




Biografski podaci

Branislav Cvetković je rodjen 14.01.1979. u Beogradu, gde je završio osnovnu školu.
Srednju školu, Matematičku gimnaziju, završio je 1998. kao djak generacije. Učestovao je
na Medjunarodnim olimpijadama iz matematike (Argentina 1997) i fizike (Island 1998). Iste
1998. godine upisao je Fizički fakultet Univerziteta u Beogradu, smer Teorijska i eksperi-
mentalna fizika, koji je završio 2002. godine sa prosečnom ocenom 10.

Postdiplomske studije na Fiziǩom fakultetu, smer Teorijska fizika elementarnih čestica
i gravitacije, upisao je 2002. godine. Magistrirao je 17.03.2005. sa temom ,,Kanonska
struktura trodimenzione gravitacije sa torzijom”. Mentor magistarske teze je bio Milutin
Blagojević.

Od 01.11.2003. radi na Institutu za fiziku kao saradnik projekata ,,Gradijente teorije
gravitacije: dinamika i simetrija”, ,,Alternativne teorije gravitacije” (od 01.01.2006. do
31.12.2010.) i ,,Fizičke implikacija modifikovanog prostor-vremena” (od 01.01.2011.), koji
su finansirani od strane Ministarstva prosvete, nauke i tehnološkog razvoja vlade Republike
Srbije.

Doktorsku disertaciju pod naslovom ,,Asimptotska struktura trodimenzione gravitacije
sa torzijom” odbranio je 06.03.2008. na Fizičkom fakultetu Univerziteta u Beogradu. Men-
tor disertacije bio je dr Milutin Blagojević. U oktobru 2008. izabran je u zvanje naučni
saradnik, a u septembru 2013. u zvanje vǐsi naučni saradnik.

Od 01.06.2010. do 01.12.2010. boravio je na postdoktorskom usavršavanju, kao stipendista
Ministarstva nauke, na Institutu za teorijsku fiziku Tehničkog univerziteta u Beču u grupi
dr Danijela Grumilera. Tokom boravka u Beču bavio se holografskom strukturom trodimen-
zione Čern-Sajmonsove gravitacije.

U tri navrata tokom 2009, 2012. i 2015. godine boravio je u poseti Katoličkom uni-
verzitetu u Valparaisu u okviru saradnje sa dr Oliverom Mǐsković i dr Rodrigom Oleom,
poslednji put kao gostujući profesor.

Aktivan je kao referi za časopise Physical Review Letters, Physical Review D, Classical
and Quantum Gravity, Journal of physics A: Mathematical and Theoretical, International
Journal of Modern Physics D, European Journal of Physics. Čileanska nacionalna fondacija
za nauku FONDECYT angažovala ga je od 2010. kao referija za ocenu projekata.

Do sada je objavio dvadeset devet radova u vodećim medjunarodnim časopisima kate-
gorije M21, jedan rad u medjunarodnom časopisu M22, jedan rad u medjunarodnom časopisu
kategorije M23, koji su prema podacima baze INSPIRE citirani 433 puta, od toga 292 bez
autocitata sa h-faktorom 12. Prema bazi Google Scholar radovi dr Cvetkovica citirani su
491 put sa h-faktorom 12.

Pod rukovodstvom dr Cvetkovića je u završnoj fazi izrada jedne doktorske disertacije
na Fizičkom fakultetu Univerziteta u Beogradu, a bio je i mentor jednog diplomskog mas-
ter rada na istom fakultetu, kao i komentor prilikom izrade jednog diplomskog rada na
Katoličkom Univerzitetu u Valparaisu.

Od školske 2013/2014. godine nastavnik je na doktorskim studijama na Fizičkom fakul-
tetu Univerziteta u Beogradu za užu naučnu oblast Kvantna polja, čestice i gravitacija na
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predmetu Teorija gravitacije 2.
Od školske 2004/2005. radi kao spoljni saradnik – profesor fizike, u Matematičkoj gim-

naziji, gde je tokom školske 2006/2007. obavljao i funkciju pomoćnika direktora, a u periodu
od 2013. do 2017. bio je član Školskog odbora. Aktivno je učestvovao u obeležavanju Svetske
godine fizike 2005. U periodu od 2003. do 2005. učestvovao je u radu Komisije za takmičenje
iz fizike, dok je 2008. bio zamenik lidera na Medjunarodnoj olimpijadi iz fizike održanoj u
Vijetnamu.

Od 2014. godine je zamenik predsednika Upravnog odbora Instituta za fiziku.
Autor je vǐse zbirki zadataka za učenike osnovnih i srednjih škola u izdanju Zavoda za

udžbenike iz Beograda i Istočnog Sarajeva.
Oženjen je i ima jednu ćerku.
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Pregled naučne aktivnosti

Naučno-istraživački rad dr Branislava Cvetkovića odvija se u oblasti teorijske fizike gra-
vitacije, preciznije lokalne Poenkareove teorije. Kandidat je objavio ukupno 31 rad u me-
djunardonim časopisima sa recenzijom, ot toga 29 kategorije M21 i po 1 rad kategorije M22
i M23.

Za vreme postdiplomskih studija (2002-2005) na Fizičkom fakultetu u Beogradu ka-
ndidat se bavio Hamiltonovom analizom Milke-Beklerovog (MB) modela. Magistrirao je
na temi ,,Kanonska struktura trodimenzione gravitacije sa torzijom”, koja je uradjena pod
mentorstvom dr Milutina Blagojevića.

Tokom izrade doktorata (2005-2008) kandidat je nastavio da se bavi MB modelom, gde
su u radu:

• M. Blagojević and B. Cvetković, Black hole entropy in 3D gravity with torsion, Class.
Quantum Grav. 23 (2006) 4781,

dobijeni veoma značajni rezultati vezani za termodinamičke osobine crnih rupa – pokazano
je da torzija utiče na vrednost entropije crne rupe i da je dobijeni rezultat u skladu sa
prvim zakonom termodinamike. Doktorsku disertaciju pod naslovom ,,Asimptotska struk-
tura trodimenzione gravitacije sa torzijom” odbranio je 06.03.2008. na Fizičkom fakultetu
Univerziteta u Beogradu. Mentor disertacije bio je dr Milutin Blagojević.

Nakon doktorata istraživanje kandidata takodje je vezanom za modele 3D gravitacije.
Pronadjena su i ispitane su osobine rešenja sa električnim i magnetnim poljem za 3D grav-
itaciju kuplovanu sa Maksvelovom i nelinearnom elektrodinamikom. Pokazano je da ge-
ometrijske osobine ovih rešenje zavise od vrednosti centalnih naboja u MB modelu. Kandi-
dat je 2009. postigao značajne rezultate u ispitivanju kanonske strukture topološki masivne
gravitacije (TMG). U radu

• M. Blagojević and B. Cvetković, Canonical structure of topologically massive gravity
with a cosmological constant, JHEP05(2009)073,

razrešena je kontroverza, prisutna u tadašnjoj literauri oko broja propagirajućih stepeni
slobode u ovoj teoriji i utvrdjeno je da za TMG on iznosi jedan, a ne tri. Ispitana je
kanonska struktura Bergšof-Hom-Taundzendove (BHT) gravitacije, dok je u radu:

• M. Blagojević and B. Cvetković, Extra gauge symmetries in BHT gravity,
JHEP03(2011)139.

pokazano da je fenomen parcijalne bezmasenosti, tj. pojave da za specifičan izbor param-
etara broj propagirajućih stepeni slobode smanjuje za 1, vezan isključivo za linearnu aproksi-
maciju, a ne za nelinearnu teoriju koja u posmatranoj tački ne poseduje dodatnu lokalnu
simetriju.

Tokom 2010. kandidat je boravio na postdoktorskom usavršavanju, kao stipendista Min-
istarstva nauke, na Institutu za teorijsku fiziku Tehničkog univerziteta u Beču u grupi dr
Danijela Grumilera. Tokom boravka u Beču bavio sam se holografskom strukturom trodi-
menzione Čern-Sajmonsove gravitacije, koja je veoma detaljno ispitana u radu
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• H. Afshar, B.Cvetković, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-
Simons holography, Phys. Rev. D 85, 064033 (2012).

Nakon prethodnog izbora u zvanje u periodu (2013-2018) istraživanje kandidata se odvi-
jalo u okviru nekoliko tema.

Trodimenziona teorija gravitacije sa propagirajućom torzijom. Tokom proučavanja
MB modela od početka devedesetih godina prošlog veka postignuti su mnogobrojni značajni
rezultati. Medjutim, MB model je topološki, tj. ne poseduje propagirajuće stepene slobode.
Zbog toga model sa propagirajućom torzijom predstavlja ,,realističniju” teoriju gravitacije.

Kandidat je rad na opštoj teoriji gravitacije sa propagijaćom torzijom koja ne narušava
parnost započeo 2012. godine, kada je ispitan čestični spektar teorije oko prostora M3, kao
i formulacije prvog reda koja je veoma pogodna za konstrukciju generatora lokalne simetrije
i ispitivanje kanonske strukture u AdS sektoru.

U saradnji sa kolegama iz Čilea ispitani su osnovni aspekti AdS/CFT korespondencije
za 3D gravitaciju sa torzijom. Izabran je konziztentan holografski anzac, formulisan je
pobolǰsani pristup Neter-Vordovim identitetima za teoriju na granici. I za MB model i
za model sa propagirajućom torzjom dobijene su konačne struje spina i energije impulsa i
izračunate anomalije.

Zatim je pažnja posvećena Hamiltovoj strukturi skalarnog sektora teorije. Stabilnost
Hamiltonove strukture u odnosu na linearizaciju je iskorǐsćena za identifikaciju dinamički
prihvatljivog skupa parametara u dejstvu.

Konstruisana su i talasna rešenja 3D gravitacije sa propagirajućom torzijom, najpre
uopšteni pp-talasi, a zatim i generalisani Sikloševi talasi. Pokazano je da Oliva-Tempo-
Troncozo crna rupa, konformno ravno rešenje BHT gravitacije, predstavlja rešenje Lokalne
Poeankareove teorije u 3D za specifičan izbor parametara. Korǐsćenjem pouzdanog kanon-
skog pristupa izračunati su održani naboji za ovo rešenje, koji zadovoljavaju prvi zakon
termodinamike, čime je pokazano da je Abot-Dezer-Tekinov pristup neadekvatan za izraču-
navanje naboja ovog rešenja. Konstruisana je Vaidija ekstenzija ovog rešenja, čija posebna
podklasa poseduje asimptotsku konformnu simetriju.

Od prethodnog izbora u zvanje iz ove tematike objavljeni su sledeći radovi:

• M. Blagojević, B. Cvetković , O. Misković and R. Olea, Holography in 3D AdS gravity
with torsion, JHEP1305(2013)103.

• M. Blagojević, B. Cvetković, M. Vasilić, Exotic black holes with torsion, Phys.Rev. D
88, 101501 (2013).

• M. Blagojević and B. Cvetković, Three-dimensional gravity with propagating torsion:
Hamiltonian structure of the scalar sector, Phys.Rev. D88, 104032 (2013).

• M. Blagojević and B. Cvetković, Gravitational waves with torsion in 3D, Phys. Rev.
D 90, 044006 (2014).

• M. Blagojević and B. Cvetković, Siklos waves with torsion in 3D, JHEP11(2014)141.

• M. Blagojević and B. Cvetković, Vaidya-like exact solutions with torsion,
JHEP05(2015)101.
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• M. Blagojević and B. Cvetković, Conformally flat black holes in Poincaré gauge theory,
Phys. Rev D 93, 044018 (2016).

Talasna rešenja u Lokalnoj Poenkareovoj teoriji. Druga istraživačka tema kojom se
kandidat bavio je nalaženje i ispitivanje osobina gravitacionih talasa, koji su posebno dobili
na aktuelnosti nakon nedavne eksperimentalne potvrde njihovog postojanja. Kandidat se
bavio talasnim rešenjima sa torzijom u 4D lokalnoj Poenkareovoj teoriji.

Iako je u literaturi bila poznata talasna rešenja sa torzijom, nedostajao je sistematski
pristup konstruisanju anzaca na nivou osnovnih dinamičkih varijabli lokalne Poenkareove
teorije, tetrada i Lorencove koneksije. Pokazano je da se upravo polazeći od anzaca u kome
je koneksija generalisana u odnosu na Rimanovu teoriju, ali ipak zadržava njene glavne
osobine mogu konstruisati uopšteni Sikloševi talasi sa torzijom, kao i uopšteni pp-talasi sa
torzijom. Ispitane su i osobine posebnih rešenja kao što su uopšteno Kaigorovljevo rešenje,
eksponencijalno i homogeno rešenje, i pokazano je da u slučaju jedne familije uopštenih
pp-talasa torzija dinamički odredjuje oblik metrike.

U poslednjem objavljenom radu iz ove oblasti u dejstvo su uključeni i članovi kvadratični
po torziji i krivini koji narušavaju parnost. Ovaj rad predstavlja uvod u izučavanje opšte
lokalne Poenkareove teorije koja ima veoma zanimljivu kanonsku strukturu i čestični spektar
oko ravnog prostora, što je potrvrdjeno u radu koji je poslat u štampu.

Iz ove tematike objavljeni su sledeći radovi:

• M. Blagojević and B. Cvetković, Siklos waves in Poincaré gauge theory, Phys. Rev.
D 92, 024047 (2015).

• M. Blagojević and B. Cvetković, Generalized pp waves in Poincar gauge theory, Phys.
Rev D 95, 104018 (2017).

• M. Blagojević, B. Cvetković and Y. N. Obukhov, Generalized plane waves in Poincaré
gauge theory of gravity, Phys. Rev. D 96, 064031 (2017).

Lavlokova teorija gravitacije sa torzijom. Lavlokova teorija gravitacije predstavlja
minimalističko uopstenje OTR i jedna je od alternativnih teorija gravitacije koja je pre-
dmet aktivnih istraživanja još od ranih sedamdesetih godina. Iako je u literaturi povremeno
posvećivana pažnja ispitivanju Lavlokove gravitacije sa torzijom ta oblast je još uvek nedo-
voljno istraženja, jer je nalaženje rešenja sa torzijom tehnički veoma komplikovano, budući
da se ispostavlja da su jednačine kretanja neretko ,,preodredjene”.

Doprinos kandidata u ovoj oblasti ogleda se u konstrukciji novih rešenja sa torzijom: BTZ
crnog prstena i sferno-simetrične crne rupe sa torzijom. Identifikovani su sektori teorije u
kojima postoje ova rešenja, koja su nadjena u slučaju petodimenzione teorije i ispitane su
njihove geometrijske karakteristike i termodinamičke osobine.

Poseban sektor Lavlokove gravitacije predstavlja Lavlokova Čern-Sajmonsova gravitacija
koja je posebno pogodna za proučavanje sa stanovǐsta AdS/CFT korespondencije, budući
da Feferman-Grahamov razvoj osnovnih dinamičkih varijablo sadrži konačan broj članova.
Nadjene su asimptotske simetrije u AdS sektoru i pokazano je da se one sastoje od lokalnih
translacija, lokalnih Lorencovih rotacija, dilatacija i ne-Abelovih lokalnih tranformacija.
Izračunate su 1-tačkaste funkcije: struje energije-impulsa i spina u dualnoj koformnoj teoriji
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polja i zapisani su odgovarajući Vordovi identiteti. Pokazano je da holografska teorija pose-
duje Vajlovu anomaliju, kao i da je ne-Abelova lokalna simetrija narušena na kvantnom
nivou.

Objavljeni radovi iz ove oblasti su

• B. Cvetković and D. Simić, 5D Lovelock gravity: New exact solutions with torsion,
Phys. Rev. D 94, 084037 (2016).

• B. Cvektović, O. Miskovic and B. Cvetković, Holography in Lovelock Chern-Simons
AdS gravity, Phys. Rev. D 96, 044027 (2017).

• B. Cvetković and D. Simić, A black hole with torsion in 5D Lovelock gravity, Class.
Quantum Grav. 35 (2018) 055005 (13pp).
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Elementi za kvalitativnu ocenu rada
kandidata

1 Kvalitet naučnih rezulata

1.1 Naučni nivo i značaj rezultata, uticaj naučnih radova

Dr Branislav Cvetković je tokom naučne karijere objavio ukupno 31 rad u medjunarodnim
časopisima sa recenzijom, od čega 29 kategorije M21, 1 kategorije M22 i 1 kategorije M23.
Ukupan impakt faktor radova je 139.23. Od odluke Naučnog veća o predlogu za sticanje
zvanja viv̌i naučni saradnik dr Cvetkovic je objavio 13 radova kategorije M21. Ukupan
impakt faktor ovih radova je 63.19. Kvalitet naučnih radova dr Cvetkovića se može proce-
niti, izmedju ostalog, prema kvalitetu časopisa u kojima su objavljeni: dr Cvetković je do
sada objavio 8 radova u časopisu Journal of High Energy Physics (IF=6.22), jednom od
najuglednjih časopisa iz oblasti fizike visokih energija, kao i 14 radova u časopisu Physical
Review D (IF=4.57) koji je jedan od najznačajnijih časopisa za fiziku gravitacije, čestica
i polja. Dva rada doktora Cvetkovića u časopisu Phys. Rev. D objavljeni su kao ”rapid
communication”.

Najznačajniji radovi dr Cvetkovića u poslednjih nekoliko godina su

[1] H. Afshar, B.Cvetković, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-
Simons holography, Phys. Rev. D 85, 064033 (2012), IF=4.691, citiran 49 puta

[2] M. Blagojević, B. Cvetković , O. Misković and R. Olea, Holography in 3D AdS
gravity with torsion, JHEP1305(2013)103, IF=6.220, citiran 12 puta

[3] M. Blagojević and B. Cvetković, Siklos waves with torsion in 3D, JHEP11(2014)141,
IF=6.111, citiran 7 puta

[4] M. Blagojević and B. Cvetković, Vaidya-like exact solutions with torsion,
JHEP05(2015)101, IF=6.023, citiran 6 puta

[5] M. Blagojević, B. Cvetković and Y. N. Obukhov, Generalized plane waves in Poincaré
gauge theory of gravity, Phys. Rev. D 96, 064031 (2017), IF=4.557, citiran 1 put

U radu [1] je veoma detaljno ispitana je holografska struktura trodimenzione Čern-
Sajmonsove gravitacije za skup različitih asimptotskih uslova. U radu [2] u saradnji sa
kolegama iz Čilea ispitani su osnovni aspekti AdS/CFT korespondencije za 3D gravitaciju sa
torzijom. Izabran je konzistentan holografski anzac, formulisan je pobolǰsani pristup Neter-
Vordovim identitetima za teoriju na granici o dobijene su konačne struje spina i energije
impulsa i izračunate anomalije. Talasna rešenja 3D gravitacije sa propagirajućom torzijom,
generalisani Sikloševi talasi konstruisani su u radu [3]. U radu [4] je pokazano je da Oliva-
Tempo-Troncozo crna rupa, konformno ravno rešenje BHT gravitacije, predstavlja rešenje

1



Lokalne Poeankareove teorije u 3D za specifičan izbor parametara. Konstruisana je Vaidija
ekstenzija ovog rešenja, čija posebna podklasa poseduje asimptotsku konformnu simetriju.
U radu [5] pokazano je da se polazeći od anzaca u kome je koneksija generalisana u odnosu
na Rimanovu teoriju, ali ipak zadržava njene glavne osobine mogu konstruisati pp-talasi sa
torzijom. U dejstvo su uključeni i članovi kvadratični po torziji i krivini koji narušavaju
parnost. Ovaj rad predstavlja uvod u izučavanje opšte lokalne Poenkareove teorije koja ima
veoma zanimljivu kanonsku strukturu i čestični spektar oko ravnog prostora.

1.2 Pozitivna citiranost radova kandidata

Prema podacima baze inSPIRE na dan 18.04.2018. radovi doktora Cvetkovića citirani su
ukupno 435 puta, 292 puta bez autocitata, sa h-faktorom 12. Prema podacima baze Google
Scholar radovi su citirani ukupno 494 puta (videti prilog o citiranosti). Najveći broj citata
imaju rasovi objavjeni u časopisima Journal of high energy physics i Physical Review D.
Rad M. Blagojević and B. Cvetković, Canonical structure of topologically massive gravity
with a cosmological constant, JHEP05(2009)073, citiran je ukupno 55 puta bez autocitata.

1.3 Parametri kvaliteta časopisa

Dr Branislav Cvetković je tokom karijere objavio ukupno 31 rad u časopisima sa ISI liste od
toga 29 kategorije M21, 1 kategorije M22 i 1 kategorije M23. Ukupan impalt faktor radova
je ukupan impakt faktor radova je 139.23. Od odluke Naučnog veća o predlogu za sticanje
zvanja viv̌i naučni saradnik dr Cvetkovic je objavio 13 radova kategorije M21. Ukupan
impakt faktor ovih radova je 63.19.

Zbirno prikazano dr Cvetković je objavio:

• 8 radova u Journal of High Energy Physics, (srednji IF=5.931)

• 16 radova u Physical Review D (srednji IF=4.728)

• 5 radova u Classical and Quantum Gravity (srednji IF=2.981)

• 1 rad u Modern Physics Letters A (srednji IF=1.418)

Nakon odluke Naučnog veća o predlogu za sticanje zvanja viv̌i naučni saradnik dr
Cvetkovic je objavio:

• 3 rada u Journal of High Energy Physics (srednji IF=6.118)

• 9 radova u Physical Review D (srednji IF=4.635)

• 1 rad u Classical and Quantum Gravity (srednji IF=3.119)

1.4 Stepen samostalnosti i stepen učešća u realizaciji radova u
naučnim centrima u zemlji i inostranstvu

Od izbora u prethodno zvanje dr Cvetković je pokrenuo pravce istraživanja koji se nisu
ranije izučavali u Srbiji. Primena aspekata AdS/CFT korenspondencije na teorije gra-
vitacije sa torzijom, izučava se u bliskoj saradnji sa kolegama iz Čilea (Katolički univerzitet
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u Valparaisu i Univerzitet Andreas Beljo u Santjagu). Dr Cvetković je deo veliki dopri-
nos u formulisanju holografskog anzaca u okviru lokalne Poenkareove teorije, uopštavanju
Neter-Vordovih identiteta na teorije sa torzijom i razumevanje Rimanovog limita za zakone
održanja.

Drugi pravac istraživanja odnosi se na nalaženje talasnih rešenja u okviru teorija grav-
itacije sa torzijom. Doprinos dr Cvetkovića ogledao se u nalaženju sistematskog pristupa za
nalaženje odgovarajućeg anzaca za Lorencovu koneksiju, koji dovodi do identifikacije sektora
teorije u kome egzistiraju talasna rešenja, esplicitnoj konstrukciji i analizi osobina dobijenih
partikularnih rezšenja.

Treći pravac istraživanja je Lavlokova gravitacija sa torzijom, koja predstavlja i temu
doktorske disertacije Dejana Simića.

2 Angažovanost u razvoju uslova za naučni rad, obra-

zovanju i formiranju nauňih kadrova

Pod mentorstvom dr Branislava Cvetkovića radi se jedna doktorska disertacija na Fizičkom
fakultetu Univerziteta u Beogradu. Doktorska teza Dejan Simića pod naslovom ,,Lavlokova
gravitacija sa torzijom: egzaktna rešenja, kanonska i holografska struktura” sa pratećim
izveštajem za pregled i ocenu disertacije koji je sačinila komisija u sastavu prof. dr Maja
Burić, prof. dr Voja Radovanović i dr Branislav Cvetković se nalazi se na uvidu javnosti na
Fizičkom fakultetu u Beogradu. Očekuje se da će teza biti odbranjena početkom leta ove
godine.

Pod mentorstvom dr Branislava Cvetkovića na Fizičkom fakultetu Univerziteta u Beogradu
odbranjen je i jedan master rad studentkinje Marije Tomašević pod naslovom ,,Kretanje
četica u polju OTT crne rupe”. Dr Branislav Cvetković bio je i komentor diplomskog rada
Constance Belen Calender Olivares pod naslovom ”Chemistry of three-dimensional black
holes in AdS space” koji je odbranjen na Katoličkom Univerzitetu u Valparaisu. Trenutno
je u toku izdrada još jednog master rada na Fiziǩom fakultetu.

Dr Branislav Cvetković je angažovan na doktorskim studijama na Fizčkom fakultetu u
uokviru uže naučne oblasti Kvantna polja, čestice i gravitacija kao nastavnik na predmetu
Teorija gravitacije 2.

Od 2004. radi kao spoljni saradnik – profesor fizike u Matematičkoj gimnaziji. Njegovi
učenici postižu zapažene rezultate na državnim i medjunarodnim takmičenjima iz fizike.

3 Normiranje broja koautorskih radova, patenata i tehni-

čkih rešenja

Radovi dr Cvetkocića su teorijski i najveći broj ima samo dva autora. Medju radovima dr
Cvetkovića objavljenim u periodu nakon odluke Naučnog veća o predlogu za sticanje zvanja
vǐsi nauňi saradnik jedan rad ima četiri, jedan rad tri dok svi ostali radovi imaju samo dva
autora. Ukupan broj normiranih M bodova je 106.5, odnosno 102.5 nakon normiranja.
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4 Rukovodjenje projektima, potprojektima i projekt-

nim zadacima

Dr Branislav Cvetković rukovodi potprojektom ,,Gradijente teorije gravitacije” u okviru
projekta ON171031 ,,Fizičke implikacije modifikovanog prostor-vremena” koji je finansiran
od strane Ministarstva prosvete, nauke i thenološkog razvoja Republike Srbije. U peri-
odu od 2008. do 2010. rukovodio je potprojektom ,,Torzija i nemetričnost u gravitaciji i
teoriji struna/brana” u okviru projekta 141036 ,,Alternativne teorije gravitacije”, koji je bio
finansiran od strane Ministarstva nauke vlade Republike Srbije.

Od 2015. Branislav Cvetkovć je zamenik člana uprave (MC substitute) COST akcije
”Quantum Structure of Spacetime” kojim rukovodi prof. Ričard Sabo.

Kada je 2016. godine raspisan konkurs za nove projekte Ministarstva prosvete nauke
i thenološkog razvoja dr Branislav Cvetković je bio prijavljen kao rukovodilac projekta
,,Kvantno prostorvreme”.

5 Aktivnost u naučno stručnim društvima

Dr Branislav Cvetković je recenzent za vodeće medjunarodne časopise iz fizike kao što su:
Physical Review Letters, Physical Review D, Classical and Quantum Gravity, Journal of
physics A: Mathematical and Theoretical, International Journal of Modern Physics D, Euro-
pean Journal of Physics. Čileanska nacionalna fondacija za nauku FONDECYT angažovala
ga je od 2010. kao referija za ocenu projekata.

Dr Branislav Cvetković je od 2012. do 2014. bio član Odeljenja za nauku i visoko
obrazovanje Društva fizičara Srbije (NIVO DFS). Od 2003. do 2004. bio je član Komisije
za takmičenja učenika srednih škola. Bio je zamenik lidera na Medjunarodnoj olimpijadi
iz fizike održanoj u Vijetnamu 2008. Aktivno je učestvovao u obeležavanju Svetske godine
fizike 2005, kao koordinator takmičenja ,,Otkrivamo talente za fiziku”.

Dr Branislav Cvetković je bio član Organizacionog komiteta vǐse medjunarodnih kon-
ferencija, kao što su 2018 Workshop on Gravity, Holography, Strings and Noncommutative
Geometry (Beograd 2018), Gravity: new ideas for unsovled problems (Divčibare 2011),
Gravity: new ideas for unsovled problems II (Divčibare 2013), 5th MATHEMATICAL
PHYSICS MEETING: Summer School and Conference on Modern Mathematical Physics
(Beograd 2010).

6 Uticajnost naučnih rezultata

Uticajnost naučnih rezultata kandidata ogleda se u broju citata koji su navedeni u tački
1 ovog priloga, kao i priloga o citiranosti. Značaj rezultata kandidata je takodje opisan u
tački 1.
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7 Konkretan doprinos kandidata u realizaciji radova u

centrima u zemlji i inostranstvu

Dr Cvetković je pokrenuo pravce istraživanja koji se nisu ranije izučavali u Srbiji. Primena
aspekata AdS/CFT korenspondencije na teorije gravitacije sa torzijom, izučava se u bliskoj
saradnji sa kolegama iz Čilea (Katolički univerzitet u Valparaisu i Univerzitet Andreas Beljo
u Santjagu). Dr Cvetković je deo veliki doprinos u formulisanju holografskog anzaca u okviru
lokalne Poenkareove teorije, uopštavanju Neter-Vordovih identiteta na teorije sa torzijom i
razumevanje Rimanovog limita za zakone održanja.

Drugi pravac istraživanja odnosi se na nalaženje talasnih rešenja u okviru teorija grav-
itacije sa torzijom. Doprinos dr Cvetkovića ogledao se u nalaženju sistematskog pristupa za
nalaženje odgovarajućeg anzaca za Lorencovu koneksiju, koji dovodi do identifikacije sektora
teorije u kome egzistiraju talasna rešenja, esplicitnoj konstrukciji i analizi osobina dobijenih
partikularnih rezšenja.

Treći pravac istraživanja je Lavlokova gravitacija sa torzijom, koja predstavlja i temu
doktorske disertacije Dejana Simića.

Dr Cvetkovi je učestvovao i svim segmentima izrade svih radova od prethodnog izbora
u zvanje od definisanja teme, analitičkog računa, provere rezultata korǐsćenjem softerskih
paketa Mathematica i Reduce pa do procesa objavljivanja kroz komunikaciju sa recenzen-
tima i editorima časopisa budući da je gotovo kod svih radova on ”corresponding autor”

8 Uvodna predavanja na konferencijama i druga pre-

davanja

Nakon prethodnog izbora u zvanje dr Cvetković je održao sledeća predavanja po pozivu:

1. Generalized plane waves in Poincaré gauge theory of gravity, 9th Mathematical Physics
Meeting: School and Conference on Modern Mathematical Physics (MPHYS9), 18-23
septembar 2018, Beograd.

2. Siklos waves in gravity with torsion, Universtity Andreas Bello, Santiago, Chile 27.10.2015.

3. General Relativity - Introduction, Overview and Perspectives, GR100 Centennial of
General Relativity, Beograd 23.06.2015.

4. 3D gravity with propagating torsion, Savremena matematička fizika i njene primene,
Banja Luka 13.09.2014.

5. Holografija u 3D gravitaciji sa torzijom, Gravity: new ideas for unsolved problems II,
Divčibare 19-22. septembar 2013.

Do prethodnog izbora u zvanje dr Cvetković je odrzao sledeća predavanja po pozivu:

1. Extra gauge symmetries in BHT gravity, Gravity: new ideas for unsolved problems,
Divčibare 12-14. septembar 2011.

2. Conserved charges in 3D gravity, Technical University Vienna, 08.06.2010.
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3. Canonical structure of topologically massive gravity with a cosmological constant, Uni-
versidad Catholica de Valparaiso, Chile, 15.05.2009.
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Elementi za kvantitativnu ocenu rada
kandidata

Dr Branislav Cvetković je tokom naučne karijere objavio ukupno 31 rad u medjunaro-
dnim časopisima sa recenzijom, od čega 29 kategorije M21, 1 kategorije M22 i 1 kategorije
M23. Ukupan impakt faktor radova je 139.23. Od odluke Naučnog veća o predlogu za sti-
canje zvanja viv̌i naučni saradnik dr Cvetkovic je objavio 13 radova kategorije M21. Ukupan
impakt faktor ovih radova je 63.19.

Prema podacima baze inSPIRE na dan 18.04.2018. radovi doktora Cvetkovića citirani su
ukupno 435 puta, 292 puta bez autocitata, sa h-faktorom 12. Prema podacima baze Google
Scholar radovi su citirani ukupno 494 puta (videti prilog o citiranosti). Najveći broj citata
imaju rasovi objavjeni u časopisima Journal of high energy physics i Physical Review D.
Rad M. Blagojević and B. Cvetković, Canonical structure of topologically massive gravity
with a cosmological constant, JHEP05(2009)073, citiran je ukupno 55 puta bez autocitata.

Ostvareni rezultati u periodu nakon odluke Naučnog veća o predlogu za sticanje zvanja
vǐsi naučni saradnik sumirani su u tabeli 1:

Tabela 1

Kategorija M bodova po radu Broj radova Ukupno M bodova Normiranih M bodova
M21 8 13 104 100
M33 1 2 2 2
M34 0.5 1 0.5 0.5

Poredjenje sa minimalnim kvantitatvnim uslovima za izbor u zvanje naučni savetnik
dato je u tabeli 2:

Tabela 2

Minimalan broj M bodova Ostvareni rezultati Ostvareni
normirani rezultati

Ukupno 70 106.5 102.5
M10+M20+M31+M32+M33+M41+M42+M90 50 106 102

M11+M12+M21+M22+M23 35 104 100

Spisak radova dr Branislava Cvetkovića

Radovi u vrhunskim medjunarodnim časopisima M21

♣ Do prethodnog izbora u zvanje:

1



• M. Blagojević and B. Cvetković, Black hole entropy in 3D gravity with torsion, Class.
Quantum Grav. 23 (2006) 4781.

• M. Blagojević and B. Cvetković, Black hole entropy from the boundary conformal
structure in 3D gravity with torsion , JHEP10(2006)005.

• M. Blagojević and B. Cvetković, Covariant description of the black hole entropy in
3D gravity, Class. Quant. Grav. 24 (2007) 129.

• B. Cvetković and M. Blagojević, Supersymmetric 3D gravity with torsion: asymptotic
symmetries, Class. Quantum Grav. 24 (2007) 3933.

• M. Blagojević and B. Cvetković, Electric field in 3D gravity with torsion, Phys. Rev.
D 78, 044036 (2008).

• M. Blagojević and B. Cvetković, Self-dual Maxwell field in 3D gravity with torsion,
Phys. Rev. D 78, 044037 (2008)

• M. Blagojević and B. Cvetković, Canonical structure of topologically massive gravity
with a cosmological constant, JHEP05(2009)073.

• M. Blagojević, B. Cvetković and O. Mǐsković, Nonlinear electrodynamics in 3D gravity
with torsion, Phys. Rev. D 80, 024043 (2009).

• M. Blagojević and B. Cvetković, Asymptotic structure of topologically massive gravity
in spacelike stretched AdS sector, JHEP09(2009)006.

• M. Blagojević and B. Cvetković, Asymptotic Chern-Simons formulation of spacelike
stretched AdS gravity, Class. Quantum Grav. 27 (2010) 185022 (19pp).

• M. Blagojević and B. Cvetković, Conserved charges in 3D gravity, Phys. Rev. D 81,
124024 (2010).

• M. Blagojević and B. Cvetković, Hamiltonian analysis of BHT massive gravity,
JHEP01(2011)082.

• M. Blagojević and B. Cvetković, Extra gauge symmetries in BHT gravity,
JHEP03(2011)139.

• H. Afshar, B.Cvetković, S. Ertl, D. Grumiller and N. Johansson, Holograms of con-
formal Chern-Simons gravity, Phys. Rev. D 84, 041502(R) (2011).

• H. Afshar, B.Cvetković, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-
Simons holography, Phys. Rev. D 85, 064033 (2012)

• M. Blagojević and B. Cvetković, 3D gravity with propagating torsion: The AdS sector,
Phys. Rev. D 85, 104003 (2012).

♣ Nakon prethodnog prethodnog izbora u zvanje:

2



• M. Blagojević, B. Cvetković , O. Misković and R. Olea, Holography in 3D AdS gravity
with torsion, JHEP1305(2013)103.

• M. Blagojević, B. Cvetković, M. Vasilić, Exotic black holes with torsion, Phys.Rev. D
88, 101501(R) (2013).

• M. Blagojević and B. Cvetković, Three-dimensional gravity with propagating torsion:
Hamiltonian structure of the scalar sector, Phys.Rev. D 88, 104032 (2013).

• M. Blagojević and B. Cvetković, Gravitational waves with torsion in 3D, Phys. Rev.
D 90, 044006 (2014).

• M. Blagojević and B. Cvetković, Siklos waves with torsion in 3D, JHEP11(2014)141.

• M. Blagojević and B. Cvetković, Siklos waves in Poincaré gauge theory, Phys. Rev.
D 92, 024047 (2015).

• M. Blagojević and B. Cvetković, Vaidya-like exact solutions with torsion,
JHEP05(2015)101.

• M. Blagojević and B. Cvetković, Conformally flat black holes in Poincaré gauge theory,
Phys. Rev D 93, 044018 (2016).

• B. Cvetković and D. Simić, 5D Lovelock gravity: New exact solutions with torsion,
Phys. Rev. D 94, 084037 (2016).

• M. Blagojević and B. Cvetković, Generalized pp waves in Poincar gauge theory, Phys.
Rev D 95, 104018 (2017).

• B. Cvetković, O. Miskovic and B. Cvetković, Holography in Lovelock Chern-Simons
AdS gravity, Phys. Rev. D 96, 044027 (2017).

• M. Blagojević, B. Cvetković and Y. N. Obukhov, Generalized plane waves in Poincaré
gauge theory of gravity, Phys. Rev. D 96, 064031 (2017).

• B. Cvetković and D. Simić, A black hole with torsion in 5D Lovelock gravity, Class.
Quantum Grav. 35 (2018) 055005 (13pp).

Radovi u istaknutim medjunarodnim časopisima M22

♣ Do prethodnog izbora u zvanje:

• B. Cvetković and M. Blagojević , Stability of 3D black hole with torsion, Mod. Phys.
Lett. A, Vol. 22, No. 40 (2007) 3047-3055.

Radovi u medjuanarodnim časopisima M23

♣ Do prethodnog izbora u zvanje:
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• M. Blagojević and B. Cvetković, Canonical structure of 3D gravity with torsion, in:
Progress in General Relativity and Quantum Cosmology , vol. 2, ed. Ch. Benton (Nova
Science Publishers, New York, 2006), 103.

Radovi sa medjunarodnih skupova štampani u celini M33

♣ Do prethodnog izbora u zvanje:

• M. Blagojević and B. Cvetković, Conserved charges in 3d gravity with torsion, Bled
workshops in physics, Vol.6, No. 2, (2005), ed. N. Mankoc-Borstnik et al. 8-16.

• M. Blagojević and B. Cvetković, Asymptotic charges in 3d gravity with torsion, pre-
davanje na skupu ”Fourth Meeting on Constrained Dynamics and Quantum Gravity”
(Sardinija, Italija, 12-16 sept. 2005.), J. Phys. Conf. Ser. 33 (2006) 248.

• M. Blagojević and B. Cvetković, The influence of torsion on the black hole entropy in
3D gravity, SFIN XX (A1) (2007) 51-62.

• B. Cvetković and M. Blagojević, Supersymmetric 3D gravity with torsion: asymptotic
symmetries and black hole stability, predavanje na skupu ”V International Symposium
on Quantum Theory and Symmetries” (Valjadolid, Španija 22–28 jul 2007.), J. Phys.
Conf. Ser. 128 (2008) 012001.

• M. Blagojević and B. Cvetković, Self-dual Maxwell field in 3D gravity with torsion
and dynamical role of central charges, predavanje na skupu ”Recent Developments in
Gravity (NEB XIII)” (Solun, Grčka 4–06. jun 2008.), J. Phys. Conf. Ser. 189 (2009)
012010.

• M. Blagojević and B. Cvetković, Asymptotic symmetries of spacelike stretched AdS
gravity, predavanje na skupu ”The twelfth Marcel Grossman meeting on general rela-
tivity” (Pariz, Francuska, 12-18. jul 2009) Proceedings of the twelfth Marcel Grossman
meeting on general relativity, Part C 1823.

♣ Nakon prethodnog izbora u zvanje:

• M. Blagojević and B. Cvetković, Poincaré gauge gauge theory in 3D: canonical stability
of the scalar sector, predavanje na skupu ”Gravity: new ideas for unsolved problems
II”, Divčibare 19-22. septembar 2013, arXiv: 1310.8309 [gr-qc]

• M. Blagojević and B. Cvetković, Vaidya-like exact solutions with torsion, predavanje
na skupu ”The fourtheenth Marcel Grossman meeting on general relativity” (Rim,
Italija, 11-19. jul 2015) Proceedings of the twelfth Marcel Grossman meeting on general
relativity 2597.

Radovi sa medjunarodnih skupova štampani u izvodu M34

♣ Do prethodnog izbora u zvanje:
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• M. Blagojević and B. Cvetković, Canonical structure of the topological 3d gravity
with torsion, Book of short contributions, ed. G. Djordjevic, Lj. Nesic and J. Wess,
22-24.

• M. Blagojević and B. Cvetković, Canonical structure of new massive gravity, 60th
Annual Meeting of the Austrian Physical Society, 69.

♣ Nakon prethodnog izbora u zvanje:

• M. Blagojević and B. Cvetković, Generalized plane waves in Poincaré gauge theory
of gravity, Book of abstracts – 9th MATHEMATICAL PHYSICS MEETING: School
and Conference on Modern Mathematical Physics, 22.

M63 - 1 rad

♣ Do prethodnog izbora u zvanje:

• B. Cvetković and M. Blagojević, Supersymmetric 3D black hole with torsion, J. Res.
Phys, Vol.31, No 2 (2007) 102-105.
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1 Introduction

Poincaré gauge theory (PGT) is a modern field-theoretic approach to gravity, proposed

in the early 1960s by Kibble and Sciama [1, 2]. Compared to Einstein’s general rela-

tivity (GR), PGT is based on using both the torsion and the curvature to describe the

underlying Riemann-Cartan (RC) geometry of spacetime [3–6]. Investigations of PGT in

three-dimensional (3D) spacetime are expected to improve our understanding of both the

geometric and dynamical role of torsion in a realistic, four-dimensional gravitational the-

ory. Systematic studies of 3D PGT started with the Mielke-Baekler model [7], introduced

in the 1990s as a PGT extension of GR. However, this model is, just like GR, a topological

theory without propagating degrees of freedom. In PGT, such an unrealistic dynamical

feature can be quite naturally improved by going over to Lagrangians that are quadratic

in the field strengths [8, 9], as in the standard gauge theories.

Relying on our experience with GR, we know that exact solutions of a gravitational

theory are essential for its physical interpretation. In the context of 3D PGT, exact so-

lutions were first studied in the Mielke-Baekler model; for a review, see chapter 17 in

ref. [6]. Recently, our research interest moved toward exact solutions in a more dynamical
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framework of the quadratic PGT. The first step in this direction was made by construct-

ing the Bañados-Teitelboim-Zanelli (BTZ) black hole with torsion [9]. Then, we showed

that gravitational waves can be naturally incorporated into the PGT dynamical frame-

work [10, 11]. The purpose of the present work is to examine a PGT generalization of

the Oliva-Tempo-Troncoso (OTT) black hole [12], see also [13], as well as its Vaidya-like

extension [14].

The OTT black hole is an exact solution of the Bergshoeff-Hohm-Townsend (BHT)

massive gravity [15], a Riemannian model defined by adding a specific combination of

curvature-squared terms to the Hilbert-Einstein action. Generically, the BHT gravity with

a cosmological constant admits two distinct maximally symmetric vacua. However, when

the coupling constants satisfy a specific critical condition, these two vacua coincide. It is

exactly in this case that the OTT black hole is a vacuum solution of the BHT gravity.1

Going a step further, Maeda [14] formulated a Vaidya-like extension of the OTT black hole,

assuming the presence of a null dust fluid as a matter field. In this paper, we construct a

Vaidya-OTT spacetime with torsion as an exact vacuum solution of PGT.

The paper is organized as follows. In section 2, we describe the static OTT black hole

as a Riemannian solution of PGT in vacuum. In particular, the canonical expression for

the gravitational energy is shown to be directly compatible with the first law of black hole

thermodynamics. In section 3, we introduce a Vaidya extension of the OTT metric in the

manner of Maeda [14]; the resulting Riemannian geometry is not compatible with the PGT

dynamics in vacuum. Then, in section 4, we construct a Vaidya-OTT geometry with torsion

as an exact vacuum solution of PGT. In section 5, we apply canonical methods to show that

a specific subclass of these solutions is characterized by the asymptotic conformal symmetry.

The canonical Vaidya-OTT energy is found; apart from the OTT term, it contains a

contribution stemming from torsion. The associated surface term of the canonical generator

for time translations is a generalization of the more standard expression [16], used in ref. [17]

to calculate energies for a number of exact solutions in 3D gravity. Finally, section 6 is

devoted to concluding remarks, while appendices contain some technical details.

Working in PGT, we use the following conventions: the Latin indices (i, j, k, . . .) refer

to the local Lorentz frame, the Greek indices (µ, ν, ρ, . . .) refer to the coordinate frame, bi

is the triad field (coframe 1-form), ωij = −ωji is a connection 1-form, the respective field

strengths are the torsion T i = dbi + ωim ∧ bm and the curvature Rij = dωij + ωik ∧ ωkj

(2-forms); the Lie dual of an antisymmetric form Xij is Xi := −εijkXjk/2, the Hodge dual

of a form α is ?α, and the exterior product of forms is implicit.

2 OTT black hole in PGT

We begin our considerations by showing that the static OTT black hole, a vacuum solution

of the BHT gravity with a unique AdS ground state [12], is also a Riemannian solution of

PGT, in spite of the fact that PGT represents quite a different dynamical framework [9].

1For the canonical aspects of the full nonlinear theory in the critical regime, see refs. [18, 19].
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2.1 Geometric aspects

The metric of the static OTT spacetime is given by

ds2 = N2dt2 − dr2

N2
− r2dϕ2 , N2 := −µ+Br +

r2

`2
, (2.1)

where µ and B are integration constants. The Killing horizons are determined by the

condition N2 = 0:

r± =
`2

2

(
−B ±

√
B2 + 4µ/`2

)
.

When at least r+ is real and positive, and `2 > 0, the OTT metric defines a static and

spherically symmetric AdS black hole; for B = 0, it reduces to the BTZ black hole.

Given the metric (2.1), one can choose the associated triad field in the form

b0 = Ndt , b1 =
dr

N
, b2 = rdϕ , (2.2)

so that ds2 = ηijb
i ⊗ bj , where η = diag(+1,−1,−1). Then, treating the OTT black hole

as a Riemannian object, we use the Christoffel connection,

ω01 = −N ′b0 , ω02 = 0 , ω12 =
N

r
b2 , (2.3)

where N ′ := ∂N/∂r, to calculate the curvature 2-form:

R01 = (N ′N)′b0b1 =
1

`2
b0b1 ,

R02 =
1

r
N ′Nb0b2 =

(
B

2r
+

1

`2

)
b0b2 ,

R12 =
1

r
N ′Nb1b2 =

(
B

2r
+

1

`2

)
b1b2 . (2.4a)

For B 6= 0, the scalar curvature has a singularity at r = 0:

R =
6

`2
+

2B

r
. (2.4b)

Nonvanishing irreducible components of the curvature are:

(6)Rij =
1

6
Rbibj , (4)Rij = Rij − (6)Rij .

In this geometry, the Cotton 2-form Ci, defined by

Ci := ∇Li , Li = (Ric)i − 1

4
Rbi , (2.5)

is vanishing, so that the OTT spacetime is conformally flat. This is not a surprise since

the OTT metric is also a solution of the conformal gravity [13].

Now, we shall show that the OTT black hole is a Riemannian solution of PGT in

vacuum.
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2.2 Riemannian sector of PGT

Lagrangian dynamics of PGT if expressed in terms of its basic field variables, the triad

field bi and the RC connection ωij , and the related field strengths, the torsion T i and the

curvature Rij . The general parity-preserving gravitational Lagrangian of PGT is quadratic

in the field strengths, see appendix A. In the Riemannian sector of PGT, torsion vanishes

and LG is expressed only in terms of the curvature. For (5)Rij = 0, we have

LG = −?(a0R+ 2Λ0) +
1

2
Rij?

(
b4

(4)Rij + b6
(6)Rij

)
, (2.6)

and the general vacuum PGT field equations (A.2) reduce to a simpler form:

(1ST) Ei = 0 ,

(2ND) ∇Hij = 0 , (2.7)

where Ei and Hij are given in (A.5). The field equations produce the following result:

(2ND) ⇒ b4 + 2b6 = 0 ,

(1ST) ⇒ b4 − 2a0`
2 = 0 , a0 + 2`2Λ0 = 0 . (2.8)

Thus, the OTT black hole is an exact vacuum solution in the Riemannian sector of PGT,

provided the four Lagrangian parameters (a0, b4, b6, Λ0) satisfy the above three conditions.

2.3 Gravitational energy and entropy

Asymptotically, for large r, the OTT geometry takes the AdS form. Based on the canonical

approach described in appendix B and section 5, one finds that the only nontrivial conserved

charge of this geometry is the gravitational energy,

E =
1

4G

(
µ+

1

4
B2`2

)
, (2.9)

whereas the angular momentum M vanishes. The result is obtained from the canonical

generator of time translations, the surface term of which contains a new contribution with

respect to the more standard situation, see refs. [16, 17] and subsection 5.2.

Remarkably, the canonical expression for E is directly compatible with the first law of

black hole thermodynamics. Indeed, using the OTT central charges (subsection 5.3)

c± = 24π · 2a0` =
3`

G
, (2.10)

the Cardy formula produces the following expression for the entropy:

S = 4π`
√
E/4G . (2.11)

Then, by introducing the Hawking temperature,

T =
1

4π
∂rN

2
∣∣
r=r+

=
1

2π`

√
4GE , (2.12)
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one can directly verify the first law of the black hole thermodynamics:

δE = TδS . (2.13)

Since the entropy vanishes for E = 0, the state with E = 0 can be naturally regarded as

the ground state of the OTT family of black holes [20].

The canonical energy (2.9) coincides with the shifted OTT energy ∆M = M −M0,

introduced by Giribet et al. [20], where M = µ/4G is interpreted as the conserved charge

and M0 = −B2/16G. The quantity ∆M is defined to respect Cardy’s formula for the

entropy, and it has the role of thermodynamic energy in the first law. In the canonical

approach, the conserved charge E is the same object as the thermodynamic energy.

3 Vaidya extension of the OTT metric

To obtain a Vaidya extension of the OTT metric, we first make a coordinate transformation

from the Schwarzschild-like time coordinate t to a new coordinate u, such that

dt = du+ dr/N2 . (3.1)

The physical meaning of u is obtained by noting that u = const. corresponds to a radially

outgoing null ray, dr/dt = N2, see ref. [21]. Then, following Maeda [14], we introduce a

Vaidya extension of the OTT black hole by making B a function of u, B = B(u), but

leaving µ as a constant. The Vaidya-OTT metric defines a time dependent spherically

symmetric geometry:

ds2 = N2du2 + 2dudr − r2dϕ2 . (3.2)

In the new coordinates xµ = (u, r, ϕ), it is convenient to choose the triad field as

b+ := du , b− := Hdu+ dr , b2 := rdϕ , (3.3)

where H = N2/2, so that the line element becomes ds2 = ηijb
ibj , with

ηij =

 0 1 0

1 0 0

0 0 −1

 .

The dual frame hi, defined by hi bj = δji , is given by

h+ = ∂u −H∂r , h− = ∂r , h2 =
1

r
∂ϕ .

For vanishing torsion, one can use the Riemannian connection

ω+− = −H ′b+ , ω+2 = −1

r
b2 , ω−2 =

1

r
Hb2 , (3.4)

to calculate the related curvature 2-form Rij . Then, following the procedure described in

the previous section, one finds that the PGT field equations (2.7) imply:

(2ND) ⇒ b4 + 2b6 = 0 ,

(1ST) ⇒ b4 − 2a0`
2 = 0 , a0 + 2`2Λ = 0 , Ḃ = 0 , (3.5)
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where Ḃ := ∂uB. Thus, the Vaidya-OTT metric with Ḃ 6= 0 is not a Riemannian solution

of PGT in vacuum.

In order to overcome a similar barrier in the BHT gravity, Maeda [14] introduced

the Vaidya-OTT solution in the presence of matter, represented by a null dust fluid. The

energy density of this fluid is expressed directly in terms of the metric function B(u), which

remains dynamically undetermined. Based on our experience with exact wave solutions in

PGT [10, 11], we expect that the presence of torsion could lead to a consistent description

of the Vaidya-OTT dynamics in vacuum. Further exposition confirms this expectation.

4 Vaidya-OTT solution with torsion

4.1 Geometry of the ansatz

Following the logic of our approach to exact wave solutions in PGT [10, 11], we propose to

look for a Vaidya-OTT solution with torsion using the following two assumptions:

(i) The new triad field retains the form (3.3);

(ii) The RC connection is obtained from the Riemannian expression (3.4) by the rule

H → H +K, where K = K(u):

ω+− = −H ′b+ , ω+2 = −1

r
b2 , ω−2 =

1

r
(H +K)b2 . (4.1)

The new function K is expected to compensate the presence of the problematic Ḃ term in

the Riemannian field equations (3.5). Geometrically, K defines the torsion of spacetime.

Indeed, using T i := ∇bi one obtains:

T+, T− = 0 , T 2 =
1

r
Kb+b2 . (4.2)

The nonvanishing irreducible components of the torsion are (1)T i and (2)T i.

To complete the geometric description of our ansatz, we use the connection (4.1) to

calculate the RC curvature 2-form:

R+− = H ′′b+b− =
1

`2
b+b− ,

R+2 =
1

r
H ′b+b2 =

(
1

`2
+
B

2r

)
b+b2 ,

R−2 =
1

r
H ′b−b2 +

1

r

(
Ḣ + K̇ +H ′K

)
b+b2 . (4.3)

For B 6= 0, the scalar curvature is singular at r = 0:

R =
6

`2
+

2B

r
.

The nonvanishing irreducible components of the curvature are (6)Rij and (4)Rij =Rij−(6)Rij .

With the adopted geometric structure of our ansatz, the general PGT Lagrangian (A.1)

becomes effectively of the form

LG = −?(a0R+ 2Λ0) + T i?(a1
(1)Ti + a2

(2)Ti) +
1

2
Rij ?(b4

(4)Rij + b6
(6)Rij) . (4.4)
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4.2 Solutions

With a given geometry of our ansatz, we now wish to find the metric function H and

the torsion function K as solutions of the vacuum PGT field equations (A.2). To ensure a

smooth limit to the standard OTT black hole for B → const., we impose the conditions (2.8)

on the Lagrangian parameters. Then, the field equations (A.2) take the form

(2ND) 2K̇ +BK = 0 , a1, a2 = 0 ,

(1ST) Ḃ`2 + 2K = 0 . (4.5)

The conditions a1, a2 = 0 effectively eliminate the T 2 terms from the Lagrangian. Moreover,

the second term in R−2 vanishes on-shell. Such a reduction of Rij to its OTT form (with

Ḣ,K = 0) is a manifestation of the compensating role of the torsion function K.

By combining the above two equations, one obtains

2K − 1

4
B2`2 = −K0`

2 , Ḃ +
1

4
B2 = K0 , (4.6)

where K0 is an integration constant, the first integral of the field equations (4.5). Intro-

ducing a new constant E by K0`
2 = 4GE − µ, the first equation takes the form

4GE = µ+
1

4
B2`2 − 2K , (4.7)

where E is recognized as a RC generalization of the gravitational energy (2.9). The con-

servation law of E is defined with respect to the evolution along u, dE/du = 0. However,

dt = du+dr/N2 implies t = u+O1, so that asymptotically, one expects E to be conserved

also with respect to the Schwarzschild-like time t. In the next section, this argument is

confirmed by canonical methods.

Depending on the value of K0, there exist three branches of solutions.

1. K0 = C2
1 . Apart from the trivial case B = 2C1, K = 0, one finds:

B = 2C1 tanh
C1

2
(u+ C2) , K = − C2

1`
2

2 cosh2 C1
2 (u+ C2)

. (4.8)

2. K0 = −C2
1 . By replacing C1 → iC1 in the solution (4.8), one obtains:

B = −2C1 tan
C1

2
(u+ C2) , K =

C2
1`

2

2 cos2 C1
2 (u+ C2)

. (4.9)

3. K0 = 0.

B =
4

u+ C2
, K =

2`2

(u+ C2)2
. (4.10)

The solutions in branches 2 and 3 are singular at finite values of u, whereas the solutions

in branch 1 are perfectly regular, and physically most appealing.

In figure 1, we illustrate a typical form of the solutions from branch 1. Since B(u) and

K(u), as well as their derivatives, are bounded functions, the field strengths (4.2) and (4.3)

approach asymptotically to a Riemannian AdS spacetime. This motivates us to examine

the corresponding asymptotic structure in more details.
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Figure 1. Branch 1 solutions for B(u) and K(u), with C1, ` = 1, C2 = 2.

5 Asymptotic symmetry

In this section, we use the canonical approach to analyze the asymptotic symmetry asso-

ciated to the Vaidya-OTT solution with torsion in branch 1.

5.1 AdS asymptotic conditions

Transition from the OTT to the Vaidya-OTT triad is realized not only by making B a

function of u, but also by going over to a new triad basis, as can be seen by comparing

eqs. (2.2) and (3.3). The new basis allowed us to introduce the RC geometry by the simple

rules formulated in subsection 4.1. Then, requiring the invariance under the AdS group

SO(2, 2), see [22], one arrives at the following set of the Vaidya-OTT asymptotic states:

biµ = b̄iµ +Bi
µ, b̄iµ =


1 0 0
r2

2`2
1 0

0 0 r

 , Bi
µ :=

O1 O3 O1

O−1 O1 O−1

O0 O2 O0

 , (5.1a)

and

ωiµ = ω̄iµ + Ωi
µ, ω̄iµ = −

 0 0 1

0 0 r2

2`2
r
`2

0 0

 , Ωi
µ :=

O1 O3 O1

O−1 O1 O−1

O0 O2 O0

 , (5.1b)

where ωi is the Lie dual of ωij , and b̄iµ and ω̄iµ refer to the background configuration with

µ,B = 0, representing the massless BTZ black hole. These states are invariant under the

set of restricted local Poincaré transformations, defined by the parameters

ξu = `U +O2 , ξr = −r`∂uU +O0 ,

ξϕ = Φ− `

r
∂ϕU +O2 , (5.2a)

θ+ = − `
r
∂ϕU +O2 , θ− =

r

2`
∂ϕU +O0 ,

θ2 = `∂uU +O1 . (5.2b)
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Here, the functions U = U(u, ϕ) and Φ = Φ(u, ϕ) are such that the combinations U± =

U ±Φ satisfy the conditions ∂±U
∓ = 0, where x± = u/`±ϕ. Since u = t+O1 for large r,

these conditions define the asymptotic conformal group in 2D.

In spite of certain technical differences between the asymptotic requirements (5.1)

and (B.1), the corresponding commutator algebras have the same form. Using the compo-

sition law of the restricted Poincaré parameters to leading order, the commutator algebra

associated to (5.1) is found to have the form of two independent Virasoro algebras,

i[`±m, `
±
n ] = (m− n)`±m+n , (5.3)

where `±n = δ0(U± = e±inx
+

). The respective central charges c± will be determined by the

canonical methods.

To complete the analysis of the asymptotic conditions, we presented in appendix C an

additional set of asymptotic requirements, motivated by the form of torsion in (4.2).

5.2 Canonical generators

In order to examine the canonical structure of the quadratic PGT, we use the first-order

formulation [23], as it leads to a particularly simple construction of the canonical generator,

the form of which can be found in eq. (5.7) of ref. [9]. In this formulation, one introduces

two new variables, τi and ρmn, such that their on-shell values are τi = Hi and ρmn = Hmn.

Since the canonical generator G acts on basic dynamical variables via the Poisson bracket

operation, it is required to be a differentiable phase-space functional. For a given set of

asymptotic conditions, this property is ensured by adding a suitable surface Γ term to G,

such that G̃ = G + Γ is both differentiable and finite phase-space functional [24, 25]. To

examine the differentiability of G, we start from the form of its variation:

δG = −
∫

Σ
d2x(δG1 + δG2) ,

δG1 = εtαβξµ
(
biµ∂αδτiβ + ωiµ∂αδρiβ + τ iµ∂αδbiβ + ρiµ∂αδωiβ

)
+R ,

δG2 = εtαβθi∂αδρiβ +R . (5.4)

Here, the coherently oriented volume 2-form on the spatial section Σ of spacetime is nor-

malized to d2x = drdϕ, the variation is performed in the set of asymptotic states, R stands

for regular terms, and ρi is the Lie dual of ρmn = Hmn, the on-shell value of which reads

Hij = −2a0εijkb
k − 4a0`

2εijkL̂
k , (5.5)

and L̂k is the “symmetrized” Schouten 1-form, L̂k = L(km)b
m, see (2.5).

In what follows, we restrict our considerations by two specific assumptions that char-

acterize both the OTT black hole and the Vaidya-OTT solution with torsion:

(1) The torsion squared-terms in LG effectively vanish, that is τi = 0;

(2) (5)Rij = 0.
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The asymptotic conditions (5.1) imply δG2 = R, so that the surface term in the improved

generator G̃ = G+ Γ is determined by the variational equations

δΓ =

∫ 2π

0
dϕ(ξtδE + ξϕδM) , (5.6a)

δE :=
1

2

(
ωij tδHijϕ + δωijϕH

ij
t

)
, (5.6b)

δM :=
1

2

(
ωijϕδHijϕ + δωijϕH

ij
ϕ

)
, (5.6c)

where we used u = t+O1, and the boundary ∂Σ is parametrized by the coordinate ϕ.

Finding a solution for E from the variational equation (5.6b) demands rather involved

considerations, based on the asymptotic conditions (5.1) and (C.1). As shown in ap-

pendix C, the surface term for time translations can be written in the form

Γ[ξt] =

∫ 2π

0
dϕ ξtE , (5.7a)

E =
1

2

(
ωij t∆Hijϕ + ∆ωijϕH̄ijt

)
− 1

4

(
∆ωij t∆Hijϕ −∆ωijϕ∆Hijt

)
, (5.7b)

where ∆X := X − X̄ is the difference between any form X and its boundary value X̄. On

the other hand, equation (5.6c) leads to a simple surface term for spatial rotations:

Γ[ξϕ] =

∫ 2π

0
dϕ ξϕM , M =

1

2
ωijϕHijϕ . (5.7c)

Both Γ[ξt] and Γ[ξϕ] are finite phase-space functionals (see appendix C).

The boundary terms for ξt = 1 and ξϕ = 1,

E =

∫ 2π

0
dϕ E , M =

∫ 2π

0
dϕM , (5.8)

represent the energy and angular momentum of the system, respectively. Calculated on

the Vaidya-OTT configuration, these expressions take the values

E =
1

4G

(
µ+

1

4
B2`2 − 2K

)
, M = 0 . (5.9)

The form of E confirms the result (4.7) obtained from the Lagrangian field equations.

In the canonical formalism, the conservation laws for E and M follow from the Poisson

bracket algebra of the asymptotic symmetry [13].

The expression for energy defined by equation (5.7b) consists of two pieces. As shown

in ref. [17], the first piece is sufficient to correctly describe the energy content of a number of

solutions in 3D gravity with/without torsion and topologically massive gravity. However,

when applied to the (Vaidya-)OTT solution, this piece is not sufficient; in particular, it

produces the incorrect coefficient 1/2 for the B2 term in (5.9). The second piece in (5.7b)

is closely related to the presence of the Br term in the OTT metric. Thus, our result (5.7b)

represents a generalization of the energy formula used in [17] to the (Vaidya-)OTT case.
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5.3 Canonical algebra of asymptotic symmetries

The asymptotic symmetry is described by the Poisson bracket algebra of the improved

generators. Rather then performing a direct calculation, the form of this algebra can be

found by a more instructive method. To show how it works, we introduce the notation

G̃′ = G̃[U ′,Φ′], and similarly for G̃′′ and G̃′′′. Then, according to the main theorem of

ref. [25], one can conclude that the Poisson bracket algebra has the form

{G̃′′, G̃′} = G̃′′′ + C ′′′ , (5.10)

where the parameters of G̃′′′ are defined by the composition law of the asymptotic Poincaré

transformations, and C ′′′ is the central charge term. In order to calculate C ′′′, one should

note that the algebra (5.10) implies δ′0Γ′′ ≈ Γ′′′ + C ′′′, where δ′0Γ′′ is determined by the

relations (5.6), and C ′′′ is identified as the field independent piece on the right-hand side.

Then, going over to the Fourier modes L±n of G̃, the algebra (5.10) takes the form of two

independent Virasoro algebras,

i{L±m, L±n } = (m− n)L±n+m +
c±

12
n3δm,−n , (5.11)

where the classical central charges are equal to each other, c± = c, with

c =
3`

G
. (5.12)

Thus, the value of c is found to be twice the GR value c0 = 3`/2G.

6 Concluding remarks

In this paper, we constructed a Vaidya-like extension of the OTT black hole as an exact

solution of the quadratic PGT in vacuum. The construction is realized in two steps.

First, we showed that the OTT black hole is a Riemannian vacuum solution of PGT,

provided the coupling constants satisfy certain requirements. The black hole energy is

calculated from the canonical generator for time translations, the surface term of which is

a suitable generalization of the more standard expression that can be found in ref. [16],

see also ref. [17]. The canonical energy E is compatible with the first law of black hole

thermodynamics, in agreement with the equality of E to the shifted OTT energy [20].

Then, following Maeda [14], we introduced a Vaidya-like extension of the OTT black

hole; however, this extension is not a Riemannian solution of PGT in vacuum. To overcome

this difficulty, we introduced a suitable ansatz for the connection possessing a nontrivial

torsion content, making thereby the resulting Vaidya-OTT geometry an exact vacuum so-

lution of PGT. As far as the asymptotic structure of the Vaidya-OTT solution is concerned,

one should note that: (a) the surface term of the canonical generator for time translations

has the same structure as in the OTT case, (b) the canonical energy differs from the OTT

black hole energy by a contribution stemming from the torsion, and (c) central charges of

the asymptotic algebra are the same as in the OTT black hole case.

Since the OTT solution is known to exists also for positive or vanishing 1/`2 [12], most

of the present results could be straightforwardly extended to these sectors.
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A PGT field equations

In this appendix, we give a brief account of the PGT field equations, based on ref. [9].

The parity-invariant gravitational Lagrangian LG = LG(bi, T j , Rmn) (3-form) is at most

quadratic in the torsion T i and the curvature Rij :

LG = −?(a0R+ 2Λ0) + T i?(a1
(1)Ti + a2

(2)Ti + a3
(3)Ti)

+
1

2
Rij

(
b4

(4)Rij + b5
(5)Rij + b6

(6)Rij

)
, (A.1)

where (n)T i and (n)Rij are irreducible components of the respective field strengths, and a0

is normalized by a0 = /16πG. By varying LG with respect to bi and ωij , one obtains the

vacuum field equations that can be written in a compact form as

(1ST) ∇Hi + Ei = 0 ,

(2ND) ∇Hij + Eij = 0 . (A.2)

Here, Hi := ∂LG/∂T
i and Hij := ∂LG/∂R

ij are the covariant momenta:

Hi = 2?(a1
(1)Ti + a2

(2)Ti + a3
(3)Ti) ,

Hij = −2a0εijmb
m +H ′ij ,

H ′ij := 2 ?
(
b4

(4)Rij + b5
(5)Rij + b6

(6)Rij

)
, (A.3)

and Ei := ∂LG/∂b
i and Eij = ∂LG/∂ω

ij are the energy-momentum and spin currents:

Ei = hi LG − (hi Tm)Hm −
1

2
(hi Rmn)Hmn ,

Eij = −(biHj − bjHi) . (A.4)

In the Riemannian sector (T i = 0) with (5)Rij = 0, Hi and Eij vanish, and the

simplified field equations take the form displayed in (2.7), with

Hij = −2a0εijmb
m +

b6 + 2b4
3

Rεijkb
k − 2b4εij

m(Ric)mkb
k ,

Ei = LG?bi −RmnikbkHmn . (A.5)

Here, we used LG = LG ε̂, and ε̂ is the volume 3-form.
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B Asymptotic conditions for the OTT black hole

The action of the AdS Killing vectors on the OTT black hole configuration, described in

section 2, leads to the associated asymptotic conditions that are relaxed with respect to

the Brown-Henneaux ones:

biµ = b̄iµ +Bi
µ , Bi

µ :=

O0 O3 O0

O1 O2 O1

O0 O3 O0

 , (B.1a)

and

ωiµ = ω̄iµ + Ωi
µ , Ωi

µ :=

O0 O3 O0

O1 O2 O1

O0 O3 O0

 . (B.1b)

Here, ωi is the Lie dual of ωij , and b̄iµ and ω̄iµ refer to the AdS background (with B =

µ = 0). These conditions are invariant under the asymptotic Poincaré transformations,

defined by the set of restricted local parameters (ξµ, θi) that can be found in ref. [22]. The

conditions (B.1) are a PGT generalization of those discussed in [12].

Following the procedure described in section 5, one can find the conserved charges of

the OTT black hole, the energy E and the angular momentum M . Moreover, the canonical

algebra of the asymptotic symmetry is represented by two independent Virasoro algebras

with equal central charges c∓ = c. The values of E,M and c are given in subsection 2.3.

C Refined asymptotic conditions

Equation (4.2) implies that the Vaidya-OTT solution has only one nonvanishing component

of torsion: T 2
uϕ = K. Clearly, this property is not valid on the whole set of asymptotic

states. In order to ensure finiteness of the improved canonical generators, we find it nec-

essary to make further restrictions of the asymptotic conditions (5.1) by demanding the

highest order terms in T iµν to vanish:

T+
uϕ : r

(
Ω+

u +
1

`2
B+

ϕ

)
+ (Ω2

ϕ +B2
u) = O1 ,

T+
ur :

r

`2
B+

r + Ω2
r +

1

r
B+

u = O3 ,

T+
rϕ : rΩ+

r +B2
r +

1

r
B+

ϕ = O3 , (C.1a)

T−uϕ : r

(
Ω−u +

1

`2
B−ϕ

)
+

r2

2`2
(Ω2

ϕ +B2
u) = O0 ,

T−ur :
r

`2
B−r +

r2

2`2
Ω2

r − Ω2
u −

1

r
B−u = O1 ,

T−rϕ : Ω2
ϕ +

r2

2`2
B2

r + rΩ−r +
1

r
B−ϕ = O1 , (C.1b)

T 2
uϕ :

r2

2`2
(Ω+

ϕ +B+
u)− (B−u + Ω−ϕ) = O0 ,
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T 2
ur :

r2

2`2
Ω+

r − (Ω−r + Ω+
u) = O2 ,

T 2
rϕ :

r2

2`2
B+

r + Ω+
ϕ −B−r = O2 . (C.1c)

Now, we use the asymptotic conditions (5.1) and (C.1) to derive the surface terms (5.7)

and prove their finiteness. First, we show that E satisfies the variational equation (5.6b):

δE =
1

2

(
ωij tδHijϕ + δωijϕH

ij
t

)
+

1

4

(
δωij t∆Hijϕ −∆ωij tδHijϕ − δωijϕ∆Hijt + ∆ωijϕ∆Hijt

)
=

1

2

(
ωij tδHijϕ + δωijϕH

ij
t

)
+O1 . (C.2)

Next, we prove that the surface term for time translations is finite:

E = 2a0

(
r2

2`2
Ω+

ϕ + Ω−ϕ − rΩ2
u

)
+O0

= −a0
r3

`2

(
1

r
B+

u +
r

`2
B+

r + Ω2
r

)
+O0 = O0 . (C.3)

Finally, we derive the finiteness of the surface term for spatial rotations:

M = −a0ε
imnωmnϕ

(
biϕ + 2`2L(ij)b

j
ϕ

)
= 2a0

(
rB2

u −B−ϕ −
1

2

r2

`2
B+

ϕ

)
− 4a0`

2

(
r(Ric)(+2) +

r2

2`2
(Ric)(−2)

)
+O0

= O0 . (C.4)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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1 Introduction

Exact gravitational waves have been an important subject of investigation in general rela-

tivity (GR) from the early 1920s; for a review, see [1–4]. Most of the activity on the subject

has been focused on asymptotically flat models, the solutions of GR without a cosmological

constant. From 1980s, exact gravitational waves have been studied also in GR with a cos-

mological constant (GRΛ) [5–7], see also [8]; for higher-dimensional extensions, see [9–13].

In particular, exact gravitational waves with an AdS asymptotic behavior attracted a lot

of interest in regard to the AdS/CFT correspondence [14, 15]. Moreover, some of these

solutions “may serve as exact models of the propagation of primordial gravitational waves

and may be relevant for the (hypothetical) cosmological wave background” [16].

To properly understand dynamical complexities of gravity, one often relies on tech-

nically simplified three-dimensional (3D) models (for a review and an extensive list of

references, see [17, 18]). In 3D, both GR and GRΛ are topological theories without propa-

gating degrees of freedom, in which nontrivial wave solutions can exist only in the presence

of matter sources [19–21]. To avoid such a degenerate situation, one is naturally motivated

to study alternative gravitational models possessing true dynamical degrees of freedom.

The well-known models of this type, formulated in the context of Riemannian geometry of

– 1 –
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spacetime, are Topological massive gravity and New massive gravity [22–24]. Their dynam-

ical properties allow for the existence of gravitational waves in vacuum; see, for instance,

Ayón-Beato et al. [25].

In the early 1960s, a new approach to gravitational dynamics was proposed, based

on a modern, gauge-field-theoretic approach, known as the Poincaré gauge theory

(PGT) (see [26, 27], for a textbook exposition of PGT, [28] for an up-to-date status of

PGT, including its 3D version, and [29]) with an underlying Riemann-Cartan (RC) geom-

etry of spacetime, characterized by both the curvature and the torsion. In a topological

version of the three-dimensional PGT, gravitational waves with torsion were constructed in

the presence of matter sources by Obukhov [30]. However, genuine gravitational waves are

those that can propagate in spacetime regions without matter. Further investigations of the

PGT, with a Lagrangian that is at most quadratic in the field strengths (quadratic PGT),

revealed a rich dynamical structure, expressed, in particular, by the existence of propagat-

ing torsion modes [31]. In a recent paper [32],1 we used quadratic PGT to construct exact

torsion waves in vacuum as a generalization of the plane-fronted waves from GR.

In the present paper, we continue the investigation of genuine gravitational waves with

torsion in 3D, by focusing on the anti-de Sitter (AdS) background. We found a new class

of exact torsion waves in vacuum, representing a PGT extension of the Siklos waves in

GRΛ [33], see also [8, 16]. In the linear approximation, this class is associated to spin-2

torsion excitations around the AdS background. In the sector of massless torsion modes,

we found a set of asymptotic conditions that leads to a conformal asymptotic symmetry,

characterized by two independent Virasoro algebras with central charges. On the other

hand, massive torsion waves show kind of an oscillatory behavior in the asymptotic region.

The paper is organized as follows. In section 2, we give an overview of the Siklos

waves in the three-dimensional GRΛ. In section 3, we construct a new wave solution

in PGT, taking the metric to be of the Siklos form, whereas the torsion piece of the

connection is assumed to possess only the tensorial irreducible component. The solutions

of the field equations are found and classified according to the values of the mass parameter

µ2, associated to the spin-2 torsion modes. For µ2 ≥ 0 (no tachyons), the asymptotic

limit of the Siklos waves with torsion is shown to be represented by Riemannian AdS

spacetimes. In section 4, we study the form of the AdS asymptotic conditions for µ2 ≥ 0.

It turns out that a well-defined asymptotic structure exists only in the massless sector.

The corresponding central charges of the asymptotic symmetry are found in section 5, and

section 6 is devoted to concluding remarks. Finally, two appendices contain some technical

details.

Here are our conventions: the Latin indices (i, j, k, . . .) refer to the local Lorentz

(co)frame and run over (+,−, 2), bi is the triad field (coframe 1-form), hi is the dual

basis (frame), totally antisymmetric tensor εijk is normalized to ε+−2 = 1; the Greek in-

dices (µ, ν, ρ, . . .) refer to the coordinate frame; the Lie dual of an antisymmetric form Xjk

is Xi := −εijkXjk/2, the Hodge dual of a form α is ?α, and the exterior product of forms

is implicit.

1Here, the reader can find references of earlier studies of exact gravitational waves with torsion in 4D.

– 2 –
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2 Siklos waves

In 1980s, Siklos [33] found a special class of exact gravitational waves propagating on

the AdS background, the physical interpretation of which was investigated in detail by

Podolský [16]. In the Poincaré coordinates xµ = (u, v, y), the Siklos metric in 3D has

the form

ds2 =
`2

y2

[
2du(Hdu+ dv)− dy2

]
, (2.1)

with H = H(u, y), which is equivalent to a subclass of the Kundt metric [8, 16]. The wave

fronts are labeled by u = const., v is an affine parameter along the corresponding rays

generated by the Killing vector field ∂v that is null but not covariantly constant, and for

H = 0 the metric reduces to the AdS background (see appendix A). We choose the triad

field bi (1-form) to be

b+ :=
`

y
du , b− :=

`

y
(Hdu+ dv) , b2 =

`

y
dy , (2.2)

so that the line element is given by ds2 = ηijb
ibj , with the half-null Lorentz metric

ηij =

 0 1 0

1 0 0

0 0 −1

 .

The dual frame basis hi, defined by hi bj = δji , is given by

h+ =
y

`
(∂u −H∂v) , h− =

y

`
∂v , h2 =

y

`
∂y .

The related Riemannian connection ωij (1-form) can be written in a compact form as

ωij = ω̄ij − 1

`
εijmk

m
(
yH ′

)
knb

n . (2.3a)

Here, prime denotes a derivative with respect to y, the first term ω̄ij describes the back-

ground AdS geometry,

ω̄+− = 0 , ω̄+2 =
1

`
b+ , ω̄−2 =

1

`
b− , (2.3b)

and the second one is the radiation piece, characterized by the null vector km := (0, 1, 0),

with km = (1, 0, 0).

