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   Област истраживања Милоша Дражића је физике кондензованог стања, а 

посебно област квантног електронског транспорта кроз наноструктуре и 

молекуле/квантне тачке. У раду користи методе аналитичког и нумеричког 

описа квантног транспорта кроз молекул који је постављен између две 

проводне електроде, користећи  формализам Гринових функција 

дефинисаних на Келдишовој  контури као и теорију функционала густине 

(DFT-density functional theory). 

  Тема досадашњег истраживања је  испитивање утицаја временски 

променљивог напона мале амплитуде на транспортне особине произвољног 

молекула који је постављен између две добро проводне електроде.  Поступак 

који се уводи јесте да се познати и ефикасни DFT  методи користе за 

рачунање временски хомогених Гринових функција као и  стационарног 

потенцијала  у молекулу.   

Прва целина досадашњег рада  се односила на одређивање динамичке 

корекције временски хомогених Гринових функција и стационарног 

потенцијала молекула у Хартри-Фоковој апроксимацији у ортогоналном 

базису.  Фоков члан не уноси додатну грешку услед самоинтеракције, мимо 

оне коју практична употреба DFT-а производи. Уведена је саоусаглашена 

схема којом се динамичке корекције добијају у функцији временски 

хомогених Гринових функција, стационарног потенцијала и временски 

зависних  потенцијала у електродама. 

   Друга целина се бави одређивањем динамичке корекције временски 

хомогених Гринових функција и стационарног потенцијала у Хартријевој 

апроксимацији у неортогоналном базису.  Добијена веза између временски 

хомогених Гринових функција и њихових динамичких корекција отвара 

могућност нумеричког рачунања временски променљивих транспортних 

особина уз помоћ DFT-a,  где су кодови стандардно базирани на коришћењу 

неортогоналних базисних скупова .  Избегавањем ортогонализационих схема, 

карактеристичних за постојеће кодове који се користе у опису временски 

зависног транспорта,  добијени резултат постаје погодан за рачунарску 

примену.  
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Abstract
A microscopic theory of nonequilibrium electronic transport under time-dependent bias through a

molecule (or quantum dot) embedded between two semi-infinite metallic electrodes is developed

in a nonorthogonal single-particle basis set using an ab initio formalism of Green’s functions. The

equilibrium zeroth order electron Green’s function and self-energy are corrected by the corre-

sponding time-inhomogeneous dynamical contributions derived in the Hartree approximation in a

steady-state linear-response regime. Nonorthogonality contributes to dynamical response by intro-

ducing terms related to the central region-electrode interface, which appears only in the time-

dependent case. The expression for current is also derived, where a nonorthogonality-induced

dynamical correction gives an additional current that is not present in the orthogonal description.

It is shown that the obtained expression for current is gauge-invariant and demonstrated that the

omission of the additional current violates charge conservation. The additional current term van-

ishes in an orthogonal basis set.

K E YWORD S

time-dependent nonequilibrium electron transport

1 | INTRODUCTION

Numerical codes for the calculation of electronic transport are based

on theories derived for orthogonal basis sets, but their implementation

is realized using a nonorthogonal basis.[1,2] Numerical calculations of

electronic transport under time-independent bias (i.e., steady state cur-

rent) are invariant with respect to the choice of an orthogonal basis

set. In the time-dependent (TD) case, a number of studies have demon-

strated that the exact treatment of nonorthogonality (i.e., the use of a

nonorthogonal basis without any transformations) in electronic trans-

port is necessary for reliable results.[3–11] Since the early days of molec-

ular orbital theory, there was a strong and prominent advocacy that

nonorthogonality is not just a mathematical convenience.[12–17] The

nonorthogonality of atomic orbital basis sets in electronic transport

theories is typically handled via L€owdin[18] or lead-device orthogonali-

zation.[19,20] However, L€owdin orthogonalization should be applied

with care in the case of electronic transport of small open-shell systems

since orthogonal functions have wider spatial extents than nonorthog-

onal functions.[21–23] Working directly with a nonorthogonal set is a

natural alternative. In the present work, we develop a theory of TD

nonequilibrium electronic transport through a molecule in a two-probe

geometry formulated in a nonorthogonal basis set. The derived theory

shows that new terms appear in the nonorthogonal case that are pres-

ent in neither the orthogonal nor the time-independent case. The origin

of these terms is in the displacement current, as will be shown in detail.

Atomic orbitals appear to be a natural basis for a theoretical

description of atoms and molecules, but because of the nonorthogonal-

ity of single-electron states, a number of conceptual difficulties arise:

discrepancy in the description of the chemical bonds strengths and the

resonance molecular energies,[12–15] sensitivity of bond orders and

charge densities in heteromolecules to the value of the overlap,[16] and

dependence of the description of atomic force attraction of mole-

cules.[17] Additionally, nonorthogonality is strongly involved in the pop-

ulation analysis problem.[24–28] Further, it leads to various possible

Hamiltonian projections where the appearance of ambiguity in the

obtained eigenvalues, local density of states and partial charges is

caused by nonorthogonality between complementary subspaces.[29,30]

In a recent series of papers,[31–33] many-body nonorthogonal theory

was developed and applied to valence bond theory, giving the

enhanced Wick’s theorem.

In electronic transport theories, nonorthogonality has also been

the subject of research, and Prange[3] considered it an elementary
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problem of thin-barrier tunneling of electrons, showing that conceptual

difficulties with the transfer Hamiltonian can be overcome if one

includes nonorthogonality between the states left and right of the bar-

rier. In addition, nonorthogonality has been proposed as a solution to

the problem of transferability appearing in orthogonal basis

sets.[21,34,35] In his papers, Stuchebrukhov[4–6] developed a method for

calculating the tunneling currents in electron transfer reactions.

Because of the overlap of the atomic orbitals, the currents between

atoms are nonuniquely defined. However, the balance equation dem-

onstrated that the Mulliken population gives a well-defined theory.

Important insights concerning the nonorthogonality related appearance

of anti-resonances and its effects on a diminishing of electron transfer

are achieved by introducing a revised Hilbert space by Emberly,[7,8]

where new orthogonal states appears and the Hamiltonian matrix ele-

ments associated with noninteracting electrodes become energy-

dependent. The anti-resonances can be reproduced within the tight

binding scheme. This scheme has highlighted the equivalence between

the nonorthogonal description with nearest neighbor hopping and the

orthogonal description with second neighbor hopping.[9] Such a conclu-

sion is known from earlier studies.[36] Additionally, the theoretical stud-

ies showed an asymmetric band structure and an effective mass

decrease/increase at the band top/bottom. The asymmetry of the

transmission curves relative to the band center was obtained using a ten-

sorial approach,[10] which showed an energy dependence of the overlap

effect. The nonorthogonality effects were examined on the T-junction

structure[37] indicating that anti-resonance increases inside the band and

at the band edges. Fransson[11] studied weak coupling of a dot and elec-

trode in a nonorthogonal case for an extended Anderson Hamiltonian

with a large Coulomb intra-dot repulsion by analyzing one-particle Hamil-

tonian of a single-barrier tunneling structure. In that case, transformation

of the tunneling coefficient decreased the coupling strength. Thyge-

sen[20] used the contravariant states of the central region and achieved

mutual orthogonality of the electrode’s and central region’s subspaces,

also known as electrode-central region orthogonalization. This result rep-

resents a generalization of Meir-Wingren[38] in the steady state case for

an arbitrary type of interaction in the central region. Within the TD den-

sity functional theory (TDDFT) scheme, based on the hierarchical equa-

tions of motion, the problem of electrode-central region overlap is solved

by embedding the overlap in the self-energy (SE). This transformation

has been shown to be equivalent to electrode-central region orthogonali-

zation.[19] The electrode’s time dependency can be treated as a perturba-

tion. In orthogonal formalism this dependence is removed by using a

proper unitary transformation, giving a phase factor that is acquired in

hopping between the electrodes and the central region. The nonorthogo-

nal extension is developed[18] to approximate the exact noninteracting

result[39] and has been shown to be applicable after the Hamiltonian

orthogonalization. In strongly correlated electronic systems, Haldane

used the nonorthogonality of localized states to construct an extensive

Hilbert space of topological states of the quantum Hall effect, leading to

a generalization of the Pauli Principle.[40]

This work studies quantum electronic transport in a standard two-

probe geometry when the entire system is decomposed into three

parts: the left and right electrodes and a molecule placed between

them. In this case, the Hamiltonian and the overlap matrices have a

block form induced by the system partition, where the central region

Green’s function (GF), electrode (surface) GF, and junction (interface)

SE are obtained from the matrix equations within the formalism of

nonequilibrium GFs, leading to computational applications in which the

numerical codes rely on coupling with DFT to treat the

interaction.[1,2,41–43] In this context, nonorthogonality was also shown

to be a solution to the lack of transferability of orthogonal basis sets

and instrumental to developing order-N methods.[22,23,44] The main

advance made by this work is that the nonequilibrium theory of TD

electronic transport is formulated starting from a nonorthogonal single-

particle basis set. Our approach does not rely on electrode-central

region orthogonalization[19,20] or on unitary transformation.[18] Instead,

working directly with a nonorthogonal set, we obtained dynamical cor-

rections of the GFs, the SE, and the current. The dynamical corrections

of the GFs and SEs we will call the time-inhomogeneous (TIH). The

effects of the displacement current are accounted for in a self-

consistent manner. Our primary goal was to obtain linear dynamical

corrections and responses accordingly. Additionally, our method can be

perturbatively expanded to include nonlinearities. Since the TD contri-

butions of the GFs and the SEs are obtained in terms of time transla-

tional invariant quantities, which we will call the time-homogeneous

(TH) quantities, this method is suitable for use in combination with

DFT. From a theoretical point of view, it is shown that nonorthogonal-

ity introduces a nontrivial contribution to the current caused by its cou-

pling to the electrodes.

2 | METHODOLOGY

The formalism of GFs is the main method used to describe electronic

transport through mesoscopic and nano-structures, particularly in systems

of molecule/interface/dot between two metallic electrodes.[38,42,43,45–56]

Such systems have been successfully coupled with both DFT[1,2,41–43] and

TDDFT.[19,57–60] The significance of GFs in the description of quantum

transport is that they provide both microscopic and phenomenological

theories of the time-evolutions of many particle systems through their

particle and current densities, momentums and energies. In the micro-

scopic case considered here, a general form of the one-particle GF is

defined through the field operators given in the Heisenberg picture.[61,62]

From the equation of motion (EOM) of a one-particle GF, and in addition

to the one-particle kinetic energy and external potential, there are two-

body contributions caused by the Coulomb interaction, which is

expressed by a two-particle GF, which indicate a BBGKY hierarchy.[61–64]

In this work, interaction is treated at the level of the mean-field Hartree

approximation[62,65] and is expressed in terms of characteristic

potentials.[43,66–68] To obtain a closed-form GF equation, SE is introduced,

which in its exact form can be perturbatively expanded to obtain approxi-

mations that conserve current, momentum and energy.[62,65] In the case

of electronic transport, in addition to the particle-interaction related SE,

there is an additional contribution associated with the coupling of the cen-

tral region and the electrode: the junction (i.e., interface) SE.
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Defined through the field operators, the GF depends on two time-

position variables. The representation of the GF in a set of one-particle

creation/annihilation operators requires an expansion of the field oper-

ators of the many-particle state over a basis of single-particle states.

DFT based numerical calculations of electronic transport for time-

independent bias expand wavefunctions in nonorthogonal basis

sets,[1,2,41,69] which raises a question regarding the nature of the crea-

tion and annihilation operators; that is, what are the states created

(annihilated) by these operators and how are related to the field expan-

sion coefficients (functions).

When expanding an electronic wavefunction in a given nonorthog-

onal basis set, the relations between this set and the one created by

the operators given in the field operator expansion concern the prob-

lem of the existence of a biorthonormal basis, where creation (annihila-

tion) operators create (annihilate) the given nonorthogonal basis set

state, leading to the conclusion (Riesz lemma) that the expansion func-

tions are isomorphic to the space of linear functionals (the dual

space),[70] and biorthonormalization is related to the inversion of the

overlap matrix of the given basis.[71–74] There is a nonunique resolution

of identity, which provides Hermitian projectors[29,75] only in the

L€owdin case.[14,15]

2.1 | Hamiltonian

The Hamiltonian of Coulomb-interacting electrons in the second quan-

tization formalism is

H5
ð
ŵ

†ðrÞhðrtÞŵðrÞdr1 e2

2

ð ð
ŵ

†ðrÞŵ†ðr0Þ 1
jr2r0j ŵðr

0ÞŵðrÞdrdr0; (1)

where the electron field operators satisfy the fermionic anti-

commutation relations

fŵðrÞ; ŵ†ðr0Þg5dðr2r0Þ; fŵðrÞ; ŵðr0Þg50; fŵ†ðrÞ; ŵ†ðr0Þg50; (2)

and time dependency is introduced through one-particle contributions

arising from TD external perturbation. For simplicity, spin indices are

omitted and �h51.

The system naturally decomposes into three coupled subsystems

of left- and right-lead and the central region, with respective single-

particle basis sets of fwia ðrÞ;a5L;R; ia51; . . .g and fwnðrÞ; n51; . . .g.
The standard assumption is taken that there is no interaction between

the leads. The central region consists of the molecule with the elec-

trode termini (which will be defined more precisely in a later section).

2.2 | Nonorthogonal basis set field operator expansion

The completeness relations (i.e., resolution of identity) in a nonorthogo-

nal single-particle basis set fjwiig is given by[70]

I5
X
ij

jwiiðS21Þijhwjj (3)

where S is the overlap matrix, Sij5hwijwji, of the corresponding two

states.

In the system studied here S has a 3 3 3 block form that is natu-

rally induced by the system decomposition into left-lead/dot/right-

lead, where the blocks are matrices Sab; SaC; SCa; SC with matrix ele-

ments equal to the overlaps of the lead-lead (Sia jb ), lead-dot (Sian; Snja )

and dot-dot (Snm) basis vectors.

To simplify the notation, the overlap matrix and its inverse can be

presented as a covariant and contravariant tensor, respectively, where

the tensor element Sij equals the matrix element ðS21Þij. The property

S21S5I gives the connection between the upper and lower indices

SijSjk5dik , where the Einstein summation convention is used.

The introduction of Sij now induces the contravariant basis-set,

jwii5Sijjwji; (4)

and the completeness identity in Equation 3 can now be written as

I5jwiiSijhwjj5jwiihwij5jwiihwij; (5)

or equivalently, the orthogonality of the covariant and contravariant

states,

hwijwji5hwjjwii5dji; (6)

which provides an interpretation of fjwiig as a biorthogonal basis.

Any operator O now has contravariant (Oij), covariant (Oij), and

mixed (Oi
j) representations, which are connected through the metric

tensors Sij and Sij in the standard fashion. In particular, Equation 3 gives

expansions[76] for the electron field creation operator

ŵ
†ðrÞ5c†i S

ijw�j ðrÞ5ci†w�i ðrÞ (7)

and annihilation operator,

ŵðrÞ5wiðrÞSijcj5ciwiðrÞ (8)

where the operators ci† (ci) create (annihilate) the corresponding one-

particle state jwii5wiðrÞ, with anti-commutators

fci†; cjg5fc†j ; cig5dij (9)

fci; cjg5fcj; cig50; (10)

and the operators ci (c
†
i ) create (annihilate) the state jwii5Sijjwii, with

the remaining anti-commutators

fci; cj†g5Sij; fci; cjg5fci†; cj†g50; (11)

fci; c†j g5Sij; fci; cjg5fc†i c†j g50: (12)

The assumption of no-overlap between the leads can be simply

stated as Sia jb50;a 6¼ b. However, nonorthogonality implies that Sia jb

does not necessarily vanish, since it is determined by the inverse of S.

2.3 | Green’s functions in a nonorthogonal basis

GFs of the electronic system are defined as

Gðrt; r0t0Þ52ihTcðŵðrtÞŵ†ðr0t0ÞÞi; (13)

where Tc represents time-ordering on the Keldysh contour,[61–63] with

the equations of motion (EOM)

iotGðrt; r0t0Þ5dðt2t0Þdðr2r0Þ1hðrtÞGðrt; r0t0Þ

1

ð
dr1

ð
c
dt1R

intðrt; r1t1ÞGðr1t1; r0t0Þ;
(14)
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iot0Gðrt; r0t0Þ52dðt2t0Þdðr2r0Þ2hðr0t0ÞGðrt; r0t0Þ

2

ð
dr1

ð
c
dt1Gðrt; r1t1ÞRintðr1t1; r0t0Þ;

(15)

where Rint is the Coulomb interaction SE and the time integration is

along the Keldysh contour.

We proceed by using a contravariant representation of GF,

Gðrt; r0t0Þ5wiðrÞGijðt; t0Þw�j ðr0Þ; (16)

which is also used in numerical implementations in a time-independent

regime.[1,2] This approach has the advantage that the Hamiltonian is

represented in the given nonorthogonal basis; consequently, the

screening in the dot region, where the interaction plays an important

role, has an intuitive description.

