
HP-SEE User Forum 2012, Belgrade

Iterative Perturbative Method for a Study of Disordered Strongly Correlated Systems

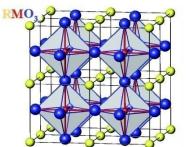
<u>Jakša Vučičević</u>, Miloš Radonjić, Darko Tanasković,

Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia

Theory of strongly correlated materials

IntroductionDynmical mean field theory

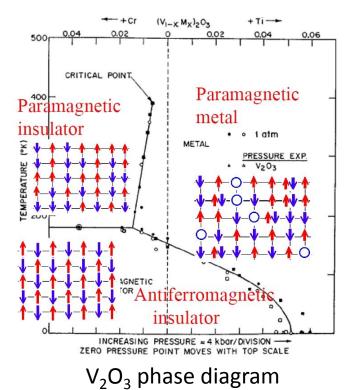
Iterative Perturbative Method


- •Theory
- •Hybrid parallel C++ implemetantion Numerical issues Optimization Parallelization
- •Applications TMT StatDMFT

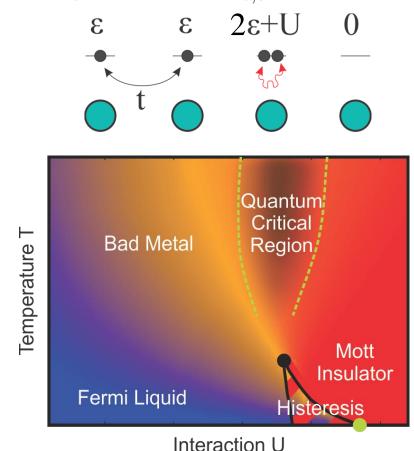
•Examples of results

	able nat MP ne DMF	ONLY in solving Clea T Bs will ALWAYS be T loop converges. Fi	IAM With FIXED n			
			nd mu0 are not known EVEN FOR n=0.5 !!!!			
bool SIAM	1: : Run	_CHM(Result* r) //ou	tput			
this->r	r = r;	Solet N():				
grid = get_fer	r->gr mi();	>get_N(); id;				
Clipped						
epsilor	n = 0;					
if (r->	-n==0.	5) HalfFilling = tru ling = false;	e;			
			: n=%.3f, U=%.3f, T=%.3f, epsilon=%.3f\n*, r->n, U, T, epsilon);			
if (Hal			, mesor, mesor, mesor, epotomesor (, ron, o, r, epotom);			
{ r->mu	J = 0.	5*U;				
mu0 = MPT_E	= 0.0; 3 = 0. 30 = 0					
MPT_E Symme	BO = 0 etricC	<pre>> = 0.0; tricCase = true;</pre>				
1/	initial quess//					
complex V[0] =	<doub mu8;</doub 	nitial guess/// ouble>* V = mex complex=duble>[1]; g: //initial guess is always the last mu0. in first DMFT iteration it is 0				
//		//				
printf(The second		\$fe\n", MPT_B, MPT_B0);			
if (Hal get_G	fFill	CALCULATION ·····// 'Illing)//and (SymmetricCase))):				
else		vyjen <siah>(1, MAX_ITS, Accr, &SIAM::get_G0, this, V); * mu0 = ∿f\m*, mu0);</siah>				
get_As(s();					
get_Ps(get_SOC	[Ps(); _socsigna();]] = r→#u;					
V[0] =						
{ if (i	fFill	ing)//and (Symmetric e)	Case))			
{	Sigm					
parans						
	GRI	D params GRID::GridType GRID::Nlog GRID::Nlin	// type of the omega-grid. 0-LogLin. Nothing else should be use for now // number of point in the logarithmic part of the grid (should be even)			
	GRI	GRID::Nlog GRID::Nlin	// Sppe of the energy-grid: 0-LogLin. Nothing else should be use for now // Sppe of the LogPrithmic part of the grid (Should be even) // number of points in the Linear part of the grid (Should be even) // the extension of the grid (Lt is always symmetric around 0)			
		GRID::Nlin GRID::omega_lin_max GRID::omega_max GRID::omega_min				
		GRID::Nlog GRID::omega lin max GRID::omega max GRID::omega min M params STAM::U	// the extension of the grid (it is always symmetric around 0). // the extension of the logarithmic part of the grid (it is always symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) 			
		GKID::NLOG GKID::NLIn GKID::onega_in_max GKID::onega_max GKID::onega_min M params SIAM::T SIAM::T SIAM::T SIAM::PSILON	<pre>// the extension of the grid (it is always symmetric around 0) // the extension of the logarithmic part of the grid (it is always symmetric around 0) // the value of points closest to 0 (0.6 is not present in the grid)# // on-inpurity interaction // temperature // impurity orbital energy</pre>			
		GRID::Nlog GRID::omega lin max GRID::omega max GRID::omega min M params STAM::U	<pre>// the extension of the grid (it is always symmetric around 0) // the extension of the logarithmic part of the grid (it is always symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) </pre>			
		GRID::RILOG GRID::RILOG GRID::RILOG GRID::Comega_max GRID::Comega_max GRID::Comega_max SIAM::U SIAM::RILO SIAM::RESION SIAM::RESION SIAM::RESION	<pre>// the extension of the qrid (it is always symmetric around 0) // the extension of the fogrithmic part of the grid (it is always symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) // on-inpurity interaction // temperature // impurity rollal energy // maximum number of iterations for the Broyden solver that solves the system of 2 equations // desired accuracy for the above process // bradening that is included in calculation of 60</pre>			
		GRID::RILOG GRID::RILOG GRID::RILOG GRID::Comega_max GRID::comega_max GRID::Comega_max SIAM::U SIAM::RILO SIAM::RILO SIAM::RILO SIAM::RILO SIAM::RIC SIAM::RIC	<pre>// the extension of the qrid (it is always symmetric around 0) // the extension of the fogrithmic part of the grid (it is always symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) // on-inpurity interaction // temperature // impurity rollal energy // maximum number of iterations for the Broyden solver that solves the system of 2 equations // desired accuracy for the above process // bradening that is included in calculation of 60</pre>			
	SIA	oniD::R109 GAID::R109 GAID::nonpalin max GAID::nonpalmax GAID::nonpalmax GAID::nonpalmax SIAM::D SIAM::D SIAM::ACC SIAM::CheckSpectralWeig SIAM::CheckSpectralWeig SIAM::CheckSpectralWeig SIAM::CheckSpectralWeig SIAM::CheckSpectralWeig SIAM::CheckSpectralWeig SIAM::CheckSpectralWeig	<pre>// the extension of the grif (it is a lawpy symmetric around 0) // the extension of the Goprithic part of the grif (it is a lawpy symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) // on-inpurity interaction // on-inpurity interaction // importy footial energy // maximum number of iterations for the Broyden solver that solves the system of 2 equations // desired accuracy for the above process // bradening that is included in calculation of 60 th // if this is set to true n and n0 are printed // if this is set to true n and n0 are printed // if this is set to true n and n0 are printed // if this is set to true n and n0 are printed // if this is set to true not m0 for calculated.when just solving siam, should be set to false // this determines the way 6 is calculated.when just solving siam.</pre>			
	SIA	oniD::R109 GAID::R109 GAID::nonpalin max GAID::nonpalmax GAID::nonpalmax GAID::nonpalmax SIAM::D SIAM::D SIAM::ACC SIAM::CheckSpectralWeig SIAM::CheckSpectralWeig SIAM::CheckSpectralWeig SIAM::CheckSpectralWeig SIAM::CheckSpectralWeig SIAM::CheckSpectralWeig SIAM::CheckSpectralWeig	<pre>// the extension of the grif (it is a lawpy symmetric around 0) // the extension of the Goprithic part of the grif (it is a lawpy symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) // on-inpurity interaction // on-inpurity interaction // importy footial energy // maximum number of iterations for the Broyden solver that solves the system of 2 equations // desired accuracy for the above process // bradening that is included in calculation of 60 th // if this is set to true n and n0 are printed // if this is set to true n and n0 are printed // if this is set to true n and n0 are printed // if this is set to true n and n0 are printed // if this is set to true not m0 for calculated.when just solving siam, should be set to false // this determines the way 6 is calculated.when just solving siam.</pre>			