Next, we calculate the Riemannian curvature,

Rij =
1

`2
bibj − 1

`2
εijmk

m
(
y2H ′′ − yH ′

)
kn?bn , (2.4a)

whereupon the Ricci curvature (Ric)i = −hj Rij and the scalar curvature R = hi (Ric)i

are found to be

(Ric)i =
2

`2
bi +

1

`2
ki
(
y2H ′′ − yH ′

)
knb

n ,

R =
6

`2
. (2.4b)

– 3 –
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When the Siklos metric satisfies the vacuum field equation of GRΛ with Λ ∼ −1/`2,

the metric function H takes a simple form:

y2H ′′ − yH ′ = 0 ⇒ H = D1(u) +D2(u)y2 . (2.5)

However, this solution is trivial. Indeed, since the radiation piece of the curvature vanishes

on shell, we have Rij = bibj/`2, and the geometry of spacetime is fixed, it has the AdS

form. Nontrivial AdS waves can exist in GRΛ only in the presence of matter [19–21], but

to have vacuum AdS waves, one has to change the gravitational dynamics. As we shall

see, transition to quadratic PGT allows the existence of genuine AdS waves with torsion.

3 Siklos waves with torsion

Basic gravitational variables of PGT are the triad field bi and the Lorentz connection ωij

(1-forms), and the related field strengths are the torsion T i = dbi+ωimb
m and the curvature

Rij = dωij +ωimω
mj (2-forms). Relying on PGT, we now introduce a geometric extension

of the Siklos waves (2.1) to genuine Siklos waves with torsion.

3.1 Ansatz

In order to preserve the radiation nature of the Siklos metric, we assume that the form

of the triad field in PGT remains the same as in eq. (2.2). Essentially the same idea can

be applied also to the connection [32]: starting from the Riemannian connection (2.3), we

assume that the new, RC connection is given by

ωij = ω̄ij − 1

`
εijmk

m(yG)knb
n , (3.1a)

where

G := H ′ +K , K = K(u, y) . (3.1b)

Geometrically, the new function K in the connection is related to the torsion:

T i := ∇bi = −yK
`
kikn?bn . (3.2)

For K = 0, the torsion vanishes, and the connection becomes equivalent to ω̄ij . The only

nonvanishing irreducible component of T i is its tensorial piece (1)T i [32], so that

(1)T i = T i .

Using the above ansatz for the connection, one can calculate the RC curvatures:

Rij =
1

`2
bibj − 1

`2
εijmk

m
(
y2G′ − yH ′

)
kn?bn , (3.3)

(Ric)i =
2

`2
bi +

1

`2
ki
(
y2G′ − yH ′

)
knb

n ,

R =
6

`2
.

– 4 –
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The quadratic curvature invariant takes the form

Rij?Rij =
6

`4
?1 .

The only nonvanishing irreducible components of Rij are:

(6)Rij =
1

6
Rbibj , (4)Rij = Rij − (6)Rij .

For more details on the irreducible decomposition of the field strengths, see ref. [32].

In what follows, the specific forms of both the metric function H and the torsion

function K will be determined by the PGT field equations.

3.2 Lagrangian dynamics of PGT

The PGT dynamics is described by a Lagrangian 3-form LG = LG(bi, T i, Rij), which

is assumed to be at most quadratic in the field strengths (quadratic PGT) and parity

invariant. In conformity with our ansatz, the Lagrangian is chosen to have the form

LG = −a0εijkb
iRjk − 1

3
Λ0εijkb

ibjbk

+T i ?
(
a1

(1)Ti

)
+

1

2
Rij ?

(
b4

(4)Rij + b6
(6)Rij

)
. (3.4)

Indeed, the only nonvanishing irreducible components of the field strengths appearing in

LG are (1)T i, (4)Rij and (6)Rij , and a1, b4, b6 are the corresponding coupling constants.

Then, the PGT field equations in vacuum are found to be (see section III.A of ref. [32]):

(1ST ) :
(
a0`

2 − b4 − b6
) (
yH ′′ −H ′

)
+
(
a0`

2 − a1`
2 − b4 − b6

)
yK ′ = 0 ,

2a0`
2 + b6 + 2`4Λ0 = 0 ,

(2ND) : b4
[
y2
(
H ′′′ +K ′′

)
+ yK ′

]
−
(
a0`

2 − a1`
2 − b6

)
K = 0 . (3.5)

These equations are checked using the Excalc package of the computer algebra system

Reduce. Using the expression for (1ST )′, one finds that (2ND) can be rewritten as

y2K ′′ + yK ′ + `2µ2K = 0 , µ2 =
(a1 − a0 − b6λ)(a0 + b4λ+ b6λ)

b4a1
,

where λ := −1/`2. Finally, after introducing the notation

ŷ =
y

`
, m2 = `2µ2 ,

the two field equations take a more compact form:

(1ST ) ŷH ′′ −H ′ = `CŷK ′ , C :=
a1

a0 + b4λ+ b6λ
− 1 ,

(2ND) ŷ 2K ′′ + ŷK ′ +m2K = 0 , (3.6)

where prime now denotes differentiation with respect to ŷ . As one can see, it is the presence

of torsion (K 6= 0) that makes the metric of the AdS wave nontrivial (ŷH ′′ − H ′ 6= 0).

Equations (3.6) define a new class of Siklos waves — the Siklos waves with torsion.

– 5 –
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3.3 Solutions

The coefficient m2 in (2ND) is the (dimensionless) mass parameter associated to the spin-2

excitation of the torsion field around the AdS background, see [31, 32]. The absence of

tachyons requires m2 ≥ 0. In this subsection, we construct the exact Sikos waves with

torsion, and classify them according to the values of m2.

(1) m2 > 0. The Euler (or Euler-Fuchs, Euler-Cauchy) differential equation (2ND) is

solved by the ansatz K = ŷα, which yields α2 + m2 = 0. For m2 > 0, we have α = ±im,

so that K = ŷ±im = e±im ln ŷ , or equivalently,

K = A(u) cos(m ln ŷ ) +B(u) sin(m ln ŷ ) . (3.7a)

By substituting this result into (1ST ), one finds the related solution for H:

H = D1 +D2ŷ
2 +

`Cm

1 +m2
ŷ [A(u) sin(m ln ŷ )−B(u) cos(m ln ŷ )] . (3.7b)

The first two terms, which represent a solution of the homogeneous equation ŷH ′′−H ′ = 0,

can be geometrically disregarded, as they do not influence the values of the field strengths.

In the asymptotic limit ŷ → 0, the torsion and the radiation piece of the curvature,
(4)Rij , vanish, as follows from the relations

lim
ŷ→0

ŷK = 0 ,

lim
ŷ→0

[
ŷ 2(H ′′ +K ′)− ŷH ′

]
= lim

ŷ→0

[
ŷ 2K ′ + `Cŷ 2K ′

]
= 0 . (3.8)

Thus, the asymptotic geometry of our solution is given by the Riemannian AdS spacetime.

(2) m2 = 0. In order to have a smooth Minkowskian limit for `2 → ∞, the condition

m2 = 0 is realized by demanding [31]

a1 − a0 + b6/`
2 = 0 . (3.9)

As a consequence, the solution for the massless torsion wave is given by

K = C1 + C2 ln ŷ ,

H = D1 +D2ŷ
2 − `CC2ŷ . (3.10)

As before, one can choose D1 = D2 = 0 without loss of generality, so that the asymptotic

limit of the solution is again given by the Riemannian AdS spacetime.

(3) m2 < 0. Although the spin-2 torsion modes are now tachyons, we present the related

exact wave solution, for the sake of completeness:

K = Aŷm +Bŷ−m ,

H =
`Cm

m2 − 1

(
Aŷ 1+m −Bŷ 1−m) . (3.11)

The asymptotic behavior depends on the value of m.
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4 Asymptotic conditions

In our study of the asymptotic conditions, we assume that the topology of the spacetime

manifold M is R×Σ, where R is interpreted as time, and Σ is a spatial section of spacetime,

whose boundary ∂Σ is topologically a circle. The asymptotic analysis is simplified by

introducing a new set of local coordinates (t, ϕ), given by u = (t+`ϕ)/
√

2, v = (t−`ϕ)/
√

2,

such that the boundary ∂Σ at y = 0 is parametrized by the angular coordinate ϕ.

As we have seen in the previous section, in the asymptotic limit y → 0, the geometry of

our torsion wave is described by the Riemannian AdS spacetime. This property motivates

us to examine asymptotic conditions based on the following requirements:

(a) asymptotic configurations include the torsion wave geometry;

(b) they are invariant under the action of the AdS group SO(2, 2);

(c) asymptotic symmetries have well defined canonical generators.

Specific aspects of these criteria depend on the value of the mass parameter µ2.

4.1 Massive torsion waves

For µ2 > 0, the characteristic functions H and K can be represented in the form

H = yW0 , K = W0 , (4.1a)

where W0 is a generic wave “oscillatory” function,

W0 := C1(u) cos(m ln y/`) + C2(u) sin(m ln y/`) . (4.1b)

In spite of this oscillatory behavior, both the torsion and the wave piece of the curvature

tend to zero when y → 0.

In the matrix notation, the components of the Siklos metric (2.1) read

gµν =
`2

y2

 2H 1 0

1 0 0

0 0 −1

 .

Asymptotically, for y → 0, we have guu ∼ W0/y, so that, to leading order in 1/y, gµν
reduces to the AdS metric ḡµν . In the asymptotic analysis, we use O(ynW0) to denote

a term that is at most proportional to ynW0 when y → 0. Thus, the Siklos metric is of

the type

gµν = ḡµν +Gµν , Gµν :=

O(W0/y) 0 0

0 0 0

0 0 0

 .

Looking at the action of the AdS Killing vectors (appendix A) on gµν , one finds that the

general requirements (a) and (b) are fulfilled by the following asymptotic configurations:

gµν = ḡµν +Gµν , Gµν :=

O−1 O0 O0

O0 O0 O0

O0 O0 O0

 , (4.2)
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where On := O(ynW0). The asymptotic form (4.2), but with On = O(yn), was studied

earlier by Afshar et al. [34, 35], in the context of Conformal Chern-Simons gravity.

The asymptotic conditions (4.2) are preserved by the local translations of the form

ξu = εu(u) +
y2

4
∂2
vε
v(v) +O3 ,

ξv = εv(v) +
y2

4
∂2
uε
u(u) +O3 ,

ξ2 =
y

2
(∂uε

u + ∂vε
v) +O3 . (4.3)

These parameters are essentially of the Brown-Henneaux type [35, 36].

In the next step, one could try to extend these considerations to the variables bi and

ωij . However, a problem arises when we return to our general requirement (c). Namely,

although the field strengths T i and Rij have an AdS asymptotic limit, the asymptotic

behavior of bi and ωij is determined by the function W0, which oscillates when y → 0.

Thus, the basic dynamical variables have no asymptotic limit, and one is not able to define

surface terms of the canonical generators. Thus, one cannot formulate a boundary theory,

and in particular, the AdS/CFT correspondence is not well defined.

4.2 Massless torsion waves

In the sector with massless torsion modes, the form of our wave solution is displayed in

eq. (3.10). As we noted before, the geometrically irrelevant term D1 + D2y
2 in H can be

removed by choosing D1 = D2 = 0, whereupon the characteristic functions H and K are

of the generic form

H = C0(y/`) , K = C1 + C2 ln(y/`) . (4.4)

The asymptotic geometry of the solution is described by the AdS spacetime. In this section,

we discuss the asymptotic structure of the massless torsion wave (4.4).

Quite generally, the wave triad (2.2) can be written in the form biµ = b̄iµ+Bi
µ, where

b̄i is the AdS triad, and the only nonvanishing component of Bi
µ is B−u = `H/y = C0.

Then, in accordance with the general requirements (a) and (b), we choose the following

asymptotic form of the triad field:

biµ = b̄iµ +Bi
µ , Bi

µ :=

O1 O1 O1

O0 O1 O1

O1 O1 O1

 , (4.5)

where On := O(yn). These conditions impose the following restriction on the local Poincaré

parameters (ξρ, εij):

δ0b
i
µ := εijkθjbkµ − (∂µξ

ρ)biρ − ξρ∂ρbiµ = Bi
µ ,

where θi is the Lie dual of εmn. As a consequence, the asymptotic parameters of local

translations take the form displayed in eq. (4.3), whereas the asymptotic parameters of
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Lorentz rotations are found to be

θ+ =
y

2
∂2
vε
v +O2 ,

θ− = −y
2
∂2
uε
u +O2 ,

θ2 =
1

2
(∂vε

v − ∂uεu) +O2 . (4.6)

Next, we wish to examine whether the asymptotic behavior of the RC connection (3.1)

can be made compatible with the already found form of the asymptotic Poincaré parame-

ters. First, we introduce the Lie-dual connection ωi:

ω+ =
1

`
b+ , ω− = −1

`
b− +

y

`
Gb+ , ω2 = 0 . (4.7)

The form of K implies that the asymptotic conditions on the connection should contain

log terms. By combining the expression (4.7) for ωiµ with the asymptotic formulas for b±

and G = H ′ +K, we find it suitable to assume

ωiµ = ω̄iµ + Ωi
µ , Ωi

µ :=
1

`

O1 O1 O1

O(ln y/`) O1 O(y ln y/`)

O(y ln y/`) O1 O1

 . (4.8)

As it turns out, the asymptotic invariance of ωiµ,

δ0ω
i
µ := −∂µθi − εijkωjµθk − ∂µξρωiρ − ξρ∂ρωiµ = Ωi

µ ,

does not impose any new restriction of the asymptotic Poincaré parameters (4.3) and (4.6).

In order to clarify the interpretation of our asymptotic conditions, we wish to find the

commutator algebra of the asymptotic Poincaré transformations. To do that, we note that

the composition law of the asymptotic transformations, to lowest order in y, reads

(εu)′′′ = (εu)′∂u(εu)′′ − (εu)′′∂u(εu)′ , (4.9)

and similarly for εv. Then, introducing the notation

`+n := − 1√
2
δ0

(
εu = `einu

√
2/`, εv = 0

)
, `−n := − 1√

2
δ0

(
εu = 0, εv = `einv

√
2/`
)
,

the commutator algebra of the asymptotic symmetry takes the form of two independent

Virasoro algebras:

i
[
`±m, `

±
n

]
= (m− n)`±m+n . (4.10)

The related central charges are discussed in the next section.

5 Canonical form of the asymptotic symmetry

In this section, we use the canonical approach to analyze the asymptotic symmetry in the

massless sector, including the values of the central charges.
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To simplify the analysis, we follow Nester [37] in applying the first-order formulation

to the quadratic PGT. In this formalism, the Lagrangian (3.4) is written in the form

LG = T iτi +
1

2
Rijρij − V

(
bi, τi, ρij

)
− 1

3
Λεijkb

ibjbk . (5.1)

Here, τi and ρij are new, independent variables, and V is a function quadratic in τi and ρij ,

chosen so that, on shell, we have τi = Hi and ρij = Hij , where Hi = ∂LG/∂T
i and Hij =

∂LG/∂R
ij are the covariant field momenta associated to the original Lagrangian (3.4).

Explicit form of V is described in ref. [31], and it ensures the first-order formulation (5.1)

to be equivalent to (3.4). Thus, the variation of LG with respect to τi and ρij yields

τi = 2a1
?Ti ,

ρij = −2

(
a0 −

1

6
b6R

)
εijkb

k + 2b4
?(4)Rij , (5.2)

in accordance with the forms of Hi and Hij defined by the Lagrangian (3.4).

Asymptotic symmetries are best described in the canonical formalism. In the first order

formulation of PGT, the canonical gauge generator is a functional G[ϕ, π] on the phase

space, the form of which is defined in eqs. (5.7) of ref. [31]. The canonical generator acts

on the phase-space variables (ϕ, π) via the Poisson (or Dirac) bracket operation, defined

in terms of the functional derivatives. A functional F [ϕ, π] =
∫
d2xf(ϕ, ∂αϕ, π, ∂απ) is

differentiable (or regular) if its variation has the form δF =
∫
d2x [A(x)δϕ+B(x)δπ]. In

order to ensure this property for our generator G, we have to improve its form by adding

an appropriate surface term Γ [38]. The improved canonical generator G̃ := G + Γ has

been calculated in appendix B; it is both finite and differentiable (well-defined).

The Poisson bracket (PB) algebra of the improved generators could be found by a

direct calculation, but we rather rely on another, more instructive method. Introducing

a convenient notation, G̃′ = G̃[εu′, εv ′] and similarly for G̃′′ and G̃′′′, we use the main

theorem of ref. [39], which states that the PB of two well-defined generators must also be

a well-defined generator, to conclude that the PB algebra has the form

{G̃′′, G̃′} = G̃′′′ + C ′′′ . (5.3a)

Here, the parameters of G̃′′′ are defined by the composition law (4.9), and C ′′′ is the central

charge of the algebra. A simple reformulation of this formula, given by

{G̃′′, G̃′} = δ′0G̃
′′ ≈ δ′0Γ′′ , (5.3b)

represents a powerful tool for calculating the central charge. Indeed, the previous two

equations imply

δ′0Γ′′ ≈ Γ′′′ + C ′′′ . (5.3c)

Now, since C ′′′ does not depend on the basic dynamical variables and Γ′′′ vanishes on the

AdS background (see appendix B), the evaluation of δ′0Γ′′ on the AdS background yields

the final expression for C ′′′:

δ′0Γ′′ = C ′′′ . (5.4)
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An explicit calculation based on the results of appendix B yields

√
2

`
C ′′′ = −

(
a0 −

b6
`2

)∫ 2π

0
dϕ
(
εu′′∂3

uε
u′ + εv ′′∂3

vε
v ′) . (5.5)

This result, combined with eq. (5.3a), completes the derivation of the canonical PB algebra.

A more familiar form of this algebra is obtained by introducing the Fourier modes of

the improved generator:

L+
n := − 1√

2
G̃
(
εu = `einu

√
2/l, εv = 0

)
, L−n := − 1√

2
G̃
(
εv = `einv

√
2/l, εu = 0

)
.

Then, the canonical algebra (5.3a) takes the form of two independent Virasoro algebras

with central charges,

i
{
L±m, L

±
n

}
= (m− n)L±m+n +

c±

12
m3δm+n , (5.6)

where the central charges are equal to each other:

c± =

(
1− b6

a0`2

)
c0 . (5.7)

Note that the coupling constant b6 modifies the GRΛ central charge c0 := 3`/2G, and for

b6 < a0`
2, the central charge c± is positive.

6 Concluding remarks

In this paper, we found a new class of exact vacuum solutions of the three-dimensional

PGT, the class of Siklos waves with torsion. Asymptotic geometry of these solutions is

described by the Riemannian AdS spacetime. In the sector of massless torsion modes, we

found a set of asymptotic conditions for which the asymptotic symmetry is described by

two independent Virasoro algebras with equal central charges c±, the values of which differ

from the GRΛ result.

Further studies of the massless sector might help us to clarify the role of torsion in the

AdS/CFT correspondence.
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A AdS and Siklos spacetimes in 3D

In this appendix, we review basic aspects of the three-dimensional AdS and Siklos space-

times; see for instance [4, 40, 41] and [7, 8, 16], respectively.

The AdS space in 3D, with topology S1×R2, can be defined in terms of the hypersurface

H3 : ū2 − x̄2 − ȳ2 + v̄2 = `2 ,
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embedded in a 4-dimensional Minkowski space with metric ηab = (1,−1,−1, 1). The metric

on H3 has the form

ds2 = dū2 − dx̄2 − dȳ2 + dv̄2 , (A.1)

its isometry group is SO(2, 2), and the scalar curvature is R = 6/`2.

The space H3 can be covered by the global coordinates (t, ρ, ϕ),

ū = ` cosh ρ cos t , x̄ = ` sinh ρ cosϕ ,

v̄ = ` cosh ρ sin t , ȳ = ` sinh ρ sinϕ ,

with t ∈ [−π, π], ρ ∈ [0,∞), for which the metric takes the form

ds2 = `2
[
dt2 cosh2 ρ−

(
dρ2 + sinh2 ρdϕ2

)]
. (A.2)

However, since t is an angle, there are closed timelike curves in H3. The problem can be

cured by replacing the S1 time t ∈ [−π, π] by a new, R1 time t ∈ (−∞,+∞), changing

thereby the topology from S1 ×R2 to R3. The space obtained in this way is known as the

universal covering of the AdS space. According to the commonly accepted terminology,

it is this space that is called the AdS space; we denote it by AdS3. A simple form of the

AdS3 metric is obtained in the Schwarzschild-like coordinates r = ` sinh ρ, `t→ t.

Let us now parametrize AdS3 by introducing the Poincaré coordinates:

τ =
−v̄
ū+ x̄

, x =
ȳ

ū+ x̄
, y =

`

ū+ x̄
.

They do not cover the whole space, but only one of the regions where ū+ x̄ has a definite

sign. In these regions, the metric has the form

ds2 =
`2

y2

(
2dudv − dy2

)
, (A.3)

where u = (τ + x)/
√

2, v = (τ − x)/
√

2, and the boundary is located at y = 0.

The Killing vectors ξ = ξµ∂µ for the metric (A.3) are defined by the conditions

δ0gµν := −∂µξρgρν − ∂νξρgρµ − ξρ∂ρgµν = 0 .

They produce a set of requirements on ξµ, the solutions of which define a basis of six

independent AdS Killing vectors ξ(m):

ξ(1) = (`, 0, 0) , ξ(4) = (0, 2v, y) ,

ξ(2) = (0, `, 0) , ξ(5) =

(
u2

`
,
y2

2`
,
uy

`

)
,

ξ(3) = (u,−v, 0) , ξ(6) =

(
y2

2`
,
v2

`
,
vy

`

)
. (A.4)

Turning now to the class of Siklos spacetimes (2.1), we note that it is equivalent to a

subclass of Kundt spacetimes, defined by the metric

ds2 = 2

(
q

p

)2

dU
(
H̄dU + dV

)
− 1

p2
dY 2 , (A.5)
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where H̄ = H̄(U, Y ), and

p := 1 +
λ

4
Y 2 , q :=

(
1 +

√
−λ

4
Y

)2

,

with λ := −1/`2. Indeed, by introducing the new coordinates

Y = −2`
y + 1/2

y − 1/2
, U = 2`u , V = 2`v ,

one ends up with the Siklos metric (2.1), where the new function H = H(u, y) is defined

by H(u, y) := H̄(U, Y )|U=U(u),Y=Y (y).

For general H, the only Killing vector of the Siklos metric is ξ(2) = `∂v, but for some

specific forms of H there can be more Killing vectors; for instance, ξ(1) = `∂u when H is

independent of u, or the maximal number of six Killing vectors (A.4) when H = 0.

B Improving the canonical generator

In this appendix, we construct the improved gauge generator for the massless sector of our

solution.

Gauge symmetries of the first-order Lagrangian (5.1) are described by the canonical

gauge generator G, the form of which can be found in eqs. (5.7) of ref. [31]. To examine

the differentiability of G, we start from the form of its variation:

δG = −
∫

Σ
d2x(δG1 + δG2) ,

δG1 = −εtαβξµ
(
biµ∂αδτiβ + ωiµ∂αδρiβ + τ iµ∂αδbiβ + ρiµ∂αδωiβ

)
+R ,

δG2 = −εtαβθi∂αδρiβ +R . (B.1)

Here, the variation is performed in the set of asymptotic states, R stands for regular terms

and ρi is the Lie dual of ρmn:

ρi = 2

(
a0 −

b6
6
R

)
bi + 2b4

(
(Ric)(ik) −

1

3
Rηik

)
bk .

Moreover, the coherently oriented volume 2-form on Σ, expressed in the new coordinates

(t, ϕ, y), is normalized to d2x = dydϕ. Together with εyϕ := εtyϕ = 1, this is in accordance

with the conventions used in ref. [31].

As one can see, G is not differentiable, but the problem can be corrected by going over

to the improved canonical generator G̃ := G+ Γ, where the surface term Γ is constructed

so that δG̃ = R. In the process, transition to surface integrals is performed with the help

of the Stokes formula:∫
Σ
d2x ∂αv

α =

∫
∂Σ
dfαv

α =

∫ 2π

0
dϕvy , dfα = εαβdx

β .
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Thus, using (B.1) and the asymptotic conditions (4.5) and (4.8), the surface term Γ in the

improved generator G̃ ≡ G+ Γ is found to have the following form:

Γ = Γu + Γv ,√
2

`
Γu = −2

(
a0 −

b6
`2

)∫ 2π

0
dϕεu

1

y

(
B−u −B−v

)
+ 2`a1

∫ 2π

0
dϕεu∂y

(
B−u −B−v

)
+

2b4
`

∫ 2π

0
dϕεu

(
∂yΩ

−
u − ∂uΩ−y +

1

y

B−u
`

)
, (B.2a)

√
2

`
Γv = 2

(
a0 −

b6
`2

)∫ 2π

0
dϕεv

`

y

(
Ω+

u − Ω+
v +

1

`
B+

u −
1

`
B+

v

)
. (B.2b)

The result for Γu is simplified with the help of the condition a0 − b6/`2 − a1 = 0, which is

used in eq. (3.9) to define the massless sector of the torsion wave. The factors
√

2/` appear

as an effect of the change of coordinates (t, ϕ)→ (u, v) in the components of Bi and Ωi.

The above construction shows that G̃ is differentiable provided it is finite, and the

finiteness of G̃ follows from the finiteness of Γ ≡ Γu + Γv. The term Γv is seen to be finite

directly from the adopted asymptotic conditions, whereas the finiteness of Γu depends on

the validity of an additional relation:

−
(
a0 −

b6
`2
− b4
`2

)
B−u +

b4
`
y∂yΩ

−
u = O1 . (B.3)

To clarify this situation, we note that the original set of the asymptotic conditions, given in

eqs. (4.5) and (4.8), can be extended using the following general principle: the expressions

that vanish on-shell should have an arbitrarily fast asymptotic decrease, as no solution of

the field equations is thereby lost. This principle allow us to derive the needed relation (B.3)

as the (µ = v, i = +) component of the field equation

εµνρ
(
∇µρiν + εijkb

j
ντ

k
ρ

)
= 0 . (B.4)

The surface terms (B.2) are used in section 5 to calculate the canonical algebra of the

improved gauge generators. Note, in particular, that Γ vanishes on the AdS background.
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[5] A. Garćıa Dı́az and J.F. Plebański, All nontwisting N’s with cosmological constant, J. Math.

Phys. 22 (1981) 2655.
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1 Introduction

According to the idea of AdS/CFT correspondence [1], to any asymptotically anti-de Sit-

ter (AdS) gravitational theory on a (d+ 1)-dimensional spacetime M , there corresponds a

d-dimensional conformal field theory (CFT) on the boundary ∂M . This duality is of the

weak/strong coupling type: the weak coupling regime of the gravitational theory is related

to the strong coupling regime of the boundary CFT, and vice versa.
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Following a widely spread belief that general relativity (GR) is the most reliable ap-

proach for studying the gravitational phenomena, the analysis of the AdS/CFT corre-

spondence has been carried out mostly in the realm of Riemannian geometry, leading to

a number of highly interesting results [2, 3]. However, one should note that, for nearly

five decades, there exists a modern gauge-theoretic conception of gravity, characterized by

a Riemann-Cartan geometry of spacetime. In this approach, known as Poincaré gauge

theory (PGT) [4–6], both the torsion and the curvature carry the gravitational dynamics.

In spite of its well-founded dynamical structure, the use of this framework for studying

the AdS/CFT correspondence is still in a rather rudimentary phase. In this regard, we

wish to mention the work of Bañados et al. [7], who studied the holographic currents in

the 5-dimensional (5D) Chern-Simons gravity with torsion, and the paper of Klemm and

Tagliabue [8], investigating the holographic structure of the Mielke-Baekler (MB) model of

3D gravity with torsion [9]. In 4D, Petkou [10] examined holographic aspects of Einstein-

Cartan theory amended by topological torsional invariants.

In order to properly understand dynamical features of gravity with torsion, one is nat-

urally led to consider technically simplified models with the same conceptual features. An

important and useful model of this type is the MB model of topological 3D gravity with tor-

sion [9], introduced in the early 1990s. Further investigations along these lines led to a num-

ber of remarkable results; for more details, see [11, 12] and references therein. Of particular

interest for our present work is the existence of a holographic structure, as discussed in [8].

However, in the MB model (like in GR with a cosmological constant) there are no propa-

gating degrees of freedom. In order to overcome this unrealistic feature of the gravitational

dynamics, a systematic study of 3D gravity with propagating torsion has been recently ini-

tiated in [12], see also [13]. The present work is aimed at investigating holographic aspects

of 3D gravity with (propagating) torsion, in order to reexamine the compatibility of the

concept of torsion with the basic aspects of the AdS/CFT correspondence, and moreover,

to understand the dynamical role of the new CFT sources associated with torsion.

The paper is organized as follows. In section 2, we discuss general holographic features

of 3D gravity with torsion, with or without the propagating torsion modes. After choosing

a suitable ansatz for the gravitational variables, we derive the related consistency condi-

tions, which tell us that the maximal boundary symmetry consists of the local Poincaré

transformations and dilatations. In section 3, we propose an improved treatment of the

corresponding Noether-Ward identities for the boundary theory. In section 4, we use this

approach to reexamine the holographic structure of the topological 3D gravity with tor-

sion; our results confirm the analysis of Klemm and Tagliabue [8], based on a different

technique. Then, in section 5, we turn to the main subject of the present work — the

study of holography in 3D gravity with propagating torsion. We find that the maximal

boundary symmetry is reduced by the existence of the conformal anomaly. The improved

formalism ensures that these results do not depend on the value of torsion on the boundary.

Our conventions are given by the following rules. In 3D spacetime M , the Latin indices

(i, j, k, . . . ) refer to the local Lorentz frame, the Greek indices (µ, ν, ρ, . . . ) refer to the co-

ordinate frame, the metric components in the local Lorentz frame are ηij = (+1,−1,−1),

totally antisymmetric tensor εijk is normalized by ε012 = +1, and symmetric and anti-

– 2 –
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symmetric pieces of a tensor Xij are X(ij) = 1
2(Xij + Xji) and X[ij] = 1

2(Xij − Xji),

respectively. Next, the (1 + 2) decomposition of spacetime is described in terms of the

suitable coordinates xµ = (ρ, xα), where ρ is a radial coordinate and xα are local coordi-

nates on the boundary ∂M ; in the local Lorentz frame, this decomposition is expressed by

i = (1, a). Then, on 2D boundary ∂M (which is orthogonal to the radial direction), we

have ηab = (+1,−1) and εab := εa1b, with ε02 = +1. Finally, we use the Stokes theorem

in the form
∫

∂λV
λd3x =

∫

V ρd2x, where V λ = (V ρ, V α) is a vector density, and d3x and

d2x are coherently oriented volume forms on M and ∂M , respectively.

2 Holographic ansatz

In this section, we introduce a general setting for 3D gravity with torsion and discuss a

suitable holographic ansatz for the basic dynamical variables.

Three-dimensional gravity with torsion can be naturally described in the framework of

PGT [11, 12], where basic gravitational variables are the triad field êi and the Lorentz con-

nection ω̂ij = −ω̂ji (1-forms), the corresponding field strengths are T̂ i = dêi+ ω̂i
j ∧ êj and

R̂ij = dω̂ij+ω̂i
k∧ω̂kj (2-forms), and the covariant derivative ∇̂ = d+ 1

2 ω̂
ijΣij (1-form) acts

on local Lorentz spinors/tensors in accordance with their spinorial structure, encoded in the

form of the spin matrix Σij . The antisymmetry of ω̂ij ensures that the underlying geomet-

ric structure of spacetime is given by the Riemann-Cartan (RC) geometry, in which êi is an

orthonormal frame, ĝ = ηij ê
i ⊗ êj is the metric of spacetime, ω̂ij is the metric-compatible

connection, ∇̂ĝ = 0, and T̂ i and R̂ij are the torsion and the RC curvature of spacetime,

respectively. In our convention, hatted variables are 3D objects. Clearly, general features of

PGT make it dynamically quite different from Riemannian theories, such as, for instance,

topologically massive gravity [14, 15] or the Bergshoeff-Hohm-Townsend gravity [16].

In 3D, to any antisymmetric form X̂ij there corresponds its Lie dual form X̂k, defined

by X̂ij = −εijkX̂k. Replacing ω̂ij , R̂ij with their Lie duals ω̂i, R̂i, we have:

T̂ i = dêi + εijkω̂
j ∧ êk , R̂i = dω̂i +

1

2
εijkω̂

j ∧ ω̂k (2.1)

In local coordinates xµ, we can write êi = êiµdx
µ, ω̂i = ω̂i

µdx
µ, and the action of local

Poincaré transformations on the basic dynamical variables reads:

δ0ê
i
µ = −εijkêjµθ̂k − (∂µξ̂

λ)êiλ − ξ̂λ∂λê
i
µ ,

δ0ω̂
i
µ = −∇̂µθ̂

i − (∂µξ̂
λ)ω̂i

λ − ξ̂λ∂λω̂
i
µ . (2.2)

Here, δ0 is the form variation of a field, the parameters θ̂i and ξ̂µ describe local Lorentz

transformations and local translations, respectively, and ∇̂µθ̂
i = ∂µθ̂

i + εijkω̂
j
µθ̂

k.

Specific features of the RC geometry in 2D are described in appendix A.

2.1 Restricting the local Poincaré symmetry

In order to study the holographic structure of 3D gravity with torsion, we assume that

spacetime M is a 3D manifold with a boundary ∂M at spatial infinity; more precisely,

M is asymptotically diffeomorphic to R × ∂M . The gravitational content of M implies

– 3 –
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that its geometric structure is of the RC type, whereas its dynamics is determined by

choosing an action integral, which produces the field equations. Given the field equations,

the asymptotic behavior ofM is controlled by the asymptotic conditions. In the asymptotic

region, M can be suitably parametrized by the local coordinates xµ = (ρ, xα), where ρ is

a radial coordinate, such that ρ = 0 on ∂M . The asymptotic conditions are formulated as

certain conditions on the gravitational variables êi and ω̂i near the boundary at ρ = 0.

The (asymptotic) radial foliation of M is an analog of the temporal foliation in the

standard canonical formalism, with time line replaced by the radial line; early ideas on

dynamical evolutions along spatial directions can be found in [17]. In this framework,

Poincaré gauge invariance implies that êiρ and ω̂i
ρ are unphysical variables, so that their

values can be fixed by suitable gauge conditions. Although gauge conditions have no

influence on the physical content in the bulk, the boundary dynamics is very sensitive to

their form. Based on the experience with the Mielke-Baekler (MB) topological model of

3D gravity with torsion [8, 11], we impose the following six gauge conditions:

êiρ = (ê1ρ, ê
a
ρ) =

(

ℓ

ρ
, 0

)

, (2.3a)

ω̂i
ρ = (ω̂1

ρ, ω̂
a
ρ) =

(

pℓ

2ρ
, 0

)

, (2.3b)

which break the Lorentz and the translational gauge invariance; ℓ is the AdS radius. As we

shall see below, the parameter p controls the strength of both the torsion and the curvature

on M . Next, we impose an extra condition:

ê1α = 0 , (2.4)

which is equivalent to êi
ρ = 0 and is known as the “radial gauge” (an analog of the standard

“time gauge”). Geometrically, it ensures that the radial direction coincides with the normal

to ∂M , which greatly simplifies the calculations. In particular, the matrix representation

of êiµ becomes block diagonal. Finally, combining (2.4) with a suitable ansatz for êaα and

ω̂i
α, we can write:

êiα = (ê1α, ê
a
α) =

(

0,
1

ρ
eaα

)

, (2.5a)

ω̂i
α = (ω̂1

α, ω̂
a
α) =

(

ωα,
1

ρ
kaα

)

, (2.5b)

where eaα(ρ, x), ωα(ρ, x) and kaα(ρ, x) are assumed to be finite and differentiable functions

of ρ at ρ = 0, such that, near the boundary, they have the form

eaα(ρ, x) = ēaα(x) +O(ρ) ,

ωα(ρ, x) = ω̄α(x) +O(ρ) , (2.6)

and similarly for κaα(ρ, x). Here, O(ρ) tends to zero when ρ → 0, a bar over eaα denotes

the value of eaα at the boundary ρ = 0, and similarly for ω̄α. Note, in particular, that the

– 4 –
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conditions (2.6) allow the presence of ρn ln ρ terms for n > 0, but not for the leading term

n = 0. The inverse of êiµ has the form

êi
ρ = (ê1

ρ, êa
ρ) =

(ρ

ℓ
, 0
)

,

êi
α = (ê1

α, êa
α) = (0, ρea

α) . (2.7)

The geometric interpretation of eaα, ωα and kaα will be given in the next subsection.

Based on these conditions, we will investigate the holographic structure of 3D gravity

with torsion, assuming the absence of matter. In particular, we shall study two comple-

mentary dynamical situations, described by

(a) MB model of topological 3D gravity with torsion, and

(b) general (parity-preserving) 3D gravity with propagating torsion.

For later convenience, we note that the metric defined by (2.3) and (2.5),

ds2 = ĝµνdx
µdxν = −ℓ2dρ2

ρ2
+

1

ρ2
gαβdx

αdxβ ,

where gαβ := eaαe
b
βηab is regular at ρ = 0 and takes the usual Fefferman-Graham form [18].

For ρ = 0, the full metric has a pole of order two, which is typical for asymptotically AdS

spaces, and directly related to the pole of order one in the triad field (2.5a).

In the rest of the paper, we use the units in which the AdS radius is ℓ = 1.

Comment on (2.6). Any assumption on the asymptotic form of dynamical variables

restricts the set of possible solutions of the field equations. In general, depending on

the model-dependent dynamical features, expansions of the fields in (2.6) could contain

logarithmic terms or power series of different order. However, having in mind that the

holographic structure of the general 3D gravity model (b) has not been studied before, our

intention is not to make the most general holographic analysis, which would be technically

extremely complex, but to identify its basic holographic features. Furthermore, since both

models (a) and (b) possess asymptotically AdS black hole solution [12], it is quite natural to

expect that those features can be successfully revealed by focusing on the AdS asymptotic

sector of the Brown-Henneaux type [11, 20].

To be more specific, let us mention that certain holographic aspects of the MB model

in the Chern-Simons formulation have been studied earlier by Klemm and Tagliabue [8].

Their results strongly suggest that, in the MB model, our assumption (2.6) should be

restricted to the following form:

êaα(ρ, x) = ēaα + ρ2saα +O4 ,

ω̂α(ρ, x) = ω̄α +O2 , (2.8)

where On is a term that tends to zero as ρn or faster, when ρ → 0. Moreover, we expect

the same sector to be of prime interest for the holographic structure of the general 3D

gravity model (b). As we shall see, the results obtained in sections 4 and 5 justify our

expectations. In this section, however, we continue using only (2.6).
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2.2 Residual gauge symmetries

A field theory is defined by both the field equations and the asymptotic (boundary) condi-

tions. The concept of asymptotic symmetry is of fundamental importance for understand-

ing basic aspects of the boundary dynamics. Since the conditions (2.3), (2.5) and (2.6)

control the form of dynamical variables in the asymptotic region near ρ = 0, they have a

decisive influence on the asymptotic symmetry. The asymptotic symmetry is defined by

a subset of gauge transformations that leaves the asymptotic conditions invariant. Thus,

the parameters of the asymptotic (or residual) gauge transformations are defined by the

consistency requirements

− εijkêjµθ̂k − (∂µξ̂
λ)êiλ − ξ̂λ∂λê

i
µ = 0 ,

−∇µθ̂
i − (∂µξ̂

λ)ω̂i
λ − ξ̂λ∂λω̂

i
µ = 0 ,

where êiµ and ω̂i
µ are taken to satisfy (2.3) and (2.5).

Starting with these conditions, we first find the restrictions stemming from the invari-

ance of ê1ρ, ê
a
ρ, ê

1
α, and ω̂1

ρ, respectively:

ξ̂ρ = ρf(x) ,

∂ρξ̂
α = ρgαβ∂βf ,

θ̂a = ρεabeb
α∂αf ,

∂ρθ̂
1 = −ρωα∂αf . (2.9a)

There relations give rise to the following radial radial expansion of the local parameters:

ξ̂ρ = ρf(x) ,

ξ̂α = ξα(x) +
1

2
ρ2ḡαβ∂βf + ρ2O(ρ) ,

θ̂a = ρεabēb
α∂αf + ρO(ρ) ,

θ̂1 = θ(x)− ρ2

2
ω̄α∂αf + ρO(ρ2) . (2.9b)

Thus, the residual symmetry is expressed in terms of the four boundary parameters:

ξα(x), θ(x) and f(x).

In the next step, we find the restrictions produced by the invariance of ω̂a
ρ and ω̂a

α,

respectively:
[(

εab − p

2
ηab + kab

)

eb
β + ρεab(∂ρeb

β)
]

∂βf = 0 ,

δ0k
a
α = [−εabkbαθ − (∂αξ

β)kaβ − ξβ∂βk
a
α] + fkaα +O(ρ) . (2.10)

Assuming that f(x) is an arbitrary function on ∂M , we have ∂βf 6= 0, and the first relation

defines kaα in terms of the eaα:

kab =
p

2
ηab − εab − ρεacec

β∂ρe
b
β , (2.11)

where kab = kaαeb
α. The second relation in (2.10) defines the transformation law for kaα;

it shows that, at the boundary, kaα is a tensorial object with respect to local Poincaré
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transformations combined with dilatations. As shown in appendix A, Kab = εcbk
c
a is the

extrinsic curvature of ∂M .

Finally, we wish to examine the implications of the invariance conditions for êaα and

ω̂1
α. Using (2.5), these condition yield, in the lowest order of the radial expansion, the

following transformation rules for the boundary fields:

δ0ē
a
α = δP ē

a
α + fēaα ,

δ0ω̄α = δP ω̄α + εabē
a
αē

bβ∂βf , (2.12)

where δP ē
a
α and δP ω̄α are the local Poincaré transformations in 2D:

δP ē
a
α = −εacθē

c
α − (∂αξ

β)ēaβ − ξ · ∂ēaα ,
δP ω̄α = −∂αθ − (∂αξ

β)ω̄β − ξ · ∂ω̄α , (2.13)

and f defines local dilatations. Thus, we conclude the following:

− The residual symmetry transformations (2.12) belong to the Weyl group of local

Poincaré transformations plus dilatations, whereas ēaα and ω̄α are recoginzed as the

vielbein and the spin connection of the boundary RC geometry.

The transformation rule for ēaα can be used to calculate how the residual symme-

tries act on the boundary metric ḡαβ = ηabē
a
αē

b
β . Restricting our attention to dilatations

(f 6= 0), we obtain δf ḡαβ = 2f ḡαβ . For more details, see appendix B.

The results obtained in this subsection are based only on the adopted holographic con-

ditions (2.3), (2.5) and (2.6). We consider them as being kinematical, in the sense that they

are not influenced by the dynamical arguments encoded in (2.8). Another useful set of kine-

matical relations is found by calculating the expressions for the torsion and the curvature

tensors, based on (2.3), (2.5) and (2.6). As shown in appendix C.1, the result is of the form

T̂ijk = pεijk +O(ρ) , R̂ijk = qεijk +O(ρ) , (2.14a)

where

q :=
p2

4
− 1 . (2.14b)

Thus, to lowest order in ρ, the parameter p defines both the torsion and the curvature of

spacetime.

In sections 4 and 5, we shall combine these results with (2.8) to study the specific

dynamical models.

3 Noether-Ward identities

It is clear from the previous discussion that the residual gauge symmetries (2.9) are also

kinematical. They are maximal gauge symmetries that we can expect to find on the

boundary. Indeed, after choosing an action integral, the corresponding field equations may

impose additional restrictions on these symmetries. In this section, we shall study the

gravitational Noether identities (also called generalized conservation laws) induced by the
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maximal gauge symmetries (2.9), and interpret them as the corresponding Ward identities

of the boundary CFT.

To make these ideas more precise, consider a 3D gravitational system without matter

in an asymptotically AdS spacetime, with solutions characterized by independent boundary

values of eaα and ωα. The quasilocal energy-momentum and spin currents of the system

are calculated by varying the action with respect to the boundary values of eaα and ωα.

The variation produces a bulk term, which is proportional to the field equations, and a

boundary term. The on-shell value of the gravitational action, suitably renormalized, is

given as a finite 2D functional Iren[e, ω] on ∂M . Next, consider a set of quantum fields φ

on ∂M , coupled to the external gravitational fields (sources) eaα and ωα, and described by

an action integral I[φ; e, ω]. The corresponding effective action W [e, ω] is defined by the

functional average over φ:

eiW [e,ω] =

∫

∂M

DφeiI[φ;e,ω] . (3.1a)

In the semiclassical approximation, the AdS/CFT correspondence can be expressed by

identifying the effective action with Iren[e, ω]:

W [e, ω] = Iren[e, ω] . (3.1b)

Using this identification, we can calculate the gravitational Noether identities for Iren[e, ω]

and identify them as the Ward identities for the 1-point functions derived from W [e, ω],

provided the functional measure is invariant under the residual gauge symmetries.

We consider gravity theories whose Lagrangians are at most quadratic in the first

derivatives of the spin connection and the vielbein. The corresponding field equations are

obtained integrating by parts, such that the surface term,

δIon−shell =

∫

d2x
(

P ν
i δêiν +Qν

i δω̂
i
ν

)

, (3.2)

does not contain derivatives of the variations of the fields.

The gauge choice (2.3)–(2.5), when used in the above formula, produces a surface term

expressed in terms of the boundary quantities

δIon−shell =

∫

d2x (pαi δe
a
α + qαδω α + q̃αa δk

a
α) . (3.3)

It is clear that the PGT formulation of gravity also allows to impose boundary conditions

different than keeping the vielbein and spin connection fixed at the conformal boundary.

However, a theory with boundary conditions other than a Dirichlet one does not lead itself

to a holographic description in the usual AdS/CFT framework.

In fact, in the metric formalism, the last term in (3.3) is related to the variation of

the extrinsic curvature that is usually traded off for the variation of metric by a Gibbons-

Hawking-type term. When a Gibbons-Hawking-type term cannot be constructed for a

given theory, the only way out is to consider that the extrinsic curvature and the metric

are related asymptotically.

The fact that the leading-order in the expansion of the extrinsic curvature is the same

as the leading-order of the boundary metric for Riemannian AdS spacetimes suggests that
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there is an asymptotic relation between the extrinsic curvature and the vielbein in theories

with torsion; such a relation in PGT is given by (2.11). Note that, as showed in appendix A,

only the symmetric part of the extrinsic curvature is Riemannian, and the antisymmetric

one explicitly depends on torsion. Once appropriate counterterms are added, the variation

of the renormalized PGT action can be written as

δ Iren = −
∫

∂M

d2x (ταaδe
a
α + σαδωα) , (3.4)

whereby the standard duality between gravity and a boundary CFT is recovered.

The form of the expected Noether identities is based on the residual symmetry trans-

formations (2.12) and (2.13). Quite generally, the invariance of the renormalized action

under these transformations can be written in the form

δ Iren = −
∫

∂M

d2x (ταaδ0e
a
α + σαδ0ωα) = 0 , (3.5a)

where

ταa := −δIren
δeaα

, σα := −δIren
δωα

, (3.5b)

are the energy-momentum and spin currents (tensor densities) of our dynamical system.

Restricting our attention first to the local translations (with parameters ξα) and then

to the local Lorentz transformations (with parameter θ), we arrive at the corresponding

Noether identities:

eaβ∇ατ
α
a = ταaT

a
βα + σαFβα − ωβ(∇ασ

α + εabτab) , (3.6a)

∇βσ
β = −εabτab , (3.6b)

which are also known as the generalized conservation laws of ταa and σβ . Note that if the

second Noether identity (3.6b) is fulfilled, the last term in (3.6a) can be omitted. Similarly,

the invariance of Iren[e
a
α, ωα] under dilatations leads to

τ −∇β

(

εabσ
aebβ

)

= 0 , (3.6c)

where τ := τaa is the trace of the energy momentum tensor.

Although the gravitational dynamics in the bulk is described by a RC geometry, with

ω̂i
µ and êiµ as independent fields, it may happen that some solutions on the boundary are

Riemannian, that is, characterized by a vanishing torsion, Tabc = 0. For such solutions,

the boundary connection ωα is no longer independent of the vielbein eaα. Nevertheless,

as we are going to show, the Noether-Ward identities are still of the form (3.6), but now,

ωα takes on the Riemannian value ω̃α. In a way, this might have been expected, since the

transformation properties of ω̃α are the same as those of ωα, and these properties play a

crucial role in defining the boundary symmetry.

When the boundary torsion vanishes, the connection takes the Riemannian form (A.3).

However, we find it more convenient to use an equivalent but more compact expression:

ω̃α = −εabε
γδεαβe

aβ∂γe
b
δ . (3.7)
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Now, starting from the Riemannian renormalized action Ĩren = Iren[e
a
α, ω̃α], we find that

the related spin current Σα := −δĨren/δωα vanishes, whereas the energy-momentum current

Θα
a := −δĨren/δe

a
α has an additional contribution stemming from the last term in (3.5a):

Θα
a = τ̃αa − ∇̃β

(

εαβe−1σ̃a

)

. (3.8)

Here, X̃ denotes the Riemannian limit of a RC object X; in particular, ∇̃αfa = ∂αfa −
εacω̃αf

c. Then, the Noether identities for the action Ĩren are found to be:

eaβ∇̃αΘ
α
a + ω̃βε

abΘab = 0 , (3.9a)

εabΘab = 0 , (3.9b)

Θ = 0 . (3.9c)

Since Θα
a is a tensor density, the first relation, which is a condition for diffeomorphism

invariance, is seen to coincide with the condition (4.10) in Klemm et al. [8]. When the

Lorentz invariance is satisfied, (3.9a) reduces to the usual form Dα(e
−1Θα

β) = 0, where

Dα is the Riemannian covariant derivative. The remaining two relations are the standard

Riemannian conditions for the Lorentz and Weyl invariance, respectively. Using Tabc = 0,

as well as the identity εαβ∇̃α∇̃βfa = −1
2ε

αβF̃αβεabf
b, one can transform (3.9) into

eaβ∇̃ατ̃
α
a − σ̃αFβα + ω̃β(∇̃βσ̃

β + εabτ̃ab) = 0 , (3.10a)

εabτ̃ab + ∇̃βσ̃
β = 0 , (3.10b)

τ̃ − ∇̃β(εabσ̃
aebβ) = 0 . (3.10c)

Hence, the Riemannian identities (3.9) coincide with those obtained from (3.6) in the limit

Tabc → 0, as expected. This proves the following theorem:

− In the context of PGT, the form (3.6) of Noether identities can be used for both

Riemann-Cartan and Riemannian boundary geometries.

According to the AdS/CFT correspondence, relations (3.6) are interpreted as the max-

imal set of Ward identities that can be found in the boundary CFT. If the field equations

happen to be incompatible with the above symmetries, some of the Ward identities may

be violated, leading to the appearance of quantum anomalies.

4 Holography in topological 3D gravity with torsion

In this section, we analyze the validity of the Noether-Ward identities (3.6), in the MB

model of topological 3D gravity with torsion [9, 11], described by the action

IMB =

∫
(

2aêiR̂i −
1

3
Λ0εijkê

iêj êk + α3LCS(ω̂) + α4ê
iT̂i

)

, (4.1)

where LCS(ω̂) = ω̂idω̂
i + 1

3εijkω̂
iω̂jω̂k is the Chern-Simons Lagrangian for the Lorentz

connection, a = 1/16πG is the gravitational constant, Λ0 is a (bare) cosmological constant,
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α3, α4 are dimensionful coupling constants, the wedge product signs ∧ are omitted for

simplicity, and the matter contribution is absent.

The vacuum field equations read

T̂ijk = pεijk , R̂ijk = qεijk , (4.2a)

where the parameters p and q are defined in terms of the coupling constants a, Λ, α3, α4.

The spacetime described by these equations is maximally symmetric, at least locally. More-

over, in the AdS sector, the effective cosmological constant is negative,

Λeff := q − p2

4
= −1 . (4.2b)

By comparing these equations with (2.14), it follows that the parameter p from our ansatz

should be identified with the parameter p in the MB model.

Our analysis is based on using the AdS asymptotic conditions (2.8). For an interest-

ing asymptotic correspondence between the MB model and topologically massive gravity,

see [21].

4.1 Analysis of the field equations

The subset of the field equations (4.2a) that describes the radial evolution of the system is

given by (ijk) = (11c), (a1c). The first pair of equations takes the form

T̂11c = 0 , R̂11c = 0 . (4.3a)

Using the expressions for T̂ijk and R̂ijk calculated in appendix C, one finds that the first

equation is identically satisfied, whereas the second one implies that ωα is the Lorentz

connection at the boundary,

ωα = ωα(x) . (4.3b)

The second pair of equations reads:

T̂a1c = −pεac , R̂a1c = −qεac . (4.4a)

After introducing the radial expansion (2.6), the first equation in (4.4a) yields that sab is

symmetric,

εabsab = 0 . (4.4b)

This result simplifies the second equation in (4.4a); relying on (C.5)3, the piece of the

zeroth order in ρ implies that the effective cosmological constant Λeff is negative, see (4.2b),

whereas the piece of order ρ2 leads to a finite radial expansion of ecβ:

ecβ = ēcβ + ρ2s̄cβ . (4.4c)

Such an expansion that terminates at ρ2 is a generalization of the result known for GR in

3D; in higher dimensions, the result holds when the Weyl tensor vanishes [22]. As a simple

consequence, the radial expansion of kab is also finite:

kab =
p

2
ηab − εab + 2ρ2εacsbc .
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Using the above results, the nontrivial content of the remaining (1bc) and (abc) field

equations is expressed in terms of the following radial contraints:

Tabc = 0 , (4.5a)

R− 4scc = O2 , (4.5b)

∇αsbβ −∇βsbα = 0 . (4.5c)

In particular, we see that the boundary torsion vanishes.

4.2 Counterterm and boundary currents

Now, we introduce the boundary currents and verify their Noether-Ward identities.

The variation of the MB action, calculated on shell, reduces to a surface integral:

δIMB =

∫

∂M

d2xεαβ
(

2aêiαδω̂iβ + α3ω̂
i
αδω̂iβ + α4ê

i
αδêiβ

)

. (4.6)

Each of these three terms can be written in more details as:

2aεαβ êiαδω̂iβ =
2a

ρ2
εαβ

[p

2
ebαδebβ − εabe

a
αδe

b
β − 2ρ2εabs

a
αδe

b
β

]

+ δ∆1 ,

α3ε
αβω̂i

αδω̂iβ =
α3

ρ2
εαβ

[

qebαδebβ − 2pρ2εabsaαδebβ + 4ρ2sbαδebβ

]

−α3ε
αβωαδωβ ,

α4ε
αβ êiαδêiβ =

α4

ρ2
εαβebαδebβ ,

where δ∆1 is a total variation with

∆1 := 4aεαβεabs
a
αe

b
β = −4aēscc ,

and e := det(eaα). Then, the identity ap+α3q+α4 = 0, see ref. [11], implies that the sum

of the first three terms in the above expressions vanishes, whereupon the only divergent

term in δIMB is also a total variation, δ∆2, with

∆2 := − a

ρ2
εαβεabe

a
αe

b
β =

2a

ρ2
ē(1 + ρ2scc) .

Since the boundary integral of ∆1+∆2 appears in δIMB as a total variation, it can be

subtracted from IMB to obtain an improved variational principle. The integral

Ict :=

∫

∂M

d2x(∆1 +∆2) = 2a

∫

∂M

d2xē

(

1

ρ2
− scc

)

(4.7a)

is usually called the counterterm. Before discussing its role in the new variational principle,

let us rewrite Ict in an equivalent form as

Ict := a

∫

∂M

d2xẽK , (4.7b)

where K is the trace of the extrinsic curvature (A.5), and ẽaα = ēaα/ρ is the induced viel-

bein at the boundary. The expression for Ict is just one-half of the Gibbons-Hawking term
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(IGH), the result that naturally appears in the Chern-Simons formulation of GR in 3D, as

discussed by Bañados and Méndez [23], and by Mǐsković and Olea [24] (for an interesting

approach to counterterms in higher dimensional gravity, see [25]). On the other hand,

using the field equation (4.5b), we can express the finite piece of the counterterm, scc, in

terms of the scalar curvature R, but since R is a topological invariant, its contribution to

Ict can be disregarded. Thus, effectively, the counterterm can be written as a covariant

object, determined by a local function of ẽaα:

Ict = 2a

∫

d2xẽ = IGH − 2a

∫

d2xẽ , (4.7c)

where the last term is the usual local counterterm of Balasubramanian and Kraus [26], ob-

tained in the context of 3D GR. It is interesting to note that the nonlinear Chern-Simons

term in the MB action does not contribute to the counterterm, in agreement with the

analysis of [7].

Since the total variation δIct is a divergent piece of δIMB, we are quite naturally led

to introduce the renormalized (or, more precisely, the improved) MB action:

IrenMB := IMB − Ict , (4.8)

such that it has well-defined functional derivatives and produces finite boundary currents,

on-shell.

Note that, although the counterterm (4.7a) ensures that the variation of IrenMB is finite

and differentiable, one can verify that the value of the renormalized action IrenMB is logarith-

mically divergent. Similarly as in GR, the logarithmic term is proportional to the Euler

topological invariant eR, which is why it does not influence the variation of IrenMB. The log-

arithmic terms, even though topological in three dimensions, are important to be included,

because the renormalized gravitational action is identified with the free energy in the dual

boundary field theory.

Finally, by noting that

δIrenMB =

∫

∂M

d2xεαβ
[

−4
(

a+
α3p

2

)

εabs
a
αδe

b
β + 4α3sbαδe

b
β − α3ωαδωβ

]

, (4.9)

we can use (3.5b) to obtain the energy-momentum and spin currents on the boundary:

τβb = 4
(

a+
α3p

2

)

εαβεabs
a
α − 4α3ε

αβsbα ,

σβ = −α3ε
βαωα . (4.10)

4.3 Boundary symmetries and anomalies

Now, we wish to check the expected Noether-Ward identities (3.6).

Using the radial constraints (4.5), we find the following on-shell relations:

∇βτ
β
b = 0 , ∇βσ

β = −1

2
εbcτbc . (4.11)
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Comparing with (3.6b), we see that the Lorentz invariance of the effective 2D theory is

violated, and the Lorentz anomaly reads:

AL := ∇βσ
β + εbcτbc =

1

2
εbcτbc = −1

2
α3ēR . (4.12)

The coefficient α3, multiplying the topological (Euler) density ēR, is proportional to the

difference of the classical central charges c∓ of the Mielke-Baekler model [11]:

c∓ = 24π

[

aℓ+ α3

(

pℓ

2
∓ 1

)]

.

Next, (4.11)1 implies that the translation invariance condition (3.6b) is reduced to the

form 0 = σβFαβ + ωα∇βσ
β . Using the relations

∇βσ
β =

1

2
α3eR , σβFαβ = −1

2
α3ωαeR ,

we conclude that local translations are a correct boundary symmetry. Hence, there is no

translational anomaly:

AT := eaβ∇ατ
α
a − ταaT

a
βα − σβFαβ + ωα(∇βσ

β + εabτab) = 0 . (4.13)

Finally, in order to verify the Noether identity for dilatations (3.6c), we use (4.4b)

and (4.5b) to obtain

τ cc = −4ē
(

a+
α3p

2

)

scc = −ē
(

a+
α3p

2

)

R ,

∇β

(

εabσ
aebβ

)

= −α3∂β(ēω
β) . (4.14)

Thus, the dilatational Noether identity is violated, and the violation is measured by a

quantity which is usually called the conformal (or Weyl) anomaly :

AC := τ cc −∇β

(

εabσ
aebβ

)

= −
(

a+
α3p

2

)

ēR+ α3∂β(ēω
β) . (4.15)

Here, the coefficient of ēR is proportional to the sum of the central charges.

In treating the boundary symmetries of the MB model, Klemm et al. [8] followed a

different approach, based on using the Riemannian connection in the renormalized action.

Nevertheless, our results for anomalies coincide with theirs, in agreement with the theorem

proved in section 3. The full strength of this theorem will be seen in the more interesting

case of 3D gravity with propagating torsion, where the complicated field equations may

lead to either vanishing or nonvanishing boundary torsion. However, we will be able to

derive the Noether-Ward identities without recourse to the value of the boundary torsion.

5 Holography in 3D gravity with propagating torsion

In this section, we analyze the holographic structure of 3D gravity with propagating torsion,

assuming parity invariance [12], and using the AdS asymptotic conditions (2.8).
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5.1 Lagrangian and the field equations

Assuming the absence of matter, dynamical content of 3D gravity with propagating torsion

is defined by the action integral

I =

∫

d3x êLG , (5.1)

where ê = det(êiµ), and the gravitational Lagrangian LG is at most quadratic in the torsion

and the curvature. Assuming parity invariance, the general form of LG is given by [12]

LG = −aR̂− 2Λ0 + LT 2 + LR2 . (5.2a)

The quadratic terms can be conveniently be written in the form

LT 2 =
1

4
T̂ ijkHijk , Hijk := a1

(1)T̂ijk + a2
(2)T̂ijk + a3

(3)T̂ijk ,

LR2 =
1

8
R̂ijklHijkl , Hijkl := b4

(1)R̂ijkl + b5
(2)R̂ijkl + b6

(3)R̂ijkl , (5.2b)

where we introduced the covariant field momenta Hijk and Hijkl, which are linear in the

irreducible components of the torsion, (n)T̂ijk, and the curvature, (n)R̂ijkl. An equivalent

form of these two terms, which is more convenient for practical calculations, is given by:

Hijk = 4(α1T̂ijk + α2T̂[kj]i + α3T̂ijk) ,

LR2 = R̂ijHij , Hij = β1R̂ij + β2R̂ji + β3ηijR̂ . (5.2c)

The expression for LR2 is obtained using the fact that the Weyl tensor identically vanishes

in 3D, and the new coupling constants (αk, βk) are expressed in terms of the (ak, bk) as [12]

α1 =
1

6
(2a1 + a3) , α2 =

1

3
(a1 − a3) , α3 =

1

2
(a2 − a1) ,

β1 =
1

2
(b4 + b5) , β2 =

1

2
(b4 − b5) , β3 =

1

12
(b6 − 4b4) .

The variation of the action (5.1) with respect to êiµ and ω̂ij
µ (= −εijω̂µ) produces

two gravitational field equations, displayed in equations (2.13) of ref. [12]. Without matter

contribution, these equations, transformed to the local Lorentz basis, take the form:

∇mHimj +
1

2
Hi

mn(−Tjmn + 2ηjmVn)− tij = 0 , (5.3a)

tij := ηijLG − Tmn
iHmnj + 2aR̂ji − 2(R̂n

iHnj − R̂j
nm

iHnm) ,

where tij is the energy-momentum tensor of gravity, and

2aTkij + 2Tm
ij(Hmk − ηmkH) + 4∇[i(Hj]k − ηj]kH) + εijnε

mr
kHmr

n = 0 , (5.3b)

with H = Hk
k.

In the near-boundary expansion, the leading order of the field equations (5.3), cor-

responding to ρ = 0, reduces to the following relations involving the coupling constants:

p(a+ qb6 + 2a3) = 0 , (5.4a)
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aq − Λ0 +
1

2
p2a3 −

1

2
q2b6 = 0 . (5.4b)

As shown in [12], these relations ensure that the AdS configuration, as well as the black

hole with torsion, are solutions of the present theory. However, quadratic equations (5.4)

allow to have two different solution for the effective cosmological constant Λeff = p− q2/4,

and consequently, two different AdS vacua. For a particular choice of parameters (p =

0, a − b6q = 0), the two vacua coincide [12]. For an analysis of this situation in the

Bergshoeff-Hohm-Townsend gravity, see refs. [27, 28].

5.2 Equations of motion

In this section, we discuss the consistency of the near-boundary analysis of the field equa-

tions (5.3), given in appendix D, with the holographic description of the asymptotic theory.

The leading order of the field equations is given by eqs. (5.4). These equations constrain

the coupling constants and, therefore, restrict the form of the allowed gravity actions.

Equations linear in ρ are given by the algebraic system (D.1), (D.2), (D.6) and (D.8) for

the vector V̄a = T̄ b
ba, which defines the complete torsion tensor in 2D (appendix A). These

equations allow not only Riemann-Cartan but also Riemann boundary geometries. How-

ever, thanks to the theorem proved in section 3, we can study the Noether-Ward identities

in these two cases quite generally, without making an explicit distinction between them.

The order ρ2 of the field equations is given in (D.3)–(D.5) and (D.7). These are

algebraic equations in the tensor sab, which is related to the extrinsic curvature Kab (ap-

pendix D). More precisely, these equations determine the antisymmetric part εabsab and

the trace scc as local expressions of the boundary curvature and torsion. In particular, for

the vanishing torsion we have εabsab = 0 and scc =
1
4R, as in the MB model.

Here, in contrast to the MB model, the radial expansion goes beyond ρ2, but the cubic

and higher order terms do not affect our results in the ρ → 0 limit.

Let us emphasize that, in our near-boundary analysis, we were not able to determine

the symmetric traceless part s′ab of sab. We can understand this situation by noting that s′ab
is a nonlocal function that requires a global solution. Such nonlocal terms are parts of the

(nonlocal) 1-point functions of the boundary CFT. On the other hand, physical objects,

such as the conformal anomaly, are always local. This is a general feature of the boundary

currents in an effective theory.

In the next section, we calculate the boundary currents of the effective CFT.

5.3 Boundary currents

In the absence of matter, the variation of the (gravitatonal) action, evaluated on-shell,

takes the form

δIon−shell =

∫

d3x ∂µ

{

2εµνλêkλ
[

δêiνε
jm

kHijm + δω̂i
ν (a ηik +Hki − ηkiH)

]

}

. (5.5)

After expressing δIon−shell as a boundary integral, we will use the field equations to find

the renormalized 2D action. Then, in accordance with (3.5b), we will identify the energy-

momentum and the spin boundary currents as the objects (1-point functions) coupled to
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the sources ēaα and ω̄α in the boundary CFT. To do that, we write the action corresponding

to the Lagrangian (5.2a) as

I = IEC + IΛ0
+ IT 2 + IR2 . (5.6)

The variation of the term IEC , linear in the scalar curvature, is known from the MB

model:

δIEC =
ap

ρ2

∫

∂M

d2xεαβeaαδeaβ − 4a

∫

∂M

d2xεαβεabsαaδebβ

+δ

∫

∂M

d2x(∆1 +∆2) , (5.7a)

where the total variation contains two pieces, one finite and the other divergent:

∆1 := 4aεαβεabs
a
αe

b
β = −4aescc ,

∆2 := − a

ρ2
εαβεabe

a
αe

b
β =

2a

ρ2
ē(1 + ρ2scc) .

The variation of the cosmological term does not contribute to the boundary integrals.

Next, we vary the term quadratic in torsion:

δIT 2 =
2a3p

ρ2

∫

∂M

d2xεαβeaαδeaβ +
2a3
ρ2

∫

∂M

d2x(Â − p)εαβeaαδeaβ . (5.8)

Note that the second piece, containing the axial torsion, is a finite 2D integral.

Finally, the variation of the term quadratic in curvature yields:

δIR2 = 2

∫

M

d3xεµνσ (Hσi − biσH) ∂µδω̂
i
ν

= 2

∫

∂M

d2xεαβ
[

Hα1δωβ + (Hca − ηacH)
1

ρ2
ecαδk

a
β

]

, (5.9)

where

Hca − ηcaH = ηcab6q + ηcaρ
2

[

b6p(ε · s)−
b6 − b4

6
(R− 4sγγ)

]

+ 2εcaρ
2b5(ε · s) ,

and ε · s := εfgsfg. The first piece of δIR2 has the form

A := 2β2

∫

∂M

d2xεαβ
(p

2
εac − ηac

)

V c ēaαδωβ . (5.10a)

The second piece can be conveniently written as the sum of two terms, B + C, where:

B :=
b6qp

ρ2

∫

∂M

d2xεαβeaαδe
a
β − 4b6q

∫

∂M

d2xεαβδeaαε
afsβf

+δ

∫

∂M

d2x∆3 , (5.10b)

∆3 := 4b6qε
αβεabeaαsβb −

b6q

ρ2
εαβεabeaαebβ =

qb6
ρ2

ēK .
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and

C := 2

∫

∂M

d2xεαβ
[

b6p(ε · s)−
b6 − b4

6
(R− 4sγγ)

]

eaα

(p

2
ηab − εab

)

δebβ

−4b5

∫

∂M

d2xεαβ(ε · s)ecβ
(p

2
ηca − εca

)

δeaα . (5.10c)

Now, the first terms in δIEC, δIT2 and A are divergent, but their sum vanishes as a

consequence of (5.4a). The sum Ict :=
∫

d2x(∆1+∆2+∆3), which appears in δI as a total

variation and is also divergent, is recognized as the counterterm; when subtracted from I,

it defines the renormalized action Iren = I − Ict, see the next subsection for more details.

The variation of Iren is finite:

δIren = −4a

∫

∂M

d2xεαβεacsβcδeaα ,

+4a3

∫

∂M

d2x(ε · s)εαβeaαδeaβ ,

+A− 4b6q

∫

d2xεαβεafsβfδeaα + C . (5.11)

From this result, one can identify the spin and the energy-momentum boundary currents,

or equivalently, the 1-point functions of an effective 2D quantum theory, as:

σβ = (b4 − b5)ε
βα

(p

2
εac − ηac

)

V c ēaα , (5.12a)

ταa = 4(a+ b6q)ε
αβεacsβ

c + 4a3(ε · s)εαβeaβ

−εαβ
b6 − b4

3
(R− 4sγγ)e

b
β

(p

2
ηba − εba

)

+2εαβ
[(

b6
p2

2
− 2b5

)

ηba + p(b5 − b6)εba

]

ebβ(ε · s) . (5.12b)

5.4 Renormalized action

Before we continue to examine the Noether-Ward identities of the boundary currents (5.12),

let us stress that the variation of the full action I contains the total variation of the divergent

term Ict, which can be compactly expressed as

Ict =
(a+ qb6)

ρ2

∫

∂M

d2xēK = (a+ qb6)

∫

∂M

d2xẽK . (5.13a)

Note that the factor (a + qb6) is proportional to the central charge of the theory [12].

Subtracting this counterterm from the original action I yields the renormalized action,

Iren = I − Ict = I − (a+ qb6)

∫

∂M

d2xẽK , (5.13b)

the variation of which produces the finite boundary currents (5.12).

One should observe that here, like in the MB model or GR, the counterterm is of

the Gibbons-Hawking type, but with a modified factor which involves the R̂2 coupling

constant b6. All the other quadratic terms in the action give finite contributions that
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need not be regularized. Similarly as in the previous section, we can decompose Ict into

the Balasubramanian-Kraus type local counterterm and the finite term proportional to
∫

d2xēscc, which becomes, on shell, a local function of the boundary curvature and torsion.

We would like to emphasize that, in even boundary dimensions, there is a logarithmic

term in the field expansions related to the variation of the conformal anomaly, i.e., to its

functional derivative with respect to the corresponding source. In Einstein-Hilbert gravity,

however, its coefficient is obtained as a variation with respect to the boundary metric of

the conformal anomaly which is topological invariant in two dimensions, such that it can

be dropped out in the holographic renormalization procedure [19]. For the present holo-

graphic analysis with torsion, the field equations can be also solved consistently without

adding such type of terms. This seems to be a reflection of the fact that the coefficients

of the log terms in both the vielbein and the spin connection are related to the variation

of the Weyl anomaly that turns out to be, as we show below, a topological invariant, even

when the torsional degrees of freedom are taken into account.

Similar type of a logarithmic term also appears in the action evaluated on-shell.

Namely, the counterterm (5.13a) ensures a differentiable and finite variation of the ac-

tion Iren, but the action itself contains a log term whose coefficient is related to topological

invariants. As mentioned in section4, inclusion of these terms is important in the full

renormalized action that is identified with the free energy of the dual CFT.

These invariants are the same as those appearing in the conformal anomaly, the form

of which will be obtained in the next subsection.

5.5 Boundary symmetries and anomalies

To simplify the derivation of the boundary symmetries and make it more direct, we rewrite

the spin and the energy-momentum current in a more compact way. First, using the

expression (5.9), we write the spin current in the form

σβ = −2εαβHα1 = 2εβα
(

êaαHa1

)

|ρ=0 . (5.14)

In what follows, we shall omit the sign |ρ=0 for simplicity. After isolating the counterterm,

the energy-momentum tensor becomes

τβb = 4(a+ qb6)ε
αβεcbsα

c − 2a3
ρ2

εαβebα
(

Â − p
)

− 2

ρ2
εαβecα

(

Hcg − ηcgH− ηcgb6q
)

(p

2
δgb − εgb

)

. (5.15a)

Then, using (5.4a), we obtain an equivalent form of τβb:

τβb = − 2

ρ2
(a+ qb6)ε

αβ(kbα − εabe
a
α)−

2a3
ρ2

εαβebαÂ

− 2

ρ2
εαβecα

(

Hcg − ηcgH− ηcgb6q
)

(p

2
δgb − εgb

)

. (5.15b)

Note that the trace of ταa is given by

τ = ē

[

−4(a+ b6q)s
a
a −

2

ρ2

(

Ha
a − 2H− 2b6q +

p

2
εabHab

)

]

. (5.16)
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Lorentz invariance. To verify the conservation law of the spin current (5.14), we start

from the relations:

∇ασ
α = ∇̂ασ

α =
ē

ρ2
εbc

(

T̂ a
bcHa1 + 2∇̂bHc1

)

,

εabτab = −2ē

ρ2
(

a+ b6q + 2a3
)

(Â − p)− 2ē

ρ2

(

εbcHbc +
p

2
Hc

c − pH− pb6q
)

≡ ē

ρ2
(a+ 2a3 −Hc

c)ε
abT̂1ab = −2ē

ρ2
(a+ 2a3 −Hc

c)Â .

Then, using the field equation (1ab) in the form

− 2
(

a−Hc
c + 2a3

)

Â+ εbc(T̂ a
bcHa1 + 2∇̂bHc1) = 0 ,

the Lorentz invariance condition is found to be satisfied on shell:

AL ≡ ∇ασ
α + εabτab=0 . (5.17)

Thus, our parity-invariant model (5.2) is Lorentz-invariant, in contrast to the situation in

the MB model, where the Chern-Simons term violates this invariance, see (4.12).

Translation invariance. Let us now examine the invariance under local translations.

First, we note that the validity of the Lorentz invariance condition (3.6b) implies that the

last term on the right-hand-side of (3.6a) vanishes. Next, we calculate the divergence of

the energy-momentum tensor:

∇βτ
β
a =

2ē

ρ2

[

(a+ b6q)

(

1

ρ
R̂1a −

(p

2
εab − ηab

)

V b

)

+ 2∇bHa1b − a3(p− Â)εabV
b

]

+
ē

ρ3

(

εa
b +

p

2
δab

) [

2εcd∇̂c(Hdb − ηdbH) + 2ÂH1b + 2ÂHb1 − 2kb
dHd1

+ T̂ f
cdε

cd (Hfb − ηfbH− b6qηfb)
]

.

Making use of (5.4a) and the (abc) field equation (appendix D), the above result is simpli-

fied:

∇βτ
β
a =

2ē

ρ2

[

(a+ b6q)
1

ρ
R̂1a + 2∇bHa1b − α3

(p

2
εab + ηab

)

V b

+a3(Â+ p)εabv
b +

1

ρ

(

εab +
p

2
ηab

)

(ÂHb
1 − kdbHd1)

]

. (5.18)

Then, using the relations

σβFαβ = ēRHα1 ,

τ cbTbac = 4ē(a+ b6q)sabV
b +

2ē

ρ2
a3(p− Â)εabV

b

−2ē

ρ3
(Hac − ηacH− ηacb6q)R̂1

c , (5.19)

we finally obtain:

AT = ∇βτ
b
a − σβFaβ − τ bcTcab
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=
ē

ρ2

[

−4ρ2(a+ b6q + α3)sabV
b − ρRHa1 +

1

ρ
(2R̂11 + R̂)Ha1

+
2

ρ

(

εab +
p

2
ηab

)

(ÂHb
1 − kdbHd1)

]

= −4ēsa
b

[(

a+ b6q + α3 −
b4 − b5

2

(

1 +
p2

4

))

Vb + p
b4 − b5

2
εbcV

c

]

=0 , (5.20)

where, in the last line, we again used the (abc) field equation.

This proves the translation invariance on the boundary.

Conformal anomaly. Let us now examine the dilatation invariance by calculating the

expression AC = τ −∇β(εabσ
aebβ). We start with

AC = ē

[

−4(a+ b6q)s
c
c + 4p(b5 − b6)(ε · s) +

2

3
(b6 − b4)(R− 4scc)

]

+(b4 − b5)∇β

[

ē
(p

2
εab − ηab

)

eaβV b
]

.

Then, the identity

∇β

[

ē
(p

2
εab − ηab

)

eaβV b
]

= ē
[(p

2
εab − ηab

)

∇aV b + V aVa

]

,

and the 2nd order piece of equation (1ab), lead to:

AC = ē
[

−(a+ b6q)R+ 4b6pq(ε · s) +
(

a+ q
b6 + 2b4

3

)

(R− 4scc)

−(q + 2)(b4 − b5)(∇aV
a − VaV

a) + p(b4 − b5)ε
ab∇aVb)

]

.

Finally, by using equations (1a) and (11), we obtain the conformal anomaly:

AC = −(a+ b6q)ēR+ [2α3 − (q + 2)(b4 − b5)] ē(∇aV
a − VaV

a)

+p(b4 − b5)ēε
ab∇aVb . (5.21)

Since the conformal symmetry is broken, the boundary symmetry is reduced to the local

Poincaré invariance.

The first term in AC , proportional to ēR = ∂α(2ε
αβωβ), is a topological density (re-

lated to the topological invariant
∫

d2xēR̄); the related factor (a+ b6q) is proportional to

the central charge of the theory [12]. Since the Weyl weights of eaα, T
a
βγ , V

a,∇aV
a are

+1,+1,−1,−2, respectively, the remaining two terms in AC are seen to be invariant under

local dilatations. For details of the classification of conformal anomalies, see [29].

