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Биографиjа Вељка Jанковића

Вељко Jанковић рођен jе у Београду, Република Србиjа, 23. IX 1990. године. У Београду jе
завршио основну школу и Математичку гимназиjу.

Основне академске студиjе на Физичком факултету Универзитета у Београду, смер Теориjска
и експериментална физика, започиње 2009. године и завршава их 2013. године са просечном оценом
9,97. Мастер академске студиjе на Физичком факултету Универзитета у Београду, смер Теориjска
и експериментална физика, завршио jе jуна 2014. године са просечном оценом 10,00, одбранивши
мастер рад на тему Неравнотежна оптичка проводност у систему са локализованим електрон-
ским стањима. Мастер рад jе израђен у Лабораториjи за примену рачунара у науци Института
за физику у Београду, а израдом рада руководио jе др Ненад Вукмировић. Октобра 2014. године
рад jе награђен наградом Проф. др Љубомир Ћирковић као наjбољи мастер рад одбрањен током
академске 2013/2014. године на Физичком факултету. Новембра 2014. године уписуjе докторске
академске студиjе на Физичком факултету Универзитета у Београду, ужа научна област физика
кондензоване материjе и статистичка физика. Ментор студиjа jе др Ненад Вукмировић, научни
саветник Инситута за физику у Београду. Израда докторске тезе под насловом Exciton dynamics at
photoexcited organic heterojunctions (Динамика екситона на органским хетероспоjевима побуђеним
светлошћу) jе одобрена, а за ментора тезе именован jе др Ненад Вукмировић.

Од новембра 2014. године ангажован jе на проjекту основних истраживања ОН171017 Моде-
лирање и нумеричке симулациjе сложених вишечестичних система Министарства просвете, науке
и технолошког развоjа Републике Србиjе. Од октобра 2013. до августа 2015. године био jе ангажо-
ван на FP7 проjекту Европске комисиjе Електронски транспорт у органским материjалима. До
сада jе обjавио четири научна рада М21 категориjе. Своjе резултате jе представио на међународним
конференциjама у Београду, Саламанки (Шпаниjа), Ахену (Немачка), Луки и Трсту (Италиjа), а
похађао jе и летњу школу CECAM Summer School on Atomistic Simulation Techniques for Material
Science, Nanotechnology and Biophysics коjа jе 2014. године одржана у Трсту (Италиjа).

Од академске 2013/14. године, Вељко Jанковић учествуjе у извођењу наставе на Физичком
факултету Универзитета у Београду као сарадник у настави, током академске 2013/14. године на
предмету Теориjска механика (предметни наставник проф. др Сунчица Елезовић-Хаџић), а од ака-
демске 2014/15. године на предмету Квантна статистичка физика (предметни наставници доц. др
Михаjло Ваневић и проф. др Милан Кнежевић). Од школске 2015/16. године, као и током школске
2012/13. године, учествуjе у раду Државне комисиjе за такмичења ученика средњих школа из физи-
ке као аутор задатака. Био jе jедан од вођа тима Србиjе на такмичењу The 5th Romanian Masters of
Physics коjе jе одржано фебруара 2016. године у Букурешту (Румуниjа), као и на 48. Међународноj
олимпиjади из физике одржаноj у jулу 2017. године у Jогjакарти (Индонезиjа).

Од 2008. до 2012. године Вељко Jанковић jе био стипендиста Републичке фондациjе за развоj
научног и уметничког подмлатка, док jе од 2012. до 2014. године био стипендиста Фонда за младе
таленте Републике Србиjе. Током академске 2011/2012. године био jе стипендиста фонда Проф. др
Ђорђе Живановић као jедан од наjбољих студената III године физике на Физичком факултету.

Говори два светска jезика, енглески (ниво C2 према Заjедничком европском оквиру за jезике)
и италиjански (ниво B2.2 према Заjедничком европском оквиру за jезике).



Преглед научне активности Вељка Jанковића

Вељко Jанковић се у свом научном раду бави проблемима неравнотежне динамике носилаца
наелектрисања у полупроводничким материjалима.

Током мастер студиjа, истраживање Вељка Jанковића било jе фокусирано на високо-фреквентну
електричну проводност материjала са локализованим електронским стањима у неравнотежним
условима. Равнотежна електрична проводност се може описати добро познатом Кубоовом тео-
риjом линеарног одзива. Међутим, у литератури не постоjи jедноставан приступ коjи може да
опише неравнотежну проводност. Вељко Jанковић jе извео формулу коjа има веома jедноставан
математички облик и описуjе неравнотежну проводност у материjалима са локализованим елек-
тронским стањима. Типични примери таквих материjала су аморфни неоргански полупроводници
(нпр. аморфни силициjум) и неуређени органски полупроводнци (на бази конjугованих полимера
или малих молекула).

Током докторских студиjа, у центру истраживачког рада Вељка Jанковића jе теориjски опис
динамике екситона генерисаних светлосном побудом органских полупроводника и њихових хетеро-
споjева, што jе релевантно за разумевање фундаменталних физичких процеса у органским соларним
ћелиjама.

У првоj фази истраживања, Вељко Jанковић jе развио модел за разумевање процеса формирања
екситона у полупроводничким материjалима побуђеним светлошћу. Конструисан jе моделни Ха-
милтониjан коjи укључуjе релевантне физичке ефекте (делокализациjа носилаца, Кулонова интер-
акциjа, носилац-фонон интеракциjа, интеракциjа са спољашњим електромагнетним пољем) и коjи
за различите вредности моделних параметара може да симулира како неорганске, тако и орган-
ске полупроводнике. Динамика модела jе проучавана у оквиру формализма матрице густине, при
чему jе посебна пажња посвећена одсецању фононске гране jедначина тако да се не наруши закон
одржања енергиjе и закон одржања броjа честица. Временске скале релевантне за процесе форми-
рања и (инициjалних етапа) релаксациjе екситона су одређене из нумеричког прорачуна у оквиру
jеднодимензионалног модела. Добиjено jе да се за параметре органских полупроводника форми-
рање везаних екситона дешава на временскоj скали од неколико стотина фемтосекунди, након чега
долази до њихове даље релаксациjе и уравнотежавања коjе траjе барем неколико пикосекунди. До-
биjене временске скале су робустне на разумне вариjациjе параметара модела (температура, jачина
електрон-фонон спреге, jачина Кулонове интеракциjе).

Током друге фазе истраживања, развиjени модел jе модификован тако да се може испитивати
динамика раздваjања екситона на пар електрон-шупљина на границама између два органска по-
лупроводничка материjала. Циљ jе био разумевање узрока експериментално опаженог ултрабрзог
раздваjања електрона и шупљине на хетероспоjу. Резултати су показали да парови просторно раз-
двоjених електрона и шупљине коjи постоjе 100 fs након оптичке побуде система претежно настаjу
њиховом директним оптичким генерисањем, а у много мањем уделу генерисањем екситона у jедном
материjалу коjе jе праћено његовим раздваjањем на граници између два материjала. Показано jе
и да jе таj закључак неосетљив на вредности параметара материjала и њихове границе. Такође,
идентификоване су фотофизичке путање дуж коjих се на временским скалама испод 1 ps обавља
раздваjање електрон-шупљина парова. Екситонска стања у коjима су носиоци наелектрисања де-
локализовани на хетероспоjу су кључна за ултрабрзо раздваjање електрон-шупљина парова из два
разлога: jедан jе могућност директног оптичког генерисања носилаца у тим стањима, а други jе мо-
гућност ултрабрзог преласка инициjалних екситона у поjединачном материjалу у та стања. Ипак,
прорачуни показуjу да jе броj раздвоjених електрон-шупљина парова 1 ps након побуде значаjно
мањи од укупног броjа генерисаних парова, односно да се наjвећи део парова раздваjа на дужим
временским скалама.
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“Nonequilibrium optical conductivity in materials with localized electronic states”,
Phys. Rev. B 90, 224201 (2014) [ISSN 1098-0121, IF2014 3.736].

Саопштења са међународног скупа штампана у изводу (категориjа М34)
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ABSTRACT: The exciton dissociation and charge separation occurring on
subpicosecond time scales following the photoexcitation are studied in a model
donor/acceptor heterojunction using a fully quantum approach. Higher-than-
LUMO acceptor orbitals which are energetically aligned with the donor LUMO
orbital participate in the ultrafast interfacial dynamics by creating photon-
absorbing charge-bridging states in which charges are spatially separated and
which can be directly photoexcited. Along with the states brought about by single-
particle resonances, the two-particle (exciton) mixing gives rise to bridge states in
which charges are delocalized. Bridge states open up a number of photophysical
pathways that indirectly connect the initial donor states with states of spatially
separated charges and compete with the efficient progressive deexcitation within the manifold of donor states. The diversity and
efficiency of these photophysical pathways depend on a number of factors, such as the precise energy alignment of exciton states,
the central frequency of the excitation, and the strength of carrier−phonon interaction.

■ INTRODUCTION

Tremendous research efforts have been devoted to under-
standing the microscopic mechanisms governing efficient and
ultrafast (happening on a ≲ 100 fs time scale) free-charge
generation observed in time-resolved experiments on donor/
acceptor (D/A) heterojunction organic photovoltaic (OPV)
devices.1−4 The photogenerated exciton in the donor material
is commonly believed to transform into the charge transfer
(CT) exciton.5,6 In the CT exciton, the electron and hole are
tightly bound and localized at the D/A interface. The Coulomb
barrier preventing the electron and hole in the CT state from
further charge separation and formation of a charge separated
(CS) state is much higher than the thermal energy at room
temperature, so that the actual mechanism of the emergence of
spatially separated charges on such short time scales remains an
open question.7−10

Electronically hot CT states, which are essentially resonant
with the initial states of donor excitons and exhibit significant
charge delocalization,11,12 are believed to be precursors to
separated charges present on ultrafast time scales following the
excitation.1,2,13−16 The delocalization of carriers can also reduce
the Coulomb barrier and allow the transition from CT to
CS exciton.3,17−19 The ultrafast exciton dissociation and
charge separation are not purely electronic processes, but
are instead mediated by the carrier−phonon coupling.17,20−26

The phonon-mediated ultrafast exciton dissociation and charge
separation can proceed via the so-called intermediate bridge
states,20,25 the vibronically hot CT states,17 or can occur
without any intermediate CT state.24 The exciton states of
mixed donor and CS character are found to open up different
photophysical pathways for ultrafast dissociation of initial

donor excitons, which are concurrent with vibronically assisted
transitions within the donor exciton manifold.23

We have recently investigated the exciton dynamics occurring
on a subpicosecond time scale following the excitation of the
model D/A heterojunction.27 Our model explicitly takes into
account the physical mechanisms regarded as highly relevant
for the ultrafast heterojunction dynamics, such as the carrier
delocalization and the carrier−phonon interaction. Moreover,
the exciton generation, exciton dissociation, and further charge
separation are treated on equal footing and on a fully quantum
level, which is essential to correctly describe processes taking
place on ultrafast time scales. For the model parameters
representative of a low-bandgap polymer/fullerene blend, we
found that the major part of space-separated charges present
on 100 fs time scales after the excitation originates from the
direct optical generation from the ground state rather than
from the ultrafast population transfer from initially generated
donor excitons. The resonant mixing between single-electron
states in the two materials leads to the redistribution of oscil-
lator strengths between states of donor excitons and space-
separated charges, the latter becoming accessible by direct
photoexcitation.
In this study, we aim at giving a more detailed description of

the ultrafast heterojunction dynamics in terms of particular
photophysical pathways along which it proceeds. In order to
keep the numerical effort within reasonable limits, we still use
one-dimensional model of a heterojunction, but we extend it by
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taking into account more than only one single-electron (single-
hole) state per site. The model parameters are chosen to be
representative of the prototypical blend of poly-3-hexylthio-
phene (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester
(PCBM). The aforementioned extension of the model is
important in many aspects. First, the degeneracy of the LUMO,
LUMO+1, and LUMO+2 orbitals of the C60 molecule is
broken in its functionalized derivative PCBM,28−30 giving rise
to three energetically close bands of electronic states of PCBM
aggregates. This fact was shown to be important for efficient
and ultrafast charge separation observed in D/A blends
containing PCBM as the acceptor.14,25,31 Upon the function-
alization of C60, together with the degeneracy of its LUMO,
LUMO+1, and LUMO+2 orbitals, the degeneracy of its LUMO+3,
LUMO+4, and LUMO+5 orbitals, which are situated at around
1 eV above the LUMO, LUMO+1, and LUMO+2 orbitals, is
also broken. Second, according to the results of Ma and Troisi,32

the precise energy alignment of higher-than-LUMO orbitals of
the acceptor can modulate the exciton dissociation rate by
orders of magnitude by opening up new exciton dissociation
channels. The LUMO−LUMO offset in the P3HT/PCBM blend
can be quite large (around 1 eV)33−35 and thus comparable to
the energy separation between LUMO and LUMO+3 orbitals
of the PCBM molecule. It can therefore be expected that
the electronic states of a PCBM aggregate, which arise from
LUMO+3, LUMO+4, and LUMO+5 orbitals of the PCBM
molecule may play nontrivial role in the ultrafast interfacial
dynamics. Surprisingly, it seems that the effect of these orbitals
has not received enough attention in previous model studies
of the P3HT/PCBM heterojunction. The ultrafast electron
transfer observed in ref 36 has been ascribed to the energy
overlap between the state of the photoexcited electron and the
electronic states of the fullerene aggregate. The result presented
in Figure 3e of ref 36 suggests that this overlap involves the
electronic states of the fullerene aggregate stemming from the
LUMO+3, LUMO+4, and LUMO+5 orbitals of the PCBM
molecule.
Our results indicate that the exciton states in which the

charges are delocalized throughout the heterojunction play a
crucial role in the ultrafast heterojunction dynamics. In the low-
energy part of the exciton spectrum, such states emerge due
to the resonant mixing between different exciton (i.e., two-
particle) states, and we denote them as bridge states. However,
in the high-energy region of the exciton spectrum, such states
form as a consequence of the resonant mixing between single-
electron states in the donor and acceptor (states originating
from LUMO+3, LUMO+4, and LUMO+5 orbitals of the
PCBM molecule). The relevant exciton states of this kind are
those in which the charges are spatially separated (the electron
is mainly in the acceptor, while the hole is mainly in the donor)
and we denote them as photon-absorbing charge-bridging
(PACB) states,28,37,38 since they can be directly reached by a
photoexcitation. Exciting well above the lowest donor state, we
find that excitons are generated in both donor and PACB states,
while the major part of space-separated charges present on a
100 fs time scale following the excitation resides in PACB
states. The deexcitation of initial PACB excitons proceeds via
the donor exciton manifold, while single-phonon-assisted
processes involving a PACB state and CT and CS states
belonging to the low-energy part of the spectrum are virtually
absent. The donor excitons mainly deexcite within the donor
exciton manifold and, before reaching the lowest donor exciton
state, may perform transitions to bridge states, which are

gateways into the space-separated manifold. The lowest donor
state, being essentially decoupled from the space-separated
manifold, is a trap state for exciton dissociation. The bridge
states can be either intermediate or final states in the course of
the charge separation. Once a space-separated state is reached,
the gradual energy loss within the space-separated manifold
leads to the population of low-energy CT states on a pico-
second time scale. The participation of PACB excitons in
the total exciton population strongly depends on the central
frequency of the excitation. The probability of a bridge state
being accessed during the exciton deexcitation sensitively depends
on the distribution of initially generated excitons, the energy level
alignment, and the carrier−phonon interaction strength.

■ MODEL AND METHODS

Model Hamiltonian. We use the standard semiconductor
Hamiltonian with multiple single-electron/single-hole states
per site. The model heterojunction consists of 2N sites located
on a one-dimensional lattice of constant a: sites 0,..., N − 1
belong to the donor part, while sites N,..., 2N − 1 belong to the
acceptor part of the heterojunction. The single-electron levels
on site i are counted by index βi, so that Fermi operators
ciβi
† (ciβi) create (destroy) electrons on site i and in single-elec-

tron state βi. Analogously, single-hole levels on site i are
counted by index αi, so that Fermi operators diαi

† (diαi) create

(destroy) holes on site i and in single-hole state αi. Each site
contributes a number of localized phonon modes and the corre-
sponding Bose operators biλi

† (biλi) create (annihilate) phonons

belonging to mode λi on site i. The Hamiltonian has the form

= + + +− −H H H H Hc p c p c f (1)

where Hc describes interacting carriers

∑ ∑
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∑ ω= ℏ
λ

λ λ λ
†H b b

i

i i ip

i

i i i

(3)

is the phonon part of the Hamiltonian, Hc−p accounts for the
carrier−phonon interaction

∑ ∑

∑ ∑
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(4)

whereas Hc−f represents the interaction of carriers with the
external electric field E(t)

∑= − +
α β

α β β α α β−
† †H E t d c d d c( ) ( )

i

i i i i ic f
cv

i i

i i i i i i

(5)

In our model, quantities ϵ(iβi)(jβj′)
c (ϵ(iαi)(jαj′)

v ), which represent

electron (hole) on-site energies and transfer integrals, are
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nonzero only for certain combinations of their indices. Namely,

ϵ(iβi)(jβ′j)
c is nonzero when it represents

(1) on-site energy ϵiβi
c of electron level βi on site i for i = j and

βi = βi′;
(2) negative electron transfer integral between nearest

neighbors of band βi, − Jiβi
c,int, for i and j both belonging

to the same part of the heterojunction, |i − j| = 1, and
βi = βj′;

(3) negative electron transfer integral between nearest

neighbors of different bands, − Jiβiβj′
c,ext, for i and j both

belonging to the same part of the heterojunction, |i − j| = 1,
and βi ≠ βj′;

(4) negative electron transfer integral between different parts
of the heterojunctions, − JDA

c , for i = N − 1 and j = N or
vice versa.

The Coulomb interaction described by eq 2 is taken into
account in the lowest monopole−monopole approximation
and the interaction potential Vij is assumed to be the Ohno
potential

=

+ ( )
V

U

1

ij
r

r

2
ij

0 (6)

where U is the on-site Coulomb interaction, rij is the distance
between sites i and j, r0 = e2/(4πε0εr U) is the characteristic
length, and εr is the relative dielectric constant. Charge
carriers are assumed to be locally and linearly coupled to
the set of phonon modes (Holstein-type interaction), as
given in eq 4. We assume that the frequency of the
external electric field is such that it creates electron−hole
excitations, the interband matrix elements of the dipole
moment being diαiβi

cv , and neglect all intraband dipole matrix

elements.
Theoretical Framework. Ultrafast exciton dynamics

governed by the model Hamiltonian defined in eqs 1−5 is
treated using the density matrix formalism complemented with
the dynamics controlled truncation (DCT) scheme.27,39−42

Exciton generation (from initially unexcited heterojunction) by
means of a pulsed excitation and subsequent evolution of
thus created nonequilibrium state of the system are treated on
equal footing. We consider the case of weak excitation and low
carrier densities. The carrier branch of the hierarchy of
equations produced by the density matrix formalism can
then be truncated retaining only contributions up to the
second order in the exciting field. The truncation of the phonon
branch of the hierarchy is performed to ensure the con-
servation of the particle-number and energy after the pulsed
excitation.42

It is advantageous to formulate theory in the subspace of
single electron−hole excitations, which is spanned by the
so-called exciton basis. The most general electron−hole pair

state is of the form ψ| ⟩ = ∑ | ⟩
α α β β α

† †

β

x c d 0
i i j

x
j i( )( )i

j j

i j j i
, where |0⟩ is the

vacuum of electron−hole pairs. The exciton basis states are
obtained by solving the eigenvalue problem Hc|x⟩ = ℏωx|x⟩,

which in the basis of single-particle states localized at lattice
sites reads as

∑ δ δ δ δ
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The operator which creates an exciton in state x is defined
through

∑ ψ=
α

α β β α
† † †

β

X c dx

i
i j
x

j i( )( )

i
j j

i j j i

(8)

The total Hamiltonian (eq 1), in which we keep only operators
whose expectation values are at most of the second order in the
exciting field, can be expressed in terms of exciton creation and
annihilation operators as
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(9)

Dipole-moment matrix elements for the direct generation
(from the ground state) of excitons in state x are given as

∑ ∑ ψ=
α β

α β α β
*M dx

i
i i
x

i( )( )
cv

i i

i i i i

(10)

while exciton−phonon matrix elements describing transitions
from exciton state x to exciton state x ̅ assisted by phonon (iλi)
are

∑ ∑

∑ ∑

ψ ψ
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(11)

Active variables in our formalism are electronic density matrices
yx = ⟨Xx⟩ and nxx̅ = ⟨Xx ̅

†Xx⟩, along with their single-phonon-
assisted counterparts yx(iλi)

− = ⟨Xxbiλi⟩, yx(iλi)
+ = ⟨Xxbiλi

† ⟩, and

nxx̅(iλi)
+ = ⟨Xx ̅

†Xxbiλi
† ⟩. The equations of motion for these variables

are given in the Supporting Information. Since the phonon
branch of the hierarchy is truncated at the level of second-order
phonon assistance, our treatment of the electron−phonon
interaction does not capture properly the processes with
higher-order phonon assistance, which are important for
stronger electron−phonon interaction. In this case, the feed-
back effects of electronic excitations on phonons would have
to be taken into account as well. To this end, in our recent
publication27 we performed a computation of subpicosecond
dynamics using surface hopping approach (which, however,
treats lattice dynamics classically) and found that the feedback
effects were not very pronounced. In order to treat the electron−
phonon interaction more accurately, other approaches based on
state-of-the-art multiconfigurational techniques,23 infinite resum-
mation within Green’s function formalism43,44 or variational
ansaẗze for the wave function of electron−phonon system45 can
be used.
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The early stages of our numerical experiment (during and
immediately after the pulsed excitation) are dominated by
exciton coherences with the ground state yx and their phonon-
assisted counterparts. The corresponding coherent exciton
populations |yx|

2 are not a measure of the number of truly
bound electron−hole pairs and generally decay quickly after the
pulsed excitation, converting into incoherent exciton popula-
tions. This conversion from coherent to incoherent exciton
populations is in our model mediated by the carrier−phonon
interaction. The incoherent exciton populations are defined as

̅ = − | |n n yxx xx x

2
(12)

They represent numbers of Coulomb-correlated electron−hole
pairs and typically exist for a long time after the decay of
coherent populations. The incoherent populations of various
groups X of exciton states are defined as

∑= ̅
∈

N nX

x X

xx
incoh

(13)

and are frequently and conveniently normalized to the total
exction population

∑=N n
x

xxtot
(14)

which is conserved after the excitation. Once created from
coherent populations, incoherent populations redistribute
among various exciton states, the redistribution being mediated
by the carrier−phonon interaction. In order to gain insight
into the pathways along which these redistribution processes
proceed, we define energy- and time-resolved exciton
populations φX(E, t) of states belonging to group X as

∑φ δ ω= − ℏ
∈

E t
N

n t E( , )
1

( ) ( )
X

x X

xx x
tot (15)

so that φX(E, t)ΔE is the number (normalized to Ntot) of
excitons from group X residing in the states whose energies are
between E and E + ΔE. Bearing in mind eq 12, relating the
coherent, incoherent, and total exciton population of state x,
quantity φX(E, t) can be decomposed into its coherent

∑φ δ ω= | | − ℏ
∈

E t
N

y t E( , )
1
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x X
x x
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and incoherent part

∑φ δ ω= ̅ − ℏ
∈

E t
N

n t E( , )
1

( ) ( )
X

x X

xx x
incoh

tot (17)

The plots of φX
coh as a function of E and t provide information

about states in which excitons are initially generated (the
initial exciton distribution) and the time scale on which the
conversion from coherent to incoherent exciton populations
takes place. The plots of φX

incoh as a function of E and t reveal
actual pathways along which (incoherent) excitons are
redistributed, starting from the initial exciton distribution.
Parameterization of the Model Hamiltonian. Our

model is parametrized with the aim of describing ultrafast
exciton dissociation and charge separation in the direction
perpendicular to the D/A interface. This is motivated by recent
studies of ultrafast exciton dissociation46 and charge separation19

in two-dimensional models of a D/A polymeric heterojunction
which have suggested that these processes crucially depend
on the electronic properties and geometry in the direction

perpendicular to the interface. In actual computations, we take
one single-electron level per site in the donor and one single-
hole level per site in both the donor and acceptor. In order to
mimic the presence of higher-than-LUMO orbitals energetically
close to the LUMO level (which is a situation typical of fullerenes),
as well as to investigate the effects of single-electron levels
situated at around 1.0 eV above the LUMO level on the exciton
dissociation, we take four single-electron levels per site in the
acceptor. Different types of electronic couplings are schematically
indicated in Figure 1, while the values of model parameters

used in computations are summarized in Table 1. These values
are selected so that the main characteristics of the single-
particle and exciton spectrum (band widths, band alignments,
exciton and charge transfer state binding energies) within the
model correspond to the ones observed in P3HT/PCBM
material system. We take the HOMO level of the donor material
to be the zero of the energy scale.
The value of the lattice spacing a agrees with the typical

distance between constitutive elements of organic semicon-
ductors. The number of sites in a single material N = 11 is
reasonable since typical linear dimensions of phase segregated
domains in bulk heterojunction morphology are 10−20 nm.47

The value of the transfer integral JD,0
v,int was chosen so as to agree

with the HOMO bandwidth along the π-stacking direction of
the regioregular P3HT48,49 and the values of the hole transfer
integral along the π-stacking direction of the same material.50,51

The electron transfer integral JD,0
c,int should be of similar

magnitude as the hole transfer integral along the π-stacking
direction.50 Energies of the single-electron and single-hole
levels in the donor, as well as the on-site Coulomb interaction
U, were chosen so that the lowest donor exciton state is located
at around 2.0 eV, while the HOMO−LUMO gap (single-
particle gap) is around 2.4 eV, i.e., the binding energy of the
donor exciton is around 0.4 eV.52,53

Electron transfer integrals in the acceptor JA,0
c,int, JA,1

c,int and
JA,01
c,ext, together with the energy difference ϵA,1

c − ϵA,0
c between

Figure 1. Illustration of the model system indicating different transfer
integrals present in Table 1. The plot on the right shows the single-
particle DOS for electrons in the neat donor (blue curve) and acceptor
(magenta curve) materials obtained using the values of relevant
parameters listed in Table 1. The electronic states of the isolated
materials are computed by diagonalizing the free-electron Hamiltonian
(the first term on the right-hand side of eq 2) in which the D/A
coupling is set to 0. The DOS was then calculated by broadening each
of the states obtained by a Gaussian with the standard deviation of
10 meV.
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single-electron states, are chosen to reproduce the most important
features of the low-energy part of the electronic density of
states (DOS) of fullerene aggregates,14,25 such as the combined
(total) bandwidth of 0.4−0.5 eV and the presence of two
separated groups of allowed states. Let us note that, because of
the reduced dimensionality of our model, we cannot expect to
reproduce details of the actual DOS, but only its gross features.
We therefore believe that taking two instead of three orbitals
energetically close to the LUMO orbital is reasonable within
our model. The electronic DOS in the acceptor produced by
our model is shown in the inset of Figure 1. Magnitudes of
transfer integrals in the acceptor are also in agreement with the
values reported in the literature.54,55 We have also included the
single-electron fullerene states which are located at around 1 eV
above the lowest single-electron state. It is well-known that
these states in C60 are also triply degenerate and that this
degeneracy is lifted in PC60BM. Since we use a model system,
we take, for simplicity, that the degeneracy is lifted in the same
manner as in the case of lowest single-electron levels, i.e., we take
JA,0
c,int = JA,2

c,int, JA,1
c,int = JA,3

c,int, JA,01
c,int = JA,23

c,int , and ϵA,3
c − ϵA,2

c = ϵA,1
c − ϵA,0

c ,
while ϵA,2

c − ϵA,0
c = 1.0 eV. For the magnitudes of the energy

difference ϵA,0
c − ϵA,0

v and the transfer integral JA,0
v,int listed in

Table 1, the single-particle gap in the acceptor part of the
heterojunction assumes the value of 2.2 eV, which is similar to
the literature values for PCBM.52

The energy differences ΔXD−CT and ΔXA−CT between the
lowest excited state of the heterojunction (the lowest CT state)
and the lowest exciton states in the donor and acceptor
respectively, are directly related to LUMO−LUMO and
HOMO−HOMO energy offsets between the materials.
Literature values of ΔXD−CT representative of P3HT/PCBM

blends are usually calculated for the system consisting of one
PCBM molecule and one oligomer and range from 0.7 eV33 to
1.3 eV.34 Liu and Troisi35 obtained ΔXD−CT = 0.97 eV and
pointed out that taking into account partial electron
delocalization over fullerene molecules can significantly lower
the XD-CT energy difference. For parameters listed in Table 1,
ΔXD−CT = 0.68 eV, which is a reasonable value, since we do
account for carrier delocalization effects. The LUMO−LUMO
offset ΔEDA

c (see Figure 1) produced by the model parameters
is around 0.96 eV and the lowest CT state is located at 1.32 eV.
The energy difference ΔXA−CT = 0.42 eV, so that the HOMO−
HOMO offset is around 0.73 eV and the lowest XA state is
approximately at 1.74 eV, both of which compare well with
the available data.52 The magnitudes of the transfer integrals JDA

c

and JDA
v between the two materials are taken to be similar to the

values obtained in ref 28.
Interband matrix elements of the dipole moment diαiβi

cv are

assumed not to depend on band indices αi,βi and to be equal on
all sites belonging to the single material, diαiβi

cv = dD
cv for i = 0,..., N

− 1 and diαiβi
cv = dA

cv for i = N,..., 2N − 1. Since the focus of our

study is on the dissociation of donor excitons, in all the
computations we set dA

cv = 0.
We assume that each site contributes one low-frequency and

one high-frequency phonon mode. The energies of the phonon
modes, as well as the carrier−phonon interaction constants,
are taken to be equal in both parts of the heterojunction.
The phonon mode of energy 185 meV, present in both
materials, was shown to be important for ultrafast charge
transfer in the P3HT/PCBM blend,26 while low-energy
(≲ 10 meV) phonon modes of P3HT exhibit strong coupling
to carriers.56 The strength of the carrier−phonon interaction
can be quantified by the polaron binding energy, which can be
estimated using the result of the second-order weak-coupling
perturbation theory at T = 0 in the vicinity of the point k = 0:57
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(18)

where ϵb,i
pol are the contributions of high- and low-frequency

phonon modes to the polaron binding energy. The values of
g1 and g2 in Table 1 are obtained assuming that ϵb

pol = 50 meV
and ϵb,1

pol = ϵb,2
pol and setting |J| = 125 meV.

Classification of Exciton States. The classification of
exciton states is unambiguous only for JDA

c = JDA
v = 0

(noninteracting heterojunction), when each exciton state

ψ(iαi)(jβj)
x
(0)

can be classified as a donor exciton state (XD), a

space-separated state, an acceptor exciton state (XA) or a state
in which the electron is in the donor, while the hole is in the
acceptor (eDhA). Because eDhA states are very well separated
(in energy) from other groups of exciton states, we will not
further consider them. In the group of space-separated states,
CT and CS states can further be distinguished by the mean
electron−hole distance

∑ ψ⟨ ⟩ = | | | − |
α

α β−

β

r i jx

i
i j
x

e h ( )( )
2

i
j j

i j

(0)

(0)

(19)

If the electron−hole interaction is set to zero, the mean
electron−hole distance for all the space-separated states is equal
to N. For the nonzero Coulomb interaction, we consider a

Table 1. Values of Model Parameters Used in Computations

parameter value

N 11

a (nm) 1.0

U (eV) 0.65

εr 3.0

ϵD,0
c (eV) 2.63

JD, 0
c,int (eV) 0.1

ϵD,0
v (eV) −0.3

JD, 0
v,int (eV) −0.15

ϵA,0
c (eV) 1.565

ϵA,1
c (eV) 1.865

ϵA,2
c (eV) 2.565

ϵA,3
c (eV) 2.865

JA,0
c,int (eV) 0.05

JA,1
c,int (eV) 0.025

JA,2
c,int (eV) 0.05

JA,3
c,int (eV) 0.025

JA,01
c,ext (eV) 0.02

JA,12
c,ext (eV) 0.02

JA,23
c,ext (eV) 0.02

ϵA,0
v (eV) −1.03

JA,0
v,int (eV) −0.15

JDA
c (eV) 0.1

JDA
v (eV) −0.1

ℏωp, 1 (meV) 10.0

g1 (meV) 42.0

ℏωp, 2 (meV) 185.0

g2 (meV) 94.0

T (K) 300.0
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space-separated state as a CS state if its mean electron−hole
distance is larger than (or equal to) N, otherwise we consider it
as a CT state.
In general case, when at least one of JDA

c , JDA
v is different from

zero (interacting heterojunction), it is useful to explicitly
separate the D/A interaction from the interacting-carrier part of
the Hamiltonian (eq 2),

= +H H Hc c
(0)

DA (20)

where
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is the D/A interaction, and Hc
(0) describes interacting carriers

at the noninteracting heterojunction. Exciton states of the non-

interacting heterojunction ψ(iαi)(jβj)
x
(0)

and corresponding exciton

energies ℏωx
(0) are obtained solving the electron−hole pair

eigenproblem of Hc
(0). Exciton states of the interacting hetero-

junction ψ(iαi)(jβj)
x are linear combinations of exciton states of the

noninteracting heterojunction
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α β α β
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(22)

and their character is obtained using this expansion. Namely,
for each group X(0) of the exciton states of the noninteracting
heterojunction, we compute the overlap of state x (of the
interacting heterojunction) with states belonging to this group

∑= | |
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C C
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x X

xx
2
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(0) (0)

(0)

(23)

The character of state x is then the character of the group X(0)

for which the overlap CX(0)
x is maximum.

