HayuHom Behy UHcTuTyTa 32 hn3nKy

Beorpag, 13. HoBemGap 2017.

MpeameTt: Mon6Ga 3a nokpeTake NOCTYMKa 3a CTUMLalke 3Baka HayYHU capagHuk

C obG3npom ga ucnywaBaMm KpuTepujyme nponucaHe of cTpaHe MuHucTtapctBa npocseTe, Hayke U
TEXHOIOLWIKOr pasBoja 3a CTuLUawe HayyHor 3Baka HayvyHu capagHuk, Monum HaydHo Behe
WHcTutyTa 3a usnky y beorpagy Aa nokpeHe nocTtynak 3a Moj n3bop y HaBegeHo 3Bakse.

Y npunory gocTtaBrbam:
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HayuHom Behy UHcTtutyTa 3a hpmusuky

Beorpag, 13. HoBembap 2017.

Mpeamet: Muwsbewe koMeHTOpa 3a u3bop ap AHhena Maljutuja (Dr. Angelo Maggitti) y
3Bakbe Hay4YHM capagHMK

AHnheno Mafhutu je aunnomupao 7. anpuna 2016. roguHe Ha pusnykom pakynTeTy YHuBepauteTa y
Beorpagy., AHfieno je goktopcky avceptauujy pagmo y obanctu Teopujcke KBaHTHe ho3nKe U
OnTUKe. Y JOKTOPCKOj AncepTauujn "dopmuparse TaMHUX NONapMTOHA N 4BO-NONAPUTOHCKMX
BE3aHMX CTaka Y HU30BUMa atoma 1 ONTUYKUX MUKpope3oHaTopa' yCreLwHo je passujao mogene
KOXEpPeHTHMUX MHTepaKLunja aTtoma 1 poToHa Koje foBoJe Ao hopMupara KBaHTHOr cTaka namehy
CBETIIOCTU U KONEeKTUBHOr meTacTabonHor ctawa atoMa. 3Havaj oBMX CTaka, NonapuToHa TaMHUX
cTaa, je 3HayajHa jep je ocHOB (heHOMEHA Crope CBETSIOCTU, 3ayCTaBHE CBETNOCTU, U OCHOB 3a
NpUeMeHy OBUX cUCTEMA Y KBAHTHOj MHGOpMaTULX.

AHheno MahuTtu je nokasao camocTanHox y pagy 1 peailaBaky npobnema Teopujcke KBaHTHe
ONTUKe, HaCTaBUO je camMoCTanHo Aa peluasa HOBe, 3aHUMIBbMBE N BaXkHe, Npobrneme 3a cnnyHe
aTomcke cucteme us e obnactu. Ctora npegnaxem HayvyHom sehy UHcTuTyTa 3a dusuky beorpap
Aa noapxu nsdop AHhena MafuTtuja y 3Barbe Hay4yHW capagHuK.

3a cactas Komucuje 3a nsbop ap Avhena Mahutuja (Dr. Angelo Maggitti) y 3eame Hay4HU
capafgHuK npegnaxem:

1. op bpaHucnas JeneHkoBuh, Hay4yHU caBeTHUK, IHCTUTYT 3a hU3NKy,

2. ap MunaH Papomsuh, Hay4Hu capagHuk, UIHCTUTYT 3a cusuky,
3. ap Epus [Jo6apuuh, BaHpenHn nopodecop, Pusmuku cakynter.

Ko-meHTOp AoKTOpCKe AucepTaumje
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Ap bpanucnas Jenerkosuh



Buorpadmuja lp AHhena Mahutuja (Dr. Maggitti Angelo)

AHheno Mahutu je poheH 4. centembpa 1977. roanHe y baseny, LBajuapcka. 3aBpLInoO je OCHOBHE
cTyanje HaHoHayke (Nanoscience) Ha dhakynTeTy 3a ouno3odujy n NpupoaHe Hayke YHuBepauTeTa y
baseny (Philosophisch Naturwissenschaftliche Fakultat der Universitat Basel). HakoH OCHOBHMX
cTyauvja, HacTaBuO je MacTep cTyauje Takohe Ha YHuBep3uteTy y baseny, Ha cmepy HaHou3mka.
TokoM macTep cTyauvja, y4eCcTBOBaO je Yy TpW HayyHa npojekta of Kojux je jegaH 6mo ocHoBa 3a
macTep pan. Npeu HayyHW npojekaTt nog HasusoMm "OnTumusosaHe cTpyktype Mg'(Ne)n-knactepa
(1+m < 8) cumynupaHe meTogom Dypuje uHTerpana no Tpajektopujama" [Fourier Path Integral
Simulations and Optimized Structures of Mg" (Ne),-Clusters (1+m < 8)] npunagao je obnactu
Teopujcke KBaHTHe xemuje. [pyry HayyHW npojekaT O HaHOMEXaHW4YHMM pe3oHaTopuMma Ha 6asu
joHckmx 3amkm (Towards ion trap transducers of nanomechanical resonators) 6uo je u3 obnactm
Teopujcke HaHoMexaHuke. MacTtep paa, nog Has3mBom "O KBaHTOBaHOj MPOBOAHOCTM Y [4BOCIIOjHOM
rpadpeHy" (Towards quantized conductance in graphene bilayer) ypaheH je Ha TexHU4KOM
yHuBep3nteTy y [endTy y Xonanauju nog pykosoactsom npod. ap JlmeeH BaHgepcajneHa (Lieven
Vandersypen) kao MeHTopa n KomeHTopa npod. ap MapTtuHo lNohoa (Martino Poggio). 3a Mactep
pag je HarpaheH cTunengujom YHuusepauteTta y baseny u yyewhem y Epasmyc nporpamy.

AHheno Mahutu je ynucao OoKTopcke ctyamje Ha domsmndkom hbakynteTy YHuBepsuteTa y beorpagy
2011. roguHe, Ha cMmepy KBaHTHa, MatemMaTndka n HaHodusnka. lNopen OOKTopcknx ctyauja, AHheno
Manutn je yyectoBao y neTwoOj wWkonu International Summer Schools on Nanosciences &
Nanotechnologies, Organic Electronics and Nanomedicine (ISSON11) 2011, ogpxaHoj y ConyHy u
Ha cumno3unjymy 2nd International Symposium about Quantum Mechanics based on a "Deeper Level
Theory": Emergence of Quantum Mechanics, ogpxaHoj y beuy, y AycTpujckoj akagemMmju Hayka,
okTobpa 2013. roanHe.

HaHa 7. anpuna 2016. rogmHe, AHheno Mahutu je oabpaHno OOKTOPCKY AucepTtauumjy noa Ha3vBOM:
"@opmuparbe maMHuUX ronapumoHa u 080-r0/1apUMOHCKUX 8€3aHUX CmaHa y HU308uma amoma u
onmuykux mukpopesoHamopa" ("Formation of dark-state polaritons and two-polariton bound states in
arrays of atoms and optical cavities") Ha cpmnsnykom pakynteTy YHuBepauteTa y beorpagy.



AHheno Mahutn je aytop/koaytop 4 pagoBa. [1Ba pagoBa cy objaBfbeHM Yy MehyHapOaHWUM,
BUPXYHCKMM Yaconucmma a oAaTHUX ABa pafoBa Cy y NpUNpemMu 3a BUPXYHCKM Yaconuca. [JogaTHo,
Nnpes3eHToBao je Tpu NocTepa Kao ayTop Ha JOMayuM U MeflyHapoaHUM KoHdbepeHLmjama.



NMpernepg HayuHe akTuBHocTU ap AHRena MahuTuja (Dr.
Angelo Maggitti)

Hay4dHo-unctpaxmBadku pag ap Adhena Manhutnja (Dr. Angelo Maggitti) je Be3saH 3a obnact Teopujcke
KBaHTHE ONTUKE M MNpUMEHaA KBaHTHA Teopuwja WHGOPMauuja y KBaHTHOj onTuum. 3a Bpeme
AokTopckux crtyavja y beorpagy (2011-2016) kaHanpaT ce 6aBMo ga acnekTuma yHyTap Teopujcke
KBaHTHe OMNTUKE Koje cy
e [lpoyyaBare cnobogHMx, TaMHMUX NOSIAPUTOHA y racy atoma ca [ABa eHeprujcka HMBoa Koju
nmajy nereHepucaHe nogHMBOE,
e Peanusauuvja oBO-NoONapuMTOHCKUX BE3aHUX CTakba Y HA30BUMA OMTUYKMX MUKpOpe3oHaTopa y3
yBoherwe moandukosaHor LleHjc-KamuHrcosor moaena.
Pesyntatn oba acnekta cy npenctaBibeHW Yy OOKTOPCKOj Auceptaumjn. [oktopupao je Ha Temu
"@opmuparbe maMHuX ronapumoHa u 080-r10/1apUMOHCKUX 8e3aHUX cmaHa y Hu3osuma amoma u
onmMuYKUX MUKpope3oHamopa", ypaheHoj nog pykosogctBom Ap MunaHom Papgowwuhem (rnmaBHor
mMeHTopa) n ap bpanucnasom JeneHkosuhem (KomeHTtopa) y LleHTpy 3a poToHUKy NHCTUTYyTa 3a
dunsunky y beorpagy.

Y MOOEepHUM UCTpaxmBarwuMa y omsnLmM YeCTo ce TeXU NoBe3nBamy ABa UCTpaXxmnBayka nosba LUTo
MOXe OuTK Bpro NNogoTBOPHO. JegaH npumep TakBor cnoja je uamehy dusnke YBpPCTOr cTawa U
KBaHTHe onTuke. [MpoyyaBawe nonapuMtoHa WM TaMHUX MNoOnapuToHa Kao noaspcte (dark-state
polaritons) je Beoma akTyanHo v npegcraerba jedHO of crnoHa uamehy ¢usnke 4YBpCTOr CTaka U
kKBaHTHe onTuke. lNpema Tome, pBe HaydHe akTuBHOCTM Ap AHRhena MahuTtuja (Dr. Angelo Maggitti) cy
TaMHe MnonapuToHe U HUXOBO dopmMmupare Yy ogpeheHnm aToMckum cuctemmma. Popmupane
TaMHMX nonaputoHa je Moryhe y aTOMCKMM CUCTEMMMA KOjU [MOKasWnjy KOXepeHTHUM edbekaT
enekTpomarHeTHe uHAyKoBaHe TpaHcnapeHuuwje (Eletromagnetically Induced Transparency).
TunuyaH npumep TakBor cUCTEMa je aTOMCKM CUCTEM ca TpWU HUBOA Y T3B. A-KOHUrypaumju y Kojoj
ABa nacepa crnpexy pAsa payroxuseha HuBoa ca jegHuM nobyheHum HuBooM. [lecTpykTuBHa
UHTepdepeHumja aBa HavymHa nobyhuearwa omoryhasa popmupane "TamHux ctawa". TamHa cTana
npeacraerbajy cneumduyHe nuHeapHe koMbuHauuvje gyroxumeehux cTawa ca 0CobuMHOM [a ce He
Mory nobyauTn HU jeaHMM of nacepa U y AUPEKTHO] Cy Be3n ca TaMHUM MNOonapuToHMma. TamHu
NONapuTOHN Cy HUCKO-EHEpPrujCcKe KONMEKTUBHE eKkcuuTauuje atoma U enekTpoMarHeTHor norba 6es
aonpuHoca nobyheHnx atoMmckux ctawa. Kao takeu, TaMHM nonaputoHn omoryhasajy ycnopaBawe
CBETIIOCTU M CKraauwTere POTOHCKMX CTakwa Y KONEeKTUBHUM ekcuuMTaumjama aTOMCKMX CUCTeMa.
lUta Buwe, mMory umatu ynory KBaHTHUX OuTOBa M caMUM TUM OUTU KOpUWNEHW Yy KBaHTHO]
WHpopMaTULM N KBAHTHOM padvyHaky. TUNUYHM NONAPUTOHW OCTBApPEHM Y KBAHTHO-OMTUYKUM
cucteMmnma cy HeuHTteparyjyhu.

