
www.hp-see.eu

HP-SEE
Tiled matrix multiplication 

(using shared memory)

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

Petar Jovanović
Scientific Computing Laboratory

Institute of Physics Belgrade
petarj@ipb.ac.rs



Matrix Multiplication: Simple 
host version in C

void matrixMulOnHost(float* A, float* B, float* C, int width) {
for (int i=0; i<width; i++) {

for (int j=0; j<width; j++) {
double sum = 0;
for (int k=0; k<width; k++) {

double a = A[i*width+k];
double b = B[k*width+j];
sum += a*b;

}
C[i*width+j] = sum;

}
}

}

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013 2



Simple Matrix Multiplication 
Kernel

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013 3

__global__ void matrixMulKernel(float* A, float* B, float* C, 
int width) {

int row = blockIdx.y*blockDim.y+threadIdx.y;
Int col = blockIdx.x*blockDim.x+threadIdx.x;

if ((row<width) && (col<width)) {
float tmp = 0;
for (int i=0; i<width; i++)

tmp += A[row*width+i]*B[i*width+col];
C[row*width+col] = tmp;

}
}



●Local memory & registers
-Small
-Accessed by one core/thread
-Low latency (~1 cycle)

●Shared memory
-Not large (16 KB)
-Low latency (~5 cycles)
-Shared between cores/threads 
within a thread block

●Global memory
-Large (256mb+)
-High bandwidth (100 GB/s)
-High latency (~500 cycles)

●Constant memory
-Read only, low latency, shared by 
all threads

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013 4

CUDA Memory Reminder(1)



Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013 5

CUDA Memory Reminder(2)



Shared Memoru in CUDA

• A special type of memory whose contents are explicitly 
declared and used in the source code

– One in each SM
– Accessed at much higher speed than global memory
– Still accessed by memory instructions
– A form of scratchpad memory

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013 6



Hardware View

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013 7



CUDA Variable Type 
Qualifiers

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013 8

Variable declaration Memory Scope Lifetime

int localVar; register thread thread

__device__ __shared__ int sharedVar; shared block block

__device__ int globalVar global grid application

__device__ __constant__ int constantVar; constant grid application

• __device__ is optional when used with __shared__ or 
__constant__

• Automatic variables reside in registers
– Except per-thread arrays, which are in global memory



Common Programming 
Strategy

• Partition data into tiles that 
fit into shared memory

• Each thread block handles a 
tile by:

– Loading it into shared memory 
using multiple threads

– Performing the computation 
on the tile

– Copying results back from 
shared to global memory

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013 9



Tiled Matrix Multiplication 
Kernel

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013 10

__global__ void matrixMulKernel(float* dA, float* dB, float* dC, 
int width) {

__shared__ float dsA[TILE_WIDTH][TILE_WIDTH];
__shared__ float dsB[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x, by = blockIdx.y;
int tx = threadIdx.x, ty = threadIdx.y;

int row = by*TILE_WIDTH+ty;
int col = bx*TILE_WIDTH+tx;
float tmp = 0;

for (int i=0; i<width/TILE_WIDTH; i++) {
dsA[ty][tx]=dA[row*width+i*TILE_WIDTH+tx];
dsB[ty][tx]=dB[(i*TILE_WIDTH+ty)*width+col];
__synchtreads();
for (int j=0; j<TILE_WIDTH; j++) 

tmp += dsA[ty][j]*dsB[j][tx];
__synchthreads();

}
dC[row*width+col] = tmp;

}



Size Considerations

• Each thread block should have many threads
– For 16x16 threads, each block performs 512 loads for 8192 

mul/add operations
– For 32x32 threads, we have 2048 loads and 65536 mul/add 

operations

• Each SMP in Fermi has 16 or 48 KB shared memory
– Size is implementation dependent
– TILE_WIDTH=16 takes 2*256*4B=2KB of shared memory

● Can have up to 8 thread blocks executing
– TILE_WIDTH=32 takes 8KB of shared memory per block, which 

allows for 2 or 6 blocks to be active at the same time

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013 11


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

