
www.hp-see.eu

HP-SEE
Hybrid MPI+OpenMP Programming

HPC Summer Training, Athens, 13-15 July 2011

Antun Balaz
Institute of Physics Belgrade - IPB

antun at ipb dot ac dot rs

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

Agenda

  Introduction: HPC, performance, speedup
  Parallel computing and memory models
  Programming models and Flynn’s taxonomy
  MPI vs. OpenMP
  Hybrid programming model and mismatch problems
  Thread safety
  Hybrid parallelism and programming strategies
  Library stack
  Hybrid programming in practice
  Examples and exercises

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 2

What HPC stands for?

  High Performance Computing
  The term is most commonly associated with computing used for

scientific research. [from Wikipedia]
  It involves not only hardware, but software and people as well!
  HPC encompasses a collection of powerful:

  hardware systems
  software tools
  programming languages
  parallel programming paradigms

 which make previously unfeasible calculations possible

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 3

Only performance?

  High Throughput Computing
  High Availability Computing
  Capacity Computing
  Capability computing
  To reflect a greater focus on the productivity, rather than

just the performance, of large-scale computing systems,
many believe that HPC should now stand for High
Productivity Computing

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 4

Performance vs. Productivity

  A definition:
  Productivity = (application performance) / (application

programming effort)
  Scientists in HPC arena have different goals in mind thus

different expectations and different definitions of
productivity.

  Which kind of productivity are you interested in?

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 5

Measures of performance

  How fast can I crunch numbers on my CPU?
  How much data can I store?
  How fast can I move the data around?

  from CPUs to memory; from CPUs to disk; from CPUs to/on different
machines

  among computers: networks
  default (commodity): 1 Gb/s
  custom (high speed): 10Gb/s, 20 Gb/s and now 40Gb/s

  within the computer:
  CPU – Memory: thousands of Mb/s: 10 - 100 Gb/s
  CPU - Disks: MByte/s: 50 ~ 100 MB/s up to 1000 MB/s

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 6

Parallel performance

  The speedup of a parallel application is
 Speedup(p) = Time(1) / Time(p)
 where:
 Time(1) = execution time for a single processor
 Time(p) = execution time using p parallel processors

  If Speedup(p) = p, we have a perfect speedup (also called linear
scaling)

  Speedup compares performance of an application with itself on
one and on p processors

  More useful to compare:
  The execution time of the best serial application on 1 processor vs.
  The execution time of the best parallel algorithm on p processors

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 7

Speedup

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 8

Superlinear speedup?

  Can we find superlinear speedup, i.e.
 Speedup(p) > p

  Yes, we can:
  Choosing a bad “baseline” for T(1)

  Old serial code has not been updated with optimizations
  Shrinking the problem size per processor

  May allow it to fit in small fast memory (cache)
  Total time decreased because memory optimization tricks can be played.

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 9

Question

  Algorithm A and algorithm B solve in parallel the same problem
  We know that on 64 core:

  Program A gets a speedup of 50
  Program B gets a speedup of 4

  Which one do you choose ?
  1) program A
  2) program B
  3) None of the above

Advanced Regional Workshop in High Performance and Grid Computing, IPM, Tehran, Iran

Answer

  None of the above, since we do not know the overall execution
time of each of them!

  What if A is sequentially 1000 time slower than B?
  Always use the best sequential algorithm for computing speedup

(absolute speedup)
  And the best compiler to produce the executable, for both serial

and parallel version of the application!

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 11

Limits to speedup

  All parallel programs contain:
  Parallel sections
  Serial sections

  Serial sections limit the speed-up:
  Lack of perfect parallelism in the application or algorithm
  Imperfect load balancing (some processors have more work)
  Cost of communication
  Cost of contention for resources, e.g., memory bus, I/O
  Synchronization time

  Understanding why an application is not scaling linearly will help
finding ways improving the applications performance on parallel
computers.

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 12

Amdahl’s law (1)

  Let S be the fraction in an application representing the work done
serially

  Then, 1-S = P is fraction done in parallel
  What is the maximum speedup for N processors?

  Even if the parallel part scales perfectly, we may be limited by the
sequential portion of the code!

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 13

Amdahl’s law (2)

  The presence of a serial part of the code is quite limiting
in practice:

  Amdahl’s Law is relevant only if serial fraction is
independent of the problem size

  Fortunately, the proportion of the computations that are
sequential (non parallel) usually decreases as the
problem size increase (a.k.a. Gustafson’s law)

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 14

Effective parallel performance

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 15

How to run applications faster ?

  There are 3 ways to improve performance:
  Work Harder
  Work Smarter
  Get Help

  Analogy in computer science
  Use faster hardware
  Optimize algorithms and techniques used to solve computational tasks
  Use multiple computers to solve a particular task

  All 3 strategies can be used simultaneously!

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 16

What is parallel computing?

