
www.hp-see.eu

HP-SEE
Advanced Application Porting and

Optimization

Emanouil Atanassov

WP5 leader

Institute of Information and Communication Technologies

Bulgarian Academy of Science

emanouil@parallel.bas.bg

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

OUTLINE

 Goals

 Application porting

 Profiling and optimization

 Conclusions

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 2

Goals

 The main goal is to be able to perform the desired
computer simulations/computations

 The goal of the application porting phase is to produce
and verify executables for the target architecture, with
acceptable performance

 The further optimization of the application aims to
improve scalability, shorten execution time, reduce load
on the infrastructure, etc.

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 3

Application porting

 Two main use cases are considered:

 Application developed mainly by the developers’ team

 Application that uses established open source or commercial tools,
with or without access to actual source code

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 4

Issues during application
porting

 Missing libraries

 Operation teams would usually install libraries that are distributed
as rpms in the popular repositories

 Non-standard libraries must be compiled and installed by the
developers themselves (set LD_LIBRARY_PATH appropriately).

 Problems with interpreted languages (java, python, perl,
etc.)

 Usually the installed version would be different from the desired,
or some modules would be missing

 In most cases – install your own version under your user account

 Example: s3curl on bg-fen (the front end node of Blue Gene P)
required some perl modules, that on their own required newer
version of perl. After that commands like:

 perl -MCPAN -e "install Digest::HMAC_SHA1"

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 5

Issues during application
porting

 Top problems with compilers

 Default versions of compilers available on SL 5 are rather
outdated – you can use gcc44 or you can deploy your own version
(takes a long time to compile a compiler, so do this only if really
necessary)

 Compilation for CUDA may be tricky, sometimes codes that
compiled fine with previous version may start showing problems
with newer version. You have no control over the driver module
that is installed, but you can use your own toolkit/SDK version.

 On Blue Gene P the compiler to use is a cross compiler thus
running the configure scripts requires extra care.

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 6

Compiler options used on
Blue Gene P

 CC="xlc_r"

 CPP=xlc_r -E

 CXX=xlC_r

 CXXFLAGS=-qarch=450d -qtune=450 -O3 #-qstrict

 CXXCPP=xlC_r -E

 F77=xlf_r

 FC=xlf_r

 F90=xlf90_r

 FFLAGS="-O3 -qstrict"

 MPICXX=/bgsys/drivers/ppcfloor/comm/bin/mpixlcxx_r

 MPICC=/bgsys/drivers/ppcfloor/comm/bin/mpixlc_r

 MPIF77=/bgsys/drivers/ppcfloor/comm/bin/mpixlf90_r

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 7

Issues with static/dynamic
libraries

 Compiling with –static or similar options has performance
and to some extent portability advantages, however:

 Some widely used libraries have no static version in a default
installation

 The resulting executable may be dependant on using the same
version of the standard C library, which may not be the case if
system is upgraded

 Always make sure LD_LIBRARY_PATH has the right content

 Do not mix compilers, if you can avoid it. Always compile NETCDF
with the same compiler like the rest of the program.

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 8

Compiler flags

 First goal is to achieve correctness of the application
execution. Conservative compilation flags include:

 -O0 or –O2, -g for gcc

 -fp-model strict for icc or similar

 -qstrict for IBM Blue Gene compilers

Test cases are used to detect wrong compilation results. Many open-
source applications have visible mistakes in the code related to
the move to 64-bit architectures (a pointer is not the same size as
an int, etc.). Correct these as last resort.

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 9

Compiler flags

 More aggressive optimization flags can be tried once we
see the application is working correctly.

 For Intel/AMD based clusters, it may be useful to have a
look on spec.org and see what kind of flags were used for
the benchmark cases submitted there, since these are
supposedly optimal. They differ between applications.

 Using profiling information is beneficial, i.e. two phases of
compilation are recommended. For Intel compiler, the
relevant options are –prof_gen and -prof_use. May take a
long time.

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 10

Improving scalability

 Application profiling is useful for improving scalability of
your own code. Using non-blocking MPI communications,
trying to optimize cache use, overlapping communications
and computations are usual techniques.

 Avoid using swap!

 For other people’s code our options are mainly:

 Choice of parallelization strategy

 Choice of compiler, mpi library, lapack/blas and other libraries

 Choice of compiler flags

 Choice of number of nodes, number of CPUs/Cores per node to
actually use vs the maximum, options to tune MPI usage

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 11

Improving scalability

 Choice of parallelization strategy:
 Some codes offer choice of parallelization strategy –

– pure MPI

– hybrid MPI+OpenMP (or MPI+shared memory)

– Custom sockets (example – GAMESS) or ibverbs (example – NAMD)

 Choice of compiler, mpi library, lapack/blas and other libraries

 There are many examples showing that difference between compilers
is not so big, but still relevant.

 Contrary to the suggestions in documentation, we have found that
pure MPI outperforms the other parallelization strategies (your
mileage may vary).

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 12

Improving scalability

 The behaviour of the MPI executable can be changed at
runtime via command line options or environment
variables. Example of such tuning include:

 For NAMD, openmpi (suggested combination):

 -gmca mpi_paffinity_alone 1 -gmca btl_openib_eager_limit 32767

 For GAMESS, Intel MPI:

 setenv I_MPI_WAIT_MODE disable (important, contrary to suggestion
in doc)

 setenv I_MPI_DAT_LIBRARY libdat2.so (as suggested in doc)

 To PIN or not to PIN (processes to cores)

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 13

Detecting bottlenecks

 When the application is running, we can determine:

 Does it use swap – leads to extremely bad performance in most cases?

 Are the processes using close to 100% CPU time or idling?

 Is disk I/O time important?

 Using 100% CPU does not guarantee good performance!

 How to see that – login to the node and run top

 How to see what the process is doing – strace –p xxxx

 You can attach gdb to a particular process

 Use MPI tracing and/or profiling tools

 MPE for tracing (jumpshot for visualisation)

 mpiP for profiling

 Find optimal number of nodes / number of CPU cores per node

 Using the hyper-threading may be useful or useless – use appropriate
options to launch less processes than PBS gives you.

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 14

Demo

 Demonstration of application porting and optimisation

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 15

