

1

User Instructions for the PARADOX Cluster

1. PARADOX Cluster overview

PARADOX Cluster at Scientific Computing Laboratory of Institute of Physics Belgrade consists of
84 worker nodes (2 x quad core Xeon E5345 @ 2.33 GHz with 8GB of RAM). Its computing
nodes are interconnected by the star topology Gigabit Ethernet network through three stacked
high-throughput Layer 3 switches. In terms of storage resources, PARADOX provides up to 50
TB of disk space to the HP-SEE community.

2. Access to the PARADOX cluster

From your local machine, you need to use the ssh command to access login node of the
PARADOX Cluster - ui.ipb.ac.rs (ssh is a program for logging into the remote machine and for
executing commands on it).

$ ssh username@ui.ipb.ac.rs

If you need a graphical environment you have to use the -X option:

$ ssh username@ui.ipb.ac.rs –X

This node is used for preparing, submitting jobs to the batch system and some lightweight
testing but not for the long-running computations. To log out from ui.ipb.ac.rs, you can use the
Ctrl-d command, or exit.

3. File transfer

To transfer files between ui.ipb.ac.rs and your local machine, you can use the scp command.
Create an archive with the directories you want to copy (it will be faster to transfer):

$ tar -cvzf archivename.tgz directoryname1 directoryname2

or in the case of a file:

$ tar -cvzf archivename.tgz filename

Transfer the archive to your home directory at ui.ipb.ac.rs:

$ scp archivename.tgz username@ui.ipb.ac.rs:

Uncompress the archive in your target directory:

$ tar -xvzf archivename.tgz destinationdirectory

2

4. File systems

There are two file systems available to users at ui.ipb.ac.rs:
o /home
o /nfs

Both file systems have directories like /home/<USERNAME> or /nfs/<USERNAME>. Only
/nfs is shared between all nodes on the cluster and this file system should be used for cluster
job submission. It is required to put all executables and data used by jobs in this directory.

Additionally, there is another local file system available on each worker node: /scratch. This
file system should be used only for temporary storage of running jobs (environment variable:
$TMPDIR).

5. Job submission

Job submissions, resources allocations and the jobs launching over the cluster are managed by
the batch system (torque+maui scheduler). From ui.ipb.ac.rs jobs can be submitted using the
command qsub. Batch system server ce64.ipb.ac.rs will accept submitted jobs and distribute
them to PARADOX cluster worker nodes for execution.

To submit a batch job, you first have to write a shell script which contains:

- A set of directives. These directives are lines beginning with #PBS which describe needed
resources for your job

- Lines necessary to execute your code

Then your job can be launched by submitting this script to batch system. The job will enter into
a batch queue and, when resources are available, job will be launched over allocated nodes.
Batch system provides monitoring of all submitted jobs.

Queue hpsee is available for user’s job submission.

It is important to state that job submission should be performed from the shared /nfs file
system!

Frequently used PBS commands for getting the status of the system, queues, or jobs are:

Qstat list information about queues and jobs
qstat –q list all queues on system
qstat –Q list queue limits for all queues
qstat –a list all jobs on system

3

qstat -au userID list all jobs owned by user userID
qstat –s list all jobs with status comments
qstat -r list all running jobs
qstat -f jobID list all information known about specified job
qstat -n in addition to the basic information, nodes allocated to a job are listed
qstat -Qf <queue> list all information about specified queue
qstat -B list summary information about the PBS server
qdel jobID delete the batch job with jobID
qalter alter a batch job
qsub submit a job

5.1. Sequential Job submission

Here is a sample sequential job PBS script:

#!/bin/bash

#PBS -q hpsee

#PBS -l nodes=1:ppn=1

#PBS -l walltime=00:10:00

#PBS -e ${PBS_JOBID}.err

#PBS -o ${PBS_JOBID}.out

cd $PBS_O_WORKDIR

chmod +x job.sh

./job.sh

 #!/bin/bash - Specifies the shell to be used when executing the command portion

of the script.

 #PBS -q <queue> - Directs the job to the specified queue. Queue hpsee should be

used.

 #PBS -o <name> - Writes standard output to <name> (in this case it is

${PBS_JOBID}.out) instead of <job script>.o$PBS_JOBID. $PBS_JOBID

is an environment variable created by PBS that contains the PBS job identifier.

 #PBS -e <name> - Writes standard error to <name> (in this case it is

${PBS_JOBID}.err) instead of <job script>.e$PBS_JOBID.

