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NAUCNOM VECU INSTITUTA ZA FIZIKU

Predmet: Molba za pokretanje postupka za za izbor u zvanje
naucni savetnik

Molim Nauéno vece Instituta za fiziku u Beogradu da u skladu Pravi-
Inikom o postupku i nac¢inu vrednovanja i kvantitativnom iskazivanju naucno-
istrazivackih rezultata istrazivaca pokrene postupak za moj izbor u zvanje
naucni savetnik.

U prilogu dostavljam:

1. Misljenje rukovodica projekta sa predlogom ¢lanova komisije za izbor
u zvanje

2. Struénu biografiju

3. Pregled naucne aktivnosti

4. Elemente za kvalitativnu analizu nau¢nog doprinosa

5. Elemente za kvantitativnu analizu naucnog doprinosa

6. Spisak objavljenih radova i njihove kopije

7. Potrvde o citiranosti radova (arhive INSPIRE i Google Scholar)
8. Fotokopiju o regenja o izboru u prethodno zvanje

9. Dodatke

Beograd, 19.04.2018.

dr Branislav Cvetkovié¢
visi nauéni saradnik Instituta za fiziku
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NAUCGNOM VECU INSTITUTA ZA FIZIKU
UNIVERZITETA U BEOGRADU

MISLIENJE RUKOVODIOCA PROJEKTA O IZBORU DR BRANISLAVA CVETKOVICA U ZVANJE
NAUCNI SAVETNIK

Dr Branislav Cvetkovié je zaposlen na Institutu za fiziku u Beogradu u Grupi za gravitaciju,
¢estice i polja. AngaZovan je na projektu osnovnih istrazivanja ON 171031 “Fizicke imp-
likacije modifikovanog prostor-vremena” Ministarstva prosvete, nauke i tehnoloskog razvoja
Srbije, i radi na temama vezanim za gradijentne teorije gravitacije. Dr Cvetkovi¢ je jedan
od vodeéih istrazivaca na nasem projektu, a u periodu od prethodnih pet godina ostvario je
veoma znacajne rezultate, objavio veliki broj radova u vrhunskim ¢asopisima a doktorant
koga vodi je pred odbranom doktorske teze (izvestaj o tezi je na uvidu javnosti na Fizickom
fakultetu). S obzirom da dr Branislav Cvetkovi¢ ispunjava sve uslove predvidjene Pravil-
nikom o postupku, nacinu vrednovanja i kvantitativhom iskazivanju naucnoistrazivackih
rezultata istrazivaca MPNTR za nauc¢nog savetnika, predlazem Nauc¢nom vecu Instituta za
fiziku da pokrene postupak za njegov izbor u ovo zvanje.

Za izbor dr Branislava Cvetkovi¢a u zvanje naucni savetnik predlazem sledecu komisiju:

Prof. dr Voja Radovanovi¢, redovni profesor, Fizicki fakultet
Dr Milutin Blagojevié, nau¢ni savetnik u penziji, Institut za fiziku
Dr Branislav Sazdovi¢, naucni savetnik, Institut za fiziku

Dr Milovan Vasili¢, nauéni savetnik, Institut za fiziku.

Beograd, 17. april 2018. Rukovodilac projekta ON171031

M aq 3w C.ff

prof. dr Maja Buric¢



BIOGRAFSKI PODACI

Branislav Cvetkovi¢ je rodjen 14.01.1979. u Beogradu, gde je zavrSio osnovnu skolu.
Srednju skolu, Matematicku gimnaziju, zavrsio je 1998. kao djak generacije. Ucestovao je
na Medjunarodnim olimpijadama iz matematike (Argentina 1997) i fizike (Island 1998). Iste
1998. godine upisao je Fizicki fakultet Univerziteta u Beogradu, smer Teorijska i eksperi-
mentalna fizika, koji je zavrsio 2002. godine sa prose¢nom ocenom 10.

Postdiplomske studije na Fizikom fakultetu, smer Teorijska fizika elementarnih ¢estica
i gravitacije, upisao je 2002. godine. Magistrirao je 17.03.2005. sa temom ,,Kanonska
struktura trodimenzione gravitacije sa torzijom”. Mentor magistarske teze je bio Milutin
Blagojevic.

Od 01.11.2003. radi na Institutu za fiziku kao saradnik projekata ,,Gradijente teorije
gravitacije: dinamika i simetrija”, , Alternativne teorije gravitacije” (od 01.01.2006. do
31.12.2010.) i ,,Fizicke implikacija modifikovanog prostor-vremena” (od 01.01.2011.), koji
su finansirani od strane Ministarstva prosvete, nauke i tehnoloskog razvoja vlade Republike
Srbije.

Doktorsku disertaciju pod naslovom ,,Asimptotska struktura trodimenzione gravitacije
sa torzijom” odbranio je 06.03.2008. na Fizickom fakultetu Univerziteta u Beogradu. Men-
tor disertacije bio je dr Milutin Blagojevi¢. U oktobru 2008. izabran je u zvanje naucni
saradnik, a u septembru 2013. u zvanje visi naucni saradnik.

0d 01.06.2010. do 01.12.2010. boravio je na postdoktorskom usavrsavanju, kao stipendista
Ministarstva nauke, na Institutu za teorijsku fiziku Tehnickog univerziteta u Be¢u u grupi
dr Danijela Grumilera. Tokom boravka u Becu bavio se holografskom strukturom trodimen-
zione Cern—Sajmonsove gravitacije.

U tri navrata tokom 2009, 2012. i 2015. godine boravio je u poseti Katolickom uni-
verzitetu u Valparaisu u okviru saradnje sa dr Oliverom Miskovié¢ i dr Rodrigom Oleom,
poslednji put kao gostujuéi profesor.

Aktivan je kao referi za casopise Physical Review Letters, Physical Review D, Classical
and Quantum Gravity, Journal of physics A: Mathematical and Theoretical, International
Journal of Modern Physics D, European Journal of Physics. Cileanska nacionalna fondacija
za nauku FONDECY'T angazovala ga je od 2010. kao referija za ocenu projekata.

Do sada je objavio dvadeset devet radova u vode¢im medjunarodnim casopisima kate-
gorije M21, jedan rad u medjunarodnom ¢asopisu M22, jedan rad u medjunarodnom ¢asopisu
kategorije M23, koji su prema podacima baze INSPIRE citirani 433 puta, od toga 292 bez
autocitata sa h-faktorom 12. Prema bazi Google Scholar radovi dr Cvetkovica citirani su
491 put sa h-faktorom 12.

Pod rukovodstvom dr Cvetkovi¢a je u zavrsnoj fazi izrada jedne doktorske disertacije
na Fizickom fakultetu Univerziteta u Beogradu, a bio je i mentor jednog diplomskog mas-
ter rada na istom fakultetu, kao i komentor prilikom izrade jednog diplomskog rada na
Katolickom Univerzitetu u Valparaisu.

Od skolske 2013/2014. godine nastavnik je na doktorskim studijama na Fizickom fakul-
tetu Univerziteta u Beogradu za uzu naucnu oblast Kvantna polja, Cestice i gravitacija na
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predmetu Teorija gravitacije 2.

Od skolske 2004/2005. radi kao spoljni saradnik — profesor fizike, u Matematickoj gim-
naziji, gde je tokom skolske 2006,/2007. obavljao i funkciju pomoénika direktora, a u periodu
od 2013. do 2017. bio je lan Skolskog odbora. Aktivno je uéestvovao u obelezavanju Svetske
godine fizike 2005. U periodu od 2003. do 2005. ucestvovao je u radu Komisije za takmicenje
iz fizike, dok je 2008. bio zamenik lidera na Medjunarodnoj olimpijadi iz fizike odrzanoj u
Vijetnamu.

Od 2014. godine je zamenik predsednika Upravnog odbora Instituta za fiziku.

Autor je vise zbirki zadataka za ucenike osnovnih i srednjih skola u izdanju Zavoda za
udzbenike iz Beograda i Isto¢nog Sarajeva.

OzZenjen je i ima jednu ¢erku.



PREGLED NAUCNE AKTIVNOSTI

Naucno-istrazivacki rad dr Branislava Cvetkovic¢a odvija se u oblasti teorijske fizike gra-
vitacije, preciznije lokalne Poenkareove teorije. Kandidat je objavio ukupno 31 rad u me-
djunardonim ¢asopisima sa recenzijom, ot toga 29 kategorije M21 i po 1 rad kategorije M22
i M23.

Za vreme postdiplomskih studija (2002-2005) na Fizickom fakultetu u Beogradu ka-
ndidat se bavio Hamiltonovom analizom Milke-Beklerovog (MB) modela. Magistrirao je
na temi ,,Kanonska struktura trodimenzione gravitacije sa torzijom”, koja je uradjena pod
mentorstvom dr Milutina Blagojevica.

Tokom izrade doktorata (2005-2008) kandidat je nastavio da se bavi MB modelom, gde
su u radu:

e M. Blagojevi¢ and B. Cvetkovié¢, Black hole entropy in 3D gravity with torsion, Class.
Quantum Grav. 23 (2006) 4781,

dobijeni veoma znacajni rezultati vezani za termodinamicke osobine crnih rupa — pokazano
je da torzija utice na vrednost entropije crne rupe i da je dobijeni rezultat u skladu sa
prvim zakonom termodinamike. Doktorsku disertaciju pod naslovom ,,Asimptotska struk-
tura trodimenzione gravitacije sa torzijom” odbranio je 06.03.2008. na Fizickom fakultetu
Univerziteta u Beogradu. Mentor disertacije bio je dr Milutin Blagojevi¢.

Nakon doktorata istrazivanje kandidata takodje je vezanom za modele 3D gravitacije.
Pronadjena su i ispitane su osobine resenja sa elektricnim i magnetnim poljem za 3D grav-
itaciju kuplovanu sa Maksvelovom i nelinearnom elektrodinamikom. Pokazano je da ge-
ometrijske osobine ovih resenje zavise od vrednosti centalnih naboja u MB modelu. Kandi-

dat je 2009. postigao znacajne rezultate u ispitivanju kanonske strukture topoloski masivne
gravitacije (TMG). U radu

e M. Blagojevi¢ and B. Cvetkovi¢, Canonical structure of topologically massive gravity
with a cosmological constant, JHEP05(2009)073,

razreSena je kontroverza, prisutna u tadasnjoj literauri oko broja propagirajuc¢ih stepeni
slobode u ovoj teoriji i utvrdjeno je da za TMG on iznosi jedan, a ne tri. Ispitana je
kanonska struktura Bergsof-Hom-Taundzendove (BHT) gravitacije, dok je u radu:

e M. Blagojevi¢ and B. Cvetkovi¢, Extra gauge symmetries in BHT gravity,
JHEP03(2011)139.

pokazano da je fenomen parcijalne bezmasenosti, tj. pojave da za specifican izbor param-
etara broj propagirajuc¢ih stepeni slobode smanjuje za 1, vezan isklju¢ivo za linearnu aproksi-
maciju, a ne za nelinearnu teoriju koja u posmatranoj tacki ne poseduje dodatnu lokalnu
simetriju.

Tokom 2010. kandidat je boravio na postdoktorskom usavrsavanju, kao stipendista Min-
istarstva nauke, na Institutu za teorijsku fiziku Tehnickog univerziteta u Bec¢u u grupi dr
Danijela Grumilera. Tokom boravka u Becu bavio sam se holografskom strukturom trodi-
menzione Cern-Sajmonsove gravitacije, koja je veoma detaljno ispitana u radu



e H. Afshar, B.Cvetkovi¢, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-
Simons holography, Phys. Rev. D 85, 064033 (2012).

Nakon prethodnog izbora u zvanje u periodu (2013-2018) istrazivanje kandidata se odvi-
jalo u okviru nekoliko tema.

Trodimenziona teorija gravitacije sa propagirajuc¢om torzijom. Tokom proucavanja
MB modela od pocetka devedesetih godina proslog veka postignuti su mnogobrojni znacajni
rezultati. Medjutim, MB model je topoloski, tj. ne poseduje propagirajuce stepene slobode.
Zbog toga model sa propagiraju¢om torzijom predstavlja ,realisticniju” teoriju gravitacije.

Kandidat je rad na opstoj teoriji gravitacije sa propagijacom torzijom koja ne narusava
parnost zapoceo 2012. godine, kada je ispitan ¢esti¢ni spektar teorije oko prostora M3, kao
i formulacije prvog reda koja je veoma pogodna za konstrukciju generatora lokalne simetrije
i ispitivanje kanonske strukture u AdS sektoru.

U saradnji sa kolegama iz Cilea ispitani su osnovni aspekti AdS /CFET korespondencije
za 3D gravitaciju sa torzijom. Izabran je konziztentan holografski anzac, formulisan je
poboljsani pristup Neter-Vordovim identitetima za teoriju na granici. 1 za MB model i
za model sa propagiraju¢om torzjom dobijene su konacne struje spina i energije impulsa i
izracunate anomalije.

Zatim je paznja posve¢ena Hamiltovoj strukturi skalarnog sektora teorije. Stabilnost
Hamiltonove strukture u odnosu na linearizaciju je iskoriS¢ena za identifikaciju dinamicki
prihvatljivog skupa parametara u dejstvu.

Konstruisana su i talasna resenja 3D gravitacije sa propagiraju¢om torzijom, najpre
uopsteni pp-talasi, a zatim i generalisani SikloSevi talasi. Pokazano je da Oliva-Tempo-
Troncozo crna rupa, konformno ravno resenje BHT gravitacije, predstavlja reSenje Lokalne
Poeankareove teorije u 3D za specifican izbor parametara. Koris¢enjem pouzdanog kanon-
skog pristupa izracunati su odrzani naboji za ovo resenje, koji zadovoljavaju prvi zakon
termodinamike, ¢ime je pokazano da je Abot-Dezer-Tekinov pristup neadekvatan za izracu-
navanje naboja ovog resenja. Konstruisana je Vaidija ekstenzija ovog reSenja, ¢ija posebna
podklasa poseduje asimptotsku konformnu simetriju.

Od prethodnog izbora u zvanje iz ove tematike objavljeni su sledeé¢i radovi:

e M. Blagojevi¢, B. Cvetkovié¢ , O. Miskovi¢ and R. Olea, Holography in 3D AdS gravity
with torsion, JHEP1305(2013)103.

M. Blagojevi¢, B. Cvetkovié¢, M. Vasili¢, Exotic black holes with torsion, Phys.Rev. D
88, 101501 (2013).

M. Blagojevi¢ and B. Cvetkovi¢, Three-dimensional gravity with propagating torsion:
Hamiltonian structure of the scalar sector, Phys.Rev. D88, 104032 (2013).

M. Blagojevi¢ and B. Cvetkovi¢, Gravitational waves with torsion in 3D, Phys. Rev.
D 90, 044006 (2014).

M. Blagojevi¢ and B. Cvetkovié¢, Siklos waves with torsion in 3D, JHEP11(2014)141.

M. Blagojevi¢ and B. Cvetkovi¢, Vaidya-like exact solutions with torsion,
JHEP05(2015)101.



e M. Blagojevi¢ and B. Cvetkovi¢, Conformally flat black holes in Poincaré gauge theory,
Phys. Rev D 93, 044018 (2016).

Talasna reSenja u Lokalnoj Poenkareovoj teoriji. Druga istrazivacka tema kojom se
kandidat bavio je nalazenje i ispitivanje osobina gravitacionih talasa, koji su posebno dobili
na aktuelnosti nakon nedavne eksperimentalne potvrde njihovog postojanja. Kandidat se
bavio talasnim reSenjima sa torzijom u 4D lokalnoj Poenkareovoj teoriji.

[ako je u literaturi bila poznata talasna reSenja sa torzijom, nedostajao je sistematski
pristup konstruisanju anzaca na nivou osnovnih dinamickih varijabli lokalne Poenkareove
teorije, tetrada i Lorencove koneksije. Pokazano je da se upravo polazec¢i od anzaca u kome
je koneksija generalisana u odnosu na Rimanovu teoriju, ali ipak zadrzava njene glavne
osobine mogu konstruisati uopsteni Siklosevi talasi sa torzijom, kao i uopsteni pp-talasi sa
torzijom. Ispitane su i osobine posebnih resenja kao Sto su uopsteno Kaigorovljevo resenje,
eksponencijalno i homogeno resenje, i pokazano je da u slucaju jedne familije uopstenih
pp-talasa torzija dinamicki odredjuje oblik metrike.

U poslednjem objavljenom radu iz ove oblasti u dejstvo su ukljuceni i clanovi kvadrati¢ni
po torziji i krivini koji narusavaju parnost. Ovaj rad predstavlja uvod u izuc¢avanje opste
lokalne Poenkareove teorije koja ima veoma zanimljivu kanonsku strukturu i ¢esti¢ni spektar
oko ravnog prostora, sto je potrvrdjeno u radu koji je poslat u stampu.

Iz ove tematike objavljeni su slede¢i radovi:

e M. Blagojevi¢ and B. Cvetkovié¢, Siklos waves in Poincaré gauge theory, Phys. Rev.
D 92, 024047 (2015).

e M. Blagojevi¢ and B. Cvetkovi¢, Generalized pp waves in Poincar gauge theory, Phys.
Rev D 95, 104018 (2017).

e M. Blagojevi¢, B. Cvetkovi¢ and Y. N. Obukhov, Generalized plane waves in Poincaré
gauge theory of gravity, Phys. Rev. D 96, 064031 (2017).

Lavlokova teorija gravitacije sa torzijom. Lavlokova teorija gravitacije predstavlja
minimalisticko uopstenje OTR i jedna je od alternativnih teorija gravitacije koja je pre-
dmet aktivnih istrazivanja jos od ranih sedamdesetih godina. Iako je u literaturi povremeno
posvecivana paznja ispitivanju Lavlokove gravitacije sa torzijom ta oblast je jos uvek nedo-
voljno istrazenja, jer je nalazenje resenja sa torzijom tehnicki veoma komplikovano, buduéi
da se ispostavlja da su jednacine kretanja neretko ,,preodredjene”.

Doprinos kandidata u ovoj oblasti ogleda se u konstrukciji novih reSenja sa torzijom: BTZ
crnog prstena i sferno-simetricne crne rupe sa torzijom. Identifikovani su sektori teorije u
kojima postoje ova resenja, koja su nadjena u slucaju petodimenzione teorije i ispitane su
njihove geometrijske karakteristike i termodinamicke osobine.

Poseban sektor Lavlokove gravitacije predstavlja Lavlokova Cern-Sajmonsova gravitacija
koja je posebno pogodna za proucavanje sa stanovista AdS/CFT korespondencije, buduci
da Feferman-Grahamov razvoj osnovnih dinamickih varijablo sadrzi konacan broj ¢lanova.
Nadjene su asimptotske simetrije u AdS sektoru i pokazano je da se one sastoje od lokalnih
translacija, lokalnih Lorencovih rotacija, dilatacija i ne-Abelovih lokalnih tranformacija.
Izracunate su 1-tackaste funkcije: struje energije-impulsa i spina u dualnoj koformnoj teoriji



polja i zapisani su odgovarajuc¢i Vordovi identiteti. Pokazano je da holografska teorija pose-
duje Vajlovu anomaliju, kao i da je ne-Abelova lokalna simetrija narusena na kvantnom
nivou.

Objavljeni radovi iz ove oblasti su

e B. Cvetkovi¢ and D. Simi¢, 5D Lovelock gravity: New exact solutions with torsion,
Phys. Rev. D 94, 084037 (2016).

e B. Cvektovi¢, O. Miskovic and B. Cvetkovi¢, Holography in Lovelock Chern-Simons
AdS gravity, Phys. Rev. D 96, 044027 (2017).

e B. Cvetkovié¢ and D. Simié, A black hole with torsion in 5D Lovelock gravity, Class.
Quantum Grav. 35 (2018) 055005 (13pp).



ELEMENTI ZA KVALITATIVNU OCENU RADA
KANDIDATA

1 Kvalitet nauc¢nih rezulata

1.1 Naucni nivo i znac¢aj rezultata, uticaj nauc¢nih radova

Dr Branislav Cvetkovié¢ je tokom naucne karijere objavio ukupno 31 rad u medjunarodnim
¢asopisima sa recenzijom, od ¢ega 29 kategorije M21, 1 kategorije M22 i 1 kategorije M23.
Ukupan impakt faktor radova je 139.23. Od odluke Naucnog veca o predlogu za sticanje
zvanja vivi naucni saradnik dr Cvetkovic je objavio 13 radova kategorije M21. Ukupan
impakt faktor ovih radova je 63.19. Kvalitet naucnih radova dr Cvetkovi¢a se moze proce-
niti, izmedju ostalog, prema kvalitetu ¢asopisa u kojima su objavljeni: dr Cvetkovi¢ je do
sada objavio 8 radova u ¢asopisu Journal of High Energy Physics (IF=6.22), jednom od
najuglednjih casopisa iz oblasti fizike visokih energija, kao i 14 radova u casopisu Physical
Review D (IF=4.57) koji je jedan od najznacajnijih casopisa za fiziku gravitacije, ¢estica
i polja. Dva rada doktora Cvetkovi¢a u casopisu Phys. Rev. D objavljeni su kao "rapid
communication”.
Najznacajniji radovi dr Cvetkovic¢a u poslednjih nekoliko godina su

[1] H. Afshar, B.Cvetkovi¢, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-
Simons holography, Phys. Rev. D 85, 064033 (2012), IF=4.691, citiran 49 puta

[2] M. Blagojevié¢, B. Cvetkovi¢ , O. Miskovi¢ and R. Olea, Holography in 3D AdS
gravity with torsion, JHEP1305(2013)103, [F=6.220, citiran 12 puta

[3] M. Blagojevi¢ and B. Cvetkovi¢, Siklos waves with torsion in 3D, JHEP11(2014)141,
[F=6.111, citiran 7 puta

[4] M. Blagojevi¢ and B. Cvetkovi¢, Vaidya-like exact solutions with torsion,
JHEPO05(2015)101, IF=6.023, citiran 6 puta

[5] M. Blagojevié¢, B. Cvetkovi¢ and Y. N. Obukhov, Generalized plane waves in Poincaré
gauge theory of gravity, Phys. Rev. D 96, 064031 (2017), IF=4.557, citiran 1 put

U radu [1] je veoma detaljno ispitana je holografska struktura trodimenzione Cern-
Sajmonsove gravitacije za skup razlicitih asimptotskih uslova. U radu [2] u saradnji sa
kolegama iz Cilea ispitani su osnovni aspekti AdS /CFET korespondencije za 3D gravitaciju sa
torzijom. Izabran je konzistentan holografski anzac, formulisan je poboljSani pristup Neter-
Vordovim identitetima za teoriju na granici o dobijene su konacne struje spina i energije
impulsa i izracunate anomalije. Talasna reSenja 3D gravitacije sa propagiraju¢om torzijom,
generalisani Siklosevi talasi konstruisani su u radu [3]. U radu [4] je pokazano je da Oliva-
Tempo-Troncozo crna rupa, konformno ravno resenje BHT gravitacije, predstavlja resenje
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Lokalne Poeankareove teorije u 3D za specifican izbor parametara. Konstruisana je Vaidija
ekstenzija ovog resenja, ¢ija posebna podklasa poseduje asimptotsku konformnu simetriju.
U radu [5] pokazano je da se polazeéi od anzaca u kome je koneksija generalisana u odnosu
na Rimanovu teoriju, ali ipak zadrzava njene glavne osobine mogu konstruisati pp-talasi sa
torzijom. U dejstvo su ukljuceni i clanovi kvadratiéni po torziji i krivini koji narusavaju
parnost. Ovaj rad predstavlja uvod u izu¢avanje opste lokalne Poenkareove teorije koja ima
veoma zanimljivu kanonsku strukturu i cesti¢ni spektar oko ravnog prostora.

1.2 Pozitivna citiranost radova kandidata

Prema podacima baze inSPIRE na dan 18.04.2018. radovi doktora Cvetkovic¢a citirani su
ukupno 435 puta, 292 puta bez autocitata, sa h-faktorom 12. Prema podacima baze Google
Scholar radovi su citirani ukupno 494 puta (videti prilog o citiranosti). Najveéi broj citata
imaju rasovi objavjeni u casopisima Journal of high energy physics i Physical Review D.
Rad M. Blagojevi¢ and B. Cvetkovi¢, Canonical structure of topologically massive gravity
with a cosmological constant, JHEP05(2009)073, citiran je ukupno 55 puta bez autocitata.

1.3 Parametri kvaliteta casopisa

Dr Branislav Cvetkovié¢ je tokom karijere objavio ukupno 31 rad u ¢asopisima sa ISI liste od
toga 29 kategorije M21, 1 kategorije M22 i 1 kategorije M23. Ukupan impalt faktor radova
je ukupan impakt faktor radova je 139.23. Od odluke Nau¢nog veca o predlogu za sticanje
zvanja vivi naucni saradnik dr Cvetkovic je objavio 13 radova kategorije M21. Ukupan
impakt faktor ovih radova je 63.19.

Zbirno prikazano dr Cvetkovié¢ je objavio:

e 8 radova u Journal of High Energy Physics, (srednji IF=5.931)
e 16 radova u Physical Review D (srednji [F=4.728)

e 5 radova u Classical and Quantum Gravity (srednji [F=2.981)
e 1 rad u Modern Physics Letters A (srednji IF=1.418)

Nakon odluke Naucnog veca o predlogu za sticanje zvanja vivi nau¢ni saradnik dr
Cvetkovic je objavio:

e 3 rada u Journal of High Energy Physics (srednji IF=6.118)
e 9 radova u Physical Review D (srednji IF=4.635)

e 1 rad u Classical and Quantum Gravity (srednji IF=3.119)

1.4 Stepen samostalnosti i stepen uceséa u realizaciji radova u
naucnim centrima u zemlji i inostranstvu

Od izbora u prethodno zvanje dr Cvetkovi¢ je pokrenuo pravce istrazivanja koji se nisu
ranije izucavali u Srbiji. Primena aspekata AdS/CFT korenspondencije na teorije gra-
vitacije sa torzijom, izucava se u bliskoj saradnji sa kolegama iz Cilea (Katolicki univerzitet

2



u Valparaisu i Univerzitet Andreas Beljo u Santjagu). Dr Cvetkovié¢ je deo veliki dopri-
nos u formulisanju holografskog anzaca u okviru lokalne Poenkareove teorije, uopstavanju
Neter-Vordovih identiteta na teorije sa torzijom i razumevanje Rimanovog limita za zakone
odrzanja.

Drugi pravac istrazivanja odnosi se na nalazenje talasnih resenja u okviru teorija grav-
itacije sa torzijom. Doprinos dr Cvetkovic¢a ogledao se u nalazenju sistematskog pristupa za
nalazenje odgovarajuceg anzaca za Lorencovu koneksiju, koji dovodi do identifikacije sektora
teorije u kome egzistiraju talasna reSenja, esplicitnoj konstrukciji i analizi osobina dobijenih
partikularnih rezsenja.

Trec¢i pravac istrazivanja je Lavlokova gravitacija sa torzijom, koja predstavlja i temu
doktorske disertacije Dejana Simica.

2 Angazovanost u razvoju uslova za nauc¢ni rad, obra-
zovanju i formiranju naunih kadrova

Pod mentorstvom dr Branislava Cvetkovic¢a radi se jedna doktorska disertacija na Fizickom
fakultetu Univerziteta u Beogradu. Doktorska teza Dejan Simi¢a pod naslovom ,,Lavlokova
gravitacija sa torzijom: egzaktna reSenja, kanonska i holografska struktura” sa prateéim
izvestajem za pregled i ocenu disertacije koji je sacinila komisija u sastavu prof. dr Maja
Buri¢, prof. dr Voja Radovanovi¢ i dr Branislav Cvetkovi¢ se nalazi se na uvidu javnosti na
Fizickom fakultetu u Beogradu. Ocekuje se da ¢e teza biti odbranjena pocetkom leta ove
godine.

Pod mentorstvom dr Branislava Cvetkovi¢a na Fizickom fakultetu Univerziteta u Beogradu
odbranjen je i jedan master rad studentkinje Marije Tomasevi¢ pod naslovom ,,Kretanje
¢etica u polju OTT crne rupe”. Dr Branislav Cvetkovi¢ bio je i komentor diplomskog rada
Constance Belen Calender Olivares pod naslovom ”Chemistry of three-dimensional black
holes in AdS space” koji je odbranjen na Katolickom Univerzitetu u Valparaisu. Trenutno
je u toku izdrada jos jednog master rada na Fizikom fakultetu.

Dr Branislav Cvetkovié¢ je angazovan na doktorskim studijama na Fizckom fakultetu u
uokviru uze naucne oblasti Kvantna polja, ¢estice i gravitacija kao nastavnik na predmetu
Teorija gravitacije 2.

Od 2004. radi kao spoljni saradnik — profesor fizike u Matematickoj gimnaziji. Njegovi
ucenici postizu zapazene rezultate na drzavnim i medjunarodnim takmicenjima iz fizike.

3 Normiranje broja koautorskih radova, patenata i tehni-
ckih resenja

Radovi dr Cvetkoci¢a su teorijski i najveéi broj ima samo dva autora. Medju radovima dr
Cvetkovica objavljenim u periodu nakon odluke Nau¢nog vec¢a o predlogu za sticanje zvanja
visi nauni saradnik jedan rad ima cetiri, jedan rad tri dok svi ostali radovi imaju samo dva
autora. Ukupan broj normiranih M bodova je 106.5, odnosno 102.5 nakon normiranja.



4 Rukovodjenje projektima, potprojektima i projekt-
nim zadacima

Dr Branislav Cvetkovi¢ rukovodi potprojektom ,,Gradijente teorije gravitacije” u okviru
projekta ON171031 ,,Fizicke implikacije modifikovanog prostor-vremena” koji je finansiran
od strane Ministarstva prosvete, nauke i thenoloskog razvoja Republike Srbije. U peri-
odu od 2008. do 2010. rukovodio je potprojektom ,,Torzija i nemetri¢nost u gravitaciji i
teoriji struna/brana” u okviru projekta 141036 ,,Alternativne teorije gravitacije”, koji je bio
finansiran od strane Ministarstva nauke vlade Republike Srbije.

Od 2015. Branislav Cvetkové je zamenik ¢lana uprave (MC substitute) COST akcije
”Quantum Structure of Spacetime” kojim rukovodi prof. Ricard Sabo.

Kada je 2016. godine raspisan konkurs za nove projekte Ministarstva prosvete nauke
i thenoloskog razvoja dr Branislav Cvetkovi¢ je bio prijavljen kao rukovodilac projekta
,,Kvantno prostorvreme”.

5 Aktivnost u nauc¢no stru¢nim drustvima

Dr Branislav Cvetkovi¢ je recenzent za vodeée medjunarodne ¢asopise iz fizike kao sto su:
Physical Review Letters, Physical Review D, Classical and Quantum Gravity, Journal of
physics A: Mathematical and Theoretical, International Journal of Modern Physics D, Euro-
pean Journal of Physics. Cileanska nacionalna fondacija za nauku FONDECYT angazovala
ga je od 2010. kao referija za ocenu projekata.

Dr Branislav Cvetkovi¢ je od 2012. do 2014. bio ¢lan Odeljenja za nauku i visoko
obrazovanje Drustva fizicara Srbije (NIVO DFS). Od 2003. do 2004. bio je ¢lan Komisije
za takmicenja ucenika srednih Skola. Bio je zamenik lidera na Medjunarodnoj olimpijadi
iz fizike odrzanoj u Vijetnamu 2008. Aktivno je ucestvovao u obelezavanju Svetske godine
fizike 2005, kao koordinator takmicenja ,,Otkrivamo talente za fiziku”.

Dr Branislav Cvetkovi¢ je bio clan Organizacionog komiteta vise medjunarodnih kon-
ferencija, kao sto su 2018 Workshop on Gravity, Holography, Strings and Noncommutative
Geometry (Beograd 2018), Gravity: new ideas for unsovled problems (Divéibare 2011),
Gravity: new ideas for unsovled problems II (Divéibare 2013), 5th MATHEMATICAL
PHYSICS MEETING: Summer School and Conference on Modern Mathematical Physics
(Beograd 2010).

6 Uticajnost naucnih rezultata

Uticajnost naucnih rezultata kandidata ogleda se u broju citata koji su navedeni u tacki
1 ovog priloga, kao i priloga o citiranosti. Znacaj rezultata kandidata je takodje opisan u
tacki 1.



7 Konkretan doprinos kandidata u realizaciji radova u
centrima u zemlji i inostranstvu

Dr Cvetkovi¢ je pokrenuo pravce istrazivanja koji se nisu ranije izucavali u Srbiji. Primena
aspekata AdS/CFT korenspondencije na teorije gravitacije sa torzijom, izuc¢ava se u bliskoj
saradnji sa kolegama iz Cilea (Katolicki univerzitet u Valparaisu i Univerzitet Andreas Beljo
u Santjagu). Dr Cvetkovié je deo veliki doprinos u formulisanju holografskog anzaca u okviru
lokalne Poenkareove teorije, uopstavanju Neter-Vordovih identiteta na teorije sa torzijom i
razumevanje Rimanovog limita za zakone odrzanja.

Drugi pravac istrazivanja odnosi se na nalazenje talasnih resenja u okviru teorija grav-
itacije sa torzijom. Doprinos dr Cvetkovic¢a ogledao se u nalazenju sistematskog pristupa za
nalazenje odgovarajuceg anzaca za Lorencovu koneksiju, koji dovodi do identifikacije sektora
teorije u kome egzistiraju talasna resenja, esplicitnoj konstrukciji i analizi osobina dobijenih
partikularnih rezsenja.

Trec¢i pravac istrazivanja je Lavlokova gravitacija sa torzijom, koja predstavlja i temu
doktorske disertacije Dejana Simica.

Dr Cvetkovi je ucestvovao i svim segmentima izrade svih radova od prethodnog izbora
u zvanje od definisanja teme, analitickog racuna, provere rezultata koris¢enjem softerskih
paketa Mathematica i Reduce pa do procesa objavljivanja kroz komunikaciju sa recenzen-
tima i editorima casopisa buduci da je gotovo kod svih radova on ”corresponding autor”

8 Uvodna predavanja na konferencijama i druga pre-
davanja
Nakon prethodnog izbora u zvanje dr Cvetkovié je odrzao slede¢a predavanja po pozivu:

1. Generalized plane waves in Poincaré gauge theory of gravity, 9th Mathematical Physics
Meeting: School and Conference on Modern Mathematical Physics (MPHYS9), 18-23
septembar 2018, Beograd.

2. Siklos waves in gravity with torsion, Universtity Andreas Bello, Santiago, Chile 27.10.2015.

3. General Relativity - Introduction, QOuverview and Perspectives, GR100 Centennial of
General Relativity, Beograd 23.06.2015.

4. 3D gravity with propagating torsion, Savremena matematicka fizika i njene primene,
Banja Luka 13.09.2014.

5. Holografija u 3D gravitaciji sa torzijom, Gravity: new ideas for unsolved problems II,
Divéibare 19-22. septembar 2013.

Do prethodnog izbora u zvanje dr Cvetkovi¢ je odrzao slede¢a predavanja po pozivu:

1. Eztra gauge symmetries in BHT gravity, Gravity: new ideas for unsolved problems,
Divcibare 12-14. septembar 2011.

2. Conserved charges in 3D gravity, Technical University Vienna, 08.06.2010.



3. Canonical structure of topologically massive gravity with a cosmological constant, Uni-
versidad Catholica de Valparaiso, Chile, 15.05.2009.



ELEMENTI ZA KVANTITATIVNU OCENU RADA
KANDIDATA

Dr Branislav Cvetkovi¢ je tokom naucne karijere objavio ukupno 31 rad u medjunaro-
dnim ¢asopisima sa recenzijom, od cega 29 kategorije M21, 1 kategorije M22 i 1 kategorije
M23. Ukupan impakt faktor radova je 139.23. Od odluke Naucnog vec¢a o predlogu za sti-
canje zvanja vivi nau¢ni saradnik dr Cvetkovic je objavio 13 radova kategorije M21. Ukupan
impakt faktor ovih radova je 63.19.

Prema podacima baze inSPIRE na dan 18.04.2018. radovi doktora Cvetkovica citirani su
ukupno 435 puta, 292 puta bez autocitata, sa h-faktorom 12. Prema podacima baze Google
Scholar radovi su citirani ukupno 494 puta (videti prilog o citiranosti). Najveéi broj citata
imaju rasovi objavjeni u casopisima Journal of high energy physics i Physical Review D.
Rad M. Blagojevi¢ and B. Cvetkovi¢, Canonical structure of topologically massive gravity
with a cosmological constant, JHEP05(2009)073, citiran je ukupno 55 puta bez autocitata.

Ostvareni rezultati u periodu nakon odluke Nauénog veca o predlogu za sticanje zvanja
visi naucni saradnik sumirani su u tabeli 1:

Tabela 1
Kategorija | M bodova po radu | Broj radova | Ukupno M bodova | Normiranih M bodova
M21 8 13 104 100
M33 1 2 2 2
M34 0.5 1 0.5 0.5

Poredjenje sa minimalnim kvantitatvnim uslovima za izbor u zvanje nauc¢ni savetnik

dato je u tabeli 2:

Tabela 2
Minimalan broj M bodova Ostvareni rezultati Ostvareni
normirani rezultati
Ukupno 70 106.5 102.5
M10+M20+M31+M32+M33+M41+M42+M90 | 50 106 102
M114+M12+M21+M224+M23 35 104 100

Spisak radova dr Branislava Cvetkoviéa

Radovi u vrhunskim medjunarodnim casopisima M21

& Do prethodnog izbora u zvanje:




M. Blagojevi¢ and B. Cvetkovié¢, Black hole entropy in 3D gravity with torsion, Class.
Quantum Grav. 23 (2006) 4781.

M. Blagojevi¢ and B. Cvetkovi¢, Black hole entropy from the boundary conformal
structure in 3D gravity with torsion , JHEP10(2006)005.

M. Blagojevi¢ and B. Cvetkovi¢, Covariant description of the black hole entropy in
3D gravity, Class. Quant. Grav. 24 (2007) 129.

B. Cvetkovi¢ and M. Blagojevié¢, Supersymmetric 3D gravity with torsion: asymptotic
symmetries, Class. Quantum Grav. 24 (2007) 3933.

M. Blagojevi¢ and B. Cvetkovi¢, Electric field in 3D gravity with torsion, Phys. Rev.
D 78, 044036 (2008).

M. Blagojevi¢ and B. Cvetkovi¢, Self-dual Maxwell field in 3D gravity with torsion,
Phys. Rev. D 78, 044037 (2008)

M. Blagojevi¢ and B. Cvetkovié¢, Canonical structure of topologically massive gravity
with a cosmological constant, JHEP05(2009)073.

M. Blagojevi¢, B. Cvetkovi¢ and O. Miskovié¢, Nonlinear electrodynamics in 3D gravity
with torsion, Phys. Rev. D 80, 024043 (2009).

M. Blagojevi¢ and B. Cvetkovi¢, Asymptotic structure of topologically massive gravity
in spacelike stretched AdS sector, JHEP09(2009)006.

M. Blagojevi¢ and B. Cvetkovi¢, Asymptotic Chern-Simons formulation of spacelike
stretched AdS gravity, Class. Quantum Grav. 27 (2010) 185022 (19pp).

M. Blagojevi¢ and B. Cvetkovi¢, Conserved charges in 3D gravity, Phys. Rev. D 81,
124024 (2010).

M. Blagojevi¢ and B. Cvetkovi¢, Hamiltonian analysis of BHT massive gravity,
JHEP01(2011)082.

M. Blagojevi¢ and B. Cvetkovi¢, Extra gauge symmetries in BHT gravity,
JHEP03(2011)139.

H. Afshar, B.Cvetkovi¢, S. Ertl, D. Grumiller and N. Johansson, Holograms of con-
formal Chern-Simons gravity, Phys. Rev. D 84, 041502(R) (2011).

H. Afshar, B.Cvetkovi¢, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-
Simons holography, Phys. Rev. D 85, 064033 (2012)

M. Blagojevi¢ and B. Cvetkovi¢, 3D gravity with propagating torsion: The AdS sector,
Phys. Rev. D 85, 104003 (2012).

Nakon prethodnog prethodnog izbora u zvanje:




M. Blagojevi¢, B. Cvetkovié¢ , O. Miskovi¢ and R. Olea, Holography in 3D AdS gravity
with torsion, JHEP1305(2013)103.

e M. Blagojevi¢, B. Cvetkovi¢, M. Vasili¢, Exotic black holes with torsion, Phys.Rev. D
88, 101501(R) (2013).

e M. Blagojevi¢ and B. Cvetkovi¢, Three-dimensional gravity with propagating torsion:
Hamiltonian structure of the scalar sector, Phys.Rev. D 88, 104032 (2013).

e M. Blagojevi¢ and B. Cvetkovi¢, Gravitational waves with torsion in 3D, Phys. Rev.
D 90, 044006 (2014).

e M. Blagojevi¢ and B. Cvetkovi¢, Siklos waves with torsion in 3D, JHEP11(2014)141.

e M. Blagojevi¢ and B. Cvetkovié¢, Siklos waves in Poincaré gauge theory, Phys. Rev.
D 92, 024047 (2015).

e M. Blagojevi¢ and B. Cvetkovi¢, Vaidya-like exact solutions with torsion,
JHEP05(2015)101.

e M. Blagojevi¢ and B. Cvetkovi¢, Conformally flat black holes in Poincaré gauge theory,
Phys. Rev D 93, 044018 (2016).

e B. Cvetkovi¢ and D. Simi¢, 5D Lovelock gravity: New exact solutions with torsion,
Phys. Rev. D 94, 084037 (2016).

e M. Blagojevi¢ and B. Cvetkovi¢, Generalized pp waves in Poincar gauge theory, Phys.
Rev D 95, 104018 (2017).

e B. Cvetkovi¢, O. Miskovic and B. Cvetkovi¢, Holography in Lovelock Chern-Simons
AdS gravity, Phys. Rev. D 96, 044027 (2017).

e M. Blagojevi¢, B. Cvetkovi¢ and Y. N. Obukhov, Generalized plane waves in Poincaré
gauge theory of gravity, Phys. Rev. D 96, 064031 (2017).

e B. Cvetkovi¢ and D. Simi¢, A black hole with torsion in 5D Lovelock gravity, Class.
Quantum Grav. 35 (2018) 055005 (13pp).

Radovi u istaknutim medjunarodnim ¢asopisima M22

& Do prethodnog izbora u zvanje:

e B. Cvetkovi¢ and M. Blagojevi¢ , Stability of 3D black hole with torsion, Mod. Phys.
Lett. A, Vol. 22, No. 40 (2007) 3047-3055.

Radovi u medjuanarodnim casopisima M23

& Do prethodnog izbora u zvanje:




e M. Blagojevi¢ and B. Cvetkovié¢, Canonical structure of 3D gravity with torsion, in:
Progress in General Relativity and Quantum Cosmology, vol. 2, ed. Ch. Benton (Nova
Science Publishers, New York, 2006), 103.

Radovi sa medjunarodnih skupova stampani u celini M33

& Do prethodnog izbora u zvanje:

e M. Blagojevi¢ and B. Cvetkovi¢, Conserved charges in 3d gravity with torsion, Bled
workshops in physics, Vol.6, No. 2, (2005), ed. N. Mankoc-Borstnik et al. 8-16.

e M. Blagojevi¢ and B. Cvetkovi¢, Asymptotic charges in 3d gravity with torsion, pre-
davanje na skupu ”Fourth Meeting on Constrained Dynamics and Quantum Gravity”
(Sardinija, Italija, 12-16 sept. 2005.), J. Phys. Conf. Ser. 33 (2006) 248.

e M. Blagojevié¢ and B. Cvetkovié¢, The influence of torsion on the black hole entropy in
3D gravity, SFIN XX (A1) (2007) 51-62.

e B. Cvetkovi¢ and M. Blagojevi¢, Supersymmetric 3D gravity with torsion: asymptotic
symmetries and black hole stability, predavanje na skupu ”V International Symposium
on Quantum Theory and Symmetries” (Valjadolid, Spanija 22-28 jul 2007.), J. Phys.
Conf. Ser. 128 (2008) 012001.

e M. Blagojevi¢ and B. Cvetkovi¢, Self-dual Maxwell field in 3D gravity with torsion
and dynamical role of central charges, predavanje na skupu ”Recent Developments in
Gravity (NEB XIII)” (Solun, Gréka 4-06. jun 2008.), J. Phys. Conf. Ser. 189 (2009)
012010.

e M. Blagojevi¢ and B. Cvetkovi¢, Asymptotic symmetries of spacelike stretched AdS
gravity, predavanje na skupu ”The twelfth Marcel Grossman meeting on general rela-
tivity” (Pariz, Francuska, 12-18. jul 2009) Proceedings of the twelfth Marcel Grossman
meeting on general relativity, Part C' 1823.

& Nakon prethodnog izbora u zvanje:

e M. Blagojevi¢ and B. Cvetkovi¢, Poincaré gauge gauge theory in 3D: canonical stability
of the scalar sector, predavanje na skupu ”Gravity: new ideas for unsolved problems
117, Divéibare 19-22. septembar 2013, arXiv: 1310.8309 [gr-qc]

e M. Blagojevi¢ and B. Cvetkovi¢, Vaidya-like exact solutions with torsion, predavanje
na skupu ”"The fourtheenth Marcel Grossman meeting on general relativity” (Rim,
Italija, 11-19. jul 2015) Proceedings of the twelfth Marcel Grossman meeting on general
relativity 2597.

Radovi sa medjunarodnih skupova Stampani u izvodu M34

& Do prethodnog izbora u zvanje:




e M. Blagojevi¢ and B. Cvetkovié¢, Canonical structure of the topological 3d gravity
with torsion, Book of short contributions, ed. G. Djordjevic, Lj. Nesic and J. Wess,
22-24.

e M. Blagojevi¢ and B. Cvetkovi¢, Canonical structure of new massive gravity, 60th
Annual Meeting of the Austrian Physical Society, 69.

& Nakon prethodnog izbora u zvanje:

e M. Blagojevi¢ and B. Cvetkovi¢, Generalized plane waves in Poincaré gauge theory
of gravity, Book of abstracts — 9th MATHEMATICAL PHYSICS MEETING: School
and Conference on Modern Mathematical Physics, 22.

M63 - 1 rad

& Do prethodnog izbora u zvanje:

e B. Cvetkovi¢ and M. Blagojevi¢, Supersymmetric 3D black hole with torsion, J. Res.
Phys, Vol.31, No 2 (2007) 102-105.
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1 Introduction

Poincaré gauge theory (PGT) is a modern field-theoretic approach to gravity, proposed
in the early 1960s by Kibble and Sciama [1, 2]. Compared to Einstein’s general rela-
tivity (GR), PGT is based on using both the torsion and the curvature to describe the
underlying Riemann-Cartan (RC) geometry of spacetime [3—6]. Investigations of PGT in
three-dimensional (3D) spacetime are expected to improve our understanding of both the
geometric and dynamical role of torsion in a realistic, four-dimensional gravitational the-
ory. Systematic studies of 3D PGT started with the Mielke-Baekler model [7], introduced
in the 1990s as a PGT extension of GR. However, this model is, just like GR, a topological
theory without propagating degrees of freedom. In PGT, such an unrealistic dynamical
feature can be quite naturally improved by going over to Lagrangians that are quadratic
in the field strengths [8, 9], as in the standard gauge theories.

Relying on our experience with GR, we know that exact solutions of a gravitational
theory are essential for its physical interpretation. In the context of 3D PGT, exact so-
lutions were first studied in the Mielke-Baekler model; for a review, see chapter 17 in
ref. [6]. Recently, our research interest moved toward exact solutions in a more dynamical



framework of the quadratic PGT. The first step in this direction was made by construct-
ing the Banados-Teitelboim-Zanelli (BTZ) black hole with torsion [9]. Then, we showed
that gravitational waves can be naturally incorporated into the PGT dynamical frame-
work [10, 11]. The purpose of the present work is to examine a PGT generalization of
the Oliva-Tempo-Troncoso (OTT) black hole [12], see also [13], as well as its Vaidya-like
extension [14].

The OTT black hole is an exact solution of the Bergshoeff-Hohm-Townsend (BHT)
massive gravity [15], a Riemannian model defined by adding a specific combination of
curvature-squared terms to the Hilbert-Einstein action. Generically, the BHT gravity with
a cosmological constant admits two distinct maximally symmetric vacua. However, when
the coupling constants satisfy a specific critical condition, these two vacua coincide. It is
exactly in this case that the OTT black hole is a vacuum solution of the BHT gravity.!
Going a step further, Maeda [14] formulated a Vaidya-like extension of the OTT black hole,
assuming the presence of a null dust fluid as a matter field. In this paper, we construct a
Vaidya-OTT spacetime with torsion as an exact vacuum solution of PGT.

The paper is organized as follows. In section 2, we describe the static OTT black hole
as a Riemannian solution of PGT in vacuum. In particular, the canonical expression for
the gravitational energy is shown to be directly compatible with the first law of black hole
thermodynamics. In section 3, we introduce a Vaidya extension of the OTT metric in the
manner of Maeda [14]; the resulting Riemannian geometry is not compatible with the PGT
dynamics in vacuum. Then, in section 4, we construct a Vaidya-OTT geometry with torsion
as an exact vacuum solution of PGT. In section 5, we apply canonical methods to show that
a specific subclass of these solutions is characterized by the asymptotic conformal symmetry.
The canonical Vaidya-OTT energy is found; apart from the OTT term, it contains a
contribution stemming from torsion. The associated surface term of the canonical generator
for time translations is a generalization of the more standard expression [16], used in ref. [17]
to calculate energies for a number of exact solutions in 3D gravity. Finally, section 6 is
devoted to concluding remarks, while appendices contain some technical details.

Working in PGT, we use the following conventions: the Latin indices (4, j, k, . . .) refer
to the local Lorentz frame, the Greek indices (u, v, p,...) refer to the coordinate frame, b
is the triad field (coframe 1-form), w" = —w’? is a connection 1-form, the respective field
strengths are the torsion 7% = db’ + w', A b and the curvature RY = dw" + w'j, A W
(2-forms); the Lie dual of an antisymmetric form X% is X; := —&;;5X7*/2, the Hodge dual
of a form « is *«, and the exterior product of forms is implicit.

2 OTT black hole in PGT

We begin our considerations by showing that the static OTT black hole, a vacuum solution
of the BHT gravity with a unique AdS ground state [12], is also a Riemannian solution of
PGT, in spite of the fact that PGT represents quite a different dynamical framework [9].

!For the canonical aspects of the full nonlinear theory in the critical regime, see refs. [18, 19].



2.1 Geometric aspects

The metric of the static OTT spacetime is given by

7“2

d2
d32:N2dt2—L—r2d<p2, N? .= —,u—{—Br—i—Ez,

= (2.1)

where 1 and B are integration constants. The Killing horizons are determined by the
condition N? = 0: )
ry = % (—B + /B2 +4u/€2> .
When at least . is real and positive, and 2 > 0, the OTT metric defines a static and
spherically symmetric AdS black hole; for B = 0, it reduces to the BTZ black hole.
Given the metric (2.1), one can choose the associated triad field in the form

dr

b0 = Ndt, blzﬁ, b =rdy, (2.2)

so that ds? = n;;b° ® b7, where n = diag(+1, —1, —1). Then, treating the OTT black hole
as a Riemannian object, we use the Christoffel connection,

N
Wi2 —

wh=-N,  Ww?=0, —b*, (2.3)
r

where N’ := 9N/Jr, to calculate the curvature 2-form:

1
ROI — (N/N)lbobl — ﬁbobl,
1 B 1
R% = ZN'NpO%? = ( = bOp?
r 2r + 0?2 ’
1 B 1
RZ = ZN'Nb'? = [ = + — | b'b2. 2.4
r or + 02 (2.4a)

For B # 0, the scalar curvature has a singularity at r = 0:

6 2B
R=—-+—. 2.4b
02 + r ( )

Nonvanishing irreducible components of the curvature are:
©) pis — L pyip ) pid — pii _ 6) pij
6 9y
In this geometry, the Cotton 2-form C?, defined by
. . . 1
C':=VL', L' = (Ric)" — ZRb’, (2.5)

is vanishing, so that the OTT spacetime is conformally flat. This is not a surprise since
the OTT metric is also a solution of the conformal gravity [13].
Now, we shall show that the OTT black hole is a Riemannian solution of PGT in

vacuum.



2.2 Riemannian sector of PGT

Lagrangian dynamics of PGT if expressed in terms of its basic field variables, the triad
field b' and the RC connection w”, and the related field strengths, the torsion T° and the
curvature RY. The general parity-preserving gravitational Lagrangian of PGT is quadratic
in the field strengths, see appendix A. In the Riemannian sector of PGT, torsion vanishes
and L is expressed only in terms of the curvature. For (5)R¢j = 0, we have

1 ..
Lg = —*(aoR + 2/1()) + §R”* (b4(4)RZ'j + bG(G)Ri]‘) , (2.6)
and the general vacuum PGT field equations (A.2) reduce to a simpler form:

(1ST) E; =0,
(2ND)  VH; =0, (2.7)

where E; and H;; are given in (A.5). The field equations produce the following result:

(2ND) = by + 26 = 0,
(IST) = by — 2&052 =0, ag + 2€2A0 =0. (2.8)

Thus, the OTT black hole is an exact vacuum solution in the Riemannian sector of PGT,
provided the four Lagrangian parameters (ag, b4, bg, Ag) satisfy the above three conditions.

2.3 Gravitational energy and entropy

Asymptotically, for large r, the OTT geometry takes the AdS form. Based on the canonical
approach described in appendix B and section 5, one finds that the only nontrivial conserved
charge of this geometry is the gravitational energy,

E= i (u + iBW) : (2.9)
whereas the angular momentum M vanishes. The result is obtained from the canonical
generator of time translations, the surface term of which contains a new contribution with
respect to the more standard situation, see refs. [16, 17] and subsection 5.2.

Remarkably, the canonical expression for E is directly compatible with the first law of
black hole thermodynamics. Indeed, using the OTT central charges (subsection 5.3)

3¢

¢t = 24w - 20l = o (2.10)

the Cardy formula produces the following expression for the entropy:

S = 4nl\/E/AG . (2.11)

Then, by introducing the Hawking temperature,

2| 1 AGE, (2.12)

1
T=5 0N r=re T 2l
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one can directly verify the first law of the black hole thermodynamics:
OFE =T6S. (2.13)

Since the entropy vanishes for F = 0, the state with £ = 0 can be naturally regarded as
the ground state of the OTT family of black holes [20].

The canonical energy (2.9) coincides with the shifted OTT energy AM = M — M),
introduced by Giribet et al. [20], where M = u/4G is interpreted as the conserved charge
and My = —B?/16G. The quantity AM is defined to respect Cardy’s formula for the
entropy, and it has the role of thermodynamic energy in the first law. In the canonical
approach, the conserved charge F is the same object as the thermodynamic energy.

3 Vaidya extension of the OTT metric

To obtain a Vaidya extension of the OTT metric, we first make a coordinate transformation
from the Schwarzschild-like time coordinate ¢ to a new coordinate w, such that

dt = du + dr/N?. (3.1)

The physical meaning of u is obtained by noting that u = const. corresponds to a radially
outgoing null ray, dr/dt = N2, see ref. [21]. Then, following Maeda [14], we introduce a
Vaidya extension of the OTT black hole by making B a function of u, B = B(u), but
leaving 1 as a constant. The Vaidya-OTT metric defines a time dependent spherically
symmetric geometry:

ds® = N?du? + 2dudr — r?de? . (3.2)
In the new coordinates z# = (u,, ¢), it is convenient to choose the triad field as
bt = du, b~ := Hdu + dr, b i=rdyp, (3.3)
where H = N?/2, so that the line element becomes ds? = nijbibj, with

010
Nij = 10 0
00-1

The dual frame h;, defined by h; |/ = (5{ , is given by
hy =0, — HO,, h_ =0, hgz%@w.
For vanishing torsion, one can use the Riemannian connection
wt™ = —H'bT, wt? = —%bQ, w?= %HZP, (3.4)

to calculate the related curvature 2-form R%. Then, following the procedure described in
the previous section, one finds that the PGT field equations (2.7) imply:

(2ND) = by + 2bg =0,
(1ST) = bi—2a0?=0, ag+20?A=0, B=0, (3.5)



where B := 8, B. Thus, the Vaidya-OTT metric with B # 0 is not a Riemannian solution
of PGT in vacuum.

In order to overcome a similar barrier in the BHT gravity, Maeda [14] introduced
the Vaidya-OTT solution in the presence of matter, represented by a null dust fluid. The
energy density of this fluid is expressed directly in terms of the metric function B(u), which
remains dynamically undetermined. Based on our experience with exact wave solutions in
PGT [10, 11}, we expect that the presence of torsion could lead to a consistent description
of the Vaidya-OTT dynamics in vacuum. Further exposition confirms this expectation.

4 Vaidya-OTT solution with torsion

4.1 Geometry of the ansatz

Following the logic of our approach to exact wave solutions in PGT [10, 11], we propose to
look for a Vaidya-OTT solution with torsion using the following two assumptions:

(i) The new triad field retains the form (3.3);

(ii) The RC connection is obtained from the Riemannian expression (3.4) by the rule
H — H + K, where K = K(u):

1 1
wt==—Hb", w2 =—2p, wl=Z(H+K)}H. (4.1)
r T

The new function K is expected to compensate the presence of the problematic B term in
the Riemannian field equations (3.5). Geometrically, K defines the torsion of spacetime.
Indeed, using T* := Vb’ one obtains:

1
TV, T~ =0, T? = “Kbtv2. (4.2)
r
The nonvanishing irreducible components of the torsion are (V7% and AT

To complete the geometric description of our ansatz, we use the connection (4.1) to
calculate the RC curvature 2-form:

1
= gyt — ot
R = H'Y b = 5b%0

1 1 B
+2 _ *H,b+b2 Y = b+b2
R r <€2 * 2r> ’
1 1 /. -
R2=-Hbp4- (H g H’K) b2 (4.3)
r r
For B # 0, the scalar curvature is singular at r = 0:
6 2B
R=—=+—.
02 + r

The nonvanishing irreducible components of the curvature are (6) R and () R = R7{6) RiJ
With the adopted geometric structure of our ansatz, the general PGT Lagrangian (A.1)
becomes effectively of the form

‘ 1.
Lg = —*(a()R + 2/10) + TZ*(al(l)Ti + az(Q)Ti) + iRU *(b4(4)Rij + b6(6)Rij) . (4.4)



4.2 Solutions

With a given geometry of our ansatz, we now wish to find the metric function H and
the torsion function K as solutions of the vacuum PGT field equations (A.2). To ensure a
smooth limit to the standard OTT black hole for B — const., we impose the conditions (2.8)
on the Lagrangian parameters. Then, the field equations (A.2) take the form

(2ND) 2K+ BK =0, a,a3=0,
(1ST) B’ 42K =0. (4.5)

The conditions a1, ag = 0 effectively eliminate the 7% terms from the Lagrangian. Moreover,
the second term in R~2 vanishes on-shell. Such a reduction of R¥ to its OTT form (with
H. K= 0) is a manifestation of the compensating role of the torsion function K.

By combining the above two equations, one obtains

1 |
2K — ZBQZQ = —Kyl?, B+ ZB2 =K, (4.6)

where K is an integration constant, the first integral of the field equations (4.5). Intro-
ducing a new constant E by K¢?> = 4GE — p, the first equation takes the form

1
4GE = p+ 13252 - 2K, (4.7)

where FE' is recognized as a RC generalization of the gravitational energy (2.9). The con-
servation law of E is defined with respect to the evolution along u, dE/du = 0. However,
dt = du+dr/N? implies t = u+ Oy, so that asymptotically, one expects E to be conserved
also with respect to the Schwarzschild-like time ¢. In the next section, this argument is
confirmed by canonical methods.

Depending on the value of Ky, there exist three branches of solutions.

1. Ko = C?. Apart from the trivial case B = 2C, K = 0, one finds:
c2e

Cy
B =20 tanh = (u+ Cy), K —=— . 438
1 tanh == (u + C2) 2 cosh? i (u 1 Ca) (4.8)

2. Ky = —C?. By replacing C; — iC} in the solution (4.8), one obtains:
C2e?

&
B = -2Ctan —(u + C9), K= . 4.9
! 2( 2) 2cos2 L (u + Cy) (4.9)
3. Kp=0 )
4 20
B= — K=—_. 4.10
u+Cy’ (u+ Co)? (4.10)

The solutions in branches 2 and 3 are singular at finite values of u, whereas the solutions
in branch 1 are perfectly regular, and physically most appealing.

In figure 1, we illustrate a typical form of the solutions from branch 1. Since B(u) and
K (u), as well as their derivatives, are bounded functions, the field strengths (4.2) and (4.3)
approach asymptotically to a Riemannian AdS spacetime. This motivates us to examine
the corresponding asymptotic structure in more details.
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Figure 1. Branch 1 solutions for B(u) and K (u), with C, £ =1, Cy = 2.

5 Asymptotic symmetry

In this section, we use the canonical approach to analyze the asymptotic symmetry asso-
ciated to the Vaidya-OTT solution with torsion in branch 1.

5.1 AdS asymptotic conditions

Transition from the OTT to the Vaidya-OTT triad is realized not only by making B a
function of u, but also by going over to a new triad basis, as can be seen by comparing
egs. (2.2) and (3.3). The new basis allowed us to introduce the RC geometry by the simple
rules formulated in subsection 4.1. Then, requiring the invariance under the AdS group
SO(2,2), see [22], one arrives at the following set of the Vaidya-OTT asymptotic states:

. . . —. 12 0 O . 01 03 Ol
v,=b0,+B, b,=|w10]|, B,=|0.,0 0], (5.1a)
0 0r Qo 02 O
and
001 01 03 O
W=+, @u=-l004 |, Qu=|0,004|, (51b)
500 Oy Oy Oy

where w' is the Lie dual of w”, and b’ u and o u refer to the background configuration with
w1, B = 0, representing the massless BTZ black hole. These states are invariant under the
set of restricted local Poincaré transformations, defined by the parameters

fu =0U + Oy, fT = —r00,U + O,
=3 §8¢U+(’)2, (5.2a)
o= Louro 0~ = _9,U+0
= , © 2 _26 © ()
62 = 00,U + O . (5.2b)



Here, the functions U = U(u, ) and ® = ®(u, ) are such that the combinations U+ =
U + ® satisfy the conditions 9.UT = 0, where 2 = u/f + ¢. Since u = t + O for large 7,
these conditions define the asymptotic conformal group in 2D.

