
14 Oct 2011

PARADOXical Training
Institute of Physics Belgrade, 14 October 2011

A
ca

d
em

ic
	 a
n
d 	
E d

u c
at i

o n a l 	 G r id 	 I n it ia t iv e 	 o
f 	 S

erbia

 A 	 E 	 G 	 I 	 S

Introduction to High
Performance Computing

Antun Balaz
Institute of Physics Belgrade
http://www.scl.rs/

14 Oct 2011

Agenda

  Introduction:
  or why scientists need HPC & GRID

  Section 1: HPC concepts
  Section 2:

  Parallel computing
  Parallel machines

  Section 3: GRID concepts
  Conclusions

  Computer infrastructure for everybody

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Why computer simulations in
science ?

  numerically solve theories which could
not be solved otherwise (i.e. get numbers
out of theories, much in the same way as
experiments get numbers out of nature)

  perform virtual experiments when real
experiments are not possible, or under
conditions controlled in ways not possible in
the lab

  benchmark the soundness of ideas and
theories

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Examples of numerical
simulations at SCL

  Ultra-cold quantum gases
  Global and local properties of BEC
  Parametric resonance

  Strongly correlated systems
  Fractional quantum Hall effect
  Bose-Hubbard

  Granular materials
  Classical MD simulations of collective

behavior

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

What resources are needed to
perform them?

  Example 1: pure CPU
  Monte Carlo for global properties of BEC

  Example 2: CPU and memory
  Exact diagonalization for study of BEC and

FQHE
  Large number of particles in studies of granular

material

  Example 3: CPU and storage
  Single runs sometimes produce large (TBs)

outputs, or may need to process large inputs

  Ad hoc, fast, powerful, reliable
computational platform - in short HPC!

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Agenda

  Introduction:
  or why scientists need HPC & GRID

  Section 1: HPC concepts
  Section 2:

  Parallel computing
  Parallel machines

  Section 3: GRID concepts
  Conclusions

  Computer infrastructure for everybody

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

What HPC stands for?
  High Performance Computing
  The term is most commonly associated with

computing used for scientific research. [from
Wikipedia]

  It involves not only hardware, but software and
people as well!

  HPC encompasses a collection of powerful:
  hardware systems
  software tools
  programming languages
  parallel programming paradigms

 which make previously unfeasible
calculations possible

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Only performance?
  High Throughput Computing
  High Availability Computing
  Capacity Computing
  Capability computing
  To reflect a greater focus on the

productivity, rather than just the
performance, of large-scale computing
systems, many believe that HPC should
now stand for High Productivity Computing

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

How to run applications
faster ?

  There are 3 ways to improve performance:
  Work Harder
  Work Smarter
  Get Help

  Analogy in computer science
  Use faster hardware
  Optimize algorithms and techniques used to

solve computational tasks
  Use multiple computers to solve a particular task

  All 3 strategies can be used simultaneously!

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Measures of performance

  How fast can I crunch numbers on my
CPU?

  How fast can I move the data around?
  from CPUs to memory
  from CPUs to disk
  from CPUs to/on different machines

  How much data can I store?

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

CPU crunching

  Number of floating point operations per
second (flops, Mflops, Gflops…)

  Comparison of theoretical and
sustained peak performance

  Theoretical peak performance:
  determined by counting the number of

floating-point additions and multiplications
that can be completed during a period of
time, usually the cycle time of the
machine

  IPC=Instruction per Cycle

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Peak performance of modern
systems

  My laptop: 9.6 Gflops
  4 IPC x 2 cores x 2.4 GHz

  Cluster at SCL: 6.6 Tflops
  4 IPC x 712 cores x 2.33 GHz

  sp6.cineca.it: 100 Tflops
  5300 Power6 processors @ 4.7Ghz

  Cray Jaguar, ORNL: 2331 Tflops
  Opteron Six Core 2.6 GHz
  224162 cores

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Sustained performance

  What your application is actually able
to get from the computer hardware

  Example from previous century:

