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Preface

The fifth Petrov International Symposium on High Energy Physics, Cosmology
and Gravity was organized by the Bogolyubov Institute for Theoretical Physics
of the National Academy of Sciences of Ukraine and the Walter Thirring Inter-
national Institute for Mathematical Physics, Astrophysics and Nuclear Investiga-
tions (Ukraine); and supported by the Austrian Academy of Sciences, the National
Academy of Sciences of Ukraine, the Austro-Ukrainian Institute for Science and
Technology, the Slovak Research Centre (Slovakia), the Czech Research Centre
(Czech Republic), the Hadronic Press Inc. and the Project No. 1202.094-12 of
the Central European Initiative Cooperation Fund. This Symposium is dedicated
to the 85th anniversary of the outstanding Austrian physicist Walter Thirring.
Walter Thirring international cooperation with N. Bogolyubov Institute for Theo-
retical Physics of the National Academy of Sciences of Ukraine, in Kyiv, and with
the respected Walter Thirring Institute for Mathematical Physics, Astrophysics,
and Nuclear Investigations in the Transcarpathian Region of Ukraine had an effect
clearly transgressing scientific policy: it helped to establish contacts of Ukrainian
scientific institutions with Western European scientific institutions. This interna-
tional cooperation in the frame of Bogolyubov-Petrov and Thirring-Kummer-Wess
scientific schools have helped to guarantee a stimulating atmosphere which con-
tinues to attract the bright students which the community of physicists in Europe
needs to accomplish its further scientific goals. These Proceedings are limited
to the applications of new mathematical methods in High Energy Physics, Cos-
mology and Gravity. There are based on invited talks given at the forum where
scientists and students with different professional backgrounds can discus con-
cepts which are relevant to more than one field, and propose new mathematical
methods for solutions of yet unsolved fundamental problems.



This collection is also reprinted in Journal “Algebras, Groups and Geometries”
(2012, Vol. 29, issues n. 1-3). And it is recommended to researchers in various
areas of High Energy Physics, Cosmology and Gravity, on the one hand, and
to graduate and postgraduate students as an introduction into self-consistent
modern mathematical methods applications in High Energy Physics, Cosmology

and Gravity too.

S. S. Moskaliuk Kosivska Poliana, December 2012
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Multidimensional Kaluza-Klein models with toroidal compactification
of extra dimensions face a severe problem. It lies in contradiction with
the gravitational tests (the perihelion shift, the deflection of light, the
time delay of radar echoes and PPN parameters) for a dust-like mat-
ter source of the gravitational field. One of the alternative choices of
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the further development direction lies in the change of the compact-
ification type. According to this possible choice, we consider two ex-
tra dimensions compactified on a two-sphere, representing the curved
internal space. In order to provide this curvature, we introduce the
background matter in the form of a perfect fluid with the vacuum
equation of state in the external space and an arbitrary equation of
state in the internal space, as well as a bare multidimensional cosmo-
logical constant. Then we perturb the background by the non-dust-like
matter source of the gravitational field, possessing tension in the in-
ternal space. As a result, we arrive at approximate soliton solutions
and impose experimental constraints on their parameters in order to
satisfy the gravitational tests.

1 Introduction

The search of a common principle, which describes the phenomenological plurality
of the physical world, brought modern theoretical physics into the deep ontolog-
ical crisis. This crisis is underlain by the impudent infringement of the Occam’s
principle, according to which “entities must not be multiplied beyond necessity”.
It is clear that any theoretical model may be called a physical one only relative
to a special sphere of reality, where its predictions are experimentally verified or,
at least, do not contradict the observational data. Beyond such sphere, the model
represents just an abstractive logical construct that is absolutely separated from
physical reality. However, nowadays we diagnose the impetuous growth of a tumor
of new theoretical essences, while their ontological status remains indefinite. In
this situation the problems of revealing of physically inadequate theories become
really relevant. As a vivid example we can consider multidimensional theories in
general and Kaluza—Klein models in particular.

On the one hand, the significant increase of Kaluza—Klein models popularity in
last decades was caused by the well-known problems, which arise in the Standard
SU(3)xSU(2)xU(1) model, such as the hierarchy problem [1], or the fact that the
Standard model does not include gravity. An attempt to solve these problems has
been undertaken in supersymmetric models, such as superstring and M-theories



[2]. These theories can be consistently formulated only in the dimensionalities of
the fundamental space-time D = 10 and D = 11 correspondingly. In both theories
additional spatial dimensions are compactified on the energy scale unattainable
within the limits of sub-Planckian physics, or, in other words, they are based on
the Kaluza—Klein approach.

On the other hand, the Kaluza—Klein models in their original formulation
[3, 4] face a serious problem. As it was shown in [5], the models with toroidal
compactification of extra spatial dimensions contradict the experimental data.
In particular, the gravitational field of a point-like massive source with dust-like
equation of state was considered in this article in the weak field approximation.
In General Relativity we can use this approach to derive formulas for such effects,
as the Mercury perihelion shift, the deflection of light by the Sun, the frequency
shift, and the Shapiro time delay of radar echoes [6].

General Relativity is in brilliant accordance with experiments that check these
effects, or, in other words, with classical gravitational tests. Also these tests impose
strong restrictions on the numerical values of the so-called PPN parameters 5 and
v [7-10], which are the coefficients in the Robertson-Eddington expansion of the
metrics in powers of a small perturbation parameter 2¢ / ¢? in isotropic spherical
coordinates r3, 0, ¢:

2 22
ds® ~ (1 + C—f+ ﬁci;Jr ) Adt*—

2
— (1 - 'yc—f + ) (dr3 +r3d6* + 73 sin® 0de?) , (1)

where ¢ is the gravitational potential. For example, in the first order in pertur-
bation the deflection of light is defined by the expression

5¢:(L+w€$ (2)

where 7 is the gravitational radius. For the perihelion shift per one revolution we
have the formula

B B 3mry
06 = 5(2-F+27) - (3)
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If a planet (or a satellite) is on the superior conjunction (the far side of the
Sun from the Earth), then the formula for the Shapiro time delay is defined by
the formula

r Arar
5h:u+7y§m<lﬁpv. (4)
Sun

The tightest constraint on the parameter v comes from the Shapiro time delay
experiment using the Cassini spacecraft

y=1+(21£23) x 107" ()

This value is completely consistent with General Relativity, where 7 is equal
to the unity. Thus, separating the linear in perturbation metric mode in a certain
multidimensional model, we can detect the deviation of theoretical predictions
from experimental data comparing the obtained value for v with the unity. It is
clear that the significant difference between this numbers points to a certain flaw
in the considered model.

Such analysis of Kaluza—Klein models with toroidal topology of additional
dimensions has been carried out in [5]. The authors have shown that in the case
of three-dimensional external (non-compact) space and dust-like equations of state
in both internal and external spaces the following relation fulfills for the parameter

y:

1
TE g (6)
where D is the total number of spatial dimensions. This result does not depend
on the sizes of the extra dimensions. Therefore, point-like gravitating sources are
in concordance with experiments only in the three-dimensional space.

The exact soliton solutions of the Einstein equations were investigated in [11,
12]. In these solutions a gravitating source is uniformly smeared over the inter-
nal space and its nonrelativistic gravitational potential exactly coincides with the
Newtonian one. A new class of solutions, called latent solitons, which are indis-
tinguishable from General Relativity and at the same time are the only objects
which satisfy the gravitational experiments at the same level of accuracy as Gen-
eral Relativity, was obtained in [10]. To get these solutions, the matter source



must have tension in the internal space instead of the dust-like equation of state,
and this is a distinctive feature of these solutions. In particular, black strings and
black branes belong to this class. However, the physical meaning of such strange
characteristic as tension in the internal space for ordinary astrophysical objects
is not clear.

Thus, in the case of toroidal compactification, on the one hand we arrive at the
contradiction with the experimental data for the physically reasonable gravitating
source in the form of a point-like mass, and on the other hand we have no problem
with the experiments for black strings or branes but arrive at very strange equation
of state in the internal spaces. How common is this problem for the Kaluza-Klein
models? To understand it, we investigate a model with spherical compactification
of the internal space.

Our first goal is to get a black brane solution with spherical topology of two
extra dimensions.

2 Black brane with spherical compactification

So, to start with, let us consider the six-dimensional static metrics in the form

ds* = A(F3)c*dt® + B(7s)di5 + C(73) (d6* + sin® 0d¢?) +
+E(3) (d€? + sin® &dn?) | (7)

where tilde denotes the “Schwarzschild-like” parameterization for the metrics and
the three-dimensional radial coordinate. Similar to the black strings or branes with
the flat internal space, here the metric coefficients depend only on the absolute
value of the three-dimensional radius-vector. These coefficients can be found with
the help of the six-dimensional Einstein equation

1 1 .
Ry = K¢ (Tm =19~ §A69ik> , ke =295Gg/c?, (8)
here Ag is a bare cosmological constant, S5 is the total solid angle and G is
the gravitational constant in the six-dimensional space-time. However, in the case
of the six-dimensional space-time with spherical compactification of the internal



space, we should introduce additional matter which provides the nonzero inter-
nal space curvature. Let the components of the energy-momentum tensor of this
matter have the form

k=0,..,3;
b ) b) 9
k=4,5. )

e(73)gik for 4
Ty = - .
—w1e(T3)gik for 4

Its trace reads T' = 2(2 — wy)e(73). In the language of a perfect fluid, we have
a vacuum-like equation of state in the external space, but an arbitrary equation
of state with the parameter wj in the internal space. Then the Einstein equations
reduce to the following system of fundamentally different equations:

Roo 1 APC2E?\ ke
—_—= = — ~ ~ . ~ == — —(w1€ - A/XG)7 (10)
A 4A'C? E? AB

2
Ry 1 (A7 1 (¢ 1 (B K6
— = ——= | == —_ = =~ = - = ~ "~ :—(W1€_A6), (11)
B 4A'\ AB) 20"\ BC) 2E' \BE 2

RQQ 1 1 CN'IZAEQ /'436( A ) (12)
—= = = — ~ ~ ~ ~ = - — g — 9
¢ ¢ acicer\ B p e e
R44 1 1 E’QACQ Ii@[(2 n ) n A ] (13)
— = = — <~ <~ ~ =< = _- — g 3
E E 4E'AEC?\ B PR 0

where prime denotes the derivative with respect to the coordinate 3. In the case
of black strings or branes with toroidal compactification, the internal space is
flat. Now, we require that the internal space is exactly the two-sphere, that is the
function E is constant. Therefore, from the equation (13) we get the relation

1 K¢
3= 512 Fwi)e + A, (14)
which is valid for identically constant €, which we denote as epsilon with a
bar. On the other hand, equations (10), (11) and (12) exactly coincide with the

vacuum four-dimensional Schwarzschild equations if the following condition holds:

§:A6/W1. (15)



Substituting this value of the background matter energy density into the equa-
tion (14), we get the relation

1
S 16
© (14 wy)kga?’ (16)

The obtained equalities allows to conclude that because of positiveness of the
background energy density w; > —1. The parameter wj, which determines the
state in the internal state, is not fixed and takes part in fine-tuning between & and
Ag. Choosing different values of this parameter (with the vacuum-like equation
of state in the external space), we can simulate different forms of matter. In
particular, w; = 1 and wy = 2 correspond to the monopole form-fields (the Freund-
Rubin scheme of compactification) and the Casimir effect, respectively. As an
example, let’s consider the case of the Freund-Rubin stable compactification with

two-forms
- f ) = g 4 .
}4—1“c — V gQE’ka or1 k ] ) 57 (17)
0 otherwise;

where g is the determinant of the metrics on the internal sphere, ¢;;, is the totally
antisymmetric Levi-Civita tensor and f is a constant which we define below.
Hence, the energy-momentum tensor is determined by

f2
8—7T-gik, for i, k=0, ..., 3;
Tik = £2 (18)
—8—-gik, for i, k=4,5.
s

The comparison of this expression with the background energy-momentum tensor
shows that the parameter of the equation of state in the internal space w; is
equal to the unity. Similarly, we can consider the stabilization by means of the
Casimir effect where w; = 2. It is also worth noting that in the case of the zero
cosmological constant, the parameter w; should also be equal to zero. Therefore,
the homogeneous matter with the received energy-momentum tensor provides
spherical compactification of the internal space.

In the usual four-dimensional space-time, the Schwarzschild metrics is created
by a compact (for example, point-like) spherically symmetric gravitating matter
source. Thus, to get the external spacetime in the form of the Schwarzschild



metrics, we have to introduce such object which is spherically symmetric in the
external space and uniformly smeared over the internal space. Let the energy-
momentum tensor of this perturbation have the following nonzero components:

1:—100 = égOOa TaaA: 0, o = 1a 2a 3 (19)
Ty = —D1gas, T55 = —D19gs5.

Note that 44 and 55 components of the energy-momentum tensor are gen-
erally nonzero. Then the total energy-momentum tensor is the superposition of
the background one and the energy-momentum tensor of the perturbation. In
the weak-field limit we can suppose that the energy density is approximately
pc?, where tho with a hat is the multidimensional rest mass density, and for the
particle uniformly smeared over the internal space, multidimensional and three-
dimensional rest mass densities are proportional to each other, namely, they’re
connected by the relation

p=2 (20)

where V2 is the volume of the internal sphere. Also in the case of a pointlike
gravitating mass the three-dimensional rest mass density is proportional to the
delta-function of the position vector in the external space.

Now it is the crucial point of our reasoning.

Taking into account only the gravitating matter source and keeping in mind
that we want to get the Schwarzschild solution in the external space, it can be
easily realized that the only non-zero components of the Ricci tensor should have
the following form:

1 1
Ry = 5"465900 ~ §HN/3302900, (21)
1 r
Raa = =5 R68gaa X —5RNP3C aar @ = 1,2,3, (22)
Ry =1, Rz =sin’¢, (23)

8GN
A
now, substituting these components of the Ricci tensor as well as the components

where kg/Va = Ky = , Gn is the Newton’s gravitational constant. And



of the total energy-momentum tensor of the perturbed system in the Einstein—
Hilbert equations, one can see that these equations are compatible only if the
following equation of state holds:

1

p1= —55 (24)

For example, the 00-component of the Einstein equation is given by (10),
and we see that the left-hand side of the equation identically coinsides with the
right-hand side only if the source has the equation of state (24):

1 1
ROO = 5/43(;5_900 = K¢ [z’f — Z(é - 2]51)] goo (25)

Similarly, all other nontrivial components also give the same equation of state.
That is the gravitating matter source should have tension in the internal space as
it takes place for the black strings or branes with toroidal compactification.

Therefore, the required exact solution of the field equations, which is called in
the considered case the black brane with spherical compactification, is presented
here:

—1
ds? = (1 - :—9> Rdt? — (1 - :—9> di? — 73d03 — a® (d€? + sin® £di?) | (26)
3 3

So, the matter source of this black brane consists of two parts. First, it is the
homogeneous component with fine-tuning conditions, which provides spherical
compactification of the internal space. Second, it is the gravitating object which is
spherically symmetric and compact in the external space and uniformly smeared
over the internal space. It has negative pressure in the extra dimensions. This
component provides the Schwarzschild-like metrics in the external spacetime.

To calculate formulas for the famous gravitational experiments or expressions
for parameterized post-Newtonian (PPN) parameters, it is usually convenient to
rewrite the metrics in isotropic (with respect to our three-dimensional space)
coordinates. The Schwarzschild-like radial coordinate and the isotropic radial co-
ordinate are connected by the relation:

- Ty ’
T3 =7T3 1—}—4—73 . (27)
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For example, in isotropic coordinates the linear in perturbation expression for
the metrics, similar to the Eddington—Robertson expansion in General Relativity,
is given by the approximate equality:

2 2
ds® ~ (1 + @) Adt? — (1 — @) (dav2 +dy? + dzg) —
c c
—a? (d§2 + sin? fdn2) . (28)

This equality shows, that the PPN-parameter v = 1. It’s also not difficult to
demonstrate, that the PPN parameter S is also equal to the unity, similar to Gen-
eral Relativity. Therefore, our black brane satisfies the gravitational experiments
at the same level of accuracy as General Relativity.

3 Approximate soliton solutions

Now we shall consider the other problem. It arises from the following question:
are the objects, which provide the black brane metrics, the only sources which
satisfy the gravitational experiments in the Kaluza—Klein models with spherical
topology of additional dimensions? To get the answer, let’s note, that in General
Relativity, the weak-field limit is a good approximation to calculate the above-
mentioned gravitational experiments. In this limit, a gravitating massive body
(e.g., a point-like mass) has dust-like equations of state. Obviously, the physical
sense of such approach should be preserved in multidimensionality, and it’s natural
to generalize this approach to our model.

Let us investigate the most general case, where, instead of the dust-like
equations of state in all spatial dimensions, we suppose the following energy-
momentum tensor of the perturbation:

TOO ~ /362, Taa =0, =123

. 29
Tus ~ Qpc?a®, Ty ~ Qpcta’sin® €. (29)

Here €2 denotes a certain parameter. Concerning the energy-momentum tensor
of the background matter, we suppose that perturbation does not change the
equations of state in the external and internal spaces, i.e. € and w; are constant
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and still satisfy the fine-tuning conditions (15). For example, if we had a monopole
form-fields (corresponding to wy = 1) before the perturbation, the same type of
matter we shall have after the perturbation. Therefore, the energy-momentum
tensor of the perturbed background is defined by
Tik%{ (5—{:51)gik’ ik =0...3; (30)
—wy (E+¢e) gin, i k=45,
where the correction e! is of the same order of magnitude as the perturbation.
Further we shall see that existence of such correction provides the field equa-
tions consistency. The total energy-momentum tensor is the superposition of
the corresponding tensors of the perturbed background and the perturbation:
Ti, = Tj + Tiy.
In the case of uniformly smeared (over the internal space) perturbation, the

perturbed metrics preserves its diagonal form and in isotropic coordinates is given
by formulas

ds® = Adt? + Bda® + Cdy? + Ddz* + Ed¢? + Fdn?, (31)

A= 1+ Al(r3), B~ -1+ B(r3),
C~—14+CYr3), D= —1+ D(r3), (32)
E%—a2+E1(r3), F%—aZSin2§+F1(T3),

where we take into account the spherical symmetry of the perturbation with
respect to the external space. All the terms indexed by the unity are of the order
of perturbation. To find these coefficients, we should solve the Einstein—Hilbert
equation, which is reduced now to the system of linear equations:

1 1 3 A2
N3A" = kgwie + 5—1— Q| kepc”, (33)
1
A3B' = AsCl = AsD! = —kgwie! + (5 - Q) KepC”, (34)

AE! — (9 21 2o 1 A2 2
3B = (24 wi)kea“e a2E + 2+Q Kepc-a”, (35)
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where the triangle is the three-dimensional Laplace operator. It is very helpful to
analyze the non-diagonal components of the field equation. Using the geometric
properties of the perturbation (namely, the spherical symmetry with respect to
the external space and the uniform smearing over the internal sphere) we also
obtain the relations

a?

F'= E'sin®¢, NA3E' = > (A3AY — A3BY) =
a? 1 s 2
=5 [2kewie’ + (1 +2Q) kepc?] . (36)
The comparison of (35) and (36) gives
El
1
= . 37
K6E P ( )

Hence the introduction of the background energy-momentum tensor pertur-
bation is totally legitimate, because only in the case of nonzero ! the system of
linearized field equations is consistent in the general case. The substitution of the
relation (37) back into (36) gives the Helmholtz equation:

w1 1 R 1 87mG N
ME' = B = <§+ Q) ropeta’ = <5+ Q) Z mAa),  (38)

where for the smeared extra dimensions the perturbation rest mass density is
proportional to the delta-function of the position vector in the external space. If
the parameter Q2 # —1/2, then the negative value of w; results in the nonphysical
oscillating solution. Hence, in the case of positive wy, the solution of this equation
is given by

c2

ElzaQCPN(l—i—QQ)e*T?’/A, )\:a/\/wl, (39)

pn denotes the Newton’s potential of a perturbation. It’s easy now to obtain the
metric corrections A' and B

p_en B 2w
C2 2 C2

1+ (% + Q) exp (—7“3/)\)] , (40)

a
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B! — 20N _ E_l _ 2;’# [1 — (%—}— Q) exp(—rg/)\)] . (41)

c? a?

Thus, to get agreement with gravitational experiments, coefficients A' and B!
should be very close to each other. In General Relativity, A! is exactly equal to
B'. In our model, we can satisfy this condition in two cases.

First case: 2 = —1/2. Obviously, this is the case of the previous problem with
the black brane, and we just reproduce this exact solution in the weak-field limit.
Here, the parameter wy is not fixed and satisfies the condition w; > —1 including
the case of the zero wi, when a bare cosmological constant is absent.

Second case: 2 # —1/2, r3 > \. Here, the metrics asymptotically approaches
to (28), including the physically reasonable case of the dust-like equation of state
Q) = 0. Therefore, the second case is called the asymptotic black brane. The
positiveness of the state parameter w! is the necessary condition of the considered
case.

The metric correction term A' describes the nonrelativistic gravitational po-
tential: A! = 2<p/ c2. Therefore, this potential acquires the Yukawa correction
term. The Yukawa interaction is characterized by two parameters: the parameter
A, which defines the characteristic range of this interaction, and the parameter
a in front of the exponential function. In our case @ = 1/2 + Q. There exists a
strong restriction on these parameters from the inverse square law. If, for example,
omega is not equal to —1/2, the upper limit for \ is given by the relation

Amax = (a//w1) = 6 x 10~ 3cm. (42)

In view of this relation we have also a possibility to estimate the upper limit
of the size of the internal space for a fixed value of the state parameter. Let
us estimate now the Yukawa correction term for the gravitational experiments
in the Solar system. We can take astrophysical external distances, for example,
comparable with the radius of the Sun. Therefore, with very high accuracy we
can drop the Yukawa correction term, and arrive at the case of the asymptotic
black brane.
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4 Conclusions

Thus, now let us summarize all the results of the present work in the form of a
short conclusion. In this work we found a metrics for a black brane with spheri-
cal compactification of the internal space. This is the exact solution of the Ein-
stein equations. To get such solution, we should first prepare the corresponding
background with the flat external space-time and the curved internal space (the
two-sphere). For this purpose, we should include a matter source in the form of
a homogeneous perfect fluid with the vacuum equation of state in the external
(our) space and an arbitrary equation of state in the internal space. The model
can also contain a bare multidimensional cosmological constant. To get spherical
compactification, parameters of the perfect fluid should be fine-tuned. The pres-
ence of such perfect fluid is the main difference from the well-known black branes
with toroidal compactification. In the latter case we do not need to introduce an
additional perfect fluid, because the background here is flat for both external and

internal spaces.

The next step is to construct a Schwarzschild-like metrics in the external
space-time. To perform it, we included a gravitating object which is spherically
symmetric and compact in the external space as well as uniformly smeared over
the internal space. We have shown that the Einstein equations are compatible
only if this object has negative pressure (i.e. tension) in the internal space. It
should be noted that the gravitating matter source for black branes with toroidal
compactification has precisely the same equation of state in the internal space.

Then, we generalized our investigations to the case where the background with
spherical compactification is perturbed by a matter source which has the dust-
like equation of state in the external space and an arbitrary equation of state in
the internal space. In the weak-field limit, we found solutions of the linearized
Einstein equations. One case of the parameter choice reproduces the weak-field
limit of the exact solution. In the other case the metric coefficients acquire the
Yukawa correction terms which are negligibly small at three-dimensional distances
much greater than the characteristic range of the Yukawa interaction. At these
distances, the metrics asymptotically tends to the weak-field limit of the exact
black brane solution. We named the second case the asymptotic black brane.
Obviously, in the case of spherical compactification, the exact black branes and
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the asymptotic black branes satisfy the gravitational experiments at the same level

of accuracy as General Relativity. Hence, we have two theoretical possibilities to

satisfy observational restrictions, but we still don’t know which of them is closer

to physical reality.

References

1

10

N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D 59, 086004
(1999); arXiv:hep-ph/9807344.

J. Polchinski, String Theory, Volume 2: Superstring Theory and Beyond
(Cambridge University Press, Cambridge, 1998).

Th. Kaluza, Zum Unitdtsproblem der Physik, Sitzungsber. d. Preuss. Akad.
d. Wiss., 966 (1921).

0. Klein, Quantentheorie and finfdimensionale Relativitdtstheorie,
Zeitschrift fr Physik 37, 895 (1926).

M. Eingorn and A. Zhuk, Class. Quant. Grav. 27, 205014 (2010); arXiv:gr-
qc/1003.5690.

C.M. Will, Was Einstein Right? Testing Relativity at the Century (100 Years
of Relativity: Spacetime Structure — Finstein and Beyond, World Scientific,
Singapore, 2005); arXiv:gr-qc/0504086.

N. Straumann, General Relativity and Relativistic Astrophysics (Springer-
Verlag, Berlin, Heidelberg, 1984).

C.M. Will, Theory and Ezperiment in Gravitational Physics (Cambridge
University Press, Cambridge, 2000).

Hooft, Gerard aAYt Introduction to General Relativity, (Princeton: Rinton
Press Inc., 2002).

Itzykson, C., and Zuber, J.B. (1980) Quantum Field Theory, New York:
McGraw-Hill.



16
11 M. Eingorn and A. Zhuk, Phys. Rev. D 83, 044005 (2011); arXiv:gr-
qc,/1010.5740.

12 M. Eingorn, O.R. de Medeiros, L.C.B. Crispino and A. Zhuk, Phys. Rev. D
84, 024031 (2011); arXiv:gr-qc/1101.3910.



Gyorgy Darvas

Finsler geometry in the presence
of 1sotopic field charges applied
for gravity”

Institute for Research Organisation of the Hungarian Academy of Sciences,
18, Nador St., Budapest, H-1051 Hungary
e-mail: darvasqg@iif.hu

The paper specifies the conservation of the isotopic field-charge spin
on the gravitational interaction, and discusses one of the consequences.
First, the isotopic field-charges of the gravitational field will be defined,
followed by a short presentation how the conservation of the isotopic
field-charge spin has been derived. It will be shown that in the presence
of a kinetic gauge field the metric of the gravitational field and its cur-
vature should follow a Finsler geometry, that means in the presence of
an isotopic mass field, the metric and the curvature depend also on ve-
locity. In particular, the g, metric tensor, and consequently the affine
connection field and the curvature tensor formed from its derivatives,
depend on space-time plus velocity co-ordinates. We insert this met-
ric in the formula of the affine connection field, and the Ricci tensor.

3Based on invited talks given at the 5th Petrov International Symposium on High Energy
Physics, Cosmology and Gravity (April 29-May 5, 2012, Kyiv, Ukraine), which were partially
supported by the Project No. 1202.094-12 of the Central European Initiative Cooperation Fund.
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These extended formulas will be applied to one side of the FEinstein
equation, while on the other side there appears the stress-energy ten-
sor specified in the presence of an isotopic mass field. We conclude
that due to the velocity dependence, the Schwarzschild solution cannot
be applied! It must be replaced by a Finslerian solution. Finally, as an
example, we will predict that this solution may give a more accurate
calculation for the precession of the perihelion of Mercury. General
Theory of Relativity was based in a significant part on the equivalence
principle. This principle states equivalence between the mass of gravity
and the mass of inertia. At the same time, this statement declares that
gravitational and inertial masses are not identical, for equivalence can
be observed between non-identical physical properties. Papers [1]-[12]
dealt in detail with this ambiguity. It is analysed in [13]. In [14]-[15]
18 formulated an assumption that the field charges of the gravitational
field — gravitational and inertial are not only equivalent in their mea-
sured quantity, there exists an invariance between them. This means,
that there is a symmetry according to which they are interchangeable.
They can be considered as macroscopically indistinguishable physical
properties of matter, which behave as isotopes of each other. Since
they are qualitatively not identical, we have the right to distinguish
them in our physical equations, although we can calculate with them
like with equivalent value quantities. As shown in [13]-[15], mass of
gravity s associated with the potential part V' of an object’s Hamil-
tonian and mass of inertia is associated with the kinetic part T of
an object’s Hamiltonian. According to this observation we can call the
mass of gravity as (scalar) potential mass, and the mass of inertia as
kinetic mass. For kinetic mass is associated with (and, according to
STR, depending on) the velocity of a massive object in a given refer-
ence frame, it can be described in a velocity dependent (kinetic) field,
while gravitational mass belongs to a (scalar) field depending solely
on the space-time co-ordinates. [16]-[17] proved the mathematical ex-
istence of a gauge tnvariance in a velocity dependent gauge field. This
mathematical derivation led to two conserved Noether currents that ez-
ist simultaneously. This result [14]-[15] predicted at first, a conserved
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quantity - called isotopic field charge spin - and, at second, the ex-
change of two gauge quanta (bosons) between interacting mass units.
One of them can be identified with the earlier assumed graviton. The
other boson - let’s call it ‘dion’ [1}] - which appears in the equations
due to the consideration of a velocity dependent gauge field, is new,
and is a consequence of the conservation of the isotopic field charge
spin. The paper presents how did the equivalence principle applied in
GTR lead to the assumption of the isotopic field charge spin and its
conservation, and to the prediction of an additional boson exchange.
The invariance between isotopic field charges in the presence of a ve-
locity dependent gauge field, and the conservation of the isotopic field
charge spin were extended to the field charges of other physical inter-
action fields [14]-[15], since the mathematical proof [16]-[17] allowed
general interacting kinetic gauge fields. This predicted the exchange of
additional gauge bosons in electroweak and strong interactions as well.
The result is part of the ‘new physics’ expected for many years in high
energy physics [18]-[22], and is a candidate to replace the SUSY as-
sumption. The difference between SUSY and the isotopic field charge
spin assumption is that the former renders fermion-boson pairs as new-
born brothers to each other, while the latter does fermion-fermion and
boson-boson twins. There are only the boson twins new and to be dis-
covered, since the twin brothers of fermions originate in splitting the
existing ones and are assumed to be identified with the long ‘known’
pairs defined by the equivalence principle.

1 INTRODUCTION

This paper treats fundamental physical interactions starting from two preliminary
assumptions.

i) Although mass of gravity and mass of inertia are equivalent quantities in
their measured values, they are qualitatively not identical physical entities.
We take into consideration this difference in our equations. Then this ‘equiv-
alence 1s not identity’ principle is extended to sources of further fundamental
interaction fields, other than gravity.
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ii) Physical interactions occur between these qualitatively different entities.

These two assumptions do not contradict to any known physical theory, however,
they allow another interpretation of facts built in our explanations of physical
experience. Based on them we demonstrate the existence of an invariance between
the two isotopic forms of the field charges, and formulate certain consequences in
our view on the physical structure of matter.

2 THE NOTION OF ISOTOPIC FIELD CHARGES
AND THEIR DYNAMICS

2.1 Equivalence does not mean identity

In a strict sense, identical objects cannot be equivalent. Only qualitatively different
objects can be compared to conclude a quantitative equivalence between them.
Equivalence always presumes the existence of at least one property, in which the
compared objects differ. (Isotopic spin is a good example how to avoid ambiva-
lence.)

The equivalence principle is one of the main pillars of the general theory
of relativity (GTR). It states the equivalence of the gravitational and inertial
masses. Let’s consider the mass of gravity and the mass of inertia as two different
properties of matter. For the same massive object can behave once as a source of
gravity, then as a measure of inertia, we will imagine them as two isotopic states
of the same property, called mass of the object.

As much as the mass is the field charge of the gravitational field, we will call its
two isotopic states as isotopic field charges for the gravitational interaction. The
gravitational mass is associated with the (scalar) potential part of that interaction,
while the inertial mass with the kinetic part. In GTR the latter is attributed to the
momentum densities, while the former is associated with the gravitational field
energy. They are separated within the stress-energy tensor (7}, ), but according
to the general relativity principle they can be transformed into each other; - we
should add, at least in their quantitatively equivalent values. GTR does not make
any statement about the qualitative transformation of the two kinds of masses
into each other. This was a reason to identify them. The need for a qualitative
transformation simply has not emerged. Nevertheless, we show that it cannot
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be avoided. So, we introduce distinction between masses of gravity and inertia
in our equations. (In a similar way, the electric charge - i.e., the source of the
electromagnetic field - is the field charge of the electromagnetic interaction; flavour
and lepton charge - are the sources of the weak field; the colour charge - i.e., the
source of the strong field - is the field charge of the strong interaction.) The sources
- field charges - are assumed to be realised in the matter field, while they serve
as sources for gauge fields. Are they really the same, or can one distinguish the
two agents? The mass of gravity and the mass of inertia are considered as two
equivalent quantity isotopic states of the field charge of the gravitational field.
They represent two different qualities. Their concepts express two properties of
matter, whose existence originates in different experiences. Physics established
quantitative relations between them (i.e., equal values), however this fact does
not vanish their qualitative difference. We argue that we have all reason to make
distinction between them in our theories.

When we introduce the two isotopic filed charges in our equations, they will
destroy certain symmetries of those equations. This contradicts to our experience.
Therefore, there must be an invariance that compensates and restores the spoiled
symmetry. To avoid the contradiction between experience and theory, we assume
that the two kinds of charges of the gravitational field, should be transformed
into each other by a gauge transformation. Such a gauge transformation should
involve the existence of a conserved property that we define in the following way.

Since the required transformation affects the isotopic states of the individual
field-charges (we mark it with 7T [‘dalet’ the fourth letter of the Hebrew
alphabet]), this transformation must be performed in a special gauge field;
and

since these states can occupy two positions in that gauge field, it must be a
spin-like property, therefore, we will call this property as Isotopic Field-
Charge Spin (IFCS) and denote it by A, and we will refer to the invariance
transformation what we are seeking for as isotopic field-charge gauge trans-
formation. This assumption assumes the existence of a local gauge field, in
which the isotopic field-charge spin can rotate and occupy two states and
concludes a conserved (non-Abelian) current and a corresponding class of
SU(2) type invariances.
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For the same object can behave, e.g., in the gravitational field, once as the source
of a gravitational force, and in another frame of reference as a source of a
(kinetic) inertial force (cf., covariance principle), they must be able to get
transformed into each other. Non-Abelian character and arbitrariness in-
volve that the orientation of the isotopic field-charge spin is of no physical
significance. If we determine the proper form of this invariance transfor-
mation, it will counteract the loss of symmetry between the two kinds of
field-charges, and bring our equations in compliance with the experimental
observations.

The required invariance shows certain formal similarities to YM-type invariances
[23]-[24]. However, it must differ from them in at least two features. Once,
the concerned physical property, namely the isotopic field charge (IFC, ),
is a quite different physical property than the isotopic states of nucleons.
Secondly, the gauge field, and consequently the gauge transformation that
rotates the isotopic field charge spin (IFCS, A) in this gauge field, are quite
different from the isotopic gauge field derived for the isotopic spin transfor-
mation. (For specification, see section 2.)

The existence of such an invariance transformation provides us with a symmetry,
and consequently with a conservation law, with the conservation of the introduced
new property (A) of the field-charges. The conservation of isotopic field-charge
spin is identical with the requirement of invariance of all interactions under iso-
topic field-charge spin rotation (in the gauge field where it is interpreted). Ac-
cordingly, all physical interactions should be invariant under a transformation
in a specific gauge field, more precisely, under a rotation of the property, called
isotopic field-charge spin (A). [15]-[17] proved that invariance transformation.

2.2 Interaction between the isotopic field charges

When we take a measure on an object, we have no experience that we found
it in one or the opposite isotopic state. Would we observe a single particle, it
were either in one or in the other IFCS state. We can call the two states as
potential and kinetic, scalar and vector, or bound and free states. However, our
measurement records a mixture of the two states. Nevertheless, we do not observe
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the individual IFCS states. Our observation suggests that they behave as being
in both states, each measured object can occupy both a potential (bound) and a
kinetic (free) IFCS state. In the lack of experience to catch a particle in one or the
other stable state, we have good reason to assume that they permanently change
their states. (Randomly or with a stable frequency, they may probably follow a
similar mechanism like quarks do during their colour change via gluon exchange).

Let us consider a model of a doublet, when a particle can be in a potential
state (V) and in a kinetic state (7). According to its actual state it has potential
or kinetic energy respectively. According to our observation all particles possess
both. We can interpret the phenomenon in the following way: In a probabilistic
model we can consider that the wave function of the given particle may be in
a potential state with amplitude ¥, or in a kinetic state with amplitude .
We detect a probabilistic mixture in a measurement. In a large set of particles
(e.g., in the case of a massive body consisting of many particles) the probabilities
reach a stable proportion and we observe stabilised measurable potential and
kinetic energies in a given reference frame. A harmonic oscillator model presumes
the permanent change of a single particle between its two isotopic field charge
states. A particle in a potential state plays the role of the source of a scalar field.
Therefore a potential isotopic field charge (we denote by T1y/) is a scalar quantity. A
particle in a kinetic state serves as a current source of a vector field. So a kinetic
isotopic field charge (we denote by TIr) plays roles in three vector components
according to three, directed, independent components of a field charge current.
An important consequence of the switch between the two IFC states is that the
isotopic field charges must commute between a scalar and three components of a
vector quantity, according to the velocity components of the kinetic state in the

given reference frame.

2.3 Isotopic field charges in the gravitational field

As a consequence of the distinction between my and mr, as well as the association
of the energy content with the mass my and the components of the momentum
with mp, we lose also the symmetry of the 7}, energy-momentum tensor. To
retain symmetry in Einstein’s field equations we must require again the invariant
transformation of my and mg into each other in an appropriate gauge field.
We refer to Mills [24] who foresaw the possible generalisation of YM type gauge
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invariance in general relativity “in close analogy with the curvature tensor”. If
we consider the energy-momentum tensor (in which both isotopic states of mass
appear) as the source of the gravitational field, then - in the usual way - a scalar
and a vector potential can be separated. (A hypothetic vector potential is justified
by a non-static effect, e.g., acceleration, in the field.) Although, unlike QED, there
is no analogy with the meaning of a vector potential of the electromagnetic field,
the consideration of the kinetic (inertial) mass as an individual physical property
against the gravitational mass may lend certain meaning to a gravitational vector
potential. We can explain this so, that my4 in Ty4 does not compose a fourth
component of a four-vector in the classical theory of gravitation where there is a
single scalar mass, while if we consider now m4 = my, the three components of
the kinetic mass mp can compose a three-vector, however T;4 will not form a four
vector either.

To maintain the Lorentz invariance of our physical equations in the grav-
itational field, we must demand to restore the invariance of mT under an

v

additional transformation that should counteract the loss of symmetry caused by
the introduction of two isotopic states of mass. We discuss that transformation in
section 2. Further, in the case of gravitation the relation of the scalar and the vec-
tor fields are not linear even if we have not made distinction between the potential
and kinetic masses. The non-linearity is coded in the relation of the tensors [25]
at the left side of the Einstein equation (in units ¢ = 1),

1
R, — §Rgu,, +Ag = 81GT),

or Gy + Mg, = 8nGT),, where the Einstein tensor is defined as G, = Ry —
%Rg#,, whose covariant derivative must vanish.

Since our 7}, tensor on the right side has already lost its symmetry, we can
take Ag,, into account within a modified T;,w - handling the gravitational and
kinetic masses in it together with the dark energy - and we get the following
formally symmetric equation:

Gy = 87GT), .

(The disadvantage of this apparently quasi-symmetric form is that the metric
tensor g, appears in the expressions at both sides of the equation.) It is only our
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enigmatic hope that the asymmetry hidden inside T;/w will be restored with the
conservation of the IFCS for the isotopic gravitational field charges together with
the dark energy. Nevertheless, even if the latter fails, the symmetry of the energy-
momentum tensor can be saved by the invariant gauge transformation of the
IFCS. The most important analogy is between the behaviour of the potential and
the kinetic field charges of the individual fields that makes probable to conjecture
that a unique transformation will assure their invariance (cf., section 2).4
(See in details in sections 3-4.)

3 CONSERVATION OF THE ISOTOPIC FIELD
CHARGE SPIN

Distorted symmetry of our equations® - what is not in accordance with experience
- can be restored by proving that there exists an invariance between the twin
brothers of the field charges (sources of the fields) split according to the introduced
new property (A). Invariance means that particles, disposed with these properties,
can be exchanged. The “exchange rate” (gauge) depends on the velocity of the
kinetic field charge compared to the respective matter field (i.e., to the scalar
potential field charge in rest in that field). The validity of the assumption can
be verified by demonstrating the existence of the gauge bosons that mediate the

*We must add to the conjecture of the “unique” transformation a few remarks. As [26] stated,
“In contrast to the symmetry or invariance requirement in STR, the principle in GTR is most
often presented as strictly speaking a covariance requirement.” Gauge theories behave like GTR,
at least in this respect. General covariance “is not tied to any geometrical regularity of the
underlying spacetime, but rather the form invariance (covariance) of laws under arbitrary smooth
coordinate transformations” [26, p. 34]. Weyl [27] found that the more general geometry resulting
from admitting local changes called gauges described not only gravity but also electromagnetism.
He showed also that the conservation laws of Noether follow in two distinct ways in theories with
local symmetries. This led to the Bianchi identities, which hold between the coupled equations
of motion, and which are due to the local gauge invariance of action. Later [28] demonstrated
that the conservation of the electric charge followed from the local gauge invariance in the same
way as does energy-momentum conservation from co-ordinate invariance in GTR.

® According to Higgs [29]: “The idea that the apparently approximate nature of the internal
symmetries of elementary-particle physics is the result of asymmetries in the stable solutions of
exactly symmetric dynamical equations, rather than an indication of asymmetry in the equations
themselves, is an attractive one.” Please, compare this notice with Wigners concern [30]!
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exchange. This invariance as soon as proven means a new symmetry principle of
nature. This perspective is challenging!

Section 2.2 below presents the main lines of the mathematical proof [17]| of
such invariance. The demonstration of the predicted gauge bosons is left to the

experience.

3.1 Velocity dependent phenomena

We know certain phenomena in classical physics that depend on velocity in a given
reference frame. As examples, there can be mentioned first the kinetic energy, then
the Lorentz force, and the covariant effect of the Lorentz transformation [(z#)" =
Ajj(v)a” for space-time vectors, and (F*) = A4 (v)A%(v)F*? for the electro-
magnetic field tensor|. Descriptions of the mentioned phenomena handle the space-
time co-ordinates as indirect variables. The Lorentz invariance depends only on the
velocity difference between the compared systems. In general, kinetic quantities
depend first on velocity in the chosen reference frame, and only indirectly, through
v = v(x;,t) on the space-time variables. As [24] observed, “Hamilton’s principle
was first discovered in connection with mechanical systems, where the Lagrangian
turns out to be the difference between the kinetic and potential energies, but the
principle is easily extended to include velocity-dependent forces of certain types”,
including, e.g., the magnetic force on a moving, electrically charged particle.

It is not surprising that phenomena related solely to the kinetic part of the
Hamiltonian (7') can be described in a velocity dependent, i.e., kinetic field
Dy = D[v(z;,t)] where the dependence on the local co-ordinates is indirect. This
does not disclose the possibility of localisation of the theory in space-time, how-
ever, it does not ensure it automatically. Local symmetry in a kinetic field means
that the objects, fields or physical laws in question are invariant under a local
transformation, namely under a set of continuously infinite number of separate
transformations with an arbitrarily different one at every velocity in the given
reference frame.

The isotopic field charge (IFC, ) as a property can be identified in the case
of the gravitational field with the properties of the masses of gravity and inertia
respectively. The potential isotope of T(7ly) depends directly on space-time co-
ordinates. The physical state of the kinetic isotope of T1(T7) depends primarily
on the components of its velocity (and indirectly on its space-time co-ordinates).
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When we try to specify physical phenomena that distinguish kinetic behaviour of
objects from their behaviour in a field caused by another, potential source (i.e.,
Ty) we should make attempt to seek for a description in a velocity dependent
field.

3.2 Mathematical background of the conservation of A

For the sake of the description of the mentioned distinction, we introduce a gauge
field D,,, that depends primarily on velocity. We derived a set of conserved cur-
rents in such a field [17]. The mathematical treatment is as much general as
possible, while we made a specification. Namely, Noethers second theorem allows
the dependence of the concerned fields (on which the Lagrangian depends) on
any, general co-ordinate. Certain physical theories restrict themselves on the four
space-time co-ordinates as dependent variables. We discuss fields that depend on
co-ordinates in the velocity four-space, (and handle the space-time co-ordinates
as indirect variables).

For the effects of a general non-Abelian group on the local gauge invariance are
to be described, we refer to the [24] review paper. We partially use the methods
of his description of YM type gauge fields. We introduce a new type of localised
gauge field that does not coincide with the isotopic spins YM field, marked by
B in [23] and [24]; this field, marked by D, is per defintionem different from
the YM field.® In our discussion, the D gauge field, introduced below, depends
directly on the velocity-space coordinates, while the matter field depends directly
on the four dimensional space-time co-ordinates. In other words, this means that
although we primarily use coordinates of the velocity-space, our derivations are
indirect and include derivatives with respect to the space-time co-ordinates (cf.,
the introduction of the relativistic A} tensor below) and play important role in
our conclusions. This is an expression of the facts that we observe the physical
events (occurring even in the velocity space) with respect to the 4D space-time,
on the one hand, and that our operators should effect complex ¢ (x, ) fields which
depend on the four space-time co-ordinates, on the other.

We extend the role of the co-ordinates to a set of generalised variables alike
Noether [31] did. These variables may be the four space-time co-ordinates or

6 Although we use the letter “D” to denote this gauge field, in [24] and many other publications
that letter denoted the covariant derivative, which we will mark by careted (capped) derivation
mark 9.
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they may be others (and their number may vary). In her mathematical terms
of invariant variational problems, the space-time co-ordinates did not play a dis-
tinguished role. According to her second theorem, other variables, among others
(e.g., velocity-space co-ordinates), are allowed which may implicitly depend on
the space-time co-ordinates. For practical reasons we replace the f(&,,x,) depen-
dence with a f(4,(x,)) dependence. The localisation is present here too (in the
above generalised, Noetherian sense), although it makes us possible another way
of calculating it.

We were seeking for invariance between scalar fields and (gauge) vector fields that
describe kinetic processes, the latter depending therefore primarily on velocity. For
this reason, we consider Lagrangians which depend on matter fields ¢y, and gauge
fields Dy, o, which all depend - in simple mathematical terms - on parameters. In
physical terms these parameters are generally identified with the four space-time
co-ordinates. In our specific case the dependence of D on z, will be given by the
formula: D, = D,, (gITZ)’ or in another form Dy, = D,, [i*(x,)]. The 2nd theorem
of Noether is just about Lagrangians, which depend on arbitrary number of fields
with arbitrary finite number of derivatives by arbitrary number of parameters. We
can apply her theorem here because in mathematical terms she did not specify ei-
ther the physical-mathematical character or the number of applicable parameters.
Our consideration will be justified by the final result, which demonstrates that in
a boundary situation, namely in the absence of a velocity-dependent gauge field
we obtain the same currents that were derived in a space-time dependent field,
(cf. Egs. (4) and (7) below). In other words, in the absence of relativistically high
velocities or acceleration, the effect of the velocity dependent gauge field can be
neglected, and we get back to the same currents as derived in the semi-classical,
only space-time dependent gauge’s case. At the same time, in the presence of a
velocity dependent gauge field, we derived new conserved Noether currents [17].

3.2.1 Noether’s currents for gauge invariance localised in the velocity
space

The presentation discusses general, non-Abelian case. Let’s first introduce a (ki-
netic) D field localised in the velocity space, with components D, = D ("),
where &* = i (z,); (u,v = 1,2,3,4); (dotted indices denote the velocity-space
components).
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We introduce a A}, tensor defined as A}, = J,2" = g% (Lorentz invariant
"

acceleration), which characterises the changes of the velocity-space components
in the space-time.

Localisation will be taken into consideration in this way (we refer to the gen-
eralised interpretation of localisation as defined above).”

In general, we base on a transformation group G and the transformations of its
elements into each other T'[Gw ] = T [pa(23)], where the number of parameters
are arbitrary finite numbers (a« =1,...,p));, (8 =1,...,0). The p are parameters
on which the transformations, constituting the group elements, depend. They take
the form of functions p.(zg) and their derivatives. The group transformations
depend on p and are finitely differentiable. G may take the form of different groups,
depending on the concrete form of interaction in subject, namely SO(3,1), U(1),
SU(2), SU(3) in the cases of the fundamental physical interactions.

We consider a Lagrangian density L(yk, Dj.o), where ¢, (kK =1,...,n) are
the matter fields - which also includes the velocity field ## = @#(z,) —, and Dy, 4,
(e = 1,...,N), are the (kinetic) gauge fields. We assume, that L(pg, D) is
invariant under the local transformations of a compact, simple Lie group G gen-
erated by Ty, (e = 1,..., N), where [Ty, T] = iC’gBTy, and CYJB are the so-called
structure constants, corresponding to the actually considered individual physical
interactions symmetry group.® For examples, in the case of SU(2) symmetry, G
consists of 2 x 2 matrices with 3 independent components, representing a state
doublet, and in the case of SU(3) its matrix has 8 independent components, rep-
resenting a state triplet. For simplicity we assume that the matter fields belong
to a single, n-dimensional representation of G.

Let us consider a local transformation V(&) € G parameterised by p,(2) that
acts on 1 as ¢ = V)

V(i) = e Pa(@)Ta

The infinitesimal transformations of the matter- and the gauge fields determine

"Relativistic covariance under Lorentz transformation S(A) and its consequences are a stan-
dard part of quantum field theory textbooks for long, e.g., [32, Sec. 2.1.3]. Here we take into
account time derivatives of Lorentz transformed velocities.

8We partly follow the clues by Higgs [29] and Weinberg [33] at the beginning of their pa-
pers with the exception that we consider different dependencies in the potential and kinetic
Hamiltonian terms.
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the covariant derivatives of ¢ in the gauge field. (For invariance, we can require
that the derivatives of ¢ coincide with the derivatives of V4'). The infinitesimal
transformations can be formulated as follows:

(5(pk = —ipa(.’t)(Ta)kl(pl(.’t) (k = 1, . ,n) s (1)

where the T, are matrix-representation operators generating the group G, with
the above commutation rule [Ty, 7] = iC; 3T, and

1o, a0 . .
0D, = §6ppa(x)8ﬂxp + C’gﬁpg(x)D[m(x) (a=1,...,N) (2)

where 9° = %, and J (Hebrew g, gimel) denotes a general coupling constant,
which can be replaced by a concrete coupling constant for each individual physical
interaction.

For the induced infinitesimal transformation dL of the Lagrangian density
L(¢k, Djo), on using the field equations for both the matter and the gauge fields,
one obtains

oL oL

One would like to describe the events, resulted in the interaction between the
matter field and the kinetic (velocity-space dependent) gauge field, as they are
observed from the usual 4D space-time. Therefore one needs to apply derivatives
by the space-time co-ordinates. Substituting from (1) and (2) into (3), using the
notation % = 0,2 = A}, (Lorentz invariant acceleration), and a permutation of
the indices, one can obtain

SL =0, <%(—i)pa(i)(Ta)kl¢l(i)> +

oL 1, oL
___——  —HP ») \P o . ) .
4_@L<3Q%IM@)Jalhch”>_%QL<3Q%[M@)Chﬁwﬂx)wa@ﬂ>-

We have derived from here the following two sets of equations:

IV (@) = 0,F"™ (@) 0,700 =0 (4)
(g{?)l/ — 8ﬂFo(¢2)#V ayJo(?)V =0 (5)
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completed with
oL oL
AP+
0(0uDja) 0(0yDyy.0)

Ao =0 (6)

this set (4)-(6) demonstrates, that in the presence of a kinetic (velocity-dependent)
gauge field, there exist two (families of ) conserved Noether currents. Although the
two conserved currents are not independent, in the presence of a kinetic gauge field
they exist simultaneously. (One can easily see, that A}, mixes the components of
the gauge-field currents depending on the 4D velocity space in a similar way, like
the Lorentz transformation mixes the co-ordinates of four-vectors in the 4D space-
time; since the A} tensor was defined to characterise the changes of the velocity-
space components - accelerations - in the space-time.) Taking into account the
conditions how we have obtained these currents, one can write Jo(él)” as

oL

Wpfay — Y~
@) = 3550

(To)kpi(E) - (7)

The most significant conclusion of the above cited derivation (cf., [17]) is that

(2

in the presence of a kinetic gauge field D, there appear extra Ja2
J2

. . . . . 14 .
currents. Taking into account conditions of the derivation of J; ', one can write

conserved

it in the form

oL

v _ g 0L
a(au‘Pk)

(To) (&), — C) Dy, p(&) e x M (z)| . (8)

Their dependence on the velocity-space gauge is apparent, although, none of the
conserved vector currents involve the gauge parameters p, (&) and their deriva-
tives.

>From (4) and (7), considering consequences of (6), one obtains

oL

J m(%)kl@l(i)- 9)

>From (5) and (8), considering the concrete forms of the covariant derivatives,
one obtains
oL

5, () = i OL
Wb @) = A o

(To)krpi(Z) ], - (10)
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3.3 Mathematical conclusions

First conclusion - of the conserved Noether current (4) - is a conserved quantity:
Conservation of the field charge (7).

Second conclusion - of the conserved Noether current (5) - is another conserved
quantity: Conservation of the isotopic field charge spin (A).

Further, we could derive, in the usual way, the total isotopic field charge spin
sod [

which is independent of time and independent of Lorentz transformation. J(2#
does not transform as a vector, while A transforms as a vector under rotations in
the isotopic field charge spin field.

