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IMPEJIMET:
Moi0a 3a moKpeTarbe MOCTYNKa 3a CTHLAkb€ 3Bakba BHIM HAYYHH CapaHUK

Monum Hayuno sehe MHcTuTyTa 33 DUskky y Beorpazy aa, v ckazy ca I[IpaBUIHMKOM O MOCTYTIKY
M HaiWHy Bpe/HOBalba W KBAHTHTaTMBHOM HCKa3WBamby Hay4YHO-UCTPOKMBAUKUX pe3y/Tara
UCTpaXknBaya, MOKPeHe MOoCTymnaK 3a Moj U300p y 3Bakbe BULIM HAyUYHH CapajjHUK.

Y npunory gocrasmbam:

1. Muuubere pykoBogHoLa Taboparopuje ca NMpeaIoroM 4iaHoBa KOMHCH]e
2. buorpadcke nogatke

3. [Iperne HayuHe aKTMBHOCTH

4. EnemeHTe 3a KBa/IMTaTUBHY OLIEHY HayuHOT JOMPUHOCA

5. EnemeHte 3a KBaHTUTaTMBHY OL|EHY Hay4HOT JONpPHHOCA

6. Cricak objaB/beHNX pajjoBa U HHUX0Be KOTHje

7. IlojiaTke 0 UUTHPAHOCTH

8. Konujy peiera o npeTxogHoM u3b0py y 3Bambe

9. lopatHe npunore
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Hayunom Behy UnctuTyTa 32 Qpusuky y Beorpany

Ipeaver: Mummeme pykoBoanouna Jadoparopuje o usbopy ap Jakme Byunuesuha y
3Baibe BHIIH HAYYHH CApPaTHHK

Hp Jakwa Byaunuesuh je 3anocnien y Jlabopatopuju 3a mpuMeHy pauyHapa y HaylH, y OKBHPY
HauoHanHor neHTpa H3y3eTHUX BPEJIHOCTH 3a W3yYaBame KOMIUIEKCHUX cucteMa MHCTHTYTA
3a Gusuky y beorpamy. Y ucrtpaxuBadkoM paxy 0aBM ce TeMama Be3aHHM 3a TPaHCTIOPT
HaeJeKTpUcama M CYNEpNpoBOAHOCT Y jako KopenucaHuM Matepujaiuma. C obO3upom ja
HCTIymaBa cBe mnpensuheHe ycioBe y ckiaay ca [IpaBUIHMKOM O MHOCTYIKY, HAYMHY
BPEIHOBAbA 1 KBAHTUTATHBHOM HCKa3WBarby HayYHOMCTPAXKMBAUKUX pe3yJiTara MCTPaKMBaya

MIIHTP, carnacan cam ca nokperameM TOCTyMKa 3a u30op Ap Jakime Byuuuesuha y 3Bame
BUILM HAYYHU Capa/IHUK.

3a cacraB komucuje 3a u3bop ap Jakme Byunuesnha y 3Bame BUIIM HayyHH CapajiHMK
IpeiasKeM:

(1) nmp Mapxo Tanackosuh, Hayynu caBeTHUK, MHCTUTYT 3a pu3uky y Beorpay

(2) np Henan Bykmuposuh, Hayunu caBeTHUK, IHCTHTYT 3a Gusuky y Beorpay

(3) np Bophe Cnacojesuh, penosuu npodecop ®uszuukor (akyiarera YHUBEP3UTETA Y
beorpany

‘WWH banax

Hay4YHH CaBCTHHK
Pyxosoamiail JlabopaTtopuje 3a npumMeHy pauyHapa y Haylu



2. BUOT'PA®CKU IIOJALIV KAH/IUJIATA

Jakiia Byunuesuh je pohjen 30. Maja 1984. rogune y Beorpazny. Martypupao je 2003. rog. y [leBeToj
6eorpazickoj rumMHa3uju "Muxauno [TynuH", MPpUPOAHO-MaTeMaTUUKHA CMep, Ca MPOCEKOM 00AUUdH.
Crygupao je 2003-2009. roz. Ha ®PusuukoM ¢akynTeTy YHHUBep3uTeTa y beorpagy, cmep
[MpumemeHa pusrka u uHbopmarrka. OCHOBHe CTy/ije je 3aBpIIMO ca pocekoM 9.05. [IuriomMcKu
pag "YTuijaj acuMeTpuje TyCTHHe CTalka Ha 0COOMHe MOTOBOT MeTaj-U30/1aTop Mpesasa’ je
Hamucao 1oJ, pykoBojcTBoM Ap [apka TanackoBuha, ca MHctutyTa 3a usuky y beorpagy. VY
nepuony 2009-2015. rog. je OMO CTy#eHT [JOKTOPCKMX CTyadja Ha  PusndkoM (akynrety
YuuBep3uteTa y beorpagy, cmep ®@usrka KOHZI€H30BaHOI CTawa Marepuje U CTaTUCTHYKa (prU3MKa.
Hoktopcky Te3y "[lokasare/bu CKpUBeHe KBaTHe KPUTUYHOCTA Y BUCOKO-TeMIlepaTypHOM
TPAHCIIOPTY HaejieKTpucamwa y Onm3vHu MoToBor mpesia3a” je Hammcao Moj PYKOBOACTBOM /[P
HNapka TanackoBuha. [oOWTHUK je ToAMIIIbe CTyleHTCKe Harpase WHcTuTyTa 3a OU3MKY Y
beorpazay 2016. rof., 3a Haj60/bY AOKTOPCKY Te3y y MPETXOAHOj TOAUHH.

Tokom 2010. roauHe, Kao [oKTopaHg, J.B. je 6uo crumeHaucra MuHHcTapcTBa 3a Hayky. Of
janyapa 2011. je 3anocneH Ha MIHCTUTYTY 3a ¢u3uKy y beorpazsy. YuecTBoBao je Ha HalMOHA/IHOM
npojekty OH171017 "MogenoBatke U HyMepuuke CUMYy/aljyje KOMIUIEKCHUX BUILIeYeCTUYHUX
cucreMa" MMHUCTAPTCTBA MPOCBETe, HAyKe M TeXHOJIOLIKOr pasBoja y nepuony 2011-2019. rog,.
Kao cTyzeHT JOKTOPCKUX CTy[Hja yueCcTBOBAO je U Ha JiBa OmsiaTepasiHa MpojeKTa ca pernybIMkoM
@panuyckom: "Torosolika cTawba U (ase y HUCKOAVMEH3WOHATHUM e/IeKTPOHCKUM CcHhcTeMHMa',
2011-2012. rog. mog, pykoBoAcTBOM Ap Muuije MunoBanoBuh u agp Mapka I'epbura (LPS Orsay),
1 "KBaHTHO-KPUTHUHH TpaHCHOPT y Oyi3uHM MoTOBOT MeTas-ru3o/arop npenasa’’, 2012-2013. rog.
o, pykoBozctBoM Ap [dapka TaHackoBuha u ap Mapcesna Po3zen6epra (LPS Orsay).

Hakon mokropupama, J.B. je mpoBeo aBe roause (2015-2017) kao noctaok y rpynu ap OnuBujea
[Mapkonea y ycranoBu IPhT, CEA Saclay, ITapu3, ®paHijycka, ¥ paguo y OJMCKOj capajiibu ca
rpyriom p AHToaHa JKopxka ca College de France, Takolje y Ilapusy. buo je yuecHuK Tipojekrta
"Quantitative approaches for strongly correlated quantum systems in equilibrium and far from
equilibrium", European Research Council (ERC) starting grant (O. Parcollet). Y nepuony 2016-
2017. yuectBoBao je u Ha OwsarepanHoMm mpojekTy Cpbuje m pernybmke CroBeHuje '"Jake
e/IeKTPOHCKe Kopesiallije W CyrneprnpoBOAHOCT" 107 pyKoBoAcTBOM Ap [lapka TaHackoBuha u fp
JepHeja Mpas/be-a.

Hakon noBpartka u3 @panuycke, 2017. J.B. je HactaBuo paj Ha MHcTuTyTy 3a @U3uKy y beorpany.
TpeHyTHO je pyKoBOAW/AL] CPIICKe CTpaHe OusaTepajHOr TpojeKTa ca pemnybnrkom Hemaukom
(DAAD) "EnekTpoHCKe Kopejaluje y OKCHAMMa ca TpaHC(epoM HaejleKTpucama: (QyHKLUje
of3uBa U AyropomeTHa ypehema" 3a mepuog 2020-2021. roguHe., y capafmpu ca Ap dunvrom
XancmaHoM (Friedrich Alexander Universitdt Erlangen/Niirnberg). J.B. yuecTByje u y mpojekTy
NI40S-Europe (National Initiatives for Open Science in Europe, Grant number 857645),
¢uHaHcrpaHoM ofi cTpaHe EBporicke komucHje y okBupy mporpama XopusoHT 2020. Ha oBom
nipojekty ap ByunueBuh pazsy Ha nipojekTHOM 3azaTky nog HasuBoM: LMDB, Distributed database
of numerical results and codes pertaining to a large class of condensed matter theoretical models.
Op aerycra 2020. J.B. je pykoBogunay aoroauiiwer [TIPOMUC nipojekra doHza 3a HayKy IOZ,
Ha3uBoM "X/agHu atomH, Xabap/ioB Mozien 1 Xonorpaduja: K/byu 3a uygHe MeTtarne".

['maBHa TeMa pazia J.B. cy edekTu jakux esleKTPOHCKUX Kopesaljja y CUCTeMUMa YBPCTOTr CTamwa. Y
Jocajaiimem pagy, J.B. ce 6aBuo ¢deHomeHMMa Kao 1ITO Cy MOTOB MeTasn-HM30/1aTop Tipena3 U
HEeKOHBEHIIMOHanmHa cyrneprnpoBogHocT. Tokom 6OopaBka y ¢pannyckoj J.B. ce pgomatHO
CrieLidjann30Bao 3a pa3B0j HyMepUUKHX ajJropuTaMa 3a pelleme XabapJoBor Mojena IITo My je Of
Tajla ¥ LeHTpa/iHa JmHuja paja. J.B. je objaBuo 13 mybmukanyja y meljyHapogHuM vaconmcuma (4
paza kareropuje M21a, 8 pajgoBa kareropuje M21, u 1 paj kareropuje M23). Ha ocHoBy 0Oa3se



SCOPUS, pagosu cy yutarvpanu 190 nyta (172 He pauyHajyhu ayto-uutare), a J.B. nma h-index
8. J.B. uMa akTHBHY capafiiby ca rpyrnama u3 Jbybseane, ITapu3a, Bbyjopka u Epnanrena (Hemauka).
J.B. je TPpeHyTHO MEHTOP jeZJHOT CTy[eHTa Ha MacTep cTyAurjama dusnukor dakynrera y beorpagy u
¥Ma Capajilby Ca UCTpPaKMBAukoM cTaHuLOM [leTHuia. J.B. je akTHMBaH peLieH3eHT uaconuca
Physical Review (Letters, B u E) ca ykymHo 34 perjen3uje oz okro6pa 2017. rog,.

3. ITIPEITIE] HAYYHE AKTUBHOCTU
HayuHo-ucTpa)kuBauky paji KaHZu/iaTa ce MoXKe ToJe/IuTy y 3 fena:

1. uctpakuBame 0COOMHA TPAHCIIOPTA Hae/eKTPHCama Yy OKOMWHU MOTOBOT MeTas-u3ToJaTop
npesasa

2. UCTpa)KrBambe HEKOHBEHIIMOHATHE CyTIePIIPOBOAHOCTH

3. pa3Boj HYMepUYKMX MeTo/la 3a pelliele BUIIIeYyeCTUYHOT KBaHTHOT mpobsieMa ¢epMyoHa Ha
perIeTKH

3.1. Tpancnopt y oKo/1MHM MoTOBOI MeTa/1-M30/1aT0p Ipesiasa

MoToB MeTas-U30/1aTOP MpeJias je rojaBa y CUCTEMMMA YBPCTOT CTama IJe Ce OTIOPHOCT CUCTeMa
MIPOMEHU Harzio U [ApPacTUYHO MPU Majoj TPOMEHM HEeKOr CII0JbHOT TMapaMmerpa (MpPUTHCAK,
TeMIleparypa Wi XeMHjCKH cactas). OBa rojasa ce omnaxa y HU3y Marepujaja Kao IITO Cy pasHu
OKCH/IM BaHaJWjyMa M Kara-OpraHCcKyd CUCTeMH, a Bepyje Ce [a je pejieBaHTHa U 3a KyIpaTHe
BHCOKOTeMIlepaTypHe cyrnepripoBofHuke. IlpencraB/ba mocieguily e(QeKkTHBHO jake Ky/IOHOBe
VHTepakLyje u3Mel)y esleKTpoHa y MOIMYNONYHEeHOj BaleHTHOj 30HM Marepujana. IIpBu Teopujcku
OTMUC MeTaJI-|30/1aTop TIpesa3a je TOCTUTHYT moueTkoM 90-MX, y OKBHpPY peliema XabapaoBor
Mo/ie/sia ToMohy Teopuje AMHAMUUKOT cpefitber no/ba (DMFT).

KeanmHo-kpumuuHo ckaaupare

Tokom JOKTOpCKUX CTyAuja, J.B. ce ¢okycrpao Ha rpopauyH OTIOPHOCTH y XabapJoBOM MOJey,
yrpaBo y OKOJIMHU MoToBor mpenasa. ¥ 0BOj MMHUjU paja, J.B. u ap dapko TanackoBuh cy numanu
bnucky capagmwy ca rpynoM jp Bsagumupa [JobpocaBbeBrha ca /IpykaBHOT YHUBep3uTeTa Ha
®nopugu, CA/l. Y tpu nybnukanyje koje cy objaBumm y nepuogy 2011-2015. roauHe, mokas3aHo je
Jila ce OTIIOPHOCT Ha BUCOKMM TemIleparypama IIOHAlla y CK/IaJy Ca jeJHOCTaBHUM 3aKOHOM
cKa/mupawma. OBO IOHAlllalke HaluKyje 3aKOHMMa CKalvpawka KOjU Bake Y OKOJMHU KBAaHTHUX
KPUTUYHUX Tauaka (KBaHTHO-KDUTHMUYHO CKalWpame) y HU3y TPeTXOAHO J00po M3yueHHX I0jaBa,
yK/byuyjyhy ¥ MeTasn-u30/1aTop mnpenas y ABOAMMEH3MOHOM e/IeKTPOHCKOM racy (HIIp. OCTBapeHOM
Ha MHTep(ejcy ABa MoaynpoBofHMKa). [lokasaHO je fa cKalupame OICTaje y LIMPOKOM ety
(asHor aujarpama XabapzoBor Moena, y OKOJMHM 0Oa Turma MOTOBOr Tpesia3a Koju ce y TOM
Mo/iesly onaska (Ipesa3 ycje[, jauMHe UHTepakLyje, U Ipesas ycies fonvpama). OBO NoHallame je
NO7IPOOHO MCITUTAHO M AT Cy apryMeHTH /ia je TO BHJ, YHHUBepP3a/HOT TOHaIllaka Be3aHOT 3a CaM
¢asHu mpenas, koje 6u ce Tpebano BUETH Y eKCIIEPHMEHTY HEe3aBMCHO O[] JieTa/ba CTPYKType
jenumema.

Pesynratu oBe /ivHHMje paja Cy MOTBpieHM ekcrieprMeHTanHoO of crtpaHe rpymne K. Kanoge u3
JanaHa, mro je o6GjaBbeHo 2015. roguHe y uyacormmcy Nature Physics. OHu cy uW3BpIIAIM
CUCTeMaTCKa Mepera OTIIOPHOCTU Y HEeKOJIMKO Kara-OpraHCKUX MaTepujajia KOju MCII0/baBajy
MortoB mpena3 u cmarpa ce ja cy Jobpo onvcaHyd XabapfoBUM MofenoM. 3aucTa, He3aBUCHO Of
JleTajba CTPYKTYpPe XeMHjCKOI jeluibera, OINCepBUpa/i Cy Ha BMCOKO] TeMmIepaTypyd KBaHTHO
KPUTUYHO CKa/lvpawe OTIOpPHOCTM Yy ckiagy ca DMFT rnpopauyHyMMa IIpukasaHuMm Y
ny0O/MKalpjaMa KaHauaaTa.



O/1 HapOUMTOT 3Hauaja je U IITO je YCTAaHOBJ/bEHO Jla Cy pe3y/TaTH MpopadyyHa 3a Xabap/ioB Mogen y
CK/IaZly Ca eKCIlep¥MeHTa/lHWM OIlCcepBalyjaMa y KylpaTHUM jeMielbrMa Y PeXUMYy JIOLIer, Tj.
yyfaHor metasna. To je pekuM 3a KOjU Ce cMarpa Ja je O M3y3eTHOI 3Hauaja 3a pasyMeBarbe
BHUCOKOTeMIlepaTypHe CyTIeplipOBOAHOCTH Yy KyIpaTHUM jefumemrmMa. OBaj pexum KapakTepulle
JIMHeapHa 3aBHCHOCT OTIIOpa 07 TeMIleparype, 3a IITa HejoCTaje AyO/be pasymeBame. AHanv3a
yudmeHa y pajJly KaHJujara je ToBe3asa Harub JiMHeapHe OTIIODHOCTH ca (yHAaMeHTaTHUM
KPUTHUUHUM eKCIIOHeHTHMa MOTOBOT Tipesia3a, LITO je pe3y/iTOBajo MyOIMKaljoM y BPXYHCKOM
yacormcy Physical Review Letters, unju je J.B. mpBu ayTop.

Y oBoj nuHMju paza, J.B. je monmpuHOCHO uMILIeMeHTaljoM HymMepuukux Metoga (DMFT u
pauyHame TIPOBOAHOCTH), MPOAYKIIAjOM U aHAIU30M pe3y/iTaTa, Kao U MUcameM MmybivKaiyja.

[Ty6siukarvje KaHAWaTa U3 oBe JIMHUje paja Cy:

1. J. Vucicevi¢, D. Tanaskovi¢, M. Rozenberg, V. Dobrosavljevi¢, "Bad-metal behavior reveals
Mott quantum criticality in doped Hubbard models"
Phys. Rev. Lett. 114, 246402 (2015)

2. J. Vucicevi¢, H. Terletska, D. Tanaskovi¢, V. Dobrosavljevi¢, "Finite temperature crossovers and
the quantum Widom line near the Mott transition"
Phys. Rev. B 88, 075143 (2013)

3. H. Terletska, J. Vucicevi¢, D. Tanaskovi¢, V. Dobrosavljevi¢, "Quantum Critical Transport Near
the Mott Transition "
Phys. Rev. Lett. 107, 026401 (2011)

Heypehenocm u jake uHmepaxkuuje

Op paHuje je mo3HaTo Jja HeypeljeHOCT y MaTepujasviMa HeraTMBHO yTHYe Ha HUXOBY MPOBOJHOCT,
U Jia jaka HeypeljeHOCT MOXe [OBECTH [0 JOKaju3aldje efeKTpoHa, IITO je ¢asa ro3HaTa Kao
Anpepcon usonarop. MeljyTum HHje OWIO y TOTIYHOCTH pa3jallilbeHO Ha KOjU HAauWH Ce OBO
TIOHalllake MOAU(UKYje y MPUCYCTBY jaKMX MHTepaKLija n3mMel)y efnekTpoHa.

Ha usyuaBamy HeypeljeHor XabapZoBor mogesna, KaHAWJAT je pafiio y capajmu ca Ap Japkom
TanackoBuhewM, u rpynama ap Bnagumupa /JobpocasmeBuha u ap Mapuje Kaponune O. Aryuap
(Benmo Xopusonte, bpa3un). Y pagy oGjaBbeHom 2015. rop., ucnurtaH je oarosapajyhu daszuu
mvjarpaMm. McrnocTtaBba ce fga ce edeKTH jakMx WHTepakiuja u HeypeljeHocTH MeljycoOHO
TOHUINTABajy, U Jla je CHUCTeM HajMeTa/HHjU Kafla Cy €eHeprujcke ckajse HeypeljeHocTH U
uHTepakivja Omucke. [Ipy BeJMKUM WHTEpakKiMjaMa U BeJMKOj HeypeljeHOCTH, OmMcaHa je U
MeiliiaHa aza MoToBor U AHZIEpCOHOBOT K30/1aTopa.

Y 0BOj IMHUjU pajia, KaHauUaart je pa3Buo cetT C++ KoJ0OBa KOjU UMIUIEMEHTHPAjy MeTO/| TUITUMYHOT
megujyma (TMT) 3a perierse HeypeljeHor XabapgoBor mozena. KozoBu koje je pa3Bro KaHAWJAT Cy
U Jlajbe y yroTpeOwu, IITO Ce HABOAM U Y 3aXBa/THULIM CKOpaIlliber rnpernpuHTa arXiv:2008.09714.

Pag kanaugaTa U3 oBe MHUje paja je:

1. H. Braganca, M. C. O. Aguiar, J. Vucicevi¢, D. Tanaskovi¢, V. Dobrosavljevi¢, "Anderson
localization effects near the Mott metal-insulator transition"
Phys. Rev. B 92, 125143 (2015)



OmnopcHocm v 08e OuMeH3uje U 8epmeKc KopeKuuje

Y okBupy DMFT Teopuje, npoBogHOCT 3a XabapZioB Moziesl ce MOKe M3pauyHaTH 0e3 /0/jaTHUX
anpokcuManmja. Meljytum, y ciaydajy [BOAMMeH3HOHa/He pellleTKe (KBJapaTHa, TpOyIvacTa),
DMEFT je camo npubmi»kaH MeTOZI, a ca CUCTeMaTCKUM rorpaBkamMma DMFT-a, HacTaje u motpeba 3a
KOpeKllMjaMa M3pa3a 3a MPOBOJHOCT (Tako3BaHe "BepTeKC' Kopekuuje). MehyTuMm, ypauyHaBame
BEPTEKC KOpeKIFja y OTIMOPHOCTH 3a XabapZioB Moies1 TIpe/iCTaB/ba BUILE/IEI[EHUjCKH M3a30B, U
Jl0Ca/lalliby TIOKYLIAju HUCY Janu Je(UHUTHBaH OJrOBOP Ha IMWTame BeJMYMHE OBHUX KOpeKlyja.
Ha ocHOBy (u3nuapcke WHTyHLMje, JlaBaHe Cy pas3/MuMTe IpPOLieHe, a UeCTo Ce CMarpaso Ja Ccy
BepPTeKC KOpeKljije 3aHeMapuBe Ha BUCOKOj TeMIlepaTypu I/ie je COITCTBeHAa eHepruja ejaeKTpoHa
JIOKaJ/IHa.

Y nepuopy 2017-2020. rog. xaHguzar je capahuBao ca ap [dapkom TanackoBuheMm, rpynom w3
WHcTtutyTa Josed Credan u3 Jbybrbane kao u gp Huncom Benuiesiom (Flatiron Institute, Hbyjopk,
CAl) Ha mipobneMy oppehjuBama [JOMPUHOCA BEPTEKC KOPEKLMja y CIyyajy ABOAMMEH3HMOHAHe
pewietke. [lopeljemem pesynrara HEKONIMKO HajMOJEPHUJUX HYMEPUUYKHMX METOZAa YCIELIHO Cy
pallwIakeH! pas3/Iu4nTH JONPUHOCH ONTUUKO] IIPOBOJHOCTH. YCTaHOB/BEHO je Jja He3aHeMap/buBe
BepPTeKC KOpeKliMje OICTajy W [0 HajBUILMX TeMIleparypa, JOK HeKu JpPyru e(eKkTH Kao ILITO Cy
KOHAUHOCT pelleTKe U HeJIOKa/IHe Kopesanyje urpajy ceKyHzapHy yiory. Ha Taj HauuH, mokasaHo je
Jla je pe3ynaTaT mNpopauyHa er3akTHe /JujaroHajgv3alvje Ha pelleTku BenuuuHe 4x4 (FTLM)
MPaKTUYHO er3akTaH pe3y/aTar 3a XabapzoB MoJies1 y TepMOJUHAMHUUKOM JIMMUTY U TeMIlepaTypaMa
BehMM 071 OKO fleceTor Jiefa IIMpHHe eHepreTcKe 30He.

OBaj pe3ysrar je HApOUYMTO 3HauajaH y CBeT/Iy CKOpalllbUX eKClieprMeHaTa ca XJ1aJJHUM arToMrUMa y
ONTUYKUM peIleTKaMa, KOju cuMyiupajy XabapioB Mogen. Y eKCIiepUMeHTy 00jaB/beHOM Y
yacorucy Science (P. T. Brown et. al., Science 363, 379 (2019)) nopeljeHa je uamepeHa OTHOPHOCT
ca DMFT u FTLM Teopujama U 3aK/byuyeHO je [a ce [Be TeOpHje He CJIaxy, U Ja Ce pe3y/Tar
Mepema ciiaxe 6obe ca FTLM TeopujoM. MeljytuM, ocTano je HepasjalimkeHO Koja off iBe TeopHje
je Gmka ersakTHOM pe3y/Tary, U Oflakiie TIOTHYe pa3/ivKa u3Melly TMX Teopuja. Y pajly KaHauzara,
OBO NHTale je cajia pasjallkbeHo, LITO je 0f U3y3eTHe BaKHOCTH 3a YCIIOCTaB/bakbe IpOBepe
Oynyhux ekcriepuMeHaTa Ha X/1a[[HUM aTOMHMa.

Y HajckopujeM pajy KaHJujara, CUCTeMaTCKy [POpauyyHU M3 OBe JIMHUje paja Cy MPOLIMPeHU U Ha
C/ly4aj TpoyIyacTe peuierke. [IOKyMeHTOBaHO je Ja je COIICTBeHA eHepruja ejaekTpoHa Ha
TPOYIVIaCTOj pelleTKU JIOKaTHWja Hero Ha KBaZipaTHOj, U MoTBpijeHa je ¢hr3nuka UHTYULIM]ja [a je TO
VH/JVKaTOp Mamer 3Hauaja BepTeKC KOpeKliHja 3a OTIOPHOCT, MAaKo Cy OHe KBaHTHUTaTUBHO
He3aHeMap/bUBe U y C/Iyuajy TpoyIviacTe perierke. IIokasaHo je v a, HEOUeKUBAHO, HAa TPOYIVIACTO)]
pelleTkd TepMOAUHAMUUKe BeJMUMHe CIIOpUje KOHBeprujpajy ca BeIM4YuHOM pelletke. OBH
pe3y/ITaTd UMajy Ba)kKHe UMIUTHKAIIMje Be3aHO 3a 300p HYMEePUUKUX MeTOoZla U TeOPHjCKe CTyauje Yy
OynyhHocTu.

Y o0BOj vHUjU paza, J.B. je nonpuHeo UMILJIEMEeHTAaL[jOM HEKOJIMKO HajMOJEepPHUjUX HYMEepPUUKUX
metoza (CDMFT, DCA, CTINT), kao v aHanM30M pe3ynTaTa U M1cambeM MMyosrKaiyja.

Osa lvHMja pajia je 4o cajja pe3y/aToBasa ca JBe myokaryje:
1. A. Vrani¢, J. Vucicevi¢, J. Kokalj, J. Skolimowski, R. Zitko, J. Mravlje, D. Tanaskovi¢, "Charge

transport in the Hubbard model at high temperatures: triangular versus square lattice"
Phys. Rev. B 102, 115142 (2020)



2. Jaksa Vucicevi¢, Jure Kokalj, Rok Zitko, Nils Wentzell, Darko Tanaskovi¢, Jernej Mravlje,
"Conductivity in the square lattice Hubbard model at high temperatures: importance of vertex
corrections"

Phys. Rev. Lett. 123, 036601 (2019)

3.2. HeKOHBeHI{OHA/THA CYNepPIPOBOJHOCT

CynepnpogodHocm y 080¢/10jy 2pddeHa

I'pacden je mocnenwrx roAvHa MPUBAAUMO IYHO Ma)Kke Kao CUCTEM Ca MHOTMM H3y3eTHUM
CBOjCTBMMA, W BeJUKUM OpojeM MoryhHOCTM 3a TIOTeHIMjajHe TIpUMeHe. JeZlHa Of Ba)KHUX U
HEe/I0BOJbHO MCTPa’KEeHUX IHTama je MoryhHOCT ocTBapewa HEKOHBEHLIMOHAHE CyTepIipOBOHOCTH
y OBakBUM CHCTeMUMa, HapOUYMTO y CJyuajy ABocjoja rpadeHa rje MOCTOjU HEHY/ITa T'yCTHUHA
cTama Ha PepMU HUBOY.

Y nepuopy 2011-2012. roa. kaHguAaT je capahuBao ca Ap Mwmmiiom MunoBaHoBuh (MHCTUTYT 3a
¢u3uky y beorpamy) m Mapkom I'epburom (LPS, Orsay, ®paHijycka) Ha HCTPaXUBambY
CyTiepIipoBO/IHe HeCTaOW/IHOCTA Y [BOC/IOjy rpadeHa, ycnen e(eKTHBHUX aHTH(epOMarHeTHx
uHTepakivja. [loka3aHO je fJa TakBe HeCTaOWIHOCTH TIOCTOje, alu Ja (YHKIMja CrapyBamba
3Ha4ajHO 3aBUCU Of] MOMYHEHOCTH eHepreTcke 3oHe. HaljeHo je fa je criapuBame MelllaHOT THIIa,
a/ny Jia je IOMAHAHTHO TvMa d+id, U ia OTCTaje MPBEHCTBEHO HAa YMEpPEHOM JIOTIHHTY.

Kanzuzar je y oBOj JIMHUjY pajia AONPUHEO MMIUIEMEHTALIUjOM pelliera jeJHauruHa CpeJber 1oJba,
MIPOJYKIIMjOM U aHa/TM30M pe3y/ITaTa U MucameM MyouKaiyje.

[Tybnukaivja KaHAuAATa y OBOj TMHU|H paja je:
1. J. Vucicevi¢, M. O. Goerbig, M. V. Milovanovic, "d-wave superconductivity on the honeycomb

bilayer"
Phys. Rev. B 86, 214505 (2012)

CynepnpogodHocm y Xabapdosom mooeny

MHuoru cMatpajy ga je XabapfoB Mofe/ Ha KBaZipaTHOj peIleTKH MWHAMATHM MOJe/T 3a OITHC
BUCOKOTEMIIepaTypHe CyTepripOBOJHOCTH Yy KyTpaTHUM jefHuberuMa. Y XabapoBoM Mozeny,
y3POK CYTIepIIPOBOAHOCTH je ofbojHa KysmoHoBa uHTepakiyja. Kao u y KyrnpaTtuma, criapuBame je d-
TUIA, IITO 3Hauu Jla Ce Clapyjy eleKTPOHM Ha pas/IMuMTHUM UYBOPOBMMA pelleTke. TpeTvpame
OBakBe CYIeprpOBOAHOCTH je M3y3eTaH M3a30B 3a TEOPHjy jep 3axTeBa paji y BUILIEUeCTUYHOM
(hopmanusMy U OMuUC HeJIOKaIHUX Koperalyja; To 3HauM [ja Ce He MOTy KOPHUCTUTH Teopuje Cpefiiber
no/ka kKao mro je BCS Teopuja, anu HU DMFT Teopuja y opuruHaaHoj ¢dopMy/aLyju.
MMHUMAaTHOM TEOpHjOM CyIeprpoBOAHOCTA y XabapoBOM MoOeny ce TOC/IeABUX [eKaja
cmarpana knactep DMFT Teopwuja, Koja 3axTeBa Be/JIMKe padyyHapCKe pecypce, a MOKe OIrcaTh
CaMO KpaTKOZIOMETHO CllapyBame eJIeKTPOHa.

Y papy KaHjgujara y okBupy rpyne np Onusujea Ilapkonea Tokom 2016-2017. roauHe, pasBujeH je
TRILEX MeTof 3a TpeTHpame CyIeprioBOJHOCTH d-Tvra y XabapgoBoMm mozeny. OBaj meTorn je
cimyad opuruHasHoj DMFT Teopuju mo padyyHCKOj 3aXTeBHOCTH, aid omoryhaBa oOmuc u
[YrolOMeTHOI CIiapvBama. PaspaljeHa cy M cucTeMaTcka IOje[JHOCTaB/belha OBe Teopuje Koja ce
MOT'y KOPUCTUTH y pexxumy ciiabuje nHTepakuuje. Teopuja je uckopwuiheHa fia ce uicruta (asHH
fvjarpam XabapzoBor Mojena U fo0HjeHH Cy pe3yaTaTH y CKAafy caj, ApPYrMM MeTojuMa M
ommuToM (eHOMEHO/MIOTHjoM Kympara. /JlogaTHO, wWcCnHWTaHe Cy CIeKTpajHe O0coOuHe Yy
CyTiepripoBoJHOj ¢a3u yrope/o ca "pseudogap” (pa3om u omnakeHa je U3y3eTHa CIMYHOCT U3Mely Te



nBe ¢ase. Takolje, cucTeMaTcKy je UcnMTaHa BUCMHA KPUTHYHE TeMIlepaType 3a CyIepripoBOJHOCT
y QYHKIMjU KOHCTaHTU TIPeCKOKa pellleTKe U rMpoHaljeH je jefaH KOHKpeTaH M300p rapamerapa 3a
KOjy je BHCHMHA KpPUTHUYHe TeMIlepaType HapOUMTO BHCOKA, y PeXXUMY KakO C/1labuX Tako U jaKux
VIHTepakLyja.

