Hayganom Behy lHcTuTyTa 3a pusmky y beorpaay

Beorpan, 4. okrobap 2016. roaune

Ilpeamer: Mouba 3a moKpeTame MOCTYyIKa 3a pen300op y 3Bame MCTPa*kKuBad
capaaHuK

MOJIBb A

C ob3upoMm Ja mcmymaBaM KpUTepHjyMe Hpomucane oj crpaHe MuHHCTapcTBa mMpocseTe,
HayKe ¥ TeXHOJIONIKOI' pa3Boja 3a peu300p y 3Bame HCTPayKuBad capaJHuk, mojanM Hay4ano
Behe Mucruryra 3a ¢usuky y bBeorpajy jna mokperne nocrynak 3a MOj pen3d0p y HaBeIeHO
3Bambe.

Y NpUIOTy HOCTaBJbaM:

1. Mummeme pyKoBOAMOINA MPOjeKTa

2. Kparky crpyuny ouorpadujy

3. Cruucak o6jaB/beHUX pPafoBa U APYTUX IIyOIHKAIM]A

4. TlorBpay O yIUCAHUM JOKTOPCKUM CTY/IHjaMa

5. Kpartak npersies; HaydHe aKTUBHOCTU

6. Kommje o6jaB/beHUX paoBa U APYTHUX ITyOJIUKAIT]ja

7. Pememe o mpeTXoaHOM U300pY Y 3Baibe UCTPAKUBAY CAPaTHUK
8. Pemreme 0 mpuxBaramy Teme JOKTOPCKE JUCepTaIije

9. VBepeme 0 MOJOKEHUM UCIATUMA Ha JOKTOPCKUM CTYAUjaMa

10. ¥YBepeme 0 cTeueHOM BHCOKOM 00pa30Bamby APYTOT CTeleHa MacTep aKaIeMCKUX CTYIH]ja
ca CIIMCKOM IOJIOZKeHUX HCIUTA

11. ¥VBepeme 0 cTeYeHOM BHCOKOM 0OPA30BaIby Ca CHHUCKOM IIOJTOXKEHHX HUCINTA,

Ca noirToBameM,

Baaaumup Jlorgap

Hayuynom Behy UncTHTyTa 32 du3uky y Beorpaay

beorpan, 4. oktobap 2016. rogune

IIpeamer: Mumbeme pyKoBoHOLa NpojeKkTa o pen3dopy Biaagumupa Jlonuapa
y 3Bambe¢ HCTPAKMBAY CapaIHUK

Bragumup Jlonwap je 3amocneH y JlaGoparopuju 3a mpeMeHy padyHapa y HayLu
Mucturyra 3a (U3MKYy ¥ aHrakoBaH je Ha MPOjeKTY OCHOBHHMX HCTPaXMBarba
MunucrapeTsa npocBeTe, HayKe M TEXHOJIOMKOT pa3Boja Pemy6unke Cpouje OH171017,
noJa HasuBoM "Mojenupame U HyMEpHYKEe CHMYJAllMje CIOKEHHX BHUIIEYECTHYHMX
¢Gu3nuknx cucrema”. Ha moMeHyTOM IpOjeKTy paau Ha TeMaMa M3 pa3Boja HyMEPUUKHX
METO/Ia 3a IapajiejiHe payyHapcKe CHCTEME I10J PyKOBOJACTBOM Jp AHTyHa bamaxa. C
0034poM J1a HCIymaBa cBe Npe/BUleHe yciaoBe y ckiany ca [IpaBUIIHHKOM O MOCTYIIKY,
Ha4YWHY BPEJHOBakha ¥ KBAHTUTATUBHOM MCKa3MBaby HAyYHOMCTPAKUBAYKUX pe3yJITara
ucrpaxusaya MITHTP, caryacan cam ca nokpetameM HocTynka 3a peusdop Biaaumupa
Jlonuapa y 3Bame UCTpaKuBay capaTHUK.

3a cacraB Komucuje 3a penszdop Bragumupa JloHdapa y 3Bambe HCTpaKMBay capaJHUK
[PEUIAXKEM:

(1) 1p AnTyH banax, Hay4Hu caBeTHUK, MHCTUTYT 3a pusuky y Beorpamy

(2) np Henan Byxmuposuh, Hay4Hu caBeTHUK, IHCTUTYT 3a usuky y beorpay

(3) mpod. ap Cphan Ilkp6uh, Banpemnnu mnpodecop IIpupoaHO-MaTEMATHIKOT
¢axynrera Yuusep3ureta y Hosom Cany

PykoBoiunan npojexra

O
1p AHTyH banax
HAay4HU CaBETHUK

Buorpaduja Baaguvmmpa Jlomuapa

Biiaagumup Jlonuap je pohen 28. okrobpa 1985. romuue y Hoom Camy. OcuoBHe cryuje
Ha [Ipupogro-maremarmakom akyarery YauBepsurera y Hoom Cay, cMep aumioMupanu
undopmaruyap - mnocjaoBHa mHdopMaruka, ymnucao je 2004. romune, a 3appruno 2009.
rogune. Mactep cryauje Ha ucToM (hakyJaTeTy, Ha cMepy HH(POPMAIMOHN CUCTEMH, 3aBPIIHO
je 2011. romuue. UM3pamoMm AMILIOMCKOr W MacTep paja pykooamo je npod. ap Cphan
Mkp6uh. Illkoacke 2011/2012 roamue je ymnucao JOKTOPCKe cTy/uje HHPOPMATHKE Ha
JlenapTMany 3a MareMaTuky u uadopmatuky [pupoano-maremarudkor dpakyarera Y HUBEp-
sureta y Hosom Caxy. Menrtopu mokTopckux cryauja Bramuvmupa Jloruapa cy mpod. ap
Cphan Llkpb6uh ca [Ipupoano-maremarndkor ¢pakyarera Yuusepsurera y Hosom Cany u
ap Anryr Bamax ca MHcruTyTa 3a dusuky y Beorpany.

Baagumup Jlonuap je oj 2012. 50 kpaja 2014. rojuHe aKTUBHO y4€CTBOBAO y Pa3BOjy
nadopmanuonor cucrema [Ipupoano-maremarndkor pakynrera y Hosom Cany, rie je 6mo u
zanocsaen. O 2015. je 3amocsien y Jlaboparopuju 3a mpuMeny padyHapa y Haymu VHcTuTyTa
3a ¢usuky y Beorpamy, na npojekty ocHoBuux ucrpazkupama OH171017 “Mogenupame u
HYMEpHYKE CUMYJIALH]e CJIOKEHUX BUIICYCCTHIHUX CHCTEMA .

On mperxoanor u3bopa y 3Bame Braaumup Jlondap je objaBuo 2 paga kareropuje M21a,
jenno caomireme kareropuje M33 u aBa caomrema kareropuje M34. Jeman ox pajosa
kareropuje M21la je y Web of Science ozmagen kao Highly Cited Paper 3a mepmon on
objaB/puBama 10 jyaa 2016. rogune.

Cmucak pamoBa Baaaummupa Jlorgapa

Panosu y mehynapoguum vaconucuma n3y3etrHux Bpegaoctu (M21a)
HAKOH IIPEeTXOAHOr m300opa y 3Bambe

1. CUDA programs for solving the time-dependent dipolar Gross-Pitaevskii equation in
an anisotropic trap
V. Lonéar, A. Balaz, A. Bogojevi¢, S. Skrbi¢, P. Muruganandam, and S. Adhikari
Comput. Phys. Commun. 200, 406 (2016)

2. OpenMP, OpenMP /MPI, and CUDA /MPI C programs for solving the time-dependent
dipolar Gross-Pitaevskii equation
V. Lonéar, L. E. Young-S., S. Skrbi¢, P. Muruganandam, S. Adhikari, and A. Balaz
Comput. Phys. Commun. 209, 190 (2016)

Caommresa ca mehynapogunx ckymosa mramnana y eaunan (M33)
HAKOH IIPEeTXOAHOTr m30opa y 3Bambe

1. Parallelization of minimum spanning tree algorithms using distributed memory archi-
tectures
V. Loné&ar, S. Skrbi¢, and A. Balaz
Transactions on Engineering Technologies, pp. 543-554, Springer (2014)
G.-C. Yang, S-I. Ao, L. Gelman (Eds.), Special Volume of the World Congress on
Engineering 2013.
DOIT: 10.1007,/978-94-017-8832-8 39

Caonirema ca MehyHapoaHUX CKYyTOBa mtammnana y meguan (M33)
IIpe MPeTXOaHOT m300pa y 3Bame

1. Parallel implementation of minimum spanning tree algorithms using MPI
V. Loné&ar, S. Skrbi¢
IEEE 13th International Symposium on Computational Intelligence and Informatics
(CINTT), pp. 35-38 (2012).

Caommrema ca mehyHapoaanx ckymosa mramnana y ussoay (M34)
HAKOH IIPEeTXOAHOTr m300opa y 3Bambe

1. Rosensweig instability due to three-body interaction or quantum fluctuations?
V. Lonéar, D. Vudragovié, A. Balaz, A. Pelster
DPG 2016 conference, Q17.2, Hannover, Germany (2016)
2. Trapped Bose-Einstein Condensates with Strong Disorder
V. Londar, A. Balaz, A. Pelster
Book of abstracts of V International School and Conference on Photonics - Photonica
2015, Belgrade, Serbia, 24-28 August 2015

L EMA7T
> » 104; PRIRODNO-MATEMATICKI FAKULTET FACULTY OF SCIENCES
A - Univerzitet u Novom Sadu University of Novi Sad

)
= __"; TRG DoOsITEJA OBRADOVICA 3, 21000 Novi SAD, SRBIJA (SERBIA)
= &

- Ry

'W
tel +381.21.455.630 fax +381.21.455.662 e-mail dekanpmf@uns.ac.rs web www.pmf.uns.ac.rs
- ,.—""'T;;‘T_. p @ P
& O PIB 101635863 MB 08104620
Ovy sh

Uverenje br.: 287/2016

Broj dosijea: 72d/11

Na osnovu ¢l. 161 Zakona o opStem upravnom postupku ("Sluzbeni list SRJ" br. 33/97 i 31/2001) i
("Sluzbeni glasnik RS" br. 30/2010) i po molbi Loncar (Milenko) Vladimir od 13.06.2016. godine izdaje
se

UVEREN E

kojim se potvrduje da je Loncar (Milenko) Vladimir, roden 28.10.1985. godine u mestu Novi Sad,
opstina Novi Sad, drzava Republika Srbija student koji se sam finansira. Upisan je na 3. godinu (3. put)
doktorskih studija Prirodno-matemati¢kog fakulteta Univerziteta u Novom Sadu, na Departmanu za
matematiku i informatiku, na studijskom programu Doktorske akademske studije informatike, $kolske

2015/2016 godine.

Loncar (Milenko) Vladimir upisan je prvi put $kolske 2011/2012. godine, na Departmanu za

matematiku i informatiku, na studijskom programu Doktorske akademske studije informatike.

Uverenje se izdaje na li¢ni zahtev imenovanog.

Novi Sad, 13.06.2016. L%

!

Kparak npersien Haydne aKTUBHOCTH
Baamumupa Jloruapa

Baaguvup Jlonuap je o dedbpyapa 2015. roaune anraxkopan y JlabopaTtopuju 3a mpu-
MeHy padyHapa y Hayiu MucturyTa 3a (pusuky vy beorpay u meroB HCTpaKUBadKU PaJl ce
oaBHja 1o pykoBoacTBoM ap AnrtyHa Bamaxka. Mcerpaxkusauku pan Biaaagnvupa Jlordapa
je 6uo boKycupaH Ha IPUMEHY padyHapa y Hayly, Y CKJAJy Ca IJIAHUPAHUM CaJpzKajeM
IberoBe JOKTOPCKe Te3e. Y OKBHPY OBOI' MCTpakKumBadka mnpasia Biagumup je objaBuo
HEKOJIMKO IyO/IMKaImja y MehyHapoHUM 9aCONUCUMA, OJIHOCHO y 300PHUITUMA PaIoBa Ca
MehyHapoaHux KoHdepeHuja.

Y OKBHPY OBOI' HCTPAXKUBAUKOT IIpaBia, Baamumup Jlondap ce 6aBHO padyHApPCTBOM
BHCOKHUX epdOpMAHCH, TTOCEOHO UMILIEMEHTAIINjOM U OITHMU3AIINjOM HyMEPUUKHUX aJIrOPH-
TaMa 3a peraBame CJA0KeHUX MaTeMaTu4dKuxX npodsemMa. JeaaH oj 3ajaraka je Omiaa u
UMIIJIEMEHTAIja TTAPAJIeJTHIX HYMEPUIKAX AJTOPATAMa BE3aHUX 33 npoydaBame boze-Aju-
MTajH KOHJEH3aTa ca KOHTAKTHOM W JHMIOJ-JAUION HHTepakKIujoM. DBiaaguMup je pas3Buo
BHIIIE NMApAJIeTHUX AJITOPHTAMA 34 PA3/JIUIUTe XapABepCcKe apXUTeKType, o1 KJaacuunux Intel
nporecopa, 10 Nvidia rpadudkux KapTuia, KOju ce MOTY U3BpIIaBaTH KaKO Ha jeIHOM
padyHapy, TakO M Ha PadyyHApCKOM KJjacrepy. PasBujao je u ajropurme 3a XeTeporeHe
padyHapcKe CUCTeMe, Ka0 1 XeyPUCTHYKE METO/Ie 3a OITHUMHU3AIN]Y aJIrOPUTAMa 3a XeTepore-
He cucreme. Kopucrehu passujene ajaropurMe mpoydaBao je yTHUIA] JATIO/- U0 HHTEePaK-
nuje Ha ocobuHe Bose-AjHINTajH KOHIEH3aTa XpoMa U JUCIPO3UjyMa, Kao U (hopMHpame
KBAHTHUX JPOILIETa IPUIMKOM HarjIe IpoMeHe KOHTAKTHE HHTePAKIUje V jaKO JUTIOIAPHUIM
KOHACH3aTHUMA.

Baaguvmup ce 6aBro u BU3yean3aliijoM 1mojaraka JoOMjeHnX n3 HyMepUIKuX CUMYyJIalmja.
3a ome morTpebe pasBUO je MeXaHU3ME MPEKO KOjUX Ce TOJANM JIAKO BU3YEIN3Yjy TOKOM
U3BpIIaBamba CUMYJIaIUje, U MPEeKO KOJUX ce MOXKe yIpaB/haTH CAMYJAIHjOM, T3B. in situ
BU3yeT3aIlHja.

Oux uperxognor u3zbopa y 3Bame Biaamumup Jlondyap je objaBuo aBa paja Kareropuje
M21a, jenno caonmreme Kareropuje M33 u aBa caommrema kareropuje M34. Jeman on
pasosa kareropuje M21a je y Web of Science o3nauen xao Highly Cited Paper 3a mepuon
of1 objaBpUBama 10 jyHa 2016. romumHe.

Computer Physics Communications 200 (2016) 406-410

Computer Physics Communications

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cpc

CUDA programs for solving the time-dependent dipolar

@ CrossMark

Gross-Pitaevskii equation in an anisotropic trap

Vladimir Lon¢ar **, Antun BalaZ?, Aleksandar Bocfgojevic’a, Srdjan Skrbi¢”,
Paulsamy Muruganandam ¢, Sadhan K. Adhikari

2 Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

b Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
€School of Physics, Bharathidasan University, Palkalaiperur Campus, Tiruchirappalli - 620024, Tamil Nadu, India

4 Instituto de Fisica Terica, UNESP - Universidade Estadual Paulista, 01.140-70 Sdo Paulo, Sdo Paulo, Brazil

ARTICLE INFO

Article history:

Received 12 November 2015
Accepted 17 November 2015
Available online 17 December 2015

Keywords:

Bose-Einstein condensate

Dipolar atoms

Gross-Pitaevskii equation

Split-step Crank-Nicolson scheme
Real- and imaginary-time propagation
C program

GPU

CUDA program

Partial differential equation

* Corresponding author.

ABSTRACT

In this paper we present new versions of previously published numerical programs for solving the dipolar
Gross-Pitaevskii (GP) equation including the contact interaction in two and three spatial dimensions in
imaginary and in real time, yielding both stationary and non-stationary solutions. New versions of pro-
grams were developed using CUDA toolkit and can make use of Nvidia GPU devices. The algorithm used is
the same split-step semi-implicit Crank-Nicolson method as in the previous version (Kishor Kumar et al.,
2015), which is here implemented as a series of CUDA kernels that compute the solution on the GPU.
In addition, the Fast Fourier Transform (FFT) library used in the previous version is replaced by cuFFT li-
brary, which works on CUDA-enabled GPUs. We present speedup test results obtained using new versions
of programs and demonstrate an average speedup of 12-25, depending on the program and input size.

New version program summary

Program title: DBEC-GP-CUDA package, consisting of: (i) imag2dXY-cuda, (ii) imag2dXZ-cuda, (iii) imag3d-
cuda, (iv) real2dXY-cuda, (v) real2dXZ-cuda, (vi) real3d-cuda.

Catalogue identifier: AEWL_v2_0

Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/AEWL_v2_0.html

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland.
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 18297.

No. of bytes in distributed program, including test data, etc.: 128586.

Distribution format: tar.gz.

Programming language: CUDA C.

Computer: Any modern computer with Nvidia GPU with Compute Capability 2.0 or higher, with CUDA
toolkit (compiler and runtime, with cuFFT library, minimum version 6.0) installed.

Operating system: Linux.

RAM: With provided example inputs, programs should run on a computer with 512 MB GPU RAM. There
is no upper limit to amount of memory that can be used, as larger grid sizes require more memory, which
scales as NX*NY or NX*NZ (in 2d) or NX*NY*NZ (in 3d). All programs require roughly the same amount of
CPU and GPU RAM.

Number of processors used: One CPU core and one Nvidia GPU.

Classification: 2.9, 4.3, 4.12.

External routines/libraries: CUDA toolkit, version 6.0 or higher, with cuFFT library.
Catalogue identifier of previous version: AEWL_v1_0.

E-mail addresses: vladimir.loncar@ipb.ac.rs (V. Lon€ar), antun.balaz@ipb.ac.rs (A. Balaz), aleksandar.bogojevic@ipb.ac.rs (A. Bogojevic), srdjan.skrbic@dmi.uns.ac.rs
(S. Skrbi¢), anand@cnld.bdu.ac.in (P. Muruganandam), adhikari@ift.unesp.br (S.K. Adhikari).

http://dx.doi.org/10.1016/j.cpc.2015.11.014
0010-4655/© 2015 Elsevier B.V. All rights reserved.

V. Loncar et al. / Computer Physics Communications 200 (2016) 406-410 407

Journal reference of previous version: Comput. Phys. Commun. 195 (2015) 117.
Does the new version supersede the previous version?: No.

