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• Theoretical solid state physics 
– Modeling materials with crystal structure 
 

N ~ 1023 
 
 
 
 
 
 

• Weakly correlated materials 
• Conventional metals 
• Band-insulators 
• Semi-conductors 

– Described well by effective single-particle theories  
(e.g. DFT+LDA) 
 

• Strongly correlated materials 
• High Tc Superconductors (Cuprates and Fe based) 
• Numerous Transition metal oxides exhibiting metal-

insulator transition 
• Rare-earth and actinide intermetallics 
• Kapa-organics 

– Still lack theories with predictive power 

 
• To understand emergent phenomena like 

macropscopic quantum phases of matter, one 
must tackle a true many-body QM problem 

V2O3 phase diagram 



• Hubbard Model 

2 
• A very simplified model: 

• No details of atomic structure 

• No lattice dynamics (phonons) 

• No long-range interactions 

• No disorder  

 

• Exactly soluble only in  

• d=1 

• d=∞ (Dynamical Mean Field Theory) 

H. Terletska, J. Vucicevic, D. Tanaskovic, V. Dobrosavljevic  
Phys. Rev. Lett. 107, 026401 (2011) 



• DMFT solution of the Hubbard Model 
A. Georges, Rev. Mod. Phys., Vol. 68, No. 1, (1996) 

IT’S A MEAN-FIELD THEORY 
The approach is simillar to the Weiss-
Curie mean-field theory of magnetism 
   
• The environment of a site is replaced by 
an effective bath of electronic states 
described by the self-consistently 
determined Hybridization function 
 
 
 IT IS DYNAMICAL 
The effective fermionic field is frequency 
dependent so that the temporal 
fluctuations are fully taken into account 
   
• Electrons are allowed to hop in and out 
from the bath 



• DMFT solution of Hubbard Model 

 

 

DMFT method assumes that  the  
self-energy is purely local  Σ(k, ω) 

Exact only in infinite 
dimensions 

Works particurarly well in cases when self-energy locality 
is a reasonable approximation 
 

• Lattice has a large coordination number 
• Long range order is geometrically frustrated 
• Temperature is high as compared to the Fermi 
liquid coherence temperature 
• Away from near vicinity of critical points 

In finite dimensions, it neglects spatial 
fluctuations 



•  Numerical solution: The DMFT Loop 

Step 1: 
Solve the Single Impurity Anderson Model  (SIAM)  

Step 2:  
Use the solution of SIAM (Green’s function and Self-energy) to Calculate a 
Hybridization function using the Self consistency relation 

Step 0: 
Pick an arbitrary Hybridazation fucntion 

Step 3: 
GOTO Step 1 



 
– Exact 

• CTQMC (Continuous Time Quantum Monte Carlo) 
 

– Noisy 
– Computationally intensive 
– Formulated on the imaginary axis 
 

• ED (Exact Diagonalization) 
– Unfeasible unless Hybridization bath is 

approxiated with only a small number of orbitals 

• NRG (Numerical Renormalization Group) 

– Works well only at zero termperature 

 
– Approximate 

• NCA (Non-crossing approximation) 
• SB (Slave boson) 
• SOP (Second order perturbative solution) 

 

 
 

• Single Impurity Anderson Model solvers 

 

 

G(iωn) G(ω) 
Not an easy task! 

ρ(ω) 

N.V. Prokof’ev, JETP Lett. 64, 911 (1996), P. Werner, Phys. Rev. Lett. 97, 076405 (2006), 
K. Haule, Phys. Rev. B 75, 155113 (2007) 



• Approximate  
– Takes into account the Feynman diagrams 

of only up to the second order 

• Computationally not very demanding 

• Can be formulated on both real and 
imaginary axes 

• In good qualitative and even 
quantitative agreement with CTQMC 

 

• The DMFT with SOP impurity solver a.k.a. 

