
www.hp-see.eu

HP-SEE
Valgrind Usage

Josip Jakić
Scientific Computing Laboratory

Institute of Physics Belgrade
josipjakic@ipb.ac.rs

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

Introduction

q  Valgrind is a suite of command line tools both for
debugging and profiling codes on Linux system.

q  Includes a set of production-quality tools
q  Memcheck – memory error detector
q  Cachegrind – cache and branch-prediction profiler
q  Callgrind – call-graph generating extension to Cachegrind
q  Massif – heap profiler
q  Helgrind – thread error detector

q  Ease of use:
q  Valgrind uses dynamic binary instrumentation – no need to

modify, recompile or relink your applications.
q  Simply prefix your command line with valgrind and everything

works.

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 2

Why you should use it

q  Valgrind helps solving issues with dynamic memory
allocation and errors associated with it:
q  Automatically detect many memory management and threading

bugs, saving hours of debugging time.
q  Valgrind tools allow very detailed profiling to help find bottlenecks

in your programs, often resulting in program speed-up.
q  Valgrind works with programs written in any language.
q  Valgrind works with MPI: Open-MPI and MVAPICH/MVAPICH2

q  Downsides:
q  Large overhead

q  Programs run significantly more slowly under Valgrind. Depending on
which tool you use, the slowdown factor can range from 5 – 100.

q  Measurements may not be absolutely accurate

 Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 3

Common Errors

q  Use of uninitialized memory
q  Reading/writing memory after it has been freed
q  Reading/writing off the end of allocated blocks
q  Reading/writing inappropriate areas on the stack
q  Memory leaks – where pointers to allocated blocks

become lost
q  Mismatched use of malloc/new/new[] vs free/delete/

delete[]

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 4

Compiling

q  When testing for memory problems It is recommended to
compile the code with both the debugging options –O0
(no optimization) and –g (debugging information).
q  $(CC) filecode.c –g –O0 –o fileprog.x
q  $(FC) filecode.f90 –g –O0 –o fileprog.x
q  $(CXX) filecode.cpp –g –O0 –fno-inline –o fileprog.x

q  The –fno-inline flag avoids the inlining of functions into
the main program and makes it easier to see the
function-call chain.

q  Using Valgrind with code that has been compiled with
optimisation options could give incorrect results.

q  These examples can also be applied using the MPI
compiler wrappers.

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 5

Memcheck:
Memory Error Checker

q  Aimed primarily at Fortran, C and C++ programs.
q  All reads and writes of memory are checked, and calls to

malloc/new/free/delete are intercepted. Will report if:
q  Accesses memory it shouldn't (not yet allocated, freed, past the

end of heap blocks, inaccessible areas of the stack).
q  Uses uninitialized values in dangerous ways.
q  Leaks memory.
q  Does bad frees of heap blocks (double frees, mismatched frees).
q  Passes overlapping source and destination memory blocks to

memcpy() and related functions.
q  Memcheck reports these errors as they occur, giving the

source line number, and also a stack trace of the functions
called to reach that line.

q  Memcheck runs programs 10–30× slower than normal.
Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 6

Memcheck usage
Uninitialized Memory

1 #include <stdlib.h>
2 int main() {
3
4 int p, t;
5
6 if (p == 5) /* Error */
7 t = p + 1;
8 return 0;
9 }

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 7

[josipjakic@ui Valgrind]$ valgrind --tool=memcheck ./uninit_memory
==32126== Memcheck, a memory error detector
==32126== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
==32126== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==32126== Command: ./uninit_memory
==32126==
==32126== Conditional jump or move depends on uninitialised value(s)
==32126== at 0x400450: main (uninit_memory.c:6)
==32126==
==32126==
==32126== HEAP SUMMARY:
==32126== in use at exit: 0 bytes in 0 blocks
==32126== total heap usage: 0 allocs, 0 frees, 0 bytes allocated
==32126==
==32126== All heap blocks were freed -- no leaks are possible
==32126==
==32126== For counts of detected and suppressed errors, rerun with: -v
==32126== Use --track-origins=yes to see where uninitialised values come from
==32126== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)
[josipjakic@ui Valgrind]$

p is uninitialized and
may contain garbage,
resulting in an error if
used to determine
branch-outcome or
memory address
(ex: a[p] = y)

