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Abstract

We show that the EPRL/FK spin foam model of quantum gravity has an
absolutely convergent partition function if the vertex amplitude is divided by
an appropriate power p of the product of dimensions of the vertex spins. This
power is independent of the spin foam 2-complex and we find that p > 2
ensures the convergence of the state sum. Determining the convergence of the
state sum for the values 0 < p < 2 requires the knowledge of the large-spin
asymptotics of the vertex amplitude in the cases when some of the vertex spins
are large and other are small.

PACS number: 04.60.Pp

1. Introduction

Spin foam models are quantum gravity theories where the quantum geometry of spacetime is
described by a colored two-complex where the colors are the spins, i.e. the irreducible SU (2)
group representations and the corresponding intertwiners. By assigning appropriate weights
for the simplexes of the 2-complex and by summing over the spins and the intertwiners,
one obtains a state sum that can be interpreted as the transition amplitude for the boundary
quantum geometries, which are described by spin networks [1]. A spin foam state sum can be
considered as a path integral for general relativity.

The most advanced spin foam model constructed so far is the EPRL/FK model, introduced
in [2, 3]. The finiteness, as well as the semiclassical properties of a spin foam model, depend
on the large-spin asymptotics of the vertex amplitude. This asymptotics was studied in [4-6]
for the EPRL/FK case. The study of the finiteness of the model was started in [7], where only
two simple spin foam amplitudes were studied (equivalent to loop Feynman diagrams with
two and five vertices) in the Euclidean case. It was concluded that the degree of divergence
of these two spin foam transition amplitudes depends on a choice of the normalization of the
vertex amplitude. This normalization is a power of the product of the dimensions of the spins
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and the intertwiners which label the faces and the edges of the 4-simplex dual to a spin-foam
vertex.

One can exploit this freedom in the definition of the EPRL/FK vertex amplitude in order to
achieve the finiteness of the model. Namely, an EPRL/FK vertex amplitude can be introduced
such that it is the original one divided by a positive power p of the product of dimensions
of the vertex spins A,. This new amplitude will give the state sum with better convergence
properties, and one can try to find a range of p for which the state sum is convergent. In this
paper, we will show that there are such values of p which are independent from the spin-foam
2-complex.

Note that an equivalent approach was used in the case of the Barrett—Crane spin foam
model, where the finiteness was achieved by introducing an appropriate edge amplitude [8, 9].
This is an equivalent approach to our approach because a state sum with a dual edge amplitude
A3(j) = (dim jj ...dim j;)? and a vertex amplitude A4(j) is the same as the state sum with
As (j) = 1and A4(j) = (Ay)?P(j) A4(j), where p is an appropriate power.

Our paper is organized such that in section 2 we describe the EPRL/FK spin foam model
and discuss the large-spin asymptotic properties of the vertex amplitude. In section 3, we
show that the vertex amplitude divided by the product of the dimensions of the vertex spins
is a bounded function of the spins. In section 4, we introduce a rescaled EPRL/FK vertex
amplitude, which is the original amplitude divided by the product of the dimensions of the
vertex spins raised to a power p. We prove that the corresponding state sum is absolutely
convergent for p > 2 by using the amplitude estimate from section 3. In section 5, we discuss
our results and present conclusions.

2. The vertex amplitude

The EPRL/FK spin foam model state sum is given by

Z(m) =Y [ A4 [T WG tew): )

.t feT* veT*

where T is a triangulation of the spacetime manifold, 7* is the dual simplicial complex, while
e, f and v denote the edges, the faces and the vertices of T*, respectively. The sum in (1) is
over all possible assignments of SU(2) spins j; to the faces of T* (triangles of T') and over
the corresponding intertwiner assignments ¢, to the edges of 7 (tetrahedrons of T'). A, is the
face amplitude, and it can be fixed to be