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Data movement
  bit/s transmitted
  among computers: networks

  default (commodity): 1 Gb/s
  1000 Mb/s = 1 Gb/s

  custom (high speed)
  10Gb/s, 20 Gb/s and now 40Gb/s

  within the computer:
  CPU – Memory: thousands of Mb/s

  10 - 100 Gb/s

  CPU - Disks: MByte/s
  50 ~ 100 MB/s up to 1000 MB/s

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Storage sizes

  Size of storage devices:
  kbyte/Mbyte ----> caches / RAM
  Gigabyte ----> RAM / hard disks
  Terabyte ----> Disks / SAN
  Petabyte ----> SAN / Tapes

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

HPC architecture
HPC architectures try to maximize performance
simultaneously on all the three aspects
(number crunching/ data access /data storage)
by using many Processing Elements (CPUs)
together to solve a given task

 PARALLEL COMPUTING

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Agenda

  Introduction:
  or why scientists need HPC & GRID

  Section 1: HPC concepts
  Section 2:

  Parallel computing
  Parallel machines

  Section 3: GRID concepts
  Conclusions

  Computer infrastructure for everybody

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

What is parallel computing?

  Parallel computing is the simultaneous
execution of the same task (split up and
specially adapted) on multiple
processors in order to obtain results
faster

  The process of solving a problem
usually can be divided into smaller
tasks, which may be carried out
simultaneously with some coordination

[from Wikipedia]

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

High performance problem
example:

 picture from http://www.f1nutter.co.uk/tech/pitstop.php

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Analysis of the parallel solution
  Functional decomposition

  different people are executing different tasks

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

  Domain
decomposition
  different people

are solving the
same global task
but on smaller
subset

14 Oct 2011

HPC parallel computers

  The simplest and most useful way to
classify modern parallel computers is
by their memory model.

  How CPUs view and can access the

available memory?
  SHARED MEMORY
  DISTRIBUTED MEMORY

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Shared vs. Distributed
  Distributed Memory:

  Each processor has its
own local memory. Must
do message passing to
exchange data between
processors.

  Multi-computers

  Shared Memory
  Single address space.

All processors have
access to a pool of
shared memory.

  Multi-processors

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Shared Memory: UMA vs. NUMA

  Uniform memory
access (UMA): Each
processor has uniform
access to memory. Also
known as symmetric
multiprocessors (SMP).

  Non-uniform memory
access (NUMA): Time
for memory access
depends on location of
data. Local access is
faster than non-local
access.

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Clusters: distributed memory

  Independent machines combined into a
unified system through software and
networking

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Hybrids
  Modern clusters have hybrid architecture
  Many-core CPUs make each node a small

SMP system

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Parallel Programming Paradigms

  Memory models determine programming
paradigms

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

Parallel machines
Distributed memory Shared memory

Parallel paradigms
Message passing Data parallel
All processes could directly
access only their local
memory. Explicit messages
are requested to access
remote memory of different
processors.

Single memory view. all
processes (usually threads)
could directly access the
whole memory.

14 Oct 2011

Parallel performance

  The speedup of a parallel application is
 Speedup(p) = Time(1) / Time(p)
 where
 Time(1) = execution time for a single
processor
 Time(p) = execution time using p
parallel processors

  If Speedup(p) = p, we have a perfect
speedup (also called linear scaling)

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Absolute performance

  Speedup compares performance of
an application with itself on one and
on p processors

  More useful to compare:
  The execution time of the best serial

application on 1 processor
vs.
  The execution time of best parallel

algorithm on p processors

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Speedup

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Superlinear speedup?

  Can we find superlinear speedup, i.e.
 Speedup(p) > p

  Yes, we can:
  Choosing a bad “baseline” for T(1)

  Old serial code has not been updated with
optimizations

  Shrinking the problem size per processor
  May allow it to fit in small fast memory (cache)
  Total time decreased because memory optimization

tricks can be played.

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Question

  Algorithm A and algorithm B solve in
parallel the same problem

  We know that on 64 core:
  Program A gets a speedup of 50
  Program B gets a speedup of 4

  Which one do you choose ?
  1) program A
  2) program B
  3) None of the above

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Answer
  None of the above, since we do not

know the overall execution time of
each of them!

  What if A is sequentially 1000 time
slower than B?

  Always use the best sequential
algorithm for computing speedup
(absolute speedup)

  And the best compiler to produce the
executable, for both serial and
parallel version of the application!