	SIA	onic::nitog GATD::niton GATD::nonega_inax GATD::nonega_max GATD::nonega_max GATD::nonega_min SIAM::U SIAM::U SIAM::U SIAM::U SIAM::U SIAM::Accr SIAM::Accr SIAM::Accr SIAM::CheckSpectralWeig SIAM::UsePPT Bs SIAM::CheckSpectralWeig SIAM::UsePPT Bs SIAM::CheckSpectralWeig Loop::StayWeightarto	<pre>// the extension of the grid (it is always symmetric around 0) // the extension of the Gayrithnic part of the grid (it is always symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) .// on simpurity interaction // temperature // impurity extended in a close of the above process // bardening that is included in calculation of 00 ht // if this is set to true MPT corrections are used // if this is set to true MPT corrections are used // if this is set to true MPT corrections are used // if this is set to true MPT corrections are used // if this is set to true MPT corrections are used // is by the true of is calculated.when just solving sime, chould be set to false .// use broyden for alding DMPT loop convergence // use broyden for alding DMPT loop convergence // use broyden for closerees of for reaching of which loop starts using broyden</pre>			
	SIA	onic::nitog GATD::niton GATD::nenga_ina GATD::nenga_max GATD::nenga_min SIAM::U SIAM::U SIAM::U SIAM::U SIAM::U SIAM::Accr SIAM::Accr SIAM::Accr SIAM::CheckSpectralWeig SIAM::Useperf Bs SIAM::CheckSpectralWeig SIAM::Dep::BigWeigHt Loop::TorceBroyden Loop::TorceBroyden Loop::TorceBroyden Loop::TorceBroyden Loop::TorceBroyden Loop::TorceBroyden Loop::TorceBroyden	<pre>// the extension of the grid (it is always symmetric around 0) // the extension of the Gayrithnic part of the grid (it is always symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) .// on-sense. // on-impurity interaction // temporitor // impuritor // basis set to true Bayrithnic and of are printed // if this is set to true APP (is closed, when just solving size, should be set to false // use broyden for aiding DMFT loop convergence // use broyden for aiding DMFT loop convergence // use broyden for aiding DMFT loop convergence // use broyden for closed-tor to take (ALWAYS == 2) // number of consequence is for alung broyden // number of consequence is for alung broyden</pre>			
	SIA	onic::Nicg GRID::Nicg GRID::cnegg_lin_max GRID::cnegg_max GRID::cnegg_max GRID::cnegg_max SIAN::U SIAN::CheckSonctal SIAN::CheckSonctalWeig SIAN::CheckSonctalWe	<pre>// the extension of the grid (it is always symmetric around 0) // the extension of the logarithmic part of the grid (it is always symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) .// on-simpurity interaction // temperature // impurity interaction // temperature // impurity orbital energy // impurity orbital energy // bradening that is included in calculation of 00 ht // if this is set to true more for actions of the for your of the form of the form</pre>			
	SIA	onic::nitog GATD::niton GATD::nenga_ina GATD::nenga_max GATD::nenga_min SIAM::U SIAM::U SIAM::U SIAM::U SIAM::U SIAM::Accr SIAM::Accr SIAM::Accr SIAM::CheckSpectralWeig SIAM::Useperf Bs SIAM::CheckSpectralWeig SIAM::Dep::BigWeigHt Loop::TorceBroyden Loop::TorceBroyden Loop::TorceBroyden Loop::TorceBroyden Loop::TorceBroyden Loop::TorceBroyden Loop::TorceBroyden	<pre>// the extension of the grid (it is always symmetric around 0) // the extension of the logarithmic part of the grid (it is always symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) .// on-simpurity interaction // temperature // impurity interaction // temperature // impurity orbital energy // impurity orbital energy // bradening that is included in calculation of 00 ht // if this is set to true more for actions of the for your of the form of the form</pre>			
	SIA	onic::lug GAID::mlug GAID::enceps_lin_max GAID::mesp_min SIAM::u SIAM::u SIAM::u SIAM::u SIAM::u SIAM::u SIAM::d SIAM::Accr SIAM::Accr SIAM::Cap::user SIAM::Cap::user Data: Data:Cap::user Data: Data: SIAM::Cap::user Data: Data: Data: Cap::user Data: Da	<pre>// the extension of the Gyridet is a lawy symmetric around 0) // the extension of the Gyridetic part of the gyride yais symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) .// the uperature // on-importly interaction // the tay of the above process // bradening that is included in calculation of 00 th // if this is set to true MPT corrections are used // this is is set to true more for a close diverse diverse</pre>			
	SIA	onic::Nicg GRID::Nicg GRID::cnegg_lin_max GRID::cnegg_max GRID::cnegg_max GRID::cnegg_max SIAN::U SIAN::CheckSonctal SIAN::CheckSonctalWeig SIAN::CheckSonctalWe	<pre>// the extension of the Gyrithic is a lawy symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // advant member of iterations for the Broyden solver that solves the system of 2 equations // desired accuracy for the above process // brokening that is included in calculation of 00 ht // if this is set to true mer corrections are used // this determines the way 0 is calculated, when just solving sime, should be set to false // use broyden for adiago pert loop convergence here reaching of which Loop starts using broyden // making number of convergince for mixing solutions (newer to older) // number of convergince for mixing solutions (newer to older) // the bis is set to true, after acking solutions (newer to older) // desired accuracy // adebugging option that halts the execution after the first iteration and promts the user for the ordi convergince for adiago pert loop iterations // desired accuracy // desired accuracy // adebugging option that halts the execution after the first iteration and promts the user for the ordi convergince for addiago pert loop iterations // hadbard on-site interaction // temperature // temp</pre>			
	SIA	onic::lug GAID::mlug GAID::enceps_lin_max GAID::mesp_min SIAM::u SIAM::u SIAM::u SIAM::u SIAM::u SIAM::u SIAM::d SIAM::Accr SIAM::Accr SIAM::Cap::user SIAM::Cap::user Data: Data:Cap::user Data: Data: SIAM::Cap::user Data: Data: Data: Cap::user Data: Da	<pre>// the extension of the Gyrithics part of the gyrithic around 0) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // temperature // advantume.present of iterations for the Broyden solver that solves the system of 2 equations // desired accuracy for the above process // brademing that is included in calculation of 00 ht // if this is set to true mer or printed // this is set to true mer or printed // use broyden for ading perf loop convergence // use broyden for ading perf loop convergence ter reaching of which Loop starts using broyden // is the lower of formations for maining solutions (never to older) // the torse of printers for maining solutions (never to older) // the torse of printers for maining solutions (never to older) // desired accuracy // desired accuracy // adebugging option that halts the execution after the first iteration and prouts the user for the ordi // this is set to true, after eaching after the first iteration and prouts the user for the ordi // the produce ment iteraction // hobbard on-site interaction // hobbard monieste interaction // hobbard monieste</pre>			
	SIA	onin::Ning GRID::Ning GRID::onega_lin_max GRID::onega_max GRID::onega_max GRID::onega_max SIAN::U SIAN::D SIAN::AX SIAN::C SIAN::AX SIAN::AX SIAN::C SIAN::AX SIAN::G SIAN::SIAN::AX SIAN::SIAN::SIAN::AX SIAN::SIAN::SIAN::AX SIAN::SIAN::SIAN::AX SIAN::SIAN::SIAN::AX SIAN::SIAN::SIAN::SIAN::AX SIAN::SIAN:	<pre>// the extension of the Gyrithics part of the gyrithic around 0) // the extension of the Gyrithics part of the gyrithic part of the gyrithics part of the gyrithic gyrithics part of the gyrithic gyrithics part of the gyrithics part of the gyrithics of the gyrithics of the gyrithic gyrithics around 0 if the gyrithic gyrithic gyrithics are gyrithics and the gyrithic gyrithic gyrithic gyrithics of the gyrithic gyrithics of the gyrithic gyrithics gyrithics are gyrithic gyrithics are gyrithics are gyrithics are gyrithics is set to true more gyrithic divergence in the gyrithic to the gyrithics of the gyrithics of the gyrithics of the gyrithics are used if gyrithics to the gyrithics of gyrithics of the gyrithics are gyrithics of the gyrithics of the gyrithics of the gyrithics are used if this is to the true of convergence are for gyrithics to the gyrithics of the gyrithics are used if the gyrithics to the gyrithics of the gyrithics are used if the gyrithics of gyrithics of gyrithics are used in gyrithics are gyrithics of the gyrithics of the gyrithics of the gyrithics for gyrithics are gyrithics are used in the gyrithics are gy</pre>			
