
Solving linear systems with multiple right-hand sides:

Kernel for scientific computing and parallel

computing challenges

Vasilis Kalantzis

Department of Computer Engineering & Informatics

University of Patras, Greece

LinkSCEEM-2, Athens, 13 July 2011

Acknowledgments

CEID collaborators: Prof. Efstratios Gallopoulos, Jiannis Kalofolias,

Maria Predari

Dr. Costas Bekas, IBM Research, Zurich

Prof. Ahmed Sameh, Purdue University

Applications vs. Comp. kernels [Sameh+’84]

1 2 3 4 5 6 7 8 9

Lattice Gauge (QCD) * . . * * .

quantum mechanics . . . * . . * * *

weather * * . . .

CFD * . * . * * . . .

geodesy * *

inverse problems . * . . *

structures * . * *

circuit * . * . . * * . * .

circuit simulation * . * . . . * . .

electromagnetics * * * * * * . . .

1. linear systems 2. least squares 3.nonlinear systems

4. eigenvalues/SVD’s 5. fast transforms 6. rapid elliptic solvers

7. stiff DE 8. Monte Carlo 9. integral transforms

New Applications vs. Computational Kernels

1 2 3 4 5 6 7 8 9

financial * * * . . . * * *

IR * * . * . . * . .

DS& Image P. * * * * * . * . *

Internet Algorithmics * . . * . . * * .

1. linear systems 2. least squares 3.nonlinear systems

4. eigenvalues/SVD’s 5. fast transforms 6. rapid elliptic solvers

7. Optimization 8. Monte Carlo 9. integral transforms

Short Introduction

Numerical linear algebra computations are fundamental kernels of

scientific computing (table 1) and optimization targets in HPC.

Fundamental problems: A← A + BC; Solve Ax = b,

minx‖Ax − b‖; compute PA = LU; A = LL>; A = VΛV−1;

A = UΣV>, etc.

A ‘‘new’’ fundamental problem:

f(A), e.g. exp(A), where f(.) is a function of A

f(A)B, e.g. exp(A)B

Need for solving problems with multiple right-hand sides

Solving systems with mrhs

Several applications demand the solution of linear systems with

mrhs

Lattice QCD

Computational Electromagnetics

Uncertainty Quantification

Data Handling

Domain Decomposition

Time dependent problems (holy grail!)

Some applications solving mrhs

Linear systems with mrhs

Main objective (assume dense matrices):

Solve AX = B, where A ∈ Rn×n and B ∈ Rn×s with s > 1

Direct methods

Factorize and solve, e.g. L(UX) = PB

Cost: solve at a rate of O(n3/s + 2n2) per rhs

⇒ cubic cost amortized as s increases

Iterative methods

Cost: O(#iter ∗ cost(MV)) per rhs in ‘‘standard approaches’’,

... e.g. applying CG separately per rhs.

Challenges

Direct methods

Factorize A→ high cost even for moderate size n

Iterative methods

What is the analogue of the ‘‘factorize once’’ advantage of

direct methods

Iterative methods for mrhs

Seed methods: Exploit Krylov subspace for ‘‘other’’ rhs

Saad’87, PapadrakakisSmerou, vdVorst, SmithPetersonMittra’89, Fisher,

SimonciniG, ChanWan’97, GuennouniJbilou, Gu, LotstedtNilsson,

MorganWilcoxAbdel-Rehim, ...

Block methods: Generate block Krylov subspace

O’Leary, Vital, NikishinYeremin, SimonciniG, CalvettiReichel,

FreundMalhotra, Jbilou, JbilouMessaoudiSadok, JbilouSadok,

GuennouniJbilou, BakerDennisJessup, Gutknecht, ...

Hybrid approaches: Block seeds, deflation, multiple matrices

SimonciniG, ChanWan, SaadErhel, ErhelGyomar’ch, ChanNg, deSturler,

KilmerMillerRappoport, Morgan, GolubRuizTouhami,

OrginosStathopoulos...

Iterative methods for mrhs

Not all of the above methods are suitable for every problem

Example: Let A be a SPD matrix and B random

Compare: standard CG vs. recent seed CG solver

n = 500 : 500 : 5000, stopping when ‖r‖ ≤ 1e − 8

Runtimes

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−2

10
−1

10
0

10
1

size

tim
e

seed−CG

standard−CG

Figure: time per rhs

Why parallel computing?

Need to solve much larger problems

Resolve memory and computational cost bottlenecks

Architecture n = 103 5× 103 2× 104 5× 104 106

32-bit 4MB 100MB 1.6GB 10GB 4TB

64-bit 8MB 200MB 3.2GB 20GB 8TB

Table: memory requirements for different n

Some approaches

Direct approach

Replicate A in each processor and factorize

Factorization is needed only once, no matter what is s

Even parallel factorization can be very costly

Iterative approach

It is known today that iterative mrhs solvers can be effective

... on a single processor

Challenge is to preserve the same advantage when going parallel,

... can we beat the ‘‘embarassingly parallel’’ approach?

Information sharing between systems:

Overhead

Scalability

Granularity

Current work

Build from the start parallel iterative methods for AX = B

Use these as kernels for solving problems in different applications

Combine with mixed precision arithmetic

THANK YOU! QUESTIONS?

