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IlpeJJ.MeT: MumJLe11,e pyKOBOJJ.nu:a npojeKTa o HJ6opy .ll.P MuxauJia qy6poBuha 
y JBa11,e uayquu capaJJ.HHK 

,D;p M11xa11JI0 qy6poBHn je 3aHHTepecoBaH 3a capa,nH.y ca Jla6oparnp11joM 3a rrpHMeey 
paqyHapa y Hayu11, y OKBHpy HaUHOHaJIHOf ueHTPa H3y3eTHHX Bpe.r.(HOCTH 3a 113yqaBa11,e 
KOMIIJieKCHHX CHCTeMa HHCTHTYTa 3a q>H3HKY y Eeorpa.ny, Kao M 3a aHra)l{MaH Ha 
rrpojeKTy OCHOBHHX HCTPa)l{HBaTha MHHHCTapcrna rrpocBeTe, HayKe M TeXHOJIOillKOf 
proBoja Perry6JIHKe Cp611je OHl 71017 , rro.ri. Ha3HBOM "Mo.ri.eJI11pa11,e 11 HyMepl{qKe 
CHMyJiau11je CJIO)l{eHHX BHrneqecTHqHHX q>H3HqKHX CHCTeMa". Ha IIOMeH)'TOM rrpojeKzy 
pa.n110 611 Ha TeMaMa Be3aHHM 3a rrpoyqaBaH,e jaKO KOpeJIHCaHHX KBaHTHHX CHCTeMa. C 
o63HpOM .ri.a HCIIyH.aBa CBe rrpe.ri.BJujeHe ycJIOBe y CKJla.z:lY ca ITpaBHJIHHKOM O IIOCTYIIKY, 
Haq11Hy Bpe.r.(HOBaH.a M KBaHTHTaTHBHOM HCKa3HBaH.y HayqHOHCTPa)l{HBaqKHX pe3yJITaTa 
HCTpa)l{HBaqa MITHTP , carrracaH caM ca rroKpern11,eM rroczyrrKa 3a H36op .ri.p MHxa11Jia 
qy6pOBHna y 3BaH,e HayqHI{ capa,nHHK. 

3a cacTaB KOMHCHje 3a H36op .ri.p M11xa11Jia qy6pOBHna y 3BaH.e HayqHI{ capa,nHHK 
rrpe.ri.11a)l{eM: 

(1) .ri.p AttzyH oaJia)K, ttayqH11 caBeTHHK, HttcTHTYT 3a q>H3HKY y Eeorpa.ny 
(2) .ri.p MHJIHUa M11JI0BaHOBHn, ttayqtt11 caBeTHHK, HttcTHTYT 3a q>H3HKY y Eeorpa.ny 
(3) .ri.p HBaHa BacHti, ttayqtt11 capa,nHHK, HHCTHTYT 3a q>H3HKY y Eeorpa.ny 
(4) .ri.p M11xajJio BatteBHn, .ri.oueHT <D11311qKor q>aKyJITern YHHBep3HTern y Eeorpa.ri.y 

PyKoBO.r.(HJiau rrpojeKTa OHl 71017 

~~ 
.ri.p AHTYH DaJia)K 
HayqHI{ caBeTHHK 
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Михаило  Чубровић  је  рођен  04.  05.  1985.  године  у  Београду.  Математичку  гимназију  је
завршио 2004. године, и уписао Физички факултет Универзитета у Београду, смер Теоријска
и експериментална физика. Дипломски рад под називом  “On topological defects in quantum
and classical glass systems” урадио је на Институту за физику у Београду, под руководством др
Милана  Петровића.  Дипломирао  је,  на  теоријском  смеру,  децембра  2008.  године,  са
просечном  оценом  9.85.  Од  2003.  године  до  завршетка  студија  је  био  стипендиста
Министарства за науку.

Докторске студије је започео фебруара 2009. године на Лоренцовом институту Универзитета
у Лајдену, Холандија (Lorentz Institute,  Leiden University), под вођством проф. Јана Занена
(Jan Zaanen) и др Кунрада Схалма  (Koenraad Schalm). Фебруара 2013. године одбранио је
докторску  тезу  под  насловом  “Holography,  Fermi  surfaces  and  Criticality”.  Дисертација  је
нострификована  јануара  2017.  године,  решењем  Министартства  за  просвету,  науку  и
технолошки развој бр. 612-01-02635/2016-06. У току докторских студија био је запослен као
млађи истраживач на Лоренцовом институту, и као асистент у настави на Универзитету у
Лајдену.

Постдокторско усавршавање је започео септембра 2013. године на Институту за теоријску
физику Универзитета у Келну, Немачка (Institute of Theoretical Physics, University of Cologne),
у групи проф. Ахима Роша (Achim Rosch). У току постдокторског усавршавања био је такође
запослен као асистент у настави.

У току докторских студија и након тога учествовао је на неколико школа и презентовао своје
резултате на више конференција и радионица.  Објавио је укупно 10 публикација, од тога 1
рад у часопису категорије М21а (класификован као “Highly cited paper” у бази података Web
of Science), 8 радова у часописима категорије М21, 1 рад у часопису категорије М23 и једно
поглавље у зборнику водећег међународног значаја М13. Његови радови су, по бази података
Web of Science, цитирани укупно 323 пута без аутоцитата. Његов Хиршов индекс износи 5. 



Преглед научних активности

Научно-истраживачки  рад  др  Михаила  Чубровића  је  фокусиран  на  везе  између  јако
корелисаних  електронских  система  и  физике  високих  енергија,  посебно  на  не-Фермијеве
течности и њихову везу са квантном критичношћу, а однедавно и на неравнотежне особине
јако корелисаних система. Друга, споредна област интересовања су нелинеарна динамика и
комплексни  системи.  Радови  кандидата  комбинују  аналитичке  (теоријске)  и  нумеричке
методе.

Фермионска квантна критичност и  AdS/CFT кореспонденција.  Основно питање радова
[A1,B4-B6] је: можемо ли разумети не-Фермијеве течности и чудне метале (strange metals) на
нивоу теорије средњег поља аналогне Ландауовој теорији Фермијевих течности, те постоји
ли  генеричко  (РГ  стабилно)  стање  интерагујућих  електрона,  које  не  нарушава  никакву
симетрију а  које се разликује од Фермијеве течности.  Идеја је да се проблем формулише
преко  AdS/CFT  кореспонденције  (холографског принципа),  дуалности између отворених и
затворених струна откривене крајем деведесетих година прошлог века.  Дуалност повезује
теорију поља (строго узев, гејџ теорију) са интеракцијама реда величине g са гравитацијом у
анти-де Ситеровом простору са гравитационом константом реда  1/g.  Тако јако корелисани
системи одговарају слабо интерагујућој, квазикласичној гравитацији. Први покушај  [A1]  је
показао да већ јако упрошћен модел, који одговара електронима ниске густине у интеракцији
са (неидентификованом) јако интерагујућом гејџ теоријом,  показује Фермијеве  површи са
стабилним  квазичестицама,  сличним  Фермијевој  течности.  Рад  [B6]  доноси  целовитију
теорију,  у  којој  се  показује  да  систем  има  две  фазе,  од  којих  једна  одговара  Фермијевој
течности, а друга не-Фермијевој течности са неким квантно-критичним особинама (аномално
скалирање  по  енергији,  не  и  по  импулсу).  Овде  је  изведен  нови  елемент  “холографског
речника”, тј.  нови елемент  AdS/CFT  дуалности: скок дистрибуције импулса на Фермијевој
површи  Z  одговара  одређеној  одржаној  струји  (билинеарном оператору)  у  AdS простору;
разрађен  је  и  општи  формализам  за  рачун  са  билинеарним  операторима  који  се  може
употребити  и  за  друге  параметре  уређења.  У  [B4,B5]  се  разматрају  пре  свега  формална
питања  значајна  за  разумевање саме  кореспонденције:  испоставља  се  да  је  нестабилност
критичне Фермијеве површи дуална суперрадијационој нестабилности наелектрисане црне
рупе,  док Фермијева течност одговара Лифшицовој  геометрији.  На основу тога,  у  [B4] je
конструисан цео фазни дијаграм система, и формулисан је метод који омогућава да се на
гравитационој страни кореспонденције оде и даље од квазикласичног третмана, тј. да се узму
у обзир и квантне корекције. Методолошки, ови радови комбинују аналитичка извођења на
основу “холографског речника”,  тј.  асимптотских решења Ајнштајнових једначина која се
могу добити аналитички, и самоусаглашено нумеричко решавање целог система једначина
(за метрику, гејџ поља и поља материје) у AdS простору.

У  радовима  [B2,B7]  такође  су  у  холографским  моделима  проучавани  јако  интерагујући
електрони, али сада у спољашњем магнетном пољу. У [B7] се, поред општих тестова важних
за разумевање самог метода и за додатну потврду да теорија показује присуство Фермијеве
површи (Ландауови нивои,  рачунање густине у зависности од магнетног поља,  итд),  даје
крајње  поједностављен модел квантног  Холовог  ефекта  и изводе фактори попуњености у
фази Фермијеве и не-Фермијеве течности. Показује се да у овом моделу не-Фермијева фаза
доводи до фракционе попуњености, док нормални метал даје целобројни ефекат. У  [B2]  је
дат  физички боље мотивисан модел екситона (парова електрон-шупљина)  у  билинеарном
формализму претходно развијеном у  [B6]. Показано је како долази до магнетне катализе и
кондензације екситона под дејством магнетног поља, и конструисан је фазни дијаграм који је
упоређен са резултатима из литературе за екситоне у двослојном графену.



Конфајнмент у ефективним гејџ теоријама и тешки фермиони. У раду [B1] разматра се
концепт фракционализације електрона који је, у радовима Сачдева, Војте и других, постао
важан  кандидат  за  разумевање  чудних  метала,  и  њему  сродан  проблем
конфајнмент/деконфајнмент  прелаза  у  ефективним гајџ  пољима каква  се  јављају у  опису
високо корелисаних система. Главна физичка мотивација су тешки фермиони.

Нелинеарни и  неравнотежни системи  [B3,B8,C1]. Овде  се  за  сад  не  може  говорити  о
кохерентном истраживачком програму, већ је размотрен низ ситнијих, независних питања. У
[B8] разматрају се ненинтеграбилни Хамилтонови системи, и изводи се кинетичка једначина
која описује еволуцију нестабилних орбита у фазном простору. У [C1] се сличан формализам
нелокалних  кинетичких  једначина  примењује  на  геометрију  појединих  полимера  у
конфинираној  геометрији,  предвиђа  се  звонасти  облик  криве  NMR одзива  и  пореди  са
експерименталним резултатима из литературе. 

Рад  [B3]  проучава  термализацију  једнодимензионог  ланца  неинтерагујућих  фермиона  у
контакту са термостатом путем Линдбладове једначине. У одсуству меморије у термостату,
термализација  је  нагла  и  понаша  се  као  фазни  прелаз  првог  реда.  Меморијски  ефекти
непертурбативно  мењају  слику,  и  доводе  до  веома  споре  термализације.  Велика  мана  је
потпуно занемаривање интеракција и право питање је шта ће се десити у њиховом присуству
– очекивање је да интеграбилност система има кључну улогу за дистинкцију између брзе и
споре  термализације.  У  току  је  рад  на  овом  проблему  у  TFD  (thermofield  dynamics)
формализму,  што ће убудуће бити један од главних праваца рада кандидата,  но на жалост
публикабилних резултата још нема.



Елементи за квалитативну анализу рада

1. Квалитет научних резултата

Научни  ниво  и  значај  резултата.  Кандидат  је  до  сада  објавио  10 радова,  од  тога  1  у
часопису М21а (међународни часопис изузетне вредности), 8 у часописима категорије М21
(врхунски међународни часопис) и 1 у часопису категорије М23 (међународни часопис). 

Утицајност.  Радови у  области  јако  корелисаних  Фермијевих  и  не-Фермијевих  течности
испитиваних методом  AdS/CFT били су међу првим радовима овог правца и иницирали су
даљи рад многих истраживача,  што се  види по одзиву на  рад  [A1]  објављен у  часопису
Science, који је, иако полази од крајње поједностављеног модела, имао срећу да буди први рад
у коме је показано постојање Фермијевих површи у AdS/CFT формализму па је цитиран 263
пута  без  аутоцитата  (“Highly  cited  paper” по  бази  података  Web  of  Science)  и  чија  је
методологија у основи холографских проучавања јако корелисаних електрона.

Награде. Кандидат је био стипендиста Министарства за науку Републике Србије у периоду
2003-2008. године. Добитник је годишње награде Одсека за физику Универзитета у Лајдену
за научни рад ”Trots op... ” 2009. године и годишње награде истог одсека за најбољу тезу 2013
године.

Цитираност.  Према бази  Web of Science,  радови кандидата су цитирани укупно 323 пута,
без самоцитата, уз Хиршов индекс 5.

Параметри квалитета часописа. Кандидат је објавио радове у следећим часописима:

– 3 рада у Journal of High Energy Physics (ИФ=6.023)
– 3 рада у Physical Review D (ИФ=4.506)
– 1 рад у Physical Review B (ИФ=3.718)
– 1 рад у Physical Review E (ИФ=2.252)
– 1 рад у Science (ИФ=34.661)
– 1 рад у European Physical Journal D (ИФ=1.208)

Укупан импакт фактор радова кандидата је 73.25.

Међународна сарадња. Кандидат је завршио докторске студије и докторирао на универзитету
у Лајдену,  са  којим и данас  има активну сарадњу.  Након тога,  био је  на  постдокторском
усавршавању  на  Универзитету  у  Келну.  Кандидат  је  сарађивао  и  са  Универзитетом  у
Франкфурту (Institute for Theoretical Physics, J.-W. Goethe-University), Институтом за напредне
студије у Франкфурту (Frankfurt Institute for Advanced Studies) и Универзитетом у Гетингену
(Institute for Theoretical Physics, Georg August University, Goettingen), што се види из радова са
коауторима.  Током лета 2007. године био је  у  тромесечној  посети Институту за напредне
студије у Франкфурту. Остварио је краће посете бројним универзизетима и институтима где
је на семинарима представио своје радове.

2. Ангажованост у формирању научних кадрова

Кандидат је  у  летњем семестру 2010.  и  2011.  године био асистен на  предмету  Theory of
Condensed Matter  на Универзитету у Лајдену. На Универзитету у Келну био је асистент на



предемтима  Advanced  Quantum Mechanics  (зима  2013),  Quantum Mechanics  (лето  2014)  и
Quantum Field Theory  (лето 2015). На универзитету у Лајдену кандидат је радио са мастер
студентима (Piet Schijven & Jelle Brill), који су се укључили у рад на публикацији [В7]. 

3. Нормирање броја коауторских радова

Сви радови кандидата укључују нумеричке симулације.  По Правилнику,  рад  [B7]  и рад у
зборнику  [D1]  рачунају се са коефицијентом 0.83, јер имају укупно шест коаутора. Остали
радови имају мање од пет аутора, и рачунају се са пуним бројем бодова.

4. Активност у научним у научно-стручним друштвима

Кандидат је рецензент часописа Journal of High Energy Physics (ИФ=6.023).

5. Конкретни научни допринос кандидата у реализицији 
резултата у научним центрима и земљи и иностранству

Кандидат има два рада у којима је једини аутор, [В1] и [В8]. Кандидат има четири рада у
којима је први аутор: [A1], [B5], [B6] и [C1]. У радовима [A1, B6, C1] кандидат је радио све
нумеричке прорачуне и већину аналитичких, а у [B5] је радио пре свега део који се односи на
модел  “black  hole  with  Dirac  hair”  и  спектралне  функције,  док  су  прорачуне  са  моделом
електронске звезде радили други коаутори. У раду  [B2]  кандидат је радио све аналитичке
прорачуне и део нумеричких, а у [В7] је радио део који се односи на рачунање скалирања и
фазног дијаграма, и надзирао студенте у нумеричком раду. У раду  [B4]  кандидат је радио
углавном аналитички део, а у раду [B3] део везан за Линдбладову једначину (без транспорта).

Радови [B8] и [C1] су урађени у току основних студија на Физичком факултету у Београду:
[B8]  у сарадњи са Институтом за физику у Београду, а  [C1]  у сарадњи са Институтом за
напредне студије у Франкфурту. Радови [A1], [B4-7] су настали у току докторских студија на
универзитету у Лајдену,  а  [B7]  је укљичивао и сарадњу са Универзитетом у Франкфурту.
Радови  [B1-B3]  су  настали  у  току  постдока  на  Универзитету  у  Келну,  а  у  сарадњи  са
Универзитетима у Лајдену и Франкфурту  [B3]  и у сарадњи са Универзитетом у Гетингену
[B2].



Елементи за квантитативну анализу рада

Кандидат  је  објавио укупно  10  публикација,  од  тога  1  рад  у  часопису  категорије  М21а
(класификован  као  “Highly  cited  paper”  у  бази  података  Web  of  Science),  8 радова  у
часописима категорије М21, 1 рад у часопису категорије М23 и једно поглавље у зборнику
водећег  међународног  значаја  М13.  Његови  радови  су,  по  бази  података  Web  of  Science,
цитирани укупно 323 пута без аутоцитата. Његов Хиршов индекс износи 5. 

Следе остварени резултати по категоријама.

Категорија М бодова по 
раду

Број радова Укупно М 
бодова

Нормирани 
број М бодова

М13 7 1 7 5.83

М21а 10 1 10 10

М21 8 8 64 62.67

M23 3 1 3 3

М33 1 2 2 2

М34 0.5 7 3.5 3.5

М71 6 1 6 6

Поређење са минималним квантитативним резултатима за избор у звање научни сарадник.

Минималан број М бодова Укупно Нормирани
резултат кандидата

Укупно 16 91

М10+М20+М31+М32+М33+М41+М42 10 81.5

М11+М12+М21+М22+М23 6 75.67



Списак радова

Радови у међународним часописима изузетних вредности (М21а)

[A1]
M. Čubrović, J. Zaanen, K. Schalm
String theory, quantum phase transitions and the emergent Fermi liquid, Science 325, 439, 2009.
[arXiv:0904.1993[hep-th]]
7 страна, 263 цитата без аутоцитата, ИФ за 2009. годину 29.747, ИФ за 2015. годину 34.661

Радови у врхунским међународним часописима (М21)

[B1]
M.  Čubrović
Confinement/deconfinement transition from symmetry breaking in gauge/gravity duality, JHEP 
2016, 102, 2016. [arXiv:1605.07849[hep-th]]
38 страна, ИФ за 2015. годину 6.023, ИФ за 2014. годину 6.220

[B2]
E. Gubankova, M.  Čubrović, J. Zaanen
Exciton-driven quantum phase transitions in holography, Phys. Rev. D 92 086004, 2015. 
[arXiv:1412.2373[hep-th]]
35 страна, 1 цитат без аутоцитата, ИФ за 2015. годину 4.506, ИФ за 2013. годину  4.864

[B3]
M. V. Medvedyeva, M. T. Čubrović, S. Kehrein
Dissipation-induced first-order decoherence phase transition in a noninteracting fermionic system, 
Phys. Rev. B 91 205416, 2015. [arXiv:1409.1625[cond-mat]]
11 страна, 3 цитата без аутоцитата, ИФ за 2015. годину 3.718, ИФ за 2014. годину 3.736

[B4]
M. V. Medvedyeva, E. Gubankova, M. Čubrović, K. Schalm, J. Zaanen
Quantum corrected phase diagram of holographic fermions, JHEP 2013, 25, 2013. 
[arXiv:1302.5149[hep-th]]
26 страна, 3 цитата без аутоцитата, ИФ за 2016. годину 6.023, ИФ за 2013. годину 5.618

[B5]
M. Čubrović, Y. Liu, K. Schalm, Y.-W. Sun, J. Zaanen
Spectral probes of the  holographic Fermi liquid ground state: Dialing between the electron star and 
the AdS Dirac hair, Phys. Rev. D 84 086002, 2013. [arXiv:1106.1798[hep-th]]
16 страна, 18 цитата без аутоцитата, ИФ за 2015. годину 4.506, ИФ за 2013. годину 4.864

[B6]
M. Čubrović, J. Zaanen, K. Schalm
Constructing the AdS dual of a Fermi liquid: black holes with Dirac hair, JHEP 2011, 17, 2011. 
[arXiv:1012.5681[hep-th]]
29 страна, 13 цитата без аутоцитата, ИФ за 2015. годину 6.023, ИФ за 2011. годину 5.831



[B7]
E. Gubankova, J. Brill, M. Čubrović, K. Schalm, P. Schijven, J. Zaanen
Holographic fermions in external magnetic fields, Phys. Rev. D 84 106003, 2011. 
[arXiv:1011.4051[hep-th]]
27 страна, 15 цитата без аутоцитата, ИФ за 2015. годину 4.506, ИФ за 2011. годину 4.558

[B8]
M. Čubrović
Fractional kinetic model for chaotic transport in nonintegrable Hamiltonian systems, Phys. Rev. E 
72, 025204(R), 2005.
4 стране, ИФ за 2015. годину 2.252, ИФ за 2005. годину 2.418

Радови у међународним часописима (М23)

[C1]
M. Čubrović, O. Obolensky, A. Solov’yov
Semistiff polymer model of unfolded proteins and its application to NMR residual dipolar 
couplings, Eur. J. Phys. D 51, 41, 2009.
9 страна, 4 цитата без аутоцитата, ИФ за 2015. годину 1.208, ИФ за 2009. годину 1.420

Рад у тематском зборнику водећег међународног значаја (М13)

[D1]
E. Gubankova, J. Brill, M. Čubrović, K. Scalm, P. Schijven, J. Zaanen
Holographic description of strongly correlated electrons in external magnetic fields
D. Kharzeev et al (eds.), Strongly interacting matter in magnetic fields, Lecture Notes in Physics 
871, Springer-Verlag Berlin Heidelberg, 2013. (ISBN 978-3-642-37304-6), p. 555.
35 страна

Саопштења са међународних скупова штампана у целини (М33)

[E1]
M. Čubrović
Regimes of stability and scaling relations for the removal time in the asteroid belt: a simple kinetic 
model and numerical tests
(Z. Knežević, A. Milani, eds.), IAUC197 2004, 209, 2004.
IAU Colloquium No. 197: „Dynamics of Populations of Planetary Systems”, Belgrade, Serbia, 
September 1-5. 2004
8 страна

[E2]
M. Čubrović
Fully analytic kinetic model of resonance dynamics in the Solar system, Publ. Astron. Obs. 
Belgrade 80, 173, 2006.
Proceedings of the XIV National conference of astronomers of Serbia and Montenegro
5 страна



Саопштења са међународних скупова штампана у изводима (М34)

[F1]
M. Čubrović
DPG spring meeting, Berlin, Germany, March 15-20 2015: Dissipation-induced first order 
decoherence phase transition in a non-interacting fermionic system

[F2]
M. Čubrović
DPG spring meeting, Dresden, Germany, March 30-April 4 2014: Heavy fermion quantum critical 
point from AdS/CFT correspondence

[F3]
M. Čubrović, J. Zaanen, K. Schalm
Physics@FOM 2013, Veldhoven, Netherlands, January 22-24. 2013: The strange metals and Fermi 
liquids of holography

[F4]
M. Čubrović, K. Schalm, J. Zaanen
Physics@FOM 2012, Veldhoven, Netherlands, January 17-19. 2012: Novel stable phases of matter 
from AdS/CFT correspondence

[F5]
M. Čubrović, K. Schalm, J. Zaanen
SFKM2011 – Symposium on Physics of Condensed Matter, Belgrade, Serbia, April 2011: 
Fermionic quantum criticality from AdS/CFT correspondence

[F6]
M. Čubrović, J. Zaanen, K. Schalm
Physics@FOM 2011, Veldhoven, Netherlands, January 18-20. 2011: Geometry encoding for 
statistics: from Fermi liquids to Cooper pairing

[F7]
M. Čubrović
Let's Face Chaos Through Nonlinear Dynamics, Maribor, Slovenia, June 26. – July 10. 2005: 
Universality and scaling in nonlinear Hamiltonian systems – escape times, Lyapunov exponents and
inverse chaotic scattering

Објављена докторска дисертација (M71)

Дана 27. фебруара 2013. године на Универзитету у Лајдену кандидат је одбранио докторску
дисертацију “Holography, Fermi surfaces and Criticality”  (Холографија, Фермијеве површи и
критично  понашање).  Комисију  за  преглед  и  оцену  тезе  су  чинили  проф.  Ј.  Занен
(супервизор), др. К. Схалм (косупервизор), проф. Х. Лу (Hong Liu), проф Е. Елиел (E. Eliel),
проф. Е. Верлинде (E. Verlinde), проф. Ц. В. Ј. Бенакер (C. W. J. Beenakker) и проф Ј. М. Ван
Рајтенбек (J. M. Van Ruitenbeek). Дисертација је објављена као:
Holography, Fermi surfaces and Criticality, Casimir PhD Series, Delft-Leiden, 2013 (ISBN 978-90-
8593-099-0).
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Mihailo Cubrovic liet onlangs zien dat de snaartheorie helemaal niet 
zo exotisch is als wordt gedacht. Je kunt er bijvoorbeeld eenvoudig 
mee verklaren hoe hoge temperatuur supergeleiding werkt. nou ja, 
eenvoudig.

Er zat twee jaar tussen naar Leiden willen en in Leiden aan een 

promotieonderzoek werken, twee maanden tussen de snaartheorie 

leren kennen en toepassen en twee weken tussen de acceptatie van 

een artikel en de publicatie ervan in Science. Mihailo Cubrovic is een 

man van records, zou je kunnen zeggen. Hij verklaart graag dat het 

toch allemaal minder spectaculair is verlopen als de opsomming het 

doet lijken. 

“Ik kwam naar Leiden na mijn halve leven in Belgrado om te werken 

aan supergeleidingsexperimenten”, vertelt Cubrovic. “Dat ik in no 

time tot over mijn oren in de snaartheorie zou zitten was voor mij 

ook een verrassing”, maar een aangename, mogen we van hem 

aannemen. 

“Ik wist dat de snaartheorie wat aan glans aan het verliezen was, 

maar toch besloten mijn begeleider Jan Zaanen en ik ermee te gaan 

rekenen. Met een vaag vermoeden, maar ook uit pure nieuwsgierig-

heid”, geeft de Servische onderzoeker toe. “Om met de snaartheorie 

te willen verklaren dat bij relatief hoge temperaturen ook supergelei-

ding mogelijk is, was een gok. Maar een gok die goed bleek.”

Big Bang
Om te begrijpen wat Cubrovic en zijn begeleiders Jan Zaanen en 

Koenraad Schalm precies hebben gedaan, is het van belang twee 

zaken in ogenschouw te nemen. Allereerst dat de snaartheorie zich 

grotendeels richt op een verklaring voor de oorsprong van de Big 

Bang. Namelijk het moment waarop grote hoeveelheden deeltjes 

samenkomen in een klein punt. 

“En dat is ook het geval in een situatie waarin je bijvoorbeeld 

kristallen met afkoeling stilzet tot op het punt dat ze overgaan in 

supergeleiding”, vertelt Cubrovic. Al was de Big Bang geen 

quantum condensaat, zoals dat heet, de situatie van supergeleiding 

en de Big Bang singulariteit zijn wel beide ‘quantumkritische’ 

toestanden te noemen.

Dan zijn we voor sommige stoffen nog niet op het absolute 

nulpunt. Uit experimenten blijkt dat elektronen in deze situatie, 

een microscopische schaal, zich op dezelfde manier gedragen als 

elektronen op macroscopische schaal. Tijdens de Bing Bang dus, en 

dat is het tweede punt dat op het werk van Cubrovic betrekking 

heeft.

Het maakte dat we dachten aan de snaartheorie voor een oplos-

sende beschrijving.

Althans een specifiek onderdeel van de snaartheorie, de zogenaam-

de de AdS/CFT correspondentie, of Anti-de Sitter/conformal field 

theory. Die beschrijft de kwantummechanische elektronenwereld 

MiHAiLO CUBROViC LeiDS inStitUUt vOOR OnDeRZOek in De natUURkUnDe

“ALS JE HET EENMAAL BEGRIJPT 
IS HET SIMPEL”
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als een wereld die veel meer lijkt op de onze: het is een klassieke 

wereld die in de greep is van zwaartekracht en lichtstralen, met een 

vreemde ‘anti de Sitter’ kromming (genoemd naar de Leidse fysicus 

de Sitter), terwijl het nodig blijkt dat zich in het middelpunt van 

deze wereld een elektrisch geladen zwart gat bevindt. Met die 

machinerie berekenden de Leidse onderzoekers dat de vibraties 

van zo’n zwart gat tot een collectieve ordening van elektronen 

leiden: precies het gedrag in de kwantumkritische toestand.

geen benul
De laatste jaren ligt de snaartheorie onder vuur omdat concrete 

voorspellingen voor experimenten uitblijven en de theorie 

daardoor ontstaat het gevoel dat de theorie dus wel niet van direct 

belang kan zijn voor het begrip van de wereld om ons heen. De 

kritiek op het werk van Cubrovic valt daarom ook wel te raden: 

ook nu blijft het vooral een wiskundige verklaring. Overeind blijft 

dat hetbehalve Cubrovic, Zaanen en Schalm tot nu toe niemand 

nog gelukt is hogetemperatuursupergeleiding theoretisch te 

verklaren. Het is dan ook de eerste keer dat een berekening op 

basis van de snaartheorie in Science staat, en zo snel is gepubli-

ceerd, ondanks de grote bekendheid die de theorie heeft.

De begeleider van Cubrovic, de Leidse hoogleraar theoretische 

natuurkunde Zaanen, verwoordt zijn enthousiasme als volgt: “Men 

dacht altijd dat als je die kwantum-kritische toestand begrijpt, je 

ook hogetemperatuursupergeleiding kunt begrijpen. Maar 

ondanks dat de experimenten boekdelen spraken, hadden we geen 

flauw benul hoe je dit fenomeen kon beschrijven.” 

volgens Cubrovic kan de snaartheorie zich in de toekomst vaker 

bewijzen. Hij zal er in zijn onderzoek op doorgaan, ook al is het 

onderwerp relatief nieuw en zal hij zich nog verder in de snaarthe-

orie moeten verdiepen. Dat betekent niet dat hij er dag en nacht 

mee bezig is, zegt hij desgevraagd. 

“Ik heb me de theorie eigen gemaakt, en dat was niet eenvoudig. 

Het ging met horten en stoten.” Een Eureka-moment kan hij zich 

niet meer herinneren. “Er was geen duidelijke doorbraak. We zijn 

bij de basis begonnen te rekenen en daarna steeds een stap verder 

gegaan.” Dat ze zo snel tot een passende theorie kwamen, was voor 

Cubrovic ook een verrassing. Alhoewel, aarzelend en terugkijkend 

op zijn ontdekkig van de kracht van de snaartheorie, zegt hij nu: 

“als je het eenmaal begrijpt is het simpel.”

Marco van Kerkhoven



DOI: 10.1126/science.1174962
, 439 (2009);325 Science

 et al.Mihailo Cubrovic
Liquid
String Theory, Quantum Phase Transitions, and the Emergent Fermi

 This copy is for your personal, non-commercial use only.

 clicking here.colleagues, clients, or customers by 
, you can order high-quality copies for yourIf you wish to distribute this article to others

 
 here.following the guidelines 

 can be obtained byPermission to republish or repurpose articles or portions of articles

 
 ): April 4, 2014 www.sciencemag.org (this information is current as of

The following resources related to this article are available online at

 http://www.sciencemag.org/content/325/5939/439.full.html
version of this article at: 

including high-resolution figures, can be found in the onlineUpdated information and services, 

http://www.sciencemag.org/content/suppl/2009/06/25/1174962.DC1.html 
can be found at: Supporting Online Material 

 http://www.sciencemag.org/content/325/5939/439.full.html#ref-list-1
, 1 of which can be accessed free:cites 22 articlesThis article 

38 article(s) on the ISI Web of Sciencecited by This article has been 

 http://www.sciencemag.org/content/325/5939/439.full.html#related-urls
3 articles hosted by HighWire Press; see:cited by This article has been 

 http://www.sciencemag.org/cgi/collection/physics
Physics

subject collections:This article appears in the following 

registered trademark of AAAS. 
 is aScience2009 by the American Association for the Advancement of Science; all rights reserved. The title 

CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 
(print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience 

 o
n 

A
pr

il 
4,

 2
01

4
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 
 o

n 
A

pr
il 

4,
 2

01
4

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

 o
n 

A
pr

il 
4,

 2
01

4
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 
 o

n 
A

pr
il 

4,
 2

01
4

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

 o
n 

A
pr

il 
4,

 2
01

4
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 
 o

n 
A

pr
il 

4,
 2

01
4

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

 o
n 

A
pr

il 
4,

 2
01

4
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/content/325/5939/439.full.html
http://www.sciencemag.org/content/325/5939/439.full.html
http://www.sciencemag.org/content/suppl/2009/06/25/1174962.DC1.html 
http://www.sciencemag.org/content/325/5939/439.full.html#ref-list-1
http://www.sciencemag.org/content/325/5939/439.full.html#ref-list-1
http://www.sciencemag.org/content/325/5939/439.full.html#related-urls
http://www.sciencemag.org/content/325/5939/439.full.html#related-urls
http://www.sciencemag.org/cgi/collection/physics
http://www.sciencemag.org/cgi/collection/physics
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/


of three inactivating mutations (13). Although
highly conserved in gene organization, as well as
primary amino acid sequence of the predicted
TDH open reading frame, the human TDH gene
carries AG-to-GG splice acceptor mutations in
exons 4 and 6, as well as a nonsense mutation
within exon 6 wherein arginine codon 214 is re-
placed by a translational stop codon.Whereas poly-
morphic variation within the human population
has been observed for the exon 4 splice acceptor
mutation, with some individuals carrying the
normalAG splice acceptor dinucleotide and others
carrying the GG variant, all individuals genotyped
to date carry both the splice acceptor and nonsense
mutations in exon 6. Reverse transcriptase–PCR
analysis of TDH transcripts expressed in human
fetal liver tissue showed complete skipping of
exon 4 and either complete skipping or aberrant
splicing of exon 6 (fig. S8). Given that exons 4
and 6 encode segments of the enzyme critical to its
function and that truncation via the nonsense
codon at amino acid 214 would also be predicted
to yield an inactive variant, it appears that the
human gene is incapable of producing an active
TDH enzyme. Remarkably, all metazoans whose
genomes have been sequenced to date, including
chimpanzees, appear to contain an intact TDH
gene (14). Unless humans evolved adaptive ca-
pabilities sufficient to overcome three mutational
lesions, it would appear they are TDH deficient.

Human ES cells grow at a far slower rate than
mouse ES cells, with a doubling time of 35 hours
(15). Whether the slower growth rate of human
ES cells reflects the absence of a functional TDH
enzyme can perhaps be tested by introducing,
into human ES cells, either a repaired human
TDH gene or the intact TDH gene of a closely
related mammal. That this strategy might work is
supported by the expression in human cells of a
functional form of the 2-amino-3-ketobutyrate-

CoA ligase enzyme that converts the short-lived
product of TDH-mediated catabolism of threo-
nine into acetyl-CoA and glycine (Fig. 1B). It is
possible that the culture conditions used to grow
human ES cells do not match the ICM environ-
ment of the human embryo, in which the cell
division cycle is more rapid than the 35-hour
doubling time of cultured human ES cells (16). If
human ES cells do not use the TDH enzyme to
acquire an advantageous metabolic state for rapid
growth, and if conditions can be adapted to facil-
itate the rapid proliferation of human ES cells in
culture, the tools and approaches that we describe
here may prove useful. As often happens in sci-
ence, findings made in one experimental system

can open avenues of investigation useful for
other matters of inquiry. Finally, it is important to
consider whether humans benefit from some
form of selective advantage as a consequence of
mutational inactivation of the TDH gene.
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String Theory, Quantum Phase
Transitions, and the Emergent
Fermi Liquid
Mihailo Čubrović, Jan Zaanen, Koenraad Schalm*

A central problem in quantum condensed matter physics is the critical theory governing the zero-
temperature quantum phase transition between strongly renormalized Fermi liquids as found in
heavy fermion intermetallics and possibly in high–critical temperature superconductors. We found
that the mathematics of string theory is capable of describing such fermionic quantum critical
states. Using the anti–de Sitter/conformal field theory correspondence to relate fermionic quantum
critical fields to a gravitational problem, we computed the spectral functions of fermions in the
field theory. By increasing the fermion density away from the relativistic quantum critical point, a
state emerges with all the features of the Fermi liquid.

Quantum many-particle physics lacks a
general mathematical theory to deal
with fermions at finite density. This is
known as the “fermion sign problem”:

There is no recourse to brute-force lattice mod-
els because the statistical path-integral methods
that work for any bosonic quantum field theory
do not work for finite-density Fermi systems.

100 30 10 3Cys (µM)
E

S
 +

 M
E

F
E

S
 +

 N
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3T
3

Fig. 6. Effects of cysteine deprivation on the growth of ES, MEF, and 3T3 cells. Cocultures of ES/MEF or ES/3T3
cells were subjected for 2 days to media containing varying amounts of supplemented cysteine. Cysteine
deprivation severely impeded MEF cell growth at 10 and 3 mM and 3T3 growth at 3 mM (see also fig. S5).
Although colony morphology was altered under the most severe conditions of cysteine deprivation, ES
cell colonies were observed under all culture conditions tested.
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The nonprobabilistic fermion problem is known
to be of exponential complexity (1), and in the
absence of a general mathematical framework,
all that remains is phenomenological guesswork
in the form of the Fermi-liquid theory describing
the state of electrons in normal metals and the
mean-field theories describing superconductivity
and other manifestations of spontaneous sym-
metry breaking. This problem has become par-
ticularly manifest in quantum condensed matter
physics with the discovery of electron systems
undergoing quantum phase transitions that are
reminiscent of the bosonic quantum critical sys-
tems (2) but are governed by fermion statistics.
Empiricallywell-documented examples are found
in the “heavy fermion” intermetallics, where the
zero-temperature transition occurs between dif-
ferent Fermi liquids with quasi-particle masses
that diverge at the quantum critical point [(3) and
references therein]. Such fermionic quantum
critical states are believed to have a direct bearing
on the problem of high–critical temperature
(high-Tc) superconductivity because of the ob-
servation of quantum critical features in the
normal state of optimally doped cuprate high-Tc
superconductors [(4); (5) and references therein].

A large part of the fermion sign problem is
to understand this strongly coupled fermionic
quantum critical state. The emergent scale invari-
ance and conformal symmetry at critical points is
a benefit in isolating deep questions of principle.
The fundamental problem is: How does the
system get rid of the scales of Fermi energy
and Fermi momentum that are intrinsically
rooted in the workings of Fermi-Dirac statistics
(6, 7)? From another perspective, how can one
construct a renormalization group with a rele-
vant “operator” that describes the emergence of
a statistics-controlled (heavy) Fermi liquid from
the critical state (3), or perhaps the emergence
of a high-Tc superconductor? Here, we show
that a mathematical method developed in string
theory has the capacity to answer at least some
of these questions.

String theory for condensed matter. Our
analysis makes use of the AdS/CFT correspon-
dence: a duality relation between classical gravi-
tational physics in a d + 1–dimensional “bulk”
space-timewith an anti–de Sitter (AdS) geometry
and a strongly coupled conformal (quantum
critical) field theory (CFT), with a large number
of degrees of freedom, that occupies a flat or
spherical d-dimensional “boundary” space-time.
Applications of AdS/CFT to quantum critical sys-
tems have already been studied in the context of
the quark-gluon plasma (8, 9), superconductor-
insulator transitions (10–14), and cold atom
systems at the Feshbach resonance (15–17), but
so far the focus has been on bosonic currents
[see (18, 19) and references therein]. Although

AdS/CFT is convenient, in principle the ground
state or any response of a bosonic statistical field
theory can also be computed directly by averag-
ing on a lattice. For fermions, statistical averaging
is not possible because of the sign problem.
There are, however, indications that AdS/CFT
should be able to capture finite-density Fermi
systems as well. Ensembles described through
AdS/CFT can exhibit a specific heat that scales
linearly with the temperature characteristic of Fermi
systems (20), zero sound (20–22), and a mini-
mum energy for fermionic excitations (23, 24).

To address the question of whether AdS/CFT
can describe finite-density Fermi systems and the
Fermi liquid in particular, we compute the single
charged fermion propagators and the associated
spectral functions that are measured experimen-
tally by angle-resolved photoemission spectrosco-
py (“AdS-to-ARPES”) and indirectly by scanning
tunneling microscopy. The spectral functions con-
tain the crucial information regarding the nature
of the fermion states. These are computed on the
AdS side by solving for the on-shell (classical)
Dirac equation in the curved AdS space-time
background with sources at the boundary. A tem-
perature T and finite U(1) chemical potential m0
for electric charge is imposed in the field theory
by studying the Dirac equation in the background
of anAdSReissner-Nordstrom black hole.We do
so with the expectation that the U(1) chemical
potential induces a finite density of the charged
fermions. The procedure to compute the retarded
CFT propagator from the dual AdS description is
then well established (8, 19). Relative to the
algorithm for computing bosonic responses, the
treatment of Dirac waves in AdS is more delicate
but straightforward; details are provided in (25).
The equations obtained this way are solved
numerically and the output is the retarded single
fermion propagator GR(w, k) at finite T. Its
imaginary part is the single fermion spectral
function A(w, k) = –(1/p) Im Tr[ig0GR(w, k)] that
can be directly compared with ARPES experi-
ments (26).

The reference point for this comparison is
the quantum critical point described by a zero
chemical potential (m0 = 0), zero temperature
(T = 0), and conformal and Lorentz invariant
field theory. (Below, we use relativistic notation
where c = 1.) Here the fermion propagators
〈YY〉 ≡ G(w, k) are completely fixed by sym-
metry to be of the form

GCFT
DY

ðw, kÞ ∼ 1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−w2 þ k2
p Þd−2DY

ð1Þ

where DY is the scaling dimension of the fer-
mion field. Through the AdSd+1/CFTd dictio-
nary, DY is related to the mass parameter in
the d + 1–dimensional AdS Dirac equation.
Unitarity bounds this mass from below in units
of the AdS radius mL = DY – d/2 > –1=2 (we set
L = 1 in the remainder). The choice of which
value to use for m will prove essential to show
the emergence of the Fermi liquid. The lower
end of the unitarity-bound m = –1=2 + d, d << 1,
corresponds to introducing a fermionic confor-
mal operator with weight DY = [(d – 1)/2] + d.
This equals the scaling dimension of a nearly
free fermion. Even though the underlying CFT
is strongly coupled, the absence of a large
anomalous dimension for a fermion with mass
m = –1=2 + d argues that such an operator fulfills
a spectator role and is only weakly coupled to
this CFT. We therefore use such values in our
calculations. Our expectation is that the Fermi
liquid, as a system with well-defined quasi-
particle excitations, can be described in terms
of weakly interacting long-range fields. As we
increase m from m = –1=2 + d, the interactions
increase and we can expect the quasi-particle
description to cease to be valid beyond m = 0.
For that value m = 0, and beyond m > 0, the
naïve scaling dimension DO of the fermion-
bilinear ODO

= YY is marginal or irrelevant,
and it is hard to see how the ultraviolet con-
formal theory can flow to a Fermi-liquid state,
assuming that all vacuum state changes are
caused by the condensation of bosonic oper-

Institute-Lorentz for Theoretical Physics, Leiden University,
P.O. Box 9506, Leiden, Netherlands.

*To whom correspondence should be addressed. E-mail:
kschalm@lorentz.leidenuniv.nl

Fig. 1. (A) The phase diagram near a quantum critical point. Gray lines depict lines of constant m0/T;
the spectral function of fermions is unchanged along each line if the momenta are appropriately
rescaled. As we increase m0/T we cross over from the quantum critical regime to the Fermi liquid. (B)
The trajectories in parameter space (m0/T, DY) studied here. We show the crossover from the quantum
critical regime to the Fermi liquid by varying m0/T while keeping DY fixed; we cross back to the critical
regime varying DY→d/2 for m0/T fixed. The boundary region is not an exact curve but only a qualitative
indication.
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ators. This intuition is borne out by our re-
sults: When m ≥ 0, the standard Fermi liquid
disappears. A similar approach to describing
fermionic quantum criticality (27) discusses
the special case m = 0 or DY = d/2 in detail; an
early attempt to describe the m = 0 system is
(28).

The emergent Fermi liquid. With an eye
toward experiment, we consider the AdS4 dual
to a relativistic CFT3 in d = 2 + 1 dimensions
(25). We do not know the detailed microscopic
CFT, nor do we know whether a dual AdS with
fermions as the sole U(1) charged field exists as
a fully quantum-consistent theory for all values
of m = DY – d/2, but the behavior of fermion
spectral functions at a strongly coupled quantum
critical point can be deduced nonetheless. Aside

from DY, the spectral function will depend on
the dimensionless ratio m0/T as well as the U(1)
charge g of the fermion; we set g = 1 from here
on, as we expect that only large changes away
from g = 1 will change our results qualitatively.
We therefore study the system as a function of
m0/T and DY. Our approach is sketched in Fig.
1B. We first study the spectral behavior as a
function of m0/T for fixed DY < 3=2; then we
study the spectral behavior as we vary the scal-
ing dimension DY from 1 to 3=2 for fixed m0/T
coding for an increasingly interacting fermion.
Note that our setup and numerical calculations
necessitate a finite value of m0/T; all our results
are at nonzero T.

Our analysis starts near the reference point
m0/T → 0, where the long-range behavior of

the system is controlled by the quantum critical
point (Fig. 1A). Here we expect to recover con-
formal invariance, as the system forgets about
any well-defined scales, and the spectral func-
tion should be controlled by the branchcut at
w = k in the Green’s function (Eq. 1): (i) Forw < k
it should vanish. (ii) At w = k we expect a sharp
peak, which for w >> k scales as w2DY−d . Figure
2A shows this expected behavior of spectral
function for three different values of the mo-
mentum for a fermionic operator with weight
DY = 5/4 computed from AdS4 following the
setup in (25).

Turning on m0/T while holdingDY = 5/4 fixed
shifts the center location of the two branchcuts to
an effective chemical potential w = meff; this bears
out our expectation that the U(1) chemical po-
tential induces a finite fermion density. Although
the peak at the location of the negative branchcut
w ~ meff – k stays broad, the peak at the other
branchcut w ~ meff + k sharpens distinctly as the
size of m0/T is increased (Fig. 2B). We identify
this peak with the quasi-particle of the Fermi
liquid and its appearance as the crossover be-
tween the quantum critical regime and the Fermi-
liquid regime. The spectral properties of the
Fermi liquid are very well known and display
a number of uniquely identifying characteris-
tics (29, 30). If this identification is correct, all
these characteristics must be present in our spec-
tra as well.

1) The quasi-particle peak should approach
a delta function at the Fermi momentum k =
kF. In Fig. 2B we see the peak narrow as we
increase k, then peak and broaden back out as
we pass k ~ kF (recall that T = 0 is outside our
numerical control and the peak always has some
broadening). In addition, the spectrum should
vanish identically at the Fermi energy A(w = EF,
k) = 0, independent of k (Fig. 2C).

2) The quasi-particle should have linear dis-
persion relation near the Fermi energy with a
renormalized Fermi velocity vF different from
the underlying relativistic speed c = 1. In Fig. 3
we plot the maximum of the peak wmax as a
function of k. At high k we recover the linear
dispersion relation w = |k| underlying the
Lorentz invariant branchcut in Eq. 1. Near the
Fermi energy and Fermi momentum, however,
this dispersion relation changes to a slope vF ≡
limw→EF,k→kF (w – EF)/(k – kF) clearly less than
unity.

Note that the Fermi energy EF is not lo-
cated at zero frequency. Recall, however, that
the AdS chemical potential m0 is the bare U(1)
chemical potential in the CFT. This is con-
firmed in Fig. 3 from the high-k behavior: Its
Dirac point is m0. On the other hand, the chem-
ical potential felt by the IR fermionic degrees of
freedom is renormalized to the value mF = m0 –
EF. As is standard, the effective energy w~ = w –
EF of the quasi-particle is measured with re-
spect to EF.

3) At low temperatures, Fermi-liquid theory
predicts the width of the quasi-particle peak to

Fig. 2. (A) The spectral function A(w,k) for m0/T = 0.01 and m = –1/4. The spectral function has the
asymptotic branchcut behavior of a conformal field of dimension DY = d/2 +m = 5/4: It vanishes for w <
k, save for a finite T tail, and for large w it scales asw2DY−d. (B) The emergence of the quasi-particle peak
as we change the chemical potential to m0/T = –30.9 for the same value DY = 5/4. The three displayed
momenta k/T are rescaled by a factor Teff/T for the most meaningful comparison with those in (A) (25). The
insets show the full scales of the peak heights and the dominance of the quasi-particle peak for k ~ kF.
(C) Vanishing of the spectral function at EF for DY = 1.05 and m0/T = –30.9. The deviation of the dip
location from EF is a finite temperature effect; it decreases with increasing m0/T.
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grow quadratically with temperature. Figure 4,
A and B, shows this distinctive behavior up to a
critical temperature, Tc/m0 ~ 0.16. This temper-

ature behavior directly follows from the fact that
the imaginary part of the self-energy S(w, k) =
w – k – [Tr ig0G(w, k)]–1 should have no linear

term when expanded around EF: Im S(w, k) ~
(w – EF)

2 + ... This is shown in Fig. 4, C and D.
These results give us confidence that we

have identified the characteristic quasi-particles
at the Fermi surface of the Fermi liquid emerg-
ing from the quantum critical point.

We now discuss how this Fermi liquid
evolves when we increase the bare m0 (Fig. 5).
Similar to the fermion chemical potential mF, the
fundamental control parameter of the Fermi
liquid, the fermion density rF, is not directly
related to the AdS m0. We can, however, infer it
from the Fermi momentum kF that is set by the
quasi-particle pole via Luttinger’s theorem rF ~
kF
d–1. The more illustrative figure is therefore

Fig. 5B, which shows the quasi-particle charac-
teristics as a function of kF/T. We find that the
quasi-particle velocities decrease slightly with
increasing kF, rapidly leveling off to a finite
constant less than the relativistic speed. Thus,
the quasi-particles become increasingly heavy as
their mass mF ≡ kF/vF approaches linear growth
with kF. The Fermi energy EF also shows linear
growth. Suppose the heavy Fermi–quasi-particle
system has the underlying canonical nonrel-
ativistic dispersion relation E = k 2/(2mF) =
kF
2/(2mF) + vF(k – kF) + ...; in that case, the
observed Fermi energy EF should equal the
renormalized Fermi energy EF

(ren) ≡ kF
2/(2mF).

Figure 5B shows that these energies EF and EF
(ren)

Fig. 3. Maxima in the spectral function as a function of k/m0 for DY = 1.35 and m0/T = –30.9.
Asymptotically for large k the negative-k branchcut recovers the Lorentz-invariant linear dispersion with
unit velocity, but with the zero shifted to –m0. The peak location of the positive-k branchcut that
changes into the quasi-particle peak changes noticeably. It gives the dispersion relation of the quasi-
particle near (EF, kF). The change of the slope from unity shows renormalization of the Fermi velocity.
This is highlighted in the inset. Note that the Fermi energy EF is not located at wAdS = 0. The AdS
calculation visualizes the renormalization of the bare chemical potential m0 = mAdS to the effective
chemical potential mF = m0 – EF felt by the low-frequency fermions.

Fig. 4. (A) Temper-
ature dependence of
the quasi-particle peak
forDY =5/4 and k/kF≈
0.5; all curves have
been shifted to a com-
mon peak center. (B)
The quasi-particle peak
width d ~ Re S(w, k =
kF) for DY = 5/4 as a
function of T 2; it reflects
the expected behavior
d ~ T 2 up to a critical
temperature Tc/m0, be-
yond which the notion
of a quasi-particle be-
comes untenable. (C and
D) The imaginary part of
the self-energy S(w, k)
near EF, kF forDY =1.4,
m0/T = –30.9. The defin-
ing Im S(w, k) ~ (w –
EF)

2 + … dependence
for Fermi-liquid quasi-
particles is faint in (C)
but obvious in (D). It
shows that the inter-
cept of ∂w Im S(w, k)
vanishes at EF, kF.
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track each other remarkably well. We therefore
infer that the true zero of energy of the Fermi
quasi-particle is set by the renormalized Fermi
energy as deduced from the Fermi velocity and
Fermi momentum.

Although the true quasi-particle behavior
disappears at T > Tc, Fig. 5A indicates that in
the limit kF/T → 0 the quasi-particle pole
strength vanishes, Zk → 0, while the Fermi ve-
locity vF remains finite; vF approaches the bare

velocity vF = 1. This is seemingly at odds with
the heavy Fermi liquid relation Zk ~ mmicro/mF =
mmicrovF/kF. The resolution is the restoration of
Lorentz invariance at zero density. From gen-
eral Fermi liquid considerations it follows that
vF = Zk (1 + ∂k Re S|EF,kF) and Zk = 1/(1 – ∂w Re
S|EF,kF), where ∂k,w Re S refers to the momen-
tum and energy derivatives of the real part of the
fermion self-energy S(w, k) at kF, EF. Lorentz
invariance imposes ∂wS′ = – ∂kS′, which allows

for vanishing Zkwith vF→ 1. Interestingly, the case
has been made that such a relativistic fermionic
behavior might be underlying the physics of cuprate
high-Tc superconductors (31).

Finally, we address the important question of
what happens when we vary the conformal di-
mension DY of the fermionic operator. Figure 6
shows that the Fermi momentum kF stays con-
stant as we increase DY. This completes our
identification of the new phase as the Fermi
liquid: It indicates that the AdS dual obeys
Luttinger’s theorem, if we can interpret the con-
formal dimension of the fermionic operator as a
proxy for the interaction strength. We find fur-
thermore that the quasi-particle pole strength
vanishes as we approach DY = 3=2. This confirms
our earlier assumption that it is essential to study
the system for DY < d/2 and that the point DY =
d/2, where the naïve fermion bilinear becomes
marginal, signals the onset of a new regime.
Because the fermion bilinear is marginal at that
point, this ought to be an interesting regime in
its own right, and we refer to (27) for a discus-
sion thereof (32). Highly remarkable is that the
pole strength vanishes in an exponential fashion
rather than the anticipated algebraic behavior
(6, 7). This could indicate that an essential singu-
larity governs the critical point at DY = d/2, and
we note that such a type of behavior was iden-
tified by Lawler et al. in their analysis of the
Pomeranchuk instability in d = 2 + 1 dimen-
sions using the Haldane patching bosonization
procedure (33). Note that this finite m0/T tran-
sition as we vary DY has no clear symmetry
change, similar to (7). However, this may be an
artifact of the fact that our theory is not quan-
tummechanically complete (25). Note also that
the quasi-particle velocity and the renormalized
Fermi energy EF = vF(k – kF) – E stay finite at the
DY = 3=2 transition with Z → 0, which could in-
dicate an emergent Lorentz invariance for the
reasons discussed above.

Concluding remarks. We have presented
evidence that the AdS dual description of
strongly coupled field theories can describe the
emergence of the Fermi liquid from a quantum
critical state, as a function of both density and
interaction strength, as encoded in the conformal
dimension of the fermionic operators. From the
AdS gravity perspective, it was unclear whether
this would happen. Sharp peaks in the CFT
spectral function correspond to so-called quasi-
normal modes of black holes (34), but Dirac
quasi-normal modes have received little study
[see, e.g., (35)]. It is remarkable that the AdS
calculation processes the Fermi-Dirac statistics
essential to the Fermi liquid correctly. This is
manifested by the emergent renormalized Fermi
energy and the validity of Luttinger’s theorem.
The AdS gravity computation, however, is com-
pletely classical without explicit quantum statis-
tics, although we do probe the system with a
fermion. It would therefore be interesting to
fully understand the AdS description of what is
happening, in particular how the emergent scales

Fig. 5. The quasi-particle
characteristics as a func-
tion of m0/T for DY = 5/4.
(A) The change of kF, vF,
mF, EF, and the pole
strength Z (the total weight
between half-maxima) as
we change m0/T. Beyond
a critical value (m0/T)c we
lose the characteristic T2

broadening of the peak
and there is no longer a
real quasi-particle, although
the peak is still present.
For the Fermi liquid, kF/T
rather than m0/T is the
defining parameter. (B)
We can invert this rela-
tion, and (B) shows the
quasi-particle characteris-
tics as a function of kF/T.
Note the linear relation-
ships of mF and EF to kF
and that the renormal-
ized Fermi energy E (ren) ≡
kF
2/(2mF) matches the em-
pirical value EF remark-
ably well.

Fig. 6. The quasi-particle
characteristics as a func-
tion of the Dirac fermion
mass –1/2 < m < 0 cor-
responding to 1 < DY <
3/2 for m0/T = –30.9. The
upper panel shows the
independence of kF of
the mass. This indicates
Luttinger’s theorem if the
anomalous dimensionDY
is taken as an indicator of
the interaction strength.
Note that vF and EF both
approach finite values as
DY → 3/2. The lower panel
shows the exponential
vanishing pole strength Z
(the integral between the
half-maxima) as m → 0.
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EF and kF feature in the geometry. An early
indication of such scales was seen in (24, 36) in a
variant of the story that geometry is not universal
in string theory: The geometry depends on the
probe used, and different probes experience
different geometric backgrounds. The absence
of these scales in the general relativistic descrip-
tion of the AdS black hole could thus be an
artifact of the Riemannian metric description of
space-time.

Regardless of these questions, AdS/CFT has
shown itself to be a powerful tool to describe
finite-density Fermi systems. The description of
the emergent Fermi liquid presented here argues
that AdS/CFT is uniquely suited as a computa-
tional device for field theory problems suffering
from fermion sign problems. AdS/CFT repre-
sents a rich mathematical environment and a new
approach to qualitatively and quantitatively in-
vestigate important questions in quantum many-
body theory at finite fermion density.
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Radio Imaging of the Very-High-Energy
g-Ray Emission Region in the
Central Engine of a Radio Galaxy
The VERITAS Collaboration, the VLBA 43 GHz M87 Monitoring Team,
the H.E.S.S. Collaboration, the MAGIC Collaboration*

The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets
found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies
exceeding 1012 electron volts and are bright sources of very-high-energy (VHE) g-ray emission, it is
not yet known where the VHE emission originates. Here we report on radio and VHE observations of
the radio galaxy Messier 87, revealing a period of extremely strong VHE g-ray flares accompanied
by a strong increase of the radio flux from its nucleus. These results imply that charged particles
are accelerated to very high energies in the immediate vicinity of the black hole.

Active galactic nuclei (AGN) are extra-
galactic objects thought to be powered
by massive black holes in their centers.

They can show strong emission from the core,
which is often dominated by broadband con-
tinuum radiation ranging from radio to x-rays
and by substantial flux variability on different
time scales. More than 20 AGN have been es-

tablished as very-high-energy (VHE) g-ray emit-
ters with measured energies above 0.1 TeV; the
jets of most of these sources are believed to be
aligned with the line of sight to within a few de-
grees. The size of the VHE g-ray emission region
can generally be constrained by the time scale of
the observed flux variability (1, 2), but its location
remains unknown.

We studied the inner structure of the jet of the
giant radio galaxy Messier 87 (M87), a known
VHE g-ray–emitting AGN (2–5) with a (6.0 T

0.5) × 109 solar mass black hole (6) (scaled by
distance), located 16.7 Mpc (54 million light
years) away in the Virgo cluster of galaxies. The
angle between its plasma jet and the line of
sight is estimated to lie between 15° and 25°
[see supporting online material (SOM) text].
The substructures of the jet, which are ex-
pected to scale with the Schwarzschild radius
Rs of the black hole (7), are resolved in the
x-ray, optical, and radio wave bands (8) (Fig. 1).
High-frequency radio very-long-baseline inter-
ferometry (VLBI) observations with resolu-
tion under a milli–arc second (milli–arc sec)
are starting to probe the collimation region of
the jet (9). With its proximity, bright and well-
resolved jet, and very massive black hole, M87
provides a unique laboratory in which to study
relativistic jet physics in connection with the
mechanisms of VHE g-ray emission in AGN.

VLBI observations of the M87 inner jet
show a well-resolved, edge-brightened structure
extending to within 0.5 milli–arc sec (0.04 pc or
70 Rs) of the core. Closer to the core, the jet has
a wide opening angle, suggesting that this is the
collimation region (9). Generally, the core can
be offset from the actual location of the black
hole by an unknown amount (10), in which case
it could mark the location of a shock structure or
the region where the jet becomes optically thin.
However, in the case of M87, a weak structure

*The full list of authors and affiliations is presented at the
end of this paper.
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Abstract: We study the confinement/deconfinement transition in a strongly coupled

system triggered by an independent symmetry-breaking quantum phase transition in

gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS

near-boundary behavior and soft wall interior at zero scalar condensate. We study the

cases of neutral and charged condensate separately. In the former case the condensation

breaks the discrete Z2 symmetry while a charged condensate breaks the continuous U(1)

symmetry. After the condensation of the order parameter, the non-zero vacuum expec-

tation value of the scalar couples to the dilaton, changing the soft wall geometry into a

non-confining and anisotropically scale-invariant infrared metric. In other words, the for-

mation of long-range order is immediately followed by the deconfinement transition and the

two critical points coincide. The confined phase has a scale — the confinement scale (en-

ergy gap) which vanishes in the deconfined case. Therefore, the breaking of the symmetry

of the scalar (Z2 or U(1)) in turn restores the scaling symmetry in the system and neither

phase has a higher overall symmetry than the other. When the scalar is charged the phase

transition is continuous which goes against the Ginzburg-Landau theory where such tran-

sitions generically only occur discontinuously. This phenomenon has some commonalities

with the scenario of deconfined criticality. The mechanism we have found has applications

mainly in effective field theories such as quantum magnetic systems. We briefly discuss

these applications and the relation to real-world systems.
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1 Introduction

The gauge/gravity duality, AdS/CFT correspondence or holography [1, 2] is by now a well-

established area, providing insights into fundamental issues of string theory and quantum

gravity but also into strongly-coupled physics in various areas such as quantum chromo-

dynamics (QCD) and condensed matter systems [4]. In such studies, the spacetime has
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anti de Sitter (AdS) geometry at large distances, near the boundary of the space, while

the interior is deformed away from AdS by various matter and gauge fields. This means

that the high-energy behavior (ultraviolet, UV) of the field theory, determined by the near-

boundary geometry, is conformally invariant but the interesting low-energy (infrared, IR)

physics is determined by the geometry of the interior which can look differently for various

configurations of fields and matter. The basic idea is that the radial coordinate on the

gravity side corresponds to the energy scale in field theory: as we travel from the boundary

toward the interior, we probe lower and lower energy scales.

One outstanding problem where AdS/CFT has provided some insights is the confine-

ment/deconfinement transition in strongly coupled gauge theories. In the confined phase,

only gauge-neutral bound states (mesons or baryons) can be observed. In the deconfined

phase, individual gauge-charged particles are also observable. The fact that the gauge-

charged excitations confine to form gauge-neutral bound states means that a gap opens,

as we only see the gauge-neutral bound states at finite energies; the number of the degrees

of freedom is effectively reduced at low energies. In AdS/CFT, this in turn means that

the scale of the spacetime in the dual gravity model shrinks to zero in the interior. Such

geometries are called soft-wall geometries, if the scale shrinks continuously, or hard-wall

geometries if the spacetime is sharply cut off at some finite radius. Soft-wall geometries

(which are more realistic than the hard-wall idealization) are obtained by coupling a neutral

scalar — dilaton — to the metric in a non-minimal way. They were first used in so-called

AdS/QCD studies in [3, 21, 32–34].

Typically, as the temperature rises, the system undergoes a confinement/deconfinement

phase transition: when the system deconfines, the free energy of individual gauge-charged

particles becomes finite, and they can be observed. This is the dominant mechanism in

quark-gluon plasmas in QCD. But confinement/deconfinement is also present in condensed

matter systems. Here the gauge field is not microscopic but emergent in the low-energy

description. In the confined phase the degrees of freedom are bound into gauge-neutral ex-

citations which are seen as normal electrons, i.e. quasiparticles. In the deconfined regime,

the excitations are gauge-charged and not observable by ordinary probes in experiment.

This might explain some non-Fermi liquid materials [10–15]. This topic was addressed

e.g in [29] as well as in a series of very general and systematic studies by Kiritsis and

coworkers [24–26]. In such systems, it is realistic to assume that deconfinement can also

happen as a quantum phase transition, at zero temperature, when some parameter is var-

ied. Deconfined gauge theories in AdS/CFT often have full conformal symmetry (dual

to AdS geometry) or at least some form of anisotropic scale covariance (with different

scaling exponents along different coordinates) which arguably can be expected to hold at

high energies for many realistic gauge theories [3] while a confined theory has an explicit

scale because the energy of gauge-neutral bound states or, equivalently, the position of

the wall zw along the radial direction sets a scale. The confinement/deconfinement tran-

sition can thus be treated also as a symmetry-breaking transition, where scale covariance

is lost. The scaling properties of dilaton spacetimes have recently become known as hy-

perscaling geometries [27, 30, 31] and have attracted attention also independently of the

confinement/deconfinement problems.

– 2 –
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Another class of problems where strongly-coupled models are provided by AdS/CFT

are the order/disorder quantum phase transitions where some field O acquires a vacuum

expectation value (VEV). A textbook example is the famous holographic superconduc-

tor [5–7] where a charged field condenses, breaking the U(1) symmetry, similarly to the

superconducting transition in metals. While many such systems are described by the

Landau-Ginzburg paradigm, this paradigm fails in some strongly-coupled systems. Many

variations of such models have been proposed [36–40] where a dilaton is also present, or

it is precisely the dilaton that condenses. The work [36] in particular addresses the setup

similar as in our study: a scalar which condenses in the presence of a separate dilaton

(however, explicit calculation with backreaction on dilaton and geometry was not done to

check if the confinement/deconfinement transition exists). This opens an alley to study

the interplay of the two transitions, the confinement/deconfinement transition and the

order/disorder transition.

Our idea is to explore the interplay of the two above phenomena: the confine-

ment/deconfinement transition and the condensation of an order parameter. They might

in principle be independent, or one might foster or hinder the other. Well-studied examples

of holographic superconductors [5] or superconductor-dilaton systems [37, 38] suggest that

order parameter condensation often makes the length scale in the interior decrease faster:

a charged black AdS-Reissner-Nordström black hole, which in deep interior has the AdS2

geometry of finite radius, upon condensation turns into a Lifshitz spacetime whose length

scale vanishes in the interior [4, 7]; in [29] this was interpreted as turning a fractionalized

non-Fermi liquid into a system closer to a Fermi liquid. On general grounds one also expects

that an ordered system can be expressed in terms of fewer degrees of freedom (in terms of

the fluctuations of the order parameter rather than all microscopic degrees of freedom).

We will however present an example where the opposite occurs, i.e. the formation of

a condensate destroys the soft-wall geometry and deconfinement takes place. Thus the

phase transition is not a straightforward symmetry-breaking transition: on one hand, the

condensate breaks a symmetry, on the other hand, another symmetry is restored as the

deconfinement happens. This happens because the confinement scale (the energy gap)

vanishes so scale invariance is restored. Our main interest is how this transition looks and

what is its nature. We find that the phase transition can be continuous, contrary to the

prediction of the Ginzburg-Landau theory where such transitions (where the two phases

have different symmetries neither of which is a subgroup of the other) can only occur

through phase coexistence or a first-order transition.

This has some common logic with the deconfined criticality concept of [10, 11]. Denote

the full symmetry group of the non-soft-wall geometry by G1 and its subgroup which

remains after confinement by G2. We do not know what exactly G1,2 are but generically G1

will contain some scale invariance which stems from the scaling behavior of the IR geometry,

while the confined system has a scale (the confinement gap) and thus G2 does not contain

any scaling symmetry. Denote further the symmetry group broken by the condensate

formation by H1 and its residual subgroup by H2 (in our case, we have (H1,H2) = (Z2, I)
for the neutral scalar and (H1,H2) = (U(1), I) for the charged scalar. Now in our paper

we have a transition from the confined-disordered phase (symmetry group G2⊗H1) to the
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deconfined-ordered phase with the symmetry G1 ⊗H2. We have G2 < G1 and H2 < H1 so

the critical point partly breaks, and partly restores symmetry. The same situation occurs in

deconfined criticality scenario but the detailed physics is different: at a deconfined critical

point (only at the critical point) there is an additional topological conserved quantity which

governs the transition. We will comment on this in the paper in more detail, however no

direct relation or equivalence can be established at this level. We cite the deconfined

criticality as an inspiration and possible direction of future work, not something that our

present results are directly relevant for.

Although the specific problem of how condensation of a scalar may influence the con-

finement/deconfinement transition was not studied so far to the best of our knowledge,

a lot of work was done on Einsten-Maxwell-dilaton systems in other contexts. After the

pioneering work in [3] which first drew attention to the AdS/QCD alley of research, con-

finement was studied in [32–34] and more systematically in [22, 23] with finite temperature

behavior further explored in [21]. These authors have studied a neutral Einstein-dilaton

system and have classified geometries which lead to confinement as well as the nature of the

phase transition (first-order or continuous). Charged systems have been studied in [24–27].

The non-condensed phases of our system (without the order parameter) are just a small

subset of the systems studied in [25] and we will frequently compare our case to their

general results throughout the paper. Charged EMD systems are particularly well studied

as top-down constructions regularly include charged fields. The charged case we consider

is also closely related to the dilatonic charged black holes considered in [18–20] as possible

candidates for gravity duals of Fermi liquids. The issue of a scalar condensation in the

presence of dilaton is also rather extensively studied, e.g. in [39, 40] but in these cases

the dilaton does not lead to a soft wall geometry so there is no confinement which can be

destroyed upon condensation. In [35, 37, 38] the dilaton itself is charged (i.e., a charged

scalar is coupled to the curvature) and the phenomenology was found to be similar to the

basic holographic superconductor [5].

In section 2 we give the gravity setup and explain our model. Section 3 sums up dif-

ferent solutions for the geometry, depending on the bulk mass (conformal dimensions) of

the scalar field and classifies the solutions into confined and deconfined ones. In section 4

we explain how the condensation of the order parameter proceeds and how it leads to

deconfinement, and finally construct the phase diagram of the system. In the fifth sec-

tion we study the response functions (conductivity, charge susceptibility and the retarded

propagator of the scalar field) and show how various phases and their symmetries can be

inspected from the response functions which are in principle measurable quantities. The

last section sums up the conclusions and discusses possible directions of further work. The

appendix contains a detailed description of the numerical calculations.

2 Gravity setup

We have the Einstein-(Maxwell)-scalar-dilaton system in asymptotically AdSD+1 space-

time, with or without the Maxwell sector: the metric gµν , the dilaton scalar Φ and the

(neutral or charged) scalar χ. If the system is charged, there is also the electric field Aµ
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where only the electric component A0 is nonzero (we do not consider magnetic systems).

The dilaton Φ couples to the curvature R in the string frame and is always neutral; thus

unlike the models where the dilaton (actually, a non-minimally coupled scalar) is itself

the charged field that condenses, we want the dilaton to perform its usual work, i.e. to

control the scale (and confinement). This will be crucial to study the influence of the order

parameter on the confining properties. We find it more convenient to work in the Einstein

frame where the dilaton does not couple non-minimally to the metric but to the matter

fields only. The scalar χ is minimally coupled to gravity and to the Maxwell field with

charge q (including the possibility q = 0). We now have the action:

S =

∫
dt

∫
dDx
√
−g(R− Λ + LΦ + Lψ + LEM ) (2.1)

LΦ = −ξ (∂Φ)2 − V (Φ) (2.2)

Lχ = −1

2
Z(Φ)(Dχ)2 −

m2
χ

2
χ2 = −1

2
Z(Φ)(∂χ)2 − q2

2f(z)2
Z(Φ)A2

0χ
2 − e−2A

2ξf
m2
χχ

2 (2.3)

LEM = −1

4
T (Φ)F 2 = −1

2
T (Φ)(∂A0)2. (2.4)

This is just the minimal symmetry-allowed action for these fields apart from the exponential

couplings of the dilaton. In string theory we would have ξ = 4/(D−1) but since our model

is purely phenomenological we can leave it as an arbitrary positive constant. We have

subtracted the constant piece, i.e. the cosmological constant Λ = −D(D − 1)/2 from the

dilaton potential, so the AdS solution corresponds to Φ = 0 (and χ = 0). The geometry

is AdSD+1 in the far field (UV, near-boundary) region while, with a suitable choice of

V (Φ), Z(Φ), T (Φ) it narrows into a soft wall in the interior (IR). The AdS radius is

rescaled to L = 1. The potential of the scalar is fixed to just the mass term, like in [5, 6],

as it suffices to achieve condensation (and is a consistent truncation of more elaborate,

top-down potentials). As explained in [5], the field χ, even when charged, can be made

real, i.e. its phase can be put to zero.

Now we come to the question of choosing the model, i.e. the dilaton potentials

V (Φ), Z(Φ), T (Φ). The basic picture of confinement in AdS/CFT means the dilaton po-

tential should produce a soft-wall geometry but we also want to study its interplay with

the establishment of (bosonic) long-range order and condensation. We want to engineer

the dilaton potentials so that the scalar is unstable to condensation into a hairy black hole

with χ(z) 6= 0 for some m2
χ in the soft wall background and that the soft wall dilaton is in

turn unstable to transition into a non-confining (non-soft-wall) solution upon the formation

of scalar hair. This means that, upon dialing m2
χ, we should have two possible solutions

for the scalar, χ(z) = 0 and χ(z) 6= 0, each with a different nonzero solution for the dilaton

Φ(z). The following potentials will serve us well:

V (Φ) = V0Φ
2ν−2
ν e2Φ (2.5)

Z(Φ) = Z0e
γΦ, D − 1 < γ < 2D (2.6)

T (Φ) = T0e
τΦ, τ > 2D − 4, τ2 >

(
γ +

D − 2

8

)2

+
1

D
. (2.7)
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The limitations for γ and τ follow from the requirement that the stress-energy tensor of

the EM field and also of the charged scalar field χ should stay finite and not dominate

over the components of the Einstein tensor. In top-down constructions from supergravity

the functions Z(Φ), V (Φ), T (Φ) are typically all purely exponential in Φ (or linear com-

binations of such exponentials), with fixed exponent values. In our bottom-up approach

these exponents are free parameters and by tuning these we can study the behavior we are

looking for. We have added a power-law prefactor to (2.5) for reasons of better analytical

tractability: the soft wall solution for the scale factor A(z) is simplified with this choice

for V (Φ) and at the leading order reads just A(z) = zν with subleading corrections for

z → ∞ whereas with a purely exponential V (Φ) it would have be more complicated also

at leading order. We conjecture that the phase diagram and overall behavior of the system

would be similar for V ∝ eκΦ. In a companion publication we derive our model from a

superpotential which demonstrates the stability of the system, giving legitimacy to (2.5).

The prefactors Z0, T0 merely rescale the amplitudes of χ,A0 and can be put to unity (they

have no physical meaning). Notice the case ν = 1 is special: then we get the linear dilaton

theory, the potentials V,Z, T become purely exponential and can be embedded in a super-

gravity action. Finally, the potentials (2.5)–(2.7) are the expressions in IR: near the AdS

boundary they are corrected to ensure the AdS asymptotics.

For analytical considerations it is convenient to parametrize the metric as:1

ds2 = e−2A(z)

(
−f(z)dt2 +

dz2

f(z)
+ dx2

)
, (2.8)

with the coordinates (t, z, x1, . . . xD−1), where xi are the transverse spatial coordinates, i.e.

the spatial coordinates in field theory and z is the radial distance in AdS space: the AdS

boundary (UV of the field theory) sits at z = 0 and the interior (IR in field theory) is at

z → ∞. At equilibrium, the fields are static, homogenous and isotropic, so they depend

only on z. The equations of motion read:

A′′ + (A′)2 =
1

D − 1

1

f2
T00 + Tzz =

1

2(D − 1)
Z(χ′)2 +

1

D − 1
ξ(Φ′)2 (2.9)

f ′′ − (D − 1)f ′A′ = 2

(
1

f
T00 + Tii

)
= 2e2AT (A′0)2 (2.10)

Φ′′ +

(
f ′

f
− (D − 1)A′

)
Φ′ − e−2A∂ΦV

ξf
− e2Af

2ξ
(χ′)2∂ΦZ −

e−3A

f
(A′0)2∂ΦT = 0 (2.11)

χ′′ +

(
f ′

f
− (D − 1)A′ + Φ′

∂ΦZ

Z

)
χ′ − 2e−2A

2f
m2
χχ+

q2

f2
ZA2

0χ = 0 (2.12)

A′′0 −
(

(D − 3)A′ − ∂ΦT
T

)
A′0 −

2Z

fT
e−3Aχ2A0 = 0. (2.13)

The prime denotes the radial derivative. As we have only two independent functions in the

metric, it suffices to take two combinations of the Einstein equations. Due to homogeneity

1In numerical calculations we find it convenient to use a different parametrization of the metric. Equa-

tions of motion and the description of the numerical algorithm can be found in appendix A.
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we have Tx1x1 = Tx2x2 = . . . = TxD−1xD−1 ≡ Tii and the off-diagonal components are zero.

The energy-momentum tensor Tµν = TµνΦ + Tµνχ + TµνEM reads

T 00
Φ = ξgzz(Φ′)2 − V, T zzΦ = T iiΦ = −ξgzz(Φ′)2 − V (2.14)

T 00
χ =

Zgzz(χ′)2

2
+
ZgzzA2

0χ
2

2
−m2

χχ
2, T zzχ = T iiχ = −Zg

zz(χ′)2

2
− ZgzzA2

0χ
2

2
−m2

χχ
2

(2.15)

T 00
EM = T zzEM = −T g00gzz(A′0)2, T iiEM = −2T g00gzz(A′0)2 (2.16)

In order to have AdS asymptotics, the metric functions must satisfy A(z → 0) = log z and

f(z → 0) = 1. The near-boundary expansion of the gauge field is of the form

A0(z → 0) = µ− ρzD−2 + . . . (2.17)

which determines the chemical potential µ and the charge density ρ. One can work either

in the canonical ensemble (fixing ρ) or in the grand canonical ensemble (fixing µ). For

our purposes it doesn’t matter much which variant we choose; in the concrete numerical

examples we always fix the chemical potential. The scalar has the near-boundary behavior:

χ = χ−z
∆−(1 + c−1z + c−2z

2 + . . .) + χ+z
∆+(1 + c+1z + c+2z

2 + . . .) (2.18)

where the leading and subleading branches χ∓ have the conformal dimension ∆± = D/2±√
D2/4 +m2

χ. In field theory, one of these is the source of the order parameter Oχ dual

to χ and the other is its the vacuum expectation value (VEV). We pick χ+ as the VEV,

so the formation of the condensate means χ+ 6= 0 for χ− = 0 — nonzero subleading

component (VEV) for zero leading (source) term. It usually turns out that the scalar

can condense for negative enough mass squared, i.e. for m2
χ < m2

BF for some bound mBF

(Breitenlohner-Friedmann bound [17]) that depends on the spacetime, i.e. on geometry;

in AdSD+1 of unit radius it is m2
BF = −D2/4. Similar asymptotics as in (2.18) hold

for the dilaton Φ when the near-boundary form of the potential starts from a quadratic

term: V (Φ(z → 0)) ∼ m2
ΦΦ2 + . . .. We tune m2

Φ above the bound for condensation

because we never consider the condensed state of the dilaton. This leaves Φ− as the

sole free parameter. Obviously, Φ− sources some field theory operator OΦ of dimension

D/2−
√
D2/4 +m2

Φ which does not condense and thus does not break a symmetry. Still, the

value of Φ− influences the bulk solution and consequently may influence the condensation

of χ or the confinement/deconfinement transition. In accordance with the main idea of the

paper, we mainly focus on the condensation of Oχ at fixed Φ and only briefly discuss the

meaning of OΦ.

In absence of the scalar χ and apart from the subleading correction in the dilaton

potential V , our system is one of the many cases of Einstein-dilaton and Einstein-Maxwell-

dilaton systems considered systematically in [25]. Our parameter values are similar to a

solution that the authors of [25] call “near-extremal case”. For each solution, we check

that the value of the parameters we use for γ, δ, ν are consistent with the Gubser criterion

for “good” curvature singularities in IR [16]. A good singularity means that, even though
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the curvature becomes infinite at z → ∞, it can be trapped by a horizon. A systematic

discussion of allowed parameter values (for purely exponential potentials) can be found

in the cited reference [25]. The exponent ν is also a free parameter with the limitation

ν ≥ 1. In numerical calculations, unless specified differently, we take ν = 2 and D = 4 for

calculations, though any D > 2 again leads to similar results. An account of numerical

calculations can be found in the appendix; the procedure is essentially iterative, repeatedly

computing the profile of the scalar χ(z) and then updating the metric and the dilaton in

the presence of χ(z).

3 Solutions in the infrared: soft-wall and AdS-like

3.1 Neutral solutions

3.1.1 No symmetry breaking

At zero temperature (which is central for studying the ground state) the space extends

to z → ∞. The authors of [23] have performed a classification of asymptotically AdS

Einstein-dilaton systems (without other fields), motivated by AdS/QCD studies. Their

results can be summed up as follows. The scale factor A(z) either has a singularity at

finite z, or at z = ∞. In the former case, the metric can be conformally equivalent to

AdS with A(z) ∼ α log z (type Ib geometry), which is never confining whereas the soft-wall

solutions with A(z) ∼ zν (type Ia geometry) are confining for ν ≥ 1. If the singularity is

to be found at finite z = zW , then the logarithmic approach A(z) ∼ log(zW − z) (type IIb

geometry) does not give confinement whereas a power-law A(z) ∼ 1/(zW − z)ν (type IIa

solution) does, for any ν.2 We have nothing to add here: our system is a special case of

the systems considered in [23], with slightly different V (Φ).

To solve our equations of motion (2.9)–(2.12), notice first that the equation (2.10) is

decoupled from all matter fields and yields the solution

f(z) = C0 + C1

∫
dze(D−1)A(z). (3.1)

A growing scale A(z) in the interior would lead to a bad singularity according to the

criterion of Gubser [16].3 Therefore, we need to suppose that A(z) is a monotonically

growing function of z, as also discussed in [23]. This in turn means that the non-constant

term in (3.1) is likewise growing, so C1 < 0 (in order to have a solution for the position

of the horizon, defined by f(zhor) = 0) and for correct AdS asymptotics C0 = 1. Now C1

is determined by the boundary condition in the interior: at zero temperature, the space is

2Let us quickly remind the reader where this comes from. The defining criterion for confinement is

that the Wilson loop operator follows the area law. The Wilson loop, defined as the potential energy of a

quark-antiquark pair separated by distance L, is holographically expressed as the action of a classical string

embedded in spacetime, with a rectangular loop at the AdS boundary with sides equal to L and the time

T . If the metric is of the form (2.8), one can plug it in into the expression for the string action and find

the action scales as e−2A(zs), where zs is a stationary point: A′(zs) = 0. From this the above conclusions

follow, bearing in mind that one may have zs →∞.
3To remind the reader, the paper [16] shows that a curvature singularity is physically meaningful if it

can be obtained as the limit of a geometry with horizon, so that the horizon hides the singularity.
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infinite so C1 = 0, f(z) = 1 as expected for a neutral system. At nonzero temperature T ,

the position of the horizon is determined by the condition f(zh) = 0.

We are left with one Einstein equation for A(z) and two Klein-Gordon-like equations

for the two scalars. It is easiest to start from an ansatz A(z) ∼ zν to get a soft wall

(type Ia) solution

A(z) = zν
(

1 +
a1

z
+
a2

z2
+ . . .

)
f(z) = 1− (D − 1)1/ν

ν

M
zν−1

e(D−1)zν , χ(z) = 0

Φ(z) =

√
D − 1

νξ

√
νz2ν + (ν − 1)zν

(
1 +

φ11

z
+
φ12

z2
+ . . .

)
+

+
ν − 1

ν
√
ξ

log
(
νz

ν
2 +

√
ν2zν + ν2 − ν

)(
1 +

φ21

z
+
φ22

z2
+ . . .

)
. (3.2)

These forms are exact as z → ∞ and the coefficients ai, φij can be found analytically

at arbitrary order in principle. We are not interested in the details of the small z (UV)

geometry, as long as enough free parameters remain that the solution can be continued

to the AdSD+1 boundary conditions. The red shift function includes the rescaled black

hole mass M, which is related to the position of the horizon as M = zν−1
h , the horizon

being determined through the transcendental equation f(4πD/T ) = 0 which we will not

explore here in detail. Importantly, the thermal solution smoothly crosses into the zero

temperature solution and all temperatures down to T = 0 are defined, which is not always

the case with Einstein-(Maxwell)-dilaton systems, see e.g. [25]. There is another solution,

however: starting from the ansatz A(z) ∼ α log z we get a type Ib solution

A(z) = α log z
(

1 +
a1

z
+
a2

z2
+ . . .

)
, α =

ξ

D − 1 + ξ

f(z) = 1− M
α(D − 1)

z(D−1)α, χ(z) = 0

Φ(z) = φ0 log z

(
1 +

φ1

z
+

φ2

z log z
+
φ3

z2
+

φ4

z2 log z
+ . . .

)
, φ0 =

D − 1

D − 1 + ξ
. (3.3)

Which of these is the ground state is to be determined by comparing the free energies, our

task in the next section (it turns out the confining solution Ia is the correct choice). These

solutions have a curvature singularity at z →∞: the Ricci scalar for (3.2) is

R = −D(D − 1)ν2e2zνz2ν−2 + . . . (3.4)

which diverges for z large but can be trapped by a thermal horizon for any finite zh so that

R is finite as zh → 0. This follows from the form of f(z) in (3.2) and makes the solution

physically meaningful.

3.1.2 Symmetry-breaking order parameter

Now consider the symmetry-broken solution with χ(z) 6= 0. If we require the physically

logical (and simplest) choice of purely exponential Z(Φ) as in (2.6), then the only way
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to satisfy (2.9) while keeping the scaling function A(z) ∼ zν is to “reduce” the dilaton,

i.e. make its growth slower than zν : otherwise, an additional source on the r.h.s. of equa-

tion (2.9) can only make A(z) grow even faster, never slower (remember the r.h.s. is the

kinetic energy of the scalar field which cannot be negative; adding a new nonzero field

cannot reduce the sum). Thus we seek for a scalar χ(z) which, when coupled to Φ(z), gives

it a logarithmic behavior Φ(z) ∼ φ0 log z. Such a solution indeed exists. We deliberately

postpone the discussion of the mechanism of the scalar instability to condensation, i.e. of

the scalar fluctuations in background (3.2) which lead to the new solution discussed in this

subsection. This mechanism (and the value of m2
χ at which it happens) will be discussed

in the next section, before constructing the phase diagram. For now we are content to

show that the solution exists. To the best of our knowledge, this kind of solution was not

analytically constructed in earlier work.

The solution is now of type IbC (Ib with condensate):

A(z) = α log z
(

1 +
a1

z
+
a2

z2
+ . . .

)
, α =

γ + 2

2γ − 2(D − 1)

f(z) = 1− M
α(D − 1)

z(D−1)α

Φ(z) = φ0 log z

(
1 +

b1
z

+
b2

z log z
+
b3
z2

+
b4

z2 log z
+ . . .

)
, φ0 =

D + 1

γ + 1−D

χ(z) = χ0z
− γφ0

2 , φ0 =
D + 1

2(γ + 2)
α =

D + 1

γ − (D − 1)

χ0 =

√
2(γ2 + 2γ + 2D2(γ + 2− 2ξ)− 4ξ −D((γ + 2)2 + 8ξ))

(D + 1)γ
. (3.5)

Interestingly, the value of ν does not appear in the solution at leading order (of course,

it does appear in the subleading corrections ai, bi). The solutions for φ0, χ0 show that we

need the condition γ > D− 1 to avoid the growing metric scale in the interior. The crucial

observation in the above discussion was that adding bosonic fields (for which T00/f
2 + Tzz

is always positive) cannot destroy the soft wall solution. We find there is no solution with

two scalars, Φ and χ, and with the couplings (2.5)–(2.6), which has a soft-wall metric

scale behavior A(z) ∼ zν . This can be seen more rigorously from the superpotential

approach. There is thus an interesting bifurcation-like behavior as the amplitude of the

order parameter field is varied: there are two competing solutions for 〈Oχ〉 = χ(z = 0) but

only one of them survives as 〈O〉 grows away from zero. Is this solution acceptable? The

curvature behaves as

R = −4α(3α+ 2)z2α−2 + . . . ∝ z
γ−2D
γ−D+1 , (3.6)

the exponent being positive precisely in the allowed interval of γ values, D − 1 < γ < 2D.

Thus we again have a singularity, and it is again a “good” singularity according to [16].

This is in line with the results of [25] for “near-extremal” solutions: acceptable solutions

are only those with a singularity; those without a curvature singularity are cosmological

solutions with an unacceptable singularity at small z.
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3.2 Charged solutions

3.2.1 No symmetry breaking

Instead of a neutral scalar we now take a charged scalar, i.e. the typical holographic su-

perconductor setting, coupled to a dilaton. The results should not depend crucially on the

spin of the charged field as long as it is integer; half-integers fields, i.e. fermions may well

behave differently as they have different pressure (spatial components of the stress tensor).

We will not analyze the fermionic case here.

For further convenience we adopt the terminology of [28, 29], used also in [27], to

roughly classify the charged solutions in terms of the charge distribution in the bulk and

how it influences the geometry. On one hand, we have (1) IR-neutral solutions where the

Maxwell contribution to Tµν is subleading so that the IR geometry is not influenced by A0(z)

in the first approximation, as opposed to (2) IR-charged solutions where A0(z) contributes

at leading order. The second criterion is whether the solution is fractionalized or coherent:

(a) fractionalized solutions are those where the charged fields do not contribute to Tµν and

thus to geometry in the IR at leading order whereas in (b) cohesive solutions they con-

tribute. In the fractionalized case the electric flux in the IR
∫
? [T (Φ)F ] is non-zero while it

is zero for cohesive solutions. The physical interpretation of the fractionalized/coherent dy-

chotomy is still unclear. The logical explanation would be that in the fractionalized case the

charge-carrying degrees of freedom are not those which are seen in the spectrum as they are

charged under the gauge group and are not seen by the gauge-neutral probe (”gauginos”),

as opposed to the gauge-neutral composite excitations of the coherent case (”mesinos”).

This interpretation suggests a close relation between the confinement/deconfinement and

coherence/fractionalization. The trouble is that many examples exist both of fractional-

ized but confined systems (the dilatonic black holes of [18–20]) and coherent but deconfined

systems (the electron star and the dilatonic electron star of [29]). While confinement is

about the behavior of the Wilson operator and the gauge field excitations, coherence is

about the emergence of stable composite gauge-neutral excitations. Examples where the

quarks emerge only after the gauge field compactifies are known in AdS/CFT [41] but the

understanding of the phenomenon is lacking. We plan to address this issue in more detail

in future work; here we will just state the fractionalization/coherence nature of our geome-

tries and comment briefly on the interpretation in the conclusions. For more information

on the general problems of fractionalization in this context see [19, 20, 27].

Let us now study the charged solutions. Notice first that a charged solution without

condensate can only exist in the presence of a charged horizon. Such a solution must be

fractionalized as none of the charge carriers have a dual VEV at the boundary. It reads

A(z) = zν
(

1 +
a1

z
+
a2

z2
+ . . .

)
f(z) = 1−M(T )e(D−1)zν +

2Q2

2ν − 3
e(τ+4−2D)zνz3−2ν

(
1 +

f1

z
+
f2

z2
+ . . .

)
Φ(z) = zν

(
1 +

φ1 log z

z
+
φ2

z
+ . . .

)
, χ(z) = 0

A0(z) = a0 −Qe−(τ−(D−3))zνz1−ν
(

1 +
a1

z
+
a2

z2
+ . . .

)
. (3.7)

Now the horizon carries the charge Q and at zero temperature M(T = 0) = 0, so
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the extremal horizon is degenerate and located at z = ∞. Again, we are not inter-

ested in the (complicated) analytical form of M(T ). The electric flux at the horizon is√
−gg00gzzT (Φ)A′0 = T (Φ)A′0 ∼ e−(D−3)zν × eτzνa1e

(D−3−τ)zν ∼ a1 which is a generically

nonzero constant for z → ∞, meaning that the solution is fractionalized. On the other

hand, it is confining, as it is of type Ia (we call it IaQ, as it has charge) and the metric

scale diminishes exponentially in the IR (we call it IaQ to emphasize it is charged). In

fact, this solution is quite similar to the top-down dilatonic black hole with two-exponent

potential discussed in [18–20]. Although fractionalized, it still confining so it fits into our

main story: deconfinement from independent symmetry breaking.

3.2.2 Symmetry-breaking order parameter

Postulating a nonzero profile for the scalar field and requiring that the scalar contributes

at leading order in the equation (2.9), we find the solution IbQC, the non-confining

charged solution:

A(z) = α log z
(

1 +
a1

z
+
a2

z2
+ . . .

)
f(z) = 1−M(T )

z(D−1)α+1

(D − 1)α+ 1
+

2Q2

zβ

(
1 +

f1

z
+
f2

z2
+ . . .

)
Φ(z) = φ0 log z

(
1 +

φ1 log z

z
+
φ2

z
+ . . .

)
χ(z) = χ0z

− γφ0
2

(
1 +

χ1

z
+
χ2

z2
+ . . .

)
A0(z) = a0 −Qz−

10+11γ+9τ
10+10γ+8τ

(
1 +

a1 log z

z
+
a2

z
+ . . .

)
, (3.8)

and the exponents read

α =
4 + 4γ + 3τ

5 + 5γ + 4τ
, β =

2τ + 3γ + 2

4τ + 5γ + 5
, φ0 =

1

4τ + 5γ + 5
. (3.9)

The charged horizon is still degenerate at zero temperature. Comparing the stress tensors

by plugging in the solution (3.8) into (2.14)–(2.16), we easily find that TEM � TΦ, Tχ for

z → ∞, so according to the criterion of [25] the solution is IR neutral. Being of type

Ib (we denote it IbQC, as it is charged and has the condensate), it is not confining, and

the IR flux is z
−2− 9γ+5τ+8

10+10γ+8τ which goes to zero for z → ∞ since γ and τ are positive

and all the coefficients in both numerator and denominator of the exponent are positive.

The solution IbQC is thus coherent and deconfined. On one hand, the fact that the non-

condensed solution IaQ is fractionalized while the condensed solution IbQC is coherent is

perfectly logical, since in the non-condensed case all the charge is on the horizon, whereas

in the presence of the condensate it carries all the charge. The fact that the fractionalized

solution is confined and the coherent one is deconfined may sound strange; e.g. in [27] the

intuition is expressed that confined solutions should be coherent. But as we have already

commented the zoo of field theories in gauge/gravity duality offers many counterexamples.

At least, one expects that the coherent nature of the systems shows up as poles, i.e. bound

states in the bottom half-plane of complex-frequency response functions of matter fields
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(the scalar χ), independently of the presence or absence of confinement. We will check this

in section 5.

Can we get a soft wall with charged condensate? We were unable to find such a

solution either analytically or numerically. The conclusion is again that the competition

of two scalars (dilaton and order parameter) destroys the confining solution. Of course,

by adjusting the potentials V,Z, T we could get many different phase diagrams but in

the present model there is a strict competition between the soft wall and the condensate.

Finally, the singularity properties of both charged solutions are analogous to the charge-

neutral case: the singularities exist but are physically allowed.

3.3 Resume of the geometries

We have found five solutions: Ia, Ib, IaQ, IbC, IbQC. Only two of them compete in the

same regime, Ia and Ib, and the preferred solution has to be found by computing the energy.

Geometries Ia, IaQ are confined whereas Ib, IbC, IbQC are deconfined. Among the charged

geometries, IaQ is fractionalized whereas IbQC is coherent, and both are IR neutral. In

figure 1 we plot the metric functions A(z), f(z) and the bulk profile of the dilaton and the

scalar field Φ(z), χ(z) at zero temperature, at zero chemical potential in the panel (A) and

at finite chemical potential in the panel (B). The most obvious feature of the solutions is

the sharp exponential fall-off of the scale factor e−2A for soft-wall geometries versus much

slower fall-off for deconfined solutions where the blue curve e−2Az2 is almost flat, i.e. the

solution behaves almost as AdS in the IR. This is logical, as the volume in the IR counts the

degrees of freedom of the low-energy excitations; at low enough energies, such excitations

are completely absent in the confined phase. In fact, as can be seen from the analytical

form of the solutions (3.5), (3.8), the factor e−2A in the deconfined phase behaves as a

power law just like in AdS, only with a different power. In [25, 27, 30, 31] such geometries

are classified in terms of hyperscaling exponents, where the time, space and energy (i.e.,

radial distance in AdS) are each scale-covariant but with different exponents. It turns out

these three exponents can be described by combinations of two parameters, the Lifshitz

exponent ζ and the hyperscaling violation exponent θ; if θ = 0 the geometry obeys the

hyperscaling whereas for θ 6= 0 it is hyperscaling-violating. For a Lorentz-invariant system

we have ζ = 1; values different from unity mean that the dispersion relation is nonlinear

and the Lorentz invariance broken. The neutral deconfined geometries (3.3) and (3.5) have

ζ = 1 but the hyperscaling exponent is nontrivial and reads θ = D(1 + α). The charged

version (3.8) has both exponents nontrivial (ζ > 0 6= 1 and θ 6= 0). Note that the ζ < 0

case is hard to interpret physically and thus we have checked that all of our geometries

have ζ > 0.

4 Phase diagram and thermodynamics

We will consider the ground state of our system as a function of the parameters and

external sources of the theory. Parameters of the theory are the exponents ν, τ, γ and

the conformal dimension (bulk mass) ∆χ. The ranges of the allowed values of ν, τ, γ are

chosen in such a way that the dependence on their values is smooth and unlikely to lead to
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(A) (B)

Figure 1. (A) The metric functions e−2A(z)z2, f(z) (blue, red) and the bulk fields Φ(z), χ(z)

(magenta, orange) in the confined regime (geometry Ia, full lines) and in the deconfined regime

(geometry IbC, dashed lines). The blue line corresponds to the ratio of the scale factor in our

system and the AdS scale factor 1/z2. The confining regime has a soft wall in the IR and its IR

scale falls practically to zero already at z ∼ 3. (B) Same as the previous figure but for the charged

field at the chemical potential µ = 1; now we plot also the gauge field A0(z) (green). The basic

phenomenology is the same as in (A): the soft wall broadens and the scale factor e−2A has no

characteristic scale zW at which it falls off rapidly. The plots are in D = 4 and the parameter

values are ν = 2, γ = 4 (both A and B), and τ = 5 for the charged case (B). For the neutral case

we pick m2
χ = 1/4 and m2

χ = −1/4 whereas for the charged case we have m2
χ = 8 and m2

χ = 4.

phase transitions; furthermore, these exponents characterize the running couplings in field

theory, which include also the information at different energy scales and probably cannot be

realistically tuned. Therefore, the dependence of the thermodynamic quantities on ν, τ, γ

will not be explored. The typical procedure in holographic superconductor literature would

be to tune ∆χ = D/2 +
√
D2/4 +m2

χ as a proxy for coupling strength in field theory, and

this is what we shall do. The requirement for condensation fully fixes the solution χ(z),

as we remind below, and we have no sources for Oχ. However, there is one free parameter

in the theory at fixed parameter values: the operator OΦ dual to the dilaton in the UV.

Therefore, the phase transitions are driven by dialing the scaling dimension ∆χ and the

expectation value of the operator OΦ dual to the dilaton. When not explicitly stated, we

will assume a fixed OΦ and study the phase transitions as a function of ∆χ.

4.1 The condensation of the boson at T = 0

We expect that at some ∆χ = ∆c the neutral bosonic operator Oχ acquires a nonzero

expectation value. As we know [5], the expectation value in field theory is given by the

subleading term in the UV expansion (2.18) at zero source term

〈Oχ〉 = χ+|χ−=0. (4.1)

One can also consider an alternative quantization where the VEV is given by χ−, provided

both terms are normalizable, but we will stick with the standard quantization. At this place

one should differentiate between the neutral and the charged case. In the neutral case, no

continuous symmetry is broken and the phase transition is more akin to nucleation, where
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the oscillating modes of the scalar add up to a significant perturbation which eventually

changes the metric. Whether the oscillations are strong enough or not to lead to a new

ground state in principle depends on the parameters of the system. The charged case

is expected to be simpler: here, the instability is supposed to be rooted in the Higgs

mechanism which breaks the U(1) symmetry, and one expects this to happen for any

charged scalar (independently of the m2
χ value). The charged scalar is thus expected to

always condense at T = 0, at least in absence of the dilaton. In the presence of the dilaton,

things can become more complicated, as we shall see.

4.1.1 The neutral case

The critical value of the conformal dimension4 ∆c can be related to the violation of the

Breitenlohner-Freedman (BF) stability bound in the interior. To remind, the idea is to

rewrite the Klein-Gordon equation for the scalar with energy ω as an effective Schrödinger

equation for the rescaled scalar χ̃(z) = χ(z)/B(z) with energy ω2:

χ̃′′ − Veff(z)χ̃ = −ω
2

f2
χ̃(z) (4.2)

and the effective potential

Veff =
e−2A

f
m2
χ −

B′

B

(
f ′

f
+
∂ΦZ

Z
Φ′ − (D − 1)A′

)
− B′′

B
, (4.3)

where the rescaling factor is

B(z) =
e−

D−1
2
A − ∂ΦZ

2Z Φ
√
f

. (4.4)

If the energy of χ becomes imaginary, i.e. the Schrödinger energy ω2 becomes negative,

it means there is an exponentially growing mode which likely signifies an instability, and

the scaling dimension becomes complex [17]. In the Schrödinger formalism, it means that

χ̃ forms a bound state. We are not allowed to violate the bound in the UV, to prevent

violating the AdS asymptotics assumed in the gauge/gravity duality, but an instability in

the interior is perfectly allowed and signifies the change of IR physics, i.e. of the field theory

ground state. In AdS-RN background, the instability of the neutral scalar is given simply

by the BF bound of the near-horizon AdS2, which equals −1/4 [5, 8]. We do not have a

near-horizon AdS region and there is no simple formula for the critical mass (dimension)

m2
c (∆c) but the logic is the same: we are looking for complex energies, i.e. bound states

in the Schrödinger formalism.

In geometry Ia the effective potential reads

Veff = m2
χe
−2zν − (D − γ − 1)ν(ν − 1)

2
zν−2 +

(D − γ − 1)2ν2

4
z2ν−2 (4.5)

which is positive and growing to infinity at large z. For any bound states to exist, we need

to have a sufficiently deep and broad potential well below zero energy, i.e. the potential

4We will use the conformal dimension ∆χ and the bulk mass squared m2
χ interchangeably as they are

uniquely related to each other through ∆χ = D/2 +
√
D2/4 +m2

χ.
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needs to grow to infinity also on the “left-hand side”, for small z, and fall sufficiently low

in-between. Now we remember that for z → 0 the potential certainly goes to positive

infinity because m2
χ > −D2/4 (i.e., we do not want bound states in the far UV region,

sitting at z → 0). Now the question is what the potential looks like for some intermediate

z1 which is still large enough that the IR solution (geometry Ia) is valid. Assuming that

z1 ∼ 1, this depends on the combination m2
χ− (D−γ− 1)ν(ν− 1)/2 + (D−γ− 1)2ν2/4 —

the second and third term are both positive, and the question is whether there is a value

of m2
χ > −D2/4 which is nevertheless sufficiently negative to make Veff negative. This is

obviously a question of numerical calculation but we can see that for γ = D − 1 + ε for

ε small the second and the third term in (4.5) have practically zero coefficients and not

too large |m2
χ| suffices to push Veff below zero in some interval. We conclude that we can

expect a BF-type instability at some critical m2
c . We have seen this means the geometry Ia

is modified, presumably into IbC, and at finite m2
c , analogously to the neutral holographic

superconductor in AdS-RN [5, 8].

Having shown that there is indeed a mechanism for the condensation of the order

parameter in the soft-wall regime, we should also check if the geometry IbC is stable in the

presence of the condensate. In geometry IbC the effective potential is:

Veff = V∞ +
m2
χ

z2α
+
κ(κ+ 1)

z2
(4.6)

where κ = (D−1)α+γφ0

2 and V∞ is a z-independent constant. The inverse square term is

always positive and the power of the mass term varies between −∞ for γ → D − 1 and

−2 for γ = 2D (we see this from the expressions for α, φ0 in (3.5)). Thus the 1/z2 term

dominates at large z for the allowed values of γ (from (2.6)) and approaches zero from

above as z → ∞; this means the potential approaches the constant V∞ from above. This

in turn means there is no room for bound states — the potential in the UV is positive and

decaying and never falls below zero.5 Therefore, the geometry IbC is stable in the presence

of the scalar. Numerical plot of the potential in figure 2 confirms the above discussion. In

the panel (A) there is a potential well with bound states for all masses below some m2
c ∼ 6

which is thus the critical value for the condensation. In panel (B) the well turns out too

shallow to allow the formation of bound states: the geometry is stable. All curves are for

m2
χ ≥ −D2/4 as for this value there is a potential well near z = 0 and the outer AdS region

becomes unstable.

In the numerical calculation, we shoot for the solution of a two-point boundary value

problem which satisfies the boundary condition (2.18) for χ at the AdS boundary and the

expected asymptotics for χ(z) from (3.5) in the interior. We do this as a part of the complete

calculation (with backreaction on geometry, see the appendix). In this way we can find

the dependence of the VEV 〈Oχ〉 on the conformal dimension ∆χ. In figure 3(A), the blue

curve jumps at the transition, signifying that the transition is of first order. This is different

from the infinite-order BKT-type (stretched-exponential) scaling laws found in [5, 8] for

5This picture changes for γ > 2D — then the mass term dominates for z → ∞ and for negative mass

squared it forms a potential well. But in our model one always has γ < 2D so we do not explore this case

in detail.

– 16 –



J
H
E
P
1
0
(
2
0
1
6
)
1
0
2

(A) (B)

Figure 2. The effective Schrödinger potential Veff(z) defined by (4.3) for a range bulk masses

(conformal dimensions) m2
χ = 6, 2, 0,−2,−4 (blue, magenta, red, pink, orange) and D = 4, ν =

2, γ = 4. The instability corresponds to bound states, i.e. existence of a sufficiently deep and

broad potential well. In (A), we can fit a bound state for all masses shown, for the last one just a

single bound state, thus m2
c ∼ 6 corresponds to the BF bound. For such masses, the geometry will

remorph and we will enter the condensed phase. This phase is stable, as in (B) the potential well

is too shallow to accommodate a bound state. Notice that for m2
χ = −4 the potential develops a

well in the outer region, i.e. this is the BF bound for AdS5.

a neutral scalar in AdS-RN background because the BKT scaling originates in so-called

Efimov states in the IR which depend on the details of the potential for the scalar [8]

and would require a fine tuning of the dilaton potentials too. First-order transition is not

unknown even for a charged scalar if it is non-minimally coupled to the metric [37, 38].

We also expect the condensate to vanish at higher temperatures, a case which we find

too difficult for analytical work so we limit ourselves to numerics. The result is shown in

figure 3: there is again a jump at the critical temperature.

4.1.2 The charged case

The charged problem can usually be understood as the textbook Abelian-Higgs instabil-

ity where the gauge field develops an effective mass term |χ|2A0 and the mass of the

scalar is effectively negative as it acquires a correction −g00A2
0, leading to instability and

condensation. Without dilaton, in AdS-Reissner-Nordstrom background, this correction

to the scalar mass grows fast enough near the horizon to produce an instability even at

positive m2
χ [9]. For our system the equation for the charged scalar in IR geometry IaQ

(eq. (3.7)) reads

χ′′ − ν(τ + 3− γ −D)zν−1χ′ − e(τ−2D+2)zν

ξ

(
m2
χ − ξa2

1q
2z2ν−2e(γ−τ)zν

)
χ = 0 (4.7)

Now the negative correction to the effective mass of the scalar may grow or diminish as

z → ∞, depending essentially on the sign of γ − τ . If γ > τ the correction dominates

the bare mass term and we always have a mode growing at z → ∞ but if γ < τ it is

subleading and does not influence the behavior of χ(z → ∞) at leading order. Looking
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(A) (B)

Figure 3. (A) Expectation value of the scalar 〈Oχ〉 as a function of temperature for m2
χ = −2, for

the neutral scalar (blue) and the charged scalar with q = 1 (red), in D = 4 and for ν = 2, γ = 4; for

the charged scalar τ = 5. The neutral scalar has a first-order quantum phase transition and its value

jumps from zero, whereas in the charged case the quantum phase transition shows a continuous

BKT-like exponential form exp
(
− (Tc − T )

−1/2
)

. The unit of temperature is Tc — the critical

temperature for the charged case. In (B) we zoom-in near the critical temperature for the neutral

case to make it obvious that there is a jump.

at our conditions (2.5)–(2.6), we see this is always the case. Naively, one may guess that

the critical value is m2
c = 0 but since our analysis ignores all subleading terms one should

check numerically (numerics confirms that this is indeed the critical value, see the phase

diagram in figure 7). Amusingly, the scaling with temperature and conformal dimension is

now consistent with the BKT-like form:

〈Oχ〉 = const.× e
− 1√

−m2
χ . (4.8)

Although the numerical fit to the e−1/(−m2
χ)n law with n = 1/2 is good, we cannot exclude

the possibility that the exponent n weakly depends on ν and that it is not exactly 1/2; we

have no analytical estimate for n. The condensate formation is now, strictly speaking, not

a consequence of the coupling with the gauge field at all (remember the term q2g00A2
0 is

now exponentially suppressed) but merely the consequence of growing modes for negative

scalar mass. Thus the mechanism is essentially the same as for the neutral scalar and

the fact that the neutral scalar undergoes a discontinuous transition reminds us that the

details of this process depend sensitively on the IR geometry. The temperature scaling is

of the same form as the scaling with m2
χ (4.8) and is shown as red points in figure 3.

4.2 Free energies and phases at zero temperature

Now that we have explained the instability that seeds the condensation, we will compute

the free energy (on-shell action) of the system as a function of ∆χ and T , to study the

order of the transition and the full phase diagram. We thus need to evaluate (2.1) on-shell

for solutions Ia and IbC: F =
∫
dDxL|Ia,IbC + Fbnd. The boundary terms are given by

Fbnd =

∮
bnd

√
gind(−2K − λ− 1

2
A0A

′
0 − χ2 − 2ΦΦ′), (4.9)
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Here, gind is the induced metric at the boundary, K is the trace of the extrinsic curvature,

λ is the boundary cosmological constant, and the remaining terms come from the gauge

field, the scalar and the dilaton. The counterterm for the scalar is in accordance with

our choice that χ+ is the VEV; had we chosen χ− for the VEV the counterterm would

be −2χ′χ, analogous to the situation for the dilaton. The comparison of free energies is

best done numerically but even analytically we can draw some conclusions. Let us first

consider the quantum phase transitions as a function of ∆χ at fixed Φ− and discuss the

free energies at zero temperature.6 Our analytical solutions are only valid in the large z

region, whereas for smaller z they cross over into the AdSD+1 forms, so the radial integral

in (4.9) goes from some z1 ∼ 1. The difference between the energy of the solution Ia (we

will show numerically it is indeed preferred to Ib) and IbC is

FIa −FIbC ∼ χ2
+z

2∆χ +

∫ ∞
z1

dz
[
(D2 −D)z−(D−1)α + χ2

0m
2
χz
−γφ0 + . . .

]
. (4.10)

The difference in free energies at leading order has terms proportional to the squared

amplitude of the order parameter (in the UV — χ−, i.e. 〈Oχ〉 and in the IR — χ0) but also

a χ-independent term (coming from the Ricci scalar and cosmological constant terms in

geometry IbC) so we expect that the transition, determined by FIa−FIbC = 0 generically

happens at nonzero amplitudes 〈Oχ〉, χ0 and we can exclude a continuous transition. This

is again in line with the discreteness of the symmetry broken and the discontinuous nature

of the transition. On the other hand, for the charged geometries IaQ and IbQC there is

also the boundary contribution A0(z → 0)A′0(z → 0) so

FIaQ −FIbQC =
µ(ρIaQ − ρIbQC)

2
+ χ2

+z
2∆χ −

∫ ∞
z1

dzz−(D−1)αχ2
0(4 + 7γ)2 + . . . (4.11)

Now there is no χ-independent term and the dominant terms in the energy difference are

proportional to the squared amplitude of the condensate, or to the difference in charge

densities ρIaQ−ρIbQC which, according to the Gauss-Ostrogradsky theorem, also has to be

proportional to the bulk density of the charged field, q2χ(z)2. Therefore, one can expect

that the energy difference grows from zero at 〈Oχ〉 = 0, as in a continuous phase transition.

We have assumed that the chemical potential is kept constant across the transition (grand

canonical ensemble). Now we will check our conclusions numerically.

First of all let us show that the confined solution is indeed the ground state in absence

of the condensate. In figure 4(A) we plot the on-shell action of the solutions Ia (3.2) and

Ib (3.3) and we see that Ia indeed always has lower energy — the system is confining.

Now consider the free energies as functions of m2
χ and the temperature. In figure 4(B) we

compare the free energies as functions of the conformal dimension for the neutral system

and confirm the discontinuous nature of the transition: the curves have different derivatives

at the transition point. Here we also scan for different values of the source Φ−, which

change the value of the transition point ∆χ but, importantly, do not introduce new phases.

This is easily understood from the discussion in section IV.A.1 and also from eq. (4.10).

Dialing Φ− influences the matching between the solutions in the UV and the solutions in

IR without introducing new IR solutions, so we are still left with the choice between Ia

6At T = 0 the free energy is just the total energy E of the system, since F = E − TS. For simplicity of

notation, we will still call it F just like the finite temperature case.
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Figure 4. (A) Free energy at zero temperature as a function of the scaling exponent ν in the absence

of condensate, for geometry Ia (confining, blue)and Ib (nonconfining, magenta). Obviously the soft-

wall geometry always has lower free energy, thus it is always preferred: in absence of condensate

we have a confining soft wall. The units on the vertical axis are arbitrary. (B) Free energy at zero

temperature as a function of the bulk mass m2
χ for geometry Ia (confining, no condensate, blue)

and for geometry IbC (nonconfining, with condensate, red). Both solutions exist before and after

the critical point, where their energies F (m2
χ) intersect at finite angle, thus the phase transition

is of first order. The solid, dashed and dotted lines are from three different values of the source

Φ− = 0.1, 0.2, 0.5 — the source shifts the location of the transition but does not change the behavior

qualitatively. The free energy is in computational units and the parameters are ν = 3/2, γ = D = 4.

and IbC. Concerniing the scalar condensation, different values of Φ− reshape the effective

potential, influencing the point z1 where the geometry crosses over to the IR asymptotics

and thus the width of the potential well, so it starts supporting bound states for different

values of m2
χ. Finally, the free energy difference depends on the IR quantities φ0, χ0 which

are determined by the matching to the UV solution. Their values influence the location of

the transition point but not the nature of the transition.

For the charged case the free energy is given in figure 5. The transition is now con-

tinuous and the zoom-in near the origin clarifies that the critical point lies at m2
χ = 0.

Interestingly, the three values of the OΦ source now all give the same critical point, at zero

mass squared. The curves for different values of OΦ only differ in the deconfined phase,

with nonzero 〈Oχ〉, and coincide as long as no condensate forms. At first, this may sound

strange. However, a look at the effective potential (4.7) shows that the negative term is

now exponentially growing at large z and thus the potential well is always in the deep IR

region, rather than in the middle as in the neutral case (figure 2). It is thus understandable

that it is not affected by the matching to the UV solution with given Φ−.

We have already established that our confinement/deconfinement transition may be

of continuous or discontinuous nature. Both cases are in principle known even in field

theory, and all the more so among the many condensed matter systems where some kind

of fractionalization picture is appropriate.

4.3 Finite temperature thermodynamics

At finite temperature, the free energy is still the value of the on-shell action but the radial

integration now terminates at finite zh. In the leading term of the action in geometry Ia,
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Figure 5. Same as in figure 4(B) but for the charged order parameter with q = 1 (A), with

a zoom-in near m2
c = 0 (B). The new solution with condensate branches off smoothly and with

continuous first derivative, thus the phase transition is continuous. It is consistent with BKT-like

scaling e−1/
√

∆2
c−∆2

. The three values of source (solid, dashed, dotted lines, same as in the previous

figure) leave the critical point m2
c = 0 invariant and only influence the deconfined, condensed phase.

The free energy is in arbitrary units and τ = 6.

which stems from the dilaton potential:

FIa ∼ −V0

∫ zh

z1

dz
e−(D−3)zν

z2
+ . . . (4.12)

we need to perform the radial integration from the crossover-to-AdS-scale z1 to the horizon

zh and expand the result about zh. Therefore, we integrate from “deep IR” at zh to “the

UV of the IR”, i.e. the location where the geometry crosses over to the asymptotic AdSD+1.

Clearly, the integral is dominated by the exponential term and our free energy scales as

F(T → 0) ∝ 1

z2
h

Γ2−1/ν((D − 3)zνh) ∼ const.× e−
D−2
Tν T 3−ν (4.13)

where the power-law correction T 3−ν is in fact unimportant (we don’t consider D < 3 so

the exponent −(D − 2)/T ν is always negative) and the free energy has an extremely slow

growth at low T . Clearly, the entropy S = ∂F/∂T is zero at zero temperature, and is

extremely low at low T (much smaller than for any system with the scaling F ∼ T x for any

power x). Thus the effective number of the degrees of freedom is much reduced because of

the confinement. The same scaling is obtained for the charged case.7 At high temperatures

(compared to the confinement gap) we can expand the action in 1/T and get

F(1/T → 0) ∝ Γ(1− 1/ν)

z2
h

∼ const.× T 2, (4.14)

the quadratic behavior of the free energy and the linear behavior of entropy characteristic

of Fermi liquids.8 This result was found for a dilatonic black hole in [18] and our system

7One may wonder whether this slow growth of entropy can actually be observed. It is possible that

any amount of disorder in the system would make the entropy significantly larger. At least theoretically,

however, an exponentially slow growth is not unusual in dilatonic setups, see e.g. [21].
8For high temperature we get T ∼ 4πD/zh but this is not en exact relation and is not even close at low

T (unlike the textbook Schwarzschild or RN black hole without the dilaton).
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Figure 6. Temperature dependence of the free energy F(T ) for the charged system in the confined

phase (m2
χ = 4), for µ = 1, ν = 2, γ = 4, τ = 6. The dashed and the dotted black lines are the

analytical estimates (4.13), (4.14) for the confined phase. In (A) we cover a broad range of temper-

atures, showing both the low-temperature regime with the scaling (4.13) and the high-temperature

regime (4.14). In (B), we zoom in at low temperatures, showing the very slow growth of free energy

and entropy. The analytical estimates for the low-temperature scalings are determined only up to

the UV contribution, which was assumed approximately constant and was fit to the numerics.

behaves similarly at high temperatures (in fact, our confined charged system only differs

from it by the choice of the dilaton potential, which likely influences the low-temperature

behavior but not the high-T asymptotics). Even though we have no fermions in the system,

the quadratic scaling is perhaps not so surprising: one may expect it in any confined system,

where only the gauge-neutral bound states are observable. Notice, however, that at high

temperatures we expect a dimensional scaling to take place

In the deconfined phase, the exponential scaling is gone and we have a simple scaling

law for both low and high temperatures:

F(T ) ∝ z−(D−1)α
h ∼ const.× T x. (4.15)

For high temperatures the exponent is x = (D − 1)α; for low T the relation T (zh) is

complicated but behaves as a power-law, so F still scales as a power law of the temperature.

This anomalous power law for all temperatures is precisely in line with the hyperscaling-

violating nature of the system: the metric has power-law scaling and has no sharp scale

where low-T regime cross over to high-T regime. These findings are illustrated in figure 6,

where we plot the numerical calculation of F(T ) together with analytical scaling laws for

the confined system. We have chosen a large and positive scalar mass m2
χ = 4 to avoid the

phase transition to the condensed deconfined system, since the purpose of the figure is to

study the different scaling regimes in the same phase, not the phase transition (which is

discontinuous in T for the neutral system and of infinite order in T in the charged system,

same as the scaling with m2
χ). Notice that the analytical estimates (4.13)–(4.15) are only

the IR contribution, and the true free energy is obtained by adding the UV contribution,

which is fit as a constant in figure 6 (assuming that the T -dependence in the UV is weak,

though in reality it is certainly not strictly constant).
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4.4 Structure of the phase diagram

We are now in position to construct the whole phase diagram. The phases are the same

both for the neutral and for the charged case, except that the critical line is of different

nature (first-order and smooth, respectively). The phase diagram is sketched in figure 7.

For small enough conformal dimension ∆χ and temperature T , the scalar condenses and the

system deconfines, restoring the scale invariance at low energies. As the temperature rises,

the long-range order of the scalar is lost and we are back to the confined regime. This shows

our main point — the confinement/deconfinement transition is triggered by the long-range

order of O. What does this mean symmetry-wise? On one hand, the condensation of O

certainly breaks a symmetry — Z2 (neutral) or U(1) (charged). But on the other hand the

deconfinement restores a symmetry: as we have explained, the deconfined geometries are

anisotropically scale-covariant (hyperscaling), of the form ds2 = z−2κ(−f0z
−ηdt2 + dx2 +

f−1
0 zηdz2). In absence of charge (f0 = 1, η = 0), all coordinates in field theory can be

rescaled as xµ 7→ λxµ though the energy (dual to z) scales differently (this is sometimes

called generalized conformal symmetry, [25]). With nontrivial f the scaling exponent is

different along different axes but there is still some invariance to dilatatons (rescaling of

coordinates). At the same time, in the soft-wall case with ds2 ∝ e−2zν there is no scale

invariance at all. Overall, neither phase is more symmetric than the other: denoting the

symmetry group of the scaling system in field theory by G1, we expect it to be broken in

the confined phase down to some subgroup G2 < G1, while the symmetry of the scalar

(Z2 or U(1)) is fully broken in the deconfined phase. Since we have a bottom-up model

we don’t have the explicit form of the field theory Lagrangian and so we cannot fully

determine G1,2. Both certainly include the spacetime translations and rotations and G1,

as discussed, contains also dilatations. In special cases, e.g. when the field theory is N = 4

super-Yang-Mills, it will be the full conformal group and the deconfinement will be the

restoration of the full conformal symmetry. In any case, the symmetry at the critical point

changes like

G2 ⊗ Z2 7→ G1 ⊗ I, G2 ⊗U(1) 7→ G1 ⊗ I. (4.16)

The neutral case where the phase transition is discontinuous could be related to the Landau-

Ginzburg theory which generically predicts that in such situations, when no overall sym-

metry reduction occurs, the two phases can be separated by a first-order transition or by

a finite area of phase coexistence. But the charged case where the transition is contin-

uous is of non-Landau-Ginzburg type. This case in particular resembles the concept of

deconfined criticality proposed as an explanation for the physics of some strongly coupled

quantum critical points in D = 3 [10, 11]. We would like to understand how one could

probe such phase diagrams in nature, having in mind the handicap that in a bottom-up

gauge/gravity model we do not know the explicit form of the action to directly inspect

the symmetries of different phases. We would also like to gain a better knowledge of the

confinement/deconfinement transition itself: we cannot directly identify the gauge-charged

and gauge-neutral degrees of freedom but we can detect the existence of bound states in

the confined phase and explore their dispersion relation, a technique particularly used in

AdS/QCD, where the quark confinement is recognized from the linear scaling of bound
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Figure 7. Phase diagram in the ∆χ–T plane for the charged scalar. Blue dots denote the numerical

results for the onset of the condensation of the scalar; the line is just to guide the eye. The

condensed/deconfined phase (geometry IaQ) is located to the left and below the boundary line;

the rest is the non-condensed/deconfined phase (geometry IbQC). For the neutral case the phase

diagram is similar. The key finding is that the deconfinement transition coincides with the onset of

the long-range order. The vertical black line denotes the BF bound for AdS5.

state masses, mn ∝ n [22, 32–34]. We can also look for the signs of symmetry breaking in

the response functions. Bound states can be detected in this way too, since they manifest

as poles of correlation functions in the imaginary half-plane, separated from the possible

quasiparticle peak by a gap (the binding energy).

Finally, one should have in mind that at very high temperatures it is possible that both

confined and deconfined solutions (i.e., all the solutions we have considered) give way to the

solution with zero dilaton profile, i.e. the system becomes just a (neutral, Schwarzschild or

charged, Reissner-Nordstrom) black hole, as pointed out in [39, 40]. This depends on the

parameters of the dilaton potentials; for some values such solutions exist and for some not.

We have not checked the existence of this regime explicitly and will not consider it; it is not

relevant for the low-temperature and zero-temperature phase transitions we consider here.

5 Response functions and bound states

5.1 Definition and equations of motion

In this section we will try to understand better the nature of different phases by computing

the electric AC conductivity σ(ω, k = 0) and charge susceptibility ξ(ω, k) of our system

as well as the retarded propagator GR(ω, k) of the order parameter Oχ, in particular by
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looking at the bottom half of the complex frequency plane where one can find the poles

corresponding to the bound states typical of confined systems. In this section we consider

the T = 0 case as we are interesting in the properties of the ground state (and its excitations

encoded in the pole structure), not the finite-temperature fluctuations. According to the

basic dictionary (e.g. [4]) the conductivity, as the response of the current to the imposed

(transverse) electric field, is proportional to the ratio of the source and VEV terms of the

fluctuation of the spatial component of the bulk electromagnetic field:

δAx(z;ω, k) = δA(0)
x + δA(1)

x z + . . . , σ(ω, k) =
1

ıω

δA
(1)
x

δA
(0)
x

+
1

ıω
R(ω, k), (5.1)

where R(ω, k) is the regulator connected to the boundary counterterms in the action.

Without entering into detailed discussion, we can quote that in D = 3 no regulator is

needed (R = 1) whereas in D = 4 we have R = k2 − ω2 [9]. Charge susceptibility is the

response of the charge density to the applied electric field, and therefore can be computed

analogously from the fluctuation of A0:

δA0(z;ω, k) = δA
(0)
0 + δA

(1)
0 z + . . . , ξ(ω, k) =

δA
(1)
0

δA
(0)
0

=
δρ

δµ
, (5.2)

so the susceptibility can be interpreted as the ratio of the charge density fluctuation and the

fluctuation in chemical potential. The conductivity mainly makes sense at zero momentum

(in the absence of a lattice) whereas susceptibility can also be considered as a function

of momentum, to study the spatial modulation of the charge density, as in [42]. The

equations of motion are really the variational equations from the action (2.1)–(2.4) about

the equilibrium solutions A0(z;ω, k) and Ax(z;ω, k) = 0:

δA′′x −
(

(D − 3)A′ − ∂ΦT
T

Φ′
)
δA′x −

(
ω2

f2
− k2

f
− 2q2e−3A

fT
χ2

)
δAx = 0 (5.3)

δA′′0 −
(

(D − 3)A′ − ∂ΦT
T

Φ′
)
δA′0 −

(
ω2

f2
− k2

f
− 4q2e−3A

fT
A0χ

2

)
δA0 = 0. (5.4)

Even though the fluctuations δA0, δAx are coupled to the fluctuations of the metric, we

do not consider the full system of fluctuation equations here. For a charged system, this

amounts to working in the limit of large charge, where the probe barely has any influence

on the system.

Finally, to study the symmetry breaking we explore also the fluctuation of the scalar

field δχ which determines the retarded propagator GR(ω, k) of the field O in field the-

ory. According to the dictionary, the retarded propagator is again the ratio of the lead-

ing boundary components, χ−/χ+, of the fluctuation ∆χ(z;ω, k) which satisfies exactly

the same Klein-Gordon equation (2.12) as the equilibrium solution, only at finite energy

and momentum:

δχ′′+

(
f ′

f
− (D − 1)A′ − ∂ΦZ

Z
Φ′
)
δχ′−

(
ω2

f2
− k2

f
+
e−2A

f
m2
χ −

q2

f2
eτΦA2

0

)
δχ = 0. (5.5)

Unlike the BF bound calculation, we are not exclusively interested in the case when the

energy ω is pure imaginary but will consider general values of energy (with non-positive

imaginary part, since the poles in the upper half-plane are forbidden).
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5.2 Effective Schrödinger equation for the response functions

It is well-known (e.g. [43, 44]) that the IR behavior of the effective Schrödinger problem for

various quantities like (5.3), (5.4)(5.5) is related to the energy scaling of the corresponding

response functions in field theory, defined as the ratio of the leading and subleading com-

ponent of the bulk field in the boundary. The aforementioned references study the case

when the equation can be written in the form A′′x − V (z)Ax = −ω2Ax (and similarly for

any other field instead of Ax) with V (z) ∼ 1/z2 in the IR. The inverse-square potential is

famous for allowing a conformal-invariant solution, and simple scaling arguments together

with flux conservation lead to the conclusion that the z-scaling of the solutions to the

Schrödinger equation in IR determines the ω-scaling of the response function (essentially,

the solution is a function of ωz only, and since the flux must be conserved (z-independent)

it is also ω-independent, which relates the scaling with z to the scaling with ω). In our

problem, even in the deconfined case with no soft wall, the behavior of the potential is

in general different from 1/z2, and no quantitative results on the frequency scaling can

be drawn. We can, however, decide if the spectrum is gapped or continuous, and if the

gaps are “hard” (zero spectral weight of the response function) or “soft” (exponentially

suppressed nonzero weight).

As the charge susceptibility in dilaton systems was never studied so far, we give a

more detailed analysis of the effective potential. The equation (5.4) can be recast as a

Schrödinger problem with an effective potential

Veff(z;ω, k) = −ω
2

f2
+
k2

f
+
e−2A

f
m2
χ +

X ′′

X
+B

X ′

X
(5.6)

with B = (D − 3)A′ − τΦ′ and X = e−
∫
B/2 = e(D−1)/2A−γΦ/

√
f . Starting from the

confined phase (in the charge-neutral case), we see that the potential for the confining

geometry behaves in the IR as

Veff(z →∞;ω, k) = −ω2+k2−ν(ν − 1(τ −D + 3))

2
zν−2+

3

4
ν2(τ−D+3)2z2ν−2+. . . , (5.7)

thus it grows to infinity in the IR (the subleading terms were left out). For finite z (still

far enough from the AdS boundary), it is positive if ω2 < ω2
0 + k2 for some constant ω0,

i.e. the spectrum is discrete and gapped for small energies. In the bulk, a gap in the

spectrum simply means that there is no tunneling of the infalling solution toward the far

IR at z →∞ (in the terminology of [43], the reflection coefficient is zero). This means that

the integral
∫
dz
√

2Veff(z)/z2 has to diverge at large z. For (5.7) the integral behaves as∫
dzzν−3 and thus diverges for ν ≥ 2. Therefore, the gaps might be hard or soft depending

on the parameters.

For ω >
√
ω2

0 + k2 we expect a continuum, as the effective potential does not have a

well anymore. In the deconfined neutral background, the potential looks like

Veff(z →∞;ω, k) = −(D − 3)α− φ0τ

2z
−ω2 +k2 +

3

4z
((D−3)α−φ0τ)2(log z)2 + . . . , (5.8)

which grows to infinity in the IR but logarithmically slowly, whereas on the other side it

again depends on ω−
√
ω2

0 + k2. The spectrum is thus still gapped and discrete but (since
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the well is now shallow, because of the logarithmic growth) the bound states are expected

to come closer to each other. Also, the tunneling probability behaves as
∫
dz log z/z2

which is finite for z → ∞, and the gaps is always soft. In the charged case, the effective

potential is augmented by a positive term proportional to q2A0χ
2 which is independent

of ω, k. Therefore, the threshold ω0 is increased but the qualitative behavior remains the

same. Similar conclusions hold for the other response functions: the gaps are always soft

for the deconfined phase, and may be hard or soft for the confined phase.

5.3 Numerics

5.3.1 AC conductivity

The AC conductivity best encapsulates the breaking of a continuous symmetry (4.16)

through the existence of the zero mode. The AC conductivity on the real frequency axis,

as well as in the bottom half-plane of complex ω, is given in figure 8. In this plot we show

the conductivity <σ(ω, k = 0) as a function of the real frequency <ω for a range of =ω
values (at zero momentum). We first show the set of curves <σ(<ω) computed at different

=ω values, where the curves at different =ω values are vertically shifted in the figure to be

visible together (panels A, B); the x-axis is the real frequency axis and the y-axis is the

magnitude of the conductivity minus the vertical shift. In parallel we show the same data

as two-dimensional color maps <σ(<ω,=ω) (panels C, D); now the y-axis is the imaginary

part of the frequency, and the lighter areas denote higher values. We use the same recipe

to show the curves =GR(ω, k) and ξ(ω, k) in later figures.

In the charged confined non-condensed system (panels A, C), there is no gap at small

frequencies as the continuous U(1) symmetry is preserved. On the other hand, confinement

means the existence of stable bound states (”glueballs”), i.e. poles on the real axis. These

are seen as sharp peaks in <σ(ω) for real ω. For nonzero =ω the poles apparently turn

into branch cuts (the vertical lines); the resolution of our numerics is limited so we are not

sure if these are branch cuts or strings of poles along the vertical (=ω) axis. Such poles on

the real axis have been seen also in [9] in the simple holographic superconductor (without

dilaton) when the scalar mass is exactly at the BF bound for AdSD+1; the relation to our

result is not clear but this fact is certainly interesting and we plan to look more carefully

into it. Naively, it looks like a bad metal: the AC conductivity is continuous and gapless

but small except on a discrete set of real frequencies where the bound states lie.

After deconfinement and the onset of superconductivity (figure 8B, D), the Dirac delta

peak at ω = 0 is followed by a gap, which shows the breaking of the U(1) symmetry (this is

particularly obvious in the panel B). The bound states do not sit at the real axis anymore.

It is again not clear from the numerics if they turn into branch cuts or strings of poles in

the complex plane but in any case they do not reach the real axis anymore. In this and

further spectral plots, we use the critical temperature as a suitable unit of energy to express

the frequencies and momenta; a more usual choice would be the chemical potential, but it

is absent in the neutral case, so we have opted for Tc as a natural and physical scale.

Therefore, we witness both the breaking of the U(1) symmetry (Dirac delta peak

followed by the gap) and the deconfinement (absence of stable bound states), but not the

restoration of scale invariance since our probe is charged and sees the nonzero chemical
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(A) (B)

(C) (D)

Figure 8. Conductivity <σ(ω) in the confined/non-condensed phase (m2
χ = 2, A,C) and in the

deconfined/condensed phase (m2
χ = −2, B,D) in a U(1)-charged system at µ = 1, for a range of =ω

values starting from zero (the real axis). In the deconfined/superconducting phase there is only the

ω = 0 pole at the real axis (visible for the first curve in the panel B; in the color map panel D it is

hard to recognize since it is very narrow), followed by a gap. The gap is expectedly absent in the

confined/non-superconducting phase, as the continuous U(1) symmetry is preserved. On the other

hand, the confinement/deconfinement transition is visible through the stability of bound states: in

the confined regime these states have an infinite lifetime at T = 0 and thus manifest as sharp peaks

(poles) on the real axis (the bright white spots on the real axis in the density plot). In the deconfined

regime these states are pushed to a finite distance below the real axis and look more like branch cuts.

For all calculations in a charged system in this section we use D = 4, ν = 3/2, γ = 4, τ = 6, µ = 1

and m2
χ = 1/4 for the confined case and m2

χ = −1/4 for the deconfined case.

potential which sets a scale. It is instructive to compare this situation to the charge-neutral

case in figure 9. The superconducting gap now has to vanish from the spectrum. Only the

presence or absence of confinement is now seen — bound states as poles on the real axis

(again apparently continuing as branch cuts below the real axis) in the confined regime and

their absence in the deconfined regime. Notice that our confined phase is fractionalized

and the deconfined phase is coherent — therefore, our poles are not “mesinos”, they are

closer to “glueballs”, i.e. complex bound states which contain charged gauge bosons.
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(C) (D)

Figure 9. Conductivity <σ(ω) in the confined/non-condensed phase (m2
χ = 8, A,C) and in the

deconfined/condensed phase (m2
χ = 4, B,D) in a neutral system, for a range of =ω values starting

from zero (the real axis). Neither phase is superconducting thus neither phase has a gap but rather a

continuous background behaving as 1/ωn. But the confined case again has long-living bound states

corresponding to poles on the real axis, while upon deconfinement these poles vanish completely.

The parameters are D = 4, ν = 3/2, γ = 4 and m2
χ = 4 for the deconfined case and m2

χ = 8 for the

confined case (also in the remaining plots for the neutral system in this section).

5.3.2 Retarded propagator

A probe which specifically shows the restoration of scale invariance is the retarded propaga-

tor GR(ω, k), given in figure 10. In the confined regime we see well-defined quasiparticles,

due to nonzero chemical potential. But since quasiparticles exist at finite binding energies,

the spectrum is gapped and starts from nonzero energy (A, C). Once the system is decon-

fined, scale invariance is restored and GR(ω) ∼ 1/ωn (B, D). Unlike conductivity, which

is not sensitive confinement/deconfinement, the scalar probe differentiates between them:

in their absence, it shows no quasiparticles. Another way to understand it is that at low

energies (in deep interior) the local chemical potential behaves as e−AA0/
√
f ∼ z−2α+φ0τ/2

while the scale of the metric (the confinement scale) drops faster as z−2α, so the confine-

ment scale is above the chemical potential and the probe sees no chemical potential at all.
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When the system is neutral and the symmetry to be broken is discrete, we expect to see

the presence/absence of scale invariance in much the same way as before but we expect no

quasiparticle in either phase, since the chemical potential is zero. The plot for the neutral

case is shown in figure 11: now there is indeed no quasiparticle in either phase as the

chemical potential and density are zero. But we still detect a scaleful, though continuous

spectrum in the confined case, whereas the deconfined case looks pretty much the same

as with a charged boson — just a power-law decay. Again, this is not about fractional-

ization — the confined phase, with quasiparticles in figure 10(A,C), has “gauginos” which

the gauge-neutral probe cannot see, and the deconfined phase, with no quasiparticles in

figure 10(B,D), has “mesinos” which the gauge probe can see. The bottom line is that the

probe apparently couples mainly to the gauge field bound states, and in general that the

presence/absence of quasiparticles may not be directly related to fractionalization.

5.3.3 Charge susceptibility

Charge susceptibility is interesting as it shows the absence of metallic behavior in both the

confined and deconfined phase. Both phases show a gap followed by a series of dispersing

poles. This is in line with our analytical finding that both backgrounds give a potential

well for δA0, inhabited with bound states. But since the well is rising towards infinity very

slowly in the deconfined phase, the spacing between the bound states is small in this case.

In [42] the authors have explored mainly the momentum dependence of the susceptibility at

zero frequency, finding the Friedel oscillations and the singularity at k = 2kF , as expected

for a system with zero modes at finite momentum, resembling a Fermi surface. In figure 12,

in particular in the ω − k maps (panels B,D) we see that no oscillatory behavior exists for

χ(ω = 0, k) (the bottom edge of figure 12 C,D) and in particular no pole at ω = 0 exists

for any finite k. This tells that our system is different from a normal metal even in the

confined phase, and this is not because it is fractionalized (since the RN black hole studied

in [42] is also fractionalized).

6 Conclusions and discussion

We have considered an Einstein-(Maxwell)-dilaton-scalar system where the scalar can con-

dense (acquire a VEV) and thus break a symmetry, discrete if neutral or continuous if

charged. This in turn remorphs the geometry from a soft-wall, confining form to a decon-

fined, power-law-scaling form. This goes against the common intuition that a condensate

always “narrows” the geometry, which indeed happens in absence of a dilaton with a suit-

ably chosen coupling, e.g. in the textbook holographic superconductor where an AdS-RN

background with a near-horizon AdS2 throat with finite AdS radius typically turns into a

Lifshitz-type geometry whose scale shrinks to zero in the interior. From a general viewpoint,

it is not so surprising that the huge “zoo” of dilatonic theories contains counterexamples

to this behavior, as we have great freedom in choosing the dilaton potentials. But from the

viewpoint of field theory and applied gauge/gravity duality, this is interesting as it tells

us that we can consider situations in which breaking a symmetry with an order parameter
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Figure 10. The retarded propagator =GR(ω) for a range of momentum values (0 < k < 1.5) in

a charged system (µ = 1), in the confined regime (m2
χ = −2, A,C) and in the deconfined regime

(m2
χ = 2, B,D). In the confined case we see gapped quasiparticle excitations, starting at ω ≈ 1 > 0

since we see the bound states in the soft wall which have a discrete and gapped spectrum. In field

theory, it means we see gauge-neutral particles. In the deconfined regime, no quasiparticle is present

and we have a featureless power-law spectrum =GR(ω) ∝ 1/ωn. From the gravity viewpoint, it

is because the potential has no bound states. From the field theory viewpoint, it means we have

gauge-colored excitations which are not visible through a gauge-neutral probe. We thus see the

deconfinement transition.

can actually restore another symmetry, since confined systems have a scale (the confine-

ment gap) which vanishes upon condensation. In the simplest case, we can thus expect

that conformal symmetry is restored. In practice, it is not the full conformal symmetry

but some subset of it, i.e. some scale invariance. We therefore see a non-Ginzburg-Landau

phase transition, where neither phase has a higher overall symmetry than the other and the

transition can be continuous (in the charged case). This may be related to the picture of

deconfined criticality proposed in [10, 11]. But one should be careful, since the transition

mechanism in [10, 11] is related to the existence of a new, topological conserved quantity

– 31 –



J
H
E
P
1
0
(
2
0
1
6
)
1
0
2
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Figure 11. The retarded propagator =GR(ω) in the confined/non-condensed phase (A,C) and in

the deconfined/condensed phase (B,D) in a neutral system. While the deconfined case is again

an almost exact power law, the confined case has a scale but no quasiparticle. The discrete Z2

symmetry has no zero modes upon breaking. The retarded propagator is thus not so useful when

the system is neutral.

which only exists at the critical point. In our setup we cannot study geometry or lattice

effects and definitely cannot argue anything about topology. The connection is thus very

loose and we only see it as inspiration for further work. It would be interesting to consider

a setup where the topologically protected gauge flux analogous to that at a deconfined

critical point can be detected.

In would also be nice to understand our system better from the gravity side, by deriving

our solutions from a superpotential and inspecting how generic this behavior is, which we

address in a subsequent publication. It is also interesting to apply our findings to real-world

systems. While in QCD there is no obvious additional order parameter that may condense,

such situations are abundant in condensed matter systems, mainly in the context of the

fractionalization paradigm, where certain non-Fermi-liquid phases are argued to consist
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Figure 12. Charge susceptibility ξ(ω) in the confined/non-condensed phase (A,C) and in the

deconfined/condensed phase (B,D) in a charged system. Both cases show bound states; this might

look surprising for the deconfined case but is in accordance with the effective potentials in eqs. (5.7)–

(5.8). This probe is thus not very useful for detecting the transition but shows the absence of peaks

at ω = 0 and k = 2kF > 0, indicating that even the confined phase is different from a normal

Fermi liquid.

of gauge-charged excitations which are therefore not observable as quasiparticles. This

is also relevant for the heavy fermion systems, where a long-range order is present (the

antiferromagnetic ordering, the SO(3) equivalent of our scalar neutral order parameter)

and is connected to the disappearance of a normal Fermi liquid, which can be related to

the deconfinement of the gauge-charged spinons and holons (in this case, of course, the

gauge field is emergent and not microscopic) [12–15]. However, great care must be taken

to interpret the fractionalization concept properly, as it is distinct from confinement — in

our case, the confined phase is fractionalized and the deconfined phase is coherent. This

will also be addressed in our future work.
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A A short summary of numerical calculations

For numerical work we find it more convenient to introduce a different coordinate choice

where the metric reads

ds2 = −f(z)h(z)dt2

z2
+
dx2

z2
+

dz2

f(z)z2
. (A.1)

The boundary is again at z = 0 and the space extends to z → ∞. It is easy to derive

the relations between this parametrization and the one used in the main text. Now the

boundary conditions for small z are f(z → 0), h(z → 0)→ 1. The Einstein equations read

zf ′ −Df +D +
2

D − 1
T 00 = 0 (A.2)

h′

h
zf =

2

D − 2
(T 00 − T zz). (A.3)

Therefore, both metric functions have first-order equations and we can omly impose two

boundary conditions for the metric. However, we have more than two physical require-

ments. The physical requirement for h (which is proportional to the scale factor e−2A in the

metric (2.8)) is h(z →∞)→ 0 and for f the first derivative should vanish: f ′(z =∞)→ 0.

