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Bose-Einstein condensation

o Intensive progress in the field of ultracold atoms has been
recognized by 2001 Nobel prize for experimental realization
of Bose-Einstein condensation in 1995

o Cold alkali atoms:

Rb, Na, Li, K...

T ~ 11K, p ~ 10"cm™3
@ Cold bosons, cold fermions
o Optical lattices

e Short-range interactions,
long-range dipolar interactions

@ Tunable quantum systems concerning dimensionality, type
and strength of interactions
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Feshbach resonance

@ Scattering length depends on the external magnetic field

10°
e For "Li: PRL 102, 090402 (2009) .1
A
a(B) = aBG (1 + m) %1027
aBc = —24.5a9, Boo = 73.68 mT, 3 10}
A=192mT i ‘ ‘ ‘
55.0 60.0 65. 70.0

.0
Magnetic Field (mT)

@ The interaction can be in principle tuned to any small or
large, positive or negative value
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Mean-field theory

e At T =0 (no thermal excitations), order parameter 1
satisfies mean-field Gross-Pitaevskii equation:

G
=5

2
A V) + NI )P+ s Nl D) (1)

(7, t) is a condensate wave-function

V(r) = %mwg(pQ + A222) is a harmonic trap potential
¢ = /h/mw, is a characteristic harmonic oscillator length

o Effective contact interaction between atoms is gd(7)

e gy = @ a, where a is the s-wave scattering length

gsis a three—body interaction strength

N is the number of atoms in a BEC
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Variational approach

Starting point for analytical calculations is the Gaussian
variational approach: PRL 77, 5320 (1996)
e For an axially symmetric trap:

2 2
B, 2) = Ny exp | -2 -2 4 ipz%(t)] xp [_EL

2, (07 e TiE o)

@ By extremizing the corresponding action, we obtain four
equations

e Two equations (for the phases) are algebraic and can be
solved

@ This then leads to two ordinary differential equations of the
second order
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Variational equations

o In terms of dimensionless condensate widths, the equations

are
P R () B () N
p(t) + up(t) up(t)3  up(t)3uz(t)  up(t)Pu(t)? ’
1 p(t) k(?)

s () + N us (t) — =0

uz () up()?us(8)?  up(t)tus(t)?
where dimensionless interaction are given by
p=+/2/mNajl and k=4g3N?/9v3r5hw,
@ 3-body interaction can be expressed as k = 329—3&;3192
9\/392
e For N =10° 8"Rb atoms in a trap with w, = 27 x 112 Hz:

go = 5h x 107 em3s™! = p = 426
g3 ~ h x 10726cmf%~! = k = 1050.
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Parametric resonances

Freque

Modulation of the interaction

o Nonlinear effects lead to rich resonant phenomena in BEC

o Interaction modulation in a recent experiment by groups of
R. Hulet (Rice Univ.) and V. Bagnato (Sao Paulo Univ.)
PRA 81, 053627 (2010) 300 ym

e BEC of 7Li is confined in a cylindrical
harmonic trap

o Time-dependent modulation of atomic
interactions via a Feshbach resonance

o Excitation of the lowest-lying
quadrupole mode

@ Shift of the quadrupole mode frequency

o Interesting setup for studying nonlinear BEC dynamics
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Parametric resonances

Modulation of the interaction

o We study effects of harmonic modulation of the s-wave
scattering length on collective modes:

B(t) = Bav + 0B cosQt, a(t) ~ aav + dacosQt
ch,A(sB

(Bav — Bo)?

Bay =56.5mT, 6B =14mT, aa ~3a0, da~ 2ao

= p(t) ~p+ qcost

aav = a(Bav), da=—

o For now, we neglect three-body interactions

o Nonlinear form of GP equation induces shifts in the
frequencies of low-lying modes (beyond linear response)

e For € close to some of BEC eigenmodes, we expect
resonances - large amplitude oscillations, for which

nonlinear terms becomes crucial
@ Vidanovié¢, Balaz, Al-Jibbouri, Pelster, PRA 84, 013618 (2011)
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Parametric resonances

Linear stability analysis

o Equilibrium widths: w, = = + =2—, ANu.0 = o + =5
PO

“‘20“20 20 UsoUzo
e Linearized equations:

up(t) = upo + 6up(t), uz(t) = uzo + du=(t)

. 3 3
§up+5up<1+uT+ 4p >+6uzu3L2:0

- 3 2 2
6uz+5uz</\ + o+ 52 )+6up37p2:0
uzO upO zO upouzO
@ Breathing mode wpo and quadrupole mode wqo:

1/2

1t 1
Quadrupole % .,2_ ” .,y«_ Breathing
mode wqo ~ y -y : mode wpgg
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Frequency sh

Condensate dynamics

o Numerical results for cylindrically symmetric BEC
p=15,¢=10, A =0.021 and ©2 = 0.05

3

&

[ variational .
GP nurgerics

Axial condensate width
Radial condensate width

0 200 400 600 800 1000 1200
Time

@ Vudragovié¢, Vidanovié, Balaz, Muruganandam, Adhikari, Comput.
Phys. Commun. 183, 2021 (2012)
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Poincaré-Linc dt method
Frequency shift

Excitation spectra

@ Resonant behaviour for Q ~ wg and 2 ~ 2w for spherically
symmetric BEC

1000 : . .
10 g T T T
100 £ 2oee 1
1 ffaal
[ O.l L L L L ]
) 10 196 2 204 2.08
°
2
= 1
I3
<
0.1
0.01

0.001
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Frequency shifts

Poincaré-Lindstedt method

o To calculate collective modes to higher orders, we rescale
time as s = wt and use expansions:

u(s) = wo+qui(s)+ ¢ ua(s) + ¢ us(s) +...
w = wo+qw1+q2w2+q3w3+...

o This leads to a hierarchical system of equations for
spherically symmetric BEC:

Wi din(s) + woui(s) = uié sin %
2 . 2 .. 4 . Qs 9
wo tiz(s) +wpuz(s) = —2wowiiir(s)— ©u (s) sin W + aui(s)
0
wi diz(s) + wous(s) = —2wowaiin(s) —28u1(s)® + 2cui(s)uz(s) — wi i1 (s)
+117(8) u1(s)? sin % — %ug(s) sin % — 2wo w1 ti2(s)

@ wi, wo,... are obtained so as to cancel secular terms
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Parametric resonances

Frequency shift for spherically symmetric BEC

e Frequency of the breathing mode vs. driving frequency €2
for spherically symmetric BEC
@ Result in second order of perturbation theory
Polynomial(€2)
(92— w)? (522 — 4u)

= wo + ¢

23
2.25 :noalyticdw
2.2 | numerical w .
215
2.1 fes
205
2
1.95
19

21

W
analytica w
2.08  numerica w .

Frequency
Frequency

1|

i

1

1

2 1
1 15 2 25 3 35 4 45 5

p=04," ¢g=0.1
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Frequency shift for cylindrically symmetric BEC

e Frequency of quadrupole o Frequency of breathing
mode wq versus driving mode wp versus driving
frequency {2 frequency {2

0.55 2.01
2.008
2.006

é) 0.545 éﬂ 2004

s $ o 4 I

§ 0.54 § 2

g g 1998

i i 1.996

0.535 1094
1.992
0.53 1.99
0 1 2
Q Q

e Poles: wqo, wpo — wqo, @ Poles: wqo, wpo — wqo,

2wQo, wQo + WBo, WRBO WBo, WQo + WBo, 2WBo
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Frequency shifts

Frequency shift for the experimental setup

o In the experiment:

® wp >> wQ, 0.04
Q€ (0,3wq), large 0038
modulation amplitude §
e Strong excitation of > 0036 |,
quadrupole mode o
o Excitation of breathing g 0034
mode in the radial . 0.032
direction
o Frequency shifts of %%, 6(3)2 0?04 o'oe 008 01 012

quadrupole mode of

about 10% are present Q
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Resonant mode coupling

Geometric resonances

o Modulation of the interaction is one way to induce strong
nonlinear regime and generate resonances

o However, this is possible to achieve even without the
dynamical manipulation of the system

e Geometry of the system (trap aspect ratio) essentially
influences its behavior

o It is known that systems exhibits resonances for particular

values of the trap aspect ratios:
Stringari, PRL 77, 2360 (1996)

Dalfovo, Minniti, Pitaevskii, PRA 56, 4855 (1997)

o We study variationally and numerically geometric
resonances in systems with 2-body and 3-body interactions
@ Al-Jibbouri, Vidanovi¢, Balaz, Pelster, arXiv:1208.0991 (2012)
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Resonant mode coupling

Variational equations

o Gaussian variational approach:

i L e®) k)
o(t) 4 up(t) up(t)®  up(t)Bus(t)  wp(t)us(t)? 0
i (8) + Nua(t) — — PO kO
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Resonant mode coupling

Linear stability analysis

e For N = 10° 8"Rb atoms, in a trap with wp = 2m x 112 Hz,
we earlier calculated p = 426 and k = 1050.