 #PBS -l walltime=<time> - Maximum wall-clock time. <time> is in the format

HH:MM:SS.

 cd $PBS_O_WORKDIR - Change to the initial working directory.

http://www.nics.tennessee.edu/computing-resources/kraken/queues

4

 #PBS -l nodes=1:ppn=1 – Number of nodes (nodes) to be reserved for
exclusive use by the job and number of virtual processors per node (ppn) requested for
this job. For sequential job one CPU on a node will be sufficient. We would have the
same effect if this line was left out from the PBS script.

Assuming that you are in the /nfs/<USERNAME>/somefolder which contains job script

in the file job.pbs and file job.sh, this job can be submitted by issuing following command:

$ qsub job.pbs

The qsub command will return а result of the type:

<JOB_ID>.ce64.ipb.ac.rs

Where <ЈОВ_ID> is а unique integer used to identify the given job.

To check the status of your job use the following command:

$ qstat <ЈОВ_ID>

This will return an output similar to:

Job id Name User Time Use S Queue
------------------------- ---------------- --------------- ------------ - -----

<ЈОВ_ID>.ce64 job.pbs <username> 00:01:10 R hpsee

Alternatively you сап check the status of all your jobs using the following syntax of the qstat
command:

 $ qstat -u <user_name>

To get detailed information about your job use the following command:

$ qstat -f <JOB_ID>

When your job is finished, files to which standard output and standard error of a job was
redirected will appear in your work directory.

If, for some reason, you want to cancel a job following command should be executed:

$ qdel <JOB_ID>

If qstat <ЈОВ_ID> returns the following line:

5

qstat: Unknown Job Id <JOB_ID>.ce64

This most likely means that your job has finished.

5.2. MPI Job Submission

The cluster has several implementation of МРI, all of them installed in
/opt/<MPI_VERSION> directories (for details about compilation take a look in section 6.7).
Each of them has its own environment variables:

 mpich-1.2.7p1
o MPI_MPICH_MPIEXEC=/opt/mpiexec-0.83/bin/mpiexec
o MPI_MPICH_PATH=/opt/mpich-1.2.7p1

 mpich2-1.1.1p1
o MPI_MPICH2_MPIEXEC=/opt/mpiexec-0.83/bin/mpiexec
o MPI_MPICH2_PATH=/opt/mpich2-1.1.1p1

 openmpi-1.2.5
o MPI_OPENMPI_MPIEXEC=/opt/openmpi-1.2.5/bin/mpiexec
o MPI_OPENMPI_PATH=/opt/openmpi-1.2.5

MPI_<MPI_VERSION>_MPIEXEC defines MPI launcher for specific MPI implementation:

- MPICH and MPICH2 - mpiexec-0.83 (MPI parallel job launcher for PBS)

- OPENMPI - its own version of mpiexec

Here is a sample MPI job PBS script:

#!/bin/bash

#PBS -q hpsee

#PBS -l nodes=3:ppn=8

#PBS -l walltime=00:10:00

#PBS -e ${PBS_JOBID}.err

#PBS -o ${PBS_JOBID}.out

cd $PBS_O_WORKDIR

chmod +x job

cat $PBS_NODEFILE

${MPI_MPICH_MPIEXEC} ./job # If mpich-1.2.7p1 is used
#${MPI_MPICH2_MPIEXEC} --comm=pmi ./job # If mpich2-1.1.1p1 is used
#${MPI_OPENMPI_MPIEXEC} ./job # If openmpi-1.2.5 is used

6

Depending of the MPI implementation used, appropriate environment variable

(MPI_<MPI_VERSION>_MPIEXEC) should be used for launching of MPI jobs. MPI launcher,

together with the batch system will take care of proper launching of a parallel job, i.e. no need

to specify number of MPI instances to be launched or machine file in the command line. All

these information launcher will obtain from the batch system.

All stated PBS directives are same as for the sequential job except the resource allocation line

which is, in this case:

#PBS -l nodes=3:ppn=8

In this statement we are demanding 3 nodes with 8 cores each (3 full nodes, as PARADOX

worker nodes are 8 cores machines), all together 24 MPI instances.

Job can be submitted by issuing following command:

$ qsub job.pbs

By using the qstat command we can view the resources allocated for our parallel job.

$ qstat -n hpsee

ce64.ipb.ac.rs:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
-------------------- -------- -------- ---------------- ------ ----- --- ------ ----- - -----
1667065.ce64.ipb vlada hpsee job.pbs 3096 3 -- -- 48000 R --
n09+n09+n09+n09+n09+n09+n09+n09+n17+n17+n17+n17+n17+n17+n17+n17+n18+n18+n18
+n18+n18+n18+n18+n18

Job monitoring and canceling is no different than for sequential job and it is already described
in sequential job submission section (5.1).

