HP-SEE SCL Quantum ESPRESSO extensions

www.hp-see.eu

Dusan Stankovic Scientific Computing Laboratory Institute of Physics Belgrade dusan.stankovic@ipb.ac.rs

HP-SEE

High-Performance Computing Infrastructure for South East Europe's Research Communities

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

About Quantum ESPRESSO

Quantum ESPRESSO – open source code for electronic structure calculations

- Based on density-functional theory, planewaves and pseudopotentials
- Core packages and modules to expand functionality
 PW and CP used for testing
- Current version 5.0.1 development done on 5.0

HP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

- Fastest Fourier Transform in the East
 - Comes from Japan, Tsukuba University
- Written in Fortran
- Supports 1D, 2D and 3D transforms
 - With complex and real numbers
- Parallelism enabled with
 - MPI
 - OpenMP
- Limitations:
 - Only transforms of size $2^i * 3^j * 5^k$
 - OpenMP problems on tested system

FFTW3 library

for South East Europe's Research Commu

Fastest Fourier Transform in the West

- Developed at MIT
- Written in C, with Fortran interfaces
- Supports Pthreads, OpenMP, MPI
- Complex and real transforms
 - Sizes can be arbitrary (even prime)
 - Though performance can suffer
- Most commonly used FFT package in the world
 - Performance comparable to vendor-specific libraries
 - Used in MATLAB for FFT calculations

FFTW3 advanced

HP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

Supports transform planning

- Create plan once, reuse many times
- Measure performance
 - Run series of benchmarks
 - Finds best configuration for the system
- Estimate parameters
 - Faster planning
 - Performance might not be optimal
- Serial routines are thread-safe
 - Though plan creation is not
- Can plan multiple (batched transforms)
 - Execute in a single routine call
 - Arbitrary strides in memory

QE code structure 1

for South East Europe's Research Communiti

□ Written in Fortran 90

- Application structure
 - Common modules (e.g FFT or time-logging)
 - Calculation specific (like PW or CP)
- Using external numerical libraries
 - Vendor-specific (MKL, ESSL and so on)
 - Open source (FFTW3)
- Parallelized using MPI and OpenMP
 - Hybrid mode not supported for all libraries
- FFTW version 2 comes with QE
 - Hybrid mode enabled
 - Used for comparison in testing

QE code structure 2

HIP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

- Conditional compilation to select a library
 - #ifdef, #else and #endif directives
- □ FFT routine calls in *Modules/fft_scalar.f90* file
- QE uses 3D complex to complex transform
 - Zero-valued elements present in the FFT grid
 - Not using native 3D FFT calls
- Decomposition done manually
 - Instead 1D+2D transforms are used
 - Serial calls on each CPU
 - Data reordering in between using MPI

Enabling FFTE

- Distributed as source code files
 - First step to create a library
- FFTE selected with preprocessor directives
 - Compiles and executes if macro _____FFTE is defined
 - Introduced variables prefixed with *ffte*_
- Overhead related to FFTE
 - Routine call needed for each transform
 - Initialization needed before each transform
 - Compare to FFTW3 plans (needed only once)
- Unable to support FFTE threading
 - Native OpenMP support not working in all cases
 - Serial routines are not thread-safe

FFTE performance 1

PW module of QE tested Cluster with AMD Magny-Cours Opteron 6174 CPUs

FFTE was slightly faster
 More evident with bigger datasets

FFTE performance 2

HP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

CP module of QE tested Cluster with Intel Xeon E5345 CPUs

Similar results as with previous test
 Both tests – serial libraries were compared

Enabling FFTW3 threading

FFTW3 library is very widespread

- Already pre-built at most sites
- Just need to link to a library

Fortran interface is present

- Can be used, or
- Call directly call C routines
 - Standardized in Fortran 2003
 - Need to reverse dimensions for multidimensional arrays
- Variants of FFTW3 threading
 - Threaded library (implicit)
 - Serial library with OpenMP region

FFTW3 threading variants

Implicit

- New OpenMP parallel region created for each call
- Can use advanced planning interface
 - Multiple transforms in a single call
- Code stays mostly the same
 - Added thread init routines
 - Linking with *libfftw3_omp* library