	SIA	GHD: Hilds GHD: Hilds GHD: compage in max GHD: compage in GHD: GHD: compage in GHD: SIAN: SIAN: SIAN: Compage in GHD: SIAN: SIAN: SI	<pre>// the extension of the grid (it is always symmetric around 0) // the extension of the Gayrithnic part of the grid (it is always symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // use value of fitteration // the value of points closest to 0 (0.0 is not present in the grid) // temperature // maintown muther of iteration for the Broyden solver that solves the system of 2 equations // desired accuracy for the above process // bradening that is included in calculation of 00 ht // if this is set to true mPF corrections are used // this to be to 0 is calculated.when just obving siam, should be set to false // use broyden for aiding DMFT loop convergence // use broyden for aiding DMFT loop convergence after reaching of which loop starts using broyden // number of consequece after reaching of which loop starts using broyden // number of convergive after reaching of which loop starts using broyden // maker of convergive after reaching of which loop starts using broyden // maker of convergive after reaching of which loop starts using broyden // maker of convergive after reaching of which loop starts using broyden // maker of convergive after reaching of the Toop iterations // is abougning onjun that halts the execution after the first iteration and promts the user for the ordin##</pre>			
	SIA	onin::Ning GRID::Ning GRID::cneepalin GRID::cneepalin SIAM::U SIAM::U SIAM::U SIAM::U SIAM::U SIAM::C	<pre>// the extension of the girld (it is always symmetric around 0) // the extension of the Gigrithic part of the girld (it is always symmetric around 0) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the solves the system of 2 equations // desired accuracy for the above process // bradening that is included in calculation of 00 ht // if this is set to true MPT corrections are used // this bis set to true MPT corrections are used // use broyden for alding DMPT loop convergence // use broyden for alding DMPT loop convergence // use broyden for diding DMPT loop convergence for a convergence 10 for Convergence To for The Govergence after reaching of which loop starts using broyden // maker af contactive solutions to mis (ALWAYS = 2) // the linear coefficients for mixing solutions innew to older) // maximum number of DMPT loop iterations // desired accuracy // if this is set to true, after acch iteration current reall gets printed to a file named "intermediate // if this is set to true, after acch iteration current reall gets printed to a file named "intermediate // debugging option that halts the secution after the first iteration and promas the user for the ordif convert // hopbing amplitude sizM: is ideation // if set to true, belta = t2 0 bethe-specific self-consistency realtion is used sizM: is ideation // if set to true, belta = t2 0 bethe-specific self-consistency realtion is used sizM: is ideation // if set to true, belta = t2 0 bethe-specific self-consistency realtion is used sizM: is ideation // if set to true, belta =</pre>			
	SIA	onli::Niug GRID::Niug GRID::niug GRID::onega_max GRID::onega_max GRID::onega_max GRID::nega_max SIAM::D SIAM::T SIAM::T SIAM::T SIAM::T SIAM::T SIAM::T SIAM::T SIAM::T SIAM::T SIAM::S SIAM::S SIAM::S SIAM::S SIAM::S SIAM::S SIAM::S SIAM::S SIAM::S SIAM::T SIAM::T SIAM::T SIAM::T SIAM::T SIAM::T SIAM::S SIAM:S SIAM::S	<pre>// the extension of the grid (it is always symmetric around 0) // the extension of the Gayrithnic part of the grid (it is always symmetric around 0) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // the value of points closest to 0 (0.0 is not present in the grid) // use value of fitteration // the value of points closest to 0 (0.0 is not present in the grid) // temperature // maintown muther of iteration for the Broyden solver that solves the system of 2 equations // desired accuracy for the above process // bradening that is included in calculation of 00 ht // if this is set to true mPF corrections are used // this to be to 0 is calculated.when just obving siam, should be set to false // use broyden for aiding DMFT loop convergence // use broyden for aiding DMFT loop convergence after reaching of which loop starts using broyden // number of consequece after reaching of which loop starts using broyden // number of convergive after reaching of which loop starts using broyden // maker of convergive after reaching of which loop starts using broyden // maker of convergive after reaching of which loop starts using broyden // maker of convergive after reaching of which loop starts using broyden // maker of convergive after reaching of the Toop iterations // is abougning onjun that halts the execution after the first iteration and promts the user for the ordin##</pre>			
	SIA	onin::Ning GRID::Ning GRID::cneepalin GRID::cneepalin SIAM::U SIAM::U SIAM::U SIAM::U SIAM::U SIAM::C	<pre>// the extension of the girld (it is always symmetric around 0) // the extension of the Gigrithic part of the girld (it is always symmetric around 0) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the grid) // the value of points closest to 9 (0.0 is not present in the solves the system of 2 equations // desired accuracy for the above process // bradening that is included in calculation of 00 ht // if this is set to true MPT corrections are used // this bis set to true MPT corrections are used // use broyden for alding DMPT loop convergence // use broyden for alding DMPT loop convergence // use broyden for diding DMPT loop convergence for a convergence 10 for Convergence To for The Govergence after reaching of which loop starts using broyden // maker af contactive solutions to mis (ALWAYS = 2) // the linear coefficients for mixing solutions innew to older) // maximum number of DMPT loop iterations // desired accuracy // if this is set to true, after acch iteration current reall gets printed to a file named "intermediate // if this is set to true, after acch iteration current reall gets printed to a file named "intermediate // debugging option that halts the secution after the first iteration and promas the user for the ordif convert // hopbing amplitude sizM: is ideation // if set to true, belta = t2 0 bethe-specific self-consistency realtion is used sizM: is ideation // if set to true, belta = t2 0 bethe-specific self-consistency realtion is used sizM: is ideation // if set to true, belta = t2 0 bethe-specific self-consistency realtion is used sizM: is ideation // if set to true, belta =</pre>			

