Solving linear systems with multiple right-hand sides: Kernel for scientific computing and parallel computing challenges

Vasilis Kalantzis

Department of Computer Engineering & Informatics University of Patras, Greece

LinkSCEEM-2, Athens, 13 July 2011

- **CEID collaborators: Prof. Efstratios Gallopoulos, Jiannis Kalofolias,** Maria Predari
- Dr. Costas Bekas, IBM Research, Zurich
- **Prof. Ahmed Sameh, Purdue University**

Applications vs. Comp. kernels (Sameh+'84)

-
- 1. linear systems 2. least squares 3.nonlinear systems 4. eigenvalues/SVD's 5. fast transforms 6. rapid elliptic solvers 7. stiff DE 8. Monte Carlo 9. integral transforms

New Applications vs. Computational Kernels

-
-
-
-
-
-
- 1. linear systems 2. least squares 3.nonlinear systems
- 4. eigenvalues/SVD's 5. fast transforms 6. rapid elliptic solvers
- 7. *Optimization* 8. Monte Carlo 9. integral transforms
- **Numerical linear algebra computations are fundamental kernels of** scientific computing (table 1) and optimization targets in HPC.
- **Fundamental problems:** $A \leftarrow A + BC$; Solve $Ax = b$, $\min_x \|Ax - b\|$; compute $PA = LU$; $A = LL^\top$; $A = V\Lambda V^{-1}$; $A = U\Sigma V^{\top}$, etc.
- A "new" fundamental problem:
	- *f*(*A*), e.g. exp(*A*), where *f*(.) is a function of *A*
	- *f*(*A*)*B*, e.g. exp(*A*)*B*
	- Need for solving problems with multiple right-hand sides
- Several applications demand the solution of linear systems with mrhs
	- **Lattice QCD**
	- Computational Electromagnetics $\mathcal{L}_{\mathcal{A}}$
	- **Uncertainty Quantification**
	- Data Handling $\mathcal{L}_{\mathcal{A}}$
	- Domain Decomposition $\mathcal{L}_{\mathcal{A}}$
	- **Time dependent problems (holy grail!)**

COMPUTING AND DEFLATING EIGENVALUES WHILE SOLVING MULTIPLE RIGHT HAND SIDE LINEAR SYSTEMS WITH AN APPLICATION TO QUANTUM CHROMODYNAMICS *

ANDREAS STATHOPOULOS [†] AND KONSTANTINOS ORGINOS [‡]

Parallel hybrid solver for multiple right-hand sides for the wave propagation simulation in the frequency domain for 3D domains with heterogeneity and topography

Proposers: Henri Calandra (TOTAL), Luc Giraud and Jean ROMAN (INRIA).

Main objective (assume dense matrices):

Solve $AX = B$, where $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times s}$ with $s > 1$

Direct methods

Factorize and solve, e.g. $L(UX) = PB$

- Cost: solve at a rate of $O(n^3/s + 2n^2)$ per rhs
- ⇒ cubic cost amortized as *s* increases

Iterative methods

- Cost: $O(\#$ *iter* $*$ cost(*MV*)) per rhs in "standard approaches",
- ... e.g. applying CG separately per rhs.

Direct methods

Factorize *A* → high cost even for moderate size *n*

Iterative methods

What is the analogue of the ''factorize once'' advantage of direct methods

Seed methods: Exploit Krylov subspace for "other" rhs

Saad'87, PapadrakakisSmerou, vdVorst, SmithPetersonMittra'89, Fisher, SimonciniG, ChanWan'97, GuennouniJbilou, Gu, LotstedtNilsson, MorganWilcoxAbdel-Rehim, ...

Block methods: Generate block Krylov subspace

O'Leary, Vital, NikishinYeremin, SimonciniG, CalvettiReichel, FreundMalhotra, Jbilou, JbilouMessaoudiSadok, JbilouSadok, GuennouniJbilou, BakerDennisJessup, Gutknecht, ...

Hybrid approaches: Block seeds, deflation, multiple matrices

SimonciniG, ChanWan, SaadErhel, ErhelGyomar'ch, ChanNg, deSturler, KilmerMillerRappoport, Morgan, GolubRuizTouhami, OrginosStathopoulos...

Not all of the above methods are suitable for every problem ■ Example: Let *A* be a SPD matrix and *B* random **Compare: standard CG vs. recent seed CG solver** *n* = 500 : 500 : 5000, stopping when k*r*k ≤ 1*e* − 8

Runtimes

■ Need to solve much larger problems

Resolve memory and computational cost bottlenecks

Table: memory requirements for different *n*

Some approaches

Direct approach

- Replicate *A* in each processor and factorize
- Factorization is needed only once, no matter what is *s*
- **Even parallel factorization can be very costly**

Iterative approach

- \blacksquare It is known today that iterative mrhs solvers can be effective
- **...** on a single processor
- **n** Challenge is to preserve the same advantage when going parallel,
- **.... can we beat the ''embarassingly parallel'' approach?**
- **Information sharing between systems:**
	- **Dverhead**
	- Scalability
	- **Granularity**
- Build from the start parallel iterative methods for $AX = B$
- Use these as kernels for solving problems in different applications
- Combine with mixed precision arithmetic

THANK YOU! QUESTIONS?