The replacement of Equation 16 into the EOM Equations 14 and

15 gives

iSijotGjkðt; t0Þ5dðt2t0Þdki 1HijðtÞGjkðt; t0Þ1
ð
c
 dt1 Rint

ij ðt; t1ÞGjkðt1; t0Þ
(17)

2iot0Gijðt; t0ÞSjk5dðt2t0Þdik1Gijðt; t0ÞHjkðt0Þ1
ð
c
 dt1 Gijðt; t1ÞRint

jk ðt1; t0Þ; :
(18)

To emphasize the dot-leads structure Equation 17 can be written

in block-form, standardly written as

SL SLC 0

SCL SC SCR

0 SRC SR

2
6664

3
7775iot

GL GLC GLR

GCL GC GCR

GRL GRC GR

2
6664

3
7775   ðt; t0Þ5

dðt2t0Þ

diLiL 0 0

0 dnn 0

0 0 diRiR

2
66664

3
777751

HL HLC 0

HCL HC HCR

0 HRC HR

2
6664

3
7775  ðtÞ

GL GLC GLR

GCL GC GCR

GRL GRC GR

2
6664

3
7775   ðt; t0Þ

1

ð
c
dt1

Rint
L Rint

LC 0

Rint
CL Rint

C Rint
CR

0 Rint
RC Rint

R

2
6664

3
7775   ðt; t1Þ

GL GLC GLR

GCL GC GCR

GRL GRC GR

2
6664

3
7775  ðt1; t0Þ;

(19)

where each letter in subscript/superscript of a matrix refers to a block

formed by the covariant/contravariant indices of the subsystem

marked by the letter and the zero block-matrices of H and R arise from

the assumption of no interaction between different electrodes.[1,2,42]

The similar block-matrix expression for GF EOM in t0 (i.e., Equation 15)

is straightforward to write, which we omit for brevity.

Projections of GF satisfy the trace property,Ð
drGðrt; rt0Þ5TrGðt; t0Þ, in which the nonorthogonal basis adopts ten-

sor notation for the subsystems,ð
 drGabðrt; rt0Þ5Sib iaG

ia ib ðt; t0Þ
ð
 drGaCðrt; rt0Þ5SniaG

ianðt; t0Þ
ð
 drGCaðrt; rt0Þ5SianG

nia ðt; t0Þ
ð
 drGCðrt; rt0Þ5SnmGmnðt; t0Þ;

(20)

where the l.h.s. are defined as Equation 16 over the set of basis vectors

given by indices.

Electronic transport is described by the continuity equation

otnðrtÞ1rjðrtÞ50; (21)

where electron density and electron current are given, respectively, as

nðrtÞ52iGðrt; rt1Þ; (22)

jðrtÞ5 1
2mi
ðr2r0Þð2iGðrt; r0t1ÞÞjr5r0 ; (23)

where t1 implies the value of G obtained on the Keldysh contour.[61]

2.4 | Time-dependent external potential

The special case of great interest that is studied here concerns electrodes

with good screening properties.[68] In this case, TD potentials are spatially

constant in the electrodes because of screening, giving an overall shift of

their energy levels. This is satisfied for metallic leads in a periodic external

driving field of frequency below the leads plasma frequency.[48]

Near the molecule, the constant potential shift is violated and the

TD potential profile along the transport direction changes depending

on the injected and the induced TD charge. This defines the central

region as the molecule together with parts of the electrodes where the

screening occurs, and outside of which the TD potentials of the elec-

trodes are unperturbed.

The induced charge generation restores the charge neutrality

within the central region whose boundaries are determined by parts of

the leads near the physical molecule where the potential begins to

deviate from the bulk.[77–79] Time dependency in the central region

and at its interface with the rest of the electrodes then arise from the

dynamical contributions of the interaction SEs, Rint
C and Rint

CaðaCÞ, respec-

tively, whereas the time dependency in the electrodes is integrated

into their one-particle Hamiltonian.

The mean-field approximation for the interaction SE,

Rint
a ðt; t0Þ � Rint

a ðt; t0Þdðt2t0Þ; (24)

introduces time-homogeneity of SEs, giving

HaðtÞ5Ha1SavaðtÞ; (25)

where a spatially uniform TD potential is introduced through the sec-

ond term. The TD bias arises from the sum of an external field and the

dynamical (TIH) contribution of the electrode’s interaction SE. Further-

more, the mean-field approximation allows the inclusion of the interac-

tion TH SE, Rint
a , into the one-particle Hamiltonian Equation 25,

Htot
a ðtÞ5Ha1Rint

a 1SavaðtÞ: (26)

The isolated electrode GFs, G0a, has matrix elements defined as

G0ia ja ðt; t0Þ52ihTcc0ia ðtÞc0ja†ðt0Þi; (27)

with operators

c0ia5Sia jaa cja ; c
0ja†5c†iaS

ia ja
a ; (28)

where the time evolution is governed by the evolution operator of

Hamiltonian Equation 26,

60 | DRA�ZIĆ ET AL.



c0ia ðtÞ5U†
H0
a
ðt; t0Þc0iaUH0

a
ðt; t0Þ; (29)

with EOM,

iotUH0
a
ðt; t0Þ5H0

aðtÞUH0
a
ðt; t0Þ

H0
aðtÞ5c0ia†½Htot

a ðtÞ�ia jac0ja :
(30)

At present, the steady-state regime is considered; therefore, the

EOM of lead GFs, Equation 27, become

ðSa i~ot2Htot
a ðtÞÞG0aðt; t0Þ5Iaadðt2t0Þ

G0aðt; t0Þðiot0
 

Sa1Htot
a ðt0ÞÞ52Iaadðt2t0Þ;

(31)

which gives the following system of GF EOM for the whole system,

which are decomposed into contributions from the subsystems,

Gabðt; t0Þ5G0aðt; t0Þdab

1

ð
c

ð
c
G0aðt; t1Þ~VaCðt1; t2ÞðGCaðt2; t0Þdba1GCbðt2; t0Þð12dabÞÞdt1dt2

(32)

GCaðt; t0Þ5
ð
c
GCðt; t1Þ~VCaðt1; t2ÞG0aðt2; t0Þdt1dt2 (33)

GaCðt; t0Þ5
ð
c
G0aðt; t1Þ~VaCðt1; t2ÞGCðt2; t0Þdt1dt2 (34)

SCiotGCðt; t0Þ5ICCdðt; t0Þ1HCG
Cðt; t0Þ1

ð
c
ðRint

C ðt; t1Þ1Rjunct
C ðt; t1ÞÞGCðt1; t0Þdt1

(35)

Rjunct
C ðt; t0Þ5

X
a

Rjunct
Ca
ðt; t0Þ5

X
a

ð
c

ð
c

~VCaðt; t1ÞG0aðt1; t2Þ~VaCðt2; t0Þdt1dt2;

(36)

where

~VaCðt; t0Þ5dðt; t0ÞðHaC2SaCi~ot Þ1Rint
aCðt; t0Þ

~VCaðt; t0Þ5dðt; t0ÞðHCa2SCai~ot Þ1Rint
Caðt; t0Þ:

(37)

Similarly, the derivative over the time argument t0 gives

Gabðt; t0Þ5dabG0aðt; t0Þ

1

ð
c

ð
c
GaCðt; t1ÞðV

 
Caðt1; t2ÞG0aðt2; t0Þdba1V

 
Cbðt1; t2ÞG0bðt2; t0Þð12dabÞÞdt1dt2

(38)

GCaðt; t0Þ5
ð
c

ð
c
GCðt; t1ÞV

 
Caðt1; t2ÞG0aðt2; t0Þdt1dt2 (39)

GaCðt; t0Þ5
ð
c

ð
c
G0aðt; t1ÞV

 
aCðt1; t2ÞGCðt2; t0Þdt1dt2 (40)

iot0GCðt; t0ÞSC52ICCdðt2t0Þ2GCðt; t0ÞHC2

ð
c
GCðt; t1ÞðRint

C ðt1; t0Þ1Rjunct
C ðt1; t0ÞÞdt1

(41)

Rjunct
C ðt; t0Þ5

X
a

Rjunct
Ca
ðt; t0Þ5

X
a

ð
c

ð
c
V
 

Caðt; t1ÞG0aðt1; t2ÞV
 

aCðt2; t0Þdt1dt2;

(42)

where

V
 

aCðt; t0Þ5ðHaC1iot0
 

SaCÞdðt; t0Þ1Rint
aCðt; t0Þ

V
 

Caðt; t0Þ5ðHCa1iot0
 

SCaÞdðt; t0Þ1Rint
Caðt; t0Þ:

(43)

Despite a similarity to the orthogonal states description,[48–50]

there are some important differences. In addition to the use of a

biorthogonal basis set, where the Hamiltonian and GFs are represented

in dual basis sets, the hopping matrices now contain two additional

terms: the mixed overlap matrices with time-derivative operators and

the interaction SE projected onto the interface Equations 37 and 43.

The appearance of the mixed overlap matrices is the result primarily

known from steady state transport in the energy domain.[1,2,42] The

interface interaction SEs affect the form of the junction SEs, Equations

36 and 42. The TD component of these interface interaction SEs,

RCaðaCÞ, contributes to the total induced potential within the region

where charge neutrality is conserved. These dynamical corrections,

originating in the dot-leads hopping terms (Equations 37 and 43) also

affect the TD contributions of the junction SE (Equations 36 and 42)

by making them different from the same quantities described in an

orthogonal set.

2.5 | Coulomb interaction

In GFs formalism, the interaction SE represents the Coulomb (two-par-

ticle) interaction. The EOM (we take only the first time argument deriv-

ative since the second time argument derivative leads to the same

result) of GF Equation 13 of the system described with Hamiltonian

Equation 1 is[61,62]

iotGðrt; r0t0Þ5dðt2t0Þdðr2r0Þ1hðrtÞGðrt; r0t0Þ

2i
ð
Wðjr2r1jÞG2ðrt; r1t; r0t0; r1t1Þdr1;

(44)

where W is the Coulomb interaction and the two particle GF is

G2ðrt; r1t1; r0t0; r2t2Þ5ð2iÞ2hTcðwðrtÞwðr1t1Þw†ðr2t2Þw†ðr0t0ÞÞi: (45)

The time argument t1 in Equation 44 equals t1d on the Keldysh

contour for an infinitesimal d. The interaction SE represents the Cou-

lomb interaction viað ð
c
Rintðrt; r1t1ÞGðr1t1; r0t0Þdr1dt152i

ð
Wðjr2r1jÞG2ðrt; r1t; r0t0; r1t1Þdr1;

(46)

The form of the SE depends on the procedure to acquire the two-

particle GF expansion over the one-particle GFs. We consider the Har-

tree approximation, which is mean-field and leads to the following

expansion of two-particle GF in terms of single-particle GFs[62]

G2ðrt; r1t1; r0t0; r2t2Þ5Gðrt; r0t0ÞGðr1t1; r2t2Þ; (47)

giving

Rint
H ðrt; rtÞ52i

ð
Wðjr2r1jÞG<ðr1t; r1tÞdr1;

G<ðr1t; r1tÞ5Gðr1t; r1t1Þ:
(48)

Finally, we consider the linear-response regime of the molecule to

the external bias, that is, that the dynamical corrections of equilibrium

quantities will be small, and GF and SE can be separated,[43,49,50]

Gðt; t0Þ5Gðt2t0Þ1gðt; t0Þ
Rðt; t0Þ5Rðt2t0Þ1rðt; t0Þ;

(49)

into the TH quantities and additional TIH corrections represented by

the first and second terms on the r.h.s., respectively.
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This splits the system of the EOM Equations 31–37 into functions

that consider TH and TIH contributions.

3 | RESULTS

The following subsections are devoted to a derivation for a closed sys-

tem of equations of the entire system. The results are presented in the

energy domain by Fourier transforms of the results obtained by appli-

cation of Langreth rules,[63,80] where to simplify notation,[50] we drop

explicitly writing the energy dependence; the bar over a quantity repre-

sents its dependence on E1x. The TIH quantities g and r have ðE1x;

EÞ dependence, and va; ia in the energy domain indicate vaðxÞ; iaðxÞ,
respectively. The indices a, b, and q enumerate electrodes and are not

tensor quantities; thus, there is no implicit summation when the same

index is repeated. Finally, the index c is often used in superscript to

denote a type of GF, either retarded (R), lesser (<), or advanced (A).

3.1 | Time-homogeneous contributions

The TH contributions of the dot-leads interaction, Equations 36 and

37, are

VaC5HaC1Rint
aC2ESaC

VCa5HCa1Rint
Ca2ESCa

Rjunctg
C 5

X
a

Rjunctg
Ca

5
X
a

VCaG0agVaC; g5R;A; < ;

(50)

and equations for the TH EOM of Gg; g5R;A, follow from Equations

33–35,

GCg5 ðESC2HC2Rint
c 2Rjunctg

C Þ21; (51)

GCag5GCgVCaG
0ag (52)

GaCg5G0agVaCG
Cg (53)

Gabg5G0agdba1G0agVaCðGCagdba1GCbgð12dabÞÞ (54)

5G0agdba1GaCgðVCaG
0agdba1VCbG

0bgð12dabÞÞ (55)

and the lesser GF,

GC<5GCRRjunct<
C GCA ðKeldyshEq:Þ (56)

GCa<5GCRVCaG
0a<1GC<VCaG

0aA (57)

GaC<5G0aRVaCG
C<1G0a<VaCG

CA (58)

Gab<5G0a<dba1G0aRVaCðGCa<dba1GCb<ð12dabÞÞ
1G0a<VaCðGCaAdba1GCbAð12dabÞÞ

(59)

5G0a<dba1GaCRðVCaG0a<dba1VCbG0b<ð12dabÞÞ
1GaC<ðVCaG0aAdba1VCbG0bAð12dabÞÞ:

(60)

In Equation 80, retarded, advanced, and lesser TH GFs are simply

the EOM of an isolated electrode, Equation 31,

ðSaE2Ha2Rint:
a ÞG0aRðAÞ5Ia

ðSaE2Ha2Rint:
a ÞG0a<50;

(61)

with solutions

G0aR5ðSaðE1idÞ2Ha2Rint:
a Þ21

G0aA5½G0aR�†

G0a<5fðG0aA2G0aRÞ;
(62)

where f is the Fermi distribution.

The standard result Equation 62, which uses the regularity of

the retarded (advanced) GFs in the upper (lower) half-plane, is

obtained.

3.2 | Time-inhomogeneous contribution of electrodes

Linearization, Equation 49, of the EOM of the electrodes GF for the

TIH part Equation 31 gives

ðSai~ot2Ha2Rint
a ÞG0aðt2t0Þ5Iaadðt2t0Þ (63)

G0aðt2t0Þðiot0
 

Sa1Ha1Rint
a Þ52Iaadðt2t0Þ (64)

ðSai~ot2Ha2Rint
a Þg0aðt; t0Þ5SavaðtÞG0aðt2t0Þ; (65)

g0aðt; t0Þðiot0
 

Sa1Ha1Rint
a Þ52vaðt0ÞG0aðt2t0ÞSa (66)

where the last two Equations represent TIH contributions.

Equation 66 provides the connection between the TH and TIH

quantities

g0aðt; t0Þ5
ð
c
dt1G

0aðt2t1ÞSavaðt1ÞG0aðt12t0Þ: (67)

This can be further simplified by making the transformation

G0aðt; t0Þ7!e2i
Ð t

t0 vaðsÞdsG0aðt; t0Þ;

which gives

ðSai~ot2Htot
a ðtÞÞe2i

Ð t

t0 vaðsÞdsG0aðt; t0Þ5dðt; t0ÞIaa1SavaðtÞe2i
Ð t
t0 vaðsÞdsG0aðt; t0Þ:

(68)

Alternatively, from the EOM of the leads, Equation 31, follows

e2i
Ð t

t0 vaðsÞdsG0aðt; t0Þ5G0aðt; t0Þ1
ð
c
G0aðt; t1ÞSavaðt1Þe2i

Ð t1

t0 VaðsÞdsG0aðt1; t0Þdt1;

(69)

which, after linearization, gives

2i
ðt
t0
 dsvaðsÞG0aðt2t0Þ5

ð
c
dt1G

0aðt2t1ÞSavaðt1ÞG0aðt12t0Þ; (70)

Therefore, the expression for the TIH portion of the GFs of the

leads follows from Equations 67 and 70,

g0aðt; t0Þ52i
ðt
t0
 dsvaðsÞG0aðt2t0Þ: (71)

The above procedure produces a dynamical correction that is sim-

ply linear in the TD potentials. However, this result can be easily

extended to obtain the full dynamical response

g0afullðt; t0Þ5ðe2i
Ð t

t0  dsvaðsÞ21ÞG0aðt2t0Þ:

In the energy domain, Equations 70 and 71 become
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g0a<5
va
E
ðG0a<2�G

0a<Þ5vað�G0aR
SaG

0a<1�G
0a<

SaG
0aAÞ (72)

g0ag5
va
E
ðG0ag2�G

0agÞ5va �G
0ag

SaG
0ag; g5R;A; (73)

These equations express the TIH GF contribution of the electrodes

in terms of the TH GF. These expressions will be useful later when the

dynamical corrections of the junction SEs and the GFs are rearranged

in a way that is suitable for comparison with the orthogonal results and

in proving gauge-invariance.

3.3 | Interaction time-inhomogeneous contributions

In the Hartree case, B€uttiker connects[68] the potential induced in the

central caused by an external bias (i.e., TIH interaction SE) and the

external potential via characteristic potentials, a½a�ðrÞ,
rintðrt; rtÞ5VHðrtÞ5

X
a

a½a�ðrÞvaðtÞ; (74)

with the property that, in the case of well-screening electrodes a, the

TIH SE in the bulk of a must match vaðtÞ, that is, a½a�ðrÞ changes from 0

to 1 on going from a bulk of b 6¼ a to a bulk of a. The gauge invariance

condition requires that X
a

a½a�ðrÞ51: (75)

We generalize these expressions for the nonorthogonal case by

considering the following normalization conditionsX
a

a½a�C 5SC;
X
a

a½a�bC5SbC;
X
a

a½a�Cb5SCb;
X
a

a½a�b 5dabSb; (76)

and explicitly prove the gauge-invariance of the obtained theory.