In spite of certain technical differences between the asymptotic requirements (5.1)
and (B.1), the corresponding commutator algebras have the same form. Using the compo-
sition law of the restricted Poincaré parameters to leading order, the commutator algebra
associated to (5.1) is found to have the form of two independent Virasoro algebras,

i ) = (m —n)6:

mytn m—4n >

(5.3)

where (£ = §(UE = eF*"), The respective central charges ¢ will be determined by the
canonical methods.

To complete the analysis of the asymptotic conditions, we presented in appendix C an
additional set of asymptotic requirements, motivated by the form of torsion in (4.2).

5.2 Canonical generators

In order to examine the canonical structure of the quadratic PGT, we use the first-order
formulation [23], as it leads to a particularly simple construction of the canonical generator,
the form of which can be found in eq. (5.7) of ref. [9]. In this formulation, one introduces
two new variables, 7; and pp,,, such that their on-shell values are 7, = H; and py, = Hpn-
Since the canonical generator G acts on basic dynamical variables via the Poisson bracket
operation, it is required to be a differentiable phase-space functional. For a given set of
asymptotic conditions, this property is ensured by adding a suitable surface I' term to G,
such that G = G + I is both differentiable and finite phase-space functional [24, 25]. To
examine the differentiability of G, we start from the form of its variation:

6G = —/ d?z(6Gy + 6Gy),
>
6G1 = P (b ,000Ti5 + W' 10abpig + T 10aObig + p'0adwig) + R,
6Go = "%0'9,0pis + R. (5.4)

Here, the coherently oriented volume 2-form on the spatial section 3 of spacetime is nor-
malized to d?x = drdp, the variation is performed in the set of asymptotic states, R stands
for regular terms, and p’ is the Lie dual of p,u, = Hyny, the on-shell value of which reads

HZ‘j = —2a061'jkbk — 4a0£25¢jkﬁk s (5.5)

and LF is the “symmetrized” Schouten 1-form, Lj, = L(m)b™, see (2.5).
In what follows, we restrict our considerations by two specific assumptions that char-
acterize both the OTT black hole and the Vaidya-OTT solution with torsion:

(1) The torsion squared-terms in L¢ effectively vanish, that is 7; = 0;

(2) ®)RY = 0.



The asymptotic conditions (5.1) imply 6G2 = R, so that the surface term in the improved
generator G = G + I is determined by the variational equations

2
o = / dcp(ft(sg +£POM), (5.6a)
0
1. . -
0& = 3 (UJUt(SHijgp + 5wz’j¢H”t) , (5.6b)
1, .y
oM = 5 (w ]¢5Hij<p + 5wij¢H j(p) R (5.60)

where we used v =t 4+ 01, and the boundary 0% is parametrized by the coordinate .

Finding a solution for £ from the variational equation (5.6b) demands rather involved
considerations, based on the asymptotic conditions (5.1) and (C.1). As shown in ap-
pendix C, the surface term for time translations can be written in the form

2
righ = [ dpste. (5.72)
0
1 .. A 1 . ..
g = 5( Z]tAHij<p + szJ(pHZ’jt) — Z(AwthHij%’ - AwljcpAHijt) s (57b)

where AX := X — X is the difference between any form X and its boundary value X. On
the other hand, equation (5.6¢) leads to a simple surface term for spatial rotations:

2w 1 ..
re?] = /O oM, M=, (5.70)
Both T'[¢f] and T'[£¥] are finite phase-space functionals (see appendix C).

The boundary terms for ¢! =1 and £¥ =1,

2T 27
E:/ o€ M:/ do M., (5.8)
0 0

represent the energy and angular momentum of the system, respectively. Calculated on
the Vaidya-OTT configuration, these expressions take the values

E:41G<,u+i32£2—2K>, M=0. (5.9)
The form of E confirms the result (4.7) obtained from the Lagrangian field equations.
In the canonical formalism, the conservation laws for £ and M follow from the Poisson
bracket algebra of the asymptotic symmetry [13].

The expression for energy defined by equation (5.7b) consists of two pieces. As shown
in ref. [17], the first piece is sufficient to correctly describe the energy content of a number of
solutions in 3D gravity with/without torsion and topologically massive gravity. However,
when applied to the (Vaidya-)OTT solution, this piece is not sufficient; in particular, it
produces the incorrect coefficient 1/2 for the B2 term in (5.9). The second piece in (5.7b)
is closely related to the presence of the Br term in the OTT metric. Thus, our result (5.7b)
represents a generalization of the energy formula used in [17] to the (Vaidya-)OTT case.

~10 -



5.3 Canonical algebra of asymptotic symmetries

The asymptotic symmetry is described by the Poisson bracket algebra of the improved
generators. Rather then performing a direct calculation, the form of this algebra can be
found by a more instructive method. To show how it works, we introduce the notation
G' = G[U', @], and similarly for G” and G”. Then, according to the main theorem of
ref. [25], one can conclude that the Poisson bracket algebra has the form

{é//’ G«/} — é/// + C”/, (5‘10)

where the parameters of G" are defined by the composition law of the asymptotic Poincaré
transformations, and C”” is the central charge term. In order to calculate C"”, one should
note that the algebra (5.10) implies 0pI"” ~ I'” + C", where 6 I'” is determined by the
relations (5.6), and C” is identified as the field independent piece on the right-hand side.
Then, going over to the Fourier modes L™ of G, the algebra (5.10) takes the form of two
independent Virasoro algebras,

+
. c
{LE LEY = (m—n)LE, + En35m7,n , (5.11)
where the classical central charges are equal to each other, ¢t = ¢, with
3¢
==- 5.12
=" (5.12)

Thus, the value of ¢ is found to be twice the GR value ¢y = 3¢/2G.

6 Concluding remarks

In this paper, we constructed a Vaidya-like extension of the OTT black hole as an exact
solution of the quadratic PGT in vacuum. The construction is realized in two steps.

First, we showed that the OTT black hole is a Riemannian vacuum solution of PGT,
provided the coupling constants satisfy certain requirements. The black hole energy is
calculated from the canonical generator for time translations, the surface term of which is
a suitable generalization of the more standard expression that can be found in ref. [16],
see also ref. [17]. The canonical energy E is compatible with the first law of black hole
thermodynamics, in agreement with the equality of E to the shifted OTT energy [20].

Then, following Maeda [14], we introduced a Vaidya-like extension of the OTT black
hole; however, this extension is not a Riemannian solution of PGT in vacuum. To overcome
this difficulty, we introduced a suitable ansatz for the connection possessing a nontrivial
torsion content, making thereby the resulting Vaidya-OTT geometry an exact vacuum so-
lution of PGT. As far as the asymptotic structure of the Vaidya-OTT solution is concerned,
one should note that: (a) the surface term of the canonical generator for time translations
has the same structure as in the OTT case, (b) the canonical energy differs from the OTT
black hole energy by a contribution stemming from the torsion, and (c) central charges of
the asymptotic algebra are the same as in the OTT black hole case.

Since the OTT solution is known to exists also for positive or vanishing 1/¢? [12], most
of the present results could be straightforwardly extended to these sectors.

- 11 -
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A PGT field equations

In this appendix, we give a brief account of the PGT field equations, based on ref. [9].
The parity-invariant gravitational Lagrangian Lg = Lg(b%, T/, R™") (3-form) is at most
quadratic in the torsion 7% and the curvature R¥:
Lg = —*(aoR + 24¢) + T™(ay VT + a2 DT} + a5}
1 ..
+§RU (b4(4)RZ‘j + b5(5)Rij + 56(6)Rij> , (A.1)
where MT% and (W RY are irreducible components of the respective field strengths, and ag

is normalized by ag = /167G. By varying Lg with respect to b° and w%, one obtains the
vacuum field equations that can be written in a compact form as

(1ST) VH;+E; =0,
(2ND)  VH;; + E; =0. (A.2)

Here, H; := OLg/0T" and H;j :=0L¢g/ ORY are the covariant momenta:

H; = 25T+ ae?T; + a39T)
Hl] = —2a0€ijmbm + HZIJ 5

Hz{j = 2% (b4(4)Rij + b5(5)RZ’j + 56(6)Rij) R (A3)
and E; := 0Lg/0b" and Eij =0Lg/ Ow" are the energy-momentum and spin currents:

1
E; = hil Lg — (hi) T™)Hy — 5 (hid R™™) Hyn
Eij = —(biHj — b]HZ) . (A4)

In the Riemannian sector (T° = 0) with (5)R¢j = 0, H; and Ej;; vanish, and the
simplified field equations take the form displayed in (2.7), with

b + 2b4

Hij = —2a05ijmbm + Ré‘l‘jkbk — 254€ijm(RiC)mkbk ,

E; = Lg*bi — R™ b Hppyp, (A.5)

Here, we used Lg = LG €, and € is the volume 3-form.

- 12 —



B Asymptotic conditions for the OTT black hole

The action of the AdS Killing vectors on the OTT black hole configuration, described in
section 2, leads to the associated asymptotic conditions that are relaxed with respect to
the Brown-Henneaux ones:

Op O3 Og
Vu=b,+B,, Bu=[00,0 [, (B.1a)
Oy 03 O

and
Op O3 Oy
W=+, Q=10 0,0 |. (B.1b)
Oy O3 Oy

Here, w is the Lie dual of w¥, and Biu and aﬂ'u refer to the AdS background (with B =

= 0). These conditions are invariant under the asymptotic Poincaré transformations,
defined by the set of restricted local parameters (&, 6%) that can be found in ref. [22]. The
conditions (B.1) are a PGT generalization of those discussed in [12].

Following the procedure described in section 5, one can find the conserved charges of
the OTT black hole, the energy F and the angular momentum M. Moreover, the canonical
algebra of the asymptotic symmetry is represented by two independent Virasoro algebras
with equal central charges ¢t = ¢. The values of E, M and ¢ are given in subsection 2.3.

C Refined asymptotic conditions

Equation (4.2) implies that the Vaidya-OTT solution has only one nonvanishing component
of torsion: T2W = K. Clearly, this property is not valid on the whole set of asymptotic
states. In order to ensure finiteness of the improved canonical generators, we find it nec-
essary to make further restrictions of the asymptotic conditions (5.1) by demanding the
highest order terms in 7" uv to vanish:

1
Thup r<Q+u+£23+¢)+(Q2¢+Bzu)_01,
+ " et I
Th: —B". +Q% +-B", =03,
Iz r
1
TFy: rQt, + B + ;Bﬁo =03, (C.1a)

_ _ 1 2
T up : T<Q ut 5B S0)+2£2(QQWLB2U):00,

T r2 1
T ur 7Bi7‘ 7927‘ - Q2u - *Biu =

AT r 1,
T : 2t g oy L —0 (C.1b)

TP - © 202 T r r p — Y1, .

2

r _ _
Thi  gE@et B~ (Bt 2,) = O,
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Tzur : ;@QJFT’ - (Qir + Q+u) =0,
2 oy + -
TTL,DZ ﬁB ’I‘+Q CP_B 7‘:(92- (CIC)

Now, we use the asymptotic conditions (5.1) and (C.1) to derive the surface terms (5.7)
and prove their finiteness. First, we show that £ satisfies the variational equation (5.6b):

0 = wijt(SHijSD + 5wijg0Hijt)

1
2
—1—1 (&u”tAHijw — Aw”t(SHij@ — 5WZJ¢AHU1§ + Aw”@AHijt)
1 3
B (w”t(SHijw + 5wij¥,H”t) + Oq. (C2)

Next, we prove that the surface term for time translations is finite:
r? 9
g = 20/0 (2629+£’0 + Q_Lp — T'Q u) + OO

3
r <1B+u + Bt + QQ,«> +0p = 0. (C.3)

- _aoﬁ r 0?2

Finally, we derive the finiteness of the surface term for spatial rotations:

M = —aoéimnwmnso <bi<p + 2€2L(ij)bj¢>

172 r?

= 20,0 (T‘B2u — B_(p — 2€2B+(p> — 4@052 (T(Ric>(+2) + 252 (RZC)(_2)> + OO
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1 Introduction

Exact gravitational waves have been an important subject of investigation in general rela-
tivity (GR) from the early 1920s; for a review, see [1-4]. Most of the activity on the subject
has been focused on asymptotically flat models, the solutions of GR without a cosmological
constant. From 1980s, exact gravitational waves have been studied also in GR with a cos-
mological constant (GRy) [5-7], see also [8]; for higher-dimensional extensions, see [9-13].
In particular, exact gravitational waves with an AdS asymptotic behavior attracted a lot
of interest in regard to the AdS/CFT correspondence [14, 15]. Moreover, some of these
solutions “may serve as exact models of the propagation of primordial gravitational waves
and may be relevant for the (hypothetical) cosmological wave background” [16].

To properly understand dynamical complexities of gravity, one often relies on tech-
nically simplified three-dimensional (3D) models (for a review and an extensive list of
references, see [17, 18]). In 3D, both GR and GRp are topological theories without propa-
gating degrees of freedom, in which nontrivial wave solutions can exist only in the presence
of matter sources [19-21]. To avoid such a degenerate situation, one is naturally motivated
to study alternative gravitational models possessing true dynamical degrees of freedom.
The well-known models of this type, formulated in the context of Riemannian geometry of



spacetime, are Topological massive gravity and New massive gravity [22-24]. Their dynam-
ical properties allow for the existence of gravitational waves in vacuum; see, for instance,
Ayén-Beato et al. [25].

In the early 1960s, a new approach to gravitational dynamics was proposed, based
on a modern, gauge-field-theoretic approach, known as the Poincaré gauge theory
(PGT) (see [26, 27], for a textbook exposition of PGT, [28] for an up-to-date status of
PGT, including its 3D version, and [29]) with an underlying Riemann-Cartan (RC) geom-
etry of spacetime, characterized by both the curvature and the torsion. In a topological
version of the three-dimensional PGT, gravitational waves with torsion were constructed in
the presence of matter sources by Obukhov [30]. However, genuine gravitational waves are
those that can propagate in spacetime regions without matter. Further investigations of the
PGT, with a Lagrangian that is at most quadratic in the field strengths (quadratic PGT),
revealed a rich dynamical structure, expressed, in particular, by the existence of propagat-
ing torsion modes [31]. In a recent paper [32]," we used quadratic PGT to construct exact
torsion waves in vacuum as a generalization of the plane-fronted waves from GR.

In the present paper, we continue the investigation of genuine gravitational waves with
torsion in 3D, by focusing on the anti-de Sitter (AdS) background. We found a new class
of exact torsion waves in vacuum, representing a PGT extension of the Siklos waves in
GR4 [33], see also [8, 16]. In the linear approximation, this class is associated to spin-2
torsion excitations around the AdS background. In the sector of massless torsion modes,
we found a set of asymptotic conditions that leads to a conformal asymptotic symmetry,
characterized by two independent Virasoro algebras with central charges. On the other
hand, massive torsion waves show kind of an oscillatory behavior in the asymptotic region.

The paper is organized as follows. In section 2, we give an overview of the Siklos
waves in the three-dimensional GRj. In section 3, we construct a new wave solution
in PGT, taking the metric to be of the Siklos form, whereas the torsion piece of the
connection is assumed to possess only the tensorial irreducible component. The solutions
of the field equations are found and classified according to the values of the mass parameter
©2, associated to the spin-2 torsion modes. For p? > 0 (no tachyons), the asymptotic
limit of the Siklos waves with torsion is shown to be represented by Riemannian AdS
spacetimes. In section 4, we study the form of the AdS asymptotic conditions for u? > 0.
It turns out that a well-defined asymptotic structure exists only in the massless sector.
The corresponding central charges of the asymptotic symmetry are found in section 5, and
section 6 is devoted to concluding remarks. Finally, two appendices contain some technical
details.

Here are our conventions: the Latin indices (i,7,k,...) refer to the local Lorentz
(co)frame and run over (4,—,2), b° is the triad field (coframe 1-form), h; is the dual
basis (frame), totally antisymmetric tensor €% is normalized to et=2 = 1; the Greek in-
dices (p, v, p, . ..) refer to the coordinate frame; the Lie dual of an antisymmetric form X7*
is X; := —aiijjk/Z the Hodge dual of a form « is *«, and the exterior product of forms
is implicit.

'Here, the reader can find references of earlier studies of exact gravitational waves with torsion in 4D.



2 Siklos waves

In 1980s, Siklos [33] found a special class of exact gravitational waves propagating on
the AdS background, the physical interpretation of which was investigated in detail by
Podolsky [16]. In the Poincaré coordinates z* = (u,v,y), the Siklos metric in 3D has

the form )

l
ds* = 7 [2du(Hdu + dv) — dy?] , (2.1)
with H = H(u,y), which is equivalent to a subclass of the Kundt metric [8, 16]. The wave
fronts are labeled by u = const., v is an affine parameter along the corresponding rays
generated by the Killing vector field 0, that is null but not covariantly constant, and for
H = 0 the metric reduces to the AdS background (see appendix A). We choose the triad

field b* (1-form) to be
l l l
b= —du, b :=—(Hdu+dv), b= -dy, (2.2)
Y Y Y
so that the line element is given by ds? = mjbibj , with the half-null Lorentz metric
010
’I7¢j = 10 0
00 -1

The dual frame basis h;, defined by h; |t/ = (55 , is given by

hy =20, —HO,), ho=720,, hy=20,.

14 l 14
The related Riemannian connection w” (1-form) can be written in a compact form as
i _ —ii L m / n
w' =Y — e mk™ (yH') knb™ . (2.3a)

Here, prime denotes a derivative with respect to v, the first term @* describes the back-
ground AdS geometry,

1 1
ot =0, ot? = Zb+, o 2= Zb* , (2.3b)

and the second one is the radiation piece, characterized by the null vector £™ := (0, 1,0),
with kn, = (1,0,0).
Next, we calculate the Riemannian curvature,

N U
RY = Eb’b] — g—stmkm (y*H" — yH') k"*b,, , (2.4a)
whereupon the Ricci curvature (Ric)’ = —hjJ R¥ and the scalar curvature R = h; | (Ric)"

are found to be

. 2 1 .
(Ric)" = 3b" + k' (y*H" — yH') kyb™,
6



When the Siklos metric satisfies the vacuum field equation of GRy with A ~ —1/¢2,
the metric function H takes a simple form:

yH'—yH' =0 = H=Di(u)+ Da(u)y’. (25)

However, this solution is trivial. Indeed, since the radiation piece of the curvature vanishes
on shell, we have RY = b'b/ /¢, and the geometry of spacetime is fixed, it has the AdS
form. Nontrivial AdS waves can exist in GR only in the presence of matter [19-21], but
to have vacuum AdS waves, one has to change the gravitational dynamics. As we shall
see, transition to quadratic PGT allows the existence of genuine AdS waves with torsion.

3 Siklos waves with torsion

Basic gravitational variables of PGT are the triad field b° and the Lorentz connection w%
(1-forms), and the related field strengths are the torsion 7% = db’+w?’,,,b™ and the curvature
RY = dw" + w',,w™ (2-forms). Relying on PGT, we now introduce a geometric extension
of the Siklos waves (2.1) to genuine Siklos waves with torsion.

3.1 Ansatz

In order to preserve the radiation nature of the Siklos metric, we assume that the form
of the triad field in PGT remains the same as in eq. (2.2). Essentially the same idea can
be applied also to the connection [32]: starting from the Riemannian connection (2.3), we
assume that the new, RC connection is given by

g 1.
W'l = = S K (yGkb" (3.1a)

where
G:=H +K, K =K(u,y). (3.1b)

Geometrically, the new function K in the connection is related to the torsion:

Ti .= Vbi = —%kik”*bn. (3.2)

For K = 0, the torsion vanishes, and the connection becomes equivalent to ©@¥. The only
nonvanishing irreducible component of 7% is its tensorial piece (VT [32], so that

Wi — 7t

Using the above ansatz for the connection, one can calculate the RC curvatures:

- 1 .. . 1 ..
R = b — el (3G — yH') Kby (3:3)
) 2 . 1 .
(Ric)" = Z3b" + k' (y*G' — yH') k,b™,
6



The quadratic curvature invariant takes the form
g 6
RZ]*Rij == Ej*l .

The only nonvanishing irreducible components of R¥ are:
©) pid — X pyipi ) pii _ pid _ (6) pij
6 y

For more details on the irreducible decomposition of the field strengths, see ref. [32].
In what follows, the specific forms of both the metric function H and the torsion
function K will be determined by the PGT field equations.

3.2 Lagrangian dynamics of PGT
The PGT dynamics is described by a Lagrangian 3-form Lg = Lg(b', T, R¥), which
is assumed to be at most quadratic in the field strengths (quadratic PGT) and parity
invariant. In conformity with our ansatz, the Lagrangian is chosen to have the form
o 1 o
LG = —aoeijkaRjk - g/lo&ijkblbjbk
ix (. (1) Loiiw (1 (4) pij (6) pij

4T (al T) + 3R <b4 R 1 bR ) . (3.4)

Indeed, the only nonvanishing irreducible components of the field strengths appearing in

Lg are W1 MR and O RY | and aq, by, bg are the corresponding coupling constants.
Then, the PGT field equations in vacuum are found to be (see section IIT.A of ref. [32]):

(18T) : (agl? — by — bg) (yH" — H') + (aol® — arl®> — by — b) yK' =0,
20,052 + bg + 254/10 =0,
(2ND) : by [y* (H" + K") + yK'] — (apl® —a1* —bg) K =0.  (3.5)

These equations are checked using the Excalc package of the computer algebra system
Reduce. Using the expression for (157)’, one finds that (2N D) can be rewritten as

—ag — bgA b b

baay
where X\ := —1//2. Finally, after introducing the notation
’g = g s m2 = €2M2 5
L

the two field equations take a more compact form:

1ST JH' — H = (CjK', C=— " 1,

( ) 4 Y ag + baX + bg\

(2ND) 7?°K" + 9K +m?K =0, (3.6)

where prime now denotes differentiation with respect to §. As one can see, it is the presence
of torsion (K # 0) that makes the metric of the AdS wave nontrivial (yH” — H' # 0).
Equations (3.6) define a new class of Siklos waves — the Siklos waves with torsion.



3.3 Solutions

The coefficient m? in (2N D) is the (dimensionless) mass parameter associated to the spin-2
excitation of the torsion field around the AdS background, see [31, 32]. The absence of
tachyons requires m? > 0. In this subsection, we construct the exact Sikos waves with
torsion, and classify them according to the values of m?.

(1) m2 > 0. The Euler (or Euler-Fuchs, Euler-Cauchy) differential equation (2N D) is
solved by the ansatz K = ), which yields a? + m? = 0. For m? > 0, we have o = +im,
so that K = g+ = ™Iy or equivalently,

K = A(u)cos(mIng) + B(u)sin(mIng). (3.7a)
By substituting this result into (157), one finds the related solution for H:

{C'm

H = Dy + Dyjj?
1+ Doy +1—|—m

59 [A(u) sin(mIng) — B(u) cos(mIng)] . (3.7b)

The first two terms, which represent a solution of the homogeneous equation §j H"” — H' = 0,
can be geometrically disregarded, as they do not influence the values of the field strengths.

In the asymptotic limit § — 0, the torsion and the radiation piece of the curvature,
(4)Rl-j, vanish, as follows from the relations

lim §K = 0,
y—0

lim [gQ(H” LK) - QH/} — lim [ng’ n zcg%{/] —0. (3.8)

g—0 7 —0

Thus, the asymptotic geometry of our solution is given by the Riemannian AdS spacetime.

(2) m2 = 0. In order to have a smooth Minkowskian limit for /2 — oo, the condition
m? = 0 is realized by demanding [31]

ay —ag+bg/l>=0. (3.9)
As a consequence, the solution for the massless torsion wave is given by

K=C+Cylny,
H = Dy + Dyjj? — 1CCyy) . (3.10)

As before, one can choose D1 = Dy = 0 without loss of generality, so that the asymptotic
limit of the solution is again given by the Riemannian AdS spacetime.

(3) m2 < 0. Although the spin-2 torsion modes are now tachyons, we present the related
exact wave solution, for the sake of completeness:

K =A™+ By ™,
C'm

_ ~1+m ~1—m
H=—— (Ag BytT™) . (3.11)

The asymptotic behavior depends on the value of m.



4 Asymptotic conditions

In our study of the asymptotic conditions, we assume that the topology of the spacetime
manifold M is R x X, where R is interpreted as time, and ¥ is a spatial section of spacetime,
whose boundary 9% is topologically a circle. The asymptotic analysis is simplified by
introducing a new set of local coordinates (¢, ), given by u = (t+£p)/V/2, v = (t—Lp) /2,
such that the boundary 9% at y = 0 is parametrized by the angular coordinate ¢.

As we have seen in the previous section, in the asymptotic limit y — 0, the geometry of
our torsion wave is described by the Riemannian AdS spacetime. This property motivates
us to examine asymptotic conditions based on the following requirements:

(a) asymptotic configurations include the torsion wave geometry;
(b) they are invariant under the action of the AdS group SO(2,2);
(c) asymptotic symmetries have well defined canonical generators.
Specific aspects of these criteria depend on the value of the mass parameter p?.
4.1 Massive torsion waves
For ;2 > 0, the characteristic functions H and K can be represented in the form
H = yW,, K =W, (4.1a)
where Wy is a generic wave “oscillatory” function,
Wo := Ci(u) cos(mIny/l) + Co(u) sin(mIny/l). (4.1b)

In spite of this oscillatory behavior, both the torsion and the wave piece of the curvature
tend to zero when y — 0.
In the matrix notation, the components of the Siklos metric (2.1) read

, (2H1 0
guyzﬁ 1 00
Y\ o o0-1

Asymptotically, for y — 0, we have gy, ~ Wy/y, so that, to leading order in 1/y, gu.
reduces to the AdS metric g,,. In the asymptotic analysis, we use O(y"Wy) to denote
a term that is at most proportional to y"Wy when y — 0. Thus, the Siklos metric is of

the type
O(Wo/y) 00
G = Guv + G, Gu = 0 00
0 00

Looking at the action of the AdS Killing vectors (appendix A) on g, one finds that the
general requirements (a) and (b) are fulfilled by the following asymptotic configurations:

O_1 Og Oy

Juv = gm/ + GMV s Guy = O() O() Oo s (42)
Oy O Oy



where O,, := O(y"Wp). The asymptotic form (4.2), but with O,, = O(y"), was studied
earlier by Afshar et al. [34, 35], in the context of Conformal Chern-Simons gravity.
The asymptotic conditions (4.2) are preserved by the local translations of the form

2
& = e"(w) + L2 (0) + 05,

2
& =¢e"(v)+ %aggu(u) + O3,

62

%(aue“ + 0,e”) + O;. (4.3)

These parameters are essentially of the Brown-Henneaux type [35, 36].

In the next step, one could try to extend these considerations to the variables b’ and
w%. However, a problem arises when we return to our general requirement (c). Namely,
although the field strengths 7% and RY have an AdS asymptotic limit, the asymptotic
behavior of b’ and w¥ is determined by the function Wj, which oscillates when y — 0.
Thus, the basic dynamical variables have no asymptotic limit, and one is not able to define
surface terms of the canonical generators. Thus, one cannot formulate a boundary theory,
and in particular, the AdS/CFT correspondence is not well defined.

4.2 Massless torsion waves

In the sector with massless torsion modes, the form of our wave solution is displayed in
eq. (3.10). As we noted before, the geometrically irrelevant term Di 4+ Doy? in H can be
removed by choosing D1 = Dy = 0, whereupon the characteristic functions H and K are
of the generic form

H=Coly/t), K=C+Cyln(y/l). (4.4)

The asymptotic geometry of the solution is described by the AdS spacetime. In this section,
we discuss the asymptotic structure of the massless torsion wave (4.4).

Quite generally, the wave triad (2.2) can be written in the form biu = Biu + Biu, where
b’ is the AdS triad, and the only nonvanishing component of Biu is B~, = (H/y = Cy.
Then, in accordance with the general requirements (a) and (b), we choose the following
asymptotic form of the triad field:

0, 07 Oy
by =0+ By, B, =100, 0; |, (4.5)
0, 07 Oy

where O,, := O(y"). These conditions impose the following restriction on the local Poincaré
parameters (£°,e%):

b’y = €%0;by,, — (9,E°)°, — €PO Y, = B,

where 0 is the Lie dual of €,,,. As a consequence, the asymptotic parameters of local
translations take the form displayed in eq. (4.3), whereas the asymptotic parameters of



Lorentz rotations are found to be

o+ = Y920 £ 0,

2 v
0~ = —%&38” + O,
0% = %(81,5” — Oue) + Oy (4.6)

Next, we wish to examine whether the asymptotic behavior of the RC connection (3.1)
can be made compatible with the already found form of the asymptotic Poincaré parame-
ters. First, we introduce the Lie-dual connection w’:

1
wh=-bt, wo =

14

1
S+ dart, W?=o. (4.7)
l l
The form of K implies that the asymptotic conditions on the connection should contain
log terms. By combining the expression (4.7) for w’, with the asymptotic formulas for bt
and G = H' + K, we find it suitable to assume

O 01 Oy
Wy =w'y + 0, Q= O(lny/t) O; O(ylny/e) | . (4.8)
O(ylny/t) O1 O

As it turns out, the asymptotic invariance of w* e
Sow' 1= —0u0" — TFw;, 0) — 98P0, — PO, = Q)

does not impose any new restriction of the asymptotic Poincaré parameters (4.3) and (4.6).

In order to clarify the interpretation of our asymptotic conditions, we wish to find the
commutator algebra of the asymptotic Poincaré transformations. To do that, we note that
the composition law of the asymptotic transformations, to lowest order in y, reads

(8“)/// — (6u)18u(5u)/1 _ (6u)//au(6u)/7 (49)
and similarly for €. Then, introducing the notation

1 , 1 .
€+ =4 (Eu _ Eemuﬁ/ﬁjgv — 0) , 0~ = ——5 <6u _ O,E’U _ eeznv\/iM) 7
n \/i 0 n \/§ 0
the commutator algebra of the asymptotic symmetry takes the form of two independent

Virasoro algebras:
i [05,05] = (m — n)E

motn m—+n *

(4.10)
The related central charges are discussed in the next section.
5 Canonical form of the asymptotic symmetry

In this section, we use the canonical approach to analyze the asymptotic symmetry in the
massless sector, including the values of the central charges.



To simplify the analysis, we follow Nester [37] in applying the first-order formulation
to the quadratic PGT. In this formalism, the Lagrangian (3.4) is written in the form

; 1 .. , 1 o
LG = TZTi + iRijij -V (bz,’TZ’, pij) — §A€Z‘jkbzbybk . (51)

Here, 7; and p;; are new, independent variables, and V' is a function quadratic in 7; and p;;,
chosen so that, on shell, we have 7; = H; and p;; = H;;, where H; = OLg/0T" and H;; =
OLg/ORY are the covariant field momenta associated to the original Lagrangian (3.4).
Explicit form of V' is described in ref. [31], and it ensures the first-order formulation (5.1)
to be equivalent to (3.4). Thus, the variation of Lg with respect to 7; and p;; yields

7 = 2a1"T;

1
pij = =2 <a0 - 6b6R) eijib + 204"V Ryj (52)

in accordance with the forms of H; and H;; defined by the Lagrangian (3.4).

Asymptotic symmetries are best described in the canonical formalism. In the first order
formulation of PGT, the canonical gauge generator is a functional G[p, 7| on the phase
space, the form of which is defined in egs. (5.7) of ref. [31]. The canonical generator acts
on the phase-space variables (p, ) via the Poisson (or Dirac) bracket operation, defined
in terms of the functional derivatives. A functional F[p, 7] = [d*zf(p,0atp, T, dar) is
differentiable (or regular) if its variation has the form §F = [ dz [A(z)dp + B(z)d7]. In
order to ensure this property for our generator GG, we have to improve its form by adding
an appropriate surface term I' [38]. The improved canonical generator G := G +T has
been calculated in appendix B; it is both finite and differentiable (well-defined).

The Poisson bracket (PB) algebra of the improved generators could be found by a
direct calculation, but we rather rely on another, more instructive method. Introducing
a convenient notation, G/ = G[e*,&"'] and similarly for G” and G”, we use the main
theorem of ref. [39], which states that the PB of two well-defined generators must also be
a well-defined generator, to conclude that the PB algebra has the form

[G"Gly=G" 4, (5.30)

Here, the parameters of G are defined by the composition law (4.9), and C”” is the central
charge of the algebra. A simple reformulation of this formula, given by

{G".G'} = 6,G" ~ 5T, (5.3b)

represents a powerful tool for calculating the central charge. Indeed, the previous two
equations imply
S =1" 4+ C". (5.3¢)

Now, since C""" does not depend on the basic dynamical variables and I vanishes on the
AdS background (see appendix B), the evaluation of §,I"”” on the AdS background yields

the final expression for C"”:
ST = " (5.4)

~10 -



An explicit calculation based on the results of appendix B yields

\/5 b6 2

TC”/ = - <a - €2> /0 dp (" 03 + 93" . (5.5)
This result, combined with eq. (5.3a), completes the derivation of the canonical PB algebra.

A more familiar form of this algebra is obtained by introducing the Fourier modes of
the improved generator:

L = _\}ié (5“ = éem“ﬂ/l,av = 0) , L, = _\}ﬁé (5” = Eem”ﬁ/l,au = O) .

Then, the canonical algebra (5.3a) takes the form of two independent Virasoro algebras
with central charges,

+
U {Li, L?%} = (m - n)L;lr:z—i-n + %mgém-‘rn s (56)

where the central charges are equal to each other:

b
o (1- = ). :
c < o2 o (5.7)

Note that the coupling constant bg modifies the GRy central charge ¢y := 3¢/2G, and for
be < apl?, the central charge ¢ is positive.

6 Concluding remarks

In this paper, we found a new class of exact vacuum solutions of the three-dimensional
PGT, the class of Siklos waves with torsion. Asymptotic geometry of these solutions is
described by the Riemannian AdS spacetime. In the sector of massless torsion modes, we
found a set of asymptotic conditions for which the asymptotic symmetry is described by
two independent Virasoro algebras with equal central charges ¢*, the values of which differ
from the GR result.

Further studies of the massless sector might help us to clarify the role of torsion in the
AdS/CFT correspondence.
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A AdS and Siklos spacetimes in 3D

In this appendix, we review basic aspects of the three-dimensional AdS and Siklos space-
times; see for instance [4, 40, 41] and [7, 8, 16], respectively.
The AdS space in 3D, with topology S' x R?, can be defined in terms of the hypersurface

Hs : - -t =02,

- 11 -



embedded in a 4-dimensional Minkowski space with metric 74, = (1, —1, —1,1). The metric
on Hs has the form
ds? = du® — dz* — dy? + dv?, (A1)

its isometry group is SO(2,2), and the scalar curvature is R = 6//2.
The space Hj3 can be covered by the global coordinates (¢, p, ¢),

l {sinh pcos @,
v = {fcoshpsint, y = {sinh psing,

with ¢t € [—m, 7], p € [0, 00), for which the metric takes the form
ds® = [dlt2 cosh? p — (dp2 + sinh? pdch)] . (A.2)

However, since t is an angle, there are closed timelike curves in Hs. The problem can be
cured by replacing the S' time ¢t € [—7, 7] by a new, R! time ¢t € (—o0, +00), changing
thereby the topology from S* x R? to R®. The space obtained in this way is known as the
universal covering of the AdS space. According to the commonly accepted terminology,
it is this space that is called the AdS space; we denote it by AdSs. A simple form of the
AdSs3 metric is obtained in the Schwarzschild-like coordinates r = £sinh p, ¢t — t.

Let us now parametrize AdSs by introducing the Poincaré coordinates:

—v Yy /
T=—"7", r= —"7, Y= - — .
u—+x u—+x U+

They do not cover the whole space, but only one of the regions where @ + = has a definite
sign. In these regions, the metric has the form

£2
ds® = 72 (2dudv — dy?) | (A.3)

where u = (17 +2)/v/2, v = (T — 2)/v/2, and the boundary is located at y = 0.
The Killing vectors § = {#0,, for the metric (A.3) are defined by the conditions

5Og/w = _augpgpu - 8V§pgpu - fpapg;w =0.

They produce a set of requirements on &¥, the solutions of which define a basis of six
independent AdS Killing vectors §(,,):

g(l) = (& 0, 0) ’ §(4) = (07 2v, y) ’
U2 y2 uy
) = (0,£,0), ) = <£a BTk £> ;
2 2
yo vy

Turning now to the class of Siklos spacetimes (2.1), we note that it is equivalent to a
subclass of Kundt spacetimes, defined by the metric

2
i 1
ds? =2 (1) au (HdU +dv) — —dY?, (A.5)
p p?

- 12 —



where H = H(U,Y), and

2
A A
=14 2Y? = (1+4/-2V
p VR q < 1 ) )

with A := —1/¢2. Indeed, by introducing the new coordinates

Y =-2¢

U =2u, V =2,

one ends up with the Siklos metric (2.1), where the new function H = H(u,y) is defined
by H(u,y) := H(U,Y)|u—v(u),y=y (y)-

For general H, the only Killing vector of the Siklos metric is §(9) = £0,, but for some
specific forms of H there can be more Killing vectors; for instance, £y = £0,, when H is
independent of u, or the maximal number of six Killing vectors (A.4) when H = 0.

B Improving the canonical generator

In this appendix, we construct the improved gauge generator for the massless sector of our
solution.

Gauge symmetries of the first-order Lagrangian (5.1) are described by the canonical
gauge generator GG, the form of which can be found in egs. (5.7) of ref. [31]. To examine
the differentiability of GG, we start from the form of its variation:

6G = —/ d*z(6G1 + 0Ga),
%

0Gy = —"Per (b ,000Tip + w1 0adpig + T u0abbip + p'uOadwip) + R,
6Goy = —£"P0'0,6pis + R. (B.1)

Here, the variation is performed in the set of asymptotic states, R stands for regular terms
and p' is the Lie dual of py,p:

pi =2 <a0 — b66R> b; + 2by <(ch)(zk) - ;ank> be .
Moreover, the coherently oriented volume 2-form on X, expressed in the new coordinates
(t,,y), is normalized to d?z = dydy. Together with e¥% := % = 1, this is in accordance
with the conventions used in ref. [31].

As one can see, G is not differentiable, but the problem can be corrected by going over
to the improved canonical generator G := G + T, where the surface term T' is constructed
so that G = R. In the process, transition to surface integrals is performed with the help
of the Stokes formula:

2m
/ d?x Oqv® = / df v = / devY | dfe = eagdxﬁ.
b % 0

~13 -



Thus, using (B.1) and the asymptotic conditions (4.5) and (4.8), the surface term I" in the
improved generator G = G + I is found to have the following form:

r=r,+1,,

27 27
V2~ <a0 _ bﬁ) | e (- ) 2t [ decta, (- B
¢ 2 0 Y 0

2y [T 3 1B,
=1 w 9,0y — 9,0 - , B.2
+ ; dpe <8y OufYy + 0 > (B.2a)
V2 be 2 ¢ 1 1
Yir, =2(ag— 2 doe?~ (Qt, —Qt, + -Bt, — -B*, ). B.2b
‘ ( €2>/o ey ( T 0 ) (B.2b)

The result for T',, is simplified with the help of the condition ag — bg/¢?> — a1 = 0, which is
used in eq. (3.9) to define the massless sector of the torsion wave. The factors v/2/¢ appear
as an effect of the change of coordinates (¢, ) — (u,v) in the components of B’ and §2°.

The above construction shows that G is differentiable provided it is finite, and the
finiteness of G follows from the finiteness of I' = I'y +T',. The term I';, is seen to be finite
directly from the adopted asymptotic conditions, whereas the finiteness of I', depends on
the validity of an additional relation:

bg  ba\ ,— | s _
To clarify this situation, we note that the original set of the asymptotic conditions, given in
egs. (4.5) and (4.8), can be extended using the following general principle: the expressions
that vanish on-shell should have an arbitrarily fast asymptotic decrease, as no solution of
the field equations is thereby lost. This principle allow us to derive the needed relation (B.3)

as the (1 = v, i = +) component of the field equation
ghvp <Vupiy + E@'jkbijkp) =0. (B.4)

The surface terms (B.2) are used in section 5 to calculate the canonical algebra of the
improved gauge generators. Note, in particular, that I" vanishes on the AdS background.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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1 Introduction

According to the idea of AdS/CFT correspondence [1], to any asymptotically anti-de Sit-
ter (AdS) gravitational theory on a (d + 1)-dimensional spacetime M, there corresponds a
d-dimensional conformal field theory (CFT) on the boundary dM. This duality is of the
weak /strong coupling type: the weak coupling regime of the gravitational theory is related
to the strong coupling regime of the boundary CFT, and vice versa.



Following a widely spread belief that general relativity (GR) is the most reliable ap-
proach for studying the gravitational phenomena, the analysis of the AdS/CFT corre-
spondence has been carried out mostly in the realm of Riemannian geometry, leading to
a number of highly interesting results [2, 3]. However, one should note that, for nearly
five decades, there exists a modern gauge-theoretic conception of gravity, characterized by
a Riemann-Cartan geometry of spacetime. In this approach, known as Poincaré gauge
theory (PGT) [4-6], both the torsion and the curvature carry the gravitational dynamics.
In spite of its well-founded dynamical structure, the use of this framework for studying
the AdS/CFT correspondence is still in a rather rudimentary phase. In this regard, we
wish to mention the work of Banados et al. [7], who studied the holographic currents in
the 5-dimensional (5D) Chern-Simons gravity with torsion, and the paper of Klemm and
Tagliabue [8], investigating the holographic structure of the Mielke-Baekler (MB) model of
3D gravity with torsion [9]. In 4D, Petkou [10] examined holographic aspects of Einstein-
Cartan theory amended by topological torsional invariants.

In order to properly understand dynamical features of gravity with torsion, one is nat-
urally led to consider technically simplified models with the same conceptual features. An
important and useful model of this type is the MB model of topological 3D gravity with tor-
sion [9], introduced in the early 1990s. Further investigations along these lines led to a num-
ber of remarkable results; for more details, see [11, 12] and references therein. Of particular
interest for our present work is the existence of a holographic structure, as discussed in [8].
However, in the MB model (like in GR with a cosmological constant) there are no propa-
gating degrees of freedom. In order to overcome this unrealistic feature of the gravitational
dynamics, a systematic study of 3D gravity with propagating torsion has been recently ini-
tiated in [12], see also [13]. The present work is aimed at investigating holographic aspects
of 3D gravity with (propagating) torsion, in order to reexamine the compatibility of the
concept of torsion with the basic aspects of the AdS/CFT correspondence, and moreover,
to understand the dynamical role of the new CFT sources associated with torsion.

The paper is organized as follows. In section 2, we discuss general holographic features
of 3D gravity with torsion, with or without the propagating torsion modes. After choosing
a suitable ansatz for the gravitational variables, we derive the related consistency condi-
tions, which tell us that the maximal boundary symmetry consists of the local Poincaré
transformations and dilatations. In section 3, we propose an improved treatment of the
corresponding Noether-Ward identities for the boundary theory. In section 4, we use this
approach to reexamine the holographic structure of the topological 3D gravity with tor-
sion; our results confirm the analysis of Klemm and Tagliabue [8], based on a different
technique. Then, in section 5, we turn to the main subject of the present work — the
study of holography in 3D gravity with propagating torsion. We find that the maximal
boundary symmetry is reduced by the existence of the conformal anomaly. The improved
formalism ensures that these results do not depend on the value of torsion on the boundary.

Our conventions are given by the following rules. In 3D spacetime M, the Latin indices
(1,7, k,...) refer to the local Lorentz frame, the Greek indices (i, v, p,...) refer to the co-
ordinate frame, the metric components in the local Lorentz frame are n;; = (+1, -1, —1),
totally antisymmetric tensor % is normalized by €12 = +1, and symmetric and anti-



i) = 3(Xij + Xji) and X = 3(X55 — Xj),
respectively. Next, the (1 + 2) decomposition of spacetime is described in terms of the

symmetric pieces of a tensor X;; are X

suitable coordinates z# = (p, z%), where p is a radial coordinate and z¢ are local coordi-
nates on the boundary dM; in the local Lorentz frame, this decomposition is expressed by
i = (1,a). Then, on 2D boundary M (which is orthogonal to the radial direction), we
have 7g, = (+1,—1) and €% := £ with £°2 = 4-1. Finally, we use the Stokes theorem
in the form [ 9\V*d3z = [ VPd?z, where V* = (V, V%) is a vector density, and d®z and
d?x are coherently oriented volume forms on M and dM, respectively.

2 Holographic ansatz

In this section, we introduce a general setting for 3D gravity with torsion and discuss a
suitable holographic ansatz for the basic dynamical variables.

Three-dimensional gravity with torsion can be naturally described in the framework of
PGT [11, 12], where basic gravitational variables are the triad field ¢ and the Lorentz con-
nection &% = —&J% (1-forms), the corresponding field strengths are Tt = dét —HDij Aé7 and
R = diV 4+t A&k (2-forms), and the covariant derivative V = d+ 1095, (1-form) acts
on local Lorentz spinors/tensors in accordance with their spinorial structure, encoded in the
form of the spin matrix 3;;. The antisymmetry of % ensures that the underlying geomet-
ric structure of spacetime is given by the Riemann-Cartan (RC) geometry, in which é’ is an
orthonormal frame, § = mjéi ® &7 is the metric of spacetime, &% is the metric-compatible
connection, @@ = 0, and Tt and RY are the torsion and the RC curvature of spacetime,
respectively. In our convention, hatted variables are 3D objects. Clearly, general features of
PGT make it dynamically quite different from Riemannian theories, such as, for instance,
topologically massive gravity [14, 15] or the Bergshoeff-Hohm-Townsend gravity [16].

In 3D, to any antisymmetric form X there corresponds its Lie dual form X &, defined
by X = —gitkx »- Replacing &%, R with their Lie duals &, f%", we have:

.. ) ) ) N 1. )
T'=dé' +e i’ neb, R =do' + & ik’ A ok (2.1)

In local coordinates x#, we can write &' = ', dz", &' = &' ,dx", and the action of local

Poincaré transformations on the basic dynamical variables reads:

Soé'y = —9%e;,0k — (9,N)¢'\ — E205é",,

S0ty = =V 00 — (9, — £\, . (2.2)
Here, &g is the form variation of a field, the parameters 0% and é“ describe local Lorentz

transformations and local translations, respectively, and @ué’ = 8“éi + & jkdjj Mék.
Specific features of the RC geometry in 2D are described in appendix A.

2.1 Restricting the local Poincaré symmetry

In order to study the holographic structure of 3D gravity with torsion, we assume that
spacetime M is a 3D manifold with a boundary M at spatial infinity; more precisely,
M is asymptotically diffeomorphic to R x @M. The gravitational content of M implies



that its geometric structure is of the RC type, whereas its dynamics is determined by
choosing an action integral, which produces the field equations. Given the field equations,
the asymptotic behavior of M is controlled by the asymptotic conditions. In the asymptotic
region, M can be suitably parametrized by the local coordinates z# = (p,z®), where p is
a radial coordinate, such that p =0 on M. The asymptotic conditions are formulated as
certain conditions on the gravitational variables ¢’ and & near the boundary at p = 0.

The (asymptotic) radial foliation of M is an analog of the temporal foliation in the
standard canonical formalism, with time line replaced by the radial line; early ideas on
dynamical evolutions along spatial directions can be found in [17]. In this framework,
Poincaré gauge invariance implies that é’ p and ot p are unphysical variables, so that their
values can be fixed by suitable gauge conditions. Although gauge conditions have no
influence on the physical content in the bulk, the boundary dynamics is very sensitive to
their form. Based on the experience with the Mielke-Baekler (MB) topological model of
3D gravity with torsion [8, 11], we impose the following six gauge conditions:

= @t = (40 (2.32)

i 1 a pt
o, = (@, 0%,) = <2p’0> ) (2.3b)

which break the Lorentz and the translational gauge invariance; £ is the AdS radius. As we
shall see below, the parameter p controls the strength of both the torsion and the curvature

on M. Next, we impose an extra condition:
~1 _
€a=0, (2.4)

which is equivalent to é;” = 0 and is known as the “radial gauge” (an analog of the standard
“time gauge”). Geometrically, it ensures that the radial direction coincides with the normal
to OM, which greatly simplifies the calculations. In particular, the matrix representation
of é',, becomes block diagonal. Finally, combining (2.4) with a suitable ansatz for é%, and

W'y, we can write:
i 1 ~a 1 a
€'a = (670,6%) = O,;e ol s (2.5a)
~i ~1  ~a 1 a
W = (Wa,0%) = wa,;k ol s (2.5b)

where e, (p, ), wq(p, x) and k%, (p, x) are assumed to be finite and differentiable functions
of p at p = 0, such that, near the boundary, they have the form

e“a(pyx) = e"a(z) + O(p),
wa(p,z) = Walz) + O(p), (2.6)

and similarly for k%, (p,z). Here, O(p) tends to zero when p — 0, a bar over €%, denotes
the value of e%, at the boundary p = 0, and similarly for @w,. Note, in particular, that the



conditions (2.6) allow the presence of p" In p terms for n > 0, but not for the leading term
n = 0. The inverse of é¢', has the form

o = (@ er) = (£.0) .

6% = (19,¢,") = (0, pe,”) . (2.7)

The geometric interpretation of e%,,w, and k%, will be given in the next subsection.

Based on these conditions, we will investigate the holographic structure of 3D gravity
with torsion, assuming the absence of matter. In particular, we shall study two comple-
mentary dynamical situations, described by

(a) MB model of topological 3D gravity with torsion, and
(b) general (parity-preserving) 3D gravity with propagating torsion.

For later convenience, we note that the metric defined by (2.3) and (2.5),

Cdp* 1
ds?® = Gudatdr” = —TQP + ﬁgagda:adxﬂ,

where gog 1= eqel aMab is regular at p = 0 and takes the usual Fefferman-Graham form [18].
For p = 0, the full metric has a pole of order two, which is typical for asymptotically AdS
spaces, and directly related to the pole of order one in the triad field (2.5a).

In the rest of the paper, we use the units in which the AdS radius is £ = 1.

Comment on (2.6). Any assumption on the asymptotic form of dynamical variables
restricts the set of possible solutions of the field equations. In general, depending on
the model-dependent dynamical features, expansions of the fields in (2.6) could contain
logarithmic terms or power series of different order. However, having in mind that the
holographic structure of the general 3D gravity model (b) has not been studied before, our
intention is not to make the most general holographic analysis, which would be technically
extremely complex, but to identify its basic holographic features. Furthermore, since both
models (a) and (b) possess asymptotically AdS black hole solution [12], it is quite natural to
expect that those features can be successfully revealed by focusing on the AdS asymptotic
sector of the Brown-Henneaux type [11, 20].

To be more specific, let us mention that certain holographic aspects of the MB model
in the Chern-Simons formulation have been studied earlier by Klemm and Tagliabue [8].
Their results strongly suggest that, in the MB model, our assumption (2.6) should be
restricted to the following form:

éaa(pa x) - éaa + p28aa + Oy )
Wa(p,x) = Wo + O, (2.8)

where O,, is a term that tends to zero as p" or faster, when p — 0. Moreover, we expect
the same sector to be of prime interest for the holographic structure of the general 3D
gravity model (b). As we shall see, the results obtained in sections 4 and 5 justify our
expectations. In this section, however, we continue using only (2.6).



2.2 Residual gauge symmetries

A field theory is defined by both the field equations and the asymptotic (boundary) condi-
tions. The concept of asymptotic symmetry is of fundamental importance for understand-
ing basic aspects of the boundary dynamics. Since the conditions (2.3), (2.5) and (2.6)
control the form of dynamical variables in the asymptotic region near p = 0, they have a
decisive influence on the asymptotic symmetry. The asymptotic symmetry is defined by
a subset of gauge transformations that leaves the asymptotic conditions invariant. Thus,
the parameters of the asymptotic (or residual) gauge transformations are defined by the

consistency requirements
—€9%e,0, — (0,60)¢'\ — E0né', = 0,
—Vu0" = (0,6M 0" — i’y = 0,
where é’, and &', are taken to satisfy (2.3) and (2.5).

Starting with these conditions, we first find the restrictions stemming from the invari-
ance of élp, ey, ély,, and d)lp, respectively:

& = pfx),
0,6* = pg*’ 05,
6% = peeyOnf ,
9,08 = —pwdaf . (2.9a)

There relations give rise to the following radial radial expansion of the local parameters:

& = pfla),
£ = () + 50°5°0sf + 77 Op),

0% = p"*e,"0af + pOl(p) ,
2
0l = 0(z) — %aaaa F+pO(p?). (2.9b)

Thus, the residual symmetry is expressed in terms of the four boundary parameters:
¢ (), 0(x) and f(x).

In the next step, we find the restrictions produced by the invariance of w®, and @w%,,
respectively:

[(gab - gn“” + k“b> er” + pe“b(apebﬁ)] 9sf =0,

Sok® o = [—e"kpal — (0a€”)k"s — €705k o] + [K%a + O(p) . (2.10)

Assuming that f(x) is an arbitrary function on M, we have dgf # 0, and the first relation
defines k%, in terms of the e%,:

pab — gnab _gab _ psacecﬂapebﬁ , (2.11)

where k% = k%,e,®. The second relation in (2.10) defines the transformation law for k%;
it shows that, at the boundary, k%, is a tensorial object with respect to local Poincaré



transformations combined with dilatations. As shown in appendix A, Ky, = ¢4k, is the
extrinsic curvature of OM.

Finally, we wish to examine the implications of the invariance conditions for é%, and
@'y Using (2.5), these condition yield, in the lowest order of the radial expansion, the
following transformation rules for the boundary fields:

5Oéaa = 5Péaa + féaa 5

OoWa = Oplg + €abéaaébﬁaﬂf7 (2.12)
where dpe®, and dpw, are the local Poincaré transformations in 2D:

dpe’y = —c0e — ((%ﬁﬁ)éag —&-0e%,,
0p@e = —0a0 — (0aE" )0 — € - 00, (2.13)

and f defines local dilatations. Thus, we conclude the following:

— The residual symmetry transformations (2.12) belong to the Weyl group of local
Poincaré transformations plus dilatations, whereas €%, and @, are recoginzed as the
vielbein and the spin connection of the boundary RC geometry.

The transformation rule for e%, can be used to calculate how the residual symme-
tries act on the boundary metric go.g = nabéaaébg. Restricting our attention to dilatations
(f #0), we obtain 07gag = 2f gag. For more details, see appendix B.

The results obtained in this subsection are based only on the adopted holographic con-
ditions (2.3), (2.5) and (2.6). We consider them as being kinematical, in the sense that they
are not influenced by the dynamical arguments encoded in (2.8). Another useful set of kine-
matical relations is found by calculating the expressions for the torsion and the curvature
tensors, based on (2.3), (2.5) and (2.6). As shown in appendix C.1, the result is of the form

Tiji = peijie + O(p) . Rijk = qeije + O(p), (2.14a)

where
»?
q="r - 1. (2.14b)
Thus, to lowest order in p, the parameter p defines both the torsion and the curvature of
spacetime.
In sections 4 and 5, we shall combine these results with (2.8) to study the specific

dynamical models.

3 Noether-Ward identities

It is clear from the previous discussion that the residual gauge symmetries (2.9) are also
kinematical. They are mazimal gauge symmetries that we can expect to find on the
boundary. Indeed, after choosing an action integral, the corresponding field equations may
impose additional restrictions on these symmetries. In this section, we shall study the
gravitational Noether identities (also called generalized conservation laws) induced by the



maximal gauge symmetries (2.9), and interpret them as the corresponding Ward identities
of the boundary CFT.

To make these ideas more precise, consider a 3D gravitational system without matter
in an asymptotically AdS spacetime, with solutions characterized by independent boundary
values of €%, and w,. The quasilocal energy-momentum and spin currents of the system
are calculated by varying the action with respect to the boundary values of €%, and wy.
The variation produces a bulk term, which is proportional to the field equations, and a
boundary term. The on-shell value of the gravitational action, suitably renormalized, is
given as a finite 2D functional Iey[e,w] on OM. Next, consider a set of quantum fields ¢
on OM, coupled to the external gravitational fields (sources) e%, and w,, and described by
an action integral I[¢;e,w|. The corresponding effective action Wle,w] is defined by the
functional average over ¢:

Wlewl _ [ pgeiives] (3.1a)
oM

In the semiclassical approximation, the AdS/CFT correspondence can be expressed by
identifying the effective action with I en[e, w]:

Wle,w| = Lenle,w]. (3.1b)

Using this identification, we can calculate the gravitational Noether identities for Iiey|e,w]
and identify them as the Ward identities for the 1-point functions derived from Wile, w],
provided the functional measure is invariant under the residual gauge symmetries.

We consider gravity theories whose Lagrangians are at most quadratic in the first
derivatives of the spin connection and the vielbein. The corresponding field equations are
obtained integrating by parts, such that the surface term,

51’0nfshell = /de (sz 5élu + Qzu 5(‘:)21/) ) (32)

does not contain derivatives of the variations of the fields.
The gauge choice (2.3)—(2.5), when used in the above formula, produces a surface term
expressed in terms of the boundary quantities

(S-[On—shell = /dQZE (p?ée“a + qo‘éw ot qgékaa) . (33)

It is clear that the PGT formulation of gravity also allows to impose boundary conditions
different than keeping the vielbein and spin connection fixed at the conformal boundary.
However, a theory with boundary conditions other than a Dirichlet one does not lead itself
to a holographic description in the usual AdS/CFT framework.

In fact, in the metric formalism, the last term in (3.3) is related to the variation of
the extrinsic curvature that is usually traded off for the variation of metric by a Gibbons-
Hawking-type term. When a Gibbons-Hawking-type term cannot be constructed for a
given theory, the only way out is to consider that the extrinsic curvature and the metric
are related asymptotically.

The fact that the leading-order in the expansion of the extrinsic curvature is the same
as the leading-order of the boundary metric for Riemannian AdS spacetimes suggests that



there is an asymptotic relation between the extrinsic curvature and the vielbein in theories
with torsion; such a relation in PGT is given by (2.11). Note that, as showed in appendix A,
only the symmetric part of the extrinsic curvature is Riemannian, and the antisymmetric
one explicitly depends on torsion. Once appropriate counterterms are added, the variation
of the renormalized PGT action can be written as

0 Lien = / d’z (T90€e% + 0%0wy,) (3.4)
oM

whereby the standard duality between gravity and a boundary CFT is recovered.

The form of the expected Noether identities is based on the residual symmetry trans-
formations (2.12) and (2.13). Quite generally, the invariance of the renormalized action
under these transformations can be written in the form

0 Iien = —/ d?z (1%00e% + 0%0ws) = 0, (3.5a)
oM
where 5I sI
a ren o ren
= — = — 3.5b
T a 5eaa7 g PN ) ( )

are the energy-momentum and spin currents (tensor densities) of our dynamical system.

Restricting our attention first to the local translations (with parameters £%) and then
to the local Lorentz transformations (with parameter ), we arrive at the corresponding
Noether identities:

e 5VaT% = 7T %50 + 0% Fo — ws(Vao® + %14 (3.6a)

V@Oﬁ = —é‘abTab, (3.6b)

which are also known as the generalized conservation laws of 7, and o”. Note that if the

second Noether identity (3.6b) is fulfilled, the last term in (3.6a) can be omitted. Similarly,
the invariance of Iyenle®q, wq] under dilatations leads to

T —Vg (sabaaebﬁ) =0, (3.6¢)

where 7 := 7%, is the trace of the energy momentum tensor.

Although the gravitational dynamics in the bulk is described by a RC geometry, with
d)iu and éiu as independent fields, it may happen that some solutions on the boundary are
Riemannian, that is, characterized by a vanishing torsion, Ty, = 0. For such solutions,
the boundary connection w, is no longer independent of the vielbein e%,. Nevertheless,
as we are going to show, the Noether-Ward identities are still of the form (3.6), but now,
wq takes on the Riemannian value w,. In a way, this might have been expected, since the
transformation properties of @, are the same as those of w,, and these properties play a
crucial role in defining the boundary symmetry.

When the boundary torsion vanishes, the connection takes the Riemannian form (A.3).
However, we find it more convenient to use an equivalent but more compact expression:

(I)a = —sa55755aﬁe“5876b5. (3.7)



Now, starting from the Riemannian renormalized action fren = Lienl€%a, Wa)], we find that

the related spin current X< := —5fren /dw,, vanishes, whereas the energy-momentum current
0%, := —dlen/de%, has an additional contribution stemming from the last term in (3.5a):
0%, = 7%, — Vg (aaﬁe*a@) . (3.8)

Here, X denotes the Riemannian limit of a RC object X; in particular, Va fo = Oafa —
€acWa f€. Then, the Noether identities for the action fren are found to be:

e 5Va0% + 0pe™Oyp = 0, (3.9a)
0, =0, (3.9b)
0 =0. (3.9¢)

Since ©%, is a tensor density, the first relation, which is a condition for diffeomorphism
invariance, is seen to coincide with the condition (4.10) in Klemm et al. [8]. When the
Lorentz invariance is satisfied, (3.9a) reduces to the usual form D, (e 1©%3) = 0, where
D, is the Riemannian covariant derivative. The remaining two relations are the standard
Riemannian conditions for the Lorentz and Weyl invariance, respectively. Using Ty = 0,
as well as the identity saﬁﬁaﬁﬁfa = —%6aﬁﬁa55abfb, one can transform (3.9) into

€5V aT% — 6 Fgo + 05(Va? 4+ e®7y) = 0, (3.10a)
e®7+ Ve’ =0, (3.10b)
7 — Valeapt®e?) = 0. (3.10¢)

Hence, the Riemannian identities (3.9) coincide with those obtained from (3.6) in the limit
Tupe — 0, as expected. This proves the following theorem:

— In the context of PGT, the form (3.6) of Noether identities can be used for both
Riemann-Cartan and Riemannian boundary geometries.