Y npBOM geny guceptauuvje npoyyaBaHo je hopMupare TaMHUX MOoflapuToHa y aHcambny atoma,
Koju nocenyjy OBa HMBOA, OCHOBHM WM nobyheHn, ca pereHepucaHuMM nogHuBouMa. A aTOMCKU
CUCTEMW Ca HMBOMMA Ca AereHepauujoMm cy y nutepaTypu yrnaBHOM NpeaxodHo npoydaHu nomohy
Mopuc-LLlopose TpaHchopmaumje (Morris-Shore-Transformation). Cuctem je KapaktepucaH
crnpesawem oba gereHepucaHa nogHnBoa nomohy fBa facepcka nosba, Tako 3BaHO NpobHo (cnabo)
NnoSbe M KOHTPOSHO (jako) nosbe. MNMpobHOo norbe je TpeTUpaHo KBAHTHO @ KOHTPOJSTHO NOSbe KNacu4Ho.



3a pasnuky og Mopuc-LLopose TpaHchopmaumje (Morris-Shore-Transformation), passujeH je HOB U
apyrauvju anroputam 3a UCNUTMBake TaMHUX MOMapuToHa KOj Ce 3aCHMBa Ha peluaBamke
MUKPOCKOMCKMX ONnepaTopCcKnxX jedHadnHa KpeTawa. [Jo caga, oBaj MeTo[ Huje NnpuMersnBaH Ha
cucteMe Koje uMajy gereHepucaHe nogHusoe. OBaj anroputam npeacTtaBiba  HeTpuBjanHo
npoLwmnpere rno3HaTor anroputma 3a He JereHepucaHe nogHMBOE Ha NOLHMBOE ca AereHepaumomM.
PasBujeHn anroputam omoryhaesa nNoTnyHy aHanusy hopMmpaHnux TaMHUX NonapuToHa y 3aBUCHOCTU
nzabpaHe nonapusaumnje NpUMEHEHUX nacepcknx norba. [lpukasaHa je npuMmeHa Ha
eKcrnepuMeHTanHo 3HayajHe aTtomcke nape pybuwanjyma 87 u OUCKyTOBaHM cy Moryhu TamHm
nonaputoHn. [opaTtHo je pasmaTpaHo MOryhHOCT KOHBep3uvje pekBeHUnje U JMHeapHe
nonapusaumje ceetnoctn. OBe pesyntaTe cy objaBrbeHe y paay [Al].

WHTeparyjyhn nonaputoHckn cuctemm cy cnabo npoyyasaHu. HbMxoBo npoyyaBawe je of pactyher
nHTepeca 36o0r 6pojHUX Moryhmnx npumeHa y peanus3auujyu KBaHTHUX FNOTMYKMX KOSla U cuMmynauuje
jako KopenucaHux, BULLEYECTUYHUX BO30HCKNX cucTeMa No3HaTux U3 unsnke YBPCTOr cTawa. JeaaH
O4 YeCTO KopuwyeHux npuctyna obesbehmBarwe MHTepakumja mehy nonaputoHa, a eqeKTUBHO
npeko wwux U Mehy @OoToHMMa, je MPUCYCTBO  ONTUYKUX  KBAHTHO-EMEKTPOOUHAMMUYKNX
MuUKpope3oHaTtopa (optical QED cavities) koju uHTeparyjy ca aTtoMckum cuctemuma. OnTUYKK
MUKpope3oHaTopu 06e3belyjy pexum jakor cnpesakwe namehy goToHa u atoma. Ha Taj HauuH ce
NnoCcTUXXe HenMHeapHOCT HeonxodHa 3a peanu3auuvjy uHTepakumja, kao m MOryRHOCT NpeuunsHor m
edmnKacHoOr KoOHTponucawa Te uHTepakumje. OCHOBHM MoAern 3a Onuc MHTepakuuje atoma ca [ABa
HMBOA W erneKTpOMarHeTHOr noSfba OMTMYKOr, KBaHTHO-eMNEKTPOAUHAMUYKOr MWUKpope3oHaTopa je
LleHc-KamnHrco mopen (Jaynes-Cummings model). dusmnyke ocobumHe noMeHyTor mopena cy
AeTarbHO NpoyYeHe TeOPUjCKM U NPOoBEpPEHe eKkcrnepuMeHTanHo. KsanutatmeHo npowmvpere mogena
Ha Hu3oBe MehycoBHO cnperHyTMx ONTUYKUX MUKpope3oHaTopa npenctasba LlejHc-KamuHre-
Xapbagos mopen (Jaynes-Cummings-Hubbard-model) koju ykrbyyyje n MoryhHOCT pasmeHe poToHa
n3mehy cycegHux MukpopesoHatopa. Puamdke ocobuHe OBOr mogena cy npeaMeT akTUBHUX
ncTtpaxusawa, mM3amehy octanor m 3060r OOCTyrNHE eKcnepuMmeHTanHe peanusauuje. UHTepakuuja
n3mehy nonaputoHa y TakBOM CUCTEMY AOBOAWM OO MojaBe KBAHTHUX (pa3HMX npenasa, Hnp. Mot
nzonaTop-cynepnyuna, kao 1 o opmupara Be3aHMUX OBO-NONapUTOHCKMX CTawa. BesaHa gBo-
nonapuToHCKa CTakwa Cy TeK HefaBHO nocTana npeameT UcTpaxueawa obnactu KBaHTHE OMTUKE U
dusmke BULLIEYECTUYHUX cucTema. [MpoyyaBarwe PU3MYKMX OCOBMHA Be3aHUX OBO-MONAPUTOHCKUX
cTaka MOXe ykasaTu Ha HOBe (hbyHAameHTarnHe OCHoBe 3a Oyayhy peanusaumjy KBAHTHUX Memopuja
N KBaHTHUX Mpexa. Ca gpyre cTpaHe, ocTBapajy ce 3HayajHe MOryhHOCTM y KOHTEKCTY npoyvaBaha
KBaHTUX (pasHMX npenasa, kao u peanusaumje dpycTpupaHmx, XajseHbeproBmx CNUHCKMX cUcTema
(Frustrated Heisenberg Spin sistem), a Takohe 1 cacBUM HOBUX BULLEYECTUYHUX CUCTEMA.

3 npeaxogHo HaBegeHNX N U3NOXEHUX pasnora, y Apyrom aeny gokropcke guceprtauuvje p AHhena
Manutuja (Dr. Angelo Maggitti) npoyyaBaHu cy uHTeparyjyhn nonaputoHu y jeAHOOUMEH3NOHAaTHOM
HW3Y eBaHECLEHTHO CMPErHyTuX ONTUYKNX KBAHTHO-EMEKTPOANHAMUYKNX MUKPO-pe3oHaTopa o Kojux
CBaku MHTeparyje Npeko jeaHe o4 CBOjUX MoAda ca aToMOM ca Tpu HuBoa ([Ba gyroxuseha v jeaHUM
nobyhenum). [opgatHo, cBakM atom je nobyhuBaH cnorbalkuUM NacepckMMm MNoSfbeM Tako Aa je
OCTBapeH ycnoB OBO-(poToHCKke PamaHoBe pe3oHaHue Yy /A-KOoHurypaumju norba. [lokasaHo je ga
nog ogpeheHnm ycnosmma y oBakBoMm cuctemy LlejHc-KamuHre-Xabapaosor Tmna gonasu Ao nojaee
BE3aHMX TaMHUX MonaputoHa. YO4eHO je [a Be3aHn TaMHU MNONlapuUTOHW MoKasyjy 3aHUMIbUBY



MoryhHocT kopuwhera ka0 KBaHTHE MeMopuje 3a TayHo jegaH poToH. PesyntaTte pgpyror gena
ancepTtaumje cy objaBrbeHe y pagy [A2].

Y HactaBky gucepTtauuje AHhena MahuTtunja yBeaeHo je KOHTPONMcaHO nepuoguyHo Heypehewe y
jeAHO-OUMEH3NOHANTHOM  HWU3Y CMPErHyTuX OMTUYKUX MUKpope3oHaTopa [Mpeko Hau3MeHWYHO
NPOMEHSbMBOr MNapameTpa cnpesawa J; — Jo — J; — Jo — ... . [lokasaHO je ga ce y TakBeoj
KOH(purypaumju nojasrbyje cneumcuyaH TMN Be3aHNX TaMHUX NONapuUTOHa Koju A0 cafa Huje BuleH.
Taj cneuynduyaH TN Be3aHMX TaMHUX nofiaputoHa 6wu ganu moryha npumeHa kKao peanusauuja
Kjyout cuctema. OBu pesyntaTu cy y npynpemu 3a cname y yaconuc [A3].

Acnektn npoydenun y pagosuma [A1] u [A2] cy oa 3HATHOT Kako TEOPMUJCKOr Tako N eKcrepumMeHTanHor
nHTepeca 36or MoryhHOCTM KOHTponucakwa MnoHawawa cuctema MpoMeHOM napameTapa
crnorbawmmnx nosba. Y paay [A2] je no npeu NyT yBeAeH HOB MOAEN Yy OKBUPY Kora ocobuHe Be3aHor
napa TaMHWX MonapuToHa MOry [a ce nofellaBajy Ha NOMeHyTM HayuH. [logaTHO, Be3aHu nap
TaMHUX MonapuToHa nog ogapeheHum ycrnoBMma MOry nocTtatM OCHOBHO CTake cuctema n outu
KopuwheHn kao KkBaHTHa Memopwuja. Y paay [A3] je no npBu NyT OUCKYTOBaAH yTULAj] HAU3MEHUYHOT
HeypeheHa Ha Be3aHe NapoBe TaMHUX NONapuToHa.

Hayuynn pap Op AHhena Mahwutnja kapaktepuvile ce BeriMKOM W 3HavajHOM camocTtanHowhy,
opurMHanHowhy, kao n temerbutowhy y pelwaBawy npobnema. KaHguaaTt je camMouHMUMjaTUBHO
MOKPEHYO UCTPaXKMBaYKM NpojekaT Tj. HaYnMHUO n3bop TemMe N UCTPaKMBAYKOr Npasua U yCreLwHo ux
peanu3oBao y capaghu ca MEHTOPUMA.

HakoH ycnewHe opbpaHe poktopcke auceptauvje 7.4.2016, Op Anheno Mahutm (Dr. Angelo
Maggitti) HacTaBuo je cBOjy UCTpaXunBayky akTMBHOCT y [Ba Kiby4yHa npasLa:

e |lejHc-KamnHrcoBor-Xabapaoso pewetke (Jaynes-Cummings-Hubbard-lattice) koje cy parte
CrperHyTumM ABOANMEH3NOHANHNUM KBAaHTHO-ENEKTPOANHAMUYKMM MUKPOPE3aHToOpUMa Yy Kojum
Cy CMeLUTeHN aHcambria atoMa pasnuyeTMm KoHdurypaumjama eHepreTCkMx HMBoa ca Luibem
noBesnBawe Be3aHWX TaMHWUX nonaputoHa ca PpycTpupaHum-XenjzeHdeproBmx-CrnmHCKNX
cuctemmma  (Frustrated-Heisenberg-Spin-System) un  moryhum  Tako3BaHMM  OMTUYKUM
TOMOSOLLKNM n3onatopuma.

e [lpMmeHa MeToOMKe KBaHTHE Teopuje MHdopMauuvje u peanusnumnja UHTeparyjyumx KBaHTHUX
wertaya y Hu3y jedHO W ABOAMMEH3UOHANHWUX CNpPerHyTUX KBaHTHO-eNeKTPOaUHAMMUYKNX
MUKPOPE30OHaTOpa Ha jako KOpenucaHuxX MonapuToHa rae KOpUuLIYeHUX aTtoma umajy
pasnuyeTy eHepreTcky KoHdUrypaumjy.



