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Problem importance
Natural convection of a fluid between rigid boundaries kept at 
constant surface temperature received much attention because of 
the theoretical interest and the wide engineering applications. The 
fluid flow in a cylindrical annulus shows a  multiplicity of solutions 
(bifurcation phenomenon) [1], [2]. The problem of the stability of the 
solutions in different geometries (cylindrical or spherical) is at the 
uttermost interest of several theoretical studies [3]÷[6]. In the case of 
two coaxial cylinders, using the Oberbeck-Boussinesq 
approximation[4], the partial differential equations governing 
conservation of mass, momentum and energy are written into non 
dimensional form of cylindrical coordinates introducing  Prandtl and 
Rayleigh number [7].
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Previous Calculations

In the Oberbeck- Boussinesq approximation (ρ ≈ ρ0 [1+α(T-T0)] , the 
PDE system of equation  are written: 
∇ · v =0 
(1/Pr) v · ∇v  − ∆v + ∇Π = (Ra /B) sin ϕ  er + Ra τ  e3 

v · ∇τ −  ∆τ  =  vr / rB,
where the Prandtl number and Rayleigh number are:
Pr = ν/ k    ,  Ra = (αg/νk)(Ti − To)(Ro − Ri )3 
while  B= ln(Ro/Ri)
 endowed with the boundary conditions v = 0, τ = 0 on ∂ΩA    (τ is the 
temperature deviation from the conduction profile) .

Running ANSYS-Fluent software package (noncommercial version) in 
a PC, we studied the stability of solutions for different values of 
Prandtl and Rayleigh parameters and for different temperature 
difference between concentric cylinders. The calculations were 
limited by the PC capacities.  For example to get solution presented 
here by the animation of streamlines, the  calculation  in a PC ended 
after one day.  
Therefore we applied the project: to run the numerical calculation in 
HP-SEE grids.



Preliminary calculations
  The  open source software that could substitute the ANSYS Fluent software for the 
numerical calculations in the field of CFD, is OpenFoam  (Open Source Field Operation 
and Manipulation):
- Uses C++ libraries to solve numerically PDE
- Has several pre-build numerical solvers and pre/post processors  too
- Is free under pubic license GNU
- Can be executed in parallel.
Is always in development by OpenFoam community.

•We installed OpenFoam package (version 2.1.1 for CentOS) and its add-ins (post - 
processing utility, named “Paraview”) in our server (RedHat). We explored its capabilities 
aiming to carry out numerical experiments previewed by our project and executed some 
cases of its tutorial in serial mode.
• Replying to our request, the administrator of the PARADOX cluster (Serbia), where our 
project is hosted,  installed of the OpenFoam package and Paraview and offered the 
assistance for using it.  

• Thanks to the instructions and assistance of the Serbian specialist Vladimir Slavic, we 
have started to use OpenFoam known applications in the parallel mode. 

•  As the internet connection to that cluster is very slow, we can’t visualize the results by 
the graphical mode log-in in Paradox claster. Therefore, after executing an OpenFoam 
case, we download the results and visualize them locally in our server.



Basics of OpenFoam 
OpenFOAM package uses FV (Finite Volume) method to solve 
numerically partial differential equations.  
Spatial discretisation means approximation of a problem into 
discrete quantities . Likes as  the finite element and finite difference 
methods, the FV method defines the solution domain by a set of 
points that fill and bound a region of space (domain).
Temporal discretisation (For transient problems) dividing the time 
domain into into a finite number of time intervals, or steps;
Equation discretisation:  Generating a system of algebraic 
equations in terms of discrete quantities defined at specific locations 
in the domain, from the PDEs that characterise the problem.Discretisation of the solution 
domain
Discretisation of the solution domain is 
shown in Figure. The space domain is 
discre-tised into computational mesh 
on which the PDEs are subsequently 
discretised. Discretisation of time, if 
required, is simple: it is broken into a 
set of time steps ∆t that may change 
during a numerical simulation. 
Discretisation of space requires the subdivision of 
the domain into a number of cells, or control 
volumes. The cells are contiguous, i.e. they do not 
overlap one another and completely fill the domain