Memcheck usage
Invalid Read/Write

1 #include <stdlib.h>
2 int main() {
3
4 int *p, i, a;
5
6 p = malloc(10*sizeof(int));
7 p[11] = 1; /* write */
8 a = p[11]; /* read */
9 free(p);
10 return 0;
11 }

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 8

[josipjakic@ui Valgrind]$ valgrind --tool=memcheck ./invalid_read_write
==13028== Memcheck, a memory error detector
==13028== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
==13028== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==13028== Command: ./invalid_read_write
==13028==
==13028== Invalid write of size 4
==13028== at 0x4004F6: main (invalid_read_write.c:7)
==13028== Address 0x4c3b06c is 4 bytes after a block of size 40 alloc'd
==13028== at 0x4A05E1C: malloc (vg_replace_malloc.c:195)
==13028== by 0x4004E9: main (invalid_read_write.c:6)
==13028==
==13028== Invalid read of size 4
==13028== at 0x400504: main (invalid_read_write.c:8)
==13028== Address 0x4c3b06c is 4 bytes after a block of size 40 alloc'd
==13028== at 0x4A05E1C: malloc (vg_replace_malloc.c:195)
==13028== by 0x4004E9: main (invalid_read_write.c:6)
==13028==
==13028==
==13028== HEAP SUMMARY:
==13028== in use at exit: 0 bytes in 0 blocks
==13028== total heap usage: 1 allocs, 1 frees, 40 bytes allocated
==13028==
==13028== All heap blocks were freed -- no leaks are possible
==13028==
==13028== For counts of detected and suppressed errors, rerun with: -v
==13028== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 4 from 4)
[josipjakic@ui Valgrind]$

Attempting to read/
write
from address
(p+sizeof(int)*11)
which has not been
allocated.

Memcheck usage
Invalid Free

1 #include <stdlib.h>
2
3 int main() {
4
5 int *p, i;
6 p = malloc(10*sizeof (int));
7 for(i = 0;i < 10;i++)
8 p[i] = i;
9 free(p);
10 free(p); /* Error */
11 return 0;
12 }

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 9

[josipjakic@ui Valgrind]$ valgrind --tool=memcheck ./invalid_free
==24100== Memcheck, a memory error detector
==24100== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
==24100== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==24100== Command: ./invalid_free
==24100==
==24100== Invalid free() / delete / delete[]
==24100== at 0x4A05A31: free (vg_replace_malloc.c:325)
==24100== by 0x400527: main (invalid_free.c:9)
==24100== Address 0x4c3b040 is 0 bytes inside a block of size 40 free'd
==24100== at 0x4A05A31: free (vg_replace_malloc.c:325)
==24100== by 0x40051E: main (invalid_free.c:8)
==24100==
==24100==
==24100== HEAP SUMMARY:
==24100== in use at exit: 0 bytes in 0 blocks
==24100== total heap usage: 1 allocs, 2 frees, 40 bytes allocated
==24100==
==24100== All heap blocks were freed -- no leaks are possible
==24100==
==24100== For counts of detected and suppressed errors, rerun with: -v
==24100== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)
[josipjakic@ui Valgrind]$

Valgrind checks the
address passed to the
free() call and sees
that it has already
been
freed.

Memcheck usage
Invalid Call Parameter

1 #include <stdlib.h>
2 #include <unistd.h>
3
4 int main() {
5 int *p;
6
7 p = malloc(10);
8 read(0, p, 100); /* err */
9 free(p);
10 return 0;
11 }