The only remaining TIH quantity related to the interaction is the

TIH contribution of the junction SE, Equation 36, rjunctðt; t0Þ, which is

related to the TIH GFs of the isolated electrodes and, in the nonorthog-

onal case, to TIH hopping, Equation 37. The latter is nothing but the

TIH contribution of the interaction SE projected onto the interface.

3.4 | Time-inhomogeneous contributions to GF

The TIH correction of the central region GF, which is obtained after

substituting Equation 49 into the GF (Equations 35 and 41), are given

in the energy domain as

gC5�G
CðUC1rjunct

C ÞGC; (77)

where the form of UC is given in Equation 84. Derivation of an expres-

sion for g<, the most important quantity in the formalism related to

electron transport, as well as gR=A are quite involved, and the details

are given in the Appendix. The result can be expressed rather suc-

cinctly in coordinate-free expressions,

g<5
X
a

vað�GR
a½a�G<1�G

<
a½a�GAÞ

5
va
x
ðG<2�G

<Þ1ðvb2vaÞð�GR
a½b�G<1�G

<
a½b�GAÞ

(78)

gg5
X
a

vað�Gg
a½a�GgÞ

5
va
x
ðGg2�G

gÞ1ðvb2vaÞð�Gg
a½b�GgÞ; g5R;A:

(79)

These contributions are via Equations 32–34 and 38–40 con-

nected with the GFs of the isolated electrodes,

g0a<5vað�G0aR
SaG0a<1�G

0a<
SaG0aAÞ

5
va
x
ðG0a<2�G

0a<Þ;

g0a;g5va �G
0a;g

SaG0a;g

5
va
x
ðG0a;g2�G

0a;gÞ; g5R;A:

(80)

where the second row in each case is obtained from Equation 70. The

corrections resemble the orthogonal ones,[43,49] where the only differ-

ence is that both the TH and TIH GFs are represented in a contravar-

iant basis.

Linearization of Rjunct
Ca

, Equation 36, in the energy domain, a,

rjunctg
Ca

5�VCa
�G
0a;g

UaC1UCaG
0a;gVaC1�VCag

0a;gVaC; (81)

contains g0a which is transformed using Equation 80 to obtain

rjunctg
Ca

5
va
x
ðRjunctg

Ca
2�R

junctg
Ca
Þ1�VCa

�G
0a;gðUaC2vaSaCÞ1ðUCa2vaSCaÞG0a;gVaC;

(82)

where g5R;A;< and with a first term that is equal to the orthogonal

case.[43,49] The difference being the energy dependent junction SE

caused by the overlap, Equation 50, whereas the last two terms are

obtained from Rjunct:, Equations 36 and 42, in the energy domain, and

transformed via Equation 70. The TIH contribution of the dot SE from

the junction with lead a, Equation 82, introduces new terms recognized

in explicit dependence of the characteristic potential projections onto

the interfaces, Equation 83. In the wide-band limit,[48] the difference

Rjunctg
Ca

2�R
junctg
Ca

vanishes.[48] Therefore, the TIH SE also vanishes in the

orthogonal case because of the junction, whereas the second and the

third terms in Equation 82 remain nonvanishing in the nonorthogonal

case.

Finally, dynamically induced TIH potentials in the nonorthogonal

case have a dot and junction contribution, both of which are expressed

through characteristic potentials,

UCaðaCÞ5
1
2p

ð
rint
CaðaCÞdE5

X
b

a½b�CaðaCÞvb (83)

UC5
1
2p

ð
rint
C dE5

X
b

a½b�C vb: (84)

This closes the GF EOM where all the TIH quantities are repre-

sented through TH quantities. What remains is to determine the spatial

shape of the characteristic potentials.

3.5 | Time-inhomogeneous contributions in the space

domain

Characteristic potentials are present in a self-consistent relation with

g<, which means that their spatial dependence is obtained as a solution

of the Poisson equation,

DVHðrtÞ524p e2 dnðrtÞ; (85)

dnðrtÞ5nðrtÞ2neqðrÞ; (86)
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where both the Hartree potential, VH, and the electron density fluctua-

tions caused by the TD bias, dn, are related to a½a�. The former is given

by definition, Equation 74, and the latter is given through g<, Equation

78.

However, the nonorthogonality introduces a complication when

determining the electron densities of the subsystems. In the orthogonal

case, the particle number operator for the electrodes is Na5
P

ia
c†iacia ,

and for the dot, it is NC5
P

n c
†
ncn. However, the trace of the corre-

sponding lesser GF provides the formal framework for the particle

number and current calculation. In the nonorthogonal case, the total

number of particles operator, N̂, can be expressed as a scalar Hermitian

operator in two manifestly basis-independent ways,

N̂5 ci†ci5cn†cn1
X
a

cia†cia ; (87)

5 c†i c
i5c†nc

n1
X
a

c†iac
ia5N̂

†
; (88)

which, again, express the decomposition of the total number of elec-

trons across the subsystems but in two ways as N̂5N̂C1
P

a N̂a, and

N̂5N̂
†
5N̂

†
C1
P

a N̂
†
a, where

N̂C5c†nc
n; N̂a5c†iac

ia ; (89)

represent the operators of the number of electrons in the correspond-

ing subsystem. It is straightforward to verify that both of these opera-

tors are non-Hermitian, with the consequence that every linear

combination of the form

xN̂C1ð12xÞN̂†
C; 0 � x � 1

provides a possible number operator of the dot (and is similarly true for

N̂a). Among those, however, there is a unique x when both operators

are Hermitian, x51/2, when NC and Na can be obtained as eigenval-

ues of Hermitian operators,

1
2
ðN̂C1N̂

†
CÞ;

1
2
ðN̂a1N̂

†
aÞ; (90)

respectively. Therefore, x51/2 is used in the following calculations.

Accordingly, the deviation of the particle number near the equilib-

rium value, dNðxÞ5NðxÞ2N, can be determined for each subsystem,

dNaðxÞ52
i
2p

ð
TrðSaga<ÞdE2 i

4p

ð
TrðSaCgCa<1SCag

aC<ÞdE

dNCðxÞ52
i
2p

ð
TrðSCgC<ÞdE2 i

4p

X
a

ð
TrðSaCgCa<1SCag

aC<ÞdE
(91)

After expressing GF in the space domain, Equations 16 and 20,

projections of the Poisson equation on the central region gives

X
a

Da½a�ðrÞva52ie2
ð
ðgC<rr 1

1
2

X
b

ðgCb<rr 1gbC<rr ÞÞdE; (92)

with the boundary conditions set by the requirement of charge

neutrality,ðX
a

Da½a�ðrÞvadr505
ð
TrðSCgC<11

2

X
b

ðSbCgCb<1SCbg
bC<ÞÞdE: (93)

Using the obtained expression for g<, Equation 78, to express the

TIH contribution in terms of G, the charge neutrality condition decou-

ples into independent equations for each component of the character-

istic potential,

Da½a�ðrÞ52ie2
�ð

wnðrÞð�GR
a½a�G<1�G

<
a½a�GAÞnmw�mðrÞdE

1
1
2

ð
wnðrÞð�GR

a½a�G<1�G
<
a½a�GAÞnjbw�jb ðrÞdE

1
1
2

ð
wib ðrÞð�G

R
a½a�G<1�G

<
a½a�GAÞibmw�mðrÞdE

�
:

(94)

Since the results are obtained in the Hartree approximation which

is charge-conserving,[62] summing both sides over a must equal zero. In

particular, because of the characteristic potential normalization, Equa-

tion 76, the sum of the r.h.s. gives,

X
a

Da½a�52ie2
"ð

wnðrÞð�GR
SG<1�G

<
SGAÞnmw�mðrÞdE

1
1
2

ð
wnðrÞð�GR

SG<1�G
<
SGAÞnjbw�jb ðrÞdE1

ð
wjb ðrÞð�G

R
SG<1�G

<
SGAÞjbnw�nðrÞdE

� �#
;

(95)

Transforming this expression is performed using a result derived in

the Appendix, Equation A21, which, in essence, expresses the �GSG

terms as differences G<2�G
<
to obtain

2ie2

x

ð
ðGC<

rr 2�G
C<
rr ÞdE1

1
2

X
b

ð
ðGCb<

rr 2�G
Cb<
rr 1GbC<

rr 2�G
bC<
rr ÞdE

" #
:

The integrals in the last expression vanish because all their differ-

ences are of the form
Ð1
21ðF2�FÞdE; which equals 0, thereby proving

the charge-neutrality condition of the Poisson equation. This also

proves that
P

a Da
aðrÞ50:

The total dynamical charge density within the central region is

contained in the r.h.s. of the Poisson Equation 92, which contains con-

tributions from both the injected and the induced charge densities.

Contributions from the former occur via the terms with characteristic

potentials projected onto the electrodes (giving dabSb), whereas contri-

butions from the latter occur via the terms with characteristic poten-

tials projected onto the interfaces and the dot.

With each of the characteristic potentials obtained, Equation 94

can be formulated in the form of the Lindhard equation[43,68]

Da½a�ðrÞ54pe2 2
dnðr;aÞ

dE
1

ð
Pðr; r0;xÞa½a�ðr0Þdr0

� �
; (96)

where we obtain the following for the injectivity of lead a (i.e., its den-

sity of states)

dnðr;aÞ
dE

52
i
2p

ð ð �
�G
CaR
rr0 GaC<

r0r 1�G
Ca<ðrr0ÞGaCA

r0r

1
1
2

X
g

ð�GCaR
rr0 Gag<

r0r 1�G
Ca<
rr0 GagA

r0r 1�G
gaR
rr0 GaC<

r0r 1�G
ga<
rr0 GaCA

r0r Þ
�
dEdr0:

(97)

The polarization, Pðr; r0;xÞ, has dot-dot (pC), dot-lead (pa) and

lead-lead (pab) contributions,

Pðr; r0;xÞ5 i
2p

ð
 dE pCðr; r0;xÞ1

X
a

paðr; r0;xÞ11
2

X
ab

pabðr; r0;xÞ
 !

;

(98)

where
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pCðr; r0;xÞ5 �G
CR
rr0 G

C<
r0r 1

�G
C<
rr0 G

CA
r0r

paðr; r0;xÞ5 1
2
ð�GCR

rr0 G
Ca<
r0r 1�G

C<
rr0 G

CaA
r0r 1�G

aCR
rr0 GC<

r0r 1
�G
aC<
rr0 GCA

r0r Þ

1�G
CR
rr0 G

aC<
r0r 1�G

C<
rr0 G

aCA
r0r 1�G

CaR
rr0 GC<

r0r 1
�G
Ca<
rr0 GCA

r0r

pabðr; r0;xÞ5 �G
CR
rr0 G

ab<
r0r 1�G

C<
rr0 G

abA
r0r 1�G

CaR
rr0 GCb<

r0r 1�G
Ca<
rr0 GCbA

r0r

1�G
aCR
rr0 GbC<

r0r 1�G
aC<
rr0 GbCA

r0r 1�G
abR
rr0 GC<

r0r 1
�G
ab<
rr0 GCA

r0r :

With the Lindhard Equation 96 determining the characteristic

potentials design, the theory is closed. We now proceed to derive the

expression for the TD current through the molecule.

3.6 | Time dependent current

The electronic current is driven by the external TD potentials vaðtÞ;a5
L;R: To provide the current conservation, the displacement current,

which is caused by charge accumulation in the central region, must be

considered.[81] A self-consistent treatment of the response potential

incorporates the effects of the Coulomb interaction, thus creating a

feedback. That is, the induced charge density screens the charge

injected from the electrodes, giving a zero net charge. Consequently,

integration of the continuity equation over the volume of the central

region provides a conserved current. Inclusion of the Coulomb interac-

tion in the particle current expression ensures that the displacement

current effects are not neglected,[68,81] so the total current can be

obtained as a time derivative of the particle current where the displace-

ment current contribution arises from its explicit dependence on the

induced potential constituents (i.e., the characteristic potentials). A

time derivative over the dynamical contribution of charge density in

electrode a will give the corresponding TD current density plus the TD

current after integration over the region of interest. Using a nonorthog-

onal basis set, this approach imposes the question regarding lead popu-

lation, which was addressed in the previous section, giving the

following result for the TD current from dNa

iaðtÞ52ei½TrðSaotga<ðt; tÞÞ11
2
TrðSaCotgCa<ðt; tÞÞ11

2
TrðSCaotgaC<ðt; tÞÞ�

52ei½TrðSaðot1ot1 Þgaðt; t1ÞÞ11
2
TrðSaCðot1ot1 ÞgCaðt; t1ÞÞ

1
1
2
TrðSCaðot1ot1 ÞgaCðt; t1ÞÞ�

52eTr½ðHaC1Rint
aC2SaCiotÞgCaðt; t1Þ1rint

aCðt; tÞGCaðt2t1Þ
2gaCðt; t1ÞðHCa1Rint

Ca1io t1SaCÞ2GaCðt2t1Þrint
Caðt1; t1Þ

(99)

1
i
2
ðSaCðot1ot1 ÞgCaðt; t1Þ1SCaðot1ot1 ÞgaCðt; t1ÞÞ�; (100)

where the leading coefficient 2 arises from the spin. In the energy-

domain,

iaðxÞ5 e
p

ð
Tr½ðHaC1Rint

aC2ðE1xÞSaCÞgCa<1UaCG
Ca<

2gaC<ðHCa1Rint
Ca2ESCaÞ2�G

aC<
UCa�dE

1x
e
2p

ð
TrðgCa<SaC1SCag

aC<ÞdE:

(101)

After some algebra involving expressions for the TIH contribution g<

from the dot and leads, Equations 78 and 80, and the TIH contribution

r from the junction to the dot SE, Equation 82, we obtain

ia5
e
p

ð
Trð�GCR

rjunct<
Ca

1�G
C<

rjunctA
Ca

1gCRRjunct<
Ca

1gC<RjunctA
Ca

2rjunctR
Ca

GC<2rjunct<
Ca

GCA2�R
junctR
Ca

gC<2�R
junct<
Ca

gCAÞdE

2x
e
2p

ð
TrðgCa<SaC1SCag

aC<ÞdE;

(102)

Together with equations that express the TIH quantities over the

TH quantities, Equations 78–80 and 82, these equations constitute the

main results of this article. The first integral of Equation 102 formally

contains the same terms as in the orthogonal case, only with contravar-

iant GFs (i.e., represented in a dual basis[43,50]). The second integral of

Equation 102, which is absent in the orthogonal case, arises from the

TD charge at the interfaces because of the nonorthogonality of the dot

and leads states, which are introduced by nonzero SaC; SCa.

4 | DISCUSSION

Since the results are obtained in the Hartree approximation, which is

one of a few known conserving approximations,[62] we next explicitly

verify the current conservation and gauge invariance of the result and

then discuss the importance of the second integral, which relates to

the nonorthogonality by considering both the orthogonal case and the

limit of vanishing nonorthogonality.

4.1 | Current conservation and gauge invariance

The sum of the lead currents, Equation 99,

X
a

iaðtÞ522e
X
a

TrððHCa1Rint
Ca2iotSCaÞgaCðt; t1Þ1rint

Caðt1; t1ÞGaCðt2t1Þ

2gCaðt; t1ÞðHaC1Rint
aC1io t1SaCÞ2GCaðt2t1Þrint

aCðt; tÞ

1
i
2
ðSaCðot1ot1 ÞgCaðt; t1Þ1SCaðot1ot1 ÞgaCðt; t1ÞÞÞ;

(103)

can be transformed by rewriting the first two rows using the GF EOM

Equation 19, to obtainX
a

iaðtÞ522eiTr½SCðot1ot1 ÞgCðt; t1Þ

1
X
a

1
2
ðSaCðot1ot1 ÞgCaðt; t1Þ1SCaðot1ot1 ÞgaCðt; t1ÞÞ�;

which in the energy domain becomes

X
a

iaðxÞ52
e
p
x
ð
TrðSCgC<ÞdE2 e

2p
x
X
a

ð
TrðSaCgCa<1gaC<SCaÞdE;

(104)

where the first term is simply (negative) current through the central

region. The charge neutrality condition in Equation 93 ensures thatP
a iaðxÞ50. To verify gauge invariance, the potentials are shifted by a

constant, va 7!va1K, and the resulting ia are calculated. The shift

changes the TIH quantities, Equations 78, 79, and 82,
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gg 7! gg1Kð�GSGÞg5gg1
K
x
ðGg2�G

gÞ; g5<;A;R;

rjunctg
Ca
7!rjunctg

Ca
1
K
x
ðRjunctg

Ca
2�R

junctg
Ca
Þ;

(105)

where the normalization property of the characteristic potentials, Equa-

tion 76, has been used, whereas the equality

ð�GSGÞg5 1
x
ðGg2�G

gÞ;

is proved in the Appendix. By recalling the results for the TIH contribu-

tions g< and rjunct, Equation 105, the current changes as

ia 7!ia1
eK
px

ð
Trð�GCRðRjunct<

Ca
2�R

junct<
Ca

Þ1�G
C<ðRjunctA

Ca
2�R

junctA
Ca

Þ1ðGCR2�G
CRÞRjunct<

Ca

1ðGC<2�G
C<ÞRjunctA

Ca
2ðRjunctR

Ca
2�R junctR

Ca
ÞGC<

2ðRjunct<
Ca

2�R
junct<
Ca

ÞGCA2�R
junctR
Ca

ðGC<2�G
C<Þ2�R

junct<
Ca

ðGCA2�G
CAÞÞdE

2
eK
2p

ð
TrððGCa<2�G

Ca<ÞSaC1SCaðGaC<2�G
aC<ÞÞdE;

(106)

where only terms of the form
Ð1
21ðF2�FÞdE50 appear under both inte-

grals, thereby proving that ia 7!ia.