3.4 Physical conclusions

Coupling of the two conserved quantities (71 and A), what is based on the depen-
dence of the two currents Jél)“ and J(g)“ on each other, has physical consequences.
The quantities, whose conservation they represent, and which are coupled (by
AL = 0,&"), exist simultaneously. The derived conservation law verifies just the
invariance between two isotopic states of the field charges, namely between the
potential Ty and the kinetic 7 what we intended to prove. We obtained, that
in the presence of kinetic fields we have two conserved currents that are effec-
tive simultaneously. The kinetic gauge field D is present simultaneously with the
interacting matter [¢] and gauge [B] fields. The presence of D corresponds to
the property of the field charges 7 of the individual fields that they split in two
isotopic states, and analogously to the isotopic spin, we named these two states
isotopic field charge spin what we denoted by A. The source of the isotopic field
charge spin (A) is the field ¢(Z), in interaction with the kinetic gauge field D.
The physical meaning of A can be understood, when we specify the transfor-
mation group associated with the D field, which describes the transformations of
T (i.e., the isotopic field charges). 7 can take two (potential and kinetic) isotopic
states 1y and TIp in a simple unitary abstract space. Their symmetry group is
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SU(2), that can be represented by 2 x 2 T, matrices. There are three indepen-
dent T, that may transform into each other, following the rule [T5,, T3] = iC’gﬁT 5
where the structure constants can take the values 0, £1. Let 77 and 75 be those
which do not commute with T5; they generate transformations that mix the differ-
ent values of T3, while this “third” component’s eigenvalues represent the members
of a A doublet. For the isotopic field charges compose a 1 doublet of Ty and Tr,
the field’s wave function can be written as

_(¥r
(%) "

(11) is the wave function for a single particle which may be in the “potential
state”, with amplitude 1y, or in the “kinetic state”, with amplitude 7. ¢ in (11)
represents a mixture of the potential and kinetic states of the 7, and there are
T, that govern the mixing of the components ¢y and 7 in the transformation.
T, (o =1,2,3) are representations of operators which can be taken as the three
components of the isotopic field charge spin, Ay, As, Ag that follow the same
(non-Abelian) com-mutation rules as do the T, matrices, [Ay, Ag] = iAs, etc.
These operators represent the charges of the isotopic field charge spin space, and
1 are the fields on which the operators of the gauge fields act.

The quanta of the D field should carry isotopic field charge spin A. The A dou-
blet, as a conserved quantity, is related to the two isotopic states of field charges
(), and the associated operators (4;) induce transitions from one member of the
doublet to the other.

3.5 Interpretation of the isotopic field charge spin conservation

Invariance between Ty and T means that they can substitute for each other arbi-
trarily in the interaction between field charges of any given fundamental physical
interaction. They appear at a probability between [0, 1| in a mixture of states in
the wave function ¢ (11) so that the Hamiltonian of a single particle oscillates
between V and T, while the Hamiltonian of a composite system is a mixture of the
oscillating components of the particles that constitute the system. The individual
particles in a two-particle system are either in the V or in the T state respectively,
and switch between the two roles permanently; while the observable value of H is
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the expected value of the mixture of the actual states of the two, always opposite
state particles.

The invariance between Ty and 7 (what is ensured by the conservation of
A), and their ability to swap, means also that they can restore the symmetry in
the physical equations which was lost when we replaced the general 7 (in our case
mass m) by their isotopes Ty, and Tz (concretely my and mr).”?

We denote the predicted quanta of the D field by . We call this hypothetical
boson “dion”, after the Greek term meaning ‘flee’, ‘flight’, ‘rout’ in English. The
0 quanta (dions) carry the A (isotopic field charge spin as a physical property:
charge of the D field). According to the IFCS model, gravitational interaction
takes place between two massive particles wit the simultaneous exchange of a
graviton and a dion.

Starting from the equivalence principle, through the qualitative distinction
of the masses of gravity and inertia as isotopic field charges of the gravitational
field and interaction between them, we concluded the prediction of a boson that
mediates their interaction.

4 Finsler geometry in the presence
of isotopic field charges

Let us specify (9) for the gravitational field [35]. The right side of the equation
contains the scalar field that serves for the source of the gravitational field. The
J can be replaced by the gravitational coupling constant g. As we noticed, the
dependence on the gauge fields is on the left side of the equation (9). F(Wm ()
must satisfy the

1
Tuu = ,u)\F)\y + Z(suugHUF)\ogApan

identity for the energy-momentum tensor 7). (In order to bring this form in
compliance with the indices in (9), one should raise the indices by multiplying
with the metric tensor gg in the right side.) This energy-momentum tensor 7},
can be expressed by the way of the Einstein equation

1

Ty = ————
me 8rG N

1
(R;w - §R9w/ + Agw/) (12)

9Consequences of the application of effective field theories were analysed e.g., in philosophy
by E. Castellani [34] and in physics by S. Weinberg [22].
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where R, is the Ricci tensor defined by the help of the derivatives of the metric
tensor g,,,, R is the Ricci scalar formed from the Ricci tensor (Riemann curvature)
and the metric tensor, and A is a constant of Nature, as well as G the constant
of Newton.

The metric tensor g, and its derivatives depend on the localisation of the
given point in the space-time in the General Theory of Relativity (GTR), and are
subject of Riemann geometry. In the presence of a kinetic field, that means, iso-
topic mass field D (mass being the field-charge of the gravitational field), however,
the curvature depends also on velocity. (Whose velocity? On the actual inertial
velocity of atest unit-mass placed in a given space-time point in the referenceframe
fixed to the source of a scalar gravitational field ¢ which appears on the right side
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of (9).) The g, metric tensor, and consequently the affine connection field and
the curvature tensor formed from its derivatives, depend on space-time and veloc-
ity co-ordinates. With the appearance of the dependence on the velocity vector,
the curvature becomes dependent on its direction in each space-time point. The
direction (additional parameter) attributed to each space-time point is defined by

the orientation of the velocity of a test unit-mass in the given space-time point,
Vv
vl .
Finsler geometry whose metric is defined by the dependence of g,, on (z, and)

The curvature can no more follow a “simple” Riemann geometry, it follows a

Z,.

Of course, the space-time plus four-velocity dependence of the metric tensor
g affects its all derivatives, including the formation of the affine connection
field (from first derivatives) and the Riemann curvature (or Ricci tensor, second,
covariant derivative)

1
F)\uu = 5 [aug)\u + aug)\u - a}\gﬂl/] Ff;y = g)‘pfplw

and

Rl“/ = aﬂri\)\ - 8)\F;);,1/ + Ff\l,o 3/\ - Fé)\FZV :

The solution of the Einstein equation in velocity dependent field with Finsler
geometry must necessarily lead to solutions different from that of Schwarzschild.

5 The role of the isotopic field charge spin conservation

The role of equation (12) is to retain the invariance between the two isotopic
forms, namely gravitational and inertial, of masses. The importance of this is to
save the covariance of our equations. Since there appear two different kinds of
(isotopic) masses in the energy-momentum “four-vector” (in the fourth column of
T,,) it does no more transform as a vector, and Lorentz transformation can no
more guarantee alone the covariance of our equations.

As a consequence of the distinction between my and mp, as well as the as-
sociation of the energy content with the mass my and the components of the
momentum with my, we lose also the symmetry of the T}, energy-momentum
tensor. To retain symmetry in Einstein’s field equations we must require again
the invariant transformation of my and myp into each other in an appropriate
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gauge field, namely in D. We refer to [24] who foresaw the possible generalisa-
tion of YM type gauge invariance in general relativity “in close analogy with the
curvature tensor”. If we consider the energy-momentum tensor (in which both
isotopic states of mass appear) as the source of the gravitational field, then - in
the usual way - the scalar and the vector potential can be separated. See, my4 in
Ty4 does not compose a fourth component of a four-vector in the classical theory
of gravitation where there is a single scalar mass. If we consider now my = my,
the three components of the kinetic mass my can compose a three-vector, how-
ever T),4 will not form a four vector either. To maintain the Lorentz invariance of
our physical equations in the gravitational field, we must demand to restore the
invariance of mT under an additional transformation that should counteract
v

the loss of symmetry caused by the introduction of two isotopic states of mass. We
discussed that transformation in section 2. Further, in the case of gravitation the
relation of the scalar and the vector fields are not linear even if we have not made
distinction between the potential and kinetic masses. The non-linearity is coded
in the relation of the tensors [25] at the right side of the Einstein equation (12)
(in units ¢ = 1), or we can write G, + Agu, = 87GT),, where the Einstein tensor
is defined as G, = R, — %ng, whose covariant derivative must vanish.

Since our Ty, tensor has already lost its symmetry, we can take Ag,, into
account within a modified T},, - handling the gravitational and kinetic masses in
it together with the dark energy - and we get the following formally symmetric
equation: G, = 87GT),,.

The symmetry of the energy-momentum tensor can be saved by the invariant
gauge transformation of the IFCS. The most important analogy is between the
behaviour of the potential and the kinetic field charges of the individual fields that
makes probable to postulate a unique transformation to assure their invariance

(cf., section 2).19 So the invariance under the Lorentz transformation combined

19A5 [26] stated, “In contrast to the symmetry or invariance requirement in STR, the principle
in GTR is most often presented as strictly speaking a covariance requirement.” Gauge theories
behave like GTR, at least in this respect. General covariance “is not tied to any geometrical
regularity of the underlying spacetime, but rather the form invariance (covariance) of laws
under arbitrary smooth coordinate transformations” [26, p. 34]. [27] found that the more general
geometry resulting from admitting local changes called gauges described not only gravity but
also electromagnetism. He showed also that the conservation laws of Noether follow in two
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with the invariance of the isotopic field charge spin field provide together the
covariance of the gravitational equation. However, this combined transformation
should now be taken into consideration in a field with a metric depending on all
space-time and velocity co-ordinates, following a Finsler geometry.

6 Appendix

Comparison of the invariance properties in classical GTR and in the IFCS model

In classical physics, conservation laws - as consequences of the invariance prop-
erties of the investigated systems - can be obtained by integration of the Euler-
Lagrange equations of motion of classical mechanical point systems. According to
Hamilton’s principle the variation of the action integral of the systems Lagrangian
must be zero. These conservation laws include the conservation of the energy -
invariance under translation in time. That conserved energy is equivalent with a
well determined amount of mass E = mc?, where m = my is gravitational mass,
and this conservation law does not provide any information on the quantity of
kinetic mass.

In general relativistic treatment, the source of the gravitational field is the T},
momentum-energy stress tensor, which includes the sources of inertial and grav-
itational effects as well. Applying the same variational method and integration
for the Einstein equation (using [+ + + -] signature) we derive the conservation
of the —Ty4 element of the 7, momentum-energy stress tensor. —Tjy is energy
density of the gravitational field, and is proportional to a certain amount of mass.
According to invariance under translations in the Minkowski space (Lorentz trans-
formation) the conserved current can be written in the form

0Ty = 0, <L5W _ awpr%) —0

where ¢, denote functions on which (and their first derivatives) the Lagrangian
may depend.

distinct ways in theories with local symmetries. This led to the Bianchi identities, which hold
between the coupled equations of motion, and which are due to the local gauge invariance of
action. Later [28] demonstrated that the conservation of the electric charge followed from the
local gauge invariance in the same way as does energy-momentum conservation from co-ordinate
invariance in GTR.
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The Einstein equation
1
R, — iRg#,, +Agu = 81GT),

provides the elements of T},,, in which - according to the left side - the contribution
of the kinetic and potential components are mixed by the g,, curvature tensor.
Applying the usual integration method and Gauss’ theorem, we get the fourth
column of the momentum-energy stress tensor for a conserved quantity, what is
no else than the four-momentum density, which behaves like a four-vector and
whose individual components are

(14

1
Py - /T4VdV
or separated

1 1 oL
P, =— /T4de = — /8k90i—dv (k=1,2,3);
ic ic 004p;

. oL
H = —ZCP4 - — /T44dV == /(8482m - L)dV

what are considered the conserved total momentum and energy of the field re-
spectively.

If we take into account the qualitative difference between the masses mp (what
appear in the components of Py) and my (what appears in H) that are mixed
by the curvature tensor g,, in the elements of T},,, this consideration will involve
the mixed mp and my dependence of the Lagrangians as well. As a consequence,
P, and H cannot be considered separately, and independently of each other,
conserved quantities. (We do not investigate here the ambiguous interpretations
of invariant mass.) The covariance of the gravitational equation can no more be
secured by the Lorentz invariance alone. The lost symmetry of nature can be
restored only with the shown invariance between the isotopic mass states (as
field charges of the gravitational field, conservation of A) which are rotated in an
isotopic field charge spin gauge field. The covariance of the gravitational equation
is a result of invariance under the combination of the Lorentz transformation and
rotation in the isotopic field charge field. In the latter case the four components of
(Pg[mr], H[my]) transform as isovectors. Due to the IFCS gauge transformation,
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the transformation of the field components can be described in a (space-time +)

velocity dependent gauge field, whose metric, consequently, depends also on the

velocity components, and is subject of a Finsler geometry.
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scalar curvature) as well as non-linear f(R) Kaluza-Klein models with
both toroidal and spherical compactifications of an arbitrary number
of extra dimensions and non-dust-like matter sources of the gravita-
tional field concerning compatibility with the experimental data (labo-
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case of spherical compactification a dust-like matter source also satis-
fies them under certain conditions, imposed on the parameters of the
model. However, there is the other problematic aspect in this case.
Together with the perturbation of the background matter, which pro-
vides the internal space curvature, the dust-like source looks like an
effective source, which has the non-dust-like equation of state in the
external space. Again introducing tension, one can avoid this difficulty,
but tension itself has no clear physical origin. Thus, this possibility is
not satisfactory enough.

1 Introduction

The multidimensionality of spacetime is an essential property of the modern theo-
ries of unification such as superstrings, supergravity and M-theory, which have the
most self-consistent formulation in spacetime with extra spatial dimensions [1].
Obviously, these physical theories should be consistent with observations. For ex-
ample, in the weak field limit they must satisfy the gravitational experiments
such as the perihelion shift, the deflection of light and the time delay of radar
echoes. It is well known that general relativity is in good agreement with these
experiments [1]. Therefore, in order to investigate the similar correspondence for
multidimensional theories, in our recent papers [3]- [9], we investigated classical
gravitational tests (the perihelion shift, the deflection of light and the time delay
of radar echoes) in Kaluza-Klein (KK) models.

We paid attention mainly to theories with toroidal compactification of extra di-
mensions, i.e. with compact and flat internal spaces. These theories are very popu-
lar in the literature devoted to KK models. Generalizing the standard approach [7]
of general relativity, we supposed that the background metrics (in the absence of
the matter source) is flat for our external four-dimensional spacetime and all in-
ternal spaces, and a pointlike matter source has dustlike equations of state in all
spatial dimensions. To our surprise, the obtained formulas strongly contradict the
observations [3].

It turned out that in order to satisfy the experimental data, the matter source
should have negative parameters in equations of state in the internal spaces (ten-
sion) [4,5]. For example, latent solitons have tension and satisfy the gravitational
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tests at the same level of accuracy as general relativity [5]. The uniform black
strings and black branes are particular examples of the latent solitons. The simi-
lar situation takes place for nonlinear (with respect to the scalar curvature) KK
theories with toroidal compactification [6,7]|. Here, a pointlike mass with the dust-
like equation of state in all spatial dimensions also contradicts the observations [6],
but there are two classes of asymptotic latent solitons, which are in agreement
with the observations at the same level of accuracy as general relativity [7]. For
both of these classes, a gravitating mass has tension in the internal space with
unclear physical origin.

Let us note that the metric coefficients for uniform black strings/branes depend
only on the three-dimensional radius-vector. Therefore, a matter source is uni-
formly smeared over the extra dimensions and the nonrelativistic gravitational
potential exactly coincides with the Newtonian one.

Then, we generalized our investigation to the case of KK models with spher-
ical compactification of the internal space [8,9]. Here, the background metrics
is not flat because the internal space (e.g., the two-sphere) is curved. To create
such background, we need to introduce the background matter. A pointlike (and,
for example, dustlike) mass disturbs this background. In the presence of a bare
cosmological constant the perturbed metric coefficients have the Yukawa type
corrections with respect to the usual Newtonian gravitational potential. These
corrections are negligible in the Solar system, and the considered model satisfies
the gravitational tests.

Moreover, all models with spherical compactification, where a matter source has
the dustlike equation of state py = 0 in the external (our) space and an arbitrary
equation of state p; = ¢ in the internal space, satisfy asymptotically (in the re-
gion of the negligibly small Yukawa interaction) the gravitational experiments [9].
However, in all models with Q # —1/2 a gravitating matter source acquires effec-
tive relativistic pressure in the external (our) space. Obviously, this situation can
not be acceptable for ordinary astrophysical objects such as our Sun. Therefore,
in spite of the agreement (asymptotical) with the gravitational experiments, such
models fail with the observations. Only in the case of tension 2 = —1/2, a mat-
ter source remains dustlike in the external space. Therefore, tension also plays a
crucial role in models with spherical compactification as in the case of toroidal
compactification. The only problem is to explain the physical origin of tension
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for ordinary astrophysical objects. In this paper we present a brief review of our
results, which prejudice KK models.

2 Linear models
with toroidal compactification

In this section we analyze very briefly linear with respect to the scalar curvature
R KK models with toroidal compactification of the internal spaces.

2.1 Pointlike mass

First, we investigate a model with a pointlike massive gravitating source in the
weak field limit. It means that the gravitational field is weak, i.e. the metrics is
only slightly perturbed from its flat spacetime value:

1gik = nix, + hig, - (1)

Here, the metric correction terms hy, ~ O(1/c?), where c is the speed of light,
i,k=0,1,...,D, and D is a total number of the spatial dimensions. In the weak
field limit, the only nonzero component of the energy-momentum tensor for a
pointlike mass at rest is Tog ~ ppc® ~ O(c?). pp is a D-dimensional rest mass
density, and for a pointlike mass m we have pp = md(rp). Usually, we deal with
the case of matter sources, which are uniformly smeared over the extra dimensions
[11]. In this case, the metric coefficients may depend only on coordinates of the
external space and the nonrelativistic three-dimensional rest mass density ps is
connected with the D-dimensional one as follows: pp = p3/Vpr = md(rs)/Vpr,
where D' = D — 3 is a total number of the extra dimensions and Vpr is a total
volume of the unperturbed internal spaces. For example, if a; are periods of tori,
then we have Vpr = Hg 1 @;. The Einstein equation

QSDGD 1
2Ry, = T (Tz - mgikT> > (2)

where Sp = 27°/2/T'(D/2) is a total solid angle (a surface area of the (D — 1)-
dimensional sphere of the unit radius) and Gp is the gravitational constant in the
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(D = D+1)-dimensional spacetime, is reduced to a system of linearized equations
with the following nonzero solutions [3]:

2(D — 2) 2Gnm

3h = - 3
00 D_1 CQ'I"3 ) ( )
2 QGNm
(e70% D—l C2’I"3 ) « ) ’3’ ( )
2 QGNm
h = —— =4,5,...,D b}
MM D—l 62713 ) /’[/ ) ) ) ) ( )

where we introduce the Newtonian gravitational constant

6Gy = 2222 (6)

Hereafter, the Latin indices i,k = 0,..., D, the Greek indices o, 5 = 1,2,3 and
the Greek indices p,v =4,5,...,D.

It is well known that in order to satisfy the gravitational experiments (such as the
deflection of light and the time delay of radar echoes) at the level of accuracy of
general relativity, the metric coefficients hgg and h,o should coincide with each
other. However, Eqgs. (3) and (4) show that for the considered model hgg/hoa =
D — 2 and this ratio does not depend on the size of the internal space. So, we can
not make it equal to a unity. This is the first problematic aspect to be mentioned.
On the other hand, hgy defines the nonrelativistic gravitational potential: hgy =
2¢/c?. For example, in general relativity hog = 2¢n/c®> = —2Gym/ (c?rs) and
hoo = hae. In our case, the Newtonian gravitational potential acquires a prefactor
2(D—-2)/(D —1).

2.2 Latent solitons, black strings and black branes

Above, we consider the case of a pointlike mass with the dustlike equations of
state in all spatial dimensions. However, there is a class of exact static spherically
symmetric (with respect to the external space) soliton solutions (see, e.g., [4,5])
with nonzero equations of state in the extra dimensions:

1
10Tl’4" ~ w#v—l)/p3(r3)62 ~ w;l,TOO, M= 45 5) .. ’D . (7)
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These solutions are defined by the parameters «y,, which are connected with the
equation of state parameters w, [5]:

Yp— 147
11(&)“:“2#, (8)

where 7 = 25: 4 Vu- In the weak field limit, the metric correction terms for these
solutions read [5]:

2(D —2)2Gym 20 2Gym

12hgg = — 9
00 D—1 c%r3 D—1 cr3 (9)
2 2GNm 200 2Gym
ho = — 10
o D—1 c%rs + D—1 c?r; (10)
2 QGNm Q ZGNm
By = — ——— 9w, — 1
s D—1 c?rs <w“ D — 1) c?r3 (11)

where ) = 25:4

nonzero equations of state in the extra dimensions. Solutions with

wy. Obviously, the second terms in Eqs. (12)-(14) are due to

60— -2 =3 (12)
2

we call latent solitons. In this case hgg and h,. exactly coincide with the New-
tonian expressions and with each other: hgy = hoo = hao = hae. Black stings
(D = 4) and black branes (D > 4) are particular cases of the latent solitons with
the same equations of state (w, = —1/2) in all extra dimensions. For these par-
ticular cases, each h,, = 0, i.e. each scale factor of the internal spaces is constant.
Since 2 < 0, all or some of w,, should be negative. This is the second problematic
aspect to be mentioned.

3 Nonlinear models
with toroidal compactification

In this section we briefly analyze nonlinear f(R) KK models with toroidal com-
pactification of the internal spaces. In the case of nonzero equations of state (10)
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in the extra dimensions, the correction terms read [7]

2(D —2)2Gym 2Q 2Gym 4a
D—-1 c?rs D —1 c?rg D-1
2 2Gym 200 2Gnm 4a
hew = —
o D—1 c?rg +D—1 c2rs +D—1

18hgo = —

2 2Gym Q 2GNm 4a
hyy = ——— — — 1
Hht D—-1 c?r3 <w“ D—l) c?r3 +D—1R’ (15)
where a = (1/2) f”(0) and the scalar curvature
1-Q2Gym D-1\"?
2IR= ————— — | —= . 16
2D Ery ¥ [ <4|a|D> " (16)

It is clear that the second terms in (18)-(20) take place due to the nonzero equa-
tions of state in the extra dimensions (w2 # 0) and the third terms originate
from the nonlinearity of the model (a # 0). The Eq. (21) shows that nonlinearity
generates the Yukawa interaction with the mass [(D — 1)/(4|a|D)]*/? [6].

3.1 Pointlike mass

Let us first consider the case of a pointlike gravitating source at rest, i.e. with the
dustlike equation of state in all spatial dimensions: w, = 0, p = 4,5,...,D =
2 = 0. In this case, the second terms in Eqs. (18)-(20) disappear and we arrive
at equations of the subsection 2.1 with the admixture of the Yukawa interaction.
Similar to the linear case, this situation also contradicts the observational data [6].

3.2 Asymptotic latent solitons, black strings and black branes

Now, we want to consider solutions, which are in agreement with the gravitational
tests (the deflection of light and the time delay of radar echoes). In the case of the
linear models, it takes place for the latent solitons. Therefore, we should take into
account tension in the internal spaces: 2 # 0. Unfortunately, it is impossible to
get exact soliton solutions in the case of an arbitrary function f(R). Therefore, in
the paper [7], we proposed two types of asymptotic solutions with hgy = hgg and
hoo = ﬁaa = hgo = haa- These asymptotic latent solitons exist in the regions
r3 > \/m and r3 < \/m . Let us consider these two regions separately.
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3.2.1 73> \/]d].

In this asymptotic region, the exponent in (21) is negligible and we can drop
the third terms in the Eqgs. (18)-(20). In other words, the effect of nonlinearity
is negligibly small and we arrive at the case of the subsection 2.2. Here, () =
—(D —3)/2.

3.2.2 13K +/|al.

In this case, we can replace the exponent in (21) by a unity. Here, the effect of
nonlinearity is not negligible. After substitution (21) into (18) and (19) we get

2GNm D-3 20  2(1-9Q)
22hgg = ———— 1
00 2ry [ D-1 D1 tDD-1]" (17)
2 D — 2Q) 2(1 - Q
ho = —26Nm |} D=3 _ 2= (18)
c2r3 D-1 D-1 D(D-1)
It can be easily seen that for
D -2
U0 = ——— (19)

4 Spherical compactification
of the internal space

In this section we consider a model with spherical compactification of the internal
space, where the background metrics is defined on a product manifold My x Ms.
Here, M, describes the external four-dimensional flat spacetime and M, corre-
sponds to a two-dimensional sphere with the radius (the internal space scale
factor) a. To create such spacetime with the curved internal space, we should
introduce the background matter. As we have shown in our papers [8,9], this
matter simulates a perfect fluid with the vacuum equation of state in the external
space. In the internal space (the two-sphere) the parameter of the equation of

state is
Ag

1/[(255@6/64)0,2] — A6

27w1 = ) (20)
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where Ag is a bare multidimensional cosmological constant. Different forms of
matter can simulate such perfect fluid. For example, w; = 1 and w; = 2 corre-
spond to the Freund-Rubin mechanism of compactification and the Casimir effect,
respectively. In the case Ag = 0 we get the dustlike equation of state with the
parameter wy; = 0. For w; > 0 the internal space is stabilized [9]. In this model,
the Eq. (6) takes the form 47Gy = S5Gg/(4ma?), where we take into account
that the volume of the internal space Vpr = Vo = 4ma®. The background metrics
and matter are perturbed by a pointlike massive source with dustlike equations
of state in all spatial dimensions. In the case w; > 0 the correction terms read [9]

28y = _QG;Nm B Gé\/m exp (_,/wl r3> , (21)
c°Tr3 Cc°Tr3 a
2
hen = Gnm n Gnm exp _,/wlr3 . (22)
c2rg c2rg a

So, we have the Yukawa interaction with the mass squared w;/a?. Obviously, the
admixture of such interaction to hgg and h,e is negligible for sufficiently large
Yukawa masses. Exactly this situation takes place for the gravitational tests in
the Solar system [9]. Here, hoop = haa with very high accuracy, and we achieve
good agreement with the gravitational tests for the considered model. Obviously,
models with w; < 0 do not satisfy the experimental data.

However, even for w; > 0 we have the third problematic aspect to be mentioned.
As we pointed out in the papers [8,9], the matter source in the KK models with
spherical compactification should consist of two parts. First, it is the homogeneous
perfect fluid which provides spherical compactification of the internal space. Sec-
ond, it is the gravitating mass, which is finite (i.e. pointlike) in the external space
and uniformly smeared over the internal space. The total energy-momentum ten-
sor is the sum of these parts with the following nonzero components:

al T me+e +pr3)c , TO~e+e', a=1,2,3, (23)
T =T9 =~ —wiE —wie' — Qp(r3)e?, (24)

where £ is the energy density of the homogeneous perfect fluid, p(rs) is the rest
mass density of the finite gravitating mass and ¢! is the excitation of the back-
ground matter energy density by this mass. The background matter is fine-tuned
with the radius a of the two-sphere: £ = [(1 + wi)rga?] !, and a free parameter
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w1 defines the equation of state of this matter in the internal space. The model
may also include a six-dimensional cosmological constant Ag, which is fine-tuned
with the parameters of the model: A¢ = wi€. This bare cosmological constant is
absent if w; = 0. It is assumed that the gravitating matter source has the dustlike
equation of state in the external (our) space pp = 0 and an arbitrary equation
of state p; ~ Qp(r3)c? in the internal space. We also suppose that this source is
uniformly smeared over the internal space: p(rs) = p3(rs)/Ve. In the case of a
pointlike mass in the external space p3(rs) = md(rs).

The metrics for the considered model in isotropic coordinates takes the form (see
for details [8,9])

ds® = Actdt® + Bda® + Cdy? + Ddz? + E(d€? + sin® £dn?)

with A ~ 1+ Al(r3), B ~ =1+ BY(r3), C = -1+ C%(r3), D ~ —1 + D!(r3),
E ~ —a® + E'(r3), where all metric perturbations A!, B!, C!, D!, E' are of the
order O(1/c?) and can be found with the help of the Einstein equations. They
read

20y B! 20y E!
1_ 1_ 1 _ pl_
G/4A— Cz +¥7B —C —D—C—Q—?7 (25)
YN - —
El :a2c—2 (1+QQ)€ TS/)\, )\:G/\/Wl, (26)
where the Newton’s potential is oy = —Gnym/rs. The solution (26) takes place

for wy > 0. In the opposite case wy; < 0, we get the nonphysical oscillating solution.
If @ # —1/2, the Eq. (26) demonstrates that the Yukawa interaction is generated.
The admixture of such interaction to A!, B',C', D' is negligible at distances
r3 > A (i.e. for the large Yukawa mass /wi/a), and we achieve good agreement
with the gravitational tests in this region. Exactly this situation takes place in
the Solar system |[8].

The Einstein equations also lead to the following important relationship: e! =
E'/ (kga). The Eq. (26) shows that this background perturbation is localized
around the gravitating mass and falls off exponentially with the distance r3 from
it. Therefore, the bare gravitating mass is covered by this “coat”. For an external
observer, this coated gravitating mass is characterized by the effective energy-
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momentum tensor with the following nonzero components:

2
e « v/ 1
STYID ~ et plrg)e? = —(1420) T exp <‘%r3>+7mc25<r3>’

2 T3 2
2
T a2l = (14 20) _v¥L —1,2 p
a € ( + )2‘/227“3 €Xp a rs ), « ) 535 ( 7)
Tf(eff) — T;(eff) ~ —W181 o Qﬁ(r3)02
2
wime Vw1 Q 5
= (1+2Q — - — .
(1+ )2V227"3 exp < - 7“3) V2mc 5(r3)

These components define the effective energy density and pressure of the coated
gravitating mass. From the Eq. (27) we conclude that this mass acquires rela-

s(ef0) _ _eder)

tivistic pressure p in the external space. We see that the effective
Té](eff)

energy density &(¢/7) = and effective pressure in the external (our) space

ﬁ((]eff) — _Tg‘(eff)

depend on the parameter {2, which defines the equation of
state of the bare gravitating mass in the internal space. It can be easily seen that
the equality 2 = —1/2 is the only possibility to achieve ﬁ(()ef 1) — 0 for our model.
It means that the bare gravitating mass should have tension with the equation
of state p; = —£/2 in the internal space. Then, the effective and bare energy
densities coincide with each other and the gravitating mass remains pressureless
in our space. In the internal space the gravitating mass still has tension with the
parameter of state —1/2. Therefore, tension plays a crucial role for models with

spherical compactification.

5 Conclusions

In this paper we investigated failure with the gravitational tests for (linear as well
as nonlinear with respect to the scalar curvature) KK models with toroidal and
spherical compactifications of the internal spaces, when the gravitating matter
source is dustlike with respect to all spatial dimensions. We demonstrated that
introduction of tension (negative relativistic pressure in the internal spaces) can
save the situation, but only in mathematical sense.
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case of spherical compactification of three and more extra dimensions
in Kaluza-Klein geometries. In detail we consider the internal space in
the form of the three-sphere and arrive at corresponding approximate
solutions, satisfying the experimental data.

1 Introduction

Any physical theory is correct until it does not contradict the experimental data.
Obviously, the Kaluza-Klein model is no exception to this rule. There is a number
of the well-known gravitational experiments in the Solar system, e.g., the deflec-
tion of light and the time delay of radar echoes. In the weak field limit, all these
effects can be expressed via parameterized post-Newtonian (PPN) parameters (3
and 7 [1,2]. These parameters take different values in different theories of gravity.
There are strict experimental restrictions on these parameters [3-6]. The tightest
constraint on 7 comes from the Shapiro time-delay experiment using the Cassini
spacecraft: y—1 = (2.14£2.3) x 107°. General Relativity is in good agreement with
all gravitational experiments [7]. Here, the PPN parameters 5 = 1 and 7 = 1. The
Kaluza-Klein model should also be tested by the above-mentioned experiments.
In our previous papers [8,9] we have investigated this problem in the case
of spherical compactification of the 2-dimensional internal space. In contrast to
the case of toroidal compactification the background metrics was not flat but had
topology R x R? x S2. To make the internal space curved, we introduced back-
ground matter. We demonstrated that this matter can be simulated by a perfect
fluid with the vacuum equation of state in the external space and an arbitrary
equation of state with the parameter w; in the internal space. Our model con-
tained also a bare multidimensional cosmological constant Ag. We perturbed this
background by a point-like mass and calculated the perturbed metric coefficients
in the weak field approximation up to the order 1/c?. In the case w; > 0, these
metric coefficients acquired the Yukawa correction terms with respect to the usual
Newtonian gravitational potential. The Yukawa interaction was characterized by
its mass which was proportional to y/wi. The terrestrial inverse square law exper-
iments [10] restrict such corrections and provide strong bounds on parameters of
the model, e.g., on the radius of the internal two-sphere. This radius is in many
orders of magnitude less than the radius of the Sun. Obviously, in the Solar sys-
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tem we could drop the Yukawa correction terms with very high accuracy, and
the parameterized post-Newtonian parameter v was equal to 1 similar to General
Relativity. Therefore, our model satisfied the gravitational experiments (the de-
flection of light and the time delay of radar echoes) at the same level of accuracy
as General Relativity.

In the present paper we generalize our previous results to the case of spherical
compactification of three and more extra dimensions (and a non-dust-like matter
source of the gravitational field as perturbation).

2 Background metrics and matter required
for spherical compactification
Let us start from the 7-dimensional diagonal metrics
ds® = Adt® + Bda? + Cdy? + Ddz* + Ed¢? + Fdn? + Gd¢?,

where A, B,C, D, E, F, G are functions of t, x, y, z,£,n, (, and find the correspond-
ing diagonal covariant Ricci tensor components for the background metric coeffi-
cients

A=1, B=C=D=-1, E=-d’sin®(sin’n, F =—a’sin?¢,G = —a?,

where «a is a radius of the three-sphere, representing the internal space. For these
values of the metric coefficients we get

. . 2 2
Roo = Ri1 = Rog = Ry3 =0, Ryy = 2sin’nsin®( = _EE =9
. 2 2 2 2
Rs5 = 2sin®( = — g =505, He=2= _?G =~ 966
The corresponding scalar curvature reads
, 6
R = Ritg™ = Rug" + Rs59” + Resg™ = 2

Obviously, in the case of the n-dimensional internal space in the form of the
n-sphere

n—1
RNN:_TQMN’ ,LL:3+1,3+27,3+TL,
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and

In our present particular case n = 3. In the previous particular case [8,9|
n = 2.

The Einstein equation, written down in the form
1
Ry, — §Rgik = kT + kA7gik, K = const >0,

where A7 is a bare 7-dimensional cosmological constant, allows to find immediately
the corresponding covariant energy-momentum tensor components for matter re-

quired for spherical compactification:

3

~ 3
Too = goo <—2 —A7> =—5 — Az,
ra ra

- - - 3 3
T11:T22:T33:gaa<—2—A7>:——2+A7,Q:1,2,3,
ra Rra

~ 1 sin? ¢ sin? . .
Tyg = gaa <F - A7> = —% + Aza®sin® ¢ sin?n,
~ 1 sin? ¢ )
T55 = gs5 <—2 - A7> = — + Aza?sin? ¢,
Ka K

~ 1 1
To6 = ges <—2 - A7> = —— + Aa®.
Ka K
Obviously, in the general case

~ nn—1 nin —1
Too = goo <(2T‘L2)—A4+n> =(2T‘L2)—A4+n, a=1,2,3,

~ ~ ~ nn—1 n(n—1
T =12 =T33 = gaa <(2Ta2) _A4+n> = _%‘}'A4+n,

~ n—1)(n-—2
Tuuzguu<$—fx4+n>, pw=3+13+2,...3+n,

where Ay, is a bare (4 + n)-dimensional cosmological constant.
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The transition T — T,g allows to find background energy density and
pressures as well as equations of state in external and internal spaces:

- - 3 ~ - - 3
0 _ 00 _ _ = 1_ A2 _ 3 _ _&
Ty = Toog _W_A7_6, 1—T2_T3_W_A7__po’
4 5 6 a2 7 P1, Do 0<, 0 )
) L P Agka® —1 3w +1 1
= Wwi€ W= =9 x 3 = a2 "
P ! L e T 3 Arka?’ w1+ 1 ka?
In the general case
=0 n(n—1) - sl _ge_ s _nn—1) - _5
T =g ~Mem=e T =T =T5==35" ~Mn =0,
- —1)(n—2
5:W_A4+n:_pl, p=3+1,3+2..3+n,
2ka
nn—Nw+n—-1)(n-2) 1 _ _
A — [ = :—1
44n 2(w1 T 1) I{CLQ ,  Po woé&, wo )
_ _ D1 2A4+nna2 — (n — 1)(n — 2)
p1 = w1 w1 z n(n —1) — 2A ka2

Thus, the background matter has the vacuum equation of state in the external

space and an arbitrary equation of state in the internal space.

3 Perturbation in the form
of a non-dust-like matter source

Now let us turn to the first-order approximation (the weak field limit) and find
the corresponding approximate expressions for the metric coefficients, when per-
turbation represents a point-like mass at rest, uniformly smeared over the internal

space. For

goo = A=~ 1+ Al(r3),
g33 =D ~ —1+ Dl(r3),

~
~

gs5 = F

g11 = B~ —1+ Bl(r3),

g2 = C ~ =1+ C'(r3),

[—a2 + Gl(rg)] sin? ¢,

gas = E = [—a® + G*(r3)]sin? ¢ sin 7,
go6 = G = —a® + G (r3)
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let us write down the corresponding approximate expressions for the diagonal
covariant Ricci tensor components:

1 1 1 3G!
Ry~ =AA', Ru~-AB'+-(-A'-B'4+C'+ D'+ = ,
2 2 2 a? ).

1 1 3G!
Ry~ -AC*+ - (-A'+B' - C'+ D'+ —|
2 2 a* /.,

1 1 3G!
Rys~ =AD' 4+ = (-A'+B'+Cc'—D'+ — | |,
2 2 at ).
1
Rys ~ 2sin®nsin® ¢ + §AE1 ~ R sin® nsin? ¢,
1 1
Rss w2sin2g‘+§AF1 ~ Rggsin® ¢, R66%2+§AG1.

Now let us rewrite the previously used Einstein equation in the other form:

1 2
Ry =k <Tzk - 3T9ik - 3A7Qik> .

In the general case (A7 — Agyn, gig™ =4+ n)

Ry, =k <Tz - H%Tgik - Hinl\ungik) :

In order to solve this equation, let us find the covariant components of the
total energy-momentum tensor Tj, = Tie + Tik, where the components le corre-
spond to the perturbation. The approximate expressions for the covariant energy-
momentum tensor components of the background matter in presence of the grav-
itating mass read

Too~ (+e)gor~ (e+e') (1+AY) me+e! +eA,

Ty~ (+e)gnm~(e+e') (-1+B") ~ —e—¢c' +&B',
Ty~ (+e')gnr(E+e') (-1+CY) m—-c' +&C,
Tss ~ (5+51)g33% (5—1—51) (—1—|—D1) ~—f—el 42D,

Ty = Tegsin® psin® ¢, Ths = Teg sin”

Tos ~ —w1 (£ +¢€') gos = —w1 (E+ ') (—a® + GY) = wia?s + wia’e! — wiEG?

= Trete'+3(e+e') — 3w (6+¢') =48 — 3wie +4e’ — wiet.
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In the general case instead of the last two approximate expressions we have
respectively:

Tpp ~ —w; (§+ 51) gpD X —wi (§+ 61) (—a2 + Gl) ~ wia’e + wiale! — weGh,

T%é—l—al—i—i%(é—i—el) — nwq (5—1—51) :4§—nw15+4€1 —nwlgl.
Here and in what follows D = 3 + n is the total space dimensionality and we
keep the convenient designation gpp = G.

Further, the approximate expressions for the covariant energy-momentum ten-
sor components of the gravitating mass read

Too ~ pc®,  Taa =0, Tig=Tsssin®nsin®¢,  Ths = Tyesin®¢, a =1,2,3,

Tee ~ Qpcta®, Q=const, = T~ pc® —30pc* = pc?(1—3Q),
where p is the rest mass density of the perturbation.

In the general case Tpp ~ Qpc2a? and T =~ pe? — nQpc? = pe2 (1 — nf).

The approximate expressions for the covariant components of the total energy-
momentum tensor read

Too ~ pt + e+l +2AY, Ty~ —-zc—c' 4B, Ty~ —-c—ct +eCt,
Tys~ —&—el + 2D, Ty = Teesin?nsin®¢, Tss = Tgesin’ ¢,

Tee ~ Qﬁc2a2 + w1a?e + wia’et — w G

= T pc®(1—3Q) +48 — 3wié + 4e! — 3wyt

Obviously, in the general case Tpp ~ Qpc?a® + wia’e + wia?e’ — wEG' and
T =~ pc? (1 — nQ) + 42 — nw1& + 4! — nwyet.

Taking into account the relationships A7 = £ (1 + 3w1) /2 and & = 2/[ka?(1 +
wi)] (or Agyp =& (n—2+nwy) /2and & = (n—1)/[ka®(1+w1 )] respectively in the
general case) as well as the relationships B! = C! = D! and —A'+ B! +3G'/a? =
0 (or —A' + B! + nG'/a? = 0), which follow directly from the non-diagonal
components of the Einstein equation, one can equate both sides of the Einstein
equation diagonal components and get

2 2

AAl = 3“(4 +3Q) pc? + 3/4(1 + 3wy )et,
2 2

AB! = 5“(1 —30) pc? — g“(l + 3wy et

2 4 4
AG! = gna2 (14 2Q) pc® + gmﬂ(z +wy)e' — G
a
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It can be easily seen that the relationship between G! and €' reads

kat | 1 3 4
3  kat

The final expressions for A!, B! and G' in the case 1 + 3w; > 0 and p =

md(rs)/Ss (where m is the mass of the particle at rest and Ss is the total volume

of the internal space) read

290N 3 2(,0]\[ 3
Al=""2 4 St Bt="2 - G
c? * 202’ 2 202
dpn T3
1_ 2
Here oy = —Gnm/rs is the standard Newtonian gravitational potential and

A3 = V5a/ (2¢/T+ 3wr).
In general case one can equate both sides of the Einstein equation diagonal
components and get

2(1 Q 2(n—2
Al — (1+n+n )/@[)c2+ (n —i—nwl)ﬁl’
24+n 2+n
ABL — 2(1 - nQ)ﬁﬁc2 B 2(n —2 +nw1)/€€1 ’
24n 24n
21+20) 5 o, 42+w) 2(n — 1)
1 _ 242 2_1 1
AG —2_}—7”:‘4}(1 pPC —}—ﬂﬁae —TG .

Again it can be easily seen that the relationship between G! and €' reads

2ka’ n(n —1)
Gl — 1 1 _ Gl )
n(n — 1)5 ° 2ka*
The final expressions for A!, B! and G! in the case n — 2 + nw; > 0 and
p =md(r3)/S, (where S, is the total volume of the internal space) read

20 | 208 n
Al — _Gl Bl — o _Gl
c2 + 202’ 2 202
don T3
Gl =a>—"" _(1+20 - .
“ (2+n)02( +22) exp < )\n>

Here A, = a\/(2+n)/[2(n — 1)(n — 2 + nwy)].
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Obviously, if the range A3 (or A,) of Yukawa interaction is small enough, we
can drop the corresponding terms in the astrophysical problems and obtain the
relationship A! = B! in agreement with the deflection of light and the time delay
of radar echoes with the same accuracy as General Relativity.

4 Conclusions

In order to calculate the deflection of light by the Sun and the time delay of radar
echoes, we need the metric coefficients in the weak field approximation. Performing
the corresponding calculations in General Relativity, we usually assume that the
background spacetime metrics is flat and perturbation has the form of a point-like
mass (see, e.g., [7]).

In the present paper we considered the Kaluza-Klein model where the internal
space is not flat but has the form of a three- (or n-) sphere with the radius a. Sim-
ilar to General Relativity, the external spacetime background remains flat and the
perturbation takes the form of a point-like mass. Additionally, we included a bare
multidimensional cosmological constant. First, we found the background matter
which corresponds to our unperturbed metrics. It was shown that this matter can
be simulated by a perfect fluid with the vacuum equation of state in the external
space and an arbitrary equation of state with the parameter w; in the internal
space. Then, in the weak field approximation we perturbed the background mat-
ter and metrics by a point-like mass. We assumed that such perturbation does
not change the equations of state. We have shown that in the case 14 3w; > 0 (or
n — 2 4 nwy > 0) the perturbed metric coefficients have the Yukawa type correc-
tions with respect to the standard Newtonian gravitational potential. The inverse
square law experiments restrict such corrections and provide the following bound
on the parameters of the model: A\yax ~ 1073 cm. Obviously, in the Solar system
we can drop the Yukawa correction terms with very high accuracy, and the post-
Newtonian parameter - is equal to 1 similar to General Relativity. Therefore, our
model satisfies the gravitational experiments (the deflection of light and the time
delay of radar echoes) at the same level of accuracy as General Relativity. This is
the main conclusion of our paper. The usual drawback of such models consists in
fine tuning of their parameters.



64

References

1.

10.

CM. Will, Theory and Ezperiment in Gravitational Physics, (Cambridge
University Press, Cambridge, 2000).

. N. Straumann, General Relativity and Relativistic Astrophysics, (Springer-

Verlag, Berlin, Heidelberg, 1984).

. B. Bertotti, L. Iess and P. Tortora, Nature 425, 374 (2003).

C.M. Will Was FEinstein Right? Testing Relativity at the Century, in 100
Years of Relativity: Space-time Structure — Einstein and Beyond, ed. Ab-
hay Ashtekar, page 205, (World Scientific, Singapore, 2005); (arXiv:gr-
qc/0504086).

. Bh. Jain and J. Khoury, Cosmological Tests of Gravity (2010); (arXiv:astro-

ph/1004.3294).

. T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Physics Reports 513,

1 (2012); (arXiv:astro-ph/1106.2476).

L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Fourth Edi-
tion: Volume 2 (Course of Theoretical Physics Series), (Pergamon Press,
Oxford, 2000).

A. Chopovsky, M. Eingorn and A. Zhuk, Phys. Rev. D 85, 064028 (2012);
(arXiv:gr-qc/1107.3388).

. A. Chopovsky, M. Eingorn and A. Zhuk, Ezact and asymptotic black branes

with spherical compactification, submitted to Phys. Rev. D (2012); (arXiv:gr-
qc/1202.2677).

D.J. Kapner, T.S. Cook, E.G. Adelberger, J.H. Gundlach, B.R. Heckel, C.D.
Hoyle and H.E. Swanson, Phys. Rev. Lett. 98, 021101 (2007); (arXiv:hep-
ph/0611184).



A. Kusevich'®, M. Eingorn, A. Zhuk
On Gibbs distribution and
equations of state!®

Odessa National University named after 1.1. Mechnikov,
2, Dvoryanskaya street, Odessa 65082, Ukraine
e-mail: lika.kusevich@gmail.com

The black string represents the most interesting exact spherically
symmetric “soliton” solution of the vacuum Einstein equation in five-
dimensional space-time with a single finite (compact) extra dimen-
sion. Its metrics describes the gravitational field of a non-dust-like
matter source, possessing relativistic negative tension and, hence, a
very specific equation of state in the one-dimensional internal space.
Such matter source has two main advantages. First of all, it is at the
same level of agreement with gravitational tests as General Relativity.
Secondly, its equations of state do not violate the necessary condition
of the internal space stabilization. At the same time tension has no
clear physical origin.

We investigate this challenge from the statistical physics and thermo-
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dynamics point of view, generalizing the standard Gibbs distribution
and its consequences to the multidimensional case. Using quantum
mechanics, we find the discrete part of the energy spectrum of a free
black string. Then we consider an ideal gas of black strings and obtain
corresponding non-relativistic equations of state.

1 Introduction

Present-day observable phenomena, such as dark energy and dark matter, rep-
resent the great challenge for modern cosmology, astrophysics and theoretical
physics generally. Nowadays within the scope of standard models these phenom-
ena have no satisfactory explanation. This critical situation stimulates the search
of solutions of this very complicated and overwhelmingly important problem be-
yond all conventional models, for example, by introducing extra spatial dimensions
(ESDs). This breathtaking generalization follows directly from modern theories
of unification of all known fundamental interactions (such as superstring theory,
supergravity and M-theory). Indeed, these theories have the most self-consistent
formulation in multidimensional space-times with ESDs [1]. Obviously, it is ex-
tremely necessary to subject these and other non-standard physical theories to
a procedure of hard-edged screening concerning their compatibility with experi-
mental data.

In the well-known Kaluza-Klein models, based on two pioneering papers [2, 3|
by Theodor Kaluza and Oskar Klein respectively, all ESDs are assumed to be
finite/compact and microscopic (see, e.g., [4-6], where the authors involve such
ESDs in solving of the well-known topical hierarchy problem). Let us note that
in brane world models (see, e.g., [7, 8]) ESDs may be macroscopic and even
infinite/non-compact.

In the recent paper [9] it was explicitly shown that Kaluza-Klein models with
toroidal compactification of ESDs and a standard dust-like matter source of the
gravitational field contradict experimental data of astronomical observations. In
these models formulas for the classical gravitational tests of any theory of gravity
(such as the perihelion shift, the deflection of light, the time delay of radar echoes
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[10] and PPN parameters [11, 12|) are incompatible with observations in the Solar
System.

Let us note that in the important case of non-toroidal (namely, spherical) com-
pactification of ESDs the state of affairs improves noticeably because of the back-
ground with a non-dust-like equation of state in the internal space. When appro-
priately choosing model parameters, this background leads to stabilization of the
internal space, and at first glance the corresponding Kaluza-Klein model becomes
consistent with all known experimental data, including astronomical observations
as well as laboratory tests of the Newton’s inverse square law at small distances.
One of the main characteristic features of spherical compactification lies in the fact
that the internal space is curved and the background with the non-zero energy-
momentum tensor as well as certain physical properties is necessary to provide
this curvature. The natural topical question arises, whether Kaluza-Klein models
with toroidal compactification also survive, when introducing non-dust-like mat-
ter sources of the gravitational field with non-dust-like equations of state in the
internal space.

Such matter sources were considered in [13|, where it was explicitly shown that
among the exact “soliton” solutions of the vacuum Einstein equation in the 5-
dimensional space-time with a single compact ESD [14-16], describing the static
gravitational field of a finite spherically symmetric matter source at rest, there
is only one solution, called “the black string”, satisfying all observational data
with the same accuracy as the Schwarzschild solution in General Relativity. This
fact represents the main advantage of this solution. According to the considered
Kaluza-Klein model, all ordinary non-relativistic particles must be identified ex-
actly with the black strings.

A single black string at rest is characterized by the dust-like equation of state
po = 0 in the 3-dimensional external space and the very specific, strange and
even unlikely equation of state p; = —&/2 in the 1-dimensional internal space,
where pg and p; are the corresponding pressures and € is the rest energy density.
Thus, the pressure p;, sometimes called “tension”, is negative and relativistic.
Unfortunately, both these circumstances have unclear physical origin, and the
corresponding burning issue remains open. This fact represents the main disad-
vantage of the black string.

In this work we produce consistent multidimensional generalization of standard
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methods of quantum mechanics, statistical physics and thermodynamics and ap-
ply it in order to derive different thermodynamic quantities, characterizing an
ideal gas of black strings. Firstly, we solve exactly the 4-dimensional Schrodinger
equation for the wave function of a free black string and find its energy spec-
trum. Secondly, we generalize the standard Gibbs distribution to the case of the
multidimensional space and obtain the partition function of the considered ideal
gas. Thirdly, with the help of this function and the first law of thermodynamics
we arrive at the explicit expression for the pressure in the internal space and in-
vestigate its asymptotical behavior. This predictably positive and non-relativistic
expression represents the usual temperature dependent contribution to the pres-
sure.

In order to explain the unusual (negative and relativistic as well as temperature
independent) contribution, we assume that each non-relativistic particle perturbs
the hypothetical background matter in such a way that together with this non-
trivial perturbation it looks like a black string with the tension. This strong re-
quirement imposes severe restrictions on the parameters of the perturbation.

In conclusion we summarize our main results.

2 Multidimensional Gibbs distribution
and an ideal gas

Let us start with the stationary 4-dimensional Schrodinger equation

R . . h2 82
Hypy = Egtpy, Hy= H3 — 2m 92
a K2 K2 0?2 0?2 0?2
Hy=—tpg=— (L 2 O 1
K 2m " ? 2m <3x2 - 0y? * 82’2) ’ e

where Hy and Hj are 4- and 3-dimensional Hamilton operators respectively; 1y
is a wave function of a free black string (it depends on all spatial coordinates
x, y, z, £, but does not depend on time t); the coordinate £ corresponds to the
ESD and Aj is a 3-dimensional Laplace operator. Let us note that subscripts 4,
3 and 1 indicate everywhere that the corresponding quantity relates to the total
4-dimensional, the external 3-dimensional or the internal 1-dimensional spaces
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respectively.
Following the variable separation method, we seek for the solution of the equation

(1) in the form ¢4($, Y, %z, 5) = ¢3($, Y, Z)¢1 (5) and obtain

W d*y

Hips = Est)s, ~2m de?

=B, Es=FEs+Ex, (2)

where F3 and Ej represent the standard and the additional parts of the total en-
ergy Fy respectively. Now our aim is to determine F; . Imposing periodic boundary

dyp dy
d—gw) = d—g<a>, (3)

where a is the period of the torus (the size of the ESD), one can explicitly show
that

conditions

¥1(0) = ¢1(a),

212 h?
Eyny = —n% n=0,1,2,... (4)

ma?
Thus, we have arrived at the additional energy spectrum, which is necessary for
the subsequent determination of the corresponding partition function Z;. For
n = 0 the wave function ) = 1 /+v/a is constant. Therefore, we can draw an
important side conclusion that in the ground state (n = 0, Ejg) = 0) the black
string is uniformly smeared over the ESD. Thus, the assumption of the uniform
smearing, actually made in [14-16], means that the matter source is considered in
its ground state.

For n = 1,2,3,... the wave function v;(,) can be expressed in the form of the
linear combination of two orthogonal functions

wls(n) = \/%Sin <27an5> ) wlc(n) = \/%COS <27an5> : (5)

Both these functions (as well as () are real and satisfy the normalization
a

condition [ ?d¢ = 1.
0

Now let us turn to the multidimensional Gibbs distribution. Proceeding from
the fundamental principles of quantum statistical physics, one can show that it
preserves its standard form:
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where w,, represents the probability of finding a system, closed in the thermostat,
in the v-th quantum state with the energy ¢,; v denotes the full set of quan-
tum numbers, unambiguously determining the considered quantum state; & is the
Boltzmann constant and 7' is the temperature. Finally, Z represents the partition
function.