Nature of problem: These programs are designed to solve the time-dependent nonlinear partial differential
Gross-Pitaevskii (GP) equation with contact and dipolar interactions in two or three spatial dimensions in
a harmonic anisotropic trap. The GP equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Solution method: The time-dependent GP equation is solved by the split-step Crank-Nicolson method by
discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary
or real time, over small time steps. The contribution of the dipolar interaction is evaluated by a Fourier
transformation to momentum space using a convolution theorem. The method yields the solution of
stationary and/or non-stationary problems.

Reasons for the new version: Previously published dipolar Fortran and C programs [1], based on earlier
programs and algorithms for GP equation with the contact interaction [2], are already used within
the ultra-cold atoms community [3]. However, they are sequential, and thus did not allow for use of
the maximum computing performance modern computers can offer. For this reason we have explored
possible ways to accelerate our programs. Detailed profiling revealed that the calculation of FFTs is the
most computationally demanding part of our programs. Since using GPUs to compute FFTs with optimized
libraries like the cuFFT can lead to much better performance, we have decided to parallelize our programs
using Nvidia CUDA toolkit. Also, the massive parallelism offered by GPUs could be exploited to parallelize
the nested loops our programs have. We have focused on 2d and 3d versions of our programs, as they
perform enough computation to justify and require the use of massive parallelism.

Summary of revisions: Previous C programs in two or three spatial dimensions are parallelized using CUDA
toolkit from Nvidia and named similarly, with “-cuda” suffix appended to their names. The structure of all
programs is identical. Computationally most demanding functions performing time evolution (calcpsidd2,
calcnu, calclux, calcluy, calcluz), normalization of the wave function (calcnorm), and calculation of
physically relevant quantities (calcmuen, calcrms) were implemented as a series of CUDA kernels, which
are executed on GPU. All kernels are implemented with grid-stride loops [4], which allow us to use the
same kernel block sizes for all of our kernels. These block sizes can be changed in src/utils/cudautils.cuh,
containing the optimal values for current Nvidia Tesla GPUs.

As before, CPU performs the initialization of variables and controls the flow of programs, offloading
computation to GPU when needed. Because of the initialization, programs still require almost the same
amount of CPU RAM as GPU RAM. Before any computation begins, relevant variables are copied to GPU,
where they remain during computation, and only wave function array is returned back to CPU when it is
required for writing output.

Parallelization with CUDA toolkit required some dynamically allocated arrays (tensors, matrices, or
vectors) to become private for each GPU thread. This has caused an increase in the amount of used GPU
memory, since the number of running threads on GPU is very large. Coupled with the fact that GPUs
usually have smaller amount of RAM than CPU, this meant that our GPU versions of programs could
be used for much smaller input in comparison to sequential versions. In order to fix this problem and
reduce memory usage, our programs reuse temporary arrays as much as possible. Aside from allocation
of complex tensor/matrix (for 3d or 2d case, respectively) in which we store wave function values, we
allocate one complex tensor/matrix, and up to two double precision tensors/matrices, and reuse them for
different purposes in computations. Allocated complex tensor/matrix is later also used as two double
precision tensors/matrices, for other purposes. This required some reorganization of computation in
several functions, mainly in calcmuen and calcpsidd2. In calcmuen we have reorganized computation
to reuse temporary array and store partial derivatives in it, so instead of using three (in 3d) or two
(in 2d) separate tensors/matrices for partial derivatives, we now use a single temporary tensor/matrix,
which we also use for different purposes in other places in programs. In calcpsidd2 we have removed
the use of additional temporary array that was only used in FFT computation, and also use real-to-
complex and complex-to-real FFT transformations in place of complex-to-complex transformations of
previous program versions. This change was possible because condensate density (input array for FFT)
is purely real, and thus it exhibits Hermitian symmetry. Some FFT libraries, like the cuFFT used in these
programs, can exploit this to reduce memory usage and provide better performance by calculating only
non-redundant parts of the array. Additionally, programs can further reduce GPU RAM consumption by
keeping the tensor/matrix used to store trap potential and dipolar potential in main RAM, configurable
through POTMEM parameter in the input file. Setting value of POTMEM to 2 maximizes performance, and
means that programs will allocate two separate tensors/matrices for storing trap potential and dipolar
potential in GPU memory. This provides the best performance, but at the cost of a larger total memory
consumption. If we set the value of POTMEM to 1, only one tensor/matrix will be allocated in GPU memory,
to which trap potential and dipolar potential will be asynchronously copied from main memory when
they are needed for computation. In this case, tensor/matrix will initially contain trap potential, which
will be replaced with dipolar potential during execution of FFT in calcpsidd2, and replaced back with trap
potential during inverse FFT. Finally, setting POTMEM to 0 will instruct the programs not to allocate any
GPU memory for storing potentials and will instead use main memory, which GPU can access through
slower PCI-Express bus. Figure 1 explains how memory is used and the possible values of POTMEM. We
suggest using POTMEM value of 2 if memory permits, and using values of 1 or 0 if problem cannot fit into
GPU memory. If POTMEM is not specified, programs will check if GPU memory is large enough to fit all
variables and set POTMEM accordingly.

Time propagation functions calclux, calcluy, and calcluz have a recursive relation that makes them
difficult to parallelize. In principle, recursive relations could be parallelized using a higher-order prefix

408

V. Loncar et al. / Computer Physics Communications 200 (2016) 406-410

sum algorithm [5] (also known as scan algorithm), but implementation of this would require multiple
CUDA Kkernels [6]. Since recursive relations are in the innermost loop, launching of all required kernels
would create a sizeable overhead. Also, the number of grid points in each dimension is usually not large
enough to compensate that overhead. Therefore, we have chosen an approach that, instead of parallelizing
the inner loop which has the recursive relation, we parallelize the outer loops, and each GPU thread
computes the whole innermost loop. Since each GPU thread now requires its own array for storing
Crank-Nicolson coefficients cbeta, we reuse existing temporary tensor/matrix for storing these values.
Similar pattern of parallelizing outer loops was also used in calcnorm, calcrms, and calcmuen.

We tested our programs at the PARADOX supercomputing facility at the Scientific Computing
Laboratory of the Institute of Physics Belgrade. Nodes used for testing had Intel Xeon E5-2670 CPUs with
32 GB of RAM and Nvidia Tesla M2090 GPU with 6 GB of RAM. Figure 2 shows the speedup obtained for six
DBEC-GP-CUDA programs compared to their previous versions [1] executed on a single CPU core. Profiling
reveals that the execution time is dominated by execution of FFTs and that the speedup varies significantly
with changing of the grid size. This is due to FFT libraries used (FFTW in previous CPU version [1] and cuFFT
in this version), which use different algorithms for different input array sizes. We thus conclude that the
best performance can be achieved by experimenting with different grid sizes around the desired target.

POTMEM = 2 POTMEM =1 POTMEM =0
cPU psi pot potdd pot potdd pot potdd
q temp pot or
GPU psi array pot potdd potdd pot potdd

Fig. 1. [llustration of placement of relevant variables in CPU and GPU memory. CPU initializes its own wave function
tensor/matrix (psi), trap potential (pot) and dipolar potential (potdd), which is copied to GPU memory. Depending
on value of POTMEM variable, GPU will either allocate the same tensors/matrices for trap and dipolar potential
(POTMEM = 2), allocate only one tensor/matrix and use it for different purposes (POTMEM = 1), or will map pot
and potdd from CPU and not allocate extra memory on GPU (POTMEM = 0). Additionally, GPU allocates one complex
tensor/matrix which is used for temporary data. This tensor/matrix is used either as a single complex tensor/matrix, or
is divided into two double tensors/matrices which can then each contain the same number of elements as the complex
tensor/matrix.

Restrictions:
Programs will only run on computers with Nvidia GPU card (Tesla or GeForce) with Compute Capability
2.0 or higher (Fermi architecture and newer) and with CUDA toolkit installed (version 6.0 or higher).

a 4 b
imag2d-cuda . -, real2d-cuda LR IR Y
* . . L .
30 e et te e arees 30
Iy . A ? .

=" . P = . S >
_é, o . . PO . _g .M.\o
g 20 T, A R S i el eyt g 20 B
2, O LR IRCIL 2,
3 < Coro)

10 10

0 2 2 2 2 2 2 2 O 2 2 2 2 2 2 2

[} 2500 5000 7500 10000 125007 15000 0 2500 5000 7500 10000 12500 15000

grid size grid size

30 30
C imag3d-cuda d real3d-cuda T 2 s ey e

25 25 e

o 0 ©
e . iy .
%20 e %20 RPN < g
.
g5 oty gy SR 15 wete :
53 o o oy o o 5 °
g 1 A INCNCIED e & o
v ot g [N
RO

5 5

0 3 3 3 3 3 3 3 0 3 3 3 3 3 3 '3

0 100 200 300 400 500 600 0 100 200 300 400 500 600

grid size grid size

Fig. 2. Speedup in execution time of imag2dXY-cuda and imag2dXZ-cuda (top-left), real2dXY-cuda and real2dXZ-
cuda (top-right), imag3d-cuda (bottom-left) and real3d-cuda (bottom-right) compared to the previous versions of
programs [1] executed on a single CPU core. Solid red line represents average speedup obtained. We tested linear
grid sizes starting from 50 in 3d and 10007 in 2d, up to the maximum that could fit in GPU memory, which was 600°
for imag3d-cuda, 5403 for real3d-cuda, 15000 for imag2dXY-cuda and imag2dXZ-cuda, and 130007 for real2dXY-cuda
and real2dXZ-cuda. Note that the dispersion of data is due to the use of FFTW_ESTIMATE flag in library calls to FFTW
in the CPU programs.

Unusual features of all programs:

As part of the memory usage optimizations, programs may slightly increase the number of spatial grid
points in each dimension (NX, NY, NZ). This is due to FFT algorithms of cuFFT library that require additional
memory to store temporary results. Qur programs reuse already allocated memory to provide cuFFT with
the temporary memory it requires, however, some problem sizes require much more memory, up to eight
times more [7]. For instance, if the number of grid points in any dimension is a large prime number, cuFFT

V. Loncar et al. / Computer Physics Communications 200 (2016) 406-410 409

uses an algorithm that requires eight times more memory than similarly sized power of two number.
Adjustments of the number of grid points made in the programs ensure that cuFFT will not require such
significantly increased additional memory. In case the programs perform the adjustments to grid size, this
is reported in the output.

Additional comments:
This package consists of 6 programs, see Program title above. For the particular purpose of each program,
please see descriptions below.

Running time:
Example inputs provided with the programs take less than one minute on Nvidia Tesla M2090 GPU.

Program summary (i)

Program title: imag2dXY-cuda.

Title of electronic files: imag2dXY-cuda.cu and imag2dXY-cuda.cuh.
Maximum RAM memory: No upper bound.

Programming language used: CUDA C.

Typical running time: Minutes on a medium PC.

Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in two space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.

Program summary (ii)

Program title: imag2dXZ-cuda.

Title of electronic files: imag2dXZ-cuda.cu and imag2dXZ-cuda.cuh.
Maximum RAM memory: No upper bound.

Programming language used: CUDA C.

Typical running time: Minutes on a medium PC.

Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in two space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.

Program summary (iii)

Program title: imag3d-cuda.

Title of electronic files: imag3d-cuda.cu and imag3d-cuda.cuh.
Maximum RAM memory: No upper bound.

Programming language used: CUDA C.

Typical running time: Tens of minutes on a medium PC.

Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in three space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.

Program summary (iv)

Program title: real2dXY-cuda.

Title of electronic files: real2dXY-cuda.cu and real2dXY-cuda.cuh.
Maximum RAM memory: No upper bound.

Programming language used: CUDA C.

Typical running time: Tens of minutes on a good workstation.

Unusual feature: If NSTP = 0, the program requires and reads the file imag2dXY-den.txt, generated by
executing imag2dXY-cuda with the same grid size parameters.

Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in two space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in real time over
small time steps. The method yields the solution of dynamical problems.

Program summary (v)
Program title: real2dXZ-cuda.
Title of electronic files: real2dXZ-cuda.cu and real2dXZ-cuda.cuh.

410

V. Loncar et al. / Computer Physics Communications 200 (2016) 406-410

Maximum RAM memory: No upper bound.
Programming language used: CUDA C.
Typical running time: Tens of minutes on a good workstation.

Unusual feature: If NSTP = 0, the program requires and reads the file imag2dXZ-den.txt, generated by
executing imag2dXZ-cuda with the same grid size parameters.

Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in two space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in real time over
small time steps. The method yields the solution of dynamical problems.

Program summary (vi)

Program title: real3d-cuda.

Title of electronic files: real3d-cuda.cu and real3d-cuda.cuh.
Maximum RAM memory: No upper bound.

Programming language used: CUDA C.

Typical running time: Tens of minutes on a good workstation.

Unusual feature: If NSTP = 0, the program requires and reads the file imag3d-den.txt, generated by
executing imag3d-cuda with the same grid size parameters.

Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in three space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in real time over
small time steps. The method yields the solution of dynamical problems.

Acknowledgments

V.L,A.B., A. B, and S. § acknowledge support by the Ministry of Education, Science, and Technological
Development of the Republic of Serbia under projects ON171017, 11143007, ON174023, and IBEC, and by
the DAAD - German Academic and Exchange Service under project IBEC. P.M. acknowledges support by
the Science and Engineering Research Board, Department of Science and Technology, Government of India
under project No. EMR/2014/000644. S.K.A. acknowledges support by the CNPq of Brazil under project
303280/2014-0, and by the FAPESP of Brazil under project 2012/00451-0. Numerical simulations were
run on the PARADOX supercomputing facility at the Scientific Computing Laboratory of the Institute of
Physics Belgrade, supported in part by the Ministry of Education, Science, and Technological Development
of the Republic of Serbia under project ON171017.

References

[1] R.Kishor Kumar, L. E. Young-S., D. Vudragovi¢, A. BalazZ, P. Muruganandam, and S. K. Adhikari, Fortran
and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap,
Comput. Phys. Commun. 195 (2015) 117.

[2] P. Muruganandam and S. K. Adhikari, Comput. Phys. Commun. 180 (2009) 1888;

D. Vudragovié, 1. Vidanovi¢, A. Balaz, P. Muruganandam, and S. K. Adhikari, Comput. Phys. Commun.

183 (2012) 2021;

P. Muruganandam and S. K. Adhikari, J. Phys. B: At. Mol. Opt. Phys. 36 (2003) 2501.

R. Kishor Kumar, P. Muruganandam, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys. 46 (2013)

175302;

S. K. Adhikari, Bright dipolar Bose-Einstein-condensate soliton mobile in a direction perpendicular to

polarization, Phys. Rev. A 90 (2014) 055601;

S. K. Adhikari, Stable matter-wave solitons in the vortex core of a uniform condensate, J. Phys. B: At.

Mol. Opt. Phys. 48 (2015) 165303;

S. K. Adhikari, Stable spatial and spatiotemporal optical soliton in the core of an optical vortex, Phys.

Rev. E 92 (2015) 042926;

T. Khellil, A. Balaz, and A. Pelster, Dirty bosons in a quasi-one-dimensional harmonic trap, e-print

arXiv:1510.04985 (2015).

M. Harris, CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops, Parallel Forall Blog, http://

devblogs.nvidia.com/parallelforall/cuda- pro-tip-write-flexible-kernels-grid- stride-loops/ (2013).

[5] G.E. Blelloch, Prefix Sums and Their Applications, In]. H. Reif (Ed.), Synthesis of Parallel Algorithms,
Morgan Kaufmann, San Francisco (1990).

[6] M. Harris, Parallel Prefix Sum (Scan) with CUDA, EECS 570 Parallel Computer Architecture Course,
University of Michigan, http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf (2007).

[7] cuFFT, CUDA API References, CUDA Toolkit Documentation v7.5, http://docs.nvidia.com/cuda/cufft/
(2015).

3

[4

© 2015 Elsevier B.V. All rights reserved.

Computer Physics Communications 209 (2016) 190-196

Computer Physics Communications

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cpc

OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the @CmsMark
time-dependent dipolar Gross-Pitaevskii equation

Vladimir Lon¢ar **, Luis E. Young-S."¢, Srdjan Skrbi¢¢, Paulsamy Muruganandam ¢,
Sadhan K. Adhikari ¢, Antun Balaz?

2 Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080

Belgrade, Serbia

b Departamento de Ciencias Bdsicas, Universidad Santo Tomds, 150001 Tunja, Boyacd, Colombia

¢ Instituto de Fisica Tedrica, UNESP—Universidade Estadual Paulista, 01.140-70 Sdo Paulo, Sdo Paulo, Brazil

4 Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
€ School of Physics, Bharathidasan University, Palkalaiperur Campus, Tiruchirappalli - 620024, Tamil Nadu, India

ARTICLE INFO

Article history:

Received 13 July 2016

Accepted 15 July 2016

Available online 6 September 2016

Keywords:

Bose-Einstein condensate

Dipolar atoms

Gross-Pitaevskii equation
Split-step Crank-Nicolson scheme
C program

OpenMP

GPU

CUDA program

MPI

* Corresponding author.

ABSTRACT

We present new versions of the previously published C and CUDA programs for solving the dipolar
Gross-Pitaevskii equation in one, two, and three spatial dimensions, which calculate stationary and non-
stationary solutions by propagation in imaginary or real time. Presented programs are improved and
parallelized versions of previous programs, divided into three packages according to the type of paral-
lelization. First package contains improved and threaded version of sequential C programs using OpenMP.
Second package additionally parallelizes three-dimensional variants of the OpenMP programs using MPI,
allowing them to be run on distributed-memory systems. Finally, previous three-dimensional CUDA-
parallelized programs are further parallelized using MPI, similarly as the OpenMP programs. We also
present speedup test results obtained using new versions of programs in comparison with the previous
sequential C and parallel CUDA programs. The improvements to the sequential version yield a speedup of
1.1-1.9, depending on the program. OpenMP parallelization yields further speedup of 2-12 on a 16-core
workstation, while OpenMP/MPI version demonstrates a speedup of 11.5-16.5 on a computer cluster with
32 nodes used. CUDA/MPI version shows a speedup of 9-10 on a computer cluster with 32 nodes.

New version program summary

Program Title: DBEC-GP-OMP-CUDA-MPI: (1) DBEC-GP-OMP package: (i) imag1dX-th, (ii) imag1dZ-th,
(iii) imag2dXY-th, (iv) imag2dXZ-th, (v) imag3d-th, (vi) real1dX-th, (vii) real1dZ-th, (viii) real2dXY-th,
(ix) real2dXZ-th, (x) real3d-th; (2) DBEC-GP-MPI package: (i) imag3d-mpi, (ii) real3d-mpi; (3) DBEC-GP-
MPI-CUDA package: (i) imag3d-mpicuda, (ii) real3d-mpicuda.

Program Files doi: http://dx.doi.org/10.17632/j3z92379m8.1

Licensing provisions: Apache License 2.0

Programming language: OpenMP C; CUDA C.