4.2 | Importance of dot-interface projections

To demonstrate that the gauge invariance would have been violated if

the interface SE projections Equation 83 were not included, we calcu-

late dynamical corrections that neglect the interface projections when

only a½a�C remains in a self-consistent manner. The hopping and junction

quantities, Equations 50 and 82, then become

VCaðaCÞ5HCaðaCÞ2ESCaðaCÞ

Rjunctg
Ca

5VCaG0a;gVaC

rjunctg
Ca

5 �VCag0a;gVaC;

whereas the TIH contributions become

rjunctg
Ca

5
va
x
ðRjunctg

Ca
2�R

junctg
Ca
Þ2vaðSCaG0a;gVaC1�VCa

�G
0a;g

SaCÞ; g5R;A; <

g<5
X
b

vbðð�GRða½b�C 1SbÞG<Þ1ð�G<ða½b�C 1SbÞGAÞÞ

gg5
X
b

vb �G
gða½b�C 1SbÞGg:

(107)

To verify the gauge invariance of the obtained current, we again

make a shift of va by K and calculate the resulting current change.

Quantities in Equation 107 change after the shift as

rjunctg
Ca
7!rjunctg

Ca
1
K
x
ðRjunctg

Ca
2�R

junctg
Ca
Þ2KðSCaG0agVaC1�VCa

�G
0ag

SaCÞ

gij< 7! gij<1
K
x
ðGij<2�G

ij<Þ

2K
X
q

ð�GiCR
SCqG

qj<1�G
iqR

SqCG
Cj<1�G

iC<
SCqG

qjA1�G
iq<

SqCG
CjAÞ

gijg 7! gijg1
K
x
ðGijg2�G

ijgÞ2K
X
q

ð�GiCg
SCqG

qjg1�G
iqg
SqCG

CjgÞ; g5R;A:

(108)

For comparison, the shift changes the same quantities in the full

description, Equations 78, 79, and 82, as

gijg 7!gijg1
K
x
ðGijg2�G

ijgÞ; g5<;A;R;

rjunctg
Ca
7!rjunctg

Ca
1
K
x
ðRjunctg

Ca
2�R

junctg
Ca
Þ;

(109)

which reveals that all three TIH quantities after the potential shift

acquire additional terms with respect to the full description scenario.

This difference arises from neglecting UCa;UaC in rjunct;g
Ca

, Equation 81,

which consequently influences all other TIH quantities through Equa-

tions 78, 79, and 82. The current changes after the shift again by

acquiring two additional contributions,

ia 7!ia2K
e
p
i
0
a1K x

e
2p

i
00
a; (110)

where

i
0
a5

ð
Tr

�
�G
Ca<

SaC2SCaGaC<1�G
CR
SCaG0a<VaC1�G

C<
SCaG0aAVaC

2�VCa
�G
0aR

SaCGC<2�VCa
�G
0a<

SaCGCA

1
X
b

ð�GCR
SCbGbCR1�G

CbR
SbCGCRÞRjunct<

Ca

2�R
junct<
Ca

X
b

ð�GCA
SCbGbCA1�G

CbA
SbCGCAÞ

1
X
b

ð�GCR
SCbGbC<1�G

C<
SCbGbCA1�G

CbR
SbCGCb<1�G

Cb<
SbCGCbAÞ

ðRjunctA
Ca

2�R
junctR
Ca

Þ
�
dE

(111)

and

i
00
a5

ð
Tr

�X
b

ð�GCbR
SbCGCa<1�G

CR
SCbGba<1�G

Cb<
SbCGCaA1�G

C<
SCbGbaAÞSaC

1SCa
X
b

ð�GabR
SbCGC<1�G

aCR
SCbGbC<1�G

ab<
SbCGCA1�G

aC<
SCbGbCAÞ

�
dE;

(112)

neither of which are zero. Therefore, omitting the interface-induced

potentials in the dot, UCa and UaC , in the nonorthogonal case gives a

nongauge-invariant theory.

4.3 | From nonorthogonal to orthogonal basis

If the overlap matrix S is the unit matrix, the known results for the

orthogonal case of Wei et al.[43] are recovered. The TIH GF contribu-

tions g derived here, Equations 78, 79, and 82, depend on the dot-

leads interaction electron SEs Rint
CaðaCÞ. In the previous section it is

explicitly shown that they cannot be neglected in the nonorthogonal

case if the theory is to be gauge-invariant. In the orthogonal case, the

gauge-breaking currents, Equations 111 and 112, equal 0 when the

basis-set overlap matrices between the central region and electrodes,

SaC; SCa, equal 0. However, this only demonstrates that neglecting the

dot-leads SE in the orthogonal case does not violate gauge-invariance.

We now derive the expression for current in the orthogonal case when

the central-region-electrodes SE are not neglected. The result for the

current Equation 102 in the orthogonal case, using Equations 78, 79,

and 82 with SaC5SCa50, becomes
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iorthoa 5ðvb2vaÞ ep
ð
Trð�G<

Caa
½b�
aC2a½b�CaG

<
aC1

�G
R
Ca
½b�
CaG

0<
a VaC1�G

<

C a
½b�
CaG

0A
a VaC

2VCa
�G
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a a½b�aCG

<
C2VCa

�G
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a a½b�aCG
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C

1ð�GR
a½b�GRÞCRjunct<
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junct<
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a½b�GAÞC

1ð�GR
a½b�G<1�G

<
a½b�GAÞCðRjunctA

Ca
2�R

junctR
Ca

ÞÞdE;
(113)

where all the indices are written in subscript since the covariant and

contravariant formulations are identical because of the trivial metric S

5S215I of the orthogonal single-particle basis. Because of the zero

overlap of the basis states in the dot and leads, the hopping matrices

VCaðaCÞ, Equation 50, are now energy independent. The current again

can be split into the particle, ipa, dot-dot, i
d0
a , dot-leads, i

d00 , and displace-

ment current contributions,

iorthoa 5ipa1id
0

a 1id
00

a ;

where the first two terms,

ipa5ðvb2vaÞ ep
ð
Tr½�GR

CbG
R
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junct<
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2�R
junct<
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junctR
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Þ�dE;

id
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Ca
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junctR
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Þ�dE;

correspond to the standard orthogonal result[43] and both currents are

clearly gauge-invariant. Clearly, the additional dot-lead interface contri-

bution to the total current,

id
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junct<
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A
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A
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1
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ð�GR
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qCG

<
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R
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<
qC1
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<
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<

C a
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CqG

A
qCÞðRjunctA
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junctR
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Þ

1�G
<

Caa
½b�
aC2a½b�CaG

<
aC�dE;

(114)

is also gauge-invariant. It consists solely of terms containing character-

istic potentials a½b�Ca; a
½b�
aC, which, in turn, are determined self-

consistently. The normalization condition on the characteristic poten-

tials, Equation 76, in the orthogonal case becomes

X
b

a½b�aC5
X
b

a½b�Ca50; (115)

which, notably, does not rigorously guarantee that each summand is

zero. Indeed, although each a goes from 0 to a positive value � 1

when going from one electrode through the central region to the other

electrode, it is at present not known whether they are also, for exam-

ple, strictly non-negative, which would be a sufficient condition for

their vanishing under the orthogonal case condition, Equation 115. To

estimate the value of these potentials, we use the block-form of S,

Equation 19, which is decomposed via the identity[82] S5SD1SO into

its block-diagonal, SD, and block-off-diagonal, SO, parts,

S5
1
2
ðSDðI1S21

D SOÞ1ðI1SOS
21
D ÞSDÞ;

SD5

SL 0 0

0 SC 0

0 0 SR

0
BBBB@

1
CCCCA; SO5

0 SLC 0

SCL 0 SCR

0 SRC 0

0
BBBB@

1
CCCCA:

Using the condition of a½a�b 50 in electrode b 6¼ a; a½a�Cb and a½a�bC can

be written, after some algebra, as

a½a�Cb5
1
2
ða½a�C S21

C 1dabÞSCb

a½a�bC5
1
2
SbCðdab1S21

C a½a�C Þ;
(116)

which shows that in the limit of vanishing nonorthogonality, when

SO ! 0, they are expected to also go to zero. Therefore, the additional

current id
00

a ! 0 recovers the orthogonal case result.

4.4 | The model and numerical results

Regarding the numerical aspects of our work, the central quantities

that have to be determined are the characteristic potentials. As we

show, every other time inhomogeneous contribution depends directly

on the characteristic potentials and the TH GFs. The Lindhard equation

must be solved with charge neutrality as a boundary condition. DFT is

suitable for determining/establishing the TH GFs, including the central

region GF, the mixed GF and the GF of the isolated electrodes. The lat-

ter, also called the surface GF, can be determined by a separate calcula-

tion, which is possible because of the screening approximation. Within

this separate calculation, the junction SEs are determined as well.

Although the components necessary to solve the Lindhard equation

are provided, in principle, the involvement of the polarization kernel

can be computationally cumbersome. The first step toward simplifica-

tion would be to localize the polarization kernel, that is, to adopt the

Thomas–Fermi approximation. As a quasi-static approximation, it is

expected that this framework will omit some effects, such as Friedel

oscillations. Nevertheless, the Thomas–Fermi approximation can be a

good choice for an acceptable range of frequencies. Furthermore, the

quasi-neutrality condition can be imposed. Another huge simplification

would be to neglect the energy dependence of the electrodes-central

region couplings (wide band limit,-WBL), which can be justified as long

as the width of the conduction band significantly exceeds the values of

the bias amplitudes and the width of the resonances. Still, the calcula-

tion within the microscopic theory remains highly demanding even

with all these approximations because it must be performed at every

real space point. It is much easier to begin with the phenomenological

approach where the explicit dynamical response is neglected; thus, the

displacement current partition is determined by the gauge invariance

requirement. The advantage of the phenomenological theory is a low

computational cost since the calculation must be performed in the

orbital space. We have developed a toy model in the nonorthogonal

basis to test our theory using the phenomenological approach. In this

subsection, we present the toy model to consist of an interacting sys-

tem connected to noninteracting one-dimensional tight-binding chains.

The interacting system consists of two sites CL and CR. We consider
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that their states are jCLi and jCRi in the orthogonal description,

whereas the chain sites are denoted with jii, where i goes from 21 to

21 and from 1 to1 for the left and the right chains, respectively. The

nonorthogonality is introduced through linear combinations[9]

jCL
ni5sin/sin uj21i1cos ujCLi1cos/sin ujCRi;
jCR

n i5sin/sin uj1i1cos/sin ujCLi1cos ujCRi:
(117)

It is easy to see that

h21njCL
ni5h1njCR

n i5sin/sin ucosa5�s;

hCL
njCR

n i5sin 2ucos/5S;
(118)

represent the overlap between the central region and the chains, �s , as

well as the overlap within the central region, S. We adopted the follow-

ing for the Hamiltonian matrix elements, given in an orthogonal

basis,[52]

HCij
5hCij

1vij; hCij
5dij21; vij51:510:75ð12dijÞ;

h21CL5hCL215h1CR5hCR152�t520:5;

2t5hii61522:

Above, HC denotes the Hamiltonian in the central region, where

the one-particle contribution hC, and the Coulomb contribution vij are

presented. Additionally, the dot-electrodes hopping �t and the next

neighbor hopping in wires t are introduced. The on-site energy E equals

the Fermi energy. In the nonorthogonal description, the hopping matrix

elements are

VCR
n ;1

5hCR
n jh2Ej1i5hCL

njh2Ej21i5VCL
n ;215�sðE2EÞ2�tcos u;

VCR
n ;2

5hCR
n jh2Ej2i5hCL

njh2Ej22i5VCL
n ;2252t�s;

VCL
n ;1
5hCL

njh2Ej1i5hCR
n jh2Ej21iVCR

n ;2152�tsin ucos/:

From the above, it is straightforward to find the junction SEs

RRðAÞ
Cn

5
X
a

VCnaG
0RðAÞ
a VaCn

where the isolated electrode GFs are obtained from the half-infinite

matrix

ĥ5

E 2t 0 0 0 . . .

2t E 2t 0 0 0 . . .

0 2t E 2t 0 0 0

: : : : :

2
666664

3
777775; (119)

where

G0RðAÞ
ij ðEÞ5P:V:

X
k

Uik
1

E2Ek
ðU†Þkj

7ip
X
k

UikdðE2EkÞðU†Þkj

G0<
ij ðEÞ5ifðEÞ2p

X
k

UikdðE2EkÞðU†Þkj;

(120)

and the matrix Uij5sin ijp
M11 diagonalizes the Hamiltonian. The eigen-

value problem

ĥj�ki5Ekj�ki;

gives

j�ki5
ffiffiffiffiffiffiffiffiffiffiffi
2

M11

r
sin

kp
M11

sin
2kp
M11
:

:

:

sin
Mkp
M11

2
6666666666666664

3
7777777777777775

; (121)

with eigenvalues

Ek5E22tcos
kp

M11
:

Releasing the infinite sum in Equation 120 to a continuum, is

obtained using contour integration

G0RðAÞ
11 5

1
t

E2E
2t

7i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

E2E
2t

� �2
s0

@
1
AHð2t2jE2EjÞÞ

1
1
t

E2E
2t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2E
2t

� �2

21

s0
@

1
Að12Hð2t2jE2EjÞÞ

G0RðAÞ
12 5G0RðAÞ

21 5G0RðAÞ
21;225G0RðAÞ

22;21522
E2E
2t

� �
G0RðAÞ
11 1

1
t

G0RðAÞ
22 5g0RðAÞ2222522

E2E
2t

� �
G0RðAÞ
12

G0<
ij 5fðEÞðG0A

ij 2G0R
ij Þ:

(122)

To determine the central region GF, we derived the Hamiltonian

ðHCÞCL
n ;C

L
n
5ðHCÞCR

n ;C
R
n
5�s2E22�s�tcos u1ð12�s2ÞðhC111v11Þ1SðhC12

1v12Þ
ðHCÞCR

n ;C
L
n
5ðHCÞCL

nC
R
n
522�s�tsin ucos/1ð12�s2ÞðhC12

1v12Þ1SðhC111v11Þ:
(123)

Knowing that

ðEŜ2HCn2RCn ÞGCn5I;

where

A 5
def:

E2ðHCÞCLðRÞ
n ;CLðRÞ

n
2RRðAÞ

CLðRÞ
n ;CLðRÞ

n

5ð12�s2ÞðE2ðhCÞ112v112g0RðAÞ11
�t2Þ2SððhCÞ121v12Þ;

B 5
def:

ES2ðHCÞCLðRÞ
n ;CRðLÞÞ

n
2RRðAÞ

CLðRÞ
n ;CRðLÞÞ

n

5SðE2ðhCÞ112v112g0RðAÞ11
�t2Þ2ð12�s2ÞððhCÞ121v12Þ;

we obtain

GCn5ðA22B2Þ21
A 2B

2B A

" #
: (124)

Here, we adopted the phenomenological theory.[50] This method is

equivalent to a microscopic self-consistent model in the quasi-

neutrality approximation where the charge polarization in the central

region is neglected. Since the dynamically induced charge is not consid-

ered, the total displacement current is partitioned into each electrode,

giving for the conductance

Gab5Gp
ab2Gd

b

P
g G

p
agP

g G
d
g

;

where
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Gp
ab5

2e2

h
Tr
ð
dEðð�GIbGÞ<aCn

11=2ð�GSCnbGÞ<aCn
11=2ð�GSbCnGÞ<aCÞ VCna2

�hx
2

SCna

� �

2ðVaCn2
�hx
2

SaCn Þðð�GIbGÞ<Cna
11=2ð�GSCnbGÞ<Cna

11=2ð�GSbCnGÞ<CaÞ

11=2dab
2e2

h
Tr
ð
dEð�G<

aCn
SCna2SaCnG

<
Cna
Þ

Gd
b52�hx

e2

h
Tr
X
a

ð
½SaCn ðð�GIbGÞ<Cna

11=2ð�GSCnbGÞ<Cna
11=2ð�GSbCnGÞ<Cna

Þ

1ðð�GIbGÞ<Cna
11=2ð�GSCnbGÞ<aCn

11=2ð�GSbCnGÞ<aCn
ÞSCna�

2�hx
2e2

h
Tr
ð
SCn ðð�GIbGÞ<Cn

11=2ð�GSCnbGÞ<Cn
11=2ð�GSbCnGÞ<Cn

Þ;

(125)

Gp
ab and Gd

ab are the particle and the displacement current related

conductance, respectively. The above expressions for conductance are

derived from our microscopic theory. Using the expressions (78 and

79), the current can be expanded over the voltages

ia5
X
b

GabVb:

The voltage is Va52va=e, where va is the external potential. Since

the dynamical self-consistent response is neglected, charge neutrality

does not hold any more. This is the reason for partitioning the term

from the right side of Equation 104, to separate contributions of the

left and the right electrode. This leads to interface projections of the

characteristic potentials Equation 116,

a½a�Cnb
5
1
2
dabSCnb; a½a�bCn

5
1
2
SbCndab: (126)

This is the reason for the coefficient 1/2 in front of the interface

terms in Equation 125. In our model SbCn5SCnb5�s; SCn5S: In the left

panel of Figure 1, the real and imaginary parts of the conductance (G)

obtained in the orthogonal and nonorthogonal description are plotted.