In addition, in order to have an asymptotically AdS geometry we need f(z → 0) = 1 and

h(z → 0) = 1. We implement this by introducing some cutoff zΛ and imposing the ana-

lytical solutions we have found for the metric in section III for all z < zΛ (the analytical

solutions of course automatically satisfy the necessary requirements in the interior). Then

we start the integrator at zΛ, using the condition f(z = 0) = h(z = 0) = 1 as the sole

boundary condition for the numerics. At finite temperature, the space terminates at the

horizon zh whose value is determined by the temperature, and in this case f itself vanishes

at the horizon: f(zh) = 0. In practice, it means we use the analytical ansatz for f, h in the

interval zh > z > zh − ε and start the integration at z = zh − ε, again with the boundary

condition h(z) = 1.

The equations of motion for the gauge and matter fields are

Φ′′ −
(
h′

2h
− (D − 1)z

)
Φ′ +

gzz
ξ
∂ΦV −

4

ξ(D − 1)
g00T A2

0 = 0 (A.4)

A′′0 −
(
h′

2h
− (D − 3)z − ∂ΦT

T
Φ′
)
A′0 − 2q2Z

T
√
g00gzz|χ|2 = 0 (A.5)

χ′′ −
(
h′

2h
− (D − 1)z

)
χ′ −

m2
χ

ξz2f
+
q2Z

f2
A2

0χ = 0. (A.6)

Here we have three second-order equations and two boundary conditions per field. For A0,

one condition is that the electric field should vanish in the interior: −A′0(z → ∞) → 0

– 34 –



J
H
E
P
1
0
(
2
0
1
6
)
1
0
2

and the other is to impose the chemical potential or the charge density at the boundary

(A0(z → 0) = µ or A0(z)/zD−2|z→0 = −ρ). For Φ and χ the only physically obvious

boundary condition is to set the leading branch in the small-z expansion (2.18) to zero

(remember we pick the dilaton potential V in the UV in such a way that the subleading

branch of the dilaton also falls off quickly enough that no condensation occurs). The other

boundary condition for Φ, χ is again set by the analytical expansion for z large, similar as

for the metric.

It is well known that the integration is unstable if started from the boundary. We

therefore start from the interior and impose all boundary conditions in the interior. Physical

requirements for z → 0 are then obtained by shooting. We start from z1 ≡ zΛ at T =

0 or from z1 ≡ zh − ε at finite T and iterate the procedure in two stages. The first

iteration assumes some essentially arbitrary metric in the whole space (AdSD+1 works

well) and solves first the coupled system for f, h,A0,Φ. For f , the boundary condition is

the analytical estimate fanal(z1). We similarly impose the analytical estimate for Φ while

for Φ′ we try an arbitrary value C1. For h we also start from an arbitrary value C2. For

the gauge field we impose the physical boundary condition for the derivative (A′0(z1) = 0)

whereas the other condition is arbitrary (A0(z1) = C3). We thus have three free parameters

C1, C2, C3 so we can shoot for the correct UV behavior of A0,Φ, h. This procedure does

not guarantee the correct behavior for f(0) and h(z1) as we do not shoot for them but

when one lands at the correct solution, these turn out to be automatically satisfied (if not,

one should play around a bit with the starting values of the shooting parameter h(z1)). In

the next stage, we solve the equation for χ with the conditions χ(z1) = C4χanal(z1) and

χ′(z1) = C4χ
′
anal(z1), leaving the overall normalization C4 as a free parameter. Then we

shoot for the required behavior in the UV (this will yield the solution with nonzero VEV,

if it exists; if not, it will give the solution χ(z) = 0). After that, we update the metric and

the stress tensor and repeat the whole procedure, again in two steps, first for f, h,Φ, A0

and then for χ. After 5 − 10 steps (a few minutes of computation time) the procedure

converges. One should check that the solution is independent of the cutoff z1. At zero

temperature, for confining backgrounds the overall scale falls off very sharply and typically

z1 ≈ 3 − 4 is enough while for nonconfining geometries one needs zΛ ≈ 6 − 10. At finite

temperature, the size of the “analytical” region in the interior ε can be made quite small,

of the order 10−3. A cutoff in the UV is also necessary and is roughly of the size 10−6.
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Exciton-driven quantum phase transitions in holography
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We study phase transitions driven by fermionic double-trace deformations in gauge-gravity duality. Both
the strength of the double-trace deformation and the infrared conformal dimension/self-energy scaling of
the quasiparticle can be used to decrease the critical temperature to zero, leading to a line of quantum
critical points. The self-energy scaling is controlled indirectly through an applied magnetic field and the
quantum phase transition naturally involves the condensation of a fermion bilinear which models the spin
density wave in an antiferromagnetic state. The nature of the quantum critical points depends on the
parameters and we find either a Berezinsky-Kosterliz-Touless-type transition or one of two distinct second-
order transitions with non-mean-field exponents. One of these is an anomalous branch where the order
parameter of constituent non-Fermi liquid quasiparticles is enhanced by the magnetic field. Stabilization of
ordered non-Fermi liquids by a strong magnetic field is observed in experiments with highly oriented
pyrolytic graphite.

DOI: 10.1103/PhysRevD.92.086004 PACS numbers: 11.25.Tq, 71.27.+a

I. INTRODUCTION

The anti–de Sitter/conformal field theory correspondence
(AdS=CFT) or gauge/gravity duality is a new proving
ground to describe strongly correlated systems, and its
application to unresolved questions in condensed matter
is an exciting new direction. It is especially compelling, as
conventional methods, such as large-N [1] and ð4 − ϵÞ-type
[2] expansions fail to describe quantum critical behavior in
2þ 1-dimensional systems. The primary examples of such
are the strangemetal states in the high-Tc cuprates and heavy
fermion systems. Both systems are characterized by anoma-
lous behavior of transport and thermodynamic quantities. In
heavy fermions, the Sommerfeld coefficient grows as the
temperature is lowered, meaning that the effective mass of
the electrons on the Fermi surface diverges or the Fermi
energy of the electrons vanishes [3]. In the strange metal
phase of the high-Tc superconductors as well as in heavy
fermions near a quantum phase transition, the resistivity is
linear with temperature ρ ∼ T. These anomalous behaviors
are partly explained by the phenomenological marginal
Fermi liquid model [4], and it is an early success of
AdS=CFT that the marginal Fermi liquid can be seen to
emerge as the low-energy dynamics of a consistent theory.
A particularly simple gravity description for strongly

interacting finite-density matter is the planar AdS-Reissner-
Nordström (AdS-RN) black hole (BH), which is dual to a
system at finite chemical potential. While the AdS-RN
black hole is a natural starting point to study the universal

aspects of finite charge density systems, the universality of
a black hole makes it difficult to explain experiments that
are keen on the nature of the charge carriers, such as
transport properties (e.g. conductivity). In particular the
dominance of Pauli blocking for observed physics, requires
that at the minimum one needs to add free Dirac fermions to
the AdS-RN background. A self-consistent treatment
shows that this system is unstable to a quasi-Lifshitz
geometry in the bulk [5–7], that encodes for a deconfined
Fermi liquid system [8–11]. Here we shall initiate the study
of instabilities in the unstable metallic AdS-RN phase that
are driven by Fermi bilinears.
The essential low-energy property of the metallic system

dual to the AdS-RN black hole background is the emer-
gence of Fermi surfaces [12,13] where the notion of a
quasiparticle need not be well defined, i.e. stable [14]. In
Ref. [15], we used the magnetic field as an external probe to
change the characteristics of the Fermi surface excitations
and as a consequence the transport properties of the system.
It strongly suggested that a quantum phase transition
should occur when the underlying quasiparticle becomes
(un)stable as a function of the magnetic field. The study in
this article of the influence on stability of Fermi bilinears
allows us to show that there is a phase transition between
the two regimes and that for a specific set of parameters the
critical temperature vanishes. Our work is therefore also a
fermionic companion to Ref. [16].
Continuing the connection of AdS models to actual

observations, the results we find resemble other experi-
mental findings in quantum critical systems. At low
temperatures and in high magnetic fields, the resistance
of single-layer graphene at the Dirac point undergoes a
thousandfold increase within a narrow interval of field
strengths [17]. The abruptness of the increase suggests that
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a transition to a field-induced insulating, ordered state
occurs at the critical field hc [18]. In bilayer graphene,
measurements taken at the filling factor ν ¼ 0 point show
that, similar to single-layer graphene, the bilayer becomes
insulating at strong magnetic field [19]. In these systems,
the divergent resistivity in strong magnetic fields was
analyzed in terms of Kosterlitz-Thouless localization
[18] and the gap opening in the zeroth Landau level
[20]. However, it remains a theoretical challenge to explain
a highly unusual approach to the insulating state. Despite
the steep divergence of resistivity, the profile of ρ vs T at
fixed h saturates to a T-independent value at low temper-
atures, which is consistent with gapless charge-carrying
excitations [18]. Moreover, in highly oriented pyrolytic
graphite in the magnetic field, the temperature of the metal-
insulator phase transition TcðhÞ increases with increasing
field strength, contrary to the TcðhÞ dependence in the
classical low-field limit [21]. The anomalous TcðhÞ behav-
ior has been successfully modeled within a dynamical gap
picture [22]. The available data suggest that by tuning the
magnetic field graphene approaches a quantum critical
point, beyond which a new insulating phase develops with
anomalous behavior TcðhÞ. This picture is in agreement
with expectations of quantum critical behavior, where e.g.
in heavy fermion metal a new magnetically ordered state
(antiferromagnet) emerges when tuned through the quan-
tum critical point [3].

We shall see that the same qualitative physics emerges
with our use of the the magnetic field as a knob to tune to
the IR fixed point to gain some insight into the quantum
critical behavior driven by fermion bilinears. In our gauge/
gravity dual prescription, the unusual properties character-
istic for quantum criticality can be understood as being
controlled by the scaling dimension of the fermion operator
in the emergent IR fixed point. The novel insight of
AdS=CFT is that the low-energy behavior of a strongly
coupled quantum critical system is governed by a nontrivial
unstable fixed point which exhibits nonanalytic scaling
behavior in the temporal direction only (the retarded
Green’s function of the IR CFT is GR

IR ∼ ω2ν) [14]. This
fixed point manifests itself as a near-horizon region of the
black hole with AdS2 geometry which is (presumably) dual
to a one-dimensional IR CFT. Building on the semilocal
description of the quasiparticle characteristics by simple
Dyson summation in a Fermi gas coupled to this 1þ 1-
dimensional IR CFT [23] an appealing picture arises that
quantum critical fermionic fluctuations in the IR CFT
generate relevant order parameter perturbations of the
Fermi liquid theory. Whether this is truly what is driving
the physics is an open question. Regardless, quantum
critical matter is universal in the sense that no information
about the microscopic nature of the material enters.
Qualitatively our study should apply to any bilinear
instability in the strange metal phase of unconventional
superconductors, heavy fermions as well as for a critical

point in graphene. Universality makes applications of
AdS=CFT to quantum critical phenomena justifiable and
appealing.
The paper is organized as follows. In Sec. II, we review

the AdS-RN black hole solution in AdS-Einstein-Maxwell
gravity coupled to charged fermions and the dual inter-
pretation as a quantum critical fermion system at finite
density. In Sec. III we use the bilinear formalism put
forward in Ref. [6] to explore an instability of a quantum
system towards a quantum phase transition using the AdS
dual description. We study a quantum phase transition to an
insulating phase as a function of the magnetic field. For
completeness we test the various phases by a spectral
analysis in Sec. IV. We conclude by discussing a phase
space in ðh; TÞ variables for a quantum critical matter at
nonzero temperatures.

II. HOLOGRAPHIC FERMIONS IN THE
BACKGROUND OF A DYONIC BLACK HOLE

The gravity dual to a 2þ 1-dimensional CFT at finite
density in the presence of a magnetic field starts with the
Einstein-Maxwell action describing an asymptotically
AdS4 geometry:

Sg ¼
1

2κ2

Z

d4x
ffiffiffiffiffiffi

−g
p �

Rþ 6 −
1

g2F
FMNFMN

�

: ð1Þ

Here AM is the gauge field, g2F is an effective dimensionless
gauge coupling and the curvature radius of AdS4 is set to
unity. The equations of motion following from Eq. (1) are
solved by a dyonic AdS black hole, having both electric
and magnetic charge

ds2 ¼ 1

ð1 − zÞ2
�

−fdt2 þ dx2 þ dy2 þ dz2

f

�

ð2Þ

where the redshift factor f and the vector field AM are given
by

f¼ zð3−3zþz2−ðQ2þH2Þð1−zÞ3Þ;
At¼μz; Ay¼hx; with μ¼gFQ; h¼gFH: ð3Þ

The AdS boundary is reached for z → 1, the black hole
horizon is at z → 0 and the electric and magnetic charge of
the black hole Q and H, encoding the chemical potential μ
and magnetic field h of the dual CFT, are scaled such that
the black hole temperature equals1

T ¼ 1

4π
ð3 − ðQ2 þH2ÞÞ: ð4Þ

1The independent black hole mass parameter is restored after
rescaling t → Mt, x → Mx, y → My and h → M−2h.
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In these units, the extremal T ¼ 0 black hole corresponds to
Q2 þH2 ¼ 3 and in this case the red shift factor develops a
double zero at the horizon

f¼3z2ðz−z�Þðz− z̄�Þ; z� ¼ð4þ i
ffiffiffi

2
p

Þ=3: ð5Þ

To include the bulk fermions, we consider a spinor field
ψ in the AdS4 of charge q and mass m, which is dual to a
fermionic operatorO in the boundary CFT3 of charge q and
dimension

ΔΨ ¼ 3

2
þm; ð6Þ

with m ≥ − 1
2
(in units of the AdS radius). The quadratic

action for ψ reads

Sψ ¼
Z

d4x
ffiffiffiffiffiffi

−g
p ðψ̄ΓMDMψ −mψ̄ψÞ; ð7Þ

where ψ̄ ¼ ψ†iΓt̂, and

DM ¼ ∂M þ 1

4
ωMabΓab − iqAM; ð8Þ

where ωMab is the spin connection, and Γab ¼ 1
2
½Γa;Γb�.

Here, M and a; b denote the bulk space-time and tangent-
space indices respectively, while μ, ν are indices along the
boundary directions, i.e.M ¼ ðz; μÞ. The Dirac equation in
the dyonic AdS-black hole background becomes

�

Γẑ
ffiffiffi

f
p ∂z þ Γẑ

ffiffiffi

f
p

2ð1 − zÞ
�

3þ ð1 − zÞf0
2f

�

− Γt̂ iðωþ qμzÞ
ffiffiffi

f
p

−
1

ð1 − zÞmþ Γx̂∂x þ Γŷiðky − qhxÞ
�

ψ ¼ 0 ð9Þ

where ψ is the Fourier transform in the y directions and
time. The z and x dependences can be separated as in
Refs. [15,24,25]. Define

P ¼ Γẑ
ffiffiffi

f
p

�

∂z þ
1

2ð1 − zÞ
�

3þ ð1 − zÞf0
2f

��

− Γt̂ iðωþ qμzÞ
ffiffiffi

f
p −

1

ð1 − zÞm;

Q ¼ Γx̂∂x þ Γŷðiky − iqhxÞ; ð10Þ
in terms of which the Dirac equation is ðPþQÞψ ¼ 0. In
order to separate the variables, we can proceed by finding
the matrix U such that UPψ ¼ −UQψ ¼ λψ . The idea is
that, although P and Q do not commute, we can find U so
that ½UP;UQ� commute and can be diagonalized simulta-
neously [15].2 To this end, U must satisfy the relations

fU;Γzg ¼ 0, fU;Γtg ¼ 0, ½U;Γx� ¼ 0, ½U;Γy� ¼ 0. A
clear solution is U ¼ ½Γz;Γt�.
In a convenient gamma matrix basis (Minkowski sig-

nature) [14]

Γẑ ¼
�

−σ3 0

0 −σ3

�

; Γt̂ ¼
�

iσ1 0

0 iσ1

�

;

Γx̂ ¼
�

−σ2 0

0 σ2

�

;

Γŷ ¼
�

0 σ2

σ2 0

�

; Γ5̂ ¼
�

0 iσ2

−iσ2 0

�

≡ iΓt̂Γx̂ΓŷΓẑ

ð11Þ
the matrix U equals

U ¼
�

−iσ2 0

0 −iσ2

�

: ð12Þ

This choice of the basis allows one to obtain ky ¼ 0 spectral
functions in a simple way. In the absence of a magnetic
field one can use rotational invariance to rotate to a frame
where this is so. The gauge choice for the magnetic field
obviously breaks the isotropy, but the physical isotropy still
ensures that the spectral functions simplify in this basis
[15]. The x-dependent part of the Dirac equation can be
solved analytically in terms of Gaussian-damped Hermite

polynomials Hnð
ffiffiffiffiffiffi

qh
p ðxþ ky

qhÞÞ with eigenvalues λn ¼
ffiffiffiffiffiffiffiffiffiffiffijqhjnp

quantized in terms of the Landau index n¼
0;1;… [15,24,25]. The Dirac equation ðP − U−1λÞψ ¼ 0,
where λ is a diagonal matrix in terms of λn and whose
square is proportional to the identity, then reduces to
��

∂z þ
1

2ð1 − zÞ
�

3þ ð1 − zÞf0
2f

��

Γẑ −
iðωþ qμzÞ

f
Γt̂

−
m

ffiffiffi

f
p ð1 − zÞ −U−1 λn

ffiffiffi

f
p
�

ψ ¼ 0: ð13Þ

We introduce now the projectors Πα that split the four-
component bispinors into two two-component spinors Ψ ¼
ðψ1;ψ2ÞT where the index α ¼ 1; 2 is the Dirac index of the
boundary theory

Πα ¼
1

2

�

1 − ð−1ÞαΓẑΓt̂ 1

jλjQ
�

; α ¼ 1; 2;

Π1 þ Π2 ¼ 1: ð14Þ

The projectors commute with both P and Q (recall that
Q2 ¼ λ21). At zero magnetic field projectors are given by

Πα ¼ 1
2
ð1 − ð−1ÞαΓẑΓt̂k̂iΓiÞ with unit vector k̂i ¼ ~k=j~kj.

The projections ψα ¼ Παψ with α ¼ 1, 2 therefore decou-
ple from each other and one finds two independent copies
of the two-component Dirac equation:

2Rather the part in P not proportional to the identity anti-
commutes with Q. This realization shows why the relations in the
next sentence are the solution.
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�

∂z þ
1

2

�

3

1 − z
þ f0

2f

�

−
iðωþ μqzÞ

f
σ2 þ m

ffiffiffi

f
p ð1 − zÞ σ

3

þ λn
ffiffiffi

f
p σ1

�

ψ1;2 ¼ 0; ð15Þ

where the magnetic momentum λn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2jqhjnp

is Landau
quantized with integer values n ¼ 0; 1;… and μq ≡ μq. It
is identical to the AdS-Dirac equation for an AdS-RN black
hole with zero magnetic charge when the discrete eigen-
value λ is identified with the (size of the) momentum k.
As we have shown in Ref. [15], solving Eq. (15) is

equivalent to solving the Dirac equation at zero magnetic
field but with a rescaled chemical potential and fermion
charge. At T ¼ 0 the mapping is given by [15]

ðμq; h; qÞ ↦ ðμq;eff ; heff ; qeffÞ

¼
 

ffiffiffi

3
p

q

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
h2

3

r

; 0; q

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
h2

3

r

!

; ð16Þ

which we will use further.

III. BILINEAR APPROACH TO
PARTICLE-HOLE PAIRING

The objective of this paper is to use the magnetic field as
a tool to probe our unstable quantum critical system dual to
the dyonic AdS-RN geometry. We show that the instability
is manifest in the appearance of ordering in the system: the
magnetic field acts as a catalyzer for the particle-hole
pairing. In particular, we will find an unusual behavior for
the critical temperature of the normal to paired phase
transition as the dialing of the magnetic field drives the
system to a quantum critical point: for a critical magnetic
field the critical temperature vanishes indicating a new
emergent quantum critical point.
We will identify the bulk quantities in the bilinear

approach which are dual to the sought-for quantities on
the CFT side. We have given the setup of the bilinear
formalism in Ref. [6]. Here, we will first give a concise
review with the focus on the transport properties and the
influence of magnetic fields, and then derive the bilinear
equations relevant for computing the pairing gap.

A. Bulk propagators and currents

A controlled method for calculating the expectation
value of some composite operator J with the structure of
a fermion bilinear (J ∼ ψ†ψ) has been put forward in
Ref. [6] and it is based on a relation between the bulk and
the boundary propagator in the isotropic single-particle
approximation. This allows us to identify the familiar
quantities at the boundary by matching the resulting
expression to known thermodynamic relations. The crucial
object was identified in Ref. [6]

JμðE; p; zÞ ¼
Z

dω
Z

d2kψ̄ðω; k; zÞΓμψðE − ω; p − k; zÞ
ð17Þ

and it is the spatial average of the Uð1Þ current four-vector
in the bulk.3 The metric then assumes the form given in the
first section by Eq. (2) (so that the horizon is located at
zH ¼ 0 and the boundary is at z0 → 1). Having defined the
radial projection of the bulk Dirac equation in Eq. (14) we
can also define the radial projections of the current as

JμαðE;p;zÞ¼
Z

dω
Z

d2kψ̄αðω;k;zÞγμψαðE−ω;p−k;zÞ;

ð18Þ

where α ¼ 1, 2 and γμ is a Pauli matrix acting in the
boundary frame.
The boundary interpretation of this current is, however,

subtler than the simple Uð1Þ conserved current which it is
in the bulk [6]: it expresses the Migdal theorem, i.e. the
density of quasiparticles in the vicinity of the Fermi surface.
To see this, express the bulk spinors ψαðzÞ at an arbitrary
value of z through the bulk-to-boundary propagators
Gαðz; z0Þ and the boundary spinors ψαðz0Þ as

ψαðzÞ ¼ GαðzH; zÞG−1
α ðzH; z0Þψαðz0Þ: ð19Þ

The meaning of the above expressions is clear: the spinors
evolve from their horizon values toward the values in the
bulk at some z, under the action of the bulk-to-boundary
propagator Gαðz; z0Þ acting upon them (normalized by its
value at the boundary). To find the relation with the
boundary Green’s function we need to know the asymp-
totics of the solutions of the Dirac equation (15) at the
boundary; see Eq. (A6) in Appendix A:

ψ1 ∼ a1ð1 − zÞ3=2−mψ in
0;þ þ b1ð1 − zÞ3=2þmψ in

0;−;

ψ2 ∼ a2ð1 − zÞ5=2−mψ in
0;þ þ b2ð1 − zÞ5=2þmψ in

0;−: ð20Þ

On the other hand, the boundary retarded propagator is given
by the dictionary entry [26], Eq. (A9), where γ0 ¼ iσ1.
The bulk-to-boundary Green’s function (in dimension-

less units) can be constructed from the solutions to the
Dirac equation [27] as in Eq. (A4). Using Eq. (A6) and the
expression for the Wronskian, we arrive at the following
relation between the boundary asymptotics of the solutions
ψ in and ψbdy:

ψ in
α ðz0Þ ¼

�ð1 − zÞ−2m
Gα

ð−iγ0Þ þ 1

�

ψbdy
α ðz0Þ: ð21Þ

3As shown in Ref. [6], even though the current is defined as a
spatial average, the only mode that contributes at the leading
order (tree level) is the quasinormal mode at k ¼ kF.
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Taking into account the dictionary entry for the boundary
propagator from Eq. (A9) and the representation (19) for
ψ in and ψbdy, the retarded propagator at the boundary is

Gα ¼ lim
z0→1

ð1 − z0Þ−2mψbdy
α ðz0Þðψ in

α ðz0ÞÞ−1

¼ lim
z0→1

GαðzH; z0Þγ0GαðzH; z0Þ ð22Þ

with zH ¼ 0. Using Eq. (22) and the definition for the
current in Eq. (18) it can now be shown that the current
Jμ1 ∼

R

Ḡ1γ
μG1 for an on-shell solution becomes at the

boundary [6]

Jμ1ðω ¼ 0; k ¼ kF; z0 → 1Þ ¼ 1þ 2m
μ

Z

dωγμG1ðω; kFÞ:
ð23Þ

It is well known [28] that the integral of the propagator is
related to the charge density. In particular, for γμ ¼ γ0 and
for the horizon boundary conditions chosen so thatG ¼ GF
(Feynman propagator), we obtain

J01 ≡
Z

dωψ†
1ψ1 ¼

1þ 2m
μ

nF; ð24Þ

i.e. the bilinear J0 directly expresses the charge density
nF ¼ trðiγ0GÞjon-shell ∼ jb1ðkFÞj2. Notice that to achieve
this we need to set ω ¼ k − kF ¼ 0, i.e. look at the location
of the Fermi surface. By analogy, we can now see that the
components J1;2 correspond to current densities. In par-
ticular, the ratio of the spatial components Ji1=E

j in the
external electric field E readily gives the expression for the
conductivity tensor σij. Finally, the formalism outlined
above allows us to define an arbitrary bilinear JA ¼
R

ψ̄ Âψ and to compute its expectation value. By choosing
the matrix Â appropriately we are able to model particle-
hole, particle-particle or any other current. Notice however
that all bilinears JA are proportional on shell, as can be seen
from Eqs. (22)–(23), which hold also for any other matrix Â
sandwiched between the two bulk propagators. The pro-
portionality is at fixed parameters (μ, T, etc.) so the
dependences of the form JAðμÞ and JAðTÞ will be different
for different choices of Â.
To introduce another crucial current, we will study the

form of the action. (We will define our action to model the
quantum phase transition and to define the pairing excitonic
gap in Sec. III B.) We pick a gauge, Eq. (3), so that the
Maxwell field is Aμ ¼ ðΦðzÞ; 0; hðzÞx; 0; 0Þ, meaning that
the nonzero components of Fμν are Fz0¼∂zΦ, Fz2 ¼ x∂zh,
F12 ¼ h and their antisymmetric pairs. The total action
[Eqs. (1) and (7)] is now

S ¼
Z

dzd3x
ffiffiffiffiffiffi

−g
p �

1

2κ2

�

Rþ 6 −
1

4g2F
FMNFMN

�

þ ψ̄ΓMDMψ −mψ̄ψ

�

þ
Z

d3x
ffiffiffiffiffiffi

−h
p �

RbndAμnνFμν þ
X

α

ψ̄αð−iσ3Þψα

�

;

ð25Þ

where ψ̄α ¼ iψ†
ασ1. The second integral is the boundary

term added to regularize the bulk action, for which the
fermion part vanishes on shell. Knowing the metric (2) and
the form of Aμ, we find that the total action (free energy,
from the dictionary) can be expressed as [6]

F ¼ F hor −
1

2
ðμρþ hMÞ þ 3

2
K ð26Þ

whereF hor is the free energy at the horizon, which does not
depend on the physical quantities on the boundary as long
as the metric is fixed [6] so we can disregard it here. In
Eq. (26), μ, ρ and h, M are the leading and subleading
terms in the electric and magnetic field

Φðz → z0Þ ¼ μ; ∂zΦðz → z0Þ ¼ ρ;

hðz → z0Þ ¼ h; ∂zhðz → z0Þ ¼ M; ð27Þ
and the fermionic contribution is proportional to

K¼
Z

dω
Z

d2k
X

α

ψ̄αðω;k;zÞψαðE−ω;p−k;zÞ ð28Þ

which brings us to the second crucial bilinear. Along the
lines of the derivation (18)–(23), we see that the fermionic
contribution to the boundary action (25) is proportional to

K ¼ 2
X

α

ReGα; ð29Þ

i.e. it is the real part of the boundary propagator.4 The
bulk fermionic term does not contribute, being propor-
tional to the equation of motion, while the boundary terms
include the holographic factors of the form ð1 − z0Þn. In
accordance with our earlier conclusion that the on-shell
bilinears are all proportional, we can reexpress the free
energy in Eq. (26) as

F ¼ F hor −
1

2
ðμρþ hMÞ þ 3

4mþ 2
μJ01 ð30Þ

where the chemical potential reappears in the prefactor and
the fermionic term becomes of the form μJ01, confirming
again that J01 can be associated with the number density.

4In Ref. [6] this bilinear was denoted by I. In the present paper
a different bilinear is called I�.
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B. Pairing currents

Now we will put to work our bilinear approach in order
to explicitly compute the particle-hole (excitonic) pairing
operator. We add a scalar field which interacts with
fermions by the Yukawa coupling as done in Ref. [29].
Both scalar and fermion fields are dynamical. The matter
action is given by

Sψ ¼ i
Z

dzd3x
ffiffiffiffiffiffi

−g
p ðψ̄ΓMDψ

Mψ −mψ ψ̄ψ − λjϕj2ψ̄ψÞ;

SG ¼
Z

dzd3x
ffiffiffiffiffiffi

−g
p 1

2
Gintðϕψ̄Γψ þ ϕ⋆ψ̄ Γ̄ψÞ;

Sϕ ¼ −
Z

dzd3x
ffiffiffiffiffiffi

−g
p ðjDϕ

Mϕj2 þ VðjϕjÞÞ ð31Þ

where the covariant derivatives are Dψ
M¼∇Mþ1

4
ωMabΓab−

iqψAM, Dϕ
M¼∇M−iqϕAM, and ψ̄¼ψ†iΓt. The gamma-

matrix structure of the Yukawa interaction is specified
further. Matter action is supplemented by the gauge-gravity
action

SA ¼ 1

2κ2

Z

dzd3x
ffiffiffiffiffiffi

−g
p �

Rþ 6

L2
−

1

4g2F
FMNFMN

�

:

ð32Þ

We take the AdS radius L ¼ 1 and gF ¼ 1. The gauge field
components A0 and A2 are responsible for the chemical
potential and magnetic field, respectively, in the boundary
theory. As in Ref. [29], we assume λ ¼ 0 and VðjϕjÞ ¼
m2

ϕjϕj2 and the scalar is real ϕ⋆ ¼ ϕ. For the particle-hole
sector, the scalar field is neutral qϕ ¼ 0.
The Yukawa coupling Gint is allowed to be positive and

negative. When the coupling is positive Gint > 0, a repul-
sive interaction makes it harder to form the particle-hole
condensate. Therefore it lowers the critical temperature and
can be used as a knob to tune to a vanishing critical
temperature Tc ¼ 0 at a critical value Gc

int which defines a
quantum critical point. When the coupling is negative
Gint < 0, an attractive interaction facilitates pairing and
helps to form the condensate.
Both situations can be described when the interaction

term is viewed as a dynamical mass of either sign due to the
fact that it is in the ψ̄ψ channel. ForGint > 0, the interaction
Gintϕ introduces a new massive pole: the massless free
fermion field acquires a mass which makes it harder to
condense. For Gint < 0, there is a tachyonic instability. The
exponentially growing tachyonic mode is resolved by a
condensate formation, a new stable ground state. It can be
shown that we do not need a nonzero chemical potential to
form a condensate in this case. A similar situation was
considered in Ref. [16] for the superconducting instability

where the spontaneous symmetry breaking of Uð1Þ was
achieved by the boundary double-trace deformation. In
our case for the electron-hole pairing, Z2 symmetry is
spontaneously broken by a neutral order parameter. Next
we discuss the choice for the gamma-matrix structure Γ of
the Yukawa interaction (31) and the corresponding pairing
parameter Δ

Δ ¼ Ginthψ̄Γψi: ð33Þ

Now we explain our choice of the pairing operator and give
a rigorous justification for this choice.
In principle, any operator that creates a particle and a

hole with the same quantum numbers could be taken to
define Δ. This translates into the requirements

½Γ;Γi� ¼ 0; fΓ;Γ0g ¼ 0; ½Γ; Ĉ� ¼ 0: ð34Þ

(Anti)commutation with (time) space gamma matrices is
required for the preservation of homogeneity and isotropy,
and the last one is there to preserve the particle-hole
symmetry. In the basis we have adopted, Eq. (11), ðΓtÞ⋆ ¼
−Γt and Γz⋆ ¼ Γz, and therefore the charge conjugation is
represented as

Ĉ∶ ψ → Γ0Γ3ψ⋆: ð35Þ

We will also consider the parity of the order parameter. As
defined in Ref. [30], parity in the presence of the AdS
boundary acts as x1 → −x1 with x2, z unchanged, while the
transformation of the spinor is given by

P̂∶ ψ → Γ1Γ5ψ : ð36Þ

We can now expand Γ in the usual basis:

B ¼ fI;Γμ;Γ5;Γ5Γμ; ½Γμ;Γν�g ð37Þ

where the indices in the commutators ½Γμ;Γν� run along
the six different combinations, and check directly
that the conditions (34) can only be satisfied by the
matrices I, Γ5Γi and ½Γ0;Γz�. This gives three candidate
bilinears:

(i) For Γ ¼ I we get the bulk current ψ̄ψ ¼
−ðψ†

1σ
1ψ1 þ ψ†

2σ
1ψ2Þ, i.e. the mass operator in

the bulk. As noted in this section and in more
detail in Ref. [6], it can be identified as propor-
tional to the bulk mass term. As such, it describes
the free energy per particle, as can be seen from
the expression for the free energy (26). The
equation of motion for K ¼ hψ̄ψi [Eq. (28)] ex-
clusively depends on the Uð1Þ current and thus
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cannot encapsulate the density of the neutral
particle-hole pairs: indeed, we directly see that
the right-hand side equals zero if the total charge
current vanishes.

(ii) For Γ ¼ iΓyΓ5, the bulk current is ψ̄iΓyΓ5ψ ¼
−ðψ†

1σ
1ψ1 − ψ†

2σ
1ψ2Þ. The crucial difference with

respect to the first case is the relative minus sign. It is
due to this sign that the current couples to itself, i.e. it
is a response to a nonzero parameter Gint, as we will
see soon.

(iii) For Γ ¼ Γz, the resulting bulk current is ψ̄Γ3ψ ¼
−iðψ†

1σ
2ψ1 þ ψ†

2σ
2ψ2Þ. It sources the radial gauge

field Az which is believed to be equal to zero in all
meaningful holographic setups, as the radial direc-
tion corresponds to the renormalization group (RG)
scale. Thus, this operator is again not the response to
the attractive pairing interaction.

We are therefore left with one possibility only: Γ ¼
iΓ2Γ5 which is also consistent with the choice of our
gauge at nonzero magnetic field. We will therefore work
with the channel

Γ≡ iΓyΓ5 ¼
�

1 0

0 −1

�

: ð38Þ

As we have discussed earlier, the isotropy in the x-y
plane remains unbroken by the radial magnetic field,
and hence the expectation value should in fact be
ascribed to the current Iμ ¼ iψ̄ΓμΓ5ψ with μ ¼ 1, 2.
We show the equivalence of the iΓxΓ5 and iΓyΓ5 order
parameters below. The choice of the y channel is
motivated by technical simplicity due to the form of
the projection operator and the fermion basis we use,
Eq. (14): Πα ¼ 1

2
ð1 − ð−1ÞαΓ3Γ0Γ1Þ with α ¼ 1; 2, since

Γ3Γ0Γ1 ¼ −iΓ2Γ5 with Γ5 ¼ iΓ0Γ1Γ2Γ3. Finally, we note
that the structure of the currents defined in Eqs. (17) and
(18) depends on the basis choice and that the currents as
such have no physical interpretation in the boundary
theory: physical meaning can only be ascribed to the
expectation values [6]. It is exactly the expectation
values that encode for the condensation (order) on
the field theory side [6,30].
The AdS=CFT correspondence does not provide a

straightforward way to match a double-trace condensate
to a boundary operator, though only single-trace fields
are easy to identify with the operators at the boundary.
Indeed, in holographic superconductors a superconduct-
ing condensate is modeled by a charged scalar field hΦi
(see e.g. Ref. [31]). As in Ref. [30], we argue by
matching discrete symmetries on the gravity and field
theory sides, that the expectation of the bulk current
hψ̄iΓ2Γ5ψi is the gravity dual of the pairing particle-hole
gap. Let us consider properties of the corresponding

condensates with respect to discrete symmetries, parity and
charge conjugation, in the AdS four-dimensional space.
According to Eq. (36), hψ̄ψi and hψ̄Γ3ψi are scalars and
parity even, while hψ̄iΓ2Γ5ψi is a pseudoscalar and parity
odd. As for the charge conjugation, we easily find that hψ̄ψi
and hψ̄iΓ2Γ5ψi commute with Ĉ, while hψ̄Γ3ψi anticom-
mutes. Since the latter is the component of a vector current
while the former two are (pseudo)scalars, we find that all
operators preserve the particle number, as promised. The
magnetic field H is odd under both parity and charge
conjugation, and therefore it is unaffected by Ĉ P̂. The
condensate hψ̄ψi is also unaffected by Ĉ P̂; however
hψ̄iΓ2Γ5ψi and hψ̄Γ3ψi spontaneously break the Ĉ P̂
symmetry.
In the three-dimensional boundary theory, gamma

matrices can be deduced from the four-dimensional bulk
gamma matrices; and the four component Dirac spinor ψ
is dual to a two-component spinor operator Ψ. As has
been also found in Ref. [30], the three-dimensional
condensate Ψ̄Ψ is odd under parity and even under
charge conjugation, and therefore it is odd under Ĉ P̂. We
summarize the transformation properties of the four- and
three-dimensional condensates together with the magnetic
field

hψ̄ψi4d hψ̄Γ3ψi4d hψ̄iΓ2Γ5ψi4d hΨ̄Ψi3d H

P̂ þ þ − − −
Ĉ þ − þ þ −
ĈP̂ þ − − − þ

ð39Þ

which shows that the symmetry properties are matched
between hψ̄iΓ2Γ5ψi4d and hΨ̄Ψi3d condensates: they
spontaneously break the CP symmetry while the mag-
netic field leaves it intact. Therefore our AdS=CFT
dictionary between the bulk and boundary quantities is
ψ ↔ Ψ and hψ̄ iΓ2Γ5ψi ↔ hΨ̄Ψi, with the corresponding
conformal dimensions of boundary operators given by
Eq. (84) and Eq. (83).
The natural bulk extension is now the current

I¼ð−iÞ
Z

dω
Z

d2kψ̄ðω;k;zÞΓψðE−ω;p−k;zÞ ð40Þ

and it is understood that in nonzero magnetic field
the integration over k degenerates into the sum over
Landau levels (this holds for all currents in this section).
We will soon show that a complete set of bulk equations
of motion for the operator (40) requires a set of currents
that we label J�, I� and K�. In the representation (11)
we introduce the following bilinears of the fer-
mion field:
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J�ðE; p; zÞ ¼ ð−iÞ
Z

dω
Z

d2kðψ̄1ðω; k; zÞσ1ψ1ðE − ω; p − k; zÞ � ψ̄2ðω; k; zÞσ1ψ2ðE − ω; p − k; zÞÞ

≡ J1ðE; p; zÞ � J2ðE; p; zÞ;

I�ðE; p; zÞ ¼ ð−iÞ
Z

dω
Z

d2kðψ̄1ðω; k; zÞψ1ðE − ω; p − k; zÞ � ψ̄2ðω; k; zÞψ2ðE − ω; p − k; zÞÞ

≡ I1ðE; p; zÞ � I2ðE; p; zÞ;

K�ðE; p; zÞ ¼ −
Z

dω
Z

d2kðψ̄1ðω; k; zÞσ2ψ1ðE − ω; p − k; zÞ � ψ̄2ðω; k; zÞσ2ψ2ðE − ω; p − k; zÞÞ

≡ K1ðE; p; zÞ � K2ðE; p; zÞ; ð41Þ

where the pairing parameter hψ̄Γψi in Eq. (40) is I ≡ I−,
the index 0 for the zeroth component is omitted in J�, and
ψ̄α ¼ iψ†

ασ1.
Let us now study the dynamics of the system. We need to

know the evolution equations for the currents and the scalar
field and to complement them with the Maxwell equations.
We will show that the equations of motion for all currents
generically have nonzero solutions. This suggests that, due
to the coupling with the UV CFT, the pairing can occur
spontaneously, without explicitly adding new terms to the
action (there is no need to add an interaction for fermions
in the bulk). Nevertheless, we will also analyze the situa-
tion with nonzero Gint and show what new phenomena it
brings as compared to UV CFT-only coupling (i.e. no bulk
coupling).
Let us start from the equations of motion. The Dirac and

Klein-Gordon equations are to be complemented with the
Maxwell equation

∇MFMN ¼ iqϕðϕ⋆ð∇N − iqϕANÞϕ − ϕð∇N þ iqϕAnÞϕ⋆Þ
− iqψ ψ̄ΓNψ ð42Þ

which is reduced when the scalar is real, ϕ⋆ ¼ ϕ, to

∇MFMN ¼ 2q2ϕϕ
2AN − iqψ ψ̄ΓNψ : ð43Þ

In the background of a dyonic black hole with the metric

ds2 ¼ 1

ð1 − zÞ2
�

−fdt2 þ dz2

f
þ dx2 þ dy2

�

ð44Þ

the Maxwell equation for the component A0 is

∂2
zA0 −

2q2ϕϕ
2

ð1 − zÞ2f A0 −
iqψJþ

ð1 − zÞ2f ¼ 0 ð45Þ

where we have used ψ̄Γ0ψ → −Jþ.
In our setup we ignore the backreaction to A2 ¼ Hx,

treating it as a fixed external field. The justification
comes from the physics on the field theory side: we
consider a stationary nonmagnetic system with zero

current and magnetization density. In the bulk, this
means that the currents sourced by—and backreacting
to—the magnetic field arise as corrections of higher
order that can be neglected to a good approximation.5

Inclusion of the second Maxwell equation for A2 would
likely only lead to a renormalization of the magnetic
field H ↦ H þ δH without quantitative changes of the
physics.
The equations of motion for the matter fields read

eMA ΓMð ~Dψ
M − iqψAMÞψ −mψψ − iGintϕΓψ ¼ 0;

− ð∂M − iqϕAMÞð∂M − iqϕAMÞϕþ 1

2

ϕ

jϕjV
0ðjϕjÞ

−
1

2
Gintψ̄Γψ ¼ 0 ð47Þ

where we included the connection to the definition
~DM ¼ ∇M þ 1

4
ωMabΓab. In the dyonic black hole back-

ground, the Dirac equation is

�

ð∂z þAÞΓz −
iðωþ qA0Þ

f
Γt −

m
ffiffiffi

f
p ð1 − zÞ

∓ iGintϕ
ffiffiffi

f
p ð1 − zÞ − U−1 λn

ffiffiffi

f
p
�

ψ ¼ 0 ð48Þ

5To see this, consider the corresponding Maxwell equation

∂2
zA2 þ

∂zf
f

∂zA2 ¼
2q2ϕϕ

2

ffiffiffi

f
p ð1 − zÞ3 A2 þ

iqψ
ffiffiffi

f
p ð1 − zÞ3 Kþ; ð46Þ

and insert the ansatz A2 ¼ Hxþ δðz; xÞ. The resulting relation
for the neutral scalar qϕ ¼ 0 ∂zðf∂zδÞ ¼ −q=ð ffiffiffi

f
p ð1 − zÞ3Þ

predicts K ∼ ψ̄ασ
3ψα ∼ δ, compared to the analogous estimate

for the electrostatic backreaction J ∼ ψ̄ασ
1ψα ∼ μ. Thus the

spatial current is of order of the small correction to the field,
δ. The reason obviously lies in the fact that the magnetic
monopole sources a z-independent field.
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where qψ ≡ q, the scalar is neutral qϕ ¼ 0, mψ ≡m and

A ¼ 1

2

�

3

ð1 − zÞ þ
f0

2f

�

; A0 ¼ μz;

λn ¼
ffiffiffiffiffiffiffiffiffiffiffi

2qhn
p

; U−1 ¼
�

iσ2 0

0 iσ2

�

ð49Þ

with f0 ≡ ∂zf. In the limit ω ¼ 0 it is written as follows:
�

∂z þA −
iqA0

f
σ2 þ m

ffiffiffi

f
p ð1 − zÞ σ

3

� iGintϕ
ffiffiffi

f
p ð1 − zÞ σ

3 þ λn
ffiffiffi

f
p σ1

�

ψ1;2 ¼ 0: ð50Þ

We write the bilinears in short as

I� ¼ ψ†
1σ

1ψ1 � ψ†
2σ

1ψ2;

J� ¼ ψ†
1ψ1 � ψ†

2ψ2;

K� ¼ ψ†
1σ

3ψ1 � ψ†
2σ

3ψ2; ð51Þ
with ψ̄1 ≡ ψ†

1iσ
1. Therefore I− ¼ ð−iÞψ̄Γψ because

ψ̄ ¼ ψ†Γt. We rewrite the Dirac equation for the bilinears

ð∂z þ 2AÞJ� þ 2m
ffiffiffi

f
p ð1 − zÞK� þ 2λn

ffiffiffi

f
p I�

þ 2iGint
ffiffiffi

f
p ð1 − zÞϕK∓ ¼ 0;

ð∂z þ 2AÞI� þ 2qA0

f
K� þ 2λn

ffiffiffi

f
p J� ¼ 0;

ð∂z þ 2AÞK� −
2qA0

f
I� þ 2m

ffiffiffi

f
p ð1 − zÞ J�

þ 2iGint
ffiffiffi

f
p ð1 − zÞϕJ∓ ¼ 0: ð52Þ

The pairing parameter is obtained by averaging the
current I−

Δ ¼ iGinthI−i: ð53Þ
This system should be accompanied by the equation of
motion for the neutral scalar field. In the limit of ω ¼ 0 and
ki ¼ 0 it is given by

−
1
ffiffiffiffiffiffi−gp ∂z

�

ffiffiffiffiffiffi

−g
p 1

gzz
∂zϕ

�

þ 1

2
V 0ðjϕjÞ − 1

2
Gintψ̄Γψ ¼ 0

ð54Þ

where g≡ det gMN . In the dyonic black hole background,
the equation of motion for the scalar is

∂2
zϕþ B∂zϕ −

m2
ϕ

fð1 − zÞ2 ϕþ iGint

2fð1 − zÞ2 I− ¼ 0 ð55Þ

where

B ¼ 2

ð1 − zÞ þ
f0

f
: ð56Þ

The system of equations (52) and (55) is solved, at the
lowest Landau level, for the unknown I�; J�; K� and ϕ.
We do not consider the backreaction of the spinor and
scalar fields to the gauge field, and therefore we omit the
Maxwell equation (45).
Since the magnetic field is encapsulated in the parameter

mapping (16), we may put λn ¼ 0 and use the rescaled
fermion charge; furthermore, the terms proportional to off-
shell (discrete) momentum cancel out due to symmetry
reasons, as explained in Ref. [6]. Another key property of
the magnetic systems is that, at high magnetic fields, the
ratio μeff=T can approach zero at arbitrarily small temper-
atures (including T → 0).
Next we set up boundary conditions at the IR and UV for

the system of equations (52). It is enough to establish the
boundary conditions for the fermion components. At the
horizon we choose the incoming wave into the black hole.
However, as we consider static solutions ω ¼ 0, it is
enough to take a regular solution, not growing to infinity
as we approach horizon. We write the Dirac equation at the
horizon z ∼ 0 for the upper component ψ1 ¼ ðy1; y2Þ,
�

∂z þA −
iμqz
f

σ2 þ mþ Gintϕ
ffiffiffi

f
p ð1 − zÞ σ

3 þ λn
ffiffiffi

f
p σ1

��

y1
y2

�

¼ 0;

A ¼ 1

2

�

3

1 − z
þ f0

2f

�

ð57Þ

where at T ¼ 0 the metric factor is f ¼ zð3 − 3zþ z2−
3ð1 − zÞ3Þ. Near the horizon it becomes

�

∂z þ
1

2z
−
iμq
6z

σ2 þmþ Gϕ

z
ffiffiffi

6
p σ3 þ λn

z
ffiffiffi

6
p σ1

��

y1
y2

�

¼ 0:

ð58Þ

Explicitly, the system is written as

∂zy1 þ
1

z

�

1

2
þmþ Gintϕ

ffiffiffi

6
p

�

y1 þ
1

z

�

λn
ffiffiffi

6
p −

μq
6

�

y2 ¼ 0;

∂zy2 þ
1

z

�

1

2
−
mþ Gintϕ

ffiffiffi

6
p

�

y2 þ
1

z

�

λn
ffiffiffi

6
p þ μq

6

�

y1 ¼ 0:

ð59Þ

The solution reads

y1 ¼ C1z−
1
2
−ν þ C2z−

1
2
þν;

y2 ¼
1

μq
6
− λn
ffiffi

6
p

�

C1

�

mþ Gintϕ
ffiffiffi

6
p − ν

�

z−
1
2
−ν

þ C2

�

mþGintϕ
ffiffiffi

6
p þ ν

�

z−
1
2
þν

�

ð60Þ
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where C1, C2 are constants and

ν ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ðmþ GintϕÞ2 þ 6λ2n − μ2q

q

: ð61Þ

We choose the solution with the regular behavior y ∼ z−
1
2
þν.

The solution for zi in the lower component ψ2 ¼ ðz1; z2Þ
where ψ ¼ ðψ1;ψ2Þ is obtained from yi by a substitute
Gint → −Gint. We have for the bilinear combinations

I� ¼ y†1y2 þ y†2y1 � ðy → zÞ;
J� ¼ y†1y1 þ y†2y2 � ðy → zÞ;
I� ¼ y†1y1 − y†2y2 � ðy → zÞ; ð62Þ

where ψ1 ¼ ðy1; y2Þ and ψ2 ¼ ðz1; z2Þ.
We impose two boundary conditions for Eq. (55): at

the horizon ϕ0ðz ¼ 0Þ ¼ 0 and at the AdS boundary
ϕðz ¼ 1Þ ¼ 0.

At the AdS boundary, the boundary conditions for the
currents are known from Ref. [6]: one should extract the
normalizable components of J, I, K in order to read off
the expectation values. However, a normalizable solution is
defined in terms of an absence of a source for the
fundamental Dirac field ψα rather than the composite fields
such as J�. The solution is to put the source of the Dirac
field to zero and then to read off the desired normalizable
solution for J� directly. Under the assumption that the
electrostatic potential A0 is regular, from Eq. (20) the
composite field densities behave near the AdS boundary
z0 ¼ 1 as

J 1 ¼ ψ†
1ψ1 → a21ð1 − zÞ3−2m þ b21ð1 − zÞ3þ2m;

I1 ¼ ψ†
1σ

1ψ1 → a1b1ð1 − zÞ3;
K1 ¼ ψ†

1σ
3ψ1 → a21ð1 − zÞ3−2m − b21ð1 − zÞ3þ2m; ð63Þ

and

J 2 ¼ ψ†
2ψ2 → a22ð1 − zÞ5−2m þ b22ð1 − zÞ5þ2m;

I2 ¼ ψ†
2σ

1ψ2 → a2b2ð1 − zÞ5;
K2 ¼ ψ†

2σ
3ψ2 → a22ð1 − zÞ5−2m − b22ð1 − zÞ5þ2m: ð64Þ

The currents we have defined in Eq. (41) are the averaged
densities, e.g. J1 ¼

R

dωd2kJ 1. A normalizable solution in
J � ¼ J 1 � J 2 is thus defined by the vanishing of both the
leading and the subleading term.
In what follows the AdS evolution equations (52) and

(55) with appropriate boundary conditions are solved
numerically with a shooting method from the horizon.
Unlike the recent study in Ref. [30] where only in the
presence of the four-Fermi bulk coupling Gint one finds a
nontrivial solution for the averaged current hI−i with the IR
boundary taken at z ¼ 0, we will generically have a
nonzero expectation value even for Gint ¼ 0. In
Ref. [30], one needed to introduce an IR cutoff, such as
the hard wall, positioned at a radial slice z ¼ z⋆. In our
setup, the choice of the boundary conditions in the UV
guarantees that the condensate will form irrespectively of
the IR geometry, as it specifically picks the quasinormal
mode of the fermion.
We repeat the same calculations for the x-component

order parameter

~Γ≡ iΓxΓ5 ¼
�

0 1

1 0

�

: ð65Þ

The pairing current defined as

~I¼ð−iÞ
Z

dω
Z

d2kψ̄ðω;k;zÞ ~ΓψðE−ω;p−k;zÞ ð66Þ

requires us to introduce the following currents:

~J�ðE; p; zÞ ¼ ð−iÞ
Z

dω
Z

d2kðψ̄1ðω; k; zÞσ1ψ2ðE − ω; p − k; zÞ � ψ̄2ðω; k; zÞσ1ψ1ðE − ω; p − k; zÞÞ

≡ ~J1ðE; p; zÞ � ~J2ðE; p; zÞ;
~I�ðE; p; zÞ ¼ ð−iÞ

Z

dω
Z

d2kðψ̄1ðω; k; zÞψ2ðE − ω; p − k; zÞ � ψ̄2ðω; k; zÞψ1ðE − ω; p − k; zÞÞ

≡ ~I1ðE; p; zÞ � ~I2ðE; p; zÞ;
~K�ðE; p; zÞ ¼ −

Z

dω
Z

d2kðψ̄1ðω; k; zÞσ2ψ2ðE − ω; p − k; zÞ � ψ̄2ðω; k; zÞσ2ψ1ðE − ω; p − k; zÞÞ

≡ ~K1ðE; p; zÞ � ~K2ðE; p; zÞ: ð67Þ

A tilde is used to distinguish the two cases of pairings involving x and y components. Using the Dirac equation at ω ¼ 0

�

∂z þA −
iqA0

f
σ2 þ m

ffiffiffi

f
p ð1 − zÞ σ

3 þ λn
ffiffiffi

f
p σ1

�

ψ1;2 þ
iGintϕ
ffiffiffi

f
p ð1 − zÞ σ

3ψ2;1 ¼ 0 ð68Þ
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where the pairing parameter is obtained by averaging the
current ~Iþ

~Δ ¼ iGinth~Iþi ð69Þ

we get the following set of coupled equations for the
bilinears defined in Eq. (67):

ð∂z þ 2AÞ ~J� þ 2m
ffiffiffi

f
p ð1 − zÞ

~K� þ 2λn
ffiffiffi

f
p ~I�

þ 2iGint
ffiffiffi

f
p ð1 − zÞϕKþ ¼ 0;

ð∂z þ 2AÞ~I� þ 2qΦ
f

~K� þ 2λn
ffiffiffi

f
p ~J� ¼ 0;

ð∂z þ 2AÞ ~K� −
2qΦ
f

~I� þ 2m
ffiffiffi

f
p ð1 − zÞ

~J�

þ 2iGint
ffiffiffi

f
p ð1 − zÞϕJþ ¼ 0: ð70Þ

There are no minus components for the Gintϕ term in the
first and third equations of Eq. (70), and these terms contain
currents without tildes defined in Eq. (41). The equation of
motion for the scalar is

∂2
zϕþ B∂zϕ −

m2
ϕ

fð1 − zÞ2 ϕþ iGint

2fð1 − zÞ2
~Iþ ¼ 0: ð71Þ

The system of equations (52), (55) and (70), (71) differ only
in the Gint term: they are identical without it, though
currents are defined differently. Therefore, provided there is
no “source” in the equations of motion, i.e. there is no
Yukawa interaction Gint ¼ 0, the x and y components of
gamma matrices produce the vacuum expectation values
(VEVs)

hI�i ¼ h~I�i ð72Þ

and according to the definitions of the pairing parameters

Δ → hI−i; ~Δ → hIþi ð73Þ

where I� is found from Eq. (52). However, the equations
for the plus and minus components in Eq. (52) are identical.
In particular,

hIþi ¼ hI−i ð74Þ

which proves that x-y rotational symmetry is intact and

Δ ¼ ~Δ: ð75Þ

Further we consider only the y component for simplicity.

C. Quantum criticality in the electron-hole channel

1. Thermodynamic behavior

We will first use the bilinear formalism to inspect the
thermodynamics, in particular the phase transition that
happens at high magnetic fields and the behavior of the
pair density after the phase transition has occurred. To
detect the transition, we can simply plot the free energy (26)
at a fixed temperature as a function of the magnetic field.
The action can be rewritten in terms of the gauge field and
currents as

S ¼
Z

dzd3x

�

1

2
Φ∂zzΦþ 1

2
H2 − I−Δ

�

ð76Þ

and we need to include also the boundary term that fixes the
boundary values of the gauge field:

Sbnd ¼
Z

d3x
ffiffiffiffiffiffi

−h
p

AμnνFμν ¼
Z

d3xΦ∂zΦ ð77Þ

where nμ ¼ ð0; 0; 0; 1Þ is the unit normal to the AdS4
boundary, and h is the induced metric for which
ffiffiffiffiffiffi

−h
p ¼ z−30 . Identifying Φðz0Þ ¼ μ and ∂zΦðz0Þ ¼ ρ and
using the Maxwell equation (45), we arrive at the final
expression

F ¼ F bulk þ F bnd

¼
Z

d3x

�ð1 − z0Þ1þ2m

2
ffiffiffi

f
p JþΦþ 1

2
h2 − I−Δ

�

þ
Z

d3x

�

μ

2mþ 1
J01ð1 − z0Þ1þ2m þ 1

2
μρ

�

: ð78Þ

In particular, we see that I− is indeed the response to the bulk
order parameterΔ. When the couplingGint is set to zero, the
I− term in the bulk part of Eq. (78) will be absent. Let us
first see what happens in that case. The free energy is
then unaffected by the pairing, and we can only follow
the dependence on the magnetic field (Fig. 1). We see the
nonanalyticity in the free energy at the point h ¼ hc. The
underlyingmechanism can be understood from themapping
(16): it is the disappearance of the coherent quasiparticle due
to the lowering of the effective chemical potential μeff . The
pairing arises as a byproduct of the interaction with the
boundary CFT and does not influence the transition.
With the contact interaction, corresponding to electron-

hole attraction in the infrared, we can further rewrite
Eq. (78) observing that generically

J1ðz;ωÞ ¼
1

2
GRðz;ωÞI−ðz;ωÞ; ð79Þ

which gives the following result for the fermionic free
energy:
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F f ¼ð1−z0Þ1þ2mJ1ðz0;ω¼ 0Þ
�

3μ

4mþ2
−2ΔG−1

R ðω¼ 0Þ
�

:

ð80Þ

The minus sign already makes it obvious that the derivative
of the free energy can change sign, signifying a new critical
point. To probe the transition point itself, however, we need
to rewrite the relation (79) for on-shell values. Then the
denominator ofGR vanishes, the current J1 exactly captures
the jump of the particle number on the Fermi surface [6]
and Eq. (24) becomes J1 ¼ 3μ=ð2mþ 1Þ × Z, so we need
to replaceGR ↦ Z, which gives the equation for the critical
point:

F f ¼ð1−z0Þ−2mJ1ðhÞ
�

33=2q
4ðΔΨ−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffi

1−
h2

3

r

−
2GintI−ðhÞ

ZðhÞ
�

:

ð81Þ

We have also used ΔΨ ¼ 3=2þm in order to write the
equation purely in terms of the boundary quantities, and
emphasized that Z and J1 are also complicated functions of
h, since h determines the effective chemical potential.
Notice that only F bnd contributes to the fermionic term,
while both F bulk and F bnd contribute to the gauge field
term. For Gint ¼ 0, the second term vanishes and the free
energy can only have a nonanalyticity when J1ðhcÞ has it. It
is a first-order transition already identified in the magnetic
case in Ref. [15] and studied from a more general viewpoint
in Ref. [6]: the magnetic field depletes the Landau levels of

their quasiparticles and the Fermi surface vanishes. This
first-order jump happens at some critical μeff and we will
denote the corresponding value of the magnetic field by hc.
If, however, Gint becomes finite, we can see that the
first term decreases with h while the second increases,
since ZðhÞ decreases. Thus, the overall free energy F ¼
F f þ F gauge will have a saddle point (F gauge always
decreases with h). We can now conclude that the following
behavior with respect to Gint can take place:

(i) For 0 ≤ Gint < G0
int, the second term in Eq. (81) is

always negligible and the system only has the first-
order transition at h ¼ hc.

(ii) For G0
int < Gint < G1

int, the interplay of the first and
the second term in Eq. (81) gives rise to a local
stationary point (but not an extremum) at some
h ¼ h⋆. This can potentially be a new critical point.
In order to understand it better we will later perform
a detailed analysis of the infrared behavior of the
currents. It will turn out that it can be either a
second-order transition or an infinite-order, Bere-
zinsky-Kosterliz-Touless (BKT)-type transition.

(iii) For Gint > G1
int, the Dirac hair cannot be formed and

we have J1 ¼ 0 for any magnetic field, including
zero. Since in this regime the pairing cannot occur
even though Gint is large, this means we are in fact
outside the applicability of the mean-field approach.

In Fig. 1 we show the second, arguably most interesting
case. A second-order nonanalyticity in the free energy is
obvious, as long as the stable quasiparticles with ν > 1=2
do not overpower the unstable quasiparticles that govern
the transition at h ¼ h⋆.
The conclusion we wish to emphasize is that order

parameter physics is able to stabilize the non-Fermi liquids,
while it is known [6,7] that in the absence of additional
degrees of freedom a consistent backreaction treatment
tends to leave only the stable, Fermi liquid surfaces. The
physical nature of the point h⋆ will be the object of further
analysis. The next section will reveal more on the actual
pairing phenomenology, showing the new phase to be
characterized by an anomalous, growing dependence ΔðhÞ.

2. Analysis of critical points

Having analyzed the thermodynamics and found the
existence of critical points, we will now study the behavior
of the order parameter Δ in the most interesting regime, for
G0

int < Gint < G1
int, where the critical points are expected to

appear.
In a nutshell, we will find that the region between G0

int
and G1

int can be further subdivided into three regions,
delimited by the values G⋆

c , G⋆⋆
c and Gc, characterized

by one or two second-order transitions or a BKT transition.
We will also show that the pairing is favored for high
effective chemical potentials when the density is high
enough for the gravitational interaction to produce bound
states. Finally, at small h values the pairs vanish as Δ ∝

0 0.5 1 1.5 2
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h = h*: continuous
phase transition

FIG. 1 (color online). Total (bulk plus boundary) free energy of
the system F ðhÞ for increasing values of the charge q. An explicit
pairing term Gint ¼ 2 has been chosen in order to suppress the
stable Fermi surfaces and emphasize the phase transition at
h ¼ h⋆. Still, for higher q values, the ν < 1=2 quasiparticles
become subdominant compared to ν > 1=2 ones and the tran-
sition is lost. The bulk mass is m ¼ 0.10.
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expððTc − TÞβÞ with 0 < β < 1 (presumably β ¼ 1=2) and
finally reach zero density Δ ¼ 0 for T ≤ Tc, while for
higher magnetic fields the trend is reversed and the order
parameter starts growing with h.
In order to construct the phase diagram, we will first

study ΔðhÞ at fixed temperature [Fig. 3(a)]. We see that for
m ¼ −1=4 (smooth curves) the gap vanishes following a
function which is smoother than a power law. Indeed, it
turns out that for h < hc we have the infinite-order BKT
scaling behavior

Δ ∼ μ exp

�

−
C

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðhc − hÞp

�

: ð82Þ

The scaling (82) will be proven in Sec. IV. Similar behavior
has been obtained in Ref. [32] where the scalar mass has
been tuned to the quantum phase transition: Δ∼
μ exp ð− C0

2
ffiffiffiffiffiffiffiffiffiffiffi

m2
c−m2

p Þ. Notice also that the value hc is very

high, corresponding to the magnetic length of the order
ffiffiffiffiffiffiffiffiffiffi

hμ2eff
p

∼ 102 (we use 1=μeff as the natural unit of length).
The above behavior is characteristic of the normal metal

parent materials, i.e. νkF > 1=2. At small values of νkF (i.e.
ΔΨ close to 3=2 or small μq), the anomalous growing
dependence ΔðhÞ appears (found also in the previous
section at strong enough magnetic fields) as shown by
the dashed curves in Fig. 3(a). The nature of the depend-
ence ΔðhÞ is rooted in the unstable Fermi surfaces with
νkF → 0 and can be understood from the analysis of the
bilinear equations in the AdS2 region, which we postpone
until the next section.
We study the relation ΔðhÞ at different values of the

pairing coupling Gint. For Gint > 0, Δ decreases as we
increase Gint: repulsive interaction destructs the pairing, as
given in Fig. 2. For Gint < 0, Δ increases as the absolute
value of Gint is increased: attractive interaction triggers and
enhances the pairing, as given in Fig. 3(b). Combining the
two cases, when the sign of Gint is taken into account, the
dependence Δ versus Gint is decaying. Lowering the mass
of the bulk fermion enhances pairing as can be seen by
comparing casesm ¼ 0 andm ¼ −1=4 in Fig. 2. As shown
in Fig. 2, pairing parameters with the x and y components

FIG. 3 (color online). (a) Dependence ΔðhÞ (in dimensionless units) for m ¼ −1=4 (smooth lines) and m ¼ −1=20 and for increasing
values of the fermion charge. At fixed fermion charge in the Fermi liquid regime (νkF < 1=2), the magnetic field reduces the pair density,
while small charges reduce the number of pairing particles, thus also reducing hΔi. In the non-Fermi liquid regime (νkF > 1=2) for
h > hc we observe an anomalous, power-law growing behavior of the gap. (b) Dependence ΔðhÞ for m ¼ −1=4 and the negative bulk
coupling Gint. For increasing absolute values of the bulk coupling Gint the pairing order Δ is enhanced. A new value h⋆ arises where the
order parameter drops to zero due to competition between the channel K1 and the quasiparticle density channel I1. For a large absolute
value of Gint eventually h⋆ ¼ 0 and we are out of the mean-field regime. The temperature is T ¼ 5.6 × 10−4.

FIG. 2 (color online). Dependence for the x and y components
of the pairing order ΔxðhÞ and ΔyðhÞ for Gint ¼ 0 (coinciding
solid line) and for Gint ¼ 1, 2, 4 (dashed, dotted and dash-dotted
lines). The coinciding solid line Δx ¼ Δy demonstrates the x-y
rotational invariance. For Gint > 0, increasing the bare coupl-
ing decreases Δ (and lowers Tc) which provides a way to tune
to the quantum critical point. Lowering the mass of the bulk
fermion enhances pairing and increases Δ as seen for
m ¼ 0 and m ¼ −1=4.

EXCITON-DRIVEN QUANTUM PHASE TRANSITIONS IN … PHYSICAL REVIEW D 92, 086004 (2015)

086004-13



are identical for Gint ¼ 0, which proves that the x-y plane
rotational symmetry is intact. As Gint is switched on, it
disrupts pairing in both channels in a slightly different way
causingΔx andΔy to deviate from each other. An important
novel feature distinguishing Gint > 0 and Gint < 0 is the
appearance of the second anomalous branch for Gint < 0 as
seen in Fig. 3 where the magnetic field enhances pairing:
the rising ΔðhÞ manifests magnetic catalysis (MC).
The motivation to consider Gint > 0 was the ability to

reduce the critical temperature to zero and to tune to the
quantum critical point. On the other hand, adding Gint < 0
increases the critical temperature; however we can tune to
vanishing Tc by adjusting other parameters such as the
magnetic field. Figures 2 and 3(b) can be used to extract the
quantum critical point (QCP) h ¼ hc when Δ ¼ 0 (or
Tc ¼ 0) at fixed Gint. Upon varying the coupling Gint,
the QCP becomes the quantum critical line (QCL) hcðGcÞ
or GcðhcÞ. In Fig. 3(b), for growing Gc, hc decreases in the
normal branch and hc increases in the anomalous branch. In
the normal branch, h depletes the particles from the Fermi
surface decreasing the pairing density. Therefore h destroys
the condensate. In the anomalous branch though, h enhan-
ces the condensation (magnetic catalysis).
The next step toward the phase diagram is the depend-

ence of the critical temperature on the external magnetic
field TcðhÞ. A typical situation is given in Fig. 4(a). We
have captured both branches so we see the expected
twofold behavior, with the decrease of Tc up to h ¼ hc
and a subsequent increase. A precise tuning of the mass
toward zero is necessary to enter the quantum critical
regime where TcðhcÞ ¼ 0. For reference, we have also

shown the cases m ¼ −0.10 and m ¼ −0.05, where the
approach of the critical point is seen but TcðhcÞ is still a
finite minimum.
Figure 4(b) shows the decreasing dependence of the

critical temperature Tc vs the coupling strengthGint. For the
blue curve Tc vanishes at the QCP Gc ≈ 1.1. It corresponds
to the quantum phase transition (QPT) of the second order
with a non-mean field exponent Tc ∼ jGc −Gjβ, β > 1. For
the red curve, Tc remains nonzero for all couplings Gint. It
happens when the system is always in the condensed phase
(an extreme RN-AdS black hole is unstable) [33]. As seen
from Fig. 4(b), Gint is a sensitive “knob” to adjust the
critical temperature Tc.
Finally, after studying the influence of the fermion

charge q and the bulk mass m on the relation TcðhÞ, we
conclude with Fig. 5, showing the critical temperature vs
the magnetic field for different couplings Gint. We find four
distinct regimes located in the interval G0 < G < G1 (we
omit the “int” subscript in Gint for now). The delimiting
points are denoted by G⋆

c, G⋆⋆
c and Gc, with G0<G⋆

c <
G⋆⋆

c <Gc<G1.
(i) For G < G⋆

c the critical temperature is nonzero, as
demonstrated in Fig. 4(b) and also by the red curve
in Fig. 5. There is thus no QCP and the normal and
anomalous regimes are separated by a crossover.

(ii) For G⋆
c < G < G⋆⋆

c , there are two second-order
phase transitions, one for the normal and one for
the anomalous branch. This case is represented by
the blue curve in Fig. 5, and can also be seen in
Fig. 3(a). The quantum phase transition correspond-
ing to the anomalous branch scales with a non-mean

1.2 1.3 1.4 1.5 1.6 1.7

h

m = − 0.10
m = − 0.05
m =    0

h
c
≈ 1.58

(a) (b)

T c
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FIG. 4 (color online). Critical temperature Tc vs the magnetic field (a) and the coupling Gint (b), for q ¼ 1. In (a), we again see the
anomalous branch starting at hc ≈ 1.58, that signifies the exit from the Landau-Ginzburg regime and the mean field scaling into a new
phase. Higher curves do not possess the QCP and arise when the system is always in the condensed phase. The coupling is G ¼ 0.7. In
(b), we see Tc vanish at the QCP Gc ≈ 1.1, corresponding to the QPT with a non-mean field exponent Tc ∼ jGc − Gjβ, β > 1. In the
higher curve, Tc remains nonzero for all Gint, with no QPT for this set of parameters. The bulk mass is m ¼ −0.10.
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field exponent Tc ∼ jhc − hjδ0 , δ0 > 1. The limiting
case of G ¼ G⋆

c is given by the magenta curve,
where the two critical points coincide.

(iii) For G⋆⋆
c < G < Gc, there is the second-order phase

transition with the non-mean field exponent
Tc ∼ ðhc − hÞδ, δ < 1, which describes the normal
branch. This is the dark violet curve in Fig. 5, similar
to the regime in Fig. 3(b).

(iv) For G > Gc, there is an infinite-order phase tran-
sition of the BKT type with the characteristic
exponential scaling Tc ∼ exp ð− C

ffiffiffiffiffiffiffiffi

hc−h
p Þ. This is

the black curve in the figure.
Finally, based on the data from Fig. 5 and some addi-

tional calculations, we can draw the phase diagram in terms
of the magnetic field h and the coupling Gint, given in
Fig. 6. The QCL (solid line) separates the condensed
(ordered) from uncondensed (disordered) phases. The
position of the QCL is extracted from the phase transition
curve of the critical temperature vs the magnetic field: the
QCL where the critical temperature vanishes is given by the
relation GcðhcÞ. From the dependence GcðhÞ, one can
translate the scaling exponents Tc vs G into Tc vs
h: Tc ∼ jGc −Gjβ → jGcðhcÞ −Gjβ → jhc − hjδ.
In Fig. 6, increasing the coupling G and the magnetic

field h destroy the pairing condensate except in the non-
Fermi liquid regime. This twofold behavior manifests itself
through a double-valued function hcðGcÞ in some param-
eter range. Indeed, the region with a condensed non-Fermi
liquid is enhanced by the magnetic field, which is a
consequence of the magnetic catalysis and the Callan-
Rubakov effect discussed in the next section.
A deeper understanding of the phase diagram can be

reached by considering the scaling dimensions of the
condensate and the fermion field. With some foresight

from the next subsection, we note that the IR conformal
dimension of the operator which condenses δ~I ¼ 1=2þ ν~I ,
where the bulk pairing current ~I ¼ ffiffiffi

ζ
p

I is the gravity dual
of the excitonic condensate, is given by Eq. (95)

ν~I ¼
ffiffiffi

2

3

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmþ ΔÞ2 þ 2qh −
μ2q
6

s

: ð83Þ

On the other hand, the IR conformal dimension of the
fermion operator δψ ¼ 1=2þ νψ , where the bulk fermion
field ψ is dual to the boundary fermion Ψ, is given by

νψ ¼
1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þk2FðhÞ−
μ2q;eff
6

s

; μq;eff ¼
ffiffiffi

3
p

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−h2=3
q

:

ð84Þ

Importantly, the ratio ν~I=νψ is first a decreasing and then an
increasing function of the magnetic field h (see left panel of
Fig. 8 in Ref. [15] for νψ ). At the dashed line the IR
dimension νI of the operator with the gravity dual pairing
current becomes imaginary, signaling the pairing instabil-
ity. This is analogous to the instability of a scalar operator,
when the Breitenlochner-Freedman (BF) bound in the
AdS2 is violated but the BF bound in the AdS4 remains
unbroken. The dash-dotted line corresponds to the locus of
points in the phase diagram where νψ ¼ 1=2, separating the
Fermi liquid from the non-Fermi liquid behavior as

G<G
c
* − no QPT

G≈G
c
* − 2nd order

G
c
*<G<G

c
** − 2nd order

G
c
**<G<G

c
 − 2nd order

G
c
<G − BKT
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T c

FIG. 5 (color online). Critical temperature Tc vs the magnetic
field h for different couplings Gint. Depending on the coupling
Gint, there are the BKT and second-order phase transitions. At
Tc ¼ 0, the QCP becomes QCL ðhc; GcÞ with a decreasing/
increasing dependence on hc as Gc is increased which corre-
sponds to the normal/anomalous branch.

FIG. 6 (color online). Phase diagram h vs G for the condensed/
normal (non-)Fermi liquids. G and h destroy the condensate
except for the non-Fermi liquid. The ordered non-Fermi liquid is
enhanced and stabilized by the strong magnetic field, which is
also seen experimentally in pyrolytic graphite.
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discussed in Ref. [14]. Since νψðhÞ is a monotonically
decreasing function, coherent quasiparticles disappear at
large magnetic field resulting in the non-Fermi liquid
regime at νψ ≤ 1

2
(upper part of the phase diagram).

Notably, there is a similarity between our phase diagram
(Fig. 6) and the phase diagram obtained for a scalar field
(Fig. 14 in Ref. [16]), which uses the double-trace
deformation as the control parameter. This may provide
an insight into the mechanism of suppression/enhancement
of the ordered phase at small/large magnetic fields.
We can redraw our phase diagram in terms of the

magnetic field h vs the chemical potential μ (Fig. 7) to
be able to compare our result with the literature [34].
It is worth noting that our phase diagram exhibits the same

main features as the analogousphasediagramobtainedusing
theSakai-Suggimotomodel (Fig. 8 inRef. [34]). Primarily, it
also has two regions of weak magnetic field where the
condensate is destroyed by the magnetic field (“inverse”
magnetic catalysis) and a regime of strong magnetic field
which enhances the condensate (magnetic catalysis).
Likewise, Fig. 5 shows the same structure as the analogous
Fig. 9(b) in Ref. [34]. Thus there are two regimes with
opposite dependence ΔðhÞ is a robust finding. We will
discuss the reasons for it in the next section.

3. Pairing, double-trace deformations
and conformal field theory

We will conclude our study of the phase diagram by
offering an alternative viewpoint of the observed critical
phenomena. Dialing the pairing coupling to drive the
system toward QPT can also be understood as dialing
the double-trace deformation in the boundary theory [16].

For example, in the Gross-Neveu model with vector
SUðNfÞ symmetry, the four-fermion coupling operator is
relevant at the UV fixed point. Hence, as a relevant
deformation in UV, it can drive the RG flow of the system
to a new IR fixed point with spontaneous symmetry
breaking. In holography, the multitrace deformations which
are introduced on the boundary and correspond to the
multiparticle states in gravity are a powerful knob that can
drive the theory either to a free CFT at the IR fixed point or
to a CFTwith the spontaneously broken symmetry. An RG
flow of this kind has been considered in Ref. [35], where
the relevant double-trace deformation at the UV fixed point
drives the theory toward the asymptotically free IR fixed
point. In the gravity dual theory, it corresponds to different
boundary conditions imposed at the AdS4 boundary (alter-
native/standard quantization), and the UVand IR CFTs are
related by a Legendre transform [35].
As an illustration, consider a scalar theory in the bulk as

in Ref. [32]. One can hope that this case at least qualita-
tively captures the behavior of our system as a bilinear
fermion combination bosonizes into a scalar field. Figure 8
shows schematically the two-loop beta function for the
double-trace coupling for decreasing magnetic field value.
At strong magnetic fields, Fig. 8 (top), the theory exhibits
the usual RG flow from the strongly coupled UV fixed
point (with a Landau pole at the QCP: gc → ∞) to a free
fermion (a noninteracting theory at g → 0) at the IR fixed
point, with no expectation value for the scalar operator O.
At the QCP i.e. h ¼ hc, Fig. 8 (middle), the UV and IR
fixed points merge and annihilate, leading to the BKT
scaling [36]

FIG. 7 (color online). Phase diagram h vs q for the condensed/
normal (non-)Fermi liquids. Increasing the fermion charge at zero
temperature is equivalent to increasing the chemical potential. It
stabilizes the condensate in the anomalous regime and then
destabilizes it in the normal branch. We can thus qualitatively
relate q to G, the coupling constant from the previous figure.

g

β
β

(g
,h

)

g

(g
,h

)

g

(g
,h
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〈O〉≠0

〈O〉≠0

〈O〉≠0

〈O〉=0

UV f. p.

IR & UV f. p.

〈O〉=0

IR f. p.

β

FIG. 8 (color online). Two-loop beta function for the double-
trace coupling for decreasingmagnetic field values. The disappear-
ance of the original UVand IR fixed points at the critical magnetic
field h ¼ hc leads to conformality loss and the BKT scaling
behavior, themiddle panel.Ath < hc, thebottompanel, the system
flows to a new IR fixed pointwith spontaneous symmetry breaking
and nonzero condensate of a scalar field hOi ≠ 0.
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ΛIR ∼ μ exp

�

−
C
ffiffiffiffiffiffiffiffiffiffiffiffiffi

hc − h
p

�

∼ μ exp

�

−
C0
ffiffiffiffiffiffiffiffiffiffiffiffi

g − gc
p

�

; ð85Þ

which can be interpreted as a distance along the RG
trajectory to get to the nontrivial IR fixed point with
broken symmetry. In this case, the QPT is of infinite order
and where the critical temperature Tc and the order
parameter hOi are governed by the exponential BKT
scaling of Eq. (85) as Tc ∼ hOi ∼ ΛIR. When the magnetic
field h is further decreased, Fig. 8 (bottom), the theory
becomes gapped leading to an apparent conformality loss
[36] and the QPT is now of second order.
In this paper we use the Yukawa coupling (or four-

fermion coupling) in the bulk. However, the results we
obtain are in line with the theory having a double-trace
deformation on the boundary as described by Fig. 8: we
have observed the rise of a new critical point. Figure 3(b) in
particular conveys the message: at some h⋆ < hc we
observe a transition from the quasiparticle regime to an
electron-hole condensate. Formally, it comes from the
competition between the pairing channel and the par-
ticle-photon interaction, encoded by the bilinears K1 and
I1. Physically, it corresponds to the competition between
the Fermi surface “order” and the pairing order. At h ¼ hc,
it is the entrance into the non-Fermi liquid region (ν < 1=2)
that drives the transition. At very high Gint values, the
pairing is again suppressed which we interpret as the
consequence of the Fermi surface depletion. The number
density near the Fermi momentum is given by the current
J0. In Eq. (52), it is clear that the gauge field term, encoding
for the chemical potential (and implicitly density), is
competing with the term containing ΔðrÞ, i.e. the term
proportional to the coupling Gint. When the latter is
dominant, the pairing is highly enhanced but only up to
the point that all electrons are “used up,” and their total
number density is small. Notice also how Δ drastically
increases at nonzero Gint, growing by about an order of
magnitude.

D. AdS2 analysis of the critical exponents

Most of our conclusions so far were driven by numerical
results, with some qualitative analytical insight. A some-
what more detailed analytical understanding of the model
can be gained by considering the far IR region, corre-
sponding to the AdS2 throat of the RN black hole.
We will follow the arguments of Ref. [32], where it was

shown by analyzing the AdS2 region that a new IR scale
ΛIR is generated which leads to the scaling behavior for the
critical temperature Tc and the condensate Δ vs a tuning
parameter (the magnetic field in our case). The key point of
this analysis is to show that an instability for a scalar field
develops in a certain parameter range. In particular, for a
neutral scalar field the mass should be lower than the AdS2
BF bound,m2R2 < − 3

2
(where R is the AdS4 radius), which

corresponds to a point where the IR conformal dimension

becomes imaginary. For a charged scalar, the mass value
can be slightly higher if the product of the charge and the
chemical potential, μq is sufficiently large. We therefore
consider a composite bosonic field, which can be con-
structed as a bilinear combination of ψ ’s and in our case it
is given by a bulk current.
Let us start by recalling that at T ¼ 0, the redshift factor

develops a double zero near the horizon: f ≈ 6z2. Adopting
the rescaled coordinates ζ; τ instead of the dimensionless
coordinates z; t

1
1
z − 1

¼ ω

6ζ
; t ¼ τ

ω
; ð86Þ

with ω → 0 and ζ; τ finite, the metric (2) becomes near the
horizon

ds2 ¼ 1

6ζ2
ð−dτ2 þ dζ2Þ þ dx2 þ dy2; ð87Þ

where the gauge field is

Aτ ¼
μ

6ζ
: ð88Þ

In this metric, the currents defined in Eq. (41) become

JðE;p;zÞ¼ð−iÞ
Z

dω
Z

d2kψ̄ðω;k;zÞσ1ψðE−ω;p−k;zÞ;

IðE;p;zÞ¼ð−iÞ
Z

dω
Z

d2kψ̄ðω;k;zÞψðE−ω;p−k;zÞ;

KðE;p;zÞ¼−
Z

dω
Z

d2kψ̄ðω;k;zÞσ2ψðE−ω;p−k;zÞ;

ð89Þ
with ψ̄ ¼ iψ†σ1. The Dirac equation at ω ¼ k ¼ 0 assumes
the form
�

∂ζ − i
μq
ffiffiffi

6
p

eζ̂
σ2 þ ðmþ ΔÞ

eζ̂
σ3 þ λ

eζ̂
σ1;

�

ψ ¼ 0; ð90Þ

giving the following equations of motion for the currents:

∂ζJ þ
2ðmþ ΔÞ

eζ̂
K þ 2λ

eζ̂
I ¼ 0; ð91Þ

∂ζI þ 2
μq
ffiffiffi

6
p

eζ̂
K þ 2λ

eζ̂
J ¼ 0; ð92Þ

∂ζK − 2
μq
ffiffiffi

6
p

eζ̂
I þ 2ðmþ ΔÞ

eζ̂
J ¼ 0 ð93Þ

where eζ̂ ¼
ffiffiffi

6
p

ζ, μq ¼ μq, hq ¼ hq, λ ¼ 2jhqjl, l ¼
1; 2;… and Δ ¼ −hIi. Differentiating the second equation
for I with respect to ζ and eliminating the derivatives of J
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and K currents from the other two equations, we obtain the
zero-energy Schrödinger equation:

∂2
ζ
~I −

ν2~I − 1=4

ζ2
~I ¼ 0; ð94Þ

ν~I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2λ2

3
−
μ2q
9

s

; ð95Þ

where ~I ¼ I
ffiffiffi

ζ
p

. We assume that condensation occurs for
the lowest (first) Landau level (l ¼ 1) and it is caused by an
instability when ν~I becomes imaginary. Therefore we can
represent the conformal dimension as

~ν~I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4

3
ðhcq − hqÞ

r

; hcq ¼
μ2q
12

ð96Þ

where ν~I ≡ i~ν~I, and hcq is found from the condition ν~I ¼ 0.
Generalizing for m ≠ 0 we get

ν~I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3
ðλ2 þm2Þ − μ2q

9

s

; ð97Þ

hcq ¼ −
m2

2
þ μ2q
12

; ð98Þ

in dimensionless units.
Now consider the scaling behavior near the quantum

critical point, h ≈ hc or G ≈Gc (solid red line in the phase
diagram Fig. 6). As in Ref. [32], imposing the Dirichlet
boundary condition ~Iðζ ¼ ζIRÞ ¼ 0 gives an oscillatory
solution of Eq. (94):

IðζÞ ¼ sin

�

~ν log
ζ

ζUV

�

; ð99Þ

where ζUV is the location of the boundary of the AdS2
throat. In order to satisfy the boundary condition we should
have

~ν log
ζIR
ζUV

¼ π: ð100Þ

According to the discussion in Sec. IV of Ref. [32], this
means that a new IR scale is generated

ΛIR ∼
1

ζh
∼ μ exp

�

−
π

~ν

�

; ð101Þ

where μ is the UV scale, that leads to the infinite-order BKT
scaling behavior:

Tc ∼ μ exp

�

−
C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hcq − hq
p

�

;

Δ ∼ μ exp

�

−
C

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hcq − hq
p

�

; ð102Þ

with C ¼ π
ffiffiffiffiffiffi

4=3
p and hcq given by Eq. (98). The factor of 2 in

the exponent comes from the difference in operator
dimensions in the intermediate conformal regime: the
current I scales as a dimension-1=2 operator and the
temperature scales with dimension 1. Equation (102)
describes the behavior below the critical magnetic field
h < hc, which can be seen in Fig. 5. Since hq ¼ hq,
increasing the charge q would produce higher curves.
Choosing the mass m as a tuning parameter, we obtain

the infinite-order BKT scaling behavior from the condition
ν~I ¼ 0 in Eq. (98):

Tc ∼ μ exp

�

−
C0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
c −m2

p

�

;

Δ ∼ μ exp

�

−
C0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
c −m2

p

�

; ð103Þ

with C0 ¼ π
ffiffiffiffiffiffi

2=3
p and m2

c ¼ −2hq þ μ2q=6. The scaling

behavior from Eqs. (102) and (103) describes the BKT
regime found also for the condensation of a scalar field in
Ref. [32], with the condensed phase for h < hc (or at
m2 < m2

c) and the normal state with zero condensate at h >
hc (or at m2 > m2

c).
While the above analysis fits well into the results we

have found for the normal branch, the anomalous branch,
where at high h > hc the magnetic field catalyzes and
enhances the condensate is still to be explained. The scaling
behavior in this region is given by

Tc ∼ Δ ∼ jh − hcjδ; ð104Þ

where δ > 1. In Figs. 3(a) and 4(a), a sharp increase with h
is found, which is in agreement with field theory calcu-
lations of magnetic catalysis [22] and experiments on
graphite in strong magnetic fields [18]. We leave the
explanation of this regime within the AdS2 analysis for
further work.
For m ¼ 0, the equation of motion for I can be reduced

to a Schrödinger-like equation also in the general AdS4
case. This is what we will do in the next subsection.

E. The m ¼ 0 formalism

As elucidated before in a slightly different context [14],
nonzero contributions to the current (corresponding to the
quasiparticles at the boundary) are quantified by counting
the bound states at zero energy for the formal wave function
I− of the above equation. An important novel feature in our
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setup is that the momentum is quantized due to the
magnetic field, and thus we cannot use the usual quasi-
classical (WKB) formalism. Still, in the massless limit we
will be able to gain some more insight by constructing an
effective Schrödinger equation with a formal WKB
momentum, that can be studied analytically.
Notice first that the RN geometry allows the spin

connection term from Eq. (8) to be absorbed into the
definition of the currents as it is a total derivative [14]:

A ¼ ∂zð−ggzzÞ1=4: ð105Þ
Upon implementing Eq. (105), the system (52) for m ¼ 0
and in the static limit ω → 0 is simplified to

eẑ∂zJ� þ 2ΔK∓ þ 2eîλI� ¼ 0; ð106aÞ
eẑ∂zI� þ 2et̂ΦK� þ 2λeîJ� ¼ 0; ð106bÞ

eẑ∂zK� − 2et̂ΦI� þ 2ΔJ∓ ¼ 0; ð106cÞ

where the vierbeine of the metric (2) are eẑ ¼ ð1 − zÞ ffiffiffi

f
p

,
et̂ ¼ ð1 − zÞ= ffiffiffi

f
p

, eî ¼ ð1 − zÞ, and the scalar potential is
rescaled as qΦ → Φ to absorb q. As before, the magnetic
field is implemented by rescaling the chemical potential
and the fermion charge as given by Eq. (16), meaning that
we can put λ ¼ 0. The expectation values are given by the
minus component, with only three coupled equations for
J−, K−, I− remaining to be solved. In order to understand
the phenomenology of the bulk pair current, it is useful to
eliminate J− from Eq. (106). Rescaling I− as

I− ↦ ~I− ≡ I−
et̂Φ
eẑ

≡ I− ~Φ ð107Þ

we first easily eliminate J− and differentiate Eq. (106b)
with respect to z. The derivative ∂zK− can be expressed
from Eq. (106c) and K− from Eq. (106b). In this way we
arrive at the second-order equation involving I− only and
having the form of the Schrödinger equation for ~I−:

∂zz
~I− −

�

2∂z
~Φ

~Φ
þ 4 ~Φ2 − Δ∂zz log ~Φ

�

~I− ¼ 0: ð108Þ

Notice that the term containing the first derivative vanishes
automatically due to the transform (107).
We are interested in the behavior of the current in the

limit z → z0 ¼ 1. While the Schrödinger formulation might
in some cases be more convenient also for computational
reasons, the real benefit is that we can use a formal WKB
scheme to arrive at surprisingly accurate solutions without
solving the differential equation. Equation (108) has the
form ð∂zz − VeffðzÞÞ~I− ¼ 0, where the effective potential
obeys the inverse square law near the boundary [we also
use the relation (69)]:

Veffðz → 1Þ ¼ δ2ð1 − zÞ − 8Δ
ð1 − zÞ2 þ μ2ð1 − zÞ2 þOð1Þ

ð109Þ

where Δ≡ Δðz → z0Þ ≈ const; although, strictly speaking,
one needs to computeΔ self-consistently given the value of
Gint, for qualitative considerations we may assume a
constant Δ proportional to Gint. The formal squared
Dirac delta function is there to enforce the condition
J�ðz0Þ ¼ I�ðz0Þ ¼ K�ðz0Þ ¼ 0. The typical appearance
of the potential is given in Fig. 9. The development of
the electron-hole condensate can be seen as the accumu-
lation of bound states inside the potential well, analogously
to the similar logic for electron states in Fermi and non-
Fermi liquids, elucidated in Ref. [14] and applied in
Ref. [37]. We can easily visualize our findings on the
transition points h ¼ h⋆ and h ¼ hc by looking at
the potential (Fig. 9). In the figures, we have left out the
Dirac-delta squared spike at the boundary, as it is completely
localized and only ensures that the currents reach zero at
z ¼ 1, exerting no influence on the behavior at small but
finite 1 − z values. Importantly, the near-boundary gap
opens with Δ > 0, supporting the electron-hole pair

(a) (b)

FIG. 9 (color online). Effective potential for the current ~I− for m ¼ 0, q ¼ 2, T ¼ 0.001 × 10−3 and h ¼ 0, Gint ¼ 0, 1=3, 2=3, 1 [red
to blue, (a)] and Gint ¼ 0.2, h ¼ 0, 0.50, 1.00, 1.50, 1.71 [red to blue, (b)]. The pairing interaction opens the near-boundary gap (a),
which gets wider but shallower as the magnetic field increases (b). The competition between the broadening and the shallowing effect
gives rise to the transition between the normal and anomalous regime at h ¼ hc.

EXCITON-DRIVEN QUANTUM PHASE TRANSITIONS IN … PHYSICAL REVIEW D 92, 086004 (2015)

086004-19



condensate near the boundary. The influence of themagnetic
field through the relation q ↦ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −H2=ðQ2 þH2Þ
p

is
subtler: it makes the potential well both broader and
shallower. The former generally facilitates the formation
of bound states, while the latter acts against it. It is this
competition that gives rise to the transition from the normal
toward the anomalous region at h ¼ hc.
Within the WKB approximation, the solution to

Eq. (108) can be written as

~I−ðzÞ ¼
ð1 − zÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VeffðzÞ
p

�

expð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−VeffðzÞ
p

�

þ exp

�

3π

4
i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VeffðzÞ
p

��

: ð110Þ

We have constructed the solution by equating the WKB
expansion with the near-boundary expansion [Eqs. (63) and
(64)]. Notice that the phase shift is 3π=4 instead of the usual
π=4, as the boundary itself provides an additional π=2 shift
due to the condition I−ðz0Þ → 0. The radial profile of the
condensate is depicted in Fig. 10. It can be shown to have 1

r3

behavior at the UV boundary r → ∞, and it diverges as 1
r−1

at the horizon in the IR r → 1. We obtain the same
asymptotic behavior when Δ ¼ 0 in Eq. (109), but we
impose the hard wall near the horizon in the IR, which
brings us in agreement with the results of Ref. [30]. The UV
behavior follows from the boundary condition on the
fermion currents at the AdS boundary (putting the source
term to zero) and the appearance of a fermion mass gap, to
be discussed in more detail later.
Another advantage of the Schrödinger approach is that

solving the Schrödinger equation numerically is easier than
solving the current equations. In Figs. 11 and 12 we give
the dependences ΔðhÞ and ΔðqÞ, produced by solving the
equation (108). Qualitatively similar behavior is seen in
both cases. The WKB approach makes it feasible to study
also the dependence on the fermion charge q. Figure 12
already shows that there is a critical value q ¼ qc below
which no pairing can occur at all. We conjecture that this
value corresponds to ν < 1=2, i.e. only stable quasiparticles
can pair up. While plausible, this is not easy to see from the
relations ΔðhÞ and ΔðTÞ that we obtained in the m ≠ 0
case.

IV. SPECTRA AND THE PSEUDOGAP

In this section we will compute the spectra for the
fermionic system with particle-hole pairs. We invoke again
Eq. (15) to derive the equations of motion for the retarded
propagator, which will directly give us the spectral function
as Aðω; kÞ ¼ ImGR.

0.0 0.2 0.4 0.6 0.8 1.0
0.0000

0.0002

0.0004
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0.0008
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z

I
z

FIG. 10 (color online). Radial profile of the excitonic con-
densate (solid line) from the numerical solution of the effective
Schrödinger equation. The transformation law between radial
coordinates is r ¼ 1

1−z. The fits (dashed lines) are the asymptotic
behaviors ð1 − zÞ3 → 1

r3 at z ∼ 1 in the UVand 1
z →

1
r−1 at z ∼ 0 in

the IR.

(a) (b)

FIG. 11 (color online). Order parameter of the pair density Δ vs the temperature (all in dimensionless units) (a) for h ¼ 1 and different
values of the coupling strength q ¼ 1, 3, 5, 7 (red, magenta, blue, black) and (b) for q ¼ 3 and different values of the magnetic field
h ¼ 0, 0.8, 1.2, 1.4, 1.6, 1.7 (red to black). Pairing is favored in the overdamped phase, with stable quasiparticles for q ≫ 1 and ν ∼ 1,
and suppressed at very high magnetic fields when the effective chemical potential is lowered and thus only a small number of electrons is
available for pairing.
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Following Ref. [14], we can write a single nonlinear
evolution equation for GR. It will generically be a matrix
equation, due to the additional, pairing channel. Of course,
we can rewrite it as a system of four scalar equations for the
four components of the bispinor. We adopt the basis given
in Eq. (11) and the metric given by Eq. (2). Introducing the
notation ψ ¼ ðψ1;ψ2ÞT with ψα ¼ ðyα; zαÞT where α ¼ 1,
2, the resulting system reads

ð∂z ∓ m
ffiffiffiffiffiffi

gzz
p Þy1;2 ¼∓ i

ffiffiffiffiffiffi

gzz
gii

r

ðλ − uÞz2;1 − Δ
ffiffiffiffiffiffi

gzz
p

y1;2 ¼ 0;

ð111aÞ

ð∂z ∓ m
ffiffiffiffiffiffi

gzz
p Þz1;2 ¼ �i

ffiffiffiffiffiffi

gzz
gii

r

ðλþ uÞy2;1 þ Δ ffiffiffiffiffiffi

gzz
p

z1;2 ¼ 0;

ð111bÞ

with

u ¼
ffiffiffiffiffiffiffiffi

gii
−gtt

r

ðωþ qΦðzÞÞ: ð112Þ

Introducing ξα ¼ iyα=zα as in Ref. [14], where the boun-
dary Green’s function is found from the asymptotics of the
solution at the boundary [Eq. (20)]

Gα ¼ lim
z→1

�

1

1− z

�

2m
ξαðzÞ¼ lim

ϵ→0
ϵ−2mξαð1− z¼ ϵÞ; ð113Þ

the equations of motion for ξα become

∂zξ1;2 ¼ −2m ffiffiffiffiffiffi

gzz
p

ξ1;2 −
ffiffiffiffiffiffi

gzz
gii

r

ðλ − uÞ

þ
ffiffiffiffiffiffi

gzz
gii

r

ðλþ uÞξ21;2 ∓ 2Δ ffiffiffiffiffiffi

gzz
p

ξ1;2: ð114Þ

The infalling boundary conditions at the horizon are
imposed ξα ¼ i, while the amplitude of yα remains free

(it cancels out in the propagator GR) and can be chosen to
be of order unity for convenience in the numerical
integration.
With no pairing channel, the morphology of the spectra

is well known and has been analyzed in detail in
Refs. [14,15]: near k ¼ kF, gapless quasiparticle excita-
tions appear, belying a Fermi surface. Let us now repeat the
AdS2 analysis of Ref. [14] for the equations with pairing.
We will use the ðζ; τÞ coordinates introduced in Eq. (86).
The near-horizon equation of motion now assumes the
following form:

ζ∂ζψ ¼
�

iσ2
μq
6
− σ3

ðmþ sΔÞ
ffiffiffi

6
p − σ1

k
ffiffiffi

6
p
�

ψ ; ð115Þ

where s ¼ �1, and in the presence of magnetic field the
role of the momentum k is taken over by Landau levels
λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2jqhjlp

. Near the AdS2 boundary (ζ → 0), the equa-
tion can be solved analytically at the leading order:

ψ ¼ A

� mþsΔ
ffiffi

6
p þ ν

k
ffiffi

6
p þ μq

6

�

ζ−ν þ B

� mþsΔ
ffiffi

6
p − ν

k
ffiffi

6
p þ μq

6

�

ζν ð116Þ

with

ν ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2q − 6ððmþ sΔÞ2 þ k2Þ
q

; ð117Þ

and the self-energy scales as

ImΣ ∼ ω2ν: ð118Þ

As usual, the Fermi surface is stable for ν2 > 1=4, unstable
for ν2 < 1=4 and nonexistent for ν2 < 0.
In the bulk (and also as we move toward the boundary),

the pairing term acts by shifting the mass as m ↦ m� Δ,
meaning that the position of the quasiparticle pole is
shifted, effectively modifying the kF value, which removes

(a) (b)

FIG. 12 (color online). (a) Order parameter of the pair density Δ vs the fermion charge q, for T ¼ 5.6 × 10−4 and different values of
the magnetic field h ¼ 0, 0.8, 1.2, 1.4, 1.6, 1.7 (red to black). The critical value qc is shifted again due to the shifting of the effective
potential. (b) Zoom-in near q ¼ 0 to better appreciate the transition.
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(a) (b)

(c) (d)

FIG. 13 (color online). The spectral function Aðω; λÞ forΔ ¼ 0.2, h ¼ 0.9, 1.11, 1.3, 1.5 [(a), (b), (c), (d)] and three momentum values
around keffF . At h < h⋆ [(a), (b)] we see that ν2 < 0, corresponding to zero weight at ω ≈ 0, the phenomenon we have dubbed the
pseudogap. For h > h⋆ [(c), (d)] we enter the quasiconformal regime, with no Fermi surfaces left, the conformality being only slightly
broken by nonzero Δ.

(a) (b)

(c) (d)

FIG. 14 (color online). The spectral function Aðω; λÞ for h ¼ 0.2, Δ ¼ 0.9, 1.11, 1.3, 1.5 [(a), (b), (c), (d)] and four momentum values
around keffF . At Δ < Δc ≈ 0.2 (a), the quasiparticle peak survives; for higher Δ the influence of the exact value of the pairing term is
negligible, and the spectrum always shows the pseudogap behavior.
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the spectral weight from the vicinity of ω ¼ 0. It thus
resembles a gap even though it is, strictly speaking, not a
gap since the poles in ψ1 and ψ2 do not coincide (see also
Ref. [29]). Nevertheless, we expect the size of the zero-
weight region to be a useful benchmark for the degree to
which the pairing eats up the (non-)Fermi liquid
quasiparticles.
The typical appearance of the spectrum is given in

Fig. 13, where we plot the spectra for Δ ¼ 0.2 and for
increasing magnetic field values. Increasing the magnetic
field leads to destabilization of the quasiparticle [panels (a)
and (b)], leading to a gap-like behavior, and destabilization
of the quasiparticle as seen from the asymmetry of the
peak which loses its Fermi-liquid-like scaling. Eventually
[panels (c) and (d)] the effective chemical potential is so
low that we enter the “almost conformal” regime. Figure 14
shows the dependence on the pairing coupling: the peak at
ω ¼ 0 turns into a dip, a “pseudogap” develops and we lose
the quasiparticle.

V. DISCUSSION AND CONCLUSIONS

Before concluding the paper, we will discuss possible
universal aspects of our findings, and show that the
formation and enhancement of the particle-hole condensate
in a strong magnetic field is a robust phenomenon seen in a
number of distinct systems. We will limit ourselves to short
remarks only, as more detailed comparisons with earlier
work can be made by consulting the appropriate references.
We found the exciton instability using a Dirac hair or

bilinear approach. A Dirac hair method uses bilinear
combinations where a bilinear in a given channel develops
an expectation value at the UV boundary provided a source
is switched off. Dirac hair is equivalent to a Tamm-Dancoff
approximation; planar diagrams of processes 2 → 2 are
included with no bulk fermion loops. In this sense, Dirac
hair is a quantum-mechanical treatment with one single
classical wave function. It is quite remarkable to see that the
condensate develops on a “classical” level due to a non-
trivial nature of the curved space-time with the help of the
AdS=CFT dictionary, a phenomenon that was first obtained
as a holographic superconductor [5].
We have associated the rising critical temperature vs

magnetic field with the magnetic catalysis (MC), and the
decreasing Tc vs h with the inverse MC (anomalous and
normal branches in Fig. 5 for G⋆

c < G < G⋆⋆
c , respec-

tively). We adopted the terminology from Ref. [34]. It
corresponds to a double-valued regime in the phase
diagram (Fig. 6). Similar behavior of increasing Tc vs
the scalar mass m has been observed in Ref. [32] under the
action of a double-trace deformation, for the alternative
quantization starting at the critical mass m2R2 ≥ − 27

16
.

There it was associated with the formation of a new
condensed phase corresponding to the high-temperature
regime. However, it was suggested that the high-T con-
densed phase is thermodynamically unstable [32].

Likewise, in Ref. [38], exploring the phase diagram for
a nonrelativistic conformal field theory, the authors found
the high-temperature condensate for T ≥ TH. The similar-
ity of the dependences hOiðTÞ at different chemical
potentials μ and TcðhÞ at different couplings G to our
Fig. 5 is obvious. In that work, the high-temperature
condensate was related to the high-temperature instability
predicted by Cremonesi et al. [39], and it was found to be
thermodynamically disfavored over the trivial vacuum by
direct calculation of the difference in the free energies [38].
However, the particle-hole condensate found at high
magnetic fields in our case is crucially different from the
unstable high-temperature condensate in Refs. [32,38].
Though naively both the magnetic field h and the fermion
mass m destroy the condensate, increasing m2 (or h) drives
the bulk system to the UV (or the IR). Indeed, from the
radial profile of the wave functions at large m the system
resides near the UV boundary and at strong h it resides near
the RN black hole horizon in the IR (Fig. 5 in Ref. [15]).
Therefore, from a holographic viewpoint large magnetic
fields can lead to low-energy behavior and possible
quantum critical phenomena, involving different ordering
in the system. The main argument in favor of robustness
and stability of our high-h condensate is provided by the
magnetic catalysis effect. In strong magnetic fields only the
lowest Landau level contributes significantly to the ground
state. Therefore, the dynamics is effectively dimensionally
reduced as d → d − 2. In field theory this dimensional
reduction leads to an increase in the density of states [40] or
in QCD to one-gluon exchange with a linear binding
potential [41], with both effects working towards pairing
and enhancement of the condensate. In the AdS space,
dimensional reduction leads to a Schwinger model showing
an instability which is very similar to the Bardeen-Cooper-
Schrieffer (BCS) pairing instability, where also the dynam-
ics is effectively one dimensional at the Fermi surface. The
exact mapping between the magnetic catalysis at h ≠ 0 and
the BCS Cooper pairing at μ ≠ 0 has been established
in Ref. [40].
We obtained a nontrivial radial profile and a boundary

VEV for the bulk excitonic condensate hψ̄Γψi at vanishing
source, with the relation

hψ̄1ψ1i ¼
1

2
hψ̄ψi − 1

2
hψ̄Γψi;

hψ̄2ψ2i ¼
1

2
hψ̄ψi þ 1

2
hψ̄Γψi; ð119Þ

where Γ¼ iΓ2Γ5 and ψ1;2 ¼ 1
2
ð1∓ ΓÞψ are the eigenvalues

of the Dirac operator (13) [the projectors Π1;2 ¼ 1
2
ð1 ∓ ΓÞ

are constructed out of gamma matrices which enter the
Dirac operator only [14]]. We need to find the boundary
condensate whose gravity dual is hψ̄Γψi where the bulk
Dirac field ψ corresponds to a fermionic operator Ψ,
ψ → Ψ. The AdS=CFT correspondence does not provide
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a straightforward way to match a double-trace condensate
to a boundary operator, though only gravity dual single-
trace fields are easy to identify with the operators at the
boundary. For example, in holographic superconductors a
superconducting condensate is modeled by a charged scalar
field hΦi (see e.g. Ref. [31]). As in Ref. [30], we find a
boundary operator by matching discrete symmetries on the
gravity and field theory sides and considering the asymp-
totic behavior of the gravity dual condensate at the
boundary. As a result we associate a gravity dual excitonic
order to some sort of a chiral condensate

hψ̄Γψi ↔ Ψ̄Ψ ð120Þ
or some combination of condensates which break chiral
symmetry. In Ref. [30], this strategy provided the corre-
spondence hψ̄Γ5ψi ↔ Ψ̄Ψ. There an explicit use of the
chiral basis ψL;R ¼ 1

2
ð1 ∓ Γ5Þψ and the relation ψ̄LψR ¼

1
2
hψ̄ψi þ 1

2
hψ̄Γ5ψi made the correspondence evident.

Specifically, by matching symmetries with respect to the
discrete transformations (39) we find that hψ̄Γψi and hΨ̄Ψi
are pseudoscalars under parity and are unaffected by the
charge conjugation; therefore they both spontaneously
break the combination Ĉ P̂ symmetry. This finding is
consistent with the existence of the parity-odd mass in
graphene associated with the excitonic order parameter in
the 2þ 1-dimensional effective field theory of graphene
[22,42]. Also the asymptotic behavior of the bulk conden-
sate at the boundary, which was found numerically (Fig. 10)
to be hψ̄Γψi → C=r3 as r → ∞, allows us to use a standard
AdS=CFT dictionary to identifyC as the response orVEVof
the boundary operator. The third power in the decay
exponent indicates an extra mass scale. Indeed provided
the response hΦi ∼ 1=r3, the gauge-gravity duality gives a
strong coupling form of the magnetic catalysis in 2þ 1
dimensions [30]:

hΨ̄Ψi ∼ hMF; ð121Þ

with the magnetic field h and mass gap MF [30]. It can be
compared to theweak coupling field theory result hΨ̄Ψi ∼ h
(we absorbed dimensional electric charge in the definition of
magnetic field h, i.e. in 2þ 1 dimensions the operator
dimension is given by ½e� ¼ 1

2
and ½h� ¼ 3

2
with ½eh� ¼ 2 and

therefore we substitute jejh → h) [22]. Strong coupling
realization follows from the anomalous fermion dimension
½Ψ� ¼ 3

2
compared to the weak coupling conformal dimen-

sion ½Ψ� ¼ 1 (free value dimension) in 2þ 1-dimensional
field theory. An extra fermion mass gap MF appears as a
consequence of the dimensional four-fermion coupling
Gint ¼ 1=MF in the bulk or the introduction of the IR cutoff
thought of as a hard wall at the radial slice z⋆ ¼ 1=M. The
authors of Ref. [30] have used the hard wall construction to
obtain the strong coupling realization of the magnetic
catalysis (121). It is remarkable that the chiral condensate

is proportional to the magnetic field even at strong coupling,
that manifests the essence of the magnetic catalysis.
Another aspect of the chiral condensate is related to the

Callan-Rubakov effect. As found in the field theory and also
shown in the context of the gauge-gravity duality [43], the
chiral condensate can be spontaneously created in the field of
a magnetic monopole. Due to the chiral anomaly ∂j5 ¼ F ~F,
the chiral symmetry is spontaneously broken and the chiral
condensate hψ̄ψi ∼ eiΘ=r3 is generated in the field of a
monopole. In AdS, a construction involving a monopolewall
(more precisely, a dyonic wall) and light fermions in the bulk
produces an analog of the Callan-Rubakov effect resulting in
the formation of the chiral symmetry breaking (CSB) con-
densate: hψ̄ψi ≠ 0 [43]. The scaling behavior of the con-
densate is, however, different in our setup: as pointed out
before, due to the lowest Landau level (LLL), the dimensional
reduction 3d → 1d takes place in the bulk. This reduces the
equation of motion to an effective Schrödinger equation for
the condensate, given by Eq. (108) with the potential (109).
Solving the equation, we have found the IR behavior of the
condensate near the horizon of the RN black hole (1=r) to be
less divergent than the one near the monopole 1

r3 or the
monopole wall 1

ðr−rwÞ3 [43].

FIG. 15. Formation of the chiral-symmetry-breaking excitonic
condensate in the AdS space-time. Individual “bouncing” events
are shown schematically by the dashed lines. In an individual
event, helicity flips while spin and charge are conserved.
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It turns out that the AdS space with two boundaries—the
UV boundary and the IR hard wall—plays an additional
role in stabilizing the chiral condensate [30,43]. It also
provides an important hint for the interpretation of our
current ψ̄Γψ in the boundary theory. In particular, for the
lightest states to condense, we should take the LLL which
only has one spin state available (instead of two states
available for the higher LLs). This means that for a given
charge, the spin direction is fixed. Therefore, fixing the
direction of motion and the charge fixes also the helicity.
Out of eight possibilities with a given charge, helicity and
direction, only four are available for the LLL, as depicted in
Fig. 15 (left). The charge � denotes e�, positive/negative
helicity is denoted by R=L, and S gives the spin orientation;
lines with arrows show the momentum direction and h
stands for the magnetic field. The following bilinear
combinations are possible when only LLLs participate.

(i) hψ̄R↑ψR↓i, hψ̄L↑ψL↓i—(spin) scalar, charge neutral,
momentum of the pair ~P ¼ 0, chiral symmetry (CS)
is not broken.

(ii) hψ̄R↑ψL↓i, hψ̄L↑ψR↓i—(spin) scalar, charge neutral,
momentum of the pair ~P ≠ 0, CS is broken.

(iii) hψ̄R↑ψ̄L↑i, hψL↓ψR↓i—(spin) vector triplet, charged,
momentum of the pair ~P ¼ 0, CS is broken.

We will not consider the first combination because it does
not break the CS, and in our case CS is broken otherwise
there would be no preferred scale for the current I−. As for
the third combination, it has been considered in the context
of nonzero-density QCD, where it describes the condensate
of charged ρ� vector mesons [41]. It cannot be our order
parameter either, since our current is a spin singlet. It is
tempting to regard the doublet ΓiΓ5, i ¼ 1, 2 as a vector,
and we leave it for a future work.
We are thus left with the second combination. One can

think of this order parameter as a spin-density wave, or
magnetization which precesses around the direction of the
magnetic field. The analog of the second combination has
been considered within the Sakai-Sugimoto model as a
holographic top-down approach to QCD [34]. The setting
of Ref. [34] is very different from ours: it identifies the
embedding coordinate of a probe D-brane with a scalar
field dual to a single-trace fermion bilinear operator; the
magnetic catalysis is modeled as a bending of the probe
brane under the influence of the magnetic field. There the
anisotropic spatially modulated CSB condensate in the
form of a single plane wave Larkin-Ovchinnikov-Fulde-
Ferrell (LOFF) state has been found. To have a condensate
in the form of the second combination, we need to
introduce the SUð2Þ spin symmetry as in Ref. [32]. We
should note the difference with our case where the con-
struction of the condensate is done in the bulk and there is a
special effort involved to identify the boundary operator.
Provided the condensate of the second form is realized, the
AdS boundary and the IR hard wall play a stabilizing role
in its formation [43]. As the pair hψ̄R↑ψL↓i “bounces” from

either of the boundaries it converts into the pair hψ̄L↑ψR↓i
conserving the total charge. This process can be decom-
posed into elementary “bouncing” events.

(i) ψ̄R↑ → ψR↓, ψL↓ → ψ̄L↑—helicity is conserved,
spin flips, mixing of charge occurs.

(ii) ψ̄R↑ → ψL↑, ψL↓ → ψ̄R↓—helicity flips, spin and
charge are unaffected.

In the first case a particle deposits the charge at the
boundary, which is picked up by the antiparticle, thus
conserving the total charge of the particle-hole pair. The
main difference between the two cases is either the
“bouncing” event involves a spin flip or not, and therefore
either helicity is conserved or broken, respectively. By
imposing the AdS boundary condition which breaks CS,
helicity gets inverted by the boundary and CS breaking
propagates from the boundary into the bulk. Then CS
breaking occurs due to the boundary condition before the
chiral condensate forms, which affects the propagation of
the fields in the bulk in accordance with the second case
stabilizing the condensate [30].
Next we discuss an analogy between the MC and the

BCS Cooper pairing, and mapping between the Gross-
Neveu model (or the Nambu–Jona-Lasinio model) in the
presence of the magnetic field and the BCS model at
nonzero chemical potential. The reason this mapping works
is that effectively the dynamics in both cases is one
dimensional: in the strong magnetic field the motion is
constrained to Larmor orbits and includes only states from
the lowest Landau level, while in a high-density system
only states at the Fermi surface contribute to the dynamics.
We can draw the following analogy [44]:

MC BCS

ð3þ1Þd→ ð1þ1Þd ð1þ1Þd
LLL and ε¼0surface Fermi surfaceε¼μ

ε¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2zþ2jehjn
p

ε¼k−kF; k¼
ffiffiffiffiffi

~k2
p

excitonic∶Δ∼Ghψ̄ψi SC∶Δ∼Ghψψi
Δ∼

ffiffiffiffiffi

eh
p

expð−const
Gν0

Þ Δ∼μexpð−const
GνF

Þ
ν0 isDOS atε¼0 νF is DOS atε¼μ

henhances; μdestroysΔ μenhances; hdestroysΔ
δΩ∼h

�

μ2−Δ2

2

�

δΩ∼μ2
�

δμ2−Δ2

2

�

h≫μ;Δ μ≫δμ;Δ
it can haveμ¼0 it can haveh¼0

TcgrowswithhðMCÞ Tcdecreaseswithh
Tcdecreaseswithμ TcgrowswithμðSCÞ ð122Þ

Effectively one-dimensional dynamics in both cases leads
to similarities in formulas for the pairing gapΔ and the gain
in the thermodynamic potential δΩ as compared to the
normal unpaired state. In the BCS, the density of states at
the Fermi surface ε ¼ μ defines the gap Δ, and there is an
energy cost μ2δμ2 to bring two Fermi surfaces together to
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pair in case of nonzero mismatch δμ between them. In MC,
the density of states at the ε ¼ 0 surface separating
electrons and holes contributes to the gap, and a similar
cost in energy hμ2 exists to involve both particles and holes
to pair. The gain from the pairing is proportional to Δ2 in
both cases, and is linear in μ2 for the BCS and in h for the
MC, manifesting the essence of both phenomena. These
simple formulas for δΩ can be obtained when there is a
hierarchy of scales: the largest scale is μ in the BCS and it is
h in the MC.
The comparison given in Eq. (122) provides the follow-

ing mapping between parameters in the two systems at a
nonzero density and at a nonzero magnetic field [40]:

MC ⟷ BCS

hψ̄ψi ≠ 0 ⟷ hψψi ≠ 0

finite h ⟷ finite μ

small μ ⟷ small δμ

h ≫ μ ⟷ μ ≫ δμ ð123Þ

where the last line expresses the hierarchy of scales. A
similar mapping has been obtained in case of the Gross-
Neveu and the BCS models, where the magnetic field h
maps to the chemical potential mismatch δμ and is relevant
for the inhomogeneous superconductors in the incommen-
surate phase [45]. Based on Fig. 5 and using the above-
described mapping, we can speculate and draw an analogy
between the condensed matter phase diagram in Tc vs h and
the QCD phase diagram in Tc vs μ, as depicted in Fig. 16.
The high-magnetic-field phase is mapped to the color
superconductor state at very large densities [for example
color-flavor-locked (CFL)] in QCD, while weak magnetic
fields which do not destroy superconductivity are mapped
to the chirality-broken phase in QCD. The robust feature of
the phase diagram in Fig. 5 is the existence of two regions,
with small and large h where the condensate is destroyed
and enhanced, respectively, by the magnetic field. We
found numerically that both branches are thermodynami-
cally favored compared to the normal states, as can be seen
in Fig. 1. In the Sakai-Sugimoto model [34], analytical
formulas for the free energy difference between condensed
and normal states have been obtained, proving the stability
of both condensed states. The strong-h regime (“direct”
magnetic catalyses) has a remarkably simple form [34]

δΩ ∼ −h
�

ΔðhÞ2
2

− μ2
�

; ð124Þ

which is exactly the result obtained in the field theory
(122); compare also with Fig. 1. The condition for a
thermodynamically stable ordered phase with the excitonic
condensate is given by

μ ≤
ΔðhÞ
ffiffiffi

2
p ; ð125Þ

which according to the mapping (123) coincides with the
familiar Clogston limit in the SC: δμ ≤ Δ

ffiffi

2
p . However, there

is an important difference between the formation of the
excitonic and superconducting condensates. In MC the
excitonic condensate ΔðhÞ is a growing function with h
[Fig. 3(a)] which ensures that Eq. (124) is always satisfied
at high enough magnetic fields. This finding is important,
since it demonstrates the robustness of the chiral
condensate.
Though MC and BCS both have one-dimensional

dynamics, the mapping between the two models may come
as a surprise. Indeed properties of both systems (one is a
magnetic and the other is a dense medium) including the
symmetry-breaking pattern when a condensate forms are
quite different. However, we speculate that these two
systems can be unified on the gravity side using the duality
between electric and magnetic fields. In the gravity dual
description the two phenomena can be represented as
follows:

h

T c

〈ΨΨ〉≠0 〈ΨΨ〉≠0

SC
χSB excitonic
condensate

µ

T c

〈ΨΨ〉≠0

χSB
condensate

〈ΨΨ〉≠0

Color SC

FIG. 16. Analogy between the phase diagram of a condensed
matter system at nonzero magnetic field and the QCD phase
diagram at nonzero density. In strongmagnetic fields, the excitonic
condensate is mapped to the asymptotic regime of high-chemical-
potential QCD with the color superconductor phase.
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HolographicMC HolographicSC

dyonicAdSRNBH; AdSRNBH
SchwarzschildBH

jHj> jQj jQj> jHj
it can beQ¼0 it can beH¼0

Z2ðchiralSBÞbroken Uð1Þbroken
magnetic field enhances it magnetic field destroyes it
electric field destroyes it electric field enhances it

Callan−Rubakov effect dual Callan−Rubakov effect

ð126Þ
which shows the electromagnetic duality [the invariance
under an interchange of the electric and magnetic charges
of the black hole ðjQj; jHjÞ → ðjHj; jQjÞ�. The motivation
for this duality is a similarity in the expressions for the gap
and the energy gain of the ordered phase between two
systems as given by Eq. (122). Probably the underlying
reason for the duality is a symmetry of how both charges of
the black hole enter in the red shift factor. They always
enter in combination Q2 þH2, which defines also the
Hawking temperature of the black hole or the temperature
of the system T ∼ r0ð1 − Q2þH2

3r4
0

Þ with r0 is the radius of the
horizon of the BH. Similarly, according to the Montonen-
Olive conjecture, the spectrum in the Georgi-Glashow
model is invariant under the electromagnetic Z2 duality
ðq; gÞ → ðg;−qÞ as a consequence of the fact that the
Bogomol’nyi bound is invariant under electromagnetic
duality (ther Bogomol’nyi bound for the mass of the ’t
Hooft-Polyakov monopole is M ≥ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ g2
p

), and the
spectrum of the Georgi-Glashow model saturates this
bound [46]. Notably, the mass of the black hole

M ¼ r30 þ
Q2 þH2

r0
ð127Þ

is also invariant under the electromagnetic duality. The
electromagnetic duality (126) holds on a classical level and
is destroyed by quantum corrections. It stays intact for the
supersymmetric theories though.
In this work a four-fermi interaction has been used as a

control parameter to go from one regime mimicking the SC
to the other one of MC. The robustness of both regimes can
be seen in a symmetric form of the dependence Tc vs h (top
of Fig. 16). In the application to nonzero-density QCD, this
means that at strong enough magnetic fields the chiral
symmetry is spontaneously broken by a chiral condensate.
Moreover, due to a dimensional reduction QCD as well as
plain QED are in the confined regime even on the
perturbative level: they can be reduced to a Schwinger
model where one-gluon (one-photon) exchange in one
dimension leads to a linear rising potential in the configu-
ration space (a similar argument provides confinement

along the boost direction for theories in the light-front
quantization). Evidence of the QED confinement in a
strong magnetic field can be provided by the existence
of a 2e bound state which contributes to the fractional
quantum Hall effect [47]. Summarizing, quark-gluon
plasma (QGP) at strong magnetic fields is probably con-
fined and has a broken chiral symmetry, as opposed to QGP
at zero magnetic fields which is in a deconfined and chiral-
symmetry-invariant phase. This finding might have some
implications for the chiral magnetic effect in heavy-ion
collisions at the RHIC [48].
A general note is that the low-energy behavior of the

non-Fermi liquids is governed by a nontrivial IR fixed point
which arises from the near-horizon region with AdS2
geometry [14]. This IR fixed point arises as a consequence
of the interplay between the emergent quantum critical
bosonic modes and the fermions at finite density. In other
words, the class of systems studied is both metallic and
quantum critical at low energies. On the gravity side, this is
reflected by the instability of the background (Reissner-
Nordstrom black hole in the AdS space) unless order
parameter fields are introduced to stabilize it [7].
We have explored the quantum critical aspects of the

system by using the magnetic field as a knob to tune the
system to a quantum critical point. Indeed, the magnetic
field as an external parameter driving the system to
quantum criticality is used in experiments on heavy
fermions and graphene. We have shown that by increasing
the magnetic field, the system evolves from the normal
metallic to a quantum critical phase, where the stable
quasiparticle is destroyed. The quantum critical point is
controlled by the IR fixed point with the scaling dimension
ν ¼ 1

2
, where the Fermi velocity vanishes vF ¼ 0 (see

Fig. 10 in Ref. [15]) but the Fermi momentum stays finite
kF ≠ 0 (see Fig. 9 in Ref. [15]). It is important that we
are able to deduce the position of the quantum critical
point from our calculations. The phase transition can be
understood as the formation of a semiclassical condensate
on the gravity side near the AdS4 boundary. Using the
bilinear formalism developed in Ref. [6], we have also
calculated the thermodynamic parameters of both phases.
We found that the particle-hole pairing instability arises for
both ν > 1

2
corresponding to h < hc and ν < 1

2
correspond-

ing to h > hc. In a holographic superconductor, a super-
conducting instability has been shown to exist only for
ν > 1

2
[27]. This shows the remarkable difference in nature

between superconducting and excitonic instabilities: exist-
ence of excitonic condensate beyond the critical point ν ¼ 1

2

is a quantum critical phenomenon. The magnetic field acts
as a catalyzer of the particle-hole pairing because of the
dimensional reduction d → d − 2 in the magnetic
field [22].
Other thermodynamic and transport quantities including

the heat capacity and DC conductivity are calculated for
both normal- and anomalous-paired phases in Appendix B.
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The results support our findings obtained from the bilinear
holographic approach on the nature and scaling behavior of
the two phases.
The critical temperature of the normal-paired phase

transition follows the expected behavior for h < hc: the
critical temperature Tc decreases with increasing h, with
the scaling Tc ∝ μ exp ð−C= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðhc − hÞp Þ. At h > hc,
however, we find anomalous behavior: Tc grows with
increasing h. To the best of our knowledge, this is the first
example of non-mean field scaling from an AdS4 holo-
graphic model. Mathematically, it follows from the fact
that, for ν < 1

2
, we have the scaling Tc ∼ δ2ν−1 with δ small

and decreasing. Physically, such behavior is consistent with
the fact that the system is driven through the quantum critical
point at hc where Tc ¼ 0, and beyond the quantum
critical point at h > hc it can be characterized as a quantum
critical metal possessing new properties. In the existing
literature, a novel antiferromagnetic behavior has been
predicted for heavy fermions driven through the quantum
critical point [3]. Such an anomalous behavior for Tc vs h
has been seen in experiments on highly oriented pyrolytic
graphite at strongmagnetic fields h > hc [21]. Furthermore,
the anomalous branch matches the properties of excitons in
bilayer interfaces and cold atom realizations [49], and can
further be related to the behavior of chiral condensates in
holographic QCD models, signaling the universal signifi-
cance of the twofold normal-anomalous regime in the phase
diagram.
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APPENDIX A: BULK GREEN’S FUNCTION
AND ZERO MODES

We express the bulk Green’s function through the
boundary one as in Ref. [27]. The bulk Green’s function
is a solution of the free Dirac equation,

D̂ðΩ; klÞGRðz; z0;Ω; klÞ ¼
1
ffiffiffiffiffiffi−gp iδðz; z0Þ; ðA1Þ

with the free radial Dirac operator D̂ðΩ; kÞ ¼ ΓiDi, which
includes the mass term, chemical potential and the mag-
netic field but has zero gap, Δ ¼ 0, i.e. the equation (15).
The bulk Green’s function is constructed from the modes
ψðzÞ which are solutions of the free Dirac equation

D̂ðΩ; klÞψ radialðzÞ ¼ 0: ðA2Þ

Due to the choice of the Dirac matrices in Eq. (11), ψ
decouples into two-component spinors, ψ radial ¼ ðψ1;ψ2ÞT .
Therefore the bulk retarded Green’s function has a block-
diagonal form:

GRðz; z0;Ω; klÞ ¼
�

GR
1 0

0 GR
2

�

; ðA3Þ

where the components Gα, α ¼ 1, 2 are constructed from
the solutions to the Dirac equation [27]

GR
α ðz; z0;Ω; klÞ ¼

i

Wðψ in
α ;ψ

bdy
α Þ ×

	

ψ in
α ðzÞψ̄bdy

α ðz0Þz < z0;

ψbdy
α ðzÞψ̄ in

α ðz0Þz > z0;

ðA4Þ

with ψ̄α ¼ iψ†
ασ1 and Wα are the components of the

Wronskian

Wðψ in
α ;ψ

bdy
α Þ ¼ −

ffiffiffiffiffiffi−gp
2
ffiffiffiffiffiffi

gzz
p ðψ̄bdy

α σ3ψ in
α − ψ̄ in

α σ
3ψbdy

α Þ: ðA5Þ

The retarded Green’s function (A4) must satisfy the
following two conditions. At the boundary (z, z0 → 1)
where ψ radial

α ∼ aαð1 − zÞ3−Δψ þ bαð1 − zÞΔψ þ � � � with
Δψ ¼ 3

2
þm it must be the normalizable solution, i.e.

ψbdy
α ¼ bαð1 − zÞΔψ þ � � �. At the horizon (z, z0 → 0) where

ψ radial ∼ Aαz−iω=4πT þ Bαziω=4πT , the retarded propagator
corresponds to the ingoing solution ψ in

α ¼ z−iω=4πTAα.
This infalling solution behaves near the boundary as

ψ in
α ∼ aαð1 − zÞ3−ΔΨ þ bαð1 − zÞΔΨ þ � � � : ðA6Þ

In principle, the coefficients in ψbdy and ψ in are different,
i.e. bbdy and bin (we omit the difference for simplicity).
This determines the z-independent Wronskian Wα ¼
−iReðbbdy†α σ1σ3ainα Þ after substituting the asymptotic
behavior near the AdS boundary. The Wronskian is directly
proportional to the spectral function of the dual CFT. The
two spinor components of each spinor aα and bα are not
independent, but are related by the Dirac equation
[12,26,50]. Defining up/down spin eigenstates with respect
to γz ¼ −σ3,
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aα ≡
�

a↑
a↓

�

¼
�

1

0

�

; bα ≡
�

b↑
b↓

�

¼
�

0

1

�

: ðA7Þ

Substituting this into the Wronskian

W ¼ −ib†α↓aα↑ ðA8Þ
and recalling the expression for the boundary propagator,

Gα ¼
bα↓
aα↑

ðA9Þ

one finds that

Wðψ in
α ;ψ

bdy
α Þ ¼ −ijbα↓j2G−1

α ¼ −
i
Gα

: ðA10Þ

The result is similar to the one for fermion transport
in Ref. [33].
This expression for the bulk propagator in terms of

boundary spectral functions shows us that the contribution
to the effective action is dominated by the poles of the
boundary Green’s function. These poles precisely corre-
spond to the values where ψ in ∝ ψbdy ≡ ψ0 is the zero
mode with aα ¼ 0.

APPENDIX B: THERMODYNAMICS AND
TRANSPORT AT ZERO MAGNETIC FIELD

Quantum critical behavior is associated, among other
things, with unusual scaling exponents of the heat capacity
and the resistivity with temperature. In this section, we
obtain an equation of state and find the scaling behavior of
the specific heat and the DC conductivity with temperature.
Following a prescription worked out in detail for conduc-
tivity [33], we bypass the bulk calculations and do our
calculations directly in the boundary field theory making
use of the gravity-“dressed” fermion propagators [14].
Since the two-point Green’s function is obtained from
the AdS=CFT correspondence, it is “exact” in terms of
gauge coupling corrections, and the lowest-order diagrams
on the field theory side should suffice. However, we lack
the knowledge of the gravity-“dressed” gauge-fermion
vertex. Nevertheless, for the quantities considered below,
the scaling behavior should not change when vertex
corrections are taken into account.

1. Single-particle spectral functions and
dispersion relations

Using AdS=CFT, one finds that, close to the Fermi
surface (ω=μ ≪ 1) and at low temperatures (T=ω ≪ 1), the
retarded fermion Green’s function is given by [14]

GRðω; ~kÞ ¼
h1vF

vFk⊥ − ωþ vFh2e
iθ−iπνkFω2νkF

þO

�

ω

μ

�

:

ðB1Þ

Here k⊥ ¼ k − kF, the last term in the denominator defines
the self-energy Σ, h1 and vF are real constants obtained
from the UV (bulk) physics, h2 is positive with contribu-
tions from both the UVand IR regions, the phase θ is such
that the poles of Eq. (B1) are in the bottom frequency half-
plane corresponding to stable quasiparticle poles and νkF is
the IR conformal dimension at the Fermi momentum. At
T ¼ 0, it is given by (in dimensionless units)

νkF ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ðm2 þ k2FÞ − μ2q

q

; ðB2Þ

with μq ¼ μq. The IR conformal dimension νkF defines the
quasiparticle dispersion. Writing the Green’s function pole
in Eq. (B1) as ωcðkÞ ¼ ω�ðkÞ − iΓðkÞ, at leading order
ω ∼ 0 we get the following dispersion relations:

ω� ∼

8

>

>

<

>

>

:

vFk⊥; νkF > 1
2
;

k⊥= ln k⊥; νkF ¼ 1
2
;

k
1=2νkF⊥ ; νkF < 1

2
:

ðB3Þ

For νkF ¼ 1=2, the leading-order coefficients in front of ω
and ω2νkF diverge and cancel exactly, leaving the sublead-
ing logarithmic dependence ~c1ω lnω where ~c1 is a real
constant.6 As νkF is decreased we move from a metal (Fermi
liquid) at ν > 1=2 to a marginal metal at ν ¼ 1=2 to a
quantum critical metal (non-Fermi liquid) at νkF < 1=2, and
the dispersion Eq. (B3) becomes softer. This has conse-
quences for the behavior of thermodynamic properties, e.g.
the heat capacity.
The imaginary part of the self-energy Σ ∼ ω2νkF gives

rise to the following width of the quasiparticle dispersion:

Γ ∼

8

>

>

>

<

>

>

>

:

k
2νkF⊥ ; νkF > 1

2
;

k⊥= ln k⊥; νkF ¼ 1
2
;

k
1=2νkF⊥ ; νkF < 1

2
:

ðB4Þ

Comparing Eqs. (B3) and (B4), we see that the pole
represents a stable quasiparticle only for νkF > 1=2 when
the width is much smaller than the real part: Γ=ω� ≪ 1,
while a coherent quasiparticle is replaced by an unstable
pole for νkF ≤ 1=2 where Γ=ω� ¼ const. The imaginary
part of the self-energy becomes important for the behavior
of transport coefficients, e.g. conductivity, where the
dissipation processes play the key role.

6The logarithmic dependence for the real part of the self-
energy defines the dispersion for νkF ¼ n

2
, n ∈ Zþ. Therefore, the

linear spectrum is valid for νkF ≠ n
2
.
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We rewrite Eq. (B1) as

GRðω; ~kÞ ¼
h1vF

vFk⊥ − ωþ Σðω; kFÞ
; ðB5Þ

with the self-energy Σ ¼ Σ1 þ iΣ2. Therefore the spectral

function defined as Aðω; ~kÞ ¼ 1
π ImGRðω; ~kÞ is given by

Aðω; ~kÞ ¼ 1

π

h1vFΣ2ðω; kFÞ
ðω − vFk⊥ þ Σ1ðω; kFÞÞ2 þ Σ2ðω; kFÞ2

:

ðB6Þ

From the above form we can directly read off the structure:
a sharp quasiparticle near k ¼ kF and ω ¼ 0 goes through
the infrared scaling region for ω=T < 1 and eventually
asymptotes to the universal conformal scaling in the UV,
i.e. for ω; k ≫ 1.

2. Equation of state and specific heat

Having established the formal structure of the single-
particle propagator, we can use it to construct the Landau-
Ginzburg action for our system. An effective potential in
the CJT formalism is given by [51]

Γeff ¼
1

2
Tr ln S−1 þ 1

2
TrðS−10 S − 1Þ þ Γ2½S�; ðB7Þ

where S is a dressed fermion propagator, Γ2 is the sum of all
two-particle irreducible diagrams, and the trace Tr involves
also the summation over the Matsubara frequencies and the
integration

R

d2x. The last two terms can be simplified with
the help of the Dyson-Schwinger equation, to give

Γeff ¼
1

2
Tr ln S−1 −

1

4
TrðΣSÞ; ðB8Þ

where the self-energy is Σ ¼ S−1 − S−10 .
The fact that we have a finite quasiparticle width,

encoding for inelastic/dissipative processes, allows us to
calculate the transport coefficients, which would otherwise
be infinite. However, the imaginary part of the self-energy
gives rise to a branch cut in the fermion propagator along
Imω ¼ 0 in a complex ω plane [52–55]. In the calculation
of the Matsubara sum we should take into account the
contributions from poles and from the discontinuities along
the branch cuts [54,55]:

T
X

oddm

FðiωmÞ ¼
X

poles

nðziÞResðF; z ¼ ziÞ

−
X

cuts

Z

∞

−∞

dζ
2πi

nðζÞDiscF; ðB9Þ

with the analytical continuation iωm → z, and the Fermi
distribution function nðxÞ. In the contour integral one can

use either nðxÞ≡ nðxTÞ or tanhð x
2TÞ functions with prefactors

ð− 1
2πiÞ and ð− 1

4πiÞ respectively, as both give the same result
for the observables. The calculation of Matsubara sums
using a perturbative expansion in the imaginary part of the
self-energy has been developed in Ref. [56].
For simplicity we will take h1vF → −1 which will not

change our results qualitatively. Using the retarded fermion
propagator, an effective potential is found to be

Γeff →−
1

4πi
V2

T

Z

d2k
ð2πÞ2

Z

C
dz tanh

z
2T

×T

�

1

2
ln
z−vFk⊥þΣðz;kFÞ

T
−
1

4

Σðz;kFÞ
z−vFk⊥þΣðz;kFÞ

�

;

ðB10Þ

where we have substituted the Matsubara sum by the
contour integral. The original contour C0 going around
the poles along the imaginary z axis was deformed into the
contour C going along the real z axis and then along the
arcs at infinity with vanishing contribution, denoted by Γ
[54]. In the case of a pure real self-energy the result for the
contour integration is (see Ref. [52])

Γeff →
V2

T

Z

d2k
ð2πÞ2

X

z�

�

1

2
T ln

�

2 cosh
z�
2T

�

þ 1

4
Σðz�Þ tanh

z�
2T

�

; ðB11Þ

where z� are the poles of the retarded propagator, and the
sum over all allowed poles is taken. As was shown in
Ref. [52], when the self-energy and hence the poles include
an imaginary part, the following substitution of hyperbolic
functions with Γ functions should be made [57]:













Γ
�

1

2
þ iz

�












2

¼ π

coshðπzÞ ;

jΓðizÞj2 ¼ π

z sinhðπzÞ : ðB12Þ

We can now use Γeff to compute all thermodynamic
quantities, using the relations

p¼ T
V2

Γeff ; s¼ ∂p
∂T ; c¼T

∂s
∂T ; n¼ ∂p

∂μ ; ðB13Þ

where the role of μ is played by kF, and we get the equation
of state
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p ¼
Z

d2k
ð2πÞ2

X

z�

�

−
1

2
T ln

�

1

2π













Γ
�

iz�
2πT

þ 1

2

�












2
�

þ 1

4

Σðz�ÞjΓð iz�2πT þ 1
2
Þj2

jz�j
2πT jΓð iz�2πTÞj2

�

; ðB14Þ

where the summation over complex poles z� is performed.
We only take into account the contribution of the pole
closest to ω ¼ 0, with the imaginary part of the self-energy
scaling as ΣðzÞ ∼ z2ν. Near the Fermi surface, the one-loop
contribution dominates over the self-energy term for Fermi
liquids ν > 1

2
, while the self-energy becomes leading for

non-Fermi liquids ν < 1
2
.

What we are truly interested in are the temperature
scaling relations for these quantities, in particular for the
specific heat c. The first term in Eq. (B14) gives the
following contributions to c:

∼
1

T2

Z

d2k
ð2πÞ2Re

�

z2�Ψ0
�

iz�
2πT

þ1

2

�

þz�2� Ψ0
�

−
iz�

2πT
þ1

2

��

;

×
1

T2

Z

d2k
ð2πÞ2Re

�

∼z�TΨ
�

iz�
2πT

þ1

2

�

;

∼z��TΨ
�

−iz��
2πT

þ1

2

��

ðB15Þ

where Ψ0ðxÞ ¼ dΨ
dx ¼ d2 lnΓ

dx2 . The second term gives the
following contribution:

1

T2

Z

d2k
ð2πÞ2 Re

�

∼TΣðz�ÞF½Γ�;

∼ z�Σðz�ÞF½Γ�;∼
z2�Σðz�Þ

T
F½Γ�

�

; ðB16Þ

where F½Γ� denotes a combination of Γ functions and their
first and second derivatives. Here, the momentum integra-
tion is performed around the Fermi surface, d2k → kFdk⊥
with k⊥ ¼ k − kF, the poles z� ¼ ωc − iΓ are given by
Eqs. (B3) and (B4) for the three cases of interest,
and ΣðzÞ ∼ z2ν.
For a Fermi liquid, one has ν > 1

2
and z⊥ ∼ k⊥ (the real

part is dominant). The first term then gives 1
T2

R

dk⊥z2� → T
and the same behavior from the other combination, while in
the second term we have Σ ∼ k2ν⊥ . Therefore, the second
term gives 1

T2

R

dk⊥Σðz�Þz� → T2ν and the same behavior
for the other two combinations.7 Thus for a Fermi liquid at
low temperatures we have

c ∼ T: ðB17Þ

We thus reproduce the linear temperature dependence of
the heat capacity known for Fermi liquids.
For a non-Fermi liquid, we have instead ν < 1

2
and z⊥ ∼

k
1
2ν⊥ (for both real and imaginary parts). The first term gives
1
T2

R

dk⊥k
1
ν⊥ → T

1
ν−1 and 1

T2

R

dk⊥k
1
2ν⊥T → T

1
2ν. The second

term gives 1
T2

R

dk⊥Σðz�ÞT → T2ν and subleading behavior
for the other two combinations. For ν < 1

2
, the self-energy

dominates over the one-loop contributions in the pressure
and at low temperatures we have

c ∼ T2ν: ðB18Þ

This result for the heat capacity reflects the scaling
behavior of the self-energy. Finally, for ν ¼ 1

2
, all the terms

are ∼T, so for the marginal liquids we have c ∼ T. One can
understand it physically from the dispersion relation (B3).
As the dispersion becomes softer, the number of states per
energy interval increases, and thus the heat capacity
increases as well:

cqcm > cm; ðB19Þ

where “m” stands for the normal metal and “qcm” for the
quantum critical metal.
It is illustrative to repeat the derivation of the equation of

state using the spectral function as given in Eq. (B6). The
density of states can be written through a spectral function
as follows:

n ¼ T
X

m

Z

d2k
ð2πÞ2 Aðiωm; ~kÞ

→ −
1

4πi

Z

d2k
ð2πÞ2

Z

C
dzAðz; ~kÞfðzÞ; ðB20Þ

where fðzÞ ¼ tanhð z
2TÞ. One can also use the Fermi dis-

tribution function fðzÞ ¼ nðzÞ with a prefactor ð− 1
2πiÞ,

which gives the same result for the observables. The
pressure is given by

p ¼
Z

μ

−∞
dμ0n; ðB21Þ

where in our case μ≡ kF. For simplicity we again take
h1vF → 1. We expand the spectral function with respect to
the imaginary part of the self-energy, which we treat as a
small parameter in this calculation [56]:

Aðz; ~kÞ ≈ 2πδðz − z�Þ − Σ2ðz; kFÞP0 1

z − z�
;

P0 1

z − z�
≡ ∂

∂z
�

P
1

z − z�

�

: ðB22Þ

The pole of the propagator z� is a solution of the equation
z − vFk⊥ − Σ1ðz; kFÞ ¼ 0 which does not contain the

7This is related to the fact that in Eq. (B14) for the effective
action the one-loop term dominates over the self-energy for ν > 1

2
.
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imaginary part of the self-energy Σ2. Substituting this
representation into the equation for the pressure, we have

p ¼ −
1

4πi

Z

d2k
ð2πÞ2

Z

kF

−∞
dk0F

Z

∞

−∞
dz

�

2πδðz − z�Þ

þ Σ2ðzÞP0 1

z� − z

�

fðzÞ: ðB23Þ

The frequency integral in the first term gives the familiar
expression for the number density

n ¼
Z

d2k
ð2πÞ2 fðz�Þ; ðB24Þ

where usually f is a Fermi distribution function, and the
dispersion relation is given by z� (in standard notation
z� → εk). Here we have fðxÞ ¼ tanhðx

2
Þ, and therefore

integrating over kF gives
R

dk0F tanh
z�
2
→ lnð2 cosh z�

2
Þ

where, at the leading order z� ∼ ðk − kFÞ. In the second
term we exchange the order of integrations in z and kF.
Therefore,

R

kF
−∞dk0FP

0 1
z�ðk0FÞ−z→− 1

z�ðkFÞ−z, and there is no kF
dependence in Σ2ðzÞ ∼ z2ν at the leading order. The second
integral is 1

2πi

R

∞
−∞ dzΣ2ðz; kFÞfðzÞ 1

z�−z
→ Σ2ðz�Þfðz�Þ.

Combining all terms together we have

p¼
Z

d2k
ð2πÞ2

X

z�

�

1

2
T ln

�

2cosh
z�
2T

�

þ1

4
Σ2ðz�Þ tanh

z�
2T

�

;

ðB25Þ

which is exactlyEq. (B11).Here, z� is the pole of the fermion
propagator without the imaginary part Σ2, and summing
over the poles is understood. If we take z� to be the pole of
the full propagator, z� becomes imaginary and a generali-
zation of hyperbolic functions to theΓ functions is necessary
as in Eq. (B12). Then we arrive at Eq. (B14) for the pressure
of the system.

