HP-SEE Using CUDA numerical libraries

www.hp-see.eu

Dušan Stanković, Petar Jovanović Scientific Computing Laboratory Institute of Physics Belgrade dusan.stankovic@ipb.ac.rs, petarj@ipb.ac.rs

High-Performance Computing Infrastructure for South East Europe's Research Communities

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

High-Performance Computing Infrastructure for South East Europe's Research Communities

- CUDA Showroom
- cuBLAS
- cuFFT
- cuRAND

CUDA Showroom

HP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

GPU Applications: http://www.nvidia.com/object/gpu-applications.html

GPU APPLICATIONS			
Most Popular	P Search		🔣 🛃 1 of 1 🗈 🚺
AMBER • 89.44 ns/day JAC NVE Speed up* Supported Features • PMEMD: Explicit and Implicit Solvent Molecular Dynamics	GROMACS • 165 ns/day DHFR Speed up* Supported Features • Implicit (5x) • Explicit(2x) Solvent Molecular Dynamics	LAMMPS • 3.5 - 15x Speed up* Supported Features • Lennard-Jones • Gay-Berne Molecular Dynamics	NAMD • 6.44 ns/day STMV585x 2050s Speed up* Supported Features • Non-Bond Force calculation • 100M atom capable Molecular Dynamics
GeoVation CGG/Veritas RTM • Speed up non-disclosed Supported Features • RTM algorithm	Paradigm Echos RTM • 14x Speed up* Supported Features • RTM algorithm	Schlumberger WesternGeco Omega2 RTM • Non-disclosed Supported Features • Multiple algorithms (RTM, etc)	Tsunami RTM • 5x Speed up* Supported Features • RTM algorithm
NWChem • 3-10x Speed up* Supported Features • Triples part of Reg-CCSD(T) • CCSD and EOMCCSD task schedulers • In development Computational Chemistry	ANSYS Mechanical 2-3x Speed up* Supported Features • Direct & iterative solver <u>Computational Structural</u> <u>Mechanics</u>	Abagus/Standard • 1.5 - 2.5x Speed up* Supported Features • Direct sparse solver <u>Computational Structural</u> <u>Mechanics</u>	Impetus Afea • 10x SPH, 2x total Speed up* Supported Features • linear equation solver <u>Computational Structural</u> <u>Mechanics</u>
<u>WSC Nastran</u> • 1.5 Speed up* Supported Features • Linear equation solver <u>Computational Structural</u> <u>Mechanics</u>	MathWorks MATLAB • 2-20x Speed up* Supported Features • GPU acceleration for over 200 common MATLAB functions <u>Computational Finance</u>	VASP • 2x Speed-up* 2 GPUs vs. 128 CPU cores Supported Features • Hybrid Hartree-Fock DFT functionals including exact exchange	Chroma • 8-9x Speed up* 768 GPUs vs. 768 (16-core) CPUs Supported Features • Wilson-clover fermions, Krylor solvers, Domain-decomposition
			🖪 🖪 1 of 1 🗈 🗈

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013

- Key features
 - Complete support for all 152 standard BLAS routines
 - Single, double, complex and double complex data types
 - Support for CUDA streams
 - Fortran bindings
 - Support for multiple GPUs and concurrent kernels
 - Batched GEMM API
 - Device API that can be called from CUDA kernels
 - Batched LU factorization API

• 4Kx4K matrix size

• cuBLAS 4.1, Tesla M2090 (Fermi), ECC on

•MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz •Performance may vary based on OS ver. and motherboard config

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013

cuBLAS 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

•Performance may vary based on OS ver. and motherboard config.

- Key features:
 - 1D, 2D, 3D transforms of complex and real data types
 - 1D transform sizes up to 128 million elements
 - Flexible data layouts by allowing arbitrary strides between individual elements and array dimensions
 - FFT algorithms based on Cooley-Tukey and Bluestein
 - Familiar API similar to FFTW Advanced Interface
 - Streamed asynchronous execution
 - Single and double precision transforms
 - Batch execution for doing multiple transforms
 - In-place and out-of-place transforms
 - Flexible input & output data layouts, similar to FFTW Advanced Interface
 - Thread-safe & callable from multiple host threads

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013

• Measured on sizes that are exactly powers-of-2

• cuFFT 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

•MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz •Performance may vary based on OS version and motherboard configuration

for South East Europe's Research Commu

• cuFFT 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

•Performance may vary based on OS ver. and motherboard config.

- Key features:
 - Flexible Usage Model
 - Host API for generating random numbers in bulk on GPU
 - Inline implementation allows use inside GPU functions/kernels, or in your host code
 - Four High-Quality RNG Algorithms
 - MRG32k3a
 - MTGP Merseinne Twister
 - XORWOW pseudo-random generation
 - Sobol' quasi-random number generators, including support for scrambled and 64-bit RNG
 - Multiple RNG Distribution Options
 - Uniform, normal, log-normal, Poisson distribution
 - Single or double precision

for South East Europe's Research

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013