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Bose-Einstein condensation

Intensive progress in the field of ultracold atoms has been
recognized by 2001 Nobel prize for experimental realization
of Bose-Einstein condensation in 1995
Cold alkali atoms:
Rb, Na, Li, K . . .
T ∼ 1 nK, ρ ∼ 1014cm−3

Cold bosons, cold fermions
Optical lattices
Short-range interactions,
long-range dipolar interactions

Tunable quantum systems concerning dimensionality, type
and strength of interactions
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Feshbach resonance

Scattering length depends on the external magnetic field

For 7Li: PRL 102, 090402 (2009)
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The interaction can be in principle tuned to any small or
large, positive or negative value
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Mean-field theory

At T = 0 (no thermal excitations), order parameter ψ
satisfies mean-field Gross-Pitaevskii equation:

ı~∂ψ(~r, t)

∂t
=

»
− ~2

2m
∆ + V (~r) + g2N |ψ(~r, t))|2 + g3N

2|ψ(~r, t))|4
–
ψ(~r, t)

ψ(~r, t) is a condensate wave-function
V (~r) = 1

2mω
2
ρ(ρ

2 + λ2z2) is a harmonic trap potential

` =
√

~/mωρ is a characteristic harmonic oscillator length
Effective contact interaction between atoms is gδ(~r)

g2 = 4π~2

m a, where a is the s-wave scattering length
g3 is a three-body interaction strength
N is the number of atoms in a BEC
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Variational approach

Starting point for analytical calculations is the Gaussian
variational approach: PRL 77, 5320 (1996)
For an axially symmetric trap:

ψ(ρ, z, t) = N (t) exp

»
−1

2

ρ2

uρ(t)2
+ iρ2φρ(t)

–
exp

»
−1

2

z2

uz(t)2
+ iz2φz(t)

–
By extremizing the corresponding action, we obtain four
equations
Two equations (for the phases) are algebraic and can be
solved
This then leads to two ordinary differential equations of the
second order
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Variational equations

In terms of dimensionless condensate widths, the equations
are

üρ(t) + uρ(t)−
1

uρ(t)3
− p(t)

uρ(t)3uz(t)
− k(t)

uρ(t)5uz(t)2
= 0

üz(t) + λ2uz(t)−
1

uz(t)3
− p(t)

uρ(t)2uz(t)2
− k(t)

uρ(t)4uz(t)3
= 0

where dimensionless interaction are given by

p =
√

2/π Na/` and k = 4g3N
2/9
√

3π3~ωρ`6

3-body interaction can be expressed as k = 32g3~ωρ
9
√

3g22
p2

For N = 105 87Rb atoms, in a trap with ωρ = 2π × 112 Hz:
g2 = 5~× 10−11cm3s−1 ⇒ p = 426
g3 ≈ ~× 10−26cm6s−1 ⇒ k = 1050.
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Modulation of the interaction

Nonlinear effects lead to rich resonant phenomena in BEC
Interaction modulation in a recent experiment by groups of
R. Hulet (Rice Univ.) and V. Bagnato (São Paulo Univ.)
PRA 81, 053627 (2010)

BEC of 7Li is confined in a cylindrical
harmonic trap

Time-dependent modulation of atomic
interactions via a Feshbach resonance

Excitation of the lowest-lying
quadrupole mode

Shift of the quadrupole mode frequency

300 µm

Interesting setup for studying nonlinear BEC dynamics
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Modulation of the interaction

We study effects of harmonic modulation of the s-wave
scattering length on collective modes:

B(t) = Bav + δB cos Ωt, a(t) ' aav + δa cos Ωt

aav = a(Bav), δa = − aBG∆δB

(Bav −B∞)2

Bav = 56.5 mT , δB = 1.4 mT , aav ∼ 3a0 , δa ∼ 2a0

⇒ p(t) ' p+ q cos Ωt

For now, we neglect three-body interactions
Nonlinear form of GP equation induces shifts in the
frequencies of low-lying modes (beyond linear response)
For Ω close to some of BEC eigenmodes, we expect
resonances - large amplitude oscillations, for which
nonlinear terms becomes crucial
Vidanović, Balaž, Al-Jibbouri, Pelster, PRA 84, 013618 (2011)
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Linear stability analysis

Equilibrium widths: uρ0 = 1
u3
ρ0

+ p

u3
ρ0uz0

, λ2uz0 = 1
u3
z0

+ p

u2
ρ0u

2
z0

Linearized equations:
uρ(t) = uρ0 + δuρ(t), uz(t) = uz0 + δuz(t)

