HP-SEE P»‘
Valgrind Usage L>
www.hp-see.eu ’

Josip Jakié
Scientific Computing Laboratory H P - S E E

Institute of Physics Belgrade
. . . . High-Performance Computing Infrastructure
jOSlpjﬁle@lpb.aC.rS for South East Europe's Research Communities

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

Introduction

2 Valgrind is a suite of command line tools both for
debugging and profiling codes on Linux system.

0 Includes a set of production-quality tools
0 Memcheck — memory error detector
Cachegrind - cache and branch-prediction profiler

Q
0 Callgrind - call-graph generating extension to Cachegrind
0 Massif — heap profiler

0 Helgrind - thread error detector

0 Ease of use:

0 Valgrind uses dynamic binary instrumentation — no need to
modify, recompile or relink your applications.

0 Simply prefix your command line with valgrind and everything
works.

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Why you should use it

2 Valgrind helps solving issues with dynamic memory
allocation and errors associated with it:

0 Automatically detect many memory management and threading
bugs, saving hours of debugging time.

0 Valgrind tools allow very detailed profiling to help find bottlenecks
in your programs, often resulting in program speed-up.

0 Valgrind works with programs written in any language.

2 Valgrind works with MPI: Open-MPI and MVAPICH/MVAPICH2

2 Downsides:

0 Large overhead

0 Programs run significantly more slowly under Valgrind. Depending on
which tool you use, the slowdown factor can range from 5 - 100.

0 Measurements may not be absolutely accurate

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Use of uninitialized memory

Reading/writing memory after it has been freed
Reading/writing off the end of allocated blocks
Reading/writing inappropriate areas on the stack

Memory leaks — where pointers to allocated blocks
become lost

C OO0 00

(

Mismatched use of malloc/new/new|] vs free/delete/
delete[]

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

0 When testing for memory problems It is recommended to
compile the code with both the debugging options -00
(no optimization) and —g (debugging information).

0 $(CC) filecode.c —g —-00 -o fileprog.x
0 $(FC) filecode.f90 —g —00 -o fileprog.x
0 $(CXX) filecode.cpp —g —0O0 -fno-inline —o fileprog.x

2 The -fno-inline flag avoids the inlining of functions into
the main program and makes it easier to see the
function-call chain.

0 Using Valgrind with code that has been compiled with
optimisation options could give incorrect results.

0 These examples can also be applied using the MPI
compiler wrappers.

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Memcheck:

Memory Error Checker

a Aimed primarily at Fortran, C and C++ programs. ~—
2 All reads and writes of memory are checked, and calls to
malloc/new/free/delete are intercepted. Will report if:

0 Accesses memory it shouldn't (not yet allocated, freed, past the
end of heap blocks, inaccessible areas of the stack).

Uses uninitialized values in dangerous ways.
Leaks memory.
Does bad frees of heap blocks (double frees, mismatched frees).

Passes overlapping source and destination memory blocks to
memcpy() and related functions.

0 Memcheck reports these errors as they occur, giving the

source line number, and also a stack trace of the functions
called to reach that line.

10 Memcheck runs programs 10-30x slower than normal.

U 0O 0O DO

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Memcheck usage

Uninitialized Memory

1 #include <stdlib.h> [josipjakic@ui Valgrind]$ valgrind --tool=memcheck ./uninit_memory
2 int main() { ==32126== Memcheck, a memory error detector
3 ==32126== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
. . ==32126== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
o e ==32126== Command: ./uninit_memory
5 ==32126==
6 if (p ==>5)/* Error */ ==32126== Conditional jump or move depends on uninitialised value(s)
7 t=p+1; ==32126== at 0x400450: main (uninit_memory.c:6)
8 return O; ==32126==
9} ==32126==
==32126== HEAP SUMMARY:
==32126== in use at exit: 0 bytes in 0 blocks
==32126== total heap usage: 0 allocs, O frees, 0 bytes allocated
p is uninitialized and ==32126==
may contain garbage, ==§;:§:== All heap blocks were freed -- no leaks are possible
resultlng in an error if ==32126== For counts of detected and suppressed errors, rerun with: -v
used to determine ==32126== Use --track-origins=yes to see where uninitialised values come from

==32126== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)

branch-outcome or [josipjakic@ui Valgrind]$

memory address
(ex: a[p] =)

y
HP-SEE

High-Performance Computing Infrastructure

for South East Europe’s Research Communities

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Memcheck usage

y
HP-SEE

[josipjakic@ui Valgrind]$ valgrind --tool=memcheck ./invalid_read_write HighPeriormznce Computing Infrastricture

