

Performance and scalability evaluation of short fragment sequence alignment applications

- Windisch, G John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary
 Kozlovszky, M. - John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary
- Balasko, A. Lab. of Parallel & Distrib. Comput., MTA SZTAKI, Budapest, Hungary

- The recently used deep sequencing techniques present a new data processing challenge: mapping short fragment reads to open-access eukaryotic (animal: focusing on mouse and rat) genomes at the scale of several hundred thousands.
- This task is solvable by algorithms like BLAST, BWA. which is one of the most frequently used tool in bioinformatics
- Local installations of these algorithms are typically not able to handle such problem size therefore the procedure runs slowly, while web based implementations cannot accept high number of queries.
- SEE-HPC infrastructure allows accessing massively parallel architectures and the sequence alignment code is distributed free for academia.
- The aim of the task is threefold,
 - the first task was to port the BLAST algorithm to the massively parallel HP-SEE infrastructure
 - create a BLAST service, which is capable to serve the short fragment sequence alignment demand of the regional bioinformatics communities,
 - to do sequence analysis with high throughput short fragment sequence alignments against the eukaryotic genomes to search for regulatory mechanisms controlled by short fragments
- For more details, please see [1, 2]

Role of Obuda University in the project

- Create and operate a Life Science portal
- Port the applications to supercomputing infrastructure
 - Enhancing wall clock performance by optimization
- Create services that use the ported applications and make them available on the portal

Β

U

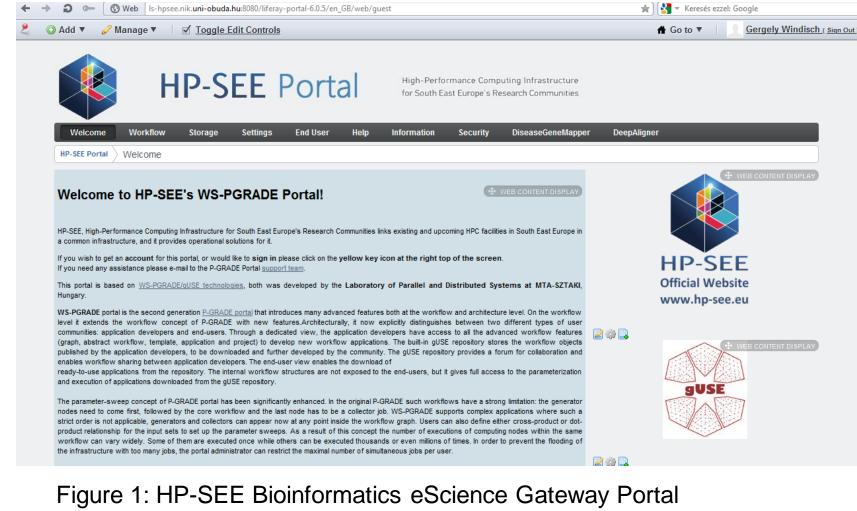
Α

T

E

G

Y


E

Т

Ε

Μ

LS-HPSEE portal @ Obuda University

running at Obuda University. Server is mainaned by SZTAKI, backend infrastructure provided by NIIF The portal has just been opened for the public

- Short sequence analysis
 - Deep Aligner
 - Runs BLAST on a huge number of short fragments against a large database
- Disease Mapping
 - Disease Gene Mapper
 - Maps known genes associated to a disease to other organizations
- Design goals
 - Easy to use for the scientists
 - High performance
 - Highly scalable
- Requirements
 - Web browser
 - User account on the HP-SEE server (available at Obuda University)
 - User account and certificate for the NIIF supercomputing centers (available at NIIF)

Developed Services

- Both services are gUSE portlets
- gUSE is a WS-PGrade portal developed at MTA SZTAKI, Hungary
 - Workflow based operation

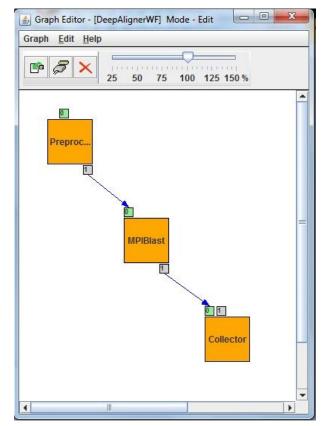


Figure 2: Simplified workflow graph of Deep Aligner

Gergely Windisch - Obuda University

HP-SEE Portal

High-Performance Computing Infrastructure for South East Europe's Research Communities