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 10

[josipjakic@ui Valgrind]$ valgrind --tool=memcheck ./invalid_call_param
==18300== Memcheck, a memory error detector
==18300== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
==18300== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==18300== Command: ./invalid_call_param
==18300==
==18300== Syscall param read(buf) points to unaddressable byte(s)
==18300== at 0x3351AC52A0: __read_nocancel (in /lib64/libc-2.5.so)
==18300== by 0x400550: main (invalid_call_param.c:7)
==18300== Address 0x4c3b04a is 0 bytes after a block of size 10 alloc'd
==18300== at 0x4A05E1C: malloc (vg_replace_malloc.c:195)
==18300== by 0x400539: main (invalid_call_param.c:6)
==18300==
12345678901234567890
==18300==
==18300== HEAP SUMMARY:
==18300== in use at exit: 0 bytes in 0 blocks
==18300== total heap usage: 1 allocs, 1 frees, 10 bytes allocated
==18300==
==18300== All heap blocks were freed -- no leaks are possible
==18300==
==18300== For counts of detected and suppressed errors, rerun with: -v
==18300== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)
[josipjakic@ui Valgrind]$

read() tries to read 100
bytes from stdin and
place the results in p but
the bytes after the firs 10
are unaddressable.

Memcheck usage
Leak Detection

1 #include <stdlib.h>
2
3 int main() {
4 int *p, i;
5 p = malloc(5*sizeof(int));
6 for(i = 0;i < 5;i++)
7 p[i] = i;
8 return 0;
9 }

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 11

[josipjakic@ui Valgrind]$ valgrind --leak-check=yes --tool=memcheck ./memory_leak
==325== Memcheck, a memory error detector
==325== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
==325== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==325== Command: ./memory_leak
==325==
==325==
==325== HEAP SUMMARY:
==325== in use at exit: 20 bytes in 1 blocks
==325== total heap usage: 1 allocs, 0 frees, 20 bytes allocated
==325==
==325== 20 bytes in 1 blocks are definitely lost in loss record 1 of 1
==325== at 0x4A05E1C: malloc (vg_replace_malloc.c:195)
==325== by 0x4004A9: main (memory_leak.c:5)
==325==
==325== LEAK SUMMARY:
==325== definitely lost: 20 bytes in 1 blocks
==325== indirectly lost: 0 bytes in 0 blocks
==325== possibly lost: 0 bytes in 0 blocks
==325== still reachable: 0 bytes in 0 blocks
==325== suppressed: 0 bytes in 0 blocks
==325==
==325== For counts of detected and suppressed errors, rerun with: -v
==325== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)
[josipjakic@ui Valgrind]$

20 unfreed blocks at
routine exit – memory
leak.

Cachegrind:
Cache profiler

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 12

q  Performs detailed simulation of I1, D1 and L2 caches
q  Can accurately pinpoint the sources of cache misses in

your code. It identifies for each line of source code the
number of:
q  Cache misses
q  Memory references
q  Instructions executed

q  Provides per-function, per-module and whole-program
summaries.

q  Useful for programs written in any language.
q  Performance hit is about a 20-100x slowdown.

Cachegrind usage (1/2)

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 13

q  Array size is 1,000 x 1000 x 8 bytes = 8Mb
q  32kB L1i and 32kB L1d
q  4096kB L2

Cachegrind usage (2/2)

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 14

[josipjakic@ui Valgrind]$ gcc -O2 -g -o loops-fast loops-fast.c
[josipjakic@ui Valgrind]$ valgrind --tool=cachegrind ./loops-fast
==23430== Cachegrind, a cache and branch-prediction profiler
==23430== Copyright (C) 2002-2009, and GNU GPL'd, by Nicholas Nethercote et al.
==23430== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==23430== Command: ./loops-fast
==23430==
sum = 10000.000
==23430==
==23430== I refs: 10,122,886
==23430== I1 misses: 847
==23430== L2i misses: 846
==23430== I1 miss rate: 0.00%
==23430== L2i miss rate: 0.00%
==23430==
==23430== D refs: 2,041,972 (1,029,938 rd + 1,012,034 wr)
==23430== D1 misses: 251,113 (125,846 rd + 125,267 wr)
==23430== L2d misses: 251,047 (125,785 rd + 125,262 wr)
==23430== D1 miss rate: 12.2% (12.2% + 12.3%)
==23430== L2d miss rate: 12.2% (12.2% + 12.3%)
==23430==
==23430== L2 refs: 251,960 (126,693 rd + 125,267 wr)
==23430== L2 misses: 251,893 (126,631 rd + 125,262 wr)
==23430== L2 miss rate: 2.0% (1.1% + 12.3%)
[josipjakic@ui Valgrind]$