A closer inspection of the Weyl invariants leads to the identities:

W1 := ē(∇aV
a − VaV

a) = ∂α(ε
αβeaβε

abVb) ,

W2 := εab∇aVb = ∂α(ε
αβeaβVa) . (5.22)

In particular, the first identity can be written in the language of differential forms as

N ′ ≡ T a ∗Ta − ea∇ ∗Ta = d(ea ∗Ta) , (5.23)
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where we used Va = εab
∗T b. The 2-form N ′, which represents W1, has an interesting

resemblance with the Nieh-Yan 4-form [30, 31]. Similarly, a Nie-Yan-like representation for

W2 is obtained by the replacement ∗Ta → Ta in (5.23). The integrals of W1 and W2 over

the boundary are topological invariants, the nature of which will be studied elsewhere.

A theory with parameters for which the conformal anomaly vanishes is known as the

critical gravity. For such a critical choice of parameters, the bulk theory may acquire loga-

rithmic modes, which leads to a logarithmic CFT at the boundary. For general properties

of gravities at the critical point, see e.g. [32].

6 Concluding remarks

In this paper, we presented an analysis of the AdS/CFT correspondence in the realm of

3D gravity with torsion, with an underlying RC geometry of spacetime.

Starting with a suitable holographic ansatz and its consistency condition, we found

that the expected boundary symmetry is described by local Poincaré transformations plus

dilatations. Based on an improved form of the Noether-Ward identities, we first analyzed

the holographic features of the MB model, where we confirmed the results of Klemm and

Tagliabue [8], derived by a different technique. Then, turning our attention to the more

interesting case of 3D gravity with propagating torsion, we obtained the holographic con-

formal anomaly, with contributions stemming from both the curvature and the torsion

invariants. As a consequence, the boundary symmetry is reduced to the local Poincaré

invariance. The improved treatment of the Noether-Ward identities, being independent of

the value of torsion on the boundary, significantly simplifies the calculations.

An interesting problem for further study is to clarify how torsion affects the structure

of the dual CFT. A simple approach would be to study the specific PGT sectors containing

only one of the six propagating torsion modes, with JP = 0±, 1, 2 [12].
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A On the RC geometry in 2D

In 2D, the Lorentz connection, which is Abelian, has only one independent “internal”

component, ωab
α = −εabωα, and the local Poincaré transformations of eaα and ωα have the

form (2.12). The corresponding field strengths, the curvature and the torsion, are given by

Rab
αβ = −εabFαβ , Fαβ := ∂αωβ − ∂βωα ,
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T a
αβ = ∇αe

a
β −∇βe

a
α , ∇αe

a
β := ∂αe

a
β − εacωαe

c
β . (A.1)

The Ricci tensor and the scalar curvature read:

Ra
c = −εabFcb , R = −εabFab . (A.2a)

As a consequence:

Rab =
1

2
ηabR , Fab =

1

2
εabR , (A.2b)

and the Ricci tensor is always symmetric. The torsion tensor, with only two independent

components, is completely determined by its vector piece Va = T b
ba as

T a
bc = δabVc − δacVb .

When the torsion vanishes, the connection becomes Riemannian:

ω̃α =
1

2
εab(cabc − ccab + cbca)e

c
α , caαβ := ∂αe

a
β − ∂βe

a
α , (A.3)

see also (3.7).

In the Gauss-normal radial foliation, the unit normal to the boundary ∂M has the form

ni = (n1, na) =
êi

ρ

√
−ĝρρ

= (1, 0, 0) ,

with n2 = −1. The extrinsic curvature (the second fundamental form) of ∂M is defined

by Kij = ∇̂inj . The only nonvanishing components of Kij are

Kab := ∇̂anb = −εbcω̂
c
a = εcbk

c
a =

p

2
εab + ηab − 2ρ2sab , (A.4)

where we used kca := kcαea
α. In particular:

K(ab) = ηab − 2ρ2s(ab) , Kb
b = 2− 2ρ2scc ,

εabKab = −p− 2ρ2εabsab ≡ −Â . (A.5)

The last equation gives an interesting geometric interpretation of the axial torsion Â. For

Â = 0, Kab reduces to the standard Riemannian form.

B Residual symmetries to second order

At the end of section 2, we showed that the residual symmetry group with the parameter

f(x), defined by (2.9), acts as local dilatation on the leading order of the metric, ḡαβ .

From (2.9), we can also find the transformation rule for the second order of the vielbein,

saα, and extend the result of section 2 to the second order of the metric, g(2)αβ .

Indeed, using the definitions ḡαβ = ηabē
a
αē

b
β and g(2)αβ = sαβ + sβα, and restricting

our attention to dilatations (f 6= 0), we obtain:

δf ḡαβ = 2f ḡαβ ,

δfg(2)αβ = 2f g(2)αβ − 2ēa(α∇̄β)f
a + 2fγ T̄(αβ)γ , (B.1)

where fα := 1
2∂αf . In the limit when torsion vanishes, this result reduces to the Penrose-

Brown-Henneaux transformation [33, 34], which was derived in Riemannian GR and used

to study universal properties of trace anomalies.
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C Field strengths and covariant momenta

C.1 Torsion and curvature

The results of this subsection are obtained using the expression (2.11) for kab.

In the local Lorentz basis, the torsion components are:

T̂ 1
1c = 0 ,

T̂ 1
bc = εcek

e
b − εbek

e
c = −εbck

e
e ,

T̂ a
1c = −εae

[

εec +
(p

2
ηec + kec

)]

+ ρec
γ∂ρe

a
γ ,

T̂ a
bc = ρT a

bc , (C.1)

and the components of curvature read:

R̂11c = −ρ2ec
γ∂ρωγ ,

R̂1bc = −ρ2Fbc + εedkebkdc ,

R̂a1c = −
(

kac +
p

2
εa

bkbc

)

+ ρec
γ∂ρkaγ ,

R̂abc = ρeb
βec

γ(∇βkaγ −∇γkaβ) . (C.2)

The Ricci tensor and the scalar curvature are calculated from the relations:

R̂ik = −εmn
iR̂mnk ,

R̂ = −εmnkR̂mnk = R̂1
1 + R̂a

a . (C.3)

Reduction. Equation (2.11), in which kab is expressed in terms of eaα, simplifies the

expressions (C.1) for the torsion:

T̂1bc = εbcÂ ,

T̂a1c = −εacÂ ,

T̂abc = ρTabc , (C.4)

where Â is the axial torsion:

Â :=
1

6
εijkT̂ijk = p− ρεfgef

β∂ρegβ .

Similarly, the curvature tensor reads:

R̂11c = −ρ2ec
β∂ρωβ ,

R̂1bc = εbcq − ρ2Fbc − εbc
p

2
(p− Â) + ρεbce

gβ∂ρegβ + Ybc ,

R̂a1c = −εacq +
(p

2
εac − ηac

)

(p− Â) + ρ3εabe
bβ∂ρ

(

ρ−1∂ρecβ
)

+Xac ,

R̂abc = ρ
(p

2
Tabc − εa

fTfbc

)

+ Zabc , (C.5)

where Yac, Xac and Zabc are given by

Xac := ρ2εa
fec

β∂ρebγ∂ρ(ef
γebβ) = −ηacρ

3∂ρ
[

ρ−2(p− Â)
]

− ρ(p− Â)ec
β∂ρeaβ ,
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Ybc = −ρ2εfge
fβegγ(∂ρebβ)(∂ρecγ) ,

Zabc = −ρ2εafeb
βec

γ
[

∇β(∂ρe
fαgαγ)−∇γ(∂ρe

fαgαβ)
]

. (C.6)

As a consequence, the Ricci tensor and the scalar curvature read:

R̂11 = εbcR̂b1c = 2q − p(p− Â)− ρ3ecβ∂ρ
(

ρ−1∂ρecβ
)

+ (p− Â)2 ,

R̂1c = −εabR̂abc = ρ
(p

2
εcbV

b − Vc

)

− εabZabc ,

R̂a1 = εa
cR̂11c = −ρ2εa

cec
β∂ρωβ ,

R̂ab = εa
c(R̂c1b − R̂1cb) = −2ηabq + (pηab − εab)(p− Â)

+ρ3ea
β∂ρ

(

ρ−1∂ρebβ
)

+ ρ2Rab − ρηabe
gγ∂ρegγ + εa

c(Xcb − Ycb) ,

R̂ = −6q + 3p(p− Â) + 2ρ3ecβ∂ρ(ρ
−1∂ρecβ)

+ρ2R− 2ρefβ∂ρefβ − εac(2Xac + Yac) ,

where

εa
c(Xcb − Ycb) = −εabρ

3∂ρ
[

ρ−2(p− Â)
]

− ρ(p− Â)εa
ceb

β∂ρecβ

+ρ2εa
cEβγ(∂ρecβ)(∂ρebγ) ,

−εac(2Xac + Yac) = −2(p− Â)2 − ρ2εbcEβγ(∂ρebβ)(∂ρecγ) .

C.2 Covariant momenta

Here, we rely on the conditions (2.8), which imply Xabc = O4 = Yabc and Zabc = O3.

The calculations in section 5 are greatly simplified if we first find the explicit form of the

covariant momenta. In the torsion sector, we have:

H11c = −2α3ρVc ,

H1bc = −Hb1c = 4(α1 − α2)εbcÂ ,

Habc = 2ρ (2α1 + α2 + α3)Tabc , (C.7)

and in the curvature sector, we find:

H11 = 2(β1 + β2 + 3β3)q − (β1 + β2 + 3β3)p(p− Â)

−β3ρ
2 (R− 4scc) +O4 ,

Ha1 = β2ρ
(p

2
εac − ηac

)

V c +O3 ,

H1a = β1ρ
(p

2
εac − ηac

)

V c +O3 ,

Hab = −2(β1 + β2 + 3β3)ηabq + (β1 + β2 + 3β3)ηabp(p− Â)

−(β1 − β2)εab(p− Â) +
1

2
ρ2(β1 + β2 + 2β3)ηab(R− 4ēfβsfβ) +O4 . (C.8)

D Radial expansion of the field equations

In this appendix, we display higher orders in ρ of the vacuum field equations (5.3), which are

needed in our study of the Noether-Ward identities for 3D gravity with propagating torsion.

To zeroth order in ρ, the content of these equations is displayed in (5.4). The parameter q

is given in (2.14b) as q = p2/4− 1. In our notation, ε · s = εabsab and H = Hk
k.
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(1). Let us start by considering the components (ij) = (1a), (a1), (11) and (ab) of the first

field equation (5.3a). The object tij is defined in the same equation. For each component

(i, j), we display first a compact form, and then the fully expanded field equation.

(1a):

∇̂mH1am +
1

2
H1

mnT̂amn −H1a
nVn + t1a = 0 ,

2ρ [(2α1 + α2 + α3) + β1q]
(p

2
εabV

b − Va

)

= O3 . (D.1)

(a1):

∇̂mHa1m +
1

2
Ha

mnT̂1mn −Ha1
nVn + ta1 = 0 ,

−2ρ [a+ α3 + (b6 + β2)q]Va

+pρ [a− α3 + 8(α1 − α2) + (b6 + β2)q] εabV
b = O3 . (D.2)

(11):

∇̂mH11m +
1

2
H1

mnT̂1mn −H11
nVn + t11 = 0 ,

−2α3∇aV
a − [(2α1 + α2 − α3) + β1q]VcV

c

+

[

a−
(

2β3 −
b6
2

)

q

]

(R− 4sγγ)

−2p [a+ 4(α1 − α2)− b6q] (ε · s) = O2 . (D.3)

(ab):

∇̂mHabm +
1

2
Ha

mnT̂bmn −Hab
nVn + tab = 0 ,

2(2α1 + α2 + α3)∇cTabc − [(2α1 + α2 + α3) + β1q] ηabVcV
c

−ηab

(

β3 −
3b6
4

)

q(R− 4sγγ)

+2ηab [a+ 4(α1 − α2)− b6q] p(ε · s)
−4εab [a+ 4(α1 − α2)− (β1 − β2 − b6)q] (ε · s) = O2 . (D.4)

(2). Now, we turn to the components (kij) = (a1b), (11b), (1ab) and (cab) of the second

field equation (5.3b).

(a1b):

2T̂ c
1b (aηca+Hca−ηcaH)+2∇̂1(Hba−ηbaH)−2∇̂bH1a−εbcε

f
a(H1f

c−Hf1
c) = 0 ,

−2β1

(p

2
εaf − ηaf

)

∇bV
f + 2pηab

[

2b6 + (β1 − β2)
]

(ε · s)

−4εab
[

a+ 4(α1 − α2) + b6(q + p2/2) + (β1 − β2)
]

(ε · s)

−
(

ηab −
p

2
εab

)

(

3b6
4

− β3

)

(R− 4sγγ) = O2 . (D.5)
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(11b):

2T̂ c
1bHc1 + 2∇̂1Hb1 − 2∇̂b(H11 − η11Hk

k) + εbcε
fgHfg

c = 0 ,

[− (2α1 + α2 + α3)− β1q] ρVb = O3 . (D.6)

(1ab):

2T̂ 1
ab (aη11 +H11 − η11H) + 2T̂ c

abHc1 + 4∇̂[aHb]1 + εabε
fgHfg

1 = 0 ,

4
[

a+ 4(α1 − α2) + b6(q + p2/2)− 2(β1 − β2)
]

(ε · s)

+pβ2VcV
c − 2β2

(p

2
ηfg − εfg

)

∇fVg − p

(

b6
4

+ β3

)

(R− 4sγγ) = O2 . (D.7)

(cab):

2T̂ f
ab(aηfc+Hfc−ηfcH)+2T̂ 1

abH1c+4∇̂[a(Hb]c−ηb]cH)−εabε
f
cH1f

1 = 0 ,
[

a+ b6q − β2

(

1 +
p2

4

)

+ α3

]

Tcab − β2p εabVc = O2 . (D.8)
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A family of exact vacuum solutions, representing generalized plane waves propagating on the (anti-)de
Sitter background, is constructed in the framework of Poincaré gauge theory. The wave dynamics is defined
by the general Lagrangian that includes all parity even and parity odd invariants up to the second order in
the gauge field strength. The structure of the solution shows that the wave metric significantly depends on
the spacetime torsion.
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I. INTRODUCTION

The gauge principle, which was originally formulated by
Weyl in the context of electrodynamics [1], now belongs to
the key concepts which underlie the modern understanding
of dynamical structure of fundamental physical inter-
actions. Development of Weyl’s idea, most notably in
the works of Yang, Mills and Utiyama [2,3], resulted in
the construction of the general gauge-theoretic framework
for arbitrary non-Abelian groups of internal symmetries.
Sciama and Kibble extended this formalism to the space-
time symmetries, and proposed a theory of gravity [4,5]
based on the Poincaré group—a semidirect product of the
group of spacetime translations times the Lorentz group.
The importance of the Poincaré group in particle physics
strongly supports the Poincaré gauge theory (PGT) as the
most appropriate framework for description of the gravi-
tational phenomena.
The “translational” gauge field potentials (corresponding

to the subgroup of the spacetime translations) can be
consistently identified with the spacetime coframe field,
whereas the “rotational” gauge field potentials (correspond-
ing to the local Lorentz subgroup) can be interpreted as the
spacetime connection. This introduces the Riemann–Cartan
geometry on the spacetime manifold, since one naturally
recovers the torsion and the curvature as the Poincaré gauge
field strengths [6–16] (“translational” and “rotational” one,
respectively). The gravitational dynamics in PGT is deter-
mined by a Lagrangian that is assumed to be the function of
the field strengths, the curvature and the torsion, and the
dynamical setup is completed by including a suitable matter
Lagrangian.

In the past, investigations of PGT were mostly focused
on the class of models with quadratic parity symmetric
Lagrangians of the Yang-Mills type, expecting that the
results obtained for such a class should be sufficient to
reveal essential dynamical features of the more complex
general theory, for an overview see [17]. Recently, how-
ever, there has been a growing interest for the extended
class of models with a general Lagrangian that includes
both parity even and parity odd quadratic terms, see for
instance [18–23]. An important difference between these
two classes of PGT models is manifest in their particle
spectra. Generically, the particle spectrum of the parity
conserving PGT model consists of the massless graviton
and eighteen massive torsion modes. The conditions for the
absence of ghosts and tachyons impose serious restrictions
on the propagation of these modes [24–29]. In contrast, a
recent analysis of the general PGT [30] shows that the
propagation of torsion modes is much less restricted. This is
a new and physically interesting dynamical effect of the
parity odd sector.
Based on the experience stemming from general rela-

tivity (GR), it is well known that exact solutions play an
important role in understanding gravitational dynamics. An
important class of these solutions consists of the gravita-
tional waves [31–35], one of the best known families of
exact solutions in GR. For many years, investigation of
gravitational waves has been an interesting subject also in
the framework of PGT [36–45], as well as in the metric-
affine gravity theory which is obtained in the gauge-
theoretic approach when the Poincaré group is extended
to the general affine symmetry group [46–54]. Noticing that
dynamical effects of the parity odd sector of PGT are not
sufficiently well known, recently one of us [55] has studied
exact plane wave solutions with torsion in vacuum,
propagating on the flat background, for the case of the
vanishing cosmological constant Λ. In another recent work
[56] complementary results have been obtained, when the
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generalized pp waves with torsion were derived as exact
vacuum solutions of the parity even PGT, but for the case of
a nontrivial Λ ≠ 0. In the present paper, we merge and
extend these investigations by constructing the generalized
plane waves with torsion as vacuum solutions of the general
quadratic PGT with nonvanishing cosmological constant.
The resulting structure offers a deeper insight into the
dynamical role of the parity odd sector of PGT.
The paper is organized as follows. In the next Sec. II we

present a condensed introduction to the Poincaré gauge
gravity theory, giving the basic definitions and describing
the main structures; more details can be found in [6–9]. In
Sec. III we start with representing an (anti)-de Sitter
spacetime as a gravitational wave and use the properties
of the plane-fronted electromagnetic and gravitational
waves discussed in [57] to formulate an ansatz for the
gravitational wave in the Poincaré gauge gravity. The
properties of the resulting curvature and torsion 2-forms
are studied. In Sec. IV the set of differential equations for
the wave variables is derived. It is worthwhile to note that
the functions which describe the wave’s profile satisfy a
system of linear equations, even though the original field
equations of the Poincaré gauge theory are highly non-
linear. Solutions of this system are constructed, and their
properties are discussed. We demonstrate the consistency of
the results obtained with the particle spectrum of the
general Poincaré gauge gravity model. Finally, the con-
clusions are outlined in Sec. V.
Our basic notation and conventions are consistent with

[7]. In particular, Greek indices α; β;… ¼ 0;…; 3, denote
the anholonomic components (for example, of a coframe
ϑα), while the Latin indices i; j;… ¼ 0;…; 3, label the
holonomic components (dxi, e.g.). The anholonomic vector
frame basis eα is dual to the coframe basis in the sense that
eα⌋ϑβ ¼ δβα, where ⌋ denotes the interior product. The
volume 4-form is denoted η, and the η-basis in the space of
exterior forms is constructed with the help of the interior
products as ηα1…αp ≔ eαp⌋…eα1⌋η, p ¼ 1;…; 4. They are
related to the ϑ-basis via the Hodge dual operator �, for
example, ηαβ ¼ �ðϑα ∧ ϑβÞ. The Minkowski metric
gαβ ¼ diagðþ1;−1;−1;−1Þ. All the objects related to
the parity-odd sector (coupling constants, irreducible pieces
of the curvature, gravitational wave potentials, etc) are
marked by an overline, to distinguish them from the
corresponding parity-even objects.

II. BASICS OF POINCARÉ GAUGE GRAVITY

The gravitational field is described by the coframe ϑα ¼
eαi dx

a and connection Γα
β ¼ Γiα

βdxi 1-forms. The trans-
lational and rotational field strengths read

Tα ¼ Dϑα ¼ dϑα þ Γβ
α ∧ ϑβ; ð2:1Þ

Rα
β ¼ dΓα

β þ Γγ
β ∧ Γα

γ: ð2:2Þ
As usual, the covariant differential is denoted D.

The gravitational Lagrangian 4-form is (in general) an
arbitrary function of the geometrical variables:

V ¼ Vðϑα; Tα; Rα
βÞ: ð2:3Þ

Its variation with respect to the gravitational (translational
and Lorentz) potentials yields the field equations

Eα ≔
δV
δϑα

¼ −DHα þ Eα ¼ 0; ð2:4Þ

Cαβ ≔
δV
δΓα

β ¼ −DHα
β þ Eα

β ¼ 0: ð2:5Þ

Here, the Poincaré gauge field momenta 2-forms are
introduced by

Hα ≔ −
∂V
∂Tα ; Hα

β ≔ −
∂V
∂Rα

β ; ð2:6Þ

and the 3–forms of the canonical energy–momentum and
spin for the gravitational gauge fields are constructed as

Eα ≔
∂V
∂ϑα ¼ eα⌋V þ ðeα⌋TβÞ ∧ Hβ

þ ðeα⌋Rβ
γÞ ∧ Hβ

γ; ð2:7Þ

Eα
β ≔

∂V
∂Γα

β ¼ −ϑ½α ∧ Hβ�: ð2:8Þ

The field equations (2.4) and (2.5) are written here for
the vacuum case. In the presence of matter, the right-hand
sides of (2.4) and (2.5) contain the canonical energy-
momentum and the canonical spin currents of the physical
sources, respectively.

A. Quadratic Poincaré gravity models

The torsion 2-form can be decomposed into the 3
irreducible parts, whereas the curvature 2-form has 6
irreducible pieces. Their definition is presented in the
Appendix.
The general quadratic model is described by the

Lagrangian 4-form that contains all possible quadratic
invariants of the torsion and the curvature:

V ¼ 1

2κc

�
ða0ηαβ þ ā0ϑα ∧ ϑβÞ ∧ Rαβ − 2λ0η

− Tα ∧ X3
I¼1

½aI �ððIÞTαÞ þ āI ðIÞTα�
�

−
1

2ρ
Rαβ ∧ X6

I¼1

½bI �ððIÞRαβÞ þ b̄I ðIÞRαβ�: ð2:9Þ

The Lagrangian has a clear structure: the first line is linear
in the curvature, the second line collects torsion quadratic

BLAGOJEVIĆ, CVETKOVIĆ, and OBUKHOV PHYSICAL REVIEW D 96, 064031 (2017)

064031-2



terms, whereas the third line contains the curvature
quadratic invariants. Furthermore, each line is composed
of the parity even pieces (first terms on each line), and the
parity odd parts (last terms on each line). The dimension-
less constant ā0 ¼ 1

ξ is inverse to the so-called Barbero-
Immirzi parameter ξ, and the linear part of the Lagrangian
—the first line in (2.9)—describes what is known in the
literature as the Einstein-Cartan-Holst model. A special
case a0 ¼ 0 and ā0 ¼ 0 describes the purely quadratic
model without the Hilbert-Einstein linear term in the
Lagrangian. In the Einstein-Cartan model, one puts
a0 ¼ 1 and ā0 ¼ 0.
Besides that, the general PGT model contains a set of the

coupling constants which determine the structure of quad-
ratic part of the Lagrangian: ρ, a1, a2, a3 and ā1; ā2; ā3,
b1;…; b6 and b̄1;…; b̄6. The overbar denotes the constants
responsible for the parity odd interaction. We have the
dimension ½1ρ� ¼ ½ℏ�, whereas aI, āI, bI and b̄I are dimen-
sionless. Moreover, not all of these constants are indepen-
dent: we take ā2 ¼ ā3, b̄2 ¼ b̄4 and b̄3 ¼ b̄6 because some
of terms in (2.9) are the same in view of (A14)–(A16).
For the Lagrangian (2.9) from (2.6)–(2.8) we derive the

gauge gravitational field momenta

Hα ¼
1

κc
hα; ð2:10Þ

Hα
β ¼ −

1

2κc
ða0ηαβ þ ā0ϑα ∧ ϑβÞ þ

1

ρ
hαβ; ð2:11Þ

and the canonical energy-momentum and spin currents of
the gravitational field

Eα ¼
1

2κc
ða0ηαβγ ∧ Rβγ þ 2ā0Rα

β ∧ ϑβ

− 2λ0ηα þ qðTÞα Þ þ 1

ρ
qðRÞα ; ð2:12Þ

Eα
β ¼

1

2
ðHα ∧ ϑβ −Hβ ∧ ϑαÞ: ð2:13Þ

For convenience, we introduced here the 2-forms which are
linear functions of the torsion and the curvature, respec-
tively, by

hα ¼
X3
I¼1

½aI �ððIÞTαÞ þ āIðIÞTα�; ð2:14Þ

hαβ ¼
X6
I¼1

½bI �ððIÞRα
βÞ þ b̄IðIÞRα

β�; ð2:15Þ

and the 3-forms which are quadratic in the torsion and in
the curvature, respectively:

qðTÞα ¼ 1

2
½ðeα⌋TβÞ ∧ hβ − Tβ ∧ eα⌋hβ�; ð2:16Þ

qðRÞα ¼ 1

2
½ðeα⌋Rβ

γÞ ∧ hβγ − Rβ
γ ∧ eα⌋hβγ�: ð2:17Þ

By construction, (2.14) has the dimension of a length,
½hα� ¼ ½l�, whereas the 2-form (2.15) is obviously dimen-
sionless, ½hαβ� ¼ 1. Similarly, we find for (2.16) the

dimension of length ½qðTÞα � ¼ ½l�, and the dimension of

the inverse length, ½qðRÞα � ¼ ½1=l� for (2.17).
The resulting vacuum Poincaré gravity field equa-

tions (2.4) and (2.5) then read:
a0
2
ηαβγ ∧Rβγþ ā0Rα

β∧ϑβ−λ0ηαþqðTÞα þl2
ρq

ðRÞ
α −Dhα¼0;

ð2:18Þ

a0ηαβγ ∧ Tγ þ ā0ðTα ∧ ϑβ − Tβ ∧ ϑαÞ
þhα ∧ ϑβ − hβ ∧ ϑα − 2l2

ρDhαβ ¼ 0: ð2:19Þ

The contribution of the curvature square terms in the
Lagrangian (2.9) to the gravitational field dynamics in
the Eqs. (2.18) and (2.19) is characterized by the parameter

l2
ρ ¼

κc
ρ
: ð2:20Þ

Since ½1ρ� ¼ ½ℏ�, this new coupling parameter has the
dimension of the area, ½l2

ρ� ¼ ½l2�.

III. GRAVITATIONAL WAVES IN POINCARÉ
GAUGE GRAVITY

Gravitational waves are of fundamental importance in
physics, and recently the purely theoretical research in this
area was finally supported by the first experimental
evidence [58–60]. A general overview of the history of
this fascinating subject can be found in [61–63].

A. (Anti)-de Sitter spacetime as a wave

Let us now discuss the four-dimensional manifold which
can be viewed as an “(anti)-de Sitter spacetime in the wave
disguise”. As before [55], we use the same local coor-
dinates which are divided into two groups: xi ¼ ðxa; xAÞ,
where xa ¼ ðx0 ¼ σ; x1 ¼ ρÞ and xA ¼ ðx2; x3Þ. Hereafter
the indices from the beginning of the Latin alphabet label
the coordinates σ and ρ parametrizing the wave rays,
a; b; c… ¼ 0, 1, whereas the capital Latin indices,
A;B;C… ¼ 2, 3, refer to coordinates xA on the wave front.
The coframe 1-form is chosen as a direct generalization

of the ansatz used in [55,57]:

ϑ̂0̂ ¼ q
2p

½ðÛ þ 1Þdσ þ dρ�; ð3:1Þ
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ϑ̂1̂ ¼ q
2p

½ðÛ − 1Þdσ þ dρ�; ð3:2Þ

ϑ̂Â ¼ 1

p
dxA; A ¼ 2; 3: ð3:3Þ

Here the three functions are given by the following
expressions:

Û ¼ −
λ

4
ρ2; ð3:4Þ

p ¼ 1þ λ

4
δABxAxB; ð3:5Þ

q ¼ 1 −
λ

4
δABxAxB: ð3:6Þ

The constant parameter λ is an arbitrary real number (which
can be positive, negative or zero). As a result, the line
element reads

ds2 ¼ 1

p2
fq2ðdσdρþ Ûdσ2Þ − δABdxAdxBg: ð3:7Þ

The key object for the description of the wave configu-
rations is the wave 1-form. On the basis of the earlier results
[55], we introduce a wave 1-form k as

k ≔ dσ ¼ p
q
ðϑ̂0̂ − ϑ̂1̂Þ: ð3:8Þ

By construction, we have k ∧ �k ¼ 0. As before, the wave
covector is kα ¼ eα⌋k. Its (anholonomic) components are
thus kα ¼ p

q ð1;−1; 0; 0Þ and kα ¼ p
q ð1; 1; 0; 0Þ. Hence, this

is a null vector field, kαkα ¼ 0.
The corresponding Riemannian connection Γ̂β

α is deter-
mined from

dϑ̂α þ Γ̂β
α ∧ ϑ̂β ¼ 0; ð3:9Þ

and it reads explicitly (recall that a; b;… ¼ 0, 1 and
A;B;… ¼ 2, 3)

Γ̂0̂
1̂ ¼ Γ̂1̂

0̂ ¼ −
λρ

2
k; ð3:10Þ

Γ̂B
a ¼ p

q
ϑ̂aeB⌋d

�
q
p

�
; ð3:11Þ

Γ̂B
A ¼ 1

p
ðϑ̂BeA⌋dp − ϑ̂AeB⌋dpÞ: ð3:12Þ

Substituting (3.4)–(3.6), we straightforwardly find the
curvature:

R̂β
α ¼ λϑ̂β ∧ ϑ̂α: ð3:13Þ

Thus, the coframe and connection ðϑ̂α; Γ̂β
αÞ, described by

(3.1)–(3.3) and (3.10)–(3.12), represent the geometry of a
torsionless (3.9) spacetime of constant curvature (3.13).
Depending on the sign of λ, we have either a de Sitter or an
anti-de Sitter space.
We mark the corresponding geometrical quantities by the

hat over the symbols. This geometry will be used as a
starting point for the construction of the plane wave
solutions in the Poincaré gauge gravity with nontrivial
cosmological constant.
It is worthwhile to note that the wave vector field k is a

null geodesic in this geometry:

k ∧ �k ¼ 0; k ∧ �D̂kα ¼ 0: ð3:14Þ
B. Generalized plane wave ansatz

We will construct new gravitational wave solutions in
Poincaré gauge gravity theory by making use of the ansatz
for the coframe and for the local Lorentz connection

ϑα ¼ ϑ̂α þ U
2

q
p
kαk; ð3:15Þ

Γα
β ¼ Γ̂α

β þ q
p
ðkαWβ − kβWαÞk: ð3:16Þ

Here the function U ¼ Uðσ; xAÞ determines the wave
profile. The ansatz for the local Lorentz connection is
postulated as a direct analogue of the construction used
earlier in [55], and the vector variable Wα ¼ Wαðσ; xAÞ
satisfies the same orthogonality property, kαWα ¼ 0, which
is guaranteed by the choice

Wα ¼
�
Wa ¼ 0; a ¼ 0; 1;

WA ¼ WAðσ; xBÞ; A ¼ 2; 3:
ð3:17Þ

Consequently, the generalized ansatz for the Poincaré
gauge potentials—coframe (3.15) and connection (3.16)
—is described by the three variables U ¼ Uðσ; xBÞ and
WA ¼ WAðσ; xBÞ. These should be determined from the
gravitational field equations.
The ansatz (3.15) and (3.16) can be viewed as a non-

Riemannian extension of the Kerr-Schild-Kundt construc-
tion developed recently [64–67] in general relativity and in
modified gravity models. The original Kerr-Schild con-
struction [34] in GR is underlain by the existence of
preferred null directions. In our approach, the metric
defined by the coframe (3.15) can be written in a typical
Kerr-Schild form

gij ¼ ĝij þ
q
p
Ukikj; ð3:18Þ

where ĝij is the spacetime metric of the (anti)-de Sitter line
element (3.7), and ki ¼ ∂i⌋k ¼ ∂i⌋dσ ¼ ð1; 0; 0; 0Þ is the
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null vector with respect to both ĝij and gij. On the other
hand, the orthogonality property of the vector Wα that
defines the radiation piece of the connection (3.17),
kαWα ¼ 0, ensures typical radiation structure of the
Riemann-Cartan field strengths, the torsion and the
curvature.
The line element for this ansatz has the same form (3.7),

with a replacement

Û → Û þ p
q
U: ð3:19Þ

It is important to stress that the wave 1-form k is still
defined by (3.8), which however can be recast into

k ¼ dσ ¼ p
q
ðϑ0̂ − ϑ1̂Þ: ð3:20Þ

Consequently, the anholonomic components of the wave
covector kα ¼ eα⌋k still have the values kα ¼ p

q ð1;−1; 0; 0Þ
and kα ¼ p

q ð1; 1; 0; 0Þ. As before, this is a null vector
field, kαkα ¼ 0.
One may wonder why does the factor q

p appear in the
ansatz (3.15) and (3.16). After all, it is always possible to
absorb it by redefining U and WA. However, it is conven-
ient to keep this factor explicitly by noticing that the
combination q

p k
α ¼ ð1; 1; 0; 0Þ has the constant values. It

becomes clear then that the following differential relations
are valid:

dk ¼ 0; d

�
q
p
kα

�
¼ 0: ð3:21Þ

Moreover, although Dkα no longer vanishes, we find

k ∧ D

�
q
p
kα

�
¼ k ∧ D̂

�
q
p
kα

�
¼ 0: ð3:22Þ

Taking this into account, we straightforwardly compute the
torsion 2-form

Tα ¼ −k ∧ q
p
kαΘ; ð3:23Þ

where we introduced the 1-form

Θ ¼ 1

2
dU þWαϑ

α; ð3:24Þ

with the differential d ≔ ϑAeA⌋d ¼ dxA∂A that acts in the
transversal 2-space spanned by xA ¼ ðx2; x3Þ.
The structure of the torsion is qualitatively the same as in

the case of the vanishing parameter λ, see [55]. The
structure of curvature is more nontrivial, though. A direct
computation yields a 2-form

Rα
β ¼ λϑα ∧ ϑβ − k ∧ q

p
ðkαΩβ − kβΩαÞ; ð3:25Þ

where we introduced the vector-valued 1-form with the
components

Ωα ¼
�Ωa ¼ 0; a ¼ 0; 1;

ΩA ¼ D̂WA þ λ
2
UϑA; A ¼ 2; 3:

ð3:26Þ

The transversal covariant derivative is defined by

D̂WA ¼ dWA þ Γ̂B
AWB: ð3:27Þ

Note that the Riemannian de Sitter connection (3.12)
appears here (more exactly, the corresponding components
of the Riemann-Cartan connection (3.16) coincide with the
Riemannian components: ΓB

A ¼ Γ̂B
A).

Let us describe the geometry of the transversal 2-space
spanned by xA ¼ ðx2; x3Þ explicitly. The volume 2-form
reads η ¼ 1

2
ηABϑ

A ∧ ϑB ¼ 1
p2 dx2 ∧ dx3, where ηAB ¼

−ηBA is the 2-dimensional Levi-Civita tensor (with
η23 ¼ 1). Obviously this is a non-flat space. The corre-
sponding Riemannian connection (3.12) yields a nontrivial
curvature R̂B

A ¼ λϑB ∧ ϑA of a 2-dimensional de Sitter
space. The volume 4-form of the spacetime manifold reads

η ¼ ϑ0̂ ∧ ϑ1̂ ∧ ϑ2̂ ∧ ϑ3̂ ¼ q2

2p2 k ∧ dρ ∧ η. For the wave 1-

form we find the remarkable relation

�k ¼ −k ∧ η: ð3:28Þ

We will denote the geometrical objects on the transversal
2-space by underlining them; for example, a 1-form
ϕ ¼ ϕAϑ

A. The Hodge duality on this space is defined
as usual via �ϑA ¼ η

A
¼ eA⌋η ¼ ηABϑ

B. With the help of
(3.28), we can verify

�ðk ∧ ϕÞ ¼ k ∧ �ϕ: ð3:29Þ

The new 1-forms (3.24) and (3.26) have the obvious
transversality properties:

k ∧ �Θ ¼ 0; k ∧ �Ωα ¼ 0; kαΩα ¼ 0: ð3:30Þ

In accordance with (3.17) and (3.26), we have explicitly:

Θ ¼ ϑA
�
1

2
D̂AU − δABWB

�
; ð3:31Þ

ΩA ¼ ϑB
�
D̂BWA þ λ

2
UδAB

�
: ð3:32Þ

Here we denoted D̂A ¼ eA⌋D̂. Applying the transversal
differential to (3.24), and making use of (3.26), we find
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dΘ ¼ Ωα ∧ ϑα: ð3:33Þ

In essence, this is equivalent to the Bianchi identity DTα ¼
Rβ

α ∧ ϑβ which is immediately checked by applying the
covariant differentialD to (3.23) and using (3.25). Note that
it is crucial to use (3.21).
A further refinement of the generalized wave ansatz will

be considered in Sec. IV C.

C. Irreducible decomposition
of gravitational field strengths

Irreducible parts of the torsion and the curvature are as
follows. The second (trace) and third (axial trace) irreduc-
ible part of the torsion are trivial, ð2ÞTα ¼ 0 and ð3ÞTα ¼ 0,
and the first (pure tensor) piece is nontrivial:

ð1ÞTα ¼ Tα ¼ −k ∧ q
p
kαΘ: ð3:34Þ

At the same time, the curvature pieces ð3ÞRαβ ¼ ð5ÞRαβ ¼ 0,
whereas

ð6ÞRαβ ¼ λϑα ∧ ϑβ; ð3:35Þ

and for I ¼ 1, 2, 4:

ðIÞRαβ ¼ 2k ∧ ðIÞΩ½αkβ�
q
p
: ð3:36Þ

Here ð1ÞΩα þ ð2ÞΩα þ ð4ÞΩα ¼ Ωα, and explicitly we have

ð1ÞΩα ¼ 1

2
ðΩα − ϑαeβ⌋Ωβ þ ϑβeα⌋ΩβÞ; ð3:37Þ

ð2ÞΩα ¼ 1

2
ðΩα − ϑβeα⌋ΩβÞ; ð3:38Þ

ð4ÞΩα ¼ 1

2
ϑαeβ⌋Ωβ: ð3:39Þ

The transversal components of these objects are con-
structed in terms of the irreducible pieces of the 2 × 2

matrix D̂BWA: symmetric traceless part, skew-symmetric
part and the trace, respectively. Using (3.32), we derive
ðIÞΩA ¼ ðIÞΩA

Bϑ
B, with

ð1ÞΩA
B ¼ 1

2
ðD̂BWA þ D̂AWB − δABD̂CWCÞ; ð3:40Þ

ð2ÞΩA
B ¼ 1

2
ðD̂BWA − D̂AWBÞ; ð3:41Þ

ð4ÞΩA
B ¼ 1

2
δABðD̂CWC þ λUÞ: ð3:42Þ

One can demonstrate the following properties of these
1-forms:

ϑα ∧ ð1ÞΩα ¼ 0; ϑα ∧ ð2ÞΩα ¼ ϑα ∧ Ωα; ð3:43Þ

ϑα ∧ ð4ÞΩα ¼ 0; eα⌋ð1ÞΩα ¼ −eα⌋Ωα; ð3:44Þ

eα⌋ð2ÞΩα ¼ 0; eα⌋ð4ÞΩα ¼ 2eα⌋Ωα; ð3:45Þ

kαð1ÞΩα ¼ −
1

2
keα⌋Ωα; kαð2ÞΩα ¼ 0; ð3:46Þ

kαð4ÞΩα ¼ 1

2
keα⌋Ωα; k ∧ �ð2ÞΩα ¼ 0; ð3:47Þ

k ∧ �ð1ÞΩα ¼ −k ∧ �ð4ÞΩα ¼ −
1

2
kαϑβ ∧ �Ωβ: ð3:48Þ

IV. FIELD EQUATIONS

Let us now turn to the quadratic Poincaré gauge model
with the general Lagrangian (2.9), and allow for a nontrivial
cosmological constant λ0.
Substituting the torsion (3.34) and the curvature (3.35),

(3.36), into (2.14) and (2.15), we find

hα ¼ −kαZ
q
p
; ð4:1Þ

hαβ ¼ λb6ηαβ þ λb̄6ϑα ∧ ϑβ − 2k½αZβ� q
p
; ð4:2Þ

where we introduced the 2-forms

Z ¼ a1 �ðk ∧ ΘÞ þ ā1k ∧ Θ; ð4:3Þ

Zα ¼
X

I¼1;2;4

½bI �ðk ∧ ðIÞΩαÞ þ b̄Ik ∧ ðIÞΩα�: ð4:4Þ

Making use of (3.30) and (3.43)–(3.48) we can show that

k ∧ hα ¼ 0; k ∧ �hα ¼ 0; kαhα ¼ 0: ð4:5Þ

As a result, substituting (4.2) into (2.16) and (2.17), we find

qðTÞα ¼ 0 and

qðRÞα ¼ 2λ
q
p
kαf−ðb4 þ b6Þ �keβ⌋Ωβ

þ ðb̄2 − b̄6Þk ∧ ϑβ ∧ Ωβg: ð4:6Þ
With an account of the properties (4.5), one can check that

Dhα ¼ −D̂
�
kαZ

q
p

�
; ð4:7Þ

Dhαβ ¼ −D̂
�
2k½αZβ�

q
p

�
þ λb6ηαβμ ∧ Tμ

þ λb̄6ðTα ∧ ϑβ − Tβ ∧ ϑαÞ: ð4:8Þ
The transversal nature of Θ and ΩA leads to a further

simplification. In particular, using (3.29), we recast (4.3)
and (4.4) into
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Z ¼ k ∧ Ξ; ZA ¼ k ∧ ΞA; ð4:9Þ

where we have introduced the 1-forms

Ξ ¼ a1 �Θþ ā1Θ; ð4:10Þ

ΞA ¼
X

I¼1;2;4

½bI �ðIÞΩA þ b̄IðIÞΩA�: ð4:11Þ

A. Wave equations

After all these preparations, we are in a position to write
down the gravitational field equations for the quadratic
Poincaré gauge model (2.9). Substituting the gravitational
wave ansatz (3.15)–(3.16) into (2.18), we derive the first
equation

ð3a0λ − λ0Þηα þ
q
p
kα �kðeβ⌋ΩβÞ½a0 − 2λl2

ρðb4 þ b6Þ�

þ q
p
kαk ∧ fϑβ ∧ Ωβ½ā0 þ 2λl2

ρðb̄2 − b̄6Þ� − dΞg ¼ 0:

ð4:12Þ

Contracting this with kα, we find the value of the constant
parameter in the wave ansatz:

λ ¼ λ0
3a0

; ð4:13Þ

and with an account of (3.28) and (4.10) we recast
(4.12) into

½a0 − 2λl2
ρðb4 þ b6Þ�ϑA ∧ �ΩA þ a1d �Θ − ½ā0 þ ā1 þ 2λl2

ρðb̄2 − b̄6Þ�ϑA ∧ ΩA ¼ 0: ð4:14Þ

The first two terms describe the parity-even model, whereas the last term accounts for the parity-odd sector.
Similarly, by gravitational wave ansatz (3.15)–(3.16) in (2.19), we obtain the second equation

ka
q
p
k ∧ fða0 þ a1 − 2λl2

ρb6ÞϑB ∧ �Θþ ðā0 þ ā1 − 2λl2
ρb̄6ÞϑB ∧ Θ − 2l2

ρD̂ΞBg ¼ 0: ð4:15Þ

Note here that the ½ab� and ½AB� components in (2.19) are satisfied identically, and only the mixed ½aB� components give
rise to the result (4.15).
Equation (4.14) and the expression inside the curly bracket in (4.15) are both 2-forms on the 2-dimensional transversal

space spanned by xA ¼ ðx2; x3Þ, and thus (4.14) and (4.15) describe a system of three partial differential equations for the
three variablesU ¼ Uðσ; xBÞ andWA ¼ WAðσ; xBÞ. Substituting (3.31) and (3.32), we recast (4.14) and (4.15) into the final
tensorial form

A0ðD̂AWA þ λUÞ þ a1

�
D̂AWA −

1

2
Δ̂U

�
− Ā0η

ABD̂AWB ¼ 0; ð4:16Þ

−A1

�
WA −

1

2
D̂AU

�
þ Ā1ηAB

�
WB −

1

2
D̂BU

�
þ l2

ρðb̄1 − b̄2Þ½D̂AðηBCD̂BWCÞ þ ηABD̂
BðD̂CWC þ λUÞ�

þl2
ρðb1 þ b4Þ

�
−Δ̂

�
WA −

1

2
D̂AU

�
þ λ

�
WA −

1

2
D̂AU

�
− D̂AðD̂BWB þ λUÞ þ D̂A

�
D̂BWB −

1

2
Δ̂U

��
¼ 0: ð4:17Þ

The 2-dimensional transversal space has the (anti)-de Sitter
geometry and the corresponding covariant Laplacian reads

Δ̂ ¼ δABD̂AD̂B ¼ p2Δ; ð4:18Þ
where Δ ¼ δAB∂A∂B is the usual Laplace operator.
Note that b̄4 ¼ b̄2. Here we denoted WA ¼ δABWB and

D̂A ¼ δABD̂B, and introduced the convenient abbreviations
for the combinations of the coupling constants,

A0 ¼ a0 − 2λl2
ρðb4 þ b6Þ; ð4:19Þ

Ā0 ¼ ā0 þ ā1 þ 2λl2
ρðb̄2 − b̄6Þ; ð4:20Þ

A1 ¼ a0 þ a1 þ 2λl2
ρðb1 − b6Þ; ð4:21Þ

Ā1 ¼ ā0 þ ā1 þ 2λl2
ρðb̄1 − b̄6Þ: ð4:22Þ

The transversal covariant derivatives do not commute,

ðD̂AD̂B − D̂BD̂AÞWC ¼ R̂ABD
CWD ¼ 2λδC½AWB�; ð4:23Þ

and we used this fact when deriving (4.16) and (4.17).
Direct consequences of (4.23) are:

ηBCD̂BD̂CWA ¼ ληABWB; ð4:24Þ
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ðΔ̂D̂A − D̂AΔ̂ÞU ¼ λD̂AU: ð4:25Þ

It is worthwhile to notice that the derivatives of WA

appear in (4.16)–(4.17) only in combinations

Ω ≔ eα⌋Ωα ¼ D̂AWA þ λU; ð4:26Þ

Φ ≔ �d �Θ ¼ D̂AWA −
1

2
Δ̂U; ð4:27Þ

Φ̄ ≔ �dΘ ¼ −ηABD̂AWB; ð4:28Þ

which have a clear geometrical meaning in terms of the
curvature and the torsion.
The system (4.16)–(4.17) always admits a nontrivial

solution for arbitrary quadratic Poincaré gauge model with
any choices of the coupling constants. There are some
interesting special cases.

B. Torsionless gravitational waves

The torsion (3.23) vanishes when Θ ¼ 0 which is
realized, see (3.24) and (3.31), for

WA ¼ 1

2
δABD̂BU: ð4:29Þ

Substituting this into (4.16), we find

A0fΔ̂U þ 2λUg ¼ 0; ð4:30Þ

whereas (4.17) reduces to

l2
ρðb̄1 − b̄2ÞηABD̂BfΔ̂U þ 2λUg

−l2
ρðb1 þ b4ÞD̂AfΔ̂U þ 2λUg ¼ 0: ð4:31Þ

Accordingly, we conclude that the well-known torsionless
wave solution of GR with the function U satisfying

p2ΔU þ 2λU ¼ 0 ð4:32Þ

is an exact solution of the generic quadratic Poincaré gauge
gravity model. This is consistent with our earlier results on
the torsion-free solutions in Poincaré gauge theory [16].
Moreover, the torsionless wave (4.29)–(4.30) represents

a general solution for the purely torsion quadratic class of
Poincaré models, since this is the only configuration
admitted by the system (4.16)–(4.17) for bI ¼ b̄I ¼ 0.

C. Torsion gravitational waves

The torsion-free ansatz (3.9) can be generalized to

WA ¼ 1

2
δABD̂BðU þ VÞ þ 1

2
ηABD̂BV̄; ð4:33Þ

with V ≠ 0. The two scalar functions V ¼ Vðσ; xAÞ and
V̄ ¼ V̄ðσ; xAÞ define the non-Riemannian piece of the
connection, stemming from torsion:

Θ ¼ −
1

2
ðdV þ �d V̄Þ

¼ −
1

2
ϑAðD̂AV − ηABD̂

BV̄Þ: ð4:34Þ

For the above choice, the metric and torsion contributions
to the connection are described in a rather symmetric way,
in terms of the three potentials (U;V; V̄). In particular, we
find for (4.26)–(4.28):

Ω ¼ 1

2
ðΔ̂V þ Δ̂U þ 2λUÞ; ð4:35Þ

Φ ¼ 1

2
Δ̂V; Φ̄ ¼ 1

2
Δ̂ V̄ : ð4:36Þ

Substituting (4.33) into (4.16) and (4.17), we derive

A0Ωþ a1Φþ Ā0Φ̄ ¼ 0; ð4:37Þ

D̂A

�
−
1

2
A1V −

1

2
Ā1V̄ − l2

ρðb1 þ b4ÞΩ − l2
ρðb̄1 − b̄2ÞΦ̄

�

þηABD̂
B

�
−
1

2
A1V þ 1

2
Ā1V̄ − l2

ρðb1 þ b4ÞΦ̄þ l2
ρðb̄1 − b̄2ÞΩ

�
¼ 0: ð4:38Þ

One needs to pay attention to the noncommutativity of the covariant derivatives and use (4.23)–(4.25).
As a result, we obtain the system of the three linear second order differential equations for the three functions U, V, V̄:

A0ðΔ̂V þ Δ̂U þ 2λUÞ þ a1Δ̂V þ Ā0Δ̂ V̄ ¼ 0; ð4:39Þ

−l2
ρðb1 þ b4ÞðΔ̂V þ Δ̂U þ 2λUÞ − A1V − l2

ρðb̄1 − b̄2ÞΔ̂ V̄ −Ā1V̄ ¼ 0; ð4:40Þ

l2
ρðb̄1 − b̄2ÞðΔ̂V þ Δ̂U þ 2λUÞ þ Ā1V − l2

ρðb1 þ b2ÞΔ̂ V̄ −A1V̄ ¼ 0: ð4:41Þ
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D. Solution for potentials

Before starting the analysis of solutions, one can notice
that the system (4.40) and (4.41) is actually not equivalent
to the original equation (4.38). Indeed, by taking the
covariant divergence (applying D̂A) and by taking
the covariant curl (applying ηABD̂B) of (4.38), we derive
the pair of equations where on the right-hand sides of (4.40)
and (4.41) one finds not zeros but arbitrary functions, say,
αðσ; xAÞ and βðσ; xAÞ, which are harmonic, in the sense that
they both satisfy equations Δ̂α ¼ Δ̂β ¼ 0. However, one
then immediately notices that with the help of redefinitions

V → V þ v; Δ̂v ¼ 0; ð4:42Þ

V̄ → V̄ þ v̄; Δ̂ v̄ ¼ 0; ð4:43Þ

we can always remove these nontrivial right-hand sides and
come to the system (4.40) and (4.41).
In other words, a solution of the system (4.39)–(4.41)

admits the gauge transformation (4.42)–(4.43), under
which the potentials V and V̄ can be shifted by arbitrary
harmonic functions. Such gauge transformed potentials are
of course still solutions of the Poincaré gauge field
equations (4.37) and (4.38). What is important, however,
the curvature and the torsion remain invariant under the
redefinition (4.42)–(4.43) of potentials: (4.35) and (4.36)
obviously are not affected by the arbitrary harmonic
functions.
Now, as a first step, we substitute ðΔ̂V þ Δ̂U þ 2λUÞ

from (4.39) into (4.40) and (4.41). The resulting system
reads

l2
ρΔ̂fa1ðb1 þ b4ÞV þ ½−A0ðb̄1 − b̄2Þ þ Ā0ðb1 þ b4Þ�V̄g
− A0A1V − A0Ā1V̄ ¼ 0; ð4:44Þ

l2
ρΔ̂fa1ðb̄1 − b̄2ÞV þ ½A0ðb1 þ b2Þ þ Ā0ðb̄1 − b̄2Þ�V̄g
− A0Ā1V þ A0A1V̄ ¼ 0: ð4:45Þ

After solving this system, we can use the potentials V
and V̄ to substitute them into (4.39) which then becomes
an inhomogeneous differential equation for the metric
potential U:

A0ðΔ̂U þ 2λUÞ ¼ −ða1 þ A0ÞΔ̂V − Ā0Δ̂ V̄ : ð4:46Þ
For the parity-even models with āI ¼ 0, b̄I ¼ 0, hence
Ā0 ¼ 0 and Ā1 ¼ 0, the system (4.44)–(4.45) reduces to the
two uncoupled equations

a1ðb1 þ b4Þl2
ρΔ̂V − A0A1V ¼ 0; ð4:47Þ

ðb1 þ b2Þl2
ρΔ̂ V̄þA1V̄ ¼ 0; ð4:48Þ

recovering the result of [56].

To analyze the system (4.44)–(4.45), let us rewrite it in
matrix form

Δ̂V −MV ¼ 0; M ≔
A0

l2
ρ
F; ð4:49Þ

where we combined the potentials into a single object, a “2-
vector” V ¼ ðVV̄Þ, and the 2 × 2 matrix F ¼ K−1N is
constructed from

K ¼
�a1ðb1 þ b4Þ Ā0ðb1 þ b4Þ − A0ðb̄1 − b̄2Þ
a1ðb̄1 − b̄2Þ A0ðb1 þ b2Þ þ Ā0ðb̄1 − b̄2Þ

�
;

N ¼
�A1 Ā1

Ā1 −A1

�
: ð4:50Þ

One immediately notices the simple structure of the matrix
N which is manifest in the properties

N2¼ðA2
1þ Ā2

1Þ
�
1 0

0 1

�
; detN¼−ðA2

1þ Ā2
1Þ: ð4:51Þ

One can solve the matrix differential equation (4.49) by
diagonalizing this system. To achieve this, one needs to find
the eigenvalues of the matrix M and to construct the
corresponding eigenvectors. Let m2 be an eigenvalue of
the matrix M. It is determined from the corresponding
characteristic equation detðM −m2Þ ¼ 0 which has the
meaning of the dispersion relation for the mass:

l4
ρm4 detK þ l2

ρm2A0trðNKÞ − A2
0ðA2

1 þ Ā2
1Þ ¼ 0: ð4:52Þ

The coefficients of the quadratic equation (4.52) are
constructed from the coupling constants of the gauge
gravity model. From (4.50) we have explicitly:

detK ¼ a1A0½ðb1 þ b4Þðb1 þ b2Þ þ ðb̄1 − b̄2Þ2�; ð4:53Þ

trðNKÞ ¼ ða1A1 þ Ā0Ā1Þðb1 þ b4Þ − A0A1ðb1 þ b2Þ
þ ða1Ā1 − A0Ā1 − Ā0A1Þðb̄1 − b̄2Þ: ð4:54Þ

For the parity-even models with āI ¼ 0, b̄I ¼ 0, hence
Ā0 ¼ 0 and Ā1 ¼ 0, the dispersion equation (4.52) reduces
to

½l2
ρm2a1ðb1 þ b4Þ − A0A1�
× ½l2

ρm2A0ðb1 þ b2Þ þ A0A1� ¼ 0; ð4:55Þ

and hence we recover the result (4.47)–(4.48).
General case with parity-odd terms in the Lagrangian is

more complicated. No obvious simplification of (4.52) is
visible.
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Having found the eigenvalues m2
1 and m2

2 of the mass
matrix M as the two roots of the quadratic equation (4.49),
one can construct the matrix P that transforms M to its
diagonal form. For M12 ≠ 0, the latter reads

P ¼
� −M12 −M12

M11 −m2
1 M11 −m2

2

�
: ð4:56Þ

Multiplying Eq. (4.49) by P−1, one then obtains

Δ̂V 0 −M0V 0 ¼ 0; ð4:57Þ

where

M0 ≔ P−1MP ¼
�
m2

1 0

0 m2
2

�
; ð4:58Þ

and V 0 is the eigenvector of M, corresponding to the
eigenvalues m2

1 and m2
2:

V 0 ¼
�
V 0
1

V 0
2

�
¼ P−1V

¼ 1

detP

� ðM11 −m2
2ÞV þM12V̄

−ðM11 −m2
1ÞV −M12V̄

�
: ð4:59Þ

Recalling Δ̂ ¼ p2Δ, we thus recast the system of the
field equations (4.44) and (4.45) into a diagonal form

p2ΔV 0
n −m2

nV 0
n ¼ 0; ð4:60Þ

with n ¼ 1, 2. The solutions for V 0
n are given in terms of the

hypergeometric functions 2F1ða; b; c; zÞ, see [56]. Similar
construction exists in the case M21 ≠ 0.
Now, we can return to (4.46) to find the solution for U.

Each solution for V 0
n defines the corresponding solution

V ¼ PV 0 ð4:61Þ

of (4.49). Inserting these solutions for V and V̄ on the right-
hand side of (4.46), this equation becomes an inhomo-
geneous differential equation for U. Its general solution is
given as a general solution of the homogeneous equation
plus a particular solution of the inhomogeneous equation,
U ¼ Uh þUp. Note that Uh coincides with the general
vacuum solution of GR, see (4.32). The solution for U
obtained by choosing Uh ¼ 0 has a very interesting
interpretation. Indeed, in that case U reduces just to the
particular solution Up, the form of which is completely
determined by the torsion potentials ðV; V̄Þ. A similar
mechanism was found also in the parity even sector [56].
Clearly, there are many other solutions for Uh, and
consequently, for U. In each of them, the influence of
torsion on the metric is quite clear.

E. Masses of the torsion modes

In order to get a deeper understanding of the role of the
torsion in our gravitational wave solution, it is important to
examine the mass spectrum of the associated torsion
modes. Having found the matrix F ¼ K−1N with the help
of (4.50), the solutions of the characteristic equation (4.52)
can be conveniently represented in terms of the matrix f ¼
ðdetKÞF as

m2
� ¼ A0

2l2 detK
ðtrf �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrfÞ2 − 4 det f

q
Þ: ð4:62Þ

This is an exact formula for the mass eigenvalues m2
�

associated to the gravitational wave. It is worthwhile to
notice that trf ¼ −trðNKÞ, and det f ¼ ðdetNÞðdetKÞ.
The particle spectrum of PGT has been calculated only

with respect to the Minkowski background [24–29], and
never for the (anti)-de Sitter spacetime. Accordingly, we
can compare the result (4.62) with those existing in the
literature only for the values of m2

� in the limit of the
vanishing cosmological constant. In the limit of λ → 0, we
have

trf ¼ −½a1ða0 þ a1Þ þ ðā0 þ ā1Þ2�ðb1 þ b4Þ
þ a0ða0 þ a1Þðb1 þ b2Þ þ 2a0ðā0 þ ā1Þðb̄1 − b̄2Þ;

det f ¼ −a0a1½ða0 þ a1Þ2 þ ðā0 þ ā1Þ2�
× ½ðb1 þ b2Þðb1 þ b4Þ þ ðb̄1 − b̄2Þ2�;

detK ¼ a0a1½ðb1 þ b2Þðb1 þ b4Þ þ ðb̄1 − b̄2Þ2�: ð4:63Þ

As a first test, we apply the formula (4.62) to the parity
even sector of PGT. One can straightforwardly see that the
corresponding values ofm2

� coincide with the masses of the
spin-2� torsion modes, known from the literature [24];
compare also with [56]. This is consistent with (4.55).
A more complete verification can be done by comparing

(4.62) with the recent work of Karananas [30], which
presently offers the only existing calculation of the com-
plete mass spectrum for the most general PGT with both
parity even and parity odd sectors included. A comparison
of the Lagrangian (5) of Ref. [30] with our expression (2.9)
is straightforward, although one should be careful since the
paper [30] contains numerous misprints. As a result, we
establish the following relations between our and
Karananas’ coupling constants (we use the notation t0
instead of Karananas’ λ to distinguish it from our cosmo-
logical term):

a0 ¼ 2κct0; ā0 ¼ 0; ð4:64Þ

a1 ¼ 2κcð−t1 − t0Þ; ð4:65Þ

a2 ¼ 4κcð−t3 þ t0Þ; ð4:66Þ
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a3 ¼ κcð−t2 þ t0Þ; ð4:67Þ

ā1 ¼ 4κct5; ð4:68Þ

ā2 ¼ ā3 ¼ 2κct4: ð4:69Þ

b1 ¼ 4ρð−r1 þ r3Þ; ð4:70Þ

b2 ¼ 4ρð−r3Þ; ð4:71Þ

b3 ¼ 4ρð−r2 þ r3Þ; ð4:72Þ

b4 ¼ 4ρð−r1 þ r3 − r4Þ; ð4:73Þ

b5 ¼ 4ρð−r3 − r5Þ; ð4:74Þ

b6 ¼ 4ρð−r1 þ r3 − 3r4Þ; ð4:75Þ

b̄1 ¼ ρð−r7 þ 3r8Þ; ð4:76Þ

b̄2 ¼ b̄4 ¼ ρð−r7 − r8Þ; ð4:77Þ

b̄3 ¼ b̄6 ¼ ρð4r6 − r7 − r8Þ; ð4:78Þ

b̄5 ¼ ρð3r7 − r8Þ: ð4:79Þ

Substituting the expressions for aI, bI and āI , b̄I into (4.63),
one finds that the resulting values of m2

� in (4.62) exactly
reproduce the result (A.3.5) of Karananas’ paper [30] (after
correcting a number of his misprints), which displays the
spin-2� torsion modes.
Thus, we conclude that the massive spin-2� torsion

modes turn out to be an essential ingredient of our
gravitational wave, in the sense that these massive torsion
modes determine the structure of the wave profile encoded
in the functions V, V̄ and U. This is a remarkable result if
one recalls that the particle spectrum of PGT is derived
from the linearized equations of motion, whereas our
gravitational waves are exact solutions of the full nonlinear
field equations.

V. DISCUSSION AND CONCLUSION

In this paper, we have found a family of the exact
vacuum solutions of the most general PGT model with all
possible parity even and parity odd linear and quadratic
invariants in the Lagrangian (2.9), and with a nontrivial
cosmological constant λ0 ≠ 0. This family represents gen-
eralized plane waves with torsion, propagating on the
(anti)-de Sitter background. The present paper extends
the results obtained recently in [55,56].
The underlying construction can be understood as a

generalization of the Kerr-Schild-Kundt ansatz from the
Riemannian to the Riemann-Cartan geometry of PGT. An
essentially new element in this extended formalism is the

ansatz for the local Lorentz connection Γα
β, the radiation

piece of which is constructed in terms of the null covector
field k. The generalized plane wave ansatz (3.15)–(3.16)
ensures that the torsion 2-form Tα and the radiation piece of
the curvature 2-form Sαβ ≔ Rαβ − λϑα ∧ ϑβ satisfy the
radiation conditions

k ∧ �Tα ¼ 0; k ∧ �Sαβ ¼ 0; ð5:1Þ

k ∧ Tα ¼ 0; k ∧ Sαβ ¼ 0; ð5:2Þ

Tα ∧ �Tβ ¼ 0; Sαβ ∧ �Sρσ ¼ 0: ð5:3Þ

These relations represent an extension of the well-known
Lichnerowicz criterion for identifying gravitational waves
[68] (see also [32]), based on analogy with the electro-
magnetic waves, to the framework of the PGT.
In the limit of vanishing torsion, the generalized plane

waves with torsion reduce to the family of the Riemannian
pp waves on the (anti)-de Sitter background. The pp
waves are classified as solutions of Petrov type N, since the
corresponding Weyl tensor satisfies the special algebraic
condition kαCαβμν ¼ 0, see [34,35]. This criterion can be
naturally extended to a Riemann-Cartan geometry of
PGT as

kαð1ÞRαβμν ¼ 0; ð5:4Þ

where ð1ÞRαβμν is the first irreducible part of the curvature
tensor, see [55,56]. The validity of (5.4) for the generalized
plane waves with torsion confirms that they are also of
type N.
The spacetime torsion is an essential ingredient of the

generalized gravitational wave solution; its dynamical
characteristics are described by the two potentials V and
V̄, satisfying the matrix equation (4.49). The mass matrix
M is of particular importance for the physical interpretation
of the torsion. We demonstrate that, in the limit of λ → 0,
the eigenvalues of M coincide with the values of the mass
square the spin-2� torsion modes, identified in the work of
Karananas [30]. Generically, wave front profile of a
generalized plane wave with torsion is thus determined
by two spin-2 massive torsion modes and the massless
graviton, produced by the third, coframe potentialU (which
enters the spacetime metric).
It is interesting to note that there exist particular solutions

for which the metric potential is completely determined by
the torsion. For such solutions, the motion of a spinless test
particle is effectively determined by the spacetime torsion.
The results obtained in this work were checked with

the help of the computer algebra systems Reduce and
Mathematica.
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APPENDIX: IRREDUCIBLE DECOMPOSITION
OF THE TORSION AND CURVATURE

The torsion 2-form can be decomposed into the three
irreducible pieces, Tα ¼ ð1ÞTα þ ð2ÞTα þ ð3ÞTα, where

ð2ÞTα ¼ 1

3
ϑα ∧ ðeν⌋TνÞ; ðA1Þ

ð3ÞTα ¼ 1

3
eα⌋ðTν ∧ ϑνÞ; ðA2Þ

ð1ÞTα ¼ Tα − ð2ÞTα − ð3ÞTα: ðA3Þ

The Riemann-Cartan curvature 2-form is decomposed
Rαβ ¼ P

6
I¼1

ðIÞRαβ into the 6 irreducible parts

ð2ÞRαβ ¼ − �ðϑ½α ∧ Ψ̄β�Þ; ðA4Þ

ð3ÞRαβ ¼ −
1

12
�ðX̄ϑα ∧ ϑβÞ; ðA5Þ

ð4ÞRαβ ¼ −ϑ½α ∧ Ψβ�; ðA6Þ

ð5ÞRαβ ¼ −
1

2
ϑ½α ∧ eβ�⌋ðϑγ ∧ XγÞ; ðA7Þ

ð6ÞRαβ ¼ −
1

12
Xϑα ∧ ϑβ; ðA8Þ

ð1ÞRαβ ¼ Rαβ −
X6
I¼2

ðIÞRαβ; ðA9Þ

where

Xα ≔ eβ⌋Rαβ; X ≔ eα⌋Xα; ðA10Þ

X̄α ≔ �ðRβα ∧ ϑβÞ; X̄ ≔ eα⌋X̄α; ðA11Þ

and

Ψα ≔ Xα −
1

4
ϑαX −

1

2
eα⌋ðϑβ ∧ XβÞ; ðA12Þ

Ψ̄α ≔ X̄α −
1

4
ϑαX̄ −

1

2
eα⌋ðϑβ ∧ X̄βÞ: ðA13Þ

Directly from the definitions (A1)–(A3) and (A4)–(A9),
one can prove the relations

Tα ∧ ð2ÞTα ¼ Tα ∧ ð3ÞTα ¼ ð2ÞTα ∧ ð3ÞTα; ðA14Þ

Rαβ ∧ ð2ÞRαβ ¼ Rαβ ∧ ð4ÞRαβ ¼ ð2ÞRαβ ∧ ð4ÞRαβ; ðA15Þ

Rαβ ∧ ð3ÞRαβ ¼ Rαβ ∧ ð6ÞRαβ ¼ ð3ÞRαβ ∧ ð6ÞRαβ; ðA16Þ

whereas Tα ∧ ð1ÞTα ¼ ð1ÞTα ∧ ð1ÞTα and Rαβ ∧ ð1ÞRαβ ¼
ð1ÞRαβ ∧ ð1ÞRαβ and Rαβ ∧ ð5ÞRαβ ¼ ð5ÞRαβ ∧ ð5ÞRαβ.
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We analyze holographic field theory dual to Lovelock Chern-Simons anti–de Sitter (AdS) gravity in
higher dimensions using first order formalism. We first find asymptotic symmetries in the AdS sector
showing that they consist of local translations, local Lorentz rotations, dilatations and non-Abelian gauge
transformations. Then, we compute 1-point functions of energy-momentum and spin currents in a dual
conformal field theory and write Ward identities. We find that the holographic theory possesses Weyl
anomaly and also breaks non-Abelian gauge symmetry at the quantum level.
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I. INTRODUCTION

The AdS/CFT correspondence [1] relates the fields in
(dþ 1)-dimensional asymptotically anti–de Sitter (AAdS)
space and correlators in a d-dimensional conformal field
theory (CFT). These two theories are dual in the asymptotic
sector of gravity, such that the weak coupling regime of
one is related to the strong coupling regime of another.
For a weak gravitational coupling, the bulk theory is well
described by its semiclassical approximation, leading to the
form of the duality most often used.
Since its discovery, the correspondence tools have

been applied to many strongly coupled systems, giving
rise to new insights into their dynamics, for example in
hydrodynamics [2] and condensed matter systems such as
superconductors [3].
On the other hand, much effort has been invested in

analyzing the duality in semiclassical approximation of a
bulk theory, with twofold purpose. First, it enables us to
test the conjecture itself. Second, it helps us to gain the
knowledge about strongly coupled systems which are
nonperturbative and not very well understood. However,
most of this investigation deals with Riemannian geometry
of bulk spacetime, see for example [3–8], while a more
general structure based on Riemann-Cartan geometry,
where both torsion and curvature determine gravitational
dynamics, is mostly underinvestigated. One of the first
studies of Riemann-Cartan holography used first order
formalism to obtain a holographic dual of Chern-Simons
AdS gravity in five dimensions [9]. After that, in three
dimensions, holographic dual to the Mielke-Baekler model
was analyzed in [10], and to the most general parity-
preserving three-dimensional gravity with propagating
torsion in [11]. The physical interpretation of torsional
degrees of freedom as carriers of a nontrivial gravitational

magnetic field in 4D Einstein-Cartan gravity was discussed
in [12].
Studying holographic duals of gravity with torsion has

many benefits. Since its setup is more general, it also
contains the results of torsion-free gravity. One of the very
important features is that treating vielbein and spin con-
nection as independent dynamical variables simplifies
calculations to great extent. In Ref. [11], it was shown
that for three-dimensional bulk gravity conservation laws of
the boundary theory take the same form in Riemann-Cartan
and Riemannian theory when the boundary torsion is set
to zero. Thus, it is possible to treat vielbein and spin
connection as independent dynamical variables and repro-
duce Riemannian results in the limit of zero torsion. In this
work, we extend the results of [11] to all odd dimensions
in case of holographic theory dual to Lovelock-Chern-
Simons AdS gravity, by reproducing the conservation laws
with respect to diffeomorphisms, Weyl and local Lorentz
symmetry using first order formalism after taking a
Riemannian limit.
Working in the framework of gravity with torsion also

leads to richer boundary non-Abelian symmetries, as it is
explicitly demonstrated for the particular model studied in
this paper.
We analyze a holographic structure of Lovelock Chern-

Simons AdS Gravity [13,14] in asymptotically AdS spaces.
The key feature of this model is that it possesses a unique
AdS vacuum, which is multiply degenerate in odd D ≥ 5
dimensions. Unlike general Lovelock-Lanczos [15] gravity,
it contains only two free parameters—gravitational con-
stant κ and the AdS radius l. This theory also features a
symmetry enhancement from local Lorentz to AdS gauge
symmetry. Degenerate vacuum makes the linear perturba-
tion analysis not applicable around the AdS background.
The holographic study in AAdS spacetimes, however, is
nonperturbative, because the gravitational fields in a dual
theory are not dynamical but they play the role of external
sources for the CFT matter. Indeed, the holographic theory
will remain fully nonlinear in gravitational fields, which
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will be explicitly shown in Sec. IV. On the other hand, these
theories couple successfully to external sources [16], which
are stable in the framework of Lovelock Chern-Simons
(LCS) supergravities [17].
The paper is organized as follows. In Sec. II we

introduce the holographic ansatz for the fundamental
dynamical variables and we arrive to their radial expan-
sion in the asymptotic sector. Expressed in terms of the
metric, it reduces to Fefferman-Graham expansion [18].
We also analyze corresponding residual gauge sym-
metries which leave this ansatz invariant. In Sec. III we
focus to the holographic quantum theory and derive the
Noether-Ward identities. In Sec. IV we focus on Chern-
Simons–AdS gravity in arbitrary odd dimensions and
compute 1-point functions in the corresponding dual
theory, which are energy-momentum and spin currents.
We show that translational and Lorentz symmetries are
present also at the quantum level, but the Weyl anomaly
and non-Abelian anomaly arise, breaking the conformal
and non-Abelian symmetries quantically, the former
being proportional to the Euler density up to a divergence.
Our results generalize the ones of [9] from five to arbitrary
dimensions. Our calculations are simplified to great extent
by using the results of [19]. Section V contains conclud-
ing remarks, while appendices deal with some technical
details.
Our conventions are given by the following rules. On a

D ¼ dþ 1-dimensional spacetime manifold M, the latin
indices ði; j; k;…Þ refer to the local Lorentz frame, the
greek indices ðμ; ν; ρ;…Þ refer to the coordinate frame. The
symmetric and antisymmetric parts of a tensor Xij are
XðijÞ ¼ 1

2
ðXij þ XjiÞ and X½ij� ¼ 1

2
ðXij − XjiÞ, respectively.

The dþ 1 decomposition of spacetime is described in
terms of the suitable coordinates xμ ¼ ðρ; xαÞ, where ρ is a
radial coordinate and xα are local coordinates on the
boundary ∂M. In the local Lorentz frame, this decom-
position is expressed by i ¼ ð1; aÞ.

II. HOLOGRAPHIC ANSATZ

We are interested in a gravitational theory which
possesses a local AdS symmetry. The presence of local
spacetime translations and spacetime rotations introduces
naturally the vielbein and the spin connection as the
fundamental fields. Our goal is to gauge fix this symmetry
by imposing a set of conditions on the fundamental fields
in a such a way that it singles out a particular coordinate
frame which is suitable for a description of a holograph-
ically dual theory. This frame should be consistent with
the known Fefferman-Graham coordinate choice used on
the Riemannian manifold. All the properties that follow
from this gauge-fixing are purely kinematical and can be
applied to any gravity invariant under local AdS group. To
include the dynamics we focus, in particular, on Lovelock-
Chern-Simons gravity.

A. AdS gauge transformations

In a theory with local AdS symmetry, the fundamental
fields are components of a gauge field (1-form) for the
AdS group SOðD − 1; 2Þ (see Appendix A) and is
defined by

A ¼ 1

l
êAPA þ 1

2
ω̂ABJAB; ð2:1Þ

where l is the AdS radius. For the sake of simplicity,
we set l ¼ 1. Gauge transformations, parametrized by
λ ≔ ηAPA þ 1

2
λABJAB, act on the gauge field as

δ0A ¼ Dλ ¼ dλþ ½A; λ�; ð2:2Þ
wherefrom we get the transformation law of the funda-
mental fields,

δ0êA ¼ ∇̂ηA − λABêB;

δ0ω̂
AB ¼ ∇̂λAB þ 2e½AηB�: ð2:3Þ

Here, the ω̂-covariant derivative is ∇̂ηA ≔ dηA þ ω̂ABηB.
The AdS field strength F ¼ dAþ A ∧ A has components

F ¼ T̂APA þ 1

2
FABJAB; ð2:4Þ

which are the torsion 2-form T̂A and AdS curvature FAB,

T̂A ¼ 1

2
T̂A

μνdxμ ∧ dxν ¼ dêAþ ω̂AB ∧ êB;

FAB ¼ 1

2
FAB

μνdxμ ∧ dxν ¼ dω̂ABþ ω̂AC ∧ ω̂C
Bþ êA ∧ êB:

ð2:5Þ

The wedge product sign is going to be omitted for
simplicity from now on in the text. The global AdS space
is described by a Riemannian manifold (T̂A ¼ 0), whose
AdS curvature vanishes (FAB ¼ 0), and where the
Riemannian curvature R̂AB ¼ dω̂ABþ ω̂AC ∧ ω̂C

B becomes
explicitly constant, R̂AB ¼ −êA ∧ êB.

B. Radial expansion and residual
gauge transformations

We use the radial foliation with the local coordinates
xμ ¼ ðρ; xαÞ and the Lorentz indices decomposed corre-
spondingly as A ¼ ð1; aÞ. The asymptotic boundary of the
manifold is located at the constant radius ρ ¼ ρ0. For
convenience we set ρ0 ¼ 0.