¨δuρ + δuρ

„
1 +

3

u4
ρ0

+
3p

u4
ρ0uz0

«
+ δuz

p

u3
ρ0u

2
z0

= 0

¨δuz + δuz

„
λ2 +

3

u4
z0

+
2p

u2
ρ0u

3
z0

«
+ δuρ

2p

u3
ρ0u

2
z0

= 0

Breathing mode ωB0 and quadrupole mode ωQ0:

√
2

24„1 + λ2 − p

4u2
ρ0u

3
z0

«
±

s„
1− λ2 + p

4u2
ρ0u

3
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+ 8

„
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2
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mode ωQ0

Breathing
mode ωB0

ZARM, University of Bremen 23 January 2013ZARM, University of Bremen | A. Balaž: Nonlinear Excitations in Bose-Einstein Condensates
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Condensate dynamics

Numerical results for cylindrically symmetric BEC
p = 15, q = 10, λ = 0.021 and Ω = 0.05
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Vudragović, Vidanović, Balaž, Muruganandam, Adhikari, Comput.
Phys. Commun. 183, 2021 (2012)
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Excitation spectra

Resonant behaviour for Ω ∼ ω0 and Ω ∼ 2ω0 for spherically
symmetric BEC
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Collective modes exhibit shifts close to resonances
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Poincaré-Lindstedt method

To calculate collective modes to higher orders, we rescale
time as s = ωt and use expansions:

u(s) = u0 + q u1(s) + q2 u2(s) + q3 u3(s) + . . .

ω = ω0 + q ω1 + q2 ω2 + q3 ω3 + . . .

This leads to a hierarchical system of equations for
spherically symmetric BEC:

ω2
0 ü1(s) + ω2

0 u1(s) =
1

u4
0

sin
Ωs

ω

ω2
0 ü2(s) + ω2

0 u2(s) = −2ω0 ω1 ü1(s)− 4

u5
0

u1(s) sin
Ωs

ω
+ αu1(s)2

ω2
0 ü3(s) + ω2

0 u3(s) = −2ω0 ω2 ü1(s)− 2β u1(s)3 + 2αu1(s)u2(s)− ω2
1 ü1(s)

+
10

u6
0

u1(s)2 sin
Ωs

ω
− 4

u5
0

u2(s) sin
Ωs

ω
− 2ω0 ω1 ü2(s)

ω1, ω2, . . . are obtained so as to cancel secular terms
ZARM, University of Bremen 23 January 2013ZARM, University of Bremen | A. Balaž: Nonlinear Excitations in Bose-Einstein Condensates
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Frequency shift for spherically symmetric BEC

Frequency of the breathing mode vs. driving frequency Ω
for spherically symmetric BEC
Result in second order of perturbation theory

ω = ω0 + q2 Polynomial(Ω)
(Ω2 − ω2

0)2 (Ω2 − 4ω2
0)
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Poincaré-Lindstedt method
Frequency shifts

Frequency shift for cylindrically symmetric BEC

Frequency of quadrupole
mode ωQ versus driving
frequency Ω
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Introduction
Parametric resonances
Geometric resonances

Faraday waves in 2C BEC
Conclusions and outlook

Modulation of the interaction
Linear stability analysis
Condensate dynamics
Poincaré-Lindstedt method
Frequency shifts

Frequency shift for the experimental setup

In the experiment:
ωB >> ωQ,
Ω ∈ (0, 3ωQ), large
modulation amplitude
Strong excitation of
quadrupole mode
Excitation of breathing
mode in the radial
direction
Frequency shifts of
quadrupole mode of
about 10% are present
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Geometric resonances

Modulation of the interaction is one way to induce strong
nonlinear regime and generate resonances
However, this is possible to achieve even without the
dynamical manipulation of the system
Geometry of the system (trap aspect ratio) essentially
influences its behavior
It is known that systems exhibits resonances for particular
values of the trap aspect ratios:
Stringari, PRL 77, 2360 (1996)

Dalfovo, Minniti, Pitaevskii, PRA 56, 4855 (1997)

We study variationally and numerically geometric
resonances in systems with 2-body and 3-body interactions
Al-Jibbouri, Vidanović, Balaž, Pelster, arXiv:1208.0991 (2012)
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Variational equations

Gaussian variational approach:

üρ(t) + uρ(t)−
1

uρ(t)3
− p(t)

uρ(t)3uz(t)
− k(t)

uρ(t)5uz(t)2
= 0

üz(t) + λ2uz(t)−
1

uz(t)3
− p(t)

uρ(t)2uz(t)2
− k(t)

uρ(t)4uz(t)3
= 0
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Linear stability analysis

For N = 105 87Rb atoms, in a trap with ωρ = 2π × 112 Hz,
we earlier calculated p = 426 and k = 1050.
Although k is larger than p, the corresponding 3-body
terms are suppressed by u2

