Electronic Structure and Lattice Dynamics Calculations of FeSb₂ and CoSb₂

<u>Milos Radonjic¹</u>

Collaborators: D. Tanaskovic¹ N. Lazarevic² Z. Popovic²

¹Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade

²Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade

Introduction

- Basic ideas of Density Functional Theory (*DFT*)
- Approximations and implementation
- **DFT** in crystals, method of pseudopotentials
- Limitations of **DFT**
- Quantum Espresso package
- Electronic calculations on cobalt and iron antimony
- Density functional perturbation theory (crystal lattice dynamics)
- Phonon calculations of CoSb₂ and FeSb₂

Quantum mechanics $\hat{H}\Psi = E\Psi$

 $V \neq \mu$

 $\Psi = \Psi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$ Many-electron wave function

 $\hat{H} = \sum_{\mu=1}^{N} \hat{H}_{\mu} + \frac{1}{2} \sum_{\mu=1}^{N} \sum_{\nu=1}^{N} \frac{e^2}{|\mathbf{x}_{\mu} - \mathbf{x}_{\nu}|}$

Single electron term

(kinetic energy, nuclear charge attractive energy) Many-electron term (Coulomb interaction)

3N-body problem

Density functional theory

The Nobel Prize in Chemistry 1998

"for his development of the density-functional theory" "for his development of computational methods in quantum chemistry"

Walter Kohn 1/2 of the prize USA

University of California Santa Barbara, CA, USA

b. 1923 (in Vienna, Austria)

John A. Pople 1/2 of the prize United Kingdom

Northwestern University Evanston, IL, USA

b. 1925 d. 2004

Density functional theory

Hohenberg, Kohn:

 Universal energy functional of the electron density exists and it has a global minimum in the ground state of the system

$$E[n] = T[n] + \int d\mathbf{r}n(\mathbf{r})V_{ext}(\mathbf{r}) + E_{int}[n]$$

All properties can be expressed as a functional of electron density
Functional T[n] + E_{int}[n] is universal for for all systems of interacting particles

Difficulties:

- The form of universal functional is unknown
- It can not be minimized in terms of electron density

Kohn-Sham approach

1. Replacing difficult interacting many-electron system with an auxiliary system which is easy to solve

2. Problem of finding the universal functional reduce to finding of exchange-correlation functional

Approximations of exchangecorrelation functional

1. Local density approximation (*LDA*), easy to generalize for spin systems (*LSDA*)

$$E_{xc}^{LSDA}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{xc}^{unif}(\rho^{\uparrow}(\mathbf{r}), \rho^{\downarrow}(\mathbf{r})) d\mathbf{r}$$

2. Generalized gradient approximation (GGA)

$$E_{xc}^{GGA}[n] = \int d\mathbf{r} f(n^{\uparrow}, n^{\downarrow}, \nabla n^{\uparrow}, \nabla n^{\downarrow})$$

Example of E_{xc} (LDA)

It is calculated from the homogeneous electron gas using Monte-Carlo methods (in principle functional is universal)
Most of the time problem is reduced to calculation of the potential

$$V_{KS} = V_{ext}(\mathbf{r}) + V_{H} + V_{x} + V_{c} = V_{ext}(\mathbf{r}) + \frac{\delta E_{H}[n]}{\delta n(\mathbf{r},\sigma)} + \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r},\sigma)}$$

$$\varepsilon_{c} = \frac{A}{2} \left\{ \log\left(\frac{x^{2}}{X(x)}\right) + 2\frac{b}{Q} \arctan\left(\frac{Q}{2x+b}\right) - \frac{bx_{0}}{X(x_{0})} \left[\log\left(\frac{(x-x_{0})^{2}}{X(x)}\right) + \frac{2(b+2x_{0})}{Q} \arctan\left(\frac{Q}{2x+b}\right) \right] \right\}$$

$$V_{c} = \varepsilon_{c} - \frac{1}{6} A \frac{c(x-x_{0}) - bxx_{0}}{(x-x_{0})(x^{2}+bx+c)}$$

$$\varepsilon_{x} = -\frac{3}{4} \left(\frac{3}{\pi}(n_{\uparrow}+n_{\downarrow})\right)^{1/3} = -\frac{3}{4} \left(\frac{3}{2\pi}\right)^{2/3} \frac{1}{r_{s}}$$

$$V_{x} = \frac{4}{3} \varepsilon_{x} = -\left(\frac{3}{2\pi}\right)^{2/3} \frac{1}{r_{s}}.$$

Algorithm

1.We start from the initial electron density and calculate the Kohn-Sham potential