Now let us consider an ideal gas of IV identical black strings. Obviously, in view of
(2) the partition function Z, of each of them can be expressed in the form of the
product of two partition functions Z3 and Zp, corresponding to the external and
the internal spaces respectively: Z4 = Z3Z;. Substituting the discrete spectrum

(4) into (6), we obtain
f . 2m2h? 2
= X _— =
‘ P\ T makT

n—=

+o00 El( )
Z1 = Zexp (— /ﬂ?
n=0

R T. )\ N~ _ 1.1,
—nZ_OeXP 7 _nz—oq —§+§ 3(0,9), (7)

+o00
where 05(z,q) = 1+2 Y ¢ cos 2nz denotes the third of the theta-functions [17-

n=1
19].
In (7) we have also introduced a convenient quantity g and a characteristic tem-
perature T:

272 h2 T. 222
- ENLGNL, L) g 1, T.="2 (8
4= =P < ma2kT> P ( T) DA b fe= ®)

According to [20], the free energy F' = U —TS = —kTInZ, where U is the internal
energy and S is the entropy, preserves its standard form, while the first law of
thermodynamics now reads

TdS = dU + poadVs + p1Vzda, dF = —SdT — pgadVs — p1Vzda. (9)

It follows from (9), in particular, that

__L(oF _ 1 (oF
bo = o \ Vs T,a7 b1 = Vs \ da T7V37

oF o (F
= (= =-1?( = (= : 1
S <8T>V3,a, v (aT <T))V3,a ( 0)
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For the considered ideal gas the existence of the ESD results in the additional
(everywhere with respect to the standard 3-dimensional part) free energy

+

i exp <— En2>
T

n=0

— _NkT B + %93 <0,exp (—%))} : (11)

From (10) and (11) we obtain the following additional pressures:

Fy = —-NkTInZy = —NkTlIn

+o0 9 n2
INKT, EO” T oNET  6040,9) T,
po=0, p1= Vaa  tx " Vs 1+ 65(0,q) o <_?>’ (12)
pas

where the prime denotes the derivative with respect to ¢. It is clear that p; is
positive and non-relativistic. It has the following asymptotes:

ONKT, ( T. NET
exX

| | kT N (13)
~ e N ——=n , Mg = —.
P1|T<<T. Vaa T/ P1lT>>T. Vaal 4 4 Vaa

The latter asymptote is predictable, since when the temperature is high enough,
we can apply the classical approach instead of the quantum one.

3 Background matter perturbation
and tension
In order to explain the tension of a single black string, let us consider the 5-

dimensional Minkowski metrics, slightly perturbed by the ordinary non-relativistic
particle of the mass m at rest, uniformly smeared over the ESD:

dS? ~ (14 A))Edt* + (=1 + By) (dz? + dy® + d2*) + (-1 + C1)d€?,  (14)

where small correction functions A;, B; and C7 depend only on r3 =

V22 4+ y2 + 22 in view of spherical symmetry and satisfy the following gauge
and boundary conditions:

Ay = B; + Cy; lim Ay =0, lim By =0, lim C;=0. (15)

r3——400 r3— 400 r3——+00
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The choice of the perturbed metrics exactly in the form (14) with such metric
coefficients g;; is always possible in the considered case (see, e.g., [21], where a
similar approach is evolved). Henceforth we adhere to the same accuracy every-
where. The non-zero covariant Ricci tensor components read

1 1 1
ROO ~ §A3A1, R11 = RQQ = R33 ~ 5&331, R44 ~ 5&301. (16)

Let us assume that the particle itself has no tension, and, consequently, its only
non-zero covariant energy-momentum tensor component reads TE)O ~ psc?, where
the 4-dimensional rest mass density reads ps = md(r3)/a. However, it is not
unlikely that the presence of the mass m can cause the background matter per-
turbation with

Too = e, Ti1 =Th =T33 = py=woe, Tu ~p1=wie, (17)

where the function £ also depends only on r3; wg and w; are constants. Thus,
this perturbation looks like a perfect fluid with different equations of state in
the external and the internal spaces. The total energy-momentum tensor has the
following non-zero covariant components and trace:

Too = Too + Too = pac® +&, Ti1 =Tao = Ta3 ~ wof, Tu = wi’,
T = Ting™® ~ psc® + (1 — 3wy — w1)Z (18)
Substituting (16) and (18) into the 5-dimensional Einstein equation

) 254G5
) R =

272
r@2)

Sy = = 21?, (19)

4 )

C

1
Ry, =k <Tzk - ngzk

where G5 is the gravitational constant in the 5-dimensional space-time, we obtain
1 2 ~ 1 2 ~
§A3A1 =K pac” +€— g [,046 + (1 — 3wy — wl)s] =

2 2+3
g/ﬁsp4c2 + me#, (20)

1 ~ 1 . 1 11—
§A331 =K {wos + 3 [p402 + (1 — 3wp — wl)s]} = §Kp4c2 + ke 3w1’ (21)
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1 ~ 1 .
§A3C’1 =K {wle + 3 [,0402 + (1 = 3wp — wl)e]} =

1 1-3 2
= —kpac® + /ﬁ;z’:‘w. (22)
3 3
It follows from (15) and (20), (21), (22) that wp = 0 and, consequently,
4 2 2 11—
N3zA; = —/{p402 + 2ke + wl, NA3B| = —/{p402 + 2ke wl,
3 3 3 3
2 142
N3Cy = §Kp4c2 + 2ke +3 ity (23)
Excluding £, one can show that
24wy 9 W1
N3 | A — Cr) =2
3( YT o 1) A T o0
A3z | By — 1_w1C’ = 2k pyc? ! (24)
S\ T T e ! P oy

Obviously, the inequalities wy # 0 and w; # —1/2 must hold true. From (24) we
get
2+ w; 20N l-uw 20N Gnym

e — B = C 9 - - ) 25
1+ 2w ! c2 ! 1+ 2w Lt c2 N r3 (25)

Ay

where G is the Newtonian gravitational constant. The non-relativistic gravita-
tional potential ¢ satisfies the Poisson equation

w1
1+ 2wy

Nspn = kpact = 4drGnapy = ArGymd(rs), (26)
where the following relationship between the multidimensional and the Newtonian
gravitational constants has been established:

I{C4 w1 _ 2S4G5 w1 7TG5 w1

il — =47Gy, —2
a 1+ 2w a 142w TN a 14 2w,

= Gpy. (27)

Now let us turn to the case € = vC7, where + is a constant. Then

1+ 2wy

2
N3C1 = g/ﬁp4c2 + 2Ky Cq,
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20N 142w
N C9 3(.01

1+ 2wy
3

Ch , (28)

exp [—7’3 2Ky

where we assume that the important inequality (1 + 2w;) > 0 holds true. Sub-
stituting (28) into (25), we obtain

20N 24w [ [ 142w
Alzf—2{1—i—37w1exp —1r31/ 2Ky 3 },

20y 1—w [ 1420
B; = 2 {1—}— o exp | —r3y/ 2Ky 3 } (29)

Obviously, if the quantity 1//2k7(1 4 2w1)/3 is less than a submillimeter scale,
then the second terms in braces can be neglected, and at both laboratory and
astrophysical distances the important approximate equality A; ~ By ~ 2¢y/c?
holds true. It means that there is no any noticeable deviation from the Newton’s
inverse square law as well as from predictions of the classical gravitational tests.
Finally, taking into account a sharp decrease of the Yukawa potential, when rj
increases, let us approximately replace it by the delta-function:

1o (s Lo (Y gy —
Tsexp( A)%é(rg)/réexp< )\)dV_

“+o0o
/
= 4md(rs) / rh exp <—%3> drl = 4t)\?6(r3), (30)
where A is a parameter, then
- 2Gym 1+ 2w 1 1+ 2w;
£=—v —exXp | —T3 2/‘{’7
c2 3wy T3 3
2Gym 14 2w, 4 1 9
_ ) = — 31
2 3w 2/«)’% (I’3) 1+ 2w, pac, ( )

where the relationship (27) has been used. This replacement means that we amass
artificially the total energy of the background matter perturbation in the origin
of coordinates. Substituting (31) into (18), we get

2w
2 1 2
pac” = pac”, Ty — —

2
. 32
15 20 pac (32)

1 w1
Too — pac® —
00 = PAC T T o 1+ 2w,
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Therefore, in this limit the total pressure p; ~ Ty4 of both a single particle and
the corresponding background matter perturbation in the internal space and the
total energy density ¢ ~ T satisfy the equation of state p; = —&/2 of a single
black string. Thus, we have arrived at the possible explanation of the tension of
black strings.

Conclusions

Let us enumerate briefly the main results of this work:

1. An ideal gas of ordinary non-relativistic particles has been described by the
standard methods, generalized to the multidimensional case. In particular, the
explicit expressions (11) and (12) for the additional free energy and pressures
respectively have been derived. The pressure p; in the internal space is positive
and temperature dependent.

2. The relativistic, negative and temperature independent tension of each black
string can be explained by the corresponding background matter perturbation
with the energy-momentum tensor (17), where

~ 1
€=~C1, wo=0, wl#;—§, v(1 4 2wy) > 0.

Both conclusions are overwhelmingly important for further development of multi-
dimensional theories of gravity. The first one prejudices Kaluza-Klein models with
toroidal ESDs and non-dust-like matter sources of the gravitational field, while
the second one gives them a chance of reprieve.

Our results can be generalized directly to the case of the multidimensional space-
time with an arbitrary number of toroidal ESDs.
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as a perfect fluid with two components between which there is energy
exchange. The analytical solutions of the Einstein equations are found.
The limiting cases of the the Hubble expansion rate and the total
energy density, which correspond to matter production, pressure-free
and radiation-dominated phases are investigated. The transition to
the inflationary phase and a unidirectional evolution of matter in the
universe at all phases are discussed.

1 Introduction

The standard cosmological model is based on the hot Big Bang model and the
assumption about the inflationary expansion of the very early universe, when the
scale factor grows quasi-exponentially, while the Hubble expansion rate remains
almost constant (e.g., Refs. [1-4]). During inflation the universe is in the vacuum-
like state which is usually associated with a scalar field called the inflaton. After
inflation the energy density of the primordial matter (except the inflaton) which
filled the universe before this stage becomes negligibly small. In order to explain
the presence of conventional matter in the universe after inflation, the decay of
the vacuum-like state into ‘normal’ particles is postulated.

The universe becomes hot as a result of interaction between particles and
transits into the radiation-dominated phase. In the process of energy transfer from
the inflaton to radiation (called reheating) the equation of state of matter changes.
A change from a vacuum-like equation of state to the equation of relativistic
matter might be gradual and an intermediate stage between these two known
phases may be modeled.

In the present article, the evolution of the equation of state of the matter in
the universe during the time interval between the end of inflation and the be-
ginning of the radiation-dominated era is considered. Without rendering concrete
mechanisms of decay of vacuum-like state into the conventional matter, we assume
that the global geometry and total amount of matter in the universe as a whole
satisfy a constraint, which is valid during some time interval, before radiation
domination. This constraint is equivalent to the law of the conservation of total
energy of the universe which remains equal to zero due to the gravitational mass
effect, whereas the energy attributed to the particles of conventional matter in-
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creases with expansion of the universe [2,5]. In this case, at all stages of evolution
the universe is described by the Einstein equations with addition of appropriate
equations of state.

The paper is organized as follows. In Section 2 the basic equations which
describe the homogeneous, isotropic and spatially flat universe are given. The
equations of state of matter for the different phases of reheating are justified.
In Section 3 a two-component perfect fluid model is introduced. The analytical
solution of the non-linear equation for the Hubble expansion rate is obtained.
The expressions for the deceleration parameter and the total energy density as
functions of time are deduced. The limiting cases of the solutions which correspond
to pressure-free and relativistic matter are considered. The Whitrow-Randall’s
relation [6] is rederived. In Section 4 the transition to the inflationary phase is
discussed. The mechanical analogy which explains a unidirectional evolution of
matter in the universe at the phases under consideration is given.

2 Equation of state parameter

Let us consider the homogeneous, isotropic and spatially flat universe in the early
epoch, when its dynamics can be described by the equations of the Friedmann-
Robertson-Walker (FRW) cosmology,

. 2
H?= (%) -7, 1)
p+3H(p+p)=0, (2)
p=w(t)p, (3)

where R(t) is the cosmic scale factor, p(t) is the energy density of the matter
which has a form of the homogeneous perfect fluid, p(t) is its pressure, w(t) is
the equation of state parameter, G is the Newtonian gravitational constant, an
overdot denotes d/dt, t is the proper time (units ¢ = 1 are used).

Let there exist an interval of time after inflation At.; = t.—t;, where t; denotes
the time at which inflation ends and ¢, stands for the time at which an intensive
transfer of energy to the matter degrees of freedom ends. We assume that during
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this interval the matter is produced, so that the following condition is fulfilled, at
least in good approximation,
M2

where M = %ngp is total mass-energy of matter (the sum of masses of particles
of conventional matter) in the equivalent flat-space volume taken without account
of gravitational interaction between particles. The equation (4) can be interpreted
as the law of the conservation of zero total mass-energy of the universe during
its expansion with matter production [5|. According to Eq. (4), during the time
interval At,; the following relation R = GM is valid. It means that the energy

density
3 1

= —— 5
P~ GanR? (5)
decreases linearly with increasing surface area 47 R2.
From Egs. (2) and (5), one can find the equation of state

1 1

p=-3p w(t):—g- (6)

After the end of this phase, the mass M remains constant on the time interval
Aty = t.—t., where t,. denotes the beginning of the subsequent relativistic matter
dominant era. The equation of state on the time interval At,. takes the form

p=0, w(t)=0. (7)

In the relativistic matter dominant era, the mass attributed to relativistic
matter reduces as the universe expands, M ~ R~ due to the cosmic redshift.
For times t > t,, the equations of state has a form

1 1

p=3p w(t) = 3 (8)

We will study the model of evolution of matter in the early universe, where
the equation of state parameter w(t) changes with time from —%, passing through
the point w = 0, to % taking all intermediate values. Substituting a continuous

w(t) = étanh <t_t0>, (9)

T

function w(t) of time ¢,
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for the equation of state parameter on the time interval [t;,¢,.[, and choosing
properly a point ¢y on this interval, one can reproduce the required values of w
(6)-(8). Since t, > t; (in standard cosmological model, the value t; ~ 1073 s is
acceptable, whereas the time ¢, is often evaluated as ¢, ~ 10730 s corresponding
to temperatures not exceeding 10'2 GeV [1]), the good estimation for ¢y may be
to < tr. The value 1/7 determines the mean rate of change of the equation of
state parameter w(t). Such a variation of the equation of state parameter can be
achieved in a system, where the matter consists of a few components between

which occurs the energy transfer for some typical time 7.

3 Two-component fluid

Let us consider a two-component perfect fluid with the energy density and pressure

p=pg+pi,  P=Dpg+Dd (10)

These components satisfy the equations

pq + 3H(pq +pq) = Q? ﬁd + 3H(Pd +pd) = _Q7 (11)

which represent the energy conservation law (2) rewritten for components, @ is
the interaction term.

The components of the perfect fluid are imitated by scalar fields ¢4(t) and
¢4(t) with potentials V,(¢,) and Vy(¢q),

1.2 1.2
Po = §¢o¢ + Vo, Pa = §¢a — Vo, a= {(Ld}- (12)

The models of such a type which include a coupling between the matter com-
ponents were considered in the literature, in particular, within the context of
inflation and reheating and the coincidence problem of dark energy and matter in
the accelerating universe (see, e.g., Refs. [7-9] and references therein). The form
of the interaction term ) may be derived from different physical arguments or
obtained as a solution of some dynamical equation, which describes the required
properties of the matter fields ¢.

Let us assume that the field ¢, forms the pressure-free matter component
(dust),

1.2
§¢d =Vi, pa=2Vy, pq=0. (13)
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Concerning the field ¢,, we suppose that it is described by the vacuum-type
equation of state (as for the inflaton) at times t < tg,

Pq = —Pq- (14)

From Eq. (12), it follows that at this stage the kinetic energy of the field ¢, can
be neglected and the total energy is determined by its potential term,

¢.q2 ~0, p;=V,. (15)
For times t ~ ty, the equation of state takes the form
pg =~ 0. (16)
It means that Ly
§¢q ~V,,  pg 2V (17)
Then, for the times ¢ > 1y, the field ¢, describes the matter component with the

energy density which is almost equal to its kinetic energy,

1.2
—¢, , Vy~0. (18)

PqEQ

This phase corresponds to the reheating of the pressure-free matter and provides
the passage to relativistic matter domination. The field ¢4 here has a form of the
stiff Zel’dovich matter,

Dg = pg at t > 1. (19)
The continuous transition from Eq. (14) to (16), and then from (16) to (19) can
be achieved if the following condition is imposed on the field ¢,
1.
g =, 20
where 7 < %to.
Taking into account Eqgs. (10), (12), (13), (15), (20), from Eq. (3) we find

o2(t—to) /T _ 1

e2(t—to)/T + 1 4+ 2Vd/‘/;1.

w(t) = (21)
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This relation passes into Eq. (3.2), if one introduces the following additional con-
dition on Vj,

Vd — pq = ‘/'q |:e2(t7t0)/7— + 1 . (22)
Then from Egs. (10) and (13), we get
Dq
q q 3pq ( )

In this case, the interaction term @ = 2Hp, and the set of equations (11) reduces
to one equation

. 1
pq +3H <Pq + gpq> =0. (24)
From Egs. (1), (3.2), and (24), it follows the non-linear equation for the Hubble
expansion rate,
H+§ 3 + tanh H*=0. (25)
T

The general solution of this equation is

2
H(t) = — 2
0= 5 (26)
where we denote P
D(t) = Cto + 3t + 7 Incosh ( — 0> , (27)
T

C is a constant of integration.
The deceleration parameter, ¢ = —1 — H/HZ, is equal to

q(t):%{l—i-tanh (t_T“)}. (28)

The deceleration parameter changes from the value ¢ = 0 for the equation of state
(6), through the point g = % for Eq. (7), to ¢ = 1 for Eq. (8). Thus, in the model
under consideration, the expansion of the universe is decelerating on the whole

time interval from the end of inflation to the beginning of the radiation-dominated
era.
The total energy density is

3
p(t) = 27 GD(1)?
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The limiting cases of the solutions (26) and (29) reproduce the well-known ex-
pressions for the Hubble expansion rate and the energy density. Setting C' = 0,
near the point ¢ = t¢ we find for pressure-free matter [10]

2 1
3 PV T s

Choosing the constant C' ~ 1+ = 1In2, for ¢ >ty > 27 we obtain the relations for
the relativistic matter

H(t) (30)

3

1
H(t) ~ — )~ ———. 31
(=50 pl)~ = (31)
For times t < to and ¢y > 27, from Eq. (27) it follows
D(t)=2t+ (C+1)tg — 7In2. (32)
Setting C' ~ —1 + % In 2, these expressions reduce to
1 3
H(t) ~ - t) ~ ——.
O~7 o)~ —ms (3)

The equation for p(t) has a form of Whitrow-Randall’s relation [6].

4 Discussions

The equations (26), (27), and (29) demonstrate how the Hubble expansion rate
and the energy density change with time from the inflationary phase of the uni-
verse’s expansion, through the subsequent eras of an intensive energy transfer and
pressure-free matter, to the beginning of the radiation domination. By choosing
the constant of integration C, the solutions (26) and (29) are reduced to known
‘standard’ expressions (30), (31), and (33). An interesting feature of the solution
(29) is that at the point ¢ = 0 it is finite,

3
PO) = G Tt 2P

(34)

Thus, the two-component system does not have an initial cosmological singularity.
The equations (26), (29), and (6) can be continued into the region of extremely
small values of time, ¢ < 1|(C' + 1)to — 7In2|, where the Hubble expansion rate
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slightly changes with time, so that in the inflationary phase H(¢;) ~ H(0) =

% p(0) and the expansion of the universe will be exponential in time, R(t) ~

exp{H (t:)1}.

The expression for the energy density p(¢;) in the inflationary phase can be
reduced to the ‘standard’ form. Setting G = My? [3], where Mp is the Planck
mass, 7 =~ M;l, and choosing C' = —1, from Eq. (34) with a good accuracy we
get H(t;) = \/§MP, p(t) =~ M5* (ct. [1]).

In the two-component model (10) with the equation of state (3) with the
parameter (3.2), the evolution of the universe goes in one direction, from small
times t < tg to large values t > {g.

The following mechanical analogy allows to understand the reason of the origin
of this ‘arrow of time’. The function (3.2) can be considered as the kink solution
of the equation

L+ [~U(w)] =0, U= 9 <w2 - 1>2 (35)
2 ’ 272 9/’

which describes the motion of the analogue particle with zero energy in the po-
tential [—U(w)] (cf., e.g., Ref. [11]). This potential has two maxima at the points
w = i% and a local minimum at w = 0. The analogue particle moves along the
‘trajectory’ (3.2) from the value w = —% in the distant past (t = —o0) to the
value w = % reached at t = co. At the moment t = ¢, the particle passes through
the minimum of the potential at w = 0. Leaving the point w = —%, the analogue
particle can only approach the point w = % at t — oo, where its velocity and
acceleration vanish. It cannot return back to w = —%.

We note that Eq. (35) has another solution in the form of the antikink which
is equal to the function (3.2) with an inverse sign. This case corresponds to the
model in which the relativistic matter at ¢ = —oo transforms into the pressure-free
matter and then into a gas of low-velocity cosmic strings at t = co. It was studied
in Ref. [12], where it was shown that the equation of state of matter can change
with the expansion of the universe due to energy transfer between the matter
components (scalar fields) allowing to reproduce the evolution of matter in the
universe with non-zero cosmological constant. The description on equal footing
of the universe over the total time interval from inflation through reheating to

subsequent cooling and transition to the pressure-free matter using the kink and
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antikink solutions of Eq. (35) may indicate about their important role in the

representation of the evolution of matter.
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proposed to avoid such effects: artificial viscosity, artificial dispersion,
anti-diffusion etc. But the problem is still open, especially in design
of special difference schemes. In this paper some theoretical consid-
erations for understanding the errors in numerical computations are
proposed. It is strictly considered for some cases as extra smoothing of
fronts as the origin of artificial oscillations in the solutions. It is con-
firmed that the smoothing is originated by dissipation in schemes and
oscillations by dispersion of schemes. Some new methods of improving
numerical solutions of evolution equations are proposed on the base
of theoretical considerations. In the case of linear equations proposed
tools can increase the order of the accuracy. The artificial viscosity
and artificial dispersion for difference schemes of gas dynamics are
proposed as the first examples. A new class of tools for improving
numerical solutions is proposed - ‘Langoliers’. ‘Langoliers’ are special
difference operators which should be applied at each time steps after
the running of original difference schemes. The design of ‘Langoliers’
allows to reduce the dissipative and dispersive errors of schemes.
The examples are anti-diffusion, anti-dispersion and specially con-
structed difference schemes. Different illustrative examples of such
tools are considered for gas dynamics equations and for wave equation.

Keywords: Numerical schemes; dispersion; dissipation; non-smooth
solutions, anti-dispersion; 'Langoliers’; collapses.

1 Introduction

It is a well-known fact that the difference schemes for approximate solutions of
evolution equations have usually some errors within the interval of theoretical
accuracy of the schemes [1]- [4]. The two most known errors are the artificial
smoothing of the solution and oscillations in the solutions near the places with high
derivatives of the solutions (near the sharp fronts of the solution). A lot of special
tools have been proposed to avoid such effects: artificial viscosity in schemes [1],
artificial dispersion in schemes [3,5, 6], anti-diffusion [7],ENO (essentially non-
oscillation) schemes [8] etc. But the problem is still open, especially in design of
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special difference schemes. Remark the before we outline only some of known and
working approaches. Some of remembered tools essentially improve the numerical
solutions but the difficulties in their applications still are large (as in the theory as
in the practice, especially in the modelling of 2D and 3D flows of complex media).

Because of increasing complexity of equations which should be used for mod-
elling of evolving media and systems in hydrodynamics, gas dynamics, plasma,
reology the problem of design of more accurate difference schemes is very impor-
tant. For such goal it is necessary to know the peculiarities of numerical schemes
behavior, the souses of ‘artifacts’ in the numerical solutions and better theoretical
understanding of the difference schemes as the objects. So in given paper some
theoretical considerations for understanding the errors in numerical computation
are proposed. It is strictly considered for some cases as the extra smoothing of
fronts as the origin of artificial oscillations in the solutions. It is confirmed that the
smoothing is originated by dissipation in schemes and oscillations by dispersion
of schemes.

On the base of theoretical considerations there are proposed some methods for
improving numerical solutions of evolution equations. In the case of linear equa-
tions proposed tools can increase the order of the accuracy. The artificial viscosity
and artificial dispersion for difference schemes of gas dynamics are proposed as
the first examples.

A new class of tools for improving numerical solutions is proposed - ‘Lan-
goliers’. ‘Langoliers’ are special difference operators which should be applied at
each time steps after the running of original difference schemes. The design of
‘Langoliers’ allows to reduce the dissipative and dispersive errors of schemes. The
examples are anti-diffusion, anti-dispersion and specially constructed difference
schemes. Different illustrative examples of such tools are considered for gas dy-
namics equations and for wave equation.

2 Dissipation and dispersion
of finite-difference schemes
The terms ‘dissipation’ and ‘dispersion’ of difference schemes have a strict sense in

case when the original partial differentia equations are linear and have a constant
coefficients. In such case difference harmonics of difference scheme (or alternatively
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the harmonic of continual analogue of difference scheme) is the adequate tool for
investigation of the properties of numerical schemes. Such approach is well known
and is proposed in any textbook on numerical methods (for example see [1-3,9].
The results of analysis are specific to a problem or a process. But the general
chart of researches remains the same - that is the analysis of accordions and their
dispersion correlation is conducted for the initial condition and for the method
of its approximation. Therefore further we will illustrate a chart of methods, and
also facilities of improvement on a simplest example - equation of transfer or
advection. We will consider a Cauchy problem for advection equation in a region
—0 < T <0

0 0
Lu:a—ztt—}—aa—z:O,a:const (1)
with initial conditions
u(z,0) = v(z). (2)

We will consider also the general class of obvious numerical schemes for equation

(1)

n+1 mo

Ay = % + Z WY, (3)
l=—m

where y denotes the numerical solution calculated on lattice wp, = wp X wy,
wp ={x; =jh, j=0,%£1,..}, w; = {t, =n7,n=0,1,..., N}, ar/h = v = const.
A scheme (3) can be rewritten in a kind

yn+1 — Ryn7 (4)

where (Ry"); =y} — 7302 | aiy? =300, byl
To conduct the analysis of accordions for chart (3) we will consider special
kind schemes solutions (numerical harmonic):

Yyt = qf exp(ikay), (5)
where k = 27/) is a wave number, A is a harmonic wave-length. A value ¢, =
Rqr + iS¢ is named the coefficient of transition of scheme. Putting (5) in (4) we
get for g,

m2

qr = Z by exp(iklh).

l=—m
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A transition coefficient can be also presented as

Qk = prexp(igy). (6)

In formula (3) pr = mod g, = [(Rqr)?+(Sqr)?]/? there is the module of coefficient
of transition ¢y, = — arg g, = arctan(—Sqi/Rqr). We will name vy, = qi/kT phase
speed of k-th harmonic. We will enter the continual analogues of the module to the
transition coefficient p({) = a¢({)/v¢ from an argument ¢ such that p(Cx) = pk
and also phase velocity v({;) = v, where (x = kh.

We will consider numerical schemes charts for which

p(¢) =1-w((),0=w(() <2,¢<1,

w(C) = eC* + O(¢12), ¢ = const,s = 2p (™)

From Rihtmayer’s papers [4] it is known, that such scheme has s-th order of
dissipation. By [10] a scheme has m-th order of dispersion if a dispersion function
can be written down as

v(¢) = a[l +6¢™ 4+ O™ )], 6 = const. (8)

We now will draw some result from (Brenner & Thomee, 1970). Their character
of scheme (coefficient of transition of scheme) was presented in a way where such
presentations are accepted

q(¢) = exp[—iv¢ + ()], (9)

where
RU(C) =9¢°[L+0o(1)], ¢—=0, ¢>0, (10)
T(C) = Vo1 +0(1)], Te#0, r>0. (11)

Then s is interpreted as an order of dissipation, and r characterizes the order
of approximation. For schemes with the orders of dissipation s and approximation
r and initial conditions v € By,’™, where B," ™ are spaces of Besov’s functions
subject to the condition 0 < o < r+ 1, a # (r +1)(1/2 — p!) in (Brenner &
Thomee, 1970) the estimation for convergence of the scheme had been proved

1y (@) — v(z,n7) || 1p< CRP@) [ v | 000 (12)
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and the order of convergence of scheme is set by formulas
B(a) = a[l = (14 )74+ min(0, [ — (r+1)|1/2 —p Y][1/(r +1) —1/s]). (13)

If we set the order of dissipation, it is possible to find the order of convergence.
For this purpose we will rewrite the coefficient of transition of scheme as following

@k = [1 — w(Q)] exp(—uvphT) = exp[—in¢ + W1 (()], (14)

where W (¢) = [(—cC® +0(¢®))] +i[y0¢™ T + 0o(¢™H1)). From previous formulas it
is possible to get very important correlation between the order of approximation,
dissipation and dispersion of scheme:

r=min(s, m+1)—1 (15)

Very important conclusion is that the order of approximation can be determined
by either the order of dissipation or order of dispersion.

If the initial conditions of problem belong to Sobolev’s spaces W§* C By* ™,
« is a whole number, m is order of scheme dispersion, s is order of scheme dissi-
pation, v € W3, subject to the condition 0 < o < min(s, m + 1), then speed of
convergence d in space Lo has the form d = 8(a) = a{1 — [min(s, m + 1)]71}.

So the order of approximation may be determine either by the order of dis-
sipation or the order of dispersion. Note that the order of approximation also
determines the order of convergence (in dependence on the smoothing of the solu-
tions). It may be found from such analysis that for example for even s the schemes
have an even order of approximation and the rate of convergence is determined
by dispersion effects. This implies that the large non-physical oscillations which
are usually observed in schemes of even order of approximation, when comput-
ing non-smooth solutions, are precisely due to dispersion of difference harmonics.
Note that in the papers [10, 13, 14| other equations and multidimensional case
had been considered. The application of results on the order of dissipation and
dispersion allows to understand the ‘artifacts’ in numerical solutions of evolution
equations and to propose new tools to suppress or diminish them.
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3 Some existing tools of diminishing
‘artifacts’ in calculations

Here we describe the construction of some more or less known tools for improving
the quality of numerical solutions and describe their mechanisms with the help of
the concepts from section 2. The diagram below shows schematically one step of
running the conditional difference scheme.

Numerical solution on time level ¢t = 7k

!

Basic difference scheme

!

Numerical solution on time level t = 7(k + 1)

3.1 Choosing new scheme with increasing accuracy

The first approach to reduce ‘artifacts’ is to take other scheme with increased
accuracy. But usually it is time expensive and difficult in theoretical aspects espe-
cially for modelling by nonlinear equation in multidimensional cases. So below we
discuss the methods for improving the ‘basic’ original schemes by special tools.

3.2 Artificial viscosity approach

According to this approach special terms should be added into the difference
scheme for suppressing artificial oscillations by adding non-physical viscosity (
[1,3,9] and many other papers).

Numerical solution on time level ¢t = 7k

!

Basic difference scheme + Artificial viscosity

0

Numerical solution on time level ¢t = 7(k + 1)
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3.3 Artificial dispersion

Special terms should be added into the difference scheme for suppressing artificial
oscillations by adding non-physical dispersion [3,5, 6]

Numerical solution on time level ¢t = 7k

!

Basic difference scheme + Artificial dispersion

!

Numerical solution on time level t = 7(k + 1)

3.4 Anti-diffusion

The idea of anti-diffusion has been developed since the works by Boris J. and Book
D. [1,7,15]. In anti-diffusion the special filtration operator is applied to numerical
solution after the running step of conditional scheme with the goal to reduce the
oscillations by applying special rules to the solution. It had been shown that the
action of such filter is equivalent to some portion of artificial smoothing viscosity.
The anti-diffusion already has a lot of applications especially in gas dynamics. But
the difficulties of applications lie in the nonlinear character of filter and theoretical
background.

Numerical solution on time level ¢t = 7k

0

Basic difference schemet = 7k + 7/2

1
Anti-diffusion

!

Numerical solution on time level t = 7(k + 1)

4 New tools for improving numerical schemes

In previous section we had described some new but more or less known tools for
reducing the oscillations. Here we briefly describe some other tools for improving
solutions which have as the background the concepts from section 2.
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4.1 Composite schemes of higher order

The investigations of phase velocity and transition modules show that such func-
tions may have either positive or negative dispersion (that is the harmonic of dif-
ference scheme may be faster of slower than the harmonic of original differential
equation); also the transition modules measure the level of decreasing (increasing)
of harmonic amplitude and may be less or bigger then in the harmonic of original
equation. So the sequential application of two schemes with different properties
for transition from one time level to the next level is equivalent to application
some composite scheme with different properties. For example such combination
of two different schemes may increase the order of dispersion and thus follows to
the essential reduction of artificial oscillations [16]. The same trick may be used
for reduction the artificial smoothing in computations.

Numerical solution on time level ¢t = 7k

1
Basic difference scheme I ¢t = 7k + 7/2
1
Basic difference scheme 11
1

Numerical solution on time level ¢t = 7(k + 1)

4.2 Anti-dispersion

The goal of anti-dispersion is to reduce the artificial dispersion of numerical
schemes by application of special difference operator which dispersion is opposite
to the dispersion of basic difference scheme [17]. It is useful to take as such opera-
tor the approximation of simplest differential equations with necessary dispersion.
Remark that usually it is enough to take the linear part of Kortewega-de-Vreez
equation but with special choice of coefficient which allows to compensate for
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some dispersive error of the scheme:

Numerical solution on time level ¢t = 7k

!
Basic difference scheme I ¢t = 7k + 7/2

1
Anti-dispersion

0

Numerical solution on time level ¢t = 7(k + 1)

4.3 ‘Langoliers’

It is useful to introduce the special name for the class of tools which should be
applied after the application of basic scheme at each time step of calculation. We
named it as ‘Langoliers’ because such tools are applied at each point of space
grid of difference scheme at given time level and the action of such ‘Langoliers’
consist in ‘eating’ ‘artificial’ defects of numerical solution in each point of greed.
We illustrate such mechanism on the diagram below. After the application of
basic scheme the solution has a lot of artificial oscillations (the true solution is
step function). The application of ‘Langolier’ reduces the errors essentially.

Figure 1 corresponds to the case when the ‘Langolier’ has the ‘anti-dispersive’
character. The anti-diffusive filter may be considered as the ‘Langolier’ of ‘anti-
viscosity’ character. Also other cases of ‘Langoliers’ designing may exist. We can
use not a single ‘Langolier’ between time levels but the sequence of different ‘Lan-
goliesr’. For example as it follows from the theory of dispersion and dissipation
of schemes we can for linear equations theoretically receive any order of approxi-
mation of composite ‘basic schemes’ + series of specially constructed ‘Langoliers’.
One of the construction consist in consequence ‘Langoliers’ of ‘anti-dispersive’ and
‘anti-diffusive’ nature (but of course of increasing order of dispersion or dissipa-
tion and thus of increasing structure). Note also that the apparatus of continual
analogs of different schemes may be useful for such design.
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Numerical solution on time level t=T It

)

Basic difference scheme

*

N

Application of 'Langolier

— T\

v v ¥

Numerical solution on time level t =T (k+1)

Figure 1: Mechanism of ‘Langolier’ action
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5 Nonlinear case

As we already remarked the approaches above already had been developed and
tested in case of some equations (the linear transport equation, the wave equation,
the Kadomtcev - Petviashvily equation). The conclusion on the applicability of
the above tools can be drawn from the numerical solutions of nonlinear equations.
The key approach in application consists of two ideas: 1) the linearization of
nonlinear equation around the ‘basic’ solution for original nonlinear equation and
2) the idea of ‘frozen’ coefficients of received linearized equation [1-3,9]. Then the
analysis of harmonic should be proceeding locally. In such case the coefficients of
such tools should depend on the values of the solutions at given point in given
time moment. The results of such analysis for the case of nonlinear Klein-Gordon
equation had been published in [13]. Other interesting example of application
of proposed concept to nonlinear equations is described in [16]. The object of
investigation is the numerical schemes for some system of gas dynamic equations.
It was realized the scheme 4a from the section 4. We take as basic scheme I
the Wendroff scheme and as the basic scheme II Lax-Wendroff scheme [4,10,16].
Remark that such schemes have opposite dispersion (positive and negative). The
numerical experiments display the essential reduction of artificial oscillations. In
fact such composed schemes behave as the scheme of 3d order of accuracy (the
Wendroff and Lax-Wendroff schemes has the second order of accuracy).

The proposed approach also is very prospective for numerical calculations of
collapses, blow-up solutions or solutions with singularities. Usually such solutions
tend to infinite values by the finite time. Such increasing of solutions and their
derivatives follows to the reducing of accuracy of approximate methods and to
the necessity of adaptive mesh using. Such adaptation follows to decreasing of
time and space steps and thus to the non-limiting grows of computational work.
In described approach the accuracy of the schemes can be increased with time on
the fixed space grid. Also the region of ‘Langoliers’ application during computation
can be concentrated near the singularities points.
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6 Conclusions

Thus, in this paper I described special methods and their applications for reduc-
tion of artificial errors of type "spreading" and "oscillations" in the calculations of
the evolutional equations solutions. It is very important that the offered facilities
also befit computations of solutions of one-sided physical processes with memory,
because the evolutional equations with memory help to raise proper mathematical
problems. In addition, proposed methods become especially perspective in con-
nection with modern development of facilities for the parallel calculations (GRID
computation) of solutions. This relates to the fact that that "Langoliers" can
be used parallel in every knot of numerical lattice, leading here to increase the
exactness in all methods of approximation.
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Following Manin, Leinster, Markl, Aguiar and Sottile we review defi-
nitions, and basic properties of operads, and trees, and algebras over
these structures in Sections 1-13. It is intended to consider categories
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from different points of view.

The next Sections we begin by introducing the method of Vilenkin-
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constructed on parameters, each of which can be real, purely imagi-
nary and Clifford dual one. Then representations of orthogonal Cayley-

90n leave from Uzhgorod National University, Ukraine.

20Based on invited talks given at the 5th Petrov International Symposium on High Energy
Physics, Cosmology and Gravity (April 29-May 5, 2012, Kyiv, Ukraine), which were partially
supported by the Project No. 1202.094-12 of the Central European Initiative Cooperation Fund.

101



102

Klein groups are constructed with the method of VKS-tree. Finally,
a Cayley-Klein category is defined and the functor category of VKS-
trees is constructed.

1 Operads as a Generalization
of Associative Algebras

1.1 Classical linear operads

In Sections 1-2 and 12-13 we fix a ground field k of characteristic zero and denote
by VECT the category of linear spaces over k. All tensor products are taken over
k unless it is explicitly stated otherwise. The symmetric group S, is defined as
the group of the bijections n — n where n = {1,...,n}.

Classical linear algebra deals with a linear space V endowed with a family O
of linear operators V' — V. Usually it is convenient to close O by adding all oper-
ator compositions and their linear combinations to . In this way linear algebra
becomes the study of associative k-algebras and their linear representations.

Classical linear operads arise in the same way when we start with a linear space
V endowed with a family P of polylinear operators V™ — V,m =1,2,3,... (for
example, an associative algebra is such a space endowed with a multiplication
map V®2 — V). Closing P with respect to compositions (of functions with many
variables) and linear combinations we get a (concrete) classical linear operad
together with its linear representation in V. Axiomatizing the universal properties
of such an object, we get the following notion.

DEFINITION 1.1 A classical linear operad P consists of the data a) — d)
satisfying the axioms A) — C) below.

a) A family of linear spaces P(l), for all 1> 1.

b) A left/right linear action of S; on P(l), for alll >1:s e S; maps f € P(l) to
fs=s"1f.

c¢) A family of composition maps y(ki,..., k), for all 1 > 1,kq > 1:

Yk, k) PO @Pk) @ @P(ky) = Plkr+ -+ ki) . (1)

d) (Optional). An identity element I € P(1).
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We will state the axioms for these data in two forms: directly in terms of ~
and in functional notation. For the latter, put P = @72 ,P(k) and notice that (1)
allows us to consider each f € P(l) as a polylinear function P! — P:

flg,. ) =7(fone @), (2)

where v = y((k1,..., k) if go € P(kq). We will often write simply ~ for such
multigraded components of the operadic composition.

A) The symmetric group S; acts on the functions (represented by) P(l) by
permutation of arguments:

(fs)g1:--- q) = f(s(g1,- -, 91)) - (3)
In ~v-notation:
Vfs®@n® - ®g)=1(f@s(1®@ - ®q)) . (4)
In addition, for s1 € Sk,,...,s1 € Sk, denote by s1 X --- X 8 € Sk 4. 4k, the
image of (s1,...,s;) acting blockwise upon

(1,...,]{31‘]{31+1,...,k1—i—]{?g’...’kl—i—---—i—]{)l,l—i—l,...,/{)l—i----—l-kl).

Then
flgrs1, . qst) = (f(g1, -, 90)) (51 X -+ X 81) . (5)

In ~v-notation:
Vf@gs1@ - @gs) = (f@a® - @aq))(s1 X Xs). (6)

B) The composition maps are associative with respect to the substitution (in
functional notation). That is, for any f € P(l), go € P(ks),a = 1,...,1, and
hap € P(lap),b=1,... ks, we have
[f(gla e ,gl)](hl,la R hl,k‘l; cees hl,la R hl,kl) = (7)
= flgr(h1s - P )s oo gl - b))

In ~v-notation:

TY(fO@ @ - @g)®hi1 @ @)= (8)
=@ @h1® - @hipy) @ - @V GO h2®@ @ hyg)) -
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C) (Optional). If P is endowed with identity I € P(1), then I (resp. 1°")
become left (resp. right) identical functions:

Y®g) =9 F(fRI® -xI)=f. (10)

An operad endowed with identity which is considered as a part of its structure will
be called a unital operad.

We will often call the classical linear operads simply operads until the intro-
duction of other versions of this notion.

EXAMPLE 1.1 Let (E, ) be an associative algebra with multiplication p : EQE —
E. Define an operad Pr by Pr(1) = E, Pg(l) = {0} forl > 2, v(1) = p, the rest
of the data being self-explanatory. Operadic associativity of v is clearly equivalent
to the associativity of L.

Conversely, for any operad P,P(1) with multiplication v(1) is an associative
algebra. Operadic identity becomes algebra identity and vice versa.

EXAMPLE 1.2 Let V be a linear space. Define the operad OpEnd(V') by the fol-

lowing data:

OpEnd(V)(l) = Homy ger(VEL V), (11)

S; acts by permuting arguments as in (3), the composition v is defined by substi-
tution as in the left-hand side of (2), and I = idy .

DEFINITION 1.2 A morphism of operads ¢ : P — Q is a family of linear
maps p(l) : P(l) — Q(), I > 1, compatible with the action of symmetric groups,
composition, and optionally, mapping Ip to Ig.

Thus we have defined a category of classical linear operads OPER. In fact, we
allow some ambiguity, because the existence of the identity is optional, and, even
if it exists, we may decide not to consider it as a part of the structure when we
define morphisms. This extends the common ambiguity in the definition of the
category of associative algebras.
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REMARK 1.1 Denote by ASS one of the two categories of associative k-algebras
(with or without identity). Constructions of Example 1.1 extend to the functors
ASS — OPER and OPER — ASS which are adjoint to each other from both

sides so that we have canonical identifications

Homopgr(P,Pa) = Homass(P(1), A),
Homopgr(Pa,P) = Homags(A, P(1)) .

In particular, ASS is a full subcategory of OPER.

1.2 Operads as classifiers of algebras of different species

By species we mean here a general notion whose specializations include, e.g., asso-
ciative, Cayley-Klein and Lie, commutative, and Poisson algebras; cf. Subsection
1.3 below.

DEFINITION 1.3 Let P be an operad and V a linear space. A structure of P-
algebra on V, or equivalently, a linear representation of P in V, is a mor-
phism of operads p : P — OpEnd(V') sending I to idy if P is unital.

As Definition 1.1 shows, P = @,~; P(l) has a canonical structure of P-algebra
(regular representation). -

Generally, to define a structure of P-algebra on V is the same as to define
for every element f € P(l) a [-ary multiplication map m; : Ve 5 V linearly
depending on f, translating y-composition to substitution and the action of the
symmetric groups to the permutation of the arguments.

DEFINITION 1.4 Let V,W be two P-algebras. A morphism between them is a lin-
ear map ¢ : V. — W such that for every f € P(l) we have

p(m) (1 ® - ®u)) =my (p(vr) @ @ p(w)) . (12)

We will show that for certain species C' of k-algebras which we may call “operadic’
one can find a unital operad C'Op such that COp-algebras and morphisms between
them “are” algebras of the species C' and their morphisms.
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REMARK 1.2 Let us start with an example, taking again associative algebras with-
out unit, this time considered as a species. Besides the identity map V. — V| any
associative algebra is commonly given by one gemerating bilinear multiplication
m: V&V — V, but the transposition of arguments transforms it into another
multiplication m®P. Therefore we must put AssOp(1) = (I) (brackets denoting the
linear span), AssOp(2) = (m, m°P), the regular representation of Sa. In AssOp(3)
we have then twelve ternary operations that can be constructed from I, m,m°: in
the functional notation they are m(m,I), m(I,m°P), etc. In plain words, each
such operation applied to vi ® vy @ v3 € VO3 picks two v;’s, multiplies them in
some order, and then multiplies the result by the remaining v;.

These twelve ternary operations are related by identities expressing the asso-
ciativity of m and its consequence, that of m°P : m(m,I) = m(I,m), etc. As a
result, AssOp(3) is isomorphic to the reqular representation of Ss generated by,
say, m(m,I).

The general pattern is as follows. Pick an infinite sequence of independent non-
commuting but associative variables x1,x9,xs,. ... Instead of m, m° m(I,m°P),
etc., write the value of the respective operation applied to the initial segment of this
sequence, getting respectively x1xo, xox1, Xx1x3%2, etc. A contemplation shows that
one can thus identify AssOp(n) with the linear space generated by all associative
monomials Ty(1y ... Te) where s € Sy, with the evident action of S,.

Namely, m(...(m(m,I),I)...) produces the monomial (... ((x122)x3)...)xn

= I1...T,, and the application of S,, furnishes the rest. It remains to describe the
y-composition of a monomial Ty ... Tsmy with g1 ®--- @ g, € P,_; AssOp(la).
We first replace arguments x1,...,x;, in g, by adding 1+ --+1,—1 to all subscripts
thus getting g,, and then put

Y(Zg(1) @ @ () D G1 @ -+ @ Gn) *= Go(1) - - - Ts(n) -

Now let us try to construct a functor from AssOp-algebras to associative algebras.
A structure of an AssOp-algebra on V, clearly, is uniquely determined by the

restriction of the operadic morphism
p(2) : AssOp(2) — Homypcr(VE2, V).

However, the image of p(2) is a two-dimensional space of multiplications {am +
bm°P} whereas classically we need just one associative multiplication. Let us write
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the associativity equation p(p, 1) = p(l,p) for p = am + am® in the functional
notation with free arguments x,y,z:

p(p, I) = al(azy + byz)2] + b[z(azy + byx)]
u(l, p) = alz(ayz + bzy) + bl(ayz + bzy)z .

Comparing coefficients, one sees that the universal associativity (in any linear rep-
resentation) is equivalent to ab = 0. Hence the best we can do is to pinpoint in any
AssOp-algebra V' two lines of associative multiplications: (p(m))) and (p(m°P)).
An additional choice of unit would reduce each line to one (non-zero) element,
however there is nothing in the structure of AssOp that would help us to do this.
In fact, we encounter here a general problem: how to account for eventual struc-
tural special elements, i.e. 0-ary operations. In principle, we could have extended
the definition of an operad P by including P(0) and extending correspondingly
(1). In particular, we can put AssOp(0) = ground field, OpEnd(V)(0) =V, and
define the identity in V as the image of 1. In other cases this might not work.
We will now summarize the preceding discussion in a deliberately vague “meta-

theorem” (for more precise statements, see below).

1.3 Species of algebras and operads

Let C be a category of algebras which is defined by a family of multilinear opera-
tions {m;|i € I'} and a family of universal identities between them constructed of
compositions and linear combinations. Morphisms in C are linear maps compat-
ible with m;’s. Examples: associative algebras without identity (multiplication;
associativity); Cayley-Klein and Lie algebras (bracket; skew-symmetry; Jacobi
identity); Poisson algebras without identity (multiplication, bracket; associativ-
ity, commutativity, Jacobi, Leibniz); commutative rings with an m-dimensional
linear space of pairwise commuting derivations, etc.

Then one can construct a classical linear operad C'Op with the following prop-
erties.

a) COp(l) as a representation space of S; is isomorphic to a subspace of the
free algebra Fo(xq,...,2;) of the species C freely generated by [ independent
variables x1,...,x;. This subspace consists of forms of total degree [ linear in
each z,, upon which S; acts by permuting arguments.

b) Compositions « are induced by substitution.
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c) To give a structure of a COp-algebra on a space V is the same as giving
a set of structures of species C' on V. Various elements of this set are obtained
by choosing in COp various generating families of solutions {m/} of the universal
identities defining C'. The group Aut(COp) acts transitively on this set.

d) The category of C'Op-algebras is equivalent to the category of algebras of
the species C. Every choice of generators {m;}, as above fixes one equivalence
functor. However, two different choices may lead to non-isomorphic functors.
This happens, e.g., with AssOp and functors corresponding to m and m°P.

To give a precise statement and proof of this theorem, we would have to explain
in more detail the two different notions of “freeness” and “defining an object by
generators and relations”: separately for operads and algebras over a given operad.
Above we used them on an intuitive level.

Before proceeding further, we want to list the limitations of the operadic
approach to species, some of which can be overcome by modifying the notion of
the classical operad.

e We cannot account for the structure constants, partly because of the lack

of P(0).

e We cannot account for the use of dual spaces in the definitions of some
species, e.g., algebras with invariant scalar products interpreted as V' — V*.
(In this case, a remedy is the introduction of the cyclic operads).

e We cannot account for the structure morphisms like comultiplication V —
V ® V, and generally tensors of various co- and contravariant degrees.

e We cannot account for non-linear and not everywhere defined operations
like inversion in the multiplicative group of a field.

1.4 Operads as analogs of associative algebras

In Example 1.1 and Subsection 1.1 we have shown that the associative algebras
naturally form a part of the classical operads (with P(l) = 0 for [ > 2). We will
now demonstrate that the total classical operad P is in a very definite sense an
analog of associative algebra.

To do this convincingly, we must start with a definition of an associative
algebra as a couple (V,m) where V' is an object of the monoidal category VECT,
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and m is an associative morphism V ® V' — V, eventually endowed with identity
which is a morphism 1 — V where 1 is the ground field considered as an identity
object in VECT. The two categories (VECT,®) and ASS obtained in this way
are connected by the two adjoint functors

forget m: ASS — VECT ,
free tensor algebra : VECT — ASS .

In order to present the classical linear operads in the same way we have to start
with specifying an analog of the functor “forget m”. This can be done in several
ways because we can choose to forget any subset of the data given in Definition
1.1. Here we will decide that m corresponds to all 7’s. What is left then is the
following category SMOD of S-modules:

DEFINITION 1.5 An object of SMOD is a family of linear spaces V(1),l > 1,
endowed with an action of S;.

A morphism in SMOD is a family of linear maps V(1) — W(l) compatible
with the Sj-action.

We will sometimes say that V() is the part of V' of degree I.

LEMMA 1.1 a) The category SMOD possesses a bifunctorial product x which can
be defined on the objects by the following formula:

n l
Vawm =@V es | @ QW@ ] - (13)
=1

mTn—l =1

Here n = {1,...,n} and 7 runs over all surjective maps. The action of S; must
be self-explanatory, and the tensor product is taken over the group ring of S;.
This product 1is functorially associative but mnot commutative so that
(SMOD, %) is a monoidal category. It possesses a two-sided identity object 1:
the ground field placed in degree 1, zero elsewhere.
b) The map V +— (V,0,0,...) extends to a functor identifying (VECT,®,1)
with a full monoidal subcategory of (SMOD,x,1).
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Now consider an associative algebra (V,u), p: V «V — V in the monoidal
category of S-modules. From (13) we see that p is a family of maps

n l

pin): Pvyes | @ V(@) | > V), n>1. (14)
=1 mn—l i=1

For given (I;k1,...,k;), k1 + -+ + k; = n, consider the component of (14) corre-

sponding to the S;-orbit of the map sending {1,...,k} to 1,k; +1,..., k1 + ko to

2, etc. We can identify this part of the source with V(1) @ V(k1) ® --- ® V(k;) so

that p generates a family of maps

Yk, k) V)@ V(k) @ @V(k) = Vkr+...+ k). (15)

PROPOSITION 1.1 a) The associativity of u translates into the associativity of v’s
in the sense of (7).

b) The fact that u is a morphism in SMOD translates into the compatibility
azioms (3-6)

¢) In this way we get a functor

Associative algebras in (SMOD, x) - OPER

which is an equivalence of categories.
There exists a similar equivalence between associative algebras with identity and

unital operads.

Proof. We will now sketch a proof of the main statements in Lemma 1.1 and
Proposition 1.1. In order to understand the main formula (13), we will show that
it expresses the substitution law of “formal series in VECT™.

To be more precise, denote by F.SETS the category of finite non-empty sets
and bijections. Let F[-] : FSETS — VECT be a functor.

FSETS is equivalent to its full subcategory whose objects are n. Restricting
F to this subcategory we get an S-module Vg : Vi (n) := F[n], the action of S,
being induced by the bijections of n.

Now consider Vr(n) as coefficients of the formal series defining the functor
F(:):VECT - VECT:

F(X) = Vr(n) ®s, X" .

n>1
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Such functors will be called analytic ones.

We will show that these constructions establish an equivalence of the three
categories involved: functors F'[] and their morphisms, SMOD), analytic functors.
Moreover, the composition of analytic functors is again analytic, and it induces
on the coefficients exactly the *-product:

VFoG(n) = (VF * Vg)(n) .

The equivalence of the category of functors F[] and SMOD is a part of general
nonsense because FSETS is equivalent to its subcategory of natural numbers.
The only point deserving explication is the possibility to lift every S-module to
an F'[-] canonically without using the axiom of choice. Namely, for a finite set M
with |M| = m put

F[M] := F[m] ®s,, (Iso(m, M)) .