A list of tensors, and a mesh are combined 
to define a tensor field relating to discrete 
points in our domain, specified in 
OpenFOAM by the template class 
geometricField<Type>. The Field values 
are separated into those defined within 
the internal region of the domain, e.g. at 
the cell centres (points P in Fig.), and 
those defined on the domain boundary, 
e.g. on the boundary faces (f in fig.). The 
geometricField<Type> stores :
Internal field  This is simply a 
Field<Type>;
BoundaryField This is a 
GeometricBoundaryField
Mesh A reference to an fvMesh, with some additional detail as to the 
whether the field is defined at cell centres, faces, etc., as is shown in 
the following table



Equation discretisation
Equation discretisation converts the PDEs into a set of algebraic 
equations that are commonly expressed in matrix form as:  [A] [x] = 
[b] 
where [A] is a square matrix, [x] is the column vector of dependent 
variable and [b] is the source vector. The description of [x] and [b] as 
‘vectors’ comes from matrix terminology rather than being a precise 
description of what they truly are: a list of values defined at locations 
in the geometry, i.e. a geometricField<Type>, or more specifically a 
volField<Type> when using FV discretisation.
[A] is a list of coefficients of a set of algebraic equations, and cannot 
be described as a geometricField<Type>. It is therefore given a class 
of its own: fvMatrix. fvMatrix<Type> is created through discretisation 
of a geometric<Type>Field and therefore inherits the <Type>. It 
supports many of the standard algebraic matrix operations of 
addition +, subtraction - and multiplication.
Each term in a PDE is represented individually in OpenFOAM code 
using two classes of static functions: finiteVolumeMethod and 
finiteVolumeCalculus, abbreviated by a typedef to fvm and fvc 
respectively. fvm and fvc contain static functions, representing 
differential operators, e.g. ∇2, ∇• and ∂/∂t, that discretise 
geometricField<Type>s. The purpose of defining these functions 
within two classes, fvm and fvc, rather than one, is to distinguish:
• functions of fvm that calculate implicit derivatives of and return an 
fvMatrix<Type>
• some functions of fvc that calculate explicit derivatives and other 
explicit calculations, returning a geometricField<Type>.



Example
 If we wished to solve Poisson’s equation ∇2φ = f, we would define phi and f 
as volScalarField and then do: 
solve(fvm::laplacian(phi) == f) 
The Laplacian term is integrated over a control volume and linearised as 
follows:

The temporal discretisation is controlled by the implementation of the spatial 
derivatives in the PDE we wish to solve. For example, to solve a transient 
diffusion equation 
an Euler implicit implementation of this would read:
solve(fvm::ddt(phi) == kappa*fvm::laplacian(phi))
where we use the fvm class to discretise the Laplacian term implicitly. An 
explicit implementation would read
solve(fvm::ddt(phi) == kappa*fvc::laplacian(phi))
where we now use the fvc class to discretise the Laplacian term explicitly. 
The Crank- Nicholson scheme can be implemented by the mean of implicit 
and explicit terms:
solve
(
fvm::ddt(phi)
==
kappa*0.5*(fvm::laplacian(phi) + fvc::laplacian(phi))
)



Boundary Conditions

Boundary conditions are required to complete the problem we wish to 
solve. We therefore need to specify boundary conditions on all our 
boundary faces. Boundary conditions can be divided into 2 types:
Dirichlet prescribes the value of the dependent variable on the 
boundary and is therefore termed ‘fixed value’;
Neumann prescribes the gradient of the variable normal to the 
boundary and is therefore termed ‘fixed gradient’ 
When we perform discretisation of terms that include the sum over 
faces Σf , we need
to consider what happens when one of the faces is a boundary face.
• We can simply substitute φb in cases where the discretisation 
requires the value on a boundary face φf , e.g. in the convection term. 
• In terms where the face gradient (∇φ)f is required, e.g. Laplacian, it 
is calculated using the boundary face value and cell centre value  
(referring the fig.2.2)



Physical boundary conditions

The specification of boundary conditions is usually an engineer’s 
interpretation of the true behaviour. Real boundary conditions are 
generally defined by some physical attributes rather than the 
numerical description as described previously 
In incompressible fluid flow there are the following physical 
boundaries:
Inlet The velocity field at the inlet is supplied and, for consistency, 
the boundary condition on pressure is zero gradient.
Outlet The pressure field at the outlet is supplied and a zero gradient 
boundary condition on velocity is specified.

