

HP-SEE

Introduction to heterogeneous parallel programming

www.hp-see.eu

HP-SEE

High-Performance Computing Infrastructure for South East Europe's Research Communities

Petar Jovanović Scientific Computing Laboratory Institute of Physics Belgrade petarj@ipb.ac.rs

- •Heterogeneous parallel system
 - Motivation
- •CPU/GPU Architecture
 - Abstract view of a processor
 - Latency vs. Throughput

•CUDA Platform

- Streaming Multiprocessor
- Memory hierarchies
- Scalable programming model

Heterogeneous Parallel Systems

HP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

Using the best match for the task at hand

Heterogeneous Parallel Systems: Motivation(1)

• Floating-Point Operations per Seconds for the CPU and GPU

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013

Heterogeneous Parallel Systems: Motivation(2)

Memory Bandwidth for the CPU and GPU

Theoretical GB/s

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013

High-Performance Computing Infrastructure for South East Europe's Research Communities

CPU/GPU Architecture: Abstract view of a processor

• The von Neumann architecture

CPU/GPU Architecture: Latency vs. throughput

HP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

DRAM

CPU (latency oriented design):

- Large caches
- Sophisticated control Powerful ALU

GPU (throughput oriented design):

- Small caches
- Simple control
 - Energy efficient ALUs
 - Latencies compensated by large number of threads

CUDA: Streaming multiprocessor (SMP)

High-Performance Computing Infrastructure for South East Europe's Research Communities

D-C

CUDA: Memory hierarchy(1)

- •Local memory & registers –Small
 - -Accessed by one core/thread
 - -Low latency (~1 cycle)
- Shared memory
 - -Not large (16 KB)
 - -Low latency (~5 cycles)
 - -Shared between cores/threads within a thread block
- •Global memory
 - -Large (256mb+)
 - -High bandwidth (100 GB/s)
 - -High latency (~500 cycles)
- •Constant memory
 - -Read only, low latency, shared by all threads

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013

HIP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

CUDA: Memory hierarchy(2)

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade 18-Feb-2013

HP-SFF

High-Performance Computing Infrastructure

for South East Europe's Research Communities

CUDA: Scalable Programming Model (1)

HP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

•Three key abstractions:

•Hierarchy of thread groups

- Grid, thread blocks, warps, threads

Shared memories

- Global, shared, local, registers

•Barrier synchronization

CUDA: Scalable Programming Model (2)

•Grid

- 3D array of thread blocks
- Thread blocks
 - 3D array of threads
 - Up to 1024 threads

•Thread warp

- Consists of 32 threads which share
 - a control unit.

CUDA: Scalable Programming Model (4)

HP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

•Automatic program scalability

- Across cards of various sizes
- Across new core architectures
- Subject to compute capabilities
 SMP is a basic unit of

hardware components each GPU has.

Better GPUs have more SMPs.
Compute capabilities are backward compatible, so that older code can run on newer higher capability hardware.

CUDA: Scalable Programming Model (5)

High-Performance Computing Infrastructure for South East Europe's Research Communities

•Compute capabilities specify which features hardware can support.

Feature support (unlisted features are	Compute capability (version)							
supported for all compute capabilities)	1.0	1.1	1.2	1.3	2.x	3.0	3.5	
Integer atomic functions operating on 32-bit words in global memory	No				(00			
atomicExch() operating on 32-bit floating point values in global memory	NO			T	res			
Integer atomic functions operating on 32-bit words in shared memory								
atomicExch() operating on 32-bit floating point values in shared memory	No				Yes			
Integer atomic functions operating on 64-bit words in global memory								
Warp vote functions								
Double-precision floating-point operations	No			Ŷ	Yes			
Atomic functions operating on 64-bit integer values in shared memory								
Floating-point atomic addition operating on 32-bit words in global and shared memory								
_ballot()								
_threadfence_system()	No				Yes			
_syncthreads_count(), _syncthreads_and(), _syncthreads_or()								
Surface functions								
3D grid of thread block								
Warp shuffle functions			No			Y	es	
Funnel shift	No				Yes			
Dynamic parallelism						103		

CUDA: Languages and APIs

HP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

GPU Computing Applications												
			Libra	ries and	Middle	ware						
	cuFFT cuBLAS cuRAND cuSPARSE	LAPACK CULA MAGMA	Thrust VSIP NPP SVN cuDPP OpenCu		L 1 rrent	PhysX OptiX		iray RealityServi	MATLAB er Mathematica			
	Programming Languages											
c c++		Fortran		Java Python Wrappers		DirectCompute		Directives (e.g. OpenACC)				
			CUI	DA-Enab	led NV	'IDIA G	PU					
Kepler Architecture (compute capabilities 3.x)		GeForce 600 Series					Tesia K2 Tesia K1					
Fermi Architecture (compute capabilities 2.x)		GeForce 500 Series GeForce 400 Series		Quadro Fermi Series			Tesia 20					
Tesla Architecture (compute capabilities 1.x)		GeForce 200 Series GeForce 9 Series GeForce 8 Series		Quadro FX Series Quadro Plex Series Quadro NVS Series			Tesla 10 Series					
			Entertain	iment		ofession		High P	enformance			

Prerequisites

HP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

- CUDA Toolkit and developer driver
 - http://www.nvidia.com/getcuda
- CUDA capable hardware
 - http://www.nvidia.com/object/cuda_gpus.htm
- To test if the CUDA Toolkit is correctly installed:

\$ nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2012 NVIDIA Corporation Built on Fri_Sep_28_16:10:16_PDT_2012 Cuda compilation tools, release 5.0, V0.2.1221

References

Many graphics and materials in this presentation are borrowed from the following sources:

- NVidia CUDA Tookit documentation
 - http://docs.nvidia.com/cuda/index.html
- Slides by prof. Wen-mei W. Hwu, of University of Illinois at Urbana-Chapaign, from his online course in Heterogeneous Parallel programming at Coursera
 - https://www.coursera.org/course/hetero
- Stanford CS193G course material
 - http://see.stanford.edu/see/courses.aspx