A2(j) = dimj =2j +1, 2)
by using the consistent gluing requirements for the transition amplitudes between three-

dimensional boundaries, see [12].
The vertex amplitude W can be written as

+00
W)=Y [0 dpe (K + p?) (®f,§:pf(jf)) (S jdsLac) (2 2 ke pe)) -

k,=0
3)
where the 15 symbol is for the unitary representations (k, p) of the SL(2, C) group, the
universal covering group of the Lorentz group. The f,ﬁ p, Are the fusion coefficients, defined in
detail in [2, 3, 10].
Instead of using the spin-intertwiner basis, one can rewrite (1) in the coherent state basis,
introduced in [11]. In this basis, the state sum is given by

Z2(T)y =Y / [T T dim jir [T WGror ersw)- )
TRy

feT* veTl™*
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The 77, is a unit three-dimensional vector associated with the triangle dual to a face f of
the tetrahedron dual to an edge e which belongs to f (see [11] for details). For a geometric
tetrahedron, the four vectors 7' can be identified with the unit normal vectors for the triangles.
Note that the domain of integration for each such vector is a two-sphere.

The key property of W (j, ') amplitude, which was used to find the large-spin asymptotics,
is that it can be written as an integral over the manifold SL(2, C)* x (CP!)!°, see [6]. More
precisely,

Hdgﬁ(gs)/ ndsz(g Z)eS(Jngz)

(C]P’)“k 1

10
W (j. ii) = const. | | dim jk/
k=1

SL(2,C)°

where 2 is a slowly changing function and

10

SG, 1, 82) = ) jelogwe(i, g.2) = ) ji(In|wi(i, g 2)| + i6k(7, &, 2)).
k=1 k=1

The functions wy are complex-valued, so that 6; = arg wx + 2w my, where my;, are integers
which have to be chosen such that log wy belong to the same branch of the logarithm.

Since |wy| < 1, it follows that Re S < 0 and it can be shown that the large-spin asymptotics
is given by

Q (.X*) eiA >k JkOk (. x*)

const
Wj,n) ~ 5
i Dy iy ¥ ®

for A — +o00, where the sum is over the critical points x* = (g*, z*) satisfying
aS as

=0, —| =0, 6
8ga x* aZk x* ( )

ReS(j, 7, g, 7*) =0,

and H (x) is the Hessian for the function S(x). There are finitely many critical points, and it can
be shown that the conditions (6) require that j; are proportional to the areas of triangles for a
geometric 4-simplex, while 77 have to be the normal vectors for the triangles in a tetrahedron
of a geometric 4-simplex and g* have to be the corresponding holonomies. A geometric 4-
simplex has a consistent assignment of the edge-lengths, and it can be shown that 6, (77, x*) is
proportional to the dihedral angle for a triangle in a geometric 4-simplex, so that

Sy = Zjlﬁk(n x)

corresponds to the Regge action for a 4-simplex.
The Hessian H (J, 77, x) is a 44 x 44 matrix, and

10
Hop (.78, X°) =Y ji Hyg (77, x°), (7)

k=1
since S is a linear function of j. Consequently
det(=H) = Y ()™ (j10)" Doy (T, X°) . (®)
my+--+mjo=44

is a homogeneous polynomial of degree 44 in j; variables. One also has that Re (—H) is a
positive definite matrix.
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3. A bound for the vertex amplitude

We will now find a bound for the vertex amplitude by using the asymptotic formula (5) and its
generalization for the case when some of the vertex spins are large and other are small. Since
AS(j, 71, x) = S(Aj, 7, x) and

A¥ det(—H (j, T, x*)) = det(—H (A, 7T, x*)),
then the formula (5) can be rewritten as

Q(x*) el 2ok Jibk (.x%)

W(j, ) ~ constl_[dlm]/< Z

Pl Vdet(—H(j, i, %))
when j = (ji, ..., jio) = (400, ..., +00) = (+00)'°, because ]_[,1(;1 dim jj scales as A!°
for X large. Therefore,
10 iy
Q i) kO (Tx%)
lim W(j,n) =const lim Hdim Jk Z e )]
Jj— (+00)10 = (roo)0 o \/det( —H(j,n x*))
Note that
Qx*) el Te i x”) Q
= /det(—H(j. 77, x*)) = Idet(=H(j. 7, g")|’
and
di
lim M dimji_ -0, (11)
= +00)0 /| det(—H (j, i, x*))|
due to (8). The equations (9)—(11) imply
lim W(j,n) =0. (12)

j—> (+00)10

The equation (12) is equivalent to
Ve > 0,35 >0 suchthat j; >34,..., ji10>8= |[W(j,n)| <e.
This implies that W is a bounded function in the region

Do ={jlj1 > 8,..., jio > &}.