The electron in a space-separated state is predominantly
located in the acceptor part of the heterojunction, while the
hole is located in the donor part. Since there is a number of
single-electron levels per acceptor site, the electron in a space-
separated state can be in different electronic bands originating
from these single-electron levels. A useful quantity for further
classification of space-separated states is

∑ ∑β ψ= | |
α

α β
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−
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x

j N

N

i
i j
x

2 1

( )( )
2

i
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which represents the conditional probability that, given that the
electron in state x is in the acceptor, it belongs to the electronic
band stemming from the single-electron level β. The index of
the electronic band βx to which the electron in space-separated
state x predominantly belongs is then the value of β for which
the conditional probability px is maximal. In other words, space-
separated state x belongs to the CTβx band.
Let us note here that, because of the large energy separation

between the lower two (0 and 1) and the higher two (2 and 3)
single-electron levels in the acceptor, the electronic coupling
JA,12
c,ext, which couples space-separated states belonging to CT0

and CT1 bands to the ones belonging to CT2 and CT3 bands, is
not effective. Therefore, the space-separated states from CT0

and CT1 bands are very weakly mixed with (and essentially

isolated from) space-separated states of CT2 and CT3 bands,
which permits us to separately analyze these two subgroups of
space-separated states.

Role of the Donor−Acceptor Coupling and the
Resonant Mixing Mechanism. In this section, we show
that the D/A coupling is at the root of the resonant mixing
mechanism, which explains the presence of space-separated
(and XA) states that have a certain amount of donor character,
can be reached by means of a photoexcitation, and act as
gateways to the space-separated manifold for the initial donor
excitons. However, the precise role of the D/A coupling is
different in different energy regions of the exciton spectrum.
In the low-energy region of the exciton spectrum, which is
dominated by the space-separated states belonging to CT0

and CT1 bands, this coupling leads to the resonant mixing
of two-particle (exciton) states. On the other hand, in the
high-energy region of the exciton spectrum, in which space-
separated states belong to CT2 and CT3 bands, it gives rise to
the resonant mixing of single-electron states in the donor and
acceptor.
To better appreciate the role of couplings JDA

c , JDA
v , it is

convenient to schematically represent exciton wave functions

ψ(iαi)(jβj)
x
(0)

and ψ(iαi)(jβj)
x in the coordinate space. For the clarity of

the discussion, we assume that we have only one single-electron
and single-hole state per site throughout the system. This
assumption does not compromise the validity of the conclusions
to be presented in the case of more single-particle states per site.
On the abscissa of our coordinate space is the hole coordinate,
while the electron coordinate is on the ordinate.
The wave functions of exciton states x(0) of the non-

interacting heterojunction are confined to a single quadrant of
our coordinate space, see Figure 2a. For example, the wave

function of a donor exciton state is nonzero only when both
electron and hole coordinates are between 0 and N − 1, and
similarly for other groups of exciton states. Because of the D/A
interaction HDA (eq 21), exciton states x of the interacting
heterojunction are mixtures of different exciton states x(0) of the
noninteracting heterojunction, see eq 22. Therefore, the
wave function of a general exciton state at the interacting
heterojunction is not confined to the quadrant which is in
Figure 2a labeled by its prevalent character, but is nonzero also
in other quadrants. The D/A interaction HDA is written in the
noninteracting-heterojunction exciton basis as

Figure 2. (a) At the noninteracting heterojunction, the wave function
of each exciton state is confined to a single quadrant in the position
space of the electron and hole. (b) The points at which the sums in
eq 26 are evaluated: the points relevant to the computation of the first
and the second sum are grouped by red ellipses, the points relevant to
the computation of the third and the fourth sum are grouped by blue
rectangles.
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The points at which the sums in the last equation (disregarding
band indices) are to be evaluated are presented in Figure 2b.
The first two sums in eq 26 are nonzero only when one state is
of XD, and the other is of space-separated character. Similarly,
the other two sums in eq 26 are nonzero only when one state is
of XA, and the other is of space-separated character. Therefore,
if JDA

c ≠ 0 and JDA
v = 0, XA states of the interacting

heterojunction are identical to XA states of the noninteracting
heterojunction, while XD (space-separated) states of the
interacting heterojunction are generally combinations of XD
and space-separated states of the noninteracting heterojunction.
Similarly, if JDA

c = 0 and JDA
v ≠ 0, XD states of the interacting

heterojunction are identical to XD states of the noninteracting
heterojunction, while XA (space-separated) states of the inter-
acting heterojunction are generally combinations of XA and
space-separated states of the noninteracting heterojunction.
The exact mechanism of this mixing is different in different

parts of the exciton spectrum. Let us start with the lower-energy
part of the spectrum, which contains space-separated states
belonging to CT0 and CT1 bands. Single-electron states in the
acceptor which originate from levels 0 and 1 do not exhibit
strong resonant mixing with single-electron states in the donor,
thanks to the large energy separation between these two groups
of states. Therefore, the relevant partitioning of the interacting-
carrier Hamiltonian Hc is the one embodied in eq 20. Coeffi-
cients Cxx

(0) in the expansion of exciton state x (of the inter-
acting heterojunction) in terms of exciton states x(0) (of the
noninteracting heterojunction) are obtained as solutions to the
eigenvalue problem

∑ δ ω ωℏ + = ℏ
̅ ̅ ̅

h C C( )
x

x x x x x xx x xx
(0)

(0) (0) (0) (0) (0) (0) (0)

(27)

Since hx ̅
(0)
x
(0) contains products of two exciton wave functions,

|hx ̅
(0)
x
(0)| is generally much smaller than |JDA

c/v
|. Therefore, most of

the states in the lower-energy part of the interacting
heterojunction are almost identical to the respective states
of the noninteracting heterojunction. However, whenever
|hx ̅

(0)
x
(0)|∼ |ℏωx ̅

(0) − ℏωx
(0)|, there exists at least one state of the

interacting heterojunction which is a mixture of states x ̅
0 and

x(0) (which have different characters!) of the noninteracting
heterojunction. In other words, states x ̅

(0) and x(0), which are
virtually resonant in energy, exhibit resonant mixing to form
the so-called bridge states of the interacting heterojunction.
Apart from their dominant character, which is obtained as
previously explained, bridge states also have nontrivial overlaps

with noninteracting-heterojunction states of other characters.
For example, if JDA

v = 0, all the bridge states of the interacting
heterojunction are of mixed XD and space-separated character;
if JDA

c = 0, all the bridge states of the interacting heterojunction
are of mixed XA and space-separated character; if both
couplings are nonzero, bridge states of the interacting hetero-
junction are of mixed XD, XA, and space-separated character.
The emergence of bridge states in the low-energy part of the
exciton spectrum requires subtle energy alignment of exciton,
i.e., two-particle, states. Bridge states formed by resonances
between two-particle states are thus rather scarce. Having a
certain amount of the donor character, bridge states acquire
oscillator strengths from donor states and can thus be directly
generated from the ground state. In the rest of our paper, it is
convenient to consider as a bridge state any state (in the lower-
energy part of the exciton spectrum) of dominant CS, CT, or
XA character whose amount of donor character is at least 0.01.
On the other hand, in the high-energy region of the exciton

spectrum, which contains space-separated states belonging to
CT2 and CT3 bands, there is significant mixing between single-
electron states in the acceptor stemming from levels 2 and 3
and single-electron states in the donor. In this case, instead of
the decomposition of the interacting-carrier part of the
Hamiltonian given in eq 20, it is more convenient to separate
the carrier−carrier interaction (last three terms in eq 2) from
the part describing noninteracting carriers (first two terms in
eq 2). The latter part of the interacting-carrier Hamiltonian then
gives rise to single-electron states of the whole heterojunction
which are delocalized on both the donor and acceptor as a
consequence of the resonant mixing between single-electron
states in the two materials. Since one single-electron state of the
entire system generally participates in many two-particle states,
exciton states having at least one carrier delocalized throughout
the heterojunction are ubiquitous in the high-energy region of
the spectrum. They also generally have greater amount of
donor character than the bridge states in the low-energy part of
the spectrum, vide inf ra, making them easily accessible from the
ground state by a (suitable) photoexcitation. The dominant
character of these states can be different and to our further
discussion are relevant space-separated (CT and CS) states of
CT2 and CT3 bands with partial donor character, which will be
further termed photon-absorbing charge-bridging (PACB)
states. This term has been repeatedly used in the literature to
denote space-separated states in which charges are delocalized
throughout the system.28,37,38 We note that the PACB states
within our model do not have any other immediate relationship
with PACB states reported in ab initio studies of D/A interfaces
apart from the charge-bridging property and relatively large
oscillator strengths permitting their direct optical generation.
The bridge states owe their name to the fact that they

indirectly connect, via phonon-assisted processes, a state of
pure XD character to a state of pure space-separated character.
In our model, these two states cannot be involved in a single-
phonon-assisted process because of the form of exciton−
phonon matrix elements Γxx̅

iλi (eq 11), which contain products of
exciton wave functions taken at the same point. Therefore,
single-phonon-assisted transitons among exciton states of the
same character are most intensive and probable. A state of pure
XD character can, however, also be coupled (via processes
mediated by a donor phonon) to a bridge state, which can then
be coupled to a state of pure space-separated character
(via single-phonon processes mediated by acceptor phonons).
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In the remaining part of our study, we will for ease of
presentation adopt the following classification of the exciton
states. Since space-separated states belonging to CT2 and CT3

bands which are relevant to our study are PACB states, we will
not discriminate between CT and CS states in CT2 and CT3

bands, but rather refer to all of them as PACB states. We will,
however, distinguish between CS and CT states in CT0 and
CT1 bands and, for brevity of discussion, we will denote them
simply as CS and CT states. This classification facilitates the
understanding of the role that PACB states play in ultrafast
interfacial dynamics by enabling direct comparison between
results obtained with all four and only two lower orbitals per
acceptor site, vide inf ra. The comparison is plausible since there
is a well-defined correspondence between XA, CT, and CS
states in the lower-energy part of the exciton spectrum
(four orbitals per acceptor site) and the corresponding states
when only two orbitals per acceptor site are taken into account.
The part of the exciton spectrum which is relevant for our study
is shown in Figure 3.

■ NUMERICAL RESULTS

In this section, we present results for the exciton dynamics at
the model heterojunction during and after its pulsed excitation.
The form of the excitation is

ω
τ

θ θ= − + −
⎛

⎝
⎜

⎞

⎠
⎟E t E t

t
t t t t( ) cos( ) exp ( ) ( )0 c

2

G
2 0 0

(28)

where ωc is its central frequency, 2t0 is its duration, τG is the
characteristic time of the Gaussian envelope, and θ(t) is the
Heaviside step function. In all the computations, we set t0 =
50 fs and τG = 20 fs. Computing the energy- and time-resolved
exciton populations φX(E, t) (eqs 16 and 17) or the exciton
DOS, we represent δ functions by a Gaussian with the standard
deviation of 10 meV.
We start with the analysis of the ultrafast exciton dynamics

when model parameters assume the values listed in Table 1 and

the system is excited at the bright donor state located around
ℏωc = 2.35 eV, which is significantly above the lowest donor
state. We also present the results obtained taking into account
only two lower single-electron levels (of energies ϵA,0

c and ϵA,1
c )

in the acceptor per site, while the values of all other model
parameters are as listed in Table 1. The comparison of these
results helps us understand the effects that the presence of two
higher single-electron levels in the acceptor has on ultrafast
exciton dynamics in our model.
In Figure 4a we show the time dependence of the total

coherent exciton population Ntot
coh = ∑x |yx|

2, total incoherent
exciton population Ntot

incoh =∑x n ̅xx, and total exciton population
Ntot (eq 14). Exciting well above the lowest donor state, the
conversion from coherent to incoherent exciton populations is
rapid and is completed in a couple of tens of femtoseconds after
the end of the pulsed excitation. Figure 5a−e presents density
plots of energy- and time-resolved distributions φX

coh(E, t) of
coherent exciton populations for different groups of exciton
states X. Comparing the ranges of color bars in Figure 5a−e, we
conclude that the excitation predominantly generates donor
excitons. We observe in Figure 5a that the initially populated
donor states are the states located around 2.35 and 2.42 eV,
together with the lowest donor state at around 2 eV. Even
though we pump well above the lowest donor state, this state is
prone to the direct optical generation because of its very large
dipole moment Mx (eq 10) for direct generation from the
ground state and the spectral width of the pulse. Apart
from donor states, PACB states are also initially populated
(see Figure 5b). In Figure 5c−e we see that energy positions of
the bright spots in the density plots on the left correspond very
well to the energy positions of red bars, which indicate bridge
states of dominant CS, CT, and XA character, on the right.
In other words, these states can be directly optically generated
from the ground state, as already discussed.
The time dependence of normalized incoherent populations

of different groups of exciton states is presented in Figure 4b.
Figure 4c shows normalized incoherent populations in the
model with only two accessible electronic states (of energies
ϵA,0
c and ϵA,1

c ) at each acceptor site. Comparing panels b and c of
Figure 4, we conclude that the presence of PACB states
significantly affects exciton dynamics on ultrafast time scales.
In the presence of only two lower electronic levels in the
acceptor, the number of donor excitons decreases, while the
numbers of CS, CT, and XA excitons increase after the excita-
tion (see Figure 4c). On the other hand, taking into account
the presence of higher-lying electronic orbitals in the acceptor
and pumping well above the lowest donor exciton, the popula-
tions of XD, XA, CT, and CS states increase, while the popula-
tion of PACB states decreases after the excitation. The fact that
donor states acquire population after the end of the pulse may
at first seem counterintuitive, since initially generated donor
excitons are expected to dissociate, performing transitions to
the space-separated manifold. Having significant amount of
donor character, PACB states are well coupled (via single-
phonon-assisted processes) to the manifold of donor excitons,
while their coupling to space-separated states belonging to CT0

and CT1 bands is essentially negligible (see also the paragraph
following eq 24). Therefore, instead of performing single-
phonon-assisted transitions to lower-energy space-separated
states, initially generated PACB excitons perform transitions
toward donor states, i.e., the number of donor excitons increases
at the expense of excitons initially generated in PACB states.
While, at the end of the pulse, excitons in PACB states comprise

Figure 3. Exciton states relevant for our study divided in different groups.
In the third (the fourth) column (from the left), blue and magenta lines
denote CS (CT) states belonging to CT0 and CT1 band, respectively.
Ultrafast exciton dynamics proceeds along the photophysical pathways
denoted by (1)−(8), which are further specified in the Numerical Results
section. The solid arrows [pathways (1), (3), (6), (7), and (8)] indicate
the deexcitation processes occurring within one group of exciton states,
whereas the dashed arrows [pathways (2), (4), and (5)] denote
transitions among different groups of exciton states. The black (red) bolt
denotes the direct photoexcitation of excitons in donor (PACB) states.
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around 11% of the total exciton population, 900 fs after the
pulse their participation in the total population reduces to 4%.
At the same time, the normalized number of donor excitons
increases from around 85% to around 89% of the total exciton
population, meaning that some of the donor excitons are con-
verted into XA, CT, and CS states, which is seen in Figure 4b as
the increase in the populations of these states.
In the model with four accessible electronic orbitals per

acceptor site, the major part of space-separated states that are
populated on 100 fs time scales following the excitation are
directly generated PACB states. This conclusion is in line with

our recent results regarding ultrafast photophysics in a model
where the LUMO−LUMO offset is comparable to the effective
bandwidth of the LUMO band of the acceptor.27 Namely, we
have recognized that the resonant mixing between single-
electron states in the LUMO bands of the two materials is at
the root of the ultrafast direct optical generation of space-
separated charges. Here, the same mechanism is responsible
for the observed direct generation of excitons in PACB states,
which now acquire nonzero oscillator strengths due to the

Figure 4. Time dependence of (a) the total exciton population and its
coherent and incoherent parts, (b,c) normalized incoherent popula-
tions of different groups of exciton states. In panels a and b, we take
four single-electron levels per acceptor site, while in panel c we take
only two lower single-electron levels (ϵA,0

c and ϵA,1
c ) per acceptor site.

The dotted vertical lines denote the end of the excitation.

Figure 5. Density plots of φX
coh(E,t) for (a) XD, (b) PACB, (c) CS,

(d) CT, and (e) XA states. Each density plot is complemented with
the plot of the corresponding exciton DOS. In panels b−e, exciton
DOS plots contain amounts of the donor character of exciton states
(see eq 23) [in panels c−e, as long as it is greater than 0.01].
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energy alignment between single-electron states stemming from
the donor LUMO orbital and higher-than-LUMO acceptor
orbitals. On the contrary, if only electronic orbitals close to
the LUMO orbital are taken into account, populations of
space-separated states present on 100 fs time scales after the
excitation mainly reside in bridge states, which are formed by
two-particle resonant mixing. The populations of bridge states
are dominantly built by phonon-assisted transitions from
initially generated donor excitons (since the direct generation
of excitons in bridge states is not very pronounced for the
excitation studied). Therefore, in our model, the PACB states
can enhance the generation of space-separated charges on
ultrafast time scales by allowing for their direct optical genera-
tion and not by acting as intermediate states of charge
separation starting from initial donor excitons.
In order to understand the photophysical pathways of

ultrafast exciton dynamics, in Figure 6a−e we depict the
density plots of φX

incoh(E,t) for various groups X of exciton
states. For the completeness of the discussion, in the
Supporting Information we provide the density plots of
φX
incoh(E,t) in the model with only two lower electronic orbitals

per acceptor site and compare them to the plots presented
here. As already explained, the excitons initially generated
in PACB states (red bolt in Figure 3) undergo deexcitation
within the PACB manifold (pathway (1) in Figure 3) followed
by phonon-mediated transitions toward the manifold of donor
states (pathway (2) in Figure 3; see Figure 6b). Donor excitons
(either the ones initially generated in higher-lying bright states
(black bolt in Figure 3) or the ones originating from PACB
excitons) are involved in a series of ultrafast phonon-assisted
transitions toward lower-energy states. Most of these transitions
happen within the XD manifold (pathway (3) in Figure 3; see
the series of more or less bright bands in the density plot
of Figure 6a), which is consistent with the fact that donor
excitons comprise the largest part of the total exciton popu-
lation at every instant. The deexcitation within the XD manifold
proceeds until the lowest XD state is reached. In fact, we see
that already for t ≳ 250 fs, XD population resides mainly in the
lowest donor state at around 2 eV and the donor state at
around 2.13 eV. The lowest donor state is almost uncoupled
from the space-separated manifold, acting as a trap state for
exciton dissociation, which is in line with other studies.23

The other donor state (at around 2.13 eV) acting as a trap state
for exciton dissociation is specific to our computation.
In the course of the deexcitation from the higher-lying donor

states and before reaching a trap state for exciton dissociation,
a donor exciton can perform a transition to a bridge state
(pathway (4) in Figure 3). As seen in Figure 6c−e, the energy
positions of the bright bands in the density plots on the left
match exactly the energy positions of red bars displaying the
amount of donor character of dominantly space-separated or
XA states on the right. Figure 7b−d depicts probability distri-
butions of the electron and hole in representative bridge states
of different dominant characters, while Figure 7a shows the
same quantities for particular PACB states. All the bridge states
exhibit carrier delocalization throughout the system; this prop-
erty makes them accessible from the initial states of donor
excitons. The same holds for PACB states: since the carriers in
these states are delocalized throughout the heterojunction,
these states inherit oscillator strengths from donor excitons
and may thus be directly accessed by an optical excitation.
Moreover, this property enables efficient phonon-assisted
coupling between PACB states and donor states. The bridge

states gain significant populations during the first 100 fs
following the excitation (pathway (4) in Figure 3) and con-
comitantly the excitons initially generated in PACB states perform
phonon-mediated transitons toward donor states (pathway (2) in
Figure 3).
Once the exciton has reached a bridge state, it can deexcite

within the manifold of its dominant character (pathways (6)−(8)
in Figure 3) or it can perform a transiton to the CT manifold
(pathway (5) in Figure 3) followed by a number of downward
transitions within this manifold (pathway (7) in Figure 3; see the

Figure 6. Density plots of φX
incoh(E,t) for (a) XD, (b) PACB, (c) CS, (d)

CT, and (e) XA states. Each density plot is accompanied by the plot of
the corresponding exciton DOS. In panels b−e, the exciton DOS plots
contain the amount of the donor character of exciton states (see eq 23)
[in panels c−e, as long as it is greater than 0.01].
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series of more or less bright bands between 1.3 and 2.2 eV in the
density plot of Figure 6d). The gradual deexcitation within the
CT manifold leads to the delayed buildup of populations of low-
energy CT states (pathway (7) in Figure 3; see bright bands at
around 1.62 and 1.32 eV in the density plot in Figure 6d), which
happens on a picosecond time scale. Apart from mediating the
charge separation, bridge states can also act as competing
final states. In our computation, at every instant, virtually all CS
excitons reside in bridge states of dominant CS character, and the
progressive deexcitation within the CS manifold (pathway (6) in
Figure 3) is not pronounced (see Figure 6c). Analogous situation
is observed analyzing the energy- and time-resolved populations
of XA states (pathway (8) in Figure 3) in Figure 6e. This 2-fold
role of bridge states observed in our computations is in agreement
with conclusions of previous studies.20

Ultrafast Exciton Dynamics for Various Central
Frequencies. The exact photophysical pathways along which

the exciton dynamics proceeds on ultrafast time scales strongly
depend on the frequency of the excitation, the exciton dis-
sociation being more pronounced for larger excess energy.1,58

Here, we examine ultrafast exciton dynamics for three different
excitations of central frequencies ℏωc = 2.35, 2.25, and 2 eV
(excitation at the lowest donor state). As the central frequency
of the excitation is decreased, i.e., as the initially generated
donor excitons are closer in energy to the lowest donor state,
the conversion from coherent to incoherent exciton population
is slower and the time scale on which exciton coherences with
the ground state dominate the interfacial dynamics is longer
(see Figure 8b). At the same time, the participation of excitons

in PACB states in the total exciton population is decreased,
whereas donor excitons comprise larger part of the total
population (see Figure 8a). Namely, as the central frequency is
lowered toward the lowest donor state, the initial optical
generation of excitons in PACB states is less pronounced and
the pathways (1) and (2) in Figure 3 become less important,
while the possible photophysical pathways of the initially
generated donor excitons become less diverse. Therefore, the
phonon-assisted processes responsible for the conversion from
coherent to incoherent exciton populations and for the ultrafast
phonon-mediated transitions from donor states toward space-
separated states are less effective. As a consequence, the con-
version from coherent to incoherent exciton populations is
slower, and initially generated donor excitons tend to remain
within the manifold of donor states (pathway (3) in Figure 3,
down to the lowest donor state, is preferred to pathways (4)−
(7), which may lead to space-separated states). The latter fact is
especially pronounced exciting at the lowest donor state, which
is very weakly coupled to the space-separated manifold, when
around 80% of the total exciton population lies in the lowest
donor state, meaning that the ultrafast charge transfer upon
excitation at this state is not significant. In the Supporting
Information, we present the density plots of φX

incoh(E,t) for
different groups of exciton states X and excitations of different
central frequencies.

Influence of Small Variations of the LUMO−LUMO
Offset on Ultrafast Exciton Dynamics. In this work, we deal
with rather large LUMO−LUMO offsets, when the bridge
states emerge as a consequence of the energy resonance
between two-particle (exciton) states. The energies of these
states, as well as their number and amount of the donor
character, are therefore very sensitive to the particular exciton
energy level alignment at the heterojunction. On the other
hand, the properties of PACB states are not expected to be
particularly sensitive to the details of the energy level alignment,

Figure 7. Probability distributions of the electron (left) and hole
(right) in representative (a) PACB states and bridge states of
dominant (b) CS, (c) CT, and (d) XA character.

Figure 8. Time dependence of (a) the normalized number of excitons
in donor and PACB states, and (b) the total coherent exciton
population, for different central frequencies of the excitation. For
convenience, the total coherent population shown in panel b is
normalized so that its maximal value is equal to 1.
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since they originate from resonances between single-electron
states in the donor and acceptor. In order to demonstrate
this difference between bridge states and PACB states, we
performed computations with different, but very close, values of
the LUMO−LUMO offset. The LUMO−LUMO offset is
varied by changing all the parameters ϵA,0

c ,ϵA,1
c ,ϵA,2

c ,ϵA,3
c ,ϵA,0

v in
Table 1 by the same amount, keeping all the other model
parameters fixed. The effects of small variations of LUMO−
LUMO offset are studied for JDA

v = 0, when all the bridge states
are of mixed XD and space-separated character and, since dA

cv = 0,
XA states do not participate in the ultrafast exciton dynamics.
The exclusion of XA states from the dynamics significantly
decreases the numerical effort and at the same time allows us
to concentrate on the dynamics of ultrafast electron transfer,
instead of considering both electron transfer and exciton
transfer. The main qualitative features of the ultrafast exciton
dynamics described earlier remain the same, as detailed in the
Supporting Information.
The system is excited at ℏωc = 2.35 eV. Figure 9a presents

the time dependence of the normalized number excitons in

PACB states, while Figure 9b shows the normalized number of
excitons in space-separated states 900 fs after the excitation for
different LUMO−LUMO offsets ranging from 950 to 980 meV
in steps of 5 meV. Small variations of the LUMO−LUMO
offset between 955 and 975 meV weakly affect the portion of
PACB excitons in the total exciton population. However, for
the LUMO−LUMO offset of 980 meV, the normalized number
of excitons in PACB states is somewhat higher than for the
other considered values, while this number is somewhat smaller
for the LUMO−LUMO offset of 950 meV. Namely, for larger
LUMO−LUMO offsets, the lowest state of CT2 band is closer
to the central frequency of the excitation, and the direct optical
generation of excitons in PACB states is more pronounced.
For smaller LUMO−LUMO offsets, the initial generation of

excitons in PACB states is to a certain extent suppressed
because the energy difference between the lowest state of CT2

band and the central frequency of the excitation is larger.
On the other hand, the relative number of space-separated
excitons can change up to three times as a result of small
changes in the LUMO−LUMO offset. The different behavior
displayed by the relative numbers of PACB excitons and space-
separated excitons is a consequence of different mechanisms
by which PACB states and bridge states emerge. The peak in
the normalized number of space-separated excitons observed
for the LUMO−LUMO offset of 965 meV signalizes that the
exciton-level alignment at this point favors either (i) formation
of more bridge states of dominant space-separated character
than at other points or (ii) formation of bridge states that
couple more strongly to initial donor states than bridge states at
other points.

Influence of Carrier−Phonon Interaction Strength
and Temperature on Ultrafast Exciton Dynamics. We
have analyzed the ultrafast exciton dynamics for different
strengths of the carrier−phonon coupling, exciting the system
at ℏωc = 2.35 eV. The polaron binding energy ϵpol

b (eq 18),
which is a measure of the carrier−phonon interaction strength,
assumes values of 20, 50, and 70 meV.
Since the carrier−phonon interaction mediates the con-

version from coherent to incoherent exciton populations,
weaker carrier−phonon coupling makes this conversion
somewhat slower (see Figure 10a). We note that, for all the
interaction strengths considered, the total coherent population
decays 100 times (compared to its maximal value) in ≲100 fs
following the excitation, meaning that the conversion is in all
three cases relatively fast.
The normalized number of excitons in PACB states is smaller

for stronger carrier−phonon interaction (see Figure 10b).
The characteristic time scale for the decay of the population of
PACB states is shorter for stronger carrier−phonon interaction,
which is a consequence of stronger phonon-mediated coupling
among PACB states and donor states (pathway (2) in Figure 3).
For larger interaction strength, the populations of CS and
CT states comprise larger part of the total exciton population
(see Figure 10d,e). Namely, the stronger the carrier−phonon
interaction, the more probable the transitions from donor
excitons to bridge states (pathway (4) in Figure 3) and the
larger the populations of CS and CT states (pathways (5)−(7)
in Figure 3). The relative number of acceptor excitons does not
change very much with the carrier−phonon interaction
strength (see Figure 10b). The variation in the relative number
of donor excitons brought about by the changes in the inter-
action strength is governed by a number of competing factors.
First, stronger carrier−phonon interaction favors larger number
of donor excitons, since phonon-assisted transitions from
PACB to XD states (pathway (2) in Figure 3) are more
pronounced. Second, for stronger interaction, the transitions
from XD to bridge states are more probable (pathway (4) in
Figure 3). Third, since phonon-mediated transitions are most
pronounced between exciton states of the same character,
stronger interaction may also favor deexcitation of donor
populations within the XD manifold (down to the lowest
XD state, pathway (3) in Figure 3) to possible transitions (via
bridge states) to the space-separated manifold (pathways (4)−
(7) in Figure 3). From Figure 10c we see that, as a result of all
these factors, the relative number of donor excitons does not
change monotonously with the interaction strength.

Figure 9. (a) Time dependence of the normalized number of PACB
excitons for different LUMO−LUMO offsets Δ. (b) The relative
number of excitons in space-separated (CT and CS) states 900 fs after
the excitation for different LUMO−LUMO offsets Δ.
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In order to understand how the changes in carrier−phonon
interaction strength affect the photophysical pathways along
which the ultrafast exciton dynamics proceeds, in Figure 11a−l
we present energy- and time-resolved incoherent populations of
various groups of exciton states (in different rows) and for
different interaction strengths (in different columns).
While for the strongest studied interaction initially generated

higher-lying donor excitons and excitons in PACB states leave
the initial states rapidly (see Figure 11i,j), for the weakest
studied interaction strength, significant exciton population
remains in these states during the first picosecond of the
exciton dynamics (see Figure 11a,b). The deexcitation of donor
excitons takes place predominantly within the XD manifold
(pathway (3) in Figure 3) for all three interaction strengths
(compare the ranges of color bars in Figure 11a,e,i). For the
weakest studied interaction, the lowest donor state, which is
a trap for the exciton dissociation, is largely bypassed in the
course of the deexcitation, whereas for stronger carrier−
phonon interactions, this state acquires significant population
already from the beginning of the excitation. Energy- and time-
resolved populations of CS states are very nearly the same for
all three interaction strengths studied (see Figure 11c,g,k).
The major part of the CS population resides in bridge states,
and the deexcitation within the subset of CS states (pathway
(6) in Figure 3) is not very pronounced. On the other hand,
the deexcitation within the subset of CT states (pathway (7) in
Figure 3), down to the lowest CT state, is observed for all the
interaction strengths considered (see the series of more or
less bright bands in Figure 11d,h,l). While for the weakest
interaction the largest portion of the CT population resides in

the bridge state of CT character located at around 2.2 eV, for
the strongest interaction, the major part of the CT population
is located in the lowest state of CT1 band at around 1.63 eV.
The carrier−phonon coupling thus acts in two different ways.

