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Scientific motivation 

• The recently used deep sequencing techniques present a new data 

processing challenge: mapping short fragment reads to open-access 

eukaryotic (animal: focusing on mouse and rat) genomes at the scale of 

several hundred thousands.  

• This task is solvable by algorithms like BLAST, BWA. - which is one of the 
most frequently used tool in bioinformatics 

• Local installations of these algorithms are typically not able to handle such 
problem size therefore the procedure runs slowly, while web based 
implementations cannot accept high number of queries.  

• SEE-HPC infrastructure allows accessing massively parallel architectures 
and the sequence alignment code is distributed free for academia.  

• The aim of the task is threefold,  

– the first task was to port the BLAST algorithm to the massively parallel 
HP-SEE infrastructure 

– create a BLAST service, which is capable to serve the short fragment 
sequence alignment demand of the regional bioinformatics communities,  

– to do sequence analysis with high throughput short fragment sequence 
alignments against the eukaryotic genomes to search for regulatory 
mechanisms controlled by short fragments 

• For more details, please see [1, 2] 

 

Gergely Windisch – Obuda University 2 



Role of Obuda University in the project 

• Create and operate a Life Science portal 

• Port the applications to supercomputing infrastructure 
– Enhancing wall clock performance by optimization 

• Create services that use the ported applications and 
make them available on the portal 
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LS-HPSEE portal @ Obuda University 
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Figure 1: HP-SEE Bioinformatics eScience Gateway Portal  

running at Obuda University.  

Server is mainaned by SZTAKI, backend infrastructure provided by NIIF 

The portal has just been opened for the public 
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Developed Services 

• Short sequence analysis 
– Deep Aligner 

• Runs BLAST on a huge number of short fragments against a 
large database 

• Disease Mapping 
– Disease Gene Mapper 

• Maps known genes associated to a disease to other organizations 

• Design goals 
– Easy to use for the scientists 

– High performance 

– Highly scalable 

• Requirements 
– Web browser 

– User account on the HP-SEE server (available at Obuda University) 

– User account and certificate for the NIIF supercomputing centers 
(available at NIIF) 
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Developed Services 

• Both services are gUSE portlets 

• gUSE is a WS-PGrade portal developed at MTA SZTAKI, 
Hungary 
– Workflow based operation 
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Figure 2: Simplified workflow graph of Deep Aligner 
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Developed Services - DGM 
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Figure 3: Disease Gene Mapper portlet main window 
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Developed Services - DGM 
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Figure 4: Disease Gene Mapper set properties 
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Developed Services - DeepAligner 
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Figure 5: Deep Aligner – set properties 
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Developed Services - DeepAligner 
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Figure 6: Downloading results 
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Execution time analysis 

• Amdahl’s law 
– „The speedup of a program using multiple processors in parallel 

computing is limited by the time needed for the sequential 
fraction of the program” 

• Both applications consist of three jobs 
– job1: preparation (sequential) 

– job2: execution (highly parallel OpenMPI) 

– job3: results collection (sequential) 

• Applications differ mainly in Job1 and Job2 
– Job2 uses the same algorithms (they only differ in their 

parameters) so the performance evaluation holds for both 
applications 
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Execution time analysis – Job 1 

• Job 1 in DeepAligner 
– Takes n input sequences from the user 

– Input files come in a tar.gz 

• faster to process than all sequences in one big file 

• pigz could be used for multithreaded decompress 

– not used in our app for compatibility reasons 

– Overall percentage of execution time is about 0.01% of the whole 
job – 32 node MPI 

– No real reason to parallelize 
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Execution time analysis – Job 1 

• Job 1 in DiseaseGeneMapper 
– Gets the name of a disease from the user 

– Downloads gene sequences from the NCBI database associated 
with the given disease 

• The speed of the internet connection is vital in this 
application 
– on average downloading one sequence takes about 0.913 s  

– total execution time is O(n) 

– can be parallelized – multithreaded downloader 

• problem: NCBI server detects abuse with too many threads 
and shuts down the connection 

• we use a single thread downloader to avoid accidents 
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Execution time analysis – Job 2 

• Job 2 in both applications 
– Uses MPIBlast to search for the gene sequence 

– Most time consuming job by far 

• ~99.3% of the total execution time is spent in this job 

• ~99.1% of Job2’s execution time is spent on MPIBlast 

• profiling MPIBlast [5] shows that on average 85% of the time 
is spent on actual BLAST search, about 7% is fragment copy 
& communication 3% is printing the results. Other functions 
use up the rest of the time 
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Execution time analysis – Job 3 

