Electronic structure and transport in semiconducting materials

Nenad Vukmirović Scientific Computing Laboratory Institute of Physics Belgrade

Institute of Physics Belgrade, 18 November 2010

Examples of electrical and optical devices

T. Aellen et al, APL 83, 1929 (2003)

http://www.esdalcollege.nl/eos/vakken/ na/zonnecel.htm

Methods for electronic structure and electronic transport

Density functional theory

Many electron problem can be reduced to a set of single particle problems (Kohn-Sham equations)

$$
\left[-\frac{\hbar^2}{2m_0}\nabla^2 + V_{ion} + V_{H} + V_{xc}(\varrho)\right]\psi_i = \varepsilon_i\psi_i
$$

where $\mathsf{V}_{_{\mathsf{H}}}$ is the Hartree potential:

$$
V_H(\mathbf{r}) = \frac{1}{4\pi\,\varepsilon_0} \int d\mathbf{r}' \frac{\varrho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}
$$

 ρ the electronic charge density:

$$
\varrho = -e \sum_{occ} |\psi_i|^2
$$

and $V_{\text{xc}}(\rho)$ the exchange correlation potential that has to be approximated (for example local density approximation)

Empirical pseudopotential method

Tight-binding method

SCIENTIFIC IMPUTING Cо **ABORATORY**

Envelope function methods

Charge patching method

BORATORY

Methods for electronic transport

- $\bullet H = H_{0} + H_{int}$
	- where H_0 is the single particle Hamitlonian
	- where H_{int} is the rest (external fields, phonons, impurities,...)
- Semiclassical (Boltzmann) approach $\langle a^{\dagger}_{\alpha}(t_1) a_{\alpha}(t_1) \rangle$

- Density matrix approach
	- central quantities are coherences $\langle a^+_{\alpha}(t_1) a_{\beta}(t_1) \rangle$
- Nonequilibrium Green's functions approach
	- central quantities are Green's functions $\langle a_{\alpha}^{+}(t_1) a_{\beta}(t_2) \rangle$

Treatments of e-ph interaction

- Atomistic methods
	- e-ph coupling constants can be obtained from the change in single particle Hamiltonian due to displacements of atoms
		- can be extremely computationally expensive
- Models for e-ph interaction in inorganic semiconductor nanostructures:
	- approximation that the e-ph interaction Hamiltonian is the same as in bulk
	- consideration of phonon confinement effects continuum model for phonons

Intraband quantum dot optoelectronic devices

Interband and intraband transitions

- Interband transitions
	- between conduction and valence band
	- visible, UV, NIR
- Intraband transitions
	- within the conduction (or valence) band
	- NIR, MIR, FIR (THz)

Quantum well and quantum dot intraband optoelectronic devices (1)

Quantum well infrared photodetectors (QWIPs) • realized in mid 1980s Quantum dot infrared photodetectors (QDIPs) realized in mid 1990s

Quantum well and quantum dot intraband optoelectronic devices (2)

Optically pumped lasers based on quantum wells

• realized in 1997

- Optically pumped lasers based on quantum dots
	- not realized yet

Quantum cascade lasers based on quantum wells • realized in 1994

Quantum cascade lasers based on quantum dots • not realized yet

Why quantum dot intraband devices ?

Self-assembled quantum dots – high dot density, D~15-30nm, h~3-7nm, energy levels spacing ~30-60 meV.

- A fully discrete spectrum
	- reduced phase space for relaxation processes.
- Consequences for device characteristics
	- lower dark current in QDIPs:
		- room temperature operation of QDIPs demonstrated.
			- Bhattacharya et al., APL 86 191106 (2005); Lim et al., APL 90 131112 (2007)
	- lower threshold in lasers expected:
		- demonstrated in QCLs in magnetic field.

However: difficult to engineer QDs, i.e. produce the dots of desired size, shape and composition.

Electronic structure of QDs

- 8-band kp method
- Symmetry used to reduce the computational effort.

N. Vukmirović et al, PRB 72, 075356 (2005).

Carrier transition rates in QDs

- Interaction with LO phonons
	- Fermi's golden rule not applicable.
	- transition rate determined by anharmonic decay of an LO phonon.
- Interaction with LA phonons
	- weaker, treated within Fermi's golden rule.
	- important only for small ∆*E*.
- Interaction with EM radiation
	- Dipole approximation + Fermi's golden rule

Transport in QDIPs – dark current

Current calculated by considering all intra- and interperiod transition rates.

• Transport channels causing the increase in dark current were identified.

• Inset: comparison with exp. results of Chen et al, JAP 89, 4558 (2001).

Transport in QDIPs – responsivity

Appearance of peak at smaller energies and the drop of responsivity at higher voltages predicted in agreement with experiment.

Calculated values of responsivity are overall consistent with experimental results.

Transport in QD cascades

- · InAs/GaAs lens-shaped QDs, D=20nm, h=5nm, T=77K. NEGF simulation with interaction with LO and LA phonons.
- Transport takes place through QD ground states.