On the one hand, stronger carrier−phonon interaction
enhances exciton dissociation and subsequent charge separation
by (i) enabling phonon-assisted transitons from a donor state
to space-separated states via bridge states (pathways (4) and
(5) in Figure 3) and (ii) enabling phonon-assisted transitions
within the space-separated manifold once a space-separated
state is reached (pathways (6) and (7) in Figure 3). On the
other hand, stronger carrier−phonon coupling is detrimental to
exciton dissociation and further charge separation because
(i) it makes donor states more easily accessible from initially
generated PACB excitons (pathway (2) in Figure 3), and,
similarly, it may favor backward transitions from a bridge state
to a donor state with respect to transitions to the space-sepa-
rated manifold and (ii) downward phonon-assisted transitions
make low-energy CT states, which are usually considered as
traps for charge separation, populated on a picosecond time
scale following the excitation (pathway (7) in Figure 3).
In the Supporting Information we examine the temperature

dependence of the ultrafast heterojunction dynamics. We find
that the effect of temperature variations on exciton dynamics
occurring on subpicosecond time scales is not particularly pro-
nounced, as has been repeatedly recognized in the literature.59−61

■ DISCUSSION AND CONCLUSION

Using a relatively simple, but physically grounded model of an
all-organic heterointerface, we have investigated subpicosecond
dynamics of exciton dissociation and charge separation in the
framework of the density matrix theory complemented with the
DCT scheme. Our model is constructed as an effective model
intended to describe the dynamics of excitation transport in the
direction perpendicular to the interface, and it is parametrized
using the literature data for the P3HT/PCBM blend.
Apart from the electronic states of the fullerene aggregate

that originate from molecular orbitals close to the LUMO
orbital of PCBM, we also account for the electronic states
stemming from orbitals situated at around 1 eV above the
LUMO orbital. Our analysis reveals the importance of the
space-separated states that inherit nonzero oscillator strengths
from donor states (bridge states and PACB states) and exhibit
charge delocalization in ultrafast exciton dynamics. Depending
on the energy region of the exciton spectrum, the origin of
these states is different. In the low-energy region of the spec-
trum, bridge states are formed as a consequence of the resonant
mixing among exciton (i.e., two-particle) states, while in the
opposite part of the spectrum the resonant mixing between
single-electron states in the two materials brings about the
formation of PACB states.
The resonant mixing has been suggested to be the key

physical mechanism responsible for the presence of separated
charges on ultrafast time scales following the excitation of a D/A
heterojunction.1,11,12,62−65 Employing the model of reduced
dimensionality and studying its subpicosecond dynamics on a
fully quantum level, we reach similar conclusions, and thus
believe that our one-dimensional model is capable of describing
the essential physics behind ultrafast interfacial processes.
Our one-dimensional model does not provide a detailed description
of, e.g., the role of fullerene cluster size and packing in the
ultrafast dynamics. However, it takes into account the most
important consequences of the aforementioned effects, i.e., the

Figure 10. (a) Time dependence of the total coherent exciton
population Ntot

coh for different carrier−phonon interaction strengths. For
convenience, Ntot

coh is normalized so that its maximum assumes the
same value for all studied interaction strengths. Dynamics of
normalized incoherent excition populations of (b) PACB and XA,
(c) XD, (d) CS, and (e) CT states, for different interaction strengths.
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delocalization of electronic states and the accessibility of delo-
calized states of space-separated charges from the states of
donor excitons.64 The effects of the dimensionality of the
model become crucial on somewhat longer time and length
scales. Namely, on ≳10 ps time scales, the diffusion-controlled
charge separation by incoherent hops throughout the respective
materials takes place,66 and one has to take into consideration
all possible separation paths the electron and hole can follow,
which can be done correctly only within a three-dimensional
model of the heterojunction. The effects of electric polarization
and screening at realistic interfaces are rather complex and
strongly dependent on the details of the interface.67 Here,
however, we take a minimal model of the electron−hole inter-
action that reproduces the most important features of the
energetics of exciton states obtained from experimental data or
from more sophisticated models of polarization and screening

at interfaces. In that sense, our model can be considered as an
effective model whose parameters were adjusted to yield realistic
energetics of relevant exciton states.
While the PACB states in our model enhance ultrafast charge

separation by acting as additional interfacial photon-absorbing
states, the most important characteristic of the bridge states is
not their direct accessibility from the ground state, but their
good coupling with the manifold of donor states. Therefore, for
donor excitons, the bridge states act as gateways to the space-
separated manifold, so that the populations of low-lying space-
separated states are built by progressive deexcitation within the
space-separated manifold on a picosecond time scale following
the excitation.
The ultrafast exciton dynamics strongly depends on the

central frequency of the excitation. While exciting well above
the lowest donor state, there are a number of photophysical

Figure 11. Energy- and time-resolved incoherent exciton populations φX
incoh(E, t) for different carrier−phonon interaction strengths: (a−d) g1 =

26.7 meV, g2 = 59.7 meV; (e−h) g1 = 42.2 meV, g2 = 94.3 meV; (i−l) g1 = 54.0 meV, g2 = 111.6 meV. Groups of exciton states: (a,e,i) XD states;
(b,f,j) PACB states; (c,g,k) CS states; (d,h,l) CT states.
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pathways enabling subpicosecond exciton dissociation, exciting
at the lowest donor state, the major part of generated excitons
reside in this state, and ultrafast exciton dissociation is not
pronounced. Stronger carrier−phonon interaction enhances
phonon-mediated transitions from donor states to bridge states
and is thus beneficial to exciton dissociation on ultrafast time
scales.
Our results indicate that the number of space-separated

charges that are present 1 ps after photoexcitation is rather
small, being typically less than 10% of the number of excited
electron−hole pairs (see, e.g., Figures 4 and 10). On the other
hand, in most efficient solar cell devices internal quantum
efficiencies (IQE) close to 100% have been reported. In light of
an ongoing debate on the origin of high IQE and the time scale
necessary for the charge separation process to occur, our results
indicate that longer time scales are needed to separate the
charges. Many of the photophysical pathways that we identify
eventually lead to occupation of low-lying CT states (e.g.,
in Figure 3, the pathway starting from initial donor excitons
(black bolt)[ → (3)] → (4) → (5) → (7) or the pathway
starting from initial PACB excitons (red bolt)[ → (1)] →

(2)[ → (3)] → (4) → (5) → (7)). We also find that on
subpicosecond time scales a large portion of excitons remains in
donor states. Therefore, a mechanism that leads to escape of
charges from low-lying CT states and donor states on longer
time scales and consequently to high IQE needs to exist.
Several recent experimental68,69 and theoretical70−72 studies
have provided evidence that the separation of charges residing
in these states is indeed possible. Along these lines, our model
could potentially be part of a multiscale model of the OPV
devices, as it yields the populations of different states at ∼1 ps
after photoexcitation. The output of our model could then be
used as input for a semiclassical model that would consider the
charge separation and transport on a longer time scale.
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(56) Lücke, A.; Ortmann, F.; Panhans, M.; Sanna, S.; Rauls, E.;
Gerstmann, U.; Schmidt, W. G. Temperature-Dependent Hole
Mobility and Its Limit in Crystal-Phase P3HT Calculated from First
Principles. J. Phys. Chem. B 2016, 120, 5572−5580.
(57) Cheng, Y.-C.; Silbey, R. J. A Unified Theory for Charge-Carrier
Transport in Organic Crystals. J. Chem. Phys. 2008, 128, 114713.
(58) Schulze, M.; Han̈sel, M.; Tegeder, P. Hot Excitons Increase the
Donor/Acceptor Charge Transfer Yield. J. Phys. Chem. C 2014, 118,
28527−28534.
(59) Pensack, R. D.; Asbury, J. B. Beyond the Adiabatic Limit:
Charge Photogeneration in Organic Photovoltaic Materials. J. Phys.
Chem. Lett. 2010, 1, 2255−2263.
(60) Chenel, A.; Mangaud, E.; Burghardt, I.; Meier, C.; Desouter-
Lecomte, M. Exciton Dissociation at Donor-Acceptor Heterojunc-
tions: Dynamics Using the Collective Effective Mode Representation
of the Spin-Boson Model. J. Chem. Phys. 2014, 140, 044104.
(61) Hughes, K. H.; Cahier, B.; Martinazzo, R.; Tamura, H.;
Burghardt, I. Non-Markovian Reduced Dynamics of Ultrafast Charge

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.7b05582
J. Phys. Chem. C 2017, 121, 19602−19618

19617

http://dx.doi.org/10.1021/acs.jpcc.7b05582


Transfer at an Oligothiophene-Fullerene Heterojunction. Chem. Phys.
2014, 442, 111−118.
(62) D’Avino, G.; Muccioli, L.; Olivier, Y.; Beljonne, D. Charge
Separation and Recombination at Polymer-Fullerene Heterojunctions:
delocalization and Hybridization Effects. J. Phys. Chem. Lett. 2016, 7,
536−540.
(63) Ma, H.; Troisi, A. Direct Optical Generation of Long-Range
Charge-Transfer States in Organic Photovoltaics. Adv. Mater. 2014, 26,
6163−6167.
(64) Savoie, B. M.; Rao, A.; Bakulin, A. A.; Gelinas, S.; Movaghar, B.;
Friend, R. H.; Marks, T. J.; Ratner, M. A. Unequal Partnership:
Asymmetric Roles of Polymeric Donor and Fullerene Acceptor in
Generating Free Charge. J. Am. Chem. Soc. 2014, 136, 2876−2884.
(65) Yao, Y.; Xie, X.; Ma, H. Ultrafast Long-Range Charge Separation
in Organic Photovoltaics: Promotion by Off-Diagonal Vibronic
Couplings and Entropy Increase. J. Phys. Chem. Lett. 2016, 7, 4830−
4835.
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We present a detailed investigation of ultrafast (subpicosecond) exciton dynamics in the lattice model of
a donor/acceptor heterojunction. Exciton generation by means of a photoexcitation, exciton dissociation, and
further charge separation are treated on equal footing. The experimentally observed presence of space-separated
charges at �100 fs after the photoexcitation is usually attributed to ultrafast transitions from excitons in the
donor to charge-transfer and charge-separated states. Here, we show, however, that the space-separated charges
appearing on �100-fs time scales are predominantly directly optically generated. Our theoretical insights into
the ultrafast pump-probe spectroscopy challenge usual interpretations of pump-probe spectra in terms of ultrafast
population transfer from donor excitons to space-separated charges.
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I. INTRODUCTION

The past two decades have seen rapidly growing research
efforts in the field of organic photovoltaics (OPVs), driven
mainly by the promise of economically viable and environ-
mentally friendly power generation [1–5]. In spite of vigorous
and interdisciplinary research activities, there is a number of
fundamental questions that still have to be properly answered
in order to rationally design more efficient OPV devices. It
is commonly believed [1,6] that photocurrent generation in
OPV devices is a series of the following sequential steps.
Light absorption in the donor material creates an exciton,
which subsequently diffuses towards the donor/acceptor (D/A)
interface where it dissociates producing an interfacial charge
transfer (CT) state. The electron and hole in this state are
tightly bound and localized at the D/A interface. The CT state
further separates into a free electron and a hole [the so-called
charge-separated (CS) state], which are then transported to
the respective electrodes. On the other hand, several recent
spectroscopic studies [7–10] have indicated the presence of
spatially separated electrons and holes on ultrafast (�100 fs)
time scales after the photoexcitation. These findings challenge
the described picture of free-charge generation in OPV devices
as the following issues arise. (i) It is not expected that an
exciton created in the donor can diffuse in such a short time
to the D/A interface since the distance it can cover in 100 fs is
rather small compared to the typical size of phase segregated
domains in bulk heterojunctions. [11] (ii) The mechanism by
which a CT state would transform into a CS state is not clear.
The binding energy of a CT exciton is rather large [6,12] and
there is an energy barrier preventing it from the transition to a
CS state, especially at such short time scales.

To resolve question (ii), many experimental [7,8,13,14]
and theoretical [15–19] studies have challenged the implicit
assumption that the lowest CT state is involved in the process.
These studies emphasized the critical role of electronically
hot (energetically higher) CT states as intermediate states
before the transition to CS states. Having significantly larger

*veljko.jankovic@ipb.ac.rs
†nenad.vukmirovic@ipb.ac.rs

electron-hole separations, i.e., more delocalized carriers, com-
pared to the interface-bound CT states, these hot CT states
are also more likely to exhibit ultrafast charge separation and
thus bypass the relaxation to the lowest CT state. The time
scale of the described hot exciton dissociation mechanism is
comparable to the time scale of hot CT exciton relaxation to the
lowest CT state [8,18]. Other studies suggested that electron
delocalization in the acceptor may reduce the Coulomb barrier
[9,20,21] and allow the transition from CT to CS states.
Experimental results of Vandewal et al. [22], who studied
the consequences of the direct optical excitation of the lowest
CT state, suggest that the charge separation can occur very
efficiently from this state. To resolve issue (i), it has been
proposed that a direct transition from donor excitons to CS
states provides an efficient route for charge separation [23,24].

All the aforementioned studies implicitly assume that an
optical excitation creates a donor exciton and address the
mechanisms by which it can evolve into a CT or CS state
on a ∼100-fs time scale. In this work, we demonstrate
that the majority of space-separated charges that are present
∼100 fs after photoexcitation are directly optically generated,
in contrast to the usual belief that they originate from optical
generation of donor excitons followed by some of the proposed
mechanisms of transfer to CT or CS states. We note that in a
recent theoretical work Ma and Troisi [25] concluded that
space-separated electron-hole pairs significantly contribute
to the absorption spectrum of the heterojunction, suggesting
the possibility of their direct optical generation. A similar
conclusion was also obtained in the most recent study of
D’Avino et al. [26]. These works, however, do not provide
information about the relative importance of direct optical
generation of space-separated charges in comparison to other
hypothesized mechanisms of their generation. On the other
hand, in the framework of a simple, yet physically grounded
model, we simulate the time evolution of populations of
various exciton states during and after optical excitation.
Working with a model Hamiltonian whose parameters have
clear physical meanings, we are able to vary model parameters
and demonstrate that these variations do not violate our
principal conclusion that the space-separated charges present
at ∼100 fs following photoexcitation originate from direct
optical generation. In addition, we numerically investigate the
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ultrafast pump-probe spectroscopy and find that the signal
on ultrafast time scales is dominated by coherences rather
than by state populations. This makes the interpretation of
the experimental spectra in terms of state populations rather
difficult.

The paper is organized as follows. Section II introduces
the model, its parametrization, and the theoretical treatment
of ultrafast exciton dynamics. The central conclusion of our
study is presented in Sec. III, where we also assess its
robustness against variations of most of the model parameters.
Section IV is devoted to the theoretical approach to ultrafast
pump-probe experiments and numerical computations of the
corresponding pump-probe signals. We discuss our results and
draw conclusions in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, we lay out the essential elements of the
model (Sec. II A) and of the theoretical approach (Sec. II B)
we use to study ultrafast exciton dynamics at a heterointer-
face. Section II C presents the parametrization of the model
Hamiltonian and analyzes its spectrum.

A. One-dimensional lattice model of a heterojunction

In this study, a one-dimensional two-band lattice semi-
conductor model is employed to describe a heterojunction.
It takes into account electronic couplings, carrier-carrier,
and carrier-phonon interactions, as well as the interaction of
carriers with the external electric field. There are 2N sites
in total, see Fig. 2(a); first N sites (labeled by 0, . . . ,N − 1)
belong to the donor part of the heterojunction, while sites
labeled by N, . . . ,2N − 1 belong to the acceptor part. Each
site i has one valence-band and one conduction-band orbital
and also contributes localized phonon modes counted by
index λi . The model Hamiltonian is pictorially presented in
Fig. 1(a), the total Hamiltonian being

H = Hc + Hp + Hc−p + Hc−f . (1)

Interacting carriers are described by

Hc =
2N−1∑
i=0

⎛
⎜⎝Hi

e + Hi
h +

2N−1∑
j=0
j �=i

(
Hij

e + H
ij

h

) +
2N−1∑
j=0

H
ij

e−h

⎞
⎟⎠,

(2)

the phonon Hamiltonian is

Hp =
2N−1∑
i=0

Hi
p, (3)

the carrier-phonon interaction is

Hc−p =
2N−1∑
i=0

(
Hi

e−p + Hi
h−p

)
, (4)

while the interaction of carriers with the external exciting field
E(t) is given as

Hc−f =
2N−1∑
i=0

Hi
c−f . (5)

(a)

(b)

FIG. 1. (a) Illustration of the model Hamiltonian used in our
study. (b) Active variables in the density matrix formalism and their
interrelations in the resulting hierarchy of equations. The direction
of a straight arrow indicates that in the equation for the variable at
its start appears the variable at its end. Loops represent couplings to
higher-order phonon-assisted density matrices which are truncated so
that the particle number and energy of the free system are conserved.

In Fig. 1(a), Fermi operators c
†
i and d

†
i (ci and di) create

(destroy) electrons and holes on site i, whereas Bose operators
b
†
iλi

(biλi
) create (destroy) phonons in mode λi on site i. εc

i

and εv
i are electron and hole on-site energies, while J c

ij and
J v

ij denote electron and hole transfer integrals, respectively.
The carrier-phonon interaction is taken to be of the Holstein
form, where a charge carrier is locally and linearly coupled
to dispersionless optical modes, and gc

iλi
and gv

iλi
are the

interaction strengths with electrons and holes, respectively.
Electron-hole interaction is accounted for in the lowest
monopole-monopole approximation and Vij is the carrier-
carrier interaction potential. Interband dipole matrix elements
are denoted by dcv

i .

B. Theoretical approach to exciton dynamics

We examine the ultrafast exciton dynamics during and
after pulsed photoexcitation of a heterointerface in the pre-
viously developed framework of the density matrix theory
complemented with the dynamics controlled truncation (DCT)
scheme [27–29] (see Ref. [30] and references therein), starting
from initially unexcited heterojunction. We confine ourselves
to the case of weak optical field and low carrier densities,
in which it is justified to work in the subspace of single-
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exciton excitations (spanned by the so-called exciton basis)
and truncate the carrier branch of the hierarchy of equations
for density matrices retaining only contributions up to the
second order in the optical field. The phonon branch of
the hierarchy is truncated independently so as to ensure the
particle-number and energy conservation after the pulsed
excitation, as described in detail in Ref. [30].

In more detail, the exciton basis is obtained solving the
eigenvalue problem∑

i ′j ′

(
δi ′iε

c
jj ′ − δj ′j ε

v
ii ′ − δi ′iδj ′jVij

)
ψx

i ′j ′ = h̄ωxψ
x
ij , (6)

where indices i,i ′ (j,j ′) correspond to the position of the
hole (electron) and quantities εc

mn (εv
mn) denote on-site electron

(hole) energies (for m = n) or electron (hole) transfer integrals
(for m �= n) in the donor, in the acceptor, or between the donor
and the acceptor. The creation operator for the exciton in the
state x is then defined as

X†
x =

∑
ij

ψx
ij c

†
j d

†
i . (7)

As we pointed out [30], the total Hamiltonian, in which only
contributions whose expectation values are at most of the
second order in the optical field are kept, can be expressed
in terms of exciton operators X

†
x,Xx as

H =
∑

x

h̄ωxX
†
xXx +

∑
iλi

h̄ωiλi
b
†
iλi

biλi

+
∑

x̄x

iλi

(
�

iλi

x̄x X
†
x̄Xxb

†
iλi

+ �
iλi∗
x̄x X†

xXx̄biλi

)

−E(t)
∑

x

(M∗
x Xx + MxX

†
x), (8)

where the exciton-phonon coupling constants are given as

�
iλi

x̄x = gc
iλi

∑
j

ψx̄∗
ji ψx

ji − gv
iλi

∑
j

ψx̄∗
ij ψx

ij , (9)

while the dipole moment for the generation of the state x from
the ground state is

Mx =
∑

i

ψx∗
ii dcv

i . (10)

Active variables in our formalism are the coherences between
exciton state x and the ground state, yx = 〈Xx〉, exciton
populations (for x̄ = x), and exciton-exciton coherences (for
x̄ �= x) nx̄x = 〈X†

x̄Xx〉, together with their single-phonon-
assisted counterparts yx(iλi )− = 〈Xxbiλi

〉, yx(iλi )+ = 〈Xxb
†
iλi

〉,
and nx̄x(iλi )+ = 〈X†

x̄Xxb
†
iλi

〉. Their mutual interrelations in the
resulting hierarchy are schematically shown in Fig. 1(b), while
the equations themselves are presented in Ref. [31]. In order
to quantitatively monitor ultrafast processes at the model
heterojunction during and after its pulsed photoexcitation,
the incoherent population of exciton state x, which gives the
number of truly bound (Coulomb-correlated) electron-hole
pairs in the state x,

n̄xx = nxx − |yx |2, (11)

will be used. Coherent populations of exciton states, |yx |2,
dominate early stages of the optical experiment, typically
decay quickly due to different scattering mechanisms (in our
case, the carrier-phonon interaction), and do not represent
bound electron-hole pairs. The populations of truly bound
electron-hole pairs build up on the expense of coherent exciton
populations. We frequently normalize n̄xx to the total exciton
population in the system,

Ntot =
∑

x

nxx, (12)

which, together with the expectation value of the Hamiltonian
〈H 〉, is conserved in the absence of the external field.
Probabilities fe(t,r) [fh(t,r)] that an electron (a hole) is
located at site r at instant t can be obtained using the so-called
contraction identities (see, e.g., Ref. [29]) and are given as

fe(t,r) =
∑

x̄x

( ∑
rh

ψx̄∗
rhr

ψx
rhr

)
nx̄x(t)∑

x nxx(t)
, (13)

fh(t,r) =
∑

x̄x

( ∑
re

ψx̄∗
rre

ψx
rre

)
nx̄x(t)∑

x nxx(t)
. (14)

Consequently, the probability that an electron is in the acceptor
at time t is

P e
A(t) =

2N−1∑
r=N

fe(t,r). (15)

C. Model parameters and Hamiltonian spectrum

The model Hamiltonian was parameterized to yield values
of band gaps, bandwidths, band offsets, and exciton binding
energies that are representative of typical OPV materials. The
values of model parameters used in numerical computations
are summarized in Table I. While these values largely
correspond to the PCPDTBT/PCBM interface, we note that
our goal is to reach general conclusions valid for a broad class
of interfaces. Consequently, later in this study, we also vary
most of the model parameters and study the effects of these
variations. Figures 2(a) and 2(b) illustrate the meaning of some
of the model parameters.

All electron and hole transfer integrals are restricted to
nearest neighbors. The single-particle band gap of the donor
Eg,D , as well as the offset �Ec

DA between the lowest single-
electron levels in the donor and acceptor, assume values that are
representative of the low-band-gap PCPDTBT polymer used in
the most efficient solar cells [32,33]. The single-particle band
gap of the acceptor Eg,A and electron/hole transfer integrals
J

c/v
A are tuned to values typical of fullerene and its derivatives

[34,35]. Electron/hole transfer integrals J
c/v
D in the donor were

extracted from the conduction and valence bandwidths of the
PCPDTBT polymer. To obtain the bandwidths, an electronic
structure calculation was performed on a straight infinite
polymer. The calculation is based on the density functional
theory (DFT) in the local density approximation (LDA),
as implemented in the QUANTUM ESPRESSO [36] package.
Transfer integrals were then obtained as 1/4 of the respective
bandwidth. The values of the transfer integral between the two
materials are chosen to be similar to the values obtained in the
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TABLE I. Values of model parameters used in calculations.

Parametera Value

Eg,D (meV) 1500
Eg,A (meV) 1950
�Ec

DA (meV) 500
|J c

D| (meV) 105
|J v

D| (meV) 295
|J c

A| (meV) 150
|J v

A| (meV) 150
|J c

DA|,|J v
DA| (meV) 75

εr 3.0
N 11
a (nm) 1.0
U (meV) 480
h̄ωp,1 (meV) 10
g1 (meV) 28.5
h̄ωp,2 (meV) 185
g2 (meV) 57.0
T (K) 300
t0 (fs) 50

aEg,D (Eg,A) is the single-particle band gap in the donor (accep-
tor). �Ec

DA denotes LUMO-LUMO energy offset. J
c/v
D (J c/v

A ) are
electron/hole transfer integrals in the donor (acceptor). J

c/v
DA are

electron/hole transfer integrals between the donor and acceptor. εr

is the relative dielectric constant. N is the number of lattice sites in
the donor and acceptor (2N sites in total). a is the lattice constant. U

denotes the on-site Coulomb interaction. h̄ωp,1/2 are energies of local
phonon modes, while g1/2 are carrier-phonon coupling constants. T

denotes temperature. The duration of the pulse is 2t0.

ab initio study of P3HT/PCBM heterojunctions [37]. We set
the number of sites in a single material to N = 11, which is
reasonable having in mind that the typical dimensions of phase
segregated domains in bulk heterojunction morphology are
considered to be 10–20 nm [11]. The electron-hole interaction
potential Vij is modeled using the Ohno potential

Vij = U√
1 + ( rij

a0

)2
, (16)

where rij is the distance between sites i and j , and a0 =
e2/(4πε0εrU ) is the characteristic length. The relative dielec-
tric constant εr assumes a value typical for organic materials,
while the magnitude of the on-site Coulomb interaction U

was chosen so that the exciton binding energy in both the
donor and the acceptor is around 300 meV. Following common
practice when studying all-organic heterojunctions [38,39], we
take one low-energy and one high-energy phonon mode. For
simplicity, we assume that energies of both phonon modes,
as well as their couplings to carriers, have the same values in
both materials. The high-frequency phonon mode of energy
185 meV (≈1500 cm−1), which is present in both materials,
was suggested to be crucial for ultrafast electron transfer in the
P3HT/PCBM blend [40]. Recent theoretical calculations of
the phonon spectrum and electron-phonon coupling constants
in P3HT indicate the presence of low-energy phonon modes
(�10 meV) that strongly couple to carriers [41]. The chosen
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FIG. 2. (a) One-dimensional lattice model of a heterojunction.
Various types of electronic couplings (in the donor, in the acceptor,
and among them) are indicated. There is an energy offset between
single-electron/hole levels in the donor and acceptor. (b) Band
alignment produced by our model. (c) Energies of exciton states,
in particular of donor excitons (black lines), CT (red lines), and CS
(blue lines) states. Exciton wave function square moduli are shown
for the lowest donor, CT, and CS state.

values of phonon-mode energies fall in the ranges in which
the phonon density of states in conjugated polymers is large
[42] and the local electron-vibration couplings in PCBM are
pronounced [43]. We estimate the carrier-phonon coupling
constants from the value of polaron binding energy, which
can be estimated using the result of the second-order weak-
coupling perturbation theory at T = 0 in the vicinity of the
point k = 0 [44]:

ε
pol
b =

2∑
i=1

g2
i

2|J |
1√(

1 + h̄ωp,i

2|J |
)2 − 1

. (17)

We took g2/g1 = 2 and estimated the numerical values
assuming that εpol

b = 20 meV and |J | = 125 meV. The electric
field is centered around t = 0 and assumes the form

E(t) = E0 cos(ωct)θ (t + t0)θ (t0 − t), (18)

where ωc is its central frequency, θ (t) is the step function,
and the duration of the pulse is 2t0. The time t0 should be
chosen large enough so that the pulse is spectrally narrow
enough (the energy of the initially generated excitons is
around the central frequency of the pulse). On the other hand,
since our focus is on processes happening on subpicosecond
time scale, the pulse should be as short as possible in order
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to disentangle the carrier generation during the pulse from
free-system evolution after the pulse. Trying to reconcile
the aforementioned requirements, we choose t0 = 50 fs. We
note that the results and conclusions to be presented do not
crucially depend on the particular value of t0 nor on the
wave form of the excitation. This is shown in greater detail
in Ref. [31], see Figs. 1 and 2, where we present the dynamics
for shorter pulses of wave forms given in Eqs. (18) and (33).
Interband dipole matrix elements dcv

i are zero in the acceptor
(i = N, . . . ,2N − 1), while in the donor they all assume the
same value dcv so that dcvE0 = 0.2 meV (weak excitation).

Figure 2(c) displays part of the exciton spectrum produced
by our model. Exciton states can be classified according to the
relative position of the electron and the hole. The classification
is straightforward only for the noninteracting heterojunction
(J c/v

DA = 0), in which case any exciton state can be classified
into four groups: (a) both the electron and the hole are in
the donor [donor exciton (XD) state], (b) both the electron
and the hole are in the acceptor (acceptor exciton state), (c)
the electron is in the acceptor, while the hole is in the donor
(space-separated exciton state), and (d) the electron is in the
donor, while the hole is in the acceptor.

Space-separated excitons can be further discriminated
according to their mean electron-hole distance defined as

〈re−h〉x =
∑
ij

|i − j |∣∣ψx
ij

∣∣2
. (19)

When the electron-hole interaction is set to zero, the mean
electron-hole distance for all the states from group (c) is equal
to N . For the nonzero Coulomb interaction, we consider a
space-separated exciton as a CS exciton if its mean electron-
hole distance is larger than (or equal to) N , otherwise we
consider it as a CT exciton. In the general case, the character
of an exciton state is established by calculating its overlap
with each of the aforementioned groups of the exciton states
at the noninteracting heterojunction; this state then inherits the
character of the group with which the overlap is maximal.

III. NUMERICAL RESULTS

Here, the results of our numerical calculations on the model
system defined in Sec. II are presented. In Sec. III A, we
observe that the populations of CT and CS states predomi-
nantly build up during the action of the excitation, and that
the changes in these populations occurring on ∼100-fs time
scales after the excitation are rather small. This conclusion,
i.e., the direct optical generation as the principal source of
space-separated charges on ultrafast time scales following the
excitation, is shown in Sec. III B to be robust against variations
of model parameters. Since the focus of our study is on the
ultrafast exciton dynamics at photoexcited heterojunctions, all
the computations are carried out for 1 ps in total (involving the
duration of the pulse).

A. Interfacial dynamics on ultrafast time scales

Figure 3(a) shows the time dependence of the numbers
of donor, CT, and CS excitons for the 100-fs-long excitation
with central frequency h̄ωc = 1500 meV, which excites the
system well above the lowest donor or space-separated exciton
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FIG. 3. (a) Time dependence of the numbers of donor (XD), CT,
and CS excitons. The inset shows the time dependence of these
quantities normalized to the total exciton population in the system. (b)
Probability that at time t an electron is located at site r as a function of
r for various values of t . In the legend, the probability that at instant
t an electron is located in the acceptor is given, while the inset shows
its full time dependence. Dotted vertical lines indicate the end of the
excitation.

state, see Fig. 2(c). The number of all three types of excitons
grows during the action of the electric field, whereas after
the electric field has vanished, the number of donor excitons
decreases and the numbers of CT and CS excitons increase.
However, the changes in the exciton numbers brought about
by the free-system evolution alone are much less pronounced
than the corresponding changes during the action of the electric
field, as is shown in Fig. 3(a). The population of CS excitons
builds up during the action of the electric field, so that after
the first 100 fs of the calculation, CS excitons comprise 7.6%
of the total exciton population, see the inset of Fig. 3(a). In
the remaining 900 fs, when the dynamics is governed by
the free Hamiltonian, the population of CS excitons further
increases to 9.6%. A similar, but less extreme, situation is
also observed in the relative number of CT excitons, which at
the end of the pulse form 14% of the total population and
in the remaining 900 fs of the computation their number
further grows to 24%. Therefore, if only the free-system
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evolution were responsible for the conversion from donor to
CT and CS excitons, the population of CT and CS states at
the end of the pulsed excitation would assume much smaller
values than we observe. We are led to conclude that the
population of CT and CS excitons on ultrafast (�100-fs)
time scales is mainly established by direct optical generation.
Transitions from donor to CT and CS excitons are present,
but on this time scale are not as important as is currently
thought.

Exciton dissociation and charge separation can also be
monitored using the probabilities fe(t,r) [fh(t,r)] that an
electron (a hole) is located on site r at instant t , as well as
the probability P e

A(t) that an electron is in the acceptor at time
t , see Eqs. (13)–(15). Figure 3(b) displays quantity fe as a
function of site index r at different times t . The probability of
an electron being in the acceptor is a monotonically increasing
function of time t , see the inset of Fig. 3(b). It increases,
however, more rapidly during the action of the electric field
than after the electric field has vanished: in the first 100 fs of
the calculation, it increases from virtually 0 to 0.070, while in
the next 100 fs it only rises from 0.070 to 0.104, and at the end
of the computation it assumes the value 0.210. The observed
time dependence of the probability that an electron is located
in the acceptor further corroborates our hypothesis of direct
optical generation as the main source of separated carriers on
ultrafast time scales. If only transitions from donor to CT and
CS excitons led to ultrafast charge separation starting from a
donor exciton, the values of the considered probability would
be smaller than we observe.

The rationale behind the direct optical generation of space-
separated charges is the resonant coupling between donor
excitons and (higher-lying) space-separated states, which
stems from the resonant mixing between single-electron states
in the donor and acceptor modulated by the electronic coupling
between materials, see the level alignment in Fig. 2(b). This
mixing leads to higher-lying CT and CS states having non-
negligible amount of donor character and acquiring nonzero
dipole moment from donor excitons; these states can thus be
directly generated from the ground state. It should be stressed
that the mixing, in turn, influences donor states, which have
certain amount of space-separated character.

B. Impact of model parameters on ultrafast exciton dynamics

Our central conclusion was so far obtained using only one
set of model parameters and it is therefore important to check
its sensitivity on system parameters. To this end, we vary one
model parameter at a time, while all the other parameters retain
the values listed in Table I.

We start by investigating the effect of the transfer integral
between the donor and acceptor J

c/v
DA . Higher values of J

c/v
DA

favor charge separation, since the relative numbers of CT and
CS excitons, together with the probability that an electron is in
the acceptor, increase, whereas the relative number of donor
excitons decreases with increasing J

c/v
DA , see Figs. 4(a)–4(c).

In light of the proposed mechanism of ultrafast direct optical
generation of space-separated charges, the observed trends can
be easily rationalized. Stronger electronic coupling between
materials leads to stronger mixing between donor and space-
separated states, i.e., a more pronounced donor character of
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FIG. 4. Time dependence of the relative number of (a) donor and
CT, (b) CS excitons, and (c) the probability P e

A that an electron is
in the acceptor, for different values of the transfer integrals |J c

DA| =
|J v

DA| = JDA between the donor and the acceptor. Dotted vertical
lines indicate the end of the excitation.

CT and CS states and consequently a larger dipole moment for
direct creation of CT and CS states from the ground state.

The results concerning the effects of the energy offset
�Ec

DA between LUMO levels in the donor and acceptor
are summarized in Figs. 5(a)–5(c). The parameter �Ec

DA

determines the energy width of the overlap region between
single-electron states in the donor and acceptor, see Fig. 2(b).
The smaller is �Ec

DA, the greater is the number of virtually
resonant single-electron states in the donor and in the acceptor
and therefore the greater is the number of (higher-lying) CT
and CS states that inherit nonzero dipole moments from donor
states and may thus be directly excited from the ground state.
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FIG. 5. Time dependence of the relative number of (a) donor and
CT, (b) CS excitons, and (c) the probability P e

A that an electron is in
the acceptor, for different values of the LUMO-LUMO energy offset
�Ec

DA. Dotted vertical lines indicate the end of the excitation.
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FIG. 6. Time dependence of the relative number of (a) donor and
CT and (b) CS excitons, for different values of electronic coupling
in the acceptor J c

A. (c) Squared moduli of dipole matrix elements (in
arbitrary units) for direct generation of CS excitons from the ground
state for different values of electronic coupling in the acceptor J c

A.
Dotted vertical lines indicate the end of the excitation. Note that,
globally, squared moduli of dipole matrix elements are largest for
|J c

A| = 200 meV (completely filled bars).