If we denote with D,, the region where m < 10 spins are greater than § and the rest are smaller
or equal than §, then
9
R\ Dyo = |_J D
m=0

Since the regions D,, are not compact for m > 0, we do not know whether W is bounded in
these regions. In order to determine this, we need to know the asymptotics of W for the cases
when some of the spins are large and other are small. This asymptotics can be obtained by
using the same method as in the case when all the vertex spins are large.

Let m be the number of large spins (m > 3 due to the triangle inequalities for the vertex
spins) and let j/ = (ji, ..., jm). Then

m 10
SO J'onex) = jpnfwel 00 + Y Jinfwel +i6) = ASu(j's . x) + O(D).
k=1 k=m+1
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Therefore, the asymptotic properties of W (', j”, n) will be determined by the critical points
of S,,(j', n, x). Consequently

const Q(x*) el Xi=1 i (")

M et~ s

where r is the rank of the Hessian matrix H,, for S, at a critical point x* (1 < r < 44) and
ﬁm is the reduced Hessian matrix. ﬁm is the restriction of the Hessian H,, to the orthogonal
complement of Ker H,,, and I:Im has to be used if r < 44.

The asymptotics (13) implies that the function W (', j”, @) will vanish for large j’ if
r/2 —m > 0. If this was true for all m we could say that W(j) is a bounded function in
Rf. However, calculating the values for r is not easy. Instead, we are going to estimate
(W (j’, j’, n)|. Note that (13) is equivalent to

W@, j' i~

13)

Q()C )el)‘Zk | JiOk (T.x*)

\/det — A, 7 x))
for j/ — (4+00)™, since S,, and H,, are linear functions of the spins j" and det(—H,,) scales as
A", while [],_, dim ji scales as A when j* — ;" and 1 is large. Hence

W(]/ j// —') Q(x*)eik Doy JiBk (%)
=, > const

=1 dim. = \Jdet (< (7. x))
for j/ — (+00)™.
From here it follows that for every m > 3
W, 7
j>Grooy TTiL, dim j,
since r(m) > 1. Given that W = 0 in Dy and D, it follows that W (j, )/ ]—[,1(0:1 dim ji is a
bounded function in RLO. Therefore, C > 0 exists such that

W (j, D]
[T:2, dim jie
This bound can be rewritten as

W', j", n ~ COIlStl_[dlm]k

’

<C (14)

W (. )] < cﬂmmb (15)

which is convenient for 1nvest1gat1ng the absolute convergence of the state sum.

4. Finiteness

We showed in the previous section that the vertex amplitude divided by the product of the
dimensions of the vertex spins is a bounded function of spins. This result suggests to introduce
arescaled vertex amplitude W, as

W (j, fier)

]_[f 1(dlm]f)f‘

where p > 0, in order to improve the convergence of the state sum.
Given a triangulation 7 of a compact four-manifold M, we will consider the following

state sum:
Zy = Z/Hdznef H dim js H Wy (J ) ey fv)) - )

feT* vel*

W, (s ftef) = (16)



Class. Quantum Grav. 30 (2013) 035001 A Mikovi¢ and M Vojinovié¢

It is sufficient to consider 7" without a boundary, since if Z(T') is finite, then Z(T", T') will be
finite due to gluing properties, where I' is the boundary spin network.

The convergence of Z, will be determined by the large-spin asymptotics of the vertex
amplitude W and the values of p. Since the asymptotics of W is not known completely, we will
use the estimate (15) in order to find the values of p which make the state sum Z, convergent.