EnemMeHTV 3a KBanNnUTaTUBHY aHanNnM3y papa KaHauvpaTta

1. AHra>xoBaHoOCT y pa3Bojy ycrnyra 3a HayuyHu paa, obpasoBary u hopMmupamy

Hay4YHMX KagpoBa

MehyHapoaHa capagha

KaHgunoart je yyectBoBao Yy nokpeTtawe capagwy ca ap Hukona lNayHkosnhem ca MHcTutyTa
TenekomyHukaumje TexHunykor YHuBepauteTa y Jincabony.

Hasue npojekat: INTERACTING MULTIPARTICLE QUANTUM WALKS IN ONE AND TWO
DIMENSIONAL ARRAYS OF OPTICAL CAVITIES

2. Ksanutetr HayYyHuUX pesynrara

KaHompaT je y cBOM Hay4yHOM pafy YKynHo obGjaBumo 2 paga y MehyHapogHum yaconucuma ca IS|
nucTe U OoAaTHO 2 paja Cy y NpunpeMn 3a crnakwe y BpXyHCKM mefyHapoaHu Yaconuc. Cea vyeTmpu
pagoBa npunagajy kareropuje M21 (BpxyHckun meflyHapoaHu Yaconuc).

Y kaTteropuju M21 kanguaart je objaBno pagosa y cnegehmum Yaconucuma:
1 pag y Journal of Laser Physics (M® 2012. roguHe=2.545)
1pag y Physical Review A (M® 2014. roguHy=2.808)

Y kateropuju M21 kaHangat nma pagoBa y Nnpunpemu 3a crnawe y cnegehnm yaconmcuma:
2 paga y Physical Review A (1 2016. roguHy=2.925)

YKynaH nmnakT cpaktop pagoBa kaHaugarta y rophum yaconucuma kateropuja M21 je 11.203.

NMpema Science Citation Index-u, HayyHn pagoBu kaHaupata gp AHhena Mahutuja (Dr. Angelo
Maggitti) untupanu cy 3 nyta y mefjyHapoaHum yaconucmuma (He ykrbydyjyhu camoumTtate).



EnemeHT! 32 KBAQHTUTaATUBHY aHAaNMIM3y paga KaHaMaaTta

Ap Auhena Mahutuja (Dr. Angelo Maggitti) 3a n36op y sasarbe Hay4yHM capagHuK

OcTBapeHu pesyntaTu y nepuoay npe usdopa:

Kateropwja M 6opoBa no pagy Bpoj pagoBa | YkynHo M 6oaoBa
M21 8 2 16
M34 0.5 5 2.5
M71 6 1 6

I'Iopehel-be ca MMHUMalTHUM KBaHTUTaTUBHUM YyCNOBMMa 3a |/|360p Yy 3Bak€ Hay4HU CapagHUK:

MuHnmanan 6poj M 6ogoBa OcTBapeHo
YKynHo 16 24.5
M10+M20+M31+M32+M33+M34+M41+M42 = 10 18.5
M11+M12+M21+M22+M23+M24 > 5 16




Cnucak o6jaBmeHux pagoBa, bMXOBE KOonuje u cnucak
papoBa y npunpemu agp AHhena Mahutuja (Dr. Angelo
Maggitti)

PapoBun y BpxyHckum mMeRyHapogHum uvaconucuma (Myb6nukosaHe)
(M21)

[Al] A. Maggqitti, M. Radonji¢ and B. M. Jelenkovic,
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Abstract

We investigate the formation of dark-state polaritons in an ensemble of degenerate two-level
atoms admitting electromagnetically induced transparency. Using a generalization of

microscopic equation-of-motion technique, multiple collective polariton modes are identified
depending on the polarizations of two coupling fields. For each mode, the polariton dispersion
relation and composition are obtained in a closed form out of a matrix eigenvalue problem for
arbitrary control field strengths. We illustrate the algorithm by considering the

Fg =2 — Fe = 1 transition of the Dy line in 87Rb atomic vapor. In addition, an application of

dark-state polaritons to the frequency and/or polarization conversion, using D and D>

transitions in cold Rb atoms, is given.

(Some figures may appear in colour only in the online journal)

1. Introduction

At the end of the past century, the novel mechanism of
electromagnetically induced transparency (EIT) [1, 2] and
its many important applications drew a lot of attention.
Nonlinearity of EIT media enables slow, stored and stationary
light [3-5]. Mazets and Matisov were the first to introduce
the concept of adiabatic Raman polaritons that represent
a mixture of photon and collective atomic excitations [6].
Subsequently, Fleischhauer and Lukin further extended
the concept to dark-state polaritons (DSPs) in a A-type
EIT system [7]. They also developed a quantum memory
technique [8] in order to transfer quantum states of photon
wavepackets onto collective Raman excitations in a loss-free
and reversible manner. DSPs in more sophisticated schemes
have been studied, e.g. double-A [9-11], dual-V [12],
inverted-Y [13], four-level [14], tripod [15], M-type [16],
cyclic three-level [17] and multi-A [18, 19]. Collapses and
revivals of the DSP number in an atomic ensemble with
ground state degeneracy were found in [20]. Resonance
beating of light stored using spinor DSPs in a multilevel-
tripod scheme was investigated in [21]. Slow light propagation
in a degenerate two-level system was experimentally
investigated in [22]. DSPs in these various schemes may

1054-660X/13/105202+07$33.00

find applications in quantum information processing, quantum
memory and quantum repeaters. Furthermore, degenerate
atomic systems, due to their inherent complexity, could lead
to new features of DSPs and building blocks for quantum
information and quantum computation.

Most of the works treat DSPs using the perturbative
approach to the field operator equations of motion, followed
by the adiabatic approximation, which was introduced by
Fleischhauer and Lukin. In addition, Zimmer et al [12] also
used the Morris—Shore transformation [23]. Alternatively,
Juzeliunas and Carmichael applied a Bogoliubov-type
transformation for exact diagonalization of the model
Hamiltonian [24]. Chong and Soljacic [9] elegantly derived
the properties of the DSPs in single- and double-A systems
using the Sawada—Brout technique [25]. In this work, we
extend the Sawada—Brout—Chong technique to a degenerate
two-level system, having a ground state manifold g and an
excited state manifold e, that admits the appearance of EIT,
i.e. (multiple) dark states exist within g. We present a general
algorithm to identify multiple DSP modes that works for
an arbitrary number of degenerate states within manifolds g
and e and arbitrary polarizations of two coupling fields. The
approach is illustrated by finding DSPs at D; line transition
Fy =2 — Fe =1 in atomic vapor of 87Rb. It is shown

© 2013 Astro Ltd Printed in the UK & the USA
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Figure 1. Schematic of a degenerate two-level system, having a
ground state manifold g and an excited state manifold e, driven by a
strong classical control field (thick line) of Rabi frequency €2 and by

a weak quantum probe field é (dashed line) of different
polarizations.

that depending on the polarizations of the coupling fields,
one or two DSP modes can be determined. In addition,
it is shown how DSP modes, originating from different
87Rb transitions, can be utilized for frequency and/or linear
polarization conversion.

2. Degenerate two-level system

In this section, we present a general formalism of dark-
state polaritons in a degenerate two-level system. It is a
generalization of the neat approach of [9]. We consider a gas
sample of N atoms, where N is large. Let us denote by H,; the
Hilbert space of the atomic states in the ground state manifold
g and let H, be the Hilbert space of atomic excited states in
the manifold e. The corresponding ground- and excited-state
energies are denoted by fiwg and fiwe, respectively. A strong
classical control field of Rabi frequency € and a weak
quantum probe field &, which differ in polarizations and both
propagate along the z axis, couple the transition g — e (see
figure 1). The corresponding raising and lowering operators of
the control (probe) field, VZ and I7C (Vg and Vp), connect the
states in manifold g to the states in manifold e and vice versa.
We assume that dim H > dim H. holds, so that the system
admits EIT [26]. This assures the existence of the Hilbert
space Hg of the states in manifold g that are dark tothe g — e
transition for the control field [27, 28]. Formally, we can view
the raising operator VJ as a linear mapping \A/;r i Hg — He.
The space Hg is then the null space of the mapping VCT

Mg = {lg) € Hy | Vilg) = 0). 1)

2.1. Model Hamiltonian

We will now present the model Hamiltonian and the dynamics
of the lowest energy excitations of the ensemble of degenerate
two-level atoms. The free atomic Hamiltonian has the form

Hy =) (hoglly () + heoele(r), )

r
where the summation index r counts the atomic positions,
while I, and I. are the projection operators onto the
states in the manifolds g and e, respectively. The free

photon Hamiltonian, including multiple quantum probe field
modes, is

=Y hwdjay, 3)
k

where Ezz and a, are the creation and annihilation operators
of the probe photons with the wavevector k and frequency
wy = clk| ~ weg = we — wg. The atom interaction with the
probe field is given through the minimal coupling Hamiltonian

— Z Z hg,ay exp(ikr) Vg (r) +H.c. )
k r

with coupling constant /g, = 2 % v dge, Where dg. is the

effective electric dipole moment of the g — e transition, € is
the vacuum permittivity and V is the quantization volume. The
interaction of the atomic ensemble with the classical control
field of the carrier frequency we ~ weg and the wavevector k.
is of the form

H.(t) = — Z hQ expl—i(wct — ker)IVI (1) +He. ()

For simplicity, we have used the rotating-wave approx-
imation. In addition, for an atomic operator A(r) we define
a Fourier-transformed operatorA(k) =3 rA(r) exp(ikr)/ VN.
Note that (A(k))T = At (—k). Especially, one has 3" A(r) =
«/ﬁA(k = 0). In terms of the Fourier-transformed operators,
various Hamiltonian parts are

Hy = hogV/NIy(k = 0) + hweVNIe(k = 0),  (6a)
Hy=— Z hgV/'Na,Vik) +He., (6b)
H.(t) = —hQv/Ne ' VT (ko) + H.c. (6¢)

The entire Hamiltonian of the ensemble of degenerate
two-level atoms interacting with the probe and the control
field is H(t) = Hy + th + Hp + Hc(t)

2.2. Dark-state polaritons

Now, we focus on the dark-state polaritons in an ensemble of
degenerate two-level atoms. Various features of the method
in [9], which are obvious per se in the case of a simple
A system, need to be properly adapted to the degenerate
two-level system. The additional complexity of the system we
investigate also yields some new inherent requirements.

First of all, we remove the time dependence from the
Hamiltonian H (7) by performing the following unitary gauge
transformation:

Ay = U.0H0OT (1) — ho, («/ﬁﬁe(k =0) + Z &Zak>

where

U.(t) = exp [iwct<~/ﬁ Ie(k = 0) + Z &2&;()} ®)
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Eventually, we restate the time-dependent Schroedinger
equation i%id;|¢ (1)) = H(1)|¢p (¢)) as

ind,[U.(0lp )] = Br[T.(D1¢ 0)]- )

Solutions of (9) can be obtained by finding the energy
eigenstates of the time-independent Hamiltonian Hr.

Assume that the atomic ensemble is initially prepared in
the collective vacuum state with no probe photons |gg, 0) =
lg0) ® |0) = ®/|g0)r ® |0). Analogously with the A system
case [8, 9], the atomic ground state |gg) must be dark with
respect to the control field, i.e.

Vilgo) =0,

or equivalently lgo) € ’Hg. (10)

Additional requirements on the state |go) will be specified
later.

Dark-state polaritons are particular low energy, single
probe photon driven, collective excitations that do not have a
contribution of the excited atomic states. To obtain DSPs, we
look for a polariton excitation operator ¢3,: such that in the low

energy, single excitation case ékT |go, 0) is an eigenstate of Hr
with the energy /w (k). This leads to the following relation:

(A1, )] = ho ()] +- -, (11)

where dots represent the terms that are omitted in the single
excitation case and also terms that give zero when acting on
the collective vacuum state |gg, 0). Note that, for notational
simplicity, we keep in mind that all subsequent commutators
always act on the state |gg, 0). In agreement with [8, 9], we
neglect Langevin noise effects, which do not influence the
adiabatic evolution of the DSPs.