According to the AdS/CFT correspondence, relations (3.6) are interpreted as the max-
imal set of Ward identities that can be found in the boundary CFT. If the field equations
happen to be incompatible with the above symmetries, some of the Ward identities may
be violated, leading to the appearance of quantum anomalies.

4 Holography in topological 3D gravity with torsion

In this section, we analyze the validity of the Noether-Ward identities (3.6), in the MB
model of topological 3D gravity with torsion [9, 11], described by the action

1 - .
Ivp = / <2aéZRZ- - ng&'jkélé]ék +azLes(w) + 044@sz‘> ) (4.1)

where Lcg(@) = @;do’ + %eijkdz%jd)k is the Chern-Simons Lagrangian for the Lorentz
connection, a = 1/167G is the gravitational constant, Ag is a (bare) cosmological constant,

,10,



a3, ay are dimensionful coupling constants, the wedge product signs A are omitted for
simplicity, and the matter contribution is absent.
The vacuum field equations read

Tijk = peijk Rijr = qeijk (4.2a)
where the parameters p and ¢ are defined in terms of the coupling constants a, A, ag, ay.
The spacetime described by these equations is maximally symmetric, at least locally. More-
over, in the AdS sector, the effective cosmological constant is negative,

2

Aﬁxzq—%j:—l. (4.2b)

By comparing these equations with (2.14), it follows that the parameter p from our ansatz
should be identified with the parameter p in the MB model.

Our analysis is based on using the AdS asymptotic conditions (2.8). For an interest-
ing asymptotic correspondence between the MB model and topologically massive gravity,
see [21].

4.1 Analysis of the field equations

The subset of the field equations (4.2a) that describes the radial evolution of the system is
given by (ijk) = (11¢), (alc). The first pair of equations takes the form

Ty =0, Rie=0. (4.3a)

Using the expressions for Tijk and Rijk calculated in appendix C, one finds that the first
equation is identically satisfied, whereas the second one implies that w, is the Lorentz
connection at the boundary;,

Wa = wa (). (4.3b)

The second pair of equations reads:

Talc = —DPEac, Ratlc = —Q&aqc - (443“)

After introducing the radial expansion (2.6), the first equation in (4.4a) yields that s, is
symmetric,

s =0. (4.4b)

This result simplifies the second equation in (4.4a); relying on (C.5)s, the piece of the

zeroth order in p implies that the effective cosmological constant Aqg is negative, see (4.2b),

whereas the piece of order p? leads to a finite radial expansion of €cp:
€cp = €cp + p2565 . (4.40)

Such an expansion that terminates at p? is a generalization of the result known for GR in
3D; in higher dimensions, the result holds when the Weyl tensor vanishes [22]. As a simple
consequence, the radial expansion of k% is also finite:

kab _ gnab . 8ab + 21025acsbC )
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Using the above results, the nontrivial content of the remaining (1bc) and (abc) field
equations is expressed in terms of the following radial contraints:

Tabc = 0, (45&)
R — 45 = O, (4.5b)
Vaspg — Vgspe = 0. (4.5¢)

In particular, we see that the boundary torsion vanishes.

4.2 Counterterm and boundary currents

Now, we introduce the boundary currents and verify their Noether-Ward identities.
The variation of the MB action, calculated on shell, reduces to a surface integral:

§Ivip = / d*xe™® (2a€' 4005 + a3l 0 0Wig + 1€’ o 08i5) . (4.6)
oM

Each of these three terms can be written in more details as:

2
—Zaaﬁ {Eeb
p 2

, «
ageaﬂalaéww = —350‘6 {qebaéebg — 2pp26“bsaa56b3 + 4p28ba56b5]
p

2a€aﬂéia5d}w = aéeb,é’ - €ab6aa56b5 - 2p2€absaa5ebﬁ] + 5A1 ,

—agsaﬁwa5w5 ,
aBgi s _ % a8 b 5
Qyue e 063 = 26 € a0€ps ,
where dA; is a total variation with
A7 = 4a€a55abs“aebg = —4aes’.,

and e := det(e®y). Then, the identity ap 4+ a3q+ s = 0, see ref. [11], implies that the sum
of the first three terms in the above expressions vanishes, whereupon the only divergent
term in 0/yp is also a total variation, Ao, with

a 2a
Ay = —ﬁ€aﬂ€ab€aa€b5 = ?é(l + p250c) .

Since the boundary integral of A + Ao appears in 0 \p as a total variation, it can be
subtracted from Iy to obtain an improved variational principle. The integral

1
Iy = / d2x(A1 + Ag) = 2a/ d*ze (2 — scc> (4.7a)
OM oM p

is usually called the counterterm. Before discussing its role in the new variational principle,
let us rewrite I¢ in an equivalent form as

I :=a / d’zeK (4.7b)
oM

where K is the trace of the extrinsic curvature (A.5), and é%, = &%, /p is the induced viel-
bein at the boundary. The expression for I is just one-half of the Gibbons-Hawking term
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(Ign), the result that naturally appears in the Chern-Simons formulation of GR in 3D, as
discussed by Banados and Méndez [23], and by Miskovi¢ and Olea [24] (for an interesting
approach to counterterms in higher dimensional gravity, see [25]). On the other hand,
using the field equation (4.5b), we can express the finite piece of the counterterm, s¢., in
terms of the scalar curvature R, but since R is a topological invariant, its contribution to
It can be disregarded. Thus, effectively, the counterterm can be written as a covariant
object, determined by a local function of é%,:

It = 2a / d*zé = Ign — 2a / d*zé, (4.7¢)

where the last term is the usual local counterterm of Balasubramanian and Kraus [26], ob-
tained in the context of 3D GR. It is interesting to note that the nonlinear Chern-Simons
term in the MB action does not contribute to the counterterm, in agreement with the
analysis of [7].

Since the total variation 0/ is a divergent piece of d Iy, we are quite naturally led
to introduce the renormalized (or, more precisely, the improved) MB action:

II{/?]% = Iy — Iet, (48)

such that it has well-defined functional derivatives and produces finite boundary currents,
on-shell.

Note that, although the counterterm (4.7a) ensures that the variation of I}y is finite
and differentiable, one can verify that the value of the renormalized action Iy is logarith-
mically divergent. Similarly as in GR, the logarithmic term is proportional to the Euler
topological invariant e, which is why it does not influence the variation of I{f. The log-
arithmic terms, even though topological in three dimensions, are important to be included,
because the renormalized gravitational action is identified with the free energy in the dual
boundary field theory.

Finally, by noting that

g = / d?ze™P {—4 <a + %) eabs“aéebg + 4(138ba(56b5 — aszwalwg| (4.9)
oM

we can use (3.5b) to obtain the energy-momentum and spin currents on the boundary:

-

p = 4 (a + %) B ps%a — dase™P sy

of = —az3ePuw, . (4.10)

4.3 Boundary symmetries and anomalies

Now, we wish to check the expected Noether-Ward identities (3.6).
Using the radial constraints (4.5), we find the following on-shell relations:

1
Ver’y =0,  Vgo = _585%6' (4.11)
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Comparing with (3.6b), we see that the Lorentz invariance of the effective 2D theory is
violated, and the Lorentz anomaly reads:

1 1
A = Vgaﬂ + 8bchc = §€bchc = —50535]%- (4.12)

The coefficient a3, multiplying the topological (Euler) density eR, is proportional to the
difference of the classical central charges ¢T of the Mielke-Baekler model [11]:

ct =24r [a€+a3 <p2£$1)] .

Next, (4.11); implies that the translation invariance condition (3.6b) is reduced to the
form 0 = o” Fop+ an5U’B. Using the relations

1 1
Vﬁaﬁ = §a36R’ UBFag = fgagwaeR,

we conclude that local translations are a correct boundary symmetry. Hence, there is no
translational anomaly:

AT = eaﬁvoﬂ—aa - TaaTaBa - O-BFOZ,B + wa(vﬂgﬂ + 8ab7—ab) =0. (413)

Finally, in order to verify the Noether identity for dilatations (3.6¢c), we use (4.4b)
and (4.5b) to obtain

T = —4é<a+ @) 5. = —¢ <a+ %> R,
2 2
Vs (6abaaebﬂ> = —a3dp(ew”). (4.14)

Thus, the dilatational Noether identity is violated, and the violation is measured by a
quantity which is usually called the conformal (or Weyl) anomaly:

Ac =71 — Vg (saboaew) = — (a + %) eR + ozgag(éwﬁ) . (4.15)

Here, the coefficient of eR is proportional to the sum of the central charges.

In treating the boundary symmetries of the MB model, Klemm et al. [8] followed a
different approach, based on using the Riemannian connection in the renormalized action.
Nevertheless, our results for anomalies coincide with theirs, in agreement with the theorem
proved in section 3. The full strength of this theorem will be seen in the more interesting
case of 3D gravity with propagating torsion, where the complicated field equations may
lead to either vanishing or nonvanishing boundary torsion. However, we will be able to
derive the Noether-Ward identities without recourse to the value of the boundary torsion.

5 Holography in 3D gravity with propagating torsion

In this section, we analyze the holographic structure of 3D gravity with propagating torsion,
assuming parity invariance [12], and using the AdS asymptotic conditions (2.8).
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5.1 Lagrangian and the field equations

Assuming the absence of matter, dynamical content of 3D gravity with propagating torsion
is defined by the action integral

I= /d% eLa, (5.1)

where é = det(é? ), and the gravitational Lagrangian L¢ is at most quadratic in the torsion
and the curvature. Assuming parity invariance, the general form of L is given by [12]

Lo=—aR—2Ag+ L2+ Ly . (5.2a)

The quadratic terms can be conveniently be written in the form

1. . . X
Ly = ZTUkHijk : Hijr = a1 DTk + ag DTijp + ag O T,

1. X X X
Lp2 = gR”lezjk;z 7 Hijnt = bs Y Rijrs + bs D Rijry + b P Riji (5.2b)

where we introduced the covariant field momenta H,;j; and H;jx, which are linear in the
irreducible components of the torsion, (")Tijk, and the curvature, () Rijkl. An equivalent
form of these two terms, which is more convenient for practical calculations, is given by:

Hijk = 4(@1Tijk + aQT[kj]i + a3Tijk) 5
Lp2 = RIH;;, Hij = BiRij + BoRji + Banis R (5.2¢)

The expression for Lp2 is obtained using the fact that the Weyl tensor identically vanishes
in 3D, and the new coupling constants (ag, 8)) are expressed in terms of the (ag, by) as [12]

1 1 1
041:6(26114-663), a2:§(a1—a3), 04325(02—@1),
1 1 1
1= 5(ba+bs), P2 = 5(ba—bs), Bz = 15 (b6 — 4b4)
The variation of the action (5.1) with respect to é', and &%, (= —£“d,) produces

two gravitational field equations, displayed in equations (2.13) of ref. [12]. Without matter
contribution, these equations, transformed to the local Lorentz basis, take the form:

V" Hims + M (T + 2 Vi) — 1 = 0., (5.3a)
tij = 0L — T Humnj + 2aRj; — 2(R™ My — B™™ i Hum) ,
where ¢;; is the energy-momentum tensor of gravity, and
20Ty + 2T ij(Huk — M) + 4V (Hjpe — i) + €ijne™ kHm" = 0, (5.3b)

with H = Hkk
In the near-boundary expansion, the leading order of the field equations (5.3), cor-
responding to p = 0, reduces to the following relations involving the coupling constants:

p(a+ gbs + 2a3) = 0, (5.4a)
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aq— Ao + %pzag — %quG =0. (5.4b)
As shown in [12], these relations ensure that the AdS configuration, as well as the black
hole with torsion, are solutions of the present theory. However, quadratic equations (5.4)
allow to have two different solution for the effective cosmological constant A.g = p —¢*/4,
and consequently, two different AdS vacua. For a particular choice of parameters (p =
0,a — bgg = 0), the two vacua coincide [12]. For an analysis of this situation in the
Bergshoeff-Hohm-Townsend gravity, see refs. [27, 28|.

5.2 Equations of motion

In this section, we discuss the consistency of the near-boundary analysis of the field equa-
tions (5.3), given in appendix D, with the holographic description of the asymptotic theory.

The leading order of the field equations is given by egs. (5.4). These equations constrain
the coupling constants and, therefore, restrict the form of the allowed gravity actions.

Equations linear in p are given by the algebraic system (D.1), (D.2), (D.6) and (D.8) for
the vector V, = T?;,, which defines the complete torsion tensor in 2D (appendix A). These
equations allow not only Riemann-Cartan but also Riemann boundary geometries. How-
ever, thanks to the theorem proved in section 3, we can study the Noether-Ward identities
in these two cases quite generally, without making an explicit distinction between them.

The order p? of the field equations is given in (D.3)-(D.5) and (D.7). These are
algebraic equations in the tensor s,p, which is related to the extrinsic curvature Ky, (ap-
pendix D). More precisely, these equations determine the antisymmetric part e%s,, and
the trace s as local expressions of the boundary curvature and torsion. In particular, for
the vanishing torsion we have €%s,, = 0 and s¢, = iR, as in the MB model.

Here, in contrast to the MB model, the radial expansion goes beyond p?, but the cubic
and higher order terms do not affect our results in the p — 0 limit.

Let us emphasize that, in our near-boundary analysis, we were not able to determine
the symmetric traceless part s/, of sq;,. We can understand this situation by noting that s/,
is a nonlocal function that requires a global solution. Such nonlocal terms are parts of the
(nonlocal) 1-point functions of the boundary CFT. On the other hand, physical objects,
such as the conformal anomaly, are always local. This is a general feature of the boundary
currents in an effective theory.

In the next section, we calculate the boundary currents of the effective CFT.

5.3 Boundary currents

In the absence of matter, the variation of the (gravitatonal) action, evaluated on-shell,
takes the form

0l on—shell = /d31‘ O {2€“V/\ék,\ (667,67 K Hijm + 00", (@i + Hyi — UkiH)]} . (5.5)

After expressing 61yn_shen as a boundary integral, we will use the field equations to find
the renormalized 2D action. Then, in accordance with (3.5b), we will identify the energy-
momentum and the spin boundary currents as the objects (1-point functions) coupled to
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the sources €%, and @, in the boundary CFT. To do that, we write the action corresponding

to the Lagrangian (5.2a) as
I:IEC+IA0+IT2+IR2- (5.6)

The variation of the term Ig¢, linear in the scalar curvature, is known from the MB

model:

8lpc = Zl; d%eaﬁe“acseaﬁ —4a d%eaﬂsabsaa&ew

oM oM

+6 [ dPx(Ar + D), (5.7a)
oM

where the total variation contains two pieces, one finite and the other divergent:

Ay = 4a5aﬂ5abs“aeb3 = —4aes®.,
a 2a

Ay = —*26(1'86@176&&61)5 = 725(1 + p250c) .
P P

The variation of the cosmological term does not contribute to the boundary integrals.

Next, we vary the term quadratic in torsion:

2a 2a s
gp / d*rePel yeqs + —23 d*x(A — p)e®Petydeqs . (5.8)
pe Jom P Jom

5IT2 -

Note that the second piece, containing the axial torsion, is a finite 2D integral.
Finally, the variation of the term quadratic in curvature yields:

6l = 2 / d3re (Hyi — bigH) 0,00",
M
1
-y / d?xe®P {%alawﬁ + (Hea — NacH) Qecaakaﬂ} , (5.9)
oM P

where

b — by
6

Hca - ncaH = ncab6q + ncaPQ |:b6p(€ : S) - (R - 4S’y’7):| + 2€cap265(5 : S) )

and € - s := /954, The first piece of 51> has the form

A= 28, / 2B (Eeac - nac) Ve dws . (5.10a)
oM 2

The second piece can be conveniently written as the sum of two terms, B + C, where:

b
B = G—ZP d%saﬁemée“g — 4bgq/ desaﬂéeaaeafsM
P oM oM
+6 [ d%zAs, (5.10b)
oM

b
Az = 4b6qsaﬁe“beaa55b — pizqsaﬂsabeaaew = qp—éK.
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and

bg — b4

C = 2/ d?xe®P [56]9(5 -s) —
oM 2

465/ dzxsaﬂ(s - 5)e‘s (ana — 5ca) ety . (5.10¢)
oM 2

(R— 4377)] Con (Enab B Eab) Seys

Now, the first terms in dIgc, 012 and A are divergent, but their sum vanishes as a
consequence of (5.4a). The sum Io; := [ d?x(A1+ Ay + As), which appears in 61 as a total
variation and is also divergent, is recognized as the counterterm; when subtracted from I,
it defines the renormalized action .., = I — I, see the next subsection for more details.
The variation of I, is finite:

0lren = —4a/ d2x€°‘55“35656m,
oM
+4a3/ d2x(5 . 3)6"66“&66@/3,
oM
+A — 4bgq / d2335a65“f35f5em + C. (5.11)

From this result, one can identify the spin and the energy-momentum boundary currents,
or equivalently, the 1-point functions of an effective 2D quantum theory, as:

Oﬁ = (b4 - b5)55a (ggac - 77ac> Ve éaa s (512&)

7% = 4(a + b6q)e™eaes s + das(e - 5)e™Peqp

bg — b
—eo‘ﬁ%(R — 4377)61’5 (gnba — 5ba)

2
e Kb@‘pg - 2b5> Moo + p(bs — bG)Eba} ¢’s(c - 5). (5.12b)

5.4 Renormalized action

Before we continue to examine the Noether-Ward identities of the boundary currents (5.12),
let us stress that the variation of the full action I contains the total variation of the divergent
term I.¢, which can be compactly expressed as
a+ qb -
Iy = (a+dbo) d*zeK = (a + qbg) d’zeK . (5.13a)

,02 OM OM

Note that the factor (a + gbg) is proportional to the central charge of the theory [12].
Subtracting this counterterm from the original action [ yields the renormalized action,

Len=1-1I4=1— (a+ qbs) / d’zeK (5.13b)
oM
the variation of which produces the finite boundary currents (5.12).
One should observe that here, like in the MB model or GR, the counterterm is of

the Gibbons-Hawking type, but with a modified factor which involves the R? coupling
constant bg. All the other quadratic terms in the action give finite contributions that
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need not be regularized. Similarly as in the previous section, we can decompose I into
the Balasubramanian-Kraus type local counterterm and the finite term proportional to
f d?>xés., which becomes, on shell, a local function of the boundary curvature and torsion.

We would like to emphasize that, in even boundary dimensions, there is a logarithmic
term in the field expansions related to the variation of the conformal anomaly, i.e., to its
functional derivative with respect to the corresponding source. In Einstein-Hilbert gravity,
however, its coefficient is obtained as a variation with respect to the boundary metric of
the conformal anomaly which is topological invariant in two dimensions, such that it can
be dropped out in the holographic renormalization procedure [19]. For the present holo-
graphic analysis with torsion, the field equations can be also solved consistently without
adding such type of terms. This seems to be a reflection of the fact that the coeflicients
of the log terms in both the vielbein and the spin connection are related to the variation
of the Weyl anomaly that turns out to be, as we show below, a topological invariant, even
when the torsional degrees of freedom are taken into account.

Similar type of a logarithmic term also appears in the action evaluated on-shell.
Namely, the counterterm (5.13a) ensures a differentiable and finite variation of the ac-
tion Iien, but the action itself contains a log term whose coefficient is related to topological
invariants. As mentioned in section4, inclusion of these terms is important in the full
renormalized action that is identified with the free energy of the dual CFT.

These invariants are the same as those appearing in the conformal anomaly, the form
of which will be obtained in the next subsection.

5.5 Boundary symmetries and anomalies

To simplify the derivation of the boundary symmetries and make it more direct, we rewrite
the spin and the energy-momentum current in a more compact way. First, using the
expression (5.9), we write the spin current in the form

of = —2e""H 01 = 27 (6" Ha1) | p=o - (5.14)

In what follows, we shall omit the sign |,—¢ for simplicity. After isolating the counterterm,
the energy-momentum tensor becomes

2a -
Py = 4(a + gbs)e™Pepsa” — 72360“ eboe(-A )
_2 ase (H H — 1egh — 9 (5.15a)
[)25 € alTleg = Tcg Tleg 6q &% | - .

Then, using (5.4a), we obtain an equivalent form of 7%,

2 2a
7y = _E(a + ab6)e® (kpa — ape’a) — 7p238aﬁ€ba«4
2 o P
3¢ (Heg = eg M.~ egbea) (508 <) - (5.15b)

Note that the trace of 7%, is given by

2
T=c¢é|—4(a+bsq)s"y — 2 (Haa —2H — 2bq + gsab’l—lab)} . (5.16)
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Lorentz invariance. To verify the conservation law of the spin current (5.14), we start
from the relations:

Vao'a = Vao-o‘ = éebc <Tabc7‘[a1 + 2@1{7"(01) )

2e p 2e
rap = g (@t boa o 2a3) (A = p) = 75 (M Hie + SHe — pH ~ pboa)

e - 2e N
ﬁ(a + 2a3 — Hcc)saleab = —?(a + 2a3 — H ) A.

Then, using the field equation (1ab) in the form
—2(a—H+ 2(13)/l + e (T%Ha1 + 2V Her) =0,
the Lorentz invariance condition is found to be satisfied on shell:
AL = Vo + £%7,=0. (5.17)

Thus, our parity-invariant model (5.2) is Lorentz-invariant, in contrast to the situation in
the MB model, where the Chern-Simons term violates this invariance, see (4.12).

Translation invariance. Let us now examine the invariance under local translations.
First, we note that the validity of the Lorentz invariance condition (3.6b) implies that the
last term on the right-hand-side of (3.6a) vanishes. Next, we calculate the divergence of
the energy-momentum tensor:

2€e 1. .
VBT'BG = ? [(a + bGQ) <pR1a — (gé‘ab — 77ab) Vb> + QVbHalb — ag(p — A)Eabvb

e

+,03 (eab + gég) [266(1@0(7{% —napH) + 2/17‘[11; + 2.%17‘[171 — 2kbd7‘ld1

+ T g Mgy — mppH — bGQTIfb)} .

Making use of (5.4a) and the (abc) field equation (appendix D), the above result is simpli-
fied:

2e 1.
Verly = 52 [(a + bGQ);Rla +2VPH 15 — a3 (g%b + nab) Vb
+az(A byl b AN — kP
3(A+p)eapv +p Eab + 5 lab (AH" Hat)| - (5.18)

Then, using the relations

O'BFag = eRHa,

N 2e A
7T = 4é(a + bq)sap VP + ?a?;(p — A VP

2e R
—;(’Hac — NacH = Nacbeq) R1°, (5.19)
we finally obtain:

A = Vrt, — 0P Fup — m%Tom
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_ 1 . .
5 [—402((1 +b0q + a)sa V"~ pRHar + - (2B + B)Har

2 .
+ P (8ab + gnab> (AHb — kdb%dl)}

by—b 2 by—b
——4ésab{<a+bﬁq+a3— 42 5<1+i>>Vb+p 42 S e[ =0, (5.20)

where, in the last line, we again used the (abc) field equation.
This proves the translation invariance on the boundary.

Conformal anomaly. Let us now examine the dilatation invariance by calculating the
expression Ac =7 — Vj (eapo®e?®). We start with

2
Ac = e [—4((1 + bﬁq)scc + 4p(b5 - bﬁ)(E . S) + g(bﬁ — b4)(R — 4806):|
_ z(Pe aBysb
+(b4 b5)Vg [6 (28[11, Tlab) e V ] .
Then, the identity
2] E _ aBysb — 7 B - ay/b a
Vﬁ [e(zé‘ab 77ab>€ V} 6[(2Eab nab)v Vi+V Va} ,

and the 2nd order piece of equation (lab), lead to:

bg + 204
3

Ac = é[f(a + beq) R + 4bgpq(e - s) + (a +q )(R — 45%)

~(q+2)(b1 — b)(VaV* = VaV®) 4 p(bs — b5)="VaV3)]
Finally, by using equations (1a) and (11), we obtain the conformal anomaly:

Ac = —(a+bgq)eR + [2as — (¢ + 2)(by — b5)] e(V V¢ =V, V)
+p(bs — b5)ee"V, V. (5.21)

Since the conformal symmetry is broken, the boundary symmetry is reduced to the local
Poincaré invariance.

The first term in Ac, proportional to eR = 9,(2cwp), is a topological density (re-
lated to the topological invariant [ d*reR); the related factor (a + bgq) is proportional to
the central charge of the theory [12]. Since the Weyl weights of e%y,T%g,, V¢, V,V® are
+1,+1,—1, -2, respectively, the remaining two terms in A¢ are seen to be invariant under
local dilatations. For details of the classification of conformal anomalies, see [29)].

A closer inspection of the Weyl invariants leads to the identities:

Wy = &(VaVe = VoV = 0 (ePe,5eV3)
Wy := eV, Vi = 04 (e%Pe?5V,) . (5.22)

In particular, the first identity can be written in the language of differential forms as

N =T*T, — e*V*T, = d(e**T,), (5.23)
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where we used V, = eg*T".

The 2-form N’, which represents Wi, has an interesting
resemblance with the Nieh-Yan 4-form [30, 31]. Similarly, a Nie-Yan-like representation for
W5 is obtained by the replacement *T, — T, in (5.23). The integrals of Wy and W5 over
the boundary are topological invariants, the nature of which will be studied elsewhere.

A theory with parameters for which the conformal anomaly vanishes is known as the
critical gravity. For such a critical choice of parameters, the bulk theory may acquire loga-
rithmic modes, which leads to a logarithmic CFT at the boundary. For general properties

of gravities at the critical point, see e.g. [32].

6 Concluding remarks

In this paper, we presented an analysis of the AdS/CFT correspondence in the realm of
3D gravity with torsion, with an underlying RC geometry of spacetime.

Starting with a suitable holographic ansatz and its consistency condition, we found
that the expected boundary symmetry is described by local Poincaré transformations plus
dilatations. Based on an improved form of the Noether-Ward identities, we first analyzed
the holographic features of the MB model, where we confirmed the results of Klemm and
Tagliabue [8], derived by a different technique. Then, turning our attention to the more
interesting case of 3D gravity with propagating torsion, we obtained the holographic con-
formal anomaly, with contributions stemming from both the curvature and the torsion
invariants. As a consequence, the boundary symmetry is reduced to the local Poincaré
invariance. The improved treatment of the Noether-Ward identities, being independent of
the value of torsion on the boundary, significantly simplifies the calculations.

An interesting problem for further study is to clarify how torsion affects the structure
of the dual CFT. A simple approach would be to study the specific PGT sectors containing
only one of the six propagating torsion modes, with J = 0%,1,2 [12].
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A On the RC geometry in 2D

In 2D, the Lorentz connection, which is Abelian, has only one independent “internal”

b b

component, w®, = —*w,, and the local Poincaré transformations of e%,, and w, have the

form (2.12). The corresponding field strengths, the curvature and the torsion, are given by

Rabaﬁ = —EabFag s Fag = 8aw5 — 8500& s
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T%p = Vae's —Vgely, Vaes = 0qe"g — €% cwae’s . (A1)
The Ricci tensor and the scalar curvature read:
R = —®F, R=—¢"F,. (A.2a)
As a consequence:

Ry = %nabR, Fyp = %%bR, (A.2b)
and the Ricci tensor is always symmetric. The torsion tensor, with only two independent
components, is completely determined by its vector piece V, = T?,, as

T%c = 6 Ve =6V

When the torsion vanishes, the connection becomes Riemannian:

- 1
Do = §6ab(cabc — Ceab + Cbea)€ o s c"ap 1= 0qe"g — 0ge’y , (A.3)
see also (3.7).

In the Gauss-normal radial foliation, the unit normal to the boundary 0 M has the form

n; = (nlyna) — \/W — (17070)3
with n? = —1. The extrinsic curvature (the second fundamental form) of M is defined

by K;; = @m] The only nonvanishing components of Kj;; are
o - p
Kab = vanb = _gbcwca = Ecbkca = igab + Nab — 2/023ab7 (A4)
where we used k¢, := k°,e,“. In particular:

K(ab) = TNab — 2p2s(ab) ) Kbb =2- 2P280c,
WKy = —p—2p2%s = —A. (A.5)

The last equation gives an interesting geometric interpretation of the axial torsion A. For

~

A =0, K, reduces to the standard Riemannian form.

B Residual symmetries to second order

At the end of section 2, we showed that the residual symmetry group with the parameter
f(x), defined by (2.9), acts as local dilatation on the leading order of the metric, gag.
From (2.9), we can also find the transformation rule for the second order of the vielbein,
s%a, and extend the result of section 2 to the second order of the metric, g(2)as-

Indeed, using the definitions g,z = nabéaaébg and g(2)ag = Sap + Spa, and restricting
our attention to dilatations (f # 0), we obtain:

0f9ap = 2f Gas ,
5fg(2)ocﬁ = 2f 9(2)aB — 2éa(avﬁ)fa + QfWT(oaﬁ)w ) (Bl)

where f, := %801 f- In the limit when torsion vanishes, this result reduces to the Penrose-
Brown-Henneaux transformation [33, 34], which was derived in Riemannian GR and used
to study universal properties of trace anomalies.
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C Field strengths and covariant momenta

C.1 Torsion and curvature

The results of this subsection are obtained using the expression (2.11) for k4.
In the local Lorentz basis, the torsion components are:

Th. =0,
T e = eck® — epek®c = —epck®e,
T%. = —&% {660 + (gnec + kzecﬂ + pe.0pe
T% = pT%:, (C.1)
and the components of curvature read:
Rllc = —P2€c73pww

Rlbc = _pQFbc + EEdkebkdc )
Ralc = - (kac + 2%5(11)]'%0) + Pecwapkav )

~

Rape = pey’ e (Vgkay — Vokag) - (C.2)

The Ricci tensor and the scalar curvature are calculated from the relations:

Rik = _5mniRmnka

]':L) = —Emnkﬁimnk = R11 + ]%aa . (03)
Reduction. Equation (2.11), in which kg is expressed in terms of e, simplifies the
expressions (C.1) for the torsion:

lec = 8bc“gtv
Talc = _EacAa
Tabc = pTabca (04)

where A is the axial torsion:

. 1 ipe
A= és”kTijk =p—peliePdpeys.

Similarly, the curvature tensor reads:

Rllc = _p2€cﬁ8pw57
A P .
Rlbc = &beq — p2Fbc - 5bc§(p - “4) + pgbcegﬁapegﬁ + Y;)C7

~

p P _
Rale = —€acq + <§5ac - naC) (p—A)+ p35ab6’bﬁap (:0 lapecﬁ) + Xac

5 p
Rape = P <§Tabc - 5afobc) + Zabe (05)
where Y., Xy and Zg,. are given by

KXoe == p25afecﬁapebvap(€fwebﬁ) = _77acp3ap [9_2(]7 - A)] —p(p— A)ecﬁapeaﬁ )
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Yie = —p’esge! e (9,e18)(Dpeey) s
Zobe = —erSCLfebBeC“Y [Vﬁ(ﬁpefagw,) — Vw((?pefo‘gag)] . (C.6)
As a consequence, the Ricci tensor and the scalar curvature read:
Ry = "Ryt = 29 — p(p — A) — p°¢P9, (p7 9pecs) + (p — A)?,
Ri. = —®Rype = p (g%be - Vc) — % Zpe
Ra = €a°Ry1c = —P25a06c63pw/3,
Rap = €a“(Reto — Ricb) = —20apq + (Plap — €av) (p — A)
+0€a”0, (p~ Opers) + p* Rab — prave” Dpe gy + 20 (Xep — Yep) ,
R = —6q+3p(p — A) +2p°¢0,(p™ 1 0pecp)
+p°R — 2pe’P8,e 15 — €% (2X ae + Yac) »
where
a’(Xeb = Ya) = —eavp®d,[p 2 (p — A)] — p(p — A)eaes’ dpecs
+P25aCEB7(8p€CB)(8pebv) )
—£%(2X 4o + Yyo) = —2(p — A)? — P2 EPY(0,e18) (0peey) -
C.2 Covariant momenta
Here, we rely on the conditions (2.8), which imply X = Os = Yo and Zgpe = Os.
The calculations in section 5 are greatly simplified if we first find the explicit form of the
covariant momenta. In the torsion sector, we have:
Hire = —2a3pVe,
Hipe = —Hpie = 4(1 — an)epeA,
Have = 2p (201 + a2 + az) Type, (C.7)

and in the curvature sector, we find:

Hir = 2(B1 + B2+ 3B3)q — (B1 + Ba + 363)p(p — A)
—B3p? (R — 4s°.) + Oy,

Ha = 520 (ggac - nac) Ve+ O3 s
Hia = 510 (ggac - nac) Ve+ O3 s
Hap = —2(B1 + B2 + 3B3)napa + (B1 + B2 + 383)nap(p — A)

—(B1 — Ba)ean(p — A) + %P%ﬁl + B2+ 2B3)nap (R — 48/ s55) + Oy (C.8)

D Radial expansion of the field equations

In this appendix, we display higher orders in p of the vacuum field equations (5.3), which are
needed in our study of the Noether-Ward identities for 3D gravity with propagating torsion.
To zeroth order in p, the content of these equations is displayed in (5.4). The parameter ¢
is given in (2.14b) as ¢ = p?/4 — 1. In our notation, ¢ - s = £%s,, and H = HF},.
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(1). Let us start by considering the components (ij) = (1a), (al), (11) and (ab) of the first
field equation (5.3a). The object ¢;; is defined in the same equation. For each component
(i,7), we display first a compact form, and then the fully expanded field equation.

(la):

~ 1 N
vm,Hlam + iHlmnTamn - 7'[1anvn +t1qa = 07

20 [(201 + as + ag) + i) (SeaV — Va) = Os. (D.1)
(al):
V"™ Hatm + %Hamnflmn —Ha"Vo +ta1 = 0,
—2pla+ as+ (bs + f2)q] Ve
+ppla—as+8(ar — ag) + (b + B2)q) e V® = O3. (D.2)
(11):
V™" Hiim + %HlmnTlmn —Hu"Vi +t11 =0,
—2a3V,V® — [(201 + a2 — ag) + 1] Ve VE
+ [a — (253 — b;) q] (R—4s7,)
—2pla+4(a; —az) —bgq] (- s) = Os. (D.3)
(ab):

~ 1 ~
Vm,Hame + §HamnTbmn - ,Habnvn +lap = 07
2(2041 + a9 + ag)VCTabc — [(2041 + a9 + 043) + ﬁ1q] Nab Ve Ve
—Mab (ﬁ:a - > q(R—4s7,)

+2n4p [a + 4(o1 — a2) — bsq] p(e - )
—degp[a+4(a1 — ag) — (B1 — P2 — bg)g] (e - 5) = Oz (D.4)

(2). Now, we turn to the components (kij) = (alb), (11b), (1lab) and (cab) of the second
field equation (5.3b).

(ald):
2j—‘clb (anca“‘Hca _ncaH) +2¢1 (Hba _nbaH) _2@bH1a _Ebc6 (Hlf _Hflc

—2B1 ( Eaf — 77af> VoV + 2pmap[2b6 + (81 — B2)] (e - 5
—deap [a+ 4(ar — az) +bs(q +p°/2) + (B1 — )] (e - s

) =
)
)
- (nab - gw;) (31)6 - ﬁ3> (R—4s7y) =

Oy. (D.5)
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(11b):
2T 1y Het 4+ 2V Hp — 2@1,(7‘[11 - 7711Hkk) + €bc<€fg7-[fgc =0,

[— (201 + a2 + 043) — qu] pVp = Os. (D.G)

(Lab):
27" o (a1 + Hir — miH) + 27w He + 4@[(17-[;)]1 + aabsfg}[fgl =0,
4la+4(ar — ag) + be(q +p°/2) = 2(B1 — Ba2)] (¢ - s)
b

+pBaVeV© = 282 (Enfo —17) Vv, —p (f + ﬁ:a) (R—4s7,) = Oy. (D7)

(cab):

2Tfab(a77fc+ch_77ch)+2T1abH1c+4@[a(Hb]c_nb]cH) _5ab€fc;"[1fl =0 5

2

[a + beq — B2 <1 + Z) + a3] Teap — PopeapVe = O2. (D.8)
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A family of exact vacuum solutions, representing generalized plane waves propagating on the (anti-)de
Sitter background, is constructed in the framework of Poincaré gauge theory. The wave dynamics is defined
by the general Lagrangian that includes all parity even and parity odd invariants up to the second order in
the gauge field strength. The structure of the solution shows that the wave metric significantly depends on

the spacetime torsion.
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I. INTRODUCTION

The gauge principle, which was originally formulated by
Weyl in the context of electrodynamics [1], now belongs to
the key concepts which underlie the modern understanding
of dynamical structure of fundamental physical inter-
actions. Development of Weyl’s idea, most notably in
the works of Yang, Mills and Utiyama [2,3], resulted in
the construction of the general gauge-theoretic framework
for arbitrary non-Abelian groups of internal symmetries.
Sciama and Kibble extended this formalism to the space-
time symmetries, and proposed a theory of gravity [4,5]
based on the Poincaré group—a semidirect product of the
group of spacetime translations times the Lorentz group.
The importance of the Poincaré group in particle physics
strongly supports the Poincaré gauge theory (PGT) as the
most appropriate framework for description of the gravi-
tational phenomena.

The “translational” gauge field potentials (corresponding
to the subgroup of the spacetime translations) can be
consistently identified with the spacetime coframe field,
whereas the “rotational” gauge field potentials (correspond-
ing to the local Lorentz subgroup) can be interpreted as the
spacetime connection. This introduces the Riemann—Cartan
geometry on the spacetime manifold, since one naturally
recovers the torsion and the curvature as the Poincaré gauge
field strengths [6—16] (“translational” and “rotational” one,
respectively). The gravitational dynamics in PGT is deter-
mined by a Lagrangian that is assumed to be the function of
the field strengths, the curvature and the torsion, and the
dynamical setup is completed by including a suitable matter
Lagrangian.

fmb@ipb.ac.rs
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*obukhov @ibrae.ac.ru
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In the past, investigations of PGT were mostly focused
on the class of models with quadratic parity symmetric
Lagrangians of the Yang-Mills type, expecting that the
results obtained for such a class should be sufficient to
reveal essential dynamical features of the more complex
general theory, for an overview see [17]. Recently, how-
ever, there has been a growing interest for the extended
class of models with a general Lagrangian that includes
both parity even and parity odd quadratic terms, see for
instance [18-23]. An important difference between these
two classes of PGT models is manifest in their particle
spectra. Generically, the particle spectrum of the parity
conserving PGT model consists of the massless graviton
and eighteen massive torsion modes. The conditions for the
absence of ghosts and tachyons impose serious restrictions
on the propagation of these modes [24-29]. In contrast, a
recent analysis of the general PGT [30] shows that the
propagation of torsion modes is much less restricted. This is
a new and physically interesting dynamical effect of the
parity odd sector.

Based on the experience stemming from general rela-
tivity (GR), it is well known that exact solutions play an
important role in understanding gravitational dynamics. An
important class of these solutions consists of the gravita-
tional waves [31-35], one of the best known families of
exact solutions in GR. For many years, investigation of
gravitational waves has been an interesting subject also in
the framework of PGT [36-45], as well as in the metric-
affine gravity theory which is obtained in the gauge-
theoretic approach when the Poincaré group is extended
to the general affine symmetry group [46-54]. Noticing that
dynamical effects of the parity odd sector of PGT are not
sufficiently well known, recently one of us [55] has studied
exact plane wave solutions with torsion in vacuum,
propagating on the flat background, for the case of the
vanishing cosmological constant A. In another recent work
[56] complementary results have been obtained, when the

© 2017 American Physical Society
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generalized pp waves with torsion were derived as exact
vacuum solutions of the parity even PGT, but for the case of
a nontrivial A # 0. In the present paper, we merge and
extend these investigations by constructing the generalized
plane waves with torsion as vacuum solutions of the general
quadratic PGT with nonvanishing cosmological constant.
The resulting structure offers a deeper insight into the
dynamical role of the parity odd sector of PGT.

The paper is organized as follows. In the next Sec. II we
present a condensed introduction to the Poincaré gauge
gravity theory, giving the basic definitions and describing
the main structures; more details can be found in [6-9]. In
Sec. IIl we start with representing an (anti)-de Sitter
spacetime as a gravitational wave and use the properties
of the plane-fronted electromagnetic and gravitational
waves discussed in [57] to formulate an ansatz for the
gravitational wave in the Poincaré gauge gravity. The
properties of the resulting curvature and torsion 2-forms
are studied. In Sec. IV the set of differential equations for
the wave variables is derived. It is worthwhile to note that
the functions which describe the wave’s profile satisfy a
system of linear equations, even though the original field
equations of the Poincaré gauge theory are highly non-
linear. Solutions of this system are constructed, and their
properties are discussed. We demonstrate the consistency of
the results obtained with the particle spectrum of the
general Poincaré gauge gravity model. Finally, the con-
clusions are outlined in Sec. V.

Our basic notation and conventions are consistent with
[7]. In particular, Greek indices a, 3, ... = 0, ..., 3, denote
the anholonomic components (for example, of a coframe
9%), while the Latin indices i,j,... =0,...,3, label the
holonomic components (dx’, e.g.). The anholonomic vector
frame basis e, is dual to the coframe basis in the sense that
e, = &, where | denotes the interior product. The
volume 4-form is denoted 7, and the -basis in the space of
exterior forms is constructed with the help of the interior
products as 77y, 4, = €apJ~-€alJ’17 p=1,...,4. They are
related to the J-basis via the Hodge dual operator *, for
example, 7,3 = *(9, A 95). The Minkowski metric
Jap = diag(+1,—1,—-1,—1). All the objects related to
the parity-odd sector (coupling constants, irreducible pieces
of the curvature, gravitational wave potentials, etc) are
marked by an overline, to distinguish them from the
corresponding parity-even objects.

II. BASICS OF POINCARE GAUGE GRAVITY

The gravitational field is described by the coframe 9% =
e?dx® and connection I',/ =T,/dx' 1-forms. The trans-
lational and rotational field strengths read

T* = D9 =d9* + T A 9, (2.1)
R/ =dU,/ +T /AT, (2.2)

As usual, the covariant differential is denoted D.
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The gravitational Lagrangian 4-form is (in general) an
arbitrary function of the geometrical variables:
V=V TR} (2.3)

Its variation with respect to the gravitational (translational
and Lorentz) potentials yields the field equations

1%
E, = =-DH E,=0, 2.4
a 59¢ a + a ( )
et oV a a

Here, the Poincaré gauge field momenta 2-forms are
introduced by

ov ov

H, = H = ——, 2.6
a p aR,/f ( )

S ore

and the 3—forms of the canonical energy—momentum and
spin for the gravitational gauge fields are constructed as

ov
E,:= 597 = eV + (e,)TP) A Hy
+ (eq)Rg") A HP, (2.7)
(04 av a
E% = = —9* A Hy. (2.8)

The field equations (2.4) and (2.5) are written here for
the vacuum case. In the presence of matter, the right-hand
sides of (2.4) and (2.5) contain the canonical energy-
momentum and the canonical spin currents of the physical
sources, respectively.

A. Quadratic Poincaré gravity models

The torsion 2-form can be decomposed into the 3
irreducible parts, whereas the curvature 2-form has 6
irreducible pieces. Their definition is presented in the
Appendix.

The general quadratic model is described by the
Lagrangian 4-form that contains all possible quadratic
invariants of the torsion and the curvature:

1

V=— agd, A 95) A R¥ —2)
ZKC{(aoﬂaﬁ+ao a A 8p) ol

3
1Al () + 0, )
=1

1 6 _
- ZRaﬁ A Z [bl *(U)R(lﬂ) + b[ (1>R(1/)’]' (29)
=1

The Lagrangian has a clear structure: the first line is linear
in the curvature, the second line collects torsion quadratic
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terms, whereas the third line contains the curvature
quadratic invariants. Furthermore, each line is composed
of the parity even pieces (first terms on each line), and the
parity odd parts (last terms on each line). The dimension-
less constant a :é is inverse to the so-called Barbero-
Immirzi parameter &, and the linear part of the Lagrangian
—the first line in (2.9)—describes what is known in the
literature as the Einstein-Cartan-Holst model. A special
case ay =0 and ay, =0 describes the purely quadratic
model without the Hilbert-Einstein linear term in the
Lagrangian. In the Einstein-Cartan model, one puts
ap=1and ay, = 0.

Besides that, the general PGT model contains a set of the
coupling constants which determine the structure of quad-
ratic part of the Lagrangian: p, a;, a,, ay and ay, a,, as,
by, ...,bg and l_71, 56. The overbar denotes the constants
responsible for the parity odd interaction. We have the
dimension [J] = [A], whereas a;, @;, b; and b, are dimen-
sionless. Moreover, not all of these constants are indepen-
dent: we take @, = @, b, = by and by = bg because some
of terms in (2.9) are the same in view of (A14)-(A16).

For the Lagrangian (2.9) from (2.6)—(2.8) we derive the
gauge gravitational field momenta

1
H,=—hn, 2.10
= h, (2.10)
a 1 a = Qa 1 a
Hﬁ:—%(aoi’]ﬂ—i-a()& /\19[;)"";}1 ps (211)

and the canonical energy-momentum and spin currents of
the gravitational field

1

E(l = % (a()na/)’y A R/}J/ + 26_ZORa/} A '-9/)’
1
— 2o + g ) + ; g, (2.12)
a 1 a a

For convenience, we introduced here the 2-forms which are
linear functions of the torsion and the curvature, respec-
tively, by

3
he =3 lar*(0T,) +a,0T,),
=1

(2.14)

]

hs = [b*(DR%) + b, R%), (2.15)

~

=1

and the 3-forms which are quadratic in the torsion and in
the curvature, respectively:
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1

g =5 1(ea)T) A hy =T A ealhy).  (2.16)
® _ L RV AW Ry P 2.17
qa _5[(60J ﬂ)/\ y — g AeaJ y]' ( )

By construction, (2.14) has the dimension of a length,
[hg] = [¢], whereas the 2-form (2.15) is obviously dimen-
sionless, [h%] = 1. Similarly, we find for (2.16) the

dimension of length [¢] = [£], and the dimension of

the inverse length, [q((xR)] = [1/¢] for (2.17).
The resulting vacuum Poincaré gravity field equa-
tions (2.4) and (2.5) then read:

a
30770%7 ARPY +agR.P N9y —Aong + " + f,z,qg,m —Dh, =0,
(2.18)
aol’]a/}}/ AN T? + &O(T“ AN 19[)> - T/} AN 19”)
+h* AN Op—hy A9 — Zflz,Dh"/; =0. (2.19)

The contribution of the curvature square terms in the
Lagrangian (2.9) to the gravitational field dynamics in
the Eqgs. (2.18) and (2.19) is characterized by the parameter

Kc

2= - (2.20)
Since [/l)] = [A], this new coupling parameter has the
dimension of the area, [¢2] = [¢?].

III. GRAVITATIONAL WAVES IN POINCARE
GAUGE GRAVITY

Gravitational waves are of fundamental importance in
physics, and recently the purely theoretical research in this
area was finally supported by the first experimental
evidence [58-60]. A general overview of the history of
this fascinating subject can be found in [61-63].

A. (Anti)-de Sitter spacetime as a wave

Let us now discuss the four-dimensional manifold which
can be viewed as an “(anti)-de Sitter spacetime in the wave
disguise”. As before [55], we use the same local coor-
dinates which are divided into two groups: x' = (x%,x4),
where x* = (x = 6, x! = p) and x* = (¥, x*). Hereafter
the indices from the beginning of the Latin alphabet label
the coordinates ¢ and p parametrizing the wave rays,
a,b,c... =0, 1, whereas the capital Latin indices,
A,B,C... =2, 3, refer to coordinates x* on the wave front.

The coframe 1-form is chosen as a direct generalization
of the ansatz used in [55,57]:

o=

[+ 1)do + d,

(3.1)
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A7 q A

' =L (U -1)ds + dp), 3.2
2p[( )do + dp] (3.2)

QA 1 A

W = ax, A=273. (3.3)
P

Here the three functions are given by the following
expressions:

U= —sz, (3.4)
4 A B

p = 1 +15ABX X, (35)
A A B

g=1 —ZéABx x5, (3.6)

The constant parameter 4 is an arbitrary real number (which
can be positive, negative or zero). As a result, the line
element reads

1 N
ds*> = F{qz(dadp + Udo?) — Supdx*dxB}.  (3.7)

The key object for the description of the wave configu-
rations is the wave 1-form. On the basis of the earlier results
[55], we introduce a wave 1-form k as

ki=do =L (50 - 9. (3.8)
q

By construction, we have k A *k = 0. As before, the wave
covector is k, = e, | k. Its (anholonomic) components are
thus k, = g (1,-1,0,0) and k* = %(1, 1,0,0). Hence, this
is a null vector field, k,k* = 0. .

The corresponding Riemannian connection I';* is deter-

mined from

dd" + T2 A& =0, (3.9)
and it reads explicitly (recall that a,b,... =0, 1 and
AB,...=23)

1A h A

iyl =10 = —?pk, (3.10)

e = B@)"eBJa(g), (3.11)

p
~ 1 ~
4 == (e |dp — &eg|dp). (3.12)
p

Substituting (3.4)—(3.6), we straightforwardly find the
curvature:
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Ry™ =29, A &”. (3.13)
Thus, the coframe and connection (f9“, fﬂ“), described by
(3.1)—(3.3) and (3.10)—(3.12), represent the geometry of a
torsionless (3.9) spacetime of constant curvature (3.13).
Depending on the sign of 4, we have either a de Sitter or an
anti-de Sitter space.

We mark the corresponding geometrical quantities by the
hat over the symbols. This geometry will be used as a
starting point for the construction of the plane wave
solutions in the Poincaré gauge gravity with nontrivial
cosmological constant.

It is worthwhile to note that the wave vector field k is a
null geodesic in this geometry:

k A *Dk* = 0.

kA k=0, (3.14)

B. Generalized plane wave ansatz

We will construct new gravitational wave solutions in
Poincaré gauge gravity theory by making use of the ansatz
for the coframe and for the local Lorentz connection

o U
97 = 9+ 29 e,

T (3.15)

q

I =17 +2L (kW = kPW,)k. (3.16)
p

Here the function U = U(c,x") determines the wave
profile. The ansatz for the local Lorentz connection is
postulated as a direct analogue of the construction used
earlier in [55], and the vector variable W* = W% (o, x*)
satisfies the same orthogonality property, k, W* = 0, which
is guaranteed by the choice

Wa_{W“zO, a=0,1, (3.17)
WA = WA(o,xB), A =2,3. '
Consequently, the generalized ansatz for the Poincaré
gauge potentials—coframe (3.15) and connection (3.16)
—is described by the three variables U = U(c,x?) and
WA = WA (s, xB). These should be determined from the
gravitational field equations.

The ansatz (3.15) and (3.16) can be viewed as a non-
Riemannian extension of the Kerr-Schild-Kundt construc-
tion developed recently [64—67] in general relativity and in
modified gravity models. The original Kerr-Schild con-
struction [34] in GR is underlain by the existence of
preferred null directions. In our approach, the metric
defined by the coframe (3.15) can be written in a typical
Kerr-Schild form

9ij = f},-.,- + % Ukl-kj, (318)

where §;; is the spacetime metric of the (anti)-de Sitter line
element (3.7), and k; = 0; |k = 9;]do = (1,0,0,0) is the
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null vector with respect to both g;; and g;;. On the other
hand, the orthogonality property of the vector W* that
defines the radiation piece of the connection (3.17),
k,W* =0, ensures typical radiation structure of the
Riemann-Cartan field strengths, the torsion and the
curvature.

The line element for this ansatz has the same form (3.7),
with a replacement

U—)U—I—EU.

p (3.19)

It is important to stress that the wave 1-form k is still
defined by (3.8), which however can be recast into

(3.20)

Consequently, the anholonomic components of the wave
covector k, = e, | k still have the values k, = g (1,-1,0,0)
and k“ zg(l, 1,0,0). As before, this is a null vector
field, k,k* = 0.

One may wonder why does the factor < appear in the
ansatz (3.15) and (3.16). After all, it is always possible to
absorb it by redefining U and W4. However, it is conven-
ient to keep this factor explicitly by noticing that the
combination %k“ = (1,1,0,0) has the constant values. It

becomes clear then that the following differential relations
are valid:

dk = 0, d<ﬁka> = 0. (3.21)
p

Moreover, although Dk, no longer vanishes, we find

kA D(ﬁk(,) — kA D(%,,) —0. (322)
P P

Taking this into account, we straightforwardly compute the
torsion 2-form

7% = —k A L 1o, (3.23)
V4
where we introduced the 1-form
1
®= Ec_iU + W, 9%, (3.24)

with the differential d := 84e,|d = dx*0, that acts in the
transversal 2-space spanned by x4 = (x2, x3).

The structure of the torsion is qualitatively the same as in
the case of the vanishing parameter A, see [55]. The
structure of curvature is more nontrivial, though. A direct

computation yields a 2-form
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p

where we introduced the vector-valued 1-form with the
components

oo Q% =0, a=0,1, (3.26)
QN =DWA U9, A=23. '
The transversal covariant derivative is defined by
DWA = aw* + T W5, (3.27)

Note that the Riemannian de Sitter connection (3.12)
appears here (more exactly, the corresponding components
of the Riemann-Cartan connection (3.16) coincide with the
Riemannian components: I’z = I'%).

Let us describe the geometry of the transversal 2-space
spanned by x* = (x2,x3) explicitly. The volume 2-form
reads 5 =1n,p9" A 98 = #de Adx?, where 15,5 =
—nps is the 2-dimensional Levi-Civita tensor (with
13 = 1). Obviously this is a non-flat space. The corre-
sponding Riemannian connection (3.12) yields a nontrivial
curvature Rp* = 495 A 94 of a 2-dimensional de Sitter
space. The volume 4-form of the spacetime manifold reads

=29 A9 A9 A zzq—pzzk/\dp/\g. For the wave 1-
form we find the remarkable relation

k=—k A1 (3.28)

We will denote the geometrical objects on the transversal
2-space by underlining them; for example, a 1-form
¢ = ¢p49*. The Hodge duality on this space is defined
as usual via 29, =5, = e, | = n,p9”. With the help of

(3.28), we can verify
(3.29)

The new 1-forms (3.24) and (3.26) have the obvious
transversality properties:
kA O =0, kA Q% =0,

k, Q% =0. (3.30)

In accordance with (3.17) and (3.26), we have explicitly:

1.
®=9 <§DAU - 5ABWB), (3.31)

R 2
QA = 98 (DBWA +3 U(sg) . (3.32)

Here we denoted D, = e, |D. Applying the transversal
differential to (3.24), and making use of (3.26), we find
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dO = Q, A I~ (3.33)
In essence, this is equivalent to the Bianchi identity DT* =
Rs* A 9 which is immediately checked by applying the
covariant differential D to (3.23) and using (3.25). Note that
it is crucial to use (3.21).

A further refinement of the generalized wave ansatz will
be considered in Sec. IV C.

C. Irreducible decomposition
of gravitational field strengths

Irreducible parts of the torsion and the curvature are as
follows. The second (trace) and third (axial trace) irreduc-
ible part of the torsion are trivial, @7% = 0 and ®)7* = 0,
and the first (pure tensor) piece is nontrivial:

e = 70 = —k A L@, (3.34)
p

At the same time, the curvature pieces C)RY — SR — (),
whereas
ORW = )99 A 9, (3.35)

and for I = 1, 2, 4:
(DR = 2k A QI . (3.36)
P

Here Q% + 2)Q* + Q% = Q7 and explicitly we have

1
Qe = 3 (Q* — 9%, ] QF + 9e*|Qp),  (3.37)
1
(2>Qa = 5 (Qa - 19ﬂe"’J Qﬂ)’ (338)
1
W = 5 9%epl . (3.39)

The transversal components of these objects are con-
structed in terms of the irreducible pieces of the 2 x 2
matrix DyW4: symmetric traceless part, skew-symmetric
part and the trace, respectively. Using (3.32), we derive
QA = (DAL 98, with

1. . R
A, = E(DBWA + DAWg —84DWE),  (3.40)
1. .
(Z)QAB = E(DBWA - DAWB), (341)
1, -
A, = 55;; (DeWE + AU). (3.42)

One can demonstrate the following properties of these
1-forms:
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9, ADQr =0, 9, APQ =9, AQ,  (3.43)
9, A 4)Qa — 0, eaJ(l)Qa = _eaJ Q% (344)
e )" =0, ¢,|WQ" =2¢,]Q7,  (3.45)
1
k,VQ* = 5 kea 1Q, k, Q% =0, (3.46)
1
k9T = ke, |Q kA CPRT=0. (3.47)
1
kA *0QF = —k A Qe = _Eka&ﬁ A QP (3.48)

IV. FIELD EQUATIONS

Let us now turn to the quadratic Poincaré gauge model
with the general Lagrangian (2.9), and allow for a nontrivial
cosmological constant .

Substituting the torsion (3.34) and the curvature (3.35),
(3.36), into (2.14) and (2.15), we find

a_ _paz4d
h* = —k*Z >’ (4.1)
hP = Jben + Abgd9% A 9 — 2k ZP) %, (4.2)
where we introduced the 2-forms
Z=a,*(kA®)+akA®O, (4.3)
A [b;*(k A DQY) + bk A Q7. (4.4)

=124
Making use of (3.30) and (3.43)—(3.48) we can show that

kAR =0, kA*h*=0, kh*=0. (4.5)

As aresult, substituting (4.2) into (2.16) and (2.17), we find
qff) =0 and

qSIR) = Zﬂ%ka{_(lh + b6) *keﬁJ Qﬂ

+ (by = bg)k A 95 N QY. (4.6)

With an account of the properties (4.5), one can check that

Dh, = D <kazﬁ), (4.7)
p
A q
Dhaﬂ =-D <2k[azﬂ] ;) + /Ib6naﬂ;4 AN TH
+ Abe(Ty A 95— Ty A 9,). (4.8)

The transversal nature of ® and Q# leads to a further
simplification. In particular, using (3.29), we recast (4.3)
and (4.4) into
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Z=kAE, ZA =k A BA, (4.9)
where we have introduced the 1-forms
E=a,20+a,0, (4.10)
EA = [b; 200" + b, (DQA]. (4.11)
=124

A. Wave equations

After all these preparations, we are in a position to write
down the gravitational field equations for the quadratic
Poincaré gauge model (2.9). Substituting the gravitational
wave ansatz (3.15)—(3.16) into (2.18), we derive the first
equation

lag — 2A8%(by + b6)]9a A Q4 + a1d*0 — [ag + @, + 2A62(by — bg)|94 A Q* = 0.

PHYSICAL REVIEW D 96, 064031 (2017)
(3ap — Ao)1a + %ka “k(ep) ) [ag — 2462 (by + bg)]
+Lhk A {95 A DPlag +2462(by — b)) — d=} = 0.
p

(4.12)

Contracting this with k&%, we find the value of the constant
parameter in the wave ansatz:

_t

= 4.13
3610 ’ ( )

and with an account of (3.28) and (4.10) we recast
(4.12) into

(4.14)

The first two terms describe the parity-even model, whereas the last term accounts for the parity-odd sector.
Similarly, by gravitational wave ansatz (3.15)—(3.16) in (2.19), we obtain the second equation

ko Lk A {(ay + ay — 222D6)95 A 2O + (ag + @y — 2462D6)95 A © — 2£2DEg} = 0.
)4

(4.15)

Note here that the [ab] and [AB] components in (2.19) are satisfied identically, and only the mixed [aB]| components give

rise to the result (4.15).

Equation (4.14) and the expression inside the curly bracket in (4.15) are both 2-forms on the 2-dimensional transversal

2

space spanned by x* = (x?, x*), and thus (4.14) and (4.15) describe a system of three partial differential equations for the
three variables U = U(o, x®) and WA = WA (o, x). Substituting (3.31) and (3.32), we recast (4.14) and (4.15) into the final

tensorial form

. . 1. o
Ag(DyWA 4+ 2U) + a (DAWA - EAU) — A BD, Wy =0,

(4.16)

1. - 14 _ A N A
—Ay <WA - EDAU> + A (WB - EQBU) + 5(by = by)[Da(nP DgWe) 4+ nagD® (DcWE + AU))]

1

1

+£2(by + by) [—A KA—iDAU> +/1(EA —EDAU> —Ds(DgWB +2U) + Dy <DBWB—§AU>} =0. (4.17)

The 2-dimensional transversal space has the (anti)-de Sitter
geometry and the corresponding covariant Laplacian reads

A =88D,Dy = p2A, (4.18)

where A = §*80,0j is the usual Laplace operator.

Note that b, = b,. Here we denoted W, = 8,;W” and
D* = 58Dy, and introduced the convenient abbreviations
for the combinations of the coupling constants,

AO = a0—2/1f,2,(b4+b6), (419)

AO - C_lo + 6_11 + 2].2?/2,(17)2 - Z)G)v (420)

Ay = ag +ay +226%(by — b), (4.21)

Al - C_lo + ('11 + 2/1f/2)(z71 - BG) (422)
The transversal covariant derivatives do not commute,
(DADB - DBDA)WC - RABDCWD - 215@&3], (423)

and we used this fact when deriving (4.16) and (4.17).
Direct consequences of (4.23) are:

WBCDBDCEA = /1’7ABWBa (4-24)
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(AD, - D,AYU = 2D, U. (4.25)

It is worthwhile to notice that the derivatives of W4
appear in (4.16)—(4.17) only in combinations

Qi=¢,]Q% = D,WA + AU, (4.26)
N 1.

b = ic_z'i@):DAVVA—EAU, (427)

® = 2d® = —i"P D, Wy, (4.28)

which have a clear geometrical meaning in terms of the
curvature and the torsion.