  Parallel computing is the simultaneous execution of the same task
(split up and specially adapted) on multiple processors in order to
obtain results faster

  The process of solving a problem usually can be divided into
smaller tasks, which may be carried out simultaneously with some
coordination

[from Wikipedia]

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 17

High performance problem:

 picture from http://www.f1nutter.co.uk/tech/pitstop.php

Advanced Regional Workshop in High Performance and Grid Computing, IPM, Tehran, Iran

Analysis of a parallel solution

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 19

  Functional decomposition
  Different people executing different tasks

  Domain decomposition
  Different people executing

the same tasks

HPC parallel computers

  The simplest and most useful way to classify modern parallel
computers is by their memory model.

  How CPUs view and can access the available memory?

  Shared memory
  Distributed memory

Advanced Regional Workshop in High Performance and Grid Computing, IPM, Tehran, Iran

Shared vs. Distributed

  Distributed Memory:
  Each processor has its own

local memory. Must do
message passing to
exchange data between
processors.

  Multi-computers

  Shared Memory
  Single address space.

All processors have access
to a pool of shared memory.

  Multi-processors

Advanced Regional Workshop in High Performance and Grid Computing, IPM, Tehran, Iran

Shared Memory: UMA vs. NUMA

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 22

  Uniform memory access
(UMA): Each processor
has uniform access to
memory. Also known as
symmetric multiprocessors
(SMP).

  Non-uniform memory
access (NUMA): Time for
memory access depends
on location of data. Local
access is faster than non-
local access.

Clusters: distributed memory

  Independent machines combined into a unified system through software and
networking

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 23

Hybrid architecture

  All modern clusters have hybrid architecture
  Many-core CPUs make each node a small SMP system

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 24

Parallel Programming Paradigms

  Memory models determine programming paradigms

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 25

Parallel machines
Distributed memory Shared memory

Parallel paradigms
Message passing Data parallel
All processes could directly
access only their local
memory. Explicit messages
are requested to access
remote memory of different
processors.

Single memory view. all
processes (usually threads)
could directly access the
whole memory.

Architecture vs. Paradigm

Advanced Regional Workshop in High Performance and Grid Computing, IPM, Tehran, Iran

Architecture, Paradigm, Model

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 27

Architecture
Distributed memory Shared memory

Programming paradigm
Message passing Data parallel

Programing model
Domain decomposition Functional decomposition

Programming models

  Domain decomposition
  Data divided into equal chunks and distributed to available CPUs
  Each CPU process its own local data
  Exchange of data if needed

  Functional decomposition
  Problem decomposed into many sub-tasks
  Each CPU performs one of sub-tasks
  Similar to server/client paradigm

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 28

Flynn’s taxonomy (1)

  SISD (Single instruction, single data)
  SIMD (Single instruction, multiple data)

  the same instructions are carried out simultaneously on multiple data items
  SSE is a good example

  MISD (Multiple instruction, single data)
  MIMD (Multiple instruction, multiple data)

  different instructions on different data
  SPSD (Single program, single data)
  SPMD (Single program, multiple data)

  not synchronized at individual operation level
  equivalent to MIMD since each MIMD program can be made SPMD

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 29

Flynn’s taxonomy (2)

  SPSD (Single program, single data)
  SPMD (Single program, multiple data)
  MPSD (Multiple program, single data)
  MPMD (Multiple program, multiple data)

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 30

Model Paradigm Flynn’s taxonomy

Domain
decomposition

Message Passing
SPMD

Data Parallel - HPF

Functional
decomposition

Data Parallel -
OpenMP

MPSD

MPMD
Message Passing

Parallelism requires…

  Balancing of the load
  Applies to computation, I/O operations, network communication
  Relatively easy for domain decomposition, not so easy for functional

decomposition
  Minimizing communication

  Join individual communications
  Eliminate synchronization – the slowest process dominates

  Overlap of computation and communication
  This is essential for true parallelism!

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 31

Message Passing Interface

  Parallel programs consist of separate processes, each with its
own address space
  Programmer manages memory by placing data in a particular process

  Data sent explicitly between processes
  Programmer manages memory movement

  Collective operations
  On arbitrary set of processes

  Data distribution
  Also managed by the programmer

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 32

Distributed memory

  Nothing is shared between processes

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 33

OpenMP

  Shared memory necessary
  Good for SMP nodes, but also possible on clusters via

distributed shared virtual memory systems
  Parallelism achieved through the memory sharing
  Programmer responsible for proper synchronization
  Programmer also responsible for management of memory

(locks)

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 34

MPI vs. OpenMP

  Pure MPI pro:
  Portable to distributed

& shared memory machines
  Scales beyond one node
  No data placement problem

  Pure MPI cons:
  Difficult to develop & debug
  High latency, low bandwidth
  Explicit communication
  Large granularity
  Difficult load balancing

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 35

  Pure OpenMP pro:
  Easy to implement parallelism
  Low latency, high bandwidth
  Implicit communication
  Coarse & fine granularity
  Dynamic load balancing

  Pure OpenMP cons:
  Only on shared memory

machines
  Scales within one node
  Possible data placement

problem
  No specific thread order

Standards

  MPI inter-node
  Message passing
  Data distribution model
  Version 2.2 (09/2009)
  API for C/C++ and Fortran

  OpenMP intra-node

  Threads
  Relaxed-consistency model
  Version 3.1 (07/2011)
  Compiler directives for C/C++ and Fortran

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 36

Why hybrid?