Collective atomic excitations are driven by the probe
photons. Hence, we begin by calculating the commutator

[ir. a]] = ok — we)a, — hgi/N V] (k). (12)

The states that arise from the interaction with the probe field
are the pure photon excitation Ez,t |€o, 0), and the collective
atomic excitation ‘A/'; (k)|go, 0), up to a normalization constant.
Hence, in addition to &,t the operator Vg (k) is also a member

of the polariton excitation operator qgg Next, we determine the
commutation relation

[Ar, V()] = h(weg — 0) Vi (k) — hQ*(V,V]) (k — k)

— Y hgpal, (Vi (k- k). (13)
k/

Note that +/N [A;(k), A2(K)] = [A1, A2](k + k') holds for
any two atomic operators Ay and A,. The new operators,
(V.U (k — ko) and af,(V,Vi)(k — k'), appearing in (13)
yield the collective states via stimulated emission. The former
can readily be included into the polariton excitation operator
qglz It creates the spatially dependent coherence among the

atomic ground states |go) and ‘70 \7; |go), i.e. the ground state
coherence wave. When we commute the latter operator with
Hr, we get the operator &Z,,(VPVE Yk — K )(VPVS YK — k7).
The emergence of such operators of increasing complexity
continues and ends with &Z(N) ]_[fvzl (Vp Vg ) (kD —k(=D), where

k© = k. This case corresponds to a formidably complex DSP
mode that is not tractable. Tractable modes are obtained by
imposing one further requirement on the collective vacuum
state. Namely, it is crucial that upon action Vp \7; lgo) we end
up with the state |go), i.e.,

V, Vi 1g0) = Aplgo),
where Ap > 0 is the corresponding eigenvalue. Thus, one

obtains (V, Vi) (k — K)|go. 0) = Apv/Néy.1go. 0). so that the
relation (13) greatly simplifies to

[Hr, V()] = h(weg — we) Vi (k) — hQ*(V V) (k — ke)

(14)

— hgirpv/Nay. (15)

To proceed further, we define the excited atomic state
le) = Vglgo) /\/)Tp associated with the action of the probe
field. Clearly, it has the property ‘7p|e) = \/)Tp |go) and it is an
eigenstate of ‘7; Vp, ie. Vg Vple) = Aple). The eigenstates |go)
and |e) are ‘tuned’ to the polarization of the probe field. These
are so-called polarization-dressed states, first introduced and
used in [28, 29] for problems of interaction of resonant
elliptically polarized light with atomic and molecular energy
levels degenerate in angular momentum projections. Next, let
us consider the commutators

[Ar, (VV) (k= k)] = —hQ(VIV.VD((K),  (16)
and also
[, (VIV.VH 0] = hiweg — 0 VIV ()
— WL (V VIV VI (k — ko)
— 3 gl (V VIV U k- K.
k 17

Similar to the discussion of the relation (13), in order to avoid
the appearance of probe photons with all wavevectors, we
require that Vp VCT VC Vg |go) o< |go). That can hold provided that

ViV Vi1g0) = A V]1g0) ie. VIV le) = Acle), (18)
where A. > 0 is the corresponding eigenvalue. Thus, the
excited atomic state |e) is a common eigenstate of the
operators \7; Vp and ‘A/i Vc. Under such a condition, the relation
(16) becomes

[Ar. (V. VD) (k — k)] = —hQAc V] (), (19)
while (17) turns into
[, (VEVVHW0] = re[Hr, Vi )], (20)

where the last commutator is found in (15). Hence, under
the previous conditions no new components of the polariton
excitation operator qSZ appear. Stimulated emission, which is
driven by the control field, transfers the atoms from the excited
state |e) into the ground state |f) = f/cle) /~/%¢. The states
|go) and |e) are coupled by the probe field, while the states
le) and |f) are coupled by the control field. Thus, for each
eigenvalue pair (Ap, Ac) the three states |go), |e) and |f) form
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an independent A system that is related to one independent
collective DSP mode. The number of such A systems, i.e.
tractable DSP modes, can be at most equal to the total number
of DSP modes, i.e. to the dimensionality of the dark space Hg.
Now, we collect the necessary commutation relations

[Air. af] = hwr — we)ay — hg/ NV (k). (21a)
[r, Vi(h)] = h(weg — we) Vi (k) — hgiapv/Na,

— hQ*(V V) (k — ko), (21b)
[Ar. (V.V)) (k= ke)] = —hQac V] (k). (21c)
so that the polariton excitation operator is of the form

¢ = amal + pun® ., e Pk k) (22)

o
where the band index n enumerates the different polariton
species. Orthonormal collective excitations |gg, 1), |e(k), 0)
and |f(k — k), 0) result from the action of the operators
&Z, \A/;(k)/\/n and (VCVg)(k — ke)//Aphc on the collective
vacuum state |gg, 0), respectively,

lgo, 1k) = @ lg0)r ® 11k), (23a)
1 )
le(k),0) = — > e*le), @ lgo)r ® |0), (23b)
\/N Zr: r'#r

1 .
_ - i(k—ke)r ,
If (k — kc), 0) N Er e lfhgrlgo)r ®10). (23¢)

Note that the collective states |e(k), 0) and |f(k — k), O) are
entangled. This enables the usage of the polariton state

|Pnk) = ank|g0, 1k) + Bukle(k), 0) + yaurlf (k — kc), 0) (24)

as a resource for quantum information processing [2].

We determine the c-numbers oy, Bux and ypy by inserting
(22) into (11) and make use of (21). This leads to three
self-consistency equations that we can represent in the basis

{180, 1k), le(k), 0), [f (k — k), 0)} as

W — We — gZ\/N 0 Ok Ank
~ZkVN weg — e =2 | | Bk | = 0n(®) | Bur |, (25)
0 —Q* 0 VYnk Vnk

where g, = gk\/)Tp and Q = Q+/A¢. Our effective Hamil-
tonian in (25) is similar to the one in [9], but with a
major difference. The effective coupling constant gy and the
effective Rabi frequency Q2 differ from the corresponding one
in [9] because of the inclusion of the eigenvalues A and Ac.
The mentioned difference clearly arises as a consequence of
the degenerate two-level atomic system.

The dark-state polaritons are obtained as one of the
solutions of the eigenproblem (25). The other two solutions
are bright-state polaritons, similarly as in [9]. Exactly at
the Rargan resonance, wy = @, there is an eigenvector

. Q . . . .
x [ N 0, l]. This eigenvector has no contribution of

the excited atomic states and represents a stable dark-state
polariton that is insensitive to incoherent decay processes

acting on the excited atoms. Expansion around the resonance
Wy ~ weg and we ~ weg yields a linearized solution for the
dark-state polaritons

122
a)(k) = ~—~(a)k — , ), (26@)
k2N + Q)2 ¢
Q Q(wy — we)
U= — Vi Br = ——————=— V. (26)
ZiV/N (32N + |22

An interesting property of the DSP solution is that it only
depends on the Raman detuning w; — w. of the coupling
fields and on the coupling parameters g; and 2. It does
not depend on the energy spacing we; of the underlying
degenerate two-level system.

The algorithm for finding tractable DSP modes in a
degenerate two-level system can be summarized as:

(1) determine the dark space Hg for the operator VCT ;

(2) find all states |gg) from 'Hg and pairs of eigenvalues
(Ap. Ac) such that V, Vi |g0) = Aplgo) and ViV, Vilgo) =
e Vi 1g0) hold;

(3) for every such pair of -eigenvalues
[V (Ap, Ac)) from (24) and (26).

obtain DSPs

3. Dark-state polaritons in rubidium vapor

In this section we apply the general formalism to the rubidium
vapor. Control and probe fields couple the hyperfine levels
5812, Fg =2and 5P 5, Fe = 1 of 87Rb. The atomic lowering
operators of the control and probe fields are, respectively,

N

V.=V-e, V,=V-e, 27)
where e, and e, are polarizations of the fields. The vector

operator V is defined by [28, 30, 31]

N Je Jo 1
V= (—])F5+Jg+l+1\/(2Fe +D@2Jg+ 1) {Fe Fg I}
g €

1
X Y > (Fg,mglFe, me; 1, )|Fyg, mg) (Fe, mel€},

q:—l mg,Mme

(28)

where I = 3/2 is the nuclear quantum number of 87Rb,
{:::} is the Wigner 6j-symbol and (Fg, mg|Fe, me; 1, q) is
the Clebsch—Gordan coefficient that connects the excited
level state |Fe,me) to the ground level state |Fg,mg) via
polarization e,

1 .
e, = :Fﬁ(ex:tley), € =¢€,, (29)
given in some orthonormal basis of polarization vectors. We
choose the coordinate system such that the fields propagate
along the z axis, and define a basis of Zeeman states relative
to this quantization axis. The bases of the individual Hilbert

spaces He and Hg are

€={|19_1)67|170)e7|171)e}’ (3061)
G =1{2, =2)g, 12, = 1)g, 12, 0)g, |2, 1)g, |2, 2)g). (30b)
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‘17_1>6

11,00 |1,1)e

|27_2>g |27_1>.¢7 |270>.q ‘27 1>!] |252>g

Figure 2. Zeeman sublevel scheme of the transition

Fyg =2 — F. = 1 atthe Dy line of 87Rb. Solid lines denote o~
transitions coupled by the control field while dashed lines denote
o transitions coupled by the probe field.

We will show that according to the appropriate choice of the
polarizations of the coupling fields, one or two DSP modes
can be obtained.

3.1. Case of orthogonal circular polarizations

Let the control field couple o~ transitions, while the probe
field couples o transitions, i.e. e =e and e,=e_; (see
figure 2). The lowering operators of the coupling fields, V,
and Vp, are represented in the basis £ U G with the matrices

033 035

|'—OO
S O Oy

) (3la)

)
OOS‘

S D=

)
)

) (31b)

o o o oy

S O O =
(e}

where zeros 0, , denote rectangular m x n null matrices.
Ground level dark space determined from the null space of
Viis

HY = {12, =2),. 12, —1)g}. (32)

Both dark states are appropriate as the initial state |gp). Below
we tabulate the corresponding states and eigenvalues of the A
system:

1go) le) i) Ap  Ae
T 2.-2); I1,—1)e [2,0), 1/2 1/12
o 12,-1)g [1,0) 12,1)g 174 1/4,

|17 _1>e

[1,0) |1,1),

|27 _2>g |2a_1>g |270>g ‘27 1>g |272>9

Figure 3. Zeeman sublevel scheme of the transition

Fyg =2 — F. = 1atthe Dy line of 87Rb. Solid lines denote control
field linearly polarized along the y axis while dashed lines denote

probe field linearly polarized along the x axis.

that lead to two DSP modes:

| 1
k)= ——m—-c(wp — we), 33a
(3) 6|gk|2N+|Q|2( k — @) (33a)
Wl o - lgh 1) + 'k — k), 0)
V6 giv/N
24/3 Q2 —
_ MWIUC),O)’ (33b)
6 lgkI2N + |92
1l 12
w (k)= ———— — s 34a
(k) |gk|2N+|9|2<wk we) (34a)
[y o —i|g8, 1) + [k — ke), 0)
8kvN
2 Q(wr — wc) I
- =€ k), 0). (34b)
lgkI2N + |22

We see that for orthogonal circular polarizations of the
coupling fields, the maximal number of tractable DSP modes
exists. This is the generic case, because relevant independent
A system(s) can be easily recognized.