This manifests as a larger number of CT and CS excitons, as
well as a larger probability that an electron is in the acceptor,
with decreasing �Ec

DA.
Figures 6(a)–6(c) show the effects of electron delocalization

in the acceptor on the ultrafast dynamics at the model hetero-
junction. Delocalization effects are mimicked by varying the
electronic coupling in the acceptor. While increasing |J c

A| has
virtually no effect on the relative number of donor excitons,
it leads to an increased participation of CS and a decreased
participation of CT excitons in the total exciton population.
CT states, in which the electron-hole interaction is rather
strong, are mainly formed from lower-energy single-electron
states in the acceptor and higher-energy single-hole states
in the donor. These single-particle states are not subject to
strong resonant mixing with single-particle states of the other
material. However, CS states are predominantly composed
of lower-energy single-hole donor states and higher-energy
single-electron acceptor states; the mixing of the latter group
of states with single-electron donor states is stronger for larger
|J c

A|, just as in case of smaller �Ec
DA, see Fig. 2(b). Therefore

the dipole moments for direct generation of CS excitons
generally increase when increasing |J c

A|, see Fig. 6(c), whereas
the dipole moments for direct generation of CT excitons at the
same time change only slightly, which can account for the
trends of the participation of CS and CT excitons in Figs. 6(a)
and 6(b).

We now turn our attention to the effects that the strength
of the carrier-phonon interaction has on the ultrafast exciton
dynamics at heterointerfaces. In Figs. 7(a)–7(d), we present
the results with the fixed ratio g2/g1 = 2.0 and the polaron
binding energies defined in Eq. (17) assuming the values of
approximately 20, 40, 60, and 140 meV, in ascending order
of g1. We note that it is not straightforward to predict the
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FIG. 7. Time dependence of the relative number of (a) donor, (b)
CT, (c) CS excitons, and (d) the probability P e

A that an electron is in
the acceptor, for different strengths of the carrier-phonon interaction.
Dotted vertical lines indicate the end of the excitation.

effect of the variations of carrier-phonon interaction strength
on the population of space-separated states. Single-phonon-
assisted processes preferentially couple exciton states of the
same character, i.e., a donor exciton state is more strongly
coupled to another donor state, than to a space-separated
state. On the one hand, stronger carrier-phonon interaction
implies more pronounced exciton dissociation and charge
separation because of stronger coupling between donor and
space-separated states. On the other hand, stronger carrier-
phonon interaction leads to faster relaxation of initially
generated donor excitons within the donor exciton manifold to
low-lying donor states. Low-lying donor states are essentially
uncoupled from space-separated states, i.e., they exhibit low
probabilities of exciton dissociation and charge separation.
Our results, shown in Figs. 7(a)–7(d), indicate that stronger
carrier-phonon interaction leads to smaller number of CT and
CS excitons, as well as the probability that an electron is in
the acceptor, and to greater number of donor excitons. We
also note that stronger carrier-phonon interaction changes the
trend displayed by the population of CS states. While for
the weakest interaction studied CS population grows after the
excitation, for the strongest interaction studied CS population
decays after the excitation. This is a consequence of more
pronounced phonon-assisted processes leading to population
of low-energy CT states once a donor exciton performs a
transition to a space-separated state. This discussion can
rationalize the changes in relevant quantities summarized in
Figs. 7(a)–7(d); the magnitudes of the changes observed are,
however, rather small. In previous studies [38,45], which did
not deal with the initial exciton generation step, stronger
carrier-phonon interaction is found to suppress quite strongly
the charge separation process. The weak influence of the
carrier-phonon interaction strength on ultrafast heterojunction
dynamics that we observe supports the mechanism of ultrafast
direct optical generation of space-separated charges. If the
charge separation process at heterointerfaces were mainly
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driven by the free-system evolution, greater changes in the
quantities describing charge separation efficiency would be
expected with varying carrier-phonon interaction strength.

Additionally, we have performed computations for a fixed
value of ε

pol
b [Eq. (17)] and different values of the ratio

g2/g1 among coupling constants of high- and low-frequency
phonon modes. The result, which is presented in Ref. [31] (see
Fig. 4), shows that the increase of the ratio g2/g1 increases
the number of CT excitons and decreases the number of donor
excitons, while the population of CS states exhibits only a weak
increase. Stronger coupling to the high-frequency phonon
mode (with respect to the low-frequency one) enhances charge
separation by decreasing the number of donor excitons, but at
the same time promotes phonon-assisted processes towards
more strongly bound CT states, so that the population of CS
states remains nearly constant.

Our formalism takes into account the influence of phonons
on excitons. However, if this influence were too strong, the
hierarchy of equations would have to be truncated at a higher
level, which would make it computationally intractable. When
the effects of lattice motion on excitons are strong, one has,
in turn, to consider the feedback of excitons on phonons,
which is not captured by the current approach. The feedback
of excitons on the lattice motion can be easily included
in a mixed quantum/classical approach, where excitons are
treated quantum mechanically, while the lattice motion is
treated classically. To estimate the importance of the feedback
of excitons on the lattice motion, we have performed the
computation using the surface hopping approach [46,47] (see
Ref. [31] for more details). In Fig. 3 of Ref. [31], we show
the time dependence of the probability that an electron is
in the acceptor obtained from simulations with and without
feedback effects. The result is nearly the same in both cases,
suggesting that feedback effects are small. As a consequence,
our approach is sufficient for properly taking into account the
influence of phonons on excitons.

We have also studied the influence of the temperature on
the ultrafast exciton dynamics at a heterojunction. It exhibits a
weak temperature dependence, see Fig. 5 of Ref. [31], which
is consistent with existing theoretical [48] and experimental
[49] insights, and also with the mechanism of direct optical
generation of space-separated carriers.

Finally, the consequences of introducing diagonal static
disorder in our model will be studied. It is done by drawing
the (uncorrelated) on-site energies of electrons and holes in the
donor and the acceptor from Gaussian distributions centered
at the values that can be obtained from Table I. We have
for simplicity assumed that the standard deviations of all the
Gaussian distributions are equal to σ . As we do not intend to
obtain any of the system properties by a statistical analysis of
various realizations of disorder, but merely to check whether or
not the presence of disorder may significantly alter qualitative
features of the proposed picture of ultrafast exciton dynamics
at heterointerfaces, we present our results only for a couple
of different disorder realizations and compare them to the
results for ordered system. In Figs. 8(a)–8(d), we show the
time dependence of the relative number of space-separated
(CS and CT) excitons and of the probability P e

A for three
different realizations of disorder with standard deviations σ =
50 and 100 meV. For these disorder realizations, the quantities
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FIG. 8. (a) and (b) Time dependence of the relative number of
space-separated (CT and CS) excitons for three different disorder
realizations (r1, r2, and r3). (c) and (d) Time dependence of the
probability that an electron is in the acceptor for three different
disorder realizations. Time evolution of the respective quantities in
ordered system is shown on each graph for comparison. Disorder is
diagonal (affects only on-site energies), static, and Gaussian, standard
deviations being σ = 50 [(a) and (c)] and 100 meV [(b) and (d)].

we use to describe ultrafast heterojunction dynamics show
qualitatively similar behavior to the case of the ordered system.
Namely, changes in the relative number of space-separated
excitons and the probability of an electron being in the acceptor
are more pronounced during the action of the pulse than after
its end. The characteristic time scales of these changes (for
the disorder realizations studied) are not drastically different
from the corresponding time scale in the ordered system. The
presence of disorder in our model does not necessarily lead
to less efficient charge separation as monitored by the two
aforementioned quantities. Our results based on the considered
disorder realizations are in agreement with the more detailed
study of the effects of disorder on charge separation at model
D/A interfaces [16], from which emerged that regardless of
the degree of disorder, the essential physics of free hole and
electron generation remains the same.

In summary, we find that regardless of the particular
values of varied model parameters (J c/v

DA,�Ec
DA,J c

A, carrier-
phonon coupling constants), the majority of CT and CS states
that are present at ∼100 fs after photoexcitation have been
directly generated during the excitation. Trends in quantities
describing ultrafast heterojunction dynamics that we observe
varying model parameters can be explained by taking into
consideration the proposed mechanism of ultrafast direct
optical generation of space-separated charges.

IV. ULTRAFAST SPECTROSCOPY SIGNATURES

Exciton dynamics on ultrafast time scales is typically
probed experimentally using the ultrafast pump-probe spec-
troscopy, see, e.g., Refs. [7,8]. In such experiments, the
presence of space-separated charges on ultrafast time scales
after photoexcitation has been established and the energy
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resonance between donor exciton and space-separated states
was identified as responsible for efficient charge generation
[7], in agreement with our numerical results. However, while
our results indicate that the majority of space-separated
charges that are present at ∼100 fs after photoexcitation have
been directly optically generated, interpretation of experiments
[7] suggests that these states become populated by the
transition from donor exciton states. To understand the origin
of this apparent difference, we numerically compute ultrafast
pump-probe signals in the framework of our heterojunction
model. In Sec. IV A, we present the theoretical treatment of
ultrafast pump-probe experiments adapted for the system at
hand. Assuming that the probe pulse is deltalike, we obtain an
analytic expression relating the differential transmission �T

to the nonequilibrium state of the system “seen” by the probe
pulse. The expression provides a very clear and direct interpre-
tation of the results of ultrafast pump-probe experiments and
allows to distinguish between contributions stemming from
exciton populations and coherences, challenging the existing
interpretations. It is used in Sec. IV B to numerically compute
differential transmission signals.

A. Theoretical treatment of the ultrafast pump-probe
spectroscopy

In a pump-probe experiment, the sample is firstly irradiated
by an energetic pump pulse and the resulting excited (nonequi-
librium) state of the sample is consequently examined using a
second, weaker, probe pulse, whose time delay with respect to
the pump pulse can be tuned [50–52]. Our theoretical approach
to a pump-probe experiment considers the interaction with the
pump pulse as desribed in Sec. II B and Ref. [30], i.e., within
the density matrix formalism employing the DCT scheme
up to the second order in the pump field. The interaction
with the probe pulse is assumed not to change significantly
the nonequilibrium state created by the pump pulse and is
treated in the linear response regime. The corresponding
nonequilibrium dipole-dipole retarded correlation function is
then used to calculate pump-probe signals [52,53].

To study pump-probe experiments, we extended our two-
band lattice semiconductor model including more single-
electron (single-hole) energy levels per site. Multiple
single-electron (single-hole) levels on each site should be
dipole-coupled among themselves in order to enable probe-
induced dipole transitions between various exciton states.
We denote by c

†
iβi

(ciβi
) creation (annihilation) operators for

electrons on site i in conduction-band orbital βi ; similarly, d†
iαi

(diαi
) create (annihilate) a hole on site i in valence-band orbital

αi . The dipole-moment operator in terms of electron and hole
operators assumes the form

P =
∑

i

βi αi

(
dcv

i c
†
iβi

d
†
iαi

+ H.c.
)

+
∑

i

βi �=β′
i

dcc
i c

†
iβi

ciβ ′
i
−

∑
i

αi �=α′
i

dvv
i d

†
iα′

i
diαi

. (20)

Intraband dipole matrix elements dcc
i (dvv

i ) describe electron
(hole) transitions between different single-electron (single-
hole) states on site i, as opposed to the interband matrix

elements dcv
i , which are responsible for the exciton generation.

Performing transition to the exciton basis, which is defined
analogously to Eq. (6), dipole matrix elements for transitions
from the ground state to exciton state x are

Mx =
∑

i

βi αi

dcv
i ψx∗

(iαi )(iβi ), (21)

while those for transitions from exciton state x to exciton state
x̄ are

Mx
x̄ =

∑
i

αi �=α′
i

∑
j

βj

ψx̄∗
(iαi )(jβj )d

vv
i ψx

(iα′
i )(jβj )

−
∑

i

βi �=β′
i

∑
j

αj

ψx̄∗
(jαj )(iβ ′

i )
dcc

i ψx
(jαj )(iβi ). (22)

Operator P [Eq. (20)] expressed in terms of operators
Xx,X

†
x assumes the form (keeping only contributions whose

expectation values are at most of the second order in the pump
field)

P =
∑

x

(MxX
†
x + M∗

x Xx) −
∑
x̄x

Mx
x̄ X

†
x̄Xx. (23)

We concentrate on the so-called nonoverlapping regime
[52], in which the probe pulse, described by its electric field
e(t), acts after the pump pulse. We take that our system meets
the condition of optical thinness, i.e., the electromagnetic
field originating from probe-induced dipole moment can be
neglected compared to the electromagnetic field of the probe.
In the following considerations, the origin of time axis t = 0 is
taken to be the instant at which the probe pulse starts. The pump
pulse finishes at t = −τ , where τ is the time delay between (the
end of) the pump and (the start of) the probe. The pump creates
a nonequilibrium state of the system which is, at the moment
when the probe pulse starts, given by the density matrix ρ(0),
which implicitly depends on the pump-probe delay τ .

In the linear-response regime, the probe-induced dipole
moment dp(t) for t > 0 is expressed as [52]

dp(t) =
∫

dt ′ χ (t,t ′) e(t ′), (24)

where χ (t,t ′) is the nonequilibrium retarded dipole-dipole
correlation function

χ (t,t ′) = − i

h̄
θ (t − t ′) Tr(ρ(0)[P (t),P (t ′)]). (25)

Time dependence in Eq. (25) is governed by the Hamiltonian
of the system in the absence of external fields [Eq. (8)]:

HE(t)=0 = H0 + He-ph, (26)

where H0 is the noninteracting Hamiltonian of excitons in
the phonon field [the first two terms in Eq. (8)], while He-ph

accounts for exciton-phonon interaction [the third term in
Eq. (8)]. For an ultrashort probe pulse, e(t) = e0δ(t), the
probe-induced dipole moment assumes the form

dp(t) = e0χ (t,0) = e0

(
− i

h̄

)
Tr(ρ(0)[P (t),P (0)]). (27)

Probe pulse tests the possibility of transitions between various
exciton states, i.e., it primarily affects carriers. Therefore,
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as a reasonable approximation to the full time dependent
operator P (t) appearing in Eq. (27), operator P (0)(t), evolving
according to the noninteracting Hamiltonian H0 in Eq. (26),
may be used. This leads us to the central result for the
probe-induced dipole moment:

dp(t) = e0

(
− i

h̄

)
Tr(ρ(0)[P (0)(t),P (0)]). (28)

Deriving the commutator in Eq. (28), in the expression for
dp(t) we obtain two types of contributions, see Eq. (A3) in
Appendix. Contributions of the first type oscillate at frequen-
cies ωx corresponding to probe-induced transitions between
the ground state and exciton state x, while those of the second
type oscillate at frequencies ωx̄ − ωx corresponding to probe-
induced transitions between exciton states x̄ and x. Here, we
focus our attention to the process of photoinduced absorption
(PIA), in which an exciton in state x performs a transition
to another state x̄ under the influence of the probe field.
Therefore we will further consider only the second type of
contributions.

The frequency-dependent transmission coefficient T (ω) is
defined as (we use SI units)

T (ω) = 1 + cμ0

Sh̄
Im

[
h̄ω

dp(ω)

e(ω)

]
, (29)

where dp(ω) and e(ω) are Fourier transformations of dp(t) and
e(t), respectively, while S is the irradiated area of the sample.
The differential transmission is given as

�T (τ ; ω) = T neq(τ ; ω) − T eq(ω). (30)

The transmission of a system, which is initially (before the
action of the probe) unexcited, is denoted by T eq(ω). The
transmission of a pump-driven system T neq(τ ; ω) depends on
the time delay τ between the pump and the probe through the
nonequilibrium density matrix ρ(0). Since our aim is to study
the process of PIA and since T eq(ω) is expected to reflect
only transitions involving the ground state, we will not further
consider this term. After a derivation, the details of which are
given in Appendix, we obtain the expression for the part of the
differential transmission signal �TPIA(τ ; ω) accounting for the
PIA:

�TPIA(τ ; ω) ∝ Im

[∑
xx ′

((
MxM

x
x ′
)∗ h̄ω

h̄ω − (h̄ωx ′ − h̄ωx) + iη
yx ′ (0) − MxM

x
x ′

h̄ω

h̄ω + (h̄ωx ′ − h̄ωx) + iη
y∗

x ′ (0)

)

+
∑
x̄xx ′

(
Mx

x ′M
x̄
x

h̄ω

h̄ω + (h̄ωx ′ − h̄ωx) + iη
y∗

x ′ (0)yx̄(0) − Mx ′
x Mx

x̄

h̄ω

h̄ω − (h̄ωx ′ − h̄ωx) + iη
y∗

x̄ (0)yx ′ (0)

)

+
∑
x̄xx ′

(
Mx

x ′M
x̄
x

h̄ω

h̄ω + (h̄ωx ′ − h̄ωx) + iη
n̄x ′x̄(0) − Mx ′

x Mx
x̄

h̄ω

h̄ω − (h̄ωx ′ − h̄ωx) + iη
n̄x̄x ′ (0)

)]
. (31)

In the last equation, we have explicitly separated the coherent contributions by introducing the correlated parts of exciton
populations and exciton-exciton coherences n̄x̄x = nx̄x − y∗

x̄ yx [see also Eq. (11) defining incoherent exciton populations], while
η is a positive parameter effectively accounting for the spectral line broadening [53]. yx(0) denotes the value of the electronic
density matrix yx at the moment when the probe pulse starts, and similarly for n̄x̄x(0). The coherences between exciton states
and the ground state yx(0), as well as correlated parts of exciton-exciton coherences n̄x̄x(0) (x̄ �= x), are expected to approach
zero for sufficiently long time delays between the pump and the probe [54]. In this limit, Eq. (31) contains only the incoherent
exciton populations n̄xx :

�TPIA(τ ; ω) ∝
∑
xx ′

∣∣Mx
x ′
∣∣2

[
− η · h̄ω

(h̄ω + (h̄ωx ′ − h̄ωx))2 + η2
+ η · h̄ω

(h̄ω − (h̄ωx ′ − h̄ωx))2 + η2

]
n̄x ′x ′ (0). (32)

This expression is manifestly negative when it describes probe-
induced transitions from exciton state x ′ to some higher-energy
exciton state x. The last conclusion is in agreement with
the usual experimental interpretation of pump-probe spectra,
where a negative differential transmission signal corresponds
either to PIA or to stimulated emission [51]. Our expression
[Eq. (31)] demonstrates, however, that this correspondence
can not be uniquely established in the ultrafast regime, where
it is expected that both coherences between exciton states and
the ground state yx(0) and exciton-exciton coherences n̄x̄x(0)
(x̄ �= x), along with incoherent exciton populations n̄xx(0),
play significant role. This is indeed the case in our numerical
computations of pump-probe spectra, which are presented in
the following subsection. For each studied case, we separately
show the total signal [full Eq. (31)], the y-part of the signal

[the first two terms in Eq. (31)], and the n̄-part of the signal
[the third term in Eq. (31)]. We note that it would be possible
to further separate the n̄-part of the signal into the contribution
stemming from incoherent exciton populations n̄xx [Eq. (32)]
and exciton-exciton coherences n̄x̄x (x̄ �= x). As shown in more
detail in Ref. [31] (see Fig. 7), the overall n̄-part of the signal
is qualitatively very similar to its contribution stemming from
incoherent exciton populations. Therefore, for the simplicity of
further discussion, we may consider the n̄-part of the signal as
completely originating from incoherent exciton populations.

B. Numerical results: ultrafast pump-probe signals

In order to compute pump-probe signals and at the same
time keep the numerics manageable, we extended our model
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by introducing only one additional single-electron level both
in the donor and in the acceptor and one additional single-hole
level in the donor. Additional energy levels in the donor and the
corresponding bandwidths are extracted from the aforemen-
tioned electronic structure calculation on the infinitely long
PCPDTBT polymer. The additional single-electron level is
located at 1160 meV above the single-electron level used in all
the calculations and the bandwidth of the corresponding zone
is estimated to be 480 meV. The additional single-hole level
is located at 1130 meV below the single-hole level used in all
the calculations and the bandwidth of the corresponding zone
is estimated to be 570 meV. The additional single-electron
level in the acceptor is extracted from an electronic structure
calculation on the C60 molecule. The calculation is based
on DFT using either LDA or B3LYP exchange-correlation
functional (both choices give similar results) and 6-31G basis
set and was performed using the NWCHEM package [55]. We
found that the additional single-electron level lies around 1000
meV above the single-electron level used in all the calculations.
The bandwidth of the corresponding zone is set to 600 meV,
see Table I.

In this section, we assume that the waveform of the pump
pulse is

E(t) = E0 cos(ωct) exp

(
− t2

τ 2
G

)
θ (t + t0)θ (t0 − t), (33)

where we take τG = 20 fs and t0 = 50 fs, while the probe is

e(t) = e0δ(t − (t0 + τ )), (34)

with variable pump-probe delay τ . The intraband dipole matrix
elements dcc

i ,dvv
i in Eq. (20) are assumed to be equal in the

whole system:

dcc
i = dvv

i = d intra = 1
2dcv. (35)

The positive parameter η, which effectively accounts for the
line broadening, is set to η = 50 meV. We have checked
that variations in η do not change the qualitative features
of the presented PIA spectra, see Fig. 6 in Ref. [31]. In
actual computations of the signal given in Eq. (31), we
should remember that the pump pulse finishes at instant t0,
while in Eq. (31), all the quantities are taken at the moment
when the probe starts, which is now t0 + τ ; in other words,
yx(0) → yx(t0 + τ ), n̄x̄x(0) → n̄x̄x(t0 + τ ) when we compute
pump-probe signals using Eq. (31) and the pump and probe
are given by Eqs. (33) and (34), respectively.

In Figs. 9(a) and 9(b), we show the PIA signal from space-
separated states after the excitation by the pump at 1500 meV.
The frequency ω in Eq. (31) is set to 1000 meV, which is (for the
adopted values of model parameters) appropriate for observing
PIA from space-separated states. At small pump-probe delays
(τ � 300 fs), we see that the oscillatory features stemming
from coherences between exciton states and the ground state
(y-part of the signal) dominate the dynamics. At larger delays,
the part originating from established (incoherent) exciton
populations (n̄-part of the signal) prevails, see Fig. 9(b), and
the shape of the signal resembles the shapes of signals from
space-separated states in Fig. 4(c) of Ref. [7]. The signal
decreases at larger delays, which correlates very well with
the fact that the numbers of CT and CS excitons increase,

(a) (b)

(c) (d)
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FIG. 9. Differential transmission signal �TPIA [Eq. (31)] as a
function of the pump-probe delay for (a) pump at 1500 meV (826 nm)
and probe at 1000 meV (1240 nm) testing PIA dynamics from space-
separated states, and (c) pump resonant with the lowest donor exciton
(1210 meV, 1025 nm) and probe at 1130 meV (1096 nm) testing
PIA dynamics from donor states. The inset of (c) shows the coherent
exciton population |yXD0 |2 of the lowest donor state XD0. (b) The
same signal as in (a) at longer pump-probe delays (>300 fs). (d)
n̄ part of the signal shown in (c); the inset displays the incoherent
exciton population n̄XD0 of the lowest donor state.

see Fig. 3(a). In other words, at larger pump-probe delays, at
which the influence of coherences between exciton states and
the ground state is small, the signal can be unambiguously
interpreted in terms of charge transfer from the donor to the
acceptor.

Figures 9(c) and 9(d) display PIA signal from donor
excitons following the pump excitation at the lowest donor
exciton (1210 meV). The frequency ω in Eq. (31) is set to
1130 meV. The overall signal shape is qualitatively similar to
the shape of donor exciton PIA signal in Fig. 4(a) of Ref. [7],
but its interpretation is rather different. While the authors of
Ref. [7] suggest that the monotonically increasing PIA signal
from donor excitons reflects their transfer to space-separated
states, our signal predominantly originates from coherences
between donor states and the ground state [y-part of the
signal in Fig. 9(c)]. Furthermore, the shape of the total signal
matches very well the decay of the coherent population
of the lowest donor exciton, see the inset of Fig. 9(c),
while the shape of the n̄-part of the signal corresponds well to
the changes in the incoherent population of the lowest donor
state, see the inset of Fig. 9(d). This incoherent population
does not decay during our computation: immediately after the
pump pulse, it rises and at longer times it reaches a plateau,
which signals that the donor exciton population is “blocked”
in the lowest donor state. The lowest donor exciton is very
strongly dipole-coupled to the ground state, its population
comprising around 75% of the total generated population.
Therefore, according to our numerical results, the observed
PIA signal from donor excitons in this case mimics the
conversion from coherent to incoherent exciton population
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of the lowest donor state. This, however, does not necessarily
mean that the concomitant charge transfer is completely absent
in this case. Instead, the presence of coherences between
exciton states and the ground state, which dominate the
signal for all pump-probe delays we studied, prevents us
from attributing the signal to the population transfer from
donor excitons to space-separated states. The aforementioned
conversion from coherent to incoherent exciton population of
the lowest donor state is rather slow because of the relatively
weak coupling between low-lying donor excitons on the one
hand and space-separated states on the other hand (this weak
coupling was also appreciated in Ref. [7]). On the other hand,
pumping well above the lowest donor and space-separated
states, the couplings between these species are stronger and
more diverse than for the pump resonant with the lowest donor
exciton; this situation resembles the one encountered for the
excitation condition in Fig. 4(c) of Ref. [7].

In conclusion, our computations yield spectra which overall
agree with experimental spectra [7], and we find that the shape
of the spectrum in Figs. 9(c) and 9(d) originates from the decay
of coherences between donor excitons and the ground state,
rather than from transitions from donor excitons to space-
separated states.

V. DISCUSSION AND CONCLUSION

We studied ultrafast exciton dynamics in a one-dimensional
model of a heterointerface. Even though similar theoretical
models have been lately proposed [38,56], we believe that our
theoretical treatment goes beyond the existing approaches,
since it treats both the exciton generation and their further
separation on equal footing and it deals with all the relevant
interactions on a fully quantum level. Namely, the vast majority
of the existing theoretical studies on charge separation at
heterointerfaces does not treat explicitly the interaction with
the electric field which creates excitons from an initially
unexcited system [17,19,38,45,56], but rather assumes that
the exciton has already been generated and then follows
its evolution at the interface between two materials. If we
are to explore the possibility of direct optical generation
of space-separated charges, we should certainly monitor the
initial process of exciton generation, which we are able to
achieve with the present formalism. We find that the resonant
electronic coupling between donor and space-separated states
not only enhances transfer from the former to the latter
group of states [7,15], but also opens up a new pathway to
obtain space-separated charges: their direct optical generation
[25,26]. While this mechanism has been proposed on the basis
of electronic structure and model Hamiltonian calculations
(which did not include any dynamics), our study is, to the
best of our knowledge, the first to investigate the possibility
of direct optical generation of separated charges studying the
ultrafast exciton dynamics at a heterointerface. We conclude
that the largest part of space-separated charges which are
present ∼100 fs after the initial photoexcitation are directly
optically generated, contrary to the general belief that they
originate from ultrafast transitions from donor excitons.
Although the D/A coupling in our model is restricted to
only two nearest sites (labeled by N − 1 and N ) in the
donor and acceptor, there are space-separated states which

acquire nonzero dipole moment from donor excitons. The
last point was previously highlighted in studies conducted on
two- [25] and three-dimensional [26] heterojunction models,
in which the dominant part of the D/A coupling involves more
than a single pair of sites. We thus speculate that the main
conclusions of our study would remain valid in a more realistic
higher-dimensional model of a heterointerface. While there is
absorption intensity transfer from donor to space-separated
states brought about by their resonant mixing, the absorption
still primarily occurs in the donor part of a heterojunction.
Our results show that on ultrafast time scales the direct
optical generation as a source of space-separated carriers is
more important than transitions from donor to space-separated
states. This, however, does not mean that initially generated
donor excitons do not transform into space-separated states.
They indeed do, see Figs. 3(a) and 3(b), but the characteristic
time scale on which populations of space-separated states
change due to the free-system evolution is longer than 100 fs.

The ultrafast generation of separated charges at heteroin-
terfaces is more pronounced when the electronic coupling
between materials is larger or when the energy overlap region
between single-electron states in the donor and acceptor is
wider, either by increasing the electronic coupling in the
acceptor or decreasing the LUMO-LUMO offset between
the two materials, see Fig. 2(b). Our results are therefore
in agreement with studies emphasizing the beneficial effects
of larger electronic couplings among materials [56], charge
delocalization, [17,21,38,56], and smaller LUMO-LUMO
offset [57] on charge separation. We find that strong carrier-
phonon interaction suppresses charge separation, in agreement
with previous theoretical studies [38,45] in which the effects
of variations of carrier-phonon coupling constants have been
systematically investigated. However, changes in the quantities
we use to monitor charge separation with variations of carrier-
phonon coupling strength are rather small, which we interpret
to be consistent with the ultrafast direct optical generation of
space-separated charges. Our theoretical treatment of ultrafast
exciton dynamics is fully quantum, but it is expected to be valid
for not too strong coupling of excitons to lattice vibrations,
since the phonon branch of the hierarchy is truncated at a
finite order, see Sec. I in Ref. [31]. Results of our mixed
quantum/classical approach to exciton dynamics show that
the feedback effect of excitons on the lattice motion, which
is expected to be important for stronger exciton-phonon
interaction, is rather small. We therefore expect that more
accurate treatment of exciton-phonon interaction is not crucial
to describe heterojunction dynamics on ultrafast time scales.
If one wants to treat more accurately strong exciton-phonon
interaction and yet remain in the quantum framework, other
theoretical approaches, such as the one adopted in Ref. [45],
have to be employed.

Despite a simplified model of organic semiconductors, our
theoretical treatment takes into account all relevant effects.
Consequently, our approach to ultrafast pump-probe experi-
ments produces results that are in qualitative agreement with
experiments and confirms the previously observed dependence
of the exciton dynamics on the excess photon energy [7]. Our
results indicate that the interpretation of ultrafast pump-probe
signals is involved, as it is hindered by coherences (dominantly
by those between exciton states and the ground state) which
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cannot be neglected on the time scales studied. Time scales on
which coherent features are prominent depend on the excess
photon energy. We find that higher values of the excess photon
energy enable faster disappearance of the coherent part of
the signal since they offer diverse transitions between exciton
states which make conversion from coherent to incoherent
exciton populations faster. Pumping at the lowest donor
exciton, our signal is (at subpicosecond pump-probe delays)
dominated by its coherent part, conversion from coherent to
incoherent exciton populations is slow, and therefore it cannot
be interpreted in terms of exciton population transfer between
various states.
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APPENDIX: DETAILS OF THE THEORETICAL
TREATMENT OF PUMP-PROBE EXPERIMENTS

The commutator in Eq. (28) is to be evaluated in the
nonequilibrium state ρ(0) at the moment when the probe pulse
starts. Therefore, deriving this commutator, only contributions
whose expectation values are at most of the second order in
the pump field should be retained. The commutation relations
of exciton operators, which are correct up to the second order
in the pump field, read as

[Xx,X
†
x̄] = δxx̄ −

∑
x̄ ′x ′

Cx̄ ′x ′
x̄x X

†
x̄ ′Xx ′ , (A1)

where four-index coefficients Cx̄ ′x ′
x̄x are given as

Cx̄ ′x ′
x̄x =

∑
j̄ β̄j
jβj

⎛
⎝∑

iαi

ψx̄ ′∗
(iαi )(j̄ β̄j )ψ

x ′
(iαi )(jβj )

⎞
⎠

⎛
⎝∑

iαi

ψx̄
(iαi )(j̄ β̄j )ψ

x∗
(iαi )(jβj )

⎞
⎠ +

∑
īᾱi
iαi

⎛
⎝∑

jβj

ψx̄ ′∗
(īᾱi )(jβj )ψ

x ′
(iαi )(jβj )

⎞
⎠

⎛
⎝∑

jβj

ψx̄
(īᾱi )(jβj )ψ

x∗
(iαi )(jβj )

⎞
⎠.

(A2)

The final result for the commutator [P (0)(t),P (0)] is

[P (0)(t),P (0)] =
∑

x

|Mx |2(e−iωxt − eiωxt ) −
∑
x̄1x1

∑
xx ′

(
M∗

x Mx ′C
x̄1x1
x ′x e−iωxt − MxM

∗
x ′C

x̄1x1
xx ′ eiωxt

)
X

†
x̄1

Xx1

−
∑
xx ′

(
MxM

x
x ′
)∗

e−iωxtXx ′ +
∑
xx ′

MxM
x
x ′e

iωxtX
†
x ′ +

∑
xx ′

(
MxM

x
x ′
)∗

e−i(ωx′ −ωx )tXx ′

−
∑
xx ′

MxM
x
x ′e

i(ωx′ −ωx )tX
†
x ′ +

∑
x̄xx ′

Mx
x ′M

x̄
x ei(ωx′−ωx )tX

†
x ′Xx̄ −

∑
x̄xx ′

Mx ′
x Mx

x̄ e−i(ωx′ −ωx )tX
†
x̄Xx ′ . (A3)

The expectation values [with respect to ρ(0)] of the operators appearing in the last equation are simply the active purely electronic
density matrices of our formalism computed when the probe pulse starts, i.e., Tr(ρ(0)Xx) = yx(0) and Tr(ρ(0)X†

x̄Xx) = nx̄x(0).
As already mentioned, in order to study the process of PIA, in Eq. (A3) only terms which oscillate at differences of two

exciton frequencies should be retained. Computing the Fourier transformation of dp(t) [Eq. (28)], we obtain integrals of the type∫ +∞

0
dt ei(ω−�+iη)t = i

ω − � + iη
, (A4)

where we have introduced a positive infinitesimal parameter η to ensure the integral convergence. Physically, introducing η

effectively accounts for the line broadening. For simplicity, we assume that only one value of η is used in all the integrals of the
type (A4). Using the computed Fourier transformation dp(ω) in Eqs. (29) and (30), we obtain the result for �TPIA(τ ; ω) given in
Eq. (31).
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We investigate the dynamics of the exciton formation and relaxation on a picosecond time scale following a

pulsed photoexcitation of a semiconductor. The study is conducted in the framework of the density matrix theory

complemented with the dynamics controlled truncation scheme. We truncate the phonon branch of the resulting

hierarchy of equations and propose the form of coupling among single-phonon-assisted and higher-order phonon-

assisted density matrices so as to ensure the energy and particle-number conservation in a closed system. Time

scales relevant for the exciton formation and relaxation processes are determined from numerical investigations

performed on a one-dimensional model for the values of model parameters representative of a typical organic

and inorganic semiconductor. The exciton dynamics is examined for different values of central frequency of

the exciting field, temperature, and microscopic model parameters, such as the strengths of carrier-carrier and

carrier-phonon couplings. We find that for typical organic semiconductor parameters, formation of bound excitons

occurs on a several-hundred-femtosecond time scale, while their subsequent relaxation and equilibration take

at least several picoseconds. These time scales are consistent with recent experimental studies of the exciton

formation and relaxation in conjugated polymer-based materials.

