
www.hp-see.eu

HP-SEE

Introduction to GPU computing

Emanouil Atanassov

Grid Technologies and Applications Department

Institute of Information and Communication Technologies

Bulgarian Academy of Science

emanouil@parallel.bas.bg

The HP-SEE initiative is co-funded by the European Commission under the FP7 Research Infrastructures contract no. 261499

Outline

HPC training, Sofia, Bulgaria, 23-24 March 2011

 What is GPGPU programming

 Advantages of using GPGPU programming

 How does it work

 Availability

 Problems and obstacles

 CUDA programming model

 GPU kernel example

 Conclusions

What is GPGPU programming

 GPGPU means General-purpose computing on graphics processing
units – a technique of using a GPU (a graphics card), to perform complex
computations usually performed on CPU

 GPGPU leverages the high amount of transistors and high level of parallelism
of contemporary graphics cards to achieve better overall efficiency.

 Contemporary graphics cards used for high-level gaming provide enormous
amount of computational power, measured in Tflops

 This is achieved due to high number of processing elements, which are able
to process high number of concurrent threads

 The two main producers are NVIDIA and AMD (ATI), who also provide
speciliazed hardware for HPC installations (Tesla, Fermi, AMD FireStream)
and software development tools

 Software development can be done using
 OpenCL – cross-platform, can be used also on CPU

 NVIDIA CUDA – only available for NVIDIA GPUs

HPC training, Sofia, Bulgaria, 23-24 March 2011

Advantages of using GPGPU
programming

 Due to high volume of sales of GPUs price is relatively low

 High power efficiency, low space requirements

 Example: TESLA M2050 - 448 CUDA cores, 3 GB memory,
double Precision performance (peak) 515 Gflops, single
precision performance (peak) 1.03 Tflops, memory
bandwidth 148 GB/sec, Power Consumption 225W TDP

 Increasingly popular in top500 list, including the No 1
machine

 Improving support in popular libraries, applications and
development suites

 Tools for automatic parallelisation become available

HPC training, Sofia, Bulgaria, 23-24 March 2011

Problems and obstacles

 Memory size and bandwidth are limited and relatively low
compared with the high number of concurrent threads
executing.

 Porting a large piece of code is a daunting task

 Inter-node GPU – GPU communication not yet developed

 Synchronization and messaging between threads from
different blocks not supported (yet).

 New features constantly added, some of them only
supported on new hardware

HPC training, Sofia, Bulgaria, 23-24 March 2011

Availability

 Most of the NVIDIA CPUs, including those found on
laptops, support CUDA and OpenCL

 HPC cluster at IICT has 4 machines with NVIDIA GTX 295
(visible as 8 different computing devices). Users of the
HPC cluster can access wn019.ipp.acad.bg with same
username and password

 Latest installed version can be loaded with command

 module load cuda

 nvcc is the compiler

 Download and install the sdk containing many useful
examples:

 sh $CUDA_HOME/gpucomputingsdk_3.2.16_linux.run

HPC training, Sofia, Bulgaria, 23-24 March 2011

How does it work

 CUDA introduces keywords that extend the C language

 GPU code organized in kernels.

 When called, a kernel is N times in parallel by N different
CUDA threads

 A kernel is a C function, defined using the __global__
declaration

 A kernel may call other functions, if they are defined with
__device__ declaration

 A kernel is invoked by the CPU code by specifying how
many threads should be run in parallel.

HPC training, Sofia, Bulgaria, 23-24 March 2011

How does it work

 Example kernel definition:
__global__ void multip(float A[N][N], float B[N][N],

float C[N][N]){

int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] * B[i][j];

}

int main() {

// 1 block of N * N * 1 threads

int blocks = 1;

dim3 threadsinblock(N, N);

multip<<<numBlocks, threadsinblock>>>(A, B, C);

}

HPC training, Sofia, Bulgaria, 23-24 March 2011

Memory and execution
model

 The RAM dedicated to the GPU (global memory) has
relatively high latency, but also high bandwidth

 There is no cache in the CPU sense, but there is fast
“shared” memory “close” to the processing elements.

 Threads within the same block can use shared memory
declared with __shared__ keyword to exchange data.

 Texture memory also available, optimised for 2D access.

 The __synchthreads() intrinsic function provides a
barrier enabling synchronisation between threads from
the same block.

 Several threads, e.g., 32, form a so-called warp.

 Threads within a warp are executed on one
multiprocessor, following SIMD model.