1. Gauge fixing

There are two types of local symmetries, small and large,
depending on how they behave asymptotically. Small local
symmetries are characterized by the parameters which go to
zero at infinity and all other local symmetries are large.
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Small gauge symmetries act trivially on boundary fields
and must be considered as redundancies in the theory, i.e.,
they must be gauge fixed. A good gauge choice should fix
all small gauge transformations and should lead to a well-
posed boundary value problem, meaning that the form of a
residual symmetry in the bulk is completely determined by
the boundary values of the symmetry parameters. Note that
the large gauge transformations do not have to be fixed by a
gauge choice. For more details, see Ref. [20].
Local transformations at our disposal are spacetime

diffeomorphisms and local AdS transformations. Let us
first focus on local AdS symmetry. A good gauge fixing for
our purposes is the one where the spacetime is AAdS and
where residual gauge transformations contain conformal
transformations on the boundary.
The last condition is introduced because we want to have

a CFT as a holographic theory. Too strong gauge fixing can
overkill all residual transformations and give rise to a trivial
holographic theory. Since the bulk theory is gauge invariant
only up to boundary terms, different gauge fixings can lead
to nonequivalent boundary theories.
Another important observation is that, in the metric

formulation of Riemann gravity, according to the theorem
of Fefferman-Graham (FG) [18], in any AAdS space
there is a coordinate choice so that the metric can be
cast in the FG form, that is, with ĝρρ ¼ 1=ð2ρÞ2, ĝρα ¼ 0

and ρĝαβðρ; xÞ regular on the boundary ρ ¼ 0. Thus, a
gauge-fixing choice of the vielbein and spin connection
must be such that the corresponding metric acquires the
FG form.
The number of gauge parameters of AdS group is DðDþ1Þ

2
,

implying that we need the same number of gauge con-
ditions. We impose the following D conditions on the

vielbeins êAρ and DðD−1Þ
2

conditions on connection ω̂AB
ρ:

êAρ ¼ −
1

2ρ
δ1

A; ω̂AB
ρ ¼ 0: ð2:6Þ

In the choice of the gauge fixing one has to keep in mind
the invertibility of vielbein. Therefore, all êAρ components
cannot be set to zero. Furthermore, although in principle a
choice of the radial coordinate is arbitrary, we want to have
the Fefferman-Graham coordinate frame, where the metric
component gρρ behaves as 1=4ρ2, generalized to first order
formalism, which implies the above behavior of the radial
component of the vielbein.
To find residual transformations, we look at the restric-

tions on gauge parameters imposed by the gauge conditions
(2.6) and we find that they have to satisfy

∂ρη
1 ¼ 0; ∂ρη

a −
1

2ρ
λ1a ¼ 0;

∂ρλ
ab ¼ 0; ∂ρλ

1a −
1

2ρ
ηa ¼ 0: ð2:7Þ

The equations in η1 and λab are straightforward to solve. To
find ηa and λ1a, we combine the corresponding differential
equations and obtain for the parameter ηa

ρ2∂2
ρη

a þ ρ∂ρη
a −

1

4
ηa ¼ 0: ð2:8Þ

This is the Euler-Fuchs equation which solution takes the
form ηaðρÞ ∼ ρk. Hence, from (2.8) we get k2 ¼ 1

4
and

consequently the general solution is given by

η1ðρ; xÞ ¼ uðxÞ; ηaðρ; xÞ ¼ 1ffiffiffi
ρ

p αaðxÞ þ ffiffiffi
ρ

p
βaðxÞ;

λabðρ; xÞ ¼ λabðxÞ; λ1aðρ; xÞ ¼ −
1ffiffiffi
ρ

p αaðxÞ þ ffiffiffi
ρ

p
βaðxÞ:

ð2:9Þ

We see that our gauge choice is good, as desired, because
symmetry parameters in the whole bulk are determined by a
few arbitrary functions u, αa, βa and λab defined on the
boundary. We still have to identify an asymptotic symmetry
group defined by these parameters.
The residual gauge parameters which describe asymp-

totic symmetry group naturally induce a change of the basis
in the Lie algebra J�a ¼ Pa � J1a, so that the Lie-algebra
valued gauge parameter has the form

λ ¼ uðxÞP1 þ
1ffiffiffi
ρ

p αaðxÞJ−a þ ffiffiffi
ρ

p
βaðxÞJþa þ 1

2
λabðxÞJab:

ð2:10Þ
The AdS algebra in terms of the new generators reads

½Jþa ; J−b � ¼ 2Jab þ 2ηabP1; ½J�a ; J�b � ¼ 0;

½Jab; J�c � ¼ −ηacJ�b þ ηbcJ�a ; ½P1; Jab� ¼ 0;

½P1; J�a � ¼ �J�a : ð2:11Þ

2. Radial decomposition of gauge field
and field strength

Up to now the results are valid for any theory possessing
AdS gauge symmetry. From now on we concentrate on
Chern-Simons AdS gravity. For holography, one needs to
know how the fields evolve along the radial direction and to
study their near-boundary behavior. Since the radial compo-
nents are already fixed by the gauge condition (2.6), now we
have to determine the behavior of the spatial components.
To this end, we can use invariance of gravity under

general coordinate transformations. In Ref. [21], it was
shown that onlyD − 1 spatial diffeomorphisms are linearly
independent on gauge generators, in a physical system
where time evolution was analyzed. In our case, we look at
the radial quantization of a Hamiltonian, because we are
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interested in radial evolution of the fields from the bulk to
the boundary. Thus, our independent diffeomorpisms act
only in the transversal section of spacetime, that is, as
xα → xα þ ξαðρ; xÞ. Furthermore, we know that the radial
diffeomorphisms are broken by the boundary set at constant
radii, so this choice of quantization is natural in our case.
Thus, we have D − 1 transversal diffeomorphisms to

gauge fix. In Ref. [21] it was shown that, in any generic
Chern-Simons gauge theory (AdS in our case), there is an
on-shell identity Fρα ¼ FαβNβ, with D − 1 arbitrary func-
tions Nβ related to the transversal diffeomorphisms
ξαðρ; xÞ. Therefore, to gauge fix them, we can just set
theD − 1 functions to zero, Nβ ¼ 0. As a consequence, we
also get Fρα ¼ 0 or, equivalently, T̂A

ρα ¼ FAB
ρα ¼ 0.

These conditions are particular for Chern-Simons theory
and they arise from its dynamics. Interestingly, they can be
exactly solved using the gauge fixing (2.6), also written
as Aρ ¼ − 1

2ρP1. Rewriting the AdS Lie-algebra valued

condition Fρα ¼ 0 as ðdAþ A2Þρα ¼ 0, we get

∂ρAα −
1

2ρ
êaαJa1 þ

1

2ρ
ω̂1a

αPA ¼ 0:

This first order differential equation in Aαðρ; xÞ can be
exactly solved, given the initial condition

Aαð0; xÞ≡ eaαðxÞJþa þ kaαðxÞJ−a þ 1

2
ωab

αðxÞJab: ð2:12Þ

The solution is

Aαðρ; xÞ ¼
1ffiffiffi
ρ

p eaαðxÞJþa þ ffiffiffi
ρ

p
kaαðxÞJ−a þ 1

2
ωab

αðxÞJab:

ð2:13Þ

In components, this solution leads to the radial expansion
of the gravitational fields expressed in terms of the
boundary fields eaα, kaα and ωab

α,

êaα ¼
1ffiffiffi
ρ

p ðeaα þ ρkaαÞ;

ω̂1a
α ¼ −

1ffiffiffi
ρ

p ðeaα − ρkaαÞ;

ω̂ab
α ¼ ωab

α: ð2:14Þ

Thus, this is a generalization of the FG expansion of the
bulk metric. Indeed, the metric ĝμν ¼ êAμêBνηAB takes the
FG form since the line element can be written as

ds2 ¼ 1

4ρ2
dρ2 þ 1

ρ
ðgαβ þ 2ρkðαβÞ þ ρ2kaαkaβÞdxαdxβ;

ð2:15Þ

where gαβ ≔ ηabeaαebβ and kαβ ≔ eaαkaβ. We conclude
that the FG expansion is finite. Finite FG expansion is
typical for Chern-Simons gravity [9] and also for general
relativity when the Weyl tensor vanishes [8].
The induced metric γαβ is defined by γαβ ¼ ρĝαβ. The

coefficients in the radial expansion of γαβ are

γð0Þαβ ¼ gαβ; γð1Þαβ ¼ 2kðαβÞ;

γð2Þαβ ¼ kaαkaβ; γðnÞαβ ¼ 0; n ≥ 3: ð2:16Þ

From the radial expansion of the field strength we get on
the boundary

Fa1 ¼ 1ffiffiffi
ρ

p ðTa − ρ∇kaÞ; T̂1 ¼ −2eaka;

Fab ¼ Rab þ 4e½akb�; T̂a ¼ 1ffiffiffi
ρ

p ðTa þ ρ∇kaÞ; ð2:17Þ

where Ta ¼ ∇ea and Rab ¼ dωab þ ωa
cω

cb.
Physical interpretation of the boundary fields can be

found from their transformation law under the residual
(boundary) gauge transformations.

3. Residual gauge transformations

The complete transformation law of the basic dynamical
variables in the bulk that include the spacetime diffeo-
morphisms is given by

δ0êAμ ¼ ∇̂μη
A − λABêBμ − ∂μξ

νêAν − ξν∂νêAμ;

δ0ω̂
AB

μ ¼ ∇̂μλ
AB þ 2ê½AμηB� − ∂μξ

νω̂AB
ν − ξν∂νω̂

AB
μ;

ð2:18Þ

where the last two terms of each line are the Lie derivatives
with respect to ξμ. If we make the following redefinition of
parameters,

ηA → ηA þ ξμêAμ;

λAB → λAB þ ξμω̂AB
μ; ð2:19Þ

transformations (2.18) take the following form:

δ0êAμ ¼ ∇̂μη
A − λABêBμ þ ξνT̂A

μν;

δ0ω̂
AB

μ ¼ ∇̂μλ
AB þ 2ê½AμηB� þ ξνFAB

μν: ð2:20Þ

Due to the condition Fρα ¼ 0, the transformation laws
(2.20) of êAρ and ω̂AB

ρ with redefined parameters (2.19)
take the same form as in the case when diffeomorphisms are
absent in the transformation law (2.18). Therefore, intro-
duction of diffeomorphisms does not effectively change the
result (2.9).
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From the transformation law for ωab
α, it follows that ξα

does not depend on ρ. The complete transformation law of
the gauge fields under residual transformations reads

δ0eaα ¼ ∇αα
a − λabebα þ ueaα − ξβ ;αeaβ − ξβ∂βeaα;

δ0kaα ¼ ∇αβ
a − λabkbα − ukaα − ξβ ;αkaβ − ξβ∂βkaα;

δ0ω
ab

α ¼ ∇αλ
ab þ 4e½aαβb� þ 4k½aααb�

− ξβ ;αω
ab

β − ξβ∂βω
ab

α; ð2:21Þ

with

η1 þ ξρ

2ρ
¼ uðxÞ; ξα ¼ ξαðxÞ: ð2:22Þ

Let us note that the residual diffeomorphisms do not change
the condition Fρα ¼ 0, as expected. Their form shows that
our gauge choice is good.
In holography it is important for the boundary to be

orthogonal to the radial direction. That is why we shall
impose an additional condition ê1α ¼ 0, which puts the
bulk vielbein in the block-diagonal form with the only one

boundary component eaαðxÞ. The extra condition reduces
the asymptotic symmetries because the parameter βa is not
independent any longer,

βa ¼ eaα
�
1

2
∂αuþ kbααb

�
: ð2:23Þ

The generators of the asymptotic group cannot be deter-
mined straightforwardly because a change of the basis of
the Lie algebra necessary to identify this subgroup is
nonlinear, that is, it depends on the point of spacetime.
We shall deduce the algebra directly from the action on the
fields.
Independent transformations acting on the fields are

transversal diffeomorphisms or local translations δTðξÞ,
local Lorentz rotations δLðλÞ, local Weyl or conformal
transformations δCðuÞ and non-Abelian gauge transforma-
tions δGðαÞ. Each transformation can be seen as generated
by some generator Ta through the commutator, for example
½δGðα0Þ; δGðα00Þ� ¼ α0aα00b½Ta; Tb�, and similarly for all
other transformations. In that way, the asymptotic algebra
closes as

½δTðξ0Þ; δTðξ00Þ� ¼ δTð½ξ0; ξ00�Þ; ½δCðuÞ; δGðαÞ� ¼ δCðα · ∂uÞ − δLð~λÞ − δGðuαÞ;
½δTðξÞ; δLðλÞ� ¼ δLðξ · ∂λÞ; ½δGðα0Þ; δGðα00Þ� ¼ −δCð ~uÞ − δLðΛÞ;
½δTðξÞ; δCðuÞ� ¼ δCðξ · ∂uÞ; ½δLðλ; δGðαÞ� ¼ δGðλ · αÞ;
½δTðξÞ; δGðαÞ� ¼ δGðξ · ∂αÞ; ½δLðλÞ; δCðuÞ� ¼ 0;

½δLðλ0Þ; δLðλ00Þ� ¼ δLð½λ0; λ00�Þ; ½δCðu0Þ; δCðu00Þ� ¼ 0; ð2:24Þ

where ½ξ0; ξ00�α ¼ ξ0 · ∂ξ00α − ξ0 · ∂ξ00α is the Lie bracket and
½λ0; λ00�ab ¼ λ0acλ00cb − λ00acλ0cb is the group commutator.
We also introduced the contraction ξ · ∂ ¼ ξβ∂β and the
matrix multiplication ðλ · αÞa ¼ λabαb, and defined the
auxiliary Lorentz parameters ~λab ¼ 2α½a∂b�u and Λab ¼
4kc½aðα0cα00b� − α00cα0b�Þ, as well as the Weyl parameter
~u ¼ 4k½ab�α0aα00b.
The above brackets are computed by acting on eaα, but

their form is field independent. The boundary diffeomor-
phisms, Lorentz rotations and Weyl dilatations close in the
standard way and they form the Weyl subgroup.
Furthermore, the non-Abelian extension is realized non-
linearly, because the parameters Λ and ~u explicitly depend
on the field kab. To understand better the origin of such
non-Abelian transformations, let us note that

δGðαÞeaα ¼ ð∂αα
βÞeaβ þ αβ∂βeaα þ αβωabebα þ αβTa

αβ;

ð2:25Þ

where αβ ¼ αaeaβ. Therefore, the gauge transformations
can be cast in the form

δGðαÞeaα ¼ −δTðαβÞ − δLðωab
βα

βÞ þ αβTa
αβ: ð2:26Þ

Shifting the parameters as ξβ → ξβ þ αβ and λab → λab þ
ωab

βα
β helps us identify the independent non-Abelian

gauge transformations δGðαÞeaα ¼ αβTa
αβ. From (2.25)

and the above relation we easily conclude that non-
Abelian gauge transformations act on the boundary viel-
bein independently if and only if torsion is nonvanishing. In
the case of vanishing torsion non-Abelian gauge trans-
formations stop to be independent and they can be
represented as composition of local translations and local
Lorentz rotations with the suitable redefinition of param-
eters. Similar conclusion holds when one acts on the
boundary spin connection because it is an independent
field only if the torsion is nonvanishing.
Let us now, for completeness, inspect the action of the

transformations (2.21) on the metric gαβ ¼ eaαeaβ. We
obtain

δ0gαβ ¼ −ξγ ;αgγβ − ξγ ;βgαγ − ξγ∂γgαβ þ 2ugαβ

þ eaβ∇αα
a þ eαα∇βα

α:
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Similarly, as in the case of vielbein, the action of the
non-Abelian gauge transformations on the metric reads

δGðαÞgαβ ¼ −δTðαÞgαβ þ 2αγTðαβÞγ: ð2:27Þ

Again, we conclude that in the case when torsion
vanishes the action of non-Abelian gauge transformations
on the metric reduces to local translations with the
already mentioned redefinition of parameters [4]. The
above transformation law of the metric is not usual in
field theories, but is not surprising because we started
with local AdS symmetry which mixes vielbein and spin
connection.

III. NOETHER-WARD IDENTITIES

The AdS/CFT correspondence between the D-
dimensional AdS space and d-dimensional CFT identifies
the quantum effective action in CFT with the classical
gravitational action in AdS space for given boundary
conditions. Thus, let us assume that the renormalized
effective action in a holographic theory, Iren½e;ω�, has an
extremum for Dirichlet boundary conditions on the inde-
pendent fields, which are the vielbein, eaα, and the spin
connection, ωab

α, so that its variation takes the form

δIren½e;ω� ¼ −
Z

ddx

�
ταaδ0eaα þ

1

2
σαabδ0ω

ab
α

�
:

ð3:1aÞ

The tensor densities,

ταa ¼ −
δIren
δeaα

; σαab ¼ −
δIren
δωab

α
; ð3:1bÞ

are the energy-momentum and spin currents of our
dynamical system.
The holographic theory is invariant under d-dimensional

diffeomorphisms with the parameter ξα and the local
Lorentz transformations with the parameter λab. The con-
servation law of the corresponding Noether current reads

eaβ∇ατ
α
a þ ταaTa

αβ þ
1

2
σαabRab

αβ

þ 1

2
ωab

βð∇ασ
α
ab − 2τ½ab�Þ ¼ 0; ð3:2aÞ

∇ασ
α
ab − 2τ½ab� ¼ 0; ð3:2bÞ

which is also known as the generalized conservation laws
of ταa and σαab. Note that if the second Noether identity
(3.2b) is fulfilled, the last term in (3.2a) can be omitted.
We shall keep this term, however, because it modifies the
conservation law in cases when there are quantum
anomalies.

The invariance of Iren under Weyl transformations leads
to the additional conservation law,

τ −∇βσ
a
a
β ¼ 0; ð3:2cÞ

where τ ≔ τaa is the trace of the energy-momentum tensor.
Finally, invariance under the non-Abelian gauge trans-

formations leads to

∇ατ
α
a − 2σbbckac − 2σbcakcb ¼ 0: ð3:2dÞ

In Ref. [9], it was proposed that these residual gauge
transformations contain the information about the chiral
anomaly of the fermions in holographic CFT, encoded in
the completely antisymmetric part of the spin current.
Gravitational dynamics in the bulk is described by

nonvanishing torsion, but it may happen that some sol-
utions on the boundary are Riemannian. For such solutions,
the boundary connection ωab

α takes its Riemannian value
~ωab

α ¼ ~ωab
αðeÞ and can be expressed in terms of the

vielbein eaα in the following way:

~ωabα ¼
1

2
ðcabc − ccab þ cbcaÞecα;

caαβ ≔ ∂αeaβ − ∂βeaα: ð3:3Þ

Although boundary connection is no more independent
dynamical variable, the Noether-Ward identities keep
the form (3.2), but now ωabα takes on the Riemannian
value ~ωabα.
From the Riemannian renormalized action ~Iren ¼

Iren½eaα; ~ωα�, we get that the related spin current Σα ≔
−δ~Iren=δωα vanishes, while the energy-momentum current
Θα

a ≔ −δ~Iren=δeaα acquires an additional contribution

Θα
a ¼ ~ταa −

1

2
~∇βð ~σβαa − ~σa

βα þ ~σαa
βÞ; ð3:4Þ

where ~X denotes the Riemannian limit of a tensor X. The
Noether identities for the action ~Iren are found to be

eaβ ~∇αΘα
a − ~ωab

βΘ½ab� ¼ 0; ð3:5aÞ

Θab ¼ Θba; ð3:5bÞ

Θ ¼ 0: ð3:5cÞ

Let us remind that, as we concluded at the end of the
previous section, the non-Abelian gauge transfor-
mations are not independent for Riemannian solutions,
thus in this case there are only three independent Noether
identities (3.5).
When the Lorentz invariance is fulfilled, (3.5a) reduces

to the usual form Dαðe−1Θα
βÞ ¼ 0, where Dα is the
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Riemannian covariant derivative. The relations (3.5b) and
(3.5c) are the standard Riemannian conditions for the
Lorentz and Weyl invariance, respectively.
After using the condition of vanishing torsion, Tabc ¼ 0,

the identity ½ ~∇α; ~∇β�fa ¼ ~Rabαβfb and the Bianchi identity,
~Rabcd þ ~Racdb þ ~Radbc ¼ 0, enable us to write the expres-
sions (3.5) as

eaβ ~∇α~τ
α
a þ

1

2
~σαab ~R

ab
αβ þ

1

2
~ωab

βð∇α ~σ
α
ab − 2~τ½ab�Þ ¼ 0;

ð3:6aÞ
~∇α ~σ

α
ab − 2~τ½ab� ¼ 0; ð3:6bÞ

~τ − ~∇β ~σ
a
a
β ¼ 0: ð3:6cÞ

Hence, the Riemannian identities (3.5a), (3.5b) and (3.5c)
coincide with those obtained from (3.2a), (3.2b) and (3.2c)
in the limit Tabc → 0, as expected. Therefore, taking
torsionless limit and calculating Noether-Ward identities
gives an equivalent result as first calculating the Ward
identities and taking torsion zero [22]. This is important
when we do not know whether the torsion vanishes.
Therefore, one may safely work in first order formalism
assuming the boundary conditions and gauge fixing pre-
sented previously.

IV. LOVELOCK-CHERN-SIMONS GRAVITY

A. Action and equations of motion

The Lovelock-Lanczos gravity [15] in first order for-
mulation is described by the action

IL ¼
X½D=2�

p¼0

αpLp; ð4:1aÞ

where αp are arbitrary coupling constants and Lp is
dimensionally continued Euler density in D dimensions,

Lp ¼ εi1i2…iDR
i1i2…Ri2p−1i2pei2pþ1…eiD: ð4:1bÞ

Here p is the power of the curvature tensor in the
polynomial Lp. We omit writing the wedge product for
the sake of simplicity.
Lovelock-Lanczos gravity possesses numerous black

hole solutions with Riemannean geometry [23–25],
although some choices of the coupling constants fαpg
exhibit a causality problem in the dual CFT [26], or have
instable geometries [27,28]. Generic Lovelock gravity
without torsion possesses the same number of degrees
of freedom as general relativity [29]. With torsion, or
when the parameters take the critical values, the
dynamical content of Lovelock-Lanczos gravity might
change. Solutions in these cases are known as well, for
example the ones with Riemann-Cartan geometry in five-
dimensional gravity [30,31] and supergravity [32].

In odd-dimensional case D ¼ 2nþ 1, the special choice
of coefficients αp ¼ κ

2nþ1−2p
n
p defines theory with the

unique (degenerate) AdS vacuum, known as LCS AdS
gravity. Alternatively, LCS action can be constructed as a
Chern density by taking the topological invariant, Chern
form dLCS ¼ εi1j1…injnF

i1j1…Finjn , and writing LCS by
using holonomy operator [14,33]. Then, an equivalent
form of LCS action is given by

ILCS ¼ κ

Z
M

Z
1

0

dtεA1B1A2B2…AnBnC

×
Yn
k¼1

ðR̂AkBk þ t2êAk êBkÞêC: ð4:2Þ

Dropping the indices for simplicity, the above expression
reads

ILCS ¼ κ

Z
M

Z
1

0

dtεðR̂þ t2ê2Þnê

¼ κ

Z
M

Xn
k¼0

n
k

1

2kþ 1
εR̂n−kê2kþ1; ð4:3Þ

where we used the binomial expansion to perform an
integration over t.
Equations of motion are obtained from the variation of

the action (4.3) with respect to fundamental variables êA

and ω̂AB. Variation with respect to ê yields

CA ≔ εAA1B1…AnBn

Yn
k¼1

FAkBk ¼ 0; ð4:4Þ

which can be split into 1 and a components,

C ≔ ε1a1b1…anbn

Yn
k¼1

Fakbk ¼ 0; ð4:5aÞ

Ca ≔ εa1ba2b2…anbnF
1b
Yn
k¼2

Fakbk ¼ 0: ð4:5bÞ

Variation with respect to ω yields

CAB ≔ εABA1B1…An−1Bn−1C

Yn−1
k¼1

FAkBk T̂C ¼ 0; ð4:6Þ

and can be split into ½1a� and ½ab� components,

C̄a ≔ ε1aa1b1…an−1bn−1c

Yn−1
k¼1

Fakbk T̂c ¼ 0; ð4:7aÞ

Cab ≔ ε1aba1b1…an−1bn−1

×
Yn−2
k¼1

FakbkðFan−1bn−1 T̂1 þ ðn − 1ÞF1an−1 T̂bn−1Þ:

ð4:7bÞ
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Let us note that T̂a ¼ 0 is a particular solution of the
equations (4.7) belonging to the Riemannian subclass of all
solutions of the theory. Also, the global AdS space
(Fab ¼ 0) is a particular solution of all equations of motion.

B. 1-point functions

In this section we calculate the renormalized gravita-
tional LCS action in the classical approximation. Then we
use the AdS/CFT correspondence to promote it to the
quantum effective action in a holographic CFT, and
compute the holographic 1-point functions.
The variation of the LCS action reads

δILCS ¼ nκ
Z
∂M

Z
1

0

dtεABCA1B1…An−1Bn−1
δω̂ABêC

×
Yn−1
k¼1

ðR̂AkBk þ t2êAk êBkÞ: ð4:8Þ

To perform a near-boundary expansion of the fields, let us
first rewrite the following quantity in terms of the AdS
tensor:

R̂AkBK þ t2êAk êBk ¼ FAkBk þ ðt2 − 1ÞêAk êBk :

The first term in the above expression is independent of ρ
since on the boundary ê1 ¼ 0, and therefore the particular
components expand as

R̂akbk þ êak êak ¼ Fakbk ;

R̂ak1 þ êak ê1 ¼ 1ffiffiffi
ρ

p ðTak − ρ∇kakÞ: ð4:9Þ

Plugging these expansions in the variation of the action, we
find

δILCS ¼ nκ
Z
∂M

εδω̂
Xn−1
k¼0

n − 1

k
ð−1Þkð2kÞ!!
ð2kþ 1Þ!! Fn−k−1ê2kþ1;

ð4:10Þ

where we used the beta function to solve the inte-

gral
R
0
1dtðt2 − 1Þk ¼ ð−1Þkð2kÞ!!

ð2kþ1Þ!! .
Variation (4.10) is divergent on the boundary, that is, in

the limit ρ → 0 and extraction of physical quantities requires
its renormalization, or removal of divergences. For related
work on Riemannian Lovelock gravity, see Ref. [5].
The procedure for obtaining finite results consists in

introducing a regulating surface at ρ ¼ ϵ and adding the
counterterms which cancel all divergent contributions as ϵ
tends to zero [8,34]. Equivalently said, the divergent terms
in a variation of an action have to be represented as total
variations of local terms integrated over boundary. In
general, the computation of the total variation can be
substantially simplified after noting that the conditions
for the application of the theorem [19] are fulfilled in our
case. For an alternative proof of the theorem [19], see
Appendix C. The theorem [19] states that the terms which
are asymptotically divergent or zero (when ρ → 0) can
always be represented as total variations of local boundary
functionals. Therefore, we can discard all ρα (α ≠ 0) terms
in the expression (4.10) and keep only the ρ0-terms. For the
form of the ρα-terms (α ≠ 0), see Appendix B. Note that the
counterterms can contain arbitrary local finite part which is
nonphysical and depends on a renormalization scheme. The
divergent counterterms are local and there is finite number
of them. They also depend on only one coupling constant κ.
Counterterms in Riemannian gemetry were calculated
in Ref. [35].
Keeping only the finite terms, we obtain the variation of

the regularized action Iren ¼ ILCS þ Ict in the form

δIren ¼ −2nκε
�
δωT

Xn−2
l¼0

�
n − 2

l

� ð−1Þl22lþ1ðn − 1Þ
lþ 1

ðRþ 4ekÞn−2−lelklþ1

− δe
Xn−1
l¼0

�
n − 1

l

� ð−1Þl22lþ1

lþ 1
ðRþ 4ekÞn−1−lelklþ1

�
; ð4:11Þ

where T ¼ ∇e is the boundary torsion tensor. Comparing
to (3.1), the spin and energy-momentum currents are given
by, respectively,

σab ¼ −nκε1abT
Xn−1
l¼1

�
n − 1

l

�
4lRn−1−lel−1kl; ð4:12Þ

τa ¼ κε1a
Xn
l¼1

�
n

l

�
4lRn−lel−1kl; ð4:13Þ

and they correspond to the vacuum expectation values of
the quantum CFT operators, the spin current Sab and the
energy-momentum of the conformal matter T a,

σab ¼ hSabiCFT; τa ¼ hT aiCFT: ð4:14Þ

Using these representations of the 1-point functions of the
CFT operators, we can study their quantum conservation
laws, that is, the Noether-Ward identities.
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C. Anomalies

The equations (3.2) describe classical conservation laws
in a holographic theory invariant under diffeomorphisms,
conformal transformations and non-Abelian gauge trans-
formations. Since now we know the form of the corre-
sponding quantum currents, we can also check the quantum
conservation laws. If the law is not satisfied, then the
quantum theory possesses a quantum anomaly.
In this section we explore the Ward identities and check

for the existence of quantum anomalies: Lorentz anomaly
Aab, diffeomorphism anomaly Āa, conformal anomaly A
and gauge anomaly Aa. It is well known that there are two

types of non-Abelian anomalies, covariant and consistent.
All the anomalies we compute here are covariant, i.e., they
transform covariantly under gauge symmetries.

1. Lorentz Ward identity

The conservation law for Lorentz symmetry is given by
Eq. (3.2b), so we have to calculate the quantity

Aab ¼ ∇σab − 2e½aτb�: ð4:15Þ

Using the expressions (4.12) and (4.13) for the quantum
currents, we find

Aab ¼ −4nκεab
�
2ðn − 1ÞT∇k

Xn−2
l¼0

Xn−2−l
m¼0

�
n − 2

l

��
n − 2 − l

m

�
4mðlþmþ 1ÞRn−2−l−melþmklþm

þ eckc
Xn−1
l¼0

Xn−1−l
m¼0

�
n − 1

l

��
n − 1 − l

m

� ð−1Þl22lþ2mþ1ðlþmþ 1Þ
lþ 1

Rn−1−l−melþmklþm�
�
:

It turns out that Aab can be completely expressed in terms of
the field equations, that means that it vanishes,

Aab ¼ −4nκCab ¼ 0: ð4:16Þ

Therefore, there is no Lorentz anomaly in the holographic
theory because the Lorentz symmetry is conserved also
quantically. This is an expected result, since the Lorentz
symmetry is usually broken in the actions that are not parity
invariant.

2. Ward identity for diffeomorphisms.

The conservation law for local translations has the
form (3.2a),

Āa ¼ ∇τa −
�
IaTbτb þ

1

2
IaRbcσbc

�
; ð4:17Þ

where Ia is the contraction operator with the spacetime
index projected to the tangent manifold using the inverse
vielbein eaα. Plugging in the quantum currents (4.12) and
(4.13), one can show that the conservation law is
satisfied,

Āa ¼ 4nκðkbaCb − C̄aÞ ¼ 0: ð4:18Þ

Therefore, there is no gravitational anomaly, as expected.

3. Conformal Ward identity

The conservation law for local Weyl transformations can
be read off from Eq. (3.2c) as

A ¼ eaτa þ∇ðeaIbσabÞ; ð4:19Þ

where eaτa is the trace of energy-momentum tensor, so A is
also called the trace anomaly. Using the field equations and
discarding the total divergence, one can show that the trace
anomaly has the form

eaτa ¼ κεa1b1a2b2…anbnR
a1b1Ra2b2…Ranbn ¼ κEnðRÞ:

ð4:20Þ

Thus, the holographic anomaly is nonvanishing and, up to a
divergence, proportional to the Euler density EnðRÞ ¼ εRn,
as expected in a CFT dual to a higher-dimensional AdS
gravity [36]. Since the Weyl anomaly is topological
invariant, it is of the type A, according to the general
classification of conformal anomalies given in Ref. [37].

4. Ward identity for gauge symmetry

The conservation law for non-Abelian gauge transfor-
mations is given by Eq. (3.2d) as

Aa ¼ ∇τa − 2ðebσbckac þ kbσbaÞ: ð4:21Þ

Using (4.12) and (4.13), as well as the equations of motion,
we can express it as
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Aa ¼ −2nκε1bIaTb
Xn−1
l¼0

�
n − 1

l

� ð−1Þl22lþ1

lþ 1
ðRþ 4ekÞn−1−lelklþ1

− 4nκε1bcT

�
1

2
IaRbc − 2ebkac

�Xn−2
l¼0

�
n − 2

l

� ð−1Þl22lþ1ðn − 1Þ
lþ 1

ðRþ 4ekÞn−2−lelklþ1

þ 8nκε1aT
Xn−2
l¼0

�
n − 2

l

� ð−1Þl22lþ1ðn − 1Þ
lþ 1

ðRþ 4ekÞn−2−lelklþ2 ≠ 0: ð4:22Þ

The above holographic anomaly is in general nonvanishing,
but it cancels out when the torsion is equal to zero, as
expected. Indeed, when Ta ¼ 0, the non-Abelian gauge
symmetry is not independent, but it can be expressed in
terms of the diffeomorphisms, which are conserved at the
quantum level. Another derivation of this result is possible
by noting that in this particular case the spin tensor vanishes
and both Eqs. (3.2a) and (3.2d) reduce to

~∇α ~τ
α
α ¼ 0: ð4:23Þ

Again non-Abelian gauge anomaly vanishes since Aa ¼ 0.

V. CONCLUDING REMARKS

We analyzed a holographic dual of Lovelock Chern-
Simons AdS gravity in an arbitrary odd dimension and
calculated corresponding holographic currents and anoma-
lies in the quantum CFT. First part of the work is devoted to
the kinematics of gravitational theory with AdS gauge
symmetry. After motivating a gauge fixing suitable for a
holographc analysis, we calculated residual (asymptotic)
symmetries. Then we focused to Chern-Simons AdS
gravity. We concluded that the largest asymptotic symmetry
consists of local translations and rotations (local Poincaré
group), local Weyl rescalings and, in the presence of torsion
on the boundary, of non-Abelian gauge symmetry. If the
torsion on the boundary is zero, then a non-Abelian
symmetry is not independent any longer and reduces to
local Poincaré transformations.
We found holographic representations of the energy-

momentum and spin tensors in a dual theory, which we
identified with the corresponding 1-point functions in CFT,
in the presence of sources. We also computed their
conservation laws and obtained that some of quantum
symmetries are broken, leading to quantum anomalies.
Explicitly, we obtained that local translations and rotations
are symmetries of the quantum theory, while Weyl rescal-
ings and non-Abelian gauge symmetry are anomalous.
Similarly as in five dimensions [9], the trace anomaly is
proportional to the Euler density and is therefore of the
type A.
Because of nonlinearity of the model and working in

higher-dimensional Riemann-Cartan space, the regulariza-
tion of the action was quite involved. However, with the

help of a general renormalization theorem shown in
Appendix C, it was possible to circumvent an explicit
construction of divergent counterterms and extract directly
its finite part. An alternative proof of the theorem is given
in Ref. [19].
One of the open questions left for future work is an

application on non-Abelian gauge transformations to the
calculation of chiral anomaly. Namely, in Ref. [9] it was
suggested that the chiral anomaly is related to the com-
pletely antisymmetric component of the torsion tensor.
Another question would be to find a different gauge fixing
of either transversal diffeomorphisms or local AdS sym-
metry, in order to obtain an infinite radial expansion of the
fields, and possibly the type B anomaly. This would
describe an inequivalent holographic theory. Finally, we
are also interested in introducing a gauge fixing which
breaks relativistic covariance in an arbitrary Poincaré gauge
theory, and is suitable for the formulation of Lifshitz
holography. These last topics is the work in progress.
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APPENDIX A: ADS ALGEBRA

The algebra of generators JĀ B̄ ¼ −JB̄ Ā (Ā; B̄ ¼ 0;
1;…; D) of AdS group SOðD − 1; 2Þ if given by

½JĀ B̄; JC̄ Ē� ¼ ηB̄ C̄JĀ Ē þ ηB̄ C̄JĀ Ē − ηĀ C̄JB̄ Ē − ηB̄ ĒJĀ C̄;

ðA1Þ
where ηĀ B̄ ¼ ð−1; 1;…; 1|fflfflffl{zfflfflffl}

D−1

;−1Þ. Introducing the splitting of

indices Ā ¼ ðA;DÞ and with

PA ¼ JAD;

JAB ¼ −JBA; A; B ¼ 0; 1;…; D − 1; ðA2Þ
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the algebra (A1) (after taking into account that ηDD ¼ −1)
takes the familiar form

½PA; PB� ¼ JAB;

½PA; JBC� ¼ ηABPC − ηACPB;

½JAB; JCE� ¼ ηBCJAE þ ηAEJBC − ηACJBE − ηBEJAC:

ðA3Þ

APPENDIX B: VARIATION OF LCS ACTION

In this appendix we present the nonvanishing parts of the
variation of LCS action given by Eq. (4.10),

δILCS ¼
Xn
j¼0

1

ρj
δIj: ðB1Þ

We find the following terms, with 1 ≤ j ≤ ðn − 2Þ:

δIn ¼ εa1a1b1…an−1bn−1cδe
aecK−ðn−1Þ;

δIn−1 ¼ εaba1b1…d1cδω
abec∇edJ−ðn−2Þ

þ εa1a1b1…an−1bn−1c½δeaecK−ðn−2Þ þ ðδeakc − δkaecÞK−ðn−1Þ�;
δIj ¼ ε1abcda1b1…δωab½ec∇edJ−ðj−1Þ − ðec∇kd − kc∇edÞJ−j − kc∇kdJ−ðjþ1Þ�

− ε1aca1b1…an−1bn−1 ½δeaecK−ðj−1Þ þ ðδeakc − δkaecÞK−j − δkakcK−ðjþ1Þ�;
δI0 ¼ ε1abcda1b1…δωab½ec∇edJ1 − ðec∇kd − kc∇edÞJ0 − kc∇kdJ−1�

− ε1aca1b1…an−1bn−1 ½δeaecK1 þ ðδeakc − δkaecÞK0 − δkakcK−1�; ðB2Þ

and

Kα ¼
Xn−1
l¼0

�
n − 1

l

�
ðRþ 4ekÞn−l−1Alαel−αklþα;

Jα ¼ ðn − 1Þ
Xn−2
l¼0

�
n − 2

l

�
ðRþ 4ekÞn−l−2Alαel−αklþα;

ðB3Þ

where

Alα ¼
ð−1Þl4ll!2

ð2lþ 1Þðl − αÞ!ðlþ αÞ! : ðB4Þ

APPENDIX C: ALTERNATIVE PROOF
OF THE RENORMALIZATION THEOREM

In this appendix we show an alternative derivation of the
results of Ref. [19].
Theorem 1 A surface counterterm can be added to an

action of any classical field theory in the bulk to cancel
all the terms which depend on the radial coordinate in an
on-shell variation, if any of the following conditions are
satisfied:

(i) The bulk has the topology R × ∂M;
(ii) The boundary has a finite number of disjoint pieces

and near each one the bulk looks like R × ∂M.
Here, ∂M is any manifold without boundary with the
coordinates xα and the radial coordinate is labeled by ρ. If
the fields have asymptotic expansion near the boundary of
the form ϕi ¼ P

nf
i
nðρÞϕi

nðxαÞ, where finðρÞ are functions

that depend only on ρ and ϕi
nðxαÞ are (ρ-independent)

boundary fields, then the counterterm is a local functional
of the boundary fields.
Let the action in ðDþ 1Þ-dimensional bulkM be defined

in language of differential forms as

S ¼
Z
M
L: ðC1Þ

A variation of the action (C1) takes the form

δS ¼
Z
M
δL ¼

Z
M
e:o:m:þ

Z
M
dDþ1LB

D ðC2Þ

where e.o.m are the terms proportional to the equation of
motion. Formula (C2) is also valid without integral and it
will be used in that form later. By using the Stoke’s
theorem, we can write the last term in (C2) asZ

M
dDþ1LB

D ¼
Z
∂M

LD; ðC3Þ

where the boundary of M is placed at fixed distance ρ ¼ ε
near (but not equal) zero and LD ≔ LB

Djρ¼ε. Let ∂M be a
boundary at each ρ. The most general D-form LD near the
boundary is

LB
D ¼ LD þ dρ ∧ V; ðC4Þ

where V is an arbitrary (D − 1)-form. The exterior deriva-
tive in the bulk can be decomposed near the boundary as

dDþ1 ¼ ∂ρdρþ d; ðC5Þ
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where d is the exterior derivative at the boundary and dρ is
the derivative along the direction ρ. From Eqs. (C2), (C4)
and (C5), we get on-shell

δL ¼ dρ ∧ ∂ρLD − dρ ∧ dV: ðC6Þ

Equivalently, this can be rewritten as

∂ρLD ¼ δU þ dV ðC7Þ

where δL ¼ dρ ∧ δU. Hence, from (C7) it follows that

LD ¼ δAþ dBþ RðxαÞ ðC8Þ

where A ¼ R
dρU, B ¼ R

dρV and RðxαÞ does not depend
on ρ. This conclusion is valid under the assumption that the
right side of Eq. (C7) is integrable and that the derivative
and integral mutually commute. Therefore, LD is a sum of a
total variation, exact form and a function which does not
depend on ρ.
Consequently, we get

Z
∂M

LD ¼ δ

Z
∂M

Aþ
Z
∂M

R; ðC9Þ

where we used the fact that an integral of the exact form dB
vanishes due to the Stoke’s theorem and because the
boundary of a boundary is an empty set. After substituting
(C9) into (C2) we obtain on-shell

δðS − SctÞ ¼
Z
∂M

R; ðC10Þ

where Sct ¼
R
∂M A. Since R is ρ independent, the expres-

sion (C10) is well defined at the boundary ρ ¼ 0. Thus, all
ρ-dependent terms can be eliminated by adding a suitable
counterterm. An important observation is that this counter-
term is unique. Given an asymptotic solution of the field
equations, a near-boundary behavior is fixed. Furthermore,
the counterterm is obtained from the Lagrangian, thus it
depends on the same parameters. In other words, we do not
include new parameters in the theory. If the starting
Lagrangian has a finite number of parameters, so it does
the renormalized Lagrangian.
As the counterterm is obtained as a primitive function of

local functions, it is not necessarily local. The near-
boundary expansion method is, however, able to determine
only local counterterms.
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Generalized pp waves in Poincaré gauge theory
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Starting from the generalized pp waves that are exact vacuum solutions of general relativity with a
cosmological constant, we construct a new family of exact vacuum solutions of Poincaré gauge theory, the
generalized pp waves with torsion. The ansatz for torsion is chosen in accordance with the wave nature of
the solutions. For a subfamily of these solutions, the metric is dynamically determined by the torsion.
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I. INTRODUCTION

The principle of gauge symmetry was born in the work
of Weyl [1], where he obtained the electromagnetic field by
assuming local Uð1Þ invariance of the Dirac Lagrangian.
Three decades later, the Poincaré gauge theory (PGT) was
formulated by Kibble and Sciama [2]; it is nowadays a
well-established gauge approach to gravity, representing a
natural extension of general relativity (GR) to the gauge
theory of the Poincaré group [3,4]. Basic dynamical
variables in PGT are the tetrad field bi and the Lorentz
connection ωij ¼ −ωji (1-forms), and the associated field
strengths are the torsion Ti ¼ dbi þ ωi

k ∧ bk and the
curvature Rij ¼ dωij þ ωi

k ∧ ωkj (2-forms). By construc-
tion, PGT is characterized by a Riemann-Cartan geometry
of spacetime, and its physical content is directly related to
the existence of mass and spin as basic characteristics of
matter at the microscopic level. An up-to-date status of
PGT can be found in a recent reader with reprints and
comments [5].
General PGT Lagrangian LG is at most quadratic in the

field strengths. The number of independent (parity invari-
ant) terms in LG is nine, which makes the corresponding
dynamical structure rather complicated. As is well known
from the studies of GR, exact solutions have an essential
role in revealing and understanding basic features of the
gravitational dynamics [6–9]. This is also true for PGT,
where exact solutions allow us, among other things, to
study the interplay between dynamical and geometric
aspects of torsion [5].
In the context of GR, one of the best known families of

exact solutions is the family of pp waves: it describes
plane-fronted waves with parallel rays propagating on the
Minkowski background M4; see, for instance, Ehlers and
Kundt [6]. There is an important generalization of this
family, consisting of the exact vacuum solutions of GRwith
a cosmological constant (GRΛ) such that for Λ → 0, they
reduce to the pp waves in M4. We will refer to this family
as the generalized pp waves, or just ppΛ waves for short.

In contrast to the pp waves in M4, the wave surfaces
of the ppΛ waves have constant curvature proportional to
Λ. The family of the ppΛ waves belongs to a more general
family, known as the Kundt class of type N, labeled
KNðΛÞ. Details on the KNðΛÞ spacetimes can be found
in the monograph by Griffiths and Podolský [9]; see also
Refs. [10–12]. In this paper, we start from the Riemannian
ppΛ waves in GRΛ and construct a new family of the ppΛ
waves with torsion, representing a new class of exact
vacuum solutions of PGT. The torsion is introduced relying
on the approach used in our previous paper [13]. The
present work is motivated by earlier studies of the exact
wave solutions in PGT [14], and is regarded as a comple-
ment to them.
The paper is organized as follows. In Sec. II, we give a

short account of the Riemannian ppΛ waves, including the
relevant geometric and dynamical aspects, as a basis for
their extension to ppΛ waves with torsion. In Sec. III, we
first introduce an ansatz for the new, Riemann-Cartan (RC)
connection, the structure of which complies with the wave
nature of a RC spacetime. The ansatz is parametrized by a
specific 1-form K living on the wave surface, and the
related torsion has only one, tensorial irreducible compo-
nent. Then, we use the PGT field equations to show that the
dynamical content of K is described by two torsion modes
with the spin-parity values JP ¼ 2þ and 2−. In Sec. IV, we
find solutions for both the metric functionH and the torsion
function K, in the spin-2þ sector and for λ > 0; < 0 and
¼ 0. It is shown that K has a decisive influence on the
solution forH, and consequently, on the resulting metric. In
Sec. V, we shortly discuss solutions in the spin-2− sector,
which are found to be much less interesting. Section VI
concludes the exposition with a few remarks on some
issues not covered in the main text, and the Appendices are
devoted to certain technical details.
Our conventions are as follows. The latin indices

ði; j;…Þ refer to the local Lorentz (co)frame and run
over (0, 1, 2, 3), bi is the tetrad (1-form), and hi is the
dual basis (frame), such that hibk ¼ δik. The volume 4-form
is ϵ̂ ¼ b0 ∧ b1 ∧ b2 ∧ b3, the Hodge dual of a form α is
⋆α, with ⋆1 ¼ ϵ̂, and the totally antisymmetric tensor is
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defined by ⋆ðbi ∧ bj ∧ bk ∧ bmÞ ¼ εijkm and normalized
to ε0123 ¼ þ1. The exterior product of forms is implicit,
except in Appendix B.

II. RIEMANNIAN ppΛ WAVES

In this section, we give an overview of Riemannian ppΛ
waves using the tetrad formalism [15], necessary for the
transition to PGT.

A. Geometry

The family of ppΛ waves is a specific subclass of the
Kundt spacetimes KNðΛÞ, labeled by KNðλÞ½α¼ 1;β¼ 0�;
for the full classification of the KNðΛÞ spacetimes, see
Refs. [9,10]. In suitable local coordinates xμ ¼ ðu; v; y; zÞ
(see Appendix A), the metric of the ppΛ waves can be
written as

ds2 ¼ 2

�
q
p

�
2

duðSduþ dvÞ − 1

p2
ðdy2 þ dz2Þ; ð2:1aÞ

where

p ¼ 1þ λ

4
ðy2 þ z2Þ; q ¼ 1 −

λ

4
ðy2 þ z2Þ;

S ¼ −
λ

2
v2 þ p

2q
Hðu; y; zÞ; ð2:1bÞ

with λ being a suitably normalized cosmological constant,
and the unknown metric function H is to be determined
by the field equations. The coordinate v is an affine
parameter along the null geodesics xμ ¼ xμðvÞ, and u is
retarded time such that u ¼ const are the spacelike
surfaces parametrized by xα ¼ ðy; zÞ. Since the null
vector ξ ¼ ξðuÞ∂v is orthogonal to these surfaces, they
are regarded as wave surfaces, and ξ is the null direction
(ray) of the wave propagation. The vector ξ is not
covariantly constant, and consequently, the wave rays
are not parallel and the wave surfaces are not flat. For
λ → 0, the metric (2.1) reduces to the metric of pp waves
on the M4 background, which explains the term gener-
alized pp waves, or ppΛ waves.
Next, we choose the tetrad field (coframe) in the form

b0 ≔ du; b1 ≔
�
q
p

�
2

ðSduþ dvÞ;

b2 ≔
1

p
dy; b3 ≔

1

p
dz; ð2:2aÞ

so that ds2 ¼ ηijbi ⊗ bj, where ηij is the half-null
Minkowski metric:

ηij ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

1
CCCA:

The corresponding dual frame hi is given by

h0 ¼ ∂u − S∂v; h1 ¼
�
p
q

�
2∂v;

h2 ¼ p∂y; h3 ¼ p∂z: ð2:2bÞ

For the coordinates xα ¼ ðy; zÞ on the wave surface, we
have

xc ¼ bcαxα ¼
1

p
ðy; zÞ; ∂c ¼ hcα∂α ¼ pð∂y; ∂zÞ;

where c ¼ 2, 3.
Starting from the general formula for the Riemannian

connection 1-form,

ωij ≔ −
1

2

�
hi⌋dbj − hj⌋dbi − ðhi⌋hj⌋dbkÞbk

�
;

one can find its explicit form; for i < j, it reads

ω01 ¼ λvb0−
1

q
ðλyb2þ λzb3Þ; ω02 ¼ λy

q
b0; ω03 ¼ λz

q
b0;

ω12 ¼ λy
q
b1 −

q2

p
∂ySb0; ω13 ¼ λz

q
b1−

q2

p
∂zSb0;

ω23 ¼ 1

2
ðλzb2 − λyb3Þ: ð2:3aÞ

Introducing the notation i ¼ ðA; aÞ, where A ¼ 0, 1 and
a ¼ ð2; 3Þ, one can rewrite ωij in a more compact form:

ω01 ¼ λvb1 −
2

qp
ðbc∂cpÞ;

ωAc ¼ −
2

qp
bA∂cpþ kA

q2

p2
b0∂cS;

ω23 ¼ −
1

p
ðb2∂3p − b3∂2pÞ; ð2:3bÞ

where ki ¼ ð0; 1; 0; 0Þ is a null propagation vector, k2 ¼ 0.
The above connection defines the Riemannian curvature

Rij ¼ dωij þ ωi
mω

mj; for i < j, it is given by

Rij ¼
�
−λb1bc þ k1b0Qc; for ði; jÞ ¼ ð1; cÞ
−λbibj; otherwise;

ð2:4aÞ

where Qc is a 1-form introduced by Obukhov [15],
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Qc ¼ −∇
��

q
p

�
2

hc⌋dS

�
þ
�
q
p

�
3

hc⌋

�
d

�
p
q

�
∧ dS

�
;

and d ¼ dxα∂α is the exterior derivative on the wave
surface. In more details

Q2 ¼ q
2p

½2qp∂yySþ ðq − 4Þλy∂yS − qλz∂zS�b2

þ q
2
½2q∂yzS − λz∂yS − λy∂zS�b3;

Q3 ¼ q
2p

½2qp∂zzSþ ðq − 4Þλz∂zS − qλy∂yS�b3

þ q
2
½2q∂yzS − λz∂yS − λy∂zS�b2:

As a consequence, Rij can be represented more
compactly as

Rij ¼ −λbibj þ 2b0k½iQj�: ð2:4bÞ

The Ricci 1-form Rici ≔ hm⌋Ricmi is given by

Rici ¼ −3λbi þ b0kiQ;

Q ¼ hc⌋Qc ¼ qp
2

�
∂yyH þ ∂zzH þ 2λ

p2
H

�
; ð2:5Þ

and the scalar curvature R ≔ hi⌋Rici reads

R ¼ −12λ: ð2:6Þ

B. Dynamics

1. ppΛ waves in GRΛ

Starting with the action I0 ¼ −
R
d4xða0Rþ 2Λ0Þ, one

can derive the GRΛ field equations in vacuum,

2a0Gn
i − 2Λ0δ

n
i ¼ 0; ð2:7aÞ

where Gn
i is the Einstein tensor. The trace and the traceless

piece of these equations read

Λ0 ¼ 3a0λ; Rici −
1

4
Rbi ≡ b0kiQ ¼ 0: ð2:7bÞ

As a consequence, the metric function H must obey

∂yyH þ ∂zzH þ 2λ

p2
H ¼ 0: ð2:8Þ

There is a simple solution of these equations,

Hc ¼
1

p
ðAðuÞqþ BαxαÞfðuÞ; ð2:9Þ

for which Qa vanishes. This solution is trivial (or pure
gauge), since the associated curvature takes the background

form, Rij ¼ −λbibj; moreover, it is conformally flat, since
its Weyl curvature vanishes. The nontrivial vacuum sol-
utions are characterized by Q ¼ 0, but Qc ≠ 0; their
general form can be found in [10].

2. ppΛ waves in PGT

To better understand the relation between GRΛ and PGT,
it is interesting to examine whether ppΛ waves satisfying
the GRΛ field equations in vacuum are also a vacuum
solution of PGT. It turns out that a more general version of
the problem has been already solved by Obukhov [4].
Studying the PGT field equations for torsion-free configu-
rations, he proved the following important theorem:
T1. In the absence of matter, any solution of GRΛ is a
torsion-free solution of PGT.
It is interesting to note that the inverse statement, that any
torsion-free vacuum solution of PGT is also a vacuum
solution of GRΛ, is also true, except for three specific
choices of the PGT coupling constants.

III. ppΛ WAVES WITH TORSION

In this section, we extend the ppΛ waves that are
vacuum solutions of GRΛ to a new family of the exact
vacuum solutions of PGT, characterized by the existence of
torsion.

A. Ansatz

The main step in constructing the ppΛ waves with
torsion is to find an ansatz for torsion that is compatible
with the wave nature of the solutions. This is achieved by
introducing torsion at the level of connection.
Looking at the Riemannian connection (2.3), one can

notice that its radiation piece appears only in the ω1c

components:

ðω1cÞR ¼ q2

p2
ðhcα∂αSÞb0:

This motivates us to construct a new connection by
applying the rule

∂αS → ∂αSþ Kα; Kα ¼ Kαðu; y; zÞ; ð3:1aÞ

where Kα is the component of the 1-form K ¼ Kαdxα on
the wave surface. Thus, the new form of ðωijÞR reads

ðωicÞR ≔ ki
q2

p2
hcαð∂αSþ KαÞb0; ð3:1bÞ

whereas all the other nonradiation pieces retain their
Riemannian form (2.3).
The geometric content of the new connection is found by

calculating the torsion:
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Ti ¼ ∇bi þ ωi
mbm ¼ ki

q2

p
b0ðb2Ky þ b3KzÞ

¼ ki
q2

p2
b0bcKc: ð3:2Þ

The only nonvanishing irreducible piece of Ti is ð1ÞTi.
The new connection modifies also the curvature, so that

its radiation piece becomes

ðR1cÞR ¼ k1b0Ωc; Ωc ≔ Qc þ Θc; ð3:3aÞ

where the term Θc that represents the contribution of
torsion is given by

Θ2 ¼ q
2p

½ð2qp∂yKy − pKyλy − qKzλzÞb2

þ ð−2qp∂zKy þ pKyλz − qKzλyÞb3�;
Θ3 ¼ q

2p
½ð2qp∂zKz − pKzλz − qKyλyÞb3

þ ð−2qp∂yKz þ pKzλy − qKyλzÞb2�:

The covariant form of the curvature reads

Rij ¼ −λbibj þ 2b0k½iΩj�; ð3:3bÞ

and the Ricci curvature takes the form

Rici ¼ −3λbi þ b0kiΩ; Ω ≔ hc⌋Ωc ¼ Qþ Θ: ð3:3cÞ

The torsion has no influence on the scalar curvature:

R ¼ −12λ: ð3:3dÞ

Thus, our ansatz defines a RC geometry of spacetime.

B. PGT field equations

Having adopted the ansatz for torsion defined in
Eq. (3.1), we now wish to find explicit form of the PGT
field equations and use them to determine dynamical
content of our ansatz.
As shown in Appendices B and C, the field equations

depend on the structure of the irreducible components of
the field strengths. For torsion, we already know that the
only nonvanishing irreducible component is ð1ÞTi ¼ Ti,
defined in Eq. (3.2). As for the curvature, we note that our
ansatz yields X ¼ 0 and bmRicm ¼ 0, where X is defined in
(B2b). Then, the irreducible decomposition of the curvature
implies (see Appendix B)

ð3ÞRij ¼ 0; ð5ÞRij ¼ 0; ð3:4Þ

whereas the remaining pieces ðnÞRij are defined by their
nonvanishing components as

ð2ÞR1c ¼ 1

2
⋆ðΨ1bcÞ; ð4ÞR1c ¼ 1

2
ðΦ1bcÞ;

ð6ÞRij ¼ −λbibj; ð1ÞR1c ¼ b0
�
ΩðceÞ −

1

2
ηceΩ

�
be;

ð3:5aÞ

where the 1-forms Φi and Ψi are given by

Φi ¼ kib0ðQþ ΘÞ; Θ ¼ qp

�
∂y

�
q
p
Ky

�
þ ∂z

�
q
p
Kz

��
;

Ψi ¼ Xi ¼ −kib0Σ; Σ ¼ qp

�
∂z

�
q
p
Ky

�
− ∂y

�
q
p
Kz

��
:

ð3:5bÞ

Having found ð1ÞTi and ðnÞRij, we apply the procedure
described in Appendix C to obtain the following form of
the two PGT field Eqs. (C3):

ð1STÞ Λ0 ¼ 3a0λ; a1Θ − A0ðQþ ΘÞ ¼ 0; ð3:6aÞ

ð2NDÞ − ðb2 þ b1Þð∇Ψ1Þb2 − ðb4 þ b1Þð∇Φ1Þb3 − 2ða0 − A1ÞT1b3 ¼ 0;

−ðb2 þ b1Þð∇Ψ1Þb3 þ ðb4 þ b1Þð∇Φ1Þb2 þ 2ða0 − A1ÞT1b2 ¼ 0; ð3:6bÞ

where A0 ¼ a0 þ ðb4 þ b6Þλ and A1 ¼ a1 − ðb6 − b1Þλ [16].
Leaving (1ST) as is, (2ND) can be given a more clear structure as follows:
(i) use (1ST) to express Φ1 ¼ b0ðQþ ΘÞ in the form Φ1 ¼ ða1=A0Þb0Θ;
(ii) multiply (2ND) by A0=q.

As a result, the previous two components of (2ND) transform into

A0ðb2 þ b1Þ∂zðpΣ=qÞ þ a1ðb4 þ b1Þ∂yðpΘ=qÞ þ 2A0ðA1 − a0Þðq=pÞKy ¼ 0; ð3:7aÞ

−A0ðb2 þ b1Þ∂yðpΣ=qÞ þ a1ðb4 þ b1Þ∂zðpΘ=qÞ þ 2A0ðA1 − a0Þðq=pÞKz ¼ 0: ð3:7bÞ
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Then, calculating ∂yð3.7aÞ þ ∂zð3.7bÞ and ∂zð3.7aÞ −∂yð3.7bÞ yields the final form of (2ND):

ð∂yy þ ∂zzÞðpΘ=qÞ −m2
2þ

1

p2
ðpΘ=qÞ ¼ 0;

m2
2þ ≔

2A0ða0 − A1Þ
a1ðb1 þ b4Þ

; ð3:8aÞ

ð∂yy þ ∂zzÞðpΣ=qÞ −m2
2−

1

p2
ðpΣ=qÞ ¼ 0;

m2
2− ≔

2ða0 − A1Þ
b1 þ b2

: ð3:8bÞ

The parameters m2
2� have a simple physical interpretation.

In the limit λ → 0, they represent masses of the spin-2�
torsion modes with respect to the M4 background [17],

m̄2
2þ ¼ 2a0ða0 − a1Þ

a1ðb1 þ b4Þ
; m̄2

2− ¼ 2ða0 − a1Þ
b1 þ b2

;

whereas for finite λ,m2
2� are associated to the torsion modes

with respect to the (anti)de Sitter [(A)dS] background.
In M4, the physical torsion modes are required to satisfy

the conditions of no ghosts (positive energy) and no
tachyons (positive m2) [17,18]. However, for spin-2þ
and spin-2− modes, the requirements for the absence of
ghosts, given by the conditions b1 þ b2 < 0 and
b1 þ b4 > 0, do not allow for both m2 to be positive.
Hence, only one of the two modes can exist as a
propagating mode (with finite mass), whereas the other
one must be “frozen” (infinite mass). Although these
conditions refer to the M4 background, we assume their
validity also for the (A)dS background, in order to have a
smooth limit when λ → 0.
One should note that the two spin-2 sectors have quite

different dynamical structures.
(i) In the spin-2− sector, the infinite mass of the spin-2þ

mode implies Θ ¼ 0, whereupon (1ST) yields
Q ¼ 0, which is exactly the GRΛ field equation
for metric. Thus, the existence of torsion has no
influence on the metric.

(ii) In the spin-2þ sector, the infinite mass of the spin-2−

mode implies Σ ¼ 0, whereas (1ST) yields that Q is
proportional to Θ, with Θ ≠ 0. Thus, the torsion
functionΘ has a decisive dynamical influence on the
form of the metric.

In the next section, we focus our attention on the spin-2þ
sector, where the metric appears to be a genuine dynamical
effect of PGT.

IV. SOLUTIONS IN THE SPIN-2+ SECTOR

In this section, we first find solutions of Eq. (3.8a) for the
spin-2þ mode V ¼ ðp=qÞΘ, and then use that V to find
the metric function H and the torsion functions Kα, the

quantities that completely define the geometry of the ppΛ
waves with torsion.

A. Solutions for V = ðp=qÞΘ
The field equation for the spin-2þ sector can be written

in a slightly simpler form as

ð∂yy þ ∂zzÞV −
m2

p2
V ¼ 0; ð4:1Þ

where V ¼ ðp=qÞΘ and m2 ¼ m2
2þ . We have seen in

Appendix A that local coordinates ðy; zÞ are well defined
in the region where p and q do not vanish, which is an
open disk of finite radius, y2 þ z2 < 4jλj−1. Since (4.1)
is a differential equation with circular symmetry, it is
convenient to introduce polar coordinates, y ¼ ρ cosφ;
z ¼ ρ sinφ, in which Eq. (4.1) takes the form

� ∂2

∂ρ2 þ
1

ρ

∂
∂ρþ

1

ρ2
∂2

∂φ2

�
V −

m2

p2
V ¼ 0: ð4:2aÞ

Looking for a solution of V in the form of a Fourier
expansion,

V ¼
X∞
n¼0

VnðρÞðcneinφ þ c̄ne−inφÞ;

we obtain

V 00
n þ

1

ρ
V 0
n −

�
n2

ρ2
þm2

p2

�
Vn ¼ 0; ð4:2bÞ

where prime denotes d=dρ.

1. λ=4 ≡ l− 2 > 0

Let us first consider solutions of the dS type, using a
convenient notation:

x ¼ ρ

l
; μ ¼ ml; ξ ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q 	
:

The general solutions of (4.2b) for n ¼ 0 and n > 0 are
given by

V0 ¼ c1ð1þ x2Þ1−ξ2F1ð1 − ξ; 1 − ξ; 2ð1 − ξÞ;−j1þ x2jÞ
þ c2ð1þ x2Þξ2F1ðξ; ξ; 2ξ;−j1þ x2jÞ; ð4:3aÞ

Vn ¼ c1ðx2Þn=2ð1þ x2Þξ2F1ðξ; ξþ n; 1þ n;−x2Þ
þ c2ðx2Þ−n=2ð1þ x2Þξ2F1ðξ; ξ − n; 1 − n;−x2Þ;

ð4:3bÞ

where cn ¼ cnðuÞðn ¼ 1; 2Þ and 2F1ða; b; c; zÞ is the
hypergeometric function [19].
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2. λ=4 ≡ −l−2 < 2

In the AdS sector, using

ξ̄ ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

q 	
;

the solutions for n ¼ 0 and n > 0 take the following forms:

V0 ¼ c1ð1 − x2Þ1−ξ̄2F1ð1 − ξ̄; 1 − ξ̄; 2ð1 − ξ̄Þ; j1 − x2jÞ
þ c2ð1 − x2Þξ̄2F1ðξ̄; ξ̄; 2ξ̄; j1 − x2jÞ; ð4:4aÞ

Vn ¼ c1ðx2Þn=2ðx2 − 1Þξ̄2F1ðξ̄; ξ̄þ n; 1þ n; x2Þ
þ c2ðx2Þ−n=2ðx2 − 1Þξ̄2F1ðξ̄; ξ̄ − n; 1 − n; x2Þ:

ð4:4bÞ

These solutions are essentially an analytic continuation by
l → il of those in Eq. (4.3).

3. λ= 0

The general solution of Eq. (4.2b) has the form

Vn ¼ c1Jnð−imρÞ þ c2Ynð−imρÞ; n ¼ 0; 1; 2;…

ð4:5Þ
where Jn and Yn are Bessel functions of the first and second
kind, respectively.

B. Solutions for the metric function H

For a given Θ, the first PGT field equation
A0Q ¼ ða1 − A0ÞΘ, with Q defined in (2.5), represents a
differential equation for the metric function H:

ð∂yy þ ∂zzÞH þ 2λ

p2
H ¼ 2ða1 − A0Þ

A0

1

p2
V: ð4:6Þ

This is a second order, linear nonhomogeneous differential
equation, and its general solution can be written as

H ¼ Hh þHp;

where Hh is the general solution of the homogeneous
equation, and Hp a particular solution of (4.6). By
comparing Eq. (4.6) to Eq. (4.1), one finds a simple
particular solution for H:

Hp ¼ σV; σ ¼ 2ða1 − A0Þ
ð2λþm2ÞA0

: ð4:7aÞ

On the other hand, Hh coincides with the general vacuum
solution of GRΛ; see (2.8). Since our idea is to focus on the
genuine torsion effect on the metric, we chooseHh ¼ 0 and
adopt Hp as the most interesting PGT solution for the
metric function H. Thus, we have

Hn ¼ σVn: ð4:7bÞ

C. Solutions for the torsion functions Kα

In the spin-2þ sector, the torsion functions Kα can be
determined from Eq. (3.7), combined with the condition
Σ ¼ 0:

∂yV þm2
q
p
Ky ¼ 0; ∂zV þm2

q
p
Kz ¼ 0: ð4:8Þ

Going over to polar coordinates,

Ky ¼ Kρ cosφ −
Kφ

ρ
sinφ; Kz ¼ Kρ sinφþ Kφ

ρ
cosφ;

the previous equations are transformed into

Kρ ¼ −
1

m2

p
q
∂ρV; Kφ ¼ −

1

m2

p
q
∂φV; ð4:9aÞ

or equivalently, in terms of the Fourier modes,

Kρn ¼ −
1

m2

p
q
∂ρVn; Kφn ¼ −

1

m2

p
q
nVn; ð4:9bÞ

whereKφ ¼ P∞
n¼1ðdneinφ þ d̄ne−inφÞwith dn ¼ −icn, and

similarly for Kρ.

D. Graphical illustrations

Here, we illustrate graphical forms of two specific
solutions by giving plots of their metric functions H and
the typical torsion component T1

02,

H ¼ σV;

T1
02 ¼

q2

p2
K2 ¼

q2

p
Ky ¼ −

1

m2
qð∂ρV cosφ− ρ−1Kφ sinφÞ:

ð4:10Þ

For λ ≠ 0, it is convenient to use the units in which l ¼ 1.
In the dS sector (Fig. 1), the zero modes of both H and

T1
02ðφ ¼ 0Þ are regular functions with a clear-cut wavelike

behavior in the region 0 < x < 1. The plots correspond to
the ppΛ geometry for fixed u, and as u increases, the

0.2 0.4 0.6 0.8 1.0
x

10

5

5

10
H0

0.2 0.4 0.6 0.8 1.0
x

1.5
1.0
0.5

0.5
1.0
1.5

T1
02

FIG. 1. The plots of a solution in the sector λ > 0, in units
l ¼ 1, for n ¼ 0; μ ¼ 100; c1 ¼ 1; c2 ¼ 0; σ ¼ 1. Left: H0.
Right: T1

02ðφ ¼ 0Þ.

M. BLAGOJEVIĆ and B. CVETKOVIĆ PHYSICAL REVIEW D 95, 104018 (2017)

104018-6



pictures change. In the AdS sector (Fig. 2), the solution is
singular at x ¼ 1, or equivalently at p ¼ 0, and it does not
have a typical wavelike shape. For a discussion of the
singularity at p ¼ 0, see Ref. [11]. We also examined a zero
mode solution (n ¼ 0) in theM4 sector (λ ¼ 0); its shape is
similar to what we have in Fig. 2, but it remains finite
at x ¼ 1.

V. SOLUTIONS IN THE SPIN-2− SECTOR

As we noted at the end of Sec. III, the spin-2− sector is
characterized by Θ ¼ 0 and, as a consequence of (1ST), by
Q ¼ 0. Equation (3.8b) for Σ reads

ð∂yy þ ∂zzÞU −
m2

p2
U ¼ 0; ð5:1Þ

where U ¼ ðp=qÞΣ and m2 ¼ m2
2− . Clearly, the solutions

for U coincide with the solutions for V ¼ ðp=qÞΘ in
Sec. IVA. Furthermore, the metric function H, defined
by Q ¼ 0, has the GRΛ form, and the solutions for the
torsion functions Kα follow from the two equations

∂yU þm2
q
p
Ky ¼ 0; ∂zU þm2

q
p
Kz ¼ 0; ð5:2Þ

the counterparts of those in (4.8).
The fact that the metric of the spin-2− sector is

independent of torsion makes this sector, in general, much
less interesting. There is, however, one solution in this
sector that should be mentioned: it is the solution with
H ¼ 0 for which the metric takes the ðAÞdS=M4 form, and
the complete dynamics is carried solely by the torsion. We
skip discussing details of this case, as they can be easily
reconstructed from the results given in the previous section,
following the procedure outlined above.

VI. CONCLUDING REMARKS

In this paper, we found a new family of the exact vacuum
solutions of PGT, the family of the ppΛ waves with torsion.
Here, we wish to clarify a few issues that have not been
properly covered in the main text.
The essential step in our construction is the ansatz for the

RC connection (3.1), which modifies only the radiation

piece of the corresponding Riemannian connection (2.3). A
characteristic feature of the resulting solution is the
presence of the null vector ki ¼ ð0; 1; 0; 0Þ in the spacetime
geometry. The vector field ki∂i ¼ ðp=qÞ2∂v is orthogonal
to the spatial surfaces u ¼ const, and is interpreted as the
propagation vector of the ppΛ wavewith torsion. Is such an
interpretation justifiable?
Although gravitational waves belong to one of the

best known families of exact solutions in GRΛ, a unique
covariant criterion for their precise identification is still
missing. One of the early criteria of this type was
formulated by Lichnerowicz, based on an analogy with
methods used to determine electromagnetic radiation;
see Zakharov [7]. This criterion can be formulated as a
requirement that the radiation piece of the curvature,
Sij ¼ Rij þ λbibj, satisfies the radiation conditions:

kiSij ¼ 0; εijknkjSkn ¼ 0: ð6:1aÞ

However, when applied to a RC geometry, the
Lichnerowicz criterion can be naturally extended to include
the torsion 2-form:

kiTi ¼ 0; εijmnkmTn ¼ 0: ð6:1bÞ

A direct calculation based on the expressions (3.2) and
(3.3b) shows that both sets of the radiation conditions are
satisfied. This result gives a strong support to interpreting
the ppΛ waves with torsion as proper wave solutions
of PGT.
Looking at the explicit solutions for the ppΛ waves with

torsion, one should note that, in general, the hypergeo-
metric function 2F1ða; b; c; xÞ is singular at x ¼ 1 ðρ ¼ lÞ
[19]; moreover, local coordinates we are using are singular
at both x ¼ 1 and x ¼ 0 (Appendix A). To test the nature of
these singularities, we calculated the following torsion and
curvature invariants:

Ti ∧ ⋆Ti ¼ 0;

R ¼ −12λ; Rij⋆Ri;j ¼ 12λ2ϵ̂;

Rij
klRkl

mnRmn
ij ¼ −48λ3; ð6:2Þ

the fourth order invariant is 96λ4, and so on. All these
invariants are well behaved at x ¼ 1, 0, which might be a
signal that the singularities in question are just the
coordinate singularities. However, according to Wald
[20], the geometric singularities are not always visible in
the field strength invariants. This issue deserves further
clarification.
If the curvature Rij is replaced by its radiation piece Sij,

all the invariants in (6.2) are found to vanish. According to
Bell’s second criterion [7], we have here another result that
supports the wave interpretation of our ppΛ solutions.
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FIG. 2. The plots of a solution in the sector λ < 0, in units
l ¼ 1, for n ¼ 0; μ ¼ ffiffiffi

8
p

; c1 ¼ 0.1; c2 ¼ 0. Left: H0. Right:
T1

02ðφ ¼ 0Þ.
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In GRΛ, the ppΛ waves are algebraically special sol-
utions of Petrov type N; this property can be formulated as
an algebraic condition on the Weyl curvature:Wijmnkm ¼ 0

[9,21]. However, one cannot use the same criterion for
classifying the solutions of PGT, since Wijmn is not an
irreducible part of the RC curvature. The problem can be
overcome by replacing Wijmn with ð1ÞRijmn, which is a
genuine PGT generalization of Wijmn [4]. Using the
expression for ð1ÞRijmn from Eq. (3.5), one can directly
prove the relation

ð1ÞRijmnkm ¼ 0; ð6:3Þ

which is a natural PGT generalization of the Riemannian
condition. The condition (6.3) can be considered as a well-
founded criterion for a family of PGT solutions to be of
type N.
Finally, we wish to stress that a subfamily of the

solutions in the spin-2þ sector reveals an unexpected
dynamical aspect of torsion. Namely, although torsion is
introduced by a minor modification of the Riemannian
connection [see (3.1)], the metric function H in (4.7) is
determined solely by the torsion, and consequently, the
related metric is a genuine dynamical effect of PGT. More
detailed information could be obtained by analyzing the
motion of test particles/fields in the RC spacetimes asso-
ciated to the ppΛ waves with torsion.
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APPENDIX A: ON HYPERBOLIC GEOMETRIES

(A)dS space can be simply represented as a 4D hyper-
boloid H4 embedded in a 5D Minkowski space M5 with
metric ηMN ¼ ðþ;−;−;−; σÞ,

H4∶ X2
0 − X2

1 − X2
2 − X2

3 − σX2
5 ¼ −σl2; ðA1aÞ

where σ ¼ þ1 for a dS space and σ ¼ −1 for an AdS space
[9,23]. The metric on H4 reads

ds2 ¼ dX2
0 − dX2

1 − dX2
2 − dX2

3 − σdX2
5; ðA1bÞ

and its scalar curvature is R ¼ −12σ=l2. The group of
isometries of the dS/AdS spaces is SOð1; 4Þ=SOð2; 3Þ, and
the corresponding topologies are R × S3 for the dS space,
and S1 × R3 for the AdS space (or R4 for its universal
covering).
Going now back to the generalized ppwave metric (2.1),

we note that in the limitH ¼ 0, it describes the background
(A)dS geometry:

ds2 ¼ 2

�
q
p

�
2

duð−2Λv2duþ dvÞ − 1

p2
ðdy2 þ dz2Þ;

p ¼ 1þ Λðy2 þ z2Þ; q ¼ 1 − Λðy2 þ z2Þ: ðA2Þ

As we shall see below, Λ is related to l by 4σΛ ¼ 1=l2;
moreover, Λ > 0 for dS and Λ < 0 for AdS. The two forms
of the metric associated to the hyperboloidH4 are related to
each other by a coordinate transformation [11],

X0 ¼
q
2p

ðuþ vþ Λu2vÞ; u ¼ 2σl
X5 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σðX2

0 − X2
1 − σX2

5Þ
q

X0 − X1

;

X1 ¼
q
2p

ðu − vþ Λu2vÞ; v ¼ X0 − X1

4l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σðX2

0 − X2
1 − σX2

5Þ
q ;

X2 ¼
y
p
; X3 ¼

z
p
; y ¼ 2lX2

lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − σðX2

2 þ X2
3Þ

p ;

X5 ¼
1

2
ffiffiffiffiffiffi
σΛ

p q
p
ð1þ 2ΛuvÞ; z ¼ 2lX3

lþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − σðX2

2 þ X2
3Þ

p : ðA3Þ

Indeed, the coordinates XM in M4 describe the hyperboloid H4,

ðX2
0 − X2

1 − σX2
5Þ − X2

2 − X2
3 ¼ −

1

4Λ
q2

p2
−

1

p2
ðy2 þ z2Þ ¼ −

1

4Λ
¼ −σl2;

and the corresponding metric (A1b), followed by the rescaling v → 2v, coincides with (A2).
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Since local coordinates xμ ¼ ðu; v; x; yÞ are introduced
by the parametrization (A3), they are well defined for

X2
0 − X2

1 − σX2
5 ¼ −

1

4Λ
q2

p2
> 0:

The limiting value q ¼ 0 is not allowed, as it represents the
singularity of the local coordinate system ðu; v; y; zÞ; this
singularity is visible only for Λ > 0. The same conclusion
follows from the fact that the determinant of the metric (A2)
vanishes for q ¼ 0. Furthermore, an inspection of Eq. (A3)
reveals the existence of another singularity, located at
p ¼ 0; it is visible only for Λ < 0. Thus, local coordinates
ðu; v; y; zÞ are restricted to the region where q and/or p do
not vanish: y2 þ z2 ≤ jΛj−1. More on the geometric inter-
pretation of these singularities can be found in Ref. [11].

APPENDIX B: IRREDUCIBLE DECOMPOSITION
OF THE FIELD STRENGTHS

We present here formulas for the irreducible decom-
position of the PGT field strengths in a 4D Riemann-Cartan
spacetime [4,24].
The torsion 2-form has three irreducible pieces:

ð2ÞTi ¼ 1

3
bi ∧ ðhm⌋TmÞ;

ð3ÞTi ¼ 1

3
hi⌋ðTm ∧ bmÞ;

ð1ÞTi ¼ Ti − ð2ÞTi − ð3ÞTi: ðB1Þ
The RC curvature 2-form can be decomposed into six
irreducible pieces:

ð2ÞRij ¼ �ðb½i ∧ Ψj�Þ; ð4ÞRij ¼ b½i ∧ Φj�;

ð3ÞRij ¼ 1

12
X�ðbi ∧ bjÞ; ð6ÞRij ¼ 1

12
Fbi ∧ bj;

ð5ÞRij ¼ 1

2
b½i ∧ hj�⌋ðbm ∧ FmÞ; ð1ÞRij ¼ Rij −

X6
a¼2

ðaÞRij;

ðB2aÞ
where

Fi ≔ hm⌋Rmi ¼ Rici; F ≔ hi⌋Fi ¼ R;

Xi ≔ �ðRik ∧ bkÞ; X ≔ hi⌋Xi; ðB2bÞ
and

Φi ≔ Fi −
1

4
biF −

1

2
hi⌋ðbm ∧ FmÞ;

Ψi ≔ Xi −
1

4
biX −

1

2
hi⌋ðbm ∧ XmÞ: ðB2cÞ

The above formulas differ from those in Refs. [4,24] in
two minor details: the definitions of Fi and Xi are taken

with an additional minus sign, but at the same time, the
overall signs of all the irreducible curvature parts are also
changed.