Here (Iso(m, M)) is the linear space freely generated by the bijections m — M.
Strictly speaking, now F [m] is not F[m], but these S,,-modules are canonically
isomorphic, and we forget about this subtlety and say, for example, that the S-
module F[m] = X®™ extends to the functor F[M] = X®M on the category of
finite sets.

The equivalence of SMOD and the category of analytic functors F'(-) also
becomes a formal fact once we learn how to reconstruct functorially the coefficients
Vr(n). Let F(-) be given. Multiplication by any element A of the ground field is
an endomorphism of the identical functor of V ECT. Hence it acts functorially on
each F(X), and the A"-eigenspace of F(X) is exactly F,,(X) := Vr(n) ®g, X®",
at least when A is not 0 or a root of unity. Now consider the space X,, = (n) freely
generated by the vectors eq,...,e,. Then e ® - -+ ® e, generates the regular S,,-
submodule R,, which is the image of the projector p, : X" — X2". Since F), is
a functor, we can define Im(F,(p,)) = Vr(n) ®s, R, = Vr(n), both equalities
denoting canonical isomorphisms.

We will apply this prescription to the calculation of the coefficients of the
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composition of analytic functors:

%) 00 ®I
(FoG)(X) = D Vi(X) o5, (@ Vo(k) @, X®k> _
=1 k=1

= @ Vr(X) ®s, @ (Vi (k1) @8y, X®k1) ® - @ (Va(k) sy, Xk
=1 kot ooy =1

It follows that

9] l
(Fo@)n(X) =P Vr(X) e, P Ralk) @s,, X
=1

k1++k=n a=1

Now we must put X = X,, as above and look at the image of (F o G),(pn) or,
more intuitively, at the tensor coefficients of the vectors e ;) ®- - ® ey (). Clearly,
for a given [, such terms in square brackets correspond to the partitions of n into

[ blocks indexed by 1,...,l, i.e. to the surjections n — [ as in (13).
To finish the Proof, it remains to establish that the functor F o G(-) is isomor-
phic to the sum of Im(F o G),(py,). We leave this to the reader. [ |

DEFINITION 1.6 Let V' be an object of SMOD. Put

[e.9]

F(V):=)Y V™.

n=1

There is an obvious multiplication map V*™ x V* — V*" 40 which makes F(V)
an associative algebra, or an operad. It is called the free operad generated by
V' (without identity).

As in the classical linear algebra, F' is adjoint to the forgetful functor OPER —
SMOD. This completes the analogy sketched at the beginning of Subsection 1.4.

1.5 Operads and topology: homology of moduli spaces

We will now introduce the basic operad of the quantum cohomology. Denote by
H,(Mg,+1) the homology space of the moduli space of stable curves of genus
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zero (with coefficients in the ground field for VECT'). We will define the classical
linear operad H,M by the following data:

a) H.Mo(n) = H.(Mg,+1) for n > 2, the first component being the ground
field.

In the following, it will be convenient to assume that the structure sections of
Cpi+1 — Moy are labeled by {0,...,n}.

b) S,, acts upon H,Mg(n) by renumbering the sections x1, ..., 2.

¢) The structure map

")/(kl,...,]{)l) :
Ho(Mo41) @ Ho(Mog,41) ® -+ @ Ho(Mogy1) = He(Mo gy 4 41)  (16)

is induced by the embedding of the boundary stratum
b(ki, ... k) MO,I—H X Mo,kl—i—l X X Mo,kl-i-l - Mo,k1+~~+kl+1 . (17)
On the level of geometric points, given [ + 1 stable labeled curves of genus zero,

(C;JT(],iEl,...,fEl); (-Da;yo,a,"'ayka,a)a azla"'al'

b(k1,..., k) produces from them the stable curve
I
(CH<HD(1>/(N)7 ZO,"',Zk1+"'+kl> )
a=1
where (~) is the equivalence relation gluing x, and yo, for all a = 1,...,l, and
furthermore
20 = X, (21, e ,Zk1+___+kl) = (y171, e ayk1,1§ . ;yLC“ e ayka,a)-

Operadic axioms for H,Mj follow from their evident versions for the spaces
Moy,

REMARK 1.3 What we are actually saying here is that we can define the more
general notion of operad by replacing the basic category VECT by any symmetric
monoidal category, eventually with the identity object, and that the moduli spaces
form such an operad. The homology functor (with respect to the pushforward maps)
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from the monoidal category of manifolds to (VECT,®) then produces from a
geometric operad the classical linear operad. This viewpoint will be discussed in
more detail in the following Section.

Notice in conclusion that H*Mo 1s endowed with important additional struc-
tures. Namely, the components of this operad are in fact coalgebras (pushforward
with respect to the diagonal map), and compositions (16) as well as representa-
tions of S, are coalgebra morphisms. This is the intrinsic reason for the existence
of the operation of the tensor product on the category of H,Mjy-algebras.

2 Operads and Trees

In this Section we sketch in their natural generality several themes which have
already emerged in the previous Section. Briefly speaking, there are many useful
types of operads, and each type is determined by the choice of two categories:

1) Basic symmetric monoidal category (C,X) replacing (VECT, ®) which sup-
ports the classical linear operads.

2) A category of (labeled) graphs I reflecting the combinatorics of the operadic
data and axioms.

A concrete operad from this viewpoint is a functor I' — C.

To clarify the role of C, we first explain how to extend Definition 1.1.

2.1 May’s operads in a monoidal category

Let us recall (see [5]) that a symmetric monoidal category (C,X) is a category en-
dowed with the bifunctor X : CxC — C together with an involutive commutativity
constraint and an associativity constraint. Taken together, they define a family of
compatible and functorial isomorphisms s, : X1 X- - -&X{—TXSA(U&- X -10n),
for any objects X1q,...,X,, of C and all s € S,,.

Most of our monoidal categories will have an identity object 1¢ = 1. The
functors 1X and X1 : C — C are canonically isomorphic to the identity functor.

In order to be able to extend the constructions of Subsection 1.4, we will
assume that C has small colimits preserved by any functor XX. In particular, C
must have an initial object 0.

We can now define a classical operad P in C by closely following Definition
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1.1. Components P(n) will be objects of C endowed with the action of S,,, ® will
be replaced by X, and operadic multiplications v will be morphisms in C. Axioms
A) — C) must be written down as commutative diagrams, involving in particular
permutation isomorphisms of tensor products in C.

A neater version of the definition is again obtained by passing to the category
SC' every object which is a family of S,-objects P(n) in C given for n > 1. To
be able to write it as a sum of its components, we will require that C has small
limits. The category SC admits a non-symmetric monoidal structure *, furnished
by the formula (13). It has the unit object 1g¢ with 1 as the first component,
0 elsewhere. An associative monoid in SC is a pair (P, u) where p: P« P — P
is an associative multiplication. Giving an additional morphism 1 — P with the
usual properties defines unital monoids. An analog of Proposition 1.1 holds true,
establishing the equivalence of the category of associative monoids in (SC, %) and
the category of classical operads in C. However, the proof of Proposition 1.1 must
be changed, because we have used in it not only the monoidal structure of VECT
but the linear structure and the language of elements as well. This can be avoided
in different ways. Here we will take this fact for granted, and we leave to the reader
the transposition of other constructions of Section 1 to the present context.

REMARK 2.1 Let us consider the main classes of monoidal categories. Sets with
direct product and linear spaces with tensor product form two archetypal classes
of symmetric monoidal categories.

Variations include imposing additional structure on the objects. Sets more of-
ten appear endowed with a topology or manifold structure (in smooth or ana-
lytic category). Linear spaces come equipped with grading and/or differential. In
this way we get classical topological operads, classical operads in the category of
complexes, and so on. Monoidal functors between symmetric monoidal categories
extend to the respective categories of operads.

2.2 Oriented trees as substitution schemes

Let T be a tree with at least two flags at each vertex. Orient T' by choosing
one tail as root and declaring that direction to the root is positive. Then every
vertex has at least one incoming flag and exactly one outgoing flag. Label each
vertex of T' by a symbol of the function whose arguments are labeled by the
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incoming flags of this vertex, and whose value labels the outgoing flag f and also
its l-image, that is, the other half of the edge if f belongs to an edge. Then the
whole tree symbolizes a computation, or substitution scheme. The input values
are assigned to the incoming tails of 7', and the output value is assigned to the
root. For example, one vertex tree with n incoming tails symbolizes f(z1,...,x,)
and the (m + 1)-vertex tree with the appropriate distribution of flags symbolizes
f(gl(xgl), . ,xgl)), . ,gm(xgm), . ,xﬁ{?j))

If we label flags by objects of a symmetric monoidal category and label each
vertex v by a morphism mapping the X-product of the labels of incoming flags
to the label of the outgoing flag, the tree will describe the respective composite
morphism from the X-product of input objects to the output object.

If K is not supposed to be symmetric, we must assume that all sets of incoming
flags of each vertex are totally ordered. For a symmetric X-product, the respective
actions of symmetric groups on arguments of various levels can be succinctly
described by saying that this construction is functorial on the category of oriented

trees with isomorphisms compatible with orientation.

2.3 Trees and and *-product

Let (C,X) be a symmetric monoidal category, V an object of non-symmetric
monoidal category (SC,x), and F(V) = [[72; V*" the free operad generated by
V', as in Definition 1.6. We can define K-products indexed by arbitrary finite sets
and extend n — V(n) to a functor T+ V(T') on the category of non-empty finite
sets and their bijections. For an oriented tree as above put

V(T) == Ryey, V(FF(v)) . (18)
Then we have functorial isomorphisms
F(V)(n) = I1 V(T). (19)
{n—trees}T/(iso)

Here n-trees are oriented trees with the set {1,...,n} of incoming tails.

This statement summarizes in a more conceptual way the bookkeeping scheme
described above. It can be deduced with some pain from the formalism of analytic
functors as in Subsection 1.4. We will also reproduce the relevant combinatorics
in the context of formal series below, in Section 12 dedicated to sums over trees.
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(a) (b)

Figure 2: (a) Input-output graph with 4 vertices and 2 input edges i1, 42, (b) combina-
torial tree with 4 vertices and 3 input edges 71, i2,%3. In both, the numbers indicate the
order on the edges arriving at each vertex.

2.4 Combinatorial trees

In Subsections 2.2-2.3 trees were defined in a purely abstract way: T is the free
plain operad on the terminal object of Setl;l, and an n-leafed tree is an element of
T,,. But we give here a graph-theoretic definition of (finite, rooted, planar) tree.

The main subtlety is that the trees we use are not quite finite graphs in the
usual sense: some of the edges have a vertex at only one of their ends. This suggests
the following definitions.

DEFINITION 2.1
A (planar) input — output graph (Fig. 2(a)) consists of
e a finite set V (the vertices)

e q finite set E (the edges), a subset I C E (the input edges), and an ele-
ment o € E (the output edge)

e a function s : E\I — V (source) and a function t : E\{o} — V
(target)

e for each v € V, a total order < on t~{v}.
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We write v — to mean that e is a non-input edge with s(e) = v, and similarly
— ¢/ to mean that e is a non-output edge with t(e) = v/, and of course v — v’
to mean that e is a non-input, non-output edge with s(e) = v and t(e) = v'.

A tree is roughly speaking a connected, simply connected graph, and the
following notion of path allows us to express this.

DEFINITION 2.2 A path from a vertex v to an edge e in an input-output graph
1s a diagram
el e2 €r1—1 ej=e
V=01 — V3 —> =+ —> V] —>

in the graph. That is, a path from v to e consists of

e an integer | > 1

e a sequence (v1,ve,...,v]) of vertices with v1 = v
e a sequence (e1,...,e_1,€) of edges with e; = e
such that
v1 = s(e1), tler) = vy = s(eq), ..., tlej—1) = v, = s(e)

and all of these sources and targets are defined.

DEFINITION 2.3 A combinatorial tree is an input-output graph such that for
every vertex v, there is precisely one path from v to the output edge.

Fig. 2(b) shows a combinatorial tree. The ordering of the edges arriving at each
vertex encodes the planar embedding. ‘Tree’ is an abbreviation for ‘finite, rooted,
planar tree’. If we were doing symmetric operads then we would use non-planar
trees, if we were doing cyclic operads then we would use non-rooted trees, and so
on.

2.5 Geometric interpretation of trees

Let T}, be the set of rooted, planar binary trees with n interior nodes (and thus
n + 1 leaves). The Tamari order (see [2]) on T), is the partial order whose cover
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relations are obtained by moving a child node directly above a given node from
the left to the right branch above the given node. Thus

is an increasing chain in 73 (the moving vertices are marked with dots). Only basic
properties of the Tamari order are needed in this Subsection; their proofs will be

provided. For more properties, see Chapters 3—7. Figure 3 shows the Tamari order
on Tg and T4.

Figure 3: The Tamari order on T3 and T}.
Let 1,, be the minimum tree in T;,. It is called a right comb as all of its leaves

Iy = <, 17:%.

Given trees s € T}, and t € Ty, the tree s Vt € T), 441 is obtained by grafting the
root of s onto the left leaf of the tree Y and the root of ¢ onto its right leaf. Below

are right pointing:
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we display trees s, ¢, and s V ¢, indicating the position of the grafts with dots.

NG

For n > 0, every tree t € T, has a unique decomposition ¢t = #; V ¢, with

t; € Ty, t, € Ty, and n = p+ ¢+ 1. Thus T;, is in bijection with |_|p+q:n_1 T, x Ty,
and since Tp = {|} and 71 = {Y'}, we shall see in Section 3.5 that T}, contains
(2n)!

the Catalan number of trees.

T(n+1)!
The Hasse diagrar;n(n(;rf )Tn is isomorphic to the 1-skeleton of the associahe-
dron A, an (n—1)-dimensional polytope. (See [6] and [7].) The faces of A,, are
in one-to-one correspondence with collections of non-intersecting diagonals of a
polygon with n+2 sides (an (n+2)-gon). Equivalently, the faces of A,, correspond
to polygonal subdivisions of an n+2-gon with facets corresponding to diagonals
and vertices to triangulations. The dual graph of a polygonal subdivision is a
planar tree and the dual graph of a triangulation is a planar binary tree. If we
distinguish one edge to be the root edge, the trees are rooted, and this furnishes a
bijection between the vertices of A,, and T},. Figure 4 shows two views of the asso-
ciahedron Ag, the first as polygonal subdivisions of the pentagon, and the second
as the corresponding dual graphs (planar trees). The root is at the bottom.

s
al o U xl ox Ak

Figure 4: Two views of the associahedron Aj

Let &, be the group of permutations of [n] which denotes the set {1,2,...,n}.
We describe the map A: &,, — T}, in terms of triangulations of the (n+2)-gon
where we label the vertices with 0,1,...,n,n+1 beginning with the left vertex of
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the root edge and proceeding clockwise. Let o € &,, and set w; := o~} (n+1—1),
for ¢ = 1,...,n. This records the positions of the values of ¢ taken in decreasing
order. We inductively construct the triangulation, beginning with the empty tri-
angulation consisting of the root edge, and after ¢ steps we have a triangulation
7; of the polygon

P, := Conv{0,n+1,wy,...,w;}.

Some edges of P; will be edges of the original (n+2)-gon and others will be diag-
onals. Each diagonal cuts the (n+2)-gon into two pieces, one containing P; and
the other a polygon which is not yet triangulated and whose root edge we take
to be that diagonal. Subsequent steps add to the triangulation 7; and its support
Pi-

First set 7, := Conv{0,n+1,w;}, the triangle with base the root edge and
apex the vertex wy; = o~ 1(n). Set Py := 71 and continue. After i steps we have
constructed 7; and P; in such a way that the vertex w;;1 is not in F;. Hence it
must lie in some untriangulated polygon consisting of some consecutive edges of
the (n+2)-gon and a diagonal that is an edge of P,. Add the join of the vertex
w;+1 and the diagonal to the triangulation to obtain a triangulation 7,11 of the
polygon P;i1. The process terminates when ¢ = n.

For example, we display this process for the permutation ¢ = 316524, where
we label the vertices of the first octagon:

3 4

The last two steps are supressed as they add no new diagonals. The dual graph to
the triangulation 7, is the planar binary tree \(o). Here is the triangulation, its
dual graph, and a ‘straightened’ version, which we recognize as the tree A\(316524).

A subset S of [n] determines a face ®s of the associahedron A,, as follows.
Suppose that we label the vertices of the (n+2)-gon as above. Then the vertices
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labeled 0,41 and those labeled by S form a (#S + 2)-gon whose edges include
a set E of non-crossing diagonals of the original (n+2)-gon. These diagonals de-
termine the face ®g of A, corresponding to S. We give two examples of this
association when n = 6 below.

3 4 3 4
{1,2,5,6} 2 ° {2,4,5} 2 °
P ] H e H
1 6 1 6

We determine the image of f; using the above description of the map \: &,, — T;,.
We say that a face of Ay, of the form &g with #S = ¢ has type (p, q). If a face
has a type, this type is unique. A permutation ¢ € &®% is uniquely determined
by the set ({p+1,...,p+q}. Therefore, a face of type (p,q) is the image of f: for
a unique permutation ¢ € @9 This allows us to speak of the vertex of the face
corresponding to a pair (s,t) € T, x Ty (under f¢).

2.6 Classical operads as functors

Denote by Tree.,s as the category whose objects are finite rooted trees with the
following properties: a) the multiplicity of each vertex is at least two; b) at each
vertex either all incoming flags are halves of edges, or all incoming flags are tails.
Morphisms are generated by the following two classes of maps:

a) Isomorphisms compatible with orientation.

b) Contraction of all edges having a common vertex with some outgoing flag
and keeping orientation.

More formally, a morphism ¢ : ¢ — 7 consists of two maps py : Vo, — V;
and o' : F, — F, compatible with boundaries and involutions and such that o’
sends tails to tails. Composition of the morphisms corresponds to the composition
of the induced maps on vertices and flags. A morphism contracts an edge e if @y
glues its vertices, and both flags of this edge do not belong to the image of *".

Contractions of different edges commute in an evident sense.

Let v be a vertex of a rooted tree T'. Its star T, is a one-vertex tree with vertex
v, tails Fp(v), and the outcoming flag as a root.
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PROPOSITION 2.1 The category of classical linear operads (without identity) in
a symmetric monoidal category (C,X) is equivalent to the category of functors
P : Treeyqss — C isomorphic to a functor satisfying the following condition:

P(T) = IX'UEVT,P(TU) . (20)

Sketch of Proof. a) From functors to operads. Given such a functor P, we
construct the data of Definition 1.1 in the following way: P(l) := P(1}) where T} is
the one-vertex tree with tails 0,1,2, ...,/ and root 0. The action of S; corresponds
to the automorphisms of 7} permuting the tails 1,...,l. The multiplication map
y(k1,...,k;) corresponds to the morphism contracting all edges o — g, 4...qf,,
where o has [ + 1 vertices and [ edges and the tails are distributed in an obvious
way. The relations A) and B) follow from the functoriality.

b) From operads to functors. Given an operad (P(n),), we first extend it to
the functor from finite sets to C, then define P(7T) by (18), and finally use v in
order to define P on morphisms contracting all edges having a common vertex
with some outgoing flag. |

DEFINITION 2.4 From the graph-theoretic viewpoint it would be more natural to
allow all rooted trees with |v| > 2 as objects, and contractions of any subset of
edges as morphisms. The functors from this category Treeys to C satisfying (20)
(up to functor isomorphism) are called Markl’s operads.

REMARK 2.2 Consider now the category Treecy. of finite non-rooted trees with
|v| > 2, with morphisms generated by contraction of edges and isomorphisms.
Neither root nor orientation is a part of the structure. Functors Treecy. — C
satisfying (20) are essentially cyclic operads in the sense of [8]. The most essential
new feature of cyclic operads is the action of S;11 upon P(1).

2.7 Classifying space of the category of stable trees

Let us consider a graphical definition of a category of trees. By Definition 2.3,
tr is the free plain operad on the terminal object of Setl), and an n-leafed tree
is an element of tr,. As we saw, the sets tr, also admit the following recursive
description:
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R S U

g

Figure 5: Three pictures of a map in Treey

° | € try
o if nky,....,k, € Nand 74 € trg,...,7, € trg, then (m,...,7,) €
trk1+...+kn.

A category of trees Tree is the disjoint union [[,, . Tree,. An object of Tree,, is
an n-leafed tree. The set of maps in Tree, is

(TF1)(n) = (Ta(tr))(n),

that is, a map is an n-leafed tree 7 in which each k-ary vertex v has assigned to it
a k-leafed tree o,; the domain of the map is the tree obtained by gluing the o,’s
together in the way dictated by the shape of 7, and the codomain is 7 itself. Put
another way, what a map does is to take a tree o (the domain), partition it into
a finite number of (possibly trivial) subtrees, and replace each of these subtrees

with the same number of leaves, to give the codomain 7. Fig. 5 depicts a certain

by the corolla

map 0 — 7 in Treey in three different ways: in (a) as a 4-leafed tree T with
a k-leafed tree o, assigned to each k-ary vertex v, in (b) as a 4-leafed tree o
partitioned into subtrees o,, and in (c) as something looking more like a function.
We will return to the third point of view later; for now, just observe that there
is an induced function from the vertices of o to the vertices of 7, in which the
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T

g

Figure 6: Three pictures of an epic in Treeg

inverse image of a vertex v of 7 is the set of vertices of ,. In some texts a map
of trees is described as something that ‘contracts some internal edges’. (Here an
internal edge is an edge that is not the root or a leaf; maps of trees keep the
root and leaves fixed. To ‘contract’ an internal edge means to shrink it down to
a vertex.) With one important caveat, this is what our maps of trees do: for in a
map o — T, the replacement of each partitioning subtree o, by the corolla with
the same number of leaves amounts to the contraction of all the internal edges
of o,. For example, Fig. 6(a) shows a tree o with some of its edges marked for
contraction, and Figs. 6(b) and 6(c) show the corresponding maps ¢ — 7 in two
different styles (as in Figs. 5(b) and (c)); so 7 is the tree obtained by contracting
the marked edges of o.The caveat is that some of the ¢,’s may be the trivial tree,

and these are replaced by the 1-leafed corolla + This does not amount to the

contraction of internal edges: it is, rather, the addition of a vertex to the middle
of a (possibly external) edge. Any map of trees can be viewed as a combination
of contractions of internal edges and additions of vertices to existing edges. For
example, the map illustrated in Fig. 5 contracts two internal edges and adds a
vertex to one edge.

Some further understanding of the category of trees can be gained by consid-
ering just those trees in which each vertex has at least two branches coming up
out of it. We shall call these ‘stable trees’, following Kontsevich and Manin [9].
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Y —Y
(2 ()

Figure 7: (a) The category of 3-leafed stable trees, and (b) its classifying space

Formally, StTree, is the full subcategory of Tree, with objects defined by the
recursive clauses

e | € StTree;

o if n > 2, ki,...,k, € N, and T} € StTreey,,...,T;, € StTree, then
(Th,...,T,) € StTreey, 4...+k,»

and an n-leafed stable tree is an object of StTree,,. Since a stable tree can contain
no subtree of the form ¢, all maps between stable trees are ‘surjections’, that is,

consist of just contractions of internal edges, without insertions of new vertices.
The first few categories StTree,, are trivial:

StTreey = 0,
StTree; = {|},

sirveer ~ { Y]

where in each case there are no arrows except for identities. The cases n = 3, 4,
and 5 are illustrated in Figs. 7(a), 8(a), and 9(a). Identity arrows are not shown,
and the categories StTree,, are ordered sets: all diagrams commute. Vertices are
also omitted; since the trees are stable, this does not cause ambiguity. Parts (b)
of the figures show the classifying spaces of these categories, solid polytopes of
dimensions 1, 2 and 3. In the case of 5-leafed trees (Fig. 9) only about half of the
category is shown, corresponding to the front faces of the polytope; the back faces
and the terminal object of the category (the 5-leafed corolla), which sits at the
centre of the polytope, are hidden. The whole polytope has 6 pentagonal faces, 3
square faces, and 3-fold rotational symmetry about the central vertical axis.

For n < 5, the classifying space B(StTree,) is homeomorphic to the asso-
ciahedron A,, (see [10] and Figure 4 above), and it seems very likely that this
persists for all n € N. Indeed, the family of categories (StTree,)nen forms a
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(a) (b)

Figure 8: (a) The category of 4-leafed stable trees, and (b) its classifying space

sub-Cat-operad STTR of Cat-operad TR, and the classifying space functor
B : Cat — Top preserves finite products, so there is a (non-symmetric) topo-
logical operad B(STTR) whose nth part is the classifying space of StTree,,.
(To make B preserve finite products we must interpret Top as the category of
compactly generated or Kelley spaces: see [11] and [12].) This operad B(STTR)
is presumably isomorphic to Stasheff’s operad K = (K,)nen. A K-algebra is
called an Ay-space, and should be thought of as an up-to-homotopy version of a
topological semigroup; the basic example is a loop space.

The categories StTree,, also give rise to the notion of an A-algebra (see [10]).
For each n € N, there is a chain complex P(n) whose degree k part is the free
abelian group on the set of n-leafed stable trees with (n — k — 1) vertices.

When the signs are chosen appropriately this defines an operad P of chain
complexes. A P-algebra is called an As.-algebra, to be thought of as an up-to-
homotopy differential graded non-unital algebra; the usual example is the singular
chain complex of an A, -space. A P-category is called an A..-category (see [13]),
and consists of a collection of objects, a chain complex Hom(a,b) for each pair
(a,b) of objects, maps defining binary composition, chain homotopies witnessing
that this composition is associative up to homotopy, further homotopies witnessing
that the previous homotopies obey the pentagon law up to homotopy, and so on.

Finally, since the polytopes K, = B(StTree,) describe higher associativity
conditions, they also arise in definitions of higher-dimensional category. For exam-
ple, the pentagon Ky occurs in the classical definition of bicategory [13], and the
polyhedron K5 occurs as the ‘non-abelian 4-cocycle condition’ in Gordon, Power
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and Street’s definition of tricategory [14].
We have already described operad of trees as the set tr, of n-leafed trees.
Maps 0 — 7 between trees are described by induction on the structure of 7:

e if 7 = | then there is only one map into 7; it has domain | and we write it
as 1) : | — |
o if T =(m,...,m,) for 1 € try,, ..., T, € trg, then a map 0 — 7 consists

of trees p € try),p1 € try,,...,pn € trg, such that o = po(p1,...,pn),
together with maps
On

01
PL ——=Tly «vvy Pn — Tn,

and we write this map as

! *(6 7"'7677«)
o =po(p1s.-spn) | =S (T, ) =T (21)
It follows easily that the n-leafed corolla v, = (|,..., |) is the terminal object of
Tree,: the unique map from o € tr,, to v, is written as !, * (1|,..., 1| ). The rest

of the structure of the Cat-operad TR can be described in a similarly explicit
recursive fashion.
To make precise the intuition that a map of trees is a function of some sort,
functors
V :Tree — Sety, E : Tree®® — Sety

can be defined, encoding what happens on vertices and edges respectively. Both
functors turn out to be faithful, which means that a map of trees is completely
determined by its effect on either vertices or edges. The following account of V
and F is just a sketch.

The more obvious of the two is the vertex functor V', defined on objects by

e V(I)=0
o V((11,...,mn)) =14V (r)+ -+ V(m).

The edge functor E can be defined by first defining a functor E,, : Tree(n)°® —
(n+1)/Sety for each n € N, where (n+ 1)/Sety is the category of sets equipped
with (n + 1) ordered marked points. This definition is again by induction, the
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)

X

(a)

Figure 10: The effect on (a) vertices and (b) edges of a certain map of 4-leafed trees

0
M

idea being that F,, associates to a tree its edge-set with the n input edges and
the one output edge (root) distinguished. Fig. 10 illustrates a map 6 : 0 — 7 in
Tree(4); part (a) (= Fig. 5(c)) shows its effect V(0) on vertices; part (b) shows
E(9), taking E(1) = {1,...,7} and labelling the image of ¢ € {1,...,7} under
E(0) by an i on the edge (E(9))(i) of o.

A map of trees will be called surjective if it is built up from contractions of
internal edges. Formally, the surjective maps in Tree are defined by:

e 1, : | — | is surjective

e with notation as in (21), !, % (61,...,0,) is surjective if and only if each 0;
is surjective and p # |.

The crucial part is the last: the unique map !, from p € tr,, to the corolla v, is
made up of edge-contractions just as long as p is not the unit tree |.

Dually, a map of trees is injective if, informally, it is built up from adding
vertices to the middle of edges. Formally,

e 1) : | — | is injective

e with notation as above, !, * (61,...,6,) is injective if and only if each 6; is
injective and p is either v, or | (the latter only being possible if n = 1).
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3 Unital Operads

Although operads and the most of related structures were defined in Sections 1
and 2 as an arbitrary symmetric monoidal category with countable coproducts,
in Sections 3-11 we decided to follow the choice of [15] and formulate precise
definitions only for the category Mody = (Mody, ®) of modules over a commutative
unital ring k, with the monoidal structure given by the tensor product ® = ®y
over k. The reason for such a decision was to give, in Section 6, a clean construction
of free operads. In a general monoidal category, this construction involves the
unordered ®-product [16] so the free operad is then a double colimit, see [16].
Our choice also allows us to write formulas involving maps in terms of elements,
which is sometimes a welcome simplification. We believe that the reader can easily
reformulate next definitions and notations into other monoidal categories used in
Sections 1-2 and 12-13 (see, also [16,17]).

Let k[%,,] denote the k-group ring of the symmetric group %,,.

DEFINITION 3.1 (MAY’S OPERAD) An operad in the category of k-modules is a
collection P = {P(n)}n>0 of right k[X,]-modules, together with k-linear maps
(operadic compositions)

Y:Pn)@Pk) @ @ Pkn) — Pk + - + kn), (22)

forn>1and ky,...,k, >0, and a unit map n : k — P(1). These data fulfill the
following axioms.

Associativity. Let n > 1 and let mq,...,my and ki,..., kyn, where m := mq +
-+« + my, be non-negative integers. Then the following diagram, in which gs :=
m1+---+me_1 and hy = kg 11+ kg .y, for 1 <s < n, commutes.
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n m m
v ® id
(rp(n) 0% fp(ms)> @ Q) P(kr) P(m) @ Q) P(kr)
s=1 r=1 r=1
¥
shuffle ﬂ)(kl + -+ km)
¥
- S id ® (®3-17) -
P(n) @ ® P(ms) ® ®(-P(kgs+q) P(n) @ ® P(hs)
s=1 q=1 s=1
Equivariance. Let n > 1, let ky,...,k, be non-negative integers and o € X,
TL € Xkyy.oyTn € g, permutations. Let o(ky,... k) € Xk 4.4k, denote the
permutation that permutes n blocks (1,...,k1),...,(kn—1 +1,...,k,) as o per-
mutes (1,...,n) and let 1@+ DTy, € Lk, 4.1k, be the block sum of permutations.

Then the following diagrams commute.

oot

P(n) @ P(k1) ® -+ @ P(ky) P(n) @ Plko1y) @ -+ @ Plkgn))

Y Y
O—(ko(l)v"'vko(n))
fP(/ﬁ)l + -4 kn) T(kg(l) +---+ ka(n))
dRTI® - QTn
P(n) @ P(ky) @ - - © Plkn) P(n) @ P(ky) ® - - © Plkn)
Y Y
T1D - DTn
Plhy + - + kn) Plhy + - + kn)

Unitality. For each n > 1, the following diagrams commute.

R

P(n) @ ko P(n) k®P(n) —— P(n)

nQ id

P(n) @ P(1)®" P(1) ® P(n)

id ® n®n
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A straightforward modification of the above definition makes sense in any
symmetric monoidal category (M, ®, 1) such as the category of differential graded
modules, simplicial sets, topological spaces, etc, see [16] or [17]. We then speak
about differential graded operads, simplicial operads, topological operads, etc.

ExAMPLE 3.1 All properties axiomatized by Definition 3.1 can be read from the
endomorphism operad Endy = {Endy (n)}n>0 of a k-module V. It is defined
by setting Endy (n) to be the space of k-linear maps V" — V. The operadic
composition of f € Endy(n) with g1 € Endy(k1),...,9n € Endy (k) is given by
the usual composition of multilinear maps as

’y(faglw"?gn) = f(gl®®gn)7

the symmetric group acts by

70(f7917' .- 797L) = f(ga_l(l) POREE ®go_1(n))7 o€ En7

and the unit map n : k — Endy (1) is given by n(l) := idy : V. — V. The
endomorphism operad can be constructed over an object of an arbitrary symmetric
monoidal category with an internal hom-functor, as it was done in [16].

One often considers operads A such that A(0) = 0 (the trivial k-module). We
will indicate that A is of this type by writing A = {A(n)}n>1.

EXAMPLE 3.2 Let us denote by Ass = {Ass(n)}n>1 the operad with Ass(n) =
k[¥,], n > 1, and the operadic composition defined as follows. Let id, € %,
idy, € Xg,,...,1dy, € Xy, be the identity permutations. Then

’y(ldn, idkl, ey ’Ldkn) = idk1+...+kn S Ek1+...+kn.
The above formula determines ~(o,T1,...T) for general o € %,, 7 €
Ykis---sTn € Xg, by the equivariance axiom. The unit map n : k — Ass(1)

is giwen by n(1) = id;.

EXAMPLE 3.3 Let us give an example of a topological operad. For k > 1, the
little k—discs operad Dy, = {Dy(n)}n>0 is defined as follows [16]. Let

DF := {(x1,...,2;) €ER®; 22 4 ...+ 22 <1}
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be the standard closed disc in RF. A little k-disc is then a linear embedding
d : D* < D* which is the restriction of a linear map R¥ — RF with parallel
azes. The n-th space Dy(n) of the little k-disc operad is the space of all n-tuples
(di,...,dy) of little k-discs such that the images of dy,. .. ,d, have mutually dis-
joint interiors. The operad structure is obvious — the symmetric group X, acts on
Di(n) by permuting the labels of the little discs and the structure map ~y is given
by composition of embeddings. The unit is the identity embedding id : D* — D*.

EXAMPLE 3.4 The collection of normalized singular chains Cy(T) =
{C(T(n))}n>0 of a topological operad T = {T(n)},>0 is an operad in the cat-
egory of differential graded Z-modules. For a ring R, the singular homology
H.(T(n);R) = H.(C«(T(n)) ®z R) forms an operad H.(T;R) in the category
of graded R-modules, see [15] for details.

DEFINITION 3.2 Let P = {P(n)},>0 and Q = {Q(n) }n>0 be two operads. A homo-
morphism f : P — Q is a sequence f = {f(n) : P(n) = Q(n)}n>0 of equivariant
maps which commute with the operadic compositions and preserve the units.

An operad R = {R(n)}n>0 is a suboperad of P if R(n) is, for each n > 0,
a Yp-submodule of P(n) and if all structure operations of R are the restrictions
of those of P. Finally, an ideal in the operad P is the collection I = {J(n)}n>0 of
Y -invariant subspaces J(n) C P(n) such that

if either f € I(n) or g; € I(k;) for some 1 < i <n.

EXAMPLE 3.5 Given an operad P = {P(n)},>0, let P = {ﬁs(n)}nzo be the collec-
tion defined by @(n) = P(n) forn >1 and ’./]5(0) := 0. Then P is a suboperad of
P. The correspondence P — Pisa full embedding of the category of operads P
with P(0) = k into the category of operads A with A(0) = 0. Operads satisfying
P(0) = k have been called unital while operads with A(0) = 0 non — unital
operads. We will not use this terminology because non-unital operads will mean
something different in this book, see Section 4.

An example of an operad A which is not of the form P for some operad P
with P(0) =2 k can be constructed as follows. Observe first that operads P with the
property that

P(0) =2k and P(n) =0 forn > 2
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are the same as augmented associative algebras. Indeed, the space P(1) with the
operation o1 : P(1)@P(1) — P(1) is clearly a unital associative algebra, augmented
by the composition

P(1) = P(1) @k — P(1) ® P(0) =% P(0) = k.

Now take an arbitrary unital associative algebra A and define the operad A =

{A)}nz1 by
A, for n=1 and
A(n) =
0, for n=#1,
with o1 : A(1) ® A(1) — A(1) the multiplication of A. It follows from the above
considerations that A = P for some operad P with P(0) = k if and only if A

admits an augmentation. Therefore any unital associative algebra that does not
admit an augmentation produces the desired example.

EXAMPLE 3.6 Kernels, images, etc., of homomorphisms between operads in the
category of k-modules are defined componentwise. For example, iof f: P — Q is
such homomorphism, then Ker(f) = {Ker(f)(n)}n>o0 is the collection with

Ker(f)(n) :== Ker (f : P(n) = Q(n)), n>0.

It is clear that Ker(f) is an ideal in P.

Also quotients are defined componentwise. If J is an ideal in P, then the col-
lection P/I = {(P/I)(n)}n>0 with (P/T)(n) = P(n)/I(n) for n >0, has a natural
operad structure induced by the structure of P. The canonical projection P — P/J
has the expected universal property. The kernel of this projection equals J.

Sometimes it suffices to consider operads without the symmetric group action.
This notion is formalized by:

DEFINITION 3.3 (MAY’S NON-X OPERAD) A non—3 operad in the category
of k-modules is a collection P = {P(n)}n>0 of k-modules, together with operadic
compositions

¥ :Pn) @P(k1) ® - @ P(kn) = Plkr+ -+ + kn),

form > 1 and ky,...,k, > 0, and a unit map 1 : k — P(1) that fulfill the
associativity and unitality axioms of Definition 3.1.
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Each operad can be considered as a non-3. operad by forgetting the 3,-actions.
On the other hand, given a non-% operad P, there is an associated operad X[P]
with X[P](n) := P(n) ® k[3,], n > 0, with the structure operations induced by
the structure operations of P. Operads of this form are sometimes called regular
operads.

ExAMPLE 3.7 Consider the operad Com = {Com(n)}n>1 such that Com(n)
:= k with the trivial X, -action, n > 1, and the operadic compositions (22) given
by the canonical identifications

Com(n) ® Com (k) ® - -- @ Com(k,) = K2+ Sk Com(ky + -+ + ky).

The operad Com 1is obviously not reqular. Observe also that Com =2 E/r;ik, where
c‘,{n\dk is the endomorphism operad of the ground ring without the initial component,
see Example 3.5 for the notation.

Let Ass denote the operad Com considered as a non-% operad. Its symmetriza-
tion Y[Ass| then equals the operad Ass introduced in Example 3.2.

As we already observed in Sections 1 and 2, there is an alternative approach
to operads. For the purposes of comparison, in the rest of this Section and in the
following Section we will refer to operads viewed from this alternative perspective
as to Markl’s operads.

DEFINITION 3.4 A Markl’s operad in the category of k-modules is a collec-
tion 8 = {8(n)}n>0 of right k[X,]-modules, together with k-linear maps (o;-
compositions)

0; : 8(m) ®8(n) = 8(m+n—1),
for 1 <i<m andn > 0. These data fulfill the following azioms.
Associativity. For each 1 < j <a, b,c >0, f € 8(a), g € 8(b) and h € §(c),

(foih)ojye—1g, forl<i<yj,
(fojg)oih=1q foj(goiji1h), forj<i <b+j, and
(foi—b-l—lh)ojg’ fOT’]—}—bS’LS(Z—}—b—l,

see Figure 11.
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case 1 <i < j: case ] <i<b+j:

A V7N N /N
ATIAT X

j+ec—1 i i—j+1

.

case j+b<1i <a+b—1:

RPN
zaiiglheS

AN :

Figure 11: Flow charts explaining the associativity in Markl’s operads.

Equivariance. Foreach1 <i<m,n>0,7 € ¥, and o € Xy, let To;0 € Xppyn_1
be given by inserting the permutation o at the ith place in 7. Let f € 8(m) and
g € 8(n). Then

(f7)0i (go) = (f or() 9)(7 0i 7).
Unitality. There exists e € 8(1) such that
foie=e and eojg=yg (23)
foreach1 <i<m,n >0, fe8(m)and g € 8(n).
ExAMPLE 3.8 All axioms in Definition 3.4 can be read from the endomorphism

operad Endy = {Endy (n)}n>0 of a k-module V' reviewed in Ezample 3.1, with
o;-operations given by

foig:=flidy ' ®@g®idy™ ),

for f € &ndy(m), g € Endy(n), 1 <i<m andn > 0.
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The following proposition shows that Definition 3.1 describes the same objects
as Definition 3.4.

PROPOSITION 3.1 The category of May’s operads is isomorphic to the category
of Markl’s operads.

Proof. Given a Markl’s operad 8 = {8(n)},>0 as in Definition 3.4, define a May’s
operad P = May(8) by P(n) := 8(n) for n > 0, with the y-operations given by

Y(f 915 59n) = (- ((fon gn) On—1gn-1)---) 01 91 (24)

where f € P(n), g; € P(ki), 1 < i < n, ki,...,k, > 0. The unit morphism
n:k — P(1) is defined by n(1) := e. It is easy to verify that May(—) extends to
a functor from the category of Markl’s operads the category of May’s operads.

On the other hand, given a May’s operad P, one can define a Markl’s operad
8 = Mar(?P) by 8(n) := P(n) for n > 0, with the o;-operations:

foig::V(faea""e’g’e""’6)5 (25)
—_— =

1—1 m—i

for f € 8(m), g € 8(n), m > 1, n > 0, where e := n(1) € P(1). It is again
obvious that Mar(—) extends to a functor that the functors May(—) and Mar(—)
are mutually inverse isomorphisms between the category of Markl’s operads and
the category of May’s operads. |

The equivalence between May’s and Markl’s operads implies that an operad
can be defined by specifying o;-operations and a unit. This is sometimes simpler
that to define the ~v-operations directly, as illustrated by:

EXAMPLE 3.9 Let 3 be a Riemann sphere, that is, a nonsingular complex pro-
jective curve of genus 0. By a puncture or a parametrized hole we mean a
point p of X together with a holomorphic embedding of the standard closed disc
U={z€C; |z| <1} to X centered at the point. Thus a puncture is a holo-
morphic embedding u : U — ¥, where U C C is an open neighborhood of U and
u(0) = p. We say that two punctures uy : Ui — % and uy : Uy — 3 are disjoint,
if
(o] [¢]
ul(U) QUQ(U) = @,
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where UO' ={z € C; |z| <1} is the interior of U.

Let ﬁo(n) be the moduli space of Riemann spheres Y with n + 1 disjoint
punctures u; : Uy — %, 0 < i < n, modulo the action of complex projective
automorphisms. The topology of ﬁo(n) 1s a very subtle thing and we are not
going to discuss this issue here; see [18]. The constructions below will be made
only ‘up to topology.’

Renumbering the holes uq, ..., u, defines on each ﬁo(n) a natural right 3, -
action and the S-module My = {ﬁo(n)}nzo forms a topological operad under
sewing Riemannian spheres at punctures. Let us describe this operadic structure
using the o;-formalism. Thus, let ¥ represent an element x € ﬁo(m) and A
represent an element y € ﬁo(n). For1 < i <m,letu : U — X be the ith
puncture of ¥ and let ug : Uy — A be the Oth puncture of A.

There certainly exists some 0 < r < 1 such that both Uy and U; contain the
disc Uy == {2z € C; |2| <1/r}. Let now ¥, := ¥\ u;(Uy) and A, := A\ ug(U,).
Define finally

E= (Er |_|A7")/ ~

where the relation ~ is given by
Er 2 ui(€) ~uo(1/§) € Ay,

for r < [&] < 1/r. It is immediate to see that Z is a well-defined punctured
Riemannian sphere, with n+m —1 punctures induced in the obvious manner from
those of ¥ and A, and that the class of the punctured surface Z in the moduli
space ﬁo(m +n — 1) does not depend on the representatives ¥, A and on r. We
define x o; y to be the class of =.

The unit e € 5)\10(1) can be defined as follows. Let CP! be the complex pro-
jective line with homogeneous coordinates [z,w], z,w € C, [19, Example 1.1.6].
Let 0 := [0,1] € CP' and oo := [1,0] € CP'. Recall that we have two canonical
isomorphisms ps : CPL\ 0o — C and py : CP'\ 0 — C given by

Poo([2,w]) := z/w and po([z,w]) := w/z.

Then p! : C — CP* (respectively pal :C — CP') is a puncture at 0 (respectively
at 00). We define e € ﬁo(l) to be the class of (CP*,pyt,pl).

It is not hard to verify that the above constructions make the collection §J\TO =
{ﬁo(n)}nzo a Markl’s operad. By Proposition 3.1, §J\TO is a also May’s operad.
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In the rest of this book, we will consider May’s and Markl’s operads as two
versions of the same object which we will call simply a unital operad.

4 Non-unital Operads

It turns out that the combinatorial structure of the moduli space of stable genus
zero curves is captured by a certain non-unital version of operad. Let Mg 11
be the moduli space of (n + 1)-tuples (xg,...,z,) of distinct numbered points
on the complex projective line CP! modulo projective automorphisms, that is,
transformations of the form

CP! 5 [£1,&)] — [a&y + b, c&; + d&y] € CPL,

where a,b,c,d € C with ad — be # 0.

The moduli space Mg ,+1 has, forn > 2, a canonical compactification ﬁo(n) D
Mo n41 introduced by A. Grothendieck and F.F. Knudsen [20,21]. The space
Mpo(n) is the moduli space of stable (n + 1)-pointed curves of genus 0:

DEFINITION 4.1 A stable (n+ 1)-pointed curve of genus 0 is an object
(Cizg, ..., xn),

where C is a (possibly reducible) algebraic curve with at most nodal singularities
and xg, ...,x, € C are distinct smooth points such that

(i) each component of C is isomorphic to CP!,

(ii) the graph of intersections of components of C (i.e. the graph whose vertices
correspond to the components of C' and edges to the intersection points of
the components) is a tree, and

(iii) each component of C has at least three special points, where a special point
means either one of the x;, 0 < i < n, or a singular point of C' (the stability).

It can be seen that a stable curve (C;x, ..., z,) admits no infinitesimal automor-
phisms that fix marked points zy,...,z,, therefore (C;xq,...,z,) is ‘stable’ in
the usual sense. Observe also that Mq(0) = My(1) = () (there are no stable curves
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with less than three marked points) and that Mg(2) = the point corresponding
to the three-pointed stable curve (CP'; 00, 1,0). The space Mo n+1 forms an open
dense part of Mg(n) consisting of marked curves (C;x,...,2,) such that C is
isomorphic to CP!.

Let us try to equip the collection Mo = {Mo(n)}n>2 with an operad structure
as in Definition 3.1. For C' = (C,x1,...,2,) € Mo(n) and C; = (Cy, 41, ...y}, ) €
ﬁo(/{?i), 1 < 1 < n, let

7(07017"'7071)eﬁO(kl—i_'”—i_kn) (26)

be the stable marked curve obtained from the disjoint union C' LU C' L --- L
C" by identifying, for each 1 < ¢ < n, the point z; € C with the point y(i] €
C;, introducing a nodal singularity, and relabeling the remaining marked points
accordingly. The symmetric group acts on Mg(n) by

(Cx0,21,- -, T0) > (C,20, Zo(1)s - - s Ta(n)), T € X

We have defined the ~-compositions and the symmetric group action, but
there is no room for the identity, because Mg (1) is empty! The above structure
is, therefore, a non-unital operad in the sense of the following definition (which
is formulated, as all definitions in Sections 1.3-1.11, for the monoidal category of
k-modules).

DEFINITION 4.2 A May’s non — unital operad in the category of k-modules
is a collection P = {P(n)}n>0 of k[X,]-modules, together with operadic composi-
tions

v P(n)
forn>1and ky,...,k, >0, that fulfill the associativity and equivariance arioms
of Definition 3.1.

QR P(k1) @ @Plkyp) = Pk + -+ + kn),

We may as well define on the collection Mo = {Mq(n)},>2 operations
0; : Mo(m) x Mo(n) — Mo(m +n — 1) (27)
form,n>2,1<i<m,by

(Cd;?/o,---,?/m) X (CQ;xO""’xn) — (C;yOa""yiflnya---axn’yiJrl,---aym)
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Figure 12: The o;-compositions in My = {Mo(n)}n>o.

where C'is the quotient of the disjoint union C'| | C? given by identifying zg with
y; at a nodal singularity, see Figure 12. The collection My = {Mo(n)}n>2 with
o;-operations (27) is an example of another version of non-unital operads, recalled
in:

DEFINITION 4.3 A non — unital Markl’s operad in the category of k-
modules is a collection P = {P(n)}n>0 of k[X,]-modules, together with operadic
compositions

0; : 8(m)®8(n) —» 8(m+n—1),

for 1 <i<m and n > 0, that fulfill the associativity and equivariance azioms of
Definition 3.4.

As we saw in Proposition 3.1, in the presence of operadic units, May’s operads
are the same as Markl’s operads. Surprisingly, the non-unital versions of these
structures are radically different — Markl’s operads capture more information than
May’s operads! This is made precise in the following:

PROPOSITION 4.1 The category of non-unital Markl’s operads is a subcategory of
the category of non-unital May’s operads.

Proof. It is easy to see that (24) defines, as in the proof of Proposition 3.1, a
functor ¢ May(—) which is an embedding of the category of non-unital Markl’s
operads into the category of non-unital May’s operads. |



143

Observe that formula (25), inverse to (24), does not make sense without units.
The relation between various versions of operads discussed so far is summarized
in the following diagram of categories and their inclusions:

Mar

| May }
May’s operads Markl’s operads

YMay
non-unital May’s operads «~—— ) non-unital Markl’s operads

The following example shows that non-unital Markl’s operads form a proper
sub-category of the category of non-unital May’s operads.

EXAMPLE 4.1 We describe a non-unital May’s operad V = {V(n)},>0 which is
not of the form yMay(8) for some non-unital Markl’s operad 8. Let

k, for n=2 or 4, and
V(n) :=

0, otherwise.
The only non-trivial ~y-composition is v : V(2) @ V(2) @ V(2) — V(4), given as the
canonical isomorphism
V(2) @ V(2) @ V(2) 2 k¥ =5 k = V(4).

Suppose that V = May(8) for some non-unital Markl’s operad 8. Then, ac-

cording to (24)7 fOT' f7 91,92 € V(Q);
V(f:91,92) = (f 02 g2) °1 g1

Since (f og g) € V(3) =0, this would imply that ~y is trivial, which is not true.

Proposition 4.2 below shows that Markl’s rather than May’s non-unital oper-
ads are true non-unital versions of operads. We will need the following definition in

which X = {K(n)},>1 is the trivial (unital) operad with K(1) := k and K(n) = 0,
for n £ 1.
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DEFINITION 4.4 An augmentation of an operad P in the category of k-
modules is a homomorphism € : P — XK. Operads with an augmentation are called
augmented operads. The kernel

P = Ker(e: P — X)
1s called the augmentation ideal.

The following proposition was proved in [22].

PROPOSITION 4.2 The correspondence P — P is an isomorphism between the

category of augmented operads and the category of Markl’s non-unital operads.

Proof. The o;-operations of P obviously restrict to P, making it a non-unital
Markl’s operad. It is simple to describe a functorial inverse 8 — 8 of the corre-
spondence P — P. For a Markl’s non-unital operad 8, denote by 8 the collection
~ 8(n), for n#1, and
8(n) = (n) 7 (28)

S(1)ek for n=1.

The o;-operations of S are uniquely determined by requiring that they extend the
o;-operations of 8 and satisfy (23), with the unit e := 0@ 1y € 8(1) @ k = 8(1).
Informally, § is obtained from the Markl’s non-unital operad 8 by adjoining a
unit. |
Observe that if & were a May’s, not Markl’s, non-unital operad, the construc-
tion of 8 described in the above proof would not make sense, because we would
not know how to define
v(f,e,....e,g,€,....€)
— T ——

1—1 m—i

for f € 8(m), g € 8(n), m >2,n >0, 1 <i<m.Proposition 4.2 should be com-
pared to the obvious statement that the category of augmented unital associative
algebras is isomorphic to the category of (non-unital) associative algebras. In the
following proposition, Oper denotes the category of k-linear operads and ¢0per
the category of k-linear Markl’s non-unital operads.
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PROPOSITION 4.3 Let P be an augmented operad and Q an arbitrary operad in
the category of k-modules. Then there exists a natural isomorphism

Morgper (P, Q) =2 Morygper (T, May(Q)). (29)

The proof is simple and we leave it the reader. Combining (29) with the
isomorphism of Proposition 4.2 one obtains a natural isomorphism

MOTOper (g’ Q) = MOTprer (Sa ¢MaY(Q)) (30)

which holds for each Markl’s non-unital operad 8§ and operad Q. Isomorphism (30)
means that ~: ¥)Oper — Oper and yMay : Oper — 10per are adjoint functors.
This adjunction will be used in the construction of free operads in Section 6.

In the rest of this book, non-unital Markl’s operads will be called simply
non-unital operads. This will not lead to confusion, since all non-unital operads
referred to in the rest of this book will be Markl’s.

5 Operad Algebras

As we already remarked, operads are important through their representations
called operad algebras or simply algebras.

DEFINITION 5.1 Let V be a k-module and Endy the endomorphism operad of V
recalled in Example 3.1. A P-algebra is a homomorphism of operads p : P — Endy .

The above definition admits an obvious generalization into an arbitrary sym-
metric monoidal category with an internal hom-functor. The last assumption is
necessary for the existence of the ‘internal’ endomorphism operad, see [16]. Defi-
nition 5.1 can be however unwrapped into the form given in [15] that makes sense
in an arbitrary symmetric monoidal category without the internal hom-functor

assumption:

PROPOSITION 5.1 Let P be an operad. A P-algebra is the same as a k-module V

together with maps
a:Pn)@ Ve =V, n>0, (31)

that satisfy the following azioms.
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Associativity. For each n > 1 and non-negative integers ki, ..., ky, the following
diagram commutes.

= - ® id
((P("’L) & ® ﬂ)(k?s)> & ® V®ks v fp(kl T kn) ® V®(k1+"'+kn)
s=1 s=1

shuffle V
n id ® (Qf=; @)
P(n) @ X) <3>(/<;5) ® v®ks> 1 P(n) @ VE
s=1

Equivariance. For each n > 1 and o € X,,, the following diagram commutes.

o®071

P(n) @ Ve P(n) @ Ver

S,

Vv

Unitality. For each n > 1, the following diagram commutes.

oY

koV

V

n® id

P1) @V

We leave as an exercise to formulate a version of Proposition 5.1 that would
use o;-operations instead of «-operations.