Y oBOj nMHMjU pasia, KaHaugatr je pomnpuHeo u3Bohemem TRILEX jennaumHa y Hamby
(dopmanusMy, UMIIeMeHTaljoM MeToze, NPOAYKLMjOM U aHalau30M pe3yaTara Kao U IHCameM
ny6suKatyje.

[Tybnukaivja KaHAuAaTa U3 OBe JIMHUje pafa je:

1. Jaksa Vucicevi¢, Thomas Ayral, Olivier Parcollet, "TRILEX and GW+EDMFT approach to d-

wave superconductivity in the Hubbard model"
Phys. Rev. B 96, 104504 (2017)

CynepnpogodHU cyeHapuo niamod 5/2 y ¢ppakyuoHom keanmuom Xonogom ecpekmy

Tokom 2018. roauHe, KaHAWAT je capafjuBao ca Ap MwiuiioM MunoBaHOBUh Ha UCTpaKUBamby
MoryhHMx OCHOBHMX CTama eeKTPOHCKOI raca y jakoM MarHeTHOM MO/by Koje ozroBapa (hakropy
TIOMYHeHOCTU 5/2 y GhpaKI[MOHOM KBaHTHOM X0/i0BoM edekTy. OCHOBHO CTame y TOM CJyuajy ce
OueKyje [la Caip’Ku CllapyBame eJIeKTPOHa UCTOT CIMHA, p TUMA. Y OKBUPY alipOKCUMalLHje jeIHOrT
Jlanzay HMBOA Cca MaCceHMM 4aHOM KOjU CjlaMa uecCTHlla-pyra CUMeTPUjy U Ha Taj HauWH OIucyje
edekatr mnpucyctBa ocranux JlaHzay HMBOa, TMOKa3aHO je Ja OCHOBHO CTawme 3aucTa uma
HecTabMTHOCT Ka criapuBamy. OmnucaHe €y HeCTaOWIHOCTM Ka TPUjy BpPCTa CllapyBamba, Koje
O/ITOBapajy BHIlleueCTUUHUM CTakbHMMa yecTulja-pyra-cuMmetrpruuHoM [ldadujany, kao u [Mdpadujany
u antu-Ildadujany koju cy meljycobHO cumeTpruHM /10 Ha TIpe/j3HaK MaceHOT uiaHa. Hama3u oBe
T10jeJHOCTaB/beHE TeopHje Cy y CKIaAy ca CO(PUCTULMPAaHUM HYMEPUUKUM CUMYy/alydjamMa U3
JuTeparype.

Kanzuzar je y 0BOj /JMHMjU paja [OINPUMHEO WMIUIEMEHTALMjOM CamoycarjialleHe jeJHauuHe
cpelmer T1o0/ba, TMPOAYKLMjOM HyMEpUUYKHMX pe3ylTata W MNHMCakeM ojroBapajyher [ena
nyOMKaryja.

[Tybsukarvje KaHAuata U3 oBe JIMHUje paja Cy:

1. L. Antoni¢, J. Vucicevi¢, M. V. Milovanovi¢, "Paired states at 5/2: PH Pfaffian and particle-hole
symmetry breaking"
Phys. Rev. B 98, 115107 (2018)

2. M.V. Milovanovi¢, S. Djurdjevi¢, J. Vucicevi¢, L. Antoni¢, "Pfaffian paired states for half-integer
fractional quantum Hall effect"
Modern Physics Letters B 34, 2030004 (2020)

3.3. Hymepuuke MeTo/ie 3a pelierme HHTeparyjyhum ¢pepmuona Ha pemerku

[Tpo6siem uHTeparyjyhux dbepMroHa Ha pelieTKH je jefaH of HajTeXXUX Y CBOj TEOPHjCKOj (GU3UIIH.
Y kopeHy mpoOsieMa je eKCIIOHeHI[dja/lHO pacTyhu MpocTop cTamba KBAHTHUX BUIIIEUECTHUHUX
CUCTeMa Ca BEJIMYMHOM TUX CUCTeMa. /IMpeKTHa pelliela MeTOoJMMa er3akTHe JujaroHanvsalyje
XaMWITOHMjaHA Cy OrpaHMuYeHa Ha Majle cucTeMe [0 OKO 16 uBopoBa pemierke. To Huje
3a/|0Bo/baBajyhe 3a pa3marpama Ha HHUCKO] TeMIlepaTypd U y TPUCYCTBY Cpe/ilbe- WU [yro-
JOMETHUX Kopernaidja. Perierse ce 0O0MUHO Tpakl IOMOhy MeTozia 3acHOBaHMM Ha MonTe Kapsio
cymalju 6eckoHauHMX pefioBa KOju Cy AoOMjeHH HeKaKBUM pa3BojeM MapTULMOHe (YHKIUje WU



oricepBabnu o7, nHTepeca. OBakBe MeToZie MOTy OWTH jako MOhHe, any Ce M YeCTO Hawaa3u Ha
HerpeMOCTUB TipobsieM "depMuoHCKor 3Haka" (rpobreM OCLW/IATOPHUX —TOJWHTErpaTHux
¢ynkimja). Yak u Kaza ra je moryhe mpeBasuhu, npeocraje v mpo0sieM aHaIMTHYKOT TTPOYKema
KOje YHOCH HEeKOHTPOJIMCaHy CUCTEeMaTCKy TIpelLlKy Yy pe3yaTare 3a JuHaMuuke (Tj. (PpeKBEHTHO
3aBuUCHe) oricepBabie. [Tocneqmux JelieHja y TOKY je M3y3eTaH Hamop ¢u3nuapcke 3ajefHULe /a
ce ¢domymminy Meroau 6a3uvpaHu Ha Monrte Kapso cymainyjama Koju Cy M KOHTPOJMCAaHU U
3a06msia3e rpobiemMe 3HaKa M aHATUTHUKOT TIPOAY KeHha.

Pybmcoe Monme Kapno (CTINT), TRILEX u memo0 yeHexcOeHux Kiadacmepa

Jeman of HajycnienHujux MoHTe Kapsio nmpucTyma peliessy Moziena pelieTke je PyOTcoB anroputam
(CTINT). MeljyTum, Kao 1 Apyry CJMUHU alrOPUTMH, pelllere MoCTaje pauyHCKU HEM3BOJAWBO 3a
Be/IMKe pellleTKe, Ha HUCKO] TeMIlepaTypd, U y OACYCTBY uecCTulia-pyna cuMmerpuje. Mako je
OBaKBUM MpUCTYNIOM Moryhe TpeTvpaty Behe pelleTKe Hero er3akTHOM [iMjarOHa/iv3aliijoM, U
Jla/be 0CTajy NMpUCYTHU e(deKTH KOHAYHOCTU pellleTKe KOju Cy HeroKe/bHU. JejaH CHUCTeMaTCKu
TIPUCTYII je [ja Ceé KOHAuHa pelleTKa pellaBa y IPUCYCTBY HEKAKBOI CaMOycCarvialleHOr MezujyMa
KOjU YHOCH y cucTeM edekTe ocTaTtka OeckoHauHe peleTke (TIPUCTYT "ypOmeHOTr Kiacrepa',
quantum embedding, QE). CamoycarnanieHocT Me[djymMa Ce MO)Ke OCTBAapUTH Ha pa3IuuuTe
HauvHe, a Ha OCHOBY TOra pa3/MKyjeMo HeKoMuKo padnuuntux QE metoza (y Tom cmuciny, DMFT
ce MO)Xe cMaTpaTH HajjegHocTtaBHUjUM QE MeTozom).

Tokom mocTtaoKTOpCKOr YycaBpiiaBawa 2015-2017. roguue y rpynu ap OsmBujea [lapkonea,
KaHAWUJAT je pasnvo Ha pa3Bojy u umiuieMeHTtanju TRILEX mertoge 3a pemieme XabapzoBor
mozena. TRILEX wmetoma je mo ayxy camyHa DMFT mertogu, anu uje Kopak Jabe y
KOMITJIEKCHOCTH 00jeKTa KOju Ce almpOKCMMUpPA pauyyHOM Ha KOHayHO] pemieTkd. ok ce y DMFT
NPUCTYIlYy U HeroBUM [JUPEKTHUMM TIeHepaju3allijama arpoKCUMHupa COICTBEHa eHepruja
enektpoHa, y TRILEX mertozny ce ampokcuMupa upefyLMOWIHN efleKTPOH-0030H BepTekC, Tj.
()peKBeHTHO ¥ TMPOCTOPHO 3aBHCHA aMIUIMTYZla pacejalba eneKTpoHa O (IyKTyaluje TyCTHHe
HaesleKTpucama U crimHa. OBo omoryhaBsa fia ce 3ao6uije orpannuerse DMFT metoze u mweHUX
YOIILLITeRA Y KOjUMa je COICTBeHa-eHepruja Wiu JIoKajaHa Wiy KpaTKOJOMeHTa BeJIMurHa WK, NakK,
Be/IMYMHA AUCKOHTHHYyanHa y npocropy ummysca. Y TRILEX metoay, cOncTBeHa eHepruja Moxke
OUTH MPOU3BOJBHOT JOMEeTa, U KOHTHHYaJIHa je y pocTopy ummysica. OBo /os1a3u 10 LjeHH 1oTpebe
Jla YPOHmEeHH KjacTep CaJp)kK BPeMEeHCKH 3aBHCHe HHTepakuudje. 3a OBO je Ouao morpeOHO
yomutuT PyGTCOB anroputaM KOju ce KOPUCTH 3a pelliele YPOmkeHOT KiiacTepa.

Tokom 2015-2016. rof., KaHJUAAT je YOMINTHO jefHaudHe PyOTCOB anropuTMa Ha Cy4aj
BpeMEeHCKM 3aBUCHHX WHTepakijyja, (opMy/nucao HEeKOJMKO [OJJaTHUX YHaripeljerma Be3aHUX 3a
e(MKaCHOCT KajkKy/jaljdje W WMIUIEeMeHTUpao ojroBapajyhe wu3smeHe y mnocrtojehoj C++
umrieMenTanuju CTINT. ITporpamcku Ko Ha Kome je KaHauzgaT pazavo je aeo TRIQS 6ubunoreke
KOjU Ce U JlaHaC aKTMBHO KOPHCTH U I[UTHpa ce y AyroM Hu3y mybsukaiuyja. Og 2017. pag Ha ToM
Kozly je ripeyseo ap Husc Benuen ca Flatiron unctutyTa y Bbyjopky.

Kao miro je Beh momenyTo nog craBkoM 3.2., Kavauzgar je Tokom 2016-2017. pa3Buo U yoIIlTeHe
TRILEX metozsa y Ham0y mpoctopy 1miTo omoryhaBa TpeTMaH CYIPITIPOBOAHOCTH y XabapZioBom
Mozey.

Takolje y mepuogy 2016-2017. roguHe, KaHAWJAT je pa3BMO AYyro YeKaHO YOIIITeHme MeToZa
yriexaeHnx knacrepa (NCS). NCS je opurunHanHo ¢opmynucan jomr gaBHe 1995. roaune (A.
Schiller and K. Ingersent, Phys. Rev. Lett. 75, 113 (1995)) u nipBo je yomurerse DMFT meTtoga 3a
IBogouMeH3roHaiHe peletke. OcoBHa uzeja NCS je ma ce yMecTo jeJHO YpPOH-EHOT KJacTepa
pelllaBa BHIlle HUX CaMOycar/jaileHo, U Ja Ce COMCTBeHa-eHepruja PeKOHCTPYyHIlle JIMHeapHOM
KOMOMHAIMjOM BpeJHOCTH A00MjeHuX y THUM KjacTepMMa Tako /la Ce CBakKd JujarpaMm ypadyHa



TayHo jemqHoM. Ha Taj HaumH m3beraBajy ce mpobsemu apyrux yormretba DMFET koja ykbyuyjy
VI/IU BeLTAuKO C/laMawe TPaHC/IaTOpHe CUMeTpuje, UIU JUCKOHTUHYA/THOCT COIICTBEeHe eHepruje y
UMITy/ICHOM TpocTopy. OpUrMHaaHO, MeTo/ je GopMy/IMCaH caMo 3a KjlacTepe BeJIMYKMHe 2 YyBOpa, a
TIYHO YOIIITeHe Ha KJjacTepe MPOW3BO/bHe BesMuvHe W 006mvka Huje 6umo moryhe. ¥3 romoh
anroputamMa cumMbosMuke anrebpe, KaHAWAT je ycreo ga dopmynumre ommtd NCS mertop, 3a
K/lacTepe TIPOM3BOJbHE BesMurHe U o0siuka. MeTo/| je UMIJIeMEHTHPAo U TIOAPOOHO UCTeCTUPAo y
nopehewsy ca npeocranuMm QE meTtopuma. PesynraT oBe BesiMKe CUCTeMarcke CTyAuje Cy OTKPUIU
CYLUTUHCKO OrpaHuYelme MeToZa KOjU Ce 3aCHMBajy Ha anpokcuMauujama Jlatuniyep-Bopg
¢dyHKIMoHana crnobogHe eHepruje. OBaj Hemocratak NCS Teopuje ce WCTO/baBa y PEKUMY jaKUX
WHTepakiMja, U y CAMYHOM OONMKY je Taja TpBU TyT TpuMeheH W y JpyrdM MeTojuMa,
npBeHcTBeHO Metogy DCA+. OBo je MOTHBHCAJIO Jla/by paji, ¥ AoBeso jo mybnukanyje Phys. Rev.
B 101, 195114 (2020) rge cy notBplheHM Hana3ud pajia KaHAujara W TpejioykeHa oJroBapajyha
yHaripeljersa meTozie DCA+.

Pan kangupara Ha pasBojy CTINT u QE Meroma ce Moxe cMmarpatd Ba)KHMM IIOMakoOM Yy
METO/I0JIOTUjU U BaXKHOM OCHOBOM 3a /la/bl pa3B0j Y W3y3eTHO aKTHBHO] 00/1acTH, 1ITO NMOTBPhyjy U
LIUTaTH y CKopalllieM nperiefHoM pagy Rev. Mod. Phys. 90 025003 (2018).

[Ty6siukarvje KaHAuaTa U3 oBe JIMHUje paja Cy:

1. JakSa Vucicevi¢, Nils Wentzell, Michel Ferrero, Olivier Parcollet, "Practical consequences of
Luttinger-Ward functional multivaluedness for cluster DMFT methods"
Phys. Rev. B 97, 125141 (2018)

2. Thomas Ayral, Jaksa Vucicevi¢, Olivier Parcollet ,"The Fierz convergence criterion: a controlled
approach to strongly-interacting systems with small embedded clusters"
Phys. Rev. Lett. 119, 166401 (2017)

3. Jaksa Vucicevi¢, Thomas Ayral, Olivier Parcollet,"TRILEX and GW+EDMFT approach to d-
wave superconductivity in the Hubbard model"
Phys. Rev. B 96, 104504 (2017)

Hujaepamamcku Moume Kapio y domeHy peanHe ¢ppekgeHyuje

Hujarpamarcku MoHTe Kapsio Metoau Cy Kijaca ajaropurama y KojuMa Ce BpIIM IIpOpauvyyH
nojeguHauHMX PajHMaHOBUX [ijarpaMa y UHTePaKL[MOHOM pa3Boje Heke ¢u3nuke BennunHe. OBaj
MeTOZ, UMa TPeJHOCT J1a MOKe JUPEKTHO TPeTUpaTh TePMOAVHAMUYKHU JIMMUT, ajlv je OrpaHuYeH Ha
pe/laTUBHO HUCKe BPEJHOCTHM KOHCTaHTe WHTepakluje. Mmak, o CKOpa je TMOKa3aHO Ja Ce OBaj
MeTOZl MOXKe O/iroBapajyhe YOIIITUTU TakKO Jla OMOTYhU TIPUCTYM U PEXUMY jaudx UHTepakijdja u
Behy edukacHoct. OBO je foBesio 1a 0OHOB/LEHOT MHTEpPECOBama 3a JujarpaMaTcku Monte Kapro.
Meljytum, Kao ¥ y cBUM MeToauMa y Maiybapa ¢opManu3my, octaje TpobieM aHAJTUTHUKOT

TIPOJY>KeHba.

Op 2018. rog. kauaugar ce 6aBu opmynaiujoM aujarpamarckor Monte Kapra y oMeHy peanHe
dpekBeH1yje, mTo oMoryhasa Jja ce u3berHe rorpeba 3a aHaJIMTUUKUM MPOAYXemeM. MoryhHocT
Jla ce OBakBa pedopMysalija MOCTUTHE je Tperio3HaTa He3aBHUCHO W MPBOOMTHO objaB/beHa y
nyosukarmju rpyne ap Ilejmca Jlebnana (Bbydayngnena, Kanaga) 2018. rog. Y capagmu ca Jp
Muiien @epepom (College de France, Ilapu3), kaHAuzgaT je pa3BuO TPBY HMILJIEMEHTALU]jy
nujarpamarckor MoHte Kapna y momeHy peanHe (pekBeHlle, IIITO je BEPOBAaTHO TPBU TOTITYHO
KOHTDOJIMCAHU TMPOpauyH crieKTpaiHe GyHKiMje y Xabap0BoM MOfieNy y HETPUBHUjaIHOM PEXKUMY
rapameTapa u 6/1M3y TepMOIMHAMHUKOT JTAMUTA.



OcHoBa 3a OBaj paZi je ajaropuTaMm CcUMOONIMYKe anreOpe KOjU ers3akTHO pelllaBa BUILECTPYKe
WHTepHe cyMe 10 Maiybapa ¢pekBeHIMjaMa Koje (urypuiny y JONPUHOCHMA CBAaKOT
TNojeZiIMHAauHOr AujarpamMa. Pelllerba aHaIMTUYKOT Jle/la Cy 4eCTO U3pasy KOjUu Y MeMOpPHjU pauyHapa
3ay3uMajy uvTaBe Mera0ajTe, a HMXOBa HyMepHUKa eBasyaljfja MpeJcTaB/ba BEJIMKU H3a30B U
3axTeBa yroTrpely HM3a HampeAHUX a/JTOPUTAMCKUX U TIPOrpaMepCKUX TeXHUKa, Be3aHO 3a TAUHOCT
Y e()UKACHOCT.

Y nocneamux TOAVHY AaHa, KaHAU/AT je 0JaTHO YOIILTHO W YHAIpeAuro 0Baj MeTos, yroTpebom
paHyje Hero3HaTOr aHAJIMTUUKOI pelllelha BUILIECTPYKUX UHTerpasa 0 UMariHapHOM BpeMeHY
Koju ¢urypuiny y oarorapajyhe dopmynucanum dajHMaHOBUM [ujarpamMyMa (TyOnvKanuja je y
TIPUTIPEMM).

[Tybnukaivja KaHauAaTa U3 OBe JIMHUje pafa je:

1. JakSa Vucicevi¢, Michel Ferrero, "Real-frequency Diagrammatic Monte Carlo at Finite
Temperature"
Phys. Rev. B 101, 075113 (2020)

4. EJIEMEHTHU 3A KBAJIMTATUBHY OLIEHY HAYYHOI' JOITPUHOCA KAH/IUJAATA
4.1 KBa/muTeT Hay4yHHX pe3y/Tara
4.1.1 HayuyHu HMBO ¥ 3Hauaj pe3y/Tara, yTuijaj HAay4YHUX pafioBa

Ip Jakma ByuwueBuh je y cBoM jocajamimeM pany objaBuo 13 pagoBa y MeljyHapogaHum
yaconucumMa ca ISI nucre, og kojux 4 y kareropuju M21a, 8 y kareropuju M21, u 1 y kareropuju
M23. Y nepuogy HakoH o/iiyke HayuHor Beha o ripefiory 3a cTvijamke TPeTX0JHOT HayYHOT 3Bakha,
np Jakia Byunueruh je o6jaBuo 8 pajoBa y meljyHapogaumM yacornvicruMa ca ISI sucte of kojux 2 'y
Kareropuju M21a, 5 y kareropuju M21 u 1 y kareropuju M23. Kao ner Haj3HayajHUjUX pasioBa
KaH/AuJaTa Mory ce y3eTH (0poj iuTata Ha OCHOBY 0a3e Scopus):

1. J. Vucicevi¢ and M. Ferrero, "Real-frequency diagrammatic Monte Carlo at finite temperature",
Phys. Rev. B 101, 075113 (2020)
Iutupax 2 nyra

2. J. Vucicevi¢, J. Kokalj, R. Zitko, N. Wentzell, D. Tanaskovié, J. Mravlje, “Conductivity in the
Square Lattice Hubbard Model at High Temperatures: Importance of Vertex Corrections”,

Phys. Rev. Lett. 123, 036601 (2019)

LutupaH 5 nmyrta

3. J. Vucicevi¢, N. Wentzell, M. Ferrero, and O. Parcollet, "Practical consequences of the Luttinger-
Ward functional multivaluedness for cluster DMFT methods",

Phys. Rev. B 97, 125141 (2018)

Lurtupan 14 nyra

4. J. Vucicevi¢, D. Tanaskovi¢, M. J. Rozenberg, and V. Dobrosavljevi¢, "Bad-Metal Behavior
Reveals Mott Quantum Criticality in Doped Hubbard Models",

Phys. Rev. Lett. 114, 246402 (2015)

[utupan 35 nyta

5. H. Terletska, J. Vucicevi¢, D. Tanaskovi¢, and V. Dobrosavljevi¢, “Quantum Critical Transport



near the Mott Transition”,
Phys. Rev. Lett. 107, 026401 (2011)
[utupan 54 nyta

PamoBu 4. u 5. cy Oumm [jeo JOKTOpCKe AWcepTalyje KaHAauzara. Y paay 5. je yBesieH Tojam
KBaHTHE KPUTUUYHOCTM MOTOBOr Iipesia3a U YCIOCTaB/beHO KBAaHTHO KPUTUUHO CKa/lhpame
BpeJHOCTU OTIIOpa Ha BUCOKUM TeMmriparypama y okBupy DMFT Teopuje 3a mnosyrnonyweHu
XabapzpoB Mogen. Hanasu Teopuje Ccy NOTBpjeHM HakOH Tora y eKClepMMeHTHMa Ha Kara-
OpPraHCKMM CHCTEMHMMA, a KOHLIeNT KBAaHTHe KPUTWUYHOCTU MOTOBOr Ipesiasa je Ipey3eT M
VCNIUTUBAH Y HU3Yy TEOpHUjCKUX pa/ioBa, IITO MOTBphyje BHCOKa LMTUpaHOCT paja. Pax 4. je
YOTIIITeke Teopuje 13 pajia 5. Ha C/iyuaj JormupaHor XabapAoBor Mofiena, T7ie je MoKa3aHo C/arame
ca MepewmbMMa Ha YyBeHOM BUCOKOTeMIlepaTypHOM CyIeprpoBogHUKy LSCO.

Paz 3. je HanmcaH ToKoM OopaBKa KaHAMjara Ha MOCTJOKTOPCKOM ycaBpllaBawy y PpaHIyCKoj.
Teopuja mnpejcraB/beHa y TOM pajy je Bulle Of /JBe JeleHHje UYeKaHO YOIITeme MeToja
YTHEX/IeHUX K/1acTepa Ha KjlacTepe NMPOU3BOJBHOr 00/IMKa U Be/IMurHe. Y pajly je Npe/iCTaB/beHo 1
crcTemMarcko nopeljeme mocrojehux MeTtoza 3a periere XabapoBOr Mogfesa, MTO he KOPUCTUTU
Kao OCHOBAa 3a /Ja/bl Pa3sBOj TEOPUjCKUX arnpokcumanuja. Y pajy je OTKpDHUBEH HHXepeHTHU
Hepfoctatak JlyTuHilep-BopZ, ¢dyHKIMOHasia Kao OCHOBe 3a KOHTPOJIMCAHe aripoKcMMaljje ca
3a/l0BOJbEHMM 3aKOHMMa oOfprkawa, MaxoM kopuitheHe Beh 50 rozpuHa. KoHKpeTHO, IokKasaH je
HepocTaTak Teopuje DCA+, 1ITO je HAKHAaJHO MOTBPheHO, U IITO je 0BeJIO [0 HOBUX MpejJiora 3a
yHarpeljie Te Teopuje.

Y pany 2., yCTaHOB/bEHO je HyMepUUKH er3akTHO pelliee 3a MPoBOJHOCT XabapAoBor Mojena Ha
BUCOKUM Temreparypama. OBO je U3y3eTHO Ba)XKHO 3a UHTepIIpeTalidjy CKOpallber eKCIIepuMeHTa
Ha xJ1aflHAM atoMumMa y onTuukoj perietku (P. T. Brown et. al., Science 363, 379 (2019)). Takohe, y
paZly je Jar OArOBOP Ha BUILE/JELIeHUJCKO MUTawke BaKHOCTHU BePTeKC KOpeKliyja 3a MPOBOAHOCT
XabappoBor mozena y Ae gumensdje. Ouekyje ce na he merojonoruja u mozspobHa aHanusa
pe3y/TaTa Koje Cy TprKa3aHe y paZly UMaTi BakaH yTHLIaj Ha Oyzyha TeopHjcka UCTTUTHBambA.

Y pany 1., pa3BujeH je npsu gujarpamarcku MonTe Kapio metoz Ha 6a3u Maiybapa ¢gopmanusma,
KOjU He 3axTeBa aHA/JMTHUYKO IPOAYXKeHe U Jaje IMOTIYHO KOHTPOJIMCaH pe3y/aTar 3a CleKTpasHe
ocobuHe (1 MOTeHLMjaTHO /IpyTe AuHaMuuKe oricepBabsie). OBO je 3HauajaH METOZOJIOLIKH UCKOPaK
Koju ce ouekyje za he y 6yayhHoctu omoryhuty 6os/be pasymeBame CrieKTpasHUX 0COOMHa KyIipara,
Kao ¥ camor Xabaps Mofiena ¥ HeroBuxX eKCliepUMeHTalHUX peanu3alija y eKCliepuMeHTHMa Ca
XJ1a/IHUM aTOMHUMa Y ONTUYKOj PelleTKU.

4.1.2 TIo3uTUBHA LUTHUPAHOCT HAayYHHUX PajoBa KaHuAaTa

[MTogatu o UTHpamy paZioBa KaHauaaTa Ha gaH 16. 9. 2020. cy cymupaHu y HapeJHOj Tabesu:

baza nogaraka bpoj qurara bpoj 1jurara 6e3 h-index
camouurara
Scopus 190 172 8
Web of Science 181 164 8

PajioBu KaHAuziata Cy LUTHpaHW y dacomvcuMa Reviews of Modern Physics, Science, Nature
Physics, Nature Materials, Nature Photonics, Reports on Progress in Physics 1 MHOTUM JpyTHM.

4.1.3 ITapameTpu KBa/iMTeTa yacomnuca




[TporieHa KBa/MTeTa YacomMuca y KOjUMa je KaHAWAT 00jaB/bMBAO Ce MOXKe YUMHHUTH Ha OCHOBY
umnakT (akropa. MimmnakT daxkrtop (UD) ce Mewa 13 rofivHe y roIMHY Ta HU)Ke HABOAKUMO HajOo0sby
BPEJHOCT M3 MepHo/ia /10 Be TofiuHe yHa3as/ off Kaja je paj objaB/beH. [ToByueHUM ce 03HauyaBa
6poj pagoBa HaKoH o/TyKe HayuHor Beha o ripe/ijiory 3a CTHLIaHke TPeTXOAHOT HayuHOT 3Bamba.

1. 4 papa (2+2) y wacorucy Physical Review Letters (kareropuja M21a)
(AD: 1 pag 7.622, 1 pan 7.728, 1 pan 8.839, 1 pax 9.227)

2. 8 pagosa (5+3) y vaconucy Physical Review B (kareropuja M21)
(UD: 1 pag 3.774, 1 pax 3.767, 3 paga 3.736, 3 paga 3.836)

3. 1 pag (1+0) y uaconucy Modern Physics Letters B (kaTteropuja M23)
(Nd: 1.224)

YkynaH ¢akTop yTuiiaja pajioBa KaHauzara je 64,897, a y neproy HakoH ozasiyke HayuHor Beha o
TIpe/IJIOTy 3a CTHllake MPeTX0JHOT HayuHOoT 3Bama Taj akTop je 38.27.

Yaconuc Physical Review Letters je HapouMTO LieweH y 00/1acTh (U3MKe KOHZEH30BaHOT CTama
Marepuje, a HAjLUTUPAHU}H je YaCOIMUC y CBOj (PU3ULI.

HopatHr OUOIMOMETPHjCKU TIOKa3aTe/bW Y Be3W ca 00jaB/beHWM pafloBUMa KaHAWZATa HaKOH
opnyke Hayunor Beha o mpenjiory 3a CTUljame TMPETXOAHOT HAyYyHOT 3Bakba JIaTU Cy Y [I0H0j
tabenu. OHa caap>xu UMmakT (akrope (M1P) pagosa, M 6ozoBe pajjoBa 10 CPIICKOj KaTeropu3ariyju
HAYYHOMCTPaKMBAUKUX pe3y/iTara, Kao U UMIIAKT (haKTOp HOPMaIM30BaH 0 UMIIAKTy LUTHpajyher
yianka (CHUII) (kopuctMo Haj60/by BPEAHOCT W3 IMepHUofa /0 /IBe TOAWHe yHa3az of oOjaBe
paza). Y Tabenu cy Aare yKyIiHe BpeJHOCTH, KaO U BPEJHOCTH CBUX (haKTOpa yCpe[HeHUX I10
Opojy unaHaka ¥ 1o Opojy ayTopa 1o Y/IaHKY, 3a pajJijoBe 00jaB/beHe y KaTeropyjama

No M CHUIT

YkyrHo 38.27 63 11.49
YcpemeHo 10 ulaHKy 4.784 7.875 1.436
YcpegmweHo no aytopy 10.708 18.226 3.230

4.1.4 CteneH caMOCTA/THOCTH M CTelleH yuyeliha y peasiM3aiMju pajoBa y HQyYHUM LieHTpUMa
y 3eM/bH 1 HHOCTPAHCTBY

Kanaugar je Bogehu ayTop 7 pasoBa, Apyru aytop 4 paja, a Tpehu aytop 2 paza.

Ha pagoBuMa Koju cy o0jaB/beHH y IepHojy HakoH u30opa y TpeTXOHO 3Bame, KaHAWAAT je
Bogehu ayTop 4 pazga, Apyry ayTop 2, v Tpehu ayTop jefHOT paja.

Y mepuopy HaKOH /IOKTOpaTa, KAaHAWAAT je y CBUM MyO/IMKaldjaMa JOTPUHOCHO UMIT/IEMEHTALjOM
HYMEpPUUKMX MeTo[ja W/WIU MPOAYKLMjOM pe3y/iTaTra, a akTUBHO je yueCTBOBAO Ha (OpMynvcamy
Tema paZioBa, 0/jabupy MeTo 00T Hje, a YeCTO U MpeJBOAKNO UMIVIEMEeHTALWjy U aHaIu3y pe3ysrara
u nopeljewe ca ekcriepumeHTHMa. KaHIuzar je MMao BaKHY Yy/OTY y KOHLMIIMpawy U MHCamy
BehuHe mybMKaryja.

Hapouuto y ckopalliw0j JMHUjU paja Be3aHOj 3a gujarpaMmarcku Monrte Kapso, kaHauzar je
CaMOCTa/IHO OCMUC/IMO MeTOJ, U y TOTIIYHOCTU ra UMIUIEMEHTHPAao U UCTeCTUpao, CamMOCTalHO



TIPOJIYKOBAO pe3y/Tare U Harmucao myOsuKalyjy, 1ok je koaytop Murien depepo UMao caBeTOZaBHY
ynory. Kanauzar HacTas/ba [ja IIpeAjBOAU OBY JIMHUJY paja.

Y ckopuje BpeMe, KaHAWJAT NIpeBOAU TpU auHUje pasa y okBupy ITPOMMUC npojekra PoHja 3a
HayKy KOjer je pyKoBOJu/Iall, ca capagHuriuMa Muxaunom Yybposuhem, AHom Xyzmomarn, Berbkom
JankoBuhem u MBanom Bacuh. Kanaupgar Takohe mnpeaBogu capaamwy ca Pokom JKutkom ca
uHctutyTa Jo3ed Credan y Jbyb/baHM y KOjy je YK/bydeH W CTy[eHT Mmactep crygauja IlaBme
Cruncuh.