Computer: DBEC-GP-OMP runs on any multi-core personal computer or workstation with an OpenMP-
capable C compiler and FFTW3 library installed. MPI versions are intended for a computer cluster with
a recent MPI implementation installed. Additionally, DBEC-GP-MPI-CUDA requires CUDA-aware MPI
implementation installed, as well as that a computer or a cluster has Nvidia GPU with Compute Capability
2.0 or higher, with CUDA toolkit (minimum version 7.5) installed.

Number of processors used: All available CPU cores on the executing computer for OpenMP version, all
available CPU cores across all cluster nodes used for OpenMP/MPI version, and all available Nvidia GPUs
across all cluster nodes used for CUDA/MPI version.

Journal reference of previous version: Comput. Phys. Commun. 195 (2015) 117; ibid. 200 (2016) 406.

Does the new version supersede the previous version?: Not completely. OpenMP version does supersede

previous AEWL_v1_0 version, while MPI versions do not supersede previous versions and are meant for
execution on computer clusters and multi-GPU workstations.

E-mail addresses: vladimir.loncar@ipb.ac.rs (V. Lon¢ar), luisevery@gmail.com (L.E. Young-S.), srdjan.skrbic@dmi.uns.ac.rs (S. Skrbi¢), anand@cnld.bdu.ac.in
(P. Muruganandam), adhikari@ift.unesp.br (S.K. Adhikari), antun.balaz@ipb.ac.rs (A. Balaz).

http://dx.doi.org/10.1016/j.cpc.2016.07.029
0010-4655/© 2016 Elsevier B.V. All rights reserved.

V. Loncar et al. / Computer Physics Communications 209 (2016) 190-196 191

Nature of problem: These programs are designed to solve the time-dependent nonlinear partial differential
Gross-Pitaevskii (GP) equation with contact and dipolar interaction in a harmonic anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein condensate. OpenMP package contains
programs for solving the GP equation in one, two, and three spatial dimensions, while MPI packages
contain only three-dimensional programs, which are computationally intensive or memory demanding
enough to require such level of parallelization.

Solution method: The time-dependent GP equation is solved by the split-step Crank-Nicolson method by
discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary
or real time, over small time steps. The contribution of the dipolar interaction is evaluated by a Fourier
transformation to momentum space using a convolution theorem. MPI parallelization is done using the
domain decomposition. The method yields the solution of stationary and/or non-stationary problems.

Reasons for the new version: Previously published C and Fortran programs [1] for solving the dipolar GP
equation are sequential in nature and do not exploit the multiple cores or CPUs found in typical modern
computers. A parallel implementation exists, using Nvidia CUDA [2], and both versions are already used
within the ultra-cold atoms community [3]. However, CUDA version requires special hardware, which
limits its usability. Furthermore, many researchers have access to high performance computer clusters,
which could be used to either further speed up the computation, or to work with problems which
cannot fit into a memory of a single computer. In light of these observations, we have parallelized all
programs using OpenMP, and then extended the parallelization of three-dimensional programs using
MPI to distributed-memory clusters. Since the CUDA implementation uses the same algorithm, and thus
has the same structure and flow, we have applied the same data distribution scheme to provide the
distributed-memory CUDA/MPI implementation of three-dimensional programs.

Summary of revisions:

Package DBEC-GP-OMP: Previous serial C programs [1] are here improved and then parallelized using
OpenMP (package DBEC-GP-OMP). The main improvement consists of switching to real-to-complex (R2C)
Fourier transform, which is possible due to the fact that input of the transform is purely real. In this case
the result of the transform has Hermitian symmetry, where one half of the values are complex conjugates
of the other half. The fast Fourier transformation (FFT) libraries we use can exploit this to compute the
result faster, using half the memory.

To parallelize the programs, we have used OpenMP with the same approach as described in [4], and
extended the parallelization routines to include the computation of the dipolar term. The FFT, used in
computation of the dipolar term, was also parallelized in a straightforward manner, by using the built-
in support for OpenMP in FFTW3 library [5]. With the introduction of multiple threads memory usage
has increased, driven by the need to have some variables private to each thread. To reduce the memory
consumed, we resorted to using techniques similar to the ones used in our CUDA implementation [2],
i.e., we have reduced the memory required for FFT by exploiting the aforementioned R2C FFT, and reused
the memory with pointer aliases whenever possible.

Package DBEC-GP-MPI: Next step in the parallelization (package DBEC-GP-MPI) was to extend the
programs to run on distributed-memory systems, i.e., on computer clusters using domain decomposition
with MPI programming paradigm. We chose to use the newly-implemented threaded versions of the
programs as the starting point. Alternatively, we could have used serial versions, and attempt a pure MPI
parallelization, however we have found that OpenMP-parallelized routines better exploit the data locality
and thus outperform the pure MPI implementation. Therefore, our OpenMP/MPI-parallelized programs
are intended to run one MPI process per cluster node, and each process would spawn the OpenMP threads
as needed on its cluster node. Note that this is not a requirement, and users may run more than one MPI
process per node, but we advise against it due to performance reasons. With the suggested execution
strategy (one MPI process per cluster node, each spawning as many threads as CPU cores available),
OpenMP threads perform most of the computation, and MPI is used for data exchanges between processes.
There are numerous ways to distribute the data between MPI processes, and we decided to use a simple
one-dimensional data distribution, also known as slab decomposition. Data is distributed along the first
(slowest changing) dimension, which corresponds to NX spatial dimension in our programs (see Fig. 1).
Each process is assigned a different portion of the NX dimension, and contains the entire NY and NZ spatial
dimensions locally. This allows each process to perform computation on those two dimensions in the same
way as before, without any data exchanges. In case the computation requires whole NX dimension to be
local to each process, we transpose the data, and after the computation, we transpose the data back.

"]

Fig. 1. Illustration of data distribution between MPI processes. On the left, the data are distributed along the NX
dimension, while on the right the same data are redistributed along the NY dimension.

Transpose routine can be implemented in many ways using MPI, most commonly using
MPI_Alltoall function, or using transpose routines from external libraries, like FFTW3 [5] or
2DECOMP&FFT [6]. Since we already rely on FFTW3 library for FFT, we have utilized its dedicated

192

V. Loncar et al. / Computer Physics Communications 209 (2016) 190-196

transpose interface to perform the necessary transformations. To speed up transpose operation, we do
not perform full transposition of data, but rather leave it locally transposed. That is, we transform from
local_NX x NY x NZ, stored in row-major order, to NX x local_NY x NZ in row-major order (where
local_NX = NX / number_of_processes, and equivalently for local_NY). This approach has an additional
benefit that we do not have to make significant changes in the way array elements are processed, and in
most cases we only have to adjust the loop limit of the non-local dimension.

Package DBEC-GP-MPI-CUDA: The aforementioned data distribution scheme can be also applied to the
CUDA version of programs [2]. However, there is no support for CUDA in FFTW3, and cuFFT (used in CUDA
programs for FFT) does not provide equivalent MPI or transpose interface. Instead, we developed our
own transpose routines, and used them in FFT computation. One example of manual implementation of
transpose routines is shown in Ref. [7], and while we could readily use the same code, we wanted to have
the same result as when using FFTW3. To achieve this, we use the same basic principle as in Ref. [7],
first we create a custom MPI data type that maps to portions of the data to be exchanged, followed by an
all-to-all communication to exchange the data between processes, see Fig. 2 for details.

Fig. 2. Example of a transpose routine of a 4 x 4 x 4 data between four MPI processes. Initially, all processes have 1/4
of the NX dimension, and whole NY and NZ dimensions. After transposing, each process has full NX and NZ dimensions,
and 1/4 of the NY dimension.

The implemented transpose routines are also used to compute a distributed-memory FFT, performed
over all MPI processes. To divide the computation of a multidimensional FFT, in our case three-
dimensional, we use a well-known row-column algorithm. The basic idea of the algorithm is perhaps best
explained on a two-dimensional FFT of N x M data, stored in row-major order, illustrated in Fig. 3. First
the N one-dimensional FFTs of length M are performed (along the row of data), followed by a transpose,
after which data are stored as M x N in row-major format. Now M FFTs of length N can be performed along
what used to be a column of original data, but are stored as rows after transposing. Finally, an optional
transpose can be performed to return the data in their original N x M form. In three dimensions, we can
perform a two-dimensional FFT, transpose the data, and perform the FFT along the third dimension. This
algorithm can be easily adapted for distributed memory systems. We use advanced cuFFT interface for
local computation of FFT, and use our transpose routine to redistribute the data.

Note that DBEC-GP-MPI-CUDA programs can be easily modified to work on a single workstation with
multiple GPU cards, or a computer cluster with multiple GPU cards per node. In that case, for each GPU
card a separate MPI process should be launched and the programs should be modified to assign a separate
GPU card for processes on the same cluster node.

> — | :
— S ! |
1D FFT on Transpose 1D FFT on Traﬁ:glg se
rows data rows :
(optional)

Fig. 3. Illustration of four stages of row-column FFT algorithm. The last transpose operation may be omitted, and often
yields better performance.

MPI output format: Given that the distributed memory versions of the programs can be used for much
larger grid sizes, the output they produce (i.e., the density profiles) can be much larger and difficult to
handle. To alleviate this problem somewhat, we have switched to a binary output instead of the textual.
This allowed us to reduce the size of files, while still retaining precision. All MPI processes will write the
output to the same file, at the corresponding offset, relieving the user of the task of combining the files.
The binary output can be subsequently converted to textual, for example by using hexdump command on
UNIX-like systems. We have developed a simple script which converts the output from binary to textual
format and included it in the software package.

Testing results: We have tested all programs on the PARADOX supercomputing facility at the Scientific
Computing Laboratory of the Institute of Physics Belgrade. Nodes used for testing had two Intel Xeon E5-
2670 CPUs (with a total of 2 x 8 = 16 CPU cores) with 32 GB of RAM and one Nvidia Tesla M2090 GPU
with 6 GB of RAM, each connected by Infiniband QDR interconnect. The presented results are obtained for
arbitrary grid sizes, which are not tailored to maximize performance of the programs. We also stress that
execution times and speedups reported here are calculated for critical parallelized parts of the programs

V. Loncar et al. / Computer Physics Communications 209 (2016) 190-196 193

performing iterations over imaginary or real time steps, and they exclude time spent on initialization
(threads initialization, MPI environment, allocation/deallocation of memory, creating/destroying FFTW
plans, I/O operations). As a part of its output, each program separately prints initialization time and
time spent on iterations for GP propagation. The latter time is used to calculate a speedup, as a speedup
obtained this way does not depend on the number of iterations and is more useful for large numbers of
iterations.

The testing of OpenMP versions of programs DBEC-GP-OMP was performed with the number of
threads varying from 1 to 16. Table 1 and Fig. 4 show the obtained absolute wall-clock times, speedups,
and scaling efficiencies, as well as comparison with the previous serial version of programs [1]. As we
can see from the table, improvements in the FFT routine used already yield a speedup of 1.3 to 1.9 for
single-threaded (T = 1) 2d and 3d programs compared to the previous serial programs, and somewhat
smaller speedup for 1d programs, 1.1 to 1.3. The use of additional threads brings about further speedup
of 2 to 2.5 for 1d programs, and 9 to 12 for 2d and 3d programs. From Fig. 4 we see that for 1d programs,
although speedup increases with the number of threads used, the efficiency decreases due to insufficient
size of the problem, and one can achieve almost maximal value of speedup already with T = 4 threads,
while still keeping the efficiency around 50%. We also see, as expected, that speedup and efficiency of 2d
and 3d programs behave quite well as we increase the numbers of threads. In particular, we note that the
efficiency is always above 60%, making the use of all available CPU cores worthwhile.

Table 1

Wall-clock execution times of DBEC-GP-OMP programs compiled with Intel’s icc compiler, compared to the execution
times of previously published serial versions. The execution times given here are for 1000 iterations (in seconds,
excluding initialization and input/output operations, as reported by each program) with grid sizes: 10° for 1d
programs, 10* x 10* for 2d programs, and 480 x 480 x 480 for 3d programs. Columns T = 1,T = 2, T = 4,
T = 8,and T = 16 correspond to the number of threads used, while the last column shows the obtained speedup
with 16 OpenMP threads (T = 16) compared to one OpenMP thread (T = 1). Note that the reduction in the execution
time is not solely due to the introduction of multiple threads, as the improvements in the FFT routine used also have
noticeable impact. This is most evident when comparing execution times of serial versions to OpenMP versions with
one thread. Execution times and speedups of imag1dZ-th, real1dZ-th, imag2dXZ-th, and real2dXZ-th (not reported
here) are similar to those of imag1dX-th, real1dX-th, imag2dXY-th, and real2dXY-th, respectively.

Serial [1] T=1 T=2 T=4 T=8 T=16 Speedup

imag1dX-th 9.1 7.1 47 34 2.9 2.8 25
real1dX-th 15.2 14.2 10.5 8.2 7.3 7.2 2.0
imag2dXY-th 13657 7314 4215 2159 1193 798 9.2
real2dXY-th 17281 11700 6417 3271 1730 1052 111
imag3d-th 16064 9353 5201 2734 1473 888 10.5
real3d-th 22611 17496 9434 4935 2602 1466 119
a 3 T T T 1 b 25 1

251 e o OO0 2F pus o—0—0—0—0—0—0-0—0-0—(05§

L o— — .
=) 2 P4 do6 & =isk o 0.6 =
L AN il ol R R N T medw g
é- / efficiency | & § Lo efficiency |, S

- @ < <
05F —-& 3 0.2 0.5 oA 0.2
0 L L L L L lr\nagl (j\X-th 0 0 L L L L L rqal 1 d)?-tﬁ_ 0
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
number of threads number of threads
C 12 T T T T T 1 d 12 v\é T T T T T 1
-0 B o NN _o—
10F e\e_%_ 08 10F O~0-0-o S~6-0 ;6:5/. Jos
P L 'M—
8- Q-9 - o <)
§ ./0/0 o ~O~6-406 & é‘ § _ o H0.6 ;=>
o 6F e 2.8 e ® &
2 /o/‘ do4 2 2 ./'/ do4 2
4+ _& —@— speedup < 4F ~ —@— speedup <
L ././. -&- efficiency 02 L ././. -&- efficiency | 02
o imag2dXY-th ' real2dXY-th
L L L L L L L L L L L L L
0 2 4 6 8 10 12 14 léJ 0 2 4 6 8 10 12 14 1(?
number of threads number of threads
c 12 M T T T 1 f 12 v\é\e T T T T T prs 1
q ~0-0-0-0-0—0- o
10F Q-N-W % s 10F . 6—?;06&_ 6308
8t 6" %~e~ o 8h —o~ ©
5 J06 & & ./’ 0.6 =
e _o— a B A G,
g o 0 a § or ./. @
& _ 1043 & A 04 3
4+ ° _® —@— speedup < 4+ _» —@— speedup <
.L ././ -&— efficiency | 02 N /./. -&- efficiency | 02
o imag3d-th ./. real3d-th
n 1 n 1 n 1 n 1 n 1 n 1 n 1 n n 1 n 1 n 1 n 1 n 1 n 1 n 1 n
0 2 4 6 8 10 12 14 160 0 2 4 6 8 10 12 14 160
number of threads number of threads

Fig.4. Speedup in the execution time and scaling efficiency of DBEC-GP-OMP programs compared to single-threaded
runs: (a) imag1dX-th, (b) real1dX-th, (c) imag2dXY-th, (d) real2dXY-th, (e) imag3d-th, (f) real3d-th. Scaling efficiency
is calculated as a fraction of the obtained speedup compared to a theoretical maximum. Grid sizes used for testing
are the same as in Table 1. Speedups and efficiencies of imag1dZ-th, real1dZ-th, imag2dXZ-th, and real2dXZ-th (not
reported here) are similar to those of imag1dX-th, real1dX-th, imag2dXY-th, and real2dXY-th, respectively.

194

V. Loncar et al. / Computer Physics Communications 209 (2016) 190-196

For testing of MPI versions we have used a similar methodology to measure the strong scaling per-
formance. For OpenMP/MPI programs DBEC-GP-MPI, the obtained wall-clock times are shown in Table 2,
together with the corresponding wall-clock times for the OpenMP programs DBEC-GP-OMP that served
as a baseline to calculate speedups. The testing was done for varying number of cluster nodes, from 4 to
32, and the measured speedup ranged from 11 to 16.5. The corresponding graphs of speedups and effi-
ciencies are shown in Fig. 5, where we can see that the speedup grows linearly with the number of nodes
used, while the efficiency remains mostly constant in the range between 40% and 60%, thus making the
use of OpenMP/MPI programs highly advantageous for problems with large grid sizes.

Table 2

Wall-clock execution times of DBEC-GP-MPI programs compiled with mpicc compiler from OpenMPI implementation
of MPI, backed by Intel’s icc compiler, compared to the execution times of OpenMP (DBEC-GP-OMP) versions on
a single-node (T = 16, N = 1). The execution times given here are for 1000 iterations (in seconds, excluding
initialization and input/output operations, as reported by each program) with the grid size 480 x 480 x 500. Columns
N =4N =8, N = 16,N = 24,and N = 32 correspond to the number of cluster nodes used (each withT = 16
threads), while the last column shows the obtained speedup with N = 32 nodes compared to single-node runs.

OpenMP N=4 N=38 N =16 N=24 N =32 Speedup
imag3d-mpi 1124 653 352 167 128 96 115
real3d-mpi 2140 979 513 277 220 129 16.5
alZ T \/‘Ovﬁ b 16F " T T T g0.6
1oF G\e /‘ 105 14F — & 05
[o - Jo. 12p T o,
= 8 & /f>,/ e UA% & 1ok ./ 04%
32 6k Joszg B o d03 g
g 6 / 03z 8 gl o 037
& o : v g
T 4 / —@— speedup 40.2< To6r /C —@— speedup —40.2<
/. -&— efficiency 41 L -&- efficiency
2% e . 0.1 L . o1
S imag3d-mpi 2r o real3d-mpi
| | | | | | | 1 | | | | | | |
0 2 4 8 12 16 20 24 28 32') 0 2 4 8 12 16 20 24 28 320
number of cluster nodes number of cluster nodes

Fig. 5. Speedup in the execution time and scaling efficiency of DBEC-GP-MPI programs compared to single-node
OpenMP runs: (a) imag3d-mpi, (b) real3d-mpi. Scaling efficiency is calculated as a fraction of the obtained speedup
compared to a theoretical maximum. Grid size used for testing is the same as in Table 2.

For CUDA/MPI programs DBEC-GP-MPI-CUDA we observe similar behavior in Table 3 and in Fig. 6.
The obtained speedup with N = 32 nodes here ranges from 9 to 10, with the efficiency between 30%
and 40%. While the efficiency is slightly lower than in the case of OpenMP/MPI programs, which could be
expected due to a more complex memory hierarchy when dealing with the multi-GPU system distributed
over many cluster nodes, the speedup still grows linearly and makes CUDA/MPI programs ideal choice for
use on GPU-enabled computer clusters. Additional benefit of using these programs is their low CPU usage
(up to one CPU core), allowing for the possibility that same cluster nodes are used for other CPU-intensive
simulations.