3. DC conductivity from the Kubo formula

We calculate the DC conductivity in the boundary theory
using the gravity-“dressed” retarded/advanced fermion
propagators. Strictly speaking, we need also the “dressed”
vertex, to satisfy the Ward identities. As argued in Ref. [33]
however, the boundary vertex which is obtained from the
bulk one can be approximated by a constant in the low-
temperature limit. Also, according to Ref. [54], the vertex
only carries the singularities of the product of the Green’s
functions. Therefore, dressing the vertex will not change
the temperature dependence of the DC conductivity at low
ω [54].

We can start from the Kubo formula for conductivity:

σ ¼ −
∂
∂ω ImΠAAðω; ~k ¼ 0Þjω¼0: ðB26Þ

The polarization operator ΠAA is given by

ΠAAðiνn; 0Þ ¼
Z

d2k
ð2πÞ2 T

X

ωm

Gðiωm þ iνn; ~kÞΛA

× ðiωm þ iνn; iωm; ~kÞGðiωm; ~kÞΛð0Þ
A ð~kÞ;

ðB27Þ

where the fermion frequency is ωm ¼ ð2mþ 1ÞπT, and the
boson frequency is νn ¼ 2nπT, and in the low-temperature

limit ΛAðiωm þ iνn; iωm; ~kÞ ¼ Λð0Þ
A ð~kÞ. Usually the most

difficult step is to take the Matsubara sum. Here we can do
it in two ways. The first way consists of analytically
continuing in the complex plane iωm → z and replacing
the Matsubara sum by a contour integral with the Fermi
distribution function nðxÞ ¼ 1

exþ1
whose poles sit at the

Matsubara frequencies along the imaginary axis. The
second way is to use the spectral representation. In both
cases we follow Ref. [54], where transport coefficients
were calculated with propagators including their imagi-
nary parts.
Taking the first way, we have for the fermion Matsubara

sum

Hðiνn; ~kÞ ¼ T
X

ωm

Gðiωm þ iνn; ~kÞGðiωm; ~kÞ

→ −
1

2πi

Z

C
dzGðzþ iνn; ~kÞGðz; ~kÞnðzÞ; ðB28Þ

where the contour along the imaginary z axis can
be deformed to the contour C which goes along two branch
cuts, ImZ ¼ 0 and Imz ¼ −νn, and the large arcs Γ
with vanishing contribution [54]. The fermion propagator
has a branch cut along Imz ¼ 0 [54,55]. Therefore we can
rewrite

HðiνnÞ ¼ −
1

2πi

Z

∞

−∞
dζnðζÞGðiνn þ ζÞðGRðζÞ −GAðζÞÞ

−
1

2πi

Z

∞

−∞
dζnðζÞGð−iνn þ ζÞðGRðζÞ − GAðζÞÞ;

ðB29Þ
where the difference of the retarded and advanced functions
in the first bracket is due to the discontinuity along Imz ¼ 0
and in the second bracket it is due to the discontinuity
along Imz ¼ −νn. This contribution corresponds to the
second term in Eq. (B28), and there are no pole contribu-
tions [54]. We use the usual prescription for retarded and
advanced Green’s functions, GR ¼ Gðωþ i0þÞ and GA ¼
Gðω − i0þÞ and suppress the momentum indices. Taking
iνn → ωþ i0þ, we have
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HðωÞ ¼ −
1

2πi

Z

∞

−∞
dζnðζÞGRðωþ ζÞðGRðζÞ −GAðζÞÞ

−
1

2πi

Z

∞

−∞
dζnðζ þ ωÞGAðωþ ζÞ

× ðGRðζ þ ωÞ −GAðζ þ ωÞÞ; ðB30Þ

where we changed the integration variable in the second
integral ζ − ω → ζ. In the limit ω → 0, the dominant
contribution comes from the pair GRGA, and it is inversely
proportional to the distance between the poles given by the
imaginary part Σ2. The combinations GRGR and GAGA
with the poles on one side of the real axis make a much
smaller contribution due to the cancellation between the
residues at the poles. Therefore, as ω ∼ 0, we have

Hðω; ~kÞ → −
1

2πi

Z

∞

−∞
dζðnðζ þ ωÞ

− nðζÞÞGRðζ þ ωÞGAðζÞ; ðB31Þ

and

ImΠAAðω; 0Þ ¼
1

2π

Z

d2k
ð2πÞ2 Λ

ð0Þ
A ð~kÞ

Z

∞

−∞

dζ
2π

ðnðζ þ ωÞ

− nðζÞÞGRðζ þ ω; ~kÞ
× ΛAðζ þ ωþ i0þ; ζ − i0−; ~kÞGAðζ; ~kÞ:

ðB32Þ

In the small-T limit the vertex is a constant. We integrate
around the Fermi surface, and therefore the momentum
integral is

R

d2k
ð2πÞ2 →

kFdk⊥
ð2πÞ2 with k⊥ ¼ k − kF. We exchange

the order of integration and perform first the momentum
integration [27,33]. For ω ∼ 0, we have

Z

∞

−∞

dk⊥
2π

1

ð ζ
vF
− k⊥ þ Σðζ; kFÞ þ i0þÞð ζ

vF
− k⊥ þ Σ�ðζ; kFÞ − i0þÞ ¼

i
Σðζ; kFÞ − Σ�ðζ; kFÞ

¼ 1

2ImΣðζ; kFÞ
: ðB33Þ

Writing n0ðζÞ ¼ −βnðζÞð1 − nðζÞÞ, we have for ω ∼ 0

σ → Λð0Þ2kFh21

Z

∞

−∞

βdζ
2π

nðζÞð1 − nðζÞÞ
ImΣðζ; kFÞ

; ðB34Þ

where we have dropped constant terms. Note that we get the
same result for the conductivity also if we use tanh x

2

in the contour integral (B28) since n0ðxÞ ¼ −2 tanh0ðx
2
Þ. For

theLandauFermi liquidΣðωÞ ∼ ω2 at smallT [33,58].Weget

σ ∼ T−2; ðB35Þ

meaningthatwerecover thestandardresult for theresistivityof
the Fermi liquid: ρ ∼ T2.
In our case, ΣðωÞ ∼ ω2νkF , which produces

σ ∼ T−2νkF : ðB36Þ
This result agrees with the DC conductivity obtained in
Ref. [33]. For the marginal liquid, νkF ¼ 1

2
, we recover the

resistivity ρ ∼ T, which is empirically found in the strange
metal phase.

(i) It is interesting that the scaling behavior of the DC
conductivity is the same as the single-particle
scattering rate. On the gravity side it is explained
by the fact that the dissipative part of the current-
current correlator is controlled by the rate of the bulk
fermion falling in the horizon, given by the single-
particle scattering rate. Comparing the resistivity in

the quantum critical metal “qcm” to the one in the
normal metal “m,”

ρqcm > ρm; ðB37Þ

which indicates that the quantum critical metal
becomes increasingly insulating as νkF is decreased.
This suggests that there is some sort of ordering in
the system, not necessarily associated with a gap.

To check our calculation, we get the DC conductivity
using the spectral representation

Gðiωm; ~kÞ ¼
Z

dk0
2π

Aðk0; ~kÞ
k0 − iωm

; ðB38Þ

where the spectral function Aðk0; ~kÞ is given by Eq. (B6).
For the product of the Green functions we use the following
formula:

T
X

m

1

iωm−ω1

1

iωmþ iνn−ω2

¼ nðω1Þ−nðω2Þ
iνnþω1−ω2

: ðB39Þ

Taking iνn → ωþ i0þ, the polarization operator is given by

ΠAAðω; 0Þ ¼
Z

d2k
ð2πÞ2

dω1

2π

dω2

2π

nðω1Þ − nðω2Þ
ωþ ω1 − ω2

× Λð0Þ2
A Aðω1; k⊥ÞAðω2; k⊥Þ: ðB40Þ
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Performing the integration over ω2, we have

ImΠAAðω;0Þ¼
Z

d2k
ð2πÞ2

dω1

2π
ðnðω1Þ

−nðω2ÞÞΛð0Þ2
A Aðω1;k⊥ÞAðω1þω;k⊥Þ:

ðB41Þ
In the limit ω ∼ 0, the momentum integration proceeds as

Z

d2k
ð2πÞ2A

2ðω1;k⊥Þ→ kF

Z

dk⊥
2π

A2ðω1;k⊥Þ→
kFh21

Σ2ðω1;kFÞ
;

ðB42Þ

with Σ2 ¼ ImΣ. Therefore, the DC conductivity given by
Eq. (B26) is

σ → Λð0Þ2
A kFh21

Z

βdω1

2π

nðω1Þð1 − nðω1ÞÞ
ImΣðω1; kFÞ

ðB43Þ

which is the same as Eq. (B34) obtained by the contour
integration.
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We consider a quantum wire connected to the leads and subjected to dissipation along its length. The dissipation
manifests as tunneling into (out of) the chain from (to) a memoryless environment. The evolution of the system
is described by the Lindblad equation. Already infinitesimally small dissipation along the chain induces a
quantum phase transition (QPT). This is a decoherence QPT: the reduced density matrix of a subsystem in
the nonequilibrium steady state (far from the ends of the chain) can be represented as the tensor product of
single-site density matrices. The QPT is identified from the jump of the current and the entropy per site as
the dissipation becomes nonzero. We also explore the properties of the boundaries of the chain close to the
transition point and observe that the boundaries behave as if they undergo a second-order phase transition as a
function of the dissipation strength: the particle-particle correlation functions and the response to the electric
field exhibit a power-law divergence. Disorder is known to localize one-dimensional systems, but the coupling to
the memoryless environment pushes the system back into the delocalized state even in the presence of disorder.
Interestingly, we observe a similar transition in the classical dissipative counterflow model: the current has a
jump at the ends of the chain introducing an infinitely small dissipation.

DOI: 10.1103/PhysRevB.91.205416 PACS number(s): 03.65.Yz, 72.10.−d, 72.15.Rn, 05.30.Fk

I. INTRODUCTION

Coupling to the environment can significantly change the
properties of a quantum system. Intuitively, the presence of
dissipation leads to a decrease of coherence in the system. It
can induce various types of phase transitions [1–9].

The best known example of such a transition is exhibited
by the spin-boson model: there is a critical value of the
interaction between the two-level system and the bosonic
environment, which localizes the system [10]. A more
complicated example is the superconductor-metal transition
in dissipative nanowires [6,7], which can be modeled as a
dissipative XY -spin chain, with a coupling to the bosonic bath
at every site of the chain. It was shown both analytically and
numerically [6,8,9] that the system experiences a universal
second-order phase transition at the critical value of the
coupling to the environment.

These are examples in the presence of the bosonic bath.
Realistically, especially in condensed matter systems, the bath
can be also fermionic [11]. It is possible to describe it in a sim-
ilar manner as the bosonic bath in the spin-boson model, i.e.,
using the Feynman-Vernon formalism. However, it is rather
complicated to consider more than one or two sites in such
a formulation. The problem is often simplified by studying a
Lindblad-type equation [12,13]. This corresponds to a memo-
ryless bath. Physically, this means that the quasiparticles in the
bath are assumed to have a much smaller dynamical timescale
compared to the excitations in the system. Even the mem-
oryless dissipation induces a novel behavior in the quantum
systems. For example, dissipation along the system can lead to
the algebraic decoherence in strongly interacting systems [14].

Phase transitions have been observed in the presence of
a particle or energy flow in various spin chains [15]. For
example, the equilibrium phase diagram of the transverse field
Ising model has two phases: ordered and disordered; while
in the presence of particle flow a new phase appears, which
carries a nonzero particle flux [16].

The density matrix of the nonequilibrium steady state
(NESS) of a noninteracting fermionic system is associated
with an effective Hamiltonian [3]. In this formalism, phase
transitions can be observed directly from the spectrum of the
effective Hamiltonian, which shows features absent in the
closed system. For example, a topological phase transition
has been found in a cold atomic system subjected to laser
irradiation [3].

Equilibrium phase transitions are characterized by dis-
continuous derivatives of the free energy [17]: the order of
the transition is equal to the order of the first discontinuous
derivative. In a nonequilibrium situation the free energy is not
a well-defined statistical quantity. The partition function, on
the other hand, remains well defined also for a nonequilibrium
system, as well as entropy, which is given by the logarithm of
the number of microstates [18]. Starting from the partition
function or entropy we can define the (nonequilibrium)
susceptibilities even though the free energy is ill defined [17].
The susceptibility diverges at the transition point [19]. For the
second-order quantum phase transition (QPT) the divergence is
physical and detectable, while it is a δ-function-like divergence
for a first-order transition. This means that in an infinite system
undergoing a first-order phase transition, when the divergence
equals the Dirac δ function, we can only observe the step
(discontinuity) in susceptibility, while the (infinitely narrow)
Dirac δ peak is not measurable.

A. Short overview

In this paper we study the fermionic chain connected to the
memoryless bath at every site of the chain, hence we consider
the Lindblad equation for noninteracting fermions [5,20–22].
The ends of the chain are connected to noninteracting memory-
less leads [22,23]. The difference in chemical potential induces
the particle flow in the system. We find a first-order QPT that
separates the regimes of coherent and dissipative transport
along the chain. The coherent state is characterized by the
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constant current along the chain, while in the dissipative state
the current induced by the coupling to the reservoirs decays
exponentially inside the chain. QPT between the two happens
already at an infinitesimally small coupling to the environment,
i.e., the critical coupling value is zero. The transition can
be understood microscopically from the fact that the density
matrix is decomposed into the tensor product of one-site
density matrices in the bulk. The phenomenological reason
for the transition is breaking of the time-reversal symmetry by
the dissipation along the chain. From the thermodynamic point
of view, the transition is a consequence of the entropy-per-site
jump. The bulk susceptibility also has a jump at the transition.
These facts make us conclude that it is a first-order phase
transition. We also detect the jump of the steady-state current
at the ends of the chain for sufficiently long chains. We
can observe this nonequilibrium QPT in the spectrum of
the effective Hamiltonian of the NESS: the gap present for
zero dissipation along the chain closes in the presence of
dissipation. A nonequilibrium QPT in the system coupled to
the Markovian bath has also been observed in the XY-spin
chain [2,5] and in the XX-spin chain [1].

The phase transitions are normally considered in the ther-
modynamic limit and the effects of the boundaries (finite-size
effects) are neglected (or, in numerical work, systematically
eliminated, e.g., by finite-size scaling). When we discuss the
transition between the coherent transport through the chain and
decoherent state induced by dissipation, we cannot neglect the
effects of the boundaries, because the particle current is due
to the injection of particles at the ends of the chain. Therefore,
we study the particle-particle correlation functions and the
electrical susceptibility in the NESS at the ends of the chain
and observe power-law divergences as a function of dissipation
strength along the chain.

We also consider the workings of dissipation in the presence
of disorder. We find that any memoryless dissipation extended
along the chain destroys the localization by disorder. This
result supports previous studies by the scattering matrix
approach [24] and the Landauer-type approach with deco-
herence [25]. The phase transition to the dissipative state is
universal and preserved in the presence of disorder.

II. MODEL AND FORMALISM

We are interested in the properties of the nonequilibrium
steady state of a chain of noninteracting fermions linearly
coupled to several noninteracting fermionic baths (reservoirs;
we use the two terms as synonymous). The full Hamiltonian
of such system is

Hfull = Hsys +
∑
i,α

Hi,α,coup +
∑
i,α

Hi,α,bath, (1)

where Hsys is the tight-binding Hamiltonian of the system:

Hsys =
∑
{ij}

tij (a†
i aj + H.c.) +

∑
i

Uia
†
i ai, (2)

with {ij} denoting the links between the sites, tij is the hopping
amplitude between the sites i and j and Ui is an on-site
potential. By Hi,α,bath we denote the Hamiltonian of the bath:
the index i here stands for the site of the chain, while the index

α denotes different baths coupled to the same site:

Hi,α,bath =
∑

k

εi,α,kb
†
i,α,kbi,α,k. (3)

The annihilation operators in the baths are denoted by symbol
bi,α,k , while the annihilation operators in the chain are ai .
Finally Hi,α,coup is the coupling between the system and the
bath, with the coupling strength pi,α,k:

Hi,α,coup =
∑

k

pi,α,k(b†
i,α,kai,α + H.c.). (4)

In our model we have exactly two baths at every site which we
can denote as “incoming” and “outgoing”, with α ∈ {(i),(o)}.
The baths are described by the spectral function:

Ji,α(ω) =
∑

k

|pi,α,k|2δ(ω − εi,α,k). (5)

For a noninteracting system it has been shown [11,26] that
under the assumption of constant spectral density in the
reservoirs

Ji,α(ω) = νi,α

and for the plus/minus infinite chemical potential in the
reservoirs the time evolution of the system is described by
the Lindblad equation:

i
dρ

dτ
= Lρ,Lρ

= [H,ρ] + i
∑
j,i/o

{
2	

(i/o)
j ρ	

†(i/o)
j − [

	
†(i/o)
j 	

(i/o)
j ,ρ

]}
,

(6)

where the operator L is called the Liouvillian and 	j are the
Lindblad operators responsible for the coupling to the bath:

	
(i)
j =

√



(i)
j a

†
j , 	

(o)
j =

√



(o)
j aj , (7)



(i)
j = πνj,+∞

∑
k

|pi,+∞,k|2, 

(o)
j = πνj,−∞

∑
k

|pi,−∞,k|2,

(8)

with νj,±∞ being the density of states in reservoirs connected
to the site j with plus/minus infinite chemical potential.
The infinite chemical potential ensures Markovian dynamics
in the bath [27]: in the reservoir at the chemical potential +∞
there are always particles which can hop into the system and
in the reservoir at the chemical potential −∞ there is always
room for new particles hopping out of the system, therefore
such baths are memoryless. The finite bandwidth, finite
chemical potential, and finite temperature of the reservoirs
would make the evolution equation for the density matrix
nonlocal in time [11,26].1 Let us also note that the coefficients

 are not necessarily small, they can have any value. The
difference from the ordinary derivation [13] is that here both

1In the above derivation we have not discussed temperature, as it
does not matter in the case of infinite chemical potential. When the
chemical potential in the reservoirs becomes finite, the temperature
appears as an additional parameter.
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Source Drain

FIG. 1. (Color online) The setup of the problem: one-
dimensional chain is connected to the source and the drain as in
transport experiments. Every site of the chain is coupled to the
environment, which models the dissipation from the leakage of the
current due to imperfect insulation. The environment consists of two
reservoirs at plus/minus infinite chemical potentials coupled at each
site of the chain.

the system and the baths are noninteracting, therefore fewer
assumptions are required to get the Lindblad form of the
evolution equation.

Let us now apply the Lindblad formalism to our model. Our
chain is L sites long and it is coupled to the source and the
drain at infinite bias voltage at its ends:

	
(i)
1 =

√

(i)a

†
1, 	

(o)
1 = 0,

	L(i) = 0, 	
(i)
L =

√

(i)aL.

There is also a dissipation along the chain into a finite
temperature bath, which is represented by sources 	(i)

μ =√
d
(i)

μ a
†
μ and drains 	(o)

μ =
√
d
(o)

μ aμ, for μ = 2, . . . ,L − 1. The
d
 values are not infinitesimal: they are typically much smaller
than 
(i,o) but can take any value in principle; the notation d
 is
just for convenience. Schematically, the dissipative wire setup
we study is depicted in Fig. 1. From now on in the text and in
the plots the 
μ values are measured in the units of the hopping
t , which we assume to be constant along the chain (in other
words we put tij = t = 1).

A. Solving the Lindblad equation

The solution of the Lindblad equations for noninteracting
fermions is notably simplified in the superfermionic repre-
sentation [21,22], which is based on the doubling of the
degrees of freedom as in thermofield theory. Here instead of
solving a differential equation for the evolution of the 2L × 2L

density matrix, the calculations are done with the 2L × 2L

matrices. The observables of the NESS are computed directly.
What is more, the full-counting statistics of the transport
through the ends of the chain can be obtained by introducing
the counting field, which yields the generating function
of the counting statistics [22,23]. We will present the results for
the first cumulant of the generating function, i.e., the current, as
well as for the ratio between the second and the first cumulant,
which characterizes the noise in the system and is called the
Fano factor.

We evaluate the current along the chain by averaging the
local current operator over the NESS:

ĵk = −it(a†
kak+1 − a

†
k+1ak). (9)

At the ends of the chain the current and the Fano factor are
given by the derivatives of the generating function.

The Liouvillian for noninteracting fermions in the super-
fermionic representation becomes quadratic after performing
the particle-hole transformation [22], as the Liouvillian be-
comes diagonal in the basis {f,f ‡,f̃ ,f̃ ‡}, see Appendix. The
density matrix of the NESS is a vacuum for the operators f and
f̃ (see Appendix). As there exists a linear relation between the
initial basis {a,a†,ã,ã†} and the basis {f,f ‡,f̃ ,f̃ ‡}, the density
matrix of the NESS is quadratic:

ρNESS = exp(Hmna
†ã†)|00〉aã

〈I | exp(Hmna†ã†)|00〉aã

, Hjn = κ̃−1
ni κji, (10)

where the matrix κ is connected to the matrix of the eigenvec-
tors P of the transformation which diagonalizes the particle-
hole transformed Liouvillian [22] (see Appendix), namely
T = P −1, κkj = Tkj and κ̃kj = Tk+L,j for k,j = 1, . . . ,L.
Notice that iH is a Hermitian matrix as ρ is Hermitian, and
〈I | is the left vacuum, |I 〉 = ∑

n |nn〉aã [21], where by n we
denote the state in the a basis. Therefore, iH can be considered
as an effective Hamiltonian of the NESS.

III. DISSIPATION-INDUCED PHASE TRANSITION

In this section we first observe the dissipation-induced
phase transition in the transport properties at the ends of the
chain and in the bulk and then we characterize the transition in
the thermodynamic limit. Afterwards we discuss some specific
aspects of the transition at the ends of the chain by studying the
response to electric field and the particle-particle correlation
functions close to the ends and reveal its microscopic nature.
Finally, we study the influence of the dissipation on the
phenomenon of delocalization in disordered systems.

A. Observation of the transition

We model dissipation along the chain as tunneling to the
metallic gate in the absence of good isolation of the one-
dimensional chain from the environment. To implement this
we couple a source and a sink to every site of the chain [21]. We
also allow for disorder in the hybridization strengths d


(i/o)
μ to

account for different tunneling rates to the environment.
The fermionic chain coupled to the reservoirs only at its

ends has a uniform current along its length due to particle
conservation. Let us call the state of such a system coherent
as the current at its ends depends on both couplings. On the
other hand we call the state of the system decoherent when the
current through a given end depends only on the coupling of
the reservoir at this end.

We only expect to find a phase transition and the associated
discontinuities in the thermodynamic limit, i.e., in an infinite
system. For that reason we start by looking at a chain long
enough that there is no dependence on its length, Fig. 2(b). We
see a jump both in the current and in the Fano factor when the
dissipation is switched on, Fig. 2(a). Reference [23] provides
the large deviation calculation for the current distribution
function of the chain coupled to the reservoirs only at its ends.
The current distribution is discontinuous as a function of the
couplings to the reservoirs and the author suggests that this is
the reason of the phase transition also for the system dissipative
along its length.
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FIG. 2. (Color online) (a) The jump of the current, j , and the
Fano factor, F , at infinitesimally small dissipation constant along
the chain d
 = d
(i) = d
(o) (
(i) = 
(o) = 1). (b) Dependence of
the current j and the Fano factor F through the ends of the chain
on the length L for random dissipation along the chain taken from
the range d
(i),d
(o) ∈ (0,0.04) (points with error bars) and for the
constant dissipation with the strength d
(i) = d
(o) = 0.02 (points
and the dashed lines). Here and everywhere else in the text and the
plots the 
μ values are measured in the units of the hopping t .

In order to understand better the nature of the states on
both sides of the transition, let us consider the current along
the chain. We compute the expectation value of the local
current operator (9) in the NESS for every link of the chain.
For a nondissipative system it is constant along the chain
due to the current conservation. For the dissipative case it
decays exponentially inside the system, Fig. 3. One would
certainly expect such behavior in the presence of the drains
only. But in our setup we have both the source and the drain
attached to every site of the chain. Therefore, we conclude
that the exponential decrease of the current is connected
to the coherence losses due to coupling to the memoryless
environment, and not simply to the current leakage into the
drains.

If we allow for a random distribution of the dissipation along
the chain, the current averaged over disorder configurations
decays with the same exponent as the current in the system
with uniform dissipation, with the magnitude equal to the mean
of the distribution of the disordered couplings, Fig. 3.

With increasing dissipation strength, the current through
one end of the chain becomes only weakly dependent on the
coupling at the other end of the chain because the coherence
of the transport through the chain is lost upon adding the

(a)

(b)

FIG. 3. (Color online) Exponential decay of the current along
the chain. (a) Logarithmic scale, different lengths of the system.
The currents in the system without randomness in dissipation are
represented by the regular sets of points (forming solid lines).
Darker, irregularly scattered points represent the current for one
realization of the disorder in dissipation along the chain. (b) The
current through a dissipative chain after averaging over different
disorder realizations. The scale is linear (not logarithmic) to show
the standard deviation of the (fluctuating, random) current. Notice
that the negative values of the current are physical, because some
realization of the (random) couplings d
 can give an overall current
flowing in the opposite direction. The couplings at the ends of the
chain are 
(i) = 
(0) = 1, d
 = 0.05. For the average over disorder
d


(i)
j ,d


(o)
j ∈ (0,0.1), j ∈ (2,L − 1).

dissipation along the chain, Fig. 4. Here we make a plot for
the constant dissipation rate along the chain since the current
averaged over disorder in coupling strengths is the same as in
the case of the constant dissipation (see Fig. 3).

Both the presence of the jump in the transport characteris-
tics at the ends of the chain and the coherence/decoherence
transition in the current along the chain suggest that any
nonzero dissipation along the chain induces the QPT. It is not
a van der Waals-type transition, meaning there is no analog
of the latent heat, that is, excitation of internal degrees of
freedom, but the extra energy is instead exchanged with the
bath.

1. Classical analogue

The Lindblad approximation for the driving at the ends of
the chain and decoherence along the chain make our quantum
model less quantum and more classical. This is exemplified
by comparing our results with a classical model introduced
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FIG. 4. (Color online) Logarithmic plot of the current flowing
from the system into the reservoir at the beginning of the chain
(denoted by 1) as a function of the hopping rates at the ends of the
chain, in the presence of the constant dissipation along the chain,
d
(i) = d
(o) = 0.02. Increasing the dissipation makes the current
through one end independent of the coupling at the other end of the
chain. In this plot we denote 
(i) = 
1, 
(o) = 
2.

by Roche, Derrida, and Doucot [28] for studying the classical
version of the Landauer picture of a quantum conductor, where
we also observe the exponential decay of the current inside the
chain as well as the jump of the steady-state current at the ends
of the chain upon introducing the dissipation along the chain.

We consider a counterflow model [28]: the system is
modeled by an L-site chain, where each of the sites may
contain two particles, one right-moving and one left-moving. It
is analogous to the quantum scattering problem. Let us call the
walls between the sites tunnel barriers. The time is discrete.
At each time step the right-moving state on the left of the
barrier and the left-moving state on the right of the barrier are
transferred to the right-moving state on the right of the barrier
and the left-moving state on the left of the barrier, respectively:

(0r,k−1,0l,k) → (0r,k,0l,k−1), (11)

(1r,k−1,1l,k) → (1r,k,1l,k−1), (12)

(0r,k−1,1l,k) →
{

(0r,k,1l,k−1) with prob. T ,

(1r,k,0l,k−1) with prob. (1 − T )
(13)

(1r,k−1,0l,k) →
{

(1r,k,0l,k−1) with prob. T ,

(0r,k,1l,k−1) with prob. (1 − T ),
(14)

where on the left-hand/right-hand side of the arrow is the
state before/after the time step respectively, 0 and 1 denote the
state of the system (empty/full), the subscripts r/ l stand for
right-/left-moving and k stands for the cell number. The first
and the last cell are updated at every time step to account for

the contact with the reservoirs:

(1r,1,0l,1) with prob. ρR, (15)

(0r,1,0l,1) with prob. (1 − ρR), (16)

(0r,L,1l,L) with prob. ρL, (17)

(1r,L,1l,L) with prob. (1 − ρL). (18)

The configuration space of this process grows exponentially
with the the number of sites: it contains 2L configurations.
This makes it complicated to calculate the counting statistics
using the transition matrix approach [28]. In general, the
described model has a diffusive behavior: the current through
the system decreases with increasing system size [28] (this
happens because each transmission process is a stochastic
process). In our model we obtain pure ballistic behavior by
moving all particles in the middle of the chain (which are
independent of the dynamics on the first and the last site) as a
whole, which is just what ballistic propagation means.

While earlier work [28] considers only the flux of particles
at the end of the chain, we introduce the dissipation in the
middle of the chain as a classical analog of decoherence (from
now on we call it decoherence to emphasize the lack of true
quantum-mechanical coherence in the classical model) as a
spontaneous appearance/disappearance of right/left moving
particles in between two propagation steps. Therefore, our
algorithm of time evolution of the dissipative chain is

(i) Initialize the time step:
(a) generate an arbitrary initial state in the first step;
(b) in the subsequent steps: update first the occupation

on the first and the last site of the chain according to (15)–
(18). Then update the occupation number in the middle,
which changes due to decoherence: if both left- and right-
moving states at the site k are empty, then with probability
d
(i)/2 one of them becomes occupied. If only the left-
or right-moving state is empty, then this state becomes full
with probability d
(i). The analogous update is done for
hopping out of the chain with the rate d
(o).
(ii) Move the particles:

(a) the right/left movers on the site from 2 to (L − 2)/3
to L − 1 from are shifted in the ballistic way (the particle
is moved by one site, if the site with the corresponding
chirality on its way is empty);

(b) make a move of the states around the barriers
according to rules (11)–(14);

(c) shift particles close to the ends if more ballistic
motion is possible with respect to the configuration af-
ter (11)–(14) comparing to the initial configuration.
(iii) Repeat the steps (i) and (ii).
According to our numerical simulation the average over

the time evolution of a single state equals to the average over
different initial states evolved for a fixed time, which is long
enough to approach the steady state, as we would expect in an
ergodic system. We present the long-time averages over time
of the evolution of a single state as it is less computationally
consuming comparing to the other averaging procedure.

The current through the chain can be determined in two
ways: as the difference between the right and left movers at
each cell or as the number of the particle transmissions between
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(a)

(b)

FIG. 5. (Color online) (a) The jump of the current at the end of
the chain upon switching on the decoherence along the chain in the
classical counterflow model. (b) Dependence of the current through
the first site of the chain on the length of the chain. Compare to Fig. 3,
where analogous behavior is observed for the quantum chain modeled
by the Lindblad equation. 


(in)
1 = 


(out)
2 = 0.5

the neighboring cells. Qualitatively these approaches give the
same answer for our decoherent problem.

To compare our numerical simulation with the Lindblad
approach we fix ρR = 1 and ρL = 0 to model the leads at
plus/minus infinite voltage. The time-averaged current decays
exponentially from the ends of the chain toward the middle,
Fig. 6. The saturation of the exponential decay in the middle
happens due to finite time of averaging. The average current

FIG. 6. (Color online) The dependence of the current on the site
index for different decoherence rates d
 in logarithmic scale in the
classical counterflow model: the exponential decay of the current from
the ends toward the middle of the chain is clearly visible, suggesting a
similar mechanism of decoherence as in the quantum chain in Fig. 4.



(in)
1 = 


(out)
2 = 0.5, tmax = 105.

through the end of the chain jumps when decoherence is
introduced in the system, Fig. 5. To observe the clear jump the
number of time steps should be large enough that the system
forgets about its initial configuration, at least about L/d
.

The behavior of the quantum chain is thus qualitatively
reproduced by the classical stochastic model. It might therefore
seem that the term quantum phase transition we have used for
the transition in the quantum chain is a misnomer. This is not
the case, since the classical counterflow model is stochastic and
thus exhibits fluctuations around the expectation values, i.e.,
averaged values. The generating function of the counterflow
model is thus analogous to the action of a quantum system, and
the jump of the suitably defined classical current is formally
analogous to the QPT observed earlier. A truly classical system
(with no fluctuations) would not show such a phase transition.

B. First-order phase transition in the thermodynamic limit

Phase transitions are normally studied using the thermo-
dynamic quantities and the response functions. In a nonequi-
librium situation the partition function and the entropy are
well-defined thermodynamic quantities. Here we concentrate
on the entropy and the response to the electric field, and
eventually explain the microscopic nature of the transition.

1. Entropy

The NESS is Gaussian, Eq. (10), as it can be represented
as an exponent of a quadratic operator. Therefore, its effective
Hamiltonian is a Hamiltonian of noninteracting fermions. In
analogy with equilibrium statistical physics one can connect
the entropy of the NESS to the eigenvalues μi of the effective
Hamiltonian (10) [29]:

S = −
∑

i

(
ln(1 + e−εi ) + εi

1 + eεi

)
, μi = e−εi . (19)

The entropy per unit length S = S/L does not depend on the
system length for sufficiently long systems and experiences a
jump upon turning on the dissipation along the chain, Fig. 7.
For a chain without dissipation the specific entropy always
depends on the couplings to the reservoirs at the ends of the
chain, while for a dissipative system it does not depend on
the couplings to the leads in the thermodynamic limit (the
contribution from the boundaries is of the order of 1/L).
The specific entropy tends to a value depending only on
the ratio of the incoming and outgoing rates along the chain
γ = d
(i)/d
(o):

S = ln(1 + γ ) − γ

1 + γ
ln γ. (20)

This corresponds to the entropy of the single site coupled
to only two baths by the Lindblad operators

√
d
(i)a† and√

d
(o)a. Indeed, the reduced density matrix of a site in the
middle of the chain is the same as for a single site coupled
to two baths up to a factor exponentially small in L. The
coupling to the rest of the chain is irrelevant. The current in
the middle of the chain vanishes, but what is happening is
even stronger: the correlation between two neighboring sites
vanishes exponentially 〈c†

i+1ci〉NESS = O[exp(−βi)], where i

is the number of the site in the middle of the chain and β is the
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FIG. 7. (Color online) Entropy jump at the transition point as a
function of the dissipation strength. The dashed line is in agreement
with Eq. (20). Inset: dependence of the entropy on the chain length for
different dissipation strengths d
 = 0.01,0.02,0.03,0.04,0.05,0.06
(from top to bottom solid curve respectively), the dash-dotted line
corresponds to the entropy in the absence of the coupling to the
environment, the point at d
 = 0 at the main plot.

slope of the exponential decay. Therefore, we can write down
the reduced density matrix of the middle part of the system
neglecting the exponentially small correlations between the
sites as a tensor product of the density matrix of one site
connected to two baths.

2. Spatial decoupling in the density matrix

Such a spatial decoupling of a density matrix for a
completely translationally invariant system (without current
injection/removal at the ends) is evident. We can diagonalize
the Liouvillian by the Fourier transform. Indeed, in terms of
Ref. [22] the matrix M after the Fourier transform obtains the
block structure:

L =
∑

k

(a†
k ãk)Mk

(
ak

ã
†
k

)
− i

∑
k

(d
(i) + d
(o)), (21)

Mk =
(

−iδ
 + 2t cos k 2d
(o)

−2d
(i) iδ
 + 2t cos k

)
(22)

with δ
 = d
(i) − d
(o). Each of the matrices Mk can be
diagonalized: Mk = P −1

k DkPk , where Dk is a diagonal matrix
and Pk is a matrix of eigenvectors. This transformation
determines the basis where the Liouvillian is diagonal:(

fk

f̃
‡
k

)
= P

(
ak

ã
†
k

)
, (f ‡

k f̃k) = (a†
k ãk)P −1, (23)

L =
∑

k

(λkf
‡
k fk − λ∗

kf̃
‡
k f̃k). (24)

Here we assumed that Dk = diag(λk,λ
∗
k) and Imλk < 0. This

structure leads to cancellation of the constant term in the
Liouvillian.

The steady state density matrix is determined as the vacuum
of operators fk and f̃k . The transformation to the basis of the

a,a† occupation numbers gives the density matrix:

ρ =
∑

k

exp(Ha
†
kã

†
k)|00〉ak ãk

ak ãk
〈I | exp(Ha

†
kã

†
k)|00〉ak ãk

, (25)

H = i
d
(i)

d
(o) , |I 〉akãk
= |00〉 + |11〉. (26)

The effective Hamiltonian H is a constant, therefore the
Fourier transform gives the density matrix which is a tensor
product in position space:

ρ = ⊗i

(
d
(o)

d
(o) + d
(i) |00〉ai ãi
+ d
(i)

d
(o) + d
(i) |11〉ai ãi

)
.

(27)

We can thus conclude that the density matrix is local in
space. For the case of disordered leakage along the chain
one cannot perform the Fourier transform of the Liouvillian
analytically but numerical calculation shows that the density
matrix averaged over disorder is again represented by the
tensor product of single-site density matrices. For a single
realization of the disorder in the couplings along the chain the
decomposition is not exact, as shown in Fig. 3(a) for the current
through the chain for a single realization of the disorder.

3. Response to the electric field

The response functions are good indicators of the equi-
librium phase transitions. Let us consider a response of the
current to a constant electric field E applied along the chain.
In the tight-binding model it is incorporated as a linearly
growing on-site potential: Um = mEl0, where l0 is the lattice
constant. In most models of the transport one assumes that
the current flow is due to an electric field applied along the
system. Here we have a current through the chain due to the
coupling to the reservoirs. The difference in on-site potential
from site to site can be viewed as applying an additional
field along the chain. For example, in a cold atom system
one can imagine a lattice constructed with varying depths of
the potential well. In the decoherent phase, the electric field
changes the response function only locally: close to the ends
we expect the susceptibility to be different from the middle
of the system due to the presence of coherence because of the
coupling to the reservoirs. The linear response of the current
to the electric field applied along the chain vanishes, and only
the quadratic part is left, Fig. 8, inset:

jNESS(E,d
(i),d
(o); L) − jNESS(0,d
(i),d
(o); L)
= σ (d
(i),d
(o); L)E2. (28)

Here we also notice that there is a scaling with E: the
dependence of the conductivity on length scales with E2 for the
same dissipation rates along the chain d
(i),d
(o). We attribute
the quadratic dependence on E to the structure of the NESS.
The Ohm’s law is an outcome of the linear response theory,
which implies that the current is a consequence of the electric
field applied to the equilibrium system. In our case the situation
is tremendously different—from the physical point of view, the
current is already present in the system due to contact with the
leads even before applying the electric field along the system.
From the viewpoint of the response theory, the response is
considered with respect to the nonequilibrium steady state. It
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MEDVEDYEVA, C̆UBROVIĆ, AND KEHREIN PHYSICAL REVIEW B 91, 205416 (2015)

FIG. 8. (Color online) Main plot: the convergence of the non-
linear response to the electric field for long systems in the bulk
of the chain. Solid lines correspond to different coupling strength
d
 = 0.005,0.01,0.02,0.03,0.05 (from top to bottom) and the dashed
line is d
 = 0. Inset: quadratic scaling of j (E) − j (0) with the
applied electric field (the scale in logarithmic).

is thus possible that the linear part of the response vanishes
and only the nonlinear part is present.

The nonlinear response to the electric field vanishes in the
bulk of the chain, Fig. 8. The response in the nondissipative
system grows infinitely in the thermodynamic limit because
of the translational invariance in the bulk. Indeed, when we
make the hopping parameters disordered (i.e., make them
vary along the chain), the infinite growth of σ is suppressed.
Therefore, there is a discontinuity in the value of σ for
infinitesimally small d
. It is consistent with the first-order
phase transition.

C. Near-boundary effects

The symmetrized particle-particle correlation function:

Ci(k) = 〈a†
i+kai + a

†
i ai+k〉NESS (29)

provides further information about the transition. The corre-
lations at the ends of the system are present and they decay
exponentially: Ci(k) ∝ exp(−k/ξi),i ∼ 1 or i ∼ L, where ξ is
a correlation length, Fig. 11. We find the power-law divergence
of the correlation length as the function of dissipation at
zero dissipation rate along the chain. Inside infinitely long
systems the correlations vanish: ξi → 0,i ∼ L/2,L → ∞, as
all coherence in the system is lost.

The nonlinear conductivity converges to a nonzero value
at the boundaries of the chain, Fig. 9, unlike in the bulk of
the chain, where it converges to zero. This happens due to
some remaining coherence at the ends of the chain. Even
more, there is a power-law scaling of the conductivity with
dissipation strength, the parameter, which drives the phase
transition, inset of Fig. 9.

To further corroborate the finding of the continuous QPT
at the edges, let us now consider the spectrum of the
effective Hamiltonian, H. For the translationally invariant
dissipative system from Sec. III B 2 the spectrum of the effec-
tive Hamiltonian is a δ function δ(ε − const × d
(i)/d
(o)),

FIG. 9. (Color online) Main plot: the convergence of the non-
linear response to the electric field for long systems at the ends
of the chain. Solid lines correspond to different coupling strength
d
 = 0.005,0.01,0.02,0.03,0.05 (from top to bottom) and the dashed
line is d
 = 0. Notice that the nonlinear conductivity at the ends
points stays nonzero also in the thermodynamic limit. As in Fig. 8,
the conductivity is infinite in the absence of dissipation. Inset:
scaling of σ with disorder strength with power-law fit: σ = αd
β ,
β = 3.161 ± 0.001.

where the constant comes from the freedom of choice of the
effective Hamiltonian, which is connected to the freedom of
choice of constants in front of the left and the right vacuum of
the Liouvillian. When we take into account the whole chain
with the end sites, the spectrum of the effective Hamiltonian
is influenced by the presence of the ends of the chain: in the
absence of the dissipation along the chain the lowest eigenvalue
λmin of H is 0, while in the presence of the dissipation λmin
shifts to a nonzero value, Fig. 10. There is a power-law scaling
of λmin with the strength of the dissipation, Fig. 10(b).

D. Disordered dissipative system

Let us consider a disordered system with random on-site
potential Ui in the Hamiltonian (2). The values Ui are taken
from the uniform distribution with the range (0,dU ).

It is known that in one spatial dimension disorder always
localizes the conservative system [30]. This is the well-known
Anderson localization: it happens because the electron waves
always interfere so that the overall wave function is localized
on the impurities. Such a system is an insulator as the overlap
of the electron wave functions at different positions in the
chain is exponentially small. This reasoning suggests the
scaling hypothesis, which proposes that the conductivity in
a disordered system should decrease exponentially with the
system size, when the system is in the localized regime.

However, the presence of dissipation changes this: dissi-
pation delocalizes the disordered system, as the dissipation
breaks the interference, which is responsible for the localiza-
tion. For averaging over disorder we used only 15 disorder
configurations, as the uncertainties of the average are already
small enough in that case (the error bars in the figure are of
the size of the symbols in the plot). This happens because
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(a)

(b)

FIG. 10. (Color online) (a) The lowest eigenvalue λmin of the
effective Hamiltonian (10) as a function of the system size for the
system without (black dashed line) and with dissipation (blue points:
averages over the disorder from the range (0,d
), purple line: constant
dissipation with d
/2, d
 = 0.025). (b) The scaling of the lowest
eigenvalue with disorder strength, λmin(d
), and the power-law fit
λmin ∝ d
β with β = 0.53 ± 0.01. The couplings to the source and
the drain are 
(i) = 
(o) = 1.

the density matrix of an open quantum system contains the
sectors with different particle numbers, hence the values of the
current in the NESS can be considered as averaged not only

FIG. 11. (Color online) Dependence of the correlation length on
the coupling to the environment for 
(i) = 
(o) = 1 (dots) and the
power-law fit (dashed line). Inset: correlations at one end of the
chain as a function of the position for different couplings strengths
d
 = 0.005, 0.01, 0.02 (from top to bottom: blue, green, red) and
exponential fits, which determine the correlation length (dashed
lines).

FIG. 12. (Color online) Dependence of the current through a
disordered dissipative system on the length of the system for different
values of the dissipation along the system, d
 = 0, 0.02, 0.03, 0.05
(from top to bottom at small L: black, blue, red, green; solid lines:
dU = 0.3, dashed lines: dU = 0; 
1 = 
2 = 1). The current through
the system is independent of the system length for a sufficiently long
system.

over disorder configurations, but also with respect to different
particle numbers.

The general phenomenology of the clean system with
dissipation is thus preserved also in the disordered system.
The current again reaches a finite (though smaller) value in the
thermodynamic limit, and the current at one end only weakly
depends on the coupling at the other end. An example is seen
in Fig. 12, where for simplicity we consider constant couplings
to the environment along the chain and average only over the
disorder realizations of the on-site potential.

IV. CONCLUSIONS AND DISCUSSION

We have considered the transport properties of a one-
dimensional wire with leakage to the environment. In experi-
mental systems, this leakage can happen due to misfabrication
and the presence of the tunneling from the wire to a metallic
region underneath the wire. We observe a first-order phase
transition for infinitely long systems already at infinitesimal
dissipation rate along the chain. From the microscopic point
of view, this QPT means discontinuous behavior of the density
matrix. On the macroscopic level it manifests itself in the jump
in the current and the Fano factor. From the thermodynamic
point of view we can say that the entropy jumps across the
transition. The specific entropy in the dissipative phase is equal
to the entropy of a single site coupled to the source and the
drain.

Essentially, the phase transition is an anomaly: dissipation
breaks the time-reversal invariance [31]. Upon taking the
symmetry-breaking parameter (dissipation strength) to zero,
we do not recover the result for unbroken symmetry. In the
continuum limit it is analogous to the fact that, for example,
viscosity effects in a fluid are nonperturbative and the flow
undergoes a qualitative change for arbitrarily small nonzero
dissipation: the scaling exponents of the correlation functions
of the velocities jump at the transition between an ideal and
viscous liquid [31]. To understand better the universality of
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our finding, we have considered also the classical stochastic
counterflow model, which describes a chain with two classes of
asymmetric exclusion random walkers, left- and right-moving.
In this case, dissipation is modeled by randomly creating
or destroying the random walkers with certain probabilities
at every (discrete) time step. This model, under suitable
assumptions, again shows the same anomaly and the current
jumps for arbitrarily small nonzero values of the dissipation.
In the counterflow model, the role of quantum fluctuations
is taken over by the stochastic fluctuations. In fluid dynamics,
the velocity fluctuations make the system effectively quantum.
The notion of QPT is thus justified, and the observation of
anomaly—breaking of a classical symmetry at the quantum
level, i.e., by the loop contributions to the action—becomes
natural.

In a different context, the transport theory for dissipative
systems has been developed in Refs. [24,32] in the language
of the scattering matrices. Our Lindblad-based approach and
the scattering approach are different in a few respects. First,
let us consider a system without dissipation, coupled to two
reservoirs at the ends. The scattering matrix theory describes
the case when the wave coming from the reservoir into the
system is coherent (just a plane wave), while the Lindblad
approach describes the case of incoherent leads—the hopping
in the chain happens stochastically. This is also reflected
in the transport properties: while for coherent transport the
conductivity is proportional to the number of open channels in
the system, for the transport induced by incoherent hopping it
is not [22]. Now let us move to the dissipative system. In the
scattering matrix approach the dissipation is modeled through
additional channels, which do not contribute to the transport
(for the one-dimensional nondissipative problem the scattering
matrix has the format 2 × 2, for the incoming and the outgoing
channel, while in the dissipative case the scattering matrix has a
larger dimension, and only two channels describe the transport
along the chain whereas the others describe the scattering in
the side channels). The dissipation constructed in this way is
coherent, while the Lindblad-like dissipation is incoherent.

It is interesting that the spin system coupled to the bosonic
bath at every site experiences a second-order phase transition,
and only at finite dissipation strength [6–9]. We do not know if
the order of the transition is related to the presence or absence
of memory or if it is determined by the statistics of the bath.

The phase transition in the quadratic fermionic systems
was studied also in Refs. [2,5]. There, the XY chain coupled
to the reservoirs at both ends was considered. The transition
manifests itself in the change of behavior of the spin-spin
correlation functions and the entanglement entropy, which
does not depend on the system size on one side of the transition
and grows linearly with the system length on the other side. The
authors argue that the transition is of infinite order as all local
observables are analytical across the transition. Subsequently
the critical behavior has been observed also in the XX-spin
chain [1] coupled to the environment at every site of the chain:
the spin-spin correlation functions are short ranged in the
nondissipative case, whereas they decay as a power law in the
presence of the on-site decoherence. The transition we observe
is significantly different from the previously studied cases
since it is of the first order. This probably happens because
the Refs. [2,5] consider the local dissipation (only at the ends

of the chain), while we are interested in the global dissipation.
The difference with respect to the transition in Ref. [1]
lies in the fact that the NESS is not Gaussian (Gaussianity
allows usage of the Wick’s theorem for the calculation of
higher-order correlation functions in terms of two-point ones,
while non-Gaussian states do not allow such expression): in our
case the particle-particle correlation functions in the presence
of dissipation decay exponentially, while for the XX chain with
on-site dephasing there is a power-law decay of correlations.

The current in the steady dissipative state of the system
decays exponentially inside the chain, because the coupling
to the environment decreases the coherence of the quantum
system. For the random dissipation along the chain, we find
that the average current decreases inside the system with the
same exponent as for the chain with the same dissipation at
every site, which equals to the mean of the random coupling.
One can try to measure the current along the dissipative chain
with a scanning tunneling microscope (STM): if it decreases
exponentially uniformly along the chain, then the dissipation
model without disorder is a valid model, if the current inside
the chain fluctuates, then the dissipation inside of the chain
is random. The STM should be in the regime of a very low
tunneling rate to the microscope tip, so that the tunneling to
the tip does not destroy the dissipative state of the system
itself.

We finish with an outlook. The state of the quantum
system depends on the dimensionality, disorder, interaction,
statistics, and symmetries. The dissipation adds one more
axis to the phase diagram. It can lead to new types of
behavior, already investigated in the spin-boson model [10],
arrays of the dissipative Josephson junctions, and dissipative
spin chains [6–9]. In the present paper we have investigated
the behavior of the noninteracting fermionic system coupled
to the Markovian bath and already have seen interesting
quantum critical phenomena upon adding the dissipation along
the chain. There are many unanswered questions: will this
transition remain first order upon adding memory to the
bath; what happens to it in the presence of interactions; do
dimensionality and symmetries influence the behavior of the
dissipative system, etc.
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APPENDIX: TRANSFORMATION OF THE LIOUVILLIAN
TO THE DIAGONAL BASIS

The solution of the Lindblad equation (6) for noninter-
acting fermions is notably simplified in the super-fermionic
representation [21,22]: operators acting from the right on the
density matrix are introduced. They are denoted by a tilde.
Then the Liouvillian can be written after the particle-hole
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transformation ã = b†,ã† = b in the quadratic form:

L = (a†b†)M
(

a

b

)
− i

∑
μ


(o)
μ − i

∑
μ


(i)
μ , (A1)

where the matrix M can be represented as

M = Hδaa + Hδbb + i

(i)
k δkk(−δaa + δbb)

+ i

(o)
k δkk(δaa − δbb) − 2


(i)
k δkkδba + 2


(o)
k δkkδab

(A2)

with H being a tight-binding Hamiltonian of the system, δxy is
the Kronecker symbol, for example δaa denotes the upper-left
L by L part of the matrix M, δkk stands for the diagonal of the
matrix in the site space.

Due to this specific structure of M the constant terms in
the expression (A3) vanish after introducing a new set of the
operators {f,f ‡,f̃ ,f̃ ‡} [22] and even more in this basis the
Liouvillian becomes diagonal:

Lf =
∑

i

λif
‡
i fi −

∑
i

λ∗
i f̃

‡
i f̃i . (A3)

The operators {f ‡,f̃ ‡} are dual to the operators {f,f̃ },
but not Hermitian conjugated, though the operators obey
anticommutation relations. The operators {f,f ‡,f̃ ,f̃ ‡} are

linear combinations of the operators {a,a†,ã,ã†}:
a†

m =
∑
k1

C
(1)
mk1

f
‡
k1 + C

(2)
mk1

f̃k1,

am =
∑
k1

A
(1)
mk1

fk1 + A
(2)
mk1

f̃
‡
k1.

The coefficient matrices C and A are connected to the matrix
of the eigenvectors P of the matrix M (see Ref. [22]):

P =
(

A(1) A(2)

A(3) A4)

)
, (P −1)T =

(
C(1) C(2)

C(3) C(4)

)
. (A4)

In P the eigenvectors are ordered in the following way: first
N of eigenvectors correspond to eigenvalues with a negative
imaginary part, while the second half have a positive imaginary
part and are complex conjugated to the first set. All matrices
A(i) and C(i), i = 1, . . . ,4 have dimension N × N .

In the f basis the Liouvillian operator is diagonal, therefore
the stationary solution of the Lindblad equation (6) is the
vacuum of the operators f :

f |NESS〉 = 0, f̃|NESS〉 = 0.

It allows us to calculate the expectation values in the NESS:
we transform the operator in the a basis to the f basis and take
its expectation value with respect to the vacuum.
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1 Introduction

The problem of fermionic quantum criticality has proven hard enough for condensed matter

physics to keep seeking new angles of attack. The main problem we face is that the

energy scales vary by orders of magnitude between different phases. The macroscopic,

measurable quantities emerge as a result of complex collective phenomena and are difficult

to relate to the microscopic parameters of the system. An illustrative example present the

heavy fermion materials [3] which still behave as Fermi liquids but with vastly (sometimes

hundredfold) renormalized effective masses. On the other hand, the strange metal phase

of cuprate-based superconducting materials [4], while remarkably stable over a range of

doping concentrations, shows distinctly non-Fermi liquid behavior. The condensed matter

problems listed all converge toward a single main question in field-theoretical language. It

is the classification of ground states of interacting fermions at finite density.

In this paper we attempt to understand these ground states in the framework of

AdS/CFT, the duality between the strongly coupled field theories in d dimensions and

a string configuration in d + 1 dimension. Holography (AdS/CFT correspondence) [1, 2]

has become a well-established treatment of strongly correlated electrons by now, but it still

has its perplexities and shortcomings. Since the existence of holographic duals to Fermi

– 1 –
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surfaces has been shown in [8, 9], the next logical step is to achieve the understanding of

the phase diagram: what are the stable phases of matter as predicted by holography, how

do they transform into each other and, ultimately, can we make predictions on quantum

critical behavior of real-world materials based on AdS/CFT.

The classification of ground states now translates into the following question: classify

the stable asymptotically AdS geometries with charged fermionic matter in a black hole

background. Most of the work done so far on AdS/CFT for strongly interacting fermions

relies on bottom-up toy gravity models and does not employ a top-down string action. We

stay with the same reasoning and so will work with Einstein gravity in 3 + 1 dimensions.

We note, however, that top-down constructions of holographic fermions exist [6, 11].

In this paper we construct a model dubbed “WKB star”, alluding to the fact that

we treat the same large occupation number limit as the electron star [10] but go further

from the ideal fluid limit of [10]. The main idea is to solve the fermionic equations of

motion in the WKB limit without taking the fluid limit: the total density is the sum of

the contributions of individual wave functions rather than an integral over them. The

main approximation we introduce is thus just the quasiclassical treatment of fermions,

inherent to WKB. The inverse occupation number serves as the control parameter of this

approximation. In addition, we assume that the correction to the fluid limit is captured

by the correction to the pressure. This assumption cannot be rigorously derived. We

will discuss, however, the robustness of our findings with respect to this assumption. In

addition to simply improving the mathematical treatment of the bulk many-body fermion

system, we will show that some properties of the system change nonperturbatively in the

fluid limit. In particular, the thermodynamic behavior of the system at finite temperature

is changed compared to the electron star.

We will use a simple WKB formalism to approximate the many-body Fermi system

in the AdS bulk. This adds quantum corrections to the Thomas-Fermi (fluid) approxi-

mation by taking into account finite level spacing. In other words, we do not take the

limit of an infinite number of occupied levels but keep the occupation number finite. The

occupation number itself acts as the control parameter of our approximation. The most

notable feature, however, occurs in the transition from the semiclassical approximation at

infinite occupation number to finite occupation number. We find that the finite density

quantum many body phases with fermionic quasiparticles at high enough temperatures

always exhibit a first order transition into the zero density AdS-RN phase. Intuitively,

this can be interpreted as a universal van der Waals liquid-gas transition. On the other

hand in the semiclassical fluid limit underlying the electron star, the transition was found

to be continuous [12, 33]. With this re-emergence of the first order nature of the ther-

mal phase transition at the quantum level our results confirm the intuition that a density

driven phase transition is always first order as also indicated by the Dirac hair approxi-

mation [13]. We thus show with an explicit calculation that in the context of fermionic

questions in AdS/CFT quantum “1/N” corrections can be important and that the semi-

classical fluid limit can be unreliable, at least at finite temperature. While the quantum

corrections likely have important consequences also at T = 0, we have not explored the

zero-temperature physics in this paper.

– 2 –
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The outline of the paper is as follows. In the section 2 we describe the field content

and geometry of our gravity setup, an Einstein-Maxwell-Dirac system in 3 + 1 dimension,

and review the single-particle solution to the bulk Dirac equation. In section 3 we start

from that solution and apply the WKB approximation to derive the Dirac wave function

of a many-particle state in the bulk. Afterwards we calculate density and pressure of the

bulk fermions — the semiclassical estimate and the quantum corrections, thus arriving at

the equation of state. Section 4 contains the numerically self-consistent solution of the set

of equations for fermions, gauge field and the metric. There we also describe our numerical

procedure. Section 5 is the core, where we analyze thermodynamics and spectra of the

field theory side and identify different phases as a function of the three parameters of the

system: chemical potential µ, fermion charge e and conformal dimension ∆. Section 6

sums up the conclusions and offers some insight into possible broader consequences of our

work and into future steps.

2 Holographic fermions in charged background

We wish to construct the gravity dual to a field theory at finite fermion density. We will

specialize to 2+1-dimensional conformal systems of electron matter, dual to AdS4 gravities.

We consider a Dirac fermion of charge e and mass m in an electrically charged gravitational

background with asymptotic AdS geometry. Adopting the AdS radius as the unit length,

we can rescale the metric gµν and the gauge field Aµ:

gµν 7→ gµνL
2, Aµ 7→ LAµ. (2.1)

In these units, the action of the system is:

S =

∫

d4x
√−g

[

1

2κ2
L2 (R+ 6) +

L2

4
F 2 + L3Lf

]

(2.2)

where κ is the gravitational coupling and Fµν = ∂µAν − ∂νAµ is the field strength tensor.

The fermionic Lagrangian is:

Lf = Ψ̄

[

eµAΓ
A

(

∂µ +
1

4
ωBC
µ ΓBC − ieLAµ

)

−mL

]

Ψ (2.3)

where Ψ̄ = iΨ†Γ0, eµA is the vierbein and ωAB
µ is the spin connection.

We shall be interested in asymptotically AdS solutions with an electric field. The

U(1) gauge field is simply A = Φdt and we parametrize our metric in four spacetime

dimensions as:

ds2 =
f(z)e−h(z)

z2
dt2 − 1

z2
(

dx2 + dy2
)

− 1

f(z)z2
dz2 (2.4)

The radial coordinate is defined for z ≥ 0, where z = 0 is the location of AdS boundary.

All coordinates are dimensionless, according to (2.1). This form of the metric is sufficiently

general to model any configuration of static and isotropic charged matter. Development of

a horizon at finite z is signified by the appearance of a zero of the function f(z), f(zH) = 0.

From now on we will set L = 1.

– 3 –
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We will now proceed to derive the equation of motion for the Dirac field. From (2.3),

the equation reads:

eµAΓ
A

(

∂µ +
1

4
ωBC
µ ΓBC − ieAµ

)

Ψ = mΨ. (2.5)

In the metric (2.4) we can always eliminate the spin connection [8] by transforming:

Ψ 7→ (ggzz)−
1
4Ψ =

eh(z)/4z3/2

f(z)1/4
Ψ ≡ a−1(z)Ψ. (2.6)

At this point it is convenient to adopt a specific representation of gamma matrices.

We choose:

Γ0 =

(

1 0

0 −1

)

, Γx,y,z =

(

0 σ1,2,3
−σ1,2,3 0

)

. (2.7)

In this basis we define the radial projections Ψ± as eigenvalues of the projection operator

onto the time axis:

Ψ± =
1

2

(

1± Γ0
)

Ψ, (2.8)

after which the Dirac equation in matrix form becomes:

√

f∂z

(

Ψ+

Ψ−

)

= D̂

(

Ψ+

Ψ−

)

. (2.9)

Here the matrix D̂ is the differential operator along the transverse coordinates (x, y) and

time, which we will specify shortly.

We will now set the stage for solution of the Dirac equation in the WKB approximation.

We can separate the radial dynamics (along the z coordinate) from the motion in the x−y

plane. We can thus make the separation ansatz:
(

Ψ+(t, z, x, y)

Ψ−(t, z, x, y)

)

=

∫

dω

2π

(

F (z)K1(x, y)

−G(z)K2(x, y)

)

e−iωt (2.10)

where the F,G are scalars and the modes K1,2 are in-plane spinors. The Dirac equation

then takes the form:

(

∂zFK1

−∂zGK2

)

=





−∂̂/
√

f(z)
(

Ẽ (ω, z) + M̃ (z)
)

σ3
(

Ẽ (ω, z)− M̃ (z)
)

σ3 −∂̂/
√

f(z)





(

FK1

−GK2

)

(2.11)

We recognize the matrix at the right hand side as D̂/
√
f . The terms Ẽ and M̃ have the

meaning of local energy and mass terms, respectively:

Ẽ(z) = −eh(z)/2

f(z)
(ω + eΦ(z)), M̃(z) =

m

z
√

f(z)
. (2.12)

The in-plane operator ∂̂ acts on each in-plane spinor as:

∂̂ =

(

0 i∂̄

−i∂ 0

)

(2.13)

– 4 –
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with ∂ ≡ ∂x+i∂y. To maintain the separation of variables in (2.11), we require ∂̂Ki = λiKi,

where |λi|2 corresponds the momentum-squared of the in-plane motion of the particle. The

physical requirement that this momentum be the same for both radial projections translates

into the condition |λ2| = |λ1|. Consistency of the separation of variables then shows us that

K2 = σ3K1 and thus λ1 = −λ2 = k. This solves the x, y-dependent part of the equation,

in terms of ρ ≡
√

x2 + y2 and φ = arctan y/x:

Ki(x, y) =

(

Jl−1/2(λiρ)e
i(l−1/2)φ

Jl+1/2(λiρ)e
−i(l+1/2)φ

)

, (2.14)

where Ja is the Bessel function of the first kind of order a (the second branch, with the

modified Bessel function of the first kind Ya, is ruled out as it diverges at x = y = 0). Now

the reduced radial equation becomes:
(

∂zF

∂zG

)

=

(

−k̃ Ẽ + M̃

M̃ − Ẽ k̃

)(

F

G

)

(2.15)

with k̃ = k/
√
f (let us note that eq. (2.15) is for the pair (F,G), whereas the initial

equation (2.11) is written for the bispinor (FK1,−GK2)). For the WKB calculation of

the density, it is useful to remind that the wave function Ψ in eq. (2.10) has two quantum

numbers corresponding to the motion in the (x, y) plane: they are simply the momentum

projections kx, ky (or equivalently the momentum module λ and the angular momentum

l). The radial eigenfunctions in z-direction provide a third quantum number n.

3 Equation of state of the WKB star

In this section we construct the model of the bulk fermions in an improved semiclassical

approximation — the WKB star. We solve the Dirac equation in the WKB approximation,

and the density is computed by summing a large number of energy levels. This is in the

spirit of Thomas-Fermi approximation. However, we perform an exact summation of a

finite number of WKB quantum-mechanical solutions for the wave functions rather than

approximating the sum by an integral as implied in the semiclassical fluid limit. One of

the drawbacks of the Thomas-Fermi fluid limit are sharp bounds (i.e., discontinuous first

derivative) of density and pressure profiles along the radial direction (see e.g. [10, 12, 33]).

As we have already argued, sharp bounds make it hard if not impossible to capture several

phenomena. In this respect summing WKB wave functions goes beyond Thomas-Fermi; it

includes quantum corrections as the number of occupied states is finite and all collective

and individual profiles will be continuous without sharp edges. In further work one might

start from our model and treat the quantum-mechanical (one loop) corrections in a more

systematic way in order to bridge the gap between the electron star [10] and single-particle

quantum mechanical calculation of Dirac hair [13].

3.1 WKB hierarchy and semiclassical calculation of the density

In the framework of quantum-many-body calculations, the first task is to construct the

induced charge density n(z). Physically, the origin of the induced charge in our model is

– 5 –
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the pair production in the strong electromagnetic field of the black hole. To remind the

reader, a (negatively) charged black hole in AdS space is unstable at low temperatures, and

spontaneously discharges into the vacuum [24]. This means that there will be a non-zero

net density of electrons n(z). One can calculate n(z) in a Hartree approximation as a

density of non-interacting electrons, compute the collective effect on other fields by this

density and iterate. Our novel approach is to use WKB methods to efficiently compute the

many wave functions enumerated by the quantum numbers (λ, l, n).

The algorithm for the WKB expansion of the wave function for Dirac equation is

adopted from [31]. Even though every single step is elementary, altogether it seems to be

less well known than its Schrödinger equivalent. We consider the Dirac equation in the

form (2.9) and introduce the usual WKB phase expansion:

Ψ(z) = e
∫ z
z0

dzy(z)
√

f(z)
χ(z) (3.1)

with the spinor part χ(z). The phase y(z) can be expressed as the semiclassical expansion

in ~,1

y(z) = y−1(z) + y0(z) + y1(z) + . . . (3.2)

The equations for the perturbative corrections now follow from (3.1)–(3.2):

D̂χ0 = y−1χ0, (3.3)

D̂χ1 = y−1χ1 + y0χ0 +
√

f∂zχ0, (3.4)

. . .

D̂χn = y−1χn +
√

f∂zχn−1 +

n−1
∑

i=0

yn−i−1χi. (3.5)

Notice in particular that y−1/χ0 is an eigenvalue/eigenvector of D̂. In our case the matrix

D̂ has rank two, so there are two eigenvalues/eigenvectors for y−1/χ0: y±−1 and χ±
0 . To

find the first order correction to the phase of the wave function y0, we multiply (3.4) from

the left by the left eigenvalue χ̃±
0 of the matrix D̂ (D̂ is in general not symmetric, so the

right and left eigenvalues are different):

y0 = −(∂zχ
±
0 , χ̃

±
0 )

(χ̃±
0 , χ

±
0 )

. (3.6)

so we can now construct the usual WKB solution of the form Ψ± = eiθ±/
√
q, where q is the

WKB momentum and θ± the phase. The term y0 is just the first order correction to θ±.

Finally, let us recall the applicability criterion of the WKB calculation. It is known that

WKB approximation fails in the vicinity of turning points. The condition of applicability

comes from comparing the leading and the next to leading term in the expansion (3.2):

y0(z)

y−1(z)
≪ 1. (3.7)

1From the very beginning we put ~ = 1. However, to elucidate the semiclassical nature of the expansion

we give it here with explicit ~. Dirac equation becomes ~
√
f∂zΨ̂ = D̂Ψ̂, where Ψ̂ = (Ψ+,Ψ−), yielding the

expansion y(z) = ~
−1

(

y−1(z) + ~y0(z) + ~
2y1(z) + . . .

)

.
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In terms of Ẽ(z) and M̃(z) introduced in eq. (2.12) it gives at k = 0:

M̃(z)∂zẼ(z)− Ẽ(z)∂zM̃(z)

Ẽ(z)(Ẽ(z)− M̃(z))
≪ 1. (3.8)

3.1.1 WKB wave function

According to (3.3), the leading effective WKB momentum for the motion in z direction

q ≡ |y±−1| is:
q2(z) = Ẽ2(z)− M̃2(z)− k̃2(z). (3.9)

The wave function in radial direction, Ψ = (F,−G), is given by the superposition of two

linear independent solutions

Ψ(z) = C+χ+(z)e
iθ(z) + C−χ−(z)e

−iθ(z), (3.10)

with the phase determined by

θ(z) =

∫ z
(

q(z′) + δθ(z′)
)

dz′ (3.11)

δθ(z) =

∫ z k̃∂zk̃ − q∂zq +
(

Ẽ − M̃
)(

∂zẼ + ∂zM̃
)

2k̃q
dz. (3.12)

The constants C+ and C− are related by invoking the textbook boundary conditions [25]

for the behavior of WKB wave function at the boundary of the classically allowed region

(q2(z) > 0) and the classically forbidden region (q2(z) < 0). The wave function in the

classically allowed region then reads:

Ψ(z) =
C

√

q(z)





√

Ẽ(z) + M̃(z) sin (θ(z)− δθ(z))
√

Ẽ(z)− M̃(z) sin θ (z)



 , (3.13)

δθ(z) = ArcSin
q(z)

√

Ẽ2(z)− M̃2(z)
, (3.14)

and C is the only remaining undetermined normalization constant. Integrating the prob-

ability density over all coordinates in the classically allowed region (z1, z2) gives the nor-

malization condition:

C2

∫ 1

0
dz

√

g3d(z)

a(z)2

∫

dx

∫

dyC2
2dΨnkxky(z, x, y)Ψ

†
n′k′xk

′
y
(z, x, y) = 1. (3.15)

The metric factor is g3d(z) = g(z)gtt(z), and a(z) is the conversion factor from (2.6). In

the left-hand side of the equality we took into account the normalization of the continuous

spectrum in the (x, y) plane. The integration in the perpendiular coordinates is trivial for

the solution (2.14), as we can transform the integral into the integral over ρ, φ and the

orthogonality relation for Bessel functions gives the definition of C2
2d:

C−2
2d

∫ ∞

0
J(λρ)J(λ′ρ)ρdρ =

δ(λ− λ′)

λ
(3.16)
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and it allows us to express the normalization constant as:

C =

(

4π

∫

dz

√

gtt√
gzz

Ẽ(z)

q(z)

)−1/2

, (3.17)

where a factor of 2π comes from the integration over φ and an additional factor of 2 from

the summation over the full four-component wave function, i.e. bispinor (each spinor gives

Ẽ(z)/q(z) after averaging over the fast oscillating phase θ). This completes the derivation

of WKB wave function and allows us to compute the density.

3.1.2 WKB density

As in [31] we find the total density by summing single-particle wave functions in the clas-

sically allowed region. The WKB wave function is characterized by the quantum numbers

(λ, l, n) with λ being the linear momentum in the x− y plane, l — the orbital momentum

in the x−y plane and n — the energy level of the central motion in the potential well along

z direction. The bulk density can be expressed as the sum over the cylindrical shells of

the bulk Fermi surface. Each shell satisfies the Luttinger theorem in the transverse (x− y)

direction and so the density carried by each shell nxy(z) can easily be found. We can then

sum over all shells to arrive at the final answer which reads simply
∫

dznz(z)nxy(z). A

similar qualitative logic for summing the Luttinger densities in the x − y plane was used

also in [14] although the model used in that paper is overall very different (see also the

fully consistent treatment with regularization in [38]).

Let us start by noticing that the end points of the classically allowed region determine

the limits of summation over n and λ: q2(ωn, λ) ≥ 0. Thus, the density in the WKB

region is:

n(z) =
2π

a(z)2

∫ 2π

0
dφ

∑

n:q2(ωn,λ)≥0

∫

√
f(z)(Ẽ2(ω,z)−M̃2(z))

0
λdλ

∫ ∞

0
dρρC2

2d|Ψ(z, x, y)|2. (3.18)

The limit of the sum over the level number n is determined by the requirement that WKB

momentum be positive; in other words, we sum over occupied levels inside the potential well

only. Remember that the bulk fields live at zero temperature, hence there is no Fermi-Dirac

factor. The sum over the orbital quantum number l extends to infinity as the (x, y) plane

is homogenous and the orbital number does not couple to the non-trivial dynamics along

the radial direction. We can now invoke the (local) Bohr-Sommerfeld quantization rule:
∫

dzq(z) = NWKBπ (3.19)

to estimate the total number NWKB of radial harmonics in the sum. The expression for

NWKB in combination with (3.17) then give:

Cn =

(

1

4π2

∂ωn

∂n

)1/2

, for q(z) ≫ δθ(z), z ≈ 1. (3.20)

Now we turn the summation over the quantum number n into the integration over energy

and obtain for the bulk electron density (here we also performed the integration over ρ using
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the explicit expression for the wave function (2.11) and the normalization condition (3.16)

for the Bessel functions):

n(z) =
4π

a(z)2

∫ 2π

0
dφ

∫

√
f(z)(Ẽ2(0,z)−M̃2(z))

0
dλλ

∫ µloc

0
dω

Ẽ(ω, z)

4π2q(ω, λ, z)
. (3.21)

After performing first integral over ω and then over λ we get:2

n(z) = z3
q3WKBf

3/2(z)

3π2
(3.22)

with qWKB determined by

q2WKB = Ẽ2(0, z)− M̃2(z). (3.23)

Notice that this formula corresponds with common knowledge on the density of electron

star [10]. However, even though the formal expression is the same, the self-consistent

solution for the metric and gauge field is different because of the quantum correction we

introduce to pressure. The difference is visualized in figure 1A where we preview our

backreacted WKB star solutions and compare them to the semi-classical (electron star)

limit. While the electron star density exhibits a discontinuity at the horizon, the WKB

density smoothly falls off to zero. However, both models have a semiclassical “edge”:

outside the region z1 < z < z2, the density is exactly zero. In reality, quantum tails change

this picture. In [37] we show that (small) nonzero density extends all the way between the

boundary and the horizon. However, it is not expected to change the finite temperature

physics which is in the focus of this paper. We therefore do not take into account the

quantum tails in further calculations, to avoid any distractions from the main message.

3.2 Pressure and equation of state in the semiclassical approximation

Following the logic behind the density calculation, we will now calculate the pressure p

along the radial direction. It will actually prove easier to derive the expression for the

(bulk) internal energy density first and then calculate the pressure. By definition, the

energy density reads

E(z) =
∑

kx,ky

∫

dx

∫

dy

∫ µloc

0
dωωΨ†(z)Ψ(z) =

∑

λ

∫ µloc

0
dωω

Ẽ(z)

4π2q(z)
(3.24)

where Ẽ(z) is defined in (2.12), µloc = µeh(z)/2/f(z) and the sum limits are the same

as in (3.21). Performing the integration in a similar fashion as when computing n(z)

in (3.21)–(3.22), we obtain

E =
3

4
eΦn+

1

2
f2M̃2ArcSinh

Ẽ

M̃
. (3.25)

2The given result for n can be compared to the charge density in the electron star limit given in [17]. The

metric functions used there are related to ours as f 7→ fe−h/z2 and g 7→ 1/fz2, where our metric functions

are on the right hand side. Likewise, our definition of qWKB is related to kF of [17] as qWKB = kF /
√
f .

Now the total bulk charge is expressed in [17] as Q =
∫

dzñe(z) where ñe(z) ∼ n(z)eh/2. In our conventions

Q =
∫

dz
√
−ggzzgttn =

∫

dzn(z)eh/2 thus giving the same result as in [17].
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(A) (B)

(C) (D)

Figure 1. WKB bulk density n(z) (eq. (3.22), blue lines) and electron star density (red dashed

lines). Parameter values (A) (µ, e,m) = (1.7, 1, 0.1), (B) (µ, e,m) = (1.7, 10, 1). The classically

allowed region lies between the turning points z∗ and z∗∗, determined by the condition of vanishing

WKB momentum (q(z∗) = q(z∗∗) = 0). The parameters for (A) are in the classical (electron star)

regime, with NWKB ≫ 1 when WKB approximation is quite accurate. The plot (B) shows a case of

small NWKB where the WKB approximation becomes inadequate and further quantum corrections

are likely to be important. (C) Bulk density for a range of values (µ, e,m) = (1.7, 1, 0.1) (red),

(µ, e,m) = (1.7, 5, 0.1) (violet), (µ, e,m) = (1.7, 10, 1) (green) and (µ, e,m) = (1.7, 20, 1) (blue).

For large specific charge of the fermion (and therefore a large number of WKB levels in the bulk)

the solution is dominated by the classically allowed region and looks similar to the electron star

limit. For smaller e/m values (and thus fewer WKB levels) the quantum correction in the near-

boundary region becomes more important and the curves are visibly different from the fluid limit.

(D) Thermodynamical pressure (eq. (3.34)), for the same parameter values as in (C).

Notice that the first term exactly corresponds to the electrostatic energy while the second

is the one-loop term that encapsulates the quantum fluctuations. The above result is

remarkably close to the Hartree vacuum polarization correction as it appears in various

model energy functionals in literature.

3.2.1 Microscopic pressure

The easiest way to express the pressure is to make use of the first law of thermodynamics,

which states

p(z) =
√
gzz (eΦ (z)− E (z)) . (3.26)

There are two possible approaches to arrive at the pressure also directly from the equa-

tions of motion. We can express the radial pressure p from the microscopic fermionic
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Lagrangian (2.3). By definition it reads

p =
∑

n,λ

(

Ψ†
+σ3∂zΨ− +Ψ†

−σ3∂zΨ+

)

=
1

a2

(

Ẽ(F 2 +G2)− M̃(F 2 −G2)− 2k̃FG
)

(3.27)

The equality follows directly from the Dirac equation, substituting the expressions for ∂zΨ±

from (2.9). Now we can exploit the lowest order WKB solution (3.13) to get

p =
2π

a2

∑

n,λ

C2
n

(

Ẽ − M̃

q
− k̃

)

, (3.28)

which, after the momentum integration, gives:

p = 2π
∑

n

C2
ne

h/2z3
√

f

[

(

Ẽ − M̃
)

q2WKB(z)−
2

3
q3WKB(z)

]

(3.29)

The explicit calculation is tedious but straightforward. Unlike the density case, the final

sum is not readily performed to obtain a closed-form expression. Instead, we integrate

numerically over the energy levels ωn to obtain the function p(z). However, even a quick

look at (3.29) tells that it behaves as q3WKB at leading order, for qWKB large (the first

and the third term will contribute as q3WKB). After the energy integration this term gains

roughly a factor of µ, implying that p ∼ µn ∼ µ4, as we expect to recover in the fluid limit.

We have now calculated the radial pressure, i.e. the fermionic component of the stress

tensor T z
z . Due to local isotropy, it does not depend on the direction and position in the

x − y plane. The same happens in the fluid limit, as shown in [10]. The pressure in the

perpendicular direction (in the x− y plane) is analogously expressed as

p⊥ = −
∑

n,λ

ik
(

Ψ†
+σ1Ψ− +Ψ†

−σ1Ψ+

)

=
2π

a2(z)

∑

n,λ

C2
n

1

q
λẼ (3.30)

The summation over λ, i.e. the value of the in-plane momentum can again be performed

analytically, yielding:

p⊥ = 2π
∑

n

C2
ne

h/2z3fq2WKBẼ. (3.31)

In fact, the above sum has a closed-form limit for NWKB → ∞:

p⊥ = f2eh/2z3
q4WKB

12π2
, (3.32)

which obeys the relation p⊥
√
gii = n

√
g00/3, the covariant version of the relation p = µn/4.

We will not make use of p⊥ as the ii component of the Einstein equations is not functionally

independent of the 00 and zz components; the two metric functions f, h are determined

from the two equations, and the third one can only serve as a consistency check.
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3.2.2 Thermodynamic pressure

In a “near”-classical regime, at large occupation number, thermodynamics ought to work,

so we can express the pressure from the energy density E , as p = −∂E/∂V . This expression

is still hard to calculate exactly. However, we can use the following trick to estimate p at

the leading order. Consider a small change of the number density δn. It will introduce

a small change of energy δE , pressure δp and the volume of the bulk electron gas δV ,

the latter because the classically allowed region where q2WKB > 0 will shift and grow (if

δn > 0). Now since the metric is radially symmetric we can expand the volume V =
∫ z∗∗
z∗

d3x e−h(z)/2

z4
around its initial value and find that the leading term in its variation

behaves as δV = V δℓ/(1− ℓ) + . . ., where ℓ ≡ z∗∗ − z∗ is the (dimensionless) length of the

classically allowed interval along the z axis, i.e. the interval between the zeros of the WKB

momentum qWKB(z) =
√

Ẽ2(z)− M̃2(z). This yields

∂E

∂V
= E + V

∂E
∂V

= E + V
δE(1− ℓ)

V δℓ
=

δE
δℓ

. (3.33)

Since all the processes we study are certainly adiabatic (looking at the whole system of

gravity plus the matter fields), we can replace the variations by partial derivatives and write

p ∼ ∂E/∂ℓ as an approximation for the radial pressure. However, even this expression we

are only able to evaluate in a very crude way. For NWKB ≫ 1, it is natural to assume (and

confirmed by the numerics, see figure 1) that z∗∗ is very close to the horizon, z∗ is quite

far from the horizon and ℓ ≈ 1 − z∗. For z ∼ z∗, we assume that the electric potential

does not deviate much from the linear law: Φ ∼ µ(1 − z), because z∗ is not far from the

boundary. This means that the metric function h(z) can be well approximated by a linear

function h(z) ∼ const.(1− z). Solving the equation q2WKB = Ẽ2(z∗)− M̃2(z∗) = 0, we get

ℓ ∼ 1 − log e2µ2

m2 , and (3.25) gives the thermodynamic pressure. However, we cannot get

the numerical prefactor right in our approach, and this is important in order to satisfy the

first law of thermodynamics, which in the fluid limit predicts p = E/4. We therefore norm

pthd by hand by a constant factor Cthd. This gives:

pthd = −Cthd
∂E
∂Φ

∂Φ

∂µ

∂µ

∂ℓ
∼ 3

4
eµ(1− z)

(

n+
M̃2e−h

z
√

M̃2 + ehẼ2

)

(3.34)

This is the relevant regime to compare with the electron star. We will call the esti-

mate (3.34) thermodynamic pressure and denote it by pthd to differentiate from the exact

summation of WKB wave functions (3.29). These expression are also the equations of

state of the system as they connect the pressure to the density. The thermodynamic

pressure is more convenient for calculations. In spite of its approximate nature, (3.34) in

particular yields a remarkably accurate result when compared with the quantum pressure

at NWKB ≫ 1.

We can make the connection between the exact first law of thermodynamics (3.26) and

the quick estimate (3.34) by showing them to be equal in the limit of small Ẽ, which is

appropriate in the vicinity of the phase transition from WKB star to the RN black hole.
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(A) (B)

Figure 2. Comparison between full quantum pressure (dashed blue lines, eq. (3.29)) and thermo-

dynamic pressure (solid black lines, eq. (3.34)) for two sets of parameters: (µ/T, e,m) = (1.7, 1, 0.1)

(A) and (µ/T, e,m) = (1.7, 5, 1) (B). For comparison we plot also the fluid pressure p = enΦ/2

(dashed green lines). Expectedly, for NWKB ≫ 1 (A) the thermodynamic approximation comes

close to the exact summation while for NWKB small the level spacing is large and the thermody-

namic limit is no longer a good approximation to the sum of the contributions of individual levels.

Notice that both ways of computing pressure yield similar results for large NWKB but deviate at

smaller NWKB.

In this case expanding both equations in Ẽ, we find the same expression:

p ≈ 1

4
eΦn+

f

z
ẼM̃ +O(Ẽ3). (3.35)

Finally, it is illustrative to see how we reproduce the electron star pressure [10] in the

limit of large density. For n → ∞, the first term in E and pthd dominates and we obtain

from (3.25) and (3.34)

pES =
1

4
eΦn (3.36)

as expected for an ideal fluid, which corresponds to the electron star approach. The

physical interpretation of this result (and of the pressure inside the classically allowed

region in general) is that of a Fermi gas pressure which, as we know, survives also in the

limit of classical thermodynamics. The comparison of p, pthd and pES is summarized in

figure 2, for high and low number of levels. While the thermodynamic approximation (3.34)

is good when NWKB ≫ 1, for small NWKB both the fluid limit and the thermodynamic limit

eventually break down and the contributions of individual levels must be taken into account.

Once again, the introduction of Airy corrections would extend the nonzero pressure to the

whole AdS space, which is only expected to be relevant at T = 0 [37].

4 Maxwell-Dirac-Einstein system

We have now arrived at the point where we can look for a numerically self-consistent so-

lution of the Einstein-Maxwell equations. The numerics uses an iterative procedure to

converge toward the solution. Only in the IR region it is possible to use a scaling ansatz

to estimate the scaling behavior of the metric and matter fields, akin to the procedure

used in [20]. This is the first attempt at a numerically self-consistent solution includ-

ing backreaction on the geometry with holographic fermions which goes beyond the fluid

picture of [10].
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Our calculation is similar to the one for relativistic ideal fluid (i.e. electron star) ap-

proximation. Because an ideal fluid is dissipation-less one can construct an action as put

forward in [15] and used in [10, 12]. The Lagrangian of this charged fluid coupled to gravity

and electromagnetism is

S =

∫

d4x

[

1

2κ2
(R+ 6)− 1

2q2
(∂zΦ)

2 + p

]

. (4.1)

In other words, the contribution of fermions reduces to the pressure p. While we do

not take the fluid limit in this paper, within the WKB star model we assume that in

the first approximation the influence of the corrections to fluid limit (NWKB → ∞) is fully

encapsulated by the correction to the classical (or fluid) pressure we found in (3.25)–(3.29).

The emergent isotropy and its implied ideal nature of the fluid at large occupation number

should ensure this.

To construct the backreacted geometry, we therefore “replace” the fermionic terms

in the exact action (2.2) with our effective ideal fluid model in terms of the density and

pressure of the bulk fermions. The total effective action is represented as S = SE+SM+Sf ,

the sum of Einstein, Maxwell and fluid part. The only nonzero component of the gauge field

is Φ and the only non-vanishing derivatives are the radial derivatives ∂z (the others average

out to zero for symmetry reasons). The nonzero fermion pressure p is that considered in

section 3.2 and there is a nonzero (local) charge density

j0e = qn
√

g00 = qn
zeh/2√

f
. (4.2)

The fermion fluid term in the effective action thus becomes

Sf = −
∫

d4x
√−g

(

j0eΦ+ p
)

. (4.3)

Due to the preserved spherical symmetry we may substitute these simplifications directly

in the effective action to arrive at:

Seff =

∫

d4x
√−g

[

1

2κ2
(R+ 6)− z4

2
eh
(

∂Φ

∂z

)2

− j0eΦ+ p

]

. (4.4)

The only components of the stress tensor the fermion kinetic energy contributes to are the

diagonal ones; the others vanish due to homogeneity and isotropy in time and in the x− y

plane. From (4.4) we get the equations for the energy-momentum tensor:

T 0
0 = −1

2
z4eh

(

∂Φ

∂z

)2

+ j0eΦ (4.5)

T z
z = = −1

2
z4eh

(

∂Φ

∂z

)2

+ j0eΦ+mn+ gzzp. (4.6)

With the metric ansatz (2.4), we can now write down our equations of motion:

1√−g

(

∂ze
−h/2∂zΦ

)

= −j0e (4.7)

3f − z∂zf − 3 = T 0
0 (4.8)

3f − z∂zf − 3zf∂zh− 3 = T z
z (4.9)
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Notice that the ii component of the Einstein equations:

1

2
(∂zzf − f∂zzh) +

1

4

(

f∂zh
2 − 3∂zf∂zh

)

+
f∂zh− 2∂zf

z
+

3f

z2
= T i

i (4.10)

with

T i
i = −1

2
z4eh

(

∂Φ

∂z

)2

+ giip⊥ (4.11)

is functionally dependent on the others and drops out. For that reason, (4.7)–(4.9) forms

the complete system of Maxwell-Einstein equations. We do not need to know T i
i or p⊥ nor

to assume the isotropy (in the sense T i
i = T z

z ).

In this article we shall only be interested in finite temperature solutions. The grav-

itational background is therefore a black hole with an horizon: a single zero in the warp

function f(z) at a finite value z = zH .3 Physically the inescapability of the black hole

horizon immediately suggests the following boundary conditions. The black hole horizon

should have no hair so Φ(zH) = 0; h(z) which characterizes the ratio of the UV and IR

speed of light should be finite at the horizon: h(zH) = h0. Note that the effective WKB

potential felt by the fermions blows up at the horizon and that the fermion wavefunctions

therefore manifestly vanish at zH . This same phenomenon is noted in the electron star at

finite temperature which also has an “inner” edge outside the horizon [12, 33].

At AdS infinity the boundary conditions are standard in AdS/CFT: for the gauge

field limz→0Φ(z) = µ fixes the chemical potential at the boundary (z0 → 0). We normal-

ize limz→0 f(z) = 1, limz→0 h(z) = 0. Again the boundedness of the normalized WKB

wavefunctions uniquely fixes the behavior of the fermions.

Finally, it remains to define the units used throughout the paper. The natural unit

of energy and momentum is the chemical potential µ and we will express all quantities in

units of µ. The two thermodynamic parameters are the chemical potential µ and T . As

AdS/CFT is built on conformal field theories which have no intrinsic scale, the physics

only depends on the ratio µ/T .

Let us conclude with an outline of the numerical algorithm, which is not completely

trivial. The boundary conditions to be implemented are given at different points: some

are given at the AdS boundary and some at the horizon. Since the system is nonlinear, it

is necessary to either linearize the system or to shoot for the correct boundary conditions

with the full nonlinear system. After experimenting with both, we have decided to iterate

the full, non-simplified system of equations, integrating from the horizon and shooting

for the conditions at the boundary. The iterative procedure consists of two steps: we

start with the non-backreacted AdS-RN geometry and compute the density (semiclassical

plus the quantum corrections) for the the electron charge equal to e/N (where e is the

physical charge and N some positive integer), then we solve the system of Einstein-Maxwell

equations (4.7)–(4.9), afterwards we increase the fermion charge to 2e/N , calculate the

3At zero temperature, when the horizon vanishes due to fermionic backreaction (this includes also the

case of Lifshitz geometry), the boundary condition for f guarantees also the smoothness of the solution on

the horizon: ∂zf(zH) = 0. This condition ensures that we pick the correct branch of the solution as there

are typically two families of functions f(z) that satisfy the equations of motion and the condition f(z) = 0.

One of them has a vanishing derivative whereas the other has finite derivative as z → 1.
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(A) (B)

Figure 3. Profiles of the metric functions f(z) (red) and e−h(z) (violet), the gauge field Φ(z) (green),

density n(z) (blue) and the pressure p(z) (cyan) at zero temperature, for (µ/T, e,m) = (1.7, 1, 0.1)

(A) and for (µ/T, e,m) = (1.7, 10, 0.1) (B). Solid lines are calculated from our model while dashed

lines are the electron star solution for the same parameter values. For better visibility density

and pressure are rescaled by a constant factor. Near the boundary we always have h(z) → 0 and

Φ(z) = µ+O(z), in accordance with the universal AdS asymptotics of the solution but in the interior

the solutions start to deviate. Most striking is the absence of sharp classical edges in density and

pressure. The difference in pressure will turn out to be crucial in moving away from the fluid limit.

Here we have not shown the solution with NWKB = 4: this case deviates from the electron star

(NWKB → ∞) so strongly that it does not make sense to compare it. Indeed, 4 ≪ ∞!

charge density in the background (f, h,Φ) taken from previous iteration and solve for this

density the Einstein-Maxwell equations (4.7)–(4.9). We repeat this procedure for charge

3e/N , 4e/N etc. After N iterations we have arrived at the physical value of the charge e.

Then we do more iterations with fixed charge e to ensure that the solution has converged,

checking that the set of functions (f, h,Φ) does not change from iteration to iteration. In

this way we achieve the self-consistent numerical solution of the Maxwell-Dirac-Einstein

system of equations. The integration is always done from the horizon, shooting for the

conditions for Φ and h at the boundary, since it is well known that integrating from the

AdS boundary is a risky procedure as it is next to impossible to arrive at the correct branch

of the solution at the horizon.

5 Phases of holographic fermions

We can now analyze the structure of both the bulk and the field theory side as a function

of the parameters T/µ, e and m. We first shortly discuss the nature of the bulk solution for

the geometry and gauge field and notice some qualitative properties. The typical way that

the solutions to the WKB-Fermi-Einstein system (4.7)–(4.9) look is illustrated in figure 3.

The near-horizon scaling of the metric and gauge field is of Lifshitz type, as expected in the

light of earlier models [10, 34]. Notice that we are working at finite temperature and thus

do not impose the IR boundary conditions for the metric functions which correspond to

the Lifshitz geometry. Our finding of Lifshitz scaling is purely numerical, with the simple

boundary conditions discussed above. In the figure, we plot also the electron star solution

for comparison. One should be careful in comparing the two, however, as the electron

star corresponds to the limit e → 0 and thus cannot be compared directly (i.e., for the
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same parameter values) to our WKB star. Our convention is to first define the electron

star by choosing the total charge density Q and the parameter m̂ = m/eκ, where κ is the

gravitational constant whose value is fixed by the normalization of the action (4.1). For

the WKB star, we impose the same value of Q, while the value of m is found as m = m̂eκ

(for WKB star we can control e as an independent parameter). Relative proximity of

the solutions for large N seems to confirm that this is a physically meaningful way of

comparing the models.

5.1 Thermodynamics

We can now use these full solutions to determine the macroscopic characteristics of the

dual strongly coupled fermion system. Let us first derive the free energy of the boundary

field theory. According to the dictionary, it is equal to the (Euclidean) on-shell action,

which contains both bulk and boundary components:

F = Son−shell
bulk + Son−shell

bnd . (5.1)

We have already discussed the bulk action in the previous section. We will again approxi-

mate the fermionic contribution (4.3) by its leading term, the pressure.

In computing the free energy using AdS/CFT a crucial part is often played by boundary

terms in the action. It encapsulates the regularizing terms that eliminate z → 0 divergences,

enforces a Dirichlet boundary condition for the gauge field, but it also provides the kernel

for the fermionic correlation functions [9, 36]

Sbnd =

∮

∂AdS

√
−h

(

1

2
nνF

µνAµ + Ψ̄+Ψ−

)

, (5.2)

with h being the induced metric on the boundary (h = 1
z2
(−1/f(z = 0), 1, 1)) and Ψ+ and

Ψ− are radial projections of the wave function as in eq. (2.8). By ∂AdS we have denoted

the boundary of the AdS space. Let us now briefly show why these boundary fermion

terms do not contribute to the free energy, but that the leading fermion contribution is the

(one-loop) effective pressure. Essentially the point is that only normalizable modes of the

field are occupied and hence they cannot contribute to the boundary action as they die off

too fast. The Dirac field asymptotics at the boundary are given by [13]:

Ψ+ =
iµγ0

2m+ 1
B−z

5/2+m + . . . , Ψ− = B−z
3/2+m + . . . (5.3)

At the same time the electromagnetic boundary term reduces to Φ∂zΦ|z=0 = −µρ, where

ρ is the total boundary (not only fermionic) charge density, read off from the subleading

“response” of the bulk electrostatic potential limz→0Φ(z) = µ− ρz + . . .. The regularized

boundary action now reads

Sbnd = lim
z0→0

S(z0) + lim
z0→0

∫

d3x

[

3µ

2(2m+ 1)
B̄−iγ

0B−z
1+2m
0 − 1

2
µρ

]

, (5.4)

Since m > −1/2 is the fermionic unitarity bound in AdS/CFT, the first term always

vanishes in the limit z0 → 0. The total on-shell action, i.e. the free energy is therefore

F =

∫ zH

z0

dzd3x
√−g

[

R+ 6 +
zeh/2qnΦ

2
√
f

+ p

]

− 1

2
µρ (5.5)
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5.2 Constructing the phase diagram: quantum corrections imply a first order

thermal phase transition to AdS-RN

The condensed matter context in which we are discussing AdS/CFT is that of an emergent

finite density fermionic ground state out of an UV CFT. In the deep UV or at very high

temperatures T/µ the chemical potential should be negligible and we should recover as the

preferred groundstate the UV CFT at finite T/µ. The gravitational dual of this is the AdS-

RN black hole. It describes a conformal critical phase with no Fermi surfaces. As we lower

T/µ an instability should set in towards a state with a finite occupation number of fermions.

In the probe analysis one indeed finds several normalizable wavefunctions signalling the

existence of states with distinct occupation numbers. They are the bulk counterpart of

the existence of non-Fermi-liquid Fermi surfaces [8, 9, 19, 21]. A crucial qualitative aspect

is that due to their fermionic nature the wavefunctions of these normalizable modes can

never “grow”. From a microscopic point of view it therefore appears that any fermion

driven phase transition cannot be second order. In the fluid limit, however, the transition

was found to be third order. There is no conflict because new analytic behavior can emerge

in the fluid scaling limit where the number of Fermi surfaces is taken to infinity.4 It does

mean that one has to be quite careful in the fluid limit as for fermions these corrections can

change macroscopic quantities. For any finite number of Fermi surfaces we should discover

a first order transition. We did indeed find this earlier in the Dirac hair approximation

valid for NWKB = 1 [13]. With the WKB construction put forward here, we will show that

this is indeed so for any finite NWKB.

Figure 4 shows the behavior of the free energy F (T/µ) of the WKB corrected star

construction for different parameters e,m, corresponding to a different number of levels

NWKB (which roughly equals the number of Fermi surfaces. In the high temperature

phase the preferred state with lowest F (T/µ) is that of the pure AdS-RN. Since there are

no occupied fermionic states it is independent of the fermion charge and mass. In the low

temperature phase the preferred phase is the WKB star. Where the phase transition occurs,

one immediately sees the characteristic first order cusp in F (T/µ) whose non-analyticity

indeed becomes clearer as NWKB decreases. The panel (B) of the figure makes this clear

by showing the vicinity of the phase transition.

The first order nature of the phase transition can in fact be understood analytically

with this WKB construction. The argument is along similar lines as for the fluid limit of

the electron star [12]. Assuming that the transition is dominated by the behavior of the

fermions and that the contribution of the geometry change due to backreaction is small

4Note that there is a crucial subtlety in the fluid limit in AdS/CFT with a flat Minkowski-space boundary.

Normally one needs a thermodynamic “fluid” limit to even be able to discuss the notion of a phase transition.

In global AdS, or conventional Tolman-Oppenheimer-Volkov neutron stars, a bound on the number of radial

modes, implies a countable number of states. However, this is not so in AdS/CFT with a flat Minkowski-

space boundary. For each radial mode there is still a formal infinite number of modes distinguished by the

transverse momentum. The phase transition discussed here is where one considers N/Vtransverse → ∞. It

restores one’s intuition that the emergence of each single Fermi surface dual to each single radial mode is

associated with a macroscopic phase transition. We thank Sean Hartnoll for emphasizing this.
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Figure 4. Free energy as a function of temperature F (T ). The abrupt change of the derivative

signifies the first order transition between the finite density phase and the pure black hole (with

zero bulk fermion density), in line with the analytical prediction of the first order transition from

the second term in the bulk free energy in section 5.2. We show the calculations for three different

values (µ, e,m) of the system parameters: (1.7, 3, 0.1), NWKB(T = 0) = 40 in blue, (1.7, 10, 0.1),

NWKB(T = 0) = 20 in red and (1.7, 10, 0.7), NWKB(T = 0) = 11 in violet. Notice how the slope

of F in the low-temperature phase decreases as the number of levels increases: for NWKB → ∞
we reach the electron star limit when the transition becomes continuous. Panel (B) shows the

vicinity of the critical temperature for three sets of parameter values, to make the cusp in F (T )

clearly visible. In the high temperature (RN) phase the curves F (T ) fall on top of each other as

one expects for the RN black hole with n = 0. The behavior in the low-temperature phase (with

non-zero density) is different for the three curves as the value of the charge affects the behavior of

the bulk fermions. For presentation purposes, the curves have been rescaled to the same transition

temperature; in general, however, (T/µ)c is not universal and will differ for different corners of the

parameter space.

near the critical temperature, the relevant part of the free energy of the system is given by

FFermi ≈
∫ zH

0
p =

eµ

2

∫ z∗∗

z∗

(1− z)n+
eµ

2

∫ z∗∗

z∗

M̃2e−h

z
√

M̃2 + ehẼ2
≡ F fluid

Fermi +∆FFermi (5.6)

Starting from low temperatures and nonzero n, at the transition point the bulk density n

vanishes. In the WKB construction that means that the turning points coincide: z∗ → z∗∗.

The first, “fluid limit” term F fluid
Fermi in (5.6) is proportional to Φn and it is analyzed in detail

in [12]. It yields the scaling F fluid
Fermi ∼ (T − Tc)

3. This indicates a third order transition at

the semi-classical level. The new, second, quantum term will change this, however. The

vanishing of the classically allowed region means Ẽ ≈ M̃ in the whole (narrow) region

z∗ < z < z∗∗. One can thus expand Ẽ = M̃ + δz × δẼ/δz + . . . and analyze the leading

terms in δz. It is easy to see that its expansion starts from a constant. Since for vanishing

δz the density can be assumed constant throughout the WKB star, we estimate the integral

in ∆FFermi as

∆FFermi ≈
ΦM̃2e−h

√

M̃2 + ehẼ2
δz = (const.+O (δz)) δz, (5.7)

where δz = z∗∗ − z∗. Therefore, the second term scales as ∆FFermi ∼ δz. Now, for a

vanishing bulk charged fluid/emerging charged black hole, the principle of detailed balance

predicts that the charge of the former equals the charge of the latter: nδz = nBHδzH ,
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where the charge densities of the bulk and the black hole are n and nBH, respectively, and

δzH is the change in the position of the black hole horizon. Since the densities can be

assumed constant for vanishing δz and δzH , we find δz ∼ δzH ∼ T − Tc. We can now

write FFermi = F fluid
Fermi +∆FFermi. We know that F fluid

Fermi ∼ (T − Tc)
3 [12], but we have now

shown that

∆FFermi ∼ T − Tc. (5.8)

At the quantum level the transition is always of first order. The quantum correction is

subleading at general T values, but becomes leading as the phase transition point is ap-

proached. Finally, we remark that, if one considers the bulk free (or internal) energy
∫

dzE
given in eq. (3.24) using the similar scaling reasoning, one arrives at the same conclusion:

F ∼ T − Tc. This confirms the intuition that the bulk and boundary thermodynamics are

equivalent at leading order, i.e. the difference Fbulk − F does not contain first-order terms

in T − Tc and thus does not change the order of the transition. Now the exact free energy

differs from our WKB star calculation, as we have assumed that the correction to the fluid

limit is fully captured by the correction to pressure. However, an additional term in F

cannot decrease the order of the transition: it can introduce new singularities (of some

order α, scaling as (T − Tc)
α) but cannot cancel out the term.

The numerics just confirms this analytic prediction of a first order phase transition.

The field theory interpretation of the discontinuous nature of the transition to a phase

with Fermi surfaces is simple: fermions do not break any symmetry but the discharge of

the black hole does signify that the ground state is reconstructed due to the formation of

a rigid Fermi surface. The only way to reconstruct the ground state without breaking any

symmetries is precisely the first order transition of the density van der Waals liquid-gas

type. This is the macroscopic counterpart to the probe analysis where the Grassman nature

of fermions Pauli blocks the growing of mode functions. A van der Waals liquid-gas first

order type transition is indeed seen in [13] for the first order transition from NWKB = 1

Dirac hair state to AdS-RN. The confusing point was that electron star/AdS-RN transition

valid in the strict NWKB → ∞ fluid limit was found to be third order [12, 33]. Here we

show that this change in the nature of the phase transition is an artifact of this NWKB → ∞
limit. Instead the expected first order behavior is recovered for any finite value of NWKB.

6 Discussion and conclusions

In this paper we have constructed the WKB star as an improved semiclassical model of

holographic fermions in AdS4 space, aimed at understanding the phase diagram of strongly

coupled Fermi and non-Fermi liquids. The model combines a WKB approximation with a

Hartree summation to approximate a finite NWKB charged fermion state in AdS coupled

to both gravity and electromagnetism. The dominant effect is a quantum correction to

the pressure and energy density (”vacuum polarization”) of the conventional NWKB → ∞
classical model — the electron star. This finite NWKB approach has allowed us to address

the intermediate fermion charges which cannot be modeled satisfyingly with any of the

previously used models.
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By studying the free energy of the system we can now construct the full phase diagram

of the system. Most importantly, we find a universal first order phase transition from a

finite density to a zero density (Reissner-Nordström, quantum critical) phase. The discon-

tinuity of the density comes from the quantum term in the internal energy. This term is

always present but its relative contribution to the free energy decreases with the inverse

of the number of radial modes NWKB. The extreme limit NWKB → ∞ reproduces the

unexpected third order continuous phase transition found in [12, 33]. Nevertheless, in any

real system with finite fermion charge the discontinuity will be present, which fits into the

general expectation that the thermal phase transition of a fermionic system should be of

the van der Waals (liquid-gas, Ising) type.

So far three distinct approaches aiming at capturing the stable phases of holographic

fermionic matter have appeared: the electron star [10], Dirac hair [13] and the confined

Fermi liquid model [14]. The electron star is essentially a charged fermion rewriting of the

well-known Oppenheimer-Volkov equations for a neutron star in AdS background. The

bulk is thus modeled as a semiclassical fluid. It is a controlled approximation in the certain

limit of the parameter values. The mystery is its field theory dual: it is a hierarchically

ordered (infinite) multiplet of fermionic liquids with stable quasiparticles [17]. On the

other end of the spectrum is Dirac hair, which reduces the bulk fermion matter to a single

radial harmonic. The Dirac hair approach is based on the truncation of the full non-

local equations of motion. As a consequence the field theory dual is a single Fermi liquid,

however its gravitational consistency properties are not yet fully understood. In [18] we

have shown that Dirac hair and electron star can be regarded as the extreme points of a

continuum of models, dialing from deep quantum - a single radial mode - to a classical

regime - a very large occupation number - in the bulk. They correspond to two extreme

phases in the field theory phase diagram: a multiplet of a very large number of Fermi

liquids and a single Fermi liquid. The third approach [14] performs a Hartree summation

of the exact quantum mechanical wave functions to capture the fermion density. While the

paper [14] applies the Hartree method to a specific model (confined Fermi liquid, where

the confinement is intrduced through modifying the bulk geometry), the main idea can be

used in any background. This approach is more general then the single-particle approach

of [13] and it naturally extends the single harmonic Dirac hair state with a single Fermi

surface to a state with multiple Fermi surfaces. Our main motivation is to construct a

complementary model that extends from the other end — the semi-classical fluid — down

to a state with a countable but large number of Fermi surfaces. We aim for a system

which is general enough to encompass the middle ground between extreme quantum and

extreme classical regimes in the original deconfined setup. In the recent model of “quantum

electron star” [16] the same goal is set but the method used is different and is based on

the deconfined limit of [14].

In constructing the WKB star, we were also guided by the strengths and weaknesses

of these existing models. On the one hand, the Dirac hair is a fully quantum-mechanical

model which shows its strength in particular near the boundary (the ultraviolet of the

field theory) but becomes worse in the interior, i.e. close to the horizon (the infrared of

the field theory) where density is high and the resulting state of matter cannot be well
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Figure 5. Applicability of various approximations as a function of the ratio of the fermion charge

and the total charge of the system, Q/e: Dirac hair, confined Fermi liquid, our present WKB-model,

electron star. Dirac hair and electron star are the simplest and most flexible approximations but

limited to the extreme ends of the Q/e axis. Compare also to figure 10 in [18].

described by a single wave function. On the other hand, the electron star yields a very

robust description of high-density matter in the interior but its sharp boundary at some

radius rc is clearly incompatible with a fully quantum description. It is thus obvious that

the physically interesting model lies somewhere in-between the two approaches.

How to relate the electron star [10], Dirac hair [13] and the (confined) Hartree Fermi

liquid [14] to our new phase diagram? All models use the same microscopic action for a

Dirac fermion with charge e and mass m, but the system is approximated in different ways.

The electron star is the fluid limit of the equations of motion, yielding the Openheimer-

Volkov equations in the bulk. As explained in [18], this approximation is valid in the

limit of infinite occupation number NWKB → ∞, e → 0 with the total charge density

fixed Q = NWKBe. In addition, the mass m → 0 while m̂ = m/
√
NWKBe is fixed. The

Dirac hair departs from the opposite limit, treating the bulk fermion as a single collective

excitation with NWKB = 1. To obtain a macroscopic charge density one essentially has

to take e ≫ 1. Finally, the confined Fermi liquid of [14] and its deconfined version [16]

improve on the Dirac Hair by using a standard Hartree summation of the non-interacting

bulk Fermi gas. It works for all NWKB ∼ O(1) and this significantly increases the region

of applicability but at the cost of substantial practical complications, in particular if one

wishes to take into account the backreaction on the metric [16]. Our model takes a similar

summation approach but simplifies the wave function calculation drastically by using the

WKB approximation. This inherently assumes semiclassical dynamics and large number of

energy levels NWKB ≫ 1 in the bulk. The WKB star is thus independent of [13] but draws

heavily on the electron star and the dialing concept of [18]. Since we do not make the

assumption of zero energy spacing NWKB → ∞ necessary for the fluid approximation, our

model thus works well in the intermediate regime where NWKB is finite but large compared

to unity. This message is illustrated in figure 5, emphasizing the singular nature of both

the electron star and the Dirac hair.

One obvious downside of the WKB star is that the WKB approximation breaks down

when NWKB, the occupation number, is low. In particular, it means that the accuracy of

our method is lowest close to the phase transition to the RN phase. However, for reasons

outlined in the section 5.2, we can argue that the order of the phase transition cannot

change, i.e. the first-order singularity in the free energy will not be canceled out by the

corrections to WKB. Our treatment is an improvement over the strict NWKB → ∞ limit of
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the electron star model used in [12, 33] to analyze the phase transition, however it remains

a task for further work to approach the transition point with a more accurate method which

is not limited to large occupation numbers. The recent paper [38] constructs a solution

with finite fermion density in AdS4 without using WKB: this turns out to be much more

involved, but allows one to move away from the large NWKB regime.

The natural next step departing from this WKB treatment is to employ a fully

quantum-mechanical density functional method. It is, in fact, not a significant compli-

cation compared to the approach of this paper: the recipe for computing the density n

will be replaced by a somewhat more complicated functional of the gauge field and the

metric, which needs to be computed iteratively. We anticipate that this will not alter the

qualitative picture, although the numbers might change significantly. The main conclusion

of our paper is that the singular fluid limit of bulk fermions when coupled to AdS gravity

can lead to macroscopically anomalous results. Finite NWKB corrections are crucial to get

the correct answer.
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We argue that the electron star and the anti–de Sitter (AdS) Dirac hair solution are two limits of the free

charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of

electron stars have a free parameter that quantifies the number of constituent fermions that make up the

charge and energy density characterizing the electron star solution. The strict electron star limit takes this

number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the

behavior of the distribution of holographically dual Fermi surfaces. As we decrease the number of

constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved

holographic Fermi ground state should be a configuration that shares the qualitative properties of both

limits.
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I. INTRODUCTION

The insight provided by the application of the
anti–de Sitter/conformal field theory (AdS/CFT) corre-
spondence to finite density Fermi systems has given
brand-new perspectives on the theoretical robustness of
non-Fermi liquids [1–3]; on an understanding of the non-
perturbative stability of the regular Fermi liquid equivalent
to order parameter universality for bosons [4,5]; and most
importantly on the notion of fermionic criticality, Fermi
systems with no scale. In essence strongly coupled con-
formally invariant Fermi systems are one answer to the
grand theoretical question of fermionic condensed matter:
Are there finite density Fermi systems that do not refer at
any stage to an underlying perturbative Fermi gas?

It is natural to ask to what extent AdS/CFT can provide a
more complete answer to this question. Assuming, almost
tautologically, that the underlying system is strongly
coupled and there is in addition some notion of a large N
limit, the Fermi system is dual to classical general relativ-
ity with a negative cosmological constant coupled to
charged fermions and electromagnetism. As AdS/CFT
maps quantum numbers to quantum numbers, finite density
configurations of the strongly coupled large N system
correspond to solutions of this Einstein-Maxwell-Dirac
theory with finite charge density. Since the AdS fermions
are the only object carrying charge, and the gravity system
is weakly coupled, one is immediately inclined to infer that
the generic solution is a weakly coupled charged Fermi gas
coupled to AdS gravity: in other words an AdS electron

star [6,7], the charged equivalent of a neutron star in
asymptotically anti–de Sitter space [8,9].
Nothing can seem more straightforward. Given the total

charge density Q of interest, one constructs the free fermi-
onic wave functions in this system, and fills them one by
one in increasing energy until the total charge equals Q.
For macroscopic values of Q these fermions themselves
will backreact on the geometry. One can compute this
backreaction; it changes the potential for the free fermions
at subleading order. Correcting the wave functions at this
subleading order, one converges on the true solution order
by order in the gravitational strength �2E2

full system. Here

Efull system is the energy carried by the Fermi system and �2

is the gravitational coupling constant �2 ¼ 8�GNewton in
the AdS gravity system. Perturbation theory in � is dual to
the 1=N expansion in the associated condensed matter
system.
The starting point of the backreaction computation is to

follow Tolman-Oppenheimer-Volkov (TOV) and use a
Thomas-Fermi (TF) approximation for the lowest order
one-loop contribution [6–9]. The Thomas-Fermi approxi-
mation applies when the number of constituent fermions
making up the Fermi gas is infinite. For neutral fermions
this equates to the statement that the energy-spacing be-
tween the levels is negligible compared to the chemical
potential associated with Q, �E=� ! 0. For charged
fermions the Thomas-Fermi limit is more direct: it is the
limit q=Q ! 0, where q is the charge of each constituent
fermion.1

This has been the guiding principle behind the ap-
proaches [6–11] and the recent papers [12,13], with the
natural assumption that all corrections beyond Thomas-
Fermi are small quantitative changes rather than qualitative

*cubrovic@lorentz.leidenuniv.nl
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1For a fermion in an harmonic oscillator potential En ¼
ℏðn� 1=2Þ!, thus �E=Etotal ¼ 1=

P
N
1 ðn� 1=2Þ ¼ 2=N2.
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ones. On closer inspection, however, this completely natu-
ral TF-electron star poses a number of puzzles. The most
prominent perhaps arises from the AdS/CFT correspon-
dence finding that every normalizable fermionic wave
function in the gravitational bulk corresponds to a fermi-
onic quasiparticle excitation in the dual condensed matter
system. In particular occupying a particular wave function
is dual to having a particular Fermi-liquid state [4]. In the
Thomas-Fermi limit the gravity dual thus describes an
infinity of Fermi liquids, whereas the generic condensed
matter expectation would have been that a single (few)
liquid(s) would be the generic ground state away from the
strongly coupled fermionic quantum critical point at zero
charge density. This zoo of Fermi surfaces is already
present in the grand canonical approaches at fixed �
(extremal AdS-Reissner-Nordström [AdS-RN] black
holes) [3] and a natural explanation would be that this is
a large N effect. This idea, that the gravity theory is dual to
a condensed matter system withN species of fermions, and
increasing the charge density ‘‘populates’’ more and more
of the distinct species of Fermi liquids, is very surprising
from the condensed matter perspective. Away from criti-
cality one would expect the generic ground state to be a
single Fermi liquid or some broken state due to pairing. To
pose the puzzle sharply, once one has a fermionic quasi-
particle one should be able to adiabatically continue it to a
free Fermi gas, which would imply that the free limit of the
strongly coupled fermionic CFT is not a single but a system
of order N fermions with an ordered distribution of Fermi
momenta. A possible explanation of the multitude of
Fermi surfaces that is consistent with a single Fermi sur-
face at weak coupling is that AdS/CFT describes so-called
‘‘deconfined and/or fractionalized Fermi liquids’’ where
the number of Fermi surfaces is directly tied to the cou-
pling strength [12–16]. It would argue that fermionic
quantum criticality goes hand in hand with fractionaliza-
tion for which there is currently scant experimental
evidence.

The second puzzle is more technical. Since quantum
numbers in the gravity system equal the quantum numbers
in the dual condensed matter system, one is inclined to
infer that each subsequent AdS fermion wave function has
incrementally higher energy than the previous one. Yet
analyticity of the Dirac equation implies that all normal-
izable wave functions must have strictly vanishing energy
[17]. It poses the question how the order in which the
fermions populate the Fermi gas is determined.

The third puzzle is that in the Thomas-Fermi limit the
Fermi gas is gravitationally strictly confined to a bounded
region; famously, the TOV-neutron star has an edge. In
AdS/CFT, however, all information about the dual con-
densed matter system is read off at asymptotic AdS
infinity. Qualitatively, one can think of AdS/CFT as an
‘‘experiment’’ analogous to probing a spatially confined
Fermi gas with a tunneling microscope held to the exterior

of the trap. Extracting the information of the dual con-
densed matter system is probing the AdS Dirac system
confined by a gravitoelectric trap instead of a magneto-
optical trap for cold atoms. Although the Thomas-Fermi
limit should reliably capture the charge and energy den-
sities in the system, its abrupt nonanalytic change at the
edge (in a trapped system) and effective absence of a
density far away from the center are well known to cause
qualitative deficiencies in the description of the system.
Specifically Friedel oscillations—quantum interference in
the outside tails of the charged fermion density, controlled
by the ratio q=Q and measured by a tunneling micro-
scope—are absent. Analogously, there could be qualitative
features in the AdS asymptotics of both the gravitoelectric
background and the Dirac wave functions in that adjusted
background that are missed by the TF approximation. The
AdS asymptotics in turn specify the physics of the dual
condensed matter system and since our main interest is to
use AdS/CFT to understand quantum critical fermion sys-
tems where q=Q is finite, the possibility of a qualitative
change inherent in the Thomas-Fermi limit should be
considered.
There is another candidate AdS description of the dual

of a strongly coupled finite density Fermi system: the AdS
black hole with Dirac hair [4,5]. One arrives at this solution
when one starts one’s reasoning from the dual condensed
matter system, rather than the Dirac fields in AdS gravity.
Insisting that the system collapses to a generic single
species Fermi-liquid ground state, the dual gravity descrip-
tion is that of an AdS Einstein-Dirac-Maxwell system with
a single nonzero normalizable Dirac wave function. To
have a macroscopic backreaction the charge of this single
Dirac field must be macroscopic. The intuitive way to view
this solution is as the other simplest approximation to free
Fermi gas coupled to gravity. What we mean is that the full
gravitoelectric response is in all cases controlled by the
total charge Q of the solution: as charge is conserved it is
proportional to the constituent charge q times the number
of fermions nFAdS

and the two simple limits correspond to

nF ! 1, q ! 0 with Q ¼ qnF fixed or nF ! 1, q ! Q.
The former is the Thomas-Fermi electron star, the latter is
the AdS Dirac hair solution. In the context of AdS/CFT
there is a significant difference between the two solutions
in that the Dirac hair solution clearly does not give rise to
the puzzles 1, 2 and 3: there is by construction no zoo of
Fermi surfaces and therefore no ordering. Moreover since
the wave function is demanded to be normalizable, it
manifestly encodes the properties of the system at the
AdS boundary. On the other hand the AdS Dirac hair
solution does pose the puzzle that under normal conditions
the total charge Q is much larger than the constituent
charge q both from the gravity/string theory point of
view and the condensed matter perspective. Generically
one would expect a Fermi gas electron star rather than
Dirac hair.
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In this paper we shall provide evidence for this point of
view that the AdS electron star and the AdS Dirac hair
solution are two limits of the same underlying system.
Specifically we shall show that (1) the electron star solu-
tion indeed has the constituent charge as a free parameter
which is formally sent to zero to obtain the Thomas-Fermi
approximation. (2) The number of normalizable wave
functions in the electron star depend on the value of the
constituent charge q. We show this by computing the
electron star spectral functions. They depend in similar
way on q as the first AdS/CFT Fermi system studies in
an AdS-RN background. In the formal limit where q ! Q,
only one normalizable mode remains and the spectral
function wave function resembles the Dirac hair solution,
underlining their underlying equivalence. Since both ap-
proximations have qualitative differences as a description
of the AdS dual to strongly coupled fermionic systems, we
argue that an improved approximation that has character-
istics of both is called for.

The results here are complimentary to and share an
analysis of electron star spectral functions with the two
recent papers [12,13] that appeared in the course of this
work (see also [18] for fermion spectral functions in gen-
eral Lifshitz backgrounds). Our motivation to probe the
system away from the direct electron star limit differs: we
have therefore been more precise in defining this limit and
in the analysis of the Dirac equation in the electron star
background.

II. EINSTEIN-MAXWELL THEORY COUPLED
TO CHARGED FERMIONS

The Lagrangian that describes both the electron star
and Dirac hair approximation is Einstein-Maxwell theory
coupled to charged matter

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2

�
Rþ 6

L2

�
� 1

4q2
F2

þLmatterðeA�; A�Þ
�
; (2.1)

where L is the AdS radius, q is the electric charge, and � is
the gravitational coupling constant. It is useful to scale the
electromagnetic interaction to be of the same order as the
gravitational interaction and measure all lengths in terms
of the AdS radius L,

g�� ! L2g��; A� ! qL

�
A�: (2.2)

The system then becomes

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
L2

2�2

�
Rþ 6� 1

2
F2

�

þ L4Lmatter

�
LeA�;

qL

�
A�

��
: (2.3)

Note that in the rescaled variables the effective charge of
charged matter now depends on the ratio of the electro-
magnetic to gravitational coupling constant, qeff ¼ qL=�.
For the case of interest, charged fermions, the Lagrangian
in these variables is

L4Lfermions

�
LeA�;

qL

�
A�

�

¼�L2

�2
��

�
e
�
A�

A

�
@�þ 1

4
!BC

� �BC� i
qL

�
A�

�
�mL

�
�;

(2.4)

where �� is defined as �� ¼ i�y�0. Compared to the
conventional normalization the Dirac field has been made

dimensionless � ¼ �
ffiffiffiffi
L

p
c conventional. With this normaliza-

tion all terms in the action have a factor L2=�2 and it will
therefore scale out of the equations of motion

R�� � 1

2
g��R� 3g��

¼
�
F��F�

� � 1

4
g��F��F

�� þ Tfermions
��

�
;

D�F
�� ¼ �qeffJ

�
fermions (2.5)

with

Tfermions
�� ¼ 1

2
��eAð��A

�
@�Þ þ 1

4
!BC

�Þ �BC � i
qL

�
A�Þ

�
�

� �2L2

2
g��Lfermions; (2.6)

J�fermions ¼ i ��e�A�
A�; (2.7)

where the symmetrization is defined as Bð�C�Þ ¼ B�C� þ
B�C� and the Dirac equation�

e
�
A�

A

�
@�þ1

4
!BC

� �BC� i
qL

�
A�

�
�mL

�
�¼0: (2.8)

The stress-tensor and current are to be evaluated in the
specific state of the system. For a single excited wave
function, obeying (2.8), this gives the AdS Dirac hair
solution constructed in [4]. (More specifically, the Dirac
hair solution consists of a radially isotropic set of wave

functions with identical momentum size j ~kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
,

such that the Pauli principle plays no role.) For multiple
occupied fermion states, even without backreaction due
to gravity, adding the contributions of each separate solu-
tion to (2.8) rapidly becomes very involved. In such a
many-body system, the collective effect of the multiple
occupied fermion states is better captured in a ‘‘fluid’’
approximation

Tfluid
�� ¼ ð�þ pÞu�u� þ pg��; Nfluid

� ¼ nu� (2.9)
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with

�¼hu�T��u
�imatteronly; n¼�hu�J�imatteronly: (2.10)

In the center-of-mass rest frame of the multiple fermion
system [u� ¼ ðet0; 0; 0; 0Þ], the expressions for the

stress-tensor and charge density are given by the one-
loop equal-time expectation values (as opposed to time-
ordered correlation functions)

� ¼
�
��ðtÞet0�0

�
@t þ 1

4
!AB

t �AB � iqeffAt

�
�ðtÞ

�
: (2.11)

By the optical theorem the expectation value is equal to
twice the imaginary part of the Feynman propagator2

�¼ lim
t!t0

2ImTr

�
et0�

0

�
@tþ1

4
!AB

t �AB� iqeffAt

�
GAdS

F ðt0; tÞ
�
:

(2.12)

In all situations of interest, all background fields will only
have dependence on the radial AdS direction; in that case
the spin connection can be absorbed in the normalization of
the spinor wave function.3 In an adiabatic approximation
for the radial dependence of et0 and At—where �locðrÞ ¼
qeffe

t
0ðrÞAtðrÞ and !ðrÞ ¼ �iet0ðrÞ@t;—this yields the

known expression for a many-body fermion system at finite
chemical potential,

�ðrÞ ¼ lim
�!1

2
Z d3kd!

ð2�Þ4 ½!ðrÞ ��locðrÞ� ImTri�0G�
Fð!; kÞ

¼ lim
�!1

Z dkd!

4�3
½k2ð!��Þ�

�
1

2
� 1

2
tanh

�
�

2
ð!��Þ

��
Trði�0Þ2 �

2

L2
��ðð!��Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðmLÞ2

q
Þ

¼ lim
�!1

�2

�2L2

Z
d!fFDð�ð!��ÞÞ½ð!��Þ2 � ðmLÞ2�½!��� ð!��Þ	ð!���mLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!��Þ2 � ðmLÞ2p

¼ 1

�2

�2

L2

Z �loc

mL
dEE2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ðmLÞ2

q
: (2.13)

The normalization �2=L2 follows from the unconventional
normalization of the Dirac field in Eq. (2.4).4 Similarly

n ¼ 1

�2

�2

L2

Z �loc

mL
dEE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ðmLÞ2

q

¼ 1

3�2

�2

L2
ð�2

loc � ðmLÞ2Þ3=2: (2.14)

The adiabatic approximation is valid for highly localized
wave functions, i.e. the expression must be dominated
by high momenta (especially in the radial direction).
The exact expression on the other hand will not have a

continuum of solutions to the harmonic condition��0!þ
�iki þ �zkz � �0�loc � imL ¼ 0. Normalizable solutions
to the AdS Dirac equations only occur at discrete
momenta—one can think of the gravitational background
as a potential well. The adiabatic approximation is there-
fore equivalent to the Thomas-Fermi approximation for a
Fermi gas in a box.
To get an estimate for the parameter range where the

adiabatic approximation holds, consider the adiabatic
bound @r�locðrÞ � �locðrÞ2. Using the field equation for
A0 ¼ �loc=qeff ,

@2r�loc � q2effn; (2.15)

this bound is equivalent to requiring

@2r�loc � @r�
2
loc )

�
qL

�

�
2
n � 2�loc@r�loc

)
�
qL

�

�
2
n � �3

loc; (2.16)

where in the last line we used the original bound again.
If the chemical potential scale is considerably higher than
the mass of the fermion, we may use (2.14) to approximate

n� �2

L2 �
3
loc. Thus the adiabatic bound is equivalent to

q ¼ qeff�

L
� 1; (2.17)

2From unitarity for the S matrix SyS ¼ 1 one obtains the
optical theorem TyT ¼ 2 ImT for the transition matrix T defined
as S � 1þ iT.

3That is, one can redefine spinors 
ðrÞ ¼ fðrÞ�ðrÞ such that
the connection term is no longer present in the equation of
motion.

4One can see this readily by converting the dimensionless
definition of �, Eq. (2.11), to the standard dimension. Using
capitals for dimensionless quantities and lower-case for dimen-
sionful ones,

�� h�@T�i � �2L2hc @tc i
� �2L2

Z �

m
d��2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p

� �2

L2

Z �L

mL
dEE2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ðmLÞ2

q
with �L ¼ �loc above.
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the statement that the constituent charge of the fermions
is infinitesimal. Note that in the rescaled action (2.3) and
(2.4), L=� plays the role of 1=ℏ, and Eq. (2.17) is thus
equivalent to the semiclassical limit ℏ ! 0 with qeff fixed.
Since AdS/CFT relates L=�� Nc this acquires the mean-
ing in the context of holography that there is a large Nc

scaling limit [12,13] of the CFT with fermionic operators
where the renormalization group (RG) flow is ‘‘adiabatic.’’
Returning to the gravitational description the additional
assumption that the chemical potential is much larger
than the mass is equivalent to

Qtotal
phys

Vspatial AdS

¼ LQtotal
eff

�Vspatial AdS

� L

�Vspatial AdS

Z
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ginduced
p ðqeffnÞ

’ 1

Vspatial AdS

Z
dr

ffiffiffiffiffiffiffi�g
p qeff�

L
�3

locðrÞ � qðmLÞ3:

(2.18)

This implies that the total charge density in AdS is much
larger than that of a single charged particle (as long as
mL� 1). The adiabatic limit is therefore equivalent to a
thermodynamic limit where the Fermi gas consists of an
infinite number of constituents, n ! 1, q ! 0 such that
the total charge Q� nq remains finite.

The adiabatic limit of a many-body fermion system
coupled to gravity are the Tolman-Oppenheimer-Volkov
equations. Solving this in asymptotically AdS gives us
the charged neutron or electron star constructed in [7].
Knowing the quantitative form of the adiabatic limit, it is
now easy to distinguish the electron star solution from the
‘‘single wave function’’ Dirac hair solution. The latter is
trivially the single particle limit n ! 1, q ! Q with the
total chargeQ finite. The electron star and Dirac hair black
hole are opposing limit-solutions of the same system. We
shall now make this connection more visible by identifying
a formal dialing parameter that interpolates between the
two solutions.

To do so we shall need the full adiabatic Tolman-
Oppenheimer-Volkov equations for the AdS electron star
[7]. Since the fluid is homogeneous and isotropic, the
background metric and electrostatic potential will respect
these symmetries and will be of the form [recall that we are
already using ‘‘dimensionless’’ lengths, Eq. (2.2)]

ds2 ¼ �fðrÞdt2 þ gðrÞdr2 þ r2ðdx2 þ dy2Þ;
A ¼ hðrÞdt; (2.19)

where fðrÞ, gðrÞ, hðrÞ are functions of r; the horizon is
located at r ¼ 0 and the boundary is at r ¼ 1. Combining
this ansatz with a rescaling mL ¼ qeffm̂ the bosonic back-
ground equations of motion become [7]

1

r

�
f0

f
þg0

g

�
�gh�ffiffiffi

f
p ¼ 0;

�¼q4eff�
2

�2L2

Z h=
ffiffi
f

p

m̂
d��2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� m̂2

p
;

f0

rf
þh02

2f
�gð3þpÞþ 1

r2
¼0;

�¼q4eff�
2

�2L2

Z h=
ffiffi
f

p

m̂
d��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� m̂2

p
;

h00 þ2

r
h0 �g�ffiffiffi

f
p

�
rhh0

2
þf

�
¼ 0; �p¼�� hffiffiffi

f
p �;

(2.20)

where we have used that�loc ¼ qeffh=
ffiffiffi
f

p
and� ¼ nqeff is

the rescaled local charge density. What one immediately
notes is that the Tolman-Oppenheimer-Volkov equations of
motion for the background only depend on the parameters

�̂ � q4
eff
�2

�2L2 and m̂, whereas the original Lagrangian and the

fermion equation of motion also depend on qeff ¼
ð�2L2�̂

�2 Þ1=4. It is therefore natural to guess that the parameter

qeff ¼ qL=�will be the interpolating parameter away from
the adiabatic electron star limit toward the Dirac hair black
hole (BH).
Indeed in these natural electron star variables the adia-

batic bound (2.17) translates into

�̂ � L2

�2
¼ q2eff

q2
: (2.21)

Thus we see that for a given electron star background with

�̂ fixed decreasing �=L improves the adiabatic fluid ap-
proximation whereas increasing �=L makes the adiabatic
approximation poorer and poorer. ‘‘Dialing �=L up/down’’
therefore interpolates between the electron star and the
Dirac hair BH. Counterintuitively improving adiabaticity
by decreasing �=L corresponds to increasing qeff for fixed
q, but this is just a consequence of recasting the system in
natural electron star variables. A better way to view im-
proving adiabaticity is to decrease the microscopic charge
q but while keeping qeff fixed; this shows that a better way
to think of qeff is as the total charge rather than the effective
constituent charge.
The parameter �=L ¼ q=qeff parametrizes the gravita-

tional coupling strength in units of the AdS curvature, and
one might worry that ‘‘dialing �=L up’’ pushes one outside
the regime of classical gravity. This is not the case. One can

easily have �̂ � 1 and tune �=L toward or away from the
adiabatic limit within the regime of classical gravity. From
Eq. (2.17) we see that the edge of validity of the adiabatic

regime �̂ ’ L2=�2 is simply equivalent to a microscopic
charge q ¼ 1 which clearly has a classical gravity descrip-
tion. It is not hard to see that the statement above is the
equivalent of changing the level splitting in the Fermi gas,
while keeping the overall energy/charge fixed. In a Fermi
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gas microscopically both the overall energy and the level
splitting depends on ℏ. Naively increasing ℏ increases
both, but one can move away from the adiabatic limit
either by decreasing the overall charge density, keeping ℏ
fixed, or by keeping the charge density fixed and raising ℏ.
Using again the analogy between �=L and ℏ, the electron
star situation is qualitatively the same, where one should

think of �̂� q4L2=�2 parametrizing the microscopic
charge. One can either insist on keeping �=L fixed and

increase the microscopic charge �̂ to increase the level

splitting or one can keep �̂ fixed and increase �=L. In the
electron star, however, the background geometry changes

with �̂ in addition to the level splitting, and it is therefore

more straightforward to keep �̂ and the geometry fixed,
while dialing �=L.

We will now give evidence for our claim that the elec-
tron star and Dirac hair solution are two opposing limits.
To do so, we need to identify an observable that goes either
beyond the adiabatic background approximation or beyond
the single particle approximation. Since the generic inter-
mediate state is still a many-body fermion system, the
more natural starting point is the electron star background
and to perturb away from there. Realizing then that the
fermion equation of motion already depends directly on
the dialing parameter qeff the obvious observables are the
single fermion spectral functions in the electron star back-
ground. Since one must specify a value for qeff to compute
these, they directly probe the microscopic charge of the
fermion and are thus always beyond the strict electron star
limit q ! 0. In the next two sections wewill compute these
and show that they indeed reflect the interpretation of qeff
as the interpolating parameter between the electron star
and Dirac hair BH.

III. FERMION SPECTRAL FUNCTIONS IN THE
ELECTRON STAR BACKGROUND

To compute the fermion spectral functions in the elec-
tron star background we shall choose a specific represen-

tative of the family of electron stars parametrized by �̂ and

m̂. Rather than using �̂ and m̂ the metric of an electron star
is more conveniently characterized by its Lifshitz-scaling
behavior near the interior horizon r ! 0. From the field
equations (2.20) the limiting interior behavior of fðrÞ, gðrÞ,
hðrÞ is

fðrÞ¼ r2zþ��� ; gðrÞ¼g1
r2

þ��� ; hðrÞ¼h1rzþ��� :
(3.1)

The scaling behavior is determined by the dynamical criti-

cal exponent z, which is a function of �̂, m̂ [7] and it is

conventionally used to classify the metric instead of �̂. The
full electron star metric is then generated from this horizon
scaling behavior by integrating up an irrelevant RG-flow
[19,20]

f ¼ r2zð1þ f1r
�� þ � � �Þ;

g ¼ g1
r2

ð1þ g1r
�� þ � � �Þ;

h ¼ h1rzð1þ h1r
�� þ � � �Þ

(3.2)

with

� ¼ 2þ z

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9z3 � 21z2 þ 40z� 28� m̂2zð4� 3zÞ2p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� m̂2Þz� 1

p :

(3.3)

Scaling f1 ! bf1 is equal to a coordinate transformation

r ! b1=�r and t ! bz=�t, and the sign of f1 is fixed to be
negative in order to be able to match onto an asymptoti-
cally AdS4 solution. Thus f1 ¼ �1 and g1 and h1 are then
uniquely determined by the equations of motion.
Famously, integrating the equations of motion up the

RG-flow outward toward the boundary fails at a finite
distance rs. This is the edge of the electron star. Beyond
the edge of the electron star, there is no fluid present and the
spacetime is that of an AdS4-RN black hole with the metric

f¼c2r2�M̂

r
þ Q̂2

2r2
; g¼c2

f
; h¼ �̂�Q̂

r
: (3.4)

Demanding the full metric is smooth at the radius of

electron star rs determines the constants c, M̂, and Q̂.
The dual field theory is defined on the plane ds2 ¼
�c2dt2 þ dx2 þ dy2.
The specific electron star background we shall choose

without loss of generality is the one with z ¼ 2, m̂ ¼ 0:36
(Fig. 1),5 smoothly matched at rs ’ 4:25252 onto an AdS-
RN black hole.
The CFT fermion spectral functions now follow from

solving the Dirac equation in this background [1,2]�
e
�
A�

A

�
@�þ1

4
!�AB�

AB� iqeffA�

�
�meff

�
�¼0; (3.5)

where qeff and meff in terms of the parameters of the
electron star equal

qeff ¼
�
�2L2�̂

�2

�
1=4

;

meff ¼ qeffm̂ ¼ m̂

�
�2L2�̂

�2

�
1=4

:

(3.6)

In other words, we choose the same mass and charge for
the probe fermion and the constituent fermions of the
electron star.6 For a given electron star background, i.e. a

5This background has c ’ 1:021, M̂ ’ 3:601, Q̂ ’ 2:534, �̂ ’
2:132, �̂ ’ 19:951, g1 ’ 1:887, h1 ¼ 1=

ffiffiffi
2

p
, � ’ �1:626, f1 ¼�1, g1 ’ �0:4457, h1 ’ �0:6445.

6One could of course choose a different probe mass and
charge, corresponding to an extra charged fermion in the system.
However, even though the electron star only cares about the
equation of state, this would probably not be a self-consistent
story as this extra fermion should also backreact.
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fixed �̂, m̂ the fermion spectral function will therefore

depend on the ratio L=�. For L=� � �̂1=2 the poles in
these spectral functions characterize the occupied states in
a many-body gravitational Fermi system that is well ap-
proximated by the electron star. As L=� is lowered for

fixed �̂ the electron star background becomes a poorer and
poorer approximation to the true state and we should see
this reflected in both the number of poles in the spectral
function and their location.

Projecting the Dirac equation onto two-component �r

eigenspinors

�� ¼ ð�ggrrÞ�ð1=4Þe�i!tþikix
i y�
z�

� �
(3.7)

and using isotropy to set ky ¼ 0, one can choose a basis of

Dirac matrices where one obtains two decoupled sets of
two simple coupled equations [1]ffiffiffiffiffiffiffiffiffiffiffiffi

giig
rr

p ð@r 	meff

ffiffiffiffiffiffiffi
grr

p Þy� ¼ 	iðkx � uÞz	; (3.8)

ffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p ð@r �meff

ffiffiffiffiffiffiffi
grr

p Þz	 ¼ �iðkx þ uÞy�; (3.9)

where u ¼
ffiffiffiffiffiffiffi
gii
�gtt

q
ð!þ qeffhÞ. In this basis of Dirac matri-

ces the CFT Green’s function G ¼ h �Ocþ i
0Ocþi equals

G ¼ lim
�!0

��2mL
�þ 0

0 ��

 !��������r¼ð1=�Þ
; where �þ ¼ iy�

zþ
;

�� ¼ � iz�
yþ

: (3.10)

Rather than solving the coupled equations (3.8) it is con-
venient to solve for �� directly [1],

ffiffiffiffiffiffiffi
gii
grr

s
@r�� ¼ �2meff

ffiffiffiffiffiffi
gii

p
�� 	 ðkx 	 uÞ � ðkx � uÞ�2�:

(3.11)

For the spectral function A ¼ ImTrGR we are interested
in the retarded Green’s function. This is obtained by
imposing infalling boundary conditions near the horizon
r ¼ 0. Since the electron star is a ‘‘zero-temperature’’
solution this requires a more careful analysis than for a
generic horizon. To ensure that the numerical integration
we shall perform to obtain the full spectral function has the
right infalling boundary conditions, we first solve
Eq. (3.11) to first subleading order around r ¼ 0. There
are two distinct branches. When! � 0 and kxr=!, r2=! is
small, the infalling boundary condition near the horizon
r ¼ 0 is (for z ¼ 2)

�þðrÞ¼ i� i
kxr

!
þ i

ðk2x�2imeff!Þr2
2!2

� i
f1kxr

1��

2!
þ���

��ðrÞ¼ iþ i
kxr

!
þ i

ðk2x�2imeff!Þr2
2!2

þ i
f1kxr

1��

2!
þ��� :

(3.12)

When ! ¼ 0, i.e. kxr=! is large, and r=kx ! 0,

�þðrÞ¼�1þðqeffh1þmeffÞr
kx

þ
�
!

kxr
� !

2
ffiffiffiffiffiffiffi
g1

p
k2x

�
þ���

��ðrÞ¼1þðqeffh1�meffÞr
kx

þ
�
!

kxr
� !

2
ffiffiffiffiffiffiffi
g1

p
k2x

�
þ��� ;

(3.13)

the boundary conditions (3.13) become real. As (3.11) are
real equations, the spectral function vanishes in this case.
This is essentially the statement that all poles in the
Green’s function occur at ! ¼ 0 [17]. The fact that the
electron star ! ¼ 0 boundary conditions (3.11) are real
ensures that there is no ‘‘oscillatory region’’ for k less than
some critical value k < ko in the spectral function as is the
case for pure AdS-RN [1,3,21,22]. We discuss this in detail
in the Appendix.

Numerical results and discussion

We can now solve for the spectral functions numerically.
In Fig. 2 we plot the momentum distribution function
(MDF) (the spectral function as a function of k) for
fixed ! ¼ 10�5, z ¼ 2, m̂ ¼ 0:36 while changing the
value of �. Before we comment on the dependence on

qeff � ��1=2 which studies the deviation away from the
adiabatic limit of a given electron star background
(i.e. fixed dimensionless charge and fixed dimensionless
energy density), there are several striking features that are
immediately apparent:

0 2 4 6 8 10
0.0

0.5

1.0

1.5

r

FIG. 1 (color online). Electron star metric for z ¼ 2, m̂ ¼
0:36, c ’ 1:021, M̂ ’ 3:601, Q̂ ’ 2:534, �̂ ’ 2:132 compared
to pure AdS. Shown are fðrÞ=r2 (blue), r2gðrÞ (red), and hðrÞ
(orange). The asymptotic AdS-RN value of hðrÞ is the dashed
blue line. For future use we have also given�loc ¼ h=

ffiffiffi
f

p
(green)

and �qeff ¼
ffiffiffiffiffiffi
gii

p
h=

ffiffiffi
f

p
(red dashed) At the edge of the star rs ’

4:253 (the intersection of the purple dashed line setting the value
of meff with �loc) one sees the convergence to pure AdS in the
constant asymptotes of fðrÞ=r2 and r2gðrÞ.
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(i) As expected, there is a multitude of Fermi surfaces.
They have very narrow width and their spectral
weight decreases rapidly for each higher Fermi mo-
mentum kF (Fig. 3). This agrees with the exponential

width �� expð�ðkz!Þ1=ðz�1ÞÞ predicted by [23] for

gravitational backgrounds that are Lifshitz in the
deep interior, which is the case for the electron
star. This prediction is confirmed in [12,13,18] and
the latter two papers also show that the weight
decreases in a corresponding exponential fashion.
This exponential reduction of both the width and
the weight as kF increases explains why we only
see a finite number of peaks, though we expect a very
large number. In the next section we will be able to

count the number of peaks, even though we cannot
resolve them all numerically.

(ii) The generic value of kF of the peaks with visible
spectral weight is much smaller than the effective
chemical potential � in the boundary field theory.
This is quite different from the AdS-RN case where
the Fermi momentum and chemical potential are of
the same order. A numerical study cannot answer
this, but the recent paper [13] explains this.7

(iii) Consistent with the boundary value analysis, there
is no evidence of an oscillatory region.

(a)
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(b)
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0.080

0.085

0.090

0.095

0.100

k 103 (c)
0 2 4 6 8 10

0

2

4

6

8

10

k
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FIG. 2 (color online). (a) Electron star MDF spectral functions as a function of � for z ¼ 2, m̂ ¼ 0:36, ! ¼ 10�5. Because the peak
height and weights decrease exponentially, we present the adjacent ranges k 2 ½0:017; 0:019� and k 2 ½0:019; 0:021� in two different
plots with different vertical scale. (b, c) Locations of peaks of spectral functions as a function of �: comparison between the electron
star (b) for z ¼ 2, m̂ ¼ 0:36, ! ¼ 10�5 [the dashed gray line denotes the artificial separation in the three-dimensional representations
in (a)] and AdS-RN (c) for m ¼ 0 as a function of q in units where � ¼ ffiffiffi

3
p

These two Fermi-surface ‘‘spectra’’ are qualitatively
similar.

7In view of the verification of the Luttinger count for electron
star spectra in [12,13], this had to be so.
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The most relevant property of the spectral functions for
our question is that as � is increased the peak location
kF decreases orderly and peaks disappear at various
threshold values of k. This is the support for our argument
that changing � changes the number of microscopic
constituents in the electron star. Comparing the behavior
of the various Fermi momenta kF in the electron star with
the results in the extremal AdS-RN black hole, they are

qualitatively identical when one equates ��1=2 � qeff with
the charge of the probe fermion. We may therefore infer
from our detailed understanding of the behavior of kF for
AdS-RN that also for the electron star as kF is lowered
peaks truly disappear from the spectrum until by extrapo-
lation ultimately one remains: this is the AdS Dirac hair
solution [4].