Y ToKy 6opaBKa Ha TIOCTZOKTOPCKOM ycaBpliaBawky y PpaHLlyCcKoj, HAPOUMUTO Ce UCTUUe JOTIPUHOC
KaHAuJaTa y pajy Ha MeTogu yrwexzieHux kiactepa (NCS). Kanaupar je camocTasHO OTKpPHO
CUMOO/IMUKY TeXHUKY KojuM ce Moxke yormuTtutd NCS, caMocTasHO UMITJIEMEHTHPao BeUKU Opoj
MeToZia KOje ce y TOM paj/ly KOPUCTe, ¥ CaMOCTaTHO UCTIPOAYKOBAo Hajehu /ieo pe3ynTaTa Koju Cy y
pany mnipykasaHu. Takolje, kKaHAWZAT je a0 LeHTPaJHU JOTPUHOC Y aHAMU3M J00UjeHrX pe3y/Tara
W pesyiTara W3 JMATepaType [OHEBIIM XUIIOTe3y O Be3W Heycrnexa IIOjeJUHUX TeopHja M
JVBepreHiyje UpeJyLIMOUTHOT BepTeKca U Mpe//IOKUBILY HAaUMH /la Ce Ta XUIoTe3a MPOBepH.

Y wuctom mepuoAy, KaHAWZAAT je TIPeABOAMO HCTPOKUBAHE BE3aHO 3a CYIeprpOBOJHOCT Y
Xabap0BoM Mozieny, ¥ Mpe/Ioykio Hajeehu Opoj rmpopadyHa U aHa/iv3a Koje Cy Y TOj MmyO/uKaruju
TIpUKa3aHe.

4.1.5 Harpape

Kangupar je gobutHuk CryneHTcKe Harpage MHctuTyTa 3a ¢usuky y beorpaay 2016. roauHe 3a
HajOO0JbY OKTOPCKY AMCEepTaIHjy ypaljeHy TOKOM IpeTX0jHe TouHe.

[MTpunor: usBemiTaj Komucyje 3a gogeny CryneHTcke Harpafe MHctutyTta 3a pusuky y Beorpany
2016. roa.

4.2 AHraxoBaHocT y (popmupamy HayuHUX KaJpoBa

Kangupar ap Jakia ByuuueBuh je of okrobpa 2019. menTtop Ilana Crurnicuha, cTygeHTa MacTep
cryavja Ha PusnukoM ¢akynrety YHuBep3utera y beorpany.

[Mpunor: u3BewTaj ca cesuutie HHB ®usnukor dakyntera

Tokom 2017-2019. kaHAKUJAT je oMarao y pagy fgokropasza Willem-Victor van Gerven Oei-ja mro
ce MOKe 3aK/byUWTU U W3 3axXBa/iHULIe y HeroBoMm pagy W. -V. van Gerven Oei, D. Tanaskovic, J.
Phys.: Condens. Matter 32 325601 (2020) u 3axBasiHULle Y HEIOBOj Te3U Koja je TPeHYTHO Ha yBUAY
jaBHOCTH.

[Tpusior: Hac/l0BHa CTpaHa M 3axBasiHuUL[a JoKTopcKe Te3e Willem-Victor van Gerven Oei-ja.
Kanguzar je ogpkao [Ba mpeJiaBawkba y OKBUPY IpegMmeTa MozepHa ¢usuka 3a cTyzaeHTe Tpehe
roJMHe OCHOBHHUX CTyAMja Ha PusnukoMm Qakyntety y beorpasy Ha TeMy HyMepUUyKuUX MeTOZa y

BHUIIIEUeCTUYHOj KBaHTHO] pusuiy, 2017 u 2019 rogune.

Kanpaugar je ofprkao jeqHo TipefiaBame Ha ceMuHapy ¢usuke y VcrpakuBaukoj cranuiu [letHula,
u 6o je meHTOp /1Ba nosa3Hrka (borgana IMonoeuha u borana Pajkoga).

4.3 Hopmupame 6poja KoayTOPCKHX PajioBa, MaTeHaTa U TEXHUYKHX pellerha



CBu pazioBU KaHAM/aTa CriaZiajy y KaTeropvjy y KaTeropuvjy pazoBsa ca HyMepUuukKuM CUMYyJiaLiijama
KOju ce TIpU3Hajy ca nyHuM 6pojem M 6o70Ba /10 meT KoayTopa.

bpoj M 6o/0Ba Koje je KaHAMJAT OCTBAapHO HAaKOH ofyke HayuHor Beha o mpejsiory 3a cTuijame
TIPeTXOZHOT HAay4HOT 3Bama je 63, a HAaKOH HOopMasu3aiije ca O6pojemM KoayTopa Taj Opoj rmocTtaje
59.04. Hopmupame He yThue 3HadajHO Ha Opoj 6070Ba, a KaHAWJAT CBakako MMa Behu 6poj 6omoBa
0/, 3aXTeBaHOT.

4.4 PykoBoljermse npojeKkTuma, NOTNPOjeKTHMA U NPOjeKTHUM 3a/jaljuMa

Op 2018. ron. kaHAUAAT PYKOBOAU IOTIPOjeKTOM “TpaHCIIOpPT Hae/leKTpUcCama, CyrneprpoBOLHOCT
Y JMHaMUKa pelleTKe y jako KopeJIMCaHUM MarepujajvuMa’ y OKBUPY LleHTpa u3y3eTHHUX BpeJHOCTU
3a M3yuaBame KOMILIEKCHUX cucTema VIHCcTuTyTa 3a pusuky y beorpagy. TpeHyTHO aHra)koBaHU Ha
notripojekty cy nap Japko TanackoBuh, ap Mwunom Papowuh, pgokrtopanz Willem-Victor van
Gerven Oei u cTyzneHT Mactep ctyauja [1aBne Ctuncuh.

[Tpunor: noTBpZa pyKOBOAMOLIA NTPOjeKTa O PyKOBOlewy MOTIIPOjeKTOM.

Kanaugar pyKOBOAM CpPIICKOM CTpaHOM OwaTepasiHOT TIpojeKTa ca pemnyonukoM Hemaukom
(DAAD) "EnekTpoHCKe Kopejailyje y OKCHAMMa ca TpaHC(hepoM HaeleKTpucamwa: (QyHKIUje
oZi3uBa U AiyrogoMeTHa ypehewa" 3a nepuog 2020-2021. roavHe.

[Tpusior: mucta ofoOpeHNx rpojeKara

Kanaugar pykoBogu ITPOMMUC mnpojektom PoHza 3a HayKy "XsmazgHu atomu, XabapioB Mozen U
xonorpaduja: K/byu 3a uyaHe metane" 3a nepuog 2020-2021. rog. Ha mpojekTy cy aHrakoBaHU
Muxauno Uybposuh, ViBana Bacvh u Ana Xyznomant.

I[Tpusior: email obaBerrermse 0 hrHAHCHPaY MPOjeKTa U JIMCTa 000peHNX MpojeKara.

4.5 AKTMBHOCT Y HQyYHMM M HAayYHO-CTPYYHUM APYLITBMMA

Kanpupar je peneHseHt y ciesehum HayuHuMm uaconucuma: Physical Review Letters, Physical
Review B, Physical Review E. Oz oktobpa 2017. ypaguo je 34 pelieH3uje.

[Ipuor: moTBpAa ypeAHUILITBA Yacomnuca

4.6 YTUIIajHOCT HAayYHHUX pe3y/TaTa

YTULIQjHOCT HAyYHUX pe3y/iTaTa KaHJu/aTa je HaBeJeHa y ofesbLrMa 3 v 4.1 oBor fokymeHTa. [1yH
CTIMCAaK pajioBa je aT y ofe/bKy 6, a Tofialy 0 [UTUPAHOCTU Ca MHTEPHEeT cTpaHuile 6a3ze Scopus

Cy [1daTHh HaKOH CITMCKa CBUX paZioBd KaHAWAdTad.

4.7 KoHKpeTaH JONPUHOC KaHJU/JaTa y pea/jiu3alMjH pajoBa y HAQyUHUM LieHTPUMa Yy 3eM/bHU U
HHOCTPAHCTBY

Kanauzar je 3HauajHO JOMPHUHEO CBAKOM pajy y UMjo]j IPUIIPpeMU je yueCTBOBAO.
Opn 8 pagoBa objaB/beHMX y TiepuoAy HakoH ofnyke Hayunor Beha MHctuTyTa 3a (DM3MKy O

NpeZIJIOTy 3a CTHLjalke IPeTXOAHOI HayuyHOr 3Bama, 7 je ypaljeHO y capajmu ca Kojerama U3
uHocTpaHcTBa (Ppaniycka, CAl, CnoBenuja, LipHa ['opa), a 4 cy ypahjeHa y capaZilbu ca Kojerama



u3 3emsbe. [Ip ByundeBuh je nMao K/byYHH [JOTIPUHOC Yy TTyO/IMKaljaMa Ha KOjuMa je TIpBH ayTop (4
paza) u Apyru aytop (3 paga).

Kanaugar je yBek yuecTBoBao y u3b0py Teme U MeTOZ0/IOTHje, UeCTO CaMOCTaTHO UMILJIEMEeHTHPAao
MeToJle M TPOAYKOBao pe3y/iTare, a /a0 je BUILE IyTa U LIEHTPaJHW JOMNPHUHOC y aHa/lIu3u M
VHTepripeTalyju pe3y/iTata Kao U mnopeljewmy ca ekcreprMeHTMMa W paZiloBUMa M3 JidTeparype.
YuecTBOBao je y nucamy CBake MmybivKaiyje v uecto OHO 3ay’KeH 3a KOHI[UIMPambe MaHyCKPHIITA.
HeTarpaH OMuMC AOTIPUHOCA 3a HEKe Off IojeAMHAYHUX MyO/MKal[yja je gaT y cekuuju 4.1.4.

4.8 YBoaHa npejaBama Ha KOH(epeHIjaMa U Apyra npejaBama

Y nepuozy HakoH ozyke HayuHor Beha o mpezijiory 3a cTvLjame MPeTXOAHOT 3Bama, KaHAu/aT je
OZIp’Kao 2 TpejaBara 110 M03KBYy Ha MeljyHapoaHUM KOoH(eHeHIjama.

1. "Introducing the LMDB project”, TRIQS meeting, 14-15. jyn 2018. rog., College de France,
[Tapu3, ®@paHLycka.

[Mpunor: pacriopes KoHbepeHLHje U CIUCAK yueCHUKa.

2. "Conductivity in the Hubbard model"”, C®OKM, 7-11. oktobap 2019. rof., Beorpag,.
[Mpunor: crimcak mpejiaBaua 110 MO3KWBY Ca UHTEPHET cajTa KoHdepeHIHje

Kanaugar je y ucrom nepuozy ofip>kao U 4 cemruHapa Ha IHCTUTYTY 3a QU3MKY:

1. "Beyond DMFT - capturing low temperature physics of the cuprates", 21. gerjem6ap 2016.
2. "C++ and Python - modern programming techniques", 28. ¢debpyap 2017.

3. "Monte Carlo methods for general lattice fermions", 3. mapt 2017.

4. "Lattice Model Database (LMDB)", 5. jyn 2018.

[p ByunueBuh je ofprkao u npesiaBawe Ha IlpupogHo-MarematnukoM ¢akyntery y Hosom Cagy y
okBupy pagHor cacradka CIIPYH 7.0:

"OnTuMH3aLja fujarpamaTcku MoHTte Kaprio MeTofie 3a pelliewme HHTeparyjyhux mozena pelieTke:
CUMOO/TMYKY alTOPUTMH U aPUTMeTHKA BUCOKe mpelu3HocTr", 26. merembap 2019.

5. EJIEMEHTU 3A KBAHTUTATUBHY OLEHY HAYYHOI' [JOIIPMHOCA
KAH/UJOATA

OCTBHPEHI/I pPe3y/1TdTH y He€puoAy HAKOH OJ/IyKe Haylmor Beha o npeajory 3a CTuldibe
MPEeTXOAHOI' HAYYHOTI 3Badibd:

Kareropuja M 6ogoBa 1o pagy| bBpoj pagoBa YkynHo M 6om0Ba | Hopmupanu 6poj
M GopoBa
M21a 10 2 20 18.333
M21 5 40 37.714
M23 1 3 3




ITopeljere ca MHUHMMa/JTHUM KBAaHTHUTAaTHBHHUM YC/JIOBHMa 3a W300p y 3Bame BHIIN HAayYHH
capajiHuK:

MunuManau 6poj M 6og0Ba OctBappeHo M 6ozi0Ba, | OcTBapeHo M 60710Ba,
0e3 HOpMHpama Ca HOPMHUPAKEM
YkyrHo 50 63 59.047
M10+M20+M31+M32+M33+M41+M42+M90 | 40 63 59.047
M11+M12+M21+M22+M23 30 63 59.047

[Tpema 6a3u mogaraka Scopus (Web of Science) Ha gan 16. cemrembpa 2020. roguHe, pajoBU
KaHgurata cy mutupaHu ykynHo 190 (181) myra, omHocHo 172(164) myrta He pauyHajyhu
camorurare. [Tpema o6e 6a3e, XupIIIOB UHAEKC KaHAUzATA je 8.

6. CIITMCAK PAJIOBA P JAKIITE BYUNUEBURA

6.1 PagoBu y meljynapoaaum uaconucuma u3y3eTHUX BpeaHoctH (M21a)

Padosu objas/beHu HAKOH npemxodHo2 u3bopd y 36arbe

1. "Conductivity in the square lattice Hubbard model at high temperatures: importance of vertex
corrections "
Aytopu: Jaksa Vucicevi¢, Jure Kokalj, Rok Zitko, Nils Wentzell, Darko Tanaskovic¢, Jernej Mravlje

Phys. Rev. Lett. 123, 036601 (2019)
(Hajoorsu UD 2017-2019: 9.227)

2. "The Fierz convergence criterion: a controlled approach to strongly-interacting systems with
small embedded clusters"
Aytopu: Thomas Ayral, Jaksa Vucicevi¢, Olivier Parcollet

Phys. Rev. Lett. 119, 166401 (2017)
(Haj6omu 1D 2015-2017: 8.839)

Paodosu objasbeHU npe npemxodHo2 u3bopd y 36drbe

1. "Bad-metal behavior reveals Mott quantum criticality in doped Hubbard models"
Ayropu: J. Vucicevi¢, D. Tanaskovi¢, M. Rozenberg, V. Dobrosavljevic¢

Phys. Rev. Lett. 114, 246402 (2015)
(naj6orsn P 2013-2015: 7.728)

2. "Quantum Critical Transport Near the Mott Transition "
Aytopu: H. Terletska, J. Vuc€ic€evi¢, D. Tanaskovi¢, V. Dobrosavljevi¢

Phys. Rev. Lett. 107, 026401 (2011)
(Hajbosu MU 2009-2011: 7.622)

6.2 PapoBu y BpxyHCcKuM MeljyHapoaaum yaconucuma (M21)

Paodosu objas/beHu HAKOH npemxo0Ho2 u3bopd y 368drbe




1. "Charge transport in the Hubbard model at high temperatures: triangular versus square lattice"
Aytopu: A. Vrani¢, J. Vucicevi¢, J. Kokalj, J. Skolimowski, R. Zitko, J. Mravlje, D. Tanaskovi¢

Phys. Rev. B 102, 115142 (2020)
(Haj6orsn D 2018-2019: 3.736)

2. "Real-frequency Diagrammatic Monte Carlo at Finite Temperature"
Aytopu: JakSa Vucicevi¢, Michel Ferrero

Phys. Rev. B 101, 075113 (2020)

(Hajoosu D 2018-2019: 3.736)

3. "Paired states at 5/2: PH Pfaffian and particle-hole symmetry breaking"
Aytopu: L. Antoni¢, J. Vucicevi¢, M. V. Milovanovi¢

Phys. Rev. B 98, 115107 (2018)
(Haj6orbn U 2016-2018: 3.836)

4. "Practical consequences of Luttinger-Ward functional multivaluedness for cluster DMFT
methods"

Ayropu: JakSa Vucicevi¢, Nils Wentzell, Michel Ferrero, Olivier Parcollet

Phys. Rev. B 97, 125141 (2018)

(Haj6oBM UD 2016-2018: 3.836)

5. "TRILEX and GW+EDMFT approach to d-wave superconductivity in the Hubbard model"
AyTtopu: Jaksa Vucicevi¢, Thomas Ayral, Olivier Parcollet

Phys. Rev. B 96, 104504 (2017)
(Haj6orsn U 2015-2017: 3.836)

Padosu objasmeHu npe npemxodHo2 u300pa y 38are

1. "Anderson localization effects near the Mott metal-insulator transition"
Aytopu: H. Braganca, M. C. O. Aguiar, J. Vucicevi¢, D. Tanaskovi¢, V. Dobrosavljevi¢

Phys. Rev. B 92, 125143 (2015)
(Haj6orsn U 2013-2015: 3.736)

2. "Finite temperature crossovers and the quantum Widom line near the Mott transition”
Aytopu: J. Vucicevi¢, H. Terletska, D. Tanaskovi¢, V. Dobrosavljevi¢

Phys. Rev. B 88, 075143 (2013)
(Hajoorsu D 2011-2013: 3.767)

3. "d-wave superconductivity on the honeycomb bilayer"
Aytopu: J. Vucicevi¢, M. O. Goerbig, M. V. Milovanovic

Phys. Rev. B 86, 214505 (2012)
(Hajoosu D 2010-2012: 3.774)

6.3 PapoBu y meljyHapoaaum yaconucuma (M23)

Padoesu objasmeHu HaAKOH npemxo0Ho2 u3bopda y 38arbe




1. "Pfaffian paired states for half-integer fractional quantum Hall effect"
Ayrtopu: M.V. Milovanovié¢, S. Djurdjevi¢, J. Vucicevi¢, L. Antonic¢
Modern Physics Letters B 34, 2030004 (2020)

(Hajoosu UD 2018-2020: 1.224)
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HHCTY
Peny6imka Cp6uja ATYT 3A ®U3BUKY

NMPUMILEHO: 1 E <PE. J04E
MHUHHCTAPCTBO IIPOCBETE, nmbeno: N -05- 2016

Paalen. | 6p 6] 1 Aprimd
HAVKE U TEXHOJIOIIKOT PA3BOJA shdea ] Spoi ] Apvwndpa [ Mowror

Kommncnja 3a cTuname HayYHHX 3Bamba Of07 —7705 /4
Bpoj:660-01-00011/534 -

30.03.2016. rogune
Bbeorpan

Ha ocHoBy unana 22. craBa 2. wiaHa 70. ctaB 5. 3aKoHa O HayYHOMCTPAXKHBAUYKO]
nenatHocty ("Cyx0enu riacHuk Penmy6muke Cpouje", 6poj 110/05 u 50/06 — ucnpaBka u 18/10),
ynana 50. ctaB 1. 3akoHa 0 U3MEHama U JIoMyHama 3aKOHa O Hay4YHOHCTPAa)KUBAUKOj HENATHOCTH
("Cnyx6enu rnacuuk PemyGnuke Cp6uje", 6poj 112/15) ynana 2. ctaBa 1. u 2. tauke 1 —
\4.(1'1pI/IIIO3I/I) u wiana 38. [lpaBuJIHMKA O MOCTYNKY M HAaYWHy BpEOHOBaka M KBAHTUTATHBHOM
MCKa3MBalky HAYYHOHMCTpPAXKMBAuyKUX pesynrara uctpaxuBaya ("CnyxOeHu riacHuk PemyOnuke
Cpbuje", 6poj 38/08) u 3axTeBa KOjH je MOJHEO

Hucuuiyw 3a ¢puzuxy y beozpady

Komucuja 3a cTrname HaydHUX 3Baba Ha ceqHUIM oapxkanoj 30.03.2016. roqune, noHena je

OJUIYKY
O CTUIIAILY HAYYHOT 3BAIbA

Ap Jaxwa Byuuuesuh

CTHYE HAy4YHO 3Bakbe
Hay4nu capaonux

y 061acTu IPUPOIHO-MAaTEeMaTHIKUX HayKa - PU3UKa

OF P A3J O X EBE
Huciauiuyw 3a ¢usuxy y beozpady

yTBpaKo je mpemior 6poj 1289/1 ox 22.09.2015. roqune Ha cenquuim Hayunor Beha MucTHTyTa
U nojHeo 3axTeB KoMmucHju 3a cTUlakbe HaydHUX 3Bama Opoj 1322/1 ox 01.10.2015. roxune 3a
JIOHOILEE OJTYKE O MCITyHEHOCTH YCIIOBA 3a CTHIIakhe HayqHOT 3Bawa Hay4nu capaonux.

Komucuja 3a cTHlame Hay4HHX 3Bama je MO NPETXOJHO NPHUOaB/BEHOM MO3UTHBHOM
MHUIIUBbEY MaTHuHOr HaydHor ondopa 3a (U3HKYy Ha cepHuum onpxanoj 30.03.2016. roaune
pasmarpaja 3aXTeB M YTBpJHJa Jla IMEHOBaHM HCITyHaBa ycjioBe u3 uiaHa 70. cTaB 5. 3akoHa o
HayyHoucTpaxuBaukoj genatHocT ("CnyxOenu rnacuuk Pemy6nuke CpOuje", 6poj 110/05 u
50/06 — ucnpaska u 18/10), unana 2. ctasa 1. u 2. Tauke 1 —4.(npuno3n) u unana 38. IlpasuiHuka
0 TMOCTYNKY W Ha4YuHy BpEIHOBalka M KBAHTUTATUBHOM MCKa3MBaky HAYYHOHMCTPAXKMBAYKMX
pesynrara uctpaxusaya ("Cmyx6enu rnacHuk Pemy6nuke CpOuje", 6poj 38/08) 3a cruname
Hay4HoT 3Bamha Hay4Hnu capaonuk, na je o[uTydnia Kao y U3peiy OBe OATyKe.

JIoHOIIEHEeM OBE OJUTYKe HMEHOBaHHM CTHYE CBa IpaBa KOja My Ha OCHOBY K€ I10 3aKOHY
NpUNaaajy.

OulyKy JOCTaBUTH TIOJHOCHOIy 3aXTeBa, HMEHOBAHOM M apXWBH MUHHCTapCTBa
IPOCBETE, HayKe M TEXHOJIOIIKOT pa3Boja y beorpany.

INPEACEJHUK KOMUCHUJE
Ap CranncinaBa Cromuh-I'pyjuauh,

HAY4YHH CABETHHK
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Hayunom Behy UncTuTyTa 32 hrsuxy

N3Bewraj :xupnja 3a noaeny I'onnmme Harpajge 3a Hay4YHHU paj v
Crynenrtcke Harpaae MHcTuTyTa 32 puzuky 3a 2016. ronmHy

I) l'ogumma Harpana 3a HayYHH paj

3a l'ognmmwy Harpagy 3a HaydHU paj MHCcTHTyTa 32 (hr3uky 3a 2016. ToAnHy NpeanoxkeHa cy
YETUPU KaHAMATA!

1. np bpanuncaas CasnoBuh, Hayynm caBeTHHK (mpeanmaraum: 1p bpanucnas
LBeTkoBuh, BumM Hay49HH capaaHuK, Ap bojan Huxonuh, Bumm HaydHu capagHuK, U
np Jbyouma JlaBunosuh, HayYHH capagHUK),

2. ap Mapuja Mutposuh JlankyJioB, Hay9HH capagHUK (Tpeanaradu: 1p AnekcaHmap
benuh, Hayuru caBeTHHK U 1p MunoBaH LllyBakoB, BUIIM HAYyIHH CapaTHUK),

3. np Baagumup CrojanoBuh, Bumm HayyHu capagnHuk (mpemiaraun: ap JKespka
Hukurosuh, Hayyau caBeTHHK u ap 3opaH Pacronmosuh, BuIn HaydyHU capajHUK), U

4. ap Maraganena BopheBuh, Bumm Hayunwm capagHuk (mpemnarau: Ap Jlnauja
’KuBkoBuh, HayYHU CaBETHUK).

Hakon netassHEe KBaqWUTaTHBHE M KBAaHTHUTATHBHE aHANN3€ HAYYHOT JOIPHHOCA KaHAWIATa
TOKOM MPETXOJHE IBE KaleHAapCKe TroauWHe, a mocebHo y3umajyhm y o03up KBamuTeT
00jaBJbeHNX PajoBa M HUXOB MMIIAKT Ha HAy4YHY O0JIaCT, OJHOCHO MHpPOOJIEMAaTHKY KOjOj
MIpUIIajajy, CTBapajladkyl yAeo KaHAWJaTa y OCTBAPEHHM pe3yiTathMma, yaeo MHctutyTa y
OCTBApEHHUM pe3yJITaTHMa, Kao 1 Opoj pazoBa M BUXOBE KaTeropuje y cmuciy lIpaBuianka o
MOCTYNKY ¥ HAYMHY BPEJHOBAMKA, M KBAHTUTATHBHOM HCKa3WBamby HAYYHOHCTPAXKHBAUYKHX
pe3ynTaTa MUHHCTapCTBA HAAJIEKHOT 32 HAYKY, KUPH je I0HEO jeJHOIJIACHY OJUIYKY Aa ce
TI'opnmma narpajaa 3a Hayynu pag Uncruryra 3a ¢pusuxy 3a 2016. roauny noaein

ap Marnaiaenu bBophesuh
3a 3Haqajan AOIIPUHOC padyMeBalby KBAPK-IJIYOHCKE IIJ1a3M€ U pa3130j MoaeJIa
JMHAMHMYKHUX T'YOUTaKa eHepruje.

O06paznoxeme:
CBH TpeUIOKEeHN KaHAWJATH MMajy MMIIPECHBAH HAyYHH OIyC M TOKOM IPETXOJHE JBE

KaJIeH/lapcKe ToguHe Cy 00jaBMIM HOBE M 3Ha4ajHE pe3yiTare y MelyHapoIHUM HAaydYHUM
YacoMMCHMa 1 TPEJCTaBUIIN X Ha MehyHapoHUM KoH(pepeHIHjama.



YHWUBEP3WUTET Y BEOTPALY

UHCTUTYT 3A OU3UKY IBEOTPAL,

Mperpesuua 118, 11080 3emyH - beorpaa, Cpbuja
Tenedon: +381 11 3713000, ®akc: +381 11 3162190, www.ipb.ac.rs
MAB: 100105980, MaTnuHm 6poj: 07018029, Tekyhu pauyH: 205-66984-23

Jp bpanucaas Ca3zgosuh je npoyuasao T-gyanu3aiujy 6030HCKE CTpyHE y paBHOM U Cj1abo
3aKpUBJEEHOM MPOCTOPY M pa3maTpao T-Tyanusaiujy kKao TpaHcopmaiujy cuMeTpuje y
OyniaupaHoM 1poctopy. IIpuMeHoM KaHOHCKE MeTOJe W3BEO je penamujy 3a
HEKOMYTaTHBHOCT KOOpJAMHATa 3aTBOpPEHE CTpPyHE Yy HAjONIITHjeM ciydajy ciaabo
3akpuBJbeHOr mpocTopa. I[lokazao je na ce T-gyanmsanmja MOXKe pENpPe3eHTOBATH Yy
IYTIINPAaHOM IIPOCTOPY Kao MepMyTalija ogpeeHnx moacKynoBa HHALUjATHAX U T-TyalTHuX
KoopAaMHaTa. Y CBOM HcTpaxuBamy aAp Ca3goBuh je 1a0 W KOMIJIETHY aHAJIN3Y
TpaHc(opMaIije UIATOHCKOT 1M0Jka, KOja 3aXTeBa KBAaHTHU TpeTMaH. TOKOM IMpPETXOIHE /Be
KajmeHpapcke rojauHe, ap bpanumcnaB Casposuh je o0jaBuo yKymHO 5 pajgoBa y
MelyHapomHuM gacornucuma kareropuje M21.

JAp Mapuja MutpoBuh /laHkyn10B ce 0aBmiIa IMpoydyaBameM pa3IHYUTHX KOJEKTUBHHUX
(eHOMEHA Yy COLMjalHUM M TEXHO-COIMjaIHUM CHCTEMHMa, Kao M pa3BojeM TeopHje
KoMIUTeKCHHX Mpexa. Ona je y Toky 2014. m 2015. rommne oOjaBuia 4eTupu paga y
MelyHaponHuUM dacomucuMa Kareropuje M21la (vacommcu koju cy npema D panrupanu y
cB0joj obmactu Hayka mehy npBux 10% gacomnuca). Y nutamy cy myOnukanuje y U3y3eTHUM
gacommmcuma Nature, Nature Communications u Scientific Reports. tben pan Growing time
lags threatens Nobel objaBmen je y wacommcy Nature 2014. ronmuHe W MPUBYKAO j€ BEIHKY
MaXmby CBETCKUX MeENWja, Kako oHuX mocBehenmx nHaymu (Phys.org, Scientific American),
Tako U OHUX Koju ce OaBe ommrtuMm TeMama (USA Today, SPIEGEL ONLINE, Business
Standard). O maxxmH KOjy je NMPHUBYKao paJ TOBOPH W WeroB Altmetric MHIEKC KOju Ta
cBpcTaBa y 5% umaHaka koju cy nmpuBYyKJIM HajBehy maxmy wkama. [Ip Mapuja Murposuh
JlaHKyJIOB je y CBOjUM pajoBMMa IO HPBH IyT OJPEIIa MHHHMAJaH CKYIl TOTOJIOIIKHX
ocobmHa Koje onpelyyjy CTpyKTypy peamHuxX KOMIUICKCHHX Mpexa U aeQuHucaia HadYmH
KBaHTH(UKAIlje HUXOBE pa3MKe OJ CIy4ajHHX Mpexa. Takohe je ymorpeduia merosne
CTaTHCTHYKe (DHU3WKE W TeopHje KOMIIEKCHUX MpeXa 3a IpoydaBame (peHOMEHa HacTaHKa
KOJIEKTHBHOT 3Hama y CONMjaTHUM 3ajeTHUIIaMA.

Jp Baagumup Crojanosuh ce 6aBno npoyuyaBameM TayHCEHIOBOT MPaXHEHa U CyTapHUM
IpoIecuMa Ha BHCOKOM OJHOCHMAa €HEpruje M TYCTHHE IUIa3Me, Kao M H3ydYaBameM
TpaHCIIOpTa y CMeIlaMa OCHOBHOI raca ca paJuKajJiMa, IpH 4YeMy je IMOCEOHY Maxmby
MIOCBETHO TNPOYYaBamy TPAHCIOPTHHX Koe(dHIMjeHaTa 3a pacejame eJNeKTPOHa Yy YIIbeHHK
teTpadayopuy y3 MNPHUCYCTBO pasnuuuTtux paaukana. [Ip CrojanoBuh ce ©6aBuo mu
MIPOy4YaBamkEM TPAHCHOPTHUX U OP3MHCKMX KOoe(pHIMjeHaTa jOHAa y HEYTPaIHOM racy KOju cy
0]l MHTEpeca 3a MOJETHPake HUCKOTEMIIEPaTyPHUX IUIa3MH y yIOTpeOn y MEANINHY, Kao U
MPOpPavyyHOM MpeceKka M TPAHCIOPTHHX MapaMeTrapa 3a IO3WTHBHE M HETaTHUBHE jOHE Yy
HUCKOTEMIIEpAaTypHHUM I1a3MaMa. TOKOM NMpeTxo/iHe ABe KaJeHaapcke roauue, 1p Bragumup
CrojanoBuh je o6jaBuo 9 pagosa y melyHapogHuM gacomucuma, o Tora 2 kareropuje M21,
2 xareropuje M22, 3 xareropuje M23 u 2 xareropuje M24.

Jp Marpanena Bopheuh ce 6aBmia npoy4aBameM KBapK-TIyOHCKE IIa3Me, HOBOT CTama
MaTepHje Koje HacTaje IpH BEJIWKHM T'YCTHHAMa €HEepruje M Koje ce yCIemHo (popMupa mpu
eKcIIiepuMeHTHMa ca cyaapumMa macuBHEX jesrapa y LIEPH-y (LHC exciepumenTtu ca Tedkum
jonmma) u Brookhaven National Laboratory (RHIC excnepument). p bophesuh je passumna
MOJeN JOUHAMHYKAX TyOWTaka eHepruje, KOju TMpeJcTaB/ba TPEHYTHO HajHANpeaHUjH
(dopmanr3zaM 3a MpoydaBame 0COOMHA KBapK-TJIyOH IUIa3Me, M IPUMEHMIIA I'a Ha IPOyYaBame
exkcriepuMenTanaux pesynrara ca LHC u RHIC. OBo je mo npBu myT omoryhuino nopeheme
IIMPOKOT OICEeTa eCIePUMEHTATTHIX M0jaTaKa ca TEOPHjCKUM TpeABrlambuMa Koja MOTHIY O]
jenHor Mozena, M CKyma rnapMmerapa (MKCHpaHHMX Ha CTaHJapJHe BPEIHOCTH U3 JIUTEpaType.
Ananmu3a nmomohy pa3BujeHOr (opmMann3Ma W HyMepHUKe Ipoleaype je omoryhwmna ma ap
Marnanena bophesuh pemn 3aronetky Temknx kBapkoBa y LHC-jy, mTo je o0jaBibeHO y
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gacomucy Physical Review Letters, Ha koMe je oHa jeguHu aytop. OBa 3aromerka y RHIC
eKCIIepUMEHTHMa MPeICTaBJba KIaCH4aH, 710 TajJa HepelleH podiieM, a OAHOCH Ce Ha CIINIHO
MOTHCKHBAKE MPOU3BOJH-E NMHOHA (JIAKMX YECTHIA) M €NEeKTPOHA KOjH HACTajy pacmaaoM
tTemkux dectuna. CnuyHa 3aroHerka ce jaBjba 1 'y LHC excnepumeHTHMa, 1 OJHOCH Ce Ha
MOTHCKHUBAKE TMPOM3BOAKE JAKMX XaApoHa M D Me3oHa (TEmIKMX XagpoHa), MpH YeMy
WHTYUTHBHO TyMademe yKadyje Ha HapymaBame QCD mpuHIuma y KBapK-TIyoH IUTa3MH. 3a
3aronetky y RHIC excniepumenty, np Hophesuh je mokaszana na je mocineanna KOMOMHANNje
edexara NMpOy3pOKOBAaHUX TyOWIMMa eHepruje, ¢parMeHTalnoOHMX (YHKIMja W pacmana
yecTHla y enekrpone. Y Physical Review Letters pany je hopMynncana U pelmnsia 3arOHeTKY
temkux kBapkoBa y LHC exciepumeHnTrMa, IIpH 4eMy je TOKas3aja Jia Cy eKCIIepHUMEHTATHU
pe3ynTaTH TOCHEaWIla joIl jeJHOCTaBHHje (EHOMEHOJIOTHje, Tj. IMPEKTHA IIOCIeauIa
HEO4YeKWBaHe KOMOMHamuje edexaTa MPOY3POKOBAaHMX TyOMIIMMa  €Hepruje |
¢parmenTrannonnx (QyHkuuja. HbeHum pesynTatm Cy mHoOKa3aind Ja Ce 3aroOHETKE TEIIKHX
KBapKOBa MOT'Y y MOTITYHOCTH 00jaCHUTH Y OKBUPY IEPTypOaTHBHE XPOMOJINHAMHUKE.

