HP-SEE CUDA C overview

www.hp-see.eu

Dusan Stankovic Scientific Computer Laboratory Institute of Physics Belgrade dusan.stankovic@ipb.ac.rs

High-Performance Computing Infrastructure for South East Europe's Research Communities

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

- Learn about basic features of CUDA C
 - Compilation process and compute capabilities
 - Hierarchical thread organization
 - Mapping of threads to data indices
 - Interface for GPU memory management
 - Interface for launching parallel execution
- Also some advanced features
 - Memory organization on the GPU
 - Usage of CUDA streams and asynchronous execution
 - External libraries for CUDA
 - Profiling tools and performance measuring

Heterogenous execution model

- Host a CPU which executes the main program in serial
- Device a GPU which executes parallel portions of code
- Memory spaces are completely separate
 - All allocations and data movement responsibility of the programmer

Code for GPUs

HP-SEE

- CUDA C program is written as follows:
 - Serial parts in host C code
 - Parallel parts in device SPMD kernel C code
- Source code is compiled separately
 - □ Standard C/C++ code for the CPU
 - Device code in PTX compiled just-in-time for the exact device
- Use the nvcc for compilation
 - PTX is an assembly format
 - Specific binary code for the GPU devices

Device compute capability

NVIDIA GPU devices are based on different cores

- Each new generation changes architecture and adds some new features (Fermi, Kepler, ...)
- All use the same programming model even when the internal organization changes a lot
- Compute capability used to show which features GPUs support
 - □ Major number entirely new architecture
 - □ 2 for Fermi, 3 for Kepler
 - □ Minor number incremental upgrades to an architecture
 - 3.5 for newest Tesla cards, includes some new features
- Sometimes new features can be significant
 - 1.3 added support for double precision arithmetic

r South East Europa's Research

image taken from NVIDIA CUDA C Programming Guide

Inherent variables for each thread in a kernel launch

- blockDim, blockIdx for blocks in a grid
- threadIdx for threads in a block

Thread mapping to data indices

- Both the grid and each thread block can be threedimensional
 - Predefined data type dim3 to hold grid and block dimensions
 - Parameter for the kernel launch
- Example: a 2D matrix

float matrix[N][N];

int my_col = blockIdx.x * blockDim.x + threadIdx.x; int my_row = blockIdx.y * blockDim.y + threadIdx.y;

matrix[my_row][my_col] = ...

or South East Europa's Research

CUDA kernels

Kernel calls are points of parallel execution on the GPU

- Kernel is defind using ____global___ declaration specifier
 - Meaning that it can execute on the GPU
- Each kernel launch has an execution specification
 - Grid and block dimensions are necessary
 - Syntax is my_kernel<<< ... >>>(arg1, arg2, ...);
- There are some more declaration specifiers:

	Executed on:	Callable from:
<pre>device float dev_func()</pre>	device	device
global void kern_func()	device	host
<pre>host float host_func()</pre>	host	host


```
}
int main()
{
....
```

```
// Kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);
```

}

. . .

GPU memory management

CUDA GPU has its own address space

- Necessary to allocate and free data on the GPU
- Necessary to transfer data from the main memory into the GPU memory and in the other way

for South East Europe's Research Co

CUDA memory API - data allocation

- Memory allocation and deallocation similar to malloc and free in C for the CPU
- udaMalloc(void** dev_ptr, size_t size);
 - dev_ptr address of a pointer to the device memory
 - size size to allocate in bytes
 - double pointer because pointer itself will be changed

cudaFree(void* dev_ptr);

dev_ptr - pointer to the device memory allocated with cudaMalloc

CUDA memory API - data movement

- Used to explicitly move data to the GPU and back to the CPU memory
- cudaMemcpy(void* dst, const void* src, size_t count, enum cudaMemcpyKind kind);
 - dst pointer to the transfer destination address
 - src pointer to the transfer source address
 - count size of data to copy in bytes
 - kind type of transfer
 - □ cudaMemcpyHostToDevice from the host to the device
 - cudaMemcpyDeviceToHost from the device to the host