Invalid Read/Write

for South East Europe’s Research Communities

1 #include <stdlib.h> ==13028== Memcheck, a memory error detector

2 int main() { ==13028== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
3) _ ==13028== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
4 int*p, i, a; ==13028== Command: ./invalid_read_write
5 ==13028==
6 p = malloc(10*sizeof(int)); ==13028== Invalid write of size 4
7 p[11] = 1; /* write */ ==13028== at 0x4004F6: main (invalid_read_write.c:7)
8 a=p[l11l]; /* read */ ==13028== Address 0x4c3b06c is 4 bytes after a block of size 40 alloc'd
9 free(p); ==13028== at Ox4A05E1C: malloc (vg_replace_malloc.c:195)
/ - - - .
10 return O; ==13028== by 0x4004E9: main (invalid_read_write.c:6)
111 ==13028==
==13028== Invalid read of size 4
==13028== at 0x400504: main (invalid_read_write.c:8)
==13028== Address 0x4c3b06c is 4 bytes after a block of size 40 alloc'd
. ==13028== at 0x4A05E1C: malloc (vg_replace_malloc.c:195)
Attemptmg to read/ ==13028== by 0x4004E9: main (invalid_read_write.c:6)
write ==13028==
from address ==13028==

(p+sizeof(int)*11) ==13028== HEAP SUMMARY:

==13028== in use at exit: 0 bytes in 0 blocks
which has not been ==13028== total heap usage: 1 allocs, 1 frees, 40 bytes allocated
allocated. ==13028== _
==13028== All heap blocks were freed -- no leaks are possible
==13028==

==13028== For counts of detected and suppressed errors, rerun with: -v
==13028== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 4 from 4)
[josipjakic@ui Valgrind]$

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Memcheck usage

y
HP-SEE

High-Performance Computing Infrastructure

Invalid Free

for South East Europe’s Research Communities

[josipjakic@ui Valgrind]$ valgrind --tool=memcheck ./invalid_free

1 #include <stdlib.h> ==24100== Memcheck, a memory error detector

2)) ==24100== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
3 int main() { ==24100== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
A ==24100== Command: ./invalid_free
5 int *p, |, ==24100==
6 p = malloc(10*sizeof (int)); ==24100== Invalid free() / delete / delete[]
7 for(i = 0;i < 10;i++) ==24100== at 0x4A05A31: free (vg_replace_malloc.c:325)
8 p[i] = i; ==24100== by 0x400527: main (invalid_free.c:9)
9 free(p); ==24100== Address 0x4c3b040 is 0 bytes inside a block of size 40 free'd
10 free(p); /* Error */ ==24100== at 0x4A05A31: free (vg_replace_malloc.c:325)
==24100== by O0x40051E: main (invalid_free.c:8)
11 return O;
==24100==
12} ==24100==
==24100== HEAP SUMMARY:
. ==24100== in use at exit: 0 bytes in 0 blocks
Valgrlnd checks the ==24100== total heap usage: 1 allocs, 2 frees, 40 bytes allocated
address passed to the ==24100==
free() call and sees ==24100== All heap blocks were freed -- no leaks are possible
==24100==
that it has already ==24100== For counts of detected and suppressed errors, rerun with: -v
been ==24100== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)
freed. [josipjakic@ui Valgrind]$

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Memcheck usage

y
HP-SEE

High-Performance Computing Infrastructure

Invalid Call Parameter

for South East Europe’s Research Communities

[josipjakic@ui Valgrind]$ valgrind --tool=memcheck ./invalid_call_param
==18300== Memcheck, a memory error detector
==18300== Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.

1 #include <stdlib.h>
2 #include <unistd.h>

3 ==18300== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
4 int main() { ==18300== Command: ./invalid_call_param
5 int *p; ==18300==
6 ==18300== Syscall param read(buf) points to unaddressable byte(s)
7 p = malloc(10); ==18300== at 0x3351AC52A0: __ read_nocancel (in /lib64/libc-2.5.s0)
8 read(0, p, 100); /* err */ ==18300== by 0x400550: main (invalid_call_param.c:7)
9 free(p); ==18300== Address 0x4c3b04a is 0 bytes after a block of size 10 alloc'd
10 return O; ==18300== at 0x4A05E1C: malloc (vg_replace_malloc.c:195)
11} ==18300== by 0x400539: main (invalid_call_param.c:6)
==18300==
12345678901234567890
==18300==
. ==18300== HEAP SUMMARY:
read() tries to read 100 ==18300== in use at exit: 0 bytes in 0 blocks
bytes from stdin and ==18300== total heap usage: 1 allocs, 1 frees, 10 bytes allocated
place the results in p but ==18300==
i ==18300== All heap blocks were freed -- no leaks are possible
the bytes after the firs 10 -=18300==
are unaddressable. ==18300== For counts of detected and suppressed errors, rerun with: -v