Callgrind:
Callgraphs+Cachegrind Info

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 15

q  Is an extension that provides all the info Cachegrind
yields

q  Provides callgraph information.
q  Kcachegrind is a separately available tool for visualisation

for both Callgrind and Cachegrind output data

Callgrind usage (1/3)

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 16

[josipjakic@ui Valgrind]$ valgrind --tool=callgrind --simulate-cache=yes ./loops-fast
==19141== Callgrind, a call-graph generating cache profiler
==19141== Copyright (C) 2002-2009, and GNU GPL'd, by Josef Weidendorfer et al.
==19141== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==19141== Command: ./loops-fast
==19141==
==19141== For interactive control, run 'callgrind_control -h'.
sum = 10000.000
==19141==
==19141== Events : Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw
==19141== Collected : 10122883 1029478 1012494 847 125838 125275 846 125777 125270
==19141==
==19141== I refs: 10,122,883
==19141== I1 misses: 847
==19141== L2i misses: 846
==19141== I1 miss rate: 0.0%
==19141== L2i miss rate: 0.0%
==19141==
==19141== D refs: 2,041,972 (1,029,478 rd + 1,012,494 wr)
==19141== D1 misses: 251,113 (125,838 rd + 125,275 wr)
==19141== L2d misses: 251,047 (125,777 rd + 125,270 wr)
==19141== D1 miss rate: 12.2% (12.2% + 12.3%)
==19141== L2d miss rate: 12.2% (12.2% + 12.3%)
==19141==
==19141== L2 refs: 251,960 (126,685 rd + 125,275 wr)
==19141== L2 misses: 251,893 (126,623 rd + 125,270 wr)
==19141== L2 miss rate: 2.0% (1.1% + 12.3%)
[josipjakic@ui Valgrind]$

Callgrind usage (2/3)

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 17

[josipjakic@ui Valgrind]$ callgrind_annotate callgrind.out.19141
--
Profile data file 'callgrind.out.19141' (creator: callgrind-3.5.0)
--
I1 cache: 32768 B, 64 B, 8-way associative
D1 cache: 32768 B, 64 B, 8-way associative
L2 cache: 4194304 B, 64 B, 16-way associative
Timerange: Basic block 0 - 2024406
Trigger: Program termination
Profiled target: ./loops-fast (PID 19141, part 1)
Events recorded: Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw
Events shown: Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw
Event sort order: Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw
Thresholds: 99 0 0 0 0 0 0 0 0
Include dirs:
User annotated:
Auto-annotation: off

q  Cachegrind saves output to a file callgrind.out.<pid>
q  Use callgrind_annotate to parse this file for detailed

information

Callgrind usage (3/3)

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 18

--
 Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw
--
10,122,886 1,029,478 1,012,494 847 125,838 125,275 846 125,777 125,270 PROGRAM TOTALS

--
 Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw file:function
--
6,007,017 4 1,000,004 2 2 125,001 2 2 125,001 loops-fast.c:main [/home/josipjakic/Valgrind/loops-fast]
4,005,003 1,000,001 0 0 125,001 0 0 125,001 . loops-fast.c:array_sum [/home/josipjakic/Valgrind/loops-
fast]
 23,333 7,843 3,388 12 163 5 12 157 4 ???:do_lookup_x [/lib64/ld-2.5.so]

[josipjakic@ui Valgrind]$

q  Callgrind can be used to find performance problems that
are not related to CPU cache
q  What lines eat up most instructions (CPU cycles, time)
q  What system/math/lib functions are called and what is their cost

Other tools

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 19

q  Massif: Heap Profiler
q  Performs detailed profiling by taking regular snapshots of a

program's heap.
q  Produces a graph showing heap usage over time
q  Massif runs programs about 20× slower than normal.

q  Helgrind: Thread Debugger
q  Finds data races in multithreaded programs.
q  Looks for memory locations which are accessed by more than one

[POSIX p-]thread
q  It is useful for any program that uses pthreads.
q  Experimental tool

References

Tuning and Optimization of HPC Application – Institute of Physics Belgrade, Friday 01 June 2012 20

q  Valgrind is freely available from:
 http://www.valgrind.org