We can only make this inference qualitatively as the
rapid decrease in spectral weight of each successive peak
prevents an exact counting of Fermi surfaces in the nu-
merical results for the electron star spectral functions. One
aspect that we can already see is that as � decreases all
present peaks shift to higher k, while new peaks emerge
from the left for smaller kappa. This suggests a fermionic
version of the UV/IR correspondence, where the peak with
lowest kF corresponds to the last occupied level, i.e. high-
est ‘‘energy’’ in the AdS electron star. We will now address
both of these points in more detail.

IV. FERMI SURFACE ORDERING: kF FROM
A SCHRÖDINGER FORMULATION

Our analysis of the behavior of boundary spectral func-
tions as a function of � relies on the numerically quite
evident peaks. Strictly speaking, however, we have not
shown that there is a true singularity in the Green’s func-
tion at ! ¼ 0, k ¼ kF. We will do so by showing that the

AdS Dirac equation, when recast as a Schrödinger prob-
lem, has quasinormalizable solutions at ! ¼ 0 for various
k. As is well known, in AdS/CFT each such solution
corresponds to a true pole in the boundary Green’s func-
tion. Using a WKB approximation for this Schrödinger
problem we will in addition be able to estimate the number
of poles for a fixed � and thereby provide a quantitative
value for the deviation from the adiabatic background.
We wish to emphasize that the analysis here is general

and captures the behavior of spectral functions in all
spherically symmetric and static backgrounds alike,
whether AdS-RN, Dirac hair, or electron star.
The ! ¼ 0 Dirac equation (3.5) for one set of compo-

nents (3.8) and (3.9) with the replacement iy� ! y�,
equalsffiffiffiffiffiffiffiffiffiffiffiffi

giig
rr

p
@ry� þmeff

ffiffiffiffiffiffi
gii

p
y� ¼ �ðk� �̂qeff

Þzþ;ffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p

@rzþ �meff

ffiffiffiffiffiffi
gii

p
zþ ¼ �ðkþ �̂qeff

Þy�;
(4.1)

where �̂qeff
¼

ffiffiffiffiffiffiffi
gii
�gtt

q
qeffAt and we will drop the subscript x

on kx. In our conventions zþ (and yþ) is the fundamental
component dual to the source of the fermionic operator in
the CFT [1,2]. Rewriting the coupled first-order Dirac
equations as a single second-order equation for zþ,

@2rzþ þ P@rzþ þQzþ ¼ 0;

P ¼ @rðgiigrrÞ
2giig

rr � @r�̂qeff

kþ �̂qeff

;

Q ¼ �meff@r
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p þmeff

ffiffiffiffiffiffiffi
grr

p
@r�̂qeff

kþ �̂qeff

�m2
effgrr

� k2 � �̂2
qeff

giig
rr ;

(4.2)

the first thing one notes is that both P and Q diverge at
some r ¼ r
, where �̂qeff

þ k ¼ 0. Since �̂qeff
is (chosen to

be) a positive semidefinite function which increases from
�̂qeff

¼ 0 at the horizon, this implies that for negative k

(with �k < �̂qeff
j1) the wave function is qualitatively

different from the wave function with positive k which
experiences no singularity. The analysis is straightforward
if we transform the first derivative away and recast it in the
form of a Schrödinger equation by redefining the radial
coordinate,

ds

dr
¼ exp

�
�
Z r

dr0P
�
) s ¼ c0

Z r

r1
dr0

jkþ �̂qeff
jffiffiffiffiffiffiffiffiffiffiffiffi

giig
rr

p ;

(4.3)

where c0 is an integration constant whose natural scale is of
order c0 � q�1

eff . This is a simpler version of the generalized

k-dependent tortoise coordinate introduced in [3]. In the
new coordinates the equation (4.2) is of the standard form,

@2szþ � VðsÞzþ ¼ 0 (4.4)

0.018 0.019 0.020 0.021
k

15

10

5

0

5

10

15

Ln A k,w

FIG. 3 (color online). Electron star MDF spectral functions
with multiple peaks as a function of k for! ¼ 10�5, z ¼ 2, m̂ ¼
0:36. The blue curve is for � ¼ 0:091; the red curve is for � ¼
0:090. Note that the vertical axis is logarithmic. Visible is the
rapidly decreasing spectral weight and increasingly narrower
width for each successive peak as kF increases.

SPECTRAL PROBES OF THE HOLOGRAPHIC FERMI . . . PHYSICAL REVIEW D 84, 086002 (2011)

086002-9



with potential

VðsÞ ¼ � giig
rr

c20jkþ �̂qeff
j2 Q: (4.5)

The above potential (4.5) can also be written as

VðsÞ ¼ 1

c20ðkþ �̂qeff
Þ2
�
ðk2 þm2

effgii � �̂2
qeff

Þ

þmeffgii
ffiffiffiffiffiffiffi
grr

p
@r ln

ffiffiffiffiffiffi
gii

p
kþ �̂qeff

�
: (4.6)

We note again the potential singularity for negative k,
but before we discuss this we first need the boundary
conditions. The universal boundary behavior is at spatial
infinity and follows from the asymptotic AdS geometry. In
the adapted coordinates r ! 1 corresponds to s ! 0 as
follows from ds=dr ’ c0ðkþ �̂qeff

j1Þ=r2. The potential

therefore equals

VðsÞ ’ 1

s2
ðmeff þm2

effÞ þ � � � (4.7)

and the asymptotic behavior of the two independent solu-
tions equals zþ ¼ a1s

�meff þ b1s
1þmeff þ � � � . The second

solution is normalizable and we thus demand a1 ¼ 0.
In the interior, the near-horizon geometry generically is

Lifshitz

ds2 ¼ �r2zdt2 þ 1

r2
dr2 þ r2ðdx2 þ dy2Þ þ � � � ;

A ¼ h1rzdtþ � � � ;
(4.8)

with finite dynamical critical exponent z—AdS-RN, which
can be viewed as a special case, where z ! 1, will be
given separately. In adapted coordinates the interior r ! 0
corresponds to s ! �1 and it is easy to show that in this
limit potential behaves as

VðsÞ ’ 1

c20
þ 1

s2
ðmeff

ffiffiffiffiffiffiffi
g1

p þm2
effg1 � h21q2effg1Þ þ � � � :

(4.9)

Near the horizon the two independent solutions for the
wave function zþ therefore behave as

zþ ! a0e
�s=c0 þ b0e

s=c0 : (4.10)

The decaying solution a0 ¼ 0 is the normalizable solution
we seek.
Let us now address the possible singular behavior for

k < 0. To understand what happens, let us first analyze the
potential qualitatively for positive k. Since the potential is
positive semidefinite at the horizon and the boundary, the
Schrödinger system (4.4) only has a zero-energy normal-
izable solution if VðsÞ has a range s1 < s < s2, where it is

negative. This can only occur at locations where k2 <

�̂2
qeff

�m2
effgii �meffgii

ffiffiffiffiffiffiffi
grr

p
@r ln

ffiffiffiffi
gii

p
kþ�̂qeff

. Defining a ‘‘re-

normalized’’ position dependent mass m2
ren ¼ m2

effgii þ
meffgii

ffiffiffiffiffiffiffi
grr

p
@r ln

ffiffiffiffi
gii

p
kþ�̂qeff

this is the intuitive statement that

the momenta must be smaller than the local chemical
potential k2 < �̂2

qeff
�m2

ren. For positive k the saturation

of this bound k2 ¼ �̂2
qeff

�m2
ren has at most two solutions,

which are regular zeroes of the potential. This follows from
the fact that �̂2

qeff
decreases from the boundary toward the

interior. If the magnitude jkj is too large the inequality
cannot be satisfied, the potential is strictly positive, and no
solution exists. For negative k, however, the potential has
in addition a triple pole at k2 ¼ �̂2

qeff
; two poles arise from

the prefactor and the third from the meff@r lnðkþ �̂qeff
Þ

term. This pole always occurs closer to the horizon than the
zeroes and the potential therefore qualitatively looks like
that in Fig. 4. (Since �̂qeff

decreases as we move inward

from the boundary, starting with �̂2
qeff

> �̂2
qeff

��2 > k2,

one first saturates the inequality that gives the zero in the
potential as one moves inward.) Such a potential cannot
support a zero-energy bound state, i.e. Eq. (4.4) has no
solution for negative k. In the case meff ¼ 0 a double zero
changes the triple pole to a single pole and the argument
still holds. This does not mean that there are no k < 0 poles

(a)

V s

(b)

V s

FIG. 4 (color online). The behavior of the Schrödinger potential VðsÞ for zþ when k is negative. Such a potential has no zero-energy
bound state. The potential is rescaled to fit on a finite range. As jkj is lowered below kmax for which the potential is strictly positive, a
triple pole appears which moves toward the horizon on the left (a). The blue, red, orange, and green curves are decreasing in jkj). The
pole hits the horizon for k ¼ 0 and disappears. (b) shows the special casemeff ¼ 0where two zeroes collide with two of the triple poles
to form a single pole.
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in the CFT spectral function. They arise from the other
physical polarization yþ of the bulk fermion �. From the
second set of decoupled first-order equations for the
other components of the Dirac equation (after replacing
iz� ! z�)ffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p

@ryþ �meff

ffiffiffiffiffiffi
gii

p
yþ ¼ �ðk� �̂qeff

Þz�;ffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p

@rz� þmeff

ffiffiffiffiffiffi
gii

p
z� ¼ �ðkþ �̂qeff

Þyþ;
(4.11)

and the associated second-order differential equation of
motion for yþ,

@2ryþ þ P@ryþ þQ ¼ 0;

P ¼ @rðgiigrrÞ
2giig

rr � @r�̂qeff

�kþ �̂qeff

;

Q ¼ �meff@r
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffiffiffi
giig

rr
p þmeff

ffiffiffiffiffiffiffi
grr

p
@r�̂qeff

�kþ �̂qeff

�m2
effgrr

� k2 � �̂2
qeff

giig
rr ;

(4.12)

one sees that the Schrödinger equation for yþ is the
k ! �k image of the equation (4.4) for zþ and thus
yþ will only have zero-energy solutions for k < 0. For
simplicity we will only analyze the zþ case. Note that
this semipositive definite momentum structure of the poles
is a feature of any AdS-to-Lifshitz metric different from
AdS-RN, where one can have negative k solutions [3].

The exact solution of (4.4) with the above boundary
conditions corresponding to poles in the CFT spectral
function is difficult to find. By construction the system is
however equivalent to a Schrödinger problem of finding a
zero-energy solution zþ in the potential (4.5) and can be
solved in the WKB approximation (see e.g. [3,24]). The

WKB approximation holds when j@sVj � jVj3=2. Notice
that this is more general than the background adiabaticity

limit meff � 1, qeff � 1 with �̂, m̂ fixed. Combining
background adiabaticity with a scaling limit k � 1,
meff � 1, qeff � 1 with c0k fixed and k parametrically
larger than �̂qeff

, one recovers the WKB potential solved in

[12,13]. As our aim is to study the deviation away from the
background adiabatic limit we will be more general and
study the WKB limit of the potential itself, without direct
constraints on qeff , meff . And rather than testing the in-

equality j@sVj � jVj3=2 directly, we will rely on the rule of
thumb that the WKB limit is justified when the number of
nodes in the wave function is large. We will therefore
estimate the number n of bound states and use n � 1 as
an empirical justification of our approach.8 With this cri-
terion we will be able to study the normalizable solutions

to the Dirac equation/pole structure of the CFT spectral
functions as a function of �=L.
The potential is bounded both in the AdS boundary and

at the horizon, and decreases toward intermediate values
of r. We therefore have a standard WKB solution consist-
ing of three regions:
(i) In the regions where V > 0, the solution decays

exponentially,

zþ¼c1;2V
�1=4exp

�
�
Z r

r1;2

dr0½c0
ffiffiffiffiffiffiffiffiffiffiffiffi
giigrr

q
ðkþ�̂qeff

Þ ffiffiffiffi
V

p �
�
:

(4.13)

Here r1, r2 are the turning points where Vðr1Þ ¼ 0 ¼
Vðr2Þ.

(ii) In the region r1 < r < r2, i.e. V < 0, the solution is

zþ¼c3ð�VÞ�1=4Re

�
exp

�
i
Z r

r1

dr0½c0
ffiffiffiffiffiffiffiffiffiffiffiffi
giigrr

q
ðkþ�̂qeff

Þ

� ffiffiffiffiffiffiffiffi�V
p ��i�=4

��
; (4.14)

with the constant phase �i�=4 originating in the
connection formula at the turning point r1.

Finding a WKB solution shows us that the peaks seen
numerically are true poles in the spectral function. But it
also allows us to estimate the number of peaks that the
numerical approach could not resolve. The WKB quanti-
zation conditionZ r2

r1

dr0½c0
ffiffiffiffiffiffiffiffiffiffiffiffi
giigrr

q
ðkþ�̂qeff

Þ ffiffiffiffiffiffiffiffi�V
p �¼�ðnþ1=2Þ (4.15)

counts the number of bound states with negative semi-
definite energy. Note that n does not depend on the integral

constant as there is also a factor 1=c0 in
ffiffiffiffiffiffiffiffi�V

p
. Since V

depends on k, we will see that as we increase k this number
decreases. The natural interpretation in the context of a
bulk many-body Fermi system is that this establishes the
ordering of the filling of all the! ¼ 0momentum shells in
the electron star. For a fixed k one counts the modes that
have been previously occupied and, consistent with our
earlier deduction, the lowest/highest kF corresponds to the
last/first occupied state. Though counterintuitive from a
field theory perspective where normally E� kF, this UV/
IR correspondence is very natural from the AdS bulk, if
one thinks of the electron star as a trapped electron gas.
The last occupied state should then be the outermost state
from the center, but this state has the lowest effective
chemical potential and hence lowest kF.
Let us now show this explicitly by analyzing the poten-

tial and the bound states in the electron star and the AdS-
RN case can be found in the Appendix.
The potential (4.6) for the electron star is given in Fig. 5

and the number of bound states as a function of k in Fig. 6.
As stated the number of states decreases with increasing k,
consistent with the analogy of the pole distribution of the

8A large number of bound states n implies j@sVj � jVj3=2 if
the potential has a single minimum but as is well known there are
systems, e.g. the harmonic oscillator, where the WKB approxi-
mation holds for small n as well.
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spectral functions compared with AdS-RN. Moreover, we
clearly see the significant increase in the number of states
as we decrease �=L thereby improving the adiabaticity of
the background. This vividly illustrates that the adiabatic
limit corresponds to a large number of constituents. As all
numbers of states are far larger than 1, the use of the WKB
is justified. From the trend that dialing �=L up there will be
fewer Fermi surfaces one can conjecture that the Dirac hair
has only one Fermi surface and it was shown in [5] that this
is indeed the case.

V. CONCLUSION AND DISCUSSION

These electron star spectral function results directly
answer two of the three questions raised in the introduc-
tion.

(i) They show explicitly how the fermion wave func-
tions in their own gravitating potential well are
ordered despite the fact that they all have strictly
vanishing energy: In a fermionic version of the UV-
IR correspondence they are ordered inversely in k,
with the ‘‘lowest’’/first occupied state having the
highest k and the ‘‘highest’’/last occupied state hav-
ing the lowest k. With the qualitative AdS/CFT

understanding that scale corresponds to distance
away from the interior, one can intuitively picture
this as literally filling geometrical shells of the elec-
tron star, with the outermost/highest/last shell at
large radius corresponding to the wave function
with lowest local chemical potential and hence
lowest k.

(ii) The decrease of the number of bound states—the
number of occupied wave functions in the electron

star—as we decrease qeff ¼ �̂1=4
ffiffiffiffiffi
�L
�

q
for a fixed

electron star background extrapolates naturally to
a limit where the number of bound states is unity.
This extrapolation pushes the solution beyond its
adiabatic regime of validity. In principle we know
what the correct description in this limit is: it is the
AdS Dirac hair solution constructed in [4]. The
dependence of the number of bound states on �=L
therefore illustrates that the electron star and Dirac
hair solutions are two limiting cases of the gravita-
tionally backreacted Fermi gas.

With this knowledge we can schematically classify the
ground state solutions of AdS Einstein-Maxwell gravity
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FIG. 5 (color online). The Schrödinger potential VðsÞ for the fermion component zþ of in the electron star (ES) background m̂ ¼
0:36, z ¼ 2, c0 ¼ 0:1. (a) shows the dependence on the momentum k ¼ 0:0185 (purple), k ¼ 5 (blue), k ¼ 10 (red) for � ¼ 0:092. (b)
shows the dependence on � ¼ 0:086 (purple), � ¼ 0:092 (blue), � ¼ 0:1 (red) for k ¼ 0:0185. Recall that s ¼ 0 is the AdS boundary
and s ¼ �1 is the near-horizon region.
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FIG. 6 (color online). The WKB estimate of the number of bound states n as a function of the momentum k for � ¼ 0:086 (purple),
0.092 (blue), 0.1 (red) (a); for � ¼ 0:001 (purple), 0.002 (blue), 0.003 (red) (b); and for � ¼ 10�5 (purple), 3� 10�5ð (blue), 5� 10�5

(red) (c). Note the parametric increase in number of states as the adiabaticity of the background improves for smaller �. These three
panels are for the electron star background with m̂ ¼ 0:36, z ¼ 2. Since n � 1 in all cases, WKB gives a valid estimate.

ČUBROVIĆ et al. PHYSICAL REVIEW D 84, 086002 (2011)

086002-12



minimally coupled to charged fermions at finite charge
density.9 For large mass mL in units of the constituent
charge q, the only solution is a charged AdS-Reissner-
Nördstrom black hole. For a low enough mass-to-charge
ratio, the black hole becomes unstable and develops hair. If
in addition the total charge density Q is of the order of the
microscopic charge q this hairy solution is the Dirac hair
configuration constructed in [4], whereas in the limit of
large total charge density Q one can make an adiabatic
Thomas-Fermi approximation and arrive à la Tolman-
Oppenheimer-Volkov at an electron star (Fig. 7).

Translating this solution space through the AdS/CFT
correspondence one reads off that in the dual strongly
coupled field theory, one remains in the critical state if
the ratio of the scaling dimension to the charge �=q is
too large. For a small enough value of this ratio, the critical
state is unstable and forms a novel scaleful ground state.
The generic condensed matter expectation of a unique
Fermi liquid is realized if the total charge density is of
the same order as the constituent charge. Following [12–16]
the state for Q � q is some deconfined Fermi liquid.

The gravity description of either limit has some defi-
ciencies, most notably the lack of an electron star wave
function at infinity and the unnatural restriction to Q ¼ q
for the Dirac hair solution. A generic solution for Q � q
with wave function tails extending to infinity as the Dirac
hair would be a more precise holographic dual to the
strongly interacting large N Fermi system. Any CFT in-
formation can then be cleanly read off at the AdS bound-
ary. A naive construction could be to superpose Dirac hair
onto the electron star; in principle one can achieve this

solution by a next-order Hartree-Fock or local density
approximation computation.
This best-of-both-worlds generic solution ought to be

the true holographic dual of the strongly interacting Fermi
ground state. If one is able to answer convincingly how this
system circumvents the wisdom that the ground state of an
interacting many-body system of fermions is a generic
single quasiparticle Landau Fermi liquid, then one would
truly have found a finite density Fermi system that does not
refer at any stage to an underlying perturbative Fermi gas.
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APPENDIX: SCHRÖDINGER ANALYSIS IN THE
REISSNER-NORDSTRÖM CASE

For AdS-RN the Schrödinger analysis requires a sepa-
rate discussion of the near-horizon boundary conditions,
which we present here for completeness and comparison.
The reason is that for AdS-RN there is a special scale ko
below which the boundary condition turns complex
(Eq. (26) in [1]). This scale ko is related to the surprising
existence of an oscillatory region in the spectral function.
For k > ko the boundary conditions are real as they are for
the electron star for all k. AdS-RN boundary conditions are
therefore qualitatively different from electron star spectral
functions, but only for k < ko. This difference is not

FIG. 7 (color online). Schematic diagram of the different ground state solutions of strongly coupled fermions implied by holography
for fixed charge density Q. Here q is the constituent charge of the fermions and mL�� the mass/conformal scaling dimension of the
fermionic operator. One has the gravitational electron star (ES)/Dirac hair (DH) solution for large/small Q=q and small mL=q dual a
deconfined Fermi liquid/regular Fermi liquid in the CFT. For mL=q��=q large the ground state remains the fermionic quantum
critical state dual to AdS-RN.

9One should always keep in mind that the setup under study
here is phenomenological in nature; a full string theory embed-
ding might introduce other fields which could prevent the
electron star or Dirac hair from being the true ground state of
the system.
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relevant to the analogy between electron star spectral
functions and the distinct poles in the AdS-RN spectral
function in Fig. 2 as the latter only occur for k > ko. Part of
this analysis is originally worked out in [3].

The AdS-RN black hole with metric

ds2 ¼ L2

�
�fðrÞdt2 þ dr2

fðrÞ þ r2ðdx2 þ dy2Þ
�
; (A1)

fðrÞ ¼ r2
�
1þ 3

r4
� 4

r3

�
; (A2)

A ¼ �

�
1� 1

r

�
dt; (A3)

has near-horizon geometry AdS2 � R2

ds2 ¼ �6ðr� 1Þ2dt2 þ dr2

6ðr� 1Þ2 þ ðdx2 þ dy2Þ; (A4)

A ¼ ffiffiffi
3

p ðr� 1Þdt: (A5)

A coordinate redefinition of r in Eq. (4.8) to r¼
ðrAdS2 �1Þ1=z shows that this corresponds to a dynamical

critical exponent z ¼ 1 and is outside the validity of the
previous analysis.

Before we proceed, recall that the existence of
AdS2 � R2 near-horizon region allows for a semianalytic
determination of the fermion spectral functions with the

self-energy ��!2�kF controlled by the IR conformal
dimension �k ¼ 1=2þ �k with

�k ¼ 1ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2 � q2

2

s
: (A6)

When �k is imaginary, which for q2 > 2m2 always happens
for small k, the spectral function exhibits oscillatory be-
havior, but generically has finite weight at! ¼ 0. When �k

is real, there are poles in the spectral functions at a finite

number of different Fermi momenta kF. The associated
quasiparticles can characterize a non-Fermi liquid
(�kF < 1=2), a marginal Fermi liquid (�kF ¼ 1=2), or ir-

regular Fermi liquid (�kF > 1=2) with linear dispersion but

width � � !2 [3].
The analytic form of the near-horizon metric allows us

to solve exactly for the near-horizon potential V in terms of

s ¼ c0ffiffi
6

p ðkþ q=
ffiffiffi
2

p Þ lnðr� 1Þ þ � � � . As noted in [3] one

remarkably obtains that the near-horizon potential for
s ! �1 is proportional to the self-energy exponent,
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FIG. 8 (color online). The Schrödinger potential VðsÞ for the fermion component zþ in the AdS-RN background rþ ¼ 1, � ¼ ffiffiffi
3

p
,

gF ¼ 1, mL ¼ 0:4, c0 ¼ 0:1. (a) shows the dependence on the momentum k ¼ 1 (red), k ¼ 2 (purple), k ¼ 3 (blue) for charge q ¼
2:5. (b) shows the dependence on the charge q—analogous to � in the ES background. Shown are the values q ¼ 2 (blue), q ¼ 2:5
(purple), q ¼ 3 (red) for the momentum k ¼ 2. In both panels, the red potentials correspond to the oscillatory region �2

k < 0, the purple
potentials show the generic shape that can support an ! ¼ 0 bound state, and the blue potentials are strictly positive and no zero-
energy bound state is present. Recall that s ¼ 0 is the AdS boundary and s ¼ �1 is the near-horizon region.

VRN s

FIG. 9 (color online). The qualitative behavior for negative k
of the Schrödinger potential VðsÞ for the fermion component zþ
of the AdS-RN background rþ ¼ 1, � ¼ ffiffiffi

3
p

, gF ¼ 1, mL ¼
0:1. The radial coordinate has been rescaled to a finite domain
such that the full potential can be represented in the figure; on the
right is the AdS boundary and left is the near-horizon region and
the range is slightly extended beyond the true horizon, which is
exactly at the short vertical line-segments on the right. Potentials
are given for q ¼ 12=

ffiffiffi
3

p
, with different values of k. For k ¼

�15 (blue), the potential is strictly positive. For k ¼ �10
(purple) and k ¼ �7 (orange), both of their potentials have
triple poles and the pole can be seen to move toward the horizon
on the left as k decreases. For k ¼ �4 (green), the potential has
no pole and reaches a finite negative value at the horizon. The
pole disappears for jkj< q=

ffiffiffi
2

p
leaving a regular bounded po-

tential which can support zero-energy bound states.
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VðsÞ ’ 6

c20ðkþ q=
ffiffiffi
2

p Þ2 �
2
k þ � � � : (A7)

One immediately recognizes the oscillatory region �2
k < 0

of the spectral function as an ! ¼ 0 Schrödinger potential
which is ‘‘free’’ at the horizon s ¼ �1 (Fig. 8) and no
bound state can form. Comparing with our previous results,
we see that this oscillatory region is a distinct property of
AdS-RN. For any Lifshitz near-horizon metric the poten-
tial is always positive-definite near the horizon and all
! ¼ 0 solutions will be bounded (see also [12,13]). As
we increase k, �2

k becomes positive, then the AdS-RN

potential is also positive at the horizon and bound zero-
energy states can form. Increasing k further, one reaches a
maximal kmax, above which the potential is always positive
and no zero-energy bound state exists anymore.

Because the near-horizon boundary conditions for AdS-
RN differ from the general analysis, the possible singular-
ity in the potential for k < 0 also requires a separate study.
This is clearly intimately tied to the existence of an oscil-
latory regime in the spectral function, as the previous
analysis does apply for �2

k > 0. The clearest way to under-

stand what happens for �2
k < 0 is to analyze the potential

explicitly. Again if jkj> kmax the potential is strictly
positive-definite, and no zero-energy bound state exists.
As we decrease the magnitude of k < 0, a triple pole will
form near the boundary when k ¼ ��̂qeff

ðsÞ, soon fol-

lowed by a zero at k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂qeff

ðsÞ2 �mrenðsÞ2
q

(see

Fig. 4). As we approach the horizon, in the general case
where limr!0�̂qeff

¼ h1qeffrþ � � � , this pole at r
 ¼
�k=ðh1qeffÞ hits the horizon and disappears precisely

when k ¼ 0. In AdS-RN, however, where limr!1�̂qeff
¼

qffiffi
2

p þ
ffiffi
2

p
q

3 ðr� 1Þ þ � � � , the pole at rRN
 � 1 ¼ 3ffiffi
2

p
q
ðkþ qffiffi

2
p Þ

hits the horizon and disappears at k ¼ � qffiffi
2

p . For negative

values of k whose magnitude is less than jkj< qffiffi
2

p , the

potential is regular and bounded and can and does have
zero-energy solutions. Figure 9 shows this disappearance
of the pole for the AdS-RN potential.
Counting solutions through WKB is also more compli-

cated for AdS-RN. ForOð1Þ values of q there are only few
Fermi surfaces and the WKB approximation does not
apply. For large q it does, however. For completeness we
show the results in Fig. 10.
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1 Introduction

Fermionic quantum criticality is thought to be an essential ingredient in the full theory
of high Tc superconductivity [1, 2]. The cleanest experimental examples of quantum criti-
cality occur in heavy-fermion systems rather than high Tc cuprates, but the experimental
measurements in heavy fermions raise equally confounding theoretical puzzles [3]. Most
tellingly, the resistivity scales linearly with the temperature from the onset of supercon-
ductivity up to the crystal melting temperature [4] and this linear scaling is in conflict
with single correlation length scaling at criticality [5]. The failure of standard perturbative
theoretical methods to describe such behavior is thought to indicate that the underlying
quantum critical system is strongly coupled [6, 7].

The combination of strong coupling and scale-invariant critical dynamics makes these
systems an ideal arena for the application of the AdS/CFT correspondence: the well-
established relation between strongly coupled conformal field theories (CFT) and gravita-
tional theories in anti-de Sitter (AdS) spacetimes. An AdS/CFT computation of single-
fermion spectral functions — which are directly experimentally accessible via Angle-
Resolved Photoemission Spectroscopy [8–10] — bears out this promise of addressing
fermionic quantum criticality [11–15] (see also [16, 17]). The AdS/CFT single fermion
spectral function exhibits distinct sharp quasiparticle peaks, associated with the forma-
tion of a Fermi surface, emerging from a scale-free state. The fermion liquid which this
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Fermi surface captures is generically singular: it has either a non-linear dispersion or non-
quadratic pole strength [11, 13]. The precise details depend on the parameters of the
AdS model.

From the AdS gravity perspective, peaks with linear dispersion correspond to the ex-
istence of a stable charged fermionic quasinormal mode in the spectrum of a charged AdS
black hole. The existence of a stable charged bosonic quasinormal mode is known to signal
the onset of an instability towards a new ground state with a pervading Bose condensate
extending from the charged black hole horizon to the boundary of AdS. The dual CFT
description of this charged condensate is spontaneous symmetry breaking as in a super-
fluid and a conventional superconductor [18–21]. For fermionic systems empirically the
equivalent robust T = 0 ground state is the Landau Fermi Liquid — the quantum ground
state of a system with a finite number of fermions. The existence of a stable fermionic
quasinormal mode suggests that an AdS dual of a finite fermion density state exists.

Here we shall make a step towards the set of AdS/CFT rules for CFTs with a finite
fermion density. The essential ingredient will be Migdal’s theorem, which relates the char-
acteristic jump in fermion occupation number at the energy ωF of the highest occupied
state to the pole strength of the quasiparticle. The latter we know from the spectral func-
tion analysis and its AdS formulation is therefore known. Using this, we can show that
the fermion number discontinuity is encoded in the probability density of the normalizable
wavefunction of the dual AdS fermion field.

This shows that the AdS dual of a Fermi liquid is given by a system with occupied
fermionic states in the bulk. The Fermi liquid is clearly not a scale invariant state, but any
such states will have energy, momentum/pressure and charge and will change the interior
geometry from AdS to something else. Which particular (set of) state(s) is the right one,
it does not yet tell us, as this conclusion relies only on the asymptotic behavior of fermion
fields near the AdS boundary. Here we shall take the simplest such state: a single fermion.1

Constructing first a set of equations in terms of the spatially averaged density, we find the
associated backreacted asymptotically AdS solution. This approximate solution is already
good enough to solve several problems of principle:

• A charged AdS black hole in the presence of charged fermionic modes has a criti-
cal temperature below which fermionic Dirac “hair” forms. For our effective single
fermion solution, the derivative of the free energy has the characteristic discontinu-
ity of a first order transition. In AdS/CFT this has to be the case: In contrast to
bosonic quasinormal modes, a fermionic quasinormal mode can never cause a linear
instability indicative of a continuous phase transition. In the language of spectral
functions, the pole of the retarded Green’s function can never cross to the upper-half
plane [13].2 The absence of a perturbative instability between this conjectured Dirac
“black hole hair” solution and the “bald” charged AdS black hole can be explained
if the transition is a first order gas-liquid transition. The existence of first order
transition follows from a thermodynamic analysis of the free energy rather than a
spectral analysis of small fluctuations.

1These solutions are therefore the AdS extensions of [22–25].
2Ref. [41] argues that the instability can be second order.
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• This solution with finite fermion profile is the preferred ground state at low tem-
peratures compared to the bare charged AdS black hole. The latter is therefore a
false vacuum in a theory with charged fermions. Confusing a false vacuum with
the true ground state can lead to anomalous results. Indeed the finite temperature
behavior of fermion spectral functions in AdS Reissner-Nordström, exhibited in the
combination of the results of [11, 13] and [12], shows strange behavior. The for-
mer [11, 13] found sharp quasiparticle peaks at a frequency ωF = 0 in natural AdS
units, whereas the latter [12] found sharp quasiparticle peaks at finite Fermi energy
ωF 6= 0. As we will show, both peaks in fact describe the same physics: the ωF 6= 0
peak is a finite temperature manifestation of (one of the) ω = 0 peaks in [13]. Its
shift in location at finite temperature is explained by the existence of the nearby true
finite fermion density ground state, separated by a potential barrier from the AdS
Reissner-Nordström solution.

• The solution we construct here only considers the backreaction on the electrostatic
potential. We show, however, that the gravitational energy density diverges at the
horizon. This ought to be, as one expects the infrared geometry to change due to
fermion profile. The charged AdS-black hole solution corresponds to a CFT system
in a state with large ground state entropy. This is the area of the extremal black-hole
horizon at T = 0. Systems with large ground-state entropy are notoriously unstable
to collapse to a low-entropy state, usually by spontaneous symmetry breaking. In
a fermionic system it should be the collapse to the Fermi liquid. The final state
will generically be a geometry that asymptotes to Lifschitz type, i.e. the background
breaks Lorentz-invariance and has a double-pole horizon with vanishing area, as ex-
pounded in [26]. Indeed the gravitational energy density diverges at the horizon in
a similar way as other systems that are known to gravitationally backreact to a Lif-
shitz solution. The fully backreacted geometry includes important separate physical
aspects — it is relevant to the stability and scaling properties of the Fermi liquid —
and will be considered in a companion article.

The Dirac hair solution thus captures the physics one expects of the dual of a Fermi
liquid. We have based its construction on a derived set of AdS/CFT rules to describe
systems at finite fermion density. Qualitatively the result is as expected: one also needs
occupied fermionic states in the bulk. Next to our effective single fermion approximation,
another simple candidate is the backreacted AdS-Fermi-gas [26]/electron star [27] which
appeared during the course of this work.3 The difference between the two approaches are
the assumptions used to reduce the interacting Fermi system to a tractable solution. Ideally,
one should carefully track all the fermion wavefunctions as in the recent article [38]. As
explained in [31] the Fermi-gas and the single Dirac field are the two “local” approximations
to the generic non-local multiple fermion system in the bulk, in very different regimes of
applicability. The electron-star/Fermi-gas is considered in the Thomas-Fermi limit where
the microscopic charge of the constituent fermions is sent to zero keeping the overall charge

3See also [28, 29]. An alternative approach to back-reacting fermions is [30].
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fixed, whereas the single Dirac field clearly is the ‘limit’ where the microscopic charge equals
the total charge in the system. This is directly evident in the spectral functions of both
systems. The results presented here show that each pole in the CFT spectral function
corresponds to a unique occupied Fermi state in the bulk; the electron star spectra show
a parametrically large number of poles [31–33], whereas the Dirac hair state has a single
quasiparticle pole by construction. The AdS-Dirac-hair black hole derived here therefore
has the benefit of a direct connection with a unique Fermi liquid state in the CFT. This is
in fact the starting point of our derivation.

In the broader context, the existence of both the Dirac hair and backreacted Fermi
gas solution is not a surprise. It is a manifestation of universal physics in the presence of
charged AdS black holes. The results here, and those of [11, 13, 26, 27], together with the
by now extensive literature on holographic superconductors, i.e. Bose condensates, show
that at sufficiently low temperature in units of the black-hole charge, the electric field
stretching to AdS-infinity causes a spontaneous discharge of the bulk vacuum outside of
the horizon into the charged fields of the theory — whatever their nature. The positively
charged excitations are repelled by the black hole, but cannot escape to infinity in AdS and
they form a charge cloud hovering over the horizon. The negatively charged excitations
fall into the black-hole and neutralize the charge, until one is left with an uncharged black
hole with a condensate at finite T or a pure asymptotically AdS-condensate solution at
T = 0. As [26, 27] and we show, the statistics of the charged particle do not matter for
this condensate formation, except in the way it forms: bosons superradiate and fermions
nucleate. The dual CFT perspective of this process is “entropy collapse”. The final state
therefore has negligible ground state entropy and is stable. The study of charged black holes
in AdS/CFT is therefore a novel way to understand the stability of charged interacting
matter which holds much promise.

2 From Green’s function to AdS/CFT rules for a Fermi liquid

We wish to show how a solution with finite fermion number — a Fermi liquid — is encoded
in AdS. The exact connection and derivation will require a review of what we have learned
of Dirac field dynamics in AdS/CFT through Green’s functions analysis. The defining
signature of a Fermi liquid is a quasi-particle pole in the (retarded) fermion propagator,

GR =
Z

ω − µR − vF (k − kF )
+ regular (2.1)

Phenomenologically a non-zero residue at the pole, Z, also known as the pole strength,
is the indicator of a Fermi liquid state. Migdal famously related the pole strength to the
occupation number discontinuity at the pole ω = 0.

Z = lim
ε→0

[nF (ω − ε)− nF (ω + ε)] (2.2)

where
nF (ω) =

∫
d2kfFD

(ω
T

)
ImGR(ω, k).

– 4 –



J
H
E
P
1
0
(
2
0
1
1
)
0
1
7

with fFD the Fermi-Dirac distribution function. Vice versa, a Fermi liquid with a Fermi-
Dirac jump in occupation number at the Fermi energy ωF = 0 has a low-lying quasiparticle
excitation. Using our knowledge of fermionic spectral functions in AdS/CFT we shall first
relate the pole-strength Z to known AdS quantities. Then using Migdal’s relation, the dual
of a Fermi liquid is characterized by an asymptotically AdS solution with non-zero value
for these very objects.

The Green’s functions derived in AdS/CFT are those of charged fermionic operators
with scaling dimension ∆, dual to an AdS Dirac field with mass m = ∆ − d

2 . We shall
focus on d = 2 + 1 dimensional CFTs. In its gravitational description this Dirac field is
minimally coupled to 3 + 1 dimensional gravity and electromagnetism with action

S =
∫
d4x
√
−g
[

1
2κ2

(
R+

6
L2

)
− 1

4
F 2
MN − Ψ̄(/D +m)Ψ

]
. (2.3)

For zero background fermions, Ψ = 0, a spherically symmetric solution is a charged AdS4

black-hole background

ds2 =
L2α2

z2

(
−f(z)dt2 + dx2 + dy2

)
+
L2

z2

dz2

f(z)
,

f(z) = (1− z)(1 + z + z2 − q2z3) ,

A
(bg)
0 = 2qα(z − 1) . (2.4)

Here A(bg)
0 is the time-component of the U(1)-vector-potential, L is the AdS radius and the

temperature and chemical potential of the black hole equal

T =
α

4π
(3− q2) , µ0 = −2qα, (2.5)

where q is the black hole charge.
To compute the Green’s functions we need to solve the Dirac equation in the back-

ground of this charged black hole:

eMA ΓA(DM + iegAM )Ψ +mΨ = 0 , (2.6)

where the vielbein eMA , covariant derivative DM and connection AM correspond to the
fixed charged AdS black-hole metric and electrostatic potential (2.4) Denoting A0 = Φ and
taking the standard AdS-fermion projection onto Ψ± = 1

2(1 ± ΓZ)Ψ, the Dirac equation
reduces to

(∂z +A±) Ψ± = ∓ /T Ψ∓ (2.7)

with

A± = − 1
2z

(
3− zf ′

2f

)
± mL

z
√
f
,

/T =
i(−ω + gΦ)

αf
γ0 +

i

α
√
f
kiγ

i . (2.8)
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Here γµ are the 2+1-dimensional Dirac matrices, obtained after decomposing the 3+1
dimensional Γµ-matrices.

Explicitly the Green’s function is extracted from the behavior of the solution to the
Dirac equation at the AdS-boundary. The boundary behavior of the bulk fermions is

Ψ+(ω, k; z) = A+z
3
2
−m +B+z

5
2

+m + . . . ,

Ψ−(ω, k; z) = A−z
5
2
−m +B−z

3
2

+m + . . . , (2.9)

where A±(ω, k), B±(ω, k) are not all independent but related by the Dirac equation at the
boundary

A− = − iµ

(2m− 1)
γ0A+ , B+ = − iµ

(2m+ 1)
γ0B− . (2.10)

The CFT Green’s function then equals [11, 12, 34]

GR = lim
z→0

z−2mΨ−(z)
Ψ+(z)

− singular =
B−
A+

. (2.11)

In other words B− is the CFT response to the (infinitesimal) source A+. Since in the
Green’s function the fermion is a fluctuation, the functions Ψ±(z) are now probe solutions
to the Dirac equation in a fixed gravitational and electrostatic background (for ease of
presentation we are considering Ψ±(z) as numbers instead of two-component vectors). The
boundary conditions at the horizon/AdS interior determine which Green’s function one
considers, e.g. infalling horizon boundary conditions yield the retarded Green’s function.
For non-zero chemical potential this fermionic Green’s function can have a pole signalling
the presence of a Fermi surface. This pole occurs precisely for a (quasi-)normalizable mode,
i.e. a specific energy ωF and momentum kF where the external source A+(ω, k) vanishes
(for infalling boundary conditions at the horizon).

Knowing that the energy of the quasinormal mode is always ωF = 0 [11] and follow-
ing [13], we expand GR around ω = 0 as:

GR(ω) =
B

(0)
+ + ωB(1)+ + . . .

A
(0)
+ + ωA

(1)
+ + . . .

. (2.12)

A crucial point is that in this expansion we are assuming that the pole will correspond to a
stable quasiparticle, i.e. there are no fractional powers of ω less than unity in the expansion
around ωF = 0 [13]. Fermions in AdS/CFT are of course famous for allowing more general
pole-structures corresponding to Fermi-surfaces without stable quasiparticles [13], but those
Green’s functions are not of the type (2.1) and we shall therefore not consider them here.
The specific Fermi momentum kF associated with the Fermi surface is the momentum
value for which the first ω-independent term in the denominator vanishes A(0)

+ (kF ) = 0
— for this value of k = kF the presence of a pole in the Green’s functions at ω = 0 is
manifest. Writing A(0)

+ = a+(k− kF ) + . . . and comparing with the standard quasi-particle
propagator,

GR =
Z

ω − µR − vF (k − kF )
+ regular (2.13)
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we read off that the pole-strength equals

Z = B
(0)
− (kF )/A(1)

+ (kF ).

We thus see that a non-zero pole-strength is ensured by a non-zero value of
B−(ω = 0, k = kF ) — the “response” without corresponding source as A(0)(kF ) ≡ 0. Quan-
titatively the pole-strength also depends on the value of A(1)

+ (kF ) ≡ ∂ωA+(kF )|ω=0, which
is always finite. This is not a truly independent parameter, however. The size of the
pole-strength has only a relative meaning w.r.t. to the integrated spectral density. This
normalization of the pole strength is a global parameter rather than an AdS boundary
issue. We now show this by proving that A(1)

+ (kF ) is inversely proportional to B
(0)
− (kF )

and hence Z is completely set by B
(0)
− (kF ), i.e. Z ∼ |B(0)

− (kF )|2. Consider a transform
W̃ (Ψ+,A,Ψ+,B) of the Wronskian W (Ψ+,A,Ψ+,B) = Ψ+,A∂zΨ+,B − (∂zΨ+,A)Ψ+,B for two
solutions to the second order equivalent of the Dirac equation for the field Ψ+(

∂2
z + P (z)∂z +Q+(z)

)
Ψ+ = 0 (2.14)

that is conserved (detailed expressions for P (z) and Q+(z) are given in eq. (2.21)):

W̃ (Ψ+,A(z),Ψ+,B(z), z; z0) = exp
(∫ z

z0

P (z)
)
W (Ψ+,A(z),Ψ+,B(z)) , ∂zW̃ = 0. (2.15)

Here z0 is the infinitesimal distance away from the boundary at z = 0 which is equivalent to
the UV -cutoff in the CFT. Setting k = kF and choosing for Ψ+,A = A+z

3/2−m∑∞
n=0 anz

n

and Ψ+,B = B+z
5/2+m

∑∞
n=0 bnz

nr the real solutions which asymptote to solutions with
B+(ω, kF ) = 0 and A+(ω, kF ) = 0 respectively, but for a value of ω infinitesimally away
from ωF = 0, we can evaluate W̃ at the boundary to find,4

W̃ = z3
0(1 + 2m)A+B+ = µz3

0A+B− (2.16)

The last step follows from the constraint (2.10) where the reduction from two-component
spinors to functions means that γ0 is replaced by one of its eigenvalues ±i. Taking the
derivative of W̃ at ω = 0 for k = kF and expanding A+(ω, kF ) and B−(ω, kF ) as in (2.12),
we can solve for A(1)

+ (kF ) in terms of B(0)
− (kF ) and arrive at the expression for the pole

strength Z in terms of |B(0)
− (kF )|2:

Z =
µz3

0

∂ωW̃ |ω=0,k=kF

|B(0)
− (kF )|2 . (2.17)

Because ∂ωW̃ , as W̃ , is a number that is independent of z, this expression emphasizes that
it is truly the nonvanishing subleading term B

(0)
− (ωF , kF ) which sets the pole strength,

up to a normalization ∂ωW̃ which is set by the fully integrated spectral density. This
integration is always UV-cut-off dependent and the explicit z0 dependence should therefore

4P (z) = −3/z + . . . near z = 0
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not surprise us.5 We should note that, unlike perturbative Fermi liquid theory, Z is a
dimensionful quantity of mass dimension 2m+ 1 = 2∆− 2, which illustrates more directly
its scaling dependence on the UV-energy scale z0. At the same time Z is real, as it can be
shown that both ∂ωW̃ |ω=0,k=kF = µz3

0A
(1)
+ B

(0)
− and B

(0)
− are real [13].

2.1 The AdS dual of a stable Fermi liquid: applying Migdal’s relation
holographically

We have thus seen that a solution with nonzero B−(ωF , kF ) whose corresponding external
source vanishes (by definition of ωF , kF ), is related to the presence of a quasiparticle pole
in the CFT. Through Migdal’s theorem its pole strength is related to the presence of a
discontinuity of the occupation number, and this discontinuity is normally taken as the
characteristic signature of the presence of a Fermi Liquid. Qualitatively we can already
infer that an AdS gravity solution with non-vanishing B−(ωF , kF ) corresponds to a Fermi
Liquid in the CFT. We thus seek solutions to the Dirac equation with vanishing external
source A+ but non-vanishing response B− coupled to electromagnetism (and gravity). The
construction of the AdS black hole solution with a finite single fermion wavefunction is
thus analogous to the construction of a holographic superconductor [19] with the role of
the scalar field now taken by a Dirac field of mass m.

This route is complicated, however, by the spinor representation of the Dirac fields,
and the related fermion doubling in AdS. Moreover, relativistically the fermion Green’s
function is a matrix and the pole strength Z appears in the time-component of the vector
projection TriγiG. As we take this and the equivalent jump in occupation number to be the
signifying characteristic of a Fermi liquid state in the CFT, it would be much more direct
if we can derive an AdS radial evolution equation for the vector-projected Green’s function
and hence the occupation number discontinuity directly. From the AdS perspective is also
more convenient to work with bilinears such as Green’s functions, since the Dirac fields
always couple pairwise to bosonic fields.

To do so, we start again with the two decoupled second order equations equivalent to
the Dirac equation (2.7)

(
∂2
z + P (z)∂z +Q±(z)

)
Ψ± = 0 (2.20)

5Using that fW is conserved, one can e.g. compute it at the horizon. There each solution Ψ+,A(ω, kF ; z),

Ψ+,B(ω, kF ; z) is a linear combination of the infalling and outgoing solution

Ψ+,A(z) = ᾱ (1− z)−1/4+ıω/4πT + α (1− z)−1/4−ıω/4πT + . . .

Ψ+,B(z) = β̄ (1− z)−1/4+ıω/4πT + β (1− z)−1/4−ıω/4πT + . . . (2.18)

yielding a value of ∂ωfW equal to (P (z) = 1/2(1− z) + . . . near z = 1)

∂ωfW =
i

2πT
N (z0)(ᾱβ − β̄α) (2.19)

with N (z0) = exp
R z
z0
dz
h
P (z)− 1

2(1−z)

i
.
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with

P (z) = (A− +A+)− [∂z, /T ]
/T
T 2

,

Q±(z) = A−A+ + (∂zA±)− [∂z, /T ]
/T
T 2
A± + T 2 . (2.21)

Note that both P (z) and Q±(z) are matrices in spinor space. The general solution to
this second order equation — with the behavior at the horizon/interior appropriate for
the Green’s function one desires — is a matrix valued function (M±(z))αβ and the field

Ψ±(z) equals Ψ±(z) = M±(z)Ψ(hor)
± . Due to the first order nature of the Dirac equation the

horizon values Ψ(hor)
± are not independent but related by a z-independent matrix SΨ(hor)

+ =
Ψ(hor)
− , which can be deduced from the near-horizon behavior of (2.10); specifically S = γ0.

One then obtains the Green’s function from the on-shell boundary action (see e.g. [12, 35])

Sbnd =
∮
z=z0

ddxΨ̄+Ψ− (2.22)

as follows: Given a boundary source ζ+ for Ψ+(z), i.e. Ψ+(z0) ≡ ζ+, one concludes that
Ψ(hor)

+ = M−1
+ (z0)ζ+ and thus Ψ+(z) = M+(z)M−1

+ (z0)ζ+, Ψ−(z) = M−(z)SM−1
+ (z0)ζ+.

Substituting these solutions into the action gives

Sbnd =
∮
z=z0

ddx ζ̄+M−(z0)SM−1
+ (z0)ζ+ (2.23)

The Green’s function is obtained by differentiating w.r.t. ζ̄+ and ζ+ and discarding the
conformal factor z2m

0 with m the AdS mass of the Dirac field (one has to be careful for
mL > 1/2 with analytic terms [35])

G = lim
z0→0

z−2m
0 M−(z0)SM−1

+ (z0) . (2.24)

Since M±(z) are determined by evolution equations in z, it is clear that the Green’s
function itself is also determined by an evolution equation in z, i.e. there is some function
G(z) which reduces in the limit z → 0 to z2m

0 G. One obvious candidate is the function

G(obv)(z) = M−(z)SM−1
+ (z) . (2.25)

Using the original Dirac equations one can see that this function obeys the non-linear
evolution equation

∂zG
(obv)(z) = −A−G(obv)(z)− /TM+SM

−1
+ +A+G

(obv)(z) +G(obv)(z) /T G(obv)(z) . (2.26)

This is the approach used in [11], where a specific choice of momenta is chosen such that
M+ commutes with S. For a generic choice of momenta, consistency requires that one also
considers the evolution equation for M+(z)SM−1

+ (z).
There is, however, another candidate for the extension G(z) which is based on the

underlying boundary action. Rather than extending the kernel M−(z0)M−1
+ (z0) of the

boundary action we extend the constituents of the action itself, based on the individual
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fermion wavefunctions Ψ±(z) = M±(z)S
1
2
∓ 1

2M−1
+ (z0). We define an extension of the matrix

G(z) including an expansion in the complete set ΓI = {11, γi, γij , . . . , γi1,id} (with γ4 = iγ0)

GI(z) = M̄−1
+ (z0)M̄+(z)ΓIM−(z)SM−1

+ (z0) , GI(z0) = ΓIG(z0) (2.27)

where M̄ = iγ0M †iγ0. Using again the original Dirac equations, this function obeys the
evolution equation

∂zG
I(z)=−(Ā++A−)GI(z)−M̄−1

+,0M̄−(z) /̄T ΓIM−(z)SM−1
+,0+M̄

−1
+,0M̄+(z)ΓI /TM+(z)SM−1

+,0

(2.28)
Recall that /T γi1...ip = T [i1γ...ip] + Tjγji1...ip . It is then straightforward to see that for
consistency, we also need to consider the evolution equations of

J I+ = M̄−1
+,0M̄+(z)ΓIM+(z)SM−1

+,0 , J I− = M̄−1
+,0M̄−(z)ΓIM−(z)SM−1

+,0

and
ḠI = M̄−1

+,0M̄−(z)ΓIM+(z)SM−1
+,0.

They are

∂zJ
i1...ip
+ (z) =− 2Re(A+)J i1...ip+ − T̄ [i1Ḡi2...ip](z)

− T̄jḠji1...ip(z)−G[i1...ip−1(z)T ip] −Gi1...ipj(z)Tj
∂zJ

i1...ip
− (z) =− 2Re(A−)J i1...ip− + T̄ [i1Gi2...ip](z)

+ T̄jGji1...ip(z) + Ḡ[i1...ip−1(z)T ip] + Ḡi1...ipj(z)Tj

∂zḠ
i1...ip(z) =− (Ā− +A+)Ḡi1...ip − T̄ [i1J i2...ip]

+ (z)

− T̄jJ
ji1...ip
+ (z)− J [i1...ip−1

− (z)T ip] + J i1...ipj− (z)Tj (2.29)

The significant advantage of these functions GI , ḠI , J I± is that the evolution equations
are now linear. This approach may seem overly complicated. However, if the vector T i

happens to only have a single component nonzero, then the system reduces drastically to
the four fields J i±, G11, Ḡ11. We shall see below that a similar drastic reduction occurs, when
we consider only spatially and temporally averaged functions JI =

∫
dtd2xJ I±.

Now the two extra currents J I± have a clear meaning in the CFT. The current GI(z)
reduces by construction to ΓI times the Green’s function G11(z0) on the boundary, and
clearly ḠI(z) is its hermitian conjugate. The current J I+ reduces at the boundary to
J I+ = ΓIM+,0SM

−1
+,0. Thus J I+ sets the normalization of the linear system (2.29). The

interesting current is the current J I−. Using that S̄ = S̄−1, it can be seen to reduce on the
boundary to the combination J̄ 11

+ Ḡ
11ΓIG11. Thus,

(
J̄ 11

+

)−1 J 11
− is the norm squared of the

Green’s function, i.e. the probability density of the off-shell process.
For an off-shell process or a correlation function the norm-squared has no real functional

meaning. However, we are specifically interested in solutions in the absence of an external
source, i.e. the on-shell correlation functions. In that case the analysis is quite different.
The on-shell condition is equivalent to choosing momenta to saturate the pole in the Green’s
function, i.e. it is precisely choosing dual AdS solutions whose leading external source A±
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vanishes. Then M+ and M− are no longer independent, but M+,0 = δB+/δΨ
(hor)
+ =

− iµγ0

2m+1M−,0S. As a consequence all boundary values of J I−(z0), GI(z0), ḠI(z0) become
proportional; specifically using S = γ0 one has that

J 0
−(z0)|on−shell =

(2m+ 1)
µ

γ0G11(z0)|on−shell (2.30)

is the “on-shell” Green’s function. Now, the meaning of the on-shell correlation function is
most evident in thermal backgrounds. It equals the density of states ρ(ω(k)) = − 1

π ImGR
times the Fermi-Dirac distribution [36]

Triγ0GtF (ωbare(k), k)
∣∣
on−shell

= 2πfFD

(
ωbare(k)− µ

T

)
ρ(ωbare(k)) (2.31)

For a Fermi liquid with the defining off-shell Green’s function (2.1) ωbare(kF )− µ ≡ ω = 0
and ρ(ωbare(k)) = Zz0δ

2(k − kF )δ(ω) + . . .. Thus we see that the boundary value of
J (0)
− (z0)|on−shell = ZfFD(0)δ3(0) indeed captures the pole strength directly times a product

of distributions. This product of distributions can be absorbed in setting the normalization.
An indication that this is correct is that the determining equations for GI , ḠI , J I± remain
unchanged if we multiply GI , ḠI , J I± on both sides with M+,0. If M+,0 is unitary it is just
a similarity transformation. However, from the definition of the Green’s function, one can
see that this transformation precisely removes the pole. This ensures that we obtain finite
values for GI , ḠI , J I± at the specific pole-values ωF , kF where the distributions would
naively blow up.

2.1.1 Boundary conditions and normalizability

We have shown that a normalizable solution to J 0
− from the equations (2.29) correctly

captures the pole strength directly. However, ‘normalizable’ is still defined in terms of an
absence of a source for the fundamental Dirac field Ψ± rather than the composite fields
J I± and GI . One would prefer to determine normalizability directly from the boundary
behavior of the composite fields. This can be done. Under the assumption that the
electrostatic potential Φ is regular, i.e.

Φ = µ− ρz + . . . (2.32)

the “connection” T I is subleading to the connection A near z = 0. Thus the equations of
motion near z = 0 do not mix the various J I±, GI and the composite fields behave as

J I+ = jI3−2mz
3−2m + jI4+

z4 + jI5+2mz
5+2m + . . . ,

J I− = jI5−2mz
5−2m + jI4−z

4 + jI3+2mz
3+2m + . . . ,

GI = II4−2mz
4−2m + II3z

3 + II4+2mz
4+2m + II5z

5 + . . . , (2.33)

with the identification

jI3−2m = Ā+ΓIA+, jI4+
= Ā+ΓIB+ + B̄+ΓIA+, jI5+2m = B̄+ΓIB+ , (2.34)

jI3+2m = Ā−ΓIA−, jI4− = Ā−ΓIB− + B̄−ΓIA−, jI5−2m = B̄−ΓIB− ,

II4−2m = Ā+ΓIA−, II3 = Ā+ΓIB−, I4+2m = B̄+ΓIB−, II5 = B̄+ΓIA− .
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A ‘normalizable’ solution in J I− and thus J 0
− is therefore defined by the vanishing of both

the leading and the subleading term.

3 An AdS black hole with Dirac hair

Having determined a set of AdS evolution equations and boundary conditions that compute
the pole strength Z directly through the currents J (0)

− (z) and GI(z), we can now try to
construct the AdS dual of a system with finite fermion density, including backreaction. As
we remarked in the beginning of section 2.1, the demand that the solutions be normalizable
means that the construction of the AdS black hole solution with a finite single fermion
wavefunction is analogous to the construction of a holographic superconductor [19] with
the role of the scalar field now taken by the Dirac field. The starting point therefore is the
charged AdS4 black-hole background (2.4) and we should show that at low temperatures
this AdS Reissner-Nordström black hole is unstable towards a solution with a finite Dirac
profile. We shall do so in a simplified “large charge” limit where we ignore the gravitational
dynamics, but as is well known from holographic superconductor studies (see e.g. [19–21])
this limit already captures much of the essential physics. In a companion article [37] we
will construct the full backreacted ground state including the gravitational dynamics.

In this large charge non-gravitational limit the equations of motion for the action (2.3)
reduce to those of U(1)-electrodynamics coupled to a fermion with charge g in the back-
ground of this black hole:

DMF
MN = igeNA Ψ̄ΓAΨ ,

0 = eMA ΓA(DM + iegAM )Ψ +mΨ . (3.1)

Thus the vielbein eMA and and covariant derivative DM remain those of the fixed charged
AdS black hole metric (2.4), but the vector-potential now contains a background piece
A

(bg)
0 plus a first-order piece AM = A

(bg)
M + A

(1)
M , which captures the effect of the charge

carried by the fermions.

Following our argument set out in previous section that it is more convenient to work
with the currents J I±(z), GI(z) instead of trying to solve the Dirac equation directly, we
shall first rewrite this coupled non-trivial set of equations of motion in terms of the cur-
rents while at the same time using symmetries to reduce the complexity. Although a system
at finite fermion density need not be homogeneous, the Fermi liquid ground state is. It
therefore natural to make the ansatz that the final AdS solution is static and preserves
translation and rotation along the boundary. As the Dirac field transforms non-trivially
under rotations and boosts, we cannot make this ansatz in the strictest sense. However,
in some average sense which we will make precise, the solution should be static and trans-
lationally invariant. Then translational and rotational invariance allow us to set Ai = 0,
Az = 0, whose equations of motions will turn into contraints for the remaining degrees of
freedom. Again denoting A0 = Φ, the equations reduce to the following after the projection
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onto Ψ± = 1
2(1± ΓZ)Ψ.

∂2
zΦ =

−gL3α

z3
√
f

(
Ψ̄+iγ

0Ψ+ + Ψ̄−iγ0Ψ−
)
,

(∂z +A±) Ψ± = ∓ /T Ψ∓ (3.2)

with

A± = − 1
2z

(
3− zf ′

2f

)
± mL

z
√
f
,

/T =
i(−ω + gΦ)

αf
γ0 +

i

α
√
f
kiγ

i . (3.3)

as before.
The difficult part is to “impose” staticity and rotational invariance for the non-invariant

spinor. This can be done by rephrasing the dynamics in terms of fermion current bilinears,
rather than the fermions themselves. We shall first do so rather heuristically, and then
show that the equations obtained this way are in fact the flow equations for the Green’s
functions and composites J I(z), GI(z) constructed in the previous section. In terms of
the local vector currents6

Jµ+(x, z) = Ψ̄+(x, z)iγµΨ+(x, z) , Jµ−(x, z) = Ψ̄−(x, z)iγµΨ−(x, z) , (3.4)

or equivalently

Jµ+(p, z) =
∫
d3kΨ̄+(−k, z)iγµΨ+(p+ k, z) , Jµ−(p, z) =

∫
d3kΨ̄−(−k, z)iγµΨ−(p+ k, z) .

(3.5)
rotational invariance means that spatial components J i± should vanish on the solution
— this solves the constraint from the Ai equation of motion, and the equations can be
rewritten in terms of J0

± only. Staticity and rotational invariance in addition demand that
the bilinear momentum pµ vanish. In other words, we are only considering temporally
and spatially averaged densities: Jµ±(z) =

∫
dtd2xΨ̄(t, x, z)iγµΨ(t, x, z). Analogous to the

bilinear flow equations for the Green’s function, we can act with the Dirac operator on
the currents to obtain an effective equation of motion, and this averaging over the relative
frequencies ω and momenta ki will set all terms with explicit ki-dependence to zero.7

6In our conventions Ψ̄ = Ψ
†
iγ0.

7To see this consider

(∂ + 2A±)Ψ†±(−k)Ψ±(k) = ∓Φ

f

“
Ψ†−iγ

0Ψ+ + Ψ†+iγ
0Ψ−

”
+
iki√
f

“
Ψ†−γ

iΨ+ −Ψ†+γ
iΨ−

”
. (3.6)

The term proportional to Φ is relevant for the solution. The dynamics of the term proportional to ki is

(∂ +A+ +A−)(Ψ†−γ
iΨ+ −Ψ†+γ

iΨ−) = −2i
ki√
f

(Ψ†+γ
0Ψ+ + Ψ†−γ

0Ψ−) . (3.7)

The integral of the r.h.s. over ki vanishes by the assumption of translational and rotational invariance.

Therefore the l.h.s. of (3.7) and thus the second term in eq. (3.6) does so as well.
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Restricting to such averaged currents and absorbing a factor of g/α in Φ and a factor of
g
√
L3 in Ψ±, we obtain effective equations of motion for the bilinears directly

(∂z + 2A±) J0
± = ∓Φ

f
I ,

(∂z +A+ +A−) I =
2Φ
f

(J0
+ − J0

−) ,

∂2
zΦ = − 1

z3
√
f

(J0
+ + J0

−) , (3.8)

with I = Ψ̄−Ψ+ + Ψ̄+Ψ−, and all fields are real. The remaining constraint from the Az
equation of motion decouples. It demands Im(Ψ̄+Ψ−) = i

2(Ψ̄−Ψ+ − Ψ̄+Ψ−) = 0. What
the equations (3.8) tell us is that for nonzero J0

± there is a charged electrostatic source for
the vector potential Φ in the bulk.

Momentarily we will motivate the effective equations (3.8) at a more fundamental level.
Before that there are several remarks to be made

• These equations contain more information than just current conservation ∂µJ
µ = 0.

In an isotropic and static background current conservation is trivially true as ∂µJµ =
∂0J

0 = −i
∫
dωe−iωtωJ0(ω) = 0 as J0(ω 6= 0) = 0.

• We have scaled out the electromagnetic coupling. AdS4/CFT3 duals for which the
underlying string theory is known generically have g = κ/L with κ the gravitational
coupling constant as defined in (2.3). Thus, using standard AdS4/CFT3 scaling, a
finite charge in the new units translates to a macroscopic original charge of order
L/κ ∝ N1/3. This large charge demands that backreaction of the fermions in terms
of its bilinear is taken into account as a source for Φ.

• The equations are local. From the fundamental point of view, that one considers
finite density in the bulk, this is strange to say the least. Generic multi-fermion
configurations are non-local, see e.g. [38]. These equations can therefore never cap-
ture the full bulk fermion dynamics. Our starting point has been a single fermion
perspective, where the Pauli blocking induced non-locality is absent. In that context
local equations are fine. We have also explicitly averaged over all directions parallel
to the boundary and, as we have shown in the previous section (see also footnote 7),
it is this averaging that tremendously simplifies the equations. The most curious part
may be that this unaveraged set of equations — and therefore also eqs (3.8) — are
all local in the radial direction z. From the AdS perspective a many-fermion system
should be non-local democratically and thus also exhibit non-locality in z, yet from
the CFT perspective where z-dynamics encode RG-flow, it is eminently natural. We
leave the resolution of this paradox to future work.

The justification of using (3.8) to construct the AdS dual of a regular Fermi liquid is the
connection between local fermion bilinears and the CFT Green’s function. The complicated
flow equations (2.29) reduce precisely to the first two equations in (3.8) upon performing
the spacetime averaging and the trace, i.e. J0

± =
∫
d3kTrJ 0

± and I =
∫
d3kTr

(
G11 + Ḡ11

)
.
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Combined with the demand that we only consider normalizable solutions and the proof
that J 0

− is proportional to the pole-strength, the radial evolution equations (3.8) are the
(complicated) AdS recasting of the RG-flow for the pole-strength. This novel interpretation
ought to dispel some of the a priori worries about our unconventional treatment of the
fermions through their semi-classical bilinears. There is also support from the gravity side,
however. Recall that for conventional many-body systems and fermions in particular one
first populates a certain set of states and then tries to compute the macroscopic properties
of the collective. In a certain sense the equations (3.8) formulate the same program but
in opposite order: one computes the generic wavefunction charge density with and by
imposing the right boundary conditions, i.e normalizability, one selects only the correct
set of states. This follows directly from the equivalence between normalizable AdS modes
and quasiparticle poles that are characterized by well defined distinct momenta kF (for
ω = ωF ≡ 0). The demand that any non-trivial Dirac hair black hole is constructed
from normalizable solutions of the composite operators (i.e. their leading and subleading
asymptotes vanish8) thus means that one imposes a superselection rule on the spatial
averaging in the definition of JI±:

J0
±(z)|normalizable ≡

∫
d3kΨ̄±(−k)iγ0Ψ±(k)|normalizable

=
∫
d3k δ2(|k| − |kF |)|B(0)

± (k)|2z4+2m±1 + . . . (3.9)

We see that the constraint of normalizability from the bulk point of the view, implies
that one selects precisely the on-shell bulk fermion modes as the building blocks of the
density J0

±.
In turn this means that the true system that eqs. (3.8) describe is somewhat obscured

by the spatial averaging. Clearly even a single fermion wavefunction is in truth the full
set of two-dimensional wavefunctions whose momentum ki has length kF . However, the
averaging could just as well be counting more, as long as there is another set of normalizable
states once the isotropic momentum surface |k| = |kF | is filled. Pushing this thought to
the extreme, one could even speculate that the system (3.8) gives the correct quantum-
mechanical description of the many-body Fermi system: the system which gravitational
reasoning suggests is the true ground state of the charged AdS black hole in the presence
of fermions.

To remind us of the ambiguity introduced by spatial averaging, we shall give the
boundary coefficient of normalizable solution for J0

− =
∫
d3kJ 0

− a separate name. The
quantity J 0

−(z0) is proportional to the pole strength, which via Migdal’s relation quantifies
the characteristic occupation number discontinuity at ωF ≡ 0. We shall therefore call the
coefficient

∫
d3k|B−|2|normalizable = ∆nF .

8One can verify that the discussion in section 2.1.1 holds also for fully backreacted solutions. The

derivation there builds on the assumption that the boundary behavior of the electrostatic potential is

regular. It is straightforward to check in (3.8) that indeed precisely for normalizable solutions, i.e. in the

absence of explicit fermion-sources, when both the leading and subleading terms in J0
± and I vanish, the

boundary behavior the scalar potential remains regular, as required.
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3.1 Thermodynamics

At a very qualitative level the identification J0
−|norm(z) ≡ ∆nF z3+2m + . . . can be argued

to follow from thermodynamics as well. From the free energy for an AdS dual solution to
a Fermi liquid, one finds that the charge density directly due to the fermions is

ρtotal = −2
∂

∂µ
F =

−3
2m+ 1

∆nF
z−1−2m

0

+ ρ+ . . . , (3.10)

with z−1
0 the UV-cutoff as before. The cut-off dependence is a consequence of the fact that

the system is interacting, and one cannot truly separate out the fermions as free particles.
Were one to substitute the naive free fermion scaling dimension ∆ = m + 3/2 = 1, the
cutoff dependence would vanish and the identification would be exact.

We can thus state that in the interacting system there is a contribution to the charge
density from a finite number of fermions proportional to

ρF =
−3

2∆− 2
∆nF
z2−2∆

0

+ . . . , (3.11)

although this contribution formally vanishes in the limit where we send the UV-cutoff z−1
0

to infinity.
To derive eq. (3.10), recall that the free energy is equal to minus the on-shell action of

the AdS dual theory. Since we disregard the gravitational backreaction, the Einstein term
in the AdS theory will not contain any relevant information and we consider the Maxwell
and Dirac term only. We write the action as,

S =
∫ 1

z0

√
−g
[

1
2
ANDMF

MN − Ψ̄/DΨ−mΨ̄Ψ
]

+
∮
z=z0

√
−h
(

Ψ̄+Ψ− +
1
2
AµnαF

αµ

)
,

(3.12)
where we have included an explicit fermionic boundary term that follows from the
AdS/CFT dictionary [12] and nα is a normal vector to the boundary. The boundary
action is not manifestly real, but its on-shell value which contributes to the free energy is
real. Recall that the imaginary part of Ψ̄+Ψ− decouples from eqs. (3.8). The boundary
Dirac term in (3.12) is therefore equal to I = 2Re(Ψ̄+Ψ−).

To write the free energy in terms of the quantities µ, ρ and ∆nF , note that the on-shell
bulk Dirac action vanishes. Importantly the bulk Maxwell action does contribute to the
free energy. Its contribution is

Fbulk = lim
z0→0

∫ 1

z0

dzd3x

[
1
2

Φ∂zzΦ
]

on−shell

= − lim
z0→0

∫ 1

z0

dzd3x

[
1

2z3
√
f

Φ(J0
+ + J0

−)
]

on−shell

, (3.13)

where we have used the equation of motion (3.8). This contribution should be expected,
since the free energy should be dominated by infrared, i.e. near horizon physics. Due to
the logarithmic singularity in the electrostatic potential (eq. (3.17) this bulk contribution
diverges, but this divergence should be compensated by gravitational backreaction. At
the same time the singularity is so mild, however, that the free energy, the integral of the
Maxwell term, remains finite in the absence of the Einstein contribution.
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Formally, i.e. in the limit z0 → 0, the full free energy arises from this bulk contribu-
tion (3.13). The relation (3.10) between the charge density and ∆nF follows only from the
regularized free energy, and is therefore only a qualitative guideline. Empirically, as we
will show, it is however, a very good one (see figure 1 in the next section). Splitting the
regularized bulk integral in two

Fbulk =
∫ 1

z∗
dzd3x

[
1

2z3
√
f

Φ(J0
+ + J0

−)
]

on−shell

+ lim
z0→0

∫ z∗

z0

dzd3x

[
1

2z3
√
f

Φ(J0
++J0

−)
]

on−shell

,

(3.14)
we substitute the normalizable boundary behavior of Ψ+ = B+z

5/2+m + . . ., Ψ− =
B−z

3/2+m + . . . and Φ = µ− ρz + . . ., and obtain for the regularized free energy

F =Fhorizon(z∗)+ lim
z0→0

∫ z∗

z0

d3xdz

[
−1
2z3

µ|B−|2z3+2m+. . .
]
+
∮
d3x

z3
0

[
−B̄+B−z

4+2m
0 +

1
2
µρz3

0

]
.

(3.15)
Using that B+ = −iµγ0B−/(2m + 1) (eq. (2.10)), the second bulk term and boundary
contribution are proportional, and the free energy schematically equals

F = F horizon + lim
z0→0

∫
d3x

[
3µ

2(2m+ 1)
B̄−iγ

0B−z
1+2m
0 − 1

2
µρ

]
. (3.16)

With the UV-regulator z−1
0 finite, this yields the charge density in eq. (3.10) after one

recalls that B̄− = B†−iγ
0.

With the derived rule that the AdS dual to a Fermi liquid has a nonzero normalizable
component in the current J0

−, we will now construct an AdS solution that has this property:
an AdS black hole with Dirac hair. Ignoring backreaction, these are solutions to the density
equations (3.8). In its simplest form the interpretation is that of the backreaction due to a
single fermion wavefunction, but as explained the spatial averaging of the density combined
with the selection rule of normalizability could be capturing a more general solution.

3.2 At the horizon: entropy collapse to a Lifshitz solution

Before we can proceed with the construction of non-trivial Dirac hair solutions to eqs. (3.8),
we must consider the boundary conditions at the horizon necessary to solve the system.
Insisting that the right-hand-side of the dynamical equations (3.8) is subleading at the
horizon, the near-horizon behavior of J0

±, I, Φ is:

J0
± = Jhor,±(1− z)−1/2 + . . . ,

I = Ihor(1− z)−1/2 + . . . ,

Φ = Φ(1)
hor(1− z) ln(1− z) + (Φ(2)

hor − Φ(1)
hor)(1− z) + . . . . (3.17)

If we insist that Φ is regular at the horizon z = 1, i.e. Φ(1)
hor = 0, so that the electric field is

finite, the leading term in J0
± must vanish as well, i.e. Jhor,± = 0, and the system reduces

to a free Maxwell field in the presence of an AdS black hole and there is no fermion density
profile in the bulk. Thus in order to achieve a nonzero fermion profile in the bulk, we
must have an explicit source for the electric-field on the horizon. Strictly speaking, this
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invalidates our neglect of backreaction as the electric field and its energy density at the
location of the source will be infinite. As we argued above, this backreaction is in fact
expected to resolve the finite ground-state entropy problem associated with the presence
of a horizon. The backreaction should remove the horizon completely, and the background
should resemble the horizonless metrics found in [26, 27, 39]; the same horizon logarithmic
behavior in the electrostatic potential was noted there. Nevertheless, as the divergence in
the electric field only increases logarithmically as we approach the horizon, and our results
shall hinge on the properties of the equations at the opposite end near the boundary, we
shall continue to ignore it here. We shall take the sensibility of our result after the fact, as
proof that the logarithmic divergence at the horizon is indeed mild enough to be ignored.

The identification of the boundary value of J0
− with the Fermi liquid characteristic

occupation number jump ∆nF rested on the insistence that the currents are built out
of AdS Dirac fields. This deconstruction also determines a relation between the horizon
boundary conditions of the composite fields J0

±, I. If Ψ±(z) = C±(1 − z)−1/4 + . . . then
Jhor,± = C2

± and Ihor = C+C−. As the solution Φ(1)
hor is independent of the solution Φ(2)

hor

which is regular at the horizon, we match the latter to the vector-potential of the charged
AdS black hole: Φ(2)

hor = −2gq ≡ gµ0/α. Recalling that Φ(1)
hor = −(Jhor,+ + Jhor,−), we see

that the three-parameter family of solutions at the horizon in terms of C±, Φ(2)
hor corresponds

to the three-parameter space of boundary values A+, B− and µ encoding a fermion-source,
the fermion-response/expectation value and the chemical potential.

We can now search whether within this three-parameter family a finite normalizable
fermion density solution with vanishing source A+ = 0 exists for a given temperature T of
the black hole.

3.3 A BH with Dirac hair

The equations are readily solved numerically with a shooting method from the horizon. We
consider both an uncharged AdS-Schwarzschild solution and the charged AdS Reissner-
Nordström solution. Studies of bosonic condensates in AdS/CFT without backreaction
have mostly been done in the AdS-Schwarzschild (AdSS) background ([19, 20] and refer-
ences therein). An exception is [40], which also considers the charged RN black hole. As is
explained in [40], they correspond to two different limits of the exact solution: the AdSS
case requires that ∆nF & µ that is, the total charge of the matter fields should be dominant
compared to the charge of the black hole. On the other hand, the RN limit is appropriate
if ∆nF � µ. It ignores the effect of the energy density of the charged matter sector on the
charged black hole geometry. The AdS Schwarzschild background is only reliable near Tc,
as at low temperatures the finite charged fermion density is comparable to µ. The RN case
is under better control for low temperatures, because near T = 0 the chemical potential
can be tuned to stay larger than fermion density.

We shall therefore focus primarily on the solution in the background of an AdS RN
black hole, i.e. the system with a heat bath with chemical potential µ — non-linearly de-
termined by the value of Φ(2)

hor = µ0 at the horizon — which for low T/µ should show the
characteristic ∆nF of a Fermi liquid. The limit in which we may confidently ignore backre-
action is Φ(1)

hor � µ0 for T . µ0 — for AdSS the appropriate limit is Φ(1)
hor � T for µ0 � T .
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Figure 1. (a) Temperature dependence of the Fermi liquid occupation number discontinuity ∆nF
and operator I for a fermionic field of mass m = −1/4 dual to an operator of dimension ∆ = 5/4.
We see a large density for T/µ small and discontinuously drop to zero at T ≈ 0.05µ. At this same
temperature, the proxy free energy contribution per particle (the negative of I) vanishes. (b) The
free energy F = F fermion + FMaxwell (eq. (3.12)) as a function of T/µ ignoring the contribution
from the gravitational sector. The blue curve shows the total free energy F = FMaxwell, which is
the sum of a bulk and a boundary term. The explicit fermion contribution Ffermion vanishes, but
the effect of a non-zero fermion density is directly encoded in a non-zero FMaxwell

bulk . The figure also
shows this bulk FMaxwell

bulk and the boundary contribution FMaxwell
bulk separately and how they sum to

a continuous Ftotal. Although formally the explicit fermion contribution Ff ∼ I in equation (3.16)
vanishes, the bulk Maxwell contribution is captured remarkably well by its value when the cut-off
is kept finite. The light-green curve in the figure shows Ff for a finite z0 ∼ 10−6. For completeness
we also show the total charge density, eq. (3.10). The dimension of the fermionic operator used in
this figure is ∆ = 1.1.

3.3.1 Finite fermion density solutions in AdS-RN

Figure 1 shows the behavior of the occupation number discontinuity nF ≡ |B−|2 and the
fermion free-energy contribution I as a function of temperature in a search for normalizable
solutions to eqs.(3.8) with the aforementioned boundary conditions. We clearly see a
first order transition to a finite fermion density, as expected. The underlying Dirac field
dynamics can be recognized in that the normalizable solution for J0

−(z) which has no
leading component near the boundary by construction, also has its subleading component
vanishing (figure 2).9

9Although the Dirac hair solution has charged matter in the bulk, there is no Higgs effect for the bulk

gauge field, and thus there is no direct spontaneous symmetry breaking in the boundary. Indeed one would

not expect it for the Fermi liquid ground state. There will be indirect effect on the conductivity similar

to [27]. We thank Andy O’Bannon for his persistent inquiries to this point.
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Figure 2. The boundary behaviour of J−(0) in for a generic solution (blue) to eqs. (3.8) and a
normalizable Dirac-hair solution (red) for m = −1/4 in the background of an AdS-RN black hole
with µ/T = 128.8. The dotted lines show the scaling z11/2 and z4 of the leading and subleading
terms in an expansion of J0

−(z) near z = 0; the dashed line shows the scaling z5/2 of the sub-
subleading expansion whose coefficient is |B−(ωF , kF )|2. That the Dirac hair solution (red) scales
as the subsubleading solution indicates that the current J0

− faithfully captures the density of the
underlying normalizable Dirac field.

Analyzing the transition in more detail in figure 3, we find:

1. The dimensionless number discontinuity ∆nF /µ2∆ scales as T−δ in a certain temper-
ature range TF < T < Tc, with δ > 0 depending on g and ∆, and TF typically very
small. At T = Tc > TF it drops to zero discontinuously, characteristic of a first order
phase transition.

2. At low temperatures, 0 < T < TF , the power-law growth comes to a halt and ends
with a plateau where ∆nF /µ2∆ ∼ const. (figure 3a). It is natural to interpret this
temperature as the Fermi temperature of the boundary Fermi liquid.

3. The fermion free energy contribution I/µ2∆+1 scales as T 1/ν with ν > 1 for 0 < T <

Tc, and drops to zero discontinuously at Tc. As I empirically equals minus the free
energy per particle, it is natural that I(T = 0) = 0, and this in turn supports the
identification of ∆nF (T = 0) as the step in number density at the Fermi energy.

One expects that the exponents δ, ν are controlled by the conformal dimension ∆.10

The dependence of the exponent δ on the conformal dimension is shown in figure 3a. While
a correlation clearly exists, the data are not conclusive enough to determine the relation
δ = δ(∆). The clean power law T−δ scaling regime is actually somewhat puzzling. These
values of the temperature, TF < T < Tc, correspond to a crossover between the true Fermi
liquid regime for T < TF and the conformal phase for T > Tc, hence there is no clear
ground for a universal scaling relation for δ, which seems to be corroborated by the data
(figure 3b). At the same time, the scaling exponent ν appears to obey ν = 2 with great
precision (figure 3b, inset) independent of ∆ and g.

A final consideration, needed to verify the existence of a finite fermion density AdS
solution dual to a Fermi liquid, is to show that the ignored backreaction stays small. In
particular, the divergence of the electric field at the horizon should not affect the result.

10The charge g of the underlying conformal fermionic operator scales out of the solution.
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Figure 3. (a) Approximate power-law scaling of the Fermi liquid characteristic occupation number
discontinuity ∆nF /µ2∆ ∼ T−δ as a function of T/µ for ∆ = 5/4. This figure clearly shows the
saturation of the density at very low T/µ. The saturation effect is naturally interpreted as the
influence of the characteristic Fermi energy. (b) The scaling exponent δ for different values of the
conformal dimension ∆. There is a clear correlation, but the precise relation cannot be determined
numerically. The scaling exponent of the current I/µ2∆+1 ∼ T−1/ν obeys ν = 2 with great accuracy,
on the other hand (Inset).

The total bulk electric field Ez = −∂zΦ is shown in figure 4a, normalized by its value at
z = 1/2. The logarithmic singularity at the horizon is clearly visible. At the same time,
the contribution to the total electric field from the charged fermions is negligible even very
close to the horizon.11 This suggests that our results are robust with respect to the details
of the IR divergence of the electric field.

The diverging backreaction at the horizon is in fact the gravity interpretation of the
first order transition at Tc: an arbitrarily small non-zero density leads to an abrupt change
in the on shell bulk action. As the latter is the free energy in the CFT, it must reflect
the discontinuity of a first order transition. A full account of the singular behavior at the
horizon requires self-consistent treatment including the Einstein equations. At this level, we
can conclude that the divergent energy density at the horizon implies that the near-horizon
physics becomes substantially different from the AdS2 limit of the RN metric. It is natural
to guess that the RN horizon disappears completely, corresponding to a ground state with
zero entropy, as hypothesized in [26]. This matches the expectation that the finite fermi-
density solution in the bulk describes the Fermi-liquid. The underlying assumption in the
above reasoning is that the total charge is conserved.

11It is of the order 10−4, starting from z = 0.9999. We have run our numerics using values between

1− 10−6 and 1− 10−2 and found no detectable difference in quantities at the boundary.
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Figure 4. (a) The radial electric field −Ez = ∂Φ/∂z, normalized to the midpoint value
Ez(z)/Ez(1/2) for whole interior of the finite fermion density AdS-RN solution (upper) and near
the horizon (lower). One clearly sees the soft, log-singularity at the horizon. The colors correspond
to increasing temperatures from T = 0.04µ (lighter) to T = 0.18µ (darker), all with ∆ = 1.1. (b)
The occupation number jump ∆nF and free energy contribution I as a function of temperature in
AdS-Schwarzschild. We see the jump ∆nF saturate at low temperatures and fall off at high T . An
exponential fit to the data (red curve) shows that in the critical region the fall-off is stronger than
exponential, indicating that the transition is first order. The conformal dimension of the fermionic
operator is ∆ = 1.1. (c) The radial electric field −Ez = ∂Φ/∂z, normalized to the midpoint value
(Ez(z)/Ez(1/2)) for the finite fermion density AdS-Schwarzschild background. The divergence of
the electric field Ez is again only noticeable near the horizon and can be neglected in most of the
bulk region.

3.3.2 Finite fermion density in AdSS

For completeness, we will describe the finite fermion-density solutions in the AdS
Schwarzschild geometry as well. In these solutions the charge density is set by the density
of fermions alone. They are therefore not reliable at very low temperatures T � Tc when
gravitational backreaction becomes important. The purpose of this section is to show the
existence of finite density solutions does not depend on the presence of a charged black hole
set by the horizon value Φ(2)

hor = µ0, but that the transition to a finite fermion density can
be driven by the charged fermions themselves.

Figure 4b shows the nearly instantaneous development of a non-vanishing expectation
value for the occupation number discontinuity ∆nF and I in the AdS Schwarzschild back-
ground. The rise is not as sharp as in the RN background. It is, however, steeper than
exponential, and we may conclude that the system undergoes a discontinuous first order
transition to a AdS Dirac hair solution. The constant limit reached by the fermion density
as T → 0 has no meaning as we cannot trust the solution far away from Tc.

The backreaction due to the electric field divergence at the horizon can be neglected,
for the same reason as before (figure 4c).
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Figure 5. The single-fermion spectral function in the probe limit of pure AdS Reissner-Nordström
(red/yellow) minus the spectrum in the finite density system (blue). The conformal dimension is
∆ = 5/4, the probe charge g = 2, and µ/T = 135. We can see two quasiparticle poles near ω = 0, a
non-FL pole with kprobe

F ' 0.11µ and k∆nF

F ' 0.08µ respectively and a FL-pole with kprobe
F ' 0.18µ

and k∆nF

F ' 0.17µ. The dispersion of both poles is visibly similar between the probe and the finite
density backgroudnd. At the same time, the non-FL pole has about 8 times less weight in the finite
density background, whereas the FL-pole has gained about 6.5 times more weight.

3.4 Confirmation from fermion spectral functions

If, as we surmised, the finite fermion density phase is the true Fermi-liquid-like ground state,
the change in the fermion spectral functions should be minimal as the characteristic quasi-
particle peaks are already present in the probe limit, i.e. pure AdS Reissner-Nordström [11,
12]. Figure 5 shows that quasiparticle poles near ω = 0 with similar analytic properties can
be identified in both the probe pure AdS-RN case and the AdS-RN Dirac-hair solution.
The explanation for this similarity is that the electrostatic potential Φ almost completely
determines the spectrum, and the change in Φ due to the presence of a finite fermion
density is quite small. Still, one expects that the finite fermion density system is a more
favorable state. This indeed follows from a detailed comparison between the spectral
functions A(ω; k) in the probe limit and the fermion-liquid phase (figure 5). We see that:

1. All quasiparticle poles present in the probe limit are also present in the Dirac hair
phase, at a slightly shifted value of kF . This shift is a consequence of the change in
the bulk electrostatic potential Φ due to the presence of the charged matter. For a
Fermi-liquid-like quasiparticle corresponding to the second pole in the operator with
∆ = 5/4 and g = 2 we find kprobe

F − k∆nF
F = 0.07µ. The non-Fermi-liquid pole, i.e.

the first pole for the same conformal operator, has kprobe
F − k∆nF

F = 0.03µ.

2. The dispersion exponents ν defined through (ω −EF )2 ∼ (k − kF )2/ν , also maintain
roughly the same values as both solutions. This is visually evident in the near similar
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slopes of the ridges in figure 5. In the AdS Reissner-Nordström background, the
dispersion coefficients are known analytically as a function of the Fermi momentum:

νkF =
√

2k
2
F
µ2 − 1

3 + 1
6 (∆− 3/2)2 [13]. The Fermi-liquid-like quasiparticle correspond-

ing to the second pole in the operator with ∆ = 5/4 and g = 2 has νprobe
kF

= 1.02 vs.
ν∆nF = 1.01. The non-Fermi-liquid pole corresponding to the first pole for the same
conformal operator, has νprobe

kF
≈ 0.10, and ν∆nF = 0.12.

3. The most distinct property of the finite density phase is the redistributed spectral
weight of the poles. The non-Fermi liquid pole reaches its maximum height about 104,
an order of magnitude less than in the probe limit, whereas the second, Fermi liquid-
like pole, increases by an order of magnitude. This suggests that the finite density
state corresponds to the Fermi-liquid like state, rather than a non-Fermi liquid.

4. As we mentioned in the introduction, part of the reason to suspect the existence
of an AdS-RN Dirac-hair solution is that a detailed study of spectral functions in
AdS-RN reveals that the quasiparticle peak is anomalously sensitive to changes in
T . This anomalous temperature dependence disappears in the finite density solution.
Specifically in pure AdS-RN the position ωmax where the peak height is maximum,
denoted EF in [12], does not agree with the value ωpole, where the pole touches
the real axis in the complex ω-plane, for any finite value of T , and is exponentially
sensitive to changes in T (figure 6). In the AdS-RN Dirac hair solution the location
ωmax and the location ωpole do become the same. Figure 6b shows that the maximum
of the quasiparticle peak always sits at ω ' 0 in finite density Dirac hair solution,
while it only reaches this as T → 0 in the probe AdS-RN case.

4 Discussion and conclusion

Empirically we know that the Fermi liquid phase of real matter systems is remarkably
robust and generic. This is corroborated by analyzing effective field theory around the
Fermi surface, but as it assumes the ground state it cannot explain its genericity. If the
Fermi liquid ground state is so robust, this must also be a feature of the recent holographic
approaches to strongly interacting fermionic systems. Our results here indicate that this is
so. We have used Migdal’s relation to construct AdS/CFT rules for the holographic dual of
a Fermi liquid: the characteristic occupation number discontinuity ∆nF is encoded in the
normalizable subsubleading component of the spatially averaged fermion density J0

−(z) ≡∫
d3kΨ̄(ω = 0,−k, z)iγ0Ψ(ω = 0, k, z) near the AdS boundary. This density has its own set

of evolution equations, based on the underlying Dirac field, and insisting on normalizability
automatically selects the on-shell wavefunctions of the underlying Dirac-field.

The simplest AdS solution that has a non-vanishing expectation value for the occupa-
tion number discontinuity ∆nF is that of a single fermion wavefunction. Using the density
approach — which through the averaging appears to describe a class of solutions rather
than one specific solution — we have constructed the limit of this solution where gravita-
tional backreaction is ignored. At low black hole temperatures this solution with fermionic
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Figure 6. (a) Single fermion spectral functions near ω = 0 in pure AdS Reissner-Nordström (blue)
and in the finite fermion density background (red). In the former the position of the maximum
approaches ω = 0 as T is lowered whereas in the latter the position of the maximum stays close to
T = 0 for all values of T . (b) Position of the maximum of the quasiparticle peak in k-ω plane, for
different temperatures and ∆ = 5/4. The probe limit around a AdS-RN black hole (blue) carries a
strong temperature dependence of the ωmax value, with ωmax,T 6=0 6= 0. In the finite fermion density
background, the position of the maximum (red) is nearly independent of temperature and stays
at ω = 0.

“Dirac hair” is the preferred ground state. Through an analysis of the free energy, we
argue that this gravitational solution with a non-zero fermion profile precisely corresponds
to a system with a finite density of fermions. A spectral analysis still reveals a zoo of
Fermi-surfaces in this ground state, but there are indications that in the full gravitation-
ally backreacted solution only a Landau Fermi-liquid type Fermi surface survives. This
follows in part from the relation between the spectral density and the Fermi momentum of
a particular Landau liquid-like Fermi surface; it also agrees with the prediction from Lut-
tinger’s theorem. Furthermore, the spectral analysis in the finite density state shows no
anomalous temperature dependence present in the pure charged black-hole single spectral
functions. This also indicates that the finite density state is the true ground state.

The discovery of this state reveals a new essential component in the study of strongly
coupled fermionic systems through gravitational duals, where one should take into account
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the expectation values of fermion bilinears. Technically the construction of the full grav-
itationally backreacted solution is a first point that is needed to complete our finding. A
complete approach to this problem will have to take into account the many-body physics
in the bulk. Within the approach presented in this paper, it means the inclusion of addi-
tional fermion wavefunctions, filling the bulk Fermi surface. The realization, however, that
expectation values of fermion bilinears can be captured in holographic duals and naturally
encode phase separations in strongly coupled fermion systems should find a large set of
applications in the near future.
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We study the Fermi-level structure of 2þ 1-dimensional strongly interacting electron systems in

external magnetic field using the gague/gravity duality correspondence. The gravity dual of a finite density

fermion system is a Dirac field in the background of the dyonic AdS-Reissner-Nordström black hole. In

the probe limit, the magnetic system can be reduced to the nonmagnetic one, with Landau-quantized

momenta and rescaled thermodynamical variables. We find that at strong enough magnetic fields, the

Fermi surface vanishes and the quasiparticle is lost either through a crossover to conformal regime or

through a phase transition to an unstable Fermi surface. In the latter case, the vanishing Fermi velocity at

the critical magnetic field triggers the non-Fermi-liquid regime with unstable quasiparticles and a change

in transport properties of the system. We associate it with a metal–’’strange-metal’’ phase transition. Next,

we compute the DC Hall and longitudinal conductivities using the gravity-dressed fermion propagators.

For dual fermions with a large charge, many different Fermi surfaces contribute and the Hall conductivity

is quantized as expected for integer quantum Hall effect (QHE). At strong magnetic fields, as additional

Fermi surfaces open up, new plateaus typical for the fractional QHE appear. The somewhat irregular

pattern in the length of fractional QHE plateaus resembles the outcomes of experiments on thin graphite in

a strong magnetic field. Finally, motivated by the absence of the sign problem in holography, we suggest a

lattice approach to the AdS calculations of finite density systems.

DOI: 10.1103/PhysRevD.84.106003 PACS numbers: 11.25.Tq, 71.27.+a

I. INTRODUCTION

The study of strongly interacting fermionic systems at
finite density and temperature is a challenging task in
condensed matter and high energy physics. Analytical
methods are limited or not available for strongly coupled
systems, and numerical simulation of fermions at finite
density breaks down because of the sign problem [1].
There has been an increased activity in describing finite
density fermionic matter by a gravity dual using the holo-
graphic AdS/CFT correspondence [2]. The gravitational
solution which is dual to the finite chemical potential
system is the electrically charged AdS-Reissner-
Nordström black hole, which provides a background where
only the metric and Maxwell fields are nontrivial and all
matter fields vanish. In the classical gravity limit, the
decoupling of the Einstein-Maxwell sector holds and leads
to universal results, which is an appealing feature of ap-
plied holography. Indeed, the celebrated result for the ratio
of the shear viscosity over the entropy density [3] is
identical for many strongly interacting theories and has
been considered a robust prediction of the AdS/CFT
correspondence.

However, an extremal black hole alone is not enough to
describe finite density systems as it does not source the
matter fields. In holography, at leading order, the Fermi

surfaces are not evident in the gravitational geometry, but
can only be detected by external probes; either probe D-
branes [2] or probe bulk fermions [4–7]. Here, we shall
consider the latter option, where the free Dirac field in the
bulk carries a finite charge density [8]. We ignore electro-
magnetic and gravitational backreaction of the charged
fermions on the bulk space-time geometry (probe approxi-
mation). At large temperatures, T � �, this approach
provides a reliable hydrodynamic description of transport
at a quantum criticality (in the vicinity of superfluid-
insulator transition) [9]. At small temperatures, T � �,
in some cases, sharp Fermi surfaces emerge with either
conventional Fermi-liquid scaling [5] or of a non-Fermi-
liquid type [6] with scaling properties that differ signifi-
cantly from those predicted by the Landau Fermi-liquid
theory. The nontrivial scaling behavior of these non-Fermi
liquids has been studied semianalytically in [7] and is of
great interest as high-Tc superconductors and metals near
the critical point are believed to represent non-Fermi
liquids.
What we shall study is the effects of magnetic field

on the holographic fermions. A magnetic field is a probe
of finite density matter at low temperatures, where the
Landau-level physics reveals the Fermi-level structure.
The gravity dual system is described by an AdS dyonic
black hole with electric and magnetic charges Q and H,
respectively, corresponding to a 2þ 1-dimensional field
theory at finite chemical potential in an external magnetic
field [10]. Probe fermions in the background of the dyonic
black hole have been considered in [11,12]; and probe
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bosons in the same background have been studied in [13].
Quantum magnetism is considered in [14].

The Landau quantization of momenta due to the mag-
netic field found there shows again that the AdS/CFT
correspondence has a powerful capacity to unveil that
certain quantum properties known from quantum gases
have a much more ubiquitous status than could be antici-
pated theoretically. A first highlight is the demonstration
[15] that the Fermi surface of the Fermi gas extends way
beyond the realms of its perturbative extension in the form
of the Fermi liquid. In AdS/CFT, it appears to be gravita-
tionally encoded in the matching along the scaling direc-
tion between the ‘‘bare’’ Dirac waves falling in from the
‘‘UV’’ boundary and the true IR excitations living near
the black hole horizon. This IR physics can insist on the
disappearance of the quasiparticle but, if so, this ‘‘critical
Fermi liquid’’ is still organized ‘‘around’’ a Fermi surface.
The Landau quantization, the organization of quantum
gaseous matter in quantized energy bands (Landau levels)
in a system of two space dimensions pierced by a magnetic
field oriented in the orthogonal spatial direction, is a sec-
ond such quantum gas property. Following Ref. [11], we
shall describe here that despite the strong interactions in
the system, the holographic computation reveals the same
strict Landau-level quantization. Arguably, it is the mean-
field nature imposed by large N limit inherent in AdS/CFT
that explains this. The system is effectively noninteracting
to first order in 1=N. The Landau quantization is not
manifest from the geometry, but, as we show, this state-
ment is straightforwardly encoded in the symmetry
correspondences associated with the conformal compacti-
fication of AdS on its flat boundary (i.e., in the UV con-
formal field theory [CFT]).

An interesting novel feature in strongly coupled systems
arises from the fact that the background geometry is only
sensitive to the total energy density Q2 þH2 contained in
the electric and magnetic fields sourced by the dyonic
black hole. Dialing up the magnetic field is effectively
similar to a process where the dyonic black hole loses its
electric charge. At the same time, the fermionic probe
with charge q is essentially only sensitive to the Coulomb
interaction gqQ. As shown in [11], one can therefore map
a magnetic to a nonmagnetic system with rescaled pa-
rameters (chemical potential, fermion charge) and same
symmetries and equations of motion, as long as the
Reissner-Nordström geometry is kept.

Translated to more experiment-compatible language, the
above magnetic-electric mapping means that the spectral
functions at nonzero magnetic field h are identical to the
spectral function at h ¼ 0 for a reduced value of the
coupling constant (fermion charge) q, provided the probe
fermion is in a Landau-level eigenstate. A striking conse-
quence is that the spectrum shows conformal invariance for
arbitrarily high magnetic fields, as long as the system is at
negligible to zero density. Specifically, a detailed analysis

of the fermion spectral functions reveals that at strong
magnetic fields, the Fermi-level structure changes qualita-
tively. There exists a critical magnetic field at which the
Fermi velocity vanishes. Ignoring the Landau-level quan-
tization, we show that this corresponds to an effective
tuning of the system from a regular Fermi-liquid phase
with linear dispersion and stable quasiparticles to a non-
Fermi liquid with fractional power-law dispersion and
unstable excitations. This phenomenon can be interpreted
as a transition from metallic phase to a ’’strange metal’’ at
the critical magnetic field and corresponds to the change of
the infrared conformal dimension from � > 1=2 to � <
1=2, while the Fermi momentum stays nonzero and the
Fermi surface survives. Increasing the magnetic field
further, this transition is followed by a strange-metal–
conformal crossover and eventually, for very strong fields,
the system always has near-conformal behavior where
kF ¼ 0 and the Fermi surface disappears.
For some Fermi surfaces, this surprising metal–strange-

metal transition is not physically relevant, as the system
prefers to directly enter the conformal phase. Whether a
fine tuned system exists that does show a quantum critical
phase transition from a Fermi liquid to a non-Fermi liquid
is determined by a Diophantine equation for the Landau-
quantized Fermi momentum as a function of the magnetic
field. Perhaps these are connected to the magnetically
driven phase transition found in AdS5=CFT4 [16]. We
leave this subject for future work.
Overall, the findings of Landau quantization and ‘‘dis-

charge’’ of the Fermi surface are in line with the expecta-
tions: both phenomena have been found in a vast array of
systems [17] and are almost tautologically tied to the
notion of a Fermi surface in a magnetic field. Thus, we
regard them also as a sanity check of the whole bottom-up
approach of fermionic AdS/CFT [4–6,15], giving further
credit to the holographic Fermi surfaces as having to do
with the real world.
Next, we use the information of magnetic effects the

Fermi surfaces extracted from holography to calculate the
quantum Hall and longitudinal conductivities. Generally
speaking, it is difficult to calculate conductivity holograph-
ically beyond the Einstein-Maxwell sector, and extract the
contribution of holographic fermions. In the semiclassical
approximation, one-loop corrections in the bulk setup in-
volving charged fermions have been calculated [15]. In
another approach, the backreaction of charged fermions on
the gravity-Maxwell sector has been taken into account and
incorporated in calculations of the electric conductivity
[8]. We calculate the one-loop contribution on the CFT
side, which is equivalent to the holographic one-loop cal-
culations as long as vertex corrections do not modify
physical dependencies of interest [15,18]. As we dial the
magnetic field, the Hall plateau transition happens when
the Fermi surface moves through a Landau level. One can
think of a difference between the Fermi energy and the
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energy of the Landau level as a gap, which vanishes at the
transition point and the 2þ 1-dimensional theory becomes
scale invariant. In the holographic D3–D7 brane model of
the quantum Hall effect, plateau transition occurs as D-
branes move through one another [19]. In the same model,
a dissipation process has been observed as D-branes fall
through the horizon of the black hole geometry that is
associated with the quantum Hall insulator transition.
In the holographic fermion liquid setting, dissipation is
present through interaction of fermions with the horizon
of the black hole. We have also used the analysis of the
conductivities to learn more about the metal–strange-metal
phase transition, as well as the crossover back to the
conformal regime at high magnetic fields.

We conclude with the remark that the findings summa-
rized above are, in fact, somewhat puzzling when con-
trasted to the conventional picture of quantum Hall
physics. It is usually stated that the quantum Hall effect
requires three key ingredients: Landau quantization,
quenched disorder, 1 and (spatial) boundaries, i.e., a finite-
sized sample [20]. The first brings about the quantization of
conductivity, the second prevents the states from spilling
between the Landau levels, ensuring the existence of a gap,
and the last one, in fact, allows the charge transport to
happen (as it is the boundary states that actually conduct).
In ourmodel, only the first condition is satisfied. The second
is put by hand by assuming that the gap is automatically
preserved, i.e., that there is no mixing between the Landau
levels. There is, however, no physical explanation as to how
the boundary states are implicitly taken into account by
AdS/CFT.

The paper is organized as follows. We outline the holo-
graphic setting of the dyonic black hole geometry and bulk
fermions in Sec. II. In Sec. III, we prove the conservation
of conformal symmetry in the presence of the magnetic
fields. Section IV is devoted to the holographic fermion
liquid, where we obtain the Landau-level quantization,
followed by a detailed study of the Fermi surface proper-
ties at zero temperature in Sec. V. We calculate the DC
conductivities in Sec. VI, and compare the results with
available data in graphene. In Sec. VII, we show that the
fermion sign problem is absent in the holographic setting,
therefore allowing lattice simulations of finite density mat-
ter in principle.

II. HOLOGRAPHIC FERMIONS IN A
DYONIC BLACK HOLE

We first describe the holographic setup with the dyonic
black hole and the dynamics of Dirac fermions in this

background. In this paper, we exclusively work in the
probe limit, i.e., in the limit of large fermion charge q.

A. Dyonic black hole

We consider the gravity dual of 3-dimensional confor-
mal field theory with global Uð1Þ symmetry. At finite
charge density and in the presence of a magnetic field,
the system can be described by a dyonic black hole in 4-
dimensional anti-de Sitter space-time, AdS4, with the cur-
rent J� in the CFT mapped to a Uð1Þ gauge field AM in

AdS. We use �; �; �; . . . ; for the space-time indices in the
CFT and M;N; . . . ; for the global space-time indices in
AdS.
The action for a vector field AM coupled to AdS4 gravity

can be written as

Sg ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

Rþ 6

R2
� R2

g2F
FMNF

MN

�
; (1)

where g2F is an effective dimensionless gauge coupling and
R is the curvature radius of AdS4. The equations of motion
following from Eq. (1) are solved by the geometry corre-
sponding to a dyonic black hole, having both electric and
magnetic charge:

ds2 ¼ gMNdx
MdxN

¼ r2

R2
ð�fdt2 þ dx2 þ dy2Þ þ R2

r2
dr2

f
: (2)

The redshift factor f and the vector field AM reflect the fact
that the system is at a finite charge density and in an
external magnetic field:

f ¼ 1þQ2 þH2

r4
�M

r3
;

At ¼ �

�
1� r0

r

�
;

Ay ¼ hx;

Ax ¼ Ar ¼ 0;

(3)

where Q and H are the electric and magnetic charge of the
black hole, respectively. Here, we chose the Landau gauge;
the black hole chemical potential � and the magnetic field
h are given by

� ¼ gFQ

R2r0
; h ¼ gFH

R4
; (4)

with r0 as the horizon radius determined by the largest
positive root of the redshift factor fðr0Þ ¼ 0:

M ¼ r30 þ
Q2 þH2

r0
: (5)

The boundary of the AdS is reached for r ! 1. The
geometry described by Eqs. (2) and (3) describes the
boundary theory at finite density, i.e., a system in a charged

1Quenched disorder means that the dynamics of the impurities
is ‘‘frozen’’, i.e. they can be regarded as having infinite mass.
When coupled to the Fermi liquid, they ensure that below some
scale, the system behaves as if consisting of noninteracting
quasiparticles only.
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medium at the chemical potential � ¼ �bh and in trans-
verse magnetic field h ¼ hbh, with charge, energy, and
entropy densities given, respectively, by

� ¼ 2
Q

�2R2gF
; � ¼ M

�2R4
; s ¼ 2�

�2

r20
R2

: (6)

The temperature of the system is identified with the
Hawking temperature of the black hole, TH � jf0ðr0Þj=4�,

T ¼ 3r0
4�R2

�
1�Q2 þH2

3r40

�
: (7)

Since Q and H have dimensions of ½L�2, it is convenient
to parametrize them as

Q2 ¼ 3r4�; Q2 þH2 ¼ 3r4��: (8)

In terms of r0, r�, and r��, the above expressions become

f ¼ 1þ 3r4��
r4

� r30 þ 3r4��=r0
r3

; (9)

with

� ¼ ffiffiffi
3

p
gF

r2�
R2r0

; h ¼ ffiffiffi
3

p
gF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4�� � r4�

p
R4

: (10)

The expressions for the charge, energy, and entropy den-
sities, as well as for the temperature, are simplified as

� ¼ 2
ffiffiffi
3

p
�2gF

r2�
R2

; � ¼ 1

�2

r30 þ 3r4��=r0
R4

;

s ¼ 2�

�2

r20
R2

; T ¼ 3

4�

r0
R2

�
1� r4��

r40

�
:

(11)

In the zero temperature limit, i.e., for an extremal black
hole, we have

T ¼ 0 ! r0 ¼ r��; (12)

which in the original variables reads Q2 þH2 ¼ 3r40. In
the zero temperature limit (12), the redshift factor f as
given by Eq. (9) develops a double zero at the horizon:

f ¼ 6
ðr� r��Þ2

r2��
þOððr� r��Þ3Þ: (13)

As a result, near the horizon, the AdS4 metric reduces to
AdS2 � R2 with the curvature radius of AdS2 given by

R2 ¼ 1ffiffiffi
6

p R: (14)

This is a very important property of the metric, which
considerably simplifies the calculations, in particular, in
the magnetic field.

In order to scale away theAdS4 radius R and the horizon
radius r0, we introduce dimensionless variables

r ! r0r; r� ! r0r�; r�� ! r0r��;

M ! r30M; Q ! r20Q; H ! r20H;
(15)

and

ðt; ~xÞ !R2

r0
ðt; ~xÞ; AM ! r0

R2
AM; !! r0

R2
!;

�! r0
R2

�; h! r20
R4

h; T! r0
R2

T; ds2 !R2ds2:

(16)

Note that the scaling factors in the above equation that
describes the quantities of the boundary field theory in-
volve the curvature radius of AdS4, not AdS2.
In the new variables, we have

T ¼ 3

4�
ð1� r4��Þ ¼ 3

4�

�
1�Q2 þH2

3

�
;

f ¼ 1þ 3r4��
r4

� 1þ 3r4��
r3

; At ¼ �

�
1� 1

r

�
;

� ¼ ffiffiffi
3

p
gFr

2� ¼ gFQ; h ¼ gFH; (17)

and the metric is given by

ds2 ¼ r2ð�fdt2 þ dx2 þ dy2Þ þ 1

r2
dr2

f
; (18)

with the horizon at r ¼ 1 and the conformal boundary at
r ! 1.
At T ¼ 0, r�� becomes unity, and the redshift factor

develops the double zero near the horizon,

f ¼ ðr� 1Þ2ðr2 þ 2rþ 3Þ
r4

: (19)

As mentioned before, due to this fact, the metric near the
horizon reduces to AdS2 � R2, where the analytical calcu-
lations are possible for small frequencies [7]. However, in
the chiral limit m ¼ 0, analytical calculations are also
possible in the bulk AdS4 [21], which we utilize in this
paper.

B. Holographic fermions

To include the bulk fermions, we consider a spinor field
c in the AdS4 of charge q and mass m, which is dual
to an operator O in the boundary CFT3 of charge q and
dimension

� ¼ 3

2
þmR; (20)

with mR � � 1
2 and in dimensionless units corresponding

to � ¼ 3
2 þm. In the black hole geometry, Eq. (2), the

quadratic action for c reads as

Sc ¼ i
Z

d4x
ffiffiffiffiffiffiffi�g

p ð �c�MDMc �m �c c Þ; (21)
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where �c ¼ c y�t, and

DM ¼ @M þ 1

4
!abM�

ab � iqAM; (22)

where !abM is the spin connection, and �ab ¼ 1
2 ½�a;�b�.

Here, M and a, b denote the bulk space-time and tangent
space indices, respectively, while�, � are indices along the
boundary directions, i.e.,M ¼ ðr; �Þ. Gamma matrix basis
(Minkowski signature) is given by Eq. (A12) as in [7].

We will be interested in spectra and response functions
of the boundary fermions in the presence of magnetic field.
This requires solving the Dirac equation in the bulk [5,6]:

ð�MDM �mÞc ¼ 0: (23)

From the solution of the Dirac equation at small !, an
analytic expression for the retarded fermion Green’s func-
tion of the boundary CFT at zero magnetic field has been
obtained in [7]. Near the Fermi surface, it reads as [7]:

GRð�; kÞ ¼ ð�h1vFÞ
!� vFk? ��ð!; TÞ ; (24)

where k? ¼ k� kF is the perpendicular distance from
the Fermi surface in momentum space, h1 and vF are
real constants calculated below, and the self-energy � ¼
�1 þ i�2 is given by [7]

�ð!; TÞ=vF ¼ T2�g

�
!

T

�

¼ ð2�TÞ2�h2ei��i��
�ð12 þ �� i!

2�T þ i�q

6 Þ
�ð12 � �� i!

2�T þ i�q

6 Þ ;

(25)

where � is the zero temperature conformal dimension at
the Fermi momentum, � 	 �kF , given by Eq. (58),

�q 	 �q, h2 is a positive constant, and the phase � is

such that the poles of the Green’s function are located in
the lower half of the complex frequency plane. These
poles correspond to quasinormal modes of the Dirac
equation (23), and they can be found numerically solving
Fð!�Þ ¼ 0 [22], with

Fð!Þ ¼ k?
�ð12 þ �� i!

2�T þ i�q

6 Þ �
h2e

i��i��ð2�TÞ2�
�ð12 � �� i!

2�T þ i�q

6 Þ :

(26)

The solution gives the full motion of the quasinormal

poles !ðnÞ
� ðk?Þ in the complex ! plane as a function of

k?. It has been found in [7,22], that, if the charge of the
fermion is large enough compared to its mass, the pole
closest to the real ! axis bounces off the axis at k? ¼ 0
(and ! ¼ 0). Such behavior is identified with the exis-
tence of the Fermi momentum kF, indicative of an under-
lying strongly coupled Fermi surface.

At T ¼ 0, the self-energy becomes T2�gð!=TÞ !
ck!

2�, and the Green’s function obtained from the solution
to the Dirac equation reads [7]

GRð�; kÞ ¼ ð�h1vFÞ
!� vFk? � h2vFe

i��i��!2�
; (27)

where k? ¼
ffiffiffiffiffi
k2

p
� kF. The last term is determined by the

IR AdS2 physics near the horizon. Other terms are deter-
mined by the UV physics of the AdS4 bulk.
The solutions to (23) have been studied in detail in

[5–7]. Here, we simply summarize the novel aspects due to
the background magnetic field (formal details can be found
in the Appendix A).
(i) The background magnetic field h introduces a dis-

cretization of the momentum (see Appendix A for
details):

k ! keff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjl

q
; with l 2 N; (28)

with Landau-level index l [12,22]. These discrete
values of k are the analogue of the well-known
Landau levels that occur in magnetic systems.

(ii) There exists a (noninvertible) mapping on the level
of Green’s functions, from the magnetic system to
the nonmagnetic one by sending

ðH;Q; qÞ �
0
@0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þH2
q

; q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2

Q2 þH2

s 1
A:
(29)

The Green’s functions in a magnetic system are thus
equivalent to those in the absence of magnetic
fields. To better appreciate that, we reformulate
Eq. (29) in terms of the boundary quantities:

ðh;�q; TÞ �
�
0; �q; T

�
1� h2

12�2

��
; (30)

where we used dimensionless variables defined in
Eqs. (15) and (17). The magnetic field thus effec-
tively decreases the coupling constant q and in-
creases the chemical potential � ¼ gFQ, such that
the combination �q 	 �q is preserved [11]. This

is an important point, as the equations of motion
actually only depend on this combination and not
on� and q separately [11]. In other words, Eq. (30)
implies that the additional scale brought about by the
magnetic field can be understood as changing� and
T independently in the effective nonmagnetic system
instead of only tuning the ratio �=T. This point is
important when considering the thermodynamics.

(iii) The discrete momentum keff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

must be
held fixed in the transformation (29). The bulk-
boundary relation is particularly simple in this
case, as the Landau levels can readily be seen in
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the bulk solution, only to remain identical in the
boundary theory.

(iv) Similar to the nonmagnetic system [11], the
IR physics is controlled by the near-horizon
AdS2 � R2 geometry, which indicates the existence
of an IR CFT, characterized by operatorsOl, l 2 N
with operator dimensions � ¼ 1=2þ �l:

�l ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

�
m2 þ 2jqhjl

r2��

�
��2

q

r4��

s
; (31)

in dimensionless notation, and �q 	 �q. At

T ¼ 0, when r�� ¼ 1, it becomes

�l ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðm2 þ 2jqhjlÞ ��2

q

q
: (32)

The Green’s function for these operators Ol is
found to be GR

l ð!Þ �!2�l , and the exponents �l

determine the dispersion properties of the quasi-
particle excitations. For � > 1=2, the system has
a stable quasiparticle and a linear dispersion,
whereas, for � 
 1=2, one has a non-Fermi liq-
uid with power-law dispersion and an unstable
quasiparticle.

III. MAGNETIC FIELDS AND
CONFORMAL INVARIANCE

Despite the fact that a magnetic field introduces a scale,
in the absence of a chemical potential, all spectral func-
tions are essentially still determined by conformal symme-
try. To show this, we need to establish certain properties of
the near-horizon geometry of a Reissner-Nordström black
hole. This leads to the AdS2 perspective that was devel-
oped in [7]. The result relies on the conformal algebra and
its relation to the magnetic group, from the viewpoint of
the infrared CFT that was studied in [7]. Later on, we will
see that the insensitivity to the magnetic field also carries
over to AdS4 and the UV CFT in some respects. To
simplify the derivations, we consider the case T ¼ 0.

A. The near-horizon limit and Dirac equation in AdS2

It was established in [7] that an electrically charged
extremal AdS-Reissner-Nordström black hole has an
AdS2 throat in the inner bulk region. This conclusion
carries over to the magnetic case with some minor differ-
ences. We will now give a quick derivation of the AdS2
formalism for a dyonic black hole, referring the reader to
[7] for more details (that remain largely unchanged in the
magnetic field).

Near the horizon r ¼ r�� of the black hole described by
the metric (2), the redshift factor fðrÞ develops a double
zero:

fðrÞ ¼ 6
ðr� r��Þ2

r2��
þOððr� r��Þ3Þ: (33)

Now consider the scaling limit

r� r�� ¼ 	
R2
2



; t ¼ 	�1�;

	 ! 0 with �; 
finite:
(34)

In this limit, the metric (2) and the gauge field reduce to

ds2 ¼ R2
2


2
ð�d�2 þ d
2Þ þ r2��

R2
ðdx2 þ dy2Þ

A� ¼ �R2
2r0

r2��

1



; Ax ¼ Hx;

(35)

where R2 ¼ Rffiffi
6

p . The geometry described by this metric is

indeed AdS2 � R2. Physically, the scaling limit given in
Eq. (34) with finite � corresponds to the long time limit of
the original time coordinate t, which translates to the low
frequency limit of the boundary theory:

!

�
! 0; (36)

where ! is the frequency conjugate to t. (One can think of
	 as being the frequency !). Near the AdS4 horizon, we
expect the AdS2 region of an extremal dyonic black hole
to have a CFT1 dual. We refer to [7] for an account of this
AdS2=CFT1 duality. The horizon of AdS2 region is at

 ! 1 (the coefficient in front of d� vanishes at the
horizon in Eq. (35)), and the infrared CFT (IR CFT) lives
at the AdS2 boundary at 
 ¼ 0. The scaling picture given
by Eqs. (34) and (35) suggests that in the low frequency
limit, the 2-dimensional boundary theory is described by
this IR CFT (which is a CFT1). The Green’s function for
the operator O in the boundary theory is obtained through
a small frequency expansion and a matching procedure
between the two different regions (inner and outer) along
the radial direction and can be expressed through the
Green’s function of the IR CFT [7].
The explicit form for the Dirac equation (A28) in the

magnetic field is of little interest for the analytical re-
sults that follow; for completeness, we give it in the
Appendix A. Of primary interest is its limit in the IR region
with metric given by Eq. (35):

�
� 1ffiffiffiffiffiffiffi

g


p �3@
 �mþ 1ffiffiffiffiffiffiffiffiffiffiffi�g��

p �1

�
!þ�qR

2
2r0

r2��


�

� 1ffiffiffiffiffiffi
gii

p
i�2	l

�
FðlÞ ¼ 0; (37)

where the effective momentum of the l-th Landau level is

	l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

, �q 	 �q, and we omit the index of the

spinor field. To obtain Eq. (37), it is convenient to pick

the gamma matrix basis as �
̂ ¼ ��3, ��̂ ¼ i�1, and

�î ¼ ��2. We can write explicitly:
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R2
@
 þm � 


R2

�
!þ �qR

2
2
r0

r2��


�
þ R

r��
	l



R2

�
!þ �qR

2
2
r0

r2��


�
þ R

r��
	l



R2
@
 �m

0
BBB@

1
CCCA

� y

z

 !
¼ 0: (38)

Note that the AdS2 radius R2 enters for the ð�; 
Þ direc-
tions. At the AdS2 boundary, 
 ! 0, the Dirac equation to
the leading order is given by


@
F
ðlÞ ¼ �UFðlÞ;

U ¼ R2

m � �qR2r0
r2��

þ R
r��

	l

�qR2r0
r2��

þ R
r��

	l �m

0
B@

1
CA: (39)

The solution to this equation is given by the scaling

function FðlÞ ¼ Aeþ
��l þ Be�
�l , where e� are the
real eigenvectors of U and the exponent is

�l ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

�
m2 þ R2

r2��
2jqhjl

�
R2 ��2

qR
4r20

r4��

s
: (40)

The conformal dimension of the operator O in the IR CFT
is �l ¼ 1

2 þ �l. Comparing Eq. (40) to the expression for

the scaling exponent in [7], we conclude that the scaling
properties and the AdS2 construction are unmodified by
the magnetic field, except that the scaling exponents are
now fixed by the Landau quantization. This ‘‘quantization
rule’’ was already exploited in [22] to study de Haas-
van Alphen oscillations.

IV. SPECTRAL FUNCTIONS

In this section, we will explore some of the properties of
the spectral function, in both plane wave and Landau-level
basis. We first consider some characteristic cases in the
plane wave basis and make connection with the angle-
resolved photoemission spectoscropy (ARPES)
measurements.

A. Relating to the ARPES measurements

In reality, ARPES measurements cannot be performed in
magnetic fields so the holographic approach, allowing a
direct insight into the propagator structure and the spectral
function, is especially helpful. This follows from the ob-
servation that the spectral functions as measured in ARPES
are always expressed in the plane wave basis of the photon.
Thus, in a magnetic field, when the momentum is not a
good quantum number anymore, it becomes impossible to
perform the photoemission spectroscopy.

In order to compute the spectral function, we have to
choose a particular fermionic plane wave as a probe. Since
the separation of variables is valid throughout the bulk, the
basis transformation can be performed at every constant

r-slice. This means that only the x and y coordinates have
to be taken into account (the plane wave probe lives only at
the CFT side of the duality). We take a plane wave prop-
agating in theþx direction with spin up along the r-axis. In
its rest frame, such a particle can be described by

�probe ¼ ei!t�ipxx




 !
;  ¼ 1

0

 !
: (41)

Near the boundary (at rb ! 1), we can rescale our solu-
tions of the Dirac equation making use of Eqs. (A23),
(A24), and (B1):

Fl ¼


 ð1Þl ð~xÞ
ðlÞ
þ ðrbÞ
 ð1Þl ð~xÞ

 ð2Þl ð~xÞ

�ðlÞ
þ ðrbÞ
 ð2Þl ð~xÞ

0
BBBBBBB@

1
CCCCCCCA;

~Fl ¼


 ð1Þl ð~xÞ
ðlÞ� ðrbÞ
 ð1Þl ð~xÞ

�
 ð2Þl ð~xÞ
ðlÞ� ðrbÞ
 ð2Þl ð~xÞ

0
BBBBBBB@

1
CCCCCCCA;

(42)

with rescaled ~x defined after Eq. (A20). This representation
is useful since we calculate the components �ðrbÞ related
to the retarded Green’s function in our numerics (we keep
the notation of [7]).

Let Ol and
~Ol be the CFT operators dual to Fl and ~Fl,

respectively, and cyk , ck be the creation and annihilation

operators for the plane wave state�probe. Since the states F

and ~F form a complete set in the bulk, we can write

cypð!Þ ¼ X
l

ðU�
l ;

~U�
l Þ Oy

l ð!Þ
~Oy
l ð!Þ

 !

¼ X
l

ðU�
lO

y
l ð!Þ þ ~U�

l
~Oy
l ð!ÞÞ; (43)

where the overlap coefficientsUlð!Þ are given by the inner
product between �probe and F:

UlðpxÞ ¼
Z

dxFy
l i�

0�probe

¼ �
Z

dxe�ipxxþðrbÞð
 ð1Þyl ð~xÞ � 
 ð2Þyl ð~xÞÞ; (44)

with �F ¼ Fyi�0 and a similar expression for ~Ul involving
�ðrbÞ. The constants Ul can be calculated analytically
using the numerical value of �ðrbÞ and by noting that the
Hermite functions are eigenfunctions of the Fourier trans-
form. We are interested in the retarded Green’s function,
defined as

GR
Ol
ð!;pÞ ¼ �i

Z
dxdtei!t�ip�x�ðtÞGR

Ol
ðt; xÞ

GR
Ol
ðt; xÞ ¼ h0j½Olðt; xÞ; �Olð0; 0Þ�j0i

GR ¼ GO 0

0 ~GO

 !
;

(45)
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where ~GO is the retarded Green’s function for the

operator ~O.
Exploiting the orthogonality of the spinors created byO

and Oy and using Eq. (43), the Green’s function in the
plane wave basis can be written as

GR
cpð!;pxÞ ¼

X
l

tr

�
U
~U

�
ðU�; ~U�ÞGR

¼ ðjUlðpxÞj2GR
Ol
ð!; lÞ þ j ~UlðpxÞj2 ~GR

Ol
ð!; lÞÞ:

(46)

In practice, we cannot perform the sum in Eq. (46) all the
way to infinity, so we have to introduce a cutoff Landau-
level lcut. In most cases, we are able to make lcut large
enough that the behavior of the spectral function is clear.

Using the above formalism, we have produced spectral
functions for two different conformal dimensions and fixed
chemical potential and magnetic field (Fig. 1). Using the
plane wave basis allows us to directly detect the Landau
levels. The unit used for plotting the spectra (here and later
on in the paper) is the effective temperature Teff [5]:

Teff ¼ T

2

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3�2

ð4�TÞ2
s 1

A: (47)

This unit interpolates between � at T=� ¼ 0 and T at
T=� ! 1 and is convenient for the reason that the relevant
quantities (e.g., Fermi momentum) are of order unity for
any value of � and h.

B. Magnetic crossover and disappearance
of the quasiparticles

Theoretically, it is more convenient to consider the
spectral functions in the Landau-level basis. For definite-
ness, let us pick a fixed conformal dimension � ¼ 5

4 which

corresponds to m ¼ � 1
4 . In the limit of weak magnetic

fields, h=T ! 0, we should reproduce the results that were
found in [5].
In Fig. 2(a), we indeed see that the spectral function,

corresponding to a low value of �=T, behaves as expected
for a nearly conformal system. The spectral function is
approximately symmetric about ! ¼ 0, it vanishes for
j!j< k, up to a small residual tail due to finite tempera-
ture, and for j!j � k, it scales as !2m.
In Fig. 2(b), which corresponds to a high value of �=T,

we see the emergence of a sharp quasiparticle peak. This
peak becomes the sharpest when the Landau-level l corre-

sponding to an effective momentum keff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

coin-
cides with the Fermi momentum kF. The peaks also
broaden out when keff moves away from kF. A more
complete view of the Landau quantization in the quasipar-
ticle regime is given in Fig. 3, where we plot the dispersion
relation (!-k map). Both the sharp peaks and the Landau
levels can be visually identified.
Collectively, the spectra in Fig. 2 show that conformal-

ity is only broken by the chemical potential � and not by
the magnetic field. Naively, the magnetic field introduces
a new scale in the system. However, this scale is absent
from the spectral functions, visually validating the dis-
cussion in the previous section that the scale h can be
removed by a rescaling of the temperature and chemical
potential.
One thus concludes that there is some value h0c of the

magnetic field, depending on �=T, such that the spectral
function loses its quasiparticle peaks and displays near-
conformal behavior for h > h0c. The nature of the transition
and the underlying mechanism depends on the parameters
ð�q; T;�Þ. One mechanism, obvious from the rescaling in

Eq. (29), is the reduction of the effective coupling q as h
increases. This will make the influence of the scalar po-
tential A0 negligible and push the system back toward
conformality. Generically, the spectral function shows no
sharp change but is more indicative of a crossover.

FIG. 1 (color online). Two examples of spectral functions in the plane wave basis for �=T ¼ 50 and h=T ¼ 1. The conformal
dimension is � ¼ 5=4 (left) and � ¼ 3=2 (right). Frequency is in the units of effective temperature Teff . The plane wave momentum is
chosen to be k ¼ 1. Despite the convolution of many Landau levels, the presence of the discrete levels is obvious.
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FIG. 2 (color online). Some typical examples of spectral functions Að!; keffÞ vs ! in the Landau basis, keff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjnp

. The top four
correspond to a conformal dimension � ¼ 5

4 (m ¼ � 1
4 ), and the bottom four to� ¼ 3

2 (m ¼ 0). In each plot, we show different Landau

levels, labeled by index n, as a function of �=T and h=T. The ratios take values ð�=T; h=TÞ ¼ ð1; 1Þ; ð50; 1Þ; ð1; 50Þ; ð50; 50Þ from left
to right. The conformal case can be identified when �=T is small, regardless of h=T (plots in the left panel). Nearly conformal
behavior is seen when both �=T and h=T are large. This confirms our analytic result that the behavior of the system is primarily
governed by �. Departure from the conformality and sharp quasiparticle peaks are seen when �=T is large and h=T is small in
parts (b) and (f). Multiple quasiparticle peaks arise whenever keff ¼ kF. This suggests the existence of a critical magnetic field, beyond
which the quasiparticle description becomes invalid and the system exhibits a conformal-like behavior. As before, the frequency ! is
in units of Teff .
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A more interesting phenomenon is the disappearance of
coherent quasiparticles at high effective chemical poten-
tials. For the special case m ¼ 0, we can go beyond nu-
merics and study this transition analytically, combining the
exact T ¼ 0 solution found in [21] and the mapping (30).
In the next section, we will show that the transition is
controlled by the change in the dispersion of the quasipar-
ticle and corresponds to a sharp phase transition.
Increasing the magnetic field leads to a decrease in phe-
nomenological control parameter �kF . This can give rise to

a transition to a non-Fermi liquid when �kF 
 1=2, and,

finally, to the conformal regime at h ¼ h0c when �kF ¼ 0

and the Fermi surface vanishes.

C. Density of states

As argued at the beginning of this section, the spectral
function can look quite different depending on the particu-
lar basis chosen. Though the spectral function is an attrac-
tive quantity to consider due to connection with ARPES
experiments, we will also direct our attention to basis-
independent and manifestly gauge invariant quantities.
One of them is the density of states, defined by

FIG. 3 (color online). Dispersion relation ! vs keff for �=T ¼ 50, h=T ¼ 1, and � ¼ 5
4 (m ¼ � 1

4 ). The spectral function Að!; keffÞ
is displayed as a density plot. (a) On a large energy and momentum scale, we clearly sees that the peaks disperse almost linearly
(!  vFk), indicating that we are in the stable quasiparticle regime. (b) A zoom-in near the location of the Fermi surface shows clear
Landau quantization.

FIG. 4 (color online). Density of states Dð!Þ for m ¼ � 1
4 and (a) �=T ¼ 50, h=T ¼ 1, and (b) �=T ¼ 1, h=T ¼ 1. Sharp

quasiparticle peaks from the splitting of the Fermi surface are clearly visible in (a). The case (b) shows square-root level spacing
characteristic of a (nearly) Lorentz invariant spectrum, such as that of graphene.
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Dð!Þ ¼ X
l

Að!; lÞ; (48)

where the usual integral over the momentum is replaced by
a sum since only discrete values of the momentum are
allowed.

In Fig. 4, we plot the density of states for two systems.
We clearly see the Landau splitting of the Fermi surface. A
peculiar feature of these plots is that the density of states
seems to grow for negative values of !. This, however, is
an artifact of our calculation. Each individual spectrum in
the sum Eq. (48) has a finite tail that scales as!2m for large
!, so each term has a finite contribution for large values of
!. When the full sum is performed, this fact implies that
lim!!1Dð!Þ ! 1. The relevant information on the den-
sity of states can be obtained by regularizing the sum,
which, in practice, is done by summing over a finite
number of terms only and then considering the peaks that
lie on top of the resulting finite-sized envelope. The physi-
cal point in Fig. 4(a) is the linear spacing of Landau levels,
corresponding to a nonrelativistic system at finite density.
This is to be contrasted with Fig. 4(b), where the level

spacing behaves as / ffiffiffi
h

p
, appropriate for a Lorentz invari-

ant system and realized in graphene [23].

V. FERMI LEVEL STRUCTURE AT
ZERO TEMPERATURE

In this section, we solve the Dirac equation in the
magnetic field for the special case m ¼ 0 (� ¼ 3

2 ).

Although there are no additional symmetries in this case,
it is possible to get an analytic solution. Using this solution,
we obtain Fermi-level parameters such as kF and vF and
consider the process of filling the Landau levels as the
magnetic field is varied.

A. Dirac equation with m ¼ 0

In the case m ¼ 0, it is convenient to solve the Dirac
equation including the spin connection (Eq. (A2)) rather
than scaling it out:

�
�

ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p �1@r �
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffi�gtt
p �3ð!þ qAtÞ þ

ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffi�gtt
p �1 1

2
!t̂ r̂ t

� �1 1

2
!x̂ r̂ x � �1 1

2
!ŷ r̂ y � 	l

�
� 1

c 1

c 2

 !
¼ 0; (49)

where 	l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

are the energies of the Landau levels
l ¼ 0; 1; . . . , gii 	 gxx ¼ gyy, AtðrÞ is given by Eq. (3), and
the gamma matrices are defined in Eq. (A12). In the basis
of Eq. (A12), the two components c 1 and c 2 decouple.
Therefore, in what follows, we solve for the first compo-
nent only (we omit index 1). Substituting the spin connec-
tion, we have [18]:

�
� r2

ffiffiffi
f

p
R2

�1@r � 1ffiffiffi
f

p �3ð!þ qAtÞ

� �1 r
ffiffiffi
f

p
2R2

�
3þ rf0

2f

�
� 	l

�
c ¼ 0; (50)

with c ¼ ðy1; y2Þ. It is convenient to change to the basis

~y1

~y2

 !
¼ 1 �i

�i 1

 !
y1

y2

 !
; (51)

which diagonalizes the system into a second order differ-
ential equation for each component. We introduce the
dimensionless variables as in Eqs. (15)–(17) and make a
change of the dimensionless radial variable:

r ¼ 1

1� z
; (52)

with the horizon now being at z ¼ 0 and the conformal
boundary at z ¼ 1. Performing these transformations in
Eq. (50), the second order differential equations for ~y1
reads

�
f@2z þ

�
3f

1� z
þ f0

�
@z þ 15f

4ð1� zÞ2 þ
3f0

2ð1� zÞ þ
f00

4

þ 1

f

�
ð!þ q�zÞ � if0

4

�
2 � iq�� 	2

l

�
~y1 ¼ 0: (53)

The second component ~y2 obeys the same equation with
� � ��.
At T ¼ 0,

f ¼ 3z2ðz� z0Þðz� �z0Þ; z0 ¼ 1

3

�
4þ i

ffiffiffi
2

p �
: (54)

The solution of this fermion system at zero magnetic field
and zero temperature T ¼ 0 has been found in [21]. To
solve Eq. (53), we use the mapping to a zero magnetic field
system, Eq. (29). The combination �q 	 �q at nonzero h

maps to �q;eff 	 �effqeff at zero h as follows:

�q � q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2

Q2 þH2

s
� gF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þH2

q

¼ ffiffiffi
3

p
qgF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H2

3

s
¼ �q;eff ; (55)

where at T ¼ 0, we used Q2 þH2 ¼ 3. We solve Eq. (53)
for zero modes, i. e., ! ¼ 0, and at the Fermi surface
	 ¼ k and implement Eq. (55).
Near the horizon (z ¼ 0, f ¼ 6z2), we have

6z2~y001;2 þ 12z~y01;2 þ
�
3

2
þ ð�q;effÞ2

6
� k2F

�
~y1;2 ¼ 0; (56)

which gives the following behavior:

HOLOGRAPHIC FERMIONS IN EXTERNAL MAGNETIC FIELDS PHYSICAL REVIEW D 84, 106003 (2011)

106003-11



~y 1;2 � z�ð1=2Þ��k ; (57)

with the scaling exponent � following from Eq. (32):

� ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6k2 � ð�q;effÞ2

q
; (58)

at the momentum k. Using MAPLE, we find the zero-mode

solution of Eq. (53) with a regular behavior z�ð1=2Þþ� at the
horizon [18,21]:

~yð0Þ1 ¼N1ðz� 1Þ3=2z�ð1=2Þþ�ðz� �z0Þ�ð1=2Þ��

�
�
z� z0
z� �z0

�
1=4ð�1� ffiffi

2
p

�q;eff=z0Þ
2F1

�
1

2
þ��

ffiffiffi
2

p
3
�q;eff ;�

þ i
�q;eff

6
;1þ 2�;

2i
ffiffiffi
2

p
z

3z0ðz� �z0Þ
�
; (59)

and

~yð0Þ2 ¼ N2ðz� 1Þ3=2z�ð1=2Þþ�ðz� �z0Þ�ð1=2Þ��

�
�
z� z0
z� �z0

�
1=4ð�1þ ffiffi

2
p

�q;eff=z0Þ
2F1

�
1

2
þ �þ

ffiffiffi
2

p
3
�q;eff ; �

� i
�q;eff

6
;1þ 2�;

2i
ffiffiffi
2

p
z

3z0ðz� �z0Þ
�
; (60)

where 2F1 is the hypergeometric function and N1, N2 are
normalization factors. Since normalization factors are con-
stants, we find their relative weight by substituting solu-
tions given in Eq. (59) back into the first order differential
equations at z� 0,

N1

N2

¼ � 6i�þ�q;effffiffiffi
6

p
k

�
z0
�z0

�
�q;eff=

ffiffi
2

p
z0
: (61)

The same relations are obtained when calculations are

done for any z. The second solution ~�ð0Þ
1;2, with behavior

z�ð1=2Þ�� at the horizon, is obtained by replacing � ! ��
in Eq. (59).
To get insight into the zero-mode solution (59), we plot

the radial profile for the density function c ð0Þyc ð0Þ for
different magnetic fields in Fig. 5. The momentum chosen
is the Fermi momentum of the first Fermi surface (see the
next section). The curves are normalized to have the same
maxima. Magnetic field is increased from right to left. At
small magnetic field, the zero modes are supported away
from the horizon, while at large magnetic field, the zero
modes are supported near the horizon. This means that at
large magnetic field, the influence of the black hole to the
Fermi level structure becomes more important.

B. Magnetic effects on the Fermi momentum
and Fermi velocity at T ¼ 0

In the presence of a magnetic field, there is only a true
pole in the Green’s function whenever the Landau level
crosses the Fermi energy [22]

2ljqhj ¼ k2F: (62)

As shown in Fig. 2, whenever Eq. (62) is satisfied, the
spectral function Að!Þ has a (sharp) peak. This is not
surprising, since quasiparticles can be easily excited from
the Fermi surface. From Eq. (62), the spectral function
Að!Þ and the density of states on the Fermi surface Dð!Þ
are periodic in 1

h with the period

�

�
1

h

�
¼ 2�q

AF

; (63)

where AF ¼ �k2F is the area of the Fermi surface [22]. This
is a manifestation of the de Haas-van Alphen quantum
oscillations. At T ¼ 0, the electronic properties of metals
depend on the density of states on the Fermi surface.
Therefore, an oscillatory behavior as a function of mag-
netic field should appear in any quantity that depends on
the density of states on the Fermi energy. Magnetic sus-
ceptibility [22] and magnetization together with the super-
conducting gap [24] have been shown to exhibit quantum
oscillations. Every Landau level contributes an oscillating
term, and the period of the l-th level oscillation is deter-
mined by the value of the magnetic field h that satisfies
Eq. (62) for the given value of kF. Quantum oscillations
(and the quantum Hall effect, which we consider later in
the paper) are examples of phenomena in which Landau-
level physics reveals the presence of the Fermi surface.
The superconducting gap found in the quark matter in
magnetic fields [24] is another evidence for the existence
of the (highly degenerate) Fermi surface and the corre-
sponding Fermi momentum.

FIG. 5 (color online). Density of the zero-mode c 0yc 0 vs the
radial coordinate z (the horizon is at z ¼ 0, and the boundary
is at z ¼ 1) for different values of the magnetic field h for the
first (with the largest root for kF) Fermi surface. We set gF ¼ 1

(h ! H) and q ¼ 15ffiffi
3

p (�q;eff ! 15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2

3

q
). From right to left,

the values of the magnetic field are H ¼ f0; 1:4; 1:5; 1:6; 1:63;
1:65; 1:68g. The amplitudes of the curves are normalized to
unity. At weak magnetic fields, the wave function is supported
away from the horizon, while, at strong fields, it is supported
near the horizon.
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Generally, a Fermi surface controls the occupation of
energy levels in the system: The energy levels below the
Fermi surface are filled, and those above are empty (or
nonexistent). Here, however, the association to the Fermi
momentum can be obscured by the fact that the fermions
form highly degenerate Landau levels. Thus, in two di-
mensions, in the presence of the magnetic field, the corre-
sponding effective Fermi surface is given by a single point
in the phase space that is determined by nF, the Landau
index of the highest occupied level, i.e., the highest Landau
level below the chemical potential. 2 Increasing the mag-
netic field, Landau levels ‘‘move up’’ in the phase space,
leaving only the lower levels occupied, so that the effective
Fermi momentum scales roughly (excluding interactions)

as a square root of the magnetic field, kF � ffiffiffiffiffiffi
nF

p �
kmax
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h=hmax

p
. High magnetic fields drive the effective

density of the charge carriers down, approaching the limit
when the Fermi momentum coincides with the lowest
Landau level.

Many phenomena observed in the paper can thus be
qualitatively explained by Landau quantization. As dis-
cussed before, the notion of the Fermi momentum is lost
at very high magnetic fields. In what follows, the quanti-
tative Fermi-level structure at zero temperature, described
by kF and vF values, is obtained as a function of the
magnetic field using the solution of the Dirac equation
given by Eqs. (59) and (60). As in [11], we neglect first
the discrete nature of the Fermi momentum and velocity in
order to obtain general understanding. Upon taking the
quantization into account, the smooth curves become com-
binations of step functions following the same trend as the
smooth curves (without quantization). While usually the
grand canonical ensemble is used, where the fixed chemi-
cal potential controls the occupation of the Landau levels
[25], in our setup, the Fermi momentum is allowed to
change as the magnetic field is varied, while we keep track
of the IR conformal dimension �.

The Fermi momentum is defined by the matching be-
tween IR and UV physics [7]. Therefore, it is enough to
know the solution at ! ¼ 0, where the matching is per-
formed. To obtain the Fermi momentum, we require
that the zero-mode solution is regular at the horizon

(c ð0Þ � z�ð1=2Þþ�) and normalizable at the boundary. At
the boundary z� 1, the wave function behaves as

að1� zÞ3=2�m
1

0

 !
þ bð1� zÞ3=2þm

0

1

 !
: (64)

To require it to be normalizable is to set the first term
a ¼ 0; the wave function at z� 1 is then

c ð0Þ � ð1� zÞ3=2þm 0
1

� �
: (65)

Equation (65) leads to the condition limz!1ðz�1Þ�3=2�
ð~yð0Þ2 þ i~yð0Þ1 Þ¼0, which, together with Eq. (59), gives
the following equation for the Fermi momentum as
function of the magnetic field [18,21]:

2F1ð1þ �þ i�q;eff

6 ; 12 þ ��
ffiffi
2

p
�q;eff

3 ; 1þ 2�; 23 ð1� i
ffiffiffi
2

p ÞÞ
2F1ð�þ i�q;eff

6 ; 12 þ ��
ffiffi
2

p
�q;eff

3 ; 1þ 2�; 23 ð1� i
ffiffiffi
2

p ÞÞ

¼ 6�� i�q;eff

kFð�2iþ ffiffiffi
2

p Þ ; (66)

with � 	 �kF given by Eq. (58). Using MATHEMATICA to

evaluate the hypergeometric functions, we numerically
solve the equation for the Fermi surface, which gives
effective momentum as if it were continuous, i.e., when
quantization is neglected. The solutions of Eq. (66) are
given in Fig. 6. There are multiple Fermi surfaces for a
given magnetic field h. Here, and in all other plots,
we choose gF ¼ 1. Therefore, h ! H and q ¼ 15ffiffi

3
p . In

Fig. 6, positive and negative kF correspond to the Fermi
surfaces in the Green’s functions G1 and G2. The
relation between two components is G2ð!; kÞ ¼
G1ð!;�kÞ [6]. Therefore, Fig. 6 is not symmetric
with respect to the x-axis. Effective momenta terminate
at the dashed line �kF ¼ 0. Taking into account Landau

quantization of kF ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

with l ¼ 1; 2 . . . , the plot
consists of stepwise functions tracing the existing
curves (we depict only positive kF). Indeed, Landau

0.5 1.0 1.5
H

10

5

5

10

keff

FIG. 6 (color online). Effective momentum keff vs the mag-
netic field h ! H (we set gF ¼ 1, q ¼ 15ffiffi

3
p ). As we increase the

magnetic field, the Fermi surface shrinks. Smooth solid curves
represent the situation as if momentum is a continuous parameter
(for convenience), stepwise solid functions are the real Fermi
momenta, which are discretized due to the Landau-level quan-

tization: kF ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

, with l ¼ 1; 2; . . . ; where
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

are
Landau levels given by dotted lines (only positive discrete kF
are shown). At a given h, there are multiple Fermi surfaces. From
right to left are the first, second, etc., Fermi surfaces. The
dashed-dotted line is �kF ¼ 0, where kF is terminated. Positive

and negative keff correspond to Fermi surfaces in two compo-
nents of the Green’s function.

2We would like to thank Igor Shovkovy for clarifying the issue
with the Fermi momentum in the presence of the magnetic field.
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quantization can be also seen from the dispersion rela-
tion at Fig. 3, where only discrete values of effective
momentum are allowed, and the Fermi surface has been
chopped up as a result of quantization, Fig. 3(b).

