
IBM BlueGene/P
Short introduction

Dr. Valentin Pavlov

Rila Solutions EAD

vpavlov@rila.bg



11/29/10

Specification
 Bulgarian Supercomputing Centre (BGSC) works 

with and provides access to a supercomputer IBM 
Blue Gene/P, consisting of 2048 computing nodes 
(8192 PowerPC cores @ 850 MHz, 4TB RAM)

 Connection between the computing nodes and the 
rest of the infrastructure: 16 channels x 10 Gb/s

 Disk storage capacity: 12 TB

 Front-end OS: SLES10, externally accessible 
through SSH

 Performance rating: 27.85 Tflops

 Energy efficiency: 371.67 Mflops/W



11/29/10

Benefits
 Energy efficient

 Space saving

 Transparent, high availability, high speed 
network between the computing nodes

 Programming, based on standard API -
MPI and OpenMP

 High scalability (thousands computing 
cores)

 High reliability



System organization











File Systems

• Several places of interest for users (except the 

standard Linux dirs (/etc, /root, /usr, /dev and so 

on) are:

• /shared1 – the fundamental user file system; 

its size is 4.4TB. It is visible from everywhere 

and this is where the jobs are run from.

• /bgsys – BlueGene/P's system directory. This 

is where the system software, libraries, 

compilers, etc. is placed.



How to get access

• In order to get access to the machine you need:

• Detailed description of your research project

• The application must be shown to be scalable to at least 512 cores in 

order to benefit from the use of the supercomputer

• Signed and written agreement with the usage policies.  

http://www.scc.acad.bg/index.php?option=com_content&view=article&id

=102&Itemid=125&lang=bg

• Send a request to bgteam@scc.acad.bg and we will send you the forms 

which you need to fill.

• Your request will be duly reviewed by the management of the National 

Supercomputing Applications Consortium and accepted/rejected.

http://www.scc.acad.bg/index.php?option=com_content&view=article&id=102&Itemid=125&lang=bg
http://www.scc.acad.bg/index.php?option=com_content&view=article&id=102&Itemid=125&lang=bg


How to perform access 

 Upon approval, an account will be created for you;

 The access is remote and performed via SSH (so it is secure);

 The name of the machine is: bg-fen.scc.acad.bg

 Example Linux command:

 ssh bg-fen.scc.acad.bg -l <username>

 Be aware that SSH works on TCP port 22; If your organization has 

firewall, it has to be configured to let input and output trafic to this 

port for the specified machine;



Password change 

 Upon your very first entering, the system will require you to change your 

password. Thus, please mind the messages that are written on the screen:

vpavlov@linux-hoe5:~> ssh bg-fen.scc.acad.bg -l vpavlov

Password: 

Password change requested. Choose a new password.

Old Password: 

New Password: 

Reenter New Password: 

Password changed.

Last login: Wed Oct 14 21:31:46 2009 from XXX.XXX.XXX.XXX 

** BlueGene/P **

** This internal systems must only be used for conducting ** 

** IBM business or for purposes authorized by IBM management ** 

** Use is subject to audit at any time by IBM management. ** 

vpavlov@bgpfen:~> 



How to copy your data

 Data to and from the machine can be copied by 

using a secure shell copy client, e.g. Scp:

 scp somefile username@bg-fen.scc.acad.bg:

 scp -r somedir username@bg-fen.scc.acad.bg:

 In the second example, the -r switch is used to 

specify recursive action – copy all files and sub-

directories from the source path

mailto:username@bg-fen.scc.acad.bg
mailto:username@bg-fen.scc.acad.bg
mailto:username@bg-fen.scc.acad.bg
mailto:username@bg-fen.scc.acad.bg
mailto:username@bg-fen.scc.acad.bg
mailto:username@bg-fen.scc.acad.bg


Compiling your sofware

 Compiling applications (and libaries) to be used on the 

Computing Nodes is done via cross-compiling: the compiler 

works on the Front-end Node (FEN), but generates code 

targeted at the Computing Node (CN);

 The systam has 2 sets of C, C++ and FORTRAN compilers: 

GNU Toolchaing and IBM XL compilers;