Even a phenomenological theory applied to a simple model exhibits

clear differences between an orthogonal and nonorthogonal descrip-

tion. Nonorthogonality introduces an asymmetric response relative to

the minimum between the two peaks. This result is consistent with ear-

lier studies.[36,37] The behavior of the real part of the conductance

around the resonance energies where inductive responses occur is

expected[50] and can be understood through a classical explanation

where the current lags the voltage because of electron inertia.[53] Addi-

tionally, the increasing frequency causes the imaginary part to become

more pronounced. On the right side of Figure 1, the frequency response

for the orthogonal and nonorthogonal case is represented for a fixed

Fermi energy of 1.29 eV. The imaginary part of the conductance in the

orthogonal description is always positive, which is a hallmark of induc-

tive behavior. However, in the nonorthogonal description, there is a

range of frequencies where the imaginary part is negative, meaning that

the capacitive response dominates. Compared with the orthogonal

case, the nonorthogonal description gives rise to an additional

FIGURE 1 The conductance, G, of a two state central region coupled with two semi-infinite leads. (a) Real and (b) imaginary parts of G in
an orthogonal basis for different frequencies (eV) as functions of the Fermi energy Ef (c) Real and (d) imaginary parts of G in a nonorthogo-
nal basis for different frequencies (eV) as functions of the Fermi energy Ef (e) Real and (f) imaginary parts of G for Ef51.29 eV as functions
of frequency in nonorthogonal and orthogonal cases. To describe nonorthogonality we choose (h, /) 5 (p=6; p=8)
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displacement current (i.e., the charging capacitor current). With a fur-

ther increase in the frequency, the inductive behavior becomes more

pronounced in the nonorthogonal description, which could be related

to an increase of the electron effective mass. The above figure clearly

demonstrates that the orthogonal and nonorthogonal descriptions do

not produce the same result for dynamical currents in linear response

theory.

5 | CONCLUSIONS

We have derived expressions for current in the bounds of a micro-

scopic theory of nonequilibrium time-dependent electronic transport

through a molecule using a nonorthogonal basis. The first-order

response of the central region to external potential of well-screening

electrodes was determined within the Hartree approximation. A nontri-

vial current contribution is generated using a nonorthogonal basis for

the case of a time-dependent bias. If these terms are omitted from the

expression for current, the gauge invariance is violated. Their physical

meaning can be related to the fraction of displacement current through

the electrode-central region interfaces. The orthogonal case result is

recovered for both zero and the limit of vanishingly small overlap. The

presented theory is suitable for coupling with density functional theory

in the standard way, which would make it practical to describe time-

dependent electronic transport through atoms, molecules and junctions

for a wide variety of systems.
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APPENDIX

Obtaining the expression for the TIH GFs, Equations 78 and 79

requires a rather long derivation and, as a first step, we derive an auxil-

iary result,

gg5
X
a

vað�Ga½a�GÞg; g5R;A; <: (A1)

The derivation was done for the TIH GFs projection on the elec-

trode a (i.e., ga;g), because this step is the most demanding of all neces-

sary projections. The derivation will also give the expression for gCa,

whereas the remaining projections may be obtained in a similar way.

The superscript c will be omitted in the following presentation in

order to simplify the notation, since the following expressions are valid

for all three types (i.e., R; A and <) of the GFs individually. The product

ð�Ga½a�GÞg was expanded and expressed according to the Langreth rules

in the energy-domain via the Fourier transformation. The GFs and the

SEs, contained in the EOM of Gab, Equation 32, were separated into

the TH and TIH parts according to Equation 49. This leads to the TIH

contribution

ga5g0a1�G
0a �VaCg

Ca1�G
0a
UaCG

Ca1g0aVaCG
Ca: (A2)

The above expression contains the TIH contributions g0a ,

gCa; UaC , and each of them must be found. The TIH GF of the isolated

electrode a is obtained from Equation 67 in energy domain

g0a5va�G
0a
SaG

0a: (A3)

The TIH part of the mixed GF is obtained from Equation 33

gCa5�G
C �VCag

0a1�G
C
UCaG

0a1gCVCaG
0a; (A4)

which together with Equation A3 transforms the first two terms on the

r.h.s. of Equation A4 into

va �G
Ca
SaG

0a1
X
b

vb�G
C
a½b�CaG

0a; (A5)

where U is expressed through characteristic potentials. The third term,

gCVCaG0a , is more difficult to transform due to the presence of gC,

Equation 77. Starting from Equations 52, 54, 55, 82, and 84, for the

third term on the r.h.s. of Equation A4 the following is obtained

�G
C
UCGCa1�G

C
rjunct
C GCa5

X
b

ðvb �GC
a½b�C GCa1�G

Cb
UbCGCa

1�G
C
UCbðGba2dabG

0bÞ1vb �G
Cb
SbðGba2dabG

0bÞÞ:
(A6)

Collecting terms from Equations A5 and A6, gives

gCa5
X
b

vbð�Ga½b�GÞCa; (A7)

proving the Equation A1 for gCa.

We proceed with derivation in order to prove Equation A1 for the

expression ga;g with g5R;A;<. The sum of the first and fourth term

on the r.h.s of Equation A2, which we denote with X, is

X5g0a1g0aVaCGCa

5va �G
0a
SaG0a1va �G

0a
SaðGa2G0aÞ

5va �G
0a
SaGa;

(A8)

the third term, expressed through characteristic potentials and denoted

with Y, is

Y5�G
0a
UaCG

Ca5
X
b

vb�G
0a
a½b�aCG

Ca; (A9)

and, by using Equation A7, for the second term (denoted with Z) it is

obtained

Z5�G
0a�VaCgCa5

X
b

vb �G
aCða½b�GÞCa1

X
b

vb
X
q

ð�Gaq
2daq �G

0qÞða½b�GÞqa

5
X
b

vbð�GaCða½b�GÞCa1
X
q

�G
aqða½b�GÞqaÞ2

X
b

�G
0aða½b�GÞqa

5
X
b

vbð�Ga½b�GÞa2X2Y:

(A10)

Summary of these terms, X1Y1Z5ga , is valid for the index

g5R;A; <, which proves Equation A1.

What remains is to prove expressions given in the second row in

Equations 78 and 79 and for this purpose it is considered the case of

lesser TIH GF. By tranforming Equation A1 using the propertyP
g a
½g�5S, it is obtained
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ga<5vbð�GSGÞa<1ðva2vbÞð�Ga½a�GÞa<: (A11)

In the following procedure we will use explicit denoting of terms

obtained after the Langreth rules. The next necessary step it to calcu-

late ð�GSGÞa<; which will be done by analyzing its contributions, one by

one. The first one (denoted with A1),

A15ð�GaC
SCG

CaÞ<;

after the Langreth expansion contains terms �G
CRðAÞ

SCGCRðAÞ,
�G
CR
SCGC<

, and �G
C<

SCGCA: Referring expressions for R/A GFs, Equa-

tion 51, the following is obtained

½�GCRðAÞ�212½GCRðAÞ�215xSC1RjunctRðAÞ
C 2�R

junctRðAÞ
C : (A12)

After multiplying it with �G
CRðAÞ

from the left and with GCRðAÞ from

the right the following is gained

�G
CRðAÞ

SCG
CRðAÞ5

GCRðAÞ2�G
CRðAÞ

x
2�G

CRðAÞ R
junctRðAÞ
C 2�R

junctRðAÞ
C

x
GCRðAÞ:

(A13)

By multiplying the obtained expression with �G
CR�R

junct<
C from the

left, in the case of advanced GF, and with Rjunct<
C GCA from the right, in

the case of retarded GF, and by referring to the Keldysh Equation 56,

the following is obtained

�G
CR
SCGC<5

GC<2�G
CR
Rjunct<
C GCA

x
2�G

CR R
junctR
C 2�R

junct;R
C

x
GC<

�G
C<

SCGCA5
�G
CR�R

junct<
C GCA2�G

C<

x
2�G

C< RjunctA
C 2�R

junctA
C

x
GCA:

(A14)

Equations A13 and A14 were used to transform the TH expres-

sions for GCa;GaC , Equations 52, 53, 57, and 58 and the following was

found

A15 �G
aCR

SCGCa<1�G
aC<

SCGCaA

5 �G
0aR �VaCð�GCR

SCGCRÞVCaG0a<1�G
0aR �VaCð�GCR

SCGC<ÞVCaG0aA

1�G
0aR �VaCð�GC<

SCGCAÞVCaG0aA1�G
0a< �VaCð�GCA

SCGCAÞVCaG0aA

5
1
x
ð�G0aR �VaCG

Ca<1�G
0a<�VaCG

CaA2�G
aCR

VCaG
0a<2�G

aC<
VCaG

0aA

1�G
aCRð�R junctR

C 2RjunctR
C ÞGCa<1�G

aCRð�R junct<
C 2Rjunct<

C ÞGCaA

1�G
aC<ð�R junctA

C 2RjunctA
C ÞGCaAÞ:

(A15)

The second characteristic contribution (denoted with A2) resulting

from ð�GSGÞa< is

A25
X
b

�G
aCR

SCbGba<1�G
aC<

SCbGbaA1�G
abR

SbCGCa<1�G
ab<

SbCGCaA

5
X
b

�G
aCR

SCbðG0adba1G0bVbCGCaÞ<1�G
aC<

SCbðG0adba1G0bVbCGCaÞA

1ð�GaC �VCb
�G
0b
1�G

0a
dbaÞRSbCGCa<1ð�GaC �VCb

�G
0b
1�G

0a
dbaÞ<SbCGCaA;

(A16)

which is obtained by using Equations 54 and 59 for GbaA and Gba<,

respectively, and by applying Equations 55 and 60 for �G
abR

and �G
ab<

,

respectively. After the multiplication and the application of Langreth

rules, the above expression was transformed into

A25�G
aCR

SCaG0a<1�G
aC<

SCaG0aA1�G
0aR

SaCGCa<1�G
0a<

SaCGCaA

1
1
x

X
b

ð�GaCRðxSCbG0bRVbC1�VCb
�G
0bR

xSbCÞGCa<

1�G
aCRðxSCbG0b<VbC1�VCb

�G
0b<

xSbCÞGCaA

1�G
aC<ðxSCbG0bAVbC1�VCb

�G
0bA

xSbCÞGCaAÞ:
(A17)

The only remaining contribution (denoted with A3),

A35
X
b

ð�GabR
SbG

ba<1�G
ab<

SbG
baAÞ; (A18)

is transformed in the same way as A2, giving

A35�G
0aR

SaG0a<1�G
0a<

SaG0aA1�G
0aR

SaG0aRVaCGCa<

1ð�G0aR
SaG0a<1�G

0a<
SaG0aAÞVaCGCaA

1�G
aC<�VCa

�G
0aA

SaG0aA1�G
aCR �VCað�G0aR

SaG0a<1�G
0a<

SaG0aAÞ
1
X
b

½�GaCR�VCb
�G
0bR

SbG0bRVbCGCa<1�G
aC<�VCb

�G
0bA

SbG0bAVbCGCaA

1�G
aCR �VCbð�G0bR

SbG0b<1�G
0b<

SbG0bAÞVbCGCaA�:
(A19)

The sum A11A2 can be simplified via Equation 50 for the TH

Rjunct
C ,

A11A2 5
X
b

�
�G
aCR�VCb

�G
0bR

2G0bR

x
VbCG

Ca<1�G
aCR�VCb

�G
0b<

2G0b<

x
VbCG

CaA

1�G
aC<�VCb

�G
0bA

2G0bA

x
VbCG

CaA

�

2
1
x
½�GaCR�VCaG

0a<1�G
aC< �VCaG

0aA2�G
0aR

VaCG
Ca<2�G

0a<
VaCG

CaA�:
(A20)

The importance of Equations 72 and 73 becomes obvious because

they show that the corresponding terms in the sums over b of A3,

Equation A19, and b of A11A2, Equation A20, sum up to zero. The

remaining terms of A11A21A3, via Equations 54, 55, 59, and 60,

together with Equations 72 and 73 give simply the following:

ðGa<2�G
a<Þ=x. To summarize,

ð�GR
SG<Þa1ð�G<

SGAÞa5A11A21A35
Ga<2�G

a<

x
: (A21)

By applying the above equation to Equation A11, it is confirmed

that

ga<5va
Ga<2�G

a<

x
1ðvb2vaÞð�GR

a½b�G<1�G
<
a½b�GAÞa;

which is just sought Equation 78. Using the similar derivation it is

somewhat easier to prove Equation 79.
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The expression for current, induced by finite bias with addi-
tional time-dependent (TD) external perturbation, through a
molecule/dot is derived using the non-equilibrium Green’s
function (GF) formalism in the standard two-probe geome-
try. The GFs as well as self energies (SEs) are split into
time-homogeneous (TH) and time-inhomogeneous (TIH) con-
tributions, where the former are obtained as a result of
zeroth-order expansion of the full, two-time corresponding
quantities and the latter we find as linear corrections. The TD
charge in the dot consists of a charge that is injected from the
electrodes and the charge that is induced in the dot. The TD
potential, induced in the dot due to dot TD charge, was treated
self consistently at Hartree–Fock (HF) level as a TIH part of
Coulomb interaction related SE. It is assumed that TH quanti-
ties are solved either exactly or approximately, i.e., using density
functional theory (DFT). The theory is charge conserving and
its gauge invariance is explicitly shown. The contribution of TD

HF potential to the total Coulomb interaction energy vanishes in
the case of one-electron existence, i.e., the self-interaction error
(SIE), beyond the one associated with the DFT, was not intro-
duced. Known results in a special case of time homogeneity are
recovered and extended to TIH transport. The issues of current
partitioning and the displacement current are resolved naturally,
without any additional assumptions about any of quantities, due
to explicit inclusion of dot potential. The special cases of wide-
band limit, zero bias, and zero-bias wide-band limit are also
considered and in each case the corresponding expression for
the TD current is derived. The theory is particularly suitable for
use in connection with DFT when it provides a first-principle
microscopic linear-response description of the non-equilibrium
TIH quantum transport useful for calculation of TD current
through quantum dots, molecules, junctions, or devices at the
nano-scale.

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction One of the main challenges of the
microscopic description of current flow through a quan-
tum system is how to treat Coulomb interaction. Since the
pioneering work of Landauer [1], the scattering formal-
ism was used to formulate the theory of transport through
quantum-coherent systems coupled to electronic reservoirs.
In the equilibrium case, the transport is described using the
concept of conducting channels, directly related to the con-
ductance of the system [2, 3]. In the non-equilibrium case,
the approach was extended to the non-equilibrium quantum-
coherent case in the mesoscopic regime using the scattering
formalism in the presence of a time-dependent (TD) poten-
tial of small frequency for quantum dots, which intra-dot

interaction is treated at the Hartree (random phase approx-
imation, RPA) level [4], leading to the recent experimental
finding of the quantization of conductance in the alternat-
ing current regime [5]. The quantum mesoscopic system
in the presence of the incoherent scattering was studied as
well, extending results to the case of dephasing processes,
using the formalism of non-equilibrium Green’s functions
(NEGFs) [6], which was also used to formulate a current-
conserving gauge-invariant theory without explicit treatment
of TD potential induced by TD injected charge [7]. The
connection between the scattering and NEGF results for elec-
tronic current in the Hartree case has been established as
well [8].

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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The treatment of non-equilibrium transport in the finite-
bias stationary state by combining NEGFs and density
functional theory (DFT) has also been used to numerically
compute conductance and direct current [9–11], by express-
ing electronic density through NEGFs and treating Coulomb
interaction at the DFT level, through Hartree and (semi-)local
exchange-correlation (XC) functionals.

The DFT can be used so that GFs are associated directly
with the effective one-particle, Kohn–Sham (KS) Hamilto-
nian. From the equations of motion of the GFs, the treatment
of interaction also includes an expansion of the two-particle
GF to obtain the interaction self energy (SE) [12], while
the conservation relations [13, 14] provide a specific form of
the SE. All higher orders of the two-particle GF expansion
beyond the Hartree contribution lead to the spatially non-
local SE, which is furthermore time non-local beyond the
Fock contribution [15]. Our approach is to make a connection
between time-homogeneous (TH) and time-inhomogeneous
(TIH) parts of GFs and consequently TH and TIH parts of
all relevant quantities derived from GFs using the Keldysh
technique [15, 16] applied to the Kadanoff–Baym (KB) for-
malism [12–14]. Assuming that the ratio between amplitude
of the TD voltage and frequency is much smaller than �/e,
where � is Planck’s constant and e elementary charge, it is
possible to neglect the voltage-nonlinear contribution to the
current [6, 17]. We adopted the picture in Ref. [18], where
it was assumed that due to good screening properties of the
electrodes, a time-varying field causes a spatially homoge-
neous shift of energy levels in the electrodes. This picture
is spoiled when the driving frequency exceeds the metallic
plasma frequency. For this reason, the sudden application
of the TD voltage cannot be described properly within our
approach. The TD voltage rise time has to be slower than the
plasma frequency period. The coupling of DFT and NEGFs
is achieved through the DFT treatment of the TH contribution
of the GFs, while the KB/NEGF approach provides the TIH
part of the interaction SE, which is just the TD potential in
the dot, calculated self consistently at the Hartree–Fock (HF)
level. The starting point is the standard partitioning scheme
where the Hamiltonian of the whole system is represented
by separate Hamiltonians of electrode, dot, and junction
regions [18, 19].