• Job 3 in both applications 
– Receives the results from the MPIBlast jobs (one from each) 

– Compresses the results 

– Sends it back to gUSE 

• Sequential execution 
– pigz could be used to speed it up 

• Does not run long enough to worth optimizing 
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Performance and scalability measurements 

• Job2 was the real candidate for performance 
optimization 

• We chose MPIBlast for the main algorithm because of it’s 
proven speed and reliability [3,4] 

• Following performance measurements were executed in 
the NIIFI supercomputing center 
– Database size: 5.1 GB 

– Input sequence sizes:  

• 29.13 kB 

• 58.42 kB 

• 130.41 kB 

– note: the scalability figures were similar for all three, the 
execution times on the following slides are for the first 
input (29.13 kB) 
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Measurement methodology 

• Each measurement was executed 10 times 

• The average of the executions was taken as the value 

• note: the measurements have actually been executed on 
x+2 nodes, but 2 nodes are always used for 
administration purposes only 
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Scalability & Performance results 
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Graph 1: Execution times in seconds. The application scales well. 
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Scalability & Performance results 
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Graph 2: Speedup – performance factor compared to 1 node. 
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Scalability & Performance results 
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Graph 3: Speedup – performance factor compared to the previous node number. 
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Scalability & Performance results 
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Optimizing DB Fragment number 

• BLAST aligns the sequences in large gene databases 

• MPIBlast uses the same databases, but the databases are 
split up into smaller pieces 

• According to our measurements, DB frament number 
impacts performance 
– important to find the optimal number of fragments 
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Optimizing DB Fragment number 

Graph 5: Execution time on 64 CPU cores. Fragment size should be 

an integer multiple of the CPU cores 
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Scalability conclusion 

• Our current implementation peaks at around 128 cores 
– Speedup is almost linear – 96x at 128 nodes – even better at 

fewer. 

• Increasing the number of MPI nodes any further yields 
only minor performance increase 
– reason is the communication overhead 

• Further optimization did not help significally 
– --use-parallel-writes 
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Optimizing for real world performance 

• Synthetic testing shows that the higher the number of 
nodes, the better performance it yields – up to 128 nodes 

• However: life is not just fun and games 
– Depending on the Supercomputer’s utilization smaller jobs 

actually finish faster in real life according to our experience 

• the scheduler policy decides when to execute applications 
based on required / available resources 

• Measurements were executed on NIIF’s Budapest server 
(Sun Grid Engine Open Grid Scheduler (OGS/GE 
2011.11p1)) 
– 768 CPU cores 

– The server is highly utilized at all times 

– Jobs were executed with normal user rights 
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Optimizing for real world performance 

Graph 7: Minutes spent on the queue. On a busy HPC 

system jobs scheduled for a high number of nodes do not 

get scheduled for a long time 
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Optimizing for real world performance 
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Optimizing for real world performance 
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Optimizing for real world performance 

• Conclusion 
– The best overall throughput was achieved by setting the MPI 

node count to 16 

– Optimal value for the currently used supercomputing 
infrastructure 

– The evaluations should be re-executed periodically or when 
there is an update on the servers (new scheduler version, HW 
upgrade etc.) 

– Our results apply for our servers – different configuration will 
behave differently 

• Optimization should be done for every supercomputer 
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Summary 

• Life Science portal was developed and is available for the 
scientists 
– http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-

6.0.5/en_GB/web/guest 

– researchers can add their services to the portal 

• DiseaseGeneMapper and DeepAligner was ported to the 
supercomputing infrastructure 
– optimization lead to high performance 

• Services were created which runs on the portal 
– http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-

6.0.5/en_GB/web/diseasegene 

– http://ls-hpsee.nik.uni-obuda.hu:8080/liferay-portal-
6.0.5/en_GB/web/deepaligner 
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Future work 

• Enhancing the performance of the applications even 
further 
– Using different compilers 

• Adding further applications to gUSE / HPC 

• Making these applications available on the HP-SEE 
Bioinformatics eScience Gateway 

• Connecting the HP-SEE Bioinformatics eScience Gateway 
Portal to Supercomputing infrastructures of other 
countries 
– portal is capable of communicating with different kinds of 

middlewares 
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