Our findings agree with the results for the (largest) Fermi
momentum in a 3-dimensional magnetic system consid-
ered in [26] (compare the stepwise dependence kFðhÞ with
Fig. (5) in [26]).

In Fig. 7, the Landau-level index l is obtained from

kFðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

, where kFðhÞ is a numerical solution of
Eq. (66). Only those Landau levels which are below the
Fermi surface are filled. In Fig. 6, as we decrease magnetic
field, first nothing happens until the next Landau level
crosses the Fermi surface, which corresponds to a jump
up to the next step. Therefore, at strong magnetic fields,

fewer states contribute to transport properties, and the
lowest Landau level becomes more important (see the
next section). At weak magnetic fields, the sum over
many Landau levels has to be taken, ending with the
continuous limit as h ! 0, when quantization can be
ignored.
In Fig. 8, we show the IR conformal dimension as a

function of the magnetic field. We have used the numerical
solution for kF. Fermi-liquid regime takes place at mag-
netic fields h < hc, while non-Fermi liquids exist in a
narrow band at hc < h < h0c, and at h0c the system becomes
near-conformal.
In this figure, we observe the pathway of the possible

phase transition exhibited by the Fermi surface (ignoring
Landau quantization): It can vanish at the line �kF ¼ 0,

undergoing a crossover to the conformal regime, or cross
the line �kF ¼ 1=2 and go through a non-Fermi-liquid

regime, and, subsequently, cross to the conformal phase.
Note that the primary Fermi surface with the highest kF
and �kF seems to directly cross over to conformality, while

the other Fermi surfaces first exhibit a strange-metal phase
transition. Therefore, all the Fermi momenta with �kF > 0

contribute to the transport coefficients of the theory. In
particular, at high magnetic fields, only the first (largest)

Fermi momentum kð1ÞF is nonzero and the lowest Landau
level n ¼ 0 becomes increasingly important. The lowest
Landau level contributes to the transport with half-
degeneracy factor, as compared to the higher Landau
levels.
In Fig. 9, we plot the Fermi momentum kF as a function

of the magnetic field for the first Fermi surface (the largest
root of Eq. (66)). Quantization is neglected here. At the left
panel, the relatively small region between the dashed lines
corresponds to non-Fermi liquids 0< �< 1

2 . At large

magnetic field, the physics of the Fermi surface is captured

0.5 1.0 1.5
H

5

10

15

20

n

FIG. 7 (color online). Landau-level numbers n, corresponding
to the quantized Fermi momenta vs the magnetic field h ! H
for the three Fermi surfaces with positive kF. We set gF ¼ 1,
q ¼ 15ffiffi

3
p . From right to left are the first, second, and third Fermi

surfaces.

FIG. 8 (color online). Left panel: the IR conformal dimension � 	 �kF calculated at the Fermi momentum vs the magnetic field
h ! H (we set gF ¼ 1, q ¼ 15ffiffi

3
p ). Calculations are done for the first Fermi surface. The dashed line is for � ¼ 1

2 (at Hc ¼ 1:7), which is

the border between the Fermi liquids � > 1
2 and non-Fermi liquids � < 1

2 . Right panel: the phase diagram in terms of the chemical

potential and the magnetic field �2 þ h2 ¼ 3 (in dimensionless variables h ¼ gFH, � ¼ gFQ; we set gF ¼ 1). Fermi liquids are
above the dashed line (H <Hc), and non-Fermi liquids are below the dashed line (H >Hc).
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by the near-horizon region (see also Fig. 5), which is

AdS2 � R2. At the maximum magnetic field, Hmax ¼ffiffiffi
3

p  1:73, when the black hole becomes entirely mag-
netically charged, the Fermi momentum vanishes when it
crosses the line �kF ¼ 0. This only happens for the first

Fermi surface. For the higher Fermi surfaces, the Fermi
momenta terminate at the line �kF ¼ 0 (Fig. 6). Note the

Fermi momentum for the first Fermi surface can be almost

fully described by a function kF ¼ kmax
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2

3

q
. It is

tempting to view the behavior kF � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hmax �H

p
as a phase

transition in the system, although it strictly follows from
the linear scaling for H ¼ 0 by using the mapping (29).

(Note that also � ¼ gFQ ¼ gF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�H2

p
.) Taking into ac-

count the discretization of kF, the plot will consist of an
array of step functions tracing the existing curve. Our
findings agree with the results for the Fermi momentum
in a 3-dimensional magnetic system considered in [26],
compare to Fig. 5 there.

The Fermi velocity given in Eq. (27) is defined by the
UV physics. Therefore, solutions at nonzero ! are re-
quired. The Fermi velocity is extracted from matching
two solutions in the inner and outer regions at the horizon.
The Fermi velocity as a function of the magnetic field for
� > 1

2 is [18,21]

vF ¼ 1

h1

�Z 1

0
dz

ffiffiffiffiffiffiffiffiffiffiffi
g=gtt

q
c ð0Þyc ð0Þ

��1
lim
z!1

j~yð0Þ1 þ i~yð0Þ2 j2
ð1� zÞ3 ;

h1 ¼ lim
z!1

~yð0Þ1 þ i~yð0Þ2

@kð~yð0Þ2 þ i~yð0Þ1 Þ ; (67)

where the zero-mode wave function is taken at kF
(Eq. (59)).

We plot the Fermi velocity for several Fermi surfaces in
Fig. 10 and for the first Fermi surface in Fig. 11.
Quantization is neglected here. The Fermi velocity is
shown for � > 1

2 . It is interesting that the Fermi velocity

vanishes when the IR conformal dimension is �kF ¼ 1
2 .

Formally, it follows from the fact that vF � ð2�� 1Þ [7].
The first Fermi surface is at the far right. Positive and
negative vF correspond to the Fermi surfaces in the
Green’s functions G1 and G2, respectively. The Fermi
velocity vF has the same sign as the Fermi momentum
kF. At small magnetic field values, the Fermi velocity is

0.5 1.0 1.5
H

2

4

6

8

10

12

kF

FIG. 9 (color online). Fermi momentum kF vs the magnetic field h ! H (we set gF ¼ 1, q ¼ 15ffiffi
3

p ) for the first Fermi surface. Left
panel: The inner (closer to x-axis) dashed line is �kF ¼ 0, and the outer dashed line is �kF ¼ 1

2 . The region between these lines

corresponds to non-Fermi liquids 0< �kF <
1
2 . The dashed-dotted line is for the first Landau level k1 ¼

ffiffiffiffiffiffiffiffiffiffi
2qH

p
. The first Fermi surface

hits the border line between Fermi and non-Fermi liquids � ¼ 1
2 at Hc  1:7, and it vanishes at Hmax ¼

ffiffiffi
3

p ¼ 1:73. Right panel:

Circles are the data points for the Fermi momentum calculated analytically, and the solid line is a fit function kmax
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H2

3

q
with

kmax
F ¼ 12:96.

FIG. 10 (color online). Fermi velocity vF vs the magnetic field
h ! H (we set gF ¼ 1, q ¼ 15ffiffi

3
p ) for the regime of Fermi liquids

� � 1
2 . Fermi velocity vanishes at �kF ¼ 1

2 (x-axis). The multiple

lines are for various Fermi surfaces in ascending order, with the
first Fermi surface on the right. The Fermi velocity vF has the
same sign as the Fermi momentum kF. As above, positive and
negative vF correspond to Fermi surfaces in the two components
of the Green’s function.
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very weakly dependent onH, and it is close to the speed of
light. At large magnetic field values, the Fermi velocity
rapidly decreases and vanishes (at Hc ¼ 1:70 for the first
Fermi surface (Fig. 11)). Geometrically, this means that,
with increasing magnetic field, the zero-mode wave func-
tion is supported near the black hole horizon (Fig. 5),
where the gravitational redshift reduces the local speed
of light, as compared to the boundary value. It was also
observed in [7,21] at small fermion charge values.

VI. HALL AND LONGITUDINAL
CONDUCTIVITIES

In this section, we calculate the contributions to Hall�xy

and the longitudinal �xx conductivities directly in the
boundary theory. This should be contrasted with the stan-
dard holographic approach, where calculations are per-
formed in the (bulk) gravity theory and then translated to
the boundary field theory using the AdS/CFT dictionary.
Specifically, the conductivity tensor has been obtained in
[10] by calculating the on-shell renormalized action for
the gauge field on the gravity side and using the gauge/
gravity duality AM ! j� to extract the R charge current-

current correlator at the boundary. Here, the Kubo for-
mula involving the current-current correlator is used di-
rectly by utilizing the fermion Green’s functions extracted
from holography in [7]. Therefore, the conductivity is
obtained for the charge carriers described by the fermi-
onic operators of the boundary field theory.

The use of the conventional Kubo formula to extract the
contribution to the transport due to fermions is validated in
that it also follows from a direct AdS/CFT computation of
the one-loop correction to the on-shell renormalized AdS
action [15]. We study, in particular, stable quasiparticles
with � > 1

2 and at zero temperature. This regime effectively

reduces to the clean limit where the imaginary part of the

self-energy vanishes Im� ! 0. We use the gravity-
‘‘dressed’’ fermion propagator from Eq. (27), and, to
make the calculations complete, we need to use the dressed
vertex to satisfy the Ward identities. As was argued in [15],
the boundary vertex, which is obtained from the bulk
calculations, can be approximated by a constant in the
low-temperature limit. Also, according to [27], the vertex
only contains singularities of the product of the Green’s
functions. Therefore, dressing the vertex will not change
the dependence of the DC conductivity on the magnetic
field [27]. In addition, the zero magnetic field limit of the
formulae for conductivity obtained from holography [15]
and from direct boundary calculations [18] are identical.

A. Integer quantum Hall effect

Let us start from the dressed retarded and advanced
fermion propagators [7]: GR is given by Eq. (27) and
GA ¼ G�

R. To perform the Matsubara summation, we use
the spectral representation

Gði!n; ~kÞ ¼
Z d!

2�

Að!; ~kÞ
!� i!n

; (68)

with the spectral function defined as Að!; ~kÞ¼
� 1

� ImGRð!; ~kÞ¼ 1
2�iðGRð!; ~kÞ�GAð!; ~kÞÞ. Generalizing

to a nonzero magnetic field and spinor case [25], the
spectral function [28] is

Að!; ~kÞ ¼ 1

�
e�k2=jqhjX1

l¼0

ð�1Þlð�h1vFÞ

�
�

�2ð!; kFÞfð ~kÞ�0

ð!þ "F þ�1ð!; kFÞ � ElÞ2 þ �2ð!; kFÞ2

þ ðEl ! �ElÞ
�
; (69)

where "F ¼ vFkF is the Fermi energy, El ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

is

the energy of the Landau level, fð ~kÞ ¼ P�Llð2k2jqhjÞ �
PþLl�1ð2k2jqhjÞ with spin projection operators P� ¼
ð1� i�1�2Þ=2, we take c ¼ 1, the generalized Laguerre
polynomials are L�

n ðzÞ and by definition LnðzÞ ¼ L0
nðzÞ,

(we omit the vector part ~k ~� as it does not contribute to
the DC conductivity), all �’s are the standard Dirac
matrices, and h1, vF, and kF are real constants (we
keep the same notations for the constants as in [7]). The

self-energy ��!2�kF contains the real and imaginary
parts, � ¼ �1 þ i�2. The imaginary part comes from
scattering processes of a fermion in the bulk, e.g., from
pair creation, and from the scattering into the black hole.
It is exactly due to inelastic/dissipative processes that we
are able to obtain finite values for the transport coeffi-
cients; otherwise they are formally infinite.

FIG. 11. Fermi velocity vF vs the magnetic field h ! H (we
set gF ¼ 1, q ¼ 15ffiffi

3
p ) for the first Fermi surface. Fermi velocity

vanishes at �kF ¼ 1
2 at Hc  1:7. The region H <Hc corre-

sponds to the Fermi liquids and quasiparticle description.

E. GUBANKOVA et al. PHYSICAL REVIEW D 84, 106003 (2011)

106003-16



Using the Kubo formula, the DC electrical conductivity
tensor is

�ijð�Þ ¼ lim
�!0

Im�R
ij

�þ i0þ
; (70)

where �ijði�m ! �þ i0þÞ is the retarded current-

current correlation function; schematically the current
density operator is jið�; ~xÞ ¼ qvF

P
�
�c �ð�; ~xÞ�ic �ð�; ~xÞ.

Neglecting the vertex correction, it is given by

�ijði�mÞ ¼ q2v2
FT

X1
n¼�1

Z d2k

ð2�Þ2 trð�iGði!n; ~kÞ

� �jGði!n þ i�m; ~kÞÞ: (71)

The sum over the Matsubara frequency is

T
X
n

1

i!n �!1

1

i!n þ i�m �!2

¼ nð!1Þ � nð!2Þ
i�m þ!1 �!2

:

(72)

Taking i�m ! �þ i0þ, the polarization operator is now

�ijð�Þ ¼ d!1

2�

d!2

2�

nFDð!1Þ � nFDð!2Þ
�þ!1 �!2

�
Z d2k

ð2�Þ2 trð�iAð!1; ~kÞ�jAð!2; ~kÞÞ; (73)

where the spectral function Að!; ~kÞ is given by Eq. (69),
and nFDð!Þ is the Fermi-Dirac distribution function.
Evaluating the traces, we have

�ij ¼ � 4q2v2
Fðh1vFÞ2jqhj
��

Re
X1
l;k¼0

ð�1Þlþkþ1f�ijð�l;k�1 þ �l�1;kÞ þ i�ijsgnðqhÞð�l;k�1 � �l�1;kÞg

�
Z d!1

2�

�
tanh

!1

2T
� tanh

!2

2T

��
�2ð!1Þ

ð ~!1 � ElÞ2 þ�2
2ð!1Þ

þ ðEl ! �ElÞ
��

�2ð!2Þ
ð ~!2 � EkÞ2 þ�2

2ð!2Þ
þ ðEk ! �EkÞ

�
;

(74)

with !2 ¼ !1 þ�. We have also introduced ~!1;2 	
!1;2 þ "F þ �1ð!1;2Þ, with �ij being the antisymmetric
tensor (�12 ¼ 1), and �1;2ð!Þ 	 �1;2ð!; kFÞ. In the mo-
mentum integral, we use the orthogonality condition for
the Laguerre polynomials

R1
0 dxexLlðxÞLkðxÞ ¼ �lk.

From Eq. (74), the term symmetric/antisymmetric with
respect to exchange !1 $ !2 contributes to the diagonal/
off-dialgonal component of the conductivity (note the anti-
symmetric term nFDð!1Þ � nFDð!2Þ). The longitudinal and
Hall DC conductivities (� ! 0) are thus

�xx ¼ � 2q2ðh1vFÞ2jqhj
�T

Z 1

�1
d!

2�

�2
2ð!Þ

cosh2 !
2T

X1
l¼0

�
1

ð ~!� ElÞ2 þ �2
2ð!Þ þ ðEl ! �ElÞ

�

�
�

1

ð ~!� Elþ1Þ2 þ �2
2ð!Þ þ ðElþ1 ! �Elþ1Þ

�
; (75)

�xy ¼ �q2ðh1vFÞ2sgnðqhÞ
�

�h; �h ¼ 2
Z 1

�1
d!

2�
tanh

!

2T
�2ð!ÞX1

l¼0

�l

�
1

ð ~!� ElÞ2 þ �2
2ð!Þ þ ðEl ! �ElÞ

�
; (76)

where ~! ¼ !þ "F þ �1ð!ÞÞ. The filling factor �h is
proportional to the density of carriers: j�hj ¼ �

jqhjh1vF
n

(we derive this relation below in Eq. (89)). The degeneracy
factor of the Landau levels is �l: �0 ¼ 1 for the lowest
Landau level, and �l ¼ 2 for l ¼ 1; 2 . . . ; . Substituting the
filling factor �h back to Eq. (76), the Hall conductivity can
be written as

�xy ¼ �

h
; (77)

where � is the charge density in the boundary theory, and
both the charge q and the magnetic field h carry a sign (the
prefactor ð�h1vFÞ comes from the normalization choice in
the fermion propagator, Eqs.(27) and (69), as it was defined

in [7], which can be regarded as a factor contributing to the
effective charge and is not important for further consider-
ations). The Hall conductivity given by Eq. (77) has been
obtained using the AdS/CFT duality for the Lorentz in-
variant 2þ 1-dimensional boundary field theories in [10].
We recover this formula because, in our case, the transla-
tional invariance is maintained in the x and y directions of
the boundary theory.
Low frequencies give the main contribution in the in-

tegrand of Eq. (76). Since the self-energy satisfies�1ð!Þ �
�2ð!Þ �!2� and we consider the regime � > 1

2 , we have

�1 � �2 ! 0 at !� 0 (self-energy goes to zero faster
than the ! term). Therefore, only the simple poles in the
upper half-plane !0 ¼ �"F � El þ �1 þ i�2 contribute
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to the conductivity where �1 ��2 � ð�"F � ElÞ2� are
small. The same logic of calculation has been used in
[25]. We obtain for the longitudinal and Hall conductivities

�xx ¼ 2q2ðh1vFÞ2�2

�T
�
�

1

1þ cosh"FT

þX1
l¼1

4l
1þ cosh"FT coshEl

T

ðcosh"FT þ coshEl

T Þ2
�

(78)

�xy ¼ q2ðh1vFÞ2sgnðqhÞ
�

� 2

�
tanh

"F
2T

þX1
l¼1

�
tanh

"F þ El

2T
þ tanh

"F � El

2T

��
; (79)

where the Fermi energy is "F ¼ vFkF, and the energy of

the Landau level is El ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

. Similar expressions
were obtained in [25]. However, in our case, the filling of
the Landau levels is controlled by the magnetic field h
through the field-dependent Fermi energy vFðhÞkFðhÞ in-
stead of the chemical potential �.

At T ¼ 0, cosh!T ! 1
2 e

!=T and tanh!
2T ¼ 1�

2nFDð!Þ ! sgn!. Therefore, the longitudinal and Hall
conductivities are

�xx ¼ 2q2ðh1vFÞ2�2

�T

X1
l¼1

l�"F;El
¼ 2q2ðh1vFÞ2�2

�T
�n�"F;En

;

(80)

�xy ¼ q2ðh1vFÞ2sgnðqhÞ
�

2

�
1þ 2

X1
l¼1

�ð"F � ElÞ
�

¼ q2ðh1vFÞ2sgnðqhÞ
�

� 2ð1þ 2nÞ�ð"F � EnÞ�ðEnþ1 � "FÞ; (81)

where the Landau-level index runs n ¼ 0; 1; . . . ; . It can be

estimated as n ¼ ½ k2F
2jqhj� when vF � 0 (½� denotes the in-

teger part), with the average spacing between the Landau

levels given by the Landau energy vF

ffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjp

. Note that
"F 	 "FðhÞ. We can see that Eq. (81) expresses the integer
quantum Hall effect (IQHE). At zero temperature, as we
dial the magnetic field, the Hall conductivity jumps from
one quantized level to another, forming plateaus given by
the filling factor

�h ¼ �2ð1þ 2nÞ ¼ �4

�
nþ 1

2

�
; (82)

with n ¼ 0; 1; . . . ; . (Compare to the conventional Hall
quantization �h ¼ �4n that appears in thick graphene).
Plateaus of the Hall conductivity at T ¼ 0 follow from the
stepwise behavior of the charge density � in Eq. (77):

�� 4

�
nþ 1

2

�
�ð"F � EnÞ�ðEnþ1 � "FÞ; (83)

where n Landau levels are filled and contribute to �. The
longitudinal conductivity vanishes, except precisely at the
transition point between the plateaus. In Fig. 12, we plot
the longitudinal and Hall conductivities at T ¼ 0, using
only the terms after the � sign in Eq. (79). In the Hall
conductivity, plateau transition occurs when the Fermi
level (in Fig. 12) of the first Fermi surface "F ¼
vFðhÞkFðhÞ (Figs. 9 and 11) crosses the Landau-level
energy as we vary the magnetic field. By decreasing the

FIG. 12 (color online). Hall conductivity �xy and longitudinal conductivity �xx vs the magnetic field h ! H at T ¼ 0 (we set
gF ¼ 1, q ¼ 15ffiffi

3
p ). Contribution from the first Fermi surface is taken. By decreasing the magnetic field, the Fermi surface crosses the

Landau levels, producing the Hall conductivity plateaus characteristic for IQHE. Longitudinal conductivity has picks at the beginning
of each plateau. The right panel is a zoom-in for large h of the left one.
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magnetic field, the plateaus become shorter, and increas-
ingly more Landau levels contribute to the Hall conduc-
tivity. This happens because of two factors: the Fermi level
moves up, and the spacing between the Landau levels
becomes smaller. This picture does not depend on the
Fermi velocity as long as it is nonzero.

In the boundary field theory, we express the charge
density of the carriers (the difference between the densities
of ‘‘electrons’’ and ‘‘holes’’) through the Fermi energy "F
(as it is done in [25]):

n ¼ trð�0 ~Gð�; 0ÞÞ; � ! 0; (84)

where ~Gð�; ~xÞ is the translation-invariant part of the
Green’s function Gð�; ~xÞ from Eq. (68). Using the spectral
function representation given by Eq. (69), the charge den-
sity reads

n ¼ T
X1

n¼�1

Z d2k

ð2�Þ2
Z 1

�1
d!

2�

trð�0Að!; ~kÞÞ
!� i!n

: (85)

We express the Matsubara sum in terms of the contour
integral over real frequencies:

T
X1

n¼�1
Fði!nÞ ! � i

4�

Z
C
dz tanh

z

2T
FðzÞ; (86)

where C runs anticlockwise and encircles the poles of tanh
along the upper- and lower-half imaginary axis. We have
for the charge density

n ¼ 1

2

Z d2k

ð2�Þ2
Z 1

�1
d!

2�
tanh

!

2T
trð�0Að!; ~kÞÞ: (87)

Substituting the spectral function (69) and integrating over
momenta, we obtain

n ¼ � 2jqhjh1vF

�

Z 1

�1
d!

2�
tanh

!

2T
�2ð!Þ

�X1
l¼0

�l

�
1

ð ~!� ElÞ2 þ �2
2ð!Þ þ ðEl ! �ElÞ

�
; (88)

where the degeneracy factor is �0 ¼ 1 for the lowest
Landau level, and �l ¼ 2 for the higher Landau levels
l � 1, ~! ¼ !þ "F þ�1ð!Þ. Integrating over frequen-
cies and taking into account that �2 is effectively very
small near the Fermi surface, we obtain

n ¼ jqhjh1vF

�
� 2

�
tanh

"F
2T

þX1
l¼1

�
tanh

"F þ El

2T
þ tanh

"F � El

2T

��
: (89)

Comparing this to Eq. (79), we obtain the relation j�hj ¼
�

jqhjh1vF
n. When the Fermi energy vanishes ("F ¼ 0), the

spectral function (69) is even in !. From Eq. (88), the
carrier density of stable quasiparticles vanishes when
"F ¼ 0. At the end of this section, we discuss a situation

with no stable charge carriers and physical consequences
of it.
Equations (79)–(89) are obtained assuming that the

states are localized around the Landau levels. In quantum
Hall effect (QHE) models, impurities are added to prevent
the states from ‘‘spilling’’ between the Landau levels and
to provide the necessary occupation number of the levels.
In our holographic calculations, however, the complex self-
energy arises not from the impurities but from various
scattering processes into the black hole. Here, the limit
Im� ! 0 has been considered, which corresponds to a
simplified field theory model [25] (the cited reference
also considers the case with impurities). This approxima-
tion suffices to obtain the integer QHE [25] and for our
initial studies of the fractional QHE. We leave the imple-
mentation of a physical model with impurities for future
work.

B. Fractional quantum Hall effect

In a holographic setting, using the AdS geometry is
equivalent to a calculation in a box. Therefore, for large
enough fermion charge q, there are multiple Fermi sur-
faces, as shown in Figs. 6 and 10. Labeling the Fermi
surfaces with � > 1

2 by m ¼ 1; 2; . . . , we represent, as in

[21], the spectral function Að!; ~kÞ as a sum over the
spectral functions of individual Fermi surfaces given by
Eq. (69). Ignoring the mixing term, the DC conductivity
becomes a direct sum over the individual conductivities.
By decreasing the magnetic field, new Fermi surfaces
gradually appear, as can be seen in Figs. 6 and 7.
Therefore, the conductivity tensor is

�ij ¼
X
m

�ðmÞ
ij �ðhðmÞ

max � hÞ; (90)

where �ðmÞ
ij involves the Fermi momentum kðmÞ

F and veloc-

ity vðmÞ
F , respectively. At the maximummagnetic field hðmÞ

max,

a new kðmÞ
F opens up; hðmÞ

max is found numerically.
Including one, two, three, and four Fermi surfaces, we

obtain the following quantization rule for the filling factor
in the Hall conductivity:

1FS: �h ¼ 2ð1þ 2nÞ;
plateaus ! 2; 6; 10; . . . ;

2FS0s: �h ¼ 4ð1þ nþ kÞ;
plateaus ! 4; 8; 12; . . . ;

3FS0s: �h ¼ 2ð3þ 2ðnþ kþ pÞÞ;
plateaus ! 6; 10; 14; . . . ;

4FS0s: �h ¼ 4ð2þ nþ kþ pþ rÞ;
plateaus ! 8; 12; 16; . . . ;

(91)

with n; k; p; r ¼ 0; 1; . . . ; . An odd number of Fermi sur-
faces produces the plateaus present in the IQHE, while an
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even number of Fermi surfaces produces the additional
plateaus appearing in the fractional quantum Hall effect
(FQHE). For a large enough fermion charge q, many Fermi
surfaces contribute, and the primary effect of the change in
H is the opening of a new Fermi surface, rather than the
occupation of the next plateau. Thus, at large qwe expect a
filling fraction pattern at large h to become

�h ¼ �2j; (92)

where j ¼ 1; 2; . . . ; is the effective Landau-level index
counting the number of contributing Landau levels. This
is indeed observed in the FQHE at strong magnetic fields.
The quantization rule (91) persists as long as new Fermi
surfaces open up with decreasing h. However, the first two
plateaus present in the FQHE �h ¼ 0;�1 are absent in
Eq. (92). In order to get the Hall plateau �h ¼ �1, the
mixing term between two Fermi surfaces should probably
be taken into account (incoherent superposition), whereas
the conductivity (90) includes the diagonal terms only.
We discuss the issue with �h ¼ 0 further.

In Fig. 13, we plot the Hall and longitudinal conduc-
tivities at T ¼ 0 with three Fermi surfaces contributing

(Eq. (90)), where the individual conductivities �ðmÞ are
given by Eq. (79). We fit the Fermi momenta by

kðmÞ
F ¼ kðmÞ

Fsmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

3

s
þ �ðmÞ; (93)

with kð1ÞFmax ¼ 12:96, �ð1Þ ¼ 0., kð2ÞFmax ¼ 10:29, �ð2Þ ¼
1:5, kð3ÞFmax ¼ 9:75, �ð3Þ ¼ 3, and use Eq. (93) together

with the numerical solutions for vðmÞ
F in Fig. 13. In

Fig. 13, at strong magnetic fields, the Hall conductivity

plateau �h ¼ 4 originates from two Fermi surfaces to-
gether with the plateaus �h ¼ 2 and �h ¼ 6, when one
and three Fermi surfaces contribute, respectively. As we
decrease the magnetic field further, three Fermi surfaces
produce plateaus characteristic for IQHE, Eq. (82). The
longitudinal conductivity shows a Dirac deltalike peak at
the beginning of each plateau. Since a finite contribution
to the conductivity arises as one of the three Fermi
surfaces crosses the next Landau level, the pattern is
less regular (i.e., the plateaus have changing length)
than in the case when only one Fermi surface contributes.
In Fig. 13, we compare the Hall conductivities with one
and three Fermi surfaces participating. The irregular be-
havior of the Hall conductivity is explained naturally
from the picture with multiple Fermi surfaces.
Qualitatively similar regularity of the plateaus’ length is
seen in experiments on thin films of graphite at strong
magnetic fields [23]. The actual physics behind this,
however, might be quite different, as in this system,
multiple sheets of the Fermi surface arise due to the
(hexagonal) lattice on the UV scale, which is an effect
beyond the scope of our current model.
The somewhat regular pattern behind the irregular be-

havior can be understood as a consequence of the appear-
ance of a new energy scale: the average distance between
the Fermi levels. For the case of Fig. 13, we estimate it to

be <"ðmÞ
F � "ðmþ1Þ

F > ¼ 4:9. The authors of [25] explain

the FQHE through the opening of a gap in the quasiparticle
spectrum, which acts as an order parameter related to the
particle-hole pairing and is enhanced by the magnetic field
(magnetic catalysis). Here, the energy gap arises due to the
participation of multiple Fermi surfaces.

FIG. 13 (color online). Hall conductivity �xy and longitudinal conductivity �xx vs the magnetic field h ! H at T ¼ 0 (we set
gF ¼ 1, q ¼ 15ffiffi

3
p ). Contribution from the first three Fermi surfaces are taken. At strong magnetic fields, the Hall conductivity plateau

�h ¼ 4 appears from two Fermi surfaces together with plateaus �h ¼ 2 and �h ¼ 6 when one and three Fermi surfaces contribute,
respectively. This quantization rule is characteristic for the FQHE. At intermediate and weak magnetic fields, the Hall conductivity
plateaus are produced as one of the three Fermi surfaces crosses the Landau levels, resulting in the quantization rule of the IQHE. An
irregular pattern in the length of the plateaus is observed in the experiment on thin films of graphite at strong magnetic fields [23]. The
right panel is a zoom-in for large h of the left one.
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A pattern for the Hall conductivity that is strikingly
similar to Fig. 13 arises in the bilayer graphene (compare
with Figs. 2 and 5 in Ref. [29]), which has different
transport properties from the monolayer graphene [29]. It
is remarkable that the bilayer graphene also exhibits the
insulating behavior in a certain parameter regime. This
agrees with our findings of metal-insulating transition in
our system.

C. Metal–strange-metal phase transition

The previous discussion of conductivities and QHE is
valid provided that the Fermi velocity is nonzero. However,
we have shown that vF vanishes at relatively strong mag-
netic fields (for the first Fermi surface, it happens at hc as in
Fig. 8 and 11). In the AdS/CFT setting, the Fermi velocity
vanishes when the IR anomalous dimension is � ¼ 1

2 ,

signaling the onset of a nontrivial power-law dispersion
in Green’s function G�1ð!Þ �!� vfk? þ!2� (the pole

in the self-energy � ! GIR
R �!2� and the pole in the

prefactor of the linear term �! [7]). Vanishing of vF

was observed in [21] at large enough fermion charge.
Note that if vF is zero for some interval of the magnetic
field, it leads to the Hall plateau with the filling factor
�h ¼ 0 present in FQHE.

The vanishing of the Fermi velocity of the stable quasi-
particle leads to zero carrier density at leading order:

vF ¼ 0 ! n ¼ 0: (94)

This means that all contribution to conductivity comes
from the other terms, containing the contribution from
the non-Fermi-liquid excitations and the conformal re-
gime. This qualitatively changes the transport properties
of the system, as can be seen in Fig. 14.

The finite offset magnetic field has been observed in
experiments on highly oriented pyrolitic graphite in mag-
netic fields [30]. In particular, analyzing the basal-plane
resistivity gave an approximate scaling relation between
the critical temperature of the metal-semiconducting tran-
sition and the magnetic field has been found Tc �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� hc

p
. It suggests that at T ¼ 0, there is a threshold

magnetic field hc above which the resistivity qualitatively
changes. Interestingly, the existence of such a threshold
magnetic field follows from the AdS/CFT calculations (hc
when � ¼ 1

2 ).

A phase transition is usually governed by an order
parameter which exhibits a critical behavior. In our case,
there is no such order parameter. However, it is interesting
to note that the Fermi momentum, according to Eq. (93),
behaves as kF � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hmax � h
p

, which is in line with the
postulated critical behavior in the system, while the
Fermi surface itself behaves as order parameter.
To obtain a complete picture of the metal–strange-metal

phase transition, one needs to perform calculations in the
non-Fermi-liquid regime, taking into account the un-
stable quasiparticle pole. It is also necessary to study
the temperature dependence of the DC conductivities
�xyðTÞ and �xxðTÞ. We leave it for future study.

VII. ABSENCE OF THE SIGN PROBLEM
IN HOLOGRAPHY

In this section, we show that the fermion determinant in
the gravity dual theory does not have a sign problem and
hence can be simulated by a lattice Monte-Carlo algorithm.
Until recently, most of the work on AdS/CFT and applied
holography focused on the classical gravity (leading 1=N
in field theory) limit. However, many thermodynamic and
electric properties depend on matter fields (e.g., the elec-
trical conductivity depends on whether or not the theory
has a Fermi surface). In classical gravity, the Einstein-
Maxwell sector decouples, and matter fields run in loops
representing quantum oscillations. In order to include mat-
ter fields in the bulk, one needs to calculate loop correc-
tions, which corresponds to going beyond the leading order
in 1=N. A study of one-loop bulk physics was done in [31]
and recently in [22]. It shows that analytical calculations of
quantum corrections in the bulk are quite involved. The
study of quantum oscillations in the gravity dual will likely
improve our understanding of finite density systems in
general.
As is well known, a finite density field theory in most

cases cannot be simulated on the lattice because of the
infamous sign problem [1]. In the field theory action,
chemical potential is introduced via the term �c��0c ,
which is Hermitian and therefore gives a complex deter-
minant. At the same time, in the bulk action, finite density
is introduced through the electrically charge black hole,
and does not involve even matter fields. This is the reason
why the applied holography gives universal predictions.

FIG. 14 (color online). Comparison of the Hall conductivities
�xy vs the magnetic field h ! H from one Fermi surface (dashed

line) and from three Fermi surfaces (solid line). We set gF ¼ 1
and q ¼ 15ffiffi

3
p . At strong magnetic fields, a new plateau �h ¼ 4

appears in the multiple-Fermi-surface picture, yielding a pattern
characteristic of FQHE.
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In the leading order, the minimal gravitational dual at finite
density and temperature is the electrically charged AdS-
Reissner-Nordström black hole, where only the metric
and Maxwell fields are present. Therefore, the Einstein-
Maxwell sector gives results which do not depend, for
example, on the charge and mass of matter fields in the
gravitational bulk space-time, i.e., are universal for a class
of field theories with different charge and scaling dimen-
sions of the operators. The fact that the chemical potential
enters via the electric field in the covariant derivative leads
to the real and positive definite fermion determinant, which
is suitable for lattice simulations. We show it formally
below.

In a semiclassical approach to gravity, the action in-
cludes the Einstein-Maxwell sector Sg with fields collec-

tively denoted as g, A in Eq. (1), and the matter sector with
the fermion fields Sc , Eq. (21). The latter is given as

(Euclidean signature):

Sc ¼
Z

d4xE
ffiffiffiffiffiffiffiffiffiffi�gE

p �c ðDþmÞc ; (95)

where D 	 �M
E DM and the covariant derivative is DM ¼

@M þ 1
4!abM�

ab � iqAM. We can always scale away the

spin connection by redefining the spinor field as in
Eq. (A6). Finite density is described by the electrically
charged black hole with chargeQ that generates the imagi-
nary time component of the vector potential AtE (Eq. (17)).

Radial profile of the vector potential AtE ¼ �ð1� 1
rÞ (in

dimensionless units) ensures a finite chemical potential
at the field theory boundary AtE ! � at r ! 1, where

� ¼ gFQ (in dimensionless units). Integrating out the
fermion fields, the gravitational partition function can be
written schematically as

Z ¼ X
g�;A�

detðDðg�; A�Þ þmÞe�Sg½g�;A��; (96)

where Sg is the Euclidean gravitational action at the saddle

points g�, A�. The determinant describes fluctuations about
the saddle point solution g�, A� and corresponds to 1=N
correction to the large N limit of a dual gauge theory.
Because the Euclidean gamma matrices are Hermitian by
convention (the signature of themetric fixes theHermiticity),

we have �0y
E ¼ �0

E and �iy
E ¼ �i

E with i ¼ 1; 2; 3, so the
covariant derivative is anti-Hermitian. Now it remains to be
shown that the determinant of this anti-Hermitian differential
operator is real and positive definite [32].

Using the anticommutation relations f�5
E;�

0;i
E g ¼ 0,

we have

�5
ED�5

E ¼ �D ¼ Dy; (97)

where D 	 Dðg; AÞ. Therefore, the determinant

detD ¼ detð�5
ED�5

EÞ ¼ detDy ¼ ðdetDÞ� (98)

is real. To show the positive definiteness, we remind the
reader that the eigenmodes of an anti-Hermitian deriva-
tive operator come in pairs. If ð	; c Þ is an eigenmode
of D,

Dc ¼ 	c ; (99)

then, from Eq. (99):

Dð�5
Ec Þ ¼ ð�	Þð�5

Ec Þ; (100)

so ð�	;�5
Ec Þ is also an eigenmode of D. Because of

anti-Hermiticity, from Eq. (97),

Dð�5
Ec Þ ¼ 	�ð�5

Ec Þ: (101)

This eigenvalue is completely imaginary (or zero),
�	 ¼ 	�. The determinant is a product of all the paired
eigenvalues,

detðDþmÞ ! �ið	i þmÞð�	i þmÞ ¼ �iðj	i þmj2Þ;
(102)

which is positive definite (or zero).
In field theory, the eigenmodes of the operator Dþ

��4
E þm still come in pairs ð	; c Þ and ð�	; �5

Ec Þ.
However, since ��4

E is Hermitian, 	 is no longer purely
imaginary, and, therefore, detðDþ��4

E þmÞ is not nec-
essarily positive. The sign problem occurs when det is
negative for some gauge configurations, or, in other words,
it is generically present when considering interacting mat-
ter at finite density.

VIII. CONCLUSIONS

We have studied strongly coupled electron systems in
the magnetic field, focusing on the Fermi-level structure,
using the AdS/CFT correspondence. These systems are
dual to Dirac fermions placed in the background of the
electrically and magnetically charged AdS-Reissner-
Nordström black hole. At strong magnetic fields, the dual
system ‘‘lives’’ near the black hole horizon, which
substantially modifies the Fermi-level structure. As we
dial the magnetic field higher, the system exhibits the
non-Fermi-liquid behavior and then crosses back to the
conformal regime. In our analysis, we have concentrated
on the the Fermi-liquid regime and obtained the depen-
dence of the Fermi momentum kF and Fermi velocity vF

on the magnetic field. Remarkably, kF exhibits the square
root behavior, with vF staying close to the speed of light in
a wide range of magnetic fields, while it rapidly vanishes at
a critical magnetic field, which is relatively high. Such
behavior indicates that the system may have a phase
transition.
The magnetic system can be rescaled to a zero-field

configuration, which is thermodynamically equivalent to
the original one. This simple result can actually be seen
already at the level of field theory: The additional scale
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brought about by the magnetic field does not show up in
thermodynamic quantities, meaning, in particular, that the
behavior in the vicinity of quantum critical points is ex-
pected to remain largely uninfluenced by the magnetic
field, retaining its conformal invariance. In light of current
condensed matter knowledge, this is surprising and might
in fact be a good opportunity to test the applicability of the
probe limit in the real world. If this behavior is not seen,
this suggests that one has to include the backreaction to the
metric to arrive at a realistic description.

In the field theory frame, we have calculated the DC
conductivity using kF and vF values extracted from hol-
ography. The holographic calculation of conductivity that
takes into account the fermions corresponds to the correc-
tions of subleading order in 1=N in the field theory and is
very involved [15]. As we are not interested in the vertex
renormalization due to gravity (it does not change the
magnetic field dependence of the conductivity), we have
performed our calculations directly in the field theory with
AdS-gravity-dressed fermion propagators. Instead of con-
trolling the occupancy of the Landau levels by changing
the chemical potential (as is usual in nonholographic set-
ups), we have controlled the filling of the Landau levels by
varying the Fermi energy level through the magnetic field.
At zero temperature, we have reproduced the integer QHE
of the Hall conductivity, which is observed in graphene at
moderate magnetic fields. Our findings on equilibrium
physics (Landau quantization, magnetic phase transitions,
and crossovers) are within expectations and indeed cor-
roborate the meaningfulness of the AdS/CFT approach in
line with the well-known facts. However, the detection of
the QHE is somewhat surprising, as the spatial boundary
effects are ignored in our setup. We plan to address this
question in future work.

Interestingly, the AdS geometry produces several Fermi
surfaces. Theories where the gravity duals have larger
fermion charge q posses more Fermi surfaces. We find
that, in a multi-Fermi surface picture, the Hall conductivity
is quantized in a way reminiscent of fractional QHE. By
reducing the magnetic field, new Fermi surfaces open up
and the quantization of Hall conductivity alternates be-
tween two different patterns, corresponding to odd and
even numbers of Fermi surfaces. It turns out that an odd
number of the Fermi surfaces results in IQHE plateaus,
while an even number of surfaces gives new plateaus
characteristic for the FQHE. In a multi-Fermi surface
picture, the quantum Hall plateaus show a less regular
pattern that agrees with experiments on thin graphite in
strong magnetic field [23]. In our model, it happens due to
the fact that, as one of several Fermi surfaces crosses the
Landau level, the Hall conductivity jumps to a new plateau.
This process is not synchronized between different Fermi
surfaces. We associate the average distance between the
Fermi levels with the energy gap usually arising in the
FQHE.

Notably, the AdS-Reissner-Nordström black hole back-
ground gives a vanishing Fermi velocity at high magnetic
fields. It happens at the point when the IR conformal
dimension of the corresponding field theory is � ¼ 1

2 ,

which is the border line between the Fermi and non-
Fermi liquids. Vanishing Fermi velocity was also observed
at high enough fermion charge [21]. As in [21], it is
explained by the red shift on the gravity side because at
strong magnetic fields, the fermion wave function is sup-
ported near the black hole horizon, modifying substantially
the Fermi velocity. In our model, vanishing Fermi velocity
leads to zero occupancy of the Landau levels by stable
quasiparticles that results in vanishing regular Fermi-liquid
contribution to the Hall conductivity and the longitudinal
conductivity. The dominant contribution to both now
comes from the non-Fermi liquid and conformal contribu-
tions. We associate such change in the behavior of con-
ductivities with a metal–strange-metal phase transition.
Experiments on highly oriented pyrolitic graphite support
the existence of a finite ‘‘offset’’ magnetic field hc at
T ¼ 0, where the resistivity qualitatively changes its be-
havior [30]. At T � 0, it has been associated with the
metal-semiconducting phase transition [30]. It is worth-
while to study the temperature dependence of the conduc-
tivity in order to understand this phase transition better.
Finally, we suggest as a possibly interesting extension of

the current AdS/CFT methodology to compute the gravity
dual of the finite density matter in Monte-Carlo lattice
simulations. This is possible since the sign problem does
not arise in the holographic setting of a finite density
system. Unlike the conventional field theory setup, finite
density in holography is introduced through an electrically
charged black hole, and does not involve matter fields (this
is also the reason why holography gives universal results: It
does not depend on the expectation values of matter fields
at the leading order). In the gravity geometry, Dirac fermi-
ons are coupled minimally to the electric field via the
covariant derivative. We have shown that the covariant
derivative is anti-Hermitian in the Euclidean signature,
leading to the real and positive definite fermion determi-
nant. This makes it possible to simulate finite density
systems on the lattice in the AdS-gravity geometry, using
the curved space-time lattice formulation [33]. The sim-
plest holographic setup which describes a finite charge
density system includes a local Uð1Þ gauge symmetry.
Finite density systems with global Uð1Þ symmetry can
not be simulated numerically in field theory due to the
problem with the Gauss law in the lattice formulation.
Another important advantage of performing the Monte-
Carlo simulation is that it includes the quantum fluctua-
tions for the gauge and gravitational field. So far, most
calculations have been done in the probe limit, with the
frozen background for the metric and gauge fields.
Analytic calculations which include backreaction are usu-
ally involved and are done in the next-to-leading order,
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e.g., [8]. Holographic lattice calculations allow us to con-
sider dynamical gauge and gravity fields with matter,
which mimics complicated strong interactions in finite
density systems and opens a way toward studying novel
state of matter and instability mechanisms.
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APPENDIX A: DIRAC EQUATION
IN MAGNETIC FIELD

Here, we solve analytically the part of the Dirac equa-
tion which depends on magnetic field and space-time
coordinates of the boundary theory. The free spinor action
in the geometry given by Eq. (2) and in the presence of a
magnetic field (3) is given by Eq. (21).

Using the translational invariance,

c ðt; x; y; rÞ ¼
Z

d!dke�i!tþikyc ð!; k; x; rÞ; (A1)

with k 	 ky, the Dirac equation (Eq. (23)) can be written as�
1ffiffiffiffiffiffiffiffiffiffi�gtt

p �t̂

�
�i!þ 1

2
!t̂ r̂ t�

t̂ r̂ � iqAtðrÞ
�
þ 1ffiffiffiffiffiffiffi

grr
p �r̂@r

þ 1ffiffiffiffiffiffi
gii

p �x̂

�
@x þ 1

2
!x̂ r̂ x�

x̂ r̂

�
þ 1ffiffiffiffiffiffi

gii
p �ŷ

�
ikþ 1

2
!ŷ r̂ y�

ŷ r̂

� iqAyðxÞ
�
�m

�
c ð!; k; x; rÞ ¼ 0; (A2)

where gii 	 gxx ¼ gyy, and AtðrÞ ¼ �ð1� r0=rÞ, AyðxÞ ¼
hx. From the torsion-free condition, !a

b ^ eb ¼ �dea,
we find the spin connection [34] for the metric (2),

!t̂ r̂ ¼ �@rð ffiffiffiffiffiffiffiffiffiffi�gtt
p Þffiffiffiffiffiffiffi
grr

p dt; !î r̂ ¼
@rð ffiffiffiffiffiffi

gii
p Þffiffiffiffiffiffiffi
grr

p dxi; (A3)

where i ¼ x; y. Note that

� �t̂�t̂ r̂ ¼ �x̂�x̂ r̂ ¼ �ŷ�ŷ r̂ ¼ �r̂; (A4)

and

1

4
eMâ �

â!b̂ ĉM�
b̂ ĉ ¼ 1

4

1ffiffiffiffiffiffiffiffiffiffi�gtt
p @rð ffiffiffiffiffiffiffiffiffiffi�gtt

p Þffiffiffiffiffiffiffi
grr

p �r̂

þ 2

4

1ffiffiffiffiffiffi
gii

p @r
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p �r̂

¼ 1ffiffiffiffiffiffiffi
grr

p �r̂@r ln

�
� g

grr

�
1=4

; (A5)

where g is the determinant of the metric. Therefore, we can
rescale the spinor field:

c ¼
�
� g

grr

��1=4
� (A6)

and remove the spin connection completely. The new co-
variant derivative does not contain the spin connection, so
D0

M ¼ @M � iqAM.
In new field variables, the Dirac equation is given by0

@ ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p �r̂@r �
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffi�gtt
p �t̂i

�
!þ�q

�
1� r0

r

��
� ffiffiffiffiffiffi

gii
p

m

þ �x̂@x þ �ŷiðk� qhxÞ
�
�ð!; k; x; rÞ ¼ 0; (A7)

with �q 	 �q. We separate the x- and r-dependent parts:

PðrÞ ¼
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p �r̂@r�
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffi�gtt
p �t̂i

�
!þ�q

�
1� r0

r

��
� ffiffiffiffiffiffi

gii
p

m;

QðxÞ ¼ �x̂@xþ�ŷiðk�qhxÞ; (A8)

and the Dirac equation is

ðPðrÞ þQðxÞÞ� ¼ 0: (A9)

Even though ½PðrÞ; QðxÞ� � 0, one can find a transforma-
tion matrix U such that ½UPðrÞ; UQðxÞ� ¼ 0 and then look
for common eigenvectors of UPðrÞ and UQðxÞ as they are
commuting Hermitian operators, i.e., the Dirac equation
reads

UPðrÞ�l ¼ �UQðxÞ�l ¼ 	l�l; (A10)

where l labels the Landau levels. We use l for the Landau
index, so as not to confuse it with the Matsubara frequency
index n. Transformation matrix U should satisfy the con-
ditions

fU;�r̂g ¼ 0; fU;�t̂g ¼ 0;

½U;�x̂� ¼ 0; ½U;�ŷ� ¼ 0;
(A11)
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which do not fix U completely. It is convenient to use the
following basis [7]:

�r̂ ¼ ��3 0

0 ��3

 !
; �t̂ ¼ i�1 0

0 i�1

 !
;

�x̂ ¼ ��2 0

0 �2

 !
; �ŷ ¼ 0 �2

�2 0

 !
;

�5̂ ¼ 0 i�2

�i�2 0

 !
:

(A12)

Note that the following relation holds

�5̂ ¼ �0̂�1̂�2̂�3̂ (A13)

as expected, with 0 ! t, 1 ! x, 2 ! y, and 3 ! r. In the
representation of Eq. (A12), we can choose

U ¼ �i�2 0

0 �i�2

 !
: (A14)

We split the 4-component spinors into two 2-component
spinors (we do not write zero entries) F ¼ ðF1; F2ÞT ,
where the index � ¼ 1; 2 is the Dirac index of the bound-
ary theory, using projectors

�� ¼ 1

2
ð1� ð�1Þ��r̂�t̂�1̂Þ;

� ¼ 1; 2; �1 þ�2 ¼ 1;
(A15)

which commute with the Dirac operator of Eq. (37), and
F� ¼ ���, � ¼ 1; 2, decouple from each other. Gamma
matrices in Eq. (A12) were chosen in such a way that this
decoupling is possible.

Writing the Dirac equation (A10) for F ¼ ðF1; F2ÞT ,
we have�
�

ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p �1@r þ ffiffiffiffiffiffi
gii

p
i�2m

�
ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffi�gtt
p �3ð!þ�qð1� r0=rÞÞ � 	l

�
� 1

F1

F2

 !
¼ 0

1 � i@x þ 	l ðk� qhxÞ
ðk� qhxÞ �i@x þ 	l

 !
F1

F2

 !
¼ 0; (A16)

where in X � Y, X acts inside F1 or F2, and Y acts
between F1 and F2. In Eq. (A16), the 1 in the first
equation shows that there is no mixing of F1 and F2 by
the operator UPðrÞ, and the 1 in the second equation
shows that there is no mixing inside F1 or F2 by the
operator UQðxÞ. Therefore, the solution can be repre-
sented as

F1

F2

 !
¼

fð1Þl ðrÞgð1Þl ðxÞ
fð2Þl ðrÞgð1Þl ðxÞ
fð1Þl ðrÞgð2Þl ðxÞ
fð2Þl ðrÞgð2Þl ðxÞ

0
BBBBBBB@

1
CCCCCCCA: (A17)

We do not write explicitly the dependence on ! and k.
It is convenient to make a unitary transformation:


 ð1Þ


 ð2Þ

 !
¼ M

gð1Þ

gð2Þ

 !
; M ¼ 1 �i

�i 1

 !
: (A18)

Dirac equations for each component are written as:� ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p @r þ ffiffiffiffiffiffi
gii

p
m

�
fð1Þl ðrÞ

þ
�
�

ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffiffiffiffi�gtt
p ð!þ�qð1� r0=rÞÞ þ 	l

�
fð2Þl ðrÞ ¼ 0;

� ffiffiffiffiffiffi
gii

pffiffiffiffiffiffiffi
grr

p @r � ffiffiffiffiffiffi
gii

p
m

�
fð2Þl ðrÞ

þ
� ffiffiffiffiffiffi

gii
pffiffiffiffiffiffiffiffiffiffi�gtt
p ð!þ�qð1� r0=rÞÞ þ 	l

�
fð1Þl ðrÞ ¼ 0;

(A19)

ð@~x � ~xÞ
 ð1Þ þ ~	l

ð2Þ ¼ 0; ð@~x þ ~xÞ
 ð2Þ � ~	l


ð1Þ ¼ 0:

(A20)

In Eq. (A20), for the x-dependent part, we have rescaled

~x ¼ ffiffiffiffiffiffiffiffiffijqhjp ðx� k
qhÞwith k 	 ky and 	l ¼

ffiffiffiffiffiffiffiffiffijqhjp
~	l. The sec-

ond order ordinary differential equations

� @2~x

ð�Þ þ ~x2
 ð�Þ � ~	2

l 

� � ð�1Þ�
 ð�Þ ¼ 0; (A21)

with � ¼ 1; 2, are solved by substitution 
 ð�Þ ¼ e�~x2=2 ~
 ð�Þ.
This is exactly the Schrödinger equation for a harmonic
oscillator, so the eigenfunctions are Hermite polynomials,
andwe obtain the following solutions, indexed by an integer

l 2 Z that is related to the eigenvalue 	l by 	l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

:


 ð1Þl ð~xÞ ¼ Nl�1e
�~x2=2Hl�1ð~xÞ 
 ð2Þl ð~xÞ ¼ Nle

�~x2=2Hlð~xÞ:
(A22)

The normalization constant Nl is proportional to 1=
ffiffiffiffiffiffiffiffi
2ll!

p
.

Substituting the solutions fromEq. (A22) into the first order
eigenvalue equation with x-dependence gives the following
solutions:

Fl ¼

fð1Þl ðrÞ
 ð1Þl ð~xÞ
fð2Þl ðrÞ
 ð1Þl ð~xÞ
fð1Þl ðrÞ
 ð2Þl ð~xÞ
�fð2Þl ðrÞ
 ð2Þl ð~xÞ

0
BBBBBBB@

1
CCCCCCCA; 	l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjl

q
; (A23)

and
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~Fl ¼

~fð1Þl ðrÞ
 ð1Þl ð~xÞ
~fð2Þl ðrÞ
 ð1Þl ð~xÞ

�~fð1Þl ðrÞ
 ð2Þl ð~xÞ
~fð2Þl ðrÞ
 ð2Þl ð~xÞ

0
BBBBBBB@

1
CCCCCCCA; 	l ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjl

q
: (A24)

Solving the first order x-dependent equation, we get the
same eigenvalue, but slightly different eigenfunctions, for
different signs of qh. In particular, e.g., for F, the pairs

fð1Þð
 ð1Þ; 
 ð2ÞÞT and fð2Þð
 ð1Þ;�
 ð2ÞÞT correspond to qh > 0
and qh < 0, respectively. A different sign of qh stands for
the positive and negative Landau-level index l.

Finally, the general solution to the Dirac equation is
given by a linear combination of Eqs. (A23) and (A24):

Fsol ¼
X
l

ðalFl þ bl ~FlÞ: (A25)

Using the eigenvalues determined by Eqs. (A23) and
(A24) in the equation for the radial part (A19), we get

�
� 1ffiffiffiffiffiffiffi

grr
p �3@r �mþ 1ffiffiffiffiffiffiffiffiffiffi�gtt

p �1ð!þ�qð1� r0=rÞÞ

� 1ffiffiffiffiffiffi
gii

p i�2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjl

q �
� 1

F1

F2

 !
¼ 0; (A26)

with l ¼ 0; 1; . . . ; and the same for ~F replacing
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp !

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp

. It coincides with eq. (A14) in [7] (Dirac equa-
tion at zero magnetic field) with the momentum replaced
by the Landau-level eigenvalue [22]

k ! �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjl

q
: (A27)

Equation (A27) also gives a prescription on how to treat
the limit of zero magnetic field h ! 0. The limit is to be
taken keeping, e.g., 2jqhjðlþ 1Þ 	 k2F fixed as h ! 0. In
a compact form, the Dirac equation in a magnetic field
(A7) is given by

�
1ffiffiffiffiffiffiffi
grr

p �r̂@r � 1ffiffiffiffiffiffiffiffiffiffi�gtt
p �t̂ið!þ qAtÞ �m

� 1ffiffiffiffiffiffi
gii

p U�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjl

q �
FðrÞ ¼ 0; (A28)

with F ¼ ðF1; F2ÞT , l ¼ 0; 1; . . . ; for ~F replaceffiffiffiffiffiffiffiffiffiffiffiffiffi
2jqhjlp ! � ffiffiffiffiffiffiffiffiffiffiffiffiffi

2jqhjlp
, and U�1 is the matrix inverse to

the matrix given by Eq. (A14):

U�1 ¼ i�2 0

0 i�2

 !
; (A29)

which we use in the main text.

APPENDIX B: SPECTRAL FUNCTION

In what follows, we use the dimensionless variables
(15)–(17). Following the analysis of [7], the flow of the
Green’s function is determined by

GRð!; lÞ ¼ lim
�!0

��2m ðlÞ
þ 0

0 ðlÞ�

 !��������r¼1=�
; (B1)

where ðlÞ
þ ðrÞ ¼ fð2Þ

fð1Þ and ðlÞ� ðrÞ ¼ ~fð2Þ
~fð1Þ

from the solutions

(A23) and (A24). In obtaining this relation, we absorbed
the coefficients appearing in Eq. (A25) into the definitions

of the radial functions. The functions ðlÞ
� satisfy the

following differential equation [7]:

ffiffiffiffiffiffiffi
gii
grr

s
@r

ðlÞ
� ¼ �2m

ffiffiffiffiffiffi
gii

p
ðlÞ
� þ ðuðrÞ � 	lÞ2ððlÞ

� Þ2

þ ðuðrÞ � 	lÞ; (B2)

with uðrÞ given by

uðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
gii
�gtt

s
ð!þ qAtðrÞÞ: (B3)

Writing explicitly in the metric given by Eq. (18), we
have

r2
ffiffiffi
f

p
@r

ðlÞ
� ¼ �2mrðlÞ

� þ ðuðrÞ � 	lÞððlÞ
� Þ2 þ ðuðrÞ � 	lÞ;

(B4)

where uðrÞ is given by

uðrÞ ¼ 1ffiffiffi
f

p
�
!þ�q

�
1� 1

r

��
; (B5)

with f ¼ ðr�1Þ2ðr2þ2rþ3Þ
r4

at T ¼ 0. Near the horizon

(r ¼ 1), the flow equation reduces to

r2@r
ðlÞ
� ¼ 1

f
ððlÞ

� þ 1Þ2; (B6)

which, due to the double zero in f, has a regular solution
only if �ðr ¼ 1Þ ¼ �i. Writing the radial equation in
terms of  and choosing the infalling boundary conditions

fixes ðlÞ
� ðr ¼ 1Þ ¼ i.

The key quantity that we extract from the Green’s func-
tion is the fermionic spectral function

Að!; lx; kyÞ ¼ TrðImGRð!; lx; kyÞÞ; (B7)

which we analyze in the main text of the paper.
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We propose a kinetic model of transport in nonintegrable Hamiltonian systems, based on a fractional kinetic
equation with spatially dependent diffusion coefficient. The diffusion coefficient is estimated from the remain-
der of the optimal normal form for the given region of the phase space. After partitioning the phase space into
building blocks, a separate equation can be constructed for each block. Solving the kinetic equations approxi-
mately and estimating the diffusion time scales, we convolve the solutions to get the description of the
macroscopic behavior. We show that, in the limit of infinitely many blocks, one can expect an approximate
scaling relation between the Lyapunov time and the diffusion �or escape� time, which is either an exponential
or a power law. We check our results numerically on over a dozen Hamiltonians and find a good agreement.

DOI: 10.1103/PhysRevE.72.025204 PACS number�s�: 05.45.�a, 05.60.Cd, 05.20.Dd

Statistical treatment of chaotic transport is one of the most
difficult problems in nonintegrable Hamiltonian dynamics.
Despite its importance for many practical problems in vari-
ous fields, e.g., plasma physics �1,2� and dynamical as-
tronomy �3�, we still lack a general and consistent kinetic
theory of transport. The main reason is the complicated na-
ture of the phase space of the typical nonintegrable Hamil-
tonian system, since it usually contains a “topological zoo”
of regular and chaotic structures mixed on an arbitrarily
small scale. The most promising way for overcoming these
difficulties is, in our opinion, the so-called fractional kinetics
of the phase space �4�. Fractional kinetics has become a
broad topic of research not only in Hamiltonian dynamics
but also in very different areas such as solid-state physics �5�
and physics of complex systems �6�. The basic advantage of
the fractional kinetic equation �FKE� for describing chaotic
transport is that its fractional nature allows one to include the
self-similarity of phase space and time, which arises from the
first principles, i.e., from the dynamical equations. Especially
important is the phenomenon of the so-called stickiness �3�
or dynamical trapping �7�, which leads to long intervals of
quasiregular motion.

The particular issue that has largely motivated this re-
search is the phenomenon of approximate scaling of diffu-
sion time scales with the Lyapunov exponents or perturba-
tion strength. A number of papers have been published on
this topic, e.g., �8�; we are also inspired by the building block
method of �9�.

The basic idea of our model is to consider a FKE in the
action space with a nonhomogenous diffusion coefficient and
to combine, i.e., convolve the results to obtain the expected
macroscopic behavior. We use the following form of the
FKE:

��P�I,t�
�t�

=
���D�I�P�I,t��

� �I��
+ ��I�t−�/��1 − �� , �1�

where 0���1 and 0���2. Its derivation from the
Hamiltonian equations and discussion of assumptions in-
volved can be found, e.g., in �4�. Although, strictly speaking,
one should consider a vector of actions, we shall assume that
diffusion along one action coordinate is independent of the
others and consider I as a scalar; alternatively, one could
interpret that as considering only one action variable,
whereas the diffusion along the others is many orders of
magnitude smaller. Both cases have been described in vari-
ous systems �2,4�.

We estimate the diffusion coefficient D as the remainder
of the normal form for the dynamics in the vicinity of a
stable domain, e.g., invariant torus. Splitting the Hamiltonian
H�I ,�� into an action-only integrable part H0�I�=�I and the
nonintegrable remainder H1�I ,��, one can obtain the esti-
mate for the remainder of the form O(f�I�), i.e., as a function
of the action. Treating the influence of the nonintegrable re-
mainder on the dynamics as the microscopic transport
mechanism, we take f�I� from the above estimate for the
diffusion coefficient. Two optimal normal forms are known
as Nekhoroshev and Birkhoff normal forms. Their remain-
ders �10� give the diffusion coefficients DN and DB;

DN = D0exp�− 1/�I�	� , �2a�

DB = D0�I�	, �2b�

where D0 denotes the constant part, which is, in general,
dependent on the properties of the Hamiltonian. For both
cases, there is a constraint 	
2. The two cases roughly cor-
respond to local nonoverlapping or overlapping of the reso-
nances.

The last step before solving the FKE is the estimation of
the fractional exponents � and �. These are intimately re-
lated to the self-similarity of the structures involved, and can
be determined from the exponents of the renormalization
group of kinetics of the particular system. This has to be*Electronic address: cygnus@eunet.yu
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done numerically for all but the simplest systems �4�. In our
computations, we have employed a “building block” ap-
proach similar to that of �9�, partitioning the phase space into
several regions, each described with its own FKE, with the
diffusion coefficient �2a� or �2b�. However, instead of con-
sidering only ballistic flights and Markovian diffusion, as in
�9�, we propose the adoption of a set of �� ,�� pairs. The
values of the exponents can then be determined by sampling
the flights �longer than a certain threshold T0�, and then fit-
ting the distribution of their lengths and durations as �−�1+��

and t−�1+��, respectively.
It is hardly surprising that we were unable to find the

exact solutions for the FKE �1�, with the diffusion coeffi-
cients �2a� and �2b�, in their most general form. However, the
long-term behavior can be found by expanding the space
derivative on the right-hand side of �1� according to the gen-
eralizations of the Leibniz’s rule and chain rule for the frac-
tional operator d� /d�I��; see, e.g., �11� for mathematical de-
tails. For the case �2a�, we obtain the solution, up to the
normalization factor,

P�I,t� = E��− y0
4/� − y4/��I1�2e−y

D0
3/2� y0

t�y� , �3�

where I denotes the modified Bessel function of the first
kind, y�I , t�= �I� / ��	−2��D0I	t��, and y0=y�I0 , t�, with I0 de-
noting the value of the action at t=0. The Mittag-Leffler
function is denoted by E�. For the Birkhoff case, one obtains

P�I,t� =
y
�I
E��− y0

4/� − y4/��Ip�2y0y� , �4�

with p= �	−1� / �	−2�. We note that, for I , t�1, both y and
y0 tend to zero. The asymptotic expansions of the Mittag-
Leffler and the Bessel function can then be used to show that
the solutions P�I , t� fall off in the infinity sufficiently sharply
to be valid probability distributions. They are the main exact
result of our analysis. We shall use them here to apply the
more advanced building block model and to obtain the ap-
proximate scaling relations between the diffusion and
Lyapunov time scales.

Convolution over all the solutions ��i=1
N � can be per-

formed in the usual way, with some entrance probabilities
�actually, statistical weights of each block� pi,

Pres�I,t� = �i=1
N piPi�I,t� , �5�

which give the resulting probability distribution Pres�I , t�. We
propose this way for examining the behavior of particular
systems. In the limit of infinitely many blocks �20�, however,
one can derive a generic relation between the short-time and
long-time diffusion scales.

We next proceed to estimate the typical diffusion time
scales. These can be related to the “escape times” one often
encounters in simulations, e.g., �8�. Strictly speaking, the es-
cape time can only be defined in open systems, as the time to
cross the Lyapunov curve �see �13� for a definition�. Other-
wise, escape time is usually a more or less qualitative term
meant to describe, generally, the time needed to enter a large
connected chaotic region �“stochastic see”� or to experience

a qualitative change of dynamical behavior. In what follows,
we shall consider the escape time as the time scale needed to
reach a fixed I; without loss of generality, we may assume
I=1.

For fixed I, the solution �3� has a maximum about
2�y0 / �t�y�	D0

3/2. Solving this for time t, we obtain the es-
timate of the time to reach I=1,

TI=1 	 �16�I/I0�	−2

D0
�1/�

. �6�

Similarly, �4� reaches its peak at 2yy0	1, which gives the
following TI=1:

TI=1 	 � �II0�1−	/2

�	 − 2�D0
�1/�

. �7�

On the other hand, the short �microscopic� time scale of �1�
is about D�I� / ����/��, which may be interpreted as the aver-
age time between two “collisions;” in our case, this corre-
sponds to a time needed to cross a single resonance, bearing
in mind that resonance interactions and overlaps are the main
physical mechanisms of transport. Moreover, this time scale
is often considered to be a valid estimate of the Lyapunov
time TLyap �1,3�.

Let us now notice that the solutions �3� and �4�, with their
exit time scales �6� and �7�, can be written in the form of
Fox’s H functions �6�. By convolving these functions, one
gets, after a straightforward but tedious calculation, a Fox’s
function again, which may have two asymptotic behaviors.
They scale with the short-time scale of �3� and �4� either as
an exponential law or as a power law. The asymptotic behav-
ior depends on the weights pi and on the sum of transport
exponents 2�i /�i for each building block. Accepting this rea-
soning and inserting the above estimate for TLyap into �6� and
�7�, we obtain the approximate scalings for escape time Tesc,

Tesc  exp�TLyap
� � , �8a�

Tesc  TLyap
� . �8b�

Let us hold onto this result for a moment. The scaling of
this type has been conjectured long ago �e.g., �14��, and it is
implicitly suggested also by the classic work of Chirikov
concerning the regimes of resonance nonoverlapping and
overlapping �15� �the first one being known also as the
Nekhoroshev regime�. More recently, transition between the
Nekhoroshev and Chirikov regime has been explored by
Froeschle and others �16�. However, we show here that the
scaling �8a� and �8b� arises from both basic regimes of cha-
otic dynamics, and that its type is determined also by the
fractional exponents � and � of different building blocks.
Physically, this means that the sticky �and thus non-
Markovian� nature of self-similar structures in the phase
space can “mimic” the effects of the resonance nonoverlap-
ping. This is logical, since both phenomena effectively put a
barrier into the transport channels. The scalings can be ex-
pected to be universal for a given system but are clearly
nonuniversal for different systems, since they depend on the
properties of the Hamiltonian. It should also be noted that,
for N-dimensional �N
2� systems, one should take into ac-
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count the Arnold diffusion. However, this should be negli-
gible as long as the number of the degrees of freedom is
sufficiently low, especially if we take into account a recent
result which proves its superexponentially slow nature for a
certain class of systems �17�.

We have performed thorough numerical tests of our re-
sults, by integrating ensembles of particles initially placed in
a cell of the phase space of the given Hamiltonian. We have
inspected the behavior of the perturbed �quasi-integrable�
Hamiltonian systems, i.e., of the form H=HInt+�HPert, since
the constant part of the diffusion coefficient D0 can then
easily be estimated as �2. We have observed the time evolu-
tion of the “distribution function,” i.e., concentration of the
particles in the phase space, the escape times, and the scaling
exponents �by fitting to �8a� and �8b��. We have also calcu-
lated the finite time Lyapunov exponent �FTLE, see �18� for
a definition�, as the numerical estimate for 1 /TLyap. The es-
cape time was measured as the time of crossing the
Lyapunov curves, for open systems, or as the time of the
beginning of the first long interval of normal diffusion, for
the closed systems �21�. Details on the simulations and on
the approximate scalings of the form �8a� and �8b� found
numerically are summed up in Table I.

Figure 1 gives the comparison between the analytically
and numerically obtained distribution functions, for each of
the cases �3� and �4�. Overall agreement can be seen, al-
though it is not perfect. Typical results for the Tesc�TLyap�
relation are shown in Fig. 2. Agreement with the predicted
approximate scalings is good. The regimes are rather clearly
separated and the transient regime is short, although it does
exist. This behavior could be described as a phase transition
between two regimes of chaotic transport, an idea which is
not new for dynamical systems.

We are unable to explain the abrupt transition from one
scaling regime into another, which occurs in most of our
simulations, and resembles a phase transition. This kind of
behavior could be better described by a discrete model. An
obvious choice is a multiply branched tree �as proposed in
�19�� or a network, with the transition probabilities derived
from our results for the distribution functions. This would
actually be a formalization of the building block model,
which already �implicitly� includes a network of blocks.

In conclusion, we have proposed a method for obtaining
�and solving� the kinetic equations of chaotic diffusion. The

TABLE I. Hamiltonians of the form HInt+�HPert explored in the simulations. For each Hamiltonian, we give the integrable part HInt, the
perturbation part HPert, the range of the values of � in the simulations, the exponents of the scalings � and �, and the range of the values of
� for the transition regime. Variables �Ii ,�i� denote the action-angle variables, whereas �x ,y ,z� are the physical space coordinates. HO2 and
HO3 denote the harmonic oscillator in two and three dimensions, respectively. HH2 and HH3 refer to the integrable Henon-Heiles Hamil-
tonian �13� in two and three dimensions: �ẋ2+ ẏ2+x2+y2−2/3y3� /2 and �ẋ2+ ẏ2+ ż2+x2+y2+z2−2/3z3� /2, respectively. Hamiltonian H8 is
the egg-crate system taken from �4�, H9 is the sixth-order Toda lattice, i.e., the integrable Henon-Heiles system perturbed with its sixth-order
expansion �1�, and H14 is taken from �16�. See the text for further comments.

H HInt HPert � � � �trans

H1 HO2 �xy 1.00–4.00 0.65±0.07 0.87±0.05 1.50–1.60
H2 HO2 �x2y 0.87–3.50 0.45±0.05 1.98±0.06 1.28–1.32
H3 HO2 −�x2y2 1.50–6.00 1.09±0.03 1.70±0.04 3.32–3.70
H4 HH2 �xy 0.00–3.50 0.77±0.08 0.53±0.03 0.15–0.20
H5 HH2 �x2y 1.00–4.00 0.15±0.03 1.25±0.06 1.12–1.16
H6 HH2 −�x2y 1.00–4.00 0.71±0.05 0.88±0.04 1.55–1.66
H7 HH2 −� /�x2+y2 0.00–3.50 0.33±0.05 0.57±0.03 1.60-1.70
H8 �ẋ2+ ẏ2� /2+cos x+cos y � cos x cos y 0.00–2.00 0.22±0.04 1.12±0.08 0.34–0.37
H9 HH2 sixth-order Toda lattice expansion 0.00–4.00 0.58±0.03 1.44±0.04 0.55–0.60
H10 I1

2 /2+2�I2 ��cos �1+cos��1−�2�� 0.00–3.00 1.21±0.04 1.82±0.07 1.20–1.32
H11 I1

2 /2+2�I2+cos �1 ��cos��1−�2�+cos��1+�2�� 0.00–3.00 0.45±0.05 1.75±0.07 0.85–0.90
H12 HO3 �x2yz 0.00–2.00 0.22±0.03 0.57±0.03 0.33–0.45
H13 HH3 �xz2 0.80–4.00 0.41±0.04 1.03±0.08 1.20–1.31
H14 �I1

2+ I2
2� /2+ I3 � / �cos �1+cos �2+cos �3+4� 0.000–0.100 0.19±0.03 1.00±0.04 0.055–0.060

FIG. 1. Analytical �solid line� and numerical �histogram� distri-
bution functions P�I1 , t� for the Hamiltonian H14. Action is in rela-
tive units. �a� Nonoverlapping resonances for �=0.030. �b� Over-
lapping resonances for �=0.060.
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method is based upon using the normal forms of dynamics as
the basic blocks of kinetics. In general case, some parameters
of the model, including the fractional exponents of FKE,
have to be computed from the simulations, as the current
state of Hamiltonian theory does not allow us to estimate
them from the dynamical equations, as noted also in �4�. We
have also demonstrated a generic approximate scaling of the
macroscopic diffusion time, often regarded to in simulations
as escape time, with the Lyapunov �microscopic� time scale.
We especially underline that both the power law and the
exponential form of scaling can arise from both possible
forms of the diffusion coefficient, and that the scaling behav-
ior arises from combining the two, i.e., as a kind of collective
behavior.
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M. Čubrović1,2, O.I. Obolensky1,a, and A.V. Solov’yov1,b

1 Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
2 Institute of Physics, P.O. Box 57, 11001 Belgrade, Serbia

Received 14 March 2008 / Received in final form 15 September 2008 / Published online 15 October 2008
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Abstract. We present a new statistical model of unfolded proteins in which the stiffness of polypeptide
backbone is taken into account. We construct and solve a mean field equation which has the form of a diffu-
sion equation and derive the distribution function for conformations of unfolded polypeptides. Accounting
for the stiffness of the protein backbone results in a more accurate description of general properties of a
polypeptide chain, such as its gyration radius. We then use the distribution function of a semistiff protein
within a previously developed theoretical framework [J. Biomol. NMR 39, 1 (2007)] to determine the nu-
clear magnetic resonance (NMR) residual dipolar couplings (RDCs) in unfolded proteins. The calculated
RDC profiles (dependence of the RDC value on the residue number) exhibit a more prominent bell-like
shape and a better agreement with experimental data as compared to the previous results obtained with
the random flights chain model.

PACS. 87.10.-e General theory and mathematical aspects – 82.56.Pp NMR of biomolecules – 82.56.Dj
High resolution NMR

1 Introduction and motivation

High-resolution, liquid-state nuclear magnetic resonance
(NMR) spectroscopy has proven to be an invaluable tool in
investigation of the structure and dynamics of biomacro-
molecules, including folded and, recently, unfolded pro-
teins. One of the NMR observables from which one can
infer structural and dynamical information is the so-called
residual dipolar couplings (RDCs) [1]. These couplings are
direct dipole-dipole interactions between the spins of two
nuclei, e.g., 15N and a 1H nuclei, detected in NMR experi-
ments by a shift in the resonant frequency of nuclear spin
flip transitions. They can be measured independently for
each amino acid residue in a polypeptide chain.

Analysis of RDC profiles (dependence of the RDC
value on the residue number) has been shown to be very in-
formative in structure validation and refinement of folded
proteins [1]. However, for unfolded proteins reliable in-
terpretation of RDC measurements remains elusive even
though a significant amount of experimental data has
been accumulated (see [2] for a survey). Theoretically,
one can predict the RDC profiles by performing numeri-

a Present address: National Center for Biotechnology Infor-
mation, NLM/NIH, 8600 Rockville Pike, Bethesda, MD 20894,
USA

b e-mail: solovyov@fias.uni-frankfurt.de

cal sampling of the conformational space of the unfolded
polypeptide. For example, in [3,4] ensembles of unfolded
conformations were constructed from amino acid-specific
distributions of Ramachandran angles φ/ψ taken from the
loop regions of high-resolution X-ray structures in the pro-
tein data base. This method allows one to predict the RDC
profiles with a reasonable accuracy, but it lacks the ability
to explain on a basic level the obtained results, serving,
therefore, as a black box with a limited use for interpre-
tation of experimental data.

In [2] it was shown that the basic trends in RDC pro-
files and the underlying physical and mathematical princi-
ples leading to these trends can be revealed by statistical
analysis not based on numerical sampling of conforma-
tional space (see also similar, although less mathemati-
cally rigorous, work [5]). Two general features of RDC
profiles were predicted for unfolded polypeptide chains.
The first one is that shorter chains have larger (in ab-
solute value) RDCs under same experimental conditions.
The second feature predicted in [2,5] is that the RDCs
are larger for the amino acid residues in the middle of the
chain, leading to the bell-like shape of RDC profiles. De-
spite the simplicity of the model (random flights chain)
used in [2,5] to mimic the unfolded polypeptides, both
these trends seem to be present in the experiments carried
out under conditions prohibiting formation of native-like
structures [2].

http://www.epj.org
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Our goal in this paper is to improve the quality of the
model which is used for simulating the unfolded polypep-
tide chain. We formulate here a new statistical model
of unfolded proteins in which the stiffness of polypep-
tide backbone is taken into account. We demonstrate that
accounting for the stiffness of the protein backbone results
in a more accurate description of general properties of a
polypeptide chain, such as its gyration radius.

Stiff polymer model is a well-known concept in poly-
mer physics, much used since the pioneering paper of Sato
et al. [6]. The idea is to introduce an energy cost for bend-
ing of the polymer, thus favoring the extended conforma-
tions. The most versatile formalism for doing so is the
so-called wormlike chain model, in which the bending en-
ergy density is proportional to the square of the curva-
ture of the polymer contour. It has been developed to its
full strength only recently [7], with the introduction of
new theoretical tools to account for various generaliza-
tions and boundary conditions. The starting point in the
papers cited above is the mean-field description which has
the form of a diffusion equation in tangent space. However,
this approximation becomes less and less satisfactory for
polymers with low stiffness [8]. We show in this paper (fol-
lowed by a more technical discussion in [9]) that a better
continuum limit for the case of low stiffness is obtained in
the real space, which turns out to have, again, the form
of the diffusion equation. Also, the question of how the
wormlike chain model arises from discrete stiff chains has,
to the best of our knowledge, not been addressed so far. In
the following section we will start from a discrete model
and pass to a continuum limit, which will turn out to
be exactly the low-stiffness (the usual term in polymer
physics is semiflexible or semistiff) limit of the wormlike
chain model.

The developed semistiff polymer model is applied to
the calculation of RDCs within the theoretical framework
of [2]. The calculated RDC profiles exhibit a more promi-
nent bell-like shape and a better agreement with experi-
mental data as compared to the previous results obtained
with the random flights chain model.

In the concluding section, we will also discuss possible
further steps in interpreting the RDC measurements, as
well as the importance of our results from a more general
perspective.

2 Theory

2.1 Introduction to the problem

We first give a general and informal consideration of the
problem, before describing in more detail the interaction
potential in our system and the procedure to calculate
the necessary quantities. The ultimate goal is finding the
relation between the dipolar couplings and the physical
parameters of the unfolded polypeptide, and extracting
the information on the shape and other properties of the
polypeptide from the RDC measurements. Unfolded poly-
peptides are in many aspects similar to simple linear poly-
mers, having no well-defined secondary structure.

Fig. 1. Schematic picture of a polymer chain in a restricting
medium modelled with a set of parallel barriers. The barrier-
to-barrier distance is L. External magnetic field vector is B0ez.
The vectors r and r0 are the position vectors of points in the
chain, defined in the fourth section. Inset: structure of a single
monomer unit. The angles αNH and Θ are defined for each
segment. The residues (side chains) are denoted by Rj and
Rj+1, while the radius vector of the jth segment is δrj .

For clarity we will pose the problem for a discrete
chain first, although the calculations will be performed in
the continuum limit. The quantity to be calculated is the
dipole-dipole coupling between two nuclei. We will deal
with the 15N–1H couplings in this paper. The energy (ac-
tually, the frequency) of the coupling is given by [2]:

DNH =
μ0�γNγH

4π2r3NH

P2(αNH)〈P2(cosΘ)〉, (1)

where μ0 is the magnetic permeability constant, γN and γH

are gyromagnetic ratios for the nitrogen and the hydrogen
nucleus and rNH is the internuclear distance (assumed to
be fixed). The function P2 stands for the Legendre poly-
nomial of the second order. The angles αNH and Θ char-
acterize the orientation of a chain segment with respect
to the external field. These are in turn determined by the
conformation of the chain, therefore connecting the mea-
sured couplings to the structure of the polypeptide. The
average (denoted by angular brackets) is to be carried out
over all possible conformations of the chain, i.e. over the
state space of the chain.

The meaning of the angles αNH and Θ is best seen
from Figure 1. The former is the angle between the vector
rNH, i.e. the internuclear vector, and the axis of the jth
segment, denoted in Figure 1 by δrj . On the other hand,
Θ stands for the angle between δrj and the z-axis, which
is the direction of the external magnetic field.
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The origin of non-zero RDCs lies in the restricting
medium (bicelles or polyacrylamide gels, usually) in which
the denaturated protein is solvated in experiments. Actual
shape and geometry of the confining barriers may vary
but the overall effect will be similar and will result in an
effective confinement of the polymer. In the simplest ap-
proximation, one may regard the restricting barriers to be
parallel to each other, at some distance L, as given in the
Figure 1. The influence of the confinement is crucial even
if the distance L is large compared to the length of the
polypeptide (as is the case for typical experimental condi-
tions). Confinement only induces a mild “deformation” of
the average shape of the polypeptide coil. It is this defor-
mation, however, which gives rise to non-zero expectation
value of the term P2(cosΘ). The calculation of this value
will be in focus of the rest of the paper.

2.2 Stiffness of polypeptide chain

The discrete chain in represented as an array of N seg-
ments, each denoted by index j = 1 . . .N . The information
on structure of the chain is contained in the distribution
function P (N, r, r0) which gives probability to find the
chain in a conformation with the end points at r0 and r.
The usual approach of polymer physics would be to write
the action (or, equivalently, path integral) for the chain
based on some empirical potential [10]. As we will, for the
most part, work in the mean-field approximation, we will
refrain from this approach and write directly the equa-
tion for the distribution function. The statistical weight of
each conformation is determined by its Boltzmann weight,
supposing that the system is sufficiently close to equilib-
rium. To specify these weights completely, one needs to
employ an empirical potential for segment-to-segment in-
teractions.

Empirical potentials for polypeptides, generally, may
include the following terms: bond extensibility, bond an-
gle stiffness, rotation about the so-called Ramachandran
dihedral angles (see, e.g., [11]) and non-bonded interac-
tions, including, possibly, Coulombic interactions, hydro-
gen bonds, excluded volume interactions, etc. We will deal
with the non-bonded interactions in a separate publica-
tion [12]; it can be shown that these do not contribute
significantly to the problem of interpreting the NMR
spectroscopic data that we are primarily concerned with
in this paper. Bond extensibility is, in general, negligible
in polypeptides and better results are usually obtained in
the framework of fixed bond lengths [13]. So, all of our
segments are assumed to have the same length a.

The stiffness is an all-present effect in polymer physics
and is usually characterized either by the persistence
length Lp [10] or in terms of the bond angle θ and its dis-
crepancies from some optimal value θ0 [14]. The connec-
tion between the two descriptions is given by Lp = akθβ;
as usual, β = (kT )−1. In our model, for typical values of
kθ and β, Lp is a few segments long. However, Lp is not
very practical for nonzero θ0. Geometrically, it is equal
to the segment length of an effective freely jointed chain

with the same macroscopic properties as the stiff chain.
This geometric analogy is lost for θ0 > 0.

For most polymers, the optimal angle is θ0 = 0; in our
case, the structure of polypeptide backbone –N–C–C–N–
results in a non zero value of θ0 [11], which is actually the
tetrahedral angle characterizing the bond geometry of the
carbon atom. The radius-vector of the jth segment relative
to the end of the previous segment will be denoted by δrj .
The bond stiffness is obviously a nearest-neighbor inter-
action, involving pairs of subsequent segments. Dihedral
angles are for unfolded polypeptides usually considered in
a purely local approximation, thus leading to no site-to-
site interaction. Therefore, the potential of our system is
of the form:

V =
N−1∑

j=1

Vθ(θj) +
N∑

j=1

Vφψ(φj , ψj). (2)

Still, even in this approximation, distribution of dihedral
angles shows nontrivial behavior if the polypeptide is not
a homopolymer, i.e. if various segments have different en-
ergy minima. One final remark is that we assume various
degrees of freedom to be decoupled; it is also a common
approximation, and a necessary one for the problem to be
tractable.

The Ramachandran part of the potential, Vφψ, can-
not be treated in the mean-field approximation for the
reason mentioned in the previous paragraph: the energy
landscape is strongly site-specific and therefore evades a
description in the framework of mean-field theory. On the
other hand, the decoupling of the degrees of freedom sug-
gests that the effects of stiffness can be considered inde-
pendently. In this paper, we will explore exactly the in-
fluence of stiffness, leaving the theory for Ramachandran
angles for further work.

Hence, we are only interested for the potential Vθ. An
often-employed potential in both analytical and numeri-
cal work, with slight differences from author to author,
described in [14], is the following one:

Vθ(θj) = −kθ cos(θ − θ0) +O
(
(θ − θ0)

3
)
. (3)

The correction to the cosine term in (3) can be any func-
tion which is “small” compared to the leading term in the
cosine, i.e. containing only third and higher order terms in
the angular displacement θj−θ0. It will turn out later that
these corrections are, in our method, of secondary impor-
tance anyway, so the exact form of this correction is not
relevant. In other words, the exact form of the anharmonic
terms is not relevant; a different form would produce dif-
ferent higher-order terms for the diffusion coefficient but
these are (by definition) beyond the scope of any model
based on diffusion equation.

In the following subsection, we will give our mean-field
model for a semistiff (semiflexible) chain. For some pur-
poses the mean-field treatment can provide sufficiently ac-
curate estimates and it is also of interest for other prob-
lems, not connected to protein physics.
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2.3 Diffusion equation formalism for semistiff polymers

For the rest of this paper, we will take the continuum
limit. The index of a segment in the chain (chemical coor-
dinate s) is now a variable taking values from the interval
(0, N), where N is the total segment number. This frame-
work is, of course, only suitable for the chains which are
not too short.

The formalism we employ here is best suited for small
stiffness; typical values of kθ in (3) are of the order of
10ε, with ε = 10−23 J (0.624 × 10−4 eV), which is small
compared to systems like double-stranded DNA.

One can start from the statistical weight of the jth
segment having a bond angle θj expressed in terms of its
radius-vector δrj :

p0(δrj) =
βkθ

4πa2 sinhβkθ
δ(δrj − a) exp(βkθ cos θj). (4)

The above equation is nothing but the Boltzmann weight
with appropriate normalization. Since the experiments
with unfolded proteins are usually performed at room tem-
perature, we take T = 300 K for all calculations through-
out the paper. In other words, the chain is modelled as a
random walk with one-step memory (which is implicitly
included in (4) via the bond angle depending on the pre-
vious segment). It is a variation on the persistent random
walk problem, well-known and often encountered in the-
ory of stochastic processes [15]. The usual formalism of
master equations leads to the conclusion that the contin-
uum limit of this process is a diffusion equation; we show
that in more detail in a separate publication [9].

For a three-dimensional model, diffusion coefficient be-
comes the diffusion tensor D̂ represented with a three-by-
three matrix, the component Dij being, by definition:

Dij =
1
2

∫
dδrp0(δr)δriδrj . (5)

A straightforward calculation then shows that the off-
diagonal components vanish; furthermore, the two “trans-
versal” components (perpendicular to the tangent vector
at the given point) are equal and will be denoted by D⊥;
the “longitudinal” one is denoted by D‖. They are ob-
tained to be:

D⊥ =
a2

sinhβkθ

(
coshβkθ
βkθ

− sinhβkθ
β2k2

θ

)
(6)

D‖ =
a2 cos2 θ0
sinhβkθ

(
sinhβkθ
β2k2

θ

+
sinhβkθ

2
− coshβkθ

βkθ

)
.

(7)
The above result was derived by rotating the diffusion ten-
sor in the local tangent coordinate system. The higher or-
der terms can be included to modify the cosine potential,
by means of perturbative corrections (so-called higher-
order correlation terms) to the diffusion coefficient. The
full formalism for computation of these corrections can be
found in [16]. For example, the harmonic potential for the

bond angle, also often employed [14] in various models,
can be modelled in this way. Let us right away define also
the coefficient μ ≡ 2D⊥/D‖, as we will use it throughout
the paper.

The non-isotropic diffusion tensor gives rise to the fol-
lowing diffusion equation:

∂P

∂N
= D‖

∂2P

∂r2
+

2D‖
r

∂P

∂r
+

D⊥
r2

�S2P, (8)

where �S2 is the angular part of the Laplacian in spherical
coordinates, i.e., the two-dimensional Laplace-Beltrami
operator.

We first look for a fundamental solution (in terminol-
ogy of the theory of partial differential equations), i.e. for
a solution in the whole space, vanishing at the infinity
and starting at r0, leading to the initial-boundary condi-
tion P (0, r, r0) = δ(r − r0)/4π. Then one can use well-
developed tools for solving diffusion equations. The eas-
iest way is to rewrite (8) as the Schrödinger equation in
imaginary time for a particle in a spherical potential given
by U(r) =  (+ 1) (μ/2 − 1) /r2. It is easy to see that
U(r) defined in this way is a well only for μ < 2, i.e. for
D⊥ < D‖, otherwise, it is repulsive. The physical inter-
pretation of this fact is that the diffusion with large D⊥
corresponds to the states with high angular momenta (no-
tice the position of D⊥ in (8)). But since arbitrarily high
angular momenta are only possible for unbounded states,
this means the the imaginary time description of the dif-
fusion corresponds to a particle in a repulsive potential.
Conversely, when D‖ dominates over D⊥, the primary con-
tribution to the energy comes from the radial part of the
Laplace operator; hence, angular momentum cannot be
arbitrarily high, which is consistent with a bounded state
in a potential well.

However, one can use the same eigenbasis for both of
the above cases; only the coefficients of the expansion will
be different. The eigenfunctions of the radial part of the
equation read as:

u1(, E , r) =
C1(, E)√

r
Jκ

(
−

√
E
D‖

r

)
(9)

u2(, E , r) =
C2(, E)√

r
Yκ

(
−

√
E
D‖

r

)
, (10)

with κ = [1/4 + μ(+ 1)/2]1/2, and correspond to the
states of definite energy E and angular momentum 
of the particle. The Bessel functions of the first (sec-
ond) kind are denoted by Jα and Yα. Right away we
see that C2 = 0 for all E and , as the Bessel func-
tions of the second kind diverge at short distances.
Hence, only the (9) states contribute to the solution.
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tions P (N, r) for various values of stiffness, with θ0 = 1.9.
Bottom – radial distribution functions P (N, r) for vari-
ous values of θ0, with kθ = 50ε. The length of the chain
N = 50.
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Fig. 3. Dependence of the scaling exponent ν for the
gyration radius on θ0. We have set kθ = 20ε. The
dashed lines denote the interval of the gyration radii
measured experimentally in unfolded polypeptides (about
0.6). The exponent ν is defined through the scaling rela-
tion 〈R2

g〉 ∝ N2ν .

The solution that satisfies our boundary conditions is then
obtained by standard methods and reads as:

P�(N, r, r0) = Cn(κ,N)
(
r

r0

)2κ+1/2 1
D‖N

× exp
(

−r2 + r20
4D‖N

)
Iκ

( |r · r0|
2D‖N

)
,

(11)

where I stands for the modified Bessel function of the first
kind. The normalization constant Cn(N) is equal to:

Cn(κ,N) = 3π22+κκ(D‖N)1+κ/2Γ (1 + κ)Γ (3κ/2)

×1 F1

(
1 + 3κ/2, 1 + κ,

r20
4D‖N

)
, (12)

with 1F1(a, b, x) denoting the confluent hypergeomet-
ric function of its arguments (see [17] for a def-
inition). We obtain the above result by expanding
(11) into power series, integrating and resuming. De-
pendence of the normalization constant on N and
κ is explicitly written, as this dependence will play a role

in later sections. The large-N asymptotic form of Cn(κ,N)
reads as:

Cn(κ,N) ≈ 3π22+κκ(D‖N)1+κ/2

× Γ

(
3κ
2

) (
1 +

3κ+ 2
2κ+ 2

r20
4D‖N

)
. (13)

We will need this asymptotic form later on. Notice that the
normalization constant is dependent on N , as one would
expect. The solution explicitly depends on . It is actually
the sum of all partial waves (characterized by the value
of ) that provide a solution of finite norm (i.e. no scatter-
ing to infinity, which would correspond to the “blowup”
of the chain) and finite localization radius (i.e. no “falling
to the center”, which would correspond to the collapse of
the chain).

To understand better the general properties of the
model, it is helpful to analyze the behavior of the so-
lution (11) depending on the parameters kθ and θ0. We
will first discuss the radial distribution function P (N, r),
defined as

∫ ∫
dφ dθ sin θr2P (N, r, r0). The results for se-

lected values are given in Figure 2. It is seen that in the
whole physically sensible range of parameters, the stiffness
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kθ, once it moves away from zero, only mildly flattens the
distribution function. On the other hand, the bending an-
gle does influence it significantly. An informal explanation
is that letting kθ grow, provided it is neither too close to
zero nor too large, results in less bending of the chain but
(as kθ is not very large) the chain still does bend rela-
tively often and still has the shape of a slightly flattened
sphere; therefore, various parts of the chain still propa-
gate in almost uncorrelated directions and it is not very
important how long (on average) they are. On the other
hand, large preferential angle θ0 brings a systematic effect,
which accumulates and substantially changes the shape of
the chain.

It is also instructive to look at the behavior of the gyra-
tion radius (expectation value of the squared distance from
the center of mass of the polymer), given in Figure 3. As
one could expect, it grows significantly with θ approach-
ing zero, as in that case, the most extended configura-
tions are preferred. This case agrees with the equations
for the gyration radius cited in [10]. On the other hand,
for values of θ0 close to π, the chain, on a macroscopic
scale, behaves almost as a Gaussian freely jointed chain,
hence ν approaches its Gaussian value 0.5. The gyration
radius for the continuum limit in the case of non-zero θ0
has, to the best of our knowledge, not been addressed so
far. The plot in Figure 3 shows the range of the prefer-
ential bond angle values that correspond to the experi-
mental result, ν ≈ 0.6 [3]. This range roughly corresponds
to the value of θ0 suggested by the geometry of bonds in
polypeptides: θ0 ≈ 1.8 radians [14]; in our calculations, we
use θ0 = 1.83 radians. Hence, our model is able to repro-
duce the observed scaling exponent of the gyration radii
and allows us to conclude that the proximity of its value
to the scaling exponent νsaw of the self-avoiding random
walk (νsaw ≈ 0.59) is pure coincidence. The distribution
of bond angles (which are dominant degrees of freedom in
terms of typical energies and time scales) alone accounts
for the gyration radius scaling, whereas the self-avoidance
(together with other non-bonded interactions) only pro-
duces small corrections (for more details see [12]).

3 The calculation of RDC values

3.1 Basic considerations

Having described our model of unfolded polypeptides, we
now turn to the calculation of RDC values. The general
theory is given in [2] and the basic idea is also mentioned
in the introduction section of this paper. Here we discuss
the more formal aspects of the procedure and state the
results.

We will consider the simplest model, in which the re-
stricting medium is modelled as a set of parallel planar
absorbing barriers at the distance L from each other, as
shown in Figure 1 [2]. This effectively means that all the
paths which intersect the barrier are removed from con-
sideration. The exact solution with these boundary condi-
tions is difficult to find; therefore, we resort to the method

of images, common in problems such as diffusion and elec-
trostatics [19]. Staying at the first order approximation,
the solution reads as [2]:

f(N, r, r0) = P (N, r, r0) − P (N, r′, r0) − P (N, r′′, r0),
(14)

with r′ and r′′ being the points symmetric to r with re-
spect to the barriers, and f(N, r, r0) denoting the proba-
bility density function for the appropriate boundary con-
ditions (whereas P stands for the fundamental solution in
the whole space).

As can be seen from the defining expression, the RDC
of the jth segment is determined by the value of the an-
gle Θ of the Cαj − Cαj+1 segment with respect to the di-
rection of the magnetic field. Therefore, we wish to find
the distribution function for this angle, denoted f(Θ). As
elucidated in more detail in [2], f(Θ) equals the joint cu-
mulative distribution for a chain of length j starting at
rj − δrj/2 and reaching some position r01, and a chain of
length N − j starting at rj + δrj/2 and ending at some
position r02. Cumulative distribution, by definition, enu-
merates the states with prescribed position of one end of
the chain (r ± δrj/2), independently of the coordinate of
the other end (r01 or r02). Therefore, for C(N, r) we have,
in general:

C(N, r) =
∫
dr0f(N, r, r0). (15)

At this point, one should notice that the dependence of
the cumulative distributions on x and y vanishes due to
symmetry. We may therefore denote them by C(N, z). In-
tegrating over the initial positions of the chains, r01 and
r02, we arrive at the following equation for f(Θ):

f(Θ) ∝
∫ L/2

−L/2
dz C

(
j, z − a cosΘ

2

)

× C

(
N − j, z +

a cosΘ
2

)
, (16)

where the proportionality constant is easy to determine
from the previous equations, keeping track of all constant
factors from the beginning. We have exploited the fact
that the segment lengths are all equal (|δrj | = a), as well
as the definition of the angle Θ.

3.2 Angular averaging: elementary method

The final step is performing the necessary integrations,
i.e., calculating the average over f(Θ). Conceptually the
simplest way of doing this is expanding (16) in a power
series and integrating it term by term. This is the most
feasible way for obtaining quick, low-accuracy estimates.
We first sketch this method.

One starts by expanding the cumulative distribution
functions in powers of a cosΘ. The odd terms obviously
vanish. The even terms are then integrated by parts bear-
ing in mind the fact that the distribution f(N, r, r0) van-
ishes at the boundaries due to confinement. The averaging
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in equation (1) is then readily performed. The result up
to the fourth order in a has the form:

DNH = KP2(αNH)×
[
B − 3

8
Cn(κ,N1)Cn(κ,N −N1 − 1)

Cn(κ,N)
a2

− 1
384

Cn(κ− 1, N1)Cn(κ− 1, N)
Cn(κ,N)

a2

+
1
64
Cn(κ− 1, N1)Cn(κ− 1, N −N1 − 1)

Cn(κ− 1, N)
a4

]
.

(17)

The constant K is defined in (1) and reads as:

K =
μ0�γNγH

4π2r3NH

. (18)

The constant term B in (17) is small (about two orders
of magnitude smaller than the a-dependent terms) and
we ignore it in our calculations. When calculating DNH,
we have used the asymptotic form for the normalization
constant, as given in (13). Bearing in mind the limited
accuracy of our formalism (simple toy-model potential,
mean-field approach, etc.), one may safely ignore also the
quartic term, as well as the second quadratic term (due
to its large denominator). We have found for the exam-
ples below that this approximation leads to insignificant
changes of the computed RDC curves.

3.3 Angular averaging: advanced method

A more elaborate but substantially more general scheme,
allowing in principle calculations of arbitrarily high ac-
curacy, is based upon the formalism of quantum theory
of angular momentum. We again start from (16), which is
the exact result (not approximate, like the series expansion
subsequently performed in the previous subsection). The
idea is to refrain from using the closed-form solution (11)
and use the series expansion of P (N, r, r0) over the radial
eigenfunctions (9) and spherical harmonics. The former is
more convenient and more informative for most purposes
but the latter allows us to use numerous identities of the
angular momentum theory to obtain simpler expressions
for the average of P2(cosΘ).

The starting point is the solution in the whole space:

P (N, r, r0) =
∞∑

�=0

A�R�(N, |r − r0|)P�(cos θ), (19)

where A� are the appropriate coefficients determined by
the eigenfunctions (9),R� are radial functions, obtained by
integrating the eigenfunctions over the “energy” variable
E , and θ is the azimuthal angle. Reflections in the planes
z = ±L/2, which give the image solutions, are then read-
ily obtained in the form R̂π,ez P̂ T̂±L

2 ez
P (N, r, r0), which

is easy to prove from elementary considerations. The oper-
ators denote the rotation for a given angle about the given

axis, spatial inversion and spatial translation for a given
vector, in that order. The rotation for π about the z-axis
and the spatial inversion act upon the angular part sim-
ply by multiplying it with (−1)l. Only the translation has
a nontrivial action. A lengthy calculation, making use of
the Wigner functions and identities with Clebsch-Gordan
coefficients as given in [20], results in:

P�(θ′, φ) =K�

∞∑

λ=0

(−1)λ+�fr(λ, , r)

×
�+λ∑

Λ=|�−λ|

(2+ 1)(2λ+ 1)
2Λ+ 1

|〈Λ0|0λ0〉|2. (20)

For the left image, where we have introduced the notation:

K� =
�∑

j=0

(
−L

2

)�−j √
2(− j) − 1

(+ j)!
(− j)!

×
[

(2)!(2j)!
(2+ 2j)!

]1/2

, (21)

fr(λ, , r) =
(2rL)�

(4r2 + L2)λ+�/2
F

×
(

2λ+ 

4
,

2λ+ + 2
4

; λ+
3
2
,

16r2L2

(4r2 + L2)2

)
,

(22)

and the angular brackets stand for the Clebsch-Gordan
coefficients, whereas F is the confluent hypergeometric
function, and the angle in the new coordinate system is
denoted by θ′. The other image looks the same, except
that the functions (22) now contain −L in place of L.
Finding the cumulative distribution is straightforward, in-
serting the expressions for P (N, r, r0) and its two images
in (15) and integrating. Notice that the initial position
is contained only in the radial functions R�, which can
be integrated analytically as their integrals reduce to the
familiar Bessel integrals.

The last step is multiplying the two cumulative distri-
bution functions as in (16) and integrating over z. At this
step the symmetry of the problem nullifies all the terms
containing the product of an even and an odd functions of
z, and the triangle rule for addition of angular momenta
further reduces the number of non-zero terms. We are thus
left with a finite sum which, to the second order, gives the
result for P2(cosΘ) that coincides with (17). The fourth
order term differs from the corresponding term in (17),
however, as in this approach, due to the orthogonality of
the Legendre polynomials, we capture the exact value of
the coefficient in front of the fourth (or any other desired)
order term in the expansion. In the elementary method,
the expansion is in powers of a and in number of images.
The latter expansion is an uncontrollable approximation,
since the 2nth image can contribute a term of the order
2n − 2 in a. The advanced method captures the whole
contribution of given order in a.
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At the present level of accuracy of our model, this in-
crease in accuracy is not crucial. However, the generality
of the formalism applied in this subsection might prove to
be necessary if the subtler effects as the Ramachandran ro-
tations or long-range interactions are included. Also, the
described method allows an equally straightforward calcu-
lation of the expectation value of P�(cosΘ) for any . This
case will appear if other observables in addition to direct
dipole-dipole couplings are measured. We therefore pro-
pose this approach for any further work on this problem.

4 Examples

The purpose of this section is to test our predictions on
experimental data and judge the accuracy and usefulness
of our theory. Therefore, we do not analyze in detail any
of the systems and contend ourselves just to compare our
curves with the experimental ones.

In all the cases that we consider, we take the stiffness
kθ equal to 20ε and preferential bond angle θ0 = 1.83
(in radians). These values have been recommended in [14]
and also according to other authors the peptide bond is
expected to be well described by these values. The inter-
planar distance is taken fixed to L = 100a, where a is
the length of a single segment. In both experiments that
we analyze [21,22], this length is cited to be about 40 nm
while the segment length is 0.38 nm. So, our value for
the interplanar distance roughly corresponds to the ex-
perimental one; exact equality is not essential since the
experimental setup is difficult to control concerning the
interplanar distance [22] and the actual distribution of in-
terplanar values is probably rather fat-tailed. In our the-
ory, the segment length does not enter the final expressions
and therefore can take any arbitrary value.

The first case we consider is the urea-denaturated apo-
myoglobin, an experiment reported in [21], and analyzed
also in the previous study by two of the authors [2]. The
result is seen in Figure 4. The same paper also reports on
measurements of acid denaturated apomyoglobin, which
cannot be well described with our model, probably be-
cause the native-like topology is still present in this case,
as the authors themselves state [21].

Another example is ubiquitin, one of the proteins
which are intrinsically disordered also in their native state.
The measurements are taken from [22].

The second case, in Figure 5, shows somewhat better
agreement with experiment than the first one (χ2 about
30 percent better). In part, this is probably due to the
difference between the two proteins. Ubiquitin is known
to be a strongly disordered protein [22] and behaves es-
sentially as a perfect statistical coil, so various local de-
viations from the mean value of RDCs tend to average
out. On the other hand, apomyoglobin probably retains
some native-like structure even in the unfolded state; this
is particularly probable for the regions formed by several
subsequent segments which are completely above or be-
low the average RDC value, that are visible in the mea-
surements given in Figure 4. These are probably regions
with strong close-neighbor interactions, that behave like
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Fig. 4. (Color online) Comparison of experimental (blue
dashed line) and theoretical (red full line) RDCs for unfolded
apomyoglobin. The prediction of the random flight theory [2]
is also shown (green dash-dotted line). General bell shape is
observed but it is obvious that local conformational properties
induce large deviations from the mean field curve, predicted
by our model.
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Fig. 5. (Color online) Comparison of experimental (blue
dashed line) and theoretical (red full line) RDCs for unfolded
ubiquitin. The random flight theory prediction [2] is also shown
(green dash-dotted line). One again sees the local variations
superimposed on the global bell-shaped curve.

partially folded secondary structures and therefore choose
one of the conformations, some of them with significantly
higher probability than the others. Finally, we point out
that both examples demonstrate that the current model
provides a more realistic description of the polypeptide
than the non-interacting random flight model.
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5 Discussion and conclusion

We have presented a theoretical method for reproducing
the spatial structure of unfolded polypeptides, in partic-
ular the NMR spectroscopic measurements of NH dipolar
couplings. Our approach requires the use of the empirical
potentials and model parameters; therefore, it is not an
ab initio approach. Nevertheless, all the parameters enter-
ing the calculation are either measured (or controlled) in
the experiment itself (temperature, interplanar distance)
or more or less standard and well-known values (optimal
bond angle, bond stiffness). Bond stiffness is the “most
empirical” of them but it also seems to vary very little in
various numerical models [14,18]. The results seem encour-
aging and reveal general properties of disordered proteins.

First, it seems that the assumption of the effective
decoupling of the degrees of freedom is justified by the
RDC curves. The global shape of the chain, which is de-
termined primarily by the statistical nature of polypep-
tide chain conformations in unfolded state and is well de-
scribed within the semistiff polymer model, gives rise to
the bell shape of the curves, also detected in experiments.
On the other hand, the specificities of the segments lead
to the local deviations of the RDC values from the smooth
bell-shaped distribution. We plan to extend our model in
further work, applying the linear response theory in order
to reproduce these local structures.

The method will be subject to a number of improve-
ments in the future. Besides applying the linear response
formalism to improve the results, we also plan to asses in
more detail the influence of long range interactions and in-
trachain contacts. Also, it is possible to use the results of
the numerical work to identify the optimal Ramachandran
angles for unfolded polypeptides. This will allow us to ac-
count for even richer secondary structure than that pro-
duced by a restricted database search, as the problem of
weighting would be eliminated, with the energy values of
different (φ, ψ) points being read off numerically obtained
potential energy surfaces.
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Chapter 21
Holographic Description of Strongly Correlated
Electrons in External Magnetic Fields

E. Gubankova, J. Brill, M. Čubrović, K. Schalm, P. Schijven, and J. Zaanen

21.1 Introduction

The study of strongly interacting fermionic systems at finite density and tempera-
ture is a challenging task in condensed matter and high energy physics. Analytical
methods are limited or not available for strongly coupled systems, and numerical
simulation of fermions at finite density breaks down because of the sign problem
[1, 2]. There has been an increased activity in describing finite density fermionic
matter by a gravity dual using the holographic AdS/CFT correspondence [3]. The
gravitational solution dual to the finite chemical potential system is the electrically
charged AdS-Reissner-Nordström (RN) black hole, which provides a background
where only the metric and Maxwell fields are nontrivial and all matter fields vanish.
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In the classical gravity limit, the decoupling of the Einstein-Maxwell sector holds
and leads to universal results, which is an appealing feature of applied holography.
Indeed, the celebrated result for the ratio of the shear viscosity over the entropy den-
sity [4] is identical for many strongly interacting theories and has been considered a
robust prediction of the AdS/CFT correspondence.

However, an extremal black hole alone is not enough to describe finite density
systems as it does not source the matter fields. In holography, at leading order, the
Fermi surfaces are not evident in the gravitational geometry, but can only be de-
tected by external probes; either probe D-branes [3] or probe bulk fermions [5–8].
Here we shall consider the latter option, where the free Dirac field in the bulk carries
a finite charge density [9]. We ignore electromagnetic and gravitational backreac-
tion of the charged fermions on the bulk spacetime geometry (probe approximation).
At large temperatures, T � μ, this approach provides a reliable hydrodynamic de-
scription of transport at a quantum criticality (in the vicinity of superfluid-insulator
transition) [10]. At small temperatures, T � μ, in some cases sharp Fermi surfaces
emerge with either conventional Fermi-liquid scaling [6] or of a non-Fermi liquid
type [7] with scaling properties that differ significantly from those predicted by the
Landau Fermi liquid theory. The non-trivial scaling behavior of these non-Fermi
liquids has been studied semi-analytically in [8] and is of great interest as high-Tc
superconductors and metals near the critical point are believed to represent non-
Fermi liquids.

What we shall study is the effects of magnetic field on the holographic fermions.
A magnetic field is a probe of finite density matter at low temperatures, where the
Landau level physics reveals the Fermi level structure. The gravity dual system is
described by a AdS dyonic black hole with electric and magnetic charges Q and H ,
respectively, corresponding to a 2 + 1-dimensional field theory at finite chemical
potential in an external magnetic field [11]. Probe fermions in the background of the
dyonic black hole have been considered in [12–14]; and probe bosons in the same
background have been studied in [15]. Quantum magnetism is considered in [16].

The Landau quantization of momenta due to the magnetic field found there,
shows again that the AdS/CFT correspondence has a powerful capacity to unveil
that certain quantum properties known from quantum gases have a much more ubiq-
uitous status than could be anticipated theoretically. A first highlight is the demon-
stration [17] that the Fermi surface of the Fermi gas extends way beyond the realms
of its perturbative extension in the form of the Fermi-liquid. In AdS/CFT it appears
to be gravitationally encoded in the matching along the scaling direction between
the ‘bare’ Dirac waves falling in from the ‘UV’ boundary, and the true IR excitations
living near the black hole horizon. This IR physics can insist on the disappearance
of the quasiparticle but, if so, this ‘critical Fermi-liquid’ is still organized ‘around’ a
Fermi surface. The Landau quantization, the organization of quantum gaseous mat-
ter in quantized energy bands (Landau levels) in a system of two space dimensions
pierced by a magnetic field oriented in the orthogonal spatial direction, is a sec-
ond such quantum gas property. We shall describe here following [12], that despite
the strong interactions in the system, the holographic computation reveals the same
strict Landau-level quantization. Arguably, it is the mean-field nature imposed by
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large N limit inherent in AdS/CFT that explains this. The system is effectively non-
interacting to first order in 1/N . The Landau quantization is not manifest from the
geometry, but as we show this statement is straightforwardly encoded in the sym-
metry correspondences associated with the conformal compactification of AdS on
its flat boundary (i.e., in the UV CFT).

An interesting novel feature in strongly coupled systems arises from the fact that
the background geometry is only sensitive to the total energy density Q2 +H 2 con-
tained in the electric and magnetic fields sourced by the dyonic black hole. Dialing
up the magnetic field is effectively similar to a process where the dyonic black hole
loses its electric charge. At the same time, the fermionic probe with charge q is
essentially only sensitive to the Coulomb interaction gqQ. As shown in [12], one
can therefore map a magnetic to a non-magnetic system with rescaled parameters
(chemical potential, fermion charge) and same symmetries and equations of motion,
as long as the Reissner-Nordström geometry is kept.

Translated to more experiment-compatible language, the above magnetic-electric
mapping means that the spectral functions at nonzero magnetic field h are identi-
cal to the spectral function at h = 0 for a reduced value of the coupling constant
(fermion charge) q , provided the probe fermion is in a Landau level eigenstate. A
striking consequence is that the spectrum shows conformal invariance for arbitrarily
high magnetic fields, as long as the system is at negligible to zero density. Specif-
ically, a detailed analysis of the fermion spectral functions reveals that at strong
magnetic fields the Fermi level structure changes qualitatively. There exists a criti-
cal magnetic field at which the Fermi velocity vanishes. Ignoring the Landau level
quantization, we show that this corresponds to an effective tuning of the system
from a regular Fermi liquid phase with linear dispersion and stable quasiparticles
to a non-Fermi liquid with fractional power law dispersion and unstable excitations.
This phenomenon can be interpreted as a transition from metallic phase to a “strange
metal” at the critical magnetic field and corresponds to the change of the infrared
conformal dimension from ν > 1/2 to ν < 1/2 while the Fermi momentum stays
nonzero and the Fermi surface survives. Increasing the magnetic field further, this
transition is followed by a “strange-metal”-conformal crossover and eventually, for
very strong fields, the system always has near-conformal behavior where kF = 0
and the Fermi surface disappears.

For some Fermi surfaces, this surprising metal-“strange metal” transition is not
physically relevant as the system prefers to directly enter the conformal phase.
Whether a fine tuned system exists that does show a quantum critical phase transi-
tion from a FL to a non-FL is determined by a Diophantine equation for the Landau
quantized Fermi momentum as a function of the magnetic field. Perhaps these are
connected to the magnetically driven phase transition found in AdS5/CFT4 [18]. We
leave this subject for further work.

Overall, the findings of Landau quantization and “discharge” of the Fermi surface
are in line with the expectations: both phenomena have been found in a vast array of
systems [19] and are almost tautologically tied to the notion of a Fermi surface in a
magnetic field. Thus we regard them also as a sanity check of the whole bottom-up
approach of fermionic AdS/CFT [5–7, 17], giving further credit to the holographic
Fermi surfaces as having to do with the real world.
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Next we use the information of magnetic effects the Fermi surfaces extracted
from holography to calculate the quantum Hall and longitudinal conductivities. Gen-
erally speaking, it is difficult to calculate conductivity holographically beyond the
Einstein-Maxwell sector, and extract the contribution of holographic fermions. In
the semiclassical approximation, one-loop corrections in the bulk setup involving
charged fermions have been calculated [17]. In another approach, the backreaction
of charged fermions on the gravity-Maxwell sector has been taken into account and
incorporated in calculations of the electric conductivity [9]. We calculate the one-
loop contribution on the CFT side, which is equivalent to the holographic one-loop
calculations as long as vertex corrections do not modify physical dependencies of
interest [17, 20]. As we dial the magnetic field, the Hall plateau transition happens
when the Fermi surface moves through a Landau level. One can think of a differ-
ence between the Fermi energy and the energy of the Landau level as a gap, which
vanishes at the transition point and the 2 + 1-dimensional theory becomes scale in-
variant. In the holographic D3–D7 brane model of the quantum Hall effect, plateau
transition occurs as D-branes move through one another [21, 22]. In the same model,
a dissipation process has been observed as D-branes fall through the horizon of the
black hole geometry, that is associated with the quantum Hall insulator transition.
In the holographic fermion liquid setting, dissipation is present through interaction
of fermions with the horizon of the black hole. We have also used the analysis of the
conductivities to learn more about the metal-strange metal phase transition as well
as the crossover back to the conformal regime at high magnetic fields.

We conclude with the remark that the findings summarized above are in fact
somewhat puzzling when contrasted to the conventional picture of quantum Hall
physics. It is usually stated that the quantum Hall effect requires three key ingredi-
ents: Landau quantization, quenched disorder1 and (spatial) boundaries, i.e., a finite-
sized sample [23]. The first brings about the quantization of conductivity, the second
prevents the states from spilling between the Landau levels ensuring the existence
of a gap and the last one in fact allows the charge transport to happen (as it is the
boundary states that actually conduct). In our model, only the first condition is satis-
fied. The second is put by hand by assuming that the gap is automatically preserved,
i.e. that there is no mixing between the Landau levels. There is, however, no phys-
ical explanation as to how the boundary states are implicitly taken into account by
AdS/CFT.

We outline the holographic setting of the dyonic black hole geometry and bulk
fermions in Sect. 21.2. In Sect. 21.3 we prove the conservation of conformal symme-
try in the presence of the magnetic fields. Section 21.4 is devoted to the holographic
fermion liquid, where we obtain the Landau level quantization, followed by a de-
tailed study of the Fermi surface properties at zero temperature in Sect. 21.5. We
calculate the DC conductivities in Sect. 21.6, and compare the results with available
data in graphene.

1Quenched disorder means that the dynamics of the impurities is “frozen”, i.e. they can be regarded
as having infinite mass. When coupled to the Fermi liquid, they ensure that below some scale the
system behaves as if consisting of non-interacting quasiparticles only.
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21.2 Holographic Fermions in a Dyonic Black Hole

We first describe the holographic setup with the dyonic black hole, and the dynamics
of Dirac fermions in this background. In this paper, we exclusively work in the probe
limit, i.e., in the limit of large fermion charge q .

21.2.1 Dyonic Black Hole

We consider the gravity dual of 3-dimensional conformal field theory (CFT) with
global U(1) symmetry. At finite charge density and in the presence of magnetic
field, the system can be described by a dyonic black hole in 4-dimensional anti-
de Sitter space-time, AdS4, with the current Jμ in the CFT mapped to a U(1)
gauge field AM in AdS. We use μ,ν,ρ, . . . for the spacetime indices in the CFT
and M,N, . . . for the global spacetime indices in AdS.

The action for a vector field AM coupled to AdS4 gravity can be written as

Sg = 1
2κ2

∫
d4x

√−g
(

R + 6
R2 − R2

g2
F

FMNF
MN

)
, (21.1)

where g2
F is an effective dimensionless gauge coupling and R is the curvature radius

of AdS4. The equations of motion following from (21.1) are solved by the geometry
corresponding to a dyonic black hole, having both electric and magnetic charge:

ds2 = gMNdx
MdxN = r2

R2
(−f dt2 + dx2 + dy2)+ R2

r2
dr2

f
. (21.2)

The redshift factor f and the vector field AM reflect the fact that the system is at a
finite charge density and in an external magnetic field:

f = 1 + Q2 +H 2

r4 − M

r3 ,

(21.3)
At = μ

(
1 − r0

r

)
, Ay = hx, Ax =Ar = 0,

where Q and H are the electric and magnetic charge of the black hole, respectively.
Here we chose the Landau gauge; the black hole chemical potential μ and the mag-
netic field h are given by

μ= gFQ

R2r0
, h= gFH

R4 , (21.4)

with r0 is the horizon radius determined by the largest positive root of the redshift
factor f (r0)= 0:

M = r3
0 + Q2 +H 2

r0
. (21.5)
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The boundary of the AdS is reached for r →∞. The geometry described by (21.2)–
(21.3) describes the boundary theory at finite density, i.e., a system in a charged
medium at the chemical potential μ= μbh and in transverse magnetic field h= hbh,
with charge, energy, and entropy densities given, respectively, by

ρ = 2
Q

κ2R2gF
, ε = M

κ2R4 , s = 2π
κ2

r2
0
R2 . (21.6)

The temperature of the system is identified with the Hawking temperature of the
black hole, TH ∼ |f ′(r0)|/4π ,

T = 3r0

4πR2

(
1 − Q2 +H 2

3r4
0

)
. (21.7)

Since Q and H have dimensions of [L]2, it is convenient to parametrize them as

Q2 = 3r4∗ , Q2 +H 2 = 3r4∗∗. (21.8)

In terms of r0, r∗ and r∗∗ the above expressions become

f = 1 + 3r4∗∗
r4 − r3

0 + 3r4∗∗/r0

r3 , (21.9)

with

μ=√
3gF

r2∗
R2r0

, h=√
3gF

√
r4∗∗ − r4∗
R4 . (21.10)

The expressions for the charge, energy and entropy densities, as well as for the
temperature are simplified as

ρ = 2
√

3
κ2gF

r2∗
R2 , ε = 1

κ2
r3

0 + 3r4∗∗/r0

R4 , s = 2π
κ2

r2
0
R2 ,

(21.11)

T = 3
4π

r0

R2

(
1 − r4∗∗

r4
0

)
.

In the zero temperature limit, i.e., for an extremal black hole, we have

T = 0 → r0 = r∗∗, (21.12)

which in the original variables reads Q2 + H 2 = 3r4
0 . In the zero temperature

limit (21.12), the redshift factor f as given by (21.9) develops a double zero at
the horizon:

f = 6
(r − r∗∗)2

r2∗∗
+O

(
(r − r∗∗)3

)
. (21.13)
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As a result, near the horizon the AdS4 metric reduces to AdS2×R2 with the curvature
radius of AdS2 given by

R2 = 1√
6
R. (21.14)

This is a very important property of the metric, which considerably simplifies the
calculations, in particular in the magnetic field.

In order to scale away the AdS4 radius R and the horizon radius r0, we introduce
dimensionless variables

r → r0r, r∗ → r0r∗, r∗∗ → r0r∗∗,
(21.15)

M → r3
0M, Q→ r2

0Q, H → r2
0H,

and

(t,x)→ R2

r0
(t,x), AM → r0

R2AM, ω→ r0

R2ω,

μ→ r0

R2μ, h→ r2
0
R4 h, T → r0

R2 T , (21.16)

ds2 →R2ds2.

Note that the scaling factors in the above equation that describes the quantities of
the boundary field theory involve the curvature radius of AdS4, not AdS2.

In the new variables we have

T = 3
4π

(
1 − r4∗∗

)= 3
4π

(
1 − Q2 +H 2

3

)
, f = 1 + 3r4∗∗

r4 − 1 + 3r4∗∗
r3 ,

(21.17)
At = μ

(
1 − 1

r

)
, μ=√

3gF r2∗ = gFQ, h= gFH,

and the metric is given by

ds2 = r2(−f dt2 + dx2 + dy2)+ 1
r2

dr2

f
, (21.18)

with the horizon at r = 1, and the conformal boundary at r →∞.
At T = 0, r∗∗ becomes unity, and the redshift factor develops the double zero

near the horizon,

f = (r − 1)2(r2 + 2r + 3)
r4 . (21.19)

As mentioned before, due to this fact the metric near the horizon reduces to
AdS2 × R2 where the analytical calculations are possible for small frequencies [8].
However, in the chiral limit m = 0, analytical calculations are also possible in the
bulk AdS4 [24], which we utilize in this paper.
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21.2.2 Holographic Fermions

To include the bulk fermions, we consider a spinor field ψ in the AdS4 of charge q
and mass m, which is dual to an operator O in the boundary CFT3 of charge q and
dimension

Δ= 3
2
+mR, (21.20)

with mR ≥− 1
2 and in dimensionless units corresponds to Δ= 3

2 +m. In the black
hole geometry, (21.2), the quadratic action for ψ reads as

Sψ = i

∫
d4x

√−g(ψ̄Γ MDMψ −mψ̄ψ
)
, (21.21)

where ψ̄ =ψ†Γ t , and

DM = ∂M + 1
4
ωabMΓ

ab − iqAM, (21.22)

where ωabM is the spin connection, and Γ ab = 1
2 [Γ a,Γ b]. Here, M and a, b denote

the bulk space-time and tangent space indices respectively, while μ,ν are indices
along the boundary directions, i.e. M = (r,μ). Gamma matrix basis (Minkowski
signature) is given in [8].

We will be interested in spectra and response functions of the boundary fermions
in the presence of magnetic field. This requires solving the Dirac equation in the
bulk [6, 7]: (

Γ MDM −m
)
ψ = 0. (21.23)

From the solution of the Dirac equation at small ω, an analytic expression for the
retarded fermion Green’s function of the boundary CFT at zero magnetic field has
been obtained in [8]. Near the Fermi surface it reads as [8]:

GR(Ω,k)= (−h1vF )

ω− vF k⊥ −Σ(ω,T )
, (21.24)

where k⊥ = k − kF is the perpendicular distance from the Fermi surface in mo-
mentum space, h1 and vF are real constants calculated below, and the self-energy
Σ =Σ1 + iΣ2 is given by [8]

Σ(ω,T )/vF = T 2νg

(
ω

T

)
= (2πT )2νh2eiθ−iπν

Γ ( 1
2 + ν − iω

2πT + iμq
6 )

Γ ( 1
2 − ν − iω

2πT + iμq
6 )

, (21.25)

where ν is the zero temperature conformal dimension at the Fermi momentum,
ν ≡ νkF , given by (21.58), μq ≡ μq , h2 is a positive constant and the phase θ is
such that the poles of the Green’s function are located in the lower half of the com-
plex frequency plane. These poles correspond to quasinormal modes of the Dirac
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equation (21.23) and they can be found numerically solving F(ω∗) = 0 [25, 26],
with

F(ω)= k⊥
Γ ( 1

2 + ν − iω
2πT + iμq

6 )
− h2eiθ−iπν(2πT )2ν

Γ ( 1
2 − ν − iω

2πT + iμq
6 )

, (21.26)

The solution gives the full motion of the quasinormal poles ω(n)∗ (k⊥) in the complex
ω plane as a function of k⊥. It has been found in [8, 25, 26], that, if the charge of
the fermion is large enough compared to its mass, the pole closest to the real ω axis
bounces off the axis at k⊥ = 0 (and ω = 0). Such behavior is identified with the
existence of the Fermi momentum kF indicative of an underlying strongly coupled
Fermi surface.

At T = 0, the self-energy becomes T 2νg(ω/T )→ ckω
2ν , and the Green’s func-

tion obtained from the solution to the Dirac equation reads [8]

GR(Ω,k)= (−h1vF )

ω− vF k⊥ − h2vF eiθ−iπνω2ν , (21.27)

where k⊥ =√
k2 − kF . The last term is determined by the IR AdS2 physics near the

horizon. Other terms are determined by the UV physics of the AdS4 bulk.
The solutions to (21.23) have been studied in detail in [6–8]. Here we simply

summarize the novel aspects due to the background magnetic field [27]

• The background magnetic field h introduces a discretization of the momentum:

k→ keff =
√

2|qh|l, with l ∈N, (21.28)

with Landau level index l [13, 14, 25, 26]. These discrete values of k are the
analogue of the well-known Landau levels that occur in magnetic systems.

• There exists a (non-invertible) mapping on the level of Green’s functions, from
the magnetic system to the non-magnetic one by sending

(H,Q,q) �→
(

0,
√
Q2 +H 2, q

√
1 − H 2

Q2 +H 2

)
. (21.29)

The Green’s functions in a magnetic system are thus equivalent to those in the
absence of magnetic fields. To better appreciate that, we reformulate (21.29) in
terms of the boundary quantities:

(h,μq,T ) �→
(

0,μq,T

(
1 − h2

12μ2

))
, (21.30)

where we used dimensionless variables defined in (21.15), (21.17). The magnetic
field thus effectively decreases the coupling constant q and increases the chem-
ical potential μ = gFQ such that the combination μq ≡ μq is preserved [12].
This is an important point as the equations of motion actually only depend on this
combination and not on μ and q separately [12]. In other words, (21.30) implies
that the additional scale brought about by the magnetic field can be understood as
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changing μ and T independently in the effective non-magnetic system instead of
only tuning the ratio μ/T . This point is important when considering the thermo-
dynamics.

• The discrete momentum keff = √
2|qh|l must be held fixed in the transforma-

tion (21.29). The bulk-boundary relation is particularly simple in this case, as the
Landau levels can readily be seen in the bulk solution, only to remain identical in
the boundary theory.

• Similar to the non-magnetic system [12], the IR physics is controlled by the near
horizon AdS2 × R2 geometry, which indicates the existence of an IR CFT, char-
acterized by operators Ol , l ∈N with operator dimensions δ = 1/2 + νl :

νl = 1
6

√
6
(
m2 + 2|qh|l

r2∗∗

)
− μ2

q

r4∗∗
, (21.31)

in dimensionless notation, and μq ≡ μq . At T = 0, when r∗∗ = 1, it becomes

νl = 1
6

√
6
(
m2 + 2|qh|l)−μ2

q . (21.32)

The Green’s function for these operators Ol is found to be G R
l (ω)∼ ω2νl and the

exponents νl determines the dispersion properties of the quasiparticle excitations.
For ν > 1/2 the system has a stable quasiparticle and a linear dispersion, whereas
for ν ≤ 1/2 one has a non-Fermi liquid with power-law dispersion and an unstable
quasiparticle.

21.3 Magnetic Fields and Conformal Invariance

Despite the fact that a magnetic field introduces a scale, in the absence of a chem-
ical potential, all spectral functions are essentially still determined by conformal
symmetry. To show this, we need to establish certain properties of the near-horizon
geometry of a Reissner-Nordström black hole. This leads to the AdS2 perspective
that was developed in [8]. The result relies on the conformal algebra and its rela-
tion to the magnetic group, from the viewpoint of the infrared CFT that was studied
in [8]. Later on we will see that the insensitivity to the magnetic field also carries
over to AdS4 and the UV CFT in some respects. To simplify the derivations, we
consider the case T = 0.

21.3.1 The Near-Horizon Limit and Dirac Equation in AdS2

It was established in [8] that an electrically charged extremal AdS-Reissner-
Nordström black hole has an AdS2 throat in the inner bulk region. This conclusion
carries over to the magnetic case with some minor differences. We will now give a
quick derivation of the AdS2 formalism for a dyonic black hole, referring the reader
to [8] for more details (that remain largely unchanged in the magnetic field).
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Near the horizon r = r∗∗ of the black hole described by the metric (21.2), the
redshift factor f (r) develops a double zero:

f (r)= 6
(r − r∗∗)2

r2∗∗
+ O

(
(r − r∗∗)3

)
. (21.33)

Now consider the scaling limit

r − r∗∗ = λ
R2

2
ζ
, t = λ−1τ, λ→ 0 with τ, ζ finite. (21.34)

In this limit, the metric (21.2) and the gauge field reduce to

ds2 = R2
2

ζ 2
(−dτ 2 + dζ 2)+ r2∗∗

R2
(
dx2 + dy2),

(21.35)

Aτ = μR2
2r0

r2∗∗
1
ζ
, Ax =Hx

where R2 = R√
6

. The geometry described by this metric is indeed AdS2 × R2. Phys-
ically, the scaling limit given in (21.34) with finite τ corresponds to the long time
limit of the original time coordinate t , which translates to the low frequency limit of
the boundary theory:

ω

μ
→ 0, (21.36)

where ω is the frequency conjugate to t . (One can think of λ as being the fre-
quency ω.) Near the AdS4 horizon, we expect the AdS2 region of an extremal dyonic
black hole to have a CFT1 dual. We refer to [8] for an account of this AdS2/CFT1
duality. The horizon of AdS2 region is at ζ → ∞ (coefficient in front of dτ van-
ishes at the horizon in (21.35)) and the infrared CFT (IR CFT) lives at the AdS2
boundary at ζ = 0. The scaling picture given by (21.34)–(21.35) suggests that in
the low frequency limit, the 2-dimensional boundary theory is described by this IR
CFT (which is a CFT1). The Green’s function for the operator O in the boundary
theory is obtained through a small frequency expansion and a matching procedure
between the two different regions (inner and outer) along the radial direction, and
can be expressed through the Green’s function of the IR CFT [8].

The explicit form for the Dirac equation in the magnetic field is of little interest
for the analytical results that follow. It can be found in [27]. Of primary interest is
its limit in the IR region with metric given by (21.35):(

− 1√
gζζ

σ 3∂ζ −m+ 1√−gττ σ
1
(
ω+ μqR

2
2r0

r2∗∗ζ

)
− 1√

gii iσ 2λl

)
F (l) = 0,

(21.37)

where the effective momentum of the lth Landau level is λl = √
2|qh|l, μq ≡ μq

and we omit the index of the spinor field. To obtain (21.37), it is convenient to
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pick the gamma matrix basis as Γ ζ̂ =−σ3, Γ τ̂ = iσ1 and Γ î =−σ2. We can write
explicitly:⎛

⎝ ζ
R2
∂ζ +m − ζ

R2
(ω+ μqR

2
2r0

r2∗∗ζ
)+ R

r∗∗ λl
ζ
R2
(ω+ μqR

2
2r0

r2∗∗ζ
)+ R

r∗∗ λl
ζ
R2
∂ζ −m

⎞
⎠(

y

z

)
= 0. (21.38)

Note that the AdS2 radius R2 enters for the (τ, ζ ) directions. At the AdS2 boundary,
ζ → 0, the Dirac equation to the leading order is given by

ζ∂ζF
(l) =−UF(l), U =R2

⎛
⎝ m −μqR2r0

r2∗∗
+ R

r∗∗ λl
μqR2r0
r2∗∗

+ R
r∗∗ λl −m

⎞
⎠ . (21.39)

The solution to this equation is given by the scaling function F (l) = Ae+ζ−νl +
Be−ζ νl where e± are the real eigenvectors of U and the exponent is

νl = 1
6

√
6
(
m2 + R2

r2∗∗
2|qh|l

)
R2 − μ2

qR
4r2

0
r4∗∗

. (21.40)

The conformal dimension of the operator O in the IR CFT is δl = 1
2 + νl . Compar-

ing (21.40) to the expression for the scaling exponent in [8], we conclude that the
scaling properties and the AdS2 construction are unmodified by the magnetic field,
except that the scaling exponents are now fixed by the Landau quantization. This
“quantization rule” was already exploited in [25, 26] to study de Haas-van Alphen
oscillations.

21.4 Spectral Functions

In this section we will explore some of the properties of the spectral function, in
both plane wave and Landau level basis. We first consider some characteristic cases
in the plane wave basis and make connection with the ARPES measurements.

21.4.1 Relating to the ARPES Measurements

In reality, ARPES measurements cannot be performed in magnetic fields so the
holographic approach, allowing a direct insight into the propagator structure and the
spectral function, is especially helpful. This follows from the observation that the
spectral functions as measured in ARPES are always expressed in the plane wave
basis of the photon, thus in a magnetic field, when the momentum is not a good
quantum number anymore, it becomes impossible to perform the photoemission
spectroscopy.

In order to compute the spectral function, we have to choose a particular
fermionic plane wave as a probe. Since the separation of variables is valid through-
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out the bulk, the basis transformation can be performed at every constant r-slice.
This means that only the x and y coordinates have to be taken into account (the
plane wave probe lives only at the CFT side of the duality). We take a plane wave
propagating in the +x direction with spin up along the r-axis. In its rest frame such
a particle can be described by

Ψprobe = eiωt−ipxx
(
ξ

ξ

)
, ξ =

(
1
0

)
. (21.41)

Near the boundary (at rb →∞) we can rescale our solutions of the Dirac equation,
details can be found in [27]:

Fl =

⎛
⎜⎜⎜⎜⎝

ζ
(1)
l (x̃)

ξ
(l)
+ (rb)ζ

(1)
l (x̃)

ζ
(2)
l (x̃)

−ξ (l)+ (rb)ζ
(2)
l (x̃)

⎞
⎟⎟⎟⎟⎠ , F̃l =

⎛
⎜⎜⎜⎜⎝

ζ
(1)
l (x̃)

ξ
(l)
− (rb)ζ

(1)
l (x̃)

−ζ (2)l (x̃)

ξ
(l)
− (rb)ζ

(2)
l (x̃)

⎞
⎟⎟⎟⎟⎠ , (21.42)

with rescaled x̃ defined in [27]. This representation is useful since we calculate the
components ξ±(rb) related to the retarded Green’s function in our numerics (we
keep the notation of [8]).

Let Ol and Õl be the CFT operators dual to respectively Fl and F̃l , and c
†
k , ck

be the creation and annihilation operators for the plane wave state Ψprobe. Since the
states F and F̃ form a complete set in the bulk, we can write

c†
p(ω)=

∑
l

(
U∗
l , Ũ

∗
l

)(O†
l (ω)

Õ†
l (ω)

)
=

∑
l

(
U∗
l O†

l (ω)+ Ũ∗
l Õ†

l (ω)
)

(21.43)

where the overlap coefficients Ul(ω) are given by the inner product between Ψprobe
and F :

Ul(px)=
∫
dxF

†
l iΓ

0Ψprobe =−
∫
dxe−ipxxξ+(rb)

(
ζ
(1)†
l (x̃)− ζ

(2)†
l (x̃)

)
,

(21.44)
with F̄ = F †iΓ 0, and similar expression for Ũl involving ξ−(rb). The constants
Ul can be calculated analytically using the numerical value of ξ±(rb), and by not-
ing that the Hermite functions are eigenfunctions of the Fourier transform. We are
interested in the retarded Green’s function, defined as

GR
Ol
(ω,p) = −i

∫
dxdteiωt−ip·xθ(t)GR

Ol
(t, x)

GR
Ol
(t, x) = 〈0|[Ol (t, x), Ōl (0,0)

]|0〉 (21.45)

GR =
(
GO 0

0 G̃O

)
,

where G̃O is the retarded Green’s function for the operator Õ .
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Fig. 21.1 Two examples of spectral functions in the plane wave basis for μ/T = 50 and h/T = 1.
The conformal dimension is Δ= 5/4 (left) and Δ= 3/2 (right). Frequency is in the units of effec-
tive temperature Teff. The plane wave momentum is chosen to be k = 1. Despite the convolution
of many Landau levels, the presence of the discrete levels is obvious

Exploiting the orthogonality of the spinors created by O and O† and us-
ing (21.43), the Green’s function in the plane wave basis can be written as

GR
cp
(ω,px)=

∑
l

tr
(
U

Ũ

)(
U∗, Ũ∗)GR

= (∣∣Ul(px)
∣∣2GR

Ol
(ω, l)+ ∣∣Ũl(px)

∣∣2G̃R
Ol
(ω, l)

)
. (21.46)

In practice, we cannot perform the sum in (21.46) all the way to infinity, so we have
to introduce a cutoff Landau level lcut. In most cases we are able to make lcut large
enough that the behavior of the spectral function is clear.

Using the above formalism, we have produced spectral functions for two different
conformal dimensions and fixed chemical potential and magnetic field (Fig. 21.1).
Using the plane wave basis allows us to directly detect the Landau levels. The unit
used for plotting the spectra (here and later on in the paper) is the effective temper-
ature Teff [6]:

Teff = T

2

(
1 +

√
1 + 3μ2

(4πT )2

)
. (21.47)

This unit interpolates between μ at T/μ= 0 and T and is of or T/μ→ ∞, and is
convenient for the reason that the relevant quantities (e.g., Fermi momentum) are of
order unity for any value of μ and h.

21.4.2 Magnetic Crossover and Disappearance
of the Quasiparticles

Theoretically, it is more convenient to consider the spectral functions in the Landau
level basis. For definiteness let us pick a fixed conformal dimension Δ = 5

4 which
corresponds to m=− 1

4 . In the limit of weak magnetic fields, h/T → 0, we should
reproduce the results that were found in [6].
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In Fig. 21.2(A) we indeed see that the spectral function, corresponding to a low
value of μ/T , behaves as expected for a nearly conformal system. The spectral
function is approximately symmetric about ω = 0, it vanishes for |ω| < k, up to a
small residual tail due to finite temperature, and for |ω| � k it scales as ω2m.

In Fig. 21.2(B), which corresponds to a high value of μ/T , we see the emergence
of a sharp quasiparticle peak. This peak becomes the sharpest when the Landau
level l corresponding to an effective momentum keff = √

2|qh|l coincides with the
Fermi momentum kF . The peaks also broaden out when keff moves away from kF .
A more complete view of the Landau quantization in the quasiparticle regime is
given in Fig. 21.3, where we plot the dispersion relation (ω–k map). Both the sharp
peaks and the Landau levels can be visually identified.

Collectively, the spectra in Fig. 21.2 show that conformality is only broken by
the chemical potential μ and not by the magnetic field. Naively, the magnetic field
introduces a new scale in the system. However, this scale is absent from the spectral
functions, visually validating the discussion in the previous section that the scale h
can be removed by a rescaling of the temperature and chemical potential.

One thus concludes that there is some value h′c of the magnetic field, depending
on μ/T , such that the spectral function loses its quasiparticle peaks and displays
near-conformal behavior for h > h′c. The nature of the transition and the underlying
mechanism depends on the parameters (μq,T ,Δ). One mechanism, obvious from
the rescaling in (21.29), is the reduction of the effective coupling q as h increases.
This will make the influence of the scalar potential A0 negligible and push the sys-
tem back toward conformality. Generically, the spectral function shows no sharp
change but is more indicative of a crossover.

A more interesting phenomenon is the disappearance of coherent quasiparticles
at high effective chemical potentials. For the special case m= 0, we can go beyond
numerics and study this transition analytically, combining the exact T = 0 solution
found in [24] and the mapping (21.30). In the next section, we will show that the
transition is controlled by the change in the dispersion of the quasiparticle and corre-
sponds to a sharp phase transition. Increasing the magnetic field leads to a decrease
in phenomenological control parameter νkF . This can give rise to a transition to a
non-Fermi liquid when νkF ≤ 1/2, and finally to the conformal regime at h = h′c
when νkF = 0 and the Fermi surface vanishes.

21.4.3 Density of States

As argued at the beginning of this section, the spectral function can look quite dif-
ferent depending on the particular basis chosen. Though the spectral function is an
attractive quantity to consider due to connection with ARPES experiments, we will
also direct our attention to basis-independent and manifestly gauge invariant quan-
tities. One of them is the density of states (DOS), defined by

D(ω)=
∑
l

A(ω, l), (21.48)
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Fig. 21.2 Some typical examples of spectral functions A(ω,keff) vs. ω in the Landau basis,
keff = √

2|qh|n. The top four correspond to a conformal dimension Δ= 5
4 m= − 1

4 and the bot-
tom four to Δ= 3

2 (m= 0). In each plot we show different Landau levels, labelled by index n, as
a function of μ/T and h/T . The ratios take values (μ/T ,h/T )= (1,1), (50,1), (1,50), (50,50)
from left to right. Conformal case can be identified when μ/T is small regardless of h/T (plots
in the left panel). Nearly conformal behavior is seen when both μ/T and h/T are large. This
confirms our analytic result that the behavior of the system is primarily governed by μ. Departure
from the conformality and sharp quasiparticle peaks are seen when μ/T is large and h/T is small
in 21.2(B) and 21.2(F). Multiple quasiparticle peaks arise whenever keff = kF . This suggests the
existence of a critical magnetic field, beyond which the quasiparticle description becomes invalid
and the system exhibits a conformal-like behavior. As before, the frequency ω is in units of Teff
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Fig. 21.3 Dispersion relation ω vs. keff for μ/T = 50, h/T = 1 and Δ = 5
4 (m = − 1

4 ). The
spectral function A(ω,keff) is displayed as a density plot. (A) On a large energy and momentum
scale, we clearly sees that the peaks disperse almost linearly (ω ≈ vF k), indicating that we are in
the stable quasiparticle regime. (B) A zoom-in near the location of the Fermi surface shows clear
Landau quantization

Fig. 21.4 Density of states D(ω) for m = − 1
4 and (A) μ/T = 50, h/T = 1, and (B) μ/T = 1,

h/T = 1. Sharp quasiparticle peaks from the splitting of the Fermi surface are clearly visible
in (A). The case (B) shows square-root level spacing characteristic of a (nearly) Lorentz invariant
spectrum such as that of graphene

where the usual integral over the momentum is replaced by a sum since only discrete
values of the momentum are allowed.

In Fig. 21.4, we plot the density of states for two systems. We clearly see the
Landau splitting of the Fermi surface. A peculiar feature of these plots is that the
DOS seems to grow for negative values of ω. This, however, is an artefact of our
calculation. Each individual spectrum in the sum (21.48) has a finite tail that scales
as ω2m for large ω, so each term has a finite contribution for large values of ω.
When the full sum is performed, this fact implies that limω→∞D(ω) → ∞. The
relevant information on the density of states can be obtained by regularizing the
sum, which in practice is done by summing over a finite number of terms only, and
then considering the peaks that lie on top of the resulting finite-sized envelope. The
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physical point in Fig. 21.4(A) is the linear spacing of Landau levels, corresponding
to a non-relativistic system at finite density. This is to be contrasted with Fig. 21.4B
where the level spacing behaves as ∝√

h, appropriate for a Lorentz invariant system
and realized in graphene [28].

21.5 Fermi Level Structure at Zero Temperature

In this section, we solve the Dirac equation in the magnetic field for the special
case m = 0 (Δ = 3

2 ). Although there are no additional symmetries in this case, it
is possible to get an analytic solution. Using this solution, we obtain Fermi level
parameters such as kF and vF and consider the process of filling the Landau levels
as the magnetic field is varied.