Welcome	Workflow	Storage	Settings	End User	Help	Information	Security	DiseaseGeneMapper	DeepAligner
P-SEE Portal	DiseaseGen	eMapper							
seaseGeneM	apper								۶ - +
				Create new	DiseaseGe	eneMapper Query			
	Query Creati	on Date And Ti	me	State	/S			Actions	
	2012/06/	18 at 15:44:12		INIT		Set Parame	eters		Delete
	2012/06/	18 at 16:05:47		FINISHED				Download	Delete
	2012/06/	18 at 16:31:34		FINISHED				Download	Delete

Powered By Liferay

Figure 3: Disease Gene Mapper portlet main window

Developed Services - DGM

/ 🖂 Is-I	hpsee.nik.uni-obuda.hu:8 × 🔎 DCI BRIDGE	×	CIB Bank - Eg	vütt. a jövőről 🗙	DiseaseGeneMa	apper - HP-S X				
€ →	C SIs-hpsee.nik.uni-obuda.hu:80							☆ 🔧		
2	🔾 Add 🔻 🥜 Manage 🔻 🛛 🗹 Tog	<u>qle Edit Contro</u>	o <u>ls</u>		1	Go to 🔻 🕴 🧾 Gero	ely Windisch (s	iiqn Out)		
						ing Infrastructure				
	NCBI database	nuccore		earch Communities						
	Source animal (used for the NCBI search)	-								
	Destination Animal (blast database)	Human 💌					D	_ 1		
	Disease name	asthma				DiseaseGeneMapper	DeepAligner			
HP-S	E value	0.001								
Dise	Blast Algorithm blastn 💌						+ - بر	×		
	Number of sequences to download	50						-		
	Submit Job					Actions				
	Submit Job						Delete			
					Done	Download	Delete			
	2012/06/18 at 16:31:34		FINISHED			Download	Delete			
	2012/06/19 at 08:25:16		INIT	Set Parame	eters		Delete			
				-						
							Powered By L	iferay		
								-		
<			"	1				•		

Figure 4: Disease Gene Mapper set properties

ra ra	Compressed file containing the sequences (accepted types ar, zip) Ilast database	Cito	oose File) ir human	nputfiles.tar.gz		ing Infrastructure earch Communities	
v E	value	0.00	1			DiseaseGeneMapper	DeepAligner
	Submit job						
ee					-		₽ - + ×
L		CICULC IICH	peepangnei	query	Done		
	Query Creation Date And Time	Status		Actions			
	2012/06/19 at 10:24:02	INIT		Set Parameters			Delete

Powered By Liferay

Figure 5: Deep Aligner – set properties

Select job and port: collectResults job's 1 's port (I Download!	ing Infrastructure earch Communities					
V HP-:		Done	DiseaseGeneMapper	DeepAligner		
DiseaseGeneMapper				₽-+×		
	Create new Disea	seGeneMapper Query				
Query Creation Date And Time Status			Actions			
2012/06/18 at 15:44:12	INIT	Set Parameters		Delete		
2012/06/18 at 16:05:47	FINISHED		Download	Delete		
2012/06/18 at 16:31:34	FINISHED		Download	Delete		
2012/06/19 at 08:25:16	INIT	Set Parameters		Delete		

Figure 6: Downloading results

- Amdahl's law
 - "The speedup of a program using multiple processors in parallel computing is limited by the time needed for the sequential fraction of the program"
- Both applications consist of three jobs
 - job1: preparation (sequential)
 - job2: execution (highly parallel OpenMPI)
 - job3: results collection (sequential)
- Applications differ mainly in Job1 and Job2
 - Job2 uses the same algorithms (they only differ in their parameters) so the performance evaluation holds for both applications