The system (4.16)—-(4.17) always admits a nontrivial
solution for arbitrary quadratic Poincaré gauge model with
any choices of the coupling constants. There are some
interesting special cases.

B. Torsionless gravitational waves

The torsion (3.23) vanishes when ® =0 which is
realized, see (3.24) and (3.31), for

WA = %WDB U. (4.29)
Substituting this into (4.16), we find
Ao{AU + 24U} =0, (4.30)
whereas (4.17) reduces to
£2(by — by)napDP{AU + 24U}
~3(by + by)DA{AU +22U} = 0. (4.31)

Accordingly, we conclude that the well-known torsionless
wave solution of GR with the function U satisfying

Aog+a](p+A0(i) = 0,

1
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PPAU + 24U =0 (4.32)

is an exact solution of the generic quadratic Poincaré gauge
gravity model. This is consistent with our earlier results on
the torsion-free solutions in Poincaré gauge theory [16].
Moreover, the torsionless wave (4.29)—(4.30) represents
a general solution for the purely torsion quadratic class of
Poincaré models, since this is the only configuration
admitted by the system (4.16)—(4.17) for b, = b; = 0.

C. Torsion gravitational waves

The torsion-free ansatz (3.9) can be generalized to

| A 1 nn -
WA = —8Dy(U+ V) +=n"BDyV,

5 5 (4.33)

with V # 0. The two scalar functions V = V(o,x*) and
V = V(o,x") define the non-Riemannian piece of the
connection, stemming from torsion:

O =—5(dV+ *dV)

= —— 94D,V — g DBV). (4.34)

N = N =

For the above choice, the metric and torsion contributions
to the connection are described in a rather symmetric way,
in terms of the three potentials (U, V, V). In particular, we
find for (4.26)—(4.28):

1 4 A
Q=2 (AV+ AU +220), (4.35)
o= LAy b-Lav (4.36)
2 20 ‘

Substituting (4.33) into (4.16) and (4.17), we derive

(4.37)
N 1 I _ _
DA{—EAN — EAlv —5(by + by)Q — £3(by — b2)cI>}

AV = 20y + by)® + 225, _132)9} o, (438)

o 1 1
DBL——A V4=
+NnapD { >4 ‘|‘2

One needs to pay attention to the noncommutativity of the covariant derivatives and use (4.23)—(4.25).
As a result, we obtain the system of the three linear second order differential equations for the three functions U, V, V:

Ao(AV + AU 4 24U) 4+ a)AV + A)AV =0,
—22(by + by)(AV + AU +20U) = AV = £2(b; — b))AV —A,V =0,

£2(by — by)(AV + AU +20U) + AV — 2(b, + by) AV -A,V = 0.

(4.39)

(4.40)

(4.41)
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D. Solution for potentials

Before starting the analysis of solutions, one can notice
that the system (4.40) and (4.41) is actually not equivalent
to the original equation (4.38). Indeed, by taking the
covariant divergence (applying D) and by taking
the covariant curl (applying 7*8Dp) of (4.38), we derive
the pair of equations where on the right-hand sides of (4.40)
and (4.41) one finds not zeros but arbitrary functions, say,
a(c,x*) and (o, x*), which are harmonic, in the sense that
they both satisfy equations Aa = Aﬂ = 0. However, one
then immediately notices that with the help of redefinitions
Av = 0,

VoV, (4.42)

(4.43)

we can always remove these nontrivial right-hand sides and
come to the system (4.40) and (4.41).

In other words, a solution of the system (4.39)—(4.41)
admits the gauge transformation (4.42)—(4.43), under
which the potentials V and V can be shifted by arbitrary
harmonic functions. Such gauge transformed potentials are
of course still solutions of the Poincaré gauge field
equations (4.37) and (4.38). What is important, however,
the curvature and the torsion remain invariant under the
redefinition (4.42)—(4.43) of potentials: (4.35) and (4.36)
obviously are not affected by the arbitrary harmonic
functions.

Now, as a first step, we substitute (AV + AU + 24U)
from (4.39) into (4.40) and (4.41). The resulting system
reads

C2A{a,(by + by)V + [-Ag(by — by) + Ag (b + by)|V}
—ApAV — AgA,V =0, (4.44)

20{ay(by — by)V + [Ag(by + by) + Ag(by — b,)]V}

After solving this system, we can use the potentials V
and V to substitute them into (4.39) which then becomes
an inhomogeneous differential equation for the metric

potential U:
Ao(AU +24U) = —(ay + A))AV —A)A V.  (4.46)

For the parity-even models with @, =0, b, = 0, hence
Ay =0and A, = 0, the system (4.44)—(4.45) reduces to the
two uncoupled equations

ai(by + by)2AV — AgAV = 0, (4.47)
(b1 + by)2AV +A,V =0, (4.48)

recovering the result of [56].
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To analyze the system (4.44)—(4.45), let us rewrite it in
matrix form

_ 4

AV—MV:O, M:—L’Tg

F. (4.49)

where we combined the potentials into a single object, a “2-
vector” V= (y), and the 2x2 matrix F=K"'N is
constructed from

<a1(b1+b4) | Ao(b1+b4)—Ao(131—152)>
" \aibr=by) | Ag(bi+by) + Agl(by —by) )°

vo (A A
a <Al _Al>.

One immediately notices the simple structure of the matrix
N which is manifest in the properties

/10 _
NZ:(Aﬁ—i—A%)(ﬂT), detN =—(A2+A2).  (4.51)

One can solve the matrix differential equation (4.49) by
diagonalizing this system. To achieve this, one needs to find
the eigenvalues of the matrix M and to construct the
corresponding eigenvectors. Let m? be an eigenvalue of
the matrix M. It is determined from the corresponding
characteristic equation det(M —m?) =0 which has the
meaning of the dispersion relation for the mass:

(4.50)

£im* detK + £3m*Agtr(NK) — A3(A? + A7) = 0. (4.52)

The coefficients of the quadratic equation (4.52) are
constructed from the coupling constants of the gauge
gravity model. From (4.50) we have explicitly:

detK = a;Ao[(by + by)(by + by) + (by — by)?],  (4.53)

tr(NK) = (a1A; + AgA;) (b + by) — AgA;(by + bs)
+ (a1A; = AgA; — AgA;)(by — by). (4.54)

For the parity-even models with @; = 0, b, = 0, hence
Ay = 0and A, = 0, the dispersion equation (4.52) reduces
to

[£3m*a;(by + by) — ApA]

X [f%mon(b] + bz) +AOA1] = O, (455)
and hence we recover the result (4.47)—(4.48).

General case with parity-odd terms in the Lagrangian is
more complicated. No obvious simplification of (4.52) is
visible.
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Having found the eigenvalues m3 and m3 of the mass
matrix M as the two roots of the quadratic equation (4.49),
one can construct the matrix P that transforms M to its
diagonal form. For M, # 0, the latter reads

M, —M
P= . (4.56)
My, —m% My, —m%
Multiplying Eq. (4.49) by P!, one then obtains
AV —Mm'V' =0, (4.57)
where
m? 0
MH:P*MP:( : ), (4.58)
0 m}

and V' is the eigenvector of M, corresponding to the
eigenvalues m? and m3:

V/
V:<}>:PW
Va

- 1 <(M11—m%)V—|-M12\7)
detP \ —(M; —mj)V — M,V .

(4.59)

Recalling A = p2A, we thus recast the system of the
field equations (4.44) and (4.45) into a diagonal form
prAV, —miV, =0, (4.60)
with n = 1, 2. The solutions for V), are given in terms of the
hypergeometric functions ,F 1(a,b,c,z), see [56]. Similar
construction exists in the case M,; # 0.
Now, we can return to (4.46) to find the solution for U.
Each solution for V), defines the corresponding solution
V=PV (4.61)
of (4.49). Inserting these solutions for V and V on the right-
hand side of (4.46), this equation becomes an inhomo-
geneous differential equation for U. Its general solution is
given as a general solution of the homogeneous equation
plus a particular solution of the inhomogeneous equation,
U = Uy, + U,. Note that Uy, coincides with the general
vacuum solution of GR, see (4.32). The solution for U
obtained by choosing U, =0 has a very interesting
interpretation. Indeed, in that case U reduces just to the
particular solution U, the form of which is completely
determined by the torsion potentials (V, V). A similar
mechanism was found also in the parity even sector [56].
Clearly, there are many other solutions for U,, and
consequently, for U. In each of them, the influence of
torsion on the metric is quite clear.
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E. Masses of the torsion modes

In order to get a deeper understanding of the role of the
torsion in our gravitational wave solution, it is important to
examine the mass spectrum of the associated torsion
modes. Having found the matrix F = K~'N with the help
of (4.50), the solutions of the characteristic equation (4.52)
can be conveniently represented in terms of the matrix f =
(detK)F as

Ao (trf +

7 delk (trf)? — 4 det f).

(4.62)

mi =
This is an exact formula for the mass eigenvalues m2
associated to the gravitational wave. It is worthwhile to
notice that trf = —tr(NK), and det f = (det N)(det K).

The particle spectrum of PGT has been calculated only
with respect to the Minkowski background [24-29], and
never for the (anti)-de Sitter spacetime. Accordingly, we
can compare the result (4.62) with those existing in the
literature only for the values of m% in the limit of the
vanishing cosmological constant. In the limit of A — 0, we
have

tef = —[a;(ag + ay) + (ao +a,)*|(by + by)
+ ag(ag + ar)(by + by) + 2ag(ag + @) (by = by),
det f = —agay[(ag + a;)* + (ao + @,)?]
X [(by + by)(by + by) + (by = by)?),

detK = agay[(by + by)(by + by) + (by — by)?].  (4.63)

As a first test, we apply the formula (4.62) to the parity
even sector of PGT. One can straightforwardly see that the
corresponding values of m2 coincide with the masses of the
spin-2i torsion modes, known from the literature [24];
compare also with [56]. This is consistent with (4.55).

A more complete verification can be done by comparing
(4.62) with the recent work of Karananas [30], which
presently offers the only existing calculation of the com-
plete mass spectrum for the most general PGT with both
parity even and parity odd sectors included. A comparison
of the Lagrangian (5) of Ref. [30] with our expression (2.9)
is straightforward, although one should be careful since the
paper [30] contains numerous misprints. As a result, we
establish the following relations between our and
Karananas’ coupling constants (we use the notation ¢,
instead of Karananas’ 4 to distinguish it from our cosmo-
logical term):

ag = 2K'C[0, ao = O, (464)
a; =2ke(—t; — ty), (4.65)
a, = 4KC(—I3 + fo), (466)
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as = kc(—=t, + ty), (4.67)

a, = 4xcts, (4-68)

a, = azy = 2Kcty (4.69)

by =4p(=ri +r3), (4.70)

by =4p(—r3), (4.71)

by =4p(=ry+13), (4.72)

by =4p(=r| +r3—r14), (4.73)
bs =4p(—r3 —rs), (4.74)

beg = 4p(—r; + r3 —3ry), (4.75)
by = p(—r; + 3rg), (4.76)

1_72 = 54 = p(—r7 - ”s)a (4-77)
by = bg = p(4re — ry; — 13), (4.78)
bs = p(3r; —rg). (4.79)

Substituting the expressions for a;, b; and @, b, into (4.63),
one finds that the resulting values of m?% in (4.62) exactly
reproduce the result (A.3.5) of Karananas’ paper [30] (after
correcting a number of his misprints), which displays the
spin-2* torsion modes.

Thus, we conclude that the massive spin-2* torsion
modes turn out to be an essential ingredient of our
gravitational wave, in the sense that these massive torsion
modes determine the structure of the wave profile encoded
in the functions V, V and U. This is a remarkable result if
one recalls that the particle spectrum of PGT is derived
from the linearized equations of motion, whereas our
gravitational waves are exact solutions of the full nonlinear
field equations.

V. DISCUSSION AND CONCLUSION

In this paper, we have found a family of the exact
vacuum solutions of the most general PGT model with all
possible parity even and parity odd linear and quadratic
invariants in the Lagrangian (2.9), and with a nontrivial
cosmological constant 4y # 0. This family represents gen-
eralized plane waves with torsion, propagating on the
(anti)-de Sitter background. The present paper extends
the results obtained recently in [55,56].

The underlying construction can be understood as a
generalization of the Kerr-Schild-Kundt ansatz from the
Riemannian to the Riemann-Cartan geometry of PGT. An
essentially new element in this extended formalism is the
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ansatz for the local Lorentz connection I',#, the radiation
piece of which is constructed in terms of the null covector
field k. The generalized plane wave ansatz (3.15)—(3.16)
ensures that the torsion 2-form 7% and the radiation piece of
the curvature 2-form S% := R% — 9% A 9 satisfy the
radiation conditions

kATO=0, kA *S% =0, (5.1)
kAT =0, kAS¥=0, (5.2)
TOA TP =0, SPA*S7=0. (53)

These relations represent an extension of the well-known
Lichnerowicz criterion for identifying gravitational waves
[68] (see also [32]), based on analogy with the electro-
magnetic waves, to the framework of the PGT.

In the limit of vanishing torsion, the generalized plane
waves with torsion reduce to the family of the Riemannian
pp waves on the (anti)-de Sitter background. The pp
waves are classified as solutions of Petrov type N, since the
corresponding Weyl tensor satisfies the special algebraic
condition k“Cyp,, = 0, see [34,35]. This criterion can be
naturally extended to a Riemann-Cartan geometry of
PGT as

k*Ryp,, =0, (5.4)

where (”Raﬂw is the first irreducible part of the curvature
tensor, see [55,56]. The validity of (5.4) for the generalized
plane waves with torsion confirms that they are also of
type N.

The spacetime torsion is an essential ingredient of the
generalized gravitational wave solution; its dynamical
characteristics are described by the two potentials V and
V, satisfying the matrix equation (4.49). The mass matrix
M 1is of particular importance for the physical interpretation
of the torsion. We demonstrate that, in the limit of 1 — 0,
the eigenvalues of M coincide with the values of the mass
square the spin-2* torsion modes, identified in the work of
Karananas [30]. Generically, wave front profile of a
generalized plane wave with torsion is thus determined
by two spin-2 massive torsion modes and the massless
graviton, produced by the third, coframe potential U (which
enters the spacetime metric).

It is interesting to note that there exist particular solutions
for which the metric potential is completely determined by
the torsion. For such solutions, the motion of a spinless test
particle is effectively determined by the spacetime torsion.

The results obtained in this work were checked with
the help of the computer algebra systems Reduce and
Mathematica.
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APPENDIX: IRREDUCIBLE DECOMPOSITION
OF THE TORSION AND CURVATURE

The torsion 2-form can be decomposed into the three
irreducible pieces, 7% = (V7 + 7% 1 ()T where

@7 = %&a A (e, |TY), (A1)
1

Glre = 3¢ (T* A9, (A2)

(I)Ta — T _ (2)Ta _ (3)Ta. (A3)

The Riemann-Cartan curvature 2-form is decomposed
R =379 )R into the 6 irreducible parts

QR = —+(9le A WA, (A4)

|
)R = -5 “(X9% A 9P), (AS)
@R — _gla A Phl (A6)

PHYSICAL REVIEW D 96, 064031 (2017)

1
CIRY — —519[“ AP AX,), (A7)
1
ORY = — —X9* A 9P, (A8)
12
6
(DR — Rap _ Z (DRP (A9)
1=2
where
X* = e4| R, X = e, | X%, (A10)
XTi= (RN, Ke=e, RO (Al
and
1 1
\Pa = Xa_zlgaX_EeGJ (19ﬁ /\Xﬂ)’ (A12)
- _ 1 - 1 '
lPa = Xa—ZlgaX—EeaJ (19 /\X/}) (A13)

Directly from the definitions (A1)—(A3) and (A4)-(A9),
one can prove the relations

TN T, =T AOT, =@1% A O, (A14)
R A (Z)Raﬂ — R A (4)Raﬁ — QR A (4)Raﬁ, (A15)
R A (3)Ra/i = R A (6)Raﬁ — BG)RA A (6)Raﬁ, (A16)

whereas 7% A U7, = 1% A VT, and R A VR, =
R A (UR,5 and R A OR,5 = ORY A OR 4.
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We analyze holographic field theory dual to Lovelock Chern-Simons anti—de Sitter (AdS) gravity in
higher dimensions using first order formalism. We first find asymptotic symmetries in the AdS sector
showing that they consist of local translations, local Lorentz rotations, dilatations and non-Abelian gauge
transformations. Then, we compute 1-point functions of energy-momentum and spin currents in a dual
conformal field theory and write Ward identities. We find that the holographic theory possesses Weyl
anomaly and also breaks non-Abelian gauge symmetry at the quantum level.
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I. INTRODUCTION

The AdS/CFT correspondence [1] relates the fields in
(d + 1)-dimensional asymptotically anti—de Sitter (AAdS)
space and correlators in a d-dimensional conformal field
theory (CFT). These two theories are dual in the asymptotic
sector of gravity, such that the weak coupling regime of
one is related to the strong coupling regime of another.
For a weak gravitational coupling, the bulk theory is well
described by its semiclassical approximation, leading to the
form of the duality most often used.

Since its discovery, the correspondence tools have
been applied to many strongly coupled systems, giving
rise to new insights into their dynamics, for example in
hydrodynamics [2] and condensed matter systems such as
superconductors [3].

On the other hand, much effort has been invested in
analyzing the duality in semiclassical approximation of a
bulk theory, with twofold purpose. First, it enables us to
test the conjecture itself. Second, it helps us to gain the
knowledge about strongly coupled systems which are
nonperturbative and not very well understood. However,
most of this investigation deals with Riemannian geometry
of bulk spacetime, see for example [3—-8], while a more
general structure based on Riemann-Cartan geometry,
where both torsion and curvature determine gravitational
dynamics, is mostly underinvestigated. One of the first
studies of Riemann-Cartan holography used first order
formalism to obtain a holographic dual of Chern-Simons
AdS gravity in five dimensions [9]. After that, in three
dimensions, holographic dual to the Mielke-Baekler model
was analyzed in [10], and to the most general parity-
preserving three-dimensional gravity with propagating
torsion in [11]. The physical interpretation of torsional
degrees of freedom as carriers of a nontrivial gravitational
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magnetic field in 4D Einstein-Cartan gravity was discussed
in [12].

Studying holographic duals of gravity with torsion has
many benefits. Since its setup is more general, it also
contains the results of torsion-free gravity. One of the very
important features is that treating vielbein and spin con-
nection as independent dynamical variables simplifies
calculations to great extent. In Ref. [11], it was shown
that for three-dimensional bulk gravity conservation laws of
the boundary theory take the same form in Riemann-Cartan
and Riemannian theory when the boundary torsion is set
to zero. Thus, it is possible to treat vielbein and spin
connection as independent dynamical variables and repro-
duce Riemannian results in the limit of zero torsion. In this
work, we extend the results of [11] to all odd dimensions
in case of holographic theory dual to Lovelock-Chern-
Simons AdS gravity, by reproducing the conservation laws
with respect to diffeomorphisms, Weyl and local Lorentz
symmetry using first order formalism after taking a
Riemannian limit.

Working in the framework of gravity with torsion also
leads to richer boundary non-Abelian symmetries, as it is
explicitly demonstrated for the particular model studied in
this paper.

We analyze a holographic structure of Lovelock Chern-
Simons AdS Gravity [13,14] in asymptotically AdS spaces.
The key feature of this model is that it possesses a unique
AdS vacuum, which is multiply degenerate in odd D > 5
dimensions. Unlike general Lovelock-Lanczos [15] gravity,
it contains only two free parameters—gravitational con-
stant k and the AdS radius #. This theory also features a
symmetry enhancement from local Lorentz to AdS gauge
symmetry. Degenerate vacuum makes the linear perturba-
tion analysis not applicable around the AdS background.
The holographic study in AAdS spacetimes, however, is
nonperturbative, because the gravitational fields in a dual
theory are not dynamical but they play the role of external
sources for the CFT matter. Indeed, the holographic theory
will remain fully nonlinear in gravitational fields, which

© 2017 American Physical Society
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will be explicitly shown in Sec. IV. On the other hand, these
theories couple successfully to external sources [16], which
are stable in the framework of Lovelock Chern-Simons
(LCS) supergravities [17].

The paper is organized as follows. In Sec. II we
introduce the holographic ansatz for the fundamental
dynamical variables and we arrive to their radial expan-
sion in the asymptotic sector. Expressed in terms of the
metric, it reduces to Fefferman-Graham expansion [18].
We also analyze corresponding residual gauge sym-
metries which leave this ansatz invariant. In Sec. III we
focus to the holographic quantum theory and derive the
Noether-Ward identities. In Sec. IV we focus on Chern-
Simons—AdS gravity in arbitrary odd dimensions and
compute 1-point functions in the corresponding dual
theory, which are energy-momentum and spin currents.
We show that translational and Lorentz symmetries are
present also at the quantum level, but the Weyl anomaly
and non-Abelian anomaly arise, breaking the conformal
and non-Abelian symmetries quantically, the former
being proportional to the Euler density up to a divergence.
Our results generalize the ones of [9] from five to arbitrary
dimensions. Our calculations are simplified to great extent
by using the results of [19]. Section V contains conclud-
ing remarks, while appendices deal with some technical
details.

Our conventions are given by the following rules. On a
D = d + 1-dimensional spacetime manifold M, the latin
indices (i, J,k,...) refer to the local Lorentz frame, the
greek indices (u, v, p, ...) refer to the coordinate frame. The
symmetric and antisymmetric parts of a tensor X;; are
X(’J) = % (XU + X]l) and X[l]] = % (XU - le'), reSpeCtiVely.
The d+ 1 decomposition of spacetime is described in
terms of the suitable coordinates x* = (p, x*), where p is a
radial coordinate and x* are local coordinates on the
boundary OM. In the local Lorentz frame, this decom-
position is expressed by i = (1, a).

II. HOLOGRAPHIC ANSATZ

We are interested in a gravitational theory which
possesses a local AdS symmetry. The presence of local
spacetime translations and spacetime rotations introduces
naturally the vielbein and the spin connection as the
fundamental fields. Our goal is to gauge fix this symmetry
by imposing a set of conditions on the fundamental fields
in a such a way that it singles out a particular coordinate
frame which is suitable for a description of a holograph-
ically dual theory. This frame should be consistent with
the known Fefferman-Graham coordinate choice used on
the Riemannian manifold. All the properties that follow
from this gauge-fixing are purely kinematical and can be
applied to any gravity invariant under local AdS group. To
include the dynamics we focus, in particular, on Lovelock-
Chern-Simons gravity.

PHYSICAL REVIEW D 96, 044027 (2017)

A. AdS gauge transformations

In a theory with local AdS symmetry, the fundamental
fields are components of a gauge field (1-form) for the
AdS group SO(D —1,2) (see Appendix A) and is
defined by

A= l”‘P + 1é)ABJ
7€ Aty AB>
where 7 is the AdS radius. For the sake of simplicity,
we set £ = 1. Gauge transformations, parametrized by
A=nPy +1248] ,p, act on the gauge field as

(2.1)

80A = DA = di+ [A. ], (2.2)

wherefrom we get the transformation law of the funda-
mental fields,

o2t = Vit — 1482y,

So@"B = VAB 4 2elAyBl. (2.3)

Here, the @-covariant derivative is Vi = dp + a&"Bn;.

The AdS field strength F = dA + A A A has components

. 1
F=TP, + EFABJAB, (2.4)

which are the torsion 2-form 74 and AdS curvature FAB,

A

1,
™= ETAde" Adx* = det 4+ ' A e,

1
FAB = EFABde/‘ Adx¥ =dMB + & NP+ e A eb.
(2.5)

The wedge product sign is going to be omitted for
simplicity from now on in the text. The global AdS space
is described by a Riemannian manifold (T = 0), whose
AdS curvature vanishes (FA% =0), and where the
Riemannian curvature R4 = d@*® + @€ A &P becomes
explicitly constant, RAB = —24 A &5,

B. Radial expansion and residual
gauge transformations

We use the radial foliation with the local coordinates
x* = (p,x*) and the Lorentz indices decomposed corre-
spondingly as A = (1, a). The asymptotic boundary of the
manifold is located at the constant radius p = p,. For
convenience we set pg = 0.

1. Gauge fixing

There are two types of local symmetries, small and large,
depending on how they behave asymptotically. Small local
symmetries are characterized by the parameters which go to
zero at infinity and all other local symmetries are large.

044027-2
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Small gauge symmetries act trivially on boundary fields
and must be considered as redundancies in the theory, i.e.,
they must be gauge fixed. A good gauge choice should fix
all small gauge transformations and should lead to a well-
posed boundary value problem, meaning that the form of a
residual symmetry in the bulk is completely determined by
the boundary values of the symmetry parameters. Note that
the large gauge transformations do not have to be fixed by a
gauge choice. For more details, see Ref. [20].

Local transformations at our disposal are spacetime
diffeomorphisms and local AdS transformations. Let us
first focus on local AdS symmetry. A good gauge fixing for
our purposes is the one where the spacetime is AAdS and
where residual gauge transformations contain conformal
transformations on the boundary.

The last condition is introduced because we want to have
a CFT as a holographic theory. Too strong gauge fixing can
overkill all residual transformations and give rise to a trivial
holographic theory. Since the bulk theory is gauge invariant
only up to boundary terms, different gauge fixings can lead
to nonequivalent boundary theories.

Another important observation is that, in the metric
formulation of Riemann gravity, according to the theorem
of Fefferman-Graham (FG) [18], in any AAdS space
there is a coordinate choice so that the metric can be
cast in the FG form, that is, with g,, = 1/(2p)%, 9, =0
and pg,s(p.x) regular on the boundary p = 0. Thus, a
gauge-fixing choice of the vielbein and spin connection
must be such that the corresponding metric acquires the
FG form.

The number of gauge parameters of AdS group is D(D2+1>,
implying that we need the same number of gauge con-

ditions. We impose the following D conditions on the

. . A D(D—-1 .. . A
vielbeins &4, and % conditions on connection @

1
A A AAB
et, = 251, 10} p—O.

(2.6)
In the choice of the gauge fixing one has to keep in mind
the invertibility of vielbein. Therefore, all &4 , components
cannot be set to zero. Furthermore, although in principle a
choice of the radial coordinate is arbitrary, we want to have
the Fefferman-Graham coordinate frame, where the metric
component g,, behaves as 1/ 4p?, generalized to first order
formalism, which implies the above behavior of the radial
component of the vielbein.

To find residual transformations, we look at the restric-
tions on gauge parameters imposed by the gauge conditions
(2.6) and we find that they have to satisfy

1
8pi11 =0, an® — 5/11“ =0,

1
0% =0, Q= =0, (2.7)

PHYSICAL REVIEW D 96, 044027 (2017)

The equations in ! and 1%® are straightforward to solve. To
find # and A', we combine the corresponding differential
equations and obtain for the parameter 7*

1
PPN + pd,n* — Zr]" =0. (2.8)
This is the Euler-Fuchs equation which solution takes the
form n°(p) ~ p*. Hence, from (2.8) we get k* =1 and
consequently the general solution is given by

1 =u(x a xzia“x a(x
n'(p,x) =u(x),  n*(p.x) 75 (xX) + VB (x),

1
ab x:abx la x) = — a®(x a( ).
#Hpx) =), A1) == () + VR

(2.9)

We see that our gauge choice is good, as desired, because
symmetry parameters in the whole bulk are determined by a
few arbitrary functions u, a¢, f* and A9 defined on the
boundary. We still have to identify an asymptotic symmetry
group defined by these parameters.

The residual gauge parameters which describe asymp-
totic symmetry group naturally induce a change of the basis
in the Lie algebra JF = P, + J,,, so that the Lie-algebra
valued gauge parameter has the form

2= u(x)Py + ;Ea%xw; VBT 31 ()

(2.10)
The AdS algebra in terms of the new generators reads
Vo Ty) = 20 + 214, Py

[‘]ab"]ci] = _nac'];;t +’7bc‘]izt7
[Py Ja] =£T3.

£ It =0,
[Plv*]ab] = 0’
(2.11)

2. Radial decomposition of gauge field
and field strength

Up to now the results are valid for any theory possessing
AdS gauge symmetry. From now on we concentrate on
Chern-Simons AdS gravity. For holography, one needs to
know how the fields evolve along the radial direction and to
study their near-boundary behavior. Since the radial compo-
nents are already fixed by the gauge condition (2.6), now we
have to determine the behavior of the spatial components.

To this end, we can use invariance of gravity under
general coordinate transformations. In Ref. [21], it was
shown that only D — 1 spatial diffeomorphisms are linearly
independent on gauge generators, in a physical system
where time evolution was analyzed. In our case, we look at
the radial quantization of a Hamiltonian, because we are
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interested in radial evolution of the fields from the bulk to
the boundary. Thus, our independent diffeomorpisms act
only in the transversal section of spacetime, that is, as
x* — x* + &%(p, x). Furthermore, we know that the radial
diffeomorphisms are broken by the boundary set at constant
radii, so this choice of quantization is natural in our case.

Thus, we have D — 1 transversal diffeomorphisms to
gauge fix. In Ref. [21] it was shown that, in any generic
Chern-Simons gauge theory (AdS in our case), there is an
on-shell identity F,, = F,sN”, with D — 1 arbitrary func-
tions N/ related to the transversal diffeomorphisms
&%(p, x). Therefore, to gauge fix them, we can just set
the D — 1 functions to zero, N = 0. As a consequence, we
also get F,, =0 or, equivalently, 7%, =F8, =0.
These conditions are particular for Chern-Simons theory
and they arise from its dynamics. Interestingly, they can be
exactly solved using the gauge fixing (2.6), also written
as A, = —5-P;. Rewriting the AdS Lie-algebra valued
= O as (dA +A?),,

condition F pa =0, we get

1

1 .
3pAa _Zeaa‘]al +Z laaPA =0.

This first order differential equation in A,(p,x) can be
exactly solved, given the initial condition

1
Ay(0,x) = e (x)JF + k% (x)J; + zw"ba(x)Jab. (2.12)

The solution is

1
4TS+ Pk G (x)T 5 4 5 0 (x) T -

Aglpox) =
opx) =—e
pX) =7 5

(2.13)
In components, this solution leads to the radial expansion

of the gravitational fields expressed in terms of the
boundary fields e“,, k%, and @

1
(eq + pk?y),

a \/ﬁ
. 1
o', = —%(6“ - pk?,),
0"y = 0, (2.14)

Thus, this is a generalization of the FG expansion of the
bulk metric. Indeed, the metric j,, = &*,8% 5, takes the
FG form since the line element can be written as

1
ds? 4 — dp + - (ga/g + 2pkap) + pzk“akaﬁ)dx“dxﬂ,

(2.15)

PHYSICAL REVIEW D 96, 044027 (2017)

where g5 = n%e%,e”5 and kyp := €,,k"5. We conclude
that the FG expansion is finite. Finite FG expansion is
typical for Chern-Simons gravity [9] and also for general
relativity when the Weyl tensor vanishes [8].

The induced metric y,z; is defined by y,3 = pg,p. The
coefficients in the radial expansion of y,; are

(0)

_ (m _
Yap =9apr  Yap = 2K(ap):

yizﬁ) — kaakaﬂv 75;;;) - 07 n Z 3 (216)

From the radial expansion of the field strength we get on
the boundary

1
Fal _ (Ta

N

Feb — Rab 4e[akb]’ Ta —

—pVk9), T! = —2¢%,,

Ly pvke), (217)
D

where 7¢ = Ve and R = dw®™ + o, 0.

Physical interpretation of the boundary fields can be
found from their transformation law under the residual
(boundary) gauge transformations.

3. Residual gauge transformations

The complete transformation law of the basic dynamical
variables in the bulk that include the spacetime diffeo-
morphisms is given by

5 AA :@ ﬂA—ﬂABéB -0 §V@A —5”8 éA
5060 _ v lAB_'_zeA B] -0 éyAAB _51/8 é\)AB
(2.18)
where the last two terms of each line are the Lie derivatives

with respect to &. If we make the following redefinition of
parameters,

=t + et

JAB 5 JAB cf”(bAB,,, (2.19)
transformations (2.18) take the following form:
02, =Vt — 1MBep, + &1,
So@E, =V, A8 + 2014 yBl 4 & FAB (2.20)

Due to the condition F,, =0, the transformation laws
(2.20) of &4, and @*#, with redefined parameters (2.19)
take the same form as in the case when diffeomorphisms are
absent in the transformation law (2.18). Therefore, intro-
duction of diffeomorphisms does not effectively change the
result (2.9).
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From the transformation law for w?’,, it follows that &
does not depend on p. The complete transformation law of
the gauge fields under residual transformations reads

Soe’y = V' — 2% ey + ue, — & ety — Eoget,,
Sokty = VB = 2%k — ke — & k5 — POk,
Sow ™, =V, 1% + 4ele ¥ + 4kl a”)
— & (0" = F ™, (2.21)
with
L e
n + 0 u(x), & = &%(x). (2.22)

Let us note that the residual diffeomorphisms do not change
the condition F,, = 0, as expected. Their form shows that
our gauge choice is good.

In holography it is important for the boundary to be
orthogonal to the radial direction. That is why we shall
impose an additional condition &', = 0, which puts the
bulk vielbein in the block-diagonal form with the only one
|

PHYSICAL REVIEW D 96, 044027 (2017)

boundary component e“,(x). The extra condition reduces
the asymptotic symmetries because the parameter ¢ is not
independent any longer,

pe = e (% Oqu + kbaab> . (2.23)
The generators of the asymptotic group cannot be deter-
mined straightforwardly because a change of the basis of
the Lie algebra necessary to identify this subgroup is
nonlinear, that is, it depends on the point of spacetime.
We shall deduce the algebra directly from the action on the
fields.

Independent transformations acting on the fields are
transversal diffeomorphisms or local translations &;(&),
local Lorentz rotations &; (1), local Weyl or conformal
transformations 6¢(#) and non-Abelian gauge transforma-
tions 85 (a). Each transformation can be seen as generated
by some generator 7', through the commutator, for example
[66(d),66(a")] = d“d"?[T,, Tp], and similarly for all
other transformations. In that way, the asymptotic algebra
closes as

[6r(&). 07N = 8r(€.8"). [Bc(u). (a)] = dc(a- du) = 8,(2) = 8¢(ua).
[07(6). 0. ()] = 6.(&-04),  [66(),06(a")] = =bc(ut) = 6. (A),
[07(8), 6c ()] = 6¢(&-Ou),  [6.(4,6g(a)] = ( a),
[67(S), 6 (a)] = 66(§ - D), [6.(4),6c(u)] =
[0 (X), 6. (A")] = o.((A, 27]),  [6c(w ),5c(u”)] =0, (2.24)
|
where [&, &% = & - 9&"* — & - OE'* is the Lie bracket and Sg(a)et, = =57(a’) = 6, (0" ya’) + T3 (2.26)

(A, ") = placpib — pMac)lb s the group commutator.
We also introduced the contraction &-0 = 5ﬂa,, and the
matrix multiplication (4-a)® = 1%%a,;, and defined the
auxﬂlary Lorentz parameters 2% = 2ala9Ply and A =
4kc[“( o' — '), as well as the Weyl parameter
i = 4k[ab] / Z

The above brackets are computed by acting on e“,, but
their form is field independent. The boundary diffeomor-
phisms, Lorentz rotations and Weyl dilatations close in the
standard way and they form the Weyl subgroup.
Furthermore, the non-Abelian extension is realized non-
linearly, because the parameters A and u explicitly depend
on the field k“*. To understand better the origin of such
non-Abelian transformations, let us note that
5G(a)eaa

= (0,07)e"s + ol Oge’ s + AP ™ ey + AP T 4,

(2.25)

where of = a“e,’. Therefore, the gauge transformations
can be cast in the form

Shifting the parameters as & — & + o and 1% — 1?0 +
w®sal helps us identify the independent non-Abelian
gauge transformations &g(a)e?, :aﬂTgﬂ. From (2.25)
and the above relation we easily conclude that non-
Abelian gauge transformations act on the boundary viel-
bein independently if and only if torsion is nonvanishing. In
the case of vanishing torsion non-Abelian gauge trans-
formations stop to be independent and they can be
represented as composition of local translations and local
Lorentz rotations with the suitable redefinition of param-
eters. Similar conclusion holds when one acts on the
boundary spin connection because it is an independent
field only if the torsion is nonvanishing.

Let us now, for completeness, inspect the action of the
transformations (2.21) on the metric g,z = e“,e,5. We
obtain

009ap = =& a9yp — & pGay — E 0y 9ap + 2Ugqp
+ eV + ey Vga.
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Similarly, as in the case of vielbein, the action of the
non-Abelian gauge transformations on the metric reads

5G(a)g¢xﬁ = _ST(a)gaﬁ + 2ayT(aﬁ)y' (227)
Again, we conclude that in the case when torsion
vanishes the action of non-Abelian gauge transformations
on the metric reduces to local translations with the
already mentioned redefinition of parameters [4]. The
above transformation law of the metric is not usual in
field theories, but is not surprising because we started
with local AdS symmetry which mixes vielbein and spin
connection.

III. NOETHER-WARD IDENTITIES

The AdS/CFT correspondence between the D-
dimensional AdS space and d-dimensional CFT identifies
the quantum effective action in CFT with the classical
gravitational action in AdS space for given boundary
conditions. Thus, let us assume that the renormalized
effective action in a holographic theory, I,.,[e, @], has an
extremum for Dirichlet boundary conditions on the inde-
pendent fields, which are the vielbein, ¢“,, and the spin
connection, @, so that its variation takes the form

1
5Iren [6, 0)} = / ddx <Taa5()€aa + _O'aabaoa)aba> .

2
(3.1a)
The tensor densities,
ol ol
a _ _lren a _ _ ren 1b
Ta 5€aa ’ 0" ab 5(l)aba ’ (3 )

are the energy-momentum and spin currents of our
dynamical system.

The holographic theory is invariant under d-dimensional
diffeomorphisms with the parameter £* and the local
Lorentz transformations with the parameter 1%°. The con-
servation law of the corresponding Noether current reads

a \J % a Ta la Rab
eﬂ aTa+Ta a/5+26ab aff

1
+ 7wahﬁ(vaaaub - ZT[ub]) =0,

3 (3.2a)

Vaa"ab - Zr[ab] = 0, (32]3)
which is also known as the generalized conservation laws
of 7,4 and 6”,,. Note that if the second Noether identity
(3.2b) is fulfilled, the last term in (3.2a) can be omitted.
We shall keep this term, however, because it modifies the
conservation law in cases when there are quantum
anomalies.

PHYSICAL REVIEW D 96, 044027 (2017)

The invariance of /., under Weyl transformations leads
to the additional conservation law,

t— Vo'l =0, (3.2¢)

where 7 := 7¢ is the trace of the energy-momentum tensor.

Finally, invariance under the non-Abelian gauge trans-
formations leads to

V1% = 26° k¢ — 20,0,k = 0. (3.2d)

In Ref. [9], it was proposed that these residual gauge
transformations contain the information about the chiral
anomaly of the fermions in holographic CFT, encoded in
the completely antisymmetric part of the spin current.

Gravitational dynamics in the bulk is described by
nonvanishing torsion, but it may happen that some sol-
utions on the boundary are Riemannian. For such solutions,
the boundary connection 0, takes its Riemannian value
@, = @",(e) and can be expressed in terms of the
vielbein e“, in the following way:

- 1 .
Dapg = 5 (cabc — Ccab + Cbca)eLav

Caaﬂ = aaeaﬂ - 8ﬂeaa. (33)

Although boundary connection is no more independent
dynamical variable, the Noether-Ward identities keep
the form (3.2), but now w,,, takes on the Riemannian
value @,pg-

From the Riemannian renormalized action 7ren =
Ienl€y, @,), we get that the related spin current X% :=
61, /éw, vanishes, while the energy-momentum current
0%, = —(Sjren /de“,, acquires an additional contribution

~a le o ] ~ fa ~a
®aa =T _Evﬂ(gﬂ a _Gaﬂ +o aﬂ)’ (34)

where X denotes the Riemannian limit of a tensor X. The
Noether identities for the action /., are found to be

e"4V,0%, — 40, =0, (3.5a)
®ab = ®ba1 (35b)
®=0. (3.5¢)

Let us remind that, as we concluded at the end of the
previous section, the non-Abelian gauge transfor-
mations are not independent for Riemannian solutions,
thus in this case there are only three independent Noether
identities (3.5).

When the Lorentz invariance is fulfilled, (3.5a) reduces
to the usual form D,(e7'@%) =0, where D, is the
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Riemannian covariant derivative. The relations (3.5b) and
(3.5¢) are the standard Riemannian conditions for the
Lorentz and Weyl invariance, respectively.

After using the condition of vanishing torsion, 7. = 0,
the identity [V, V4|f, = Rabaﬁ £ and the Bianchi identity,
Rabcd + Racdb + Radbc = 0, enable us to write the expres-
sions (3.5) as

v 1 ~a ~(1 1 ~a ~a et
ea/}vafau + 50 arR b(l/} +so hﬁ(v(la ab — 27'-[1117]) =0,

2
(3.6a)

Vadap = 2Fap) = O, (3.6b)
-Vl =0. (3.6¢)

Hence, the Riemannian identities (3.5a), (3.5b) and (3.5¢)
coincide with those obtained from (3.2a), (3.2b) and (3.2¢)
in the limit 7,,. — 0, as expected. Therefore, taking
torsionless limit and calculating Noether-Ward identities
gives an equivalent result as first calculating the Ward
identities and taking torsion zero [22]. This is important
when we do not know whether the torsion vanishes.
Therefore, one may safely work in first order formalism
assuming the boundary conditions and gauge fixing pre-
sented previously.

IV. LOVELOCK-CHERN-SIMONS GRAVITY

A. Action and equations of motion

The Lovelock-Lanczos gravity [15] in first order for-
mulation is described by the action

[D/2]

I=> a,lL,
p=0

where «, are arbitrary coupling constants and L, is
dimensionally continued Euler density in D dimensions,

(4.1a)

L, =&, i, R Romimeinin e, (4.1b)

P iiy...

Here p is the power of the curvature tensor in the
polynomial L,. We omit writing the wedge product for
the sake of simplicity.

Lovelock-Lanczos gravity possesses numerous black
hole solutions with Riemannean geometry [23-25],
although some choices of the coupling constants {a,}
exhibit a causality problem in the dual CFT [26], or have
instable geometries [27,28]. Generic Lovelock gravity
without torsion possesses the same number of degrees
of freedom as general relativity [29]. With torsion, or
when the parameters take the critical values, the
dynamical content of Lovelock-Lanczos gravity might
change. Solutions in these cases are known as well, for
example the ones with Riemann-Cartan geometry in five-
dimensional gravity [30,31] and supergravity [32].

PHYSICAL REVIEW D 96, 044027 (2017)

In odd-dimensional case D = 2n + 1, the special choice
of coefficients a), = 5-—-" defines theory with the
unique (degenerate) AdS vacuum, known as LCS AdS
gravity. Alternatively, LCS action can be constructed as a
Chern density by taking the topological invariant, Chern
form dLcg = ¢, ; F'/i...F'n, and writing Lcg by
using holonomy operator [14,33]. Then, an equivalent
form of LCS action is given by

1
Iics :K/MA dtes B,a,B,...A,B,C
n

x [T (RN + PerveBi)eC.
k=1

(4.2)

Dropping the indices for simplicity, the above expression

reads
l A
ILCS = K/ / dté'(R + tzéz)né
M JO

"n 1 N
_ for—k p2k+1
K/ Zk2k+18 “

M=o

(4.3)

where we used the binomial expansion to perform an
integration over f.

Equations of motion are obtained from the variation of
the action (4.3) with respect to fundamental variables &4
and @*B. Variation with respect to & yields

n
Ca = €4,B,..A,B, HFA"Bk =0, (4.4)
k=1
which can be split into 1 and a components,
C:= €lab;...a,b, Fobe =0, (4'53')

k=1

n
Ca = €albarhy...app, F" H Fobe=0.  (4.5b)
k=2

Variation with respect to @ yields

n—1
Cap = €apa,,..A,_5,c | | FA*TC =0, (4.6)
k=1
and can be split into [la| and [ab] components,
_ n—1
Ca = elaalb]...a,,_lb,,_]c Fakkac = O? (478')
k=1
Cab *= €laba,b,...a,_ b,
n—=2
% Fakbk(Fan—lbn—l Y, (n— ])Flam] f‘bn—l).
k=1
(4.7b)
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Let us note that 7% =0 is a particular solution of the
equations (4.7) belonging to the Riemannian subclass of all
solutions of the theory. Also, the global AdS space
(F = 0) is a particular solution of all equations of motion.

B. 1-point functions

In this section we calculate the renormalized gravita-
tional LCS action in the classical approximation. Then we
use the AdS/CFT correspondence to promote it to the
quantum effective action in a holographic CFT, and
compute the holographic 1-point functions.

The variation of the LCS action reads

1
_ AAB AC
51Lcs—”l</ / dteapca,s,..A, B, 00" "€
om Jo

n—1
% H (RA,(BA, + IZéAk@Bk).
k=1

(4.8)

To perform a near-boundary expansion of the fields, let us
first rewrite the following quantity in terms of the AdS
tensor:

RABx 4 2pMpBe — FAB: 4 (2 = 1)e

The first term in the above expression is independent of p
since on the boundary 2! =0, and therefore the particular
components expand as

pagb S 5ar — b
Rk + g% e = Fabli,
Rl 4 pae! =

1
(T =gV (49)

Plugging these expansions in the variation of the action, we
find

PHYSICAL REVIEW D 96, 044027 (2017)

n—1
n-— K (2k)!
51 — n—k—l*\2k+l’
LCs ”K/W 2 k 2k+ !
(4.10)
where we used the beta function to solve the inte-
—1)k(2k)!!
gral [ ldi(rP — 1)k = ((21124512)!), .

Variation (4.10) is divergent on the boundary, that is, in
the limit p — 0 and extraction of physical quantities requires
its renormalization, or removal of divergences. For related
work on Riemannian Lovelock gravity, see Ref. [5].

The procedure for obtaining finite results consists in
introducing a regulating surface at p = ¢ and adding the
counterterms which cancel all divergent contributions as €
tends to zero [8,34]. Equivalently said, the divergent terms
in a variation of an action have to be represented as total
variations of local terms integrated over boundary. In
general, the computation of the total variation can be
substantially simplified after noting that the conditions
for the application of the theorem [19] are fulfilled in our
case. For an alternative proof of the theorem [19], see
Appendix C. The theorem [19] states that the terms which
are asymptotically divergent or zero (when p — 0) can
always be represented as total variations of local boundary
functionals. Therefore, we can discard all p* (a # 0) terms
in the expression (4.10) and keep only the p°-terms. For the
form of the p*-terms (o # 0), see Appendix B. Note that the
counterterms can contain arbitrary local finite part which is
nonphysical and depends on a renormalization scheme. The
divergent counterterms are local and there is finite number
of them. They also depend on only one coupling constant «.
Counterterms in Riemannian gemetry were calculated
in Ref. [35].

Keeping only the finite terms, we obtain the variation of
the regularized action [, = I; g + I in the form

n=2 /0 9N (—1)20+1 (4 _
0l ey = —2nke [5(1)T (n ) (=127 (n

0
n—1 n—1 -1 1221+1
— e < > 7( )

I+1

where T = Ve is the boundary torsion tensor. Comparing
to (3.1), the spin and energy-momentum currents are given
by, respectively,

n—1 n
aah:—nkelang
=1

—~(n I pn—1 17,1

Ta:KF,'laE / 4'Re K,

=1

-1
>4IR"—1—lel-1k', (4.12)

(4.13)

(R+4ek)n—l—lelkl+l ,

1)
R dek n—2-1 lkl+1
= (R + 4ek) e

(4.11)

|

and they correspond to the vacuum expectation values of
the quantum CFT operators, the spin current S,;, and the
energy-momentum of the conformal matter 7,

ta = (Ta)err-  (414)

Cap = (Sap)cFr>

Using these representations of the 1-point functions of the
CFT operators, we can study their quantum conservation
laws, that is, the Noether-Ward identities.
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C. Anomalies

The equations (3.2) describe classical conservation laws
in a holographic theory invariant under diffeomorphisms,
conformal transformations and non-Abelian gauge trans-
formations. Since now we know the form of the corre-
sponding quantum currents, we can also check the quantum
conservation laws. If the law is not satisfied, then the
quantum theory possesses a quantum anomaly.

In this section we explore the Ward identities and check
for the existence of quantum anomalies: Lorentz anomaly
Agp, diffeomorphism anomaly A,, conformal anomaly A
and gauge anomaly A,. It is well known that there are two
|

n—2 n—2-1 -2 -2
A, = —Anke,, {2(;1 —TVEY <n 1 > ("

=0 m=0

PHYSICAL REVIEW D 96, 044027 (2017)

types of non-Abelian anomalies, covariant and consistent.
All the anomalies we compute here are covariant, i.e., they
transform covariantly under gauge symmetries.

1. Lorentz Ward identity

The conservation law for Lorentz symmetry is given by
Eq. (3.2b), so we have to calculate the quantity
Aab = VGab - 2e[a7b]- (415)

Using the expressions (4.12) and (4.13) for the quantum
currents, we find

[
>4m<l m 1)R11—2—l—m€l+inkl+m
m

n—1 n—1-1 n—1 n—1-=1 -1 1221+2m+1 ! 1
—I—eckcz Z ( / > < ) ( ) ( +m+ >Rn—l—l—mel+mk1+m] )

=0 m=0 m

It turns out that A, can be completely expressed in terms of
the field equations, that means that it vanishes,

A,y = —4nkC,y = 0. (4.16)

Therefore, there is no Lorentz anomaly in the holographic
theory because the Lorentz symmetry is conserved also
quantically. This is an expected result, since the Lorentz
symmetry is usually broken in the actions that are not parity
invariant.

2. Ward identity for diffeomorphisms.

The conservation law for local translations has the
form (3.2a),

i 1
A, =Vr,— <]uTth + zluR”"o,,c>, (4.17)

where [, is the contraction operator with the spacetime
index projected to the tangent manifold using the inverse
vielbein e,*. Plugging in the quantum currents (4.12) and
(4.13), one can show that the conservation law is
satisfied,

A, = 4nk(kb,C, - C,) = 0. (4.18)

Therefore, there is no gravitational anomaly, as expected.

I+1

3. Conformal Ward identity

The conservation law for local Weyl transformations can
be read off from Eq. (3.2¢) as

A = e, +V(elbs,,), (4.19)

where e“z,, is the trace of energy-momentum tensor, so A is

also called the trace anomaly. Using the field equations and

discarding the total divergence, one can show that the trace
anomaly has the form

_ by payh by _
€T, = K€y p,arhy...a b, RN R ..ROr = k&, (R).

(4.20)

Thus, the holographic anomaly is nonvanishing and, up to a
divergence, proportional to the Euler density £, (R) = eR",
as expected in a CFT dual to a higher-dimensional AdS
gravity [36]. Since the Weyl anomaly is topological
invariant, it is of the type A, according to the general
classification of conformal anomalies given in Ref. [37].

4. Ward identity for gauge symmetry

The conservation law for non-Abelian gauge transfor-
mations is given by Eq. (3.2d) as

A, = V1, =2(e6,.k,C + KPoy,). (4.21)

Using (4.12) and (4.13), as well as the equations of motion,
we can express it as
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n—1
n—=1\ (—])2H+1
A, = _an‘SlbIaTb Z( ) ()7 (R + 4€k)n_1_lelkl+1

/ [+1

=0

1 n—2 n—=2 -1 1221+1 -1
- 4nz<elth(§IaR1"' - 2e”ka"> Z( > (=1) (n—1) (R + dek)—2-lel ]

1=0

[+1

n—2 n-=2 -1 1221+1 -1
+ 8"K€1aTZ< ] ) (=1) (n—-1)
=0

The above holographic anomaly is in general nonvanishing,
but it cancels out when the torsion is equal to zero, as
expected. Indeed, when 7% = 0, the non-Abelian gauge
symmetry is not independent, but it can be expressed in
terms of the diffeomorphisms, which are conserved at the
quantum level. Another derivation of this result is possible
by noting that in this particular case the spin tensor vanishes
and both Eqgs. (3.2a) and (3.2d) reduce to

Vv, 7, = 0. (4.23)

Again non-Abelian gauge anomaly vanishes since A, = 0.

V. CONCLUDING REMARKS

We analyzed a holographic dual of Lovelock Chern-
Simons AdS gravity in an arbitrary odd dimension and
calculated corresponding holographic currents and anoma-
lies in the quantum CFT. First part of the work is devoted to
the kinematics of gravitational theory with AdS gauge
symmetry. After motivating a gauge fixing suitable for a
holographc analysis, we calculated residual (asymptotic)
symmetries. Then we focused to Chern-Simons AdS
gravity. We concluded that the largest asymptotic symmetry
consists of local translations and rotations (local Poincaré
group), local Weyl rescalings and, in the presence of torsion
on the boundary, of non-Abelian gauge symmetry. If the
torsion on the boundary is zero, then a non-Abelian
symmetry is not independent any longer and reduces to
local Poincaré transformations.

We found holographic representations of the energy-
momentum and spin tensors in a dual theory, which we
identified with the corresponding 1-point functions in CFT,
in the presence of sources. We also computed their
conservation laws and obtained that some of quantum
symmetries are broken, leading to quantum anomalies.
Explicitly, we obtained that local translations and rotations
are symmetries of the quantum theory, while Weyl rescal-
ings and non-Abelian gauge symmetry are anomalous.
Similarly as in five dimensions [9], the trace anomaly is
proportional to the Euler density and is therefore of the
type A.

Because of nonlinearity of the model and working in
higher-dimensional Riemann-Cartan space, the regulariza-
tion of the action was quite involved. However, with the

[+1

(R + dek)=21elkI+2 £ 0. (4.22)

I

help of a general renormalization theorem shown in
Appendix C, it was possible to circumvent an explicit
construction of divergent counterterms and extract directly
its finite part. An alternative proof of the theorem is given
in Ref. [19].

One of the open questions left for future work is an
application on non-Abelian gauge transformations to the
calculation of chiral anomaly. Namely, in Ref. [9] it was
suggested that the chiral anomaly is related to the com-
pletely antisymmetric component of the torsion tensor.
Another question would be to find a different gauge fixing
of either transversal diffeomorphisms or local AdS sym-
metry, in order to obtain an infinite radial expansion of the
fields, and possibly the type B anomaly. This would
describe an inequivalent holographic theory. Finally, we
are also interested in introducing a gauge fixing which
breaks relativistic covariance in an arbitrary Poincaré gauge
theory, and is suitable for the formulation of Lifshitz
holography. These last topics is the work in progress.
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APPENDIX A: ADS ALGEBRA

The algebra of generators Jiz = —Jz; (A,B=0,
1,...,D) of AdS group SO(D — 1,2) if given by

Wiz Jerl =nmpedir +npelae —naclse —npelic
(A1)
where ;2 = (—1,1, ..., 1, —1). Introducing the splitting of
nag = ( ) g the splitting

D-1
indices A = (A, D) and with

PA:JADv

Jag = —Jpa. A,B=0,1,...D—-1, (A2)
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the algebra (A1) (after taking into account that p, = —1)
takes the familiar form

PHYSICAL REVIEW D 96, 044027 (2017)
APPENDIX B: VARIATION OF LCS ACTION

In this appendix we present the nonvanishing parts of the
variation of LCS action given by Eq. (4.10),

[Pa, Pg] = Jas,
[PAvJBC]:’/IABPC_’//ACPBv _ - l .
[JagsJcel = nped ae + Naedse = Nacd e — MBed ac- e fz:;pj " o
(A3)  We find the following terms, with 1 < j < (n —2):
|
01, = €414,b,...a, b, 0 € K_(_1),
ol,_y = €aba1b1...d1c50)ab€cvedf—(n—2)
+ €ataby...ay b, |0 € K_(y o) + (5K — ke )K_,_p)],
81; = €1apedap,.. 00" [V el T_i_1) — (e°Vk? = kVe?)J_; — kEVkUT _(j.1)]
~ Elacayb,...a, b, 10€ € K_(j_1) + (8e“k® — 6k“e®)K_; — 6k kK _ ;1 1)),
81y = €1apeda,p,.. S0 [e°VelJ| — (e“VkI — kVe?)Jy — k”deJ_l]
= E€14carb, ...a, b, [0€" € K 4 (6e"k® — 5k e) Ky — 5k*k°K_4], (B2)

and
lin—1
K, = < (R + dek)" 171 A et~ k!+e,
=0
n-2 n—
(n—1) Z( > (R + 4ek)™ 24, e~k
=0
(B3)
where
—1)42
A= (B4)

QI+ D([I-a)(l+a)

APPENDIX C: ALTERNATIVE PROOF
OF THE RENORMALIZATION THEOREM

In this appendix we show an alternative derivation of the
results of Ref. [19].

Theorem 1 A surface counterterm can be added to an
action of any classical field theory in the bulk to cancel
all the terms which depend on the radial coordinate in an
on-shell variation, if any of the following conditions are
satisfied:

(1) The bulk has the topology R x OM;

(i) The boundary has a finite number of disjoint pieces

and near each one the bulk looks like R x OM.
Here, OM is any manifold without boundary with the
coordinates x* and the radial coordinate is labeled by p. If
the fields have asymptotic expansion near the boundary of
the form ¢’ =, 11 (p)@’,(x*), where fi(p) are functions

that depend only on p and ¢} (x*) are (p-independent)
boundary fields, then the counterterm is a local functional
of the boundary fields.

Let the action in (D + 1)-dimensional bulk M be defined
in language of differential forms as

s— [ L.
M

A variation of the action (C1) takes the form

55:/ 5L:/ e.o.m.+/ dp LB (C2)
M M M

where e.o.m are the terms proportional to the equation of
motion. Formula (C2) is also valid without integral and it
will be used in that form later. By using the Stoke’s
theorem, we can write the last term in (C2) as

/dD+ng_/ Lp,
M oM

where the boundary of M is placed at fixed distance p = ¢
near (but not equal) zero and Ly, = L5| Dly—e- Let OM be a

boundary at each p. The most general D-form L, near the
boundary is

(C1)

(C3)

LE=Lp+dpnV, (C4)
where V is an arbitrary (D — 1)-form. The exterior deriva-
tive in the bulk can be decomposed near the boundary as
=0,dp +d, (C5)

dp1
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where d is the exterior derivative at the boundary and d,, is
the derivative along the direction p. From Egs. (C2), (C4)
and (C5), we get on-shell

oL =dp NO,Lp—dp A dV. (Co)
Equivalently, this can be rewritten as
0,Lp = 6U +dV (C7)

where 6L = dp A 6U. Hence, from (C7) it follows that

Lp =6A+ dB+ R(x%) (C8)
where A = [dpU, B = [ dpV and R(x*) does not depend
on p. This conclusion is valid under the assumption that the
right side of Eq. (C7) is integrable and that the derivative
and integral mutually commute. Therefore, L is a sum of a
total variation, exact form and a function which does not
depend on p.
Consequently, we get

oM oM oM

(C9)

PHYSICAL REVIEW D 96, 044027 (2017)

where we used the fact that an integral of the exact form dB
vanishes due to the Stoke’s theorem and because the
boundary of a boundary is an empty set. After substituting
(C9) into (C2) we obtain on-shell

s5-50= | R
oM

where S, = [, A. Since R is p independent, the expres-
sion (C10) is well defined at the boundary p = 0. Thus, all
p-dependent terms can be eliminated by adding a suitable
counterterm. An important observation is that this counter-
term is unique. Given an asymptotic solution of the field
equations, a near-boundary behavior is fixed. Furthermore,
the counterterm is obtained from the Lagrangian, thus it
depends on the same parameters. In other words, we do not
include new parameters in the theory. If the starting
Lagrangian has a finite number of parameters, so it does
the renormalized Lagrangian.

As the counterterm is obtained as a primitive function of
local functions, it is not necessarily local. The near-
boundary expansion method is, however, able to determine
only local counterterms.

(C10)
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Starting from the generalized pp waves that are exact vacuum solutions of general relativity with a
cosmological constant, we construct a new family of exact vacuum solutions of Poincaré gauge theory, the
generalized p p waves with torsion. The ansatz for torsion is chosen in accordance with the wave nature of
the solutions. For a subfamily of these solutions, the metric is dynamically determined by the torsion.
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I. INTRODUCTION

The principle of gauge symmetry was born in the work
of Weyl [1], where he obtained the electromagnetic field by
assuming local U(1) invariance of the Dirac Lagrangian.
Three decades later, the Poincaré gauge theory (PGT) was
formulated by Kibble and Sciama [2]; it is nowadays a
well-established gauge approach to gravity, representing a
natural extension of general relativity (GR) to the gauge
theory of the Poincaré group [3,4]. Basic dynamical
variables in PGT are the tetrad field »' and the Lorentz
connection 0" = —@/' (1-forms), and the associated field
strengths are the torsion 7' = db' + w'; A b* and the
curvature RV = dw'/ + o', A " (2-forms). By construc-
tion, PGT is characterized by a Riemann-Cartan geometry
of spacetime, and its physical content is directly related to
the existence of mass and spin as basic characteristics of
matter at the microscopic level. An up-to-date status of
PGT can be found in a recent reader with reprints and
comments [5].

General PGT Lagrangian L is at most quadratic in the
field strengths. The number of independent (parity invari-
ant) terms in L is nine, which makes the corresponding
dynamical structure rather complicated. As is well known
from the studies of GR, exact solutions have an essential
role in revealing and understanding basic features of the
gravitational dynamics [6-9]. This is also true for PGT,
where exact solutions allow us, among other things, to
study the interplay between dynamical and geometric
aspects of torsion [5].