- Theoretical solid state physics
 - Modeling materials with crystal structure


 $N \sim 10^{23}$

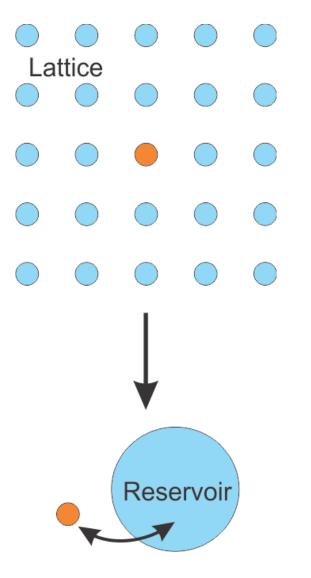
$$\hat{H} = -\frac{1}{2} \sum_{i}^{N_{e}} \nabla_{i}^{2} - \sum_{i}^{N_{e}} \sum_{I}^{N_{n}} \frac{Z_{I}}{|\vec{r_{i}} - \vec{R_{I}}|} + \frac{1}{2} \sum_{i}^{N_{e}} \sum_{j \neq i}^{N_{e}} \frac{1}{|\vec{r_{i}} - \vec{r_{j}}|} + \frac{1}{2} \sum_{I}^{N_{n}} \sum_{J \neq I}^{N_{n}} \frac{Z_{I}Z_{J}}{|\vec{R_{I}} - \vec{R_{J}}|}$$


- Weakly correlated materials
 - Conventional metals
 - Band-insulators
 - Semi-conductors
 - Described well by effective single-particle theories (e.g. DFT+LDA)
- Strongly correlated materials
 - High Tc Superconductors (Cuprates and Fe based)
 - Numerous Transition metal oxides exhibiting metalinsulator transition
 - Rare-earth and actinide intermetallics
 - Kapa-organics
 - Still lack theories with predictive power
- To understand emergent phenomena like macropscopic quantum phases of matter, one must tackle a true many-body QM problem

Hubbard Model

$$\hat{H} = -t \sum_{\langle \vec{i}, \vec{j} \rangle, \sigma} \left(c^{\dagger}_{\vec{i}, \sigma} c_{\vec{j}, \sigma} + \text{h.c.} \right) + U \sum_{\vec{i}} \hat{n}_{\vec{i}, \uparrow} \hat{n}_{\vec{i}, \downarrow} - \varepsilon \sum_{\vec{i}, \sigma} \hat{n}_{\vec{i}, \sigma}$$

- A very simplified model:
 - No details of atomic structure
 - No lattice dynamics (phonons)
 - No long-range interactions
 - No disorder