APPENDIX C: CALCULATING THE PGT
FIELD EQUATIONS

The gravitational dynamics of PGT is determined
by a Lagrangian LG ¼ LGðbi; Ti; RijÞ (4-form), which is
assumed to be at most quadratic in the field strengths
(quadratic PGT) and parity invariant [24]. The form of LG
can be conveniently represented as

LG ¼ −⋆ða0Rþ 2ΛÞ þ 1

2
TiHi þ

1

4
RijH0

ij; ðC1Þ

where Hi ≔ ∂LG=∂Ti (the covariant momentum) and H0
ij

define the quadratic terms in LG:

Hi ¼ 2
X3
n¼1

⋆ðanðnÞTiÞ; H0
ij ≔ 2

X6
n¼1

⋆ðbnðnÞRijÞ:

ðC2aÞ

Varying LG with respect to bi and ωij yields the PGT field
equations in vacuum. After introducing the complete
covariant momentum Hij ≔ ∂LG=∂Rij by

Hij ¼ −2a0⋆ðbibjÞ þH0
ij; ðC2bÞ

these equations can be written in a compact form as [4,24]

ð1STÞ ∇Hi þ Ei ¼ 0;

ð2NDÞ ∇Hij þ Eij ¼ 0; ðC3Þ

where Ei and Eij are the gravitational energy-momentum
and spin currents:

Ei ≔ hi⌋LG − ðhi⌋TmÞHm −
1

2
ðhi⌋RmnÞHmn;

Eij ≔ −ðbiHj − bjHiÞ: ðC4Þ

The above procedure is used in Sec. III B to find the
explicit form of the PGT field equations for the ppΛ waves
with torsion, with the result displayed in Eqs. (3.6), (3.7),
and (3.8). To simplify calculation of the term ∇⋆ð1ÞRij in
∇Hij, we used the identity

1

2
∇⋆Rij ¼ ∇⋆ð2ÞRij þ∇⋆ð4ÞRij; ðC5Þ

that follows from the Bianchi identity ∇Rij ¼ 0 and the
double duality properties of the irreducible parts of the
curvature.
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5D Lovelock gravity: New exact solutions with torsion
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Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact
solutions is constructed: the Bañados, Teitelboim, Zanelli black rings with and without torsion. We show
that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the
Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the
solutions are found using Nester’s formula, and the results are confirmed by the canonical method.
We show that the theory linearized around the background with torsion possesses two additional degrees of
freedom with respect to general relativity.

DOI: 10.1103/PhysRevD.94.084037

I. INTRODUCTION

The general theory of relativity introduced a revolution in
our understanding of space-time and gravity, the influence
of which on modern physics can hardly be emphasized
enough—almost all present investigations in high-energy
physics are, in certain way, related to it. On one hand, the
general theory of relativity has been very successful in
explaining experimental results, but on the other, it produced
a lot of problems for physicists to solve. The first of them is
the problem of singularities, appearing quite often in gravi-
tational solutions; there are theorems which show that
singularitiesmust appear under certain physically reasonable
assumptions [1]. This situation inspired research in the
direction of alternative theories of gravity, with an idea of
finding a singularity free theory that reproduces experimental
results equally as well as general relativity.
The second problem is quantization of tje general theory

of relativity. The inability to quantize general relativity in a
standard way, like Yang-Mills theories, motivated physi-
cists to search for alternatives, on one side for a different
quantization procedure (loop quantum gravity) and on the
other for modifications of the original theory (extra
dimensions, supersymmetry, string theory, alternative the-
ories of gravity) [2–5]. In this paper, we shall focus on an
alternative theory of gravity with one extra dimension—
Lovelock gravity in five dimensions (5D).
Lovelock gravity is one of many generalizations of

general relativity, physically appealing because of its
similarity to the former. It possesses equations of motion
which are the second order differential equations; it is ghost
free; etc. But beyond this, most of its basic properties are
not well known, and as the old saying says, “The devil is in
the details.” First, not many solutions are known, and those
constructed usually are torsionless or belong to some
special point in the parameter space [6–10]. Second,

symmetries and local degrees of freedom of the theory
are not known for the generic choice of parameters but only
for the special case of Lovelock Chern-Simons gravity [11].
In this paper, we shall introduce new solutions with(out)

torsion within Lovelock gravity in 5D by using the first
order formulation. The most interesting of them are the
Bañados, Teitelboim, Zanelli (BTZ) black rings with(out)
torsion, the properties of which can be analyzed by using
the canonical formalism. The canonical analysis is a
powerful tool for studying gauge theories, but it is not
limited solely to them. It gives a well-defined procedure for
determining symmetries of a theory, construction of the
symmetry generators, and for counting the number of local
degrees of freedom. Applying the canonical analysis to a
theory is extremely rewarding because of the already
mentioned results it gives. Note, in particular, that the
most reliable approach to conserved charges in gravity is
based on the canonical analysis [12,13]. The main aspect of
this approach consists in demanding the canonical gen-
erators to have well-defined functional derivatives. For a
given asymptotic behavior of the fields, this condition
usually requires the form of the generators to be improved
by adding suitable surface terms.
The paper is organized as follows. Section II contains a

short review of the Poincaré gauge theory of gravity and
Lovelock gravity. Section III is devoted to the new
solutions of 5D Lovelock gravity—the BTZ black rings
with(out) torsion. The conserved charges for these solu-
tions are computed by using Nester formula [14]. In
Sec. IV, we construct the canonical generator of gauge
transformations, local translations, and Lorentz rotations
and compute the canonical conserved charges for the
solutions constructed in Sec. III, confirming the results
obtained in Sec. III. In Sec. V, we investigate the canonical
structure of the theory linearized around the solution with
torsion and conclude that in this sector the theory exhibits
additional degrees of freedom.
Our conventions are given by the following rules: the

Latin indices refer to the local Lorentz frame, and the Greek
*cbranislav@ipb.ac.rs
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indices refer to the coordinate frame; the first letters of both
alphabets ða; b; c;…; α; β; γ;…Þ run over 1; 2;…D − 1,
and the middle alphabet letters ði; j; k;…; μ; ν; λ;…Þ run
over 0; 1; 2;…D − 1; the signature of space-time is
η ¼ ðþ;−;…;−Þ; and the totally antisymmetric tensor
εi1i2…iD and the related tensor density εμ1μ2…μD are both
normalized so that ε01…D−1 ¼ 1. The symbol ∧ of the
exterior (wedge) product between forms is omitted for
simplicity.

II. LOVELOCK GRAVITY

A. PGT in brief

The basic gravitational variables in poincaré gauge
theory (PGT) are the vielbein ei and the Lorentz connection
ωij ¼ −ωji (1-forms). The field strengths corresponding
to the gauge potentials ei and ωij are the torsion Ti and
the curvature Rij (2-forms): Ti ¼ dei þ ωi

m ∧ em Rij ¼
dωij þ ωi

m ∧ ωmj. Gauge symmetries of the theory are
local translations and local Lorentz rotations, parametrized
by ξμ and εij.
In local coordinates xμ, we can expand the vielbein

and the connection 1-forms as ei ¼ eiμdxμ, ωi ¼ ωi
μdxμ.

Gauge transformation laws have the form

δ0eiμ ¼ εijejμ − ð∂μξ
ρÞeiρ − ξρ∂ρeiμ ≕ δPGTeiμ;

δ0ω
ij
μ ¼ ∇με

ij − ð∂μξ
ρÞωij

ρ − ξρ∂ρω
ij
μ ≕ δPGTω

ij
μ;

ð2:1Þ

and the field strengths are given as

Ti ¼ ∇ei ≡ dei þ ωij ∧ ej ¼
1

2
Ti

μνdxμ ∧ dxν;

Rij ¼ dωij þ ωik ∧ ωk
j ¼ 1

2
Rij

μνdxμ ∧ dxν; ð2:2Þ

where ∇ ¼ dxμ∇μ is the covariant derivative.
To clarify the geometric meaning of the above structure,

we introduce the metric tensor as a specific, bilinear
combination of the vielbeins,

g ¼ ηijei ⊗ ej ¼ gμνdxμ ⊗ dxν;

gμν ¼ ηijeiμejν; ηij ¼ ðþ;−;−;−;−Þ:

Although the metric and connection are in general inde-
pendent dynamical/geometric variables, the antisymmetry
of ωij in PGT is equivalent to the so-called metricity
condition, ∇g ¼ 0. The geometry of which the connection
is restricted by the metricity condition (metric-compatible
connection) is called Riemann-Cartan geometry. Thus,
PGT has the geometric structure of Riemann-Cartan space.
The connection ωij determines the parallel transport in

the local Lorentz basis. Being a true geometric operation,
parallel transport is independent of the basis. This property

is incorporated into PGT via the so-called vielbein postu-
late, the vanishing of the total covariant derivative of eiμ,

Dμðωþ ΓÞeiν ≔ ∂μeiν þ ωij
μejν − Γρ

νμeiρ ¼ 0;

where Γρ
νμ is the affine connection and the torsion is

defined by Tρ
μν ¼ Γρ

νμ − Γρ
μν. The previous relation

implies the identity

ωijk ¼ Δijk þ Kijk; ð2:3Þ

where Δ is Riemannian (Levi-Civitá) connection and
Kijk ¼ − 1

2
ðTijk − Tkij þ TjkiÞ is the contortion. Latin

indices are changed into Greek and vice versa by means
of vielbeins (and its inverse). Namely, Xi ¼ eiμXμ and
Xμ ¼ eiμXi. For details, see Ref. [13].

B. Lovelock action and equations of motion

Lovelock gravity can also be considered in the frame-
work of PGT. Dimensionally continued Euler density Lp in
D dimensions is defined as

Lp ¼ εi1i2…iDR
i1i2…Ri2p−1i2pei2pþ1…eiD; ð2:4Þ

where p is the number of curvature tensors in Euler density.
In the previous relation, we omitted the wedge product
for simplicity. The general form of the Lovelock gravity
Lagrangian [15] in 5D is a linear combination of all
dimensionally continued Euler densities in five dimensions,

I ¼ α0
5
I0 þ

α1
3
I1 þ α2I2; ð2:5aÞ

where

I0 ¼
Z

εijklneiejekelen;

I1 ¼
Z

εijklnRijekelen;

I2 ¼
Z

εijklnRijRklen: ð2:5bÞ

C. Field equations

Variation of the action with respect to vielbein ei and
connection ωij yields the gravitational field equations:

εijklnðα0ejekelen þ α1Rjkelen þ α2RjkRlnÞ ¼ 0; ð2:6aÞ

εijklnðα1ekel þ 2α2RklÞTn ¼ 0: ð2:6bÞ

Let us note that in the generic case the field equations (2.6)
imply that torsion can be nonvanishing.
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For later convenience, let us present the tensor form of
the field equations,

εμνρστijkln

�
α0ejνekρelσenτ þ

1

2
α1Rjk

νρelσenτ

þ 1

4
α2Rjk

νρRln
στ

�
¼ 0; ð2:7aÞ

εμνρστijkln ðα1ekνelρ þ α2Rkl
νρÞTn

στ ¼ 0; ð2:7bÞ

where εμνρστijkln ≔ εμνρστεijkln.

D. Consequences of field equations

If we take covariant derivative of (2.6a), make use of the
Bianchi identities, and multiply (2.6b) with ej, we get the
following system:

εijklnð2α0ejekel þ α1RjkelÞTn ¼ 0;

εijklnðα1ejekel þ 2α2RjkelÞTn ¼ 0:

In the case 4α0α2 − α21 ≠ 0, the previous set of equations
reduces to the following conditions,

vi ≔ Tj
ji ¼ 0; ð2:8aÞ

Rjk
irTr

jk − 2RicjkTk
ij ¼ 0; ð2:8bÞ

where Ricjk ≔ Rjl
kl is the Ricci tensor.

Therefore, in the generic case, torsion is traceless, and
the second irreducible component of torsion ð2ÞTi vanishes.
For details on irreducible decomposition of torsion and
curvature in PGT, see Ref. [16]. Let us note that the
condition 4α0α2 − α21 ≠ 0 is violated in the case of
Lovelock Chern-Simons gravity.

E. Maximally symmetric solution

The field equation admits the existence of the maximally
symmetric Riemannian solution (maximally symmetric
Riemannian background) defined by

R̄ij ¼ −Λeiej; T̄i ¼ 0; ð2:9Þ

where Λ is the effective cosmological constant iff

α0 − α1Λþ α2Λ2 ¼ 0: ð2:10Þ

This equation can be solved for Λ:

Λ� ¼ α1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 − 4α0α2

p
2α2

: ð2:11Þ

The solution is unique for α21 − 4α0α2 ¼ 0, which is the
case in Lovelock Chern-Simons gravity.

Let us note that in terms of Λ� equations of motion (2.6)
take an elegant form:

εijklnðRjk þ ΛþejekÞðRln þ Λ−elenÞ ¼ 0; ð2:12aÞ

εijkln

�
Rkl þ Λþ þ Λ−

2
ekel

�
Tn ¼ 0: ð2:12bÞ

In obtaining these equations, we assumed that α2 ≠ 0, and
this condition will be used in the rest of the paper, because
for α2 ¼ 0 the theory reduces to general relativity.

III. NEW CLASS OF SOLUTIONS

The search for a new class of solutions is inspired by
Canfora et al. [17], who found a solution of the type
AdS2 × S3 when the coupling constants satisfy the relation

α21 ¼ 12α0α2; ð3:1Þ

which is different from the one satisfied in Lovelock Chern-
Simons gravity. We shall now construct another class of
solutions of the “complementary” type Σ3 × Γ2, where Σ3

and Γ2 are three- and two-dimensional manifolds, deter-
mined by solving the equations of motion. We start from
the following anzatz for curvature,

Rab ¼ Aeaeb;

R3a ¼ R4a ¼ 0;

R34 ¼ Be3e4; ð3:2Þ

and torsion,

Ta ¼ pεabcebec;

T3 ¼ T4 ¼ 0: ð3:3Þ

In the anzatz, we used the notation a; b; c;… ∈ f0; 1; 2g
and εabc ≔ εabc34, and A, B, and p are some functions
restricted by the equations of motion. Note that torsion is
totally antisymmetric, and thus only the third irreducible
component ð3ÞTi is nonvanishing; see Ref. [16]. Let us now
check whether the anzatz solves the equations of motion
(2.12). From (2.12b), we obtain

�
Bþ Λ− þ Λþ

2

�
p ¼ 0:

Thus, one can have a vanishing torsion for p ¼ 0 or a
nonvanishing torsion for

B ¼ −
Λ− þ Λþ

2
: ð3:4Þ

From (2.12a), we obtain
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AðΛ− þ ΛþÞ þ 2Λ−Λþ ¼ 0; ð3:5Þ

4Λ−Λþ þ ðAþ BÞðΛ− þ ΛþÞ þ 2AB ¼ 0: ð3:6Þ

If Λ− þ Λþ ¼ 0, which is equivalent to α1 ¼ 0, Eq. (3.5)
implies α0 ¼ 0, whereas A remains undetermined; other-
wise, for α1 ≠ 0, we have

A ¼ −
2Λ−Λþ
Λ− þ Λþ : ð3:7Þ

Let us first analyze the case with nonvanishing torsion
and α1 ≠ 0, when A and B are both determined. By
combining Eqs. (3.4), (3.5), and (3.6) and using Vieta’s
formulas,Λ− þ Λþ ¼ α1

α2
and Λ−Λþ ¼ α0

α2
, we obtain that the

solution exists in the sector:

α21 ¼ 8α0α2: ð3:8Þ
This sector is different from the one in Ref. [17], and
the above solution is the first one in this sector. Using
Eqs. (3.4), (3.10), and (3.8), we obtain

A ¼ B
2
: ð3:9Þ

Now, we turn to the solution with vanishing torsion and
α1 ≠ 0. In this case, A is determined, and B is arbitrary,
which can be used to insure the validity of (3.6), which
takes the form

2
α0
α2

þ B

�
α1
α2

− 4
α0
α1

�
¼ 0: ð3:10Þ

We see that if α21 − 4α0α2 ¼ 0, which is the Lovelock
Chern-Simons gravity, for the validity of (3.10), one must
have α0 ¼ 0. These two conditions imply α1 ¼ 0, which is
in contradiction with our assumption; hence, the solution
does not exist in the Lovelock Chern-Simons case. If α21 −
4α0α2 ≠ 0 and α1 ≠ 0 (recall that we are not interested in
general relativity, so α2 ≠ 0 also), we can choose any value
of parameters obeying this conditions and get a solution.
So, this class of solutions exists generically i.e. for almost
any choice of parameters.
For clarity of the exposure, we devote next few sections

to the most interesting solutions which belong to the class
derived in this section.

A. BTZ black ring with torsion

For this case, the curvature takes the following form,

Rab ¼ qeaeb;

R3a ¼ R4a ¼ 0;

R34 ¼ −
1

r20
e3e4; ð3:11Þ

while the torsion is given by

Ta ¼ pεabcebec;

T3 ¼ T4 ¼ 0: ð3:12Þ

The Bianchi identity implies that p is constant, and the
Riemannian curvature reads

~Rab ¼
�
qþ p2

4

�
eaeb;

~R3a ¼ ~R4a ¼ 0;

~R34 ¼ −
1

r20
e3e4: ð3:13Þ

Therefore, we can introduce the AdS3 radius l as

1

l2
≔ qþ p2

4
:

Identity (3.9) implies the following relation:

1

l2
¼ −

1

2r20
þ p2

4
: ð3:14Þ

In the AdS3 sector, the anzatz for curvature and torsion is
solved by the AdS3 solution with torsion as well as by the
BTZ black hole [18] with torsion. In the latter, physically
more appealing case, the 5D vielbein reads

e0 ¼ Ndt; e1 ¼ N−1dr; e2 ¼ rðdφþ NφdtÞ;
e3 ¼ r0dθ; e4 ¼ r0 sin θdχ; ð3:15aÞ

where

N2 ¼ −2mþ r2

l2
þ j2

r2
; Nφ ¼ j

r2
;

where m and j are (dimensionless) parameters. The Cartan
connection is given by

ωab ¼ ~ωab − εabc
p
2
ec;

~ω01 ¼ −
r
l2

dt −
j
r
dφ;

~ω12 ¼ Ndφ;

~ω20 ¼ N−1 j
r2

dr;

ω34 ¼ ~ω34 ¼ −cos θdχ; ð3:15bÞ

where ~ωij is the Riemannian connection. Let us note that
the coordinate ranges are

−∞ < t < þ∞; 0 ≤ r < þ∞; 0 ≤ φ ≤ 2π;

0 ≤ θ ≤ π; 0 ≤ χ ≤ 2π:
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1. Killing vectors

The maximal number of Killing vectors of the solution
with field strengths (3.11), (3.12), and (3.13) is 9 ¼ 6þ 3,
since the AdS3 solution with(out) torsion has six Killing
vectors; see Ref. [19]. The solution (3.15) has five
Killing vectors, since the BTZ solution possesses two
Killing vectors. They are given by

ξð1Þ ¼ l
∂
∂t ; ξð2Þ ¼ ∂

∂φ ; ξð3Þ ¼ ∂
∂χ ;

ξð4Þ ¼ sin χ
∂
∂θ þ cot θ cos χ

∂
∂χ ;

ξð5Þ ¼ cos χ
∂
∂θ − cot θ sin χ

∂
∂χ : ð3:16Þ

B. Riemannian BTZ ring

For this case, the curvature (Riemannian) takes the
following form,

Rab ¼ 1

l2
eaeb;

R3a ¼ R4a ¼ 0;

R34 ¼ −
1

r20
e3e4; ð3:17Þ

while the torsion equals zero, Ti ¼ 0.
Let us note that since torsion is zero there are no further

constraints on B, so we can chose B ¼ − 1
r2
0

. In terms of the
action constants, we get

1

l2
¼ −

2α0
α1

;
1

r20
¼ 2α0α1

α21 − 4α0α2
: ð3:18Þ

The solution exists provided that α0α1 < 0 and α21−
4α0α2 < 0. Let us note this solution does not solve
equations of motion in Lovelock Chern-Simons gravity.
The vielbein fields and connection take the same form as

in (3.15) with p ¼ 0, while Killing vectors are identical and
given by (3.16).

C. Conserved charges

In order to compute conserved charges, we shall make
use of Nester formula. Let us denote the difference between
any variable X and its reference value X̄ byΔX ¼ X − X̄. In
5D, the boundary term B is a 3-form. With a suitable set of
boundary conditions for the fields, the proper boundary
term reads [14]

B ¼ ðξ⌋biÞΔτi þ Δbiðξ⌋τ̄iÞ þ
1

2
ðξ⌋ωi

jÞΔρij

þ 1

2
Δωi

jðξ⌋ρ̄ijÞ; ð3:19Þ

where ξ is an asymptotically Killing vector, while τi and ρij
are covariant momenta corresponding to torsion and
curvature, respectively. The covariant momenta for the
Lovelock action (2.5) are given by

τi ≔
∂L
∂Ti ¼ 0; ð3:20Þ

ρij ≔
∂L
∂Rij ¼ 2εijkln

�
α1
3
ekel þ 2α2Rkl

�
en: ð3:21Þ

Consequently, we obtain

ρab ¼ 4εabc

�
α1 −

2α2
r20

�
ece3e4;

ρa3 ¼ 2εabcðα1 þ 2α2qÞebece4 ¼ α1εabcebece4;

ρa4 ¼ 2εabcðα1 þ 2α2qÞebece3 ¼ α1εabcebece3;

ρ34 ¼ 2εabc

�
α1
3
þ 2α2q

�
eaebec ¼ −

α1
3
eaebec: ð3:22Þ

In our calculations of the boundary integrals, we use the
coordinates xμ ¼ ðt; r;φ; θ; χÞ. The background configu-
ration is the one defined by zero values of parameters
m ¼ 0 and j ¼ 0 of the solution (3.15). For the solutions
with Killing vectors ∂t and ∂φ, the conserved charges are
the energy and angular momentum, respectively,

E ¼
Z
∂Σ

Bð∂tÞ ¼
Z
∂Σ

eitΔτi þ Δeiτ̄it þ
1

2
ωij

tΔρij

þ 1

2
Δωijρ̄ijt; ð3:23aÞ

J ¼
Z
∂Σ

Bð∂φÞ ¼
Z
∂Σ

eiφΔτi þ Δeiτ̄iφ þ
1

2
ωij

φΔρi

þ 1

2
Δωijρ̄ijφ; ð3:23bÞ

where ∂Σ is a boundary S1 × S2, located at infinity,
described by coordinates φ, θ, χ.
Thus, conserved charges for the black ring with torsion

and the Riemannian black ring are given by

E ¼ 8π2r20

�
α1 −

2α2
r20

�
m; J ¼ 8π2r20

�
α1 −

2α2
r20

�
j:

ð3:24Þ

Let us note that the solution with torsion exists in the sector
α21 ¼ 8α0α2, where both conserved charges vanish.

IV. CANONICAL GAUGE GENERATOR

As an important step in our examination of the asymp-
totic structure of space-time, we are going to construct the
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canonical gauge generator, which is our basic tool for
studying asymptotic symmetries and conserved charges of
5D Lovelock gravity.

A. Hamiltonian and constraints

The best way to understand the dynamical content of
gauge symmetries is to explore the canonical generator,
which acts on the basic dynamical variables via the Poisson
bracket (PB) operation. To begin the canonical analysis, we
rewrite the action (2.5) as

I ¼
Z

d5xL

L ¼ εμνρστijkln

Z
M

d5x

�
α0
5
eiμejνekρelσ þ

α1
6
Rij

μνekρelσ

þ α2
4
Rij

μνRkl
ρσ

�
enτ: ð4:1Þ

1. Primary constraints and canonical Hamiltonian

The basic Lagrangian variables ðeiμ;ωij
μÞ and the

corresponding canonical momenta ðπiμ; πijμÞ are related
to each other through the set of primary constraints:

ϕi
0 ≔ πi

0 ≈ 0; ϕij
0 ≔ πij

0 ≈ 0;

ϕi
α ≔ πi

α ≈ 0;

ϕij
α ≔ πij

α − 2ε0αβγδijkln

�
α1
3
ekβelγ þ α2Rkl

βγ

�
enδ ≈ 0:

ð4:2Þ

The algebra of primary constraints is displayed in the
Appendix.
The canonical Hamiltonian is defined by

Hc ¼ πi
μ _eiμ þ

1

2
πij

μ _ωij
μ − L:

Since the Lagrangian is linear in velocities, the canonical
Hamiltonian in the formula given above reduces to
Hc ¼ −Lð_eiμ ¼ 0; _ωij

μ ¼ 0Þ. It is linear in unphysical
variables:

Hc ¼ ei0Hi þ
1

2
ωij

0Hij þ ∂αDα;

Hi ¼ −ε0αβγδijkln

�
α0ejαekβelγenδ þ

1

2
α1Rjk

αβelγenδ

þ 1

4
α2Rjk

αβRln
γδ

�
;

Hij ¼ −ε0αβγδijkln ðα1ekαelβ þ α2Rkl
αβÞTn

γδ;

Dα ¼ ε0αβγδijkln ω
ij
0ðα1ekβelγ þ α2Rkl

βγÞenδ: ð4:3Þ

2. Secondary constraints

Going over to the total Hamiltonian,

HT ¼ Hc þ uiμϕi
μ þ 1

2
uijμϕij

μ; ð4:4Þ

we find that the consistency conditions of the primary
constraints πi0 and π0ij yield the secondary constraints:

Hi ≈ 0; Hij ≈ 0: ð4:5Þ

Let us note that these constraints reduce to the μ ¼ 0
components of the Lagrangian field equations (2.7).
The consistency of the remaining primary constraints ϕi

α

and ϕij
α leads to the relations for multipliers uiβ and uijβ,

ε0αβγδijkln ½Rjk
0βðα1elγenδ þ α2Rln

γδÞ
þ ðα1Rjk

βγ þ 4α0ejβekγÞel0enδ� ¼ 0;

ε0αβγδijkln ½Tk
0βðα1elγenδ þ α2Rln

γδÞ
þ α2Rkl

0βTn
γδ þ α1ek0elβTn

γδ� ¼ 0; ð4:6Þ

where Ti
0α¼Ti

0αð_eiα→uiαÞ and Rij
0α¼Rij

0αð _ωij
α→uijαÞ.

Using the Hamiltonian equations of motion _eiα ¼ uiβ and
_ωij

α ¼ uijα, these relations reduce to the μ ¼ α compo-
nents of the Lagrangian field equations (2.7).

3. Further consistency procedure

Some of the relations (4.6) can be solved in terms of the
multipliers uiα and uijα, while the others may lead to
ternary constraints, the consistency of which has to be
examined as well. However, this procedure is extremely
sensitive to the particular sector of the theory as we shall
illustrate in the next section (for the pure Lovelock theory,
see Ref. [20]). The final form of the total Hamiltonian is
given by

HT ¼ H̄T þ ui0πi0 þ
1

2
uij0πij0 þ ðu · ϕÞ;

H̄T ¼ ei0H̄i þ
1

2
ωij

0H̄ij þ ∂αD̄α;

H̄i ¼ Hi þ ðū · ϕÞ;
H̄ij ¼ Hij þ ðū · ϕÞ;
D̄α ¼ Dα þ ðū · ϕÞ; ð4:7Þ

where by ðu · ϕÞ we denoted terms stemming form the
undetermined multipliers and belonging to the set
ðuiβ; uijβÞ, and by ðū · ϕÞ we denoted terms stemming
form the determined multipliers belonging to the same set.
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B. Canonical generator and charges

The sure symmetries of the theory are local translations
and local Lorentz rotations. The general form of the
canonical generator of the local Poincaré transformations
constructed by the Castellani procedure [21] is given by

G ¼ −G1 −G2;

G1 ¼ _ξρ
�
eiρπi0 þ

1

2
ωij

ρπ
0
ij

�

þ ξρ
�
eiρH̄i þ

1

2
ωij

ρH̄ij þ CPFC

�
;

G2 ¼
1

2
_εijπij

0 þ 1

2
εijðH̄ij þ CPFCÞ;

where CPFC are terms proportional to sure primary first
class constraints ðπi0; πij0Þ.
The canonical generator acts on dynamical variables via

the PB operation, and hence, it should have well-defined
functional derivatives. In order to ensure this property, we
have to improve the form of G by adding a suitable surface
term Γ, such that ~G ¼ Gþ Γ is a well-defined canonical
generator. In this process, the asymptotic conditions play a
crucial role; see for instance Refs. [22,23]. Though we did
not construct the exact form of the canonical generator, it
still allows us to compute canonical charges for the
solutions found in Sec. III. Namely, if we adopt the general
principle that the quantities that vanish on shell have an
arbitrary fast asymptotic decrease, we obtain that the on-
shell variation of the generator takes the following form,

δGðξt ¼ l; ξφ ¼ 1Þ ≈ δΓ ¼ −lδEc − δJc; ð4:8Þ

where

Ec ¼ 8π2r20

�
α1 −

2α2
r20

�
m; Jc ¼ 8π2r20

�
α1 −

2α2
r20

�
j

ð4:9Þ

are the canonical conserved charges, which are identical to
the expressions (3.24), obtained from the Nester formula.

V. LINEARIZED THEORY

The canonical structure of the full nonlinear theory
crucially depends on the relations (4.6), as we already
mentioned in the previous section. In order to get a deeper
insight into the structure of the Lovelock gravity in the
sector α21 ¼ 8α0α2, we shall consider the theory linearized
around the BTZ black ring with torsion (3.15). The
linearization is based on the expansion of the basic
dynamical variables ðeiμ;ωij

μÞ and the related conjugate
momenta ðπiμ; πijμÞ denoted shortly by QA,

QA ¼ Q̄A þ ~QA; ð5:1Þ

where Q̄A refers to the background [solution (3.15) with
m ¼ j ¼ 0 and p ≠ 0], while ~QA denotes small excitations.
From the linearized form of the 60 relations (4.6), we

conclude that out of 60 ¼ 5 × 4þ 10 × 4 multipliers
ð ~uiα; ~uijαÞ 46 are determined, while among 14 remaining
relations, there are 12 new constraints (since two pairs of
them are identical), the explicit form of which is given by

α1 ~R
24

rχ þ α1 sin θ ~R
23

rθ þ 4α0r0 sin θ ~e2r ≈ 0; ð5:2aÞ

α1 ~R
14

φχ þ α1 sin θ ~R
13

φθ þ 4α0r0 sin θ ~e2r ≈ 0; ð5:2bÞ

r2

l
ðα1 ~R14

rχ þα1 sinθ ~R
13

rθþ2α0r0 sinθ ~e1rÞ
−α1 ~R

24
φχ −α1 sinθ ~R

23
φθ−2α0r0 sinθ ~e2φ ≈ 0 ð5:2cÞ

and

~T4
rχ þ sin θ ~T3

rθ ≈ 0; ð5:3aÞ

pðα1r0ð~e4χ þ sin θ ~e3θÞ þ 2α2 ~R
34

θχÞ ≈ 0; ð5:3bÞ

~T4
φχ þ sin θ ~T3

φθ ≈ 0; ð5:3cÞ

α1
r
l
r0 sin θ ~T

2
rθ − 2pðα1r0 sin θ ~e0θ þ 2α2 ~R

04
θχÞ ≈ 0;

ð5:3dÞ

α1
r
l
r0 ~T

2
rχ − 2pðα1r0 sin θ ~e0χ − 2α2 ~R

03
θχÞ ≈ 0; ð5:3eÞ

α1r0 ~T
1
φχ þ 2prðα1r0 ~e0χ − 2α2 ~R

03
θχÞ ≈ 0; ð5:3fÞ

~R03
rχ ≈ 0; ð5:3gÞ

~R02
θχ ≈ 0; ð5:3hÞ

~R01
θχ ≈ 0: ð5:3iÞ

Let us denote 12 constraints (5.2a) and (5.3a) by ~ψA. The
consistency conditions of ~ψA leads to the determination of
12 additional multipliers, thus finishing the consistency
procedure. Thus, out of 60 multipliers ð ~uiα; ~uijαÞ, 58 are
determined, while 2 remain undetermined. By using the PB
algebra from the Appendix, we find

f ~ϕ12
r; ~ϕi

αg ≈ 0; f ~ϕ12
r; ~ϕij

αg ≈ 0;

f ~ϕ12
r; ~ψAg ≈ 0;

f ~ϕ12
φ; ~ϕi

αg ≈ 0; f ~ϕ12
φ; ~ϕij

αg ≈ 0;

f ~ϕ12
φ; ~ψAg ≈ 0:
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The undetermined multipliers correspond to the constraints
~ϕ12

r and ~ϕ12
φ which are first class (FC). The final classi-

fication of constraints is given in Table I. In total, there are
N1 ¼ 32 FC constraints and N2 ¼ 70 second class (SC)
constraints. The number of propagating degrees of freedom
in phase space is

N� ¼ 2N − 2N1 − N2 ¼ 150 − 64 − 70 ¼ 14:

In the configuration space, there are seven degrees of
freedom: five of them correspond to general relativity in
D ¼ 5, and two are additional degrees of freedom. The
presence of two primary FC constraints ~ϕ12

r, ~ϕ12
φ implies

that there is an additional gauge symmetry in the theory, as a
consequence of the fact that variables ~ω12

r and ~ω12
φ do not

appear in the linearized equations of motion.

VI. CONCLUSION

In this paper, we found a new class of solutions of
Lovelock gravity in 5D, in the first order formalism. The
most interesting solutions are the BTZ black rings with(out)
torsion. It is shown that the solution with torsion exists

provided that the parameters of the theory satisfy the
relation α21 ¼ 8α0α2. This sector of the parameter space
is different from the one of Lovelock Chern-Simons
gravity, as well as from the sector investigated by
Canfora et al. [17]. Restricting our attention to the basic
properties of the solutions, we calculated the values of
conserved charges by using Nester’s formula and the
canonical method. The canonical structure of the theory
linearized around the background with torsion shows that
there are two additional degrees of freedom, compared to
general relativity.
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APPENDIX: ALGEBRA OF CONSTRAINTS

The structureof thePBalgebraof constraints is an important
ingredient in the analysis of the Hamiltonian consistency
conditions. Starting from the fundamental PB feiμ; πjνg ¼
δijδ

ν
μδðx − x0Þ and fωij

μ; πklνg ¼ 2δ½ikδ
j�
l δ

ν
μδðx − x0Þ, we

find PB between primary constraints:

fϕi
α;ϕjk

βg ¼ −2ε0αβγδijkln ðα1elγenδ þ α2Rln
γδÞδ;

fϕij
α;ϕβ

klg ¼ −8α2ε
0αβγδ
ijkln T

n
γδδ: ðA1Þ
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Conformally flat black holes in Poincaré gauge theory
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General criteria for the existence of conformally flat Riemannian solutions in three-dimensional
Poincaré gauge theory without matter are formulated. Using these criteria, we show that the Oliva-Tempo-
Troncoso black hole, a solution of the Bergshoeff-Hohm-Townsend gravity, is also an exact vacuum
solution of the Poincaré gauge theory. The related conserved charges, calculated from the Hamiltonian
boundary term, are shown to satisfy the first law of black hole thermodynamics. The form of the boundary
term is verified by using the covariant Hamiltonian approach.

DOI: 10.1103/PhysRevD.93.044018

I. INTRODUCTION

The use of three-dimensional gravitational models in the
Poincaré gauge theory (PGT), the first properly formulated
gauge theory of gravity [1–4], started in the early 1990s,
when Mielke and Baekler formulated a topological model
of three-dimensional gravity with torsion [5]. Studies of
different aspects of the model made a significant contri-
bution to a proper understanding of the influence of torsion
on the gravitational dynamics; for a recent review, see
Blagojević and Hehl [4], chapter 17. But, as time went on, it
eventually became clear that transition to the level of
quadratic PGT Lagrangians is needed, as the existence
of propagating torsion modes offers a more realistic insight
into the dynamical role of torsion; for more details, see
Helayël-Neto et al. [6], Blagojević and Cvetković [7].
It is well known that classical solutions are an important

tool for exploring dynamical content of gravitational
theories, including the quadratic PGT [4]. Looking at what
has been done in three dimensions, one should note that the
model can accommodate exact torsion waves [8] and a
Vaidya-like solution with torsion [9]. Quite interestingly,
the methods used to construct Siklos waves in [8] are
recently generalized to four dimensions [10].
In order to properly understand the complex dynamical

structure of PGT, powerful Lagrangian and Hamiltonian
formalisms have been developed; see Obukhov [3], Chen
et al. [11], and Refs. [2,4]. This machinery is very useful
not only for genuine PGT problems, characterized by a
nonvanishing torsion, but also in studying torsion-free
solutions of PGT. On the other hand, quite recently [9]
we noticed that the issue of conserved charges of the Oliva-
Tempo-Troncoso (OTT) black hole [12], a solution of the
Bergshoeff-Hohm-Townsend (BHT) massive gravity [13]
for the special choice of parameters, is not completely
settled in the literature, see [14–16]. Such a situation
motivated us to reconsider the OTT black hole as a

Riemannian (torsion-free) solution of PGT, and try to find
the conserved charges, energy and angular momentum,
relying on the full power of the constrained Hamiltonian
formalism. The analysis is based on deriving the
Hamiltonian boundary term, the values of which correctly
reproduce the conserved charges.
The paper is organized as follows. In Sec. II, we use the

PGT field equations to study dynamical properties of
Riemannian solutions. In particular, we show that (i) for
a specific condition on the coupling constants, Riemannian
solutions of PGT are conformally flat, and (ii) any con-
formally flat solution of the BHT gravity is also a solution
of PGT. The results are used in Sec. III to prove that the
static OTT black hole is a solution of PGT. In Sec. IV, we
introduce a set of asymptotic conditions naturally associ-
ated to this black hole, and use the constrained Hamiltonian
formalism to construct the improved canonical generator ~G,
acting on the related phase space [17]. The form of the
boundary term in ~G is shown to be directly related to the
OTT asymptotic conditions, and the conserved charges,
defined as the values of ~G, are proved to be fully
compatible with the first law of black hole thermodynam-
ics. In Sec. V, the same approach is used to analyze the
rotating OTT black hole, and in Sec. VI, we summarize our
results and verify the form of the boundary term by
comparing it to the generalized covariant formula proposed
by So [18]. Appendices contain some technical details.
Our conventions are the same as in Ref. [9]: the latin

indices ði; j; k;…Þ refer to the local Lorentz frame, the
greek indices ðμ; ν; ρ;…Þ refer to the coordinate frame, bi

is the orthonormal triad (coframe 1-form), ωij is the
Lorentz connection (1-form), the respective field strengths
are the torsion Ti ¼ dbi þ ωi

m∧bm and the curvature Rij ¼
dωij þ ωi

k∧ωkj (2-forms), the frame hi dual to bj is
defined by hi⌋bj ¼ δji, the signature of the metric is
ðþ;−;−Þ, the totally antisymmetric symbol εijk is normal-
ized to ε012 ¼ 1, the Lie dual of the antisymmetric form Xij

is Xi ≔ −εijkXjk=2, the Hodge dual of the form α is ⋆α, and
the exterior product of forms is implicit.
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II. CONFORMALLY FLAT RIEMANNIAN
SOLUTIONS IN PGT

The OTT black hole is a vacuum solution of the BHT
gravity with a unique AdS ground state [12,14]. Here,
based on our earlier experience [8,9], we wish to interpret it
as a Riemannian solution of PGT in vacuum. By doing so,
we will be able to use the full power of the constrained
Hamiltonian formalism to clarify the asymptotic structure
and find the conserved charges for both the static and the
rotating OTT black hole.
The possibility to interpret the OTT black hole as a

Riemannian solution of PGT (a solution with vanishing
torsion) is not just a coincidence, it is based on a deep
dynamical relation between the PGT sector of Riemannian
solutions and the BHT gravity. The content of this relation
is expressed by a theorem stating that any conformally flat
solution of the BHT gravity is also a Riemannian solution
of PGT. This is, in particular, true for the OTT black holes.
In three dimensions, the Weyl curvature identically van-
ishes, and the Cotton 2-form Ci is used to characterize
conformal properties of spacetime [19]. It is defined by
Ci ≔ ∇Li ¼ dLi þ ωi

mLm where Lm ≔ Ricm − 1
4
Rbm is

the Schouten 1-form. A spacetime is conformally flat
when Ci ¼ 0.
To prove the above theorem, we note that the BHT

gravity action,

IBHT ¼ a0

Z
d3x

ffiffiffi
g

p �
R − λþ 1

m2
K

�
;

K ≔ RicijRicij −
3

8
R2;

leads to the field equations [20],

Gij − ληij −
1

2m2
Kij ¼ 0;

Kij ¼ Kηij − 2LikGk
j − 2ð∇mCinÞεmn

j; ð2:1Þ
where Gij ¼ Ricij − Rηij=2 is the Einstein tensor, Cij ¼
hj⌋⋆Ci is the Cotton and Lij ¼ hj⌋Li the Schouten tensor.
This compact form of the BHT field equations significantly
simplifies the analysis of conformally flat solutions.
The Lagrangian dynamics of PGT is expressed in terms

of its basic field variables, the triad bi and the Lorentz
connection ωij (1-forms), the related field strengths are the
torsion Ti ≔ dbi þ ωi

mbm and the curvature Rij ≔ dωij þ
ωi

mω
mj (2-forms), and the spacetime continuum is

described by a Riemann-Cartan geometry. The gravita-
tional Lagrangian LG ¼ LGðbi; Tj; RmnÞ (3-form) is at
most quadratic in the field strengths:

LG ¼ −⋆ða0Rþ 2Λ0Þ þ Ti⋆ða1ð1ÞTi þ a2ð2ÞTi þ a3ð3ÞTiÞ

þ 1

2
Rij⋆ðb4ð4ÞRij þ b5ð5ÞRij þ b6ð6ÞRijÞ;

where ðnÞTi and ðnÞRij are irreducible components of the
respective field strengths, and a0 is normalized by
a0 ¼ =16πG; for details, see Ref. [7]. Since we are here
interested only in Riemannian solutions of PGT, the torsion
can be effectively set to vanish, whereas the curvature
becomes Riemannian; in three dimensions, it has only two
nonvanishing irreducible components,

ð6ÞRij ¼ 1

6
Rbibj; ð4ÞRij ¼ Rij − ð6ÞRij;

whereas the third one vanishes, ð5ÞRij ¼ 0. The Riemannian
reduction of the general field equations takes the form
derived in Appendix A of Ref. [9]:

ð1STÞEi ¼ 0;

ð2NDÞ∇Hij ¼ 0; ð2:2aÞ

where

Ei ¼ hi⌋LG −
1

2
ðhi⌋RmnÞHmn;

Hij ¼ −2a0εijmbm þ b4 þ 2b6
6

Rεijkbk − 2b4εijmLm:

ð2:2bÞ

Let us now note a simple property of (2ND): the
vanishing of the second term in Hij implies that the
Cotton 2-form Cm ¼ ∇Lm vanishes. More precisely,
(T1) A Riemannian solution of PGT is conformally flat

if and only if b4 þ 2b6 ¼ 0.
Next, to examine the content of (1ST), it is convenient to
express it in the tensorial form:

a0Ricij þ 2Λ0ηij þ b4LimGm
j ¼ 0:

In combination with its trace, a0Rþ 6Λ0 þ b4K ¼ 0, it can
be transformed to

a0Gij − Λ0ηij − b4
1

2
ðKηij − 2LimGm

jÞ ¼ 0: ð2:3Þ

A direct comparison shows that Eq. (2.3) coincides with
the BHT field equation (2.1) for Cin ¼ 0, provided one
makes the following identification of parameters:

Λ0 ¼ a0λ; b4 ¼ a0=m2: ð2:4Þ

This leads to the main result of this section:
(T2) Any conformally flat solution of the BHT gravity

is also a Riemannian solution of PGT with
b4 þ 2b6 ¼ 0, and vice versa.

An interesting interpretation of the identifications (2.4) is
found by using the BHT condition λ ¼ −m2 that ensures
the existence of the unique maximally symmetric
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background. For m2 ¼ 1=2l2, the identifications (2.4) are
transformed into

Λ0 ¼ −a0=2l2; b4 ¼ 2a0l2: ð2:5Þ

Theorems (T1) and (T2) allow us to study conformally
flat solutions of the BHT massive gravity relying on the
powerful Hamiltonan methods developed in the context of
PGT [2,4,11]. In particular, we will use these methods to
study boundary terms, conserved charges, and central
charges of the OTT black hole. Recently, it was shown
by Barnich et al. [21] that BHT gravity admits black hole
solutions that can be deformed into dynamical “black
flowers,” a new class of solutions that are no longer
spherically symmetric. Since black flowers are conformally
flat, they are also solutions of PGT.
Although PGT is used here as a convenient framework for

studying conformally flat solutions of the BHT gravity, it is
worth mentioning some general dynamical aspects of PGT,
expressed through its unitarity properties. In three dimen-
sions, the requirement of unitary propagation of torsion
modes leads to certain conditions on the coupling constants,
the form of which is given in Eqs. (17) of Ref. [6]. The
content of these equations leads to the following conclusions:
(a) the conditionb4 þ 2b6 ¼ 0 implies that the spin-0þmode
does not propagate and (b) for a suitable choice of the
remaining coupling constants, the propagation of the spin-
0−, spin-1 or spin-2 modes is unitary.

III. STATIC OTT BLACK HOLE

Now, we turn our attention to the static OTT spacetime,
described by the metric [12]

ds2 ¼ N2dt2 −
dr2

N2
− r2dφ2; N2 ≔ −μþ brþ r2

l2
;

ð3:1Þ
where μ and b are real parameters. The roots of equation
N2 ¼ 0 are

r� ¼ 1

2
ð−bl2 � l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μþ b2l2

q
Þ:

The OTT metric defines a static AdS black hole when
l2 > 0 and at least rþ is real and positive; for b ¼ 0 it
reduces to the BTZ black hole [22].
In order to have a suitable geometric description of the

OTT black hole in the framework of PGT, we introduce the
triad field (1-form),

b0 ≔ Ndt; b1 ≔
dr
N

; b2 ≔ rdφ; ð3:2aÞ

so that ds2 ¼ ηijbi ⊗ bj, with η ¼ diagðþ1;−1;−1Þ, and
the corresponding Riemannian connection (1-form),

ω01 ¼ −N0b0; ω02 ¼ 0; ω12 ¼ N
r
b2; ð3:2bÞ

where N0 ≔ ∂rN. The geometric structure introduced in
Eqs. (3.2) can now be used to calculate first the curvature
2-form Rij and then the Schouten 1-form:

L0 ¼ 1

2l2
b0; L1 ¼ 1

2l2
b1; L2 ¼

�
1

2l2
þ b
2r

�
b2:

ð3:3Þ

An explicit calculation yields Ci ¼ ∇Li ¼ 0, and theorem
(T2) from Sec. II implies that the static OTT black hole is
an exact Riemannian solution of PGT in vacuum.
It is interesting to compare these general arguments

with direct calculations based on the PGT field equa-
tions (2.2). As shown in [9], the result takes the form of
three conditions on the four Lagrangian parameters
ða0; b4; b6;ΛÞ:

b4 − 2a0l2 ¼ 0; a0 þ 2l2Λ0 ¼ 0; b4 þ 2b6 ¼ 0:

ð3:4Þ

The meaning of these conditions is now quite clear: the
third one follows from the conformal flatness of the static
OTT black hole, and the first two coincide with the
relations (2.5).

IV. ASYMPTOTIC STRUCTURE OF THE
STATIC BLACK HOLE

In this section, we use the canonical approach to analyze
the asymptotic structure naturally associated to the static
OTT black hole. In particular, we wish to calculate the
conserved charges and verify their compatibility with the
first law of black hole thermodynamics.

A. Asymptotic conditions

The asymptotic state associated to the triad (3.2a) is
determined by the asymptotic formula

N ¼ r
l
þ bl

2
−

l
2r

�
μþ b2l2

4

�
þO2;

and a similar formula for 1=N. In order to produce a
suitable set of the asymptotic states, we act on this
particular state by the transformations belonging to the
AdS group SOð2; 2Þ, as described in Ref. [7]. The family of
triads obtained in this way has the AdS asymptotic behavior
given by biμ ¼ b̄iμ þ Bi

μ, where

b̄iμ ≔

0
B@

r
l 0 0

0 l
r 0

0 0 r

1
CA; Bi

μ ≔

0
B@

O0 O3 O0

O1 O2 O1

O0 O3 O0

1
CA: ð4:1Þ
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Here, b̄iμ refers to an AdS background (b ¼ μ ¼ 0). Note
that the presence of the OTT parameter b makes the
asymptotic decrease of Bi

μ slower then in the BTZ case.
The subset of the local Poincaré transformations that
respect these conditions is determined by the parameters
ðξμ; εij ¼ −εijkθkÞ, such that

δ0biμ ≔ εijkθjbkμ − ð∂μξ
ρÞbiρ − ξρ∂ρbiμ ¼ Bi

μ:

As a consequence, the asymptotic parameters of local
translations and Lorentz rotations are found to be

ξt

l
¼ T þ l4

2r2
∂2
t T þO3; ξr ¼ −lr∂tT þO0;

ξφ ¼ S −
l2

2r2
∂2
φSþO3; ð4:2aÞ

θ0 ¼ −
l2

r
∂t∂φT þO2; θ1 ¼ ∂φT þO1;

θ2 ¼ l3

r
∂2
t T þO2: ð4:2bÞ

The functions T and S are such that ∂�T∓ ¼ 0, with
x� ≔ t=l� φ, and T� ≔ T � S. Thus, in spite of a relaxed
asymptotic behavior of Bi

μ as compared to the BTZ black
hole, the values of the corresponding asymptotic parame-
ters are essentially the same [23].
Similar procedure leads to the asymptotic conditions for

the connection. Introducing the Lie dual connection ωi by
ωij ¼ −εijkωk, one finds ωi

μ ¼ ω̄i
μ þ Ωi

μ, where

ω̄i
μ ¼

0
B@
0 0 − r

l

0 0 0

− r
l2 0 0

1
CA; Ωi

μ ≔

0
B@
O0 O3 O0

O1 O2 O1

O0 O3 O0

1
CA: ð4:3Þ

The asymptotic behavior of the connection does not
impose any new restriction on the asymptotic Poincaré
parameters (4.2).
For an easier comparison with the literature, we display

here the deviation of the metric from its background value:

Gμν ≔ gμν − ḡμν ¼

0
B@

O−1 O2 O−1

O2 O3 O2

O−1 O2 O−1

1
CA:

Using the composition law of the asymptotic Poincaré
parameters (4.2) to leading order, the commutator algebra
of the asymptotic symmetry is found to have the form of
two independent Virasoro algebras,

i½l�
m;l�

n � ¼ ðm − nÞl�
mþn; ð4:4Þ

where l�
n ¼ −δ0ðT� ¼ e�inx�Þ. The respective central

charges c� will be determined by the canonical methods.
The condition Ti ¼ 0 leads to further asymptotic require-

ments (Appendix A).

B. Canonical generator and conserved charges

The standard construction of the canonical generator for
the quadratic PGT makes use of the existence and classi-
fication of all constraints in the theory. The construction
can be significantly simplified by going over to the first-
order Lagrangian (3-form)

LG ¼ Tiτi þ
1

2
Rijρij − Vðb; τ; ρÞ;

see Refs. [11,24]. Here, τm and ρij are independent
dynamical variables, the covariant field momenta conjugate
to bi and ωij, and the potential V ensures the on-shell
relations τi ¼ Ti, ρij ¼ Rij, which transform LG into the
standard quadratic form.
The first-order formulation of LG simplifies the con-

struction of the canonical generator G, the form of which
can be found in Ref. [7], Eq. (5.7). SinceG acts on the basic
dynamical variables via the Poisson bracket operation, it
must be a differentiable functional. To examine the
differentiability of G, one starts from the form of its
variation [8,9]:

δG ¼ −
Z
Σ
d2xðδG1 þ δG2Þ;

δG1 ¼ εtαβξμðbiμ∂αδτiβ þ ωi
μ∂αδρiβ

þ τiμ∂αδbiβ þ ρiμ∂αδωiβÞ þR;

δG2 ¼ εtαβθi∂αδρiβ þR: ð4:5aÞ

Here, Σ is the spatial section of spacetime, the variation is
performed in the set of adopted asymptotic states,R stands
for regular (differentiable) terms, and we use ρi and ωi, the
Lie duals of ρmn ¼ Hmn and ωmn, to simplify the formulas.
Using the adopted asymptotic conditions, one finds

δG2 ¼ R, which implies

δG ¼ −
Z
Σ
d2xεtαβξμðbiμ∂αδτiβ þ ωi

μ∂αδρiβ

þ τiμ∂αδbiβ þ ρiμ∂αδωiβÞ þR: ð4:5bÞ

Thus, in general, δG ≠ R and G is not differentiable. The
problem can be corrected by going over to the improved
generator ~G ≔ Gþ Γ, where the boundary term Γ is
constructed so that δ ~G ¼ R [17]. After making a partial
integration in δG, one finds that Γ is defined by the
variational equation,
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δΓ ¼
Z
∂Σ

ξμðbiμδτi þ ωi
μδρi þ τiμδbi þ ρiμδωiÞ; ð4:6Þ

where ∂Σ is the boundary of Σ located at infinity, para-
metrized by the coordinate φ. Now, restricting our attention
to the Riemannian sector with τi ¼ 0, we obtain

δΓ ¼
Z
∂Σ

ξμðωi
μδρi þ ρiμδωiÞ ¼

Z
2π

0

ðξtδE þ ξφδJ Þdφ;

ð4:7aÞ

where (after returning to ωij and Hij)

δE ≔
1

2
ðωij

tδHijφ þHij
tδωijφÞ; ð4:7bÞ

δJ ≔
1

2
ðωij

φδHijφ þHij
φδωijφÞ: ð4:7cÞ

In what follows, one should take into account that the form
(2.2b) of Hmn is simplified after using the restrictions (3.4)
on the Lagrangian parameters:

Hij ¼ −2a0εijkbk − 4a0l2εijkLk:

Once we find the solutions for E and J , the boundary
term takes the form

ΓðξÞ ¼
Z

2π

0

ðξtE þ ξφJ Þdφ: ð4:8Þ

In general, Eqs. (4.7) refer to the fields and their variations
belonging to the entire set of asymptotic states, defined by
Eqs. (4.1) and (4.3). However, it is instructive to consider
first a simpler situation, in which the fields and their
variations refer just to a single asymptotic state, the static
OTT configuration (3.2). In that case, Eq. (4.7b) takes the
form

δE ¼ ω01
tδH01φ þH12

tδω12φ

¼ 2a0l2

�
r
l2

þ 1

2
b

�
δb − 4a0NδN

¼ 2a0δ

�
μþ 1

4
l2b2

�
; ð4:9Þ

which is easily integrated to obtain E. In fact, the procedure
just described is sufficient to calculate the values of the
conserved charges, but only for this particular
configuration.
In the next step, we wish to find a solution for E on the

whole set of asymptotic states. Using the special result (4.9)
as a guide, we find

E ¼ E0 −
1

4
ðΔωij

tΔHijφ þ ΔHijtΔωij
φÞ;

E0 ≔
1

2
ðωij

tΔHijφ þHijtΔωij
φÞ; ð4:10aÞ

where ΔX ≔ X − X̄ is the difference between any field X
and its boundary value X̄. In a similar manner, Eq. (4.7c)
leads to

J ¼ 1

2
ωij

φHijφ ¼ J 0 −
1

2
ΔHijφΔωij

φ;

J 0 ≔
1

2
ðωij

φΔHijφ þHijφΔωij
φÞ; ð4:10bÞ

where the first equality follows directly from (4.7c), and the
second one from H̄ijφω̄

ij
φ ¼ 0. With these results for E and

J , the boundary term (4.8) is seen to be a finite phase-space
functional that satisfies the variational equation (4.7a)
(Appendix B).
The values of the improved generators for time trans-

lations (ξ ¼ ∂t) and spatial rotations (ξ ¼ ∂φ) are given by
the corresponding boundary terms, which define the con-
served charges of the system, the energy and the angular
momentum, respectively:

E ¼
Z

2π

0

dφE; J ¼
Z

2π

0

dφJ : ð4:11Þ

Calculated on the static OTT configuration, these expres-
sions take the values

E ¼ 1

4G

�
μþ 1

4
b2l2

�
; J ¼ 0: ð4:12Þ

The expressions (4.10) for E and J are obtained by
relying on the set of asymptotic configurations (4.1) and
(4.3) that contain the static OTT black hole geometry. It is
interesting to compare the boundary term (4.8) to the
covariant approach of Chen et al. [11]. Looking at the
Riemannian reduction of their formula (239) and choosing
the upper or lower term in each curly bracket separately,
one finds that none of the resulting expressions can
reproduce our result. To make the argument more clear,
consider, for instance, the term E0 in (4.10a) that corre-
sponds to choosing all the upper terms in (239); the
corresponding expression for the energy would be different
from (4.12): E0 ¼ 1

4G ðμþ 1
2
b2l2Þ. How do we know that

this result is not correct? The answer can be found by
noting that the boundary term Γ½ξ� has a twofold role: (i) its
values define the conserved charges, and (ii) its form
ensures the improved generator ~G ¼ Gþ Γ to be a differ-
entiable functional on the phase space associated with the
chosen boundary conditions. Since E0 does not satisfy the
variational equation (4.7b), replacing E by E0 would
destroy the differentiability of the new canonical generator
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~G½E → E0�. The way out of this situation can be found in
the work of So [18], who proposed a generalized boundary
term by introducing “mixed” choices involving a linear
combinations of upper and lower term in (239); see
footnote “u” in [11]. As discussed in Sec. VI, our boundary
term (4.8) is appropriately described by a particular mixed
form. The need for using a mixed boundary term stems
directly from the slower asymptotic decrease of the OTT
dynamical variables as compared to the BTZ case (see
Sec. IVA), or equivalently, from the presence of the br term
in the OTT metric (3.1).

C. Asymptotic symmetry

The results obtained so far allow us to precisely describe
the OTT asymptotic symmetry by the Poisson bracket
algebra of the improved canonical generators. Following
the procedure described in [8,9], one finds that this algebra,
expressed in terms of the Fourier modes L�

n of ~G, is
given by a centrally extended form of the commutator
algebra (4.4),

i½L�
m; L�

n � ¼ ðm − nÞLmþn þ
c�

12
m3δm;−n; ð4:13Þ

where c� are classical central charges,

c� ¼ c; c ¼ 3l
G

: ð4:14Þ

D. Black hole entropy

As an additional, theoretical test of the validity of our
canonical expression for the OTT energy (4.12)1, we
propose to verify its exact agreement with the first law
of black hole thermodynamics; the same strategy was
used, for instance, by Giribet and Leston [15], and by
Maeda [25].
The black hole entropy can be calculated from the Cardy

formula [26]

S ¼ 2π

ffiffiffiffiffiffiffiffiffiffi
h−c−

6

r
þ 2π

ffiffiffiffiffiffiffiffiffiffiffi
hþcþ

6

r
;

where h� ¼ ðlE� JÞ=2. For the static OTT black hole,
this formula yields

S ¼ 2πl

ffiffiffiffi
E
G

r
: ð4:15Þ

Then, using the expression for the Hawking temperature,

T ¼ 1

4π
∂rN2jr¼rþ ¼ 1

πl

ffiffiffiffiffiffiffi
GE

p
; ð4:16Þ

one can directly verify the first law of the black hole
thermodynamics:

δE ¼ TδS: ð4:17Þ

Since the entropy vanishes for E ¼ 0, the state with E ¼ 0
can be naturally regarded as the ground state of the OTT
family of black holes [14].

V. ROTATING OTT BLACK HOLE

In order to verify to what extent the canonical expres-
sions (4.10) for the boundary terms of the static OTT black
hole are general, we now use the same approach to study
the rotating OTT black hole.

A. Geometric aspects

The rotating OTT black hole is defined by the
metric [14,15]

ds2 ¼ N2dt2 − F−2dr2 − r2ðdφþ NφdtÞ2; ð5:1aÞ

where

F ¼ H
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

l2
þ b

2
Hð1þ ηÞ þ b2l2

16
ð1 − ηÞ2 − μη

s
;

N ¼ AF; A ¼ 1þ bl2

4H
ð1 − ηÞ;

Nφ ¼ l
2r2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
ðμ − bHÞ;

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −

μl2

2
ð1 − ηÞ − b2l4

16
ð1 − ηÞ2

r
: ð5:1bÞ

The roots of N ¼ 0 are

r� ¼ l

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

2

r �
−
bl
2

ffiffiffi
η

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ b2l2

4

r �
:

The metric (5.1) depends on three free parameters, μ, b
and η. For η ¼ 1, it represents the static OTT black
hole, and for b ¼ 0, it reduces to the rotating BTZ
black hole with parameters ðm; jÞ, such that 4Gm ≔ μ and
4Gj ≔ μl

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
.

Choosing the triad field as

b0¼Ndt; b1¼F−1dr; b2 ¼ rðdφþNφdtÞ; ð5:2aÞ

the Riemannian connection takes the form

ω01¼−αb0þβb2; ω02¼ βb1; ω12¼−βb0þ γb2;

ð5:2bÞ

where α ≔ FN0=N, β ≔ rFN0
φ=2N and γ ¼ F=r. These

objects define the Riemannian geometry of the rotating
OTT black hole in the context of PGT.
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Now, based on theorem (T2) from Sec. II, we know that
the rotating OTT black hole, being an exact solution of the
BHT gravity, is also a solution of PGT provided its Cotton
tensor vanishes. Technically, the proof that Cij ¼ 0 is not
quite simple due to the complicated structure of the metric
functions N, F and Nφ. However, relying on the standard
computer algebra systems, one easily finds that Cij indeed
vanishes.

B. Asymptotic conditions and conserved charges

A direct inspection of the rotating black hole geometry
(5.2) shows that it belongs to the same class of asymptotic
states as described by Eqs. (4.1) and (4.3). Hence, the
results for (i) the boundary term (4.8) and (ii) the classical
central charges (4.14) remain valid also in the rotating black
hole case.
Applying formulas (4.10) to the rotating OTT geometry

(5.2) yields the following conserved charges:

E ¼ 1

4G

�
μþ 1

4
b2l2

�
; ð5:3aÞ

J ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
E: ð5:3bÞ

For η ¼ 1 the angular momentum vanishes, whereas for
b ¼ 0 we have the BTZ black hole with E ¼ m and J ¼ j;
its energy is twice as big as in GR.

C. The first law of black hole thermodynamics

The entropy for the rotating OTT black hole can be
calculated in the same manner as for the static one. Using
the above expressions for E, J, and the central charges
c� ¼ 3l=G, the Cardy formula yields

S ¼ 2πl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ηÞE

2G

r
: ð5:4Þ

The Hawking temperature and the angular velocity at the
outer horizon are

T ¼ 1

4π

∂rN2

A

����
r¼rþ

¼ 1

πl

ffiffiffiffiffiffiffiffiffiffiffi
2η2

1þ η

s ffiffiffiffiffiffiffi
GE

p
;

Ωþ ¼ Nφjr¼rþ ¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

1þ η

s
: ð5:5Þ

Then, the first law of black hole thermodynamics is
automatically satisfied:

TδS ¼ δE −ΩþδJ: ð5:6Þ

VI. DISCUSSION AND CONCLUSIONS

The OTT black hole energy was calculated already in the
original paper [12], based on the Deser-Tekin approach
[27]. Since the Deser-Tekin formula (37) in [12] does not
contain the asymptotic terms produced by the parameter b,
the resulting energy EDT ¼ μ=4G does not depend
on b. This result is evidently not compatible with the first
law of black hole thermodynamics. Then, Giribet et al. [14]
found certain arguments, based on interpreting b as a ‘hair’
parameter, to transform EDT into E ¼ ðμþ l2b2=4Þ=ð4GÞ,
the expression that is fully compatible with the first
law [25].
In the next paper, Giribet and Leston [15] tried to find

more convincing arguments to derive the above form of E.
Their approach was based on the work of Hohm and Tonni
[28], who developed a generalized Brown-York approach
to the generic form of the BHT gravity. By restricting their
considerations to the special value of m2, where the OTT
black hole is admitted as an exact solution, the authors of
[15] succeeded to derive the above result for E, but only for
the rotating black hole, where certain ambiguity in the
derivation disappears. By improving the construction,
Kwon et al. [16] obtained the conserved charges for both
the static and the rotating OTT black hole. Our expressions
(5.3) for the conserved charges confirm their final results,
given in Eq. (44).
In the approach initiated by Regge and Teitelboim [17],

the gravitational conserved charges and the improved
canonical generators are closely related to each other.
An important progress in understanding essential aspects
of this relation has been achieved in the first-order
approach, which allows one to find a covariant boundary
term and identify its value as a conserved charge; for an
early version of the formalism, see Nester [24], and for a
comprehensive exposition of this approach, see Chen et al.
[11]. The covariant approach has been widely used in four-
dimensional gauge theories of gravity with a great success
[4,11]. Moreover, it was also confirmed on a set of selected
three-dimensional solutions [29]. Now, in order to properly
understand our results in the context of this approach, we
start from a particular choice of the covariant boundary
expression (integrand) defined by the upper line in
Eq. (234) of [11]:

BulðξÞ≔ ðξ⌋biÞΔτiþΔbiðξ⌋τiÞþðξ⌋ωiÞΔρiþΔωiðξ⌋ρiÞ:
ð6:1Þ

Here, ΔX ¼ X − X̄ is a difference between a field X and its
boundary value X̄, and ξ is asymptotically a Killing vector
field. The lower line is obtained by replacing the variables
ðbi; τi;ωi; ρiÞ with their boundary values. One can verify
that formula (6.1), taken in the Riemannian limit, is not
compatible with our result (4.8). This is, in fact, true for all
sixteen versions of BðξÞ, obtained from Eq. (234) of [11] by
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choosing either the upper or lower term in each of the four
curly brackets separately. However, the situation is changed
by generalizing the construction of BðξÞ in a way proposed
by So [18]. According to his prescription, the original
Hamiltonian boundary term BðξÞ is modified by replacing
each curly bracket by a linear combination of its upper and
lower term. Applying this prescription to Eq. (234) of [11],
one finds that its Riemannian reduction takes the form

~Bðξ; c3; c4Þ ≔ ξ⌋½c3ωi þ ð1 − c3Þω̄i�∧Δρi
þ Δωi∧ξ⌋½c4ρi þ ð1 − c4Þρ̄i�; ð6:2Þ

where c3 and c4 are real parameters. For the particular
choice ðc3; c4Þ ¼ ð1=2; 1=2Þ, we have

~Bðξ; 1=2; 1=2Þ ≔ ξ⌋

�
ωi −

1

2
Δωi

�
∧Δρi

þ Δωi∧ξ⌋
�
ρi −

1

2
Δρi

�
: ð6:3Þ

A comparison with Eqs. (4.10) shows that the boundary
term

R
∂Σ ~Bðξ; 1=2; 1=2Þ exactly coincides with our expres-

sion ΓðξÞ, Eq. (4.8).
Clearly, the result (6.3) represents only a Riemannian

reduction of a more general So-like formula for the
boundary term. With an obvious extension of notation,
this more general formula can be represented in the form

BðξÞ ¼ Bðξ; c1; c2; 1=2; 1=2Þ: ð6:4Þ

Additional information on the general structure of B can be
found in Ref. [28], where the conserved charges of several
three-dimensional solutions were calculated. However, the
results are not sufficiently sensitive to clearly recognize the
general structure of a “good” expression for the boundary
term in PGT, in three dimensions. Further work in this
direction is needed.
In conclusion, we summarize our results as follows:

(a) First, we found general criteria that allow us to study
conformally flat Riemannian spacetime configurations
as solutions of PGT. These criteria are used to show
that the OTT black hole, a solution of the BHT gravity,
is a Riemannian solution of PGT.

(b) Then, we constructed a natural set of the asymptotic
conditions and calculated the conserved charges of the
OTT black hole as the values of the Hamiltonian
boundary term. The expressions for the conserved
charges coincide with those found by of Kwon et al.
[24] in the generalized Brown-York approach.

(c) Finally, the obtained results are verified by showing
that: (i) the conserved charges are exactly compatible
with the first law of black hole thermodynamics, and
(ii) our boundary term is in agreement with the
generalized covariant formula proposed by So [18].

On the other hand, the OTT black hole appears to be
an interesting physical example for the generalized
covariant formula.
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APPENDIX A: USEFUL ASYMPTOTIC
RELATIONS

In the Riemannian sector of PGT, the condition Ti ¼ 0,
calculated on the asymptotic configurations (4.1) and (4.3),
leads to an additional set of asymptotic requirements:

r2

l2
B1

r − lΩ2
t ¼ O1; B1

r −
l2

r2
Ω0

φ ¼ O1;

r2

l
Ω1

r þ Ω2
φ ¼ O1;

r2

l2
Ω1

r þΩ0
t ¼ O1;

B0
φ

l
þΩ2

φ þ B2
t þ lΩ0

t ¼ O1: ðA1Þ

Then, relying on the asymptotic form of the Schouten
tensor Lij,

L00 ¼
1

2l2
−

1

rl

�
B0

t þ
r2

l2
B1

r

�
þO2;

L11 ¼ −
1

2l2
þO2;

L22 ¼ −
1

2l2
þ 1

rl

�
r2

l2
B1

r þ
1

l
B2

φ

�
þO2;

L02 ¼ −
1

l2r
B0

φ þ
r
l2

Ω1
r þO2;

one obtains the asymptotic relations

ΔHijt ¼ −4a0Ωijφ þO
�
Ωijφ

r

�
;

ΔHijφ ¼ −4a0l2Ωijt þO
�
Ωijt

r

�
: ðA2Þ

APPENDIX B: CONSISTENCY OF
THE BOUNDARY TERM

In this appendix, we prove the consistency of the
Hamiltonian boundary term (4.8) by showing that it is a
finite expression that satisfies thevariational equations (4.7a).
Using the expressions (4.10) for E and J , as well as the
results of Appendix A, we have
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E ¼ 4a0
r
l

�
Ω0

φ −
r2

l2
B1

r

�
þO0 ¼ O0; ðB1aÞ

J ¼ 2a0ωi
φbiφ þ 4a0l2Lijω

i
φbjφ

¼ −4a0r
�
B0

φ

l
þ Ω2

φ

�
− 4a0lr2L02 þO0;

¼ −4a0r
�
Ω2

φ þ
r2

l
Ω1

r

�
þO0 ¼ O0; ðB1bÞ

which completes the proof of finiteness.

In a similar manner,

δE ¼ 1

2
ðωij

tδHijφ þ δωijφHij
tÞ

þ 1

4
ðΔHijφδω

ij
t − Δωij

tδHijφ − ΔHijtδω
ij
φ

þ Δωij
φδHijtÞ;

¼ 1

2
ðωij

tδHijφ þ δωijφHij
tÞ þO1; ðB2Þ

whereas the proof for δJ is trivial. Thus, the variational
equation (4.7a) is satisfied.
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A class of Siklos waves, representing exact vacuum solutions of general relativity with a cosmological
constant, is extended to a new class of Siklos waves with torsion, defined in the framework of the Poincaré
gauge theory. Three particular exact vacuum solutions of this type, the generalized Kaigorodov, the
homogeneous solution and the exponential solution, are explicitly constructed.
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I. INTRODUCTION

The first complete formulation of the idea of (internal)
gauge invariance was given in Weyl’s classic paper [1].
Significant progress in this direction was achieved some-
what later by Yang, Mills and Utiyama [2,3]. It opened a
new perspective for understanding gravity as a gauge
theory, the perspective that was realized by Kibble and
Sciama [4] in their proposal of a new theory of gravity,
known as the Poincaré gauge theory (PGT). The PGT is a
gauge theory of the Poincaré group, with an underlying
Riemann-Cartan (RC) geometry of spacetime [5,6]. In this
approach, basic gravitational variables are the tetrad field bi

and the Lorentz connection ωij (1-forms), and the related
field strengths are the torsion Ti ¼ dbi þ ωi

m ∧ bmj and
the curvature Rij ¼ dωij þ ωi

m ∧ ωmj (2-forms). At a
more physical level, the source of gravity in PGT is matter
possessing both the energy-momentum and spin currents.
The importance of the Poincaré symmetry in particle
physics leads one to consider PGT as a favorable frame-
work for describing the gravitational phenomena.
Based on the experience stemming from Einstein’s

general relativity, it is known that exact solutions play a
crucial role in developing our understanding of the
geometric and physical content of a gravitational theory;
for a review, see Refs. [7–10]. An important set of these
solutions refers to exact gravitational waves, the structure
of which has been studied also in PGT [11]. In the present
work, we focus on a particular class of the gravitational
waves, the class of Siklos waves that are vacuum solutions
of general relativity with a cosmological constant (GRΛ),
propagating on the anti–de Sitter (AdS) background [12].
By generalizing the ideas developed in three dimensions
[13], we construct here a class of the four-dimensional
Siklos waves with torsion as vacuum solutions of PGT.
The paper is organized as follows. In Sec. II, we give a

short account of the Siklos waves in the tetrad formulation
of GRΛ. In Sec. III, we show that Siklos waves are torsion-
free vacuum solutions of PGT. In Sec. IV, we introduce new

vacuum solutions of PGT, the Siklos waves with torsion, by
modifying the Siklos geometry in a manner that preserves
the radiation nature of the original configuration. That is
achieved by an ansatz for the RC connection that produces
only the tensorial irreducible mode of the torsion with
JP ¼ 2þ. The PGT field equations are simplified and
shown to depend only on three parameters, including the
mass of the torsion mode. In Secs. V–VII, we describe three
different vacuum solutions belonging to the class of Siklos
waves with torsion: the generalized Kaigorodov, the homo-
geneous solution and the exponential solution. Section VII
is devoted to concluding remarks, and two appendixes
contain some technical details.
Our conventions are as follows. We use the Poincaré

coordinates xμ ¼ ðu; v; x; yÞ as the local coordinates; the
latin indices ði; j;…Þ refer to the local Lorentz (co)frame
and run over ðþ;−; 2; 3Þ, bi is the tetrad (1-form), and hi is
the dual basis (frame), such that hi⌋bk ¼ δki ; the volume
4-form is ϵ̂ ¼ bþ ∧ b− ∧ b2 ∧ b3, the Hodge dual of a
form α is ⋆α, with ⋆1 ¼ ϵ̂, and the totally antisymmetric
tensor is defined by ⋆ðbi ∧ bj ∧ bk ∧ bmÞ ¼ εijkm and
normalized to εþ−23 ¼ 1; in the rest of the paper, the
exterior product of forms is implicit.

II. SIKLOS WAVES IN GRΛ

Siklos waves were introduced as a class of exact
gravitational waves propagating on the AdS background
[12]. In the Poincaré coordinates xμ ¼ ðu; v; x; yÞ, the
Siklos metric is given by

ds2 ¼ l2

y2
½2duðHduþ dvÞ − dx2 − dy2�; ð2:1Þ

with H ¼ Hðu; x; yÞ. It admits the null Killing vector
field ∂v that is not covariantly constant; the wave fronts
are surfaces of constant u and v, and the case H ¼ 0
corresponds to the AdS background. The metric (2.1)
coincides with a special subclass of the Kundt class
[9,10], and is obviously conformal to pp waves. The
physical interpretation of the Siklos waves was investigated
by Podolský [14,15].
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Now we give a short account of the Siklos waves in the
tetrad formulation of GRΛ, which allows for a simpler
generalization to PGT. First, we choose the tetrad field in
the form

bþ ≔
l
y
du; b− ≔

l
y
ðHduþ dvÞ;

b2 ≔
l
y
dx; b3 ≔

l
y
dy; ð2:2Þ

so that the line element becomes ds2 ¼ 2bþb−−
ðb2Þ2 − ðb3Þ2 ≡ ηijbibj, where η is the half-null
Minkowski metric,

ηij ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

1
CCCA:

The dual frame hi is given by

hþ ¼ y
l
ð∂u −H∂vÞ; h− ¼ y

l
∂v;

h2 ¼
y
l
∂x; h3 ¼

y
l
∂y: ð2:3Þ

Next, we introduce the Riemannian connection ωij by
imposing the condition of vanishing torsion, ∇bi ≔ dbiþ
ωi

mbm ¼ 0, which yields

ωþ−;ωþ2 ¼ 0; ωþ3 ¼ 1

l
bþ;

ω23 ¼ 1

l
b2; ω−2 ¼ −

y
l
∂xHbþ;

ω−3 ¼ 1

l
b− −

y
l
∂yHbþ: ð2:4aÞ

The wave nature of the Siklos wave is clearly seen by
rewriting ωij in the form

ωij ¼ ω̄ij þ kiðhj⌋HÞbþ; ð2:4bÞ

where ω̄ij ¼ ωijðH ¼ 0Þ refers to the AdS background,
and the second term is the radiation piece, characterized by
the null vector ki ¼ ðkþ; k−; k2; k3Þ ¼ ð0; 1; 0; 0Þ.