21.5.1 Dirac Equation with m = 0

In the case m = 0, it is convenient to solve the Dirac equation including the spin
connection (see details in [27]) rather than scaling it out:(

−
√
gii√
grr

σ 1∂r −
√
gii√−gtt σ

3(ω+ qAt)+
√
gii√−gtt σ

1 1
2
ωt̂r̂t

− σ 1 1
2
ωx̂r̂x − σ 1 1

2
ωŷr̂y − λl

)
⊗ 1

(
ψ1
ψ2

)
= 0, (21.49)

where λl =√
2|qh|l are the energies of the Landau levels l = 0,1, . . . , gii ≡ gxx =

gyy , At(r) is given by (21.3), and the gamma matrices are defined in [27]. In this
basis the two components ψ1 and ψ2 decouple. Therefore, in what follows we solve
for the first component only (we omit index 1). Substituting the spin connection, we
have [20]:(

− r2√f

R2 σ 1∂r − 1√
f
σ 3(ω+ qAt)− σ 1 r

√
f

2R2

(
3 + rf ′

2f

)
− λl

)
ψ = 0, (21.50)

with ψ = (y1, y2). It is convenient to change to the basis(
ỹ1
ỹ2

)
=

(
1 −i
−i 1

)(
y1
y2

)
, (21.51)

which diagonalizes the system into a second order differential equation for each
component. We introduce the dimensionless variables as in (21.15)–(21.17), and
make a change of the dimensionless radial variable:

r = 1
1 − z

, (21.52)
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with the horizon now being at z= 0, and the conformal boundary at z= 1. Perform-
ing these transformations in (21.50), the second order differential equations for ỹ1
reads (

f ∂2
z +

(
3f

1 − z
+ f ′

)
∂z + 15f

4(1 − z)2
+ 3f ′

2(1 − z)
+ f ′′

4

+ 1
f

(
(ω+ qμz)± if ′

4

)2
− iqμ− λ2

l

)
ỹ1 = 0. (21.53)

The second component ỹ2 obeys the same equation with μ �→ −μ.
At T = 0,

f = 3z2(z− z0)(z− z̄0), z0 = 1
3
(4 + i

√
2). (21.54)

The solution of this fermion system at zero magnetic field and zero temperature
T = 0 has been found in [24]. To solve (21.53), we use the mapping to a zero
magnetic field system (21.29). The combination μq ≡ μq at non-zero h maps to
μq,eff ≡ μeffqeff at zero h as follows:

μq �→ q

√
1 − H 2

Q2 +H 2 · gF
√
Q2 +H 2 =√

3qgF

√
1 − H 2

3
= μq,eff (21.55)

where at T = 0 we used Q2 +H 2 = 3. We solve (21.53) for zero modes, i.e. ω= 0,
and at the Fermi surface λ= k, and implement (21.55).

Near the horizon (z= 0, f = 6z2), we have

6z2ỹ′′1;2 + 12zỹ′1;2 +
(

3
2
+ (μq,eff)

2

6
− k2

F

)
ỹ1;2 = 0, (21.56)

which gives the following behavior:

ỹ1;2 ∼ z−
1
2±νk , (21.57)

with the scaling exponent ν following from (21.32):

ν = 1
6

√
6k2 − (μq,eff)2, (21.58)

at the momentum k. Using Maple, we find the zero mode solution of (21.53) with a
regular behavior z− 1

2+ν at the horizon [20, 24]:

ỹ
(0)
1 = N1(z− 1)

3
2 z−

1
2+ν(z− z̄0)

− 1
2−ν

(
z− z0

z− z̄0

) 1
4 (−1−√

2μq,eff/z0)

× 2F1

(
1
2
+ ν −

√
2

3
μq,eff, ν + i

μq,eff

6
,1 + 2ν,

2i
√

2z
3z0(z− z̄0)

)
, (21.59)
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Fig. 21.5 Density of the zero mode ψ0†ψ0 vs. the radial coordinate z (the horizon is at z = 0
and the boundary is at z = 1) for different values of the magnetic field h for the first (with the

largest root for kF ) Fermi surface. We set gF = 1 (h→H ) and q = 15√
3

(μq,eff → 15
√

1 − H 2
3 ).

From right to left the values of the magnetic field are H = {0,1.40,1.50,1.60,1.63,1.65,1.68}.
The amplitudes of the curves are normalized to unity. At weak magnetic fields, the wave function
is supported away from the horizon while at strong fields it is supported near the horizon

and

ỹ
(0)
2 = N2(z− 1)

3
2 z−

1
2+ν(z− z̄0)

− 1
2−ν

(
z− z0

z− z̄0

) 1
4 (−1+√

2μq,eff/z0)

× 2F1

(
1
2
+ ν +

√
2

3
μq,eff, ν − i

μq,eff

6
,1 + 2ν,

2i
√

2z
3z0(z− z̄0)

)
, (21.60)

where 2F1 is the hypergeometric function and N1, N2 are normalization factors.
Since normalization factors are constants, we find their relative weight by substitut-
ing solutions given in (21.59) back into the first order differential equations at z∼ 0,

N1

N2
=−6iν +μq,eff√

6k

(
z0

z̄0

)μq,eff/
√

2z0

. (21.61)

The same relations are obtained when calculations are done for any z. The second
solution η̃(0)1;2, with behavior z− 1

2−ν at the horizon, is obtained by replacing ν →−ν
in (21.59).

To get insight into the zero-mode solution (21.59), we plot the radial profile for
the density function ψ(0)†ψ(0) for different magnetic fields in Fig. 21.5. The mo-
mentum chosen is the Fermi momentum of the first Fermi surface (see the next
section). The curves are normalized to have the same maxima. Magnetic field is
increased from right to left. At small magnetic field, the zero modes are supported
away from the horizon, while at large magnetic field, the zero modes are supported
near the horizon. This means that at large magnetic field the influence of the black
hole to the Fermi level structure becomes more important.
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21.5.2 Magnetic Effects on the Fermi Momentum and Fermi
Velocity

In the presence of a magnetic field there is only a true pole in the Green’s function
whenever the Landau level crosses the Fermi energy [25, 26]

2l|qh| = k2
F . (21.62)

As shown in Fig. 21.2, whenever the equation (21.62) is satisfied the spectral func-
tion A(ω) has a (sharp) peak. This is not surprising since quasiparticles can be easily
excited from the Fermi surface. From (21.62), the spectral function A(ω) and the
density of states on the Fermi surface D(ω) are periodic in 1

h
with the period

Δ

(
1
h

)
= 2πq

AF

, (21.63)

where AF = πk2
F is the area of the Fermi surface [25, 26]. This is a manifestation

of the de Haas-van Alphen quantum oscillations. At T = 0, the electronic proper-
ties of metals depend on the density of states on the Fermi surface. Therefore, an
oscillatory behavior as a function of magnetic field should appear in any quantity
that depends on the density of states on the Fermi energy. Magnetic susceptibility
[25, 26] and magnetization together with the superconducting gap [29] have been
shown to exhibit quantum oscillations. Every Landau level contributes an oscillating
term and the period of the lth level oscillation is determined by the value of the mag-
netic field h that satisfies (21.62) for the given value of kF . Quantum oscillations
(and the quantum Hall effect which we consider later in the paper) are examples of
phenomena in which Landau level physics reveals the presence of the Fermi sur-
face. The superconducting gap found in the quark matter in magnetic fields [29] is
another evidence for the existence of the (highly degenerate) Fermi surface and the
corresponding Fermi momentum.

Generally, a Fermi surface controls the occupation of energy levels in the sys-
tem: the energy levels below the Fermi surface are filled and those above are empty
(or non-existent). Here, however, the association to the Fermi momentum can be
obscured by the fact that the fermions form highly degenerate Landau levels. Thus,
in two dimensions, in the presence of the magnetic field the corresponding effective
Fermi surface is given by a single point in the phase space, that is determined by nF ,
the Landau index of the highest occupied level, i.e., the highest Landau level below
the chemical potential.2 Increasing the magnetic field, Landau levels ‘move up’ in
the phase space leaving only the lower levels occupied, so that the effective Fermi
momentum scales roughly (excluding interactions) as a square root of the magnetic
field, kF ∼√

nF ∼ kmax
F

√
1 − h/hmax. High magnetic fields drive the effective den-

sity of the charge carriers down, approaching the limit when the Fermi momentum
coincides with the lowest Landau level.

2We would like to thank Igor Shovkovy for clarifying the issue with the Fermi momentum in the
presence of the magnetic field.
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Many phenomena observed in the paper can thus be qualitatively explained by
Landau quantization. As discussed before, the notion of the Fermi momentum is lost
at very high magnetic fields. In what follows, the quantitative Fermi level structure
at zero temperature, described by kF and vF values, is obtained as a function of the
magnetic field using the solution of the Dirac equation given by (21.59), (21.60). As
in [12], we neglect first the discrete nature of the Fermi momentum and velocity in
order to obtain general understanding. Upon taking the quantization into account,
the smooth curves become combinations of step functions following the same trend
as the smooth curves (without quantization). While usually the grand canonical en-
semble is used, where the fixed chemical potential controls the occupation of the
Landau levels [30], in our setup, the Fermi momentum is allowed to change as the
magnetic field is varied, while we keep track of the IR conformal dimension ν.

The Fermi momentum is defined by the matching between IR and UV physics [8],
therefore it is enough to know the solution at ω = 0, where the matching is per-
formed. To obtain the Fermi momentum, we require that the zero mode solution
is regular at the horizon (ψ(0) ∼ z− 1

2+ν ) and normalizable at the boundary. At the
boundary z∼ 1, the wave function behaves as

a(1 − z)
3
2−m

(
1
0

)
+ b(1 − z)

3
2+m

(
0
1

)
. (21.64)

To require it to be normalizable is to set the first term a = 0; the wave function at
z∼ 1 is then

ψ(0) ∼ (1 − z)
3
2+m

(
0
1

)
. (21.65)

Equation (21.65) leads to the condition limz→1(z−1)−3/2(ỹ
(0)
2 + iỹ

(0)
1 )= 0, which,

together with (21.59), gives the following equation for the Fermi momentum as
function of the magnetic field [20, 24]

2F1(1 + ν + iμq,eff
6 , 1

2 + ν −
√

2μq,eff
3 ,1 + 2ν, 2

3 (1 − i
√

2))

2F1(ν + iμq,eff
6 , 1

2 + ν −
√

2μq,eff
3 ,1 + 2ν, 2

3 (1 − i
√

2))
= 6ν − iμq,eff

kF (−2i +√
2)
,

(21.66)
with ν ≡ νkF given by (21.58). Using Mathematica to evaluate the hypergeometric
functions, we numerically solve the equation for the Fermi surface, which gives
effective momentum as if it were continuous, i.e. when quantization is neglected.
The solutions of (21.66) are given in Fig. 21.6. There are multiple Fermi surfaces
for a given magnetic field h. Here and in all other plots we choose gF = 1, therefore
h→H , and q = 15√

3
. In Fig. 21.6, positive and negative kF correspond to the Fermi

surfaces in the Green’s functions G1 and G2. The relation between two components
is G2(ω, k) = G1(ω,−k) [7], therefore Fig. 21.6 is not symmetric with respect
to the x-axis. Effective momenta terminate at the dashed line νkF = 0. Taking into
account Landau quantization of kF →√

2|qh|l with l = 1,2 . . . , the plot consists of
stepwise functions tracing the existing curves (we depict only positive kF ). Indeed
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Fig. 21.6 Effective momentum keff vs. the magnetic field h→ H (we set gF = 1, q = 15√
3

). As
we increase magnetic field the Fermi surface shrinks. Smooth solid curves represent situation as
if momentum is a continuous parameter (for convenience), stepwise solid functions are the real
Fermi momenta which are discretized due to the Landau level quantization: kF → √

2|qh|l with
l = 1,2, . . . where

√
2|qh|l are Landau levels given by dotted lines (only positive discrete kF are

shown). At a given h there are multiple Fermi surfaces. From right to left are the first, second etc.
Fermi surfaces. The dashed-dotted line is νkF = 0 where kF is terminated. Positive and negative
keff correspond to Fermi surfaces in two components of the Green’s function

Fig. 21.7 Landau level
numbers n corresponding to
the quantized Fermi momenta
vs. the magnetic field h→H

for the three Fermi surfaces
with positive kF . We set
gF = 1, q = 15√

3
. From right

to left are the first, second and
third Fermi surfaces

Landau quantization can be also seen from the dispersion relation at Fig. 21.3, where
only discrete values of effective momentum are allowed and the Fermi surface has
been chopped up as a result of it Fig. 21.3(B).

Our findings agree with the results for the (largest) Fermi momentum in a three-
dimensional magnetic system considered in [31], compare the stepwise dependence
kF (h) with Fig. 21.5 in [31].

In Fig. 21.7, the Landau level index l is obtained from kF (h)= √
2|qh|l where

kF (h) is a numerical solution of (21.66). Only those Landau levels which are below
the Fermi surface are filled. In Fig. 21.6, as we decrease magnetic field first nothing
happens until the next Landau level crosses the Fermi surface which corresponds to a
jump up to the next step. Therefore, at strong magnetic fields, fewer states contribute
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Fig. 21.8 Left panel. The IR conformal dimension ν ≡ νkF calculated at the Fermi momentum vs.
the magnetic field h→H (we set gF =1, q = 15√

3
). Calculations are done for the first Fermi surface.

Dashed line is for ν = 1
2 (at Hc = 1.70), which is the border between the Fermi liquids ν > 1

2 and
non-Fermi liquids ν < 1

2 . Right panel. Phase diagram in terms of the chemical potential and the
magnetic field μ2 + h2 = 3 (in dimensionless variables h = gFH , μ = gFQ; we set gF = 1).
Fermi liquids are above the dashed line (H <Hc) and non-Fermi liquids are below the dashed line
(H >Hc)

to transport properties and the lowest Landau level becomes more important (see the
next section). At weak magnetic fields, the sum over many Landau levels has to be
taken, ending with the continuous limit as h→ 0, when quantization can be ignored.

In Fig. 21.8, we show the IR conformal dimension as a function of the magnetic
field. We have used the numerical solution for kF . Fermi liquid regime takes place
at magnetic fields h < hc , while non-Fermi liquids exist in a narrow band at hc <
h < h′c , and at h′c the system becomes near-conformal.

In this figure we observe the pathway of the possible phase transition exhibited by
the Fermi surface (ignoring Landau quantization): it can vanish at the line νkF = 0,
undergoing a crossover to the conformal regime, or cross the line νkF = 1/2 and go
through a non-Fermi liquid regime, and subsequently cross to the conformal phase.
Note that the primary Fermi surface with the highest kF and νkF seems to directly
cross over to conformality, while the other Fermi surfaces first exhibit a “strange
metal” phase transition. Therefore, all the Fermi momenta with νkF > 0 contribute
to the transport coefficients of the theory. In particular, at high magnetic fields when
for the first (largest) Fermi surface k

(1)
F is nonzero but small, the lowest Landau

level n = 0 becomes increasingly important contributing to the transport with half
degeneracy factor as compared to the higher Landau levels.

In Fig. 21.9, we plot the Fermi momentum kF as a function of the magnetic field
for the first Fermi surface (the largest root of (21.66)). Quantization is neglected
here. At the left panel, the relatively small region between the dashed lines corre-
sponds to non-Fermi liquids 0 < ν < 1

2 . At large magnetic field, the physics of the
Fermi surface is captured by the near horizon region (see also Fig. 21.5) which is
AdS2 × R2. At the maximum magnetic field, Hmax = √

3 ≈ 1.73, when the black
hole becomes pure magnetically charged, the Fermi momentum vanishes when it



21 Holographic Description of Strongly Correlated Electrons 579

Fig. 21.9 Fermi momentum kF vs. the magnetic field h→H (we set gF = 1, q = 15√
3

) for the first
Fermi surface. Left panel. The inner (closer to x-axis) dashed line is νkF = 0 and the outer dashed
line is νkF = 1

2 , the region between these lines corresponds to non-Fermi liquids 0 < νkF < 1
2 .

The dashed-dotted line is for the first Landau level k1 = √
2qH . The first Fermi surface hits

the border-line between a Fermi and non-Fermi liquids ν = 1
2 at Hc ≈ 1.70, and it vanishes at

Hmax = √
3 = 1.73. Right panel. Circles are the data points for the Fermi momentum calculated

analytically, solid line is a fit function kmax
F

√
1 − H 2

3 with kmax
F = 12.96

crosses the line νkF = 0. This only happens for the first Fermi surface. For the higher
Fermi surfaces the Fermi momenta terminate at the line νkF = 0, Fig. 21.6. Note the
Fermi momentum for the first Fermi surface can be almost fully described by a func-
tion kF = kmax

F

√
1 − H 2

3 . It is tempting to view the behavior kF ∼ √
Hmax −H as

a phase transition in the system although it strictly follows from the linear scaling
for H = 0 by using the mapping (21.29). (Note that also μ= gFQ= gF

√
3 −H 2.)

Taking into account the discretization of kF , the plot will consist of an array of
step functions tracing the existing curve. Our findings agree with the results for
the Fermi momentum in a three dimensional magnetic system considered in [31],
compare with Fig. 21.5 there.

The Fermi velocity given in (21.27) is defined by the UV physics; therefore so-
lutions at non-zero ω are required. The Fermi velocity is extracted from matching
two solutions in the inner and outer regions at the horizon. The Fermi velocity as
function of the magnetic field for ν > 1

2 is [20, 24]

vF = 1
h1

(∫ 1

0
dz

√
g/gttψ

(0)†ψ(0)
)−1

lim
z→1

|ỹ(0)1 + iỹ
(0)
2 |2

(1 − z)3
,

(21.67)

h1 = lim
z→1

ỹ
(0)
1 + iỹ

(0)
2

∂k(
˜

y
(0)
2 + iỹ

(0)
1 )

,

where the zero mode wavefunction is taken at kF (21.59).
We plot the Fermi velocity for several Fermi surfaces in Fig. 21.10. Quantization

is neglected here. The Fermi velocity is shown for ν > 1
2 . It is interesting that the

Fermi velocity vanishes when the IR conformal dimension is νkF = 1
2 . Formally,

it follows from the fact that vF ∼ (2ν − 1) [8]. The first Fermi surface is at the
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Fig. 21.10 Fermi velocity vF vs. the magnetic field h → H (we set gF = 1, q = 15√
3

) for the

regime of Fermi liquids ν ≥ 1
2 . Fermi velocity vanishes at νkF = 1

2 (x-axis). For the first Fermi
surface, the top curve, Fermi velocity vanishes at Hc ≈ 1.70. The region H <Hc corresponds to
the Fermi liquids and quasiparticle description. The multiple lines are for various Fermi surfaces
in ascending order, with the first Fermi surface on the right. The Fermi velocity vF has the same
sign as the Fermi momentum kF . As above, positive and negative vF correspond to Fermi surfaces
in the two components of the Green’s function

far right. Positive and negative vF correspond to the Fermi surfaces in the Green’s
functions G1 and G2, respectively. The Fermi velocity vF has the same sign as the
Fermi momentum kF . At small magnetic field values, the Fermi velocity is very
weakly dependent on H and it is close to the speed of light; at large magnetic field
values, the Fermi velocity rapidly decreases and vanishes (at Hc = 1.70 for the
first Fermi surface). Geometrically, this means that with increasing magnetic field
the zero mode wavefunction is supported near the black hole horizon Fig. 21.5,
where the gravitational redshift reduces the local speed of light as compared to the
boundary value. It was also observed in [8, 24] at small fermion charge values.

21.6 Hall and Longitudinal Conductivities

In this section, we calculate the contributions to Hall σxy and the longitudinal σxx
conductivities directly in the boundary theory. This should be contrasted with the
standard holographic approach, where calculations are performed in the (bulk) grav-
ity theory and then translated to the boundary field theory using the AdS/CFT dic-
tionary. Specifically, the conductivity tensor has been obtained in [11] by calculating
the on-shell renormalized action for the gauge field on the gravity side and using the
gauge/gravity duality AM → jμ to extract the R charge current-current correlator
at the boundary. Here, the Kubo formula involving the current-current correlator is
used directly by utilizing the fermion Green’s functions extracted from holography
in [8]. Therefore, the conductivity is obtained for the charge carriers described by
the fermionic operators of the boundary field theory.
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The use of the conventional Kubo formula to extract the contribution to the trans-
port due to fermions is validated in that it also follows from a direct AdS/CFT com-
putation of the one-loop correction to the on-shell renormalized AdS action [17].
We study in particular stable quasiparticles with ν > 1

2 and at zero temperature.
This regime effectively reduces to the clean limit where the imaginary part of the
self-energy vanishes ImΣ → 0. We use the gravity-“dressed” fermion propagator
from (21.27) and to make the calculations complete, the “dressed” vertex is nec-
essary, to satisfy the Ward identities. As was argued in [17], the boundary vertex
which is obtained from the bulk calculations can be approximated by a constant in
the low temperature limit. Also, according to [32, 33], the vertex only contains sin-
gularities of the product of the Green’s functions. Therefore, dressing the vertex will
not change the dependence of the DC conductivity on the magnetic field [32, 33].
In addition, the zero magnetic field limit of the formulae for conductivity obtained
from holography [17] and from direct boundary calculations [20] are identical.

21.6.1 Integer Quantum Hall Effect

Let us start from the “dressed” retarded and advanced fermion propagators [8]:
GR is given by (21.27) and GA = G∗

R . To perform the Matsubara summation we
use the spectral representation

G(iωn,k)=
∫

dω

2π
A(ω,k)
ω− iωn

, (21.68)

with the spectral function defined asA(ω,k)=− 1
π

ImGR(ω,k)= 1
2πi (GR(ω,k)−

GA(ω,k)). Generalizing to a non-zero magnetic field and spinor case [30], the spec-
tral function [34] is

A(ω,k)= 1
π

e−
k2
|qh|

∞∑
l=0

(−1)l(−h1vF )

×
(

Σ2(ω, kF )f (k)γ 0

(ω+ εF +Σ1(ω, kF )−El)2 +Σ2(ω, kF )2
+ (El →−El)

)
,

(21.69)

where εF = vF kF is the Fermi energy, El = vF
√

2|qh|l is the energy of the Lan-
dau level, f (k)= P−Ll(

2k2

|qh| )− P+Ll−1(
2k2

|qh| ) with spin projection operators P± =
(1 ± iγ 1γ 2)/2, we take c= 1, the generalized Laguerre polynomials are Lα

n(z) and
by definition Ln(z) = L0

n(z), (we omit the vector part kγ , it does not contribute
to the DC conductivity), all γ ’s are the standard Dirac matrices, h1, vF and kF
are real constants (we keep the same notations for the constants as in [8]). The
self-energy Σ ∼ ω2νkF contains the real and imaginary parts, Σ =Σ1 + iΣ2. The
imaginary part comes from scattering processes of a fermion in the bulk, e.g. from
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pair creation, and from the scattering into the black hole. It is exactly due to in-
elastic/dissipative processes that we are able to obtain finite values for the transport
coefficients, otherwise they are formally infinite.

Using the Kubo formula, the DC electrical conductivity tensor is

σij (Ω)= lim
Ω→0

ImΠR
ij

Ω + i0+ , (21.70)

where Πij (iΩm → Ω + i0+) is the retarded current-current correlation function;
schematically the current density operator is j i(τ,x)=qvF

∑
σ ψ̄σ (τ,x)γ iψσ (τ,x).

Neglecting the vertex correction, it is given by

Πij (iΩm)= q2v2
F T

∞∑
n=−∞

∫
d2k

(2π)2
tr
(
γ iG(iωn,k)γ jG(iωn + iΩm,k)

)
. (21.71)

The sum over the Matsubara frequency is

T
∑
n

1
iωn −ω1

1
iωn + iΩm −ω2

= n(ω1)− n(ω2)

iΩm +ω1 −ω2
. (21.72)

Taking iΩm →Ω + i0+, the polarization operator is now

Πij (Ω)= dω1

2π
dω2

2π
nFD(ω1)− nFD(ω2)

Ω +ω1 −ω2

∫
d2k

(2π)2
tr
(
γ iA(ω1,k)γ jA(ω2,k)

)
,

(21.73)

where the spectral function A(ω,k) is given by (21.69) and nFD(ω) is the Fermi-
Dirac distribution function. Evaluating the traces, we have

σij =−4q2v2
F (h1vF )

2|qh|
πΩ

× Re
∞∑

l,k=0
(−1)l+k+1{δij (δl,k−1 + δl−1,k)+ iεij sgn(qh)(δl,k−1 − δl−1,k)

}

×
∫

dω1

2π

(
tanh

ω1

2T
− tanh

ω2

2T

)(
Σ2(ω1)

(ω̃1 −El)2 +Σ2
2 (ω1)

+ (El →−El)

)

×
(

Σ2(ω2)

(ω̃2 −Ek)2 +Σ2
2 (ω2)

+ (Ek →−Ek)

)
, (21.74)

with ω2 = ω1 +Ω . We have also introduced ω̃1;2 ≡ ω1;2 + εF +Σ1(ω1;2) with εij
being the antisymmetric tensor (ε12 = 1), and Σ1;2(ω) ≡ Σ1;2(ω, kF ). In the mo-
mentum integral, we use the orthogonality condition for the Laguerre polynomials∫∞

0 dxexLl(x)Lk(x)= δlk .
From (21.74), the term symmetric/antisymmetric with respect to exchange ω1 ↔

ω2 contributes to the diagonal/off-diagonal component of the conductivity (note the
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antisymmetric term nFD(ω1)− nFD(ω2)). The longitudinal and Hall DC conductiv-
ities (Ω → 0) are thus

σxx = −2q2(h1vF )
2|qh|

πT

∫ ∞

−∞
dω

2π
Σ2

2 (ω)

cosh2 ω
2T

×
∞∑
l=0

(
1

(ω̃−El)2 +Σ2
2 (ω)

+ (El →−El)

)

×
(

1
(ω̃−El+1)2 +Σ2

2 (ω)
+ (El+1 →−El+1)

)
, (21.75)

σxy = −q2(h1vF )
2 sgn(qh)
π

νh,

(21.76)

νh = 2
∫ ∞

−∞
dω

2π
tanh

ω

2T
Σ2(ω)

∞∑
l=0

αl

(
1

(ω̃−El)2 +Σ2
2 (ω)

+ (El →−El)

)
,

where ω̃ = ω + εF + Σ1(ω). The filling factor νh is proportional to the density
of carriers: |νh| = π

|qh|h1vF
n (see derivation in [27]). The degeneracy factor of the

Landau levels is αl : α0 = 1 for the lowest Landau level and αl = 2 for l = 1,2 . . . .
Substituting the filling factor νh back to (21.76), the Hall conductivity can be writ-
ten as

σxy = ρ

h
, (21.77)

where ρ is the charge density in the boundary theory, and both the charge q and the
magnetic field h carry a sign (the prefactor (−h1vF ) comes from the normalization
choice in the fermion propagator (21.27), (21.69) as given in [8], which can be
regarded as a factor contributing to the effective charge and is not important for
further considerations). The Hall conductivity (21.77) has been obtained using the
AdS/CFT duality for the Lorentz invariant 2+1-dimensional boundary field theories
in [11]. We recover this formula because in our case the translational invariance is
maintained in the x and y directions of the boundary theory.

Low frequencies give the main contribution in the integrand of (21.76). Since
the self-energy satisfies Σ1(ω)∼Σ2(ω)∼ ω2ν and we consider the regime ν > 1

2 ,
we have Σ1 ∼Σ2 → 0 at ω ∼ 0 (self-energy goes to zero faster than the ω term).
Therefore, only the simple poles in the upper half-plane ω0 =−εF ±El+Σ1 + iΣ2
contribute to the conductivity where Σ1 ∼Σ2 ∼ (−εF ±El)

2ν are small. The same
logic of calculation has been used in [30]. We obtain for the longitudinal and Hall
conductivities

σxx = 2q2(h1vF )
2Σ2

πT
×

(
1

1 + cosh εF
T

+
∞∑
l=1

4l
1 + cosh εF

T
cosh El

T

(cosh εF
T

+ cosh El

T
)2

)
, (21.78)
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σxy = q2(h1vF )
2sgn(qh)
π

× 2

(
tanh

εF

2T
+

∞∑
l=1

(
tanh

εF +El

2T
+ tanh

εF −El

2T

))
,

(21.79)

where the Fermi energy is εF = vF kF and the energy of the Landau level is El =
vF

√
2|qh|l. Similar expressions were obtained in [30]. However, in our case the

filling of the Landau levels is controlled by the magnetic field h through the field-
dependent Fermi energy vF (h)kF (h) instead of the chemical potential μ.

At T = 0, cosh ω
T

→ 1
2 e

ω
T and tanh ω

2T = 1 − 2nFD(ω) → sgnω. Therefore the
longitudinal and Hall conductivities are

σxx = 2q2(h1vF )
2Σ2

πT

∞∑
l=1

lδεF ,El
= 2q2(h1vF )

2Σ2

πT
× nδεF ,En, (21.80)

σxy = q2(h1vF )
2sgn(qh)
π

2

(
1 + 2

∞∑
l=1

θ(εF −El)

)

= q2(h1vF )
2sgn(qh)
π

× 2(1 + 2n)θ(εF −En)θ(En+1 − εF ), (21.81)

where the Landau level index runs n= 0,1, . . . . It can be estimated as n= [ k2
F

2|qh| ]
when vF �= 0 ([ ] denotes the integer part), with the average spacing between the
Landau levels given by the Landau energy vF

√
2|qh|. Note that εF ≡ εF (h). We

can see that (21.81) expresses the integer quantum Hall effect (IQHE). At zero
temperature, as we dial the magnetic field, the Hall conductivity jumps from one
quantized level to another, forming plateaus given by the filling factor

νh =±2(1 + 2n)=±4
(
n+ 1

2

)
, (21.82)

with n = 0,1, . . . . (Compare to the conventional Hall quantization νh = ±4n, that
appears in thick graphene.) Plateaus of the Hall conductivity at T = 0 follow from
the stepwise behavior of the charge density ρ in (21.77):

ρ ∼ 4
(
n+ 1

2

)
θ(εF −En)θ(En+1 − εF ), (21.83)

where n Landau levels are filled and contribute to ρ. The longitudinal conductivity
vanishes except precisely at the transition point between the plateaus. In Fig. 21.11,
we plot the longitudinal and Hall conductivities at T = 0, using only the terms after
× sign in (21.79). In the Hall conductivity, plateau transition occurs when the Fermi
level (in Fig. 21.11) of the first Fermi surface εF = vF (h)kF (h) (Fig. 21.9) crosses
the Landau level energy as we vary the magnetic field. By decreasing the magnetic
field, the plateaus become shorter and increasingly more Landau levels contribute to
the Hall conductivity. This happens because of two factors: the Fermi level moves
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Fig. 21.11 Hall conductivity σxy and longitudinal conductivity σxx vs. the magnetic field h→H

at T = 0 (we set gF = 1, q = 15√
3

). Left panel is for IQHE. Right panel is for FQHE. At strong
magnetic fields, the Hall conductivity plateau νh = 4 appears together with plateaus νh = 2 and
νh = 6 in FQHE (details are in [27]). Irregular pattern in the length of the plateaus for FQHE is
observed in experiments on thin films of graphite at strong magnetic fields [28]

up and the spacing between the Landau levels becomes smaller. This picture does
not depend on the Fermi velocity as long as it is nonzero.

21.6.2 Fractional Quantum Hall Effect

In [27], using the holographic description of fermions, we obtained the filling factor
at strong magnetic fields

νh =±2j, (21.84)

where j is the effective Landau level index. Equation (21.84) expresses the frac-
tional quantum Hall effect (FQHE). In the quasiparticle picture, the effective index
is integer j = 0,1,2, . . . , but generally it may be fractional. In particular, the fill-
ing factors ν = 2/m where m = 1,2,3, . . . have been proposed by Halperin [35]
for the case of bound electron pairs, i.e. 2e-charge bosons. Indeed, QED becomes
effectively confining in ultraquantum limit at strong magnetic field, and the electron
pairing is driven by the Landau level quantization and gives rise to 2e bosons. In
our holographic description, quasiparticles are valid degrees of freedom only for
ν > 1/2, i.e. for weak magnetic field. At strong magnetic field, poles of the fermion
propagator should be taken into account in calculation of conductivity. This will
probably result in a fractional filling factor. Our pattern for FQHE Fig. 21.11 resem-
bles the one obtained by Kopelevich in Fig. 3 [36] which has been explained using
the fractional filling factor of Halperin [35].

The somewhat regular pattern behind the irregular behavior can be understood
as a consequence of the appearance of a new energy scale: the average distance
between the Fermi levels. For the case of Fig. 21.11, we estimate it to be 〈ε(m)F −
ε
(m+1)
F 〉 = 4.9 with m = 1,2. The authors of [30] explain the FQHE through the
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opening of a gap in the quasiparticle spectrum, which acts as an order parameter
related to the particle-hole pairing and is enhanced by the magnetic field (magnetic
catalysis). Here, the energy gap arises due to the participation of multiple Fermi
surfaces.

A pattern for the Hall conductivity that is strikingly similar to Fig. 21.11 arises in
the AA and AB-stacked bilayer graphene, which has different transport properties
from the monolayer graphene [37], compare with Figs. 2, 5 there. It is remarkable
that the bilayer graphene also exhibits the insulating behavior in a certain parameter
regime. This agrees with our findings of metal-insulating transition in our system.

21.7 Conclusions

We have studied strongly coupled electron systems in the magnetic field focussing
on the Fermi level structure, using the AdS/CFT correspondence. These systems are
dual to Dirac fermions placed in the background of the electrically and magnetically
charged AdS-Reissner-Nordström black hole. At strong magnetic fields the dual
system “lives” near the black hole horizon, which substantially modifies the Fermi
level structure. As we dial the magnetic field higher, the system exhibits the non-
Fermi liquid behavior and then crosses back to the conformal regime. In our analysis
we have concentrated on the Fermi liquid regime and obtained the dependence of
the Fermi momentum kF and Fermi velocity vF on the magnetic field. Remarkably,
kF exhibits the square root behavior, with vF staying close to the speed of light in
a wide range of magnetic fields, while it rapidly vanishes at a critical magnetic field
which is relatively high. Such behavior indicates that the system may have a phase
transition.

The magnetic system can be rescaled to a zero-field configuration which is ther-
modynamically equivalent to the original one. This simple result can actually be
seen already at the level of field theory: the additional scale brought about by the
magnetic field does not show up in thermodynamic quantities meaning, in particu-
lar, that the behavior in the vicinity of quantum critical points is expected to remain
largely uninfluenced by the magnetic field, retaining its conformal invariance. In the
light of current condensed matter knowledge, this is surprising and might in fact be
a good opportunity to test the applicability of the probe limit in the real world: if
this behavior is not seen, this suggests that one has to include the backreaction to
metric to arrive at a realistic description.

In the field theory frame, we have calculated the DC conductivity using kF and
vF values extracted from holography. The holographic calculation of conductivity
that takes into account the fermions corresponds to the corrections of subleading
order in 1/N in the field theory and is very involved [17]. As we are not interested
in the vertex renormalization due to gravity (it does not change the magnetic field
dependence of the conductivity), we have performed our calculations directly in the
field theory with AdS gravity-dressed fermion propagators. Instead of controlling
the occupancy of the Landau levels by changing the chemical potential (as is usual
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in non-holographic setups), we have controlled the filling of the Landau levels by
varying the Fermi energy level through the magnetic field. At zero temperature, we
have reproduced the integer QHE of the Hall conductivity, which is observed in
graphene at moderate magnetic fields. While the findings on equilibrium physics
(Landau quantization, magnetic phase transitions and crossovers) are within expec-
tations and indeed corroborate the meaningfulness of the AdS/CFT approach as
compared to the well-known facts, the detection of the QHE is somewhat surpris-
ing as the spatial boundary effects are ignored in our setup. We plan to address this
question in further work.

Interestingly, at large magnetic fields we obtain the correct formula for the fill-
ing factor characteristic for FQHE. Moreover our pattern for FQHE resembles the
one obtained in [36] which has been explained using the fractional filling factor of
Halperin [35]. In the quasiparticle picture, which we have used to calculate Hall
conductivity, the filling factor is integer. In our holographic description, quasiparti-
cles are valid degrees of freedom only at weak magnetic field. At strong magnetic
field, the system exhibits non-Fermi liquid behavior. In this case, the poles of the
fermion propagator should be taken into account to calculate the Hall conductivity.
This can probably result in a fractional filling factor. We leave it for future work.

Notably, the AdS-Reissner-Nordström black hole background gives a vanishing
Fermi velocity at high magnetic fields. It happens at the point when the IR confor-
mal dimension of the corresponding field theory is ν = 1

2 , which is the borderline
between the Fermi and non-Fermi liquids. Vanishing Fermi velocity was also ob-
served at high enough fermion charge [24]. As in [24], it is explained by the red shift
on the gravity side, because at strong magnetic fields the fermion wavefunction is
supported near the black hole horizon modifying substantially the Fermi velocity. In
our model, vanishing Fermi velocity leads to zero occupancy of the Landau levels
by stable quasiparticles that results in vanishing regular Fermi liquid contribution
to the Hall conductivity and the longitudinal conductivity. The dominant contribu-
tion to both now comes from the non-Fermi liquid and conformal contributions.
We associate such change in the behavior of conductivities with a metal-“strange
metal” phase transition. Experiments on highly oriented pyrolitic graphite support
the existence of a finite “offset” magnetic field hc at T = 0 where the resistivity
qualitatively changes its behavior [38–41]. At T �= 0, it has been associated with the
metal-semiconducting phase transition [38–41]. It is worthwhile to study the tem-
perature dependence of the conductivity in order to understand this phase transition
better.
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Abstract. We report on our theoretical and numerical results concerning the transport mech-
anisms in the asteroid belt. We first derive a simple kinetic model of chaotic diffusion and
show how it gives rise to some simple correlations (but not laws) between the removal time
(the time for an asteroid to experience a qualitative change of dynamical behavior and enter a
wide chaotic zone) and the Lyapunov time. The correlations are shown to arise in two different
regimes, characterized by exponential and power-law scalings. We also show how is the so-called
“stable chaos” (exponential regime) related to anomalous diffusion. Finally, we check our re-
sults numerically and discuss their possible applications in analyzing the motion of particular
asteroids.

Keywords. Minor planets, asteroids; diffusion; celestial mechanics; methods: analytical

1. Introduction
Despite some important breakthroughs in the research of transport mechanisms in

the Solar system in the past decade, we still lack a general quantitative theory of chaotic
transport, which is especially notable for the so-called stable chaotic bodies. In this paper,
we sketch a new kinetic approach, which, in our opinion, has a perspective of providing
us such a theory sometime in the future.

A kinetic model of transport has already been proposed by Murray & Holman (1997).
Although it is an important step forward, this model fails to include a number of impor-
tant effects. We also wish to emphasize the role of phase space topology in the transport
processes. This has only recently been understood in papers by Tsiganis, Varvoglis &
Hadjidemetriou (2000, 2002a, 2002b). Still, the exact role of cantori and stability islands
in various resonances remains unclear. This is one of the issues we intend to explore in
this paper. We argue that, due to the inhomogenous nature of the phase space, a sep-
arate kinetic equation for each transport mechanism should be constructed; after that,
one can combine them to obtain the description of long-time evolution. This is the basic
idea of our approach, which leads to some interesting statistical consequences, such as
anomalous diffusion and approximate scaling of removal times with Lyapunov times.

2. The kinetic scheme
In order to model the transport, we use the “building block approach” we have recently

developed for Hamiltonian kinetics (Čubrović 2004). We use the Fractional Kinetic Equa-
tion (FKE), a natural generalization of the diffusion equation for self-similar and strongly
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inhomogenous media (e. g. Zaslavsky 2002):

∂βf (I, t)
∂tβ

=
∂α

∂|I|α [D (I) f (I, t)] (2.1)

Thus, the evolution of the distribution function f(I, t) is governed by the transport
coefficient D (the generalization of the diffusion coefficient) and by the (non-integer,
in general) order of the derivatives α (0 < α � 2) and β (0 < β � 1). The quantity
µ ≡ 2β/α is called the transport exponent (for the second moment the following holds
asymptotically: 〈∆I2〉 ∝ tµ). If µ �= 1, the transport is called anomalous (in contrast to
normal transport or normal diffusion†).

We shall now very briefly describe each of the four building blocks; unfortunately,
most expressions are cumbersome and complicated, so we limit ourselves in this paper
to merely state the basic ideas and final results of the method. We use the planar MMR
Hamiltonians H2BR = H0

2BR + H ′
2BR and H3BR = H0

3BR + H ′
3BR for two- and three-

body resonances, taken from Murray, Holman & Potter (1998) and Nesvorný & Morbidelli
(1998), respectively. Under H0 we assume the action-only part of the Hamiltonian. H2BR

was modified to account for the purely secular terms; also, both Hamiltonians were
modified to include the proper precessions of Jupiter and Saturn‡:

H ′
2BR =

u5,u6
∑

m=0,1;s=0...kJ−k
cmsu5u6 cos [m (kJλJ − kλ) + sp+ (u5g5 + u6g6) t+ u5βJ + u6βS ]

(2.2)

H ′
3BR =

u5,u6
∑

m=0,1;s

cmsu5u6 cos [m (kJλJ + kSλS + kλ) + sp+ (u5g5 + u6g6) t+ u5βJ + u6βS ]

(2.3)
The notation is usual. In H ′

2BR, we include all possible harmonics; in H ′
3BR, we include

only those given in Nesvorný & Morbidelli (1998). In what follows, we shall consider only
the diffusion in eccentricity, i. e. P Delaunay variable. Inclusion of the inclination could
be important but we postpone it for further work.

We estimate the transport coefficient as:

D =
T

(α−β)
lib

2

∑

s

sαP sα

(

∑

u5,u6

c′0su5u6
(α) + jc′1su5u6

(α)

)

(2.4)

where Tlib denotes the libration period while c′msu5u6
are coefficients dependent on the

exponent α from (2.1), independent on angles and P , which were computed using the
algorithm from Ellis & Murray (2000), for H2BR, or taken from Nesvorný & Morbidelli
(1998), for H3BR. The indicator j can be equal to 0 or 1 (i. e. omission or inclusion of the
resonant terms), depending on the building block (see bellow). Although we were able
to compute also the higher-order corrections to this quasilinear result in some cases, we
neglect them in what follows, in order to be able to solve the FKE analytically.

† From now on, we will refer to any transport in the phase space (i. e. evolution of the
momenta of the action I) as to “diffusion”; for the “classical” diffusion, we shall use the term
“normal diffusion”.

‡ All our computations, analytical and numerical, are performed with the osculating elements,
in order to gain as much simplification as possible. However, in order to avoid the non-diffusive
oscillations of the osculating elements, one should use the proper elements instead; we plan to
do this in the future.



Regimes of stability and removal time in the asteroid belt 211

The first class of building blocks we consider are the overlapping stochastic layers of
subresonances. In this case, one expects a free, quasi-random walk continuous in both
time and space, since no regular structures are preserved. Therefore, the FKE simplifies
to the usual diffusion equation, i. e. we have α = 2, β = 1 in (2.4); also, j = 1 (the
resonant harmonics are actually the most important ones).

The above reasoning is only valid if the overlapping of subresonances is not much
smaller than 1. Otherwise, the diffusion can only be forced by the secular terms. Also,
long intervals between subsequent “jumps” induce the so-called “erratic time”, i. e. β can
be less than 1, its value being determined by the distribution of time intervals between
“jumps” p(∆t) = 1/∆t1+β . So, the transport coefficient (2.4) now has j = 0, α = 2 and
β < 1.

Our third class of building blocks are the resonant stability islands. To estimate β
we use the same idea as in the previous case; after that, we compute α from β and µ,
the transport exponent, which we deduce using the method developed in Afraimovich &
Zaslavsky (1997). Namely, analytical and numerical studies strongly suggest a self-similar
structure characterized by a power-law scaling of trapping times λT , island surfaces
λS and number of islands λN at each level. The transport exponent is then equal to
λNλS/λT . For some resonances and for some island chains, we computed the scaling
exponents applying the renormalization of the resonant Hamiltonian as explained in
Zaslavsky (2002); in the cases when we did not know how to do this, we used the relation
between the transport exponent and the fractal dimension dT of the trajectory in the
(P, p) space (the space spanned by the action P and the conjugate angle p), which is
actually the dimension of the Poincare section of the trajectory:

dT =
2λT
λNλS

(2.5)

The last remaining class of blocks are cantori. Here, we assume the scaling of gap area
on subsequent levels with exponent λS and an analogous scaling in trapping probability
with exponent λp, which determines the transport exponent as 2 lnλp/ lnλS ; see also the
reasoning from Shevchenko (1998). The scaling exponents were estimated analogously to
the previous case.

For each building block, we construct a kinetic equation and solve it. We always put
a reflecting barrier at zero eccentricity and an absorbing barrier at the Jupiter-crossing
eccentricity. The solution in Fourier space (q, t) can be written approximately in the
following general form:

fi(q, t) = Eβ(−|qα| � D̂it
β) (2.6)

where Eβ stands for the Mittag-Leffler function and D̂i denotes the Fourier transform
of Di. The index i denotes a particular building block. The key to obtaining the global
picture is to perform a convolution of the solutions for all the building blocks. Further-
more, one must take into account that the object can start in different blocks and also
that, sometimes, different ordering of the visited blocks is possible. Therefore, one has
the following sum over all possible variations of blocks (we call it Equation of Global
Evolution - EGE):

f(P, t) =
∑

[p1f1(P, t) � p2f2(P, t) � . . . � pifi(P, t) � . . .] (2.7)

To calculate it, one has to know also the transition probabilities pi, which is not possible
to achieve solely by the means of analytic computations. That is why we turn again to
semi-analytic results.
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3. Removal times, Lyapunov times and TL – TR correlations
The first task is to determine the relevant building blocks and transitional prob-

abilities. We do that by considering the overviews of various resonances as given in
Morbidelli & Moons (1993), Moons & Morbidelli (1995), Moons, Morbidelli & Migliorini
(1998). For the resonances not included in these references, we turn again to the inspec-
tion of Poincare surfaces of section, integrating the resonant models (2.2) and (2.3). In
this case, the probabilities are estimated as the relative measures of the corresponding
trajectories on the surface of section.

The result of solving the EGE is again a Mittag-Leffler function:

fglobal(q, t) = Eγ(−|q|δtγ) (3.1)

The asymptotic behavior of this function, described e. g. in Zaslavsky (2002), has two
different forms: the exponential one and the power-law one, depending on the coefficients
γ and δ, which are determined by the probabilities pi and transport coefficients and
exponents of the building blocks. In the small γ limit, the behavior is exponential and
the second momentum scales with τcross, where τcross is the timescale of crossing a single
subresonance, which we interpret as the Lyapunov time†. When γ becomes large and the
role of stickiness more or less negligible, one gets a power-law dependance on τcross, i. e.
TL. So, we have the expressions:

TR ∝ exp (T xL) Φ (Λ0, cos(lnP0), Q0) (3.2)

for the exponential or stable chaotic regime, and:

TR ∝ (T yL) Φ (Λ0, cos(lnP0), Q0) (3.3)

for the power-law regime. The scalings are not exact because the fluctuational terms
Φ (Λ0, P0, Q0) appear. These terms are log-periodic in P0 and can explain the log-normal
tails of the TR distribution, detected numerically e. g. in Tsiganis, Varvoglis & Had-
jidemetriou (2000).

4. Results for particular resonances
We plan to do a systematic kinetic survey of all the relevant resonances in the asteroid

belt. Up to now, we have only preliminary results for some resonances.
Table 1 sums up our results for all the resonances we have explored. For each resonance,

we give our analytically calculated estimates for TL and TR. We always give a range of
values, obtained for various initial conditions inside the resonance. If the “mixing” of the
phase space is very prominent, we sometimes get a very wide range, which includes both
normal and stable chaotic orbits. One should note that the “errorbars” in the plot are
simply the intervals of computed values – they do not represent the numerical errors.
We also indicate if the resonance has a resonant periodic orbit, which is, according to
Tsiganis, Varvoglis & Hadjidemetriou (2002b), the key property for producing the fast
chaos‡. Bulirsch-Stoer integrator with Jupiter and Saturn as perturbers was used for the
integrations.

We have also tried to deduce the age of the Veritas family, whose most chaotic part lies
inside the 5 − 2 − 2 resonance. Our EGE gives an approximate age about 9 Myr while,
assuming a constant diffusion coefficient (Knežević, personal communication), one gets

† One should bear in mind that this is just an approximation; strictly speaking, Lyapunov
time is not equal, nor simply related to the subresonance crossing time.

‡ The existence of the periodic orbit for 13 : 6 and 18 : 7 resonances has not been checked
thus far; however, we think this would be highly unlikely for such high-order resonances
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Table 1. Analytical and numerical values of the Lyapunov time (in Kyr) and removal time (in
Myr). Existence of the periodic orbit in the planar problem for the 2BR is also indicated; the
data in this column were taken from Tsiganis, Varvoglis & Hadjidemetriou (2002b).

Resonance TL (Kyr) TNum
L (Kyr) TR (Myr) TNum

R (Myr) Per. orbit ?
2 : 1 1.1–3.4 2.9–5.2 0.8–19.4 1.1–31.2 Yes
3 : 2 1.4–3.5 3.1–6.2 0.9–19.1 3.2–142.7 Yes
3 : 1 6.2–8.2 6.8–9.4 0.8–8.0 1.0–21.2 Yes
5 : 3 1.9–2.2 1.1–3.5 0.9–4.1 0.8–7.4 Yes
5 : 2 6.9–9.2 8.3–14.4 7.6–13.4 9.2–28.7 Yes
7 : 4 2.7–5.3 1.8–3.9 6.9–23.4 12.2–41.3 Yes
8 : 5 3.7–6.7 4.1–7.6 8.2–18.2 7.3–23.4 No
7 : 3 5.0–6.9 6.9–9.1 16.7–62.2 22.4–91.2 No
9 : 5 5.4–6.8 3.1–5.2 23.2–86.7 11.3–104.2 No
11 : 7 7.1–14.1 3.4–9.7 10.6–73.4 8.4–88.2 Yes
11 : 6 10.8–22.7 10.1–16.5 16.4–330.3 13.2–≈ 500 No
12 : 7 11.1–14.7 4.1–15.2 4.6–278.1 5.2–≈ 1000 No
13 : 7 65.1–84.6 43.3–76.1 23.2– ≈ 1000 14.2– > 1000 No
13 : 6 55.1–77.6 14.6–24.5 41.3– ≈ 1000 21.1– > 1000 No
18 : 7 ≈ 500 300-600 ≈ 20000 > 1000 No
5 − 2 − 2 11.4–13.7 8.4—10.9 ≈ 10000 > 1000 No
2 + 2 − 1 90–160 130–240 ≈ 20000 > 1000 No
6 + 1 − 3 130–150 130–170 ≈ 40000 > 1000 No

about 8.3 Myr. The similarity is probably due to the young age of the family: were it
older, the effects of non-linearity would prevail and our model would give an age estimate
which is substantially different from that obtained in a linear approximation.

Figure 1 gives the results from table 1 plotted along the semimajor axis. It can be noted
that the agreement is good within an order of magnitude, with some exceptions. Actually,
one can see that the disagreement with the simulations is most significant exactly in the
resonances with a periodic orbit, which might actually require a completely different
treatment of transport.

In Figure 2, we plot the numerical TL – TR relation for the resonances 5 : 3 and
12 : 7, examples of normal and stable chaos, respectively. The largest discrepancies in
the Figure 2a are probably for objects near the stability islands; in the Figure 2b, the fit
fails completely. To check the assumption that this is due to the mixing of populations, we
integrate a larger population of objects and divide them into two classes (the criterion
being the prominence of anomalous diffusion, see later). For each class, we perform a
separate fit with the corresponding TL – TR relation. Now most objects can be classified
into one of the two scaling classes. In particular, this shows that the famous stable-chaotic
object 522 Helga is probably not a remnant of some larger initial population but rather
a member of one of the two populations existing in this resonance.

Finally, in Figure 4, we give the time evolution of the dispersion in P (i. e. 〈∆P 2〉) for
a set of clones of 522 Helga, using the procedure described in Tsiganis, Anastasiadis &
Varvoglis (2000). Anomalous diffusion is clearly visible. This confirms the stable chaotic
nature of this object and shows that we can use the anomalous character of diffusion as
an indicator of stable chaos.

5. Conclusions and discussion
We have given a kinetic model of chaotic transport in the asteroid belt, based on the

concept of convolution of various building blocks. Combining numerical and analytical
results, we have shown how the removal time can be calculated and interrelated with the
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Figure 1. Analytical (points) and numerical (circles) values from table 1, for Lyapunov time
(a) and removal time (b). Arrows correspond to extremely uncertain numerical values, usually
the values close to or larger than the integration timespan (1 Gyr).
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Figure 2. Plot of TL – TR dependance for the resonances 5 : 3 (a), fit with a power-law, and
12 : 7 (b), fit with the exponential law. The straight line obtained by linear regression in the
logarithmic scale is an obviously bad fit. See text for comments.

Lyapunov time. We have obtained two regimes for chaotic bodies, the power-law one and
the exponential one. Due to the fractal structure of the phase space, however, asteroids
from different regimes can be “mixed” in a small region of the phase space.

We would like to comment briefly on the controversial issue of the TL – TR relation.
First of all, the correlations we have found are of statistical nature only and should not
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Figure 3. The same as in Figure 2b but with two separate plots for the exponential regime
population, and for the power-law regime population. Obviously, we have a substantially better
fit.
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Figure 4. Diffusion in eccentricity for a set of clones of 522 Helga. Domination of anomalous
transport is obvious. The reference line for normal diffusion (µ = 1) is also plotted.

be regarded as “laws” in the sense of Murison, Lecar & Franklin (1994). Furthermore,
due to their statistical nature, they cannot be used for any particular object, only for
populations. Finally, it is clear that the scalings are non-universal, i. e. the scaling ex-
ponents are different for different resonances (possibly also in disconnected regions of a
single resonance).
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The exponential regime, characterized mainly by anomalous transport through vari-
ous quasi-stable structures, corresponds to the stable chaotic regime, discussed e. g. in
Tsiganis, Varvoglis & Hadjidemetriou (2000) and Tsiganis, Varvoglis & Hadjidemetriou
(2002a). The reason that the exponential TL – TR correlation was not noticed thus far
are in part very large values of TR in this regime, and in part the fact that stable chaotic
objects are typically mixed with the objects in the normal chaotic regime. Also, it is
interesting to note that the exponential scalings are of the same form as those predicted
in Morbidelli & Froeschlé (1996) for the Nekhoroshev regime; therefore, it seems that the
exponential stability can arise also due to stickyness, not necessarily as a consequence of
the Nekhoroshev structure.

Finally, we hope that our research will stimulate further work in this field, since the
results presented here are no more than just a sketch of possible general theory.
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Abstract. We propose a fractional kinetic equation to model the transport in eccentricity of
objects in the mean motion resonances in the Elliptic Planar Restricted Three-Body Problem.
Making use of the renormalization group formalism, we show how the fractional exponents
and the diffusion coefficient can be estimated analytically, making use of the degeneracy of
the problem. We apply our model to selected Mean Motion Resonances in the Solar System
and explain some basic properties of transport in these resonances.

1. INTRODUCTION

Kinetic models of chaotic transport in the Asteroid Belt have been proposed or dis-
cussed by a number of authors (Varvoglis and Anastasiadis, 1996; Murray and Hol-
man, 1997; Tsiganis, Varvoglis and Hadjidemetriou, 2002). All of these models are
based on a Fokker-Planck type equation (”normal” diffusion equation) for the eccen-
tricity, which implicitly assumes the Gauss-Markovian statistics of the quasi-random
walk in the eccentricity space. In order to incorporate the more general (and more
realistic) case of Levy-type statistics (see, e.g., Zaslavsky, 2002), we have recently
proposed a semi-analytical model (Čubrović, 2005a) based on the fractional kinetic
equation – FKE (Zaslavsky, 2002). In this paper we give a fully analytical model.

We consider the transport in Mean Motion Resonances (MMR) of the Elliptic
Planar Restricted Three-Body Problem (EPRTBP), and apply it on diffusion in the
asteroid belt. The model we propose is, however, applicable to any EPRTBP Hamil-
tonian, and possibly also to a wider class of degenerate systems, which all have a
similar structure of resonances.

173
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2. THE MODEL OF TRANSPORT

Our model is the Hamiltonian for a q-th order two-body MMR, used, among others,
by Murray and Holman (1997):

HMMR(L, λ; P, p) = H0(L) +
∑

s

cs(L)P s cosσs (1)

with L, λ, P = L(1 −
√

1 − e2), and p = −ω̃ being the modified Delauney variables
(defined as in Morbidelli 2002). In the above relations, e is eccentricty, and ω is
the longitude of perihelion. Critical angles are denoted by σs. We assume that the
transport only takes place along P (i.e., that the timescale of transport in L is much
longer) and that a particle starts at P = 0, where we put a reflecting barrier, and
escapes immediately after reaching a planet-crossing orbit (P = Pcross), where we put
an absorbing barrier. The possible phase protection mechanisms are ignored.

Assuming a Levy-type statistics for the angles σs, one finds, after performing the
averaging, that the master equation for the probability distribution function f(P, t)
leads to a multi-channel FKE:

∂βf(P, t)

∂tβ
=

q
∑

s=1

∂αs

∂|P |αs
[Ds(P )f(P, t)] (2)

with the diffusion coefficients:

Ds =
1

2
cαs
s sαsP s2αT

(α−β)s

Lib
(3)

where TLib denotes the libration period. Applying the separation ansatz and writing
the time-independent part of the solution as a superposition of the time-independent
parts of one-channel solutions (given in Čubrović, 2005b) for different values of s
(which is justified by the linearity of FKE), one finds an estimate for the removal time
and the Lyapunov time (for the latter from the FKE for the variational equations,
which shares all the basic properties with (2)):

TR ≈
(

P0Pcross

D(L, P0)D(L, Pcross)

)1/β

× Φ

(

α, β; L, P0; cos

(

log P0

| log β|

))

(4)

TLy ≈ 2
cs(L)

‖D‖ (5)

where ‖‖ denotes the standard Euclidean norm, and Φ is, in general, a compli-
cated resonance-dependent function which, however, has an important property of
log-periodicity.

A few interesting consequences follow from the above results. First, it is obvious
that, for different values of P , different components Ds of the diffusion coefficient will
prevail, leading to a stair-like behavior of the ”effective” (e.g., numerically computed)
diffusion coefficient. Furthermore, since the amplitude of log-periodic oscillations of
Φ can be shown to grow with q (order of the resonance), the log-periodic oscillations
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will be more and more significant for higher order resonances. Also, applying the
Tauberian theorem for the Fourier transform, and making use of the generalized Cen-
tral Limit Theorem (e.g., Weiss, 1994), one can show that two approximate scalings
of TR with TLy are possible: the power-law one and the stretched-exponential one
(corresponding to the ”stable chaos”).

In order to actually compute any of the relevant quantities (like TR), however, the
question of determining the exponents α and β arises. We will sketch in the next
section an analytical procedure to do that.

3. THE RENORMALIZATION GROUP EQUATION

The idea of the Renormalization Group of Kinetics (RGK) is to model the transport
explicitly as a random walk in P with the waiting time distribution Ψ(t) and the
step-size distribution W (∆P ) being chosen from the dynamical considerations (see
Kuznetsov and Zaslavsky, 1997). Although also the FKE (2) could have been deduced
from this formalism, we have decided to retain the more common averaging procedure
for obtaining the FKE.

Two basic mechanisms of transport are expected to be the ”hopping” between
subsequent layers in the resonant multiplet, and the trapping inside higher and higher
levels of hierarchy of a cantorus or a stability island chain. This process leads to the
following expressions for Ψ(t) and W (∆P ):

Ψ(t) = const. ×
N
∑

j=1

pj
[

exp(−bjt/TLib) + exp(−t/jTLib)
]

(6)

W (∆P ) = const.×
N
∑

j=1

pj
[

δ(∆P + a0a
j) + δ(∆P − a0a

j) + δ(∆P + ja0) + δ(∆P − ja0)
]

(7)

where δ(x) is the common Dirac delta function. The above functions obey the follow-
ing RGK in the Fourier-Laplace (q, u) space:

W (q) → pW (qa), Ψ(u) → pΨ(u/b), j → 2j, N → N/2 (8)

which leads to two coupled fixed-point equations for a and b, whereas p = δS/∆S (the
relative overlap, which can be estimated, e.g., as in Murray and Holman, 1997), and a0

is also easy to calculate as the separation between the subsequent resonant layers. Now
the fractional exponents are found as α = | log p|/ log a and β = | log p|/ log b. Notice
that the presented model breaks down in a non-degenerate system, where a0 → 0 and
we only have a trivial RGK with a whole interval of fixed points (irrelevant for our
purposes).
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Figure 1: Diffusion coefficient as a function of P in the 5 : 2 (left) and 12 : 7 (right)
resonances. Solid line is the analytical prediction, and circles are numerical results
for an ensemble of 150 bodies. The value of the diffusion coefficient varies rather
smoothly with P in the former case, whereas in the latter case the stair-like structure
and the log-periodic oscillations are much more prominent.

4. RESULTS FOR SELECTED RESONANCES
IN THE ASTEROID BELT

A systematic study of all important MMR in the Asteroid Belt is still in progress. We
present here only two typical cases, namely the 5 : 2 and 12 : 7 resonances. Figure 1
shows the diffusion coefficient as a function of P ; figure 2 gives the predicted TR–TLy

relation.

The figures illustrate the qualitative properties discussed at the end of the second
section. The 12 : 7 resonance, as expected, contains a population with very long
removal times, in which the bodies such as the now famous 511 Helga (Milani and
Nobili, 1992) reside. The power-law and the exponential-law regimes for TR coexist in
a large part of the resonance. Contrary, the 5 : 2 objects should all have comparable
lifetimes, and only one type of transport should exist – the relatively fast diffusion
towards Pcross.

5. CONCLUSIONS

We have proposed a fractional kinetic equation for the eccentricity transport in the
MMR, together with an analytical scheme for the estimation of the fractional expo-
nents α and β. The predictions for two typical low- and high-order resonances agree
well with the numerical results and with our previous, semi-analytical model (Tsi-
ganis, Anastasiadis and Varvoglis, 2000; Čubrović, 2005a). It is clear, however, that
further work is needed to obtain a complete model, capable of describing also the fine
details of dynamics inside the MMR.
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Figure 2: The analytically computed values of TLy and TR for the 5 : 2 (left) and

12 : 7 (right) resonances. The power law (straight line on the log-log plot) describes
well the general trend in the 5 : 2 case, with the scaling exponent about 0.70. In the
12 : 7 case, however, another, more stable regime, with exponentially long lifetimes is
also present (denoted by squares), in addition to the ”normal” chaos, which is again
well described with a power-law fit, the slope being about 0.35.
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TT 7: Transport: Quantum Coherence and Quantum Information Systems – Theory (jointly
with HL, MA)

Time: Monday 9:30–13:00 Location: H 3005

TT 7.1 Mon 9:30 H 3005
Collective modes in the fluxonium qubit — ∙Gianluigi
Catelani1 and Giovanni Viola2 — 1Forschungszentrum Jülich,
PGI-2 — 2RWTH Aachen, IQI
In the fluxonium qubit, an array comprising a large number of iden-
tical Josephson junctions form a so-called superinductance. The su-
perinductance is connected to a junction – the phase slip element –
with a smaller Josephson energy and a different charging energy. We
investigate the effects of unavoidable capacitive couplings to ground as
well as non-linearities of the superinductance: they both introduce in-
teractions between the low-energy qubit degree of freedom and higher-
energy collective modes of the circuit. We also consider the role of
the additional capacitances that are used to couple the qubit to a res-
onator for driving and read-out. We show that the interactions with
the collective modes can affect not only the spectrum of the qubit but
also its coherence.

Work supported in part by the EU under REA grant agreement
CIG-618258

TT 7.2 Mon 9:45 H 3005
Optimal Control of Quantum Measurement — Daniel Egger
and ∙Frank Wilhelm — Theoretical Physics, Saarland University,
66123 Saarbrücken, Germany
Pulses to steer the time evolution of quantum systems can be designed
with optimal control theory. In most cases it is the coherent pro-
cesses that can be controlled and one optimizes the time evolution
towards a target unitary process, sometimes also in the presence of
non-controllable incoherent processes. Here we show how to extend
the GRAPE algorithm in the case where the incoherent processes are
controllable and the target time evolution is a non-unitary quantum
channel. We perform a gradient search on a fidelity measure based
on Choi matrices. We illustrate our algorithm by optimizing a mea-
surement pulse for superconducting phase qubits. We show how this
technique can lead to large measurement contrast close to 99%. We
also show, within the validity of our model, that this algorithm can
produce short 1.4 ns pulses with 98.2% contrast.

TT 7.3 Mon 10:00 H 3005
Optimal control of single flux quantum pulses — ∙Per Lieber-
mann, Daniel Egger, and Frank Wilhelm — Universität des Saar-
landes, Saarbrücken
Rapid single flux quantum pulses are a natural candidate for on-chip
control of superconducting qubits [1]. We apply trains of single flux
quantum pulses to perform single qubit gates. Under the constraint
of constant amplitudes and gate times we use genetic algorithms for
optimising the pulse sequence to decrease the gate error by two orders
of magnitude. We consider leakage transitions into a third energy level
as well as timing jitter of the pulses, exploring the robustness of our
optimized sequence. This takes us one step further to on-chip qubit
controls.

[1] R. McDermott and M.G. Vavilov, Phys. Rev. Applied 2, 014007
(2014)

TT 7.4 Mon 10:15 H 3005
Adaptive characterization of coherent states — ∙Markku P.
V. Stenberg, Kevin Pack, and Frank K. Wilhelm — Theoretical
Physics, Saarland University, 66123 Saarbrücken, Germany
We present a method for efficient characterization of an optical co-
herent state |𝛼⟩. We choose measurement setups adaptively based on
the data while it is collected. Our algorithm divides the estimation in
three different steps with different measurement strategies: (i) search-
ing a crude estimate, (ii) rapidly improving the accuracy, and (iii) the
phase where the improvement of the accuracy slows down due to the
quantum nature of the coherent state. Our algorithm significantly out-
performs nonadaptive schemes. While our standard strategy is robust
against measurement errors we also present strategies optimized for
the presence of such errors.

TT 7.5 Mon 10:30 H 3005
Qubit dephasing due to Quasiparticle Tunneling — ∙Sebastian
Zanker, Michael Marthaler, and Gerd Schön — Institut für

Theoretische Festkörperphysik, Karlsruhe Institute of Technology, D-
76128 Karlsruhe, Germany
We study dephasing of a superconducting qubit due to quasiparticle
tunneling through a Josephson junction. While qubit decay due to
tunneling processes is well understood within a golden rule approxi-
mation, pure dephasing due to BCS quasiparticles gives rise to a diver-
gent golden rule rate. We calculate qubit dephasing due to quasiparti-
cle tunneling beyond lowest order approximation in coupling between
qubit and quasiparticles. Summing up a certain class of diagrams
we show that qubit dephasing due to purely longitudinal coupling to
quasiparticles leads to dephasing ∼ exp(−𝑥(𝑡)) where 𝑥(𝑡) ∝ 𝑡3/2 for
short time scales and 𝑥(𝑡) ∝ 𝑡 log(𝑡) for long time scales.

TT 7.6 Mon 10:45 H 3005
Detecting nonlocal Cooper pair entanglement by optical Bell
inequality violation — Simon E. Nigg, Rakesh P. Tiwari, Ste-
fan Walter, and ∙Thomas L. Schmidt — Department of Physics,
University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
Based on the Bardeen Cooper Schrieffer (BCS) theory of superconduc-
tivity, the coherent splitting of Cooper pairs from a superconductor to
two spatially separated quantum dots has been predicted to generate
nonlocal pairs of entangled electrons. In order to test this hypothesis,
we propose a scheme to transfer the spin state of a split Cooper pair
onto the polarization state of a pair of optical photons. We show that
the produced photon pairs can be used to violate a Bell inequality,
unambiguously demonstrating the entanglement of the split Cooper
pairs.

[1] Nigg et al., arXiv:1411.3945 [cond-mat.mes-hall]

TT 7.7 Mon 11:00 H 3005
Detection of non-local spin-entanglement by light emission
from a superconducting pn-junction — ∙Alexander Schroer
and Patrik Recher — Institut für Mathematische Physik, Technische
Universität Braunschweig, D-38106 Braunschweig, Germany
We model a superconducting pn-junction in which the n- and the p-site
are contacted through two optical quantum dots, each embedded into
a photonic nanocavity. Whenever a Cooper pair is transported from
the n-site to the p-site, two photons are emitted. When the two elec-
trons of a Cooper pair are transported through different quantum dots,
polarization entangled photons are created, provided that the Cooper
pairs retain their spin-singlet character although being spatially sep-
arated on the two quantum dots. We show that a CHSH Bell-type
measurement is able to detect the entanglement of the photons over a
broad range of microscopic parameters, even in the presence of para-
sitic processes and imperfections. Observing this signature is a direct
proof of crossed Andreev reflection, or, equivalently, Cooper pair split-
ting, retaining the spin-singlet wave function.

15 min. break.

TT 7.8 Mon 11:30 H 3005
Scattering of two photons from two distant qubits: exact so-
lution — Matti Laakso and ∙Mikhail Pletyukhov — Institute
for Theory of Statistical Physics, RWTH Aachen, 52056 Aachen
We consider the inelastic scattering of two photons from two qubits
separated by an arbitrary distance and coupled to a one-dimensional
transmission line. We present an exact, analytical solution to the
problem, and use it to explore a particular configuration of qubits
which is transparent to single-photon scattering, thus highlighting
non-Markovian effects of inelastic two-photon scattering: Strong two-
photon interference and momentum dependent photon (anti)bunching.
This latter effect can be seen as an inelastic generalization of the Hong-
Ou-Mandel effect.

TT 7.9 Mon 11:45 H 3005
Robust entanglement under multipartite correlated dephas-
ing — ∙Edoardo Carnio1,2, Manuel Gessner2, and Andreas
Buchleitner2,3 — 1Department of Physics, University of War-
wick, Coventry, CV4 7AL, United Kingdom — 2Physikalisches Insti-
tut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3,

1
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79104 Freiburg, Germany — 3Freiburg Institute for Advanced Studies,
Albert-Ludwigs-Universität Freiburg, Albertstraße 19, 79104 Freiburg,
Germany
We derive an analytical description for the dephasing process under-
gone by a system on non-interacting atomic qubits, immersed in a uni-
form, fluctuating magnetic field. The dephasing process is correlated,
as the noise source is common to all the particles and induces an effec-
tive atom-atom interaction on them. This correlated nature allows to
specify field orientations that preserve any degree of atomic entangle-
ment for all times, and families of states with entanglement properties
that are time-invariant for arbitrary field orientations. Our formalism
applies to arbitrary spectral distributions of the fluctuations.

TT 7.10 Mon 12:00 H 3005
Bell inequalities and waiting times — ∙Christina Pöltl and
Michele Governale — School of Chemical and Physical Sciences
and MacDiarmid Institute for Advanced Materials and Nanotechnol-
ogy, Victoria University of Wellington, PO Box 600, Wellington 6140,
New Zealand
We propose a Bell test based on waiting time distributions for spin
entangled electron pairs, which are generated and split in mesoscopic
Coulomb blockade structures, denoted as entanglers. These systems
have the advantage that quantum point contacts enable a time re-
solved observation of the electrons occupying the system, which gives
access to quantities such as full counting statistics and waiting time
distributions. We use the partial waiting times to define a CHSH-Bell
test, which is a purely electronic analogue of the test used in quantum
optics. After the introduction of the Bell inequality we discuss the
findings on the two examples of a double quantum dot and a triple
quantum dot. This Bell test allows the exclusion of irrelevant tunnel
processes from the statistics normally used for the Bell correlations.
This can improve the parameter range for which a violation of the Bell
inequality can be measured significantly.

TT 7.11 Mon 12:15 H 3005
Quantum dynamics of a strongly driven Josephson Junction
— ∙Jennifer Gosner, Björn Kubala, and Joachim Ankerhold —
Institute for Complex Quantum Systems, University of Ulm, Germany
A Josephson Junction embedded in a dissipative circuit can be driven
to exhibit non-linear oscillations.

Classically the non-linear oscillator shows under sufficient strong
driving and weak damping dynamical bifurcations and a bistable region
similar to the conventional Duffing-oscillator. These features depend
sensitively on initial conditions and parameters. The sensitivity of this
circuit, called Josephson Bifurcation Amplifier, can be used to amplify
an incoming signal, to form a sensing device or even for measuring a
quantum system.

The quantum dynamics can be described by a dissipative Lindblad
master equation. Signatures of the classical bifurcation phenomena
appear in the Wigner representation, used to characterize and vi-
sualize the resulting behaviour. In order to compare this quantum
dynamics to that of the conventional Duffing-oscillator, the complete

cosine-nonlinearity of the Josephson Junction is kept for the quantum
description while going into a rotating frame.

TT 7.12 Mon 12:30 H 3005
Dissipation-induced first order decoherence phase transition
in a non-interacting fermionic system — ∙Mihailo Cubrovic —
Institute for Theoretical Physics, Universität zu Köln, Zülpicher Str.
77, D-50937, Köln, Germany
We consider a dissipative tight-binding fermionic chain as a model
for a nanowire with current leakage due to imperfect isolation. The
dissipation manifests as tunneling into/out of the chain from/to the
environment. The evolution of the system is described by the Lind-
blad equation, generalized to incorporate the memory effects in the
bath. Already infinitesimally small dissipation along the chain induces
a quantum phase transition (QPT). This is a decoherence QPT: the
reduced density matrix of a subsystem (far from the ends of the chain)
can be represented as the tensor product of single-site density matri-
ces. We analyze the QPT in the thermodynamic limit by looking at
the entropy and the response function in the bulk, and compare in
detail the results with and without memory in the bath. To gain a
better intuitive understanding we also contruct the analogous classical
model (a correlated random walk process) and compare its behavior
to the QPT of the quantum chain.

TT 7.13 Mon 12:45 H 3005
Spin dynamics using the Majorana representation: validity,
path integral and higher correlators — ∙Pablo Schad1, Boris
N. Narozhny1,2, Gerd Schön3, Yuriy Makhlin4,5, and Alexan-
der Shnirman1 — 1Institut für Theorie der Kondensierten Materie,
Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany —
2National Research Nuclear University MEPhI (Moscow Engineer-
ing Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
— 3Institut für Theoretische Festkörperphysik und Institut für Nan-
otechnologie, Karlsruhe Institute of Technology, D-76131 Karlsruhe,
Germany — 4Landau Institute for Theoretical Physics, acad. Semy-
onov av., 1a, 142432, Chernogolovka, Russia — 5Moscow Institute of
Physics and Technology, 141700, Dolgoprudny, Russia
We present a method to calculate higher spin correlators via the Ma-
jorana fermion representation of spin operators. We show explicitly
that the Majorana representation does not require any projection pro-
cedure. Previously found identities [1,2] between spin and Majorana
fermion correlation functions are extended. As an example we con-
sider a spin-1/2 coupled to an isotropic, ohmic bath. We formulate a
path-integral approach, which is valid at B=0 in contrast to pertur-
bation theory, find the saddle-point solution and discuss fluctuations.
We demonstrate that spin correlators in the high-temperature regime
can be obtained using saddle-point Green’s functions.

[1] A. Shnirman and Y. Makhlin,
Phys. Rev. Lett. 91, 207204 (2003).
[2] W. Mao, P. Coleman, C. Hooley, and D. Langreth,
Phys. Rev. Lett. 91, 207203 (2003).
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TT 50.1 Tue 14:00 BEY 81
Detailed analysis of critical points in coupled spin dimer
systems — •Sebastian Eggert1, Dominik Straßel1, and Pe-
ter Kopietz2 — 1Fachbereich Physik, Technische Universität Kaiser-
slautern — 2Fachbereich Physik, Goethe Universität Frankfurt

Spin dimer systems are a promising playground for the detailed study
of quantum phase transitions. In many cases it is sufficient to use
the magnetic field as the tuning parameter in order to reach interest-
ing non-trivial critical points. Depending on the temperature it is in
principle possible to observe a crossover from the characteristic scaling
near the critical point to the behavior of a finite temperature phase
transition. In order to quantitatively demonstrate those effects and
inspired by recent experiments we have started large scale quantum
Monte Carlo simulations in order to analyze several different phys-
ical quantities in spin dimer systems, namely the susceptibility, the
magneto-caloric effect, the structure factor and the spin stiffness. We
discuss in detail how the phase transitions (quantum and finite temper-
ature) are manifest in the characteristic scaling behavior near critical
points by comparing them with interacting boson theories. The results
give a unified picture of the full quantum and finite temperature phase
diagram.

TT 50.2 Tue 14:15 BEY 81
Quantum Monte Carlo Simulations of Trimerized Antiferro-
magnetic Systems — •Dominik Straßel and Sebastian Eggert
— Department of Physics and Research Center Optimas, Technical
University Kaiserslautern, 67663 Kaiserslautern, Germany

We study linear clusters of three strongly coupled spins S = 1
2

(trimers), which are connected more weakly in a two dimensional lat-
tice using Stochastic Series Expansion Quantum Monte Carlo simu-
lations of the Heisenberg model in a magnetic field. In general these
systems show a magnetization plateau at 1

3
saturation, which is already

known from strongly coupled three-leg ladders. Interestingly, the ori-
gin of the plateau is very similar to the 1

3
plateau in frustrated lattices

(e.g. the triangular lattice) so that the analogous phase transitions can
be analyzed using non-frustrated systems, which do not suffer from the
infamous minus sign problem. With increasing coupling between the
trimers, the plateau vanishes and a critical point can be identified. We
also analyze the behavior in the limit of weak inter-trimer coupling.

TT 50.3 Tue 14:30 BEY 81
Excitonic Instability at Spin-State Transition — •Jan Kuneš
and Pavel Augustinský — Institute of Physics, ASCR, Prague,
Czechia

We report a newly observed instability of the half-filled two-band Hub-
bard model in the vicinity of the spin-state transition. [1] Using dy-
namical mean-field theory we have performed a unbiased search for
divergent particle-hole susceptibilities. Depending on the bandwidths
ratio the system was found to establish a checker-board order of high-
and low-spin sites, breaking the discrete translational symmetry, or
to undergo a condensation of spinful excitons, breaking a continuous
gauge symmetry. Besides numerical results we provide an analytic de-
scription in the strong-coupling limit where the problem maps of a
variate of the bosonic t-J model.
[1] Kunes and Augustinsky, arXiv:1310.0669

TT 50.4 Tue 14:45 BEY 81
Critical phenomena of the two-channel spin-boson model
— •Benedikt Bruognolo1, Andreas Weichselbaum1, Jan von
Delft1, and Matthias Vojta2 — 1Physics Department, Arnold Som-
merfeld Center for Theoretical Physics and Center for NanoScience,
Ludwig-Maximilians-Universität München, 80333 München, Germany
— 2Institut für Theoretische Physik, Technische Universität Dresden,
01062 Dresden, Germany

In recent years bosonic quantum impurity models have attracted signif-
icant attention in the context of quantum phase transitions. Numerical
approaches to study the critical properties in such models face addi-
tional challenges arising from the bosonic nature of the bath modes,
that are not present in purely fermionic systems.
Guo et al. [1] presented a powerful numerical method based on a com-
bination of NRG and DMRG, which overcomes the problem of a di-
verging bosonic state space by variationally constructing an optimized

boson basis on each site of the Wilson chain. We discuss a symme-
try improved application of this method to the sub-ohmic spin-boson
model with two symmetrically coupled bosonic baths and focus on its
critical properties, which so far had been an open question. We present
the first numerical study of the critical points, which in combination
with RG results allows a description of the critical phenomena of this
model for a wide range of parameters.
[1] C. Guo, A. Weichselbaum, J. von Delft, M. Vojta, Phys. Rev. Lett.
108, 160401 (2012)

TT 50.5 Tue 15:00 BEY 81
Interplay of fermion and boson induced critical Kondo de-
struction — •Farzaneh Zamani1,2, Pedro Ribeiro1,2,3, and Ste-
fan Kirchner1,2 — 1MPI-PKS, Dresden, Germany — 2MPI-CPFS,
Dresden, Germany — 3CFIF-IST, Universidade de Lisboa, Lisboa,
Portugal

An increasing number of experiments have indicated that the tradi-
tional approach to continuous zero-temperature phase transitions in
strongly correlated electrons systems is inadequate. In the context
of intermetallic rare-earth compounds this approach does e.g. not
account for the linear-in-temperature relaxation rates observed in a
number of systems in the charge- and spin-response near criticality. A
widely discussed alternative to the standard approach picture is local
Kondo destruction, where Kondo screening becomes critical concomit-
tantly with the lattice. We study the phenomenon of critical Kondo
destruction in the pseudogap Bose-Fermi Kondo model where a quan-
tum spin is coupled to a fermionic and a bosonic bath. Each of the
baths by itself is capable of critically destroying Kondo screening, al-
lowing us to study the dynamic interplay of the two. We employ a
dynamic large-N limit and obtain asymptotically exact solutions at
zero temperature. We also report full scaling equations at all criti-
cal points and discuss the ensuing relaxation rates. Finally, we revisit
the issue of ’conformal scaling’ of the imaginary-time correlation func-
tions at criticality and relate our findings to their counterpart in the
easy-axis pseudogap pseudogap Bose-Fermi Kondo model.

TT 50.6 Tue 15:15 BEY 81
Corrections to scaling in the critical theory of deconfined crit-
icality — •Lorenz Bartosch — Institut für Theoretische Physik,
Universität Frankfurt, 60438 Frankfurt am Main, Germany

Inspired by recent conflicting views on the order of the phase tran-
sition from an antiferromagnetic Néel state to a valence bond solid,
we use the functional renormalization group to study the underlying
quantum critical field theory which couples two complex matter fields
to a non-compact gauge field. In our functional renormalization group
approach we only expand in covariant derivatives of the fields and use
a truncation in which the full field dependence of all wave-function
renormalization functions is kept. While we do find critical exponents
which agree well with some quantum Monte Carlo studies and sup-
port the scenario of deconfined criticality, we also obtain an irrelevant
eigenvalue of small magnitude, leading to strong corrections to scaling
and slow convergence in related numerical studies.

TT 50.7 Tue 15:30 BEY 81
Heavy fermion quantum critical point from AdS/CFT cor-
respondence — •Mihailo Čubrović — Institute for Theoretical
Physics, University of Cologne, Germany

We propose a holographic (AdS/CFT) approach to strongly correlated
electrons and study a quantum phase transition from small to large
Fermi surface phase in a model ”heavy fermion” system. AdS/CFT
is a duality which maps the correlation functions from field theory
to solutions of the equations of motion for classical fields in a curved
spacetime, i.e. in general relativity. The appealing side of this ap-
proach is its nonperturbative nature: the calculations on the gravity
side are essentially an expansion in inverse coupling strength and in-
deed work best in the strong coupling regime. We construct a gravity
dual of a Fermi liquid system which shows a mass enhancement of the
order of several hundred times the bare mass. At zero temperature,
the system exhibits a continuous quantum phase transition to another
Fermi liquid with different effective mass and Fermi momentum. The
difference in sizes of the Fermi surfaces (i.e. Fermi momenta), as well
as the fact that the transition happens at finite wavevector agree with
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the intuition on heavy fermion transitions. While the picture resembles
the fractionalization scenario, we.do not introduce any emergent gauge
fields. The shrinking of the Fermi surface can best be interpreted as
formation of bound states between electrons and exotic bosonic exci-
tations near the quantum critical point.

TT 50.8 Tue 15:45 BEY 81
Anderson Metal-Insulator Transitions With Classical Mag-
netic Impurities — •Daniel Jung1, Keith Slevin2, and Stefan
Kettemann1,3 — 1School of Engineering and Science, Jacobs Univer-
sity Bremen, 28759 Bremen, Germany. — 2Department of Physics,
Graduate School of Science, Osaka University, 1-1 Machikaneyama,
Toyonaka, Osaka 560-0043, Japan. — 3Division of Advanced Materials
Science, Pohang University of Science and Technology (POSTECH),
Pohang 790-784, South Korea.

We study the effects of classical magnetic impurities on the Ander-

son metal-insulator transition numerically [1, 2]. In particular we find
that while a finite concentration of Ising impurities lowers the critical
value of the site-diagonal disorder amplitude Wc, in the presence of
Heisenberg impurities, Wc is first enhanced with increasing exchange
coupling strength J due to time-reversal symmetry breaking. The
resulting scaling with J is analyzed and compared to analytical pre-
dictions by Wegner [3]. We discuss the relevance of our findings for
systems like phosphor-doped silicon, which are known to exhibit a
quantum phase transition from metal to insulator driven by the inter-
play of both interaction and disorder, accompanied by the presence of
a finite concentration of magnetic moments [4].
[1] D. Jung, and S. Kettemann, AIP conf. proceed., submitted.
[2] D. Jung, K. Slevin, and S. Kettemann, to be published.
[3] F. Wegner, Nucl. Phys. B 280, 210 (1987).
[4] H. von Löhneysen, Adv. Solid State Phys. 40, 143 (2000)
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Schalm, K.
Topic Materials, surfaces and interfaces
Abstract text

The "holographic" AdS/CFT correspondence is a result of string theory that expresses the dual relation
between quantum field theory and gravity. Although originating in high energy physics, the case has
been rapidly developing that it is amazingly powerful in addressing ubiquitous emergence phenomena of
the strongly interacting quantum systems of condensed matter physics. Examples are the holographic
superconductors [1], the strange metals [2,3], and the holographic Fermi liquids [4]. These describe
phenomena beyond the reach of standard field theory. For instance, the Fermi liquid appears as an
"order" instability of the "quantum disordered" strange metal, holographically encoded as the uncollapse
of a charged black hole into an "electron" star.

[1] J.-H. She et al, Phys. Rev. B 84, 144527 (2010).

[2] M. Čubrović, J. Zaanen and K. Schalm, Science 325, 439 (2009).

[3] T. Faulkner et al, Science 329, 1043 (2010).
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Topic Subatomic physics
Abstract text

We study holographic fermions in the framework of AdS_4/CFT_3 correspondence in bottom-up models
with finite fermion density in the bulk. We show that the resulting system always has a Lifshitz geometry
while encoding different phases on the CFT side. We identify two extreme cases, corresponding to single-
particle and fluid models in the bulk, that describe Fermi liquids and fractionalized fermionic liquids,
respecively[1], while the intermediate regime shows a distinct and novel stable phase. We also study the
dispersion, scaling and transport properties of different phases.

[1] M. Cubrovic, Y. Liu, K. Schalm, Y.-W. Sun, J. Zaanen 2011, accepted for Phys. Rev. D,
arXive:1106.1798
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Fermionic Quantum Criticality From AdS/CFT
Correspondence

Mihailo ³Cubrović∗, Koenraad Schalm∗ and Jan Zaanen∗

∗Institute Lorentz, Leiden University, P. O. Box 9506, Leiden 2300RA, The Netherlands

Abstract. We study ordering phenomena and quantum phase transitions in strongly correlated
electron systems from the viewpoint of AdS/CFT correspondence [1]. The correspondence is a dual
classical description of strongly coupled quantum systems coming from string theory, and provides
a controlled framework that is free of the fermion sign problem. We £rst show how the basic
workings of the Fermi statistics (Pauli principle, Fermi surfaces, Fermi momentum) are encoded
in AdS/CFT [2, 3]. A number of distinct states are found to exist, characterized by either Landau
Fermi liquid scaling or by non-Fermi liquid exponents, and separated by critical points similar
to those found in heavy fermion systems. We further study some ordering phenomena: quantum
Hall effect [4], electron-hole (exciton) pairing and Cooper pairing. The last shows a remarkable
dichotomy between the systems with Fermi liquid ground states, where the BCS mechanism gives
rise to the conventional textbook superconductivity, and the systems with quantum critical ground
states where the same BCS pairing mechanism leads to power-law scaling of the gap equation and
an increase in critical temperature, characteristic of unconventional superconducting materials.

REFERENCES

1. Maldacena, J., arXiv:hep-th/9711200 (1997).
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Abstract text

The general workings of Fermi-Dirac statistics in strongly interacting fermion matter is a profound
unresolved question in condensed matter physics. We offer an insight from the AdS/CFT correspondence
that reduces the Pauli principle to a "shrinking" of spacetime in the vicinity of the black hole horizon in
the gravity dual. The resulting Lifshitz scaling geometry naturally explains the empirical stability of Fermi
liquids, as well as the workings of unconventional vs. conventional pairing mechanisms in
superconducting materials. The fermionic AdS/CFT setup is markedly different than for bosons: instead of
a condensate at the black hole horizon, the former is just a single quantum-mechanical fermion particle
orbiting the black hole.
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Quantum chaos in two-dimensional potentials with non-trivial
topology

Victor Berezovoj, Yuri Bolotin, and Vitaliy Cherkaskiy

Akhiezer Institute for Theoretical Physics, Academicheskaya Str.1, 61108 Kharkov, UKRAINE

We summarize our recent investigations of quantum chaos in smooth 2D-potentials with two and more local
minima and discuss our numerical results obtained for the potential of lower umbillic catastrophe D5 (with two
local minima) and the potential of quadrupole surface oscillations of atomic nuclei (with four local minima).
We stress some new specific features of the systems under consideration in comparison with more usual objects
of quantum chaos investigations: two-dimensional billiards and trivial topology potential cases — homogeneous
and one-well potentials.

References
Berezovoj V.P., Bolotin Y.L., Cherkaskiy V.A. 2003 PTP Supplements 150 326-329
Berezovoj V.P., Bolotin Y.L., Cherkaskiy V.A. 2004 Phys.Lett.A 323(3-4) 218-223
Berezovoj V.P., Bolotin Y.L., Cherkaskiy V.A. 2004 The Journal of Kharkiv National University 628 47-60

Universality and scaling in nonintegrable Hamiltonian systems:
escape times, Lyapunov exponents and inverse chaotic scattering

Mihailo Čubrović

Institute of Physics, P. O. B. 57, 11001, Belgrade, Serbia and Montenegro
Department of Astronomy – Petnica Science Center, P. O. B. 6, Valjevo, Serbia and Montenegro

We describe our fractional kinetic model of transport in Hamiltonian systems which allows one to obtain and
solve approximately the fractional diffusion equation in the action space. In addition to the derivation of kinetic
equations from the optimal normal forms (1), we give two additional ways of obtaining them, from a non-
Gaussian Langevin equation and as a hydrodynamic limit of continous time random walk. The model predicts
approximate scaling relations for the diffusion times with respect to the Lyapunov times, and for the rates and
probabilities of the escape to infinity in open Hamiltonian systems (inverse chaotic scattering). The scalings
appear in two distinct regimes, thus resembling a phase transition. As an example, we present analytical and
numerical results for a number of Hamiltonians (1, 2) and discuss the relation to some results of other authors.

References
(1) Čubrović M 2005 submitted to Phys. Rev. E
(2) Čubrović M 2005 Proc. of the IAUC 197 209
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Chapter 1

Introduction

1.1 Holographic principle: the idea

Reductionism lies at the heart of physics. Much of the history of physics
can be understood as striving for reduction in the number of basic prin-
ciples and thus explaining seemingly disparate phenomena starting from
the same core idea. Indeed some of the key scientific revolutions can be
formulated in terms of unifying previously distinct areas of study: New-
tonian mechanics bridges the gap between statics and dynamics, Maxwell
electrodynamics connects electricity and magnetism, Boltzmann’s kinet-
ics unites mechanics and statistical physics. General relativity has unified
gravity with mechanics while quantum field theory brought a unified look
at quantum mechanics, electrodynamics and statistical physics. Finally,
in the last decades we are witnessing the attempts at unifying all of physics
within string theory. Looking for analogies between different systems has
certainly proven to be one of the deepest principles in the search for fun-
damental laws of nature.

The presumed approach of the Theory of Everything through the ad-
vent of string theory (if it indeed turns out to lead to the Theory of
Everything) in parallel with the standing fundamental problems of many-
body and collective physics – such as unconventional superconductivity
and quark confinement – has actualized the problem of emergence versus
reductionism. We are facing the question of how the reduction to the few
fundamental principles might help us with resolving the problems which
obviously come from a complicated interplay of an enormous number of
degrees of freedom. One could even wonder if extremely complex systems
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are within the reach of microscopic models at all – after all, we know that
hydrodynamics is not within the reach of the single-molecule description.
Such a question, in its full generality, is hard to address, and the an-
swer almost certainly varies – systems which do not at all have a single
dominant energy scale might well be out of reach. On the other hand,
successful explanations of collective phenomena such as Mott insulators,
or the energy cascade in turbulence do give a hint that reduction to the
basic principles can be fruitful even if these principles live on the scales
which are many orders of magnitude smaller.

All of the above prompts us to rethink the quest for reduction and
analogies as formulated in the first paragraph. We might look for direct
analogies between fundamental and emergent phenomena. If Maxwell’s
equations connect the two elementary constituents of electromagnetic in-
teraction, are we able to find a theory which connects a fundamental
interaction to an emergent phenomenon? Putting it bluntly, is there an
analogy between the simple and the complicated? This thesis is an at-
tempt to contribute to the answer in a specific setting – strongly correlated
fermions – where the ”complex” side of the duality is likely unreachable
by ”ordinary means”1 and the fundamental side is a string theory through
a mapping known as holography.

Holography is an idea aimed at providing a unified description of quan-
tum mechanics and gravity. It was coined from a disparity between the
thermodynamically calculated black hole entropy and the naive guess from
dimensional analysis. Understood as information content of a physical
system, entropy is expected to be an extensive quantity, proportional to
the volume (measure) of the system. Nevertheless, the famous semiclas-
sical Hawking-Bekenstein result for the entropy of a neutral non-rotating
(Schwarzschild) black hole [9] predicts it as proportional to the surface

1It is known [109] that the problem of interacting fermions is NP complete. At this
place we briefly remind what this means. A problem is said to belong to the NP class
if an algorithm exists which checks a proposed solution in polynomial time, but no
algorithm is known which finds a solution in polynomial time. An example could be
an equation such that plugging in a given candidate solution and checking if it satisfies
the equation can be done in polynomial time, but no polynomial algorithm is known to
compute the solution starting from the equation only. Notice that we do not know if such
an algorithm really does not exist, or we are simply unable to find it yet (this question
is the famous unsolved P = NP problem). NP complete problems are a subclass of
NP problems, such that an algorithm that solves an NP problem polynomially could
be modified in a certain way to solve all NP problems in polynomial time.
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area:

S =
Ac3

4G~
(1.1)

Informally, all information about the black hole is stored on a lower-
dimensional object, suggesting that a complete description of the black
hole in D dimensions can be obtained by looking at the correctly chosen
degrees of freedom on a D− 1-dimensional manifold. This is the logic be-
hind the arguments by ’t Hooft [122] and Susskind [107]. The foundation
of this principle is that it connects the concept of gravity to the quantum-
mechanical concept of entropy as counting the states of the system.

The second, more technical key concept in holography is the idea of
dualities, mathematically equivalent but different descriptions of the same
phenomena – thus providing a bridge between different formalisms or even
altogether different physical systems. The idea of duality can be given a
very precise and familiar meaning. Formally, it is just a canonical trans-
formation of the action. Well-known examples are the vortex duality for
charged scalar fields and electric-magnetic duality in U(1) gauge theory
[71]. In the vortex case, the physical picture is that of changing the view-
point of what is an elementary excitation. If it is the linearly dispersing
plane wave, then the vortices then appear as defects where the phase of
the charged field winds for a full circle. But if we dualize, then vortices
are the elementary excitations and plane waves are complex vortex com-
binations. The duality can be captured by a Legendre transformation of
the action:

S =

∫
d3x∂µΦ∂µΦ 7→ Sdual =

∫
d3x (aµa

µ − ∂µΦaµ) . (1.2)

Here, Φ is the charged scalar field which lives in two space dimensions,
while its gradient ∂µΦ maps to the vortex field aµ. We can thus reexpress
the action in terms of aµ: the physics must remain the same but that does
not change the fact that some phenomena are much easier to see in one or
in the other language. Similar is the wisdom behind the electric-magnetic
duality, where the physical observables, i.e. elements of the field strength
tensor, transform into each other, again by adding a bilinear term (linear
in both old and new components) to the action.

As an idea which connects quantum theories with gravity, holography
finds its natural language in the formalism of string theory, where it arises
as a duality transformation of the strings themselves. It is within string
theory and M theory that a precise realization of the abstract holographic
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principle was found. One reason is simply that it offers a coherent frame-
work in which we can study the gravity at various energy scales– from the
low-energy description of general relativity to the nonperturbative regime
where the string effects dominate.

In string theory language, the duality becomes the equivalence of the
open and closed string descriptions. The higher-dimensional, gravita-
tional system is given by the excitations of the closed string. Its lower-
dimensional dual gauge field description is given by the excitations on
the open strings. In the next section we will present a more detailed
explanation of this construction, known as the AdS/CFT correspondence
[81, 38, 114]. However, in this introductory chapter we will not assume
any prior knowledge of string theory on the side of the reader. We will
stay away from extensive use of string-theoretical language and results
and formulate AdS/CFT in terms of gauge theory and general relativ-
ity, with only qualitative discussion of the underlying specifically stringy
constructions (branes, open strings between branes, string dualities, etc).

1.2 Realization: AdS/CFT correspondence

We do not intend to give anything like a comprehensive tutorial on AdS/CFT
in this (or any subsequent) chapter, we will merely wet the reader’s ap-
petite to look for the original references if interested; most of the thesis
can be followed without a detailed understanding of the foundations of
AdS/CFT. The first explicit realization is due to Maldacena [81]. Here we
have a Type IIB superstring theory in a configuration describing a stack
of parallel D3 branes (planar objects extending along three spacetime di-
mensions) at some distance r from each other. The interbrane distance
r also determines the ”elastic energy” of the open strings which stretch
between the branes and carry the gauge fields from a U(N) multiplet: the
energy is proportional to r/α′, where α′ is the string tension. Consider
now the limit of coincident branes, when r → 0 but with r/α′ = const.. In
the closed string description, the metric of a stack of coincident D3 branes
factors out into the product of AdS space and a sphere: AdS5 ⊗ S5. The
open string description is a very special, highly symmetric QFT – a con-
formal field theory (CFT). The idea is that the more restricted and special
the field theory, the easier it is to relate it to gravity. This certainly does
hold for a conformal field theory (CFT), where the very high symmetry
severely constraints behavior of correlation functions. CFT has a central
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place in modern high and low energy physics – allowing exact calculation
of correlation functions in two dimensions and strong results on RG flow
(c-theorem [120]) and scaling [24]. In low energy physics they describe the
quantum critical systems [15] lying at the heart of the description of phase
transitions and strongly competing interactions. The N = 4 supersym-
metric Yang-Mills in four spacetime dimensions is such a CFT – despite
the many fields involved, its behavior is simple due to conformality, and
it has given us the first example of a holographic duality.

This explicit example allows for a quantitative connection between
the gauge theory and the supersymmetric theory in AdS geometry. The
connection is provided by the fact that the radius of AdS space is propor-
tional to (gN)1/4. The supergravity solution can be trusted if gN � 1
and N � 1. Remember that this means that the field theory is strongly
coupled and can be expanded in the inverse number of colors. The
lower-dimensional, field theory side in this and similar (early) setups of
AdS/CFT are generically non-Abelian gauge theories, either Yang-Mills
or its supersymmetric version, motivating another frequently used name
for AdS/CFT: gauge/gravity duality.

To turn the above discussion into a precise duality, one needs a rela-
tion between the partition functions (on-shell actions) of the gauge theory
and supergravity. To this end it is critical to determine the boundary
conditions for the supergravity fields living in AdS – when they reach the
branes, they are coupled to the fields living on them. This was done in the
follow-up work by Gubser, Klebanov and Polyakov [38] as well as Witten
[114].

1.2.1 Warmup: symmetries

Let us study the closed string (gravity) side first. The formulation of a field
theory on AdS spaces is not quite trivial: AdS geometry possesses some
troublesome properties such as closed timelike curves and the existence of
a boundary at infinity. Informally, anti de Sitter (AdS) space is an open
(hyperbolic) equivalent of the perhaps more familiar de Sitter (dS) space.
The latter is the solution to the Einstein equations in the vacuum with
a positive cosmological constant [2]. The latter can be thought of as a
mysterious form of matter with equation of state p = −ρ. It has negative
pressure: it expands as it cools down, just like our universe. It is thus
a cosmological model in the approximation of “empty Universe” where
the presence of matter is negligible and the geometry is dictated by the
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cosmological constant. In AdS space, on the other hand, the cosmological
constant is negative, i.e. it behaves as (positive) pressure of regular matter.
Because the matter is cosmological, it cannot clump and one finds a static
(time-independent) solution. The Einstein-Hilbert action that describes
the anti de Sitter space in D + 1 spacetime dimensions is:2

S =

∫
dD+1x(R− Λ) (1.3)

where R is the scalar curvature while Λ < 0. As the only dimensionful
factor, Λ can be rescaled at will depending on the choice of the unit of
length. By convention, we write Λ = −D(D − 1)/L2 where L has the
meaning of AdS radius. This means that the solution can be embedded
into a D + 2-dimensional flat space as a sphere:

t2 − z2 − yiyi = L2. (1.4)

A natural coordinate patch covers half of the space:

ds2 =
r2

L2
(−dt2 + dxidx

i) +
L2dr2

r2
. (1.5)

The radial coordinate r stretches from 0, called the interior, to infinity,
called the AdS boundary. AdS is the maximally symmetric solution to
Einstein equations. An extremely useful way to think about AdSD+1 is s
a hyperboloid embedded in a D + 2-dimensional flat spacetime with sig-
nature (+, . . .+,−,−). The embedding in a spacetime with D+ 2 dimen-
sions helps to see that the total geometric symmetry group of AdS space
is SO(D, 2). The global and local geometry of AdS space are sketched
in Fig. 1.1: what globally looks as the usual double hyperboloid (but in
Minkowskian as opposed to Euclidean spacetime) locally becomes a patch
of isotropic space of ”decreasing size” as we move further and further,
until at infinity all lengths scale to zero.

One can now motivate the correspondence starting from the symmetry
arguments. It is well known that a CFT in D dimensions (one timelike
and D − 1 spacelike dimension) also obeys the SO(D, 2) symmetry [24].
Informally, the conformal symmetry is just the symmetry associated to

2In this thesis, unless specified otherwise the dimensionality of spacetime is always
D + 1, the flat space coordinates in D dimensions are denoted by (t, yi) (i = 1 . . . D)
and the metric signature follows the convention ds2 = −dt2 + dyidy

i.
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Figure 1.1: Sketch of AdS geometry. Globally it looks like a double hyper-
boloid but if we take a small patch it becomes very much like Minkowski
space in which distances decrease as we move toward infinity. Counterin-
tuitively, local AdS is completely isotropic and has spherical symmetry.

length rescaling, i.e. changing the scale combined with rotations. Confor-
mal field theories are thus closely related to the concepts of self-similarity,
fractality and scale-free objects but more general: the scale invariance
is continuous, not discrete as in fractals, and it can be broken due to
quantum effects – anomalies, like any other physical symmetry. A closer
inspection reveals that the exact conformal representation of SO(D, 2) is
already geometrically encoded in AdS in a special limit – its boundary
transforms in the same way. If one would ”extend” the AdS space by
”gluing” some fields on its D-dimensional boundary, these fields ought to
be redefinable as representations of the conformal group.

As a result, the CFT can be understood as the boundary degrees of
freedom of a field theory in AdS. Emphatically, however, this is not enough
for a duality, and does not yet encapsulate the idea of AdS/CFT. We
need more – not just that AdS space in the near-boundary limit becomes
conformal invariant but that the fields in AdS in the near-boundary limit
also encapsulate the behavior of a conformal field.

1.2.2 Enlightenment: the duality relation

This idea finds its precise formulation in the concept of duality introduced
earlier. The quantum theory is dual to gravity, thus the operators in field
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theory are sourced by the fields on the gravity side. More precisely, the gen-
erating functional for the correlation functions in field theory is identified
with the minimum of the supergravity action, satisfying specific bound-
ary conditions at the AdS boundary. The precise boundary conditions and
the crucial point of AdS/CFT, known as the GKPW (Gubser-Klebanov-
Polyakov-Witten) prescription. The prescription addresses the boundary
conditions mentioned at the beginning of this section and was proposed
in [38, 114]. The conformal and the gravity side are connected through
their partition functions as

Zbnd(J) = Zbulk(Φ|∂AdS = J) (1.6)

where Zbnd and Zbulk are the partition functions on each side, and we
have employed Φ as a generic notation for all fields living in the bulk and
J are their boundary values, acting as sources. In the classical gravity
limit, i.e. for a large N strongly coupled field theory, Zbulk is evaluated
simply by plugging in the classical solutions to the equations of motion
into the gravity-matter action (in other words, it is the on-shell action).
Schematically, this looks like

Zbulk = e−S(Φ)|Φ(r→∞)=J = 〈eφJ〉CFT (1.7)

where S is the classical gravity action, and in the second equality we
have expressed the partition function at the boundary as the generating
function of the field theory correlators. The boundary operator φ sees
the boundary values Φ(r → ∞) = J precisely as sources: treating Zbulk
in (1.7) as an effective action for φ, we can apply the textbook rule to
calculate their correlation functions:

〈φ(y1)φ(y2) . . . φ(yn)〉 = lim
r→∞

∂ne−S

∂Φ(r, y1)∂Φ(r, y2) . . . ∂Φ(r, yn)

This is the essence of applying holography in practice: we do not know
how to write Zbnd in terms of boundary fields explicitly, but we can use
it as the generating functional of the correlation functions, and thus gain
qualitative insight into the system.

The precise translation of the bulk physics into the boundary is thus
achieved by analyzing the r → ∞ limit of various bulk quantities. This
is the quantitative basis to constructing the holographic dictionary which
makes possible numerous practical applications of AdS/CFT. In the next
chapter we will introduce dictionary entries such as temperature, chemical
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Figure 1.2: Pictorial resume of AdS/CFT: the duality is rooted in the
notion of open-closed string duality. On the level of coupling constants
it is also a weak-strong duality. Closed string coupling g is related to
the coupling gYM of the Yang-Mills theory on open strings as g2

YM = g.
The small parameter in the perturbative expansion for the closed string
interactions is the combination λ ≡ gN . Sending the closed string coupling
to zero (g → 0) at constant λ we get classical strings in AdS5 ⊗ S5 while
the Yang-Mills theory on open strings reaches the large N limit (N →∞).
Taking also the limit λ→ 0, the classical type IIB string theory becomes
type IIB SUGRA.

potential, electromagnetic field, conformal dimension... It is the main link
between the formalism of holography and more familiar low-energy QFT
physics.

From a more general viewpoint, AdS/CFT was historically important
as a facet of the second superstring revolution, which found numerous
dualities between string theories with different coupling constants or geo-
metric properties. Here, the control parameter is the combination 1/gN of
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the string coupling g = g2
YM and the number of colors N . In order to trust

the supergravity limit we need gN � 1, but this is precisely the strongly
coupled regime of the gauge theory. Therefore, AdS/CFT is an example of
a weak-strong duality. Such dualities are known as S-dualities. Formally,
these relate a theory with coupling constant g to a theory with coupling
1/g. While AdS/CFT does not quite follow this pattern, as the control
parameter is not g but gN , it remains a relation between strongly and
weakly coupled systems. Needless to say, this gives it a great deal of prac-
tical utility: when one side becomes intractable due to string interactions,
the other one becomes better and better controlled.

1.2.3 Some general remarks

We will conclude this section with some speculations on broader implica-
tions of holography on string theory and other areas. Even though the
general holographic principle is essentially a gravity/quantum field theory
duality, its full realization in the form of AdS/CFT is a decidedly string-
theoretical result, which follows from the near-brane geometry and the
action of that solution in a specific brane configuration. In other words,
the ’t Hooft-Susskind principle states more than AdS/CFT – it states than
any physical system with gravity is equivalent to a lower-dimensional sys-
tem without gravity. One might now wonder if this is indeed so, if hologra-
phy is in fact a fundamental principle itself, independent of string theory,
and a property of gravity and field theory as we know them. There is
no answer yet on this central question. At the very least, what one can
try is to apply the precise results of AdS/CFT (dictionary entries) to ge-
ometries which do not follow from string theory. As long as the geometry
looks like AdS at long distances, numerous attempts so far give encour-
aging results.3 The non-string AdS spaces give us more freedom: we can
work in any number of dimensions, with any field content. The price to

3It is much less clear and much more complicated to generalize it to non-AdS spaces,
including flat space. This is another important problem to work on. The natural guess
is that the correspondence can be generalized to arbitrary geometries and arbitrary field
theories. Reasons that require an asymptotically AdS geometry and the difficulties in-
volved in constructing a flat space holography are beyond the scope of this Introduction
and indeed this thesis. Roughly speaking, in flat spacetime there seem to be too many
degrees of freedom on the gravity side to match to a lower-dimensional QFT; AdS
asymptotics puts some rather stringent constraints on the dynamics of gravitational
field. The extension beyond AdS is certainly a central fundamental question for the
future of holography.
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pay is, of course, that we cannot at the present be sure about the consis-
tency of such attempts. This approach is known as bottom-up as opposed
to the top-down string approaches. In this thesis we will mostly use the
bottom-up logic, for both practical and conceptual reasons.

In this place it is appropriate to discuss the status of AdS/CFT as a
confirmed result versus a conjecture. Though it is widely accepted (e.g.
[25]), a rigorous proof is lacking. Nevertheless, the evidence in favor of
AdS/CFT is very solid: it has passed numerous non-trivial tests where
observables whose forms do not depend on the coupling constant were
computed on both sides and compared [2].

1.2.4 Holography outside high-energy theory

The manifestation of holography as a duality has given rise to a com-
pletely different research pursuit from the understanding of black holes.
Holography can also be used as a tool to understand systems at strong
coupling, where the conventional perturbative methods of field theory fail.
So far AdS/CFT has established itself as an approach to quantum chro-
modynamics (QCD) and to condensed matter theory (CMT), the corre-
sponding fields being known as AdS/QCD and AdS/CMT. The power of
holography is that it allows us to study previously inaccessible strongly
coupled systems. In AdS/QCD, the focus of most work done so far was
on describing the confinement transition and studying the quark-gluon
plasma at intermediate energies, when neither perturbative QCD nor ef-
fective low-energy theories work well (this regime is primarily tested in
heavy ion collisions). The latter line of research has produced perhaps the
most important result of applied holography so far, the universal viscosity
bound, stating that any isotropic equilibrium fluid has an inherent shear
viscosity to entropy ratio

η

s
≥ 1

4π
(1.8)

The quark-gluon plasma studied in the RHIC accelerator exhibit a viscos-
ity remarkably close to the bound (1.8).

The main approaches exist in AdS/CFT. The first is a top-down ap-
proach which constructs a Yang-Mills theory akin to QCD from brane
intersections, following closely the early ideas of Witten [114, 115] where
the whole endeavor of AdS/CFT is put in the context of specifically
gauge/gravity duality, i.e. understanding the dynamics of Yang-Mills
fields. The second is a bottom-up scheme where the four-dimensional
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QCD is dual an asymptotically AdS5 space where confinement is modeled
by ”thinning out” (suppressing exponentially) the amplitudes of fields in
the IR. This is done using the insight that the extra dimension in AdS
corresponds to the scaling flow in field theory with the near boundary
behavior encoding the UV asymptotics. In this case, the RG flow inter-
pretation is that the confinement of low-energy excitations corresponds to
suppressing the dynamics in deep interior.

The second claim to fame for AdS/CFT is its application to condensed
matter theory. Here, the problems of strong correlations and competing
orders show their best (or rather, worst) side. It is thus extremely exciting
to see how they dualize in gravity. However, since the phenomenology of
condensed matter systems is much richer, and removed even further from
the microscopic Hamiltonian, it becomes important to build the model in
an appropriate way: to start from the solid and robust features (symme-
tries, degrees of freedom, extreme limits when some fields decouple or be-
come exactly soluble) rather than engineer the gravity dual in order to get
this or another specific phenomenon. The field started with a holographic
calculation of transport properties of certain strongly coupled systems
[59] and took off with the crucial work of Hartnoll, Horowitz and Herzog
on holographic superconductors [47]. Despite the by now universally ac-
cepted name, the model in question is not actually a superconductor at
all but a boson at finite density which breaks the global phase symmetry
by condensing, akin to a superfluid. Nevertheless, precisely as it stands
it is a very important proof of concept: this is the simplest possible case
of the Landau-Ginzburg picture of order, and thus the obligatory start-
ing point of any candidate theory for description of many-body systems.
Holographic superconductors have taken the bosonic AdS/CMT to per-
fection and have been the arena in which many of the universal results
and dictionary entries have been obtained.

1.3 The arena: fermions in organized matter

This thesis will focus on AdS/CFT applied to strongly coupled fermion
matter. Experimental condensed matter physics has discovered numer-
ous materials which cannot be understood from the weakly coupled per-
spective. Strongly coupled fermions are thus an experimental reality, and
developing general methods to study them is of central importance for un-
derstanding the observed phenomena in condensed matter. In AdS/CFT,



1.3 The arena: fermions in organized matter 13

precisely the strong coupling regime in field theory is easy to understand on
the gravity side, as it corresponds to classical (super)gravity. We will now
argue that such holographic description of the strongly coupled physics
is especially valuable precisely for fermion systems, as conventional field-
theoretical methods are far less helpful for fermions then for bosons.

We have a number of nearly equivalent ways to describe the simple ob-
servation that fermions and bosons differ in their behavior. Antisymmetry
of fermionic wave functions, the Pauli principle, fermion sign problem and
kinematic correlations (i.e., Slater determinants) are all about the fact
that the antisymmetry of fermionic states reduces the number of avail-
able configurations, acting as a constraint on dynamics and introducing
an effective interaction (or correlation) even in absence of any explicit in-
teracting potential. While a non-interacting Fermi gas can still be solved
by explicitly taking into account the antisymmetry of states when con-
structing thermodynamical potentials, presence of interactions spoils the
picture: antisymmetry acts as a constraint, and solving an interacting
system in the presence of such a constraint becomes a hopeless task. A
common way to phrase the problem is the ”fermion sign” viewpoint, re-
viewed e.g. in [119]: it refers to the negative contributions to the fermionic
partition function, meaning that it cannot be regarded as a sum of prob-
ability amplitudes as for bosons and classical particles.4

The fermion signs are simply the minus signs in the density matrix of
a fermion system. This is a direct consequence of antisymmetry of the
fermionic wave function. For a system of free fermions we can write the
wave function exactly; the outcome is the Slater determinant where the
odd permutations contribute with a minus sign. Antisymmetry, however,
does not depend on interactions in the system and the sign picture will be
exactly the same. A technical way to see the trouble with fermion signs
is analysis of the fermionic path integral. It is enough to remember the
basic rule of constructing the partition function for a system of fermions
in compact Euclidean time with period β, thus accounting for finite tem-

4Besides condensed matter, another area where the sign problem is well-known is
Quantum Chromodynamics (QCD). There, the sign problem arises in a seemingly dif-
ferent but in essence equivalent form: the presence of finite density (and thus chemical
potential) makes the Euclidean Hamiltonian non-Hermitian, and thus the partition
function complex. The negative vs. complex dichotomy is that of real vs. imaginary
time, but in both cases it is the fermionicity of the Hamiltonian which gives rise to
problems at finite density, and both negative and complex partition function give us
the same pain: absence of probabilistic interpretation.
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perature T = 1/β. Remember that partition function equals the integral
of the trace of the density operator:

Z = Tre−βH =

∫
dNDxρ(x,x;β) (1.9)

where the density operator is ρ(x1,x2) and x denotes the set of coordinates
of all particles in a D-dimensional system with N fermions. Now for a
system of indistinguishable particles ρ is a sum over of all permutations Π
of the particles, as any two particles can be exchanged without changing
the system physically. This gives

ρ(x,x;β) =
1

N !

∑
Π

(±1)|Π|ρ(x,Πx;β) (1.10)

Here, the sum is over all permutations Π of the particles, and |Π| is the par-
ity (symmetry/antisymmetry) of the permutation. For bosons all terms
are positive and one can define a measure based on the density matrix ρ+.
For fermions, however, odd permutations carry a negative contribution.
The partition function is, of course, always positive, but we see that indi-
vidual contributions to the density matrix are not. This in turn means that
fermions are never classical: unlike for bosons, quantum statistics brings
a discontinuity from classical Euclidean field theory and its path integral
formulation. The effective action for bosonic expectation values is just the
celebrated Ginzburg-Landau theory or one of its many derivations. Noth-
ing like it exists for fermionic operators.5 Consequently, despite decades
of research of strongly correlated fermions, the actual methodologically
sound knowledge we have on this topic is very limited. A measure of the
difficulty of the sign problem is the realization of Troyer and Wiese [109]
that it is NP complete.

What, then, are the things we do know?

1. Free Fermi gas. One example is obvious: the free Fermi gas is ex-
actly soluble. It is not really free, as kinematic correlations are
introduced by the statistics, however we know that the Slater deter-
minant accounts for them exactly.

5While the expectation value of a fermionic operator is trivially zero, we typically
want to compute operator products. Density, correlation functions, transport coeffi-
cients etc. are all of this form. However, working with fermion operator products is no
easier than working with single fermions.
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2. Fermi liquid. The second example is the breakthrough of Landau in
understanding normal metals in terms of Fermi gases [73]: the Fermi
liquid paradigm. The logic is well-known: a gas of particles with
infinite lifetimes turns into a gas of quasiparticles with finite but long
lifetimes. Everything remains the same as for a free gas, except that
all parameters undergo renormalization. The crucial requirement
is that the ground state of the interacting system have a nonzero
overlap with the ground state in the non-interacting limit. In other
words, Fermi liquid is so much akin to a Fermi gas simply because it
is adiabatically connected to it. Subsequent, more rigorous studies
of the Fermi liquid have confirmed this basic picture (see [5] and
references therein). The mathematical foundation of Landau’s Fermi
liquid insight is provided by the RG formalism for fermions given in
[88, 100] and has the form of a functional RG which starts from
a weakly interacting theory at intermediate scales and introduces
interactions perturbatively in the effective action. Being a weak
coupling expansion, it does not have sign problems. However the
perturbative treatment does make it hard to treat non-perturbative
phenomena e.g. a superconducting instability within this approach.

3. Fermions in (1 + 1)d. A special case which is in principle com-
pletely known is that of fermions in one spatial dimensions. While
fashionable these days, and certainly capable of displaying very intri-
cate behavior of correlation functions and transport properties (see
e.g. [110]), one-dimensional fermions are completely demystified by
bosonization: in one space dimension, any fermion system can be
bosonized in infinitely many ways (the most typical situation is the
spin-charge separation) and then solved through usual field theory
methods. The reason is that statistics cannot really be defined in
1 + 1 dimension: the manifold of possible Slater determinant states
coincides with the manifold of nodeless wave functions.

4. Miscellanea. Finally, there is a small number of exactly soluble
interacting fermion models in higher dimension, such as exact wave
functions for Fractional Quantum Hall states [74]. These are however
of very little significance for the broader sign problem, being rather
special non-generic.

The inescapable conclusion is that, if we want to avoid the strange
ad hoc models of the point (4), everything we know is either to bosonize
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or to hope that the system studied is adiabatically connected to a non-
interacting Fermi gas, at least in the IR. The vast field of strongly corre-
lated electrons armed with various field-theoretical techniques [34, 110] is
as it stands incapable of constructing (through controlled, justifiable ap-
proximations) novel ground states of fermion matter. The list of celebrated
experimental puzzles, from unconventional superconductors [118, 42] to
heavy fermions [80], all likely novel ground states qualitatively different
from normal Fermi liquids, is therefore in desperate need of a theoretical
paradigm that will not depend on non-interacting or bosonic physics.

We are now able to formulate a sharp question underlying all of strongly
correlated electron systems: Is there a stable state of electrons at finite
density which cannot be adiabatically continued to Fermi gas? This is
perhaps the closest it comes to formulating the motivation for this the-
sis in one sentence. A solution we propose here is to use the power of
holography.6

This is not just an academic question. The importance of strongly cor-
related electron physics is its manifest necessity to explain a multitude of
experimental findings amidst experimental evidence in favor of distinctly
non-Fermi liquid phases of fermionic matter. The most famous are cer-
tainly high temperature superconductors, cuprates and pnictides being
the leading members of this heterogenous group. The superconducting
order at relatively high temperatures is almost the least important of the
many unusual properties. A glance at the phase diagram of cuprates (Fig.
1.3) reveals how the doping of external charge carriers turns the system
from the familiar normal metal, i.e. Fermi liquid phase into a non-Fermi
liquid, universally known in condensed matter physics as strange metal,
continuing on into the pseudogap. The pseudogap region is also myste-
rious, but thought to display some kind of long-range order. Dozens of
exotic order parameters were proposed to explain this novel ground state:
stripes, current loops, exotic spin ordering and others [118]. Many of them

6As a side remark, we refer the reader to [119, 72] for a possible geometric interpreta-
tion of the ”fermionic constraint” which allows one to treat the problem of fermionicity
by looking at certain global (topological) properties of the many-particle wave function
and the path integral. The key result is the proof [13] that the signful path integral
can be turned into ordinary bosonic path integral but with an additional constraint.
For us, it is the morale and not the details which is important: it provides a construc-
tion which explicitly reduces fermion dynamics to boson dynamics with constraints.
While AdS/CFT handles fermions in a somewhat different way, essentially trading the
fermionic physics for curved space, it might be an indication that in the end all fermion-
icity can be bosonized by adding additional constraint structure to dynamics.
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have some degree of experimental support [118]. We also do not under-
stand how the advent of the strange metal is related to superconductivity
itself.

A possible unifying point for these phenomena in unconventional su-
perconductors and heavy fermions (as well as some other materials) is
quantum criticality [95, 15], developed mainly by Sachdev. Its basic idea
is that quantum fluctuations can mimic the effects of temperature on the
order parameter of some ordered phase. The outcome is that the ordered
phase becomes unstable and vanishes at a critical point at zero temper-
ature. In place of temperature, the control parameter is typically some
quantity which governs the competition between two ordered phases at
T = 0, e.g. coupling strength or doping. The phase diagram of a system
with a quantum critical point typically looks as in Fig. 1.3(A), quite sim-
ilar to the phase diagram of real-world cuprates in Fig. 1.3(B) – above the
critical point one has a characteristic quantum critical ”cone”, the regime
in which the quantum critical point influences the physics even at rela-
tively high temperatures. This is an important difference with respect to
finite temperature critical points: in the latter case, the scale invariance
inherent to criticality is only felt in a narrow window around T = Tc,
while quantum critical behavior can be detected even by measurements
significantly above T = 0. Systems with a quantum critical point are
mainly recognized for exhibiting remarkable scaling laws [111]. Of course,
quantum criticality immediately brings associations on CFT and makes a
great starting point for a holographic investigation. Notice the inverted
epistemology of holography compared to conventional methods: normally,
we would start from the Fermi liquid phase and try to build up interac-
tions that drive it to the critical point. In AdS/CFT, we can start from
the quantum critical point where the theory is very strongly coupled and
completely encapsulated in the scaling relations, with particles being non-
existent, and the challenge is to see how the system picks a ground state
away from criticality. This is the essence of AdS/CMT: we know most in
AdS/CFT precisely in the situation when we know least in conventional
CMT.

This in turn makes CFT an important tool for description of such sys-
tems – scale invariance of the quantum critical phase is almost equivalent
to conformal invariance. Therefore, if the universal ingredient in transi-
tions from Fermi liquid non-Fermi liquid systems is quantum criticality,
then the CFT and its gravity dual in AdS present a natural starting point.
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(A) (B)

Figure 1.3: (A) Sketch of the phase diagram of cuprates. Normal metal
phase turns into a non-Fermi liquid at critical doping, which presumably
corresponds to a quantum critical point. The zoo of exotic orderings re-
sides in the strange metal phase, which partially overlaps with the super-
conducting region. The properties of the strange metal remain mystifying,
and might constitute a prime example of a stable non-Fermi liquid ground
state. In (B) (adopted from [95]) we see schematically how the quantum
critical point influences the physics at finite temperature: when the tem-
perature energy scale kBT is larger than some characteristic energy scale
∆ of the system, we are in the quantum critical ”cone” where the physics
is governed by the scaling laws imposed by the quantum critical point.

1.4 Outline

Our first goal will be to find the gravity dual for the Fermi surface which
will be as general as possible and not hinge on existence of quasiparticles.
The minimal ingredients we need are fermions, temperature and chemical
potential. Our holographic dictionary translates this into a charged black
hole plus the Dirac equation for the fermions. This is done in the next
chapter. A Fermi surface should reveal itself in the spectrum of perturba-
tions. We will study in detail the momentum and energy distributions of
the spectral weight and conclude a great deal about the quantum critical
fermions in this way. This chapter is adapted from [17] and includes the
formalism for calculating the spectrum in a separate section (originally the
Supplementary material of the paper). Chapter 4 [18] studies fermionic
instabilities, giving dictionary entries for fermion density and Fermi liquid
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itself, within a model we call black hole with Dirac hair. Chapter 5 [19] is
the beginning of the study of the phase diagram of holographic fermions.
In this chapter, we compare the Dirac hair model to the electron star
model by Hartnoll et al [51] and show how one can interpolate between
the two, corresponding to stable quasiparticles with different properties
in field theory. In chapter 6 [83] we will study the actual phase diagram
of holographic fermions by a full quantum-mechanical formulation of elec-
tron star and Dirac hair. and finally address the question – can we see
novel phases from AdS/CFT? Chapter 7 sums up the conclusions.
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Chapter 2

The holographic dictionary

2.1 The basic entries

We are now ready to consider the theoretical background of our work
and to work out in some detail the results we will use. This essentially
corresponds to constructing the detailed dictionary entries and formulate
rules for the boundary terms in the action. We start with pure AdS space
(we will need more later, to introduce temperature). We will work on
the Poincaré patch of AdS space rather than global AdS. For most of the
calculations it is much more appropriate to use the dimensionless inverse
of the r coordinate:

z ≡ L

r
(2.1)

While the radial distance goes from r = 0 in the interior to infinity, now
z = 0 corresponds to the boundary while z = ∞ is the deep interior.
We might have a situation where there is a lowest bound on r, e.g. the
position of a black hole horizon rh (and there will be, if the temperature is
finite). Then the deep IR is at zh = L/rh instead of infinity. The AdSD+1

metric in z coordinate is

ds2 =
1

z2

(
−dt2 +

D−1∑
i=1

dx2
i + dz2

)
. (2.2)

Deformations away from AdS space are allowed as long as the small z
asymptotics (AdS boundary) is unchanged. We will only consider equi-
librium physics in this thesis, which corresponds to stationary and ho-
mogenous geometries. We will also only consider isotropic systems, i.e.



22 Chapter 2. The holographic dictionary

isotropic geometries in the bulk. This makes all components of the metric
depend only on z and allows at most two free functions parametrizing
deformations from AdS. We can therefore write the most general metric
as

ds2 =
1

z2

(
−f(z)h(z)dt2 +

D−1∑
i=1

dx2
i +

dz2

f(z)

)
(2.3)

where we recognize f(z) as the red shift factor (warp function). For AdS
asymptotics we must have f(z) = 1 + O(z) and h(z) = 1 + O(z) for
z → 0. General stability conditions also make both f and h everywhere
non-negative. Finally, f(zh) = 0 indicates the existence of a horizon at
z = zh.

2.1.1 Thermodynamics

Finite temperature

The basis of the dictionary is given by the identification of the partition
functions given in (1.6). The first new dictionary entry we introduce
is temperature, originally proposed by Witten in [115]. It is a direct
consequence of the basic fact that temperature enters kinematics of a field
theory by imposing periodicity of Euclidean time. Consider first an AdS
space in imaginary time. A well-known (but not unique) solution with
periodic Euclidean time τ ≡ it is the Schwarzschild black hole. This
solution corresponds to metric (2.3) with h = 0 and

f(z) = 1− 4πM

DπD/2Γ(D/2 + 1)
zD, (2.4)

where M is the black hole mass. This solution is only defined up to the
horizon at zh, the outermost (smallest z) radial slice where the red shift
function vanishes: f(zh) = 0. It is only smooth if the time is periodic
with the period

1

TBH
≡ β =

zh
2π

(2.5)

where TBH is the Hawking temperature of the black hole. Since the space-
time coordinates (t, x) are directly identified in the dictionary, the com-
pactification of imaginary time retains the same meaning in the boundary
theory: TBH = Tbnd. Notice that the temperature in field theory equals
the temperature of the black hole and not the temperature of the bulk,
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as the latter is always zero. This is of more than academic interest as it
means that the bulk fields live at T = 0 and should be treated by the
usual field theory and not thermal field theory.

Free energy

The next dictionary entry, especially important when dealing with exotic
systems where very few principles are known to hold, is that of free energy
of the field theory, as the laws of thermodynamics are general enough that
they can always be used as the starting point. This directly follows from
the relation of free energy Fbnd to partition function Zbnd as the defining
equality:

e−βFCFT = 〈ZCFT 〉CFT. (2.6)

According to GKPW formula, the right-hand side equals the bulk on-shell
action with appropriate boundary conditions. We thus find:

e−βFCFT = 〈e−
∫
dτLbulk+Sbnd〉AdS (2.7)

where we have included the possibility of boundary interactions on the
gravity side. In classical gravity, i.e. for large N and large gN the bulk
expectation value is obtained simply by plugging in the on-shell solutions
into Sbulk + Sbnd. Taking into account (2.5) we get the factor of β in the
exponent of Zbulk too, so

FCFT = Sbulk(Φon−shell) + Sbnd(Φon−shell). (2.8)

This simple but very important rule was given in [115]. Then we can
follow all the usual thermodynamic identities to find other thermodynamic
potentials, as well as their derivatives. Notice again that we cannot equate
FCFT to any thermodynamic quantity in the bulk, as the latter is at zero
temperature.

2.1.2 Sources and expectation values

Scalar field

The observables of a CFT have correlation functions of their operators
O, carrying certain quantum numbers. These correlation functions are
formally generated in the standard way by taking functional derivatives
of

〈OO . . .O〉 =
δn

δnΦ0
〈e

∫
Φ0O〉CFT. (2.9)
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Recalling our duality discussion, we should identify the source Φ0 with a
field in AdS Φ(x) restricted to the boundary where conformal symmetries
are realized, relating limz→0 Φ(z) to Φ0. The boundary conditions should
ensure that the source is the leading (non-normalizable) component of the
solution at the boundary. Let us see how such a procedure works for a
scalar field and for a gauge field. The results to follow are mostly from
[114, 115] with some slight refinements summarized in [2, 25]. In this case
the bulk action and the equations of motion are trivially

Sbulk = −
∫
dDx

(
D†µΦDµΦ +m2Φ2

)
(2.10)(

zD−1∂zz
1−D∂z + k2 − m2

z2

)
Φ = 0 (2.11)

We are looking for a solution which remains finite at the boundary z → 0.
Making a power-law ansatz Φ ∼ zα, we find that exponents of the near-
boundary asymptotic of the field Φ are ∆± = D/2 ∓

√
(D/2)2 +m2.

Here, ∆− corresponds to the leading and ∆+ to the subleading branch.
One can actually find the exact solution in the whole AdS space in terms
of modified Bessel functions, giving general solution of the form

Φ(z) = ΦSz
D/2K∆−D/2(kz) + ΦRz

D/2I∆−D/2(kz) (2.12)

where K and I are modified Bessel functions of first and second kind,
respectively and

∆ = ∆+ = D/2 +

√(
D

2

)2

+m2. (2.13)

The normalizable solution is proportional to ΦR while the non-normalizable
one is the ΦS branch. Therefore, according to the dictionary, ΦR is the re-
sponse (expectation value) and ΦS the source. Consider now the one-point
function 〈O〉. The variation of the bulk action for such a configuration is
found by substituting the solution into Sbulk:

δSbulk =

∫ ∞
0

dz

∫
dDx
√−g2δΦ(D†µD

µ−m2)Φ−2

∫
dDx
√
−hδΦ∂zΦ|z=0

(2.14)
where h is the induced metric on the boundary. The first term vanishes for
the solution of (2.11). For the second term the characteristic AdS/CFT
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steps come. First, we see that the bulk action in general diverges at the
UV boundary z → 0 and needs to be regularized. The last, divergent part
of (2.14) can be removed by the boundary counterterm

Sbnd =

∫
dDx
√
−hΦ2 (2.15)

This is exactly the Dirichlet term familiar from elementary analysis: its
meaning is to fix the boundary data Φ0. So consistency if the bulk theory
requires it to be reconstructible from the boundary.

At second order we find the two-point correlator for the boundary field
O

〈O(x1)O(x2)〉 =
∂2S

∂Φ(x1)∂Φ(x2)
∼ const.

|x1 − x2|2∆
(2.16)

with ∆ defined in (2.13). Therefore, the seemingly arbitrary definition of
∆ in (2.12) is chosen to match the conformal dimension of the boundary
field. We see that the operator O scales in accordance with the predictions
of CFT with conformal dimension ∆. Also if additional terms asuch as
interactions are added in the bulk, it is clear that the UV asympotics will
still be determined by m, or else (if the additional terms are irrelevant at
the boundary) the asymptotic AdS geometry will be unstable. So another
dictionary entry is that conformal dimension in field theory is determined
by the bulk mass of the field.

Gauge fields, field strengths and densities

The procedure above is readily generalized to gauge fields. In this thesis
we will need only the Abelian U(1) field so we focus on that. Let us start
from the well known Maxwell action. By partial integration, bulk action
evaluates to

S = −1

4

∫ ∞
0

dz

∫
dDx
√−gFµνFµν =

1

2
lim
z0→0

∫
dDx
√−gFµνAµnν |z0 +

+

∫ ∞
0

dz

∫
dDx
√−gAν∂µFµν (2.17)

where nν is the unit normal vector to the boundary. To cancel the
boundary contribution we precisely need the von Neumann term Sct =∫
dDx
√
−hFµνAµ that fixes the field strength at the boundary. Now that
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we have the boundary action, we can proceed to find the dictionary en-
tries. The solution to the Maxwell equations near the AdS boundary is a
linear function in z. For the component A0 we can write

A0 = A
(0)
0 +A

(1)
0 z +O(z2), (2.18)

so the leading term, A
(0)
0 , is the source and A

(1)
0 is the response. The

boundary action is Sbnd = −A(0)
0 A

(1)
0 + . . .: the leading and subleading

term are linearly coupled to each other. It becomes clear that A
(1)
0 can

be identified with negative charge density ρ while its source A
(0)
0 has the

meaning of chemical potential µ (i.e. background scalar potential). For a
spatial component of the gauge field, we can write

Ai = A
(0)
i +A

(1)
i z +O(z2) (2.19)

and equate the subleading term A
(1)
i to the current Ji while A

(0)
x is its

source. Therefore, we arrive at the conclusion that the subleading and
leading term of the bulk gauge field encode the current density and its
source, i.e. background U(1) field. We can rephrase this conclusion in
terms of electric and magnetic field strengths in the bulk if we assume
spacetime homogeneity. In this case transverse electric field is simply
Ei = −iωAi and the radial magnetic field is Bi = iεijkkjAk. We can
now say that the bulk radial electric field stands for the charge density
while the radial magnetic field in the bulk is the magnetic field at the
boundary. For the transverse fields, we get that transverse bulk electric
field encodes for the electric field at the boundary, while transverse bulk
magnetic field stands for spatial current on field theory side.1 Notice that
the fields at the boundary obey global rather than gauge currents. This
is an important property of the dictionary: gauge symmetry in the bulk
becomes a local symmetry at the boundary. Another manifestation of
this principle is the SO(D − 1) rotational invariance in field theory. In
AdS, SO(D − 1) is a gauge symmetry, a consequence of diffeomorphism

1This fails for the component Az. Obviously, since the radial coordinate does not
exist on field theory side, Az cannot be dual to any component of the current. In fact,
it has no physical sense at all and one should put Az = 0 in holographic setups. To see
this, remember that nonzero radial gauge field implies a nonzero radial flux through the
boundary. This would violate the RG flow interpretation of the radial direction – we
do not know how to interpret radial flow of matter along z. For that reason we always
put Az = 0.
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invariance, in the sense that an SO(D−1) rotation transforms AdS space
into itself but in different coordinates.

There is a way to use AdS/CFT in the canonical ensemble using the
method of alternative quantization for the gauge field. From (2.19), we
see that the leading term has the same asymptotics as the derivative of
the subleading term. By a Legendre transform we can thus swap the roles
of Fµν and Aµ in the boundary term and regard Jµ as fixed instead of the
source Eµ. For example, suppose the gauge field has the form A = A0dt.
Then the boundary action is Sct = µρ+. . .: the two coefficients are linearly
coupled to each other, and we can identify a0 7→ µ, b0 7→ ρ: leading and
subleading term in the gauge field component A0 correspond to chemical
potential and charge density in field theory.

2.2 Holographic superconductors: a tutorial

In this subsection we will present a worked-out example where the gen-
eral formalism of holography is applied on perhaps the simplest possible
nontrivial system: a charged scalar boson coupled to the U(1) Maxwell
field and gravity. This is the famous holographic superconductor model,
proposed in 2008 by Hartnoll, Horowitz and Herzog [47, 46], and Gubser
[40]. It is immediately clear that the term superconductor is not quite sat-
isfying: not only are there no fermionic degrees of freedom but the U(1)
symmetry is global and not gauged, thus more akin to the situation in a
superfluid. Nevertheless, it is the most famous application of AdS/CFT
on complex systems, encapsulating all important elements.

Let us first recall the effective Landau-Ginzburg theory of supercon-
ductivity. There, one replaces the microscopic treatment of Cooper pairs
by an effective theory for the charged bosonic order parameter Φ. One then
constructs the free energy in the vicinity of the transition point in accor-
dance with general symmetry requirements. The result is a phenomeno-
logical action which can describe the dependence of the pair density on
temperature near the critical point, as well as the Higgsing phenomenon,
i.e. breaking of the gauge U(1) symmetry by the condensate. Since the
holographic description will take U(1) to be a global rather a local sym-
metry, This last ingredient is missing in the holographic version. The
holographic superconductivity an important breakthrough. Not only does
it give an example on how to treat in principle the condensation of any or-
der parameter holographically, but it does so in a novel way: directly from
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a critical system and this is reflected in non-standard transport properties
which reproduce the experimental results for superconducting materials.

Following the original papers, we specify to the case of D = 3 in this
section. The bulk action is easy to write from the symmetry requirements:

Sbulk =

∫
dz

∫
d3x

[
R+ 6− 1

4
FµνF

µν −D†µΦDµΦ−m2Φ2 − Vint(|Φ|)
]

(2.20)
where the covariant derivative is

Dµ = ∂µ − iqAµ (2.21)

and the potential Vint can be an arbitrary function in the bottom-up
setup. We will opt for the simplest case and set it to zero. At finite
temperature nothing changes dramatically upon introducing a finite po-
tential. The ansatz (2.3) can be used for the metric. For simplicity, let us
assume spherical symmetry, isotropy and an electric-only configuration of
the Maxwell field for now, writing

A = A0(z)dt (2.22)

The 00 and zz components of the Einstein equations read:

3f − z∂zf − 3 =
1

2

(
(∂zΦ)2 − V + (∂zA0)2 + q2Φ2A2

0

)
(2.23)

3f − z∂zf − 3zf
∂zh

h
− 3 =

1

2

(
(∂zΦ)2 + V + (∂zA0)2 + q2Φ2A2

0

)
(2.24)

while the Maxwell equation for F0z reads

∂z

(
1√
h
∂zA0

)
= 2q2 Φ2

z3
√
fh
. (2.25)

The ii component of Einstein equations can be shown to be a linear com-
bination of the remaining two and can be left out. The equations for
this simple system are clearly quite involved. This is typical for the bulk
physics of holographic systems: the full solution has to be obtained nu-
merically, while analytical estimates can be made in the near-horizon and
near-boundary limit. The former is of importance for the phase diagram
and analysis of the condensate formation. We will discuss it after we solve
a more basic question: how to impose the boundary conditions and calcu-
late the quantities on the field theory side? To that end, we can use the
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results obtained earlier for the near-boundary asymptotics of the scalar
field – it turns out that coupling to the gauge field is always a subleading
term for z → 0 and does not change the asymptotics. Schematically, the
near-boundary solution is therefore

Φ(z → 0) = Φ(1)z3−∆ + Φ(2)z∆. (2.26)

The boundary action is important for the calculation of free energy at
the boundary. The scaling dimension is set by the bulk mass; as before,
we have ∆ = D/2 +

√
D2/4 +m2. According to the dictionary, Φ(2)

sources the boundary field while Φ(1) is its VEV. For a solution that
holographically encodes spontaneous symmetry breaking, we must seek
for a spontaneously generated VEV without a source for the scalar and
gauge field:2

S
(1)
bnd−Φ =

∮
d3x
√
−hΦ2|z→0 (2.27)

For completeness we give also the boundary action for the metric and
the gauge field. This is the Hawking-Gibbons term for the metric and
imposing the chemical potential µ = A0(z0) through a Dirichlet boundary
condition for A0. This gives altogether:

Sbnd =

∮
d3x
√
−h
(
−2K + 4 +A0∂zA0 + Φ2

)
. (2.28)

2.2.1 Scalar condensate and phase transitions

In the presence of a nonzero electrostatic potential the scalar has an ef-
fective negative mass: −m2

effΦ2 ∼ −q2fhA2
0Φ2/z2. For a large enough

charge q, it is reasonable to expect the scalar order parameter to condense.
This is precisely what happens. Note that this means that the sponta-
neous breaking of the global U(1) invariance in field theory is described by
the spontaneous breaking of a local symmetry in the bulk, i.e. Higgsing in
the bulk. Upon solving the equations of motion (2.23-2.25) with appropri-
ate boundary conditions, one is able to find a solution with non-vanishing
scalar field. On the field theory side, the operator dual to Φ will condense,

2We can also employ the alternative quantization, where the subleading term be-
comes the source. Fixing the subleading term however is not enough to cancel the
divergence, and we need to add an explicit counterterm so the boundary action be-
comes S

(2)
bnd−Φ =

∮
d3x
√
−h(Φ2 + 2Φnz∂

zΦ).
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breaking now the global U(1) symmetry.3 Solving the system (2.23-2.25)
numerically, one obtains the dependence of the condensate value 〈Φ〉 on
temperature. The result is a textbook order-disorder transition with the
mean field scaling of the condensate with temperature:

〈Φ1,2〉 ∝
(

1− T

Tc

)β1,2

. (2.29)

One can then proceed to calculate the free energy which indeed reveals
the existence of a second order phase transition, and with mean field ex-
ponents, thus reproducing the predictions of the Landau-Ginzburg theory.
This finding encapsulates the essential features of holographic supercon-
ductivity – a scalar with arbitrary mass Higsses in the bulk leading to a
global order-disorder transition on the field theory side.

Hartnoll et al have proceeded to compute conductivities [47] and found
excellent qualitative agreement with experiment. In the standard quan-
tization, Φ1 condenses and backreacts on the gauge field. We can then
compute the conductivity of the system as the ration of the current and
the external field – the corresponding bulk quantities are the subleading
and the leading term of a spatial component of the gauge field. The result-
ing curve looks like that of conventional BCS superconductors. Doing the
same in alternative quantization, for Φ2 (see the footnote on this page),
one finds that conductivity mimics the one seen in unconventional super-
conductors. This was the first triumph of AdS/CMT in approaching the
experiment [45].

Remarkably, a neutral scalar can also condense. The above mechanism
clearly cannot be the cause of the formation of neutral hair. What is
the mechanism here? The explanation lies in the generalization of the
tachyonic instability to AdS known as the Breitenlohner-Freedman (BF)
bound [25, 47, 46] and the geometry of the charged black hole. The BF
bound is the value for which the square root in ∆ becomes imaginary. In
D + 1 dimension it reads:

m2 < m2
BF = − D

2

4L2
(2.30)

3For low masses, the scalar field has two quantizations with the non-standard al-
ternative quantization similar to the Legendre transform to the canonical ensemble as
described earlier. The two possible choices for the boundary conditions – fixing the VEV
versus fixing the source – lead to two different field theories, with different properties.
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where L is the radius of the space. In AdS4 the BF value is thus −9/4L2.
In the presence of non-zero chemical potential, this system has a different
geometry in deep interior dual to the IR of a CFT. The near-horizon region
of the charged black hole has the geometry AdS2⊗R2: it is a direct product
of the x−y plane and a two-dimensional AdS space, distinct from the AdS4

where the system as a whole lives. AdS2 has the BF bound m2 < m2
BF .

Dimension is reduced from D + 1 = 4 to D + 1 = 2 but the radius of the
AdS2 is smaller than the radius of AdS4: L2 = L/

√
6. Therefore, the BF

bound in the interior is m2 < −6/4L2. This means that there is a window
of the values of m where m2

AdS4 < m2 < m2
AdS2, so a scalar which is stable

in AdS4 will still condense in AdS2 [47]. The field theory meaning of this
effect is the breaking of the discrete (Ising) Z2 gauge symmetry. This is a
truly novel result of the holographic theory. The fact that the physics on
field theory side can be explained by analyzing near-horizon geometry is
an important lesson we will take from this review section.