5.3. OpenMP job submission

Here is an example of an openMP job submission script:

#!/bin/bash

#PBS -q hpsee

#PBS -l nodes=1:ppn=6

#PBS -l walltime=00:10:00

#PBS -e ${PBS_JOBID}.err

#PBS -o ${PBS_JOBID}.out

7

cd $PBS_O_WORKDIR

chmod +x job

export OMP_NUM_THREADS=6

./job

Executable job is compiled with OpenMP (see 6.7.3. Compiling OpenMP programs section). For
the execution of the OpenMP jobs you shouldn’t use more than one node, as it is specified in
PBS script:

#PBS -l nodes=1:ppn=6

OpenMP is a shared memory parallel computational library and as such the processes cannot

be forked among various machines. Thus, an OpenMP job on the PARADOX Cluster can at most

consume 8 CPUs in parallel since the largest SMP on the cluster has 8 cores.

OMP_NUM_THREADS environment variable should be specified, especially in the case when

user is not allocating whole node for its job (not using ppn=8). If this is the case and the number

of threads is not specified in program, OpenMP executable will use 8 threads (worker nodes at

PARADOX have 8 CPU cores) and potentially compete for CPU time with the other jobs running

at the same node.

Job submitting, monitoring and canceling is the same as for other previously described types of

jobs.

6. Environment

6.1. Operating System

Operating system on PARADOX Cluster nodes is Scientific Linux release 5.5, based Red Hat

Enterprise 5 Linux.

6.2. Available shells

The default shell is bash. Other shells, such as ksh, csh and tcsh are also available. We strongly

recommend you to use bash shell.

6.3. Passwords

User passwords can be changed using the passwd command:

8

$passwd

Changing password for user <username>.

Changing password for <username>

(current) UNIX password:

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

6.4. Text editors

Following text editors are available at ui.ipb.ac.rs

 vi

 emacs

 nano

 joe

6.5. Available compilers

The available compilers on the cluster are:

- Intel Compiler suite (icc, icpc, ifort)

- GNU compiler suite (gcc, g++, gfortran)

All Intel tools are installed at /opt/intel directory and in order to use them user should source

provided scripts, for example:

$ source /opt/intel/composerxe/bin/compilervars.sh intel64

Intel tools are not present at PARADOX worker nodes (only at ui.ipb.ac.rs) so linking with static

Intel libraries (static compilation) is necessary when executables will run on batch system and

they are using Intel libraries (for example, libiomp5.so used with OpenMP executables).

It is recommended to use the Intel compilers which provide the best performances.

6.5.1. Compiler flags

C/C++

9

Intel compilers: icc and icpc. Compilation options are the same, except for the the C language
behavior. Icpc manages all the source files as C++ files whereas icc makes a difference between
both of them.

Basic flags:

- -o exe_file : names the executable exe_file
- -c: generates the correspondent object file. Does not create an executable.
- -g : compiles in a debugging mode
- -I dir_name : specifies the path where include files are located.
- -L dir_name : specifies the path where libraries are located.
- -l<lib_name> : asks to link against the lib<libname> library

Optimizations:

- -O0, -O1, -O2, -O3: optimization levels - default : -O2
- -opt_report: generates a report which describes the optimization in stderr (-O3

required)
- -ip, -ipo: inter-procedural optimizations (mono and multi files)
- -fast: default high optimization level (-O3 -ipo -static).
- -ftz: considers all the denormalized numbers (like INF or NAN) as zeros at runtime.
- -fp-relaxed: mathematical optimization functions. Leads to a small loss of accuracy.

Preprocessor:

- -E: preprocess the files and sends the result to the standard output
- -P: preprocess the files and sends the result in file.i
- -Dname=<value>: defines the "name" variable
- -M: creates a list of dependence

Practical:

- -p: profiling with gprof (needed at the compilation)
- -mp, -mp1: IEEE arithmetic, mp1 is a compromise between time and accuracy

Fortran:

Intel compiler: ifort (Fortran compiler).

Basic flags :

- -o exe_file : names the executable exe_file
- -c: generates the correspondent object file does not create an executable.
- -g: compiles in debugging mode - R.E. 'Debugging'
- -I dir_name: specifies the path where include files are located
- -L dir_name: specifies the path where libraries are located
- -l<libname>: asks to link against the lib<libname> library

10

Optimizations:

- -O0, -O1, -O2, -O3 : optimization levels - default : -O2
- -opt_report : generates a report which describes the optimization in stderr (-O3

required)
- -ip, -ipo : inter-procedural optimizations (mono and multi files)
- -fast : default high optimization level (-O3 -ipo -static).
- -ftz : considers all the INF and NAN numbers as zeros
- -fp-relaxed : mathematical optimization functions. Leads to a small loss of accuracy
- -align all: fills the memory up to get a natural alignment of the data
- -pad: makes the modification of the memory positions operational