==18300== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)
[josipjakic@ui Valgrind]$

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

1 #include <stdlib.h>

2
3 int main() {
4 int *p, i;

5 p = malloc(5*sizeof(int));
6 for(i = 0;i < 5;i++)

7 plil =1i;

8 return O;
S}

20 unfreed blocks at
routine exit — memory
leak.

Memcheck usage

Leak Detection
HP-SEE

High-Performance Computing Infrastructure

for South East Europe’s Research Communities

[josipjakic@ui Valgrind]$ valgrind --leak-check=yes --tool=memcheck ./memory_leak

=325==
=325==
=325==
=325==
=325==
=325==
=325==
=325==
=325==
=325=
=325=
=325=
=325=
=325=
=325=
=325==
=325==
=325==
=325==
=325==
=325==

Memcheck, a memory error detector

Copyright (C) 2002-2009, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
Command: ./memory_leak

HEAP SUMMARY:
in use at exit: 20 bytes in 1 blocks
total heap usage: 1 allocs, O frees, 20 bytes allocated

20 bytes in 1 blocks are definitely lost in loss record 1 of 1
at 0x4A05E1C: malloc (vg_replace_malloc.c:195)
by 0x4004A9: main (memory_leak.c:5)

LEAK SUMMARY:
definitely lost: 20 bytes in 1 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: 0 bytes in 0 blocks
still reachable: 0 bytes in 0 blocks
suppressed: 0 bytes in 0 blocks

==325== For counts of detected and suppressed errors, rerun with: -v
==325== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)

[Josipjakic@ui Valgrind]$

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Cachegrind:

Cache profiler

Performs detailed simulation of I1, D1 and L2 caches

Can accurately pinpoint the sources of cache misses in
your code. It identifies for each line of source code the
number of:

0 Cache misses
0 Memory references
0 Instructions executed

0 Provides per-function, per-module and whole-program
summaries.

0 Useful for programs written in any language.
2 Performance hit is about a 20-100x slowdown.

U U

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Cachegrind usage

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

e ¥

0 Array size is 1,000 x 1000 x 8 bytes = 8Mb
0 32kB L1i and 32kB L1d
0 4096kB L2

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012 13

<l

N

Cachegrind usage (2/2)

HP-SEE

High-Performance Computing Infrastructure
for South East Europe’s Research Communities

[Josipjakic@ui Valgrind]$ gcc -02 -g -o loops-fast loops-fast.c

[Josipjakic@ui Valgrind]$ valgrind --tool=cachegrind ./loops-fast

==23430== Cachegrind, a cache and branch-prediction profiler

==23430== Copyright (C) 2002-2009, and GNU GPL'd, by Nicholas Nethercote et al.
==23430== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info
==23430== Command: ./loops-fast

==23430==

sum = 10000.000

==23430==

==23430==1 refs: 10,122,886
==23430==I1 misses: 847
==23430== L2i misses: 846

==23430== I1 miss rate: 0.00%

==23430== L2i miss rate: 0.00%

==23430==

==23430== D refs: 2,041,972 (1,029,938 rd + 1,012,034 wr)
==23430== D1 misses: 251,113 (125,846rd + 125,267 wr)
==23430== L2d misses: 251,047 (125,785rd + 125,262 wr)
==23430== D1 miss rate: 12.2% (12.2% + 12.3%)
==23430== L2d miss rate: 12.2% (12.2% + 12.3%)

==23430==

==23430== L2 refs: 251,960 (126,693 rd + 125,267 wr)
==23430== L2 misses: 251,893 (126,631 rd + 125,262 wr)
==23430== L2 miss rate: 2.0% (1.1% + 12.3%)

[josipjakic@ui Valgrind]$

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Callgrind:

Callgraphs+Cachegrind Info

0 Is an extension that provides all the info Cachegrind
yields
0 Provides callgraph information.

0 Kcachegrind is a separately available tool for visualisation
for both Callgrind and Cachegrind output data

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

<l

Callgrind usage (1/3)| "<

HP-SEE

[josipjakic@ui Valgrind]$ valgrind --tool=callgrind --simulate-cache=yes ./loops-fast HIQDES TN e STUPRED lissHECE

for South East Europe’s Research Communities

==19141== Callgrind, a call-graph generating cache profiler

==19141== Copyright (C) 2002-2009, and GNU GPL'd, by Josef Weidendorfer et al.
==19141== Using Valgrind-3.5.0 and LibVEX; rerun with -h for copyright info

==19141== Command: ./loops-fast

==19141==

==19141== For interactive control, run 'callgrind_control -h'.

sum = 10000.000

==19141==

==19141== Events :Ir Dr Dw I1mr Dimr Dimw I2Zmr D2mr D2mw

==19141== Collected : 10122883 1029478 1012494 847 125838 125275 846 125777 125270

==19141==

==19141==1 refs: 10,122,883
==19141== 11 misses: 847
==19141== L2i misses: 846
==19141== 11 miss rate: 0.0%
==19141== L2i miss rate: 0.0%
==19141==

==19141== D refs: 2,041,972 (1,029,478 rd + 1,012,494 wr)
==19141== D1 misses: 251,113 (125,838 rd + 125,275 wr)
==19141== L2d misses: 251,047 (125,777 rd + 125,270 wr)
==19141== D1 miss rate: 12.2% (12.2% + 12.3%)
==19141== L2d miss rate: 12.2% (12.2% + 12.3%)

==19141==

==19141== L2 refs: 251,960 (126,685 rd + 125,275 wr)
==19141== L2 misses: 251,893 (126,623 rd + 125,270 wr)
==19141== L2 miss rate: 2.0% (1.1% + 12.3%)

[josipjakic@ui Valgrind]$

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Callgrind usage (2/3)

High-Performance Computing Infrastructure
for South East Europe’s Research Communities

0 Cachegrind saves output to a file callgrind.out. <pid>

0 Use callgrind_annotate to parse this file for detailed
information

[josipjakic@ui Valgrind]$ callgrind_annotate caligrind.out.19141

Profile data file 'callgrind.out.19141' (creator: calligrind-3.5.0)

I1 cache: 32768 B, 64 B, 8-way associative

D1 cache: 32768 B, 64 B, 8-way associative

L2 cache: 4194304 B, 64 B, 16-way associative

Timerange: Basic block 0 - 2024406

Trigger: Program termination

Profiled target: ./loops-fast (PID 19141, part 1)

Events recorded: Ir Dr Dw I1mr Dimr Dimw I2Zmr D2mr D2mw
Events shown: Ir Dr Dw I1mr D1imr D1mw I2mr D2mr D2mw
Event sort order: Ir Dr Dw I1mr Dimr D1mw I2mr D2mr D2mw
Thresholds: 9900000000

Include dirs:

User annotated:

Auto-annotation: off

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Callgrind usage (3/3)

Ir Dr DwIilmr Dimr DimwI2mr D2mr D2mw

10,122,886 1,029,478 1,012,494 847 125,838 125,275 846 125,777 125,270 PROGRAM TOTALS

Ir Dr DwIimr Dimr DimwI2mr D2mr D2mw file:function

6,007,017 4 1,000,004 2 2125,001 2 2 125,001 loops-fast.c:main [/home/josipjakic/Valgrind/loops-fast]
4,005,003 1,000,001 0 0125,001 0 0125,001 . loops-fast.c:array_sum [/home/josipjakic/Valgrind/loops-

fast]
23,333 7,843 3,388 12 163 5 12 157 4 ???:do_lookup_x [/lib64/1d-2.5.s0]

[Josipjakic@ui Valgrind]$

0 Callgrind can be used to find performance problems that
are not related to CPU cache
0 What lines eat up most instructions (CPU cycles, time)
0 What system/math/lib functions are called and what is their cost

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

Other tools

0 Massif: Heap Profiler
0 Performs detailed profiling by taking regular snapshots of a
program's heap.
0 Produces a graph showing heap usage over time
0 Massif runs programs about 20x slower than normal.

0 Helgrind: Thread Debugger
0 Finds data races in multithreaded programs.

0 Looks for memory locations which are accessed by more than one
[POSIX p-]thread

0 It is useful for any program that uses pthreads.
0 Experimental tool

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

References

0 Valgrind is freely available from:
http://www.valgrind.org

Tuning and Optimization of HPC Application — Institute of Physics Belgrade, Friday 01 June 2012