Jp Marnanena HBophesuh je Tokom npeTxoaHe ABe KaneHAapcke roauae odjasmaa 10 pagosa
y mehyHapogamM wacomucmma, onx Tora 6 karteropuje M2la, 1 xarteropmje M21 m 3
kareropuje M22. Onx Ttora cy 7 opurnHamHM HaydHu pagoBu (M2la m M21), a 3 cy
IperyieqHy pagoBu 1o no3uBy. Ona je y 2015. rogunan Onna u ¢puHanmucTa KoHKypca 3a ERC
(European Research Council) Starter rpanT, npu 4eMy je HEHO J0TAJallbe HCTPaKUBAE
OIIEHEHO HajBHUIINM OIIeHaMa o]l CTpaHe pedeprja U maHena.

3akbyyak:

Ha ocHOBy cBera HaBeneHOr, MakO Cy CBa YeTHPH KaHIWAATa Jaja 3Ha4ajHE HaydHe
JOTIPHUHOCE Y CBOM pajJy TOKOM MHpPETXOJHE ABE KaJeHJIapCKe ToJuHe, NCTHYyhH moceGHO
pamoBe ap Mapuje Murtposuh JlankymnoB oOjaBibeHe y wacomucuma Nature W Nature
Communications, cMaTpamMo Aa ce Hay4dHH pe3ynaTtatu Ap Marnanene Bophenh moceOHo
UCTUYY TI0 CBOM M3Y3€THOM KBAJIMTETYy W 3Hadajy, Aa JompuHOoce nosehamy melyHapomHor
yrnena MuctuTyTa 3a (m3mky, m nma 36or tora l'oammimy Harpagy 3a Hay4YHH paj
HHceTruTyTa 32 puzuky 3a 2016. ronuny Tpeda noaeautu Ap Maraanenu Bophesuh.

IT) CtynenTcka Harpaaa

3a Crygmentcky Harpamy Muctutyra 3a ¢usmky 3a 2016. roamHy NpennoxeHo je meT
KaHJuaaTa:

1. ap Anexcanaap MatkoBuh (npemnarau: ap Pagom I'ajuh, HayuHu caBeTHHK),

2. ap Toppana BykoBuh (mpemmaraua: np Mwupa Anwmumh VYpomesuh, HaydHuH
CapajHuK),

3. ap Jaxkma ByuwmueBuh (npemmarau: ap [lapko TanackoBumh, BHIIN HayIHH
CapajHuK),

4. nap Muaxka JakosmseBuh (npeqmarau: ap I'opan Mcuh, HayuHu capagHuk), u
5. np Mapuja Mapjanosuh (npennarau: ap Jbupana Cumuh, HayYHU CaBETHUK).
Hakon nmeraspHe aHanmm3e AOKTOPCKHMX Te3a M HAYYHHX JONPHUHOCA KaHIWAATa, a MOoceOHO

y3umajyhu y 003up KBamuTeT Te3a M 00jaBJbeHHX PaJoBa W HHUXOB MMIAKT HA HAYYHY
o0jacT, OJHOCHO TPOOIEMAaTHKy KOjOj TpPHIaAajy, CTBapajadykd YyAeOo KaHAWjgaTa Yy
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OCTBapEeHHUM pE3yiTaTnMa, yneo MHCTUTYyTa y OCTBapeHUM pe3yiTaTuMa, Kao U Opoj pamgosa
U BUXOBE Kareropuje y cmuciy llpaBuiHWKAa O MOCTYNKY W HAYWHY BpPEAHOBAWmA, H
KBAaHTUTATUBHOM HCKa3UMBalbhy HayYHOUCTPAXKMBAYKUX pe3yiaTaTa MUHUCTAPCTBA HAJIEKHOT
3a HayKy, *KMPH je T0HeO jeAHOrJacHy oMayKy na ce Ctynentcka Harpaga Uucruryra 3a
¢usuky 3a 2015. ronuny goaeaun

ap Jakumu Byunuyesuhy
3a IOKTOPCKY Te3y moJ Ha3uBoM “Signatures of Hidden Quantum Criticality in the High-
temperature Charge Transport Near the Mott Transition”.

O06paznoxeme:
Kupu xoHCcTaTyje Ja Cy TOKTOPCKE Te3€ CBUX NMPEATOKEHUX KaHIWAATa W3Y3€THO BHCOKOT

kBanuTeTa. CBU KaHOWAATH Cy OMIIM M3Y3€THHU CTYJE€HTH, a OCHOBHE, MacTep M JTOKTOPCKE
CTyIHje Cy 3aBpIIMJIM y CIMYHOM BPEMEHCKOM POKY, NpH 4deMmy ce uctude ap [opmana
BykoBuh koja je cryamje 3aBpmmnia y peKOpJHO KpaTkoM poky. CBU KaHAWIATH UMajy
3Ha4yajaH Opoj 00jaBJbEHMX pPagoBa y KBAJUTETHUM MelyHapoaHMM dacomucuma, a CBOje
pe3ynTaTe Cy NMpeacTaBuiIN Ha OpojHuM Mel)yHapogHuM 1 fomahuM KoH(epeHIjama.

Ap Aunexcangap MatkoBuh je DOKTOPCKY AWMCEpTaldjy MOJ HazuBoM I[nvestigating the
optical properties of graphene with spectroscopic ellipsometry ondpanno Ha DuU3MYIKOM
¢dakynrery YHuBepsutera y beorpany, mox pykoBoactBoM nap Pamomra I'ajuha. ¥ cBojoj
JUCepTaliju OH ce OaBHO MepemeM ONTHYKHX ocoOnHa TpadeHa y BHJJBUBOM H
yaTpasbyondacToM aeny crekrpa. OnTuuke ocobmHe rpadeHa cy M3MepeHe IpuMemyjyhu
TeXHHKe Hylnpajyhe u CIIeKTPOCKOIICKE EIUIICOMETPH]E.

Ap Iopnana BykoBuh je 1OKTOpPCKY nucepTanujy moa Ha3uBoM Biomonitoring of urban air
pollution (particulate matter, trace elements and polycyclic aromatic hydrocarbons) using
mosses Sphagnum girgensohnii Russow and Hypnum cupressiforme Hedw onOpanuna Ha
XeMmujckoMm ¢akynteTy YHuBep3uTera y beorpamy moa pykoBoAacTBOM 1Ip Mupe AHmuuh
VYpomesuh. Ibena guceprammja je oOyxBaTajga HCTpaKMBAamkEe AKTHMBHOT OMOMOHHMTOPWHTIA
0JIHOCHO MOTYhHOCTH KopHInhemha TPaHCIIIAHTUPAHUX MaXOBHHA Ka0 UHIUKATOPA KBATUTETa
Bazayxa. Hamme, TecTupana je pa3nmuuuTe nmapaMmerpe KOju yTHYy Ha MIPUMEHY OBE METOJAE Y
KOMIIJICKCHUM YCJIOBUMa I'PajJiCKe CpelluHe: BPCTa MaXxOBHHE, IPUIpeMa TPAHCIUIAHTA, BpeMe
€KCIIO3UII}je MaXOBHHA M BUCHHA EKCIIO3UIIH]jE HAJ| TIOJIJIOTOM.

JAp Jakma ByuuueBuh je nokTopcky aumcepTanmjy mox HasuBoM ‘‘Signatures of Hidden
Quantum Criticality in the High-temperature Charge Transport Near the Mott Transition”
onbpanno Ha PusmukoMm ¢akynarery YHmBep3uteta y beorpamy, mox pyKoBOACTBOM Ap
Hapka Tanackosuha. JlokTopcka nucepramnuja np Jakme ByunueBuha je y obmactu Teopujcke
¢u3nKe KOHACH30BaHE MaTepHje 1 0aBH ce MpoydyaBameM TPAHCIIOPTHUX OCOOMHA Y OIU3NHU
MotoBor MeTan-u30y1aTop Ipenasa U3 NepcrneKTUBe KBaHTHUX (a3HuX mpernasda. Ilokaszano je
Ja ce ocobmHe MOTOBOr MeTan-M30JIaTOp Mpesia3a y BHCOKO-TEMIIEPATYPHOM DPEXKUMY
n3Mely MeTana M M30JaTOpa TOKJamajy ca ocoOMHaMa KoOje MPOMCTHUYY W3 NPETIIOCTaBKe
MOCTOjarba KBAHTHE KPUTHYHE Tadke, yNpKoc (pa3HOM IMpera3y IPBOT pelda MW PETHOHY
KOET3WCTEHIMje MeTaJHE M H30JIaTOpcke (a3e KojuMa je KBAHTHA KPUTHYHA Tadka
3aMacKHpaHa.

Ap Munka JakoBbeBuh je IOKTOpCKy HAmMcepTamujy Ton Ha3suBoM [lpoyuasarve
RIA3MOHCKUX HAHOCMPYKMYpa Kopuwherbem cnekmpockoncke eauncomempuje onopaHmia Ha
Enextporexanukom dakynrety YHuBepsurera y beorpany, mox pykoBoacTBoM np Pamoma
l'ajuha um gmp T'opana Mcwha. Ona ce y cBojoj naucepranyju 0aBH TNPOYyYaBAKHEM
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JIOKaTM30BaHMX MOBPUIMHCKHUX IUIa3MOHA KOjU C€ jaBJbajy y MH(PAIPBEHOM CIEKTPY T3B.
MPEKHMHYTHX MPCTEHOBA, KOjU NpHUBJIade MaXmy 300T TOra ITO NMPEACTaBIbajy KOMIIAKTHE
ONTHYKE aHTEHE Ca U3pAKEHUM MarHeTHUM TUIIOJIHUM MOMEHTOM KOjH ce He cpehe y oa3uBy
XOMOTEHUX MaTepHjayia y OnMcKOoM HMH(QpaIpBEHOM CHEKTPY W BHUIIUM (DpeKBeHIHjama.
3HayajHa MaXXka y AUCEPTALUjH je mocBeheHa enMnncoMeTpHjCKOM IIpoydaBamy Tell Ia3MOH
MOJIAPUTOHA y METaJI-U30JIaTOP-METal CTpYKTypaMa Ha 0a3u 371aTa ¥ CHIIUIN]YM AHOKCHA.

Jp Mapuja MapjanoBuh je NOKTOpcKy aucepTanujy mojx HasuBoM Search for strongly
produced Supersymmetric particles with the ATLAS detector and interpretation in the
pMSSM model onbpannna Ha YHuBep3utery Paris-Saclay y ®@pannyckoj. OBa guceprarnmja
je ypahena mox 3ajemHuukuM pykoBoacTBoM dr Sophie Henrot-Versille (Orsay LAL) u np
Mapuje Bpamem Mwmtocasmesuh (MucTHTYT 32 Qu3uky, YHHBep3uteT y beorpany), a
peann3oBaHa je y OKBHPY CIOpa3yMa O 3ajeJHHYKOM pPYKOBOJCTBY HaJa JOKTOPCKHM
mucepranujama u3Mmel)y YHuBepsutera Paris-Saclay m YauBepsurera y beorpany. ¥ cBojoj
qucepranuju, aAp. Mapuja Mapjanosuh ce 0aBu TparameM 3a cynepcumerpudanM (SUSY)
YecTHIlaMa, YHje T0CTOojame je mpeaBrljeHo MIHNUMAaTHIM CyIepCUMETPUYHNM IPOIIHPEHEM
Cranmapaaor mogena. IIpoyudaBame (OHCKMX mpomeca ca XaJpOHCKHM pachaaoM Tay
JIETITOHA j€ HajBAXXHMjH JOMPHHOC JUCEPTAIllje Y OBOj aHAIH3H.

3akbyyak:

Nmajyhu y Buay pasHOIMKOCT MCTPAKMBAYKUX TeMa M 00JacTH, pa3sHOPOJHOCT AOMPHHOCA
KaHJU/aTa, Ka0 M KBAINTET JOKTOPCKUX Te3a M pajoBa NPOMCTEKINX U3 HHUX, OWUIO je
M3y3€THO TemKo omadparn noOuTHWKa oBoroaumme CTyneHTCKe Harpazge. Vmak, skupu ce
OIJy4YHO Aa Harpaay jaoaeau Ap Jakmu ByuuuyeBmhy, 300r 3Hawaja TIaBHOT HAyYHOT
pe3ynTaTa meroBe Teze. Teopujcka npeasuhama U3 HETOBE Te3€ Cy UCTPaKMBAa4dHM M3 JamaHa
HEJaBHO M EKCIIEPHMMEHTATHO MOTBPAWIN y paxy o0jaBibeHOM y yacomucy Nature Physics.
ITopen Tora, mocebHO kenUMO J1a HCTaKHEMO U Te3y Ap ['opmane Bykosuh kxoja je ypahena y
PEKOPIAHO KPaTKOM POKY, a IpeJCTaB/ba CUCTEMATHYaH M M3y3€THO 3HauajaH JOIPHHOC U3
o0jacTn OGMOMOHHUTOPUHTA KBAJIUTETA Ba3ayXa.

Ha kpajy OucmMo MOHOBO Keneiu Ja MCTaKHEMO Ja Cy CBE OBOTOJHINIE JOKTOPCKE Te3e
M3y3€THO BHCOKOT KBAJIWTETa W Ja TO BUIMUMO Kao BEJMKH yCIIeX NMPeIIoXKEeHNX KaHAWIaTa,
BUXOBUX MeHTopa u MHctuTyTa 3a (Qusuky. lloce6HO ckpehemo maxmy na cy CBH
KaHJM/IaTH HAaCTaBHMJIM BEOMa YCIEIIHO ca pPajoM M HaKOH 0J10paHe CBOjUX JOKTOPCKHUX Te€3a,
u 1a cy y MehyBpeMeHy 00jaBHiin HOBE U 3HaYajHE pe3yJTare.

Hanmamo ce jom jadoj m OpojHHjOj KOHKypeHIHju cienche romvHe W CBUM KaHIWJATUMAa
YECTUTAMO Ha W3BPCHUM HAYYHHUM pPE3yITaTHMa, a JOOUTHUIIMMA HAa OCBOJEHHM Harpaaama.

Beorpan, 25. anpun 2016. roa.
Ip AutyH banax

HAy4YHH CaBETHUK, IHCTUTYT 3a GU3NKY

1np Henan Bykmuposuh
BUIIIM HAyYHU capaaHuk, MHCTHTYT 3a husuky

ap Cama [lyjko
HAy4YHH CaBETHUK, IHCTUTYT 3a GU3NKY
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hisEsINTET ¥ SrormanY |
MHUTHTYT 3A D3y FEOTPAL,

ANHOT

YEWRY CREUMIY

[TIOTBPJA O PYKOBOBEWY ITOTIIPOJEKTOM

Osum notephyjem 1a Haydnu capamuuk ap Jakma Byunuesnh, 3a xora ce nokpehe u36op y
3BaibC BUIIM Hay4HH CapajHuK, y okBupy Jlabopartopuje 3a npuveny pauymapa y Hayum
HauwonanHor mneHTpa u3y3eTHHX BpemHOCTH 3a H3y4yaBamke KOMILIEKCHHX CHCTEMA
WrcrutyTa 3a Gusuxy y Beorpany, pyxkoBomu nOTNpOjexToM: ,, TpaHCHOpT HaereKkTpHcama,
CYNEPNPOBOHOCT M JHHAMMKA pEIIETKE Y jako KOpeIMCaHMM MaTepujaamma’. Ha
IIOMEHYTOM TIOTIPOJEKTY Cy aHTaXKOBAaHH Cleaehu HCTPaKUBAYH: np Jakma Byuwuesuh, ap
Mustom Panomuh, 1p Japko Tanackosuh n Willem-Victor van Gerven Oei.

ocow

ap AHTYH Banax
Hay4HU CaBETHUK

PyxoBomunan I{eHTpa 3a n3yuapame KOMILIEKCHHAX
cucrema MucturyTa 3a ¢usuxy y Beorpany
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Postovani dr Vucicevic,
Personal

Obavestavamo Vas da je predlog projekta koji ste podneli u okviru ovog javnog poziva Programa
za izvrsne projekte mladih istraZivaca (u daljem tekstu: PROMIS) odobren za finansiranje.

Programski odbor za evaluaciju projekata, u skladu sa ¢lanom 26. stav 3. Akta o ciljevima, nacinu
realizacije i uslovima finansiranja projekata u okviru Programa za izvrsne projekte mladih
istraZzivaca, je formirao rang listu predloga projekata koji su zadovoljili oba stepena evaluacije i
koji ¢e biti finansirani u okviru raspoloZivih sredstava PROMIS-a. Nauc¢ni savet Fonda za nauku je
dao pozitivno misljenje na tu listu, a Upravni odbor je usvojio kao konacnu listu Projekata kojima
se odobrava finansiranje sredstvima Fonda za nauku Republike Srbije u okviru ovog javnog poziva
programa PROMIS.

U prilogu Vam dostavljamo rezultat evaluacije Vaseg Projekta.

Konacnu listu Projekata odobrenih za finansiranje u okviru PROMIS-a moZete pogledati na sajtu
Fonda za nauku Republike Srbije na slede¢em linku: PROMIS- konacna rang lista projekata
odobrenih za finansiranje

U narednom koraku ¢emo Vas kontaktirati radi pripreme i potpisivanja ugovora o finansiranju
projekta.

Svecanost povodom dodele projekata ¢e biti organizovana dana 11.03.2020. godine u 11:00
¢asova u Narodnom pozoristu, o ¢emu Cete biti dodatno obavesteni u narednom mailu.

Cestitamo Vama i projektnom timu na odobrenom projektu i radujemo se buduéoj saradniji!

S postovanjem,

Fond za nauku Republike Srbije

Masarikova 5, Beograd

Message 2 of 20
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. & . . Rukovodilac Naucno-istraZivacka .
Akronim Sifra Naziv projekta . . Budzet Rezultat
projekta (PI) organizacija (NIO)
BIOMARKERS OF NEUROACTIVE COMPOUNDS IN THE AQUATIC prirod tematitki fakultet. Univerzitet
BIANCO 6061817 |ENVIRONMENT: INTEGRATION INTO ADVERSE OUTCOME PATHWAY Sonja Kaigarevic N'['}:/‘;:;";Z ematicidTakultet, Univerzitet u € 110,571.39 85.67
FRAMEWORK
BiolTGenoSelect 6066512 A BIOINFORMATICS APPROACH TO DAIRY CATTLE BREEDING USING Ljuba Strbac Poljoprivredni fakultet, Univerzitet u Novom € 169,763.96 38.62
GENOMIC SELECTION Sadu
BioSolAfla 6064541 BIOPROCESS SOLUTION FOR THE PRODUCTION OF BIOCONTROL AGENT Jovana Grahovac Tehnoloski fakultet Novi Sad, Univerzitet u € 170,000.00 85.19
AGAINST AFLATOXIGENIC ASPERGILLUS SPECIES Novom Sadu
BOWIE 6060916 |BLOWING IN THE WIND Marko Stalevski Astronomska opservatorija € 168,225.62 86.33
BREATHE 6039613 REAL-TIME DETECTION AND QUANTIFICATION OF BIOAEROSOLS Branko Sikoparija !nstltut B!oSens - Istraz!yaclfo-razvojnl institut za € 171,064.50 92.19
RELEVANT FOR HUMAN AND PLANT HEALTH informacione tehnologije biosistema
CASCH-MOF 6066708 |CARBON CAPTURE BY SELF-DRYING SCHIFF BASE MOFS Marko Rodié m:/‘;‘i’}";’a'gztemamk' fakultet, Univerzitet u € 193,601.44 86.24
COMPUTATIONAL DESIGN OF HIGH ENERGETIC MATERIALS: CASE OF
CD-HEM 6066886 Dusan Veljkovi¢ Hemijski fakultet, Univerzitet u Beogradu €  46,859.94 85.24
CHELATE COMPLEXES
Prirodno-matematicki fakultet, Univerzitet
cLouDs 6062228 |CLASSIFICATION OF LARGE OBJECTS - ULTRAFILTERS AND DIRECTED SETS  |Boria Kuzeljevi¢ N'[')::;r:‘;a'gz ematicid Takultet, Univerzitet u € 61,484.08 86.81
CryoPlum 6062279 | CONSERVATION AND PLUM POX VIRUS ERADICATION FROM SERBIAN Darko Jevremovié Institut za vocarstvo Cacak € 10506527 85.19
AUTOCHTHONOUS PLUM GENOTYPES USING CRYOTECHNIQUES
Aleksandra Buha . . .
DecodExpo 6066532 [DECODING THE ROLE OF EXPOSOME IN ENDOCRINE HEALTH Pordevi¢ Farmaceutski fakultet, Univerzitet u Beogradu € 186,522.28 88.10
VI
Naugni institut hrambene tehnologije,
DEStiny 6060592 |NATURAL DEEP EUTECTIC SOLVENTS FOR GREEN AGRI-FOOD SOLUTIONS  |Aleksandra Misan aucni Institut za prehrambene tehnologlje € 163,604.35 85.04
Univerzitet u Novom Sadu
COMMON PHTHALATE DEHP AND WOMEN'S REPRODUCTIVE HEALTHRISK | o prirod tematicki fakultet. Depart
DETOX 6062573 |ASSESSMENT: MECHANISTIC AND CHRONIC LOW-DOSE EXPOSURE ristina Fogrmic rirodno-matematicid fakultet, Departmanza | ¢ 149 451 58 87.90
Majki¢ biologiju i ekologiju, Univerzitet u Novom Sadu
STUDIES.
EFFECTS OF DIABETES MELLITUS ON OSTEOCYTIC, NEURAL AND VASCULAR
DiaBoNet 6064549 |NETWORKS IN BONE: IMPLICATIONS FOR INCREASED FRACTURE Petar Milovanovic Medicinski fakultet, Univerzitet u Beogradu € 199,171.79 86.57
SUSCEPTIBILITY AT THE PROXIMAL FEMUR
DYNAMICS RESILIENCE AS A MEASURE FOR RISK ASSESSMENT OF THE
DyRes_System 6062556 |COMPLEX WATER, INFRASTRUCTURE AND ECOLOGICAL SYSTEMS: MAKING | Milan Stojkovié Institut za vodoprivredu Jaroslav Cerni € 199,532.93 86.17
A CONTEXT.
FEMALE LEADERSHIP IN MUSIC: A CROSS-GENRE RESEARCH OF WOMEN’S Fakultet muzitke umetnosti. Univerzitet
FLIM 6066876 |ROLES, AGENCY AND COLLABORATIVE MUSIC-MAKING PRACTICES IN Iva Neni¢ A ’ € 86419.47 86.14
umetnosti u Beogradu
SERBIA
MECHANICAL IMPEDANCE ESTIMATION AND PLANNING FOR THE NEXT
ForNextCobot 6062528 Kosta Jovanovié Elektrotehnicki fakultet, Univerzitet u Beogradu | € 155,215.45 87.07
GENERATION COLLABORATIVE ROBOTS
Institut za hemiju, tehnologiju i metalurgiju,
Gramulsen 6057070 |GRAPHENE-BASED WEARABLE MULTIPARAMETER SENSOR Marko Spasenovi¢ Institut od nacionalnog znacaja, Univerzitet u € 171,357.63 85.34
Beogradu
HEMOGLOBIN-BASED SPECTROSCOPY AND NONLINEAR IMAGING OF Institut za fiziku u B du, Univerzitet
HEMMAGINERO 6066079 Aleksandar Krmpot | -1t 28 Tiziku u Beogrady, Univerzitet u € 199,285.55 86.67
ERYTHROCYTES AND THEIR MEMBRANES AS EMERGING DIAGNOSTIC TOOL Beogradu
HIGH-CAPACITY ELECTRODES FOR AQUEOUS RECHARGEABLE Fakultet za fizicku hemiiu, Univerzitet u
HiSuperBat 6062667 |MULTIVALENT-ION BATTERIES AND SUPERCAPACITORS: NEXT STEP Milica Vujkovi¢ Beograd i € 180,689.98 85.67
TOWARDS A HYBRID MODEL gracu
HUMANE 6061921 HYDROXYUREA-MEDIATED ACTIVATION OF NITRIC OXIDE SYNTHASE IN Milica Toti¢ Institut za medicinska istraZivanja, Univerzitet u € 116041.26 85.14

ERYTHROID PROGENITORS

Beogradu
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HYBRID BRAIN COMPUTER INTERFACE FOR CONTROL OF SENSORY-MOTOR
HYBIS 6066223 j Savi¢ icki iverzi € 119,559.72 89.16
COUPLING IN POST- STROKE REHABILITATION Andrej Savi¢ Elektrotehnicki fakultet, Univerzitet u Beogradu
Mirjam Vujadinovi¢
IAPS 6062629 |INTEGRATED AGRO-METEOROLOGICAL PREDICTION SYSTEM M'ﬂ':;'[’; Ujadinovic 1 o ioprivredni fakultet, Univerzitet u Beogradu | € 180,503.78 87.83
iDUCOMBSENS 6066816 [AN INTEGRATED DUAL-COMB GAS SENSOR Marko Krsti¢ Elektrotehnicki fakultet, Univerzitet u Beogradu | € 149,173.86 85.00
IN-DEPTH 6059147 AN EVOLUTIONARY INSIGHT INTO MOLECULAR DIVERSITY OF EMERGING Irena Arandjelovi¢ InstltAuAt za Tnlkroblologlj.u i |rr1unologuu, € 189,867.80 85.19
PATHOGENS IN SERBIA THROUGH PHYLOGENETIC APPROACH Medicinski fakultet, Univerzitet u Beogradu
INTRAMAMMARY ETHNO-VETERINARY FORMULATION IN PREVENTION polionrivredni fakultet. Univerzitet u N
InfoBomat 6066966 | AND TREATMENT OF BOVINE MASTITIS FOR OPTIMIZATION OF Zorana Kovatevi¢ S;Jspnvre i fakultet, Univerzitet u Rovom € 88807.21 87.29
ANTIMICROBIAL TREATMENT
Key25M 6066160 COLD ATOMS, HUBBARD MODEL AND HOLOGRAPHY: KEY TO STRANGE Jakéa Vuicevic Institut za fiziku u Beogradu, Univerzitet u € 199,827.18 87.47
METALS Beogradu
MECHANISTIC INSIGHT INTO THE ANTI-INFLAMMATORY AND Institut ekl dikui itk
LABLUNG 6066974 | ANTIOXIDATIVE EFFECTS OF LACTIC ACID BACTERIA IN IN VITRO MODELS | Marija Stankovic institut za molekufarnu genetiku i geneticko € 147,524.84 85.00
inZenjerstvo, Univerzitet u Beogradu
OF CHRONIC LUNG DISEASES
LEAPSyn-SCI 6039663 LATE EMBRYOGENESIS ABUNDANT PROTEINS: STRUCTURAL Marija Vidovié InsFltut vza multidisciplinarna istraZivanja, € 178,110.44 85.33
CHARACTERISATION AND INTERACTION WITH A-SYNUCLEIN Univerzitet u Beogradu
Makipol 6066089 MATHEMATICAL METHODS IN THE KINETIC THEORY OF POLYATOMIC GAS Milana Eoli¢ Prirodno-matematicki fakultet, Univerzitet u € 52537.96 85.00
MIXTURES: MODELLING, ANALYSIS AND COMPUTATION Novom Sadu
FROM BRAIN WAVES TO MEMORY BOOST: MEMORY ENHANCEMENT BY Institut dicinska istragivania, Univerzitet
nstitut za medicinska Istrazivanja, Univerzitet u
MEMORYST 6058808 |PERSONALIZED FREQUENCY-MODULATED NONINVASIVE BRAIN Jovana Bjeki¢ Beogradu ! € 168,490.00 89.90
STIMULATION 8
IDENTIFICATION OF CNV-MIRNAS AS GENETIC DRIVERS AND RISK FACTORS Vina Institut " re. Institut od
MiFaDriCa 6066923 |FOR CONGENITAL ANOMALIES OF THE KIDNEY AND URINARY TRACT Ivan Jovanovic inca institut za nukdearne nauke, institut o € 196,566.95 85.10
nacionalnog znacaja, Univerzitet u Beogradu
(CAKUT)
MORTAR DESIGN FOR CONSERVATION - DANUBE ROMAN FRONTIER 2000
MoDeC02000 6067004 Emilija Nikoli¢ Arheoloski institut Beograd € 199,657.08 87.84
YEARS AFTER
DEVELOPMENT OF CLIMATE SMART FORESTRY (CSF) CONCEPT IN THE
MYCOCLIMART 6066613 REPUBLIC OF SERBIA THROUGH MYCORRHIZAL MODULATION OF Marko Kebert InsFltut .za nizijsko Sumarstvo i Zivotnu sredinu, € 194419.63 87.81
POLYAMINE METABOLISM IN PEDUNCULATE OAK (QUERCUS ROBUR L.) Univerzitet u Novom Sadu
TREES
NOVEL IMMUNOTHERAPEUTIC APPROACHES FOR AUTOIMMUNE Institut . " -
nstitut za primenu nukiearne energlje,
Nano-MDSC-Thera 6062673 |DISEASES BASED ON MYELOID DERIVED SUPPRESSOR CELLS INDUCED BY | Sergej Tomi¢ titutza p &l € 199,727.74 86.62
Univerzitet u Beogradu
NANOMATERIALS
PHANTER 6066764 BACTERIOPHAGES AND ANTIBIOTICS INTERACTIONS — A MISSING LINK petar Knesevic Prirodno-matematicki fakultet, Univerzitet u € 198794.62 86.38
TOWARD PHAGE THERAPEUTIC APPLICATION Novom Sadu
Fakultet za fizicku hemiju, Uni itet
PHYCAT 6062285 |PROTEIN HYDROGEL FOR CANCER THERANOSTICS Ana Popovic-Bijelié¢ Baeou :d za fizicku hemiju, Univerzitet u € 134,759.68 87.14
gradu
TOWARDS A “GREEN” AND SUSTAINABLE POLYMER INDUSTRY: FULLY Fakultet tehnickih nauka u Cacku, Univerzitet
POLYGREEN 6062612 Pavle Spasojevié akuftet tehnickih nauka u tacku, Univerzitetu | ¢ 169 706.55 87.47
BIOBASED UNSATURATED POLYESTER RESINS Kragujeveu
PRECAST 6060755 PREDICTION OF CANCER TREATMENT EFFECTIVENESS WITH STIMULI- Nikola Knesevié !nstltut Bfosens - Istran‘\./ack.o-razvojnl institut za € 199,999.77 85.10
RESPONSIVE NANOMATERIALS informacione tehnologije biosistema
PROMISING NATURAL ALTERNATIVES FOR THE CULTURAL HERITAGE
PROTECTA 6066210 Nikola Unkovi¢ Bioloski fakultet, Univerzitet u Beogradu € 140,329.97 85.62
SAFEGUARD: A FORCE OF NATURE
UTILITY OF PLASMA DRUG LEVEL MONITORING AND CYP2C19/CYP2D6
PsyCise 6066800 |GENOTYPING IN DOSE PERSONALIZATION OF ANTIDEPRESSANTS AND Marin Juki¢ Farmaceutski fakultet, Univerzitet u Beogradu | € 199,872.88 88.71