 They are at:

/bgsys/drivers/ppcfloor/comm/default/bin/



~/.profile :

export PATH=/bgsys/drivers/ppcfloor/comm/default/bin/:$PATH



GNU Toolchain

 C compiler:

/bgsys/drivers/ppcfloor/comm/default/bin/mpicc

 C++ compiler:

/bgsys/drivers/ppcfloor/comm/default/bin/mpicxx

 FORTRAN-77 compiler:

/bgsys/drivers/ppcfloor/comm/default/bin/mpif77

 FORTRAN-90 compiler:

/bgsys/drivers/ppcfloor/comm/default/bin/mpif90



IBM XL compilers

 C/C++ compiler:

/bgsys/drivers/ppcfloor/comm/default/bin/mpixlc

/bgsys/drivers/ppcfloor/comm/default/bin/mpixlc_r

 FORTRAN-77 compiler:

/bgsys/drivers/ppcfloor/comm/default/bin/mpixlf77

/bgsys/drivers/ppcfloor/comm/default/bin/mpixlf77_r

 FORTRAN-90 compiler:

/bgsys/drivers/ppcfloor/comm/default/bin/mpixlf90

/bgsys/drivers/ppcfloor/comm/default/bin/mpixlf90_r

 The _r versions generate thread-safe code



How to perform compilation

 In order to perform a compilation, the Makefile or 

configure script (or whatever build system is used) 

must be instructed to use the cross-compiler 

instead of the standard gcc (or other).

 Usually, this is done by setting the env. Variables 

CC, FC, F77, CXX, etc. But in any case – the 

installation and configuration documentation of the 

package should be consulted.

 For example:

CC=mpixlc ./configure



IBM XL optimizations

 IBM XL compilers can produce code, specifically 

optimized for the PPC 450 double-hummer 

processor of the computing nodes. This is 

achieved by specifying the flags:

CFLAGS=”-O3 -qarch=450d -qtune=450”

 These are also valid for C++ and FORTRAN and 
so CXXFLAGS and FCFLAGS are usually set also



Example

 There is a sample program in /bgsys/local/samples/helloworld. It is 

equipped with a Makefile and a LoadLeveler JCF file.

 These can be used as skeleton examples for your own projects.

 In order to make the application you have to copy it to your own 

directory and then type 'make':

cp -r /bgsys/local/samples/helloworld ~/your-name

cd ~/your-name

make

 These commands create a file named hello, 
which can be executed on the BlueGene/P



Job execution

 Jobs are scheduled for execution by a system called LoadLeveler

 The prepared jobs are submitted for execution via the command  
llsubmit, which receives something called Job Control File, which 

describes the executing program and its environment

 This puts the job into a queue of waiting jobs. There are scheduling 

strategies via which the jobs are prioritized. When suitable resource is 

available, the next task in the queue will execute.

 You can see the contents of the queue with llq. If the status of the job 

is R, it is running, if I – it waits, and if  H, there was a problem and you 
need to look at the error output and remove your job via llcancel.



Contents of a JCF

 /bgusr/local/samples/helloworld.jcf is an example Job Control 

File:

This is how it is sent for execution:

cd /bgsys/local/samples/helloworld

llsubmit hello.jcf

# @ job_name = hello

# @ comment = "This is a HelloWorld program"

# @ error = $(jobid).err

# @ output = $(jobid).out

# @ environment = COPY_ALL;

# @ wall_clock_limit = 01:00:00

# @ notification = never

# @ job_type = bluegene

# @ bg_size = 128

# @ class = n0128

# @ queue

/bgsys/drivers/ppcfloor/bin/mpirun -exe hello -verbose 1 -mode VN -np 512



JCF Parameters

• # @ job_name = hello The name for the job, could be anything

• # @ comment = "This is a HelloWorld program" Some 
comment

• # @ error = $(jobid).err Where to send the stderr. Writing to 
file descriptor 1 (in C) writes to this file. Note how $(jobid) is used to 
make this file unique. For example, if LoadLeveler gives the job an ID 
of 4242, then he name of the file will be 4242.err in the current working 
directory.