CUDA memory API example

HP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

```
int main()
{
```

```
float *host_array, *dev_array; int size =
N*sizeof(float));
    host_array = malloc(size);
    cudaMalloc(&dev_array, size);
    cudaMemcpy(dev_array, host_array, size,
                cudaMemcpyHostToDevice);
    // Kernel invocation with N threads
    process_array<<<1, N>>>(dev_array);
    cudaMemcpy(host_array, dev_array, size,
                cudaMemcpyDeviceToHost);
    free(host_array);
    cudaFree(dev_array);
```

Indexing of 2D structures

Contiguous memory for multidimensional structures

- Can be accessed with a single indexing operation
- Good for performance, allows for easy transferring of data

C example:

- □ data is stored row by row in memory
- mat[i][j] translates to mat[i*width + j];

In CUDA:

- Thread x index changes fastest (important for thread scheduling issues)
- We should use x to select a column and y to select a row for a 2D matrix

Working with 2D arrays example

```
__global___ void process_matrix(float *mat, int nrows, int ncols) {
                                                                          for South East Europa's Research (
    int my_row = blockIdx.y * blockDim.y + threadIdx.y;
    int my_col = blockIdx.x * blockDim.x + threadIdx.x;
    //no need to loop through matrix elements, need to check bounds
    (if my_row < nrows && my_col < ncols) {</pre>
        mat[my_row * ncols + my_col] = some_func();
    }
}
void main() {
    cudaMemcpy(dmat, hmat, size, cudaMemcpyHostToDevice);
    dim3 block_size(NTHREADS, NTHREADS);
    dim3 grid_size((ncols-1)/NTHREADS+1, (nrows-1)/NTHREADS+1);
    process_matrix<<<qrid_size, block_size>>>(dmat, nrows, ncols);
    cudaMemcpy(hmat, dmat, size, cudaMemcpyDeviceToHost);
    . . .
```

}

GPU memory organization

Registers are per-thread

- very low latency, very high throughput
- Iimited resource, used for automatic variables
- Shared memory (and L1 cache) is per-block
 - Iow latency, high throughput
 - can yield significant performance boost, depends on algorithm
 - programmer is responsible for its usage
 - □ shared/cache split can be controlled using the API
- Global memory is visible to all threads
 - high latency, moderate throughput
 - memory allocated with cudaMalloc is global
 - □ has the highest capacity

for South East Europe's Research Co

CUDA memory organization examples

HIP-SEE

```
__device__ int global_var; //global
```

```
__global__ void my_kernel(float *array, int size)
{
    int block_xsize = blockDim.x; //register
    int my_ind = blockIdx.x * blockDim.x + threadIdx.x;
    __shared__ float smem[block_xsize]; //shared
    //load into shared memory
    smem[threadIdx.x] = array[my_ind];
    ...
    //do something with shared array
}
```

Thread synchronization in CUDA

- Sometimes a synchronization between threads is necessary
 - happens between various computation stages
 - usually follows loading into shared memory
- Synchronization between threads in the same block
 - syncthreads() function causes each thread in a block to wait untill all reach that point
 - □ to ensure that all needed elements are stored into shared memory
 - to ensure that all needed elements are read from shared memory before its contents are modified again
- Synchronization between threads from different blocks
 - □ can be done with global variables slow, not recommended
 - best to create separate kernels and synchronize in between

for South East Europa's Research (

Host – device synchronization in CUDA

- CUDA calls are synchronous with regard to host and device
 - example cudaMalloc, cudaMemcpy, ...
- Kernel launches are asynchronous on the host side
- Host can do some work while kernel is being executed on the GPU
- To synchronize after a kernel launch use cudaDeviceSynchronize()
- Allows for partial overlap but there is an asynchronous API for even more control
- Memory copying can be overlapped with computation on the CPU, but also with computation on the GPU

Asynchronous memory transfers

High-Performance Computing Infrastructure for South East Europe's Research Communities