ANTIPSYCHOTICS
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PV-Waals 6062710 NANOMETER THIN PHOTOVOLTAICS BASED ON PLASMONICALLY Goran Isi¢ Institut za fiziku u Beogradu, Univerzitet u € 200,000.00 88.33
ENHANCED VAN DER WAALS HETEROSTRUCTURES Beogradu
RACOLNS 6062361 [REGIONAL ABSOLUTE CHRONOLOGY OF THE LATE NEOLITHIC IN SERBIA Miroslav Mari¢ Balkanoloski Institut SANU € 164,470.03 85.00
RatioCAT 6062244 RATIONAL DESIGN OF MULTIFUNCTIONAL ELECTRODE INTERFACES FOR Igor Pasti Fakultet za fizicku hemiju, Univerzitet u € 9488610 91.33
EFFICIENT ELECTROCATALYTIC HYDROGEN PRODUCTION Beogradu
THE POLITICS OF REPRESENTATION: PERFORMANCES AND DEMOCRATIC
RECLAIM 6062225 & iticki i i € 94,960.66 88.67
LEGITIMACY OF REPRESENTATIVE CLAIMS IN SERBIA Jelena Loncar Fakultet politickih nauka, Univerzitet u Beogradu
REPANCAN 6056979 [DRUG REPURPOSING IN PANCREATIC DUCTAL ADENOCARCINOMA Jelena Grahovac Institut za onkologiju i radiologiju Srbije € 194,075.79 85.71
ReTRA 6062634 REVIVING TRADITIONAL BREADMAKING PROCESSES THROUGH Miroslav Hadnadev Naucni institut Za. prehrambene tehnologije u € 175399.30 91.29
INNOVATIVE APPROACHES Novom Sadu, Univerzitet u Novom Sadu
RIBIDF 6066818 |RESEARCH AND DEVELOPMENT OF IONIC BIO FLUIDS Sinisa Biki¢ :Z‘:net tehnickih nauka, UniverzitetuNovom | ¢ gq 37 75 85.83
THE ENIGMATIC ROLE OF EPSTEIN-BARR VIRUS INFECTION IN
RHEUMATOID ARTHRITIS AND SYSTEMIC LUPUS ERYTHEMATOSUS: WHICH
ROLERS 6060866 Ana Banko Medicinski fakultet, Univerzitet u Beogradu € 131,051.15 89.10
VIRAL MARKER COULD SUGGEST TRIGGERING OF AUTOIMMUNE
DISEASES?
SENSOGENE 6052315 [CANCER BIOSENSORS BASED ON GENE REGULATORY ELEMENTS Aleksandra Nikoli¢ | mStitut 22 molekularu genetiku  geneticko € 113,697.39 85.43
inZenjerstvo, Univerzitet u Beogradu
Institut za bioloska istrazivanja "Sinisa
HONEY BEES OF SERBIA, WILD VS. MANAGED COLONIES THROUGH THE o, ., . . .
SERBHIWE 6066205 Slobodan Davidovi¢ Stankovic¢", Institut od nacionalnog znadaja za € 111,679.17 85.38
EYES OF POPULATION GENETICISTS " - . "
Republiku Srbiju, Univerzitet u Beogradu
THE SERBIAN RIGHT-WING PARTIES AND INTELLECTUALS IN THE KINGDOM
SerbRightWing 6062708 Dragan Baki¢ Balkanolo3ki institut SANU € 93,566.35 85.24
OF YUGOSLAVIA, 1934-1941
A TOOLKIT FOR RISK ASSESSMENT INTEGRATION IN MODELING A
STOLKit 6060914 [MANAGEMENT STRATEGY FOR STOLBUR PHYTOPLASMA ASSOCIATED Milana Mitrovi¢ Institut za zastitu bilja i Zivotnu sredinu €  25,261.66 85.00
DISEASES IN SUSTAINABLE AGRICULTURE
StrainedFeSC 6062656 [STRAIN EFFECTS IN IRON CHALCOGENIDE SUPERCONDUCTORS Nenad Lazarevi¢ :::'gt:’:;j fiziku u Beogradu, Univerzitet u € 199,789.40 85.00
CONTROLLABLE DESIGN OF EFFICIENT ENZYME@MOF COMPOSITES FOR
SYMBIOSIS 6066997 @ Tamara Todorovi¢ Hemijski fakultet, Univerzitet u Beogradu € 129,524.02 85.04
BIOCATALYSIS
TRACKING SYSTEMIC THERAPY RESISTANCE OF LUNG AND COLORECTAL
TRACEPIGEN 6060876 |CANCER THROUGH TARGETED NGS ANALYSIS OF GENETIC AND Miljana Tanic Institut za onkologiju i radiologiju Srbije € 199,986.22 90.04
EPIGENETIC VARIANTS IN LIQUID BIOPSIES
UNDERSTANDING QUERCUS ROBUR L. VITALITY LOSS USING STABLE
CARBON ISOTOPES RATIO (A13C), DROUGHT AND REMOTELY SENSED Institut izijsko § tvo i Zivot dinu,
TreeVita 6066697 (8130), Dejan Stojanovié nstitut za nizijsko sumarstvo i Zivotnu sredint, | ¢ 14 666 87 89.96
INDICES AND DEVELOPMENT OF STRATEGIES FOR ADAPTATION TO Univerzitet u Novom Sadu
CHANGING CLIMATE CONDITIONS
DEVELOPMENT OF NO-BASED APPROACHES FOR GUIDED WHITE ADIPOSE Institut za bioloska istraZivanja "Sinisa
WARMED 6066747 |TISSUE BROWNING. CAN WE TACKLE METABOLIC DISEASES BY HEATING Aleksandra Jankovi¢  |Stankovi¢", Institut od nacionalnog znacaja za € 159,512.67 85.14
UP/COOLING DOWN THE FAT? Republiku Srbiju, Univerzitet u Beogradu
Prirodno-matematicki fakultet, Departman za
WASTE WATER TREATMENT REINFORCEMENT— ADVANCED PROCESSES
WasteWaterForce 6066881 Djurdja Kerkez hemiju, biohemiju i zastitu Zivotne sredine, € 165,254.49 84.96
USING GREEN AND COST-EFFECTIVE MATERIALS . .
Univerzitet u Novom Sadu
YUGOSLAVIA’S COMPARATIVE HISTORICALEXPERIENCE WITH THE POLICIES
YEH 6062589 Srdan Mici¢ Institut za noviju istoriju Srbije € 66,924.24 87.16

OF ALLIANCE-MAKING AND NEUTRALITY/NONALIGNMENT
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Hp Jenena 3AI'OPALL, Research Scientist ZnO/ZnS

Vesna SROT XETEPOCTPYKTYPE, O

Hay4YHH CaBETHUK Teopl/lje bi (o)
eKCTICpUMEHTA

WncrutyT 3a HykineapHe Max Planc Institute for Solid

Hayke ,,Bunua®, state Research, Stuttgart Zn0/ZnS
heterostructures from

Y beorpazn theory to the experiment

Hp bojan AYAVYK, Prof. Dr. Michael KUBE Judepenuujanuja u

HAay4YHU CaABCTHUK

I/IHCTI/ITYT 3a NeCTUIHIAC U

3alITUTY KUBOTHC

University of Hohenheim

yHopeaHa MOoJIeKyJIapHa
aHanu3a GpUTOIIazMH U3
maprapene y Cpouju u
Hemauxkoj

Differentiation and
Comparative Molecular

cpenuHe, Analyses of
Phytoplasmas infecting

Y beorpaz Carrots in Serbia and
Germany

Hp Janujena Prof. Dr. Evamarie HEY- CaBpeMeHH TPUCTYTT

MAKCHUMOBHWh HAWKINS TepaIHji MeIaHOMa

0a3upaH Ha MTHXUOUIIN]H




MNBAHUMR, [UKJIOKCUT'€HAa3€e

Hay4YHU CaBETHHUK o o An Advanced Option for
University of Leipzig Melanoma Treatment by

HucturyT 3a 6uosnomika Targeting

UCTpaKuBamwa ,,CHHHIIA Cyclooxygenase 2

CrankoBuh®,

Y Bbeorpan

Hp Ana I[TPOTU'h Prof. Dr. Urlike XeMOMEeTpHjCKU

dapmarieyTcku GaKyiTeT,
Y beorpan

HOLZGRABE

University of Wiirzburg

MIPHUCTYT UCTIUTUBEY
onrosopa Corona
Charged Aerosol
JETEeKTOpa y
(hapmarieyTCKoj aHAIH3U

Chemometrically
supported study of
Charged Aerosol
Detector

Jp Haramma CAMAPIITh

DakynATeT TEXHUIKUX
HayKa,

VY Hosu Can

Full Professor Ronald
TETZLAFF

Technical University of
Dresden

Mewmpucropu: ox
(dabpukanuje 10 qu3ajHa
HHTCIPUCAHUX KOJIa

Memristors: from
fabrication to IC design

Hp Bnanucnas
BOJIAPEBWhH

@akyJITeT MEAULIUHCKUX
HayKa,

V¥ Kparyjesar

PhD Marietta HERMANN

University of Wiirzburg

Vnora IL-33/ST2
CUTHAJIHOT IIyTa y
3apacramy KOCTH]Y

The role of IL-33/ST2
pathway in bone healing

Jp Mupocnas COKH'R,

Dr.- Ing. Habil Srecko
STOPIC

Pa3Boj HampenHe
TEXHOJIOTHje 32




HAay4YHU CABCTHUK

pELUKIIaXy IITaMIIaHUX
71048 y OKBUDPY

WNuctuTyT 32 TexHOoNorujy | RWTH Aachen University KOHIIITA LIUPKYJIAPHE
HyKJICapHUX U JPYTUX eKOHOMHje
MHHEPAJTHUX CHPOBUHA,

Advanced recycling

¥ beorpazn technologies of end of
life products (EOL)
within the

8. | Hp Urop ITOIIOB, PhD Gianaurelio KonTtponucana
CUNIBERTI Moaudukamja

BULIA HAy"HI CAPaLHUK €JIEKTPOHCKHX 0COOMHA
TaHKUX (UIMOBA
JIMXAJIKOT€HUAA

HncruryT 3a Technical University of TIpeIasHuX MCTal1a 3a

MYJITUANCIUATUIMHAPHA Dresden IpPUMEHE Y COJIApHUM

UCTpaKUBamba, henujama —

YVBeorpan KOM6I/THOBaHI/I
TEOPH]jCKO-
eKCTIEPUMEHTAIIHU
MIPUCTYTI
Engineering of TMDCs
for solar cells

9. | IOp Panka CTAHKOBUR | Dr. Jelena MITROVIC Mebyjeznuxo
NpEeno3HaBamke roBOpa
Pynapcko-reosomku University of Passau MpIKEbE
daxynrer,
Cross-Lingual Hate
¥ beorpan Speach Detection
10. | Ip Mapuja MUPKOBUWTR, | Senior. Sc. Sanjay buokomyrosane

Hay4HH CapaHUK

MATHUR

MarHeTHe HaHOYECTUlle
JM3ajHUpaHE 3a




WNHcTuTyT 32 HyKIIeapHe
HayKke ,,Bunua®,

VY Bbeorpan

University of Kdln

MYJITUMOJAJIHY Teparnujy
KaHIepa

Bioconjugated Magnetic
Nanoparticles Designed
for Multimodal Cancer

11. | Ap Annemarie SORESCU | PhD Aleksandra Je3nuku nejzax
— MAPUHKOBUA, SAMUROVIC KyITypHE 0671aCTH
banara: qujaxpoHa u
BHIIH HAYHHH CAPAZHHUK CUHXPOHA MIEPCIIEKTHBA
Bbankanonomxku HUHCTUTYT University of Jena Liguis tic Lan dscape o f
CAHY the Cultural Region
Banat in Diachrony and
Sinchrony perspective
12. | IIpod. dp Cuexana Privatdozent Dominique WNuoBatuBHE
CABUR LUNTER HaHo(opMyIaluje 3a
o o UCIIOPYKY JICKOBA Y
dapmaneyrcku paxynrer, | University of Tiibingen MO3AK/KOKY
Y beorpan
Innovative
nanoformulations for
brain/skin delivery
13. | Ip Anexcannap Postdoctoral beamline OcnukaBame u
KPMIIOT, scientist Rui PAN BPEMEHCKH Pa3lokKeHa
CIIEKTPOCKOTIH]a y
BUIIIM HAYYHU CapaTHUK TepaxepIHO;, GIHCKO]
WucTtutyT 3a pusuky, DESY Hamburg HHpALPBEHOj
BUJHHUBO] 00JIaCTH 32
VY beorpan Oynyhe GMOMeIUIMHCKE
pUMEHE
Imaging and time
resolved spectroscopy of
hemoglobin and red
blood cells
14. | IIpod. op XKapko Prof. Dr. Manfred ZEHN buomenunuHacko
hOJBAIINR, UHXEHEPCTBO

MarmuHcku QaxkynTerT,

TU Berlin

3aCHOBAHO Ha BCH_ITa‘IKOj
HUHTCIIUT eHI.IPIjI/I n




Y Humr

HAIpEJHO] METOIH
KOHAYHUX eJieMeHaTa
(Next Level BME)

Artificial intelligence
and Advanced FEM
Based Biomedical Eng.

15. | Ip Harama BYPUIIINR | Dr. Alberto BEZAMA [Ipomena ytuiaja
MJIAJIEHOBU'h PEruonamuunx
o BUoexkoHOMCKHX
TexHounomku gaxkynrer, UFY Leipzig
CUCTEeMa Ha )KUBOTHY
V Hosu Can CpEMHY U JAPYLITBO
(PEBUC)
Assessing environmental
and social impacts of
Regional Bioeconomy
16. | Ap Carmpa BOJHOBUR, | PhD Tobias GULDER Ontumu3anmja
CTPYKTYpE CEeKYHIapHHUX
BUIIIM HAYYHHU CapaJHUK MerafomuTa paH
VIHCTUTYT 32 MOTEKYTAPHY | Technical University of nobobLIaa HIXOBE
TEHETHKY ¥ T€HETUYKO Dresden anTHQyrane
WHXXEHEPCTBO, aKTUBHOCTH
Y Beorpan Development of efficient
antifungals based on
microbial secondary
17. | Ap Karapuna Dr. Nicolae BARSAN I"acHu cen3opu Ha 6a3u
BOJCABJBLEBIA, HaHOCTPYKTYPHUX

BUIIN HAYYHHU CapaJHUK

MOy TIPOBOTHUX METaJ-
OKCH/JIa 32 MEITUITMHCKY
JINJaTHOCTHUKY ITyTeM




dHaJIN3C Jaxa

WHcTuryT 32 University of Tiibingen
MYJITUAUCIUTUIMHAPHA
HCTPAXHBAI:A, Nanostructured
semiconducting metal-
VY Bbeorpan oxides as gas sensors for
medical diagnostics by
breath analysis
18. | Ip Munuma ITOJUR, Dr. Oliver SCHLUTER [ToTenmujan xmagHe
IJ1a3Me y HaKJIM]jaBamy
HayHHH CaBeTHHK CEeMEHa UHIYCTPH]jCKe
Hayunu MHCTUTYT 3a ATRB Potsdam KOHOM/BE
npexpamOeHe
TEXHOJIOTH]E,
Non-thermal plasma
¥ Hosn Can potential in the hemp
seed sprouting
19. | p Mapxko Univ.-Prof. Dr. Rer. Nat. Tanku punmMoBH
CITACEHOBMURA, Georg DUESBERG IUIaTUHA —OUCeJICHUIa
Ka0 FacHU CEH30PH
BUIIIM HAy4YHU CapaTHUK
Hayunu uncturyt 3a UB w Munich
XEMU]y TEXHOJIOTH]Y U Thin films of liquid
MeTayprujy, phase exfoliated TMDs
¥ Beorpax for gas sensing
20. | dp Marnanena Prot. Dr.-Ing. habil buoxomnatuOuinnu

CTEBAHOBUH,
Hay4HH CABETHUK

WMHCTUTYT TEXHUUYKUX
Hayka CAHY

Aldo R. BOCCACCINI

University of Erlangen

TepaneyTUIM Ha 0a3u
ckadoiga OMOaKTHBHOT
CTaKJIa ¥ TOJIMMEPHHUX
YyecTula 3a
pereHepanujy TKuBa u




henujcky Tepamnujy

Biocompatible
engineered therapeutics
based on bioactive glass
scaffolds

21. | IIpod. np Jenena Prof. Dr. Agnes GORLACH | Viora peakTHBHHX
HBOPBHEBU'Hh KHUCEOHUYKHUX BPCTa y
) XHAIOTaJIaMHUYKO)]
Buonomku ¢akynrer, TU Munich .
KOHTPOJIM T'0ja3HOCTH
¥ beorpan Role of reactive oxygen
species in the
hypothalamic control of
obesity
22. | Op Ypou JIAUBEBALL, Ph.D. Patrick SCHMUKI Ti02 nanoTyOynapHu
HU30BH JICKOPHCAHU
BHUIIIM HAY4YHH CapaJHHUK University of Erlangen HAHOYECTHI[AMA METATA
WHCTHTYT 32 TUTATUHCKE TPyTIe 32
MYJITHJIHCIHTUTHHADHA NPUMEHY y eIEKTPOITH3H
MCTpakuBarba, beorpan Ti02 nanotube arrays
decorated with platinum
group metal
nanoparticles for electro
catalysis applications
23. | dp Anexcanapa Dr.rer.nat. Dubravka Jletekuja 6uomapkepa
JAHKOBUR, VUCICEVIC paka JIojke KOJ KeHa y
MIPEeMEHOMIAY3H — YTHUIIA]
BUIIIMA HAYYHHU CapaJHUK .
r0ja3HOCTH
WNucTuTyT 32 6HONOIIKA MDC Berlin

UCTpaXkuBama ,,CHHHIIA
CrankoBuh®,

Detection of breast
cancer biomarkers in




Y beorpan

premenopausal women

24. | Ilpod. np 'opnana PhD Urich KORTZ ITepoxco-
hMPTh MAPJAHOBW'h MTOJIMOKCOMETAJIATH:
CHHTE3a, CTPYKTypa H
q)aKy:TITeT 3a (PU3HUKY JU Bremen Pamas cTymmja
XeMujy,
Y beorpan
Peroxo-
Polyoxometalates:
Synthesis, Structure and
Raman Study
25. | Ap Jakma BYUMREBUR, | Dr. Philipp HANSMANN Enexrtponcke

Hay4YHHU CapaJHUK
Wucturyt 3a ¢pusuky,

VY beorpan

Max Planc Institute for
Chemical Physics of Solids,
Dresden

KOpenaiuje y OKCUAuMa
ca TpaHchepom
HaeJIeKTpUCamba:
¢byHK1HM]e 03UBa U
JyTOJIOMETHA ofipeherma

Electronic correlations
in charge transfer oxides




AMERICAN PHYSICAL SOCIETY

S EDITORIAL OFFICE
1 Research Road * Ridge, NY 11961« http://journals.aps.org/

P h YSi CS (631) 591-4000

Physical Review Letterse«Physical Review«Reviews of Modern Physicse Phy_sTc‘s

Michael Thoennessen
Editor in Chief

September 17, 2020

Dr. Jaksa Vucicevic
Institut za Fiziku Beograd
Univerzitet u Beogradu
Pregrevica 118

11080 Zemun

SERBIA

Dear Dr. Vucicevic,

This is to confirm that you have served as a referee for Physical Review B, Physical Review E and
Physical Review Letters, journals of the American Physical Society, since October 2017. Our files
indicate that you have so far provided us with 34 reviews.

Our journals are leading international journals in basic physics research. Physics researchers
around the world submit roughly 40,000 manuscripts to us annually. To evaluate these
submissions, we rely on the advice of expert reviewers such as yourself, whose expertise has been
established by, for example, a strong record of publication in the field and the frequent citation of
their work in various research journals. Referees are asked to assess the correctness, importance,
interest, and clarity of presentation of manuscripts in their fields of physics or related sciences.
The editors rely on this advice in making decisions about whether to publish manuscripts, reject
them, or request changes in them. You and our other experts provide such advice as a service to
the scientific community that, eventually, contributes to the intellectual and economic prosperity
of the country. The enclosed Advice for Referees gives an idea of what we request of reviewers.

We hope that this information is helpful to you and that we will be able to count on your advice
and assistance in the future.

Yours sincerely,

Michael Thoennessen
Enclosures
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Venue

We can meet on Thursday morning, at 9:30, at the Condensed Matter Chair of College
de France, 11 Place Marcelin Berthelot, 75231 Paris. For those of you who know the place,
you can just walk in. For those who haven’t been at Collége before, there is a welcome
desk on the right after the main entrance. You can ask them to give me or our secretary
(Frangoise Salagnac) a call and we will come to get you. If there is a problem, call me on
my cell phone : +33 6 87 79 77 11.

Participants

— Olivier Parcollet, CCQ, Flatiron Institute, New York, USA
— Antoine Georges, CCQ), Flatiron Institute, New York, USA
— Hugo Strand, CCQ, Flatiron Institute, New York, USA

— Manuel Zingl, CCQ, Flatiron Institute, New York, USA
— Minjae Kim, Collége de France, Paris, France

— Thomas Schaefer, College de France, Paris, France

— Alice Moutenet, Collége de France, Paris, France

— Giacomo Mazza, Collége de France, Paris, France

— Leonid Pourovskii, Ecole Polytechnique, Palaiseau, France
— Michel Ferrero, Ecole Polytechnique, Palaiseau, France

— Nils Wentzell, CEA Saclay, France

— Marco Schiro, CEA Saclay, France

— Francesco Peronaci, CEA Saclay, France

— Markus Aichhorn, TU Graz, Austria

— Robert Triebl, TU Graz, Austria

— Daniel Bauernfeind, TU Graz, Austria

— Jaksa Vucicevic, University of Belgrade, Serbia

— Jernej Mravlje, Jozef Stefan Institute, Ljubljana, Slovenia
— Thomas Ayral, Atos Quantum Lab, Les Clayes-sous-Bois, France
— Pablo Cornaglia, Centro Atémico Bariloche, Argentina

— Cedric Weber, King’s College, London, UK

— Evgeny Plekhanov, King’s College, London, UK

— Francois Jamet, King’s College, London, UK

— Philipp Hansmann, Max Planck Stuttgart, Germany

— Daniel Mantadakis, Max Planck Stuttgart, Germany

— Xiaodong Cao, Max Planck Stuttgart, Germany

— Marcel Klett, Max Planck Stuttgart, Germany

— Michael Schmid, Max Planck Stuttgart, Germany
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Invited Speakers at National Symposium on
Condensed Matter Physics

® Marco Aprili, PS-CNRS Université Paris-Sud, France
m Stefano Baroni, Scuola Internazionale Superiore di Studi
Avanzati, Italy Latest news

®m Wolfgang Belzig, University of Konstanz, Germany
Conference photo

October 8, 2019

Please join us at
Wednesday at 13.30h in
front of the SASA building
for conference photo.

® Emil BozZin, Brookhaven National Laboratory, USA

® Harald Brune, Ecole Polytechnique Fédérale de Lausanne,
Switzerland

® | jviu Chioncel, University of Augsburg, Germany

® Gyula Eres, Oak Ridge National Laboratory, USA

m | aszlo Forro, Ecole Polytechnique Fédérale de Lausanne,

Switzerland Changes in the program
® Rudi Hackl, Walther Meissner Institute, Germany, October 6, 2019
® |gor Herbut, Simon Fraser University, Canada Please note changes in
m Kurt Hingerl, Johannes Kepler University, Linz, Austria the program for Monday
® Liv Hornekaer, Aarhus University, Denmark morning session and
m Zoran lkonié, Univsity of Leeds, UK Tuesday afternoon
® Vladimir Juri¢i¢, Nordita, KTH Royal Institute of Technology session.
and Stockholm University, Sweden
® Milo§ Knezevic, Berlin Institute of Technology, Germany ?:lf:eof Abstracts is
® Hechang Lei, Renmin University October 2, 2019
® Marjana Lezaié, Forschungszentrum Jiilich, Germany Book of abstracts is
® Zoran Miskovié, University of Waterloo, Canada online!
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Danilo Nikoli¢, UniversitatKonstanz,Konstanz,Germany
Francois Peeters, University of Antwerp, Belgium

Maria Peressi, University of Trieste, ltaly

Cedomir Petrovic, Brookhaven National Laboratory, USA
Hyejin Ryu, Korea Institute of Science and Technology
Milan Radovié¢, Paul Scherrer Institute, Switzerland

Nicolas Regnault, Ecole Normale Supérieure Paris, France
Rastko Sknepnek, University of Dundee, UK

Frank Steglich, MPICP{S Dresden and Zhejiang University
Bosiljka Tadi¢, JoZef Stefan Institute, Slovenia

Jack Tuszynski, University of Alberta, Canada

Dieter Vollhardt, University of Augsburg, Germany

Rok Zitko, Jozef Stefan Institute, Slovenia

Qingming Zhang, Lanzhou University and Institute of Physics,
Chinese Academy of Science

Vladimir Damljanovi¢, Institute of Physics Belgrade

Marija Mitrovié-Dankulov, Institute of Physics Belgrade
Sasa Dmitrovié, Faculty of Physics, University of Belgrade
Vladimir Bokovié, Institute of Nuclear Sciences Vinca,
Belgrade

Igor Franovié, Institute of Physics Belgrade

Sanja Janicievi¢, Institute of Physics Belgrade

Zorica Konstantinovi¢, Institute of Physics Belgrade

Nenad Lazarevié, Institute of Physics Belgrade

Aleksandar Matkovié, Institute of Physics, Montanuniversitat
Leoben, Austria

Ivana R. MiloSevié, Institute of Physics Belgrade

Ivanka MiloSevié, Faculty of Physics, University of Belgrade
Milica Milovanovi¢, Institute of Physics Belgrade

Jovan Odavié, Institut fir Theorieder Statistischen Physik,
RWTH Aachen University

Marko Petrovié¢, Department of Physics & Astronomy,
University of Delaware

Igor Popov, Institute for Multidisciplinary Research, Belgrade
Milo§ Radoniji¢, Institute of Physics Belgrade

Milan Rajkovi¢, Institute of Nuclear Sciences Vinca, Belgrade
Marko Spasenovi¢, Institute of Chemistry, Technology and
Metallurgy (IHTM),

Dorde Spasojevié, Faculty of Physics, University of Belgrade
Borislav Vasi¢, Institute of Physics Belgrade

Jaks8a Vucicevié, Institute of Physics Belgrade
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PROGRAM IN ONLINE!
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August 15, 2019
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FACULTY OF SCIENCES
UNIVERSITY OF NOVISAD

Presentation session: RC3 - new wing (DMI), 2nd floor

10:00-10:30
Welcome coffee

o He {0 By Ko HYo) 11:30-11:50
Migrating HPC Applications to Cloud -

Introduction
Experiences from the CloudiFacturing Project

Dr Srdan Skrbi¢
Faculty of Sciences, University of Novi Sad Dr Milo$ Ivanovié
Faculty of Science, University of Kragujevac

10:50-11:10
Synergy between normal and missing-feature 11:50-12:10

classification in deep convolutional neural networks Market fragmentation and

Nemanja Milosevié consolidation in adaptive agent models

Faculty of Sciences, University of Novi Sad Dr Aleksandra Alorié
Institute of Physics Belgrade
11:10-11:30
Optimization of diagrammatic Monte Carlo 12:10-12:30
for interacting lattice models: symbolic algorithms Multi-scale modelling in designing anti-cancer
and multiple precision arithmetic nanomedicine drug delivery Systems

Dr Jaksa Vucicevic Dr Igor Balaz
Institute of Physics Belgrade Faculty of Sciences, University of Novi Sad

UNIVERSITY OF NOVI SAD, FACULTY OF SCIENCES, www.scorg.pmf.uns.ac.rs

DEPARTMENT OF MATHEMATICS AND INFORMATICS, P St
TRG DOSITEJA OBRADOVICA 4, NOVI SAD srdjan.skrbic@dmi.uns.ac.rs




SATTMCHUK

ca VIl cegHuue M3b6opHor n HactaBHo-Hay4yHor Beha oaprkaHe y cpeay 24. jyHa 2020. roguHe

CeaHuUM npucycTayje 42 ynaHa M3bopHor n HactaBHO-Hay4Hor Beha, MpUCyTHMX Y amduteatpy u
npeko Zoom anaukaumje.

OnpaBAaHoO OACYTHU: npod. ap TaTtjaHa Bykosuh
npoo. ap Bnaagummnp Munocaesbesuh
npod. ap Mapuja Aumutpujesuh hmpuh
npoo. ap Bnagummnp byphesuh
npoo. ap AywaH MNonoeuh
nou,. ap KatapuHa Besbosuh
nou,. ap Cawa Amutposuh
nou,. ap MupjaHa CapsaH
ap bumwana Hukonnh

HeonpaegaHo oAcyTHM: npood. ap MunaH ammaHosuh
npod. ap UeaH [ojunHoBuh
nou. ap Bnagumup Musbkosuh

[ekaH ®akynteta npod. ap MeaH benya otBopwmo je ceanunuy y 11:10 yacoBa 1 NpeasoXxmno
cnepgehu

OHeBHN pep

1. YcBajame 3anucHuKa ca VI cegHuue N3bopHor u HactaBHo-Hay4Hor Beha ®usunykor dakynTera.
MN360pHO Behe
2. Pasmatparbe npeasiora kategapa y Besum ca nsbopom HactaBHUKa Pusnykor pakynterta u To:
a) Kartegpe 3a dM3KNKy aToMa, MOJIEKYNA, JOHU30BaHMX racoBa, NaasMe U KBaHTHY ONTUKY 3a U36op jeiHor
[OLEHTa 3a Y)Y Hay4yHy o61acT PusmKa joHM30BaHMX racoBa 1 naasme.
b) KaTtegapa MHCTUTYTa 3a MeTeoposiorujy 3a U36op jeIHOr AOLLEHTA 3a Y)XXY Hay4dHy o6aacT ®u3nka obiaka
3. YcBajarbe nsBelTaja Komucuje 3a nsbop jeaHor pegoBHor npodecopa 3a YKy HayuyHy obnact d13mnka vyectmua u
nosba (yHanpeherse ap Mapuje JJumumpujesuh hupuh)
4. TloKpeTame nocTynka 3a usbop Munuue BacusbeBuh y 3Batbe UCTpaXKMBay capagHUK 3a Y)Ky HaydHy obnact
dur3nKa joHM30BaHOT raca u niasMme.
5. [LaBambe carnacHoct ®usnykor dakyaTeTa Ha aHraXKoBaHe HaCTaBHUKA Y LWKoACKoj 2020/21 u To:
a) aHraxoBare Ap bpaHucnase Byyetnuh (Mucannosuh) 3a nssoherse Hactaee us npegmeta ®usmka A b Ha
BojHoj AkageMnju MuHucTapcTBa onbpaHe
b) aHraxoBarbe Npod. ap [ejaHa JaHua 3a M3Boherbe HacTaBe U3 NpeaMeTa BasyxonioBHa MeTeoposioruja Ha
BojHoj Akapgemuju MuHuctapcTea ogbpaHe
c) aHraxoBare npod. ap CphaHa byksuha 3a nseohere HacTaBe 13 NpegmeTa MeToze Meperba Ha MpUpoaHo
MaTeMaykoM daKynTeTy YHuBep3auterta y baroj Jlyum
d) aHraxosamse gou,. Ap 3opaHa Monosuha 3a nssohere HacTase U3 npeamMerta MporpamMuparse y dGusmum 1 u
2 1 KBaHTHa MexaHuKa 1 n 2 Ha [p1MpoHO MaTeMayvykoM baKynTeTy YHMBep3uTeta y baroj Jlyum
e) aHraxoakse npod. ap Mapuje Aumutpujesmh hnpuh ns npeameta KeaHTHa Teopuja nosba n dusnka
efleMeHTapHUX YecTmua Ha MpupoaHo-MaTeMaTUiIKoM dakynTeTy YHUBep3uTeTa y Huwy
HacraBHO-Hay4Ho Behe
6. OpapehuBarbe Komucuje 3a oLeHy UCNYHEHOCTM YCIOBA M ONPaBAaHOCT NPEASIOXKEHE TEME 3a U3PaAY AOKTOPCKe

AucepTauuje 3a:
a) AHY MWJIOCABJLEBUH, aunaomMupaHor MateMaTuyapa, Mactep ¢pusmnyapa, Koja je npujaBuaa OKTOPCKY
pucepTaumjy nog, HasusoMm: "EJIEKTPOH-OOHOH U CMUH-®OHOH MHTEPAKLUUIA Y



10.

11.

12.
13.
14.
15.
16.

24. jyHu 2020.

