HP-SEE
SCALASCA

www.hp-see.eu

2K

Dusan Stankovic
Scientific Computing Laboratory H P o S E E
Institute of Physics Belgrade

SdUIQ@ipb.aC.rS High-Performance Computing Infrastructure

for South East Europe's Research Communities

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract

U

I W N

runtime behavior of parallel applications
* Interprocess communication

* and synchronization

Stands for Scalable performance Analysis of Large-Scale
parallel Applications

Developed with large scale systems in mind (typically
over 1000 processes running in parallel)

Traces processed in parallel, efficient implementation
Open Source software, available under BSD licence
Developed in Julich Supercomputing Centre
Available for a wide range of current HPC platforms

d Optimization work consists of multiple tasks, profiling and
performance analysis is an important one

\\easuremen,

d Supports parallel programming paradigms & language
* MPI, OpenMP & hybrid OpenMP/MPI

e Fortran, C, C++

d Integrated instrumentation, measurement & analysis

toolset
e Automatic and/or manual customizable

Instrumentation
* Runtime summarization (aka profiling)
* Automatic event trace analysis
* Analysis report exploration & manipulation

Performance analysis

techniques

J Profile analysis
 Summary of aggregated metrics per function/callpath
and/or per process/thread

d Time-line analysis

* Visual representation of the space/time sequence of
events

* Requires an execution trace

d Pattern analysis
* Search for event sequences characteristic of
Inefficiencies

* Can be done manually, e.qg., via visual time-line
analysis

d

O U

Installation

Download source code with:

wget http://www2.fz-
juelich.de/zam/datapool/scalasca/scalasca-
l.4.1.tar.gz

Extract archive contents with:

tar xf scalasca-1.4.1l.tar.gz ; cd scalasca-1.4.1

Run configure, set location with —--prefix=, compiler suite
to use with —--compiler= and graphical library to use
when building GUI with --with-gmake=

Build as usual with make ; make install
Needs Qt graphical library in order to create GUI viewer

Generic parallel tools

architecture
program| |

SDU I'CES

4J Automatic/manual .
code instrumenter (compﬂer)mstrument@
d Measurement library
for runtime summary &

event trac in g appllcatlon + measurement@)?

mstrumented executable | expt config |

J Parallel (and/or serial) unified | [
. defs+maps
event trace analysis ¥ HH

when desired @rallel trice anal@

L J

J Analysis report summary o
examiner for analysis analysis
: : : R ¥
Interactive exploratl_on @alysis E— @
of measured execution -

performance properties

SCALASCA toolset

components

d Scalasca instrumenter - SKIN
* prepare application objects and executable for
measurement:

scalasca -instrument <compile-or-link-command>

d Scalasca analyzer - SCAN
* run application under control of measurement system:
scalasca -analyze <application-launch-command>

d Scalasca examiner - SQUARE
* post-process & explore measurement analysis report:

scalasca -examine <experiment-archive|report>

Instrumentation

Jd Prepend commands which invoke the compiler with
scalasca -instrument, for example:

scalasca -instrument mpicc -o test test.c

d For larger applications, when using makefiles to build,
useful technique is to have prefix (e.g. PREP) as a variable

Set cC (or MPICC) to SPREP gcc (Or SPREP mpicc)

Initially set to an empty string, leave like that for
production builds

Invoke make with PREP="scalasca -instrument” for
Instrumented builds

with scalasca -analyze, for example:
scalasca -analyze mpirun -np 2 test

d To enable trace collection and analysis, add the -t flag

J Each application run with Scalasca analyzer enabled will
produce new archive named as:

. epik_executablename_A(xB)_{sum|trace}, where
* Ais the number of MPI processes

* B is the (optional) number of OMP threads/process

* sum IS for summary, trace for trace files

o U

for South East Europe’s Resear rch Communities

Analysis of created summary or trace files can be done
Interactively, or by a textual score output

