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Abstract We calculate the classical limit effective action of the EPRL/FK spinfoam
model of quantum gravity coupled to matter fields. By employing the standard QFT
background field method adapted to the spinfoam setting, we find that the model has
many different classical effective actions. Most notably, these include the ordinary
Einstein-Hilbert action coupled to matter, but also an action which describes anti-
gravity. All those multiple classical limits appear as a consequence of the fact that the
EPRL/FK vertex amplitude has cosine-like large spin asymptotics. We discuss some
possible ways to eliminate the unwanted classical limits.
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1 Introduction

One of the approaches to the problem of quantization of the gravitational field is
called Loop Quantum Gravity. Historically it started as a canonical quantization of
general relativity expressed in the language of the Ashtekar variables [1], and has
since developed into a mainstream research direction [2]. Loosely speaking, it is split
into the canonical quantization approach, today called canonical LQG, and the path
integral approach, called covariant LQG. There are many concrete covariant formu-
lations of LQG, and they are collectively called spinfoam models.
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The main aim of every spinfoam model is to give a rigorous definition of the path
integral for the gravitational field,

Z =
∫

Dgµν exp
(
iSEH [gµν ]

)
, (1)

where gµν is the spacetime metric and SEH [gµν ] is the Einstein-Hilbert action for
general relativity. This is done by discretization of the spacetime manifold in some
particular way. One starts by considering a 2-complex σ , consisting of vertices v,
edges e connecting the vertices, and faces f bounded by vertices and edges. Each of
these objects are suitably “colored” by certain variables c which represent the grav-
itational degrees of freedom, and each are assigned an “amplitude” (some function
of the colors), which establishes its contribution to the path integral. The colored 2-
complex σ is called a spin foam, and the corresponding path integral is then defined
in the following way:

Zσ = ∑
c

∏
f∈σ

A f (c)∏
e∈σ

Ae(c)∏
v∈σ

Av(c).

Here A f (c), Ae(c) and Av(c) are the face amplitude, edge amplitude and the vertex
amplitude, respectively. The colors are summed over if they take values in a discrete
set, or integrated over if they take values in a continuum set. The 2-complex may be
dual to some triangulation T (M ) of some 4-dimensional manifold M , and may have
a boundary.

The colors are most often chosen such that on the boundary they correspond to
the gravitational degrees of freedom of the canonical LQG formalism. The amplitudes
should be chosen such that they have correct gluing properties along the boundary,
that the whole state sum Z be finite, and that in the classical limit the theory reduces
to the ordinary general relativity.

There have been many spin foam models proposed in the literature, with varying
degrees of success in satisfying the above criteria. The most successful model so far is
called the EPRL/FK model [3,4], and it has been extensively studied in the literature.
Its main ingredient is the particular choice of the vertex amplitude Av, denoted Wv,
which in the classical limit has the asymptotic form [5]

Wv ∼ eiSv + e−iSv ∼ cosSv, (2)

where Sv is the area-Regge action for one 5-simplex dual to the vertex v. If the vertex
amplitude had asymptotics of the form eiSv , one could write the classical limit of the
state sum in the form

Z ∼∑∏
v

eiSv ∼∑ei∑v Sv ∼
∫

eiSR ,

where SR could be considered as the Regge action for the triangulation T (M ) of the
manifold M dual to the 2-complex σ . In a suitable limit this could give a rigorous
definition for the gravitational path integral (1), thus making the connection with
the classical limit of the theory. Unfortunately, the vertex amplitude does not have
asymptotics of the form eiSv , but rather of the form cosSv, which makes the above
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connection to (1) much more complicated. This is usually called the cosine problem
in the literature.

In this paper we will try to provide a detailed analysis of the consequences of
the asymptotics (2) for the classical limit of the EPRL/FK spin foam model. We
will employ the background field method [6–9] for calculating the effective action
of the theory in the classical limit, and analyze in detail the consequences of the
conjugate term in (2). Our main result is that the EPRL/FK model, in its original form,
indeed does have a correct classical limit, but also features additional classical limits,
which do not correspond to general relativity. In particular, one of the classical limits
predicts antigravity. We will also discuss some of the possible ways the EPRL/FK
model could be modified in order to eliminate these extra classical limits.

It is important to note that various aspects of the effective action, in particular
antigravity, become obvious and appreciable only after coupling the spin foam model
to matter fields. Namely, the attractive or repulsive character of the gravitational field
is dictated by the relative sign between the gravitational action and matter action.
Thus, if matter is absent from the effective action, one cannot distinguish between
gravity and antigravity. This is the main reason why the appearance of antigravity
might seem surprising. Namely, the coupling of matter fields to spin foam models
has been already considered in the literature (see for example [10–13] and references
therein), but so far never in the context of the classical limit. As we shall see, anti-
gravity is directly related to the minus sign in the second exponent in (2). In order to
keep the discussion as general as possible, we shall not specify any particular proper-
ties of the matter fields, except for some generic properties of their classical limit. In
particular, we will not specify the form of the matter action, and we will not fix any
particular number or type of the matter fields present in the theory.

The layout of the paper is as follows. In section 2 we will give a short introduction
to the EPRL/FK spin foam model, and discuss the results for the asymptotics of the
vertex amplitude. In section 3 we will introduce the background field method for
evaluating the effective action in quantum field theory. Some details of the method
will be discussed, in particular the possibility of having multiple classical limits in the
same theory. Then we will adapt the method to the spin foam setting, which gives us
the possibility to evaluate the effective action for the EPRL/FK model in the classical
limit. Section 4 is devoted to the computation of the effective action in the classical
limit for the EPRL/FK spin foam model. It is split into five subsections, each of
which deals with one of the aspects of the calculation — from the definition of the
classical limit in the spin foam setting, through all the details of the computation
of the effective action, to taking the continuum limit of the resulting expression in
order to obtain the classical general relativity coupled to matter fields. The main
interpretation of the obtained results is then given in section 5, where the various
classical limits are discussed in detail. The discussion focuses on the appearance
of antigravity, and its connection to the conjugate exponent in the asymptotics of
the vertex amplitude. We also devote attention to some of the possible scenarios to
resolve the cosine problem, discussing their benefits and drawbacks. In section 6 we
give our concluding remarks. The Appendix is devoted to fixing the notation, and
some technical results are spelled out in detail.
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Throughout the paper we work in the natural system of units, c = h̄ = 1 and
G = l2

p, with the (−,+,+,+) signature for the Minkowski metric. For the remaining
conventions and notation, see Appendix A.

2 EPRL/FK spin foam model

We will give a brief overview of the EPRL/FK spin foam model [3,4], in particular
its Lorentzian formulation. For the motivation and details see [14] and references
therein.

Given a fixed 2-complex σ with no boundary, denote its faces, edges and vertices
as f , e, v, respectively. Assume that all vertices are 5-valent. Each edge e is connected
to 4 faces.

The assignment of color variables on this structure goes as follows. First, each
face f is colored by an irreducible representation j f ∈N0/2 of SU(2). Second, in the
Livine-Speziale coherent state basis [15], one assigns a normalized vector ne f ∈ S2

to each pair e f describing one of the 4 faces connected to a given edge e. In the
EPRL/FK model there are no more labels, so that the gravitational degrees of freedom
are described by the values of j f and ne f for each face and edge on the 2-complex σ .
A 2-complex colored in this way is called a spin foam.

Next, we introduce the choice of the face, edge and vertex amplitudes. The choice
of face-amplitude is mainly determined by the gluing properties of spin foams with
boundaries [16] and is given by

A f ( j f ) = dim j f ≡ 2 j f +1.

Since the number of edges E is proportional to the number of vertices V , 2E = 5V ,
one can always redefine the vertex amplitude Av( j f ,ne f ) such that all edge ampli-
tudes are absorbed into the vertex amplitude. Consequently we can make a trivial
choice for the edge amplitudes,

Ae = 1.

Finally, the vertex amplitude is the most complicated part of the EPRL/FK model. In
the ( j,n) basis it can be expressed as

AEPRL/FK
v ≡Wv( j,n) = N

∫
SL(2,C)5

5

∏
a=1

dga δ (g5)∫
(CP1)10

10

∏
k=1

dzk Ωk(g,z)exp

(
10

∑
f ′=1

j f ′ logw f ′(n,g,z)

)
,

where w f and Ωk are some functions and N is some normalization constant. See for
example [5] for details.

Once the labels and amplitudes have been specified, we can write the state sum
for the EPRL/FK spinfoam model as

Zσ = ∑
j

∫
∏
e f

dne f ∏
f

(
2 j f +1

)
∏

v
Wv( j,n). (3)
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Here the sum over j means the sum over j f ∈ N0/2 for all faces f ∈ σ , while the
integral is over a sphere S2 for every e f pair belonging to σ . Similarly, products over
v and e f range over all vertices and edge-face pairs in σ .

The EPRL/FK spinfoam model has numerous interesting properties. However,
for our analysis two particular results will be important. The first is the physical
interpretation of the j f variables. Namely, given a face f and its label j f , the area of
a triangle dual to the face f is

A f = 8πγl2
p

√
j f ( j f +1). (4)

Here A f is the area, lp is the Planck length, and γ is the Barbero-Immirzi parameter.
The second result is the asymptotic formula for the vertex amplitude Wv in the limit
where all spins j are uniformly scaled to infinity, j f → ∞ (see [5]):

Wv( j,n)≈W asymp
v ( j)≡N+( j)eiγSv( j)+N−( j)e−iγSv( j)+o( j−12), ( j→∞). (5)

See Appendix A for the definitions of “small-o” and “big-O” symbols. Here N+( j)
and N−( j) are some functions that scale as O( j−12), while Sv( j) is a function that
scales as O( j) and is given as

Sv( j) = ∑
f∈v

j fΘv f ( j).