It is not necessary to consider the equation of motion
of GFs in order to describe the steady-state regime, where
it is possible to work directly with the matrix equation in
the energy domain. The GF of the whole system is the
resolvent of the total Hamiltonian; the connection between
block matrices, associated with subsystems and contained
in the equation, provides relevant equations for the dot,
electrode, and junction regions; and, the junction SE is
obtained as a function of surface (isolated electrode) GF,
hopping, and mixed overlap matrices [9, 11]. In the non-
steady regime working with the equation of motion is very
useful because it facilitates computations with two-particle
GFs [12, 15], and for this reason we use creation/annihilation
operators of orthogonal states in the second quantiza-
tion [6, 7, 18].

Working with two-particle GFs allows us to trivially
demonstrate the current conservation, i.e., validity of the
continuity equation, using the GF equation of motion. In
order to satisfy the request of current conservation (as well as
momentum and energy conservation), the approximate SE,
stemming from two-particle GF expansion, has to take par-
ticular forms [13, 14]. Therefore, some basic physics was
preserved, and the need for current-conserving theory was the
motive for introducing the DFT, coupled with NEGFs, in our
description. Namely, combining the two methods, treating
the steady state in one way (DFT) and the TD contribution in
another way, i.e., using HF expansion of the two-particle GFs
and keeping its TIH part, provides the current conservation,
as we will demonstrate explicitly. In addition to being current
conserving, our approach is advantageous compared with
Hartree self-consistent treatment of the TD internal potential,
because the HF potential does not introduce a self-interaction
error (SIE). Namely, the energy of the Coulomb interaction,
within the linear-response description of TD systems, con-
sists of contributions associated with time-independent and
TD charge density that interact via TH, Coulomb interaction
related, SE and contributions due to time-independent charge
density that interact via TIH, Coulomb interaction related,
SE. Within the proposed scheme, TH GFs are treated in the
DFT manner, while the linear TIH corrections are adopted
from perturbation expansion in the HF approximation. The
consequences of such approximation are a replacement of
TH SE by the Hartree plus exchange-correlation (H + XC)
part of the KS Hamiltonian. In the one-electron case, the first
two contributions are not zero (constant), which is the intrin-
sic DFT property, i.e., SIE, but the third term goes to zero,
due to cancelation of Hartree and Fock contributions. The
need for the current-conserving description, as well as the
possibility of self-interaction-free TD transport theory, was
a motivation for us to propose this hybrid approach.

The rest of the paper is organized as follows: in Sec-
tion 2, the model and notation are introduced; the equation
of motion of GFs in the presence of an external TD potential
is discussed; in Section 3, the connections between TIH and
TH quantities are established and a set of equations for their
determination is derived, while the use of DFT to calculate
TH quantities is discussed in Section 3.1; in Section 3.2,
we point out the SIE problem as well as the benefit of
our method associated with SIE reduction; in Section 4,
expressions for both direct (Section 4.1) and alternating
(Sections 4.2 and 4.3) currents are derived, and the solution
to the current-partitioning problem within the theory is also
given; gauge invariance of the obtained expressions is shown
in Section 4.3; special cases of wide-band limit (WBL),
zero bias, and zero-bias WBL are considered in Section 5,
where corresponding expressions for TD current in each of
the three cases are derived; and, Section 6 summarizes the
main results of the paper.

2 Hamiltonian The standard model of two probes
with TD energy levels coupled to a quantum dot (molecule),

www.pss-b.com © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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described by the Hamiltonian

H = HL + HLD + HD + HRD + HR, (1)

is considered, where HL/R are Hamiltonians of the left/right
lead, HD is the dot Hamiltonian, and HLD/RD are Hamiltonians
describing the interaction of the left/right lead and the dot,
which in the second quantization take the following forms:

Hα =
∑

kα

εkα(t)c†kαckα, (2)

HD =
∑
nm

ε
nm

d†
n
d

m
+ 1

2

∑
mnkl

Wmn,kl d
†
m
d†

n
dldk, (3)

HαD =
∑
kα,n

(
Vkα,nc

†
kαdn

+ h.c.
)
, (4)

where k is a wave vector such that kα counts eigenstates of the
probe α = L, R; the index n labels basis vectors of the dot,
the Hamiltonian HD is assumed to be Hermitian, represented
in a basis {φn(r)}, with particles interacting via two-particle
interaction described by the matrix W , while the spin indices
are not written since it is assumed that the system is non-
magnetic. Creation and annihilation operators in the dot, dn(t)
and d†

n
(t), respectively, as well as creation and annihilation

operators in the leads, ckα(t) and c
†
kα(t), respectively, all sat-

isfy fermionic commutation relations, while operators of the
dot and leads anti-commute, i.e., {c†kα(t), d†

n
(t)} = 0. We set

� = 1 hereafter to simplify notation without loss of general-
ity. One-particle, kinetic with additional external potential,
energy matrix elements are

εnm =
∫

dr φ∗
n
(r)

(− 1

2m
Δr + u(r)

)
φm(r) (5)

and the Coulomb repulsion of electrons is represented via
matrix elements of W as

Wmn,kl = e2

∫
dr

∫
dr′ φ∗

m
(r)φ∗

n
(r′)φk(r)φl(r′)

|r − r′| . (6)

It is furthermore adopted that the standard assumption is
that the two probes do not interact one with another and that
the only interaction between the probes and the dot is through
the coupling Vkα,n, typically representing tunneling ampli-
tudes across the junction between lead α and the molecule
D.

3 Time dependence An externally applied voltage in
the lead α, Vα(t), induces time dependence of probe energy
levels εkα = εkα(t), thus making H time dependent as well.
As a consequence, the first concern is how this introduces
TD potential in the dot, and it is analyzed by using Dyson’s
equation. The GF of HD is

Gnm(t, t′) = −i
〈
TC dn(t)d†

m
(t′)

〉
, (7)

where dn (d†
m

(t′)) is an annihilation (creation) operator in
the Heisenberg picture, and the time ordering TC is on the
Keldysh contour C, where also lie time arguments [15, 16].
The equation of motion of dn is

i ḋn(t) = [dn(t), H(t)]. (8)

The evaluation of the commutator is simplified because
[dn(t), Hα] = 0 due to {dn(t), ckα(t)} = 0. The commutator
[dn(t), HαD(t)] gives a contribution to the SE of the junction,
while [dn(t), HD(t)] gives SE coming from the interaction
part of HD (the second sum of Eq. (3)). The junction SE,
Σjnc, comes from its surface GF [18],

gkα(t, t′) = −i
〈
TC c(Hα)

kα
(t)c(Hα)†

kα (t′)
〉
, (9)

where operators are in the Heisenberg picture according to
the electrode Hamiltonian Hα(t), while the dot-interaction
SE time dependence comes from the two-particle GF [12]

G2(nt, mt′, n1t1, m1t
′
1)

= (−i)2
〈
TC dn(t)dm(t′)d†

m1
(t′1)d†

n1
(t1)

〉
. (10)

The last GF can be in principle represented as a one-
particle GF multiplying the dot-interaction SE Σint that is
generally difficult to calculate. The standard assumption of
non-interacting electrons in the leads is used, while the dot
interaction remains Coulomb. Therefore, TD potential will
exist in the dot due to potentials in electrodes coupled to
the dot, which can be in principle found knowing Σint. It is
important to emphasize that, due to the coupling of the dot and
probes, the TD potential introduced in the probes will make
the dot-interaction GF and the SE time dependent. Therefore,
the problem is approached by decomposing all quantities into
TH and TIH parts [6], expanding the two-particle GF up to
the Hartree–Fock level [12], and then treating the TH parts
of the obtained expressions using a different theory, in this
case DFT [20–22], which solves, in principle exactly or in
practice approximately, ground-state properties of interact-
ing electrons in the dot through KS single-particle solutions.
In other words, a perturbative technique is used to find the
TD potential in the dot (related to TIH Σint), while DFT deals
with the Coulomb interaction in the dot (related to TH Σint).

The TH part of Σint can be taken into account by
decomposing it into the HF local part and the non-local
remainder [15]:

Σint(t, t′) = Σint,HF(t, t′)δ(t − t′) + Σint,>(t, t′)θ(t − t′)

+ Σint,<(t, t′)θ(t′ − t), (11)

obtained from the expansion of the two-particle GF, where
the lowest-order term gives the HF part, and the remain-
ing two terms contain the contribution from the two-particle
interaction.

The concern is with the linear-response regime, where
Dyson’s equation for the TIH part is derived assuming that the

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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TIH contribution is small and depends on time-varying volt-
age up to the linear term [6, 8], giving the following equation
of motion of the GF, written in matrix form as

i
∂G(t, t′)

∂t
= δ(t−t′)I+ε G(t, t′) +

∫
C

dt1Σ(t, t1)G(t1, t
′),

(12)

where I is the unity matrix, andΣ is the total SE, which can be
split into the interaction and junction parts, Σ = Σint + Σjnc,
with the following equations for each contribution:

∑
l

∫
C

dt1Σ
int
nl

(t, t1)Glm(t1, t
′)

= −i
∑
jkl

WnjklG2(kt, lt; mt′, jt+), (13)

Σ
jnc
nl (t, t1) =

∑
kα

V ∗
kα,n

g
kα

(t, t1)Vkα,m
, (14)

where Eq. (13) describes the intra-dot Coulomb interaction of
electrons, Eq. (14) describes the coupling between the dot and
leads, and g is the surface GF, Eq. (9). The time argument t+

means t + δ for infinitesimal δ > 0, and the time integration
is along the Keldysh contour C. Similarly, both G and Σ are
decomposed into TH and TIH parts:

G(t, t′) = Gh(t − t′) + Gi(t, t′), (15)

Σ(t, t′) = Σh(t − t′) + σ(t, t′). (16)

Equation (15) allows separation of the equation of motion
of the GF, Eq. (12), into two equations, for TH and TIH parts,

i
∂Gh(t − t′)

∂t
= δ(t − t′)I + ε Gh(t − t′)

+
∫

C

dt1Σ
h(t − t1)G

h(t1 − t′), (17)

i
∂Gi(t, t′)

∂t
= ε Gi(t, t′) +

∫
C

dt1Σ
h(t − t1)G

i(t1, t
′)

+
∫

C

dt1σ(t, t1)Gh(t1 − t′) (18)

with the following particular solution for the TIH part:

Gi(t, t′) =
∫

C

dt1

∫
C

dt2 Gh(t − t1)σ(t1, t2)Gh(t1 − t′).

(19)

The TIH SE of the junction, σ jnc(t, t′), directly follows
from Eq. (14),

σ jnc
mn

(t, t′) =
∑

kα

V ∗
kα,m

gi
kα

(t, t′)V
kα,n

, (20)

where the TIH part is now contained in the surface GF. Evo-
lution of g in the Heisenberg picture of Hα is given by

gkα(t, t′) = θ(t − t′)(−i)
〈
ckαc

†
kα

〉
e−i

(
εkα(t−t′)+

∫ t

t′ dτVα(τ)
)

+ θ(t′ − t)i
〈
c
†
kαckα

〉
e−i

(
εkα(t−t′)+

∫ t

t′ dτVα(τ)
)

(21)

with retarded, advanced, and lesser GFs given by

gR
kα(t, t′) = −iθ(t − t′)e−iεkα(t−t′)

−iθ(t − t′)e−iεkα(t−t′)
∞∑

n=1

(−i)n

n!

(∫ t

t′
dτVα(τ)

)n

,

gA
kα(t, t′) = iθ(t′ − t)e−iεkα(t−t′)

+iθ(t′ − t)e−iεkα(t−t′)
∞∑

n=1

(−i)n

n!

(∫ t

t′
dτVα(τ)

)n

,

g<
kα(t, t′) = i

〈
c
†
kαckα

〉
e−iεkα(t−t′)

+ i
〈
c
†
kαckα

〉
e−iεkα(t−t′)

∞∑
n=1

(−i)n

n!

(∫ t

t′
dτVα(τ)

)n

.

(22)

Within the linear-response regime, we keep only the first
term (n = 1) of each series, which gives the TIH part of SE,
Eq. (14), expressed through the TH part

σγ(t, t′) = −i
∑

α

∫ t

t′
dτVα(τ)Σγh

α
(t − t′), (23)

where γ stands for R, A, or <. Furthermore, assuming that
the leads contain non-interacting fermions, we can associate
a Fermi distribution with the average number of electrons in
a single-particle state kα:

〈c†kαckα〉 = fα(εkα). (24)

Now that TIH junction SEs are expressed in the
linear-response approximation, attention is paid to Σint. As
announced, it will be treated in the HF approximation [12],

G2(kt, lt; mt′, jt+) ≈ Gkm(t, t′)Glj(t, t
+)

− Gkj(t, t
+)Glm(t, t′), (25)

where two terms on the right-hand side represent, respec-
tively, the Hartree and the Fock terms. Inserting this
approximate expression into Eq. (13), we get the interaction
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SE in the HF approximation

Σint
nl

(t, t1) = δ(t − t1)
∑

jk

(
2Wnjlk − Wnjkl

)〈
d†

j
(t)dk(t1)

〉
.

(26)

The result is time local, as expected within the HF
approximation, and can be conveniently expressed as

Σint
nl

(t, t) = −i
∑

jk

(
2Wnjlk − Wnjkl

)
G<

kj
(t, t). (27)

Prior to the further derivation, a remark about Eq. (19)
will be made. It is a linear TD correction to the zeroth-order
TH GF due to external TD perturbation σ jnc and induced field
σ int, and the total TD SE can be recognized as the effective
field in the dot. This is analogous to the random phase approx-
imation (RPA) [23], the difference being that the explicit
external potential influences the dot through the junction TIH
SE, Eq. (23), and that the induced field is TD HF while in
the RPA it is TD Hartree potential. The induced field can be
understood as a shielding potential that screens the particle
interaction [23]. Then, non-inclusion of short-range effects
in RPA leads to the overestimation of the screening.

Our aim is to find the TIH part of the HF SE, using
the decomposition G<(t, t′) = G<h(t − t′) + G<i(t, t′). Obvi-
ously, the TIH part of the interaction SE is related to the TIH
lesser GF through

σ int
nm

(t, t) = −i
∑

jk

(
2Wnjmk − Wnjkm

)
G<i

kj
(t, t), (28)

while another connection is provided by applying Langreth
rules [16] on Eq. (19), leading to

G<i(t, t) =
∫∫

dt1dt2

[
GRh(t − t1)σ

R(t1, t2)G<h(t2 − t)

+ GRh(t − t1)σ
<(t1, t2)GAh(t2 − t)

+ G<h(t − t1)σ
A(t1, t2)GAh(t2 − t)

]
+

∫
dt1

[
GRh(t − t1)σ

int(t1, t1)G
<h(t1 − t)

+ G<h(t − t1)σ
int(t1, t1)G

Ah(t1 − t)
]
. (29)

The first term can be interpreted as the contribution to the
TD charge density in the dot due to charge injection, as a con-
sequence of the external TD potentials, while the second term
is the charge density induced as a response, which depends on
the internal, screening HF potential. Finally, lesser TH GFs
are expressed through the Keldysh equation [16, 18], valid
for a non-interacting system

G<(t − t′) =
∫∫

dt1dt2G
R(t − t1)Σ

<(t1 − t2)GA(t2 − t′).

(30)

From the expressions derived so far, it is possible to
formulate a self-consistent scheme for deriving the dot poten-
tial, Eq. (28): what is needed is the TIH part of the lesser
GF, Eq. (29), which depends on TH retarded, advanced, and
lesser GFs, TIH retarded, advanced, and lesser junction SEs
as well as TIH interaction SE, i.e., the TD dot potential. This
brings us back to Eq. (28) as the new input for Eq. (29).
The TH expression for SE, Eq. (23), as a consequence of
the linear-response approximation, provides the TIH junc-
tion SE, contained in Eq. (29), and the TH lesser GF, also
included in Eq. (29), is through Eq. (30) described in terms
of TH retarded and advanced GFs, and TH lesser junction
SE.

3.1 Time-homogeneous quantities of the dot
The set of equations derived in the previous section forms the
basis for alternating current calculation, where TIH quantities
are reduced to TH quantities. Now the TH quantities, that is,
TH dot’s GF and TH isolated electrode’s GF, are addressed,
where the latter will provide the TH junction SE.

Fourier transformation (FT) of the equation of motion of
the TH GF, Eq. (17), gives the well-known result

G(E) = (
E − ε − Σjnc − Σint

)−1
. (31)

At this point, DFT can be used to provide an effective
single-electron Hamiltonian, the so-called KS Hamiltonian,
of the system in the ground state, by mapping an interacting
to an effective non-interacting, KS electronic system. This
system is influenced by a (semi-)local potential generated
from the electron density. The potential consists of external,
Hartree, and exchange-correlation (XC) contributions. The
key point here is that the GF related to Heff and the GF related
to the KS Hamiltonian provide densities that are equal. This
feature has a benefit as it allows the use of the GF related to
the KS Hamiltonian to find the density, Eq. (55). At the same
time, a determinantal (Slater) shape of the many-electron
function can be used due to an effectively non-interacting
description.