Table 3

Wall-clock execution times of DBEC-GP-MPI-CUDA programs compiled with Nvidia’s nvcc compiler, with CUDA-
aware OpenMPI implementation of MPI, backed by Intel’s icc compiler, compared to the execution times of previous
CUDA [2] versions on a single-node with one GPU card (N = 1). The execution times given here are for 1000 iterations
(in seconds, excluding initialization and input/output operations, as reported by each program) with the grid size
480 x 480 x 250.Columns N = 4,N = 8, N = 16, N = 24, and N = 32 correspond to the number of cluster nodes
used (each with one GPU card), while the last column shows the obtained speedup with N = 32 nodes compared to
single-node runs.

CUDA [2] N=4 N=38 N =16 N =24 N =32 Speedup
imag3d-mpicuda 579 447 212 103 71 61 9.5
real3d-mpicuda 800 619 295 142 96 80 9.9
a 10 T T T T T T \/'[)_4 b 10— T T T T T — 0.4
[o————, ® i —o—O——5
8 0/9 . /. 6\< 03 8 o/é/e ./ G\g 03
[} o
§ 6F ./ = %% 6 ./ =
f§. , ./ Ho2 % §_ A ./ +0.2 ;
z / —@— speedup < @ / —@— speedup <
2 / ~©- efficiency 0.1 2l ./‘ -&- efficiency 0.1
D imag3d-mpicuda A real3d-mpicuda
0 ’ L L L L L L L 0 0 , L L L L L L L 0
2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32
number of cluster nodes number of cluster nodes

Fig. 6. Speedup in the execution time and scaling efficiency of DBEC-GP-MPI-CUDA programs compared to single-
node runs of previous CUDA programs [2]: (a) imag3d-mpicuda, (b) real3d-mpicuda. Scaling efficiency is calculated
as a fraction of the obtained speedup compared to a theoretical maximum. Grid size used for testing is the same as in
Table 3.

The introduction of distributed transposes of data creates some overhead, which negatively impacts
scaling efficiency. This is more evident in the CUDA/MPI version, as the transpose algorithm is inferior
to the one provided by FFTW3. In our tests, both MPI versions of programs failed to achieve speedup on

V. Loncar et al. / Computer Physics Communications 209 (2016) 190-196 195

less than 4 nodes, due to the introduction of the transpose routines. We therefore recommend using MPI
versions only on 4 or more cluster nodes.

The MPI versions are highly dependent not only on the configuration of the cluster, mainly on the
speed of interconnect, but also on the distribution of processes and threads, NUMA configuration, etc. We
recommend that users experiment with several different configurations to achieve the best performance.
The results presented are obtained without extensive tuning, with the aim to show the base performance.

Finally, we note that the best performance can be achieved by evenly distributing the workload among
the MPI processes and OpenMP threads, and by using grid sizes which are optimal for FFT. In particular,
the programs in DBEC-GP-OMP package have the best performance if NX, NY, and NZ are divisible by the
number of OpenMP threads used. Similarly, for DBEC-GP-MPI programs the best performance is achieved
if NX and NY are divisible by a product of the number of MPI processes and the number of OpenMP threads
used. For DBEC-GP-MPI-CUDA programs, the best performance is achieved if NX and NY are divisible by
a product of the number of MPI processes and the number of Streaming Multiprocessors (SM) in the GPU
used. For all three packages, the best FFT performance is obtained if NX, NY and NZ can be expressed
as 293°5¢7911°13/, where e and f are either 0 or 1, and the other exponents are non-negative integer
numbers [8].

Additional comments, restrictions, and unusual features: MPI programs require that grid size (controlled by
input parameters NX, NY and NZ) can be evenly distributed between the processes, i.e., that NX and NY
are divisible by the number of MPI processes. Since the data is never distributed along the NZ dimension,
there is no such requirement on NZ. Programs will test if these conditions are met, and inform the user
if not (by reporting an error). Additionally, MPI versions of CUDA programs require CUDA-aware MPI
implementation. This allows the MPI runtime to directly access GPU memory pointers and avoid having
to copy the data to main RAM. List of CUDA-aware MPI implementations can be found in Ref. [9].

Acknowledgments

V.L, S.S. and AB. acknowledge support by the Ministry of Education, Science, and Technological
Development of the Republic of Serbia under projects ON171017, 011611005, and 11143007, as well as
SCOPES project 1Z274Z0-160453. LEE. Y.-S. acknowledges support by the FAPESP of Brazil under project
2012/21871-7 and 2014/16363-8. P.M. acknowledges support by the Science and Engineering Research
Board, Department of Science and Technology, Government of India under project No. EMR/2014/000644.
S.K.A. acknowledges support by the CNPq of Brazil under project 303280/2014-0, and by the FAPESP of
Brazil under project 2012/00451-0.

References:

[1] R.Kishor Kumar, L. E. Young-S., D. Vudragovié, A. Balaz, P. Muruganandam, and S. K. Adhikari, Comput.
Phys. Commun. 195 (2015) 117.
[2] V. Lonéar, A. BalaZ, A. Bogojevi, S. Skrbi¢, P. Muruganandam, S. K. Adhikari, Comput. Phys. Commun.
200 (2016) 406.
[3] R. Kishor Kumar, P. Muruganandam, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys. 46 (2013)
175302;
H. Al-Jibbouri, I. Vidanovi¢, A. BalaZ, and A. Pelster, J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 065303;
R. R. Sakhel, A. R. Sakhel, and H. B. Ghassib,]. Low Temp. Phys. 173 (2013) 177;
B. Nikoli¢, A. Balaz, and A. Pelster, Phys. Rev. A 88 (2013) 013624;
X. Antoine and R. Duboscq, Comput. Phys. Commun. 185 (2014) 2969;
J. Luo, Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 3591;
K.-T. Xi, J. Li, and D.-N. Shi, Physica B 436 (2014) 149;
S. K. Adhikari, Phys. Rev. A 90 (2014) 055601;
M. C. Raportaruy, J. Jovanovski, B. Jakimovski, D. Jakimovski, and A. Mishev, Rom. J. Phys. 59 (2014) 677;
A. L. Nicolin, A. Balaz, J. B. Sudharsan, and R. Radha, Rom. J. Phys. 59 (2014) 204;
A.Balaz, R. Paun, A. L. Nicolin, S. Balasubramanian, and R. Ramaswamy, Phys. Rev. A 89 (2014) 023609;
A. 1. Nicolin and I. Rata, High-Performance Computing Infrastructure for South East Europe’s Research
Communities: Results of the HP-SEE User Forum 2012, in Springer Series: Modeling and Optimization
in Science and Technologies 2 (2014) 15;
S. K. Adhikari, J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 165303;
S. K. Adhikari, Phys. Rev. E 92 (2015) 042926;
T. Khellil and A. Pelster, arXiv:1512.04870 (2015);
H. L. C. Couto and W. B. Cardoso,]. Phys. B: At. Mol. Opt. Phys. 48 (2015) 025301;
R. R. Sakhel, A. R. Sakhel, and H. B. Ghassib, Physica B 478 (2015) 68;
L. Salasnich and S. K. Adhikari, Acta Phys. Pol. A 128 (2015) 979;
X. Antoine and R. Duboscq, Lecture Notes Math. 2146 (2015) 49;
E. Chiquillo, J. Phys. A: Math. Theor. 48 (2015) 475001;
S. Sabari, C. P. Jisha, K. Porsezian, and V. A. Brazhnyi, Phys. Rev. E 92 (2015) 032905;
W. Wen, T. K. Shui, Y. F. Shan, and C. P. Zhu, J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 175301;
P. Das and P. K. Panigrahi, Laser Phys. 25 (2015) 125501;
Y.S.Wang, S. T. Ji, Y. E. Luo, and Z. Y. Li,]. Korean. Phys. Soc. 67 (2015) L1504;
A. L. Nicolin, M. C. Raportaru, and A. BalaZ, Rom. Rep. Phys. 67 (2015) 143;
V. S. Bagnato, D.]. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, and D. Mihalache, Rom. Rep. Phys.
67 (2015) 5;
J. B. Sudharsan, R. Radha, H. Fabrelli, A. Gammal, and B. A. Malomed, Phys. Rev. A 92 (2015) 053601;
K.-T. Xi, J. Li, and D.-N. Shi, Physica B 459 (2015) 6;
E.]. M. Madarassy and V. T. Toth, Phys. Rev. D 91 (2015) 044041;
F. 1. Moxley III, T. Byrnes, B. Ma, Y. Yan, and W. Dai,]. Comput. Phys. 282 (2015) 303;
D. Novoa, D. Tommasini, J. A. N6voa-Lopez, Phys. Rev. E 91 (2015) 012904;

196 V. Loncar et al. / Computer Physics Communications 209 (2016) 190-196

Y. H. Wang, A. Kumar, F. Jendrzejewski, R. M. Wilson, M. Edwards, S. Eckel, G. K. Campbell, and C. W.
Clark, New]. Phys. 17 (2015) 125012;

T. Khellil, A. BalaZ, and A. Pelster, New J. Phys. 18 (2016) 063003;

T. Khellil and A. Pelster,]. Stat. Mech.-Theory Exp. (2016) 063301;

J. Akram and A. Pelster, Phys. Rev. A 93 (2016) 023606;

S. K. Adhikari, Laser Phys. Lett. 13 (2016) 035502;

J. Akram and A. Pelster, Phys. Rev. A 93 (2016) 033610;

J. Akram, B. Girodias, and A. Pelster,]. Phys. B: At. Mol. Opt. Phys. 49 (2016) 075302;

S. K. Adhikari and S. Gautam, Phys. Rev. A 93 (2016) 013630;

7. Marojevi¢, E. Gokli, and C. Limmerzahl, Comput. Phys. Commun. 202 (2016) 216;

A. Paredes and H. Michninel, Phys. Dark Universe 12 (2016) 50;

J. Akram and A. Pelster, Laser Phys. 26 (2016) 065501;

T. Mithun, K. Porsezian, and B. Dey, Phys. Rev. A 93 (2016) 013620;

C.-Y. Lai and C.-C. Chien, Phys. Rev. Appl. 5 (2016) 034001;

S. K. Adhikari, Laser Phys. Lett. 13 (2016) 085501;

K. Manikandan, P. Muruganandam, M. Senthilvelan, and M. Lakshmanan, Phys. Rev. E 93 (2016)
032212;

R. R. Sakhel, A. R. Sakhel, H. B. Ghassib, and A. Balaz, Eur. Phys.]. D 70 (2016) 66;

W. Bao, Q. Tang, and Y. Zhang, Commun. Comput. Phys. 19 (2016) 1141;

R. Kishor Kumar, T. Sriraman, H. Fabrelli, P. Muruganandam, and A. Gammal, J. Phys. B: At. Mol. Opt.
Phys. 49 (2016) 155301;

A. Bogojevi¢, A. BalaZ, and A. Beli¢, Phys. Rev. E 72 (2005) 036128;

A. Bogojevic¢, 1. Vidanovi¢, A. BalaZ, and A. Beli¢, Phys. Lett. A 372 (2008) 3341;

I. Vidanovié, A. Bogojevié, A. BalaZ, and A. Beli¢, Phys. Rev. E 80 (2009) 066706;

A. BalazZ, A. Bogojevi¢, 1. Vidanovi¢, and A. Pelster, Phys. Rev. E 79 (2009) 036701;

A. Balaz, 1. Vidanovi¢, A. Bogojevi¢, and A. Pelster, Phys. Lett. A 374 (2010) 1539;

A. 1. Nicolin, Physica A 391 (2012) 1062;

I. Vasi¢ and A. Balaz, arXiv:1602.03538 (2016);

0. Voronych, A. Buraczewski, M. Matuszewski, and M. Stobiriska, arXiv:1603.02570 (2016);

A. M. Martin, N. G. Marchant, D. H.]. O’Dell, and N. G. Parker, arXiv:1606.07107 (2016).

[4] D. Vudragovi¢, L. Vidanovi¢, A. BalaZ, P. Muruganandam, and S. K. Adhikari, Comput. Phys. Commun.
183 (2012) 2021.

[5] FFTW3 library, http://www.fftw.org/ (2016).

[6] 2DECOMP&EFFT library, http://www.2decomp.org/ (2016).

[7] B.Satarié, V. Slavni¢, A. Beli¢, A. Balaz, P. Muruganandam, S. K. Adhikari, Comput. Phys. Commun. 200
(2016) 411.

[8] Real-data DFTs with FFTW3, http://www.fftw.org/fftw3_doc/Real_002ddata-DFTs.html (2014);
Nvidia’s cuFFT accuracy and performance, http://docs.nvidia.com/cuda/cufft/#accuracy-and-performance
(2015).

[9] Nvidia’s MPI Solutions for GPUs, https://developer.nvidia.com/mpi-solutions-gpus (2016).

© 2016 Elsevier B.V. All rights reserved.

Parallelization of Minimum Spanning
Tree Algorithms Using Distributed
Memory Architectures

Vladimir Lon¢ar, Srdjan Skrbi¢ and Antun BalaZ

Abstract Finding a minimum spanning tree of a graph is a well known problem in
graph theory with many practical applications. We study serial variants of Prim’s
and Kruskal’s algorithm and present their parallelization targeting message passing
parallel machine with distributed memory. We consider large graphs that can not fit
into memory of one process. Experimental results show that Prim’s algorithm is a
good choice for dense graphs while Kruskal’s algorithm is better for sparse ones.
Poor scalability of Prim’s algorithm comes from its high communication cost while
Kruskal’s algorithm showed much better scaling to larger number of processes.

Keywords Distributed memory - Kruskal « MPI - MST - Paralellization + Prim

1 Introduction

A minimum spanning tree (MST) of a weighted graph G = (V, E) is a subset of
E that forms a spanning tree of G with minimum total weight. MST problem has
many applications in computer and communication network design, as well as
indirect applications in fields such as computer vision and cluster analysis [12].

V. Lonéar - S. Skrbi¢ (B<)
Faculty of Science, University of Novi Sad, Trg Dositeja Obradovica 4, Novi Sad, Serbia
e-mail: srdjan.skrbic@dmi.uns.ac.rs

V. Loncar
e-mail: vladimir.loncar@dmi.uns.ac.rs

A. Balaz

Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade,
Pregrevica 118, Belgrade, Serbia

e-mail: antun.balaz@scl.rs

G.-C. Yang et al. (eds.), Transactions on Engineering Technologies, 543
DOI: 10.1007/978-94-017-8832-8_39,
© Springer Science+Business Media Dordrecht 2014

544 V. Loncar et al.

In this paper we implement two parallel algorithms for finding MST of a graph,
based on classical algorithms of Prim [23] and Kruskal [18], building upon our
previous work in [19]. Algorithms target message passing parallel machine with
distributed memory. Primary characteristic of this architecture is that the cost of
inter-process communication is high in comparison to cost of computation. Our
goal was to develop algorithms which minimize communication, and to measure
the impact of communication on the performance of algorithms. Our primary
interest were graphs which have significantly larger number of vertices than
processors involved in computation. Since graphs of this size cannot fit into the
memory of a single process, we use a partitioning scheme to divide the input graph
among processes. We consider both sparse and dense graphs.

First algorithm is a parallelization of Prim’s serial algorithm. Each process is
assigned a subset of vertices and in each step of computation, every process finds a
candidate minimum-weight edge connecting one of its vertices to MST. The root
process collects those candidates and selects one with minimum weight which it
adds to MST and broadcasts result to other processes. This step is repeated until
every vertex is in MST.

Second algorithm is based on Kruskal’s approach. Processes get a subset of
G in the same way as in first algorithm, and then find local minimum spanning tree
(or forest). Next, processes merge their MST edges until only one process remains,
which holds edges that form MST of G.

Implementations of these algorithms are done using C programming language
and MPI (Message Passing Interface) and tested on a parallel cluster PARADOX
using up to 256 cores and 256 GB of distributed memory.

Section 2 contains references to the most important related papers. In Sect. 3 we
continue with the description and analysis of algorithms—both serial and parallel
versions, and their implementation. In the last section we describe experimental
results, analyze them and draw our conclusions.

2 Related Work

Algorithms for MST problem have mostly been based on one of three approaches,
that of Boruvka [3], Prim [23] and Kruskal [18], however, a number of new
algorithms has been developed. Gallager et al. [10] presented an algorithm where
processor exists at each node of the graph (thus n = p), useful in computer net-
work design. Katriel and Sanders designed an algorithm exploiting cycle property
of a graph targeting dense graph, [17], while Ahrabian and Nowzari-Dalini’s
algorithm relies on depth first search of the graph [1].

Due to its parallel nature, Boruvka’s algorithm (also known as Sollin’s algo-
rithm) has been the subject to most research related to parallel MST algorithms.
Examples of algorithms based on Boruvka’s approach include Chung and Condon
[4], Wang and Gu [14] and Dehne and Gotz [7].

Parallelization of Minimum Spanning Tree Algorithms 545

Parallelization of Prim’s algorithm has been presented by Deo and Yoo [8]. Their
algorithm targets shared memory computers. Improved version of Prim’s algorithm
has been presented by Gonina and Kale [11]. Their algorithm adds multiple vertices
per iteration, thus achieving significant speedups. Another approach targeting
shared memory computers presented by Setia et al. [24] uses the cut property of a
graph to grow multiple trees in parallel. Hybrid approach, combining both
Boruvka’s and Prim’s approaches has been developed by Bader and Cong [2].

Examples of parallel implementation of Kruskal’s algorithm can be found in
work of Jin and Baker [16], and Osipov et al. [21]. Osipov et al. proposes a
modification to Kruskal’s algorithm to avoid edges which certainly are not in a
graph. Their algorithm runs in near linear time if graph is not too sparse.

Bulk of the research into parallel MST algorithms has targeted shared memory
computers like PRAM, i.e. computers where entire graph can fit into memory. Our
algorithms target distributed memory computers and use partitioning scheme to
divide the input graph evenly among processors. Because no process contains info
about partition of other processes, we designed our algorithms to use predictable
communication patterns, and not depend on the properties of input graph.

3 The Algorithms

Let us assume that graph G = (V, E), with vertex set V and edge set E is connected
and undirected. Without loss of generality, it can be assumed that each weight is
distinct, thus G is guaranteed to have only one MST. This assumption simplifies
implementation, otherwise a numbering scheme can be applied to edges with same
weight, at the cost of additional implementation complexity.