- cudaMemcpyAsync(void* dst, const void* src, size_t count, enum cudaMemcpyKind kind, cudaStream_t stream = 0);
 - stream an additional parameter to the call, defaults to zero
 - host memory used during transfer has to be page-locked
- Page-locked host memory prevents OS from swapping
 - allows using DMA controllers on host and device for better performance, and
 - allows to safely copy memory without OS interference, thus leaving the CPU free for other tasks
- Needs to be explicitly allocated as page-locked
 - use cudaMallocHost() or cudaFreeHost()
 - □ should be used carefully, too much of it can slow down the system

Introduction to streams

even when these commands are asynchronous to the host, they are executed in sequence on the GPU

> kernelA<<<grid, block>>>(arrayA, sizeA); kernelB<<<grid, block>>>(arrayB, sizeB);

 Additional parameter in kernel configuration – stream to use

□ if none is specified, a default stream is used

- Different streams are independent, can execute their commands concurrently
- To use asynchronous copying we need a separate stream

Using streams to overlap copying and computation

- Fermi GPUs and newer can overlap kernel execution, H2D and D2H transfers at the same time
- Create separate streams for execution and copying
- For synchronization with a specific stream use cudaStreamSynchronize

copy array1 H2D	calc array1	copy array1 D2H		
	copy array2 H2D		calc array2	copy array1 D2H

Using streams example

```
cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMallocHost(&array1_h, size); cudaMalloc(&array1_d, size);
cudaMallocHost(&array2_h, size); cudaMalloc(&array2_d, size);
```

```
cudaMemcpyAsync(array1_d, array1_h, size, H2D, stream1);
kernel1<<<grid, block, 0, stream1>>>(array1_d, size);
cudaMemcpyAsync(array1_h, array1_d, size, D2H, stream1);
cudaMemcpyAsync(array2_d, array2_h, size, H2D, stream2);
kernel1<<<grid, block, 0, stream1>>>(array1_d, size);
cudaMemcpyAsync(array1_d, array1_h, size, D2H, stream1);
```

```
do_something_else(...);
//now we need the data from the first array
cudaStreamSynchronize(stream1);
process_array(array1_h);
```

for South East Europe's Research Co

Checking for errors in CUDA calls

High-Performance Computing Infrastructure for South East Europe's Research Communities

- All CUDA runtime functions return an error code
- For synchronous calls (such as cudaMemcpy)
 - error is related to the call execution
 - but, can also be a result of some previous asynchronous call
- For asynchronous calls (such as kernel launches or cudaMemcpyAsync)
 - error can only be related to launching of the CUDA function (for example, wrong parameters)
 - errors that happen during execution can only be checked at subsequent synchronization points

```
cudaError_t err;
```

```
if((err=cudaMemcpy(a_d, a_h, size, H2D)) != cudaSuccess)
exit(1)
```

```
compute<<<grid, block>>>(a_d, size);
```

if((err=cudaDeviceSynchronize()) != cudaSuccess) exit(1); Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013

Numerical libraries for CUDA GPUs

- NVIDIA is developing numerical libraries for its GPU cards
 CUBLAS, CUFFT, CURAND, CUSPARSE
- Thrust a template library based on STL
- Relatively sasy to use, just swap some routine calls and link with CUDA libraries
 - memory allocation and movement is still responsibility of the programmer
 - sometimes it is more complicated CUBLAS uses column based storage (like FORTRAN), need to swap dimensions
- They have their own error types for example cublasStatus_t or cufftResult_t

Debugging and profiling

- For debugging there is an extension to gdb called CUDA-GDB
- Allows breakpoints inside kernels
- Supports switching between thread contexts and printing values of thread local variables
- Command-line profiler for CUDA is a part of the toolkit
 - very easy to use to get initial measurements just export an environment variable
- \Box export CUDA_PROFILE = 1
- export CUDA_PROFILE_LOG = path/to/log/file

r South East Europa's Research

Questions?

Introduction to parallel programming with CUDA training – Institute of Physics Belgrade – 18 February 2013