In the context of GR, one of the best known families of
exact solutions is the family of pp waves: it describes
plane-fronted waves with parallel rays propagating on the
Minkowski background M,; see, for instance, Ehlers and
Kundt [6]. There is an important generalization of this
family, consisting of the exact vacuum solutions of GR with
a cosmological constant (GR,) such that for A — 0, they
reduce to the pp waves in M,. We will refer to this family
as the generalized pp waves, or just pp, waves for short.
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In contrast to the pp waves in M,, the wave surfaces
of the pp, waves have constant curvature proportional to
A. The family of the pp, waves belongs to a more general
family, known as the Kundt class of type N, labeled
KN(A). Details on the KN(A) spacetimes can be found
in the monograph by Griffiths and Podolsky [9]; see also
Refs. [10-12]. In this paper, we start from the Riemannian
ppa waves in GR,, and construct a new family of the pp,
waves with torsion, representing a new class of exact
vacuum solutions of PGT. The torsion is introduced relying
on the approach used in our previous paper [13]. The
present work is motivated by earlier studies of the exact
wave solutions in PGT [14], and is regarded as a comple-
ment to them.

The paper is organized as follows. In Sec. II, we give a
short account of the Riemannian pp, waves, including the
relevant geometric and dynamical aspects, as a basis for
their extension to pp, waves with torsion. In Sec. III, we
first introduce an ansatz for the new, Riemann-Cartan (RC)
connection, the structure of which complies with the wave
nature of a RC spacetime. The ansatz is parametrized by a
specific 1-form K living on the wave surface, and the
related torsion has only one, tensorial irreducible compo-
nent. Then, we use the PGT field equations to show that the
dynamical content of K is described by two torsion modes
with the spin-parity values J” = 2% and 2. In Sec. IV, we
find solutions for both the metric function H and the torsion
function K, in the spin-2* sector and for 1 > 0, < 0 and
= 0. It is shown that K has a decisive influence on the
solution for H, and consequently, on the resulting metric. In
Sec. V, we shortly discuss solutions in the spin-2~ sector,
which are found to be much less interesting. Section VI
concludes the exposition with a few remarks on some
issues not covered in the main text, and the Appendices are
devoted to certain technical details.

Our conventions are as follows. The latin indices
(i,j,...) refer to the local Lorentz (co)frame and run
over (0, 1, 2, 3), b is the tetrad (I1-form), and A; is the
dual basis (frame), such that &;b* = 5;'(. The volume 4-form
is & = b% A b' A b? A b3, the Hodge dual of a form a is
*a, with *1 = ¢, and the totally antisymmetric tensor is

© 2017 American Physical Society
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defined by *(b; A b; A by A b,,) = €;jx,, and normalized
to €y123 = +1. The exterior product of forms is implicit,
except in Appendix B.

II. RIEMANNIAN pp, WAVES

In this section, we give an overview of Riemannian pp,
waves using the tetrad formalism [15], necessary for the
transition to PGT.

A. Geometry

The family of pp, waves is a specific subclass of the
Kundt spacetimes KN(A), labeled by KN(A)[a=1,8=0];
for the full classification of the KN(A) spacetimes, see
Refs. [9,10]. In suitable local coordinates x* = (u, v, y, z)
(see Appendix A), the metric of the pp, waves can be
written as

2 1
ds* = 2(%) du(Sdu + dv) — ?(a'y2 +dz?), (2.1a)

where

p
p=1+70"+2).

A
=1-=-2(y? 172
1 q 4(y + z%),

A
S = ——vz—l—ﬂH(u,y,z),

2.1b

with 4 being a suitably normalized cosmological constant,
and the unknown metric function H is to be determined
by the field equations. The coordinate » is an affine
parameter along the null geodesics x* = x*(v), and u is
retarded time such that u = const are the spacelike
surfaces parametrized by x* = (y,z). Since the null
vector & = &(u)d, is orthogonal to these surfaces, they
are regarded as wave surfaces, and ¢ is the null direction
(ray) of the wave propagation. The vector £ is not
covariantly constant, and consequently, the wave rays
are not parallel and the wave surfaces are not flat. For
A — 0, the metric (2.1) reduces to the metric of pp waves
on the M, background, which explains the term gener-
alized pp waves, or pp, waves.

Next, we choose the tetrad field (coframe) in the form

(2.2a)

so that ds®=un;b' ® b/, where n;; is the half-null
Minkowski metric:

PHYSICAL REVIEW D 95, 104018 (2017)
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The corresponding dual frame A; is given by

2
ho =0, —S9,,  hy = (g) a,,

I’lz = pay, h3 = paz (22b)

For the coordinates x* = (y,z) on the wave surface, we
have

1
Xt = bcaxa = ;(y! Z)’ 80 = hcaaa = p(ay’az)’

where ¢ = 2, 3.
Starting from the general formula for the Riemannian
connection 1-form,

@' = =2 |\h']db = W] db' — (h']h7]db*)by |,

one can find its explicit form; for i < j, it reads

1 i A
" = Jwb® == (Ayb? +4zbY), @2 ="2p0, o =Z2p0,
q q q
i 2 iz, ¢
w2 =2p1 Ly sp0, @3 =Zp - Lo 510,
q p q p
1
w® == (Azb* = Ayb?). (2.3a)

2

Introducing the notation i = (A, a), where A =0, 1 and
a = (2,3), one can rewrite @"/ in a more compact form:

2
o’ = Jvb' ——(b°0,p),
qp

2 7
a)A“:——bAGCp+kA—2b08"S,
qp p

1
0P = > (b23p — B*0*p), (2.3b)

where k' = (0, 1,0, 0) is a null propagation vector, k* = 0.
The above connection defines the Riemannian curvature
RV = dw' + o',,@"; for i < j, it is given by

for (i,7) = (1,¢)

_ 1kl 17,0 e
R"-/':{ Ab' b + k' b°Q°,
otherwise,

o 2.4a
—Ab'b/, ( )

where Q¢ is a 1-form introduced by Obukhov [15],
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s3]+ (1 2)

and d = dx“0, is the exterior derivative on the wave
surface. In more details

0 — % 2gp0,,S + (g — 4)Ay0,S — qAz0.S|b?

+ g 2q0,.S — 420,S — Ayd.S]b?,
0° = % 2qp0..S + (q — 4)420.8 — qAyd,S|b°
q
+5 240,,S — Az0,S — Ay0_S|b*.

As a consequence, RY can be represented more

compactly as

R = —Ab'b/ 4 2 Kl Q. (2.4b)
The Ricci 1-form Ric' = h,, |Ric™ is given by
Ric' = =32b" + bk’ Q,
. qp 24
Q=h|0 = > OyH + 0. .H + PH . (25)
and the scalar curvature R := h;|Ric' reads
R = —-12A. (2.6)

B. Dynamics

1. pps waves in GR,

Starting with the action Iy = — [ d*x(agR + 2A,), one
can derive the GR, field equations in vacuum,

2a9G"; — 2Ao5" = 0, (2.7a)

where G"; is the Einstein tensor. The trace and the traceless
piece of these equations read

S .
Ay = 3apl, Ric' — ZRb’ =b'%kQ=0. (2.7b)

As a consequence, the metric function H must obey

24
OyyH + 0, H + ?H =0. (2.8)
There is a simple solution of these equations,
1
Hc = ; (A(Lt)q + Baxa)f(u)’ (29)

for which Q¢ vanishes. This solution is trivial (or pure
gauge), since the associated curvature takes the background

PHYSICAL REVIEW D 95, 104018 (2017)

form, RV = —1b'b/; moreover, it is conformally flat, since
its Weyl curvature vanishes. The nontrivial vacuum sol-
utions are characterized by Q =0, but Q¢ #0; their
general form can be found in [10].

2. pp, waves in PGT

To better understand the relation between GR, and PGT,
it is interesting to examine whether pp, waves satisfying
the GR, field equations in vacuum are also a vacuum
solution of PGT. It turns out that a more general version of
the problem has been already solved by Obukhov [4].
Studying the PGT field equations for torsion-free configu-
rations, he proved the following important theorem:

T1. In the absence of matter, any solution of GR, is a
torsion-free solution of PGT.

It is interesting to note that the inverse statement, that any
torsion-free vacuum solution of PGT is also a vacuum
solution of GR,, is also true, except for three specific
choices of the PGT coupling constants.

IIL. pp, WAVES WITH TORSION

In this section, we extend the pp, waves that are
vacuum solutions of GR, to a new family of the exact
vacuum solutions of PGT, characterized by the existence of
torsion.

A. Ansatz

The main step in constructing the pp, waves with
torsion is to find an ansatz for torsion that is compatible
with the wave nature of the solutions. This is achieved by
introducing torsion at the level of connection.

Looking at the Riemannian connection (2.3), one can
notice that its radiation piece appears only in the w'¢
components:

7
(wlc)R == (h““aaS)bO.
p

This motivates us to construct a new connection by
applying the rule

0eS — 9,8 + K, K,=K,(u,y,2), (3.1a)
where K, is the component of the 1-form K = K, dx* on
the wave surface. Thus, the new form of (w/)R reads

2
()R = ki T hee(9,8 + K,)b°, (3.1b)
P

whereas all the other nonradiation pieces retain their
Riemannian form (2.3).

The geometric content of the new connection is found by
calculating the torsion:

104018-3
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2
T = Vb + o', b" = K L0(12K, + bK,)
p

q2

= ki?bObCKc. (3.2)

The only nonvanishing irreducible piece of 7% is (VT".
The new connection modifies also the curvature, so that
its radiation piece becomes

(Rlc>R = k'p0Qc, Q¢ := Q° + O°, (338.)

where the term ©¢ that represents the contribution of
torsion is given by

0’ = % [(2gpd,K, — pK Ay — qK Az)b*
+ (—2qpd.K, + pK Az — qK Ay)b?],
e’ = % [(2qpd.K, — pK Az — gK ,Ay)b®
+ (-2gpd,K . + pK Ay — qK,Az)b?].
The covariant form of the curvature reads

RYU = —Ab'b/ + 2b0kliQ/, (3.3b)

and the Ricci curvature takes the form

Ricl = =31b' + B°kiQ,  Q:=h,]Q¢ = 0 +©. (3.3¢)

The torsion has no influence on the scalar curvature:

R=-12i (3.3d)

Thus, our ansatz defines a RC geometry of spacetime.

|
AO = 3610/1,

(1ST)

(2ND)

where Ay = ag + (by + bg)A and A; = a; — (bg — by)A [16].

PHYSICAL REVIEW D 95, 104018 (2017)
B. PGT field equations

Having adopted the ansatz for torsion defined in
Eq. (3.1), we now wish to find explicit form of the PGT
field equations and use them to determine dynamical
content of our ansatz.

As shown in Appendices B and C, the field equations
depend on the structure of the irreducible components of
the field strengths. For torsion, we already know that the
only nonvanishing irreducible component is ()7, = T,
defined in Eq. (3.2). As for the curvature, we note that our
ansatz yields X = 0 and b Ric,, = 0, where X is defined in
(B2b). Then, the irreducible decomposition of the curvature
implies (see Appendix B)

GIR

GIR, =0, 0, (3.4)

ij =

whereas the remaining pieces "R are defined by their
nonvanishing components as

@) pRle — *(lec), (@) Rle — ((I)lbc),

N[ =

ORI — —apipi, (Rl = po( Qee)

T N D=

1
— R
X )be,

(3.5a)

where the 1-forms ® and ¥/ are given by
i _ 1ip0 _ q q
D' =k'b°(Q +0), @-qp{@(;l(},)—l—@(EKZ)],

W= X = kT, T =gp {az (ﬁKy) -0, (QKZ)].
P P

Having found (VT; and <”)R,~j, we apply the procedure
described in Appendix C to obtain the following form of
the two PGT field Egs. (C3):

Leaving (1ST) as is, (2ND) can be given a more clear structure as follows:
(i) use (1ST) to express ®' = b°(Q + O) in the form ®' = (a,/A,)b"O;

(ii) multiply (2ND) by Ay/q.

As a result, the previous two components of (2ND) transform into

Ag(by + b1)0.(pZ/q) + a;(bs + b1)0y(p©/q) + 24(A; — ag)(q/p)K, =0,

a0 —Ay(Q+0)=0, (3.6a)

= (by + b)) (VE)D? = (by + b)) (VOB —2(ag — AT = 0,
—(by + b)) (VEYD? + (by + by ) (VOB + 2(ay — A})T'b* = 0, (3.6b)
(3.7a)
(3.7b)

—Ao(by + b1)0y(PZ/q) + ai(by + b1)0.(pO/q) + 240(A) — ap)(q/p)K, = 0.
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Then, calculating 0,(3.7a) + 0,(3.7b) and 0,(3.7a) —
0,(3.7b) yields the final form of (2ND):

(8, +0..)(p®/q) — m2. pi (00/q) = 0.

, _24A4(ag—Ay)

T (b + by) 3.8
"2 ay (b1 + b4) ( a)
1
(8yy +0..)(pZ/q) - m%, ?(pz,/q) =0,
2(610 _Al)
2 =0
T T T, (3.8b)

The parameters m%i have a simple physical interpretation.
In the limit 1 — 0, they represent masses of the spin-2*
torsion modes with respect to the M, background [17],

2 —
m2. = ag(ag — a;) m3 =

ay(by +by)

2(ap — ay)
b+ by ’

whereas for finite A, m%i are associated to the torsion modes

with respect to the (anti)de Sitter [(A)dS] background.

In M, the physical torsion modes are required to satisfy
the conditions of no ghosts (positive energy) and no
tachyons (positive m?) [17,18]. However, for spin-2*
and spin-2~ modes, the requirements for the absence of
ghosts, given by the conditions b;+ b, <0 and
by + b, > 0, do not allow for both m? to be positive.
Hence, only one of the two modes can exist as a
propagating mode (with finite mass), whereas the other
one must be “frozen” (infinite mass). Although these
conditions refer to the M, background, we assume their
validity also for the (A)dS background, in order to have a
smooth limit when 1 — 0.

One should note that the two spin-2 sectors have quite
different dynamical structures.

(i) In the spin-2~ sector, the infinite mass of the spin-2"

mode implies ® =0, whereupon (1ST) yields
Q =0, which is exactly the GR, field equation
for metric. Thus, the existence of torsion has no
influence on the metric.

(ii) In the spin-27 sector, the infinite mass of the spin-2~
mode implies X = 0, whereas (1ST) yields that Q is
proportional to ®, with ® # 0. Thus, the torsion
function © has a decisive dynamical influence on the
form of the metric.

In the next section, we focus our attention on the spin-2+

sector, where the metric appears to be a genuine dynamical
effect of PGT.

IV. SOLUTIONS IN THE SPIN-2* SECTOR

In this section, we first find solutions of Eq. (3.8a) for the
spin-2" mode V = (p/q)®, and then use that V to find
the metric function H and the torsion functions K,, the
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quantities that completely define the geometry of the pp,
waves with torsion.

A. Solutions for V=(p/q)®

The field equation for the spin-2" sector can be written
in a slightly simpler form as

2

m
(8yy+8ZZ)V—?V:0, (4.1)

where V = (p/q)® and m> =m3,. We have seen in
Appendix A that local coordinates (y, z) are well defined
in the region where p and ¢ do not vanish, which is an
open disk of finite radius, y* + z* < 4|A|~". Since (4.1)
is a differential equation with circular symmetry, it is
convenient to introduce polar coordinates, y = pcos @,
7 = psing, in which Eq. (4.1) takes the form

V =0.

! 32> _m_2 (4.2a)

(82 +1 0 i
op*  pdp  p* o p*
Looking for a solution of V in the form of a Fourier
expansion,
V=3 Vilp)(c,e +2,em),
n=0
we obtain

1 n?2  m?
VZ—G—;V’,, — <[?~I—?>Vn =0,

(4.2b)

where prime denotes d/dp.

1.A/4=¢72>0

Let us first consider solutions of the dS type, using a
convenient notation:

1
X == u=mc, 525(1—&— 1—;42).

The general solutions of (4.2b) for n =0 and n > 0 are
given by
Vo=ci(1+x)5,F (1= & 1= &2(1 = &) =[1 +x%))
+ep(1+27)5F (6,628 —[1 + 2%)), (4.3a)
Vi =ci(2)"2(1+ )5 F (£.6+ni 1 +n,—x%)
+ e ()2 (1 + x2)6,F (6= n; 1 — n, —x?),
(4.3b)

where ¢, =c,(u)(n=1,2) and ,F(a,b,c,z) is the
hypergeometric function [19].
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2.0/4=-¢2<2
In the AdS sector, using

Zs:%(l+\/1+/ﬂ),

the solutions for n = 0 and n > 0 take the following forms:

Vo—Cl(l—x)15 ( é_f 52(1—5); 2)
+ (1l —x ) V(& E28 11 = X2)), (4.4a)
V,=c,(2)2(x2 = 1), F (EE4 ny 1+ n,x%)
+ o ()2 (2 = 1) F (B E— ;1 —n,x2).
(4.4b)

These solutions are essentially an analytic continuation by
¢ — it of those in Eq. (4.3).
3. A=0

The general solution of Eq. (4.2b) has the form
V, = cJ,(=imp) + ¢, Y n=0,1,2,...

(4.5)

n(_imp)’

where J,, and Y, are Bessel functions of the first and second
kind, respectively.

B. Solutions for the metric function H

For a given O, the first PGT field equation

AgQ = (a; — Ap)®, with Q defined in (2.5), represents a
differential equation for the metric function H:
22 2(611 —Ao) 1
Oy +0,. ) H+—H=—-———=5V. (4.6
( yy + zz) + pz AO P2 ( )

This is a second order, linear nonhomogeneous differential
equation, and its general solution can be written as

H=H"+HP,

where H" is the general solution of the homogeneous
equation, and H?” a particular solution of (4.6). By
comparing Eq. (4.6) to Eq. (4.1), one finds a simple
particular solution for H:

_ 2(a; = Ay)

HP = oV, = I %)
’ (24 + m?)A,

(4.7a)

On the other hand, H" coincides with the general vacuum
solution of GR,; see (2.8). Since our idea is to focus on the
genuine torsion effect on the metric, we choose H h'— 0 and
adopt H? as the most interesting PGT solution for the
metric function H. Thus, we have
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H,=0V,. (4.7b)

C. Solutions for the torsion functions K,
In the spin-2" sector, the torsion functions K, can be
determined from Eq. (3.7), combined with the condition
=0

249

K, =0, 24
p

p

0,V +m 0.V+m=K.,=0. (4.8)

Going over to polar coordinates,
sin ¢,

K, : K,
Ky:K/,cos¢—7 KZ:Kﬂ51n(p+7c05(p,

the previous equations are transformed into

1 1 p
k,=-—Lov, k,=-—Lo,v. (49)
m? g m? q
or equivalently, in terms of the Fourier modes,
_1r lLp
Klm = m qa Vn, Kgan = —WEnV,,, (49b)
where K, = >°% | (d,e™ + d,e~™") with d, = —ic,, and

similarly for K,

D. Graphical illustrations

Here, we illustrate graphical forms of two specific
solutions by giving plots of their metric functions H and
the typical torsion component T,

H=oV,
. 4
'y :?Kz = ;Ky =—-—4q(9,Vcosp—p 'K ,sing).

(4.10)

For A # 0, it is convenient to use the units in which £ = 1.

In the dS sector (Fig. 1), the zero modes of both H and
T'y,(¢ = 0) are regular functions with a clear-cut wavelike
behavior in the region 0 < x < 1. The plots correspond to
the pp, geometry for fixed u, and as u increases, the

T
10 15
1.0
0.5
4 O _05
-1.0

-1.5

FIG. 1. The plots of a solution in the sector A > 0, in units

=1, for n=0,uy=100,c; =1,c0 =0,0 =1. Left: H,.
nght T102 (gﬂ = 0)
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Hy T1.02
5 02704 0608 10"
4 )
3 -3
2 —4
9204 06 08 10 -5

FIG. 2. The plots of a solution in the sector A < 0, in units
=1, for n=0,u= \/g,cl =0.1,c, = 0. Left: Hy. Right:
Ty (e = 0).

pictures change. In the AdS sector (Fig. 2), the solution is
singular at x = 1, or equivalently at p = 0, and it does not
have a typical wavelike shape. For a discussion of the
singularity at p = 0, see Ref. [11]. We also examined a zero
mode solution (n = 0) in the M, sector (4 = 0); its shape is
similar to what we have in Fig. 2, but it remains finite
at x = 1.

V. SOLUTIONS IN THE SPIN-2- SECTOR

As we noted at the end of Sec. III, the spin-2~ sector is
characterized by ® = 0 and, as a consequence of (1ST), by
Q = 0. Equation (3.8b) for X reads

2

m
(O +0:)U =5 U =0, (5.1)

where U = (p/q)X and m?> = m3-. Clearly, the solutions
for U coincide with the solutions for V = (p/q)® in
Sec. IVA. Furthermore, the metric function H, defined
by O =0, has the GR, form, and the solutions for the
torsion functions K, follow from the two equations

(5.2)

o,Uu+mik =0 ou+mik, =o
p p

the counterparts of those in (4.8).

The fact that the metric of the spin-2~ sector is
independent of torsion makes this sector, in general, much
less interesting. There is, however, one solution in this
sector that should be mentioned: it is the solution with
H = 0 for which the metric takes the (A)dS/M, form, and
the complete dynamics is carried solely by the torsion. We
skip discussing details of this case, as they can be easily
reconstructed from the results given in the previous section,
following the procedure outlined above.

VI. CONCLUDING REMARKS

In this paper, we found a new family of the exact vacuum
solutions of PGT, the family of the pp, waves with torsion.
Here, we wish to clarify a few issues that have not been
properly covered in the main text.

The essential step in our construction is the ansatz for the
RC connection (3.1), which modifies only the radiation

PHYSICAL REVIEW D 95, 104018 (2017)

piece of the corresponding Riemannian connection (2.3). A
characteristic feature of the resulting solution is the
presence of the null vector k' = (0, 1,0, 0) in the spacetime
geometry. The vector field k'0; = (p/q)*d, is orthogonal
to the spatial surfaces u = const, and is interpreted as the
propagation vector of the p p, wave with torsion. Is such an
interpretation justifiable?

Although gravitational waves belong to one of the
best known families of exact solutions in GR,, a unique
covariant criterion for their precise identification is still
missing. One of the early criteria of this type was
formulated by Lichnerowicz, based on an analogy with
methods used to determine electromagnetic radiation;
see Zakharov [7]. This criterion can be formulated as a
requirement that the radiation piece of the curvature,
S = RU 4 )b, satisfies the radiation conditions:

k'S;; =0, ek, Sy, = 0. (6.1a)
However, when applied to a RC geometry, the
Lichnerowicz criterion can be naturally extended to include
the torsion 2-form:

K'T; =0, giimn T, = 0. (6.1b)
A direct calculation based on the expressions (3.2) and
(3.3b) shows that both sets of the radiation conditions are
satisfied. This result gives a strong support to interpreting
the pp, waves with torsion as proper wave solutions
of PGT.

Looking at the explicit solutions for the pp, waves with
torsion, one should note that, in general, the hypergeo-
metric function ,F(a, b, ¢, x) is singular at x = 1 (p = )
[19]; moreover, local coordinates we are using are singular
atboth x = 1 and x = 0 (Appendix A). To test the nature of
these singularities, we calculated the following torsion and
curvature invariants:

T AT, =0,
R=—122, RU*R;; =121%,

RijkIRklm,,R””T,-j = —4823, (6.2)
the fourth order invariant is 964*, and so on. All these
invariants are well behaved at x = 1, 0, which might be a
signal that the singularities in question are just the
coordinate singularities. However, according to Wald
[20], the geometric singularities are not always visible in
the field strength invariants. This issue deserves further
clarification.

If the curvature R" is replaced by its radiation piece S/,
all the invariants in (6.2) are found to vanish. According to
Bell’s second criterion [7], we have here another result that
supports the wave interpretation of our pp, solutions.
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In GR,, the pp, waves are algebraically special sol-
utions of Petrov type N; this property can be formulated as
an algebraic condition on the Weyl curvature: W;;,,, k™ = 0
[9,21]. However, one cannot use the same criterion for
classifying the solutions of PGT, since W;j,, is not an
irreducible part of the RC curvature. The problem can be
overcome by replacing W;;,, with (1)Rijmn, which is a
genuine PGT generalization of W;;,, [4]. Using the
expression for (1>R,-jm,, from Eq. (3.5), one can directly
prove the relation

(6.3)

which is a natural PGT generalization of the Riemannian
condition. The condition (6.3) can be considered as a well-
founded criterion for a family of PGT solutions to be of
type N.

Finally, we wish to stress that a subfamily of the
solutions in the spin-2* sector reveals an unexpected
dynamical aspect of torsion. Namely, although torsion is
introduced by a minor modification of the Riemannian
connection [see (3.1)], the metric function H in (4.7) is
determined solely by the torsion, and consequently, the
related metric is a genuine dynamical effect of PGT. More
detailed information could be obtained by analyzing the
motion of test particles/fields in the RC spacetimes asso-
ciated to the pp, waves with torsion.
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APPENDIX A: ON HYPERBOLIC GEOMETRIES

(A)dS space can be simply represented as a 4D hyper-
boloid H, embedded in a 5D Minkowski space M5 with
metric nyy = (+,—,—, —,0),

Hy: X3 — X3 — X5 — X3 — 0X: = —o??, (Ala)
where 6 = +1 for a dS space and 6 = —1 for an AdS space
[9,23]. The metric on H, reads

ds* = dX} — dX? — dX3 — dX3 — odX2, (Alb)
and its scalar curvature is R = —12¢/¢>. The group of

isometries of the dS/AdS spaces is SO(1,4)/5S0(2,3), and
the corresponding topologies are R x S° for the dS space,
and S' x R® for the AdS space (or R* for its universal
covering).

Going now back to the generalized p p wave metric (2.1),
we note that in the limit H = 0, it describes the background
(A)dS geometry:

2 1
ds*> =2 <Q) du(=2Av*du + dv) — — (dy* + dz?),
P P

p=1+A0*+22), q=1-A0*+2%). (A2)

As we shall see below, A is related to # by 46A = 1/£7;
moreover, A > 0 for dS and A < 0 for AdS. The two forms
of the metric associated to the hyperboloid H, are related to
each other by a coordinate transformation [11],

Xs = \/=o(XG - X} - oX})

q
X0:5(M+U+Auzv), u =20t Xo X, ,
Xo—X
Xlzi(u—zH—Auzv), V= 0“1 ,
2p 46\ /0(X3 - X3 - 0X3)
y z 20X
X ==, X3 =—, y= 2 22 N
P P £+ —o(X2+X3)
1 g 20X,
Xs = = (1 4+ 2Auv), 7= . A3
S ovenp ) £+ —o(X2+X3) (A3)

Indeed, the coordinates X, in M, describe the hyperboloid H,,

(X5 — Xt —0X3) = X3 - X3 =

and the corresponding metric (Alb), followed by the rescaling » — 2v, coincides with (A2).
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Since local coordinates x* = (u, v, x,y) are introduced
by the parametrization (A3), they are well defined for
1 2
X2 - X3 —oX2 = _H% > 0.
The limiting value ¢ = 0 is not allowed, as it represents the
singularity of the local coordinate system (u, v, y, z); this
singularity is visible only for A > 0. The same conclusion
follows from the fact that the determinant of the metric (A2)
vanishes for ¢ = 0. Furthermore, an inspection of Eq. (A3)
reveals the existence of another singularity, located at
p = 05 it is visible only for A < 0. Thus, local coordinates
(u,v,y,z) are restricted to the region where ¢ and/or p do
not vanish: y? + z2 < |A|~!. More on the geometric inter-

pretation of these singularities can be found in Ref. [11].

APPENDIX B: IRREDUCIBLE DECOMPOSITION
OF THE FIELD STRENGTHS

We present here formulas for the irreducible decom-
position of the PGT field strengths in a 4D Riemann-Cartan
spacetime [4,24].

The torsion 2-form has three irreducible pieces:

A
(Z)Tl :gbl A (hmJTm),

1
OTi = ST A by),
Wi =7 - @7 — )T, (B1)

The RC curvature 2-form can be decomposed into six
irreducible pieces:
@RI =*(bli AW, @RI = pli A @],

o1 o T
CIRY = —X*(b' A b/), ORI = oAb,

12
(5) Rl :lb[i AR (" AF,), DRV :Rij_i:(a)Rij’
2 a=2
(B2a)
where
F':= h,, |R™ = Ric', F:=h]F' =R,
X' = *(R* A by), X = ;| XY, (B2b)
and
®,; := F; —lbiF—lhiJ(bm AF,,),
4 2
R S TP S

The above formulas differ from those in Refs. [4,24] in
two minor details: the definitions of F? and X' are taken
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with an additional minus sign, but at the same time, the
overall signs of all the irreducible curvature parts are also
changed.

APPENDIX C: CALCULATING THE PGT
FIELD EQUATIONS

The gravitational dynamics of PGT is determined
by a Lagrangian L; = Lg(b', T, RV) (4-form), which is
assumed to be at most quadratic in the field strengths
(quadratic PGT) and parity invariant [24]. The form of L
can be conveniently represented as

1 _. |
Lo =—"(aoR +2A) + 5 T'H; + o RVH};. - (C)

4 0’
where H; := OL;/OT' (the covariant momentum) and H' ;
define the quadratic terms in Lg:

6
Hi=2) (0,7, Hjj=2)"(b,"R,).

n=1 n=1

(C2a)

Varying L with respect to b’ and "/ yields the PGT field
equations in vacuum. After introducing the complete
covariant momentum H;; := OL/OR" by

H.

ij —

—2ay*(b'b)) + Hj,

(C2b)
these equations can be written in a compact form as [4,24]

where E; and Ej; are the gravitational energy-momentum
and spin currents:

1
E;=h;|Ls— (hiJ Tm>Hm - E (hiJRmn)Hmn’

The above procedure is used in Sec. III B to find the
explicit form of the PGT field equations for the pp, waves
with torsion, with the result displayed in Egs. (3.6), (3.7),
and (3.8). To simplify calculation of the term V*(UR;; in

VH,;;, we used the identity

(C5)

1

EV RU - V (2>le + V (4>Rij7
that follows from the Bianchi identity VRY = 0 and the
double duality properties of the irreducible parts of the
curvature.
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5D Lovelock gravity: New exact solutions with torsion
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Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact
solutions is constructed: the Bafiados, Teitelboim, Zanelli black rings with and without torsion. We show
that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the
Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the
solutions are found using Nester’s formula, and the results are confirmed by the canonical method.
We show that the theory linearized around the background with torsion possesses two additional degrees of

freedom with respect to general relativity.
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I. INTRODUCTION

The general theory of relativity introduced a revolution in
our understanding of space-time and gravity, the influence
of which on modern physics can hardly be emphasized
enough—almost all present investigations in high-energy
physics are, in certain way, related to it. On one hand, the
general theory of relativity has been very successful in
explaining experimental results, but on the other, it produced
a lot of problems for physicists to solve. The first of them is
the problem of singularities, appearing quite often in gravi-
tational solutions; there are theorems which show that
singularities must appear under certain physically reasonable
assumptions [1]. This situation inspired research in the
direction of alternative theories of gravity, with an idea of
finding a singularity free theory that reproduces experimental
results equally as well as general relativity.

The second problem is quantization of tje general theory
of relativity. The inability to quantize general relativity in a
standard way, like Yang-Mills theories, motivated physi-
cists to search for alternatives, on one side for a different
quantization procedure (loop quantum gravity) and on the
other for modifications of the original theory (extra
dimensions, supersymmetry, string theory, alternative the-
ories of gravity) [2-5]. In this paper, we shall focus on an
alternative theory of gravity with one extra dimension—
Lovelock gravity in five dimensions (5D).

Lovelock gravity is one of many generalizations of
general relativity, physically appealing because of its
similarity to the former. It possesses equations of motion
which are the second order differential equations; it is ghost
free; etc. But beyond this, most of its basic properties are
not well known, and as the old saying says, “The devil is in
the details.” First, not many solutions are known, and those
constructed usually are torsionless or belong to some
special point in the parameter space [6—10]. Second,
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‘dsimic @ipb.ac.rs

2470-0010/2016/94(8)/084037(9)

084037-1

symmetries and local degrees of freedom of the theory
are not known for the generic choice of parameters but only
for the special case of Lovelock Chern-Simons gravity [11].

In this paper, we shall introduce new solutions with(out)
torsion within Lovelock gravity in 5D by using the first
order formulation. The most interesting of them are the
Baiiados, Teitelboim, Zanelli (BTZ) black rings with(out)
torsion, the properties of which can be analyzed by using
the canonical formalism. The canonical analysis is a
powerful tool for studying gauge theories, but it is not
limited solely to them. It gives a well-defined procedure for
determining symmetries of a theory, construction of the
symmetry generators, and for counting the number of local
degrees of freedom. Applying the canonical analysis to a
theory is extremely rewarding because of the already
mentioned results it gives. Note, in particular, that the
most reliable approach to conserved charges in gravity is
based on the canonical analysis [12,13]. The main aspect of
this approach consists in demanding the canonical gen-
erators to have well-defined functional derivatives. For a
given asymptotic behavior of the fields, this condition
usually requires the form of the generators to be improved
by adding suitable surface terms.

The paper is organized as follows. Section II contains a
short review of the Poincaré gauge theory of gravity and
Lovelock gravity. Section III is devoted to the new
solutions of 5D Lovelock gravity—the BTZ black rings
with(out) torsion. The conserved charges for these solu-
tions are computed by using Nester formula [14]. In
Sec. IV, we construct the canonical generator of gauge
transformations, local translations, and Lorentz rotations
and compute the canonical conserved charges for the
solutions constructed in Sec. III, confirming the results
obtained in Sec. III. In Sec. V, we investigate the canonical
structure of the theory linearized around the solution with
torsion and conclude that in this sector the theory exhibits
additional degrees of freedom.

Our conventions are given by the following rules: the
Latin indices refer to the local Lorentz frame, and the Greek

© 2016 American Physical Society
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indices refer to the coordinate frame; the first letters of both
alphabets (a,b,c,...;a,f,7,...) run over 1,2,...D —1,
and the middle alphabet letters (i, j, k,...;u,v,4,...) run
over 0,1,2,...D —1; the signature of space-time is
n=(+,—,...,—); and the totally antisymmetric tensor
gh2io and the related tensor density e“#2-#> are both
normalized so that €°-P~! = 1. The symbol A of the
exterior (wedge) product between forms is omitted for
simplicity.

II. LOVELOCK GRAVITY
A. PGT in brief

The basic gravitational variables in poincaré gauge
theory (PGT) are the vielbein e’ and the Lorentz connection
@ = —@’" (1-forms). The field strengths corresponding
to the gauge potentials e’ and @'/ are the torsion 7% and
the curvature RV (2-forms): T' = de' + w',, A ™ RV =
do' + @', N ®". Gauge symmetries of the theory are
local translations and local Lorentz rotations, parametrized
by & and &'.

In local coordinates x*, we can expand the vielbein
and the connection 1-forms as ¢’ = ¢/, dx*, o' = ', dx".
Gauge transformation laws have the form

Soe', = e'e;, — (0,8)e', — &0 €', = Spgre’,,

Sow" , = Vﬂe” — (6”5/))60” p— (S/’apa)’/ 4 = Opgr@" ),

(2.1)
and the field strengths are given as
. . . . 1 _.
T' = Ve =de' + o’ A e; = ET’de” A dx”,
RV = do' + o™* N 0/ = %Rijﬂydx" A dx?, (2.2)

where V = dx*V, is the covariant derivative.

To clarify the geometric meaning of the above structure,
we introduce the metric tensor as a specific, bilinear
combination of the vielbeins,

g=nie' ® e/ =g, dx* ® dx,

G = Mije ey, = (F,— = = ).
Although the metric and connection are in general inde-
pendent dynamical/geometric variables, the antisymmetry
of @ in PGT is equivalent to the so-called metricity
condition, Vg = 0. The geometry of which the connection
is restricted by the metricity condition (metric-compatible
connection) is called Riemann-Cartan geometry. Thus,
PGT has the geometric structure of Riemann-Cartan space.
The connection @/ determines the parallel transport in
the local Lorentz basis. Being a true geometric operation,
parallel transport is independent of the basis. This property
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is incorporated into PGT via the so-called vielbein postu-
late, the vanishing of the total covariant derivative of e’ e

Dﬂ(a) + F)eiy = aﬂeil, + a)ij'uejy - prﬂei/) = 0’

where 17, is the affine connection and the torsion is
defined by 77, =17, —I7,. The previous relation
implies the identity

o = A + K, (2.3)
where A is Riemannian (Levi-Civitd) connection and
Kijk = _%(Tl]k - Tkij —+ Tjki) is the contortion. Latin
indices are changed into Greek and vice versa by means
of vielbeins (and its inverse). Namely, X' = ¢/, X, and
X* = e#X!. For details, see Ref. [13].

B. Lovelock action and equations of motion

Lovelock gravity can also be considered in the frame-
work of PGT. Dimensionally continued Euler density L, in
D dimensions is defined as

L

— g . . Rhb ip-102p plap+1 ip
= &4, .ip R R et e,

p (2.4)
where p is the number of curvature tensors in Euler density.
In the previous relation, we omitted the wedge product
for simplicity. The general form of the Lovelock gravity
Lagrangian [15] in 5D is a linear combination of all
dimensionally continued Euler densities in five dimensions,

1= %IO n %Il + ayly, (2.52)
where

Iy = /eijklneiejeke’e”,

I, = /sijkl,,Rijekele",

I, = /8,-jklnRinkle". (2.5b)

C. Field equations

Variation of the action with respect to vielbein e’ and
connection @'/ yields the gravitational field equations:
& ( Jj okl n Rjk l,n Rijln =0 2.6
ijkin(age’ee’e™ +a R e'e" + a, ) =0, (2.6a)

€ijkln((11€kel + 20, R T = 0. (2.6b)

Let us note that in the generic case the field equations (2.6)
imply that torsion can be nonvanishing.
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For later convenience, let us present the tensor form of
the field equations,

. 1 .
vpot k ol _n k [ ,n
eﬁ’jkln (aoef,,e sele" +§a1RJ e €

1 .
+Lam, Rmﬂ) _0. (2.72)
%fﬁir(alekyelp + a2Rk]yp)Tno‘T = O’ (27b)

vpoT _ uupot .
where &/ = &""7Te .

D. Consequences of field equations

If we take covariant derivative of (2.6a), make use of the
Bianchi identities, and multiply (2.6b) with e/, we get the
following system:

eijun(2ageleke! + a Rk )T" = 0,

eijm(arelere! + 2a, R )T = 0.

In the case 4aya, — a? # 0, the previous set of equations
reduces to the following conditions,

(2.8a)

RIK,TT i — 2Ric/, TF;; = 0, (2.8b)
where Ric/, := R/}, is the Ricci tensor.

Therefore, in the generic case, torsion is traceless, and
the second irreducible component of torsion (27, vanishes.
For details on irreducible decomposition of torsion and
curvature in PGT, see Ref. [16]. Let us note that the
condition 4qya, —a? #0 is violated in the case of
Lovelock Chern-Simons gravity.

E. Maximally symmetric solution

The field equation admits the existence of the maximally
symmetric Riemannian solution (maximally symmetric
Riemannian background) defined by

R = —Aéle/, T'=0, (2.9)
where A is the effective cosmological constant iff
ao—a1A+a2A2 =0. (210)
This equation can be solved for A:
A, _x + a%—4a0a2. (2.11)

202

The solution is unique for a? —4aga, = 0, which is the
case in Lovelock Chern-Simons gravity.
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Let us note that in terms of A equations of motion (2.6)
take an elegant form:

Eijin(R* + A eleF) (R + A_ele") =0, (2.12a)

AL+ A
Eijkin <R’<’ + % eke’> T"=0. (2.12b)
In obtaining these equations, we assumed that a, # 0, and
this condition will be used in the rest of the paper, because
for a, = 0 the theory reduces to general relativity.

III. NEW CLASS OF SOLUTIONS

The search for a new class of solutions is inspired by
Canfora et al. [17], who found a solution of the type
AdS, x S5 when the coupling constants satisfy the relation

(3.1)

which is different from the one satisfied in Lovelock Chern-
Simons gravity. We shall now construct another class of
solutions of the “complementary” type X5 x I';, where 25
and [, are three- and two-dimensional manifolds, deter-
mined by solving the equations of motion. We start from
the following anzatz for curvature,

2 _
a; = 2oy,

R = Ae‘e?,

R3a — R4a — 0’

R3* = Bede*, (3.2)
and torsion,
T¢ = abc
= peTepe,,
T3=T*=0. (3.3)

In the anzatz, we used the notation a, b, c, ... € {0,1,2}
and e%¢ := gb<34 and A, B, and p are some functions
restricted by the equations of motion. Note that torsion is
totally antisymmetric, and thus only the third irreducible
component )7t s nonvanishing; see Ref. [16]. Let us now
check whether the anzatz solves the equations of motion
(2.12). From (2.12b), we obtain

A_+A
<B+%>p—0.

Thus, one can have a vanishing torsion for p =0 or a
nonvanishing torsion for

(3.4)

From (2.12a), we obtain
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AA_+A,)+2A_A, =0, (3.5)

AN A +(A+B)(A_+A,)+2AB=0. (3.6)
If A_+ A, =0, which is equivalent to a; = 0, Eq. (3.5)
implies ap = 0, whereas A remains undetermined; other-
wise, for a; # 0, we have
2A_A
A=-""7 (3.7)
A+ A+
Let us first analyze the case with nonvanishing torsion
and a; #0, when A and B are both determined. By
combining Egs. (3.4), (3.5), and (3.6) and using Vieta’s
formulas, A_ + A, = Ztand A_A, = 2, we obtain that the
solution exists in the sector:

at = 8aya,. (3.8)

This sector is different from the one in Ref. [17], and
the above solution is the first one in this sector. Using
Egs. (3.4), (3.10), and (3.8), we obtain

B

A=—. 39

Now, we turn to the solution with vanishing torsion and
a; # 0. In this case, A is determined, and B is arbitrary,
which can be used to insure the validity of (3.6), which
takes the form

2@+B<ﬂ—4@> ~0. (3.10)

(25) a ay

We see that if of —4aya, =0, which is the Lovelock
Chern-Simons gravity, for the validity of (3.10), one must
have oy = 0. These two conditions imply a; = 0, which is
in contradiction with our assumption; hence, the solution
does not exist in the Lovelock Chern-Simons case. If a7 —
4apa, # 0 and a; # 0 (recall that we are not interested in
general relativity, so a, # 0 also), we can choose any value
of parameters obeying this conditions and get a solution.
So, this class of solutions exists generically i.e. for almost
any choice of parameters.

For clarity of the exposure, we devote next few sections
to the most interesting solutions which belong to the class
derived in this section.

A. BTZ black ring with torsion

For this case, the curvature takes the following form,

b _ b
R = ge®e”,

R3a — R4a — 0,
1

R¥* = —=eet, (3.11)
o

while the torsion is given by
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T = pe*e,e,.,

T3 =T =0. (3.12)

The Bianchi identity implies that p is constant, and the
Riemannian curvature reads

2
R = (q +%) e‘el,

R — Rl 0,

~ 1

R =—5éet. (3.13)
o

Therefore, we can introduce the AdS; radius £ as

Identity (3.9) implies the following relation:

+

2
p
—. 3.14

Y
o

2
o

In the AdS; sector, the anzatz for curvature and torsion is
solved by the AdS; solution with torsion as well as by the
BTZ black hole [18] with torsion. In the latter, physically
more appealing case, the 5D vielbein reads

e =Ndt, e'=Nldr, e*=r(dp + N, dt),

e =rydh, e* = rysinfdy, (3.15a)
where
2 2 .
J J
N2:—2m+ﬁ+p, Nﬁﬂzﬁ’

where m and j are (dimensionless) parameters. The Cartan
connection is given by

wab — &)ab _ lc’,abc Be

277
LA
@ 2 g
P Nde,
0 = N‘lizdr,
r
w* = @ = —cos Ody, (3.15b)

where @' is the Riemannian connection. Let us note that
the coordinate ranges are

—00 < < +00,

0<0<Lm,

0<r<+4oc0, 0<L¢<2x,

0<y<2n.
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1. Killing vectors

The maximal number of Killing vectors of the solution
with field strengths (3.11), (3.12), and (3.13)is 9 = 6 + 3,
since the AdS; solution with(out) torsion has six Killing
vectors; see Ref. [19]. The solution (3.15) has five
Killing vectors, since the BTZ solution possesses two
Killing vectors. They are given by

0
M) —p= 2 — =
¢ ot’ ¢ op’ oy’

EW = Sin%%"‘ cotecosx%,

0 0
&B) :COS)(%—COtQSin)(@. (3.16)
B. Riemannian BTZ ring

For this case, the curvature (Riemannian) takes the
following form,

Rab :?eaeb’

R3a _ R4a =0
1

R¥* = —= e, (3.17)
o

while the torsion equals zero, Ti=0.

Let us note that since torsion is zero there are no further
constraints on B, so we can chose B = — r—lz In terms of the
action constants, we get ’

(3.18)

The solution exists provided that apa; <0 and of—
4apa, < 0. Let us note this solution does not solve
equations of motion in Lovelock Chern-Simons gravity.

The vielbein fields and connection take the same form as
in (3.15) with p = 0, while Killing vectors are identical and
given by (3.16).

C. Conserved charges

In order to compute conserved charges, we shall make
use of Nester formula. Let us denote the difference between
any variable X and its reference value X by AX = X — X. In
5D, the boundary term B is a 3-form. With a suitable set of
boundary conditions for the fields, the proper boundary
term reads [14]

B = (E]b)Ax, + AB(El7) + 5 (E]of,)8p/

A0 (E1p)). (3.19)
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where £ is an asymptotically Killing vector, while z; and p;;
are covariant momenta corresponding to torsion and
curvature, respectively. The covariant momenta for the
Lovelock action (2.5) are given by

oL
T; = o7 = 0 (3.20)
OL
pij = W = 28ijkln <% ekel + 2(12Rkl> e” (321)
Consequently, we obtain
2
Pab = 48uhc <a1 6; )ec 6364
o
Pa3 = 2€ubc ((11 + 2a2q)e ecet = algabce e 64
Pas = 28uhc(a1 + 2“2Q)ebece3 = algabcebe 63
P31 = 2€4pc (% + 20{261) edebet = % e‘ebec.  (3.22)

In our calculations of the boundary integrals, we use the
coordinates x* = (t,r,¢,0,y). The background configu-
ration is the one defined by zero values of parameters
m = 0 and j = 0 of the solution (3.15). For the solutions
with Killing vectors 9, and 9,,, the conserved charges are
the energy and angular momentum, respectively,

) . |
E = / B(0,) = / e' At + Ae'Ty + ' Ap;;
s s 2

1 .
—+ EAa)l]pijﬁ (3233.)
. A T
J = / B(0,) = / e' At + Ae't;, + - o' Ap;
ox 9% 2
1 y
+ EACU”,BU(,» (3.23Db)

where OX is a boundary S'x §% located at infinity,
described by coordinates ¢, 0, y.

Thus, conserved charges for the black ring with torsion
and the Riemannian black ring are given by

2 2
E = 87%r} (al - %) m, J = 8x2%r] (al - %)j.
o o

(3.24)

Let us note that the solution with torsion exists in the sector
a} = 8aya,, where both conserved charges vanish.

IV. CANONICAL GAUGE GENERATOR

As an important step in our examination of the asymp-
totic structure of space-time, we are going to construct the
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canonical gauge generator, which is our basic tool for
studying asymptotic symmetries and conserved charges of
5D Lovelock gravity.

A. Hamiltonian and constraints

The best way to understand the dynamical content of
gauge symmetries is to explore the canonical generator,
which acts on the basic dynamical variables via the Poisson
bracket (PB) operation. To begin the canonical analysis, we
rewrite the action (2.5) as

:/dsxﬁ
e’:jl’lgff/ dx <geﬂe/e el —|—6R’W !
+ 2RV, Rkl,,,,)

(4.1)

1. Primary constraints and canonical Hamiltonian

The basic Lagrangian variables (e,,@",) and the
corresponding canonical momenta (z#,7;#) are related
to each other through the set of primary constraints:

$:% =" =0,

¢ =n" =0,

a,— Oapys
¢ij ﬂlj _2€ljkln

0, 0
¢ij° =m;; =0,

3€ﬁ€ +02Rl/}y> no~ 0.

(4.2)

The algebra of primary constraints is displayed in the
Appendix.
The canonical Hamiltonian is defined by

1
H, = nté +27T,J”CO]; L.
Since the Lagrangian is linear in velocities, the canonical
Hamiltonian in the formula given above reduces to
H,=-L(¢, =0,wY, =0). It is linear in unphysical
variables:

. 1 ..
H.=e'oH; + EwUOHij + 0,D%,

_ Oaﬂy Jj ook 1 n l jk 1 n
Hi = =€ <0‘0€ o€ peyes t MR e e’

1 Jjk In
+1052R apR" 5 )

. Oafys k1 kl n
Hij = =€ (1€ e’y + mR )T" 5

DY — Oapysd

ijiin @ o(ane’ gel, + RN g )es. (4.3)
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2. Secondary constraints

Going over to the total Hamiltonian,

. 1 ..
HT = Hc + ”lﬂqsiﬂ + E”U/tgbijﬂ’ (4'4)

we find that the consistency conditions of the primary
constraints 7,° and 71' yield the secondary constraints:
Let us note that these constraints reduce to the =10
components of the Lagrangian field equations (2.7).

The consistency of the remaining primary constraints ¢;*
and ¢,;” leads to the relations for multipliers u'; and u,

Oafiys
et R op(are! €5 + an R )
+ (alRJ By + 40061138 )e Oe 5] 0
Oapyd
v [T op(are! e"s + aR™ )

+ RM oy T" 5 + ayeboel s 5] = 0,

&

(4.6)

where T O(I_T Oa(e a U a) and R JOa—R 10(1( i a™ ul] )
Using the Hamiltonian equations of motion ¢, = u's and
@', = u' ,, these relations reduce to the y = a compo-
nents of the Lagrangian field equations (2.7).

3. Further consistency procedure

Some of the relations (4.6) can be solved in terms of the
multipliers u, and u%,, while the others may lead to
ternary constraints, the consistency of which has to be
examined as well. However, this procedure is extremely
sensitive to the particular sector of the theory as we shall
illustrate in the next section (for the pure Lovelock theory,
see Ref. [20]). The final form of the total Hamiltonian is
given by

_ . |
HT = HT + uloﬂ'io + Euljoﬂijo + (u . ¢),

(4.7)

where by (u-¢) we denoted terms stemming form the
undetermined multipliers and belonging to the set
(u'y,up), and by (i-¢) we denoted terms stemming
form the determined multipliers belonging to the same set.
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B. Canonical generator and charges

The sure symmetries of the theory are local translations
and local Lorentz rotations. The general form of the
canonical generator of the local Poincaré transformations
constructed by the Castellani procedure [21] is given by

G == —G] - Gz,
G =¢ (elp”io + 2“’”/)”?/‘)
R P
+ & epHi+§a)ijij+CPFC ,

G, = %éijﬂijo + %gij(ﬂij + Cprc),
where Cpgpc are terms proportional to sure primary first
class constraints (7,°, 7;;°).

The canonical generator acts on dynamical variables via
the PB operation, and hence, it should have well-defined
functional derivatives. In order to ensure this property, we
have to improve the form of G by adding a suitable surface

term I, such that G=G +I'" is a well-defined canonical
generator. In this process, the asymptotic conditions play a
crucial role; see for instance Refs. [22,23]. Though we did
not construct the exact form of the canonical generator, it
still allows us to compute canonical charges for the
solutions found in Sec. III. Namely, if we adopt the general
principle that the quantities that vanish on shell have an
arbitrary fast asymptotic decrease, we obtain that the on-
shell variation of the generator takes the following form,

5G( t:f’élﬂz 1)%5F:—Lﬂ5EC—5Jc» (48)
where
) 2
E. — 827 (m - %) m. I =82 <a1 - %)J
I "o
(4.9)

are the canonical conserved charges, which are identical to
the expressions (3.24), obtained from the Nester formula.

V. LINEARIZED THEORY

The canonical structure of the full nonlinear theory
crucially depends on the relations (4.6), as we already
mentioned in the previous section. In order to get a deeper
insight into the structure of the Lovelock gravity in the
sector ai = 8aya,, we shall consider the theory linearized
around the BTZ black ring with torsion (3.15). The
linearization is based on the expansion of the basic
dynamical variables (e’,,",) and the related conjugate
momenta (7, 7;/#) denoted shortly by Q,,
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Ox = 04+ 04, (5.1)

where Q, refers to the background [solution (3.15) with
m = j = 0and p # 0], while QA denotes small excitations.

From the linearized form of the 60 relations (4.6), we
conclude that out of 60 =5 x4+ 10 x4 multipliers
(', 47 ,) 46 are determined, while among 14 remaining
relations, there are 12 new constraints (since two pairs of
them are identical), the explicit form of which is given by

aiR™,, + a; sinOR™ ,; + dagry sin 082, ~ 0, (5.2a)
aR",, + aysinOR" 5 + dagrysin 0%, ~ 0, (5.2b)
%(alku,l +a;sinOR" )+ 2ayrsinde' )

—aR* ,, —a,sinOR™ ) —2ayrysin0&, ~0  (5.2¢)
and
T4r)( +sin 673,y ~ 0, (5.3a)
playrg(2*, + sin02%y) + 2a,R*,,) = 0, (5.3b)
T, +sin0T° 4 ~ 0, (5.3¢)

ap ;ro sin Hiarg — Zp(al ro sin 9509 + 2a2RO491) ~ O’

(5.3d)
a grOTZ,Z — 2p(ayresin 0%, — 20,R%y,) 0, (5.3¢)
ayroT",, +2pr(ayre®, — 2a,R%y,) ~ 0, (5.3f)
R%,, ~0, (5.3g)
R%,, ~0, (5.3h)
R",, ~0. (5.3i)

Let us denote 12 constraints (5.2a) and (5.3a) by 4. The
consistency conditions of 4 leads to the determination of
12 additional multipliers, thus finishing the consistency
procedure. Thus, out of 60 multipliers (it',, #t"/,), 58 are
determined, while 2 remain undetermined. By using the PB
algebra from the Appendix, we find

{$1a" 9"} ~ 0, {12, "} ~ 0,

{1 W4} =0,
{$1,". "} ~ 0.
{(}IZIﬂ»l/?A} ~ 0.

(¢, f;ﬁija} ~ 0,
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TABLE 1. Classification of constraints.
First class Second class
Primary 0.’ <.~bij0s b’ B ;bija j#EF12ANa#r @
Secondary 7/ 7y, WA
1A 1

J

The undetermined multipliers correspond to the constraints
¢1," and ¢, which are first class (FC). The final classi-
fication of constraints is given in Table I. In total, there are
N; = 32 FC constraints and N, = 70 second class (SC)
constraints. The number of propagating degrees of freedom
in phase space is

N*=2N —2N, = N, = 150 — 64 — 70 = 14.

In the configuration space, there are seven degrees of
freedom: five of them correspond to general relativity in
D =5, and two are additional degrees of freedom. The
presence of two primary FC constraints (;51{, &512"’ implies
that there is an additional gauge symmetry in the theory, as a
consequence of the fact that variables @'%, and @'%,, do not
appear in the linearized equations of motion.

VI. CONCLUSION

In this paper, we found a new class of solutions of
Lovelock gravity in 5D, in the first order formalism. The
most interesting solutions are the BTZ black rings with(out)
torsion. It is shown that the solution with torsion exists

PHYSICAL REVIEW D 94, 084037 (2016)

provided that the parameters of the theory satisfy the
relation a% = 8apa,. This sector of the parameter space
is different from the one of Lovelock Chern-Simons
gravity, as well as from the sector investigated by
Canfora et al. [17]. Restricting our attention to the basic
properties of the solutions, we calculated the values of
conserved charges by using Nester’s formula and the
canonical method. The canonical structure of the theory
linearized around the background with torsion shows that
there are two additional degrees of freedom, compared to
general relativity.
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APPENDIX: ALGEBRA OF CONSTRAINTS

The structure of the PB algebra of constraints is an important
ingredient in the analysis of the Hamiltonian consistency
conditions. Starting from the fundamental PB {¢’,, 7"} =
5iaus(x —x') and {w¥,, my"} = 26.6)8:8(x —x'), we
find PB between primary constraints:

Oapys ,
{¢iav ¢jkﬂ} = _251'}(')/[52 (al el;/e 15 + a2Rlny§)57

Oafs
{¢ija’¢fl} = —8me /yngy(sé-
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Conformally flat black holes in Poincaré gauge theory
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General criteria for the existence of conformally flat Riemannian solutions in three-dimensional
Poincaré gauge theory without matter are formulated. Using these criteria, we show that the Oliva-Tempo-
Troncoso black hole, a solution of the Bergshoeff-Hohm-Townsend gravity, is also an exact vacuum

solution of the Poincaré gauge theory. The related conserved charges, calculated from the Hamiltonian
boundary term, are shown to satisty the first law of black hole thermodynamics. The form of the boundary
term is verified by using the covariant Hamiltonian approach.

DOI: 10.1103/PhysRevD.93.044018

I. INTRODUCTION

The use of three-dimensional gravitational models in the
Poincaré gauge theory (PGT), the first properly formulated
gauge theory of gravity [1-4], started in the early 1990s,
when Mielke and Baekler formulated a topological model
of three-dimensional gravity with torsion [5]. Studies of
different aspects of the model made a significant contri-
bution to a proper understanding of the influence of torsion
on the gravitational dynamics; for a recent review, see
Blagojevi¢ and Hehl [4], chapter 17. But, as time went on, it
eventually became clear that transition to the level of
quadratic PGT Lagrangians is needed, as the existence
of propagating torsion modes offers a more realistic insight
into the dynamical role of torsion; for more details, see
Helayél-Neto et al. [6], Blagojevi¢ and Cvetkovic [7].

It is well known that classical solutions are an important
tool for exploring dynamical content of gravitational
theories, including the quadratic PGT [4]. Looking at what
has been done in three dimensions, one should note that the
model can accommodate exact torsion waves [8] and a
Vaidya-like solution with torsion [9]. Quite interestingly,
the methods used to construct Siklos waves in [8] are
recently generalized to four dimensions [10].

In order to properly understand the complex dynamical
structure of PGT, powerful Lagrangian and Hamiltonian
formalisms have been developed; see Obukhov [3], Chen
et al. [11], and Refs. [2,4]. This machinery is very useful
not only for genuine PGT problems, characterized by a
nonvanishing torsion, but also in studying torsion-free
solutions of PGT. On the other hand, quite recently [9]
we noticed that the issue of conserved charges of the Oliva-
Tempo-Troncoso (OTT) black hole [12], a solution of the
Bergshoeff-Hohm-Townsend (BHT) massive gravity [13]
for the special choice of parameters, is not completely
settled in the literature, see [14—16]. Such a situation
motivated us to reconsider the OTT black hole as a
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Riemannian (torsion-free) solution of PGT, and try to find
the conserved charges, energy and angular momentum,
relying on the full power of the constrained Hamiltonian
formalism. The analysis is based on deriving the
Hamiltonian boundary term, the values of which correctly
reproduce the conserved charges.

The paper is organized as follows. In Sec. II, we use the
PGT field equations to study dynamical properties of
Riemannian solutions. In particular, we show that (i) for
a specific condition on the coupling constants, Riemannian
solutions of PGT are conformally flat, and (ii) any con-
formally flat solution of the BHT gravity is also a solution
of PGT. The results are used in Sec. III to prove that the
static OTT black hole is a solution of PGT. In Sec. IV, we
introduce a set of asymptotic conditions naturally associ-
ated to this black hole, and use the constrained Hamiltoniqn
formalism to construct the improved canonical generator G,
acting on the related phase space [17]. The form of the
boundary term in G is shown to be directly related to the
OTT asymptotic conditions, and the conserved charges,
defined as the values of G, are proved to be fully
compatible with the first law of black hole thermodynam-
ics. In Sec. V, the same approach is used to analyze the
rotating OTT black hole, and in Sec. VI, we summarize our
results and verify the form of the boundary term by
comparing it to the generalized covariant formula proposed
by So [18]. Appendices contain some technical details.

Our conventions are the same as in Ref. [9]: the latin
indices (i, J,k, ...) refer to the local Lorentz frame, the
greek indices (u,v, p, ...) refer to the coordinate frame, b
is the orthonormal triad (coframe 1-form), w”/ is the
Lorentz connection (1-form), the respective field strengths
are the torsion 7" = db' + @',, Ab™ and the curvature R/ =
do' + o' A0 (2-forms), the frame h; dual to b/ is
defined by h;|b/ = 5!, the signature of the metric is
(+, —, —), the totally antisymmetric symbol £/* is normal-
ized to €”1? = 1, the Lie dual of the antisymmetric form X*/
is X; = —¢,; X/% /2, the Hodge dual of the form a is *a, and
the exterior product of forms is implicit.

© 2016 American Physical Society
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II. CONFORMALLY FLAT RIEMANNIAN
SOLUTIONS IN PGT

The OTT black hole is a vacuum solution of the BHT
gravity with a unique AdS ground state [12,14]. Here,
based on our earlier experience [8,9], we wish to interpret it
as a Riemannian solution of PGT in vacuum. By doing so,
we will be able to use the full power of the constrained
Hamiltonian formalism to clarify the asymptotic structure
and find the conserved charges for both the static and the
rotating OTT black hole.

The possibility to interpret the OTT black hole as a
Riemannian solution of PGT (a solution with vanishing
torsion) is not just a coincidence, it is based on a deep
dynamical relation between the PGT sector of Riemannian
solutions and the BHT gravity. The content of this relation
is expressed by a theorem stating that any conformally flat
solution of the BHT gravity is also a Riemannian solution
of PGT. This is, in particular, true for the OTT black holes.
In three dimensions, the Weyl curvature identically van-
ishes, and the Cotton 2-form C' is used to characterize
conformal properties of spacetime [19]. It is defined by
C':=VL =dL' + @',,L"™ where L™ := Ric"™ — in”’ is
the Schouten 1-form. A spacetime is conformally flat
when C' = 0.