Since | )|
W ]f(v)s ne(v)f(v)
Z d*i, di , 18
1Z,l < Zfl_[ Moy l_[ im jy l_[ [T (im jr0))? (13)

feT* veT*

and by using (15) we obtam

z,l <cv / d*i | | dim; 1 :

1Zyl < Z 1_[ 7};[ Jr vl;[* nfeu (dlm]f(v))l’*l
where V is the total number of Vertlces in the triangulation 7. At this point, the integrand
does not depend anymore on 7z, so the appropriate integration over 4E 2-spheres can be
performed. Here E is the total number of edges in o, and it is multiplied by 4 since every edge
is a boundary for exactly four faces. After the integration, we obtain

1
1Z,| < CY(4m)* dim j — ) (19)
P Z 1_[ Jr 1_[ ]_[fev(dlmff(v))p_l

Jjr feT* veT*
The sum over the spins in (19) can be rewritten as a product of single-spin sums. Let
Ny be the number of vertices bounding a given face f. Each vertex contributes with a factor
(dim j;)"P*!, so the total contribution for each face f is (dim jz)'~?~DNr. Thus, we can
rewrite (19) as

1Z,l <V m* T Z (dim jp)!~ (=N, (20)
JeT™ jrep
The sum in (20) will be convergent if
I—(p— DNy < —1,

or 2

P N; (21)
for every Ny. Since Ny > 2 for every face f, a sufficient condition for p is

p>2. (22)

Therefore, Z, is absolutely convergent for p > 2, which means that it is convergent for
p > 2. As far as the convergence of Z, for p < 2 cases is concerned, one has to calculate the
ranks of the Hessians H,, and use the following inequalities:

m r/m
| det (~H,)| > C. <]_[ dim jk) : (23)
k=1

when possible. We expect that the inequalities (23) will hold for a~ll m, since det(—ﬁm) is
a homogeneous polynomial of the spins of the degree r and Re (—H,,) is a positive definite
matrix. Then

10 1-q
W (. M| <C, (1_[ dim jk> , (24)
for any j, where ¢ = min{r/2m | m= 3, ..., 10}. Since g > 0, the new bound (24) will be an
improvement of the bound (15) and consequently Z, will be absolutely convergent for
p>2—gq. (25)

Given that » = 44 for m = 10, this implies that ¢ > 1/18 (r = 1 and m = 9 case) and
therefore p > 35/18.

6
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5. Conclusions

We proved that the deformed partition function Z, for the EPRL-FK spin foam model is
convergent for p > 2. We expect that the bound for p can be lowered below 2, since the
inequalities (23) are likely to be true. In this way, one can obtain that p > 35/18 without
calculating the matrices H,,.

In order to find the exact value for g, the ranks r of the Hessians H,, have to be calculated.
If it turns out that g > 2, then the formula (25) will give that the p = O case is convergent.
However, if it turns out that g < 2, then the convergence of the p = 0 case has to be checked
by some other method.

If the p = O state sum is finite, our construction provides an infinite number of new
models with better convergence properties. In any case, one has to decide which choices for
p are physical. This can be done by analyzing the semiclassical limit of the corresponding
EPRL/FK model. As shown in [13, 14], the parameter p appears in the first-order quantum
correction to the classical Einstein—Hilbert term. It is therefore an experimental question to
determine the value of p, provided that quantum gravity is described by an EPRL/FK spin
foam model.

Given that a p-deformed spin foam model is finite for p > 2 and any choice of the
triangulation 7', one can construct a quantum field theory whose Feynman diagrams are in
one-to-one correspondence with the transition amplitudes for all triangulations 7', see [15, 16].
Since all those amplitudes are finite by construction, the corresponding quantum field theory
will be perturbatively finite. For such a theory, no regularization scheme is necessary and there
is no necessity for a perturbative renormalization procedure.

As the final remark, note that

Z(T) = Z 7T, (26)

T'cT

where T’ is a sub-complex of T obtained by removing one or more faces from 7 and Z' is the
state sum where the zero spins are absent. The state sums Z’ are considered more physical,
because their spin foams correspond to simplicial complex geometries where all the triangles
have a non-zero area. The relation (26) was used in [17] to define the sum over the spin
foams, since if one chooses a very large o, then (26) implies that Z(o) is the result of a sum
of the physical transition amplitudes for various spin foams. Since Z(o) can be made finite
for EPRL/FK model if one modifies the vertex amplitude as (16), one arrives at a concrete
realization of the idea of summing over spin foams.
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