o Although k is larger than p, the corresponding 3-body
terms are suppressed by uguz compared to 2-body terms

o Equilibrium widths:

1 P k
Up) = —7—
P 3 3 5 2
PO upOUZO upOuZO
2 1 D k
AUz = ==+ — 3

Uzo upOUEO “ﬁouzo
e For A = 3/2, we obtain numerically u,y ~ 3.69 and
Uz & 247, ie. ulyuzo ~ 33.6
@ 3-body terms thus have effective coupling of k/33.6 ~ 31.2,
which makes them small corrections of the order of 7%
e However, close to resonances, they may be more significant
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Frequencies of collective modes

6 6
5 5 (D)
§3 % 3
D2 D2 WRQ
(C L ===
1 1}
% 1 2 3 % 1 2 3
A A

Frequencies of the breathing, quadrupole, and radial quadrupole modes
versus trap aspect ratio A for p = 1, k = 0.001 (solid lines) and p = 10,
k = 0.1 (dashed lines)
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Stability diagram

0.2
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Condensate dynamics (1)

1.4
1=23 @ 075l A =23 (b)
1.35}
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= = 073
St 1.25 50

1.2 072

1.15

0 10 20 30 40 50 OMg—15 20 30 40 0
wpl wpt

1152 = 055 (© 18/} = 0.55 (d)

114 1.75}
= S 17
< 113 <
= S 165

112}

16
111} ‘ ‘ ‘ ‘ - ‘ ‘ ‘ ‘
0 10 20 30 40 50 ¥ 10 20 30 40 50

sity of Bremen |

A. Balaz: Nonlinear Excitations in Bose-Einstein Condensates



SCIENTIFIC

cs

() COMPUTING Geometric resonances Poinc t method
o* LABORATORY Frequ

Resonant mode coupling

Condensate dynamics (2)
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Resonant mode coupling

Poincaré-Lindstedt method

o To calculate collective modes to higher orders, we rescale
time as s = wt and use expansions:

2 3
Up =  Upo + EUp1 + E Up2 + E Up3 + ...
2 3
Uz = Uzo + EUz1 +E Uza +E Uz + ...
2 3
w = woteEwr+eE wet+e w3+ ...

o Initial conditions

u(0) = ug+eug
u0) = 0

@ This leads to a hierarchical system of equations, where wy,
wo, ... are obtained so as to cancel secular terms

e Frequency shifts are calculated using the third-order
perturbation theory
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Far from resonances

Resonant mode coupling

FTof Uz
1k
FT of Up - —

107

(a) 100L FTof U
2wq 10

wg —wq | 1t

1072 10°1t
1037 1072
10—3 L

10742 wo—wg

107453

(b)

0 1 2 3 4 5 0

Frequency (in units of w,) Frequency (in units of w,,)

Fourier spectra of the nonlinear BEC dynamics for a repulsive
two-body interaction p = 1, a repulsive three-body interaction
k =0.001, and € = 0.1 for (a) A=1.9 and (b) A =0.5
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Quadrupole mode

0.005 0.005
@ | p=1 () [ p=1
g 0.0025 k=0 g 0.0025 K = 0.001
> 0% > o+
3 3
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) (¢ | p=01 ' (d) | p=01
g 0% k=0.001 _J g 005 k=0.1
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Breathing mode

L p=1 @) 4 p=02 (b)
1078 103
P k=0 o k =0.001
é . //MJ é _gevveveseevves
:%n O+ vres 5 O-tesvoooves
B |
-10°° ~10°
0 05 1 15 2 25 0 05 1 15 2 25
A A
1078
p=01 © 1P = ~02 ©
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3 3
= 0#_.#_7_AW & Ol
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Resonant mode coupling
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What are Faraday waves?

e M. Faraday, Philos. Trans. R. Soc. London 121, 299 (1831):

When the upper surface of a plate vibrating so as to produce sound is
covered with a layer of water, the water usually presents a beautifully
crispated appearance, the crispations being produced more readily and
beautifully when there is a certain quantity than when there is less.
For small crispations, the water should flow upon the surface freely.
Large crispations require more water than small ones. Too much water
sometimes interferes with the beauty of the appearance, but the
crispation is not incompatible with much fluid, for the depth may
amount to eight, ten, or twelve inches, and is probably unlimited.