D

h

RATORY

П

N. Vukmirović et al, PRB 72, 075356 (2007).

Design and simulation of a THz QD QCL

ORATORY

Outlook - emerging structures

L. H. Li et al, IEEE JSTQE 40, 239 (2008).

- Theoretical challenges
	- whole structure with contacts
	- nonuniformities

• Columnar quantum rods • Quantum dots in nanowires

M. T. Bjork et al, APL 80, 1058 (2002).

Amorphous conjugated polymers

Conjugated polymers

•Single polymer chains:

•Polymers forming a real material:

P3HT

MEH-PPV

Applications

•Advantages •light and flexible •easy and cheap processing •tailored synthesis

•Drawbacks •low mobility •sensitive to UV •degradation with time

Electronic structure

- Atomic structure classical MD, simulated annealing
- Charge patching method for electronic structure
- Hole states in P3HT:
	- typically localised to 3-6 rings.

N. Vukmirović and L.-W. Wang, J. Phys. Chem. B 113, 409 (2009)

P3HT – 5 chains with 20 rings (2510 atoms)

blue: 18.910eV green: 18.888eV cyan: 18.755eV red: 18.690eV pink: 18.682eV black: 18.675eV white: 18.654eV

Previous approaches for transport

- •Gaussian or exponential DOS •Cubic lattice of sites
- •Miller-Abrahams transition rates

$$
W_{ij} \sim \exp(-\alpha R_{ij})
$$

\n
$$
E_i > E_j
$$

\n
$$
W_{ij} \sim \exp(-\alpha R_{ij}) \exp(-\Delta E_{ji}/kT)
$$

\n
$$
E_i \le E_j
$$

•Several fitting parameters

This approach for transport

- Direct calculation of WFs and energies **ⁱ**
- Transition rates calculated by considering interaction with all phon

on modes
_{ij}=
$$
\pi \sum_{\mu}
$$
 $\frac{|M_{ij,\mu}|^2}{\omega_{\mu}}$ $[N(\hbar \omega_{\mu})+1] \delta(E_i-E_j-\hbar \omega_{\mu})$

 W_{ij}

SCIENTIFIC

ORATORY

Phonon modes from classical force field

Electron-phonon coupling constants from charge patching

$$
{M}_{i j,\,\mu} {=} \big< i | \frac{\partial H}{\partial \nu_\mu} | j \big>
$$

No fitting parameters

W

Multiscale method for carrier transport

Mobility

•Microscopic insight into the current

paths in the material.

http://www.colourlovers.com/uploads/2008/02/sydney_lightning_bolts.jpg

N. Vukmirović and L.-W. Wang, Nano Lett. 9, 3996 (2009)

Outlook

- •Transport in polymers of arbitrary order
	- coherence?
	- polarons?

R. A. Street et al, PRB 71, 165202 (2005).

•Organic crystals based on small molecules

• transport is still not well understood

Graphene antidot lattices

Graphene

- •Ultrahigh charge carrier mobility.
- •Great mechanical strength.
- •Lack of band gap.
- •Methods to introduce the band gap
	- graphene nanoribbons
	- covalent functionalization
	- create holes in graphene:
		- graphene antidot lattice

Model for graphene antidot lattices

- •TB model for electronic structure
- •Empirical potentials for phonons
- •E-ph Hamiltonian obtained by assuming linear dependence of TB hopping integrals on the distance

SCIENTIFIC

ORATORY

•Quasiparticle spectral weight:

$$
Z_c^{-1}(0) = 1 + \frac{1}{N} \sum_{\mathbf{q},\lambda} \frac{|\gamma_{cc}^{\lambda}(\mathbf{k} = \mathbf{0}, \mathbf{q})|^2}{\left[\varepsilon_c(0) - \varepsilon_c(\mathbf{q}) - \omega_{\lambda}\right]^2}
$$

N. Vukmirović, V. M. Stojanović and M. Vanević, Phys. Rev. B 81, 041408 (R) (2010).

Polaronic nature of carriers

- • $Z_c^{-1}(0) = 3.7 5$ for lattices with R=5 and $R=7$
	- Polaronic nature of carriers

- •Physical origin of this result
	- Narrow bare electronic bands
	- Maxima of $γ(k=0,q)$ at small q for several phonon modes

 γ (k=0,q) for several phonon modes

V. M. Stojanović, N. Vukmirović and C. Bruder, Phys. Rev. B 82, 165410 (2010).

Outlook

- •Understand the nature of charge carriers in other graphene-based nanostructures.
- •Develop a method for the calculation of transport properties of polaronic carriers.
- •What will be the impact of graphene based structures?

Colleagues and collaborators

●Intraband quantum dot optoelectronic devices

- D. Indjin, Z. Ikonic, V. D. Jovanovic, I. Savic, P. Harrison, University of Leeds, UK.
- S. Tomic, Daresbury Laboratory, Warrington, UK
- P. Aivaliotis, E. A. Zibik, L. R. Wilson, University of Sheffield, UK.
- L. Fu, G. Jolley, H. H. Tan, C. Jagadish, Australian National University.
- Electronic structure and transport in conjugated polymers
	- L. W. Wang, Lawrence Berkeley National Laboratory (LBNL)
	- F. Martin, M. Salmeron, LBNL
	- Gao Liu, Wanli Yang, LBNL
	- J. Roldan, M. Fernandez-Gomez, University of Jaen, Spain
- •Graphene antidot lattices
	- V. M. Stojanovic, C. Bruder, University of Basel
	- M. Vanevic, Delft.