EXAMPLE 5.1 In this example we verify, using Proposition 5.1, that algebras over
the operad Com = {Com(n)}n>1 recalled in Example 3.7 are ordinary commutative
associative algebras. To simplify the exposition, let us agree that v’s with various
subscripts denote elements of V. Since Com(n) = k for n > 1, the structure
map (31) determines, for each n > 1, a linear map , : V" — V by

b (V1. vp) = a1y, v1, ..y V),
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where 1, denotes in this example the unit 1,, € k = Com(n). The associativity of
Proposition 5.1 says that

Hn (/“ﬁ (vl’ s ’vk1)’ sy Mk (vk1+~~~+kn71+1’ s ’vk1+"'+kn)) =
Hki+--+kn, (vla s ’vk1+"'+kn)’ (32)
for each n,ky1,...,k, > 1. The equivariance of Proposition 5.1 means that each

Ln 1S fully symmetric

Mn(vly s 77}71) = /’Ln(vo(l)7 s 7”0(11))7 S Ena (33)

and the unitality implies that py is the identity map,

pi(v) =v. (34)

The above structure can be identified with a commutative associative multipli-
cation on V. Indeed, the bilinear map - == po : VRV — V s clearly associative:

(v1-v2) - v3 =1 (v2-v3) (35)

and commutative:
V1V =V2 1. (36)

On the other hand, ui(v) :=v and
(01, 00) = (-o(01 - 02) -+ Uno1) vn form > 2

defines multilinear maps {p, : VO™ — V'} satisfying (32)-(34). It is equally easy
to verify that algebras over the operad Ass introduced in Example 3.2 are ordinary
associative algebras.

Following Leinster [13], one could say that (32)-(34) is an unbiased definition
of associative commutative algebras, while (35)-(36) is a definition of the same
object biased towards bilinear operations. Operads therefore provide unbiased
definitions of algebras.

EXAMPLE 5.2 Let us denote by UCom the endomorphism operad Endy of the
ground ring k. It is easy to verify that UCom-algebras are unital commutative
associative algebras. We leave it to the reader to describe the operad UAss gov-
erning unital associative operads.
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Algebras over a non-Y operad P are defined as algebras, in the sense of Defi-
nition 5.1, over the symmetrization X[P] of P . Algebras over non-unital operads
discussed in Section 4 are defined by appropriate obvious modifications of Defini-
tion 5.1.

EXAMPLE 5.3 Let Y be a topological space with a base point x and SF the k-
dimensional sphere, k > 1. The k-fold loop space QFY is the space of all continuous
maps S¥ — Y that send the south pole of S* to the base point of Y. Equivalently,
QFY s the space of all continuous maps X : (D, S¥=1) — (Y, %) from the standard
closed k-dimensional disc D* to Y that map the boundary S*~1 of D* to the base
point of Y. Let us show, following Boardman and Vogt [23], that QFY is a natural
topological algebra over the little k-discs operad Dy, = {Di(n)}n>0 recalled in
Example 3.3.

The action o : Di(n) x (QFY)*" — QFY s, for n > 0, defined as fol-
lows. Given ); : (DF,SF1) — (Y,%) € QFY, 1 < i < n, and little k-discs
d=(di,...,dy) € Di(n) as in Ezample 3.3, then

ald, A1, ..., ) - (DF,SF1) — (Y, %) € QFY

is the map defined to be \; : D¥ — Y (suitably rescaled) on the image of d;, and
to be x on the complement of the images of the maps d;, 1 <i <mn.

Therefore each k-fold loop space is a Dy-space. The following classical theorem
is a certain form of the inverse statement.

THEOREM 5.1 (Boardman-Vogt [23], May [24]) A path-connected Dy-algebra X
has the weak homotopy type of a k-fold loop space.

The connectedness assumption in the above theorem can be weakened by as-
suming that the Dy-action makes the set mo(X) of path components of X a group.

EXAMPLE 5.4 The non-unital operad My of stable pointed curves of genus 0 (also
called the con figuration (non — unital) operad) recalled on page 141 is a
non-unital operad in the category of smooth complex projective varieties. It there-
fore makes sense, as explained in Example 3.4, to consider its homology operad

H*(MO, k) = {H*(MO(TL)’ k)}n22-
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An algebra over this non-unital operad is called a (tree level) cohomological
conformal field theory or a hyper — commutative algebra [9]. It con-
sist of a family of linear operations {(—,...,—) : V®" =V}, ., which are totally
symmetric, that is -

(Ua(l)a ce ava(n)) = (’Ul, ce ,’Un),

for each permutation o € X,,. Moreover, we require the following form of associa-
tivity:

Z (w,v,25; 1 € S),w,x5; jeT)= Z(u, (v,w,z;; 1 €5),z5;5€T), (37)

(S,7) (8,1)
where u, v, w,x1,...,x, €V and (S,T) runs over disjoint decompositions ST =
{1,...,n}. Forn =0, (37) means the (usual) associativity of the bilinear operation

(=, —), t.e. (u,v),w) = (u,(v,w). Forn =1 we get
(u,v),w,z) + (u,v,z),w) = (u, (v,w,z) + (u, (v, w),x).

EXAMPLE 5.5 In this example, k is a field of characteristic 0. The non-unital
operad Mo(R) = {Mo(R)(n)}n>2 of real points in the configuration operad My
is called the mosaic non — unital operad [25]. Algebras over the homology
H,(Mp(R), k) = {H.(Mo(R)(n), k) }n>2 of this operad were recently identified [26]
with 2-Gerstenhaber algebras, which are structures (V,u, ) consisting of a
commutative associative product p: V@V — V and an anti-symmetric degree
+1 ternary operation 7 : V ® V.® V. — V which satisfies the generalized Jacobi
identity
> sgn(0) - T(T(To(1) To(2)s Ta(3))s Ta(a)s Ta(z) = 0,

where the summation runs over all (3,2)-unshuffles o(1) < 0(2) < o(3), 0(4) <
o(5). Moreover, the ternary operation T is tied to the multiplication p by the
distributive law

T(p(s,t), u,v) = p(r(s,u,v),t) + (—1)(1+|“‘+|”|)‘s| (s, T(tu,v)), s, t,u,v €V,

saying that the assignment s — 7(s,u,v) is a degree (1 + |u| + |v|)-derivation of
the associative commutative algebra (V,u), for each u,v € V.
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6 Free Operads and a Category of rooted Trees

The purpose of this Section is three-fold. First, we want to study free operads
because each operad is a quotient of a free one. The second reason why we are
interested in free operads is that their construction involves trees. Indeed, it turns
out that rooted trees provide ‘pasting schemes’ for operads and that, replacing
trees by other types of graphs, one can introduce several important generaliza-
tions of operads, such as cyclic operads, modular operads, and PROPs. The last
reason is that the free operad functor defines a monad which provides an unbiased
definition of operads as algebras over this monad. Everything in this Section is
written for k-linear operads, but the constructions can be generalized into an ar-
bitrary symmetric monoidal category with countable coproducts (M, ®, 1) whose
monoidal product ® is distributive over coproducts, see [16].

Recall that a ¥-module is a collection E' = {E(n)},>¢ in which each E(n) is a
right k[, ]-module. There is an obvious forgetful functor O : Oper — ¥-mod from
the category Oper of k-linear operads to the category Y-mod of ¥-modules.

DEFINITION 6.1 The free operad functor is a left adjoint [27] T : ¥-mod —
Oper to the forgetful functor O : Oper — X -mod. This means that there exists a
functorial isomorphism

Morgper (I'(E), P) = Morsmoa(E,0(P))

for an arbitrary X-module E and operad P. The operad T'(E) is the free operad
generated by the YX-module E. Similarly, the free non-unital operad functor is
a left adjoint W : X-mod — 1)0per of the obvious forgetful functor Oy : 1)0per —
Y.-mod, that is

Moryoper (Y (E),8) = Mors, moa (£,04(8)),

where E is a X-module and 8 a non-unital operad. The non-unital operad V(E)
is the free non-unital operad generated by the X-module E.

Let 7: 10per — Oper be the functor of ‘adjoining the unit’ considered in the
proof of Proposition 4.2 on page 144. Functorial isomorphism (30) implies that
one may take

=7, (38)
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which means that the free operad I'(E) can be obtained from the free non-unital
operad VU (FE) by formally adjoining the unit.

Let us indicate how to construct the free non-unital operad ¥(FE), a precise
description will be given later in this Section. The free non-unital operad V(E)
must be built up from all formal o;-compositions of elements of £ modulo the ax-
ioms listed in Definition 3.4. For instance, given f € F(2), g € E(3), h € E(2) and
l € E(0), the component ¥(E)(5) must contain the following five compositions

(for(gozl))oszh, (foxh)oi(goal), ((fozh)org)oal,
((forg)ozl)ozh and ((fo1g)osh)ozl.

The elements in (39) can be depicted by the ‘flow diagrams’ of Figure 13.

(39)

Nodes of these diagrams are decorated by elements f,g,h and [ of E in such a
way that an element of E(n) decorates a node with n input lines, n > 0. Thin
‘amoebas’ indicate the nesting which specifies the order in which the o;-operations
are performed.

The associativity of Definition 3.4 however says that the result of the compo-
sition does not depend on the order, therefore the amoebas can be erased and the
common value of the compositions represented by

Let us look more closely how diagram (40) determines an element of the (still
hypothetical) free non-unital operad W(E). The crucial fact is that the underlying
graph of (40) is a planar rooted tree. Recall (see Section 2) that a tree is a finite
connected simply connected graph without loops and multiple edges. For a tree
T we denote, as usual, by Vert(T') the set of vertices and Edg(T) the set of edges
of T. The number of edges adjacent to a vertex v € Vert(T) is called the valence
of v and denoted val(v). We assume that one is given a subset

ext(T) C {v € Vert(T); val(v) =1}



152

(for(goal))ozh (foah)or(gozl)

((fo2h)o1g)oal ((forg)ozl)osh

Figure 13: Flow diagrams in non-unital operads.
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of external vertices, the remaining vertices are internal. Let us denote
vert(T') := Vert(T) \ ext(T)

the set of all internal vertices. Henceforth, we will assume that our trees have at
least one internal vertex. This excludes at this stage the exzceptional tree consisting
of two external vertices connected by an edge.

Edges adjacent to external vertices are the legs of T. A tree is rooted if one of
its legs, called the root, is marked and all other edges are oriented, pointing to the
root. The legs different from the root are the leaves of T'. For example, the tree
in (40) has 4 internal vertices decorated f, g, h and [, and 4 leaves. Finally, the
planarity means that an embeddings of T  into the plane is specified. In Sections
6-11 for all pictures, the root will always be placed on the top. By a vertex we
will always mean an internal one.

The planarity and a choice of the root of the underlying tree of (40) specifies
a total order of the set in(v) of input edges of each vertex v € vert(T) as well as
a total order of the set Leaf (T') of the leaves of T', by numbering from the left to
the right:

(41)

1 23 4
This tells us that [ should be inserted into the second input of g, g into the first
input of f and h into the second input of f. Using ‘abstract variables’ vy, va, v3
and vy, the element represented by (41) can also be written as the ‘composition’
flg(vr,l,v2), h(vs,vg)).
Now we need to take into account also the symmetric group action. If 7 is the
generator of Yo, then the obvious equality

f(g(UI, l’v2)’ h(v3’v4)) = fT(h(v3’v4)’g(’U1’ l’UQ))

of ‘abstract compositions’ coming from the equivariance of Definition 3.4 trans-
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lates into the following equality of flow diagrams:

Relation (42) shows that the equivariance of Definition 3.4 violates the linear
orders induced by the planar embedding of T'. This leads us to the conclusion that
the flow diagrams describing elements of free non-unital operads are (abstract,
non-planar) rooted, leaf-labeled decorated trees.

Let us describe, after these motivations, a precise construction of W(E). The
first subtlety one needs to understand is how to decorate vertices of non-planar
trees. In Sections 6-11, we need to explain how each ¥-module E = {E(n)},>0
naturally extends into a functor (denoted again F) from the category Sety of
finite sets and their bijections to the category of k-modules. If X and Y are finite
sets, denote by

Bij(Y,X) :={0: X — Y} (43)

the set of all isomorphisms between X and Y (notice the unexpected direction of
the arrow!). It is clear that Bij(Y, X)) is a natural left Auty- right Autx-bimodule,
where Auty := Bij(X, X) and Auty := Bij(Y,Y’) are the sets of automorphisms
with group structure given by composition. For a finite set S € Sety of cardinality
n and a ¥-module E = {E(n)},>0 define E(S) to be

E(S) = E(n) x5, Bij([n), S) (44)

where, as usual, [n] := {1,...,n} and, of course, ¥, = Aut,).

Let us recall that a (leaf-) labeled rooted n-tree is a rooted tree T' together
with a specified bijection £ : Leaf (T) = [n]. Let Tree, be the category of labeled
rooted n-trees and their bijections. For T € Tree,, define

E(T):= () E(in(v)) (45)

vevert(T)
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where in(v) is, as before, the set of all input edges of a vertex v € vert(T). It is
easy to verify that E — FE(T) defines a functor from the category Tree,, to the
category of k-modules.

Recall that the colimit of a covariant functor F' : D — Mody is the quotient

colim F'(x) = @ F(x)/ ~,
zeD zeD

where ~ is the equivalence generated by
F(y) 3 a~F(f)(a) € F(z),
for each a € F(y), y,z € D and f € Morp(y, z). Define finally

U(E)(n):= colim E(T), n>0. (46)
T € Tree,

The following theorem was proved in [16].

THEOREM 6.1 There exists a natural non-unital operad structure on the ¥-module
V(E) = {¥(E)(n)}n>0,

with the o;-operations given by the grafting of trees and the symmetric group re-
labeling the leaves, such that V(E) is the free non-unital operad generated by the
Y -module E.

One could simplify (46) by introducing Tree(n) as the set of isomorphism
classes of n-trees from Tree,, and defining ¥(E) by the formula

B = @ ET). n>0, (47)

[T)eTree(n)

which does not involve the colimit. The drawback of (47) is that it assumes a
choice of a representative [T'] of each isomorphism class in Tree(n), while (46) is
functorial and admits simple generalizations to other types of operads and PROPs.
See [16] for other representations of the free non-unital operad functor.

Having constructed the free non-unital operad ¥(E), we may use (38) to define
the free operad I'(E). This is obviously equivalent to enlarging, in (46) for n = 1,
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the category Tree, by the exceptional rooted tree | with one leg and no internal
vertex. If we denote this enlarged category of trees and their isomorphisms (which
however differs from Tree, only at n = 1) by UTree,, we may represent the free
operad as
['(E)(n) :== colim E(T), n>0. (48)
T € UTreen,

If £ is a ¥-module such that F(0) = E(1) = 0, then (47) reduces to a sum-
mation over reduced trees, that is trees whose all vertices have at least two input
edges. By simple combinatorics, the number of isomorphism classes of reduced
trees in Tree, is finite for each n > 0. This implies the following proposition that
says that operads are relatively small objects.

PROPOSITION 6.1 Let E = {E(n)},>0 be a X-module such that

and that E(n) are finite-dimensional for n > 2. Then the spaces V(E)(n) and
['(E)(n) are finite-dimensional for each n > 0.

We close this Section by showing how the free operad functor can be used to
define operads. It follows from general principles that any operad P is a quotient
P =T(E)/(R), where E and R are ¥-modules and (R) is the operadic ideal (see
Definition 3.2) generated by R in I'(E).

EXAMPLE 6.1 The commutative associative operad Com recalled in Example 3.7
1s generated by the X-module

k-p, if n=2 and

Eeom(n) = {o it om0

where k - p is the trivial representation of Xo. The ideal of relations is generated
by
Reom = Spam{p(p @ id) — p(id @ p)} C T'(Ecom)(3),

where p(p ® id) — p(id @ p) is the obvious shorthand for v(u, u,e) — v(u, e, i),
with e the unit of T'(Ecom)-



157

Similarly, the operad Ass for associative algebras reviewed in Example 3.2 is
generated by the X-module E 455 such that

k[¥9], if n=2 and

Ees(n) = {o it n A2

The ideal of relations is generated by the K[X3]-closure R 4ss of the associativity
ala®id) —a(id ® a) € T'(E4s5)(3), (49)
where « is a generator of the reqular representation E 455(2) = k[Xo].

EXAMPLE 6.2 The operad Lie governing Lie algebras is the quotient Lie :=
[(Erie)/(Rric), where Erje is the X-module

. ) k-8B, ifn=2and
Beie(n) '_{ 0, ifn#2

with k - B is the signum representation of Xo. The ideal of relations (Rrje) is
generated by the Jacobi identity:

B(B®id) + B(B @ id)c+ B(B®id)c* =0, (50)
in which ¢ € X3 is the cyclic permutation (1,2,3) — (2,3,1).

EXAMPLE 6.3 We show how to describe the presentations of the operads Ass and
Lie given in Examples 6.1 and 6.2 in a simple graphical language. The generator
a of Egss 18 an operation with two inputs and one output, so we depict it as A.
The associativity (49) then reads as

AN = A,

therefore Ass = T'(N) /(A = A\). Also the operad for Lie algebras is generated

by one bilinear operation A, but this time the operation is anti-symmetric

A __ A

1 2 2 1°

The Jacobi identity (50) reads

AN+ AN+ AN =0

123 231 312
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The kind of description used in the above examples is ‘tautological’ in the
sense that it just says that the operad P governing a certain type of algebras is
generated by operations of these algebras, with an appropriate symmetry, modulo
the axioms satisfied by these operations. It does not say directly anything about
the properties of the individual spaces P(n), n > 0. Describing these individual
components may be a very nontrivial task, see for example the formula for the
Y,-modules Lie(n) given in [16]. Operads in Examples 6.1 and 6.2 are quadratic
in the sense of the following:

DEFINITION 6.2 An operad P is quadratic if it has a presentation P =
I'(E)/(R), where E = P(2) and R C I'(E)(3).

Quadratic operads form a very important class of operads. Each quadratic
operad P has a quadratic dual P' [28], [16] which is a quadratic operad defined,
roughly speaking, by dualizing the generators of P and replacing the relations
of P by their annihilator in the dual space. For example, Ass' = Ass, Com' =
Lie and Lie' = Com. A quadratic operad P is Koszul if it has the homotopy
type of the bar construction of its quadratic dual [28], [16]. For quadratic Koszul
operads, there is a deep understanding of the derived category of the corresponding
algebras. Operads Ass, Com and Lie above, as well as most quadratic operads
one encounters in everyday life, are Koszul.

7 Category of May’s Trees

In this Section, we review the definition of a triple (monad) and give, in Theo-
rem 7.1, a description of unital and non-unital operads in terms of algebras over
a triple. The relevant triples come from the endofunctors ¥ and I' recalled in
Section 6. Let End(C) be the strict symmetric monoidal category of endofunctors
on a category C where multiplication is the composition of functors.

DEFINITION 7.1 A triple (also called a monad) T on a category C is an as-
sociative and unital monoid (T, p,v) in End(C). The multiplication p : TT — T
and unit morphism v : id — T satisfy the azioms given by commutativity of the
diagrams in Figure 1/.
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Tp
TTrT T T T T T
wl H id K id K
1
T T T T

Figure 14: Associativity and unit axioms for a triple.

Triples arise naturally from pairs of adjoint functors. Given an adjoint pair |27,
IL.7]

with associated functorial isomorphism
Mory(F(X),Y) = Morg(X,G(Y)), X €B, Y €A,

there is a triple in B defined by T := GF. The unit of the adjunction id — GF
defines the unit v of the triple and the counit of the adjunction F'G — id induces
a natural transformation GFGF — GF which defines the multiplication p. In
fact, it is a theorem of Eilenberg and Moore [29] that all triples arise in this way
from adjoint pairs. This is exactly the situation with the free operad and free
non-unital operad functors that were described in Section 6. We will show how
operads and non-unital operads can actually be defined using the concept of an
algebra over a triple:

DEFINITION 7.2 A T-algebra or algebra over the triple T is an object A of
C together with a structure morphism o : T(A) — A satisfying

a(T(a)) = a(pa) and avg = id 4,
see Figure 15.

The category of T-algebras in C will be denoted Alg,(C). Since the free non-
unital operad functor ¥ and the free operad functor I' described in Section 6 are
left adjoints to Oy : ¥Oper — X-mod and O : Oper — X-mod, respectively, the
functors Oy W¥ (denoted simply ¥) and OI' (denoted I') define triples on ¥-mod.
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T(a) or
T(T(A)) T(A) A—— T(A)
T(A) t A

Figure 15: T-algebra structure.

THEOREM 7.1 A Y-module 8 is a V-algebra if and only if it is a non-unital operad
and it is a '-algebra if and only if it is an operad. In shorthand:

Algy(X-mod) = ¢)Oper and Algp(X-mod) = Oper.

Proof. We outline first the proof of the implication in the direction from algebra to
non-unital operad. Let 8§ be a W-algebra. The restriction of the structure morphism
a: ¥(8) — 8 to the components of ¥(§) supported on trees with one internal
edge defines the non-unital operad composition maps o;, as indicated by:

In the opposite direction, for a non-unital operad 8, the W-algebra structure
a: ¥U(8) — § is the contraction along the edges of underlying trees, using the
o;-operations. The proof that I'-algebras are operads is similar. |

Let us change our perspective and consider formula (46) as defining an endo-
functor ¥ : 3-mod — Y-mod, ignoring that we already know that it represents free
non-unital operads. We are going to construct maps

YV 5 Vandwv:id— U

making W a triple on the category >-mod. Let us start with the triple multiplication
w. It follows from (46) that, for each ¥-module E,

VU (E)(n) :== colim Y(E)(T), n>0.

T € Tree,
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Figure 16: Bracketed trees. The left picture shows an element of YW (FE)(5) while the
right picture shows the same element interpreted, after erasing the braces indicated by
thin cycles, as an element of U(E)(5). For simplicity, we did not show the decoration of
vertices by elements of E.

The elements in the right hand side are represented by rooted trees 1" with ver-
tices decorated by elements of W(E), while elements of W(F) are represented by
rooted trees with vertices decorated by E. We may therefore imagine elements of
VWU (E) as ‘bracketed’ rooted trees, in the sense indicated in Figure 16. The triple
multiplication pg : WU (FE) — WU(FE) then simply erases the braces. The triple unit
vg : E — U(F) identifies elements of E with decorated corollas:

7 inputs

It is not difficult to verify that the above constructions indeed make W a triple,
compare [16]. Now we can define non-unital operads as algebras over the triple
(U, p,v). The advantage of this approach is that, by replacing Tree,, in (46) by
another category of trees or graphs, one may obtain triples defining other types
of operads and their generalizations.

We have already seen in (48) that enlarging Tree,, into UTree,, by adding the
exceptional tree, one gets the triple I describing (unital) operads. It is not difficult
to see that non-unital May’s operads are related to the category MTree,, of May’s
trees which are, by definition, rooted trees whose vertices can be arranged into
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AN KON

Figure 17: A May'’s tree.

levels as in Figure 17. Non-unital May’s operads are then algebras over the triple
M : ¥-mod — ¥-mod defined by

M(E)(n) := colim E(T), n>0.
T € MTreen,

These observations are summarized in the first three lines of the table in Figure 24
on page 188.

8 Cyclic Operads and non-rooted Trees

In the following two Sections we use the approach developed in Section 7 to in-
troduce cyclic and modular operads. We recalled, in Example 3.9, the operad
My = {ﬁo(n)}nzo of Riemann spheres with parametrized labeled holes. Each
5)\20(71) was a right X,-space, with the operadic right X,-action permuting the
labels 1,...,n of the holes uy,...,u,. But each ﬁo(n) obviously admits a higher
type of symmetry which interchanges labels 0, ..., n of all holes, including the la-
bel of the ‘output’ hole ug. Another example admitting a similar higher symmetry
is the configuration (non-unital) operad Mo = {Mo(n)},>2.

These examples indicate that, for some operads, there is no clear distinction
between ‘inputs’ and the ‘output.” Cyclic operads, introduced by E. Getzler and
M.M. Kapranov in [8], formalize this phenomenon. They are, roughly speaking,
operads with an extra symmetry that interchanges the output with one of the
inputs. Let us recall some notions necessary to give a precise definition.
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We remind the reader that in this Section, as well as everywhere in Sections
3-11, main definitions are formulated over the underlying category of k-modules,
where k is a commutative associative unital ring. However as in Sections 1-2, for
some constructions, we will require k to be a field; we will indicate this as usual
by speaking about wvector spaces instead of k-modules.

Let 7 be the permutation group of the set {0,...,n}. The group % is, of
course, non-canonically isomorphic to the symmetric group ¥,,+1. We identify 3,
with the subgroup of ;7 consisting of permutations o € 3t such that o(0) = 0.
If 7, € &} denotes the cycle (0,...,n), that is, the permutation with 7,(0) =
1, 7,(1) =2, ...,7(n) =0, then 7, and X,, generate 2.

Recall that a cyclic X-module or a X7 -module is a sequence W = {W(n)},>0
such that each W(n) is a (right) k[X;']-module. Let ¥ *-mod denote the category
of cyclic X-modules. As (ordinary) operads were Y-modules with an additional
structure, cyclic operads are X T-modules with an additional structure.

We will also need the following ‘cyclic’ analog of (44): if X is a set with n+1
elements and W € ¥ "-mod, then

W (X)) =W (n) xg1 Bij([n]", X), (51)

where [n|* := {0,...,n}, n > 0. Double brackets in W (X)) remind us that the
nth piece of the cyclic ¥-module W = {W(n)},,>0 is applied on a set with n + 1
elements, using the extended 3;"-symmetry. Therefore

W({0,...,n}) = W(n) while WHO0,...,n})=W(n+1), n>0.

Pasting schemes for cyclic operads are cyclic (leg-) labeled n-trees, by which

we mean non-rooted trees, with legs labeled by the set {0,...,n}. An example of
such a tree is given in Figure 18. Since we do not assume a choice of the root,
the edges of a cyclic tree C' are not directed and it does not make sense to speak
about inputs and the output of a vertex v € vert(C). Let Tree,l be the category
of cyclic labeled n-trees and their bijections.

For a cyclic ¥-module W and a cyclic labeled tree T" we have the following
cyclic version of the product (45)

W(T) = Q) W(edge(v)).

vevert(T)
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Figure 18: A cyclic labeled tree from Treeg .

The conceptual difference between (45) and the above formula is that instead of
the set in(v) of incoming edges of a vertex v of a rooted tree, here we use the set
edge(v) of all edges incident with v. Let, finally, ¥, : ¥T-mod — ¥ "-mod be the
functor

U, (W)(n) := colim W(T), n>0, (52)

T e Tree:[

equipped with the triple structure of ‘forgetting the braces’ similar to that re-
viewed on page 161. We will use also the ‘extended’ triple I'y : ¥ *-mod — ¥ -mod,

'y (W)(n):= colim W(T), n>0,

T e UTreei

where UTree, is the obvious extension of the category Tree," by the exceptional
tree | .

DEFINITION 8.1 A cyclic (resp. non — unital cyclic) operad is an algebra
over the triple T'y (resp. the triple W, ) introduced above.

In the following proposition, which slightly improves [8], 7, € ;7 denotes the
cycle (0,...,n).

PROPOSITION 8.1 A non-unital cyclic operad is the same as a non-unital operad
C = {C(n)}n>0 (Definition 3.4) such that the right ¥,,-action on C(n) extends, for
each n > 0, to an action of ¥ with the property that for p € €(m) and q € €(n),
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1<i<m, n >0, the composition maps satisfy

(qTn) on (PTm), ifi = 1,and
(P2 Q) Tmtn—1 = .

(pTm) ©i—1 q, for2 <i <m.
The above structure is a (unital) cyclic operad if moreover there evists a Y -
invariant operadic unit e € C(1).

Proposition 8.1 gives a biased definition of cyclic operads whose obvious mod-
ification (see [16]) makes sense in an arbitrary symmetric monoidal category. We
can therefore speak about topological cyclic operads, differential graded cyclic
operads, simplicial cyclic operads etc. Observe that there are no non-unital cyclic
May’s operads because it does not make sense to speak about levels in trees with-
out a choice of the root.

EXAMPLE 8.1 Let V' be a finite dimensional vector space and B : V@V — k a
nondegenerate symmetric bilinear form. The form B induces the identification

Lin(V®" V)3 f—s B(f) := B(—, f(=)) € Lin(V®"+D k)

of the spaces of linear maps. The standard right ;" -action

B(f)o(vo, ..., vn) = E(f)(v0_1(0), e Vpmi(ny)s O ESE, v, v €V,
defines, via this identification, a right X} -action on Lin(VE™, V), that is, on the
nth piece of the endomorphism operad Endy = {Endy (n)}n>o recalled in Exam-
ple 8.1. It is easy to show that, with the above action, Endy is a cyclic operad in the
monotdal category of vector spaces, called the cyclic endomorphism operad
of the pair V.= (V, B). The biased definition of cyclic operads given in Proposi-
tion 8.1 can be read off from this example.

EXAMPLE 8.2 We saw in Example 3.5 that a unital operad A = {A(n)}n>0 such
that A(n) = 0 for n # 1 is the same as a unital associative algebra. Similarly,
it can be easily shown that a cyclic operad C = {C(n)}n>0 satisfying C(n) = 0
for n # 1 is the same as a unital associative algebra A with a linear involutive
antiautomorphism, by which we mean a kK-linear map * : A — A such that

(ab)* =b*a*, ()" =a and 1" =1,

for arbitrary a,b € A.
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Let P =T'(E)/(R) be a quadratic operad as in Definition 6.2. The action of ¥
on E extends to an action of X7, via the sign representation sgn : 35 — {+1} =
>o. It can be easily verified that this action induces a cyclic operad structure on
the free operad I'(E). In particular, I'(E)(3) is a right X3 -module.

DEFINITION 8.2 We say that the operad P is a cyclic quadratic operad if, in
the above presentation, R is a E;‘-invariant subspace of T'(E)(3).

If the condition of the above definition is satisfied, P has a natural induced
cyclic operad structure.

EXAMPLE 8.3 By [8], all quadratic operads generated by a one-dimensional space
are cyclic quadratic, therefore the operads Lie and Com are cyclic quadratic.
Also the operads Ass and the operad Poiss for Poisson algebras are cyclic
quadratic [8]. A surprisingly simple operad which is cyclic and quadratic, but not
cyclic quadratic, is constructed in [62].

The operad ﬁo of Riemann spheres with labeled punctures reviewed in Ex-
ample 3.9 is a topological cyclic operad. The configuration operad My recalled on
page 141 is a nomn-unital topological cyclic operad. Important examples of non-
cyclic operads are the operad pre-Lie for pre-Lie algebras [62, Section 3] and the
operad Leib for Leibniz algebras [8].

Let € be an operad, a : C(n) ® V" — V, n > 0, a C-algebra with the
underlying vector space V' as in Proposition 5.1 and B : V ® V — U a bilinear
form on V with values in a vector space U. We can form a map

B(a): C(n) @ VM) U n>0, (53)

by the formula

B(a)(c®uvg®-+-vy) := B(vg,a(c®@v1 ® -+ -vy)), ¢ € C(n), vo,...,v, € V.

Suppose now that the operad C is cyclic, in particular, that each C(n) is a right
Y r-module. We say that the bilinear form B : V ® V. — U is invariant (8], if
the maps B(a) in (53) are, for each n > 0, invariant under the diagonal action
of ¥ on C(n) ® VO +1) We leave as an exercise to verify that the invariance of
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B(a) for n = 1 together with the existence of the operadic unit implies that B is
symmetric,
B(Uo,vl) = B(Ul,vo), V9,01 € V.

DEFINITION 8.3 A cyclic algebra over a cyclic operad C is a C-algebra struc-
ture on a vector space V together with a nondegenerate invariant bilinear form
B:V®V =k

By [16], a cyclic algebra is the same as a cyclic operad homomorphism € —
Endy, where Endy is the cyclic endomorphism operad of the pair (V, B) recalled
in Example 8.1.

ExXaMPLE 8.4 A cyclic algebra over the cyclic operad Com is a Frobenius
algebra, that is, a structure consisting of a commutative associative multiplica-
tion - : V@V — V as in Example 5.1 together with a non-degenerate symmetric
bilinear form B :V @ V — k, invariant in the sense that

B(a-b,c) = B(a,b-c), forall a,bjceV.

Similarly, a cyclic Lie algebra is given by a Lie bracket [—,—] : V @V — V and
a non-degenerate symmetric bilinear form B :' V ® V — k satisfying

B([a,b],¢) = B(a,[b,c]), for a,b,ceV.

For algebras over cyclic operads, one may introduce cyclic cohomology that
generalizes the classical cyclic cohomology of associative algebras [63-65| as the
non-abelian derived functor of the universal bilinear form [8], [16]. Let us close
this Section by mentioning two examples of operads with other types of higher
symmetries. The symmetry required for anticylic operads differs from the sym-
metry of cyclic operads by the sign [16]|. Dihedral operads exhibit a symmetry
governed by the dihedral groups [62].

9 Modular Operads

Let us consider again the Y t-module My = {ﬁo(n)}nzo of Riemann spheres
with punctures. We saw that the operation M, N — M o; N of sewing the Oth
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hole of the surface N to the ith hole of the surface M defined on 5)\?0 a cyclic
operad structure. One may generalize this operation by defining, for M € §J\?o(m),
N € My(n), 0 <i < m,0<j<n, the element M;o;N € My(m + n — 1) by
sewing the jth hole of M to the ith hole of V. Under this notation, o; = ;0q. In
the same manner, one may consider a single surface M € ﬁo(n), choose labels
1,7, 0 < i # j < n, and sew the ith hole of M along the jth hole of the same
surface. The result is a new surface £; j) (M ), with n — 2 holes and genus 1.
This leads us to the system 90 = {ﬁ(g,n)}gzo,nz—l, where ﬁ(g,n) denotes
now the moduli space of genus g Riemann surfaces with n+ 1 holes. Observe that
we include E/D\?(g,n) also for n = —1; ﬁ(g, —1) is the moduli space of Riemann
surfaces of genus g. The operations ;o; and ; ;3 act on M. Clearly, for M €

—

M(g,m) and N € M(h,n),0<i<m,0<j<nandgh>0,
Mio;N € M(g+h,m+n—1) (54)
and, for m > 1 and g > 0,
(M) € Mg +1,m — 2). (55)
A particular case of (54) is the non-operadic composition
000 : M(g,0) x M(h,0) = M(g + h,—1), g,h > 0. (56)

Modular operads are abstractions of the above structure satisfying a certain
additional stability condition. The following definitions, taken from [66], are made
for the category of k-modules, but they can be easily generalized to an arbitrary
symmetric monoidal category with finite colimits, whose monoidal product © is
distributive over colimits. Let us introduce the underlying category for modular
operads.

A modular ¥-module is a sequence £ = {£(g,n)}g>0,n>—1 of k-modules such that
each £(g,n) has a right k[X]-action. We say that & is stable if

E(g,n)=0 for2g+n—-1<0 (57)

and denote MMod the category of stable modular 3-modules.
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Stability (57) says that £(g,n) is trivial for (¢g,n) = (0,—1), (1,—1), (0,0) and
(0,1). We will sometimes express the stability of £ by writing & = {£(g, 1) }(gn)es)
where

S:={(g,n)| g>0, n>—1and 2g+n—1> 0}.

Recall that a genus g Riemann surface with k£ marked points is stable if it does not
admit infinitesimal automorphisms. This happens if and only if 2(g — 1) + k£ > 0,
that is, excluded is the torus with no marked points and the sphere with less
than three marked points. Thus the stability property of modular -modules is
analogous to the stability of Riemann surfaces.

Now we introduce graphs that serve as pasting schemes for modular operads.
The naive notion of a graph as we have used it up to this point is not subtle
enough; we need to replace it by a more sophisticated:

DEFINITION 9.1 A graph T is a finite set Flag(T') (whose elements are called
flags or half— edges) together with an involution o and a partition . The
vertices vert(T') of a graph T are the blocks of the partition A\, we assume also
that the number of these blocks is finite. The edges Edg(T') are pairs of flags
forming a two-cycle of o. The legs Leg(T") are the fized points of o.

We also denote by edge(v) the flags belonging to the block v or, in common
speech, half-edges adjacent to the vertex v. We say that graphs I'y and I's are
isomorphic if there exists a set isomorphism ¢ : Flag(I';) — Flag(I'2) that pre-
serves the partitions and commutes with the involutions. We may associate to a
graph I' a finite one-dimensional cell complex |I'|, obtained by taking one copy

of [0, %] for each flag, a point for each block of the partition, and imposing the
'3
block of the partition A with the point corresponding to the block, and the points

following equivalence relation: The points 0 € [0, 5] are identified for all flags in a
% € [0, %] are identified for pairs of flags exchanged by the involution o.

We call |I'| the geometric realization of I'. Observe that empty blocks of the
partition generate isolated vertices in the geometric realization. We will usually
make no distinction between the graph and its geometric realization. As an exam-
ple (taken from [66]), consider the graph with {a,b,...,i} as the set of flags, the
involution o = (df)(eg) and the partition {a,b,c,d,e} U{f,g,h,i}. The geomet-
ric realization of this graph is the ‘sputnik’ in Fig. 19. Let us introduce labeled



Figure 19: The sputnik.

versions of the above notions. A (vertez-) labeled graph is a connected graph T’
together with a map g (the genus map) from vert(I') to the set {0,1,2,...}. La-
beled graphs I'y and I'y are isomorphic if there exists an isomorphism preserving
the labels of the vertices. The genus g(I") of a labeled graph I' is defined by

g0 =bi(M)+ > glv), (58)
vevert(T')
where b (T") := dim H;(|T'|) is the first Betti number of the graph |T'|, i.e. the
number of independent circuits of I'. A graph I is stable if

2(g(v) — 1) + [edge(v)| > 0,

at each vertex v € vert(I').

For ¢ > 0 and n > —1, let MGr(g,n) be the groupoid whose objects are pairs
(T, ¢) consisting of a stable (vertex-) labeled graph I' of genus ¢ and an isomor-
phism ¢ : Leg(I') — {0,...,n} labeling the legs of I' by elements of {0,...,n}.
Morphisms of MGr(g, S) are isomorphisms of vertex-labeled graphs preserving the
labeling of the legs. The stability implies, via an elementary combinatorial topol-
ogy that, for each fixed ¢ > 0 and n > —1, there is only a finite number of
isomorphism classes of stable graphs I" € MGr(g,n), see [66].

We will also need the following obvious generalization of (51): if & =
{€(9,n)}¢g>0,n>—1 is a modular ¥-module and X a set with n + 1 elements, then

E(g, X)) = E(g:n) x5+ Bij([n]*,X), g >0, n> —1. (59)

For a modular ¥-module € = {£(g,n)}¢>0,n>—1 and a labeled graph T', let £(T")
be the product

E():= Q) E(9(v), edge(v)). (60)

vevert(T)
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Evidently, the correspondence I" — £(T") defines a functor from the category
MGr(g,n) to the category of k-modules and their isomorphisms. We may thus
define an endofunctor M on the category MMod of stable modular 3-modules by
the formula
ME&(g,n) := colim &(T), ¢ >0, n> —1.
T € Mcr(g, n)

Choosing a representative for each isomorphism class in MGr(g,n), one obtains

the identification

ME(g:n) = P E(M)awwy, 920, n> -1, (61)
[T]e{Mer(g,n)}

where {MGr(g,n)} is the set of isomorphism classes of objects of the groupoid
MGr (g, n) and the subscript Aut(I") denotes the space of coinvariants. Stability (57)
implies that the summation in the right-hand side of (61) is finite. Formula (61)
generalizes (47) which does not contain coinvariants because there are no non-
trivial automorphisms of leaf-labeled trees. On the other hand, stable labeled
graphs with nontrivial automorphisms are abundant, an example can be easily
constructed from the graph in Figure 19. The functor M carries a triple structure
of ‘erasing the braces’ similar to the one used on pages 161 and 164.

DEFINITION 9.2 A modular operad is an algebra over the triple M : MMod —
MMod.

Therefore a modular operad is a stable modular ¥-module A = {A(g,n)}(yn)cs
equipped with operations that determine coherent contractions along stable mod-
ular graphs. Observe that the stability condition is built firmly into the very
definition. Very crucially, modular operads do not have units, because such a unit
ought to be an element of the space A(0, 1) which is empty, by (57).

One can easily introduce un-stable modular operads and their unital versions,
but the main motivating example reviewed below is stable. We will consider an
extension of the Grothendieck-Knudsen configuration operad Mg = {Mp(n)},>2
consisting of moduli spaces of stable curves of arbitrary genera in the sense of the
following generalization of Definition 4.1:



172

Aq

Curve C:

A3

Figure 20: A stable curve and its dual graph. The curve C on the left has five components
A;, 1 <i <5, and three marked points xg, 1 and z. The dual graph I'(C) on the right
has five vertices a;, 1 <14 < 5, corresponding to the components of the curve and three
legs labeled by the marked points.

DEFINITION 9.3 A stable (n+1)-pointed curve, n > 0, is a connected complez
projective curve C' with at most nodal singularities, together with a ‘marking’ given
by a choice xq,...,x, € C of smooth points. The stability means, as usual, that
there are no infinitesimal automorphisms of C' fixing the marked points and double

points.

The stability in Definition 9.3 is equivalent to saying that each smooth com-
ponent of C' isomorphic to the complex projective space CP! has at least three
special points and that each smooth component isomorphic to the torus has at
least one special point, where by a special point we mean either a double point
or a node.

The dual graph T' = T'(C) of a stable (n + 1)-pointed curve C = (C, zg,...,x,) is
a labeled graph whose vertices are the components of C, edges are the nodes and
its legs are the points {z;}o<i<n. An edge e, corresponding to a nodal point y
joins the vertices corresponding to the components intersecting at y. The vertex
vk corresponding to a branch K is labeled by the genus of the normalization of
K. See [30] for the normalization and recall that a curve is normal if and only if it
is nonsingular. The construction of I'(C) from a curve C'is visualized in Figure 20.

Let us denote by M, 5,41 the coarse moduli space [30] of stable (n + 1)-pointed
curves C' such that the dual graph I'(C') has genus g, in the sense of (58). The
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genus of I'(C) in fact equals the arithmetic genus of the curve C, thus My 41 is
the coarse moduli space of stable curves of arithmetic genus g with n + 1 marked
points. By a result of P. Deligne, F.F. Knudsen and D. Mumford [21, 31, 32],
Mg,n+1 is a projective variety.

Observe that, for a curve C' € Mg ,,+1, the graph T'(C) must necessarily be
a tree and all components of C' must be smooth of genus 0, therefore ﬁomﬂ
coincides with the moduli space My(n) of genus 0 stable curves with n+1 marked
points that we discussed in Section 4. Dual graphs of curves C € ﬁgmﬂ are stable
labeled graphs belonging to MGr(g,n + 1).

The symmetric group 3, acts on ﬁg7n+1 by renumbering the marked points,
therefore

M= {M(g,7)} 420> 1,

with M(g,n) = ﬁg,n+1, is a modular ¥-module in the category of projective
varieties. Since there are no stable curves of genus g with n + 1 punctures if
29+ n—1<0, Mis a stable modular X-module. Let us define the contraction
along a stable graph I" € MGr(g,n)

ar: M(D) = [ M(g(v), edge(v)) = M(g,n) (62)
vevert(I)

by gluing the marked points of curves from M(g(v), edge(v))), v € vert(T'), ac-
cording to the graph I'. To be more precise, let

H Cy, where C, € M((g(v), edge(v))),
vevert(I')

be an element of M((I'). Let e be an edge of the graph I' connecting vertices vy
and va, e = {y5,, s, }, where 5 is a marked point of the component C,,, i = 1,2,
which is also the name of the corresponding flag of the graph I'. The curve ar(C)
is then obtained by the identifications yg, = y,, introducing a nodal singularity,
for all e € Edg(T"). The procedure is the same as that described for the tree
level in Section 4. As proved in [66, § 6.2], the contraction maps (62) define on
the stable modular ¥-module of coarse moduli spaces M = {M(g,n)}(gm)eg a
modular operad structure in the category of complex projective varieties.

Let us look more closely at the structure of the modular triple M. Given a
(stable or unstable) modular ¥-module &, there is, for each ¢ > 0 and n > —1, a
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natural decomposition

with My(€)(g,n) the subspace obtained by summing over graphs I' with
dim H{(|T'|) = k, k& > 0. In particular, M(€)(g,n) is a summation over sim-
ply connected graphs. It is not difficult to see that My(E) is a subtriple of M (E).
This shows that modular operads are M g-algebras with some additional opera-
tions (the ‘contractions’) that raise the genus and generate the higher components
My, k > 1, of the modular triple M.

There seems to be a belief expressed in the proof of Theorem in [66] that, in
the stable case, the triple M is equivalent to the non-unital cyclic operad triple
U, but it is not so. The triple Mg is much bigger, for example, if a € £(1,0),
then M((£)(2,—1) contains a non-operadic element

a a

which can be also written, using (56), as agoga. The corresponding part
U, (€)(—1) of the cyclic triple is empty. In the Grothendieck-Knudsen modu-
lar operad M, an element of the above type is realized by two tori meeting at a
nodal point.

On the other hand, the triple M restricted to the subcategory of stable mod-
ular ¥-modules £ such that £(g,n) = 0 for ¢ > 0 indeed coincides with the
non-unital cyclic operad triple W, as was in fact proved in [66]. Therefore, given

a modular operad A = {A(g,n)}(gn)cs, there is an induced non-unital cyclic

,n
operad structure on the cyclic collgec)tion A = {A(0,n)}y>2. We will call A°
the associated cyclic operad. For example, the cyclic operad associated to the
Grothendieck-Knudsen modular operad M equals its genus zero part Mo.

A biased definition of modular operads can be found in [16]. It is formulated

in terms of operations
{ioj : A(g,m) @ A(h,n) = A(g+h,m+n); 0<i<m, 0<j<n, g,h >0}
together with contractions
{&igy s Algm) = Alg+1,m —2); m>1, g >0}

that generalize (54) and (55).
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EXAMPLE 9.1 Let V = (V, B) be a vector space with a symmetric inner product
B:V ®V — k. Denote, for each g >0 andn > —1,

Endy (g, n) = VOO,

It is clear from definition (60) that, for any labeled graph T' € MGr(g,n),
Endy () = V®Flag(D),

Let B®Edg() . yy@Flag(l) _, yy®Leg() pe the multilinear form which contracts
the factors of VEFIW) corresponding to the flags which are paired up as edges of
I'. Then we define ar : Endy (I') — Endy (g,n) to be the map

B®Edg(T)
ar : Endy (T) = VeFlas) —___, yele(l) V2 yemt) - Endv (g, n),

where € : Leg(T') — {0,...,n} is the labeling of the legs of T'. It is easy to show
that the compositions {ar; T' € MGr(g,n)} define on Endy the structure of an
un-stable unital modular operad, see [66].

An algebra over a modular operad A is a vector space V' with an inner product
B, together with a morphism p : A — Endy of modular operads. Several impor-
tant structures are algebras over modular operads. For example, an algebra over
the homology H.(M) of the Grothendieck-Knudsen modular operad is the same
as a cohomological field theory in the sense of [9]. Other physically relevant alge-
bras over modular operads can be found in [16,33,66]. Relations between modular

operads, chord diagrams and Vassiliev invariants are studied in [61].

10 PROPs

Operads are devices invented to describe structures consisting of operations with
several inputs and one output. There are, however, important structures with op-
erations having several inputs and several outputs. Let us recall the most promi-

nent one:

ExAMPLE 10.1 A (associative) bialgebra is a k-module V' with a multi—
plication : V @V — V and a comultiplication (also called o diagonal)
AV -V ®V. The multiplication is associative:

p(p @ idy) = plidy @ p),
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the comultiplication is coassociative:
(A ®idy)A = (idy @ A)A
and the usual compatibility between p and A is assumed:
Au-v) = Au) - A(v) for u,v €V, (63)

where u-v := p(u,v) and the dot - in the right hand side denotes the multiplication
induced on V@V by u. Loosely speaking, bialgebras are Hopf algebras without unit,
counit and antipode.

PROPs (an abbreviation of product and permutation category) describe struc-
tures as in Example 10.1. Although PROPs are more general than operads, they
appeared much sooner, in a 1965 Mac Lane’s paper [34]. This might be explained
by the fact that the definition of PROPs is more compact than that of operads —
compare Definition 10.1 below with Definition 1.1 in Section 1 and Definition 3.1
in Section 3. PROPs then entered the ‘renaissance of operads’ in 1996 via [35].

Definition 10.1 uses the notion of a symmetric strict monoidal category, see [16,
34,60]. An example is the category Mody of k-modules, with the monoidal product
©® given by the tensor product ® = ®y, the symmetry Syy : UV = VU
defined as Sy y(u,v) == v®@u for v € U and v € V, and the unit 1 the ground
ring k.

DEFINITION 10.1 A (k-linear) PROP (called a theory in [35]) is a symmetric
strict monoidal category P = (P,®,S,1) enriched over Mody such that

(1) the objects are indexed by (or identified with) the set N = {0,1,2,...} of
natural numbers, and

(ii) the product satisfies m ©® n = m + n, for any m,n € N = Ob(P) (hence the
unit 1 equals 0).

Recall that the Mody-enrichment in the above definition means that each hom-
set Morp(m,n) is a k-module and the operations of the monoidal category P (the
composition o, the product ® and the symmetry S) are compatible with this
k-linear structure.
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For a PROP P denote P(m,n) := Morp(m,n). The symmetry S induces, via
the canonical identifications m = 19 and n & 19" on each P(m,n) a structure of
(X, Xp)-bimodule (left X,,- right ¥,-module such that the left action commutes
with the right one). Therefore a PROP is a collection P = {P(m,n)}n n>0 of
(X, Xp)-bimodules, together with two types of compositions, horizontal

®: P(mi,n1) @+ @ P(mg,ns) = P(my+ -+ mg,n1 4+ 4 1),

induced, for all my,...,mg,n1,...,ns > 0, by the monoidal product ® of P, and
vertical
o:P(m,n) ® P(n,k) — P(m, k),

given, for all m,n,k > 0, by the categorial composition. The monoidal unit is an
element e := 1 € P(1,1). In Definition 10.1, Mody can be replaced by an arbitrary
symmetric strict monoidal category.

Let P = {P(m,n)}mn>0 and Q = {Q(m,n)}m n>0 be two PROPs. A homo-
morphism f : P — Q is a sequence f = {f(m,n) : P(m,n) = Q(m,n)}mn>o0 of
bi-equivariant maps which commute with both the vertical and horizontal com-
positions. An ideal in a PROP P is a system | = {I(m, n)}n n>0 of left 3,,- right
Y,-invariant subspaces I(m,n) C P(m,n) which is closed, in the obvious sense,
under both the vertical and horizontal compositions. Kernels, images, etc., of ho-
momorphisms between PROPs, as well as quotients of PROPs by PROPic ideals,
are defined componentwise, see [35-38] for details.

ExaMPLE 10.2 The endomorphism PROP of a k-module V' is the system
Endy = {Endy (m,n)}mn>0

with Endy (m,n) the space of linear maps Lin(VE™ VE™) with n ‘inputs’ and m
‘outputs,” e € Endy (1,1) the identity map, horizontal composition given by the
tensor product of linear maps, and vertical composition by the ordinary composi-
tion of linear maps.

Also algebras over PROPs can be introduced in a very concise way:

DEFINITION 10.2 A P-algebra is a strict symmetric monoidal functor \ : P —
Mody of enriched monoidal categories. The value A(1) is the underlying space of
the algebra p.
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It is easy to see that a P-algebra is the same as a PROP homomorphism
p: P — &ndy. As in Proposition 5.1, a P-algebra is determined by a system

a:P(m,n) @ Ve = VO™ m n,>0,

of linear maps satisfying appropriate axioms.

As before, the first step in formulating an unbiased definition of PROPs is to
specify their underlying category. A X-bimodule is a system E = {E(m, n)}m.n>0
such that each E(m,n) is a left k[%,,]- right k[3,]-bimodule. Let ¥-bimod denote
the category of ¥-bimodules. For ¥ € ¥-bimod and finite sets Y, X with m resp. n
elements put

E(Y,X) := Bij(Y,[m]) xx,, E(m,n) xs,, Bij([n],X), m,n >0,

where Bij(—,—) is the same as in (43). Pasting schemes for PROPs are directed
(m,n)-graphs, by which we mean finite, not necessary connected, graphs in the
sense of Definition 9.1 such that

(i) each edge is equipped with a direction
(ii) there are no directed cycles and

(iii) the set of legs is divided into the set of inputs labeled by {1,...,n} and the
set of outputs labeled by {1,...,m}.

An example of a directed graph is given in Figure 21. We denote by Gr(m,n)
the category of directed (m,n)-graphs and their isomorphisms. The direction of
edges determines at each vertex v € vert(G) of a directed graph G a disjoint
decomposition

edge(v) = in(v) U out(v)

of the set of edges adjacent to v into the set in(v) of incoming edges and the set
out(v) of outgoing edges. The pair (#(out(v)),#(in(v))) € N x N is called the
biarity of v. To incorporate the unit, we need to extend the category Gr(m,n),
for m = n, into the category UGr(m,n) by allowing the exceptional graph

1 ...’]*EUGI‘("’L,”), n=>1,
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Figure 21: A directed graph from Gr(4, 3).

with n inputs, n outputs and no vertices. For a graph G € UGr(m,n) and a
Y-bimodule E, let
E(G):= @ E(out(v),in(v)).
vevert(G)

and

I's(E)(m,n) = colim E(G), m,n > 0. (64)

G € UGr(m,n)

The X-bimodule I'p(F) is a PROP, with the vertical composition given by the
disjoint union of graphs, the horizontal composition by grafting the legs, and
the unit the exceptional graph 1€ I'p(E)(1,1). The following proposition follows
from [39] and [36-38|:

PROPOSITION 10.1 The PROP I'p(E) is the free PROP generated by the X-
bimodule E.

As in the previous Sections, (64) defines a triple I'p : 3-bimod — X-bimod with
the triple multiplication of erasing the braces. According to general principles [29],
Proposition 10.1 is almost equivalent to

PROPOSITION 10.2 PROPs are algebras over the triple I'p.

One may obviously consider non-unital PROPs defined as algebras over the
triple
Up(E)(m,n) := colim E(G), m,n >0,
G € cr(m, n)
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and develop a theory parallel to the theory of non-unital operads reviewed in
Section 4.