To prove the above theorem, we note that the BHT
gravity action,

1
IBHT = ao / dS.X\/g<R _l +2K),
m
o 3 5
K = RicYRic;; — §R ,
leads to the field equations [20],

Gij— Anij — K;; =0,

2m?
K;j = Kn;j — 2Likaj - 2<vmcin)8mnjv (2.1)
where G;; = Ric;; — Rn;;/2 is the Einstein tensor, C;; =
h;]*C; is the Cotton and L;; = h;|L; the Schouten tensor.
This compact form of the BHT field equations significantly
simplifies the analysis of conformally flat solutions.

The Lagrangian dynamics of PGT is expressed in terms
of its basic field variables, the triad b’ and the Lorentz
connection "/ (1-forms), the related field strengths are the
torsion 7" := db' + w',,b™ and the curvature R/ := dw'/ +
',0™ (2-forms), and the spacetime continuum is
described by a Riemann-Cartan geometry. The gravita-
tional Lagrangian Lg = Lg(b',T/,R™) (3-form) is at
most quadratic in the field strengths:

LG = —*(aoR + 2A0) + Ti*(a1(1>Ti + az(z)T,- + a3(3)T,»)

1 ..
+ ERI']*(b4(4>Rij +bsOIR; + b OR;),
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where "T" and W R are irreducible components of the
respective field strengths, and aq is normalized by
ay = /167G, for details, see Ref. [7]. Since we are here
interested only in Riemannian solutions of PGT, the torsion
can be effectively set to vanish, whereas the curvature
becomes Riemannian; in three dimensions, it has only two
nonvanishing irreducible components,

W pii _ Lo ., ’ ’

R :6Rblb]’ ( )Rij = R — (O)RU,

whereas the third one vanishes, (S)Ri ; = 0. The Riemannian

reduction of the general field equations takes the form
derived in Appendix A of Ref. [9]:

where
1
B = )L =5 (] R™)H,y,
by +2b
Hij = —2a08ijmbm ‘l‘%Rgijkbk - 2b48iij "
(2.2b)

Let us now note a simple property of (2ND): the
vanishing of the second term in H;; implies that the
Cotton 2-form C,, = VL,, vanishes. More precisely,
(TI) A Riemannian solution of PGT is conformally flat

if and only if by + 2bg = 0.
Next, to examine the content of (1ST), it is convenient to
express it in the tensorial form:

aoRiC[j + 2A07]U + b4L,’mej = 0

In combination with its trace, agR + 6y + b, K = 0, it can
be transformed to

1
aOGij - A0’7ij —by 5 (Kﬂij - 2Limej) =0. (2-3)
A direct comparison shows that Eq. (2.3) coincides with
the BHT field equation (2.1) for C;, = 0, provided one
makes the following identification of parameters:
AO = Clo//{, b4 = Clo/mz. (24)

This leads to the main result of this section:

(T2)  Any conformally flat solution of the BHT gravity
is also a Riemannian solution of PGT with
by + 2bg = 0, and vice versa.

An interesting interpretation of the identifications (2.4) is

found by using the BHT condition A = —m? that ensures

the existence of the unique maximally symmetric

044018-2
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background. For m? = 1/2¢?, the identifications (2.4) are
transformed into
AO = —ao/2f2, b4 = 2002/02. (25)

Theorems (T1) and (T2) allow us to study conformally
flat solutions of the BHT massive gravity relying on the
powerful Hamiltonan methods developed in the context of
PGT [2,4,11]. In particular, we will use these methods to
study boundary terms, conserved charges, and central
charges of the OTT black hole. Recently, it was shown
by Barnich et al. [21] that BHT gravity admits black hole
solutions that can be deformed into dynamical “black
flowers,” a new class of solutions that are no longer
spherically symmetric. Since black flowers are conformally
flat, they are also solutions of PGT.

Although PGT is used here as a convenient framework for
studying conformally flat solutions of the BHT gravity, it is
worth mentioning some general dynamical aspects of PGT,
expressed through its unitarity properties. In three dimen-
sions, the requirement of unitary propagation of torsion
modes leads to certain conditions on the coupling constants,
the form of which is given in Egs. (17) of Ref. [6]. The
content of these equations leads to the following conclusions:
(a) the condition by + 2bg = 0implies that the spin-0* mode
does not propagate and (b) for a suitable choice of the
remaining coupling constants, the propagation of the spin-
07, spin-1 or spin-2 modes is unitary.

III. STATIC OTT BLACK HOLE

Now, we turn our attention to the static OTT spacetime,
described by the metric [12]

VZ

Ze
(3.1)

where y and b are real parameters. The roots of equation

N? =0 are
1
re=> (=bt* + \/4u + b>£?).

The OTT metric defines a static AdS black hole when
£* >0 and at least r, is real and positive; for b = 0 it
reduces to the BTZ black hole [22].

In order to have a suitable geometric description of the
OTT black hole in the framework of PGT, we introduce the
triad field (1-form),

d 2
ds? = N2dr* — N_rz — rdg?, N2 = —u+ br+

_dr

b0 := Ndt, b : N b?* == rdeg,

(3.2a)

so that ds? = n;;b' @ b/, with n = diag(+1,-1,—1), and
the corresponding Riemannian connection (1-form),

PHYSICAL REVIEW D 93, 044018 (2016)

N

o' = —N'"B°, 0 =0, w'? =—b* (3.2b)
r

where N’ := 9,.N. The geometric structure introduced in

Egs. (3.2) can now be used to calculate first the curvature

2-form R and then the Schouten 1-form:

0 _ 0 1 1 2 2
L—22b, L—zzb, L—(22—|—2r>b

(3.3)

An explicit calculation yields C' = VL = 0, and theorem
(T2) from Sec. II implies that the static OTT black hole is
an exact Riemannian solution of PGT in vacuum.

It is interesting to compare these general arguments
with direct calculations based on the PGT field equa-
tions (2.2). As shown in [9], the result takes the form of
three conditions on the four Lagrangian parameters
(ao, b4, b69 A)
b4 — 2(1()bﬂ 2 — 0,

a0+2f2A0 :0, b4+2b6 :0

(3.4)

The meaning of these conditions is now quite clear: the
third one follows from the conformal flatness of the static
OTT black hole, and the first two coincide with the
relations (2.5).

IV. ASYMPTOTIC STRUCTURE OF THE
STATIC BLACK HOLE

In this section, we use the canonical approach to analyze
the asymptotic structure naturally associated to the static
OTT black hole. In particular, we wish to calculate the
conserved charges and verify their compatibility with the
first law of black hole thermodynamics.

A. Asymptotic conditions

The asymptotic state associated to the triad (3.2a) is
determined by the asymptotic formula

R N i W
AR AU 2

and a similar formula for 1/N. In order to produce a
suitable set of the asymptotic states, we act on this
particular state by the transformations belonging to the
AdS group SO(2,2), as described in Ref. [7]. The family of
triads obtained in this way has the AdS asymptotic behavior
given by b', = b', + B',, where

L% 0 OO 03 OO
b,=10 ¢ ., B,=|0 0, O (4.1)
00 r Oy O3 Oy
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Here, b’ , refers to an AdS background (b = u = 0). Note
that the presence of the OTT parameter b makes the
asymptotic decrease of B, slower then in the BTZ case.
The subset of the local Poincaré transformations that
respect these conditions is determined by the parameters
(&, el = —£'7kg,), such that

Sob', = 7%0,by, — (0,E°)b', — E°0,b', = B! .
As a consequence, the asymptotic parameters of local
translations and Lorentz rotations are found to be

f’ f4
?:T—f—ﬁatzT—ﬁ—Oy f’:—fratT—i—(’)o,

fz
& =5- WBZ,S + 0;, (4.2a)
f2
90:—7818¢T+02, 91:8,,,T+(91,
f3
6> = — 0T + Oy, (4.2b)

The functions T and S are such that 0, 7T =0, with
x*t =1t/ £ @, and T* := T & S. Thus, in spite of a relaxed
asymptotic behavior of B’ y as compared to the BTZ black
hole, the values of the corresponding asymptotic parame-
ters are essentially the same [23].

Similar procedure leads to the asymptotic conditions for
the connection. Introducing the Lie dual connection @’ by

w'l = —ekg,, one finds w', = @', + Q',, where
0 0 -Z Oy 05 O
a,=|0 00 |, a,.=|0 0,0 (4.3)
-5 00 Oy O3 Oy

The asymptotic behavior of the connection does not
impose any new restriction on the asymptotic Poincaré
parameters (4.2).

For an easier comparison with the literature, we display
here the deviation of the metric from its background value:

o, 0O, 0
G;w =9 — g;w = 02 03 02
o, 0, 0,

Using the composition law of the asymptotic Poincaré
parameters (4.2) to leading order, the commutator algebra
of the asymptotic symmetry is found to have the form of
two independent Virasoro algebras,

ilts ¢ = (m—n)t5

m-+n»

(4.4)
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where 7 = —8,(T* = ¢*""). The respective central
charges ¢* will be determined by the canonical methods.

The condition 7% = 0 leads to further asymptotic require-
ments (Appendix A).

B. Canonical generator and conserved charges

The standard construction of the canonical generator for
the quadratic PGT makes use of the existence and classi-
fication of all constraints in the theory. The construction
can be significantly simplified by going over to the first-
order Lagrangian (3-form)

. 1 ..
Le=T'r; + ER[jpij = V(b,7,p);

see Refs. [11,24]. Here, 7" and p;; are independent
dynamical variables, the covariant field momenta conjugate
to b’ and w”, and the potential V ensures the on-shell
relations 7; = T;, p;; = R;;, which transform Lg into the
standard quadratic form.

The first-order formulation of L; simplifies the con-
struction of the canonical generator G, the form of which
can be found in Ref. [7], Eq. (5.7). Since G acts on the basic
dynamical variables via the Poisson bracket operation, it
must be a differentiable functional. To examine the
differentiability of G, one starts from the form of its
variation [8,9]:

Jo

6G = —/ d*x(6G, + 5G,).
p)

5G1 = 6'[{1/36”[ (biﬂaaéfi/} -+ a)iﬂa,l(spi/,»
+ Tiya(zébi/)' + piﬂaaéwiﬁ) + R,

5G2 = e’“ﬂHiaaépiﬂ + R. (453)
Here, X is the spatial section of spacetime, the variation is
performed in the set of adopted asymptotic states, R stands
for regular (differentiable) terms, and we use p and @', the
Lie duals of p,,,, = H,,, and @,,,, to simplify the formulas.

Using the adopted asymptotic conditions, one finds
0G, =R, which implies

G — — / dzxgt(lﬁgﬂ(biﬂaaéfi/} + a)iﬂa,ﬁpi/,’
z

+7,0,6bi5 + p',0,0w;5) + R. (4.5b)
Thus, in general, 6G # R and G is not differentiable. The
problem can be corrected by going over to the improved
generator G:=G+ I, where the boundary term I is
constructed so that G = R [17]. After making a partial
integration in 6G, one finds that I" is defined by the
variational equation,
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U = [ &(b ot + o' ,Sp; + 7 ,6b; + p',Sw;),
)

(4.6)

where O is the boundary of X located at infinity, para-
metrized by the coordinate ¢. Now, restricting our attention
to the Riemannian sector with 7/ = 0, we obtain

. . 2r
6T — / (' 3pi + ' dr) = / (E5E + &5 )do,
oz 0

(4.7a)
where (after returning to w;; and H;;)
1
o€ = =5 (w",6H;, + HY sw;j,), (4.7b)
1
8J = =3 (0" ,6H;, + HY ,60;;,,). (4.7¢)

In what follows, one should take into account that the form
(2.2b) of H,,, is simplified after using the restrictions (3.4)
on the Lagrangian parameters:

Hij = —2a08,jkbk - 4a0f2£,-jkLk.

Once we find the solutions for £ and J, the boundary
term takes the form

r(E) = / (€ + £ T)dg

0

(4.8)

In general, Eqs. (4.7) refer to the fields and their variations
belonging to the entire set of asymptotic states, defined by
Egs. (4.1) and (4.3). However, it is instructive to consider
first a simpler situation, in which the fields and their
variations refer just to a single asymptotic state, the static
OTT configuration (3.2). In that case, Eq. (4.7b) takes the
form

(35 = 0)01[5H01 + letawlzw

1
= 2a,/? < At b)éb 4aoNSN

= 26105 (,Ll + leﬂzb2> s (49)

which is easily integrated to obtain £. In fact, the procedure
just described is sufficient to calculate the values of the
conserved charges, but only for this particular
configuration.

In the next step, we wish to find a solution for £ on the
whole set of asymptotic states. Using the special result (4.9)
as a guide, we find
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1
£ = &~ (A, AHy, + AH,

ijo ijt

Aw' ),

1
50 2((1) AHIJ(0+Htjt

Aw' ), (4.10a)
where AX := X — X is the difference between any field X
and its boundary value X. In a similar manner, Eq. (4.7¢)

leads to
_ 1 U H,. = 1AH Aw'/
j_iw oHijo = Jo— 5 BHijp R0y

(4.10b)

1
Jo = 3 — (", AH, + HWAa) »)s
where the first equality follows directly from (4.7¢), and the
second one from H jo@" , = 0. With these results for £ and
J, the boundary term (4. 8) is seen to be a finite phase-space
functional that satisfies the variational equation (4.7a)
(Appendix B).

The values of the improved generators for time trans-
lations (§ = 0,) and spatial rotations (£ = J,,) are given by
the corresponding boundary terms, which define the con-
served charges of the system, the energy and the angular

momentum, respectively:
2
J= / deJ.
0

2n
E:/ dg€,
0

Calculated on the static OTT configuration, these expres-
sions take the values

1
E= ez
4G (” T3 )

The expressions (4.10) for £ and J are obtained by
relying on the set of asymptotic configurations (4.1) and
(4.3) that contain the static OTT black hole geometry. It is
interesting to compare the boundary term (4.8) to the
covariant approach of Chen er al. [11]. Looking at the
Riemannian reduction of their formula (239) and choosing
the upper or lower term in each curly bracket separately,
one finds that none of the resulting expressions can
reproduce our result. To make the argument more clear,
consider, for instance, the term &, in (4.10a) that corre-
sponds to choosing all the upper terms in (239); the
corresponding expression for the energy would be different
from (4.12): Ey = 4= (1 + 3 b*¢*). How do we know that
this result is not correct? The answer can be found by
noting that the boundary term I'[£] has a twofold role: (i) its
values define the conserved charges, and (ii) its form

(4.11)

J=0. (4.12)

ensures the improved generator G =G +T to be a differ-
entiable functional on the phase space associated with the
chosen boundary conditions. Since &, does not satisfy the
variational equation (4.7b), replacing £ by &, would
destroy the differentiability of the new canonical generator
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G[€ — &,]. The way out of this situation can be found in
the work of So [18], who proposed a generalized boundary
term by introducing “mixed” choices involving a linear
combinations of upper and lower term in (239); see
footnote “u” in [11]. As discussed in Sec. VI, our boundary
term (4.8) is appropriately described by a particular mixed
form. The need for using a mixed boundary term stems
directly from the slower asymptotic decrease of the OTT
dynamical variables as compared to the BTZ case (see
Sec. IV A), or equivalently, from the presence of the br term
in the OTT metric (3.1).

C. Asymptotic symmetry

The results obtained so far allow us to precisely describe
the OTT asymptotic symmetry by the Poisson bracket
algebra of the improved canonical generators. Following
the procedure described in [8,9], one finds that this alggbra,
expressed in terms of the Fourier modes L of G, is
given by a centrally extended form of the commutator
algebra (4.4),

+

([LE LE] = (m—n)Ly,, + i—2m35m__”, (4.13)
where ¢* are classical central charges,
3¢

+ =, =—. 4.14

c c c=3 (4.14)

D. Black hole entropy

As an additional, theoretical test of the validity of our
canonical expression for the OTT energy (4.12),, we
propose to verify its exact agreement with the first law
of black hole thermodynamics; the same strategy was
used, for instance, by Giribet and Leston [15], and by
Maeda [25].

The black hole entropy can be calculated from the Cardy
formula [26]

htet
6 b

h~c™

S=2r + 27

where h® = (£E + J)/2. For the static OTT black hole,

this formula yields
E
S =2ntl\/—=.
i \@

Then, using the expression for the Hawking temperature,

(4.15)
1 1

T=—0,N?,_, =—/GE, (4.16)
vi¥y/s vl

one can directly verify the first law of the black hole
thermodynamics:
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SE = T5S. (4.17)

Since the entropy vanishes for E = 0, the state with £ = 0
can be naturally regarded as the ground state of the OTT
family of black holes [14].

V. ROTATING OTT BLACK HOLE

In order to verify to what extent the canonical expres-
sions (4.10) for the boundary terms of the static OTT black
hole are general, we now use the same approach to study
the rotating OTT black hole.

A. Geometric aspects

The rotating OTT black hole is defined by the
metric [14,15]

ds? = N*di* — F2dr* — r*(dg + N,,dt)*,  (5.1a)
where
H |H*> b 22
F="02 42 2 (g2 —
r\/fz+2 (Lt n) + == (L= m)* —pn.
bt?
N = AF, A=14+—(1-n),
+og (-1
¢ 2
N("_Zrz 1 —n*(p— bH),
4 bt
H=1\/Pr-2a-pn-22(1-p7 1
Za-n-"Ca- (5.10)

The roots of N = 0 are

L+n( bt [ 2
— -t ).
5 ( S VIEN\

The metric (5.1) depends on three free parameters, yu, b
and 7. For n =1, it represents the static OTT black
hole, and for b =0, it reduces to the rotating BTZ
black hole with parameters (m, j), such that 4Gm := u and

4Gj = pt\/1 =

Choosing the triad field as
B°=Ndt, b'=F'dr, b*=r(dp+N,,di),

ri:f

(5.2a)
the Riemannian connection takes the form

0)01 :—ab0+ﬂb2, a)02:ﬁb17 wlz:—ﬂb0+yb2,

(5.2b)
where a = FN'/N, ff:=rFN,/2N and y = F/r. These

objects define the Riemannian geometry of the rotating
OTT black hole in the context of PGT.
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Now, based on theorem (T2) from Sec. II, we know that
the rotating OTT black hole, being an exact solution of the
BHT gravity, is also a solution of PGT provided its Cotton
tensor vanishes. Technically, the proof that C¥/ = 0 is not
quite simple due to the complicated structure of the metric
functions N, F' and N,. However, relying on the standard
computer algebra systems, one easily finds that C*/ indeed
vanishes.

B. Asymptotic conditions and conserved charges

A direct inspection of the rotating black hole geometry
(5.2) shows that it belongs to the same class of asymptotic
states as described by Egs. (4.1) and (4.3). Hence, the
results for (i) the boundary term (4.8) and (ii) the classical
central charges (4.14) remain valid also in the rotating black
hole case.

Applying formulas (4.10) to the rotating OTT geometry
(5.2) yields the following conserved charges:

1 1
_ S22
E_4G(u+4bf>, (5.3a)
J=1¢y\/1-yE. (5.3b)

For n =1 the angular momentum vanishes, whereas for
b = 0 we have the BTZ black hole with E = m and J = j;
its energy is twice as big as in GR.

C. The first law of black hole thermodynamics

The entropy for the rotating OTT black hole can be
calculated in the same manner as for the static one. Using
the above expressions for E, J, and the central charges
¢* = 3¢/G, the Cardy formula yields

1 E
S =2zt ﬂ

o (5.4)

The Hawking temperature and the angular velocity at the
outer horizon are

_ 1 9,N? 12
4n A | af\ 149

1 [1—-7g
Qe =Nol—r. =\ 15y

Then, the first law of black hole thermodynamics is
automatically satisfied:

T

VGE,

(5.5)

78S = 6E — Q. 8J. (5.6)
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VI. DISCUSSION AND CONCLUSIONS

The OTT black hole energy was calculated already in the
original paper [12], based on the Deser-Tekin approach
[27]. Since the Deser-Tekin formula (37) in [12] does not
contain the asymptotic terms produced by the parameter b,
the resulting energy Epr = u/4G does not depend
on b. This result is evidently not compatible with the first
law of black hole thermodynamics. Then, Giribet et al. [14]
found certain arguments, based on interpreting b as a ‘hair’
parameter, to transform Epyp into E = (u + £2b*/4)/(4G),
the expression that is fully compatible with the first
law [25].

In the next paper, Giribet and Leston [15] tried to find
more convincing arguments to derive the above form of E.
Their approach was based on the work of Hohm and Tonni
[28], who developed a generalized Brown-York approach
to the generic form of the BHT gravity. By restricting their
considerations to the special value of m?, where the OTT
black hole is admitted as an exact solution, the authors of
[15] succeeded to derive the above result for E, but only for
the rotating black hole, where certain ambiguity in the
derivation disappears. By improving the construction,
Kwon et al. [16] obtained the conserved charges for both
the static and the rotating OTT black hole. Our expressions
(5.3) for the conserved charges confirm their final results,
given in Eq. (44).

In the approach initiated by Regge and Teitelboim [17],
the gravitational conserved charges and the improved
canonical generators are closely related to each other.
An important progress in understanding essential aspects
of this relation has been achieved in the first-order
approach, which allows one to find a covariant boundary
term and identify its value as a conserved charge; for an
early version of the formalism, see Nester [24], and for a
comprehensive exposition of this approach, see Chen et al.
[11]. The covariant approach has been widely used in four-
dimensional gauge theories of gravity with a great success
[4,11]. Moreover, it was also confirmed on a set of selected
three-dimensional solutions [29]. Now, in order to properly
understand our results in the context of this approach, we
start from a particular choice of the covariant boundary
expression (integrand) defined by the upper line in
Eq. (234) of [11]:

B(&) = (&]b")Ar;+ Ab (E|7;) + (E] ') Ap; + Aa)' (] p;).
(6.1)

Here, AX = X — X is a difference between a field X and its
boundary value X, and ¢ is asymptotically a Killing vector
field. The lower line is obtained by replacing the variables
(b',7;, @', p;) with their boundary values. One can verify
that formula (6.1), taken in the Riemannian limit, is not
compatible with our result (4.8). This is, in fact, true for all
sixteen versions of B(&), obtained from Eq. (234) of [11] by
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choosing either the upper or lower term in each of the four
curly brackets separately. However, the situation is changed
by generalizing the construction of B(¢) in a way proposed
by So [18]. According to his prescription, the original
Hamiltonian boundary term B(&) is modified by replacing
each curly bracket by a linear combination of its upper and
lower term. Applying this prescription to Eq. (234) of [11],
one finds that its Riemannian reduction takes the form

B(& cs.cq) = E][c30" + (1 = c3)@' | A Ap;

+ A’ AE][eapi + (1= ca)pi],  (6.2)
where ¢; and ¢4 are real parameters. For the particular
choice (c3,c4) = (1/2,1/2), we have

B(&1/2,1/2) = ¢ [wi - % Aw"] AAp;
+ AwiAg] [,,,. - %Ap,} . (63)

A comparison with Eqgs. (4.10) shows that the boundary
term [y B(&;1/2,1/2) exactly coincides with our expres-
sion I'(¢), Eq. (4.8).

Clearly, the result (6.3) represents only a Riemannian
reduction of a more general So-like formula for the
boundary term. With an obvious extension of notation,
this more general formula can be represented in the form

B(&) = B(&;¢q,¢0,1/2,1/2). (6.4)

Additional information on the general structure of B can be
found in Ref. [28], where the conserved charges of several
three-dimensional solutions were calculated. However, the
results are not sufficiently sensitive to clearly recognize the
general structure of a “good” expression for the boundary
term in PGT, in three dimensions. Further work in this
direction is needed.

In conclusion, we summarize our results as follows:
(a) First, we found general criteria that allow us to study

conformally flat Riemannian spacetime configurations
as solutions of PGT. These criteria are used to show
that the OTT black hole, a solution of the BHT gravity,
is a Riemannian solution of PGT.

(b) Then, we constructed a natural set of the asymptotic
conditions and calculated the conserved charges of the
OTT black hole as the values of the Hamiltonian
boundary term. The expressions for the conserved
charges coincide with those found by of Kwon et al.
[24] in the generalized Brown-York approach.

(c) Finally, the obtained results are verified by showing
that: (i) the conserved charges are exactly compatible
with the first law of black hole thermodynamics, and
(i) our boundary term is in agreement with the
generalized covariant formula proposed by So [18].

PHYSICAL REVIEW D 93, 044018 (2016)

On the other hand, the OTT black hole appears to be
an interesting physical example for the generalized
covariant formula.
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APPENDIX A: USEFUL ASYMPTOTIC
RELATIONS

In the Riemannian sector of PGT, the condition 7% = 0,
calculated on the asymptotic configurations (4.1) and (4.3),
leads to an additional set of asymptotic requirements:

r 1 2 1 & 0
ﬁBr_th:Ol’ Br_FQ(ﬂ:OI’
2 2

oy —0 a4 =0
£ r @ 1 fz r t 1>

0

B
—24+Q%,+ B +¢Q% =0,

i (A1)

Then, relying on the asymptotic form of the Schouten

tensor L,

L= =L (0 s )10
00_2f2 }’f t fz r 2

1
L11 - —ﬁ—f—op

L22:—L+L<r—231 +le)+(’)
202 e\ 2T T e z
Loy = ———8" + L al, 10,

er @ fz r ’

one obtains the asymptotic relations

_ Qijy
AHijt = —4a0Q,-jq, + O , N

Q
AHij(/l = —461(){29,'.]'[ + O< r]t) . (A2)

APPENDIX B: CONSISTENCY OF
THE BOUNDARY TERM

In this appendix, we prove the consistency of the
Hamiltonian boundary term (4.8) by showing that it is a
finite expression that satisfies the variational equations (4.7a).
Using the expressions (4.10) for £ and 7, as well as the
results of Appendix A, we have
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&= 4a0; (QO(/, - ;;231,> 0O, =0, (Bla)
J = 2apw' by, + 4agt*L;;0' b7,
BO
= —4a0r<7¢ + Q%,) —4daytr*Lg, + Oy,
r2
= —4a0r<Q2(p + ?91,) + Oy = O,, (B1b)

which completes the proof of finiteness.
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In a similar manner,
1 .. .
55 = E (a)”,éHim + 5&)1']'(/}[‘11],)
1
+-(AH

4
+ Aw ,6H ),

ii i ii
,-]-(/,560 ]t — Aw ],5H,-j(/, — AH,U&U '](/,

1, .. .
= 5 (a)’ftéH,-jw + 5(1)ij¢HlJt) + O] N (B2)

whereas the proof for 67 is trivial. Thus, the variational
equation (4.7a) is satisfied.
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A class of Siklos waves, representing exact vacuum solutions of general relativity with a cosmological
constant, is extended to a new class of Siklos waves with torsion, defined in the framework of the Poincaré
gauge theory. Three particular exact vacuum solutions of this type, the generalized Kaigorodov, the
homogeneous solution and the exponential solution, are explicitly constructed.
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I. INTRODUCTION

The first complete formulation of the idea of (internal)
gauge invariance was given in Weyl’s classic paper [1].
Significant progress in this direction was achieved some-
what later by Yang, Mills and Utiyama [2,3]. It opened a
new perspective for understanding gravity as a gauge
theory, the perspective that was realized by Kibble and
Sciama [4] in their proposal of a new theory of gravity,
known as the Poincaré gauge theory (PGT). The PGT is a
gauge theory of the Poincaré group, with an underlying
Riemann-Cartan (RC) geometry of spacetime [5,6]. In this
approach, basic gravitational variables are the tetrad field b’
and the Lorentz connection @’/ (1-forms), and the related
field strengths are the torsion T = db' + w',, A ™/ and
the curvature RV = dw'/ + o', A @™ (2-forms). At a
more physical level, the source of gravity in PGT is matter
possessing both the energy-momentum and spin currents.
The importance of the Poincaré symmetry in particle
physics leads one to consider PGT as a favorable frame-
work for describing the gravitational phenomena.

Based on the experience stemming from FEinstein’s
general relativity, it is known that exact solutions play a
crucial role in developing our understanding of the
geometric and physical content of a gravitational theory;
for a review, see Refs. [7-10]. An important set of these
solutions refers to exact gravitational waves, the structure
of which has been studied also in PGT [11]. In the present
work, we focus on a particular class of the gravitational
waves, the class of Siklos waves that are vacuum solutions
of general relativity with a cosmological constant (GR,),
propagating on the anti—de Sitter (AdS) background [12].
By generalizing the ideas developed in three dimensions
[13], we construct here a class of the four-dimensional
Siklos waves with torsion as vacuum solutions of PGT.

The paper is organized as follows. In Sec. II, we give a
short account of the Siklos waves in the tetrad formulation
of GR,. In Sec. III, we show that Siklos waves are torsion-
free vacuum solutions of PGT. In Sec. IV, we introduce new
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vacuum solutions of PGT, the Siklos waves with torsion, by
modifying the Siklos geometry in a manner that preserves
the radiation nature of the original configuration. That is
achieved by an ansatz for the RC connection that produces
only the tensorial irreducible mode of the torsion with
JP'=2%. The PGT field equations are simplified and
shown to depend only on three parameters, including the
mass of the torsion mode. In Secs. V-VII, we describe three
different vacuum solutions belonging to the class of Siklos
waves with torsion: the generalized Kaigorodov, the homo-
geneous solution and the exponential solution. Section VII
is devoted to concluding remarks, and two appendixes
contain some technical details.

Our conventions are as follows. We use the Poincaré
coordinates x* = (u, v,x,y) as the local coordinates; the
latin indices (i, j, ...) refer to the local Lorentz (co)frame
and run over (+, —,2,3), b' is the tetrad (1-form), and h; is
the dual basis (frame), such that h;|b* = 5%; the volume
4-form is & = bt A b~ A b> A b?, the Hodge dual of a
form a is *a, with *1 = &, and the totally antisymmetric
tensor is defined by *(b; A b; A by A b,,) = €;j,, and
normalized to e, _,; = 1; in the rest of the paper, the
exterior product of forms is implicit.

II. SIKLOS WAVES IN GR,

Siklos waves were introduced as a class of exact
gravitational waves propagating on the AdS background
[12]. In the Poincaré coordinates x* = (u,v,x,y), the
Siklos metric is given by

2

£
ds* =~ [2du(Hdu + dv) — dx* — dy?], (2.1)
y

with H = H(u,x,y). It admits the null Killing vector
field 0, that is not covariantly constant; the wave fronts
are surfaces of constant # and v, and the case H =0
corresponds to the AdS background. The metric (2.1)
coincides with a special subclass of the Kundt class
[9,10], and is obviously conformal to pp waves. The
physical interpretation of the Siklos waves was investigated
by Podolsky [14,15].

© 2015 American Physical Society
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Now we give a short account of the Siklos waves in the
tetrad formulation of GR,, which allows for a simpler
generalization to PGT. First, we choose the tetrad field in
the form

4 4
b* :=—du, b~ ==—(Hdu + dv),
y y
4 4
b? = —dx, b = —dy, (2.2)
y y

so that the line element becomes ds?>=2bTb"—
(b?)? = (b*)* =n;;b'b/, where n is the half-null
Minkowski metric,
01 O 0
1 0 O 0
nij =
00 -1 0
00 0 -1
The dual frame #; is given by
y y
h, ==(0,—HO0,), h_==0,,
+ Lp( u L) £
y y
hz — ?8)6, ]’l3 — an (23)

Next, we introduce the Riemannian connection @'/ by
imposing the condition of vanishing torsion, Vb' := db'+
', b™ = 0, which yields

a)+— w+2:0 w+3:lb+
9 bl f b
1 y
B _p2 2 — _Y9 gpt,
=y @ 7%
R N 2.4
(0] —? —E y . ( a)

The wave nature of the Siklos wave is clearly seen by
rewriting @' in the form

W'l = @' + ki(hi |H)b™, (2.4b)

where @/ = w'/(H = 0) refers to the AdS background,
and the second term is the radiation piece, characterized by
the null vector k' = (k*, k=, k*,k*) = (0,1,0,0).
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Now one can calculate the Riemannian curvature:

RH = Lprpi, R = L,
Z Z

1 1
R2= i b=b* + 2 (v?0,,H — yO,H)b* b?
1
t2 (0 H)b" b,
1 1
R = 230707 + 5 (0, H = yO,H)b" b

1
+ﬁ(y28xyH)b+b2, (2.5)
where we use 0., := 9>/0x?> etc. The Ricci curvature

Ric' = h,,|R™ and the scalar curvature R = h;|Ric’ are
found to be

3
Ric™ = ﬁbm, m =+, 27 37
R'_—3b_ ! 20, H 20, H —2y0,H)b+
ic _ﬁ +ﬁ(y XX +y yytd — y y ) B
12

Dynamical structure of GR, is defined by the action
Iy = — [ d*x\/=g(aoR + 2A\). The corresponding vacuum
field equations can be suitably written in the traceless
form as

o1 )
Ric! =2 Rb' = 0. (2.7)

As a consequence, the metric function H must obey

¥ (8. H + 0y H) — 2y0,H = 0. (2.8)
The profile (u-dependence) of the Siklos wave may be
arbitrary.

We display here three special solutions of (2.8) discussed
by Siklos [12]:

H, =y Kaigorodov’s solution (1963);
H, =arctan(x/y) +xy/(x> +y?),  H, = (x> +y*)Hy;
H; = Cie*(cosy+ ysiny) + Cre(siny — ycosy).

Note that Defrise’s metric (1969), with H = 1/y?, is not a
vacuum solution of GR, [15].

III. SIKLOS WAVES AS TORSION-FREE
SOLUTIONS OF PGT

In this section, we show that the Siklos spacetime of the
previous section is an exact Riemannian solution of PGT in
vacuum.
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Starting from the general PGT dynamics described in
Appendix B, one can easily derive its reduced form in the
Riemannian sector of PGT, characterized by T’ = 0. First,
we note that the only nonvanishing irreducible components
of the Riemannian curvature are VRV, (Y RY and ©) R,
defined in Appendix A. And second, the condition 7% = 0
implies that dynamical evolution of the Riemannian sol-
utions in PGT is described by a reduced form of the general
field equations (B3):

(1ST) E; =0,
Here, the Riemannian expressions for E; and H,;; are
obtained directly from the corresponding PGT formulas
(see Appendix B) in the limit 7% = 0:

H;j = —2ay*(b'b7) +2*(b;VR;; + bW R;; + bsOR;)),

ij =

1
Ei = hiJLG - E (hlJRmn)Hmn (3lb)
As shown in Ref. [5], the field equations (3.1) are

satisfied for any configuration in which the traceless
symmetric Ricci tensor vanishes:

. 1
RlC(l‘j) - *ﬂl]R = 0

Z (3.2)

Comparing this result with the GR, field equation (2.7),
one concludes that any vacuum solution of GR, is
automatically a torsion-free solution of PGT. In particular,
this is true for the Siklos metric.

It is useful to explore this general statement in detail.
Using the geometry of the Siklos spacetime found in the
previous section, the content of Egs. (3.1a) is found to be

(1ST)  (by+ b — agt*)yy(0,H + 0,,H) — 20,H] = 0,
3ap + A =0,
(ZND) (bl + b4)y28x[y(axxH + any_I) - 28)>H] =0,

(by + b4)y*0,[y(OyH + Oy, H) — 20,H] = 0
(3.3)

For the generic values of the Lagrangian parameters
ag, by, by, bg, dynamical content of these equations is
obviously the same as in GR,, since the metric function
H must be such that

SH = y(0, H + 0, H) — 20,H = 0. (3.4)
Thus, although PGT has a rather different dynamical

structure as compared to GR,, the class of Riemannian
Siklos spacetimes is still an exact vacuum solution of PGT.
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IV. SIKLOS WAVES WITH TORSION

We are now ready to generalize the previous results by
constructing a new, non-Riemannian class of Siklos waves,
the Siklos waves with torsion.

A. Geometry of the ansatz

We wish to introduce torsion in a manner that preserves
the radiation nature of the Riemannian Siklos waves of
GR,, relying on the approach proposed in [13].

We start the construction by assuming that the tetrad field
in PGT retains its Riemannian form (2.2). Then, by noting
that the radiation piece of the Riemannin connection (2.4)
has the form (w"/)® = k'(h/*9,H)b", we assume that the
new RC connection is given by

' =" + k'h*(0,H + K,)b*, (4.1a)
where the form of K, is defined by
K, =(0,0,K,.K,),
K, =K. (u,x,y), K, =K,(u,x,y). (4.1b)

This ansatz modifies only two components of the
Riemannian connection (2.4):

(1)_2 = —;(8)(]‘1 + Kx)b+,

5 L.y
()] 3= ?b - ? (a)H -+ I(V)b+
The new terms in the connection are related to the torsion of
spacetime:

T =

(K.b™b* + K ,b™b?), T+, 72,73 = 0.

N =

(4.2)

The only nonvanishing irreducible torsion piece is the
tensor piece V77, with (N7~ = 7~

Denoting the Riemannian curvature found in Sec. II by
RY , the new RC curvature is found to have the form

Rt/ = %berj’ R — %bzb3’

| 1
R2=R7?+— (20K, —yK,)b"b>+ 2 (y*0,K,)b" b,

f2
. 1 1
R3=R7+ = (V20,K,)b"b* + 2 (»?0,K, + yK, )b b*.
(4.3a)

Note that the radiation piece of R"/ is proportional to the
null vector k' = (0, 1,0,0). The corresponding Ricci and
scalar curvatures are
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3
Ric™ = 25 b,

— 1
Ric™ = Ric” + ) (y*0,K, + y*0,K, — yK,)b™,

m=+,2,3,

12
R=—. (4.3b)

The nonvanishing irreducible components of the curvature
are "RV forn = 1,4, 6 (as in GR,) and n = 2. Quadratic
invariants of the field strengths are regular:

RiR,=2¢  Tivr, =0
ij = Fe’ i =Y.
B. Field equations

Dynamical content of our ansatz is effectively described
by the RC Lagrangian (B1) with nonvanishing parameters
(ag, Asay, by, by, by, bg) and the associated PGT field
equations (B3). Explicit calculation of the second field
equation in (B3), denoted shortly by %/, is shown to have
two nontrivial components, F =2 and F3. After introduc-
ing the quantity SH as in Eq. (3.4), these components take
the respective forms

bi(yO,SH + 20, K + y*0,,K, — 2y0,K )
+ b2(y28nyx - yzaxyKy - yaxKy)
+ by(yOSH + Y20, K, + Y20, K, — yO,K,)

+ 2(b6 — b1 + Cllfz - aofz)Kx = O, (443)

and

by (y0,SH + y*0,,K, + y*0,,K, + 2y0,K,)
+ bZ(_yzaxny + yzaxxKy + yaxKx)
+ b4(ya)SH + yzaxny + yzanyy + yaxKx)

+ 2(b6 — b] ‘|‘ Cl]fz - Cl()fz)Ky = O (44b)

The content of the first field equation is much simpler. To
have the smooth limit for vanishing torsion, we require
3ay + ¢?A = 0, whereupon the first equation reads

(b4 + b() - aofz)SH
+ (b4 + b6 - a()l/ﬂ2 + alfz)(yaxl(x + ya},Ky - Ky) =0.
(4.4c)

The form of the differential equations (4.4) appears to be
rather complicated [16]. However, there exists a suitable
reformulation that makes their content much more trans-
parent. To see that, we first rewrite Eq. (4.4c) in the form

PHYSICAL REVIEW D 92, 024047 (2015)
SH = 6(y0.K, + y0,K, — K,).

1+ alfz
0= — _— .
b4+b6—(1052

Then, by substituting the expressions for y8x3'H and
yO,SH into (4.4a)—(4.4b), and dividing the resulting
equations by (b; + by)(c + 1), one obtains

(4.5a)

(¥ 0rx + py* 0y, + 207K,

+ [(1 _p)yzaxy - (1 +p)yax]Ky = O? (45b)
(y20yy + py* 0, + 26%07)K,
+ [(1=p)y?0yy + (1 +p)yd, K, =0.  (4.5c)
where
__ bitb > _ay—ag+ (bg—by)/¢*
P v b)er 1) T T bt b)et 1)

The final equations (4.5) contain only three independent
parameters, o, p and 42, which makes it much easier to find
some specific solutions for the Siklos waves with torsion.

The parameter u° has a simple physical interpretation. As
the linearized PGT analysis shows, possible torsion exci-
tations around the Minkowski background are modes with
spin parity J¥ = 0%, 1%,2% [17]. In particular, the spin-2*+
state is associated to the tensorial piece of the torsion, and
its mass is

ﬁz _ 00(01 - (10)
ay(by + by)

For 1/£? — 0, the coefficient y> tends exactly to ji2,
whereas for finite (and positive) #2, u? is associated to
the spin-2* torsion excitation with respect to the AdS
background.

In what follows, we present three exact solutions of the
PGT field equations (4.5), enlightening thereby basic
dynamical aspects of the Siklos waves with torsion. All
the integration “constants” appearing in these solutions are
functions of u.

V. KAIGORODOV-LIKE SOLUTION

Motivated by the form of the Kaigorodov solution of
GR, (Sec. II), we consider now a class of PGT configu-
rations for which the functions H,K, and K, are x
independent. Then the field equations (4.5) take a much
simpler form:

(py*0yy + 2 ¢*)K, = 0, (5.1a)

(y?0y, +2u**)K, =0, (5.1b)
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yO,,H —20,H = o(y0, — 1)K, (5.1¢)

The Euler-Fuchs differential equation (5.1a) is solved by
the ansatz K, = y*, where « is restricted by the requirement
a*> —a+ 2u*¢?/p = 0, which implies

ai:%:i:p, p:=%\/1 — 822/ p. (5.2)
(al) For 8u%¢%/p < 1 (real p),
K, = y(Ayr +Ay7P). (5.3a)
(a2) For 8u%¢?/p > 1 (imaginary p, q := |p|),
K, = /y[Ascos(qIny) + A, sin(gIny)]. (5.3b)
(a3) For 8u*¢?/p =1 (p = 0),
K, = \/y(As+ Aglny). (5.3¢)

Equation (5.1b) follows from (5.1a) in the limit p — 1.
Hence, using the notation

_ 1 -
£p pE 1822 g=|p

the solutions for K|, can be obtained from Egs. (5.3) by the
replacements p — p, g = g.
(b1) For 82¢% < 1,

, (54)

N[ —

(_Xi:

Ky = V3(B1y? + Bay?), (550

(b2) For 8u?¢? > 1,
K, = \/y[B3cos(gIny) + Bysin(gIny)]. (5.5b)

(b3) For 8u*¢* =1,
K, = \/y(Bs+ Bglny). (5.5¢)

Knowing the form of K, one can integrate Eq. (5.1c¢) to
obtain the metric function H. Let us first find a particular
solution H; of the inhomogeneous equation (5.1c¢).

(cl) For 8u*¢? < 1,

(5.6a)

(c2) For 8u*¢? > 1,
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20
H) = 3/2[(By — 2B, g1
() =g gz [(Bs—2Bag)cos(qIny)
+ (B4 +2B5q) sin(g In y)]. (5.6b)
(c3) For 8u%¢% =1,
20 32
Hy =5 y"*(Bs = 2Bg + Bs Iny). (5.6¢)

Adding to H; the solution of the homogeneous equa-
tion (5.1c¢), that is the Kaigorodov solution H; from Sec. II,
one obtains the complete solution:
H=H+Hg;. H, = Dy, (5.7)

Thus, the existence of torsion has a direct influence on the
form of metric.

The above solutions for K., Ky and H define a
Kaigorodov wave with torsion as a vacuum solution
of PGT.

A. Asymptotic AdS limit

It is interesting to note that the Kaigorodov solution in
GR, is asymptotically AdS, as follows from the asymptotic
relation H = O(y*) for y — 0, and the form of the
Riemannian curvature (2.5). In PGT, the presence of torsion
makes the situation not so simple. Namely, the condition
that the RC curvature R”/ in (4.3) has the AdS asymptotics
produces two types of requirements: the first one is
obtained from the non-Riemannian piece of R"/,

yK, = 0, yK, =0, (5.8a)
yza},Kx -0, yzayKy - 0, (5.8b)

and the second from the Riemannian piece:
yo,H;y = 0, y20yH ;) — 0. (5.8¢c)

Further analysis goes as follows.

(i) In the sector with 84%¢2/p > 1 and 8u*¢> > 1, one
can directly verify that the solutions for K, K, and H;
satisfy the requirements (5.8).

(i) In the complementary sector with 84°#%/p < 1 and
8u’¢? < 1, one finds that the requirements (5.8) are valid
for p <1 and p < 1, or equivalently, for

8u’t?/p>—1 and 8u*t? > —1. (5.9)

Continuing with exploring the asymptotic properties of
the torsion, we see that (5.8a) implies 7' — 0 for y — 0.
Thus, the choice of parameters described in (5.9) ensures
that the Kaigorodov-like solution has an AdS asymptotic
behavior, with vanishing torsion. Clearly, in the physical
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sector with u?> >0, the second condition in (5.9) is
automatically satisfied.

B. Defrise-like solution as a special case

It is interesting to observe that the form of H ;) in (5.6a)

allows us to obtain a generalized Defrise solution, defined
in Sec. II, as a special case of the Kaigorodov wave
with torsion. Namely, by choosing D = 0 one eliminates
H from H, whereupon the term H ;), specified by B; = 0
and p =7/2, becomes identical to the Defrise metric
function:
The restriction p = 7/2 refers to the tachyonic sector of the
2+ torsion mode, with y?#? = —6. The above result for H,
combined with the corresponding expressions for K, and
K, defines the Defrise solution with torsion as a vacuum
solution of PGT. In contrast to that, the corresponding
solution in GR, exists only in the presence of matter. One
should stress that the metric function H originates purely
from the torsional term H ;).

VI. HOMOGENEOUS SOLUTION

Let us now look for a solution in which K, K, H are
homogeneous functions of y and x:

K, :fx(t),
H = h(1),

Ky = fy(t)’
t=y/x.

As a consequence, the field equations (4.5) become

(& +p?) L+ 201 + 22 f o = (1= p)PfY + 208, = 0,

(6.1a)

(2 +p")f) +2p8 f + 242 f, — (1 = p)Pf =202, = 0,
(6.1b)

SH = o(—2f + tf}, — £,). (6.1c)

where SH = y[21(7 — 1)I/ + (t* + )1"].

The set of equations (6.1) represents a system of
ordinary, second-order, linear differential equations. The
system 1is significantly simplified by assuming that the
metric function H retains the same form as in GR,, so that
SH =0. Consequently, the right-hand side of Eq. (6.1c¢)
vanishes, —#f% + tf}, — f, = 0, which implies

1
fe=1fy+B (6.2)

where B = B(u). Substituting this
(6.1a)—(6.1b), one obtains

expression into
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pr (P 1)1+ 2pt( = 1) [, +2(p+p %) fy 4+ 2u*tB =0,
(6.3a)

pr2 (2 + 1) f7 4+ 2pt(* = 1)}, + 2(p + p?¢*) f, = 0.
(6.3b)
Taking the difference of these two equations yields
W’B =0.
Hence, either 2 or B has to vanish.

A. Case u* =0
Assuming p # 0, the set of equations (6.3) reduces to

2+ 1)y +20(2 = 1)f, +2f, =0.
Hence, the general solution for f is given by

t 2

=C C ,
Iy P R

(6.4)

[ 1s determined by (6.2), and the metric function has the
same form as in GR,:

h=C; <— arctan z + 1 (6.5)

t
+ Cy.
- t2> !
As before, all the integration constants are functions of u.
B. Case B=0
In this case, the set of equations (6.3) reduces to

2{2
22+ 1)f) +21( - 1)f;+2<1 +”p>fy = 0.

(d1) For 8u?£?%/p # 1,

—+—,—+—;1+§;—t2> (6.6a)

where &=1+/1-8u*/?/p and ,F (a.b;c;z) is the
hypergeometric function [18].
(d2) For 8u*¢?/p = 1,
1/2,1 )
3/4,3/4)°
(6.6b)

35
fy = Cit3%,F, ( ;1;—1‘2) + C3G3 (—ﬂ

4’4

where G717 is the Meijer G function [18]. In both cases, the
associated solution for f is given by f, = f, /1, see (6.2),
and the metric function /& remains the same as in (6.5).
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FIG. 1 (color online). The plots of the torsion function fy in (6.6a), 8u*¢*/p = —1, f,[1] =1, f}[1] = 0 (left), and in (6.6b),

fl1] =1, f3[1] = 0 (right).
In the above two cases (d1)-(d2), the forms of the

corresponding torsion functions f, are illustrated in Fig. 1.

VII. EXPONENTIAL SOLUTION

In this section, we start with

K, =e'f(y), K,=ef,(y), H=ehy),

(7.1)
whereupon the field equations (4.5) become

(VP +py2 0y + 227 fo 4 [(1 = p)y*dy = (1 +p)ylf, =0,
(7.2a)

(320 +py? +20°C2) f 4 (1= p)y?0y + (14 p)ylf =0.
(7.2b)

SH =o(yf. +y0,fy = fy).

and SH = e*[y(h + ") = 21'].

As in the previous section, we assume that H coincides
with the vacuum solution of GR,, defined by SH = 0. This
imposes an extra condition on f, and f:

(7.2¢)

By introducing a change of variables, given by

ty
15
10}
5,
_5»
—10¢
—15¢
—20¢

FIG. 2 (color online).

[x=Y9 [y =9, (7.4a)
the condition (7.3) takes a simple form:
gy + gy =0. (7.4b)

As a consequence, Egs. (7.2a)—(7.2b) are transformed into

3
py2 g+ 2pydl + (py? + 222 g, + 2pyg, = 0, (7.5a)

pyzg’)f + (py? + 2ﬂ2f2)gy =0 (7.5b)

One can note that (7.5a) is equal to the derivative (with
respect to y) of (7.5b). The solution of (7.5b) reads

gy = VYID1J,(y) + DY, (y)],

where v =1+/1-8u*/?/p, and J,, Y, are the Bessel

functions of the first and second kind, respectively [18].
Hence,

(7.6)

fy :y%(DlJv(y)+D2Yu(y))’ (773)
and f, = —yg, yields
Fe= VD131 (v) = (v +1/2)J,(y))
+Dy(yY,a(y) - (v +1/2)Y,()].  (7.7b)

The forms of the torsion functions (7.7) are illustrated in
Fig. 2. They are of the same type as the GR, metric
function H;, defined in Sec. II. Together, they define our
third specific Siklos wave with torsion.

fx

10¢

—10¢
—20¢t

The plots of the torsion functions (7.7) for D; = D, = 1, 84°¢*/p = —1.
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VIII. CONCLUDING REMARKS

In this paper, we introduced a new class of exact vacuum
solutions of PGT, the Siklos waves with torsion. The
solution is constructed in a way that respects the radiation
nature of the original Siklos configuration in GR,. This is
achieved by an ansatz for the RC connection that produces
only the tensorial irreducible mode of the torsion, propa-
gating on the AdS background. A compact form of the PGT
field equations is used to find three particular vacuum
solutions belonging to the class of Siklos waves with
torsion; they generalize the Kaigorodov, the homogeneous
solution and the exponential solution of GR,.
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APPENDIX A: IRREDUCIBLE DECOMPOSITION
OF THE FIELD STRENGTHS

We present here formulas for the irreducible decom-
position of torsion and curvature in four-dimensional
Riemann-Cartan spacetime [5]; for general D, see [19].

It is convenient to start the exposition with the Bianchi
identities:

VTi =R!, b", VR = (. (A1)
The torsion 2-form has three irreducible pieces:
A
@1 = 30 A (hy, | T™),
3) i | 1 .
(>T :_g*[blA*(TmAbm)]:ghlJ(Tm/\bm)’
Wi =11 =@ - O, (A2)

The RC curvature 2-form can be decomposed into six
irreducible pieces:

@R = —(pli A W), @RI = pli A ],
. 1 . . y 1 . .
BYpij — — _— y*(pi J 6) pij — i J
R 12X(b A bY), R 12Wb A b,
o1 .
BRI = Eb[l AR (D™ A W,,),

6
(R = RiT =y (@i,

a=2
where
Wi = h, |R™ = Ric', W= h]W =R,
Xi = *(Rki A bk)’ X = hiJXi (A3)

and
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1 1
D= W, — bW — =] (b" AW,,),
1 1 4 L 2 lJ( ﬂ’l)

1 1
SbhX —=h) (D" A X,).

V.= X —
! "4 2

(A4)
The trace and symmetry properties of "R, ; can be found in
Ref. [19], page 127. All these properties are satisfied by our
ansatz.

For torsion-free solutions, the first Bianchi identity in
(Al) implies X' =0; hence @RV and )RV vanish.
Moreover, Ricj;; = 0 implies (®)RYU = 0. The remaining
three curvature parts, first, fourth and sixth, are the PGT
analogues of the irreducible pieces of the Riemannian
curvature. In Riemannian geometry, (VR coincides with
the Weyl (conformal) tensor,

T U R
C' = R~ (b'Ric) ~ bIRic') + -Rb'D.

but in the RC geometry, (VRY differs from C” by the
presence of torsion terms. Thus, (VR is a true extension of
C" to the RC geometry. The fourth component is defined in
terms of the symmetric traceless Ricci tensor,

1 .
P, = (Ric(m — Zl’[in) b’. (AS)
The above formulas are taken from Refs. [5,19] with one
modification: the definition of W' is taken with an addi-
tional minus sign (Landau-Lifshitz convention), and for
consistency, the overall signs of the fourth through sixth
curvature parts are also changed.

APPENDIX B: PGT FIELD EQUATIONS

The gravitational dynamics of PGT is determined by a
Lagrangian Lg = Lg(b',T',R7) (4-form), which is
assumed to be at most quadratic in the field strengths
(quadratic PGT) and parity invariant. The form of L can
be conveniently represented as

1, . |
L =—"(agR +2A) + ETlHi +-—RVH!

4 ij? (Bl)

where H; := OL;/OT' (the covariant momentum) and H' j
define the quadratic terms in L:

H =2%"*(a,"T),  Hj=2% *(b,"Ry).

n=1 n=1

(B2a)

Varying L with respect to b’ and @/ yields the PGT field
equations in vacuum. After introducing the complete
covariant momentum H;; := OL/OR" by
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Hij - _2a0*(bibj) + H/

i (B2b)
these equations can be written in a compact form as

(1ST)
(2ND)

VH; +E; =0,

where E; and E;; are the gravitational energy-momentum
and spin currents:

PHYSICAL REVIEW D 92, 024047 (2015)

1
(hlJ Rmn)Hmn’

E;=h]Ls - (hiJ Tm)Hm - )

E;:=—(bH;—b;H,). (B4)

The general field equations (B3) are used in Sec. IV to
describe specific dynamical aspects of the Siklos waves
with torsion. In the Riemannian sector with 79 = 0, we
have H; =0 and E;; =0, and the field equations (B3)
reduce to the form given in Sec. III.
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We study gravitational waves with torsion as exact vacuum solutions of three-dimensional gravity with
propagating torsion. The new solutions are a natural generalization of the plane-fronted gravitational waves
in general relativity with a cosmological constant, in the presence of matter.
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I. INTRODUCTION

Investigations of three-dimensional (3D) gravity have
had an important influence on our understanding of both
classical and quantum aspects of the realistic gravitational
dynamics. In this context, the traditional approach based on
general relativity has led to a number of outstanding results
[1]. However, in the early 1990s, Mielke and Baekler [2]
initiated a new approach to 3D gravity, relying on a modern
field-theoretic formulation of gravity, the Poincaré gauge
theory (PGT), proposed in the early 1960s by Kibble and
Sciama [3-6]. Compared to general relativity, the dynami-
cal structure of PGT is extended by using both the curvature
and the torsion to describe the associated Riemann—Cartan
(RC) geometry of spacetime.

The Mielke—Baekler model, like Einstein’s general
relativity, is a topological theory without propagating
degrees of freedom. In PGT, such an unrealistic feature
of the gravitational dynamics can be naturally improved by
going over to a Lagrangian that is at most quadratic in
torsion and curvature (quadratic PGT). Recent investiga-
tions reveal elements that indicate a rich dynamical
structure of the quadratic PGT [7-10]: the theory possesses
a number of propagating torsion modes (tordions) and
black hole solutions, its (anti-)de Sitter [(A)dS] sector is
characterized by well-defined conserved charges and cen-
tral charges, the existence of torsion is compatible with the
AdS/CFT correspondence, and the canonical structure
shows a close resemblance with the four-dimensional
theory.

In the present paper, we continue studying dynamical
aspects of the quadratic PGT in three dimensions by
looking for exact wave solutions with torsion. The
weak-field approximation of Einstein’s theory around
the Minkowski background leads to a simple picture of
the wave nature of gravity, which is recognized to have a
striking analogy to the electromagnetic phenomena [11,12].
By giving a covariant formulation of this analogy, one can
generalize the linearized gravitational wave to the concept
of an exact wave solution of general relativity [13-15].
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Here, in the context of the quadratic PGT, such general-
izations are used to find a class of exact wave solutions with
torsion.

A gravitational wave with torsion in three dimensions
was first found by Obukhov [16], in the framework of
the Mielke—Baekler model [2]. Since the model is
defined by a topological action, it was necessary to
introduce matter, chosen in the form of a Maxwell field,
to have a nontrivial wave solution. On the other hand,
our wave solution, being an exact vacuum solution of
the quadratic PGT, offers new insight into the wave
structure of genuine gravitational degrees of freedom,
the propagating torsion modes.

The paper is organized as follows. In Sec. II, we give
an overview of the plane-fronted gravitational waves in
general relativity without/with a gravitational constant,
denoted shortly as GR/GR,, as a basis for further
extension to torsion waves in the quadratic PGT. In
Sec. III, we start with the GR, form of the metric and
introduce a convenient ansatz for the RC connection, or
equivalently, for the torsion. The only irreducible com-
ponent of torsion is taken to be its tensorial piece,
parametrized by a single function K. Then, we find the
PGT field equations that impose dynamical restrictions
on K. A characteristic parameter appearing in these
equations is the mass parameter p’, associated to the
torsion spin-2 mode. In Secs. IV and V, we find a class of
exact torsion waves and classify them according to the
values of two parameters, y> and J, the latter one being
related to the value of the cosmological constant. In
Sec. VI, we discuss criteria that are used to recognize the
wave nature of exact solutions and conclude with some
specific remarks. Finally, two Appendixes contain useful
technical information.

Our conventions are the same as in Ref. [8]: the Latin
indices (i, J,k, ...) refer to the local Lorentz frame, the
Greek indices (u, v, p, ...) refer to the coordinate frame, and
both run over 0,1,2; the metric components in the local
Lorentz frame are #;; = (4, —, —); the totally antisymmet-
ric tensor €Y% is normalized to %12 = 1, b’ is the ortho-
normal triad (coframe 1-form), #; is the dual basis (frame),
the Hodge dual of a form a is *a, and the exterior product of
forms is implicit.

© 2014 American Physical Society
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II. PLANE-FRONTED WAVES
IN GENERAL RELATIVITY

In this section, we give a short account of the plane-
fronted gravitational waves as exact solutions of Einstein’s
general relativity.

A. pp waves in GR

A specific class of plane-fronted waves, characterized by
having parallel rays (pp waves for short), can be described,
in suitable local coordinates, by the metric [13—15]

ds* = H(u,y)du® + 2dudv — dy*, (2.1)
where u is interpreted as the phase of the wave and 0, is the
covariantly constant null vector field. This metric is a
natural generalization of the linearized gravitational plane
waves propagating on the background Minkowski space-
time [11,12]. General criteria for identifying the wave
nature of exact solutions will be discussed in Sec. VI.

The explicit form of H(u,y) in Eq. (2.1) can be
determined by the general relativity (GR) field equations.
Since the only nonvanishing component of the Ricci tensor
is (Ric),, = H"/2 (prime means differentiation with
respect to y) and the scalar curvature identically vanishes,
R =0, the vacuum field equations of GR imply

H' =0= H = h(u) + hy(u)y, (2.2)
where £, h, are the integration “constants.” This solution is
in fact trivial since for H” = 0 the Ricci tensor vanishes
and, in three dimensions, the full curvature tensor also
vanishes. Hence, Eq. (2.2) defines a Minkowski spacetime
in nonstandard coordinates.

Thus, in GR, nontrivial pp waves can exist only in the
presence of matter; see, for instance, Refs. [17-19]. Note,
however, that true vacuum waves can exist also in new
dynamical settings, such as topologically massive gravity
or new massive gravity [19-21]. The vacuum waves are an
idealization of wave solutions in the region far from matter
sources.

B. Plane-fronted waves in GR,

Now, we turn to a generalized dynamical framework of
GR, by allowing a nonvanishing cosmological constant.
The pp wave (2.1) is not a vacuum solution of GR, . Indeed,
the fact that R = 0 for the metric (2.1) implies A = 0.
A plane-fronted wave that is compatible with A # 0 can be
conveniently represented by the metric

2

2 d
ds* = 2(2) du(Sdu + dv) — o
p p

5 (2.3a)

see the works by Ozsvath [22] and Obukhov [23], where
the functions p, g, and S are chosen as [16]
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A
p=1+y

) A, P
—1-2y2 s=—Z22+ YT Huy).
1 q y v+2q (u.y)

4 2
(2.3b)

Clearly, the limit 4 = 0 returns us back to the pp-wave
(2.1). Introducing the ortonormal triad field as

1 q* 9>
bO ==ﬁ |:<1 +?S>du+FdU .

1 q’ q
bl :=ﬁ l:(l —?S>du —?dv s

dy, (2.4)

the metric can be written as ds® =n;b' ® b/, with
nij = diag(+1,—1,—1). In the literature, one often uses
the light-cone components of the triad:

=L

b" =du, b~ =5 (Sdu + dv).

A

To verify that the triad (2.4) satisfies the GR, field
equations,

1

T AR

1 . .
agp <(Rlc)l - 2Rbl> —Ab' = 0, ap:

we first calculate the Christofell connection; it has the form

A

A
v ;bz_\/i(bo 5,
Ay 1
2 = " b0 — E(bo + b (¢*S'/p),

A 1
D2 =726 45 (00 58 /p).

or, more compactly,

U
T =T 4 2, k", b (47S'/ ). (2.6)
Here, the first term, T"/:=I"/ (S’ = 0), is the piece that
describes the “background” (A)dS geometry of spacetime,
whereas the second term is the radiation piece, character-
ized by the null vector k' = (1, —1,0), k* = 0, which is not
covariantly constant for 4 # 0. .

