

HP-SEE receives EC support through FP7 under the 'Research Infrastructures' action

HP-SEE TRAINING

30 NOVEMBER 2010, SOFIA, IICT-BAS

ICE Cube™

Robert Uebelmesser (rue@sgi.com)

Topics

- SGI Customers, Target Markets, and Product Focus
- A Key Challenge for Future HPC Systems The System Interconnect
 - Applications Analysis
 - The SGI ICE Approach
 - The SGI UV Approach (solves the large memory problem at the same time)
- A Futuristic Data Center SGI ICE Cube
- The Structure of large HPC Data Centers in Europe

- "Brick and Mortar" Data Center Challenges
- ICE Cube Value Proposition
- Deployment Scenarios
- The "Dual Row ICE Cube" Container
- Video: The "construction" of a new Data Center

"Brick and Mortar" Data Center Challenges

Technology Drivers

- Existing data centers are not designed or instrumented to handle the demands of the changing technology requirements
- Increasing varied redundancy and reliability requirements are emerging
- Current data center designs standards generally cannot meet these needs without waste
- Increasing power and cooling demands
- Increasing application sophistication and environmental awareness
- Future potential impact of commodity cloud services

Business Factors

- Time to market: 12–18 months
- High upfront capital cost
- Business need to remain nimble and move quickly
- Speed and flexibility 25–30 years solutions

Data Center Construction Costs

Completing the Options

Traditional Data Center

Scale & Control

Modular Data Center

Modular & Mobile

Cloud

On Demand

Move freely between the environments

ICE Cube Value Proposition

ICE Cube Value Proposition (Part 1)

Fast time to results

- Just-in-time data center: weeks vs. months or years
- Optimizes Capital Expenditures <u>and</u> Operational Expenditures

Optimize capital outlay

- Just-in-time delivery of ICE Cube modular data centers means deploying data center infrastructure when needed vs. buying capacity up-front anticipating several years of growth
- ICE Cube substantially reduces power & mechanical infrastructure costs that are 82% of the cost of traditional data centers
- The bulk of shell costs are also eliminated
- Extreme density (up to 46,080 cores / 29.8PB storage)
 - Self-contained modular data center

ICE Cube Value Proposition (Part 2)

- Eco-Logical[™]: PUE <1.12
 - Maximum utilization of available power
 - Optimizes use of 480V three-phase power
 - Minimize number of power conversions
 - High voltage to rack alone can save >5% over 208VAC approach

>20% of traditional data center cost is in power redundancy

Mean

And

Green

- Instead, localize UPS functions to the rack
- Batteries supply up to 12 min
- Choice of chilled water or air cooling
 - Match container model to deployment location for best PUE
- Ability to operate at elevated temperatures
 - Reduced cooling cost

Introducing ICE Cube

Thinking outside the box...with a Cube!

KEY COMPONENTS

SERVERS/STORAGE

A 40-foot container can hold 28 server racks with up to 1,400 servers or storage systems. This translates to 1,200 processing cores (using Quad-Core Intel Xeon processors) or 24 petabytes of storage.

COOLING COLUMN

Impeller fans circulate air through center, eliminating need for individual fans at the server level.

> wATER CONNECTION Center can be connected to a cooling tower or water chiller.

POWER AND NETWORK CONNECTION AC power is converted to DC at server racks,

RADIATOR COILS

Water-cooling dissipates heat from servers and cools air circulating in the data center.

A Look Inside

Deployment Scenarios

Rapid, World-Wide Deployment

Mobility

Augment Existing Locations

Optional Support Module

- Support container with generator and chiller available
- Ideal for mobile environments or for disaster recovery sites
- Run free-standing without outside resources other than fuel and water source for cooling

Modular Data Center Site of the Future

Ideal Deployment Location Can Improve PUE

- Many locations have a ready source of <65°F water. Big opportunity to cut cooling costs.
- Example: Lake Michigan Water Temp (right) is <65°F most months. Rarely requires actively running a chiller.

Plate 4. Time series of climatological (blue line), observed (red line), and modeled (black line) lake surface temperature in 1994-1995. Green line represents the difference between modeled and observed temperature.

ICE Cube Models

Dual Row: Physical Layout

Dual Row: Power Consumption

Power Consumers at Max. Load (W):

	12 Racks	24 Racks	28 Racks	32 Racks
Systems	168,884	289,745	337,769	386,022
Quanta Host Switches	5,320	9,120	10,640	12,160
Cisco 4900M	795	1,272	1,590	1,817
Digi CM-32	100	160	200	229
Batteries	43	75	87	99
Fan Assembly	3,825	6,480	7,560	8,640
Lighting	192	384	384	384
Total	179,159	307,236	358,230	409,351
Total (@ Rectifier input)	191,614	328,595	383,134	437,809
Total (@ Main Circuit Input)	196,520	337,007	392,942	449,017

Dual Row: Advanced Cooling Design

- ICE Cube has water supply and return lines
- Fans draw air through radiators between each rack
- Air is cooled immediately before passing through the servers
- Tight integration allows for higher water loop temp and reduced air handler power usage

Dual Row: Hybrid Container in Production

Watch the "construction" of a new Data Center