ExaMPLE 10.3 We will use the graphical language explained in Example 6.3. Let
L(A,Y) be the free PROP generated by one operation A of biarity (1,2) and
one operation Y of biarity (2,1). As we noticed already in [35,40], the PROP B
describing bialgebras equals

B=T(A,Y)/lg,
where lg is the PROPic ideal generated by

A=A =N and X - (0. (65)
In the above display we denoted
A= Ao(A@e), A=Ao(eaA), ¥i=(Yae)oY, Vi=(aY)oY,
Xi=YoA and (N)i=(A®A)oro(Y®Y),

where Kk € 3y is the permutation

1234 o O o o
ﬁ::<1324):|><|. (66)

The above description of B is ‘tautological,” but B. Enriquez and P. Etingof
found in [?] the following basis of the k-linear space B(m,n) for arbitrary
m,n > 1. Let A € B(1,2) be the equivalence class, in B = T'(A\,Y)/Ig, of the
generator A € T(Y, A)(1,2) (we use the same symbol both for a generator and
its equivalence class). Define A= e e B(1,1) and, for a > 2, let

Al = Ko (A@e)o(A®e®?)o- -0 (A®e®@ ) eB(1,a).
Let Yy € B(b,1) has the obvious similar meaning. The elements

()\[al] ®...®)\[am])oao(\([b1]®'-'®Y[bn]), (67)

where ¢ € X for some N > 1, and a; + -+ + ap = b 4+ --- + 0™ = N, form a
k-linear basis of B(m,n). This result can also be found in [}1]. See also [}2,}3]
for the bialgebra PROP wviewed from o different perspective.
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EXAMPLE 10.4 FEach operad P generates a unique PROP P such that P(1,n) =
P(n) for each n > 0. The components of such a PROP are given by

Pimn)= @ [PLr) @ @P(1,15)] X5, xx5y, Sns
Pt tr=n
for each m,n > 0. The (topological) PROPs considered in [23] are all of this
type. On the other hand, FExample 10.3 shows that not each PROP is of this form.
A PROP P is generated by an operad if and only if it has a presentation P =
I's(E)/(R), where E is a X-bimodule such that E(m,n) =0 for m # 1 and R is
generated by elements in I'p(E)(1,n), n > 0.

11 Properads, Dioperads and %PROPS

As we saw in Proposition 6.1, under some mild assumptions, the components
of free operads are finite-dimensional. In contrast, PROPs are huge objects. For
example, the component I'p( A, Y)(m,n) of the free PROP I'p(A, Y) used in the
definition of the bialgebra PROP B in Example 10.3 is infinite-dimensional for
each m,n > 1, and also the components of the bialgebra PROP B itself are
infinite-dimensional, as follows from the fact that the Enriquez-Etingof basis (67)
of B(m,n) has, for m,n > 1, infinitely many elements.

To handle this combinatorial explosion of PROPs combined with lack of suit-
able filtrations, smaller versions of PROPs were invented. Let us begin with the
simplest modification which we use as an example which explains the general
scheme of modifying PROPs. Denote UGr.(m,n) the full subcategory of UGr(m,n)
consisting of connected graphs and consider the triple defined by

I(E)(m,n):= colim E(G), m,n >0, (68)
G € UGrc(m,n)

for E' € ¥-bimod. The following notion was introduced by B. Vallette [36-38].

DEFINITION 11.1 Properads are algebras over the triple I'c : ¥X-bimod —
>-bimod.

A properad is therefore a ¥-bimodule with operations that determine coher-
ent contractions along connected graphs. A biased definition of properads is given
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in [36-38|. Since T'. is a subtriple of I'p, each PROP is automatically also a pr-
operad. Therefore one may speak about the endomorphism properad Endy and
define algebras over a properad P as properad homomorphisms p : P — Endy .
Algebras over other versions of PROPs recalled below can be defined in a similar
way.

ExXaAMPLE 11.1 Associative bialgebras reviewed in FEzample 10.3 are algebras
over the properad B defined (tautologically) as the quotient of the free properad
L (A, Y) by the properadic ideal generated by the elements listed in (65). We leave
as an ezercise to describe the sub-basis of (67) that span B(m,n), m,n > 1.

The following slightly artifical structure exists over PROPs but not over prop-
erads. It consists of a ‘multiplication’ p = AN : V@V — V, a ‘comultiplication’
A=Y :V 5V®V and a linear map f =% :V — V satisfying NAop=fQ f
or, diagrammatically

X=14.

This structure cannot be o properad algebra because the graph on the right hand
side of the above display is not connected.

Properads are still huge objects. The first really small version of PROPs were
dioperads introduced in 2003 by W.L. Gan [44]. As a motivation for his definition,
consider the following:

ExXAMPLE 11.2 A Lie bialgebra is a vector space V with a Lie algebra structure
[—,—]=A:V®V =V and a Lie diagonal 6 =Y : V = V@ V. We assume
that [—, —] and 0 are related by

dla,b] = Z ([a(l), b ® a(2) + [a, b(l)] ® b(g) +an) ® [a(g), b + b(l) ® [a, b(g)])
(69)
for any a,b € V, with the Sweedler notation a =Y a(y @ a(g) and 5b = b1y ®
Lie bialgebras are governed by the PROP LieB = T'( A, Y) /I e, where A and
Y are now antisymmetric and |l jeg denotes the ideal generated by

123 231 312 21 21

K\+K\+X\ e Y and)( \H\ 1122+ + &N, (70)

123 231 12 12

with labels indicating the corresponding permutations of the inputs and outputs.
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We observe that all graphs in (70) are not only connected as demanded for
properads, but also simply-connected. This suggests considering the full subcat-
egory UGrp(m,n) of UGr(m,n) consisting of connected simply-connected graphs
and the related triple

I'h(E)(m,n) = colim E(G), m,n>0. (71)

G € UGrp(m, n)

DEFINITION 11.2 Dioperads are algebras over the triple I'y : Y-bimod —
> -bimod.

A biased definition of dioperads can be found in [44]. As observed by T. Lein-
ster, dioperads are more or less equivalent to polycategories, in the sense of [45],
with one object. Lie bialgebras reviewed in Example 11.2 are algebras over a
dioperad. Another important class of dioperad algebras is recalled in:

EXAMPLE 11.3 An in finitesimal bialgebra [46] (called in [47] a mock
bialgebra) is a vector space V' with an associative multiplication - : V.V — V
and a coassociative comultiplication A -V — V @V such that

Ala-b) =Y (aq) @ ag) -b+a-buy @ by)

for any a,b € V. It is easy to see that the axioms of infinitesimal bialgebras are

encoded by the following simply connected graphs:
A=A =Y and X—N-HN.

Observe that associative bialgebras recalled in Example 10.1 cannot be defined
over dioperads, because the rightmost graph in (65) is not simply connected. The
following proposition, which should be compared to Proposition 6.1, shows that
dioperads are of the same size as operads.

PROPOSITION 11.1 Let E = {E(m,n)}mn>0 be a L-bimodule such that
E(m,n) =0 form+n <2 (72)

and that E(m,n) is finite-dimensional for all remaining m,n. Then the com-
ponents I'n(E)(m,n) of the free dioperad T'n(E) are finite-dimensional, for all

m,n > 0.
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The proof, similar to the proof of Proposition 6.1, is based on the observation
that the assumption (72) reduces the colimit (71) to a summation over reduced
trees (trees whose all vertices have at least three adjacent edges).

An important problem arising in connection with deformation quantization is
to find a reasonably small, explicit cofibrant resolution of the bialgebra PROP B.
Here by a resolution we mean a differential graded PROP R together with a ho-
momorphism 3 : R — B inducing a homology isomorphism. Cofibrant in this
context means that R is of the form (I'p(£), d), where the generating >-bimodule
E decomposes as E = ,,~, En and the differential decreases the filtration, that
is -

O(Ey) C T'p(E)<p, for each n >0,

where I'p(E) <, denotes the sub-PROP of I'(E) generated by ,_,, £;. This no-
tion is an PROPic analog of the Koszul-Sullivan algebra in rational homotopy
theory [48]. Several papers devoted to finding R appeared recently [41,49-54].
The approach of [55] is based on the observation that B is a deformation, in the
sense explained below, of the PROP describing structures recalled in the following:

DEFINITION 11.3 A half — bialgebra or simply a %bialgebra 18 a wvector
space V' with an associative multiplication p : 'V Q V. — V and a coassociative
comultiplication A :'V — V ® V' that satisfy

A(u-v) =0, foreach u,veV. (73)

We chose this strange name because (73) is indeed one half of the compatibility
relation (63) of associative bialgebras. %bialgebras are algebras over the PROP

B:=T(A)/(A =A% =V, X=0).

1

2
Now define, for a formal variable ¢, B; to be the quotient of the free PROP T'( A, YY)
by the ideal generated by

A=A =Y X=t(N)

Thus By is a one-parametric family of PROPs with the property that By = %B.
At a generic t, B, is isomorphic to the bialgebra PROP B. In other words, the PROP
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Figure 22: Edges allowed in a Jgraph.

for bialgebras is a deformation of the PROP for %bialgebras. According to general
principles of homological perturbation theory [56], one may try to construct the
resolution R as a perturbation of a cofibrant resolution %R of the PROP %B. Since
%B is simpler that B, one may expect that resolving %B would be a simpler task
than resolving B.

For instance, one may realize that %bialgebras are algebras over a dioperad
%B, use [44] to construct a resolution %R of the dioperad %B, and then take %R to
be the PROP generated by %R. More precisely, one denotes

F : di0Op — PROP (74)

the left adjoint to the forgetful functor PROP — diOp and defines iR = Fi(3R).

The problem is that we do not know whether the functor F} is exact, so it
is not clear if %R constructed in this way is really a resolution of %B. To get
around this subtlety, M. Kontsevich observed that %bialgebras live over a version
of PROPs which is smaller than dioperads. It can be defined as follows.

Let an (m, n)—%gmph be a connected simply-connected directed (m,n)-graph
whose each edge e has the following property: either e is the unique outgoing edge
of its initial vertex or e is the unique incoming edge of its terminal vertex, see
Figure 22. An example of an (m,n)-3graph is given in Figure 23. Let Gr%(m,n)
be the category of (m,n)—%graphs and their isomorphisms. Define a triple I 1
>-bimod — 3-bimod by

I'i(E)(m,n):= colim E(G), m,n>0. (75)
2 Ge Gr%(m, n)
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Figure 23: A graph from Gr; (4,4).

DEFINITION 11.4 A 1PROP (called « meager PROP) is an algebra over the
triple I'1 : X-bimod — Y -bimod.
2

A biased definition of 2PROPs can be found in [39,55]. We followed the
convention that %PROPS do not have units; the unital version of %PROPS can be
defined in an obvious way, compare also the remarks in [55].

ExamMPLE 11.4 %bialgebms are algebras over a %PROP which we denote %b. An-
other example of structures that can be defined over %PROPS are Lie %bialgebras
consisting of a Lie algebra bracket [—,—] : V@ V. — V and a Lie diagonal
0:V =V RV satisfying one-half of (69):

dla,b] = 0.

Let us denote by
F : 1PROP — PROP

the left adjoint to the forgetful functor PROP N %PROP from the category of

PROPs to the category of %PROPS. M. Kontsevich observed that, in contrast to
Fy : di0p — PROP in (74), F' is a polynomial functor, which immediately implies
the following important theorem [39].
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THEOREM 11.1 The functor F : %PROP — PROP s ezact.

Now one may take a resolution 3r of the PROP 1b and put 3R := F(3r).
Theorem 11.1 guarantees that %R defined in this way is indeed a resolution of the
PROP %B. Let us mention that there are also other structures invented to study
resolutions of the PROP B, as 2PROPs of Shoikhet [52], matrons of Saneblidze
and Umble [49], or special PROPs considered in [55].

The constructions reviewed in this Section can be organized into the following
chain of inclusions of full subcategories:

Oper C $PROP C dilp C Proper C PROP.

The general scheme behind all these constructions is the following. We start by
choosing a subgroupoid SGr = | |, 5 8Gr(m,n) of Gr := ||, ,Gr(m,n) (or
a subgroupoid of UGr := | |, 5, UGr(m,n) if we want units). Then we define a
functor I's : 3-bimod — Y -bimod by

I's(E)(m,n) := colim E(G), m,n > 0.
G € SGr(m,n)

It is easy to see that I's is a subtriple of the PROP triple I'p if and only if the
following two conditions are satisfied:

(i) the groupoid SGr is hereditary in the sense that, given a graph from SGr
with vertices decorated by graphs from SGr, then the graph obtained by
‘forgetting the braces’ again belongs to SGr, and

(ii) SGr contains all directed corollas.

Hereditarity (i) is necessary for I's to be closed under the triple multiplication
of I'p while (ii) guarantees that I's has an unit. Plainly, all the three choices used
above — UGr,, UGrp and Gri — satisfy the above assumptions. Let us mention that
one may modify the definition of PROPs also by enlarging the category Gr(m,n),
as was done for wheeled PROPs in [57|. Pasting schemes and the corresponding
structures reviewed in this article are listed in Figure 24.
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Pasting schemes corresponding structures
rooted trees non-unital operads
May’s trees non-unital May’s operads
extended rooted trees operads
cyclic trees non-unital cyclic operads
extended cyclic trees cyclic operads
stable labeled graphs modular operads
extended directed graphs PROPs
extended connected directed graphs properads
extended connected 1-connected dir. graphs dioperads
% graphs %PROPS

Figure 24: Pasting schemes and the structures they define.

12 Sums over Trees

In this Section we prove basic formal identities for certain infinite sums (partition
functions) taken over graphs of various topological types. The simplest “Euler
product” identity relates sums over not necessarily connected graphs to those
over connected ones. Summation over trees is interpreted as a calculation of the
critical value of a formal potential. Finally, summation over graphs of arbitrary
topology is interpreted as the perturbation series for a formal Feynman integral.

12.1 Application to sums over graphs

DEFINITION 12.1 Let (€,0) be a symmetric monoidal category with the identity
object 1 satisfying the following conditions.

a) € has a countable set of isomorphism classes of objects. Every object has a
finite automorphism group.

b) Every object of £ is isomorphic to a product O;m;" where m; are indecom-

posable with respect to o (“primes”), w* is the o-product of a; copies of m;, and
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m; # 7 for i # j. This product is defined uniquely up to permutation of factors.
c) We have

]Aut O 7'('?1“ = Hai!]Au‘c Wi‘ai , (76)
i
in particular, |Aut (1)] = 1.
In addition let R be a commutative topological ring and let w : Ob& — R
be a weight function depending only on the isomorphism class of the object and

multiplicative: w(o o 7) = w(o)w(T).

THEOREM 12.1 If the sums and products involved absolutely converge, we have

w(r) w(o) w(m)
H P |Aut 7| Z |Aut o - Z |Aut7r| - ()

{m}/(iso) o€0bE/(iso) {m}/(iso)
Proof. We have
H H Z IA trle’
{}(iso) ‘ (i flisey a0 VAT ”‘
and it remains to apply (76). |

Throughout this Section, we will take for £ various categories of finite graphs,
o will denote the disjoint sum, and “primes” 7 will be connected graphs. Property
(76) will be evident from the definition of isomorphisms. The second equality in
(77) says that a weighted sum taken over all graphs can be obtained by exponen-
tiation from the similar sum taken only over connected graphs.

We will now introduce a family of weights which will be called standard.

DEFINITION 12.2 A standard weight on a category of finite graphs is defined
by the following choices:

a) A set of “colors” A, finite or countable.

b) A family of symmetric tensors Cq, . 4., k =1,2,..., whose subscripts be-
long to A and coordinates belong to a topological commutative ring R.

¢) A symmetric tensor g®® with the same properties. The matriz (¢*°) must be
invertible, and we put (gqp) = (¢*°) !
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In other words, we have a free R-module H with metric and a sequence of
symmetric polynomials of all degrees on H expressed in terms of a basis indexed
by A. (We can generalize this setting considering supercommutative R and Zs-
graded H.)

With these choices made, we put for a graph 7:

wr)= Y [ 9% ] Cutr. vy - (78)

wFr—AeckE, veEV

REMARK 12.1 a) The expression Oe in (78) means the set of two flags constituting
the edge e. When a marking u : Fr — A is given, u(de) = {a,b} consists of two
elements of A which produce g°°. We can similarly define Cu(F,(v)) thanks to the
symmetry.

b) If A is finite, the whole sum (78) is finite. Otherwise we have to postulate
convergence already at this step. In our applications R will be a formal series ring.
The multiplicativity of w with respect to disjoint union is evident.

c¢) Consider now the sum of type (77) with a standard weight:

1
Ze(w) = Z TAut 7] Z H "% H Cu(F, (v) - (79)

7/(is0) whr—Aeck; veVr

Such sums occur in some models of statistical and quantum physics. Coloring
of flags corresponds to the picture of A types of particles propagating along the
edges with amplitudes ¢g®° and interacting at vertices with amplitudes Car,...ap -
In this context, graphs are Feynman diagrams, and (79) can be called the
partition function. The same formalism emerges in the general operadic con-
text and in the topology of moduli spaces.

12.2 Summation over trees

In this Subsection, we will calculate the partition function (78) in which the
summation is taken over the set T' of isomorphism classes of all (connected) trees
without tails and having at least one edge.

We will treat here Cy, .. 4, independent formal variables over a subring Ry C R
containing gas, ¢*°, and Q. Then all our sums make sense as formal series.
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We will express Z via a simpler formal function of auxiliary variables ¢ =
{¢*|a € A} independent over R:

(b(¢) = _% Z gab¢a¢b + Z % Z Ca1,...,ak¢a1 . ¢ak ) (80)
a,b k=1

" a1,...,ap€A
Put C% =>4 g™Cy and denote by N C R the ideal generated by Cas,....a, for
all k£ > 2.
THEOREM 12.2 a) The equations
8;(525) =0, VYaeA, (81)
admit the unique solution ¢o = {¢p3} € RA satisfying the condition
g =C%mod N . (82)
b) The partition function Z = Zp satisfies the differential equations
g—é:¢8, a€ A, (83)
and is the critical value of ®(¢):
Z = ®(¢p) . (84)

REMARK 12.2 The assumption that Cy, .. a,
used several times in the statements and proofs: to locate the critical point ¢,
to make sense of the left-hand side of (83), etc. However, when the identities
(80) and (81) are proved in the formal context, they can be specialized to other

are independent formal variables is

topological rings R.
Proof. a) Rewrite (81) as

Zgab¢b = Ca + Z % Z %(CM,...,%(#LI e ¢ak) ) Va € Aa (85)

beA k>2 " ai,..,an€A
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that is,

1 0 a a
(ﬁa:Ca‘i‘Zy Z gab (Cal,...,ak¢ 1¢ k) ) vaeA (86)

a a
k>2 at,...,a,bEA ¢

Comparing (82) and (86) one sees that the critical point in question can be calcu-
lated by iterating (86). More precisely, consider the formal operator T" mapping
= (¢Y*a € A) to (T*(¢))|a € A) where

k
T“(zﬂ)zZ%Z S g Gy (8T)

k>2 i=1 ay,...,ax,b€EA

The equation (86) can be rewritten as ¢9 = C' + T'(¢o) and solved by means of a
version of the geometric progression formula

$o=C +T(C+T(C+T(C+..))). (88)

The solution is clearly unique.

b) In order to make more transparent the formal structure of (88) as a sum
over trees, we will consider the case when A = {x} is a one-element set.

Put ¢** = ¢, 9w = g%, Cs. .« (k subscripts) = Cy, ¢* = ¢, and C! = gCy.
Then (87) becomes

>, gC
T(w) =y
k=1 ’

and (88) takes the form

l k
90k [ = 905 [ = 9Cmi1 m
qso_kZT lz 0 (ZO - (gC’l—i—...)) : (89)

Opening the brackets we will represent ¢y sum of monomials in 9(’;—1,“ We
will say that such a monomial has height < N if it is a product of terms situated
before the N-th opening bracket in (89) or directly after it (the terms of the latter
type are gC1).

E.g. the only monomial of height 0 is gC7. Monomials of height 1 are

9Cr=1
k!

(gCl)k, k Z 1.
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Monomials of height 2 are indexed by the families of integers {k;;l1,...,lx}, k >
1,1; > 0, each such family contributing

Cer1Chy1 Cpp
k:—:— lll':' l’}j‘ (gcl)th e (90)

To establish the general pattern, we need a definition. Consider a tree without

tails 7. The pinning of T is given by the choice of the following data:

a) The choice of a vertex vy € V; with |F;(vg)| = 1 called the root.

Such choice determines a unique orientation of all flags (or edges) of 7 such
that the unique flag of vy is incoming and every vertex v # vy has exactly one
outgoing flag.

Such choice determines a unique orientation of all flags (or edges) of 7 such
that the unique flag of vy is incoming and very vertex v # vy has exactly one
outgoing flag.

b) A total ordering of all sets V;(k) C V; where V; (k) denotes the set of all
vertices of 7 separated by k edges from vg. This total ordering must satisfy the
following condition. Let f; : V:(k + 1) — V;(k) be the map “going along the
outgoing edge to the next vertex”. Then f; must be monotone with respect to the
chosen orderings.

A pinned tree is a tree with pinning. An isomorphism of pinned trees is an
isomorphism of trees compatible with orientation and pinning. The height of a
pinned tree is max {k|V;(k + 1) # 0.

A contemplation shows that there is a natural bijection between the isomor-
phism classes of pinned trees (7, p) with |E;| > 1 of height < N and monomials of
height < N which can be directly obtained from (89). Moreover, various pinnings
of the same 7 generate the differently ordered but equal monomials which can be
written in the form dependent only on 7:

9% T Cunftiol = 1)t (o1)
veV,
Now, the number of different pinnings of 7 is [T [,y (Jv[ — 1)! where T7 is the
set of potential roots and factorials count orderings of incoming edges. The auto-
morphism group of 7 effectively acts on the set of pinnings. Hence (91) appears
with the coefficient

IZ:| [T (ol = 1)t/ Aut 7| .

UEV‘I’
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We now turn to the proof of (83) which for the one-element A becomes

P = aC, (Z |Aut7- ‘ o H C'”') ’ (92)

veEVr

In fact, the discussion above shows that the tree 7 with all its pinnings contributes
to ¢g the term

|| Tloev, (0] = 1)!g\ET| 11 Coi
4 |Aut 7| (Jv

In view of (79), this is the same as the contribution of 7 to a—Z This gives (83).

We leave to the reader the discussion of the case |A| > 1.

To derive (84) from (83), consider both sides of (84) as formal series in Cy,a >
1. Their constants terms (value at (C,) = 0) vanish. For Z, this follows from the
fact that any tree in (79) has at least two verticles with |v| = 1. For ¢y, this follows
from (92). Hence it sufficient to check that %Z = %@(gﬁo) for all a € A. But

we have 6¢
Z a¢b 0 (gbo)

The first sum vanishes because (dS)(¢0) = 0, and the second term equals ¢

because of (80). It remains to apply (83). [ |

12.3 Summation over graphs of arbitrary topology

We will now study the partition function (79) for more general graphs, keeping the
same assumptions about the coefficient ring R and tensors C, g as in Subsections
12.1 and 12.2. In order to keep track of the Euler characteristic of the graphs, we
extend R to the Laurent formal series ring Ry = R((A™1)).

DEFINITION 12.3 An Ry-linear functional

() : RAl[¢]] — R

is called \"1g-Gaussian (mean value) if it is (\~1, ¢)-adically continuous, and

(exp(A -1 Z Cod®)) = exp(( 2)\ Z Cag“bC’b (93)
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LEMMA 12.1 (Wick) If (C,) are independent variables over Ry, then we have:

a) (@™ ...¢%) =0 forn=1 mod 2.

b) {#“0") = Ag™.

c) (P ...¢%m) = X" g% % . g%m%m where the summation is taken
over all unordered partitions of {1,...,2m} into m unordered pairs
{iv,gits - {ims Jm} (pairings).

Conversely, if a (\™1, ¢)-adically continuous functional (-) satisfies a), b), c),
then it is \"'g-Gaussian.

Proof. We have

[e.e]

- a 1 a a.
(exp D S Cad) =Y oy D Can oG9 6™
a n=0 at,...,an €A
_ o 1 a a
eXp((Q)‘) ! Z Cag be) = Z W Z Ca1Cb1 - C’amemg b g mbm .
a m=0 ai,b;€A
Comparing the coefficients, we get the lemma. |

Now put

)= 5 3 gad' s W)= S Cupad o

a,be A k=1 ai,..,ar€A

and denote by w(7) the weight function (78).

Let T" be the set of (isomorphism classes of) all finite graphs without tails, not
necessarily connected, including the empty graph, and I'g the subset of connected
non-empty graphs. Let {-} be the A"'g-Gaussian mean value. Denote by x(7) the
Euler characteristic of ||7]|.

THEOREM 12.3 We hawve

(7)
2 %w(ﬂ = (exp(A"1T1(9))) (94)
el’
AX(T) »
2 At V() = loglexp(A91(6))) - (95)
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Proof. The second equality follows from the first one in view of (77) and the
additivity of the Euler characteristic with relation to the disjoint union.
Let us now calculate the right-hand side of (94). By definition, it is

n

<ZA nn' Zki > AC‘”’ Lar @ > (96)
ay,...,ap€

Choose some (n; ki, ..., ky). A typical monomial in the decomposition of (96) will
be

n .
A nl k iC H o a ' (97)
It vanishes if k1 +--- + k:n is odd. Othervvlse, in view of Wick’s Lemma, (97) can
be rewritten as
i) ir) (r
ATk rlu k;ll <Z g gl Mgﬁr)) ’ (98)
where r = %Zkl and the inner sum is taken over all pairings of the set of
ordered pairs F' = J!_{(¢,1),..., (i, k) }.

Construct the family of graphs 7 whose set of flags is F, := F,V, = {1,...,n},
0-(1,1) = 4, and involutions bijectively correspond to various pairings in (98). If
we color the flags of one such graph by the map F, — A : (i,1) — al(i), then the
sum over all pairings will produce the same monomials as in (79). It remains to
do the accurate bookkeeping in order to identify the coefficients.

The graphs constructed above bijectively correspond to all elements of I'. In
fact, a choice of (n;ky,...,k,) determines the number of vertices of any valence,
and the choice of a pairing determines which pairs of flags become edges (n = 0
produces the empty graph). Moreover, a non-empty graph comes thus equipped
with a total ordering of its vertices and all sets of flags belonging to one vertex. The
sum over graphs does not take care of these orderings. The group Aut 7 effectively
acts on the whole set of them consisting of n! ][, k;! elements. Summing over
isomorphism classes, we may replace the numerical coefficient in (98) by |[Aut 7|~

Finally,

1 n
n+ 3D ks = [Vl Br] = x(7)
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13 Generating Functions

In this Section we calculate several generating functions related to moduli spaces
and quantum cohomology, first representing them as sums over trees of the type
treated in Section 12.

13.1 Virtual Poincare polynomial

Let Y be an algebraic variety over C, possibly non-smooth and non-compact.
Following [58] we denote by Py (q) the virtual Poincaré polynomial of Y which is
uniquely defined by the following properties.

a) If Y is smooth and compact, then

Py(q) =) dim H/(Y)q' . (99)
J
In particular
x(Y) =Py (-1). (100)
b) If Y =[], Y; is a finite union of pairwise disjoint locally closed strata, then
Py(g) = Pri(q) - (101)

¢) Pyxz(q) = Py(q)Pz(q). It follows that if Y is a fibration over base B with
fiber F' locally trivial in the Zariski topology, then Py (q) = Pg(q)Pr(q).

A definition of Py (q) can be given using the weight filtration on the cohomol-
ogy with compact support:

Py(q) = > (1) dim (gr)y H(Y, Q)¢ - (102)
1,J

13.2 Generating function for moduli spaces of genus zero

We put
pla.t) =t+Y Py, (@' € Qi (103)
n=2 )
X(#) = p(~1,8) = t 4 > X(Mopi1) o € QU] (104)

n=2
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THEOREM 13.1 a) ¢(q,t) is the unique root in t + t>Qlq][[t] of any one of the
following functional/differential equations in t with parameter q:

A+¢)7 =q'o— (@ -t +1, (105)

1+t —p)pr=1+¢. (106)

b) x is the unique root in t +t>Q[[t]] of any one of the similar equations
(1+x)log(1+x) =2x —t, (107)
I+t—x)xe=14+x. (108)

Equation (106) is equivalent to the following recursive formulas for the Poincaré
polynomials. Put p, = p,(q) = Py nﬂ/n!.

COROLLARY 13.1 We have forn > 1:

(n+Dpnyr =pn+a® > v, (109)
i+j=n+1
i>2
2 n
Py @ =P, (@ +d ) (Z) Py (@Pig, (@) (110)
i+j=n+1

i>2

From (108) one sees that the function inverse to x has a critical point at
t = e — 2. From this one can derive the following asymptotical formula:

— 1 n "
X(Mont1) = 7n (m)

In order to prove Theorem 13.1, we will first apply the additivity formula

NI

(101) to the open boundary strata of My, and then use Theorem 12.2. However,
the classes of trees involved in the labeling of stable curves, on the one hand, and
the summation formula (84), on the other, are slightly different: we need tails
in the first problem and do not allow them in the second. In order to unify the
combinatorial pictures, and only in this Section, we will eliminate tails by putting
end-point vertices on them. This will lead to the following temporary modification
of our conventions:



199

A tree without tails is called stable if |v| # 2 for all vertices v. If |v| = 1 we
call v an end vertex. Let V! be the set of end vertices. An n-marking of 7 is a
bijection p : V! — {1,...,n}. We also put V! = V\V,! and refer to it as the set
of interior vertices.

Now let (C;z1,...,x,) be a stable compact connected curve of arithmetical
genus zero with n > 3 labeled non-singular points. The combinatorial structure
of this curve is described by the following stable tree with n-marking (7, pu) :
VY = {irreducible components of C}, V! = {x1,...,2,}; p : z; = i; an edge
connects two interior vertices if the respective components of C' have non-empty
intersection; an edge connects an interior vertex to an end vertex if the respective
point belongs to the respective component.

Denote now by M (1, u) C MO,n the set of points parametrizing stable curves
of the type (7,u). If 7 has only one interior vertex, M (7, pu) := My, is the big
cell. The following statement summarizes the main properties of these sets; for a
proof, see [59],

PROPOSITION 13.1 a) M (7, ) is a locally closed subset of Mom depending only
on (the isomorphism class of) (T, ).
b) Mom is the union of pairwise disjoint strata M (7, ) for all marked stable
n-trees (T, 11).
c¢) For any (7, ),
M(r,p) 2= ] Mo - (111)

veVvyp

Notice that there exists exactly one stable tree e#—e which does not correspond
to any stable curve.
We can now calculate Poincaré polynomials.

PROPOSITION 13.2 We have

Pugrp(@) = T Pro(@) s (112)

veVyo

Pasy (4) = ( ‘;_‘32 ) (k—3)!. (113)
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Proof. (112) follows from (111) and the multiplicativity of Poincaré polynomi-
als.

To prove (113), one can use the following geometric facts. First, the morphism
7 Mont1 — Mo, forgetting the last marked point is (canonically isomorphic
to) the universal curve. Second, the boundary of the source consists of structure
sections and fibers at infinity of the target. Therefore, over the big cell My,
this morphism is a Zariski locally trivial fibration with fiber P!, and MOJH-l =
7 (Mo,n)\{union of structure sections}.

From the additivity of Poincaré polynomials it follows that

PMo,n+1 (q) = PMO,n (Q)PPl (Q) - nPMo,n (q) = (q2 +1-— n)PMO,n (q) .

Since Py, ,(q) = 1. we get (113). [ |
Summarizing, we have for n > 3:

Py, (@t"= > ] ( )(@;-3)! II¢ (114)

(1) /(is0) pEV/0 vevi
Vi=n
where ¢ is a new formal variable, and the sum is taken over n-marked stable trees.
We want to present (103) as a partition function. Comparing (114) to (78)
and (80), we are more or less compelled to choose A = {x} (one element set),
g* =1, C, =t, Cyx = 0 (this gives weight zero to non-stable trees), and finally,
denoting by Cj the component with k > 3 subscripts, we get

Ch = ( q;__; ) (k—3)!. (115)

In particular, we can forget about u : F; — {x}.
If [V1| = n, the set of all n-markings of 7 consists of n! elements and is
effectively acted upon by the group Aut 7. We see finally that ¢(q,t) = Z where

(g, t) == — +Z Py, (g (116)

n>3

Z = Z | t7’| H (117)

7/(iso) veEVr
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The summation in (117) is now taken over all trees, and the term t2/2 in (116)
comes from the two-vertex tree.
We will now use (83) in order to calculate

0Z _ 9Y(q,t)
- = =: t) .
5 5t (q,t)
From (80) and (115) one sees that
2 K k
% % q* —2 %
D) = —— T = :
(p) = =5 +lot) Oy 2 HWFZ( ) k(k— 1)k —2)
k>3 k>3
This can easily be summed. We need only the derivative.
For generic ¢ we have
9 (L+¢)" —1—¢%
— +t, 118
e W) =" 2(*-1) (1)
and for ¢ = —1,
0
&be( 0)=(14+p)log(l+¢)—2p+t. (119)
(4.21)

We see now that (105), resp. (107), are equations for the critical point d,® = 0.
Differentiating them in ¢ and eliminating (1+ gp)q2, resp. log(1+ ¢), we get (106),
resp. (108).

13.3 Generating function for configuration spaces

Let X be a smooth compact algebraic variety. The configuration space X|[n],
n > 2, is defined in [58] as the closure of its big cell X™\(U,;.; Aij) (A is the
diagonal z; = z;) in X" x [[g X5, where S runs over subsets S C {1,...,n},
|S| > 2; X* denotes the respective partial product of X’s, and X5 is the blow up
of the small diagonal Ag in X*.

Every S determines a divisor at infinity D(S) C X|[n]. Namely, let g : X[n] —
X be the canonical projection. Then 75" (Ag) = Upsg D(T).

The natural stratification of X[n] described in [58] consists of (open subsets
of) intersections X (S) = (;_, D(S;) corresponding to sets S = {Si,..., S} of
subsets in {1,...,n} called nests.
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We put .
Yx(a.0) =1+ Y Pxpy(a) - € Qlalll]
n>1
xx(t) = ox(-1,5) =1+ S x(X[n) - € Qlle].
n>1 '
Put also om 1
Km = qu __1 = Ppn-1(q) -

THEOREM 13.2 Denote by y° = 4°(g,t) the unique root in t +t>Q[q¢?|[[t]] of any
one of the following equations:

2m

Em(L+ 97" = ™(@*" + km — 1)Y° — @™ (@™ — Dt + ki (120)

[*"t +1 = (" =1+ km)y°lyf = 1+¢°. (121)
Then we have in Qlg][[t]]:
Ux(g,t) = (L+y°)x@ . (122)

THEOREM 13.3 Denote by n = n(t) the unique root in t + t>Q[[t]] of any one of
the following equations:

m(1+mn)log(l+n)=(m+1)n—t, (123)

t+1—mn)my=1+n. (124)

Then we have in QI[t]]:
Xx (1) = (147X (125)

We start with combinatorics of the strata.

DEFINITION 13.1 a) S = {S1,...,S} is a nest (or n-nest) if |S;| > 2 for all i,
and either S; C Sj or S; C S; for alli,j such that S;(S; # 0.

In particular, S = 0 is a nest, and S = {S} is a nest, if |S| > 2.

b) A nest S is called whole (resp. broken) if {1,...,n} € S (resp.
{1,...,n} ¢S8).
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Denote by X(S) C X(S) = Nges D(S) the subset of points not belonging to
smaller closed strata. The following facts are proved in [58].

PROPOSITION 13.3 a) For any n > 2 and n-nest S, X(S) is a locally closed
subset of X[n].
b) X|n| is the union of pairwise disjoint strata X (S) for all n-nests S.

Now we will show how to pass from nests to marked trees. As above, we consider a
bijection p : V! — [1,...,n] as a part of the appropriate marking for our problem.
The remaining data is supplied by choosing orientations of all edges.

DEFINITION 13.2 A tree T marked in this way is called admissible iff:

a) Every vertex of T except one has exactly one incoming edge.

b) The exceptional vertex has only outgoing edges, and their number is > 2. This
vertez is called the source.

c¢) All interior vertices with possible exception of the source have valency > 3.

PROPOSITION 13.4 The following maps are (1,1):
{broken n-nests} — {whole n-nests} — {admissible marked n-trees}/(iso),

S—SU{L,....n}} = 7(S) =7(SU{{L,...,n}}).
Here T is defined by its sets of vertices and edges: if S = {S1,...,S,}, then

Ve={S1,..., S} :={S1,.... S, {1},... . {n}} .

and an edge oriented from §z to §j connects these two vertices iff §j C §z and no
Sy, lies strictly in between these two subsets.

This is proved by direct observation. The following facts are worth mentioning.
a) {1,...,n} is the source of 7(S) for any S.

b) {1},...,{n} are all end vertices.

c) i € S; iff one can pass from S; € V; to {i} € V; in 7 by always going in the
positive direction.

The reader is advised to convince him- or herself that the source has valency > 2
and all other interior vertices have valency > 3.

Denote the source by s and the set of the remaining interior vertices by V.°.
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PROPOSITION 13.5 ([58]) The virtual Poincaré polynomials of the strata X (S)
are given by the following formulas (we add a formal variable t):
If S is a broken n-nest, s € Vi (s):

2m __
t"Px(s)(q) = ( PTS(F) ) [s|! x H Km, ( q|v| _32 > (Jv] = 3)! x H t.

vEV] ) veV] )
(126)
If S is a whole n-nest:
q2m —9
t" Px(s)(q) = Px(q)km s — 2 (Is] —2)! (127)
q2m -9
X H Km W =3 (Jv] = 3)! x H t.

1
UEVT(S)

Comparing (126) and (127) one sees that one can express the joint contribution
of two nests corresponding to an admissible marked tree 7 as a product of local
weights corresponding to all vertices of 7. The local weight of the source will be

P q dom — 2
( o )rserX(q)nm( o2 ><rsr—2>!

and the remaining local weights coincide and depend only on the valency.

In order to find the appropriate standard weights of marked trees (summands
in (78)), we make the following choices.

Put A = {+,—}. Interpret a mark + (resp. —) on a flag as incoming (resp.
outgoing) orientation of this flag. Thus, f : F; — A is a choice of orientation of
all flags.

Put gt = g " =1, gt = g7~ = 0. This makes the standard weight of
(7, f) vanish unless all edges are unambiguously oriented by f.

Put Cy =t (see (120) and (121)) and C_ = 0. The last choice makes the
standard weight vanish unless all end edges are oriented outwards.

Put Cy_ = C_, = 0. This excludes vertices of the type — & —.
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Put also Cq, .. 4, = 01if {+,+} C {a1,...,ax}. This eliminates vertices with > 2
incoming edges.
For tensors with k& > 2 minuses among the indices we put

o _= ( e ) B+ bom P (0) ( . ) (k-2 (128

(because only the source has all outgoing edges), and

Coo = b ( . ) (- 2)! (129)

(cf. (126) and (127)).
The standard weight of a marked tree defined by this data again is independent
on the part u : V! — {1,...,n} of the initial marking, which accounts for the
n!

factor TAut7] below.

Summarizing, we put

Vx(a,1) = Y = Pyjal(a) (130)

n>2

1 (6%
2= w2 a7 I Gren (131)

7/(is0) fFr—{+,—}a€bE: veVr
and get from the previous discussion
0
Z =vx(g,t), aZ = ¢.(g,1) . (132)

The arguments in the potential will be denoted ¢, = x, ¢ = y. We see that the
potential is

0 2m k

g~ =2 Ty
(b = — t m [
(z,9) zy+tr+ K ;( k9 )k:(k—l)+

o) o 2m __ k
+> ( PXk(Q) ) v+ kmPa(q) ) ( qk B 22 ) ﬁ (133)
k=2 k=2

(we have two arguments x,y but only one ¢ = ¢ because C_ = 0).
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We must solve the system

0P 0P

%L}:O,yo == a—y|zo7y0 =0 5 (134)
and (83) then tells us that
0 0
52 =exl@t)=a". (135)

Again, ®(x,y) can be easily summed. To write down the functional equation,
we need only the x-derivative which for general ¢ is

o 1+y)7" —1- ¢y

O _ o ian 136

I Yy+t+k 2 (g2m — 1) (136)
For ¢ = —1:

o

oy = Y tml(l+ylog(l+y) —yl. (137)

We now see that (120), resp. (123), are the equations defining y". Taking
the derivative in ¢ we get (121) and (124). And since ®(z,y) is linear in z, the
vanishing of the y-derivative provides an explicit expression of z° via 3 :

(14+y0)Px@ 4 (¢*" 4 ki — D)y° — ¢*™t — 1

t) =P

To see that this is equivalent to (122) one can derivate (122) in ¢ and use (121).

14 Method of VKS-Trees

Let us briefly review the method of VKS-trees [3,4]. Irreducible class 1 represen-
tations of the orthogonal group O (n) are realized in the space of scalar functions
on a unit sphere S, _1 in Euclidean space RR™, which are eigenfunctions of the
Laplace operator on sphere [3]:

AqYr(Q) + k(k+n —2)Y,(2) = 0. (138)

The method of VKS-trees is based on consequent factorization of Laplacian Agq,
for which it is required to introduce polyspherical coordinates.
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DEFINITION 14.1 Let xg,x1,...,xn—1 be the Cartesian coordinates of a point on
a sphere S,,. We depict them as lines (see Figure 25a). We join the lines in such
way that, at first stage, no more than two lines (edges) meet in a vertexr and, at
the second stage, no more that two previous joined lines meet in a vertexr and so
on. As a result we obtain a VKS — tree (see Figure 25b).

As can be seen from the figure, there are two kinds of lines: lines with nodes at
both ends and lines with one node. The former lines are called internal and the
latter free (or dangling) ends. The number of dangling ends is equal to dimension
of space. The number of vertices is equal to number of parameters, determining
the location of a point on sphere. To each vertex we assign an angle ;. The lines
outgoing from the vertex 8 to the left correspond to cos 05 and those outgoing to
the right correspond to sin 6. The vertex 6 is a vertex of a graph. Then the path,
say, from vertex 6 to vertex ¢o (see Figure 25b) can be represented as a product
of internal lines, i.e. a product of cosines and sines, which occur along this path
2
hey, = = ?k—gfﬂ = cosf cos Bsina . (139)
0,=0
Cartesian coordinates can be determined in terms of angles by multiplying the
coefficients h,, by the dangling end associated with the angle .
In three-dimensional space, the following VKS-tree corresponds to the spher-
ical coordinate system
X, X, X, x,=cosb,
A x, =sinOcos @, (140)
! x, =sinOsin @.

A relation of equivalence can be introduced on the set of VKS-trees: two VKS-
trees belong to the same class if one of them can be transformed into the other
by rotation around vertical (perpendicular to the plane of the diagram) axis (or
axes), passing through vertex (or vertices). This relation of equivalence enables
to split the set of VKS-trees into classes.

VKS-trees belonging to different classes, are truly different structures, i.e.
truly topologically inequivalent constructions. There is one class of VKS-trees
(systems of polyspherical coordinates) in three-dimensional space, two classes in
four-dimensional space, and three classes in five-dimensional space.
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Figure 25: VKS-tree.

ZS lc lc ZS
N Y Y
m T T o
a o o' b

Figure 26: Elementary cells.



209

In his studies of topologically different VKS-trees, G.I. Kuznetsov [67] has
given the following inductive algorithm for writing down Laplace operator Aq:
Equation (138) for Figure 25b in polyspherical coordinates can be written as

follows
1 O  epusgd  Da(B)
{coscesinseae Cos IS 0 g5 g (141)
Aq, (0
+# +k(k+n— 1)}Yk(Q) =0,
sin“ 6

where, ¢ is number of subsequent vertices to the left of vertex €; s is number of
subsequent vertices to the right of vertex 6, and c+s=n — 2.

Laplacians Agq_ (8) and Agq, (1) are given, respectively, on ¢ and s-
dimensional spheres. For Aq_ (8) and Aq, (61), the VKS-trees have left and right
parts, counting from the vertex 6 of initial VKS-tree, and the roots are 8 and 6.
The algorithm for writing these Laplacians in polyspherical coordinates remains
the same as for Ag. Consructing the Laplacian Agq in this way, gives its form in
polyspherical coordinates.

The equation (141) can be solved by the method of variable separation. This
yields a constant at each vertex. The constant the associated angle endow the
vertex with additional characteristics. To solve equation (141), first solve the
partial differential equation for each vertex. The complete solution given by the
product of the partial solutions. The three kinds of vertices (cells) which occur
with this approach are shown in Figure 26. The requirement of one-fold covering
of the sphere imposes the following restrictions on the range of angles [3]:

T

0§¢a§2ﬂ-a OSSDJSTF; - 5

o] 3

Spp <2, 0SS (142)

Let us consider an elementary cell of the graph shown at Figure 26b. Here m,
7, le, ls, 0 are constants of separation of variables. The equation for the variable
0 = ¢y is as follows:

L0 g g0 lellete—1)
cos¢ 0 sin® 6 90 0 m 00 cos2 6
Is(1 —1
sl s =) +o(o+c+s)|T(H) =0, (143)

sin? 6
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and its solution can be written as

Wl (6) = N cos'e fsin' § P25 (cos 26),
s—1

2
1
Elc+§SlC,n:0,1,2,...,

1
2n=o0—l.—1ls, a=Ils+ Els+§sls, (144)
c—1
2

if and only if n > 0 i.e. 0 > I. + 5. Here, ¢(s) is number of left (right) vertices

B:lc"i_

corresponding to the vertex o; S, S;. are the numbers of vertices above cor-
responding to vertices s and I, ?f{’ﬂ are Jakobi polynomials or hyperspherical
functions, N is normalizing factor.

Let us consider the cell shown in Figure 26c0. It is worth of noticing that the
cell in Figure 260’ is the same as that of Figure 260 except for one detail: cos p,
is substituted for sin ¢, .

The equation for the variable 8 = ¢, is

1 0 .92 0 ls(ls+8—1) _
000 095~ g TR VO) =0, (145)

and its solution can be written as follows:

WO (0) = Ny sinbs P> (cos ), (146)

n,0,s

s—1
0<<m, n=71-—1I, a:ls—}—T,nzO,l,Q,...,

where P;” are Gegenbauer polynomials, N; is normalizing coefficient.
For the cell shown in Figure 26a, there is the corresponding the obvious solu-
tion

Up(pa) = —==€"%", 0< ¢, <21, meL. (147)

As an example, let us consider a class 1 representation of the group O (3). In
spherical coordinates, the factorized solution of equation (138) can be written as
follows (see Figure 140):

img

e
—, 0<0<7m, 0< <27, 148
N @ (148)

where Y}, (0, ) is the spherical function which is an eigenfunction of Laplace

operator on sphere Ss.
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15 Polyspherical Coordinates in Cayley-Klein Spaces

Cayley-Klein geometries of dimension n are realized on spheres
n k
57() = {x e mRG) o+ Yot [T 2 =1 (149
k=1 m=1

in spaces RR"*1(4) resulting from the Euclidean space RR" ™! under the mapping

[5]

k
YRR RR™N(G) = RV,ya(§),  vag =0, ¢ =k [] jm:
m=1
J:(jl’a]n)a jkzlaLk,ia k:1,2,...,’l’L. (150)

The combination of all possible values of the parameters 3 produces 3" dif-
ferent real Cayley-Klein spaces RR"1(5) = RV, 1(5) [5]. A unified descrip-
tion of all 3" Cayley-Klein geometries (geometries of constant curvature space)
can be given as a domain of an n-dimensional spherical space parametrized by
“concrete” coordinates?!. Here the total number of nonisomorphic geometries
is N+n = [(3++5)" — (3 —+/5)"1]/27*1/5 [5]. The operation of some
transition between their groups is based on introducing a set of the parameters
(J == J1....,Jn)- Each of the parameters can take on three values: real, purely
imaginary and dual units ¢ [5].

Under the mapping (150) transforming Euclidean space RR™ into Cayley-
Klein space RR" (j), Cartesian coordinates in RR™ are multiplied by products
of parameters j. In [5, § 5.2-5.5] it is shown that angles are multiplied by some
products of parameters j as well. Under the mapping 1, the symmetry (“equal-
ity”) of Cartesian coordinates disappears. In method of VKS-trees, this reveals is
revealed by the fact that the operation of rotation around vertical axis passing
through vertex does not transform a VKS-tree into an equivalent VKS-tree; the
partition of the set of VKS-trees into classes is not possible. The other peculiarity
is that, for imaginary values of the parameters j, the sphere S, _; (§) can not

2By “concrete” coordinates, we mean real, purely imaginary or dual numbers. The latter were
introduced by Clifford [68] in such a way that a dual number itself differs from zero but vanishes
when squared.
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be covered by one (polyspherical) map. For example, the Minkowski plane can
be covered by four system of polar coordinates [69]. To simplify the exposition,
we shall consider in this paragraph only contractions of groups, i.e. parameters
k=1, k=1,2,...,n—1.

In the space RR3 (5), the sphere Sy (j) = {z |23 + j2a? + j2j323 = 1} admits
two systems of spherical coordinates:

X JiXp Jid%, g = c0s j120 cos j1,
1
= — 117 0 i ]
x1 7 €0s j1J20s1n J1¢0, (151)

To = —— sin j1J20,
J1J2

0,27'('], jl = 1, (152)
) jl =L,
T 7T:| _,
22 1T (153)
J# L
xg = cos j1&,
1 .. ¢ )
r1 = —sin COoS Jox
L g it cos e (154)
T9 = —— sin j1€ sin jaqv,
J1J2
. o Zo(j1), J2 =1,
a € ®(j2), &£€L(j1,42) = . . (155)
(I)(]l)7 J2 = L2,
. [O’ﬂ-]’ jl = 1a
Zo(j1) = _ (156)
R+7 J1 =11

For j1 = 11 both systems of coordinates describe the connected component of
sphere.
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The sphere S3 (§) = {z |23 + jia? + j3j3x3 + j2j3j323 = 1} in the space
RR* (§) admits three systems of polyspherical coordinates:
, Jx, g, g, 0= Cfs J1p cos j1j2€ cos j1j2730,
= sin j1¢ cos j1j2 cos j1j2J30,
1 o (157)
Ty = —— sin jyj2€ cos j1j2530,
J172

1 L
— sin j172730,

Tr3 = —
J1J2J3

e e ®(j1), £€0O(ij), 0c€O(jijrs) = [_2’ 2
R, J# 1

X JX, Xy JadiXs Lo = COS j14p1 €08 j12/3,
1 .. .
T = W sin jy¢1 cos j172/3,
1 L (158)
Tg = —— €08 j3p2 sin j1 72,
J1J2

— sin j3a2 sin j1j2/3,

T3 = —
J1J2J3

©1 € @(51),

Zt(j1j2), Jz=1,
| € Blj1. jn.js) =
©2 € B(j3), B € Bl 2 s) {

O(jij2),  Jjz = i3,

Xy j1x1 j1j_7x2 j1j2j3x3 xTo = Cosj107
1 - -
r1 = — sin j16 cos jo,
Wil
1 .~ ~ _ (159)
ZTo = —— sin j1 0 sin ja2€ cos j3,
J1J2

sin j1 0 sin jo£ sin j3@,

T3

123
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3/56‘1)(‘]'3), éez(j%j?»)a GEZ(jl’j2)'
For j; = 11, three systems of polyspherical coordinates describe the connected
component xg = 1 of the sphere S5 (i1, j2, j3).

16 Equations for Elementary Cells

Let us begin with the cell shown in Figure 26a. We obtain

xk—] kak

Vi Uy (p, i) = Ne™. (160)

m

Dependence on the parameter j is included in the range of values ® (ji) of the
variable ¢. The constant of separation is m € Z for jp = 1 and m € R for ji = 1.
The normalizing factor is N = 1/\/% for jy =1 and N =1 for ji = tx. In the
latter case, the solution W, (¢, ¢x) is normalized to a delta-function.

The cell shown in Figure 260 is transformed into the cell

k—1 q

jk+19 ls . .
0 Z(]k7]k+1)7 (161)

T

where k£ —1 is the order number of coordinate x;_; connected with the left branch

outgoing from vertex 7, ¢ is the order number of the of the last coordinate,

connected with node ls, and s is the number of nodes to the right from vertex 7.
To the cell (161), there corresponds the sphere

q
Sqtr1k> - 5dq) = {$|$%—1 +iRTi e+ (Hﬁ)lﬁ = 1}
r=k

and to the vertex I, — sphere Sy (Jit1,---,0q) = {w\mi + jgﬂxiﬂ + e+

q

( II jf)x?] = 1}. Under mapping 1, the Laplacian (or, otherwise, Casi-
r=k+1

mir operator of second order) is transformed according to the rule Ay (j) =



215

q

I j2>A§* (—), where the asterisk indicates the quantities entering equations

r=Fk

145) which are transformed as follows: ¥60* = jr110, 7 = 7"jp A, Is = 1A, and
q

A= ][ jr. Transforming (145), we obtain the equation

r=k+1
Az 9 0 o ls[ls + (s = 1)A]
— _ sin®jf— — 4 A)r¥(0) = 162
{sin2jk0308m W5~ g TS )} (6)=0 (162)

which corresponds to cell (161). Its formal solution is the function

\I]z:g,s(a) = N(Sinjka)lsﬂ)a,a

T—Jkls

(cos ju), (163)
—1
a=Aa* (=) = ls + STA, n = jpAn* (=) = 7 — jils,
where N is a normalizing factor.
Let jr = 1 and A # ¢, i.e. A = 1. Then sin 6 = 10, and equation (162)
turns into

A, s L(ls+ (s —1)A)
\If”+7\11’+ T — o

U =0. (164)

This is the Lommel equation [70], which can be expressed in terms of Bessel
functions:

1—s

\:[17-71873(0) =02

I,y (70). (165)

Let A =1, i.e. some of the parameters j,., k + 1 <r < ¢, take on dual values.
Then (162) can be rewritten as the algebraic equation

<72—j,§ L )q/(e):o, (166)

Sin2 jke

which connects the constants of separation in neighbouring vertices
..
ls = 7— sin j30. (167)
Jk

The case jr = tx, A = ¢ is obtained from (167) with ji = tf; the result is Iy = 76.
Comparing the formal solution (163) with the solution (165), we obtain the final
relation for Gegenbauer polynomials

(0) P (cos i) = 077 Jo(70) (168)

T*Lkls
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written up to normalizing factors.
The cell shown in Figure 260" is transformed into

[_z T
i p, 0e0(4)= 272
40 R, A#1, (169)

p
i A= II Jr

1=k+1

:|7 A:17

where k is the order number of the first coordinate x; connected with vertex I, p
is the order number of coordinate, connected with the right branch outgoing from
vertex 7 and c¢ is number of nodes to the left of vertex 7.