Next, we calculate the curvature RV = dI''/ 4T, T,

RV = —Ab'b/ + "k, k"™ b, p(¢*S'/ p)’, (2.7a)

where *b,, = (1/2)e,,,b"b*. Note that the radiation piece
of R is clearly separated from the (A)dS piece. Finally, the
form of the Ricci curvature (Ric)' = —h; | R" and the scalar
curvature R = h;|(Ric),
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. A
(Ric)! = =24 + S K'kyb" p(4?S'/ p)',

R = -64, (2.7b)
implies that the content of the PGT field equations is given
by

q2 l
Cl()l = A, P <p S/> = O,

=>\/—17H=ﬂ1(u)+ﬂz(u)§-

% (2.8)

The function H defines the vacuum solution for the metric
(2.3). Since the on-shell value of the curvature is
R = —)b'b/, the geometry of the solution (2.8) is fixed:
for A =0, > 0, or < 0, it has the Minkowskian, AdS, or de
Sitter form, respectively.

Thus, again, for the plane-fronted wave (2.3) to be a
nontrivial exact solution, one has to introduce matter.
However, by going over to PGT, we expect the new
gravitational dynamics to allow for the existence of true
wave solutions even in vacuum.

III. DYNAMICS OF TORSION WAVES

In this section, we briefly recapitulate basic aspects of
PGT, introduce a geometric extension of the Riemannian
plane-fronted waves (2.3) to torsion waves, and discuss
their dynamics.

A. Basic aspects of PGT

The PGT is a gauge theory of gravity based on gauging
the Poincaré group, with an underlying RC geometry of
spacetime [4—6]. Basic gravitational variables are the triad
field ' and the Lorentz connection A = —A/¢ (1-forms),
and the corresponding field strengths are the torsion
GT! =db' +Al,b* and the curvature RY = dAYU 4
Al ARl (2-forms). General dynamics of PGT is defined
by the gravitational Lagrangian Lg = Lg(b',T', RY)
(3-form). Varying L; with respect to b’ and A" yields
the respective gravitational field equations in vacuum [8],

(]St) VHI-—I—E,»:O,
where
dLg dLg
H: = = H; . = =4
aTY Y ORU

are the covariant field momenta and

_OLg

dLg
E =—2%, —
Y Ob

YT OAT

are the gravitational energy-momentum and spin currents.
We require Ls to be parity invariant and at most quadratic
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in the field strengths. In that case, H; and H;; can be
expressed linearly in terms of the irreducible pieces of the
field strengths (Appendix A),

H; =2*(a;VT; + a,PT; 4+ a39T;),
Hij = —2a08,-jkbk + ng,
Hi; = 2% (b4 WR;; + bsOIR;; + b Ry;), (3.2)
where ay, a,, and b,, are coupling constants; moreover, the
gravitational Lagrangian takes the form

1,_. . | 1 -
LG = ETlH[ + le(—aoé'[jkbk) +ZRUH;] —§A08ijkblbjbk,
(3.2b)

and the gravitational energy-momentum and spin currents
turn out to be

1
E;=hi|Lg— (h]T")H,, + Z(hiJRmn)Hmm

B. Geometry of the ansatz

In our search for the generalized plane-fronted waves, we
assume that the form of the triad field, of Eq. (2.4) remains
unchanged, whereas the connection is determined by the
following rule:

(a) Starting with the Riemannian connection (2.6), (i) we
leave its first, (A)dS piece I'/ unchanged (ii) but
modify the second, radiation piece in a way that
preserves the wave nature of the solution.

The instruction (ii) is realized by adopting the following

ansatz for the RC connection:

AV =T 42 e, K"k, b G (3.3)

6= (S’ +K) (3.3b)
= . .

Here, the new term K = K(u,y) describes the effect of
torsion, as follows from

2
Ti=Vb = L Kik, b (3.4)
2p

The only nonvanishing irreducible piece of T' is its
tensorial piece (Appendix A):
Wi =177,

Having chosen the form of the connection, one can now
calculate the RC curvatures; they are obtained from
Eq. (2.7) by the replacement S’ — S’ + K:
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RU = —2b'bI + elimk, k™ b, pG',
. R
(Ric)' = =2Ab" + Ek’kmb’"pG’,

R = —64. (3.5)
The nonvanishing irreducible components of the curvature
R are (Appendix A)
(4)Rij — %8ijmkmkn* ban/, (6)Rij — —ﬂbibj,

and the quadratic curvature invariant has the form
RZJ*RU - 6/12*1.

The geometric configuration defined by the triad field
(2.4) and the connection (3.3) represents a generalized
gravitational plane-fronted wave of GR,, or the forsion

wave for short. More details on its wave nature will be
given in Sec. VL

C. Field equations

Having found the expressions for the torsion and the
curvature, one can now calculate the covariant momenta
H;, H;;, and the energy-momentum and spin currents E;,
E;;, and obtain the explicit form of the PGT field equations
(3.1). The result takes the following form [24]:

(1st) (ag + byd + bgA) pG’ — a;q(gK) =0,
2A = 2aph + bgA> = 0,
(2nd)  b4(2G"p’q + G'2yp* 4+ 2G'2yp*q)

+ 2(01 —dagy — b6ﬂ>Kq3 = 0 (36)
The second equation in (1st) defines a relation between the
parameter A of the solution and the coupling constants. For
be = 0, it takes a particularly simple form: agd = A. By
noting that (2nd) can be rewritten as

2b4plpq(pG') + (pG')Ay] + 2(a) — ag — beA)Kq® = 0,

one finds that the field equations (3.6) can be transformed
to a more compact form:

a
Ist G'=CyK', Co=—F7—"—,
( ) p od 0 ag + (b4 + bé)/l
—ag—bed
(2nd)  p(pK') +p2K=0, w2 =N"0T70 0 (3
b4Cy
with K :=¢gK.

In PGT, the spectrum of excitations around the
Minkowski spacetime consists of six independent torsion
modes: one scalar, one pseudoscalar, two spin-1, and two
spin-2 states [7,8]. Two spin-2 states form a parity invariant
multiplet associated to the tensorial piece of the torsion,
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with equal masses: m? = ay(a; —ay)/(a,bs). Since

our ansatz (3.4) reduces torsion just to its tensorial
piece, it is not surprising that for 1 = 0, the coefficient
u? in Eq. (3.7) reduces exactly to m?. For A # 0, u? is
associated to the spin-2 excitations around the (A)dS
background, and the condition for the absence of tachions
requires u” > 0.

In what follows, we will solve two dynamical equations
(3.7) for the unknown functions K and G, assuming > > 0;
then, we will use of Eq. (3.3b) to find S. The torsion
function K and the metric function S, obtained in this way,
completely define the solution.

IV. MASSIVE TORSION WAVES

In this section, we classify the solutions of the field
equations (3.7) for u> > 0, according to the values of A.

A.A=0
The simplest form of equations (3.7) is obtained in the
limit 4 — 0:

CloG/—alK/ :0, A :O,

K'+mK=0, m?= 7"0(‘; —9) (4
4dy

with G = §' + K and S = H/2. The solution has a simple
form:

K = A(u) cos my + B(u) sin my,
1 ap — ay

_H =
2 agm

(Asin my — Bcos my) + hy(u) + hy(u)y.
(4.2)

In Riemannian gravity, one can remove the term h; +
h,y in H by a coordinate transformation. This trans-
formation does not change the form of the metric (2.1),
which is the only dynamical variable of the theory in
vacuum. In the RC theory, such a coordinate transformation
is not particularly useful as it affects the form of
the connection. Note, however, that the term /h; + hyy
has no influence upon the RC curvature, which depends
only on H”. Thus, without loss of generality, we can
choose h; = h, = 0.

The vector field k = 9, is the Killing vector for both the
metric and the torsion; moreover, it is a null and covariantly
constant vector field. This allows us to consider the solution
(4.2) as a generalized pp wave.

B.A>0

For positive 4, we use the notation

K =2ut,
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so that f dy =2¢ f dx. Now, having in mind the form of =~ whereas the second one is automatically satisfied. In the
the solution (4.2) for A = 0, we use a similar ansatz for the limit A — 0, we have a — xkx = my, and Eq. (4.3) reduces

torsion function K = ¢K: to Eq. (4.2).
In the next step, we use Eq. (4.3) and (Ist) to
K = Acos a + Bsin a, a=a(y), (4.3a)  calculate G:
where A = A(u), B = B(u). Substituting this into (2nd) of G = 20€, / 9rgr — pL KqA A B) o5 &
Eq. (3.7) produces two conditions on a: P P K

4x .
+ (qB —|——A> sin a],
K
where D = Cyx?/(k* — 4). Finally, integrating the relation
S" = (p/q*)G — K yields the metric function H. Using the

1
pZ(a/)Z_MZZO’ pZG”_Eﬂypa/:O-

The first condition yields

definition
Hoop Il P
ad === :>a:2f/ dx = karctan x, :=@H=S A o 44
p 1+ 142 H 2q +211, (4.4)
(4.3b)  we find
|
H:Hl—FHz,

H, ::2//%de:2fD-£(Asin a— Bcos a),
q kg

27 . () arcts 2—k 6—k _—
Hy = — 2{/ Kdx = e x [(B _ lA)(Z + K.)ez(Z K) dICtdnx2F1 (1’ 1 : 1 ;_e4ldrctdﬂ)€)
_ (B + iA)(Z _ K)ei(2+r<)arctanx2Fl <1’ 2 j: K : 6 j: K : _e4iarctanx>:| , (4_5)
I
where ,F(a, b; c;z) is the hypergeometric function [24]. and find that the torsion function K is given by
Here, again, the integration term &, (u) + h,(u)y/q appear-
ing in H is removed, as it has no influence upon the RC I =Acos a+ Bsin «a,
curvature. . . 1 [1+x (4.6)
To illustrate the form of the torsion wave, we display a= Kiln = = Kk arctanh x.

here the plots of the torsion function (¢*/p)K(u,y) and
the curvature function pG’(u, y)/2, for a specific choice of

’ X Here, a(x) is singular at x = 1, but for 4 — 0, it has the
the parameters Z, «, and for fixed amplitudes A(«) and B(u)

expected limit: @ — kx = my. Then, following the same

(see Fig. 1). steps as in the previous subsection, we can first calculate G,
In this case, we use thCe' jo?at?on o= g [(Bq B %A> sina <Aq * 4%3) cos a] ’
1= _%’ Y= zy_f K =204 :ivéqre:r;:E = Cyk*/(k* +4), and then find the metric func-
H="H, +H,,

E
H, = 2//%de —2¢=LAsin a- Beos a,
q kq

201 . . i . 2—ik 6—ix B
Hy = — 25/ Kdx = =5 {(B —iA)(2 + ik)e>~iarctanhy B, (1,—4 = ; —earctanh )
. 2+ik 641
_ (B + lA)(2 _ ik)€(2+u<)arctanhx2F1 (1, %; _Z K : _e4arctanhx>:| . (47)
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1.0,

-05F

-1.0r

FIG. 1 (color online).
x € [-10,10], and for A(u) =B(u)=1,¢ =1,k =1/4.

As before, all the integration terms in H are removed.
This solution can be obtained from the one for 1 > 0 by
the analytic continuation in #:
1

X = —X,
i

- il = k> ik,
1

arctan x — —arctanh x.
i

For the asymptotic behavior of both massive and massless
torsion waves, see Sec. VI and Appendix B.

V. MASSLESS TORSION WAVES
For y?> =0, we have a; — ay — bgd = 0, and the field
equations (3.7) are simplified:

pG' = CygK’, p(pKk') =0. (5.1)

A.A=0

For vanishing 4, the field equations with C, = 1 take the
form

1
G'-K'=;H'=0. K'=0. (5.2)
1.0
TR ; 10
-05¢
_I'OV
—-1.5F
_2'0,

FIG. 2 (color online).
region x € [—10, 10], and for A(u) = B(u) =1 and £ = 1.
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\ 5 10

The form of the torsion function (g*/p)K (left) and the curvature function pG’/2 (right) for > > 0, in the region

so that

H = hy(u) + hy(u)y. K =k(u)+k(u)y. (53)

This is a rather strange solution: since the metric function
H is trivial, the metric takes the Minkowski form, and
consequently it is dynamically decoupled from the
torsion.

B.2>0
For the positive cosmological constant, with A:=1/£2
and x = y/27, the solution reads
K =A(u)arctanx + B(u),
C()X

GZA(M)T’

CO 1— ieZiarclanx
H(u,y)=7rA — —arctanx-In—————
(u,y) (u) < 7 arctan - In n iezl‘,manx>
it A st i
+3A<”) le ie jarctan x _le —le larctanx
—2¢B(u)arctanh x, (5.4)

where Li,(z) is the dilogarithm function [24]. The solution
is illustrated in Fig. 2.

The form of the torsion function (¢%/p)K (left) and the curvature function pG’/2 (right) for y> = 0, in the
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C.A<0
Finally, for A:=—1/#?, one finds

K =A(u)arctanh x+ B(u),

C())C
G=A(u)—,
(u) »
CO i 1= ie—Z arctanh x
H(uny):fA(u) <_;_§ar(:tanhx'ln1+ie—2arctanhx
i . [ . _2arctanh . : ,—2arctanh
+3A(M) le ie arctanh x _le —ie arctanh x
+2¢B(u)arctan.x. (5.5)

VI. DISCUSSION AND CONCLUSIONS

In this paper, we derived a new class of exact solu-
tions of 3D gravity with propagating torsion in empty
spacetime, the generalized plane-fronted waves, or the
torsion waves.

The wave ansatz for the metric, Eqgs. (2.4), and the RC
connection, Egs. (3.3), represent a natural generalization of
the Riemannian plane-fronted waves with cosmological
constant. However, a covariant characterization of the wave
nature of an exact solution is a rather complex issue
[13—-15], which has not been fully clarified for non-
Riemannian theories of gravity; for an attempt in this
direction, see Ref. [25].

The existence of the null covector k; = (1, 1,0), appear-
ing already in the RC connection, Egs. (3.3), is an essential
element of the geometric structure of a gravitational wave.
It can be represented as the 1-form k;b' = v/2du, asso-
ciated to the wave fronts u = const. The related vector field
k'd; = /20, is orthogonal to the y direction; moreover, for
A =0, k' is covariantly constant (pp wave).

Based on an analogy with the electromagnetism,
Lichnerowicz proposed a covariant criterion for the exist-
ence of gravitational waves in general relativity; see
Ref. [14]. After separating the radiation piece of the RC
curvature, of Egs. (3.5), §”:=R" + 2Ab'b/, one can verify
that it satisfies Lichnerowicz’s requirements:

kiSijmn = O, Si‘ikkis‘ikmn =0. (61)
Clearly, the above criterion is not sufficient for a RC
geometry, where we have one more field strength, the
torsion. However, in analogy with electromagnetism,
the radiation conditions for torsion are expected to have
the form

K" T = 0, ek, T i = 0. (6.2)
A direct verification based on Eq. (3.4) shows that these
conditions are also satisfied. The radiation properties, of

PHYSICAL REVIEW D 90, 044006 (2014)

Egs. (6.1) and (6.2) strongly support the interpretation of
our generalized plane-fronted wave as a genuine PGT
extension of the related Riemannian structure.

One should also note that our RC curvature has the same
irreducible components as the corresponding Riemannian
curvature, and moreover it has all the usual index sym-
metries of the Riemannian curvature; in particular,
R;jmn = Ryij- The same properties were found by Pasic
and Vassiliev [26] in their pp wave with torsion, con-
structed in the model with metric-compatible connection
and curvature squared Lagrangian. The torsion of their
solution is pure tensor, as in our case.

In electrodynamics and in general relativity, exact wave
solutions are associated with massless modes of the
related fields, so that the appearance of massive torsion
waves may seem a bit strange. However, the existence of
massive torsion modes is not in conflict with the gauge
structure of PGT; it is a generic feature associated to the
presence of T2 terms in the Lagrangian. Massive waves
appear also in some Riemannian extensions of GR, such
as topologically massive gravity or new massive gravity
[19-21].

Asymptotic properties of the torsion waves are
defined by the large y limits of the torsion of Eq. (3.4)
and the RC curvature of Eq. (3.5). As follows from
the results of Appendix B, the generic asymptotic form
of the torsion waves does not coincide with the (A)dS
geometry.

Our study of exact torsion waves in three dimensions
can be considered as a complement to the related results in
four dimensions [25-27]. In particular, we wish to place
emphasis on the results of Sippel and Goenner [25], who
made a significant progress in clarifying the structure of
pp waves with torsion: (i) they generalized the Ehlers—
Kundt classification of pp waves [13] by relaxing the
assumption that the GR field equations hold, and (ii) they
introduced a classification of the allowed form of torsion
in pp waves. Further advances in this direction would help
us to better understand the role of torsion in exact wave
solutions.
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APPENDIX A: IRREDUCIBLE DECOMPOSITION

For the sake of completeness, we present here the
form of the irreducible components of 7° and R, see
also Ref. [8], with the wedge product sign explicitly
displayed.

Torsion has three irreducible components, the vector,
axial, and tensor component:
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1 1 .
AT, = Ebi/\(hmJT )= Eﬂijvkb’/\bk,
1 1 .
<3)T[ = g*[bi /\*(Tm /\bm)] = EAeijka /\bk,
(1)Ti =T; — <2)Ti - (3)Ti’ (Al)

where V; :==T",, and A:=¢;; T /6.
The curvature also has three irreducible pieces. Making
use of the definitions

—h il (*ARy) = Ry b,

where R;:=(Ric),, the irreducible pieces of R;; read

( RU = blSj - bjSi’
(S)Rij = blAj —_ bin,
1
(G)Rij = gRbl/\bj (AZ)
Note that in three dimensions, the Weyl curvature vanishes.

APPENDIX B: ASYMPTOTIC GEOMETRY

In this Appendix, we calculate the large y limits of the
expressions (¢*/p)K and pG'/2; these limits define the
respective asymptotic values of the torsion and the radiation
piece of the curvature, characterizing the gravitational wave.
The formulas for 4 = 0 are omitted, as the related asymptotic
behavior can be read off directly from the main text.
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1. Case u*> > 0

A>0:
q* Km Km
Iim — K = —<Acos—:|:Bsin—>,
y—=+too p 2 2
— kr _ Kz
ygrj?oosz 2C0,u<:l:Asm 5 Bcos 2) (B1)
A<0:
2
lim Lk = A,
y—oo p
lim + pG' = —~ CouB (B2)
im - )
}_)00219 3 oM
2. Case > = 0
A>0:
7
}Einw;’( FAT-B
AC,
1 = B3
),Lr?osz 4 (B3)
A<0:
2
lim Lk = B,
y—00 p
Ay
/ —_—
33?02” C=u (B4)
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Three-dimensional gravity with propagating torsion: Hamiltonian structure of the scalar sector
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We study the Hamiltonian structure of the general parity-invariant model of three-dimensional gravity
with propagating torsion, with eight parameters in the Lagrangian. In the scalar sector, containing scalar or
pseudoscalar modes with respect to maximally symmetric background, the phenomenon of constraint
bifurcation is observed and analyzed. The stability of the Hamiltonian structure under linearization is used
to identify dynamically acceptable values of parameters.

DOI: 10.1103/PhysRevD.88.104032

I. INTRODUCTION

Models of three-dimensional (3D) gravity were intro-
duced to help us in clarifying highly complex dynamical
behavior of the realistic four-dimensional general relativity
(GR). In the last three decades, they led to a number of
outstanding results [1]. However, in the early 1990s,
Mielke and Baekler [2] proposed a new, non-Riemannian
approach to 3D gravity, based on the Poincaré gauge theory
(PGT) [3-6]. In contrast to the traditional GR with an
underlying Riemannian geometry of spacetime, the PGT
approach is characterized by a Riemann-Cartan geometry,
with both the curvature and the torsion of spacetime as
carriers of the gravitational dynamics. Thus, PGT allows
exploring the interplay between gravity and geometry in a
more general setting.

Three-dimensional GR with or without a cosmological
constant, as well as the Mielke-Baekler (MB) model, are
topological theories without propagating modes. From the
physical point of view, such a degenerate situation is
certainly not quite realistic. In the context of Riemannian
geometry, this limitation is surmounted by two well-known
models: topologically massive gravity [7] and the
Bergshoeff-Hohm-Townsend massive gravity [8]. On the
other hand, including propagating modes in PGT is much
more natural: it is achieved simply by using Lagrangians
quadratic in the field strengths [9-12].

Since the general parity-invariant PGT Lagrangian in 3D
is defined by eight arbitrary parameters [11], it is a theo-
retical challenge to find out which values of the parameters
are allowed in a viable theory. Following the approach of
Sezgin and Nieuwenhuizen [13], Helayél-Neto et al. [10]
used the weak-field approximation around the Minkowski
background to analyze this issue in a parity-violating ver-
sion of PGT, and found a number of interesting restrictions
on the parameters. However, one should be very careful
with the interpretation of these results, since (i) it is not
clear how the transition from Minkowski to (anti—)de Sitter
[(A)dS] background might influence the perturbative
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analysis, and (ii) the weak-field approximation does not
always lead to a correct identification of the physical
degrees of freedom. Regarding (ii), we note that the con-
strained Hamiltonian method [4,14] is best suited for
analyzing dynamical content of gauge field theories,
respecting fully their nonlinear structure. As noticed by
Chen et al. [15] and Yo and Nester [16], it may happen, for
some ranges of parameters, that the canonical structure of a
theory (the number and/or type of constraints) is changed
after linearization in a way that affects its physical content,
such as the number of physical degrees of freedom. Based
on the canonical stability under linearization as a criterion
for an acceptable choice of parameters, Shie et al. [17]
were able to define a PGT cosmological model that offers a
convincing explanation of dark energy as an effect induced
by torsion. Recently, the Bergshoeff-Hohm-Townsend
massive gravity is found to be canonically unstable under
linearization [18,19].

In this paper, we use the constrained Hamiltonian
formalism to study (a) the phenomenon of ‘“‘constraint
bifurcation” and (b) the stability under linearization of
the general parity-invariant PGT in 3D [11], in order to
find out the parameter values that define consistent models
of 3D gravity with propagating torsion. Because of the
complexity of the Hamiltonian structure, we restrict our
attention to the scalar sector, with J* = 0% or 0~ modes,
defined with respect to the (A)dS background. Investigation
of higher spin modes is left for a future study.

The paper is organized as follows. In Sec. II, we review
basic Lagrangian aspects of the parity-invariant PGT in
3D. In Sec. III, we give a brief account of the weak-field
approximation around the (A)dS background, restricting
our attention to the scalar sector, with J* = 0% or 0. In
Sec. IV, we analyze general aspects of the canonical dy-
namics of PGT; in particular, we examine how, depending
on certain critical values of parameters, some extra primary
constraints may appear (if-constraints), leading to a sig-
nificant effect on the Hamiltonian structure. In Sec. V, we
analyze the canonical structure of the spin-0* sector, in-
cluding the “constraint bifurcation” effects. Then, the test
of canonical stability under linearization is used to reveal
dynamically acceptable values of parameters. In Sec. VI,

© 2013 American Physical Society
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the same type of analysis is carried out for the spin-0~
sector. Section VII is devoted to concluding remarks, and
appendixes contain technical details.

Our conventions are as follows: the Latin indices
(i, j, k,...) refer to the local Lorentz frame, the Greek
indices (u, v, A, ...) refer to the coordinate frame, and
both run over 0, 1, 2; the metric components in the local
Lorentz frame are 7,; = (+, —, —); totally antisymmetric
tensor €% is normalized to £%12 = 1.

II. LAGRANGIAN FORMALISM

We begin our considerations by a short account of the
Lagrangian formalism for PGT. Assuming parity invari-
ance, the dynamics of 3D gravity with propagating torsion
is determined by the gravitational Lagrangian (density)

LG = b£G’
Lo=—aR—2Ayg+ Ly + Lp, (2.1a)

where A, is a bare cosmological constant, a = 1/167G,
and the pieces quadratic in the field strengths read

1.
L= ET”k(al(l)Tijk +a, T, + a;9T,),

1 ..
-£R2 — ZRz]kl(b4(4)Rijk] + bS(S)Rijkl + b6(6)Rijk1);

(2.1b)

where ™7, - and R, x are irreducible components of the

torsion and the Riemann-Cartan curvature [11]. Since the
Weyl curvature vanishes in 3D, one can rewrite these

1
\Y% ‘q-[lm] + 53-[1 (_ijn + 277]mVn) - lij = O’
2aTkij + 2Tmij(g-[mk - T’mkj-[) + 4v[z(g{j]k - nj]kj-[) + sijnsmrkj-[mrn =0,

where H = H* , and 1, ; is the energy-momentum tensor
of gravity:

tij = 77ij£G - Tmnig'[mnj + 2(1Rﬁ
- 2(Rnl}['n] - Rjnml'g—[nm).
Relying again on the vanishing of the Weyl curvature,
one can express Bianchi identities in terms of the Ricci

tensor. In the local Lorentz basis, these identities take the
form:

amnrvainr + SrsnTimnTmrS + Zsiman” — 0’
) ) 2.3
vakl - Vkal = O, ( )
where le' = Rki - %T]ikR.
III. SCALAR EXCITATIONS AROUND
(A)DS BACKGROUND

Particle spectrum of 3D gravity with torsion (2.1) around
the Minkowski background M3 is already known [10,11].
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expressions in the form that is more practical for the
canonical analysis:

£T2 = Tijk(aflT,'jk + a2Tkji + a317,-ij),
Lo = RU(BiR;; + BaRj; + Bami;R) = RVH ;.

(2.1¢)

P m . m . . . .
Here, V; :=T1",,, R;; *= R",,; is the Ricci tensor, R is
the scalar curvature, and

1 1
a; = 6(201 + a3), a, = 3(“1 —a3),

1 1
a3 = E(az —ay). B = §(b4 + bs),

1

B, = —(b4 — bs),

1
3 B3 = E(bﬁ - 4194)'

We also introduce the covariant momenta ik =
0Ly2/0T and H ;jy = 0 L2/ IRM:
Hip = 2(‘11(1)Tijk + a2(2)Tijk + ‘13(3)Tijk)
=4 Ty + Ty + azmVig),
}[ijkl = —2a(myn; — npma) + Hfjkl,
g{;jkl = 2(b4(4)Rijkl + b5(5)Rijkl + b6(6)Rijkl)
=2nuHj— npHy) — (k= D).

General field equations for the PGT theory (2.1) are
given in [11]. Without matter contribution, these equations,
transformed to the local Lorentz basis, take the form

(2.2a)
(2.2b)

Here, we wish to examine the modification of this spectrum
induced by transition to the (A)dS background. This will
help us to clarify the relation between the canonical stabil-
ity of the theory under linearization and its M5 or (A)dS
particle spectrum. Our attention is restricted to the scalar
sector, with J© = 0, 0~ modes.

Maximally symmetric configuration of 3D gravity with
torsion is defined by the set of fields ¢ = (b M,A"j W)
such that

Tijk = psijk’ Rijmn = _Q(5im6jn - 5[najm)! (31)
where the parameters p and ¢ define an effective
cosmological constant,

2
P
Aeir = q — —.
eff q 4
In order for this configuration to be a solution of the field
equations in vacuum, the parameters p and g have to

satisfy the following conditions [11]:
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pla + gbg + 2a3) = 0, (3.2a)
1 1
aqg — Ay + §p2a3 - §q2b6 =0. (3.2b)

In the weak-field approximation around ¢, the gravitational
variables ¢ = (b, AU,) take the form ¢ = ¢ + ¢.
We use the convention that indices of the linear excitations
¢ are changed by the background triad and/or metric.

The analysis of the particle spectrum is based on
the linearized field equations. In the same approximation,
the Bianchi identities read:

ghmn\y T — 2pVi+ 2gimR =0,
vkéki - q‘?l = 0

(3.3a)
(3.3b)

A. Spin-0* mode

Looking at the particle spectrum of the theory (2.1) on
the M5 background (see Sec. 3 in [11]), one finds that the
spin-0* mode has a finite mass (and propagates) if

az(b4 + 2b6) # 0.

In order to study the spin-0* mode, we adopt the following,
somewhat simplified conditions:

~ =7 beq =~
(@ +gbe)Gji + azn;[ijVk] + %ﬂi/R =0,

- pb - ~ b - .
(a + gbe)Tj — TGSiij +aymiiVig + §6 i VigR = 0,

and their traces are

—2a,V,Vi + (a — gbg)R = 0, (3.6a)

~ be = ~
(a + gbg + a)V, + gﬁka = 0. (3.6b)

In the generic case, by combining V, V¥ of (3.6a) with V¥
of (3.6b), one obtains

(VV +m2.)o =0,
, _ 3(a— gbe)la+ gbs + a,)
m., = ’
0 2a2b6

(3.7)

where o 1= W,Vi . Thus, the field o can be identified as the

PHYSICAL REVIEW D 88, 104032 (2013)

aj, b6 * 0, a) = dads = b4 = bs = 0. (343)
In fact, this choice is not unique since the existence
of a spin—OJr mode can be realized, for instance, without
requiring b, = 0. However, our “‘minimal” choice (3.4a)
greatly simplifies the calculations, and moreover, one
does not expect that any essential dynamical feature of
the spin-0* mode will be thereby lost; see [15,16]. The

corresponding Lagrangian reads

1 1
.Eg = —aR — 2A0 + EaQVka + Eb6R2, (34b)

and the conditions (3.2) reduce to

1
pla + gbg) =0, ag — Ay — §q2b6 =0. (3.4c)

Now, we are going to show that the Minkowskian
conditions (3.4a) equally well define the spin-0* mode
with respect to the (A)dS background (3.1). We start by
noting that, under the conditions (3.4a), the linearized field
equations (2.2) read

(3.5a)

(3.5b)

|
B. Spin-0~ mode

Similar analysis can be applied to the spin-0~ excitation.
We start from the Minkowskian condition that the spin-0~
mode has a finite mass (and propagates) [11],

(al + 2613)175 # 0.

We describe dynamics of the spin-0~ sector by the sim-
plified conditions:

as, b5 # O, ap = a, = b4 = bé = 0. (383)
The related Lagrangian has the form
L5 = —aR —2A\y +3a3; A% + bsR;;7RY), (3.8b)

with A = &*T,;; /6, and the conditions (3.2) reduce to

spin-0* excitation with respect to the (A)dS background, pla + 2a3) =0, aqg — Ay + 1 p*a;=0. (3.8¢)
the mass of which is finite. In the limit of vanishing g, m(z)+ 2
reduces to the corresponding Minkowskian expression. Starting from the linearized field equations,
|
—r 7 ~ 4a3 ~ ~1 ~ ~
038ijkv .54. + a3p7]ij./'4 + Tps(imntj)mn - a3p8,-jkV + ani + bqu[l]] = 0, (393)
aT,-jk + prSijk[ni] + bsv[l(kk]l - ﬁik]) + 2a38ijkal = 0. (39b)
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the axial irreducible components of these equations read

_ o~ . 1 R
a;V' A — a;pV' = 5 (a = qbs)e* Ry = 0,
) | . (3.10)
(a =+ 2a3)ﬂ + gbsSijkviIéjk = 0.

Then, the divergence of the first equation combined with

the second one yields

3(a + 2a3) -
(a as) a

-~ - . 1
a; V'V, A — pa;V;V' + = (a — gbs)
2 bs

=0.
(3.11)

Now, using the divergence of the first Bianchi identity
(3.32) and the commutator identity [V,,V,]X; =
_psmnkkai - 2q77i[an]’ we find

. 3 .
o=V, Vk= —Ep(a + 2a3) A =0,
as a consequence of (3.8c). Hence, (3.11) implies

vV, V 7 - +
@F +m)A=0  mp = q2bs><a 2a3)
asbs

(3.12)

Thus, generically, A can be identified as the spin-0~
excitation with respect to the (A)dS background. For
g = 0, mj- takes the Minkowskian form.

IV. HAMILTONIAN STRUCTURE

In this section, we analyze general features of the
Hamiltonian structure of 3D gravity with propagating
torsion, defined by the Lagrangian (2.1); see [4,20].

A. Primary constraints

We begin our study by analyzing the primary con-
straints. The canonical momenta corresponding to basic
dynamical variables (b',, AV ) are (m;#, I1;;*); they are

given by
M= ap = bH ¥,
d(dob},)
w 6£u — b on
Y 3(9pAY ) Y

Since the torsion and the curvature do not involve the
velocities dpby and dpA",, one obtains the so-called
“sure”” primary constraints

a0 =~ Hijo =~ (), 4.1)
which are always present, independently of the values of
coupling constants. If the Lagrangian (2.1) is singular
with respect to some of the remaining velocities dyb’,

and 9yAY,, one obtains further primary constraints.

PHYSICAL REVIEW D 88, 104032 (2013)

The existence of these primary ‘‘if-constraints” (ICs) is
determined by the critical values of the coupling constants.

1. The torsion sector
The gravitational Lagrangian (2.1) depends on the time
derivative d,b’, only through the torsion tensor, appearing
in L42. It is convenient to decompose 7 into the parallel
and orthogonal components with respect to the spatial
hypersurface 3 (see Appendix A),

Tijp =Typ + 2Ti5ong = Tij + T it

where T, = T;;; does not depend on velocities and the
unphysical variables (b', A” ), and n; is the normal to X..
Now, by introducing the parallel gravitational momentum

K = 7. 2bk, (7 n; = 0), one obtains

i

wrig=JH, (T), (4.2a)
where J := det (b',), and

Hijp=22a,T; 1+ ar(Try; — Tig)
+ a3(n; Vi — miiVi)]

The linearity of H ; #(T) in the torsion tensor allows us to
rewrite (4.2a) in the form

Gip 1=k = H, (1) = Hu(T),  @2b)

where the “velocities” T;;, appear only on the right-hand
side. This system of equations can be decomposed into
irreducible parts with respect to the group of two-
dimensional rotations in 3. Going over to the parameters
a,, a,, as, one obtains

P _
d)J_]EE%_(aZ_al)Tmm/;:(al +a)T) 1, (4.32)
S A
S E%: —2a,T"; |, (4.3b)
Ao 2 2
Ad)ZIE = Jlk _§(a1 —a3)T ;= _5(01 +2a3) T,
(4.3¢)
T A_
T = ik — —2a,"T; |, (4.3d)

where $¢p, A, and T ¢p_ are the trace (scalar), antisym-
metric, and traceless-symmetric  parts of ¢
(Appendix A).

If the critical parameter combinations appearing on the
right-hand sides of Egs. (4.3) vanish, the corresponding
expressions ¢ x become additional primary constraints, the
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primary ICs. After a suitable reordering, the result of the
analysis is summarized as follows:

Fora, =0,a, + 2a; =0,a; + a, = 0, and/ora; = 0,
the expressions S¢p, “¢ ., ¢, and/or "¢ . become
primary ICs (see Table I below).

2. The curvature sector

In order to examine how the gravitational Lagrangian
depends on the velocities d,A" ,, we start with the follow-
ing decomposition of the curvature tensor:

Rijmrz = Rijrhﬁ + 2Rij[r71J.nn] = Rijmn + Rijmnr

where R;j,., ‘= R;j; 5 does not depend on the “velocities™
R;;1 7 and the unphysical variables. The parallel gravita-

. k. k a ko .
tional momentum II;;" =: I1;b%, (II;;"n; =0) is
given as

ﬂile =JH ;1 (R), (4.4a)

where

H 5= —4anym g+ 4npH g — 4 H o
= dn;impp(—a +2B3R) + 4B, (n;R jp — mpeRj1L)
+ 4B (niR;; — MR Lj)-

Since the velocities R;;| ; are contained only in R, we
rewrite this equation as

I, ;
ik = }] +dan;n g — H

R) =H'

ijlk

(R).

!

i jLIE(
(4.4b)

The components of a tensor X | ;; can be decomposed into

the trace, antisymmetric, and symmetric-traceless piece
(Appendix A). Such a decomposition of (4.4b) yields

TABLE I. Primary if-constraints.
Critical conditions Primary constraints JP
a, = 0 Sd) =~ () o+
b4 + 2b6 =0 SCI)J_ =
- Ay ~
5 17k
a + a, = 0 d)l/; =~ 0 1
b4 + b5 =0 V(I)]z =~
a; =0 "= o)
— T ~
by =0 CDJ_z'k —

PHYSICAL REVIEW D 88, 104032 (2013)

P
II 2 in
S, = Tl +4q — §(176 — by)R*"
2 —
= 5(174 + 2b6)RkJJ€J_, (453)
o
(LTS P S P (4.5b)
1= g STk — SO '
e
ML i g
', = J - b4(2R(r1§J)k = MR )
= D4Ry — MR 7)) (4.5¢)
For a tensor X;;; = —X;;, the pseudoscalar (8’_7’EX,-],;)

and the symmetric-traceless piece (Xy;z — traces) identi-
cally vanish. Hence, Eq. (4.4b) implies one more relation,

- (b4 - bS)RJ_]E”E = (b4 + b5)R”€J_‘

o (4.5d)

where VX" = X'/, (Appendix A).

Thus, when the parameters appearing on the right-hand
sides of (4.5) vanish, we have the additional primary con-
straints ® . Combining these relations with those obtained
in the torsion sector, one finds the complete set of primary
ICs, including their spin-parity characteristics (J©), as
shown in Table I.

This classification has a noteworthy interpretation:
whenever a pair of the ICs with specific J¥ is absent, the
corresponding dynamical mode is liberated and becomes a
physical degree of freedom (DoF). Thus, for a,(b, +
2bg) # 0, the spin-0" ICs are absent, and the related
DoF becomes physical. Similarly, (a; + 2a3)bs # 0 im-
plies that the spin-0~ DoF becomes physical. The results
obtained here refer to the full nonlinear theory; possible
differences with respect to the perturbative analysis
(Sec. III) will be discuss in Secs. V and VI.

B. General form of the Hamiltonian

Once we know the complete set of the primary ICs, we
can construct first the canonical and then the total
Hamiltonian. Being interested only in the gravitational
degrees of freedom, we disregard the matter contribution.

1. Canonical Hamiltonian

In the absence of matter, the canonical Hamiltonian
(density) is defined by

.. 1 L
:]-[C = Wiabla + EHijaA[jaf - b.EG
Using the lapse and shift functions N and N¢, defined in
Appendix A, one can rewrite J{ , in the Dirac—Arnowitt-
Deser-Misner (DADM) form [4,20],
1 ..
H, =NH, +NH,— EAIJO}[U +9,D%  (4.6a)

where
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- I~ i ; o
g{l = 7Tl-jTlJ_j + EH” RUJ_IZ - J‘EG - nlvawi ,
A 1 N
Ho=mPT 5+ inj[”R”aB

.7‘[,J=27T[ j]a+VH0‘

— b Y P 77-1,,3’
(4.6b)
D =Dl 7w+ EHij“A"fa.

The canonical Hamiltonian is linear in the unphysical
variables (b%(, A), and H | is the only dynamical part
of H . The velocities T’ | , R/ | appearingin H{ | can be
expressed in terms of the phase-space variables, using
Egs. (4.3) and (4.5). Explicit calculation is simplified by
separating the torsion and the curvature contributions

in H | :
HLZZA()J"‘}[]J:"‘HR,
j‘[’i = ’ﬁ'l]_TlJ_j— - .].ETZ - nivaﬁia, (47)

1 ~n T
3_[1}- = EHl]kRijJJ? —JLg + aJR.

The torsion piece of J{ | turns out to have the form
(Appendix A)

HT = %Jd)z —JLp(T) — 'V, 7.2, (4.8a)
g =R g S g
a, +a
3 May +2a3) 40 1o ﬂ 2
3 T aay (O G (9P @)

where A(x) is the singular function

Alx) )—lc, x#0
X 0, x=0
which takes care of the conditions under which ICs become

true constraints. Similar calculations for the curvature part
yield

1
HE = quﬂ — J L (R) + aJR, (4.92)
' /\(bs) /\(b4)
(I)Z . (Aq)l]/;)z (TCI)J_]k)
g Aby + 2bg) (Sq)J_)Z . /\(b4 + bs) (VD).
2 b, + 2bg by+b
(4.9b)

2. Total Hamiltonian

The total Hamiltonian is defined by the expression
..
Hog=H, +ukyp,° + zu’fq)ijo +(u-d)+ (v D),

(4.10a)
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where u’s and v’s are arbitrary multipliers and (u - ¢) +
(v - @) denotes the contribution of all the primary ICs.
Formally, the existence of ICs is regulated by the form
of the related multipliers, for instance, u,; is given as
uypi=[1-Ala; + ay)]u';, and so on. Using the irre-
ducible decomposition technique, we find

- - - 1
(l/t . ¢) c= MJ'kd’lE + TutkT('Zl)ilE + AulkA(ﬁilE +

2SMS¢’

(U . (I)) = TUJ.TIET(I)LZ_E + AUJ.TIEA(I)

(4.10b)

3. Consistency conditions

Having found the form of the total Hamiltonian, we
can now apply Dirac’s consistency algorithm to the
primary constraints, ¢x = {¢x, H} = 0, where H,, =
[ d3xH  and {X, Y} is the Poisson bracket (PB) between
X and Y; then, the procedure continues with the secondary
constraints, and so on [20]. In what follows, our attention
will be focused on the scalar sector, with J* = 0%
or 0 modes.

V. SPIN-0* SECTOR

As one can see from Table I, the absence of two spin-0*
constraints, ¢ and 5@, is ensured by the condition
ay(by + 2bg) # 0, whereby the spin-0* degree of freedom
becomes physical. To study the dynamical content of this
sector, we adopt the relaxed conditions

az,b6 7&0, a, = as :b4:b5:O, (51)

which define the Lagrangian £/ as in (3.4b).

A. Hamiltonian and constraints
1. Primary constraints

In the spin-0" sector (5.1), general considerations of the
previous section lead to the following conclusions: the set
of primary constraints is given by

AA
7T__
77.02 ) Hijozo’ A(bz‘j:: Jljzo,

T 4 Ay

T _ Ty A _ Hll’i —~

¢ = 7 =~ 0, (I)Jj] Ty ~0, (5:2)

T VA
IT ;5 II;

(Y U S N S Y
11j J ! J

the dynamical part of the canonical Hamiltonian has the
form

H o =5 (s + 3 C8P 4 100, ]

~JLL(T, R) - n,-vawla, (5.3)

104032-6



THREE-DIMENSIONAL GRAVITY WITH PROPAGATING ...

where ¢z, S¢p, and 5@ | are the “generalized” momen-

tum variables defined in (4.3) and (4.5), and the total

Hamiltonian reads

Hopy=H, + Au’_f_A(bij- + Tu’_7T¢;j- + Av’_/_ACI)iJ-
+ TvijT(I)f] + VoV, (5.4)

2. Secondary constraints

The consistency conditions of the sure primary con-
straints 7,° and 7, jo produce the secondary constraints

H, =0, H, =0, H,; =0, (5.5a)
where
H IS ls. Lsn i B
o T TJ.oa‘_E 7TV0[+§ HLRJ.a/_bavﬁﬂ-i ,
Aﬁ.__ SHJ_
Hip=—4+ =7 Tuw (5.5b)
SH S
T HJ_ HJ_
H g ~% +Vi——
Going over to the (elght) primary ICs, X, =

(A, T, 2®, Td, VD), we note that the only nonvanishing
PBs among them are

ST
H, 8,1m5,Ms,
272

B 1y N ) (5.6)

{T(I)Jjj’ T¢m n} ~ 2]2 5 (n6 )m)é“

Aslong as STI| # 0, the constraints (¢, 7, A®, Td) are
second class (SC) [4,20], and their consistency conditions
fix the values of the corresponding multipliers
(Au, Tu, “v, Tv) in H . On the other hand, " ® commutes

{A¢Jjj’ A¢rhﬁ} ~ _

0 0
0 0
O R
0 —{T¢, T}
0 0
0 0
we use (5.6) and (5.8), which leads to
SH 10 /STI 4
AT ~ —L— ) : 5.10
( 47 ) ( g © (5.10)
Introducing a convenient notation
STI,
Wi=—= 5.11
4J ( )

{*¢
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with all the other primary constraints, but not with its own
secondary pair y; = {Y®, H}; see [20]. Using x; =
J YVIL, H,

tot} and
{Vﬁfr g-[mn} = 0’ {Vﬁil }[a} =~ O

ST ST
Vi birfa I, 1,
i, 3 zj[ (7_ ) Gy sy, L ]
Ul 33 a, \2  4J 4]
one ends up with
d’u(sﬁl az) ay gl
= —=—=)-=V;-V,—. (57
= \ay ) T2V Vi O
The only nonvanishing PB involving y; is
2 Sy An
SV ="yt —L - )3. 5.8
{/\/l’ k} azjnlk 4] ( 4J a2 ( )

Thus, for STI | (°TI | — 4Ja,) # 0, both y; and Y@ are SC.
Consequently, the consistency condition of y; determines the
multiplier Vv’, which completes the consistency algorithm.

If the kinetic energy density in the Hamiltonian (5.3) is

to be positive definite (‘““no ghosts™), the coefficients of
(S¢)? and (5@ | )? should be positive:

a,>0,  bg>0. (5.9)

On the other hand, (¢ | )?> gives a negative definite con-
tribution, but it is an interaction term, as can be seen from
(4.3a) and (5.5b).

B. Constraint bifurcation

In the previous discussion, we identified the conditions
for which all the ICs, X}, = (X,, x), are SC. To calculate
the determinant of the 10 X 10 matrix A}y = {X},, X\ },

,AD} 0 0 0

0 {T¢p, T} 0 0

0 0 0 0

0 0 0 0

0 0 0 {"o. xt

0 0 —{¢, x} 0
|
we see that A" can vanish only on a set (of spacetime
points) of measure zero, definedby W = 0or W — a, = 0.
In other words, the condition

W(W —ay) #0 (5.12)

is fulfilled almost everywhere (everywhere except on a set
of measure zero). Thus, our previous discussion can be

summarized by saying that all of the ICs are SC almost
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TABLE II. Generic constraints in the 0" sector.
First class Second class
Primary 7,0, I1,;° Xy
Secondary H\, H, .’]—[;1- Xi

everywhere; the related (generic) classification of con-
straints is shown in Table II.
The Hamiltonian constraints H',, ', and H ;i are

first class (FC) [4,20]; they are obtained from (5.3) and
(5.5b) by adding the contributions containing the deter-
mined multipliers. With N = 18, N; = 12, and N, = 10,
the dimension of the phase space is given as N* = 2N —
2Ny — N, = 2. Thus, the theory exhibits a single
Lagrangian DoF almost everywhere.

However, the determinant A*, being a field-dependent
object, may vanish in some regions of spacetime, changing
thereby the number and/or type of constraints and the
number of physical degrees of freedom, as compared to
the generic situation described in Table II. This effect,
known as the phenomenon of constraint bifurcation, can
be fully understood by analyzing the dynamical behavior
of the two factors in (5.12). Although the complete analysis
can be carried out in the canonical formalism, we base
our arguments on the Lagrangian formalism, in order to
simplify the exposition (see Appendix B).

Starting with the second factor,

1
QIZW—azz _<Cl_gb6R+a2), (513)

where we used (4.5a) to clarify the geometric interpreta-
tion, one can prove the relation

which implies that the behavior of () is limited to the
following two options (Appendix B):

(a) either {)(x) vanishes globally, on the whole space-

time manifold,

(b) or it does not vanish anywhere.
Which of these two options is realized depends upon the
initial conditions for {}; choosing them in accordance with
(b) extends the generic behavior of ), ) # 0 almost
everywhere, to the whole spacetime. This mechanism is
the same as the one observed in the spin-0" sector of the
four-dimensional PGT; compare (5.14) with equation (4.20)
in [16].

We now focus our attention to the first factor in (5.12),

W = —(a — ébéR). (5.15)

It is interesting that a solution for the W bifurcation
(W = 0) can be found by relying on the solution for the ()
bifurcation, which is based on choosing ) # 0 on the initial
spatial surface 2.. Indeed, the choice {) > 0 on 2, implies
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Q>0 globally. (5.16a)
Then, since () = W — a, (a, is positive), we find
W >a, globally. (5.16b)

Thus, with 3 >0 and W > a,, the problem of constraint
bifurcation simply disappears. Note that geometrically, the
condition W > a, represents a restriction on the Cartan
scalar curvature, bgR > 6(a + a,). An equivalent form of
this relation is obtained by using the identity R = R — 20,
where R is Riemannian scalar curvature.

Thus, with a suitable choice of the initial conditions, one
can ensure the generic condition A* # 0 to hold globally,
so that the constraint structure of the spin-0" sector is
described exactly as in Table II. Any other situation, with
W = 0or W — a, = 0, would not be acceptable—it would
have a variable constraint structure over the spacetime, the
property that could not survive the process of linearization.

C. Stability under linearization

Now, we are going to compare the canonical structure of
the full nonlinear theory with its linear approximation
around a maximally symmetric background.

In the linear approximation, the condition of canonical
stability (5.12) is to be taken in the lowest order (zeroth)
approximation. Using R = —6gq, it reduces to

(a + gbg)a + gbg + a,) # 0. (5.17)

The three cases displayed in Table III define characteristic
sectors of the linear regime (see Appendix C).

(a) When the condition (5.17) is satisfied, the nature of
the constraints remains the same as in Table I, and we have
a single Lagrangian DoF, the massive spin-0* mode.

(b) Here, all ICs become FC, but only six of them are
independent. Thus, N; = 12 + 6 = 18, and with N, = 0,
the number of DoF’s is zero: N* = 36 — 2 X 18 = 0.

(c) In this case, yj is not an independent constraint, and
V&)E is FC. As compared to (a), the number and type of
constraints is changed according to Ny — N; + 2, N, —
N, — 4, but the number of DoF’s remains one (N* = 2),
corresponding to the massless spin-0* mode.

The case when both @ + gbg and a + gbg + a, vanishis
not possible, since a, # 0.

To clarify the case (c), we need a more detailed analysis.
Consider first the case (a), in which the constraint %;,
defined in (C3) is replaced by an equivalent expression,

X, = 7r1;/J. Then, the pair of SC constraints (Vd),;, Xp)-

TABLE III. Canonical stability in the 0* sector.
a+ gqbg a+ gbg + a, DoF stability
(a) #0 #0 1 stable
(b) =0 #0 0 unstable
() #0 =0 1 stable*
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with the related Dirac brackets, defines the reduced phase
space R(a). Next, consider the case (c), where X; does not
exist and VCiDE is FC. Here, we can introduce a suitable
gauge condition afsociated with V(i),;, given by X/g =
# 1;/J. The pair (V& i X7) defines the reduced phase space
R(c), which coincides with the reduced phase space R(a),
subject to the additional condition a + gbg + a, = 0.
Thus, the “massless” nonlinear theory, defined by a +
qb¢ + a, = 0, is essentially (up to a gauge fixing) stable
under the linearization. The star symbol in Table III
(stable*) is used to remind us of this gauge fixing condition.

For the M5 background (p = ¢ = O and a # 0), the case
(b) is not possible.

VI. SPIN-0~ SECTOR

For (a; + 2a3)bs # 0, the constraints A¢_, ® - in
Table I are absent, and the spin-0~ mode becomes a physical
degree of freedom. Here, we study canonical features of the
spin-0~ sector by using the specific conditions

as, bs # 0, ap = a, = b4 = b6 = O, (61)

which define the Lagrangian £ as in (3.8b).

A. Hamiltonian and constraints
1. Primary constraints

Applying the conditions (6.1) to the general considera-
tions of Sec. IV, we find the following set of the primary
(sure and if-) constraints:

w0 =0, I, 0 =0, S¢:=7~O,
gy =~ Sy (6.2)
¢fj T’“ » Q’)Jj - 7 - Y
ST T1
. o, . HJ.;“
S(I)J_ .=T+4a20, Tq)lij': J J*O.

The dynamical part of the canonical Hamiltonian has the
form

34 2 L, 1 ]
= _ )4+ q)__2+_V(I)_2
Hy = I g P+ g0 4 ()

~ JLZ(T, R) — n,V m', (6.3)

where 4,
momentum variables defined in (4.3) and (4.5), and the
total Hamiltonian reads

A(I)Mj_, and V®; are the “generalized”

1 - ,
HT = g"[c + ES S¢ + TMIJT¢T] + “ll‘ﬁii

1 -
+ ESviScpL + Tt (6.4)
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2. Secondary constraints

The consistency conditions of the primary constraints
0 and 11, jo produce the usual secondary constraints:
H, =0, H, =0, H

= 0, (6.52)

ij

where

Using the PB algebra between the primary ICs Y,, =
G, T, ¢, 15D, Td) (Appendix D), one finds that ge-
nerically, for A7AT”E # 0, they are SC; their consistency
conditions result in the determination of the corresponding
multipliers (Su, Tu, u, ¢, Sv, Tv). Moreover, the secondary
constraints (6.5a), corrected by the contributions of the
determined multipliers, are FC, so that their consistency
conditions are trivially satisfied. Thus, in the generic case,
the consistency algorithm is completed at the level of
secondary constraints.

The first two terms in JH |, proportional to the squares
of Ad)”Z and 4P |, describe the contribution of the
spin-0~ mode to the kinetic energy density, see Table I.
This contribution is positive definite for

ay>0,  bs>0. (6.6)

At the same time, the contribution of the third term, the
square of ¥ ;> becomes negative definite (“ghost™), which
is a serious problem for the physical interpretation. As we
shall see, this is not the only problem.

B. Constraint bifurcation

Based on the PB algebra of the (eight) primary ICs Y,,,
we can now calculate the determinant of the 8 X 8 matrix
Ayn = {Yu, Yy} (Appendix D); the result takes the form

1
8J4

4a?

A7 -~ A'ﬁ'——A'ﬁjj<? +

R A s \2

- AHLMAHL’”") . (6.7
Since the second factor is always positive definite, A~
remains different from zero only if
Afro s # 0. (6.8)

This condition holds everywhere except on a set of
measure zero, so that A~ # 0 almost everywhere. Thus,
generically, the eight primary ICs are SC, as shown in
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TABLE IV. Generic constraints in the 0~ sector.

First class Second class

0 0
TP, Hlj YM

/ / /
Hy, Hi, Hi

Primary
Secondary

Table 1V; the primes in H',, H',, and H §j denote the
presence of corrections induced by the determined
multipliers.

Using N =18, Ny =12, and N, = 8, we find N* =
2N — 2N; — N, = 4. Surprisingly, the theory exhibits
two Lagrangian DoF: one is the expected spin-0~ mode,
and the other is the spin-1 “ghost” mode, represented
canonically by " ®..

In Appendix E, we analyzed the nature of the critical
condition A7 - = 0. In the region of spacetime where it
holds, we found the phenomenom of constraint bifurcation:
the number of Lagrangian DoF is changed to zero.
Although such a situation is canonically unstable under
linearization, it is interesting to examine basic aspects of
the linearized theory.

C. Instability under linearization
In the linearized theory, the term 4 7_3'1_ ¢ in the determinant
A~ takes the form

A (6.9)

7A7'jlg = —2a3& 5;p.
Hence, the canonical structure of the linearized theory
crucially depends on the value of the background parame-
ter p, as shown in Table V.

(@) For p # 0 (the background with nontrivial torsion,
massless spin-0* mode), the determinant A~ is positive
definite, all the primary ICs are SC, and consequently,
N* = 4, as in the generic sector of the full nonlinear theory.
However, this is not true in the critical region Aﬁij =0
where N* = 0, and the theory is canonically unstable.

(B) For p =0 (Riemannian background, massive or
massless spin-0~ mode), the situation is changed, as dis-
cussed in Appendix F. First, the determinant A~ vanishes,
which follows from the fact that the primary IC ¢ ;
commutes with itself; see (D1). By calculating its consis-
tency condition (which was not needed for p # 0), one
finds its secondary pair y;. Now, the PB of & 1; with the

modified secondary pair ¥} = ¥; — FH; does not vanish.

TABLE V. Canonical stability in the O~ sector.

DoF stability
(a) p#0 2 unstable
B p= 1 unstable

PHYSICAL REVIEW D 88, 104032 (2013)

Thus, there are two SC constraints more than in the case
(a) so that N* = 2, and we have the canonical instability
under linearization.

Thus, in both cases « and B, the theory is canonically
unstable.

VII. CONCLUDING REMARKS

In this paper, we studied the Hamiltonian structure of the
general parity-invariant model of 3D gravity with propa-
gating torsion, described by the eight-parameter PGT
Lagrangian (2.1). Because of the complexity of the prob-
lem, we focused our attention on the scalar sector, contain-
ing J® = 0% or 0 modes with respect to a maximally
symmetric background. By investigating fully nonlinear
“constraint bifurcation” effects as well as the canonical
stability under linearization, we were able to identify the
set of dynamically acceptable values of parameters, dis-
played in Tables III and V. Transition from (A)dS to the
Minkowski background simplifies the results.

Further analysis involving higher spin sectors is left for
future studies.
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APPENDIX A: THE 1+ 2 DECOMPOSITION
OF SPACETIME

To derive the DADM form of the Hamiltonian, it is
convenient to pass from the tetrad basis h; = h;#d, to
the ADM basis (n, h,), where n is the unit vector with
n, = hko/\/gm, orthogonal to the vectors h, = 9, lying in
the x* = const hypersurface ; see [4,20].

Introducing the projectors on n and X, (P); = n'n;
and (P)))i = 8 — n'n,, any vector V; can be decomposed
in terms of its normal and parallel projections:

Vk = I’lkVJ_ + V/;,
vV, = n*V,
V]g = (P||);cVi = h];"‘Va.

(AD)

The decomposition of V, = bko V in the ADM basis yields
Vo = NV, + N*V,, where the lapse and shift functions N
and N, respectively, are linear in b¥:

N = bk, N = h bk (A2)
The decomposition (A1) can be extended to any tensor field.
Thus, a second rank antisymmetric tensor X;; = —X;; can
be decomposed as

Xix = X + Xy — Xy ny). (A3)

104032-10
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The parallel tensors, like X;z, lie in %, and can be further
decomposed into the irreducible parts with respect to the
spatial rotations:

1
Xp=T"X,+ AX”; +-n.5X,

A4
> (Ada)
where
TX = Xop — 2 X
kT A TS Nk o
Ay — y. .
Xop = Xuiy
SX 1= X",
As a consequence, the product X'k Y;; is given by
- _- _- 1
Xhy = TX”‘TY”g + AX”‘AY”; + ESXSY. (A4b)
For a tensor ®; ;7 = —®;;4, the pseudoscalar (g'/ k. %)

and traceless-symmetric piece (®;; ) — traces) identically
vanish, so that the only nontrivial piece is the vector
V. := d_k.

7 ik

D p=2mp Py DTEQp =2V0Q. (AS)

These results can be now used to find the DADM form of
the Hamiltonian. Starting with the torsion sector, we use
the formula T = T + T to rewrite L2 in the form

1 .. 1.
.£T2 = Z}[Uk(T)Tijk + Zg-[l]k(T)Tijk
. )
+ Zg-[l'lk(T)Tijk = Lo(T) + % Ti15 = 507Ti15,

which yields

1. .
HYT =-J¢p"T; ;= JLp(T) — n'V,m%  (Aba)

N

Then, the irreducible decomposition

PHYSICAL REVIEW D 88, 104032 (2013)

. B - o 1 _
d)leiJ_j = d’lJTLJ_j + Ad’”T[uj] + T¢UT(ZJ_1’) + ESQ{’T’J_;,

(A6b)

in conjunction with (4.3), leads to (4.8).
Similar calculations for the curvature part yield

| R
HER = ZJcszle.jJ_]E —JLp(R) + aJR. (A7a)

Then, the irreducible decompositions
DURR,; = 2DYFR  p + 2V DR K,

15k _—n[AgLikA TdHLikT
2047 Rmk—z( QLR o\ +TOLITR o

1 _
+ ESchka), (A7b)

combined with (4.5), lead directly to (4.9).

APPENDIX B: CONSTRAINT BIFURCATION
IN THE SPIN-0" SECTOR

In this appendix, we study the phenomenon of constraint
bifurcation in the spin-0* sector, determined by the critical
condition () = 0.

We start our discussion by writing the field equations for
the spin-0* sector:

b
2a277,~[jkak] + 2(61 - fR)Gjl

b
- T]U(ﬂ V2 + —6R2 + 2A0) = 0,

2 12 (B1)

bg bg
(Cl - KR)TU]{ + azni[ij] + ?n,[lvk]R = 0, (BZ)
where V> = V, V¥, The content of these equations can be
expressed in terms of their irreducible components. For the
first equation, we find

b
1 be 1
3 b
—2a,0 + 5azv2 + aR + éRZ +6Ay =0, (B3c¢)

where o := V,V’. The irreducible components of the second equation are
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(a - %R)ﬂ =0, (B4a)
- %R r.. =0 (B4b)
(a - %R + az)V,- + %le = 0 (B4C)

Now, we focus our attention on the factor {} = W — a,
in A*. Its dynamical evolution is determined by Eq. (B4c),
which can be written in the form

—-QV, +29,0Q = 0. (BS)
Note that this equation is an extension of Eq. (5.13) from 3
to the whole spacetime M.

The spacetime continuum M on which 3D PGT lives is
a differentiable manifold with topology M = R X 3,
where R corresponds to time, and 3, to the spatial section
of M. Let us now assume that (i) {} vanishes at some point
x = ain M, (ii) Q is an infinitely differentiable function
on M, and (iii) V, and all its derivatives are finite at
x = a. Then, one can notice that (B5) implies 9, = 0

PHYSICAL REVIEW D 88, 104032 (2013)

at x = a. In the next step, we apply the differential operator
di, to (B5) and conclude that 9, 9, =0 at x = a.
Continuing this procedure, we eventually conclude that
for every n, 9y ...0;,0;{) =0 at x = a. In general, the
behavior of () on the whole M is not determined by its
properties at a single point. However, if (iv) () is an
analytic function on M, its Taylor expansion around
x = a implies that {) = 0 on the whole M.