3.2. Case of orthogonal linear polarizations

Now we analyze the case of the control field polarization
along the y axis and the probe field polarization along the
X axis, i.e. e, = e, and e, =e, (see figure 3). The matrices
representing the atomic lowering operators \A/C and Vp in the
basis £ U G are

B 033 0357
1
3 ? 0
0 - o0

V=i 1 265 1 ) (35a)

26 26 05
0 ;1= 0

L 0 0 3 i
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i 033 0357
1
: 00
0 — 0
Vv, = X Zf 1 (35b)
“as O o s
0 3% Ol
L 0 0 -3 i
In this case, the ground level dark space is
HY = —1|2—1>+ 1|21>
g \/E ’ g ﬁ 9 g
1 V3 1
—12, =2)g — —-12,0)g + —=12, 2)g, ¢, (36)
ﬁ g 2 g ﬁ g

but only the first dark state satisfies all necessary conditions
for the vacuum state of the tractable mode. The states and
eigenvalues of the corresponding A system are

1go) = —%IZ —Deg+ %Il Dy,
le) = Ill, 0)e, | 37a)
Iy = EIZ, —1g + EIZ, g,
Ap = 1/4, Ac = 1/4.
We identify one DSP mode
w(k) = L(wk — ), (38a)
|gkI*N + 1212
Q
Vi) o _ngIV'gO’ L) + [f (k — k), 0)
_ 2Q(wx — we) ) (38b)

e(k),0
lgkl>N + IQI2| ®

while the other one is non-tractable.

From the above examples, it can be seen that the choice of
the polarization of the coupling fields yields entirely different
DSP modes. This is reflected in the composition of the DSP
state as well as in the polariton dispersion relation. Note
that different polariton dispersion relations would lead to
distinct slow light group velocities. In section 4 we outline one
possible application of DSP modes in degenerate two-level
systems for frequency and/or linear polarization conversion.

4. Frequency and polarization conversion

Let us consider the DSP modes that can be formed from the
states within 58,2, Fg = 1 hyperfine level of 87Rb atoms,
when the control and the probe field have orthogonal linear
polarizations. There are three relevant atomic transitions:

(@) 5812, Fg=1— 5Pyp2, Fe =1,
(b) 5812, Fg=1— 5P3p3, Fe =1,
(c) 551/2, Fy = 1 — 5P3/2, F.=0.

The first belongs to the D line. The last two belong to the D,
line and can be rendered non-overlapping by using ultracold
rubidium atoms.

In the case of orthogonal linear polarizations e, = e, and
e = e, of the fields that are resonant to the D line transition
(a), we have

1 1
= —-——|1, -1 —I1, I)g,
1g0) «/§| det «/§| Je
le) = [1,0)e,
1 = 1)y 4 —[1, 1),
r) ﬁ' de + ﬁl e
Ap = 1/12, Ac=1/12.

When considering the D, line transition (b) with the same
polarizations of the coupling fields as in the previous case,

e. =e and e, =e,, we find

o) = =511 —Dg + =11 Dy,
le) = Ill, 0)e, | 400)
Iy = EIL —1)e+ Ell, Dy,
Ap = 5/24, Ac =5/24.
Finally, for the swapped linear polarizations, e, = e, and

e, =e, of the fields coupling the D; line transition (c), we

have
1 1
1go) = _Euv_l)g‘i‘ EH’ e,
le) = IOI, 0)e, | @1a)
i) = Ell,—l)ngﬁll,l)g,
Ap = 1/6, Ac = 1/6.

Note, if the polarizations of the fields had not been swapped,
the states |go) and |f) would have been interchanged.

As can be seen from (39) to (41), the DSP modes
are formed from the same states |go) and |f) in all three
cases, but the considered transitions and polarizations of the
coupling fields are different. This provides the possibility
for frequency [32, 18] and/or polarization conversion [33]
of linearly polarized light. First, one can store a pulse of
the probe light polarized along the y axis into the atomic
coherence among the states |gg) and |f) using the transition
(a) and the control field polarized along the x axis. The
retrieval process, using the transition (b) and the control
field polarized along the x axis, would release the pulse at
a different frequency, but of the same optical quantum state
and polarization along the y axis as the original probe pulse.
However, the pulse retrieved using the transition (c) and the
control field polarized along the y axis would be in the same
optical quantum state as the original probe pulse, but of
different carrier frequency and linear polarization along the
X axis, i.e. orthogonal to the original one. Moreover, this
realization does not suffer from losses in the retrieved pulse,
since the ratios of the probe and control Clebsch—Gordan
coefficients are the same among all three transitions [33].
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5. Conclusion

To sum up, we have investigated the formation of dark-state
polaritons in an ensemble of degenerate two-level atoms
with ground state Hilbert space H, and excited state
Hilbert space He, where dim’H,; > dimH. holds. We
elaborated an algorithm, which is a generalization of the
Sawada—Brout—-Chong approach [9, 25]. Under suitable
conditions, the polariton mode dispersion relation and
composition can be stated in a closed form. Such DSPs do
not depend on the energy spacing of the two-level system,
but rather on the Raman detuning of the coupling fields. For
each polariton mode, the effective field coupling parameters
depend on the appropriate eigenvalues of the atomic operators
\A/g Vp and V{ V. that determine the eigenproblem for the
polariton species. The application of the general procedure
is given for 3’Rb atomic transition Fg=2— F.=1 of
the D line. Two cases of polarizations of the control and
probe field are analyzed, when the two fields have orthogonal
circular polarizations and when both are linearly polarized in
the orthogonal directions. In the former case, two DSP modes
are identified, while in the latter case, only one DSP mode
can be determined. The formation of the modes as well as
their dispersion relation critically depend on the polarizations
chosen. Possible application of DSP modes in ultracold 8’Rb
atoms for frequency and/or linear polarization conversion
without losses in the retrieved pulse is presented. Our
algorithm can be extended to degenerate systems with more
levels and might have applications in quantum information
processing as a building block for a preparation and read out
schemes with the DSPs as qubit states.
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Dark-polariton bound pairs in the modified Jaynes-Cummings-Hubbard model
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We investigate a one-dimensional modified Jaynes-Cummings-Hubbard chain of N identical QED cavities
with nearest-neighbor photon tunneling and periodic boundary conditions. Each cavity contains an embedded
three-level atom which is coupled to a cavity mode and an external classical control field. In the case of two
excitations and common large detuning of two Raman-resonant fields, we show the emergence of two different
species of dark-polariton bound pairs (DPBPs) that are mutually localized in their relative spatial coordinates.
Due to the high degree of controllability, we show the appearance of either one or two DPBPs, having the
energies within the energy gaps between three bands of mutually delocalized eigenstates. Interestingly, in a
different parameter regime with negatively detuned Raman fields, we find that the ground state of the system is
a DPBP which can be utilized for the photon storage, retrieval, and controllable state preparation. Moreover, we
propose an experimental realization of our model system.

DOI: 10.1103/PhysRevA.93.013835

I. INTRODUCTION

The interaction between light and matter is one of the
most fundamental and basic processes in nature, and it
represents a milestone in our understanding of a broad range
of physical phenomena. The recent experimental success in
engineering strong interactions between photons and atoms
in high-quality microcavities opens up the possibility to use
light-matter systems as quantum simulators for many-body
physics [1]. Key examples as first-principles proposals are
quantum phase transitions of light in coupled cavities [2—4],
quantum fluids of light (see [5]) and the Mott-insulator-
to-superfluid phase transition of polaritons in an array of
coupled QED cavities [6-11]. Coupled cavities are realized
in a variety of physical systems, among them microcavities
and nanocavities in photonic crystals [12]. These have paved
the way to study strongly correlated phenomena in a controlled
way by using such systems. Richness in these systems emerges
from the interplay of two main effects. At one side, light-matter
interaction inside the cavity leads to a strong effective Kerr
nonlinearity between photons. By controlling the atomic level
spacings as well as the cavity-mode frequency, it is possible
to achieve a photon-blockade regime [13-16] where photon
fluctuations are suppressed in each cavity. On the other
side, photon hopping between neighboring cavities supports
delocalization and competes with the photon blockade.

At the end of the past century, Fleischhauer and Lukin
introduced the theoretical concept of dark-state polaritons
(DSPs), form-stable coupled excitations of light and matter
associated with the propagation of quantum fields in electro-
magnetically induced transparency (EIT), and showed their
potential usage as quantum memories for photons [17,18].
Since then, DSPs have been in the focus of intense theoretical
and experimental investigations [19-33]. The first proposal
for realization of strong interactions among DSPs and Mott-
insulator-to-superfluid phase transition thereof was given by
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Hartmann et al. [9]. They demonstrated the possibility to
generate attractive onsite potentials for polaritons yielding
highly entangled states and a phase with particles much
more delocalized than in superfluids. Moreover, two-polariton
bound states, composite excitations of two polaritons that may
be spatially confined together, were predicted by Wong and
Law [34]. Very recently, two-polariton bound states have been
related to spin-orbit interactions by Li et al. [35]. Both are
features of the systems described by the one-dimensional
Jaynes-Cummings-Hubbard model (JCH) and represent an
important connection between condensed matter physics and
quantum optics. In such systems, itis possible to realize various
many-body effects where the particles of interest are photons
rather than electrons.

In this paper, we present a scheme based on a modified
Jaynes-Cummings-Hubbard model (MJCH) that enables the
formation of two different species of spatially, mutually
localized dark-polariton bound pairs (DPBPs). Our scheme
is based on N identical coupled QED cavities with periodic
boundary conditions. Each cavity embeds a single three-level
atom. A cavity mode and an external control field, which are
in two-photon Raman resonance, drive the transitions from
the two atomic ground states to the excited state. We assume
that a common single-photon detuning of the fields is large
compared to the coupling strengths. Under such conditions, the
description of the three-level atoms is effectively reduced to
ground-state two-level systems with tunable coupling strength
between the ground levels and controllable level Stark shifts.
Hence, our model circumvents the drawbacks of the excited-
state spontaneous emission and provides a tunable extension of
two-polariton bound states of the classical Jaynes-Cummings-
Hubbard model [34]. Furthermore, we find that when the
common detuning of the coupling fields is negative, the
lowest-energy eigenstate of the system becomes a mutually
localized DPBP of a new type that may be used as a quantum
memory of light. This may find potential use in quantum
information processing and controllable state preparation.

This paper is organized as follows. In Sec. II, we recapit-
ulate the standard Jaynes-Cummings model and focus on its
spectrum and eigenstates. In Sec. III, we discuss the modified
Jaynes-Cummings model where we derive the modified

©2016 American Physical Society
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Jaynes-Cummings Hamiltonian from a bare model. Further,
we analyze the eigenstates and highlight the differences to
the standard Jaynes-Cummings model. In Sec. IV, we present
the considered model system and extend the modified Jaynes-
Cummings model to a modified Jaynes-Cummings-Hubbard
model, highlighting that it features the formation of bound
states of two dark-polaritons. In Sec. V, we present a detailed
discussion of the two-excitation subspace and explain the for-
mation of dark-polariton bound pairs (DPBPs), accentuating
their tunability through the control field Stark shift. In Sec. VI,
we demonstrate an application of a ground-state DPBP as a
quantum memory on which storage and retrieval of a single
photon can be performed, while the second photon remains not
influenced by the storage and retrieval process. Even though
two photons are bound, exactly one photon can be addressed.
The state composition of the ground-state DPBP can be tuned
by the relative importance of the intercavity photon hopping,
e.g., increasing the common single-photon detuning |A|. In
Sec. VII, we propose an experimental realization of our
model system, where we state not only promising candidates
to the creation of one-dimensional chains of N-coupled
QED cavities, but also name single A atoms which can be
considered. In addition, we point out that for Cs the measured
strong-coupling constant g, fits very well with our theoretical
prediction, where the formation of DPBPs as well as the
storage and retrieval process can be seen. Finally, In Sec. VIII
we draw our conclusions.