Now one can calculate the Riemannian curvature:

Rþj ¼ 1

l2
bþbj; R23 ¼ 1

l2
b2b3;

R−2 ¼ 1

l2
b−b2 þ 1

l2
ðy2∂xxH − y∂yHÞbþb2

þ 1

l2
ðy2∂xyHÞbþb3;

R−3 ¼ 1

l2
b−b3 þ 1

l2
ðy2∂yyH − y∂yHÞbþb3

þ 1

l2
ðy2∂xyHÞbþb2; ð2:5Þ

where we use ∂xx ≔ ∂2=∂x2 etc. The Ricci curvature
Rici ¼ hm⌋Rmi and the scalar curvature R ¼ hi⌋Rici are
found to be

Ricm ¼ 3

l2
bm; m ¼ þ; 2; 3;

Ric− ¼ 3

l2
b− þ 1

l2
ðy2∂xxH þ y2∂yyH − 2y∂yHÞbþ;

R ¼ 12

l2
: ð2:6Þ

Dynamical structure of GRΛ is defined by the action
IΛ ¼ −

R
d4x

ffiffiffiffiffiffi−gp ða0Rþ 2ΛÞ. The corresponding vacuum
field equations can be suitably written in the traceless
form as

Rici −
1

4
Rbi ¼ 0: ð2:7Þ

As a consequence, the metric function H must obey

y2ð∂xxH þ ∂yyHÞ − 2y∂yH ¼ 0: ð2:8Þ

The profile (u-dependence) of the Siklos wave may be
arbitrary.
We display here three special solutions of (2.8) discussed

by Siklos [12]:

H1 ¼ y3; Kaigorodov’s solution ð1963Þ;
H2 ¼ arctanðx=yÞ þ xy=ðx2 þ y2Þ; ~H2 ¼ ðx2 þ y2ÞH2;

H3 ¼ C1exðcosyþ y sinyÞ þC2exðsiny− y cosyÞ:

Note that Defrise’s metric (1969), with H ¼ 1=y2, is not a
vacuum solution of GRΛ [15].

III. SIKLOS WAVES AS TORSION-FREE
SOLUTIONS OF PGT

In this section, we show that the Siklos spacetime of the
previous section is an exact Riemannian solution of PGT in
vacuum.
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Starting from the general PGT dynamics described in
Appendix B, one can easily derive its reduced form in the
Riemannian sector of PGT, characterized by Ti ¼ 0. First,
we note that the only nonvanishing irreducible components
of the Riemannian curvature are ð1ÞRij, ð4ÞRij and ð6ÞRij,
defined in Appendix A. And second, the condition Ti ¼ 0
implies that dynamical evolution of the Riemannian sol-
utions in PGT is described by a reduced form of the general
field equations (B3):

ð1STÞ Ei ¼ 0;

ð2NDÞ ∇Hij ¼ 0: ð3:1aÞ

Here, the Riemannian expressions for Ei and Hij are
obtained directly from the corresponding PGT formulas
(see Appendix B) in the limit Ti ¼ 0:

Hij ¼ −2a0⋆ðbibjÞ þ 2⋆ðb1ð1ÞRij þ b4ð4ÞRij þ b6ð6ÞRijÞ;

Ei ≔ hi⌋LG −
1

2
ðhi⌋RmnÞHmn: ð3:1bÞ

As shown in Ref. [5], the field equations (3.1) are
satisfied for any configuration in which the traceless
symmetric Ricci tensor vanishes:

RicðijÞ −
1

4
ηijR ¼ 0: ð3:2Þ

Comparing this result with the GRΛ field equation (2.7),
one concludes that any vacuum solution of GRΛ is
automatically a torsion-free solution of PGT. In particular,
this is true for the Siklos metric.
It is useful to explore this general statement in detail.

Using the geometry of the Siklos spacetime found in the
previous section, the content of Eqs. (3.1a) is found to be

ð1STÞ ðb4 þ b6 − a0l2Þy½yð∂xxH þ ∂yyHÞ − 2∂yH� ¼ 0;

3a0 þ l2Λ ¼ 0;

ð2NDÞ ðb1 þ b4Þy2∂x½yð∂xxH þ ∂yyHÞ − 2∂yH� ¼ 0;

ðb1 þ b4Þy2∂y½yð∂xxH þ ∂yyHÞ − 2∂yH� ¼ 0:

ð3:3Þ

For the generic values of the Lagrangian parameters
a0; b1; b4; b6, dynamical content of these equations is
obviously the same as in GRΛ, since the metric function
H must be such that

ŜH ≔ yð∂xxH þ ∂yyHÞ − 2∂yH ¼ 0: ð3:4Þ

Thus, although PGT has a rather different dynamical
structure as compared to GRΛ, the class of Riemannian
Siklos spacetimes is still an exact vacuum solution of PGT.

IV. SIKLOS WAVES WITH TORSION

We are now ready to generalize the previous results by
constructing a new, non-Riemannian class of Siklos waves,
the Siklos waves with torsion.

A. Geometry of the ansatz

We wish to introduce torsion in a manner that preserves
the radiation nature of the Riemannian Siklos waves of
GRΛ, relying on the approach proposed in [13].
We start the construction by assuming that the tetrad field

in PGT retains its Riemannian form (2.2). Then, by noting
that the radiation piece of the Riemannin connection (2.4)
has the form ðωijÞR ¼ kiðhjμ∂μHÞbþ, we assume that the
new RC connection is given by

ωij ¼ ω̄ij þ kihjμð∂μH þ KμÞbþ; ð4:1aÞ

where the form of Kμ is defined by

Kμ ¼ ð0; 0; Kx; KyÞ;
Kx ¼ Kxðu; x; yÞ; Ky ¼ Kyðu; x; yÞ: ð4:1bÞ

This ansatz modifies only two components of the
Riemannian connection (2.4):

ω−2 ¼ −
y
l
ð∂xH þ KxÞbþ;

ω−3 ¼ 1

l
b− −

y
l
ð∂yH þ KyÞbþ:

The new terms in the connection are related to the torsion of
spacetime:

T− ¼ y
l
ðKxbþb2 þ Kybþb3Þ; Tþ; T2; T3 ¼ 0:

ð4:2Þ

The only nonvanishing irreducible torsion piece is the
tensor piece ð1ÞTi, with ð1ÞT− ¼ T−.
Denoting the Riemannian curvature found in Sec. II by

~Rij, the new RC curvature is found to have the form

Rþj ¼ 1

l2
bþbj; R23 ¼ 1

l2
b2b3;

R−2 ¼ ~R−2 þ 1

l2
ðy2∂xKx − yKyÞbþb2 þ

1

l2
ðy2∂yKxÞbþb3;

R−3 ¼ ~R−3 þ 1

l2
ðy2∂yKyÞbþb3 þ

1

l2
ðy2∂xKy þ yKxÞbþb2:

ð4:3aÞ

Note that the radiation piece of Rij is proportional to the
null vector ki ¼ ð0; 1; 0; 0Þ. The corresponding Ricci and
scalar curvatures are
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Ricm ¼ 3

l2
ba; m ¼ þ; 2; 3;

Ric− ¼ gRic− þ 1

l2
ðy2∂xKx þ y2∂yKy − yKyÞbþ;

R ¼ 12

l2
: ð4:3bÞ

The nonvanishing irreducible components of the curvature
are ðnÞRij for n ¼ 1; 4; 6 (as in GRΛ) and n ¼ 2. Quadratic
invariants of the field strengths are regular:

Rij⋆Rij ¼
12

l4
ϵ̂; Ti⋆Ti ¼ 0:

B. Field equations

Dynamical content of our ansatz is effectively described
by the RC Lagrangian (B1) with nonvanishing parameters
ða0;Λ; a1; b1; b2; b4; b6Þ and the associated PGT field
equations (B3). Explicit calculation of the second field
equation in (B3), denoted shortly by F ij, is shown to have
two nontrivial components, F−2 and F−3. After introduc-
ing the quantity ŜH as in Eq. (3.4), these components take
the respective forms

b1ðy∂xŜH þ y2∂xxKx þ y2∂yyKx − 2y∂xKyÞ
þ b2ðy2∂yyKx − y2∂xyKy − y∂xKyÞ
þ b4ðy∂xŜH þ y2∂xxKx þ y2∂xyKy − y∂xKyÞ
þ 2ðb6 − b1 þ a1l2 − a0l2ÞKx ¼ 0; ð4:4aÞ

and

b1ðy∂yŜH þ y2∂xxKy þ y2∂yyKy þ 2y∂xKxÞ
þ b2ð−y2∂xyKx þ y2∂xxKy þ y∂xKxÞ
þ b4ðy∂yŜH þ y2∂xyKx þ y2∂yyKy þ y∂xKxÞ
þ 2ðb6 − b1 þ a1l2 − a0l2ÞKy ¼ 0: ð4:4bÞ

The content of the first field equation is much simpler. To
have the smooth limit for vanishing torsion, we require
3a0 þ l2Λ ¼ 0, whereupon the first equation reads

ðb4 þ b6 − a0l2ÞŜH
þ ðb4 þ b6 − a0l2 þ a1l2Þðy∂xKx þ y∂yKy − KyÞ ¼ 0:

ð4:4cÞ

The form of the differential equations (4.4) appears to be
rather complicated [16]. However, there exists a suitable
reformulation that makes their content much more trans-
parent. To see that, we first rewrite Eq. (4.4c) in the form

ŜH ¼ σðy∂xKx þ y∂yKy − KyÞ;

σ ≔ −
�
1þ a1l2

b4 þ b6 − a0l2

�
: ð4:5aÞ

Then, by substituting the expressions for y∂xŜH and
y∂yŜH into (4.4a)–(4.4b), and dividing the resulting
equations by ðb1 þ b4Þðσ þ 1Þ, one obtains

ðy2∂xx þ ρy2∂yy þ 2l2μ2ÞKx

þ ½ð1 − ρÞy2∂xy − ð1þ ρÞy∂x�Ky ¼ 0; ð4:5bÞ

ðy2∂yy þ ρy2∂xx þ 2l2μ2ÞKy

þ ½ð1 − ρÞy2∂xy þ ð1þ ρÞy∂x�Kx ¼ 0; ð4:5cÞ

where

ρ≔
b1 þ b2

ðb1 þ b4Þðσ þ 1Þ ; μ2 ≔
a1 − a0 þ ðb6 − b1Þ=l2

ðb1 þ b4Þðσ þ 1Þ :

The final equations (4.5) contain only three independent
parameters, σ; ρ and μ2, which makes it much easier to find
some specific solutions for the Siklos waves with torsion.
The parameter μ2 has a simple physical interpretation. As

the linearized PGT analysis shows, possible torsion exci-
tations around the Minkowski background are modes with
spin parity JP ¼ 0�; 1�; 2� [17]. In particular, the spin-2þ
state is associated to the tensorial piece of the torsion, and
its mass is

μ̄2 ¼ a0ða1 − a0Þ
a1ðb1 þ b4Þ

:

For 1=l2 → 0, the coefficient μ2 tends exactly to μ̄2,
whereas for finite (and positive) l2, μ2 is associated to
the spin-2þ torsion excitation with respect to the AdS
background.
In what follows, we present three exact solutions of the

PGT field equations (4.5), enlightening thereby basic
dynamical aspects of the Siklos waves with torsion. All
the integration “constants” appearing in these solutions are
functions of u.

V. KAIGORODOV-LIKE SOLUTION

Motivated by the form of the Kaigorodov solution of
GRΛ (Sec. II), we consider now a class of PGT configu-
rations for which the functions H;Kx and Ky are x
independent. Then the field equations (4.5) take a much
simpler form:

ðρy2∂yy þ 2μ2l2ÞKx ¼ 0; ð5:1aÞ

ðy2∂yy þ 2μ2l2ÞKy ¼ 0; ð5:1bÞ
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y∂yyH − 2∂yH ¼ σðy∂y − 1ÞKy: ð5:1cÞ

The Euler-Fuchs differential equation (5.1a) is solved by
the ansatzKx ¼ yα, where α is restricted by the requirement
α2 − αþ 2μ2l2=ρ ¼ 0, which implies

α� ¼ 1

2
� p; p ≔

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8μ2l2=ρ

q
: ð5:2Þ

(a1) For 8μ2l2=ρ < 1 (real p),

Kx ¼
ffiffiffi
y

p ðA1yp þ A2y−pÞ: ð5:3aÞ

(a2) For 8μ2l2=ρ > 1 (imaginary p, q ≔ jpj),

Kx ¼
ffiffiffi
y

p ½A3 cosðq ln yÞ þ A4 sinðq ln yÞ�: ð5:3bÞ

(a3) For 8μ2l2=ρ ¼ 1 (p ¼ 0),

Kx ¼
ffiffiffi
y

p ðA5 þ A6 ln yÞ: ð5:3cÞ

Equation (5.1b) follows from (5.1a) in the limit ρ → 1.
Hence, using the notation

ᾱ� ¼ 1

2
� p̄; p̄≔

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 8μ2l2

q
; q̄¼ jp̄j; ð5:4Þ

the solutions for Ky can be obtained from Eqs. (5.3) by the
replacements p → p̄, q → q̄.
(b1) For 8μ2l2 < 1,

Ky ¼
ffiffiffi
y

p ðB1yp̄ þ B2y−p̄Þ: ð5:5aÞ

(b2) For 8μ2l2 > 1,

Ky ¼
ffiffiffi
y

p ½B3 cosðq̄ ln yÞ þ B4 sinðq̄ ln yÞ�: ð5:5bÞ

(b3) For 8μ2l2 ¼ 1,

Ky ¼
ffiffiffi
y

p ðB5 þ B6 ln yÞ: ð5:5cÞ

Knowing the form of Ky, one can integrate Eq. (5.1c) to
obtain the metric function H. Let us first find a particular
solution HðiÞ of the inhomogeneous equation (5.1c).
(c1) For 8μ2l2 < 1,

HðiÞ ¼ σy3=2
� ðᾱþ − 1Þ
ðᾱþ þ 1Þðᾱþ − 2ÞB1yp̄

þ ðᾱ− − 1Þ
ðᾱ− þ 1Þðᾱ− − 2ÞB2y−p̄

�
: ð5:6aÞ

(c2) For 8μ2l2 > 1,

HðiÞ ¼
2σ

9þ 4q̄2
y3=2½ðB3 − 2B4q̄Þ cosðq̄ ln yÞ

þ ðB4 þ 2B3q̄Þ sinðq̄ ln yÞ�: ð5:6bÞ

(c3) For 8μ2l2 ¼ 1,

HðiÞ ¼
2σ

9
y3=2ðB5 − 2B6 þ B6 ln yÞ: ð5:6cÞ

Adding to HðiÞ the solution of the homogeneous equa-
tion (5.1c), that is the Kaigorodov solutionH1 from Sec. II,
one obtains the complete solution:

H ¼ H1 þHðiÞ; H1 ¼ Dy3: ð5:7Þ

Thus, the existence of torsion has a direct influence on the
form of metric.
The above solutions for Kx; Ky and H define a

Kaigorodov wave with torsion as a vacuum solution
of PGT.

A. Asymptotic AdS limit

It is interesting to note that the Kaigorodov solution in
GRΛ is asymptotically AdS, as follows from the asymptotic
relation H ¼ Oðy3Þ for y → 0, and the form of the
Riemannian curvature (2.5). In PGT, the presence of torsion
makes the situation not so simple. Namely, the condition
that the RC curvature Rij in (4.3) has the AdS asymptotics
produces two types of requirements: the first one is
obtained from the non-Riemannian piece of Rij,

yKx → 0; yKy → 0; ð5:8aÞ

y2∂yKx → 0; y2∂yKy → 0; ð5:8bÞ

and the second from the Riemannian piece:

y∂yHðiÞ → 0; y2∂yyHðiÞ → 0: ð5:8cÞ

Further analysis goes as follows.
(i) In the sector with 8μ2l2=ρ ≥ 1 and 8μ2l2 ≥ 1, one

can directly verify that the solutions for Kx; Ky and HðiÞ
satisfy the requirements (5.8).
(ii) In the complementary sector with 8μ2l2=ρ < 1 and

8μ2l2 < 1, one finds that the requirements (5.8) are valid
for p < 1 and p̄ < 1, or equivalently, for

8μ2l2=ρ > −1 and 8μ2l2 > −1: ð5:9Þ

Continuing with exploring the asymptotic properties of
the torsion, we see that (5.8a) implies Ti → 0 for y → 0.
Thus, the choice of parameters described in (5.9) ensures
that the Kaigorodov-like solution has an AdS asymptotic
behavior, with vanishing torsion. Clearly, in the physical
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sector with μ2 ≥ 0, the second condition in (5.9) is
automatically satisfied.

B. Defrise-like solution as a special case

It is interesting to observe that the form of HðiÞ in (5.6a)
allows us to obtain a generalized Defrise solution, defined
in Sec. II, as a special case of the Kaigorodov wave
with torsion. Namely, by choosing D ¼ 0 one eliminates
H1 from H, whereupon the term HðiÞ, specified by B1 ¼ 0
and p̄ ¼ 7=2, becomes identical to the Defrise metric
function:

H ¼ HðiÞ ∼ 1=y2: ð5:10Þ

The restriction p̄ ¼ 7=2 refers to the tachyonic sector of the
2þ torsion mode, with μ2l2 ¼ −6. The above result for H,
combined with the corresponding expressions for Kx and
Ky, defines the Defrise solution with torsion as a vacuum
solution of PGT. In contrast to that, the corresponding
solution in GRΛ exists only in the presence of matter. One
should stress that the metric function H originates purely
from the torsional term HðiÞ.

VI. HOMOGENEOUS SOLUTION

Let us now look for a solution in which Kx; Ky;H are
homogeneous functions of y and x:

Kx ¼ fxðtÞ; Ky ¼ fyðtÞ;
H ¼ hðtÞ; t ≔ y=x:

As a consequence, the field equations (4.5) become

ðt4 þ ρt2Þf00x þ 2t3f0x þ 2μ2fx − ð1 − ρÞt3f00y þ 2ρt2f0y ¼ 0;

ð6:1aÞ

ðt2 þ ρt4Þf00y þ 2ρt3f0y þ 2μ2fy − ð1 − ρÞt3f00x − 2t2f0x ¼ 0;

ð6:1bÞ

ŜH ¼ σð−t2f0x þ tf0y − fyÞ; ð6:1cÞ

where ŜH ¼ y½2tðt2 − 1Þh0 þ ðt4 þ t2Þh00�.
The set of equations (6.1) represents a system of

ordinary, second-order, linear differential equations. The
system is significantly simplified by assuming that the
metric function H retains the same form as in GRΛ, so that
ŜH ¼ 0. Consequently, the right-hand side of Eq. (6.1c)
vanishes, −t2f0x þ tf0y − fy ¼ 0, which implies

fx ¼
1

t
fy þ B; ð6:2Þ

where B ¼ BðuÞ. Substituting this expression into
(6.1a)–(6.1b), one obtains

ρt2ðt2þ1Þf00yþ2ρtðt2−1Þf0yþ2ðρþμ2l2Þfyþ2μ2tB¼0;

ð6:3aÞ

ρt2ðt2 þ 1Þf00y þ 2ρtðt2 − 1Þf0y þ 2ðρþ μ2l2Þfy ¼ 0:

ð6:3bÞ

Taking the difference of these two equations yields

μ2B ¼ 0:

Hence, either μ2 or B has to vanish.

A. Case μ2 ¼ 0

Assuming ρ ≠ 0, the set of equations (6.3) reduces to

t2ðt2 þ 1Þf00y þ 2tðt2 − 1Þf0y þ 2fy ¼ 0:

Hence, the general solution for fy is given by

fy ¼ C1

t
t2 þ 1

þ C2

t2

t2 þ 1
; ð6:4Þ

fx is determined by (6.2), and the metric function has the
same form as in GRΛ:

h ¼ C3

�
− arctan tþ t

1þ t2

�
þ C4: ð6:5Þ

As before, all the integration constants are functions of u.

B. Case B ¼ 0

In this case, the set of equations (6.3) reduces to

t2ðt2 þ 1Þf00y þ 2tðt2 − 1Þf0y þ 2

�
1þ μ2l2

ρ

�
fy ¼ 0:

(d1) For 8μ2l2=ρ ≠ 1,

fy ¼ C5t
3
2
−ξ

2F1

�
3

4
−
ξ

2
;
5

4
−
ξ

2
; 1 − ξ;−t2

�

þ C6t
3
2
þξ

2F1

�
3

4
þ ξ

2
;
5

4
þ ξ

2
; 1þ ξ;−t2

�
ð6:6aÞ

where ξ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8μ2l2=ρ

p
and 2F1ða; b; c; zÞ is the

hypergeometric function [18].
(d2) For 8μ2l2=ρ ¼ 1,

fy ¼ C7t3=22F1

�
3

4
;
5

4
; 1;−t2

�
þ C8G20

20

�
−t2

���� 1=2; 1

3=4; 3=4

�
;

ð6:6bÞ

where Gmn
pq is the Meijer G function [18]. In both cases, the

associated solution for fx is given by fx ¼ fy=t, see (6.2),
and the metric function h remains the same as in (6.5).
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In the above two cases (d1)–(d2), the forms of the
corresponding torsion functions fy are illustrated in Fig. 1.

VII. EXPONENTIAL SOLUTION

In this section, we start with

Kx ¼ exfxðyÞ; Ky ¼ exfyðyÞ; H ¼ exhðyÞ;
ð7:1Þ

whereupon the field equations (4.5) become

ðy2þ ρy2∂yyþ 2μ2l2Þfxþ ½ð1− ρÞy2∂y− ð1þ ρÞy�fy ¼ 0;

ð7:2aÞ

ðy2∂yyþ ρy2þ 2μ2l2Þfyþ ½ð1− ρÞy2∂yþð1þ ρÞy�fx ¼ 0;

ð7:2bÞ

ŜH ¼ σðyfx þ y∂yfy − fyÞ; ð7:2cÞ

and ŜH ¼ ex½yðhþ h00Þ − 2h0�.
As in the previous section, we assume that H coincides

with the vacuum solution of GRΛ, defined by ŜH ¼ 0. This
imposes an extra condition on fx and fy:

yfx þ y∂yfy − fy ¼ 0 ⇒
fx
y
þ
�
fy
y

�0
¼ 0: ð7:3Þ

By introducing a change of variables, given by

fx ¼ ygx; fy ¼ ygy; ð7:4aÞ

the condition (7.3) takes a simple form:

gx þ g0y ¼ 0: ð7:4bÞ

As a consequence, Eqs. (7.2a)–(7.2b) are transformed into

ρy2gð3Þy þ 2ρyg00y þ ðρy2 þ 2μ2l2Þg0y þ 2ρygy ¼ 0; ð7:5aÞ

ρy2g00y þ ðρy2 þ 2μ2l2Þgy ¼ 0: ð7:5bÞ

One can note that (7.5a) is equal to the derivative (with
respect to y) of (7.5b). The solution of (7.5b) reads

gy ¼
ffiffiffi
y

p ½D1JνðyÞ þD2YνðyÞ�; ð7:6Þ

where ν ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8μ2l2=ρ

p
, and Jν, Yν are the Bessel

functions of the first and second kind, respectively [18].
Hence,

fy ¼ y
3
2ðD1JνðyÞ þD2YνðyÞÞ; ð7:7aÞ

and fx ¼ −yg0y yields

fx ¼
ffiffiffi
y

p ½D1ðyJνþ1ðyÞ − ðνþ 1=2ÞJνðyÞÞ
þD2ðyYνþ1ðyÞ − ðνþ 1=2ÞYνðyÞÞ�: ð7:7bÞ

The forms of the torsion functions (7.7) are illustrated in
Fig. 2. They are of the same type as the GRΛ metric
function H3, defined in Sec. II. Together, they define our
third specific Siklos wave with torsion.
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FIG. 2 (color online). The plots of the torsion functions (7.7) for D1 ¼ D2 ¼ 1, 8μ2l2=ρ ¼ −1.
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FIG. 1 (color online). The plots of the torsion function fy in (6.6a), 8μ2l2=ρ ¼ −1, fy½1� ¼ 1; f0y½1� ¼ 0 (left), and in (6.6b),
fy½1� ¼ 1, f0y½1� ¼ 0 (right).
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VIII. CONCLUDING REMARKS

In this paper, we introduced a new class of exact vacuum
solutions of PGT, the Siklos waves with torsion. The
solution is constructed in a way that respects the radiation
nature of the original Siklos configuration in GRΛ. This is
achieved by an ansatz for the RC connection that produces
only the tensorial irreducible mode of the torsion, propa-
gating on the AdS background. A compact form of the PGT
field equations is used to find three particular vacuum
solutions belonging to the class of Siklos waves with
torsion; they generalize the Kaigorodov, the homogeneous
solution and the exponential solution of GRΛ.
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APPENDIX A: IRREDUCIBLE DECOMPOSITION
OF THE FIELD STRENGTHS

We present here formulas for the irreducible decom-
position of torsion and curvature in four-dimensional
Riemann-Cartan spacetime [5]; for general D, see [19].
It is convenient to start the exposition with the Bianchi

identities:

∇Ti ¼ Ri
mbm; ∇Rij ¼ 0: ðA1Þ

The torsion 2-form has three irreducible pieces:

ð2ÞTi ¼ 1

3
bi ∧ ðhm⌋TmÞ;

ð3ÞTi ¼ −
1

3
⋆½bi ∧ ⋆ðTm ∧ bmÞ� ¼

1

3
hi⌋ðTm ∧ bmÞ;

ð1ÞTi ¼ Ti − ð2ÞTi − ð3ÞTi: ðA2Þ

The RC curvature 2-form can be decomposed into six
irreducible pieces:

ð2ÞRij ¼ −�ðb½i ∧ Ψj�Þ; ð4ÞRij ¼ b½i ∧ Φj�;

ð3ÞRij ¼ −
1

12
X�ðbi ∧ bjÞ; ð6ÞRij ¼ 1

12
Wbi ∧ bj;

ð5ÞRij ¼ 1

2
b½i ∧ hj�⌋ðbm ∧ WmÞ;

ð1ÞRij ¼ Rij −
X6
a¼2

ðaÞRij;

where

Wi ≔ hm⌋Rmi ¼ Rici; W ≔ hi⌋Wi ¼ R;

Xi ≔ �ðRki ∧ bkÞ; X ≔ hi⌋Xi ðA3Þ

and

Φi ≔ Wi −
1

4
biW −

1

2
hi⌋ðbm ∧ WmÞ;

Ψi ≔ Xi −
1

4
biX −

1

2
hi⌋ðbm ∧ XmÞ: ðA4Þ

The trace and symmetry properties of ðnÞRij can be found in
Ref. [19], page 127. All these properties are satisfied by our
ansatz.
For torsion-free solutions, the first Bianchi identity in

(A1) implies Xi ¼ 0; hence ð2ÞRij and ð3ÞRij vanish.
Moreover, Ric½ij� ¼ 0 implies ð5ÞRij ¼ 0. The remaining
three curvature parts, first, fourth and sixth, are the PGT
analogues of the irreducible pieces of the Riemannian
curvature. In Riemannian geometry, ð1ÞRij coincides with
the Weyl (conformal) tensor,

Cij ≔ Rij −
1

2
ðbiRicj − bjRiciÞ þ 1

6
Rbibj;

but in the RC geometry, ð1ÞRij differs from Cij by the
presence of torsion terms. Thus, ð1ÞRij is a true extension of
Cij to the RC geometry. The fourth component is defined in
terms of the symmetric traceless Ricci tensor,

Φi ¼
�
RicðijÞ −

1

4
ηijR

�
bj: ðA5Þ

The above formulas are taken from Refs. [5,19] with one
modification: the definition of Wi is taken with an addi-
tional minus sign (Landau-Lifshitz convention), and for
consistency, the overall signs of the fourth through sixth
curvature parts are also changed.

APPENDIX B: PGT FIELD EQUATIONS

The gravitational dynamics of PGT is determined by a
Lagrangian LG ¼ LGðbi; Ti; RijÞ (4-form), which is
assumed to be at most quadratic in the field strengths
(quadratic PGT) and parity invariant. The form of LG can
be conveniently represented as

LG ¼ −⋆ða0Rþ 2ΛÞ þ 1

2
TiHi þ

1

4
RijH0

ij; ðB1Þ

where Hi ≔ ∂LG=∂Ti (the covariant momentum) and H0
ij

define the quadratic terms in LG:

Hi ¼ 2
X3
n¼1

⋆ðanðnÞTiÞ; H0
ij ≔ 2

X6
n¼1

⋆ðbnðnÞRijÞ:

ðB2aÞ

Varying LG with respect to bi and ωij yields the PGT field
equations in vacuum. After introducing the complete
covariant momentum Hij ≔ ∂LG=∂Rij by
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Hij ¼ −2a0⋆ðbibjÞ þH0
ij; ðB2bÞ

these equations can be written in a compact form as

ð1STÞ ∇Hi þ Ei ¼ 0;

ð2NDÞ ∇Hij þ Eij ¼ 0; ðB3Þ

where Ei and Eij are the gravitational energy-momentum
and spin currents:

Ei ≔ hi⌋LG − ðhi⌋TmÞHm −
1

2
ðhi⌋RmnÞHmn;

Eij ≔ −ðbiHj − bjHiÞ: ðB4Þ

The general field equations (B3) are used in Sec. IV to
describe specific dynamical aspects of the Siklos waves
with torsion. In the Riemannian sector with Ti ¼ 0, we
have Hi ¼ 0 and Eij ¼ 0, and the field equations (B3)
reduce to the form given in Sec. III.
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We study gravitational waves with torsion as exact vacuum solutions of three-dimensional gravity with
propagating torsion. The new solutions are a natural generalization of the plane-fronted gravitational waves
in general relativity with a cosmological constant, in the presence of matter.
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I. INTRODUCTION

Investigations of three-dimensional (3D) gravity have
had an important influence on our understanding of both
classical and quantum aspects of the realistic gravitational
dynamics. In this context, the traditional approach based on
general relativity has led to a number of outstanding results
[1]. However, in the early 1990s, Mielke and Baekler [2]
initiated a new approach to 3D gravity, relying on a modern
field-theoretic formulation of gravity, the Poincaré gauge
theory (PGT), proposed in the early 1960s by Kibble and
Sciama [3–6]. Compared to general relativity, the dynami-
cal structure of PGT is extended by using both the curvature
and the torsion to describe the associated Riemann—Cartan
(RC) geometry of spacetime.
The Mielke—Baekler model, like Einstein’s general

relativity, is a topological theory without propagating
degrees of freedom. In PGT, such an unrealistic feature
of the gravitational dynamics can be naturally improved by
going over to a Lagrangian that is at most quadratic in
torsion and curvature (quadratic PGT). Recent investiga-
tions reveal elements that indicate a rich dynamical
structure of the quadratic PGT [7–10]: the theory possesses
a number of propagating torsion modes (tordions) and
black hole solutions, its (anti-)de Sitter [(A)dS] sector is
characterized by well-defined conserved charges and cen-
tral charges, the existence of torsion is compatible with the
AdS/CFT correspondence, and the canonical structure
shows a close resemblance with the four-dimensional
theory.
In the present paper, we continue studying dynamical

aspects of the quadratic PGT in three dimensions by
looking for exact wave solutions with torsion. The
weak-field approximation of Einstein’s theory around
the Minkowski background leads to a simple picture of
the wave nature of gravity, which is recognized to have a
striking analogy to the electromagnetic phenomena [11,12].
By giving a covariant formulation of this analogy, one can
generalize the linearized gravitational wave to the concept
of an exact wave solution of general relativity [13–15].

Here, in the context of the quadratic PGT, such general-
izations are used to find a class of exact wave solutions with
torsion.
A gravitational wave with torsion in three dimensions

was first found by Obukhov [16], in the framework of
the Mielke—Baekler model [2]. Since the model is
defined by a topological action, it was necessary to
introduce matter, chosen in the form of a Maxwell field,
to have a nontrivial wave solution. On the other hand,
our wave solution, being an exact vacuum solution of
the quadratic PGT, offers new insight into the wave
structure of genuine gravitational degrees of freedom,
the propagating torsion modes.
The paper is organized as follows. In Sec. II, we give

an overview of the plane-fronted gravitational waves in
general relativity without/with a gravitational constant,
denoted shortly as GR=GRΛ, as a basis for further
extension to torsion waves in the quadratic PGT. In
Sec. III, we start with the GRΛ form of the metric and
introduce a convenient ansatz for the RC connection, or
equivalently, for the torsion. The only irreducible com-
ponent of torsion is taken to be its tensorial piece,
parametrized by a single function K. Then, we find the
PGT field equations that impose dynamical restrictions
on K. A characteristic parameter appearing in these
equations is the mass parameter μ2, associated to the
torsion spin-2 mode. In Secs. IV and V, we find a class of
exact torsion waves and classify them according to the
values of two parameters, μ2 and λ, the latter one being
related to the value of the cosmological constant. In
Sec. VI, we discuss criteria that are used to recognize the
wave nature of exact solutions and conclude with some
specific remarks. Finally, two Appendixes contain useful
technical information.
Our conventions are the same as in Ref. [8]: the Latin

indices ði; j; k;…Þ refer to the local Lorentz frame, the
Greek indices ðμ; ν; ρ;…Þ refer to the coordinate frame, and
both run over 0,1,2; the metric components in the local
Lorentz frame are ηij ¼ ðþ;−;−Þ; the totally antisymmet-
ric tensor εijk is normalized to ε012 ¼ 1, bi is the ortho-
normal triad (coframe 1-form), hi is the dual basis (frame),
the Hodge dual of a form α is ⋆α, and the exterior product of
forms is implicit.
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II. PLANE-FRONTED WAVES
IN GENERAL RELATIVITY

In this section, we give a short account of the plane-
fronted gravitational waves as exact solutions of Einstein’s
general relativity.

A. pp waves in GR

A specific class of plane-fronted waves, characterized by
having parallel rays (pp waves for short), can be described,
in suitable local coordinates, by the metric [13–15]

ds2 ¼ Hðu; yÞdu2 þ 2dudv − dy2; ð2:1Þ

where u is interpreted as the phase of the wave and ∂v is the
covariantly constant null vector field. This metric is a
natural generalization of the linearized gravitational plane
waves propagating on the background Minkowski space-
time [11,12]. General criteria for identifying the wave
nature of exact solutions will be discussed in Sec. VI.
The explicit form of Hðu; yÞ in Eq. (2.1) can be

determined by the general relativity (GR) field equations.
Since the only nonvanishing component of the Ricci tensor
is ðRicÞuu ¼ H00=2 (prime means differentiation with
respect to y) and the scalar curvature identically vanishes,
R ¼ 0, the vacuum field equations of GR imply

H00 ¼ 0 ⇒ H ¼ h1ðuÞ þ h2ðuÞy; ð2:2Þ

where h1; h2 are the integration “constants.” This solution is
in fact trivial since for H00 ¼ 0 the Ricci tensor vanishes
and, in three dimensions, the full curvature tensor also
vanishes. Hence, Eq. (2.2) defines a Minkowski spacetime
in nonstandard coordinates.
Thus, in GR, nontrivial pp waves can exist only in the

presence of matter; see, for instance, Refs. [17–19]. Note,
however, that true vacuum waves can exist also in new
dynamical settings, such as topologically massive gravity
or new massive gravity [19–21]. The vacuum waves are an
idealization of wave solutions in the region far from matter
sources.

B. Plane-fronted waves in GRΛ

Now, we turn to a generalized dynamical framework of
GRΛ by allowing a nonvanishing cosmological constant.
The pp wave (2.1) is not a vacuum solution of GRΛ. Indeed,
the fact that R ¼ 0 for the metric (2.1) implies Λ ¼ 0.
A plane-fronted wave that is compatible with Λ ≠ 0 can be
conveniently represented by the metric

ds2 ¼ 2

�
q
p

�
2

duðSduþ dvÞ − dy2

p2
; ð2:3aÞ

see the works by Ozsváth [22] and Obukhov [23], where
the functions p, q, and S are chosen as [16]

p¼ 1þ λ

4
y2; q¼ 1−

λ

4
y2; S¼−

λ

2
v2þ

ffiffiffiffi
p

p
2q

Hðu;yÞ:
ð2:3bÞ

Clearly, the limit λ ¼ 0 returns us back to the pp-wave
(2.1). Introducing the ortonormal triad field as

b0 ≔
1ffiffiffi
2

p
��

1þ q2

p2
S

�
duþ q2

p2
dv

�
;

b1 ≔
1ffiffiffi
2

p
��

1 −
q2

p2
S

�
du −

q2

p2
dv

�
;

b2 ≔
1

p
dy; ð2:4Þ

the metric can be written as ds2 ¼ ηijbi ⊗ bj, with
ηij ¼ diagðþ1;−1;−1Þ. In the literature, one often uses
the light-cone components of the triad:

bþ ≔ du; b− ≔
q2

p2
ðSduþ dvÞ:

To verify that the triad (2.4) satisfies the GRΛ field
equations,

a0

�
ðRicÞi − 1

2
Rbi

�
− Λbi ¼ 0; a0 ≔

1

16πG
; ð2:5Þ

we first calculate the Christofell connection; it has the form

Γ01 ¼ λy
q
b2 −

λvffiffiffi
2

p ðb0 þ b1Þ;

Γ02 ¼ λy
q
b0 −

1

2
ðb0 þ b1Þðq2S0=pÞ;

Γ12 ¼ λy
q
b1 þ 1

2
ðb0 þ b1Þðq2S0=pÞ;

or, more compactly,

Γij ¼ Γ̄ij þ 1

2
εijmkmknbnðq2S0=pÞ: ð2:6Þ

Here, the first term, Γ̄ij≔ΓijðS0 ¼ 0Þ, is the piece that
describes the “background” (A)dS geometry of spacetime,
whereas the second term is the radiation piece, character-
ized by the null vector ki ¼ ð1;−1; 0Þ, k2 ¼ 0, which is not
covariantly constant for λ ≠ 0.
Next, we calculate the curvature Rij ¼ dΓij þ Γi

mΓmj,

Rij ¼ −λbibj þ εijmkmkn⋆bnpðq2S0=pÞ0; ð2:7aÞ

where ⋆bn ¼ ð1=2Þεnrsbrbs. Note that the radiation piece
of Rij is clearly separated from the (A)dS piece. Finally, the
form of the Ricci curvature ðRicÞi ¼ −hj⌋Rij and the scalar
curvature R ¼ hi⌋ðRicÞi,
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ðRicÞi ¼ −2λbi þ 1

2
kikmbmpðq2S0=pÞ0;

R ¼ −6λ; ð2:7bÞ

implies that the content of the PGT field equations is given
by

a0λ ¼ Λ; p

�
q2

p
S0
�0

¼ 0;

⇒
ffiffiffiffi
p

p
2q

H ¼ β1ðuÞ þ β2ðuÞ
y
q
: ð2:8Þ

The function H defines the vacuum solution for the metric
(2.3). Since the on-shell value of the curvature is
Rij ¼ −λbibj, the geometry of the solution (2.8) is fixed:
for λ ¼ 0, > 0, or < 0, it has the Minkowskian, AdS, or de
Sitter form, respectively.
Thus, again, for the plane-fronted wave (2.3) to be a

nontrivial exact solution, one has to introduce matter.
However, by going over to PGT, we expect the new
gravitational dynamics to allow for the existence of true
wave solutions even in vacuum.

III. DYNAMICS OF TORSION WAVES

In this section, we briefly recapitulate basic aspects of
PGT, introduce a geometric extension of the Riemannian
plane-fronted waves (2.3) to torsion waves, and discuss
their dynamics.

A. Basic aspects of PGT

The PGT is a gauge theory of gravity based on gauging
the Poincaré group, with an underlying RC geometry of
spacetime [4–6]. Basic gravitational variables are the triad
field bi and the Lorentz connection Aij ¼ −Aji (1-forms),
and the corresponding field strengths are the torsion
GTi ¼ dbi þ Ai

kbk and the curvature Rij ¼ dAij þ
Ai

kAkj (2-forms). General dynamics of PGT is defined
by the gravitational Lagrangian LG ¼ LGðbi; Ti; RijÞ
(3-form). Varying LG with respect to bi and Aij yields
the respective gravitational field equations in vacuum [8],

ð1stÞ ∇Hi þ Ei ¼ 0;

ð2ndÞ ∇Hij þ Eij ¼ 0; ð3:1Þ
where

Hi ≔
∂LG

∂Ti ; Hij ≔
∂LG

∂Rij

are the covariant field momenta and

Ei ≔
∂LG

∂bi ; Eij ≔
∂LG

∂Aij

are the gravitational energy-momentum and spin currents.
We require LG to be parity invariant and at most quadratic

in the field strengths. In that case, Hi and Hij can be
expressed linearly in terms of the irreducible pieces of the
field strengths (Appendix A),

Hi ¼ 2⋆ða1ð1ÞTi þ a2ð2ÞTi þ a3ð3ÞTiÞ;
Hij ¼ −2a0εijkbk þH0

ij;

H0
ij ≔ 2⋆ðb4ð4ÞRij þ b5ð5ÞRij þ b6ð6ÞRijÞ; ð3:2aÞ

where a0, an, and bn are coupling constants; moreover, the
gravitational Lagrangian takes the form

LG ¼ 1

2
TiHiþRijð−a0εijkbkÞþ

1

4
RijH0

ij−
1

3
Λ0εijkbibjbk;

ð3:2bÞ

and the gravitational energy-momentum and spin currents
turn out to be

Ei ¼ hi⌋LG − ðhi⌋TmÞHm þ 1

4
ðhi⌋RmnÞHmn;

Eij ¼ −ðbiHj − bjHiÞ: ð3:2cÞ

B. Geometry of the ansatz

In our search for the generalized plane-fronted waves, we
assume that the form of the triad field, of Eq. (2.4) remains
unchanged, whereas the connection is determined by the
following rule:
(a) Starting with the Riemannian connection (2.6), (i) we

leave its first, (A)dS piece Γ̄ij unchanged (ii) but
modify the second, radiation piece in a way that
preserves the wave nature of the solution.

The instruction (ii) is realized by adopting the following
ansatz for the RC connection:

Aij ¼ Γ̄ij þ 1

2
εijmkmknbnG; ð3:3aÞ

G≔
q2

p
ðS0 þ KÞ: ð3:3bÞ

Here, the new term K ¼ Kðu; yÞ describes the effect of
torsion, as follows from

Ti ≔∇bi ¼ q2

2p
Kkikm⋆bm: ð3:4Þ

The only nonvanishing irreducible piece of Ti is its
tensorial piece (Appendix A):

ð1ÞTi ¼ Ti:

Having chosen the form of the connection, one can now
calculate the RC curvatures; they are obtained from
Eq. (2.7) by the replacement S0 → S0 þ K:
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Rij ¼ −λbibj þ εijmkmkn⋆bnpG0;

ðRicÞi ¼ −2λbi þ 1

2
kikmbmpG0;

R ¼ −6λ: ð3:5Þ

The nonvanishing irreducible components of the curvature
Rij are (Appendix A)

ð4ÞRij ¼ 1

2
εijmkmkn⋆bnpG0; ð6ÞRij ¼ −λbibj;

and the quadratic curvature invariant has the form
Rij�Rij ¼ 6λ2⋆1.
The geometric configuration defined by the triad field

(2.4) and the connection (3.3) represents a generalized
gravitational plane-fronted wave of GRΛ, or the torsion
wave for short. More details on its wave nature will be
given in Sec. VI.

C. Field equations

Having found the expressions for the torsion and the
curvature, one can now calculate the covariant momenta
Hi;Hij, and the energy-momentum and spin currents Ei;
Eij, and obtain the explicit form of the PGT field equations
(3.1). The result takes the following form [24]:

ð1stÞ ða0 þ b4λþ b6λÞpG0 − a1qðqKÞ0 ¼ 0;

2Λ − 2a0λþ b6λ2 ¼ 0;

ð2ndÞ b4ð2G00p3qþG0λyp3 þ 2G0λyp2qÞ
þ 2ða1 − a0 − b6λÞKq3 ¼ 0: ð3:6Þ

The second equation in ð1stÞ defines a relation between the
parameter λ of the solution and the coupling constants. For
b6 ¼ 0, it takes a particularly simple form: a0λ ¼ Λ. By
noting that (2nd) can be rewritten as

2b4p½pqðpG0Þ0 þ ðpG0Þλy� þ 2ða1 − a0 − b6λÞKq3 ¼ 0;

one finds that the field equations (3.6) can be transformed
to a more compact form:

ð1stÞ pG0 ¼C0qK0; C0 ¼
a1

a0þðb4þb6Þλ
;

ð2ndÞ pðpK0Þ0 þμ2K¼ 0; μ2 ¼ a1−a0−b6λ
b4C0

; ð3:7Þ

with K≔ qK.
In PGT, the spectrum of excitations around the

Minkowski spacetime consists of six independent torsion
modes: one scalar, one pseudoscalar, two spin-1, and two
spin-2 states [7,8]. Two spin-2 states form a parity invariant
multiplet associated to the tensorial piece of the torsion,

with equal masses: m2 ¼ a0ða1 − a0Þ=ða1b4Þ. Since
our ansatz (3.4) reduces torsion just to its tensorial
piece, it is not surprising that for λ ¼ 0, the coefficient
μ2 in Eq. (3.7) reduces exactly to m2. For λ ≠ 0, μ2 is
associated to the spin-2 excitations around the (A)dS
background, and the condition for the absence of tachions
requires μ2 ≥ 0.
In what follows, we will solve two dynamical equations

(3.7) for the unknown functionsK andG, assuming μ2 ≥ 0;
then, we will use of Eq. (3.3b) to find S. The torsion
function K and the metric function S, obtained in this way,
completely define the solution.

IV. MASSIVE TORSION WAVES

In this section, we classify the solutions of the field
equations (3.7) for μ2 > 0, according to the values of λ.

A. λ ¼ 0

The simplest form of equations (3.7) is obtained in the
limit λ → 0:

a0G0 − a1K0 ¼ 0; Λ ¼ 0;

K00 þm2K ¼ 0; m2 ¼ a0ða1 − a0Þ
b4a1

; ð4:1Þ

with G ¼ S0 þ K and S ¼ H=2. The solution has a simple
form:

K ¼ AðuÞ cos myþ BðuÞ sin my;

1

2
H ¼ a1 − a0

a0m
ðA sin my − B cos myÞ þ h1ðuÞ þ h2ðuÞy:

ð4:2Þ
In Riemannian gravity, one can remove the term h1 þ

h2y in H by a coordinate transformation. This trans-
formation does not change the form of the metric (2.1),
which is the only dynamical variable of the theory in
vacuum. In the RC theory, such a coordinate transformation
is not particularly useful as it affects the form of
the connection. Note, however, that the term h1 þ h2y
has no influence upon the RC curvature, which depends
only on H00. Thus, without loss of generality, we can
choose h1 ¼ h2 ¼ 0.
The vector field k ¼ ∂v is the Killing vector for both the

metric and the torsion; moreover, it is a null and covariantly
constant vector field. This allows us to consider the solution
(4.2) as a generalized pp wave.

B. λ > 0

For positive λ, we use the notation

λ ¼ 1

l2
; x ¼ y

2l
; κ ¼ 2μl;
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so that
R
dy ¼ 2l

R
dx. Now, having in mind the form of

the solution (4.2) for λ ¼ 0, we use a similar ansatz for the
torsion function K≡ qK:

K ¼ A cos αþ B sin α; α ¼ αðyÞ; ð4:3aÞ
where A ¼ AðuÞ; B ¼ BðuÞ. Substituting this into (2nd) of
Eq. (3.7) produces two conditions on α:

p2ðα0Þ2 − μ2 ¼ 0; p2α00 −
1

2
λypα0 ¼ 0:

The first condition yields

α0 ¼ μ

p
¼ μ

1þ x2
⇒ α ¼ 2l

Z
μ

1þ x2
dx ¼ κ arctan x;

ð4:3bÞ

whereas the second one is automatically satisfied. In the
limit λ → 0, we have α → κx ¼ my, and Eq. (4.3) reduces
to Eq. (4.2).
In the next step, we use Eq. (4.3) and (1st) to

calculate G:

G ¼ 2lC0

Z
q
p
K0dx ¼ D

1

p

��
qA −

4x
κ
B

�
cos α

þ
�
qBþ 4x

κ
A

�
sin α

�
;

where D ¼ C0κ
2=ðκ2 − 4Þ. Finally, integrating the relation

S0 ¼ ðp=q2ÞG − K yields the metric function H. Using the
definition

H≔
ffiffiffiffi
p

p
2q

H ≡ Sþ λ

2
v2; ð4:4Þ

we find

H ¼ H1 þH2;

H1 ≔ 2l
Z

p
q2

Gdx ¼ 2lD ·
p
κq

ðA sin α − B cos αÞ;

H2 ≔− 2l
Z

Kdx ¼ 2l
κ2 − 4

×

�
ðB − iAÞð2þ κÞeið2−κÞ arctan x2F1

�
1;
2 − κ

4
;
6 − κ

4
;−e4i arctan x

�

− ðBþ iAÞð2 − κÞeið2þκÞ arctan x
2F1

�
1;
2þ κ

4
;
6þ κ

4
;−e4i arctan x

��
; ð4:5Þ

where 2F1ða; b; c; zÞ is the hypergeometric function [24].
Here, again, the integration term h1ðuÞ þ h2ðuÞy=q appear-
ing in H is removed, as it has no influence upon the RC
curvature.
To illustrate the form of the torsion wave, we display

here the plots of the torsion function ðq2=pÞKðu; yÞ and
the curvature function pG0ðu; yÞ=2, for a specific choice of
the parameters l, κ, and for fixed amplitudes AðuÞ and BðuÞ
(see Fig. 1).

C. λ < 0

In this case, we use the notation

λ ¼ −
1

l2
; x ¼ y

2l
; κ ¼ 2lμ

and find that the torsion function K is given by

K ¼ A cos αþ B sin α;

α ¼ κ
1

2
ln

���� 1þ x
1 − x

���� ¼ κ arctanh x:
ð4:6Þ

Here, αðxÞ is singular at x ¼ 1, but for λ → 0, it has the
expected limit: α → κx ¼ my. Then, following the same
steps as in the previous subsection, we can first calculateG,

G ¼ E
p

��
Bq −

4x
κ
A
�
sin αþ

�
Aqþ 4x

κ
B
�
cos α

�
;

where E ¼ C0κ
2=ðκ2 þ 4Þ, and then find the metric func-

tion H:

H ¼ H1 þH2;

H1 ≔ 2l
Z

p
q2

Gdx ¼ 2l
E
κ

p
q
½A sin α − B cos α�;

H2 ≔− 2l
Z

Kdx ¼ −
2li

κ2 þ 4
×

�
ðB − iAÞð2þ iκÞeð2−iκÞarctanhx2F1

�
1;
2 − iκ
4

;
6 − iκ
4

;−e4 arctanhx
�

− ðBþ iAÞð2 − iκÞeð2þiκÞarctanhx
2F1

�
1;
2þ iκ

4
;
6þ iκ
4

;−e4 arctanhx
��

: ð4:7Þ
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As before, all the integration terms in H are removed.
This solution can be obtained from the one for λ > 0 by

the analytic continuation in l:

l → il ⇒ κ → iκ; x →
1

i
x;

arctan x →
1

i
arctanh x:

For the asymptotic behavior of both massive and massless
torsion waves, see Sec. VI and Appendix B.

V. MASSLESS TORSION WAVES

For μ2 ¼ 0, we have a1 − a0 − b6λ ¼ 0, and the field
equations (3.7) are simplified:

pG0 ¼ C0qK0; pðpK0Þ0 ¼ 0: ð5:1Þ

A. λ ¼ 0

For vanishing λ, the field equations with C0 ¼ 1 take the
form

G0 − K0 ≡ 1

2
H00 ¼ 0; K00 ¼ 0; ð5:2Þ

so that

H ¼ h1ðuÞ þ h2ðuÞy; K ¼ k1ðuÞ þ k2ðuÞy: ð5:3Þ
This is a rather strange solution: since the metric function
H is trivial, the metric takes the Minkowski form, and
consequently it is dynamically decoupled from the
torsion.

B. λ > 0

For the positive cosmological constant, with λ≔ 1=l2

and x ¼ y=2l, the solution reads

K¼ AðuÞarctanxþBðuÞ;

G¼ AðuÞC0x
p

;

Hðu;yÞ ¼ lAðuÞ
�
C0

q
− arctanx · ln

1− ie2iarctanx

1þ ie2iarctanx

�

þ il
2
AðuÞ

�
Li2

�
ie2iarctanx

�
−Li2

�
−ie2iarctanx

��

− 2lBðuÞarctanh x; ð5:4Þ

where Li2ðzÞ is the dilogarithm function [24]. The solution
is illustrated in Fig. 2.
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FIG. 1 (color online). The form of the torsion function ðq2=pÞK (left) and the curvature function pG0=2 (right) for μ2 > 0, in the region
x ∈ ½−10; 10�, and for AðuÞ ¼ BðuÞ ¼ 1, l ¼ 1, κ ¼ 1=4.
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FIG. 2 (color online). The form of the torsion function ðq2=pÞK (left) and the curvature function pG0=2 (right) for μ2 ¼ 0, in the
region x ∈ ½−10; 10�, and for AðuÞ ¼ BðuÞ ¼ 1 and l ¼ 1.
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C. λ < 0

Finally, for λ≔− 1=l2, one finds

K¼AðuÞarctanh xþBðuÞ;

G¼AðuÞC0x
p

;

Hðu;yÞ¼lAðuÞ
�
−
C0

q
−
i
2
arctanh x · ln

1− ie−2 arctanhx

1þ ie−2 arctanhx

�

þ il
2
AðuÞ

�
Li2

�
ie−2 arctanhx

�
−Li2

�
− ie−2 arctanhx

��

þ2lBðuÞarctanx: ð5:5Þ

VI. DISCUSSION AND CONCLUSIONS

In this paper, we derived a new class of exact solu-
tions of 3D gravity with propagating torsion in empty
spacetime, the generalized plane-fronted waves, or the
torsion waves.
The wave ansatz for the metric, Eqs. (2.4), and the RC

connection, Eqs. (3.3), represent a natural generalization of
the Riemannian plane-fronted waves with cosmological
constant. However, a covariant characterization of the wave
nature of an exact solution is a rather complex issue
[13–15], which has not been fully clarified for non-
Riemannian theories of gravity; for an attempt in this
direction, see Ref. [25].
The existence of the null covector ki ¼ ð1; 1; 0Þ, appear-

ing already in the RC connection, Eqs. (3.3), is an essential
element of the geometric structure of a gravitational wave.
It can be represented as the 1-form kibi ¼

ffiffiffi
2

p
du, asso-

ciated to the wave fronts u ¼ const. The related vector field
ki∂i ¼

ffiffiffi
2

p ∂v is orthogonal to the y direction; moreover, for
λ ¼ 0, ki is covariantly constant (pp wave).
Based on an analogy with the electromagnetism,

Lichnerowicz proposed a covariant criterion for the exist-
ence of gravitational waves in general relativity; see
Ref. [14]. After separating the radiation piece of the RC
curvature, of Eqs. (3.5), Sij≔Rij þ 2λbibj, one can verify
that it satisfies Lichnerowicz’s requirements:

kiSijmn ¼ 0; εijkkiSjkmn ¼ 0: ð6:1Þ

Clearly, the above criterion is not sufficient for a RC
geometry, where we have one more field strength, the
torsion. However, in analogy with electromagnetism,
the radiation conditions for torsion are expected to have
the form

kmTimk ¼ 0; εmnkkmTink ¼ 0: ð6:2Þ

A direct verification based on Eq. (3.4) shows that these
conditions are also satisfied. The radiation properties, of

Eqs. (6.1) and (6.2) strongly support the interpretation of
our generalized plane-fronted wave as a genuine PGT
extension of the related Riemannian structure.
One should also note that our RC curvature has the same

irreducible components as the corresponding Riemannian
curvature, and moreover it has all the usual index sym-
metries of the Riemannian curvature; in particular,
Rijmn ¼ Rmnij. The same properties were found by Pašić
and Vassiliev [26] in their pp wave with torsion, con-
structed in the model with metric-compatible connection
and curvature squared Lagrangian. The torsion of their
solution is pure tensor, as in our case.
In electrodynamics and in general relativity, exact wave

solutions are associated with massless modes of the
related fields, so that the appearance of massive torsion
waves may seem a bit strange. However, the existence of
massive torsion modes is not in conflict with the gauge
structure of PGT; it is a generic feature associated to the
presence of T2 terms in the Lagrangian. Massive waves
appear also in some Riemannian extensions of GR, such
as topologically massive gravity or new massive gravity
[19–21].
Asymptotic properties of the torsion waves are

defined by the large y limits of the torsion of Eq. (3.4)
and the RC curvature of Eq. (3.5). As follows from
the results of Appendix B, the generic asymptotic form
of the torsion waves does not coincide with the (A)dS
geometry.
Our study of exact torsion waves in three dimensions

can be considered as a complement to the related results in
four dimensions [25–27]. In particular, we wish to place
emphasis on the results of Sippel and Goenner [25], who
made a significant progress in clarifying the structure of
pp waves with torsion: (i) they generalized the Ehlers—
Kundt classification of pp waves [13] by relaxing the
assumption that the GR field equations hold, and (ii) they
introduced a classification of the allowed form of torsion
in pp waves. Further advances in this direction would help
us to better understand the role of torsion in exact wave
solutions.
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APPENDIX A: IRREDUCIBLE DECOMPOSITION

For the sake of completeness, we present here the
form of the irreducible components of Ti and Rij, see
also Ref. [8], with the wedge product sign explicitly
displayed.
Torsion has three irreducible components, the vector,

axial, and tensor component:
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ð2ÞTi ≔
1

2
bi∧ðhm⌋TmÞ ¼ 1

2
ηijVkbj∧bk;

ð3ÞTi ≔
1

3
⋆½bi∧⋆ðTm∧bmÞ� ¼

1

2
Aεijkbj∧bk;

ð1ÞTi ≔Ti − ð2ÞTi − ð3ÞTi; ðA1Þ

where Vk ≔ Tm
mk and A≔ εijkTijk=6.

The curvature also has three irreducible pieces. Making
use of the definitions

Ai ≔
1

2
hi⌋ðbk∧R̂kÞ ¼ R̂½ik�bk;

Si ≔ R̂i − Ai −
1

3
Rbi ¼ R̂ðikÞbk −

1

3
Rbi;

where R̂i≔ðRicÞi, the irreducible pieces of Rij read

ð4ÞRij ≔ biSj − bjSi;
ð5ÞRij ≔ biAj − bjAi;

ð6ÞRij ≔
1

6
Rbi∧bj: ðA2Þ

Note that in three dimensions, the Weyl curvature vanishes.

APPENDIX B: ASYMPTOTIC GEOMETRY

In this Appendix, we calculate the large y limits of the
expressions ðq2=pÞK and pG0=2; these limits define the
respective asymptotic values of the torsion and the radiation
piece of the curvature, characterizing the gravitational wave.
The formulas for λ ¼ 0 are omitted, as the related asymptotic
behavior can be read off directly from the main text.

1. Case μ2 > 0

λ > 0:

lim
y→�∞

q2

p
K ¼ −

�
A cos

κπ

2
� B sin

κπ

2

�
;

lim
y→�∞

1

2
pG0 ¼ 1

2
C0μ

�
�A sin

κπ

2
− B cos

κπ

2

�
: ðB1Þ

λ < 0:

lim
y→∞

q2

p
K ¼ −A;

lim
y→∞

1

2
pG0 ¼ −

1

2
C0μB: ðB2Þ

2. Case μ2 ¼ 0

λ > 0:

lim
y→�∞

q2

p
K ¼ ∓A

π

2
− B;

lim
y→∞

1

2
pG0 ¼ −

AC0

4l
: ðB3Þ

λ < 0:

lim
y→∞

q2

p
K ¼ −B;

lim
y→∞

1

2
pG0 ¼ −

AC0

4l
: ðB4Þ
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We study the Hamiltonian structure of the general parity-invariant model of three-dimensional gravity

with propagating torsion, with eight parameters in the Lagrangian. In the scalar sector, containing scalar or

pseudoscalar modes with respect to maximally symmetric background, the phenomenon of constraint

bifurcation is observed and analyzed. The stability of the Hamiltonian structure under linearization is used

to identify dynamically acceptable values of parameters.
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I. INTRODUCTION

Models of three-dimensional (3D) gravity were intro-
duced to help us in clarifying highly complex dynamical
behavior of the realistic four-dimensional general relativity
(GR). In the last three decades, they led to a number of
outstanding results [1]. However, in the early 1990s,
Mielke and Baekler [2] proposed a new, non-Riemannian
approach to 3D gravity, based on the Poincaré gauge theory
(PGT) [3–6]. In contrast to the traditional GR with an
underlying Riemannian geometry of spacetime, the PGT
approach is characterized by a Riemann-Cartan geometry,
with both the curvature and the torsion of spacetime as
carriers of the gravitational dynamics. Thus, PGT allows
exploring the interplay between gravity and geometry in a
more general setting.

Three-dimensional GR with or without a cosmological
constant, as well as the Mielke–Baekler (MB) model, are
topological theories without propagating modes. From the
physical point of view, such a degenerate situation is
certainly not quite realistic. In the context of Riemannian
geometry, this limitation is surmounted by two well-known
models: topologically massive gravity [7] and the
Bergshoeff-Hohm-Townsend massive gravity [8]. On the
other hand, including propagating modes in PGT is much
more natural: it is achieved simply by using Lagrangians
quadratic in the field strengths [9–12].

Since the general parity-invariant PGT Lagrangian in 3D
is defined by eight arbitrary parameters [11], it is a theo-
retical challenge to find out which values of the parameters
are allowed in a viable theory. Following the approach of
Sezgin and Nieuwenhuizen [13], Helayël-Neto et al. [10]
used the weak-field approximation around the Minkowski
background to analyze this issue in a parity-violating ver-
sion of PGT, and found a number of interesting restrictions
on the parameters. However, one should be very careful
with the interpretation of these results, since (i) it is not
clear how the transition fromMinkowski to (anti–)de Sitter
[(A)dS] background might influence the perturbative

analysis, and (ii) the weak-field approximation does not
always lead to a correct identification of the physical
degrees of freedom. Regarding (ii), we note that the con-
strained Hamiltonian method [4,14] is best suited for
analyzing dynamical content of gauge field theories,
respecting fully their nonlinear structure. As noticed by
Chen et al. [15] and Yo and Nester [16], it may happen, for
some ranges of parameters, that the canonical structure of a
theory (the number and/or type of constraints) is changed
after linearization in a way that affects its physical content,
such as the number of physical degrees of freedom. Based
on the canonical stability under linearization as a criterion
for an acceptable choice of parameters, Shie et al. [17]
were able to define a PGT cosmological model that offers a
convincing explanation of dark energy as an effect induced
by torsion. Recently, the Bergshoeff-Hohm-Townsend
massive gravity is found to be canonically unstable under
linearization [18,19].
In this paper, we use the constrained Hamiltonian

formalism to study (a) the phenomenon of ‘‘constraint
bifurcation’’ and (b) the stability under linearization of
the general parity-invariant PGT in 3D [11], in order to
find out the parameter values that define consistent models
of 3D gravity with propagating torsion. Because of the
complexity of the Hamiltonian structure, we restrict our
attention to the scalar sector, with JP ¼ 0þ or 0� modes,
defined with respect to the (A)dS background. Investigation
of higher spin modes is left for a future study.
The paper is organized as follows. In Sec. II, we review

basic Lagrangian aspects of the parity-invariant PGT in
3D. In Sec. III, we give a brief account of the weak-field
approximation around the (A)dS background, restricting
our attention to the scalar sector, with JP ¼ 0þ or 0�. In
Sec. IV, we analyze general aspects of the canonical dy-
namics of PGT; in particular, we examine how, depending
on certain critical values of parameters, some extra primary
constraints may appear (if-constraints), leading to a sig-
nificant effect on the Hamiltonian structure. In Sec. V, we
analyze the canonical structure of the spin-0þ sector, in-
cluding the ‘‘constraint bifurcation’’ effects. Then, the test
of canonical stability under linearization is used to reveal
dynamically acceptable values of parameters. In Sec. VI,

*mb@ipb.ac.rs
†cbranislav@ipb.ac.rs

PHYSICAL REVIEW D 88, 104032 (2013)

1550-7998=2013=88(10)=104032(15) 104032-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.104032


the same type of analysis is carried out for the spin-0�
sector. Section VII is devoted to concluding remarks, and
appendixes contain technical details.

Our conventions are as follows: the Latin indices
ði; j; k; . . .Þ refer to the local Lorentz frame, the Greek
indices ð�; �; �; . . .Þ refer to the coordinate frame, and
both run over 0, 1, 2; the metric components in the local
Lorentz frame are �ij ¼ ðþ;�;�Þ; totally antisymmetric

tensor "ijk is normalized to "012 ¼ 1.

II. LAGRANGIAN FORMALISM

We begin our considerations by a short account of the
Lagrangian formalism for PGT. Assuming parity invari-
ance, the dynamics of 3D gravity with propagating torsion
is determined by the gravitational Lagrangian (density)
~LG ¼ bLG,

LG ¼ �aR� 2�0 þLT2 þLR2 ; (2.1a)

where �0 is a bare cosmological constant, a ¼ 1=16�G,
and the pieces quadratic in the field strengths read

LT2 :¼ 1

2
Tijkða1ð1ÞTijk þ a2

ð2ÞTijk þ a3
ð3ÞTijkÞ;

LR2 :¼ 1

4
Rijklðb4ð4ÞRijkl þ b5

ð5ÞRijkl þ b6
ð6ÞRijklÞ;

(2.1b)

where ðnÞTijk and
ðnÞRijkl are irreducible components of the

torsion and the Riemann-Cartan curvature [11]. Since the
Weyl curvature vanishes in 3D, one can rewrite these

expressions in the form that is more practical for the
canonical analysis:

LT2 ¼ Tijkð�1Tijk þ �2Tkji þ �3�ijVkÞ;
LR2 ¼ Rijð�1Rij þ �2Rji þ �3�ijRÞ ¼: RijH ij:

(2.1c)

Here, Vk :¼ Tm
mk, Rij :¼ Rm

imj is the Ricci tensor, R is

the scalar curvature, and

�1 ¼ 1

6
ð2a1 þ a3Þ; �2 ¼ 1

3
ða1 � a3Þ;

�3 ¼ 1

2
ða2 � a1Þ: �1 ¼ 1

2
ðb4 þ b5Þ;

�2 ¼ 1

2
ðb4 � b5Þ; �3 ¼ 1

12
ðb6 � 4b4Þ:

We also introduce the covariant momenta H ijk ¼
@LT2=@Tijk and H ijkl ¼ @LR2=@Rijkl:

H ijk ¼ 2ða1ð1ÞTijk þ a2
ð2ÞTijk þ a3

ð3ÞTijkÞ
¼ 4ð�1Tijk þ �2T½kj�i þ �3�i½jVk�Þ;

H ijkl ¼ �2að�ik�jl � �jk�ilÞ þH 0
ijkl;

H 0
ijkl ¼ 2ðb4ð4ÞRijkl þ b5

ð5ÞRijkl þ b6
ð6ÞRijklÞ

¼ 2ð�ikH jl � �jkH ilÞ � ðk $ lÞ:
General field equations for the PGT theory (2.1) are

given in [11]. Without matter contribution, these equations,
transformed to the local Lorentz basis, take the form

rmH imj þ 1

2
H i

mnð�Tjmn þ 2�jmVnÞ � tij ¼ 0; (2.2a)

2aTkij þ 2Tm
ijðH mk � �mkH Þ þ 4r½iðH j�k � �j�kH Þ þ "ijn"

mr
kH mr

n ¼ 0; (2.2b)

whereH ¼ H k
k, and tij is the energy-momentum tensor

of gravity:

tij :¼ �ijLG � Tmn
iH mnj þ 2aR̂ji

� 2ðR̂n
iH nj � R̂j

nm
iH nmÞ:

Relying again on the vanishing of the Weyl curvature,
one can express Bianchi identities in terms of the Ricci
tensor. In the local Lorentz basis, these identities take the
form:

"mnrrmT
i
nr þ "rsnTi

mnT
m
rs þ 2"imnRmn ¼ 0;

rkG
ki � VkG

ki ¼ 0;
(2.3)

where Gki :¼ Rki � 1
2�ikR.

III. SCALAR EXCITATIONS AROUND
(A)DS BACKGROUND

Particle spectrum of 3D gravity with torsion (2.1) around
the Minkowski background M3 is already known [10,11].

Here, wewish to examine the modification of this spectrum
induced by transition to the (A)dS background. This will
help us to clarify the relation between the canonical stabil-
ity of the theory under linearization and its M3 or (A)dS
particle spectrum. Our attention is restricted to the scalar
sector, with JP ¼ 0þ, 0� modes.
Maximally symmetric configuration of 3D gravity with

torsion is defined by the set of fields �� ¼ ð �bi�; �Aij
�Þ,

such that

�Tijk ¼ p"ijk; �Rij
mn ¼ �qð	i

m	
j
n � 	i

n	
j
mÞ; (3.1)

where the parameters p and q define an effective
cosmological constant,

�eff :¼ q� p2

4
:

In order for this configuration to be a solution of the field
equations in vacuum, the parameters p and q have to
satisfy the following conditions [11]:
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pðaþ qb6 þ 2a3Þ ¼ 0; (3.2a)

aq��0 þ 1

2
p2a3 � 1

2
q2b6 ¼ 0: (3.2b)

In the weak-field approximation around ��, the gravitational

variables � ¼ ðbi�; Aij
�Þ take the form � ¼ ��þ ~�.

We use the convention that indices of the linear excitations
~� are changed by the background triad and/or metric.
The analysis of the particle spectrum is based on

the linearized field equations. In the same approximation,
the Bianchi identities read:

"kmn �rk
~Ti

mn � 2p ~Vi þ 2"imn ~Rmn ¼ 0; (3.3a)

�rk
~Gki � q ~Vi ¼ 0: (3.3b)

A. Spin-0þ mode

Looking at the particle spectrum of the theory (2.1) on
the M3 background (see Sec. 3 in [11]), one finds that the
spin-0þ mode has a finite mass (and propagates) if

a2ðb4 þ 2b6Þ � 0:

In order to study the spin-0þ mode, we adopt the following,
somewhat simplified conditions:

a2; b6 � 0; a1 ¼ a3 ¼ b4 ¼ b5 ¼ 0: (3.4a)

In fact, this choice is not unique since the existence
of a spin-0þ mode can be realized, for instance, without
requiring b4 ¼ 0. However, our ‘‘minimal’’ choice (3.4a)
greatly simplifies the calculations, and moreover, one
does not expect that any essential dynamical feature of
the spin-0þ mode will be thereby lost; see [15,16]. The
corresponding Lagrangian reads

Lþ
G ¼ �aR� 2�0 þ 1

2
a2V

kVk þ 1

12
b6R

2; (3.4b)

and the conditions (3.2) reduce to

pðaþ qb6Þ ¼ 0; aq��0 � 1

2
q2b6 ¼ 0: (3.4c)

Now, we are going to show that the Minkowskian
conditions (3.4a) equally well define the spin-0þ mode
with respect to the (A)dS background (3.1). We start by
noting that, under the conditions (3.4a), the linearized field
equations (2.2) read

ðaþ qb6Þ ~Gji þ a2�i½j �rk ~Vk� þ b6q

3
�ij

~R ¼ 0; (3.5a)

ðaþ qb6Þ ~Tijk � pb6
6

"ijk ~Rþ a2�i½j ~Vk� þ b6
3
�i½j �rk� ~R ¼ 0; (3.5b)

and their traces are

�2a2
�ri

~Vi þ ða� qb6Þ ~R ¼ 0; (3.6a)

ðaþ qb6 þ a2Þ ~Vk þ b6
3

�rk
~R ¼ 0: (3.6b)

In the generic case, by combining �rk
�rk of (3.6a) with �rk

of (3.6b), one obtains

ð �ri
�ri þm2

0þÞ
 ¼ 0;

m2
0þ ¼ 3ða� qb6Þðaþ qb6 þ a2Þ

2a2b6
; (3.7)

where 
 :¼ �ri
~Vi. Thus, the field 
 can be identified as the

spin-0þ excitation with respect to the (A)dS background,
the mass of which is finite. In the limit of vanishing q, m2

0þ
reduces to the corresponding Minkowskian expression.

B. Spin-0� mode

Similar analysis can be applied to the spin-0� excitation.
We start from the Minkowskian condition that the spin-0�
mode has a finite mass (and propagates) [11],

ða1 þ 2a3Þb5 � 0:

We describe dynamics of the spin-0� sector by the sim-
plified conditions:

a3; b5 � 0; a1 ¼ a2 ¼ b4 ¼ b6 ¼ 0: (3.8a)

The related Lagrangian has the form

L�
G ¼ �aR� 2�0 þ 3a3A2 þ b5R½ij�R½ij�; (3.8b)

with A ¼ "ijkTijk=6, and the conditions (3.2) reduce to

pðaþ 2a3Þ ¼ 0; aq��0 þ 1

2
p2a3 ¼ 0: (3.8c)

Starting from the linearized field equations,

a3"ijk
�rk ~Aþ a3p�ij

~Aþ 4a3
3

p"ðimn~tjÞmn � a3p"ijk ~V
k þ a ~Gji þ b5q ~R½ij� ¼ 0; (3.9a)

a ~Tijk þ pb5"
n
jk
~R½ni� þ b5

�r½jð ~Rk�i � ~Rik�Þ þ 2a3"ijk
~A ¼ 0: (3.9b)
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the axial irreducible components of these equations read

a3
�ri ~A� a3p ~Vi � 1

2
ða� qb5Þ"ijk ~Rjk ¼ 0;

ðaþ 2a3Þ ~Aþ 1

3
b5"

ijk �ri
~Rjk ¼ 0:

(3.10)

Then, the divergence of the first equation combined with
the second one yields

a3
�ri �ri

~A� pa3
�ri

~Vi þ 1

2
ða� qb5Þ 3ðaþ 2a3Þ

b5
~A ¼ 0:

(3.11)

Now, using the divergence of the first Bianchi identity
(3.3a) and the commutator identity ½ �rm;

�rn� ~Xi ¼
�p"mnk

�rk ~Xi � 2q�i½m ~Xn�, we find


 � �rk
~Vk ¼ � 3

2
pðaþ 2a3Þ ~A ¼ 0;

as a consequence of (3.8c). Hence, (3.11) implies

ð �rk
�rk þm2

0�Þ ~A ¼ 0; m2
0� ¼ 3ða� qb5Þðaþ 2a3Þ

2a3b5
:

(3.12)

Thus, generically, ~A can be identified as the spin-0�
excitation with respect to the (A)dS background. For
q ¼ 0, m2

0� takes the Minkowskian form.

IV. HAMILTONIAN STRUCTURE

In this section, we analyze general features of the
Hamiltonian structure of 3D gravity with propagating
torsion, defined by the Lagrangian (2.1); see [4,20].

A. Primary constraints

We begin our study by analyzing the primary con-
straints. The canonical momenta corresponding to basic
dynamical variables ðbi�; Aij

�Þ are ð�i
�;�ij

�Þ; they are

given by

�i
� :¼ @ ~L

@ð@0bi�Þ ¼ bH i
0�;

�ij
� :¼ @ ~L

@ð@0Aij
�Þ ¼ bH ij

0�:

Since the torsion and the curvature do not involve the
velocities @0b

i
0 and @0A

ij
0, one obtains the so-called

‘‘sure’’ primary constraints

�i
0 � 0; �ij

0 � 0; (4.1)

which are always present, independently of the values of
coupling constants. If the Lagrangian (2.1) is singular
with respect to some of the remaining velocities @0b

i
�

and @0A
ij
�, one obtains further primary constraints.

The existence of these primary ‘‘if-constraints’’ (ICs) is
determined by the critical values of the coupling constants.

1. The torsion sector

The gravitational Lagrangian (2.1) depends on the time
derivative @0b

i
� only through the torsion tensor, appearing

in LT2 . It is convenient to decompose Tijk into the parallel

and orthogonal components with respect to the spatial
hypersurface � (see Appendix A),

Tijk ¼ Ti�| �k þ 2Ti½�|?nk� ¼ Tijk þT ijk;

where Tijk :¼ Ti�| �k does not depend on velocities and the

unphysical variables ðbi0; Aij
0Þ, and nk is the normal to �.

Now, by introducing the parallel gravitational momentum

�̂i
�k ¼ �i

�bk� (�̂i
�knk ¼ 0), one obtains

�̂i �k ¼ JH i? �kðTÞ; (4.2a)

where J :¼ det ðb�{
�Þ, and

H i? �k ¼ 2½2�1Ti? �k þ �2ðT �k?i � T? �kiÞ
þ �3ðniV �k � �i �kV?Þ�:

The linearity of H ijkðTÞ in the torsion tensor allows us to

rewrite (4.2a) in the form

�i �k :¼
�̂i �k

J
�H i? �kðTÞ ¼ H i? �kðT Þ; (4.2b)

where the ‘‘velocities’’ Ti�|? appear only on the right-hand

side. This system of equations can be decomposed into
irreducible parts with respect to the group of two-
dimensional rotations in �. Going over to the parameters
a1, a2, a3, one obtains

�? �k�
�̂? �k

J
�ða2�a1ÞT �m

�m �k
¼ða1þa2ÞT?? �k; (4.3a)

S��
S�̂

J
¼�2a2T

�m
�m?; (4.3b)

A�
�{ �k
�

A�̂
�{ �k

J
�2

3
ða1�a3ÞT?�{ �k¼�2

3
ða1þ2a3ÞT½�{ �k�?;

(4.3c)

T�
�{ �k
�

T�̂
�{ �k

J
¼�2a1

TT
�{ �k?; (4.3d)

where S�, A�
�{ �k
, and T�

�{ �k
are the trace (scalar), antisym-

metric, and traceless-symmetric parts of ��{ �k

(Appendix A).
If the critical parameter combinations appearing on the

right-hand sides of Eqs. (4.3) vanish, the corresponding
expressions�K become additional primary constraints, the
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primary ICs. After a suitable reordering, the result of the
analysis is summarized as follows:

For a2 ¼ 0, a1 þ 2a3 ¼ 0, a1 þ a2 ¼ 0, and/or a1 ¼ 0,
the expressions S�, A�

�{ �k
, �? �k, and/or T�

�{ �k
become

primary ICs (see Table I below).