Ι

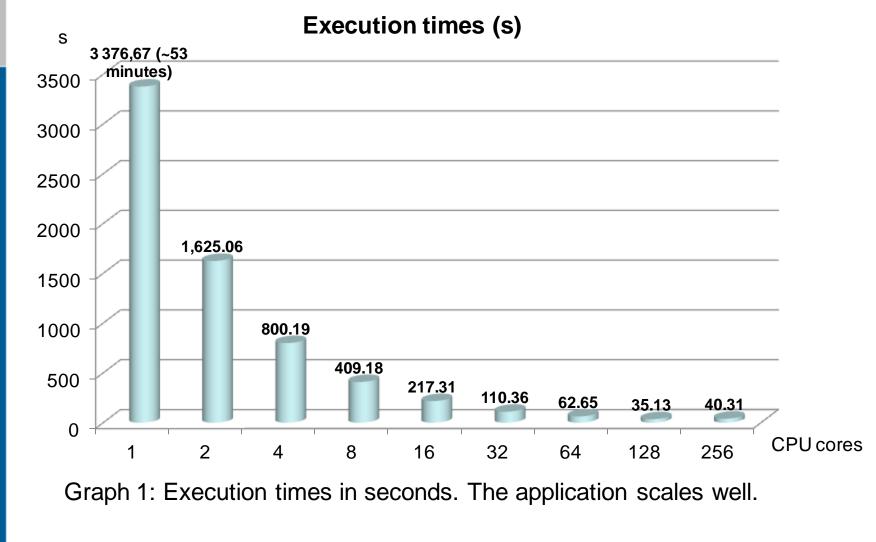
- Job 1 in DeepAligner
 - Takes n input sequences from the user
 - Input files come in a tar.gz
 - faster to process than all sequences in one big file
 - pigz could be used for multithreaded decompress
 - not used in our app for compatibility reasons
 - Overall percentage of execution time is about 0.01% of the whole job - 32 node MPI
 - No real reason to parallelize

- Job 1 in DiseaseGeneMapper
 - Gets the name of a disease from the user
 - Downloads gene sequences from the NCBI database associated with the given disease
- The speed of the internet connection is vital in this application
 - on average downloading one sequence takes about 0.913 s
 - total execution time is O(n)
 - can be parallelized multithreaded downloader
 - problem: NCBI server detects abuse with too many threads and shuts down the connection
 - we use a single thread downloader to avoid accidents

- Job 2 in both applications
 - Uses MPIBlast to search for the gene sequence
 - Most time consuming job by far
 - ~99.3% of the total execution time is spent in this job
 - ~99.1% of Job2's execution time is spent on MPIBlast
 - profiling MPIBlast [5] shows that on average 85% of the time is spent on actual BLAST search, about 7% is fragment copy & communication 3% is printing the results. Other functions use up the rest of the time

- Job 3 in both applications
 - Receives the results from the MPIBlast jobs (one from each)
 - Compresses the results
 - Sends it back to gUSE
- Sequential execution
 - pigz could be used to speed it up
- Does not run long enough to worth optimizing

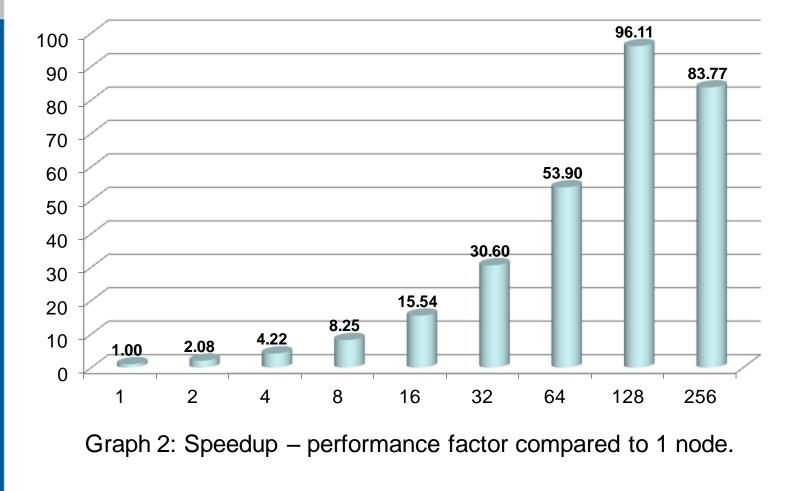
- Job2 was the real candidate for performance optimization
- We chose MPIBlast for the main algorithm because of it's proven speed and reliability [3,4]
- Following performance measurements were executed in the NIIFI supercomputing center
 - Database size: 5.1 GB
 - Input sequence sizes:
 - 29.13 kB
 - 58.42 kB
 - 130.41 kB
 - note: the scalability figures were similar for all three, the execution times on the following slides are for the first input (29.13 kB)