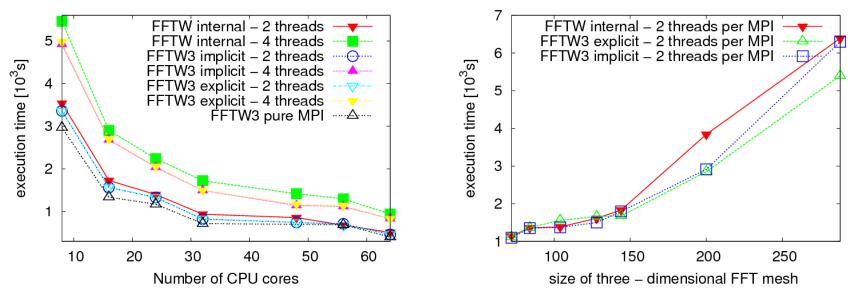
Explicit

- Single parallel region with multiple calls inside
- Code needs to be modified
 - Splitting batched into multiple transforms
 - Linking with standard *libfftw3* library
- Performance should be very close

for South East Europe's Research Commu

Running QE in hybrid mode

HP-SEE High-Performance Computing Infrastructure for South East Europe's Research Communities

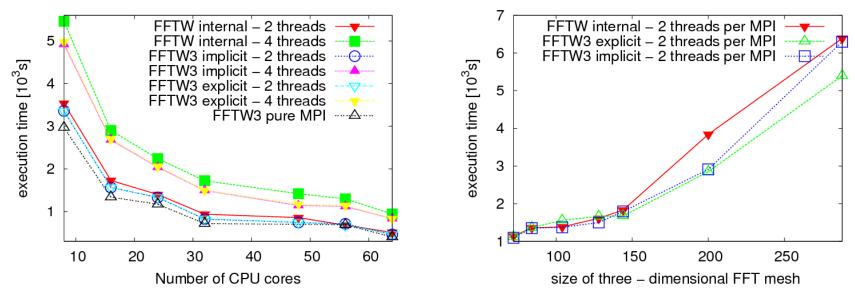

- QE has multiple levels of parallelism
 - MPI, but not just a simple division
 - Domain-specific grouping of processes
 - Different CPU scalability and RAM dependencies
 - OpenMP is the final layer, divide calculations
- A bit harder to tune for optimal performance
 - Depends on the input, cluster configuration etc.
 - Threading changes number of processes
- When testing hybrid QE
 - Find parameters for some test case
 - Modify ratio of OpenMP threads per MPI process
 - Leave other parameters the same

FFTW3 performance 1

for South East Europe's Research Communiti

PW module of QE testedCluster with Intel Xeon E5345 CPUs

- MPI version fastest
 - Followed by 2-way threaded
- Both variants faster than internal FFTW (version 2)


HP-SEE User Forum 2012 – National Library of Serbia, Belgrade, Serbia, 17-19 October 2012

FFTW3 performance 2

for South East Europe's Research Communiti

CP module of QE tested Same cluster, Intel Xeon E5345 CPUs

- Similar results as the previous test
- No clear winner between threading variants
 - Different approaches, but similar implementation

Results explanation

- Version without threading was fastest
 - Threading introduces overhead
 - Thread creation
 - Synchronization at the end of parallel region
 - Threading reduces MPI communication
 - Lower number of MPI processes
 - Tradeoff benefits not large enough to compensate
- □ Total CPU power the same, with or without threads
 - Not all problems benefit from threading
 - MPI implementations are memory-aware
 - Use shared memory for processes on the same node
 - Equivalent to shared variables in terms of performance

Conclusions

for South East Europe's Research Commu

FFTE extension

- Comparable to or better results than FFTW3
- Still has room for improvements
 - Implementation would have to be changed

FFTW3 threading extension

- Performance is not improved compared to MPI
- Thread overhead too large on tested examples
- Possibly needs larger datasets
 - Greater computation to overhead ratio
- Possibly needs more processes
 - MPI communication reduction will be more significant
- Faster than internal FFTW (version 2) library in hybrid mode