Taking into account (4) in the limit j → ∞, this function has the structure similar
to the Regge action for a single 4-simplex dual to the vertex v. Namely, the O(1)
function Θv f ( j) has the geometric interpretation of the dihedral angle corresponding
to the triangle dual to the face f within the 4-simplex dual to the vertex v. Moreover,
the variable j f is proportional to the area of a triangle dual to the face f .

It is important to note that the asymptotic formula (5) is valid if the variables
( j,n) satisfy the so-called Regge geometry conditions. This means that the variables
take certain values such that they describe a geometrical 4-simplex embedded in a 4-
dimensional Minkowski geometry. There are also other possibilities — for example
the ( j,n) can be such that they describe a 4-simplex embedded in a 4-dimensional
Euclidean geometry, or some other structure. In those cases the asymptotic formula
is different, see [5] for details.

Finally, for what follows we need to generalize the EPRL/FK model in order to
introduce matter fields. To this end, we denote all matter fields present in the theory
as φr, where r counts all degrees of freedom of matter fields in the 2-complex σ . The
matter is coupled to gravity through the redefinition of the vertex amplitude

Av( j f ,ne f ,φr) =Wv( j f ,ne f )eiSmatter
v ( j f ,ne f ,φr), (6)

where Smatter
v ( j,n,φ) contains the details of the matter fields coupled to gravity, for a

given 4-simplex dual to the vertex v. The state sum for the theory with matter is

Zσ = ∑
j

∫
∏
e f

dne f

∫
∏

r
dφr ∏

f

[
2 j f +1

]
∏

v
Wv( j,n)eiSmatter

v ( j,n,φ). (7)
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The domain of integration over the fields φ ranges over the possible values that the
fields can take.

The choice of the fields and their dynamics encoded in Smatter
v can vary wildly

depending on the specific model. In particular, fermions are notoriously difficult to
couple to gravity, even in the case of classical general relativity (for one possible
way to couple Dirac fermions to the EPRL/FK model see [10,11]). However, for the
purposes of this paper we will not need to specify any details about the fields or their
dynamics, except some general properties which will be discussed later.

Also, it is important to note that the choice (6) for the vertex amplitude represents
a natural way to couple matter fields to gravity, but it is by no means the only possible
way. More complicated ways exist, and we will discuss one particular class of them
in section 5. The reason why we consider (6) as the most natural choice is twofold.
First, if one “freezes-out” the gravitational degrees of freedom in the state sum, in
the continuum limit the state sum is supposed to take the form of the ordinary path
integral of quantum field theory for the matter fields on that “frozen” background
geometry. For example, one possible goal would be that this path integral reproduce
the Standard Model of particle physics. The choice (6) for the matter coupling is
the simplest one that can implement this requirement. Second, as we know from the
theory of general relativity, the prescription for the coupling between gravity and
matter is dictated by the equivalence principle. Therefore, we want the equivalence
principle to hold at least in the classical limit of any theory of quantum gravity. As we
shall demonstrate later, the coupling (6) is compatible with the equivalence principle.
We will discuss this point in more detail in subsection 5.3, where we will compare
and contrast the coupling (6) with another, more complicated choice of the coupling,
and examine the compatibility of each of the two couplings with the equivalence
principle.

3 Effective action

In quantum field theory, the background field method (see [6,7] for a review) provides
one with an efficient way to calculate the effective action Γ [φ ] as a solution of the
following functional integrodifferential equation:

eiΓ [φ ] =
∫

Dφ
′eiS[φ+φ ′]−i

∫ δΓ [φ ]
δφ

φ ′
. (8)

Here S[φ ] is the action of the classical theory, and φ is the arbitrary field configuration
(the background) for which the effective action Γ is to be calculated. In Appendix C
one can find an explicit derivation of this equation in the context of quantum field
theory. It is very important to note that (8) represents an off-shell equation, in the
sense that the background field φ is not assumed to satisfy any equations of motion,
but is instead completely arbitrary (see Appendix C for details).

It is usually not possible to find a general solution for the equation (8) explic-
itly. Instead, one must resort to various approximations. One of the most important
approximations is the semiclassical limit.
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The traditional way to establish a semiclassical limit is to take the limit where the
quantum deformation parameter h̄ goes to zero. Writing h̄ explicitly in (8) amounts
to substitutions

Γ → 

h̄
Γ , S→ 

h̄
S.

However, in the natural system of units we have c = h̄ = 1 and the reduced Planck
constant is normalized to one. Given this normalization (which we use throughout the
paper), the equivalent limit is to take S[φ ]→ ∞, which is usually achieved by taking
φ→∞. Namely, the semiclassical limit is by definition a physical configuration of the
fields such that the action is S[φ ]� h̄ ≡ 1. In most cases the action is a polynomial
functional of the fields, so in the semiclassical limit we can assume that both the
background fields φ and the action S[φ ] tend to infinity.

Therefore, in the case S[φ ]→ ∞, the equation (8) can be solved by an iterative
asymptotic procedure. In particular, one writes the effective action as a sum of terms

Γ [φ ] = Γ[φ ]+Γ[φ ]+Γ[φ ]+ . . . , (9)

where each consecutive term is assumed to be much smaller than the previous one in
the asymptotic expansion,

Γ = O(S), Γk+ = o(Γk), ∀k ∈ N,

where S→ ∞. Substituting the expansion of Γ into (8) and calculating iteratively
the Γ and Γ terms using the stationary point method, one obtains the following
expression for the effective action,

Γ [φ ] = S[φ ]+
i


tr log
δ S[φ ]
δφδφ

+o(logS′′),

which has the asymptotic structure Γ = O(S) + O(logS) + o(logS). The effective
action is complex due to the Lorentzian nature of the path integral. After using the
Wick rotation prescription (see [8] for details),

Γcomplex→ Γreal = Re(Γcomplex)+ Im(Γcomplex), (10)

one finally obtains the familiar expression for the effective action in the semiclassical
limit,

Γ [φ ] = S[φ ]+



tr logS′′[φ ].

For a review of the details of the calculation, see Appendix B.
It is important to note that the equation (8) can have more than one solution in

the classical limit. Depending on the structure of the action S[φ ], it can become much
larger than h̄ in different ways for different configurations of the fields φ . This will
lead to multiple classical limits. For example, one can take two different configura-
tions of fields, φ = φ1→ ∞ and φ = φ2→ ∞, such that the action S[φ ] has different
behavior in each limit, S[φ1] = S1[φ1]→∞ and S[φ2] = S2[φ2]→∞. In such cases one
arrives at two different effective actions in the classical limit,

Γ[φ] = S[φ]+o(S), Γ[φ] = S[φ]+o(S), φ,φ→ ∞.
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The two different effective actions describe the two different classical behaviors of
the theory in two different physical regimes described by φ1 and φ2 respectively. In
this sense, a theory can have more than one classical limit. This is of course not a
problem, as long as φ1 and φ2 describe incompatible, mutually exclusive physical
situations.

There can also be situations where (8) can give multiple solutions for the same
configuration φ of the fields. For example, one can consider the action

S[φ ] =−i log
[
eiS1[φ ]+ eiS2[φ ]

]
.

Substituting this into (8) we obtain

eiΓ [φ ] =
∫

Dφ
′
[

eiS1[φ+φ ′]−i
∫ δΓ [φ ]

δφ
φ ′
+ eiS2[φ+φ ′]−i

∫ δΓ [φ ]
δφ

φ ′
]
.

As we shall see in the next section, this equation has two solutions,

Γ[φ ] = S[φ ]+o(S), Γ[φ ] = S[φ ]+o(S),

for the same physical configuration of the fields φ , in the classical limit. There are
situations where the two effective actions, although different, give equivalent classical
equations of motion. For example, if S1[φ ] = aS2[φ ]+b, where a and b are constants.
In this case, the two solutions are of course equivalent and represent the same classical
limit.

However, it can also turn out that the two solutions produce inequivalent equa-
tions of motion. This last case is a problem for the theory — if there is no unique clas-
sical limit for a given field configuration φ , the theory does not have a well defined
classical limit at all. Of course, this does not mean that the theory is inconsistent or
otherwise ill-defined. From a mathematical point of view there is nothing wrong with
the theory — it only means that the classical limit, as defined by the limit S[φ ]� h̄,
does not exist. This is in complete analogy, for example, with a function sin(x) be-
ing well defined everywhere on a real line, while not having a well-defined value for
lim
x→∞

sin(x). On the other hand, from a physical point of view, this theory is problem-
atic, since we expect that it has a unique classical limit. Namely, the existence and
the uniqueness of the classical limit is a physical requirement, that ultimately comes
from experiment.

In what follows, we shall be confronted with basically all these scenarios — in
the same theory we will find different solutions for Γ for different configurations of
φ (all being classical!), we will find different but equivalent solutions for the same
choice of φ , and finally different and inequivalent solutions for the same φ . As we
have elaborated, the first two scenarios do not pose a problem for the theory, while
the third one does, albeit only from the standpoint of physics.

Finally, we turn to an implementation of the equation (8) to the EPRL/FK spin
foam model with matter fields. To this end, we define the effective action Γ as a
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solution of the following integrodifferential equation (see also [8,9]):

eiΓ ( j,n,φ) = ∑
j′

∫
∏
e f

dn′e f

∫
∏

r
dφ
′
r e
−i
(

∑ f
∂Γ

∂ j f
j′f +∑e f

∂Γ

∂ne f
n′e f +∑r

∂Γ

∂φr
φ ′r

)

∏
f

[
2
(

j f + j′f
)
+1
]
∏

v
Wv( j+ j′,

n+n′

‖n+n′‖
)e

iSmatter
v ( j+ j′, n+n′

‖n+n′‖ ,φ+φ ′)
.