To cell (169) there corresponds the sphere

p
Sp—k kg1, -+ Jp) = {CE |2} + e o ( H jg)“zz) = 1}
r=k+1

and to the vertex l., the sphere S, _1(jk+1,---,Jp—1). Under mapping 1, the
Laplacian is transformed according to the rule Ay (j) = A?A}. (—), where the
asterisk indicates the quantities in the equation of the cell shown in Figure 260.
These quantities can be written as follows: 8* = A0, 7 = 7*A, I, = I’ B, where

p—1
B= [ jr ie. A=j,B. To cell (169), there corresponds the equation
r=k+1
1 90 9 Slefle+ (c—1)B]
5y COsC A= s — A)bT(0) =0. (170
{(:osc 46090 " Vo ~r cos2 Af +7(7+cA) (¥(0) (170)

Its formal solution can be written as follows

WG (0) = N(cos AG)' P, | (sin AP), (171)
c—1

a=Ba*(—=)=1.+ B, n=An*(—)=1— jplc.

2

Let B =, some of the parameters j,., k+1 <r < p— 1, are equal to dual units,
and j, # tp. Then the equation (170) takes following form:

U(0) + (2 — j212)(6) =0, (172)
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and its solution can be written as
(0) = VT Ik (173)

The case j, = i, is obtained from (172) and (173). Comparing (171) and (173),
we obtain limit relations for Gegenbauer polynomials

T7lc

L ; — c—1
?ff{jplc(sm Ljph) = AvA ]12’13, a=l.+1 5
. ; c—1
P sin ) =T a=lo+ — (174)
written up to normalizing factors.
The cell, shown at Figure 26b, is transformed into the cell
ZH(A), Jpt2 # lpr2, A
kooq 96{ b i Pl 11 i
p @(A), Ip+2 = lp+2’ r=k+1
N ™ Tom
) ) |:0’ _:|a A:l, |:__, _:|a A:L
o ZH(A) = 2 0(A) = 2’ 2
R, A#1, R, A#1,
(175)

where k is order number of the first coordinate xj., connected with the left vertex
l¢; p is order number of the last coordinate connected with vertex [.; ¢ is order
number of the last coordinate connected with the right vertex Is.

To cell (175) there corresponds sphere

p
Sq—k (jk-l—l"" ajq) = {$|xi +jg+1$i+1 + -+ ( H ]3>$§+
r=k+1

q
+A<x12)+1 + JpaaTpin + o < 1T J3>9UC21> = 1}-
r=p+2
Equating the expression in round brackets to unit, we can obtain sphere
Sq—p—1(Jp+2+ -+, Jq), which corresponds to vertex [;, and equating to unit
the expression in front of round brackets, we are able to write the sphere
Sp—k (Jk+15- -+, Jp), corresponding to vertex [.. Under mapping ¢ Laplacian (143)

q
is transformed according to the rule Ay (5) = < II jf) Aj.(—), and quantities,
r=k+1
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entering (143), are transformed as follows:
q q
Wo* = A0, 0 =0* ] jr,le =1A)jpt1, s =B, where B= [] j,.
r=k+1 r=p+2
Transforming (143), we obtain equation, corresponding to cell (175):

B? 0 3, le[le + (¢ = 1) A/ jpia]
= cos® Afsin® A— — j2, B*C AR
{cosc A5 Ag gg % A0S AVZE = o cos? Af
ls[ls —1)B
— A? [ + (28 )B] +olo+ (c+s)AB] p¥(0) = 0. (176)
sin® Af
Its formal solution can be written as follows:
\Ilglﬁcls (0) = N(sin A9)" (cos AQ)'=PF (cos 2A0), (177)
—1 -1
M =0—1.Bjps1 — A, a=l+>-B, B=l+—"A
2 2]10—1—1

For A = 1, B = , i.e. when one or more parameters j., p+ 2 < r < ¢, take
dual values, equation (176) is transformed into algebraic equation, connecting
constants of separation of variables in neighbouring vertices by relation

1
2= a2ﬁ sin? A6. (178)

For B=1, A=u, jpt1 # tp+1, equation (176) takes form

Is(ls+s—1)

S .
U+ 20+ [02 — jol? — 7

; ]qf = 0. (179)

This is Lommel equation [70], which solution can be expressed in terms of Bessel
function

l—s R
Vot ) = NOF Iy o (02 = 22 (180)

For jp+1 = tp+1 equation and its solution come out of (179) and (180).
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17 Representations of Groups SO (3;3), SO (4;7)

Let us consider representations of class 1 of groups SO (3;7), j1 = 1,t1; jo = 1,0
in spherical system of coordinates, corresponding to the VKS-tree (151). Metrics
on sphere S3(j) in these coordinates is as follows

di*(§) = dp? cos® j1j20 + jado>. (181)
Laplacian on sphere, corresponding to this metrics, is

, 19 9 2
A3(.7) = —————-C08 j1 20 J2

—_ 182
cos 71720 00 00 + cos? j1j20 Op? (182)

Factorized eigenfunctions of Laplacian (182), which are solutions of equation
A3 ()V(0,p) = —7 (7 + 1) ¥ (0,¢), can be found, multiplying solution (161)
by solution (171) for c =1, I, = m:

om0, 0) = Ne™# (cos j1520)™ P (sin j1j20). (183)

T—jom

In coordinate system, corresponding to the VKS-tree (154), metrics on sphere
Ss(7) can be written

1
di*(3) = d¢* + j3 2 sin? j1Cda?, (184)
1

and Laplacian takes the following form

9 9 2
N Q .. g I 0
As(d) = sin 71 OC Sm]lg@( * sin? j1¢ Oa?’

Its eigenfunctions can be found, multiplying solution (160) and (163) for s = 1,

(185)

ls=1, k=1, q=2, which gives
U, (C @) = Ne™(sin j1 ) PLL . (cos ji€). (186)

On sphere S3 () metrics in polyspherical coordinates, corresponding to the
VKS-tree (157), is given by expression

di%(§) = cos? j1jajzf(cos? jrjal dp® + j2 de?) + j242 db>. (187)
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It corresponds to Laplacian

1 0 0
A N_ .+ (Y 2. . .Y
9 ) 2
j3 9 .. .0 Jajs O )
————— - CO8 =+t — , 188
cos j1j2§ O ]1]2535 cos ji1j2€ O¢p? (188)

which eigenfunctions, realizing the representation of class 1 of group SO (4;7),
can be found by multiplying functions (171) and have the form

Vo 1m(0,€,0) = Ne™ (cos j1jaé)™ (cos jijzjaf)’
I+2g1d2, 0+ 2152, . .
X P (sin o) Py 20 T2 (sin g ogia). (189)
In polyspherical coordinates (158) metrics on sphere Ss (7) is as follows:
di? (§) = j3dB? + cos? j1joBdp? +]§j—2 sin? j1 joBdip3. (190)
i

To this metrics there corresponds Laplacian

9
. J3 o . .. .0
Auj) = < 2
4(7) S0 1723 cos j1jaB OB sin j1 j2 8 COS]l]Q/BaB +
j3is O jiis o

cos? j1ja 0p?  sin® j1jo3 O3
(191)

and its eigenfunctions, realizing representation of class 1 of group SO (4;7) in
coordinate system (158), can be found by using (160) and (177).
These functions are

\Illl,ml,mg (/859015902) = (192)
— Netmiel +imip2 (COS jleﬂ)ml (sin jleB)mz ?;?2_,;721;37”1 jrjama (COS 2j1j2,8).
Finally, in coordinates (159) metrics on sphere S3(j) can be written as

. ~ 1 5. =~ 5 = 9 .9 .
dl2(_7) = dh? + j—2 sin® j19(]22 d§2 +]§ sin® j2& dgo2). (193)
1
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To this metrics there corresponds Laplace operator

1 0 ~ 0
A ) = ——— .2‘2—~Sin2-0—~+
4(3) 217 <3233 o Sl
2 42 _ 2 42 2
i SN S JLJ2 a_~2> (194)
sin jo O& 9t sin?ji€ 09

its eigenfunctions

\Ifam(é, €,3) = Ne'™P(sin jp €)™ (sin j16)" x

><’.]3171’7,71~ (cos ng)’.Plj%,jijS’H%mS (cos jla) (195)
l—jom o—jl
can be found, using the described algorithm. They realize representation of class
1 of group SO (4;7) in polyspherical coordinate system (159). Using relations
from § 16, it is easy to find eigenfunctions of Laplace operators of contracted
groups [71-75].

18 Functor category of VKS-trees

Let us briefly review a category Euclid and classical Cayley-Klein categories [5,
§ 7.1.5].

A Euclidean vector space RR"*! is a vector space over the field R of real
numbers-equipped with an inner product function (,) : RR"™ x RR""1 — R
which is bilinear, symmetric, and positive definite. These spaces are the objects
of a category Euclid, with morphisms those linear maps which preserve inner
product. There are two functors

U : Euclid — Vetg, % : (Euclid)” — Vcetg

to the category of real vector spaces: The (covariant) forgetful functor U “forget
the inner product” and the contravariant functor “take the dual space”.

On the other hand, in the previous Section we have found representations of
orthogonal groups in Cayley-Klein spaces and we have shown that their Laplace
(Casimir) operators on sphere and other algebraic constructions can be obtained
by transfering the corresponding constructions for classical Lie groups in accord
with (150). Such an approach is natural and justified by the fact that classical
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Lie groups and their characteristic algebraic constructions are well studied. But
is such an approach the only one? Is it possible to take as the initial space not
only the Euclidean space but also a Cayley-Klein space? The positive answer
to this question was given by Theorem on the structure of transitions between
Cayley-Klein spaces [76-79].

The transitions from the (n + 1)-dimensional real Cayley-Klein space RV (j)
to the real Cayley-Klein space RV"*+1(5"), and from the groups SO(n + 1,R; ),
Sp (n,R; §) to the groups SO(n+1,R; 3"), Sp (n,R; 37) as well, can be, respectively,
obtained from (150) and the transitions

k
¢ RVM(G) = RV, oao =ah,  'ax = [] dhdn's  (196)

m=1

by the same substitution of parameters jp for j,;j,;l, where j = (j1,...,Jn) and
each of parameters j; assuming three values: jp = 1, 1, i.

Similarly the permissibility of these transitions can be justified for complex
Cayley-Klein space CV"*1(j) which emerge from the (n+1)-dimensional complex
Euclidean space CR"*! by the mapping

Y : CR™ — CV™(5), vz = 20,

k
Q)[)ZZ:Z]C H]m’ k:1,2,...,n, (197)
m=1

where 27, 2}, € CR™ 1 29, 21, € CV™F1(4) are complex Cartesian coordinates. The
totality of all possible values of the parameter j gives 3" different real RV *1(4)
and, correspondingly, complex CV"1(5) Cayley-Klein spaces.
n
The quadratic form (z*,2*) = > |2%|? of the space CR"*! turns into the

m=0
quadratic form

n k
(z,2) = lz2o* =) lal* [] 5 (198)
k=1 m=1

of the space CR™!(j) under the mapping (197). Here |z| = (22 + y?)"/? is the
absolute value (modulus) of the complex number z; = zp + iyg, and z is the
complex vector: z = (29,21, ..., 2n)-
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Let us define (formally) the transition from the space CV"1(j) and genera-
tors to the space CV"*1(5') by transformations, which can be obtained from the
transformations (197), substituting in the latter the parameters jj for jl’gjk*l, ie.

Y CVTHL(G) = CVTLED), Wz = 2,

k
Vo =21 Jrdm's k=12...,n. (199)

m=1

A Cayley-Klein space K(j) := RV™*L(j5), CV"HL(5), RV"(j) @ RV"(5) is

called non-fiber space, if none of the parameters ji,...,j, assumes a dual value.
A space K(j) : is called (k1,ka...,ky)fiber space, if 1 <k; <ky<---<kp,<mn
and jr, = tgys .-, Jkp = lky) and the other j = 1,4.

However, transitions (196) and (199) do not make sense for all Cayley-Klein
groups and spaces, because for the dual values of parameters j the expressions
.ty tmt t for k # m are not defined. We have defined (see [5]) only expressions
Lkblzl, k=1,2,...,n. So if for some k we put jr = ¢, then the transformations
(196) and (199) will be defined only in the case when the dashed parameter with
the same number is equal to the same purely dual number, i.e. j; = .

These Cayley-Klein spaces are the objects of a Cayley-Klein category CK,
with morphisms (196) or (199) which preserve quadratic form.

Let us introduce the notations: TV"*l(j) for VKS-trees in Cayley-Klein
spaces K(j).

Given Cayley-Klein categories CKC' and CKB, we consider all VKS-tree
functors RV"t1(5), SV™HL(5), TV"*i(j),...: CKC — CKB. If 6 : R — S and
7 :8 — T, are two natural transformations, their components for each ¢ € C
define composite morphisms (7 - o)c — 7c o oc¢ which are the components of a
transformation 7o ~— T. To show 7 - ¢ natural, take any f : ¢ — ¢ in C and
consider the diagram

N, RC Rf RC,—
oc { l oc
(1-0)c Sec Sf S (1-0)

|

— Tc

l T

Tcl<_

rf
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Since ¢ and 7 are natural, both small squares are commutative. Hence the rect-
angle commutes, so the composite 7 - ¢ is natural.

This composition of transformations is associative; moreover it has for each
functor T an identity, the natural transformation 17 : T — T with components
1rc = 17,. Hence, given the Cayley-Klein categories CKB and CKC, we may
construct formally a functor category of VKS-trees VKS|Tree with objects the
functors R, S,T : CKC — CKB and morphisms the natural transformations
between two such functors.
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We propose an algorithm which allows to derive the generalized
Alexander polynomial invariants of knots and links with the help of
the ¢, p—numbers, appearing in bosonic two-parameter quantum alge-
bra. These polynomials turn into HOMFLY ones by applying special
parametrization. The Jones polynomials can be also obtained by using
this algorithm.

1 Introduction

The aim of this paper is to generalize one-parameter Alexander polynomial in-
variants, one of the main characteristics of knots and links, to two-parameter
generalized Alexander polynomial invariants.

22Based on invited talks given at the 5th Petrov International Symposium on High Energy
Physics, Cosmology and Gravity (April 29-May 5, 2012, Kyiv, Ukraine), which were partially
supported by the Project No. 1202.094-12 of the Central European Initiative Cooperation Fund.
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First, we recall some basic notions of the knot theory. Applying to an initial
link (knot) Ly so called “surgery” operation - elimination of a crossing - we
obtain a simpler link /knot L. Applying to the same initial link (knot) L another
“surgery” operation - switching of a crossing - we obtain another simpler link /knot
L_.

It is postulated:

1) every knot and link is described by the definite polynomial;

2) three concrete polynomials, namely Pr_ (t), Pr,(t), Pr_(t) are connected with
the help of the following (geometro-algebraic) recurrence relation, which is called
the skein relationship:

Pp,(t) =lLPry(t) + l2Pr_(t) (1)

where [1,ls are coefficients;
3) the normalization condition for the unknot:

Punknot =1. (2)

Applying the operation of elimination for torus knots and links L, o turns it
into L,_12, and the switching operation turns it into L,,_2 2, where n is a positive
integer number. From these considerations and from (1) it follows the following
recurrence relation :

PLn+1,2 (t) = llPLn,2 (t) + l2PLn—l,2 (t) )
or in the simpler notations:
Pri12(t) = LPoa(t) + 2Pp12(t). (3)

Thus, the form of the recurrence relation (3) for torus knots and links L,, o coin-
cides with the form of the skein relationship (1).

Recurrence relation only for torus knots T'(2m + 1,2) (or only for torus links
L(2m,2)), where m = 0,1,2,... . looks as follows:

Pri2a(t) = ki1 Ppa(t) + ko Pr_22(t), (4)
where

ki =134 2y, k= —I2. (5)
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We also have

PLQ = 1, P372 = kl + kg. (6)

2 Alexander polynomials

The Alexander polynomials A(t) of knots and links [1] can be defined by the skein
relationship

A+(t) — A_(t) = (t% - t_%)AO(t)a Aunknot =L (7)

From (7) (in analogy to (3)) it follows the following recurrence relation for torus
knots and links L,, o(%):

Api1o(t) = (12 —t73)Apa(t) + Ap_12(t) - (8)

From (8) (in analogy to (4)) one obtains the recurrence relation only for torus
knots T'(2m + 1,2) (or for torus links L(2m, 2))

Antoa(t) = (E+1 1) Ana(t) = An2a(t). (9)

The Alexander polynomials of torus knots T'(n,2) can be expressed through
g-numbers characteristic to Biedenharn-Macfarlane quantum bosonic oscillator.
The bosonic g-number corresponding to an integer n is defined as [2, 3]

n

_4"—-a"

[7lq P (10)
where ¢ is a parameter. Some of the g-numbers are:
We=1, R2y=a+q ', Bly=a+1+a? U= +a+a +q7 ...
The recurrence relation for (10) looks as
[n+1]g=(a+ qil)[n]q —[n—1]g. (11)
It was found that [4,5]:
Agpy1,2(t) = [m + 1] — [mly, t=q, (12)
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or, since n = 2m + 1, as

aalt) = [757], - [, 03)

In the following section we generalize these results with the help of g—numbers.

3 Algorithm of obtaining of Alexander

polynomials from bosonic g—numbers
Analyzing the results of previous sections we can formulate an algorithm of ob-
taining of the Alexander skein relationship (7). Afterwards this procedure will be
used for obtaining another skein relations.

First step: we introduce polynomials A, 2(q), which refer to torus knots
T(2m + 1,2), satisfying following recurrence relation (repeating (11)):

Ant22(q) = (¢ +q ) An2(q) — An—222(q) - (14)
According to (6):
Aip(q) =1, Asp(q)=qg-1+q " (15)

Second step: we formulate full recurrence relation for all polynomials A, 2(q)
and, thus, find corresponding skein relationship. From (14) we have k; = ¢ +
q ', ko = —1. Because of (5), we find

h=q>+q 2 bL=1. (16)

Therefore
Ant12(0) = (@2 = 472 An2(9) + Auc12(q). (17)
From (17) (in anology with (1) and (3)) we obtain the following skein relationship:
Ac(9) = A-(9) = (a% — 4 2)Ao(0). (18)

Third step: we find an expression for torus knots Agy,+12(¢). In analogy
with (19), we put

Agm1,2(q) = ar(q)[m + 1g — az(q)[m]e , t (19)

Il
<
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Using (10), (15) and (19), we find a1(q) = 1, a2(q) = 1. Therefore,

Azm+1,2(q) = [m + 1]g — [m, . (20)

In general, we described three-step procedure of obtaining of: 1) skein rela-
tionship of knots and links, and 2) expression for polynomial invariants of torus
knots T'(2m + 1, 2), from structural functions of bosonic deformed oscillators. In
particular, we obtained the formulas (18), (28), which coincides with those for the
Alexander polynomial invariants (7), (12) (if ¢ = ¢).

4 Generalized Alexander polynomials A(q,p)
from ¢, p-numbers

In this section we use the proposed three-step algorithm to obtain the generalized

Alexander polynomials A(q,p) from ¢, p-numbers, which reduce to the Alexander

polynomials if p = ¢~ .

The g, p-number corresponding to integer number n is introduced as [6]

g — p"
[n]gp = a—p (21)

where ¢ ,p are some complex parameters. If p = ¢~!, then [n],, = [n],. Here are
some of the ¢, p-numbers:

Wap=1, Rlop=a+p, Blop=0"+ap+ 1, Wep=0"+p+ap* +1°,... .
The recurrence relation for g, p-numbers is

n+1gp = (¢ +p)nlgp — apln — gp - (22)

First, in anology with previous section, on the base of (22) we introduce poly-
nomials A, 2(g,p), which generalize the Alexander polynomials:

Ant22(q,p) = (¢ +p)Ana(q,p) — qpAn—22(q,p). (23)

Thus from normalization condition and (6)

Ai2(q,p) =1, Ass(q,p) =q—qp+p. (24)
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Second, from (23) it also follows
ki=0+2=q+p, ky=-I5=—qp.
From here one finds o ) )
lp=gq?p2, L=gq>—p2,
which leads to the generalized Alexander skein relationship [7]:
Ai(a.p) = (4% = p*)Ao(a.p) + ¢2p* A-(a.p). (25)

Formula (25) can be written in the form

IS

)Ao(q,p) (26)

By putting p = ¢!, the generalized Alexander skein relationship turns into the

1 _1 11 1 1 1
q ip 1A(q,p) —qprA_(q,p) = (qip 1 —q 4p

Alexander skein relationship (7).
Third, we take

Aomi1,2(q,p) = a1(q, p)[m + 1]gp — a2(q,p)[m]gp - (27)

From (24) we have ay(q,p) =1, a2(q,p) = gp. Therefore,

Aomi1,2(q,p) = [m+ 1gp — qplm]qep - (28)

5 Generalized Alexander polynomials
and HOMFLY polynomials

The HOMFLY polynomial invariants 8] are described by the skein relationship:
aH(a,2) —aH_(a,2) = zHp(a, 2). (29)

Comparing (26) with the HOMFLY skein relationship (29) we obtain

_ 1

—q ipi . (30)

IS

1 1 1
a=qips, z=qip
Substituting this result into (29), one obtains the generalized Alexander skein
relationship (26).
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6 Generalized Alexander polynomials
and Jones polynomials
The Jones polynomial invariants [9] can be defined as

V() — tV_(t) = (t2 — 7 2) Vo (t). (31)

Comparing (26) with the Jones skein relationship (31), we find that substitution
g=1 p=t (32)

reduces the generalized Alexander polynomials to Jones ones.

According to results of Section 3, the Jones skein relationship (31) can be
obtained with the help of the proposed three-step algorithm from g—numbers
defined as

3n n

qg —q
nlsz,=————. 33
quq @ —q (33)
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Parabose symmetry (alternative names: Generalized conformal su-
persymmetry with tensorial central charges, conformal M-algebra,
0sp(1|2n) supersymmetry) has been considered as an alternative to
d-dimensional conformal superalgebra. Potential relevance of the cor-
responding superalgebra spreads to various subfields of High Energy
Physics and Astrophysics (e.g. particle classification, gauging gravity,
dark matter/energy candidates, etc.). Yet, due to mathematical diffi-
culties, even classification and analysis of its unitary irreducible repre-
sentations (UIR’s) have not been entirely accomplished. We complete
this classification for n = 4 case (corresponding to four dimensional
space-time) and then show how the discrete subset of these UIR’s can
be constructed in a less abstract manner, that allows natural phys-
ical interpretation as spaces of particular composite particle states.

23 This work was based on invited talks given at the 5th Petrov International Symposium on
High Energy Physics, Cosmology and Gravity, Kyiv (Ukraine), April 29-June 15, 2012, and sup-
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We also conjecture generalization of the obtained results to the cases
relevant in the string/brane context (n > 4).

1 Introduction

In the standard Poincaré supersymmetry, anticommutator of two lefthanded
(righthanded) supersymmetry generators either vanishes or, in the extended su-
persymmetry case, equals to a central charge. If this requirement is relaxed, in
four space-time dimensions the following relations are obtained (in four compo-
nent spinor notation):

{Qa,Qp} = (CY*)ap Py + (CY)apZu, {QQcovariantly} (1)

with C' being the charge conjugation matrix, v., = [y,7], space-time indices
take values p,v = 0,1,2,3 and spinorial indices «, 8 = 1,2, 3,4. The nonstandard
second term on the righthand side contains six entities Z,,, known as "tensorial
central charges".

This sort of supersymmetry generalization conveys also to the superconformal
case, introducing, as we will see, a number of additional bosonic generators into
the algebra. The superconformal generalization turns out to form osp(1|8) super-
algebra, whose enveloping algebra coincides with the, so called, n = 4 parabose
algebra [1,2].

Historically, first to notice interesting properties of such a construct seems to have
been C. Fronsdal [3|, as early as in 1985, while investigating Penrose twistors
and conformal field theory. He noticed that reduction from osp(1|8) symmetry
to conformal symmetry of Minkowski space (0sp(1]8) D su(2,2)) can be seen as
a specific type of Kaluza-Klein reduction from 10 to 4 dimensions that leads to
model with infinite tower of massless fields with increasing spins. Since then the
construct of generalized supersymmetry reappeared, sometimes independently, in
many physical contexts. In particular, it gained lot of interest when it was realized
that tensorial central charges in higher dimensions appear naturally in relation to
extended objects, such as branes and that it seems to be the underlying symmetry
of M-theory [4-9]. Besides, exotic BPS particles were found and studied [10-13]
in this framework, and field equations corresponding to higher spin fields were
obtained [14-19]|. Independently, generalized conformal supersymmetry showed
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up as the result of a search for mathematically simple structures that could con-
tain Poincaré symmetry and thus could be interesting as candidates for a larger
space-time symmetry. The approach was based on Heisenberg [20,21], bose and
parabose [22-24] algebras.

In the first place we will be interested in the orthosymplectic generalization of
supersymmetry as a candidate for a realistic symmetry of the space-time. This
means that we will consider case osp(1|8) that is related to four space-time di-
mension, but we also conjecture generalization of the results to higher dimensional
cases (where osp(1]2n) algebra appears in the context of branes and M-theory).
When considering a (super)group in the context of a space-time symmetry, one of
the first and most natural steps to undertake is to find unitary irreducible repre-
sentations (UIR’s) of the group, as these give us basic information on the particle
content of the free theory. In principle, only then one can know what types of
fields can exist in the model, and is entitled to consider field theory, write action
for the fields, attempt quantisation and/or introduce interactions. Yet, in spite of
substantial interest in this type of generalized supersymmetry, no complete anal-
ysis of unitary irreducible representations, especially in this physical context, has
been carried out. The probable reason is that this task is related with substantial
mathematical difficulties.

The problems have been solved for low n cases: apart from the well understood
case n = 1, even UIR’s of n = 2 were successfully classified [25] and some fam-
ilies explicitly constructed [26]. We are familiar with only a few partial results
pertaining to the representations of the osp(1|2n) for n > 2 (for a brief review
of the progress in the representation theory of the orthosymplectic superalgebras
osp(m|2n) in general, see [27]). Giinayadin applied his oscillator construction to
obtain some positive energy UIR’s of 0osp(1|2n) from discrete spectrum [28]. How-
ever, his approach was constructional and thus lacking in a few ways: no clas-
sification of UIR’s was given, the question if there are more discrete UIR’s was
left open and there was no insight where is the limit of the continuous spectre.
Taking parabosonic approach Lievens, Stoilova, and Van der Jeugt [29] obtained
a narrow subclass of positive energy UIR’s, called representations with unique
vacuum (parastatistics terminology). To the best of our knowledge, the only sys-
tematic and general approach to the classification of (positive energy) osp(1|2n)
UIR’s was attempted by Dobrev and Zhang [30], who analyzed reducibility of
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lowest weight Verma modules. Yet, it turned out that a complete classification
of positive energy UIR’s of osp(1]8), at the present level of our mathematical
understanding of Verma module structure, required some extremely lengthy and
involved calculations that could be only performed by using computers. We thus
followed the approach of Dobrev and Zhang, but developed computer algorithms
to analyze Verma module structure: to search for singular and subsingular vec-
tors and check their dependencies in each particular case. In this way we managed
to make a complete list of positive energy osp(1|8) UIR’s, together with explicit
forms of the corresponding Verma module singular and subsingular vectors. We
demonstrate that there is a concrete number of discrete UIR families (precisely
nine, or ten if the trivial representation is counted as a separate class), that phys-
ically should be related to elementary particles of osp(1|8) models.

In addition, we also propose a method to explicitly construct discrete representa-
tions, allowing one to easily perform concrete calculations in these spaces and, in
that way, give physical interpretation to the states within. The method is based
on a specific generalization of the, so called, Green’s ansatz (used in the context
of parastatistics), but in such a way that no anticommuting operators appear
when representing superalgebra elements. Curiously, it turns out that to realise
all discrete families of UIR’s, elementary Green’s ansatz representations have to
be grouped in pairs, and it takes exactly up to three such pairs to construct ar-
bitrary discrete UIR. It is quite probably that our method for construction of
representations can be connected with the one in [28], but, to our opinion, is
advantageous due to lack of anticommuting operators that drastically simplifies
calculations (and allows us to directly use mathematical machinery developed for
non relativistic quantum mechanics).

2 Parabose algebra n = 4 as generalized superconfor-
mal symmetry

Parabose algebra is a generalization of the algebra of standard bose creation and
annihilation operators, first suggested by H.S.Green [1]. In literature [1,31], it is
usually defined as algebra of n pairs of mutually hermitian conjugate operators
Qe aTa, satisfying trilinear relations:

{aa @l 03] = ~205 00, @
[{aa,ag},a»y] =0, (3)
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together with relations (additional four) that follow from these by hermitian con-
jugation and by use of Jacobi identities.?*

Parabose operators, defined as above, together with all possible anticommuta-
tors {aq,as}, {aa, aTﬁ} and {al,, aTﬁ} of the parabose operators, form a realization
of orthosymplectic superalgebra osp(1[2n). With the usual assumptions of pos-
itivity of Hilbert space metrics in the space where parabose operators act, list
of unitary irreducible representation of parabose algebra reduces to, so called,
"positive energy" class of osp(1|2n) UIR’s.

As announced in the introduction, we are primarily interested in the case of
4 physical dimensions, corresponding to n = 4.

Conformal (¢(1,3) ~ so(2,4)) algebra is contained in the algebra closed by all
anticommutators of parabose operators. We will demonstrate the connection by
making a two-step change of basis. We first switch from operators aq and al, to
their hermitian combinations S% = (aq +al) and Qu = —i(aq —ab). In the space
of all anticommutators of S* and @, we then introduce the following basis:

Ji = %(Ui)a {Qa, 57}, Yi = %( i) B{ngﬁ}’ Nij = 8(‘11]) {Qa, 57,
Kij =— %(a,]) {5%,8%), Ky= %(QO)C‘,[; {8, 8Py,
D = §(a0)% {Qa, 5%}, Py = (i) {Qu, Q). Po = £(a0)*® {Qa, Qs

Matrices o0, 74, o;j and o, appearing here, represent a basis of four by four real
matrices, defined as follows. Basis for antisymmetric matrices is given by six ma-
trices o; and 7y, 4,4 = 1,2, 3 that satisfy:

[O’Z‘,O'j] = 25ijk0'ka [Tj,TJ‘] = 28_2‘257'5‘, [UiaTJ] =0. (5)

Matrices «;; = 7;0, together with the unit matrix denoted as ag, form a basis of
symmetric matrices.

Algebra closed by parabose anticommutators, whose one particular basis is
given by (4), has 36 generators and is isomorphic to sp(8). Centralizer of element Y;
(z arbitrary) is a subalgebra isomorphic to Conformal algebra of Minkowski space-
time (so(2,4) C sp(8)) plus the element Y; alone. Without loss of generality, we

2"We note that, in a Hilbert space equipped with positive definite metrics (with respect to
which one defines the adjoint a ) all algebra relations actually follow from a single relation (2).

(4)
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will consider centralizer of Y3, spanned by the operator Y3 itself and the operators:

Ji, Ni = N3;, D, P, = P3;, Py, K; = K34, Ko, (6)

that generate so(2,4) algebra. Operators (6) play the roles of rotation generators,
boost generators, dilatation generator, momenta and pure conformal generators,
respectively.

We have thus demonstrated that the group generated by anticommutators of
n = 4 parabose algebra can be seen as a particular generalization, that is, ex-
tension of the conformal symmetry group in four dimensions. If we additionally
include the parabose operators @) and S themselves in the even algebra, the overall
structure becomes an extension of conformal superalgebra (hence the name gener-
alized conformal supersymmetry). Mathematically, algebra extends from sp(8) to
0sp(1|8). Operators @ and S play roles of space-time supersymmetry generators.
To see this we can "invert" relations (4):

{Qa, Qs} = (@0)ap Po + (aij)ap Pij, {5%, 9%} = (a0)™ Ko — () Ky, (7)
{5, Qp} = (ao)aﬁ D+ (O@‘j)aﬁ Nij + (Ui)aﬁ Ji + (Tj)aﬁ Y;.

Comparison of these relations with the standard conformal superalgebra relations
shows appearance of extra terms on righthand sides of (7) — these are exactly the
tensorial central charges from relation (1), written in a different, Lorentz non-
covariant notation. In the first of the relations, apart from the expected operators
P3; and P, that we have identified with spatial momentum and energy (6), there
are additional operators Pi; and Ps;. These operators transform as components
of a second rank antisymmetric Lorentz tensor and are linear combinations of an-
ticommutators {Qy, Q¢} and {@n,ég} (that vanish by definition in the standard
supersymmetry case).

3 Unitary irreducible representations

In this section we classify unitary irreducible representations of n = 4 parabose
algebra. We will begin with some basic observations.

As the metrics is positive definitive, an operator defined as E = % Y ataa, aL}
must be positive. Annihilation operators a, reduce the eigenvalue of E, thus
the Hilbert space must contain a subspace that these operators annihilate. This
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subspace is called vacuum subspace: Vp = {|v),an|v) = 0}. From the parabose
algebra relations follows:

[v) € Vo = {aa,al;}v) € Va, (8)

with «, 8 arbitrary. Therefore vacuum subspace carries a representation of an
U(1)xSU(N) group generated by operators {aq, aTﬁ} (with U(1) part generated by

E). Let VO(“ ) be a subspace of V| carrying irreducible representation p of SU(N).
For the reasons of unitarity we are interested in cases when this subspace is finite
dimensional. Since generators {aq, a};} commute with F, F acts as a multiple of
unity in this subspace and its eigenvalue will be denoted as ey. Therefore, we can
uniquely label VO(” ) as VO(“ ’60), and the parameters p and eg in this way also label
UIR’s of parabose algebra. In the context of osp(1|2n) algebra such representations
are called positive energy UIR’s. In analysis of this type of osp(1]|2n), or more
concretely, of osp(1|8) unitary irreducible representations we closely followed the
approach from [30]: not only in method (analysis of reducibility and unitarity
conditions for lowest weight Verma modules), but also in conventions, choice of
root system, UIR labels, et cetera (only different letters will be sometimes used
to denote quantities, in order to ensure compatibility with the rest of this paper).
Thus we will run through preliminaries very briefly, referring to [30] for details.

We consider lowest weight Verma modules VA 2 U(GT) ® |vg). Here, Gt
denotes subalgebra of positive roots in standard algebra decomposition G€ =
GT®H ®G™ (G denotes superalgebra osp(1|8) and GC its complexification; H is
Cartan subalgebra) and |vg) is a lowest weight vector of weight A:

Xeg :>X’U0>:O, HGH#H’UQ>=A(H)‘00> (9)
Roots, expressed using elementary functionals, are:
A = {£64, 1 <a <446, +08,1<a<f <4
+26,,1 < o < 4} (10)

(the two signs in £, +d5 not being correlated) and the corresponding root vectors
we will denote as (in the same order):

Gteg = {ala,1§a§4;alai5,1ga<ﬁg4;

Al ol <a <4}, (11)
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Here we introduced a compact notation for superalgebra elements, that empha-
sises the parabose connection:

Simple root vectors are:
{aT—2,1’ ai?)’?, aT—4,3a a}l} (13)

and the corresponding positive root vectors are:

_ oot i T oot i Tt i
AT = Ay, A1 4509 4,03 4, 03,01 3,09 3,09, 0] 9,07, (14)

T T T T T T
A_g3,0_492,0-39,0_41,0_31,0_271 (>

written in, so called, normal ordering [30] that we will use for ordering of the
Poincaré-Birkhoff-Witt (PBW) basis of U(GT).
We will label representations by the signature

X = {s1, s2, s3,d}, (15)

where parameters s1, s9, s3 actually label the su(4) representation p and parame-
ter d is related to ey by eg = 4d + s1 — s3. The connection between the signature
and the lowest weight A is given by:

(16)
S1 52 S3 S1 S9 S3
d+ = +=—-2)s+ (d+ =+ = + =)bs
td+ 55 )t dr 5+ )0

A corresponding shortened notation will be also used for weights: A =
(2d731 —59—83 2d+s81—82—83 2d+s1+s2—s3 2d+s1+s2+S3 )
2 2 g 2 :

) 2 )

We introduce a (Shapovalov) norm on the Verma module via natural involutive
antiautomorphism: w : w(a,) = aL (compatible with the assumed Hilbert space
metric). Right away we note that simple unitarity considerations — calculating
norms of vectors ai(a+1)7a|v0> and a“vo) — result in constraints: s; > 0,59 >
0,83 >0,d > (s1+ s2+ s3)/2. Parameters s1, s2, s3 must be integer, labelling an
SU(4) Young tableau with s1 + s + s3 boxes in the first row, s; 4 s2 boxes in the
second and s; boxes in the third row.
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For certain values of A submodules appear in the structure of the Verma
module VA, and the module becomes reducible. Basic case is when this happens
due to existence of a singular vector |vs) € VA:

X|vs) =0, VXegG . (17)

This singular vector, in turn, generates a submodule VA" 2 U7(G)|v,) within VA,

To ensure irreducibility, all submodules corresponding to singular vectors must
be factored out. However, after factoring out these submodules, new singular
vectors may appear in the remaining space — called subsingular vectors. Namely,
if the union of all submodules of singular vectors is denoted by I* then a vector
[uss) € VA is called a subsingular vector [32] if |vs,) ¢ I* and:

X|vgs) e I, vXeg. (18)

Just as singular vectors, subsingular vectors also generate submodules that have
to be factored out when looking for irreducible representations.

In the particular case of osp(1|2n) there are always, irrespectively of d value,
singular vectors of the form:

00 = (al gy ) oo) @ =1.2..n—1, (19)

(when considering cases of unitary and therefore finite dimensional SU(n) rep-
resentations pu, related to integer values of s,). The union of the submodules
corresponding to these singular vectors we will denote as [ QU. We will always
consider factor modules VA/T é\U, and due to this fact subsingular vectors will
play a significant role in the the analysis.

Our analysis of the Verma module structure heavily relied on the computer
analysis and was carried out in the following general manner (that we just briefly
describe). First, Kac determinant of a sufficiently high level was considered as a
function of parameter d (for each given class of SU(4) representation ). In this
way it was possible to locate the highest value of d for which the determinant
vanishes and the Verma module becomes reducible. The singular or subsingular
vector responsible for the singularity of the Kac matrix was then calculated, ef-
fectively by solving an (optimized) system of linear equations. Next we would
find the norm of this vector and look for possible additional discrete reduction
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points at (lower) values of d for which the norm also vanishes. If new reduction
points with new (sub)singular vectors were found it was also necessary to check
that, upon removal of the corresponding submodules, no vectors with zero or
negative norm remained. For this, it was enough to check that previously found
(sub)singular vectors (i.e. those occurring for higher d values) belonged to the
factored-out submodules. Optimized Wolfram Mathematica code was written to
perform all these calculations.

We will illustrate the procedure on a few cases, and then give the final classifi-
cation. More detailed account of the (sub)singular vectors and their interrelations
will be given elsewhere.

First we consider unitary irreducible representations that appear when p is
the trivial representation (s; = sa = s3 = 0), i.e. cases when the lowest weight
vector of Verma module is invariant w.r.t. SU(4) subgroup action (space V} is one
dimensional). The structure of the Verma module in this case is as follows.

For values d > % the Verma module is irreducible, all norms are positive and
the corresponding representations are unitary and irreducible.

At value d = % a subsingular vector appears. In PBW basis this vector has
form:

joia™Y) = (~2a} yabaf + 20} yalal —2ala} o] — 20} jala} + 20]a] 5]

- QGZG:T’,@I,Q + a:];,4a];,2 - a;4a{73 + aha;?, + 4a}ia§;a£ai)\vo>.

The notation for labeling these (sub)singular vectors is the following: ss in the
lower index stands for "subsingular" whereas s means "singular" vector; in the
upper index we give "relative weight" of the vector — if the (sub)singular vec-
tor generates Verma submodule of weight A’ the the relative weight is A" — A
(the relative weight alone will turn out to uniquely label these vectors, in a very
systematic way).

Upon removing, i.e. factoring out the submodule generated by this vector, an
UIR is obtained.

The norm of the vector ]vg’l’l’l)> as a function of d at s1 = s9 = s3 = 0 is
64(2d — 3)(d — 1)(2d — 1)d, having zeros at d = 2,1, 1 and 0.

Between d = % and d = 1 the norm above is negative and there are no UIR’s.
However, at the value d = 1 a new subsingular vector appears:

@0 — (o] yah — oo+ afal, — 2alelad) o). (20)
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It can be explicitly shown that the subsingular vector |v§§’1’1’1)> belongs to

the union of submodule generated by |v§2’1’1’1)> and the submodule I23;. After

factoring out submodule of the vector \v§2’1’1’1)> no negative or zero norm vectors
remain in the factor space and an UIR is obtained for d = 1, s1 = s9 = s3 = 0.

Norm of the subsingular vector (20) is 16(d — 1) (2d — 1)d. In particular, it is
negative for 1 > d > %, precluding existence of UIR’s in this range.

At d = % a singular vector appears:

(0,0,1,1)> _ ( Tt

[0 falal 5 —al, +2alal)|vo), (21)

with norm 8(2d — 1)d.
The previous subsingular vector |v§2’1’1’1)> belongs to the union of submodule
generated by |v£0’0’1’1)> and submodule IZ;,. Thus, there is UIR also at d = 1/2,

$1 = 89 = s3 = 0 obtained upon removing the submodule of vector \v§0’0’1’1)>.

Norm of |v§0’0’1’1)> is negative when 1 > d > 0 and, therefore, there are no
UIR’s in this range.

At d = 0 another subsingular vector, of the norm 2d, appears:
[v00) = afvo). (22)

This reduction point corresponds to the trivial representation of osp(1|8) with
representation space being spanned only by vector |vg).

Proceeding in the same manner, we finally obtain the following simple scheme
for n = 4 parabose UIR classification:

® 51 =89 =s53=0:

d>3/2;

d=3/2,[vis" ),

d=2/2, [, (23)
d=1/2,[o" "1y,

d =02, [v" 0Ny,

® 51 =59 =0,83 > 0:
d> s3/2+4/2;
d = s3/2 +4/2, [vis"10);
d = s3/2 +3/2, [V 1)
d = s3/2 +2/2, w010y,
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o 51 =0,s59>0:

> (s9+83)/2+5/2;
= (52 + 53)/2 + 5/2, [u{"100); (25)
(52 + 83)/2 + 4/2, v 0100y,

9

d
d
d

e 51 >0:
d> (81 +82+83)/2+6/2;

d = (s1+ 82+ 83)/2 + 6/2, [u{"000.

The pattern of "relative weights" of (sub)singular vectors in the above scheme

(26)

is obvious, and it allows us to immediately conjecture UIR classification for n > 4:
® 5] =8 =---=58,_1=0:

d>(n—1)/2;
d=(n—-1)/2, |vg’1’1""’1’171’ )>

d=(n—-2)/2, foigttttY)

7

?

(27)
d=2/2, ’vgg,O,O,...7o,1,1,1)>;
d=1/2, |v§0,0,0,...,0,0,1,1)>;
d=0/2, ’ng,O,O,...70,o7o,1)>;
e s1=8=""=8-2=0:5-1>0:
4> sna/2+ (0 =14+ 1)/2,
d=s,-1/2+ (n—1)/2, |vg’1’1"“’17170) :
d=sp_1/2+(n—1-1)/2, ]vgg’l’l""’1’1’0)>;
(28)

?

|1)£(SJ,0,...,1,1,1,0)>
0,0,...,0,1,1,0
’,Ug sUyeeesUy Ly dy )>,
|’U£070

d:Sn,1/2+4/2,
dZSn_1/2+3/2,
d:Sn,1/2+2/2,

)

,...,0,0,1,0)>

?

e 51 =0,50>0:
d> (sg4 - +s,-1)/2+n—3/2;
d= (s34 +8,-1)/2+n—3/2, |10 000, (29)
d= (32 4+t Sn—l)/2 4+n— 4/27 ‘Ugovlvov---707070)>

)
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e 51 >0
d>(s1+--+sp-1)/2+n—1; )
d=(s1+ - +8p-1)/2+n—1, ’vgl,O,O,...,O,O70)>.

4 An explicit construction of parabose UIR’s

We propose a method to explicitly construct the above classified unitary irre-
ducible representations of parabose algebra. The method cannot be applied to
UIR’s from the continuous spectre, i.e. those UIR’s that occur for non (half)integer
values of parameter d. However, from the physical viewpoint, representations from
the discrete spectre (d taking discrete (half)integer values less or equal to the first
reduction point) are of far greater significance since only in these cases singu-
lar or subsingular vectors appear. And it is well known that these vectors turn
into important equations of motion (e.g. see [32]). In the particular case of the
parabose generalization of supersymmetry, these vectors, for example, turn into
Klein-Gordon, Dirac and Maxwell equations.

In the same paper where he first introduced parabose (and parafermi) alge-
bra [1], H.S.Green has also offered a way to construct some of the unitary repre-
sentations using what is nowadays known as the Green’s ansatz. We demonstrate
that the ansatz, originally applicable only to "unique vacuum" representations,
can also accommodate other representations of the discrete type. We also com-
bine the ansatz with, so called, Klein transformation, so that Green operators no
longer satisfy strange "mixed" commutation and anticommutation relations, but
instead obey usual commutation relations of bosonic algebra.

We define a Klein transformed analogue of Green’s decomposition of order
p (p is known as the order of the parastatistics) as the following expression for
parabose operators:

ao = Yoy Ty L(2) -~ I(g—1)al. (31)

In this expression operator a% and its adjoint agj satisfy ordinary bosonic algebra
relations. There are total of n-p mutually commuting pairs of annihilation-creation

operators (a%,a%):
[agu a?] = 55a5ab; [G’Z? ab] =0, (32)

where a,b=1,2,...pand o, 6 =1,2,...n.
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In (31) we have also introduced selfadjoint unipotent Klein "inversion" oper-
ators that act on the Green’s operators in the following way:

Iyag Iy = (=)**ap,. (33)

By their introduction we avoided appearance of anticommuting relations of
original Green’s operators and, by this, operators a% and a®' become familiar
mathematical objects which are easier to manipulate and interpret. The easi-
est way to show that such inversion operators exist is by explicit construction:
Iiq) = exp(im ) _,, ${ag, ahy.

The overall Green’s ansatz representation space of order p can be seen as
tensor product of p multiples of Hilbert spaces H,) of ordinary linear harmonic
oscillator in n-dimensions: H = H 1) @ Hz) ® -+ @ H(y,). A single factor Hilbert
space Hq) is the space of unitary representation of n dimensional bose algebra
of operators (ag{,agj),a = 1,2,...n, which is, at the same time, the simplest
nontrivial unitary representation of parabose algebra (i.e. the simplest positive
energy UIR of osp(1[2n)): H ) = U(agj)|0>a, where |0), is the usual bose vacuum
of factor space H,). This picture is apropriate due to the fact that the action of
even operators of osp(1|2n) (and, in particular, of spacetime symmetry generators
(4) in the n = 4 case) reduces simply to sum of actions in each of these factor
spaces, by virtue of:

{aa’aﬁ} = Z{agaa%}’ {aa’ag} = Z{QZ?QZT}‘ (34)
a=1 a=1

As, from the mathematical point of view, the whole representation space exactly
corresponds to Hilbert space of p particles in a n-dimensional non relativistic
quantum mechanics, it is very clear that no negative or zero norm states appear.
Therefore, if we can find, in this framework, a lowest weight vector |vg) of a proper
weight (corresponding to some UIR signature found in previous section) then the
vectors of the form P(X)|vg), P(X) € U(G") will span that representation space.
In addition, one can explicitly check that the corresponding (sub)singular vector
vanishes, as it must.

The simplest nontrivial representation, with signature s; = so = s3 = 0,
d = 1/2 corresponds to p = 1 space. The lowest weight vector is simply the
vacuum of the Hy: |v(()0’0’1’1)> = |0);. Space in p = 1 case is irreducible. Physical
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interpretation of the vectors in this space is that they correspond to tower of
massless states with raising helicities. Other "unique vacuum states (i.e. s1 =
s9 = s3 = 0) are obtained for p = 2 and p = 3 with lowest weight vectors being
|01 ® |0)2 and [0h ® [O) ® |0)3.

The simplest UIR class of non "unique vacuum" type has signature s; = so =
0,83 >0, d = s3/2+ 1 and in these representations u corresponds to single row
Young tableaux. This class can be realized in p = 2 space, with

of1) = (42 0 © [0, (35)

where A((lk) = I(Qk)(aik‘*” + I(Qk_l)ai“). We note that entire p = 2 space reduces

w.r.t. parabose algebra action to UIR’s with signatures: s3 = 0,1,2,3,...,d =
s3/2 41, s1 = s9 = 0, without any additional degeneracy. From the viewpoint of
physics, this is the simplest class that contains both massless and massive states
with an additional charge (related to the label s3).

There are two more classes of "single row" discrete UIR-s: those with signa-
tures {0,0,s3, 3 + %} and {0,0,s3, % 4 2}. These are constructed in a similar
manner as the previously considered class with signature {0,0,s3, 3 + 1}, only
in spaces p = 3 and p = 4, respectively, with the lowest weight states given by

expressions:
o) = L APy (o) @ [0 @ |03, (36)
o) = S (D)2 0 @ [0} @ [0 @ [0)s (87)

There are two "two-rows" (s; = 0,s2 > 0) UIR classes. The class with d =
(s2+ s3)/2 + 2 can be realized in p = 4 space, with the lowest weight state given
as (up to normalization constant):

00100y = (AP AP — AP APy (A |0y @ |0k @ |0 @ [0}, (38)

S

The remaining class with d = (s2 + s3)/2 4+ 5/2 can be realized in p = 5 space,
with

o100y = (AW AP — 45D AP (A1) 0) @ |0) @ (0% ® [0} @ [0)s5. (39)

The only discrete class of representations that corresponds to three-rows
Young tableaux (s; > 0, d = (s1 + s2 + s3)/2 + 3) can be realized in p = 6 space,
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with the lowest weight state constructed as (up to normalization constant):

3

1,0,0,0 k) 4(1) 4(m))*?

000 = (Y eumAP AP AM)
k,l,m=1

2
S2
(3 cuallal) " ap)s (40)
k=1

|0)1 @ --- ® |0},

where ¢ denotes the Levi-Civita symbol.

Thus we demonstrated a method for realization of all discrete classes of UIR/’s.
The presented construction method can be straightforwardly generalized both to
n >4 and to other (half)integer values of d that belong to continuous spectrum.

5 Conclusions

We analyzed n = 4 parabose supersymmetry (corresponding to D = 4 general-
ized conformal supersymmetry) using a group-theoretical approach. We gave a
complete classification of unitary irreducible representations of parabose algebra.
These results, although obtained in the n = 4 case, have proved to be readily
generalizable to higher values of n, that made the analysis important also in the
higher dimensional context of the string theory. Apart from classifying UIR’s of
the symmetry, we also proposed a method for their explicit construction.

We bring a special attention to the "pairing" of factor spaces that was observ-
able in this setup: to obtain the simplest single box UIR (s1 = s9 = 0,83 = 1,d =
3/2) it takes two factor spaces p = 2. To form the simplest UIR with two boxes in
a column (s = s3 = 0,s9 = 1,d = 5/2), it turns out that p = 4 must be taken and
the vacuum is essentially obtained by antisymmetrizing two "single-box" vacuum
states. Similarly, "three-box in a column" UIR (sg = s3 = 0,81 = 1,d = 7/2)
is obtained by antisymmetrizing tensor product of three "single box" vacua. All
discrete IR classes can be realized using tensor product of up to three "single-box"
p = 2 spaces, in a way reminiscent of forming composite particles from simpler
constituent ones.
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(UV/IR) mixing term and from the finite terms as well. For a
certain choice of the noncommutative parameter # which preserves
unitarity, problematic UV divergent and UV /IR mixing terms vanish.
Non-perturbative modifications of the neutrino dispersion relations
are assymptotically independent of the scale of noncommutativity
in both the low and high energy limits and may allow superluminal
propagation.

Keywords: Noncommutative geometry, Quantum field theory, Neu-
trino physics, Cosmic ray experiments

1 Introduction

String theory indicated that noncommutative gauge field theory (NCGFT) could
be one of its low-energy effective theories [1|. Studies on noncommutative parti-
cle phenomenology [2,3] was motivated to find possible experimental signatures
and/or predict/estimate bounds on space-time noncommutativity from collider
physics experimental data: for example from the Standard Model (SM) invisible
part of Z — Dv decays, and more important from the ultra high energy (UHE)
processes occurring in the framework of the cosmic-ray neutrino physics. Con-
straint on the scale of the NCGFT, Anc, is possible due to a direct coupling of
neutrinos to photons.

Significant progress has been obtained in the so-called Seiberg-Witten (SW)
maps [1] and enveloping algebra based models where one could deform commu-
tative gauge theories with arbitrary gauge group and representation [4-10]. In
our construction the noncommutative fields are obtained via SW maps from the
original commutative fields. It is commutative instead of the noncommutative
gauge symmetry that is preserved as the fundamental symmetry of the theory.
The constraints on the U, (1) charges, stated as “no-go theorem” [11], are also
rescinded in our approach [12], and the noncommutative extensions of particle
physics covariant SM (NCSM) and the noncommutative grand unified theories
(NCGUT) models [10,12-18| were constructed. These allow a minimal deforma-
tion with no new particle content and with the sacrifice that interactions include
infinitely many terms defined through recursion over the NC parameter 6#"; in
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practice cut-off at certain #-order.
In a simple model of NC spacetime local coordinates x* are promoted to her-
mitian operators * satisfying spacetime NC and implying uncertainty relations

1
@3] = 10" —> |AatAa”| = 510", (1)

where 6 is real, antisymmetric matrix. The Moyal-Weyl *-product, relevant for
the case of a constant 0¥, is defined as follows:

o f@)e(y)| (2)

Yy—x

(f > g)(z) = 2"

The operator commutation relation (1) is then realized by the so-called -
commutator
[ZH, 27] = [aF ¥ a¥] =M. (3)

The perturbative quantization of noncommutative field theories was first pro-
posed in a pioneering paper by Filk [19]. Other famous examples are the running
of the coupling constant of NC QED [20] and the UV/IR mixing [21,22|. Later
well behaving one-loop quantum corrections to noncommutative scalar ¢* theo-
ries [23-25] and the NC QED [26] have been found. Also the SW expanded NCSM
[10,13,15,17| at first order in 6, albeit breaking Lorentz symmetry is anomaly
free [27,28|, and has well-behaved one-loop quantum corrections [20-22,29-37].
However, despite of some significant progress in the models [23-37], a better un-
derstanding of various models quantum loop corrections still remains in general
a challenging open question. This fact is particularly true for the models con-
structed by using SW map expansion in the NC parameter 0, [5,10, 16, 38, 39].
Resulting models are very useful as effective field theories including their one-loop
quantum properties [27-37] and relevant phenomenology [40-47].