  The iterative perturbation theory (IPT) 

   

H.Kajueter, Phys. Rev. Lett. 77, 131–134 (1996) 
M. Potthoff, Phys. Rev. B 55, 16132–16142 (1997) 
 
 



Crystal lattices are usually not perfect… 
 
•  Structural defects 

Interstitial atoms 
Vacancies 
Deviations from the perfect 
translational symmetry 
 

•  Impurities 
 

… but highly doped systems are usually 
very disordered, with many dopants 
distributed randomly across the lattice. 

• Disordered systems 

 

 

STM images of the spatial distribution of the 
superconducting gap and normal phase 

conductivity of the doped  Bi2Sr2CaCu2O8+x 

DMFT for disordered systems:  
each lattice site has different properties 
and a different environment and must be 
treated as an independent  
impurity problem! 

The efficiency of IPT is of 
great importance. 





• General numerical issues 

 

 
Function discretization grid         G(ω)        G(ωi) 

A uniform but dense grid can be good enough… 

Weak to medium interaction 
  
Metallic solution 
  
Relatively featureless Green’s function and self-energy 









• General numerical issues 

 

 
Function discretization grid         G(ω)        G(ωi) 

… but is not good enough for a Mott-insulator 

Very sharp delta-like peaks in Self-energy at zero frequency 
Have to be resolved with high precision 



• General numerical issues 

 

 
Function discretization grid 

A combination of logarithmic 
and uniform grids 

The majority of points is located 
around zero frequency 



• General numerical issues 

 

 

Integration of divergent integrands 

Straight-forward integration fails 

Easy solution degrades the result 

Smart solution works well! 

Integration 

Trapezoidal integration is sufficient 

Using adaptive grids for integrands with 
features away from zero frequency could in 
principle increase precision and efficiency 



• Optimization 

 

 

Solving systems of non-linear equations 

Broyden solver – generalization 
of secant method in 1D 

Very fast, but can fail 

In some cases, solving SIAM = 
solving a system of 2 equations 
(2 parameters need to be fixed self-
consistently) 

When Broyden fails,  the procedure has 
to be restarted with another initial 
guess 



• Optimization 

 

 

Speeding up the convergence of the DMFT loop 

Improved broyden – 
“remembers” all previous 
iterations 

Rok Žitko, Phys. Rev. B 80, 125125 (2009) 

Should not be used 
from the start 

F(X)=X 

Broyden from the start 

Broyden from the 15th iteration 

No broyden 



• Application in Typical medium theory (TMT) 

 

 

 

 
disordered Hubbard model 

 

V. Dobrosavljević, Europhys. Lett. 62 76, (2003) 



• This Example:  
 4 MPI processes 
 4 OpenMP threads  
   per MPI process 
 solving 10 impurities 
 

• Hybrid implementation of TMT 

 

 



Tested on: 
• 2 computational nodes of 8 
cores (Intel Xeon E5405 @ 
2.00GHz) interconnected by 
Infiniband 
• Intel compiler (icpc) 
• OpenMPI + Intel OpenMP 

 
 
• This Example:  
 41 iterations for 
convergence 
 U=0.1, T=0.1, W=0.3 
 solving 32 impurities 
2000 points in freq grid 
 

Number of 
MPI processes 

Number of 
OpenMP 

threads per 
MPI process 

Execution time 
[min:sec] 

1 1 31:01 

1 2 15:46 

1 4 07:58 

1 8 04:06 

16 1 02:20 

8 2 02:10 

4 4 02:08 

2 8 02:07 

• Hybrid implementation of TMT 

 

 



• Statistical (Inhomogeneous) DMFT 

 

 

Deals with disorder in a more detailed way : 
every lattice site is coupled to a different bath determined by 
green’s functions of surrounding lattice sites 

  
  A step forward from the mean-field philosophy! 

Large matrix inversion needs to 
be done in every iteration – MKL 
library routine does the job 

Finite dimensions and finite samples 

Energies are randomized – many 
realizations are needed to get 
statistical averages 

Massive computation - would take months 
with CTQMC 