The KS states, which build the Slater determinant, are
solutions of the following eigenproblem [20]:

(− 1

2m
Δ + u[n] + vH[n] + vXC[n]

)
φKS

μ
(r) = εKS

μ
φKS

μ
(r),

(32)

where n is the electron density n(r) = ∑
μ
|φKS

μ
(r)|2, with

corresponding GF

G = (
E − εKS − Σjnc

)−1
. (33)

The KS matrix elements in the dot basis are

εKS
nm

=
∫

dr φ∗
n
(r)

(− 1

2m
Δr + u + vH + vXC

)
φm(r).

(34)
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KS orbitals can be expanded in an orthonormal basis {φn(r)}
of the dot,

φKS
μ

(r) =
∑

n

Cnμφn(r), (35)

where orthonormality provides the constraint that expansion
coefficients in Eq. (35) have to satisfy [24]:∑

nm

C∗
nβ

εKS
nm

C
mα

= εKS
α

δ
αβ

,
∑

n

C∗
nβ

C
nα

= δαβ. (36)

What remains is to find a description of the junction SE,
which depends on the isolated electrode’s GF. In practice,
this is the first step in obtaining the dot GF [25]. The iterative
procedure developed in Ref. [9] then finds the initial electron
density from the electric field between the electrodes at the
Hartree level, providing the initial KS Hamiltonian matrix,
Eq. (32). The matrix and junction SE determine the initial
GF, Eq. (33), which is then used to calculate the density
matrix D and from it the electron density n = Tr D. The
process is then iteratively repeated until the convergence of
n. The scheme remains valid in the present theory as well,
insofar as it solves the Hartree part of the problem and with
it the associated direct current, to which we will return in
Section 4.1.

3.2 Self interaction The reducing of SIE will be
demonstrated. It is necessary to find the Coulomb interac-
tion related potential energy. By observing Eqs. (17) and
(18), it is possible to find the total energy by taking the trace
of the time derivative of lesser GFs over the first time argu-
ment, repeating the same procedure with the time derivative
over the second time argument, and finding the difference of
the obtained derivatives [12]. The total energy will include
kinetic, lead–dot interaction, and Coulomb interaction ener-
gies. For the last, it can be found that

Eint(t) ∼ Tr
∫

dt′[(Σint(t, t′)G(t′, t))<

+ (G(t, t′)Σint(t′, t))<]. (37)

Decomposing both G and Σint into TH and TIH parts,
Eqs. (15) and (16), adopting the DFT description of TH GF
and SE, and treating the TIH SE at the HF approximation, it
can be observed that Eq. (37) consists of the following parts:
(i) a contribution due to stationary (obtained from lesser TH
GF) charge interacting via effective H + XC potential

Tr[(εKS
H + εKS

XC)G<],

(ii) a contribution due to dynamic (obtained from lesser TIH
GF) charge interacting via effective H + XC potential

Tr[(εKS
H + εKS

XC)G<i(t, t)],

(iii) a contribution due to stationary charge interacting via
internal HF time-dependent potential

Tr[σ int(t, t)G<].

Taking the existence of one electron only, it is, recall-
ing Eq. (28), possible to straightforwardly see that the third
contribution is zero (the prefactor 2 at the Hartree term came
because of spin summation, but in the single-electron case
this summation does not exist). The problem of SIE remains
due to the fact that in DFT, moving of a single electron is
influenced by the external potential, i.e., the junction SE, but
also to a certain extent by H + XC potential. This is in contrast
to the physical picture, in which this potential would have to
be constant (there should be no Coulomb force acting on the
single electron), namely,

veff (r) = vH(r) + vX(r) + vC(r);

vH(r) + vX(r) = const.;

vC(r) = 0. (38)

If this were satisfied, then the first two contributions to
the interaction energy would be

const.
∑
n,m

δnmG<(t, t)mn = const., (39)

where the unity value of the trace of the total lesser GF was
taken, according to the existence of one electron only. In order
to avoid the problem of SIE, the DFT SIC scheme [26, 27]
(SIC – self-interaction correction) has to be adopted. In that
case, the first and the second contributions could be zero
(constant), and this is what knowing the exact functionals
guarantees. However, it is important to point out that even
in the case of DFT that is free of SIE, the linear-response,
time-dependent theory would be free of SIE only within the
proposed HF treatment of the time-dependent internal poten-
tial. Throughout the rest of the paper the symbol for SE (TH,
TIH, or total) means junction SE, unless otherwise noted.

4 Current Electrical current originates in the leads that
are kept at a finite potential difference, the externally con-
trolled bias V , where additionally the potential Vα of lead α

changes in time. The standard adopted assumption is of non-
interacting Fermi-distributed electrons in the leads when the
difference in chemical potentials between the left and the
right electrodes is due to the bias, i.e., μL − μR = eV . At
some time, assumed to be in the remote past, reservoirs pro-
viding electrons to the leads are exposed to the influence
of time-dependent potential. The total electron flow through
the system then is the sum of the time-independent currents
due to the finite bias and the time-dependent currents due
to the varying potential, which were each determined sepa-
rately, starting from the definition of the electrical current in
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the lead α:

Iα(t) = −e
d

dt

〈
Nα(t)

〉 = −ie
〈
[H(t), Nα(t)]

〉
, (40)

where Nα(t) = ∑
kα

c
†
kα(t)ckα(t) is the total number of elec-

trons in the lead α. The evaluation of the commutator in
Eq. (40) gives

Iα(t) = ie
∑

kn

(
Vkα,n〈c†kα(t)d

n
(t)〉 − V ∗

kα,n
〈d†

n
(t)ckα(t)〉).

(41)

The last sum can be expressed with the lesser form of
the mixed GF, which involves analytical continuation on the
real-time axis [16], transforming Eq. (41) into

Iα(t) = 2e

∫ t

−∞
dt′Tr

[
GR(t, t′)Σ<

α
(t′, t) +G<(t, t′)ΣA

α
(t′, t)

− ΣR
α
(t, t′)G<(t′, t) − Σ<

α
(t, t′)GA(t′, t)

]
. (42)

Double counting, due to spin summation, is included in
the above equation. Partitioning of GFs and SEs into TH and
TIH parts done in Section 3 gives two contributions to the
total current Iα(t), namely a time-independent direct current
(DC) Iα and a time-dependent alternating current (AC) iα(t),
respectively, as follows:

Iα(t) = Iα + iα(t), (43)

Iα = 2e

∫
dt′ Tr

[
GR(t − t′)Σ<

α
(t′ − t)

+ G<(t − t′)ΣA
α

(t′ − t) − ΣR
α
(t − t′)G<(t′ − t)

− Σ<

α
(t − t′)GA(t′ − t)

]
, (44)

iα(t) = 2e

∫
dt′ Tr

[
GR(t, t′)Σ<

α
(t′−t) +GR(t−t′)σ<

α
(t′, t)

+ G<(t − t′)σA
α

(t′, t) + G<(t, t′)ΣA
α

(t′ − t)

− ΣR
α
(t − t′)G<(t′, t) − σR

α
(t, t′)G<(t′ − t)

− Σ<

α
(t − t′)GA(t′, t) − σ<

α
(t, t′)GA(t′ − t)

]
,

(45)

where the index α denotes the contribution from the lead α.
Langreth rules [16] provide the retarded and advanced forms
of the TIH contribution of the dot GF, Eq. (19), as

Gγi(t, t′) =
∫∫

dt1dt2 Gγh(t − t1)
[
σγ(t1, t2)

+ σ int(t1, t2)δ(t1 − t2)
]
Gγh(t2 − t′), (46)

where γ stands for R or A. Note that in this expression all one-
and two-time quantities correspond to TH and TIH terms,
respectively, which remains true for all the expressions in
the rest of the paper, and thus explicit writing of ‘h’ and ‘i’
hereafter is omitted.

4.1 Direct current After FT of the expression for DC,
Eq. (44), it is obtained that

Iα = e

π

∫
Tr

[
GRΣ<

α
+ G<ΣA

α
− ΣR

α
G< − Σ<

α
GA

]
dE,

(47)

where, to simplify the notation, explicit dependence of quan-
tities under the integral on E is omitted. From Eq. (20), it
follows that

Σγ

α
= V †

αD gγ

α
V

αD, γ = R, A, < (48)

and, from Eqs. (22) and (24), SE matrices describing the
influence of electrodes are obtained as follows:

ΣA
α

− ΣR
α

= i Γα, (49)

Σ<

α
= ifαΓα, (50)

where the bandwidth Γ is defined as

Γ =
∑

α

Γα; Γα(E) = 2πV †
αDΔ

α
(E)V

αD (51)

and Δα(E) is the density of states matrix of the isolated
electrode α.

From Eq. (49), it follows that

Γα(E) = −2Im ΣR
α
(E) (52)

and, recalling Eqs. (33) and (49), it is straightforward to show
that

[GR]−1 − [GA]−1 = ΣA − ΣR,

i(GR − GA) = GRΓGA, (53)

which, together with the TH part of the Keldysh equa-
tion (30), gives the expression for DC, Eq. (47), in the
well-known Caroli form [19]

Iα = e

π

∫
dE(fα − fβ)Tr[ΓβG

RΓαG
A], α 	= β. (54)

This equation was obtained before using the scattering
formalism of Büttiker [28, 29], where particle interaction in
the dot was treated up to the elastic one-particle interaction
level, the connection between S-matrix and GF was estab-
lished viathe Fisher–Lee relation [3], and the transmission

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com



Original

Paper

Phys. Status Solidi B 251, No. 7 (2014) 1445

recognized in the term Tr[ΓαG
RΓβG

A]. Beyond elastic
mean-field potential scattering, however, equality between
this expression and the transmission coefficient does not
hold any longer.

The expressions for the TH lesser GF, Eq. (30), and the
lesser SE, Eq. (50), together with Eq. (53), determine the
electron density matrix as

D = −iG<(t − t+) = 1

2πi

∫
dE G<(E). (55)

The Fourier-transformed Keldysh equation (30), together
with Eq. (49), expresses the lesser TH GF as

G< = GRΣ<GA

= GR
∑

β

ifβΓβG
A

= ifβG
RΓGA + i(fα − fβ)GRΓαG

A. (56)

It is assumed here that μα > μβ for definiteness, two
terms of the TH lesser GF, respectively, are the equilibrium
density matrix associated with lead states kβ up to μβ and
the non-equilibrium part with the energy values between
chemical potentials. Due to Eq. (53), the equilibrium part
is simply

ifβG
RΓGA = −2ifβImGR, (57)

which is analytical in the complex upper half-plane except at
poles of the Fermi distribution at the imaginary axis, and the
integral can be calculated by contour integration [9, 10]. The
non-equilibrium part of the density matrix is not analytical
due to the presence of both retarded and advanced GFs, so
the integration is done along the real axis [9–11].

The DC is conserved, which can be demonstrated by tak-
ing the sum over left and right current contributions, Eq. (47),
to obtain∑

α=R,L

Iα = e

π

∫
Tr[(GR − GA)Σ< + (ΣA − ΣR)G<] dE.

(58)

The first rows of Eqs. (53) and (56) then trivially lead to
the DC conservation.

4.2 Alternating current The expression for the alter-
nating current, Eq. (45), can be transformed recalling
Eqs. (29), (28), (23), and (46), to obtain an expression involv-
ing only TH quantities. To this end, first the double FT is
applied to all two-times quantities, which transforms the
expression for AC, Eq. (45), into a sum of four contributions

iα(ω) = e

π

∫
dE Tr

[
i(1)
α

+ i(2)
α

+ i(3)
α

+ i(4)
α

]
,

i(1)
α

= [GR(E+) − GA(E)]σ<

α
(E+, E),

i(2)
α

= [ΣA
α

(E) − ΣR
α
(E+)]G<(E+, E),

i(3)
α

= GR(E+, E)Σ<

α
(E) − Σ<

α
(E+)GA(E+, E),

i(4)
α

= G<(E+)σA
α

(E+, E) − σR
α

(E+, E)G<(E), (59)

where E+ stands for E + ω (notation adopted from Ref. [6]).
The first three terms agree with the results previously
obtained by Anantram and Datta (see Eq. (22) of Ref. [6]),
who provided also their interpretation – the first term, i(1)

α
,

corresponds to the correlated injection of electrons from elec-
trode α at energies E and E+, while the second, i(2)

α
, describes

the correlated injection of the electrons in the other direction,
from the dot into the lead; the third term, i(3), corresponds to
the injection of the electron from one energy from the leads
to the changing density of states in the dot.

The fourth term, i(4), also presented in Refs. [7, 8], can
be interpreted by tracing back its origin to the expression
for the TIH junction SE, Eq. (60) – if, for the sake of sim-
plicity, Σ(E) changes linearly with E, then σα(E+, E) =
(−∂Σα(E)/∂E)Vα, i.e., TIH SE is produced by the change
of the TH junction SE with energy. The change of the real
part is associated with the shifting of energy levels in the dot,
while the change of the imaginary part with the change of
width of dot levels. Since these changes originate in the leads,
the fourth term describes the process that is the third process
reversed, namely an injection of the electron from the dot into
the lead due to the altering density of states in the leads. This
term gives the contribution beyond the WBL approximation,
which is discussed later (Section 5.1) considering it a special
case of the general expression (59).

Subsequently, the four contributions to the current can be
grouped into two types of processes: i(1) + i(3) corresponds to
the transfer of the electron from the leads into the dot, while
i(2) + i(4) corresponds to the transfer of the electron from the
dot into the leads.

4.3 Expression for current Now, what follows is the
derivation of the final expression for the dynamical current
starting with the FT of Eq. (23):

σγ

α
(E+, E) = Vα(ω)

ω
[Σγ

α
(E) − Σγ

α
(E+)], (60)

where γ stands for A, R, or <. The FT of Eq. (46) is

Gγ(E+, E) = Gγ(E+)[U(ω) + σγ(E+, E)]Gγ(E),

(61)

where γ stands for A or R, and U is the time-dependent
potential at the HF level

Unm(ω) = 1

2π

∫
dE σ int

nm
(E+, E), (62)
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determined self consistently. The FT of the TIH contribution
of the lesser GF of the dot, Eq. (29), is

G<(E+, E) = GR(E+)σR(E+, E)G<(E)

+ GR(E+)σ<(E+, E)GA(E)

+ G<(E+)σA(E+, E)GA(E)

+ GR(E+)U(ω)G<(E)

+ G<(E+)U(ω)GA(E). (63)

The self-consistent set of equations now involves the use
of Eqs. (60), (62), and (63) to express TIH quantities through
TH ones, resulting in the expression for the current where all
the quantities are functions of either E or E + ω. For this rea-
son, to simplify notation, the writing of explicit dependence
on E is dropped, while the explicit dependence on E + ω is
indicated by the subscript +, while V and U depend on ω

only, which is also not explicitly written. Using this notation,
the derivation of the expression for dynamical current at the
frequency ω is given in the Appendix, with the following
result:

iα(ω) = e

π

∫
dE Tr

(
GR

+ŨR
α
GRΣ<

α
− Σ<

α+GA
+ŨA

α
GA

)
+ e

π

∫
dE Tr{[ΣA

α
− ΣR

α+][GR
+ŨR

α
G<

+ G<

+ŨA
α
GA + GR

+
Vβ − Vα

ω
(Σ<

β
− Σ<

β+)GA]},
(64)

Ũγ

α
= Vβ − Vα

ω

(
Σ

γ

β − Σ
γ

β+
) + U − Vα; γ = R, A; β 	= α,

(65)

where Ũα can be perceived as an effective potential that
includes TIH self energy as well as the induced dot potential,
all shifted by the potential of the corresponding lead.

The first integral of Eq. (64) contains the AC contri-
bution from leads-to-dot processes i(1,3)

α
. Presence of the

in-scattering rate Σ< in the integral shows that the described
process is not only due to external potentials but also due
to internal ones [30]. The second integral of Eq. (64), corre-
sponding to the contribution of dot-to-leads processes i(2,4)

α
,

is due to the presence of the dissipative term G< [30].
The gauge-invariant current theory is the one where

simultaneous shift of all potentials by the same amount has
no observable effect on current, i.e., the current depends
only on voltage differences [4, 7, 8, 28, 31]. Both of these
contributions to the total AC show that the current depends
on potential differences, which is the hallmark of gauge
invariance, and clearly point out the necessity of the explicit
introduction of internal potential in order to preserve gauge
invariance.