DOI: 10.1103/PhysRevB.92.235208 PACS number(s): 71.35.−y, 71.10.−w

I. INTRODUCTION

The continual and ever-increasing demand for economic

and efficient ways of utilizing solar energy drives a huge

part of current research activities. In particular, organic

solar cells have developed rapidly in the past decade and

have become promising candidates for economically viable

large-scale power generation due to their flexibility, cost

effectiveness, relatively simple fabrication techniques, and

mass production [1,2]. Processes upon which the operation of

solar cells is based are the light absorption in a semiconducting

material and the subsequent conversion of photons into mobile

charge carriers that produce an electric current [3,4]. An

optical excitation of a semiconductor creates an exciton, i.e.,

an electron-hole pair in which Coulomb attraction between

oppositely charged electron and hole prevents their separa-

tion. In a conventional inorganic semiconductor, relatively

weak Coulomb interaction (primarily due to large dielectric

constant) results in the exciton binding energy of the order of

10 meV [5–7]. Thus, thermal excitations are likely to split the

exciton in an electron and a hole. On the other hand, in a typical

organic semiconductor, the attraction between an electron

and a hole is much stronger (mainly due to low dielectric

constant), the exciton binding energy being of the order of or

larger than 500 meV [3,8]. Therefore, while optical absorption

in an inorganic semiconductor results in almost immediate

generation of free charges, in an organic semiconductor it

leads to formation of tightly bound electron-hole pairs, which

should be separated in order to generate current [1,3,4]. This

last conclusion has an enormous impact on the design and

geometry of organic photovoltaic devices.

Photoexcitation of a semiconductor creates electron-hole

pairs in a highly nonequilibrium state. Apart from the Coulomb

interaction, which primarily induces correlations, the carrier-

phonon interaction is also vital for a thorough understanding

*veljko.jankovic@ipb.ac.rs
†nenad.vukmirovic@ipb.ac.rs

of nonequilibrium processes taking place in photoexcited

semiconductors. Theoretical approaches for treating these pro-

cesses are most often based on the density matrix theory [9,10]

or the nonequilibrium Green’s functions formalism [11].

Density matrix theory has become the preferred technique

in the treatment of experiments with ultrashort pulses since it

deals with quantities that depend on one time argument and

are directly related to observables.

Previous theoretical studies of the exciton formation pro-

cess after an ultrafast optical excitation of a semiconductor

were typically focused on inorganic semiconductors. Early

studies were conducted in the framework of the semiclassical

Boltzmann approach [12,13]. The fully microscopic and

quantum theory for the interacting system of electrons, holes,

photons, and phonons, capable of treating a wide variety of

optical and excitonic effects after an ultrafast optical excitation

of a semiconductor, was elaborated in Refs. [14–18]. On the

other hand, the exciton formation from an initial state of

two opposite charges in organic semiconductors was typically

modeled by simulating the time evolution of empirical Hamil-

tonians applied to small systems, where the effects of the lattice

are not included or are treated classically [19,20].

The main aim of this work was to investigate the dynamics

of exciton formation on short (up to several ps) time scale. This

time scale is of particular relevance for the operation of organic

solar cells since it has been well established that the exciton

separation at the interface of donor and acceptor materials

occurs on a subpicosecond time scale [21,22]. However, the

details of the exciton formation and separation process and the

factors that determine its efficiency are still not well under-

stood. In recent years, significant insights have been obtained

from subpicosecond time-resolved experiments performed

both on neat materials [23,24] and blends [25–29]. The results

of all these experiments highlight the importance of nonequi-

librium nature of excitons formed after photoexcitation.

In our study, we employ the Hamiltonian which includes

all relevant physical effects in the system: electronic coupling

which leads to band formation, electron-hole interaction

1098-0121/2015/92(23)/235208(16) 235208-1 ©2015 American Physical Society
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which causes exciton formation, electron-phonon interaction

that leads to relaxation, and the interaction with external

electromagnetic field. We do not, however, include the effects

of stimulated emission which lead to radiative recombination

of excitons since we are interested in the exciton dynamics

on a short time scale, where these effects are negligible. From

the time evolution of relevant quantities, we identify the time

scale of the processes of formation of free charges and bound

excitons and their subsequent relaxation. Rather than focusing

on the details of one particular material system, we have chosen

a Hamiltonian whose parameters can be easily varied so that

we can identify the influence of different physical effects on

relevant time scales. The study is conducted in the framework

of the density matrix formalism combined with the so-called

dynamics controlled truncation (DCT) scheme, first developed

in 1994 by Axt and Stahl [30,31]. This method is particularly

suited for a system described by a pair-conserving Hamiltonian

which is initially unexcited and was successfully applied to

study the dynamics of exciton formation for near-band-gap

excitations and low-excitation densities [32–34]. Here, we

truncate the phonon branch of the hierarchy so as to ensure

that the resulting equations are compatible with the energy and

particle-number conservation in a closed system. Furthermore,

we propose the form of coupling between single-phonon-

assisted and higher-order phonon-assisted electronic density

matrices which is compatible with the energy conservation in

a closed system.

The paper is organized as follows. In Sec. II, the general

form of the Hamiltonian, along with the equations which de-

scribe the exciton formation process, is presented. Section III

is devoted to the results of our numerical investigations of

the exciton formation process which are carried out on a

one-dimensional model system. The discussion of our results

in light of recent experimental investigations of ultrafast

exciton dynamics is presented in Sec. IV, whereas concluding

remarks are given in Sec. V.

II. THEORETICAL FRAMEWORK

We use the standard two-band semiconductor model which

takes into account the interaction of carriers with the external

electromagnetic field applied to the semiconductor, as well as

carrier-carrier and carrier-phonon interactions. We will work

in the electron-hole picture which is particularly suited for

describing the effects which arise after the optical excitation of

an initially unexcited semiconductor. Notation from Ref. [35]

will be used. The Hamiltonian has the form

H = Hc + Hph + Hc-ph + Hc-f, (1)

where Hc describes interacting carriers

Hc =
∑

q∈CB

ǫc
qc

†
qcq −

∑

q∈VB

ǫv
qd

†
qdq

+
1

2

∑

pqkl∈CB

V cccc
pqklc

†
pc

†
kclcq +

1

2

∑

pqkl∈VB

V vvvv
pqkl d

†
qd

†
l dkdp

+
∑

pq ∈ VB

kl ∈ CB

(

V vccv
plkq − V vvcc

pqkl

)

c
†
kd

†
qdpcl, (2)

Hph =
∑

μ

�ωμb†μbμ (3)

is the free-phonon Hamiltonian, Hc-ph describes the carrier-

phonon interaction

Hc-ph =
∑

pq ∈ CB

μ

(

γ μ
pqc

†
pcqb

†
μ + γ μ∗

pq c†qcpbμ

)

−
∑

pq ∈ VB

μ

(

γ μ
pqd

†
qdpb†μ + γ μ∗

pq d†
pdqbμ

)

, (4)

whereas the coupling to the optical field is given by

Hc-f = −E(t)

⎛

⎜

⎜

⎜

⎝

∑

p ∈ VB

q ∈ CB

Mvc
pqdpcq +

∑

p ∈ CB

q ∈ VB

Mcv
pqc

†
pd†

q

⎞

⎟

⎟

⎟

⎠

. (5)

Fermi operators c
†
q (cq) create (annihilate) an electron of

energy ǫc
q in the single-particle state q in the conduction band,

while Fermi operators d
†
q (dq) create (annihilate) a hole of

energy −ǫv
q in the single-particle state q in the valence band.

Matrix elements of the Coulomb interaction potential V (x − y)

are defined as

V
λpλqλkλl

pqkl =
∫

dx dy φ
λp∗
p (x)φ

λq

q (x)V (x − y)φ
λk∗
k (y)φ

λl

l (y),

(6)

where φ
λp

p (x) are single-particle eigenfunctions for an electron

in the state p and in the band λp. Bose operators b†μ (bμ) create

(annihilate) a phonon in mode μ, while γ
μ
pq are carrier-phonon

matrix elements. We neglect intraband contributions to the

carrier-field interaction and retain only interband dipole matrix

elements.

We note that the Hamiltonian of interacting carriers

[Eq. (2)] includes the limiting cases of Wannier and Frenkel

excitons. Namely, when single-particle eigenfunctions are of

the Bloch form labeled by a wave vector k, then under suitable

approximations, described, e.g., in Ref. [36], we obtain the

Hamiltonian describing the limiting case of Wannier excitons.

On the other hand, if single-particle eigenfunctions are taken

to be atomic states labeled by a position vector R, then using

approximations that exploit localization properties of this basis

set the Hamiltonian appropriate for the limiting case of Frenkel

excitons is obtained [37].

We study the dynamics of exciton formation in photoexcited

semiconductors in the framework of the density matrix theory.

Differential equations for dynamic variables are formed and,

due to the many-body nature of the problem, an infinite

hierarchy of differential equations is obtained. The main

approximation is then the truncation of the hierarchy, which

can be based upon different physical pictures. The Hamiltonian

defined by Eqs. (1)–(5) has the property that only the

interaction with the optical field can change the number of pair

excitations. The DCT scheme relies upon the aforementioned

property of the Hamiltonian and classifies higher-order density

matrices according to their leading order in the optical

field [30,35,38]. Namely, when the system is initially in the
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ground state represented by the vacuum of electron-hole pairs,

the expectation value of the normal-ordered product of ne

electron operators c† and c, nh hole operators d† and d and

an arbitrary number of phonon operators b† and b is at least

of the order m = max{ne,nh} in the applied field. Therefore,

higher-order density matrices are also of higher order in the

optical field and only a finite number of electronic density

matrices contributes to the optical response at any given

order in the optical field. The DCT scheme truncates only

the electronic branch of the hierarchy and can be used along

with any strategy to deal with the phonon-assisted branch

of the hierarchy [7]. We limit ourselves to the case of weak

optical field and low carrier densities, in which it is justified to

neglect biexcitonic effects and keep only contributions up to

the second order in the optical field. In Refs. [32,35] a reduced

treatment of the phonon branch of the hierarchy, which can be

combined with the DCT scheme for the electronic branch of the

hierarchy, was presented. This treatment includes correlation

expansion for phonon-assisted variables combined with the

Markov approximation. As a result, phonon-assisted variables

are eliminated from the formalism and only two types of

electronic density matrices remain. These are the interband

transition amplitude (excitonic amplitude)

Yab = 〈dacb〉 (7)

and the electron-hole pair density (excitonic population)

Nabcd = 〈c†ad
†
bdccd〉. (8)

In this study, we adopt a different strategy for dealing with

the phonon-assisted density matrices. In order to facilitate the

truncation of the phonon-assisted branch of the hierarchy,

the following generating functions for the phonon-assisted

electronic density matrices are defined [35]:

Y
αβ

ab = 〈dacbF̂
αβ〉, (9)

N
αβ

abcd = 〈c†ad
†
bdccd F̂

αβ〉, (10)

F αβ = 〈F̂ αβ〉 =

〈

exp

(

∑

ρ

αρb
†
ρ

)

exp

(

∑

ρ

βρbρ

)〉

, (11)

where {αρ} and {βρ} are arbitrary sets of real parameters.

As a consequence of the generating-function property, all

phonon-assisted electronic density matrices can be obtained

as derivatives of these functions taken at αμ = βμ = 0. The

electron and hole populations and correlations 〈c†acb〉 and

〈d†
adb〉, as well as their phonon-assisted counterparts, do

not have to be considered as independent variables in the

formalism since they can be eliminated in favor of N by

identities (contraction identities) that are exact within the

second-order treatment [35,38]. The differential equations for

variables Y
αβ

ab and N
αβ

abcd are given in Appendix A.

The most general form of an electron-hole pair state is [36]

|p〉 =
∑

a ∈ VB

b ∈ CB

ψabc
†
bd

†
a |0〉, (12)

where |0〉 represents the state in which the conduction band is

completely empty and the valence band is completely filled.

The excitonic basis is defined by the eigenvalue problem

Hc|p〉 = E|p〉 which can be transformed into equations for

amplitudes ψab:

(

ǫc
b − ǫv

a

)

ψx
ab +

∑

p ∈ VB

q ∈ CB

(

V vccv
pqba − V vvcc

pabq

)

ψx
pq = �ωxψ

x
ab. (13)

The excitonic basis is orthonormal
∑

a ∈ VB

b ∈ CB

ψ x̄∗
ab ψx

ab = δxx̄ . (14)

We perform all calculations in the excitonic basis and expand

all density matrices in the excitonic basis, for example,

Yab =
∑

x

ψx
ab yx, (15)

Nabcd =
∑

x̄x

ψ x̄∗
ba ψx

cd nx̄x, (16)

and similarly for the corresponding phonon-assisted electronic

density matrices; in the case of single-phonon assistance, the

explicit definitions are

Yabμ+ ≡ 〈dacbb
†
μ〉 =

∑

x

ψx
abyxμ+ , (17a)

Nabcdμ+ ≡ 〈c†ad
†
bdccdb

†
μ〉 =

∑

x̄x

ψ x̄∗
ba ψx

cdnx̄xμ+ . (17b)

The creation operator for the exciton in the state x can be

defined as

X†
x =

∑

a ∈ CB

b ∈ VB

ψx
bac

†
ad

†
b . (18)

The number of excitons in the state x, after performing the de-

coupling (which is exact up to the second order in the op-

tical field) 〈c†ad†
bdccd〉 = 〈c†ad†

b〉〈dccd〉 + δ〈c†ad†
bdccd〉, where

δ〈c†ad†
bdccd〉 stands for the correlated part of the electron-hole

pair density, can be expressed as the sum

〈X†
xXx〉 = |yx |2 + n̄xx, (19)

where n̄x̄x = nx̄x − y∗
x̄yx . The first term in Eq. (19) de-

scribes the so-called coherent excitons, whereas the second

term describes the incoherent excitons. Namely, an optical

excitation of a semiconductor first induces single-particle

excitations in form of optical polarizations and carrier den-

sities. Optical polarizations decay very fast due to various

scattering mechanisms present [15]. Therefore, their squared

moduli, which are usually referred to as coherent excitonic

populations [32], do not provide information about the true

excitonic populations, which are the consequence of Coulomb-

induced correlations between electrons and holes and which

typically exist in the system for a long time after the decay

of optical polarizations [7]. In order to describe true excitons,

which are atomlike complexes of electrons and holes bound

by the Coulomb attraction, we have to consider two-particle

correlations between them, and not single-particle quanti-

ties [15]. The last conclusion justifies identification of the term

δ〈c†ad†
bdccd〉 with the incoherent excitonic populations.
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The dynamic equations for the relevant variables should be

compatible with the energy conservation in a system without

external fields. Our system, however, interacts with external

optical field, but, since we consider a pulsed excitation, the

energy of the system should be conserved after the field has

vanished. The total energy of the system, i.e., the expectation

value of the Hamiltonian 〈H 〉 defined in Eqs. (1)–(5), is

expressed as

E = Ec + Eph + Ec-ph + Ec-f, (20)

where the carrier energy is

Ec =
∑

x

�ωx nxx, (21)

the phonon energy is

Eph =
∑

μ

�ωμ 〈b†μbμ〉, (22)

the carrier-phonon interaction energy is

Ec-ph = 2
∑

x̄xμ

Re
{

Ŵ
μ
x̄xnx̄xμ+

}

, (23)

and the carrier-field interaction energy is

Ec-f = −E(t)
∑

x

(

M∗
xyx + y∗

x Mx

)

. (24)

In Eqs. (20)–(24) we have kept only contributions up to

the second order in the external field and transferred to the

excitonic basis. We also introduce excitonic dipole matrix

elements

Mx =
∑

a ∈ VB

b ∈ CB

ψx∗
ab Mcv

ba, (25)

as well as matrix elements of the carrier-phonon interaction in

the excitonic basis which describe the coupling to the phonon

mode μ:

Ŵ
μ

xx ′ =
∑

a ∈ VB

b ∈ CB

ψx∗
ab

(

∑

k∈CB

γ
μ

bkψ
x ′

ak −
∑

k∈VB

γ
μ

kaψ
x ′

kb

)

. (26)

Within previous approaches to solving the hierarchy of

equations obtained after performing the DCT scheme, single-

phonon-assisted density matrices nx̄xμ+ , which appear in

Eq. (23), were not explicitly taken into account, but the

respective differential equations were solved in the Markov

and adiabatic approximations. However, it can be shown that

the total energy under these approximations is not exactly

conserved after the external field has vanished. In order to

satisfy the energy conservation, we retain density matrices

nx̄xμ+ as independent dynamic variables in the formalism.

The dynamics should also conserve the particle number

after the external field has vanished since all the other terms

in the Hamiltonian given by Eqs. (1)–(5) commute with the

total particle-number operator. The number of electrons (and

also the number of holes, since carriers are generated in pairs

in this model), with accuracy up to the second order in the

external field, is given as

Ntot = Ne = Nh =
∑

x

nxx . (27)

The equations for the purely electronic relevant variables

and phonon distribution function are

∂tyx = −iωxyx −
1

i�
E(t)Mx

+
1

i�

∑

μx ′

Ŵ
μ

xx ′ yx ′μ+ +
1

i�

∑

μx ′

Ŵ
μ∗
x ′x yx ′μ− , (28)

∂tnx̄x = −i(ωx − ωx̄)nx̄x −
1

i�
E(t)

(

y∗
x̄ Mx − M∗

x̄yx

)

+
1

i�

∑

μx ′

Ŵ
μ

xx ′nx̄x ′μ+ −
1

i�

∑

μx̄ ′

Ŵ
μ

x̄ ′x̄nx̄ ′xμ+

+
1

i�

∑

μx ′

Ŵ
μ∗
x ′xn

∗
x ′x̄μ+ −

1

i�

∑

μx̄ ′

Ŵ
μ∗
x̄x̄ ′n

∗
xx̄ ′μ+ , (29)

∂t 〈b†μbμ〉 =
2

�

∑

x̄x

Im
{

Ŵ
μ
x̄xnx̄xμ+

}

. (30)

Even at this level, without specifying the form of equations

for one-phonon-assisted electronic density matrices, using

Eq. (29) with vanishing electric field it is easily shown that,

in the absence of external fields, our dynamics conserves the

total number of particles.

We will neglect hot-phonon effects and assume that in

all the equations for yx , nx̄x , and their phonon-assisted

counterparts the phonon numbers assume their equilibrium

values n
ph
μ = (eβ�ωμ − 1)−1. We will, however, retain Eq. (30)

in the formalism because it is necessary to prove the energy

conservation.

In equations for phonon-assisted electronic density matrices

we neglect the coupling to the light field, i.e., we neglect

contributions arising from the combined action of the phonon

coupling and the interaction with the light field (so-called

cross terms) [35,39]. The equations for the electronic den-

sity matrices with one-phonon assistance contain electronic

density matrices with two-phonon assistance, from which we

explicitly separate the factorized part and the correlated part,

for example

〈c†ad
†
bdccdb

†
μbρ〉 = 〈c†ad

†
bdccd〉δμρn

ph
μ + δ〈c†ad

†
bdccdb

†
μbρ〉,

(31)

〈dacbb
†
μbρ〉 = 〈dacb〉δμρn

ph
μ + δ〈dacbb

†
μbρ〉. (32)

We should bear in mind that the two-phonon-assisted elec-

tronic density matrices with two creation (annihilation) phonon

operators, whose factorized part vanishes, should be consid-

ered on this level of truncation of the phonon branch [40].

Further comments on the factorization performed in Eq. (31)

are given in Appendix B. The following equations for the

electronic density matrices with single-phonon assistance are
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obtained:

∂tnx̄xμ+ = −i(ωx − ωx̄ − ωμ)nx̄xμ+ +
n

ph
μ

i�

∑

x ′

Ŵ
μ∗
x ′xnx̄x ′

−
1 + n

ph
μ

i�

∑

x̄ ′

Ŵ
μ∗
x̄x̄ ′nx̄ ′x

−
1

i�

∑

ρx̄ ′

(

Ŵ
ρ∗
x̄x̄ ′δnx̄ ′xμ+ρ− + Ŵ

ρ

x̄ ′x̄δnx̄ ′xμ+ρ+
)

+
1

i�

∑

ρx ′

(

Ŵ
ρ∗
x ′xδnx̄x ′μ+ρ− + Ŵ

ρ

xx ′δnx̄x ′μ+ρ+
)

, (33)

∂tyxμ+ = −i(ωx − ωμ) yxμ+ +
n

ph
μ

i�

∑

x ′

Ŵ
μ∗
x ′x yx ′

+
1

i�

∑

ρx ′

(

Ŵ
ρ

xx ′δyx ′μ+ρ+ + Ŵ
ρ∗
x ′xδyx ′μ+ρ−

)

, (34)

∂tyxμ− = −i(ωx + ωμ) yxμ− +
1 + n

ph
μ

i�

∑

x ′

Ŵ
μ

xx ′ yx ′

+
1

i�

∑

ρx ′

(

Ŵ
ρ

xx ′δyx ′ρ+μ− + Ŵ
ρ∗
x ′xδyx ′ρ−μ−

)

. (35)

The correlated parts of two-phonon-assisted density matri-

ces appearing in Eqs. (33) (δnx̄xμ+ρ− ,δnx̄xμ+ρ+ ), (34), and (35)

can be obtained solving their respective differential equations,

in which all three-phonon-assisted density matrices have been

appropriately factorized and their correlated parts have been

neglected, in the Markov and adiabatic approximations. This

procedure closes the phonon branch of the hierarchy. However,

the full solution to these equations, when combined with

Eq. (33), is cumbersome to evaluate, so further approximations

are usually employed. The most common one is the so-

called random phase approximation, which neglects sums

over correlated parts of one-phonon-assisted electronic density

matrices (which are complex quantities) due to random phases

at different arguments of these density matrices [9]. After

performing all the discussed approximations, the last two

summands in Eq. (33), which represent the rate at which nx̄xμ+

changes due to the coupling to electronic density matrices with

higher phonon assistance, reduce to

(∂tnx̄xμ+ )higher = −γx̄xμnx̄xμ+ , (36)

where γx̄xμ is given as

γx̄xμ = 1
2
(Ŵx + Ŵx̄), (37)

Ŵx =
2π

�

∑

x̃ρ

[∣

∣Ŵ
ρ
xx̃

∣

∣

2
δ(�ωx − �ωx̃ + �ωρ)nph

ρ

+
∣

∣Ŵ
ρ
x̃x

∣

∣

2
δ(�ωx − �ωx̃ − �ωρ)

(

1 + nph
ρ

)]

. (38)

Details of the procedure employed to close the phonon branch

of the hierarchy are given in Appendix B.

It was recognized that this form of the coupling to higher-

order phonon-assisted electronic density matrices is at variance

with the energy conservation [9,10,41]. In this work, we will

use the following form of the coupling to higher-order phonon-

assisted density matrices:

(∂tn
(+)
x̄xμ)higher = −γx̄xμn

(+)
x̄xμ + γx̄xμn

(+)∗
x̄xμ , (39)

where γx̄xμ is, as before, defined by Eqs. (37) and (38).

This form of (∂tn
(+)
x̄xμ)

higher
is compatible with the energy

conservation, as long as excitonic matrix elements of the

carrier-phonon interaction Ŵ
μ
x̄x are purely real, which is the

case relevant for our numerical investigation in Sec. III.

Namely, as is shown in Appendix C, the rate at which the

total energy changes after the pulse is equal to the rate at

which the carrier-phonon interaction energy changes due to

the coupling of the single-phonon-assisted electronic density

matrices nx̄xμ+ to density matrices with higher-order phonon

assistance,

∂t E = (∂t Ec-ph)higher

= 2
∑

x̄xμ

Re
{

Ŵ
μ
x̄x(∂t nx̄xμ+ )higher

}

. (40)

It is then clear that, if all Ŵ
μ
x̄x are real, the form of (∂t nx̄xμ+ )higher

given in Eq. (39) does not violate the energy conservation.

Furthermore, as nx̄xμ+ describes the elementary process in

which an exciton initially in the state x is scattered to the state x̄

emitting the phonon from the mode μ, the reverse microscopic

process, described by nxx̄μ− = n∗
x̄xμ+ , is also possible, so in the

differential equation for nx̄xμ+ the quantity n∗
x̄xμ+ may appear.

In Appendix C, we comment on the energy conservation in

greater detail.

Similar strategy can be adopted to simplify the coupling

to electronic density matrices with higher phonon assistance

in (34) and (35), with the final result

(∂ty
(±)
xμ )higher = −γxμ y(±)

xμ , (41)

where

γxμ = 1
2
Ŵx, (42)

and Ŵx is defined in Eq. (38).

An alternative route to derive equations for the relevant

variables is to rewrite the Hamiltonian given in Eq. (1) in terms

of operators Xx,X
†
x [see Eq. (18)], keeping only contributions

whose expectation values are at most of the second order in

the optical field. The result is

H =
∑

x

�ωxX
†
xXx +

∑

μ

�ωμb†μbμ

+
∑

μx̄x

(

Ŵ
μ
x̄xX

†
x̄Xxb

†
μ + Ŵ

μ∗
x̄x X†

xXx̄bμ

)

− E(t)
∑

x

(M∗
xXx + MxX

†
x). (43)

The excitonic operators (up to the second order in the optical

field) satisfy Bose commutation relations [Xx,X
†
x̄] = δxx̄ . In

this representation [42], the excitons are treated as noninter-

acting bosons and the form of the exciton-phonon interaction

is transparent, with exciton-phonon coupling constants Ŵ
μ
x̄x

defined in Eq. (26).
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III. ONE-DIMENSIONAL SEMICONDUCTOR MODEL

AND NUMERICAL RESULTS

Numerical computations will be carried out on a two-band

one-dimensional semiconductor model. We use a tight-binding

model on a one-dimensional lattice with N sites and lattice

spacing a to describe the semiconductor. Periodic boundary

conditions are used. The Hamiltonian describing interacting

carriers is given as

Hc =
N−1
∑

i=0

ǫc
0 c

†
i ci −

N−1
∑

i=0

J c(c
†
i ci+1 + c

†
i+1ci)

−
N−1
∑

i=0

ǫv
0 d

†
i di +

N−1
∑

i=0

J v(d
†
i di+1 + d

†
i+1di)

+
1

2

N−1
∑

i,j=0

(c
†
i ci − d

†
i di)Vij (c

†
jcj − d

†
jdj ). (44)

It is assumed that the carrier transfer integrals J c,J v are

nonzero only among nearest-neighbor pairs of sites. The

Coulomb interaction is taken in the lowest monopole-

monopole approximation [43], and the interaction potential

Vij is taken to be the Ohno potential

Vij =
U

√

1 +
( |i−j |a

a0

)2
. (45)

U is the onsite carrier-carrier interaction, while a0 is the char-

acteristic length given as a0 = e2/(4πε0εrU ), where εr is the

static relative dielectric constant. This form of carrier-carrier

interaction is an interpolation between the onsite Coulomb

interaction U and the ordinary Coulomb potential (in which the

static relative dielectric constant is taken) e2/(4πε0εrr) when

r → ∞ (see, e.g., the discussion on the effective electron-hole

interaction in Ref. [5]). The interaction with phonons is taken

to be of the Holstein form, where a charge carrier is locally

and linearly coupled to a dispersionless optical mode

Hc-ph =
N−1
∑

i=0

gc c
†
i ci(bi + b

†
i ) −

N−1
∑

i=0

gv d
†
i di(bi + b

†
i ), (46)

where the free-phonon Hamiltonian is

Hph =
N−1
∑

i=0

�ωphb
†
i bi . (47)

Despite the fact that the carrier-phonon interaction in real

materials has a more complicated form, we choose for our

numerical investigations its simplest possible form [Eq. (46)]

capable of providing the energy relaxation of the electronic

subsystem. The interaction with the electric field is

Hc-f = −dcvE(t)

N−1
∑

i=0

(dici + c
†
i d

†
i ). (48)

As the system described is translationally symmetric, we

can transfer to the momentum space and obtain the same

Hamiltonian as described in Eqs. (1)–(5) with the following

values of parameters:

ǫ
c/v

k = ǫ
c/v

0 − 2J c/v cos(ka), (49a)

γ
q

k1k2
= δk2,k1+q

gc

√
N

for k1,k2 ∈ CB, (49b)

γ
q

k1k2
= δk1,k2+q

gv

√
N

for k1,k2 ∈ VB, (49c)

V vvcc
pqkl = δk+q,p+lVk−l, V vccv

plkq = 0. (49d)

The signs of the transfer integrals are J c > 0, J v < 0. The

constant energy ǫc
0 > 0, while ǫv

0 < 0 is chosen so that the

maximum of the valence band is the zero of the energy scale.

Vk−l is the Fourier transformation of the Ohno potential and it

is computed numerically as

Vk =
1

N2

N−1
∑

i,j=0

Vije
−ika(i−j ). (50)

The translational symmetry of our model enables us to

solve efficiently the eigenvalue problem (13) which defines

the excitonic basis. Instead of solving eigenvalue problem of

a N2 × N2 matrix, we can solve N -independent eigenvalue

problems of matrices of dimension N × N , thus obtaining

N2 excitonic eigenstates and their eigenenergies, which are

counted by the center-of-mass wave vector Q and the band

index ν. Thus, the general index of an excitonic state x should

be, in all practical calculations, replaced by combination

(Q,ν). This has the following consequences on the matrix

elements in the excitonic basis: dipole matrix elements reduce

to

M(Qν) = δQ,0 dcv

∑

ke

ψ
(Qν)∗
Q−ke,ke

, (51)

whereas carrier-phonon interaction matrix elements reduce to

Ŵ
q

(Qν)(Q′ν ′) = δQ′,Q+q

1
√

N

∑

ke

ψ
(Qν)∗
Q−ke,ke

×
(

gcψ
(Q′ν ′)
Q−ke,Q′−Q+ke

− gvψ
(Q′ν ′)
Q′−ke,ke

)

. (52)

Due to the translational symmetry of our model, only the

dynamic variables for which the total created wave vector is

equal to the total annihilated wave vector will have nontrivial

values in the course of the system’s evolution. For example,

from all density matrices y(Qν) only those with Q = 0 can have

nonzero values.

Our objective is to analyze, in the framework of this rela-

tively simple model, the characteristic time scales of exciton

formation and relaxation in a photoexcited semiconductor,

along with the impact that various model parameters have

on these processes. Basic parameters in our model are transfer

integrals J c,J v (which determine bandwidths of the conduc-

tion and valence bands), electron-phonon coupling constants

gc,gv, the phonon energy �ωph, the dielectric constant εr , and

the onsite Coulomb interaction U . We will, throughout the

computations, assume for simplicity that J c = J v = J and

gc = gv = g.

As is well known, the main differences between a typical

organic and inorganic semiconductor can be expressed in terms

of bandwidths, dielectric constant, and the carrier-phonon
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interaction strength. Namely, inorganic semiconductors are

characterized by wide bands and high value of dielectric

constant, whereas organic semiconductors have narrow bands

and small value of dielectric constant. The carrier-phonon

interaction is stronger in organic than in inorganic semi-

conductors. Having all these facts in mind, we propose two

sets of model parameters which assume values typical of an

organic and inorganic semiconductor. Values of our model

parameters are adjusted to material parameters of GaAs for

the inorganic case and pentacene for the organic case. Values

of carrier-phonon coupling constants are chosen to correspond

to typical values for mobility and/or typical values for the

polaron binding energy.

Typical bandwidths in organic semiconductors are W ∼
500 meV [8], which corresponds to the transfer integral J ∼
125 meV, whereas inorganic semiconductors usually exhibit

bandwidths of several electronvolts [8] and we take in our

calculations the value of the transfer integral J = 500 meV.

In both cases, the lattice constant was fixed to a = 1 nm. The

dielectric constant in a typical inorganic semiconductor is of

the order of 10 and in the calculations we take the value of static

dielectric constant of GaAs εr = 12.9. For a representative

value of the dielectric constant in organic semiconductors

we take εr = 3.0 [4,8]. The value of the onsite Coulomb

interaction U is chosen to give the correct order of magnitude

for the exciton binding energy, which is calculated numerically.

For the organic parameter set, we set U = 480 meV, which

gives the exciton binding energy around 320 meV, while for the

inorganic parameter set U = 15 meV and the corresponding

exciton binding energy is roughly 10 meV.

The carrier-phonon coupling constants for the inorganic

case are estimated from the mobility values. The mobility of

carriers is estimated using the relation μ = eτ/m∗, where τ

is the scattering time and m∗ is the effective mass of a carrier.