- Exactly soluble only in
 - d=1
 - $d=\infty$ (Dynamical Mean Field Theory)

H. Terletska, J. Vucicevic, D. Tanaskovic, V. Dobrosavljevic Phys. Rev. Lett. 107, 026401 (2011)

• DMFT solution of the Hubbard Model

A. Georges, Rev. Mod. Phys., Vol. 68, No. 1, (1996)

IT'S A MEAN-FIELD THEORY

The approach is simillar to the Weiss-Curie mean-field theory of magnetism

• The environment of a site is replaced by an effective bath of electronic states described by the self-consistently determined Hybridization function

IT IS DYNAMICAL

The effective fermionic field is frequency dependent so that the temporal fluctuations are fully taken into account

• Electrons are allowed to hop in and out from the bath

• DMFT solution of Hubbard Model

DMFT method assumes that the self-energy is purely local

In finite dimensions, it neglects spatial fluctuations

Exact only in infinite dimensions

Works particurarly well in cases when self-energy locality is a reasonable approximation

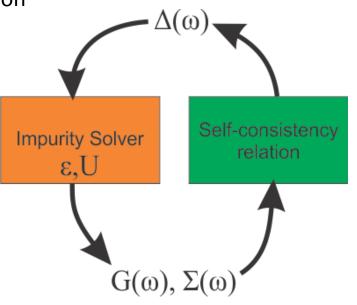
- Lattice has a large coordination number
- Long range order is geometrically frustrated
- Temperature is high as compared to the Fermi liquid coherence temperature
- Away from near vicinity of critical points

Numerical solution: The DMFT Loop

Step 0:

Pick an arbitrary Hybridazation fucntion

Step 1: Solve the Single Impurity Anderson Model (SIAM)


$$\hat{H} = -\sum_{\vec{k},\sigma} \varepsilon_{\vec{k}} \left(c^{\dagger}_{\vec{k},\sigma} c_{\vec{k},\sigma} + \text{h.c.} \right) - V \sum_{\vec{k},\sigma} \left(f^{\dagger}_{\sigma} c_{\vec{k},\sigma} + \text{h.c.} \right) - \varepsilon_f \sum_{\sigma} \left(f^{\dagger}_{\sigma} f_{\sigma} + \text{h.c.} \right) + U f^{\dagger}_{\uparrow} f^{\dagger}_{\downarrow} f_{\uparrow} f_{\downarrow}$$

Step 2:

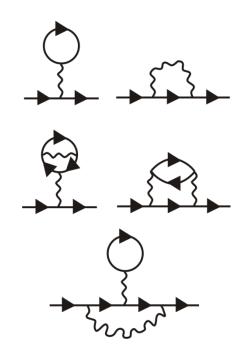
Use the solution of SIAM (Green's function and Self-energy) to Calculate a Hybridization function using the Self consistency relation

$$\Delta(\omega) = \omega + \mu - \Sigma(\omega) - G^{-1}(\omega)$$

Step 3: GOTO Step 1

Single Impurity Anderson Model solvers

- Exact
 - CTQMC (Continuous Time Quantum Monte Carlo)
 - N.V. Prokof'ev, JETP Lett. 64, 911 (1996), P. Werner, Phys. Rev. Lett. 97, 076405 (2006),
 - Noisy


K. Haule, Phys. Rev. B 75, 155113 (2007)

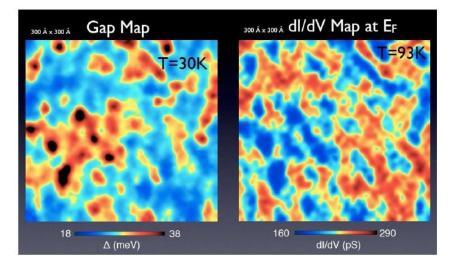
- Computationally intensive
- Formulated on the imaginary axis
- ED (Exact Diagonalization)
 - Unfeasible unless Hybridization bath is approxiated with only a small number of orbitals
- NRG (Numerical Renormalization Group)
 - Works well only at zero termperature
- Approximate
 - NCA (Non-crossing approximation)
 - SB (Slave boson)
 - SOP (Second order perturbative solution)

 $G(i\omega_n) \rightarrow G(\omega) \rightarrow \rho(\omega)$

Not an easy task!

- The DMFT with SOP impurity solver a.k.a. The iterative perturbation theory (IPT)
 - Approximate
 - Takes into account the Feynman diagrams of only up to the second order
 - Computationally not very demanding
 - Can be formulated on both real and imaginary axes
 - In good qualitative and even quantitative agreement with CTQMC

H.Kajueter, Phys. Rev. Lett. 77, 131–134 (1996) M. Potthoff, Phys. Rev. B 55, 16132–16142 (1997) • Disordered systems


Crystal lattices are usually not perfect...

- Structural defects

 Interstitial atoms
 Vacancies
 Deviations from the perfect
 translational symmetry
- Impurities

... but highly doped systems are usually very disordered, with many dopants distributed randomly across the lattice.

DMFT for disordered systems: each lattice site has different properties and a different environment and must be treated as an independent impurity problem!

STM images of the spatial distribution of the superconducting gap and normal phase conductivity of the doped Bi₂Sr₂CaCu₂O_{8+x}

The efficiency of IPT is of great importance.

$$G_{0}(\omega) = \frac{1}{\omega + \mu_{0} - \Delta(\omega)}$$

$$n_{d} = -\frac{1}{\pi} \int G_{0}(\omega) f(\omega) d\omega$$

$$A^{\pm}(\omega) = -\frac{1}{\pi} G_{0}''(\omega) f(\pm \omega)$$

$$P_{1}(\omega) = \pi \int A^{-}(\omega') A^{+}(\omega' - \omega) d\omega'$$

$$P_{2}(\omega) = \pi \int A^{+}(\omega') A^{-}(\omega' - \omega) d\omega'$$

$$Im\Sigma^{(2)}(\omega) = -U^{2} \int \left[A^{+}(\omega - \omega') P_{2}(\omega') \right] d\omega'$$