CUBE3 is graphical viewer bundled with Scalasca

If CUBE3 is built, invoke with scalasca -examine
epik archive name

Otherwise, specify -s flag to just print textual score
output, for example:

scalasca -examine -s epik ctest-mpi 4 sum

Textual output is saved in file epik.score in the archive
directory

Textual analysis report

o Example is from Scalasca example directory
0 scalasca -examine -s epik ctest-mpi 4 sum
0O cat epik ctest-mpi 4 sum/epik.score

flt type
ANY
MPI
CcCoM
USR

USR
USR
MPT
MPT
MPT
MPT
USR
MPT

max tbc
7974
1926
168
5832

3024
2592
750
690
480
360
216
120

time
11.76
5.12
3.00
3.41

3.41
0.00
0.00
0.00
0.01
0.00
0.00
0.00

example

o

(]

100.00
43.54
25.53
28.99

28.99
0.00
0.00
0.00
0.05
0.00
0.00
0.00

region

(summary) ALL
(summary) MPIT
(summary) COM
(summary) USR

do_work
step

MPI Isend
MPI Irecv
MPI Barrier
MPI Wait
sequential
MPI Bcast

Filtering of specific routines

J For real-world applications, profiling overhead can be
significant

* Lots of routines, most of them not relevant to parallel
portions of the code

* Execution time of some routines is very short, but they
are called millions of times

d These factors make instrumented application runs last

much longer than ordinary runs (up to a few orders of
magnitude)

d Solution - use filter to ignore specific routines while
collecting profiling or tracing data

d In filter file - list routines by their names, wildcard
characters are allowed

Filtering of specific routines

D U

Create a filter file with names of some of the routines

Invoke execution of the application with scalasca
—analyze -f filter file mpirun -np 2 test

0 Examine generated data as usual

d Re-run previous example with filter.scan that contains

routine names do work and sequential
Runtime analyzer will report filtering 2 of 96 functions

Now you can see that the textual report is missing
measurements for do_work and sequential routines

The same example from Scalasca example directory
scalasca -analyze -f filter.scan mpirun -np 4
scalasca -examine -s epik ctest-mpi 4 sum

cat epik ctest-mpi 4 sum/epik.score

flt type
ANY
MPT
COM
USR

USR
MPT
MPT
MPT
MPT
MPI
MPI
COM

max tbc
4734
1926
168
2592

2592
750
690
480
360
120
120

72

time
11.62
5.11
3.49
2.92

2.92
0.00
0.00
0.00
0.00
0.00
0.00
0.49

100.00
44.00
30.05
25.13

25.13
0.00
0.00
0.01
0.00
0.00
0.00
4.19

ctest-mpi

region

(summary) ALL
(summary) MPI
(summary) COM
(summary) USR

step

MPI Isend

MPI Irecv

MPI Barrier
MPI Wait

MPI Bcast

MPI Allreduce
parallel

HP-SEE

High-Performance Computing Infrastructure
for South East Europe’s Research Communities

Analysis presentation and

exploration with CUBE

d Representation of values on three hierarchical axes
* Performance property (metric)

* Call-tree path (program location)
« System location (process/thread)

d Three coupled tree browsers represent different

dimensions of the performance space (metric, program,
system)

J CUBE displays severities

* As value: for precise comparison
* As colour: for easy identification of hotspots

* Inclusive value when closed & exclusive value when expanded
 Customizable via display mode

CUBE GUI overview [1/2]
s ms SEE

File *iew Help :e Computing Infrastructure
= Call Tree | Flat Prnﬂlel Syctem Tren Topology '..l'ien.u'| P S SRS
Ahsolide /|| [Eelection percent /| [Faar percent /]
=] 0.00 Time [] 0.0 zeusmp =
<[l 41731.81 Execution +-[_| 0.0 configure
=] 60.96 MPI [] 0.0 options
=]] 0.00 Synchronization —=_] 0.1 mstart
[] 425.44 Collective [] 0.0 dataic
=] 0.00 Communication [] 0.0 clocks
O - [56 stestep
—{] 2991.08 Collective —=— | 0.0 transprt
[Jo.00 L0 =] ooct
L] 1300.43 Init/Exit = _] 8.7 lorentz_d
L] 37.54 Overhead =] 1.1 bvalv1
(Ml 57579621 Visits -=—_] 0.9 bvaly2
-=—{ll 1536 Synchronizations —=—_] 0.9 bvalv3
= | 0 Communications] 10.9 MPI_Waitall
Lf. 35492352 Point-to-point -
=] 227328 Collective ——_] 6.9 advx1
L=— "] 0 Bytes transferred /\—H—D 7.6 adux2
= [l 713051766784 Paint-to-paint @[] 7.8 advx3
#_] 1692668944 Collective [] 0.0 intchk ..
What kind of 4.6 nudt How is it
0.0 specval - E
performance £ 0.0 P! Reduce distributed across
problem? P 0 MP|_Finalize || <% the processes?
s s WhHEre IS itin the ——=-=| fi s “sisies

| source COd e'? mlIIIIIIIIIFIIIIIIIIIIIIIIIIIIIIIII‘

In what context?
))