HPC training, Sofia, Bulgaria, 23-24 March 2011

Memory and execution
model

HPC training, Sofia, Bulgaria, 23-24 March 2011

Memory and execution
model

 Each thread has an ID that it uses to compute memory
addresses and make control decisions:

 float x = input[threadID];

 All __global__ and __device__ functions have access to
these automatically defined variables

 dim3 gridDim; - Dimensions of the grid in blocks (at most 2D)

 dim3 blockDim; - Dimensions of the block in threads

 dim3 blockIdx; - Block index within the grid

 dim3 threadIdx; - Thread index within the block

HPC training, Sofia, Bulgaria, 23-24 March 2011

Parallelization approach

 If computations inside a cycle are relatively independent
from each other, the approach would be:

 Copy data from CPU to GPU memory

 Launch kernel with appropriate geometry

 Copy data from GPU back to CPU

 Number of blocks and threads should be maximised,
taking into account, however, that local variables are best
put in shared memory and shared memory is limited.

HPC training, Sofia, Bulgaria, 23-24 March 2011

Example program

#include <cuda.h>

__global__ void sum_test(int N,double *full_result, double*result){

unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;

unsigned int bid = blockIdx.x;

double cf=exp((double)tid/(double)N);

full_result[tid]=cf;

__shared__ double s_data[64];

s_data[threadIdx.x]=cf;

for (int dist = blockDim.x/2; dist > 0; dist /= 2) {

if (threadIdx.x < dist){

s_data[threadIdx.x] += s_data[threadIdx.x + dist];

}

__syncthreads();

}

if (threadIdx.x==0){

result[bid]=s_data[0];

}

HPC training, Sofia, Bulgaria, 23-24 March 2011

int main(int argc,char**argv){

int N=1280; int gridsize=20; int numthreads=64;

dim3 grid=dim3(gridsize,1,1); dim3 block=dim3(numthreads,1);

double * full_results_h=(double*)malloc(sizeof(double)*N);

double * full_results_d, *results_d;

cudaMalloc(&full_results_d,sizeof(double)*N);

double * results_h=(double*)malloc(sizeof(double)*gridsize);

cudaMalloc(&results_d,sizeof(double)*gridsize);

sum_test<<<grid,block>>>(N,full_results_d, results_d);

cudaMemcpy(full_results_h, full_results_d,sizeof(double)*N, cudaMemcpyDeviceToHost);

cudaMemcpy(results_h, results_d,sizeof(double)*gridsize, cudaMemcpyDeviceToHost);

double full_s, s;

int i;

for (i=0,s=0.;i<gridsize;i++) s+=results_h[i];

for (i=0;i<N;i++) full_s+=full_results_h[i];

printf("%g %g \n",s/N,full_s/N);

return 0;

}

HPC training, Sofia, Bulgaria, 23-24 March 2011

Device management

 Example of device management:

int deviceCount;

cuDeviceGetCount(&deviceCount);

int device;

for (int device = 0; device < deviceCount; ++device){

CUdevice cuDevice;

cuDeviceGet(&cuDevice, device);

int major, minor;

cuDeviceComputeCapability(&major, &minor, cuDevice);

}

Compute Capability - above 1.3 allows double, above 2.0 –
Fermi.

HPC training, Sofia, Bulgaria, 23-24 March 2011

New features in CUDA 4.0

 Share GPUs between multiple CPU threads,e.g., with
OpenMP

 Single thread can access all GPUs

 No-copy pinning of host RAM

 NVIDIA GPU Direct 1.0:

 Direct access to GPU memory from other devices (Infiniband
cards)

 NVIDIA GPU Direct 2.0:

 Peer-to-peer access

 Peer-to-peer transfers

HPC training, Sofia, Bulgaria, 23-24 March 2011

Tools and software for CUDA

 FFT: libcufft

 BLAS: libcublas

 Random numbers: libcurandorm

 Sparse matrix manipulations: libcusparse

 Debugger – cuda-dbg

 Application software: NAMD, ABINIT, parts of
WRF,GROMACS

HPC training, Sofia, Bulgaria, 23-24 March 2011

Most intense areas of
application

 Financial mathematics

 DNA sequencing

 Oil and gas industry

 Up to date list at
http://www.nvidia.com/object/cuda_app_tesla.html

HPC training, Sofia, Bulgaria, 23-24 March 2011

http://www.nvidia.com/object/cuda_app_tesla.html

Conclusions

 GPGPU codes become increasingly popular and GPGPU
resources increase faster than CPU-based resources.

 Many of the widely used computational chemistry, linear
algebra, fft, etc. codes are already ported and can be
used without specific knowledge of GPGPU computing.

 Programming for the GPU has unique challenges, but
there are large number of useful examples.

HPC training, Sofia, Bulgaria, 23-24 March 2011

