
www.hp-see.eu

HP-SEE

MPI libraries on PARADOX

Dusan Stankovic
Scinetific Computer Laboratory

Institute of Physics Belgrade
sdule@ipb.ac.rs

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract 
no. 261499



MPI introduction

 MPI is a standard, not an implementation. It defines what 
an MPI library should be.

 First version completed in early 1990s.
 Reasons to use MPI:

 Standardization – supported on all HPC platforms
 Portability – library takes care of serialization
 Functionality – more than a 115 routines in MPI-1 alone
 Availability – lots of implementations available, both 

vendor and open source
 MPI-1 and MPI-2 versions available, work on MPI-3 draft is 

in progress

 



MPI programming model 
[1/2]

 Originally targeted for distributed memory systems
 No shared variables, all parallelism explicit, data 

allocation and movement responsibility of the 
programmer

 Somewhat harder to learn (compared to OpenMP for 
example), allows for great customization

 Implementations for shared memory and hybrid 
architectures exist, don't degrade performance. Aware of 
the hardware beneath – e.g. will use shared memory for 
messages if CPUs physically share memory

 Library accompanied by middleware, it maps logical 
organization to physical

 



MPI programming model 
[2/2]

 Groups of processes and communicators allow message 
passing between processes.

 By default, all processes included in MPI_COMM_WORLD
 Allows creation of new communicators or even virtual 

topologies
 Message can be point-to-point or collective, with or 

without data, blocking or non-blocking etc.
 Bindings exist for C/C++ and Fortran
 Also there are custom bindings that better suit OOP model 

in C++ (like Boost.MPI)
 Note – in latest versions of the MPI-2 standard, C++ 

bindings are considered deprecated

 



An MPI use case

 Typical MPI use case scenario:
● Initially divide data between processes
● Each process does some computation on its local data
● Neighbors exchange data for bordering regions
● Processes update their data using exchanged 

information
 Important to reduce the amount of data for 

communication as much as possible and to avoid 
unnecessary waiting to obtain the best performance.

 



Available implementations 
on PARADOX

 On PARADOX cluster, there are multiple MPI 
implementations available:

● Mpich (MPI-1)
● Mpich2 (MPI-2)
● OpenMPI (MPI-2)

 MPI-2 specification included:
● One-sided communication
● Dynamic process management
● I/O

 



MPICH [1/2]

 Located in /opt/mpich1.2.7p1
 Or you can use environment variable MPI_MPICH_PATH
 Last updated in 1995
 Use mpicc to compile and link programs
 mpicc compileinfo shows how exactly the underlying 

compiler is invoked
 mpicc cc=gcc (or cc=icc) overrides the default 

compiler setting

 



MPICH [2/2]

 Use mpirun to execute programs
 mpirun np 2 machinefile my_machine_file test
 Or use existing PBS batch system to schedule and start 

jobs
 Predefined environment variable MPI_MPICH_MPIEXEC
 An example:
${MPI_MPICH_PATH}/bin/mpicc o test test.c
${MPI_MPICH_MPIEXEC} test

 



MPICH2 [1/2]

 Located in /opt/mpich21.1.1p1
 Or you can use environment variable MPI_MPICH2_PATH
 An up-to-date implementation
 Use mpicc to compile and link programs
 mpicc compileinfo shows how exactly the underlying 

compiler is invoked
 mpicc cc=gcc (or cc=icc) overrides the default 

compiler setting
 The same can be done with export MPICH_CC=gcc

 



MPICH2 [2/2]

 Use mpirun to execute programs
 mpirun np 2 machinefile my_machine_file test
 Or use existing PBS batch system to schedule and start 

jobs
 Predefined environment variable MPI_MPICH2_MPIEXEC
 An example:
${MPI_MPICH2_PATH}/bin/mpicc o test test.c
${MPI_MPICH2_MPIEXEC} test 

 



OpenMPI [1/2]

 Located in /opt/openmpi1.2.5
 Or you can use environment variable MPI_OPENMPI_PATH
 Widespread, used by top supercomputers in the world
 Use mpicc to compile and link programs
 mpicc show shows how exactly the underlying compiler 

is invoked
 Change default compilers by setting environment 

variables
● OMPI_CC for C compiler
● OMPI_CXX for C++ compiler
● OMPI_FC for Fortran 90 compiler

 



OpenMPI [2/2]

 On PARADOX, applications can be ran by using mpirun 
script or PBS scheduling system

 When using mpirun, some useful arguments are:
● np X, to run X MPI processes
● hostfile my_hostfile, to specify on which hosts to 

run
● npernode X, to run X processes on each specified 

node
● displaymap, to display mapping of processes to 

hosts
 Hostfile should contain addresses of hosts, an example: 
int1.ipb.ac.rs int2.ipb.ac.rs

 



PBS complete example

 Download the archive Openmpi.tgz from:
http://wiki.ipb.ac.rs/index.php/Openmpi

 Unzip with tar xf Openmpi.tgz ; cd openmpi 
 Compile with $MPI_OPENMPI_PATH/bin/mpicc o job 
job.c (or use provided Makefile)

 Submit a .pbs job script
 For MPICH and MPICH2 just modify correspoding 

environment variables
 MPICH2 is backwards compatible with MPICH, but the 

other way around doesn't work
 Example: compile with MPICH, run with MPICH2

 

http://wiki.ipb.ac.rs/index.php/Openmpi


Conclusion

 There are different libraries available on PARADOX, if not 
sure, use OpenMPI

 There are different ways to compile/run jobs, user 
interface has the same architecture as nodes on the 
cluster

 For more details about using batch system on PARADOX, 
please consult 
http://wiki.ipb.ac.rs/index.php/PBS_examples

 If you run into problems, there are tools to help you debug 
or profile an application:

● gdb (not so straightforward to setup)
● TotalView (native MPI/OpenMP support)
● Scalasca, TAU

 



References

 https://computing.llnl.gov/tutorials/mpi/

 http://www.mcs.anl.gov/research/projects/mpich2/

 http://www.openmpi.org/

 http://wiki.ipb.ac.rs/index.php/PBS_examples

 

https://computing.llnl.gov/tutorials/mpi/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org/
http://wiki.ipb.ac.rs/index.php/PBS_examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