2.3 Holographic dictionary for fermions

We now proceed to the object of this thesis: fermions. The essential prob-
lem for fermions is the well-known fact the Dirac fermion is a constrained
system: the equations of motion are of first order, only half of the compo-
nents of Dirac field are independent degrees of freedom while the rest are
uniquely determined by them. The sign problem does not plague holog-
raphy at least at the leading (tree) level. This is because the quasiparticle
picture is preserved in the bulk, in the sense that we will consider weakly
interacting fermions coupled to external fields only. Besides, we know that
two-point correlation functions and expectation values (densities) are dual
to tree-level objects in the bulk, thus one does not need to face the loop
effects where the fermionicity strikes harder.4

4Occasionally, it is laconically claimed that the fermion sign problem is eliminated by
holography as in the limit of classical gravity/large N strongly coupled field theory the
bulk physics is classical. This is not entirely true: while gravity is treated classically in
this limit as the gravitational constant κD+1 → 0, this does not tell us anything about
the matter fields. Indeed, these in general require the same QFT treatment no matter
if we take classical gravity limit, SUGRA limit or neither.
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2.3.1 Equations of motion

While already the original AdS/CFT works include fermions as the field
theory side is supersymmetric, it was not a priori clear how to construct
dictionary entries for a fermionic observable in field theory. This problem
was addressed in [84, 7, 56]. A more systematic rephrasing of the solution,
which takes the viewpoint of holographic regularization, was given in [16].
We will mainly follow the reasoning of the latter reference as it is the
most logically coherent exposition of the problem. Whereas the boundary
action Sbnd needed to be picked by hand in earlier formulations, [16] shows
that it follows logically from the requirement that the theory should be
regular in the UV.

Kinematics and holography

Let us first discuss the kinematics of Dirac fermion; we have already an-
nounced that this will be the main source of trouble. The Dirac algebra
in full AdS space (D + 1-dimensional) is represented by gamma matrices
Γµ, µ = 0, . . . D, and ΓD ≡ Γz. The restriction of this representation to D
dimensions, i.e. on the boundary, we will denote by γµ (µ = 0, . . . D− 1).
Recalling the table of the representations of Dirac algebra in various di-
mensions, we find that in odd number of dimensions D + 1, i.e. for D
even, there is a single spinor representation, whereas for D odd there are
two irreducible representations of the Dirac algebra. We will mainly deal
with this case in the thesis. In this case, Ψ is a bispinor and we can de-
compose it into two spinors Ψ±. The choice of projection operator Π± is
non-unique. In holography there is a natural choice which preserves all
symmetries in the boundary theory: projection on the radial direction.
Thus the projectors are Π± = (1± Γz)/2.

Dynamics

We are now ready to write the Dirac equation. We can always write it as
a pair of coupled equations for Ψ±. As we know, the Dirac equation reads

(/D −m)Ψ = 0. (2.31)

The covariant derivative includes the coupling to any gauge fields present
and to the metric through the spin connection:

/D = eµa

(
∂µ +

1

8
ωbcµ [Γb,Γc]− iqeµaAa

)
. (2.32)
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From now on, we will denote the local tangential coordinates by Latin
indices and the metric coordinates by Greek indices. The inverse vielbein
is eµa . From now on we will study a fermion in the homogenous back-
ground coupled to isotropic A0 gauge field, describing a field theory at
finite density. Taking into account homogeneity and isotropy of the sys-
tem in transverse direction, we can partially Fourier-transform so that
the derivative becomes ∂µ 7→ (−iω, ik, ∂z). The spin connection, given in
general by ωbcµ = ebν∂µe

νc + ebνe
σcΓνσµ, has only two nonzero components,

ω0z
0 and ωizi :

ω0z
0 = e0

0e
zzΓ0

z0 =
1

2
e0

0e
zzg00∂zg00 = ezz∂ze

0
0

ωizi = eiie
zzΓizi =

1

2
eiie

zzgii∂zgii = ezz∂ze
i
i, (2.33)

Note that they can be formally written as total derivatives and as a con-
sequence they can be absorbed in the redefinition of the fermion field in
the following way. The equation of the form

Γzezz
[
∂z + ∂z

(
e0

0 + (D − 1) eii
)]

Ψ + (. . .)Ψ = 0, (2.34)

where (. . .) denotes all terms containing no radial derivatives, can be
rewritten as Γzezz∂zψ + (. . .)ψ = 0 upon rescaling the Dirac field as

Ψ 7→ ψ ≡ Ψ

√
g00 (gii)

D−1 = Ψ
√−ggzz. (2.35)

This rescaling works generally for single parameter metrics. From now on
throughout this chapter we will use the rescaling (2.35) and work with ψ
and ψ± instead of Ψ and Ψ±.

With the rescaling for the Dirac field, we can write the Dirac equation
for ψ [

ezz∂z − Γz(iqeµ0A
0 +m)

]
ψ = 0. (2.36)

Next we decompose the equation into the equations for ψ±. The result
can be written as:

(∂z + ezzm)ψ± ± /T ψ∓ = 0 (2.37)

where /T is the transverse covariant derivative rescaled by the vielbein ezz:

−i /T = ezze
00γ0(−ω + qA0) + ezze

iiγiki. (2.38)
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Starting from the Dirac equation (2.38), we can eliminate either ψ+ or ψ−
and readily derive a second order equation of motion for ψ±. Using that
/T /T = −T0T

0 + TiT
i ≡ T 2, we can invert /T to rewrite

/T
T 2

(∂z + ezzm)ψ+ = −ψ− (2.39)

and use the ψ− equation to obtain

(∂z −mezz)
/T
T 2

(∂z +mezz)ψ+ = − /T ψ+. (2.40)

This finally brings us to the second-order form of the Dirac equation, for
the spinor ψ+. Denoting it as

(∂zz + P∂z +Q+)ψ+ = 0 (2.41)

we have for the coefficients

P(z) = −[∂z, /T ]
/T
T 2

Q+(q,m, ω, k; z) = −2mezz + (∂zme
z
z)− [∂z, /T ]

/T
T 2
mezz + T 2.(2.42)

For the second component ψ− we get the same equation but with Q− =
Q+(−q,−m,−ω,−k).

Of course, the second order equation implies the Dirac equation but
is not equivalent to it. The necessary and sufficient condition for ψ+, the
solution of (2.41), to be also the solution to (2.37), reads

ψ− =
1

/T (∂z +mezz)ψ+. (2.43)

It is instructive to solve the simplest case: that of pure AdS with no
gauge fields. The field is rescaled as ψ = Ψ/z(D+3)/2, and the second
order equation for ψ+ becomes(

∂zz −
2m

z
− m

z2

)
Ψ+ = 0 (2.44)

which we readily recognize as the Bessel equation. It yields the following
general solution:

ψ+(z) =
1

z

(
ψ

(1)
0 Km+1/2 (kz) + ψ

(2)
0 Km−1/2 (kz)

)
, (2.45)
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where Km±1/2 are modified Bessel functions of the second kind. The
near boundary asymptotics of the non-rescaled field Ψ+ behaves as Ψ+ =

Ψ
(1)
+ zD/2−m+Ψ

(2)
+ zD/2+m. Clearly, Ψ

(1)
+ is always the leading, source term.

But what is the response? Naively, it can be Ψ
(2)
+ as the subleading term.

In the boundary action (2.48) we have however Ψ− coupled linearly to the

source Ψ+ (which, with appropriate boundary conditions, becomes Ψ
(1)
+ ).

Therefore, the response is Ψ− with appropriate boundary asymptotics.

Dirac equation tells that Ψ
(1)
− ∝ Ψ

(2)
+ so we conclude that the response is

Ψ
(1)
− .

2.3.2 Boundary action

Let us start again from the minimal bulk action for Dirac fermions coupled
to gravity and possibly gauge fields:

Sbulk = Sgrav +

∫
dD+1x

√−gΨ̄(/D −m)Ψ + . . . , (2.46)

where (. . .) stand for any additional fields in the system. It is assumed that
these will not change the UV behavior of fermions nor the AdS asymp-
totics of the background; they might change the background and thus
also the fermionic behavior in IR but we will simply assume a given fixed
IR whatever might be the fields which produce it. The issue is how to
implement the dictionary. The Dirac action is famously proportional to
Dirac equation and thus vanishes on shell. We have seen this also in the
scalar sector however. The resolution is the existence of a boundary ac-
tion, which in fact encodes the full holographic partition function. The
objective is to construct it here for fermions. To do so, let us find the
variation of the bulk part (disregarding again the parts we know: gravity
and bosons). Since we work in a spacetime with a boundary, there will
generically be a boundary contribution. Employing partial integration in
(2.46) and varying with respect to ψ, we get:

δSbulk = δ

∫
dD+1x

√−gψ̄(/D −m)ψ =

=

∫
dDx
√
−hψ̄δψ|zhz0 −

∫
dD+1x

√−g(−/D −m)ψ̄δψ. (2.47)

The second, bulk term vanishes on shell as it is proportional to the equa-
tion of motion. The first, boundary term does not vanish however. It is
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to be evaluated on the boundary of AdS in UV and at zh in IR.5 In terms
of the radial projections, it reads

δS =
1

2

∫
dDx
√
−h
(
ψ̄+δψ− + ψ̄−δψ+

)
. (2.48)

We know from general rules of AdS/CFT that one of the components
of ψ will be the source and the other the response, and in the previous
subsection we have seen that the leading component of ψ+ is larger (i.e.
decays slower) at the boundary than the leading component of ψ−. We
can therefore pick ψ+ to be the source. This means that ψ+ is fixed at
the boundary and its variation is zero: δψ+ = 0. The variation of the
action now reduces to the first term in (2.48). To cancel ad we can add a
counterterm reading

Sct =
1

2

∫
dDx
√
−h(ψ̄+ψ− + ψ̄−ψ+) (2.49)

and the whole action is given by S = Sbulk + Sct, so Sbnd ≡ Sct: the
whole boundary contribution can be understood as the counterterm which
regularizes the action, eliminating UV divergences and making the on-shell
solution satisfy the Dirac equation in the bulk.

For the steps to follow it is convenient to introduce the bulk-to-boundary
propagator G±(z) and to express the solution in terms of G±. The bulk-
to-boundary propagator satisfies the equation of motion [114]:

(/D −m)G(z) = δ(z) (2.50)

i.e. it is a response to a Dirac delta function source at the boundary. We
can now express the solution to Dirac equation in terms of G± and χ±.
The expression for ψ± reads

ψ+ = G−1
+ (z0)G+(z)χ+, ψ− = G−1

+ (z0)G−(z)Sχ− (2.51)

where S = limz→0 T / /T . Namely, at the boundary the energy-momentum
dependence can be shown to drop from the factor T / /T , leaving only a
constant matrix (which of course depends on the representation of gamma
matrices, hence we do not specify it here). The convenience of the above
representation of ψ is that all z dependence of ψ is encoded in the bulk-to-
boundary propagators. Substituting (2.51) into the boundary action, we

5The latter is a single point if zh → ∞ or a slice in the transverse direction if zh is
finite.
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obtain an expression for the full on-shell action in terms of the solutions
G±(z):

Son−shell =

∫
z=z0

dωd2k

(2π)3

√
−hχ̄+G−(z0)G−1

+ (z0)χ+. (2.52)

The two-point correlator in field theory is therefore

G(ω, k) = G−(z0)G−1
+ (z0). (2.53)

What this illustrates is that the subleading component of Ψ− is the re-
sponse to the leading component of Ψ+. This will be the starting point of
the work done in most of Chapter 3 and 4.

2.4 The remainder of the thesis

Having discussed the larger context in the first chapter and the theoretical
foundations and previous work on the topic of our research in this, second
chapter, we have finished introducing the formal framework of our work.
We now outline the work done in this thesis on specific problems with
fermion systems. We will use the power of holography to describe strongly
coupled systems from a new fundamental perspective, to circumvent the
sign problem. We stay exclusively with bottom-up setups. The first reason
is their obvious simplicity as compared to top-down constructions which
become particularly complicated if fermions are included. A deeper reason
is that the conceptual aspects we consider such as the dictionary entry for
a Fermi surface, or for a Fermi liquid state, or pathways through which
Fermi liquids are destroyed – are not expected to depend much on the
exact string action.

Another compromise with consistency that we have to decide about is
the choice between self-consistent calculations, with backreaction, versus
probe limit calculations. We start from the probe limit and afterwards
include backreaction, first on gauge field and then also on geometry. Of
course, probe limit suffices at small fermion density, when the backreaction
is anyway small, but becomes less and less satisfactory as the density
increases. The field theory interpretation is that backreaction probes the
stability of the system – unstable quantum critical matter is described
by the probe limit calculations, but to arrive at stable phases we need
to backreact. In particular, the Fermi-liquid-like phase (which we know
empirically to be very stable) requires backreaction.
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In Chapter 3 we address the critical theory governing the zero tem-
perature quantum phase transition between strongly renormalized Fermi-
liquids as found in heavy fermion intermetallics and possibly high Tc super-
conductors. From the solutions of Dirac equation in the probe limit in the
AdS-RN background, we obtain the spectral functions of fermions in the
field theory. By increasing the fermion density away from the relativistic
quantum critical point, we observe multiple Fermi surfaces, some of them
of distinctly non-Fermi liquid nature while others have some features of
the Fermi liquid. Tuning the scaling dimensions of the critical fermion
fields we find that the quasiparticle disappears at a quantum phase tran-
sition of a purely statistical nature, not involving any symmetry change.
The resulting phase has no Fermi surfaces at all.

In Chapter 4 we extend our work by backreacting on gauge field. We
provide evidence that the bulk dual to a strongly coupled charged Fermi-
liquid-like system has a non-zero fermion density in the bulk. We then
calculate density explicitly in the small density approximation, a model
we call black hole with Dirac hair. Then we show that the pole strength
of the stable quasiparticle characterizing the Fermi surface is encoded in
the spatially averaged AdS probability density of a single normalizable
fermion wave function in AdS. Recalling Migdal’s theorem which relates
the pole strength to the Fermi-Dirac characteristic discontinuity in the
number density at Fermi energy, we conclude that the AdS dual of a Fermi
liquid is described by occupied on-shell fermionic modes in AdS. Encoding
the occupied levels in the total spatially averaged probability density of
the fermion field directly, we show that an AdS Reissner-Nordström black
hole in a theory with charged fermions has a critical temperature, at which
the system undergoes a first-order transition to a black hole with a non-
vanishing profile for the bulk fermion field. Thermodynamics and spectral
analysis support that the solution with non-zero AdS fermion-profile is the
preferred ground state at low temperatures.

In Chapter 5 we continue our study of self-consistent (backreacted)
models and move toward constructing the full phase diagram of the Dirac-
Maxwell-Einstein system and its field theory dual. We compare our Dirac
hair model with the electron star model of Hartnoll et all [51], and argue
that the electron star and the AdS Dirac hair solution are two limits
of the free charged Fermi gas in AdS. Spectral functions of holographic
duals to probe fermions in the background of electron stars have a free
parameter that quantifies the number of constituent fermions that make



2.4 The remainder of the thesis 39

up the charge and energy density characterizing the electron star solution.
The strict electron star limit takes this number to be infinite. The Dirac
hair solution is the limit where this number is unity. This is evident in the
behavior of the distribution of holographically dual Fermi surfaces. As we
decrease the number of constituents in a fixed electron star background
the number of Fermi surfaces also decreases. An improved holographic
Fermi ground state should be a configuration that shares the qualitative
properties of both limits.

We construct such configuration in Chapter 6. We employ a model
which combines the (semiclassical) WKB approximation and its Airy cor-
rection with the quantum corrections based on Dirac equation. At high
temperatures, the system exhibits a first order thermal phase transition
to a charged AdS-RN black hole in the bulk and the emergence of local
quantum criticality on the CFT side. This restores the intuition that the
transition between the critical AdS-RN liquid and the finite density Fermi
system is of van der Waals liquid-gas type. At zero temperature, we find
a Berezhinsky-Kosterlitz-Thouless transition from Fermi-liquid-like finite
density phase with a sharp Fermi surface to zero density AdS-Reissner-
Nordström but in the regime without Fermi surfaces. This suggests that
it is indeed the Fermi surface which drives the instability of the AdS-RN
quantum critical phase. Based on these findings, we construct the three-
dimensional phase diagram, with temperature, conformal dimension and
fermion charge.

Even though we have not answered some of the questions we started
from, in particular the question of what is the holographic dual to a text-
book Landau Fermi liquid and how it is destroyed by strong interactions,
we have obtained a qualitative model of how stable Fermi-liquid-like quasi-
particles become unstable at a quantum critical point and give rise to
novel phenomena. These phenomena could not be obtained in a pertur-
bative approach and they illustrate the power of AdS/CFT and its ability
to make specific predictions on strongly correlated fermions. These pre-
dictions have not been tested experimentally so far. Because of many
simplifying assumptions and the lack of ability to construct a microscopic
Hamiltonian on the boundary, our results are unlikely to be a good quan-
titative description of any realistic system. Nevertheless, they make some
remarkable qualitative predictions which can be expected to hold also in
real-world materials, due to the universality associated to quantum crit-
ical behavior. The coming years will surely determine whether the novel
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physics on display in AdS/CMT is a part of the real world.



Chapter 3

Charged black hole and
critical Fermi surfaces [17]

Quantum many-particle-physics lacks a general mathematical theory to
deal with fermions at finite density. This is known as the “fermion-sign-
problem”: there is no recourse to brute force lattice models as the sta-
tistical path integral methods that work for any bosonic quantum field
theory do not work for finite density fermi-systems. The non-probabilistic
fermion problem is known to be of exponential complexity [109] and in
the absence of a general mathematical framework all that remains is phe-
nomenological guesswork in the form of the Fermi-liquid theory describing
the state of electrons in normal metals and the mean-field theories describ-
ing superconductivity and other manifestations of spontaneous symmetry
breaking. This problem has become particularly manifest in quantum con-
densed matter physics with the discovery of electron systems undergoing
quantum phase transitions that are reminiscent of the bosonic quantum
critical systems [95] but are governed by fermion statistics. Empirically
well documented examples are found in the ’heavy fermion’ intermetallics
where the zero temperature transition occurs between different Fermi-
liquids with quasiparticle masses that diverge at the quantum critical point
[117]. Such fermionic quantum critical states are believed to have a di-
rect bearing on the problem of high Tc superconductivity because of the
observation of quantum critical features in the normal state of optimally
doped cuprate high Tc superconductors [111, 116].

A large part of the “fermion-sign-problem” is to understand this strongly
coupled fermionic quantum critical state. The emergent scale invariance
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and conformal symmetry at critical points is a benefit in isolating deep
questions of principle. The question is how does the system get rid off the
scales of Fermi-energy and Fermi-momentum that are intrinsically rooted
in the workings of Fermi-Dirac statistics [99, 72]? Vice versa, how to con-
struct a renormalization group with a relevant ’operator’ that describes
the emergence of a statistics controlled (heavy) Fermi liquid from the crit-
ical state [117], or perhaps the emergence of a high Tc superconductor?
We will show that a mathematical method developed in string theory has
the capacity to answer at least some of these questions.

3.1 String theory for condensed matter

We refer to the AdS/CFT correspondence: a duality relation between
classical gravitational physics in a d + 1 dimensional ’bulk’ space-time
with an Anti-de-Sitter (AdS) geometry and a strongly coupled conformal
(quantum critical) field theory (CFT) with a large number of degrees of
freedom that occupies a flat or spherical d dimensional ’boundary’ space-
time. Applications of AdS/CFT to quantum critical systems have al-
ready been studied in the context of the quark-gluon plasma [104, 41],
superconductor-insulator transitions [59, 46, 40, 47] and cold atom sys-
tems at the Feshbach resonance [103, 8, 1] but so far the focus has been on
bosonic currents (see [45, 49] and references therein). Although AdS/CFT
is convenient, in principle the groundstate or any response of a bosonic
statistical field theory can also be computed directly by averaging on a
lattice. For fermions statistical averaging is not possible because of the
sign-problem. There are, however, indications that AdS/CFT should be
able to capture finite density fermi systems as well. Ensembles described
through AdS/CFT can exhibit a specific heat that scales linear with the
temperature characteristic of Fermi systems [69], zero sound [69, 65, 70]
and a minimum energy for fermionic excitations [93, 101].

To address the question whether AdS/CFT can describe finite density
fermi-systems and the Fermi liquid in particular, we compute the single
charged fermion propagators and the associated spectral functions that
are measured experimentally by angular resolved photoemission (“AdS-
to-ARPES”) and indirectly by scanning tunneling microscopy. The spec-
tral functions contain the crucial information regarding the nature of the
fermion states. These are computed on the AdS side by solving for the on-
shell (classical) Dirac equation in the curved AdS space-time background
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with sources at the boundary. A temperature T and finite U(1) chemical
potential µ0 for electric charge is imposed in the field theory by studying
the Dirac equation in the background of an AdS Reissner-Nordstrom black
hole. We do so expecting that the U(1) chemical potential induces a finite
density of the charged fermions. The procedure to compute the retarded
CFT propagator from the dual AdS description is then well established
[104, 49]. Compared to the algorithm for computing bosonic responses,
the treatment of Dirac waves in AdS is more delicate, but straightforward;
details are provided in the final section of this chapter. The equations ob-
tained this way are solved numerically and the output is the retarded
single fermion propagator GR(ω, k) at finite T . Its imaginary part is the
single fermion spectral function A(ω, k) = − 1

π ImTr( iγ0GR(ω, k)) that can
be directly compared with ARPES experiments.

The reference point for this comparison is the quantum critical point
described by a zero chemical potential (µ0 = 0), zero temperature (T = 0),
conformal and Lorentz invariant field theory. Here the fermion propaga-
tors 〈Ψ̄Ψ〉 ≡ G(ω, k) are completely fixed by symmetry to be of the form
(we use relativistic notation where c = 1)

GCFT∆Ψ
(ω, k) ∼ 1

(
√
−ω2 + k2)d−2∆Ψ

(3.1)

with ∆Ψ the scaling dimension of the fermion field. Through the AdSd+1/CFTd

dictionary ∆Ψ is related to the mass parameter in the d + 1-dimensional
AdS Dirac equation. Unitarity bounds this mass from below in units of
the AdS radius mL = ∆Ψ − d/2 > −1/2 (we set L = 1 in the remain-
der). The choice of which value to use for m will prove essential to show
the emergence of the Fermi liquid. The lower end of the unitarity bound
m = −1/2 + δ, δ � 1, corresponds to introducing a fermionic confor-
mal operator with weight ∆Ψ = (d − 1)/2 + δ. This equals the scaling
dimension of a nearly free fermion. Despite the fact that the underlying
CFT is strongly coupled, the absence of a large anomalous dimension for
a fermion with mass m = −1/2 + δ argues that such an operator fulfills a
spectator-role and is only weakly coupled to this CFT. We will therefore
use such values in our calculations. Our expectation is that the Fermi
liquid, as a system with well-defined quasiparticle excitations, can be de-
scribed in terms of weakly interacting long-range fields. As we increase
m from m = −1/2 + δ, the interactions increase and we can expect the
quasi-particle description to cease to be valid beyond m = 0. For that
value m = 0, and beyond m > 0, the naive scaling dimension ∆O of the
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fermion-bilinear O∆O = ΨΨ is marginal or irrelevant and it is hard to
see how the ultra-violet conformal theory can flow to a Fermi-liquid state,
assuming that all vacuum state changes are caused by the condensation of
bosonic operators. This intuition will be borne out by our results: when
m ≥ 0 the standard Fermi-liquid disappears. A similar approach to de-
scribing fermionic quantum criticality [79] discusses the special case m = 0
or ∆Ψ = d/2 in detail; other descriptions of the m = 0 system are [76, 91].

3.2 The emergent Fermi liquid

With an eye towards experiment we shall consider the AdS4 dual to a
relativistic CFT3 in d = 2 + 1 dimensions; see the last section of this
chapter. As we argue there, we do not know the detailed microscopic CFT
nor whether a dual AdS with fermions as the sole U(1) charged field exists
as a fully quantum consistent theory for all values of m = ∆Ψ − d/2, but
the behavior of fermion spectral functions at a strongly coupled quantum
critical point can be deduced nonetheless. Aside from ∆Ψ, the spectral
function will depend on the dimensionless ratio µ0/T as well as the U(1)
charge g of the fermion; we shall set g = 1 from here on, as we expect that
only large changes away from g = 1 will change our results qualitatively.
We therefore study the system as a function of µ0/T and ∆Ψ. We have
drawn our approach in Fig. 3.1B: first we shall study the spectral behavior
as a function of µ0/T for fixed ∆Ψ < 3/2; then we study the spectral
behaviour as we vary the scaling dimension ∆Ψ from 1 to 3/2 for fixed
µ0/T coding for an increasingly interacting fermion. Note that our set-up
and numerical calculation necessitate a finite value of µ0/T : all our results
are at non-zero T .

Our analysis starts near the reference point µ0/T → 0 where the long
range behavior of the system is controlled by the quantum critical point
(Fig. 3.1A). Here we expect to recover conformal invariance, as the system
forgets about any well-defined scales, and the spectral function should be
controlled by the branchcut at ω = k in the Green’s function (Eq.1) : (a)
For ω < k it should vanish, (b) At ω = k we expect a sharp peak which for
ω � k scales as ω2∆Ψ−d. Fig. 3.2A shows this expected behavior of spec-
tral function for three different values of the momentum for a fermionic
operator with weight ∆Ψ = 5/4 computed from AdS4.

Turning on µ0/T holding ∆Ψ = 5/4 fixed, shifts the center location
of the two branchcuts to an effective chemical potential ω = µeff ; this



3.2 The emergent Fermi liquid 45

(A)

T ↑
0 µ0 →

(B)
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CFT

0
d − 1
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T

|µ0|
↑

∆Ψ →

Figure 3.1: The phase diagram near a quantum-critical point. Gray lines de-
pict lines of constant µ0/T : the spectral function of fermions is unchanged along
each line if the momenta are appropriately rescaled. As we increase µ0/T we
crossover from the quantum-critical regime to the Fermi-liquid. (B) The trajec-
tories in parameter space (µ0/T,∆Ψ) studied here. We show the crossover from
the quantum critical regime to the Fermi liquid by varying µ0/T keeping ∆Ψ

fixed; we cross back to the critical regime varying ∆Ψ → d/2 for µ0/T fixed. The
boundary region is not an exact curve, but only a qualitative indication.

bears out our expectation that the U(1) chemical potential induces a finite
fermion density. While the peak at the location of the negative branchcut
ω ∼ µeff − k stays broad, the peak at the other branchcut ω ∼ µeff + k
sharpens distinctively as the size of µ0/T is increased (Fig. 3.2B). We
shall identify this peak with the quasiparticle of the Fermi liquid and its
appearance as the crossover between the quantum-critical and the Fermi-
liquid regime. The spectral properties of the Fermi liquid are very well
known and display a number of uniquely identifying characteristics [77,
98]. If this identification is correct, all these characteristics must be present
in our spectra as well.

1. The quasiparticle peak should approach a delta function at the Fermi
momentum k = kF . In Fig. 3.2B we see the peak narrow as we
increase k, peak, and broaden as we pass k ∼ kF (recall that T =
0 is outside our numerical control and the peak always has some
broadening). In addition the spectrum should vanish identically at
the Fermi-energy A(ω = EF , k) = 0, independent of k. This is
shown in Fig. 3.2C.
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Figure 3.2: (A) The spectral function A(ω, k) for µ0/T = 0.01 and m = −1/4.
The spectral function has the asymptotic branch cut behavior of a conformal
field of dimension ∆Ψ = d/2 + m = 5/4: it vanishes for ω < k, save for a finite
T tail, and for large ω scales as ω2∆Ψ−d. (B) The emergence of the quasiparticle
peak as we change the chemical potential to µ0/T = −30.9 for the same value
∆Ψ = 5/4. The three displayed momenta k/T are rescaled by a factor Teff/T for
the most meaningful comparison with those in (A). The insets show the full scales
of the peak heights and the dominance of the quasiparticle peak for k ∼ kF . (C)
Vanishing of the spectral function at EF for ∆Ψ = 1.05 and µ0/T = −30.9. The
deviation of the dip-location from EF is a finite temperature effect. It decreases
with increasing µ0/T .
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2. The quasiparticle should have linear dispersion relation near the
Fermi energy with a renormalized Fermi velocity vF different than
the underlying relativistic speed c = 1. In Fig. 3.3 we plot the
maximum of the peak ωmax as a function of k. At high k we re-
cover the linear dispersion relation ω = |k| underlying the Lorentz
invariant branchcut in Eq.1. Near the Fermi energy/Fermi momen-
tum however, this dispersion relation changes to a slope vF given
by the limit limω→EF ,k→kF (ω − EF )/(k − kF ) clearly less than one.
Importantly, it appears that the Fermi Energy EF is not located at
zero-frequency.1 Recall, however, that the AdS chemical potential
µ0 is the bare U(1) chemical potential in the CFT. This is confirmed
in Fig. 3.3 from the high k behavior: its Dirac point is µ0. On the
other hand, the chemical potential felt by the IR fermionic degrees of
freedom is renormalized to the value µF = µ0−EF . As is standard,
the effective energy ω̃ = ω − EF of the quasiparticle is measured
with respect to EF .

3. At low temperatures Fermi-liquid theory predicts the width of the
quasiparticle peak to grow quadratically with temperature. Fig.
3.4A, 3.4B show this distinctive behavior up to a critical tempera-
ture Tc/µ0 ∼ 0.16. This temperature behavior directly follows from
the fact that imaginary part of the self-energy Σ(ω, k) = ω − k −
(Triγ0G(ω, k))−1 should have no linear term when expanded around
EF : ImΣ(ω, k) ∼ (ω −EF )2 + .... This is shown in Fig. 3.4C, 3.4D.

These results give us confidence that we have identified the characteristic
quasiparticles at the Fermi surface of the Fermi liquid emerging from the
quantum critical point.

Let us now discuss how this Fermi-liquid evolves when we increase
the bare µ0 (Fig. 3.5). Similar to the fermion chemical potential µF ,
the fundamental control parameter of the Fermi-liquid, the fermion den-
sity ρF , is not directly related to the AdS µ0. We can, however, infer it
from the Fermi-momentum kF that is set by the quasiparticle pole via
Luttinger’s theorem ρF ∼ kd−1

F . The more illustrative figure is there-
fore Fig. 3.5B which shows the quasiparticle characteristics as a function
of kF /T . We find that the quasiparticle velocities decrease slightly with

1In our original paper we misidentified the location of the maximum peak height
with EF . The correct identification is when the pole hit the real axis in the complex
frequency space. We explain this bellow in the last section of this chapter.
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Figure 3.3: Maxima in the spectral function as a function of k/µ0 for ∆Ψ =
1.35 and µ0/T = −30.9. Asymptotically for large k the negative k branch cut
recovers the Lorentz-invariant linear dispersion with unit velocity, but with the
zero shifted to −µ0. The peak location of the positive k branch cut that changes
into the quasiparticle peak changes significantly. It gives the dispersion relation
of the quasiparticle near (EF , kF ). The change of the slope from unity shows
renormalization of the Fermi velocity. This is highlighted in the inset. Note that
the Fermi energy EF is not located at ωAdS = 0. The AdS calculation visualizes
the renormalization of the bare UV chemical potential µ0 = µAdS to the effective
chemical potential µF = µ0 − EF felt by the low-frequency fermions.

increasing kF , rapidly leveling off to a finite constant less than the rela-
tivistic speed. Thus the quasiparticles become increasingly heavy as their
mass mF ≡ kF /vF asymptotes to linear growth with kF . The Fermi en-
ergy EF also shows linear growth. Suppose the heavy Fermi-quasiparticle
system has the underlying canonical non-relativistic dispersion relation
E = k2/(2mF ) = k2

F /(2mF )+vF (k−kF )+..., then the observed Fermi en-

ergy EF should equal the renormalized Fermi-energy E
(ren)
F ≡ k2

F /(2mF ).

Fig. 3.5B shows that these energies EF and E
(ren)
F track each other re-

markably well. We therefore infer that the true zero of energy of the
Fermi-quasiparticle is set by the renormalized Fermi-energy as deduced
from the Fermi-velocity and -momentum.

Although the true quasiparticle behavior disappears at T > Tc, Fig.
3.5A indicates that in the limit kF /T → 0 the quasiparticle pole strength
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Figure 3.4: (A) Temperature dependence of the quasiparticle peak for ∆Ψ = 5/4
and k/kF ' 0.5; all curves have been shifted to a common peak center. (B) The
quasiparticle peak width δ ∼ ReΣ(ω, k = kF ) for ∆Ψ = 5/4 as a function of T 2: it
reflects the expected behavior δ ∼ T 2 up to a critical temperature Tc/µ0, beyond
which the notion of a quasiparticle becomes untenable. (C) The imaginary part
of the self-energy Σ(ω, k) near EF , kF for ∆Ψ = 1.4, µ0/T = −30.9 . The
defining ImΣ(ω, k) ∼ (ω−EF )2 + . . .-dependence for Fermi-liquid quasiparticles
is faint in panel (C) but obvious in panel (D). It shows that the intercept of
∂ωImΣ(ω, k) vanishes at EF , kF .

vanishes, Zk → 0, while the Fermi-velocity vF remains finite; vF ap-
proaches the bare velocity vF = 1. This is seemingly at odds with the
heavy Fermi liquid wisdom Zk ∼ mmicro/mF = mmicrovF /kF . The reso-
lution is the restoration of Lorentz invariance at zero density. From general
Fermi liquid considerations it follows that vF = Zk(1 + ∂kReΣ|EF ,kF ) and
Zk = 1/(1 − ∂ωReΣ|EF ,kF ) where ∂k,ωReΣ refers to the momentum and
energy derivatives of the real part of the fermion self-energy Σ(ω, k) at
kF , EF . Lorentz invariance imposes ∂ωΣ′ = −∂kΣ′ which allows for van-
ishing Zk with vF → 1. Interestingly, the case has been made that such a
relativistic fermionic behavior might be underlying the physics of cuprate
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Figure 3.5: The quasiparticle characteristics as a function of µ0/T for ∆Ψ = 5/4.
Panel (A) shows the change of kF , vF ,mF , EF and the pole strength Z (the
total weight between half-maxima) as we change µ0/T . Beyond a critical value
(µ0/T )c we lose the characteristic T 2 broadening of the peak and there is no
longer a real quasiparticle, though the peak is still present. For the Fermi-liquid
kF /T rather than µ0/T is the defining parameter. We can invert this relation
and panel (B) shows the quasiparticle characteristics as a function of kF /T . Note
the linear relationships of mF , EF to kF and that the renormalized Fermi energy
E(ren) ≡ k2

F /(2mF ) matches the empirical value EF remarkably well.

high Tc superconductors [90].
Finally, we address the important question what happens when we

vary the conformal dimension ∆Ψ of the fermionic operator. Fig. 3.6
shows that the Fermi momentum kF stays constant as we increase ∆Ψ.
This completes our identification of the new phase as the Fermi-liquid: it
indicates that the AdS dual obeys Luttinger’s theorem, if we can interpret
the conformal dimension of the fermionic operator as a proxy for the inter-
action strength. We find furthermore that the quasiparticle pole strength
vanishes as we approach ∆Ψ = 3/2. This confirms our assumption made
earlier that it is essential to study the system for ∆Ψ < d/2 and that the
point ∆Ψ = d/2 where the naive fermion bilinear becomes marginal sig-
nals the onset of a new regime. Because the fermion bilinear is marginal
at that point this ought to be an interesting regime in its own right and
we refer to the recent article [79] for a discussion thereof. Highly remark-
able is that the pole strength vanishes in an exponential fashion rather
than the anticipated algebraic behavior [99, 72]. This could indicate that
an essential singularity governs the critical point at ∆Ψ = d/2 and we
note that such a type of behavior was identified by Lawler et al. in their
analysis of the Pomeranchuk instability in d = 2 + 1 dimensions using the
Haldane patching bosonization procedure [75]. Interestingly this finite
µ0/T transition as we vary ∆Ψ has no clear symmetry change, similar to
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lower panel shows the exponential vanishing pole strength Z (the integral between
the half-maxima) as m→ 0.

[72]. However, this may be an artifact of the fact that our theory is not
quantum mechanically complete. Note also that the quasiparticle velocity
and the renormalized Fermi energy EF = vF (k − kF ) − E stay finite at
the ∆Ψ = 3/2 transition with Z → 0, which could indicate an emergent
Lorentz invariance for the reasons discussed in the previous paragraph.

3.3 Concluding remarks

We have presented evidence that the AdS dual description of strongly
coupled field theories can describe the emergence of the Fermi-liquid from
a quantum critical state — both as a function of density and interaction
strength as encoded in the conformal dimension of the fermionic oper-
ators. From the AdS gravity perspective, it was unclear whether this
would happen. Sharp peaks in the CFT spectral function correspond to
so-called quasinormal modes of black holes [68], but Dirac quasinormal
modes have received little study (see e.g. [14]). It is remarkable that
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the AdS calculation processes the Fermi-Dirac statistics essential to the
Fermi-liquid correctly. This is manifested by the emergent renormalized
Fermi-energy and the validity of Luttinger’s theorem. The AdS gravity
computation, however, is completely classical without explicit quantum
statistics, although we do probe the system with a fermion. It would
therefore be interesting to fully understand the AdS description of what
is happening, in particular how the emergent scales EF and kF feature in
the geometry. An early indication of such scales was seen in [101, 94] in
a variant of the story that geometry is not universal in string theory: the
geometry depends on the probe used and different probes experience dif-
ferent geometric backgrounds. The absence of these scales in the general
relativistic description of the AdS black hole could thus be an artifact of
the Riemannian metric description of spacetime.

Regardless of these questions, AdS/CFT has shown itself to be an pow-
erful tool to describe finite density Fermi systems. The description of the
emergent Fermi liquid presented here argues that AdS/CFT is uniquely
suited as a computational device for field-theory problems suffering from
fermion sign-problems. AdS/CFT represents a rich mathematical environ-
ment and a new approach to investigate qualitatively and quantitatively
important questions in quantum many-body theory at finite fermion den-
sity.

3.4 Formal background for the calculation of the
spectral functions

3.4.1 The AdS set up and AdS/CFT Fermion Green’s func-
tions.

The deviation from the strongly coupled 2+1 dimensional quantum critical
point from which we wish to see the Fermi surface emerge is character-
ized by a temperature and background U(1) chemical potential. The phe-
nomenological AdS dual to such a finite-temperature system with chemical
potential is a charged AdS4 black hole. Including fermionic excitations,
this system is described by the minimal action

Sbulk =
1

2κ2
4

∫
d4x
√−g

[
R+

6

L2
+ L2

(
−1

4
F 2 − Ψ̄eMA ΓADMΨ−mΨ̄Ψ

)]
.(3.4.1)

Here eMA is the inverse vielbein, ΓA =
{
γa, γ4

}
are 4d Dirac matrices obey-

ing {ΓA,ΓB} = 2ηAB (hermitian except Γ0), and Ψ is a four-component
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Dirac spinor with Ψ̄ = Ψ
†
iΓ0. This spinor is charged under a U(1) gauge

field and the covariant derivative equals

DMΨ =

(
∂M +

1

8
ωABM [ΓA,ΓB] + igAM

)
Ψ . (3.4.2)

On its own this action is not a consistent quantum theory. It must be
embedded in a string dual, e.g. for appropriate choices of m and g it is
a subsector of the N = 8 AdS4 × S7 dual to the conformal fixed point of
large Nc, d = 3 N = 8 SYM and generically such a completion will have
a number of U(1) charged fields in addition to the fermions. For our con-
siderations, specifically the two point function of fermions, the quantum
completion is not relevant. At leading order in the gravitational coupling
constant, the action (5.2.5) will yield the same two-point correlators inde-
pendently of the non-linear supergravity couplings. It does mean, that we
cannot equate the U(1) chemical potential µ0 directly with the density of
fermions µF as we emphasize in the main article.

The charged AdS4 black hole is a solution to the equations of motion
of this action. In a gauge where Az = 0 and A0 is regular at the horizon
the metric and gauge potential are given by [92, 44]

ds2 =
L2α2

z2

(
−f(z)dt2 + dx2 + dy2

)
+
L2

z2

dz2

f(z)
,

A0 = 2qα(z − 1) ,

f(z) = (1− z)(z2 + z + 1− q2z3) . (3.4.3)

For z → 0 the metric asymptotes to AdS4 in Poincaré coordinates with the
boundary at z = 0 and there is a black hole horizon at the first zero, z = 1,
of the function f(z). In this parametrization the black hole temperature
and U(1) chemical potential — equal to the CFT temperature and bare
chemical potential — are

TCFT = TBH =
α

4π
(3− q2) , µ0 = µBH = −2qα . (3.4.4)

The parameter q is bounded between 0 ≤ q2 ≤ 3 interpolating between
AdS-Schwarzschild and the extremal AdS black hole. For the equation of
motion of fermions in this background we shall need the spin connection
belonging to this metric. The nonzero components are

ωab0 = −δ[a
0 δ

b]
z αf

(
1

z
− ∂zf

2f

)
, ωabi = −δ[a

i δ
b]
z

α
√
f

z
. (3.4.5)
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Applying the AdSd+1/CFTd dictionary the CFT fermion-fermion cor-
relation function is computed from the action Sbulk (5.2.5) supplemented
by appropriate boundary terms, Sbdy. One constructs the on-shell action
given an arbitrary set of fermionic boundary conditions and the latter are
then interpreted as sources of fermionic operators in the CFT:

ZCFT (J) = 〈eJO〉CFT = exp
[
i(Sbulk + Sbdy)

on−shell(φ(J))
]∣∣∣
φ|∂AdS=J

.(3.4.6)

The issue of which boundary terms ought to be added to the bulk action
tends to be subtle. For fermionic systems it is critical as the bulk action
(5.2.5) identically vanishes on-shell [57, 84, 56, 16, 66]. Because the field
equations for the fermions are first order and half the components of the
spinor correspond to the conjugate momenta of the other half, we can in
fact only choose a boundary source for half the components of Ψ. Pro-
jecting onto eigenstates of Γz, ΓzΨ± = ±Ψ±, we will choose a boundary
source Ψ0

+ ≡ limz0→0 Ψ+(z = z0) (to regulate the theory we impose the
boundary conditions at a small distance z0 away from the formal bound-
ary z = 0 and take z0 → 0 at the end). The boundary value Ψ0

− is not
independent but related to that of Ψ0

+ by the Dirac equation. We should
therefore not include it as an independent degree of freedom when tak-
ing functional derivatives with respect to the source. Adding a boundary
action,

Sbdy =
L2

2κ2
4

∫
z=z0

d3x
√
−h Ψ̄+Ψ− (3.4.7)

with hµν the induced metric ensures a proper variational principle [16].
The variation of δΨ− from the boundary action,

δSbdy =
L2

2κ2
4

∫
z=z0

d3x
√
−h Ψ̄+δΨ−

∣∣∣∣
Ψ0

+fixed

, (3.4.8)

now cancels the boundary term from variation of the bulk action

δSbulk =
L2

2κ2
4

∫ √−g [−δΨ̄(/D +m)Ψ+ − ((/D +m)Ψ)δΨ
]

+
L2

2κ2
4

∫
z=z0

√
−h
[
−Ψ̄+δΨ− − Ψ̄−δΨ+

]∣∣∣∣
Ψ0

+fixed

.(3.4.9)



3.4 Formal background for the calculation of the spectral functions 55

3.4.2 The Fermion Green’s function.

To compute the fermion Green’s function, we thus solve the field-equation
for Ψ(z) with Ψ0

+ ≡ limz0→0 Ψ+(z = z0) as the boundary condition, sub-
stitute this solution back into the combined action Sbulk + Sbdy and func-
tionally differentiate twice. As Ψsol(Ψ

0
+) obeys the field-equation — the

Dirac Equation —

(/D +m)Ψsol(Ψ0
+) = 0 , (3.4.10)

the contribution to the on-shell action is solely due to the boundary action
Sbdy in eq. (3.4.7). To solve the Dirac equation, we Fourier transform
along the boundary,

Ψ(z, xi, t) =

∫
dωd2k

(2π)3
Ψ(z, ki, ω)eikix

i−iωt , (3.4.11)

and project onto the eigenstates of Γz, ΓzΨ± = ±Ψ±. Choosing the basis
of Dirac matrices

Γz = σ3 ⊗ 11 , Γi = σ1 ⊗ σi , Γt = σ1 ⊗ σt = σ1 ⊗ iσ3,(3.4.12)

we can consider Ψ± to be two-component Dirac spinors appropriate for
d = 3 from here on. In the charged AdS black hole background with non-
zero gauge field from eq. (6.3.43), the Dirac equation decomposes into the
two equations

(∂z +A±)Ψ± = ∓ /T Ψ∓ , (3.4.13)

with

A± = − 1

2z

(
3− z∂zf

2f

)
± Lm

z
√
f
,

/T =
i

αf

[
(−ω + 2gqα(z − 1))σt +

√
fkiσ

i
]
. (3.4.14)

We can eliminate either Ψ+ or Ψ− and readily derive a second order
dynamical equation for Ψ±. Using that

/T /T = −TtTt + T1T1 + T2T2 ≡ T 2 , (3.4.15)

we can invert /T to rewrite

/T
T 2

(
∂z +A+

)
Ψ+ = −Ψ− (3.4.16)
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and use the Ψ− equation to obtain

(∂z +A−)
/T
T 2

(∂z +A+)Ψ+ = − /T Ψ+ . (3.4.17)

Using the identity eq. (5.2.4) repeatedly, this is equivalent to(
∂2
z + P (z)∂z +Q(z)

)
Ψ+ = 0 (3.4.18)

with

P (z) = (A− +A+)− [∂z, /T ]
/T
T 2

,

Q(z) = A−A+ + (∂zA+)− [∂z, /T ]
/T
T 2
A+ + T 2 . (3.4.19)

Note that both P (z) and Q(z) are two-by-two matrices. The equation
for Ψ− is simply obtained by switching A+ with A− and /T with − /T ;
it is the CPT conjugate obtained by sending m → −m and {ω, ki, q} →
{−ω,−ki,−q}.

We can now derive a formal expression for the propagator in terms
of the solutions to the second-order equation. We write the on-shell bulk
field as

Ψsol
+ (z) = F+(z)F−1

+ (z0)Ψ0
+(z0) (3.4.20)

where F±(u) is the two-by-two matrix satisfying the second order equation
(4.2.11) [16] subject to a boundary condition in the interior of AdS. We will
discuss the appropriate interior boundary condition below. There are two

independent solutions Ψ
(1)
+ (z), Ψ

(2)
+ (z) that obey the interior boundary

condition, one for each component of the spinor. In terms of this solution
the matrix F+(z) equals

F+(z) =
(

Ψ
(1)
+ (z) , Ψ

(2)
+ (z)

)
. (3.4.21)

Similarly for Ψsol
− (z) we write

Ψsol
− (z) = F−(z)F−1

− (z0)Ψ0
−(z0) . (3.4.22)

However, Ψ0
− is not independent as we emphasized earlier. It is related

to Ψ0
+ through the Dirac equation in its projected form (4.3.13). Acting

with ∂z +A+ on both sides of (5.2.11) we see that [16]

(∂z +A+)Ψsol
+ = (∂z +A+)F+(z)F−1

+ (z0)Ψ0
+

⇔ − /T Ψsol
− = − /T F−(z)F−1

+ (z0)Ψ0
+ . (3.4.23)
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We have used that all the z dependence of Ψsol
± (z) is encoded in the matri-

ces F±(z) and therefore F±(z) obey the same projected Dirac equations.
Thus we find that Ψ0

− equals

Ψ0
− = F−(z0)F−1

+ (z0)Ψ0
+ . (3.4.24)

Substituting this constraint into the boundary action, we obtain an ex-
pression for the full on-shell action in terms of the solutions F±(z):

Son−shell =
L2

2κ2
4

∫
z=z0

dωd2k

(2π)3

√
−h Ψ̄0

+ F−(z0)F−1
+ (z0) Ψ0

+ . (3.4.25)

Up to a normalization N the two-point function is therefore

G(ω, k) =
1

N F−(z0)F−1
+ (z0) . (3.4.26)

This is the time-ordered two-point function. For the spectral function we
shall need the imaginary part of the retarded propagator. At finite tem-
perature the AdS background is no longer regular in the interior but has a
horizon. In principle one should also consider its boundary contribution.
The retarded propagator prescription of [105] — verified in [58]— is to
ignore this contribution and to impose infalling boundary conditions at
the horizon instead of regularity at the center of AdS. This is what we
shall do.

The retarded Green’s function for fermions is still a matrix. Parity
and rotational invariance dictate that it can be decomposed as

GR(ω, k) = Πs + σtΠt + σiΠi . (3.4.27)

Our main interest, the spectral function, proportional to Im〈Ψ†Ψ〉, is the
imaginary part of Πt. Specifically

A(ω, k) = − 1

π
Im(Tr iσtGR(ω, k)) . (3.4.28)

As a consequence of the underlying conformal symmetry both the Green’s
function and the spectral function possess a scaling symmetry. Eq. (5.2.14)
shows that the frequency ω and momenta k are naturally expressed in
units of an effective temperature Teff (µ0) ≡ 3α/4π which depends on the
chemical potential µ0

Teff (µ0) = T

1

2
+

1

2

√
1 +

(µ0

√
3)2

(4πT )2

 .
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The spectral function computed from AdS is therefore naturally of the
form

A
µ0
T

∆Ψ
(ω, k) =

1

T d−2∆Ψ
f̃

(
ω

Teff (µ0)
,

k

Teff (µ0)
; ∆Ψ,

µ0

T

)
.

Any rescaling of Teff can be compensated by a rescaling of the frequencies
and momenta and µ0/T is the single independent parameter determining
the characteristics of the fermion spectral function. The results in the
main text have been converted to units of k/T or k/µ0 for clarity of the
presentation.

3.4.3 Masses and Dimensions.

A final crucial step is the establish the aforementioned relation between the
mass of the AdS fermion and the scaling dimension of the dual fermionic
operator in the CFT. For generality we shall work in d dimensions in this
subsection. This subsection recapitulates [16].

The scaling behavior can be read off from the asymptotic behavior
of the solution near the boundary z = 0. In this limit the second order
equation (4.2.11) diagonalizes: (setting L = 1)(

∂2
z −

d

z
∂z +

d(d+ 2)− 4m(1 +m)

4z2

)
Ψ+ = 0 + . . . (3.4.29)

Clearly the temperature or chemical potential of the black-hole is imma-
terial to the asymptotic scaling behaviour at z = 0; in terms of the CFT
z = 0 is the UV of the theory and it should be insensitive to the in-
frared physics at the horizon. The leading powers of the two independent
solutions to this equation are

Ψ+(z) = z
d+1

2
−|m+ 1

2
|(ψ+ + . . .) + z

d+1
2

+|m+ 1
2
|(A+ + . . .) . (3.4.30)

(we may drop the absolute value signs in principle, but as it emphasizes
the special value m = −1/2 it will be instructive to keep them.) Similarly
for Ψ−(z) the leading singularities are obtained by sending m→ −m

Ψ−(z) = z
d+1

2
−|m− 1

2
|(ψ− + . . .) + z

d+1
2

+|m− 1
2
|(A− + . . .). (3.4.31)

However, recall that the Dirac equation relates the two asymptotic be-
haviors and that the boundary value of Ψ− is not independent. Near
z = 0

(∂z −
d/2−m

z
)Ψ+ = − /T |z=0Ψ− + . . . (3.4.32)
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Thus ψ− ∝ ψ+ and A− ∝ A+.
Because the equation diagonalizes, each component of Ψ±(z) can be

considered independently and the matrices F±(z) diagonalize in the limit
z → 0. The scaling behavior of the Green’s function is then readily read
off from its definition

G(ω, k) =
1

N F−F
−1
+ ∼ z

d+1
2
−|m− 1

2
|(ψ− + . . .) + z

d+1
2

+|m− 1
2
|(A− + . . .)

z
d+1

2
−|m+ 1

2
|(ψ+ + . . .) + z

d+1
2

+|m+ 1
2
|(A+ + . . .)

(3.4.33)

The dominant scaling behavior depends on the value of m and there are
three different regimes (I): m > 1

2 , (II): 1
2 > m > −1

2 , and (III):
−1

2 > m. In these regimes the Green’s function behaves as

G(ω, k) ∼


z
(
ψ−
ψ+

+ . . .
)

+ z2m
(
A−
ψ+

+ . . .
)

m > 1
2

z2m
(
ψ−
ψ+

+ . . .
)

+ z
(
A−
ψ+

+ . . .
)

1
2 > m > −1

2

1
z

(
ψ−
ψ+

+ . . .
)

+ 1
z2m

(
A−
ψ+

+ . . .
)

−1
2 > m.

(3.4.34)

In regime (I) the contribution proportional to z yields a contact term [16].
Recall that at zero-temperature and chemical potential each power of z
is accompanied by a power of momentum: the dimensionless arguments
of the solutions Ψsol

± (z) are kz and ωz. Discarding the term analytic in z
and thus analytic in momenta, the second term proportional to z2m yields
a Green’s function

G(ω, k) ∼ (z0ω)2m (3.4.35)

corresponding to the two-point function of a conformal operator of weight
∆Ψ = d

2 +m. In regime (II) there is no contact term and one immediately
finds the same relation between the AdS fermion mass and the scaling
dimension of the conformal operator. In regime (III), however, one finds
an explicit pole (ωz)−1 independent of the AdS fermion mass or the space-
time dimension. It signals an inconsistency in the theory and one cannot
consider this regime as physical [16]. This is reminiscent of the situation
for scalars where for m2

scalar > −d2/4 + 1 one finds analytic terms in the
two-point correlator; for −d2/4 + 1 > m2

scalar > −d2/4 both solutions
are normalizable; and for −d2/4 > m2

scalar the theory is inconsistent. The
analogy with scalars may appear strange since a negative mass-squared for
scalars clearly can be problematic, whereas the sign of the fermion-mass
term does not have any physical consequences normally. Recall, however,
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that the same AdS bulk action can describe several CFTs depending on
the boundary terms added to the action [67]. We have chosen a very spe-
cific boundary action such that Ψ+(z) is the independent variable which
breaks the degeneracy between (bulk) theories with m > 0 and m < 0. In
this theory m is bounded below by −1/2. We could have chosen a different
theory with Ψ−(z) the independent variable. One would find then that m
is bounded from above by 1/2. The regime 1/2 > m > −1/2 is present in
both theories; it is the range where both solutions are normalizable and
choosing either Ψ+(z) or Ψ−(z) as the independent variable corresponds
to switching the “sources” and “expectation values” in the usual way (see
also [62]).

This analysis also teaches us that the normalization N should go as
z2m

0 to obtain a finite answer in the limit z0 → 0.2

3.4.4 The retarded propagator boundary conditions at the
horizon.

The final component of our set-up will be the boundary conditions at the
horizon of the the black hole. To compute the retarded propagator in
thermal settings/black hole the appropriate b.c. are those infalling into
the horizon. Near the horizon at z = 1, the second order equation for Ψ±
becomes the same for both Ψ+ and Ψ− and moreover diagonalizes:(

∂2
z −

3

2(1− z)∂z +
ω̃2 + 1

16

(1− z)2

)
Ψ± +O((z − 1)) = 0. (3.4.36)

with ω̃ ≡ ω
a(3−q2)

= ω
4πT . This equation has solutions of the form

Ψ± = (1− z)iω̃− 1
4 (cr + ...) + (1− z)−iω̃− 1

4 (ci + ...) (3.4.37)

The second solution has the incoming boundary condition we seek.3

2Note that the factor L2/2κ2
4 in the on-shell action (5.2.10) follows from an un-

conventional normalization of the fields in the action (5.2.5). It would be absent for
conventional normalization.

3A technical detail is that due to the factors
√
f in the field equation, there is no

standard Frobenius solution Ψ± = (1−z)±iω̃−
1
4
∑∞
n=0 a

(±)
n (1−z)n. Rather half-integer

powers of (1− z) appear as well. We need the Frobenius method for the numerics: we
use it to construct a second b.c. for the derivative of Ψ+ — see e.g. [12]. Changing
coordinates to z = 1− s2 solves this problem.
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3.5 Finite temperature and the position of the
Fermi surface

With some hindsight from the chapters to follow, as well as in the light
of the detailed analysis performed in [79, 27] we will now comment on our
finding that at finite temperature the zero of energy in field theory, i.e.
the position of the Fermi surface lies at finite ω, i.e. differs from the AdS
zero of energy ω = 0. In our original paper reproduced in the previous
sections, we identified the zero of energy at finite temperature with the
maximum of the peak height. Our assumption was clearly that the peak
maximum closely corresponds to the definition of zero energy: a pole for
real ω at T = 0. For small T/µ thus the pole should not move much
as the temperature is changed, and therefore neither should the position
of the maximum peak height. We can test this hypothesis by plotting
the position of the maximum of the spectral function A(ω, k = kF ) for
three different temperatures (Figure 3.7A). Surprisingly, we see that the
position of the maximum EF (T ) drastically depends on T and moves
toward ω = 0 as the temperature is lowered. This suggests (in agreement
with the arguments given in [79, 27]) that the sharp Fermi surface, which
only exists at T = 0, is indeed at zero energy. This strong dependence
of the peak position on temperature is not known in field theory models,
and in the following chapter we will see that it suggests an inconsistency
in the probe limit calculations presented in this section. The changing
position EF (T ) is due to the instability of the black hole background in
the presence of Fermi surface (in the next chapter we will see that gravity
dual of a Fermi surface always has finite fermion density, which backreacts
on the gauge field and the metric).
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Figure 3.7: Spectral weight at its maximum, i.e. at the position of the peak for
three different values of temperature and ∆Ψ = 5/4. We see that the maximum
moves toward zero energy as the temperature is lowered. This suggests that the
true zero temperature ground state is indeed at ω = 0. However, the fact that
the ”Fermi energy” is strongly temperature-dependent is in fact a signal that
we are looking at the false vacuum, i.e. that a self-consistent calculation with
backreaction would yield a background different from the Reissner-Nordström
black hole. (B) The relation between the linearly dispersing quasiparticle peak
and the ω = 0 peak with slow (sublinear) dispersion as ∆Ψ → 3/2 for k/µ0 = 0.35
and µ0/T = −30.9.
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Chapter 4

AdS dual of a Fermi liquid:
Dirac hair [18]

4.1 Introduction

Fermionic quantum criticality is thought to be an essential ingredient in
the full theory of high Tc superconductivity [112, 102]. The cleanest exper-
imental examples of quantum criticality occur in heavy-fermion systems
rather than high Tc cuprates, but the experimental measurements in heavy
fermions raise equally confounding theoretical puzzles [80]. Most tellingly,
the resistivity scales linearly with the temperature from the onset of su-
perconductivity up to the crystal melting temperature [42] and this linear
scaling is in conflict with single correlation length scaling at criticality
[86]. The failure of standard perturbative theoretical methods to describe
such behavior is thought to indicate that the underlying quantum critical
system is strongly coupled [117, 78].

The combination of strong coupling and scale-invariant critical dynam-
ics makes these systems an ideal arena for the application of the AdS/CFT
correspondence: the well-established relation between strongly coupled
conformal field theories (CFT) and gravitational theories in anti-de Sit-
ter (AdS) spacetimes. An AdS/CFT computation of single-fermion spec-
tral functions — which are directly experimentally accessible via Angle-
Resolved Photoemission Spectroscopy [11, 21, 121] — bears out this promise
of addressing fermionic quantum criticality [79, 17, 27, 28] (see also [76,
91]). The AdS/CFT single fermion spectral function exhibits distinct
sharp quasiparticle peaks, associated with the formation of a Fermi sur-
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face, emerging from a scale-free state. The fermion liquid which this Fermi
surface captures is generically singular: it has either a non-linear disper-
sion or non-quadratic pole strength [79, 27]. The precise details depend
on the parameters of the AdS model.

From the AdS gravity perspective, peaks with linear dispersion cor-
respond to the existence of a stable charged fermionic quasinormal mode
in the spectrum of a charged AdS black hole. The existence of a sta-
ble charged bosonic quasinormal mode is known to signal the onset of
an instability towards a new ground state with a pervading Bose con-
densate extending from the charged black hole horizon to the boundary of
AdS. The dual CFT description of this charged condensate is spontaneous
symmetry breaking as in a superfluid and a conventional superconductor
[40, 47, 49]. For fermionic systems empirically the equivalent robust T = 0
groundstate is the Landau Fermi Liquid — the quantum groundstate of
a system with a finite number of fermions. The existence of a stable
fermionic quasinormal mode suggests that an AdS dual of a finite fermion
density state exists.

Here we shall make a step towards the set of AdS/CFT rules for CFTs
with a finite fermion density. The essential ingredient will be Migdal’s the-
orem, which relates the characteristic jump in fermion occupation number
at the energy ωF of the highest occupied state to the pole strength of the
quasiparticle. The latter we know from the spectral function analysis and
its AdS formulation is therefore known. Using this, we can show that the
fermion number discontinuity is encoded in the probability density of the
normalizable wavefunction of the dual AdS fermion field.

This shows that the AdS dual of a Fermi liquid is given by a system
with occupied fermionic states in the bulk. The Fermi liquid is clearly
not a scale invariant state, but any such states will have energy, momen-
tum/pressure and charge and will change the interior geometry from AdS
to something else. Which particular (set of) state(s) is the right one, it
does not yet tell us, as this conclusion relies only on the asymptotic be-
havior of fermion fields near the AdS boundary. Here we shall take the
simplest such state: a single fermion.1 Constructing first a set of equa-
tions in terms of the spatially averaged density, we find the associated
backreacted asymptotically AdS solution. This approximate solution is
already good enough to solve several problems of principle:

• A charged AdS black hole in the presence of charged fermionic modes

1These solutions are therefore the AdS extensions of [30–33].
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has a critical temperature below which fermionic Dirac “hair” forms.
For our effective single fermion solution, the derivative of the free en-
ergy has the characteristic discontinuity of a first order transition. In
AdS/CFT this has to be the case: In contrast to bosonic quasinormal
modes, a fermionic quasinormal mode can never cause a linear in-
stability indicative of a continuous phase transition. In the language
of spectral functions, the pole of the retarded Green’s function can
never cross to the upper-half plane [27].2 The absence of a pertur-
bative instability between this conjectured Dirac ”black hole hair”
solution and the “bald” charged AdS black hole can be explained if
the transition is a first order gas-liquid transition. The existence of
first order transition follows from a thermodynamic analysis of the
free energy rather than a spectral analysis of small fluctuations.

• This solution with finite fermion profile is the preferred ground state
at low temperatures compared to the bare charged AdS black hole.
The latter is therefore a false vacuum in a theory with charged
fermions. Confusing a false vacuum with the true ground state can
lead to anomalous results. Indeed the finite temperature behavior
of fermion spectral functions in AdS Reissner-Nordström, exhibited
in the combination of the results of [79, 27] and [17], shows strange
behavior. The former [79, 27] found sharp quasiparticle peaks at a
frequency ωF = 0 in natural AdS units, whereas the latter [17] found
sharp quasiparticle peaks at finite Fermi energy ωF 6= 0. As we will
show, both peaks in fact describe the same physics: the ωF 6= 0 peak
is a finite temperature manifestation of (one of the) ω = 0 peaks
in [27]. Its shift in location at finite temperature is explained by
the existence of the nearby true finite fermion density ground state,
separated by a potential barrier from the AdS Reissner-Nordström
solution.

• The solution we construct here only considers the backreaction on
the electrostatic potential. We show, however, that the gravitational
energy density diverges at the horizon. This ought to be, as one ex-
pects the infrared geometry to change due to fermion profile. The
charged AdS-black hole solution corresponds to a CFT system in
a state with large ground state entropy. This is the area of the
extremal black-hole horizon at T = 0. Systems with large ground-

2Ref. [10] argues that the instability can be second order.
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state entropy are notoriously unstable to collapse to a low-entropy
state, usually by spontaneous symmetry breaking. In a fermionic
system it should be the collapse to the Fermi liquid. The final state
will generically be a geometry that asymptotes to Lifschitz type,
i.e. the background breaks Lorentz-invariance and has a double-
pole horizon with vanishing area, as expounded in [50]. Indeed the
gravitational energy density diverges at the horizon in a similar way
as other systems that are known to gravitationally backreact to a
Lifshitz solution. The fully backreacted geometry includes impor-
tant separate physical aspects — it is relevant to the stability and
scaling properties of the Fermi liquid — and will be considered in a
companion article.

The Dirac hair solution thus captures the physics one expects of the
dual of a Fermi liquid. We have based its construction on a derived set
of AdS/CFT rules to describe systems at finite fermion density. Qualita-
tively the result is as expected: one also needs occupied fermionic states
in the bulk. Next to our effective single fermion approximation, another
simple candidate is the backreacted AdS-Fermi-gas [50]/electron star [51]
which appeared during the course of this work.3 The difference between
the two approaches are the assumptions used to reduce the interacting
Fermi system to a tractable solution. Ideally, one should carefully track
all the fermion wavefunctions as in the recent article [96]. As explained in
[19] the Fermi-gas and the single Dirac field are the two “local” approx-
imations to the generic non-local multiple fermion system in the bulk,
in very different regimes of applicability. The electron-star/Fermi-gas is
considered in the Thomas-Fermi limit where the microscopic charge of
the constituent fermions is sent to zero keeping the overall charge fixed,
whereas the single Dirac field clearly is the ’limit’ where the microscopic
charge equals the total charge in the system. This is directly evident in the
spectral functions of both systems. The results presented here show that
each pole in the CFT spectral function corresponds to a unique occupied
Fermi state in the bulk; the electron star spectra show a parametrically
large number of poles [53, 63, 19], whereas the Dirac hair state has a single
quasiparticle pole by construction. The AdS-Dirac-hair black hole derived
here therefore has the benefit of a direct connection with a unique Fermi
liquid state in the CFT. This is in fact the starting point of our derivation.

3See also [23, 6]. An alternative approach to back-reacting fermions is [64].
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In the broader context, the existence of both the Dirac hair and backre-
acted Fermi gas solution is not a surprise. It is a manifestation of universal
physics in the presence of charged AdS black holes. The results here, and
those of [79, 27, 50, 51], together with the by now extensive literature
on holographic superconductors, i.e. Bose condensates, show that at suf-
ficiently low temperature in units of the black-hole charge, the electric
field stretching to AdS-infinity causes a spontaneous discharge of the bulk
vacuum outside of the horizon into the charged fields of the theory —
whatever their nature. The positively charged excitations are repelled by
the black hole, but cannot escape to infinity in AdS and they form a charge
cloud hovering over the horizon. The negatively charged excitations fall
into the black-hole and neutralize the charge, until one is left with an un-
charged black hole with a condensate at finite T or a pure asymptotically
AdS-condensate solution at T = 0. As [50, 51] and we show, the statistics
of the charged particle do not matter for this condensate formation, ex-
cept in the way it forms: bosons superradiate and fermions nucleate. The
dual CFT perspective of this process is “entropy collapse”. The final state
therefore has negligible ground state entropy and is stable. The study of
charged black holes in AdS/CFT is therefore a novel way to understand
the stability of charged interacting matter which holds much promise.

4.2 From Green’s function to AdS/CFT rules for
a Fermi Liquid

We wish to show how a solution with finite fermion number — a Fermi liq-
uid — is encoded in AdS. The exact connection and derivation will require
a review of what we have learned of Dirac field dynamics in AdS/CFT
through Green’s functions analysis. The defining signature of a Fermi
liquid is a quasi-particle pole in the (retarded) fermion propagator,

GR =
Z

ω − µR − vF (k − kF )
+ regular (4.2.1)

Phenomenologically a non-zero residue at the pole, Z, also known as the
pole strength, is the indicator of a Fermi liquid state. Migdal famously
related the pole strength to the occupation number discontinuity at the
pole ω = 0.

Z = lim
ε→0

[nF (ω − ε)− nF (ω + ε)] (4.2.2)
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where

nF (ω) =

∫
d2kfFD

(ω
T

)
ImGR(ω, k).

with fFD the Fermi-Dirac distribution function. Vice versa, a Fermi liq-
uid with a Fermi-Dirac jump in occupation number at the Fermi energy
ωF = 0 has a low-lying quasiparticle excitation. Using our knowledge of
fermionic spectral functions in AdS/CFT we shall first relate the pole-
strength Z to known AdS quantities. Then using Migdal’s relation, the
dual of a Fermi liquid is characterized by an asymptotically AdS solution
with non-zero value for these very objects.

The Green’s functions derived in AdS/CFT are those of charged fermionic
operators with scaling dimension ∆, dual to an AdS Dirac field with mass
m = ∆− d

2 . We shall focus on d = 2+1 dimensional CFTs. In its gravita-
tional description this Dirac field is minimally coupled to 3+1 dimensional
gravity and electromagnetism with action

S =

∫
d4x
√−g

[
1

2κ2

(
R+

6

L2

)
− 1

4
F 2
MN − Ψ̄(/D +m)Ψ

]
. (4.2.3)

For zero background fermions, Ψ = 0, a spherically symmetric solution is
a charged AdS4 black-hole background

ds2 =
L2α2

z2

(
−f(z)dt2 + dx2 + dy2

)
+
L2

z2

dz2

f(z)
,

f(z) = (1− z)(1 + z + z2 − q2z3) ,

A
(bg)
0 = 2qα(z − 1) . (4.2.4)

Here A
(bg)
0 is the time-component of the U(1)-vector-potential, L is the

AdS radius and the temperature and chemical potential of the black hole
equal

T =
α

4π
(3− q2) , µ0 = −2qα, (4.2.5)

where q is the black hole charge.

To compute the Green’s functions we need to solve the Dirac equation
in the background of this charged black hole:

eMA ΓA(DM + iegAM )Ψ +mΨ = 0 , (4.2.6)
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where the vielbein eMA , covariant derivative DM and connection AM cor-
respond to the fixed charged AdS black-hole metric and electrostatic po-
tential (6.2.4)Denoting A0 = Φ and taking the standard AdS-fermion
projection onto Ψ± = 1

2(1± ΓZ)Ψ, the Dirac equation reduces to

(∂z +A±) Ψ± = ∓ /T Ψ∓ (4.2.7)

with

A± = − 1

2z

(
3− zf ′

2f

)
± mL

z
√
f
,

/T =
i(−ω + gΦ)

αf
γ0 +

i

α
√
f
kiγ

i . (4.2.8)

Here γµ are the 2+1-dimensional Dirac matrices, obtained after decom-
posing the 3+1 dimensional Γµ-matrices.

Explicitly the Green’s function is extracted from the behavior of the
solution to the Dirac equation at the AdS-boundary. The boundary be-
havior of the bulk fermions is

Ψ+(ω, k; z) = A+z
3
2
−m +B+z

5
2

+m + . . . ,

Ψ−(ω, k; z) = A−z
5
2
−m +B−z

3
2

+m + . . . , (4.2.9)

where A±(ω, k), B±(ω, k) are not all independent but related by the Dirac
equation at the boundary

A− = − iµ

(2m− 1)
γ0A+ , B+ = − iµ

(2m+ 1)
γ0B− . (4.2.10)

The CFT Green’s function then equals [17, 62, 79]

GR = lim
z→0

z−2mΨ−(z)

Ψ+(z)
− singular =

B−
A+

. (4.2.11)

In other words B− is the CFT response to the (infinitesimal) source A+.
Since in the Green’s function the fermion is a fluctuation, the functions
Ψ±(z) are now probe solutions to the Dirac equation in a fixed grav-
itational and electrostatic background (for ease of presentation we are
considering Ψ±(z) as numbers instead of two-component vectors). The
boundary conditions at the horizon/AdS interior determine which Green’s
function one considers, e.g. infalling horizon boundary conditions yield the
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retarded Green’s function. For non-zero chemical potential this fermionic
Green’s function can have a pole signalling the presence of a Fermi sur-
face. This pole occurs precisely for a (quasi-)normalizable mode, i.e. a
specific energy ωF and momentum kF where the external source A+(ω, k)
vanishes (for infalling boundary conditions at the horizon).

Knowing that the energy of the quasinormal mode is always ωF = 0
[79] and following [27], we expand GR around ω = 0 as:

GR(ω) =
B(0) + ωB(1) + . . .

A
(0)
+ + ωA

(1)
+ + . . .

. (4.2.12)

A crucial point is that in this expansion we are assuming that the pole will
correspond to a stable quasiparticle, i.e. there are no fractional powers
of ω less than unity in the expansion around ωF = 0 [27]. Fermions in
AdS/CFT are of course famous for allowing more general pole-structures
corresponding to Fermi-surfaces without stable quasiparticles [27], but
those Green’s functions are not of the type (4.2.1) and we shall therefore
not consider them here. The specific Fermi momentum kF associated with
the Fermi surface is the momentum value for which the first ω-independent

term in the denominator vanishes A
(0)
+ (kF ) = 0 — for this value of k = kF

the presence of a pole in the Green’s functions at ω = 0 is manifest.

Writing A
(0)
+ = a+(k − kF ) + . . . and comparing with the standard quasi-

particle propagator,

GR =
Z

ω − µR − vF (k − kF )
+ regular (4.2.13)

we read off that the pole-strength equals

Z = B
(0)
− (kF )/A

(1)
+ (kF ).

We thus see that a non-zero pole-strength is ensured by a non-zero
value ofB−(ω = 0, k = kF ) — the “response” without corresponding source
as A(0)(kF ) ≡ 0. Quantitatively the pole-strength also depends on the

value of A
(1)
+ (kF ) ≡ ∂ωA+(kF )|ω=0, which is always finite. This is not a

truly independent parameter, however. The size of the pole-strength has
only a relative meaning w.r.t. to the integrated spectral density. This nor-
malization of the pole strength is a global parameter rather than an AdS

boundary issue. We now show this by proving that A
(1)
+ (kF ) is inversely

proportional to B
(0)
− (kF ) and hence Z is completely set by B

(0)
− (kF ), i.e.
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Z ∼ |B(0)
− (kF )|2. Consider a transform W̃ (Ψ+,A,Ψ+,B) of the Wronskian

W (Ψ+,A,Ψ+,B) = Ψ+,A∂zΨ+,B − (∂zΨ+,A)Ψ+,B for two solutions to the
second order equivalent of the Dirac equation for the field Ψ+(

∂2
z + P (z)∂z +Q+(z)

)
Ψ+ = 0 (4.2.14)

that is conserved (detailed expressions for P (z) and Q+(z) will be given
later):

W̃ (Ψ+,A(z),Ψ+,B(z), z; z0) = exp

(∫ z

z0

P (z)

)
W (Ψ+,A(z),Ψ+,B(z)),(4.2.15)

For this quantity it holds ∂zW̃ = 0. Here z−1
0 is the infinitesimal distance

away from the boundary at z = 0 which is equivalent to the UV -cutoff in
the CFT. Setting k = kF and choosing for Ψ+,A = A+z

3/2−m∑∞
n=0 anz

n

and Ψ+,B = B+z
5/2+m

∑∞
n=0 bnz

nr the real solutions which asymptote to
solutions with B+(ω, kF ) = 0 and A+(ω, kF ) = 0 respectively, but for a

value of ω infinitesimally away from ωF = 0, we can evaluate W̃ at the
boundary to find,4

W̃ = z3
0(1 + 2m)A+B+ = µz3

0A+B− (4.2.16)

The last step follows from the constraint (5.2.2) where the reduction from
two-component spinors to functions means that γ0 is replaced by one of
its eigenvalues ±i. Taking the derivative of W̃ at ω = 0 for k = kF
and expanding A+(ω, kF ) and B−(ω, kF ) as in (4.2.12), we can solve for

A
(1)
+ (kF ) in terms of B

(0)
− (kF ) and arrive at the expression for the pole

strength Z in terms of |B(0)
− (kF )|2:

Z =
µz3

0

∂ωW̃ |ω=0,k=kF

|B(0)
− (kF )|2 . (4.2.17)

Because ∂ωW̃ , as W̃ , is a number that is independent of z, this expression

emphasizes that it is truly the nonvanishing subleading term B
(0)
− (ωF , kF )

which sets the pole strength, up to a normalization ∂ωW̃ which is set
by the fully integrated spectral density. This integration is always UV-
cut-off dependent and the explicit z0 dependence should therefore not

4P (z) = −3/z + . . . near z = 0
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surprise us.5 We should note that, unlike perturbative Fermi liquid theory,
Z is a dimensionful quantity of mass dimension 2m+ 1 = 2∆− 2, which
illustrates more directly its scaling dependence on the UV-energy scale z0.
At the same time Z is real, as it can be shown that both ∂ωW̃ |ω=0,k=kF =

µz3
0A

(1)
+ B

(0)
− and B

(0)
− are real [27].

4.2.1 The AdS dual of a stable Fermi Liquid: Applying
Migdal’s relation holographically

We have thus seen that a solution with nonzero B−(ωF , kF ) whose corre-
sponding external source vanishes (by definition of ωF , kF ), is related to
the presence of a quasiparticle pole in the CFT. Through Migdal’s theo-
rem its pole strength is related to the presence of a discontinuity of the
occupation number, and this discontinuity is normally taken as the char-
acteristic signature of the presence of a Fermi Liquid. Qualitatively we can
already infer that an AdS gravity solution with non-vanishing B−(ωF , kF )
corresponds to a Fermi Liquid in the CFT. We thus seek solutions to the
Dirac equation with vanishing external source A+ but non-vanishing re-
sponse B− coupled to electromagnetism (and gravity). The construction
of the AdS black hole solution with a finite single fermion wavefunction is
thus analogous to the construction of a holographic superconductor [47]
with the role of the scalar field now taken by a Dirac field of mass m.

This route is complicated, however, by the spinor representation of
the Dirac fields, and the related fermion doubling in AdS. Moreover, rela-
tivistically the fermion Green’s function is a matrix and the pole strength
Z appears in the time-component of the vector projection TriγiG. As
we take this and the equivalent jump in occupation number to be the
signifying characteristic of a Fermi liquid state in the CFT, it would be

5Using that W̃ is conserved, one can e.g. compute it at the horizon. There each solu-
tion Ψ+,A(ω, kF ; z), Ψ+,B(ω, kF ; z) is a linear combination of the infalling and outgoing
solution

Ψ+,A(z) = ᾱ (1− z)−1/4+ıω/4πT + α (1− z)−1/4−ıω/4πT + . . .

Ψ+,B(z) = β̄ (1− z)−1/4+ıω/4πT + β (1− z)−1/4−ıω/4πT + . . . (4.2.18)

yielding a value of ∂ωW̃ equal to (P (z) = 1/2(1− z) + . . . near z = 1)

∂ωW̃ =
i

2πT
N (z0)(ᾱβ − β̄α) (4.2.19)

with N (z0) = exp
∫ z
z0
dz
[
P (z)− 1

2(1−z)

]
.
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much more direct if we can derive an AdS radial evolution equation for
the vector-projected Green’s function and hence the occupation number
discontinuity directly. From the AdS perspective is also more convenient
to work with bilinears such as Green’s functions, since the Dirac fields
always couple pairwise to bosonic fields.

To do so, we start again with the two decoupled second order equations
equivalent to the Dirac equation (4.2.7)(

∂2
z + P (z)∂z +Q±(z)

)
Ψ± = 0 (4.2.20)

with

P (z) = (A− +A+)− [∂z, /T ]
/T
T 2

,

Q±(z) = A−A+ + (∂zA±)− [∂z, /T ]
/T
T 2
A± + T 2 . (4.2.21)

Note that both P (z) and Q±(z) are matrices in spinor space. The gen-
eral solution to this second order equation — with the behavior at the
horizon/interior appropriate for the Green’s function one desires — is a
matrix valued function (M±(z))αβ and the field Ψ±(z) equals Ψ±(z) =

M±(z)Ψ
(hor)
± . Due to the first order nature of the Dirac equation the

horizon values Ψ
(hor)
± are not independent but related by a z-independent

matrix SΨ
(hor)
+ = Ψ

(hor)
− , which can be deduced from the near-horizon

behavior of (5.2.2); specifically S = γ0. One then obtains the Green’s
function from the on-shell boundary action (see e.g. [16, 17])

Sbnd =

∮
z=z0

ddxΨ̄+Ψ− (4.2.22)

as follows: Given a boundary source ζ+ for Ψ+(z), i.e. Ψ+(z0) ≡ ζ+, one

concludes that Ψ
(hor)
+ = M−1

+ (z0)ζ+ and thus Ψ+(z) = M+(z)M−1
+ (z0)ζ+,

Ψ−(z) = M−(z)SM−1
+ (z0)ζ+. Substituting these solutions into the action

gives

Sbnd =

∮
z=z0

ddx ζ̄+M−(z0)SM−1
+ (z0)ζ+ (4.2.23)

The Green’s function is obtained by differentiating w.r.t. ζ̄+ and ζ+ and
discarding the conformal factor z2m

0 with m the AdS mass of the Dirac
field (one has to be careful for mL > 1/2 with analytic terms [16])

G = lim
z0→0

z−2m
0 M−(z0)SM−1

+ (z0) . (4.2.24)
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Since M±(z) are determined by evolution equations in z, it is clear that
the Green’s function itself is also determined by an evolution equation in
z, i.e. there is some function G(z) which reduces in the limit z → 0 to
z2m

0 G. One obvious candidate is the function

G(0)(z) = M−(z)SM−1
+ (z) . (4.2.25)

Using the original Dirac equations one can see that this function obeys
the non-linear evolution equation

∂zG
(0)(z) = −A−G(0)(z)− /TM+SM

−1
+ +A+G

(0)(z) +G(0)(z) /T G(0)(z) .(4.2.26)

This is the approach used in [79], where a specific choice of momenta is
chosen such that M+ commutes with S. For a generic choice of momenta,
consistency requires that one also considers the evolution equation for
M+(z)SM−1

+ (z).
There is, however, another candidate for the extension G(z) which

is based on the underlying boundary action. Rather than extending the
kernel M−(z0)M−1

+ (z0) of the boundary action we extend the constituents
of the action itself, based on the individual fermion wavefunctions Ψ±(z) =

M±(z)S
1
2
∓ 1

2M−1
+ (z0). We define an extension of the matrix G(z) including

an expansion in the complete set ΓI = {11, γi, γij , . . . , γi1,id} (with γ4 =
iγ0)

GI(z) = M̄−1
+ (z0)M̄+(z)ΓIM−(z)SM−1

+ (z0)

GI(z0) = ΓIG(z0) (4.2.27)

where M̄ = iγ0M †iγ0. Using again the original Dirac equations, this
function obeys the evolution equation

∂zG
I(z) = −(Ā+ +A−)GI(z)− M̄−1

+,0M̄−(z) /̄T ΓIM−(z)SM−1
+,0 +

+M̄−1
+,0M̄+(z)ΓI /TM+(z)SM−1

+,0 (4.2.28)

Recall that /T γi1...ip = T [i1γ...ip] + Tjγji1...ip . It is then straightforward to
see that for consistency, we also need to consider the evolution equations
of

J I+ = M̄−1
+,0M̄+(z)ΓIM+(z)SM−1

+,0 , J I− = M̄−1
+,0M̄−(z)ΓIM−(z)SM−1

+,0

and
ḠI = M̄−1

+,0M̄−(z)ΓIM+(z)SM−1
+,0.
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The significant advantage of these functions GI , ḠI , J I± is that the evo-
lution equations are now linear. This approach may seem overly com-
plicated. However, if the vector T i happens to only have a single com-
ponent nonzero, then the system reduces drastically to the four fields
J i±, G11, Ḡ11.We shall see below that a similar drastic reduction occurs,
when we consider only spatially and temporally averaged functions JI =∫
dtd2xJ I±.

Now the two extra currents J I± have a clear meaning in the CFT. The
current GI(z) reduces by construction to ΓI times the Green’s function
G11(z0) on the boundary, and clearly ḠI(z) is its hermitian conjugate. The
current J I+ reduces at the boundary to J I+ = ΓIM+,0SM

−1
+,0. Thus J I+

sets the normalization of our linear system. The interesting current is the
current J I−. Using that S̄ = S̄−1, it can be seen to reduce on the boundary

to the combination J̄ 11
+ Ḡ

11ΓIG11. Thus,
(
J̄ 11

+

)−1 J 11
− is the norm squared of

the Green’s function, i.e. the probability density of the off-shell process.

For an off-shell process or a correlation function the norm-squared has
no real functional meaning. However, we are specifically interested in so-
lutions in the absence of an external source, i.e. the on-shell correlation
functions. In that case the analysis is quite different. The on-shell condi-
tion is equivalent to choosing momenta to saturate the pole in the Green’s
function, i.e. it is precisely choosing dual AdS solutions whose leading
external source A± vanishes. Then M+ and M− are no longer indepen-

dent, but M+,0 = δB+/δΨ
(hor)
+ = − iµγ0

2m+1M−,0S. As a consequence all

boundary values of J I−(z0), GI(z0), ḠI(z0) become proportional; specifi-
cally using S = γ0 one has that

J 0
−(z0)|on−shell =

(2m+ 1)

µ
γ0G11(z0)|on−shell (4.2.29)

is the “on-shell” Green’s function. Now, the meaning of the on-shell cor-
relation function is most evident in thermal backgrounds. It equals the
density of states ρ(ω(k)) = − 1

π ImGR times the Fermi-Dirac distribution
[77]

Triγ0GtF (ωbare, k)
∣∣
on−shell

= 2πfFD

(
ωbare − µ

T

)
ρ(ωbare) (4.2.30)

For a Fermi liquid with the defining off-shell Green’s function (4.2.1)
ωbare(kF ) − µ ≡ ω = 0 and ρ(ωbare(k)) = Zz0δ

2(k − kF )δ(ω) + . . .. Thus
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we see that the boundary value of J (0)
− (z0)|on−shell = ZfFD(0)δ3(0) in-

deed captures the pole strength directly times a product of distributions.
This product of distributions can be absorbed in setting the normaliza-
tion. An indication that this is correct is that the determining equations
for GI , ḠI , J I± remain unchanged if we multiply GI , ḠI , J I± on both
sides with M+,0. If M+,0 is unitary it is just a similarity transformation.
However, from the definition of the Green’s function, one can see that this
transformation precisely removes the pole. This ensures that we obtain
finite values for GI , ḠI , J I± at the specific pole-values ωF , kF where the
distributions would naively blow up.

Boundary conditions and normalizability

We have shown that a normalizable solution to J 0
− correctly captures the

pole strength directly. However, ’normalizable’ is still defined in terms of
an absence of a source for the fundamental Dirac field Ψ± rather than
the composite fields J I± and GI . One would prefer to determine normaliz-
ability directly from the boundary behavior of the composite fields. This
can be done. Under the assumption that the electrostatic potential Φ is
regular, i.e.

Φ = µ− ρz + . . . (4.2.31)

the “connection” T I is subleading to the connection A near z = 0. Thus
the equations of motion near z = 0 do not mix the various J I±, GI and
the composite fields behave as

J I+ = jI3−2mz
3−2m + jI4+

z4 + jI5+2mz
5+2m + . . . ,

J I− = jI5−2mz
5−2m + jI4−z

4 + jI3+2mz
3+2m + . . . ,

GI = II4−2mz
4−2m + II3z

3 + II4+2mz
4+2m + II5z

5 + . . . , (4.2.32)

with the identification

jI3−2m = Ā+ΓIA+, jI4+
= Ā+ΓIB+ + B̄+ΓIA+, jI5+2m = B̄+ΓIB+ ,

jI3+2m = Ā−ΓIA−, jI4− = Ā−ΓIB− + B̄−ΓIA−, jI5−2m = B̄−ΓIB− ,

II4−2m = Ā+ΓIA−, II3 = Ā+ΓIB−, I4+2m = B̄+ΓIB−,

II5 = B̄+ΓIA− . (4.2.33)

A ’normalizable’ solution in J I− and thus J 0
− is therefore defined by the

vanishing of both the leading and the subleading term.
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4.3 An AdS Black hole with Dirac Hair

Having determined a set of AdS evolution equations and boundary con-
ditions that compute the pole strength Z directly through the currents

J (0)
− (z) and GI(z), we can now try to construct the AdS dual of a system

with finite fermion density, including backreaction. As we remarked in the
beginning of section 4.2.1, the demand that the solutions be normalizable
means that the construction of the AdS black hole solution with a finite
single fermion wavefunction is analogous to the construction of a holo-
graphic superconductor [47] with the role of the scalar field now taken by
the Dirac field. The starting point therefore is the charged AdS4 black-
hole background (6.2.4) and we should show that at low temperatures this
AdS Reissner-Nordström black hole is unstable towards a solution with
a finite Dirac profile. We shall do so in a simplified “large charge” limit
where we ignore the gravitational dynamics, but as is well known from
holographic superconductor studies (see e.g. [47, 49]) this limit already
captures much of the essential physics. In a companion article [20] we
will construct the full backreacted groundstate including the gravitational
dynamics.

In this large charge non-gravitational limit the equations of motion for
the action (4.2.3) reduce to those of U(1)-electrodynamics coupled to a
fermion with charge g in the background of this black hole:

DMF
MN = igeNA Ψ̄ΓAΨ ,

0 = eMA ΓA(DM + iegAM )Ψ +mΨ . (4.3.1)

Thus the vielbein eMA and and covariant derivative DM remain those of the
fixed charged AdS black hole metric (6.2.4), but the vector-potential now

contains a background piece A
(bg)
0 plus a first-order piece AM = A

(bg)
M +

A
(1)
M , which captures the effect of the charge carried by the fermions.

Following our argument set out in previous section that it is more con-
venient to work with the currents J I±(z), GI(z) instead of trying to solve
the Dirac equation directly, we shall first rewrite this coupled non-trivial
set of equations of motion in terms of the currents while at the same time
using symmetries to reduce the complexity. Although a system at finite
fermion density need not be homogeneous, the Fermi liquid ground state
is. It therefore natural to make the ansatz that the final AdS solution is
static and preserves translation and rotation along the boundary. As the
Dirac field transforms non-trivially under rotations and boosts, we cannot
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make this ansatz in the strictest sense. However, in some average sense
which we will make precise, the solution should be static and translation-
ally invariant. Then translational and rotational invariance allow us to set
Ai = 0, Az = 0, whose equations of motions will turn into contraints for
the remaining degrees of freedom. Again denoting A0 = Φ, the equations
reduce to the following after the projection onto Ψ± = 1

2(1± ΓZ)Ψ.

∂2
zΦ =

−gL3α

z3
√
f

(
Ψ̄+iγ

0Ψ+ + Ψ̄−iγ
0Ψ−

)
,

(∂z +A±) Ψ± = ∓ /T Ψ∓ (4.3.2)

with

A± = − 1

2z

(
3− zf ′

2f

)
± mL

z
√
f
,

/T =
i(−ω + gΦ)

αf
γ0 +

i

α
√
f
kiγ

i . (4.3.3)

as before.
The difficult part is to “impose” staticity and rotational invariance for

the non-invariant spinor. This can be done by rephrasing the dynamics in
terms of fermion current bilinears, rather than the fermions themselves.
We shall first do so rather heuristically, and then show that the equations
obtained this way are in fact the flow equations for the Green’s functions
and composites J I(z), GI(z) constructed in the previous section. In terms
of the local vector currents6

Jµ+(x, z) = Ψ̄+(x, z)iγµΨ+(x, z) , Jµ−(x, z) = Ψ̄−(x, z)iγµΨ−(x, z) ,
(4.3.4)

or equivalently

Jµ+(p, z) =

∫
d3kΨ̄+(−k, z)iγµΨ+(p+ k, z),

Jµ−(p, z) =

∫
d3kΨ̄−(−k, z)iγµΨ−(p+ k, z) . (4.3.5)

rotational invariance means that spatial components J i± should vanish on
the solution — this solves the constraint from the Ai equation of motion,
and the equations can be rewritten in terms of J0

± only. Staticity and

6In our conventions Ψ̄ = Ψ
†
iγ0.
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rotational invariance in addition demand that the bilinear momentum pµ
vanish. In other words, we are only considering temporally and spatially
averaged densities: Jµ±(z) =

∫
dtd2xΨ̄(t, x, z)iγµΨ(t, x, z). Analogous to

the bilinear flow equations for the Green’s function, we can act with the
Dirac operator on the currents to obtain an effective equation of motion,
and this averaging over the relative frequencies ω and momenta ki will
set all terms with explicit ki-dependence to zero.7 Restricting to such
averaged currents and absorbing a factor of g/α in Φ and a factor of g

√
L3

in Ψ±, we obtain effective equations of motion for the bilinears directly

(∂z + 2A±) J0
± = ∓Φ

f
I ,

(∂z +A+ +A−) I =
2Φ

f
(J0

+ − J0
−) ,

∂2
zΦ = − 1

z3
√
f

(J0
+ + J0

−) , (4.3.8)

with I = Ψ̄−Ψ+ +Ψ̄+Ψ−, and all fields are real. The remaining constraint
from the Az equation of motion decouples. It demands Im(Ψ̄+Ψ−) =
i
2(Ψ̄−Ψ+ − Ψ̄+Ψ−) = 0. What the equations (4.3.8) tell us is that for
nonzero J0

± there is a charged electrostatic source for the vector potential
Φ in the bulk.

Momentarily we will motivate the effective equations (4.3.8) at a more
fundamental level. Before that there are several remarks to be made

• These equations contain more information than just current conser-
vation ∂µJ

µ = 0. In an isotropic and static background current con-
servation is trivially true as ∂µJ

µ = ∂0J
0 = −i

∫
dωe−iωtωJ0(ω) = 0

as J0(ω 6= 0) = 0.

7To see this consider

(∂ + 2A±)Ψ†±(−k)Ψ±(k) = ∓Φ

f

(
Ψ†−iγ

0Ψ+ + Ψ†+iγ
0Ψ−

)
+
iki√
f

(
Ψ†−γ

iΨ+ −Ψ†+γ
iΨ−

)
.(4.3.6)

The term proportional to Φ is relevant for the solution. The dynamics of the term
proportional to ki is

(∂ +A+ +A−)(Ψ†−γ
iΨ+ −Ψ†+γ

iΨ−) = −2i
ki√
f

(Ψ†+γ
0Ψ+ + Ψ†−γ

0Ψ−) . (4.3.7)

The integral of the RHS over ki vanishes by the assumption of translational and ro-
tational invariance. Therefore the LHS of (5.2.14) and thus the second term in eq.
(5.2.13) does so as well.
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• We have scaled out the electromagnetic coupling. AdS4/CFT3 duals
for which the underlying string theory is known generically have
g = κ/L with κ the gravitational coupling constant as defined in
(4.2.3). Thus, using standard AdS4/CFT3 scaling, a finite charge in
the new units translates to a macroscopic original charge of order
L/κ ∝ N1/3. This large charge demands that backreaction of the
fermions in terms of its bilinear is taken into account as a source for
Φ.

• The equations are local. From the fundamental point of view, that
one considers finite density in the bulk, this is strange to say the
least. Generic multi-fermion configurations are non-local, see e.g.
[96]. These equations can therefore never capture the full bulk
fermion dynamics. Our starting point has been a single fermion per-
spective, where the Pauli blocking induced non-locality is absent. In
that context local equations are fine. We have also explicitly aver-
aged over all directions parallel to the boundary and, as we have
shown in the previous section (see also footnote 7), it is this aver-
aging that tremendously simplifies the equations. The most curious
part may be that this unaveraged set of equations — and therefore
also eqs (4.3.8) — are all local in the radial direction z. From the
AdS perspective a many-fermion system should be non-local demo-
cratically and thus also exhibit non-locality in z, yet from the CFT
perspective where z-dynamics encode RG-flow, it is eminently nat-
ural. We leave the resolution of this paradox to future work.

The justification of using (4.3.8) to construct the AdS dual of a regular
Fermi liquid is the connection between local fermion bilinears and the CFT
Green’s function. The complicated flow equations reduce precisely to the
first two equations in (4.3.8) upon performing the spacetime averaging and
the trace, i.e. J0

± =
∫
d3kTrJ 0

± and I =
∫
d3kTr

(
G11 + Ḡ11

)
. Combined

with the demand that we only consider normalizable solutions and the
proof that J 0

− is proportional to the pole-strength, the radial evolution
equations (4.3.8) are the (complicated) AdS recasting of the RG-flow for
the pole-strength. This novel interpretation ought to dispel some of the a
priori worries about our unconventional treatment of the fermions through
their semi-classical bilinears. There is also support from the gravity side,
however. Recall that for conventional many-body systems and fermions
in particular one first populates a certain set of states and then tries to
compute the macroscopic properties of the collective. In a certain sense the
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equations (4.3.8) formulate the same program but in opposite order: one
computes the generic wavefunction charge density with and by imposing
the right boundary conditions, i.e normalizability, one selects only the
correct set of states. This follows directly from the equivalence between
normalizable AdS modes and quasiparticle poles that are characterized by
well defined distinct momenta kF (for ω = ωF ≡ 0). The demand that
any non-trivial Dirac hair black hole is constructed from normalizable
solutions of the composite operators (i.e. their leading and subleading
asymptotes vanish8) thus means that one imposes a superselection rule on
the spatial averaging in the definition of JI±:

J0
±(z)|norm ≡

∫
d3kΨ̄±(−k)iγ0Ψ±(k)|norm

=

∫
d3k δ2(|k| − |kF |)|B(0)

± (k)|2z4+2m±1 + . . .(4.3.9)

We see that the constraint of normalizability from the bulk point of the
view, implies that one selects precisely the on-shell bulk fermion modes as
the building blocks of the density J0

±.

In turn this means that the true system that eqs. (4.3.8) describe is
somewhat obscured by the spatial averaging. Clearly even a single fermion
wavefunction is in truth the full set of two-dimensional wavefunctions
whose momentum ki has length kF . However, the averaging could just
as well be counting more, as long as there is another set of normalizable
states once the isotropic momentum surface |k| = |kF | is filled. Pushing
this thought to the extreme, one could even speculate that the system
(4.3.8) gives the correct quantum-mechanical description of the many-
body Fermi system: the system which gravitational reasoning suggests
is the true groundstate of the charged AdS black hole in the presence of
fermions.

To remind us of the ambiguity introduced by spatial averaging, we
shall give the boundary coefficient of normalizable solution for J0

− =∫
d3kJ 0

− a separate name. The quantity J 0
−(z0) is proportional to the

8One can verify that the discussion in section 4.2.1 holds also for fully backreacted
solutions. The derivation there builds on the assumption that the boundary behavior of
the electrostatic potential is regular. It is straightforward to check in (4.3.8) that indeed
precisely for normalizable solutions, i.e. in the absence of explicit fermion-sources, when
both the leading and subleading terms in J0

± and I vanish, the boundary behavior the
scalar potential remains regular, as required.
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pole strength, which via Migdal’s relation quantifies the characteristic oc-
cupation number discontinuity at ωF ≡ 0. We shall therefore call the
coefficient

∫
d3k|B−|2|normalizable = ∆nF .

Thermodynamics

At a very qualitative level the identification J0
−|norm(z) ≡ ∆nF z

3+2m+ . . .
can be argued to follow from thermodynamics as well. From the free
energy for an AdS dual solution to a Fermi liquid, one finds that the
charge density directly due to the fermions is

ρtotal = −2
∂

∂µ
F =

−3

2m+ 1

∆nF

z−1−2m
0

+ ρ+ . . . , (4.3.10)

with z−1
0 the UV-cutoff as before. The cut-off dependence is a consequence

of the fact that the system is interacting, and one cannot truly separate
out the fermions as free particles. Were one to substitute the naive free
fermion scaling dimension ∆ = m+ 3/2 = 1, the cutoff dependence would
vanish and the identification would be exact.

We can thus state that in the interacting system there is a contribution
to the charge density from a finite number of fermions proportional to

ρF =
−3

2∆− 2

∆nF

z2−2∆
0

+ . . . , (4.3.11)

although this contribution formally vanishes in the limit where we send
the UV-cutoff z−1

0 to infinity.
To derive eq. (5.2.16), recall that the free energy is equal to minus the

on-shell action of the AdS dual theory. Since we disregard the gravitational
backreaction, the Einstein term in the AdS theory will not contain any
relevant information and we consider the Maxwell and Dirac term only.
We write the action as,

S =

∫ 1

z0

√−g
[

1

2
ANDMF

MN − Ψ̄/DΨ−mΨ̄Ψ

]
+

+

∮
z=z0

√
−h
(

Ψ̄+Ψ− +
1

2
AµnαF

αµ

)
, (4.3.12)

where we have included an explicit fermionic boundary term that fol-
lows from the AdS/CFT dictionary [17] and nα is a normal vector to the
boundary. The boundary action is not manifestly real, but its on-shell
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value which contributes to the free energy is real. Recall that the imag-
inary part of Ψ̄+Ψ− decouples from eqs. (4.3.8). The boundary Dirac
term in (5.2.10) is therefore equal to I = 2Re(Ψ̄+Ψ−).

To write the free energy in terms of the quantities µ, ρ and ∆nF ,
note that the on-shell bulk Dirac action vanishes. Importantly the bulk
Maxwell action does contribute to the free energy. Its contribution is

Fbulk = lim
z0→0

∫ 1

z0

dzd3x

[
1

2
Φ∂zzΦ

]
on−shell

= − lim
z0→0

∫ 1

z0

dzd3x

[
1

2z3
√
f

Φ(J0
+ + J0

−)

]
on−shell

,(4.3.13)

where we have used the equation of motion (4.3.8). This contribution
should be expected, since the free energy should be dominated by in-
frared, i.e. near horizon physics. Due to the logarithmic singularity in the
electrostatic potential (Eq. (4.3.17) this bulk contribution diverges, but
this divergence should be compensated by gravitational backreaction. At
the same time the singularity is so mild, however, that the free energy, the
integral of the Maxwell term, remains finite in the absence of the Einstein
contribution.

Formally, i.e. in the limit z0 → 0, the full free energy arises from
this bulk contribution (4.3.13). The relation (5.2.16) between the charge
density and ∆nF follows only from the regularized free energy, and is
therefore only a qualitative guideline. Empirically, as we will show, it is
however, a very good one (see Fig 4.1 in the next section). Splitting the
regularized bulk integral in two

Fbulk =

∫ 1

z∗
dzd3x

[
1

2z3
√
f

Φ(J0
+ + J0

−)

]
on−shell

+

+ lim
z0→0

∫ z∗

z0

dzd3x

[
1

2z3
√
f

Φ(J0
+ + J0

−)

]
on−shell

, (4.3.14)

we substitute the normalizable boundary behavior of Ψ+ = B+z
5/2+m +

. . ., Ψ− = B−z
3/2+m + . . . and Φ = µ − ρz + . . ., and obtain for the

regularized free energy

F = Fhorizon(z∗) + lim
z0→0

∫ z∗

z0

d3xdz

[−1

2z3
µ|B−|2z3+2m + . . .

]
+

+

∮
d3x

z3
0

[
−B̄+B−z

4+2m
0 +

1

2
µρz3

0

]
. (4.3.15)
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Using that B+ = −iµγ0B−/(2m+ 1) (eq. (5.2.2)), the second bulk term
and boundary contribution are proportional, and the free energy schemat-
ically equals

F = F horizon + lim
z0→0

∫
d3x

[
3µ

2(2m+ 1)
B̄−iγ

0B−z
1+2m
0 − 1

2
µρ

]
.(4.3.16)

With the UV-regulator z−1
0 finite, this yields the charge density in Eq.

(5.2.16) after one recalls that B̄− = B†−iγ
0.

With the derived rule that the AdS dual to a Fermi liquid has a nonzero
normalizable component in the current J0

−, we will now construct an AdS
solution that has this property: an AdS black hole with Dirac hair. Ig-
noring backreaction, these are solutions to the density equations (4.3.8).
In its simplest form the interpretation is that of the backreaction due to
a single fermion wavefunction, but as explained the spatial averaging of
the density combined with the selection rule of normalizability could be
capturing a more general solution.

4.3.1 At the horizon: Entropy collapse to a Lifshitz solu-
tion

Before we can proceed with the construction of non-trivial Dirac hair
solutions to Eqs. (4.3.8), we must consider the boundary conditions at
the horizon necessary to solve the system. Insisting that the right-hand-
side of the dynamical equations (4.3.8) is subleading at the horizon, the
near-horizon behavior of J0

±, I, Φ is:

J0
± = Jhor,±(1− z)−1/2 + . . . ,

I = Ihor(1− z)−1/2 + . . . ,

Φ = Φ
(1)
hor(1− z) ln(1− z) + (Φ

(2)
hor − Φ

(1)
hor)(1− z) + . . . .(4.3.17)

If we insist that Φ is regular at the horizon z = 1, i.e. Φ
(1)
hor = 0, so that

the electric field is finite, the leading term in J0
± must vanish as well, i.e.

Jhor,± = 0, and the system reduces to a free Maxwell field in the pres-
ence of an AdS black hole and there is no fermion density profile in the
bulk. Thus in order to achieve a nonzero fermion profile in the bulk, we
must have an explicit source for the electric-field on the horizon. Strictly
speaking, this invalidates our neglect of backreaction as the electric field
and its energy density at the location of the source will be infinite. As
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we argued above, this backreaction is in fact expected to resolve the finite
ground-state entropy problem associated with the presence of a horizon.
The backreaction should remove the horizon completely, and the back-
ground should resemble the horizonless metrics found in [50, 37, 51]; the
same horizon logarithmic behavior in the electrostatic potential was noted
there. Nevertheless, as the divergence in the electric field only increases
logarithmically as we approach the horizon, and our results shall hinge on
the properties of the equations at the opposite end near the boundary, we
shall continue to ignore it here. We shall take the sensibility of our result
after the fact, as proof that the logarithmic divergence at the horizon is
indeed mild enough to be ignored.

The identification of the boundary value of J0
− with the Fermi liq-

uid characteristic occupation number jump ∆nF rested on the insistence
that the currents are built out of AdS Dirac fields. This deconstruction
also determines a relation between the horizon boundary conditions of the
composite fields J0

±, I. If Ψ±(z) = C±(1− z)−1/4 + . . . then Jhor,± = C2
±

and Ihor = C+C−. As the solution Φ
(1)
hor is independent of the solution

Φ
(2)
hor which is regular at the horizon, we match the latter to the vector-

potential of the charged AdS black hole: Φ
(2)
hor = −2gq ≡ gµ0/α. Re-

calling that Φ
(1)
hor = −(Jhor,+ + Jhor,−), we see that the three-parameter

family of solutions at the horizon in terms of C±, Φ
(2)
hor corresponds to

the three-parameter space of boundary values A+, B− and µ encoding a
fermion-source, the fermion-response/expectation value and the chemical
potential.

We can now search whether within this three-parameter family a finite
normalizable fermion density solution with vanishing source A+ = 0 exists
for a given temperature T of the black hole.

4.3.2 A BH with Dirac hair

The equations are readily solved numerically with a shooting method from
the horizon. We consider both an uncharged AdS-Schwarzschild solution
and the charged AdS Reissner-Nordström solution. Studies of bosonic con-
densates in AdS/CFT without backreaction have mostly been done in the
AdS-Schwarzschild (AdSS) background ([46, 47] and references therein).
An exception is [3], which also considers the charged RN black hole. As
is explained in [3], they correspond to two different limits of the exact
solution: the AdSS case requires that ∆nF & µ that is, the total charge
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of the matter fields should be dominant compared to the charge of the
black hole. On the other hand, the RN limit is appropriate if ∆nF � µ.
It ignores the effect of the energy density of the charged matter sector on
the charged black hole geometry. The AdS Schwarzschild background is
only reliable near Tc, as at low temperatures the finite charged fermion
density is comparable to µ. The RN case is under better control for low
temperatures, because near T = 0 the chemical potential can be tuned to
stay larger than fermion density.

We shall therefore focus primarily on the solution in the background
of an AdS RN black hole, i.e. the system with a heat bath with chemical

potential µ — non-linearly determined by the value of Φ
(2)
hor = µ0 at the

horizon — which for low T/µ should show the characteristic ∆nF of a
Fermi liquid. The limit in which we may confidently ignore backreaction

is Φ
(1)
hor � µ0 for T . µ0 — for AdSS the appropriate limit is Φ

(1)
hor � T

for µ0 � T .

Finite fermion density solutions in AdS-RN

Fig. 4.1 shows the behavior of the occupation number discontinuity
nF ≡ |B−|2 and the fermion free-energy contribution I as a function of
temperature in a search for normalizable solutions to Eqs (4.3.8) with the
aforementioned boundary conditions. We clearly see a first order transi-
tion to a finite fermion density, as expected. The underlying Dirac field
dynamics can be recognized in that the normalizable solution for J0

−(z)
which has no leading component near the boundary by construction, also
has its subleading component vanishing (Fig. 4.2).9

Analyzing the transition in more detail in Fig. 4.3, we find:

1. The dimensionless number discontinuity ∆nF /µ
2∆ scales as T−δ in

a certain temperature range TF < T < Tc, with δ > 0 depending on
g and ∆, and TF typically very small. At T = Tc > TF it drops to
zero discontinuously, characteristic of a first order phase transition.

2. At low temperatures, 0 < T < TF , the power-law growth comes to a
halt and ends with a plateau where ∆nF /µ

2∆ ∼ const. (Fig. 4.3A).

9Although the Dirac hair solution has charged matter in the bulk, there is no Higgs ef-
fect for the bulk gauge field, and thus there is no direct spontaneous symmetry breaking
in the boundary. Indeed one would not expect it for the Fermi liquid groundstate. There
will be indirect effect on the conductivity similar to [51]. We thank Andy O’Bannon
for his persistent inquiries to this point.
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It is natural to interpret this temperature as the Fermi temperature
of the boundary Fermi liquid.

3. The fermion free energy contribution I/µ2∆+1 scales as T 1/ν with
ν > 1 for 0 < T < Tc, and drops to zero discontinuously at Tc. As
I empirically equals minus the free energy per particle, it is natural
that I(T = 0) = 0, and this in turn supports the identification of
∆nF (T = 0) as the step in number density at the Fermi energy.
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Figure 4.1: (A) Temperature dependence of the Fermi liquid occupation number
discontinuity ∆nF and operator I for a fermionic field of mass m = −1/4 dual
to an operator of dimension ∆ = 5/4. We see a large density for T/µ small and
discontinuously drop to zero at T ≈ 0.05µ. At this same temperature, the proxy
free energy contribution per particle (the negative of I) vanishes. (B) The free
energy F = F fermion + FMaxwell (Eq. (5.2.10)) as a function of T/µ ignoring
the contribution from the gravitational sector. The blue curve shows the total
free energy F = FMaxwell, which is the sum of a bulk and a boundary term.
The explicit fermion contribution Ffermion vanishes, but the effect of a non-
zero fermion density is directly encoded in a non-zero FMaxwell

bulk . The figure also
shows this bulk FMaxwell

bulk and the boundary contribution FMaxwell
bulk separately

and how they sum to a continuous Ftotal. Although formally the explicit fermion
contribution Ff ∼ I in equation (5.2.11) vanishes, the bulk Maxwell contribution
is captured remarkably well by its value when the cut-off is kept finite. The light-
green curve in the figure shows Ff for a finite z0 ∼ 10−6. For completeness we
also show the total charge density, Eq. (5.2.16). The dimension of the fermionic
operator used in this figure is ∆ = 1.1.

One expects that the exponents δ, ν are controlled by the conformal
dimension ∆.10 The dependence of the exponent δ on the conformal di-

10The charge g of the underlying conformal fermionic operator scales out of the so-



90 Chapter 4. AdS dual of a Fermi liquid: Dirac hair [18]

-12 -10 -8 -6 -4 -2
log z

-60

-50

-40

-30

-20

-10

0

l
og

J !
!z"

Figure 4.2: The boundary behavior of J−(0) in for a generic solution (blue)
to Eqs. (4.3.8) and a normalizable Dirac-hair solution (red) for m = −1/4
in the background of an AdS-RN black hole with µ/T = 128.8. The dotted
lines show the scaling z11/2 and z4 of the leading and subleading terms in an
expansion of J0

−(z) near z = 0; the dashed line shows the scaling z5/2 of the
subsubleading expansion whose coefficient is |B−(ωF , kF )|2. That the Dirac hair
solution (red) scales as the subsubleading solution indicates that the current J0

−
faithfully captures the density of the underlying normalizable Dirac field.

mension is shown in Fig. 4.3A. While a correlation clearly exists, the data
are not conclusive enough to determine the relation δ = δ(∆). The clean
power law T−δ scaling regime is actually somewhat puzzling. These values
of the temperature, TF < T < Tc, correspond to a crossover between the
true Fermi liquid regime for T < TF and the conformal phase for T > Tc,
hence there is no clear ground for a universal scaling relation for δ, which
seems to be corroborated by the data (Fig. 4.3B). At the same time, the
scaling exponent ν appears to obey ν = 2 with great precision (Fig. 4.3B,
inset) independent of ∆ and g.

A final consideration, needed to verify the existence of a finite fermion
density AdS solution dual to a Fermi liquid, is to show that the ignored
backreaction stays small. In particular, the divergence of the electric field
at the horizon should not affect the result. The total bulk electric field
Ez = −∂zΦ is shown in Fig. 4.4A, normalized by its value at z = 1/2. The
logarithmic singularity at the horizon is clearly visible. At the same time,
the contribution to the total electric field from the charged fermions is

lution.
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Figure 4.3: (A) Approximate power-law scaling of the Fermi liquid characteristic
occupation number discontinuity ∆nF /µ

2∆ ∼ T−δ as a function of T/µ for ∆ =
5/4. This figure clearly shows the saturation of the density at very low T/µ. The
saturation effect is naturally interpreted as the influence of the characteristic
Fermi energy. (B) The scaling exponent δ for different values of the conformal
dimension ∆. There is a clear correlation, but the precise relation cannot be
determined numerically. The scaling exponent of the current I/µ2∆+1 ∼ T−1/ν

obeys ν = 2 with great accuracy, on the other hand (Inset).

negligible even very close to the horizon.11 This suggests that our results
are robust with respect to the details of the IR divergence of the electric
field.

The diverging backreaction at the horizon is in fact the gravity inter-
pretation of the first order transition at Tc: an arbitrarily small non-zero
density leads to an abrupt change in the on shell bulk action. As the latter
is the free energy in the CFT, it must reflect the discontinuity of a first
order transition. A full account of the singular behavior at the horizon
requires self-consistent treatment including the Einstein equations. At
this level, we can conclude that the divergent energy density at the hori-
zon implies that the near-horizon physics becomes substantially different

11It is of the order 10−4, starting from z = 0.9999. We have run our numerics using
values between 1− 10−6 and 1− 10−2 and found no detectable difference in quantities
at the boundary.
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from the AdS2 limit of the RN metric. It is natural to guess that the RN
horizon disappears completely, corresponding to a ground state with zero
entropy, as hypothesized in [50]. This matches the expectation that the
finite fermi-density solution in the bulk describes the Fermi-liquid. The
underlying assumption in the above reasoning is that the total charge is
conserved.
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Figure 4.4: (A) The radial electric field −Ez = ∂Φ/∂z, normalized to the
midpoint value Ez(z)/Ez(1/2) for whole interior of the finite fermion density
AdS-RN solution (upper) and near the horizon (lower). One clearly sees the soft,
log-singularity at the horizon. The colors correspond to increasing temperatures
from T = 0.04µ (lighter) to T = 0.18µ (darker), all with ∆ = 1.1. (B) The
occupation number jump ∆nF and free energy contribution I as a function of
temperature in AdS-Schwarzschild. We see the jump ∆nF saturate at low tem-
peratures and fall off at high T . An exponential fit to the data (red curve) shows
that in the critical region the fall-off is stronger than exponential, indicating that
the transition is first order. The conformal dimension of the fermionic opera-
tor is ∆ = 1.1. (C) The radial electric field −Ez = ∂Φ/∂z, normalized to the
midpoint value (Ez(z)/Ez(1/2)) for the finite fermion density AdS-Schwarzschild
background. The divergence of the electric field Ez is again only noticeable near
the horizon and can be neglected in most of the bulk region.
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Finite fermion density in AdSS

For completeness, we will describe the finite fermion-density solutions in
the AdS Schwarzschild geometry as well. In these solutions the charge
density is set by the density of fermions alone. They are therefore not
reliable at very low temperatures T � Tc when gravitational backreaction
becomes important. The purpose of this section is to show the existence
of finite density solutions does not depend on the presence of a charged

black-hole set by the horizon value Φ
(2)
hor = µ0, but that the transition to a

finite fermion density can be driven by the charged fermions themselves.
Fig. 4.4B shows the nearly instantaneous development of a non-

vanishing expectation value for the occupation number discontinuity ∆nF
and I in the AdS Schwarzschild background. The rise is not as sharp as in
the RN background. It is, however, steeper than exponential, and we may
conclude that the system undergoes a discontinuous first order transition
to a AdS Dirac hair solution. The constant limit reached by the fermion
density as T → 0 has no meaning as we cannot trust the solution far away
from Tc.

The backreaction due to the electric field divergence at the horizon
can be neglected, for the same reason as before (Fig. 4.4C).

4.3.3 Confirmation from fermion spectral functions

If, as we surmised, the finite fermion density phase is the true Fermi-liquid-
like ground state, the change in the fermion spectral functions should be
minimal as the characteristic quasi-particle peaks are already present in
the probe limit, i.e. pure AdS Reissner-Nordström [79, 17]. Fig. 4.5 shows
that quasiparticle poles near ω = 0 with similar analytic properties can
be identified in both the probe pure AdS-RN case and the AdS-RN Dirac-
hair solution. The explanation for this similarity is that the electrostatic
potential Φ almost completely determines the spectrum, and the change
in Φ due to the presence of a finite fermion density is quite small. Still,
one expects that the finite fermion density system is a more favorable
state. This indeed follows from a detailed comparison between the spectral
functions A(ω; k) in the probe limit and the fermion-liquid phase (Fig.
4.5). We see that:

1. All quasiparticle poles present in the probe limit are also present in
the Dirac hair phase, at a slightly shifted value of kF . This shift
is a consequence of the change in the bulk electrostatic potential Φ
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Figure 4.5: The single-fermion spectral function in the probe limit of pure
AdS Reissner-Nordström (red/yellow) minus the spectrum in the finite density
system (blue). The conformal dimension is ∆ = 5/4, the probe charge g = 2, and
µ/T = 135. We can see two quasiparticle poles near ω = 0, a non-FL pole with

kprobeF ' 0.11µ and k∆nF

F ' 0.08µ respectively and a FL-pole with kprobeF ' 0.18µ

and k∆nF

F ' 0.17µ. The dispersion of both poles is visibly similar between the
probe and the finite density background. At the same time, the non-FL pole has
about 8 times less weight in the finite density background, whereas the FL-pole
has gained about 6.5 times more weight.

due to the presence of the charged matter. For a Fermi-liquid-like
quasiparticle corresponding to the second pole in the operator with
∆ = 5/4 and g = 2 we find kprobeF − k∆nF

F = 0.07µ. The non-Fermi-
liquid pole, i.e. the first pole for the same conformal operator, has
kprobeF − k∆nF

F = 0.03µ.

2. The dispersion exponents ν defined through (ω−EF )2 ∼ (k−kF )2/ν ,
also maintain roughly the same values as both solutions. This is
visually evident in the near similar slopes of the ridges in Fig. 4.5. In
the AdS Reissner-Nordström background, the dispersion coefficients
are known analytically as a function of the Fermi momentum: νkF =√

2
k2
F
µ2 − 1

3 + 1
6 (∆− 3/2)2 [27]. The Fermi-liquid-like quasiparticle

corresponding to the second pole in the operator with ∆ = 5/4 and
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Figure 4.6: (A) Single fermion spectral functions near ω = 0 in pure AdS
Reissner-Nordström (blue) and in the finite fermion density background (red).
In the former the position of the maximum approaches ω = 0 as T is lowered
whereas in the latter the position of the maximum stays close to T = 0 for all
values of T . (B) Position of the maximum of the quasiparticle peak in k-ω plane,
for different temperatures and ∆ = 5/4. The probe limit around a AdS-RN
black hole (blue) carries a strong temperature dependence of the ωmax value,
with ωmax,T 6=0 6= 0. In the finite fermion density background, the position of the
maximum (red) is nearly independent of temperature and stays at ω = 0.

g = 2 has νprobekF
= 1.02 vs. ν∆nF = 1.01. The non-Fermi-liquid pole

corresponding to the first pole for the same conformal operator, has
νprobekF

≈ 0.10, and ν∆nF = 0.12.

3. The most distinct property of the finite density phase is the redis-
tributed spectral weight of the poles. The non-Fermi liquid pole
reaches its maximum height about 104, an order of magnitude less
than in the probe limit, whereas the second, Fermi liquid-like pole,
increases by an order of magnitude. This suggests that the finite
density state corresponds to the Fermi-liquid like state, rather than
a non-Fermi liquid.
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4. As we mentioned in the introduction, part of the reason to suspect
the existence of an AdS-RN Dirac-hair solution is that a detailed
study of spectral functions in AdS-RN reveals that the quasiparti-
cle peak is anomalously sensitive to changes in T . This anomalous
temperature dependence disappears in the finite density solution.
Specifically in pure AdS-RN the position ωmax where the peak height
is maximum, denoted EF in [17], does not agree with the value ωpole,
where the pole touches the real axis in the complex ω-plane, for any
finite value of T , and is exponentially sensitive to changes in T (Fig
4.6). In the AdS-RN Dirac hair solution the location ωmax and the
location ωpole do become the same. Fig. 4.6B shows that the maxi-
mum of the quasiparticle peak always sits at ω ' 0 in finite density
Dirac hair solution, while it only reaches this as T → 0 in the probe
AdS-RN case.

4.4 Discussion and Conclusion

Empirically we know that the Fermi liquid phase of real matter systems
is remarkably robust and generic. This is corroborated by analyzing
effective field theory around the Fermi surface, but as it assumes the
ground state it cannot explain its genericity. If the Fermi liquid ground
state is so robust, this must also be a feature of the recent holographic
approaches to strongly interacting fermionic systems. Our results here
indicate that this is so. We have used Migdal’s relation to construct
AdS/CFT rules for the holographic dual of a Fermi liquid: the charac-
teristic occupation number discontinuity ∆nF is encoded in the normal-
izable subsubleading component of the spatially averaged fermion density
J0
−(z) ≡

∫
d3kΨ̄(ω = 0,−k, z)iγ0Ψ(ω = 0, k, z) near the AdS boundary.

This density has its own set of evolution equations, based on the underly-
ing Dirac field, and insisting on normalizability automatically selects the
on-shell wavefunctions of the underlying Dirac-field.

The simplest AdS solution that has a non-vanishing expectation value
for the occupation number discontinuity ∆nF is that of a single fermion
wavefunction. Using the density approach — which through the averaging
appears to describe a class of solutions rather than one specific solution —
we have constructed the limit of this solution where gravitational back-
reaction is ignored. At low black hole temperatures this solution with
fermionic “Dirac hair” is the preferred ground state. Through an analysis
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of the free-energy, we argue that this gravitational solution with a non-
zero fermion profile precisely corresponds to a system with a finite density
of fermions. A spectral analysis still reveals a zoo of Fermi-surfaces in
this ground state, but there are indications that in the full gravitationally
backreacted solution only a Landau Fermi-liquid type Fermi surface sur-
vives. This follows in part from the relation between the spectral density
and the Fermi momentum of a particular Landau liquid-like Fermi surface;
it also agrees with the prediction from Luttinger’s theorem. Furthermore,
the spectral analysis in the finite density state shows no anomalous tem-
perature dependence present in the pure charged black-hole single spec-
tral functions. This also indicates that the finite density state is the true
ground state.

The discovery of this state reveals a new essential component in the
study of strongly coupled fermionic systems through gravitational duals,
where one should take into account the expectation values of fermion bilin-
ears. Technically the construction of the full gravitationally backreacted
solution is a first point that is needed to complete our finding. A complete
approach to this problem will have to take into account the many-body
physics in the bulk. Within the approach presented in this paper, it means
the inclusion of additional fermion wavefunctions, filling the bulk Fermi
surface. The realization, however, that expectation values of fermion bi-
linears can be captured in holographic duals and naturally encode phase
separations in strongly coupled fermion systems should find a large set of
applications in the near future.
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Chapter 5

From the Dirac hair to the
electron star [19]

5.1 Introduction

The insight provided by the application of the AdS/CFT correspondence
to finite density Fermi systems has given brand new perspectives on the
theoretical robustness of non-Fermi liquids [79, 17, 27]; on an understand-
ing of the non-perturbative stability of the regular Fermi liquid equivalent
to order parameter universality for bosons [18, 20], and most importantly
on the notion of fermionic criticality: Fermi systems with no scale. In
essence strongly coupled conformally invariant fermi systems are one an-
swer to the grand theoretical question of fermionic condensed matter: Are
there finite density Fermi systems that do not refer at any stage to an
underlying perturbative Fermi gas?

It is natural to ask to what extent AdS/CFT can provide a more
complete answer to this question. Assuming, almost tautologically, that
the underlying system is strongly coupled and there is in addition some
notion of a large N limit, the Fermi system is dual to classical general rel-
ativity with a negative cosmological constant coupled to charged fermions
and electromagnetism. As AdS/CFT maps quantum numbers to quan-
tum numbers, finite density configurations of the strongly coupled large N
system correspond to solutions of this Einstein-Maxwell-Dirac theory with
finite charge density. Since the AdS fermions are the only object carrying
charge, and the gravity system is weakly coupled, one is immediately in-
clined to infer that the generic solution is a weakly coupled charged Fermi
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gas coupled to AdS gravity: in other words an AdS electron star [50, 51],
the charged equivalent of a neutron star in asymptotically anti-de Sitter
space [23, 6].

Nothing can seem more straightforward. Given the total charge den-
sity Q of interest, one constructs the free fermionic wavefunctions in this
system, and fills them one by one in increasing energy until the total
charge equals Q. For macroscopic values of Q these fermions themselves
will backreact on the geometry. One can compute this backreaction; it
changes the potential for the free fermions at subleading order. Correct-
ing the wavefunctions at this subleading order, one converges on the true
solution order by order in the gravitational strength κ2E2

full system. Here

Efull system is the energy carried by the Fermi system and κ2 is the grav-
itational coupling constant κ2 = 8πGNewton in the AdS gravity system.
Perturbation theory in κ is dual to the 1/N expansion in the associated
condensed matter system.

The starting point of the backreaction computation is to follow Tolman-
Oppenheimer-Volkov (TOV) and use a Thomas-Fermi (TF) approxima-
tion for the lowest order one-loop contribution [23, 50, 51, 6]. The Thomas-
Fermi approximation applies when the number of constituent fermions
making up the Fermi gas is infinite. For neutral fermions this equates
to the statement that the energy-spacing between the levels is neglible
compared to the chemical potential associated with Q, ∆E/µ → 0. For
charged fermions the Thomas-Fermi limit is more direct: it is the limit
q/Q→ 0 where q is the charge of each constituent fermion. 1

This has been the guiding principle behind the approaches [23, 50, 6,
51, 89, 52] and the recent papers [53, 63], with the natural assumption
that all corrections beyond Thomas-Fermi are small quantitative changes
rather than qualitative ones. On closer inspection, however, this com-
pletely natural TF-electron star poses a number of puzzles. The most
prominent perhaps arises from the AdS/CFT correspondence finding that
every normalizable fermionic wavefunction in the gravitational bulk cor-
responds to a fermionic quasiparticle excitation in the dual condensed
matter system. In particular occupying a particular wavefunction is dual
to having a particular Fermi-liquid state [18]. In the Thomas Fermi limit
the gravity dual thus describes an infinity of Fermi liquids, whereas the
generic condensed matter expectation would have been that a been that

1For a fermion in an harmonic oscillator potential En = ~(n − 1/2)ω: thus
∆E/Etotal = 1/

∑N
1 (n− 1/2) = 2/N2.
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a single(/few) liquid(s) would be the generic groundstate away from the
strongly coupled fermionic quantum critical point at zero charge density.
This zoo of Fermi surfaces is already present in the grand canonical ap-
proaches at fixed µ (extremal AdS-Reissner-Nordström (AdS-RN) black
holes) [27] and a natural explanation would be that this is a large N effect.
This idea, that the gravity theory is dual to a condensed matter system
with N species of fermions, and increasing the charge density “populates”
more and more of the distinct species of Fermi liquids, is very surpris-
ing from the condensed matter perspective. Away from criticality one
would expect the generic groundstate to be a single Fermi-liquid or some
broken state due to pairing. To pose the puzzle sharply, once one has a
fermionic quasiparticle one should be able to adiabatically continue it to
a free Fermi gas, which would imply that the free limit of the strongly
coupled fermionic CFT is not a single but a system of order N fermions
with an ordered distribution of fermi-momenta. A possible explanation
of the multitude of Fermi surfaces that is consistent with a single Fermi
surface at weak coupling is that AdS/CFT describes so-called “deconfined
and/or fractionalized Fermi-liquids” where the number of Fermi surfaces
is directly tied to the coupling strength [54, 97, 55, 53, 63]. It would argue
that fermionic quantum criticality goes hand in hand with fractionaliza-
tion for which there is currently scant experimental evidence.

The second puzzle is more technical. Since quantum numbers in the
gravity system equal the quantum numbers in the dual condensed mat-
ter system, one is inclined to infer that each subsequent AdS fermion
wavefunction has incrementally higher energy than the previous one. Yet
analyticity of the Dirac equation implies that all normalizable wavefunc-
tions must have strictly vanishing energy [27]. It poses the question how
the order in which the fermions populate the Fermi gas is determined.

The third puzzle is that in the Thomas Fermi limit the Fermi gas is
gravitationally strictly confined to a bounded region: famously, the TOV-
neutron star has an edge. In AdS/CFT, however, all information about
the dual condensed matter system is read off at asymptotic AdS infinity.
Qualitatively, one can think of AdS/CFT as an “experiment” analogous
to probing a spatially confined Fermi gas with a tunneling microscope
held to the exterior of the trap. Extracting the information of the dual
condensed matter system is probing the AdS Dirac system confined by
a gravitoelectric trap instead of a magneto-optical trap for cold atoms.
Although the Thomas-Fermi limit should reliably capture the charge and
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energy densities in the system, its abrupt non-analytic change at the edge
(in a trapped system) and effective absence of a density far away from the
center are well known to cause qualitative deficiencies in the description
of the system. Specifically Friedel oscillations — quantum interference in
the outside tails of the charged fermion density, controlled by the ratio
q/Q and measured by a tunneling microscope — are absent. Analogously,
there could be qualitative features in the AdS asymptotics of both the
gravito-electric background and the Dirac wavefunctions in that adjusted
background that are missed by the TF-approximation. The AdS asymp-
totics in turn specify the physics of the dual condensed matter system and
since our main interest is to use AdS/CFT to understand quantum critical
fermion systems where q/Q is finite, the possibility of a qualitative change
inherent in the Thomas Fermi limit should be considered.

There is another candidate AdS description of the dual of a strongly
coupled finite density Fermi system: the AdS black hole with Dirac hair
[18, 20]. One arrives at this solution when one starts one’s reasoning from
the dual condensed matter system, rather than the Dirac fields in AdS
gravity. Insisting that the system collapses to a generic single species
Fermi-liquid ground state, the dual gravity description is that of an AdS
Einstein-Dirac-Maxwell system with a single nonzero normalizable Dirac
wavefunction. To have a macroscopic backreaction the charge of this sin-
gle Dirac field must be macroscopic. The intuitive way to view this solu-
tion is as the other simplest approximation to free Fermi gas coupled to
gravity. What we mean is that the full gravito-electric response is in all
cases controlled by the total charge Q of the solution: as charge is con-
served it is proportional to the constituent charge q times the number of
fermions nFAdS and the two simple limits correspond to nF → ∞, q → 0
with Q = qnF fixed or nF → 1, q → Q. The former is the Thomas-Fermi
electron star, the latter is the AdS Dirac hair solution. In the context
of AdS/CFT there is a significant difference between the two solutions in
that the Dirac Hair solution clearly does not give rise to the puzzles 1,
2 and 3: there is by construction no zoo of Fermi-surfaces and therefore
no ordering. Moreover since the wavefunction is demanded to be nor-
malizable, it manifestly encodes the properties of the system at the AdS
boundary. On the other hand the AdS Dirac hair solution does pose the
puzzle that under normal conditions the total charge Q is much larger
than the constituent charge q both from the gravity/string theory point
of view and the condensed matter perspective. Generically one would
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expect a Fermi gas electron star rather than Dirac hair.
In this article we shall provide evidence for this point of view that the

AdS electron star and the AdS Dirac hair solution are two limits of the
same underlying system. Specifically we shall show that (1) the electron
star solution indeed has the constituent charge as a free parameter which
is formally sent to zero to obtain the Thomas-Fermi approximation. (2)
The number of normalizable wavefunctions in the electron star depend
on the value of the constituent charge q. We show this by computing
the electron star spectral functions. They depend in similar way on q
as the first AdS/CFT Fermi system studies in an AdS-RN background.
In the formal limit where q → Q, only one normalizable mode remains
and the spectral function wavefunction resembles the Dirac Hair solution,
underlining their underlying equivalence. Since both approximations have
qualitative differences as a description of the AdS dual to strongly coupled
fermionic systems, it argues that an improved approximation which has
characteristics of both is called for.

The results here are complimentary to and share an analysis of elec-
tron star spectral functions with the two recent articles [53] and [63] that
appeared in the course of this work (see also [61] for fermion spectral
functions in general Lifshitz backgrounds). Our motivation to probe the
system away from the direct electron star limit differs: we have therefore
been more precise in defining this limit and in the analysis of the Dirac
equation in the electron star background.

5.2 Einstein-Maxwell theory coupled to charged
fermions

The Lagrangian that describes both the electron star and Dirac Hair ap-
proximation is Einstein-Maxwell theory coupled to charged matter

S =

∫
d4x
√−g

[
1

2κ2

(
R+

6

L2

)
− 1

4q2
F 2 + Lmat(eAµ , Aµ)

]
,(5.2.1)

where L is the AdS radius, q is the electric charge and κ is the gravitational
coupling constant. It is useful to scale the electromagnetic interaction
to be of the same order as the gravitational interaction and measure all
lengths in terms of the AdS radius L:

gµν → L2gµν , Aµ →
qL

κ
Aµ. (5.2.2)
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The system then becomes

S =

∫
d4x
√−g

[
L2

2κ2

(
R+ 6− 1

2
F 2

)
+ L4Lmat(LeAµ ,

qL

κ
Aµ)

]
.(5.2.3)

Note that in the rescaled variables the effective charge of charged matter
now depends on the ratio of the electromagnetic to gravitational coupling
constant: qeff = qL/κ. For the case of interest, charged fermions, the
Lagrangian in these variables is

L4Lf(LeAµ ,
qL

κ
Aµ) = −L

2

κ2
Ψ̄

[
eµAΓA

(
∂µ +

1

4
ωBCµ ΓBC − i

qL

κ
Aµ
)
−mL

]
Ψ ,(5.2.4)

where Ψ̄ is defined as Ψ̄ = iΨ†Γ0. Compared to the conventional normal-
ization the Dirac field has been made dimensionless Ψ = κ

√
Lψconventional.

With this normalization all terms in the action have a factor L2/κ2 and
it will therefore scale out of the equations of motion

Rµν −
1

2
gµνR− 3gµν =

(
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ + T f
µν

)
,

DµF
µν = −qeffJνf (5.2.5)

with

T f
µν =

1

2
Ψ̄eA(µΓA

[
∂ν) +

1

4
ωBCν) ΓBC − i

qL

κ
Aν)

]
Ψ− κ2L2

2
gµνLf ,(5.2.6)

Jνf = iΨ̄eνAΓAΨ, (5.2.7)

where the symmetrization is defined as B(µCν) = BµCν + BνCµ and the
Dirac equation[

eµAΓA
(
∂µ +

1

4
ωBCµ ΓBC − i

qL

κ
Aµ
)
−mL

]
Ψ = 0. (5.2.8)

The stress-tensor and current are to be evaluated in the specific state
of the system. For a single excited wavefunction, obeying (5.2.8), this
gives the AdS Dirac hair solution constructed in [18]. (More specifically,
the Dirac hair solution consists of a radially isotropic set of wavefunc-

tions with identical momentum size |~k| =
√
k2
x + k2

y, such that the Pauli

principle plays no role.) For multiple occupied fermion states, even with-
out backreaction due to gravity, adding the contributions of each separate
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solution to (5.2.8) rapidly becomes very involved. In such a many-body-
system, the collective effect of the multiple occupied fermion states is
better captured in a “fluid” approximation

T fluid
µν = (ρ+ p)uµuν + pgµν , N fluid

µ = nuµ (5.2.9)

with

ρ = 〈uµTµνuν〉matter only , n = −〈uµJµ〉matter only. (5.2.10)

In the center-of-mass rest frame of the multiple fermion system (uµ =
(et0, 0, 0, 0)), the expressions for the stress-tensor and charge density are
given by the one-loop equal-time expectation values (as opposed to time-
ordered correlation functions)

ρ = 〈Ψ̄(t)et0Γ0(∂t +
1

4
ωABt ΓAB − iqeffAt)Ψ(t)〉. (5.2.11)

By the optical theorem the expectation value is equal to twice imaginary
part of the Feynman propagator2

ρ = lim
t→t′

2ImTr

[
et0Γ0(∂t +

1

4
ωABt ΓAB − iqeffAt)GAdSF (t′, t)

]
. (5.2.12)

In all situations of interest, all background fields will only have depen-
dence on the radial AdS direction; in that case the spin connection can
be absorbed in the normalization of the spinor wavefunction.3 In an adi-
abatic approximation for the radial dependence of et0 and At — where
µloc(r) = qeffe

t
0(r)At(r) and ω(r) = −iet0(r)∂t; — this yields the known

expression for a many-body-fermion system at finite chemical potential

ρ(r) = lim
β→∞

2

∫
d3kdω

(2π)4
[ω(r)− µloc(r)] ImTr iΓ0GβF (ω, k)

=
1

π2

κ2

L2

∫ µloc

mL
dEE2

√
E2 − (mL)2 . (5.2.13)

2From unitarity for the S matrix S†S = 1 one obtains the optical theorem T †T =
2ImT for the transition matrix T defined as S ≡ 1 + iT .

3i.e. one can redefine spinors χ(r) = f(r)Ψ(r) such that the connection term is no
longer present in the equation of motion.



106 Chapter 5. From the Dirac hair to the electron star [19]

The normalization κ2/L2 follows from the unconventional normaliza-
tion of the Dirac field in eq. (5.2.4).4 Similarly

n =
1

π2

κ2

L2

∫ µloc

mL
dEE

√
E2 − (mL)2 =

1

3π2

κ2

L2
(µloc

2 − (mL)2)3/2 .(5.2.14)

The adiabatic approximation is valid for highly localized wavefunc-
tions, i.e. the expression must be dominated by high momenta (especially
in the radial direction). The exact expression on the other hand will not
have a continuum of solutions to the harmonic condition −Γ0ω + Γiki +
Γzkz − Γ0µloc − imL = 0. Normalizable solutions to the AdS Dirac equa-
tions only occur at discrete momenta — one can think of the gravitational
background as a potential well. The adiabatic approximation is therefore
equivalent to the Thomas-Fermi approximation for a Fermi-gas in a box.

To get an estimate for the parameter range where the adiabatic ap-
proximation holds, consider the adiabatic bound ∂rµloc(r) � µloc(r)

2.
Using the field equation for A0 = µloc/qeff:

∂2
rµloc ∼ q2

effn, (5.2.15)

this bound is equivalent to requiring

∂2
rµloc � ∂rµ

2
loc ⇒ (

qL

κ
)2n� 2µloc∂rµloc ⇒ (

qL

κ
)2n� µ3

loc(5.2.16)

where in the last line we used the original bound again. If the chemical
potential scale is considerably higher than the mass of the fermion, we
may use (5.2.14) to approximate n ∼ κ2

L2µ
3
loc. Thus the adiabatic bound

is equivalent to,

q =
qeffκ

L
� 1 (5.2.17)

the statement that the constituent charge of the fermions is infinitesimal.
Note that in the rescaled action (6.3.43, 5.2.4), L/κ plays the role of 1/~,

4One can see this readily by converting the dimensionless definition of ρ, eq (5.2.11),
to the standard dimension. Using capitals for dimensionless quantities and lower-case
for dimensionful ones

ρ ∼ 〈Ψ∂TΨ〉 ∼ κ2L2〈ψ∂tψ〉 ∼ κ2L2

∫ µ

m

dεε2
√
ε2 −m2 ∼ κ2

L2

∫ µL

mL

dEE2
√
E2 − (mL)2

with µL = µloc above.
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and eq. (5.2.17) is thus equivalent to the semiclassical limit ~ → 0 with
qeff fixed. Since AdS/CFT relates L/κ ∼ Nc this acquires the meaning
in the context of holography that there is a large Nc scaling limit [53, 63]
of the CFT with fermionic operators where the RG-flow is “adiabatic”.
Returning to the gravitational description the additional assumption that
the chemical potential is much larger than the mass is equivalent to

Qtotal
phys

Vspatial AdS
=

LQtotal
eff

κVspatial AdS
≡ L

κVspatial AdS

∫
dr
√−ginduced (qeffn) (5.2.18)

' 1

Vspatial AdS

∫
dr
√−g qeffκ

L
µ3
loc(r) � q(mL)3 .

This implies that the total charge density in AdS is much larger than
that of a single charged particle (as long as mL ∼ 1). The adiabatic
limit is therefore equivalent to a thermodynamic limit where the Fermi
gas consists of an infinite number of constituents, n → ∞, q → 0 such
that the total charge Q ∼ nq remains finite.

The adiabatic limit of a many-body fermion system coupled to gravity
are the Tolman-Oppenheimer-Volkov equations. Solving this in asymp-
totically AdS gives us the charged neutron or electron star constructed in
[51]. Knowing the quantitative form of the adiabatic limit, it is now easy
to distinguish the electron star solution from the “single wavefunction”
Dirac Hair solution. The latter is trivially the single particle limit n→ 1,
q → Q with the total charge Q finite. The electron star and Dirac Hair
black hole are opposing limit-solutions of the same system. We shall now
make this connection more visible by identifying a formal dialing param-
eter that interpolates between the two solutions.

To do so we shall need the full adiabatic Tolman-Oppenheimer-Volkov
equations for the AdS electron star [51]. Since the fluid is homogeneous
and isotropic, the background metric and electrostatic potential will re-
spect these symmetries and will be of the form (recall that we are already
using “dimensionless” lengths, eq. (5.2.2))

ds2 = −f(r)dt2 + g(r)dr2 + r2(dx2 + dy2), A = h(r)dt, (5.2.19)

where f(r), g(r), h(r) are functions of r; the horizon is located at r = 0
and the boundary is at r = ∞. Combining this ansatz with a rescaling
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mL = qeffm̂ the bosonic background equations of motion become [51]

1

r

(
f ′

f
+
g′

g

)
− ghσ√

f
= 0, ρ =

q4
effκ

2

π2L2

∫ h√
f

m̂
dεε2

√
ε2 − m̂2 ,

f ′

rf
+
h′2

2f
− g(3 + p) +

1

r2
= 0, σ =

q4
effκ

2

π2L2

∫ h√
f

m̂
dεε
√
ε2 − m̂2 ,

h′′ +
2

r
h′ − gσ√

f

(
rhh′

2
+ f

)
= 0, − p = ρ− h√

f
σ , (5.2.20)

where we have used that µloc = qeffh/
√
f and σ = nqeff is the rescaled

local charge density. What one immediately notes is that the Tolman-
Oppenheimer-Volkov equations of motion for the background only depend

on the parameters β̂ ≡ q4
effκ

2

π2L2 and m̂, whereas the original Lagrangian

and the fermion equation of motion also depend on qeff =
(
π2L2β̂
κ2

)1/4
.

It is therefore natural to guess that the parameter qeff = qL/κ will be
the interpolating parameter away from the adiabatic electron star limit
towards the Dirac Hair BH.

Indeed in these natural electron star variables the adiabatic bound
(5.2.17) translates into

β̂ � L2

κ2
=
q2
eff

q2
. (5.2.21)

Thus we see that for a given electron star background with β̂ fixed decreas-
ing κ/L improves the adiabatic fluid approximation whereas increasing
κ/L makes the adiabatic approximation poorer and poorer. “Dialing κ/L
up/down” therefore interpolates between the electron star and the Dirac
Hair BH. Counterintuively improving adiabaticity by decreasing κ/L cor-
responds to increasing qeff for fixed q, but this is just a consequence of
recasting the system in natural electron star variables. A better way to
view improving adiabaticity is to decrease the microscopic charge q but
while keeping qeff fixed; this shows that a better way to think of qeff is
as the total charge rather than the efffective constituent charge.