(11)
Equation (11) is a straightforward discretization of (8) for the spin foam setting, and
it was first introduced in [9] for the pure gravity case. Note that the perturbation of
the background fields ne f had to be normalized, since both the background n and the
perturbed background n+n′ must live on the unit sphere S2. As in the case of the
equation (8) itself, here we also emphasize that the background fields j, n and φ are
off-shell — they are not assumed to satisfy any equations of motion, but are instead
completely arbitrary.

4 Classical limit

We will now employ the equation (11) to compute the effective action in the classical
limit. Note that the result can depend on the particular configuration of the back-
ground fields, which means that there may be several different classical limits, corre-
sponding to different choices of the background fields. As we have discussed in the
previous section, this should not be surprising in any way.

We will study the classical limit in five steps. In the first step we will define
what is meant by the classical limit in the spinfoam setting, and discuss the regime
in which the fields behave classically. The second step will be the application of the
asymptotic formula (5) and the discussion of the necessary assumptions. In the third
step we will rearrange the equation (11) into a form suitable for the integration of j′

and φ ′ variables, and then perform the integration as a fourth step. Having obtained
an effective action, the fifth step will be to analyze it and recast it into a continuum-
variable language, thus obtaining the final form of the classical limit of the theory. It
is convenient to split these five steps into five subsections.

4.1 Setting up the classical limit

We begin by defining what field configurations we shall consider to be classical.
First of all, we will restrict to the spin foam 2-complex σ which is dual to some
triangulation T (M ) of some 4-dimensional manifold M with Lorentzian signature
for the metric. Next, we will assume that the triangulation is very fine, so that the
number of 4-simplices NV is large, NV � 1. Later we shall discuss further how large
it should be. In addition, we will assume that the triangulation T (M ) is such that all
triangles are spacelike, and consequently their areas are real numbers.

If the 2-complex is dual to a triangulation, then it follows that there exist normals
of the tetrahedra ne f and spins j f which can be expressed as functions of edge lengths
Lε , which define the metric in the triangulation T (M ). Therefore, we will consider
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the background ( j,n) which constitutes a Regge geometry. This means that j = j(L)
and n = n(L). As a consequence, the tetrahedral closure constraint

∑
f∈v

j f ne f = 0 (12)

is satisfied for every tetrahedron e of a given 4-simplex v. In addition, there are also
other constraints present which enforce the Regge geometry across the whole mani-
fold, as opposed to every 4-simplex individually. Finally, the assumed Regge geom-
etry of the triangulation implies that all vertices in the 2-complex are 5-valent, each
corresponding to one 4-simplex in T (M ).

At this point it is important to note that all these assumptions about geometry are
not necessary for the classical limit, in the sense that the theory may have some clas-
sical limit even if these assumptions (or some of them) are not satisfied. As we have
already noted, the theory may have several different classical limits simultaneously.
That said, we are interested in this particular choice of the background geometry
since that will eventually lead us to the classical Einstein-Hilbert action for the grav-
itational field, coupled to matter fields. Other choices of the background fields will
lead to other types of classical limits, which will typically not be of Einstein-Hilbert
type. In other words, one can relax any of the assumptions made above, and still (at
least in principle) calculate the effective action Γ from (11) in the limit when j→ ∞,
φ → ∞ and the appropriate action S[ j,n,φ ]→ ∞. However, in this paper we are not
interested in those other classical limits, and rather restrict the background fields to
the configurations discussed above. Just as an example, at the end of this section
we will discuss shortly the effective action one can obtain by relaxing some of the
assumptions of Regge geometry.

We now define the classical limit as the limit where edge lengths L are much
larger than the Planck length lp. Given the relation (4) between the triangle area A f
and the spin j f labeling the corresponding face f ,

A f = 8πγl2
p

√
j f ( j f +1),

the limit L� lp implies that A� l2
p. Consequently we have

1
8πγ

A
l2
p
=
√

j( j+1)≈ j = O(N j)� 1, (13)

for the fixed value of the Barbero-Immirzi parameter γ . Here we have introduced the
number N j � 1 which represents the scale for j. Later on we will discuss how large
N j should be, along with the scale for the number of vertices NV .

Regarding the matter field action Smatter
v , we will need one additional assumption,

∂

∂ne f
∑
v

Smatter
v ( j,n,φ) = o( j), j,φ → ∞, (14)

which tells us that the equations of motion of matter action with respect to the nor-
mal vectors n are automatically satisfied to the leading order. Physically, this means
that matter fields are such that they do not “feel” the triangulation of spacetime, in



Cosine problem in EPRL/FK spinfoam model 11

the classical limit. Such an assumption is natural, since otherwise the measurements
of matter fields in the classical limit would detect the piecewise linear structure of
spacetime, which was not observed by any experiment so far. In the remainder of this
paper, all calculations will be done up to o( j) order, so given the assumption (14), we
can simply drop the dependence on n in the matter action and write

Smatter
v ( j,n,φ) = Smatter

v ( j,φ)+o( j). (15)

All of the above preliminary considerations provide us with a setup to calculate
the classical limit as the asymptotic limit for Γ [ j,n,φ ] when j,φ → ∞. Note that the
normals n are normalized to live on a unit sphere S2, and consequently they do not
scale.

Now we turn to solving the equation (11) in the classical limit. We will be in-
terested only in the leading order contribution to the effective action Γ , and we will
ignore the subleading terms Γ, Γ, etc. in (9).

4.2 Approximating the vertex amplitude

The first step is to discuss the application of the asymptotic formula (5) in the equa-
tion (11) for the effective action. Namely, according to (5), the vertex amplitude Wv
is peaked on the choice for ( j,n) which constitute the Regge geometry, and is sup-
pressed otherwise. This means that in (11) each vertex amplitude

Wv( j+ j′,
n+n′

‖n+n′‖
) (16)

gives a leading order contribution in j only for the choices of n′ and j′ such that the
combined variables ( j+ j′,n+n′) again constitute a Regge geometry. Otherwise, the
vertex amplitude will be suppressed. Therefore, we can restrict the integration domain
of n′e f such that only Regge configurations appear in (16). Then we can employ (5)
and (15) to rewrite (11) in the form

eiΓ ( j,n,φ) = ∑
j′

∫
∏
e f

dn′e f

∫
∏

r
dφ
′
r e
−i
(

∑ f
∂Γ

∂ j f
j′f +∑e f

∂Γ

∂ne f
n′e f +∑r

∂Γ

∂φr
φ ′r

)

∏
f

[
2
(

j f + j′f
)
+1
]
∏

v
W asymp

v ( j+ j′)eiSmatter
v ( j+ j′,φ+φ ′).

(17)

Note that for notational simplicity we will not explicitly denote the restricted domain
of integration for n′ in (17) and subsequent equations.

It is also important to note that the only place where n′ variables appear in the
integrand is in the exponent involving the derivative of Γ . In particular, n′ variables
do not appear in the asymptotic formula for the vertex amplitude due to the fact that
(5) does not depend on n at all. In addition, the requirement (14) for the matter action
removes its dependence on n in the leading order. As a consequence of this, in the
calculations that follow, the integration over n′ variables will be largely irrelevant. In
particular, by the end of subsection 4.4 the dependence of the effective action Γ on
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the background field n will turn out to be of subleading order. Nevertheless, it is im-
portant to note that all calculations are based on the assumption that the background
variables n satisfy the conditions of Regge geometry. In that sense, the dependence
of the effective action Γ on n is similar to the dependence of the vertex asymptotic
formula (5) — the explicit formula for the effective action will not depend on n but
it will be derived under the assumption that the background n (together with j) con-
stitutes a Regge geometry.

4.3 Rearranging the exponents

Now we want to rewrite the integrand in (17) as a sum of exponents. To this end, note
first that each vertex amplitude Wv contains two exponential terms, conjugate to each
other. The product over all vertices then gives

∏
v

∑
εv

Nvεv( j+ j′)eiεvγSv( j+ j′),

where εv ∈ {−1,+1} for every v. Since we have NV vertices in the spin foam 2-
complex σ , the above expression can be rearranged as

∑
ε1

. . .∑
εNV

∏
v

Nvεv( j+ j′)eiεvγSv( j+ j′).

We are interested in two particular configurations of the εv terms. In particular, the
choice (++ · · ·+) and the choice (−−·· ·−) deserve special attention, while all other
intermediate choices will be called “mixed terms” and denoted as {ε}∗ in the sum.
Therefore, we rewrite the above sum such that we separate it into the “all positive”
piece, the “all negative” piece and the “mixed” piece:[

∏
v

Nv+( j+ j′)
]
∏

v
eiγSv( j+ j′)+

[
∏

v
Nv−( j+ j′)

]
∏

v
e−iγSv( j+ j′)+

+ ∑
{ε}∗

∏
v

Nvεv( j+ j′)eiεvγSv( j+ j′).
(18)

Concentrate on the “all positive” term. The product of the exponents can be written
as the exponent of the sum, which can then be rearranged in the following way:

iγ ∑
v

Sv( j+ j′) = iγ ∑
v

∑
f∈v

( j f + j′f )Θv f ( j+ j′) = iγ ∑
f
( j f + j′f ) ∑

v∈ f
Θv f ( j+ j′) =

= iγ ∑
f
( j f + j′f )δ f ( j+ j′) = iγSR( j+ j′).

Here we have introduced the deficit angle δ f for the face f and the area-Regge action
SR( j) for the manifold M as

δ f ( j) = ∑
v∈ f

Θv f ( j), SR( j) = ∑
f

j f δ f ( j). (19)
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Note that in Lorentz geometry the deficit angle δ f is the sum of the dihedral angles
Θv f over all vertices connected to the face. This is in contrast to the Euclidean geom-
etry, where the deficit angle would be 2π minus the sum of dihedral angles.

The product of factors N in the “all positive” term can be rewritten as

∏
v

Nv+( j+ j′) = ∏
v

explogNv+( j+ j′) = e∑v logNv+( j+ j′).