II. STANDARD JAYNES-CUMMINGS MODEL

Within this section, we recapitulate the standard Jaynes-
Cummings model (JC). Especially, we focus on its spectrum
and eigenstates. In this model, a two-level atom with ground
level |g) and excited level |e) having energies w, and w,
interacts with a single mode of an electromagnetic field of
frequency g that couples the transition |g) — |e) with the
strength go. In the (rotating-wave) approximation (RWA), JC
Hamiltonian has the form (h = 1) [36,37]

YO = woh +86767 — goast +4a'67), (1)

where ¢1 (¢) is the photonic creation (annihilation) operator and
61 =le)(g| (6~ =|g){e|) is the atomic raising (lowering)
operator. i = ¢'é 4+ 616~ is the number operator of the
combined photonic and atomic excitations (polaritons) which
is a conserved quantity, i.e., [HAY9 4] = 0.8 = w, — wy is the
detuning. Due to the conservation of i, HY© in the subspace
{lg,n),le,n — 1)} is represented with the block matrix #,,:

won — n
hy = ( ° g"‘/—), @)
—go/n won + 8
with n = 1,2,3,... being the total number of excitations.

The matrix in (2) is a 2x2 matrix and can be analytically
diagonalized. The eigenenergies are given as

3)

£ o | B =0+ 36 £ 0@ n>1
" Ey=0, n=0
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with x,(8)=./82 +4gin being the generalized Rabi fre-
quency and + stands for the higher and — for the lower
eigenenergy, while the eigenstates are

[n,+) :=sin(6,)|g,n) + cos (6,)|e,n — 1), (4a)
n,—) :=cos(6,)|g,n) — sin(6,)|e,n — 1). (4b)

n = 0 corresponds to the state of zero polaritons. It takes on
the form

10,+) =10,¢) = 10), ®)
whereas the occurring mixing angle 6, is defined as

0, = 1arctan (M) (6)
2 8

The eigenstates (4) are called polaritons. Polaritons are low-
energy quasiparticles which are composed of photonic and
atomic excitations in superposition. As we change the mixing
angle 6, by a rotation from 0 to Z, which basically corresponds
to a change of the detuning 8, we tune the polaritons to either
pure photonic or pure atomic excitations in a reversible manner.
Due to the contribution of the excited atomic state |e,n — 1),
these polaritons in a more precise way can be called bright
polaritons similar to [17-19,33].

III. MODIFIED JAYNES-CUMMINGS MODEL

For the subsequent discussion, we need to derive the mod-
ified Jaynes-Cummings (mJC) Hamiltonian which describes
an effective interaction of a A system with a highly detuned
mode of an electromagnetic and classical field. We show that
due to the large, common single-photon detuning A, i.e.,
[A] > |gml,|2], it is possible to circumvent the drawback
of the excited-state spontaneous emission that would plague
realizations of the JC model by using atoms and optical
cavities [37]. Moreover, we focus on the discussion of the
eigenstates and eigenspectrum in two specific cases which
naturally arise in our case.

A. Derivation of the modified Jaynes-Cummings
model Hamiltonian

We consider a single photon in a single-mode QED cavity
in which a A three-level atom is embedded. The ground levels
are |g) and | f) with their level energies w, and w, whereas
the excited level |e) with level energy o, is detuned by a
large, common single-photon detuning A with respect to two
coupling fields. The cavity field with frequency w,, couples
the transition |g) — |e) with strength g,,. Further, a classical
control field with frequency w. and Rabi frequency 2 couples
the transition | f) — |e). Our bare model Hamiltonian (2 = 1)
has the form

I:Ibare(t) = ﬁc + ﬁa + ﬁim(t)» (7a)
H. = w,é'e, (7b)
H, = 064 + 06 5 + 0,600, (7c)

I:Iim(t) = _(gméﬁeg + g;kléT&ge + Qe_iwcla'ef
+Q%e'*'64,), (7d)
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where H, denotes the free-field Hamiltonian of the QED
cavity, PL stands for the free-atomic Hamiltonian, and Flim(t)
describes the interaction of the fields with the atom. & (¢) is
the photonic creation (annihilation) operator and 6,5 = |a)(f]
(o, B € {g, f}) are the atomic operators. Hpare (1) in (7) satisfies
the time-dependent Schrodinger equation

i9,]W(0) = H'(1)|W(1)). ®)

We move to a rotating frame in which (7) is time independent.
The corresponding gauge transformation [19,33] has the form
(h=1)

A" = U(t) Houe ()0 (1) + 18, (U010 (1), )

where U(z) is a unitary transformation. Under the gauge (9),
Hp,re (1) reads as

Al = A + Hy + i, (10a)
H, = w,é'e, (10b)
H, = 0464 + (0 + )8 5 + 0eBees (10c)

Hin = —(8nC6og + 8561640 + Q6o + Q764.).  (10d)

U(t) = e '®'%r has been chosen as the unitary transfor-
mation in deriving (10). Assume that the A three-level atom is
initially prepared in the state |g,n) = |g) ® |n). n represents
the arbitrary but fixed number of excitations withn = 1,2,3 ...
and |n) the corresponding number state. Under the action of
AT _onto the state lg,n) = |g) ® |n), we get the relations

bare

AlL.18.n) = (@un + wg)Ig.n) — guv/nlen — 1), (11a)
ﬂgmele’n - 1) =[w,(n — 1) + w.lle,n — 1)

AL lfn—1) = [0 — D+ op + ol fin — 1)
—Qle,n —1). (11c)

In the subspace {|g,n),le,n — 1),|f,n — 1)}, AL . has the
matrix representation

(wmn + wg) _gm\/z 0
Npare = _g;;\/ﬁ wy,(n—1) + w, —-Q*
0 —Q (wm(n_1)+wf+wc)

(12)

Under Raman resonance condition w,n + w, = oy + o, =
w, — A, we get

(wnh + ;) —8gm/1 0
Ppare = _g;;\/r_l (wn(n—1) + w.) —Q*
0 —Q (wn(n—D+owr+w.)
(13)
Under a rotating-wave approximation, (13) is reduced to
0 —gm/1 0
hp = | —gi/n A Q7] (14)
0 —Q 0

In addition, as we have a far detuned excited state |e,n — 1),
ie., |A] > |gml, 2] [36,38] we can adiabatically eliminate the
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contribution of the excited state |e,n — 1) directly on the level
of (14). This yields to

_ lgwln NG
(mJC) __ A A
h T\ _atun _le? ) (as)
A A

Equation (15) represents the matrix form of the modi-
fied Jaynes-Cummings Hamiltonian (mJC) in the subspace
{lg,n),| f,n — 1)}. The operator form of the modified Jaynes-
Cummings Hamiltonian (mJC) reads as

A™O = Hy + Hiy, (16a)

O — |gm|2ATM |Q|2A 16b
s=—\ T €t —6s)  (16b)

N * Q2 mS2
Hine = _(_gz &l6gr + £ A CUfg)- (16c¢)

The term Hg incorporates the influence of Stark shifts of
the detuned fields, while Ay represents the interaction of the
cavity field and the atom, where G = g, 2/ A is the effective
atom-photon coupling constant. Hamiltonians A s and F]im
constitute the modified Jaynes-Cummings Hamiltonian. In the
sequel, we are going to discuss the eigenstates of H™© and
look at the effect of the control field Stark shift.

B. Eigenstates of the modified Jaynes-Cummings
model Hamiltonian

In the following, we calculate the eigenenergies and
eigenstates of H™C  We show that dependent on whether
one compensates the control field Stark shift by using external
fields or not, the eigenenergies, composition of the eigenstates,
and the mixing angle 6, differ significantly. First, we consider
the case of noncompensated control field Stark shift. 4™©
of (16) reduces in the subspace {|g,n),| f,n — 1)} as

‘gmlzn
NP —-Gn
n 2 3
—G'ym
with n =1,2,3,... the total number of excitations and

corresponding number state |n). The eigenenergies are given
as

A7)

E™ =0, (18)

m ml’n Q7
E™ =—(—|gA| +—|A| ) (19)

The eigenstates to the eigenenergies Eﬁrm,), and E (_'",), read as

In,DP™) :=sin (6,)| f.n — 1) — cos (6,)|g.n),
In,DP7)) := cos (B,)] f,n — 1) + sin (6,)|g.n)

(20a)
(20b)

with the occurring mixing angle 6, which is defined as

a7

21
1] 21

1
6, = — arctan
2
However, |n,DP(i)) are called dark-polaritons. A dark-
polariton is a quasiparticle which is a superposition of photonic
and atomic excitations, where the atomic excitations have
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only contributions of ground levels |g) and |f) and not
the excited level |e). Such dark-polaritons are very similar
to the known dark-state polaritons [17,18], but with one
major difference. Dark-state polaritons are defined at Raman
resonance of two coupling fields and formed independently
of the single-photon detuning. Instead, dark-polaritons, which
are also defined at Raman resonance, are formed for a large
single, common photon detuning A of the two coupling
fields, i.e., |A| > |gml,|2|. The dependence on A enables
to tune the eigenstate |n,DP®) from an excited to a ground
eigenstate. This follows from the eigenenergy E (_'",)1 of the dark-
polariton |n,DP)). If A > 0 (A < 0), |n,DP‘P) is an excited
(a ground) eigenstate and |n,DP‘™)) a ground (an excited)
eigenstate. Note that |n,DPP) is a degenerate eigenstate
because the corresponding eigenenergy Eg_m,)l does not depend
on the dark-polariton number n. |n,DP(™)) is a degenerate
eigenstate as well for n > 2. Thus, the spectrum is discrete
and degenerate in dependence of the dark-polariton number 7.
Now, we switch to the case of compensated control field Stark
shift. Compensation is achieved by using an additional field,
which couples the ground state | f) with some far-off-resonant

excited state [39]. Within (17) we set the control field Stark
shift 12 to zero. Hence, the new block-matrix representation

A

A" in the subspace {|g.n),|f,n — 1)} reads as

| mlzn
hglm,comp) — - gT _G\/ﬁ , (22)
—G*Ji 0

with n = 1,2,3, ... the total number of excitations and corre-
sponding number state |n). The block-matrix (22) is a 2 x 2
matrix and can be analytically diagonalized. The eigenenergies
are given as

E(comp,m) - _ |gm|2n + |gm|\/ﬁ |gm|2n + 4|Q|2
- 2A ’
E(comp,m) _ _|gm|2n + |gm|\/’; |gm|2n + 4|Q|2 23
+,n - 2A : ( )

The respective eigenstates to the eigenenergies Eff),lmp’m) and
(comp,m)
E”, are

|n,DP§;Lp) i=sin(8,)|fin — 1) +cos (0,)|g,n), (24a)
[n,DPC) ) i = cos (B,)| f,n — 1) —sin(6,)|g.n),  (24b)

comp

with the occurring mixing angles 8, which are defined as

1 A(S,n)
0, == arctan | ————— |, (25a)
2 B(gm,2,n)

A(Q,n) = 232 x |QVn, (25b)
B(gn‘hQ’n) =V C(gm,Qvn), (25C)
C(gm . 2,n) = |gmIn®> +41Q2°n + D(gw,Q.n),  (25d)
D(gn,2,n) = |gm|nﬁ |gm|2n + 4|Q|2 (25¢)

|n,DP§§I)nP) are dark-polaritons, but of a different type com-

pared to the case of noncompensated control field Stark shift.
First of all, the eigenenergies E\-v™"" with s = +,— depend
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on the generalized Rabi frequency &(n) = /|gn|*n + 4|Q2).
Second, |n,DP£§r)np) have a common mixing angle 6, that
depends on the generalized Rabi frequency £(n) as well. In
addition, the two dark-polariton branches, represented through

|n,DP$)np), are separated by the energy amount

E(_cqoﬂmp,m) _ EE:TJ;nPam) _ |gm|«/z |gm|21’l + 4|Q|2 26)

The separation energy is directly dependent on the generalized
Rabi frequency &(n) and the common single-photon detuning
A as well. This separation is related to the photon-photon
repulsion. It is a consequence of the onsite repulsion U(n)
which is a measure of the Kerr nonlinearity [40].