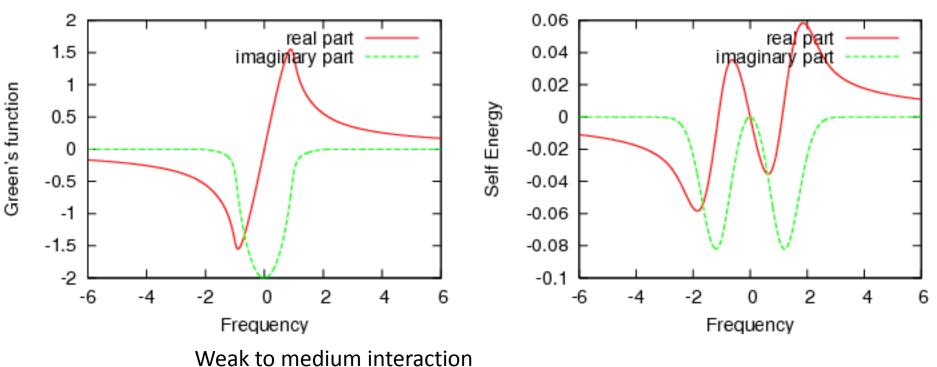
$$Re\Sigma^{(2)}(\omega) = -\frac{1}{\pi} \int \frac{Im\Sigma^{(2)}(\omega')}{\omega - \omega'} d\omega'$$

$$B_{0} = \epsilon_{d} - \frac{1}{\pi} \frac{1m\Sigma^{(2)}(\omega')}{\omega - \omega'} d\omega'$$

$$B_{0} = \epsilon_{d} - \frac{1}{\pi} \frac{1m\Sigma^{(2)}(\omega)}{m(1 - n_{d})U^{2}} d\omega'$$

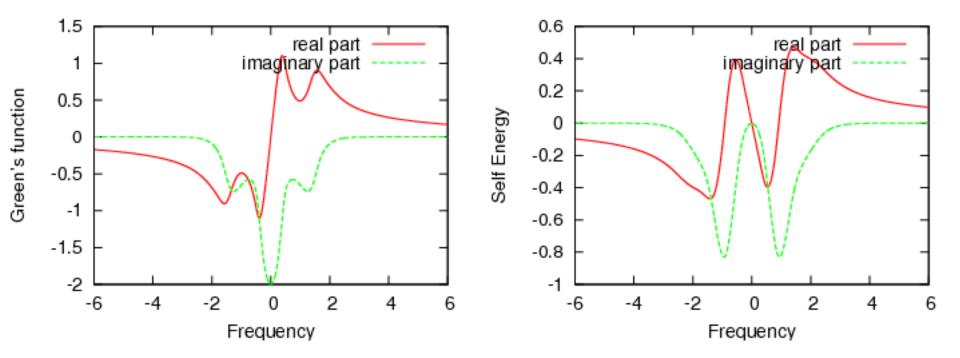
$$b = \frac{(1 - 2n_{d})U - \mu + (\mu_{0} + \epsilon_{d} + Un_{d}) - B + B_{0}}{n_{d}(1 - n_{d})U^{2}}$$

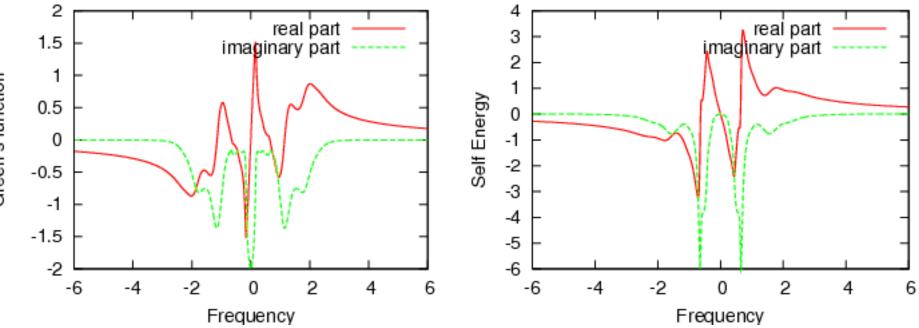
$$\Sigma(\omega) = Un_{d} + \frac{\Sigma^{(2)}(\omega)}{1 - b\Sigma^{(2)}(\omega)}$$

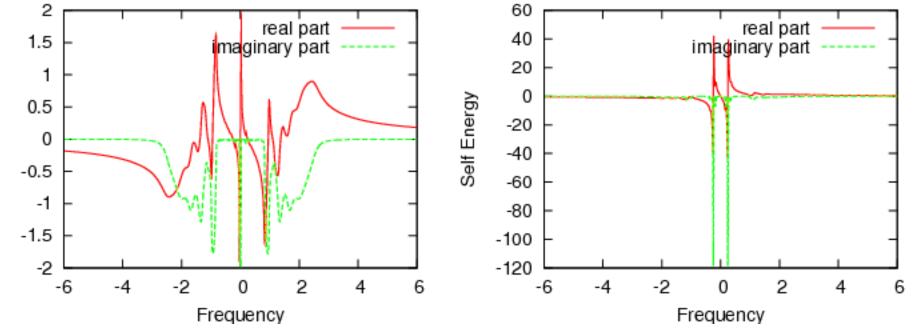

$$G(\omega) = \int \frac{\rho(\varepsilon) d\varepsilon}{\omega + \mu - \varepsilon - \Sigma(\omega)}$$