[crispation: curled condition; curliness; an undulation. (rare)]

o Faraday patterns became a standard topic in nonlinear
physics due to experiments with liquids in the 1980s
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Faraday waves in 2C BEC

Experimental observation

P. Engels, C. Atherton, M. A. Hoefer, PRL 98, 095301 (2007)

120 Hz
150 Hz e o
220 Hz

321 Hz

A
A 4

125 um

FIG. 1. In-trap absorption images of Faraday waves in a BEC.
Frequency labels for each image represent the driving frequency
at which the transverse trap confinement is modulated.
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Two-component BEC systems

o Experimentally realized with a broad variety of types of
atoms and parameters of a system
o heterogeneous systems: different types of atoms
e homogeneous systems: same type of atoms, different
internal (usually spin) states
Rich dynamics and interplay of the parameters
Several possible ground states

A variety of possible dynamical evolutions

We focus on the study of Faraday waves and patterns in
cigar-shaped two-component 8’Rb BECs, with strong
radial confinement, which is harmonically modulated
@ We also study resonant waves, which appear for specific

values of the frequency of radial modulation
@ Balaz, Nicolin, PRA 85, 023613 (2012)
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Mean-field description of a 2C BEC

@ The system is described by a coupled system of GP

equations:
L OW (7t h? . .
PP A V) + gl O + V(] ()
t 27711
. OWa(7,t 2 R R
L) [ ALV + g (O + gl 270 | Wit
t 2m2
where the couplings are given by:
24.
g11 = 74"51(”, g22 = 747722;2» g12 = go1 = 72”2;;“”

o Typical experimental values we consider for two hyperfine
states of 8"Rb:

Ny =25-10°, N, =1.25-10°
a1 =1004ap, a2 =9898ap, aint = 100.4ao
wp(t) = wp,o(l +esinwmt), wp,o =160 27 Hz
wm =250-27Hz, €=0.1, w,=7-27nHz
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Ground state - imaginary-time propagation

45x10° \ =
n,(2)
9| N, 8 |
40x 10 ,/ \‘ N2 ---
9 | \ i
o~ 35x10 I \
£ 9 | 1 ! ]
> 3.0x10 h |I
£ . |
§ 25x10° | b
©
T 20x10° 1
°
2 9
5 15x10° | ! \ 1
S 9 1 !
10x10° I | 1
1
1
50x10° 1 | 1
]
0.0 x 100 - - 2 N - .

80 60 -40 -20 O 20 40 60 80
z(um)

Density profile of the converged eigenstate obtained by propagation in the

imaginary time. Discretization parameters: N, = N, = 2000, € = 1074/wz.

RM, University of Bremen | A. Balaz: Nonlinear Excitations in Bose-Einstein Condensates



SCIENTIFIC Faraday waves in BEC
COMPUTING
LABORATORY Faraday waves in 2C BEC

Two-component BEC systems

Exp
Num. A
Num. B
. _& .
Num. A . @9
Num. B . B BN BN BN BN B B B B
FIG. 1. Top view of a time seq of i I and ical density profiles for N = 3.50(5) X 10° *'Rb atoms with equal

populations in the |1) and |2} states. The first row shows the measured density profiles for the |1} atoms, while the second and third
rows give numerical results including losses and different trap frequencies (Num. A) and without those additional model features
(Num. B). A similar arrangement is given for the |2} atoms in the fourth, fifth, and sixth rows. The field of view in all pictures is
approximately 100 uwm on a side. The evolution time (in ms) for each column is indicated in the top row.

K. M. Mertes, J. W. Merrill, R. Carretero-Gonzalez, D. J. Frantzeskakis,
P. G. Kevrekidis, D. S. Hall, PRL 99, 190402 (2007)
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Segregated state - imaginary-time propagation

45x10°

9L
4.0 x10 N2 ---
35x10° | FaN
1
30x10° | 1
I \
25x10° i \

T
-
L

20x10°
15x10° |

longitudinal density (m™)
.

1.0x10° f

I

1

1

! \
50x10°8 f !

0.0 ><100 — — - ) . . LY
-80 -60 -40 -20 0 20 40 60 80

z(um)
First excited eigenstate obtained by imaginary-time propagation.
Discretization parameters: N, = N, = 2000, ¢ = 10™*/w,.
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First excited state - experimental realization

-

- A dbadid B B e B

} 500 pm |

FIG. 1. Time evolution of an initial perfectly overlapped
mixture without (a)-(c) and with (d) an applied axial
magnetic gradient. Images taken after (a) 100 ms, (b) 1 sec,
and (c)—(d) 9 sec of in-trap evolution.