For cosine bands considered in this work, m∗ = �
2/(2|J |a2)

in the vicinity of the band extremum. The scattering time is

estimated from the expression for the carrier-phonon inelastic

scattering rate based on the Fermi’s golden rule, which around

the band extremum k = 0 assumes the following form:

1

τ (k)
=

g2

�|J |
nph

√

1 −
(

cos(ka) − �ωph

2|J |
)2

, (53)

where nph = (eβ�ωph − 1)−1. Therefore, the carrier-phonon

coupling constant in terms of the carrier mobility reads as

g = |J |

√

2ea2

�μnph

[

1 −
(

1 −
�ωph

2|J |

)2
]1/4

. (54)

Using the value for the electron mobility in GaAs at

300 K μe ≈ 8500 cm2/(Vs) [44], we obtain g ≈ 25 meV.

We can also estimate the carrier-phonon coupling constants

from the polaron binding energy. As an estimate of this

quantity, we use the result of the second-order weak-coupling

perturbation theory at T = 0 in the vicinity of the point

k = 0 [45]:

ǫ
pol

b (k) =
g2

2|J |
1

√

(

cos(ka) + �ωph

2|J |
)2 − 1

. (55)

TABLE I. Model parameters which are representative of a

typical organic and inorganic semiconductor. References from which

material parameters are taken are indicated.

Parameter Inorganic Organic

Eg (meV) 1519 [32] 2000 [47]

J (meV) 500 125

εr 12.9 [32] 3.0 [8]

g (meV) 25 40

�ωph (meV) 36.4 [32] 10.0 [48,49]

U (meV) 15 480

It is known that polaron binding energies in typical inorganic

semiconductors are ǫ
pol

b ∼ 1 meV and we used this fact along

with Eq. (55) to check our estimate for g from the value

of mobility; for g ≈ 25 meV, we obtain ǫ
pol

b ≈ 2 meV. The

polaron binding energies in polyacenes lie in the range

between 21 and 35 meV [46]. The value of g in the set of

model parameters representative of organic semiconductors

was estimated from the polaron binding energy in pentacene,

which is around 20 meV. We obtain that g ≈ 40 meV. The

values used for the organic/inorganic set of parameters are

listed in Table I.

The form of the electric field is assumed to be a rectangular

cosine pulse

E(t) = E0 cos(ωct)θ (t + t0)θ (t0 − t), (56)

where ωc is the central frequency of the field and θ (t) is the

Heaviside step function. Time t0 is chosen large enough so

that the pulse is so spectrally narrow that the notion of the

central frequency makes sense. On the other hand, the pulse

should be as short as possible, so that after its end we observe

the intrinsic dynamics of our system, the one which is not

accompanied by the carrier generation process, but merely

shows how initially generated populations are redistributed

among various states. Trying to reconcile the aforementioned

requirements, we choose t0 = 250 fs. The amplitude of the

electric field E0 and the interband dipole matrix element dcv are

chosen so that we stay in the low-density regime; particularly,

we choose them so that the corresponding Rabi frequency

�ωR = dcvE0 assumes the value of 0.2 meV, which is smaller

than any energy scale in our problem and ensures that the

excitation is weak.

In order to quantitatively study the process of exciton

formation after a pulsed excitation of a semiconductor,

we solved the system of quantum kinetic equations for

electronic density matrices yx,nx̄x and their single-phonon-

assisted counterparts [Eqs. (28), (29), (33), (34), and (35)

supplemented with Eqs. (36) and (41)] using the fourth-order

Runge-Kutta algorithm. The computations are performed for

the temperature T = 300 K and the central frequency of the

pulse equal to the single-particle gap (�ωc = Eg). The exciton

is considered bound (unbound) if its energy �ω(Qν) is smaller

(larger) than the smallest single-particle energy difference

ǫc
ke

− ǫv
Q−ke

[47]. The equation of the boundary line which
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separates bound from unbound pair states reads as

ǫsep(Q) = ǫc
0 − ǫv

0 − 2
√

(J c)2 + (J v)2 − 2J cJ v cos(Qa).

(57)

An unbound exciton may be considered as (quasi)free electron

and hole, so this way it is possible to distinguish between bound

excitons and free carriers.

The pulsed excitation of a semiconductor leads, in the first

step, to the generation of coherent electron-hole pairs that are

described in our formalism by the coherent pair amplitudes yx .

The decay of the coherent pair occupation

Ncoh =
∑

x

|yx |2 (58)

is due to the scattering processes which initiate already during

the generation of the pairs and gives a direct measure of the

loss of coherence [32]. At the same time, incoherent pair

occupations start to grow, driven by the loss rate of coherent

pair occupations [32,35]. In order to quantify the process of

exciton formation, we will follow the time dependence of the

total number of incoherent bound excitons

Nincoh,b =
∑

x∈bound

(nxx − |yx |2). (59)

This quantity represents the number of truly bound electron-

hole pairs which exist even after the optical field has vanished

and as such is the direct measure of the efficiency of the exciton

formation process. We will, when useful, also consider the

number of incoherent excitons in a particular band ν, Nincoh,ν .

The quantities Nincoh,b and Nincoh,ν will be normalized to the

total number of excitons Ntot defined in Eq. (27).

A. Numerical results: Organic set of parameters

We start this section by an overview of properties of the

excitonic spectrum, shown in Fig. 1(a), which will be relevant

for further discussions of the exciton formation process. The

lowest excitonic band is energetically well separated from

the rest of the spectrum, the energy separation between the

minima of the bands ν = 0 and 1 being around 200 meV,

which is much larger than both the value of kBT at room

temperature and the phonon energy in our model (see Table I).

As a consequence, downward transitions that end at the lowest

excitonic band start almost exclusively from the states on ν = 1

band and an exciton, which is at some instant in a state on

the ν = 0 band, cannot be scattered to an unbound excitonic

state.

We briefly comment on the size of the exciton for these

values of model parameters. From the exciton wave function

ψ
(Qν)
Q−ke,ke

in k space, we can obtain the exciton wave function

in real space performing the Fourier transformation

ψ (Qν)
re,rh

=
∑

ke

ei(Q−ke)rheikereψ
(Qν)
Q−ke,ke

= eiQ(re+rh)/2
∑

ke

e−i(Q−2ke)(re−rh)/2ψ
(Qν)
Q−ke,ke

. (60)

The exciton wave function in real space is a product of the

plane wave which describes the motion of the center of mass

-40 -20 0 20 40
0

0.2

0.4
ν=0
ν=1
ν=2
ν=3

FIG. 1. (Color online) (a) Excitonic spectrum for the organic set

of parameters. Dots represent individual excitonic states (Q,ν), while

thick red line is the boundary between bound and unbound excitonic

states computed using Eq. (57). (b) Squared modulus of the wave

function which describes the relative motion of an electron-hole pair

[Eq. (61)] calculated for different states (Q = 0,ν). Mean electron-

hole separations in these states are 0.7a (ν = 0), 2.5a (ν = 1), 4.6a

(ν = 2), and 7.8a (ν = 3). Computations are performed for N = 101.

with the wave vector Q and the wave function of the relative

motion of an electron and a hole:

ψ rel
(Q,ν) =

∑

ke

e−i(Q−2ke)(re−rh)/2ψ
(Qν)
Q−ke,ke

. (61)

The latter part is directly related to the exciton size. We

calculated squared modulus of the wave function of the

relative motion of a pair for states (Q = 0,ν) in various bands.

The result is shown in Fig. 1(b). It is clearly seen that an

electron and a hole are tightly bound in these states and

their relative separations are of the order of lattice constant,

which is the typical value for the exciton radius in organic

semiconductors. We point out that this does not mean that an

exciton is localized; due to the translational symmetry of our

system, it is delocalized over the whole lattice, as described by

the plane-wave factor in the total wave function of a pair.

Moreover, we note that the system size N = 101 is large

enough for the results to be numerically accurate, as it is much

larger than the typical size of the exciton in a bound state.
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FIG. 2. (Color online) Time dependence of the relative number

of incoherent bound excitons for different central frequencies of the

pulse.

The impact that different parameters have on the exciton

formation process is studied by changing one parameter, at

the same time fixing the values of all the other parameters

to the previously mentioned ones. We performed all the

computations for a limited number of lowest excitonic bands,

which crucially depends on the central frequency ωc of the

excitation. For the given excitation, we took into account all

the bands whose minima lie below �ωc + αkBT , where α ∼ 5

is a numerical constant.

We will first discuss the exciton formation process for

different central frequencies of the exciting pulse. We have

considered central frequencies in resonance with (Q = 0,

ν = 1) state, (Q = 0, ν = 2) state, single-particle gap, and

the central frequency which is 100 meV above the band gap.

As can be noted from Fig. 2, raising the central frequency of

the laser field leads to lower relative number of incoherent

bound excitons. Namely, the higher is the central frequency,

the higher (in energy) are the bands in which the initial

coherent excitonic populations are created and the slower is

the conversion of these coherent populations to incoherent

populations in lower excitonic bands. However, in the long-

time limit, the relative number of incoherent bound excitons

should not depend on the central frequency of the laser,

but tend to the value predicted by the Maxwell-Boltzmann

distribution, which is above 99%. Such a high value is due

to the large energy separation between the lowest excitonic

band and the rest of the spectrum. We can thus infer, based on

Fig. 2, that the semiconductor dynamics right after the pulsed

excitation shows highly nonequilibrium features. Relaxation

towards equilibrium occurs on a time scale longer than the

picosecond one.

Next, we consider the dependence of the exciton formation

process on temperature. The temperature enters our model

only through phonon numbers nph. The overall behavior of

the relative number of incoherent bound excitons for different

temperatures is shown in Fig. 3. During the pulse, the relative

number of incoherent bound excitons is highest for T = 300 K

and lowest for T = 100 K, which is the consequence of the fact

that scattering processes from higher excitonic bands (in which
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FIG. 3. (Color online) Time dependence of the relative number

of incoherent bound excitons for different temperatures. The inset

shows the portions of the same curves after the pulse.

initial coherent excitonic populations are created and which are

situated both in the pair continuum and below it) towards lower

excitonic bands are most efficient at T = 300 K. After the

generation of carriers has been completed, phonon-mediated

processes lead to the redistribution of created incoherent exci-

tons among different excitonic states and the relative number

of incoherent bound excitons increases with decreasing the

temperature, which is the expected trend. In the inset of

Fig. 3 we also note that the relative number of incoherent

bound excitons after the pulse experiences an initial growth

followed by a slow decay at T = 300 K, whereas at T = 100

K it monotonically rises. The initial growth at T = 300 K is

attributed to downward scattering processes, but since at this

temperature upward scattering events cannot be neglected, the

following slow decay is due to the fact that some excitonic

bands well below the pair continuum (bands ν = 1,2,3) lose

excitons both by downward scattering and upward scattering

to excitonic states which are near to or belong to the pair

continuum [see Figs. 4(a) and 4(b)]. At T = 100 K, these

upward processes are much less probable than downward

processes, thus the decay of the relative number of incoherent

bound excitons is not observed; in Figs. 4(c) and 4(d) we see

that lowest excitonic bands (ν = 0,1,2) gain excitons, whereas

bands which are near to or belong to the pair continuum

(ν = 9,11,13,15) lose excitons. The population of the lowest

excitonic band ν = 0 continually grows at all the temperatures

studied, due to the large energetic separation between this band

and the rest of the spectrum.

We briefly comment on the behavior of the number of

coherent excitons Ncoh and its temperature dependence. Right

after the start of the pulse, coherent excitons comprise virtually

the total excitonic population (see Fig. 5). Due to the carrier-

phonon interaction, the relative number of coherent excitons

decays during the pulse, so that at its end coherent excitons

comprise around 1% of the total excitonic population. The

conversion from coherent to incoherent populations is thus

almost completed by the end of the pulse. From the inset of

Fig. 5, we note that Ncoh/Ntot exhibits a very fast decay after

the pulse has vanished, with decay times of the order of 50 fs or

less. Therefore, we infer that the transformation from coherent
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FIG. 4. (Color online) Time dependence of the relative popula-

tion of various excitonic bands for different temperatures T = 300 K

for panels (a) and (b) and T = 100 K for panels (c) and (d). Panels

(a) and (c) concern bands which are well below the pair continuum

(ν = 0,1,2,3), whereas panels (b) and (d) deal with the bands which

are near the continuum (ν = 9) or in the continuum (ν = 11,13,15).

to incoherent excitonic populations takes place on a 50-fs time

scale. Based on Fig. 5, we also note that the lower is the

temperature, the slower is the transformation from coherent to

incoherent excitonic populations, which is the expected trend.

We continue our investigation by examining the effects that

changes in the carrier-phonon coupling constant g have on

the exciton formation process. Since increasing (lowering)

g increases (lowers) semiclassical transition rates, just as

increasing (lowering) T does, the changes in g and T should

have, in principle, similar effects on the exciton formation

process. Considering first the relative number of incoherent

bound excitons, whose time dependence for different values

of g is shown in Fig. 6(a), we note that after the end of the
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FIG. 5. (Color online) Time dependence of the relative number

of coherent excitons for different temperatures. The inset shows the

portions of the same curves (note the logarithmic scale on the vertical

axis) after the pulse.
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FIG. 6. (Color online) Time dependence of (a) the relative num-

ber of incoherent bound excitons, (b) the relative number of

incoherent excitons in the ν = 0 band, for various values of g. The

inset in the panel (a) shows the portions of the same curves after the

pulse.

pulse it increases with decreasing g. However, during the pulse,

higher values of g lead to more incoherent bound excitons,

as is expected since scattering processes which populate

low-energy states are more intensive for larger g. We also

show the time dependence of the relative number of excitons

in ν = 0 band in Fig. 6(b). It is observed that the lower is g, the

lower is the number of excitons in the lowest excitonic band.

This is due to the fact that populations on the lowest band are

generated mainly via scattering processes from the ν = 1 band

and these processes are less efficient for smaller g.

We conclude this section by studying the effects that

changes in the onsite Coulomb interaction U have on the

process of exciton formation. Changing U has profound effects

on the excitonic spectrum. Exciton binding energy lowers with

lowering U along with the energy separation between the band

ν = 0 and the rest of the spectrum. We studied the impact of

U on the exciton formation process for three values of U ,

U = 480, 240, and 48 meV, for which the exciton binding

energy is ∼ 320, ∼ 175, and ∼ 40 meV, respectively. Lowering

U lowers the relative number of incoherent bound excitons,

as is shown in Fig. 7. Smaller energy separation between the

lowest excitonic band and the rest of the spectrum means that

phonon-mediated transitions which start/end on the band ν =
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FIG. 7. (Color online) Time dependence of the relative number

of incoherent bound excitons for various values of U . The inset shows

the portions of the same curves after the pulse.

0 can end/start not predominantly on the band ν = 1, but also

on higher excitonic bands, which, for lower U , are more certain

to belong to the electron-hole pair continuum than to the part of

the spectrum which contains bound pair states. Thus, the lower

is U , the more likely are the dissociation processes in which

an exciton, initially in a bound state, after a phonon-mediated

transition ends in an unbound pair state, which explains the

observed trend in the relative number of incoherent bound

excitons. This agrees with the usual picture according to which

thermal fluctuations are likely to dissociate loosely bound

electron-hole pairs. For U = 48 meV, in the long-time limit

and according to the Maxwell-Boltzmann distribution, around

78% of the total number of excitons should be in bound states,

whereas for the other two values of U this number is above

99%. Thus, the dynamics observed is highly nonequilibrium,

but unlike the cases U = 480 and 240 meV, in which we cannot

observe that the relative number of incoherent bound excitons

starts to tend to its equilibrium value, for U = 48 meV we

observe such a behavior (see the inset of Fig. 7).

In summary, we list the time scales of the exciton formation

and relaxation that stem from our computations. The transfor-

mation from coherent to incoherent excitons takes place in

less than 50 fs. A significant number of incoherent bound

excitons are established on a time scale of several hundreds of

femtoseconds, whereas the subsequent relaxation of excitonic

populations occurs on a time scale longer than the picosecond

one. Further discussion of these results is deferred for Sec. IV.

B. Numerical results: Inorganic set of parameters

In this section, we will investigate the exciton formation

process in the case when material parameters assume values

typical of inorganic semiconductors, i.e., relatively large band-

widths, large dielectric constant (weak Coulomb interaction),

and weak carrier-phonon interaction. The excitonic spectrum

is shown in Fig. 8(a). We see that almost all excitonic bands

belong to the pair continuum, except for a couple of lowest

bands, which is more clearly seen in the inset of Fig. 8(a). This

is an entirely different situation from the one that we encounter

-50 0 50
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0.04
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FIG. 8. (Color online) (a) Excitonic spectrum for the inorganic

set of parameters. Dots represent individual excitonic states (Q,ν),

while thick red line is the boundary between bound and unbound

excitonic states computed using Eq. (57). The inset shows the same

spectrum in the range of energies around the single-particle gap.

(b) Squared modulus of the wave function which describes the relative

motion of an electron-hole pair [Eq. (61)] calculated for different

states (Q = 0,ν). Mean electron-hole separations are 9.1a (ν = 0)

and 29.4a (ν = 1), while states (Q = 0, ν = 2) and (Q = 0, ν = 3)

are not bound. Computations are performed for N = 151.

for the organic set of parameters, where large energy separation

of the lowest excitonic band from the rest of the spectrum

was crucial to understand the exciton formation process. As a

consequence, excitons in bound states are likely to scatter to a

state in the pair continuum, in contrast to the situation for the

model parameters representative of an organic semiconductor.

Having noted the important characteristics of the excitonic

spectrum, we move on to comment briefly on the exciton size

for the inorganic set of parameters. We plot in Fig. 8(b) the

squared modulus of the wave function of the relative motion

of the pair, which is defined in Eq. (61). We note that for

the inorganic set of parameters, electron and hole are not as

tightly bound as for the organic set of parameters, which is

in accord with the fact that excitons in a typical inorganic

semiconductor have large radii, typically of the order of 10

lattice constants [5,6]. From Fig. 8(b), it is also clear that, if

we are to see the lowest excitonic state (Q = 0, ν = 0) as a
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FIG. 9. (Color online) (a) Time dependence of the relative num-

ber of incoherent bound excitons for excitation resonant with the

single-particle gap and the one which is 100 meV above it. The

temperature in both cases is T = 300 K. (b) Time dependence

of the relative number of incoherent bound excitons for various

temperatures. The central frequency of the laser pulse is 100 meV

above the single-particle gap.

bound pair, we should take the system size N � 120. We opted

for N = 151 because this value makes a good compromise

between the minimal size of the system needed for the results

to be numerically accurate and the computational time.

For the inorganic set of parameters, we note that incoherent

unbound excitons comprise the major part of the total excitonic

population [see Fig. 9(a)], which is different from the case

when model parameters assume values representative of an

organic semiconductor, when excitons in bound states prevail.

Considering an unbound exciton as quasifree electron and hole,

we interpret the last observation in the following manner: after

an optical excitation of an organic semiconductor, (strongly)

bound electron-hole pairs (excitons) are mainly generated,

whereas in the case of an inorganic semiconductor an optical

excitation predominantly generates (quasi)free charges. In

Fig. 9, we also note that for higher central frequency of the

laser field, the relative number of bound excitons is lower.

However, in the long-time limit the number of incoherent

bound excitons should assume the value predicted by the

Maxwell-Boltzmann distribution, which is around 36.5%,

irrespectively of the central frequency of the pulse. The values

of the relative number of incoherent bound excitons at the end

of our computations do not strongly deviate from the value

predicted by the Maxwell-Boltzmann distribution, in contrast

to the situation for the organic set of parameters, where this

deviation was more pronounced (see Fig. 2). It can thus be

inferred that nonequilibrium features of the semiconductor

dynamics after a pulsed excitation are more pronounced for

the organic than for the inorganic set of parameters.

Finally, we comment on the temperature dependence of the

exciton formation process for the excitation whose central

frequency is 100 meV above the single-particle gap. The

lower is the temperature, the higher is the relative number

of the incoherent bound excitons [see Fig. 9(b)]. During the

pulse, higher temperature leads to higher relative number of

incoherent bound excitons, which has already been explained

in the section dealing with the organic set of parameters. The

long-time limit values of the relative number of incoherent

bound excitons are 44.7% for T = 200 K and 62.7% for

T = 100 K. In all three cases, the dynamics is highly

nonequilibrium, but it displays the trend of a slow, but

monotonic, approach towards the equilibrium.

IV. DISCUSSION

In this section, we discuss the time scales of exciton forma-

tion and relaxation processes obtained from our calculations

in light of recent subpicosecond time-resolved experiments. In

Ref. [23], femtosecond-resolved fluorescence up-conversion

spectroscopy was applied to investigate the exciton dynamics

in pristine PCDTBT polymer. The results obtained were

interpreted to originate from formation of free charges on

less than 100 fs time scale, followed by formation of bound

excitons in less than 1 ps and their further relaxation at a

longer time scale. Similar results were obtained in Ref. [24]

for P3HT polymer. Despite the fact that our Hamiltonian

does not include the effects of disorder that are present

in real materials and uses an oversimplified form of the

carrier-phonon interaction, we obtain time scales consistent

with these data in our computations. Namely, for the organic

parameter set we find that significant population of bound

excitons is formed on the time scale of several hundreds

of femtoseconds and that their further relaxation occurs for

at least several picoseconds. These conclusions are further

corroborated by fitting the relative number of incoherent bound

excitons Nincoh,b/Ntot after the carrier generation has been

completed to a sum of three exponentially decaying terms.

For the organic parameter set, we obtain characteristic time

scales of ∼50 fs, ∼500 fs and �1 ps. We attribute the fastest

time scale to decoherence processes which are responsible

for conversion from coherent (|yx |2) to incoherent (n̄xx)

populations due to the interaction with phonons. The time scale

of ∼500 fs may be associated with the buildup of the Coulomb-

induced correlations between electrons and holes by formation

of bound incoherent electron-hole pairs via phonon-assisted

scattering processes. After this time scale, however, intraband

coherences n̄x̄x (x̄ 
= x), as well as single-phonon-assisted

density matrices nx̄xμ+ , still have significant values. In the

long-time limit, these variables asymptotically vanish, and we

remain only with incoherent populations whose dynamics will
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eventually lead to thermalized distribution of excitons [35].

As our computations are certainly not long enough to observe

these effects, we speculate that the slowest time scale we obtain

may be related to the decay of the intraband coherences and/or

phonon-assisted variables.

Next, we comment on the relation of our results with recent

experimental insights which have challenged the commonly

accepted physical picture of the generation of free charges in

bulk heterojunction solar cells. Namely, it is widely believed

that physical processes leading to current generation are

formation of bound excitons due to light absorption in the

donor material, their diffusion to the donor/acceptor interface,

and their subsequent separation at the interface [4]. From

the discrepancy between the distance that a donor exciton

can diffuse in 100 fs and the distance it has to cover in

order to reach the donor/acceptor interface in efficient bulk

heterojunction solar cells, Cowan et al. [25] conclude that

the subpicosecond charge transfer to the acceptor occurs

before exciton formation in the donor. The results of our

computations, which indicate that the formation of incoherent

bound excitons occurs on a ∼500-fs time scale, are therefore

consistent with their observations. The formation of hot

charge transfer excitons which occurs in less than 100 fs and

which is followed by their relaxation to lower energies and

shorter electron-hole distances on a picosecond time scale was

experimentally observed in a small molecule CuPc/fullerene

blend using time-resolved second harmonic generation and

time-resolved two-photon photoemission [28]. The presence

of hot charge transfer excitons, which are delocalized, i.e., in

which the electron-hole separation is rather large, and their

essential role in subpicosecond charge separation in efficient

OPV systems were also identified in Refs. [26,27,29]. Our

simulation results that indicate exciton equilibration times

longer than picoseconds are fully consistent with observations

that during charge separation at the donor/acceptor interface

the excitons remain out of equilibrium (hot excitons).

V. CONCLUSION

In conclusion, we have investigated the exciton dynamics

in a photoexcited semiconductor on a picosecond time scale.

The study was conducted on the two-band semiconductor

Hamiltonian, which includes relevant physical effects in

the system, using the density matrix theory combined with

the DCT scheme. We truncate the phonon branch of the

hierarchy and propose the form of coupling between electronic

density matrices with single-phonon assistance and higher-

order phonon assistance so as to achieve the compatibility

of the resulting equations with the energy and particle-number

conservation in a system without external fields. The numerical

study aiming at identifying time scales of exciton formation

and relaxation processes was performed on a one-dimensional

model system for the values of model parameters represen-

tative of a typical organic and inorganic semiconductor. We

concluded that the dynamics on a picosecond time scale

shows highly nonequilibrium features, relaxation processes

towards equilibrium occurring on a longer time scale. While

for the organic set of parameters the excitons generated are

mainly tightly bound, for the inorganic set of parameters

the major part of excitons is in unbound pair states and

may thus be considered as (quasi)free electrons and holes.

In other words, a photoexcitation of an initially unexcited

organic semiconductor leads to creation of bound electron-hole

pairs, whereas in an inorganic semiconductor it leads to

generation of free charges. This difference can be mainly

attributed to different properties of the excitonic spectrum,

which for the organic set of parameters exhibits large energy

separation between the lowest excitonic band and the rest

of the spectrum. Furthermore, although the carrier-phonon

interaction is stronger for the organic set of parameters, we

have noted that the number of excitons in bound states more

strongly deviates from its equilibrium value for the organic

set of parameters than for the inorganic one. This observation

emphasizes the importance of nonequilibrium effects for the

proper understanding of the ultrafast dynamics of photoexcited

organic semiconductors and unraveling the working principles

of organic photovoltaic devices.
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APPENDIX A: EQUATIONS OF MOTION

In this appendix, we present equations of motion for

relevant dynamic variables. These are the same equations as

in Ref. [35], with only slight modifications in notation, which

are exact up to the second order in the external field. We

point out that, according to the generating function property,

differential equations for the corresponding phonon-assisted

density matrices are obtained after performing appropriate

differentiations and setting αμ = βμ = 0:

i� ∂tY
αβ

ab =
(

ǫc
b − ǫv

a

)

Y
αβ

ab +
∑

p ∈ VB

q ∈ CB

(

V vccv
pqba − V vvcc

pabq

)

Y αβ
pq +

∑

μ

�ωμ

(

βμ∂βμ
− αμ∂αμ

)

Y
αβ

ab

+
∑

k ∈ CB

μ

(

γ
μ

bk(∂αμ
+ βμ) + γ

μ∗
kb ∂βμ

)

Y
αβ

ak −
∑

k ∈ VB

μ

(

γ
μ

ka(∂αμ
+ βμ) + γ

μ∗
ak ∂βμ

)

Y
αβ

kb − E(t)Mcv
baF

αβ , (A1)
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i� ∂tN
αβ

abcd =
(

ǫc
d − ǫv

c + ǫv
b − ǫc

a

)

N
αβ

abcd +
∑

p ∈ VB

q ∈ CB

((

V vccv
pqdc − V vvcc

pcdq

)

N
αβ

abpq −
(

V vccv
baqp − V vvcc

bpqa

)

N
αβ

qpcd

)

+
∑

μ

�ωμ

(

βμ∂βμ
− αμ∂αμ

)

N
αβ

abcd +
∑

k ∈ CB

μ

((

γ
μ

dk(∂αμ
+ βμ) + γ

μ∗
kd ∂βμ

)

N
αβ

abck −
(

γ
μ

ka∂αμ
+ γ

μ∗
ak

(

∂βμ
+ αμ

))

N
αβ

kbcd

)

−
∑

k ∈ VB

μ

((

γ
μ

kc

(

∂αμ
+ βμ

)

+ γ
μ∗
ck ∂βμ

)

N
αβ

abkd −
(

γ
μ

bk∂αμ
+ γ

μ∗
kb

(

∂βμ
+ αμ

))

N
αβ

akcd

)

− E(t)
(

Mcv
dcY

βα∗
ba − Mvc

baY
αβ

cd

)

.

(A2)

APPENDIX B: CLOSING THE HIERARCHY OF EQUATIONS

In Eq. (33), correlated parts of two-phonon-assisted density matrices δnx̄xρ+σ− and δnx̄xρ+σ+ appear. In their differential

equations, three-phonon-assisted density matrices are present. In order to close the hierarchy of equations, we factorize them

into all possible combinations of phonon distribution functions and phonon-assisted electronic density matrices and neglect their

correlated parts. The strategy for the factorization is the one we employed in Eq. (31) where we considered an exciton as a basic

entity and did not take into account contributions arising from the excitonic amplitude (with possible phonon assistance). Namely,

the two-phonon-assisted electronic density matrix 〈c†ad†
bdccdb

†
μbρ〉 can be written in terms of exciton creation and annihilation

operators [see Eq. (18)] as
∑

x̄x ψ x̄∗
ba ψx

cd〈X
†
x̄Xxb

†
μbρ〉. Since it appears in the equation of motion for one-phonon-assisted

electronic density matrix n
(+)
x̄xμ, which is coupled to Eq. (29) describing excitonic populations and intraband coherences, we treat

an exciton as a basic entity and accordingly perform the factorization 〈X†
x̄Xxb

†
μbρ〉 = 〈X†

x̄Xx〉〈b†μbρ〉 + δ〈X†
x̄Xxb

†
μbρ〉. In the case

of three-phonon-assisted electronic density matrices, the described factorization procedure, neglecting the correlated part, gives

〈c†ad
†
bdccdb

†
μb†ρbσ 〉 = δρσ 〈c†ad

†
bdccdb

†
μ〉nph

ρ + δμσ 〈c†ad
†
bdccdb

†
ρ〉n

ph
μ . (B1)

Performing transition to the excitonic basis, the following differential equation for the variable δnx̄xρ+σ− is obtained:

∂t δnx̄xρ+σ− = −i(ωx − ωx̄ + ωσ − ωρ)δnx̄xρ+σ− +
1 + n

ph
σ

i�

∑

x ′

Ŵσ
xx ′nx̄x ′ρ+ −

n
ph
σ

i�

∑

x̄ ′

Ŵσ
x̄ ′x̄nx̄ ′xρ+

−
1 + n

ph
ρ

i�

∑

x̄ ′

Ŵ
ρ∗
x̄x̄ ′n

∗
xx̄ ′σ+ +

n
ph
ρ

i�

∑

x ′

Ŵ
ρ∗
x ′xn

∗
x ′x̄σ+ , (B2)

and similarly for the variable δnx̄xρ+σ+ . Solving Eq. (B2) in the Markov and adiabatic approximations [39,40], the following

result is obtained:

δnx̄xρ+σ− =
(

1 + nph
σ

)

∑

x ′

Ŵσ
xx ′D(�ωx ′ − �ωx − �ωσ )nx̄x ′ρ+ − nph

σ

∑

x̄ ′

Ŵσ
x̄ ′x̄D(�ωx̄ − �ωx̄ ′ − �ωσ )nx̄ ′xρ+

+
(

1 + nph
ρ

)

∑

x̄ ′

Ŵ
ρ∗
x̄x̄ ′D

∗(�ωx̄ ′ − �ωx̄ − �ωρ)n∗
xx̄ ′σ+ − nph

ρ

∑

x ′

Ŵ
ρ∗
x ′xD

∗(�ωx − �ωx ′ − �ωρ)n∗
x ′x̄σ+ , (B3)

where D(ǫ) = −iπδ(ǫ) + P(1/ǫ). We thus expressed two-phonon-assisted electronic density matrices in terms of one-phonon-

assisted electronic density matrices. When these results are inserted in Eq. (33), we neglect all terms involving principal values

which, in principle, lead to polaron shifts in energies [9,40]. Furthermore, we note that the inserted terms involve multiple

summations over excitonic indices x and we use the random phase approximation to simplify the expression obtained. This

approximation is easier to understand and justify when we transfer to a particular representation for the excitonic index x, for

example, the one that we used in our computational study, where we took advantage of the translational symmetry and had

x = (Q,ν). Electronic density matrices with one-phonon assistance n(Q̄,ν̄)(Q,ν)q+
μ

are complex quantities, which acquire nontrivial

values during the evolution provided that the condition Q̄ + qμ = Q is satisfied. Having in mind the selection rule for carrier-

phonon matrix elements in the excitonic basis [see Eq. (52)], we can express the first term which describes the coupling of the

one-phonon-assisted electronic density matrix n(Q−qμ,ν̄)(Q,ν)q+
μ

to density matrices with higher phonon assistance [see Eq. (33)] as

−
1

i�

∑

ρx̄ ′

Ŵ
ρ∗
x̄x̄ ′δnx̄ ′xμ+ρ−

=
π

�

∑

qρ ,ν ′,ν̄ ′

Ŵ
qρ∗
(Q−qμ,ν̄)(Q−qμ+qρ ,ν̄ ′)Ŵ

qρ

(Q,ν)(Q+qρ ,ν ′)

(

1 + nph
qρ

)

δ(�ω(Q+qρ ,ν ′) − �ω(Q,ν) − �ωqρ
)n(Q−qμ+qρ ,ν̄ ′)(Q+qρ ,ν ′)q+

μ
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−
π

�

∑

qρ ,ν̄ ′,ν̄ ′′

Ŵ
qρ∗
(Q−qμ,ν̄)(Q−qμ+qρ ,ν̄ ′)Ŵ

qρ

(Q−qμ,ν̄ ′′)(Q−qμ+qρ ,ν̄ ′)n
ph
qρ

δ
(

�ω(Q−qμ+qρ ,ν̄ ′) − �ω(Q−qμ,ν̄ ′′) − �ωqρ

)

n(Q−qμ,ν̄ ′′)(Qν)q+
μ

−
π

�

∑

qρ ,ν̄ ′,ν̄ ′′

Ŵ
qρ∗
(Q−qμ,ν̄)(Q−qμ+qρ ,ν̄ ′)Ŵ

qμ∗
(Q−qμ+qρ ,ν̄ ′)(Q+qρ ,ν̄ ′′)

(

1 + nph
qμ

)

δ
(

�ω(Q+qρ ,ν̄ ′′) − �ω(Q−qμ+qρ ,ν̄ ′) − �ωqμ

)

n∗
(Q,ν)(Q+qρ ,ν̄ ′′)q+

ρ

+
π

�

∑

qρ ,ν ′,ν̄ ′

Ŵ
qρ∗
(Q−qμ,ν̄)(Q−qμ+qρ ,ν̄ ′)Ŵ

qμ∗
(Q−qμ,ν ′)(Q,ν)n

ph
qμ

δ
(

�ω(Q,ν) − �ω(Q−qμ,ν ′) − �ωqμ

)

n∗
(Q−qμ,ν̄ ′)(Q−qμ+qρ ,ν ′)q+

ρ
. (B4)

In the first, the third, and the fourth sums in the previous equation we perform summation of terms which involve complex-

valued single-phonon-assisted electronic density matrices over the wave vector qρ , whereas in the second sum the summation is

not carried out over any of the wave vectors describing the density matrix. In the lowest approximation, we can assume that all

the sums apart from the second are negligible due to random phases at different wave vectors. For the sake of simplicity, in the

second sum we keep only the contribution for ν̄ ′′ = ν̄, thus expressing the coupling to higher-phonon-assisted density matrices

only in terms of the single-phonon-assisted density matrix for which the equation is formed. Restoring the more general notation,

we obtain the result

−
1

i�

∑

ρx̄ ′

Ŵ
ρ∗
x̄x̄ ′δnx̄ ′xμ+ρ− = −

π

�

⎛

⎝

∑

ρx̃

∣

∣Ŵ
ρ
x̄x̃

∣

∣

2
nph

ρ δ(�ωx̄ − �ωx̃ + �ωρ)

⎞

⎠nx̄xμ+ . (B5)

Repeating similar procedure with the remaining three terms which describe coupling to density matrices with higher-order

phonon assistance in Eq. (33), we obtain the result embodied in Eqs. (36)–(38).