The result obtained can be formulated in a more useful
form: if there is at least one point in M at which Q # 0,
then () # 0 on the whole M. Thus, by choosing the initial
data so that Q) # 0 at x =0, it follows that € stays
nonvanishing for any x° > 0. In other words, for a suitable
choice of initial data, the configuration () = 0 is kind of a
barrier that the system cannot cross during its dynamical
evolution. Moreover, since ) is a continuous function, it
has a definite sign for any x° > 0.

APPENDIX C: THE LINEARIZED

SPIN-0* SECTOR

In the weak-field approximation, the primary ICs of the
spin-0* sector take the form

o AR o TR . m,, i
A¢z‘] = 7 L=, T¢z‘j = 7 L=, A(I)J_ij = 7 L—2(a + qb6)b[i]] ~ 0,
T VA (C1)
. . N . 1, 3
T(I)J_z‘j = jl L —2(a + gbe)"b;; = 0, Y, = 7 t—2(a + gbe)b; =0,
and the secondary Hamiltonian constraints are given by
- 5T - ] -
H, = J(le — (a + gbg)(R7;; — 4b’7)) — i;V 7, (C2a)
H o = peyphlo B — b,V 78 — 2a + beq) R, (C2b)
. A i T, 1 -
= I —(a+ qbﬁ)TJ_,—] + psll—]<4—jl + E(a + qbﬁ)bk,;) =~ 0, (C20)
. 5 ] ST )
H,. ~ Tl +2(a + gbe)TX . + vi<2—jl +(a+ qbé)z;k,;) ~ 0. (C2d)

The consistency condition of V(iD,- can be expressed in the
form

5 1 ~ a+qb6+a27:7l; a+qb6+a27:TJ_,—
Xi:_j-[J_i_i —F— —=—.

2 ar J ar J
(C3)

For a + gbg # 0 and a + gbg + a, # 0, the type and the
number of constraints remains the same as in the full
nonlinear theory, and we have the canonical stability under
linearization.

|
1. The case a + gbs= 0

In this case, the analysis depends on the value of p.

(i) For p # 0, the six secondary constraints F ), =
(H,,H,, .’7—[,—]—, H |,), in conjunction with ¥ ®, =0
take, respectively, the following form:

N

0=0, "M, ~0, #,.~0. (C4)

=0,

Thus, Y; and H o are identically satisfied, and
there are no SC constraints, N, = 0. Hence, the
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number of FC constraints is Ny =6+6—2 +
8 = 18 and consequently, there are no propagating
modes: N*=2X18—-2X18—-0=0.

(ii) For p = 0, the constraints FH ,, in conjunction with

ch),— = (, read
ZS].:[J_ - }Tlivaﬁ'ia = O, Eiavﬁﬁ'i’g% O,
~ S X
g II
0~0, T4 v,-(—_i> ~ 0. (C5)
J 2J
Taking into account the form of ¥., the set F ),
reduces to
5.,~0  SE~o0, ‘M, =0

Thus, we again have N; = 18, N, = 0,and N* = 0.

2. The case a + gbg + a, = 0
Compared to the generic case, this condition induces the
following change: Eq. (C3) implies that j; is identically
satisfied, whereas " ® i becomes FC. Thus, N, =6 + 6 +
2 =14, N, = 10 — 4 = 6, and consequently, N* = 2.

0 0 —4a 0

0 {Td)ij’ T¢mﬁ} 0 0 {T¢T.7’ T(DJ.YM}
AT=10 0 {15 d’ij} {d,ll_’Scpl} {15 T(DJ_'M}

47” _{(Z’J_D Sq)l} 0

0 _{T¢ij! Tq)lﬁm} _{¢J_7» Tq)lﬁm} 0

one obtains the result displayed in Eq. (6.7).

APPENDIX E: ON THE CONDITION “7;; = 0

In this appendix, we wish to clarify the phenomenon of
constraint bifurcation in the spin-0~ sector, where the field
equations take the form:

2a38ijkvkﬂ + T]ij(a3ﬂ2 - bsR[l]]R[U] - 2A0)

8a
+ T3 ﬂ&‘(l'mntj)mn - 2a38,-jkaﬂl,

2aG; + 2bsRi;G;" = 0. E1)
Timn(anik + bSR[ik]) + b5v[m(Rn]k - Rkn])
+ 2(138kmnﬂ = O (EZ)

Condition Aﬁ'ﬁ = 0 is equivalent to A = 0. Now, the
equations of motion take the following form:
Zan,- + 2b5R[in]Gjn - nl](bsR[U]R[lj] + 2A0) = 0.
(E3)
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APPENDIX D: THE ALGEBRA OF ICS
IN THE 0~ SECTOR

The nontrivial PBs between the primary ICs Y, =
G, T, ) 15D, TD) in the spin-0~ sector read

4a

J
o 1 DN o
mn\l ~ __ m. ) — m n

Ui "0, "7} = = 5[0, 15" — 2a875,"15,

{'s, SCDJ_} ~——3,

2. 1y
1o 1n d)J_j} = ﬁA’iTz]& {d 15 S‘I)J_} =~ ﬁvﬂi&

1/1 N .
{15 Tq)l,;”-,} =~ ﬁ(i n;ﬁﬁvnf - Th‘(rhvnﬁ)

— 4aJn(m77;,,))6. (D1

Calculating the determinant of the 8 X 8 matrix A, =
{YM’ YN}7

|
T' (@ + bsRi)) + bsVi (R — Riy) = 0. (E4)

Let us now analyze Eq. (E3). The ij={LlL1l,71}
components are given by

Vi
- II
—aR';; +2Ay — 7 Ry;
1 VI VAT o ATy ATYIT

TR QTILII" + 1L 75 Ir'yy=0, (E5)

14 AT

I1; I,

2aRy;+ Gy + JJ"/RLJ=O. (E6)
They represent secondary FC constraints H | and H; :=

heH .

The condition Aﬁ;]- = ( leads to the appearance of the

additional constraints in the theory. Namely, ij ={[77],[ L 7]}
components of the (E3) are given by

(2a + bsRy )L ;5 + 265" IR 5 = 0, (E7)

2a"11; = bs("TL,G + 411 5R 7 + VTT,G) = 0.
(E8)

Since
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1 1 N N -
- YTV + 11, AT ”—6A]
a [4b5J2 ( 17j ) 0
| -
Gii=—5R; (E9)
Eq. (E7) is an additional constraint in the theory.
Let us note that 77 components of (E3) read
A
I L r L vy viym
<2anlk + Jz )ij — nl_j_[w( ;" 11
+Aﬁ“ﬁ*‘nl"‘m)+2/\0]= (E10)
Equation (E10) can be solved for G-’E since
AT ATy A mi
IT |, I, ;- 11,
detI:Zan,k + Jl k:l = 4a* + m2"J2 >0
Thus, three equations (E7) and (E8) and the condition
Aﬁ'ﬂ = 0 describe four additional SC constraints (if any of

these were FC, the number of DoF would be negative).
This implies N* = 0, and the two propagating modes of the
generic case are eliminated.

APPENDIX F: THE LINEARIZED SPIN-0~ SECTOR

In this Appendix, we present the canonical structure
of the linearized spin-0~ sector around the maximally
symmetric background. We start by noting that

A

j 26138J_ ‘/,_Zl,

~

where A = p. Then, for p # 0, Eq. (6.7) implies that
the determinant A~ is positive definite, so that the canoni-
cal structure remains the same as before linearization;
see Sec. VI. Moreover, in that case the spin-0~ mode is
massless; see (3.8¢).

To see what happens in the complementary case p = 0
(the spin-0~ mode is either massive or massless), we start
with

T = 2a380"‘ﬁ5iﬁjl,
I:Iija = _28i.jk[a80aﬁb~kﬂ + bSEkpS[an(kVOJ - RO]V)]:

and find the following primary ICs:

Shi= o =0, Th. =~
§ = biy =
- B - i _
¢J_i = #;l =~ 0, S@J_ = jl + 2abl; ~ U,
T
- 1y, -
T}, = J_L” —2a"h;; = 0. (F1)
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The only nontrivial PBs between the primary ICs are

(F2)

7

- ST
H, = J[z — a(R";; — 4b'; )]
5i[a = l;’_a[—q(vﬁl- —2alb,;) — vﬁﬁ'iﬁ —2aJR ;)
-~ ~ A%l—- Vﬁ— ~
.7‘[17 ~aT ;; + 2j1 + V[i( j’]] - Zablﬂ),
oy~ aV+ L9 Ut 2ab 3
Lr=a 1’+§ 7 avr ) (F3)

Moreover, j—[a can be used to find 5:[1— = ﬁ;“ﬂa/j:

vz P
- I1. . __Adr; <
g—[l_z —q( j ! —2abJ_,-) + V/ 7; _2dRJ_;.

According to (F2), the consistency of the primary ICs
(5, Tp; 5D, T D) results in the determination of the multi-
pliers (Su, Tu;5v, Tv), whereas the consistency of & ;
yields a new, secondary IC:

A \4

=

S

T

VJ

(a — qb5)< L 2al§l,—) ~0. (F4)

~i

L
" by

~i

The PB of ¢~>~ 17 with its own (modified) secondary pair
X5 =X;— .’}'-[j— reads

2

{(ill’ } - 771]6 (FS)

Thus, the consistency condition of j/; leads to the deter-
mination of the multiplier u | ;.

According to Egs. (F2) and (F5), the ten ICs X, =
56,5d, Tg{;,-j, T(i)lij, & 1 ¥} are SC. Hence, N = 18,
N, = 12, N, = 10, so that N* = 2 (one Lagrangian DoF).
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“Exotic’’ black holes with torsion
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In the context of three-dimensional gravity with torsion, the concepts of standard and “‘exotic”
Bafiados—Teitelboim—Zanelli black holes are generalized by going over to black holes with torsion.
This approach provides a unified insight into thermodynamics of black holes, with or without torsion.
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L. INTRODUCTION

Recently, Townsend and Zhang [1] examined thermo-
dynamics of “‘exotic”’ Bafiados—Teitelboim—Zanelli (BTZ)
black holes—the solutions of a class of three-dimensional
(3D) gravity models for which the metric coincides with
the standard BTZ metric [2] but for which the conserved
charges, energy, and angular momentum, are, in a sense,
reversed (as explained in Sec. III). Their analysis was
focused on a simple model of this type, described by the
parity-odd gravitational Lagrangian that Witten [3] named
exotic. In this framework, the authors discussed basic
thermodynamic properties of the exotic BTZ black holes
(that is, the standard BTZ black holes viewed as solutions
of the exotic model).

In Ref. [1], general relativity with a cosmological
constant (GR,) and the exotic gravity are treated as
independent models, based on the Riemannian geometry
of spacetime. In the present paper, we show that these
two models can be naturally interpreted as different sectors
of a single model—the Mielke-Baekler (MB) model
of 3D gravity with torsion [4]. This approach offers a
unified view at GR, and the exotic gravity, revealing a
new, ‘‘interpolating” role of torsion with respect to
Riemannian theories of gravity. In this, more general,
setting, standard BTZ black hole solutions can be general-
ized to BTZ-like black holes with torsion [5-T7]; see also
Ref. [8]. At the same time, their thermodynamic properties
[9,10] allow us not only to simplify the considerations
presented in Ref. [1] but also to generalize them.

II. 3D GRAVITY WITH TORSION

In the Poincaré gauge theory [11-13], the basic dynami-
cal variables are the triad e’ and the Lorentz connection w'/
(1-forms). Their field strengths, expressed in terms of the
Lie dual connection ' := —1&"%w;, are the torsion
T'=de' + e w;e; and the curvature R’ = do' +
16w w; (the exterior product sign A is omitted for
simplicity). In this framework, the MB model is defined
by the Lagrangian
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*‘mvasilic@ipb.ac.rs

1550-7998/2013/88(10)/101501(3)

101501-1

PACS numbers: 04.70.Dy, 04.60.Kz

A |
Ly = 2ae'R; — Esijke’e/e + asLeg(w) + aqe' T,
(1)

Here, Lcs(w) = w'dw; + 16,0 w/w* is the Chern—
Simons Lagrangian for o', and (a, A, as, ay) are free
parameters. In the nondegenerate case aszay — a’ # 0,
the variation of Ly with respect to e/ and ' leads to
the gravitational field equations in vacuum:

2T' = pe'jelet, 2R' = gq&' elek, ()
where
_a3A + aya _ (ag)? +aA 3)
a3y — 612 ’ a3y — a2 '

Using Eqs. (2) and the formula o’ = &' + K, where &' is
the Riemannian (torsionless) connection and K’ is the
contortion 1-form, defined implicitly by 7; = ¢;,,,K™e",
one can show [6,14] that the Riemannian piece of the
curvature, R = R(®), reads

1
Aggr '=q — = p?, “4)

i — i ik
2R' = A’ el et 1

where A is the effective cosmological constant.

In the anti-de Sitter (AdS) sector with A = —1/€2, the
MB model admits a new type of black hole solutions,
known as the BTZ-like black holes with torsion [5-7].
These solutions can be determined in two steps. First, by
combining the form of the BTZ black hole metric,

ds* = N?dt* — N72dr* — r*(de + N,d1)?,
> 16G?j?

with the relation ds® = 7,;e'e/, one concludes that the
triad field can be chosen in the simple, diagonal form:
®=Ndi, e'=N"'dr, e=r(de+N,ydi). (5a)

Then, the connection is determined by the first field
equation in Egs. (2):

w'= o'+

(S as !

e'. (5b)

© 2013 American Physical Society
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The pair (¢, ') determined in this way represents the
BTZ-like black hole with torsion [5-7]. The thermody-
namic aspects of the new black holes are given as follows.

Energy and angular momentum of the black hole with
torsion, defined as the on-shell values of the asymptotic
generators for time translations and spatial rotations, have
the following form [5,14]:

_ aszp as
E = 167TG|:<a + T)m - ﬁ]]’

J= 1677(;[((1 + %)j - a3m:|.

In contrast to GR,, where E = m and J = j, the presence
of the Chern—Simons term (@3 # 0) modifies £ and J into
linear combinations of m and j.

After choosing the AdS asymptotic conditions, the
Poisson bracket algebra of the asymptotic symmetry is
given by two independent Virasoro algebras with different
central charges [6,14]:

= 2477[(a + ‘%”)e = a3]. (7)

The partition function of the MB model, calculated in
the semiclassical approximation around the black hole with
torsion, yields the following expression for the black hole
entropy [9],

5= 8712[(a i ﬂ)m - a3%:|, (8)

(6)

2

where r. are the outer and inner horizons of the black hole,
defined as the zeros of N2. The gravitational entropy
Eq. (8) coincides with the corresponding statistical entropy
[10], obtained by combining Cardy’s formula with the
central charges shown in Eq. (7). The existence of torsion
is shown to be in complete agreement with the first law of
black hole thermodynamics.

I11. SPECIAL CASE: RESULTS
OF TOWNSEND AND ZHANG

After clarifying basic thermodynamic aspects of black
holes with torsion, the two types of black holes discussed
in Ref. [1] can be given a unified treatment by considering
the related limiting cases of the MB model.

For a3 = a4, =0 and 16wGa = 1, the MB model
reduces to GR,, the spacetime geometry is Riemannian
(p = 0), and formulas (6)—(8) produce the standard ex-
pressions for the conserved charges, central charges, and
entropy:

T

3¢ 2
J= cF = § ="+

26 4G -
Since 27rr, is the length (“‘area’) of the outer horizon, the
entropy has the usual Bekenstein—-Hawking form.

Similarly, for a = A = 0, the MB model reduces to
Witten’s exotic gravity with the Riemannian geometry of

E=m,

€))
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spacetime. By choosing 16mGa; = —¥, one arrives at the
exotic conserved charges, central charges, and entropy,

J L3¢ _2mr_
' T 2G’ 4G’
which coincide with those in Ref. [1]. Since A = —1/€>
implies 167Ga, = —1/€, the corresponding exotic
Lagrangian is also the same as in Ref. [1].

These considerations, based on our earlier studies of
black holes with torsion, provide a simple way to under-

stand somewhat enigmatic relation between the standard
and exotic black hole thermodynamics.

E= J=4tm, c*= S (10)

IV. GENERALIZATION: STANDARD AND EXOTIC
BLACK HOLES WITH TORSION

In the previous section, the concepts of standard and
exotic black holes are used in the context of simple gravi-
tational models with the Riemannian geometry of space-
time. Here, we wish to generalize these concepts by going
over to black holes with torsion.

The form of the general results (6)—(8) suggests intro-
ducing standard black holes with torsion by imposing the
following requirements:

a3 =0, 167Ga = 1. an

In this case, the general formulas reduce to the standard
form (9), and the corresponding 2-parameter Lagrangian is
given by

1
L =
587G
The AdS condition,

3 a42 A 1
A~ = | = +i=—i,
eff 4<a) a £

. A o .
e’R,- - gsijkelejek + a4e’Tl-. (12)

implies A <O0.
Similar considerations lead to the following definition
of exotic black holes with torsion:

azp

a+ T = O, 167TGCY3 = _6, (13)

which implies that the conserved charges, central charges,

and entropy take the exotic form (10). The corresponding
2-parameter Lagrangian can be written in the form

1 i IB(B2 + 3) i
Ly = e [2,86 R, + 30 Eijke elek
2+,
- €LCS - B 1 e’Ti], (14)

where B = 1677Ga and ¢ are free parameters.

In the limit p =0, Lg and Lg describe torsionless
theories discussed by Townsend and Zhang [1]; thermody-
namic aspects of the corresponding black holes are given in

101501-2
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(9) and (10). All the other limits define the standard and
exotic gravities with torsion. In particular, for the choice
g = 0 (that is, by taking (a4)*> + A/16rG = 0 in Lg and
B =1 1in Lg), the geometry of these models becomes
teleparallel (R' = 0).
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ACKNOWLEDGMENTS

M. B. thanks F. W. Hehl for bringing the paper [1] to his
attention. We acknowledge the support from Grant
No. 171031 of the Serbian Science Foundation.

P.K. Townsend and B. Zhang, Phys. Rev. Lett. 110,
241302 (2013).

M. Baiiados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett.
69, 1849 (1992).

E. Witten, Nucl. Phys. B311, 46 (1988).

E. Mielke and P. Baekler, Phys. Lett. A 156, 399
(1991).

A. Garcia, F.W. Hehl, C. Heinicke, and A. Macias, Phys.
Rev. D 67, 124016 (2003).

M. Blagojevi¢ and M. Vasili¢, Phys. Rev. D 68, 104023
(2003).

E.W. Mielke and A.A.R. Maggiolo, Phys. Rev. D 68,
104026 (2003).

M. Blagojevi¢ and M. Vasili¢, Phys. Rev. D 67, 084032
(2003).

(91
[10]

[11]
[12]

[13]

[14]

101501-3

M. Blagojevi¢ and B. Cvetkovi¢, Classical Quantum
Gravity 23, 4781 (2006).

M. Blagojevi¢ and B. Cvetkovi¢, J. High Energy Phys. 10
(2006) 005.

T. W.B. Kibble, J. Math. Phys. (N.Y.) 2, 212 (1961).

D. W. Sciama, Recent Developments in General Relativity,
Festschrift for Infeld (Pergamon, New York, 1962), p. 415.
Gauge Theories of Gravitation, a Reader with
Commentaries, edited by M. Blagojevi¢ and F. W. Hehl
(Imperial College Press, London, 2013); a review of 3D
gravity with torsion can be found in Chap. 17.

M. Blagojevi¢ and B. Cvetkovi¢, Trends in General
Relativity and Quantum Cosmology, edited by C.
Benton, Vol. 2 (Nova Science Publishers, New York,
2006), p. 103.

RAPID COMMUNICATIONS


http://dx.doi.org/10.1016/0375-9601(91)90715-K
http://dx.doi.org/10.1016/0375-9601(91)90715-K
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://dx.doi.org/10.1103/PhysRevD.68.104023
http://dx.doi.org/10.1103/PhysRevLett.110.241302
http://dx.doi.org/10.1103/PhysRevD.67.124016
http://dx.doi.org/10.1103/PhysRevD.67.124016
http://dx.doi.org/10.1103/PhysRevD.67.084032
http://dx.doi.org/10.1103/PhysRevLett.110.241302
http://dx.doi.org/10.1103/PhysRevD.67.084032
http://dx.doi.org/10.1088/1126-6708/2006/10/005
http://dx.doi.org/10.1103/PhysRevD.68.104026
http://dx.doi.org/10.1016/0550-3213(88)90143-5
http://dx.doi.org/10.1063/1.1703702
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://dx.doi.org/10.1103/PhysRevD.68.104026
http://dx.doi.org/10.1088/0264-9381/23/14/013
http://dx.doi.org/10.1103/PhysRevD.68.104023
http://dx.doi.org/10.1088/0264-9381/23/14/013
http://dx.doi.org/10.1088/1126-6708/2006/10/005

Classical and Quantum Gravity

PAPER
A black hole with torsion in 5D Lovelock gravity

To cite this article: B Cvetkovi and D Simi 2018 Class. Quantum Grav. 35 055005

View the article online for updates and enhancements.

This content was downloaded from IP address 147.91.1.41 on 21/03/2018 at 10:46


https://doi.org/10.1088/1361-6382/aaa3a7

10P Publishing Classical and Quantum Gravity

Class. Quantum Grav. 35 (2018) 055005 (13pp) https://doi.org/10.1088/1361-6382/aaa3a7

A black hole with torsion in 5D Lovelock
gravity

B Cvetkovi¢® and D Simi¢
Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

E-mail: cbranislav@ipb.ac.rs and dsimic @ipb.ac.rs

Received 6 November 2017, revised 18 December 2017
Accepted for publication 22 December 2017
Published 31 January 2018

CrossMark

Abstract

We analyze static spherically symmetric solutions of five dimensional (5D)
Lovelock gravity in the first order formulation. In the Riemannian sector,
when torsion vanishes, the Boulware—Deser black hole represents a unique
static spherically symmetric black hole solution for the generic choice of
the Lagrangian parameters. We show that a special choice of the Lagrangian
parameters, different from the Lovelock Chern—Simons gravity, leads to the
existence of a static black hole solution with forsion, the metric of which is
asymptotically anti-de Sitter (AdS). We calculate the conserved charges and
thermodynamical quantities of this black hole solution.

Keywords: Lovelock gravity, torsion, black holes

1. Introduction

Lovelock gravity [1] represents an intriguing generalization of general relativity, since it is a
unique, ghost-free higher derivative extension of Einstein’s theory that possesses second order
equations of motion. As a higher curvature theory, Lovelock gravity has a considerable num-
ber of black hole solutions—see [2—10] and references therein. Many of these possess exotic
properties, such as zero mass, peculiar topology of the event horizon etc.

This leads us to an old problem of black hole uniqueness—namely, solutions of general
relativity are highly constrained, but the situation changes drastically in the case of higher
dimensions. There are new black hole solutions with non-spherical event horizon topology,
namely black string, black ring and black brane [11]. Often, these exotic black objects suffer
from various instabilities—for example, black strings and branes have Gregory—Laflamme
instability [12], and will decay into black holes with spherical horizons. Thus, gravity in
higher dimensions represents an interesting area of research, full of surprising discoveries,
whose importance stems from its numerous applications.

Lovelock gravity can be also studied within the framework of Poincaré gauge theory (PGT),
formulated by Sciamma [13] and Kibble [14] more than half a century ago. PGT is the first
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modern, gauge-field-theoretic approach to gravity obtained by gauging the Poincaré group of
space-time symmetries, the semidirect product of translations and Lorentz transformations.
It represents a natural extension of the gauge principle, originally formulated by Weyl within
electrodynamics and further developed in the works of Yang, Mills and Utiyama, to the space-
time symmetries. The gauge procedure adopted leads directly to a new, Riemann—Cartan
geometry of space-time, since torsion and curvature are recovered as the Poincaré gauge field
strengths. The Lagrangian in PGT contains a gravitational part, which is a function of the field
strengths, the curvature and the torsion, and a suitable matter field Lagrangian.

In the context of Lovelock gravity, this more general setting contains torsionless theory
as a limit, and represents a starting point for canonical analysis, coupling with matter fields,
supersymmetric extensions of the theory and holographic applications. Interestingly, unlike
in the case of Einstein—Cartan theory (first order formulation of general relativity) where all
solutions of the equations of motion in vacuum are torsion free, the structure of the vacuum
solutions of the Lovelock gravity is more complicated, because there exist solutions with
non-vanishing torsion. However, it turns out that exact solutions with torsion are extremely
difficult to find, since consistency conditions usually lead to an over-constrained system of
equations. Solutions with non-trivial totally antisymmetric torsion have been studied in [8],
[15-19]. In this paper, we continue our analysis of the exact solutions of 5D Lovelock gravity
solutions with torsion, started in [8], and find a new static, spherically symmetric black hole
solution with torsion with zero mass and entropy. The torsion of the solution possesses both
tensorial and antisymmetric part. It, unlike the Riemannian Boulware—Deser black hole [20],
exists for a specific choice of action parameters. This fine tuning of action parameters was first
noticed by Canfora et al in their paper [15], and represents a different sector from the highly
degenerate Lovelock Chern—Simons gravity.

The paper is organized in the following way. In the second section, we review basics of
Poincaré gauge theory and Lovelock gravity in the first order formulation. In section 3 we
find the black hole solution of 5D Lovelock gravity with torsion, and analyze its properties.
In particular, we find that the quadratic torsional invariant is singular at r — 0. In section 4,
we explore the thermodynamics of the previously obtained solution. The appendices contain
additional technical details.

We use the following conventions: the Lorentz signature is mostly negative; local Lorentz
indices are denoted by the middle letters of the Latin alphabet, while space-time indices are
denoted by the letters of the Greek alphabet. Throughout the paper, we mostly use differential
forms instead of coordinate notation, and the wedge product is omitted for simplicity.

2. Lovelock gravity

Since the work of Sciamma and Kibble, it has been known that gravity in the first order form-
ulation has the structure of Poincaré gauge theory (PGT)—see [21, 22] for a comprehensive
account. For the reader’s convenience, we briefly review basics of the PGT.

2.1. PGT in brief

The basic dynamical variables in PGT, playing the role of gauge potentials, are the vielbein
¢' 1-form and the spin connection w? = —w’ 1-form. In local coordinates x*, we can expand
the vielbein and the connection 1-forms as e’ = ¢/, dx, w' = w',dx". Gauge symmetries of
the theory are local translations (diffeomorphisms) and local Lorentz rotations, parametrized
by & and €V respectively.
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From the gauge potentials, we can construct field strengths, namely torsion 7* and curva-
ture RY (2-forms), which are given as

. . . . 1 .
=Ve' =de' +e'jw! A & = ET’de“ Adx”,
RV = dw’ + w* A w = ER'/de“ Adx”,
where V = dx*V , is the exterior covariant derivative.
A metric tensor can be constructed from the vielbein and flat metrics: 7);
g =mye' ®e! = g d @dx”,
v = Tié ueu, nij:("‘,_,_)-
The antisymmetry of w¥ in PGT is equivalent to the so-called metricity condition, Vg = 0. A
geometry whose connection is restricted by the metricity condition (metric-compatible con-
nection) is called a Riemann—Cartan geometry.
The connection w? determines the parallel transport in the local Lorentz basis. Because

parallel transport is a geometric operation, it is independent of the basis. This property is
encoded into PGT via the so-called vielbein postulate, which implies

wik = Ay + Kijie»

where A is Levi-Civita connection, and Ky = —%(T,-jk — Tyj + T}k,-) is the contortion.

2.2. Action and equations of motion

The Lovelock gravity Lagrangian in the first order formulation can be constructed as the linear
combination of the dimensionally continued Euler densities L,, which in D dimensions are
defined as

Ly, = iy ipR2 . RE—1 ot ol0,
In 5D, there are three Euler densities and the general form of the action of Lovelock gravity
[1]is

I= 6ijk1,,/ ( 506 eldtele + 3 Y Riigkel e + apRVRM ¢ ”) ) 2.1

Variation of the action with respect to vielbein ¢’ and spin connection w? yields the gravi-

tational field equations

Eijkin (aoefe ele" + a R*ele" + azR]le") =0, (2.2)
and

Eijkin (oqekel + 2042Rkl) T" = 0. (2.3)

3. Spherically symmetric solution

3.1. Ansatz

We are looking for a static solution with SO(4) symmetry, which orbits are three-spheres.
The most general metric which fulfills these requirements in Schwarzschild-like coordinates
x* = (t,r,1,0,p)is given by
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ds®> = N2dr* — B=2dr? — 2(d? + sin® 1d6? + sin® ¢ sin® d?), (3.1)

where functions N and B depend solely on r, and r € [0,00), ¥ € [0,7), 6 € [0,7) and
© € [0,27). The metric (3.1) possesses seven Killing vectors (see appendix A).
The vielbeins ¢’ are chosen in a simple diagonal form

&’ = Ndt, el =B 'dr, &= rdy, & = rsin 1dé,

4

(3.2)
e’ = rsiny sin fdp.

The most general form of the spin connection compatible with Killing vectors (see appendix
A) is given by

WO = Agdr + A dr, W = Ardep,

w® = A, sindd, w™ = A, sin v sin 6de,

wh? = A3dv, wh? = A, sin 1d#,

w' = A3 sin ¢ sin 6de, w? = cos1pdf + A4 sin ) sin Ode,

w* = —Aysinpdf + cos 1 sin fdep, W = Ayde) + cos Bdep, (3.3)

where A; are arbitrary functions of radial coordinate.

3.2. Solution

The sector with vanishing torsion equations of motion for spherically symmetric ansatz has
a well-known solution, the Boulware—Deser black hole [20], which exists for the generic
choice of action parameters. Another solution, which we construct in this paper, possesses
non-vanishing torsion and is given by the following anzatz:

Ag#0, A=Ay =A;=0, A;#0

3.4
N =B. G4
By using the adopted anzatz we get that the equations (2.2) reduce to
i=0,1: 2001 — ay + A] =0, (3.5q)
i=2,34: (200 — 2045 — a1 1?) Ay + 6agr” + v (A7 — 1) = 0.
3.5
The non-vanishing field equations (2.3) take the form G-0)
jj=01: a7 + 200A% — 205 + daprAsAlL = 0, (3.6a)
ij=12,13: (a1r® + 20045 — 200) (NN’ + Ag) + 204rN* =0,  (3.6b)
ij =23,24,34 —2A) + a; = 0. (3.6¢)
From (3.5a) and (3.6¢) we get
20[() ) (7]
A4 = 1——r N AQ = —7, (37)
(03] 2&2

where the integration constant in Ay is taken to be zero for simplicity. Equation (3.5b) in con-
junction with (3.6¢) yields to the following constraint between coupling constants:
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oF — 12ap0; = 0. (3.8)
We consequently get that (3.6a) is identically satisfied, while the (3.6b) takes the form
3N?
NN+ - 2L,
r 200

and can be easily solved for N:

8
o (673} l"+

From (3.8), we conclude that the solution exists in the sector different from the Lovelock
Chern—Simons gravity. This is exactly the same fine tuning of parameters found by Canfora
et al in their paper [15], where the solutions that have the structure of a direct product of a 2D
Lorentzian with a 3D Euclidean constant curvature manifold are constructed.

The explicit form of torsion and curvature is given in appendix C. Let us note that both
tensorial and antisymmetric part of torsion are non-vanishing unlike in the case of the solu-
tion found by Canfora et al [16], for which only totally antisymmetric part of torsion is
non-vanishing.

Let us now introduce the (anti)-de Sitter ((A)dS) radius ¢

« g
]:_ﬁ’ o=+l (3.10)

8ay

By substituting previous relation into (3.7) and (3.9), we get

4012 r2 r§_
A= 1+ 3 v— a<€2_W)>. G.11)

Note that for the solution to describe a black hole, the following condition must hold:
g
— <0 o=+1
o o=+ (3.12)

with an event horizon located at r = r .
From the constraint (3.8), it follows that the sign of the ratio g—? is the same as the sign of 3—;

(7)) (673
sgn <) = sgn <> . (3.13)
(03] (0%)

If the ratio is positive, the expression for A4 implies that we have the maximum value of the
radial coordinate, the so called cosmological horizon

Y
=

Meanwhile, if the ratio is negative, we have no restriction on the value of the radial coordi-
nate, except that it is positive, and in maximally extended space-time goes to infinity. In this
case, the black hole space-time metric is asymptotically AdS.

ro (3.14)

3.2.1. Invariants. From expressions for curvature and torsion, given in appendix C, we see
that quadratic torsional invariant reads
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< 12 8
TN T, = 772" <1 - ;;) 3 (3.15)

which is obviously divergent in r = O for r different from zero. Hence, there is a singularity
of torsion at r — 0. Scalar Cartan curvature is constant,

160

R— - (3.16)
while Riemannian scalar curvature is

- 4o 302 3r§_

R = 7 (5 ~ 5 r8) , (3.17)

and is divergent for r — 0. The quadratic Cartan and Riemannian curvature invariants both
vanish:

R; N*RV =0, R;A*RV=0. (3.18)

We can conclude that the black hole obtained in this article is not of the regular type, and
that it possesses singularity at r = 0. It is worth noting that solution [16] also possesses singu-
larity of torsion and Riemannian curvature at r = 0.

Solving equations of motion (2.2) and (2.3) with seven arbitrary functions is an extremely
tedious task, which is facilitated by Mathematica and xAct packages.

3.3. Conserved charges

Conserved charges can be calculated in a number of ways, we decided to make use of Nester’s
formula [23], the application of which is quite simple in this particular case. In this section, we
shall restrict the analysis to the asymptotically AdS case, which corresponds to the black hole.
The covariant momenta stemming from the Lovelock action (2.1) are given by

OL

7= o =0, (3.19)
OL

pij = R 2¢€jjkin (%ekel + 2042Rkl) e'. (3.20)

Let us denote the difference between any variable X and its reference value X by AX = X — X.
Reference space-time, in respect to which we measure conserved charges, is given for the zero
radius of the event horizon r, = 0. Conserved charges Q¢ associated to the Killing vector {
are given by quasi-local surface integrals

Q§=/ B,
%

where the boundary 0¥ is located at infinity. With a suitable asymptotic behavior of the fields,
the proper boundary term reads [23]

. . _ 1 i i 1 i — 7
B = (§J el)ATi + Ae’(fj T,') + E(fj OJj)Api] + EAL«)](SJ p,']) N (321)
where | denotes contraction.

For solution (3.9), by making use of the the results of appendix C, we get the covariant
momenta
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4 (a? — Rapa 8 8
po1 = Mffze%4 =V, P02 = —ﬂ€1€364, P03 = ﬂ€1€2€4,
(63} 3 3

_ 8aq j 55 _8au o34 AN 4,

Pos = 3eee, P2 = 3eee 3A4e ,
8 4o N 8 41N

o3 = — ‘;1 024 30[1414 eled, pra = 21606263 . ;414 elet
p23 =0, pas =0, P4 =0. (3.22)

From (3.9), we conclude that the connection takes the same form on the background and
for ry # 0, w¥ = &Y. Therefore, formula (3.21) takes the following simpler form:

B= () w)an

For the seven Killing vectors £,,) (see appendix A) the conserved charges are given by
[0 =/ W Apor =0,
ax
Om = / —cot ¢ sin@ (w?gAprs + wgApay) =0,
s

Qp) = / cot ¢ cos 0 cos p (w239Ap23 + w249Ap24)
%

cot
sin 6

Qi) = /a cot 1 cos fsin ¢ (w9 Apas + w9 Apas)
>

ot
+ sin 0

Ou) = / cos @ (w239AP23 + w249Ap24)

oz
— cot fsin (wM(pApM + w23<pAP23 + w24¢Ap24 T w34¢Ap34) —0.
Qi) = / sin g (w9 Apas + weApas)

ax

+ cot B cos p (w' o Apis + w? o Apas + w L Apay + W, Apss) =0,

sing (W, Apis + w o Apas + w™ Aoy + w¥ o Apss) =0,

cos ¢ (wMWApM + wB,Apxs + w  Apas + w34¢Ap34) =0,

Q) = /32 (chpAPM + w23¢AP23 + w24<pAP24 + w34tpAp34) =0.
(3.23)
Therefore, we conclude that conserved charges for the black hole with torsion (3.9) van-

ish. In particular, conserved charge Q), which corresponds to the energy E of the solution,
vanishes due to the specific choice of the parameters o2 = 12apa.

4. Thermodynamics

By demanding that Euclidean continuation of the black hole has no conical singularity, we
obtain the standard formula for the black hole temperature
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2/
7= M) l=r, (4.1)
4
In the particular case of the solution (3.9) we get
2V+
T=—. 4.2
s (4.2)

The temperature is positive because solution (3.9) describes black hole iff condition (3.12) is
satisfied. Let us note that this type of relation between temperature and the radius of the event
horizon is unusual for black holes with spherical horizons. The relation (4.2) is standard in
the case of planar black holes (black branes) or black holes in three space-time dimensions.

4.1. Euclidean action

Using the equation of motion (2.2), on-shell Euclidean action takes the form

2000 ;i 4o
Iy = Ez:/kzm/ (?R”ekele’" + Soe’e e"e’e’") (4.3)
After substituting the solution (3.9), we get
—12
Iy = / dt / dr / dupdgdy, M1~ 120002) a‘m) P sin? ¢ sin 6, 4.4)

where the integration over time is performed in the interval [0, 5 := 1/T]. By using the con-
straint on the parameters (3.8), we conclude that

I =0. 4.5)
From the well-known formula for the entropy

§ = (B9 — DI, (4.6)
we obtain

S=0. 4.7

This value of entropy is surprising, but it is not uncommon for Lovelock black holes—see for
instance [24], where black holes with zero mass and entropy are obtained. From Euclidean
action we can, also, calculate the energy

E = 03lg, (4.8)
and obtain
E =0, 4.9)

in accordance with the results of the previous section.

5. Concluding remarks

We have analyzed static spherically symmetric solutions of Lovelock gravity in five dimen-
sions. For the generic values of the Lagrangian parameters, the theory possesses a well-known
solution, the Boulware—Deser black hole, while in the sector a% = 129y we have discov-
ered a new black hole solution with torsion.



Class. Quantum Grav. 35 (2018) 055005 B Cvetkovi¢ and D Simi¢

We analyzed basic properties of the obtained solution, which torsion possesses non-vanishing
tensorial and totally antisymmetric part. The solution has a singularity of torsion and Riemannian
curvature for r — 0, while the conserved charges, as well as the entropy, vanish.

It is worth stressing that the black hole metric is asymptotically AdS, which is a crucial
condition for holographic investigation. The solution that describes the space-time which is
asymptotically dS, with the cosmological horizon located at ry = 2%‘0, is not a black hole.

An interesting property of the solution in the asymptotically AdS case is that, in the semi-
classical approximation, its entropy is zero. This means that its number of micro-states is
‘small’ i.e. it is of order one instead of the expected O(GLN) It would be interesting to see what

kind of consequences this result has on dual interpretation via gauge/gravity duality.
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Appendix A. Killing vectors for metric (3.1)

In addition to the % Killing vector static and spherically symmetric metric (3.1) possesses six
Killing vectors, due to the SO(4) spherical symmetry. The complete set of Killing vectors 55)
of the metric (3.1) is given by:

f(o) =0,

§(1) = cos 00y, — cot 1hsin 00y,
cot v

§(2) = sinf cos 9y, + cot b cos O cos Dy — — 0 sin 0.,
sin
. . . cot v
§(3) = sinfsin 9y, + cot 1 cos O sin pdy + — g <08 00,
sin

§(4) = cos pdp — cot Osin 0,
§(5) = sinpdp + cot 0 cos 0,
§(6) = Op- (A.D)

The independent Killing vectors are £y, &(1), §4) and (), while the others are obtained as
their commutators. The invariance conditions of the vielbein under Killing vectors and local

Lorentz transformations with parameters €’ jare
i i i
doe,, = Lee, + €e), = 0, (A.2)

where the Lie derivative with respect to £ is denoted as L¢, giving that the only non-zero
parameters of the local Lorentz symmetry are

23 sinf 5, sin ¢
€ =0, = ——". .
sin sin 0 (A3)
Using this and the transformation law for spin connection,
. c —_—
dow!, = Lew)) + € wif + hwii =0, (A.4)

we can derive the most general form of the spherically symmetric spin connection which is
given in the main text, formula (3.3).
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Appendix B. Irreducible decomposition of the field strengths
We present here formulas for the irreducible decomposition of the PGT field strengths in a 5D
Riemann—Cartan space-time [25].

The torsion 2-form has three irreducible pieces:

. 1 .
@i = 20N (] T,

. 1 .
G = ST N bw),

(i — i _ @i _ ()i B
The RC curvature 2-form can be decomposed into six irreducible pieces:
@RI = —* (bl A W), WRI = 2pli A &1,
ORI = —LX*(b' Ab), ORI = LFb AbI,
ORI = Lpli AR | (b N Fy), (R = R — Y6 (@R (B.2a)
where
F':=h, |R"™ = (Ric)),  F:=h|F' =R,
i .__ *(pik 1. i
X =*R*A\by), X :=h | X', (B.2b)
and
B = Fy— 20— Lp 0 A F)
[ L 4 l 2 1 m)s
1 1
Wi i=Xi = 7biX = Shi | (0" A X) (B-20)

The above formulas differ from those in [25] in two minor details: the definitions of F' and
X' are taken with an additional minus sign, but at the same time, the overall signs of all the
irreducible curvature parts are also changed, leaving their final content unchanged.

Appendix C. Torsion and curvature for the solution (3.9)

In this appendix, we give values of torsion and curvature for the black hole solution.

C.1. Riemannian connection and curvature

The non-vanishing components of the Riemannian connection are given by

8
N o (r 3r ~ N - N
o0 — -7 (= J; . o2 =22 o=
/2 \N Nr r r
- cot _ N ~ cot 5 cot 0
OB = JeE’, o= 2t oM — Je“, o= S0 4 (C.1)
r r r rsiny

Riemannian curvature reads

10
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8 8
O (1 - 21r+> %!, R” = % <1 + 3?) e%e?,

S
[\e]

Y4
3 3

503 _ O 3y o5 n4 _ O 3N o4
R 62(1+r8>ee’ R £2<1+r8>€€,
p2_c 1+ ’"i 12 R 1+3’"i 1.3

ﬁ rT e e, ﬁ rT e e,

8 8

sS4 O 3ri\ 14 S04 _ O 3ri\ o4
R 62(1“"’8)6 N R —62(14-’3)66,
,}23_0(1_062 ri)zs R24_"(1 ol ri)u

2 %) i > 2 2 3 >

8

,}34:"(1_052_r+>34 (C2)

02 2 i

Riemannian scalar curvature is
- 4o 302 3%
3a
The quadratic Riemannian curvature invariant vanishes

B A KR _
Rj AR 0. (C.3b)

C.1.1. Torsion and its irreducible decomposition. The non-vanishing components of torsion
are given by
3N
— 20,1
,

N 2A
T3 =—¢'¢® — —46264, T = el + 226265, (C4)
r r r

N 2A
TO T2=—e1e2+—4€3€4
r r

The non-vanishing irreducible components of torsion are

g2 _ Ee1ez,

70 — 3N o1,
r r

W73 _ 56163’ s _ Eelezx,
r r

2A 2A 2A
G2 = 748334, G = _746264’ G4 = 748283‘ (C.5)

The 2nd irreducible component of torsion vanishes as in the case of any solution of Lovelock
gravity, excluding Lovelock Chern—Simons [8]. Quadratic torsional invariant reads

P 120 ri .

Non-zero components of the (Cartan) curvature are

(C.6)

4o 40 N 4
01 0.1 23 _ 1.4 23
R _—gzee, 73£2A74 +f3gzee,
o4 40 N |5 4o , 4 3 40 N |, 40 54

e e == e e .
362 A4 362 362 A4 362 (C7)

1
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Scalar Cartan curvature is constant:

160
¢ (C.8)
Quadratic Cartan curvature invariant vanishes:
R; A*RY = 0.

(C.9)
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Abstract

We outline the results of the canonical analysis of the three-dimensional Poincaré gauge
theory, defined by the general parity-invariant Lagrangian with eight free parameters [I1]. In
the scalar sector, containing scalar or pseudoscalar (A)dS modes, the stability of the canonical
structure under linearization is used to identify dynamically acceptable values of the parameters.

1 Introduction

Models of three-dimensional (3D) gravity, pioneered by Staruskiewicz [I], were introduced to help
us in clarifying highly complex dynamical behavior of the realistic four-dimensional general relativ-
ity (GR). In the last three decades, they led to a number of outstanding results [2]. However, in the
early 1990s, Mielke and Baekler [3] proposed a new, non-Riemannian approach to 3D gravity, based
on the Poincaré gauge theory (PGT) [4]. In PGT, the basic gravitational variables are the triad b’
and the Lorentz connection A% (1-forms), and their field strengths are the torsion 7% := db’ + A%;b7
and the curvature RY := dAY + A%, A™ (we omit the exterior product sign for simplicity). In
contrast to the traditional GR, with an underlying Riemannian geometry of spacetime, the PGT
approach is characterized by a Riemann—Cartan geometry, with both the curvature and the torsion
of spacetime as carriers of the gravitational dynamics. Thus, PGT allows exploring the interplay
between gravity and geometry in a more general setting.

Three-dimensional GR with or without a cosmological constant, as well as the Mielke-Baekler
(MB) model, are topological theories without propagating modes. From the physical point of view,
such a degenerate situation is certainly not quite realistic. Including the propagating modes in
PGT is achieved quite naturally by using Lagrangians quadratic in the field strengths [5l [6].

Since the general parity-invariant PGT Lagrangian in 3D is defined by eight free parameters
[6], it is a theoretical challenge to find out which values of the parameters are allowed in a viable
theory. The simplest approach to this problem is based on the weak-field approrimation around
the Minkowski background [5]. However, one should be very careful with the interpretation of
these results, since the weak-field approximation does not always lead to a correct identification of
the physical degrees of freedom.

The constrained Hamiltonian method [7, [4] is best suited for analyzing dynamical content of
gauge theories of gravity, respecting fully their nonlinear structure. However, as noticed by Yo
and Nester [8, 0], it may happen, for some ranges of parameters, that the canonical structure of a
theory (the number and/or type of constraints) is changed after linearization in a way that affects
its physical content, such as the number of physical degrees of freedom. Such an effect is called

*Based on a talk by MB at New ideas for unsolved problems II, Divécibare, 22-24 Sep 2013, Serbia.
"Email addresses: mb@ipb.ac.rs, cbranislav@ipb.ac.rs
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the phenomenon of constraint bifurcation. Based on the canonical stability under linearization as
a criterion for an acceptable choice of parameters, Shie et al. [10] proposed a PGT cosmological
model that offers a convincing explanation of dark energy as an effect induced by torsion.

In this note, we use the constrained Hamiltonian formalism to study (a) the phenomenon of
constraint bifurcation and (b) the stability under linearization of the general parity-invariant PGT
in 3D, in order to find out the parameter values that define consistent models of 3D gravity with
propagating torsion. Because of the complexity of the problem, we restrict our attention to the
scalar sector, with J£ = 0% or 0~ modes, defined with respect to the (A)dS background [I1].

The following conventions are of particular importance for our canonical analysis. Let M be a
3D manifold (spacetime) with local coordinates z# = (2%, 2%), and h; = h;#9, a Lorentz frame on
it. Then, if X is a 2D spacelike surface with a unit normal ny, each tangent vector V of M can
be decomposed in terms of its normal and parallel component with respect to >:

Vii=npVL + Vi, where V| :=n"V,, Vi=h"V,.

Note that V does not contain the time component of V.

2 Quadratic PGT and its scalar modes

Assuming parity invariance, the dynamics of 3D gravity with propagating torsion is determined
by the gravitational Lagrangian

| o
Lg = —ae,-jkblek — g/losijkbllﬂbk + Lp2 + L2, (1a)

where a = 1/167G, A is a free parameter (bare cosmological constant), the pieces quadratic in
the field strengths read

L2 = T (al(l)Ti + a2(2)Ti + ag(g)Ti) ,

1 .
Lp: = §R” <b4(4)Rij +b5O Ry + bﬁ(ﬁ)Rij) ; (1b)

and (T, and (")Rij are irreducible components of 7% and R¥ [6]. Being interested only in the
gravitational degrees of freedom, we disregard the matter contribution.

Particle spectrum of the theory around the Minkowski background Mj is already known [5] [6].
Restricting our attention to the scalar sector, we display here the masses of the spin-0" and 0~

modes:

3&((1 + ag) 3(1(& + 2(13)

2 2

_—m—m—-—- L = . 2
mo+ 2(b4 2b6) s mg ( ) 5 3)b5 ( a)

These modes have finite masses and propagate if
a2(b4 + 2b6) =0, (a1 + 2(13)b5 75 0, (2b)

respectively.

Transition to the (A)dS background is straightforward; it generalizes the mass formulas (2al)
by introducing a dependence on the parameter ¢ that measures the strength of the background
curvature [I1], but the propagation conditions for the scalar modes remain the same as in (2h)).
As we shall see in the next section, the conditions (2hl), derived in the weak-field approximation,
have a critical role also in the canonical analysis of the full nonlinear theory.



3 Primary if-constraints

The canonical momenta corresponding to the basic dynamical variables (b ;" A ) are defined by
mit = 0L/0(0pb",) and IL;;# := OL/0(0pA" ), respectively. Since the torsion and the curvature
do not involve the velocities b’y and 9yA¥ g, one obtains the primary constraints

0 =0, I,,° ~ 0, (3)

which are always present, independently of the values of coupling constants (“sure” constraints).
If the Lagrangian (I]) is singular with respect to some of the remaining velocities dyb’,, and 9y A¥,,
one obtains further primary constraints, known as the primary “if-constraints” (ICs).

The gravitational Lagrangian (I]) depends on the time derivative dyb’, only through the torsion
tensor, appearing in Lp2. The system of equations defining the parallel gravitational momenta
ik = movk, (fr,-knk = 0) can be decomposed into irreducible parts with respect to the group of
two-dimensional spatial rotations in X:

PLE =5 (ag — a1)T" i = (a1 4+ a2)T| |1, (4a)
S Sﬁ- 7
¢ = 7 = —2a2TmmL, (4b)
An
T 2 2
A = —2 — 201 — a3)T g = — 5 (a1 +2a3) Ty (4c)
J 3 3
T Tﬁﬂc T
G 1= 7 = 201 T (4d)

where the terms depending on the velocities dyb’,, are moved to the right-hand sides. If the critical
parameter combinations appearing on the right-hand sides of Eqs. (4)) vanish, the corresponding
expressions ¢ become additional primary constraints.

Similar analysis can be applied to the equations defining the parallel gravitational momenta
f[ijk = Hijo‘bka (f[ljknk = 0), leading to an additional set of primary constraints ®x. The
complete set of primary ICs, including their spin-parity characteristics (J P ), is shown in Table 1.

Table 1. Primary if-constraints

Critical conditions Primary constraints J%

as =0 S~ 0 o
by +2bg =0 5, ~0
a; +2a3 =0 A~ 0 _
bs =0 Ap | -~ 0 0
a1+ as =0 o, 5-~0 L
by +bs =0 Vo ~ 0
a1 =0 T~ 0 )
by =0 T, 1 ~0

This classification has a remarkable interpretation: whenever a pair of the ICs with specific J¥
is absent, the corresponding dynamical mode is liberated to become a physical degree of freedom
(DoF). Thus, for as(bs + 2bg) # 0, the spin-0" ICs are absent, and the spin-0t mode becomes
physical. Similarly, (a1 + 2a34)bs # 0 implies that the spin-0~ mode is physical. These results,
referring to the full nonlinear theory, should be compared to (2h).



Remark. Once we know the complete set of primary ICs, we can apply Dirac’s consistency
algorithm to obtain the secondary constraints, and so on.

4 Spin-0T sector

As one can see from Table 1, the spin-0" degree of freedom propagates for as(by + 2bg) # 0. In
order to investigate dynamical features of this sector, we adopt somewhat simplified conditions:

ag,bﬁ#o, a1:a3:b4:b5:0. (5&)
While such a “minimal” choice simplifies the calculations, it is not expected to influence any
essential aspect of the spin-0" dynamics [8] [9].
Generic case

Now, we turn to the canonical analysis. First, the form of the Hamiltonian implies that the kinetic
energy density is positive definite (no “ghosts”) if

as >0, bg > 0. (5b)

Second, in the simple, generic situation, when all of the ICs are second class (their number is
Ny = 10), the complete set of constraints is given in Table 2.

Table 2. Generic constraints in the 07 sector

First class Second class
Primary 7Ti07 HZJO Vq)z; A¢7 A(I)7 Tqb) Tq)
Secondary " Ho, My xa

As always, the Hamiltonian constrains H' , H. and ’ng are first class. With N = 2 x 9 field
components, N1 = 2 x 6 first class constraints and Ny = 10 second class constraints, the dimension
of the phase space is N* = 2N — 2N; — Ny = 2, and the theory exhibits a single Lagrangian DoF.

Constraint bifurcation

To clarify the term “generic” used above, we calculate the determinant of the 10 x 10 matrix
At v = {X) X}, where X}, is the set of all ICs shown in Table 2. The result is

SHJ_

AT ~ W (W —ag)*  where W := a7

(6)
The generic situation corresponds to A*™ # 0. However, the determinant A™, being a field-
dependent object, may vanish in some regions of spacetime, changing thereby the number and/or
type of constraints and the number of physical DoF, as compared to the situation described in
Table 2. This phenomenon of constraint bifurcation can be fully understood by analyzing dynamical
behavior of the critical factors W and W — as, appearing in A™T.

Assuming that W is an analytic function globally, on the whole spacetime manifold M, the
analysis of the field equations

— (W—ag)Vk+28k(W—a2) ~ 0, (7)

leads to the following conclusion [I1]:



m If there is a point in M at which W — ag # 0, then W — a9 # 0 globally.

Hence, by choosing the initial data so that W — ag # 0 at z° = 0, it follows that W — ay stays
nonvanishing for any 2% > 0. The surface W — ag = $bsR — a — az ~ 0 (on shell) is a dynamical
barrier that the spin-0T field cannot cross. Moreover, since as is positive, see (5hl), we have:

= By choosing W — as > 0 at 2° = 0, it follows that W # 0 globally.

Thus, with a suitable choice of the initial data, one can ensure the generic condition A™ # 0 to
hold globally, whereupon the constraint structure is described exactly as in Table 2. Any other
situation, with W =0 or W —as = 0, would not be acceptable—it would have a variable constraint
structure over the spacetime, the property that could not survive the process of linearization.

Stability under linearization

Now, we compare the canonical structure of the full nonlinear theory with its weak-field approx-

imation around maximally symmetric background. With the background values R = —6q and
W = %bﬁR — a, the lowest-order critical factors take the form
W = —(a+ qbs) , W —as = —(a+ as + gbg) ,

which leads to the results shown in Table 3 [I1].

Table 3. Canonical stability in the 07 sector

a+qgbg a4 az+qgbg DoF stability

(a) #0 #0 1 stable
(by =0 #0 0  unstable
(c) #0 =0 1 stable*

Based on the conditions (Bal), the spin-0" mass formula for g # 0 takes the form:

m2, = 3(a — gbg)(a + az + qbg) .
0 2(12[)6

Now, a few comments are in order: (a) the nature of constraints remains the same as in Table 2,
which implies the stability under linearization; (b) all if-constraints become first class, but only
6 of them remain independent, which leads to N* = 0 (instability); (c) the massless nonlinear
theory, defined by the condition a 4 a2 + gbg = 0, is essentially stable under linearization.

5 Concluding remarks

— By investigating fully nonlinear constraint bifurcation effects, as well as the canonical stability
under linearization, we were able to identify the set of dynamically acceptable values of parameters
for the spin-0™ sector of PGT, as shown in Table 3.

— On the other hand, the spin-0~ sector is canonically unstable for any choice of parameters; for
more details, see Ref. [11].

— Further analysis of higher spin modes is left for future studies.
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Vaidya-like exact solutions with torsion
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Starting from the Oliva—Tempo—Troncoso black hole, a solution of the Bergshoeff-Hohm—
Townsend massive gravity, a class of the Vaidya-like exact vacuum solutions with torsion
is constructed in the three-dimensional Poincaré gauge theory. A particular subclass of
these solutions is shown to possess the asymptotic conformal symmetry.

Keywords: 3D gravity; Poincaré gauge theory; Vaidya solution.

1. Introduction

Investigations of Poincar’e gauge theory (PGT)! in three-dimensional (3D) space-
time are expected to improve our understanding of both the geometric and dynam-
ical role of torsion. Systematic studies of 3D PGT started with the Mielke—Baekler
model?, introduced in the 1990s. However, this model is, just like GR, a topolog-
ical theory. In PGT, such an unrealistic dynamical feature can be quite naturally
improved by going over to Lagrangians that are quadratic in the field strengths?.

The exact solutions of a gravitational theory are essential for its physical in-
terpretation. In the context of 3D PGT, exact solutions were first studied in the
Mielke-Baekler model. Recently, our research interest moved toward exact solu-
tions in a more dynamical framework of the quadratic PGT. After constructing
the Bafiados—Teitelboim-Zanelli (BTZ) black hole with torsion® we showed that
gravitational waves can be naturally incorporated into the PGT dynamical frame-
work#®. The purpose of the present work is to examine a PGT generalization of the
Oliva—Tempo-Troncoso (OTT) black hole®, as well as its Vaidya-like extension”.

The OTT black hole is an exact solution of the Bergshoeff-Hohm-Townsend
(BHT) massive gravity®. Generically, the BHT gravity with a cosmological con-
stant admits two distinct maximally symmetric vacua. However, when the coupling
constants satisfy a specific critical condition, these two vacua coincide. In this case
OTT black hole is a vacuum solution of the BHT gravity. Going a step further,
Maeda” formulated a Vaidya-like extension of the OTT black hole, assuming the
presence of a null dust fluid as a matter field. In this paper, we construct a Vaidya-
OTT spacetime with torsion as an exact vacuum solution of PGT.

We use the following conventions: the Latin indices (i, j, k, ...) refer to the local
Lorentz frame, the Greek indices (u, v, p, ...) refer to the coordinate frame, b’ is the
triad field (1-form), w?” = —w’? is a connection 1-form, the respective field strengths
are the torsion 77 = db* 4+ w',, A b™ and the curvature RY = dw™ + wiy A wh’ (2-
forms); the Hodge dual of a form « is *«, and the exterior product is implicit.
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2. OTT Black Hole in PGT

Static OTT black hole, a vacuum solution of the BHT gravity with a unique AdS
ground state®, is also a Riemannian solution of PGT, in spite of the fact that PGT
represents quite a different dynamical framework?>.

Geometric aspects. The metric of the static OTT spacetime is given by
dr? r?
ds? = N?dt* — N r’de*,  N?:=—pu+Br+ ik (1)
where 1 and B are integration constants. When at least of the Killing horizons
is real and positive, and ¢2 > 0, the OTT metric defines a static and spherically
symmetric AdS black hole; for B = 0, it reduces to the BTZ black hole.

For B # 0, the scalar curvature has a singularity at » = 0, while the nonvanishing
irreducible components of the curvature are (Y RY = LRb'b and WRY = RV —
(6) R, In this geometry, the Cotton 2-form C? := VL! where L’ = (Ric)" — 1Rb,
is vanishing, so that the OTT spacetime is conformally flat.

Riemannian sector of PGT. The general parity-preserving gravitational
Lagrangian of PGT is quadratic in the field strengths. In the Riemannian sector of
PGT, torsion vanishes, and L is expressed only in terms of the curvature:

Le = —*(aoR + 2Ao) + %R”’* (64D Rij + 6O Ry ) 2)
and the vacuum PGT field equations produce the following result:

by +2bs =0, by — 2a0l> =0, ag +20°Ag=0. (3)
Thus, the OTT black hole is an exact vacuum solution in the Riemannian sector of
PGT, provided the four Lagrangian parameters satisfy the above three conditions.

3. Vaidya Extension of the OTT Metric

To obtain a Vaidya extension of the OTT metric, we first make a coordinate trans-
formation from the Schwarzschild-like time coordinate ¢ to a new coordinate w:

dt = du + dr/N?. (4)
The physical meaning of u is obtained by noting that u = const. corresponds to
a radially outgoing null ray, dr/dt = N2, see Ref. 10. We introduce a Vaidya
extension of the OTT black hole by making B a function of u, B = B(u), but

leaving p as a constant. The time dependent spherically symmetric Vaidya—OTT
metric reads:

ds* = N2du? + 2dudr — r*de? . (5)
In the new coordinates z* = (u,r, @), it is convenient to choose the triad field as
bt = du, b~ = Hdu+dr, b i=rdyp, (6)
where H = N?2/2.
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For vanishing torsion, one can use the Riemannian connection
wt™=—Hb", W= —%b2, w2 = %Hb2, (7)
to calculate the related curvature 2-form R%. Then, following the procedure de-
scribed in the previous section, one finds that the PGT field equations imply:
by +2bg =0, by — 200> =0, ap+20°A =0, B:=8,B=0. (8

Thus, the Vaidya—OTT metric | is not a Riemannian solution of PGT in vacuum.

To overcome a similar barrier in the BHT gravity, Maeda” introduced the
Vaidya-OTT solution in the presence of matter, represented by a null dust fluid.
Based on our experience with exact wave solutions in PGT*®, we expect that the
presence of torsion could lead to a consistent description of the problem.

4. Vaidya—OTT solution with torsion
4.1. Geometry of the ansatz

Following the logic of our approach to exact wave solutions in PGT#?, we propose to
look for a Vaidya—OTT solution with torsion using the following two assumptions:

(i) The new triad field retains the form (6);
(ii) The RC connection is obtained from the Riemannian expression (7) by the
rule H — H + K, where K = K (u):

1 1
wt==—Hb",  WwP?=-2p?, wI=Z(H+KWH. (9
T T

The new function K is expected to compensate the presence of the problematic B
term i