Measurement methodology

- Each measurement was executed 10 times
- The average of the executions was taken as the value
- note: the measurements have actually been executed on x+2 nodes, but 2 nodes are always used for administration purposes only

Ó

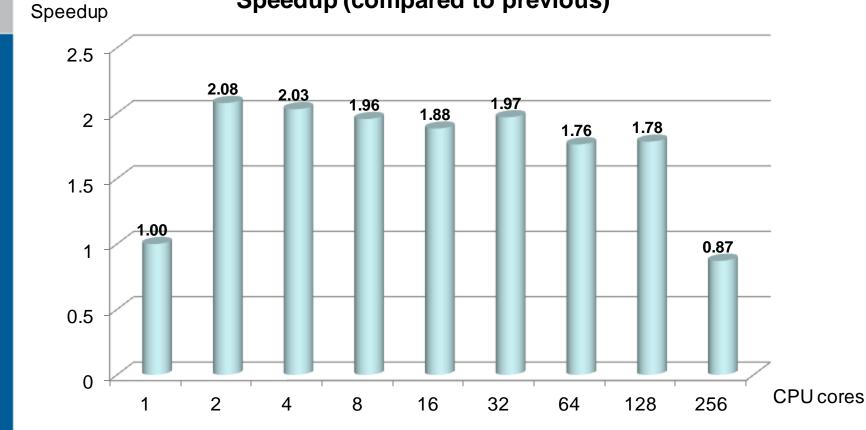
Scalability & Performance results



Gergely Windisch - Obuda University

Scalability & Performance results

Speedup (compared to 1 node, ..x)



Ó B U D A Ι E G Y E T Ε Μ

Scalability & Performance results

Speedup (compared to previous)

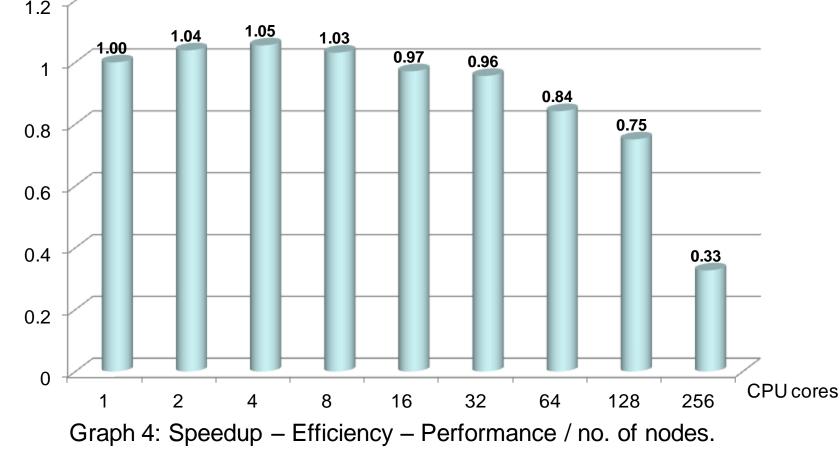
Graph 3: Speedup – performance factor compared to the previous node number.