CYNEPMNPOBOAHNUMMA HA BA3V TBOXXHA U KBA3UN-2D MATEPUJAJIMMA N3YYABAHA METOJOM
PAMAHOBE CNEKTPOCKOIMWIJE"

YcBajame M3BelTaja Komucuje 3a oLeHy MCNyHEHOCTU YCI0Ba M ONPaBAAHOCT NPeaJoXKeHe TeMe 3a U3pasy

LOKTOpCKe aucepTaumje n ogpehusarbe MeHTOpa 3a:

a) BWIEMA BUKTOPA BAH FEPBEHA, aunaoMupaHor ¢pusmnyapa, Koju je npujaBuo JOKTOPCKY AucepTauujy nog,
Ha3meoM: ,MATHETHE HEYNCTORE Y CYMNEPMPOBOOHNLNMA: CTAHA YHYTAP EHEPTMIJCKOI MPOLENA'Y
KBAHTHMM TAYKAMA U EQEKTU MEPUOONYHUNX TOKAJTHUX MOMEHATA® (Magnetic impurities in
superconductors: subgap states in quantum dots and effects of periodic local moments)

OppehuBarbe KoMucuje 3a npernes v oueHy LOKTOpCKe gucepraumje 3a:

a) KATAPWHY HOPBEBUH, auniomupaHor ¢pusmyapa, Koja je npegana JOKTOPCKY AMcepTaLujy nof HasuBoM:
"MPUMEHA HEYPOHCKUNX MPEXA Y ®OTOAKYCTNYKOJ AHATN3UN CUNTNLUNIYMA n-TUMA 'Y
OPEKBEHTHOM JOMEHY*

YcBajabe npujaB/beHe TEMe 3a U3pafy MacTep paja, oapehuearbe pykosoanoua n Komucuje 3a ogbpaHy pasa

3a:

a) MWJIEHY JOBWUH, cTyaeHTa Mactep cTyamnja cMepa MeTteoposioruja, Koja je npujasuna Mactep paf nog,
HasusoM: ,,BIAXKHA OENO3NLIMIA AEPOCOJIA KPUCTANTUMA NEOA

b) TAMAPY PAJOBAHOBWT, cTyaeHTa MacTep cTyamja cMepa MeTeoponoruja, Koja je npujaBuna mactep pag,
nopg, Hasmeom: ,,[IPOLLEHA AHOMAJIMJE Y CE3OHCKOM LIKTYCY ATMOCOEPCKE KOHLEEHTPALMIE CO,
TOKOM MEPUOJA 2019 - 2020“

c) OAHY ULMW/bAHOBWH, cTyaeHTa MacTep cTyamja cMepa MeTeoposioruja, Koja je npujaBuaa MacTep paf, nog,
HasmBoM: ,YTULAJ BYLYRUX MPOMEHA TEMMEPATYPE U BNIAXXHOCTU HA TONJIOTHN KOM®OP*

d) MUINLY EPAHKOBUT, cTyaeHTa MacTep cTyauja cMepa Teopujcka U eKcnepuMeHTanHa Gpu3nka, Koja je
npujaBuaa Mactep pag nog Hasmsom: ,,0COBNHE CMUHCKUX TABUHA Y HEYPEBEHUM TPAKACTUM
GEPOMATHETHMM CUCTEMUMA®

e) TMABJIA CTUMNCUTRA, cTyieHTa MacTep cTyauja cMepa Teopujcka U eKcnepMMeHTanHa dusnKa, Koju je
npujaBno mactep pag, nog HasmsoM: ,YTULA) MATHETHOT MOJbA HA MPOBOAHOCT Y XABAPJOBOM
MOJLENY*

f)  JOBAHY MUJIMJAHOBWT, cTyaeHTa MacTep cTyamja cMepa Onwita G13mnKa, Koja je npujaBmna macrep pag,
nof HasueoM: ,MIPOBJIEM LEOUHNCAHA MOJMA TEXXUHE Y HACTABU*

g) AJIEKCAHOPY JENNT, cTyaeHTa MacTep cTyauja cMepa OnwTa ¢pusuKa, Koja je npujaBuia Mactep pag, noj,
Ha3susoM: ,AHAJIN3A MOCTUTHYRA YYEHUKA Y PELLABAHY TPAOUYKNX SAOATAKA Y HACTABU OU3NKE"

h) CTEBAHA MELUWRA, cTyaeHTa MacTep cTyamja cMepa lMpuMerseHa 1 KoMnjytepcka GpusmKa, Koju je npujaBuo
MacTep pag, nog, HasueoM: "MOHTE KAPJI0 JO3UMETPWJA U PEAYKLMIA BAPMJAHCE 3A POTALIMOHO
CUMETPUYHE CNTYYAJEBE"

YcBajake NpaBuIHMKA ycarnaweH1x ca M3MeHama 1 lonyHaMa 3aKoHa W Apyrux nponuca u To:

- MpaBUAHMKA O U3aBavKOj AenaTHOCTU PU3NUKOT daKynTeTa,

- MpaBuaHMKa o pagy 6ubamnoteka Gusnukor Gpakynrera n

- MpaBuaHMKa o ybeHnymma dusmnykor pakynrteta.

Ytephusarbe npeasiora CaBety dakyntera 3a ycBajatbe AOKYMEHaTa U Nponuca u To:

- n3MeHa u gonyHa Ctatyta ®usunukor dakyaTera - ycariawaearbe ca CtatytoM YHuBep3uteTa y beorpaay,

- Crpaterunje 3a o6e3behunBarbe KBanuTeTa - y NPOLLEAYPU CAMOBPEHOBAHA,

- M3MeHa 1 gonyHa MpaBuUaHWKa O OpraHM3aLmju U cucTeMaTmsanmju pagHmux mecta ®usumykor dakynrteta -
ycarfalaBakbe ca akTyeaHUM 6pojemM usspimiaua,

- MMeHoBahe CaBeTa nocnogasaua ®usnukor dpakynteTa (4onyHeH NpeasosmMMa YaaHoBa HactaBHO-Hay4Hor
Beha ca cefHuLe oapxaHe 26. pebpyapa 2020).

Mutarba HacTaBe, Hayke U GUHaAHCK]a.

3axTeBu 3a 006per-e 0ACYCTBA.

YcBajarbe U3BeLLTaja ca CyX6eHux nyToBamba.

Honucn n Mmonbe ynyheHe HactaBHo-Hay4HOM Behy.

Ob6aBewTerba. Tekyha nutarba. Mutarba 1 Npeanosu.
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MowTo je ycBOjeH npeasioxeHu JJHEBHU pef, NpeLLsio ce Ha

1. Tauky

YcBojeH je 3anucHuK ca VI cegHuue N3bopHor u HactaBHO-HayuHor Beha ®usnukor
dakynteTa.

MN360pHO BEhe

2. Tayka

Ha npepnor katepapa, N36opHo Behe je fOHEN0 0NyKy O pacnmMcUBakby KOHKypca 3a n3bop
HacTaBHMKa Ousmykor dpakynteta u To:
a) Karteape 3a oU3MKy aTOMa, MOJIEKYA, JOHU30BaHMX FacoBa, N1a3Me U KBaHTHY ONTUKY
3a M360p jegHOr AOLEHTA 3a YXKY Hay4yHy o6a1acT PU3mKa jOHM30BaHMX FracoBa M njasme.
Komucuja: ap Munopas Kypauua, peaosHu npocgpecop OO
ap bpamucnas O6paaosuh, pegosHu npogpecop OO
Ap Munusoje MBkoBuh, Hay4yHU casemHuk N

b) katepapa MHcTUTYTa 32 MeTEOpOIOTHjy 3a U360P jeHOT AOLIEHTa 33 Y)KY Hay4Hy obnacTt
®usmka obnaka
Komucuja: ap [ejaH JaHu, BaHpeaHu npogecop OO
ap Bnagax Byykosuh, BaHpeaHu npogecop OO
Ap MupjaHa Pymn, pegoBHU npogecop MossonpuspeaHor ¢akyimema

3. Tauka

MoeogoM M3BeluTaja Komucuje 3a u360p jegHOr peaoBHOr npodecopa 3a YKy HayyHy
o6nact ®msMKa YecTMLa M MOJba, @ HAKOH TajHOT Tr/lacaka y KOMe Cy Y4YeCTBOBa/M PefoBHU
npodecopu dakynteta, ca 17 rnacoa 3A (of yKynHO 23 KOJIMKO YMHM M3BOPHO Tesno) yTBpheH je
npeanor o u3dopy ap Mapuje Aumutpujeeuh hupuh y 3Barbe pegoBHOr Npodecopa 3a yXKy HayqyHy
obnact dusnka yectmua 1 noswba.

4. Ta4kKa

MoKpeHyT je nocTynak 3a nsbop Munnue Bacumeuh y 3Barbe UCTpaXKMBaY capafHUK 3a YKy
Hay4Hy obnact ®u3MKa jOHM30BaHOr raca 1 njasme.
Komucuija: Aap bophe CnacojeBuh, pegosHu npodecop PP
Ap Hukona Kornsesuh, npogecop emepumyc P
Aap NeaH BugeHoBuh, BaHpeaHU npogecop OO
Ap FfopaaHa Majcmoposuh, pegosHU npogecop BojHe akaaemuje
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5. Tayka

M360pHO Behe ®du3mukor dakynTeTa Aano je carnacHOCT Ha aHraXKoBakbe HacTaBHMKA Y
LLKoACKoj 2020/21 u To:

a) ap bpanucnase Byyetuh (Mucannosuh) 3a ussoherse Hactase 13 npegmera Pusmnka A u
®dusunka b Ha BojHoj AkaaemMuju MuHUcTapcTBa oabpaHe

b) npod. ap LdejaHa JaHua 3a n3Boherbe HacTaBe 13 NpegMeTa BasayxonioBHa
MeTeoposioruja Ha BojHoj AkageMmnjm MmnHUCTapcTBa oabpaHe

c) npod. ap CphaHa bykeuha 3a nsBohere HacTaBe 13 NpegMeTa MeToge Mepeha Ha
MpupoaHo MateMaukoM dpaKynTeTy YHUBep3uTeTa y baroj Jlyum

d) pou. ap 3opaHa MNonoeuha 3a nsBoherse HacTaBe U3 NpeaMerta MNporpammuparse y
¢m3num 1 n 2 n KBaHTHa MexaHuKa 1 1 2 Ha MNpupodHO MaTeMaTUYKOM daKyaTeTy
YHuBepsuteTa y baroj Jlyum

e) npod. ap Mapuje Aumutpujesuh himpuh ns npegmeta KeaHTHa Teopuja nosba U Gusmka
e/leMeHTapHMX YecTuua Ha MNMpupoagHo-MaTeMaTMYKOM daKynTeTy YHUBep3uTeTa y Huwy

HacTtaBHO-Hay4YHo Behe

6. Tauyka

OppeheHa je KomMucKja 3a oLeHY MCMYHEHOCTU YCI0BA M ONPaBLAAHOCT NPeJ/IoXKeHe TeEMe 3a

n3pagy AOKTOpPCKe ancepTauumje 3a:

a) AHY MUJTOCABJLEBUR, gunaoMmupaHor MatemaTtnyapa, Mactep ¢pusmyapa, Koja je
npujaBmaa JOKTOPCKY aucepTaumjy nog, Hasusom: "EJIEKTPOH-OOHOH U CMNH-®OHOH
MHTEPAKUWIA'Y CYNEPMNPOBOAHUNLMMA HA BA3U TBOXHA U KBA3N-2D
MATEPMJATTMMA N3YYABAHA METO1OM PAMAHOBE CMEKTPOCKOIWMIJE"

Komucuja: ap HeHnapa Jlazapesuh, BULLIU Hay4YHU capagHuK Mo
JAp 3opaH Monosuh, Hay4yHU capagHuk N®
ap boxkugap Hukonuh, BaHpeaHu npogecop OO
Aap 3opuua Nonosuh, goueHm OO

7. Tayka

YcBojeH je N3BewTaj Komucuje 3a oLeHy MCNYHEHOCTM YCI0BA U ONPaBAAHOCT NPeasioXeHe
TeMe 3a M3paay AOKTopCKe ancepTaumje u ogpeheH MeHTop 3a:

a) BWIEMA BMKTOPA BAH FEPBEHA, aunaomupaHor ¢pusmndapa, Koju je npujaBuo
JOKTOPCKY ancepTaumjy nog Hasmeom: ,MAITHETHE HEYNCTORE Y
CYNEPNPOBOAHULNMA: CTAHA YHYTAP EHEPIMJCKOT MPOLEMNA Y KBAHTHUM
TAYKAMA U EQEKTU NEPUOANYHUNX NOKATTHUX MOMEHATA® (Magnetic impurities in
superconductors: subgap states in quantum dots and effects of periodic local moments)
MeHmop: ap dapko TaHackoBuh, Hay4HU caBemHuk N®
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8. Tauka

OppeheHa je Komucuja 3a npernes 1 oleHy JOKTOPCKe AncepTalmje 3a:

a) KATAPUHY BOPBEBUHR, agunnoMmnpaHor ¢pusmyapa, Koja je npeaana JOKTOPCKY
anceptaumjy nog HasmeoM: "MPUMEHA HEYPOHCKUX MPEXKA Y ®OTOAKYCTUYKO)
AHANU3U CUTNUNIYMA n-TUNA Y ®PEKBEHTHOM JOMEHY*“

Komucuja: ap AparaH MapkyLueB, Hay4HU casemHuk N
ap Cnobogaxka Fanosuh, Hay4yHU casemHuk HH BuH4a
Ap Fopat Monapuh, peaosHU npogecop O
Ap Muho Mumposuh, pegoBHu npogecop P
ap Equé Jobapyuh, BaHpeaHuU npogpecop OO

9. Tayka

YcBojeHa je npujaB/beHa TEMa 3a U3pagdy Mactep paja, oapeheH pykosoannal, u Komucuje
3a o6paHy paga 3a:
a) MWJIEHY JOBUT, cTyaeHTa MacTep cTyauja cMepa MeteopoJioruja, Koja je npujaeuna
MacTep paj, noj HasmeoM: ,BJIAXKHA AEMNO3NLMIA AEPOCONIA KPUCTANIMMA NEQA®
Komucuja: ap BnaaaH Bydkosuh, BaHpeaHu npogecop OO, pykosoaunal, paaa
Aap [Aparaxa Byjosuh, BaHpeaHu npogecop OO
Aap [ejaH Jaxu, BaHpeaHu npogecop OO

b) TAMAPY PAJOBAHOBWH, cTyaeHTa MacTep cTyamja cMepa MeTeopoJioruja, Koja je
npujaBmaa mMactep pag nog Hasmeom: ,[MPOLEHA AHOMAJIMIE Y CE3OHCKOM
LUMKNYCY ATMOCOEPCKE KOHLUEHTPALMIE CO, TOKOM MEPUOOA 2019 - 2020
Komucuja: ap Baagumup byphesuh, BaHpeaHu npopecop D, pykosoauaal, paaa

Aap MeaHa Towuh, pegoBHU npogecop OO
ap Jlazap Jlasuh, pegosHu npogecop OGP

c) JAAHY UMWU/BAHOBWH, cTyaeHTa MacTep cTyauja cMepa MeTteoponoruja, Koja je
npujaBuna mactep pag nog Hasmeom: ,YTULAJ BYAYRUX MPOMEHA TEMIEPATYPE U
BJIAYKHOCTW HA TOMNOTHN KOM®OP*

Komucuja: ap Baagumup byphesuh, BaHpeaHu npopecop D, pykosoauaal, paaa
Aap [paraxa Byjosuh, BaHpeaHu npogecop OO
Aap Jlasap Jlasuh, pegosHu npogecop O

d) MWUINLLY BPAHKOBUT, cTyaeHTa MacTep cTyamja cMepa Teopujcka U eKcrepuMeHTasiHa
¢u3mKa, Koja je npunjaBnna mactep pag nopa Hasmeom: ,OCOBNHE CIIMHCKNX TABUHA' Y
HEYPEBEHUM TPAKACTUM ®EPOMATHETHUM CUCTEMUMA®
Komucuja: ap CBemucnas Mujamosuh, Hay4yHuU capaaHuk @@, pykosoauaal, paaa

Ap bophe Cnacojesuh, pegoBHu npogecop P
JparymuH Joskosuh, ucmpaxkusay ®P
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e)

MABNA CTUMCURA, cTyaeHTa MacTep cTyauja cMepa Teopujcka 1 eKcnepuMeHTanHa
du3mnKa, Koju je npmjaBMo mMactep pag nog Ha3msom: ,YTULA) MATHETHOT MOJBA HA
NMPOBOAHOCT Y XABAPAOBOM MOEJTY
Komucuja: ap Jakwa Byyuhesuh, Hay4yHU capaaHuk U®, pykosoauaal, paaa

Aap bophe CnacojeBuh, peosHU npodecop PP

ap boxkuaap Hukonuh, BaHpeaHU npogpecop OO

f)

h)

JOBAHY MUJIMJAHOBWT, cTyaeHTa MacTep cTyauja cMepa Onwra ¢usmka, Koja je
npujaeuna mactep pag nog Hasmsom: ,,[MIPOBJIEM OEOUNHUCAHA NMOJMA TEXXUHE Y
HACTABU*
Komucuja: ap Cawa ViBkosuh, soueHm ®®, pykosoaunal, paaa

ap Bpamucnas O6paaosuh, pegosHu npogpecop OO

Ap Hukona LiBemaHoBuh, BaHpeaHU npogecop CaobpahajHor pakynmema

AJNNIEKCAHOPY JENINT, cTyaeHTa MacTep ctyauja cMepa Onwta $usmka, Koja je npujasuna
mactep pag nog Hasusom: ,AHAJIN3A NMOCTUTHYRA YHYEHVKA Y PELLUABAHY
FPAGUYKINX 3ANATAKA Y HACTABU ®USNKE"
Komucuja: ap AHapujaHa Xekuh, BaHpeaHu npogecop @O, pykosoauadw, paaa

ap Muho Mumposuh, pegoBHu npogecop OO

ap Cawa ViBkosuh, goueHm OO

CTEBAHA MEUWBRA, ctyaeHTa Mactep cTyamja cMepa lNMpumerseHa U KoMnjyTepcka
¢dun3mKa, Koju je npmjaBno Mactep pag nog Hasmeom: "MOHTE KAPJ1O AO3VMETPUIA U
PEOYKUWJA BAPUJAHCE 3A POTALLMOHO CUMETPUYHE C/TYYAJEBE"
Komucuja: ap Munow Buhuh, peaoBHu npogecop @O, pykosoaunal, paaa

Ap ViBaH benua, peaosBHu rnpogpecop ®O

Aap JoeaH lNy3oBuh, pegosHU npogecop PP

10. TayKa

HactaBHO-Hay4HO Behe je YCBOJVIHO NnpaBUIHNKE yCarjialeHe ca UsMmeHama 1 AornyHamMa

3aKOHa U Apyrux nponuca u To:

MpaBWHKK O n3[aBadKoj genatHocTM Pusmykor dpakynTeTa,
MpaBuAHKK 0 pagy 6ubanoteka Gusnykor pakyntera u
MpaBUAHKK 0 yLI6eHUUMMa Pusnykor pakynteTa.

11. Tayka

Y1BpheH je npeanor Casery dakynteTa 3a ycBajakbe JOKYMeHaTa 1 nponuca u To:

usMeHe u ponyHe Cratyta ®Pusmykor dakyntera - ycarnawabarbe ca CraTyToM
YHuBep3uteta y beorpagy,

CtpaTeruje 3a 06e36ehunBare KBannTeTa - y NPoLLeaypn CaMOBPEIHOBaHA,

n3MeHe n pgonyHe [lpaBMAHMKA O OpraHM3auMju U cUcTeMaTU3aUMjM pagHUX MecTa
dusnukor dakynTeTa - ycarnalaBatbe ca akTyeslHUM 6pojeM nsBpLunnaLa,
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-  WmeHoBartbe CaBeTa nocnogaBaua Pusmukor dakynrera, AOMyweH Mpenso3nmMa
ynaHoBa HactaBHo-HayyHor Beha ca cefHuue oapxkaHe 26. debpyapa 2020, Kao U
npegsoromM Aa ce 3a 4ynaHa CaBeTa nocsofaBala MMeHyje U AMpekTop Matematuyke
rMMHasmuje u gupektop ¢pupme LLMHM ns Yauka.

12. TayKa

MoBogoM npujaBe nporpamMa Mactep cTyauja npu YHuBep3uteTy y beorpagy - Ontuka u
dOoTOHMKA 3a 6MOMeaUUMNHY, ¥ KoMe je npeasuheHo ydewhe HacTaBHMKA U capafHWKA HEKOJIMKO
WHCTUTYuMja n3 beorpaga u Hoeor Caga, pa3Buia ce AMCKYCMja Yy KOjOj je y4yeCTBOBa/iO BMLLE
ynaHosa Beha. HakoH rnacamsa, ca 41 rnacom 3A n 1 rnacom MNPOTUB, noHeTa je oanyka ga npod. ap
Mwunopag, Kypaunua y ume ®usnukor dhakyiTeta ca KpeaTopuma npeaiora nporpama mMacrep ctyguja
porosopu yyewhe dakynteta y dopmMmparby OBOr MacTep nporpama, Kao UM jga ce HaliuMm
HacTaBHMLMMA 0406pu ydewhe y nporpamy , c 063MpoM aa je 061acT cTyguja U3 Halle MaTUYHOCTM.

Y mehyBpemMeHy he aekaH ®Pakynteta TpakUTW opgnararbe rnacakba Mo OBOM NuTarby Ha Behy
rpynauuja n CeHaty YHMBep3uTeTa.

13. TayKa

lMutama HacTaBe

MpoaekaH 3a HactaBy, gou. ap Cnasuua Manetuh, obaBectuna je unaHose Beha pa je
noyena npujaea 3a ynuc Ha | roagMHy OCHOBHUX cTyamja dusmke M MeTeoponornje. OBe rogmHe
3aMHTEpPeCcOBaHU KaHAMAATU MOTy NpujaBe ga nogHoce u online.

Ha 3axTeB cTyfaeHaTa, a npeMa npenopyuu YHuBepsuteta y beorpagy, AoHeTa je ogayka o
oprasoBakby A0aTHOI UCMUTHOI POKa y cenTemMobpy.

MpoaekaH je, Takohe obaBecTnna ynaHoBe Beha ga he yckopo 6UTK pacnmcaH UHTEPHU
KOHKYpC 3a aHraXKoBakbe Yy HacTaBW CTyfAeHaTa AOKTOPCKMX M MacTep ctyamja. MnaHupa ce aa
KOHKypC byae oTBopeH Ao 15. centembpa 2020, a Aa YC/1I0BM KOHKYpca byy UCTU Kao U NPeTXoaHe
rogmHe.

MpopekaH 3a HacTaBy je no3Basja liedoBe KaTeApu [a OJfipXKe cacTaHKe KaTeapu 1 aa
noluasby NMAaHWMPaHW pacrnopej, HacTaBHMKA WM capagHuKa Mo npegmMeTMMa 3a jecerbn ceMecTpa
2020/21. roguHe.

lMuTarba Hayke

MpopekaH 3a HayKy, npod. ap CreesaH CrojaguMHoBuh, obaBecTuo je yYnaHoBe Beha pa je
noyena npujaBa npojekata 3a nporpam WAEJA. MpoaekaH he HacTaBHMUMMA M capagHMUMMA
nocnatM ynyTtcTBa 3a nMpujaBy W KopucHe uWHPopMaumje, a 3akasahe W cacTaHak ca
3aMHTepecoBaHMMa Koju MMajy HeKe Hepoymuue. Pakynter he npyXutnm notpebHy nomoh u
noApLLUKY Mpu MNpujaB/buBarby, a AekaH he CBMMa Koju esie NMOTNUCaTU carnacHocT 3a ydewhe Ha
KOHKypCy.

14. TaykKa

HactaBHo-Hay4Ho Behe je og06punio nnaheHa oacycTea:



b)

d)

e)
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npo¢. ap MunaHy lamraHosuhy y nepuoay og 6. no 11. jyna 2020. rogmHe paau
yyewwha Ha KoHdpepeHuumju 17" Int. Conference on Nanosciences & Nanotechnologies
Koja ce ogpxaa y ConyHy, 'puka

npod. ap NBaHku Munowesuh y nepuoay on 6. o 11. jyna 2020. roamHe pagu y4yelha
Ha KoHdepeHumju 17" Int. Conference on Nanosciences & Nanotechnologies koja ce
ogpxxaea y ConyHy, 'puka

Ap Josuum JooBuhy y nepuoay og 24. no 28. asrycta 2020. roguHe pagm ydewha Ha
KOHdepeHUUju 30" SPIG Koja ce oapxkasa y LLanuy, Cpbuja

ap Munowy Ckouunhy y nepuoay og, 24. no 28. asrycta 2020. roanHe pagm ydewha Ha
KoHdepeHumju 30" SPIG Koja ce oapykasa y Lanuy, Cp6uja

HukoamHy Heauhy y nepuoay opn, 24. no 28. asrycta 2020. rogmnHe pagu yyewha Ha
KoHdbepeHumju 30" SPIG Koja ce ogpkasa y LLlanwy, Cp6uja.

HactaBHo-Hay4HO Behe je opobpuno u HennaheHo opcyctBo Mwuavum Bacusbesuh y

nepuoay on 15. jyna po 15. oktobpa 2020. rogmMHe paau ctyamjckor 6opaeka Ha EPFL y JlosaHu,
LLiBajuapcka.

15. TayKa

HactaBHO-Hay4HO Behe je ycBOjMO M3BELLTaj ca cyXkbeHor nyToBarba npod. Ap Brnaaumupa

MwunocaesbeBuha Koju je y nepuoay og 3. ao 12. mapta 2020. roanHe 60paBno Ha YHMUBEP3IUTETY Y
[NabnuHy, Npcka.

CepHuua je 3aBplueHa y 12:10 yacosa.

beorpapg, 1.7.2020. JEKAH ©OU3NYKOT GAKYITETA

Mpod. ap UeaH benua, c.p.
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Charge transport in the Hubbard model at high temperatures: Triangular versus square lattice
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High-temperature bad-metal transport has been recently studied both theoretically and in experiments as one
of the key signatures of strong electronic correlations. Here we use the dynamical mean field theory and its
cluster extensions, as well as the finite-temperature Lanczos method to explore the influence of lattice frustration
on the thermodynamic and transport properties of the Hubbard model at high temperatures. We consider the
triangular and the square lattices at half-filling and at 15% hole doping. We find that for T 2 1.5¢ the self-energy
becomes practically local, while the finite-size effects become small at lattice size 4 x4 for both lattice types and
doping levels. The vertex corrections to optical conductivity, which are significant on the square lattice even at
high temperatures, contribute less on the triangular lattice. We find approximately linear temperature dependence
of dc resistivity in doped Mott insulator for both types of lattices.

DOLI: 10.1103/PhysRevB.102.115142

I. INTRODUCTION

Strong correlation effects in the proximity of the Mott
metal-insulator transition are among the most studied prob-
lems in modern condensed matter physics. At low temper-
atures, material-specific details play a role, and competing
mechanisms can lead to various types of magnetic and
charge density wave order, or superconductivity [1-5]. At
higher temperatures, physical properties become more univer-
sal, often featuring peculiarly high and linear-in-temperature
resistivity (the bad-metal regime) [6—12] and gradual metal-
insulator crossover obeying typical quantum critical scaling
laws [13-17].

There are a number of theoretical studies of transport
in the high-T regime based on numerical solutions of the
Hubbard model [10,12,13,18,19], high-T expansion [20], and
field theory [21-23]. Finding numerically precise results is
particularly timely having in mind a very recent laboratory
realization of the Hubbard model using ultracold atoms on
the optical lattice [24]. This system enables fine tuning of
physical parameters in a system without disorder and other
complications of bulk crystals, which enables a direct com-
parison between theory and experiment. In our previous
work (Ref. [25]) we have performed a detailed analysis of
single- and two-particle correlation functions and finite-size
effects on the square lattice using several complementary
state-of-the-art numerical methods, and established that a
finite-temperature Lanczos method (FTLM) solution on the
4 x4 lattice is nearly exact at high temperatures. The FTLM,
which calculates the correlation functions directly on the real-
frequency axis, is recognized [25] as the most reliable method
for calculating the transport properties of the Hubbard model
at high temperatures. The dependence of charge transport and

2469-9950/2020/102(11)/115142(10)
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thermodynamics on the lattice geometry has not been exam-
ined in Ref. [25] and it is the subject of this work.

Numerical methods that we use are (cluster) dynamical
mean field theory (DMFT) and FTLM. The DMFT treats an
embedded cluster in a self-consistently determined environ-
ment [26]. Such a method captures long-distance quantum
fluctuations, but only local (in single-site DMFT), or short-
range correlations (in cluster DMFT) [27]. The results are
expected to converge faster with the size of the cluster than
in the FTLM, which treats a finite cluster with periodic
boundary conditions [28]. FTLM suffers from the finite-size
effects in propagators as well as in correlations. The con-
ductivity calculation in DMFT is, however, restricted just to
the bubble diagram, while neglecting the vertex corrections.
Approximate calculation of vertex corrections is presented
in few recent works [29-34]. This shortcoming of DMFT is
overcome in FTLM where one calculates directly the current-
current correlation function which includes all contributions
to the conductivity. Also, the FTLM calculates conductivity
directly on the real-frequency axis, thus eliminating the need
for analytical continuation from the Matsubara axis which
can, otherwise, lead to unreliable results (see Supplemental
Material of Ref. [25]). Both DMFT and FTLM methods are
expected to work better at high temperatures [35] when single-
and two-particle correlations become more local, and finite-
size effects less pronounced. Earlier work has shown that the
single-particle nonlocal correlations become small for T 2> ¢
for both the triangular and the square lattices [25,36,37].

In this paper we calculate the kinetic and potential energy,
specific heat, charge susceptibility, optical and dc conductivity
in the Hubbard model on a triangular lattice and make a com-
parison with the square-lattice results. We consider strongly
correlated regime at half-filling and at 15% hole doping. In

©2020 American Physical Society
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agreement with the expectations, we find that at high temper-
atures, T 2 1.5¢, the nonlocal correlations become negligible
and the results for thermodynamic quantities obtained with
different methods coincide, regardless of the lattice type and
doping. At intermediate temperatures, 0.5t < T < 1.5¢, the
difference between DMFT and FTLM remains rather small.
Interestingly, we do not find that the thermodynamic quanti-
ties are more affected by nonlocal correlations on the square
lattice in this temperature range, although the self-energy be-
comes more local on the triangular lattice due to the magnetic
frustration. On the other hand, the vertex corrections to opti-
cal conductivity remain important even at high temperatures
for both lattice types, but we find that they are substantially
smaller in the case of a triangular lattice. For the doped
triangular and square lattice the temperature dependence of
resistivity is approximately linear for temperatures where the
finite-size effects become negligible and where the FTLM
solution is close to exact.

The paper is organized as follows. In Sec. II we briefly
describe different methods for solving the Hubbard model.
Thermodynamic and charge transport results are shown in
Sec. III, and conclusions in Sec. IV. The Appendix contains
a detailed comparison of the DMFT optical conductivity ob-
tained with different impurity solvers, a brief discussion of
the finite-size effects at low temperatures, and an illustration
of the density of states in different transport regimes.

II. MODEL AND METHODS

We consider the Hubbard model given by the Hamiltonian

H=—t Z c;acja+UZn,-Tni¢—/LZn,-g, (1)
{i,j),0 i io
where ¢ is the hopping between the nearest neighbors on either
triangular or square lattice. cl, and c;, are the creation and
annihilation operators, U is the onsite repulsion, n;, is the
occupation number operator, and p is the chemical potential.
We set U = 10¢,t = 1, lattice constant a = 1, e = h = kg =
1 and consider the paramagnetic solution for p=1—n =
1 — 3", n, = 0.15 hole doping and at half-filling.

We use the FTLM and DMFT with its cluster extensions
to solve the Hamiltonian. FTLM is a method based on the
exact diagonalization of small clusters (4 x4 in this work). It
employs the Lanczos procedure to obtain approximate eigen-
states and uses sampling over random starting vectors to
calculate the finite-temperature properties from the standard
expectation values [28]. To reduce the finite-size effects, we
further employ averaging over twisted boundary conditions.

The (cluster) DMFT equations reduce to solving a (cluster)
impurity problem in a self-consistently determined effective
medium. We consider the single-site DMFT, as well as two
implementations of cluster DMFT: cellular DMFT (CDMFT)
[38,39] and dynamical cluster approximation (DCA) [27]. In
DMEFT the density of states is the only lattice-specific quantity
that enters into the equations. In CDMFT we construct the
supercells in the real space and the self-energy obtains short-
ranged nonlocal components within the supercell. In DCA we
divide the Brillouin zone into several patches and the num-
ber of independent components of the self-energy equals the
number of inequivalent patches. The DCA results on 4 x4 and

triangular 4x4

square 4x4

0.5

FIG. 1. DCA patches in the Brillouin zone. The irreducible Bril-
louin zone is marked by the black triangle. The dispersion relation is
shown in gray shading. Note the position of the I point in the center
of the first Brillouin zone which is not marked in this figure.

2x2 clusters are obtained by patching the Brillouin zone in a
way that obeys the symmetry of the lattice, as shown in Fig. 1.
As the impurity solver we use the continuous-time interaction
expansion (CTINT) quantum Monte Carlo (QMC) algorithm
[40,41]. In the single-site DMFT we also use the numerical
renormalization group (NRG) impurity solver [42—45].