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Limits to speedup
  All parallel programs contain:

  Parallel sections
  Serial sections

  Serial sections limit the speed-up:
  Lack of perfect parallelism in the application or algorithm
  Imperfect load balancing (some processors have more

work)
  Cost of communication
  Cost of contention for resources, e.g., memory bus, I/O
  Synchronization time

  Understanding why an application is not
scaling linearly will help finding ways
improving the applications performance on
parallel computers.

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Amdahl’s law (1)
  Let s be the fraction in an application

representing the work done serially
  Then, 1-s = P is fraction done in parallel
  What is the maximum speedup for N

processors?

  Even if the parallel part scales perfectly,
we may be limited by the sequential
portion of the code!

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Amdahl’s law (2)

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

  The presence of a serial part of the code is
quite limiting in practice:

  Amdahl’s Law is relevant only if serial fraction
is independent of the problem size

  Fortunately, the proportion of the computations
that are sequential (non parallel) usually
decreases as the problem size increase (a.k.a.
Gustafson’s law)

14 Oct 2011

Effective parallel performance

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Linux cluster revolution
  The adoption of clusters virtually exploded

since the introduction of the first Beowulf
cluster in 1994

  The ingredients / attraction lies in:
  low costs of both hardware and software
  affordable interconnect technologies
  the control that builders / users have over their own

systems

  The problems:
  you should be an expert to build and run efficiently

your clusters
  not always the problem you have fits into a cluster

solution (even if this is cheap!)

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Clusters on Top500

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Linux clusters on Top500

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Agenda

  Introduction:
  or why scientists need HPC & GRID

  Section 1: HPC concepts
  Section 2:

  Parallel computing
  Parallel machines

  Section 3: GRID concepts
  Conclusions

  Computer infrastructure for everybody

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

GRID: cluster of clusters

  Motivation: When communication is
close to free we should not be
restricted to local resources when
solving problems.

  A Grid Infrastructure built on top of
the Internet and the Web to enable
and exploit large scale sharing of
resources

  It should provides Scalable, Secure,
Reliable mechanisms for discovery
and for remote access of resources.

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Resource sharing

  Applications: web services
technology

  CPU and Storage: Grid computing,
Cloud Computing, etc.

  Data: Data Grid, Virtual Observatory,
Google Filesystem, etc.

  Instruments: Virtual Labs,
collaboration tools, etc.

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Agenda

  Introduction:
  or why scientists need HPC & GRID

  Section 1: HPC concepts
  Section 2:

  Parallel computing
  Parallel machines

  Section 3: GRID concepts
  Conclusions

  Computer infrastructure for everybody

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Building a computational
infrastructure

  Open source software + commodity (off the
shelf) hardware provide now tools to build
low cost HPC infrastructure based on
clusters

  GRID infrastructures are just two clicks
away and can provide large amounts of
resources

  Planning of a computational infrastructure
depends on your needs

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Elements of a computational
infrastructure

  Hardware
  The basic bricks

  Software
  To make hardware usable

  People
  Installers / sys admins / planners / users

etc..
  Problems to be solved

  Any action in building such an
infrastructure should be motivated by
real needs

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

What infrastructure do you
need?
  Applications

  Parallel
  Tightly coupled
  Loosely coupled
  Embarrassingly parallel

  Serial
  Memory / I/O requirements

  User community
  Large /Small
  Distributed or not?
  Homogeneous /heterogeneous

  Budget considerations
PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

HPC projects

  HP-SEE regional HPC project
  PRACE-1IP: European Tier-0

systems
  PRACE-2IP: European Tier-1

systems

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Conclusions (1)
  Modern scientific research need lots of

computational resources provide by HPC/GRID
infrastructures

  HPC means parallel computing
  GRID means pooling of geographically distributed

resources
  HPC and GRID computing are not mutually exclusive

but can be both used to address computational
resources in a transparent way.

  The challenge is now to build your own
computational infrastructure driven by real needs

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

14 Oct 2011

Conclusions (2)
  With access to commodity HPC hardware and a free

OS such as Linux, entry‐level HPC is within reach of
even the most modest budget.

  It is relatively easy to join large Grid infrastructures
that make available large amount of computational
resources.

However:
  To fully exploit HPC/GRID one needs to obtain

detailed knowledge of HPC/GRID architectures as
well as master HPC/GRID development tools and
advanced programming techniques.

  We hope to give some insight about these in this two
week school!

PARADOXical Training, Institute of Physics Belgrade, 14 October 2011