One can perform analogous transformations to the “all negative” and “mixed” terms,
and rewrite (18) in the form

eiγSR( j+ j′)+∑v logNv+( j+ j′)+ e−iγSR( j+ j′)+∑v logNv−( j+ j′)+

∑
{ε}∗

eiγ ∑v εvSv( j+ j′)+∑v logNvεv ( j+ j′),
(20)

which can be substituted into (17). In addition, equation (17) features the product of
the exponents of Smatter

v and the product of face amplitudes, both of which can be
rewritten as single exponents,

∏
v

exp
[
iSmatter

v ( j+ j′,φ +φ
′)
]
= eiSM( j+ j′,φ+φ ′), (21)

and

∏
f

[
2
(

j f + j′f
)
+1
]
= e∑ f log

[
2
(

j f + j′f
)
+1
]
. (22)

Here we have introduced the total matter action for the 2-complex σ as

SM( j,φ) = ∑
v

Smatter
v ( j,φ).

Finally, substituting (20), (21) and (22) into (17), we obtain:

eiΓ ( j,n,φ) =
∫

∏
f

d j′f

∫
∏
e f

dn′e f

∫
∏

r
dφ
′
r[

eiA+( j,n,φ , j′,n′,φ ′)+ eiA−( j,n,φ , j′,n′,φ ′)+ ∑
{ε}∗

eiAε ( j,n,φ , j′,n′,φ ′)

]
,

(23)

where we have approximated the sum over j′ with an integral via the Euler-Maclaurin
formula. The exponents A+, A− and Aε are obtained by collecting together all expo-
nent factors in the “all positive”, “all negative” and “mixed” sums:

A+( j,n,φ , j′,n′,φ ′) = γSR( j+ j′)+SM( j+ j′,φ +φ
′)+

+∑
f

log
[
2
(

j f + j′f
)
+1
]
+∑

v
logNv+

(
j+ j′

)
−

−∑
f

∂Γ

∂ j f
j′f −∑

e f

∂Γ

∂ne f
n′e f −∑

r

∂Γ

∂φr
φ
′
r,
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A−( j,n,φ , j′,n′,φ ′) = −γSR( j+ j′)+SM( j+ j′,φ +φ
′)+

+∑
f

log
[
2
(

j f + j′f
)
+1
]
+∑

v
logNv−

(
j+ j′

)
−

−∑
f

∂Γ

∂ j f
j′f −∑

e f

∂Γ

∂ne f
n′e f −∑

r

∂Γ

∂φr
φ
′
r,

and

Aε( j,n,φ , j′,n′,φ ′) = γ ∑
v

εvSv( j+ j′)+SM( j+ j′,φ +φ
′)+

+∑
f

log
[
2
(

j f + j′f
)
+1
]
+∑

v
logNvεv

(
j+ j′

)
−

−∑
f

∂Γ

∂ j f
j′f −∑

e f

∂Γ

∂ne f
n′e f −∑

r

∂Γ

∂φr
φ
′
r.

Note that there is one Aε exponent for each choice (ε1, . . . ,εNV )∈ {ε}∗, and that each
two Aε terms are mutually different in general. The notation Aε does not explicitly
distinguish between these, but is rather a catch-all shorthand which denotes any ex-
ponent of the “mixed” type. While this is a slight abuse of notation, it will not lead to
any confusion.

The effective action equation in the form (23) is suitable to integration by the
methods of Appendix B.

4.4 Integration around the large background

We will solve equation (23) by first evaluating the integral over j′, and after that the
integral over φ ′. To this end, in the limit j → ∞, we need to know the scaling of
various terms in exponents A+, A− and Aε . Some of the terms have obvious scaling:

SR( j+ j′) = O( j), Sv( j+ j′) = O( j), Γ ( j) = O( j),

log
[
2
(

j f + j′f
)
+1
]
= O(log j), logNvεv

(
j+ j′

)
= O(log j),

∂Γ

∂ j f
= O(1),

while the terms involving ∂Γ /∂n and ∂Γ /∂φ do not depend on j′ and can be taken
in front of the j′ integral. The nontrivial part is to analyze how the matter action SM
scales with j, and how this scaling correlates with the scaling of the fields φ . This can
be determined by simple dimensional analysis, but needs to be done on a case-by-
case basis, for each type of matter field separately. Note that we do not need to know
the exact way the matter action is coupled to the spin foam variables j and n. Rather,
we only need to know that large j means that areas are much larger than l2

p, see (13).
Then, for ordinary scalar, Dirac and gauge vector fields in flat Minkowski spacetime
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with metric η = (−,+,+,+) we have

Sscalar[ϕ] =
∫

d4x
[

1
2
(
∂µ ϕ

)
(∂ µ

ϕ)+
1
2

m2
ϕ

2
]
,

SDirac[ψ] =
∫

d4x ψ̄
(
iγµ

∂µ −m
)

ψ,

Svector[A] =
∫

d4x
[

1
4

Fµν Fµν +
1
2

m2Aµ Aµ

]
, Fµν ≡ ∂µ Aν −∂ν Aµ .

Given that x scales as O( j1/2), simple dimensional analysis yields that each of these
actions will scale as O( j) if

ϕ = O(1), ψ = O( j−1/4), Aµ = O(1), m = O( j−1/2). (24)

Therefore, by scaling the matter fields in this way, we have

SM = O( j).

Note that the matter fields will eventually also be scaled to infinity, since the classical
limit is achieved by taking j,φ →∞. Nevertheless, we first perform the j′ integration
by taking j→ ∞ and keeping the scale of φ as is given in (24). After this is done, we
will perform the remaining φ ′ integration in the limit φ → ∞.

From this point on, the integration of (23) proceeds according to Appendix B.
We expand each of the exponents A+, A− and Aε into power series in j′ around the
background j, discard terms higher than ( j′)3, and choose ∂Γ /∂ j f to cancel the term
linear in j′. Ignoring all subleading terms, the cancellation of leading order linear
terms will happen for the exponents A+, A− and Aε , if we choose respectively

Γ+( j,n,φ) = γSR( j)+SM( j,φ)+ Γ̃+(n,φ),

Γ−( j,n,φ) = −γSR( j)+SM( j,φ)+ Γ̃−(n,φ),

Γε( j,n,φ) = γ ∑
v

εvSv( j)+SM( j,φ)+ Γ̃ε(n,φ).

(25)

At this point we need to discuss the equation (23). Namely, from the above choices
for Γ it is obvious that one can eliminate linear terms in only one of the exponents of
(23), which means that all others will be suppressed. This effect is well-known in the
literature and is called the suppression mechanism. For example, see [17–20] for its
application in the calculation of the graviton propagator for the EPRL/FK spinfoam
model.

From the behavior of the exponents, it is easy to see that equation (23) has more
than one solution, which means that the theory has more than one classical limit.
Each choice for Γ in (25) will lead to one particular classical effective action. None
of the choices is preferred over the others, as they all correspond to the limit j→ ∞.
In section 5 we shall discuss the physical consequences of this situation. However, in
order to complete the calculation of the effective action, we will choose one of the
exponents, say A+, and keep it as dominant, while others will be suppressed. This
corresponds to the choice Γ+ in (25). Effective actions coming from the other choices
can be calculated in analogous manner, by repeating the steps of the Γ+ calculation.
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Substituting Γ+ into (23), only the first exponent will give the dominant contribu-
tion. Dropping all other exponents, the integral over j′ can be evaluated by following
the steps of Appendix B. This will give, in addition to the leading order Γ+ = O( j),
a term of the type tr logS′′. This term is of order O(log j) which is subleading, and
can be neglected in the leading order. After appropriate cancellations, equation (23)
reduces to:

eiSM( j,φ)+iΓ̃+(n,φ) =
∫

∏
e f

dn′e f e
−i∑e f

∂Γ̃+
∂ne f

n′e f
∫

∏
r

dφ
′
reiSM( j,φ+φ ′)−i∑r

∂SM
∂φr

φ ′r−i∑r
∂Γ̃+
∂φr

φ ′r .

(26)
Note that the second integral on the right-hand side is a discretization of the usual
QFT path-integral (8) for the matter action. Now we proceed by solving the equation
in the limit φ →∞, which represents the classical limit in QFT. Integrating the matter
fields, the action term SM is expanded in power series in φ ′ around the background
φ , the cubic and higher terms drop out, the constant term cancels the corresponding
term on the left-hand side, and one is left with linear and quadratic terms in φ ′. The
requirement that the linear terms vanish is

∂Γ̃+

∂φr
= 0,

which means that Γ̃+(n,φ) = Γ̃+(n). The quadratic term gives rise to a tr logS′′ sub-
leading term, and can be dropped. Therefore, after the integration of the matter fields,
equation (26) reduces to

eiΓ̃+(n) =
∫

∏
e f

dn′e f e
−i∑e f

∂Γ̃+
∂ne f

n′e f . (27)

This is a functional integrodifferential equation for Γ̃+(n). Note that it does not de-
pend on j and φ variables but rather only on n, which are of order O(1). Thus, any
solution of (27) will also be of that order, so we conclude:

Γ̃+(n) = O(1).

As this is subleading to the other terms in (25), it can be dropped. In the end we are
left with the leading order effective action

Γ+( j,φ) = γSR( j)+SM( j,φ)+o( j,φ), ( j,φ → ∞). (28)

4.5 Continuum limit

The final step in the analysis of the effective action is the continuum limit. Namely,
once we have the expression (28) for the effective action, we want to recast it in
the familiar variables of classical field theory. In particular, we want to express the
gravitational degrees of freedom via the tetrad fields ea

µ(x), which live on a smooth
manifold M . For this to happen, we should recall several assumptions made in sub-
section 4.1.
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The first step is to remember that we have restricted to a configuration of the
background fields j,n which satisfy Regge geometry on a triangulation T (M ) of the
manifold M . This means that there is a choice of edge-lengths Lε such that

j f = j f (Lε), ne f = ne f (Lε). (29)

Substituting this into the effective action, it becomes the function of edge-lengths L:

Γ+(L,φ) = γSR( j(L))+SM( j(L),φ)+o(L,φ), (L,φ → ∞).