Analogously, the following results for two-phonon-assisted electronic density matrices δyxρ+σ− ,δyxρ+σ+ are obtained, solving

their respective differential equations in the Markov and adiabatic approximations

δyxρ+σ− =
(

1 + nph
σ

)

∑

x ′

Ŵσ
xx ′D(�ωx ′ − �ωx − �ωσ )y

(+)
x ′ρ − nph

ρ

∑

x ′

Ŵ
ρ∗
x ′xD

∗(�ωx − �ωx ′ − �ωρ)y
(−)
x ′σ , (B6)

and similarly for the variable δyxρ+σ+ . Inserting the results obtained in Eqs. (34) and (35) and performing the random phase

approximation as described, the result given in Eqs. (41) and (42) is obtained.

APPENDIX C: COMMENTS ON THE ENERGY CONSERVATION IN THE MODEL

In this appendix, we will comment on the energy conservation in the model after the external field has vanished. Using

Eqs. (21), (22), (29), and (30), we obtain the rate at which the energy of carriers and phonons changes after the pulse

∂t (Ec + Eph) = −
2

�

∑

μx̄x

(�ωx − �ωx̄ − �ωμ)Im
{

Ŵ
μ
x̄xnx̄xμ+

}

, (C1)

which exactly cancels the part from ∂t Ec-ph [see Eq. (23)] that originates from the free rotation term −i(ωx − ωx̄ − ωμ)nx̄xμ+ in

Eq. (33). The terms in ∂t Ec-ph which arise from the second and third terms in Eq. (33) are identically equal to zero each since

they are purely real, which is easily checked. Therefore, the rate at which the total energy changes after the pulse is equal to

the rate at which the carrier-phonon interaction energy changes due to the coupling of single-phonon-assisted to higher-order

phonon-assisted density matrices, (∂t Ec-ph)
higher

, which is equal to [see Eq. (33)]

(∂t Ec-ph)higher = −
2

�
Im

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

μx̄x

ρx̄ ′

Ŵ
μ
x̄xŴ

ρ∗
x̄x̄ ′δnx̄ ′xμ+ρ−

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

−
2

�
Im

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

μx̄x

ρx̄ ′

Ŵ
μ
x̄xŴ

ρ

x̄ ′x̄δnx̄ ′xμ+ρ+

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+
2

�
Im

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

μx̄x

ρx ′

Ŵ
μ
x̄xŴ

ρ∗
x ′xδnx̄x ′μ+ρ−

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+
2

�
Im

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

μx̄x

ρx ′

Ŵ
μ
x̄xŴ

ρ

xx ′δnx̄x ′μ+ρ+

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (C2)

The first and the third terms on the right-hand side of Eq. (C2) are separately equal to zero (since the quantities under the

sign of the imaginary part are purely real), whereas the second and the fourth terms exactly cancel each other, so the total

energy is conserved. In particular, this is true for the form of the correlated parts of two-phonon-assisted density matrix δnx̄xρ+σ−

given in Eq. (B3) and the similar form of the density matrix δnx̄xρ+σ+ . In Eq. (C2), all the sums are performed over all

indices that are present in a particular expression, so the crux of the proof that the energy is conserved is the interchange of

dummy indices combined with the properties δn∗
x̄xρ+σ− = δnxx̄σ+ρ− and δnx̄xρ+σ+ = δnx̄xσ+ρ+ . However, when we apply the

random phase approximation, the aforementioned properties are lost and the energy is not conserved any more. For example,
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the first term on the right-hand side in Eq. (C2) after performing the random phase approximation is not equal to zero, but to

− 2π
�

(
∑

ρx̃ |Ŵρ
x̄x̃ |2n

ph
ρ δ(�ωx̃ − �ωx̄ + �ωρ))Re{

∑

μx̄x Ŵ
μ
x̄xnx̄xμ+} [see Eq. (B5)], which is just one term of the total rate (∂t Ec-ph)

higher

when we use the result from Eq. (36).
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Veljko Janković* and Nenad Vukmirović†
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A wide range of disordered materials contain electronic states that are spatially well localized. In this work, we
investigated the electrical response of such systems in nonequilibrium conditions to external electromagnetic field.
We obtained the expression for optical conductivity valid for any nonequilibrium state of electronic subsystem.
In the case of incoherent nonequilibrium state, this expression contains only the positions of localized electronic
states, Fermi’s golden rule transition probabilities between the states, and the populations of electronic states. The
same form of expression is valid both in the case of weak electron-phonon interaction and weak electron-impurity
interaction that act as perturbations of electronic Hamiltonian. The derivation was performed by expanding the
general expression for ac conductivity in powers of small electron-phonon interaction or electron-impurity
interaction parameter. Applications of the expression to two model systems, a simple one-dimensional Gaussian
disorder model, and the model of a realistic three-dimensional organic polymer material, were presented as well.
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I. INTRODUCTION

Electronic transport in semiconductors has been attracting
significant research attention for more than half a century. Par-
ticular classes of semiconductors where interesting physical
effects arise in electronic transport are semiconductors where
a certain type of disorder is present in the system which leads
to localization of electronic states. These include amorphous
inorganic semiconductors (such as amorphous Si or Ge) [1],
inorganic crystals doped with randomly positioned impurities
[2,3], and organic semiconductors based on conjugated poly-
mers or small molecules [4–10]. The latter class of materials
triggered a particular interest in the past two decades due to
their low production cost, which led to the development of a
variety of organic electronic devices [11–17].

There is currently a solid understanding of equilibrium
electronic transport in disordered systems with localized
electronic states. dc transport in such systems can be modeled
using an equivalent network of resistors that connect each two
sites where electronic states are localized [18,19]. Electronic
conductivity or mobility in the material can then be calculated
by finding the equivalent resistance of the network or estimated
using percolation theory. However, dc mobility which quanti-
fies electronic transport properties over long length scales is in
many cases not the most relevant quantity when the description
of electronic transport processes is concerned. In particular,
in organic solar cells based on a bulk heterojunction of two
organic semiconductors, charge carriers travel over very short
length (on the order of nanometers) and time (on the order
of picoseconds) scales before they reach the interface of two
semiconductors [20–22]. The high frequency (terahertz) ac
mobility is a much better measure of charge transport over
such short time scales.

The approaches for simulation of ac conductivity are
usually based on Kubo’s formula which expresses the ac
conductivity in terms of the mean square displacement of a
diffusing carrier [23–27]. Such approaches therefore assume

*veljko.jankovic@ipb.ac.rs
†nenad.vukmirovic@ipb.ac.rs

that carriers are in equilibrium and that they are only slightly
perturbed by external alternating electric field. However, in
many realistic situations, the carriers are not in equilibrium;
a typical example concerns the carriers created by external
optical excitation across the band gap of a semiconductor.
While general approaches for the treatment of nonequilibrium
electronic transport, such as the density matrix formalism [28]
or the nonequilibrium Green’s function formalism [29–31], do
exist, it is in practice quite difficult to apply them to disordered
materials, where one needs to consider large portions of
material to obtain reliable information about its properties.

The main goal of this work was to derive a simple
expression that relates the optical conductivity of a material
with localized electronic states to its microscopic parameters.
To accomplish this goal, we first derive in Sec. II the
relation between nonequilibrium optical conductivity and the
corresponding current-current correlation function. Then, in
Sec. III we derive an expression for the conductivity of the
system of localized states with electron-phonon interaction
that acts as perturbation valid for arbitrary nonequilibrium
state of the electronic subsystem. In the case of incoherent
nonequilibrium state, the obtained expression appears to have
a rather simple form—the only quantities that appear in it are
the positions of localized states, their populations, and the
phonon-induced transition probabilities between the states.
In Sec. IV we show that the same expression is obtained if
additional static potential acts as a perturbation. In Sec. V, we
present the results obtained from the application of the derived
formula to a simple one-dimensional hopping model and to a
realistic disordered conjugated polymer material. We discuss
our results in light of the other results that exist in the literature
in Sec. VI.

II. GENERAL EXPRESSION FOR NONEQUILIBRIUM
OPTICAL CONDUCTIVITY

In this section, we consider an arbitrary quantum system
described by the Hamiltonian Ĥ whose state is given by the
statistical operator ρ̂(t). We will derive the time evolution
of ρ̂(t) due to a weak external perturbation Ĥ ′(t) which is
turned on at t = 0. Next, for the system that contains charged
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particles, we will find the current density caused by external
electric field that acts as a perturbation. While the results of this
section are mostly available in the literature, we repeat them
here for completeness of the paper, as well as to introduce the
notation and terminology for the remainder of the paper.

A. Evolution of the density matrix

The equation for the density matrix ρ̂(t) describing the state
of the system for t > 0 is

i�
dρ̂(t)

dt
= [Ĥ + Ĥ ′(t),ρ̂(t)]. (1)

We search for the solution of Eq. (1) in the form ρ̂(t) =
ρ̂free(t) + f̂ (t), where

ρ̂free(t) = e−i Ĥ
�

t ρ̂(0)ei Ĥ
�

t (2)

is the statistical operator of the system in the absence of
external perturbation, ρ̂(0) is the statistical operator describing
the state of the system just before the external perturbation
is turned on, while f̂ (t) is the contribution to the statistical
operator due to linear response of the system. It satisfies the
differential equation

i�
df̂ (t)

dt
− [Ĥ ,f̂ (t)] = [Ĥ ′(t),ρ̂free(t)], (3)

with the initial condition f̂ (0) = 0̂. After solving the last
equation up to linear terms, we obtain [32]

ρ̂(t) = e−i Ĥ
�

t ρ̂(0)ei Ĥ
�

t + 1

i�
e−i Ĥ

�
t

∫ t

0
dt ′[Ĥ ′

I (t ′),ρ̂(0)]ei Ĥ
�

t ,

(4)

where Ĥ ′
I (t) = ei Ĥ

�
t Ĥ ′(t)e−i Ĥ

�
t . Equations given in this section

are strictly valid only for an isolated quantum system and do
not include the relaxation of the system from some nonequilib-
rium to the equilibrium state. In realistic systems, interaction
of the system with the environment leads to relaxation of
the system to the equilibrium state. Therefore, the equations
that we will derive are valid only if the characteristic time
of external perturbation is short compared to the relaxation
time τ . Since we shall study the response to the electric field
oscillating with a frequency ω, the aforementioned condition
reads

ωτ � 1. (5)

In that case, the relaxation of the system towards equilibrium
during one period of the perturbation is negligible and can be
ignored in the considerations.

B. Nonequilibrium optical conductivity

Next, we assume that the system contains mobile charged
particles and that external electric field acts as a perturbation.
The system responds to external electric field by nonzero value
of current density. The current density operator is given by [33]

ĵa(r) = 1

2m

∑
n

q(p̂nδ
(3)(r − r̂n) + δ(3)(r − r̂n)p̂n)a, (6)

where q and m are the charge and the mass of a carrier,
respectively, while p̂n and r̂n are the momentum and the

position operator for a single carrier, and a denotes the
component of the current density operator (x, y, or z). Using
Eq. (4), we find that the current density at time t is given as

〈ĵa(r)〉t = Tr(ρ̂(t)ĵa(r))

= Tr(ρ̂(0)ĵa(t,r))

+ 1

i�

∫ t

0
dt ′ Tr(ρ̂(0)[ĵa(t,r),Ĥ ′

I (t ′)]), (7)

where ĵa(t,r) = ei Ĥ
�

t ĵa(r)e−i Ĥ
�

t . The first term in Eq. (7) does
not depend on the electric field, while we are interested
in the response of the system to the applied electric field.
Consequently, we shall further only consider the second term
in Eq. (7) given as

Ja(t,r) = 1

i�

∫ t

0
dt ′ Tr(ρ̂(0)[ĵa(t,r),Ĥ ′

I (t ′)]). (8)

We shall also assume that we are dealing with a spatially
homogeneous system at the macroscopic scale. The current
density averaged over the volume of the system

Ja(t) = 1

V

∫
d3r Ja(t,r) (9)

will be considered as the response to the applied field. The
Hamiltonian of interaction with electric field E(t) is given as
[34]

Ĥ ′(t) = −�̂ · E(t), (10)

where �̂ is the electric dipole moment operator defined as

�̂ = q
∑

n

r̂n. (11)

Using Eqs. (9), (8), and (10), the quantity Ja(t) can be
expressed as

Ja(t) =
∫ t

0
dt ′σab(t,t ′)Eb(t ′), (12)

where the tensor

σab(t,t ′) = i

�V
Tr(ρ̂(0)[Ĵa(t),�̂b(t ′)]) (13)

describes the linear response to the applied electric field. In
Eq. (13), the operator Ĵa(t) is defined as

Ĵa(t) =
∫

d3r ĵa(t,r) = q

m

∑
n

(p̂n)a. (14)

The operators �̂a(t) and Ĵb(t) satisfy the equal time commu-
tation relation

[�̂a(t),Ĵb(t)] = i�
Nq2

m
δab, (15)

where N is the number of carriers, and the continuity equation

Ĵa(t) = d

dt
�̂a(t). (16)

When the condition

[ρ̂(0),Ĥ ] = 0̂ (17)

is satisfied, the tensor σab(t,t ′) defined in Eq. (13) does not
depend separately on t and t ′, but only on their difference
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u = t − t ′. The optical conductivity tensor can then be defined
as σab(ω) = ∫ +∞

0 du σab(u) eiωu and reads

σab(ω) = i

�V

∫ +∞

0
dt eiωt Tr(ρ̂(0)[Ĵa(t),�̂b(0)]). (18)

Using Eqs. (16) and (15), Eq. (18) can be cast into a more
familiar form (n = N/V is the concentration of carriers)

σab(ω) = i
nq2

mω
δab + 1

�ωV

∫ +∞

0
dt eiωt

× Tr(ρ̂(0)[Ĵa(t),Ĵb(0)]). (19)

The equation for the optical conductivity (19) can be consid-
ered as a generalization to the nonequilibrium stationary case
of well-known results [35] which relate optical conductivity to
the equilibrium current-current correlation function. General-
izations of this sort have already been proposed in the literature
[in the context of the fluctuation-dissipation theorem, which
relates the dissipative part of the optical conductivity to the
(non)equilibrium current fluctuations] [36,37].

In the case, when [ρ̂(0),Ĥ ] �= 0̂, the tensor σab(t,t ′) defined
in Eq. (13) depends separately on t and t ′

σab(t,t ′) = − 1

i�V
Tr

(
e− i

�
Ĥ t ρ̂(0)e

i
�

Ĥ t [Ĵa(0),�̂b(−(t − t ′))]
)
.

(20)

Using Eqs. (16) and (15), one obtains the following expression:

σab(t,t ′) = nq2

m
δab − i

�V

∫ t−t ′

0
dτ

× Tr
(
e− i

�
Ĥ (t−τ )ρ̂(0)e

i
�

Ĥ (t−τ )[Ĵa(τ ),Ĵb(0)]
)
. (21)

III. OPTICAL CONDUCTIVITY IN THE PRESENCE
OF ELECTRON-PHONON INTERACTION

In this section, we derive the expression for optical
conductivity of a system with localized electronic states in the
presence of weak electron-phonon interaction. In Sec. III A
we introduce the Hamiltonian of the system, derive the current
operator, and obtain the frequency-time representation of the
conductivity tensor. In Sec. III B, we derive the expression
for conductivity valid for the arbitrary reduced density matrix
of the electronic subsystem and in the limit of low carrier
concentration. For incoherent density matrix of the electronic
subsystem, this expression contains only the populations of
single-particle electronic states, their spatial positions, and
Fermi’s golden rule transition probabilities between these
states.

A. Model Hamiltonian and preliminaries

We consider the system of electrons and phonons described
by the Hamiltonian

Ĥ = Ĥ0 + Ĥe-ph = Ĥe + Ĥph + Ĥe-ph, (22)

where

Ĥ0 = Ĥe + Ĥph =
∑

α

εαĉ†αĉα +
∑

k

�ωk b̂
†
k b̂k (23)

is the Hamiltonian of noninteracting electrons and phonons,
while

Ĥe-ph =
∑

k

∑
αα′

(g−
αα′,k ĉ†αĉα′ b̂k + g+

αα′,k ĉ†αĉα′ b̂
†
k) (24)

is the electron-phonon interaction Hamiltonian. In previous
expressions, b̂†k (b̂k) are the creation (annihilation) operators for
the phonon mode k that satisfy bosonic commutation relations,
ĉ†α (ĉα) are creation (annihilation) operators for electronic
single-particle state α that satisfy fermion anticommutation
relations, �ωk is the energy of a mode k phonon, while
εα is the energy of electronic state α. Matrix elements of
electron-phonon interaction satisfy the relation

g±
αα′,k = g∓∗

α′α,k (25)

and their particular form depends on details of the electron-
phonon interaction mechanism.

We will assume that the phonon subsystem is in thermal
equilibrium and therefore we will adopt the following factor-
ization of the initial density matrix ρ̂(0):

ρ̂(0) = ρ̂e ρ̂ph,eq. (26)

The operator ρ̂ph,eq describes the phonon subsystem in equi-
librium at the temperature Tph = 1

kBβph
and it is given as

ρ̂ph,eq = e−βphĤph

Trph e−βphĤph
, (27)

whereas ρ̂e is the reduced density matrix of the electronic
subsystem. The state of the system described by Eq. (26)
assumes that electrons are out of equilibrium, while the
phonons are in equilibrium. Such states can arise naturally in
several relevant physical scenarios. A typical example of such
a scenario is a semiconductor structure excited with photons
whose energy is larger than the band gap of the structure.
Most of the energy of incident photons is then transferred
to electronic degrees of freedom and therefore it is quite
reasonable to assume that electrons are out of equilibrium,
while the phonons are in equilibrium.

The electric dipole moment operator �̂a introduced in
Eq. (11) can be expressed in the second quantization repre-
sentation as

�̂a = q
∑
αβ

xa;αβ ĉ†αĉβ, (28)

where xa;αβ ≡ 〈α|x̂a|β〉 are the matrix elements of the single
electron position operator. Using Eq. (16), we find that the
operator Ĵa reads Ĵa = Ĵ (1)

a + Ĵ (2)
a , where

Ĵ (1)
a = iq

�

∑
αβ

(εα − εβ)xa;αβ ĉ†αĉβ (29)

describes the contribution to the operator Ĵa due to direct
interaction of electrons with electric field, while

Ĵ (2)
a = iq

�

∑
k

∑
αβ

(F−
a;αβ,k ĉ†αĉβ b̂k + F+

a;αβ,k ĉ†αĉβ b̂
†
k) (30)
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describes the contribution arising from electron-phonon inter-
action. The coefficients F±

a;αβ,k are given by

F±
a;αβ,k =

∑
α′

(g±
αα′,k xa;α′β − xa;αα′g±

α′β,k) (31)

and satisfy the relation

F±
a;αβ,k = −F∓∗

a;βα,k. (32)

In this work, we are mainly interested in the case of localized
electronic states when the matrix elements of the position
operator between different states are negligible. This condition
can be mathematically expressed as

xa;αβ = δαβ xa;α. (33)

Therefore, in the case of localized electronic states, Ĵ (1)
a = 0

and consequently Ĵa = Ĵ (2)
a .

Next, we treat electron-phonon interaction as a perturbation
and perform the expansion of Eq. (21) with respect to small
interaction constants g±

αβ,k . The evolution operator that appears
in Eq. (21) can be expanded in Dyson series as

e− i
�

Ĥ t = e− i
�

Ĥ0t + 1

i�

∫ t

0
dt ′ e− i

�
Ĥ0(t−t ′)Ĥe-phe

− i
�

Ĥ0t
′ + · · · .

(34)

Consequently, the expansion of the time-dependent operator
Ĵa(τ ) from Eq. (21) reads

Ĵa(τ ) = e
i
�

Ĥ0τ Ĵae
− i

�
Ĥ0τ +

[
e

i
�

Ĥ0τ Ĵae
− i

�
Ĥ0τ ,

∫ τ

0

dt ′

i�
e

i
�

Ĥ0t
′
Ĥe-phe

− i
�

Ĥ0t
′
]
+ · · · . (35)

Furthermore, the expansion of the first term under trace in
Eq. (21) gives

e− i
�

Ĥ (t−τ )ρ̂(0)e
i
�

Ĥ (t−τ )

= ρ̂(0) +
+∞∑
n=1

1

n!

(
− i(t − τ )

�

)n

[Ĥ , . . . ,[Ĥ ,ρ̂(0) ] . . . ]︸ ︷︷ ︸
n

.

(36)

Our aim is to obtain the first nonzero term in the expansion
of Eq. (21) in the case of localized electronic states. It
is therefore sufficient to take only the first term in the
expansion given by Eq. (35) and to isolate the contribution
from the expansion given in Eq. (36) which does not contain
electron-phonon coupling constants. One can show by direct
inspection, using the factorization of the initial density matrix
given by Eq. (26), that every summand under the sum on the
right hand side of Eq. (36) has only one term which does
not contain electron-phonon coupling constants and which is
of the type 1

n! (− i(t−τ )
�

)n[Ĥe, . . . ,[Ĥe,ρ̂e ] . . . ]︸ ︷︷ ︸
n

ρ̂ph,eq. All these

contributions can be resummed so that we finally obtain the
zeroth-order term in the expansion given by Eq. (36)

e− i
�

Ĥ (t−τ )ρ̂(0)e
i
�

Ĥ (t−τ ) = e− i
�

Ĥe(t−τ )ρ̂(0) e
i
�

Ĥe(t−τ ) + · · · .

(37)

The first nontrivial term in the expansion of Eq. (21) in the
case of localized electronic states is thus given by

σab(t,t ′) = nq2

m
δab − i

�V

∫ t−t ′

0
dτ

× Tr
(
ρ̂(0) e

i
�

Ĥe(t−τ )[Ĵ (2),0
a (τ ),Ĵ (2)

b (0)
]
e− i

�
Ĥe(t−τ )),

(38)

where Ĵ (2),0
a (τ ) = e

i
�

Ĥ0τ Ĵ (2)
a e− i

�
Ĥ0τ . Next, we consider the

frequency-time representation of the conductivity tensor which
can be defined as

σab(t,ω) =
∫ +∞

0
du σab(t,t − u) eiωu. (39)

When σab(t,t ′) depends only on the difference t − t ′, Eq. (39)
defines the conventional optical conductivity tensor σab(ω).
The frequency-time representation of the conductivity tensor
given in Eq. (38) is

σab(t,ω) = inq2

mω
δab + 1

�ωV

∫ +∞

0
du eiωu

× Tr
(
ρ̂(0) e

i
�

Ĥe(t−u)
[
Ĵ (2),0

a (u),Ĵ (2)
b

]
e− i

�
Ĥe(t−u)

)
.

(40)

In the case when σab(t,ω) varies slowly with t on the 1/ω

time scale, it can be interpreted as the conventional optical
conductivity tensor at time t .

We also note that when the condition of localized electronic
states [Eq. (33)] is not satisfied, the dominant term in the Ĵa

operator is the Ĵ (1)
a term. The leading terms in expansions

(35) and (36) are then given by first terms in Eqs. (35) and
(37), where Ĵa is replaced by Ĵ (1)

a in Eq. (35). These terms are
independent of electron-phonon coupling constants and lead to
the following expression for the frequency-time representation
of the conductivity tensor:

σab(t,ω) = inq2

mω
δab + 1

�ωV

∫ +∞

0
du eiωu

× Tr
(
ρ̂(0) e

i
�

Ĥe(t−u)
[
Ĵ (1),0

a (u),Ĵ (1)
b

]
e− i

�
Ĥe(t−u)

)
.

(41)

The physical origin of this term is direct absorption
of electromagnetic radiation by the electronic subsystem.
However, since this term vanishes for a system with localized
electronic states, which is of main interest in this work, this
term will not be considered in the remainder of the paper.
The focus will be on the term from Eq. (40) which arises due
to phonon-assisted transitions between states, as will become
evident in Sec. III B.

B. Frequency dependence of mobility
in low carrier density limit

We will now start from Eq. (40) for the frequency-
time representation of conductivity to derive the expres-
sion for the optical conductivity that explicitly contains
the populations of electronic states (diagonal elements
of ρ̂e) and coherences (off-diagonal elements of ρ̂e). By
replacing Eq. (30) into the expression for mean value
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Tr(ρ̂(0) e
i
�

Ĥe(t−u)[Ĵ (2),0
a (u),Ĵ (2)

b ]e− i
�

Ĥe(t−u)) and tracing out the phonon degrees of freedom one obtains

Tr
(
ρ̂(0) e

i
�

Ĥe(t−u)
[
Ĵ (2),0

a (u),Ĵ (2)
b

]
e− i

�
Ĥe(t−u)

) (
iq

�

)−2

=
∑

k

∑
αβγ δ

(
F−

a;αβ,kF
+
b;γ δ,k e− i

�
(εγ −εδ+�ωk)u − F+

a;αβ,kF
−
b;γ δ,k e− i

�
(εγ −εδ−�ωk )u

)
e

i
�

(εα−εβ+εγ −εδ )t 〈ĉ†αĉβ ĉ†γ ĉδ〉e

+
∑

k

∑
αβγ

(
F−

a;αγ,kF
+
b;γβ,k e− i

�
(εγ −εβ+�ωk )u − F+

b;αγ,kF
−
a;γβ,k e− i

�
(εα−εγ +�ωk )u

)
Nk e

i
�

(εα−εβ )t 〈ĉ†αĉβ〉e

+
∑

k

∑
αβγ

(
F+

a;αγ,kF
−
b;γβ,k e− i

�
(εγ −εβ−�ωk )u − F−

b;αγ,kF
+
a;γβ,k e− i

�
(εα−εγ −�ωk )u

)
(1 + Nk) e

i
�

(εα−εβ )t 〈ĉ†αĉβ〉e. (42)

Here, Nk is the number of phonons in mode k given by
the Bose-Einstein distribution, 〈· · · 〉e denotes averaging with
respect to ρ̂e, and coefficients F±

αβ,k are given as [by the virtue
of the definition of the localized electronic states from Eq. (33)]

F±
a;αβ,k = g±

αβ,k(xa;β − xa;α). (43)

See Eqs. (31) and (32).
In the limit of low carrier densities, only single-particle

electronic excitations are relevant. One can therefore restrict
the Hilbert space of the system to the space given as a product
of single-particle electronic space and the phonon space. In
this restricted space, the operators c†αĉβ and c†αĉβ ĉ†γ ĉδ reduce
respectively to |α〉〈β| and δβγ |α〉〈δ|, while the Hamiltonian in
this restricted space reads

Ĥ =
∑

α

εα|α〉〈α| +
∑

k

�ωk b̂
†
k b̂k

+
∑

k

∑
αα′

(g−
αα′,k |α〉〈α′|b̂k + g+

αα′,k |α〉〈α′|b̂†k). (44)

The average values of the expressions appearing in Eq. (42)
are then given as

〈ĉ†αĉβ〉e = Tre(ρ̂eĉ
†
αĉβ) = 〈β|ρ̂e|α〉 (45)

and

〈ĉ†αĉβ ĉ†γ ĉδ〉e = Tre(ρ̂eĉ
†
αĉβ ĉ†γ ĉδ) = δβγ 〈δ|ρ̂e|α〉. (46)

Combining Eqs. (45), (46), (42), and (40), the following
equation for the frequency-time representation of the conduc-
tivity tensor is obtained:

σab(t,ω) = i
nq2

mω
δab − fab(t,ω) − fab(t, − ω)∗, (47)

where fab(t,ω) is defined as

fab(t,ω) = q2

�2ωV

∑
k

∑
αβγ

e
i
�

(εα−εβ )t 〈β|ρ̂e|α〉

× (F−
a;αγ,kF

+
b;γβ,kD(εβ − εγ − �ωk + �ω)(1 + Nk)

+F+
a;αγ,kF

−
b;γβ,kD(εβ − εγ + �ωk + �ω)Nk). (48)

Function D(ε) is given as

D(ε) = πδ(ε) + i P(1/ε). (49)

In the expressions (47) and (48), there are two clear signatures
of nonequilibrium: the explicit time dependence and the

presence of off-diagonal elements of ρ̂e (coherences). Both
of these effects would be absent for the system in equilibrium.

Next, we consider the case when the reduced density matrix
of the electronic subsystem is an analytic function of the
electronic Hamiltonian Ĥe, when we have

〈β|ρ̂e|α〉 = δαβ rα, (50)

where

rα = 〈α|ρ̂e|α〉 (51)

is the average occupation of electronic state α. Then in Eq. (48)
we remain only with the average occupations of individual
electronic states and since the quantity fab(t,ω) does not
depend explicitly on t , σab(t,ω) also does not depend on t

and represents the frequency-dependent conductivity tensor.
Starting from Eqs. (47) and (48) one can show that under the
aforementioned condition the following relation for the real
part of the optical conductivity holds:

Re σab(ω) = q2

2�ωV

∑
αβ

(xa;β − xa;α)(xb;β − xb;α)rβ

× [wβα,ph(εβ − εα + �ω)

−wβα,ph(εβ − εα − �ω)], (52)

where the terms wβα,ph are of the form

wβα,ph(εβ − εα) = 2π

�

∑
k

[|g−
αβ,k|2δ(εβ − εα + �ωk)Nk

+ |g+
αβ,k|2δ(εβ − εα − �ωk)(1 + Nk)].

(53)

These are identical to the rates that would be obtained by
applying Fermi’s golden rule to calculate the transition prob-
ability from the state β to the state α due to electron-phonon
interaction. Equation (52) gives a rather simple expression for
the dissipative part of the optical conductivity as it involves the
positions of electronic states, their occupations, and Fermi’s
golden rule transition probabilities. Equations (52) and (53)
also offer an intuitive interpretation of elementary processes
giving contribution to the dissipative part of the optical
conductivity in the lowest nontrivial order of the perturbation
expansion. These processes are one-particle transitions β → α

induced by emission (absorption) of one phonon accompanied
by emission (absorption) of the quantum of the external
electromagnetic field �ω. One should note that within our
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lowest-order perturbative approach, one does not take into
account multiphonon transitions which may be important in
some systems.

From the definition of mobility, one then also obtains for
the real part of ac mobility

Re μab(ω) = q

2�ω

∑
αβ

(xa;β − xa;α)(xb;β − xb;α)
rβ∑
γ rγ

× [wβα,ph(εβ − εα + �ω)

−wβα,ph(εβ − εα − �ω)]. (54)

Equation (54) was derived under the assumption that hopping
rates have the mathematical form given by Eq. (53). In
Sec. V, the hopping rates given by Eqs. (70) and (66) will
be used. Equation (70) can be derived from Eq. (53) under
the assumption that electron-phonon coupling elements are
proportional to wave function moduli overlap (see Ref. [38]).
Equation (66) can then be obtained from Eq. (70) if one
assumes that wave function overlaps decay exponentially with
distance between states and that phonon density of states
(DOS) is such that energy dependence in Eq. (70) disappears.
Therefore, both Eqs. (70) and (66) are compatible with the
mathematical structure of Eq. (53) and it is appropriate to use
them in Eq. (54).

IV. OPTICAL CONDUCTIVITY IN THE PRESENCE
OF IMPURITY SCATTERING

In this section, we will show that similar expressions for
optical conductivity are obtained if electrons interact with an
additional static potential, rather than with phonons. A typical
cause of such potential could be the impurities that are present
in the material.

Therefore, we consider the Hamiltonian

Ĥ = Ĥ0 + Û =
∑

α

εαĉ†αĉα +
∑
αβ

Aαβ ĉ†αĉβ, (55)

where Ĥ0 is the noninteracting part of the Hamiltonian, while
Û describes the interaction of electrons with static potential.
The operator Ĵa can be computed using Eq. (16) and reads

Ĵa = Ĵ (dir)
a + Ĵ (imp)

a

= iq

�

∑
αα′

xa;αα′ (εα − εα′)ĉ†αĉα′ + iq

�

∑
αβ

Aa;αβ ĉ†αĉβ .