$$\Sigma(\omega), G(\omega)$$

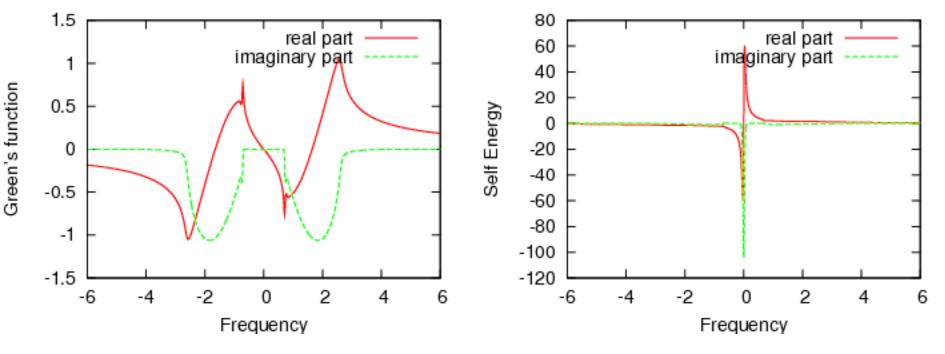
• General numerical issues


Function discretization grid $G(\omega) \longrightarrow G(\omega_i)$

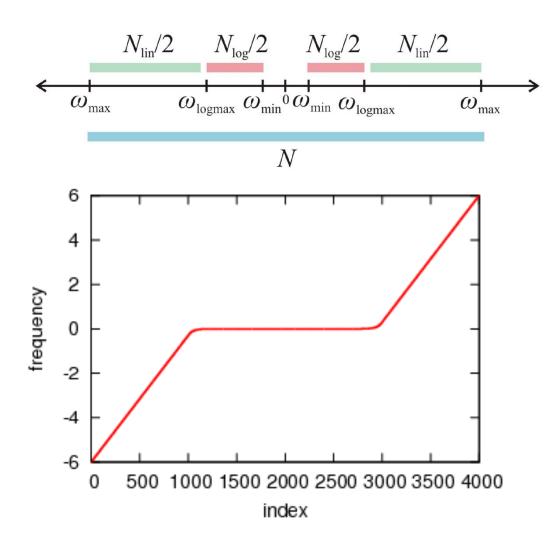

A uniform but dense grid can be good enough...


Relatively featureless Green's function and self-energy

Metallic solution



• General numerical issues


Function discretization grid $G(\omega) \longrightarrow G(\omega_i)$

... but is not good enough for a Mott-insulator

Very sharp delta-like peaks in Self-energy at zero frequency Have to be resolved with high precision General numerical issues

Function discretization grid

A combination of logarithmic and uniform grids

The majority of points is located around zero frequency

General numerical issues

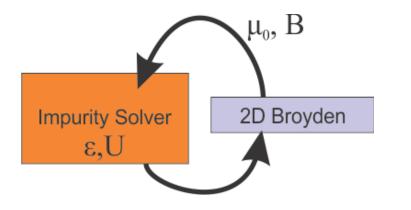
Integration

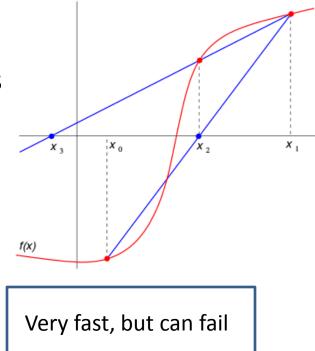
Trapezoidal integration is sufficient

Using adaptive grids for integrands with features away from zero frequency could in principle increase precision and efficiency

Integration of divergent integrands

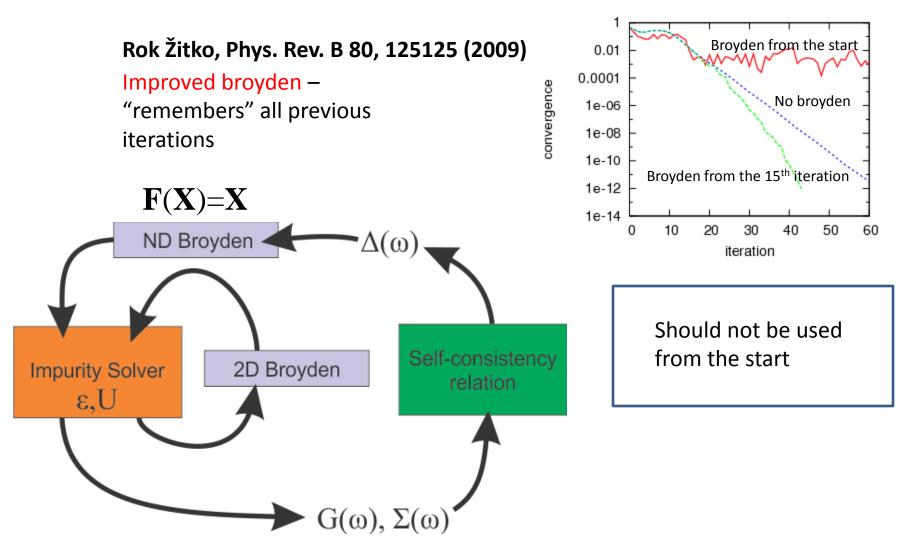
$$\begin{split} G(\omega) &= \int \frac{\rho(\varepsilon)d\varepsilon}{\omega + \mu - \varepsilon - \Sigma(\omega)} & \text{Straight-forward integration fails} \\ &= \int \frac{\rho(\varepsilon)d\varepsilon}{\omega + \mu - \varepsilon - \Sigma(\omega) + i\eta} & \text{Easy solution degrades the result} \\ &= \int d\varepsilon \frac{\rho(\varepsilon) - \rho(\omega + \mu - \Sigma(\omega))}{\omega + \mu - \varepsilon - \Sigma(\omega)} + \rho(\omega + \mu - \Sigma(\omega)) \int \frac{d\varepsilon}{\omega + \mu - \varepsilon - \Sigma(\omega)} \\ &= \int d\varepsilon \frac{\rho(\varepsilon) - \rho(\omega + \mu - \Sigma(\omega))}{\omega + \mu - \varepsilon - \Sigma(\omega)} + \rho(\omega + \mu - \Sigma(\omega)) \log \frac{\omega + \mu - \Sigma(\omega) + \omega_{max}}{\omega + \mu - \Sigma(\omega) - \omega_{max}} \end{split}$$

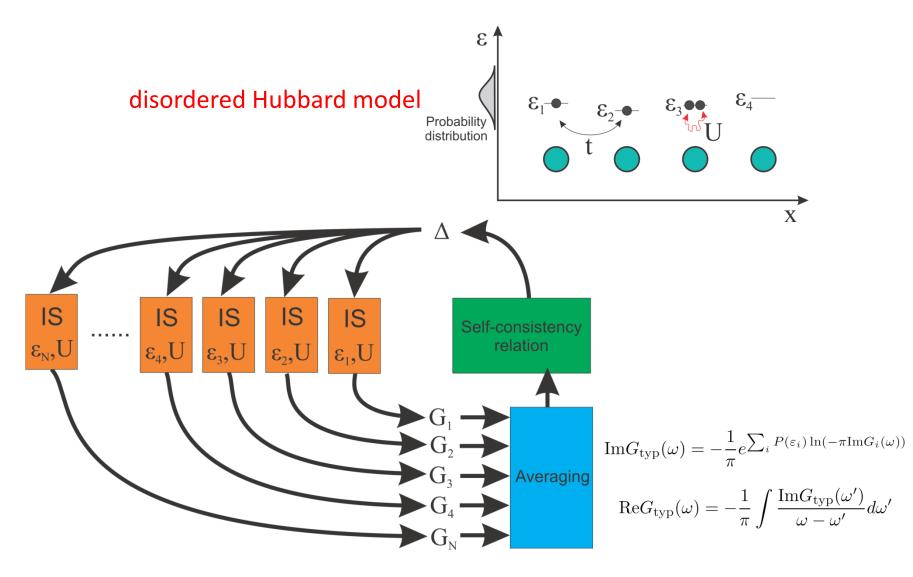

Smart solution works well!