C. Hamner, J. J. Chang, P. Engels, M. A. Hoefer, PRL 106, 065302 (2011)
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(b) 5.0x10°

5.0x10° 250
200
150
- 2.5x10° 2.5x10°
1
50
0.0x10° 0 ! 0.0x10°

-80 -60 -40 -20 0 20 40 60 80 -80 -60 -40 -20 0 20 40 60 80
z (um) z (um)

250

t (ms)

(=3
(=}

Emergence of Faraday waves as a result of real-time propagation. The
radial frequency of the trap is modulated at the non-resonant frequency
wm = 25027 Hz, ¢ =0.1.
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Emergence of Faraday waves as a result of real-time propagation. The
radial frequency of the trap is modulated at the non-resonant frequency
wm = 250 - 27 Hz, e = 0.1.
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Resonant waves

Periods of Faraday waves

FFT amplitude
FFT amplitude
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FFT of density profiles for the two condensates at ¢ = 200 ms. For the
symbiotic pair, the periods of waves are found to be 13.0 um and 12.5 pm,
while for the segregated state the periods are 11.6 um and 13.0 pm.
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Resonant waves

Variational approach - symbiotic pair (1)

e Variational ansétze for the symbiotic pair wave functions:

P1(p, 2,t) =Nlexp< o) p;( 5 +ip*a®(t )> {1 - eXp (_%)}

2 22

r(przt) = Noowp (= L - (0) L+ u(0)+i0(0) cosi]

@ 1) is considered to be unperturbed, acting as an additional
confinement for o
e Variational analysis leads to a Mathieu-type equation:

(1) + u(r) [a(k,w) + eb (k,w) sin27] =0

4 k2 k2

= 2 ﬁ Asym, b(k, w) = F Asym . wt=2T
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Resonant waves

Variational approach - symbiotic pair (2)

e For small positive e and positive b(k,w), the Mathieu
equation has solutions of the form exp(+iut)sin /a7t and
exp(=£iut) cos y/at, where Im[u| consists of a series of lobes
positioned around the solution of the equation a(k,w) = n?

o The lobe centered around a(k,w) =1 is the largest, and
yields the most unstable solutions, determined by:

kF,sym = \/_s2y + Ty +W2

o This dispersion relation yields a period of 12.0 ym for the
Faraday waves, which is in excellent agreement with the
numerical results

ZARM, University of Bremen | A. Balaz: Nonlinear Excitations in Bose-Einstein Condensates
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Resonant waves

Self-resonance - symbiotic pair
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Emergence of Faraday waves as a result of real-time propagation. The
radial frequency of the trap is modulated at the resonant frequency
wm = 160 - 27 Hz, ¢ = 0.1.
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Resonant waves

Second resonance - symbiotic pair (1)
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Emergence of resonant waves in a two-component BEC system radially
modulated at w.,, = 300 - 27 Hz.
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Resonant waves

Second resonance - symbiotic pair (2)
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Emergence of resonant waves in a two-component BEC system radially
modulated at w.,, = 320 - 27 Hz.
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Resonant waves

Second resonance - symbiotic pair (3)
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Emergence of resonant waves in a two-component BEC system radially
modulated at w.,, = 340 - 27 Hz.
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Conclusions and outlook

Conclusions

@ We have studied the dynamics and collective excitations of a BEC
e when interaction is harmonically modulated, and
o for different trap geometries (aspect ratios)
and investigated prominent nonlinear effects that arise due to 2-body
and 3-body interactions, and their delicate interplay

@ We have numerically observed and analytically described
o significant shifts in the frequencies of collective modes
o generation of higher harmonics and linear combinations
e resonant and non-resonant mode coupling

@ We have studied the emergence of surface waves in 2C BECs

o Non-resonant modulation of the radial confinement: Faraday
waves with the similar period in both components

o Self-resonant modulation: resonant waves

e Second-harmonic resonance: much stronger and faster-emerging
resonant waves, turning the non-miscible system miscible

ZARM, University of Bremen | A. Balaz: Nonlinear Excitations in Bose-Einstein Condensates
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Conclusions and outlook

Outlook

o Numerical and variational study of parametric stabilization
with and without 3-body interaction

o Interplay of dynamically and geometrically induced
resonances

e Shifts in frequencies of collective modes
e Resonant mode coupling
e Suppression of collective modes

Bistability in BECs with 2-body and 3-body interactions
Study of miscible two-component systems

Pancake-shaped two-component systems

Faraday waves for two-component BEC loaded into an
optical lattice

ZARM, University of Bremen | A. Balaz: Nonlinear Excitations in Bose-Einstein Condensates
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