2. Solve the Schrodinger equation

3. Calculate new electron density and start from the beginning

Convergence condition:

$$[-\frac{1}{2}\nabla^2 + V_{KS}]\psi_i(\mathbf{r}) = \epsilon_i\psi_i(\mathbf{r})$$
$$n^{out}(\mathbf{r}) = \sum_i |\psi_i(\mathbf{r})|^2 - \frac{1}{2}\int d\mathbf{r}(\rho_{out}(\mathbf{r}) - \rho_{in}(\mathbf{r}))^2 < \varepsilon$$

 $n^{in}(\mathbf{r}) \Rightarrow V_{KS}$

Density functional theory in crystals

Main problem – large number of electrons around the nuclei
Inner electrons – strongly coupled to the nuclei – well described with atomic-like orbitals

 Valence electrons – weekly coupled to the nuclei, determine bounds between molecules, electronic, optical and magnetic properties, etc. – well described with plane waves

Pseudo-potentials

- Influence of all core electrons replace with pseudopotential.
- Valence electrons are treated exactly.

Pseudo-potentials

Conditions for pseudo-potential to satisfy:

- \bullet All-electron potential and pseudo-potential must coincide outside radius of core electrons r_{c}
- \bullet All-electron wave function and pseudo wave function must coincide outside r_c

 Pseudo-potentials and pseudo wave functions are smooth

When DFT "works"

- It works excellent for metals and band insulators
- It works very well for semiconductors (with minor adjustments of pseudo-potentials even excellent)
- It does not describe Mott insulators and physics near the Mott metal-insulator transition (relevant for materials with partially filled *f* and *d* orbitals: cuprates, rare earth intermetallics and actinide, numerous transition metal oxides, iron based superconductors(?)

Quantum Espresso http://www.quantum-espresso.org/ Quantum opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization

- Ground state calculations
- Structural optimization
- Ab-initio molecular dynamics
- Response functions, e.g. lattice dynamics
- Certain spectroscopic properties
- Quantum ballistic transport
- Runs on all major operating systems (*Linux, MacOS, Windows*)
- Runs on all architectures

Input parameters for CoSb₂

Self-consistent calculation (*pw.x*):

```
&control
calculation = 'scf',
prefix = 'CoSb2',
wf_collect = .true.,
pseudo_dir = './',
outdir = './out_bare',
```

```
&system
 ibrav = 12.
 celldm(1) = 12.3607,
 celldm(2) = 0.99451,
 celldm(3) = 0.97589,
 celldm(4) = -0.464069,
 nat = 12.
 ntyp = 2,
 occupations='smearing',
 smearing='mv',
 degauss=0.01,
 ecutwfc = 50,
 ecutrho = 500,
&electrons
 conv_thr = 1.0d-10
 mixing_beta = 0.7
```

Input parameters

ATOMIC_SPECIES Co 58.93320 Co.pz-nd-rrkjus.UPF Sb 121.76000 Sb.pz-bhs.UPF ATOMIC_POSITIONS crystal 0.2183 0.2299 Co 0.0005 0.2817 -0.2299 0.5005 Co Co -0.2183 -0.2299 -0.0005 Co 0.7183 0.2299 0.4995 Sb 0.3325 0.1534 0.6431 Sb 0.1675 -0.1534 1.1431 Sb -0.3325 -0.1534 -0.6431 Sb 0.8325 0.1534 -0.1431 Sb 0.1329 0.3511 0.3607 Sb 0.3671 -0.3511 0.8607 Sb -0.1329 -0.3511 -0.3607 Sb 0.6329 0.3511 0.1393 **K POINTS automatic** 16 16 16 0 0 0

Lattice parameters of CoSb₂

Symmetry: Wyckoff positions:

Lattice parameters: a=6.5051 A

Pseudo-potentials:

 $P2_{1}/c$ Co, 4e(x,y,z)Sb(1), 4e (x,y,z) Sb(2), 4e (x,y,z) b=6.3833 Ac=6.5410 Aβ=117.65° ultrasoft GGA Co, $4s^{1} 3d^{8} 4p^{0}$ Sb, $5s^{2} 5p^{3}$

Electronic structure of CoSb₂

Relaxed parameters FeSb₂

Symmetry: Wyckoff positions: Fe, 2a (0, 0, 0) Lattice parameters: **Pseudo-potentials**:

Pnnm Sb, 4g (0,u,v) a=5.859 A b=6.583 Ac=3.812 Au=0.1882v=0.3554ultrasoft GGA Fe, 3s² 3p⁶ 4s² 3d⁶ Sb, $4d^{10}5s^2 5p^3$

Electronic structure of FeSb₂

Electron density of states of FeSb₂

0.4

0.0 -3

-2

-1

0

Energy (eV)