Gergely Windisch - Obuda University

Ó B U D A Ι EGYET Ε Μ

Ó B U D A

Ι

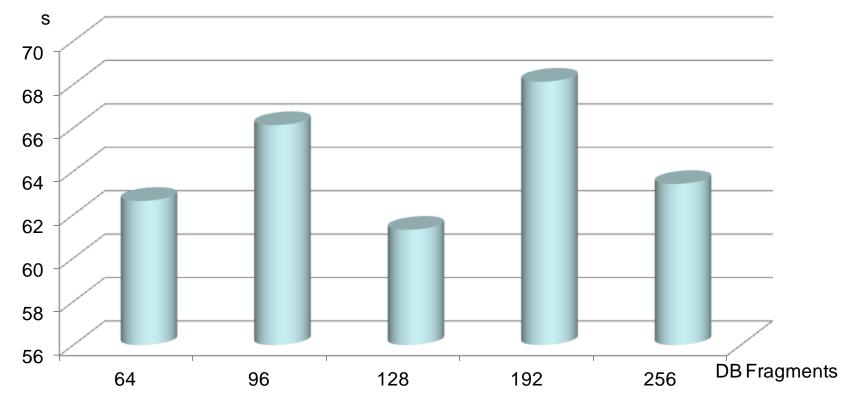

EGYETE

Μ

Scalability & Performance results

Efficiency

Gergely Windisch - Obuda University



- BLAST aligns the sequences in large gene databases
- MPIBlast uses the same databases, but the databases are split up into smaller pieces
- According to our measurements, DB frament number impacts performance
 - important to find the optimal number of fragments

Optimizing DB Fragment number

Execution times vs. DB Fragments

Graph 5: Execution time on 64 CPU cores. Fragment size should be an integer multiple of the CPU cores

23

- Our current implementation peaks at around 128 cores
 - Speedup is almost linear 96x at 128 nodes even better at fewer.
- Increasing the number of MPI nodes any further yields only minor performance increase
 - reason is the communication overhead
- Further optimization did not help significally
 - --use-parallel-writes

U D A

Ι

Ε

G Y

Ε

Т

E

 \mathbf{M}

Optimizing for real world performance

- Synthetic testing shows that the higher the number of nodes, the better performance it yields up to 128 nodes
- However: life is not just fun and games
 - Depending on the Supercomputer's utilization smaller jobs actually finish faster in real life according to our experience
 - the scheduler policy decides when to execute applications based on required / available resources
- Measurements were executed on NIIF's Budapest server (Sun Grid Engine Open Grid Scheduler (OGS/GE 2011.11p1))
 - 768 CPU cores
 - The server is highly utilized at all times
 - Jobs were executed with normal user rights

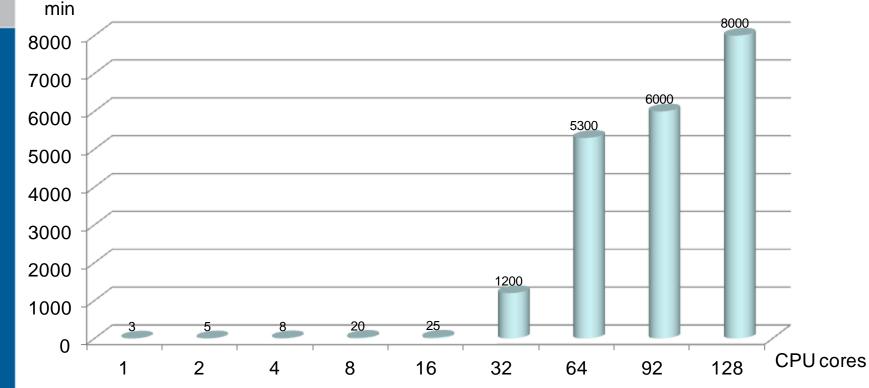
U

D

Α

Ι

E G Y E


Т

E

Μ

Optimizing for real world performance

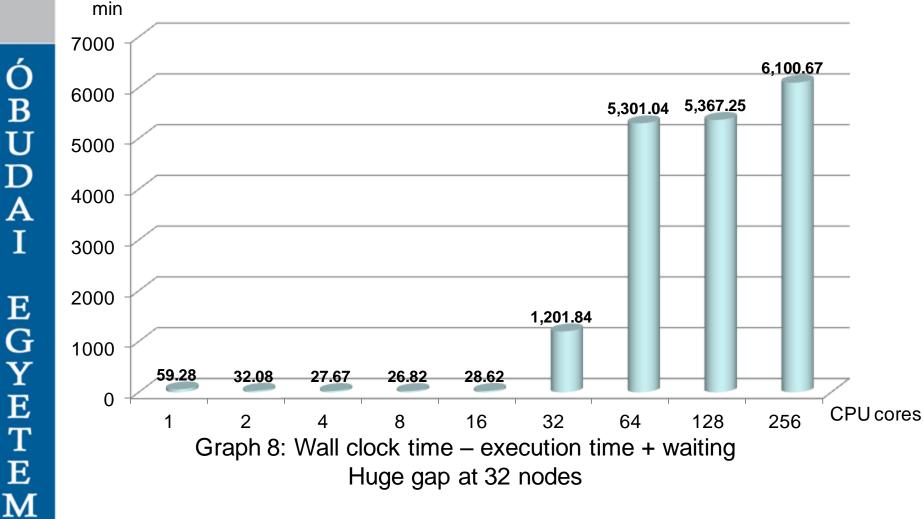
Approximate time spent waiting on the queue (min)