(56)

The Ĵ (dir)
a operator is analogous to the operator Ĵ (1)

a in the case
of a system with electron-phonon interaction and describes
direct interaction of electrons with perturbing electric field. On
the other hand, the Ĵ

(imp)
a operator describes the contribution

to Ĵa due to the interaction with the static potential (or, in
particular, with impurities). The coefficients Aa;αβ that appear
in Eq. (56) are given as

Aa;αβ =
∑
α′

(Aαα′xa;α′β − xa;αα′Aα′β) (57)

and satisfy [compare to Eq. (32)]

Aa;βα = −A∗
a;αβ. (58)

We will treat the interaction with the static potential as
a perturbation and we will derive the formula for optical
conductivity in the lowest order of the perturbation expansion
with respect to small coefficients Aαβ . We will assume that
electronic states are localized; see Eq. (33). This way, the
expression for the operator Ĵa simplifies to

Ĵa = Ĵ (imp)
a = iq

�

∑
αβ

Aαβ(xa;β − xa;α)ĉ†αĉβ . (59)

The starting point for the perturbation expansion is again
Eq. (21). Following a discussion, similar to that conducted in
Sec. III, we obtain that the first nonzero term in the expansion
of Eq. (21) in the case of localized electronic states is quadratic
in quantities Aαβ and that the corresponding expression for
the time-frequency representation of the conductivity tensor
[Eq. (39)] reads

σab(t,ω) = inq2

mω
δab + 1

�ωV

∫ +∞

0
dt eiωt

×Tr
(
ρ̂(0) e

i
�

Ĥ0(t−u)
[
Ĵ (imp),0

a (u),Ĵ (imp)
b

]
e− i

�
Ĥ0(t−u)

)
.

(60)

The notation Ĵ
(imp),0
a (t) again suggests that the time depen-

dence is governed by the noninteracting Hamiltonian.
In the low density limit, the projection of the Hamiltonian

onto the single-particle subspace reads

Ĥ0 =
∑

α

εα|α〉〈α| +
∑
αβ

Aαβ |α〉〈β|, (61)

with the average values 〈ĉ†αĉβ〉 = 〈β|ρ̂(0)|α〉. Deriving
Eq. (60) we obtain the expression for the frequency-time
representation of the conductivity tensor which bears formal
resemblance to the analogous expression [Eq. (47)] in the case
with electron-phonon interaction,

σab(t,ω) = i
nq2

mω
δab − fab(t,ω) − fab(t, − ω)∗, (62)

where fab(t,ω) is defined as

fab(t,ω) = q2

�2ωV

∑
αβγ

e
i
�

(εα−εβ )t 〈β|ρ̂e|α〉Aαγ (xa;γ − xa;α)

×Aγβ(xb;β − xb;γ )D(εβ − εγ + �ω). (63)

Again, when the initial density matrix ρ̂(0) is an analytic
function of the electronic part of the Hamiltonian Ĥ0, the
quantity fab(t,ω) defined in Eq. (63) contains only populations
of the individual electronic states rα = 〈α|ρ̂(0)|α〉 and does
not depend explicitly on time. Thus σab(t,ω) is the optical
conductivity tensor (entirely expressed in terms of populations
of electronic states). The final expression for the real part of ac
mobility in the presence of interaction with impurities reads

Re μab(ω) = q

2�ω

∑
αβ

(xa;β − xa;α)(xb;β − xb;α)
rβ∑
γ rγ

× [wβα,imp(εβ − εα + �ω)

−wβα,imp(εβ − εα − �ω)], (64)
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where the terms wβα,imp are of the form

wβα,imp(εβ − εα) = 2π

�
|Aαβ |2δ(εβ − εα). (65)

We emphasize the formal analogy between Eqs. (54) and
(64) for the ac mobility. The form of both equations is
the same, regardless of the particular interaction mechanism
(electron-phonon interaction or interaction with an additional
static potential) which causes transitions between localized
states.

V. NUMERICAL RESULTS

A. One-dimensional model with Miller-Abrahams rates
and Gaussian density of states

In this section, we apply the derived formulas to a one-
dimensional Gaussian disorder model. The assumption of
the model is that the states are located on the sites of a
one-dimensional lattice with spacing a and that the energies
of the states are drawn from a Gaussian distribution with
standard deviation σ . The transition rates were assumed to
take the Miller-Abrahams form and only the hops between

nearest neighbors were considered. Under these assumptions,
the transition rate from the state β to the state γ has the form

wβγ = w0 e−a/aloc exp

(
εβ − εγ − |εβ − εγ |

2kBT

)
, (66)

where aloc is the localization length which is assumed equal for
all sites, T is the temperature, and w0 is a constant prefactor.
Real part of the frequency dependent mobility can under all
these assumptions be written in the form

Re μxx(ω) =
∑

γ

μγ,γ+1(ω), (67)

where μγ,γ+1(ω) is the contribution of the pair of sites
(γ,γ + 1) given as

μγ,γ+1(ω) = qa2

2kBT
w0 e−a/aloc M(x). (68)

In the last equation, x is a dimensionless parameter defined
as x = β�ω [β = 1/(kBT )], while M(x) is the function that
reads

M(x) =
⎧⎨
⎩

rmin∑
δ rδ

e−xγ,γ+1 × 2 sinh x
x

, x < xγ,γ+1,

rmax∑
δ rδ

1
x

(1 − exγ,γ+1e−x) + rmin∑
δ rδ

1
x

(1 − e−xγ,γ+1e−x), x > xγ,γ+1,
(69)

where xγ,γ+1 = β|εγ − εγ+1| and rmax (rmin) is the population
of the state with larger (smaller) energy among the states γ

and γ + 1.
The frequency range in which this formula can be applied

is determined by the condition (5) where τ is the relaxation
time towards equilibrium. The relaxation time τ must be
larger than the reciprocal value of largest hopping rates
τ � w−1

0 ea/aloc , so that the relevant frequencies obey the
condition f � (2π )−1 w0 e−a/aloc .

The calculations were performed for a lattice with 105

sites, where the following values of the parameters were used:
T = 300 K, σ = 100 meV, a = 1 nm, aloc = 2a/9, and
w0 = 1.0×1014 s−1. Two different cases for initial popula-
tions of localized states were considered. In case 1, we assume
that initial distribution of carriers are nonequilibrium, but
still of Maxwell-Boltzmann form with electronic temperatures
Te which can be different than T . Therefore, in this case
rγ = e−βeεγ , where βe = 1/(kBTe). In case 2, we assume that
only the states in some narrow energy window are initially
populated, while the other states are not populated. The initial
populations are then given as rγ = 1 for εmin < εγ < εmax,
rγ = 0 otherwise. The results for different values of the
parameter Te in case 1 and different intervals (εmin,εmax) in
case 2 are shown in Figs. 1 and 2.

As can be immediately seen from expressions in
Eqs. (67)–(69), for sufficiently high frequencies f , such that
hf > maxγ |εγ − εγ+1|, real part of the ac mobility decreases
as Re μxx(f ) ∼ 1/f . On the other hand, for sufficiently low
frequencies f , such that hf < minγ |εγ − εγ+1|, real part of
the mobility tends to a constant value which depends on the
particular choice of rγ .

In case 1 and in the intermediate frequency range real part of
the ac mobility reaches its maximum value. The height of this
maximum (measured relative to the low-frequency limit of the
mobility) decreases with increasing the temperature Te. The
position of the maximum moves towards lower frequencies
with increasing the temperature Te. Namely, the position of
the maximum of the mobility spectrum is determined by the
positions of the maximum of the function M(x). For all values

FIG. 1. (Color online) Frequency dependence of real part of
the normalized mobility μ̃xx = μxx/(qa2βw0e

−a/aloc/2) for different
electronic temperatures Te in one-dimensional Gaussian disorder
model. The nonequilibrium populations of electronic states were
assumed as rγ = e−βeεγ .
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FIG. 2. (Color online) Frequency dependence of real part of
the normalized mobility μ̃xx = μxx/(qa2βw0e

−a/aloc/2) for different
choices of the energy interval ε ∈ (εmin,εmax) of the populated states
in one-dimensional Gaussian disorder model. The nonequilibrium
populations of electronic states were assumed as rγ = 1 for εmin <

εγ < εmax, and rγ = 0 otherwise.

of the parameter Te considered in Fig. 1, it can be shown (by
direct inspection) that the function M(x) has its maximum at
x = xγ,γ+1. At low temperatures Te the lowest energy states
have the highest values of the factors rγ and the typical energy
difference |εγ − εγ+1| of the pair of neighboring sites giving
significant contribution to the mobility (at least one of the states
should have high enough population factor) is fairly high, so
that the peak of the contribution μγ,γ+1 is at high frequencies.
This typical energy difference decreases with increasing the
temperature Te (since higher energy states, which are more
numerous, also have appreciable values of population factors),
which leads to the shift of the peak position towards lower
frequencies. For small enough |εγ − εγ+1| (compared to kBT ),
the function M(x), for x < xγ,γ+1, can be approximated by a
constant, which leads to flattening of the maximum, as seen at
higher electronic temperatures in Fig. 1.

A similar analysis can be used to understand the shapes
of the mobility spectra for case 2 shown in Fig. 2. The
contribution to the mobility of the pair (γ,γ + 1) reaches
its maximum at frequency f∗ such that hf∗ > |εγ − εγ+1|.
When the interval (εmin,εmax) is in the tail of the Gaussian,
the typical energy difference |εγ − εγ+1| is rather high for
the pairs contributing significantly to the mobility, so that the
maximum of the mobility spectrum is at high frequencies.
Moving the interval towards the center of the Gaussian, the
typical energy difference decreases and so does the position of
the maximum of the mobility spectrum. For sufficiently small
energy difference (compared to kBT ), the function M(x) can
be well approximated by a constant in the range x < xγ,γ+1

which explains the disappearance of the maximum.
Since the flattening of the maximum in the mobility

spectrum appears due to the presence of carriers at higher
energies under nonequilibrium conditions, this flattening may
be considered as a signature of nonequilibrium effects in the
system. It is less pronounced when nonequilibrium distribution
is of Maxwell-Boltzmann type with a different electronic

temperature and more pronounced in the case when the carriers
are present only at energies in a certain spectral window—a
situation where the carrier distribution more strongly differs
from the equilibrium one.

B. Model of a disordered conjugated polymer material

Next, we apply the derived formula for frequency depen-
dence of the mobility to a realistic polymer material—strongly
disordered poly(3-hexylthiophene) (P3HT) polymer. The po-
sitions of electronic states, hopping probabilities between the
states, and the energies of states were extracted from our pre-
vious calculations reported in Ref. [39]. For completeness, we
briefly summarize the methodology employed in these calcula-
tions. First, the positions of atoms were obtained from classical
molecular dynamics simulations using a simulated annealing
procedure. 50 different realizations of the 5 nm×5 nm×5 nm
portion of material (that consists of 120 24 atoms) were
obtained from these simulations and were subsequently used
in electronic structure calculations. Charge patching method
[40] was used to obtain the single-particle Hamiltonian that
approximates well the Hamiltonian that would be obtained
from density functional theory in local density approximation.
This Hamiltonian was diagonalized using the overlapping
fragments method [41]. The transition rates for downhill
transitions between the states were then calculated as

wαβ = α2S2
αβ[N (εαβ) + 1]Dph(εαβ)/εαβ, (70)

where Dph(E) is the phonon DOS normalized such that∫ ∞
0 Dph(E)dE = 1, εαβ = |εα − εβ |, N (E) is the phonon

occupation number given by the Bose-Einstein distribution at
a temperature T , Sαβ = ∫

d3r|ψα(r)| · |ψβ(r)| is the overlap
of the wave function moduli, and α is a constant factor equal
to 107 eV s−1/2. The phonon energies and the phonon DOS
were calculated from the classical force field that was used
in molecular dynamics simulations by diagonalizing the
corresponding dynamical matrix, as reported in Ref. [42].
Equation (70) gives a good approximation of the transition
rates that would be obtained from Eq. (53), as shown in
Ref. [38]. The value of the parameter α in Eq. (70) was chosen
to provide the best fit of Eqs. (70) to (53).

Frequency dependence of the real part of hole mobility
was then calculated using Eqs. (52) and (70) where all data
from 50 different realizations of the 120 24 atom system were
used. The results obtained from the calculation are presented
in Fig. 3. We note that the data from electronic structure
calculations that were performed are not sufficient to yield
convergent results for the mobility. This can be evidenced
from the noisy dependence in Fig. 3 and from the fact that the
mobility obtained from a smaller number of realizations of the
system is different than the one in Fig. 3. Larger number of
calculations or the calculations performed on larger systems
would be needed to obtain converged value of the mobility.
However, such calculations require a huge computational cost
and we cannot currently perform them. Nevertheless, from the
set of calculations that were performed one can identify the
main trends in the frequency dependence of the mobility. As
in the simple model discussed in Sec. V A, the real part of
the mobility exhibits a peak at a frequency that corresponds to
typical transition energies in the system, which is then followed
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FIG. 3. (Color online) Frequency dependence of real part of
hole mobility in disordered P3HT polymer for different electronic
temperatures Te and the lattice temperature T = 300 K.

by a decay at higher frequencies. The mobility also increases
with an increase in electronic temperature, as expected.

We next compare the results obtained in this work to
measurements of high-frequency P3HT hole mobility reported
in the literature. These measurements are typically based on
time-resolved terahertz spectroscopy [43] and cover the fre-
quencies around 1 THz. At these frequencies our simulations
yield the mobilities on the order of (50–100) cm2/(V s). In
Ref. [44] the mobilities on the order of 10 cm2/(V s) were
extracted from the fits to measurements. On the other hand,
the mobilities on the order of 50 cm2/(V s) were obtained in
Ref. [45]. Therefore, the simulation yields the same order of
magnitude of the terahertz mobility as previously reported in
experiments.

VI. DISCUSSION

In this section, we discuss our results in light of other results
that exist in the literature and concern optical conductivity in
a system with localized states.

Our result for nonequilibrium optical conductivity should,
of course, in the special case of equilibrium reduce to the
formula valid in equilibrium case. A well-known expression
for the real part of optical conductivity in equilibrium that
relates it to the mean square displacement of a diffusing carrier
reads (see, for example, Ref. [24])

Reσ (ω) = −q2ω2

V

tanh (β�ω/2)

�ω
Re

∫ +∞

0
dt eiωt�X2(t),

(71)

where �X2(t) = 〈(X̂(t) − X̂(0))2〉, X̂ is the sum of position
operators of all electrons, and 〈· · · 〉 = Tr(e−βĤ · · · )/Tr e−βĤ

is the thermodynamic average at the temperature T =1/(βkB).
While, at first sight, Eq. (71) seems to lead to rather different
results for the lowest-order optical conductivity than the one
embodied in Eq. (52), a detailed proof can be conducted,
showing that the two expressions are identical for the system
with localized states in equilibrium. The details of this proof
are given in the Appendix.

A somewhat different version of Eq. (71) is often encoun-
tered in the literature which contains the β/2 term instead of
the tanh (β�ω/2)

�ω
term and reads [23,26,27,46]

Re σ (ω) = −q2ω2β

2V
Re

∫ +∞

0
dt eiωt�X2(t). (72)

When the condition β�ω � 1 is satisfied these two expres-
sions are approximately equal. However, at high frequencies
these two expressions essentially differ. While Eq. (71) leads
to the real part of the conductivity that vanishes at sufficiently
high frequencies, Eq. (72) gives a constant real part of the
mobility at these frequencies which is not the correct trend.
Therefore, Eq. (72) should be applied only if the condition
β�ω � 1 is satisfied.

An expression for optical conductivity in the form similar to
the one given in Eq. (52) has also been previously obtained for
the case of equilibrium [47,48]. These expressions [Eq. (12)
in Ref. [47] and Eq. (3.21) in Ref. [48]] in the limit of low
concentration are the special case of Eq. (52) for the case of
equilibrium in the limit �ω � kBT . It is very interesting that
our main result given by Eq. (52) has the same mathematical
form as the expressions for the case of equilibrium. Therefore,
we have generalized the result that was known for the case of
equilibrium to the case of nonequilibrium systems that satisfy
the assumptions of factorization of the density matrix into the
electron and the phonon part [Eq. (26)] and weak relaxation at
relevant time scales [Eq. (5)].

As we have already pointed out, our results are not expected
to be valid at low frequencies, such that the period of
perturbation is larger than the carrier relaxation time. For
that reason, one can certainly not assume that dc mobility
or conductivity is equal to the low frequency limit of our
results. There is an additional reason that our results cannot
be extended to low frequencies. It has been pointed out in
Refs. [47,48] that conductivity at low frequencies cannot be
obtained from a formal expansion in powers of electron-
phonon interaction strength, which is an approach used in
our work.

From the previous discussion, we can conclude that our
results reduce to previous results from the literature for the case
of equilibrium state. On the other hand, there have been almost
no works in the literature with an attempt to obtain similar
results for the system out of equilibrium. The exceptions are
Refs. [36,37] where Eq. (19) was derived. However, we are
not aware of any attempt to obtain a more specific form of
nonequilibrium conductivity in a system with localized states
and the main contribution of our work is that it covers this so
far unexplored area.

VII. CONCLUSION

In conclusion, we have developed an approach for the
treatment of nonequilibrium optical conductivity in a system
with localized electronic states and weak electron-phonon or
electron-impurity interaction. Starting from nonequilibrium
generalization of Kubo’s formula and performing the expan-
sion of optical conductivity in powers of small electron-phonon
interaction parameter, we obtain a relatively simple expression
for the optical conductivity of the material. In the special case
of incoherent nonequilibrium state the expression contains
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only the positions of electronic states, their nonequilibrium
populations, and Fermi’s golden rule transition probabilities
between the states. Interestingly, the same mathematical form
of the expression is valid both in the case of electron-phonon
and electron-impurity interaction. Our result opens the way
to better understanding of the response of nonequilibrium
systems to electromagnetic radiation. A typical example where
our results can be applied is photoexcited semiconductor where
electrons and holes are formed by the optical excitation. If
that semiconductor is then probed by low energy (terahertz)
excitation, the response will depend on the nonequilibrium
distribution of excited carriers. Our final expressions should
be able to predict the response of the system to such probes.

The application of the derived formula to two model systems
was presented to illustrate the features that one may expect to
see in terahertz conductivity spectra.
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APPENDIX: PROOF OF EQUIVALENCE OF THE LOWEST-ORDER OPTICAL CONDUCTIVITY CALCULATED
FROM EQ. (71) AND THE EXPRESSION IN EQ. (52)

The operator X̂(t) − X̂(0) appearing in Eq. (71) can be expressed as [see Eqs. (11) and (16)]

q(X̂(t) − X̂(0)) =
∫ t

0
dt ′ Ĵx(t ′), (A1)

so that in the case of localized carriers, when Ĵx = Ĵ (2)
x , the operator (X̂(t) − X̂(0))2 is quadratic in electron-phonon coupling

constants. If we are to obtain the conductivity up to quadratic terms in small interaction constants g±
αβ,k , it is clear that the

following factorization of the equilibrium statistical operator should be adopted [compare to the decomposition of the initial
density matrix in Eq. (26)]

e−Ĥ /(kBT )

Tr e−Ĥ /(kBT )
≈ e−Ĥe/(kBT )

Tre e−Ĥe/(kBT )

e−Ĥph/(kBT )

Trph e−Ĥph/(kBT )
, (A2)

and that time dependencies appearing in (71) should be taken with respect to the noninteracting Hamiltonian Ĥ0. The average
value 〈(X̂(t) − X̂(0))2〉 is then transformed into

〈(X̂(t) − X̂(0))2〉 =
∑

k

∑
αβγ δ

(xβ − xα)(xδ − xγ )〈ĉ†αĉβ ĉ†γ ĉδ〉e

(
g−

αβ,kg
+
γ δ,k

e
i
�

(εα−εβ−�ωk )t − 1

εα − εβ − �ωk

e
i
�

(εγ −εδ+�ωk)t − 1

εγ − εδ + �ωk

(1 + Nk)

+ g+
αβ,kg

−
γ δ,k

e
i
�

(εα−εβ+�ωk)t − 1

εα − εβ + �ωk

e
i
�

(εγ −εδ−�ωk)t − 1

εγ − εδ − �ωk

Nk

)
, (A3)

where 〈· · · 〉e denotes averaging with respect to the electronic part of the decomposition (A2). Combining Eqs. (71) and (A3)
and in the limit of low carrier densities, when Eqs. (46), (50), and (51) can be used, the following expression for the optical
conductivity (ω �= 0) is obtained:

Re σxx(ω) = q2

2�ωV
tanh

(
�ω

2kBT

) ∑
αβ

(xβ − xα)2rβ[wβα,ph(εβ − εα − �ω) + wβα,ph(εβ − εα + �ω)], (A4)

where the transition probabilities wβα,ph are defined in Eq. (53) and the average occupation of electronic state β is rβ =
e−εβ/(kBT )/Tre e−Ĥe/(kBT ). In order to prove that the relation (52) (in which we take rβ = e−εβ/(kBTph)/Tre e−Ĥe/(kBTph)) gives the
same result for the lowest-order optical conductivity as Eq. (A4) (assuming that T = Tph), we note that the transition probabilities
satisfy the detailed-balance condition (in the low-density limit and in the presence of external harmonic perturbation)

wβα,ph(εβ − εα + �ω)

wαβ,ph(εα − εβ − �ω)
= e−(εα−εβ−�ω)/(kBT ) = rα

rβ

1 + tanh �ω
2kBT

1 − tanh �ω
2kBT

. (A5)

Interchanging the dummy electronic indices α,β in the first summand in Eq. (52) we obtain

Re σxx(ω) = q2

2�ωV

∑
αβ

(xβ − xα)2[−rαwαβ,ph(εα − εβ − �ω) + rβwβα,ph(εβ − εα + �ω)], (A6)
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whereas performing the same operation on Eq. (A4) gives

Re σxx(ω) = q2

2�ωV
tanh

(
�ω

2kBT

)∑
αβ

(xβ − xα)2[rαwαβ,ph(εα − εβ − �ω) + rβwβα,ph(εβ − εα + �ω)]. (A7)

The right-hand sides of Eqs. (A6) and (A7) are equal since, by the condition (A5), single summands under the double sums are
mutually equal.
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[41] N. Vukmirović and L.-W. Wang, J. Chem. Phys. 134, 094119

(2011).
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The promise of economically viable and environmentally friendly conversion of sunlight into electrical energy 

has driven vigorous and interdisciplinary research on donor/acceptor heterojunction organic photovoltaics. 

However, the actual mechanism of the emergence of free charges on subpicosecond (<100-fs) time scales 

following the excitation of a heterojunction remains elusive. 

 

We investigate subpicosecond exciton dynamics in the lattice model of an all-organic heterojunction. Exciton 

generation by means of a photoexcitation, exciton dissociation, and further charge separation are treated on 

equal footing and on a fully quantum level using the density matrix formalism combined with the dynamics 

controlled truncation scheme [1]. Our results indicate that the space-separated charges appearing on <100-fs 

time scales following the photoexcitation are predominantly directly optically generated [2], in contrast to the 

usual viewpoint that they originate from ultrafast population transfer from initially generated excitons in the 

donor material. The space-separated states acquire nonzero oscillator strengths from donor excitons thanks to 

the strong resonant mixing between these two groups of exciton states. The results of ultrafast pump-probe 

experiments are commonly interpreted in terms of exciton populations only. Our theoretical insights into the 

ultrafast pump-probe spectroscopy highlight the importance of coherences, which cannot be disregarded on 

such short time scales, in the interpretation of pump-probe spectra [2]. 
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Nonequilibrium Electrical Transport in Materials with Localized Electronic States 
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A broad range of disordered materials contain electronic states that are spatially well localized. In this 
work we studied the electrical response of such materials to external terahertz electromagnetic field [1]. 
We obtained expressions for nonequilibrium terahertz conductivity of a material with localized electronic 
states and weak electron-phonon or electron-impurity interaction. The expression is valid for any 
nonequilibrium state of the electronic subsystem prior to the action of external field. It gives 
nonequilibrium optical conductivity in terms of microscopic material parameters and contains both 
coherences and populations of the initial electronic subsystem's density matrix. Particularly, in the case 
of incoherent nonequilibrium state of the electronic subsystem, the optical conductivity is entirely 
expressed in terms of the positions of electronic states, their nonequilibrium populations, and Fermi's 
golden rule transition probabilities between the states. The same mathematical form of the expression is 
valid both in the case of electron-phonon and electron-impurity interaction. Moreover, our result for the 
nonequilibrium optical conductivity has the same form as the expressions previously obtained for the 
case of equilibrium. Our results are expected to be valid at sufficiently high frequencies, such that the 
period of the external field is much smaller than the carrier relaxation time. We apply the derived 
expressions to two model systems, a simple one-dimensional Gaussian disorder model and the model of 
a realistic three-dimensional organic polymer material obtained using previously developed multiscale 
methodology [2]. We note that the simple one-dimensional model captures the essential features of the 
mobility spectrum of a more realistic system. Furthermore, our simulations of the polymer material yield 
the same order of magnitude of the terahertz mobility as previously reported in experiments. 

 
 
[1] V. Janković and σ. Vukmirović, Phys. Rev. B λ0, ββ4β01 (β014). 
[β] σ. Vukmirović and L.-W. Wang, Nano Lett. 9, 3996 (2009). 

 
 



The 19th Symposium on Condensed Matter Physics - SFKM 2015, Belgrade - Serbia

Nonequilibrium High-frequency Conductivity in 

Materials with Localized Electronic States

Veljko Janković and Nenad Vukmirović

a
Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade,

Pregrevica 118, 11080 Belgrade, Serbia

Abstract. A broad range of disordered materials contain electronic states that are spatially well

localized. These include amorphous inorganic semiconductors, inorganic crystals doped with

randomly positioned impurities and organic semiconductors based on conjugated polymers or

small molecules. Usual approaches to simulation of ac conductivity of these materials rely on

Kubo’s formula which expresses the ac conductivity in terms of the mean square displacement 
of a diffusing carrier. Such approaches therefore assume that carriers are in equilibrium and that 

they are only slightly perturbed by external alternating electric field. However, in many realistic

situations, the carriers are not in equilibrium; a typical example concerns the carriers created by

external optical excitation across the band gap of a semiconductor.

In this work we obtain the expression for the optical conductivity in a material with localized

electronic states and weak electron-phonon or electron-impurity interaction [1]. The expression

is valid for any nonequilibirum state of the electronic subsystem prior to the action of electric

field. It gives nonequilibirum optical conductivity in terms of microscopic material parameters

and contains both coherences and populations of the initial electronic subsystem’s density
matrix. Particularly, in the case of incoherent nonequilibrium state of the electronic subsystem,

the optical conductivity is entirely expressed in terms of the positions of electronic states, their

nonequilibrium populations, and Fermi’s golden rule transition probabilities between the states. 
The same mathematical form of the expression is valid both in the case of electron-phonon and

electron-impurity interaction. Moreover, our result for the nonequilibrium optical conductivity 

has the same form as the expressions previously obtained for the case of equilibrium. The 

derivation was performed by expanding the general expression for ac conductivity in powers of

small electron-phonon or electron-impurity interaction parameter. Our results are expected to be

valid at sufficiently high frequencies, such that the period of the electric field is much smaller

than the carrier relaxation time. We apply the derived expressions to two model systems, a 

simple one-dimensional Gaussian disorder model and the model of a realistic three-dimensional 

organic polymer material obtained using previously developed multiscale methodology [2]. We

note that the simple one-dimensional model captures the essential features of the mobility

spectrum of a more realistic system. Furthermore, our simulations of the polymer material yield

the same order of magnitude of the terahertz mobility as previously reported in experiments.
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A broad range of disordered materials contain electronic states that are spatially 

well localized. In this work [1] we studied the electrical response of such materials 

to external terahertz electromagnetic field. We obtained expressions for 

nonequilibrium terahertz conductivity of a material with localized electronic states 

and weak electron-phonon or electron-impurity interaction. The expression is valid 

for any nonequilibrium state of the electronic subsystem prior to the action of 

external field. It gives nonequilibrium optical conductivity in terms of microscopic 

material parameters and contains both coherences and populations of the initial 

electronic subsystem's density matrix. Particularly, in the case of incoherent 

nonequilibrium state of the electronic subsystem, the optical conductivity is entirely 

expressed in terms of the positions of electronic states, their nonequilibrium 

populations, and Fermi's golden rule transition probabilities between the states. The 

same mathematical form of the expression is valid both in the case of electron-

phonon and electron-impurity interaction. Moreover, our result for the 

nonequilibrium optical conductivity has the same form as the expressions 

previously obtained for the case of equilibrium. Our results are expected to be valid 

at sufficiently high frequencies, such that the period of the external field is much 

smaller than the carrier relaxation time. We apply the derived expressions to two 

model systems, a simple one-dimensional Gaussian disorder model and the model 

of a realistic three-dimensional organic polymer material obtained using previously 

developed multiscale methodology [2]. We note that the simple one-dimensional 

model captures the essential features of the mobility spectrum of a more realistic 

system. Furthermore, our simulations of the polymer material yield the same order 

of magnitude of the terahertz mobility as previously reported in experiments. 
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Title: Origin of Space-separated Charges in Photoexcited Organic
Heterojunctions on Ultrafast Time Scales

Abstract: The promise of economically viable and environmentally friendly
conversion of sunlight into electrical energy has driven vigorous and
interdisciplinary research on donor/acceptor heterojunction organic
photovoltaics. However, the actual mechanism of the emergence of free
charges on subpicosecond (<100-fs) time scales following the excitation
of a heterojunction remains elusive. 
We investigate subpicosecond exciton dynamics in the lattice model of an
all-organic heterojunction. Exciton generation by means of a
photoexcitation, exciton dissociation, and further charge separation are
treated on equal footing and on a fully quantum level using the density
matrix formalism combined with the dynamics controlled truncation
scheme [1]. Our results indicate that the space-separated charges
appearing on <100-fs time scales following the photoexcitation are
predominantly directly optically generated [2], in contrast to the usual
viewpoint that they originate from ultrafast population transfer from initially
generated excitons in the donor material. The space-separated states
acquire nonzero oscillator strengths from donor excitons thanks to the
strong resonant mixing between these two groups of exciton states. The
results of ultrafast pump-probe experiments are commonly interpreted in
terms of exciton populations only. Our theoretical insights into the ultrafast
pump-probe spectroscopy highlight the importance of coherences, which
cannot be disregarded on such short time scales, in the interpretation of
pump-probe spectra [2]. 

[1] V. Janković and N. Vukmirović, Phys. Rev. B 92, 235208 (2015). 
[2] V. Janković and N. Vukmirović, Phys. Rev. B 95, 075308 (2017).
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Since the beginning of my doctoral programme, I have been focused on
the theory and modelling of the ultrafast dynamics of electronic excitations
in photoexcited semiconductors. I am particularly interested in the
ultrafast exciton dynamics in organic semiconductors, which hold promise
for applications in organic solar cells. Using relatively simple, but
physically grounded models, I have investigated the exciton formation in
the model of a neat organic semiconductor and the exciton dissociation in
the model of an all-organic heterointerface. During my MSc studies, I
studied the nonequilibrium electronic transport in systems with localized
electronic states under the influence of terahertz fields.
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Exciton Formation and Relaxation Dynamics in Photoexcited Organic Semiconductors and 
Organic Semiconductor Heterojunctions: Numerical Study
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Recent years have seen vigorous and interdisciplinary research activity in the field of organic 
photovoltaics with the aim of deeper understanding of ultrafast processes which govern their operation. 
We have investigated the dynamics of exciton formation and relaxation on a picosecond time scale 
following a pulsed photoexcitation of a semiconductor [1]. The study is conducted on the two-band 
semiconductor  Hamiltonian,  which includes  relevant  physical  effects  in  the system, employing the 
density  matrix  theory  combined with  the  dynamics  controlled  truncation  scheme.  We truncate  the 
phonon branch of the resulting hierarchy of equations and propose the form of coupling among single-
phonon-assisted  and higher-order  phonon-assisted  density  matrices  so as  to  ensure the  energy and 
particle-number conservation in a system without external fields. Time scales relevant for the exciton 
formation and relaxation processes are determined from numerical investigations performed on a one-
dimensional  model  for  the  values  of  model  parameters  representative  of  a  typical  organic 
semiconductor and organic semiconductor heterojunction. We find that in a neat organic semiconductor 
the phonon-mediated conversion from coherent to incoherent excitonic populations happens on a 50 fs 
time scale, followed by the formation of bound excitons on a several-hundred-femtosecond time scale 
and  their  subsequent  relaxation  and  equilibration  which  takes  at  least  several  picoseconds.  At  a 
heterojunction  of  two organic  semiconductors,  we find  that  the  strong  (resonant)  mixing  between 
interfacial  excitonic states  and excitonic states  in  neat  materials,  as  well  as  proper  accounting for 
interband excitonic coherences,  are critical  for the accurate description of charge transfer from the 
donor to the acceptor and subsequent charge separation. Time scales that emerge from our numerical 
study  are  consistent  with  recent  experimental  reports  on  the  exciton  formation  and  relaxation  in 
conjugated polymer-based materials. We believe that the insights obtained from our study of a typical 
organic/organic heterojunction may contribute to more profound understanding of fundamental OPV 
physics.
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