2

Density functional perturbation theory (DFPT)

$$i\hbar\frac{\partial\hat{\Phi}(\mathbf{r},\mathbf{R};t)}{\partial t} = \left(-\sum_{I}\frac{\hbar^{2}}{2M_{I}}\frac{\partial^{2}}{\partial\mathbf{R}_{I}^{2}} - \sum_{i}\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial\mathbf{r}_{i}^{2}} + V(\mathbf{r},\mathbf{R})\right)\hat{\Phi}(\mathbf{r},\mathbf{R};t)$$

$$V(\mathbf{r}, \mathbf{R}) = \sum_{I>J} \frac{Z_i Z_J e^2}{|\mathbf{R}_I - \mathbf{R}_J|} - \sum_{i,I} \frac{Z_I e^2}{|\mathbf{r}_i - \mathbf{R}_I|} + \sum_{i>j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}$$
$$\equiv V_{nn}(\mathbf{R}) + V_{ne}(\mathbf{r}, \mathbf{R}) + V_{ee}(\mathbf{r})$$

Born-Oppenheimer:

$$\hat{\Phi}(\mathbf{r}, \mathbf{R}; t) \simeq \Phi(\mathbf{R}) \Psi(\mathbf{r}|\mathbf{R}) e^{-i\hat{E}t/\hbar}$$

Problem can be reduced to:

- Solving of electronic system which depends on positions of nuclei
- Considering system of nuclei in effective inter-atomic potential determined by the electrons

DFPT

$$\left(-\sum_{i} \frac{\hbar^2}{2m} \frac{\partial^2}{\partial \mathbf{r}_i^2} + V(\mathbf{r}, \mathbf{R})\right) \Psi(\mathbf{r} | \mathbf{R}) = E(\mathbf{R}) \Psi(\mathbf{r} | \mathbf{R})$$
$$\left(-\sum_{I} \frac{\hbar^2}{2M_I} \frac{\partial^2}{\partial \mathbf{R}_i^2} + E(\mathbf{R})\right) \Phi(\mathbf{R}) = \hat{E} \Phi(\mathbf{R})$$

 $\mathbf{F}_{I}=-\frac{\partial E(\mathbf{R})}{\partial \mathbf{R}_{I}}=0$

Normal modes in crystals

Harmonic approximation: second order expansion of interatomic potential energy (independent LHOs).

Normal modes (frequencies and elongations) are determined from secular equation

$$\sum_{t,\beta} \left(\widetilde{C}_{st}^{\alpha\beta}(\mathbf{q}) - M_s \omega^2(\mathbf{q}) \delta_{st} \delta_{\alpha\beta} \right) U_t^\beta(\mathbf{q}) = 0$$

Dynamical matrix:

$$\widetilde{C}_{st}^{\alpha\beta}(\mathbf{q}) \equiv \sum_{\mathbf{R}} e^{-i\mathbf{q}\cdot\mathbf{R}} C_{st}^{\alpha\beta}(\mathbf{R}) = \frac{1}{N_c} \frac{\partial^2 E}{\partial u_s^{*\alpha}(\mathbf{q}) \partial u_t^{\beta}(\mathbf{q})}$$
$$\mathbf{R}_I[\mathbf{u}_s(\mathbf{q})] = \mathbf{R}_l + \boldsymbol{\tau}_s + \mathbf{u}_s(\mathbf{q}) e^{i\mathbf{q}\cdot\mathbf{R}_l}$$

Raman active normal modes CoSb₂

IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 24 (2012) 135402 (5pp) doi:10.1088/0953-8984/24/13/135402 Phonon properties of CoSb₂ single crystals N Lazarević¹, M M Radonjić², Rongwei Hu^{3,4}, D Tanasković², C Petrovic³ and Z V Popović¹ ¹ Center for Solid State Physics and New Materials, Institute of Physics Belgrade, A₂⁵ =154.3 cm⁻¹ B⁶ =190.5 cm⁻¹ $A_{n}^{6} = 171.8 \text{ cm}^{-1}$ $B_{0}^{5} = 187.6 \text{ cm}^{-1}$ University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia ² Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia ³ Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA $A_{0}^{7} = 220.3 \text{ cm}^{-1}$ $B_{a}^{7} = 221.8 \text{ cm}^{-1}$ B_a⁸ =235.5 cm⁻¹ A_a⁸ =238.3 cm⁻¹ B_{a}^{1} =70.5 cm⁻¹ $A_{n}^{2} = 97.7 \text{ cm}^{-1}$ $B_a^2 = 98.9 \text{ cm}^{-1}$ A_{a}^{1} =68.7 cm⁻¹ Co Sb $B_{a}^{3} = 111.5 \text{ cm}^{-1}$ $A_{0}^{4} = 141.5 \text{ cm}^{-1}$ $A_{n}^{3} = 104.1 \text{ cm}^{-1}$ $B_{a}^{4} = 140.3 \text{ cm}^{-1}$ $B_{a}^{9} = 252.6 \text{ cm}^{-1}$ $A_{0}^{9} = 253.5 \text{ cm}^{-1}$

Raman active normal modes CoSb₂

Table 1. Raman tensors for monoclinic crystal structure and selection rules for the $(1\overline{1}0)$ plane of CoSb₂ single crystal together with Raman mode energies (in cm⁻¹) of CoSb₂ single crystal.

