
Performance and scalability evaluation of short
fragment sequence alignment applications

Windisch, G - John von Neumann Faculty of Informatics, Óbuda
University, Budapest, Hungary

Kozlovszky, M. - John von Neumann Faculty of Informatics, Óbuda
University, Budapest, Hungary

Balasko, A. - Lab. of Parallel & Distrib. Comput., MTA SZTAKI,
Budapest, Hungary

HP-SEE USER FORUM, Belgrade, 2012. October 17-19

Scientific motivation

• The recently used deep sequencing techniques present a new data

processing challenge: mapping short fragment reads to open-access

eukaryotic (animal: focusing on mouse and rat) genomes at the scale of

several hundred thousands.

• This task is solvable by algorithms like BLAST, BWA. - which is one of the
most frequently used tool in bioinformatics

• Local installations of these algorithms are typically not able to handle such
problem size therefore the procedure runs slowly, while web based
implementations cannot accept high number of queries.

• SEE-HPC infrastructure allows accessing massively parallel architectures
and the sequence alignment code is distributed free for academia.

• The aim of the task is threefold,

– the first task was to port the BLAST algorithm to the massively parallel
HP-SEE infrastructure

– create a BLAST service, which is capable to serve the short fragment
sequence alignment demand of the regional bioinformatics communities,

– to do sequence analysis with high throughput short fragment sequence
alignments against the eukaryotic genomes to search for regulatory
mechanisms controlled by short fragments

• For more details, please see [1, 2]

Gergely Windisch – Obuda University 2

Role of Obuda University in the project

• Create and operate a Life Science portal

• Port the applications to supercomputing infrastructure
– Enhancing wall clock performance by optimization

• Create services that use the ported applications and
make them available on the portal

Gergely Windisch – Obuda University 3

LS-HPSEE portal @ Obuda University

Gergely Windisch – Obuda University

Figure 1: HP-SEE Bioinformatics eScience Gateway Portal

running at Obuda University.

Server is mainaned by SZTAKI, backend infrastructure provided by NIIF

The portal has just been opened for the public

4

Developed Services

• Short sequence analysis
– Deep Aligner

• Runs BLAST on a huge number of short fragments against a
large database

• Disease Mapping
– Disease Gene Mapper

• Maps known genes associated to a disease to other organizations

• Design goals
– Easy to use for the scientists

– High performance

– Highly scalable

• Requirements
– Web browser

– User account on the HP-SEE server (available at Obuda University)

– User account and certificate for the NIIF supercomputing centers
(available at NIIF)

Gergely Windisch – Obuda University 5

Developed Services

• Both services are gUSE portlets

• gUSE is a WS-PGrade portal developed at MTA SZTAKI,
Hungary
– Workflow based operation

Gergely Windisch – Obuda University

Figure 2: Simplified workflow graph of Deep Aligner

6

Developed Services - DGM

Gergely Windisch – Obuda University

Figure 3: Disease Gene Mapper portlet main window

7

Developed Services - DGM

Gergely Windisch – Obuda University

Figure 4: Disease Gene Mapper set properties

8

Developed Services - DeepAligner

Gergely Windisch – Obuda University

Figure 5: Deep Aligner – set properties

9

Developed Services - DeepAligner

Gergely Windisch – Obuda University

Figure 6: Downloading results

10

Execution time analysis

• Amdahl’s law
– „The speedup of a program using multiple processors in parallel

computing is limited by the time needed for the sequential
fraction of the program”

• Both applications consist of three jobs
– job1: preparation (sequential)

– job2: execution (highly parallel OpenMPI)

– job3: results collection (sequential)

• Applications differ mainly in Job1 and Job2
– Job2 uses the same algorithms (they only differ in their

parameters) so the performance evaluation holds for both
applications

Gergely Windisch – Obuda University 11

Execution time analysis – Job 1

• Job 1 in DeepAligner
– Takes n input sequences from the user

– Input files come in a tar.gz

• faster to process than all sequences in one big file

• pigz could be used for multithreaded decompress

– not used in our app for compatibility reasons

– Overall percentage of execution time is about 0.01% of the whole
job – 32 node MPI

