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Formation of Bose-Einstein
condensates

What is Bose-Einstein condensation (BEC)? For high temperatures (of the order of room
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temperature) the bosonic gas  behaves
classically; the behavior is that of “billiard
balls”

For low temperatures atoms can be considered
quantum wave packet whose spatial extend is
close to the thermal de Broglie wavelength

When a gas of bosons is cooled below a critical
temperature T, most of the atoms condense
into the lowest quantum state

For T=0 all bosons are in the minimum energy
state and form a perfect Bose-Einstein
condensate
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Faraday patterns

The first work is due to Faraday. The Appendix of On a
peculiar class of acoustical figures and on certain forms assumed by
a group of particles upon wvibrating elastic surfaces, Philos. Trans.
R. Soc. London 121, 299 (1831) is now classic:

“When the upper surface of a plate vibrating so as to produce
sound is covered with a layer of water, ﬁle water usually
presents a beautifully crispated appearance [...] Too much water
sometimes interferences with the beauty of the appearance, but the
crispation is not incompatible with much fluid.”
[crispation=undulation]

Faraday patterns became a standard topic in nonlinear
ghysics due to experiments with liquids and colloids in the
Os

The main difference between a Faraday pattern and other
non-stationary patterns is that a Faraday pattern has an intrinsic
frequency half that of the drive



Faraday patterns in BECs
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Faraday patterns in BECs
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FIG. 1. In-trap absorption images of Faraday waves in a BEC.
Frequency labels for each image represent the driving frequency
at which the transverse trap confinement is modulated.

P. Engels et al., Phys. Rev.
Lett. 98, 095301 (2007).
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FIG. 2.  Average spacing of adjacent maxima of the longitudi-
nal patterns plotted versus the transverse driving frequency.
Points are experimental data, while the line shows the theoretical
values calculated for the longitudinal modes closest to half the
driving frequency.




Faraday patterns in BECs

-~ [— L V2 + V(r)+ gN |v| ] Wb

a-rrz.wf-r P+ U(z)

2m

Y(r,t) = o(r, t;0(z,1)) f(z,1)

1 3 .'--ain"'? :
=+ e ,IL—W f
\f 1+ 2a,N|f|”

Vo (z,t)

o(r,t; (2, 1)) =

L. Salasnich, Laser Phys. 12, 198
(2002); L. Salasnich, et al., Phys.

Rev. A 65, 043614 (2002) _
g-Gaussian based NPSEs:

wi(r,t) =¢(r,t;a(z, t),q(z,0))f (z, 1),

o(r.t;a,q) =c(1—r’a(1 —q)"",

_df(z,t) [ n’ 92
if , =\ _ 5
ot ] 2m 972

+ 20, L o f@, O N

1

_ ; (as [f (z.1)]? N]ﬂ }f{z. t)

A.I Nicolin, R. Carretero-Gonzales,

and P.G. Kevrekidis, Phys. Rev. A 76,
063609 (2007) A.IL Nicolin and M.C. Raportaru,

Physica A 389, 4663 (2010).




Variational treatment
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Assuming that the period of the wave is smaller than the longitudinal
width of the condensate we have:

(1) = 2w, (t)o(t).
CN o (1 Al These are the well-
known equations of the

collective
modes

o(t) = —u(t) ( NN These are the equations
N " ’ " of the surface wave

i(t) = 5 o(t).




Variational treatment

Under the assumption that the longitudinal extent of the condesate is constant the
amplitude of the surface wave is described by:
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where a(k,w) and b(k, w) deppend on the geometry of the experimental setup

a(k,w)=1 corresponds to

a(k,cw)=2% corresponds to resonant waves

w=Q




Variational treatment




Dipolar condensates
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Conclusions and outlook

We have addressed theoretically Faraday waves in one-
dimensional one-component BECs

We have obtained fully analytical results using the theory of the Mathieu
equations

We have derived a set of ODEs that describe consistently the dynamics of the
bulk of the condensate and that of the Faraday waves

Future veins of research include

Faraday pattens in pancake-shaped two-components condensates (full
numerical simulations and effectively 2D NPSEs)

Faraday waves/patterns in dipolar BECs