Graph 7: Minutes spent on the queue. On a busy HPC system jobs scheduled for a high number of nodes do not get scheduled for a long time

Gergely Windisch – Obuda University

U

D A


Ι

Т

Ε

Optimizing for real world performance

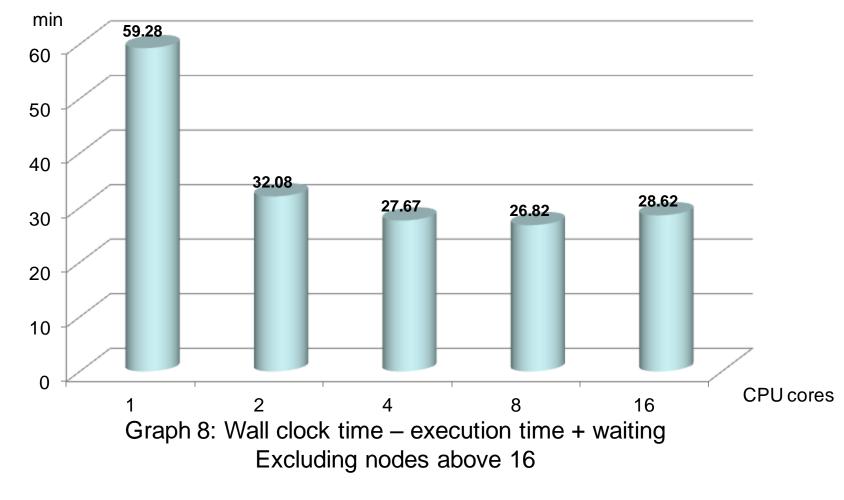
Wall clock time (min)

Gergely Windisch - Obuda University

Ó B U D

A

Ι


EGYET

E

Μ

Optimizing for real world performance

Real execution time (min)

Gergely Windisch - Obuda University

U

D

Α

- Conclusion
 - The best overall throughput was achieved by setting the MPI node count to 16
 - Optimal value for the currently used supercomputing infrastructure
 - The evaluations should be re-executed periodically or when there is an update on the servers (new scheduler version, HW upgrade etc.)
 - Our results apply for our servers different configuration will behave differently
 - Optimization should be done for every supercomputer

- Life Science portal was developed and is available for the scientists
 - <u>http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/guest</u>
 - researchers can add their services to the portal
- DiseaseGeneMapper and DeepAligner was ported to the supercomputing infrastructure
 - optimization lead to high performance
- Services were created which runs on the portal
 - <u>http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/diseasegene</u>
 - http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/deepaligner

Ó B U

D

- Enhancing the performance of the applications even further
 - Using different compilers
- Adding further applications to gUSE / HPC
- Making these applications available on the HP-SEE Bioinformatics eScience Gateway
- Connecting the HP-SEE Bioinformatics eScience Gateway Portal to Supercomputing infrastructures of other countries
 - portal is capable of communicating with different kinds of middlewares

Ó

Β

U

D

- [1] M. Kozlovszky, G. Windisch, Á. Balaskó;Short fragment sequence alignment on the HP-SEE infrastructure;MIPRO 2012
- [2] M. Kozlovszky, G. Windisch; Supported bioinformatics applications of the HP-SEE project's infrastructure; Networkshop 2012
- [3] A. Darling, L. Carey, and W. Feng; The Design, Implementation, and Evaluation of mpiBLAST; 4th International Conference on Linux Clusters; June 2003.
- [4] H. Lin, X. Ma, P. Chandramohan, A. Geist, and N. Samatova; Efficient Data Access for Parallel BLAST; IEEE International Parallel & Distributed Processing Symposium; April 2005.
- [5] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, W. Feng ; Massively Parallel Genomic Sequence Search on the Blue Gene/P Architecture; IEEE/ACM SC2008; November 2008.