2. The curvature sector

In order to examine how the gravitational Lagrangian
depends on the velocities @0A

ij
�, we start with the follow-

ing decomposition of the curvature tensor:

Rijmn ¼ Rij �m �n þ 2Rij½ �m?nn� ¼ Rijmn þRijmn;

where Rijmn :¼ Rij �m �n does not depend on the ‘‘velocities’’

Rij? �k and the unphysical variables. The parallel gravita-

tional momentum �̂ij
�k ¼: �ij

�bk� (�̂ij
�knk ¼ 0) is

given as

�̂ij �k ¼ JH ij? �kðRÞ; (4.4a)

where

H ij? �k ¼�4an½i�j� �k þ 4n½iH j� �k � 4�½i �kH j�?
¼ 4n½i�j� �kð�aþ 2�3RÞ þ 4�1ðn½iRj� �k ��½i �kRj�?Þ

þ 4�2ðn½iR �kj� ��½i �kR?j�Þ:

Since the velocities Rij? �k are contained only in R, we

rewrite this equation as

�ij �k :¼
�̂ij �k

J
þ 4an½i�j� �k �H 0

ij? �k
ðRÞ ¼ H 0

ij? �k
ðRÞ:

(4.4b)

The components of a tensor X?�{ �| can be decomposed into

the trace, antisymmetric, and symmetric-traceless piece
(Appendix A). Such a decomposition of (4.4b) yields

S�? �
S�̂?
J

þ 4a� 2

3
ðb6 � b4ÞR �k �n

�k �n

¼ 2

3
ðb4 þ 2b6ÞR �k

? �k?; (4.5a)

A�?�{ �| �
A�̂?�{ �|

J
þ 2b5R

�k
½�{ �|� �k ¼ 2b5R½�{?�|�?; (4.5b)

T�?�{ �| �
T�̂?�{ �|

J
� b4ð2Rð�{ �k �|Þ

�k � ��{ �|R
�m �n

�m �nÞ
¼ b4ð2Rð�{?�|Þ? � ��{ �|R

�k
? �k?Þ: (4.5c)

For a tensor X�{ �| �k ¼ �X�| �{ �k, the pseudoscalar ("�{ �| �kX�{ �| �k)

and the symmetric-traceless piece (X�{ð�| �kÞ � traces) identi-

cally vanish. Hence, Eq. (4.4b) implies one more relation,

V��{ �
V�̂�{

J
� ðb4 � b5ÞR? �k

�{ �k ¼ ðb4 þ b5ÞR�{ �k
? �k
; (4.5d)

where VX�{ ¼ X�{ �|
�| (Appendix A).

Thus, when the parameters appearing on the right-hand
sides of (4.5) vanish, we have the additional primary con-
straints�K. Combining these relations with those obtained
in the torsion sector, one finds the complete set of primary
ICs, including their spin-parity characteristics (JP), as
shown in Table I.
This classification has a noteworthy interpretation:

whenever a pair of the ICs with specific JP is absent, the
corresponding dynamical mode is liberated and becomes a
physical degree of freedom (DoF). Thus, for a2ðb4 þ
2b6Þ � 0, the spin-0þ ICs are absent, and the related
DoF becomes physical. Similarly, ða1 þ 2a3Þb5 � 0 im-
plies that the spin-0� DoF becomes physical. The results
obtained here refer to the full nonlinear theory; possible
differences with respect to the perturbative analysis
(Sec. III) will be discuss in Secs. V and VI.

B. General form of the Hamiltonian

Once we know the complete set of the primary ICs, we
can construct first the canonical and then the total
Hamiltonian. Being interested only in the gravitational
degrees of freedom, we disregard the matter contribution.

1. Canonical Hamiltonian

In the absence of matter, the canonical Hamiltonian
(density) is defined by

H c ¼ �i
� _bi� þ 1

2
�ij

� _Aij
� � bLG:

Using the lapse and shift functions N and N�, defined in
Appendix A, one can rewrite H c in the Dirac–Arnowitt-
Deser-Misner (DADM) form [4,20],

H c ¼ NH? þ N�H � � 1

2
Aij

0H ij þ @�D
�; (4.6a)

where

TABLE I. Primary if-constraints.

Critical conditions Primary constraints JP

a2 ¼ 0 S� � 0
0þ

b4 þ 2b6 ¼ 0 S�? � 0
a1 þ 2a3 ¼ 0 A�

�{ �k
� 0

0�
b5 ¼ 0 A�?�{ �k

� 0
a1 þ a2 ¼ 0 �? �k � 0

1
b4 þ b5 ¼ 0 V��k

� 0
a1 ¼ 0 T�

�{ �k
� 0

2
b4 ¼ 0 T�?�{ �k

� 0
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H? ¼ �̂i
�|Ti

?�| þ
1

2
�̂ij

�kRij
? �k

� JLG � nir��i
�;

H � ¼ �i
�Ti

�� þ 1

2
�ij

�Rij
�� � bi�r��i

�;

H ij ¼ 2�½i
�bj�� þr��ij

�;

D� ¼ bi��i
� þ 1

2
�ij

�Aij
�:

(4.6b)

The canonical Hamiltonian is linear in the unphysical
variables ðbi0; Aij

0Þ, and H? is the only dynamical part

ofH c. The velocities T
i
? �k
; Rij

? �k
appearing inH? can be

expressed in terms of the phase-space variables, using
Eqs. (4.3) and (4.5). Explicit calculation is simplified by
separating the torsion and the curvature contributions
in H?:

H? ¼ 2�0J þH T
? þH R

?;

H T
? :¼ �̂i�|Ti?�| � JLT2 � nir��i

�;

H R
? :¼ 1

2
�̂ij �kRij? �k � JLR2 þ aJR:

(4.7)

The torsion piece of H? turns out to have the form
(Appendix A)

H T
? ¼ 1

2
J�2 � JLT2ðTÞ � nir��i

�; (4.8a)

�2 :¼ �ða1 þ a2Þ
a1 þ a2

ð�?�{Þ2 þ �ða2Þ
2a2

ðS�Þ2

þ 3

2

�ða1 þ 2a3Þ
ða1 þ 2a3Þ ðA��{ �|Þ2 þ

�ða1Þ
2a1

ðT��{ �|Þ2; (4.8b)

where �ðxÞ is the singular function
�ðxÞ
x

¼
8<
:

1
x ; x � 0

0; x ¼ 0
;

which takes care of the conditions under which ICs become
true constraints. Similar calculations for the curvature part
yield

H R
? ¼ 1

4
J�2 � JLR2ðRÞ þ aJR; (4.9a)

�2 :¼ �ðb5Þ
b5

ðA�?�| �k
Þ2 þ �ðb4Þ

b4
ðT�?�| �k

Þ2

þ 3

2

�ðb4 þ 2b6Þ
b4 þ 2b6

ðS�?Þ2 þ 2
�ðb4 þ b5Þ
b4 þ b5

ðV��{Þ2:
(4.9b)

2. Total Hamiltonian

The total Hamiltonian is defined by the expression

H tot ¼ H c þ uk0�k
0 þ 1

2
uij�ij

0 þ ðu ��Þ þ ðv ��Þ;
(4.10a)

where u’s and v’s are arbitrary multipliers and ðu ��Þ þ
ðv ��Þ denotes the contribution of all the primary ICs.
Formally, the existence of ICs is regulated by the form
of the related multipliers, for instance, u? �k is given as
u? �k :¼ ½1� �ða1 þ a2Þ�u0? �k

, and so on. Using the irre-

ducible decomposition technique, we find

ðu ��Þ :¼ u? �k�? �k þ Tu�{ �kT�
i �k
þ Au�{ �kA�

i �k
þ 1

2
SuS�;

ðv ��Þ :¼ Tv?�{ �kT�?�{ �k
þ Av?�{ �kA�?�{ �k

þ 1

2
Sv?S�? þ Vv

�kV��k
: (4.10b)

3. Consistency conditions

Having found the form of the total Hamiltonian, we
can now apply Dirac’s consistency algorithm to the

primary constraints, _�K ¼ f�K;Htotg � 0, where Htot ¼R
d3xH tot and fX; Yg is the Poisson bracket (PB) between

X and Y; then, the procedure continues with the secondary
constraints, and so on [20]. In what follows, our attention
will be focused on the scalar sector, with JP ¼ 0þ
or 0� modes.

V. SPIN-0þ SECTOR

As one can see from Table I, the absence of two spin-0þ
constraints, S� and S�?, is ensured by the condition

a2ðb4 þ 2b6Þ � 0, whereby the spin-0þ degree of freedom
becomes physical. To study the dynamical content of this
sector, we adopt the relaxed conditions

a2; b6 � 0; a1 ¼ a3 ¼ b4 ¼ b5 ¼ 0; (5.1)

which define the Lagrangian Lþ
G as in (3.4b).

A. Hamiltonian and constraints

1. Primary constraints

In the spin-0þ sector (5.1), general considerations of the
previous section lead to the following conclusions: the set
of primary constraints is given by

�i
0 � 0; �ij

0 � 0; A��{ �| :¼
A�̂�{ �|

J
� 0;

T��{ �| :¼
T�̂�{ �|

J
� 0; A�?�{ �|

:¼
A�̂?�{ �|

J
� 0;

T�?�{ �|
:¼

T�̂?�{ �|

J
� 0; V��{ :¼

V�̂�{

J
� 0;

(5.2)

the dynamical part of the canonical Hamiltonian has the
form

H? ¼ J

�
1

2a2
ð�? �kÞ2 þ

1

4a2
ðS�Þ2 þ 3

16b6
ðS�?Þ2

�

� JLþ
G ðT;RÞ � nir��

i�; (5.3)
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where �? �k,
S�, and S�? are the ‘‘generalized’’ momen-

tum variables defined in (4.3) and (4.5), and the total
Hamiltonian reads

H tot ¼ H c þ Au�{ �|A��{ �| þ Tu�{ �|T��{ �| þ Av�{ �|A��{ �|

þ Tv�{ �|T��{ �| þ Vv�{V��{: (5.4)

2. Secondary constraints

The consistency conditions of the sure primary con-
straints �i

0 and �ij
0 produce the secondary constraints

H? � 0; H � � 0; H ij � 0; (5.5a)

where

H � � �̂?�{T?��{ �
1

2
S�̂V� þ 1

2
S�̂?R?� � bi�r��i

�;

H �{ �k �
A�̂

�{ �k

J
þ

S�̂?
2J

T?�{ �k;

H? �k �
�̂? �k

J
�

S�̂?
2J

V �k þr �k

S�̂?
2J

:

(5.5b)

Going over to the (eight) primary ICs, XM ¼
ðA�; T�; A�; T�; V�Þ, we note that the only nonvanishing
PBs among them are

fA�?�{ �|;
A� �m �ng � �

S�̂?
2J2

	i
½ �m	j

�n�	;

fT�?�{ �|;
T� �m �ng �

S�̂?
2J2

	ð�{
ð �n	�|Þ

�mÞ	:
(5.6)

As long as S�̂? � 0, the constraints ðA�; T�; A�; T�Þ are
second class (SC) [4,20], and their consistency conditions
fix the values of the corresponding multipliers
ðAu; Tu; Av; TvÞ inH tot. On the other hand,

V� commutes

with all the other primary constraints, but not with its own

secondary pair ��{ ¼ fV��{; Htotg; see [20]. Using ��{ �
J�1fV�̂�{; Htotg and
fV�̂�{;H mng � 0; fV�̂�{;H �g � 0;

fV�̂�{;H?g � J

�
�?�{

a2

�
a2
2
�

S�̂?
4J

�
þ a2

2
V�{ þr�{

S�̂?
4J

�
;

one ends up with

��{ :¼ �?�{

a2

�S�̂?
4J

� a2
2

�
� a2

2
V�{ �r�{

S�̂

4J
: (5.7)

The only nonvanishing PB involving ��{ is

f��{;
V��k

g ¼ 2

a2J
��{ �k

S�̂?
4J

�S�̂?
4J

� a2

�
	: (5.8)

Thus, for S�̂?ðS�̂? � 4Ja2Þ � 0, both��{ and
V��k

are SC.

Consequently, the consistency condition of��{ determines the
multiplier Vv�{, which completes the consistency algorithm.
If the kinetic energy density in the Hamiltonian (5.3) is

to be positive definite (‘‘no ghosts’’), the coefficients of
ðS�Þ2 and ðS�?Þ2 should be positive:

a2 > 0; b6 > 0: (5.9)

On the other hand, ð�? �kÞ2 gives a negative definite con-
tribution, but it is an interaction term, as can be seen from
(4.3a) and (5.5b).

B. Constraint bifurcation

In the previous discussion, we identified the conditions
for which all the ICs, X0

M ¼ ðXM; �Þ, are SC. To calculate
the determinant of the 10� 10 matrix �þ

MN ¼ fX0
M;X

0
Ng,

�þ �

�������������������������������

0 0 fA�; A�g 0 0 0

0 0 0 fT�; T�g 0 0

�fA�; A�g 0 0 0 0 0

0 �fT�; T�g 0 0 0 0

0 0 0 0 0 fV�; �g
0 0 0 0 �fV�; �g 0

�������������������������������

we use (5.6) and (5.8), which leads to

�þ �
�S�?
4J

�
10
�S�?
4J

� a2

�
4
: (5.10)

Introducing a convenient notation

W :¼
S�?
4J

; (5.11)

we see that �þ can vanish only on a set (of spacetime
points) of measure zero, defined byW ¼ 0 orW � a2 ¼ 0.
In other words, the condition

WðW � a2Þ � 0 (5.12)

is fulfilled almost everywhere (everywhere except on a set
of measure zero). Thus, our previous discussion can be
summarized by saying that all of the ICs are SC almost
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everywhere; the related (generic) classification of con-
straints is shown in Table II.

The Hamiltonian constraints H 0
?, H

0
�, and H 0

ij are

first class (FC) [4,20]; they are obtained from (5.3) and
(5.5b) by adding the contributions containing the deter-
mined multipliers. With N ¼ 18, N1 ¼ 12, and N2 ¼ 10,
the dimension of the phase space is given as N� ¼ 2N �
2N1 � N2 ¼ 2. Thus, the theory exhibits a single
Lagrangian DoF almost everywhere.

However, the determinant �þ, being a field-dependent
object, may vanish in some regions of spacetime, changing
thereby the number and/or type of constraints and the
number of physical degrees of freedom, as compared to
the generic situation described in Table II. This effect,
known as the phenomenon of constraint bifurcation, can
be fully understood by analyzing the dynamical behavior
of the two factors in (5.12). Although the complete analysis
can be carried out in the canonical formalism, we base
our arguments on the Lagrangian formalism, in order to
simplify the exposition (see Appendix B).

Starting with the second factor,

� :¼ W � a2 � �
�
a� 1

6
b6Rþ a2

�
; (5.13)

where we used (4.5a) to clarify the geometric interpreta-
tion, one can prove the relation

��Vk þ 2@k� � 0; (5.14)

which implies that the behavior of � is limited to the
following two options (Appendix B):

(a) either �ðxÞ vanishes globally, on the whole space-
time manifold,

(b) or it does not vanish anywhere.
Which of these two options is realized depends upon the
initial conditions for�; choosing them in accordance with
(b) extends the generic behavior of �, � � 0 almost
everywhere, to the whole spacetime. This mechanism is
the same as the one observed in the spin-0þ sector of the
four-dimensional PGT; compare (5.14)with equation (4.20)
in [16].

We now focus our attention to the first factor in (5.12),

W � �
�
a� 1

6
b6R

�
: (5.15)

It is interesting that a solution for the W bifurcation
(W ¼ 0) can be found by relying on the solution for the �
bifurcation, which is based on choosing� � 0 on the initial
spatial surface �. Indeed, the choice �> 0 on � implies

�> 0 globally: (5.16a)

Then, since � ¼ W � a2 (a2 is positive), we find

W > a2 globally: (5.16b)

Thus, with �> 0 and W > a2, the problem of constraint
bifurcation simply disappears. Note that geometrically, the
condition W > a2 represents a restriction on the Cartan
scalar curvature, b6R> 6ðaþ a2Þ. An equivalent form of
this relation is obtained by using the identity R ¼ ~R� 2
,
where ~R is Riemannian scalar curvature.
Thus, with a suitable choice of the initial conditions, one

can ensure the generic condition �þ � 0 to hold globally,
so that the constraint structure of the spin-0þ sector is
described exactly as in Table II. Any other situation, with
W ¼ 0 orW � a2 ¼ 0, would not be acceptable—it would
have a variable constraint structure over the spacetime, the
property that could not survive the process of linearization.

C. Stability under linearization

Now, we are going to compare the canonical structure of
the full nonlinear theory with its linear approximation
around a maximally symmetric background.
In the linear approximation, the condition of canonical

stability (5.12) is to be taken in the lowest order (zeroth)
approximation. Using �R ¼ �6q, it reduces to

ðaþ qb6Þðaþ qb6 þ a2Þ � 0: (5.17)

The three cases displayed in Table III define characteristic
sectors of the linear regime (see Appendix C).
(a) When the condition (5.17) is satisfied, the nature of

the constraints remains the same as in Table II, and we have
a single Lagrangian DoF, the massive spin-0þ mode.
(b) Here, all ICs become FC, but only six of them are

independent. Thus, N1 ¼ 12þ 6 ¼ 18, and with N2 ¼ 0,
the number of DoF’s is zero: N� ¼ 36� 2� 18 ¼ 0.
(c) In this case, ~� �k is not an independent constraint, and

V ~��k is FC. As compared to (a), the number and type of

constraints is changed according to N1 ! N1 þ 2, N2 !
N2 � 4, but the number of DoF’s remains one (N� ¼ 2),
corresponding to the massless spin-0þ mode.
The case when both aþ qb6 and aþ qb6 þ a2 vanish is

not possible, since a2 � 0.
To clarify the case (c), we need a more detailed analysis.

Consider first the case (a), in which the constraint ~��{,
defined in (C3) is replaced by an equivalent expression,

~�0
�{ ¼ ~̂�?�{= �J. Then, the pair of SC constraints ðV ~��k; ~�

0
�k
Þ,

TABLE III. Canonical stability in the 0þ sector.

aþ qb6 aþ qb6 þ a2 DoF stability

(a) �0 �0 1 stable

(b) ¼0 �0 0 unstable

(c) �0 ¼0 1 stable*

TABLE II. Generic constraints in the 0þ sector.

First class Second class

Primary �i
0, �ij

0 XM

Secondary H 0
?, H

0
�, H 0

ij ��{
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with the related Dirac brackets, defines the reduced phase
space ~RðaÞ. Next, consider the case (c), where ~��{ does not

exist and V ~��k is FC. Here, we can introduce a suitable

gauge condition associated with V ~��k, given by ~�00
�k
¼

~̂�?�{= �J. The pair ðV ~��k; ~�
00
�k
Þ defines the reduced phase space

~RðcÞ, which coincides with the reduced phase space ~RðaÞ,
subject to the additional condition aþ qb6 þ a2 ¼ 0.
Thus, the ‘‘massless’’ nonlinear theory, defined by aþ
qb6 þ a2 ¼ 0, is essentially (up to a gauge fixing) stable
under the linearization. The star symbol in Table III
(stable*) is used to remind us of this gauge fixing condition.

For theM3 background (p ¼ q ¼ 0 and a � 0), the case
(b) is not possible.

VI. SPIN-0� SECTOR

For ða1 þ 2a3Þb5 � 0, the constraints A�
�{ �k
, A�?�{ �k

in

Table I are absent, and the spin-0� mode becomes a physical
degree of freedom. Here, we study canonical features of the
spin-0� sector by using the specific conditions

a3; b5 � 0; a1 ¼ a2 ¼ b4 ¼ b6 ¼ 0; (6.1)

which define the Lagrangian L�
G as in (3.8b).

A. Hamiltonian and constraints

1. Primary constraints

Applying the conditions (6.1) to the general considera-
tions of Sec. IV, we find the following set of the primary
(sure and if-) constraints:

�i
0 � 0; �ij

0 � 0; S� :¼
S�̂

J
� 0;

T��{ �| :¼
T�̂�{ �|

J
� 0; �?�{ :¼ �̂?�{

J
� 0;

S�? :¼
S�̂?
J

þ 4a � 0; T�?�{ �|
:¼

T�̂?�{ �|

J
� 0:

(6.2)

The dynamical part of the canonical Hamiltonian has the
form

H? ¼ J

�
3

8a3
ðA��{ �|Þ2 þ

1

4b5
ðA�?�{ �|Þ2 þ

1

2b5
ðV��{Þ2

�

� JL�
G ðT;RÞ � nir��

i�; (6.3)

where A��{ �|,
A�?�{ �|, and V��{ are the ‘‘generalized’’

momentum variables defined in (4.3) and (4.5), and the
total Hamiltonian reads

H T ¼ H c þ 1

2
SuS�þ Tu�{ �|T��{ �| þ u?�{�?�{

þ 1

2
Sv?S�? þ Tv?�{ �|T�?�{ �|: (6.4)

2. Secondary constraints

The consistency conditions of the primary constraints
�i

0 and �ij
0 produce the usual secondary constraints:

H? � 0; H � � 0; H ij � 0; (6.5a)

where

H � � A�̂�{ �|T�{��| þ A�̂?�{ �|R?
�{
�
�| þ R�{ �|

��|
V�̂�{ � 2aJR?�

� bi�r��i
�;

H �{ �| � aT?�{ �| þ
A�̂�{ �|

2J
þ

V��k

2J
T

�k
�{ �| þr½�{

V�̂�|�
J

;

H?�{ � aV�{ þ
A�̂? �m �n

2J
T �m �n

�{ þ
V�̂ �m

2J
T?�{ �m þ 1

2
r �m

A�̂?�{
�m

J
:

(6.5b)

Using the PB algebra between the primary ICs YM ¼
ðS�; T�;�?; �k;

S�; T�Þ (Appendix D), one finds that ge-

nerically, for A�̂
�{ �k
� 0, they are SC; their consistency

conditions result in the determination of the corresponding
multipliers ðSu; Tu; u?; �k;

Sv; TvÞ. Moreover, the secondary

constraints (6.5a), corrected by the contributions of the
determined multipliers, are FC, so that their consistency
conditions are trivially satisfied. Thus, in the generic case,
the consistency algorithm is completed at the level of
secondary constraints.
The first two terms in H?, proportional to the squares

of A�
�{ �k

and A�?�{ �k
, describe the contribution of the

spin-0� mode to the kinetic energy density, see Table I.
This contribution is positive definite for

a3 > 0; b5 > 0: (6.6)

At the same time, the contribution of the third term, the
square of V��k

, becomes negative definite (‘‘ghost’’), which

is a serious problem for the physical interpretation. As we
shall see, this is not the only problem.

B. Constraint bifurcation

Based on the PB algebra of the (eight) primary ICs YM,
we can now calculate the determinant of the 8� 8 matrix
��

MN ¼ fYM; YNg (Appendix D); the result takes the form

�� � A�̂�{ �|
A�̂�{ �|

�
4a2

J2
þ 1

8J4
A�̂? �m �n

A�̂? �m �n
�
2
: (6.7)

Since the second factor is always positive definite, ��
remains different from zero only if

A�̂ �m �n � 0: (6.8)

This condition holds everywhere except on a set of
measure zero, so that �� � 0 almost everywhere. Thus,
generically, the eight primary ICs are SC, as shown in
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Table IV; the primes in H 0
?, H

0
�, and H 0

ij denote the

presence of corrections induced by the determined
multipliers.

Using N ¼ 18, N1 ¼ 12, and N2 ¼ 8, we find N� ¼
2N � 2N1 � N2 ¼ 4. Surprisingly, the theory exhibits
two Lagrangian DoF: one is the expected spin-0� mode,
and the other is the spin-1 ‘‘ghost’’ mode, represented
canonically by V��k

.

In Appendix E, we analyzed the nature of the critical
condition A�̂ �m �n ¼ 0. In the region of spacetime where it
holds, we found the phenomenom of constraint bifurcation:
the number of Lagrangian DoF is changed to zero.
Although such a situation is canonically unstable under
linearization, it is interesting to examine basic aspects of
the linearized theory.

C. Instability under linearization

In the linearized theory, the term A �̂�
�| �k
in the determinant

�� takes the form

A �̂�
�| �k

¼ �2a3"?�| �kp: (6.9)

Hence, the canonical structure of the linearized theory
crucially depends on the value of the background parame-
ter p, as shown in Table V.

(�) For p � 0 (the background with nontrivial torsion,

massless spin-0þ mode), the determinant ��� is positive
definite, all the primary ICs are SC, and consequently,
N� ¼ 4, as in the generic sector of the full nonlinear theory.
However, this is not true in the critical region A�̂�{ �| ¼ 0

where N� ¼ 0, and the theory is canonically unstable.
(�) For p ¼ 0 (Riemannian background, massive or

massless spin-0� mode), the situation is changed, as dis-

cussed in Appendix F. First, the determinant ��� vanishes,

which follows from the fact that the primary IC ~�?�{

commutes with itself; see (D1). By calculating its consis-
tency condition (which was not needed for p � 0), one

finds its secondary pair ~��{. Now, the PB of ~�?�{ with the

modified secondary pair ~�0
�{ ¼ ~��{ � ~H �{ does not vanish.

Thus, there are two SC constraints more than in the case
(�) so that N� ¼ 2, and we have the canonical instability
under linearization.
Thus, in both cases � and �, the theory is canonically

unstable.

VII. CONCLUDING REMARKS

In this paper, we studied the Hamiltonian structure of the
general parity-invariant model of 3D gravity with propa-
gating torsion, described by the eight-parameter PGT
Lagrangian (2.1). Because of the complexity of the prob-
lem, we focused our attention on the scalar sector, contain-
ing JP ¼ 0þ or 0� modes with respect to a maximally
symmetric background. By investigating fully nonlinear
‘‘constraint bifurcation’’ effects as well as the canonical
stability under linearization, we were able to identify the
set of dynamically acceptable values of parameters, dis-
played in Tables III and V. Transition from (A)dS to the
Minkowski background simplifies the results.
Further analysis involving higher spin sectors is left for

future studies.
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APPENDIX A: THE 1þ 2 DECOMPOSITION
OF SPACETIME

To derive the DADM form of the Hamiltonian, it is
convenient to pass from the tetrad basis hi ¼ hi

�@� to

the ADM basis ðn;h�Þ, where n is the unit vector with

nk ¼ hk
0=

ffiffiffiffiffiffiffi
g00

p
, orthogonal to the vectors h� ¼ @� lying in

the x0 ¼ const hypersurface �; see [4,20].
Introducing the projectors on n and �, ðP?Þik ¼ nink

and ðPjjÞik ¼ 	i
k � nink, any vector Vk can be decomposed

in terms of its normal and parallel projections:

Vk ¼ nkV? þ V �k;

V? :¼ nkVk;

V �k :¼ ðPjjÞikVi ¼ h �k
�V�:

(A1)

The decomposition of V0 ¼ bk0Vk in the ADM basis yields

V0 ¼ NV? þ N�V�, where the lapse and shift functions N
and N�, respectively, are linear in bk0:

N :¼ nkb
k
0; N� :¼ h �k

�bk0: (A2)

The decomposition (A1) can be extended to any tensor field.
Thus, a second rank antisymmetric tensor Xik ¼ �Xki can
be decomposed as

Xik ¼ X�{ �k þ ðX�{?nk � X �k?niÞ: (A3)

TABLE V. Canonical stability in the 0� sector.

DoF stability

(�) p � 0 2 unstable

(�) p ¼ 0 1 unstable

TABLE IV. Generic constraints in the 0� sector.

First class Second class

Primary �i
0, �ij

0 YM

Secondary H 0
?, H

0
�, H 0

ij
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The parallel tensors, like X�{ �k, lie in�, and can be further
decomposed into the irreducible parts with respect to the
spatial rotations:

X�{ �k ¼ TX
�{ �k
þ AX

�{ �k
þ 1

2
��{ �k

SX; (A4a)

where

TX
�{ �k
:¼ Xð�{ �kÞ �

1

2
��{ �kX

�m
�m;

AX
�{ �k
:¼ X½�{ �k�;

SX :¼ X �m
�m:

As a consequence, the product X�{ �kY�{ �k is given by

X�{ �kY�{ �k ¼ TX�{ �kTY
�{ �k
þ AX�{ �kAY

�{ �k
þ 1

2
SXSY: (A4b)

For a tensor��{ �| �k ¼ ���| �{ �k, the pseudoscalar ("
�{ �| �k��{ �| �k)

and traceless-symmetric piece (��{ð�| �kÞ � traces) identically

vanish, so that the only nontrivial piece is the vector
V��{ :¼ �

�{ �k

�k:

��{ �| �k ¼ 2�½�| �k
V��{�; ��{ �| �kQ�{ �| �k ¼ 2V��{VQ�{: (A5)

These results can be now used to find the DADM form of
the Hamiltonian. Starting with the torsion sector, we use
the formula T ¼ TþT to rewrite LT2 in the form

LT2 ¼ 1

4
H ijkðTÞTijk þ 1

4
H ijkðT ÞTijk

þ 1

4
H ijkðTÞT ijk ¼ LTðTÞ þ �̂i�|

J Ti?�| � 1
2�

i�|Ti?�|;

which yields

H T
? ¼ 1

2
J�i�|Ti?�| � JLT2ðTÞ � nir��i

�: (A6a)

Then, the irreducible decomposition

�i�|Ti?�| ¼�?�|T??�|þ A��{ �|T½�{?�|� þ T��{ �|Tð�{?�|Þ þ 1

2
S�T�{

?�{;

(A6b)

in conjunction with (4.3), leads to (4.8).
Similar calculations for the curvature part yield

H R
? ¼ 1

4
J�ij �kRij? �k � JLR2ðRÞ þ aJR: (A7a)

Then, the irreducible decompositions

�ij �kRij? �k ¼ 2�?�| �kR?�|? �k þ 2V��{R
�{ �k?

�k;

2�?�| �kR?�|? �k ¼ 2

�
A�?�| �kAR

�|? �k? þ T�?�| �kTR
�|? �k?

þ 1

2
S�?R �k

? �k?

�
; (A7b)

combined with (4.5), lead directly to (4.9).

APPENDIX B: CONSTRAINT BIFURCATION
IN THE SPIN-0þ SECTOR

In this appendix, we study the phenomenon of constraint
bifurcation in the spin-0þ sector, determined by the critical
condition � ¼ 0.
We start our discussion by writing the field equations for

the spin-0þ sector:

2a2�i½jrkVk� þ 2

�
a� b6

6
R

�
Gji

� �ij

�
a2
2
V2 þ b6

12
R2 þ 2�0

�
¼ 0; (B1)

�
a� b6

6
R

�
Tijk þ a2�i½jVk� þ b6

3
�i½jrk�R ¼ 0; (B2)

where V2 ¼ VkV
k. The content of these equations can be

expressed in terms of their irreducible components. For the
first equation, we find

�a2r½iVj� þ 2

�
a� b6

6
R

�
R½ji� ¼ 0; (B3a)

�a2

�
rðiVjÞ � 1

3
�ij


�
þ 2

�
a� b6

6
R

��
RðjiÞ � 1

3
�ijR

�
¼ 0; (B3b)

�2a2
þ 3

2
a2V

2 þ aRþ b6
12

R2 þ 6�0 ¼ 0; (B3c)

where 
 :¼ riV
i. The irreducible components of the second equation are
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�
a� b6

6
R

�
A ¼ 0; (B4a)

�
a� b6

6
R

�
TTijk ¼ 0; (B4b)

�
a� b6

6
Rþ a2

�
Vi þ b6

3
riR ¼ 0: (B4c)

Now, we focus our attention on the factor � ¼ W � a2
in �þ. Its dynamical evolution is determined by Eq. (B4c),
which can be written in the form

��Vk þ 2@k� � 0: (B5)

Note that this equation is an extension of Eq. (5.13) from�
to the whole spacetime M.

The spacetime continuumM on which 3D PGT lives is
a differentiable manifold with topology M ¼ R� �,
where R corresponds to time, and � to the spatial section
ofM. Let us now assume that (i)� vanishes at some point
x ¼ a in M, (ii) � is an infinitely differentiable function
on M, and (iii) Vk and all its derivatives are finite at
x ¼ a. Then, one can notice that (B5) implies @k� ¼ 0

at x ¼ a. In the next step, we apply the differential operator
@k1 to (B5) and conclude that @k1@k� ¼ 0 at x ¼ a.

Continuing this procedure, we eventually conclude that
for every n, @kn . . .@k1@k� ¼ 0 at x ¼ a. In general, the

behavior of � on the whole M is not determined by its
properties at a single point. However, if (iv) � is an
analytic function on M, its Taylor expansion around
x ¼ a implies that � ¼ 0 on the whole M.
The result obtained can be formulated in a more useful

form: if there is at least one point in M at which � � 0,
then� � 0 on the wholeM. Thus, by choosing the initial
data so that � � 0 at x0 ¼ 0, it follows that � stays
nonvanishing for any x0 > 0. In other words, for a suitable
choice of initial data, the configuration � ¼ 0 is kind of a
barrier that the system cannot cross during its dynamical
evolution. Moreover, since � is a continuous function, it
has a definite sign for any x0 > 0.

APPENDIX C: THE LINEARIZED
SPIN-0þ SECTOR

In the weak-field approximation, the primary ICs of the
spin-0þ sector take the form

A ~��{ �| :¼
A ~̂��{ �|

�J
� 0; T ~��{ �| :¼

T ~̂��{ �|

�J
� 0; A ~�?�{ �| :¼

A ~̂
�?�{ �|

�J
� 2ðaþ qb6Þ~b½�{ �|� � 0;

T ~�?�{ �| :¼
T�̂?�{ �|

�J
� 2ðaþ qb6ÞT ~b�{ �| � 0; V ~��{ :¼

V ~̂
��{

�J
� 2ðaþ qb6Þ~b?�{ � 0;

(C1)

and the secondary Hamiltonian constraints are given by

~H? ¼ �J

�
2
S ~�?
�J

� ðaþ qb6Þð ~R�{ �|
�{ �| � 4b�{

�{Þ
�
� �ni

�r� ~�
i�; (C2a)

~H � ¼ p"ijk �b
j
�
~̂�i

�k � �bi�
�r� ~�i

� � 2ðaþ b6qÞ ~R0
�; (C2b)

~H �{ �| �
A�̂�{ �|

J
� ðaþ qb6Þ ~T?�{ �| þ p"?�{ �|

�S ~̂
�?
4 �J

þ 1

2
ðaþ qb6Þ~b �k

�k

�
� 0; (C2c)

~H?�{ �
~̂�?�{

�J
þ 2ðaþ qb6Þ ~T �k

�k �{
þr�{

�S ~̂
�?
2 �J

þ ðaþ qb6Þ~b �k
�k

�
� 0: (C2d)

The consistency condition of V ~��{ can be expressed in the
form

~��{ ¼ 1

2
~H?�{ � aþ qb6 þ a2

a2

~̂�?�{

�J
� aþ qb6 þ a2

a2

~̂�?�{

�J
:

(C3)

For aþ qb6 � 0 and aþ qb6 þ a2 � 0, the type and the
number of constraints remains the same as in the full
nonlinear theory, and we have the canonical stability under
linearization.

1. The case aþ qb6 ¼ 0

In this case, the analysis depends on the value of p.

(i) For p � 0, the six secondary constraints HM¼
ð ~H?; ~H �;

~H �{ �|;
~H?�{Þ, in conjunction with V ~��{�0

take, respectively, the following form:

S ~̂��0; 0�0;
S ~̂
�?�0; ~̂�?�{�0: (C4)

Thus, ~��{ and ~H � are identically satisfied, and
there are no SC constraints, N2 ¼ 0. Hence, the
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number of FC constraints is N1 ¼ 6þ 6� 2þ
8 ¼ 18 and consequently, there are no propagating
modes: N� ¼ 2� 18� 2� 18� 0 ¼ 0.

(ii) For p ¼ 0, the constraintsHM, in conjunction with
V ~��{ � 0, read

2S ~�? � �ni
�r� ~�

i� � 0; �bi�
�r� ~�i

�� 0;

0 � 0;
~̂�?�{

�J
þr�{

�S ~̂
�?
2 �J

�
� 0: (C5)

Taking into account the form of ~��{, the set HM

reduces to

~̂�?�{ � 0; S ~̂� � 0;
S ~̂
�? � 0:

Thus, we again haveN1 ¼ 18, N2 ¼ 0, and N� ¼ 0.

2. The case a þ qb6 þ a2 ¼ 0

Compared to the generic case, this condition induces the
following change: Eq. (C3) implies that ~��{ is identically
satisfied, whereas V��k

becomes FC. Thus, N1 ¼ 6þ 6þ
2 ¼ 14, N2 ¼ 10� 4 ¼ 6, and consequently, N� ¼ 2.

APPENDIX D: THE ALGEBRA OF ICS
IN THE 0� SECTOR

The nontrivial PBs between the primary ICs YM ¼
ðS�; T�;�?; �k;

S�; T�Þ in the spin-0� sector read

fS�; S�?g � � 4a

J
	;

fT��{ �|;
T�?

�m �ng � � 1

J2
½	ð�{

ð �mA�̂?�|Þ
�nÞ � 2a	ð�{

�m	�|Þ
�n�	;

f�?�{; �?�|g � 2

J2
A�̂�{ �|	; f�?�{;

S�?g �
1

J2
V�̂�{	;

f�?�{;
T�? �m �ng �

1

J2

�
1

2
� �m �n

V�̂�{ � ��{ð �m
V�̂ �nÞ

� 4aJnðm��{nÞ
�
	: (D1)

Calculating the determinant of the 8� 8 matrix ��
MN ¼

fYM; YNg,

�� ¼

�����������������������������

0 0 � 4a
J 0 0

0 fT��{ �|;
T� �m �ng 0 0 fT��{ �|;

T�?
�m �ng

0 0 f�?�{; �?�|g f�?�{;
S�?g f�?�{;

T�?
�m �ng

4a
J 0 �f�?�{;

S�?g 0 0

0 �fT��{ �|;
T�?

�m �ng �f�?�{;
T�?

�m �ng 0 0

�����������������������������

one obtains the result displayed in Eq. (6.7).

APPENDIX E: ON THE CONDITION A�̂�{ �| ¼ 0

In this appendix, we wish to clarify the phenomenon of
constraint bifurcation in the spin-0� sector, where the field
equations take the form:

2a3"ijkrkAþ �ijða3A2 � b5R½ij�R½ij� � 2�0Þ
þ 8a3

3
A"ðimntjÞ

mn � 2a3"ijkV
kA;

2aGji þ 2b5R½in�Gj
n ¼ 0: (E1)

Ti
mnða�ik þ b5R½ik�Þ þ b5r½mðRn�k � Rkn�Þ
þ 2a3"kmnA ¼ 0: (E2)

Condition A�̂�{ �| ¼ 0 is equivalent to A ¼ 0. Now, the

equations of motion take the following form:

2aGji þ 2b5R½in�Gj
n � �ijðb5R½ij�R½ij� þ 2�0Þ ¼ 0:

(E3)

Ti
mnða�ik þ b5R½ik�Þ þ b5r½mðRn�k � Rkn�Þ ¼ 0: (E4)

Let us now analyze Eq. (E3). The �{ �| ¼ f??; �{ ?g
components are given by

� aR�{ �|
�{ �| þ 2�0 �

V�̂�{

J
R?�{

� 1

4b5J
2
ð2V�̂�{

V�̂�{ þ A�̂?�{ �|
A�̂�{ �|

?Þ ¼ 0; (E5)

2aR?�{ þ
V�̂�{

J
G?? þ

A�̂?�{ �|

J
R?

�| ¼ 0: (E6)

They represent secondary FC constraints H? and H �{ :¼
h�{

�H �.
The condition A�̂�{ �| ¼ 0 leads to the appearance of the

additional constraints in the theory. Namely, ij¼f½�{ �|�;½? �{�g
components of the (E3) are given by

ð2aþ b5R??ÞA�̂?�{ �| þ 2b5
V�̂½�{R?�|� ¼ 0; (E7)

2aV�̂�{ � b5ðV�̂�{G?? þ A�̂?�{ �|R?
�| þ V�̂�|G�{

�|Þ ¼ 0:

(E8)

Since
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R ¼ 1

a

�
1

4b5J
2
ð2V�̂�{

V�̂�{ þ A�̂?�{ �|
A�̂?

�{ �|Þ � 6�0

�
;

G?? ¼ � 1

2
R�{ �|

�{ �|; (E9)

Eq. (E7) is an additional constraint in the theory.
Let us note that �{ �| components of (E3) read

�
2a��{ �k þ

A�̂?�{ �k

J

�
G�|

�k � ��{ �|

�
1

4b5J
2
ð2V�̂ �m

V�̂ �m

þ A�̂? �m �n
A�̂?

�m �nÞ þ 2�0

�
¼ 0: (E10)

Equation (E10) can be solved for G�{
�k since

det

�
2a��{ �k þ

A�̂?�{ �k

J

�
¼ 4a2 þ

A�̂? �m �n
A�̂?

�m �n

2J2
> 0:

Thus, three equations (E7) and (E8) and the condition
A�̂�{ �| ¼ 0 describe four additional SC constraints (if any of

these were FC, the number of DoF would be negative).
This impliesN� ¼ 0, and the two propagating modes of the
generic case are eliminated.

APPENDIX F: THE LINEARIZED SPIN-0� SECTOR

In this Appendix, we present the canonical structure
of the linearized spin-0� sector around the maximally
symmetric background. We start by noting that

A �̂��{ �|

J
¼ �2a3"?�{ �|

�A;

where �A ¼ p. Then, for p � 0, Eq. (6.7) implies that

the determinant ��� is positive definite, so that the canoni-
cal structure remains the same as before linearization;
see Sec. VI. Moreover, in that case the spin-0� mode is
massless; see (3.8c).

To see what happens in the complementary case p ¼ 0
(the spin-0� mode is either massive or massless), we start
with

~�i
� ¼ 2a3"

0�� �bi�
~A;

~�ij
� ¼ �2"ijk½a"0�� ~bk� þ b5 �b

k
�"

½���ð ~R�
0� � ~R0�

�Þ�;
and find the following primary ICs:

S ~� :¼
S ~̂�
�J
� 0; T ~��{ �| :¼

T ~̂��{ �|

�J
� 0;

~�?�{ :¼
~̂�?�{

�J
� 0; S ~�? :¼

S ~̂
�?
�J

þ 2a~b�{
�{ � 0;

T ~�?�{ �| :¼
T ~̂
�?�{ �|

�J
� 2aT ~b�{ �| � 0: (F1)

The only nontrivial PBs between the primary ICs are

fS ~�?;
S ~�g � 4a

�J
	;

fT ~�?�{ �|;
T ~� �m �ng � � 2a

�J
	ð�{

�m	�|Þ
�n	:

(F2)

The secondary constraints ~H i and
~H ij read

~H? ¼ �J

�
2
S ~�?
�J

� að ~R�{ �|
�{ �| � 4b�{

�{Þ
�
;

~H � ¼ �b�{
�½�qðV ~̂

��{ � 2aJ ~b?�{Þ � �r� ~�i
� � 2a �J ~R?�{�;

~H �{ �| � a ~T?�{ �| þ
A ~̂��{ �|

2 �J
þr½�{

�V ~̂
��|�
�J

� 2a~b?�|�
�
;

~H?�{ � a ~V�{ þ 1

2
�r�|

�A ~̂
�?�{ �|

�J
� 2a~b½�{ �|�

�
: (F3)

Moreover, ~H � can be used to find ~H �{ ¼ �h�{
� ~H �= �J:

~H �{ � �q

�V ~̂
��{

�J
� 2a~b?�{

�
þ �r�|

A ~̂��| �{

�J
� 2a ~R?�{:

According to (F2), the consistency of the primary ICs
ðS�; T�; S�; T�Þ results in the determination of the multi-

pliers ðSu; Tu; Sv; TvÞ, whereas the consistency of ~�?�{

yields a new, secondary IC:

~��{ ¼ �r�|
A ~̂��| �{

�J
þ 1

b5
ða� qb5Þ

�V ~̂
��{

�J
� 2a~b?�{

�
� 0: (F4)

The PB of ~�?�{ with its own (modified) secondary pair

~�0
�| :¼ ~��| � ~H �| reads

f ~�?�{; ~�
0
�|g ¼

2a2

b5 �J
��{ �|	: (F5)

Thus, the consistency condition of ~�0
�| leads to the deter-

mination of the multiplier u?�|.

According to Eqs. (F2) and (F5), the ten ICs ~XA ¼
fS ~�; S ~�?;

T ~��{ �|;
T ~�?�{ �|;

~�?�{; ~�
0
�{g are SC. Hence, N ¼ 18,

N1 ¼ 12, N2 ¼ 10, so that N� ¼ 2 (one Lagrangian DoF).
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In the context of three-dimensional gravity with torsion, the concepts of standard and ‘‘exotic’’

Bañados–Teitelboim–Zanelli black holes are generalized by going over to black holes with torsion.

This approach provides a unified insight into thermodynamics of black holes, with or without torsion.
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I. INTRODUCTION

Recently, Townsend and Zhang [1] examined thermo-
dynamics of ‘‘exotic’’ Bañados–Teitelboim–Zanelli (BTZ)
black holes—the solutions of a class of three-dimensional
(3D) gravity models for which the metric coincides with
the standard BTZ metric [2] but for which the conserved
charges, energy, and angular momentum, are, in a sense,
reversed (as explained in Sec. III). Their analysis was
focused on a simple model of this type, described by the
parity-odd gravitational Lagrangian that Witten [3] named
exotic. In this framework, the authors discussed basic
thermodynamic properties of the exotic BTZ black holes
(that is, the standard BTZ black holes viewed as solutions
of the exotic model).

In Ref. [1], general relativity with a cosmological
constant (GR�) and the exotic gravity are treated as
independent models, based on the Riemannian geometry
of spacetime. In the present paper, we show that these
two models can be naturally interpreted as different sectors
of a single model—the Mielke–Baekler (MB) model
of 3D gravity with torsion [4]. This approach offers a
unified view at GR� and the exotic gravity, revealing a
new, ‘‘interpolating’’ role of torsion with respect to
Riemannian theories of gravity. In this, more general,
setting, standard BTZ black hole solutions can be general-
ized to BTZ-like black holes with torsion [5–7]; see also
Ref. [8]. At the same time, their thermodynamic properties
[9,10] allow us not only to simplify the considerations
presented in Ref. [1] but also to generalize them.

II. 3D GRAVITY WITH TORSION

In the Poincaré gauge theory [11–13], the basic dynami-
cal variables are the triad ei and the Lorentz connection!ij

(1-forms). Their field strengths, expressed in terms of the
Lie dual connection !i :¼ � 1

2"
ijk!jk, are the torsion

Ti ¼ dei þ "ijk!jek and the curvature Ri ¼ d!i þ
1
2 "

ijk!j!k (the exterior product sign ^ is omitted for

simplicity). In this framework, the MB model is defined
by the Lagrangian

LMB ¼ 2aeiRi � �

3
"ijke

iejek þ �3LCSð!Þ þ �4e
iTi:

(1)

Here, LCSð!Þ :¼ !id!i þ 1
3 "ijk!

i!j!k is the Chern–

Simons Lagrangian for !i, and ða;�; �3; �4Þ are free
parameters. In the nondegenerate case �3�4 � a2 � 0,
the variation of LMB with respect to ei and !i leads to
the gravitational field equations in vacuum:

2Ti ¼ p"ijke
jek; 2Ri ¼ q"ijke

jek; (2)

where

p ¼ �3�þ �4a

�3�4 � a2
; q ¼ �ð�4Þ2 þ a�

�3�4 � a2
: (3)

Using Eqs. (2) and the formula !i ¼ ~!i þ Ki, where ~!i is
the Riemannian (torsionless) connection and Ki is the
contortion 1-form, defined implicitly by Ti ¼ "imnK

men,
one can show [6,14] that the Riemannian piece of the
curvature, ~R ¼ Rð ~!Þ, reads

2 ~Ri ¼ �eff"
i
jke

jek; �eff :¼ q� 1

4
p2; (4)

where �eff is the effective cosmological constant.
In the anti-de Sitter (AdS) sector with�eff ¼ �1=‘2, the

MB model admits a new type of black hole solutions,
known as the BTZ-like black holes with torsion [5–7].
These solutions can be determined in two steps. First, by
combining the form of the BTZ black hole metric,

ds2 ¼ N2dt2 � N�2dr2 � r2ðd’þ N’dtÞ2;

N2 ¼
�
�8Gmþ r2

‘2
þ 16G2j2

r2

�
; N’ ¼ 4Gj

r2
;

with the relation ds2 ¼ �ije
iej, one concludes that the

triad field can be chosen in the simple, diagonal form:

e0¼Ndt; e1¼N�1dr; e2¼ rðd’þN’dtÞ: (5a)

Then, the connection is determined by the first field
equation in Eqs. (2):

!i ¼ ~!i þ p

2
ei: (5b)
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The pair ðei; !iÞ determined in this way represents the
BTZ-like black hole with torsion [5–7]. The thermody-
namic aspects of the new black holes are given as follows.

Energy and angular momentum of the black hole with
torsion, defined as the on-shell values of the asymptotic
generators for time translations and spatial rotations, have
the following form [5,14]:

E ¼ 16�G

��
aþ �3p

2

�
m� �3

‘2
j

�
;

J ¼ 16�G

��
aþ �3p

2

�
j� �3m

�
:

(6)

In contrast to GR�, where E ¼ m and J ¼ j, the presence
of the Chern–Simons term (�3 � 0) modifies E and J into
linear combinations of m and j.

After choosing the AdS asymptotic conditions, the
Poisson bracket algebra of the asymptotic symmetry is
given by two independent Virasoro algebras with different
central charges [6,14]:

c� ¼ 24�

��
aþ �3p

2

�
‘� �3

�
: (7)

The partition function of the MB model, calculated in
the semiclassical approximation around the black hole with
torsion, yields the following expression for the black hole
entropy [9],

S ¼ 8�2

��
aþ �3p

2

�
rþ � �3

r�
‘

�
; (8)

where r� are the outer and inner horizons of the black hole,
defined as the zeros of N2. The gravitational entropy
Eq. (8) coincides with the corresponding statistical entropy
[10], obtained by combining Cardy’s formula with the
central charges shown in Eq. (7). The existence of torsion
is shown to be in complete agreement with the first law of
black hole thermodynamics.

III. SPECIAL CASE: RESULTS
OF TOWNSEND AND ZHANG

After clarifying basic thermodynamic aspects of black
holes with torsion, the two types of black holes discussed
in Ref. [1] can be given a unified treatment by considering
the related limiting cases of the MB model.

For �3 ¼ �4 ¼ 0 and 16�Ga ¼ 1, the MB model
reduces to GR�, the spacetime geometry is Riemannian
(p ¼ 0), and formulas (6)–(8) produce the standard ex-
pressions for the conserved charges, central charges, and
entropy:

E ¼ m; J ¼ j; c� ¼ 3‘

2G
; S ¼ 2�rþ

4G
: (9)

Since 2�rþ is the length (‘‘area’’) of the outer horizon, the
entropy has the usual Bekenstein–Hawking form.

Similarly, for a ¼ � ¼ 0, the MB model reduces to
Witten’s exotic gravity with the Riemannian geometry of

spacetime. By choosing 16�G�3 ¼ �‘, one arrives at the
exotic conserved charges, central charges, and entropy,

E¼ j

‘
; J¼‘m; c�¼� 3‘

2G
; S¼2�r�

4G
; (10)

which coincide with those in Ref. [1]. Since �eff ¼ �1=‘2

implies 16�G�4 ¼ �1=‘, the corresponding exotic
Lagrangian is also the same as in Ref. [1].
These considerations, based on our earlier studies of

black holes with torsion, provide a simple way to under-
stand somewhat enigmatic relation between the standard
and exotic black hole thermodynamics.

IV. GENERALIZATION: STANDARD AND EXOTIC
BLACK HOLES WITH TORSION

In the previous section, the concepts of standard and
exotic black holes are used in the context of simple gravi-
tational models with the Riemannian geometry of space-
time. Here, we wish to generalize these concepts by going
over to black holes with torsion.
The form of the general results (6)–(8) suggests intro-

ducing standard black holes with torsion by imposing the
following requirements:

�3 ¼ 0; 16�Ga ¼ 1: (11)

In this case, the general formulas reduce to the standard
form (9), and the corresponding 2-parameter Lagrangian is
given by

LS ¼ 1

8�G
eiRi � �

3
"ijke

iejek þ �4e
iTi: (12)

The AdS condition,

�eff ¼ 3

4

�
�4

a

�
2 þ�

a
¼ � 1

‘2
;

implies �< 0.
Similar considerations lead to the following definition

of exotic black holes with torsion:

aþ �3p

2
¼ 0; 16�G�3 ¼ �‘; (13)

which implies that the conserved charges, central charges,
and entropy take the exotic form (10). The corresponding
2-parameter Lagrangian can be written in the form

LE ¼ 1

16�G

�
2�eiRi þ �ð�2 þ 3Þ

3‘2
"ijke

iejek

� ‘LCS � �2 þ 1

‘
eiTi

�
; (14)

where � :¼ 16�Ga and ‘ are free parameters.
In the limit p ¼ 0, LS and LE describe torsionless

theories discussed by Townsend and Zhang [1]; thermody-
namic aspects of the corresponding black holes are given in
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(9) and (10). All the other limits define the standard and
exotic gravities with torsion. In particular, for the choice
q ¼ 0 (that is, by taking ð�4Þ2 þ�=16�G ¼ 0 in LS and
� ¼ 1 in LE), the geometry of these models becomes
teleparallel (Ri ¼ 0).
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Abstract
We analyze static spherically symmetric solutions of five dimensional (5D) 
Lovelock gravity in the first order formulation. In the Riemannian sector, 
when torsion vanishes, the Boulware–Deser black hole represents a unique 
static spherically symmetric black hole solution for the generic choice of 
the Lagrangian parameters. We show that a special choice of the Lagrangian 
parameters, different from the Lovelock Chern–Simons gravity, leads to the 
existence of a static black hole solution with torsion, the metric of which is 
asymptotically anti-de Sitter (AdS). We calculate the conserved charges and 
thermodynamical quantities of this black hole solution.

Keywords: Lovelock gravity, torsion, black holes

1. Introduction

Lovelock gravity [1] represents an intriguing generalization of general relativity, since it is a 
unique, ghost-free higher derivative extension of Einstein’s theory that possesses second order 
equations of motion. As a higher curvature theory, Lovelock gravity has a considerable num-
ber of black hole solutions—see [2–10] and references therein. Many of these possess exotic 
properties, such as zero mass, peculiar topology of the event horizon etc.

This leads us to an old problem of black hole uniqueness—namely, solutions of general 
relativity are highly constrained, but the situation changes drastically in the case of higher 
dimensions. There are new black hole solutions with non-spherical event horizon topology, 
namely black string, black ring and black brane [11]. Often, these exotic black objects suffer 
from various instabilities—for example, black strings and branes have Gregory–Laflamme 
instability [12], and will decay into black holes with spherical horizons. Thus, gravity in 
higher dimensions represents an interesting area of research, full of surprising discoveries, 
whose importance stems from its numerous applications.

Lovelock gravity can be also studied within the framework of Poincaré gauge theory (PGT), 
formulated by Sciamma [13] and Kibble [14] more than half a century ago. PGT is the first 
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2

modern, gauge-field-theoretic approach to gravity obtained by gauging the Poincaré group of 
space-time symmetries, the semidirect product of translations and Lorentz transformations. 
It represents a natural extension of the gauge principle, originally formulated by Weyl within 
electrodynamics and further developed in the works of Yang, Mills and Utiyama, to the space-
time symmetries. The gauge procedure adopted leads directly to a new, Riemann–Cartan 
geometry of space-time, since torsion and curvature are recovered as the Poincaré gauge field 
strengths. The Lagrangian in PGT contains a gravitational part, which is a function of the field 
strengths, the curvature and the torsion, and a suitable matter field Lagrangian.

In the context of Lovelock gravity, this more general setting contains torsionless theory 
as a limit, and represents a starting point for canonical analysis, coupling with matter fields, 
supersymmetric extensions of the theory and holographic applications. Interestingly, unlike 
in the case of Einstein–Cartan theory (first order formulation of general relativity) where all 
solutions of the equations of motion in vacuum are torsion free, the structure of the vacuum 
solutions of the Lovelock gravity is more complicated, because there exist solutions with 
non-vanishing torsion. However, it turns out that exact solutions with torsion are extremely 
difficult to find, since consistency conditions usually lead to an over-constrained system of 
equations. Solutions with non-trivial totally antisymmetric torsion have been studied in [8], 
[15–19]. In this paper, we continue our analysis of the exact solutions of 5D Lovelock gravity 
solutions with torsion, started in [8], and find a new static, spherically symmetric black hole 
solution with torsion with zero mass and entropy. The torsion of the solution possesses both 
tensorial and antisymmetric part. It, unlike the Riemannian Boulware–Deser black hole [20], 
exists for a specific choice of action parameters. This fine tuning of action parameters was first 
noticed by Canfora et al in their paper [15], and represents a different sector from the highly 
degenerate Lovelock Chern–Simons gravity.

The paper is organized in the following way. In the second section, we review basics of 
Poincaré gauge theory and Lovelock gravity in the first order formulation. In section 3 we 
find the black hole solution of 5D Lovelock gravity with torsion, and analyze its properties. 
In particular, we find that the quadratic torsional invariant is singular at r → 0. In section 4, 
we explore the thermodynamics of the previously obtained solution. The appendices contain 
additional technical details.

We use the following conventions: the Lorentz signature is mostly negative; local Lorentz 
indices are denoted by the middle letters of the Latin alphabet, while space-time indices are 
denoted by the letters of the Greek alphabet. Throughout the paper, we mostly use differential 
forms instead of coordinate notation, and the wedge product is omitted for simplicity.

2. Lovelock gravity

Since the work of Sciamma and Kibble, it has been known that gravity in the first order form-
ulation has the structure of Poincaré gauge theory (PGT)—see [21, 22] for a comprehensive 
account. For the reader’s convenience, we briefly review basics of the PGT.

2.1. PGT in brief

The basic dynamical variables in PGT, playing the role of gauge potentials, are the vielbein 
ei 1-form and the spin connection ωij = −ω ji 1-form. In local coordinates xµ, we can expand 
the vielbein and the connection 1-forms as ei = ei

µdxµ, ωi = ωi
µdxµ. Gauge symmetries of 

the theory are local translations (diffeomorphisms) and local Lorentz rotations, parametrized 
by ξµ and εij respectively.
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From the gauge potentials, we can construct field strengths, namely torsion Ti and curva-
ture Rij (2-forms), which are given as

Ti = ∇ei ≡ dei + εi
jkω

j ∧ ek =
1
2

Ti
µνdxµ ∧ dxν ,

Rij = dωij + ωik ∧ ωk
j =

1
2

Rij
µνdxµ ∧ dxν ,

where ∇ = dxµ∇µ is the exterior covariant derivative.
A metric tensor can be constructed from the vielbein and flat metrics: ηij

g = ηijei ⊗ e j = gµνdxµ ⊗ dxν ,

gµν = ηijei
µe j

ν , ηij = (+,−,−) .

The antisymmetry of ωij in PGT is equivalent to the so-called metricity condition, ∇g = 0. A 
geometry whose connection is restricted by the metricity condition (metric-compatible con-
nection) is called a Riemann–Cartan geometry.

The connection ωij determines the parallel transport in the local Lorentz basis. Because 
parallel transport is a geometric operation, it is independent of the basis. This property is 
encoded into PGT via the so-called vielbein postulate, which implies

ωijk = ∆ijk + Kijk ,

where Δ is Levi-Civita connection, and Kijk = − 1
2 (Tijk − Tkij + Tjki) is the contortion.

2.2. Action and equations of motion

The Lovelock gravity Lagrangian in the first order formulation can be constructed as the linear 
combination of the dimensionally continued Euler densities Lp, which in D dimensions are 
defined as

Lp = εi1i2...iD Ri1i2 . . .Ri2p−1i2p ei2p+1 . . . eiD .

In 5D, there are three Euler densities and the general form of the action of Lovelock gravity 
[1] is

I = εijkln

∫ (α0

5
eie jekelen +

α1

3
Rijekelen + α2RijRklen

)
. (2.1)

Variation of the action with respect to vielbein ei and spin connection ωij yields the gravi-
tational field equations

εijkln
(
α0e jekelen + α1R jkelen + α2R jkRln) = 0, (2.2)

and

εijkln
(
α1ekel + 2α2Rkl) Tn = 0. (2.3)

3. Spherically symmetric solution

3.1. Ansatz

We are looking for a static solution with SO(4) symmetry, which orbits are three-spheres. 
The most general metric which fulfills these requirements in Schwarzschild-like coordinates 
xµ = (t, r,ψ, θ,ϕ) is given by

B Cvetković and D SimićClass. Quantum Grav. 35 (2018) 055005
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ds2 = N2dt2 − B−2dr2 − r2(dψ2 + sin2 ψdθ2 + sin2 ψ sin2 θdϕ2), (3.1)

where functions N and B depend solely on r, and r ∈ [0,∞), ψ ∈ [0,π), θ ∈ [0,π) and 
ϕ ∈ [0, 2π). The metric (3.1) possesses seven Killing vectors (see appendix A).

The vielbeins ei are chosen in a simple diagonal form

e0 = Ndt, e1 = B−1dr, e2 = rdψ, e3 = r sinψdθ,

e4 = r sinψ sin θdϕ.
 (3.2)

The most general form of the spin connection compatible with Killing vectors (see appendix 
A) is given by

ω01 = A0dt + A1dr, ω02 = A2dψ,

ω03 = A2 sinψdθ, ω04 = A2 sinψ sin θdϕ,

ω12 = A3dψ, ω13 = A3 sinψdθ,

ω14 = A3 sinψ sin θdϕ, ω23 = cosψdθ + A4 sinψ sin θdϕ,

ω24 = −A4 sinψdθ + cosψ sin θdϕ, ω34 = A4dψ + cos θdϕ,

 

(3.3)

where Ai are arbitrary functions of radial coordinate.

3.2. Solution

The sector with vanishing torsion equations of motion for spherically symmetric ansatz has 
a well-known solution, the Boulware–Deser black hole [20], which exists for the generic 
choice of action parameters. Another solution, which we construct in this paper, possesses 
non-vanishing torsion and is given by the following anzatz:

A0 �= 0, A1 = A2 = A3 = 0, A4 �= 0
N = B.
 (3.4)

By using the adopted anzatz we get that the equations (2.2) reduce to

i = 0, 1 : 2α0r2 − α1 + α1A2
4 = 0, (3.5a)

i = 2, 3, 4 :
(
2α2 − 2α2A2

4 − α1r2)A′
0 + 6α0r2 + α1(A2

4 − 1) = 0. 
(3.5b)

The non-vanishing field equations (2.3) take the form

ij = 01 : α1r2 + 2α2A2
4 − 2α2 + 4α2rA4A′

4 = 0, (3.6a)

ij = 12, 13 :
(
α1r2 + 2α2A2

4 − 2α2
)
(NN′ + A0) + 2α1rN2 = 0, (3.6b)

ij = 23, 24, 34 : −2α2A′
0 + α1 = 0. (3.6c)

From (3.5a) and (3.6c) we get

A4 =

√
1 − 2α0

α1
r2, A0 =

α1

2α2
r, (3.7)

where the integration constant in A0 is taken to be zero for simplicity. Equation (3.5b) in con-
junction with (3.6c) yields to the following constraint between coupling constants:

B Cvetković and D SimićClass. Quantum Grav. 35 (2018) 055005
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α2
1 − 12α0α2 = 0. (3.8)

We consequently get that (3.6a) is identically satisfied, while the (3.6b) takes the form

NN′ +
3N2

r
− α1

2α2
r = 0,

and can be easily solved for N:

N =

√
− α1

8α2

(
r2 −

r8
+

r6

)
. (3.9)

From (3.8), we conclude that the solution exists in the sector different from the Lovelock 
Chern–Simons gravity. This is exactly the same fine tuning of parameters found by Canfora 
et al in their paper [15], where the solutions that have the structure of a direct product of a 2D 
Lorentzian with a 3D Euclidean constant curvature manifold are constructed.

The explicit form of torsion and curvature is given in appendix C. Let us note that both 
tensorial and antisymmetric part of torsion are non-vanishing unlike in the case of the solu-
tion found by Canfora et  al [16], for which only totally antisymmetric part of torsion is 
non-vanishing.

Let us now introduce the (anti)-de Sitter ((A)dS) radius �

α1

8α2
= − σ

�2 , σ = ±1. (3.10)

By substituting previous relation into (3.7) and (3.9), we get

A4 =

√
1 +

4σr2

3�2 , N =

√
σ

(
r2

�2 −
r8
+

�2r6

)
. (3.11)

Note that for the solution to describe a black hole, the following condition must hold:

α1

α2
< 0 ⇔ σ = +1 (3.12)

with an event horizon located at r  =  r+ .
From the constraint (3.8), it follows that the sign of the ratio α0

α1
 is the same as the sign of α1

α2

sgn
(
α0

α1

)
= sgn

(
α1

α2

)
. (3.13)

If the ratio is positive, the expression for A4 implies that we have the maximum value of the 
radial coordinate, the so called cosmological horizon

r0 =
�
√

3
2

. (3.14)

Meanwhile, if the ratio is negative, we have no restriction on the value of the radial coordi-
nate, except that it is positive, and in maximally extended space-time goes to infinity. In this 
case, the black hole space-time metric is asymptotically AdS.

3.2.1. Invariants. From expressions for curvature and torsion, given in appendix C, we see 
that quadratic torsional invariant reads

B Cvetković and D SimićClass. Quantum Grav. 35 (2018) 055005
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Ti ∧ ∗Ti = −12σ
�2

(
1 −

r8
+

r8

)
ε̂, (3.15)

which is obviously divergent in r  =  0 for r+ different from zero. Hence, there is a singularity 
of torsion at r → 0. Scalar Cartan curvature is constant,

R =
16σ
�2 , (3.16)

while Riemannian scalar curvature is

R̃ =
4σ
�2

(
5 − 3σ�2

2r2 −
3r8

+

r8

)
, (3.17)

and is divergent for r → 0. The quadratic Cartan and Riemannian curvature invariants both 
vanish:

Rij ∧ ∗Rij = 0, R̃ij ∧ ∗R̃ij = 0. (3.18)

We can conclude that the black hole obtained in this article is not of the regular type, and 
that it possesses singularity at r  =  0. It is worth noting that solution [16] also possesses singu-
larity of torsion and Riemannian curvature at r  =  0.

Solving equations of motion (2.2) and (2.3) with seven arbitrary functions is an extremely 
tedious task, which is facilitated by Mathematica and xAct packages.

3.3. Conserved charges

Conserved charges can be calculated in a number of ways, we decided to make use of Nester’s 
formula [23], the application of which is quite simple in this particular case. In this section, we 
shall restrict the analysis to the asymptotically AdS case, which corresponds to the black hole. 
The covariant momenta stemming from the Lovelock action (2.1) are given by

τi :=
∂L
∂Ti = 0, (3.19)

ρij =
∂L
∂Rij = 2εijkln

(α1

3
ekel + 2α2Rkl

)
en. (3.20)

Let us denote the difference between any variable X and its reference value X̄  by ∆X = X − X̄ . 
Reference space-time, in respect to which we measure conserved charges, is given for the zero 
radius of the event horizon r+   =  0. Conserved charges Qξ associated to the Killing vector ξ 
are given by quasi-local surface integrals

Qξ =

∫

∂Σ

B,

where the boundary ∂Σ is located at infinity. With a suitable asymptotic behavior of the fields, 
the proper boundary term reads [23]

B = (ξ � ei)∆τi +∆ei(ξ � τ̄i) +
1
2
(ξ �ωi

j)∆ρi
j +

1
2
∆ωi

j(ξ � ρ̄i
j) , (3.21)

where � denotes contraction.
For solution (3.9), by making use of the the results of appendix C, we get the covariant 

momenta
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ρ01 =
4
(
α2

1 − 12α0α2
)

α1
e2e3e4 ≡ 0, ρ02 = −8α1

3
e1e3e4, ρ03 =

8α1

3
e1e2e4,

ρ04 = −8α1

3
e1e2e3, ρ12 =

8α1

3
e0e3e4 − 4α1N

3A4
e0e1e2,

ρ13 = −8α1

3
e0e2e4 − 4α1N

3A4
e0e1e3, ρ14 =

8α1

3
e0e2e3 − 4α1N

3A4
e0e1e4,

ρ23 = 0, ρ24 = 0, ρ34 = 0. (3.22)
From (3.9), we conclude that the connection takes the same form on the background and 

for r+ �= 0, ωij = ω̄ij. Therefore, formula (3.21) takes the following simpler form:

B =
1
2
(ξ �ωi

j)∆ρi
j.

For the seven Killing vectors ξ(n) (see appendix A) the conserved charges are given by

Q(0) =

∫

∂Σ

ω01
t∆ρ01 = 0,

Q(1) =

∫

∂Σ

− cotψ sin θ
(
ω23

θ∆ρ23 + ω24
θ∆ρ24

)
= 0,

Q(2) =

∫

∂Σ

cotψ cos θ cosϕ
(
ω23

θ∆ρ23 + ω24
θ∆ρ24

)

− cotψ

sin θ
sinϕ

(
ω14

ϕ∆ρ14 + ω23
ϕ∆ρ23 + ω24

ϕ∆ρ24 + ω34
ϕ∆ρ34

)
= 0,

Q(3) =

∫

∂Σ

cotψ cos θ sinϕ
(
ω23

θ∆ρ23 + ω24
θ∆ρ24

)

+
cotψ

sin θ
cosϕ

(
ω14

ϕ∆ρ14 + ω23
ϕ∆ρ23 + ω24

ϕ∆ρ24 + ω34
ϕ∆ρ34

)
= 0,

Q(4) =

∫

∂Σ

cosϕ
(
ω23

θ∆ρ23 + ω24
θ∆ρ24

)

− cot θ sinϕ
(
ω14

ϕ∆ρ14 + ω23
ϕ∆ρ23 + ω24

ϕ∆ρ24 + ω34
ϕ∆ρ34

)
= 0,

Q(5) =

∫

∂Σ

sinϕ
(
ω23

θ∆ρ23 + ω24
θ∆ρ24

)

+ cot θ cosϕ
(
ω14

ϕ∆ρ14 + ω23
ϕ∆ρ23 + ω24

ϕ∆ρ24 + ω34
ϕ∆ρ34

)
= 0,

Q(6) =

∫

∂Σ

(
ω14

ϕ∆ρ14 + ω23
ϕ∆ρ23 + ω24

ϕ∆ρ24 + ω34
ϕ∆ρ34

)
= 0.

 (3.23)
Therefore, we conclude that conserved charges for the black hole with torsion (3.9) van-

ish. In particular, conserved charge Q(0), which corresponds to the energy E of the solution, 
vanishes due to the specific choice of the parameters α2

1 = 12α0α2.

4. Thermodynamics

By demanding that Euclidean continuation of the black hole has no conical singularity, we 
obtain the standard formula for the black hole temperature
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T =
(N2)′|r=r+

4π
. (4.1)

In the particular case of the solution (3.9) we get

T =
2r+
π�2 . (4.2)

The temperature is positive because solution (3.9) describes black hole iff condition (3.12) is 
satisfied. Let us note that this type of relation between temperature and the radius of the event 
horizon is unusual for black holes with spherical horizons. The relation (4.2) is standard in 
the case of planar black holes (black branes) or black holes in three space-time dimensions.

4.1. Euclidean action

Using the equation of motion (2.2), on-shell Euclidean action takes the form

IE = εijklm

∫ (
2α1

3
Rijekelem +

4α0

5
eie jekelem

)
. (4.3)

After substituting the solution (3.9), we get

IE =

∫ β

0
dt
∫ ∞

r+
dr

∫
dψdθdϕ

4(α2
1 − 12α0α2)

α2
r3 sin2 ψ sin θ, (4.4)

where the integration over time is performed in the interval [0,β := 1/T]. By using the con-
straint on the parameters (3.8), we conclude that

IE = 0. (4.5)

From the well-known formula for the entropy

S = (β∂β − 1)IE, (4.6)

we obtain

S = 0. (4.7)

This value of entropy is surprising, but it is not uncommon for Lovelock black holes—see for 
instance [24], where black holes with zero mass and entropy are obtained. From Euclidean 
action we can, also, calculate the energy

E = ∂βIE, (4.8)

and obtain

E = 0, (4.9)

in accordance with the results of the previous section.

5. Concluding remarks

We have analyzed static spherically symmetric solutions of Lovelock gravity in five dimen-
sions. For the generic values of the Lagrangian parameters, the theory possesses a well-known 
solution, the Boulware–Deser black hole, while in the sector α2

1 = 12α0α2 we have discov-
ered a new black hole solution with torsion.
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We analyzed basic properties of the obtained solution, which torsion possesses  non-vanishing 
tensorial and totally antisymmetric part. The solution has a singularity of torsion and Riemannian 
curvature for r → 0, while the conserved charges, as well as the entropy, vanish.

It is worth stressing that the black hole metric is asymptotically AdS, which is a crucial 
condition for holographic investigation. The solution that describes the space-time which is 
asymptotically dS, with the cosmological horizon located at r0 = α1

2α0
, is not a black hole.

An interesting property of the solution in the asymptotically AdS case is that, in the semi-
classical approximation, its entropy is zero. This means that its number of micro-states is 

‘small’ i.e. it is of order one instead of the expected O( 1
GN

). It would be interesting to see what 
kind of consequences this result has on dual interpretation via gauge/gravity duality.
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Appendix A. Killing vectors for metric (3.1)

In addition to the ∂∂t Killing vector static and spherically symmetric metric (3.1) possesses six 
Killing vectors, due to the SO(4) spherical symmetry. The complete set of Killing vectors ξµ(i) 
of the metric (3.1) is given by:

ξ(0) = ∂t,
ξ(1) = cos θ∂ψ − cotψ sin θ∂θ,

ξ(2) = sin θ cosϕ∂ψ + cotψ cos θ cosϕ∂θ −
cotψ

sin θ
sinϕ∂ϕ,

ξ(3) = sin θ sinϕ∂ψ + cotψ cos θ sinϕ∂θ +
cotψ

sin θ
cosϕ∂ϕ,

ξ(4) = cosϕ∂θ − cot θ sinϕ∂ϕ,
ξ(5) = sinϕ∂θ + cot θ cosϕ∂ϕ,
ξ(6) = ∂ϕ.

 

(A.1)

The independent Killing vectors are ξ(0), ξ(1), ξ(4) and ξ(6), while the others are obtained as 
their commutators. The invariance conditions of the vielbein under Killing vectors and local 
Lorentz transformations with parameters εi

j are

δ0ei
µ = Lξei

µ + εi
je

j
µ = 0, (A.2)

where the Lie derivative with respect to ξ is denoted as Lξ , giving that the only non-zero 
parameters of the local Lorentz symmetry are

ε23 = − sin θ

sinψ
, ε34 = − sinϕ

sin θ
. (A.3)

Using this and the transformation law for spin connection,

δ0ω
ij
µ = Lξω

ij
µ + εi

kω
kj
µ + ε j

kω
ik
µ = 0, (A.4)

we can derive the most general form of the spherically symmetric spin connection which is 
given in the main text, formula (3.3).
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Appendix B. Irreducible decomposition of the field strengths

We present here formulas for the irreducible decomposition of the PGT field strengths in a 5D 
Riemann–Cartan space-time [25].

The torsion 2-form has three irreducible pieces:

(2)Ti =
1
4

bi ∧ (hm � Tm) ,

(3)Ti =
1
3

hi � (Tm ∧ bm) ,

(1)Ti = Ti − (2)Ti − (3)Ti . (B.1)
The RC curvature 2-form can be decomposed into six irreducible pieces:

(2)Rij = −∗(b[i ∧Ψ j]) , (4)Rij = 2
3 b[i ∧ Φ j] ,

(3)Rij = − 1
12 X ∗(bi ∧ b j) , (6)Rij = 1

20 F bi ∧ b j ,

(5)Rij = 1
3 b[i ∧ h j] � (bm ∧ Fm), (1)Rij = Rij −

∑6
a=2

(a)Rij .
 

(B.2a)

where

Fi := hm �Rmi = (Ric)i , F := hi �Fi = R ,

Xi := ∗(Rik ∧ bk) , X := hi �Xi, (B.2b)
and

Φi := Fi −
1
4

biF − 1
2

hi � (bm ∧ Fm),

Ψi := Xi −
1
4

biX − 1
2

hi � (bm ∧ Xm) .
 

(B.2c)

The above formulas differ from those in [25] in two minor details: the definitions of Fi and 
Xi are taken with an additional minus sign, but at the same time, the overall signs of all the 
irreducible curvature parts are also changed, leaving their final content unchanged.

Appendix C. Torsion and curvature for the solution (3.9)

In this appendix, we give values of torsion and curvature for the black hole solution.

C.1. Riemannian connection and curvature

The non-vanishing components of the Riemannian connection are given by

ω̃01 = − σ

�2

(
r
N

+
3r8

+

Nr7

)
e0, ω̃12 =

N
r

e2, ω̃13 =
N
r

e3,

ω̃23 =
cotψ

r
e3, ω̃14 =

N
r

e4, ω̃24 =
cotψ

r
e4, ω̃34 =

cot θ

r sinψ
e4.

 

(C.1)

Riemannian curvature reads
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R̃01 =
σ

�2

(
1 −

21r8
+

r8

)
e0e1, R̃02 =

σ

�2

(
1 +

3r8
+

r8

)
e0e2,

R̃03 =
σ

�2

(
1 +

3r8
+

r8

)
e0e3, R̃04 =

σ

�2

(
1 +

3r8
+

r8

)
e0e4,

R̃12 =
σ

�2

(
1 +

3r8
+

r8

)
e1e2, R̃13 =

σ

�2

(
1 +

3r8
+

r8

)
e1e3,

R̃14 =
σ

�2

(
1 +

3r8
+

r8

)
e1e4, R̃04 =

σ

�2

(
1 +

3r8
+

r8

)
e0e4,

R̃23 =
σ

�2

(
1 − σ�2

r2 −
r8
+

r8

)
e2e3, R̃24 =

σ

�2

(
1 − σ�2

r2 −
r8
+

r8

)
e2e4,

R̃34 =
σ

�2

(
1 − σ�2

r2 −
r8
+

r8

)
e3e4.