ρuz compared to 2-body terms
Equilibrium widths:

uρ0 =
1

u3
ρ0

+
p

u3
ρ0uz0

+
k

u5
ρ0u

2
z0

λ2uz0 =
1

u3
z0

+
p

u2
ρ0u

2
z0

+
k

u4
ρ0u

3
z0

For λ = 3/2, we obtain numerically uρ0 ≈ 3.69 and
uz0 ≈ 2.47, i.e. u2

ρ0uz0 ≈ 33.6
3-body terms thus have effective coupling of k/33.6 ≈ 31.2,
which makes them small corrections of the order of 7%
However, close to resonances, they may be more significant
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Introduction
Parametric resonances
Geometric resonances

Faraday waves in 2C BEC
Conclusions and outlook

Linear stability analysis
Condensate dynamics
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Frequencies of collective modes
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k = 0.1 (dashed lines)
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Stability diagram
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Condensate dynamics (1)
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Condensate dynamics (2)
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Poincaré-Lindstedt method

To calculate collective modes to higher orders, we rescale
time as s = ωt and use expansions:

uρ = uρ0 + εuρ1 + ε2uρ2 + ε3uρ3 + . . .

uz = uz0 + εuz1 + ε2uz2 + ε3uz3 + . . .

ω = ω0 + ε ω1 + ε2 ω2 + ε3 ω3 + . . .

Initial conditions

u(0) = u0 + εuQ
u̇(0) = 0

This leads to a hierarchical system of equations, where ω1,
ω2, . . . are obtained so as to cancel secular terms
Frequency shifts are calculated using the third-order
perturbation theory
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Far from resonances
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Fourier spectra of the nonlinear BEC dynamics for a repulsive
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Quadrupole mode
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Resonant mode coupling
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What are Faraday waves?

M. Faraday, Philos. Trans. R. Soc. London 121, 299 (1831):

When the upper surface of a plate vibrating so as to produce sound is
covered with a layer of water, the water usually presents a beautifully
crispated appearance, the crispations being produced more readily and
beautifully when there is a certain quantity than when there is less.
For small crispations, the water should flow upon the surface freely.
Large crispations require more water than small ones. Too much water
sometimes interferes with the beauty of the appearance, but the
crispation is not incompatible with much fluid, for the depth may
amount to eight, ten, or twelve inches, and is probably unlimited.

[crispation: curled condition; curliness; an undulation. (rare)]

Faraday patterns became a standard topic in nonlinear
physics due to experiments with liquids in the 1980s
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Experimental observation

P. Engels, C. Atherton, M. A. Hoefer, PRL 98, 095301 (2007)
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Introduction
Parametric resonances
Geometric resonances

Faraday waves in 2C BEC
Conclusions and outlook

Faraday waves in BEC
Two-component BEC systems
Non-resonant Faraday waves
Periods of Faraday waves
Resonant waves

Two-component BEC systems

Experimentally realized with a broad variety of types of
atoms and parameters of a system

heterogeneous systems: different types of atoms
homogeneous systems: same type of atoms, different
internal (usually spin) states

Rich dynamics and interplay of the parameters
Several possible ground states
A variety of possible dynamical evolutions
We focus on the study of Faraday waves and patterns in
cigar-shaped two-component 87Rb BECs, with strong
radial confinement, which is harmonically modulated
We also study resonant waves, which appear for specific
values of the frequency of radial modulation
Balaž, Nicolin, PRA 85, 023613 (2012)
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Mean-field description of a 2C BEC

The system is described by a coupled system of GP
equations:

i~∂Ψ1(~r, t)

∂t
=

»
− ~2

2m1
4+ V (~r, t) + g11|Ψ1(~r, t)|2 + g12|Ψ2(~r, t)|2

–
Ψ1(~r, t)

i~∂Ψ2(~r, t)

∂t
=

»
− ~2

2m2
4+ V (~r, t) + g21|Ψ1(~r, t)|2 + g22|Ψ2(~r, t)|2

–
Ψ2(~r, t)

where the couplings are given by:
g11 = 4π~2a1

m1
, g22 = 4π~2a2

m2
, g12 = g21 = 2π~2aint

meff

Typical experimental values we consider for two hyperfine
states of 87Rb:

N1 = 2.5 · 105 , N2 = 1.25 · 105

a1 = 100.4 a0 , a2 = 98.98 a0 , aint = 100.4 a0

ωρ(t) = ωρ,0(1 + ε sinωmt) , ωρ,0 = 160 · 2πHz

ωm = 250 · 2πHz , ε = 0.1 , ωz = 7 · 2πHz
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Ground state - imaginary-time propagation
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Density profile of the converged eigenstate obtained by propagation in the
imaginary time. Discretization parameters: Nρ = Nz = 2000, ε = 10−4/ωz.
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Ground state - experimental realization

