
www.hp-see.eu

HP-SEE

Application case studies

Emanouil Atanassov

WP5 leader

Institute of Information and Communication Technologies

Bulgarian Academy of Science

emanouil@parallel.bas.bg

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499



OUTLINE

 Stages of application porting

 Application case study: own application

 Application case study: established open source applications

 Conclusions and directions for future work

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 2



Stages of application porting

 Obtain sources, resolve dependencies

 Choose initial version of MPI to use

 ./configure

 Make

 Run tests, eliminate errors

 Read the instructions again

 Re-configure, change compiler options etc.

 More extensive testing, study scalability with real data

 Wash, rinse, repeat!

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 3



Application case study: own 
codes

 Example application: SET

 Codes are under our control

 Main dependencies: parallel random number generators 
(SPRNG), parallel low-discrepancy sequences generators 
(own codes), optional inclusion of Genetic Algorithms 
codes (galib)

 Issues when porting to Blue Gene P:

 OS is CNK, not linux (no fork)

 We had a small dependency on SSL, removed it 

 The codes we used for parallel random number generation gave 
incorrect results, most probably because of Little Endian vs Big 
Endian issues. Replaced with previously used SPRNG codes.

 Tricky compilation of galib (had to modify some codes, Makefile)

 Excellent scalability, once everything is working.
HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 4



Application case study: 
established applications

 Example application: GAMESS

 Input data: Jose Kaneti from IOCCP-BAS

 Issues with his own scripts: high memory usage, causes 
swapping, system instability, long execution times (runs 
days on more than 10 nodes).

 Initial approach: 

 recompile application for MPI instead of using sockets

 Vary number of cores per node to determine optimal number –
found that using just one core for computations and one for 
communications is faster than using more cores (removes swap).

 How can we use less than one core? Can we use memory from 
one node on another one? Yes!

 Some interesting things (bugs) we found: DDI_Id vs DDI_Id() 

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 5



Application case study: 
established applications

 After reading the instructions again:

 Memory settings can be made such that the application fits in 
physical RAM, even with more cores. In this way we do not have 
the paradoxical result that one core is better than two or more. 

 Good scalability with up to 4 cores for computations plus 4 for 
communications, with more than 10 nodes.

 Total time decreased to several hours (4-5 hours). 

 Using more cores decreases performance

 The options -prof_gen and –prof_use were used to recompile for 
the target architecture

 Varying the MPI options we concluded that I_MPI_WAIT_MODE 
should be disabled 

 Additional efforts that did not produce better results -

 Returning to the sockets implementation 

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 6



Application case study: 
established applications

 Example: NAMD

 Various parallelization strategies available: SMP, CUDA, 
MPI

 Initial attempts:

 The CUDA version was successfully compiled and run

 Required some tweaking in the options of the test case in order to 
run it

 Runs using more than one CUDA device in parallel (we have two 
on each CUDA node).

 The iverbs version was succesfully compiled and run on the 
Infiniband cluster. This should be 10% faster than MPI version

 Hit a performance problem when trying with more than 4 cores 
per node.

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 7



Application case study: 
established applications

 After reading the instructions:

 Attempt with openmpi and gcc

 Tricky compilation – had to change manually some options in the 
automatically generated configuration files

 Overcomes the scalability issue: up to 8 cores per node can be 
used, using all 16 threads per node yields small improvement. 

 Additional efforts:

 Suggested options for openmpi yield another small improvement. 

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 8



Application case study: 
established applications

 NEURON is an application from the domain of neuro-
science.

 Has a parallel version

 Extremely tricky compilation in case of GCC, easier with 
ICC. 

 Main reason for this – the application uses flex and bison. 
One of these was causing a problem by having a second 
definition of the same function. Manual changes in scripts 
were needed.

 Succesfully tested for correctness running in parallel, we 
still do not have realistic test case to test scalability.

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 9



Conclusions and future work

 When dealing with our own codes we have flexibility to 
resolve porting and/or scalability issues

 When dealing with other people’s codes we are limited in 
our options. These codes tend to be complex and have 
rather strange portability or performance issues. 
Following suggestions from the documentation is a hit or 
miss.

 It is always important to concentrate on test cases that 
are close to our real data. 

 In the hands-on session we will try and follow part of the 
process that we described here.

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 10



DEMO

 Demonstration of application porting

HP-SEE Training – Sofia, Bulgaria 29-30, Nov. 2010 11