Let n be the number of vertices, m the number of edges (IVl = n, |[El = m), and
p the number of processes involved in computation of MST. Let w(v, u) denote
weight of edge connecting vertices v and u. Input graph G is represented as
n x n adjacency matrix A = (a;;) defined as:

~_ fwi,vy) i (vi,vj) €E
dij = {O otherwise (1)

3.1 Prim’s Algorithm

Prim’s algorithm starts from an arbitrary vertex and then grows the MST by
choosing a new vertex and adding it to MST in each iteration. Vertex with an edge
with lightest weight incident on the vertices already in MST 1is added in every
iteration. The algorithm continues until all the vertices have been added to the
MST. This algorithm requires O(n”) time. Implementations of Prim’s algorithm
commonly use auxiliary array d of length n to store distances (weight) from each

546 V. Loncar et al.

Fig. 1 Partitioning of
adjacency matrix among
D processes

vertex to MST. In every iteration a lightest weight edge in d is added to MST and
d is updated to reflect changes.

Parallelizing the main loop of Prim’s algorithm is difficult [13], since after
adding a vertex to MST lightest edges incident on MST change. Only two steps
can be parallelized: selection of the minimum-weight edge connecting a vertex not
in MST to a vertex in MST, and updating array d after a vertex is added to MST.
Thus, parallelization can be achieved in the following way:

1. Partition the input set V into p subsets, such that each subset contains n/p con-
secutive vertices and their edges, and assign each process a different subset.
Each process also contains part of array d for vertices in its partition. Let V; be
the subset assigned to process p;, and d; part of array d which p; maintains.
Partitioning of adjacency matrix is illustrated in Fig. 1.

2. Every process p; finds minimum-weight edge e; (candidate) connecting MST

with a vertex in V.

Every process p; sends its e; edge to the root process using all-to-one reduction.

4. From the received edges, the root process selects one with a minimum weight
(called global minimum-weight edge e,,;,), adds it to MST and broadcasts it to
all other processes.

5. Processes mark vertices connected by e,,,, as belonging to MST and update
their part of array d.

6. Repeat steps 2-5 until every vertex is in MST.

e

Finding a minimum-weight edge and updating of d; during each iteration costs
O(n/p). Each step also adds a communication cost of all-to-one reduction and all-
to-one broadcast. These operations complete in O(log p). Combined, cost of one
iteration is O(n/p + log p). Since there are n iterations, total parallel time this
algorithm runs in is:

n

T, = 0(2) +0(n logp) 2)

Parallelization of Minimum Spanning Tree Algorithms 547

Prim’s algorithm is better suited for dense graphs and works best for complete
graphs. This also applies to its parallel formulation presented here. Ineffectiveness
of the algorithm on sparse graphs stems from the fact that Prim’s algorithm runs in
O(n?), regardless of the number of edges. A well-known modification [5] of Prim’s
algorithm is to use binary heap data structure and adjacency list representation of a
graph to reduce the run time to O(m log n). Furthermore, using Fibonacci heap
asymptotic running time of Prim’s algorithm can be improved to O(m + n log n).
Since we use adjacency matrix representation, investigating alternative approaches
for Prim’s algorithm was out of the scope of this paper.

3.2 Kruskal’s Algorithm

Unlike Prim’s algorithm which grows a single tree, Kruskal’s algorithm grows
multiple trees in parallel. Algorithm first creates a forest F, where each vertex in
the graph is a separate tree. Next step is to sort all edges in E based on their weight.
Algorithm then chooses minimum-weight edge e,,;, (i.e. first edge in sorted set). If
enin connects two different trees in F, it is added to the forest and two trees are
combined into a single tree, otherwise e,,;, 1s discarded. Algorithm loops until
either all edges have been selected, or F contains only one tree, which is the MST
of G. This algorithm is commonly implemented using Union-Find algorithm [22].
Find operation is used to determine which tree a particular vertex is in, while
Union operation is used to merge two trees. Kruskal’s algorithm runs in
O(m log n) time, but can be made even more efficient by using more sophisticated
Union-Find data structure, which uses union by rank and path compression [9]. If
the edges are already sorted, using improved Union-Find data structure Kruskal’s
algorithm runs in O(ma(n)), where o(n) is the inverse of the Ackerman function.

Our parallel implementation of Kruskal’s algorithm uses the same partitioning
scheme of adjacency matrix as in Prim’s approach and is thus bounded by on?)
time to find all edges in matrix. Having that in mind, our parallel algorithm
proceeds through the following steps:

1. Every process p; first sorts edges contained in its partition V.

2. Every process p; finds a local minimum spanning tree (or forest, MSF) F; using
edges in its partition V; applying the Kruskal’s algorithm.

3. Processes merge their local MST’s (or MSF’s). Merging is performed in the
following manner. Let a and b denote two processes which are to merge their
local trees (or forests), and let F, and F, denote their respective set of local
MST edges. Process a sends set F, to b, which forms a new local MST (or
MSF) from F, U F,. After merging, process a is no longer involved in com-
putation and can terminate.

4. Merging continues until only one process remains. Its MST is the end result.

Creating a new local MSF during merge step can be performed in a number of
different ways. Our approach is to perform Kruskal’s algorithm again on F, U F,.

548 V. Loncar et al.

Computing the local MST takes O(n*/p). There is a total of log p merging stages,
each costing O(n’log p). During one merge step one process transmits maximum
of O(n) edges for a total parallel time of:

T, = O(n’/p) + O(n* logp) (3)

Based on speedup and efficiency metrics, it can be shown that this parallel
formulation is efficient for p = O(n/log n), same as the first algorithm.

3.3 Implementation

Described algorithms were implemented using ANSI C and Message Passing Inter-
face (MPI). Fixed communication patterns in parallel formulation of the algorithms
map directly to MPI operations. Complete source code can be found in [25].

4 Experimental Results

Implementations of algorithms were tested on a cluster of up to 32 computing
nodes. Each computer in the cluster had two Intel Xeon E5345 2.33 GHz quad-
core CPUs and 8 GB of memory, with Scientific Linux 6 operating system
installed. We used OpenMPI v1.6 implementation of the MPI standard. The cluster
nodes are connected to the network with a throughput of 1 Gbit/s. Both imple-
mentations were compiled using GCC 4.4 compiler. This cluster has enabled
testing algorithms with up to 256 processes as shown in Table 1.

We tested graphs with densities of 1, 5, 10, 15 and 20 % with number of
vertices ranging from 10,000 to 100,000, and number of edges from 500,000 to
1,000,000,000. Distribution of edges in graphs was uniformly random, and all edge
weights were unique. Due to the high memory requirements of large graphs, not
every input graph could be partitioned in a small number of cluster nodes, as can
be seen in Table 1.

4.1 Results

Due to the large amount of obtained test results, we only present the most
important ones here. Complete set of results can be found in [25].

In the Table 2 we show the behavior of algorithms with increasing number of
processes on input graph of 50,000 vertices and density of 10 %.

Results show poor scalability of Prim’s algorithm, due to its high communi-
cation cost. Otherwise, computation phase of Prim’s algorithm is faster than that of

Parallelization of Minimum Spanning Tree Algorithms 549

Table 1 Testing parameters

Processes Nodes Processes per node No. of vertices (k)
4 4 1 10-50

8 8 1 10-60

16 16 1 10-80

32 32 1 10-100

64 32 2 10-100

128 32 4 10-100

256 32 8 10-100

Table 2 CPU time (in seconds) for algorithms with increasing number of processes

4 8 16 32 64 128 256
Kruskal 38.468 19.94 10.608 5.342 2.958 1.796 1.382
Prim 16.703 15.479 25.201 30.382 30.824 32.661 39.737

Table 3 CPU time (in seconds) for algorithms with increasing density

1 % 5 % 10 % 15 % 20 %
Kruskal 0.607 2.603 5.342 8.164 10.663
Prim 30.189 30.007 30.382 30.518 30.589

Kruskal’s. Due to the usage of adjacency matrix graph representation, Prim’s
algorithm performs almost the same regardless of the density of the input graph.
This can be seen from the results of input graph with 50,000 vertices and 32
processes with varying density shown at Table 3.

On the other hand, Kruskal’s algorithm shows degradation of performance with
increasing density. Results of Kruskal’s algorithm show that majority of local
computation time is spent sorting the edges of input graph, which grows with
larger density. Increasing the number of processes makes local partitions smaller
and faster to process, thus allowing this algorithm to achieve good scalability. If
the edges of input graph were already sorted, Kruskal’s algorithm would be
significantly faster than other MST algorithms.

4.2 Impact of Communication Overhead

Cost of communication is much greater than the cost of computation, so it is
important to analyse the time spent in communication routines. During tests we
measured the time spent waiting for the completion of the communication oper-
ations. In case of Prim’s algorithm, we measured the time that the root process
spends waiting for the completion of MPI_Reduce and MPI_Bcast operations.
Communication in Kruskal’s algorithm is measured as total time spent waiting for
messages received over MPI_Recv operation in the last active process (which will

550 V. Loncar et al.

Table 4 Communication versus computation time (in seconds)

Processes 4 8 16 32 64 128 256
Prim’s algorithm
Total 16.703 15.479 25.201 30.382 30.824 32.661 39.737

Communication 8.188 11.183 23.009 29.248 30.237 32.322 39.467

Kruskal’s algorithm
Total 38.468 19.94 10.608 5.342 2.958 1.796 1.382
Communication 0.171 0.356 0.371 0.288 0.317 0.253 0.256

contain the MST after last iteration of the merge operation). This gives us a good
insight into the duration of communication routines because the last active process
will have to wait the most.

The Table 4 shows communication times of processing input graph of 50,000
vertices with 10 % density.

When comparing communication time with a total computation time it can be
noted that the Prim’s algorithm spends most of time in communication operations,
and by increasing number of processes almost all the running time of the algorithm
is spent on communication operations. A bottleneck in Prim’s algorithm is the cost
of MPI_Reduce and MPI_Bcast communication operations. These operations
require communication between all processes, and are much more expensive than
local computation within each process, because all processes must wait until the
operation is completed, or until the data are transmitted over the network. This
prevents Prim’s algorithm from achieving substantial speedup of running time
with increasing number of processes. Therefore, this algorithm is most efficient on
the fewest number of processes that the partitioned input graph can fit.

On the other hand Kruskal algorithm spends much less time in communication
operations, but instead spends most of the time in local computation. These
differences are illustrated in Figs. 2 and 3. The diagrams show that communication
in Prim’s algorithm rises sharply with increasing number of processes, while
execution time slowly reduces. In Kruskal’s algorithm, the situation is reversed.

4.3 Analysis of Results

The experimental results confirmed some of the assumptions made during the
development and analysis of algorithms, but also made a couple of unexpected
results. Results of these experiments gave us directions for further improvement of
the described algorithms.

Prim’s algorithm has shown excellent performance in computational part of the
algorithm, but a surprisingly high cost of communication operations spoils its final
score. Finding candidate edges for inclusion in MST can be further improved by
using techniques described in [5], but it will not significantly improve the total

Parallelization of Minimum Spanning Tree Algorithms 551

45
40
35
30
25
20
15
10

5

0

A &
4 8

16 32 64 128 256

== Total === Communication

Fig. 2 Communication in Kruskal’s algorithm

45
40
35
30
25
20
15
10

4 8 16 32 64 128 256
e Total ==$==Communication

Fig. 3 Communication in Prim’s algorithm

time of the algorithm, as communication routines will remain the same. Unfor-
tunately, the communication can not be further improved by changing the algo-
rithm. The only way to reduce the cost of communication is to use a cluster that
has a better quality network, or to rely on the semantics of the implementation of
the MPI operation MPI_Allreduce.

Kruskal’s algorithm has shown good performance, especially for sparse graphs,
while the performance degrades with increasing density. It is important to note that
many real-world graphs have density much smaller than 1 % (for example, graph
of roads as egdes and junctions as vertices has a density much smaller than 1 %).
Also, this algorithm showed much better scaling to larger number of processes
than Prim’s algorithm. Cost of communication in Kruskal’s algorithm is much
smaller than in Prim’s algorithm, but the local computation is slower. This can be
improved by using more efficient Union-Find algorithms [9], or by improving
merging of local trees between processes. Kruskal’s algorithm does not use a lot of

552 V. Loncar et al.

slow messages like Prim’s algorithm, but can send very large messages depending
on the number of processes and the size of the graph. This can be improved by
introducing techniques for compressing messages, or changing the structure of the
message.

5 Alternate Parallelization Approaches

In this section we will give a brief overview of two other parallelization approa-
ches we considered using for implementation of these algorithms. One approach
would be using graphics processing unit (GPU) technologies like Nvidia CUDA or
OpenCL. Another would be using shared-memory parallelization API like
OpenMP to utilize multi-core processors on cluster nodes. We will go over
advantages and disadvantages of both approaches.

With the introduction of CUDA and OpenCL programming models, using GPU
for general-purpose computing (GPGPU) has become a powerful alternative to
traditional CPU programming models. Nowadays GPUs can be found in most
high-ranking supercomputers and even ordinary clusters. GPUs have their own
RAM, which is separate from main RAM of a computer and was not accessible for
distributed-memory technologies like MPI. This made writing multi-GPU pro-
grams more difficult, since it required expensive copy operations between GPU
memory and host (CPU) memory which MPI could access. However, recent
developments in MPI implementations have alleviated this problem, and newer
versions of popular MPI implementations like OpenMPI and MVAPICH can
access GPU memory directly. This unfortunately still doesn’t make GPU the
perfect platform for implementations of our algorithms. GPUs still have much
smaller amount of RAM when compared to main memory (recently released
models like Tesla K10 have up to 8 GB of memory [20]). This means that GPU
solution could only be used on much smaller graphs. Alternatively, a different
graph representation (like adjacency lists) would allow graphs with greater number
of vertices, but would still be only useful for sparser graphs. Primary part of Prim’s
algorithm which could be accelerated by GPU is finding local (and then global)
vertex with the smallest distance to the tree. This could be achieved by slightly
modifying well-known parallel reduction algorithm for GPU [15]. Communication
pattern between nodes would remain the same. Kruskal’s algorithm is more
complex to implement on GPU due to Union-Find data structure. Other important
portions of Kruskal’s algorithm, like sorting of input could be done using various
GPU libraries.

Unlike the relatively new technology that is GPGPU, OpenMP has been suc-
cessfully used to parallelize serial code since the late 90s. In some cases, OpenMP
allows developers to parallelize their with programs with minimal effort, using
compiler directives around loops, often with good performance [6]. This technique
could be used in parallelization of Prim’s algorithm for finding local (and later

Parallelization of Minimum Spanning Tree Algorithms 553

global) vertex with the smallest distance to the tree. Graph would be partitioned in
such a way that each node in cluster receives an equal part, then each node would
use all it’s processors and cores with OpenMP to find local minimum, and use MPI
for communication between nodes. Kruskal’s algorithm can be parallelized in
similar way, although it would require a slightly greater effort for implementation
of sorting and Union-Find data structure.

Acknowledgements Authors are partially supported by Ministry of Education, Science, and
Technological Development of the Republic of Serbia, through projects no. ON174023: “Intel-
ligent techniques and their integration into wide-spectrum decision support”, and ON171017:
“Modeling and numerical simulations of complex many-body systems”, as well as European
Commission through FP7 projects PRACE-2IP and PRACE-3IP.

References

1. H. Ahrabian, A. Nowzari-Dalini, Parallel algorithms for minimum spanning tree problem.
Int. J. Comput. Math. 79(4), 441-448 (2002)

2. D.A. Bader, G. Cong, Fast shared-memory algorithms for computing the minimum spanning
forest of sparse graphs. J. Parallel Distrib. Comput. 66(11), 13661378 (2006)

3. O. Boruvka, O Jistém Problému Minimalnm (about a certain minimal problem) (in Czech,
German summary). Prdce Mor. Prrodoved. Spol. v Brne III, vol. 3 (1926)

4. S. Chung, A. Condon, Parallel implementation of borvka’s minimum spanning tree
algorithm. in Proceedings of the 10th International Parallel Processing Symposium, IPPS
‘96 (IEEE Computer Society, Washington, DC, 1996), pp. 302-308

5. T.H. Cormen, C. Stein, R.L. Rivest, C.E. Leiserson, Introduction to Algorithms, 2nd edn.
(McGraw-Hill Higher Education, Boston, 2001)

6. M. Curtis-Maury, X. Ding, C.D. Antonopoulos, D.S. Nikolopoulos, An Evaluation of
Openmp on Current and Emerging Multithreaded/Multicore Processors, ed. by M.S.
Mueller, B.M. Chapman, B.R. Supinski, A.D. Malony, M. Voss. OpenMP Shared Memory
Parallel Programming, vol 4315 (Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2008), pp. 133-144

7. F. Dehne, S. Gtz, Practical Parallel Algorithms for Minimum Spanning Trees, in Workshop
on Advances in Parallel and Distributed Systems (1998), pp. 366-371

8. N. Deo, Y.B. Yoo, Parallel algorithms for the minimum spanning tree problem, in
Proceedings of the International Conference on Parallel Processing (1981), pp. 188-189

9. Z. Galil, G.F. Italiano, Data structures and algorithms for disjoint set union problems. ACM
Comput. Surv. 23(3), 319-344 (1991)

10. R.G. Gallager, P.A. Humblet, P.M. Spira, A distributed algorithm for minimum-weight
spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 6677 (1983)

11. E. Gonina, L.V. Kale, Parallel prim’s algorithm on dense graphs with a novel extension, in
PPL Technical Report, Oct 2007

12. R.L. Graham, P. Hell, On the history of the minimum spanning tree problem. IEEE Ann.
Hist. Comput. 7(1), 43-57 (1985)

13. A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to Parallel Computing, 2nd edn.
(Addison Wesley, Reading, 2003)

14. W. Guang-rong, G. Nai-jie, An efficient parallel minimum spanning tree algorithm on
message passing parallel machine. J. Softw. 11(7), 889-898 (2000)

15. M. Harris, Optimizing parallel reduction in CUDA. CUDA tips and tricks

554 V. Loncar et al.

16

17.

18.

19.

20.

21.

22.

23.

24.