K. M. Mertes, J. W. Merrill, R. Carretero-González, D. J. Frantzeskakis,

P. G. Kevrekidis, D. S. Hall, PRL 99, 190402 (2007)
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Segregated state - imaginary-time propagation
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First excited eigenstate obtained by imaginary-time propagation.
Discretization parameters: Nρ = Nz = 2000, ε = 10−4/ωz.
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First excited state - experimental realization

C. Hamner, J. J. Chang, P. Engels, M. A. Hoefer, PRL 106, 065302 (2011)
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Symbiotic pair ground state - Faraday waves

Emergence of Faraday waves as a result of real-time propagation. The
radial frequency of the trap is modulated at the non-resonant frequency

ωm = 250 · 2π Hz, ε = 0.1.
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Segregated state - Faraday waves

Emergence of Faraday waves as a result of real-time propagation. The
radial frequency of the trap is modulated at the non-resonant frequency

ωm = 250 · 2π Hz, ε = 0.1.
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Periods of Faraday waves
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FFT of density profiles for the two condensates at t = 200 ms. For the
symbiotic pair, the periods of waves are found to be 13.0µm and 12.5µm,

while for the segregated state the periods are 11.6µm and 13.0µm.
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Variational approach - symbiotic pair (1)

Variational ansätze for the symbiotic pair wave functions:

ψ1(ρ, z, t) = N1 exp

„
− ρ2

2w2
ρ(t)

+ iρ2α2(t)

«»
1− exp

„
− z2

2w2
z

«–

ψ2(ρ, z, t) = N2 exp

„
− ρ2

2w2
ρ(t)
− z2

2w2
z

+ iρ2α2(t)

«ˆ
1+(u(t)+iv(t)) cos kz

˜
ψ1 is considered to be unperturbed, acting as an additional
confinement for ψ2

Variational analysis leads to a Mathieu-type equation:

ü(τ) + u(τ) [a(k, ω) + εb (k, ω) sin 2τ ] = 0

a(k, ω) =
k4

ω2
+
k2

ω2
Λsym , b(k, ω) =

k2

ω2
Λsym , ωt = 2τ
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Variational approach - symbiotic pair (2)

For small positive ε and positive b(k, ω), the Mathieu
equation has solutions of the form exp(±iµτ) sin

√
aτ and

exp(±iµτ) cos
√
aτ , where Im[µ] consists of a series of lobes

positioned around the solution of the equation a(k, ω) = n2

The lobe centered around a(k, ω) = 1 is the largest, and
yields the most unstable solutions, determined by:

kF,sym =

s
−Λsym

2
+

r
Λ2

sym

4
+ ω2

This dispersion relation yields a period of 12.0µm for the
Faraday waves, which is in excellent agreement with the
numerical results
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Self-resonance - symbiotic pair

Emergence of Faraday waves as a result of real-time propagation. The
radial frequency of the trap is modulated at the resonant frequency

ωm = 160 · 2π Hz, ε = 0.1.
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Second resonance - symbiotic pair (1)

Emergence of resonant waves in a two-component BEC system radially
modulated at ωm = 300 · 2π Hz.
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Second resonance - symbiotic pair (2)

Emergence of resonant waves in a two-component BEC system radially
modulated at ωm = 320 · 2π Hz.
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Second resonance - symbiotic pair (3)

Emergence of resonant waves in a two-component BEC system radially
modulated at ωm = 340 · 2π Hz.
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Conclusions

We have studied the dynamics and collective excitations of a BEC

when interaction is harmonically modulated, and
for different trap geometries (aspect ratios)

and investigated prominent nonlinear effects that arise due to 2-body
and 3-body interactions, and their delicate interplay

We have numerically observed and analytically described

significant shifts in the frequencies of collective modes
generation of higher harmonics and linear combinations
resonant and non-resonant mode coupling

We have studied the emergence of surface waves in 2C BECs

Non-resonant modulation of the radial confinement: Faraday
waves with the similar period in both components
Self-resonant modulation: resonant waves
Second-harmonic resonance: much stronger and faster-emerging
resonant waves, turning the non-miscible system miscible
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Outlook

Numerical and variational study of parametric stabilization
with and without 3-body interaction
Interplay of dynamically and geometrically induced
resonances

Shifts in frequencies of collective modes
Resonant mode coupling
Suppression of collective modes

Bistability in BECs with 2-body and 3-body interactions
Study of miscible two-component systems
Pancake-shaped two-component systems
Faraday waves for two-component BEC loaded into an
optical lattice
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