Next, if we remember (13) and (19), the area-Regge action SR( j(L)) can be rewritten
as

γSR( j(L)) = γ ∑
f

j f (L)δ f ( j(L)) =
1

8πl2
p
∑

f
A f (L)δ f (L) =

1
8πl2

p
SR(L),

where we have introduced the length-Regge action in the usual way,

SR(L) = ∑
f

A f (L)δ f (L).

Note that the Barbero-Immirzi parameter γ has canceled out of the equation. Conse-
quently we end up with the effective action living on a triangulation T (M ),

Γ+(L,φ) =


πlp
SR(L)+SM( j(L),φ)+o(L,φ), (L,φ → ∞).

The effective action features the usual Regge-gravity coupled to matter fields, with
an appropriate coupling constant.

Finally, we can invoke the requirements that the triangulation be “fine”, which
means that the areas of triangles l2

pN j and the number of 4-simplices NV are both
assumed to be very large. More precisely, we need the limit analogous to the limit
taken in classical theory of fluids. There, the fluid — originally consisting of a large
number of individual molecules — is approximated as a continuum. The “volume
element of the fluid” is thus defined to be big enough to contain a large number of
molecules, while at the same time small enough to be considered infinitesimal com-
pared to macroscopic fluid motion. In the same sense, we need to consider triangu-
lation T (M ) such that all edge-lengths L of the simplices are much larger than the
Planck length lp, but at the same time still much smaller than any observable distance,
so that they can be considered infinitesimal. This restricts the scale N j as

lp� lp
√

N j� Lobservable.

Next, the number of 4-simplices NV must also be suitably large — each simplex
must be large enough to be made of edges of size lp

√
N j, while it must remain small

enough so that the discrete structure of the manifold is experimentally invisible. In
particular,

NV ∼
(4)Vobservable
(4)V4−simplex

∼
(4)Vobservable

l4
pN2

j
� 1.

In addition, the equations of motion for the normals n must be identically satisfied.
The Regge action does not depend on these variables, so it satisfies this requirement.
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However, the matter action SM can in principle give nontrivial equations of motion.
The requirement that this does not happen is the statement of assumption (14).

Under such circumstances, one can substitute the edge-lengths L with the tetrad
field ea

µ(x) living on the manifold M . The Regge action then gets transformed into
the Einstein-Cartan action

SR(L)→
1
2

SEC[e]≡
1
2

∫
tr?(e∧ e)∧R(e).

The matter action is also suitably converted, SM(L,φ)→ SM[e,φ ], so in the end taking
the continuum limit amounts to writing the effective action in the form

Γ+[e,φ ] =


πlp
SEC[e]+SM[e,φ ]. (30)

This concludes the analysis of the classical limit for the choice Γ+ in (25).
As a final comment, let us consider a configuration of the background fields j,n

such that the Regge geometry condition (29) is relaxed, while we still assume that
the background normals n satisfy the Regge geometry constraint (12) for each vertex
individually, so that the asymptotics (5) still holds. In that case one can again obtain
an effective action in the classical limit, in the form (28):

Γ+( j,φ) = γ ∑
f

j f δ f ( j)+SM( j,φ). (31)

However, due to the lack of conditions (29), this action is very different than the one
discussed so far. In particular, the first term is the area-Regge action, rather than the
usual length-Regge action. Namely, since the assumed background geometry does not
necessarily correspond to a manifold triangulation T (M ), one cannot introduce the
concept of edges with well-defined lengths in this geometry. Consequently, one must
keep using the areas j as variables for this action, which has nontrivial consequences.
The variation with respect to j gives the following equation of motion:

δ f ( j)+
∂SM

∂ j f
= 0.

In the absence of matter, this reduces to δ f ( j) = 0, suggesting that the only vacuum
solution is the flat space. However, it is not obvious that the vanishing of the deficit
angle implies that curvature is zero, since in this kind of area-defined geometry the
relation between the deficit angle and the parallel transport around a closed loop
might be more complicated than naively expected. But in any case, the equations
of motion need not have any resemblance to the Einstein equations, and can give
completely different predictions.

The action (31) is an example of one possible classical limit which is present in
the theory, but very different from the expected Einstein-Hilbert action. As we have
noted before, this is a consequence of the fact that equation (11) can have many differ-
ent solutions, even in the limit h̄→ 0. Given that the chosen background fields do not
describe a Regge geometry, the action (31) corresponds to a physical regime which is
very different from the regime in which one can expect to obtain the Einstein-Hilbert
action.
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The fact that the effective action (31) is not equivalent to the Einstein-Hilbert
action does not in any way represent a problem for the theory. As we have argued
in section 3, it is quite possible, and even intuitively expected, that the same theory
can have different classical limits in different physical regimes. In contrast to this, it
can also happen that one obtains multiple inequivalent effective actions even for ex-
actly the same physical regime, i.e. for the same choice of the background fields j,n.
Such a situation would indeed represent a problem for the theory, since the classical
limit should be unique in any given physical regime. We will be confronted with this
problem in the next section.

5 Conjugate exponent and antigravity

In the previous section we have argued that the fact that effective action equation (8)
or (11) can have many solutions in the classical limit is not a problem in itself, as
long as the different limits correspond to different configurations of the background
fields. This means that the theory has different classical behaviors in physically dif-
ferent situations. In this sense the effective actions given by (30) and (31) correspond
to different physical situations (presence and absence of Regge-geometry field con-
figurations). However, if a theory has more than one classical limit for the exact same
field configuration, then one has a problem, since there is no way to distinguish which
effective action gives a correct description of the physics in the given regime.

Therefore, after obtaining the result (30), the most immediate question is what
happens if we choose to compute the effective action around one of the other expo-
nents in (23). Given that each exponent is singled out by a suitable choice of Γ in
(25), we can choose Γ− instead of Γ+. The only difference between these two actions
is the minus sign in front of the area-Regge action. One can then recalculate the ef-
fective action all the way to the end, and instead of (30) obtain the following effective
action:

Γ−[e,φ ] =−


πlp
SEC[e]+SM[e,φ ]. (32)

It is important to note that all the choices that we have made and properties of the
background fields that we have used in the derivation remain exactly the same for both
Γ+[e,φ ] and Γ−[e,φ ]. Therefore, the theory provides us with two different classical
limits which should be valid in exactly the same physical regime, for the same choice
of the background fields.

The difference between the two actions is rather obvious — the Γ− action has
the “wrong” sign for the gravitational sector of the theory. In order to see what this
means, one can vary the action Γ+ with respect to the tetrad variables, and obtain the
Einstein equations

Rµν −
1
2

gµν R = 8πl2
p Tµν ,

where Tµν is the stress-energy tensor for the matter fields. In contrast, performing the
same procedure for the action Γ− gives

Rµν −
1
2

gµν R =−8πl2
p Tµν ,
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where both the curvature and stress-energy tensors have the same form as in the
previous case. One can be even more blunt and take the nonrelativistic approximation
of these equations, and in a suitable limit derive the two versions of Newton’s law of
universal gravity:

m
d2r
dt2 =−l2

p
mM
r2 er, m

d2r
dt2 =+l2

p
mM
r2 er.

The only difference is in the sign of the gravitational constant l2
p, which traces back

all the way to the sign in front of the area-Regge term in (25). The physical interpre-
tation is obvious — one action, say Γ+, predicts attractive gravity, while the other,
Γ−, predicts repulsive gravity, i.e. antigravity. Which action predicts one or the other
depends on the details of the matter action SM , but the key insight is that both limits
are present in the theory.

The prediction of antigravity can be a serious problem for the EPRL/FK model.
As we have argued above, one does not have a problem with all other possible clas-
sical limits of the theory, where any of our assumptions about the choice of the back-
ground fields are not satisfied. The point of the derivation of (30) was only to demon-
strate that the expected classical limit (i.e. classical general relativity with matter) is
indeed present among all those possible classical limits of the theory. However, the
procedure has shown that along with this expected classical limit one can also find the
antigravitational classical limit, valid in the very same physical regime. In addition
to those, one can also find a whole sequence of “mixed” classical limits, obtained
from Γε in (25), which “interpolate” between the gravitational and antigravitational
limits. These mixed effective actions do not even have a good continuum limit, since
in those cases the gravitational constant changes sign arbitrarily from simplex to sim-
plex, which would lead to gravitational force being either attractive or repulsive, de-
pending on the point of the manifold. These classical limits also represent a serious
problem for the theory, on the same footing as the antigravitational limit.

In order to resolve these issues, one needs to somehow eliminate those extraneous
solutions for the effective action from the theory, while retaining the solution (30).
This is extremely tricky to do, in particular because of the fact that there is no argu-
ment which could favor Γ+ over Γ−, since the two actions are completely equal in all
respects, bar the sign of the gravitational constant.

Therefore, it appears necessary to modify the EPRL/FK model in some way, so
that the problem of multiple classical limits does not happen. To that end, it is instruc-
tive to look how did multiple classical limits appear in the first place. First of all, they
can be traced back to the sum of exponents in (23). Each exponent is responsible for
one choice of the effective action in (25). Tracing back further, these multiple expo-
nents appear as a generic consequence of the fact that the EPRL/FK vertex amplitude
Wv has a cosine-like asymptotic expansion (5). The two conjugate exponents for a
single vertex are multiplied in all possible combinations across all vertices, giving
rise to multiple exponential terms in (23).