  Hybrid MPI/OpenMP paradigm is the parallel approach for clusters of
SMP architectures.

  Elegant in concept and architecture: using MPI across nodes and
OpenMP within nodes.

  Good usage of shared memory system resource (memory, latency,
and bandwidth).

  Avoids the extra communication overhead with MPI within node.
  OpenMP adds fine granularity (larger message sizes) and allows

increased and/or dynamic load balancing.
  Some problems have two-level parallelism naturally.
  Some problems could only use restricted number of MPI tasks.
  Could have better scalability than both pure MPI and pure OpenMP.

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 37

Mismatch problems

  Topology problem (with pure MPI)
  Unnecessary intra-node communication (with pure MPI)
  Saturation problem (with pure MPI)
  Sleeping threads (with OpenMP)
  Inter-node bandwidth problem (with hybrid)
  Additional OpenMP overhead (with hybrid)

  Thread startup / join
  Cache flush (data source thread)

  Overlapping communication and computatio
  application problem
  programming problem
  load balancing problem

  no silver bullet – each parallelization scheme has its problems

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 38

Thread safety

  The MPI‐2 standard defines four different levels of thread safety, in
the form of how an MPI implementation can perform communication
between processes:
  MPI_THREAD_SINGLE: there is only one thread in the application.
  MPI_THREAD_FUNNELED: only one thread may make MPI calls.
  MPI_THREAD_SERIALIZED: any threads may make MPI calls, but only

one at a time.
  MPI_THREAD_MULTIPLE: any thread may make MPI calls at any time.

  The level of multi‐threading stronly depends on the hardware and
MPI implementation.

  All MPI implementations support MPI_THREAD_SINGLE (MPI‐1 too).
  Usually when people refer to an MPI implementation as thread‐safe,

they mean that the implementation supports the maximum level of
functionality

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 39

Relationship

  In parallelizing a code with the hybrid paradigm, MPI is
used for coarse‐grain parallelism (i.e. principal data
decomposition), while OpenMP provides fine‐grain
parallelism inside each MPI process.

  There are three main different mixed mode programming
models depending on the way the MPI communication is
being handled:
  Master‐only, where all MPI communication takes place outside of

OpenMP parallel regions.
  Funnelled, where communication may occur inside parallel

regions, but is restricted to a single thread.
  Multiple, where more than one thread can call MPI communication

routines.

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 40

Classification of hybrid parallelism

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 41

Programming strategies

  Implicit
  Use of threaded numerical libraries, which are then linked after

compilation
  No control over thread overhead
  Very simple

  Explicit
  Use of explicit OpenMP syntax
  Full control
  More complex, but also more efficient

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 42

Library stack for linear algebra

  Implicit (thread level)
  BLAS, LAPACK, FFTW
  ESSL (IBM AIX)
  MKL (Intel)
  ACML (AMD)

  Explicit (MPI level)
  PBLAS
  SCALAPACK

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 43

Hybrid programming in practice

  Things we need:
  Thread-safe MPI / MPI with multithread support
  OpenMP compiler/ OpenMP libraries
  Hybrid programming aware Resource Manager (e.g. Torque)

  How to compile:
  Using the MPI wrapper
  Using the right compiler flag for OpenMP
  Linking (the right MPI library)

  How to run:
  Define correct task placement (One MPI task and as many threads

as cores per node)
  Execution environment (number of MPI task, number of OpenMP

threads)

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 44

Examples

  Example:
mpicc –fopenmp –O3 –o hybrid hybrid.c

  Running the code on 4 nodes, each with 8 cores:
export OMP_NUM_THREADS=8
mpirun -np 4 -npernode 1 hybrid

  Batch system directive example:
#PBS -l nodes=4:ppn=8

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 45

Exercise 1: pi

  pi.c or pi.cpp calculates pi by integrating f(x)=4/(1+x2)
  Compile and run the program
  Write MPI version and measure its speedup
  Write OpenMP version and measure its speedup
  Write hybrid version and measure its speedup

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 46

Exercise 2: trapez.c

  trapez.c integrates given function by trapezoid rule
  Compile and run the program
  Write MPI version and measure its speedup
  Write OpenMP version and measure its speedup
  Write hybrid version and measure its speedup

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 47

Exercise 3: poisson_mpi.c

  Poisson_mpi.c solves Poisson equation by Jacobi iteration
solver (MPI implementation)

  Compile and run the program, measure its speedup
  Study the code and write hybrid version
  Measure its speedup on one node, by combining number

of MPI processes and threads
  Measure speedup of the hybrid code in the preferred

setup (one MPI process per node, with varying number of
threads per node)

  Optimize hybrid code and measure its speedup

Joint HP-SEE, LinkSCEEM-2 and PRACE HPC Summer Training – Athens, 13-15 July 2011 48

