
www.hp-see.eu

HP-SEE

MPI libraries on PARADOX

Dusan Stankovic
Scinetific Computer Laboratory

Institute of Physics Belgrade
sdule@ipb.ac.rs

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract
no. 261499

MPI introduction

 MPI is a standard, not an implementation. It defines what
an MPI library should be.

 First version completed in early 1990s.
 Reasons to use MPI:

 Standardization – supported on all HPC platforms
 Portability – library takes care of serialization
 Functionality – more than a 115 routines in MPI-1 alone
 Availability – lots of implementations available, both

vendor and open source
 MPI-1 and MPI-2 versions available, work on MPI-3 draft is

in progress

MPI programming model
[1/2]

 Originally targeted for distributed memory systems
 No shared variables, all parallelism explicit, data

allocation and movement responsibility of the
programmer

 Somewhat harder to learn (compared to OpenMP for
example), allows for great customization

 Implementations for shared memory and hybrid
architectures exist, don't degrade performance. Aware of
the hardware beneath – e.g. will use shared memory for
messages if CPUs physically share memory

 Library accompanied by middleware, it maps logical
organization to physical

MPI programming model
[2/2]

 Groups of processes and communicators allow message
passing between processes.

 By default, all processes included in MPI_COMM_WORLD
 Allows creation of new communicators or even virtual

topologies
 Message can be point-to-point or collective, with or

without data, blocking or non-blocking etc.
 Bindings exist for C/C++ and Fortran
 Also there are custom bindings that better suit OOP model

in C++ (like Boost.MPI)
 Note – in latest versions of the MPI-2 standard, C++

bindings are considered deprecated

An MPI use case

 Typical MPI use case scenario:
● Initially divide data between processes
● Each process does some computation on its local data
● Neighbors exchange data for bordering regions
● Processes update their data using exchanged

information
 Important to reduce the amount of data for

communication as much as possible and to avoid
unnecessary waiting to obtain the best performance.

Available implementations
on PARADOX

 On PARADOX cluster, there are multiple MPI
implementations available:

● Mpich (MPI-1)
● Mpich2 (MPI-2)
● OpenMPI (MPI-2)

 MPI-2 specification included:
● One-sided communication
● Dynamic process management
● I/O

MPICH [1/2]

 Located in /opt/mpich­1.2.7p1
 Or you can use environment variable MPI_MPICH_PATH
 Last updated in 1995
 Use mpicc to compile and link programs
 mpicc ­compile­info shows how exactly the underlying

compiler is invoked
 mpicc ­cc=gcc (or ­cc=icc) overrides the default

compiler setting

MPICH [2/2]

 Use mpirun to execute programs
 mpirun ­np 2 ­machinefile my_machine_file test
 Or use existing PBS batch system to schedule and start

jobs
 Predefined environment variable MPI_MPICH_MPIEXEC
 An example:
${MPI_MPICH_PATH}/bin/mpicc ­o test test.c
${MPI_MPICH_MPIEXEC} test

MPICH2 [1/2]

 Located in /opt/mpich2­1.1.1p1
 Or you can use environment variable MPI_MPICH2_PATH
 An up-to-date implementation
 Use mpicc to compile and link programs
 mpicc ­compile­info shows how exactly the underlying

compiler is invoked
 mpicc ­cc=gcc (or ­cc=icc) overrides the default

compiler setting
 The same can be done with export MPICH_CC=gcc

MPICH2 [2/2]

 Use mpirun to execute programs
 mpirun ­np 2 ­machinefile my_machine_file test
 Or use existing PBS batch system to schedule and start

jobs
 Predefined environment variable MPI_MPICH2_MPIEXEC
 An example:
${MPI_MPICH2_PATH}/bin/mpicc ­o test test.c
${MPI_MPICH2_MPIEXEC} test

OpenMPI [1/2]

 Located in /opt/openmpi­1.2.5
 Or you can use environment variable MPI_OPENMPI_PATH
 Widespread, used by top supercomputers in the world
 Use mpicc to compile and link programs
 mpicc ­show shows how exactly the underlying compiler

is invoked
 Change default compilers by setting environment

variables
● OMPI_CC for C compiler
● OMPI_CXX for C++ compiler
● OMPI_FC for Fortran 90 compiler

OpenMPI [2/2]

 On PARADOX, applications can be ran by using mpirun
script or PBS scheduling system

 When using mpirun, some useful arguments are:
● ­np X, to run X MPI processes
● ­hostfile my_hostfile, to specify on which hosts to

run
● ­npernode X, to run X processes on each specified

node
● ­display­map, to display mapping of processes to

hosts
 Hostfile should contain addresses of hosts, an example:
int1.ipb.ac.rs int2.ipb.ac.rs

PBS complete example

 Download the archive Openmpi.tgz from:
http://wiki.ipb.ac.rs/index.php/Openmpi

 Unzip with tar xf Openmpi.tgz ; cd openmpi
 Compile with $MPI_OPENMPI_PATH/bin/mpicc ­o job
job.c (or use provided Makefile)

 Submit a .pbs job script
 For MPICH and MPICH2 just modify correspoding

environment variables
 MPICH2 is backwards compatible with MPICH, but the

other way around doesn't work
 Example: compile with MPICH, run with MPICH2

http://wiki.ipb.ac.rs/index.php/Openmpi

Conclusion

 There are different libraries available on PARADOX, if not
sure, use OpenMPI

 There are different ways to compile/run jobs, user
interface has the same architecture as nodes on the
cluster

 For more details about using batch system on PARADOX,
please consult
http://wiki.ipb.ac.rs/index.php/PBS_examples

 If you run into problems, there are tools to help you debug
or profile an application:

● gdb (not so straightforward to setup)
● TotalView (native MPI/OpenMP support)
● Scalasca, TAU

References

 https://computing.llnl.gov/tutorials/mpi/

 http://www.mcs.anl.gov/research/projects/mpich2/

 http://www.open­mpi.org/

 http://wiki.ipb.ac.rs/index.php/PBS_examples

https://computing.llnl.gov/tutorials/mpi/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org/
http://wiki.ipb.ac.rs/index.php/PBS_examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