C. Comparison to standard Jaynes-Cummings model

On the level of the individual Hamiltonians, major differ-
ences are that at first, in H™© the number operator depends
on the projection operator 6,4, of the ground level |g) which is
not the case in HY©. Second, in H™O the atom-cavity field
coupling strength G = g, 2/A is rescaled by the common
single-photon detuning A and the Rabi frequency 2, where
G is chosen to be real. Regarding the eigenstates, a key
difference between H™© and HUO is that in the modified
Jaynes-Cummings model we have eigenstate dependence on
the control field Stark shift. In addition, within the modified
Jaynes-Cummings model, we only have a dependence on
ground levels, whereas in the standard Jaynes-Cummings
model there exists a dependence on the excited level. Hence,
these dependencies affect the coherences. Namely, the bright
polaritons in the standard Jaynes-Cummings model only
consist of optical coherences 6., and are explored to spon-
taneous emission, while in the modified Jaynes-Cummings
model, dark-polaritons only consist of spin coherences 6,
and no exploration to spontaneous emission is present. This
enables the usage of dark-polaritons as a quantum memory
for photons over their spin coherences likewise the dark-
state polaritons [17-33]. Changing the mixing angles in (21)
and (25) over rotations from 0 — 7, which corresponds to
an adiabatical change of the Rabi frequency €2, photons are
transferred to and stored in the spin coherences in a reversible
manner. Optical coherences have shorter coherence times
compared to the spin coherences which have longer coherence
times. Coherence times of spin coherences are in the range of
s to ms in dark-state polaritons [17,18]. Similar is the case for
dark-polaritons. In the sequel, we focus on our model system
and state the effective model Hamiltonian which is based on
our derivation of the modified Jaynes-Cummings model.

IV. MODEL SYSTEM AND EFFECTIVE
MODEL HAMILTONIAN

In the previous sections, we have investigated the stan-
dard and modified Jaynes-Cummings model on the level
of a single QED cavity. In the subsequent step, we extend
the modified Jaynes-Cummings model to a one-dimensional
array of coupled QED cavities. This will lead us to the
modified Jaynes-Cummings Hubbard model as our effective
model Hamiltonian. It includes the hopping between adjacent
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cavities. First, we state the model system and, second, present
the effective model Hamiltonian.

A. Model system

The system we consider consists of a one-dimensional array
of N-coupled QED cavities. We assume periodic boundary
conditions, i.e., the cavity labeled by n = N + 1 corresponds
to the cavity n = 1. Each cavity embeds a three-level atom
with two ground levels |g) and |f), and an excited level
le). The level energies are w,, ws, and w,, respectively,
and the excited level |e) is detuned by the common single-
photon detuning A. In reality, the levels can be either fine
or hyperfine levels of alkali-metal atoms. Their D; or D,
line transitions are nowadays easily accessible via available
lasers and optical modes of QED cavities. One mode of a
tunable cavity [41,42] of frequency w,, couples the transition
|g) — |e) with the strength g,,, and the classical control field
of frequency w,. and Rabi-frequency 2 couple the transition
|f) — le). This configuration is known to feature vacuum
induced transparency, as first experimentally demonstrated by
the group of Vuleti¢ [43]. Both g,, and €2 are typically in MHz
range for alkali-metal atoms, which are strongly coupled to
QED cavities, and for moderate laser powers.

B. Effective model Hamiltonian

As we consider a one-dimensional chain of N identical
coupled QED cavities, the derived modified Jaynes-Cummings
model for a single QED cavity is valid for all QED cavities
in the one-dimensional chain. Therefore, our effective model
Hamiltonian (modified Jaynes-Cummings Hubbard model)
(h = 1) has the form

H(mJCH) H(mJC) + Hh0p7 (273)
H™ = Ay + Hyn, (27b)
. Q2
As = — Z (gm 61660 + &}'f) (27¢)
N
Ao =-G) (6l +e.60). (27d)
n=1
N L
Bhop = =T ) (&), 160 + &leur0), (27e)

u=1

where éT (6,L) is the photonic creation (annihilation) operator

)

and a(" a) (Bl (o, € {g, f}) are the atomic operators

for the site. number u. The term Hg incorporates the
influence of Stark shifts of the detuned fields, while Hy

J

Hlkj)r = (0 + 0 = 2a)|kj)r — Gk alj)F + 17)alk) F),

N 2G
A1) r = (@) —a =Bk alivr = GUki)a + ki) D) + 5 D (KAl F + 104K 0 + = D7 K,
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represents the interaction of the cavity field and the atom,
where G = g,,Q2/A is the effective atom-photon coupling

constant which is set to be real. Hamiltonians I:IS and Hiy
constitute the modified Jaynes-Cummings Hamiltonian. As
will be shown in the sequel, the Stark shifts have profound
influence on the energy eigenspectrum. ﬁhop describes the
photon hopping between adjacent cavities, based on evanes-
cent field coupling, with J as the intercavity photon hopping
strength. Similar effective Hamiltonian has been previously
used to describe a network of fiber coupled cavities, embedded
with three-level atoms [39]. However, while that scheme
requires the compensation of the level Stark shifts, here we
utilize the individual Stark shifts to achieve tunability. Our
effective model Hamiltonian (27) supports the formation of
dark-polariton bound pairs. We will see that the different
dark-polaritons, which have been discussed in Sec. III, are
actually involved in the formation of the energy bands and the
bound states. Moreover, we show and discuss that the bound
states are formed due to the presence of a force called Kerr
nonlinearity which is determined by the onsite repulsion.

V. FORMATION OF DARK-POLARITON BOUND PAIRS

In the following, we discuss the formation of dark-polariton
bound pairs in our system. In order to exploit the invariance of
the system under cyclic permutations of the sites, we introduce
the following operators via discrete Fourier transforms:

2mi
by = — e Ve (28a)
| X
k) _ — 2k A (1)
sf — —Ze " gf (28b)
VN =

where k = 0,1, ...,N —1 is related to the (discrete) quasimo-
mentum of the excitation. Similarly to [34], we work in the
two-excitation subspace that is spanned by the states |kj)p =

bibj|@o). 1K) £1j)a = bl |®o). and [kj)a = 857" o).
The subscripts F and A stand for the photonic and atomic
excitations, respectively. The state |Dg) = ®ﬁ’:1|g>M|O)M is
the ground state of the system, where |0),, denotes the vacuum
state of the cavity number p. We note that the excitations
(polaritons) are in our case dark in a sense that they do not
have the contribution of the excited levels |e) and are not
subjected to spontaneous emission. The atomic excitations
lkj)a are in general not orthogonal to each other because
of A(k'j'lkj)a = 8kwd)j + Sk 8k — =8k+jk+j- br and
EI fulfill the bosonic commutation relation [l;k,l;j.] = 8,
while the atomic operators fulfill the commutation relation

[Ag}) Afgjfﬁ —Lyn e N i with 61 as the Pauli z

matrix for the atom in the uth cavity. Under the action of A
on the states which form the two-excitation subspace, we get
the relations

(29a)

(29b)

(k'.j"HeSp k', j"eSp

013835-5



A. MAGGITTI, M. RADONIJIC, AND B. M. JELENKOVIC

N 2G
Alj)alk)r = (@ —a = b)j)alk)r = GAlki)a + k)R + 1 D (K)alir + 10l + =5 D2 Wi,

Hlkj)a = =G(Kk)alj)r + 1) alk) ) — 2blkj) 4,

where w; = —2J COS(%) forl € {k,j},a= gfn/A, and b =
Q?/A. Within Egs. (29b) and (29c), we have a sum over the
set Sp={k,j)|I0<k<j<N-1,k+j =P (modN)}
that is determined by the quasimomentum P. From
Eqgs. (292)—(29d) we can deduce that the quasimomentum
P is a conserved quantity and hence a good quantum
number. Apart from the quasimomentum, the total number
of excitations (dark-polaritons) N = Z,IZ=1(@LCM + a(“ ) )is a
conserved quantity.

We can construct the complete set of eigenvectors by
solving the eigenproblem within each of the subspaces P =
0,1,...,N—1. Following [34], we restrict the discussion to
the case of even N and odd P. A general dark two-polariton
eigenvector |‘~II(D)) has the form

W)= " (uslki)r + Bijlk)ali)
(k,j)eSp

+ Bl i) alk)F + vijlkj)a)- (30)

|\IJ;,D)) satisfies the time-independent Schrodinger equation
H |\II§,D)) = )\|\IJ§,D)) which yields within each of the subspaces
P=1,3,...,N—1 an eigenproblem that is given by the
subsequent set of linear equations

)\.Olkj = (a)k + w; — 2a)ozkj — G(,Bkj + ﬂlij)’ (31a)
Mj = —Gayj + (wj —a — b)ﬁkj - Gij
+N > Bey +ﬂk,)+ Z vey  (31b)
k', j)eSp (k’ J)ESP

M = —Gayj + (wx —a — b)fy; — GJ/kj

Z )

(k ,JESP

+— > Bej+ By )+

(k’ JESP
v = =GBy + Biy) —

where A is the corresponding eigenvalue. As it was demon-
strated in [34], for various values of the quasimomentum P
the majority of eigenvalues are at most distributed among three
bands. When all three bands are well resolved, it was shown
that each of the two band gaps contains an eigenenergy of the
single two-polariton bound state. For sufficiently large inter-
cavity photon hopping strength J comparing to the strength of
the atom-photon interaction, the bands start to overlap.
However, since we are not dealing with the standard JCH
model, but rather with a modified one, we find some important
differences and new features. Namely, as opposed to [34] there
is only one mutually localized DPBP within one of the existing
band gaps, while the other one joins the adjacent outer band.
The other DPBP can reappear provided that the Stark shift of
the control field is compensated. In both cases, when A < 0,
gm > Q and g,zn /|A| Z 1.5 J, the ground state of the system
is DPBP of a different type than the aforementioned ones. In

Zb)/kj , (3 1d)
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(29¢)

k. j"eSp k'.jeSp

(29d)

(

the sequel, we report on the state composition of the different
DPBP types.

The Kerr nonlinearity is a known force in light-atom
interactions which depends on the atomic level structure as
well as on the coupling strength of light-atom interactions. In
our case, the strength of light-atom interaction is described
by the effective coupling strength G = g,,€2/A. Tuning g,
and/or 2 directly affects the Kerr nonlinearity. Compared
to [34], we can not only tune and control the Kerr nonlinearity
by the cavity-mode coupling strength g,,, but also by the Rabi
frequency 2. This force can be attractive or repulsive [1,13—
16]. This force generates the bound state of two dark-polaritons
in our case. A measure of the Kerr nonlinearity is the onsite
repulsion U (n) which is in general defined as

Um):=(Ex —E)n+1)—(Ex — E_)(n) (32)

with E, the eigenenergies of the considered eigenstates. In
case of the standard Jaynes-Cummings model, the onsite
repulsion U(n) = x(n+ 1) — x(n) is determined by the
generalized Rabi frequency y(n) [3]. This will be different
in our case as we will see in the following. In our DPBPs
we have bound photons and bound atoms. In [44], they have
experimentally shown bound states of atoms in coupled QED
cavities, when atoms occupy the same site.