Discussions on the C,P,T, and CP properties of the noncommutative inter-
actions are given in [44], and in particular in [46]. For example, fixing 6 sponta-
neously breaks C, P, and/or CP discrete symmetries [16]. A breaking of C sym-
metry occurs in Z — 7y process. One common approximation in those existing
works is that only the vertices linear in terms of the NC parameter 6 were used.

Quite recently, f-exact SW map and enveloping algebra based theoretical
models were constructed in the framework of covariant noncommutative quan-
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tum gauge field theory [4], and applied in loop computation [48-51] and to the
phenomenology, as well [52,53].

At @-order there are two important interactions that are suppressed and/or
forbidden in the SM, the triple neutral gauge boson [13,15, 17|, and the tree
level coupling of neutrinos with photons [38,39], respectively. Here an expansion
and cut-off in powers of the NC parameters 6" corresponds to an expansion
in momenta and restrict the range of validity to energies well below the NC
scale Axc. Usually, this is no problem for experimental predictions because the
lower bound on the NC parameters 0* = ¢ /A%, (the coefficients ¢ running
between zero and one) runs higher than typical momenta involved in a particular
process. However, there are exotic processes in the early universe as well as those
involving ultra high energy cosmic rays [47,52-54| in which the typical energy
involved is higher than the current experimental bound on the NC scale Anc.
Thus, the previous #-cut-off approximate results are inapplicable. To cure the cut-
off approximation, we are using f-exact expressions, inspired by exact formulas
for the SW map |[8,55,56], and expand in powers of gauge fields, as we did in
[53]. In #-exact models we have studied the UV/IR mixing [48,49], the neutrino
propagation [50] and also some NC photon-neutrino phenomenology [47,52-54],
respectively. Due to the presence of the UV/IR mixing the #-exact model is not
perturbatively renormalizable, thus the relations of quantum corrections to the
observations [57] are not entirely clear.

In this work we present NCSM extended neutrino gauge bosons actions to
all orders of #. Finally we discuss the decay width I'(Z — vv) as functions of
the NC scale Anc for light-like noncommutativity which are allowed by unitarity
condition [58,59].

2 UHE cosmic ray motivation

Direct coupling of gauge bosons to neutral and “chiral” fermion particles [38,52,53],
via x-commutator in the NC background, which plays the role of an external field
in the theory, allow us to estimate a constraint on the scale of the noncommu-
tative guge field theory, Anc, arising from ultra-high energy cosmic ray experi-
ments involving v-nucleon inelastic cross section, see i.e. Fig. 27. The observation
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Figure 27: Diagrams contributing to vN — v 4+ X processes.

of ultra-high energy (UHE) v’s from extraterrestrial sources would open a new
window to look to the cosmos, as such v’s may easily escape very dense material
backgrounds around local astrophysical objects, giving thereby information on
regions that are otherwise hidden to any other means of exploration. In addition,
v’s are not deflected on their way to the earth by various magnetic fields, point-
ing thus back to the direction of distant UHE cosmic-ray source candidates. This
could also help resolving the underlying acceleration in astrophysical sources.

In the energy spectrum of UHE cosmic rays at ~ 4 x 10 eV the GZK-
structure has been observed recently with high statistical accuracy [60]. Thus the
flux of the so-called cosmogenic v’s, arising from photo-pion production on the
cosmic microwave background pycyp — A* — N7 and subsequent pion decay,
is now guaranteed to exist. Possible ranges for the size of the flux of cosmogenic
v’s can be obtained from separate analysis of the data from various large-scale
observatories [61,62].

Note that there is the uncertainty in the flux of cosmogenic v’s regarding
the chemical composition of UHE cosmic rays (for details see [52]). Usinging the
upper bound on the ¥ N cross section derived from the RICE Collaboration search
results [63] at E, = 10'* GeV (4 x 1073 mb for the FKRT v-flux [61])), one can
infer from #-truncated model on the NC scale Anc to be greater than 455 TeV, a
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really strong bound. Here we have 0" = c¢*” /A%~ such that the matrix elements
of ¢ are of order one. One should however be careful and suspect this result as it
has been obtained from the conjecture that the f-expansion stays well-defined in
the kinematical region of interest. Although a heuristic criterion for the validity
of the perturbative #-expansion, \/s/Axc < 1, with s = 2E, M, would underpin
our result on Axc, a more thorough inspection on the kinematics of the process
does reveal a more stronger energy dependence Ei/ 2g1/4 /Anc < 1. In spite of an
additional phase-space suppression for small z’s in the §2-contribution [40] of the
cross section relative to the #-contribution, we find an unacceptably large ratio
o(6%)/o(6) ~ 10*, at Axc = 455 TeV. Hence, the bound on Axc obtained this
way is incorrect, and our last resort is to modify the model adequately to include
the full-0 resummation, thereby allowing us to compute nonperturbatively in 6.

Total cross section, as a function of the NC scale at fixed £, = 10'° GeV and
E, = 10" GeV, together with the upper bounds depending on the actual size
of the cosmogenic v-flux (FKRT [61] and PJ [62]) as well as the total SM cross
sections at these energies, are depicted in our Figure 28. In order to maximize the
NC 0-exact effect we choose cg1 — ¢13 = cgg — ¢23 = cop3 = 1. Even if the future
data confirm that UHE cosmic rays are composed mainly of Fe nuclei, as indicated
by the PAO data, then still valuable information on Axc can be obtained with
our method, as seen in Fig.29. Here we see the intersections of our curves with
the RICE results (cf. Fig.28) as a function of the fraction « of Fe nuclei in the
UHE cosmic rays. On top of results, presented in Figs.28 and 29, we also have
the NC scale given as a function of the plasmon frequency, from the plasmon
decay into neutrino pairs v, — v (Fig.30), and as a function of the Tg,. from
BBN (Fig.31), respectively. All results depicted in Figs.28-31, shows convergent
behavior. In our opinion those were the strong signs to continue research towards
quantum properties and phenomenology of such f-exact noncommutative gauge
field theory model.

3 Consistency of the SW map and enveloping algebra
approach to NCGFT

The choice of gauge group appears to be severely restricted in a noncommutative
setting [1]: The star commutator of two Lie algebra valued gauge fields will involve
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Figure 28: vN — v + anything cross sections vs. Axc for E, = 100 GeV
(thick lines) and E, = 10! GeV (thin lines). FKRT and PJ lines are the upper
bounds on the v-nucleon inelastic cross section, denoting different estimates for the
cosmogenic v-flux. SM denotes the SM total (charged current plus neutral current)
v-nucleon inelastic cross section. The vertical lines denote the intersections of our
curves with the RICE results.
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Figure 29: The intersections of our curves with the RICE results (cf. Fig.2) as a
function of the fraction of Fe nuclei in the UHE cosmic rays. The terminal point
on each curve represents the highest fraction of Fe nuclei above which no useful
information on Anc can be inferred with our method.
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Figure 30: The plot of scale Axc versus the plasmon frequency wp with R = 1,
from the plasmon decay into neutrino pairs v, — vv.
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Figure 31: The plot of the scale Anc versus Ty, for perturbative/exact solution
(dashed/full curve).

the anti-commutator as well as the commutator of the Lie algebra generators. The
algebra still closes for Hermitian matrices, but it is for instance not possible to
impose the trace to be zero. This observation can be interpreted in two ways:

(a) The choice of gauge group is restricted to U(N) in the fundamental, anti-
fundamental or adjoint representation; or

(b) the gauge fields are valued in the enveloping algebra of a Lie algebra and then
any (unitary) representation is possible.

The case (a) applies also to the U(1) case and imposes severe restrictions on
the allowed charges; it has been studied carefully and has led to “theorems” |64,
65]. The second case avoids the restrictions on the gauge group and choice of
representation, but needs to address the potential problem of too many degrees of
freedom, since all coefficient functions of the monomials in the generators could
a priori be physical fields. The solution to this problem is that the coefficient
fields are not all independent. They are rather functions of the correct number
of ordinary gauge fields via Seiberg-Witten maps and their generalizations. The
situation is reminiscent of the construction of superfields and supersymmetric
actions in terms of ordinary fields in supersymmetry. This method, referred as
Seiberg-Witten map or enveloping algebra approach avoids both the gauge group
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and the U(1) charge issues. It was shown mathematically rigorously that any U(1)
gauge theory on an arbitrary Poisson manifold can be deformation-quantized to
a noncommutative gauge theory via the the enveloping algebra approach [66] and
later extended to the non-Abelian gauge groups [67,68]. The important step that
has been missed in a paper [11] opposing above conclusions, is the use of reducible
representations [12].

Following [12] we introduce a consistent noncommutative, Seiberg-Witten map
and enveloping algebra based theory: Let @[@,AM], Au[Au]a /A\[A,AM] be the SW
map expanded fields (consider for example the well-known non-abelian maps for
the Moyal-Weyl case [1]). Under an ordinary gauge transformation ¢ of the un-
derlying fields ¢;(x), i = 1,2,3 and a, the SW expanded fields transform like it
is expected for noncommutative fields.

Since in the noncommutative case the order of fields matters, there are in
fact more choices than the one given in (4). In general all fields carry left and
right charges that combines into the total commutative charge. Gauge invariance
requires that the respective charges of neighboring fields must match with opposite
signs. In the notation of (2) and (4), we have:

60 = iAL x d —id x AT (4)

Using the associativity of the star product one can easily verify the formal con-
sistency relation

[04,05]® = [iAL 5 i)« & — &« [{AT 1 D7), (5)
Therefore the noncommutative gauge transformations AL/E can be constructed
from the classical fields and parameters Aﬁ/ Ro— au(x)QL/ R and AME =
Mz)QME with QM/E = diag(qlL/R,QQL/R,q?f/R) and ¢; = ¢F — ¢F by so-called
hybrid Seiberg-Witten maps [10,69]. The hybrid covariant derivative is given by
f)ﬂé) = 8#@ — zflﬁ*i) +i<i>*flﬁ. Thanks to (5) the left and right NC gauge fields

/R

flﬁ/ R are constructed from Aﬁ only, respectively. The gauge field action could

be written as

1 N N N N
ﬁgauge:—4—92'51"(FA%U*F“VL+F£*F#VR) 5 (6)

with g := e\/tr(QL)2 + tr(QR)%. In [12] we have employed this constructon on
deformed Yukawa couplings. Namely, in the Yukawa terms, a star product de-



267

formation would prevent the charge summation. The hybrid SW map [10,69] is
introduced to recover gauge invariance. Thus the classical charge ¢ is split into
left and right charges ¢ = ¢q* — ¢, as we have seen above.

4 Covariant f-exact U,(1) model

We start with the following SW type of NC U, (1) gauge model:
1 -
S:/—ZF” « By + i % PV, (7

with the NC definitions of the nonabelian field strength and the covariant deriva-
tive, respectively:

Fu = 0,A,— 0,4, —i[A,* A),
DV = 9,V —i[A, * V] (8)

All noncommutative fields in this action (A,,¥) are images under (hybrid)
Seiberg-Witten maps of the corresponding commutative fields (a,,). Here we
shall interpret the NC fields as valued in the enveloping algebra of the underlying
gauge group. This naturally corresponds to an expansion in powers of the gauge
field a, and hence in powers of the coupling constant e. At each order in a, we
shall determine #-exact expressions.

In the next step we expand the action in terms of the commutative gauge
parameter \ and fields a, and ¢ using the SW map solution [48] up to the O(a®)
order:

A = A- %e%i *3 Oj N,
Ay = au— %Hypav *2 (Opap + fou),
U = ¢—0"a,* 0,9
%ewew (ap %2 (Do + fop)) %2 Do)
2a,,%2 (0, (apx2051)) — auxa(0payx20s1))
— (4Bt + foo) — Dpdutbavas),. | (9)

+ o+
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with A being the NC gauge parameter and f,, is the abelian commutative field
strength f,, = Oua, — dya,.

The generalized Mojal-Weyl star products x2 and %3, appearing in (9), are
defined, respectively, as

f@)x2g(z) = [f(z)7g(x)]

sin 91092

= E@if($l)g(x2) ; (10)
2

T1=T2=T

10200 . 1010(02403)
sin( #2457 ) sin( )
(01402)003 0160(02+403)

2 2

+ {1+ 2}>f(9€1)9(952)h(9€3) ;

T, =

(11)

where % is associative but noncommutative, while x5 and x3 are both commutative
but nonassociative.

The resulting expansion defines #-exact neutrino-photon U, (1) actions, for a
gauge and a matter sectors respectively. Pure gauge field (3-photon) action reads:

Sy = / i0ua, * [at % a”]

1
+ §3u (0""@,, x93 (Oyay + f(,-y)> * fH. (12)

The photon-fermion action up to 2-photon 2-neutrino fields can be derived by
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using the first order gauge field and the second order neutrino field expansions,

Sy =

_l’_

_l’_

/ <1/f + (0799 %o aj))’Y”[au % )]

i(0Y 03) %9 a; )P — ith x P(07 a; xg Djab)
Dy, 30" aiko ;0]

Py [%9”%*2 (@'%Jrfju)W]

i(07 0ith ko a;) PO ar o O1))

%0”‘0“ [(ak *a (Qyai + fii)) *2 Oj1)

2a; x5 (9;(ay +2 1)) — a; *a (Opa; *2 Ob)
(a0 (D1 + 1) — akaﬂz)ajal)*g] D
%0”0’%@ [(ak x (01ai + f1i)) *2 059
20, %2 (0 (ag*a O1))) — agka (D2 i)
(aiakw(ajaﬁfﬂ)—akaiwajal)*a} : (13)

Note that actions for gauge and matter fields obtained above, (12) and (13)
respectively, are nonlocal objects due to the presence of the star products: «,

*9 and *3. Feynman rules from above actions, represented in Fig.32, are given

explicitly in [50].

5 Quantum properties: neutrino two-point function

As depicted in Fig. 33, there are four Feynman diagrams contributing to the v-self-

energy at one-loop. With the aid of (13), we have verified by explicit calculation
that the 4-field tadpole (X2) does vanish. The 3-fields tadpoles (X3 and 34) can
be ruled out by invoking the NC charge conjugation symmetry [16]. Thus only

the ¥; diagram needs to be evaluated. In spacetime of the dimensionality D we
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Figure 32: Three- and your-field vertices
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Figure 33: One-loop self-energy of a massless neutrino
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obtain

+ (qfp) (ﬁ(2p2 +2p-q) — p(2¢° +2p- C]))
+ (¢(42<p2 +2p-q) — (5" + 25 §))

+ 4P (@® +2p-q) — p*(@ +2ﬁ-é))>] :

where pt = (Op)* = 0"¥p,, and in addition = (00p)* = 0H0,,pP. To perform
computations of those integrals using the dimensional regularization method, we
first use the Feynman parametrization on the quadratic denominators, then the
Heavy Quark Effective theory (HQET) parametrization [70] is used to combine
the quadratic and linear denominators. In the next stage we use the Schwinger
parametrization to turn the denominators into Gaussian integrals. Evaluating the
relevant integrals for D = 4 — ¢ in the limit ¢ — 0, we obtain the closed form
expression for the self-energy

5 = [“A—}—(QQ])“ P’ B}, (15)
1= Gl (G 500]9))42>

(e
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\V)

A = 2 m(0p?) +n(re) (17)
0o (92 2/4\k 2 2
+ Z(ppg;f)+/§)) <lnp (ip) +21/)0(2k+2)>,
Ay = Un)’ p_

2
i (p2(6p)%/4)""" 1 P Op)
2k + )2k + 3Tk +2)\ 4

k=0

— (2 +2) — @ i(lf)gi)Jr 3)> : (18)

with yg ~ 0.577216 being Euler’s constant.

The 1/e UV divergence could in principle be removed by a properly cho-
sen counterterm. However due to the specific momentum-dependent coefficient in
front of it, a nonlocal form for it is required.

5.1 UV/IR mixing

Turning to the UV/IR mixing problem, we recognize a soft UV /IR mixing term
represented by a logarithm,

P 1 trho (06p)*
Suv/ir =P (4m)? <ln |M(9p)|2> ((9p)2 2 (0p)* > 1

Instead of dealing with nonlocal counterterms, we take a different route here to

cope with various divergences besetting (15). Since 8% # 0 makes a NC theory
nonunitary [58|, we can, without loss of generality, chose 6 to lie in the (1, 2)

plane
0O 0 0O
1
T 0 0 10 (20)
Aic |0 -1 0 0
0O 0 0O
Automatically, this produces
troo 60p)?
w00 50y, (21)

(0p)* ~ ~ (6p)*
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With (21), ¥4, in terms of Euclidean momenta, receives the following form:

tr6 p> p*
= g [P (14 ) 200 | e

By inspecting (18) one can be easily convinced that Ay is free from the 1/e

divergence and the UV/IR mixing term, being also well-behaved in the infrared,
in the 8 — 0 as well as fp — 0 limit. We see, however, that the two terms in (22),
one being proportional to p and the other proportional to ﬁ, are still ill-behaved
in the #p — 0 limit. If, for the choice (20), P denotes the momentum in the (1,
2) plane, then 0p = OP. For instance, a particle moving inside the NC plane with
momentum P along the one axis, has a spatial extension of size |§P| along the
other. For the choice (20), #p — 0 corresponds to a zero momentum projection
onto the (1, 2) plane. Thus, albeit in our approach the commutative limit (§ — 0)
is smooth at the quantum level, the limit when an extended object (arising due to
the fuzziness of space) shrinks to zero, is not. We could surely claim that in our
approach the UV /IR mixing problem is considerably softened; on the other hand,
we have witnessed how the problem strikes back in an unexpected way. This is,
at the same time, the first example where this two limits are not degenerate.

5.2 Neutrino dispersion relations

In order to probe physical consequence of the 1-loop quantum correction, with
Y1—loopy, from Eq. (3.25) in [50], we consider the modified propagator

1 1 Y
L b Zictoopy I° 29)

We further choose the NC parameter to be (20) so that the denominator is finite
and can be expressed explicitly:

o (P P ; p?
¥? = p? [Ag (—4+2—2+5> — Ay <6+2—2> +1] , (23)
Pr T Dy
where p, represents r-component of the momentum p in a cylindrical spatial
coordinate system and Ay = e24,/(47)2 = —B/2.
From above one see that p? = 0 defines one set of the dispersion rela-
tion, corresponding to the dispersion for the massless neutrino mode, however



274

the denominator ¥2 has one more coefficient ¥’ which could also induce cer-
tain zero-points. Since the Ay is a function of a single variable p?p?, with
p? = pg —p? —p2 — pg and p? = p? + p3, the condition X' = 0 can be expressed
as a simple algebraic equation

A2:2 2 (A2 - Ag) P (1 — 64, + 5213) =0, (24)
of new variables z := p?/p?, in which the coefficients are all functions of y :=
P*p7/Axe-

The two formal solutions of the equation (24)

2= 1;2 [(1 - Ag) + 2 <A2 —Ag)%] , (25)

are birefringent. The behavior of solutions (25), is next analyzed at two limits
y— 0, and y — oo.

5.2.1 The low-energy regime: p?p? < Aﬁc

For y < 1 we set Ay to its zeroth order value €2 /872,

1
872 872 2
2 2
v ((?‘1>ﬂ<?‘1> )'p*
~ (8594 59) - p?, (26)

obtaining two (approximate) zero points. From the definition of p? and p? we see
that both solutions are real and positive. Taking into account the higher order (in
y) correction these poles will locate nearby the real axis of the complex py plane
thus correspond to some metastable modes with the above defined dispersion
relations. As we can see, the modified dispersion relation (26) does not depend on
the noncommutative scale, therefore it introduces a discontinuity in the Axg — o0
limit, which is not unfamiliar in noncommutative theories.

5.2.2 The high-energy regime: p*p? > A

At y > 1 we analyze the asymptotic behavior of

Ag ~ %\/37 (1 - @e%ﬁ> +0(y ), (27)
Y
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from [50], therefore (25) can be reduced to
2~ =142 — pi~p3+2ip?. (28)

We thus reach two unstable deformed modes besides the usual mode p? = 0 in
the high energy regime. Here again the leading order deformed dispersion relation
does not depend on the noncommutative scale Axc.

5.3 The alternative action self-energy

Using the Feynman rule of the alternative action (2.15) from Ref [50], which is a
consequence of the SW freedom, we find the following contribution to the neutrino
self-energy from diagram >;

8 1 1 [t00  (06p)
S1,, _’é§(4w)2 TR <(0p)2 +4 )’ > (29)

The detailed computation is presented in Appendix B of Ref. [50]. We notice that
there are no hard 1/e UV divergent and no logarithmic UV/IR mixing terms,
and the finite terms like in A; and A, are also absent. Thus the subgraph ¥y for
the alternative action (2.15) in [50] does not require any counter-term. However,
the result (29), does express powerful UV/IR mixing effect, that is in terms of
scales terms, the 3;_, experience the forth-power of the NC-scale/momentum-
scale ratios ~ |p|=2|0p| =2 in (29), i.e. we are dealing with the 1, ~ p (Anc/p)*
within the ultraviolet and infrared limits for Axc and p, respectively.

6 Phenomenology: 7 — v decay rate

To illustrate another phenomenologicall effects of our #-exact construction, we
present a computation the Z — vv decay rate in the Z—boson rest frame, which is
then readily to be compared with the precision Z resonance measurements, where
Z is almost at rest. Since the complete Zvv interaction on noncommutative spaces
was discussed in details in [12,49,50,53], we shall not repeat it here. We only give
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the almost complete Zvv vertex from [12]

. ;
TH(p',p) =i (7“ + §F-(p’,p)

2 cos Oy

| (P Op)y* + (0P — (929)“16/]) % (30)

+ % tan Oy F, (p, p) [(p’Hp)v“ + (0p")!"p — (0p)" I"] :

where  is an arbitrary constant®’, and

(P'Op)Fe(p',p) = —2i (1 — exp (Z Mip cos 19)) 7
202
(p'0p)Fi,(p',p) = —2sin (é\fép cos 19) : (31)
NC

Note here that due to the equations of motions, for massless on-shell neutrinos
the terms [(0p")*p — (Op)*P'] (1 — 75) in the vertex (30) do not contribute to the
Z — v amplitude. Thus the vertex (30) has the same form as the SM vertex
yoocgs V' (9v — gavs) [71,72] with

o = 1_leXp<iMchosq9>
2A%¢

2

M 9
+  2iksin® Oy sin <L2COS) , (32)
2A% ¢
1 1My pcos?
= 1-= PEZPERT)
ga 5 CXP ( 2AZ > (33)

The temporary component E@ of 0 is reduced from equations above since for the
Z-boson at rest we have

My pcosd

pop=—-Mzp-Eyg= 22
NC

(34)

*"The constant x measures a correction from the x-commutator coupling of the right handed
neutrino vg to the noncommutative hypercharge U, (1)y gauge field BY[«]. Coupling is chiral
blind and it vanishes in the commutative limit. The non-x-proportional term, on the other hand,
is the noncommutative deformation of standard model Z-neutrino coupling, which involves the
left handed neutrinos only. Details can be found in section four of [12].
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Figure 34: AT(Z — vv) decay width vs. Axc.

with [Eg| =1/ A% and ¥ the angle between p and Ey respectively.
Using Zvw vertex (30), we obtain the following Z — vv partial width [73]

F(Z — 1/17) = FSM(Z — I/l7)
(6%

+—

3Mz|Ey|

— 8csc? 29W] - sin <ﬂ>

M2|E,
k(1 — K + K cos 20y ) sec? Oy cos <%>

4

OCMZ

+12

[ — 262 + (k(2K — 1) + 2) sec? Oy + 2 csc? HW] ,

whose NC part vanishes when Eg — 0, i.e. for vanishing 6 or space-like noncom-
mutativity, but not light-like [58,59].

A comparison of the experimental Z decay width Tijpyisible = (499.0+1.5) MeV
[74] with its SM theoretical counterpart, allows us to set a constraint I'(Z — vv)—
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I'sm(Z — vv) S 1 MeV, from where a bound on the scale of noncommutativity
Axc = |Ey|~1/2 R 140 GeV is obtained (see Fig. 34), for the choice & = 1.

7 Discussion and conclusions

We have presented the tree level cosmogenic neutrinos (v’s) scatterings: vN —
v + anything and particle decays: ((yp1, Z) — vv) in the covariant #-exact non-
commutative quantum gauge theory based on Seiberg-Witten maps and envelop-
ing algebra formalism.

In the energy range of interest, 10'° to 10 GeV, where there is always en-
ergy of the system (F) larger than the NC scale (E/Anc > 1), the perturbative
expansion in terms of Axc retains no longer its meaningful character, thus it
is forcing us to resort to those NC field-theoretical frameworks involving the full
f-resummation. Our numerical estimates of the contribution to the processes com-
ing from the photon exchange, pins impeccably down a lower bound on Axc to
be as high as around up to @(10%) GeV, depending on the cosmogenic v-flux.

For above analysis it was necessary to use results of [12] which shows explicitly
that the “no-go theorem” [11] is certainly not applicable to our SW-map based
f-exact models of the NCGFT. Namely, it is known to be impossible in noncom-
mutative geometry to directly form tensor products from the NC fields as long as
there is no additional underlaying mathematical structure. The SW-map based
models do however have an additional underlying mathematical structure: They
can be understood as the deformation quantization of ordinary fiber bundles over
a Poisson manifold. With this additional structure, tensor products are possible
and survive the quantization procedure [66]. However, the authors in [11] failed to
directly form tensor products of noncommutative fields. The proof of this failure
is given in [12].

Now we first discuss #-exact computation of the one-loop quantum correc-
tion to the v-propagator. We in particular evaluate the neutrino two-point func-
tion, and demonstrate how quantum effects in the #-exact SW map approach
to NCGFT’s, together with a combination of Schwinger, Feynman, and HQET
parameterization, reveal a much richer structure yielding the one-loop quantum
correction in a closed form.

General expression for the neutrino self-energy (15) contains in (17) both
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a hard 1/e UV term and the UV/IR mixing term with a logarithmic infrared
singularity In |fp|. Results shows complete decoupling of the UV divergent term
from softened UV /IR mixing term and from the finite terms as well. Our deformed
dispersion relations at both the low and high energies and at the leading order do
not depend on the noncommutative scale Axc. The low energy dispersion relation
(26) is, in principle, capable of generating a direction dependent superluminal
velocity, this can be seen clearly from the maximal attainable velocity of the

neutrinos

Vimaz d_E
c d|pl

where 1 is the angle with respect to the direction perpendicular to the NC plane.

~ /14 (859 £ 59) sin? 0 (36)

This gives one more example how such spontaneous 6-background breaking of
Lorentz symmetry could affect the particle kinematics through quantum correc-
tions, even without divergent behavior like UV /IR mixing. On the other hand one
can also see that the magnitude of superluminosity is in general very large in our
model as a quantum effect, thus seems contradicting various observations which
suggests much smaller values [75-77]. On the other hand, note that the large su-
perluminal velocity issue may also be reduced/removed by taking into account
several considerations and/or properties:

(1.) Selection of a constant nonzero 6 background in this paper is due to the com-
putational simplicity. The results will, however, still hold for a NC background
that is varying sufficiently slowly with respect to the scale of noncommutativ-
ity. There is no physics reason to expect 6 to be a globally constant background
ether. In fact, if the 6 background is only nonzero in tiny regions (NC bubbles)
the effects of the modified dispersion relation will be suppressed macroscopically.
Certainly a better understanding of possible sources of NC is needed.

(2.) We have considered only the purely noncommutative neutrino-photon cou-
pling. However, it has been pointed out that modified neutrino dispersion rela-
tion could open decay channels within the commutative standard model frame-
work [78]. In our case this would further provide decay channel(s) which can bring
superluminal neutrinos to normal ones.

(3.) Note that the model 1 is not the only allowed deformed model with non-
commutative neutrino-photon coupling. And as we have shown for our model 2,
there could be no modified dispersion relation(s) for deformation(s) other than
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1, therefore it is reasonable to conjecture that Seiberg-Witten map freedom may
also serve as one possible remedy to this issue.

(4.) Our results differs with respect to [64] since in our case both terms are
proportional to the spacetime noncommutativity dependent #-ratio (the scale-
independent structure!) factor in (21), which arise from the natural non-locality
of our actions. Besides the divergent terms, a new spinor structure (#fp) with
finite coefficients emerges in our computation, see (15)-(18). All these structures
are proportional to p?, therefore if appropriate renormalization conditions are im-
posed, the commutative dispersion relation p? = 0 can still hold, as a part of the
full set of solutions obtained in (23).

(5.) Finally, we mention that our approach to UV/IR mixing should not be con-
fused with the one based on a theory with UV completion (Ayy < o0o), where a
theory becomes an effective QFT, and the UV/IR mixing manifests itself via a
specific relationship between the UV and the IR cutoffs |79, 80].

From the same actions (12, 13), but for three different cosmological labora-
tories, that is from UHE cosmic ray neutrino scatterings on nuclei [52], from the
BBN and from the RPAI [47], we obtain very similar, a quite strong bounds on
the NC scale, of the order of 10 GeV. Note in particular that all results depicted
in Figs.28-31, and 34 show closed-convergent forms.

All above summarized properties are previously unknown features of f-exact
NC gauge field theory. They appear in the model with the action presented in
section 4. The alternative action, and the corresponding v-self-energy (29), has
less striking features, but it does have it’s own advantages due to the absence of a
hard UV divergences, and the absence of complicated finite terms. The structure
in (29) is different (it is NC-scale/energy dependent) with respect to the NC scale-
independent structure from (21), as well as to the structure arising from fermion
self-energy computation in the case of x-product only unexpanded theories [64,81].
However, (29) does posses powerful UV /IR mixing effect. This is fortunate with
regard to the use of low-energy NCQFT as an important window to holography
[57] and quantum gravity [82].
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1 Introduction

It is well known that Einstein’s theory of General Relativity is not straightforward to
quantize. This is easily seen from the fact that GR is not perturbatively renormaliz-
able. Simply put, one can attempt to qunatize GR as an ordinary spin-two field in flat
Minkowski spacetime, in the following way (for a nice review see [1]). Starting from the
usual Einstein-Hilbert action

SEg = /d4z v—gR,

one rewrites the metric tensor g,, as the flat Minkowski metric 7,, and the spin-two
field h,, as

Juv = Nuv + h,ul/v

and substitutes it into the action, rewriting it in terms of the new variable h,,,. Thereby
one obtains

Spg = /d4:13 hy R 4 (gauge fixing terms)+
+(self — interaction terms).

The D’Alambertian operator is defined in flat Minkowski space, O = n*¥0,0,. From
here one can proceed to perform the standard field theory quantization in the naive
way — first formulate the free quantum field theory, and then introduce interactions
perturbatively.

However, very soon one is bound to face the difficulty of nonrenormalizability of
this theory. The tree-level Feynman diagrams are finite, the one-loop divergences can
be removed by wavefunction renormalization, but at the two-loop level a Lagrangian
counterterm of the form

const

Lr=— R*%,,R"™ ,, R n5 (¢ —0)

appears [2], which is nonzero on-shell. Here ¢ = 4 — D is the cutoff parameter from
dimensional regularization scheme. At higher loop levels similar terms involving R*, R®,
etc. terms are also expected to appear, rendering the theory perturbatively nonrenor-
malizable. This means that in order to remove all divergences one needs to introduce at
least one additional coupling constant for each loop level. The infinite number of these
coupling constants implies the loss of predictive power of the theory, since all experiments
doable in principle can only ever fix a finite number of coupling constants. This property
of General Relativity has been known for quite some time, and there are various research
directions which attempt to address this issue. They can be broadly separated into two
classes, by the methodology.

The first class of approaches considers modifying or substituting GR by another
theory, which should preferably be renormalizable. Such attempts have evolved into vast
research directions such as supergravity, string field theory, noncommutative geometry,
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and so on. The goal of each proposed model is to have a renormalizable theory that looks
like GR at least on the length scales which can be tested experimentally, while at the
same time have only a finite number of coupling constants. These coupling constants could
then in principle be used to predict the values of the infinite set of coupling constants
appearing in the perturbative quantum gravity approach.

The second class of approaches is based on the point of view that abandons the renor-

malization paradigm, and essentially gives physical meaning to the cutoff parameters of
some particular regularization scheme. In other words, the assumption is that at some
scale (typically expected to be near the Planck scale) expectation values of the physical
observables will start to depend explicitly on cutoff parameters. This dependence is as-
sumed to be measurable (in principle), rather than being removed by renormalization.
These attempts have also evolved into vast research directions such as loop quantum
gravity, causal dynamical triangulations, causal set theory, etc. The goal of all proposed
models is exactly the same as before — predict some definite values for the infinite num-
ber of coupling constants present in the perturbative quantum gravity. All these research
directions have had limited success, and in the absence of any experimental data relevant
at the Planck scale, none of these directions can be preferred over the others.
In what follows, we shall be mainly concerned with the approach of loop quantum gravity
(for a review see [3]), more specifically spin foam models, and we shall propose one novel
particular model that addresses some serious issues present in all other spin foam models
so far.

In section 2 we shall give a short overview of the status of LQG in general and spin
foam models in particular. We will argue that the main drawbacks of all 4D spin foam
models stem from the fact that tetrad fields are not basic variables of the theory. Section
3 deals with the categorical generalization of the Poincaré group, called the Poincaré
2-group. This will give us the necessary mathematical tools to reformulate the GR action
in a convenient way which includes tetrad fields as basic variables. The analysis of this
new action is then given in section 4, with a sketch of a quantization procedure giving
rise to the so-called spincube model. Section 5 contains conclusions and discussion of the
results.

2 Loop Quantum Gravity
and Spin Foam Models

A detailed review of the Loop Quantum Gravity approach can be found in [3]. Here we
just give some basic properties at an informal level.

The basic idea of LQG is to choose diffeomorphism-invariant quantities as basic de-
grees of freedom for the gravitational field, and then perform a canonical nonperturbative
quantization of gravity in terms of these quantities. The natural candidates for basic vari-
ables turned out to be Wilson loops, and subsequently their generalizations called spin
networks. This choice of variables introduces a natural diffeomorphism-invariant cutoff
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at the Planck length scale [p, thereby rendering the theory UV-finite. The quantization
is performed in the Schrodinger picture, and provides one with a mathematically well-
defined constructions of the kinematical Hilbert space for the theory and some basic
operators for geometric observables such as lengths, areas and volumes of space. Evolu-
tion in time is embodied in the Hamiltonian constraint, corresponding to the Wheeler-de
Witt equation in the LQG setting.

The main features of such canonical approach to quantization are as follows. The the-
ory represents a nonperturbative quantization of GR, and can in principle be applied to
the study of physical systems where gravity is the dominant factor at short distances —
such systems include the black hole and cosmological singularities. It gives one a mathe-
matical handle on a well-defined Hilbert space of states for the gravitational field, thereby
giving some insight into the quantum mechanical features of gravity. The natural basis
for the Hilbert space is the set of the spin network states, combinatorial graphs colored
by the irreducible representations of the SU(2) group, and corresponding intertwiners.
Finally, the study of the geometric observables — the length, area and volume opera-
tors — reveals that each of them has a discrete spectrum, giving rise to the geometric
interpretation of the gravitational field wavefunctional, as well as the discrete character
of space.

The theory also has some drawbacks. First, the Hamiltonian constraint is not uniquely
defined, due to the usual ordering problems present in quantum mechanics. Second,
even if one chooses some particular ordering, the Hamiltonian constraint is extremely
complicated and impossible to solve in practice. This severely limits the possibility for
any practical calculations and the study of the dynamics of the theory. As the main
obstacle, the proof of the correct semiclassical limit of the theory is still missing, as well
as any attempt to predict the coupling constants from the perturbative gravity approach.

A way to resolve these drawbacks has been found in the spin foam approach [4]. The
idea is to give up canonical quantization, but instead attempt a covariant, path-integral
quantization of the theory. Building on the results of the canonical approach, one wants
to define the gravitational path-integral

7 = /’Dg,“, exp (iSem|guw])

in some way, in order to be able to calculate expectation values of observables, both in
deep quantum regime and the semiclassical regime. This approach tends to give one a
good handle on the dynamics of the theory, in addition to all features of the canonical
approach.

The basic procedure of defining Z goes as follows. One starts from the Plebanski
action for General Relativity,

S = /Bab A Rab + ¢abchab A Beg.

The first part of this action represents the topological BF theory for the SO(3,1) group.
The R is the curvature 2-form, a field strength “F” for the SO(3,1) connection 1-
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form w®. The By, is the Lagrange multiplier 2-form. The second part of the action is
the Plebanski constraint, featuring By, and the O-form Lagrange multiplier ¢?*?. The
purpose of the constraint is to enforce the B, to be a simple 2-form (i.e. an exterior
product of two 1-forms). This constraint is therefore called “simplicity constraint”, and
it can be shown that the simplicity requirement of the B,y field is enough to convert the
topological BF theory into General Relativity. The fact that By is simple gives rise to
nontrivial degrees of freedom in the theory, reducing the equation of motion for w® from
Riemann-flat to Ricci-flat.

The second step is the quantization of the topological BF theory. This can be done
in a rigorous way by employing the methods of topological quantum field theory. One
first discretizes spacetime into 4-simplices, motivated by the structure of space in the
canonical LQG, and rewrites the BF action in the form

/Bab A R dlicg ZBARA,
JAN

where the sum goes over all triangles in the triangulation. Then one defines a topological

invariant
/Dw/’DBeXp (iZBARA) _
A
S TT A0 [T As(n).
A f v

Here A are the irreducible representations of SO(3,1), labelling the faces f, edges e and
vertices v of the Poincaré dual lattice corresponding to the triangulation. The colored
2-complex dual to the spacetime triangulation is called a spin foam. The amplitudes
As(A) and A4(A) are determined such that Z is in fact a topological invariant — the
total expression must not depend on the particular choice of the spacetime triangulation.
In that way one arrives at the TQFT corresponding to the BF theory for the SO(3,1)
group, commonly called the Qoguri spin foam model. Of course, the invariant Z may be
(and actually is) badly divergent, but that is not important at this stage, since we are
only interested in the structure of the path integral.

The last step in the quantization procedure is to enforce the simplicity constraint on
the BF path integral at the quantum level. The exact technique for this is quite involved
[5,6], but the bottomline is that one projects the SO(3,1) irreducible representations
A to the SU(2) representations present in the canonical LQG formalism, in order to
obtain the same structure of the Hilbert space on the spin foam boundary. The resulting
theory is not topologically invariant, but represents one possible rigorous definition for
the theory of quantum gravity. The most advanced spin foam model in this respect is
the EPRL/FK model, developed independently by two research groups [5,6].

The main feature of spin foam models is that they correct some drawbacks of the
canonical theory, primarily the dynamical sector is more under control. In addition,
there remains a certain ambiguity in the choice of the amplitudes A, and Ay. This can

Z
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be conveniently utilised to redefine the model such that it becomes IR-finite and to
have a correct semiclassical limit [7,8]. One can also employ standard QFT methods
to calculate the effective action for the model in the semiclassical limit, which opens
a possibility to explicitly determine the coupling constants from perturbative quantum
gravity. Unfortunately, the spin foam models introduce their own set of problems. Aside
from the “unusual” properties like fuziness of geometry at the Planck scale, all spin
foam models suffer from two major handicaps. The first is related to the fact that, in
addition to the good semiclassical limit, all models have additional semiclassical limits,
which do not give rise to the standard GR, but to the so-called area-Regge geometry.
Since these different classical limits are not observed in experiments, one needs some
additional mechanism to supress such solutions. However, so far no mechanism could be
constructed to deal with this problem.

The second handicap is related to the inability of the spin foam models to couple
matter fields to gravity. Namely, the basic geometric variables which are employed in
description of spacetime geometry are areas and volumes of space, but not lengths. This
situation makes it extremely complicated (and in the case of massive fermionic matter
even impossible) to incorporate matter fields into the spin foam model. Even if doable
(see [9] for the massless fermion coupling), the resulting theory would be too complicated
to be useful for any calculation.

As it turns out, both of these handicaps have a common origin — the edge lengths in
the triangulation are not well-defined at the quantum level. This is itself a consequence
of the choice of spin network states as basic degrees of freedom in the canonical LQG —
the choice which emphasizes the spin connection w?, while entirely ignoring the tetrad
fields e®. At the level of spin foam models, it is easy to see that the Plebanski constraint
was purposefully designed to require the simplicity of Bgy, while avoiding to explicitly
state that (the dual of) By is the product of two tetrad 1-forms. The reason for this
is that the tetrad fields do not appear as variables in the topological BF sector of the
theory, which is being used for the definition of the path integral.

In the remainder of this paper we will present a novel way to address this main
difficulty, and to introduce tetrad fields explicitly in the topological sector of the theory.
However, in order to do this, it is important to introduce some mathematical concepts
which provide the background formalism for the new model.

3 Poincaré 2-group

We begin by giving a very brief review of the so-called categorification ladder, an im-
portant and active research topic in category theory. We shall not attempt at any rigor,
leaving out most of the details, which can be found for example in [10] and references
therein.

In the branch of mathematics called category theory, one defines a structure called
a category as a set of objects and a set of morphisms between those objects, satisfying
some basic axioms. Such a structure is fairly general and does not have many interesting
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properties itself. However, this generality allows one to use it for all sorts of purposes.
For example, one can define the usual structure of a group as a category which has
only one object, while all morphisms (mapping the object onto itself) are invertible.
The composition rules for the morphisms can be chosen to be the group multiplication,
thereby providing an isomorphism between a given group and the corresponding
category with one element.

The first step in the categorification ladder is to introduce the concept of a 2-category.
A 2-category consists of a set of objects, a set of morphisms and a set of 2-morphisms,
maps between morphisms. Intuitively, if a category can be represented by a linear graph of
dots (objects) and arrows connecting them (morphisms), a 2-category can be represented
by a planar graph, consisting of dots (objeects), arrows connecting them (morphisms)
and “surface arrows” mapping one arrow into another (see [10] for details and pictures).
The main point is that the dimensionality of the graph has been raised by one. The cate-
gorification ladder can continue by introducing a 3-category (or in general an n-category)
by a similar process, leading to 3-dimensional (in general n-dimensional) graphs.

In analogy with a group, one can then define a 2-group, as a 2-category which has
only one element, while all morphisms and 2-morphisms are invertible. A 2-group is a
categorical generalization of a group, and is not a group itself. One can prove that any 2-
group is equivalent to a crossed module, a structure that has been studied independently
by mathematicians before the idea of the categorification ladder has even been introduced.
A crossed module is a quadruple (G, H, d,>). This is a pair of groups G and H, such that
0 : H — G is a homomorphism and > : G x H — H is an action of G on H such that
certain axioms are satisfied, which turn out to be directly related to the structure of a
2-category, see [10]. The elements of G represent the 1-morphisms, while the elements of
the semidirect product G x H represent the 2-morphisms. The canonical example of a
2-group relevant for physics is the Poincaré 2-group, where G = SO(3,1), H = r*, 0 is
a trivial homomorphism and > is the usual action of the Lorentz transformations on the
r4 space. The Lorentz group is the group of morphisms, while the usual Poincaré group
is the group of 2-morphisms.

The main feature of the whole 2-group formalism is that one can generalize the
concept of a holonomy along a line to its two-dimensional analog — a surface holonomy.
The initial interest in this came from string theory. A point-particle travels along a world
line in spacetime, and one is naturally led to the concept of a parallel transport along a
given line. String theory promotes the point particle into a one-dimensional object — a
string — which then travels along a world surface in spacetime. Thus one would like to
have a concept of a parallel transport along a given surface.

One of the main aims of the 2-category and 2-group formalism is to introduce and
formalize this concept.

Given the strong categorical relationship between groups and 2-groups, one can con-
struct a gauge theory on a 4-manifold M based on a crossed module (G, H,d,>) of Lie
groups by using 1-forms A, which take values in the Lie algebra g of G, and 2-forms S,



294

which take values in the Lie algebra b of H [11,12]. The forms A and § transform under
the usual gauge transformations g : M — G as

A= g lAg + g ldg, B—g ' eB,
while the gauge transformations generated by H are given by
A—=A+0n, B—=pB+dy+AN n+nAn,

where 7 is a one-form taking values in b, see [12]. When the group H is Abelian, which
happens in the Poincaré 2-group case, then the n A n term vanishes, and one obtains the
gauge transformations given in [11].

The pair (4, 8) represents a 2-connection on a 2-fiber bundle associated to the 2-Lie
group (G, H) and the manifold M. The corresponding curvature forms are given by

F=dA+ANA—-08, G=dB+ AN S,

and they transform as
F—=g'Fg, G=g'ng,

under the usual gauge transformations, while
F—=F, G=G+FANn,

under the H-gauge transformations.
One can introduce a natural topological gauge theory determined by the vanishing
of the 2-curvature
F=0, G=0.

These equations can be obtained from the action
S:/BAF%+@A®M

where B is a Lagrange multiplier 2-form taking values in g, C is a Lagrange multiplier
1-form taking values in b, ( , )4 is a G-invariant nondegenerate bilinear form in g and
( , )p is a G-invariant nondegenerate bilinear form in h. This action is called BFCG
action, in analogy with the BF theory action. The gauge transformations of the Lagrange
multiplier fields are given by

B—g'Bg, C—g >0,
for the usual gauge transformations, while
B—-B-[Cn, Cw—C,

for the H-gauge transformations.
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Let us now examine the case of the Poincaré 2-group. In this case A = w“bJab,
B = B*P,, where a,b € {0,1,2,3}, J,p are the generators of the Lorentz group while P,
are the generators of the translation group r*. Consequently

F = (dw™®+w'eAw®)Jw = R™®Jy,
G = (@B +wsAB )P = (VB*) P

The G-gauge transformations are the local Lorentz rotations
w—g lwg+g g, B—g'>p,

while the H-gauge transformations are the local translations
Sw® =0, 6.8%=de®+w Aeb,

where nn = ®P,.
The BFCG action then becomes

S:/‘wwAﬁw+@Avmy
M

where
0:.B=0, 6.C=0.

At this point a very important observation is in order. The transformation properties of
the 1-form C* are the same as the transformation properties of the tetrad 1-form e® under
the local Lorentz and the diffeomorphism transformations. In addition, the equation of
motion for C* is VC® = 0, just like the no-torsion equation for the tetrad, Ve® = 0.
Based on this, we identify the Lagrange multiplier C* with the tetrad field e®, and write
the action in the form

S:/‘w“ARw+&AV&f
M

In this way one can construct a categorical generalization of the topological BF
action. The new action is again topological, but more rich in structure, since the tetrad
fields are explicitly present. In addition, the 2-group formalism provides a framework to
construct a topological quantum field theory from this action, in analogy with the BF
case. This provides us with the necessary tools to construct a categorical generalization
of a spin foam model, based on the BFCG action instead of the BF' action. The explicit
presence of the tetrads should help us resolve the two handicaps of spin foam models
discussed in section 2.

4 The Spincube Model

The first step in the construction of the new model is to write the action for General Rel-
ativity, starting from the BF'C'G action. In order to do this, all we need is the simplicity
constraint,

Bab = Eabed e“N ed ’
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which can now be added into the action as it stands, as opposed to the BF' case where
the Plebanski constraint had to be introduced due to the absence of the tetrads e® in the
BF action. Therefore, one can write the constrained BFCG action in the form

S = / [B“b/\RabJre“AVBa—
M (1)

_ ¢ab A (Bab _ Eadeec A ed)i| ,

where ¢y, is an additional Lagrange multiplier 2-form field, introduced in order to enforce
the simplicity constraint.
The equations of motion are obtained by varying S with respect to B, e, w, § and ¢,

respectively, to give:

Rap — ¢ab =0,

vﬁa + 250,bcd¢bc A ed =0,

VB — €la A Bb] =0,

Ve, =0,

Bab — €apedet N et=0.
With the usual assumption that the tetrad fields are nondegenerate, these equations can
be reworked into an equivalent form:

(bab = Raba Bap = Eabcdec A ed’ ﬁa =0,
Ve =0, Eabed R N el = 0.

The first three equations determine 5® and the multipliers By, and ¢g in terms of e®
and w®. The fourth equation is the no-torsion equation, which determines the connection
w to be the Levi-Civita connection (a function of the tetrads e?). The last equation
is nothing but the Einstein field equation for the only remaining field e®. Thus we see
that the action (1) is classically equivalent to General Relativity. More precisely, it is
equivalent to the Einstein-Cartan theory,

SeEc = / Eabed™ N €b A\ RCd s
M

since the torsion is equal to zero as an equation of motion rather than by definition.

Given the new action for General Relativity, we can proceed with the covariant
quantization in analogy with the spin foam models. The action has the topological term
and the constraint term, so as a first step we construct a topological quantum field theory
by defining the path integral for the BFCG part of the action. In the second step, we
enforce the constraint term by requiring a suitable restriction in the path integral of the
topological theory.

One begins by triangulating spacetime into 4-simplices, and rewriting the topological
part of the action in the form

Z BARA + Z el(VB)i,
A ]
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where the first sum goes over all triangles and the second goes over all edges in the
triangulation of the spacetime manifold. Then one constructs a topologically invariant
path integral in the form (see [13] for the details of the construction)

/Dw/DB/De/Dﬁ
exp (z Y  BaRa +i Zel(VB)l) = -
A l
= Y ITa@) T A0 JT Aur).
A p f v

Z

The labels A = (L,, m¢), where L, € r§ and my € Z, are now irreducible representations
of the Poincaré 2-group, and in addition to vertices v and faces f of the Poincaré dual
lattice, we also take the product over all the polyhedra p, since they are dual to the edges
of the triangulation and naturally appear in the construction due to the presence of the
e AV term in the BFCG action. The amplitudes A;(A), A3(A) and A4(A) are chosen
so that Z does not change under the action of the Pachner moves, which guarantees its
independence of the triangulation. The polyhedra are colored with L,, which have the
interpretation as lengths of triangulation edges, while faces are colored with m, which
have the interpretation as areas of the triangles in the triangulation. In the topological
theory, edge lengths and triangle areas are independent of each other.

Note that the path integral is not defined over a colored 2-complex (the spinfoam),
but rather over a colored 3-complex (called spincube).

Finally, we can impose the simplicity constraint, in order to turn the topological path
integral into a realistic model for quantum gravity. Based on the geometric interpretation
of the variables, the constraint actually says that a very natural requirement should be
enforced — the triangle areas must be compatible with the corresponding edge lengths.
This can be formalized in the requirement

lms|lp = Af(L), Vf

where Ay (L) is the Heron formula for the triangle area in terms of its edges. The Planck
length appears naturally in order to balance the dimensions of the two sides of the
equation. As a last step, one redefines the amplitudes A1, A> and A4 in order to render
the theory IR-finite, as well as to enforce the correct semiclassical limit, in a way similar
to the spinfoam models.

Note that imposing this constraint leaves only edge lengths as independent variables
in the theory, so that the “area-Regge” problem present in spinfoam models is resolved
automatically. In addition, the edge length variables allow for a completely straightfor-
ward coupling of matter fields to the spincube model. Namely, at the level of the classical
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theory, one can introduce fermions via the action

S = / [B“” A Rap + €* AV By — ¢ap A (B* — e, A ey) } +
+ iK1 /Eabcd e Nel Nef A [vd d o+ {w, v} + % ed] v+ (3)
+ itig /Eabcdea Aeb A B Ppysy iy,
where w = wp[7%,7°]/8, k1 = 8% /3 and ky = —27l%. The first term is the constrained

BFCG action, while the second and third terms introduce fermion coupling which results
in the same equations of motion as in the ordinary Einstein-Cartan theory with fermions.

The quantization procedure of the action (3) is essentially the same as the one without
fermions. The only difference is in the fact that the vertex amplitude A4 will change to
reflect the presence of the fermionic matter, as

A4 — A4 exp [isgerm) (L, ’l/)):| s

(ferm)
R

where S is the Regge discretized action of a fermion field ¥ coupled to gravity. The

expressions which appear in Sgerm) can be easily obtained, in contrast to the EPRL/FK
model case, where the expression for the 4-simplex volume is impossible to define uniquely
in terms of the spin foam variables [9].

Similarly to (3), one can also couple other matter fields to (1) in a completely straight-
forward way, including gauge and scalar fields, the cosmological constant, the Holst term,
and so on.

5 Conclusions

The proposed 2-group reformulation of GR can be used to obtain a categorical ladder
generalization of Loop Quantum Gravity. The advantage of this generalization is that the
edge lengths of a triangulation become the basic dynamical variables. This will facilitate
the construction of the path integral such that the classical limit of the corresponding
quantum theory is GR and the coupling of matter will be much easier to accomplish.

The categorical nature of the theory implies that the edge labels of a spacetime
triangulation should be the 2-group irreducible representations on a 2-Hilbert space.
Note that this is not unique, since one can also use the category of chain complexes
of vector spaces in order to define the representations, see [12,14]. The structure of the
chain-complex representations is different from the 2-Hilbert space representations, which
means that chain-complex representation theory defines an alternative quantization of
GR. Hence it would be interesting to develop the chain-complex representation theory of
the Poincaré 2-group.

The physical significance of 2-Hilbert space representations could be better under-
stood by performing a canonical quantization of the action (1).
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As far as the construction of 4-manifold invariants based on the BFCG state sum is

conc

erned, one would have to regularize the topological state sum/integral based on the

amplitude (2) such that the triangulation independence is preserved. One way to do it is

to tr
grou

y to implement a gauge-fixing procedure, see [15]. Another way is to find a quantum
p regularization, since there are strong indications that categorified quantum groups

and their representations will be important for the construction of 4-manifold invariants

[16].

Hence one can try to find a crossed module of Hopf algebras which is a deformation

of the Poincaré 2-group, and then try to find an appropriate 2-category of representations
which will give a finite topological state sum.
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