Run-time check:

- -C or -check : generates a code which ends up in 'run time error' (ex : segmentation
fault)

Preprocessor:

- -E: preprocess the files and sends the result to the standard output
- -P: preprocess the files and sends the result in file.i
- -Dname=<value>: defines the "name" variable
- -M: creates a list of dependences
- -fpp: preprocess the files and compiles

Practical:

- -p : profiling with gprof (needed at the compilation)
- -mp, -mp1 : IEEE arithmetic, mpl is a compromise between time and accuracy
- -i8 : promotes integers on 64 bytes by default
- -r8 : promotes reals on 64 bytes by default
- -module <dir>: send/read the files *.mod in the dir directory
- -fp-model strict : Tells the compiler to strictly adhere to value-safe optimizations when

implementing floating-point calculations and enables floating-point exception
semantics. It might slow down your program.

Please refer to the 'man pages' of the compilers for more information.

GNU

Debugging:

11

- -Wall: Short for “warn about all,” this flag tells gfortran to generate warnings about

many common sources of bugs, such as having a subroutine or function with the same
name as a built-in one, or passing the same variable as an intent(in) and an intent(out)
argument of the same subroutine.

- -Wextra: In conjunction with -Wall, gives warnings about even more potential problems.
In particular, -Wextra warns about subroutine arguments that are never used, which is
almost always a bug.

- -w: Inhibits all warning messages (Not advised)
- -Werror: Makes all warnings into errors.

6.6. Available numerical libraries

MKL Library

Intel MKL library is integrated in the Intel package and contains:

- BLAS
- SparseBLAS
- LAPACK
- Sparse Solver
- CBLAS
- Discrete Fourier and Fast Fourier transform (contains the FFTW interface, R.E. FFTW)

Other libraries

- LAPACK
- BLAS
- FFTW3
- SPRNG

6.7. Parallel Programming

6.7.1. Available MPI Implementations:

- mpich-1.2.7p1
Installed in /opt/mpich-1.2.7p1 (environment variable $MPI_MPICH_PATH)

- mpich2-1.1.1p1
Installed in /opt/mpich2-1.1.1p1 (environment variable $MPI_MPICH2_PATH)

- openmpi-1.2.5
Installed in /opt/openmpi-1.2.5 (environment variable $MPI_OPENMPI_PATH)

12

In order to update environment variables $PATH and $LD_LIBRARY_PATH user can
execute following commands:

$ export PATH=$MPI_<MPI_VERSION>_PATH/bin:$PATH

$ export LD_LIBRARY_PATH=$MPI_<MPI_VERSION>_PATH/lib:$LD_LIBRARY_PATH

6.7.2. Compiling MPI program

Here is an example of a MPI program:

#include <stdio.h>

#include <mpi.h>

 main(int argc, char **argv)

 {

 int num_procs, my_id;

 int len;

 char name[MPI_MAX_PROCESSOR_NAME];

 MPI_Init(&argc, &argv);

 /* find out process ID, and how many processes were started. */

 MPI_Comm_rank(MPI_COMM_WORLD, &my_id);

 MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

 MPI_Get_processor_name(name, &len);//

 printf("Hello, world.I'm process %d of %d on %s\n", my_id, num_procs, name);

 MPI_Finalize();

 }

MPI implementations are using mpicc, mpic++, mpif77 and mpif90 wrappers for compiling and
linking MPI programs:

$ mpicc -o test test.c (Assuming that mpicc is on your $PATH)

6.7.3. Compiling OpenMP programs

The Intel and GNU compilers support OpenMP.
Example OpenMP program:

#include <omp.h>

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

int nthreads, tid;

/* Fork a team of threads giving them their own copies of variables */

#pragma omp parallel private(nthreads, tid)

13

 {

 /* Obtain thread number */

 tid = omp_get_thread_num();

 printf("Hello World from thread = %d\n", tid);

 /* Only master thread does this */

 if (tid == 0)

 {

 nthreads = omp_get_num_threads();

 printf("Number of threads = %d\n", nthreads);

 }

 } /* All threads join master thread and disband */

}

Intel compilers flag: -openmp

$ icc -openmp -o prog prog.c

Since Intel compiler is not available at worker nodes of cluster, OpenMP programs have to be
compiled statically at ui.ipb.ac.rs machine before submission:

$ icc -openmp -static-intel -o prog prog.c

GNU compilers flag: -fopenmp

$ gcc -fopenmp -o prog prog.c

6.8. Available Debuggers

- Gnu : GDB
- Intel : IDB
- TotalView Debugger