The parameter κ/L = q/qeff parametrizes the gravitational coupling
strength in units of the AdS curvature, and one might worry that “dialing
κ/L up” pushes one outside the regime of classical gravity. This is not the
case. One can easily have β̂ � 1 and tune κ/L towards or away from the
adiabatic limit within the regime of classical gravity. From eq. (5.2.17) we
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see that the edge of validity of the adiabatic regime β̂ ' L2/κ2 is simply
equivalent to a microscopic charge q = 1 which clearly has a classical
gravity description. It is not hard to see that the statement above is the
equivalent of changing the level splitting in the Fermi gas, while keeping
the overall energy/charge fixed. In a Fermi gas microscopically both the
overall energy and the level splitting depends on ~. Naively increasing
~ increases both, but one can move away from the adiabatic limit either
by decreasing the overall charge density, keeping ~ fixed or by keeping
the charge density fixed and raising ~. Using again the analogy between
κ/L and ~, the electron star situation is qualitatively the same where one
should think of β̂ ∼ q4L2/κ2 parametrizing the microscopic charge. One
can either insist on keeping κ/L fixed and increase the microscopic charge
β̂ to increase the level splitting or one can keep β̂ fixed and increase κ/L.
In the electron star, however, the background geometry changes with β̂ in
addition to the level splitting, and it is therefore more straightforward to
keep β̂ and the geometry fixed, while dialing κ/L.

We will now give evidence for our claim that the electron star and
Dirac Hair solution are two opposing limits. To do so, we need to identify
an observable that goes either beyond the adiabatic background approx-
imation or beyond the single particle approximation. Since the generic
intermediate state is still a many-body fermion system, the more natu-
ral starting point is the electron star background and perturb away from
there. Realizing then that the fermion equation of motion already depends
directly on the dialing parameter qeff the obvious observables are the sin-
gle fermion spectral functions in the electron star background. Since one
must specify a value for qeff to compute these, they directly probe the
microscopic charge of the fermion and are thus always beyond the strict
electron star limit q → 0. In the next two sections we will compute these
and show that they indeed reflect the interpretation of qeff as the inter-
polating parameter between the electron star and Dirac Hair BH.

5.3 Fermion spectral functions in the electron
star background

To compute the fermion spectral functions in the electron star background
we shall choose a specific representative of the family of electron stars
parametrized by β̂ and m̂. Rather than using β̂ and m̂ the metric of
an electron star is more conveniently characterized by its Lifshitz-scaling
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behavior near the interior horizon r → 0. From the field equations (5.2.20)
the limiting interior behavior of f(r), g(r), h(r) is

f(r) = r2z + . . . , g(r) =
g∞
r2

+ . . . , h(r) = h∞r
z + . . . (5.3.22)

The scaling behavior is determined by the dynamical critical exponent z,
which is a function of β̂, m̂ [51] and it is conventionally used to classify
the metric instead of β̂. The full electron star metric is then generated
from this horizon scaling behavior by integrating up an irrelevant RG-flow
[39, 37]

f = r2z

(
1 + f1r

−α + . . .

)
g =

g∞
r2

(
1 + g1r

−α + . . .

)
h = h∞r

z

(
1 + h1r

−α + . . .

)
. (5.3.23)

with

α =
2 + z

2
−
√

9z3 − 21z2 + 40z − 28− m̂2z(4− 3z)2

2
√

(1− m̂2)z − 1
. (5.3.24)

Scaling f1 → bf1 is equal to a coordinate transformation r → b1/αr and
t→ bz/αt, and the sign of f1 is fixed to be negative in order to be able to
match onto an asymptotically AdS4 solution. Thus f1 = −1 and g1 and
h1 are then uniquely determined by the equations of motion.

Famously, integrating the equations of motion up the RG-flow out-
wards towards the boundary fails at a finite distance rs. This is the edge
of the electron star. Beyond the edge of the electron star, there is no
fluid present and the spacetime is that of an AdS4-RN black hole with the
metric

f = c2r2 − M̂

r
+
Q̂2

2r2
, g =

c2

f
, h = µ̂− Q̂

r
. (5.3.25)

Demanding the full metric is smooth at the radius of electron star rs
determines the constants c, M̂ and Q̂. The dual field theory is defined on
the plane ds2 = −c2dt2 + dx2 + dy2.
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The specific electron star background we shall choose without loss of
generality is the one with z = 2, m̂ = 0.36 (Fig. 5.1)5, smoothly matched
at rs ' 4.25252 onto a AdS-RN black-hole.

0 2 4 6 8 10
0.0

0.5

1.0

1.5

r

Figure 5.1: Electron star metric for z = 2, m̂ = 0.36, c ' 1.021, M̂ ' 3.601, Q̂ '
2.534, µ̂ ' 2.132 compared to pure AdS. Shown are f(r)/r2 (Blue), r2g(r) (Red)
and h(r) (Orange). The asymptotic AdS-RN value of h(r) is the dashed blue line.

For future use we have also given µloc = h/
√
f (Green) and µqeff =

√
giih/

√
f

(Red Dashed) At the edge of the star rs ' 4.253 (the intersection of the purple
dashed line setting the value of meff with µloc) one sees the convergence to pure
AdS in the constant asymptotes of f(r)/r2 and r2g(r).

The CFT fermion spectral functions now follow from solving the Dirac
equation in this background [79, 17][

eµAΓA
(
∂µ +

1

4
ωµABΓAB − iqeffAµ

)
−meff

]
Ψ = 0 (5.3.26)

where qeff and meff in terms of the parameters of the electron star equal

qeff =

(
π2L2β̂

κ2

)1/4

, meff = qeffm̂ = m̂

(
π2L2β̂

κ2

)1/4

(5.3.27)

For a given electron star background, i.e. a fixed β̂, m̂ the fermion spectral
function will therefore depend on the ratio L/κ. For L/κ� β̂1/2 the poles
in these spectral functions characterize the occupied states in a many-body
gravitational Fermi system that is well approximated by the electron star.

5This background has c ' 1.021, M̂ ' 3.601, Q̂ ' 2.534, µ̂ ' 2.132, β̂ '
19.951, g∞ ' 1.887, h∞ = 1/

√
2, α ' −1.626, f1 = −1, g1 ' −0.4457, h1 ' −0.6445.
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As L/κ is lowered for fixed β̂ the electron star background becomes a
poorer and poorer approximation to the true state and we should see this
reflected in both the number of poles in the spectral function and their
location.

Projecting the Dirac equation onto two-component Γr eigenspinors

Ψ± = (−ggrr)− 1
4 e−iωt+ikix

i

(
y±
z±

)
(5.3.28)

and using isotropy to set ky = 0, one can choose a basis of Dirac matrices
where one obtains two decoupled sets of two simple coupled equations [79]

√
giigrr(∂r ∓meff

√
grr)y± = ∓i(kx − u)z∓, (5.3.29)√

giigrr(∂r ±meff
√
grr)z∓ = ±i(kx + u)y± (5.3.30)

where u =
√

gii
−gtt (ω + qeffh). In this basis of Dirac matrices the CFT

Green’s function G = 〈Ōψ+iγ
0Oψ+〉 equals

G = lim
ε→0

ε−2mL

(
ξ+ 0
0 ξ−

) ∣∣∣∣
r= 1

ε

, where ξ+ =
iy−
z+

, ξ− = − iz−
y+

.(5.3.31)

Rather than solving the coupled equations (5.3.29) it is convenient to solve
for ξ± directly [79],√

gii
grr

∂rξ± = −2meff
√
giiξ± ∓ (kx ∓ u)± (kx ± u)ξ2

±. (5.3.32)

For the spectral function A = ImTrGR we are interested in the re-
tarded Green function. This is obtained by imposing in-falling boundary
conditions near the horizon r = 0. Since the electron star is a “zero-
temperature” solution this requires a more careful analysis than for a
generic horizon. To ensure that the numerical integration we shall per-
form to obtain the full spectral function has the right infalling boundary
conditions, we first solve eq. (5.3.32) to first subleading order around r = 0.
There are two distinct branches. When ω 6= 0 and kxr/ω, r

2/ω is small,
the in-falling boundary condition near the horizon r = 0 is (for z = 2)

ξ+(r) = i− ikxr
ω

+ i
(k2
x − 2imeffω)r2

2ω2
− if1kxr

1−α

2ω
+ . . .

ξ−(r) = i+ i
kxr

ω
+ i

(k2
x − 2imeffω)r2

2ω2
+ i

f1kxr
1−α

2ω
+ . . . .(5.3.33)
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Figure 5.2: Electron star MDF spectral functions with multiple peaks as a
function of k for ω = 10−5, z = 2, m̂ = 0.36. The blue curve is for κ = 0.091; the
red curve is for κ = 0.090. Note that the vertical axis is logarithmic. Visible is
the rapidly decreasing spectral weight and increasingly narrower width for each
successive peak as kF increases.

When ω = 0, i.e. kxr/ω is large, and r/kx → 0,

ξ+(r) = −1 +
(qeffh∞ +meff)r

kx
+

(
ω

kxr
− ω

2
√
g∞k2

x

)
+ . . .

ξ−(r) = 1 +
(qeffh∞ −meff)r

kx
+

(
ω

kxr
− ω

2
√
g∞k2

x

)
+ . . . ,(5.3.34)

the boundary conditions (5.3.34) become real. As (5.3.32) are real equa-
tions, the spectral function vanishes in this case. This is essentially the
statement that all poles in the Green’s function occur at ω = 0 [27]. Note
that the fact that the electron star ω = 0 boundary conditions (5.3.32) are
real for all values of k is qualitatively different from the AdS-RN ω = 0
boundary conditions (eq. (26) in [79]). In the AdS-RN “quantum-critical”
infrared governed by the near horizon AdS2×R2 geometry, in general there
is a special scale ko below which the boundary condition turns complex.
This scale ko is related to the surprising existence of an oscillatory region
in the spectral function. One therefore infers that in a scaleful Lifshitz
infrared this oscillatory region is no longer present [63]. We will confirm
this in section 5.4.

5.3.1 Numerical results and discussion

We can now solve for the spectral functions numerically. In Fig. 5.3 we
plot the momentum-distribution-function (MDF) (the spectral function as
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a function of k) for fixed ω = 10−5, z = 2, m̂ = 0.36 while changing the
value of κ. Before we comment on the dependence on qeff ∼ κ−1/2 which
studies the deviation away from the adiabatic limit of a given electron
star background (i.e. fixed dimensionless charge and fixed dimensionless
energy density), there are several striking features that are immediately
apparent:

• As expected, there is a multitude of Fermi surfaces. They have very
narrow width and their spectral weight decreases rapidly for each
higher Fermi-momentum kF (Fig. 5.2). This agrees with the expo-

nential width Γ ∼ exp(−
(
kz

ω

)1/(z−1)
) predicted by [26] for gravita-

tional backgrounds that are Lifshitz in the deep interior, which is the
case for the electron star. This prediction is confirmed in [61, 53, 63]
and the latter two articles also show that the weight decreases in a
corresponding exponential fashion. This exponential reduction of
both the width and the weight as kF increases explains why we only
see a finite number of peaks, though we expect a very large number.
In the next section we will be able to count the number of peaks,
even though we cannot resolve them all numerically.

• The generic value of kF of the peaks with visible spectral weight is
much smaller than the effective chemical potential µ in the boundary
field theory. This is quite different from the RN-AdS case where
the Fermi momentum and chemical potential are of the same order.
A numerical study cannot answer this, but the recent article [63]
explains this.6

• Consistent with the boundary value analysis, there is no evidence of
an oscillatory region.

The most relevant property of the spectral functions for our question is
that as κ is increased the peak location kF decreases orderly and peaks
disappear at various threshold values of k. This is the support for our
argument that changing κ changes the number of microscopic constituents
in the electron star. Comparing the the behavior of the various Fermi
momenta kF in the electron star with the results in the extremal AdS-RN
black-hole, they are qualitatively identical when one equates κ−1/2 ∼ qeff
with the charge of the probe fermion. We may therefore infer from our

6In view of the verification of the Luttinger count for electron star spectra in [53, 63],
this had to be so.
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Figure 5.3: (A) Electron-star MDF spectral functions as a function of κ for
z = 2, m̂ = 0.36, ω = 10−5. Because the peak height and weights decrease expo-
nentially, we present the adjacent ranges k ∈ [0.017, 0.019] and k ∈ [0.019, 0.021]
in two different plots with different vertical scale. (B1/B2) Locations of peaks of
spectral functions as a function of κ: comparison between the electron star (B1)
for z = 2, m̂ = 0.36, ω = 10−5 (the dashed gray line denotes the artificial separa-
tion in the 3D representations in (A)) and AdS-RN (B2) for m = 0 as a function
of q in units where µ =

√
3 These two Fermi-surface ‘spectra’ are qualitatively

similar.

detailed understanding of the behavior of kF for AdS-RN that also for the
electron star as kF is lowered peaks truly disappear from the spectrum
until by extrapolation ultimately one remains: this is the AdS Dirac hair
solution [18].

We can only make this inference qualitatively as the rapid decrease in
spectral weight of each successive peak prevents an exact counting of Fermi
surfaces in the numerical results for the electron star spectral functions.
One aspect that we can already see is that as κ decreases all present peaks
shift to higher k, while new peaks emerging from the left for smaller kappa.
This suggests a fermionic version of the UV/IR correspondence where the
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peak with lowest kF corresponds to the last occupied level, i.e. highest
“energy” in the AdS electron star. We will now address both of these
points in more detail.

5.4 Fermi surface ordering: kF from a Schrödinger
formulation

Our analysis of the behavior of boundary spectral functions as a function of
κ relies on the numerically quite evident peaks. Stricly speaking, however,
we have not shown that there is a true singularity in the Green’s function
at ω = 0, k = kF . We will do so by showing that the AdS Dirac equation,
when recast as a Schrödinger problem has quasi-normalizable solutions at
ω = 0 for various k. As is well known, in AdS/CFT each such solution
corresponds to a true pole in the boundary Green’s function. Using a
WKB approximation for this Schrödinger problem we will in addition be
able to estimate the number of poles for a fixed κ and thereby provide a
quantitative value for the deviation from the adiabatic background.

We wish to emphasize that the analysis here is general and captures
the behavior of spectral functions in all spherically symmetric and static
backgrounds backgrounds alike, whether AdS-RN, Dirac hair or electron
star.

The ω = 0 Dirac equation (5.3.26) for one set of components (5.3.29,
5.3.30) with the replacement iy− → y−, equals

√
giigrr∂ry− +meff

√
giiy− = −(k − µ̂qeff)z+,√

giigrr∂rz+ −meff
√
giiz+ = −(k + µ̂qeff)y−, (5.4.35)

where µ̂qeff =
√

gii
−gtt qeffAt and we will drop the subscript x on kx. In our

conventions z+ (and y+) is the fundamental component dual to the source
of the fermionic operator in the CFT [79, 17]. Rewriting the coupled first
order Dirac equations as a single second order equation for z+:

∂2
rz+ + P∂rz+ +Qz+ = 0 (5.4.36)

where the coefficients are

P =
∂r(giig

rr)

2giigrr
− ∂rµ̂qeff
k + µ̂qeff

,

Q = −meff∂r
√
gii√

giigrr
+
meff

√
grr∂rµ̂qeff

k + µ̂qeff
−m2

effgrr −
k2 − µ̂2

qeff

giigrr
.(5.4.37)
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the first thing one notes is that both P andQ diverge at some r = r∗ where
µ̂qeff + k = 0. Since µ̂qeff is (chosen to be) a positive semidefinite function
which increases from µ̂qeff = 0 at the horizon, this implies that for negative
k (with −k < µ̂qeff |∞) the wavefunction is qualitatively different from the
wavefunction with positive k which experiences no singularity.The analysis
is straightforward if we transform the first derivative away and recast it
in the form of a Schrödinger equation by redefining the radial coordinate:

ds

dr
= exp

(
−
∫ r

dr′P
)

⇒ s = c0

∫ r

r∞

dr′
|k + µ̂qeff |√

giigrr
(5.4.38)

where c0 is an integration constant whose natural scale is of order c0 ∼
q−1
eff. This is a simpler version of the generalized k-dependent tortoise

coordinate introduced in [27]. In the new coordinates the equation (5.4.37)
is of the standard form:

∂2
sz+ − V (s)z+ = 0 (5.4.39)

with potential

V (s) = − giig
rr

c2
0|k + µ̂qeff |2

Q. (5.4.40)

The above potential (5.4.40) can also be written as

V (s) =
1

c2
0(k + µ̂qeff)

2

[
(k2 +m2

effgii− µ̂2
qeff)+meffgii

√
grr∂r ln

√
gii

k + µ̂qeff

]
.

(5.4.41)
We note again the potential singularity for negative k, but before we

discuss this we first need the boundary conditions. The universal bound-
ary behavior is at spatial infinity and follows from the asymptotic AdS
geometry. In the adapted coordinates r → ∞ corresponds to s → 0 as
follows from ds/dr ' c0(k + µ̂qeff |∞)/r2. The potential therefore equals

V (s) ' 1

s2

(
meff +m2

eff

)
+ . . . (5.4.42)

and the asymptotic behavior of the two independent solutions equals z+ =
a1s
−meff + b1s

1+meff + . . .. The second solution is normalizable and we
thus demand a1 = 0.

In the interior, the near-horizon geometry generically is Lifshitz

ds2 = −r2zdt2 +
1

r2
dr2 + r2(dx2 + dy2) + . . . , A = h∞r

zdt+ . . . ,(5.4.43)
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with finite dynamical critical exponent z — AdS-RN, which can be viewed
as a special case where z → ∞, will be given separately. In adapted
coordinates the interior r → 0 corresponds to s → −∞ and it is easy to
show that in this limit potential behaves as

V (s) ' 1

c2
0

+
1

s2

(
meff

√
g∞ +m2

effg∞ − h2
∞q

2
effg∞

)
+ . . . . (5.4.44)

Near the horizon the two independent solutions for the wavefunction z+

therefore behave as

z+ → a0e
−s/c0 + b0e

s/c0 . (5.4.45)

The decaying solution a0 = 0 is the normalizable solution we seek.

Let us now address the possible singular behavior for k < 0. To under-
stand what happens, let us first analyze the potential qualitatively for pos-
itive k. Since the potential is positive semi-definite at the horizon and the
boundary, the Schrödinger system (5.4.39) only has a zero-energy normal-
izable solution if V (s) has a range s1 < s < s2 where it is negative. This

can only at locations where k2 < µ̂2
qeff−m2

effgii−meffgii
√
grr∂r ln

√
gii

k+µ̂qeff
.

Defining a “renormalized” position dependent mass m2
ren = m2

effgii +

meffgii
√
grr∂r ln

√
gii

k+µ̂qeff
this is the intuitive statement that the momenta

must be smaller than the local chemical potential k2 < µ̂2
qeff −m2

ren. For
positive k the saturation of this bound k2 = µ̂2

qeff −m2
ren has at most two

solutions, which are regular zeroes of the potential. This follows from the
fact that µ̂2

qeff decreases from the boundary towards the interior. If the
magnitude |k| is too large the inequality cannot be satisfied, the poten-
tial is strictly positive and no solution exists. For negative k, however,
the potential has in addition a triple pole at k2 = µ̂2

qeff ; two poles arise
from the prefactor and the third from the meff∂r ln(k+ µ̂qeff) term. This
pole always occurs closer to the horizon than the zeroes and the potential
therefore qualitatively looks like that in Fig. 5.4 (Since µ̂qeff decreases as
we move inward from the boundary, starting with µ̂2

qeff > µ̂2
qeff − µ2 > k2,

one first saturates the inequality that gives the zero in the potential as
one moves inward.) Such a potential cannot support a zero-energy bound
state, i.e. eq. (5.4.39) has no solution for negative k. In the case meff = 0
a double zero changes the triple pole to a single pole and the argument
still holds. This does not mean that there are no k < 0 poles in the
CFT spectral function. They arise from the other physical polarization
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y+ of the bulk fermion Ψ. From the second set of decoupled first order
equations for the other components of the Dirac equation (after replacing
iz− → z−,)

√
giigrr∂ry+ −meff

√
giiy+ = −(k − µ̂qeff)z−,√

giigrr∂rz− +meff
√
giiz− = −(k + µ̂qeff)y+, (5.4.46)

and the associated second order differential EOM for y+:

∂2
ry+ + P∂ry+ +Qy+ = 0,

with the coefficients

P =
∂r(giig

rr)

2giigrr
− ∂rµ̂qeff
−k + µ̂qeff

,

Q = −meff∂r
√
gii√

giigrr
+
meff

√
grr∂rµ̂qeff

−k + µ̂qeff
−m2

effgrr −
k2 − µ̂2

qeff

giigrr
,(5.4.47)

one sees that the Schrödinger equation for y+ is the k → −k image of the
equation (5.4.39) for z+ and thus y+ will only have zero-energy solutions
for k < 0. For simplicity we will only analyze the z+ case. Note that
this semi-positive definite momentum structure of the poles is a feature
of any AdS-to-Lifshitz metric different from AdS-RN, where one can have
negative k solutions [27].

(A)

VHsL

(B)

VHsL

Figure 5.4: The behavior of the Schrödinger potential V (s) for z+ when k is neg-
ative. Such a potential has no zero-energy bound state. The potential is rescaled
to fit on a finite range. As |k| is lowered below kmax for which the potential is
strictly positive, a triple pole appears which moves towards the horizon on the
left (Fig A. The Blue,Red,Orange,Green curves are decreasing in |k|). The pole
hits the horizon for k = 0 and disappears. Fig B. shows the special case meff = 0
where two zeroes collide with two of the triple poles to form a single pole.

The exact solution of (5.4.39) with the above boundary conditions cor-
responding to poles in the CFT spectral function is difficult to find. By
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construction the system is however equivalent to a Schrödinger problem of
finding a zero energy solution z+ in the potential (5.4.40) and can be solved
in the WKB approximation (see e.g. [27]). The WKB approximation holds
when |∂sV | � |V |3/2. Notice that this is more general than the back-
ground adiabacity limit meff � 1, qeff � 1 with β̂, m̂ fixed . Combining
background adiabaticity with a scaling limit k � 1,meff � 1, qeff � 1
with c0k fixed and k is parametrically larger than µ̂qeff one recovers the
WKB potential solved in [53, 63]. As our aim is to study the the devia-
tion away from the background adiabatic limit we will be more general and
study the WKB limit of the potential itself, without direct constraints on
qeff,meff. And rather than testing the inequality |∂sV | � |V |3/2 directly,
we will rely on the rule of thumb that the WKB limit is justified when the
number of nodes in the wave-function is large. We will therefore estimate
the number n of bound states and use n� 1 as an empirical justification
of our approach.7 With this criterion we will be able to study the normal-
izable solutions to the Dirac equation/pole structure of the CFT spectral
functions as a function of κ/L.

The potential is bounded both in the AdS boundary and at the hori-
zon, and decreases towards intermediate values of r. We therefore have a
standard WKB solution consisting of three regions:

• In the regions where V > 0, the solution decays exponentially:

z+ = c1,2V
−1/4exp

(
±
∫ r

r1,2

dr′
[
c0

√
giigrr

(
k+ µ̂qeff

)√
V
])
. (5.4.48)

Here r1, r2 are the turning points where V (r1) = 0 = V (r2).

• In the region r1 < r < r2, i.e. V < 0, the solution is

z+ = c3(−V )−1/4Re

[
exp
(i ∫ rr1 dr′[c0√giigrr(k+µ̂qeff

)√
−V ]−iπ/4)]

,

(5.4.49)
with the constant phase −iπ/4 originating in the connection formula
at the turning point r1.

Finding a WKB solution shows us that the peaks seen numerically
are true poles in the spectral function. But it also allows us to estimate

7A large number of bound states n implies |∂sV | � |V |3/2 if the potential has a
single minimum, but as is well known there are systems, e.g. the harmonic oscillator,
where the WKB approximation holds for small n as well.



5.4 Fermi surface ordering: kF from a Schrödinger formulation 121

the number of peaks that the numerical approach could not resolve. The
WKB quantization condition∫ r2

r1

dr′
[
c0

√
giigrr

(
k + µ̂qeff

)√
−V

]
= π(n+ 1/2) (5.4.50)

counts the number of bound states with negative semi-definite energy.
Note that n does not depend on the integral constant as there is also a
factor 1/c0 in

√
−V . Since V depends on k, we will see that as we increase

k this number decreases. The natural interpretation in the context of a
bulk many-body Fermi system is that this establishes the ordering of the
the filling of all the ω = 0 momentum shells in the electron star. For
a fixed k one counts the modes that have been previously occupied and,
consistent with our earlier deduction, the lowest/highest kF corresponds to
the last/first occupied state. Though counterintuitive from a field theory
perspective where normally E ∼ kF , this UV/IR correspondence is very
natural from the AdS-bulk, if one thinks of the electron star as a trapped
electron gas. The last occupied state should then be the outermost state
from the center, but this state has the lowest effective chemical potential
and hence lowest kF .

Let us now show this explicitly by analyzing the potential and the
bound states in the electron star and AdS-RN.

Electron star

The potential (5.4.41) for the electron star is given in Fig. 5.5 and the
number of bound states as a function of k in Fig. 5.6. As stated the
number of states decreases with increasing k, consistent with the analogy
of the pole distribution of the spectral functions compared with AdS-RN.
Moreover, we clearly see the significant increase in the number of states
as we decrease κ/L thereby improving the adiabaticity of the background.
This vividly illustrates that the adiabatic limit corresponds to a large
number of constituents. As all numbers of states are far larger than one,
the use of the WKB is justified.

The Reissner-Nordström case

For AdS-RN the Schrödinger analysis requires a separate discussion of the
near horizon boundary conditions, which we present here for completeness
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Figure 5.5: The Schrödinger potential V (s) for the fermion component z+ of in
the ES background m̂ = 0.36, z = 2, c0 = 0.1. Fig. A. shows the dependence on
the momentum k = 0.0185 (Purple), k = 5 (Blue), k = 10 (Red) for κ = 0.092.
Fig. B. shows the dependence on κ = 0.086 (Purple), κ = 0.092 (Blue), κ = 0.1
(Red) for k = 0.0185. Recall that s = 0 is the AdS boundary and s = −∞ is the
near-horizon region.
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Figure 5.6: The WKB estimate of the number of bound states n as a function of
the momentum k for κ = 0.086(Purple), 0.092(Blue), 0.1(Red) (Fig A.); for κ =
0.001(Purple), 0.002(Blue), 0.003(Red) (Fig B.) and for κ = 10−5(Purple), 3×
10−5(Blue), 5× 10−5(Red) (Fig C.). Note the parametric increase in number of
states as the adiabaticity of the background improves for smaller κ. Both figures
are for the electron star background with m̂ = 0.36, z = 2. Since n � 1 in all
cases, WKB gives a valid estimate.

and comparison. Part of this analysis is originally worked out in [27]. The
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AdS-RN black hole with metric

ds2 = L2

(
−f(r)dt2 +

dr2

f(r)
+ r2(dx2 + dy2)

)
, (5.4.51)

f(r) = r2

(
1 +

3

r4
− 4

r3

)
, (5.4.52)

A = µ

(
1− 1

r

)
dt, (5.4.53)

has near horizon geometry AdS2 × R2

ds2 = −6(r − 1)2dt2 +
dr2

6(r − 1)2
+ (dx2 + dy2), (5.4.54)

A =
√

3

(
r − 1

)
dt. (5.4.55)

A coordinate redefinition of r in eq. (5.4.43) to r = (rAdS2 − 1)1/z shows
that this corresponds to a dynamical critical exponent z = ∞ and is
outside the validity of the previous analysis.

Before we proceed, recall that the existence of AdS2×R2 near-horizon
region allows for a semi-analytic determination of the fermion spectral
functions with the self-energy Σ ∼ ω2νkF controlled by the IR conformal
dimension δk = 1/2 + νk with

νk =
1√
6

√
m2 + k2 − q2

2
. (5.4.56)

When νk is imaginary, which for q2 > 2m2 always happens for small k,
the spectral function exhibits oscillatory behavior, but generically has fi-
nite weight at ω = 0. When νk is real, there are poles in the spectral
functions at a finite number of different Fermi momenta kF . The associ-
ated quasiparticles can characterize a non-FL (νkF < 1/2), a marginal FL
(νkF = 1/2) or irregular FL (νkF > 1/2) with linear dispersion but width
Γ 6= ω2 [27].

The analytic form of the near-horizon metric allows us to solve exactly
for the near horizon potential V in terms of s = c0√

6
(k+ q/

√
2) ln (r − 1) +

. . .. As noted in [27] one remarkably obtains that the near-horizon poten-
tial for s→ −∞ is proportional to the self-energy exponent:

V (s) ' 6

c2
0(k + q/

√
2)2

ν2
k + . . . . (5.4.57)
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Figure 5.7: The Schrödinger potential V (s) for the fermion component z+ of in
the AdS-RN background r+ = 1, µ =

√
3, gF = 1,mL = 0.4, c0 = 0.1. Fig. A.

shows the dependence on the momentum k = 1 (Red), k = 2 (Purple), k = 3
(Blue) for charge q = 2.5. Fig. B. shows the dependence on the charge q —
analogous to κ in the ES background —. Shown are the values q = 2 (Blue),
q = 2.5 (Purple), q = 3 (Red) for the momentum k = 2. In both figures the
Red potentials correspond to the oscillatory region ν2

k < 0, the Purple potentials
show the generic shape that can support an ω = 0 bound state, and the Blue
potentials are strictly positive and no zero-energy bound state is present. Recall
that s = 0 is the AdS boundary and s = −∞ is the near-horizon region.

One immediately recognizes the oscillatory region ν2
k < 0 of the spectral

function as an ω = 0 Schrödinger potential which is “free” at the horizon
s = −∞ (Fig. 5.7) and no bound state can form. Comparing with our
previous results, we see that this oscillatory region is a distinct property
of AdS-RN. For any Lifshitz near-horizon metric the potential is always
positive-definite near the horizon and all ω = 0 solutions will be bounded.
(see also [53, 63]). As we increase k, ν2

k becomes positive, then the AdS-
RN potential is also positive at the horizon and bound zero-energy states
can form. Increasing k further, one reaches a maximal kmax, above which
the potential is always positive and no zero-energy bound state exists
anymore.

Because the near-horizon boundary conditions for AdS-RN differ from
the general analysis, the possible singularity in the potential for k < 0 also
requires a separate study. This is clearly intimately tied to the existence
of an oscillatory regime in the spectral function, as the previous analysis
does apply for ν2

k > 0. The clearest way to understand what happens
for ν2

k < 0 is to analyze the potential explicitly. Again if |k| > kmax
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VRNHsL

Figure 5.8: The qualitative behavior for negative k of the Schrödinger
potential V (s) for the fermion component z+ of in the AdS-RN background
r+ = 1, µ =

√
3, gF = 1,mL = 0.1. The radial coordinate has been

rescaled to a finite domain such that the full potential can be represented
in the figure; on the right is the AdS boundary and left is the near-horizon
region and the range is slightly extended beyond the true horizon, which
is exactly at the short vertical line-segments on the right. Potentials are
given for q = 12/

√
3, k = −15 (Blue) for which the potential is strictly

positive, k = −10 (Red), k = −7 (Orange), which both have triple poles
and the pole can be seen to move towards the horizon on the left as k
decreases, and k = −4 (Green) which has no pole and a finite negative
value at the horizon. The pole disappears for |k| < q/

√
2 leaving a regular

bounded potential which can support zero-energy bound states.

the potential is strictly positive definite, and no zero-energy bound state
exists. As we decrease the magnitude of k < 0, a triple pole will form
near the boundary when k = −µ̂qeff(s), soon followed by a zero at k =
−
√
µ̂qeff(s)

2 −mren(s)2 (see Fig. 5.4). As we approach the horizon, in
the general case where limr→0 µ̂qeff = h∞qeffr + . . ., this pole at r∗ =
−k/(h∞qeff) hits the horizon and disappears precisely when k = 0 . In

AdS-RN, however, where limr→1 µ̂qeff = q√
2

+
√

2q
3 (r− 1) + . . ., the pole at

rRN∗ − 1 = 3√
2q

(k + q√
2
) hits the horizon and disappears at k = − q√

2
. For

negative values of k whose magnitude is less than |k| < q√
2
, the potential

is regular and bounded and can and does have zero-energy solutions. Fig.
5.4 shows this disappearance of the pole for the AdS-RN potential.

Counting solutions through WKB is also more complicated for AdS-
RN. For O(1) values of q there are only few Fermi surfaces and the WKB
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Figure 5.9: The WKB estimate of the number of bound states n in the AdS-
RN Schrödinger potential for z+ with mL = 10. The WKB approximation only
applies to large values of the charge q = 45 (Red), q = 50 (Blue), q = 55
(Purple). Fig B. gives the associated values of the IR conformal dimension νk =

1√
6

√
m2 + k2 − q2

2 . Both figures are for the extremal AdS-RN background with

µ =
√

3, r+ = 1, gF = 1.

approximation does not apply. For large q it does, however. For com-
pleteness we show the results in Fig. 5.9.

5.5 Conclusion and Discussion

These electron star spectral function results answer two of the three ques-
tions raised in the introduction directly.

• They show explicitly how the fermion wavefunctions in their own
gravitating potential well are ordered despite the fact that they all
have strictly vanishing energy: In a fermionic version of the UV-
IR correspondence they are ordered inversely in k, with the “low-
est”/first occupied state having the highest k and the “highest”/last
occupied state having the lowest k. With the qualitative AdS/CFT
understanding that scale corresponds to distance away from the in-
terior, one can intuitively picture this as literally filling geometrical
shells of the electron star, with the outermost/highest/last shell at
large radius corresponding to the wavefunction with lowest local
chemical potential and hence lowest k.

• The decrease of the number of bound states — the number of oc-
cupied wavefunctions in the electron star — as we decrease qeff =

β̂1/4
√

πL
κ for a fixed electron star background extrapolates naturally
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to a limit where the number of bound states is unity. This extrap-
olation pushes the solution beyond its adiabatic regime of validity.
In principle we know what the correct description in this limit is: it
is the AdS Dirac Hair solution constructed in [18]. The dependence
of the number of bound states on κ/L therefore illustrates that the
electron star and Dirac Hair solutions are two limiting cases of the
gravitationally backreacted Fermi gas.

With this knowledge we can schematically classify the groundstate so-
lutions of AdS Einstein-Maxwell gravity minimally coupled to charged
fermions at finite charge density. For large mass mL in units of the con-
stituent charge q, the only solution is a charged AdS-Reissner-Nördstrom
black hole. For a low enough mass-to-charge ratio, the black hole becomes
unstable and develops hair. If in addition the total charge density Q is of
the order of the microscopic charge q this hairy solution is the Dirac Hair
configuration constructed in [18], whereas in the limit of large total charge
density Q one can make an adiabatic Thomas Fermi approximation and
arrives a la Tolman-Oppenheimer-Volkov at an electron star (Fig. 5.10).

Translating this solution space through the AdS/CFT correspondence
one reads off that in the dual strongly coupled field theory, one remains
in the critical state if the ratio of the scaling dimension to the charge ∆/q
is too large. For a small enough value of this ratio, the critical state is
unstable and forms a novel scaleful groundstate. The generic condensed
matter expectation of a unique Fermi liquid is realized if the total charge
density is of the same order as the constituent charge. Following [53, 63]
and [54, 97, 55] the state for Q� q is some deconfined Fermi liquid.

The gravity description of either limit has some deficiencies, most no-
tably the lack of an electron star wavefunction at infinity and the unnat-
ural restriction to Q = q for the Dirac Hair solution. A generic solution
for Q ≥ q with wavefunction tails extending to infinity as the Dirac hair
would be a more precise holographic dual to the strongly interacting large
N Fermi system. Any CFT information can then be cleanly read off at
the AdS boundary. A naive construction could be to superpose Dirac Hair
onto the electron star; in principle one can achieve this solution by a next
order Hartree-Fock or Local Density Approximation computation.

This best-of-both-worlds generic solution ought to be the true holo-
graphic dual of the strongly interacting Fermi ground state. If one is able
to answer convincingly how this system circumvents the wisdom that the
groundstate of an interacting many-body system of fermions is a generic
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Figure 5.10: Schematic diagram of the different groundstate solutions of strongly
coupled fermions implied by holography for fixed charge density Q. Here q is the
constituent charge of the fermions and mL ∼ ∆ the mass/conformal scaling
dimension of the fermionic operator. One has the gravitational electron star
(ES)/Dirac Hair (DH) solution for large/small Q/q and small mL/q dual a de-
confined Fermi liquid/regular Fermi liquid in the CFT. For mL/q ∼ ∆/q large
the groundstate remains the fermionic quantum critical state dual to AdS-RN.

single quasiparticle Landau Fermi liquid, then one would truly have found
a finite density Fermi system that does not refer at any stage to an un-
derlying perturbative Fermi gas.



Chapter 6

The phase diagram: electron
stars with Dirac hair [83]

6.1 Introduction

The problem of fermionic quantum criticality has proven hard enough for
the condensed matter physics to keep seeking new angles of attack. The
main problem we face is that the energy scales vary by orders of magnitude
between different phases. The macroscopic, measurable quantities emerge
as a result of complex collective phenomena and are difficult to relate to
the microscopic parameters of the system. An illustrative example present
the heavy fermion materials [80] which still behave as Fermi liquids but
with vastly (sometimes hundredfold) renormalized effective masses. On
the other hand, the strange metal phase of cuprate-based superconducting
materials [118], while remarkably stable over a range of doping concentra-
tions, shows distinctly non-Fermi liquid behavior. Holography (AdS/CFT
correspondence) [81, 38, 114] has become a well-established treatment of
strongly correlated electrons by now, but it still has its perplexities and
shortcomings. Since the existence of holographic duals to Fermi surfaces
has been shown in [79, 17], the next logical step is to achieve the un-
derstanding of the phase diagram: what are the stable phases of matter
as predicted by holography, how do they transform into each other and,
ultimately, can we make predictions on quantum critical behavior of real-
world materials based on AdS/CFT.

The condensed matter problems listed all converge toward a single
main question in field-theoretical language. It is the classification of
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ground states of interacting fermions at finite density. In this paper we at-
tempt to understand these ground states in the framework of AdS/CFT,
the duality between the strongly coupled field theories in d dimensions
and a string configuration in d+1 dimension. The classification of ground
states now translates into the following question: classify the stable asymp-
totically AdS geometries with charged fermionic matter in a black hole
background. Most of the work done so far on AdS/CFT for strongly in-
teracting fermions relies on bottom-up toy gravity models and does not
employ a top-down string action. We stay with the same reasoning and
so will work with Einstein gravity in 3 + 1 dimensions. We note, however,
that a top-down construction of holographic fermions has been derived
in [35]. While expectedly more complicated, it confirms the robustness
of some features seen in 3+1-dimensional classical gravity, such as the
emergent scale invariance of the field theory propagators in the IR.

So far three distinct models aiming at capturing the stable phases of
holographic fermionic matter have appeared: the electron star [51], Dirac
hair [18] and a confined Fermi liquid model [96]. The electron star is essen-
tially a charged fermion rewriting of the well-known Oppenheimer-Volkov
equations for a neutron star in AdS background. The bulk is thus modeled
as a semiclassical fluid. The mystery is its field theory dual: it is a hier-
archically ordered multiplet of fermionic liquids with stable quasiparticles
[53]. On the other end of the spectrum is Dirac hair, which reduces the
bulk fermion matter to a single quantum-mechanical wave function. As
a consequence the field theory dual is a single Fermi liquid, however its
gravitational consistency properties are not yet fully understood. In [19]
we have shown that Dirac hair and electron star can be regarded as the
extreme points of a continuum of models, dialing from deep quantum – a
single occupied state — to a classical regime — a very large occupation
number — in the bulk. They correspond to two extreme “phases” in the
field theory phase diagram: a multiplet of a very large number of Fermi
liquids and a single Fermi liquid. The confined Fermi liquid model [96]
introduces confinement through modifying the bulk geometry and solves
for quantum-mechanical wave functions adding them up to compute the
full bulk density. This latter step is more general then the single-particle
approach of [18] and it naturally extends a Dirac hair state with single
Fermi surface to a state with multiple Fermi surfaces. Our main motiva-
tion is to construct a complementary model that extends from the other
end — the classical regime — down to a state with few Fermi surfaces.
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We aim for a system which is general enough to encompass the middle
ground between extreme quantum and extreme classical regimes in the
original deconfined setup.

In addition to simply improving the mathematical treatment of the
many-body-bulk fermion system, the guiding principle in our analysis will
be to rest on the advantages and disadvantages of the current models. On
the one hand, the Dirac hair is a fully quantum-mechanical model which
shows its strength in particular near the boundary (the ultraviolet of the
field theory) but becomes worse in the interior, i.e.close to the horizon
(the infrared of the field theory) where density is high and the resulting
state of matter cannot be well described by a single-particle wave function.
On the other hand, the electron star yields a very robust description of
high-density matter in the interior but its sharp boundary at some radius
rc means that it has zero density at the boundary of the AdS space. This
is a crucial drawback as the holographic dictionary defines densities and
thermodynamic quantities on the CFT side in terms of the asymptotics of
the bulk fields at infinity. It is thus obvious that the physically interesting
model lies somewhere in-between the two approaches. This is why what
we try to achieve will essentially be an ”electron star with Dirac hair”.

We will reproduce the results of the electron star/Dirac hair models
in the limit of infinitely large/small fermion charge but also get a look
at what is in-between. Importantly, our model incorporates the quantum
corrections to the leading WKB approximation for the bulk electron den-
sity. Our system therefore does not terminate at some finite radius like
the electron star, allowing direct calculation of the CFT quantities at the
boundary. This will allow us to sketch the phase diagram as a whole. We
do not aim at quantitative accuracy in this paper: in a follow-up publi-
cation we will present a more accurate calculation making use of density
functional formalism for interacting fermions in the bulk. Here, we use a
simple WKB formalism with quantum tails which adds quantum correc-
tions to the Thomas-Fermi (fluid) approximation by taking into account
finite level spacing. While not highly accurate, it is able to penetrate
deep in the quantum regime thus giving at least a qualitative look in the
intermediate regime. In particular, we are able to detect the instability of
the RN black hole leading to its discharge and formation of finite density
phase in the bulk. The precursor os this instability is known as oscillatory
or log-oscillatory region [27, 50, 63]. All calculations are self-consistent
and include the backreaction on the gauge field by fermions and on the



132 Chapter 6. The phase diagram: electron stars with Dirac hair [83]

geometry by both.

The physical task of understanding the various states and their insta-
bilities is clearly still ahead of us. The obvious question to ask is, what
is the nature of the phase transitions and to what degree is it universal?
A partial answer is provided by our finding that the finite density phases
with fermionic quasiparticles at high enough temperatures always exhibit
a first order transition into the zero density phase. Intuitively, this can be
interpreted as a universal van der Waals liquid-gas transition. In the fluid
limit however, returning to the semiclassical description, the transition
becomes continuous as predicted in [52]. At zero temperature, we detect
a continuous transition whereby the AdS-RN system develops finite bulk
density of fermions, driving the instability of the black hole toward a finite
density phase, which in the fluid limit is just the electron star. It is here
that our method is especially useful as it allows us to probe the ”electron
star at birth”, i.e. to observe the instability of the black hole when only
few fermion levels are filled. The instability mechanism was discussed in
[50, 63] in the framework of electron star. We again find that finite level
spacing matters and the transition is shifted compared to the electron star
model. Finally, we find also a crossover between the low density (Dirac
hair) and high density (electron star) regime. The crossover is not a tran-
sition and thus there is no clear transition point. However, looking at the
two extremes, with N ∼ 1 levels and with N ∼ ∞ levels we will see that
they bring a characteristic difference in the behavior of the system in field
theory.

The nature of the zero temperature phase transition and the crossover
between the finite density phases is complex and we will not be able to
offer a complete description of these phenomena. Hopefully any gain of
understanding in these questions will give us some insight into the crucial
question: are there any stable phases of fermion matter that cannot be
adiabatically continued to a Fermi gas?

The outline of the paper is as follows. In the Section II we describe
the field content and geometry of our gravity setup, an Einstein-Maxwell-
Dirac system in 3 + 1 dimension, and lay out the single-particle solution
to the bulk Dirac equation. In Section III we start from that solution
and apply the WKB approximation to derive the Dirac wave function of
a many-particle state in the bulk. Afterwards we calculate density and
pressure of the bulk fermions – the semiclassical estimate and the quantum
corrections, thus arriving at the equation of state. Section IV contains the
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solution of the self-consistent set of equations for fermions, gauge field and
the metric. There we also describe our numerical procedure. Section V
is the core of the matter, where we analyze thermodynamics and spectra
of the field theory side and identify different phases as a function of the
three parameters of the system: chemical potential µ, fermion charge e
and conformal dimension ∆. Section VI sums up the conclusions and
offers some insight into possible broader consequences of our work and
into future steps.

6.2 Holographic fermions in charged background

We wish to construct the gravity dual to a field theory at finite fermion
density. Dimensionality is not of crucial importance at this stage. While
some interesting condensed matter systems live in 2 + 1 dimensions, the
heavy fermion materials are for instance all three-dimensional. We will
specialize to 2 + 1-dimensional conformal systems of electron matter, dual
to AdS4 gravities. We consider a Dirac fermion of charge e and mass m
in an electrically charged gravitational background with asymptotic AdS
geometry. Adopting the AdS radius as the unit length, we can rescale the
metric gµν and the gauge field Aµ:

gµν 7→ gµνL
2, Aµ 7→ LAµ. (6.2.1)

In these units, the action of the system is:

S =

∫
d4x
√−g

[
1

2κ2
L2 (R+ 6) +

L2

4
F 2 + L3Lf

]
(6.2.2)

where κ is the gravitational coupling and Fµν = ∂µAν − ∂νAµ is the field
strength tensor. The fermionic Lagrangian is:

Lf = Ψ̄

[
eµAΓA

(
∂µ +

1

4
ωBCµ ΓBC − ieLAµ

)
−mL

]
Ψ (6.2.3)

where Ψ̄ = iΨ†Γ0, eµA is the vierbein and ωABµ is the spin connection.
Since the magnetic field is absent, the U(1) gauge field is simply A = Φdt.
We parametrize our (spherically symmetric asymptotically AdS) metric
in four spacetime dimensions as:

ds2 =
f(z)e−h(z)

z2
dt2 − 1

z2

(
dx2 + dy2

)
− 1

f(z)z2
dz2 (6.2.4)
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The radial coordinate is defined for z ≥ 0, where z = 0 is the location
of AdS boundary. All coordinates are dimensionless, according to (6.2.1).
This form of the metric is sufficiently general to model any configuration
of static and isotropic charged matter. Development of a horizon at finite
z is signified by the appearance of a zero of the function f(z), f(zH) = 0.
From now on we will set L = 1.

We will now proceed to derive the equation of motion for the Dirac
field. From (6.2.3), the equation reads:

eµAΓA
(
∂µ +

1

4
ωBCµ ΓBC − ieAµ

)
Ψ = mΨ. (6.2.5)

In the metric (6.2.4) we can always eliminate the spin connection [79] by
transforming:

Ψ 7→ (ggzz)−
1
4 Ψ =

eh(z)/4z3/2

f(z)1/4
Ψ ≡ a−1(z)Ψ (6.2.6)

After decomposing into radial projections Ψ±, defined as:

Ψ± =
1

2

(
1± ΓZ

)
Ψ, (6.2.7)

in a basis where ΓZ = diag(1, 1,−1,−1), the Dirac equation in matrix
form becomes: √

f∂z

(
Ψ+

Ψ−

)
= D̂

(
Ψ+

Ψ−

)
. (6.2.8)

Here the matrix D̂ is the differential operator along the transverse coor-
dinates (x, y) and time, which we will specify shortly.

We will give the solution of the Dirac equation in the cylindrical co-
ordinates, which will serve as the input to the calculation of bulk fermion
density in WKB approximation. Introducing the cylindrical coordinates
as (t, x, y, z) 7→ (t, ρ, φ, z) we make the separation ansatz:(

Ψ+(z, ρ, φ)
Ψ−(z, ρ, φ)

)
=

∫
dω

2π

(
F (z)K1(ρ, φ)
−G(z)K2(ρ, φ)

)
e−iωt (6.2.9)

where, unlike previous approaches, the F,G are are taken as scalars and
the modes K1,2 are in-plane spinors. The Dirac equation then takes the
form:(
∂zFK1

−∂zGK2

)
=

 −∂̂/
√
f(z)

(
Ẽ (ω, z) + M̃ (z)

)
σ3(

Ẽ (ω, z)− M̃ (z)
)
σ3 −∂̂/

√
f(z)

( FK1

−GK2

)
(6.2.10)
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We recognize the matrix at the right hand side as D̂/
√
f . The terms Ẽ

and M̃ have the meaning of local energy and mass terms, respectively:

Ẽ(z) = −e
h(z)/2

f(z)
(ω + qΦ(z)), M̃(z) =

m

z
√
f(z)

. (6.2.11)

The in-plane operator ∂̂ acts on each in-plane spinor as:

∂̂ =

(
0 i∂̄
−i∂ 0

)
(6.2.12)

with ∂ ≡ eiφ(∂ρ + ∂φ/ρ). To maintain the separation of variables in

(6.2.10), we require ∂̂Ki = λiKi, where |λi|2 corresponds the momentum-
squared of the in-plane motion of the particle. The solution of the cylin-
drical eigenvalue problem for each in-plane spinor Ki gives:

Ki(ρ, φ) =

(
Jl−1/2(λiρ)ei(l−1/2)φ

Jl+1/2(λiρ)e−i(l+1/2)φ

)
. (6.2.13)

Of the two linearly independent solutions, only the Bessel function of the
first kind J(x) is chosen in order to satisfy the normalizability condition
of the wave function at ρ −→ 0 (for linear independent Bessel function
Y this condition is not fulfilled). Remembering that |λi|2 is the squared
in-plane momentum, the physical requirement that this momentum be the
same for both radial projections translates into the condition |λ2| = |λ1|.
Consistency of the separation of variables then shows us that K2 = σ3K1

and thus λ1 = −λ2 = k and the reduced radial equation becomes:(
∂zF
∂zG

)
=

(
−k̃ Ẽ + M̃

M̃ − Ẽ k̃

)(
F
G

)
(6.2.14)

with k̃ = k/
√
f (let us note that Eq. (6.2.14) is for the pair (F,G), whereas

the initial equation (6.2.10) is written for the bispinor (FK1,−GK2)). For
the WKB calculation of the density, it is useful to remind that the wave
function Ψ in Eq. (6.2.9) has two quantum numbers corresponding to the
motion in the (ρ, φ) plane: λ, l (or equivalently the momenta kx, ky
in Cartesian coordinates). The radial eigenfunctions in z-direction will
provide a third quantum number n.
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6.3 Equation of state of the bulk fermion matter

In this section we construct the model of the bulk fermions in an improved
semiclassical approximation. In the next section we will complement it
with the equations for the Einstein-Maxwell sector. We will start by es-
timating the bulk fermion density in the semiclassical case. The Dirac
equation is solved in the WKB approximation, and the density is com-
puted assuming a large number of energy levels. This is in the spirit of
WKB approximation. However, we sum the exact quantum-mechanical
solutions for the wave functions rather than immediately taking the fluid
limit. In this respect our method goes beyond Thomas-Fermi and in fact
corresponds to calculating the vacuum density in the Hartree approxima-
tion. The resulting estimate has sharp bounds along the radial direction,
at some points z1 and z2 (0 < z1 < z2 ≤ 1), similar to electron star [51]
and its finite-temperature generalization [52]. As we have already argued,
sharp bounds fail to capture several essential phenomena on the CFT side.
To overcome this shortcoming, we will improve on the WKB approxima-
tion and continue our bulk density profile outside the classical region by
making use of Airy corrections to WKB in the interior, and the Dirac hair
formalism near the boundary. The reason for the latter is that Airy or de-
caying WKB approximations rapidly fail beyond the naive exterior sharp
edge. Compared to other models of holographic fermions at finite density
this quantum improvement on the semiclassical WKB limit bridges the
gap between the all-classical electron star [51] and single-particle quan-
tum mechanical calculation of Dirac hair [18].

6.3.1 WKB hierarchy and semiclassical calculation of the
density

In the framework of WKB calculations, the first task is to construct the
effective potential as a functional of the induced charge density n(z). Phys-
ically, the origin of the induced charge in our model is the pair production
in the strong electromagnetic field of the black hole. To remind the reader,
a (negatively) charged black hole in AdS space is unstable at low temper-
atures, and spontaneously discharges the vacuum [60]. This means that
there will be a non-zero net density of electrons n. Within the semiclassical
approximation it is consistent to calculate n as density of non-interacting
electrons. We will thus employ the semiclassical gas model and add up all
possible states enumerated by good quantum numbers. For this we choose
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the set (λ, l, n).
We now give the algorithm for the WKB expansion of the wave func-

tion for Dirac equation, adopted from [113]. Even though every single
step is elementary, altogether it seems to be less well known than its
Schrödinger equivalent. We consider the Dirac equation in the form (6.2.8)
and introduce the usual WKB phase expansion for it:

Ψ(z) = e
∫ z
z0
dzy(z)

√
f(z)

χ(z) (6.3.15)

with the spinor part χ(z). The phase y(z) can be expressed as the semi-
classical expansion in ~ 1

y(z) = (y−1(z) + y0(z) + y1(z) + . . .) . (6.3.16)

The equations for the perturbative corrections now follow from (6.3.15-
6.3.16):

D̂χ0 = y−1χ0, (6.3.17)

D̂χ1 = y−1χ1 + y0χ0 +
√
f∂zχ0, (6.3.18)

. . .

D̂χn = y−1χn +
√
f∂zχn−1 +

n−1∑
i=0

yn−i−1χi. (6.3.19)

Notice in particular that y−1/χ0 is an eigenvalue/eigenvector of D̂. In our
case the matrix D̂ has rank two, so there are two eigenvalues/eigenvectors
for y−1/χ0: y±−1 and χ±0 . To find the first order correction to the phase
of the wave function y0, we multiply (6.3.18) from the left by the left
eigenvalue χ̃±0 of the matrix D̂ (D̂ is in general not symmetric, so the
right and left eigenvalues are different):

y0 = −(∂zχ
±
0 , χ̃

±
0 )

(χ̃±0 , χ
±
0 )

. (6.3.20)

so we can now construct the usual WKB solution of the form Ψ± =
eiθ±/

√
q, where q is the WKB momentum and θ± the phase. The term y0

is just the first order correction to θ±.

1From the very beginning we put ~ = 1. However, to elucidate the semi-
classical nature of the expansion we give it here with explicit ~. Dirac equation
becomes ~

√
f∂zΨ̂ = D̂Ψ̂, where Ψ̂ = (Ψ+,Ψ−), yielding the expansion y(z) =

~−1
(
y−1(z) + ~y0(z) + ~2y1(z) + . . .

)
.
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Finally, let us recall the applicability criterion of the WKB calculation.
It is known that WKB approximation fails in the vicinity of turning points.
The condition of applicability comes from comparing leading and the next
to leading term in the expansion (6.3.16):

y0(z)

y−1(z)
� 1. (6.3.21)

In terms of Ẽ(z) and M̃(z) introduced in Eq. (6.2.11) it gives at k = 0:

M̃(z)∂zẼ(z)− Ẽ(z)∂zM̃(z)

Ẽ(z)(Ẽ(z)− M̃(z))
� 1. (6.3.22)

We will use this expression later on to estimate the point where we need to
replace the WKB density and pressure with their full quantum estimates.

WKB wave function

According to (6.3.17), the leading effective WKB momentum for the mo-
tion in z direction q ≡ |y±−1| is:

q2(z) = Ẽ2(z)− M̃2(z)− k̃2(z). (6.3.23)

The wave function in radial direction, Ψ = (F,−G), is given by the su-
perposition of two linear independent solutions

Ψ(z) = C+χ+(z)eiθ(z) + C−χ−(z)e−iθ(z), (6.3.24)

with the phase determined by

θ(z) =

∫ z (
q(z′) + δθ(z′)

)
dz′ (6.3.25)

δθ(z) =

∫ z k̃∂zk̃ − q∂zq +
(
Ẽ − M̃

)(
∂zẼ + ∂zM̃

)
2k̃q

dz.(6.3.26)

The constants C+ and C− are related by invoking the textbook boundary
conditions for the behavior of WKB wave function at the boundary of the
classically allowed region (q2(z) > 0) and the classically forbidden region
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(q2(z) < 0). The wave function in the classically allowed then reads:

Ψ(z) =
C√
q(z)

√Ẽ(z) + M̃(z) sin (θ(z)− δθ(z))√
Ẽ(z)− M̃(z) sin θ (z)

 , (6.3.27)

δθ(z) = ArcSin
q(z)√

Ẽ2(z)− M̃2(z)
, (6.3.28)

and C is the only remaining undetermined normalization constant. For
the classically forbidden region we will use a different wave function, to
be described in the subsequent subsections. Integrating the probability
density over all coordinates in classically allowed region (z1, z2) gives the
normalization condition:

C2

∫ z2

z1

dz

√
g3d(z)

a(z)2

∫
ρdρ

∫
dφC2

2dΨnlλ(z, ρ, φ)Ψ†n′l′λ′(z, ρ, φ) = 1.

(6.3.29)
The metric factor is g3d(z) = g(z)gtt(z), and a(z) is the conversion factor
from (6.2.6). In the left-hand side of the equality we took into account
the normalization of the continuous spectrum in the (ρ, φ) plane. The
integration over φ is trivial. The orthogonality relation for Bessel functions
(which encapsulates the (ρ, φ) solution) gives the definition of C2

2d:

C−2
2d

∫ ∞
0

J(λρ)J(λ′ρ)ρdρ =
δ(λ− λ′)

λ
(6.3.30)

and it allows us to express the normalization constant as:

C =

(
4π

∫
dz

√
gtt√
gzz

Ẽ(z)

q(z)

)−1/2

, (6.3.31)

where a factor of 2π comes from the integration over φ and an additional
factor of 2 from the summation over the full four-component wave func-
tion, i.e. bispinor (each spinor gives Ẽ(z)/q(z) after averaging over the
fast oscillating phase θ). This completes the derivation of WKB wave
function and allows us to compute the density.

WKB density

The key input for WKB approximation is the self-consistent bulk electron
density n(z). As in [113] we find the total density by summing single-
particle wave functions in the classically allowed region. The WKB wave
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function is characterized by the quantum numbers (λ, l, n) with λ being
the linear momentum in the x− y plane, l – the orbital momentum in the
x− y plane and n – the energy level of the central motion in the potential
well along z direction. The bulk density can be expressed as the sum over
the cylindrical shells of the bulk Fermi surface. This suggests to work
in the cylindrical geometry as the natural choice (remember that we use
the SO(2) invariant in-plane spinors). Each shell satisfies the Luttinger
theorem in the transverse (x− y) direction and so the density carried by
each shell nxy(z) can easily be found. We can then sum over all shells to
arrive at the final answer which reads simply

∫
dznz(z)nxy(z). A similar

qualitative logic for summing the Luttinger densities in the x − y plane
was used also in [96] although the model used in that paper is overall very
different.

Let us start by noticing that the end points of the classically allowed
region determine the limits of summation over n and λ: q2(ωn, λ) ≥ 0.
Thus, the density in the WKB region is:

n(z) =
1

a(z)2

∞∑
l=0

∫ 2π

0
dφ

∑
n:q2(ωn,λ)≥0

∫ λ0

0
λdλ

∫ ∞
0

dρρC2
2d|Ψ(z, ρ, φ)|2,

(6.3.32)

where λ0 =
√
f(z)(Ẽ2(ω, z)− M̃2(z)). The limit of the sum over the

level number n is determined by the requirement that WKB momentum
be positive; in other words, we sum over occupied level inside the poten-
tial well only. The sum over the orbital quantum number l extends to
infinity as the (x, y) plane is homogenous and the orbital number does not
couple to the non-trivial dynamics along the radial direction. For large
occupation numbers the normalization condition (6.3.31) and the (local)
Bohr-Sommerfeld quantization rule (

∫
dz
√
q(z) = Nπ) then give:

Cn =

(
1

4π2

∂ωn
∂n

)1/2

, for q(z)� δθ(z), z ≈ 1. (6.3.33)

Now we turn the summation over the quantum number n into the inte-
gration over energy and obtain for the bulk electron density (here we also
performed the integration over ρ using the explicit expression for the wave
function (6.2.10) and the normalization condition (6.3.30) for the Bessel
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functions):

n(z) =
2

a(z)2

∞∑
l=0

∫ 2π

0
dφ

∫ √f(z)(Ẽ2(ω,z)−M̃2(z))

0
dλλ

∫ µloc

0
dω

Ẽ(ω, z)

4π2q(ω, λ, z)
.

(6.3.34)
After performing first integral over ω and then over λ we get2:

n(z) = z3 p
3
max(z)f3/2(z)

3π2
(6.3.35)

with pmax determined by

p2
max = Ẽ2(0, z)− M̃2(z). (6.3.36)

Notice that this result corresponds with common knowledge on the
density of electron star [51].

6.3.2 Airy correction to semiclassical density

The semiclassical density profile has sharp cutoffs in the classically for-
bidden regions, that is, for p2

max < 0, i.e. Ẽ(z) < M̃(z) (Fig. 6.1, dashed
curves). Generically, there will be such two turning points, z∗ and z∗∗,
so that 0 < z∗ < z∗∗ < zH where zH = ∞ in pure AdS or equals the
horizon radius at finite temperature. The semiclassical density is only
nonzero for z∗ < z < z∗∗. Leaving out the quantum ”tails” outside
this region misses even some qualitative features of the system, as we
have discussed in the introduction. Moreover, the WKB approximation
ceases to be valid close to the turning points (Eq. 6.3.22), at some z1,2

(0 < z∗ < z1 < z2 < z∗∗ < zH). We thus account for the quantum cor-
rections for z < z1 and z > z2. We first treat the latter case, i.e. the
quantum corrections in the near-horizon IR region.

To this end it is convenient to rewrite the Dirac equation in the
Schrödinger (second order) form for the Ψ+ component. Following the

2The given result for n can be compared to the charge density in the electron star
limit given in [53]. The metric functions used there are related to ours as f 7→ fe−h/z2

and g 7→ 1/fz2, where our metric functions are on the right hand side. Likewise, our
definition of pmax is related to kF of [53] as pmax = kF /

√
f . Now the total bulk charge

is expressed in [53] as Q =
∫
dzñe(z) where ñe(z) ∼ n(z)eh/2. In our conventions

Q =
∫
dz
√
−ggzzgttn =

∫
dzn(z)eh/2 thus giving the same result as in [53].
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textbook, the lowest order correction to the WKB solution is obtained by
expanding the potential,

Veff (z) = Ẽ2(z)−M̃2(z)−3
(
∂z log

(
Ẽ(z) + M̃(z)

))2
+

1

2

∂zz(Ẽ(z) + M̃(z))

Ẽ(z) + M̃(z)
,

(6.3.37)
in the vicinity of the turning point. Naively the logical extension of our
formalism into the classically forbidden region would be to solve the Dirac
equation or the corresponding Schrödinger equation in WKB form with
imaginary WKB momentum. The result would be a set of exponentially
decaying wave functions. This is, however, not the optimal approach.
Firstly, the summation of all exponentially decaying wave functions would
be an overkill as the contributions of all but the highest amplitude expo-
nential correction are negligible and do not have a measurable influence
on the result. Secondly, the summation of wave functions with imaginary
WKB momenta turns out to be much more difficult in practice. We thus
perform the series expansion of the potential (6.3.37)around z = z2 as our
approximation scheme. The lowest order (linear) term in the expansion
of the potential yields a solution in terms of an Airy function which co-
incides with the WKB solution as we approach the turning point, i.e. for
z = z2 − 0.

In principle, also for Airy corrections such a continuation should be
made for each of the wave functions (6.3.24), and the corrections then
should be summed up. However, the Airy corrections for excited levels
are also exponentially suppressed outside the classically allowed region.
It is therefore a good approximation to only match the squared module
of one single, suitably chosen, Airy function to the total WKB density.
This should be the solution at the Fermi level ω = 0. Exponentially small
corrections are in any case beyond the scope of a Hartree-based method
and require a density functional approach.

We first expand the potential Veff in z−z∗∗, where z∗∗ is the (second)
turning point, i. e. q(z∗∗) = 0. The resulting second-order equation for
Ψ+ is schematically of the form:

(∂zz + (P0 + P1 (z − z∗∗)) ∂z +Q0 +Q1 (z − z∗∗)) Ψ+ = 0. (6.3.38)

We transform to a Schrödinger-type equation (without a first derivative
term) but consistently keep only linear correction in the potential, giving
the equation:

(∂zz +Q0 + (Q1 − 2P0)(z − z∗∗)) Ψ+ = 0 (6.3.39)
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with

Q0 = k̃
∂zẼ + ∂zM̃

Ẽ + M̃
− ∂zk̃|z=z∗∗

Q1 = 2M̃∂zM̃ + 2k̃∂zk̃ − 2Ẽ∂zẼ +
∂zẼB + ∂zM̃

(Ẽ + M̃)2

[
(Ẽ + M̃)∂zk̃ − (∂zẼ + ∂zM̃)k̃

]
P0 = −∂zE + ∂zM̃

Ẽ + M̃
|z=z∗∗ (6.3.40)

The decaying normalizable solution to the above equation is (non-normalizable
solution would imply instability of the interior):

Ψ+(z) = NAi

(
−(2P0 −Q1)(z − z∗∗)

(2P0 −Q1)2/3

)
(6.3.41)

where N is the normalization constant. There is a similar equation for
Ψ− with the same normalization N for consistency with the first order
Dirac equation. The density is now simply

nIR(z) = |Ψ+(z)|2 + |Ψ−(z)|2. (6.3.42)

where in our approximation the only contribution comes from the single
wavefunction with ω = 0. We match this to the WKB density at the point
where it fails, i.e. at the point z2 in the interior where y0/y−1 = 1:

nWKB(z2 − 0) = nIR(z2 + 0). (6.3.43)

This determines the normalization N .
This approximation for the quantum tail becomes better and better

at zH as z∗∗ → zH . It is exactly there, in deep interior, where the Airy
correction is most critical for gravitational backreaction. The presence of
a nonzero density for z → zH implies backreaction at the horizon as we
shall see in the next section.

6.3.3 Dirac hair correction to semiclassical density

In principle, the Airy expansion can also be applied to the UV non-classical
region near the AdS boundary (0 < z < z1). This approach, however, has
both practical problems and problems of principle when applied in the
near-boundary region:
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• The convergence of the Airy expansion is poor near the boundary.
Airy expansion is nothing but the linear approximation of the ef-
fective potential, as in Eq. (6.3.38). Typically, however, the AdS
boundary is too far away from the turning point and the rate of
change of the effective potential Veff for z ≈ 0 is large enough to
require higher-order terms in the expansion of Veff . These would,
however, make the calculations much more complicated and go be-
yond the accuracy of the current model.

• More importantly, expanding away from z∗ toward the boundary in-
evitably means that the resulting approximation will not reproduce
the exact asymptotics of the fermion field at the AdS boundary.
The holographic dictionary identifies expectation values on the field
theory side by considering the asymptotics of the bulk fields at the
AdS boundary (z → 0). In particular, the correct asymptotics are
necessary to have the correct fermionic contribution to thermody-
namics. With an Airy expansion around z∗, the behavior at z = 0
is completely uncontrolled.

Therefore, in the context of the AdS/CFT correspondence one needs to
start the expansion at z = 0 in the UV region and glue it to the semiclas-
sical region at z = z∗ and not vice versa. The natural framework for this
task is the Dirac hair formalism [18]. In the region 0 < z < z∗ the density
rapidly decreases toward zero and it is increasingly dominated by the long
range wave functions with ω = 0 and k ≈ 0 [19]. These facts are precisely
the necessary conditions for Dirac hair to be a good approximation. We
will thus glue the Dirac hair wave function to the semiclassical result to
obtain the quantum tail at small z. The quantum correction in the UV
is especially crucial, since otherwise all holographic dictionary entries re-
lated to fermions (density, currents, response functions) are all, according
to the holographic dictionary, equal to zero.

We will start with a very concise review of Dirac hair. As argued
in [18], a very good approximation to the bulk fermion profile at low
densities is to describe it through a single collective wave function which
encapsulates the nonzero VEV of the fermion density. The right quantity
to consider is just the spacetime average of the bulk density J(z):

J(z;E, p) =

∫
dω

∫
d2kΨ†(z;−ω,−k)Ψ(z;E + ω, p+ k) (6.3.44)
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In the bulk, this is just the probability density associated with the quantum-
mechanical state Ψ. Analogously to the Airy correction in the IR region,
one should, strictly speaking, construct a separate density bilinear for ev-
ery bulk excitation (filled level) and add up all the bilinears. Analogously
to the Airy correction, we do not implement this procedure, but approxi-
mate the density with only a single wave function, as we did in the original
Dirac hair approximation [18] essentially neglecting the multi-particle na-
ture of the system in the classically forbidden region. The justification is
less rigorous than for the Airy correction: the subleading Dirac hair correc-
tions are not damped exponentially but only as a power law. In practice,
however we have shown that the numerical value of the amplitude of the
excited wave functions with k 6= 0 is small enough to be neglected [19].

In the single-particle Dirac hair approximation the expectation value
of J(z;E, p) at the boundary at zero energy and momentum 〈J(z = E =
p = 0)〉 translates into the density discontinuity in the vicinity of the
Fermi surface [18]:

〈J(E = p = 0)〉 =

∫ kF+0

kF−0
d2kN(k) ∼ Z, (6.3.45)

where through Migdal’s theorem Z corresponds with the quasiparticle pole
strength in the spectral function. Especially in the single particle approxi-
mation, it is convenient to directly deduce effective equations of motion for
J(z, E, p) from the Dirac equation, rather than solving the Dirac equation
and squaring. Since the dominant Fermi momentum in the UV is kF ' 0
the contribution of the Fermi momentum to the effective equations of mo-
tion for J can be ignored. In this simplification its equations of motion
only contain the explicit density momentum p. The Fermi momentum is
still implicitly present in the integration over the internal momentum k.
To write the evolution equation directly for the density J(ω = k = 0), it is
convenient to consider separately the radial projections Ψ± and construct
the bilinears

J±(z) =

∫
dω

∫
d2kΨ†±Ψ±, with J = J+ + J− (6.3.46)

together with the auxiliary quantity

I(z) =

∫
dω

∫
d2kΨ†+Ψ− + h.c. (6.3.47)
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which we need to close the system of equations. The coupled equations
for J±, I implied by the Dirac equation read:(

∂z +
∂zf

2f
− 3

z
± 2m

z
√
f
− 2∂zh

h

)
J± ±

eΦ

f
I = 0 (6.3.48)(

∂z +
∂zf

2f
− 3

z
− 2∂zh

h

)
I − 2eΦ

f
(J+ − J−) = 0. (6.3.49)

Here we just need the Dirac hair solution to correct the semiclassical model
near the boundary, not in the whole space. We find it easiest to seek the
solution near z = 0 in the form of a series in z:

J−(z) = j0
−z

α−(1 + j1
−z + j2

−z
2 + . . .) (6.3.50)

J+(z) = − µ2

(2m+ 1)2
zα+(j0

+ + j1
+z + j2

+z
2 + . . .) (6.3.51)

I(z) =
iµ

2m+ 1
zα0(i0 + i1z + i2z2 + . . .). (6.3.52)

The exponents α0,± are determined by the lowest order of the near-
boundary expansion of the Dirac equation. As usual, one gets two families
of solutions and, according to the dictionary, the one with faster decay at
z → 0 corresponds to a VEV. This is the family with α± = 4 + 2m ± 1,
α0 = 4 + 2m. Since we will only use this solution in the UV region,
it is convenient to solve directly for the coefficients in this power series,
rather than a full numerical determination. We have explicitly checked
the convergence of the series using the D’Alembert criterion.

The density obtained in this way is

nUV (z) = J+(z) + J−(z). (6.3.53)

This single particle density is now matched to the WKB density at the
point z1 where y0/y−1 = 1 in the exterior:

nUV (z1 − 0) = nWKB(z1 + 0). (6.3.54)

In this way we determine the amplitude j0
− (from Eq. (6.3.50)). Together

with the Airy matching in the interior we end up with a continuous density
in the whole space.

To complete our setup, we would like to have a quick and easy way to
quantify the ”classicality” of the system, i.e. the proximity to the electron
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star limit and the smallness of the quantum corrections. A very good
estimate is provided by the number of energy levels N in the potential
well: the classical limit corresponds to N → ∞ and vanishing spacing
between the levels. Provided N is large, it can be well approximated by
the textbook WKB formula. The estimate reads

N =
1

4π

∫ z∗∗

z∗

dz
√
gzzVeff (z) (6.3.55)

where Veff is the effective Schrödinger potential, Eq. (6.3.37), derived in
the context of the Airy function tails. From now on we will frequently use
N to characterize the system at certain values of the parameters (µ, q,m).

In Fig. 6.1 we show the full quantum corrected WKB densities ob-
tained with the matching outlined above. These are obtained upon solving
the whole self-consistent system of equations (including electromagnetic
and gravitational backreaction) described in later sections. We show this
here already just to illustrate of our method. In Figs. 6.1A and 6.1B,
the semiclassical estimates nWKB

e (z) in the whole classically allowed re-
gion (z∗ < z < z∗∗) are shown as dotted lines compared to the actual
(quantum-corrected) density. Fig. 6.1C shows explicitly that N is the
correct parameter that controls the size of the quantum corrections. As
already argues in [19], for low N which is equivalent to the statement
that the total charge density becomes of the order of the charge of the
constituent fermion, the WKB approximation fails. Here we see visually
that quantum corrections become dominant in this limit.

6.3.4 Pressure and equation of state in the semiclassical
approximation

Following the logic behind the density calculation, we will now calculate
the pressure. It will actually prove easier to write the equation of state
first and then derive the pressure. We can start by computing the energy
density of the bulk fermions. By definition, it reads

E(z) =
∑
λ,l

∫ 2π

0
dφ

∫ ∞
0

dρ

∫ µloc

0
dωωΨ†(z)Ψ(z) =

=
∑
λ,l

∫ 2π

0
dφ

∫ ∞
0

dρ

∫ µloc

0
dωω

Ẽ(z)

4π2q(z)
(6.3.56)
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Figure 6.1: Semiclassical bulk density nWKB(z) (Eq. 6.3.35, dashed pink
lines) and full density n(z) with quantum corrections – Airy tails for large
z > z2 in the interior and Dirac hair for small z < z1 near the AdS bound-
ary (Eqs. 6.3.42, 6.3.53, solid blue lines). Parameter values (A) (µ, e,m) =
(1.7, 100, 0.1), (B) (µ, e,m) = (1.7, 10, 1). The classically allowed region lies
between the turning points z∗ and z∗∗, determined by the the condition of van-
ishing WKB momentum (q(z∗) = q(z∗∗) = 0). The gluing of the quantum tails
to the semiclassical part is implemented according to the condition of applica-
bility of WKB approximation, y0/y−1 = 1, at the point z2 for the Airy correc-
tion (Eq. 6.3.41), and at the point z1 for the Dirac hair correction (Eq. 6.3.44).
The parameters for (A) are in the classical (electron star) regime, the quan-
tum corrections are manifestly small and the classical region almost coincides
with the WKB region: z1 ≈ z∗, z2 ≈ z∗∗. The plot (B) is given to show
that when the system is closer to the single particle Dirac hair approximation,
N ∼ 1, the WKB approximation fails and the quantum corrections are of the
same order as the WKB part. (C) Bulk density with quantum corrections, for
a range of values (µ, e,m) = (1.7, 100, 0.1) (red), (µ, e,m) = (1.7, 30, 0.1) (vi-
olet), (µ, e,m) = (1.7, 10, 0.1) (green) and (µ, e,m) = (1.7, 5, 1) (blue). For
large specific charge of the fermion (and therefore a large number of WKB lev-
els in the bulk) the solution is dominated by the classically allowed region. For
smaller q/m values (and thus fewer WKB levels) the quantum correction in the
near-boundary region becomes important and eventually dominates the density
profile. (D) Thermodynamical pressure with quantum tails (Eq. 6.3.59), for the
same parameter values as in (C).
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where Ẽ(z) is defined in (6.2.11) and the sum limits are the same as in
(6.3.34). Performing the integration in a similar fashion as when comput-
ing n(z) in (6.3.34-6.3.35), we obtain

E =
1

2
eΦn+

1

2
f2M̃2ArcSinh

Ẽ

M̃
. (6.3.57)

Notice that the first term exactly captures the electrostatic energy while
the second is the one-loop term that encapsulates the quantum fluctua-
tions. The above result is remarkably close to the Hartree vacuum po-
larization correction as it appears in various model energy functionals in
literature. Now the calculation of pressure needs to be done very carefully
in our semiclassical setup. It is possible to delineate two opposite regimes:
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Figure 6.2: Comparison between full quantum pressure (dashed blue lines,
Eq. 6.3.58) and thermodynamic pressure (solid red lines, Eq. 6.3.59) for two
sets of parameters: (µ, e,m) = (1.7, 100, 0.1) (A) and (µ, e,m) = (1.7, 5, 1) (B).
For comparison we plot also the fluid pressure p = enΦ/2 (dashed green lines).
Expectedly, all three models are close to each other for large N while for N
small the level spacing is large and it is necessary to sum the contributions of
individual levels: both the thermodynamic approximation and the simple fluid
approximation deviate considerably from the exact sum.

1. In the deep quantum regime we can express the pressure from the
microscopic fermionic Lagrangian (6.2.3). By definition it reads

p =
∑
n,l,λ

Ψ†+∂zΨ+ −Ψ†−∂zΨ− + h.c. =
∑
n,l

2l + 1

4πq

e−3h/2

z2f
C2
n(ωn − Φ)

(6.3.58)
The explicit calculation is tedious but straightforward and we leave it
out. The end result involves the integral of a complicated function of
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q and θ. Unlike for density case, we find ourselves unable to package
it in a closed-form expression. Instead, we integrate numerically over
the energy levels ωn to obtain the function p(z).

2. Deep in the classical regime, according to thermodynamics p =
∂E/∂V which generically results in a nonzero outcome. While the
volume V is difficult to calculate exactly, we can obtain a crude
estimate in the following way. At unit AdS radius, the volume
equals the length ` of the classically allowed interval along z axis, i.e.
the interval between the zeros of the WKB momentum pmax(z) =√
Ẽ2(z)− M̃2(z). From (6.2.11) we find ` ∼ m/eµ, assuming nei-

ther of the two turning points is very close to the boundary or very
deep in the interior. One further assumption we make is that, not
too far in the interior, the gauge field is well described by the linear
law Φ ∼ µ(1− z). We thus arrive at the estimate

pthd =
∂E
∂Φ

∂Φ

∂µ

∂µ

∂`
∼ eµ2

2m
(1− z)

(
en+

m2fe−h

z
√
m2f + Φ2e−2hz2

)
(6.3.59)

where we have used (6.3.57). We will call this the thermodynamic
pressure and denote it by pthd to differentiate from the exact quan-
tum expression (6.3.58). The expression (6.3.59) is also the equation
of state of the system as it connects the pressure to the density.

The thermodynamical pressure is much more convenient calculationally.
In spite of its approximate nature, it yields a remarkably accurate re-
sult when compared with the exact quantum pressure. We ascribe the
quantitative proximity of the results in the two cases to the fact that
the differences are small in the two key regions of deep UV and deep IR.
Outside the classically allowed region, we approximate the system with
a single quantum-mechanical particle and calculate the pressure from the
quantum equation (6.3.58). The nonzero pressure obtained in this way for
the classically forbidden region is not the Fermi pressure (which vanishes
for a non-macroscopic number of particles). It is the pressure inherent to
relativistic fluids.

Finally, it is illustrative to see how we reproduce the electron star
pressure [51] in the limit of large density. For n→∞, the first term in E
dominates and we obtain

pES =
1

2
∂z(eΦn) (6.3.60)
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as expected for an ideal fluid, which corresponds to the electron star ap-
proach. The physical interpretation of this result (and of the pressure
inside the classically allowed region in general) is that of a Fermi gas
pressure which, as we know, survives also in the limit of classical ther-
modynamics. The comparison of p, pthd and pES is summarized in Fig.
6.2, for high and low number of levels. While all three approximations are
good as N � 1, for small N both the fluid limit and the thermodynamic
limit break down and the contributions of individual levels must be taken
into account.

6.4 Maxwell-Dirac-Einstein system

We have now arrived at the point where we can solve our model self-
consistently with the Einstein-Maxwell equations. Unavoidably, the so-
lution is numerical, using an iterative procedure to converge toward the
solution. Only in the IR region it is possible to use a scaling ansatz to
estimate the scaling behavior of the metric and matter fields, akin to the
procedure used in [50]. We will also see how the ”quantum tails” in both
IR and UV are crucial to capture at least qualitatively the full effect of
backreaction. This is the first attempt at a self-consistent solution includ-
ing backreaction on the geometry with holographic fermions which goes
beyond the fluid picture of [51].

Fortunately, it is known how to calculate it in the fluid (i.e. electron
star) approximation. The action principle for the relativistic fluid as put
forward in [108] and used in [51, 52] gives the Lagrangian of the whole
system (fluid plus Einstein and Maxwell background) as

S =

∫
d4x

[
1

2κ2
(R+ 6)− 1

2q2
(∂zΦ)2 + p

]
. (6.4.61)

In other words, the contribution of fermions reduces to the pressure p.
While we do not take the fluid limit in this paper, one can suspect that
in the first approximation the influence of the corrections to fluid limit
(N →∞) is fully encapsulated by the correction to the classical (or fluid)
pressure we found in (6.3.57-6.3.58).

Starting from the exact action (6.2.2), we replace the fermionic terms
with our model for the density and pressure of the bulk fermions. The
total action is represented as S = SE + SM + Sf , the sum of Einstein,
Maxwell and fermionic part. The only nonzero component of the gauge
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field is Φ and the only non-vanishing derivatives are the radial derivatives
∂z (the others average out to zero for symmetry reasons). The fermion
contribution is subtler. On-shell, the bulk action for the fermions van-
ishes because it is proportional to equations of motion. The boundary
contribution is the bilinear Ψ̄Ψ but one can show that this vanishes too
when properly regularized [19]. At the quantum level, however, there is
a nonzero fermion pressure p, considered in Sec. 6.3.4, as well as nonzero
(local) charge density is given by j0

e as

j0
e = qn

√
g00 = qn

zeh/2√
f
, (6.4.62)

The fermionic term in the effective action thus becomes

Sf = −
∫
d4x
√−g

(
j0
eΦ + p

)
. (6.4.63)

Packaging everything together, we arrive at the effective action:

Seff =

∫
d4x
√−g

[
1

2κ2
(R+ 6)− z4

2
eh
(
∂Φ

∂z

)2

− j0
eΦ +

√
gzzp

]
.

(6.4.64)
The only components of the stress tensor the fermion kinetic energy con-
tributes to is Tzz and T00 ; the others vanish due to homogeneity and
isotropy in time and in the x − y plane. From (6.4.64) we get the equa-
tions for the energy-momentum tensor:

T 0
0 = −1

2
z4eh

(
∂Φ

∂z

)2

+ j0
eΦ (6.4.65)

T zz = −1

2
z4eh

(
∂Φ

∂z

)2

+ j0
eΦ +mn+ gzzp. (6.4.66)

We can now write down our equations of motion:

1√−g
(
∂ze
−h/2∂zΦ

)
= −j0

e (6.4.67)

3f − z∂zf − 3 = T 0
0 (6.4.68)

3f − z∂zf(z)− 3zf∂zh− 3 = T zz . (6.4.69)

The boundary conditions for the gauge field are standard in AdS/CFT:
Φ(z0) = µ fixes the chemical potential at the boundary (z0 → 0), while
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∂zΦ(zH) = 0 ensures the stability of the horizon. Asymptotic AdS geom-
etry implies h(z0) = 0, while the redshift factor vanishes at the hori-
zon, f(zH) = 0 (the derivative is determined by the temperature as
∂zf(zH) = T/4π).3 Finally, it remains to define the units used through-
out the paper. The natural unit of energy and momentum is the chemical
potential µ and we will express all quantities in units of µ whenever µ is
kept constant. When varying µ, we will resort to using the temperature
T as the unit. The two ways are essentially equivalent as in holographic
systems only the ration µ/T has physical meaning.

Let us conclude with an outline of the numerical algorithm, which is
not completely trivial. The boundary conditions to be implemented are
given at different points: some are given at the AdS boundary and some
at the horizon. Since the system is nonlinear, it is necessary to either lin-
earize the system or to shoot for the correct boundary conditions with the
full nonlinear system. After experimenting with both, we have decided to
iterate the full, non-simplified system of equations, integrating from the
horizon and shooting for the conditions at the boundary. We perform the
procedure iteratively, gradually increasing the fermion charge in every it-
eration, and then iterating with fixed fermion charge until the convergence
of the solution is achieved to the fixed set of functions, (f, h,Φ). More
explicitly, the procedure is as follows: we start with the non-backreacted
AdS/RN geometry and compute the density (semiclassical plus the quan-
tum corrections) for the the electron charge equal to e/N (where e is the
physical charge and N some positive integer), then we solve the system
of Einstein-Maxwell equations (6.4.67-6.4.69), afterwards we increase the
fermion charge to 2e/N , calculate the charge density in the background
(f, h,Φ) taken from previous iteration and solve for this density Einstein-
Maxwell equations (6.4.67-6.4.69). We repeat this procedure for charge
3e/N , 4e/N etc. After N iterations we have arrived at the physical value
of the charge e. Then we do more iterations with fixed charge e to ensure
that the solution has converged, checking that the set of functions (f, h,Φ)
does not change from iteration to iteration. In this way we achieve the
self-consistent numerical solution of the Maxwell-Dirac-Einstein system of

3At zero temperature, when the horizon vanishes due to fermionic backreaction (this
includes also the case of Lifshitz geometry), the boundary condition for f guarantees
also the smoothness of the solution on the horizon: ∂zf(zH) = 0. This condition ensures
that we pick the correct branch of the solution as there are typically two families of
functions f(z) that satisfy the equations of motion and the condition f(z) = 0. One of
them has a vanishing derivative whereas the other has finite derivative as z → 1.
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equations. The integration is always done from the horizon, shooting for
the conditions for Φ and h at the boundary, since it is well known that
integrating from the AdS boundary is a risky procedure as it is next to
impossible to arrive at the correct branch of the solution at the horizon.

6.5 Phases of holographic fermions
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Figure 6.3: Profiles of the metric functions f(z) (red) and eh(z) (violet), the
gauge field Φ(z) (green), density n(z) (blue) and the pressure p(z) (cyan) at zero
temperature, for (µ, e,m) = (1.7, 100, 0.1) (A) and for (µ, e,m) = (1.7, 10, 0.1)
(B). Solid lines are calculated form our model while dashed lines are the electron
star solution for the same parameter values. For better visibility density and
pressure are rescaled by a constant factor. Near the boundary we always have
h(z)→ 0 and Φ(z) = µ+O(z), in accordance with the universal AdS asymptotics
of the solution but in the interior the solutions start to deviate. Most striking
is the absence of sharp classical edges in density and pressure. The difference in
pressure will turn out to be crucial in moving away from the fluid limit. Here
we have not shown the solution with N = 4: this case deviates from the electron
star (N → ∞) so strongly that it does not make sense to compare it. Indeed,
4�∞!

We can now analyze the structure of both the bulk and the field theory
side as a function of the parameters µ, e and m. We first shortly discuss
the nature of the bulk solution for the geometry and gauge field and
notice some qualitative properties. Afterwards we study the structure of
the phase diagram using the thermodynamical quantities as the guiding
principle, and corroborate these findings with spectral functions. As a
result we will be able to draw the phase diagram.

The typical way that the solutions to the Dirac-Maxwell-Einstein sys-
tem (6.4.67-6.4.69) look like, including the quantum tails in both UV and
IR for the density n(z), is illustrated in Fig. 6.3. The near-horizon scaling
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of the metric and gauge field is of Lifshitz type, as expected in the light
of earlier models [50, 51]. It is illustrative to make a comparison with the
simpler models of Dirac hair and electron star. The metric functions f and
h of all three models converge toward each other near the boundary, and
the gauge field Φ remains close to the non-backreacted RN setup [18, 51].
This gives hope that these approximations can provide a decent estimate
of important quantities on the CFT side since these are not overly sen-
sitive to the precise modeling of the fermionic condensate in the interior.
In addition, the Dirac-hair-like quantum correction reproduces the finite
density tail near the boundary, crucial for thermodynamics.

6.5.1 Thermodynamics

We can now use these full solutions to determine the macroscopic charac-
teristics of the dual strongly coupled fermion system. Let us first derive
the free energy of the boundary field theory. According to the dictionary,
it is equal to the (Euclidean) on-shell action, which contains both bulk
and boundary components:

F = Son−shellbulk + Son−shellbnd . (6.5.70)

We have already discussed the bulk action in the previous section. We
will approximate the fermionic contribution (6.4.63) by its leading term,
pressure. Notice that we do not disregard backreaction to the metric and
gauge field, i.e. we calculate the exact value of the gravitational and gauge
field action, and then add the fermionic component approximating it with
p.

The boundary action encapsulates the regularizing terms that elimi-
nate the divergences and the von Neumann boundary condition for the
gauge field:

Sbnd =

∮
∂AdS

√
−h
(

1

2
nνF

µνAµ + Ψ̄+Ψ−

)
, (6.5.71)

with h being the induced metric on the boundary (h = 1
z2 (−1/f(z =

0), 1, 1)) and Ψ+ and Ψ− are radial projections of the wave function as in
Eq. (6.2.7). By ∂AdS we have denoted the boundary of the AdS space.
Their asymptotics at the boundary are given by

Ψ+ =
iµγ0

2m+ 1
B−z

5/2+m + . . . , Ψ− = B−z
3/2+m + . . . (6.5.72)
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as noticed in the subsection IIIE. In our system, the electromagnetic
boundary term reduces to Φ∂zΦ|z=0 = −µρ, where ρ is the total bound-
ary (not only fermionic) charge density, read off from the subleading “re-
sponse” of the bulk electrostatic potential limz→0 Φ(z) = µ−ρz+ . . .. The
regularized boundary action now reads

Sbnd = lim
z0→0

S(z0) + lim
z0→0

∫
d3x

[
3µ

2(2m+ 1)
B̄−iγ

0B−z
1+2m
0 − 1

2
µρ

]
,

(6.5.73)
and the total on-shell action, i.e. the free energy can be written as

F =

∫ zH

z0

dzd3x
√−g

[
R+ 6 +

zeh/2qnΦ

2
√
f

+ p

]
−1

2
µρ+

µ

2(2m+ 1)
I(z0)z1+2m

0 ,

(6.5.74)
where we exploit the definition of the bilinear I from Eq. (6.3.47)4. Notice
that the last term in the free energy (6.5.74), coming from the fermionic
term in the boundary action (6.5.73), vanishes in the limit z0 → 0, i.e.
at the boundary. Therefore, it does not influence the free energy and we
include it only for completeness.

6.5.2 Constructing the phase diagram

Let us first briefly describe the role of different control parameters. One
obvious parameter is the temperature T which drives the thermal phase
transitions. In the limit T → 0, we can determine the nature of the
ground state and possible quantum phase transitions between them.5 The
parameters that determine the ground state are µ, e and m. Current
wisdom suggests that the phases of the system are primarily sensitive
to the ratio e/m [19]. Another convenient parameter is the ”effective
chemical potential”

µeff
T
≡ eµ

mT
(6.5.75)

motivated that only the combination eµ appears in the Dirac equation. We
will also sometimes look at µ0, the threshold chemical potential for nonzero

4In Eq. (6.5.74) the kinetic term for the Maxwell field ∼ ∂zΦ2 is transformed through
partial integration into ∼ Φ∂zzΦ which is then transformed into ∼ nΦ using the Poisson
equation

5Our numerical approach is not convenient at strict zero temperature. However,
it is known that quantum phase transitions can be detected also at small but finite
temperatures.
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bulk density and the formation of a Fermi surface on the field theory side.
Its value at T = 0 is easily determined either by tracking the emergence
of a solution with finite bulk density n, or by looking at the formation of
a quasiparticle peak in the spectrum (see the next subsection). Finally,
we have already argued that the parameter N(µ, e,m) that controls the
classical/quantum regime is another convenient parameter. An alternate
parametrization of the phase diagram is therefore µeff , N and m.

First order thermal phase transition to RN-AdS

n>0 n=0

0.01 0.02 0.03 0.04 0.05 0.06

2.0

2.5

3.0

T�Μ

F

Figure 6.4: Free energy as a function of temperature F (T ). The abrupt change
of the derivative signifies the first order transition between the finite density
phase and the pure black hole (with zero bulk fermion density), in line with
the analytical prediction of the first order transition from the second term in
the bulk free energy in Sec. 6.5.2. We show the calculations for three different
values (µ, e,m) of the system parameters: (1.7, 30, 0.1), N(T = 0) = 40 in red,
(1.7, 10, 0.1), N(T = 0) = 20 in blue and (1.7, 10, 0.7), N(T = 0) = 11 in violet.
In the high temperature (RN) phase the curves F (T ) fall on top of each other
as one expects for the RN black hole with n = 0. The behavior in the low-
temperature phase (with non-zero density) is different for the three curves as the
value of the charge affects the behavior of the bulk fermions. For presentation
purposes, the curves have been rescaled to the same transition temperature; in
general, however, (T/µ)c is not universal and will differ for different corners of
the parameter space.

At high temperature the preferred state of the system is the charged
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Figure 6.5: (A) Free energy (rescaled and centered to common value at the
transition point) for the same parameters as in Fig. 6.4, in the vicinity of T = Tc
(not for the whole range of temperatures). The cusp characteristic of a first
order transition is now clearly visible. The value of F on the RN side (n = 0)
is without error bars as the thermodynamic functions of the black hole can be
exactly calculated. Notice how the slope of F in the low-temperature phase
decreases as the number of levels increases: for N → ∞ we reach the electron
star limit when the transition becomes continuous. (B) Difference between the
entropy of the RN black hole and the entropy of the system ∆S = SRN−S, where
entropy is obtained from free energy as S = −∂F/∂T , for the same parameters
and in the same color schemes as in Fig. 6.4 and panel (A). The first order nature
of the transition is recognized from the jump ∆S at the critical point. Notice
that the difference is positive for T < Tc, and thus the high temperature phase
has more entropy as expected. The entropies in the RN/local quantum critical
phase are exact, as they are calculated from the exactly known RN solution at
given chemical potential. They are thus represented by a single (black) set of
data points. The entropy is in relative (computational) units.

AdS black hole rather than a finite bulk fermion density configuration.
This AdS-RN black hole describes a local (momentum-independent) quan-
tum critical phase which generically has no Fermi surfaces. At low T/µ
one finds several non-Fermi-liquid Fermi surfaces [79, 17, 27, 63], but this
should be where the instability to the finite density system sets in. Fig. 6.4
shows the behavior of the free energy F (T ) in a broad range of tempera-
tures, encompassing both the low and the high temperature phases for dif-
ferent parameters e, µ,m. The cusps in the dependence F (T ) correspond
to the points of a first order phase transition (where the derivative ∂F/∂T
experiences a jump). In the high temperature phase the dependence F (T )
is the same for different electron charges at given chemical potential as
there are no fermions in the bulk and the solution is determined only by
the temperature and the chemical potential at the boundary. In low tem-
perature phase the free energies, although close, are distinct. Fig. 6.5A
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shows the free energy in the vicinity of the phase transition and we can
clearly see the cusp in the function F (T ) signalling the first order phase
transition. To further corroborate the first order nature of the transition,
we plot the entropy S = −∂F/∂T in Fig. 6.5B for the same parameters
as in Fig. 6.4 and 6.5A. To better show the transition, entropy is plotted
with reference to its value for the black hole, as ∆S = SRN − S. Notice
that the jump of the derivative ∆S(T ) is positive for T < Tc, as it should
be, as the system evolves toward maximizing its entropy.

A first order transition between a zero/nonzero bulk density can be
explained from general analytical considerations. Starting from low tem-
peratures, at the transition point the bulk density n vanishes. In our
model that means that the turning points coincide: z∗ = z∗∗. In this
limit we are able to analytically predict the order of the transition in the
following way. Assuming that the transition is dominated by the behavior
of the fermions, the relevant part of the free energy of the system is given
by F =

∫ zH
0 dzE(z) . Since the bulk matter lives at zero temperature,

all thermodynamical potentials are equal and the free energy is just the
total (internal) energy of the system. The first (”electron star”) term in
the energy, eΦn/2 is analyzed in detail in [52] and is concluded to yield
the scaling F ∼ (T − Tc)

3. We will now analyze the second, Hartree

term, f2M̃2ArcSinh
(
Ẽ/M̃

)
. The vanishing of the classically allowed re-

gion means Ẽ ≈ M̃ in the whole (narrow) region z∗ < z < z∗∗. One
can thus expand Ẽ = M̃ + δz × δẼ/δz + . . . and analyze the leading
terms in δz. It is easy to see that its expansion starts from a constant:

ArcSinh
(
Ẽ/M̃

)
= const. + O(δz), where δz = z∗∗ − z∗. Its integral

thus scales as F ∼ δz. Now, for a vanishing bulk charged fluid/emerging
charged black hole, the principle of detailed balance predicts that the
charge of the former equals the charge of the latter: nδz = nBHδzH ,
where the charge densities of the bulk and the black hole are n and nBH ,
respectively, and δzH is the change in the position of the black hole hori-
zon. The crucial insight is that the densities can be assumed constant for
vanishing δz and δzH . We thus find δz ∼ δzH ∼ T − Tc. The conclusion
is that

F ∼ T − Tc (6.5.76)

and the transition is always of first order. The final subtlety is that we
have now analyzed the bulk free energy: the boundary free energy F
(evaluated as the bulk on-shell action) is distinct from it. However, the
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difference F−F cannot have terms of order lower than linear in T−Tc. We
thus conjecture that the thermal transition from a bulk fermionic system
to a black hole is generically of first order.

The numerics confirms the prediction of the first order phase transi-
tion. The field theory interpretation of the discontinuous nature of the
transition to a phase with Fermi surfaces is simple: fermions do not break
any symmetry but the discharge of the black hole does signify that the
ground state is reconstructed due to formation of a rigid Fermi surface.
The only way to reconstruct the ground state without breaking any sym-
metries is precisely the first order transition of the density van der Waals
liquid-gas type. This is the interpretation put forward in [18] for the first
order transition from Dirac hair to RN state. We find here that this con-
clusion stays valid even for large values of n, in contrast to [52]. These
papers study the birth of a (classical) electron star upon reducing the
temperature and find a continuous, third order, transition. The crucial
Hartree term in F is absent in the classical electron star limit, leaving
only the continuous transition from the electrostatic energy enΦ. As the
Hartree term will be present for any finite value of n, no matter how large,
these results indicate that the physical transition in the strongly coupled
fermion system is indeed of first order.
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Figure 6.6: The emergence of Fermi surfaces seen in MDCs A(ω = 0, k) upon
dialing µ = 0.8, 1.0, 1.2 (red, violet, blue), in (A) for (e,m) = (10, 1), and in (B)
for (e,m) = (30, 5). The sharp peaks at some k = kF , present for higher values
of the chemical potential reveals the Fermi surface with Fermi momentum kF .
Remarkably, the emergence of a Fermi surface coincides with critical values of µ
for which the RN black hole is replaced by a finite density solution. The obvious
difference between (A) and (B) is that in the former case only one (generically,
few) Fermi surface can form while in the latter the number of Fermi surfaces
grows rapidly with further increasing µ. The numbers in the figure (pointing on
the curves) give the level count N .
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In order to further explore the physical meaning of different phases on
the field theory side, we will study also the spectra of the fermion in each
of the phases. The central object here is the spectral weight A(ω, k) which
can be defined in terms of the retarded propagator GR:

A(ω, k) = Tr=GR(ω, k). (6.5.77)

To obtain A(ω, k) we solve now the equations of motion for a probe fermion
in the background obtained from the self-consistent solution of the bulk
equations. From this one can construct the retarded propagator GR on
the field theory side and compute the spectral function. The appropriate
procedure is well established by now [79, 17] and we will only briefly
summarize it. The solution to the bulk Dirac equation (6.2.5) can be
expanded near the boundary as

Ψ+ = A+z
3/2+m +B+z

5/2−m + . . . , (6.5.78)

Ψ− = A−z
3/2−m +B−z

5/2+m + . . . (6.5.79)

According to the holographic dictionary, the retarded propagator equals
the ratio of the VEV (subleading term in Ψ−) and the source (leading
term in Ψ+):

GR = z2m
0 B−A

−1
+ (6.5.80)

where the prefactor is just the regularization at some z = z0. Following
[79], we package the equation of motion into a single nonlinear equation
for the ratio B−A

−1
+ . At zero temperature, Fermi surfaces are always

located at ω = 0 [79, 27]and they are most easily found by studying the
momentum distribution curves (MDCs) at zero energy, A(ω = 0, k).

We can now confirm that finite/zero density phases are indeed roughly
equivalent to presence/absence of Fermi surfaces. Extensive calculations
of spectra in the vicinity of the critical µ/T or the critical temperature
show that the finite density phase always has at least one Fermi surface on
the field theory side while the zero density phase generically has no Fermi
surfaces. This is expected: Fermi surfaces are signalled in the bulk by
the existence of quasinormal modes, only if there are (quasi)normalizable
modes in the spectrum can we have a finite bulk fermion density, a fi-
nite bulk fermion density implies also finite boundary density, and finite
fermion density in field theory implies the existence of Fermi surfaces.
Emergence of Fermi surfaces from the quantum critical (RN) phase is
observed in Fig. 6.6 for the low- and high µeff case, or roughly for an
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electron star at birth and a Dirac hair at birth from a bald RN black hole.
In the first case (Fig. 6.6A), a single Fermi surface emerges at µcriteff and
remains stable, while in Fig. 6.6B increasing µeff leads to the emergence
of an ever increasing number of Fermi surfaces. Both cases belong to the
low temperature phase from Figs. 6.4-6.5. The difference between the two
regimes of this phase we will study later in this subsection.

Continuous quantum phase transition to RN-AdS

The second axis of the phase diagram is the conformal dimension ∆, i.e.
the bulk mass m. Studies of the electron star [51, 53] suggest that the
appropriate control parameter is actually the charge to mass ratio e/m:
electron star is the thermodynamically preferred solution for high e/m val-
ues. We see from the expression for WKB density (6.3.35) that increasing
the fermion mass or reducing fermion charge reduces the semiclassical
region and the total bulk charge. The electron star reasoning likewise
suggests that the finite density ground state corresponds to high values of
e/m. For some threshold value (e/m)c the electron star vanishes [51] and
the RN solution is preferred.

We will now consider in some detail the quantum phase transition
from AdS-RN zero density regime to the finite density phase. Let us
fist summarize what is known. The near-horizon geometry of the RN
black hole is described by AdS2 throat. The conformal dimension of the
corresponding IR CFT is [27]:

νk =

√
m2

6
+

1

2

(
k

µ

)2

− e2

12
, (6.5.81)

For e < m
√

2 we have ν2
k > 0 for any momentum value (including k = 0),

implying that the bulk geometry is stable. For e > m
√

2, the conformal
dimension νk becomes imaginary. According to [63, 87], this region is
unstable due to pair creation near the horizon. Accordingly, one expects
finite bulk density to form for e > m

√
2, leading to backreaction and

disappearance of AdS2 throat. However, to the best of our knowledge,
this was not checked explicitly so far in the Einstein-Maxwell-Dirac setup.
Using our WKB method we will now study the appearance of finite bulk
density and its consequences on field theory side.

The dependence of the free energy on the conformal dimensions ∆ with
other parameters fixed is given at Fig. 6.7. We have marked with dashed
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lines the critical values of the conformal dimension ∆c when a nonzero bulk
density n(z) appears. The free energy does not reveal any simgularity at
these points. Nevertheless, they can be identified as the points where the
dependence F(∆) deviates from the straight line F(∆) = const. – free
energy of a pure RN black hole clearly does not depend on the fermion.
In the zoom-in near ∆c (Fig. 6.7(B)) we find that the behavior of free
energy is consistent with the BKT form:

F(∆)−F(∆c) = const.× e−
const.√
∆c−∆ . (6.5.82)

The BKT nature of the phase transition can be related to the RG inter-
pretation of the oscillatory regime. The effective Schrödinger potential in
AdS2 regime is proportional to 1/r2 [28]. This form of potential gives rise
to RG limit cycles [85]. Finally, it is known that the system generically
experiences a BKT phase transition when the RG flow with a limit cycle
becomes unstable [106]. One can therefore argue that the BKT transition
we observe appears as a consequence of the exiting from RG limit cycle
behavior in the bulk.

In order to understand what drives the instability of the RN regime and
to what it corresponds in field theory, it is helpful to look at the spectra
(Fig. 6.8). By stacking together MDCs for different ∆ values we can eas-
ily follow their evolution: the sharp, narrow maximum corresponding to
the quasiparticle peak vanishes at ∆c simultaneously with disappearance
of n. This again suggests the generic absence of critical Fermi surfaces
immanent in the RN setup [17, 79]: the quantum phase transition sepa-
rates the ES/DH phase with stable quasiparticles from AdS2 metal with
no quasiparticles at all.

Crossover between low and high density phases

Now we will take a closer look at the low temperature finite density phase.
This is the parameter regime where earlier models [18, 51, 19] anticipate
the emergence of regular Landau Fermi surfaces. These models predict a
single Fermi surface for low fermion charge [19] while, according to [53],
the regime of high fermion charge describes a ”deconfined” phase with
a multiplicity of Fermi surfaces, with fermions of different flavors. The
question arises if the two regimes are thermodynamically distinct and if
so, separated by a critical point or by a crossover. To that end we plot
the free energy as a function of the effective chemical potential µeff = eµ.
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Figure 6.7: (A) Free energy as a function of the conformal dimension ∆ =
3/2 +m, for (µ, e) = (1.7, 20) – blue, (1.0, 20) – red and (1.0, 5) – violet. Numer-
ically, the curves are smooth and all derivatives ∂kF/∂k∆ are finite. We identify
the transition points as the values ∆c when the fermion density n(z) vanishes
identically and mark the corresponding values in the figure. Both the look of
the curves and the analytical reasoning, i.e. the lack of two independent scales
that could compete as in a crossover, are consistent with a BKT transition. (B)
Zoom-in near the transition points with analytical plots of the BKT scaling rela-
tion F ∝ exp(−const./

√
∆−∆c). The numerical data are fully consistent with

the BKT scaling.

Remarkably, all four curves fall on top of each other for small charges,
where the background is close (though not identical) to AdS-RN. The
curves are smooth in the whole region. The absence of a cusp in F (µeff )
definitely discards the possibility of a first order transition, the distinc-
tion between a continuous transition and a crossover is difficult to make.
Analytical arguments however strongly suggest the crossover. To see why,
remember that the (thermodynamically defined) density nth = ∂F/∂µ
is an analytic function of the solutions to the Einstein-Maxwell system
(f(z), h(z),Φ(z)). We thus expect all higher derivatives n = ∂kF/∂µkr
(k = 2, 3, . . .) to be continuous as well. In addition, the simplest physi-
cal interpretation of increasing µeff is that of increasing the number of
bulk fermions by filling increasingly higher levels in the effective potential
well (6.3.37). One can expect a substantial change of the behavior of the
system as the potential well is filled but not a discontinuity of the ther-
modynamical functions (e.g. [77]). We can thus conclude that a crossover
separates a Dirac-hair-like region from the electron-star-like region.

At first sight just the change in the number of occupied states should
not affect any thermodynamic properties. We will argue below that the
cause of the crossover is the change of the scaling behavior of the quasipar-
ticle width. Notice that the function F (µeff/T ) keeps the same convexity
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(A) (B)

Figure 6.8: (A) MDC spectra at ω = 0 for (µ, e) = (1.0, 5) and varying ∆.
Curves for different ∆ values are stacked on top of each other to represent the
evolution of the spectrum with ∆. To better show the Fermi surfaces we use
the logarithmic color scale, i.e. the color value is proportional to logA(ω =
0, k). Crucially, the Fermi surfaces (lines of lighter color) disappear at ∆ = ∆c,
simultaneously with entering the RN phase. Dashed line delimits the area within
which bulk density is nonzero and the system backreacts away from AdS-RN (it
is parallel t0 the k axis as the presence of nonzero bulk density does not depend
on the momentum of the probe fermion). We can conclude that the formation
of a Fermi surface indeed drives the instability of the RN background to a new,
finite density phase. In (B), we show for comparison the MDC curves for the
same parameter values without backreaction, i.e. in the AdS-RN background.
In RN background the number of Fermi surfaces is larger (we see four Fermi
surfaces).Hoeve,r both in (A) and (B) there are no Fermi surfaces bellow the
dashed line.

as in Fig. 6.4: the argument of the function is increasing in Fig. 6.4
and decreasing in Fig. 6.9, hence the increasing/decreasing trend in the
function.

The dispersion of the energy distribution functions (EDCs) for mo-
menta in the vicinity of the Fermi momentum yields a better insight into
the physical meaning of the finite density phases. It is here that the
crossover from Dirac hair to electron star becomes most obvious: the few
Fermi surfaces of Dirac hair regime exhibit a broader power law scaling
of self-energy =Σ ∼ ω2ν with ν = 1 to high accuracy while the many
Fermi surfaces of the electron star are exponentially sharp: =Σ ∼ e−1/ω

(Fig. 6.10). The latter scaling was predicted in [26] and confirmed in [53],
while the former was postulated on general grounds in [18]. Importantly,
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Figure 6.9: Free energy as a function of the fermion charge e in the crossover
region for (µ,m) = (2.2, 0.5) – red, (1.0, 0.5) – violet, (1.7, 1.0) – green and
(1.7, 5.0) – blue curve and for a range of fermion charge values. On the abscise
we plot the effective chemical potential µeff = eµ. The temperature is kept
fixed at T = 0.0005. All four cases exhibit a crossover about the same value
of µeff/T (µcrosseff /T ≈ 20), suggesting that µeff is indeed the key quantity
that drives the changes of the Fermi surface. The low-µeff region is a few-
Fermi-surfaces DH-like system while the high-µeff regime describes an ES-like
multiplet of Fermi surfaces. We will later study in more detail the dispersion
properties of the two regimes. Apart from the gradual and soft nature of the
transition as seen from the numerical curves, the crossover (as opposed to phase
transition) nature of the phenomenon also follows from analytical considerations.
The dependence of the solution (f(z), h(z),Φ(z)) on the parameters of the system
(µ, q,m) is analytical, which strongly suggests that the derivatives of the free
energy ∂kF/∂µk are continuous to all orders k = 2, 3, . . ..

no unstable or underdamped Fermi surfaces (with self-energy scaling as
=Σ ∝ ω2ν with ν < 1/2) are found: these seem to be the artifacts of the
probe limit and will not arise in a self-consistent approach (with backre-
action).

6.5.3 Phase diagram

We are now in the position to summarize our findings in the form of a
phase diagram. In Fig. 6.11(A) we give three-dimensional phase diagram
which includes all three independent parameters – µ/T , e and m, while the
”reduced” phase diagram with only two parameters, eµ/T and ∆, is given
in Fig. 6.11(B). At high temperatures the system is always in the zero
density quantum critical AdS-RN phase. Dialing eµ at fixed temperature
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Figure 6.10: Imaginary part of the self-energy of the quasiparticle in the imme-
diate vicinity of ω = 0 for e = 5, 15, 50 (red, green, blue). It shows the crossover
from power-law (solid line) (red line) to exponential The self-energy of the quasi-
particle undergoes a transition from quadratically damped peaks (=Σ ∼ ω2, red
points) toward exponentially narrow poles (=Σ ∼ e−1/ω, blue points). Notice
that the all three peaks are stable: the power-law exponent is ν = 1 with high
accuracy, signalling a normal Fermi liquid phase.

toward larger and larger values, the Fermi surfaces proliferate until the
point of crossover, when the peaks become exponentially sharp. The true
nature of this system is not yet known in detail 6. We have already
suggested such a diagram in [19] based on the analysis of the two extreme
limits. Here we have gone further and analyzed quantitatively also the
intermediate regimes. The structure of the phase diagram can now be
summarized as follows:

1. Van der Waals transition, Fig. 6.11(A), Fig. 6.5. There is univer-
sally a the first order (van der Waals) transition from finite to zero
density phase upon dialing µ/T and thus filling the levels of the
bulk fermionic system. In field theory, this means a liquid-gas tran-
sition between the Fermi liquid(s) and the disordered phase, devoid
of quasiparticles and dominated by slow conformal dynamics. In-
terestingly, the quantum corrections to the density and pressure are
crucial for the discontinuous nature of the transition: in the electron
star limit, as shown in [52], the transition becomes continuous.

6Reference [97] interprets it as fractionalized Fermi liquid
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Figure 6.11: (A) Three dimmensional phase diagram (e,m, T/µ). The phase
transition from finite density phase to AdS-RN phase is a first order phase tran-
sition in contrast to zero temperature BKT-type phase transition. (B) Phase
diagram in (eµ/T,∆) plane, based on thermodynamics and spectra, at zero tem-
perature. The two regimes with stable quasiparticles are denoted with different
colors: electron star (ES), describing (likely) a ”Russian doll” of stable Fermi-
liquid-like quasiparticles (ES/FL), and Dirac hair which is closer to normal Fermi
liquid (DH/FL). The third regime, for large ∆, is the RN black hole with its
quantum critical Fermi surfaces and no quasiparticle.

2. Quantum phase transition, Fig. 6.11(B), Fig. 6.7. There is a contin-
uous (likely BKT) transition from finite to zero density phase upon
dialing the conformal dimension ∆ at fixed fermion charge (or equiv-
alently varying the ratio m/e, or equivalently varying the fermion
charge e or the total charge Q at fixed ∆). The fact that the Fermi-
liquid-like quasiparticles vanish in the high ∆/low e regime is known
from the electron star limit and not surprising on basis of general
arguments (bulk density in the classical approximation drops with
increasing m/e). However, our finite level spacing correction to elec-
tron star makes it possible to study the transition region in detail,
and shows a nontrivial outcome: the transition is of BKT type, and
happens inside the oscillatory (pair-creation) region.
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3. No Fermi surfaces in AdS2 metal phase. The transition happens at
such parameter values which, on the AdS-RN side of the transition,
correspond to absence of Fermi surfaces, i.e. imaginary IR conformal
dimension ν. The system thus passes directly from a Fermi-liquid-
like phase into a profoundly different, exotic phase that we call AdS2

metal, and which was studied in detail in [27].

At constant temperature, the finite density phase exhibits analytic
behavior of the free energy and has no phase transitions but shows a
clear crossover between the single-Fermi-surface, Dirac hair limit and the
infinity of Fermi liquids in the electron star limit. Thermodynamically
the crossover is explained by the change in quasi-particle width =Σ from
power-law behavior in the Dirac-hair-like quantum regime with NWKB .
10 to exponential suppression in the semi-classical electron star like regime
with N � 10.

We will finish this section with a look towards real-world examples of
such phase diagrams. Condensed matter literature offers a vast landscape
of strongly coupled Fermi liquids like our DH phase, e.g. in the context
of heavy fermions [80]. However, the properties of the electron star (”Ma-
tryoshka” or ”Russian doll”) phase are not easy to relate to the real-world
examples. In part, it is a consequence of the large-N limit in AdS/CFT
which, for example, leads to an exponentially small self-energy. The hope
is that finite-N corrections would eventually lead to a realistic picture
of the ES phase, while the DH, perhaps with some modifications of the
geometry, would correspond to normal metals.

6.6 Discussion and conclusions

In this paper we have constructed a semiclassical model with quantum
tails of holographic fermions in AdS4 space, aimed at understanding the
phase diagram of strongly coupled Fermi and non-Fermi liquids. The
model uses WKB approximation in the classically allowed region, com-
plementing it with quantum-mechanical estimates of the fermionic wave
function in the classically forbidden region. Introducing the pressure into
the essentially quantum mechanical model we get the Hartree quantum
correction (”vacuum polarization”) of the classical model – the electron
star. This approach has allowed us to address the intermediate fermion
charges which cannot be modeled satisfyingly with any of the previously
used models.
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Figure 6.12: Applicability of various approximations as a function of µr ≡ eµ/m
and the ratio of the fermion charge and the total charge of the system, e/Q: Dirac
hair, electron star, confined Fermi liquid and our present model. Dirac hair and
electron star are the simplest and most flexible approximations but limited to
extreme corners of the µr axis.

By studying the free energy of the system as well as the spectra and
the number of Fermi surfaces we have contructed the phase diagram of
the system and analyzed the phase transitions. Most importantly, we find
a universal first order phase transition from finite density to zero density
(Reissner-Nordström, quantum critical) phase. The discontinuity of the
density comes from the quantum term in the internal energy. This term
is always present but its relative contribution to the free energy decreases
with the inverse of the fermion charge as 1/e. The extreme limit e → ∞
thus reproduces the continuous phase transition found in [52]. Neverthe-
less, in any real system with finite fermion charge the discontinuity will
be present, which fits neatly into the general expectation that the ther-
mal phase transition of a fermionic system should be of van der Waals
(liquid-gas, Ising) type.

The finite density phase is further divided into two regimes corre-
sponding to low and high values of the ratio eµ/m or, more precisely,
level number N , that encompass the known limits of Dirac hair [18] and
electron star [51]. The transition manifests itself as a line of crossover
points which end with a BKT quantum phase transition to the RN phase.
The BKT transition fits nicely in the RG interpretation of holography in
the following way. Firstly, the log-oscillatory region studied in [27] can
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be understood as a limit cycle of RG describing a conformal quantum
mechanical system (i.e. a conformal theory in 1 + 1 dimensions) [106].
Then, instability of the limit cycle generically happens through a BKT
transition.

It is illustrative to discuss our model in some more detail in the context
of earlier work in the field: electron star [51], Dirac hair [18] and the
confined Fermi liquid [96]. All models use the same microscopic action,
however they differ in the approximations made in order to to solve it. It
is helpful to introduce a combination of all parameters e, µ,m that one
might dub ”reduced chemical potential”:

µr ≡
eµ

m
. (6.6.83)

Electron star is the fluid limit of the equations of motion, yielding the
Openheimer-Volkov equations in the bulk. As explained in [19], this ap-
proximation is valid in the limit of large chemical potential: µr → ∞.
Dirac hair makes the opposite assumption, treating the bulk fermion as
a single collective excitation, which becomes exact in the limit µr → 0.
Finally, the confined Fermi liquid of [96] is essentially a non-local ver-
sion of Dirac hair, which models the bulk as a non-interacting Fermi gas,
adding individual excitations up to the Fermi energy. This significantly
increases the region of applicability but at the cost of substantial prac-
tical complications, in particular if one wishes to take into account the
backreaction on the metric. This picture breaks down at high chemical
potential but works well for reduced chemical potential of order unity (or
smaller): µr . 1. Our model makes use of the WKB approximation, thus
assuming semiclassical dynamics and large number of energy levels in the
bulk. Nevertheless, we do not make the assumption of zero energy spacing
necessary for the fluid approximation: our model thus works well in the
intermediate regime, µr > 1. In Fig. 6.12 we give a schematic descrip-
tion of these findings, on a one-dimensional diagram with µr and e/Q as
control parameters. The ratio of the fermion charge and the total charge,
e/Q, is crucial for Dirac hair and for electron stars: the former requires it
to be small (otherwise many energy levels are filled and the single-particle
approximation is not valid), the latter to be large (otherwise the level
separation is too small and the fluid limit does not apply). Our approach
does not take the fluid limit and thus does not depend on e/Q. It is shifted
toward high µr values because of the WKB approximation but – thanks
to using the Dirac hair near the boundary – can still cope with lower µr
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values to some extent.
The next step in our work will be the increase of quantitative accuracy

by replacing the WKB approximation with a fully quantum-mechanical
density functional method. It is, in fact, not a significant complication
compared to the approach of this paper: the recipe for computing the
density n will be replaced by a complicated functional of the gauge field
and the metric. It needs to be computed iteratively, however our approach
requires iterations in any case, to account for the backreaction. We do
not expect qualitative changes but some quantitative aspects, e.g. the
values of the scaling exponents and the scaling relations might benefit
from increased accuracy.



Chapter 7

Discussion and conclusions

We have undertaken this research motivated by the the limitations of
field theory and many-body physics to explain the collective behavior of
strongly interacting fermions at finite density. Such a situation is not
encountered in traditional areas of high energy physics – scattering of
fermions is a few-body problem that is perfectly within the reach of per-
turbative field theory. Strongly correlated fermions at finite density are
another story however. Through the lens of holography we have learned a
few things about this problem. At best, this is just setting the stage to face
the truly deep problems of the field. Still, we feel that even the modest
insights we have obtained hinge crucially on the ability of the to penetrate
deep into the workings of strongly coupled physics holographic principle
and could not be found in another way. More than a calculational tool,
AdS/CFT looks to us as a novel viewpoint, connecting many-body and
field theory to gravity. Physics on the gravity side often offers not only
quantitative results but also a clearer view of physics – for example, phase
transition from a quantum critical phase to a stable phase is easily under-
stood as the discharge of an unstable black hole due to the electrostatic
repulsion of fermions. We find that the questions we ask are interesting
not only for specific condensed matter problems but are also informative
in a general field theory context.

The main achievements of this research can be summarized as follows:

1. The Dirac hair formalism. The Dirac hair formalism has been the
backbone of this work in a formal sense. It not only provides us with
a controlled and easy method to calculate various quantities but also
a physical view of what we are doing: expectation values are dual
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to various fermion currents (bilinears) in the bulk, and the flow
equations for field theory propagators are natural bulk extensions
of the boundary action. While rather technical, we find the DH
important as it allows us to tackle any form of order parameter in
principle, to model Cooper pairing, exciton formation, etc. in a
unified way.

2. The holographic Migdal theorem. The extension of the holographic
dictionary that captures the essence of the Fermi surface – a rigid
localized object in momentum space, akin to a classical order pa-
rameters for bosons – is the holographic Migdal theorem. It leads
to the precise conclusion that the Fermi surface after all can indeed
be understood in a Landau-Ginzburg-like language: it is a conden-
sate of a certain bulk operator (Ψ†−Ψ−) and the jump of the number
density Z is the order parameter associated with such a transition.

3. Phase diagram. The main conclusion of direct relevance for con-
densed matter physics is the phase diagram for the Einstein-Maxwell-
Dirac system we have found. It predicts a quantum critical region
(as opposed to isolated quantum critical points familiar from field
theory), which gives way to a FL-like phase with multiple stable
fermion quasiparticles (as opposed to a single Fermi surface familiar
from field theory). The diagram is thus different from what is usu-
ally seen in experiment but not unheard of. For example, multiple
Fermi surfaces are indeed seen in heavy fermion systems, explained
by the difference between valence and f -shell electrons [80].

4. Fermi liquid stability. The closest we have come to the original goal
of understanding the fermionic physics in Fermi liquids is the finding
of generic stability of Fermi liquids: NFL-like excitations are only
present at the critical point, and generically give way either to AdS2

metal phase where fermions do not condense into a Fermi surface
at all or stable FL-like quasiparticles. In gravity, this is explained
by the instability of the extremal RN black hole, which generically
discharges into bulk fermions, forming a Lifshitz geometry.

As we have explained at the beginning, quantitative results such as
values of critical temperatures etc. cannot be trusted. But qualitative
insights are quite instructive already. From the very start we have en-
countered a zoo of scaling exponents – this is indeed the defining property
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of the quantum critical AdS-RN Fermi surfaces. But this zoo is replaced
by a universal (exponentially narrow or quadratic, depending on if we are
in Dirac hair or electron star regime) behavior of the self-energy in the
stable phase. While relating the AdS-RN zoo to experiment might be
hazardous, the stable phases are easy to identify as they predict quasipar-
ticles which do not depend on microscopic details. The second qualitative
lesson is the universal van der Waals first order thermal transition, present
in the whole finite density regime. So far only detected in liquid helium, it
seems to be a universal property of Fermi surfaces, in sharp contract with
the wealth of phases at zero temperature. Thus the simplifying influence
of temperature conjectured in the quantum criticality literature [15, 95]
is supported by our results. On a more technical level, this result sug-
gests that the fluid limit of the electron star is pathological – it predicts a
continuous phase transition that becomes discontinuous in the presence of
arbitrarily small but finite level spacing. This is an interesting example of
how a model that is perfectly reasonable as a general picture of the bulk
physics – the Thomas-Fermi limit which works out so well in a diverse
array of situations such as atomic physics and astrophysics – might prove
inadequate in a specifically holographic context where we wish to be ac-
curate near the boundary rather than ”everywhere” in the interior, and
where crucial elements of the boundary physics might depend on seem-
ingly unimportant details in the bulk. Dirac hair itself is another example.
There we have an approximation which is in general of poor quantitative
accuracy except for very low densities but which is doing well (actually
becoming exact) in the UV where it matters most.

The Luttinger theorem has proved to be a central criterion for dif-
ferentiation between FL and NFL systems. Again, AdS/CFT offers an
intuitive picture: the Luttinger theorem is the consequence of the black
hole discharge; when no charge hides behind the horizon all of it will show
up in the Fermi surface at the boundary. Only what is inside the black
hole cannot reach the boundary. The fact that the theorem is badly vio-
lated by the NFL-like Fermi surfaces in AdS-RN phase suggests that this
system should not be viewed as a zero density system: even though quasi-
particle density certainly is zero, it does represent a system with nonzero
macroscopic number of fermions, which manage to organize themselves
into a FS (except in the truly mysterious AdS2 phase). We feel that the
true nature of the RN phase is still unclear, despite the vast number of
works devoted to it.
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The first question we have originally asked – what is the gravity dual
of a conventional Fermi liquid – we have not managed to answer with
complete confidence. This question was fully worked out in [96], and it
turns out that the crucial ingredient is to impose the confinement of the
quasiparticles by imposing an IR cutoff. We have found the AdS-DH
phase which captures the stability, robustness and the quasiparticle of FL
systems, but it is just a small corner of the phase containing generically
multiple FL-like quasiparticles, culminating in the electron star phase with
an infinite tower of Fermi surfaces. The open issue is whether this picture,
with many stable quasiparticle excitations, also represents realistic physics
which is yet to be discovered experimentally. This is one direction for
further work stemming from this thesis.

We were more successful in extending the dictionary. The holographic
Migdal theorem is a solid dictionary entry, and it connects the unconven-
tional ”order” of the Fermi surface to the Landau-Ginzburg paradigm. In
a similar fashion, one can couple the fermion to any order parameter and
derive analogous relations for various properties. We regard this as the
most promising continuation of our work and we plan to tackle it in near
future. In particular, a number of approaches to the problem of high tem-
perature superconductivity starts from the assumption that the ground
state in the normal phase is something different from a FL, and unique
enough to account both for robust superconductivity and the zoo of order
parameters (current loops, stripes, spin dimers, etc) seen in the pseudogap
phase [118]. It will be interesting to see what kind of superconductivity
will arise from AdS-DH phase. A first step in that direction was accom-
plished in [29] in the probe limit. But a better chance of reproducing the
simple and universal properties of the strange metal phase [111] lies with
some stable, backreacted setup more akin to AdS-DH.

We would also like to know what is the role of top-down approaches in
this context. We have not explored that at all in this thesis. A problem
with AdS/CFT is that one is often not sure what the system one is study-
ing actually is. Lacking the microscopic Hamiltonian means we can judge
it only indirectly. Top-down models solve this problem, as the field con-
tent is constrained by string theory, and we know exactly the symmetries
and operators on the field theory side. An important top-down insight
is in [22] where the authors have shown that holographic Fermi surfaces
generically exist in top-down approaches.

Another extension of our work will be in the direction of transport
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phenomena. Adding finite energy and momentum to the flow equations
for DH one derives expressions for conductivity. This is of special impor-
tance for connecting our results to experiment as a straightforward way
to characterize various materials remains the measurement of DC and op-
tical conductivity. The ultimate goal here is the understanding of linear
resistivity in the strange metal phase of cuprates and similar materials
[118]. In principle, this can be achieved by making the scaling exponent ν
os the quasiparticle self-energy a function of an external parameter. This
can be achieved e.g. by coupling the fermion to a bosonic order parame-
ter. In that case, there can be a quantum critical point corresponding to
ν = 1/2, i.e. with a marginal Fermi liquid scaling which leads to linear
resistivity. A puzzle remains however to which degree the phenomenology
of the strange metal is dependent on lattice physics which is harder to
account for in AdS/CFT.

We close this thesis with a look into future development of the field.
Holography seems to be moving away from ”Lagrangian-based” physics
– for the strongly correlated systems we study, the knowledge of micro-
scopic degrees of freedom would anyway be of little value. We can there-
fore hope to understand the key qualitative issues in strongly correlated
electron physics even though we will not be able to study lattice scale
physics and microscopic workings of any material. It remains to be seen if
these microscopic details always matter, or if many deep problems in the
field can be understood through a simple emergent principle encoded by
holography.
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Summary

This thesis is devoted to the physics of strongly interacting electron sys-
tems from the viewpoint of a string-theoretical paradigm known as the
holographic principle. The idea is to bridge the gap between two seemingly
disconnected areas: gravity and quantum fields. The arena of strongly in-
teracting electrons is a prime example which could benefit from such a
connection, for both fundamental and practical reasons. In order to un-
derstand how, let us first take a closer look at how gravity and quantum
fields are related by the holographic principle.

Holography is motivated by the realization that the entropy of a black
hole scales with its area. As the entropy determines the information con-
tent (and eventually the number of degrees of freedom) of a black hole, we
can conclude that the information carried in a black hole can be ”written”
on its surface. In other words, all of its degrees of freedom are captured
by a suitably defined object spanning its surface, not its volume. This has
prompted ’t Hooft and Susskind to conjecture that, quite generally, the
dynamics in a curved spacetime, in the presence of gravity, can be equiva-
lently thought of as a quantum field in flat spacetime with one dimension
less. Finally, in 1997, Maldacena constructed an explicit example, show-
ing that a conformal field theory (CFT – a highly symmetric field theory,
invariant with respect to length rescaling at every point) is the ”image”
of gravity in a space with a certain specific geometry, known as Anti-de
Sitter (AdS) space. The connection is in the form of a duality, meaning
that the partition functions of D-dimensional CFT and D+1-dimensional
AdS gravity are equal. That opens a way to calculate correlation func-
tions, expectation values, stress tensors and other quantities on the CFT
side. The list of such correspondences is known as the holographic dic-
tionary. Importantly, AdS/CFT is a weak/strong duality, meaning that
weakly coupled gravity in AdSD+1 is dual to a strongly coupled quantum
field theory. Weakly coupled gravity is just its classical limit, i.e. general
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relativity, which is relatively well studied and a wealth of exactly solvable
models exists. On the other hand, strongly coupled field theory is out of
reach of perturbative techniques and thus poorly known.

This goes double for fermion systems to which this thesis is devoted.
The core issue comes from the simple fact that fermions obey Fermi-Dirac
statistics – meaning that their wave functions are antisymmetric and the
density matrix of a many-fermion system will contain negative contribu-
tions. This in turn leads to the so-called ”fermion sign problem”: the
partition function acquires negative contributions, which ruins its proba-
bilistic interpretation. Therefore, the formalism of statistical mechanics
(or, equivalently, Euclidean field theory) is not applicable. At weak cou-
pling, the Landau Fermi liquid theory provides a controlled approxima-
tion scheme: the interacting system behaves as a gas of quasiparticles.
A wealth of interesting systems is however outside this weakly coupled
regime. The prime example is the strange metal phase of high-temperature
superconductors, which shows distinctly non-Fermi liquid behavior, with
its universal scaling laws such as linear resistivity scaling with tempera-
ture. It is here that we see a great opportunity to apply the AdS/CFT
correspondence: it is a unique tool which provides an insight into the prob-
lem of strongly interacting fermions in a controlled way. While we are not
yet able to arrive at a realistic model of any condensed-matter system, we
study the universal features characterizing the holographic fermions.

We start our research by looking at the quantum-critical fermion sys-
tems. These systems have a quantum phase transition – a zero temper-
ature transition driven by quantum, not thermal fluctuations. Quite a
number of materials is conjectured to slip from a Fermi liquid to a non-
Fermi liquid by passing through a quantum critical point. The gravity
dual turns out to be a charged black hole in AdS space, with zero fermion
density in the bulk. We study in detail the spectrum of the the system,
and find gapless excitations around specific values (EF , kF ) of energy and
momentum, which are clearly to be identified with the Fermi energy and
Fermi momentum. We thus find holographic Fermi surfaces. Tuning the
parameters of the system, we find both stable, narrow peaks corresponding
to Fermi liquids, and unstable peaks with exotic and nonuniversal features
such as particle-hole asymmetry, of distinctly non-Fermi liquid kind. This
is in line with the expectation that the charged black hole describes a
quantum critical point: it is a point from which the system might evolve
either towards a Fermi or a non-Fermi liquid.
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The natural step now is to see where the system flows away from the
critical point, i.e. what happens when the black hole becomes unstable.
The gravity picture is that of pair production in an electrostatic and gravi-
tational field: some of the pair-produced fermions will orbit the black hole,
making it unstable. The result is a novel geometry on the gravity side,
and thus a novel system on the field theory side. We have dubbed this
model a black hole with Dirac hair. We find that it contains only stable
Fermi-liquid quasiparticles, while the unstable ones go away. After some
algebra, one can obtain from the gravity side a number of results of the
Fermi liquid theory. We therefore have a solid gravity dual to a Fermi
liquid.

Our next goal is the exploration of the full parameter space and un-
derstanding of all possible ground states. It is found that this holographic
Fermi liquid is unexpectedly robust: in the whole parameter space, the
stable quasiparticles dominate the spectrum as soon as one moves away
from the quantum critical (charged black hole) phase, which shows definite
characteristics of a non-Fermi liquid. Somewhat unexpectedly, even in the
strongly coupled setup of AdS/CFT, Fermi liquids are ubiquitous – and
only disappear when quantum-critical behavior develops. It is conceivable
that different, more involved gravity models would give a richer spectrum
of non-Fermi liquid phases. The transition between the two phases is of
the Berezhinsky-Kosterlitz-Thouless (BKT) type, i.e., of infinite order.
Clearly, it has nothing to do with vortices but with a specific instability of
the non-Fermi liquid (in technical terms, it manifests itself as the merger
of two fixed points of the RG flow).

In conclusion, we have observed previously unknown forms of fermionic
quantum criticality by employing the AdS/CFT correspondence, and ob-
tained a proof of Fermi liquid stability from the theory of gravity. The
former points to the ability of AdS/CFT to bring new developments into
the field of many-body physics, while the latter is an important check,
reproducing the best established result of conventional condensed-matter
theory. We are still at the very beginning of holographic studies of quan-
tum matter, but there is good reason to believe that these studies have
the potential to bring entirely new results to the field.
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Samenvatting

Dit proefschrift is gewijd aan de studie van sterk gecorreleerde elektron
systemen vanuit een snaartheoretisch perspectief, via het zogenoemde
holografisch principe. In essentie relateert dit principe twee onderwer-
pen uit de theoretische natuurkunde, die niets met elkaar te maken lijken
te hebben; zwaartekracht en kwantumveldentheorie. Deze connectie is
wellicht in het bijzonder van nut voor sterk gecorreleerde elektronsyste-
men, vanuit zowel fundamentele als praktisch oogpunt. Om dit te be-
grijpen, is het noodzakelijk om bovengenoemde correspondentie te ver-
duidelijken.

Aan de basis van het holografisch principe ligt de studie van zwarte
gaten. Aangezien de entropie van een zwart gat evenredig is met de op-
pervlakte van zijn horizon, en deze entropie kan worden opgevat als een
hoeveelheid informatie (en uiteindelijk het aantal vrijheidsgraden), kan
men concluderen dat de oppervlakte van de horizon codeert voor de in-
formatie van het zwarte gat. Anders gezegd, de vrijheidsgraden worden
bepaald door de oppervlakte en niet door het volume van het zwarte gat.
Dit bewoog ’t Hooft en Susskind ertoe om te postuleren dat, heel alge-
meen, de dynamica van een gekromde ruimtetijd (i.e. ruimtetijd in aan-
wezigheid van zwaartekracht) evengoed kan worden beschouwd als een
kwantumveldentheorie in een Minkowski-ruimte in een dimensie lager.
Uiteindelijk vond Maldacena in 1997 een expliciet voorbeeld van deze
veronderstelling in de vorm van de AdS/CFT correspondentie. Hierin
wordt aangetoond dat een conforme veldentheorie (CFT - een veldenthe-
orie die invariant is onder hoekgetrouwe transformaties, i.e transformaties
die lengtes herschalen maar hoeken gelijk houden) in verhouding staat tot
een specifieke ruimtetijd geometrie, de Anti-de Sitter ruimte (AdS). Deze
correspondentie betreft een vorm van dualiteit, hetgeen betekent dat de
partitiefuncties in de D dimensionale veldentheorie en D+1 dimensionale
AdS zwaartekrachttheorie gelijk zijn. Als gevolg kan men correlatiefunc-
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ties, verwachtingswaarden, de energie-impuls-tensor en andere grootheden
via deze dualiteit berekenen. In feite heeft men een holografisch woorden-
boek van specifieke correspondenties. Een van de belangrijkste eigenschap-
pen van de AdS-CFT correspondentie is het feit dat het een sterk/zwakke
dualiteit betreft. Namelijk, een zwak gecorreleerd probleem in AdSD+1

is duaal aan een sterk gecorreleerde kwantumveldentheorie. Zwak wissel-
werkende zwaartekracht, d.w.z. de algemene relativiteitstheorie, is uitge-
breid bestudeerd en tal van gevallen zijn dan ook daadwerkelijk opgelost.
Daarentegen zijn sterk gecorreleerde kwantumveldentheorien niet op te
lossen met behulp van storingsrekening, en daardoor slechts oppervlakkig
begrepen.

De situatie voor fermionsystemen, die het onderwerp van dit proef-
schrift vormen, is problematischer. Dit komt omdat fermionen een half-
tallige spin hebben en dus aan de Fermi-Dirac statistiek gehoorzamen.
Hierdoor zijn de bijbehorende golffuncties antisymmetrisch en bevat de
dichtheidsmatrix negatieve bijdragen, waardoor die niet probabilistisch
geinterpreteerd kan worden. Het formalisme van de statistische mechanica
(ofwel Euclidische veldentheorie) is dan niet langer van toepassing. Wan-
neer de interacties zwak zijn biedt Landau-Fermi-vloeistoftheorie uitkomst
als gecontroleerd benaderingsschema: het wisselwerkende system gedraagt
zich als een gas van quasideeltjes. Er zijn echter tal van interessante sys-
temen die niet zwak gekoppeld zijn. Een van de bekendste voorbeelden is
die van hoge-temperatuur supergeleiders, die zich niet als Fermi vloeistof
gedragen. Voor dit soort systemen zien we veel mogelijke winst bij het
toepassen van de AdS/CFT correspondentie; het is een geweldig instru-
ment om sterk wisselwerkende fermion systemen te analyseren op een
gecontroleerde manier. Hoewel we met AdS/CFT nog niet een realis-
tisch model voor een probleem uit de gecondenseerde materie aankunnen,
kunnen we wel kenmerkende universele eigenschappen van holografische
fermionsystemen bestuderen.

In ons onderzoek kijken we allereerst naar kwantum-kritische fermion-
systemen. Deze systemen hebben een kwantum-faseovergang – dat is een
faseovergang bij nul temperatuur die veroorzaakt wordt door kwantum
fluctuaties, en niet door thermische fluctuaties. Van veel materialen is
gesuggereerd dat deze een kwantum-faseovergang kennen van een Fermi-
vloeistof naar een niet-Fermi vloeistof. In de duale zwaartekracht-taal
wordt dit beschreven met een geladen zwart gat in de AdS ruimte, met een
fermionendichtheid in de bulk gelijk nul. We hebben in detail het spectrum
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van dit systeem bestudeerd. Wij vinden excitaties bij een specifieke en-
ergie EF en impuls kF die we duidelijk kunnen identificeren met de Fermi
energie en Fermi impuls. Wij hebben dus holografisch Fermi-oppervlakken
gevonden. Door met de parameters van het model te spelen vinden we
zowel stabiele scherpe pieken die we kennen van de Fermi vloeistof, maar
ook instabiele pieken met exotische en ongewone eigenschappen (zoals
deeltjes-gat asymmetrie) die typerend zijn voor niet-Fermi vloeistoffen.
Dit klopt met de verwachting die we hebben van het kwantum-kritische
punt: van daar uit kan het systeem zowel een Fermi vloeistof alsook een
niet-Fermi vloeistof worden.

De logische vervolgstap is om te onderzoeken hoe dit systeem zich
gedraagt net voorbij het kwantum-kritische punt, dat wil zeggen: wat
gebeurt er als het zwarte gat instabiel wordt? Aan de zwaartekrachtkant
zien wij paar productie in een electrostatisch en zwaartekrachtsveld. Een
deel van de fermionen die ontstaan in de paar-productie komt in een baan
om het zwarte gat, waardoor dit instabiel wordt. Het resultaat is een
nieuwe metriek aan de zwaartekrachtszijde, en dat komt overeen met een
nieuw systeem aan de velden-theoretische kant. We hebben dit nieuwe
model ”een zwart gat met Dirac haar” genoemd. Het blijkt dat dit sys-
tem alleen maar stabiele Fermi-vloeistof quasideeltjes bevat; de instabiele
excitaties zijn verdwenen. Met wat wiskundige trucs kunnen we aan de
zwaartekrachtskant een aantal resultaten vinden die gelijk zijn aan een
Fermi-vloeistof. We hebben daarom een overtuigende duale beschrijving
van de Fermi-vloeistof gevonden.

Ons volgende doel is om dit systeem te begrijpen voor alle mogelijke
parameters in alle mogelijke grondtoestanden. Onze holografische Fermi
vloeistof blijkt echter onverwacht robuust: voor alle parameters wordt
het spectrum gedomineerd door de stabiele quasideeltjes zolang we niet
in de kwantum-kritische fase (het geladen zwarte gat, dat duidelijk een
niet-Fermi vloeistof signatuur heeft) zitten. Het is ietwat onverwacht dat
zelfs in de sterke-koppelingstheorie de Fermi vloeistof overal opduikt – en
alleen verdwijnt in het kwantum-kritisch regime. Overigens is het goed
voor te stellen dat andere, meer gecompliceerde zwaartekrachtsmodellen
meer mogelijke niet-Fermi vloeistof fases kunnen beschrijven. De over-
gang tussen de twee genoemde fases is van het Berezhinsky-Kosterlitz-
Thouless type, oftewel een oneindige-orde faseovergang. De overgang heeft
niets met vortices te maken maar eerder met een specifieke instabiliteit
van de niet-Fermi vloeistof; in technische termen komt het neer op het
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samengaan van twee vaste punten in de renormalisatiegroep-stroom. We
hebben daarmee een nieuw voorbeeld gevonden van een niet-topologische
Berezhinsky-Kosterlitz-Thouless overgang binnen de holografische theorie.

Samenvattend: we hebben tot nu toe onbekende vormen van fermion-
ische kwantum kritikaliteit in AdS/CFT bestudeerd, waarbij we een bewijs
gevonden hebben voor de stabiliteit de Fermi vloeistof aan de zwaartekracht-
skant. Het eerstgenoemde toont de mogelijkheden aan van het gebruik
voor AdS/CFT om vooruitgang te boeken in het onderzoek naar veel-
deeltjes fysica. Het tweede is een belangrijke toets waarbij het best-
bekende resultaat van de gecondenseerde materie wordt gereproduceerd.
We staan slechts aan het begin van het holografisch onderzoek naar kwantum-
materie, maar er zijn goede redenen om te geloven dat dit onderzoek de
potentie heeft om compleet nieuwe inzichten in de gecondenseerde materie
te genereren.
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Stellingen
behorende bij het proefschrift

Holography, Fermi surfaces and criticality

1. Wavefunction renormalization Z, i.e. the jump of number density
n(k) at the Fermi surface k = kF is the Landau-Ginzburg order
parameter of a holographic Fermi liquid.

This thesis, Chapter 4.

2. At high temperatures holographic Fermi liquids undergo a first order
phase transition to the phase dual of a charged black hole.

This thesis, Chapter 5.

3. In the phase diagram of holographic fermions a continuous phase
transition separates the Fermi liquid phase from the quantum critical
AdS2 metal phase.

This thesis, Chapter 5.

4. The empirical stability of Fermi liquids has its gravity dual in the
fact that an extremely broad class of systems with bulk fermions
develops a Lifshitz horizon in the interior of the AdS space.

5. The accuracy of calculations of field-theoretic quantities in AdS/CFT
is not simply related or directly proportional to the accuracy of cal-
culations on the gravity side.

6. Even if of little use for the understanding of high-Tc superconductiv-
ity, the many elaborate models proposed to explain it such as emer-
gent gauge theories, resonant valence bonds etc. have contributed
much to broadening the horizons and the arsenal of methodological
tools available in many-body physics.

7. The importance of knowing the Lagrangian/Hamiltonian of a phys-
ical system is overrated. At strong coupling it doesn’t help much.

8. The purpose of computational physics is not to replace analytical
work but only to help it. The goal of science is insight, not numbers,
and insight only comes from analytical considerations.



9. Quality of text is an example of a non-extensive property: improving
several paragraphs individually might still decrease the quality of the
whole.
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