– No real reason to parallelize

Gergely Windisch – Obuda University 12

Execution time analysis – Job 1

• Job 1 in DiseaseGeneMapper
– Gets the name of a disease from the user

– Downloads gene sequences from the NCBI database associated
with the given disease

• The speed of the internet connection is vital in this
application
– on average downloading one sequence takes about 0.913 s

– total execution time is O(n)

– can be parallelized – multithreaded downloader

• problem: NCBI server detects abuse with too many threads
and shuts down the connection

• we use a single thread downloader to avoid accidents

Gergely Windisch – Obuda University 13

Execution time analysis – Job 2

• Job 2 in both applications
– Uses MPIBlast to search for the gene sequence

– Most time consuming job by far

• ~99.3% of the total execution time is spent in this job

• ~99.1% of Job2’s execution time is spent on MPIBlast

• profiling MPIBlast [5] shows that on average 85% of the time
is spent on actual BLAST search, about 7% is fragment copy
& communication 3% is printing the results. Other functions
use up the rest of the time

Gergely Windisch – Obuda University 14

Execution time analysis – Job 3

• Job 3 in both applications
– Receives the results from the MPIBlast jobs (one from each)

– Compresses the results

– Sends it back to gUSE

• Sequential execution
– pigz could be used to speed it up

• Does not run long enough to worth optimizing

Gergely Windisch – Obuda University 15

Performance and scalability measurements

• Job2 was the real candidate for performance
optimization

• We chose MPIBlast for the main algorithm because of it’s
proven speed and reliability [3,4]

• Following performance measurements were executed in
the NIIFI supercomputing center
– Database size: 5.1 GB

– Input sequence sizes:

• 29.13 kB

• 58.42 kB

• 130.41 kB

– note: the scalability figures were similar for all three, the
execution times on the following slides are for the first
input (29.13 kB)

Gergely Windisch – Obuda University 16

Measurement methodology

• Each measurement was executed 10 times

• The average of the executions was taken as the value

• note: the measurements have actually been executed on
x+2 nodes, but 2 nodes are always used for
administration purposes only

Gergely Windisch – Obuda University 17

Scalability & Performance results

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16 32 64 128 256

3 376,67 (~53
minutes)

1,625.06

800.19

409.18

217.31
110.36 62.65 35.13 40.31

Execution times (s)

Graph 1: Execution times in seconds. The application scales well.

Gergely Windisch – Obuda University 18

CPU cores

s

Scalability & Performance results

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256

1.00 2.08 4.22
8.25

15.54

30.60

53.90

96.11

83.77

Speedup (compared to 1 node, ..x)

Graph 2: Speedup – performance factor compared to 1 node.

Gergely Windisch – Obuda University 19

Scalability & Performance results

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256

1.00

2.08 2.03
1.96

1.88
1.97

1.76 1.78

0.87

Speedup (compared to previous)

Graph 3: Speedup – performance factor compared to the previous node number.

Gergely Windisch – Obuda University 20

CPU cores

Speedup

Scalability & Performance results

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128 256

1.00
1.04 1.05 1.03

0.97 0.96

0.84

0.75

0.33

Efficiency

Graph 4: Speedup – Efficiency – Performance / no. of nodes.

Gergely Windisch – Obuda University 21

Efficiency

CPU cores

Optimizing DB Fragment number

• BLAST aligns the sequences in large gene databases

• MPIBlast uses the same databases, but the databases are
split up into smaller pieces

• According to our measurements, DB frament number
impacts performance
– important to find the optimal number of fragments

Gergely Windisch – Obuda University 22

Optimizing DB Fragment number

Graph 5: Execution time on 64 CPU cores. Fragment size should be

an integer multiple of the CPU cores

Gergely Windisch – Obuda University 23

s

DB Fragments
56

58

60

62

64

66

68

70

64 96 128 192 256

Execution times vs. DB Fragments

Scalability conclusion

• Our current implementation peaks at around 128 cores
– Speedup is almost linear – 96x at 128 nodes – even better at

fewer.