It is important to stress that the asymptotics of the EPRL/FK vertex amplitude
features both exponents, irrespective of the choice of fundamental variables used to
describe the gravitational degrees of freedom in the theory. Namely, in section 2 we
have formulated the EPRL/FK state sum (3) in terms of the Livine-Speziale coherent
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basis variables ( j,n), see [15]. This is by no means a unique choice — one could in-
stead choose the area-volume variables, or spin-intertwiner-holonomy variables (the
first order formalism), or any other convenient set of variables that can be found in the
literature. All these different choices of variables correspond to different choices of
basis vectors in the kinematical Hilbert space of the theory. In that sense, they are all
equivalent — switching from one set of basis vectors to another amounts to rewriting
the state sum in terms of one or the other set of variables.

In light of the problem of multiple classical limits, the question one could then
ask is whether the presence of the two exponents in (5) is an intrinsic property of
the vertex, or the artifact of the particular choice of variables. The origin of the two
exponents in the asymptotics (5) has been studied in detail in [22–24]. There it was
established that the appearance of the two exponents is indeed an intrinsic property
of the vertex amplitude, and cannot be eliminated by a change of basis. Namely, one
constructs the vertex amplitude Wv by the spinfoam quantization of the Holst action,
which features a determinant of the tetrad fields. In contrast to the metric formulation
of gravity, this determinant can be either positive or negative, depending on the tetrad
fields at a given point in spacetime. The quantization procedure does not prefer either
sign over the other, and therefore in the asymptotics (5) of Wv both of these two signs
give contributions in the form of two exponents of the Regge action. Therefore, the
origin of these two exponents is completely independent of the basis variables, and
one cannot eliminate one of the exponents by a simple change of basis.

We should also emphasize that there might be some ambiguity regarding what is
considered to be a given physical regime in which the theory is supposed to have a
unique classical limit. Namely, we can choose to express the theory in some suitable
set of variables (denote them collectively as K) which is extended with additional
degrees of freedom such that the choice of background fields automatically specifies
only one exponent in the vertex amplitude (say, K = K+), while the other exponent
would correspond to some different choice of the background fields (say, K = K−). In
such K variables, one could consider the second exponent as a different sector of the
theory, which is expected to have a different classical limit, much like the limit of the
non-Regge geometry (31) discussed at the end of the previous section. In other words,
the question is whether the two choices K+,K− of the background fields correspond
to the “same physical regime” (where the theory is supposed to have the same clas-
sical limit), or to two different physical regimes (where the theory is allowed to have
different classical limits). As long as one is dealing with the EPRL/FK model, both of
these backgrounds K+ and K− expressed in these generalized variables must map to
the same set of ( j,n) variables by integrating out the additional degrees of freedom.
In this sense they must both correspond to the same physical regime. It is possible,
however, to consider the full set of K-variables as fundamental, in which case one
should interpret backgrounds K+ and K− as physically different. In that case, though,
one is generalizing the EPRL/FK model beyond its original set of variables. The anal-
ysis of such generalized models, while certainly very interesting and important in its
own right, is out of the scope of this paper.

The conclusion of the whole analysis is that one needs to somehow modify the
original theory, in order to eliminate the unwanted effective actions. There are several
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possible scenarios by which one could proceed in doing this. Each scenario has its
own degree of success and its own shortcomings. We will discuss three of them.

5.1 Redefining the vertex amplitude

One obvious way to deal with this situation is to change the definition of the vertex
amplitude Wv, such that in the large-spin limits it gives only one exponent. This has
been suggested in [8,21–24]. One way is to introduce the new vertex amplitude,
Av( j,n) as

Av( j,n) =
1

2N+( j)

(
Wv( j,n)+

√
W 2

v ( j,n)−4N+( j)N−( j)
)
,

and write the spin foam state sum (3) with Av in place of Wv. Another possible way
would be to define Av as

Av( j,n) =
N+( j)Wv( j,n)−N−( j)W ∗v ( j,n)

N2
+( j)−N2

−( j)
,

where W ∗v stands for the complex-conjugate of Wv. A third, more geometrical way
to define Av has been proposed in [23,24]. It is straightforward to verify for each of
these definitions that in the limit j→ ∞ the amplitude Av has asymptotic behavior

Av ≈ eiγSv( j).

Repeating the calculation of the effective action, one sees that all exponents in (23)
vanish, except the first one which gives rise to (28) and consequently (30) as the only
solution in the given regime. Therefore, eliminating the conjugate exponent from the
definition of the vertex amplitude will certainly also eliminate all extraneous solutions
for the effective action, including the antigravitational one.

The downside of this approach is that by redefining the vertex one is changing
the theory, i.e. the calculated effective action does not correspond to the EPRL/FK
model anymore. In addition, there is no unique way to redefine the vertex, which
gives rise to multiple different models of quantum gravity. Each model has a correct
classical behavior, but different quantum corrections. In absence of any experimental
constraints, there is no way to prefer one model over the others.

5.2 The boundary wavefunction

Another method to eliminate the extra exponent has been introduced in [25,17], see
[18] for a review. The idea is to calculate the spin foam path integral on a com-
pact region of spacetime, with the boundary conditions embodied in the boundary
wavefunction ψ( j,n). The wavefunction represents the evaluation of the path inte-
gral outside the compact region, depends only on j and n variables which intersect
the boundary of the compact region, and is assumed to have the asymptotic form

ψ( j,n)≈ ψ0( j)ei∑ f j f θ f
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in the limit j→ ∞. Here ψ0 is some real function (typically a Gaussian) while the
θ f are constants. In that setting one calculates the expectation value of any given
observable O( j,n) (which is defined only inside the compact region) as

〈O〉=
∑

j

∫
dn ψ( j,n)O( j,n)∏

f

[
2 j f +1

]
∏

v
Wv

∑
j

∫
dn ψ( j,n)∏

f

[
2 j f +1

]
∏

v
Wv

.

The denominator must be different from zero, so using a convenient normalization of
ψ , one requires it to satisfy the condition

∑
j

∫
dn ψ( j,n)∏

f

[
2 j f +1

]
∏

v
Wv = 1.

This condition is equivalent to the requirement that ψ is an element of the physical
Hilbert space (the space of solutions of the theory), i.e. that it satisfies the Hamiltonian
constraint

Ĥ ψ = 0. (33)
Given this setup, one can calculate the expectation values of various observables in
the limit j → ∞, and use the coefficients θ f to preselect the exponent one wants,
while suppressing others. This is done in the same way as we did in solving (23) by
choosing one of the possible effective actions listed in (25).

One could in principle try to implement this strategy when solving (11) to exclude
all unwanted exponents and solve for the effective action (30) uniquely. However,
there are several shortcomings to this approach. First, in this way one can obtain the
effective action only inside some compact region of spacetime, which immediately
raises the questions of the physical interpretation of such effective action. Namely, it
is not obvious how could the equation (8) be rewritten to accommodate the boundary
wavefunction ψ . And even if this is somehow done, it is not obvious what would it
mean to have boundary conditions on the effective action. Second, one needs to verify
that the boundary wavefunction ψ with a given choices for the constants θ f indeed
satisfies the Hamiltonian constraint, which might not be the case. And third, even if
one does establish that ψ satisfies (33), this would imply that the complex-conjugate
function ψ∗ also satisfies the same constraint:

Ĥ ψ
∗ =

(
Ĥ †

ψ
)∗

=
(
Ĥ ψ

)∗
= 0.

This is due to the fact that the Hamiltonian is a self-adjoint operator, Ĥ † = Ĥ . Given
that ψ∗ is also a valid boundary wavefunction, one can use it instead of ψ to solve
for the effective action. Following through the suppression mechanism, one sees that
the only non-suppressed exponent will now be the “wrong” one, giving rise to the
antigravitational effective action (32). Thus, one sees that both effective actions are
still present in the theory.

The only way to circumvent this would be to claim that the Hamiltonian is not
self-adjoint, in order to eliminate ψ∗ from the set of solutions, while retaining ψ . In
other words, one has to prove that both equations

Ĥ ψ = 0, Ĥ ψ
∗ 6= 0,
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are satisfied simultaneously. However, even if one somehow manages to prove these
two equations, the cost is very high — the EPRL/FK model would then explicitly
violate unitarity.

Therefore, while the upside of this method is that one stays within the EPRL/FK
model, there are numerous downsides — the effective action can be evaluated only
inside some compact region of spacetime, the Hamiltonian constraint must be satis-
fied for the boundary wavefunction ψ , and the theory must be non-unitary, in order
to eliminate ψ∗ from the set of solutions.

5.3 Redefining the matter coupling

The third way to eliminate the unwanted exponent is to redefine the way matter cou-
ples to the EPRL/FK vertex amplitude. Namely, in contrast to (6), one could in prin-
ciple construct the vertex amplitude Av( j,n,φ) such that it reduces to the EPRL/FK
vertex amplitude Wv when matter fields are in their vacuum state (say, φ = 0),

Av( j,n,0) =Wv( j,n),

and that in the limit j→ ∞ (and possibly φ → ∞) it has the asymptotics

Av( j,n,φ)≈ N+( j,φ)eiγSv( j)+iSmatter
v ( j,φ)+N−( j,φ)e−iγSv( j)−iSmatter

v ( j,φ). (34)

Note that now in the conjugate exponent the sign is flipped not only for the gravita-
tional sector, but also for the matter sector, so that the relative sign always stays the
same.

Repeating the calculation of the effective action, one would obtain the following
solutions for the effective action (compare with (25))

Γ+( j,φ) = γSR( j)+SM( j,φ),

Γ−( j,φ) = −γSR( j)−SM( j,φ),

Γε( j,φ) = ∑
v

εv
[
γSv( j)+Smatter

v ( j,φ)
]
.

(35)

In the continuum limit, the Γ+ solution would lead to the expected classical action
(30), and the Γ− solution would lead to the same result (30) up to an overall minus
sign. However, this overall minus sign is classically unobservable, and thus does not
lead to antigravity.