CUBE GUI overview [2/2]

CUBE: epik_zeusmp_512_trace (trace.cube) ~

File wiew Help

" CUBE metric description <@i36: =

Additional &

metrics
determined
from trace

={_] 1892668944 Collactive
z 2042.71 Computational imbalan:

Late Sender Time

Deseription:
Fefers to the time lost waiting caused by a blocking recelve operation (2.,
[AFI_Recwl) or MPI_VWait()] that is pasted eadier fhan the correspanding send

g Infrastructure
«ch Communities

= | 0.0 specwal
[] 0.0 MPI_Reduce

=[] 0.0 MPI_Finalize

elrics Call Tree | Flat Pruﬂlel
Aha0iie /|| [Befection percerd operadon.
=[] 0.00 Time = | 0.0 zeusmp A
= 41826.08 Execution =[] 0.0 configure
—=—_] 92.79 MPI —] 0.0 options £
=] 0.00 Synchronization =[] 0.1 mstart =
«[_] 429.92 Collective [] 0.0 dataio
! —=—{] 0.00 Communication —1] 0.0 clocks
=k -] 11 srcstep
La [] 403467 Late Sender =[] 0.0 transprt
] 0.00 Late Receiver s []o0et e -
=] 3089 32 Collective =] 11.3 lerentz_d
(] 0.00 File /O =[] 2.4 bvalv1 ’
[] 1488.13 Int/Exit w-[] 2.1 bvalv2 a3
—1{] 1849.98 Overhead =] 2.0 bvalv3
|l 57579621 Visits L[] 1.5 MPI_Waitall ’
2 153€ Synchronizations s .
=[] 0 Communications w-[] 13.6 advx1 ’
=l 35492352 Point-ta-point —=—_] 15.2 advx2
@] 227328 Collective #-_] 16.0 advx3 "
- [] 0 Bytes transferred =[] 0.0 intchk ’
i::l—ﬁ 713051766784 Point-to-point| | |-=_] 9.1 nudt

‘

| | e
SoEoerd

B I =

[3,037.735 (E4%)

[45367T (agw | A MIAE+T3

12 %1

|0'BEE +- 19.5%

-
1 EE0E+0D

FIIIIIIIIIIIIIIIIIIIIIIIIFIIIIIIIWIIIIIIII‘

Automatic topology recording supported only for IBM B
and Cray XT systems

Each toolset installation only supports one MPI
iImplementation / compiler

The same team of threads are expected to be used
throughout execution

OpenMP - If some parallel regions employ more threads
(for example, by using num threads or

set num threads), those extra threads are ignored in the
measurement

Also, no support for MPI_ THREAD_ MULTIPLE

Conclusion

0 Powerful tool for analyzing and measuring parallel application
supporting most widely used technologes - MPI and OpenMP

d Great scalability achieved by using parallel trace analysis on
the same CPUs the application was executed on

O Interoperability with other performance analysis software,

examples:
* TAU instrumentation with Scalasca measurement libraries

* Trace conversion utilities for VT/OTF, Paraver, JumpShot
d Vampir visualization of Scalasca traces (without conversion)

O Alternative presentation with TAU Paraprof/PerfExplorer

References

http://www.scalasca.org

User guide: http://www2.fz-
juelich.de/jsc/datapool/scalasca/UserGuide.pdf

CUBE User guide (Qt version):

http://www2.fz-
juelich.de/jsc/datapool/scalasca/CubeGuide.pdf

Images on previous slides taken from VI-HPS “Scalasca
Overview” presentation by B. Wylie and M. Geimer

WWW.V1i-
hps.org/datapool/vihpstw9/Scalasca Overview.pdf

http://www.scalasca.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