 

(C.2)

Riemannian scalar curvature is

R̃ = −4σ
�2

(
−5 +

3σ�2

2r2 +
3r8

+

r8

)
.

 (C.3a)
The quadratic Riemannian curvature invariant vanishes

R̃ij ∧ ∗R̃ij = 0. (C.3b)

C.1.1. Torsion and its irreducible decomposition. The non-vanishing components of torsion 
are given by

T0 =
3N
r

e0e1, T2 =
N
r

e1e2 +
2A4

r
e3e4,

T3 =
N
r

e1e3 − 2A4

r
e2e4, T4 =

N
r

e1e4 +
2A4

r
e2e3.

 
(C.4)

The non-vanishing irreducible components of torsion are

(1)T0 =
3N
r

e0e1, , (1)T2 =
N
r

e1e2,

(1)T3 =
N
r

e1e3, (1)T4 =
N
r

e1e4,

(3)T2 =
2A4

r
e3e4, (3)T3 = −2A4

r
e2e4, (3)T4 =

2A4

r
e2e3.

 
(C.5)

The 2nd irreducible component of torsion vanishes as in the case of any solution of Lovelock 
gravity, excluding Lovelock Chern–Simons [8]. Quadratic torsional invariant reads

Ti ∧ ∗Ti = −12σ
�2

(
1 −

r8
+

r8

)
ε̂.

 (C.6)
Non-zero components of the (Cartan) curvature are

R01 =
4σ
�2 e0e1, R23 =

4σ
3�2

N
A4

e1e4 +
4σ
3�2 e2e3,

R24 = − 4σ
3�2

N
A4

e1e3 +
4σ
3�2 e2e4, R34 =

4σ
3�2

N
A4

e1e2 +
4σ
3�2 e3e4.

 (C.7)
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Scalar Cartan curvature is constant:

R =
16σ
�2 .

 (C.8)
Quadratic Cartan curvature invariant vanishes:

Rij ∧ ∗Rij = 0. (C.9)
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Abstract

We outline the results of the canonical analysis of the three-dimensional Poincaré gauge
theory, defined by the general parity-invariant Lagrangian with eight free parameters [11]. In
the scalar sector, containing scalar or pseudoscalar (A)dS modes, the stability of the canonical
structure under linearization is used to identify dynamically acceptable values of the parameters.

1 Introduction

Models of three-dimensional (3D) gravity, pioneered by Staruskiewicz [1], were introduced to help
us in clarifying highly complex dynamical behavior of the realistic four-dimensional general relativ-
ity (GR). In the last three decades, they led to a number of outstanding results [2]. However, in the
early 1990s, Mielke and Baekler [3] proposed a new, non-Riemannian approach to 3D gravity, based
on the Poincaré gauge theory (PGT) [4]. In PGT, the basic gravitational variables are the triad bi

and the Lorentz connection Aij (1-forms), and their field strengths are the torsion T i := dbi+Ai
jb

j

and the curvature Rij := dAij + Ai
mAmj (we omit the exterior product sign for simplicity). In

contrast to the traditional GR, with an underlying Riemannian geometry of spacetime, the PGT
approach is characterized by a Riemann–Cartan geometry, with both the curvature and the torsion
of spacetime as carriers of the gravitational dynamics. Thus, PGT allows exploring the interplay
between gravity and geometry in a more general setting.

Three-dimensional GR with or without a cosmological constant, as well as the Mielke–Baekler
(MB) model, are topological theories without propagating modes. From the physical point of view,
such a degenerate situation is certainly not quite realistic. Including the propagating modes in
PGT is achieved quite naturally by using Lagrangians quadratic in the field strengths [5, 6].

Since the general parity-invariant PGT Lagrangian in 3D is defined by eight free parameters
[6], it is a theoretical challenge to find out which values of the parameters are allowed in a viable
theory. The simplest approach to this problem is based on the weak-field approximation around
the Minkowski background [5]. However, one should be very careful with the interpretation of
these results, since the weak-field approximation does not always lead to a correct identification of
the physical degrees of freedom.

The constrained Hamiltonian method [7, 4] is best suited for analyzing dynamical content of
gauge theories of gravity, respecting fully their nonlinear structure. However, as noticed by Yo
and Nester [8, 9], it may happen, for some ranges of parameters, that the canonical structure of a
theory (the number and/or type of constraints) is changed after linearization in a way that affects
its physical content, such as the number of physical degrees of freedom. Such an effect is called

∗Based on a talk by MB at New ideas for unsolved problems II, Divčibare, 22–24 Sep 2013, Serbia.
†Email addresses: mb@ipb.ac.rs, cbranislav@ipb.ac.rs
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the phenomenon of constraint bifurcation. Based on the canonical stability under linearization as
a criterion for an acceptable choice of parameters, Shie et al. [10] proposed a PGT cosmological
model that offers a convincing explanation of dark energy as an effect induced by torsion.

In this note, we use the constrained Hamiltonian formalism to study (a) the phenomenon of
constraint bifurcation and (b) the stability under linearization of the general parity-invariant PGT
in 3D, in order to find out the parameter values that define consistent models of 3D gravity with
propagating torsion. Because of the complexity of the problem, we restrict our attention to the
scalar sector, with JP = 0+ or 0− modes, defined with respect to the (A)dS background [11].

The following conventions are of particular importance for our canonical analysis. Let M be a
3D manifold (spacetime) with local coordinates xµ = (x0, xα), and hi = hi

µ∂µ a Lorentz frame on
it. Then, if Σ is a 2D spacelike surface with a unit normal nk, each tangent vector Vk of M can
be decomposed in terms of its normal and parallel component with respect to Σ:

Vk = nkV⊥ + Vk̄ , where V⊥ := nmVm , Vk̄ = hk
αVα .

Note that Vk̄ does not contain the time component of Vµ.

2 Quadratic PGT and its scalar modes

Assuming parity invariance, the dynamics of 3D gravity with propagating torsion is determined
by the gravitational Lagrangian

LG = −aεijkb
iRjk −

1

3
Λ0εijkb

ibjbk + LT 2 + LR2 , (1a)

where a = 1/16πG, Λ0 is a free parameter (bare cosmological constant), the pieces quadratic in
the field strengths read

LT 2 := T i∗
(

a1
(1)Ti + a2

(2)Ti + a3
(3)Ti

)

,

LR2 :=
1

2
Rij

(

b4
(4)Rij + b5

(5)Rij + b6
(6)Rij

)

, (1b)

and (n)Ti and
(n)Rij are irreducible components of T i and Rij [6]. Being interested only in the

gravitational degrees of freedom, we disregard the matter contribution.
Particle spectrum of the theory around the Minkowski background M3 is already known [5, 6].

Restricting our attention to the scalar sector, we display here the masses of the spin-0+ and 0−

modes:

m2
0+ =

3a(a+ a2)

a2(b4 + 2b6)
, m2

0− =
3a(a+ 2a3)

(a1 + 2a3)b5
. (2a)

These modes have finite masses and propagate if

a2(b4 + 2b6) 6= 0 , (a1 + 2a3)b5 6= 0 , (2b)

respectively.
Transition to the (A)dS background is straightforward; it generalizes the mass formulas (2a)

by introducing a dependence on the parameter q that measures the strength of the background
curvature [11], but the propagation conditions for the scalar modes remain the same as in (2b).
As we shall see in the next section, the conditions (2b), derived in the weak-field approximation,
have a critical role also in the canonical analysis of the full nonlinear theory.
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3 Primary if-constraints

The canonical momenta corresponding to the basic dynamical variables (biµ, A
ij
µ) are defined by

πi
µ := ∂L̃/∂(∂0b

i
µ) and Πij

µ := ∂L̃/∂(∂0A
ij
µ), respectively. Since the torsion and the curvature

do not involve the velocities ∂0b
i
0 and ∂0A

ij
0, one obtains the primary constraints

πi
0 ≈ 0 , Πij

0 ≈ 0 , (3)

which are always present, independently of the values of coupling constants (“sure” constraints).
If the Lagrangian (1) is singular with respect to some of the remaining velocities ∂0b

i
α and ∂0A

ij
α,

one obtains further primary constraints, known as the primary “if-constraints” (ICs).
The gravitational Lagrangian (1) depends on the time derivative ∂0b

i
α only through the torsion

tensor, appearing in LT 2 . The system of equations defining the parallel gravitational momenta
π̂i

k̄ = πi
αbkα (π̂i

k̄nk = 0) can be decomposed into irreducible parts with respect to the group of
two-dimensional spatial rotations in Σ:

φ⊥k̄ :=
π̂⊥k̄

J
− (a2 − a1)T

m̄
m̄k̄ = (a1 + a2)T⊥⊥k̄ , (4a)

Sφ :=
S π̂

J
= −2a2T

m̄
m̄⊥ , (4b)

Aφı̄k̄ :=
Aπ̂ı̄k̄
J

−
2

3
(a1 − a3)T⊥ı̄k̄ = −

2

3
(a1 + 2a3)T[̄ık̄]⊥ , (4c)

Tφı̄k̄ :=
T π̂ı̄k̄
J

= −2a1
TTı̄k̄⊥ , (4d)

where the terms depending on the velocities ∂0b
i
α are moved to the right-hand sides. If the critical

parameter combinations appearing on the right-hand sides of Eqs. (4) vanish, the corresponding
expressions φK become additional primary constraints.

Similar analysis can be applied to the equations defining the parallel gravitational momenta
Π̂ij

k̄ =: Πij
αbkα (Π̂ij

k̄nk = 0), leading to an additional set of primary constraints ΦK . The
complete set of primary ICs, including their spin-parity characteristics (JP ), is shown in Table 1.

Table 1. Primary if-constraints

Critical conditions Primary constraints JP

a2 = 0 Sφ ≈ 0

b4 + 2b6 = 0 SΦ⊥ ≈ 0
0+

a1 + 2a3 = 0 Aφı̄k̄ ≈ 0

b5 = 0 AΦ⊥ı̄k̄ ≈ 0
0−

a1 + a2 = 0 φ⊥k̄ ≈ 0

b4 + b5 = 0 VΦk̄ ≈ 0
1

a1 = 0 Tφı̄k̄ ≈ 0

b4 = 0 TΦ⊥ı̄k̄ ≈ 0
2

This classification has a remarkable interpretation: whenever a pair of the ICs with specific JP

is absent, the corresponding dynamical mode is liberated to become a physical degree of freedom

(DoF). Thus, for a2(b4 + 2b6) 6= 0, the spin-0+ ICs are absent, and the spin-0+ mode becomes
physical. Similarly, (a1 + 2a34)b5 6= 0 implies that the spin-0− mode is physical. These results,
referring to the full nonlinear theory, should be compared to (2b).

3



Remark. Once we know the complete set of primary ICs, we can apply Dirac’s consistency
algorithm to obtain the secondary constraints, and so on.

4 Spin-0+ sector

As one can see from Table 1, the spin-0+ degree of freedom propagates for a2(b4 + 2b6) 6= 0. In
order to investigate dynamical features of this sector, we adopt somewhat simplified conditions:

a2, b6 6= 0 , a1 = a3 = b4 = b5 = 0 . (5a)

While such a “minimal” choice simplifies the calculations, it is not expected to influence any
essential aspect of the spin-0+ dynamics [8, 9].

Generic case

Now, we turn to the canonical analysis. First, the form of the Hamiltonian implies that the kinetic
energy density is positive definite (no “ghosts”) if

a2 > 0 , b6 > 0 . (5b)

Second, in the simple, generic situation, when all of the ICs are second class (their number is
N2 = 10), the complete set of constraints is given in Table 2.

Table 2. Generic constraints in the 0+ sector

First class Second class

Primary πi
0, Πij

0 VΦı̄;
Aφ, AΦ, Tφ, TΦ

Secondary H′
⊥, H

′
α, H

′
ij χı̄

As always, the Hamiltonian constrains H′
⊥, H

′
α and H′

ij are first class. With N = 2 × 9 field
components, N1 = 2×6 first class constraints and N2 = 10 second class constraints, the dimension
of the phase space is N∗ = 2N − 2N1 −N2 = 2, and the theory exhibits a single Lagrangian DoF.

Constraint bifurcation

To clarify the term “generic” used above, we calculate the determinant of the 10 × 10 matrix
∆+

MN = {X ′
M ,X ′

N}, where X ′
M is the set of all ICs shown in Table 2. The result is

∆+ ∼ W 10 (W − a2)
4 where W :=

SΠ⊥

4J
. (6)

The generic situation corresponds to ∆+ 6= 0. However, the determinant ∆+, being a field-
dependent object, may vanish in some regions of spacetime, changing thereby the number and/or
type of constraints and the number of physical DoF, as compared to the situation described in
Table 2. This phenomenon of constraint bifurcation can be fully understood by analyzing dynamical
behavior of the critical factors W and W − a2, appearing in ∆+.

Assuming that W is an analytic function globally, on the whole spacetime manifold M, the
analysis of the field equations

− (W − a2)Vk + 2∂k(W − a2) ≈ 0 , (7)

leads to the following conclusion [11]:

4



If there is a point in M at which W − a2 6= 0, then W − a2 6= 0 globally.

Hence, by choosing the initial data so that W − a2 6= 0 at x0 = 0, it follows that W − a2 stays
nonvanishing for any x0 > 0. The surface W − a2 = 1

6b6R − a− a2 ≈ 0 (on shell) is a dynamical
barrier that the spin-0+ field cannot cross. Moreover, since a2 is positive, see (5b), we have:

By choosing W − a2 > 0 at x0 = 0, it follows that W 6= 0 globally.

Thus, with a suitable choice of the initial data, one can ensure the generic condition ∆+ 6= 0 to
hold globally, whereupon the constraint structure is described exactly as in Table 2. Any other
situation, withW = 0 or W−a2 = 0, would not be acceptable—it would have a variable constraint
structure over the spacetime, the property that could not survive the process of linearization.

Stability under linearization

Now, we compare the canonical structure of the full nonlinear theory with its weak-field approx-
imation around maximally symmetric background. With the background values R̄ = −6q and
W̄ = 1

6b6R̄− a, the lowest-order critical factors take the form

W̄ = −(a+ qb6) , W̄ − a2 = −(a+ a2 + qb6) ,

which leads to the results shown in Table 3 [11].

Table 3. Canonical stability in the 0+ sector

a+ qb6 a+ a2 + qb6 DoF stability

(a) 6= 0 6= 0 1 stable

(b) = 0 6= 0 0 unstable

(c) 6= 0 = 0 1 stable*

Based on the conditions (5a), the spin-0+ mass formula for q 6= 0 takes the form:

m2
0+ =

3(a− qb6)(a+ a2 + qb6)

2a2b6
.

Now, a few comments are in order: (a) the nature of constraints remains the same as in Table 2,
which implies the stability under linearization; (b) all if-constraints become first class, but only
6 of them remain independent, which leads to N∗ = 0 (instability); (c) the massless nonlinear
theory, defined by the condition a+ a2 + qb6 = 0, is essentially stable under linearization.

5 Concluding remarks

— By investigating fully nonlinear constraint bifurcation effects, as well as the canonical stability
under linearization, we were able to identify the set of dynamically acceptable values of parameters
for the spin-0+ sector of PGT, as shown in Table 3.
— On the other hand, the spin-0− sector is canonically unstable for any choice of parameters; for
more details, see Ref. [11].
— Further analysis of higher spin modes is left for future studies.

5



Acknowledgements
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Milutin Blagojević and Branislav Cvetković∗
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these solutions is shown to possess the asymptotic conformal symmetry.
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1. Introduction

Investigations of Poincar’e gauge theory (PGT)1 in three-dimensional (3D) space-

time are expected to improve our understanding of both the geometric and dynam-

ical role of torsion. Systematic studies of 3D PGT started with the Mielke–Baekler

model2, introduced in the 1990s. However, this model is, just like GR, a topolog-

ical theory. In PGT, such an unrealistic dynamical feature can be quite naturally

improved by going over to Lagrangians that are quadratic in the field strengths3.

The exact solutions of a gravitational theory are essential for its physical in-

terpretation. In the context of 3D PGT, exact solutions were first studied in the

Mielke–Baekler model. Recently, our research interest moved toward exact solu-

tions in a more dynamical framework of the quadratic PGT. After constructing

the Bañados–Teitelboim-Zanelli (BTZ) black hole with torsion3 we showed that

gravitational waves can be naturally incorporated into the PGT dynamical frame-

work4,5. The purpose of the present work is to examine a PGT generalization of the

Oliva–Tempo–Troncoso (OTT) black hole6, as well as its Vaidya-like extension7.

The OTT black hole is an exact solution of the Bergshoeff–Hohm–Townsend

(BHT) massive gravity8. Generically, the BHT gravity with a cosmological con-

stant admits two distinct maximally symmetric vacua. However, when the coupling

constants satisfy a specific critical condition, these two vacua coincide. In this case

OTT black hole is a vacuum solution of the BHT gravity. Going a step further,

Maeda7 formulated a Vaidya-like extension of the OTT black hole, assuming the

presence of a null dust fluid as a matter field. In this paper, we construct a Vaidya-

OTT spacetime with torsion as an exact vacuum solution of PGT.

We use the following conventions: the Latin indices (i, j, k, ...) refer to the local

Lorentz frame, the Greek indices (μ, ν, ρ, ...) refer to the coordinate frame, bi is the

triad field (1-form), ωij = −ωji is a connection 1-form, the respective field strengths

are the torsion T i = dbi + ωi
m ∧ bm and the curvature Rij = dωij + ωi

k ∧ ωkj (2-

forms); the Hodge dual of a form α is 	α, and the exterior product is implicit.
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2. OTT Black Hole in PGT

Static OTT black hole, a vacuum solution of the BHT gravity with a unique AdS

ground state6, is also a Riemannian solution of PGT, in spite of the fact that PGT

represents quite a different dynamical framework3.

Geometric aspects. The metric of the static OTT spacetime is given by

ds2 = N2dt2 − dr
2

N2
− r2dϕ2 , N2 := −μ+Br + r

2

�2
, (1)

where μ and B are integration constants. When at least of the Killing horizons

is real and positive, and �2 > 0, the OTT metric defines a static and spherically

symmetric AdS black hole; for B = 0, it reduces to the BTZ black hole.

ForB �= 0, the scalar curvature has a singularity at r = 0, while the nonvanishing

irreducible components of the curvature are (6)Rij = 1
6Rb

ibj and (4)Rij = Rij −
(6)Rij . In this geometry, the Cotton 2-form Ci := ∇Li where Li = (Ric)i − 1

4Rb
i,

is vanishing, so that the OTT spacetime is conformally flat.

Riemannian sector of PGT. The general parity-preserving gravitational

Lagrangian of PGT is quadratic in the field strengths. In the Riemannian sector of

PGT, torsion vanishes, and LG is expressed only in terms of the curvature:

LG = −	(a0R+ 2Λ0) +
1

2
Rij	

(
b4

(4)Rij + b6
(6)Rij

)
, (2)

and the vacuum PGT field equations produce the following result:

b4 + 2b6 = 0 , b4 − 2a0�
2 = 0 , a0 + 2�2Λ0 = 0 . (3)

Thus, the OTT black hole is an exact vacuum solution in the Riemannian sector of

PGT, provided the four Lagrangian parameters satisfy the above three conditions.

3. Vaidya Extension of the OTT Metric

To obtain a Vaidya extension of the OTT metric, we first make a coordinate trans-

formation from the Schwarzschild-like time coordinate t to a new coordinate u:

dt = du+ dr/N2 . (4)

The physical meaning of u is obtained by noting that u = const. corresponds to

a radially outgoing null ray, dr/dt = N2, see Ref. 10. We introduce a Vaidya

extension of the OTT black hole by making B a function of u, B = B(u), but

leaving μ as a constant. The time dependent spherically symmetric Vaidya–OTT

metric reads:

ds2 = N2du2 + 2dudr − r2dϕ2 . (5)

In the new coordinates xμ = (u, r, ϕ), it is convenient to choose the triad field as

b+ := du , b− := Hdu+ dr , b2 := rdϕ , (6)

where H = N2/2.
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For vanishing torsion, one can use the Riemannian connection

ω+− = −H ′b+ , ω+2 = −1

r
b2 , ω−2 =

1

r
Hb2 , (7)

to calculate the related curvature 2-form Rij . Then, following the procedure de-

scribed in the previous section, one finds that the PGT field equations imply:

b4 + 2b6 = 0 , b4 − 2a0�
2 = 0 , a0 + 2�2Λ = 0 , Ḃ := ∂uB = 0 . (8)

Thus, the Vaidya–OTT metric l is not a Riemannian solution of PGT in vacuum.

To overcome a similar barrier in the BHT gravity, Maeda7 introduced the

Vaidya-OTT solution in the presence of matter, represented by a null dust fluid.

Based on our experience with exact wave solutions in PGT4,5, we expect that the

presence of torsion could lead to a consistent description of the problem.

4. Vaidya–OTT solution with torsion

4.1. Geometry of the ansatz

Following the logic of our approach to exact wave solutions in PGT4,5, we propose to

look for a Vaidya–OTT solution with torsion using the following two assumptions:

(i) The new triad field retains the form (6);

(ii) The RC connection is obtained from the Riemannian expression (7) by the

rule H → H +K, where K = K(u):

ω+− = −H ′b+ , ω+2 = −1

r
b2 , ω−2 =

1

r
(H +K)b2 . (9)

The new function K is expected to compensate the presence of the problematic Ḃ

term in the Riemannian field equations (8). Geometrically, K defines the torsion of

spacetime.

4.2. Solutions

We now wish to find the metric function H and the torsion function K as solutions

of the vacuum PGT field equations. To ensure a smooth limit to the standard

OTT black hole for B → const., we impose the conditions (3) on the Lagrangian

parameters. Then, the field equations read:

2K̇ +BK = 0 , Ḃ�2 + 2K = 0 . (10)

By combining the above two equations, one obtains

2K − 1

4
B2�2 = −K0�

2 , Ḃ +
1

4
B2 = K0 , (11)

where K0 is an integration constant, the first integral of the field equations (10).

Introducing a new constant E by K0�
2 = 4GE−μ, the first equation takes the form

4GE = μ+
1

4
B2�2 − 2K , (12)
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where E is recognized as a RC generalization of the gravitational energy. The

conservation law of E is defined with respect to the evolution along u, dE/du = 0.

However, dt = du+ dr/N2 implies t = u+O1, so that asymptotically, one expects

E to be conserved also with respect to the Schwarzschild-like time t.

Depending on the value of K0, there exist three branches of solutions.

1. K0 = C2
1 . Apart from the trivial case B = 2C1, K = 0, one finds:

B = 2C1 tanh
C1

2
(u+ C2) , K = − C2

1 �
2

2 cosh2 C1

2 (u+ C2)
. (13)

2. K0 = −C2
1 . By replacing C1 → iC1 in the solution (13), one obtains:

B = −2C1 tan
C1

2
(u + C2) , K =

C2
1 �

2

2 cos2 C1

2 (u+ C2)
. (14)

3. K0 = 0.

B =
4

u+ C2
, K =

2�2

(u+ C2)2
. (15)

The solutions in branch 1 are perfectly regular, and physically most appealing.

Since B(u) and K(u), as well as their derivatives, are bounded functions, the field

strengths approach asymptotically to a Riemannian AdS spacetime.

5. Asymptotic Symmetry

In this section, we use the canonical approach to analyze the asymptotic symmetry

associated to the Vaidya–OTT solution with torsion in branch 1.

5.1. AdS asymptotic conditions

By requiring the invariance under the AdS group SO(2, 2), one arrives at the fol-

lowing set of the Vaidya–OTT asymptotic states:

biμ = b̄iμ +Bi
μ, Bi

μ :=

⎛⎝O1 O3 O1

O−1 O1 O−1

O0 O2 O0

⎞⎠ , (16a)

ωi
μ = ω̄i

μ +Ωi
μ, Ωi

μ :=

⎛⎝O1 O3 O1

O−1 O1 O−1

O0 O2 O0

⎞⎠ , (16b)

where ωi := − 1
2εijkω

jk, and b̄iμ and ω̄i
μ refer to the background configuration

with μ,B = 0, representing the massless BTZ black hole. These states are invariant

under the set of restricted local Poincaré transformations which commutator algebra

is found to have the form of two independent Virasoro algebras.
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5.2. Canonical generators

In order to examine the canonical structure of the quadratic PGT, we use the first-

order formulation 11, as it leads to a particularly simple construction of the canonical

generator. Since the canonical generatorG acts on basic dynamical variables via the

Poisson bracket operation, it is required to be a differentiable phase-space functional.

For a given set of asymptotic conditions, this property is ensured by adding a

suitable surface Γ term to G, such that G̃ = G+ Γ is both differentiable and finite

phase-space functional12. The improved generator G̃ = G+ Γ is determined by:

δΓ =

∫ 2π

0

dϕ(ξtδE + ξϕδM) , (17a)

δE :=
1

2

(
ωij

tδHijϕ + δωijϕH
ij
t

)
, (17b)

δM :=
1

2

(
ωij

ϕδHijϕ + δωijϕH
ij
ϕ

)
, (17c)

where Hij = −2a0εijkb
k − 4a0�

2εijkL̂
k .

The surface term for time translations can be written in the form

E =
1

2

(
ωij

tΔHijϕ +Δωij
ϕH̄ijt

)− 1

4

(
Δωij

tΔHijϕ −Δωij
ϕΔHijt

)
, (18a)

where ΔX := X − X̄ is the difference between any form X and its boundary value

X̄ . Equation (17c) leads to a simple surface term for spatial rotations:

M =
1

2
ωij

ϕHijϕ . (18b)

Improved generator is finite phase-space functional.

The boundary terms for ξt = 1 and ξϕ = 1 represent the energy and angular

momentum of the system, which for the the Vaidya–OTT configuration are

E =
1

4G

(
μ+

1

4
B2�2 − 2K

)
, M = 0 . (19)

The form of E confirms the result (12) obtained from the Lagrangian field equations.

The expression for energy defined by equation (18a) consists of two pieces. As

shown in Ref. 9, the first piece is sufficient to correctly describe the energy content of

a number of solutions in 3D gravity. However, when applied to the (Vaidya–)OTT

solution, this piece is not sufficient; in particular, it produces the incorrect coefficient

1/2 for the B2 term in (19). Thus, our result (18a) represents a generalization of

the energy formula used in9 to the (Vaidya–)OTT case.

5.3. Canonical algebra of asymptotic symmetries

The asymptotic symmetry is described by the Poisson bracket algebra of the im-

proved generators. In terms of Fourier modes L±
n of G̃, the PB algebra takes the

form of two independent Virasoro algebras,

i{L±
m, L

±
n } = (m− n)L±

n+m +
c±

12
n3δm,−n , (20)
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where the classical central charges are equal to each other, c± = c, with

c =
3�

G
. (21)

Thus, the value of c is found to be twice the GR value c0 = 3�/2G.

6. Concluding remarks

We constructed a Vaidya-like extension of the OTT black hole as an exact solution

of the quadratic PGT in vacuum. Firstly, we showed that the OTT black hole

is a Riemannian vacuum solution of PGT, provided the coupling constants satisfy

certain requirements. Then, following Maeda7, we introduced a Vaidya-like exten-

sion of the OTT black hole; however, this extension is not a Riemannian solution

of PGT in vacuum. To overcome this difficulty, we introduced a suitable ansatz

for the connection possessing a nontrivial torsion content, making thereby the re-

sulting Vaidya–OTT geometry an exact vacuum solution of PGT. The canonical

energy contains a contribution stemming from the torsion and central charges of

the asymptotic algebra are the same as in the BHT gravity case.
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Rezime

Tema ovog rada je prou£avanje Lavlokove gravitacije sa torzijom u cilju boljeg
razumevanja torzije kao i vi²ih stepena krivine. Fokus je na pronalaºenju novih
re²enja i na ispitivanju holografske strukture. Rad je podeljen na glave, sadrºaj
pojedina£ne glave je dat u daljem tekstu.

Izlaganje po£injemo kratkim uvodom, u kome dajemo pregled poznatih rezul-
tata i problema u �zici gravitacije. Tako�e, u uvodu, pravimo pregled pravaca
istraºivanja, i na kraju dajemo, kratki, osvrt na moderna dostignu¢a eksperimen-
talne �zike gravitacije, kao i na njihov zna£aj za teorijsku �ziku gravitacije i �ziku
uop²te.

Nakon toga pristupamo teoriji gravitacije kao teoriji polja. Ideja ove glave je
kriti£ki pogled na strukturu gravitacije tako da uvodimo principe efektivne teorije
polja, koja predstavlja op²teprihva¢en pogled na teoriju polja. Nakon toga, da-
jemo pregled konstrukcije teorije gravitacije i problem nerenormalizabilnosti Op²te
teorije relativnosti. Ovo ¢e pokazati da potraga za kompletnom teorijom gravita-
cije nije gotova i da¢e nam smernice u kom pravcu treba nastaviti potragu. Na
kraju, uvodimo gradijentnu teoriju Poenkareove grupe, koja je op²ti formalizam
za konstrukciju teorije gravitacije i dajemo primer Lavlokove gravitacije.

Tre¢a glava je posve¢ena kanonskoj analizi, koja je veoma koristan formali-
zam za ispitivanje strukture teorije. Naime, istom se mogu odrediti gradijentne
simetrije i konstruisati njihov generator, kao i broj stepeni slobode.

Naredna glava je skup neophodnih informacija u cilju formulisanja i razumeva-
nja holografske dualnosti. U ovoj glavi, dajemo kratki pregled termodinamike crnih
rupa i konformne teorije polja. Uvodimo asimptotske simetrije, koje nas dovode do
prvog primera holografse dualnosti. Na kraju, izlaºemo Viten-Gubser-Klebanov-
Poljakovu preskripciju, koju ilustrujemo na nekoliko elementarnih primera.

Crnim rupama u Lavlokovoj gravitaciji je posve¢ena peta glava. Prvo pravimo
pregled, nekih, poznatih re²enja. Nakon toga, detaljno izlaºemo konstrukciju i
analizu osobina sferno simetri£ne crne rupe sa torzijom. Posle toga, konstrui²emo
crni prsten sa i bez torzije i prou£avamo njegove osobine.



U narednoj glavi, ispitujemo holografsku strukturu Lavlok �ern-Sajnmonsove
gravitacije. Prvo, detaljno analiziramo �ksiranje gradijentne simetrije u teoriji sa
lokalnom AdS simetrijom. Posle toga, izvodimo Vordove identitete. Dalje se foku-
siramo na Lavlok �ern-Sajnmonsovu gravitaciju, izvodimo oblik Grinovih funkcija
i proveravamo prisustvo anomalija. U �nalnom delu ove glave dajemo alternativni
dokaz renormalizacione teoreme.

Na kraju sumiramo rezultate, revidiramo status i delimo nekoliko misli kakva
je perspektiva teorije gravitacije.

Klju£ne re£i: Alternativne teorije gravitacije, gravitacija u di-
menziji razli£itoj od £etiri, crne rupe, holografska dualnost

Nau£na oblast: Fizika

Uºa nau£na oblast: Teorijska �zika visokih energija

UDK broj: 538.9(043.3)



Abstract

Thematics of this work is studding of Lovelock gravity with torsion with the pur-
pose of better understanding of torsion as well as of higher degrees of curvature.
The focus is on discovering of new solutions and investigating of holographic struc-
ture. The paper is divided in chapters, the content of individual chapter is given
in the following text.

We start the exposure with short introduction, in which we review known
results and problems in gravitational physics. Also, in introduction, we review
directions of research, at the end we look at modern achievements in experimental
gravity, as well as their importance for theory of gravity and whole physics. Ovo
¢e pokazati da potraga za kompletnom teorijom gravitacije nije gotova i da¢e
nam smernice u kom pravcu treba da nastavimo potragu. Na kraju, uvodimo
gradijentnu teoriju Poenkareove grupe, koja je op²ti formalizam za konstrukciju
teorije gravitacije i dajemo primer Lavlokove gravitacije.

Afterwards we approach to gravity as a �eld theory. The idea of this chapter
is critical look at structure of gravity to this end we introduce the principles of
e�ective �eld theory, which represents generally accepted approach to �eld the-
ory. Next, we review construction of theory of gravity and non-renormalizability
of General relativity. This will show that search for the complete theory of gra-
vity is not �nished and give us directions in which to continue research. At the
end, we introduce gauge theory of Poincare group, which is general formalism for
construction of gravitational theory and give example of Lavlock gravity.

Third chapter is devoted to canonical analysis, which is very useful formalism
for inspecting properties of a theory. using it we can determine gauge symmetries
and construct their generator, as well as number of degrees of freedom.

Following chapter is bundle of necessary informations with the purpose of un-
derstanding and formulating holographic duality. in this chapter, we review black
hole thermodynamics and conformal �eld theory. We introduce asymptotic sym-
metry, which leads us to the �rst example of holographic duality. In the end, we
give Witten-Gubser-Klebanov-Polyakov prescription, which we illustrate on some
elementary examples.



Fifth chapter is devoted to black holes in Lavelock gravity. First we review,
some, famous solutions. Next, we give construction in detail and analyze properties
of spherically symmetric black hole with torsion. After that we construct black
ring with and without torsion and inspect its properties

Afterwards, we investigate holographic structure of Lavlock Chern-Simons gra-
vity. First, we analyze in detail gauge �xing in theory with local AdS symmetry.
After that, we derive Ward identities. Next, we focus on Lavlock Chern-Simons
gravity, we derive Green functions and inspect appearance of anomalies. In the
�nal part of this chapter we give alternative derivation of renormalization theorem.

In the end we sum results, review status and share some thoughts on perspective
of theory of gravity.

Key words: Alternative theories of gravity, gravity in dimension
other than four, black holes, holographic duality

Scienti�c �eld: Physics

Research area: Theoretical high energy physics

UDK broj: 538.9(043.3)
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UNIVERZITETA U BEOGRADU

Pošto smo na VI sednici Nastavno-naučnog veća Univerziteta u Beogradu održanoj 28.03.2018.
odredjeni za članove komisije za pregled i ocenu doktorske disertacije Dejana Simiića, diplomiranog
fizičara, ,,LAVLOKOVA GRAVITACIJA SA TORZIJOM: EGZAKTNA REŠENJA, KANONSKA
I HOLOGRAFSKA STRUKTURA”, posle pregleda disertacije podnosimo sledeći

I Z V E Š T A J

1 Biografski podaci

Dejan Simić je rodjen 02.07.1989. u Paraćinu, gde je završio osnovnu školu. Srednju školu, gim-
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rada pod naslovom ,,SO(1,2) grupa i nekomutativna geometrija”. Mentor pri izradi master teze je
bila prof. dr Maja Burić. Postdiplomske studije na Fizičkom fakultetu, na smeru Kvantna polja,
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istraživač saradnik je izabran 2017. godine.

U zimskom semestru školske godine 2012/2013. bio je saradnik u nastavi na Fizičkom fakultetu
na predmetu Simetrije u fizici.
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171031 ,,Fizičke implikacije modifikovanog prostor–vremena”, koji je finansiran od strane Min-
istarstva prosvete, nauke i tehnološkog razvoja vlade Republike Srbije.

Naučna aktivnost Dejana Simića odvija se u oblasti teorijske fizike gravitacije, odnosno pre-
ciznije, gradijentnih teorija gravitacije.

2 Opis doktorskog rada

2.1 Tema i ciljevi

Opšta teorija relativnosti (OTR), formulisana pre vǐse od jednog veka, donela je revoluciju u
razumevanju gravitacije i strukture prostor–vremena. OTR se pokazala kao veoma uspešna teorija
u interpretaciji dosadašnjih eksperimentalnih rezultata ali su njenim zasnivanjem otvorena i neka
nerešena pitanja. Jedan od značajnih problema je da su rešenja u OTR generički singularna, što
je fizički neprihvatljivo. Ovim je inspirisan pravac istraživanja u smeru alternativnih teorija gra-
vitacije, tj. potraga za teorijom koja reprodukuje eksperimentalne rezultate podjednako dobro ali
čija su rešenja fizički prihvatljiva odnosno nesingularna.

Sa razvojem kvantne teorije polja i Standardnog modela koji opisuje elektromagnetnu, slabu
i jaku interakciju, logičan korak je bio kvantovanje gravitacije. To je do danas najveći nerešeni
problem fizike visokih energija na kome se aktivno radi preko pola veka. Postoje razni pristupi
ovom problemu koji mogu grubo da se podele u dve grupe, po tome da li modifikuju gravitaciju ili
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metod kvantovanja. Najpoznatiji pristup koji modifikuje gravitaciju je teorija struna, u okviru koje
se pretpostavlja da je fundamentalni objekat struna, a ne čestica. Poznati pristupi iz ove grupe su,
takodje, teorije supergravitacije kao i teorije sa dodatnim (ekstra) dimenzijama. Pristup koji polazi
od pretpostavke da je OTR dobra klasična teorija gravitacije, ali da bi trebalo modifikovati način
kvantovanja je kvantna gravitacija na petljama (LQG). Cilj doktorske disertacije Dejana Simića je
nalaženje i proučavanje osobina egzaktnih rešenja sa torzijom u okviru Lavlokove gravitacije, jedne
od alternativnih teorija gravitacije, kao i primena jednog od aspekata teorije struna, holografije,
na pomenutu teoriju.

Postoji vǐse teorema koje značajno ograničavaju strukturu crnih rupa u OTR u četiri dimenzije.
Tokom vremena, eksplicitnom konstrukcijom rešenja, se uvidelo da ove teoreme ne važe ako razma-
tramo alternativne teorije gravitacije i/ili broj dimenzija različit od četiri. Medju ovim rešenjima
se pojavilo vǐse njih sa različitim topologijama horizonta dogadjaja ili nekim drugim egzotičnim
osobinama, dok u OTR-u postoji samo topologija sfere. Relevantnost ovih rešenja je u poten-
cijalnoj detekciji gravitacionih talasa specifične signature i dobijanje informacija o potencijalnoj
modifikaciji OTR-a. Rešenja mogu imati zanimljive termodinamičke osobine i relevantna su sa
stanovǐsta ideje primene holografske dualnosti na teorije sa torzijom. Neki od pomenutih rezultata
dobijeni su u radovima beogradske grupe1.

2.2 Sadržaj i rezultati

Doktorska teza ,,Lavlokova gravitacija sa torzijom: egzaktna rešenja, kanonska i holografska struk-
tura” Dejana Simića napisana je na 146 strana, sadrži 7 poglavlja i spisak literature od 108 referenci.

Prvo poglavlje disertacije sadrži opšti fizički uvod. Drugo poglavlje posvećeno je konstrukciji
teorije gravitacije sa stanovǐsta teorije polja, ukratko je izložen problem renormalizabilnosti OTR.
Dat je i kratak pregled lokalne Poenkareove teorije i uvedeno je dejstvo za Lavlokovu gravitaciju
u formalizmu prvog reda. Izvedene su jednačine kretanja, diskutovane su njihove posledice i
egzistencija maksimalno simetričnog rešenja, sa posebnim osvrtom na petodimenzioni slučaj.

U trećem poglavlju izloženi su osnovni elementi kanonske analize sistema sa vezana, kao i Kaste-
lanijeva procedura konstrukcije kanonskog generatora. Poglavlje četiri posvećeno je holografskoj
dualnosti. Holografski pogled na gravitaciju ima svoje korene u početku sedamdesetih godina XX
veka kada je otkriveno, u okviru OTR, da crne rupe poseduju svojstva slična termodinamičkim
sistemima i da poseduju temperaturu, entropiju i ostala termodinamička svojstva. Od svih ter-
modinamičkih osobina crnih rupa najznačajnija je entropija, u OTR-u važi Bekenštajn-Hokingova
formula, prema kojoj je entropija proporcionalna površini horizonta dogadjaja, što sugerǐse da
stepeni slobode nisu rasporedjeni zapreminski, kao što bi se očekivalo, već po površini. Ovo je
inspirisalo holografski pogled na gravitaciju, čija gruba formulacija glasi da gravitacija može da se
opǐse kao teorija u dimenziji manje. Implementacija holografskog principa je postignuta u okviru
teorije struna i poznata je pod vǐse imena AdS/CFT, holografija i gauge/gravity dualnost.

U poglavljima pet i šest dati su glavni originalni rezultati ovog rada. Rezultati u poglavlju
pet odnose se na egzaktna rešenja petodimenzione Lavlokove gravitacije. Analizirana su statička
sferno simetrična rešenja i pokazano je u Rimanovom sektoru, Bulver-Dezerova crna rupa pre-
dstavlja jedinstveno rešenje za generički izbor parametara u dejstvu. Za specijalan izbor param-
etara, različit od Lavlok Čern-Sajmonsovog (LCS) sektora, teorija poseduje statičko rešenje – crnu
rupu sa torzijom čija metrika je asimptotski AdS. Izračunati su održani naboji i ispitane termo-
dinamičke osobine dobijenog rešenja. Pronadjeno je još jedno egzaktno rešenje petodimenzione

1M. Blagojević, B. Cvetković and M. Vasilić, ”Exotic” black holes with torsion, Phys. Rev. D 88 (2013) 101501
(R); M. Blagojević and B. Cvetković, Black hole entropy in 3D gravity with torsion, Class. and Quantum Gravity
23 , 4781 (2006);M. Blagojević, B. Cvetković, O. Mǐsković and R. Olea, Holography in 3D AdS gravity with torsion,
JHEP 05 (2013) 103.
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Lavlokove gravitacije – Banjados, Tajtelbom, Zanelijev (BTZ) crni prsten sa torzijom. Održani
naboji izračunati su korǐsćenjem Nesterove formule i kanonskog metoda. Pokazano je da teorija
linearizovana oko ovog rešenja poseduje dva dodatna stepena slobode u odnosu na broj stepeni
slobode OTR.

U poglavlju šest analizirana je holografska teorija polja dualna LCS AdS gravitaciji u vǐsim
dimenzijama. Nadjene su asimptotske simetrije u AdS sektoru i pokazano je da se one sastoje od
lokalnih translacija, lokalnih Lorencovih rotacija, dilatacija i ne-Abelovih lokalnih tranformacija.
Izračunate su 1-tačkaste funkcije: struje energije-impulsa i spina u dualnoj konformnoj teoriji polja
i zapisani su odgovarajući Vordovi identiteti. Pokazano je da holografska teorija poseduje Vajlovu
anomaliju, kao i da je ne-Abelova lokalna simetrija narušena na kvantnom nivou.

Sedmo poglavlje posvećeno je zaključnim razmatranjima.
Rezultati doktorske teze Dejana Simića objavljeni su u tri načna rada u vrhunskim časopisima,

dok je četvrti u procesu publikovanja ([1] i [2] su za sajt Fizičkog fakulteta).

2.3 Naučni radovi kandidata vezani za doktorsku disertaciju

[1 ] B. Cvetković and D. Simić, 5D Lovelock gravity: New exact solutions with torsion, Phys.
Rev. D 94, 084037 (2016), IF=4.568

[2 ] B. Cvetković, O. Mǐsković and D. Simić, Holography in Lovelock Chern-Simons AdS gravity,
Phys. Rev. D 96, 044027 (2017), IF=4.568

[3 ] B. Cvetković and D. Simić, A black hole with torsion in 5D Lovelock gravity, Class. Quan-
tum Grav. 35 (2018) 055005, IF=3.119
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Sažetak

U ovom radu je razmatrano vakuumsko rešenje BHT gravitacije, nazvano po au-
torima Bergšof (Bergshoeff ), Hom (Hohm) i Tausend (Townsend). Ovo rešenje ima
naziv OTT crna rupa, po autorima Oliva (Oliva), Tempo (Tempo) i Tronkozo (Tron-
coso). Pokazano je da je rešenje koristan model za (3+1)-dimenzionu gravitaciju,
kako OTT crna rupa poseduje određene osobine koje se poklapaju sa rešenjem Opšte
teorije relativnosti. Posebno se razmatra kretanje čestica u polju statičke i rotirajuće
ove crne rupe. Takođe, pokazano je da parametar b, koji razlikuje OTT crnu rupu od
BTZ crne rupe, ne predstavlja gravitacioni "čupavi" parametar, kao što se napominje
u literaturi.

Abstract

In this paper, we analyze the vacuum solution of the theory of massive gravity
in 2+1 dimensions, recently proposed by Bergshoeff, Hohm and Townsend (BHT).
The black hole solution, named after its authors Oliva, Tempo and Troncoso (OTT),
has been shown to posses certain properties that coincide with the vacuum solution of
Einstein’s general theory of relativity. We consider the motion of particles in the fields
of static and rotating OTT black holes and analyze their potentials. Also, we show
that the parameter b is wrongly interpreted as "the gravitational hair parameter" in
the previous literature.
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8. ФИЗДФПФ8
Пирометарски системи и безконтактне методе мерења

температуре
Љубиша Зековић, Иван Белча

9. ФИЗДФПФ9 Експерименталне методе биофизике Милош Вићић

10. ФИЗДФПФ10 Примена плазме у биологији и медицини Невена Пуач, Зоран Петровић

Ужа научна област: НАСТАВА ФИЗИКЕ

1. ФИЗДФДФ1 Изабрана поглавља дидактике физике Мићо Митровић

2. ФИЗДФДФ2 Рад са талентованим ученицима Мићо Митровић

3. ФИЗДФДФ3 Методологија педагошких истраживања у физици Андријана Жекић, Јаблан Дојчиловић

4. ФИЗДФДФ4 Истраживање учења и наставе физике Јосип Слишко

5. ФИЗДФДФ5 Методе интерактивне наставе и учења физике Мирјана Поповић-Божић, Братислав Обрадовић

РАЧУНАРСКИ ПРЕДМЕТИ ЗА ВИШЕ НАУЧНИХ ОБЛАСТИ

1. ФИЗДФВО1 Нумеричке методе у физици Јован Пузовић, Зоран С. Поповић

2. ФИЗДФВО2 Монте Карло симулације у физици Горан Попарић, Антун Балаж

3. ФИЗДФВО3
Методи нумеричке симулације у физици јонизованог гаса

и плазме

Марија Радмиловић-Рађеновић, Најдан Алексић,

Милован Шуваков

4. ФИЗДФВО4 Нумеричке методе и симулације у квантној оптици Душан Арсеновић

Координатори смерова:

1. Квантна, математичка и нанофизика: М. Дамњановић, М. Поповић Божић

2. Квантна поља, честице и гравитација: Б. Саздовић, В. Радовановић

3. Физика високих енергија и нуклеарна физика: П. Аџић, Љ. Симић

4. Физика атома и молекула: Т. Грозданов, Н. Недељковић

5. Квантна оптика и ласери: М. Кураица, Љ.Хаџиевски

6. Физика јонизованог гаса и плазме: С. Буквић,З.Петровић

7. Физика кондензоване материје и статистичка физика: Н. Бибић, З. Радовић, М. Кнежевић

8. Примењена физика: М. Драмићанин, И. Белча

9. Настава физике: Ј. Дојчиловић
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Rukovodjenje projektima, potprojektima i
projekntim zadacima





Potvrda o rukovodjenju potprojektom

Ovim potvrdjujem da je dr Branislav Cvetković (za koga se pokreće izbor u
zvanje naučni savetnik) u okviru projekta 141036 ,,Alternativne teorije grav-
itacije” u periodu od 2008–2010 rukovodio potprojektom – celinom ,,Torzija
i nemetričnost u gravitaciji i teoriji struna/brana”. Na pomenutom pot-
projektu bili su angažovani istraživači: dr Branislav Cvetković, dr Milutin
Blagojević, dr Branislav Sazdović, dr Milovan Vasilić i dr Bojan Nikolić.

Beograd, 18.04.2018. Rukovodilac projekta 141036

prof. dr Milutin Blagoejvić



Subject [e-COST] New position

From <noreply@cost.eu>

To <cbranislav@ipb.ac.rs>

Date 2015-02-05 09:56

Dear Dr Branislav CVETKOVIC,

This email is sent by the e-COST system to you as a confirmation that you have been nominated
as MC Substitute [MP1405 RS].

To complete your nomination, please follow the link below:
https://e-services.cost.eu/?module=user&action=activationCode&
userParam[code]=NOMINATION_b85a85369a3e232c54e92e74d430c0dc

Should you have any questions in relation to this nomination and registration of your e-COST
profile please send your questions to e-cost@cost.eu.

The COST Association
Avenue Louise 149
1050 Brussels
Belgium
Tel.: +32 2 533 38 00
E-mail: e-cost@cost.eu
Web: www.cost.eu

Institute of Physics Belgrade Roundcube Webmail :: [e-COST] New position https://mail.ipb.ac.rs/roundcube/?_task=mail&_safe=0&_uid=4&_mbo...
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Subject Пријава пројекта

From <projekti.minis@mpn.gov.rs>

To <cbranislav@ipb.ac.rs>

Date 2016-04-13 11:48

Поштовани,

Обавештавамо вас да сте задовољили потребне квантитативне услове за руководиоца пројекта. У систему за

пријаву пројеката по вашем захтеву је отворен пројекат са евиденционим бројем OI1611010

Унос података о пројекту можете вршити преко веб странице http://minis.mpn.gov.rs/projekti

За приступ страници вашег пројекта користите корисничко име cbranislav@ipb.ac.rs

и лозинку kjrUbtVKXbNR2JLp7fxR

Након првог приступа систему за пријаву пројеката, можете променити вашу лозинку.

С поштовањем,

Андријана Ивановић

Institute of Physics Belgrade Roundcube Webmail :: Пријава пројекта https://mail.ipb.ac.rs/roundcube/?_task=mail&_safe=0&_uid=181&_mb...
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Subject Пријава пројекта

From <projekti.minis@mpn.gov.rs>

To <branislav.cvetkovic@ipb.ac.rs>

Date 2016-04-18 12:18

Поштовани,

Управо сте ангажовани на пројекту Квантно просторвреме.

Број истраживач месеци је 12.

Руководилац пројекта је Бранислав Цветковић.

С поштовањем,

Institute of Physics Belgrade Roundcube Webmail :: Пријава пројекта https://mail.ipb.ac.rs/roundcube/?_task=mail&_safe=0&_uid=186&_mb...
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društvima



Folders

Inbox

Drafts

Sent (3)

Junk (856)

Trash

COST

DFS

Divcibare 2013

Doktoranti IF

Doktorat

Facebook

HEPFIS

Izbor u zvanje

Jagodina

Karl Sch...rzschild

Komercij...na banka

Konferenc...a Milutin

Kurs Teor...itacije 2

Master Marija

Matemat...imnazija

MG2015

Mini [he...workshop

OTR2015

Postdoc

Projekat (2)

Radovi

Radovi-k...ndencija

Reports

s

saved-messages

Seminari

Sent

Softver

spam-mail

Svadba

Telenor

Trash

Upravi odbor

virus-mail





Subject From Date Size

CQG-104773: This manu… Classical and Quantum Gravity 2018-04-05 00:43 5 KB

Decision on an article yo… Classical and Quantum Gravity 2018-03-21 12:08 3 KB

Thank you for your repor… prd@aps.org 2018-03-20 00:16 3 KB

Referee list for Italian pr… fedele.lizzi@na.infn.it 2018-03-13 14:39 3 KB

Reminder CVETKOVIC D… prd@aps.org 2018-03-13 14:13 2 KB

Reminder CVETKOVIC D… prd@aps.org 2018-03-07 12:07 7 KB

Your review for Classical… Team Publons 2018-03-06 11:21 17 KB

Thank you for reviewing… Classical and Quantum Gravity 2018-03-06 11:20 4 KB

Your report for Class. Qu… Classical and Quantum Gravity 2018-03-04 08:09 5 KB

Referee report overdue f… Classical and Quantum Gravity 2018-03-01 10:11 5 KB

Your report for Class. Qu… Classical and Quantum Gravity 2018-02-25 08:07 5 KB

Review_request CVETKO… prd@aps.org 2018-02-14 18:01 5 KB

CQG-104531: This manu… Classical and Quantum Gravity 2018-02-13 18:39 5 KB

A request to referee for… Classical and Quantum Gravity 2018-02-13 11:36 7 KB

Thank you for your repor… prd@aps.org 2018-01-29 13:16 3 KB

Reminder CVETKOVIC D… prd@aps.org 2018-01-17 13:29 2 KB

Reminder CVETKOVIC D… prd@aps.org 2018-01-11 11:35 7 KB

Decision on an article yo… Classical and Quantum Gravity 2018-01-08 11:12 3 KB

Your review for Classical… Team Publons 2017-12-26 00:50 17 KB

Thank you for reviewing… Classical and Quantum Gravity 2017-12-25 13:55 3 KB

Your report for Class. Qu… Classical and Quantum Gravity 2017-12-24 08:16 4 KB

Review_request CVETKO… prd@aps.org 2017-12-21 14:46 6 KB

Referee report overdue f… Classical and Quantum Gravity 2017-12-20 10:59 4 KB

Your report for Class. Qu… Classical and Quantum Gravity 2017-12-17 08:12 4 KB

To_referee CVETKOVIC… prd@aps.org 2017-12-05 17:29 2 KB

CQG-104423: This manu… Classical and Quantum Gravity 2017-12-05 12:46 5 KB

A request to referee for… Classical and Quantum Gravity 2017-12-05 11:14 5 KB

Thank you for your repor… prd@aps.org 2017-12-04 22:33 3 KB

Reminder CVETKOVIC D… prd@aps.org 2017-11-28 14:21 2 KB

Reminder CVETKOVIC D… prd@aps.org 2017-11-17 11:44 7 KB

Review_request CVETKO… prd@aps.org 2017-10-27 18:35 5 KB

Your_manuscript DG122… prd@aps.org 2017-09-26 18:16 3 KB

Decision on an article yo… Classical and Quantum Gravity 2017-09-15 15:08 3 KB

Your review for Classical… Publons 2017-09-15 12:13 17 KB

Thank you for reviewing… Classical and Quantum Gravity 2017-09-15 12:12 3 KB

Decision on an article yo… Classical and Quantum Gravity 2017-09-08 16:11 3 KB

Request to review revise… Classical and Quantum Gravity 2017-09-08 12:26 7 KB

Decision on an article yo… Classical and Quantum Gravity 2017-09-06 13:57 3 KB

Thank you for reviewing… Classical and Quantum Gravity 2017-09-06 13:47 3 KB

Your review for Classical… Publons 2017-09-06 13:45 17 KB

Referee report pending f… Classical and Quantum Gravity 2017-09-04 10:23 4 KB

Thank you for your repor… prd@aps.org 2017-08-28 13:13 3 KB

Your report for Class. Qu… Classical and Quantum Gravity 2017-08-28 08:07 4 KB

Reminder CVETKOVIC D… prd@aps.org 2017-08-22 13:34 2 KB

Your report for Class. Qu… Classical and Quantum Gravity 2017-08-19 08:09 4 KB

Have you reviewed a ma… Daniel Johnston 2017-08-17 08:51 28 KB

Reminder CVETKOVIC D… prd@aps.org 2017-08-14 12:47 7 KB

CQG-103927: This manu… Classical and Quantum Gravity 2017-08-08 00:22 5 KB

A request to referee for Classical and Quantum Gravity 2017-08-07 16:00 6 KB
Select: Select: Threads: Threads: Show preview pane:Show preview pane: Messages 1 to 50 of 437Messages 1 to 50 of 437

Filter: All 
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Subject Certificate of evaluation

From Fondecyt

To cbranislav@ipb.ac.rs

Reply-To eval_lin@conicyt.cl

Date 2010-11-25 16:09

Priority Normal

Dear Prof. CVETKOVIC,

This is to confirm that our online evaluation system has successfully received your 
referee report. It has been added to our evaluation database.

At this time, I would like to express my sincere appreciation for the time and effort you 
have given to our agency's 2010 review process.

Sincerely,

Maria Elena Boisier
Executive Director
FONDECYT Program 

© 2010, FONDECYT
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GPFGHSNG2018 Workshop

2018 Workshop on Gravity, Holography, Strings and Noncommutative
Geometry

1. February 2018, Belgrade, Serbia

Organization

The Workshop is organized by Group for Gravitation, Particles and Fields (Institute of Physics, University of Belgrade), within the

framework  of  the  national  project  "Physical  implications  of  modified  spacetime",  number  ON 171031,  of  the  Ministry  of

Education, Science and Technological Development, Serbia.

Scientific committee

Branislav Cvetkovic and Marko Vojinovic

Registration

It is important for all interested participants to register as soon as possible, so that we can reserve an appropriate number of

places for lunch in the restaurant. Registration is now closed.

Programme

Lectures were held on Thursday, 1. February 2018, at the Institute of Physics, seminar room 360 (ex-room 300), third floor.

09:50  --  10:00  ---
Opening

Introduction and opening of the workshop

10:00  --  10:45  ---
Lecture
10:45  --  10:55  ---
Discussion

Speaker:  Rodrigo
Olea

(lecture slides)

Title: Brussels sprouts, black hole mass and pre-holography
Abstract:

We present  the  first  evidence  on  the  fact  that  topological  invariants
should  renormalize  anti-de  Sitter  gravity  with  quadratic-curvature
corrections. This argument is based on the computation of  energy for
Einstein black holes in the theory, which appears as an alternative to
linearized methods (e.g., Deser-Tekin formula).
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10:55  --  11:40  ---
Lecture
11:40  --  11:50  ---
Discussion

Speaker:  Olivera
Miskovic

(lecture slides)

Title: Thermodynamic instabilities of extremal black holes
Abstract:

We study static, charged extremal black holes in 4D gravity non-linearly
coupled to a scalar field. We show that the system can exhibit a phase
transition  due  to  electric  charge  variations  only  in  presence  of  a
cosmological constant and if the scalar is massive. A near-critical analysis
reveals that, on one side of the critical point, the hairy black hole has
larger  entropy  than  the  non-hairy  one,  thus  giving  rise  to  a  zero
temperature phase transition. Our results are analytical and based on the
second law of thermodynamics.

11:50  --  12:10  ---
Break

Coffee break

12:10  --  12:55  ---
Lecture
12:55  --  13:05  ---
Discussion

Speaker:  Maria  Pilar
Garcia del Moral

(lecture slides)

Title:  On global aspects of duality invariant theories: M2-brane versus
double field theory
Abstract:

In  this  talk  I  will  discuss  the  global  description  of  a  supermembrane
compactified  on  a  $T^2\times  M_9$,  where  T^2  is  the  2-dimensional
torus and M_9 is a 9-dimensional noncompact spacetime. I  will discuss
the T-duality transformation of this model and compare global aspects of
this construction with that of the double field theory.

13:05  --  13:50  ---
Lecture
13:50  --  14:00  ---
Discussion

Speaker:  Mihailo
Cubrovic

(lecture slides)

Title: Three tales on boundary action in AdS/CFT: Berry phases, gauge
fields and non-canonical Hamiltonians
Abstract:

We  argue  that  AdS/CFT  dictionary  can  be  extended  by  adding  new
subleading terms to the boundary (surface) part of the AdS action, under
the constraint that the bulk equations of motion at semiclassical level
remain unchanged. This corresponds to modifying the state space and/or
the  Poisson  structure  in  dual  field  theory  without  additional
sources/operator insertions.  We give three applications of the general
idea. The Berry phase is obtained from a subleading boundary term for
the bulk fermion which transforms as a spin on the sphere, hence it is
crucial to start from global AdS and subsequently take the planar limit. A
phenomenological (bottom-up) description of dynamical  gauge fields is
encoded in a singleton excitation on the boundary, decoupled from the
bulk. The Poisson structure, defined by the time evolution operator in
CFT,  is  modified  by  sourcing  multi-particle  states  in  the  bulk  from
appropriate boundary sources. This opens a way toward constructing the
gravity dual of non-canonical Hamiltonians as encountered, e.g., in fluid
advection.

14:00  --  16:00  ---
Lunch

Official workshop lunch at the IPB restaurant

16:00  --  16:20  ---
Lecture
16:20  --  16:25  ---
Discussion

Speaker: Dejan Simic

(lecture slides)

Title: Near horizon of the OTT black hole, asymptotic symmetries and
soft hair
Abstract:

We study near horizon geometry of extremal (non-)rotating Oliva-Tempo-
Troncoso black hole. First we derive the corresponding geometries. Next,
we analyze asymptotic structure and determine asymptotic  symmetry,
which consists of time reparametrization, chiral Virasoro and u(1) Kac-
Moody algebra. In the end, interpretation in  term of soft  hair on the
black hole is given.

16:25  --  16:45  ---
Lecture
16:45  --  16:50  ---
Discussion

Speaker:  Biljana
Nikolic

(lecture slides)

Title: Some geometrical aspects of NC SO(2,3)* gravity
Abstract:

We  construct  gravity  action  on  the  Moyal-Weyl  spacetime  as  a
noncommutative SO(2,3)* gauge theory and expand it, using the Seiberg-
Witten map, up to the second order in the deformation parameter. After
the  braking  of  symmetry  of  obtained  action  down  to  SO(1,3)  gauge
symmetry, we analyze the low energy sector of the model. We calculate
the equations of motion, and discuss the noncommutative corrections as
the source of the curvature and torsion. We find one solution: the NC
correction  to  Minkowski  spacetime.  Using  this  solution,  we  explain
breaking of the diffeomorphism symmetry as a consequence of working in
a particular coordinate system given by the Fermi normal coordinates.

16:50  --  17:10  ---
Break

Coffee break

17:10  --  17:30  ---
Lecture
17:30  --  17:35  ---

Speaker:  Dragoljub
Gocanin

Title:  Birefringence  property  of  the  Moyal-Weyl  noncommutative
spacetime in SO(2,3)_* model
Abstract:
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Discussion
(lecture slides)

We demonstrate that flat noncommutative (NC) Moyal-Weyl spacetime
acts as a birefringent medium for electrons propagating in it, and we
present  an  action  that  predicts  this  "optical"  effect.  The  action  is
obtained by NC Moyal-Weyl *-product deformation of a certain classical
action invariant under local SO(2,3) transformations. After perturbative
expansion  via  Seiberg-Witten  map  in  powers  of  the  deformation
parameter θ and a suitable symmetry breaking down to the local Lorentz
SO(1,3) symmetry, we get NC deformation of the Dirac action in curved
spacetime with various new couplings. One of its significant features is
the  nonvanishing  linear  θ-correction  which  pertains  even  in  flat
spacetime.  We  analyse  NC  deformation  of  the  Dirac  equation  and
dispersion  relation  for  electrons.  The  theory  predicts  Zeeman-like
splitting of  electron's  undeformed (commutative)  energy levels due to
noncommutativity of the background spacetime. This splitting is helicity-
dependent --- electrons with different helicity are affected differently by
NC background. NC correction to the electron's energy levels is linear in
θ, which brings us closer to the potential observation.

17:35  --  17:55  ---
Lecture
17:55  --  18:00  ---
Discussion

Speaker:  Dragan
Prekrat

(lecture slides)

Title: Phase transitions on the truncated Heisenberg space
Abstract:

We discuss the phase structure of matrix models on non-commutative
spaces.  We  examine  the  connection  between  the  geometry  of  the
truncated Heisenberg space, the renormalizability and the striped phase
and present the first numerical evidence of the modification of the phase
diagram due to the coupling between the matrix field and the curvature.

18:00  --  18:30  ---
Closing

Final discussion and closing

Milutin Blagojevic (Group for Gravitation, Particles and Fields, Institute of Physics Belgrade, Serbia)
Bojana Brkic (Faculty of Physics Belgrade, Serbia)
Mihailo Cubrovic (Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia)
Branislav Cvetkovic (Group for Gravitation, Particles and Fields, Institute of Physics Belgrade, Serbia)
Ljubica Davidovic (Group for Gravitation, Particles and Fields, Institute of Physics Belgrade, Serbia)
Aleksandra Dimic (Group for Quantum and Mathematical Physics, Faculty of Physics Belgrade, Serbia)
Ivan Dimitrijevic (Faculty of Mathematics Belgrade, Serbia)
Marija Dimitrijevic Ciric (Group for Gravitation, Particles and Fields, Faculty of Physics Belgrade, Serbia)
Maria Pilar Garcia del Moral (Departamento de Fisica, Universidad de Antofagasta, Chile)
Dragoljub Gocanin (Group for Gravitation, Particles and Fields, Faculty of Physics Belgrade, Serbia)
Ilija Ivanisevic (Group for Gravitation, Particles and Fields, Institute of Physics Belgrade, Serbia)
Filip Jurukovic (Faculty of Physics Belgrade, Serbia)
Dusko Latas (Group for Gravitation, Particles and Fields, Faculty of Physics Belgrade, Serbia)
Olivera Miskovic (Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Chile)
Luka Nenadovic (Group for Gravitation, Particles and Fields, College for Medicine, Business and Technology, Sabac, Serbia)
Biljana Nikolic (Group for Gravitation, Particles and Fields, Faculty of Physics Belgrade, Serbia)
Bojan Nikolic (Group for Gravitation, Particles and Fields, Institute of Physics Belgrade, Serbia)
Rodrigo Olea (Departamento de Ciencias Fisicas, Universidad Andres Bello, Santiago, Chile)
Dragan Prekrat (Group for Gravitation, Particles and Fields, Faculty of Physics Belgrade, Serbia)
Tijana Radenkovic (Group for Gravitation, Particles and Fields, Institute of Physics Belgrade, Serbia)
Voja Radovanovic (Group for Gravitation, Particles and Fields, Faculty of Physics Belgrade, Serbia)
Igor Salom (Group for Gravitation, Particles and Fields, Institute of Physics Belgrade, Serbia)
Branislav Sazdovic (Group for Gravitation, Particles and Fields, Institute of Physics Belgrade, Serbia)
Dejan Simic (Group for Gravitation, Particles and Fields, Institute of Physics Belgrade, Serbia)
Jelena Stankovic (Department of Mathematics, Teacher Education Faculty, Belgrade, Serbia)
Marko Vojinovic (Group for Gravitation, Particles and Fields, Institute of Physics Belgrade, Serbia)

Belgrade Group for Gravitation, Particles and Fields http://gravity.ipb.ac.rs/GHSNG2018/index.html

3 of 3 4/18/2018, 1:59 PM



5th MATHEMATICAL PHYSICS MEETING:

Summer School and Conference on Modern Mathematical

Physics

6 - 17 July 2008, Belgrade, Serbia

5th MATHEMATICAL PHYSICS MEETING: Summer School and Con... http://www.mphys5.ipb.ac.rs/head.htm

1 of 1 4/18/2018, 1:57 PM



Main Page

Latest news

Programme

General Information

Sponsors

Committees

Lecturers/Speakers

Participants

Registration Form

Photo Album

Previous Meetings

Poster

Accommodation

Travel/Visa

Belgrade

5th MF MEETING: Summer School and Conference on Modern Mathem... http://www.mphys5.ipb.ac.rs/menu1.htm

1 of 1 4/18/2018, 1:57 PM



    Committees

International Advisory Committee

Loriano Bonora (Trieste, Italy)

Martin Cederwall (Goteborg, Sweden)

Alexandre T. Filippov (Dubna, Russia)

Harald Grosse (Vienna, Austria)

Nemanja Kaloper (Davis, USA)

Petr Kulish (St. Petersburg, Russia)

John Madore (Paris, France)

Gradimir Milovanovic (Nis, Serbia)

Viatcheslav Mukhanov (Munich, Germany)

Hermann Nicolai (Potsdam, Germany)

Anatol Odzijewicz (Bialystok, Poland)

Voja Radovanovic (Belgrade, Serbia)

Seifallah Randjbar-Daemi (Trieste, Italy)

Branislav Sazdovic (Belgrade, Serbia)

Djordje Sijacki (Belgrade, Serbia)

Ivan Todorov (Sofia, Bulgaria)

Josip Trampetic (Zagreb, Croatia)

Mihai Visinescu (Bucharest, Romania)

Vasiliy Vladimirov (Moscow, Russia)

Rade Zivaljevic (Belgrade, Serbia)

Stanislaw Woronowitz (Warsaw, Poland)

International Organizing Committee

Irina Arefeva (Moscow, Russia)

Maja Buric (Belgrade, Serbia)

Vladimir Dobrev (Sofia, Bulgaria)

Branko Dragovich (Belgrade, Serbia)

   Dieter Luest (Munich, Germany) (www1, www2)

Zoran Rakic (Belgrade, Serbia)

Igor Volovich (Moscow, Russia)

George Zoupanos (Athens, Greece)

Local Organizing Committee

Branko Dragovich (Chairman, Inst. of Phys., Belgrade)

Sanja Cirkovic (Inst. of Phys., Belgrade)

Branislav Cvetkovic (Inst. of Phys., Belgrade)

Dusko Latas (Fac. of Phys., Belgrade)

Bojan Nikolic (Inst. of Phys., Belgrade)

Igor Salom (Inst. of Phys., Belgrade)

   Dragan Savic (Inst. of Phys., Belgrade)

Marko Vojinovic (Inst. of Phys., Belgrade)

5th MF MEETING: Summer School and Conference on Modern Mathem... http://www.mphys5.ipb.ac.rs/committees.htm

1 of 1 4/18/2018, 1:57 PM



Uvodna predavanja na konferencijama i
druga predavanja





Subject Re: Fw: Skup u Banja Luci

From Branislav Cvetkovic <cbranislav@ipb.ac.rs>

To Sinisa Ignjatovic <sinisha@teol.net>

Date 2014-05-02 19:47

Dragi kolega,
Ignjatovicu neka naslov mog predavanja
bude "3D gravity with propagating torsion".
Vidimo se.
Pozdrav Branislav

---
Institute of Physics Belgrade
Pregrevica 118, 11080 Belgrade, Serbia
http://www.ipb.ac.rs/

On 01 May 2014 16:04, Sinisa Ignjatovic wrote:

Poštovani kolega,

kako vidite, kolega Blagojević nije u mogućnosti da prisustvuje Skupu
13. septembra u Banja Luci. I ranije sam obaviješten da vi radite sa
kolegom Blagojevićem i da biste mogli održati predavanje na istu temu.
Ovim vas i formalno pozivam na naš Skup (podaci o Skupu su u
attachment-u) kao predavača po pozivu.

Pozdrav,
Siniša Ignjatović
----- Original Message ----- From: "M_Blagojevic" <mb@ipb.ac.rs>
To: "Sinisa Ignjatovic" <sinisha@teol.net>
Cc: "bc" <cbranislav@ipb.ac.rs>
Sent: Wednesday, April 30, 2014 2:27 PM
Subject: Re: Skup u Banja Luci

Postovani kolega Ignjatovicu,

Hvala vam na pozivu za ucesce na ovom skupu. Posto u tom periodu
necu biti slobodan, predlazem vam da umesto mene pozovete
Dr. Branislava Cvetkovica (email: cbranislav@ipb.ac.rs), mog mladjeg kolegu
i dugogodisnjeg saradnika, koji bi na tom skupu izlozio neke rezultate naseg
zajednickog rada na istrazivanju gravitacije.

Uz srdacan pozdrav,
Milutin Blagojevic

2014-04-27 22:20 GMT+02:00 Sinisa Ignjatovic <sinisha@teol.net>:

            Poštovani kolega,

            polovinom septembra Studijski program fizike
Prirodno-matematičkog fakulteta u Banja Luci organizovaće skup “Savremena
matematička fizika i njene primjene”. Radni dio skupa trajaće jedan dan, u
subotu 13. septembra 2014. Preliminarni program Skupa, zajedno sa
preliminarnom listom učesnika i prijedlogom sastava tijela Skupa, šaljem u
prilogu uz ovaj poziv.

            Ova poruka ujedno predstavlja i poziv predavačima; na Skupu je
planirano petnaestak predavanja po pozivu. Skupu bi takođe prisustvovalo
petnaestak slušalaca: fizičara sa Univerziteta u Banja Luci i profesora
srednjih škola regije Banja Luka. Očekuje se da Skup najvećim dijelom
finansira Ministarstvo nauke i tehnologije Republike Srpske. Svim
predavačima bi bili plaćeni troškovi puta i smještaja. Prisustvo za ostale
zainteresovane kolege je otvoreno i bez plaćanja kotizacije, ali će
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predavanja biti samo po pozivu jer se radi o jednodnevnom skupu.

            Naučna orijentacija Skupa bi bila bliska skupovima Mathematical
Physics Meeting i Balkan Workshop, kojima su do sada bar jednom
prisustvovali svi kojima je ovaj poziv upućen. Predavanja bi bila na našem
jeziku, a prilozi za Zbornik radova – čije izdavanje se planira za početak
2015. godine – na engleskom.

            Jedan od ciljeva Skupa je povećanje “vidljivosti” teorijske i
matematičke fizike u našoj sredini. Raznim povodima, u Banja Luci je u
posljednjih petnaestak godina održano nekoliko kratkih skupova iz fizike,
ali nijedan od njih nije bio posvećen isključivo teorijskoj fizici. Takođe
bi ovaj Skup bio i jedan od prvih – vjerovatno i prvi – skup posvećen
isključivo teorijskoj fizici u Bosni i Hercegovini.

            Nadam se da ćete prihvatiti poziv i vašim predavanjem
doprinijeti uspjehu Skupa. Takođe vas pozivam da budete član Naučnog
komiteta Skupa. Očekujemo vaš odgovor do 5. 5. kako bismo na vrijeme
organizovali Skup.

            Srdačno vas pozdravlja

prof. dr Siniša Ignjatović

rukovodilac Studijskog progama fizike

Prirodno-matematički fakultet

Mladena Stojanovića 2

Banja Luka, Bosna i Hercegovina
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Raspored predavanja na skupu "Gravity: new ideas for unsolved
problems II"

Divčibare, 19-22. septembar 2013.

Datum Vreme Naslov predavanja

20.09.

Predsedavaju:
M. Burić 

 M. Blagojević

10.45-11.00 Otvaranje skupa
11.00-11.40 Lj. Davidović 

T-dualnost u slabo zakrivljenom prostoru
11.40.-12.20 B. Nikolić

Nekomutativnost zatvorene strune
Pauza za ručak

16.00-16.40 D. Latas
Nejednoznačnost Sajberg-Vitenovog preslikavanja i

renormalizabilnost nekomutativne kiralne
elektrodinamike

16.40-17.20 I. Salom
Representations and particles of osp(1|2n) generalized

conformal supersymmetry
17.20-18.00 M. Vojinović

Cosine problem and antigravity in EPRL/FK spinfoam
model

21.09.
Predsedavaju:

V. Radovanović
B. Sazdović

10.20-11.00 M. Burić
Jedan nekomutativni kosmološki model

11.00-11.40 V. Radovanović
Gravitacija na Mojalovoj ravni

11.40-12.20 L. Nenadović 
One-Loop Structure of GW Model with Gauge Field

Pauza za ručak
16.00-16.40 B. Cvetković

Holografija u 3D gravitaciji sa torzijom
16.40-17.20 M. Blagojević

3D gravitacija sa propagirajućom torzijom: Hamiltonova
struktura skalarnog sektora

22.09. 10.20 Projektni sastanak



Subject abstrakt

From Branislav Cvetkovic <cbranislav@phy.bg.ac.yu>

To Olivera Miskovic <olivera_miskovic@yahoo.com>

Date 2009-05-14 14:47

Draga Olivera,

saljem ti abstrakt seminara.

Title: Canonical structure of topologically massive gravity with a

cosmological constant

Abstract

We study the canonical structure of three-dimensional topologically massive

gravity with a cosmological constant, using the full power of Dirac's method

for constrained Hamiltonian systems. It is found that the dimension of the

physical phase space is two per spacetime point, which corresponds to a single

Lagrangian degree of freedom. The analysis of the AdS asymptotic region

reveals a remarkable relation to 3D gravity with torsion: in the limit of

vanishing torsion, the conserved charges and asymptotic symmetries of the two

theories become identical.

Pozdrav Branislav

-----------------

Institute of Physics, Belgrade

http://www.phy.bg.ac.yu/
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Subject title and abstract

From Branislav Cvetkovic <cbranislav@ipb.ac.rs>

To Olivera Miskovic <olivera_miskovic@yahoo.com>, RO

<rodrigo.olea@unab.cl>

Date 2015-10-25 02:07

Dear Rodrigo and Olivera,

I am sending you the title and abstract of the seminar.

Title: Siklos wawes in gravity with torsion

Abstract: Starting from the Siklos waves in general relativity with a cosmological constant,

interpreted as gravitational waves on the anti-de Sitter background, a new class

of exact torsion waves is constructed in the framework of three-dimensional (3D) and four-

dimensional (4D) gravity with torsion.

In the  3D case we show than in the asymptotic limit, the geometry of torsion waves takes the

anti-de

Sitter form. In the sector with massless torsion modes, we found a set of asymptotic

conditions that leads to the conformal asymptotic symmetry.

In 4D three particular exact vacuum solutions, the generalized Kaigorodov, the

homogeneous solution and the exponential solution, are explicitly constructed.

Best regards

Branislav

P.S.

-----------------------------

Institute of Physics Belgrade

Pregrevica 118, 11080 Belgrade, Serbia

http://www.ipb.ac.rs/
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Subject Re: abstract

From Niklas Johansson <niklasj@hep.itp.tuwien.ac.at>

Sender <hans.niklas.johansson@gmail.com>

To Branislav Cvetkovic <cbranislav@ipb.ac.rs>

Date 2010-03-18 11:24

Dear Branislav,

Excellent! I will put your abstract on the homepage

immidiately. Sorry for not replying sooner: I was on vacation.

All the best,

Niklas

2010/3/15 Branislav Cvetkovic <cbranislav@ipb.ac.rs>:

Dear Niklas,

I am sending you the abstract of my talk.

Title: Conserved charges in 3D gravity

Abstract: The covariant canonical expression for the conserved charges,

proposed by Nester, is tested on several solutions in 3D gravity with or

without torsion and topologically massive gravity. In each of these cases,

the calculated values of energy-momentum and angular momentum are found to

satisfy the first law of black hole thermodynamics.

                            Sincerely Branislav

-----------------

Institute of Physics Belgrade

http://www.ipb.ac.rs/
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