

HP-SEE - High-Performance Computing Infrastructure for South East Europe http://www.hp-see.eu/ HP-SEE receives EC support through FP7 under

Project Overview

the "Research Infrastructures" action.

Introduction to VRCs

Comp. Physics

6 countries, 8 apps.

Comp. Chemistry

6 countries, 7 apps.

Life Sciences

5countries, 7 apps.

Country	Physics	Chemistry	Life Sciences	Total
Albania	2			1
Armenia			1	1
Bos-Herzeg		1		1
Bulgaria	2	2		4
Georgia			1	1
Greece		1	2	3
Hungary			2	2
Moldova	1			1
Montenegr			1	1
FYR of Mace	1	1		2
Romania	2	1		3
Serbia	1	1		2

>Overview

- * Numerically modeling complex systems
- * Fast processing of huge amounts of data
- * Enhancement of the participation in regional, european and international research projects

VCR structure

- * Around 12 target applications
- * Supported by developer groups belonging to 5 project beneficiaries, from 7 Balkan countries

> Applications Areas

- * High Energy and Particle Physics
- * Plasma Physics
- * Physics of Condensed Matter
- * Atomic Physics
- * Computational Fluid Dynamics

>Indicative Applications range

- * Nano-electronics
- * Micro-devices optimization&modeling of robotic devices for biomedicine
- * Feature detection in satellite images
- * Modeling of electron transport
- * Complex gas dynamics&convection

Research fields

- Astrophysics (FAMAD, HAG)
- Continuum/Fluid Mechanics (AMR_PAR, SIMPLE-2S 2D)
- Geophysics (GIM)
- High Energy Physics (HMLQCD)
- Physics of semiconductor nano-devices (SET)
- Plasma Physics (GENETATOMIC)
- Polymer Physics (SFHG)
- Quantum Optics (NUQG)

> APPLICATION

- Astrophysics (FAMAD, HAG)
- Continuum/Fluid Mechanics (AMR_PAR, SIMPLE-2S 2D)
- Geophysics (GIM)
- High Energy Physics (HMLQCD)
- Physics of semiconductor nano-devices (SET)
- Plasma Physics (GENETATOMIC)
- Polymer Physics (SFHG)
- Quantum Optics (NUQG)

- 1. SIMPLE-TS 2D Semi-Implicit Method for Pressure Linked Equations – Time Step Department of Complex and Multiphase Flow
- 2. AMR_PAR Parallel algorithm and program for the solving of continuum mechanics equations using Adaptive Mesh Refinement
- 3. EagleEye Feature Extraction from Satellite Images Using a Hybrid Computing Architecture
- 4. FAMAD Fractal Algorithms for MAss Distribution High Energy Astrophysics and Advanced Tehnologies

5. FuzzyCmeans - Parallel Fuzzy C Means for classification/Feature detection Category

6. GENETATOMICS - Genetic algorithms in atomic collisions

7. GIM - Design of fullerene and metal-diothiolenebased materials forphotonic applications

8. HAG - High energy physics Algorithms on GPU High Energy Astrophysics and Advanced Tehnologie

9. HMLQCD - Hadron Masses from Lattice QCD

10. NUQG - Numerical study of ultra-cold quantum gases Scientific Computing Laboratory

11. SET - Simulation of Electron Transport Department of Grid Technologies and Applications

12. SFHG - Self Avoiding Hamiltonian Walk on Gaskets

Computational *Chemistry* VRC ► Overview

* Quantum molecular dynamics domain

- * Molecular modelling
- * nano-technology
- * design of new materials

VCR structure

- * Supports 7 applications with main developers in 6 SEE countries
- *collaborating with 5 advanced research centers in Europe and USA
- *12 regional and national institutions

Computational Chemistry VRC

> Applications Areas

- * Molecular dynamics & simulations
- * Material science

>Indicative Applications range

- * Study of physicochemical properties of compound
- * Molecular design of platinum complexes
- * Material design for photonic applicatios
- * Molecular-orbital simulations
- * Design of chemical reactors, burners, boilers
- * Quantum mechanical simulation of Condensed Phases

- 1. FMD-PA Design of fullerene and metal-diothiolenebased materials for photonic applications Computational Chemistry
- 2. CFDOF CFDOF
- 3. CompChem Quantum Mechanical, Molecular Mechanics, and Molecular Dynamics computation
- 4. HC-MD-QM-CS Hybrid Classical/Quantum Molecular Dynamics – Quantum Mechanical Computer Simulation of Condensed Phases

- 5. ISyMAB Integrated System for Modeling and data Analysis of complex Biomolecules
- 6. MDCisplatin Molecular Design of Platinum Group Metal Complexes as Potential Non-classical Cisplatin Analoguies
- 7. PCACIC Principal Component Analysis of the Conformational Interconversions in Large-Ring Cyclodextrins Lab. Physical Organic and Computational Chemistry

>Overview

- * Utilize HPC resources with regional needs
- * Fostering the research process
- * Facilitate the cooperation between RC

VCR structure

- * Supports 7 applications with main developers in 5 SEE countries
- *involve collaborations in Europe and the U.S
 *will foster the development of new collaborations in SEE countries

Applications Areas

- * Neuroscience
- * Proteomics
- * Genomics & DNA sequence analysis

>Indicative Applications range

- * Network medels of short & long term memory
- * Identification of novel miRNA genes
- * Genonims / sequence analysis
- * Molecular Dynamics
- * Synthesis of nucleotide bases

1. MDSCS - Molecular Dynamics Study of Complex Systems

2. CMSLTM - Computational Models of Short and Long Term Memory Computational Biology Lab

3. DeepAligner - Deep sequencing for short fragment alignment Biotech Group

4. DiseaseGene - In-silico Disease Gene Mapper Biotech Group

- 5. DNAMA DNA Multicore Analysis
- 6. miRs Searching for novel miRNA genes and their targets Computational Biology group
- 7. MSBP Modeling of some biochemical processes with the purpose of realization of their thin and purposeful synthesis

References

- [1] Project HP-SEE 261499 Annex I "Description of Work"
 [2] HP-SEE Application Questionnaire,
 - http://survey.hp-see.eu/index.php?sid=95193
- [3] HP-SEE survey tool, http://survey.hp-see.eu/
- [4] LimeSurvey, http://www.limesurvey.org/
- [5] Distributed European Infrastructure for Supercomputing
 - Applications (DEISA), http://www.deisa.eu/
- [6] DEISA Extreme Computing Initiative (DECI),

http://www.deisa.eu/science/deci

[7] Partnership for Advanced Computing in Europe (PRACE), http://www.praceproject.eu/

THANK YOU!

QUESTIONS ?