Solving linear systems with multiple right-hand sides: Kernel for scientific computing and parallel computing challenges

Vasilis Kalantzis

Department of Computer Engineering & Informatics University of Patras, Greece

LinkSCEEM-2, Athens, 13 July 2011

- CEID collaborators: Prof. Efstratios Gallopoulos, Jiannis Kalofolias, Maria Predari
- Dr. Costas Bekas, IBM Research, Zurich
- Prof. Ahmed Sameh, Purdue University

Applications vs. Comp. kernels (Sameh+'84)

	1	2	3	4	5	6	7	8	9	
Lattice Gauge (QCD)	*			*					*	
quantum mechanics				*			*	*	*	
weather					*	*				
CFD	*		*		*	*				
geodesy	*	*								
inverse problems		*			*					
structures	*		*	*						
circuit	*		*			*	*		*	
circuit simulation	*		*				*			
electromagnetics	*	*	*	*	*	*				

- 1. linear systems 4. eigenvalues/SVD's 7. stiff DE
- 2. least squares 5. fast transforms 8. Monte Carlo
 - 3.nonlinear systems
 - 6. rapid elliptic solvers
 - 9. integral transforms

New Applications vs. Computational Kernels

	1	2	3	4	5	6	7	8	9
financial	*	*	*				*	*	*
IR	*	*		*			*		
DS& Image P.	*	*	*	*	*		*		*
Internet Algorithmics	*			*			*	*	

- linear systems
- 4. eigenvalues/SVD's
- 7. Optimization

- 2. least squares
- 5. fast transforms
- 8. Monte Carlo
- 3.nonlinear systems
- 6. rapid elliptic solvers
- 9. integral transforms

- Numerical linear algebra computations are fundamental kernels of scientific computing (table 1) and optimization targets in HPC.
- Fundamental problems: $A \leftarrow A + BC$; Solve Ax = b, $\min_x ||Ax - b||$; compute PA = LU; $A = LL^{\top}$; $A = V\Lambda V^{-1}$; $A = U\Sigma V^{\top}$, etc.
- A ``new'' fundamental problem:
 - f(A), e.g. exp(A), where f(.) is a function of A
 - f(A)B, e.g. exp(A)B
 - Need for solving problems with multiple right-hand sides

- Several applications demand the solution of linear systems with mrhs
 - Lattice QCD
 - Computational Electromagnetics
 - Uncertainty Quantification
 - Data Handling
 - Domain Decomposition
 - Time dependent problems (holy grail!)

COMPUTING AND DEFLATING EIGENVALUES WHILE SOLVING MULTIPLE RIGHT HAND SIDE LINEAR SYSTEMS WITH AN APPLICATION TO QUANTUM CHROMODYNAMICS *

ANDREAS STATHOPOULOS [†] AND KONSTANTINOS ORGINOS [‡]

Parallel hybrid solver for multiple right-hand sides for the wave propagation simulation in the frequency domain for 3D domains with heterogeneity and topography

Proposers: Henri Calandra (TOTAL), Luc Giraud and Jean ROMAN (INRIA).

Main objective (assume dense matrices):

Solve AX = B, where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times s}$ with s > 1

Direct methods

Factorize and solve, e.g. L(UX) = PB

- Cost: solve at a rate of $O(n^3/s + 2n^2)$ per rhs
- \Rightarrow cubic cost amortized as *s* increases

Iterative methods

- Cost: O(#iter * cost(MV)) per rhs in ``standard approaches'',
- ... e.g. applying CG separately per rhs.

Direct methods

• Factorize $A \rightarrow$ high cost even for moderate size n

Iterative methods

What is the analogue of the ``factorize once'' advantage of direct methods

Seed methods: Exploit Krylov subspace for ``other'' rhs

Saad'87, PapadrakakisSmerou, vdVorst, SmithPetersonMittra'89, Fisher, SimonciniG, ChanWan'97, GuennouniJbilou, Gu, LotstedtNilsson, MorganWilcoxAbdel-Rehim, ...

Block methods: Generate block Krylov subspace

O'Leary, Vital, NikishinYeremin, SimonciniG, CalvettiReichel, FreundMalhotra, Jbilou, JbilouMessaoudiSadok, JbilouSadok, GuennouniJbilou, BakerDennisJessup, Gutknecht, ...

Hybrid approaches: Block seeds, deflation, multiple matrices

SimonciniG, ChanWan, SaadErhel, ErhelGyomar'ch, ChanNg, deSturler, KilmerMillerRappoport, Morgan, GolubRuizTouhami, OrginosStathopoulos...

- Not all of the above methods are suitable for every problem
- Example: Let A be a SPD matrix and B random
 - Compare: standard CG vs. recent seed CG solver
 - n = 500: 500: 5000, stopping when $||r|| \le 1e 8$

Runtimes

- Need to solve much larger problems
- Resolve memory and computational cost bottlenecks

Architecture	$n = 10^{3}$	$5 imes10^3$	$2 imes 10^4$	$5 imes10^4$	10 ⁶
32-bit	4MB	100MB	1.6GB	10GB	4TB
64-bit	8MB	200MB	3.2GB	20GB	8TB

Table: memory requirements for different n

Some approaches

Direct approach

- Replicate A in each processor and factorize
- Factorization is needed only once, no matter what is s
- Even parallel factorization can be very costly

Iterative approach

- It is known today that iterative mrhs solvers can be effective
- ... on a single processor
- Challenge is to preserve the same advantage when going parallel,
- ... can we beat the ``embarassingly parallel'' approach?
- Information sharing between systems:
 - Overhead
 - Scalability
 - Granularity

- Build from the start parallel iterative methods for AX = B
- Use these as kernels for solving problems in different applications
- Combine with mixed precision arithmetic

THANK YOU! QUESTIONS?