• Optimization

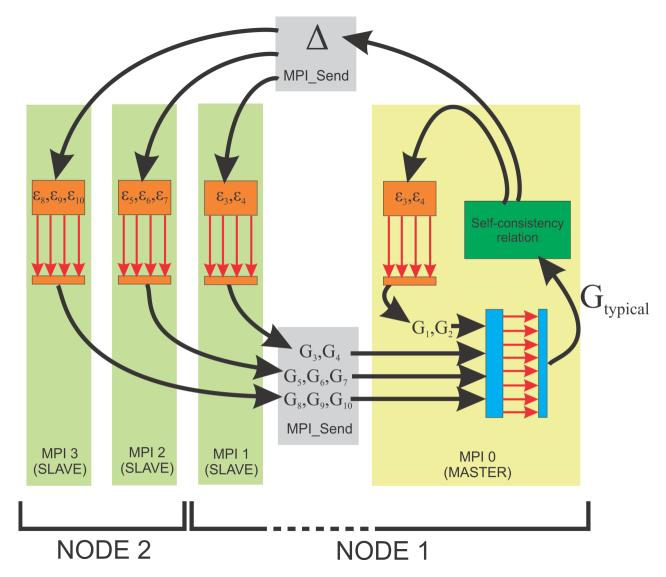
Solving systems of non-linear equations

Broyden solver – generalization of secant method in 1D


In some cases, solving SIAM = solving a system of 2 equations (2 parameters need to be fixed selfconsistently)


When Broyden fails, the procedure has to be restarted with another initial guess • Optimization

Speeding up the convergence of the DMFT loop


• Application in Typical medium theory (TMT)

V. Dobrosavljević, Europhys. Lett. 62 76, (2003)

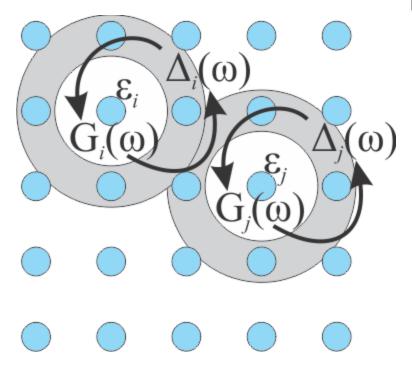
• Hybrid implementation of TMT

- This Example:
- 4 MPI processes
- 4 OpenMP threads per MPI process
- solving 10 impurities

Hybrid implementation of TMT

Tested on:

2 computational nodes of 8 cores (Intel Xeon E5405 @ 2.00GHz) interconnected by Infiniband

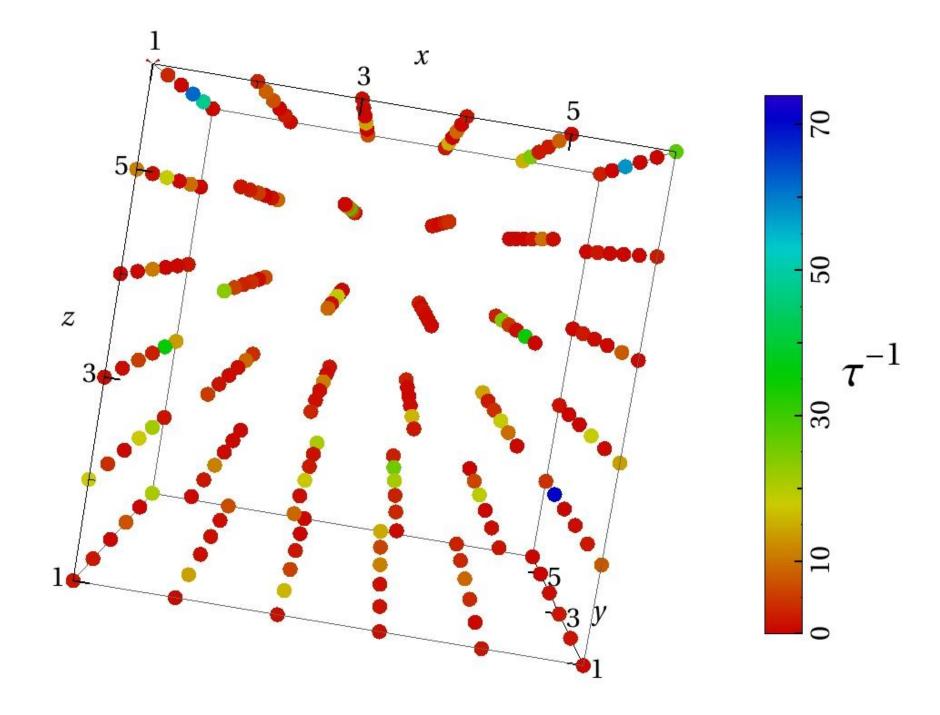

- Intel compiler (icpc)
- OpenMPI + Intel OpenMP
- This Example:
- 41 iterations for convergence
- U=0.1, T=0.1, W=0.3
- solving 32 impurities
- 2000 points in freq grid

Number of MPI processes	Number of OpenMP threads per MPI process	Execution time [min:sec]
1	1	31:01
1	2	15:46
1	4	07:58
1	8	04:06
16	1	02:20
8	2	02:10
4	4	02:08
2	8	02:07

• Statistical (Inhomogeneous) DMFT

Deals with disorder in a more detailed way : every lattice site is coupled to a different bath determined by green's functions of surrounding lattice sites

A step forward from the mean-field philosophy!



Finite dimensions and finite samples

Energies are randomized – many realizations are needed to get statistical averages

> Large matrix inversion needs to be done in every iteration – MKL library routine does the job

Massive computation - would take months with CTQMC

