
www.hp-see.eu

HP-SEE
Profiling with GNU GProf

Aleksandar Jovic
Institute of Physics Belgrade, Serbia

Scientific Computing Laboratory
ajovic@ipb.ac.rs

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

Profiling-Introduction

q  Profiling allows you to learn where your program spent its

time and which functions called which other functions while
it was executing

q  This information can show you which pieces of your program
are slower than you expected, and might be candidates for
rewriting to make your program execute faster

q  It can also tell you which functions are being called more or
less often than you expected

q  This may help you spot bugs that had otherwise been
unnoticed

q  History:
q  prof (1979.)
q  gprof (1982.) GNU gprof was written by Jay Fenlason

<Event> – <Place> <Date (DD-Month-YYYY)> 2

Gprof-Introduction

q  The gprof utility produces an execution profile of C, Pascal,
or Fortran77 programs.

q  Detail time statistics for each subroutine
q  Create relative graph for all subroutines
q  Analysis the program bottleneck
q  It's a very powerful program
q  The simplest one

<Event> – <Place> <Date (DD-Month-YYYY)> 3

Gprof-Introduction

q  Profiling steps:
q  Compiling a program for profiling
q  Executing the program (You must execute your program to

generate a profile data file)
q  You must run gprof to analyze the profile data

q  2 forms of output are available from the analysis:
q  flat profile
q  call graph

<Event> – <Place> <Date (DD-Month-YYYY)> 4

Compiling a program for
profiling

q  I assume that you know how to write, compile, and execute

programs.
q  Recompile the original source code with flag –pg
q  This option –pg affects both compiling and linking
q  $ gcc –pg sourcecode.c -o executablefile
q  [ajovic@ui moj_C]$ gcc –pg savrsen.c –o savrsen
q  If you compile only some of the modules of the program with `-pg', you

can still profile the program, but you won't get complete information
about the modules that were compiled without `-pg'. The only
information you get for the functions in those modules is the total time
spent in them; there is no record of how many times they were called,
or from where.

<Event> – <Place> <Date (DD-Month-YYYY)> 5

Executing the program

q  Your program will write the profile data into a file called
`gmon.out' just before exiting. If there is already a file
called `gmon.out', its contents are overwritten

q  Run the program:
q  [ajovic@ui moj_C]$./savrsen

q  [ajovic@ui moj_C]$ ls
q  You should now see a file in the same directory called gmon.out.

This file is used by gprof to build your profile report
q  Run gprof:

q  $ gprof List_of_options ExecuteFile gmon.out > OutputFile
q  List_of_options can be omitted
q  ExecuteFile can be omitted when the file name is a.out

q  Run gprof using the following syntax
q  gprof savrsen gmon.out > output.txt

<Event> – <Place> <Date (DD-Month-YYYY)> 6

List of options
q  List of options:

q  -b omit the table or data illustration on output file
q  -e(E) subroutine_name exclude the subroutine subroutine_name

from the table (and exclude its elapsed time). The -e option
tells gprof to not print information about the subroutine_name (and
its children) in the call graph

q  -f(F) subroutine_name: only display the subroutine SRName on
the table (and its elapsed time). The -f option causes gprof to limit
the call graph to the function function_name and its children

q  -Z only display all subroutines table which are unused on the
program

q  -v causes gprof to print the current version number, and then exit

<Event> – <Place> <Date (DD-Month-YYYY)> 7

Flat profile
q  Flat profile - The flat profile shows the total amount of time

your program spent executing each function
q  [ajovic@ui moj_C]$ gcc -pg eratosten.c -o eratosten

q  [ajovic@ui moj_C]$ gprof -b eratosten gmon.out > erat.txt

q  [ajovic@ui moj_C]$ vim erat.txt
 Each sample counts as 0.01 seconds.

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 56.1 0.80 0.80 1 796.79 796.79 make
 30.54 1.23 0.43 100000001 0.00 0.00 isprime
 9.94 1.37 0.14 3.35 main

q  % time: the percent of self seconds from total program elapsed time
q  cumulative seconds : the seconds cumulate from self seconds
q  self seconds : total elapsed time called by its parents, not including its

children’s elapsed time. Equal to (self s/call)*(calls)
q  calls : total number for each subroutine called by its parents

<Event> – <Place> <Date (DD-Month-YYYY)> 8

Flat profile

q  self s/call : elapsed time for each time called by its parents, not
including its children’s elapsed time

q  total s/call : total elapsed time called by its parents, including its

children’s elapsed time

q  name : subroutine name

<Event> – <Place> <Date (DD-Month-YYYY)> 9

Call graph
q  Call graph - The call graph shows how much time was spent

in each function and its children
q  $ ifort -pg primer_gprof.f -o f_primer

q  $ gprof –b f_primer gmon.out > output.txt
q  $ vim output.txt

q  Primary line :
q  Index % time self children called name

q  Index - Each function has an index number, which appears at the beginning of its
primary line

q  % time – This is the percentage of the total time that was spent in this function,
including time spent in subroutines called from this function

q  self - This is the total amount of time spent in this function

q  children - This is the total amount of time spent in the subroutine calls made by
this function

q  called - This is the number of times the function was called

q  name - This is the name of the current function
<Event> – <Place> <Date (DD-Month-YYYY)> 10

Example1
q  granularity: each sample hit covers 2 byte(s) no time propagated

q  index % time self children called name
q  0.00 0.00 1/2 fizika_ [3]
q  0.00 0.00 1/2 matematika_ [4]
q  [1] 0.0 0.00 0.00 2 hemija_ [1]
q  ---
q  0.00 0.00 1/1 main [223]
q  [2] 0.0 0.00 0.00 1 MAIN__ [2]
q  0.00 0.00 1/1 matematika_ [4]
q  0.00 0.00 1/1 fizika_ [3]
q  ---
q  0.00 0.00 1/1 MAIN__ [2]
q  [3] 0.0 0.00 0.00 1 fizika_ [3]
q  0.00 0.00 1/2 hemija_ [1]
q  ---
q  0.00 0.00 1/1 MAIN__ [2]
q  [4] 0.0 0.00 0.00 1 matematika_ [4]
q  0.00 0.00 1/2 hemija_ [1]
q  ---

<Event> – <Place> <Date (DD-Month-YYYY)> 11

Example2
q  [ajovic@ui moj_C]$ gcc -pg eratosten.c -o eratosten

q  [ajovic@ui moj_C]$ gprof -b eratosten gmon.out > erat.txt
q  [ajovic@ui moj_C]$ vim erat.txt

q  granularity: each sample hit covers 2 byte(s) for 0.73% of 1.37 seconds

q  index % time self children called name
q  <spontaneous>
q  [1] 100.0 0.14 1.23 main [1]
q  0.80 0.00 1/1 make [2]
q  0.43 0.00 100000001/100000001 isprime [3]
q  --
q  0.80 0.00 1/1 main [1]
q  [2] 58.1 0.80 0.00 1 make [2]
q  --
q  0.43 0.00 100000001/100000001 main [1]
q  [3] 31.6 0.43 0.00 100000001 isprime [3]
q  --

<Event> – <Place> <Date (DD-Month-YYYY)> 12

References

q  http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html

<Event> – <Place> <Date (DD-Month-YYYY)> 13