The (cluster) DMFT with QMC impurity solver (DMFT-
QMC) gives the correlation functions on the imaginary
(Matsubara) frequency axis, from which static quantities can
be easily evaluated. The kinetic energy per lattice site is equal
to

1 2 _
Eiin = N Xk:Sknka =¥ Xk:Ska(T =07), (2)

where for the triangular lattice ek = —2¢[cosk, +
2005(%kx)cos(‘/7§ky)] and for the square lattice ¢k =
—2t(cosky +cosk,) (gray shading in Fig. 1). The
noninteracting band for the triangular lattice goes from
—6¢ to 3t with the van Hove singularity at ¢ =¢. The

potential energy is equal to

1 .
Epoy = Ud = ~7 > e Gulion) Sxlion).  (3)

K,iw,

where d = (n;yn;}) is the average double occupation. In DCA
the cluster double occupation is the same as on the lattice,
and we used the direct calculation of d in the cluster solver
to cross check the consistency and precision of the numerical
data. In CDMFT we calculated E,, from periodized quantities
G and X, where the periodization is performed on the self-
energy and then the lattice Green’s function is calculated from
it. The total energy is Ei = Exn + Epoi. The specific heat
C = dE./dT)|, is obtained by interpolating Ey (7 ) and then
taking a derivative with respect to temperature. C is shown
only in the DMFT solution where we had enough points
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at low temperatures. The charge susceptibility x. = dn/du
is obtained from a finite difference using two independent
calculations with p that differs by a small shift §u = 0.17.
In the FTLM, C and yx. are calculated without taking the
explicit numerical derivative since the derivation can be done
analytically from a definition of the expectation values,

T 2
cC=C, - £
11 ((HN.) — (H)(N,))*
= ——2[<H2> — (H)? - . . ] €
NT (N2) = (N.)
which is directly calculated in FTLM. Here, C, =

¥ 7 [((H — uN)*) = (H—pNe)*1, ¢ = 55 72 [((H—pN)N,) —
(H — uNe) (N, xe = 57 ((N2) = (N)?), and N, = 3, nig
is the operator for the total number of electrons on the lattice.

We calculate the conductivity using DMFT and FTLM.
Within the DMFT the optical conductivity is calculated from
the bubble diagram as

o(w) =0y // dedvX(e)A(e,v)A(e, v + w)
)= fv+w)
X —,

w

&)

where X (¢) = % Dk (%)28(8 — &) is the transport function,
A(e,v) = —1Im[v + pu — e — (v)]”', and f is the Fermi
function. For the square lattice oy = 27 and for triangular
00 = 4 /~/3. For the calculation of conductivity in DMFT-
QMC we need the real-frequency self-energy ¥(w), which
we obtain by Pad¢ analytical continuation of the DMFT-QMC
Y(iw,). In the DMFT with NRG impurity solver (DMFT-
NRG) we obtain the correlation functions directly on the
real-frequency axis, but this method involves certain numer-
ical approximations (see Appendix A).

In order to put into perspective the interaction strength
U = 10¢ and the temperature range that we consider, in Fig. 2
we sketch the paramagnetic (cluster) DMFT phase diagram
for the triangular and square lattices at half-filling adapted
from Refs. [46,47] (see also Refs. [36,37,48-54]). In the
DMFT solution (blue lines) the critical interaction for the Mott
metal-insulator transition (MIT) is U, ~ 2.5D, where the half-
bandwidth D is 4.5¢ and 4t for the triangular and the square
lattice, respectively. The phase diagram features the region
of coexistence of metallic and insulating solution below the
critical end point at 7, = 0.1¢. In this work we consider the
temperatures above T,.. We set U = 10z, which is near U, for
the MIT in DMFT, but well within the Mott insulating part of
the cluster DMFT and FTLM phase diagram.

III. RESULTS

We will first present the results for the thermodynamic
properties in order to precisely identify the temperature range
where the nonlocal correlations and finite-size effects are
small or even negligible. In addition, from the thermodynamic
quantities, e.g., from the specific heat, we can clearly identify
the coherence temperature above which we observe the bad-
metal transport regime. We then proceed with the key result

— DMFT

0.35} ]
cluster DMFT

triangular lattice

0.3}

0.25¢

0.15}

0.1f

Mott
insulator

0.05} metal

0.35}
square lattice
0.3}

0.25}
~ 0.2t

0.15}

0.1}
0.05¢ metal Mott
insulator

0 L L .

0 2 4 6 8 10 12 14 16
U

FIG. 2. Sketch of the paramagnetic phase diagram at half-filling,
adapted from Refs. [46,47]. There is a region of the coexistence of
metallic and insulating solution below the critical end point at 7;.. The
critical interaction is smaller in the cluster DMFT solution. Above T,
there is a gradual crossover from a metal to the Mott insulator. In this
work we consider T > T. and U = 10¢.

of this work by showing the contribution of vertex corrections
to the resistivity and optical conductivity.

Before going into this detailed analysis, and in order to ob-
tain a quick insight into the strength of nonlocal correlations,
we compare in Fig. 3 the self-energy components in the cluster
DMEFT solution at two representative temperatures. We show
the imaginary part of the DCA 4x4 self-energy at different
patches of the Brillouin zone according to the color scheme of
Fig. 1. The statistical error bar of the Im X results presented
in Fig. 3 we estimate by looking at the difference in Im X
between the last two iterations of the cluster DMFT loop.
We monitor all K points and the lowest three Matsubara fre-
quencies. At lower temperature (bottom row), this difference
is smaller than 0.05 (0.01) for the square (triangular) lattice,
respectively. At higher temperature (upper row), these values
are both 10 times lower and the error bar is much smaller
than the size of the symbol. At T = 0.4¢ the differences in the
self-energy components are more pronounced on the square
than on the triangular lattice, which goes along the general
expectations that the larger connectivity (z = 6) and the frus-
trated magnetic fluctuations lead to the more local self-energy.
At T ~ 1.5¢ all the components of the self-energy almost
coincide for both lattices. We note that for the triangular
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DCA 4x4 U=10t, p=10.15

triangular

square

Wn Wn

FIG. 3. Imaginary part of the self-energy at the Matsubara fre-
quencies at different patches of the Brillouin zone for several
temperatures for p = 0.15 hole doping. The position of the patches
is indicated by the same colors as in Fig. 1. The solid lines are guide
to the eye.

lattice the components of the self-energy marked by red and
cyan colors are similar, but they do not coincide completely.
There are four independent patches in this case. For the square
lattice the red and cyan components of the self-energy are very
similar, while we have six independent patches.

A. Thermodynamics
1. p=0.15

We first show the results for hole doping p = 0.15. The
results for the triangular lattice are shown in the left column of
Fig. 4, and the results for the square lattice in the right column.
Different rows correspond to the kinetic energy per lattice
site Eyin, potential energy Ep, total energy Ei, specific heat
C =dE\/dT|,, and charge susceptibility x.. The DMFT
results are shown with blue solid lines and FTLM with red
dashed lines. The red circles correspond to DCA 4x4, light
green to DCA 2x2, green to CDMFT 2x2, and magenta to
the CDMFT 2x 1 result.

The FTLM results are shown down to 7 = 0.2¢. The
FTLM finite-size effects in thermodynamic quantities are
small for T = 0.2 (see Appendix B). The DMFT results are
shown for 7" > 0.05¢ and cluster DMFT for T > 0.2¢. Over-
all, the (cluster) DMFT and FTLM results for 15% doping
look rather similar. The kinetic and potential energy do not
differ much on the scale of the plots, and the specific heat
looks similar.

The Fermi-liquid region, with C o T, is restricted to very
low temperatures. For the triangular lattice we find a distinct
maximum in C(T) at T ~ 0.4t in FTLM, and at T ~ 0.3t
in DMFT. This maximum is a signature of the coherence-
incoherence crossover, when the quasiparticle peak in the
density of states gradually diminishes and the bad-metal
regime starts. The increase in the specific heat for T 2 2t is

‘ tri‘ang‘ula‘r, p=0.15_ square, p=0.15

E —1.0]
=
; — DMFT — DMFT
2 -~ FT™M ] -~ FTM
/ o o DCA2x2 e o CDMFT2x2
-14f e o DCA4x4|q e o DCA4x4
0.8
5 °
=

e o CDMFT2x1

0.00 L L L L L L L L
0.0 0.5 1.0 15 2.0 25 3.0 3.5 0.0 0.5 1.0 15 2.0 25 3.0 35 4.0

T T

FIG. 4. Kinetic, potential, total energy, specific heat, and charge
susceptibility as a function of temperature for the triangular and the
square lattice at 15% doping.

caused by the charge excitations to the Hubbard band. The
specific heat of the square lattice looks qualitatively the same.
[A very small dip in the DMFT specific heat near 7 = 0.4¢
for the square lattice may be an artifact of the numerics,
where C is calculated by taking a derivative with respect to
temperature of the interpolated Ei(7).] We note that the
specific heat, shown here for the fixed particle density, is
slightly different than the one for the fixed chemical potential
C, = dE/dT|,, as in Refs. [28,51,55].

For the square lattice all thermodynamic quantities
obtained with different methods practically coincide for
T Z t. This means that both the nonlocal correlations and
the finite-size effects have negligible effect on thermodynamic
quantities. For T <t the DMFT and FTLM results start to
differ. Interestingly, for the triangular lattice there is a small
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difference in the DMFT and FTLM kinetic energy up to higher
temperatures 7 ~ 1.5¢. The FTLM and DCA 4x4 results
coincide for T 2 ¢, implying the absence of finite-size effects
in the kinetic energy for both lattice types. We also note
that the agreement of the CDMFT and DMFT solutions for
the total energy on the square lattice at low temperatures is
coincidental, as a result of a cancellation of differences in Eyi,
and Ejq.

The intersite correlations in the square lattice lead to an in-
crease in the charge susceptibility at low temperatures (bottom
panel in Fig. 4). Here, the FTLM and DCA 4 x4 results are in
rather good agreement. For the triangular lattice we found a
sudden increase of . at low temperatures in the DCA results
(see Appendix B) but not in FTLM. These DCA points are not
shown in Fig. 4 since we believe that they are an artifact of the
particular choice of patching of the Brillouin zone. In order to
keep the lattice symmetry, we had only four (in DCA 4x4)
and two (in DCA 2x2) independent patches in the Brillouin
zone for triangular lattice (Fig. 1). The average over twisted
boundary conditions in FTLM reduces the finite-size error
(see Appendix B), and hence we believe that the FTLM result
for x. is correct down to T = 0.2¢. We note that an increase of
X cannot be inferred from the ladder dual-fermion extension
of DMFT [37] either. Still, further work would be needed to
precisely resolve the low-T behavior of charge susceptibility
for the triangular lattice.

2.p=0

We now focus on thermodynamic quantities at half-filling
(Fig. 5). In this case, the results can strongly depend on
the method, especially since we have set the interaction to
U = 10¢, which is near the critical value for the Mott MIT
in DMFT, while well within the insulating phase in the clus-
ter DMFT and FTLM. The results with different methods
almost coincide for T 2> 2t and are very similar down to
T ~ t. The difference between the cluster DMFT and FTLM
at half-filling is small, which means that the finite-size effects
are small down to the lowest shown temperature 7 = 0.2¢.
Therefore, the substantial difference between the FTLM and
single-site DMFT solutions at half-filling is mostly due to the
absence of nonlocal correlations in DMFT.

The specific heat at half-filling is strongly affected by non-
local correlations and lattice frustration. For triangular lattice
the low-temperature maximum in C(7") has different origin
in the DMFT and FTLM solutions. The maximum in the
FTLM is due to the low-energy spin excitations in frustrated
triangular lattice, while in DMFT it is associated with the
narrow quasiparticle peak since the DMFT solution becomes
metallic as 7 — 0. Our DMFT result agrees very well with
the early work from Ref. [36] for T 2 . At lower tempera-
tures there is some numerical discrepancy which we ascribe
to the error due to the imaginary-time discretization in the
Hirsch-Fye method used in that reference. For the square lat-
tice the DMFT and FTLM solutions are both insulating. The
maximum in the FTLM C(T') is due to the spin excitations at
energies ~4t2/U = 0.4¢, and it is absent in the paramagnetic
DMFT solution which does not include dynamic nonlocal
correlations. The increase in C(7') at higher temperatures is
due to the charge excitations to the upper Hubbard band.

triangular, p=0.0 square, p=0.0

— DMFT
-~ FTLM |
e o CDMFT 2x2

e DCA 2x2
e DCA 4x4

E pot

b e o CDMFT 2x1

00 05 10 15 20 25 30 35 00 05 1.0 15 20 25 30 35

T T

FIG. 5. Kinetic, potential, total energy, specific heat, and charge
compressibility as a function of temperature for the triangular and
the square lattice at half-filling.

B. Charge transport

The analysis of thermodynamic quantities has shown that
the FTLM results for static quantities are close to exact down
to T~ 0.5t or even 0.2¢. For charge transport we show the
results for higher temperatures T 2 ¢ since the finite-size ef-
fects are more pronounced in the current-current correlation
function at lower temperatures.

An indication of the finite-size effects in optical conductiv-
ity can be obtained from the optical sum rule

° T
/ dwo(w) =
0 4Vu.c.

(—Exin), (6)

where V. is equal to 1 and ‘/T§ for the square and triangular

lattice, respectively. The deviation from the sum rule in FTLM
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FIG. 6. Resistivity as a function of temperature.

can be ascribed to the finite charge stiffness and & function at
zero frequency in optical conductivity [28]. The FTLM result
for dc resistivity, shown by the red lines in Fig. 6, corresponds
the temperature range where the weight of the §-function peak
at zero frequency (charge stiffness) [28] is smaller than 0.5%
of the total spectral weight. The other finite-size effects are
small and the FTLM resistivity is expected to be close to the
exact solution of the Hubbard model. The remaining uncer-
tainty, due to the frequency broadening, is estimated to be
below 10% (see Supplemental Material in Ref. [25]). Small-
ness of the finite-size effects for the square lattice at T 2 ¢ was
also confirmed from the current-current correlation function
calculated on the 4x4 and 8x8 lattices using CTINT QMC
(see Ref. [25]). For doped triangular lattice we show the con-
ductivity data for T 2 1.5t since below this temperature the
weight of the charge stiffness é function is larger than 0.5% of
the total weight, which indicates larger finite-size effects.
The DMFT resistivity is shown in Fig. 6 by the blue lines.
It is obtained using the NRG impurity solver. Numerical error
of the DMFT-NRG method is small, as we confirmed by a
comparison with the DMFT-QMC calculation followed by the
Padé analytical continuation (see Appendix A). We note that
we do not show the conductivity data in the DCA since in this
approximation we cannot reliably calculate the conductivity
beyond the bubble term. At high temperatures the bubble-term
contribution in cluster DMFT does not differ from the one in
single-site DMFT since the self-energy becomes local [25].
Since the FTLM resistivity in Fig. 6 is shown only for
temperatures when both the nonlocal correlations and the
finite-size effects are small, the difference between the DMFT
and FTLM resistivity is due to the vertex corrections. Their
contribution corresponds to the connected part of the current-
current correlation function whereas the DMFT conductivity

FIG. 7. Optical conductivity at 7 = 1.4.

is given by the bubble diagram. A detailed analysis of vertex
corrections for the square lattice is given in our previous work
(Ref. [25]). Here, our main focus is on the comparison of
the importance of vertex corrections for different lattices: the
numerical results show that the vertex corrections to conduc-
tivity are less important in the case of the triangular lattice.

In the doped case, the FTLM solution gives the resistiv-
ity which is approximately linear in the entire temperature
range shown in Fig. 6. This bad-metal linear-T temperature
dependence is one of the key signatures of strong electronic
correlations. The resistivity is here above the Mott-Ioffe-Regel
limit which corresponds to the scattering length one lattice
spacing within the Boltzmann theory. The Mott-Ioffe-Regel
limit can be estimated as [6] p,,, ~ /27 & 2.5.

At half-filling and low temperatures the result qualitatively
depends on the applied method. For the half-filled triangular
lattice at U = 10t the DMFT solution gives a metal, whereas
the nonlocal correlations lead to the Mott insulating state.
Still, similar as for thermodynamic quantities, the numerically
cheap DMFT gives an insulatinglike behavior and a rather
good approximation down to 7 ~ 0.5¢.

The optical conductivity, shown in Fig. 7 for T = 1.4¢,
provides further insight into the dependence of the vertex
correction on the lattice geometry. The DMFT-QMC conduc-
tivity is calculated using Eq. (5) with X(w) obtained by the
Padé analytical continuation of X(iw,) (see Appendix A for
a comparison with DMFT-NRG). In the DMFT solution, the
Hubbard peak is determined by the single-particle processes
and it is centered precisely at w = U. The vertex corrections
in FTLM shift the position of the Hubbard peak to lower
frequencies. The total spectral weight is the same in FTLM
and DMFT solution since it obeys the sum rule of Eq. (6),
while the kinetic energies coincide. The Ward identity for
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vertex corrections [25,31]

1
ASM(y =0) = =27 3 T ) GRliwn)dh, Twin)  (7)

k iwy,

also implies that the vertex corrections do not affect the sum
rule if the self-energy is local. Here, A(iv) is the current-
current correlation function and A(iv = 0) = nl f dwo(w).

The results clearly show the much stronger effect of ver-
tex corrections on the square lattice on all energy scales. In
addition to a very different w — 0 (dc) limit, we observe
the more significant reduction of the Drude-like peak width
and a larger shift of the Hubbard peak on the square lattice,
with a more pronounced suppression of the optical weight at
intermediate frequencies. We note that a broad low-frequency
peak in conductivity is due to incoherent short-lived excita-
tions characteristic of the bad-metal regime. The structure of
the density of states in different transport regimes is discussed
in Appendix C.

IV. CONCLUSION

In summary, we have performed a detailed comparison
of the thermodynamic and charge transport properties of the
Hubbard model on a triangular and square lattice. We iden-
tified the temperatures when the finite-size effects become
negligible and the FTLM results on the 4x4 cluster are close
to exact. In the doped case, for both lattice types, the resistivity
is approximately linear in temperature for 7 2 1.5¢. In partic-
ular, we found that the contribution of vertex corrections to the
optical and dc conductivity is smaller in the case of a triangu-
lar lattice, where it leads to ~20% decrease in dc resistivity
as compared to the bubble term. The vertex corrections also
leave a fingerprint on the position of the Hubbard peak in the
optical conductivity, which is shifted from @ = U to slightly
lower frequencies.

On general grounds, higher connectivity and/or magnetic
frustration should lead to more local self-energy and smaller
vertex corrections in the case of triangular lattice, as it is
observed. However, the precise role of these physical mech-
anisms and possible other factors remains to be established.
Another important open question is to find an efficient ap-
proximate scheme to evaluate the vertex corrections, which
would be sufficiently numerically cheap to enable calculations
of transport at lower temperatures and in real materials. These
issues are to be addressed in the future, but we are now better
positioned as we have established reliable results that can
serve as a reference point.

With this work we also made a benchmark of several
state-of-the-art numerical methods for solving the Hubbard
model and calculating the conductivity at high temperatures.
This may be a useful reference for calculations of conduc-
tivity using a recent approach that calculates perturbatively
the correlation functions directly on the real-frequency axis
[56-59], thus eliminating a need for analytical continuation,
while going beyond the calculation on the 4 x4 cluster.
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APPENDIX A: COMPARISON OF THE DMFT-NRG
AND DMFT-QMC CONDUCTIVITY

Here, we compare the DMFT results for the dc resistivity
and optical conductivity obtained with two different impurity
solvers. The optical conductivity o (w) is calculated according
to Eq. (5). The dc resistivity is equal to p = o ' (w— 0).

Within DMFT-NRG solver the self-energy is obtained di-
rectly on the real-frequency axis. There are three sources of
errors in this approach: discretization errors, truncation er-
rors, and (over)broadening errors. The method is based on
the discretization of the continuum of states in the bath; the
ensuing discretization errors can be reduced by performing the
calculation for several different discretization meshes with in-
terleaved points and averaging these results. It has been shown
[45] that in the absence of interactions, the discretization error
can be fully eliminated in a systematic manner. For an inter-
acting problem, the cancellation of artifacts is only approxi-
mate, but typically very good, so that this is a minor source of
errors. The truncation errors arise because in the iterative di-
agonalization one discards high-energy states after each set of
diagonalizations. For static quantities this error is negligible,
but it affects the dynamical (frequency-resolved) quantities
because they are calculated from contributions linking kept
and discarded states [61-63]. Finally, the raw spectral func-
tion in the form of & peaks needs to be broadened in order to
obtain the smooth spectrum. If the results are overbroadened,
this can result in a severe overestimation of resistivity, and this
is typically the main source of error in the NRG for this quan-
tity. Fortunately, the resistivity is calculated as an integrated
quantity, thus, the broadening kernel width can be systemat-
ically reduced [20,64]. The lower limit is set by the possible
convergence issues in the DMFT self-consistency cycle due
to jagged aspect of all quantities, where the actual limit value
is problem dependent. In the NRG results reported in this
work, it was possible to use very narrow broadening kernel.
By studying the dependence of the p(7") curves on the kernel
width, we estimate that the presented results have at most a
few percent error even at the highest temperatures considered.

The DMFT-QMC gives the self-energy X(iw,) at the
Matsubara frequencies and the analytical continuation is nec-
essary to obtain X(w). The statistical error in QMC makes
the analytical continuation particularly challenging. However,
at high temperatures the CTINT QMC algorithm is very ef-
ficient. Running a single DMFT iteration for 10 minutes on
128 cores and using 20 or more iterations, we obtained the
self-energies with the statistical error |§X(iwp)| &~ 5x107*
and |8G(iwp)| &~ 2x 107> at the first Matsubara frequency at
T = t. Such a small statistical error makes the Padé analytical
continuation possible for temperatures 7 < 2¢.
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FIG. 8. DMFT-QMC (blue dots) and DMFT-NRG (red lines)
resistivity as a function of temperature. The analytical continuation
of the self-energy is performed with the Padé method. At high tem-
peratures the DMFT-NRG result agrees rather well with the RAIPT
(green dashed lines).

We have checked that Padé continuation gives similar re-
sults for X(w) when performed on X(iw,) taken from last
few DMFT iterations. We than used ¥(iw, ) averaged over the
last five iterations to further reduce the noise in X(iw,), be-
fore performing the Padé analytical continuation subsequently
used in the calculation of the conductivity. We also obtained
G(w) directly by the Padé analytical continuation of G(iw;,),
and checked that the result is consistent with the one cal-
culated as G(w) = [ de po(e)[w + u — & — Z(w)]™". These
cross checks have confirmed that Padé analytical continuation
is rather reliable.

Figure 8 shows the temperature dependence of resistivity
calculated with the DMFT-NRG (red lines) and DMFT-QMC
(blue dots). For the square lattice we find excellent agreement
between the two methods. For the triangular lattice we find
some discrepancy for T ~ 1.5¢, which is likely due to the
approximations in DMFT-NRG. We also find that the real-axis
iterative perturbation theory [65-67] (RAIPT) agrees rather
well with the DMFT-NRG solution for T > 2z.

It is also interesting to note how the lattice geometry can
influence the range of the Fermi liquid p oc 72 behavior in the
DMEFT solution. In the DMFT equations the lattice structure
enters only through the noninteracting density of states. We

0.05

square
p=0.15

0 5 10 15
w

FIG. 9. DMFT-QMC and DMFT-NRG optical conductivity at
T=14.

observe p oc T2 behavior up to much lower temperatures on
the square lattice. In this case, p o« T2 region is hardly visible
on the scale of the plot, while p oc 72 up to T ~ 0.3¢ on the
triangular lattice. This observation is in agreement with the
extension of the C o« T region in C(T'), which is restricted to
lower temperatures in the case of a square lattice (Fig. 4).

A comparison of the DMFT-NRG (red lines) and DMFT-
QMC (blue lines) optical conductivity at T = 1.4¢ is shown in
Fig. 9. The overall agreement is very good. We, however, find
a small discrepancy at w ~ 10t. The DMFT-QMC result has
the Hubbard peak in o (w) centered exactly at w = U, whereas
it is shifted to slightly lower frequency in the DMFI-NRG
solution. This shift is an artifact of numerical approximations
in DMFT-NRG. A position of the Hubbard peak at U = 10¢
is another manifestation of the precision of analytical contin-
uation of the QMC data.

APPENDIX B: FINITE-SIZE EFFECTS
IN CHARGE SUSCEPTIBILITY

In Fig. 10 we show the charge susceptibility obtained
with different methods. The single-site DMFT result agrees
very well with the 4x4 FTLM after averaging over the
twisted boundary conditions. We show yx. averaged over
Nwe = 1, 4, 16, 64, and 128 clusters with different bound-
ary conditions. y. obtained with a single setup of boundary
conditions deviates at low temperatures from the averaged
values. The DCA results for T < 0.5¢ are also inconsistent.
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FIG. 10. Charge susceptibility as a function of temperature for
the triangular lattice at p = 0.15 hole doping.

We believe that this is an artifact of the particular choice of
the Brillouin zone patches. In DCA 4x4 and 2x2 we have
just four and two independent patches in the Brillouin zone
for triangular lattice, respectively.

APPENDIX C: DMFT DENSITY OF STATES

Here, we illustrate the density of states in different trans-
port regimes in the DMFT solution. The results in Fig. 11 are
obtained with the QMC solver followed by the Padé analyt-
ical continuation. We have checked that the density of states
agrees with the DMFT-NRG result.

In the Fermi-liquid regime at low temperatures there is a
peak in the density of states around the Fermi level. In the
doped case the coherence-decoherence crossover is at temper-
ature T ~ 0.3, as we established from the specific-heat data
(see Fig. 4) and from the condition that the resistivity reaches
the Mott-Ioffe-Regel limit (see Sec. III B). In agreement with
earlier work [10,12], we see that at T ~ 0.3 there is a peak in
the density of states even though long-lived quasiparticles are
absent. At even higher temperatures (here shown 7 = 1.4),
deeply in the bad-metal regime, the peak at the density of
states at the Fermi level is completely washed out.
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FIG. 11. Density of states in the Fermi liquid at low temperatures
and in the bad-metal regime at high temperatures.

At half-filling the result is very sensitive to the exact posi-
tion of parameters on the U-T phase diagram (see Fig. 2). For
the triangular lattice at U = 10 the solution is metallic even
at low temperature which leads to the formation of narrow
quasiparticle peak at the Fermi level. This peak is quickly
suppressed by thermal fluctuations which is accompanied by
a sudden increase in the resistivity. For the square lattice at
U = 10 the system is insulating above for T 2> 0.03, while
the Mott gap gradually gets filled as the temperature increases.
We note that the low-temperature peak in optical conductivity
in Fig. 7 is not connected to the existence of quasiparticles.
It is just a consequence of a finite spectral density at the
Fermi level (the absence of an energy gap), as expected in
the bad-metal regime.
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In this review, the physics of Pfaffian paired states, in the context of fractional quan-
tum Hall effect, is discussed using field-theoretical approaches. The Pfaffian states are
prime examples of topological (p-wave) Cooper pairing and are characterized by non-
Abelian statistics of their quasiparticles. Here we focus on conditions for their realization
and competition among them at half-integer filling factors. Using the Dirac composite
fermion description, in the presence of a mass term, we study the influence of Landau
level mixing in selecting a particular Pfaffian state. While Pfaffian and anti-Pfaffian are
selected when Landau level mixing is not strong, and can be taken into account pertur-
batively, the particle-hole (PH) Pfaffian state requires non-perturbative inclusion of at
least two Landau levels. Our findings, for small Landau level mixing, are in accordance
with numerical investigations in the literature, and call for a non-perturbative approach
in the search for PH Pfaffian correlations. We demonstrated that a method based on the
Chern—Simons field-theoretical approach can be used to generate characteristic interac-
tion pseudo-potentials for Pfaffian paired states.

Keywords: Fractional quantum Hall effect; half-integer filling factor; Pfaffian paired
states.
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1. Introduction

The fractional quantum Hall effect (FQHE)! is a strongly correlated phenomenon of
electrons that is observed when they are confined to two dimensions and subjected
to a strong magnetic field perpendicular to the two-dimensional plane, in which
electrons live and interact. At special filling factors, i.e. ratios between the number
of electrons and the number of flux quanta piercing the two-dimensional plane,
experiments reveal highly entangled topological states of electrons with fractionally
quantized Hall conductance, for intervals of magnetic field (or density). Almost
exclusively the denominator of these fractions is an odd number, which can be
traced and connected to the fermionic statistics of electrons. A surprise came when
an even-denominator FQHE, at filling factor 5/2, was discovered.? This introduced a
new paradigm in our understanding of (even-denominator) FQHE states: they may
be Bardeen—Cooper—Schrieffer (BCS) paired states of underlying quasiparticles. If
we neglect the role of spin in high magnetic fields, the most natural choice for
a pairing in a fixed Landau level (LL) is the unconventional, p-wave pairing of
spinless quasiparticles proposed in Ref. 3. The resulting state, Moore—Read state
is also called Pfaffian due to the necessary antisymmetrization of a collection of
pairs of quasiparticles — identical fermions, which do not possess any additional
characteristic like spin.

The underlying quasiparticles at even-denominator fractions beside the possi-
bility of having the BCS pairing correlations in a paired state, may in principle
exist in its parent, Fermi-liquid-like (FLL) state.* Indeed such a state was probed
and detected at filling factor 1/2,% and firstly theoretically described in Ref. 6. The
theoretical assessment of even-denominator FLL state(s) may lead also to further
understanding of the physics of the BCS pairing of underlying quasiparticles. An
important direction in this effort is the understanding of the FLL state that occurs
at a half-integer (denominator 2) filling of the system, and, at the same time, in
an artificial circumstance of a precisely half-filled LL. Namely, a LL is singled out
and half-filled. This mathematical limit of the physical system is highly relevant
for the understanding of the real system. Our understanding of FQHE phenomena
and real circumstances of FQHE experiments call for the concept of the projection
to a single LL. Very often the physics of FQHE is confined to a single LL, and
we can neglect the LL mixing — the influence of other LLs. Thus if the system
is at half(-integer) filling, it nearly possesses the particle-hole (PH) symmetry —
the symmetry under exchange of electrons and holes that a half-filled LL has. The
Halperin-Lee-Read (HLR) theory® of the FLL state at half-filling does not possess
this symmetry (because it is a theory that does not include a projection to a fixed
LL), but a phenomenological, effective theory with Dirac quasiparticles, proposed in
Ref. 7 is manifestly invariant under exchange of electrons and holes, and describes
the artificial system of electrons that is confined to a single LL.

On the other hand, the Pfaffian paired state is not invariant under exchange
of electrons and holes. When the PH symmetry operation is applied to the
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Pfaffian, a new topological state is generated, Pfaffian’s conjugated partner, known
as anti-Pfaffian.®° Here we may ask whether a state exists, that is a collection of
p-wave Cooper pairs and respects the PH symmetry. Indeed one may argue that
the Dirac theory of the half-filled LL offers a distinct possibility” known as PH
Pfaffian (PH symmetric Pfaffian). Before the proposal of the Dirac theory, studies
that were examining possibilities of additional, negative-flux pairing, in which an-
gular momentum of p-wave has opposite sign with respect to the one in Pfaffian,
also proposed the PH Pfaffian.!0:11

While the relevance of Pfaffian and especially anti-Pfaffian for the explanation
of the FQHE at 5/2 is firmly established in numerical experiments confined to a
fixed LL with LL mixing (perturbatively) included via additional, three-body inter-
actions,'? we do not have a support for PH Pfaffian when numerical experiments are
confined to a fixed LL.'® But a recent experiment'* on thermal Hall conductance
is consistent with a PH Pfaffian scenario at 5/2. That the PH Pfaffian correlations
and topological order may be relevant even in the absence of the PH symmetry
(as is the case in experiments) may be shown by careful examination of various
experimental probes as discussed in Ref. 15.

Thus the question is whether for sufficiently strong LL mixing, that cannot
be treated perturbatively (as it is done in all numerical experiments confined to a
single LL), we can reach a regime in a uniform system when PH Pfaffian correlations
prevail. Or, is disorder needed to install the effective PH Pfaffian correlations?'6:17
In any case LL mixing may play decisive role in selecting a specific kind of Pfaffian
state in experiments. In the following sections, Secs. 3 and 4, we will review our
work!819 that used Dirac and Chern—Simons (CS) field-theoretical description to
examine the role of LL mixing and explore pairing at half-integer fillings, in general.

In Sec. 2, we will review the Dirac theory of the FLL state of underlying quasi-
particles — composite fermions at a half-filled LL, and select and describe a version
of the theory that is best fitted for a description of Pfaffian paired states. The mass
term in this theory mimics LL mixing (for small LL mixing has the role of those
additional (three-body) interactions in the electron representation), and the lim-
iting behavior of large mass may be identified with the usual HLR picture of the
FLL state of FQHE at half-filling.

In Sec. 3, within this version of the Dirac theory, we will probe the question of
topological pairing instabilities in a mean-field approximation (as usual in topolog-
ical explorations when we assume that topological characterization is immune to
the neglect of fluctuations). Instabilities will originate from the minimal coupling
term, i.e. the coupling with the CS gauge field, and we will be disregarding the
remaining influence of the Coulomb interaction, which has a pair-breaking effect.
Our interest will be to find which kind of Pfaffian will prevail at certain LL mixing,
if we assume a pairing instability.