Wall boundary conditions
No-slip impermeable wall The velocity of the fluid is equal to that of 
the wall itself, i.e. a fixed value condition can be specified. The 
pressure is specified zero gradient since the flux through the wall is 
zero.
Thermal : constant temperature, or constant heat flux, etc.



 RECENT CALCULATIONS

Running the application for different delta – time of 
discretisation and different space discretisation (studying the 
scalability of the model)  

• We used prepared meshes by the ANSYS Fuent software for the 2D 
geometry of the cylindrical gap between two coaxial cylinders. Then such 
meshes are transformed to the OpenFoam. In the fig. 2 thare are presented 
two different meshes., with the same geometry. 

                                                                             

• Then, we modified the case “hotRoom” of 
“buoyantBoussinesqPimpleFoam “ application to run on our case (our 
mesh, our boundary conditions: fixed temperatures on the two cyindrical 
walls, our regime of turbulence, our  fluid prametres, etc.). 
• The prepared cases were uploaded  to our directory of the PARADOX 
supercomputer. After setting fields to be calculated (setFields command) and 
distributing the field calculations (decomposePar –command) to 16 processes 
(2 nodes, 8 processors per node), we  submitted the jobs  by the script like 
the following: 

Fig. 2  Two meshes with the same 
geometry and different number of 
divisions (number of cells: left  
2592, right 5184)



#!/bin/bash
#PBS -q hpsee
#PBS -l nodes=2:ppn=8
#PBS -l walltime=24:00:00
#PBS -e ${PBS_JOBID}.err
#PBS -o ${PBS_JOBID}.out

cd $PBS_O_WORKDIR
date > skedar-kohe-x
. /opt/exp_soft/hpsee/OpenFOAM/OpenFOAM-2.1.1/etc/bashrc
#decomposePar -force
mpirun -np 16 -machinefile $PBS_NODEFILE buoyantBoussinesqPimpleFoam -parallel 
-case /nfs/see_bduka/cil_40_80
date >> skedar-kohe-x

• When the job is ended, the calculated field by 16 processes are 
composed using the command:  reconstrucPar 

•  Then the numrical results are downloaded in our server and are 
visualized there by “ParaView” 



In order to study the consumed CPU time dependency from the 
spatial discretisation, we executed the calculation for the same 
physical and geometrical model and the same time disctreization and 
time interval of numerical solution, to three different mesh divisions: 
a) 24 radial × 48 angular = 1052 divisions;    .
b) 36 radial × 72 angular = 2592 divisions;  c) 42 radial × 108 angular = 
5184 divisions; 
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Fig. 3. The dependency of CPU time from the spatial discretisation. 

It seems there is linear dependency of the CPU time consumed to get the 
solution from 
the number of  cells of the mesh when the time discretisation is the 
same,
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Fig. 4. The dependency of CPU time from the time discretisation.
 
It seems that for delta – time ≤ 0.01, the solution need too much time 
to converge, while for    delta – time ≥  0.01 there is a proportionality 
between the CPU time consumed to get the solution and the delta-
time of time discretisation.



The received results are similar to those we received before by ANSYS Fluent. 
The OpenFoam has advantages regarding the ANSYS Fluent, because we can 
change the solver by defining different kind of equations that are to be 
solved numerically, while Fluent solves numerically predefined system of PDE 
(defining only the method of approximation and scheme of numerical 
solution) that are not seen  explicitly.
   So far, we have launched many times the our model in PARADOX, for 
different values of geometrical and physical parameters and we are 
analyzing results by visualizing the temperature field and stream lines. In the 
following we present only some snapshot of these fields and their time 
evolution (see animations). 
   

Fig. 5. Three no sequential  snapshots from the animation of time evolution 
of the stream lines in one of cases of the model. The numerical data are 
received from running the application in PARADOX claster and the graphis 
are produced by running paraView post-processsing locally in our server  
      



Fig. 6 Three no sequential  snapshots from the animation of time evolution of 
the temperature field in one of cases of the model. The numerical data are 
received from running the application in PARADOX claster and the graphis 
are produced by running paraView post-processsing locally in our server.

Streamlines animation                         Temperature animation
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