25

.M. Jin, J.W. Baker, Two graph algorithms on an associative computing model, in
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA 2007, vol 1, Las Vegas, Nevada, 25-28 June 2007,
pp. 271277

I. Katriel, P. Sanders, J.L. Trff, J.L. Tra, A practical minimum spanning tree algorithm using
the cycle property, in [1th European Symposium on Algorithms (ESA), vol. 2832 in LNCS
(Springer, New York, 2003), pp. 679-690

J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem.
Proc. Am. Math. Soc. 7(1), 48-50 (1956)

V. Lonéar, S. Skrbi¢, A. BalaZ, Distributed memory parallel algorithms for minimum
spanning trees, in Lecture Notes in Engineering and Computer Science: Proceedings of the
World Congress on Engineering 2013, WCE 2013, London, 3-5 July 2013, pp. 1271-1275
Nvidia, Nvidia tesla GPU accelerators. Nvidia Tesla Product Datasheet (2012)

V. Osipov, P. Sanders, J. Singler, The filter-kruskal minimum spanning tree algorithm, in
ALENEX’09 (2009), pp. 52-61

D.-Z. Pan, Z.-B. Liu, X.-F. Ding, Q. Zheng, The application of union-find sets in kruskal
algorithm, in Proceedings of the 2009 International Conference on Artificial Intelligence and
Computational Intelligence (AICI ‘09), vol 2 (IEEE Computer Society, Washington, DC,
2009), pp. 159-162

R.C. Prim, Shortest connection networks and some generalizations. Bell Syst. Technol. J. 36,
1389-1401 (1957)

R. Setia, A. Nedunchezhian, S. Balachandran, A new parallel algorithm for minimum
spanning tree problem, in Proceedings of the International Conference on High Performance
Computing (HiPC) (2009), pp. 1-5

. S. Skrbi¢, Scientific Computing Seminar (2013)

CINTI 2012 » 13th IEEE International Symposium on Computational Intelligence and Informatics * 20-22 November, 2012 « Budapest, Hungary
1

Parallel implementation of minimum spanning
tree algorithms using MPI

Vladimir Lon¢ar* and Srdjan Skrbic**
Faculy of Science, Depatment for Mathematics an Informatics, University of Novi Sad, Serbia
* vlada.loncar@gmail.com
** shkrba@uns.ac.rs

Abstract—In this paper we study parallel algorithms for
finding minimum spanning tree of a graph. We present
two algorithms, based on sequential algorithms of Prim and
Kruskal, targeting message passing parallel machine with
distributed memory. First algorithm runs in O(n?/p-+n log p)
and second algorithm runs in O(n?/p + n?logp).

Index Terms—Minimum spanning tree, parallel algo-
rithms, message passing, distributed memory computer.

I. INTRODUCTION

A minimum spanning tree (MST) of a graph G =
(V,E) is a subset of F that forms a spanning tree of G
with minimum total weight. MST problem has many appli-
cations in computer and communication network design,
as well as indirect applications in fields such as computer
vision and cluster analysis [1].

In this paper we implement two parallel algorithms for
finding MST of a graph, based on classical algorithms
of Prim and Kruskal. Algorithms target message pass-
ing parallel machine with distributed memory. Primary
characteristic of this architecture is that the cost of inter-
process communication is high in comparison to cost of
computation. Our goal was to develop algorithms which
minimize communication, and to measure the impact of
communication on the performance of algorithms. Our
primary interest were graphs which have significantly
larger number of vertices than processors involved in
computation. Since graphs of this size cannot fit into a
memory of single process, we use simple partitioning
scheme to divide the input graph among processes. We
considered both sparse and dense graphs.

First algorithm is a parallelization of Prim’s sequential
algorithm. Each process is assigned a subset of vertices
and in each step of computation, every process finds a
candidate minimum-weight edge connecting one of it’s
vertices to MST. Leader process collects those candidates
and selects one with minimum weight which it adds to
MST, and broadcasts result to other processes. This step
is repeated until every vertex is in MST.

Second algorithm is based on Kruskal’s approach. Pro-
cesses get a subset of G in the same way as in first
algorithm, and then find local minimum spanning tree (or
forest). Next, processes merge their MST edges until only
one process remains, which holds edges that form MST

of G.

978-1-4673-5206-2/12/$31.00 ©2012 IEEE

35

Algorithms we present are both easy to understand
and implement, and since they use fixed communication
patterns, their performance can easily be predicted.

II. RELATED WORK

Algorithms for MST problem have mostly been based
on one of three approaches, that of Boruvka [2], Prim [3]
and Kruskal [4], however, a number of new algorithms
has been developed. Gallager et al. presented an algorithm
where processor exists at each node of the graph (thus
n = p), useful in computer network design [5]. Katriel and
Sanders designed an algorithm exploiting cycle property
of a graph targeting dense graph, [6], while Ahrabian and
Nowzari-Dalini’s algorithm relies on depth first search of
the graph [7].

Due to it’s parallel nature, Boruvka’s algorithm (also
known as Sollin’s algorithm) has seen the most research.
Examples of algorithms based on Boruvka’s approach
include Chung and Condon [8], Wang and Gu [9] and
Dehne and Gotz [10].

Parallelization of Prim’s algorithm has been presented
by Deo and Yoo [11]. Their algorithm targets shared-
memory computers. Improved version of Prim’s algorithm
has been presented by Gonina and Kale [12]. Their algo-
rithm adds multiple vertices per iteration, thus achieving
significant speedups. Another approach targeting shared-
memory computers presented by Setia et al. [13] uses the
cut property of a graph to grow multiple trees in parallel.
Hybrid approach, combining both Boruvka’s and Prim’s
approaches has been developed by Bader and Cong [14].

Examples of parallel implementation of Kruskal’s algo-
rithm can be found in work of Jin and Baker [15], and
Osipov et al [16]. Osipov et al. proposes a modification
to Kruskal’s algorithm to avoid edges which certainly are
not in a graph. Their algorithm runs in near linear time if
graph is not too sparse.

Bulk of the research into parallel MST algorithms
has targeted shared-memory computers like PRAM, i.e.
computers where entire graph can fit into memory. Our
algorithms target distributed-memory computers and use
partitioning scheme to divide the input graph evenly
among processors. Because no process contains info about
partition of other processes, we designed our algorithms
to use predictable communication patterns, and not depend
on the properties of input graph.

III. THE ALGORITHMS

In the remainder of this paper, we will assume that
graph G = (V, E) is connected and undirected. Without
loss of generality, it can be assumed that each weight is
distinct, thus G is guaranteed to have only one MST. This
assumption simplifies implementation, otherwise a num-
bering scheme can be applied to edges with same weight,
at the cost of additional implementation complexity.

Let n be the number of vertices, m the number of edges
(V| = n, |E| = m), and p the number of processes
involved in computation of MST. Let w(v,u) denote
weight of edge connecting vertices v and wu. Input graph
G is represented as n x n adjacency matrix A = (a; ;)

defined as:
am- = {

A. Prim’s Algorithm

w(v;, vj)
0

if (’Ui7 ’Uj) ek
otherwise

ey

Prim’s algorithm starts from an arbitrary vertex and then
grows the MST by choosing a new vertex and adding
it to MST in each iteration. Vertex with an edge with
lightest weight incident on the vertices already in MST is
added in every iteration. The algorithm continues until all
the vertices have been added to the MST. This algorithm
requires O(n?) time. Implementations of Prim’s algorithm
commonly use auxiliary array d of length n to store
distances (weight) from each vertex to MST. In every
iteration a lightest weight edge in d is added to MST and
d is updated to reflect changes.

Parallelizing the main loop of Prim’s algorithm is dif-
ficult [17], since after adding a vertex to MST lightest
edges incident on MST change. Only two steps can
be parallelized: selection of the minimum-weight edge
connecting a vertex not in MST to a vertex in MST, and
updating array d after a vertex is added to MST. Thus,
parallelization can be achieved in the following way:

1) Partition the input set V' into p subsets, such that
each subset contains n/p consecutive vertices and
their edges, and assign each process a different
subset. Each process also contains part of array d
for vertices in it’s partition. Let V; be the subset
assigned to process p;, and d; part of array d which
p; maintains. Partitioning of adjacency matrix is
illustrated in Fig. 1.

Every process p; finds minimum-weight edge e;
(candidate) connecting MST with a vertex in V.
Every process p; sends its e; edge to leader process
using all-to-one reduction.

From the received edges, leader process selects one
with a minimum weight (called global minimum-
weight edge e,,i,), adds it to MST and broadcasts
it to all other processes.

Processes mark vertices connected by e,,;, as be-
longing to MST and update their part of array d.
Repeat steps 2-5 until every vertex is in MST.

2)
3)

4)

5)

6)

36

V. Lon&ar and S. Skrbic « Parallel Implementation of Minimum Spanning Tree Algorithms using MP!

-1

Fig. 1. Partitioning of adjacency matrix among p processes

Finding a minimum-weight edge and updating of d;
during each iteration costs O(n/p). Each step also adds
a communication cost of all-to-one reduction and all-to-
one broadcast. These operations complete in O(logp).
Combined, cost of one iteration is O(n/p + log p). Since
there are n iterations, total parallel time this algorithm runs
in is:

n2

-o("

In comparison to sequential algorithm, this algorithm
achieves a speedup and efficiency of:

) + O (nlogp) (2)

_ O(n?)
5= O(n2/p + nlogp) 3)
1
)

B = 10 oen) /)

From equations 3 and 4 we conclude that this for-
mulation of Prim’s algorithm is efficient only for p =
O(n/logn) processes.

Prim’s algorithm is better suited for dense graphs and
works best for complete graphs. This also applies to
it’s parallel formulation presented here. Ineffectiveness
of the algorithm on sparse graphs stems from the fact
that Prim’s algorithm runs in O(n?), regardless of the
number of edges. A well-known modification [18] of
Prim’s algorithm is to use binary heap data structure and
adjacency list representation of a graph to reduce the
run time to O(mlogn). Furthermore, using Fibonacci
heap asymptotic running time of Prim’s algorithm can
be improved to O(m + nlogn). Since we use adjacency
matrix representation, investigating alternative approaches
for Prim’s algorithm was out of the scope of this paper.

B. Kruskal’s Algorithm

Unlike Prim’s algorithm which grows a single tree,
Kruskal’s algorithm grows multiple trees in parallel. Al-
gorithm first creates a forest F', where each vertex in the
graph is a separate tree. Next step is to sort all edges
in E based on their weight. Algorithm then loops the
sorted set and chooses minimum-weight edge e,,;, (i.e.
first edge in sorted set). If e,,;, connects two different

CINTI 2012 » 13th IEEE International Symposium on Computational Intelligence and Informatics * 20-22 November, 2012 « Budapest, Hungary
3

trees in I, add it to the forest and combine two trees
into a single tree, otherwise discard e,,;,. Algorithm loops
until either all edges have been selected, or F' contains
only one tree, which is the MST of G. This algorithm
is commonly implemented using Union-Find algorithm
[19]. Find operation is used to determine which tree a
particular vertex is in, while Union operation is used to
merge two trees. Kruskal’s algorithm runs in O(m logn)
time, but can be made even more efficient by using more
sophisticated Union-Find data structure, which uses union
by rank and path compression [20]. If the edges are
already sorted, using improved Union-Find data structure
Kruskal’s algorithm runs in O(ma(n)), where a(n) is the
inverse of an Ackerman function.

Our parallel implementation of Kruskal’s algorithm uses
the same partitioning scheme of adjacency matrix as in
Prim’s approach and is thus bounded by O(n?) time to
find all edges in matrix. Every process first sorts edges
contained in its partition. From edges in partition V;, every
process p; finds a local minimum spanning tree (or forest,
MSF) T; using Kruskal’s algorithm. At the end of this
step, local MSTs are merged. Merging is performed in the
following manner. Let a and b denote two processes which
are to merge their local trees (or forests), and let A and B
denote their respective set of local MST edges. Process a
sends set A to b, which forms a new local MST (or MSF)
from AUB. After merging, process a is no longer involved
in computation and can terminate. Merging continues until
only one process remains, which will contain MST of G.

Example of parallel Kruskal’s algorithm is illustrated in
Fig. 2. Input graph in (a) is divided among processes p;
and py which compute local MST based on edges incident
on vertices assigned to them ((b) and (c)). Next, processes
merge their local MST-s to form a MST of input graph.
The dashed lines represent edges which are in local MST
of a process, but are removed after merging.

Creating a new local MSF during merge step can be
performed in a number of different ways. One approach
is to perform Kruskal’s algorithm again on A U B. Alter-
natively, a modified depth-first search (DFS) can be used.
For every edge in A, it is first determined if it is already
in the same tree of B (using find operation). If it is not, it
is added in MSF and union operation is called. Merging
two trees can produce a cycle, so a modified DFS is run
to eliminate edge with a heaviest weight.

Computing the local MST takes O(n?/p). There is a
total of logp merging stages, each costing O(n?logp).
During one merge step one process transmits maximum
of O(n) edges for a total parallel time of:

T, = O(n*/p) + O(n”log p) (5)

Based on speedup and efficiency metrics, it can be
shown that this parallel formulation is efficient for p =
O(n/logn), same as first algorithm.

IV. IMPLEMENTATION

Algorithms were simple to implement using ANSI C
and MPI. Simplicity is the result of fixed communication

37

(b)

4
P
5 2 4 (o)
D E F
3 _/ 6
MST
(D)—&)
e
| yd
| 2| 7 4 @
| 7
Ve
D E F
OEmOs

Fig. 2. Example of merge step for two processes

patterns which directly map to MPI operations. During
implementation we explored alternative communication
patterns in order to grow multiple trees in parallel, similar
to approaches of parallelization of Boruvka’s algorithm.
We have found that using data-dependant communication
paths results in imbalanced computation due to arbitrary
communication between processes. Also, implementation
of arbitrary communication can be difficult with MPI,
since number of messages each process sends or receives
is not known in advance for every input. Overcoming this
obstacle often requires adding additional communication
complexity, at the cost of overall performance.

Communication pattern in Prim’s algorithm can be im-
proved by using MPI MPI_Allreduce operation instead of
the standard combination of MPI_Reduce and MPI Bcast.
This optimization does not necessarily result in better
performance, since MPI implementations can implement

MPI_Allreduce operation as a simple all-to-one reduce,
followed by a broadcast, without any performance im-
provements [21].

Main performance bottleneck of Prim’s algorithm is
communication overhead of all-to-one reduce operation.
Reduce operation is costly in comparison to local com-
putation, and all other processes are idle while waiting
for reduce to complete. This prevents Prim’s algorithm
to achieve significant speedups on a larger number of
processors. Therefore, Prim’s algorithm is best used on a
smallest number of processes on which partitioned input
graph can fit.

Unlike Prim’s algorithm, Kruskal’s algorithm doesn’t
use collective communication operations during which all
processes except one are idle. Performance-wise, critical
part Kruskal’s algorithm is merging of local MST-s. Merge
part of Kruskal’s algorithm is only fully efficient in case
when p is a power of 2. Since merging is pairwise
operation, in other cases at least one merge step will
have a process without a pair. This process will be idle
until a merge partner is available. In our implementation,
idling can span multiple merge steps, thus causing a
considerable efficiency degradation. For example, if there
are 9 processes in computation, one process will be idle
until the very last merge step. One approach to solving
this issue would be introduction of a special 3-way merge
(or in general a d-ary merge, where d = 2,3,4...) along
with a load balancing logic to minimize or remove the
effect on performance of algorithm.

V. CONCLUSION

We presented two parallel implementations of algo-
rithms for finding minimum spanning tree of a graph.
Our algorithms are parallelizations of classical sequential
algorithms of Prim and Kruskal. Parallel processes work
on a subset of input graph, and communicate using fixed
communication pattern. First algorithm takes O(n?/p +
nlog p) time, while second takes O(n?/p+n?logp) time.

Our analysis has identified several bottlenecks in our im-
plementations, and further work in this area would include
minimizing communication cost by reducing the number
and size of messages passed, as well as improving merge
step of the second algorithm. Also, further experimental
work would give us information about practical limitations
of our algorithms for wider array of input graphs and
uncover new areas for improvement.

ACKNOWLEDGMENT

Authors are partially supported by Ministry of Educa-
tion and Science of the Republic of Serbia, through project
no. I1147003: ” Infrastructure for technology enhanced
learning in Serbia”.

REFERENCES

[1] R. L. Graham and P Hell, “On the history of the
minimum spanning tree problem,” IEEE Ann. Hist. Comput.,
vol. 7, no. 1, pp. 43-57, Jan. 1985. [Online]. Available:
http://dx.doi.org/10.1109/MAHC.1985.1001 1

38

(2]

(31

(4]

[5]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

V. Lon&ar and S. Skrbic « Parallel Implementation of Minimum Spanning Tree Algorithms using MP!

0. Boruvka, “ O Jistém Problému Minimédlnim (About a Certain
Minimal Problem) (in Czech, German summary),” Prdce Mor.
Prirodoved. Spol. v Brne III, vol. 3, 1926.

R. C. Prim, “Shortest connection networks and some generaliza-
tions,” Bell System Technology Journal, vol. 36, pp. 1389-1401,
1957.

J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and
the Traveling Salesman Problem,” Proceedings of the American
Mathematical Society, vol. 7, no. 1, pp. 48-50, Feb. 1956.
[Online]. Available: http://www.jstor.org/stable/2033241

R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed
algorithm for minimum-weight spanning trees,” ACM Trans.
Program. Lang. Syst., vol. 5, no. 1, pp. 6677, Jan. 1983. [Online].
Available: http://doi.acm.org/10.1145/357195.357200

I. Katriel, P. Sanders, J. L. Tréff, and J. L. Tra, “A practical
minimum spanning tree algorithm using the cycle property,” in In
11th European Symposium on Algorithms (ESA), number 2832 in
LNCS. Springer, 2003, pp. 679-690.

H. Ahrabian and A. Nowzari-Dalini, “Parallel algorithms for min-
imum spanning tree problem,” International Journal of Computer
Mathematics, vol. 79, no. 4, pp. 441-448, 2002.

S. Chung and A. Condon, “Parallel implementation
of borvka’s minimum spanning tree algorithm,” in
Proceedings of the 10th International Parallel Processing
Symposium, ser. IPPS ’96. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 302-308. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645606.661036

W. Guang-rong and G. Nai-jie, “An efficient parallel minimum
spanning tree algorithm on message passing parallel machine,”
Journal of Software, vol. 11, no. 7, pp. 889-898, 2000.

F. Dehne and S. Gotz, “Practical parallel algorithms for minimum
spanning trees,” in In Workshop on Advances in Parallel and
Distributed Systems, 1998, pp. 366-371.

Y. Y. B. Deo, Narsingh, “Parallel algorithms for the minimum span-
ning tree problem.” in Proceedings of the International Conference
on Parallel Processing, 1981, pp. 188-189.

E. Gonina and L. V. Kale, “Parallel prim’s algorithm on dense
graphs with a novel extension,” PPL Technical Report, October
2007.

A. N. R. Setia and S. Balachandran, “A new parallel algorithm for
minimum spanning tree problem,” in Proc.International Conference
on High Performance Computing (HiPC), 2009, pp. 1-5.

D. A. Bader and G. Cong, “Fast shared-memory
algorithms for computing the minimum spanning forest
of sparse graphs,” J. Parallel Distrib. Comput., vol. 66,
no. 11, pp. 1366-1378, Nov. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2006.06.001

M. Jin and J. W. Baker, “Two graph algorithms on an associative
computing model,” in Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applica-
tions, PDPTA 2007, Las Vegas, Nevada, USA, June 25-28, 2007,
Volume 1, 2007, pp. 271-2717.

V. Osipov, P. Sanders, and J. Singler, “The filter-kruskal minimum
spanning tree algorithm,” in ALENEX 09, 2009, pp. 52-61.

A. Grama, G. Karypis, V. Kumar, and A. Gupta,
Introduction to Parallel ~ Computing (2nd Edition),
2nd ed. Addison Wesley, Jan. 2003. [Online]. Available:

http://www.worldcat.org/isbn/0201648652

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Intro-
duction to Algorithms, 2nd ed. McGraw-Hill Higher Education,
2001.