The main problem with this approach is the fact that it fails to eliminate the Γε

solutions. Moreover, not only that they do not give the correct effective action, but
they even violate the equivalence principle, in the following way.

Informally stated, the equivalence principle says that in local Minkowski coordi-
nates, all laws of physics must reduce to their special-relativistic form. As a conse-
quence, if spacetime is globally flat, i.e. the Minkowski manifold M4, the effective
action should take its special-relativistic form for the matter fields. Thus, to test if a
given action complies with the equivalence principle, we may perform the following
procedure. Given an action which describes gravity and some matter fields coupled to
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it in some way, one can “freeze-out” the gravitational degrees of freedom by evaluat-
ing the action on a flat Minkowski background geometry. The remaining action is the
action for matter fields only. If this action is not equivalent to its special-relativistic
form, the equivalence principle is violated.

It can be instructive to demonstrate this on a simple example. Consider the Ein-
stein-Hilbert gravity with the nonzero cosmological constant Λ and one real scalar
matter field ϕ , described by the action

S[g,ϕ] =
∫

M
d4x
√
−g
[

R+Λ +
1
2

gµν(∂µ ϕ)(∂ν ϕ)+
1
2

m2
ϕ

2 +Λϕ

]
.

Note that the Minkowski metric ηµν is not a solution of this theory, due to the pres-
ence of the cosmological constant. Nevertheless, the action is an off-shell object, and
we can evaluate it on any background, not just on the solutions of the theory. In par-
ticular, putting gµν = ηµν gives:

S[η ,ϕ] =
∫

M
d4x
[

Λ +
1
2

η
µν(∂µ ϕ)(∂ν ϕ)+

1
2

m2
ϕ

2 +Λϕ

]
.

The standalone cosmological constant in the first term can be ignored, since that term
does not depend on matter fields and is therefore just an additive constant in the
otherwise matter-only action. The remainder of the action is almost exactly the same
as the scalar field action in special relativity — only the presence of the last term
Λϕ makes a difference. As a consequence of this, we conclude that the equivalence
principle is violated in the original theory by the presence of this term.

Now we apply the same test to the Γε actions in (35). Consider the configuration of
the background fields which corresponds to nonzero matter fields φ in flat Minkowski
spacetime M4 described by j and n. Taking M = M4, one can construct its triangu-
lation T (M4), and introduce edge-lengths Lε as in the usual classical Regge gravity.
From those one can compute the values of the background fields j(L) and n(L) which
correspond to flat Minkowski spacetime. Now we evaluate Γε on this background,

Γε(φ)≡ Γε( j(L),φ) = γ ∑
v

εvSv( j(L))+∑
v

εvSmatter
v ( j(L),φ),

where we consider edge-lengths L to be fixed, so that the effective action is a func-
tional of φ only. We are allowed to evaluate this action on the Minkowski background
because the action is off-shell, and the flat background geometry does not need to sat-
isfy the equations of motion for this action. The evaluation procedure corresponds to
the approximation where the gravitational degrees of freedom are “frozen-out”, and
the backreaction of matter on geometry is neglected, as is the case in special relativ-
ity. Consequently, the first sum on the right-hand side is constant and can be dropped
from the effective action, which then reads

Γε(φ) = ∑
v

εvSmatter
v ( j(L),φ).

Now, using the equivalence principle, we can identify this effective action to the ac-
tion for the matter fields in flat Minkowski spacetime, SMinkowski(φ), so we conclude
that

SMinkowski(φ) = ∑
v

εvSmatter
v ( j(L),φ).
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However, if we perform the same procedure to the effective action Γ+ in (35), we
obtain a different expression for the Minkowski action,

SMinkowski(φ) = SM( j(L),φ)≡∑
v

Smatter
v ( j(L),φ).

Since the two expressions for SMinkowski(φ) are not equal, one of the effective actions,
Γ+ or Γε , gives the wrong flat spacetime action for the matter fields, and thus violates
the equivalence principle.

Regarding the above procedure, it is important to stress that we are allowed to
perform it despite the fact that the flat Minkowski spacetime might not be a solution of
the equations of motion for the action Γε . Namely, as has been explained in Appendix
C and stressed throughout the paper, all actions in (35) have been calculated off-shell,
and we may evaluate them on an arbitrary configuration of background fields (as long
as the background corresponds to a Regge-like geometry).

On the other hand, it should be remarked that, since the action is evaluated on
an off-shell background in the gravitational sector, the resulting effective action for
matter fields is derived under the assumption of the nonzero source term in the grav-
itational sector. In that light, it is not entirely clear whether the equivalence principle
is supposed to hold in such a situation, and our conclusions regarding the importance
of its violation may be questioned. This is a conceptual issue which requires further
investigation.

Next, note that the matter coupling of the form (6) does not have the above prob-
lem with the equivalence principle. Namely, the matter sector of all effective actions
in (25) is the same — so when evaluated on Minkowski spacetime, all effective ac-
tions give the same classical action for the matter fields. Therefore, the matter cou-
pling of the form (6) is compatible with the equivalence principle for all effective
actions in the theory, while the matter coupling of the form (34) necessarily violates
the equivalence principle for all but one effective action in the theory. This is the main
reason why we have preferred (6) over (34) in this paper.

Thus, on the upside, the coupling of matter to gravity of the form (34) does in-
deed resolve the problem of antigravity. On the downside, it still fails to resolve the
full problem of multiple classical limits, since the “mixed” effective actions Γε are
still present in the theory. Moreover, the equivalence principle is violated for those
“mixed” effective actions. In order to resolve this problem, one needs to somehow
eliminate Γε from the set of solutions (35), and the matter coupling of the form (34)
does not help one do that. Finally, another downside is that the vertex amplitude Av
with asymptotics (34) is not easy to construct, if possible at all.

6 Conclusions

In this paper we were investigating the classical limit of the EPRL/FK spinfoam
model of quantum gravity, with the coupling of matter fields. In particular, we have
shown that the presence of two conjugate exponents in the large-spin asymptotics
of the EPRL/FK vertex amplitude (the so called cosine problem) gives rise to two
classical limits of the theory — one describing classical theory of gravity, and the
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other describing the same theory but with an opposite coupling constant, i.e. anti-
gravity. The presence of antigravity can be established only once the matter fields are
coupled to the spinfoam model, since the attractive or repulsive nature of the gravita-
tional interaction depends on the relative sign of the gravitational and matter sectors
in the effective action. Antigravity obviously represents a problem for the original
formulation of the theory, since it follows that the unique classical limit of the theory
does not exist.

After the introduction given in section 1, in section 2 we gave a short introduc-
tion to the EPRL/FK spin foam model, discussed the results for the asymptotics of
the vertex amplitude, and generalized the model to include matter fields. In section 3
we have introduced the background field method for evaluating the effective action
in quantum field theory. After discussing the possibilities of having multiple classical
limits in the same theory, we have adapted the method to the spin foam setting, in
order to evaluate the effective action for the EPRL/FK model with matter in the clas-
sical limit. The computation was performed in section 4, with several conclusions.
First, it was found that the model has multiple classical limits, depending on what
kind of geometry was described by the choice of the configuration of the background
fields. One of these limits indeed corresponds to classical general relativity. How-
ever, since matter fields are present in the model, we have also discovered that there
is not one, but rather a whole class of classical limits, for the same choice of the back-
ground fields. In addition to ordinary gravity, one of these classical limits corresponds
to antigravity, while other choices “interpolate” between the gravitational and anti-
gravitational limits. This represents a problem for the theory, which was discussed
in section 5. After providing the proper interpretation of various classical limits, we
have established that the reason for the appearance of these extraneous limits is the
presence of two exponents in the asymptotics of the vertex amplitude.

Three strategies which attempt to resolve the problem of these extraneous clas-
sical limits have been discussed. Arguably the most obvious one is to redefine the
vertex amplitude so that it does not have the second exponent in the large spin asymp-
totics. This can certainly be done and several examples were given. However, there is
no obvious unique way of fixing the new definition of the vertex amplitude. This in
turn leads to having a whole class of theories, all of which have the correct classical
limit, but different quantum behavior.

The second strategy deals with the attempt to use the boundary wavefunction for-
malism in order to suppress the extraneous classical limits. However, this approach
is of limited success at best. Namely, there are various conceptual issues about the
meaning of putting boundary conditions on the effective action, and there are tech-
nical issues about the boundary wavefunction satisfying the Hamiltonian constraint.
But most importantly, there is no clean way to include the boundary wavefunction
in the set of physical solutions of the theory, while keeping the conjugate boundary
wavefunction outside of this set. The simple analysis shows that the theory which
implements this requirement also violates unitarity, since it requires that the Hamil-
tonian of the theory must not be self-adjoint. This is unappealing from the point of
view of quantum mechanics.

The third strategy deals with a more intricate way one could couple matter fields
to the EPRL/FK spinfoam model, in order to avoid the relative sign flip between
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gravity and matter in the conjugate exponent, and thus the appearance of antigrav-
ity. While this could in principle be made to work, not all extraneous classical limits
can be eliminated from the theory, which leads not only to multiple classical limits
for gravity, but for matter fields as well. This in turn indicates the presence of mul-
tiple classical limits for matter fields in flat Minkowski spacetime, in contradiction
with both the equivalence principle and the experimental fact that we can observe
only one of these limits. Such a bad situation is a clear consequence of the assumed
complicated coupling of matter to gravity. In general, these strategies of intricate cou-
pling of matter to gravity are sensitive to the validity of the equivalence principle, and
special care must be taken not to violate it.