4.3.1 Admittance Although expressions for AC and
DC have been derived and the scheme for the calculation

of all relevant quantities developed, no connection to the
conductance has been made so far. Büttiker established a
connection between time-dependent Hartree potential and
electrode potentials via conductance using the formalism of
characteristic potentials [4], and proved the gauge invariance
with respect to constant potential shifts of V . To better under-
stand the obtained result, Eq. (64), especially the role of the
displacement current, the expression can be formally rewrit-
ten in terms of the transport coefficient, the particle current
associated admittance G̃p(ω), and the displacement current
id
α

as

iα(ω) =
∑
αβ

G̃
p
αβ(ω)Vβ(ω) + id

α
(ω) (66)

or, in matrix form, as[
iL

iR

]
=

[
G̃

p
L G̃

p
LR

G̃
p
RL G̃

p
R

] [
VL

VR

]
+

[
id

L

id
R

]
, (67)

where corresponding components of the admittance matrix
can be easily extracted from Eq. (64). The obtained
expression appears non-homogeneous in Vα due to the
displacement-current term id

α
(ω), equal to the contribution

of the first four terms in Eq. (64) containing all the contribu-
tions of the TD potential in the molecule U(ω). This potential,
however, is determined self consistently and therefore also
indirectly depends on Vα. This can be seen by considering
first the limit of vanishing amplitudes of electrode potentials
Vα. In this case, for small frequencies the response of the dot
to the external field will also be small, and expansion of U in
Vα would provide a constant term in the lowest order, which
can be removed by choosing a suitable gauge, and terms lin-
ear in Vα as the largest non-trivial corrections, thus making
the displacement current also linearly dependent on Vα,

id
α

=
∑

β

G̃d
αβ

Vβ.

Therefore, the main effect of the displacement current is
the renormalization of the total admittance of the molecule,

iα(ω) =
∑
αβ

G̃αβ(ω)Vβ(ω), G̃(ω) = G̃p(ω) + G̃d(ω).

(68)

In this limit of vanishing Vα(ω), the current will be van-
ishing as well so long as ω is smaller than the molecular
gap. When the two energies are comparable, however, there
is a possibility of forming transient excited states, which are
not well described in the formalism of linear response [16].
This sets the upper limit for the frequency of the driving field
to about the (effective) level spacing near the Fermi energy
of the dot or, alternatively, the HOMO–LUMO gap of the
molecule.

In general, if V (ω) is non-vanishing, U(ω) does not
have to be linear in Vα(ω) even when all TIH quantities are,
where the source of nonlinearities is the intra-dot Coulomb
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interaction. Then, due to TH contributions of U nonlinear
in Vα, a simple relation (68) is only an approximation and
would acquire additional nonlinearity in Vα terms, which are
taken into account with the presented formalism and already
included in the expression for dynamical current, Eq. (64).

4.3.2 Current partition When talking about the elec-
tron injection between the dot and the lead, it should be stated
that the four terms in Eq. (59) include not only the particle
current, but also the current due to charge accumulation in
the dot induced by the external potential, the displacement
current id. This is due to the fact that the system of equations
developed in Section 3 includes also the intra-dot interaction,
whose TIH contribution is exactly the TD potential in the dot.
The left and right AC contributions to Eq. (59) are

i(ω) = iL(ω) + iR(ω). (69)

Taking the GFs in a Kohn–Sham form, Eq. (33), the above
sum is∑

α=R,L

iα(ω) = −e
ω

π

∫
dE Tr

[
GR

+σ<(E+, E)GA

+ G<

+σA(E+, E)GA + GR
+σR(E+, E)G<

]
− e

ω

π

∫
dE Tr

[
G<

+U(ω)GA+GR
+U(ω)G<

]
,

(70)

where U is the HF time-dependent potential, Eq. (62). The
above result is easy to obtain if the sum of left and right
contributions of the second term of Eq. (59) is transformed:

(ΣA − ΣR
+)G<(E+, E)

= −ωG<(E+, E) + ([GR
+]−1 − [GA]−1)G<(E+, E).

(71)

Using Eq. (63), in the second term on the right-hand side,
it can be found that this term is canceled by the left and right
sums of the first, third, and fourth terms of Eq. (59), giving
Eq. (70). The right-hand side of Eq. (70) also equals

−2ei�
∂

∂t
Tr G<(t, t).

Equation (70) consists of two contributions: the current
associated with injected charge where the external poten-
tial was recognized in the TIH junction SE, and the current
associated with induced charge with corresponding internal
potential, Eq. (62). The displacement current density is the
divergence of the time derivative of the electric field gener-
ated by charge density. This charge density is composed from
injected and induced charge densities in the dot.

The molecule–lead coupling affects both the molecule
and the leads. For metallic leads, effects of this coupling are
expected to be screened at the depth of the Thomas–Fermi
length, which is at most a few lattice constants, with bulk-

like properties deeper in the conductor, which in the case of
finite bias means the uniform electro-chemical potentials in
the bulk. This is then used to impose the correct boundary
conditions: the system is divided into the central region, the
so-called extended molecule (EM), containing the molecule
and parts of the electrodes, with the requirements that its
potential and non-equilibrium distribution match with those
in both electrodes. Due to the screening of field lines, the
charge neutrality is maintained in the central region if suffi-
ciently large parts of the leads are included [9, 11, 32].

This approach is extended to the TD transport in Hartree
approximation by the introduction of characteristic poten-
tials [4, 8, 17, 31].

At the HF level studied in this research, inclusion of
the internal potential U into the system of equations deter-
mining the current does not require use of characteristic
potentials and, since inclusion of the exchange through the
Fock term results in the reduced interaction of half of the
electrons [33, 34], the screening is expected to be slightly
weakened compared to the Hartree case. As a consequence,
the size of the central region, where charge neutrality is main-
tained, should be larger than in the RPA description. As far
as our model is concerned, the exchange contribution to the
internal potential is localized within the EM. With this in
mind, the proper boundary conditions thus should include:
matching of the TD Hartree potential, vanishing TD Fock
contribution, and imposing the EM charge-neutrality condi-
tion, Tr[G<i(t, t)] = 0.

It can be stated that the right-hand side of Eq. (70) is
a time derivative of the volume integral of the TD charge
density, which is, due to EM charge neutrality, zero. In other
words [4, 17, 31], field lines, stemming from the charge den-
sity, do not penetrate the surface which encloses the EM.
The charge neutrality of the central region, besides provid-
ing boundary conditions, means that the voltages of contacts
are well defined [35]. Therefore, Eq. (70) represents the
current conservation as well as the current partition on left
and right terms. The effects of the displacement current are
self-consistently included during the determination of the
time-dependent dot potential via implicit inclusion of the
Coulomb interaction (which is responsible for the displace-
ment current [4, 8, 17, 31] in the first place).

5 Wide-band limit and zero bias Generally, when-
ever the leads are connected to the electronic reservoir and
good featureless conductors, one may expect fast screening of
the external electric field by a large electronic density of states
at the leads’ surface, effectively creating a capacitor-like sys-
tem with the dot/molecule in the middle and approximately
constant density of states at the surface. In this case one
expects the wide-band-limit approximation to be adequate,
simplifying the derived expressions. Another interesting case
is that of voltage without any bias, corresponding to a time-
dependent-only driving voltage on the leads. We therefore
consider these cases separately and derive the appropriate
expressions for iα.
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5.1 Current in the WBL As discussed earlier (Sec-
tion. 4.2), the fourth contribution i(4) of the dynamical current,
Eq. (59), corresponds to the charge injection from the dot into
the changing density of states in the leads.

The WBL consists then in the assumption that there is no
such density change, so, in this case, the alternating current is
Eq. (59) without the fourth term, which leads to the result as
in Ref. [6], with a caveat that the here derived expression for
the current is more general due to the self-consistent inclusion
of dot interaction. To derive the expression for AC in WBL,
we start with the TH self energy, Eq. (14), which after FT
can be written in matrix form as

Σγ

α
(E) = V †

α
gγ

α
(E)V

α
, γ = R, A.

The k index labelling the wave vector, can be expressed
via the density of states, with explicitly separated real and
imaginary parts of the above equation,

Σγ

α
(E) =

∫ W

−W

dε Δ
α
(ε)V †

α
(ε)

[
Re gγ

α
(E, ε)

+ Im gγ

α
(E, ε)

]
V

α
(ε),

where W is the band half-width. After finding of separate
contributions to the SE from the real and imaginary parts of
the isolated electrode TH retarded GF, Eq. (9), and using the
standard principal value (PV) representation of the Fourier-
transformed GF

gR/A
α

(E, ε) = 1

E − ε ± iδ

= PV

(
1

E − ε

)
∓ iπδ(E − ε),

we obtain

ΣR/A

α
(E) = ∓iπV †

α
(E)Δ

α
(E)V †

α
(E)

+ PV
∫ W

−W

dε Δ
α
(ε)V †

α
(ε)

1

E − ε
V

α
(ε). (72)

The imaginary part is associated with the dot bandwidth,
Eq. (51), assumed within WBL to be energy independent
throughout the band, thus giving

ΣR/A
α

(E) =
( 1

2π
ln

∣∣∣∣W + E

W − E

∣∣∣∣ ∓ i

2

)
Γα. (73)

When it is furthermore assumed that the electrode band-
width is much larger than any other relevant energy scale,
such as amplitudes of time-dependent potentials and the dot
bandwidth Γ , the real part of SE goes to zero.

As mentioned in the introduction, the TIH SE acts as
a TD external perturbation. By its construction, Eq. (14),
the junction SE is expected to vanish in leads away from
the molecule. In general, the evolution of the EM is non-
unitary due to interaction and junction self energies. The

continuity equation for closed systems is preserved by the
current-conservation condition. In the case of the open sys-
tem, this condition affects only the interaction SE, while
the presence of junction SE breaks the continuity equation
as a consequence of boundaries where particles emerge or
disappear.

The WBL approximation significantly overestimates
the electrode density of states and consequently screening
effects, which leads to the neglect of the external perturb-
ing potential, i.e., changes of the TIH junction SE. Besides
the vanishing i(4)

α
, WBL reduces the changes of the density

of states within the EM (without self-consistent potential
inclusion, there would be no changes at all), and affects
the correlated electron injection from the dot to the leads
by removing the effects of external potentials on the elec-
tron correlation function G<. The expression for AC in the
WBL again consists of two contributions, due to the particle
current, associated with terms containing external potentials
only, and the displacement current containing the internal
potential only,

iα(ω) = e

π

∫
dE Tr{if αG

R
+(U − Vα)GR

−if α+GA
+(U−Vα)GA−

∑
γ=L,R

GR
+[fγ(U−Vα)GRΓβ

+ fγ+ΓγG
A
+(U − Vα)]GAΓα

− (fβ − fβ+)
Vβ − Vα

ω
GR

+ΓβG
AΓα}.

Once again, it can be observed that the inclusion of dis-
placement current through the self-consistent introduction of
the internal field preserves the gauge invariance. The Fermi
distributions come from Eq. (50). The first two terms under
the integral are due to charge-correlated charge injection
as well as injection with corresponding changing density
of states within the dot, i.e., the EM, while the remaining
terms correspond to correlated charge injections into the
leads without changing their density of states. To the best of
our knowledge, this expression has not been derived before.

5.2 Current in the zero-bias regime Another
important special case is that of the zero bias, when the
molecule is exposed to the AC only. In this case chemi-
cal potentials of the leads are equal and Fermi distributions
therefore unshifted, leading to the zero direct current and sim-
plifying the expression for the dynamical current, Eq. (64),
to obtain

iα = e

π

∫
dE Tr

[
(f ŨR

α
− f+ŨA

α
)GA(ΣA

α
− ΣR

α+)GR
+

+ f+ŨA
α
GA(ΣA

α
−ΣA

α+)GA
+−f ŨR

α
GR(ΣR

α
−ΣR

α+)GR
+

+ Vβ − Vα

ω
GR

+(ifΓβ − if+Γβ+)GA(ΣA
α

− ΣR
α+)

]
.

(74)
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To the best of our knowledge, this result has also not been
obtained yet.

5.3 Current in the zero-bias WBL Finally, we con-
sider the case of applied AC only in the WBL, which greatly
further simplifies the current expression, Eq. (64), to obtain

iα(ω) = e

π

∫
dE Tr{(f − f+)ΓαG

R
+

×
[
i(U − Vα) + Vα − Vβ

ω
Γβ

]
GA}. (75)

To compare the obtained expression with the zero-bias
result, Eq. (27) of Ref. [6], it is convenient to work in a gauge
corresponding to the experimental setup from the reference
(which is in our case possible due to the gauge invariance), by
setting Vα �→ Vα − Vβ and Vβ �→ 0, i.e., by shifting external
potentials of both electrodes by Vβ. In this gauge, and by
neglecting the TD potential in the dot, U, the two expressions
agree.

6 Conclusions In conclusion, we have derived a set
of equations describing non-equilibrium charge-conserving
gauge-invariant transport through a quantum dot/molecule,
including the time-dependent dot potential and with it the
associated displacement current, at the Hartree–Fock level,
and derived the expression for the frequency dependence of
the dynamical current. The gauge invariance of the theory
was explicitly shown and special cases of the wide-band
limit, zero bias, as well as the zero-bias wide-band limit
considered and corresponding expressions for the current
derived. The theory is particularly suitable for use with the
DFT, where the latter can provide the time-homogeneous
contribution of the Coulomb interaction to the dot potential,
thus providing a theoretical basis for the first-principle micro-
scopic description of the non-equilibrium quantum transport
in linear response and calculation of electronic current in
molecules, dots, junctions, or nano-scale devices beyond the
time homogeneity. Coupled with SIC DFT, the theory is free
of a self-interaction error and suitable for the time-dependent
transport description in the cases where the single-charge
effects, for example in the regime of weak coupling between
electrodes and the molecule, could be of interest. The cur-
rent conservation based on the DFT coupling with GFs relies
on the fact that the time-dependent internal potential was
approximated at the mean-field level. Therefore, within our
scheme, the possible systematic expansion of TIH interac-
tion SE, with the aim to include time non-local contributions,
would not provide current conservation. However, it does not
mean that the description based on time local potentials was
exhausted. It is our opinion that the mean-field approximation
introduced in Ref. [34] leaves room for further progress.

Appendix In this appendix we will derive the expres-
sion for the dynamical current. We start with its expression,

Eq. (59), and separately consider two contributions: the first
one describing the charge injection,

iinj
α

= e

2π

∫
dE Tr

(
i(1)
α

+ i(3)
α

)
(76)

and the second one related to charge emission,

iemi
α

= e

2π

∫
dE Tr

(
i(2)
α

+ i(4)
α

)
. (77)

Equation (76) is transformed using Eqs. (59), (60), (61),
and (63) to obtain

iinj
α

= e

2π

∫
dE Tr

[
Vα

ω
(GR

+ − GA)(Σ<

α
− Σ<

α+)

+ GR
+σRGRΣ<

α
− Σ<

α+GA
+σAGA

+ GR
+UGRΣ<

α
− Σ<

α+GA
+UGA

]
. (78)

Since the integration is over all energies, we can trans-
form the first-term contribution on the right-hand side:∫

dE Tr[(GR
+ − GA)(Σ<

α
− Σ<

α+)]

=
∫

dE Tr[(GR
+ − GR)Σ<

α
− Σ<

α+(GA
+ − GA)]. (79)

The expressions

Gγ

+ − Gγ, γ = A, R, (80)

can be transformed by recalling the definition of the KS GF,
out of which directly follows(

Gγ

+
)−1 − (

Gγ
)−1 = ω + Σγ − Σγ

+, (81)

which, after multiplying with G
γ
+ from the left and with Gγ

from the right, gives

Gγ − Gγ

+ = ωGγ

+Gγ + Gγ

+(Σγ − Σγ

+)Gγ. (82)

Finally, recalling Eq. (60), we obtain

Vα

ω
(Gγ

+ − Gγ) = −Gγ

+

(
Vα + σγ

α
+ Vα

Vβ

σ
γ

β

)
Gγ, (83)

where α 	= β. This result is inserted on the right-hand side of
Eq. (79) and the obtained expression is added to the rest of
Eq. (78) to obtain

iinj
α

= e

2π

∫
dE Tr

(
GR

+ŨR
α
GRΣ<

α
− Σ<

α+GA
+ŨA

α
GA

)
,

(84)
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where Ũ is the effective potential, Eq. (65). A similar proce-
dure applied to Eq. (77) gives

iemi
α

= e

2π

∫
dE Tr[(ΣA

α
− ΣR

α+)(GR
+UG< + G<

+UGA

+ GR
+σRG< + G<

+σAGA + G<

+σ<GA)

+ G<

+σA
α

− G<σR
α

]
. (85)

The contribution from the last line is transformed as was
done with Eq. (79),∫

dE Tr[G<

+(ΣA
α

− ΣA
α+) − G<(ΣR

α
− ΣR

α+)]

=
∫

dE Tr[(G<

+ − G<)(ΣA
α

− ΣR
α+)]. (86)

In order to find a suitable expression for lesser GFs, we
use the Keldysh equation (30). In the case of G<

+, Eq. (82),
where γ stands for advanced functions, will be useful. Taking
the product of both sides of this equation with Vα/ω and then
with GR

+Σ<
+ acting from the left, we obtain

Vα

ω
G<

+ = Vα

ω
GR

+Σ<

+GA − G<

+
(
Vα + σA

α
+ Vα

Vβ

σA
β

)
GA.

(87)

We follow the same route for G<, with those differences
that in Eq. (82), γ stands for retarded functions, and that we
take the both sides product with Σ<GA acting from the right.
This leads to

Vα

ω
G< = Vα

ω
GR

+Σ<GA + GR
+
(
Vα + σR

α
+ Vα

Vβ

σR
β

)
G<.

(88)

The insertion of Eqs. (87) and (88) into the right-hand
side of (86), and the obtained result into Eq. (85), leads to

iemi
α

= e

2π

∫
dE Tr{[ΣA

α
− ΣR

α+]

× [GR
+ŨR

α
G< + G<

+ŨA
α
GA

+ GR
+(Vβ − Vα)

Σ<
β

− Σ<
β+

ω
GA]}. (89)

Taking the sum of Eqs. (84) and (89), we arrive at
Eq. (64).
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