• Increasing the number of MPI nodes any further yields
only minor performance increase
– reason is the communication overhead

• Further optimization did not help significally
– --use-parallel-writes

Gergely Windisch – Obuda University 24

Optimizing for real world performance

• Synthetic testing shows that the higher the number of
nodes, the better performance it yields – up to 128 nodes

• However: life is not just fun and games
– Depending on the Supercomputer’s utilization smaller jobs

actually finish faster in real life according to our experience

• the scheduler policy decides when to execute applications
based on required / available resources

• Measurements were executed on NIIF’s Budapest server
(Sun Grid Engine Open Grid Scheduler (OGS/GE
2011.11p1))
– 768 CPU cores

– The server is highly utilized at all times

– Jobs were executed with normal user rights

Gergely Windisch – Obuda University 25

Optimizing for real world performance

Graph 7: Minutes spent on the queue. On a busy HPC

system jobs scheduled for a high number of nodes do not

get scheduled for a long time

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 4 8 16 32 64 92 128

3 5 8 20 25

1200

5300

6000

8000

Approximate time spent waiting on the queue (min)

Gergely Windisch – Obuda University 26

min

CPU cores

Optimizing for real world performance

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16 32 64 128 256

59.28 32.08 27.67 26.82 28.62

1,201.84

5,301.04 5,367.25

6,100.67

Wall clock time (min)

Graph 8: Wall clock time – execution time + waiting

Huge gap at 32 nodes

Gergely Windisch – Obuda University 27

min

CPU cores

Optimizing for real world performance

0

10

20

30

40

50

60

1 2 4 8 16

59.28

32.08

27.67 26.82
28.62

Real execution time (min)

Graph 8: Wall clock time – execution time + waiting

Excluding nodes above 16

Gergely Windisch – Obuda University 28

CPU cores

min

Optimizing for real world performance

• Conclusion
– The best overall throughput was achieved by setting the MPI

node count to 16

– Optimal value for the currently used supercomputing
infrastructure

– The evaluations should be re-executed periodically or when
there is an update on the servers (new scheduler version, HW
upgrade etc.)

– Our results apply for our servers – different configuration will
behave differently

• Optimization should be done for every supercomputer

Gergely Windisch – Obuda University 29

Summary

• Life Science portal was developed and is available for the
scientists
– http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-

6.0.5/en_GB/web/guest

– researchers can add their services to the portal

• DiseaseGeneMapper and DeepAligner was ported to the
supercomputing infrastructure
– optimization lead to high performance

• Services were created which runs on the portal
– http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-

6.0.5/en_GB/web/diseasegene

– http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-
6.0.5/en_GB/web/deepaligner

Gergely Windisch – Obuda University 30

http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/guest
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/guest
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/guest
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/guest
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/guest
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/guest
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/guest
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/guest
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/guest
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/diseasegene
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/diseasegene
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/diseasegene
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/diseasegene
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/diseasegene
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/diseasegene
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/diseasegene
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/diseasegene
http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-6.0.5/en_GB/web/diseasegene

Future work

• Enhancing the performance of the applications even
further
– Using different compilers

• Adding further applications to gUSE / HPC

• Making these applications available on the HP-SEE
Bioinformatics eScience Gateway

• Connecting the HP-SEE Bioinformatics eScience Gateway
Portal to Supercomputing infrastructures of other
countries
– portal is capable of communicating with different kinds of

middlewares

Gergely Windisch – Obuda University 31

References
[1] M. Kozlovszky, G. Windisch, Á. Balaskó;Short fragment sequence alignment on the HP-SEE

infrastructure;MIPRO 2012

[2] M. Kozlovszky, G. Windisch; Supported bioinformatics applications of the HP-SEE project’s
infrastructure; Networkshop 2012

[3] A. Darling, L. Carey, and W. Feng; The Design, Implementation, and Evaluation of mpiBLAST;
4th International Conference on Linux Clusters; June 2003.

[4] H. Lin, X. Ma, P.Chandramohan, A. Geist, and N. Samatova; Efficient Data Access for Parallel
BLAST; IEEE International Parallel & Distributed Processing Symposium; April 2005.

[5] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, W. Feng ; Massively Parallel Genomic Sequence Search
on the Blue Gene/P Architecture; IEEE/ACM SC2008; November 2008.

Gergely Windisch – Obuda University 32