A. Dark-polariton bound pairs in the regime
of noncompensated control field Stark shift

We focus on the single DPBP solution of Egs. (31) which
is given in red color within Fig. 1(a) representing the energy
eigenspectrum of the model Hamiltonian A in dependence
of odd values of quasimomentum P. Three energy bands
are visible for the used parameter values. We define the gap
between the two upper energy bands as the high-energy band
gap and in accordance the gap between the two lower-energy
bands as the low-energy band gap. The dark-polaritons, which
are involved in the formation of energy bands and the single
DPBP in Fig. 1(a), are given in (20). This can be seen by
solving Egs. (31) for intercavity hopping J = 0. Note that
the bands are a consequence of repulsively interacting dark-
polaritons of different types with respect to the eigenenergies
EY ("’) . By different types here, we mean that the dark-polariton
W1th eigenenergy E n interacts with the dark-polariton of

eigenenergy E(, ,)1 in a repulsive way at the same site w. This
is a consequence of the onsite repulsion U(n). On different
sites, dark-polaritons with eigenenergies Eﬁf’z and E™) a

—,n

noninteracting. Instead, the mentioned Kerr nonhnearlty,
expressed through the onsite repulsion U(n) = %, enables
the single DPBP state formation by the two dark-polaritons
with eigenenergies E™ o ) which is placed at the same site & in
case of A > 0. There is an additional DPBP, formed by the
two dark-polaritons with eigenenergies Ei:"i in case of A > 0,

but is not visible in the spectrum as it is attached to the central
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FIG. 1. (a) Normalized eigenvalues dependence on the quasi-
momentum P for N = 30 cavities. Dark-polariton bound pair state
(red curve) appears in the low-energy band gap. The eigenvalues are
joined by lines for ease of visualization. (b)—(d) Joint probabilities
for different types of double excitations associated to DPBP state for
P = 1. Used parameters: A > 0, g,, = 0.05|Al, 2 = 0.06|A[, and
J =0.001|A].

band. On the contrary, formation of single DPBP interchanges
for A < 0. Our determined U (n) from [3] is mainly affected
by the cavity field coupling strength g,,. By increasing g,, we
increase the onsite repulsion U (n) which directly enhances the
interaction between the two dark-polaritons with eigenenergies
E(,m,), at the same site u with A > 0. Thus, single DPBP is
strengthened. Due to the interaction, the single DPBP lies
inside the energy band gaps. Depending on the sign of the
common single-photon detuning A, DPBP lies either in the
high- or low-energy band gap. In the case A > 0, DPBP lies
in the low-energy band gap, whereas in the opposite case it
resides within the high-energy band gap. In order to get some
information on the inherent state composition of the single
DPBP, we calculate, in line with [34], the joint probabilities

2

AT Al
cncm

PrF = (‘I’;D)h/ﬁ@o) , (33a)

par = (¥ el 10|, (33b)

pas = (W5 |67 6,7 1@0) | (33¢)

of finding pure photonic, photon-atom, and pure atomic
excitations, respectively, in cavities at positions n and m. These
excitations (pure photonic, pure atomic, and photon-atom)
reflect the unique property of dark-polaritons in which the
superposition of photonic and collective atomic excitations
can be tuned by changing 2 in first place. In our case,
we can not only change €2, but also g, as we use tunable
cavities [41,42]. For a given value of quasimomentum P, all
three joint probabilities only depend on the relative distance
|n — m| within the cavities.

In Figs. 1(b)-1(d) we present the joint probabilities for the
single DPBP state of Fig. 1(a). We have chosen the number
of coupled QED cavities to be N = 30, single-photon detun-
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ing A > 0, cavity-mode coupling strength g,, = 0.05 A, the
control field Rabi frequency €2 = 0.06 A, intercavity photon
hopping strength J = 0.001 A, and subspace P = 1. One can
see that the DPBP excitations are well confined together,
and all three possible excitation types coexist with roughly
equal contributions. The state composition gradually changes
by decreasing the contribution of double atomic excitations
when P approaches the midrange values. This regime is
roughly characterized by g,, ~ Q and (g2 + Q*)/|A| > 5J.
The energy band gaps close when decreasing the ratio of
(g,%, + Q%)/]A] and J. At the same time, DPBP becomes
relatively delocalized, similarly as in [34].

B. Dark-polariton bound pairs in the regime of compensated
control field Stark shift

The tunability of our model enables not only the control
of the shape of the energy bands, but also the emergence
of an additional DPBP state. Namely, if the control field
Stark shift is compensated by using an additional field, which
couples the ground state | f) with some far-off-resonant excited
state [39], another DPBP state appears in the formerly empty
energy band gap. Such an add reflects in the removal of the
parameter b from Egs. (31). The energy bands in Fig. 2(a),
shown for discrete and distinct quasimomenta P, are formed
by the dark-polaritons in (24). This can be seen by solving
Egs. (31) for the intercavity hopping strength J = 0 and set
the parameter b equal to zero. The onsite repulsion U(n),
which ensures the formation of the two DPBPs, is given as

N1/ 82 (n+1)+4Q2—g,, /1A / g2 n+4Q2 ..
Un) =% En X LN for positive and

negative common single-photon detuning A. Thus, the onsite
repulsion U(n) is invariant under the sign change of A.
Distinctly to the DPBP formation under noncompensated
control field Stark shift, the onsite repulsion U(n) apart
from the cavity field coupling strength g,, directly depends
on the Rabi frequency 2. This gives the opportunity to
effectively control and enhance the interaction through g,
and Q. Further, in Fig. 2(a) one can observe that each of
the two energy band gaps now contains a single DPBP state
(blue and red curves). We used the same parameter values
as in Fig. 1, but with compensated control field Stark shift.
In Figs. 2(b)-2(d) and Figs. 2(e)-2(g) we characterize the
state composition of lower- and higher-energy DPBP states,
respectively, by considering the joint probabilities as in the
previous subsection. The DPBP in the lower-energy band gap
is dominantly composed of two-photon excitation, while in the
other DPBP state atom-photon excitation prevails. Moreover,
higher-energy DPBP state is further apart from the outer energy
band and it is relatively more localized than the lower-energy
DPBP state. We checked that the same behavior persists for
other values of quasimomentum P. Note that the described
situation is for A > 0, while it interchanges for A < 0.

VI. QUANTUM MEMORY OF LIGHT IN
A DARK-POLARITON BOUND PAIR

In the parameter regime where the common single-photon
detuning A is negative and the cavity-atom coupling strength
gm 18 significantly larger than the control field Rabi frequency
2, we have a single DPBP state which is the ground state
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FIG. 2. (a) Normalized eigenvalues dependence on the quasi-
momentum P for N = 30 cavities. Two dark-polariton bound pair
states (blue and red curves) appear in both energy band gaps. The
eigenvalues are joined by lines for ease of visualization. (b)—(d) Joint
probabilities for different types of double excitations associated to
lower-energy DPBP state. (e)—(g) Joint probabilities for different
types of double excitations associated to higher-energy DPBP state
for P = 1. Used parameters: A > 0, g, = 0.05|A[, 2 =0.06|A|,
and J = 0.001 [A].

of the system. It is well separated from the rest of the
energy spectrum when g2 /|A| > 1.5 J. This is presented in
Fig. 3(a). DPBP state composition, given in Figs. 3(b)-3(d)
by the corresponding joint probabilities, reveals that the state
is dominantly composed of combined atomic and photonic
excitations which are localized in their relative spatial coordi-
nates. Note that this DPBP state is of a completely different
type than the ones found in the previous section.

It is important that this state also enables the storage
of a single photon in the form of a collective atomic spin
coherence excitation to which the other photon is closely
bound. Namely, when 2 — 0 adiabatically, a DPBP becomes
a pure combination of an atomic and photonic excitation.
From this we can deduce that one photon remains attached
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FIG. 3. (a) Normalized eigenvalues dependence on the quasi-
momentum P for N = 30 cavities. Dark-polariton bound pair state
(red curve) appears as the ground state. The eigenvalues are joined
by lines for ease of visualization. (b)-(d) Joint probabilities for
different types of double excitations associated to DPBP state for
P = 1. Used parameters: A < 0, g,, = 0.05|A], 2 = 0.001 |A[, and
J =0.00125 |A|.

to the atomic spin coherence wave. This is reminiscent of the
atom-photon molecule [36].

The state composition can be tuned by increasing the
relative importance of the intercavity photon hopping, e.g., by
increasing |A|. This is achieved gradually for distinct values
of quasimomentum, starting from the values P =1, N — 1
and proceeding towards the midrange values of P. Figure 4(a)
shows the energy spectrum in such a case. For P € {1,3,N—3,
N — 1} the DPBP state is predominantly composed of two-
photon excitations which become delocalized in their relative
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FIG. 4. (a) Normalized eigenvalues dependence on the quasi-
momentum P for N = 30 cavities. Dark-polariton bound pair state
(red curve) appears as the ground state. The eigenvalues are joined
by lines for ease of visualization. (b)-(d) Joint probabilities for
different types of double excitations associated to DPBP state for
P = 1. Used parameters: A < 0, g,, = 0.05|A|, 2 = 0.001 |A|, and
J =0.002|A].
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spatial positions, as can be seen in Figs. 4(b)—4(d). The reason
for such behavior can be traced back to the emergence of the
avoided crossings of the ground state and the first excited state
near the edges of the quasimomentum zone. The crossings
shift towards the P-zone center as the influence of the photon
hopping is being increased. For the quasimomentum values
between the crossings, the DPBP state remains dominantly
of the atom-photon type. In the case when the control field
strength adiabatically reduces to zero, the DPBP state becomes
of a pure two-photon type. Therefore, this corresponds to the
retrieval procedure of the previously stored photon excitation.

VII. EXPERIMENTAL REALIZATION

Our model system is a large, one-dimensional mJCH
chain of N-coupled QED cavities. In order to realize it,
we need a structure, in which large arrays of coupled QED
cavities can be realized. Promising candidates are photonic
band-gap cavities [12,45]. It is manageable to produce and
position them with high precision and in large numbers. A
tempting alternative are photonic crystals as they offer the
possibility of fabricating large arrays of QED cavities in one- or
two-dimensional lattices as well as networks [46—48]. A third
possibility would be the use of toroidal micro-QED cavities
that are coupled via tapered optical fibers [49]. Single atoms,
embedded in each QED cavity, are three-level atoms where
the excited level is far detuned by the common single-photon
detuning with respect to the two coupling fields. In real
experiments, Cs and ultracold 8Rb atoms have shown to
be very suitable [44,50,51]. For Cs in a toroidal micro-QED
cavity it has be shown that g,, in the strong-coupling regime
reaches the value of ~ 50 MHz [50]. This fits pretty well with
our theoretically chosen value for the formation of individual
DPBP inside the energy band gaps, but also for the ground
DPBP at A < 0 with its potential use as a quantum memory
for a single photon.

VIII. CONCLUSION

To summarize, we have derived a modified Jaynes-
Cummings model from the bare model under two conditions:
(i) two-photon Raman resonance of the cavity mode and

PHYSICAL REVIEW A 93, 013835 (2016)

classical control field, (ii) common single-photon detuning
|A| > gm,2. We have shown that the eigenstates on one
hand depend on the common single-photon detuning and,
on the other hand, their composition differs with respect to
the control field Stark shift. Moreover, we have extended
the modified Jaynes-Cummings model to a modified Jaynes-
Cummings-Hubbard model where an array of N-coupled QED
cavities, each having an embedded single three-level atom, is
considered. The modified Jaynes-Cummings-Hubbard model
supports DPBPs. The formation of two different species of
spatially localized dark-polariton bound pairs (DPBPs) has
been elaborated when there are exactly two excitations in
the system. It was shown that the onsite repulsion U(n) as a
consequence of the Kerr nonlinearity represents the attractive
force between interacting dark-polaritons and enables the
existence of DPBP states. Furthermore, it is demonstrated
that our model system offers a high degree of tunability
that can affect both quantitative and qualitative behavior. In
particular, the number of DPBP states can be controlled by
(not) compensating the Stark shift due to the control field.
Further, in the regime when cavity-atom coupling overwhelms
the influence of the control field, and the common single-
photon detuning of the fields is negative, we obtained a
ground DPBP eigenstate on which the storage and readout of
a single photon can be effectively performed. An experimental
realization is proposed for our model system. Cs atom has
been mentioned as a promising candidate as its value of the
cavity-mode coupling strength g,, fits very well with our
theoretically chosen and determined one. We expect that future
investigations of this kind of system under different settings,
i.e., with distinct and alternating hopping strengths between
the cavities, in the presence of disorder, or in two-dimensional
lattice configurations, may lead to various effects and rich
physics.
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