• # @ output = $(jobid).out Same here, but for the stdout (file 
descriptor 0 in C).

• # @ environment = COPY_ALL; This instructs LoadLeveler to 
copy the whole user environment when running the job. Thus, the job 
has the same environment as the user that executes llsubmit.



JCF Parameters (cont.)

• # @ wall_clock_limit = 01:00:00 Time limit; after this time, 
the job is cancelled automatically. This cannot be more than a certain 
time limit imposed by the class of the job.

• # @ notification = never There is no infrastructure for 
notifications, so 'never' is a good value for this parameter.

• # @ job_type = bluegene This MUST be bluegene.

• # @ bg_size = 128 This must be an integer, divisable by 128, but 
not larger than 2048. This gives the number of computing nodes that 
will be used in order to execute the job.This must correspond to the 
class of the job.



JCF parameters (cont.)

• # @ class = n0128 This is the class of the job. The most important 
parameter. Different classes have different priorities.

• # @ queue This instructs LoadLeveler to put the job in the queue.

• /bgsys/drivers/ppcfloor/bin/mpirun -exe hello -

verbose 1 -mode VN -np 512 This is the actual command that 
sends the job to the BlueGene/P's computing nodes.

• Some parameters are:

• -exe <executable_file> – the executable file itself

• -args “<arguments>” – arguments to the executable file

• -verbose 1 – write information about job startup/finalizing in the 
stderr file



JCF parameters (прод.)

• -mode VN|SMP|DUAL – This provides the mode of execution

• -np N – the number of processes on which the job will execute

• - env BG_MAXALIGNEXP=-1 – very important (and not 
documented!) parameter, which instructs the CN kernel to ignore 
alignment traps. Most of the software is not intended to work on 
systems with alignment and if this parameter is lacking, many systems 
will crash. 



Modes, processes and bg_size

 In order for the job to be correctly stated, the 

following must be true:

bg_size >= np / km

 bg_size is the value in the JCF file # @ bg_size

 np is the value of the -np argument to mpirun

 km is a coefficient of the mode: 1 за SMP, 2 за 

DUAL, 4 за VN

 bg_size must be divisable by 128 and correspond 

to the class of the job



bg_size examples

 -mode VN -np 400 : bg_size = 128

 -mode VN -np 600 : bg_size = 256

 -mode DUAL -np 400 : bg_size = 256

 -mode DUAL -np 600 : bg_size = 512

 -mode SMP -np 400 : bg_size = 512

 -mode SMP -np 600 : bg_size = 1024



Geometry

 A rack has two parts – midplanes 

(upper and lower).

 Each midplane has 512 CN

 When bg_size >= 512 you can specify 

the geometry, which may improve 

performance with some packages (e.g. 

GROMACS)



Geometry (cont.)

 # @ bg_connection = MESH | TORUS | 

PREFER_TORUS

 MESH is the normal mode. The nodes are 

connected in cube (each with its 6 neighbours). 

 TORUS – toroidal connection in which the last in 

line is connected with the first in line. This 

halves the mean path and thus improves 

latency.

 PREFER_TORUS – If possible – TORUS, if not 

– MESH



Geometry (cont.)

 # @ bg_shape = XxYxZ – X, Y and Z midplanes in each 

direction(see also bg_rotate)

 # @ bg_rotate = True | False – can rotate the geometry

 For our system this is only meaningful for bg_size = 1024, 

without permutations (bg_rotate = False). Then,  

bg_shape = 1x2x1 means that the two midplanes will be 

in 1 rack and bg_shape = 2x1x1 means they will be in 

different racks.



Job Classes

 The class of the job defines:

 Priority – larger jobs take precedence

 The maximum number of nodes that 

can be used

 The maximum time that a job can run

 There is a limit how much jobs of each 

class can run simultaneously

 There are several classes:



Classes (cont.)

Class Number of jobs Max CNs Time Limit

n0128 16 128 24 часа

n0128long 16 128 7 дни

n0256 6 256 24 часа

n0512 3 512 24 часа

n1024 1 1024 24 часа

n2048 1 2048 24 часа



THE END
Thank you for your attention!