D.-Z. Pan, Z.-B. Liu, X.-F. Ding, and Q. Zheng, “The application
of union-find sets in kruskal algorithm,” in Proceedings of
the 2009 International Conference on Artificial Intelligence
and Computational Intelligence - Volume 02, ser. AICI ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 159—
162. [Online]. Available: http://dx.doi.org/10.1109/AICI.2009.155
Z. Galil and G. F. Italiano, “Data structures and algorithms
for disjoint set union problems,” ACM Comput. Surv.,
vol. 23, no. 3, pp. 319-344, Sep. 1991. [Online]. Available:
http://doi.acm.org/10.1145/116873.116878

P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce
algorithms for clusters of workstations,” J. Parallel Distrib.
Comput., vol. 69, no. 2, pp. 117-124, Feb. 2009. [Online].
Available: http://dx.doi.org/10.1016/j.jpdc.2008.09.002

Nonlinear optics Contributed papers

Quench Dynamics for Trapped Dipolar Fermi Gases

V. Velji¢', A. Balaz' and A. Pelster®
'Scientific Computing Laboratory, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
“Physics Department and Research center OPTIMAS,
Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
e-mail: vveljic@ipb.ac.rs

A recent time-of-flight expansion experiment for polarized fermionic erbium atoms
managed to detect a Fermi surface deformation which is due to the dipolar interaction [1].
Here we perform a systematic study of quench dynamics of trapped dipolar Fermi gases
at zero temperature, which are induced by a sudden change of the magnetic field, which
enforces the polarization of the magnetic moments of the erbium atoms. As this modifies
the equilibrium configuration, oscillations of the fermionic erbium cloud emerge around
the new equilibrium, which are characteristic for the presence of the dipole-dipole
interaction. In order to analyze the emergent dynamics we follow Ref. [2] and solve
anaytically the underlying Boltzmann-Vlasov equation wihtin the relaxation
approximation in the vicinity of the new equilibrium configuration by using a suitable
rescaling of the equilibrium distribution [3]. The resulting ordinary differential equations
of motion for the scaling parameters are solved numerically for experimentally relevant
parameters all the way from the collisionless to the hydrodynamic regime. A comparison
with a corresponding linear stability analysis reveals that the resulting quench dynamics
can be understood in terms of the low-lying collective modes due to the smallness of the
dipolar interaction strength. All our theoretical and numerical calculations can be tested in
current experiments with ultracold dipolar fermionic atoms.

REFERENCES

[1] K. Aikawaet a., Science 345, 1484 (2014).

[2] F. Wé&chtler, A. R. P. Lima, A. Pelster, arXiv: 1311.5100 (2013).

[3] P. Pedri, D. Guery-Odelin, S. Stringari, Phys. Rev. A 68, 043608 (2003).

Trapped Bose-Einstein Condensates with Strong Disorder

V. Longar’, A. Balaz' and A. Pelster?

'Scientific Computing Laboratory, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
*Physics Department and Research center OPTIMAS,
Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
e-mail: vloncar@ipb.ac.rs

We work out a non-perturbative approach towards the dirty boson problem at zero
temperature that is based on a Gaussian approximation for correlation functions of the
disorder problem and the condensate wave function solving the Gross-Pitaevskii problem.
For harmonically trapped Bose-Einstein condensates we apply, in addition, the

76

Nonlinear optics Contributed papers

semiclassical approximation and derive with this self-consistency equations between the
disorder ensemble-averages of particle density and condensate density. Invoking,
furthermore, the Thomas-Fermi approximation we obtain results that reproduce for weak
disorder the seminal results of a Bogoliubov theory of dirty bosons [1-3], but do not yield
for strong disorder a Bose-glass phase. Afterwards, we go beyond the Thomas-Fermi
approximation and perform a full numerical treatment of the self-consistency equations
based on the Crank-Nicolson split-step semi-implicit imaginary-time propagation [4],
which yields a quantum phase transition to a Bose-glass phase for strong disorder [5].

REFERENCES

[1] K. Huang, H.-F. Meng, Phys. Rev. Lett. 69, 644 (1992).

[2] G. M. Faco, A. Pelster, R. Graham, Phys. Rev. A 75, 063619 (2007).
[3] G. M. Faco, A. Pelster, R. Graham, Phys. Rev. A 76, 013624 (2007).
[4] D. Vudragovi¢ et al., Comput. Phys. Comm.. 183, 2021 (2012).

[5] P. Navez, A. Pelster, R. Graham, Appl. Phys. B 86, 395 (2007).

Faraday Waves in Dipolar Bose-Einstein Condensates

D. Vudragovi¢ and A. Balaz
Scientific Computing Laboratory, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
e-mail: dusan@ipb.ac.rs

We present the emergence of Faraday waves in cigar-shaped **Cr and *Dy Bose-
Einstein condensates. These density waves are induced by periodic modulation of the
frequency of the trapping potential. We study through extensive numerical simulations
and detailled variational treatment the effects of the strong dipolar interaction on the
spatial and time-period of the Faraday waves. Unlike in the case of homogeneous [1] or
inhomogeneous contact interactions [2], the emergence of Faraday waves is found to
further destabilize the condensate in the presence of strong dipolar interaction. The
interesting effect of spatial period variation of generated density patterns is observed
numerically and studied within the Gaussian variational approach.

REFERENCES

[1] A. Balaz, A. I. Nicolin, Phys. Rev. A 85, 023613 (2012).
[2] A. BalaZ et a., Phys. Rev. A 89, 023609 (2014).

77

Hannover 2016 — Q

Tuesday

Q 17: Quantum Gases: Bosons |

Time: Tuesday 11:00-13:00

Group Report Q 17.1 Tue 11:00 001
Rosensweig instability and solitary waves in a dipolar Bose-
Einstein condensate — eMarTHIAS WENZEL, HOLGER KaDAU,
MatTHIAS SCHMITT, IGOR FERRIER-BARBUT, and TiLmMAN Prau —
5. Physikalisches Institut and Center for Integrated Quantum Sci-
ence and Technology, Universitiat Stuttgart, Pfaffenwaldring 57, 70569
Stuttgart, Germany

Ferrofluids show unusual hydrodynamic effects due to the magnetic
nature of their constituents. For increasing magnetization a classical
ferrofluid undergoes a Rosensweig instability and creates self-organized
ordered surface structures or droplet crystals.

In the experiment we observe a similar behavior in a sample of ultra-
cold dysprosium atoms, a quantum ferrofluid. By controlling the short-
range interaction with a Feshbach resonance we can induce a finite-
wavelength instability due to the dipolar interaction.

Subsequently, we observe the spontaneous transition from an unstruc-
tured superfluid to an ordered arrangement of droplets by in situ imag-
ing. These patterns are surprisingly long-lived and show hysteretic be-
havior. When transferring the sample to a waveguide we observe mu-
tually interacting solitary waves. Time-of-flight measurements allow
us to show the existence of an equilibrium between dipolar attraction
and short-range repulsion. In addition we observe interference between
droplets.

In conclusion, our system shows both superfluidity and translational
symmetry breaking. This novel state of matter is thus a possible can-
didate for a supersolid ground state.

Q 17.2 Tue 11:30 001
Rosensweig instability due to three-body interaction or quan-
tum fluctuations? — Vviapmmir Loncar!, Dusan Vubpracoviél,
e ANTUN BaLaz!, and AXEL PELsTER? — !Scientific Computing Lab-
oratory, Institute of Physics Belgrade, University of Belgrade, Serbia
— 2Physics Department and Research Center OPTIMAS, Technical
University of Kaiserslautern, Germany

In the recent experiment [1], the Rosensweig instability was observed
in a 164Dy Bose-Einstein condensate, which represents a quantum fer-
rofluid due to the large atomic magnetic dipole moments. After a
sudden reduction of the scattering length, which is realized by tuning
the external magnetic field far away from a Feshbach resonance, the
dipolar quantum gas creates self-ordered surface structures in form of
droplet crystals. As the underlying Gross-Pitaevskii equation is not
able to explain the emergence of that Rosensweig instability, we ex-
tend it by both three-body interactions [2-4] and quantum fluctuations
[5]. We then use extensive numerical simulations in order to study the
interplay of three-body interactions as well as quantum fluctuations on
the emergence of the Rosensweig instability.

[1] H. Kadau, M. Schmitt, et al., arXiv:1508.05007v2 (2015).

[2] H. Al-Jibbouri, I. Vidanovi¢, A. BalaZz, and A. Pelster, J. Phys. B
46, 065303 (2013).

[3] R. N. Bisset and P. B. Blakie, arXiv:1510.09013 (2015).

[4] K.-T. Xi and H. Saito, arXiv:1510.07842 (2015).

[5] A. R. P. Lima and A. Pelster, Phys. Rev. A 84, 041604(R) (2011);
Phys. Rev. A 86, 063609 (2012).

Q 17.3 Tue 11:45 €001
Phonon to roton crossover and droplet formation in trapped
dipolar Bose-Einstein condensates — eFALK WACHTLER and Luis
SaNnTOs — Institut fiir Theoretische Physik, Leibniz Universitdt Han-
nover, Hannover, Germany

The stability, elementary excitations, and instability dynamics of dipo-
lar Bose-Einstein condensates depend crucially on the trap geometry.
In particular, dipolar condensates in a pancake trap with its main plane
orthogonal to the dipole orientation are expected to present under
proper conditions a roton-like dispersion minimum, which if softening
induces the so-called roton instability. On the contrary, cigar-shape
traps are expected to present no dispersion minimum, and to undergo
phonon (global) instability if destabilized. In this talk we investigate by
means of numerical simulations of the non-local non-linear Schrédinger
equation and the corresponding Bogoliubov-de Gennes equations the
stability threshold as a function of the trap aspect ratio, mapping the
crossover between phonon and roton instability. We will discuss in
particular how this crossover may be observed in destabilization ex-

Location: e001

periments to reveal rotonization.

In a second part, motivated by recent experiments on droplet forma-
tion in Stuttgart, we introduce large conservative three-body interac-
tions, and study how these forces affect the destabilization dynamics.
‘We will discuss the ground-state physics of the individual droplets, and
the crucial role that is played by the interplay between internal droplet
energy, external center-of mass energy of the droplets, and energy dis-
sipation in the nucleation of droplets observed in experiments.

Q174 Tue 12:00 €001
Lattice Physics with Ultracold Magnetic Erbium — eSimoN
Baier!, ManrFrep J. Marxk!2, DanierL PeTTER!', KrvoTaka
Atkawal, LaurRiaNE CHomaz' 2, Z1 Car?, MikHAIL BaraNov?, PE-
TER ZoLLER?3, and FrRaNcEscA FErLaiNo!2 — lInstitut fiir Exper-
imentalphysik, Universitat Innsbruck, Technikerstrafte 25, 6020 Inns-
bruck, Austria — 2Institut fiir Quantenoptik und Quanteninforma-
tion, Osterreichische Akademie der Wissenschaften, 6020 Innsbruck,
Austria — 3Institut fiir Theoretische Physik, Universitiat Innsbruck,
Technikerstrafte 21A, 6020 Innsbruck, Austria

Strongly magnetic atoms are an ideal systems to study many-body
quantum phenomena with anisotropic and long-range interactions.
Here, we report on the first observation of the manifestation of mag-
netic dipolar interaction in extended Bose-Hubbard (eBH) dynamics
by studying an ultracold gas of Er atoms in a three-dimensional optical
lattice. We drive the superfluid-to-Mott-insulator (SF-to-MI) quan-
tum phase transition and demonstrate that the dipolar interaction
can favor the SF or the MI phase depending on the orientation of
the atomic dipoles. The system is well described by the individual
terms of the eBH Hamiltonian. This includes the onsite interaction,
which, additional to the isotropic contact interaction, can be tuned
with the dipole-dipole interaction by changing the dipole orientation
and the shape of the onsite Wannier functions. We find for the first
time the presence of the nearest-neighbor interaction between two adja-
cent particles. Future work will investigate dipolar effects with erbium
molecules and fermions as well as spin physics in our lattice system.

Q 17.5 Tue 12:15 €001
Strong-wave-turbulence character of non-thermal fixed
points in Bose gases — eIsara CHaNTEsaNA''23 and THowmas
GaseENzER?3 — llnstitut fiir Theoretische Physik, Ruprecht-Karls-
Universitdt Heidelberg, Philosophenweg 16, 69120 Heidelberg, Ger-
many — 2Kirchhoff Institut fiir Physik, INF 227, 69120 Heidelberg,
Germany — 3ExtreMe Matter Institute EMMI, GSI Helmholtzzen-
trum fiir Schwerionenforschung GmbH, Planckstrafe 1, 64291 Darm-
stadt, Germany

Far-from equilibrium dynamics of a dilute Bose gas is studied by means
of the two-particle irreducible effective action formalism. We investi-
gate the properties of non-thermal fixed points predicted previously,
which are related to non-perturbative strong wave turbulence solu-
tions of the many-body dynamic equations. Instead of using a scaling
analysis, we study the Boltzmann equation of the scattering integral
by means of direct integration equation for sound waves. In this way
we obtain a direct prediction of the scaling behaviour of the possible
fixed-point solutions in the context of sound-wave turbulence. Impli-
cation for the real-time dynamics of the non-equilibrium system are
discussed.

Q 17.6 Tue 12:30 €001

Evidence of Non-Thermal Fixed Points in one-dimensional

Bose gases — oSEBASTIAN ErNED24 ROBERT BUCKER?,
WoLrcaNG RosrINGER?, Tnomas Gasenzerb?3, and Jora
ScHMIEDMAYER? — lInstitut fiir Theoretische Physik, Ruprecht-

Karls-Universitdt Heidelberg, Philosophenweg 16, 69120 Heidelberg,
Germany — 2ExtreMe Matter Institute EMMI, GSI Helmholtzzen-
trum fiir Schwerionenforschung GmbH, Planckstrae 1, 64291 Darm-
stadt, Germany — 3Kirchhoff-Institut fiir Physik, INF 227, 69120 Hei-
delberg, Germany — *Vienna Center for Quantum Science and Tech-
nology (VCQ), Atominstitut, TU Wien, Vienna, Austria

This work investigates the rapid cooling quench over the dimensional-
and quasicondensate-crossover. Analyzing experiments performed at
the Atominstitut, we study the relaxation of such a far-from equilib-
rium system. The early stage of condensate formation is dominated

Hannover 2016 — Q

Tuesday

by solitonic excitations, leading to a characteristic momentum distri-
bution in agreement with a model of randomly distributed defects.
The number of solitons increases with the quenchrate giving rise to an
incompressible condensate. The isolated system follows a self-similar
evolution governed by a universal time-independent nonthermal fixed
point distribution. The dynamic universality classes of these nonequi-
librium attractor solutions are relevant for a wide variety of physical
systems ranging from relativistic high-energy physics to cold quantum
gases. At later times of the evolution the system fully equilibrates
leading to deviations from the self-similar evolution. Our results show
a new way of condensation in far from equilibrium 1d Bose gases.

Q 17.7 Tue 12:45 €001

Spin phonon dynamics with classical statistical methods

— eAsIER PINEIRO ORIOLIV'2, ARGHAVAN SAFAVI-NAINIZ, MICHAEL
WaLL?, and JOHANNES SCHACHENMAYER? — lInstitute for Theoreti-
cal Physics, Heidelberg, Germany — 2JILA, NIST and University of
Colorado, Boulder, Colorado, USA

Systems with both spin and phonon degrees of freedom are ubiquitous
in physical fields ranging from condensed matter to biophysics. How-
ever, methods to compute the dynamics of such systems are scarce,
especially in high dimensions. In this work, we combine the Truncated
Wigner Approximation (TWA) for bosons with its recently developed
discrete version (dTWA) for spins to describe the dynamics of coupled
spin-phonon systems. We benchmark the method by comparing to
exact results and discuss applications to trapped-ion and cavity exper-
iments.

YHUBEPITET v e

11BEp3 Y HOB

FIPEPes =it 1 i 4

. i K !(MM‘FEMATHW%‘?@A%‘
TPHMILEL 10n &> =

YHUBEP3SUTET Y HOBOM CAAY P
[IPUPOJHO-MATEMATHYKH GAKYNTET ! :2;@:‘ B e
JlenapTman 3a MaTEMaTHKY ¥ HHPOPMATHKY e 7, 5 B
Hosu Cag, Tpr Jocureja O6panosuha 4 i Q“"J-w___
Bpoj: 01-2271/1

Jatym: 14.10.2013.

4

Ha ocHoBy wuaaua 70. crae 2. 3akoma o0 HAYyYHO-HCTPAKHBAYKO] AEJATHOCTH
(,Cnrnacuuk PC" 6poj 110/05, 50/06 - ucnpaska u 18/2010) u unana 76. cTaB 2. u wiaHa 126
Craryra [IpHpo/iHO-MaTeMaTHYKOT daxynrera y Hosom Cazy, Yuusepsurera y Hosom Caay, Hayuwo
pehe JlemapTMaHa 3a MaTeMaTHKy M MHQOPMATHKY Mpupoaso-MaTemaTHyKor dakynrera y Hosom
Capny, YaupepsuteTa y HosoM Capy, AoHeso je cneaehy :

OANYKY

BJAAJUMMP JIOHYAP, 6upa ce y 3Baibe UCTPAKUBAYA-CAPAZJHUKA 3a YyxXy
HayyHa o61act MHQOpMaMONy CHCTEMM Ha [IpUpo/HO-MaTEMATHYKOM daxyarery y Hosom Cany
Ha TPHM rojuHe noyesuu oj 15. oxToG6pa 2013. roaune.

O6pasnoxeme

Ha npeasior Beha JlenapTrMaHa sa MaTeMaTuky M nudopmarTuxy ox 12.06.2013.
ropuHe aexaH [pupoHO-MaTeMaTHIKOT dakysTeTa je AMEHOBAo Komucujy sa Nucame H3BelTaja sa
u3bop y 3paie jefHor WCTPAMVBAYA-CAPAJJHHKA 3a yy Hayuny o6usact UudopManuonu
CHCTEMH, y cacTaBy:

1. ap Cphau likp6uh, gouent [IMP y Hosom Cajty - HpeACeAHAK

2. np Manujena Bo6epuh Kperuhes, onenT NMM® y Hoowm Capy - 4siaH

3. ap Munau Bugakosuh, Baupesuu npodecop ®TH y Hosom Caay - 41aH

Komucuja je usBemrTaj A0CTaBAIA 27.08.2013. roguHe y KOMe je HaBesia Aa ce Ha
o6jaB/beHH KOHKYPC HPHJaBHO KaHAHJAT Bnapumup JloHgap, Koju HCnymaba yC/lioBe yrephene
KOHKYPCOM Kao W Npejior ja ce KaHAuAaT Baagumup Jlonuap usabepe y 3pame HCTpaXuBada-
capajHMKa 3a YKy Hay4Hy 061acT HndopManHoHU CHCTEMH.