As a final remark, one can discuss which of these three strategies would be best to
pursue forward, or maybe formulate yet another way to deal with the cosine problem.
While all options are open, we believe that the first strategy is the most conservative
choice, as it preserves the known physics — it does not violate either unitarity nor
the equivalence principle. The nonuniqueness problem is of course a severe one, but
nonetheless also implicit in other approaches as well.

Acknowledgements The author would like to thank Aleksandar Miković for helpful discussion and sug-
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A Notation and conventions

When discussing a 2-complex, we denote its vertices, edges and faces as v, e and f , respectively. We use
the ∈ symbol to denote adjacency. For example, the sum

∑
f∈v

F(v, f )

denotes the sum over all faces that are connected to a given vertex. Similarly,

∑
v∈ f

F(v, f )

denotes the sum over all vertices that are connected to a given face. Note that if v ∈ f , then f ∈ v as well.

The “big-O” and “small-o” symbols are defined in the usual way. One says that f (x) = O(g(x)) iff

limsup
x→∞

| f (x)|
|g(x)|

< ∞.

Also, one says that f (x) = o(g(x)) iff

lim
x→∞

| f (x)|
|g(x)|

= 0.

The usage of these symbols is convenient since it simplifies notation, and allows one to talk about the
scaling of various quantities in the large-spin limit j→ ∞ without explicitly introducing a parameter to be
taken to infinity.



Cosine problem in EPRL/FK spinfoam model 29

B Solving the effective action equation

In order to demonstrate the background field method for calculating the effective action outlined in section
3, we shall perform the explicit procedure of solving equation (8) up to the first two orders. For simplicity,
we shall discuss the mechanical system with one degree of freedom, rather than field theory. Therefore,
the action S[φ ] will become an ordinary real-valued function S(x) over x ∈ R, while the path integral will
become an ordinary integral over the set of real numbers.

Equation (8) can then be rewritten as an ordinary integrodifferential equation

eiΓ (x) =
∫
R

dy eiS(x+y)−iΓ ′(x)y, (36)

where the prime denotes the derivative with respect to x. We are looking for an asymptotic solution of this
equation in the limit x→ ∞, assuming that S(x) = O(x). First we write the effective action in the form

Γ (x) = Γ(x)+Γ(x)+o(Γ),

where
Γ = O(x), Γ = o(Γ) = o(x). (37)

Substituting this into (36) and expanding S(x+ y) into power series around the point x, we obtain

eiΓ+iΓ = eiS
∫
R

dy ei(S′−Γ ′−Γ ′ )y+
i
 S′′y+ i

 S′′′y+.... (38)

Note the order of various terms:

Γ = O(x), S = O(x), Γ = o(x),

Γ
′
 = O(), S′ = O(), Γ

′
 = o(),

S′′ = O(x−1), S′′′ = O(x−2), . . .

The cubic and higher terms in the exponent can be neglected, since corresponding coefficients scale as
O(x−2) and lower. We can then rewrite the exponent on the right-hand side as

i(S′−Γ
′
 )y− iΓ ′ y+

i


S′′y,

where the three terms are of orders O(1), o(1) and O(x−1), respectively. Note that if the O(1) term S′−
Γ ′ does not vanish, the integrand is dominated by an oscillatory term, and consequently the integral is
exponentially suppressed. The integral will be nonzero only if we set S′ = Γ ′ , which gives

Γ(x) = S(x)+ const, (39)

where the arbitrary constant can be neglected because it does not contribute to the effective equations of
motion. The equation (38) then reduces to

eiΓ =
∫
R

dy e
i
2 S′′y2−iΓ ′ y,

where the exponent can now be represented in the following form by completing the square:

1
2

S′′y2−Γ
′
 y =

S′′



(
y− Γ ′

S′′

)

− (Γ ′ )


S′′
.

At this point the integral can be evaluated, and we obtain

eiΓ = e−i (Γ
′
 )



2S′′

[√
2π

|S′′|
ei π

4 sgn(S′′)

]
,

which can be rearranged in the form

Γ =
i


ln |S′′|+ π


sgn(S′′)− i


ln(π)− (Γ ′ )



S′′
. (40)
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This is a first-order differential equation for Γ(x). However, note that the first term on the right is leading
as O(logx), while the remaining three terms are subleading and can therefore be neglected, in particular
the term containing Γ ′ . Consequently we have

Γ =
i


ln |S′′|= O(logx) = o(x). (41)

As a verification of the procedure, note that

Γ
′
 =

i


S′′′

S′′
= O(x−) = o(),

as we have assumed from the beginning. In particular, the last term in (40) is of order O(x−1) = o(logx),
as expected.

Putting together the obtained results (39) and (41) for Γ and Γ we obtain the complex effective action

Γ (x) = S(x)+
i


ln |S′′(x)|,

which can be Wick-rotated according to prescription (10) to obtain the final familiar form

Γ (x) = S(x)+



ln |S′′(x)|.

As a final note, it is straightforward to generalize this result for an arbitrary number of degrees of
freedom, giving the well-known formula for the semiclassical effective action in field theory,

Γ [φ ] = S[φ ]+



tr logS′′[φ ].

C Derivation of the effective action equation

In quantum field theory, one introduces the concept of the effective action in the following way. Starting
from the path integral state-sum for the classical action S[ϕ],

Z[J] =
∫

DϕeiS[ϕ]+i
∫

ϕJ , (42)

one first defines the energy functional W [J] as the logarithm of the state-sum,

W [J] =−i logZ[J], (43)

which should not be confused with the notation for the EPRL/FK vertex amplitude, despite the letter W
used to denote it.

Then one defines the effective action Γ [φ ], a functional of an arbitrarily chosen field φ (called the
background field), as a Legendre transformation of W [J],

Γ [φ ] =W [J[φ ]]−
∫

φJ[φ ]. (44)

Here the source J is written as a functional J[φ ] of the chosen background field φ , since for every choice
of φ we should have a corresponding choice of J. This choice can be determined by taking the derivative
of (44),

δΓ [φ ]

δφ
=
∫

δW [J]
δJ

∣∣∣
J[φ ]

δJ[φ ]
δφ

− J[φ ]−
∫

φ
δJ[φ ]

δφ
. (45)

and requiring that the first term on the right-hand side cancels the third term. This will happen if

δW [J]
δJ

∣∣∣
J[φ ]

= φ , (46)
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which gives us an implicit definition of the functional J[φ ] for any given background φ . It is important
to note that this equation determines J[φ ], rather than φ itself, which is completely arbitrary. After the
cancellation (45) reduces to

δΓ [φ ]

δφ
=−J[φ ]. (47)

The effective action in the form (44) is not very useful in practice, since in order to evaluate it one
needs to calculate W [J] from Z[J], then invert the equation (46) in order to solve it for J[φ ], and finally put
all that into (44) and evaluate Γ [φ ]. However, there is a more clever method, which expresses Γ [φ ] directly
in terms of the classical action S[ϕ]. That is the equation (8) used in the main text. In order to derive it, we
begin by taking the exponent of (44),

exp(iΓ [φ ]) = exp(iW [J[φ ]])exp
(
−i
∫

φJ[φ ]
)
,

and we use the definition (43) to rewrite this in terms of the state sum,

exp(iΓ [φ ]) = Z[J[φ ]]exp
(
−i
∫

φJ[φ ]
)
. (48)

Next we want to get rid of the other exponent on the right-hand side. To this end, we shift the integration
variable ϕ in the path integral (42) by φ ,

ϕ = φ + φ̃ ,

where φ̃ is the new integration variable and φ is the fixed background. Given that the background φ is
fixed, we have Dϕ = D φ̃ . The state sum is then rewritten as

Z[J] = exp
(

i
∫

φJ
)∫

D φ̃eiS[φ+φ̃ ]+i
∫

φ̃J .

Evaluating the state sum on J[φ ] and substituting into (48), the exponent in front of the path integral cancels
the exponent in (48), and we obtain

exp(iΓ [φ ]) =
∫

D φ̃eiS[φ+φ̃ ]+i
∫

φ̃J[φ ].

As a final step, we eliminate the remaining term J[φ ] in the path integral by using (47) to obtain

eiΓ [φ ] =
∫

D φ̃eiS[φ+φ̃ ]−i
∫ δΓ [φ ]

δφ
φ̃
. (49)

This is the desired equation (8) used in the main text. It is a functional integrodifferential equation for the
effective action Γ evaluated on an arbitrary background field φ , expressed in terms of the path integral and
the classical action S.

An important remark is in order. Namely, the background field φ is kept completely arbitrary through-
out the derivation process. In particular, it is not assumed that it satisfies any kind of equations of motion.
In other words, the above derivation of (49) is a fully off-shell and nonperturbative calculation, and the
resulting equation (49) itself is valid in general.

In contrast to this general formula, note that the effective action is commonly introduced on-shell —
with an assumption that the background field φ satisfies the effective equations of motion (compare with
(47)),

δΓ [φ ]

δφ
= 0.

If this assumption is satisfied, the second term in the exponent on the right-hand side of (49) vanishes, and
our functional integrodifferential equation then drastically simplifies to the form

eiΓ [φ ] =
∫

D φ̃eiS[φ+φ̃ ]. (50)

In contrast to (49), equation (50) is already solved for the effective action Γ , and one only needs to evaluate
the remaining path integral in order to find an explicit expression for Γ [φ ]. Given that this is a much simpler
from the calculational point of view, it is often a common practice to discuss only equation (50). However,
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the price for this apparent simplicity is the requirement that the background φ then must be a solution
of the effective equations of motion, rather than completely arbitrary. This can be very problematic if the
form of the effective action which determines these equations of motion is not already known. Namely,
in order to determine the effective action using (50), one needs to know in advance the solution of its
equations of motion, which is in most cases a circular problem. Therefore equation (50) can be of limited
applicability. In contrast, the general equation (49) is valid for an arbitrary background φ , and can be
solved systematically by an iterative procedure, as described in section 3 and Appendix B.
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