Raman tensors							Selection rules for the $(1\overline{1}0)$ plane of $CoSb_2$				
$\mathbf{A}_{\mathbf{g}} = \begin{pmatrix} a & d & 0 \\ d & b & 0 \\ 0 & 0 & c \end{pmatrix}$			$\mathbf{B}_{\mathbf{g}} = \begin{pmatrix} 0 & 0 & e \\ 0 & 0 & f \\ e & f & 0 \end{pmatrix}$			$\begin{array}{c} (c, c) \\ (\perp c, c) \\ (\perp c, \perp c) \end{array}$	$\xrightarrow{\longrightarrow}$		$\begin{array}{c} A_g \\ A_g + B_g \\ A_g + B_g \end{array}$		
Raman active modes							Infrared active modes				
Symmetry	Exp.	Calculations	Symmetry	Exp.	Calculations	Symmetry	Calculations	Symmetry	Calculations		
$\overline{A_{g}^{1}}$	63.8	68.7	B_g^1	80.9	70.5	A_u^1	99.7	B_u^1	133.3		
A_g^2	93.7	97.7	B_g^2	91.1	98.9	A_u^2	108.3	$\mathbf{B}_{\mathbf{u}}^2$	144.2		
A_g^3	102.5	104.1	$\mathbf{B}_{\mathbf{g}}^{3}$	109.7	111.5	A_u^3	142.7	B_u^3	166.6		
A_g^4	136.5	141.5	$\tilde{\mathrm{B}_{\mathrm{g}}^{\mathrm{4}}}$	134.4	140.3	A_u^4	167.4	B_u^4	174.4		
A_g^5	153.9	154.3	B_g^{5}	179.6	187.6	A_u^5	174.6	B_u^5	214.6		
A_g^6	168.0	171.8	B_g^6	187.3	190.5	A_u^5	205.5	B_u^5	235.9		
$A_{g}^{\tilde{7}}$	221.2	220.3	$\tilde{\mathrm{B}_{\mathrm{g}}^{7}}$	217.6	221.8	A_u^7	224.8	B_u^7	249.4		
A_g^{8}	239.6	238.3	$\mathbf{B}_{\mathbf{g}}^{\mathbf{\tilde{8}}}$		235.5	A_u^8	265.7				
$A_g^{\tilde{9}}$	256.6	253.5	$\mathbf{B}_{\mathrm{g}}^{\mathrm{\tilde{9}}}$		252.6						

Raman active normal modes FeSb₂

B¹_{1g} =173.3 cm⁻¹

 $B_{1g}^2 = 184.3 \text{ cm}^{-1}$

B_{2g}=89.4 cm⁻¹

Phonon frequencies in the center of Brillouin zone FeSb₂

Symmetry	Exp. [14]	$\Omega(0)$	Calculation	Activity	Symmetry	Exp. [11, 25]	Calculation	Activity
A ¹ _g	150.7	160.3	146.8	R	B _{1u}	195	177.4	IR
A_g^2	153.6	164.4	161.2	R	B_{2u}^1	106.4	108.1	IR
$B_{1g}^{\tilde{1}}$	154.3	164.6	173.3	R	B_{2u}^2	231.0	210.7	IR
B_{1g}^2	173.9	190.4	184.3	R	B_{2u}^3	257.0	259.6	IR
B _{2g}	90.4		89.4	R		271.0		IR
B _{3g}	151.7		95.6	R	B_{3u}^1	121.0	122.8	IR
					B_{3u}^2	216.0	219.2	IR
					B_{3u}^3	261.4	236.6	IR
					A_u^1		84.9	Silent
					A_u^2		195.2	Silent

Table 1. Raman- and infrared-active mode energies (in cm^{-1}) of FeSb₂ single crystal.

Phonon dispersion and density of

IOP PUBLISHING

J. Phys.: Condens. Matter 24 (2012) 000000 (7pp)

states

Lattice dynamics of FeSb₂

N Lazarević¹, <u>M M Radonjić²</u>, D Tanasković², Rongwei Hu^{3,4}, C Petrovic³ and Z V Popović¹

¹ Center for Solid State Physics and New Materials, Institute of Physics Belgrade,

University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

² Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

³ Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