Ussemraj je o6japsen y «Bunreny» 6p. 1448 od 15.09.2013. roguse.

Hayuro ehe JlenapTMaHa 3a MaTeMaTHKY H uHGOPMATHKY Ha CBOjOj CEAHMIH AaHa
10. oxTo6pa 2013. roguHe pasMaTpao je uapemtaj KomMucuje u JIOHEN0 OJVIYKY Aa ce Baaaumup
Jlonyap u3abepe y 3Bam-e UCTPAXKHBa4a-capajiHuKa.

Ha ocHOBY cBera W3HeTor joHera je Ozuiyka Kao y AUCHO3UTHBY.

JlocTaBUTH: NPEJACEJAHUK HAYYHOT BERA
1. kaupuAaTy JIETIAPTMAHA 3A MATEMATUKY U HHPOPMATHKY
2. /lenapT™Many 3a MaTeMaTHKY s,

1 NTHPOPMATHKY N o
(3nepgonanuu pocuje T kQ’“ﬁ/’* C

4. apXUBH. Jip Bpanumup lllemresna, pe/lOBHH nipodecop

YHUBEP3HUTET Y HOBOM CAJLY UNIVERSITY OF NOVI SAD

Jp 3opana Bunluha | Dr. Zorana Bindiéa 1
21000 Hoem Cag 21000 Novi Sad
Peny6nuxa Cpouja Republic of Serbia

Tenedon / Phone: +381 21 485 2000, 485 2020 | daxce / Fax: +381 21 450 418 | E-mail: rektorat@uns, ac.rs | http://www.uns.ac.rs

Bpoj: 04-29/11
Harym: 02, jyn 2016. roguse HPHMUBLTTO -9 -06- 2016
OPLATBTLIEL 5P O

Caob 4/‘%/ flo

Ha ocHoBy uiana 55 craB 6 3akoHa 0 BHCOKOM obpasoBamy (“Ciyx6enu rmacuux PC” 6poj 76/05,
100/07 - ayrentuuno Tymaueme, 97/08, 44/10, 93/12, 89/13, 99/14, 45/15-ayTEeHTHYHO TyMayewme u
68/15) u unama 73 u 78 Cratyra Yuusepsurera y HoBom Cany (CaBer Yuusepsutera, 28.12.2010.
roaune, 23.03.2012. rogune, 11.10.2012, ropune, 26.02.2013. rogune, 15.11.2013. rogune, 30.05.2014.
roaune, 04.06.2015. roaune u 29.01.2016. ronuue), Cenar Yuusepsurera y Hosom Cany Ha 11. cennunu
oapxanoj 02. jyna 2016. roaune, jeIHOrIACHO JOHOCH

LHIPHPOFHO-MATEMATHUK M OAKYITET

ONIYKY

Cenatr YHuBep3uTeTa Jaje cariiacHOCT Ha M3pemraj o momoGHOCTH TeMe, KaHAMZATa M MEHTOpa 3a
H3pajly NOKTOpCKe aucepranuje Ha [IpuponHo-MaTeMaThukoM dakyntery YHuBepsutera y Hosom Cany
MO/ Ha3UBOM: ,, XUOPH/IHU Napase/Hu aIrOPUTMH 33 PEllaBame HenuHeapHe llpenunrepose jennaunne”
»Hybrid parallel algorithms for solving nonlinear Schroedinger equation®, a xangunaty Baammmupy
JIonvapy onoGpaBa u3pazy JOKTOPCKe JHCEpTALH]e.

Obpasnoxeme

Hacraero-nayuno sehe ITpupoano-maremarnukor hakyirera Yuusepsurera y Hosom Cany na cennumnu
onpxaHoj 12. maja 2016. roguHe yCBOjUJIO je M3BEIITA] O MOAOGHOCTH TeMe, KAHAMAATA M MEHTOpa 3a
H3pany AOKTOpcKe auceprauuje Branumupa Jlongapa nox Ha3suBoM: ,, XHOPHIHM MapaselHu aJrOPUTMH
3a pemasame Henuneaphe Illpenunrepose jennauune” , Hybrid parallel algorithms for solving nonlinear
Schroedinger equation*.

Ctpyuno Behe 3a npuposHO-MaTeMaTHyke Hayke HA CeXHULM ozapxkanoj 26. maja 2016. roguse pano je
TO3UTHBHO MUIIBEELE O HCIYH-CHOCTH YC/I0BA 32 IaBakhe CarlacHOCTH Ha HaBE[eHU U3BENITA],

Ha ocnoBy onnyke HacraHo-naywnor seha IIpHpoiHO-MaTeMaTHUKOT daxynrera Yuusepsurera y
Hosom Cany u nmosuTHBHOr MHILBEH:A Crpyunor Beha 3a mpupogHO-MaTeMaTHuke Hayke, CeHaT
Yuusepsurera y Hopom Cany noseo je oniyky kao y JUCIIO3UTHRY.

*e, % iy _

el g A " S
i W pyieht ¥ y
X /:' eb."f.l'rej)l'ﬂd Bmuq‘c‘l\"\q . &

s s s

Republika Srbija - AP Vojvodina
Univerzitet u Novom Sadu
Prirodno-matematic¢ki fakultet
Novi Sad

Uverenje br.: 267/2016
Broj dosijea: 72d/11

Na osnovu ¢1.161 Zakona o opsStem upravnom postupku (SluzZzbeni list SRJ br.
33/97) i po molbi Lonc¢ar (Milenko) Vladimir, rodenog 28.10.1985. u mestu Novi
Sad, Republika Srbija, redovan student (samofinansiranje) 3. godine (godinu
upisao 3. put) 3kolske 2015/2016 na Departmanu za matematiku i informatiku,
obrazovni profil Doktorske akademske studije informatike, izdaje se

UV ERENIE

kojim se potvrduje da je imenovani poloZio ispite iz sledec¢ih predmeta:

Ocena Bodovi

1. Seminar 1.... it 10 (deset) 20.00 (dvadeset 00/100)
2. Modeliranje sistema................ 10 (deset) 5.00 {(pet 00/100)
3. Programske paradigme............... 10 (deset) 5.00 (pet 00/100)
4. Metodi istrazZivanja................ 9 (devet) 5.00 (pet 00/100)
5. Razvo]j zasnovan na komponentama.... 10 (deset) 5.00 (pet 00/100)
6. Bezbednost u rac¢unarskim mreZama... 10 (deset) 5.00 (pet 00/100)
7. BAlgebarski 1 koalgebarski modeli

rac¢unskih procesa....... ..., 10 (deset) 5.00 (pet 00/100)
B, SemMinar 2. ...t ittt 10 (deset) 20.00 (dvadeset 00/100)
9. Baze podataka*.......... ... 10 (deset) 5.00 (pet 00/100)
10, Razvo] sistema.........ouvvinunnn.. 10 (deset) 5.00 (pet 00/100)
11, Seminar B. . it ittt it et e e 10 (deset) 20.00 (dvadeset 00/100)
12, Seminar 4. ..t i i it e e 10 (deset) 20.00 (dvadeset 00/100)

PoloZeno 12 ispita sa pros. ocenom 9.92, 1 brojem bodova 120.00

Novi Sad, 05.05.2016.

UNIVERZITET U NOVOM SADU
PRIRODNO-MATEMATICKI FAKULTET
Broj: 0603-3/930

Datum: 20.10.2011. godine
Novi Sad

Na osnovu ¢lana 161. Zakona o opStem upravnom postupku ("Sl.
list SRJ" br. 33/97, 1 31/2001) 1 ("Sl. glasnik RS" br. 30/2010), u skladu sa
¢lanom 99. Zakona o visokom obrazovanju ("Sl. glasnik RS" br. 76/05, 100/07
autentiéno tumacenije 97/08 i 44/2010), uvida u matic¢ne knjige studenata master
akademskih studija Prirodno-matematickog fakulteta Univerziteta u Novom Sadu i
zahteva Lonc¢ar Milenko Vladimira, iz Novog Sada izdaje se

U v E R E NJ E
O STECENOM VISOKOM OBRAZOVANJU DRUGOG STEPENA

MASTER AKADEMSKIH STUDIJA

Lonc¢ar (Milenko) Vladimir
roden 28.10.1985. godine u Novom Sadu, opstina Novi Sad, drZava Republika
Srbija, zavr$io je visoko obrazovanje drugog stepena-master akademskih studija,
na studijskom programu Master akademske studije Informacione tehnologije
Departmana za matematiku i informatiku Prirodno-matematickog fakulteta
Univerziteta u Novom Sadu, dana 19.10.2011. godine, sa prose&nom ocenom 9.50
(devet i 50/100), u toku studija i postignutim ukupnim brojem ESPB bodova
122.50 (slovima: sto dvadeset dva i 50/100) 1 stekao akademski naziv
master informaticar-informacione tehnologije

Uverenje se izdaje radi lic¢ne upotrebe i zamenjuje diplomu do
izdavanja iste.

Na osnovu ¢lana 19. stav 1. tacka 7. Zakona o republickim
administrativnim taksama ("S1l. glasnik RS"™ broj 43/2003, 51/2003 - ispr.,
61/2005, 101/2005 - dr. zakon, 5/2009 i 54/2009) ovo uverenje je oslobodeno
takse. ‘

Sef Odseka ke i opste poslove

tNtkog fakulteta
7 (}fzj,/\j‘

Republika Srbija - AP Vojvodina
Univerzitet u Novom Sadu
Prirodno-matematic¢ki fakultet
Novi Sad

Uverenje br.: 1274/2014
Broj dosijea: 127m/09

Na osnovu ¢1.161 Zakona o opStem upravnom postupku (SluZbeni list SRJ br.
33/97) i po molbi Loné¢ar (Milenko) Vladimir, rodenog 28.10.1985. u mestu Novi
Sad, Republika Srbija, diplomiranog studenta-master na Departmanu za matematiku
i informatiku, obrazovni profil Master akademske studije Informacione
tehnologije (inf.sist), izdaje se

UV ERENJIE

kojim se potvrduje da je imenovani polozio ispite iz sledecih predmeta:

Ocena Bodovi

1. Seminarski rad C.... ... 10 (deset) 6.00 (Sest 00/100) -priznat
2. Informaticki projekat.............. 10 (deset) 10.00 (deset 00/100) -priznat
3. Teorija grafova..........., 6 (Sest) 6.00 (Sest 00/100) -priznat
4. Matematic¢ka logika u radunarstvu... 8 (osam) 6.00 (8est 00/100) -priznat
5. Upravljanje softverskim projektima. 10 (deset) 8.00 (osam 00/100) -priznat
6. Seminarski rad D....vvvniin., 10 (deset) 6.00 (Sest 00/100) -priznat
7. Obrazovni softver.................. 10 (deset) 7.00 (sedam 00/100) -priznat
8. Integracija sistema................ 10 (deset) 7.50 (sedam 50/100)
9. Proces razvoja informacionih

R o =Y (= 10 (deset) 7.50 (sedam 50/100) -priznat
10. Statistika.....iii i i, 10 (deset) 6.00 (3est 00/100) -priznat
11. Razvo]j zasnovan na komponentama.... 10 (deset) 7.50 (sedam 50/100)
12. Privatnost, etika 1 drusStvena

O0dgovornoSt . v v vttt e 9 (devet) 7.50 (sedam 50/100)
13. Softversko inZenjerstvo za sisteme

baza podataka........... ... 10 (deset) 7.50 (sedam 50/100)

Minimalan broj bodova za odbranu zavr$nog (master) rada je 90.00.
Uverenje se izdaje na lic¢ni zahtev imenovanog.
Napomena: Student je zavrsSio master akademske studije dana 19.10.2011.

godine sa prosecénom ocenom 9.50 (devet i 50/100), brojem bodova zavr$nog rada
30.00 (trideset i1 00/100) i ocenom zavrdnog rada 10 (deset).

Novi Sad, 27.11.2014.

UNIVERZITET U NOVOM SADU
PRIRODNO-MATEMATICKI FAKULTET
Broj:0603-3/590
Datum:27.11.2009. godine

Novi Sad

Na osnovu ¢l1.161 Zakona o opS$tem upravnom postupku (Sluzbeni
list SRJ br. 33/97) 1 na osnovu ¢lana 126 Zakona o visokom obrazovanju i uvida
u mati¢nu knjigu studenata Prirodno-matematickog fakulteta Univerziteta u Novom
Sadu i1 zahteva Lonc¢ar Milenko Vladimira izdaje se

U v E R E NJ E
O STECENOM VISOKOM OBRAZOVANJU

Lon¢ar (Milenko) Vladimir roden 28.10.1985. godine u Novom Sadu,
opStina Novi Sad, Republika Srbija zavr$io je visoko obrazovanje u trajanju od
Cetiri godine, po Planu 1 programu obrazovnog rada Departmana za matematiku i
informatiku smer Diplomirani informatic¢ar-poslovna informatika
Prirodno-matematic¢kog fakulteta Univerziteta u Novom Sadu, dana 14.10.2009.
godine, sa prosec¢nom ocenom 8.79 (osam 79/100) 1 ocenom zavr$nog ispita 10
(deset) 1 stekao struc¢ni naziv Diplomirani informaticar-poslovna informatika.

Uverenje se izdaje radi lic¢ne upotrebe i zamenjuje diplomu do
izdavanja iste.

Shodno ¢lanu 19 stav 1 tac¢ka 7. Zakona o administrativnim
taksama (S1. glasnik Republike Srbije broj 43/03, 51/03 1 61/05) ovo uverenje
je oslobodeno takse.

Novi Sad, 27.11.2014.

Republika Srbija - AP Vojvodina
Univerzitet u Novom Sadu
Prirodno-matematidki fakultet
Novi Sad

Uverenje br.: 124/2014
Broj dosijea: 407/04

Na osnovu ¢1.161 Zakona o ops$tem upravnom postupku (SluZbeni list SRJ br.
33/97) i po molbi LonCar (Milenko) Vladimir, rodenog 28.10.1985. u mestu Novi
Sad, , diplomiranog studenta na Departmanu za matematiku i informatiku,
obrazovni profil Diplomirani informaticar-poslovna informatika, izdaje se

UV ERENJIE

kojim se potvrduje da je imenovani poloZio ispite iz sledeéih predmeta:

Ocena Bodovi
1. godina
1. Strukture podataka i1 algoritmi I... 8 (osam) 6.00 (Sest 00/100)
2. Izborni predmet F-Finansijska
matematika T...vuiviinnnennneenn. 6 (Sest) 5.00 (pet 00/100)
3. Elektronsko poslovanje............. 9 (devet) 3.00 (tri 00/100)
4. Algebra za informatidare........... 7 (sedam) 6.00 (Sest 00/100)
5. Eticki aspekti informatike......... 8 (osam) 3.00 (tri 00/100)
6. Teorijski osnovi informatike I..... 8 (osam) 7.00 (sedam 00/100)
7. Analiza za informaticdare........... 8 (osam) 6.00 (Sest 00/100)
8. Uvod u programiranje............... 6 (3est) 8.00 (osam 00/100)
9. Softverski praktikum I -
Kancelarijsko poslovanje........... 9 (devet) 4.00 (Cetiri 00/100)
10. Kombinatorika i teorija grafova.... 6 (3est) 15.00 (petnaest 00/100)
11. Softverski praktikum - Vizuelno
PrOgramiranye. v e n e nnnenennn 10 (deset) 8.00 (osam 00/100)
12, S0Ciologija. e s e et 6 (Sest) 2.00 (dva 00/100)
2. godina
13. Engleski jezik-produzni kurs....... 10 (deset) 4.00 (&etiri 00/100)
14. Objektno-orijentisano programiranje 8 (osam) 7.00 (sedam 00/100)
15. Baze podataka I........... .0 cuivn.. 8 (osam) 7.00 (sedam 00/100)
16. Organizacija radunara.............. 8 (osam) 5.00 (pet 00/100)
17. Izborni seminar T........c.oevuiuunnn 10 (deset) 5.00 (pet 00/100)
18. Izborni predmet iz grupe I-1-Baze
podataka II......uviivinnnnnnnnns 8 (osam) 5.00 (pet 00/100)
19. Teorijski osnovi informatike III... 9 (devet) 5.00 (pet 00/100)
20. Teorijski osnovi informatike II.... 8 (osam) 5.00 (pet 00/100)
21. Numericka analiza.................. 10 (deset) 5.00 (pet 00/100)
22. RaCunarske mMreZe.vuuoeuennnn. 10 (deset) 5.00 (pet 00/100)
3. godina
23. Informacioni sistemi I............. 10 (deset) 7.00 (sedam 00/100)
24, Izborni seminar ITl........uuvuuuunn. 10 (deset) 6.00 (Sest 00/100)
25. Statistika.......ii i i, 10 (deset) 6.00 (Sest 00/100)
26. Izborni predmet grupe I-3-Obrazovni
SOftvVer. . v e e 10 (deset) 5.00 (pet 00/100)
27. Izborni predmet grupe
I-3-Informacioni sistemi II........ 10 (deset) 5.00 (pet 00/100)
28. Izborni predmet grupe
I-3-Operativni sistemi II.......... 10 (deset) 6.00 (8est 00/100)

29. Izborni predmet grupe
I-3-Upravljanje softverskim projekt 10 (deset) 5.00 (pet 00/100)
30. Softverski praktikum III -

Multimedija. ..oe i enn 10 (deset) 4.00 (&etiri 00/100)
31. Izborni predmet grupe I-2-VeStacka

inteligencija. ..o i iiii i, 10 (deset) 7.00 (sedam 00/100)
32. Izborni predmet grupe

I-2-Operativni sistemi I........... 8 (osam) 7.00 (sedam 00/100)
33. Izborni predmet M-Analiza II....... 8 (osam) 5.00 (pet 00/100)

4. godina

O B o - = 10 (deset) 15.00 (petnaest 00
35. Softversko inZenjerstvo............ 8 (osam) 9.00 (devet OO/ldb
36. Izborni seminar ITI........ouuuuunv.. 10 (deset) 8.00 (osam OO/lOO

37. Napredni softverski praktikum \§ Sercy
II-Web dizajn...............conu... 10 (deset) 8.00 (osam 00/100) _/,

godina
godina
godina
godina

Ukupno poloZeno 37 ispita sa pros.

PoloZeno
PoloZeno
PoloZeno
PoloZeno

ispita
ispita
ispita
ispita

sa
sa
sa
sa

pros ocenomnm
pros ocenomnm
pros ocenom
pros ocenom
ocenom

8.76,

-

brojem bodova
brojem bodova
brojem bodova
brojem bodova

i ukupnim brojem bodova

Minimalan broj bodova za diplomiranije je 224.
Uverenje se izdaje na 1iéni zahtev imenovanog.
Napomena:

(osam 79/100),
i ocenom diplomskog rada 10

Novi Sad,

27.11.2014.

(deset) .

Student je diplomirao dana 14.10.2009.
brojem bodova diplomskog rada 20.00

godine sa prosecnom ocenom 8.79
(dvadeset 00/100)