In Sec. 4, we will discuss which model Hamiltonians for electrons, i.e. ef-
fective interaction pseudo-potentials (PPs) in fixed LLs lead to Pfaffian states.
Using CS field-theoretical description we recover dominant, already known PPs for
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Pfaffian and anti-Pfaffian in a fixed LL, and discuss the necessity to include non-
perturbatively at least one more LL to establish PH Pfaffian correlations, and list
pertinent PPs.'” Section 5 is reserved for a discussion and conclusions.

2. Theoretical Approaches to the Physics at a Half-Integer Filling
2.1. Wave-function approach

The basic explanation of the FQHE rests on the Laughlin wave function — the
ground state wave function for the most prominent effect at filling 1/3.2° The wave
function captures the basic correlations of electrons in a constrained space of an
isolated LL. To introduce the Laughlin wave function, we start with the single-
particle Hamiltonian,

(p—A)?
2Mme

H = 5 (1)
of a particle in a constant magnetic field, B = Bz, with A, = —(B/2)y and
A, = (B/2)z, in a rotationally symmetric gauge. We fixed c=1,e =1, and i = 1.
The physics of FQHE is largely confined to a fixed LL and in the case of filling
factor 1/3, to the lowest LL (LLL). In the rotationally symmetric gauge and in the
LLL, the appropriate basis is given by the following single particle wave functions,

1 . 1
() = "o { - (g ) 1P} ®
\/ 275 ann) B

where Ip = \/g, and n = 0,1,2... is the guiding center angular momentum
number. Apart from the exponential factor, these wave functions depend only on
the coordinate z = z+1iy, i.e. they make a holomorphic description, when we neglect
the factor which is the same for each ¥, (r). Thus many-body wave functions of
frozen spin electrons become polynomials in the z coordinate(s) in the LLL, as in

the following expression,

N,
1 .

U(ry,ro,...,rN,) P(zl,ZQ,...,zN)exp{ (412> E |z,~|2} . (3)
B/ =1

The Laughlin wave function at filling factor 1/3 is specified by the Laughlin—Jastrow
choice for P,

Pr_y(z1,22, .. 2n,) = [ [ (2 — 2)™, (4)
i<j
with m = 3. In this polynomial, the highest power of any z;; i = 1,2,..., N, is
Ny, = m(N. — 1) and this number also specifies the number of (single-particle)
states available to the system, i.e. the number of flux-quanta piercing the system,
Ny = Np, + 1. Thus the ratio N./N, becomes 1/3 in the thermodynamic limit
when m = 3.
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For monotonically decreasing with distance repulsive interactions like Coulomb,
we may expect an extreme capacity of the wave-function to minimize the interaction
energy. Namely, as a function of a fixed electron coordinate, the wave function has
all (NV,,) zeros on the other electrons, m = 3 per electron, though only one zero is
required by Fermi statistics. Equivalently, we may say that the zero on any other
electron is of the m'™ order as we study the limiting behavior when a fixed electron
approaches any other in (4).

Following the same logic, we may attempt the same construction at filling factor
1/2, but, because m = 2 in (4), in this case, we need additional factors that will
ensure that the wave function is antisymmetric. These additional factors should
not contribute or change the value of N,, in the thermodynamic limit (mN), and
thus, as additional factors in the total wave function, may be considered as its
“neutral part” — the part that does not see the macroscopic flux. (The Laughlin—
Jastrow part (4) would represent the charged part.) The neutral part may describe
a collection of fermionic quasiparticles (that do not see any macroscopic flux, i.e.
external magnetic field), and they may be in the first approximation non-interacting
(make a FLL state), or they may come in BCS pairs (make a bosonic condensate and
possibly a gapped state). Indeed experiment and theory are equivocal that the state
at filling factor 1/2 (in GaAs structures) is a FLL state of underlying quasiparticles,
and the state at filling factor 5/2 (in GaAs?) is effectively a gapped state of half-
filled second LL of frozen-spin (spinless) electrons, in which quasiparticles may pair.
The exact topological nature of the paired state at filling factor 5/2 is still under
debate.

But we may say that the most theoretically appealing (the most simple and
natural BCS pairing) guess for the gapped state at the half-integer filling factors
(in various experimental set-ups) is proposed in Ref. 3, and goes under name Moore—
Read state or Pfaffian (state). The Pfaffian wave function in the LLL is

qufzgsgna{( L ! [SICEEG

Za(1) ~ Z0(2)) (20(N.—1) = Zo(N.)) P

where the sum is over all permutations of N, objects where N, is an even number.
We omitted the exponential factors and the expression is unnormalized. In math-
ematics, if A = {a;;} is N x N antisymmetric matrix, and N is even, its Pfaffian
is
N/2
pf(aij) =pf(A) = 2N/2 N/2 )! Z sgno H A5 (2i—1)0(2i) » (6)

and pf(A)? = det(A). In more physical terms, we see that the sum in the Moore—
Read wave function describes the antisymmetrization of a collection of Cooper
pairs, where each pair wave function, g(r), where r is the relative coordinate of a
pair, can be described as

TOES (™)
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This special algebraic decay is the hallmark of the Pfaffian (Moore-Read) wave
function, and expresses a special kind of topological, long-range entanglement in
this function that represents a p-wave pairing. The construction is given in the
LLL, but can be easily generalized and considered in the second LL, i.e. in any
isolated LL.

The highest power of any z; in the Pfaffian wave function is N,, = 2N, — 3,
i.e. Ny, = 2N, — S, where § = 3 is so-called shift — a topological number that
characterizes a state of a FQHE system on a curved background, such as a sphere.
If a state is PH symmetric, the shift should be invariant under the PH exchange.
We require N, + N, = N, + 1, i.e. the number of electrons, N, plus the number of
holes, Ny, should be equal to the number of available single-particle states. Thus
the state that we get by applying the PH transformation on Pfaffian, is a distinct
state, anti-Pfaffian, with shift equal to —1. This anti-Pfaffian state, that has distinct
topological features with respect to Pfaffian, was firstly described in Refs. 8 and 9.

We may wonder whether we may still have a p-wave pairing (the smallest angular
momentum pairing of spinless electrons) in a many-body wave function that is
invariant under PH exchange. It is not hard to see that in this case we must have
N,, = 2N, — 1, and this implies some kind of a microscopic negative flux or simply
reversed p-wave pairing as in

1
gpn(r) ~ — . (8)
z
The naive guess would be that by doing the projection to the LLL, in the first
approximation, we have

gpn(r) ~ 2. (9)

But, because for any set of complex numbers z;, ¢ = 1,2,...,N,; N even, and
N > 2,

pf(z; —2;) =0, (10)

this does not lead to a non-trivial state in the LLL. Thus the question is whether a
half-filled isolated LL with special interactions can support a gapped state with PH
symmetry, i.e. PH (symmetric) Pfaffian. In the case of Pfaffian and anti-Pfaffian,
special interactions exist in an isolated LL?! (and they do not respect the PH sym-
metry). Furthermore, the negative flux pairing expression in (8) calls for inclusion
of other LLs, and maybe only with significant LL mixing, when the PH symmetry
is broken, we can stabilize the pairing correlations in (8). Even in this case, we will
call this exotic state PH Pfaffian.

2.2. Field-theoretical approach
2.2.1. Quasiparticles in the FQHE and the HLR theory at half-filling

We may separate the phase part from the rest of the Laughlin wave function at
filling factor 1/m, where m = 3, or from the Laughlin—Jastrow part of a ground

2030004-6



Mod. Phys. Lett. B Downloaded from www.worldscientific.com

by UNIVERSITY OF EXETER LIBRARY on 07/15/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

Pfaffian paired states for half-integer fractional quantum Hall effect

state wave function at half-filling, when m = 2, and, then, define a decomposition
into two parts of any many-electron wave-function, W, as

(2 — z)"
\IJe(rl,rQ, N 7I‘]\IE) = H W\qu(rl,rz, ey rNe) . (11)
i< P T A
The wave function Wy, (rq,re,...,ry,) represents a wave function of quasiparti-

cles after the unitary transformation defined by the phase factor: in the Laughlin
(m = 3) case quasiparticles are bosons, and at half-filling (m = 2) they are fermions.
This defines a CS transformation, or what we will refer to as a Zhang’s construction
of quasiparticles.?? In the field-theoretical terms, quasiparticles induce field a —
they are the sources of an artificial (internal) magnetic field b that also acts as an
additional field on quasiparticles,

1Vxa 1

——b. 12
m 27 m (12)

Pap =

In (12) pgp is the quasiparticle density. We will discuss the CS field-theoretical
approach to the system at half-filling, i.e. the HLR theory with more mathematical
details below. Here we will note that in a mean-field picture the internal field will
cancel the external field. As a first approximation to the half-filling problem, we
will find that the ground state in the quasiparticle representation is simply a Slater-
determinant of free waves that are filling a Fermi sphere in the inverse space in two
dimensions, i.e. it represents a gas of fermionic quasiparticles. (The amplitude part
of the Laughlin—Jastrow factor can be recovered in the field-theoretical approach
by the random phase approximation (RPA) treatment of the density harmonic
fluctuations.)

Therefore, in the Zhang’s quasiparticle construction to each electron at position
w is attached the following phase factor:

| fe—s (13)

(zi —w)™’

a flux tube. The ensuing quasiparticle sees two gauge fields: external and internal —
it is a quasiparticle that possesses charge, and the density of quasiparticles is equal
to the density of electrons.

On the other hand in the Read’s construction®?® of quasiparticles, we start with
the notion of fluxes (flux quanta or vortices) that can be introduced by external
field in the system, and can be described by the following construction,

[z —wm, (14)
1
i.e. by insertion of m Laughlin quasiholes. We can make this object neutral by
adding a unit of charge, more precisely an electron, to it, and in this way define
the Read’s quasiparticles as neutral objects, number of which is proportional to
the number of external field flux quanta piercing the system. This view is in a
way a dual approach (equivalent description of the same theory from a different
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point of view) that was initially applied to bosonic systems where the description
in terms of elementary particles — bosons was traded for the description in terms
of excitations — vortices.?*

In any case both approaches take into account the precise commensuration
between the number of electrons and the number of flux quanta in a system at a
fixed filling factor, in our case 1/2.

The CS approach at 1/2, based on the Zhang’s construction of quasiparticles,
begins with the following Lagrangian (density),
¥p—A-—a)Ply 11

In (15), . represents a fermionic (Grassmann quasiparticle) field, and the CS term
is defined by ada = e‘“”\aua,,a)\, v, A = 0,1,2 (denote one time and two spatial
coordinates), the summation over repeated indices is understood, and a,, = (ao, a) is
a three-vector. The cf stands for composite fermions, a general name for underlying
quasiparticles.

ﬁ = \I/Zf(lat — AO — CL())\I/Cf —

Considering the classical equations of motion, from gTEO =0, we get
1Vxa
P — T 16
cf *cf 2 27_( ( )

(Above V x a denotes the z component of the vector, and can be considered as

a scalar in this two-dimensional theory.) In the mean-field, when we assume that

Vxa
27 0

the density of quasiparticles is uniform, the internal field, exactly cancels the

uniform external field at half-filling,

V x A

2

— 2UE0, = 20F Uy, (17)

where U*W, stands for the uniform electron density.

The Lagrangian in (15) is the basis or starting point for the HLR theory, which
describes the physics at 1/2 as a FLL state of (fermionic) quasiparticles. We may
notice, from the form of the Lagrangian, that the electron density—current vector
is equal to the one of quasiparticles,

oL _ .
*m:ﬁ:]é}- (18)

2.2.2. Dirac quasiparticle description of half-filled LL and at half-filling

In this section, we will first review the Dirac theory for a half-filled LL proposed
in Ref. 7 and then consider its extension in the presence of a mass term that is
relevant for the general case (with LL mixing) at half-filling.

We start with an isolated LL (of classical electrons) that is half-filled. It has
the PH symmetry — the symmetry under exchange of electrons and holes. The
low-energy physics of a zeroth LL of Dirac electrons in the weak coupling limit
should correspond to the low-energy physics of isolated LL (of classical electrons).”
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Thus we consider the Dirac problem in an external (magnetic) field, which is a
background field (no dynamics):

Lp= i@v“D;‘\I’ + interactions = W (y°D; + ~ - D)W + interactions  (19)

where D; = %+iAO and D = V—4¢A, and v*, = 0,1,2 are 2 X 2 gamma matrices
for the Dirac description in two spacial dimensions, and ¥ is a two-component
Grassmann field.

The Dirac system is a neutral system and there is no Hall conductance. To make
up for this, i.e. to continue to discuss an isolated LL (of classical electrons), which
has 1/(4r) of the units (e?/h) of Hall conductance, we consider

— ADA
L =iUy"D)V — —, T interactions. (20)
T
If we define the density—current of electrons as
oL
o
Jel = SA® ) (21)
it follows that for densities,
V x A
el — . 22
Pel = pD + . ( )

Because, pp (average density of the Dirac system) = 0, we have a non-zero density
of electrons

pcl 1
Fel _ 23
P = 2, (23)
where B = VQXWA is the uniform external magnetic field. Also
. . . E
Jel =JD + GE ) (24)
where € is a 2 X 2 matrix, €;y = —€y, = 1, €30 = €yy = 0. Thus, with pp = 0 and

jp = 0, we are at half-filling, and the Hall conductance is equal to ﬁ(%)

Following Ref. 7, in a dual picture, we postulate a new Lagrangian, £, with new
dual Dirac field x:

0A  AJA
= ixy* D% — - —— 4 2
L=y Dix +a - ———+ (25)
where --- denotes higher order terms. (We will ignore these higher order terms

below and consider classical equations of motion in the framework of the linear
response theory.) Why would we expect this Lagrangian in a dual picture? We
provide an analysis with more details below, but here we may note that the Dirac
(two-component) formalism is expected also in a dual picture, because it makes
possible that the PH symmetry is manifestly included as demonstrated in Ref. 7.
Also note that the dual fermion is not directly coupled to the external field, and,
as we show below, the Lagrangian describes a Dirac system at a finite density, in
agreement with our expectation that the system is in a FLL state of quasiparticles.
For further details on the dual approach see Refs. 25 and 26.
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(i)

(iii)

It seems that x’s represent Read’s quasiparticles. Indeed, if we consider the
following equation of motion,

oL V x A

0=——=—
5CLO Px 47 ’

(26)
we can conclude that the density of x depends on the number of flux quanta.
On the other hand,

B 57£_ an+V><A
Pel = SAy 4 A

(27)

and, at half-filling, in the mean-field approximation, V x a = 0. Thus, x’s do
not experience any uniform, non-zero gauge field, b = V2fra, that couples x’s
indirectly to the external field. Therefore, x’s are, in the first approximation,
neutral objects, but with the Dirac’s singularity in the inverse space at k = 0.
In this way, they have a non-analytical feature that we do not expect from a

description that is based on Read’s quasiparticles. We find that the effective

theories based on the description with the Dirac’s quasiparticle are very useful
when considering the pairing physics, as they capture the time-reversal and
parity breaking (that is essential for the pairing physics) as we will explain
later in this section.

We expect that the effective theory of a half-filled LL should describe a Fermi-
liquid of quasiparticles (if we do not consider the BCS instability). Indeed, in
the mean-field approximation, in the first approximation, the internal field ()
is zero, and the theory describes a Dirac Fermi-liquid.

If we vary a in £ we find

Also,
0L E-e

=é

Jel:_(SiA P

(29)

where e is the electric field due to the potential a*. Next, we assume that even
in the presence of disorder, the PH symmetry is respected, and in the linear
response we have,

jD = a—Dea (30)

D

where 0,

_ 4D o D _ _D _
= o, # O represents a longitudinal conductance, and o, = 7, = 0

(the Hall conductance is zero). The zero Hall conductance is an expression of
the PH symmetry and a property of Dirac fermions. These three equations,

(28), (29), and (30), combined lead to the conclusion that the Hall conductance
2

of electrons is %(%), which we expect to be the case in the theory of the system

with classical electrons that respects the PH symmetry.2”
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It is important to notice that o2 = o), = 0 is not an only natural “choice” for
the response of the non-interacting Dirac system (conus) to a perturbation due to
a gauge (internal a*) field. To get the Hall conductance, we assume the presence of
the mass term in the non-interacting Dirac description,

Lp = ixy"Djx —mXxx - (31)

The Ugy can be found by integration of Berry curvature in the inverse (k) space,?7-28

by choosing a specific gauge for eigenstates, and integrating over occupied states.
In this way, we can get contributions (in units e*/h):

1 m]
sgn(m)— 1 — ———— |, 32
gu(m) ( W) (32)
from the positive-energy states that are filled for 0 < |k| < kp, and
1
—sgn(m)—, (33)

47
from the negative-energy states. There are two natural ways to take into account
these two contributions: (1) to add them,

m

D

O' = - 5 34

b= (34)

i.e. adopt a “dimensional regularization,” or (2) to consider only the contribution
from the positive energy solutions:

1 |m|
D
wy = 58N 1
o sgn(m) ( R m2> , (35)

i.e. adopt a “Pauli—Villars regularization.” It is obvious that in order to get an
appropriate response in the Dirac theory (of the half-filled LL) we need to assume
and apply the dimensional regularization in the field-theoretical treatment.

We can also conclude that by choosing an appropriate singular gauge (phase)
transformation on the negative energy eigenstates, we can switch from the dimen-
sional regularization to the Pauli-Villars regularization (and vice versa). This trans-
formation can be understood as an adoption of a new quasiparticle picture and a
new Lagrangian (here without higher order terms):

alda 0A AJA
[ — ivP~H Dayap . 227 —_— . 36
XX 8 +a47r 81 (36)

To find the same response as before, we have to adopt Pauli—Villars regularization
(when integrating out fermions and generating quadratic terms in a) with a positive
mass to cancel the second term in L. Physically we indeed switched to a new
quasiparticle picture of Zhang’s type. To see that let’s consider the full theory with
a positive (m > 0) mass term:

ada 0A AJOA

L = ix®P D, P — mydPy® — =2 hetalal i fedelall 37
X X mxXTX 8 +a47r 8 (37)
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(i) From the equations of motion,

oL da 0A
_sap.p _ bl
dar Ix A7 Ar’ (38)

and

oL 0A Oa
pu_ oL 0A Jda
Jel = SAH  Am Ax’ (39)
it follows that, ji = JyP-#, as usual in the CS theory, i.e. the theory directly
relates to the Zhang’s quasiparticle construction.
(ii) If we let m — oo the effective Lagrangian becomes the HLR after the shift

a* — at + A+ 29

We can conclude that the Lagrangian in (37), with m = 0, describes the physics
of an isolated (PH symmetric) LL using the Zhang’s quasiparticle picture. The
introduction of non-zero m represents LL mixing, i.e. a measure of the inclusion of
other LLs, so that for large m we can recover the HLR theory that does not reduce
the effective physics of the electron system to a single LL.

3. Pfaffian Paired States at Half-Integer Filling

In this section, we will adopt the Dirac quasiparticle picture that is given by the
Lagrangian in (37) for a FQHE system at a half-integer filling factor. Thus, the
starting Lagrangian is

- @ _ m ada 0A AJOA
L =ixy"Dyx —mxx — | (40)

87 T4 T Rw
where for simplicity we omitted qp letters when writing x fields with respect to
(37), but we should be aware that for any probes (perturbative expansions) the
Pauli-Villars regularization is understood. We generalized the Lagrangian in (37)
for both signs of mass m (to cancel the additional contribution due to the assumed
Pauli—Villars regularization, the first term in (35)). It follows that

m Oda O0A

p__maa, 94 41
Ix |m|4r 47’ (41)
and
. da 8A
Ja=—p - (42)

as a generalization of (38) and (39) to both signs of mass. Exactly at half-filling,
i.e. when in a uniform, constant magnetic field we have on average one electron per

two flux quanta, we may solve (41) in the Coulomb gauge, V -a = 0. The solutions
22
re

—2—/(1“ ,|25px( r), (43)

m|
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and
a,(r) = \m| /drz /|2 dpy (r), (44)

and dp, (r') = xT(r')x(r") — p, where p is a constant (external flux density). We
would like to analyze the effect on pairing of the interaction term,

Vint = —axvyx- (45)
In the following, representation of v matrices,
V=03, A =ioy, = —ioy, (46)
where 0;,i = 1,2, 3 are Pauli matrices, we have
Vine = —ax"ox. (47)
In this representation, we have the following expression for the interaction:
0 z—7
[r — 1|2
Ving = — Tl /dr 5py (r')x"(r) L x(r). (48)
o T 0
[r — 1|2

On the other hand, the presence of the mass term in the Dirac system leads to the

following eigenproblem,

m—e€ k_

x(k) =0, (49)
ky —m—e

where k_ = k, —ik, and k4 = k, +ik,. The positive eigenvalue, € = \/|k|? + m? =

FJ, corresponds to the following eigenstate,

m+ Fyx

k.

1

2Ex(Ex +m) (50)

XE =

As we consider relevant only (positive energy) states around kp, we will keep only
these states in the expansion over k-eigenstates of field x(r), and, further, only
consider the BCS pairing channel in Vj,¢. Thus (in the second-quantized notation)

x(r) = \/%T/ gexp{ik ‘rixg(K)ag+ -, (51)

and
B0 = m%zmaax !
T ml 8V R T B B (m + Ex)(m + Ep)

xA{(m+ Ey)(m + Ep) +k-py}

X [m + Ey, —k,]
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We used: [ drlexp{ikr} = 22—1 We may rewrite this expression (taking into ac-
count the antisymmetry of the fermionic operators) as

Vi > = Z VkpaLapaJr—ka—p ) (53)
k,p
where
27 1
> T RV E, - B,
isin(0, —0r) m
x |—4|m|kp———L—, — —(Ep + E, +2m)(E, — m)(E, —m
exp{i2(0, — 0)} — 1}

X . 54
k —p? (54

Now we will adopt the mean-field BCS approximation, in an expectation that the
topological characterization of pairing instabilities, will stay unchanged under this
approximation. In the following, we will review the relevant parts of the BCS mean-
field theory. We will follow the notation of Ref. 30. The effective Hamiltonian is

1
Ko = Z {gkaltak + §(A1*<(l7kak + AkaLaTk)} ) (55)
K

and in our case & = Ey—pu, with Ey = 1/|k|?2 + m2. The Bogoliubov transformation

is
ok = UGk — vkaik , (56)

with
v _ —(& —fk)7 |2 = 1 <1+ fk) ’

Uk Ai’;

o _1( &
[ _2<1 &)

and & = /& + |Ax|?.

On the other hand, if we start with a Cooper channel interaction and do the

BCS mean-field decomposition with bL = aLaT_k

> Vip b bp = D> Vipblbp + > Vipbh (bp) — > Vip(bl)(bp) . (58)
k,p k,p k,p k,p

(57)

and specify u_x = ux = uy, and v_x = —vy, then
A*
TP = Z Vkp<a£aik>
k

= Vip((uof, + via 1) (—vion + weal ) (59)
k
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ie.
P _ * _ k
5 = Ek VicpUp uk = E Lkp(—)ﬁ- (60)

In our case Vip is given in (54). The numerical solutions of the BCS self-
consistent equation, when the parameter kr is kept fixed, but mass m is varied, for
channels | = 1,3, —1, with A = |Ag|exp{ilfk} are described in Fig. 1. We find
that A} = |Ax|exp{—ilfk}, | = 1,3, -1 are solutions if we switch gauge for the
eigenstates of the Dirac equation, i.e. instead of (50) we take

K 1

p— —_— . 61
X B~ m| /2B (B —m) (61

0.5

: 0.7
: — |m|=0.80
i —— |m|=1.30 0.6
0.4 !
! — |m|=1.60 o
—_— h I 0.5
o ! —— |m]=3.00 S
S ” ! —— |m|=8.00 = 04
) ! ~
_ i — |m| =20.00 <.,
X 0.2 vl
= ! %
i |=1 g o2
0.1 .
i 01
i
0.0 i 0.0 —
0.8 i — |m|]=0.02 0.000 f= = =l e e .t
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: ! o
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Fig. 1. (Color online) The solution of the self-consistent BCS problem. Left column: radial direc-
tion k-dependent pairing amplitude for various values of m. Channel | = 1 solution (PH Pfaffian)
only depends on |m|, while [ = 3 (anti-Pfaffian) and | = —1 (Pfaffian) channel solutions are
symmetric with the sign-flip of m. Upper right panel: dependence of the maximum of the pairing
amplitude on m (always found at the Fermi level kr). Lower right panel: total energy of the
different pairing solutions compared to the normal state energy. Gray vertical lines denote the
transition between different channels. Color in the background corresponds to the energetically
favorable channel at the given m: a measure of LL mixing. The color of lines: Pfaffian: green,
anti-Pfaffian: orange, PH Pfaffian: blue. Reprinted with permission from Ref. 18 (©) the American
Physical Society.
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Thus we get two sets of solutions, because the effective theory does not possess
the knowledge of the direction of the external magnetic field. Despite this, we
have a clear prediction that for small m, LL mixing, depending on the sign of
m we have Pfaffian or anti-Pfaffian, and for large m the PH Pfaffian solution is
possible. Thus, in principle, the PH Pfaffian is possible in this effective theory of
quasiparticle pairing. The nature of this state, whether it is gapped or gapless
state of electrons, needs further investigations (though we see that the Bogoliubov
quasiparticle spectrum is gapped).

These predictions on topological pairing, when the LL mixing (mass m) is small,
are in accordance with numerical experiments (a) in the second LL, because for
m = 0 there is a Schrodinger cat superposition of Pfaffian and anti-Pfaffian,3!32
and depending on the LL mixing (sign of PH breaking mass) we have Pfaffian or
anti-Pfaffian, and (b) in the LLL, where a PH Pfaffian wave function has a large
overlap with the composite fermion Fermi-liquid wave function,'333
with Fig. 1 where the PH Pfaffian-like state is continuously connected to the excited
composite fermion Fermi-liquid state at m = 0 and cannot represent a gapped state
in an isolated LL.

The dimensionless m in the theory is a measure of the PH symmetry breaking
and LL mixing, although the precise relation between m and

in accordance

92

E,:lB
= =l 62
" hw, (62)

i.e. the ratio between the characteristic interaction energy and cyclotron energy,

known as a LL mixing coefficient, we do not know. In (62), ¢, is the dielectric
constant of the background material, Aw, = ﬁfﬁ , and my, is the electron band mass.

i.e. kr fixed, from the mathematical limit

T = 25
of the PH symmetric case when m = 0, we reach various systems (experimental
settings) by changing the interaction strength (dielectric constant e,.). Thus m,
in principle, can be connected with k, which can be considerable in experiments.
(According to Ref. 41 the parameter « is given by 2.6/v/B, 14.6/v/B, 16.7/\V/B,
22.5/+/B, in n-doped GaAs, p-doped GaAs, n-doped ZnO, and n-doped AlAs, with

B measured in Tesla.)

As we keep the density, p =

4. Model Interactions for Pfaffian Paired States

It is important to know model interactions for model wave functions in order to
probe their stability and nature. In the case of bosons, the Pfaffian state at filling
factor 1 is

IR P (R S

Za(l) - 20(2)) (Z”(Ne_l) - Z”(Ne))

X H(Zk — Zl) . (63)

k<l
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The model interaction for which this state is an exact, densest state of zero energy>*
is

—0252 2 — 2j)0% (2 — 2k) (64)

(ijk)

where v > 0 and the sum is over all distinct triples of particles. Thus if three
bosons meet (come as close as possible) this will cost repulsive energy. In the case
of fermions at filling factor 1/2, the Pfaffian model interaction is a generalization
of the boson interaction to the one that, if three fermions come as close as possible,
again, only this will cost energy. The lowest angular momentum wave function of
three electrons in the LLL can be described as

W(ry,ra,T5) ~ Y SBNOZ2 (1) 70 (570 3) exp{ 15 —— (211> + |22f* + |23] )} (65)

We may conclude that if M (angular momentum) = 3 for three electrons this will
cost interaction energy. Indeed, it can be argued, just as in the case of the Laughlin
state and two-body PPs,3® that in the case of Pfaffian we need to specify only a
truncated series of three-body PPs with definite three-body angular momenta. At
filling factor 1/2, only non-zero three-body PP is the one for M = 3. (For bosouns,
at filling factor 1, the only non-zero three-body PP is for M = 0.)

These model interactions are highly artificial if we want to model and probe real
physical systems. In the FQHE, we can always specify the base LL from which most
of correlations originate, but should also consider the effects of LL mixing. Beside
the Coulomb (two-body) interaction at a half-integer filling factor, we may take
into account perturbatively the effects of LL mixing, by considering special three-
body interactions.?” 4! In this way we may find a characteristic series of three-body
PPs for Pfaffian state, when considering the specific problem of the second LL and
associated LI mixing contribution. A PP is a certain characteristic energy, Vi,
associated with a three-body state at total angular momentum M. (The dimension
of the subspace of a fixed angular momentum for three particles may be larger
than one for higher M, and Vj; may be a matrix.) In the case of Pfaffian, the
dominant, first three values of three-body PPs, for M = 3,5,6 are negative and
“jM 5 ~ 0.4 and VM Va=e ., (0.7.41 We may ask what would be a characteristic series
for PH Pfaffian, 1f We assume that the PH Pfaffian state or phase exists, and expect
that some kind of three-body interaction will be relevant also in this case.

To answer this question we may consider again the CS formalism, not directly
connected with considerations in Sec. 3. We will recall®* the effective derivation
of the Pfaffian physics, by a part of the kinetic term in the non-relativistic CS
description. (Thus these considerations will not relate to the solution in Sec. 3, in
the large m limit, when we take into account the complete kinetic term.) We will
use this formal derivation to propose a method for recovering model interactions
for Pfaffian and PH Pfaffian. (By using the PH exchange we can reach a model
interaction also for anti-Pfaffian.)
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To get (formally) the Pfaffian pairing solution we may consider the kinetic en-
ergy part of the (non-relativistic) CS approach in (15), i.e. the part of the Hamil-
tonian given by
\ij(p —A—a)’Uy

2m
with B = Bz, with A, = —(B/2)y and A, = (B/2)z , as before, and

a;(r) = /drz| ,I|25pcf( ", (67)

H = : (66)

and
o0) = =2 [ ari =St (68)

as before, in the Coulomb gauge V -a = 0, and dps = \I'Cf\I/Cf — p, where p is the
average density. We consider the following part of the implied interaction,

Va = _ajcf7 (69)
with
) 1
Jef = %[\Ij;;(plpcf) - (P‘ij)‘l’cf] ) (70)
more specifically its Cooper channel part.
After simple steps,'? we arrive at the Cooper channel part,

4r 1 zsm (O —6p)
Vlgt = Z k| 7k|2a};apaika_p : (71)

Note that in this case (followmg the mean-field equations and derivation in Ref. 30,
or in Ref. 19) we find that the Cooper pair wave function behaves as,

lim g(r) ~ ! . (72)

|r|—o0 z

This implies the Pfaffian construction (after the unitary CS transformation into the
electron representation), if we recall that the choice of A in (66) implies a holomor-
phic Laughlin—Jastrow factor (more precisely a phase factor after the unitary CS
transformation) that is associated with the usual description of the Pfaffian state
in (5). If we had an extra minus sign in (71), this would lead to the antiholomorphic
pairing, i.e. the PH Pfaffian pairing.

To derive the model interactions for Pfaffian and PH Pfaffian, we assume that
we can use an effective non-relativistic CS description to describe the pairing of
underlying quasiparticles (composite fermions). On the basis of the previous con-
sideration ((69) and (71)), we consider an effective Hamiltonian,

1 .
Hfles = %\Ilif(p)2\llcf + Adajes , (73)

where da = A + a, and the coupling A is negative in the Pfaffian case and positive
in the PH Pfaffian case. Thus we assumed that a complete (non-relativistic) CS
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description that includes all effects of interactions can be reduced to the effective
form if a pairing occurs. By using the non-relativistic CS description we take into
account PH symmetry breaking necessary to stabilize these pairing states.

If we apply the CS transformation in reverse,'? going from the composite fermion
representation to an electron one, we arrive at the following effective Hamiltonian
for electrons,

1 1 1
g _7@ — AU — —(62)2 VTV + (1 + N)daTy + (1 + ) —(0a)? Vv,
flos = 50D — APW — (3010 + (14 N)dada + (1+1)-(5a)
(74)
where

Jo = %wf(v +iA)U — [(V +iA) 0], (75)

is the (gauge invariant) electron current.
We concentrate on the effective three-body (electron) interaction that is present
in the Hamiltonian,

Vios(A) = (1/2—1—)\)% S(a)? Ut (76)

The three-body interaction in coordinate representation is

4 (rs —r1)(rs —ry)

m |I‘3 — I‘1| |I‘3 — I‘2|2

V(I‘l,rg,rg) (1/2+)\> (77)

To describe the relevant matrix elements for LL(s), we will choose our base LL to
be the LLL, which is the most natural choice when we consider a CS description; the
very CS transformation is based on the Laughlin—Jastrow correlations in the LLL.
Thus, for example, we will relate the effective PPs that we know for the Pfaffian
state, based on the perturbation theory, in the second LL, with here calculated
PPs, based on the CS description, in the LLL.

To describe relevant three-body PPs (V) in the LLL, we introduce rescaled
matrix elements, Ayr—ok31,

VM:/drl/drg/drgV(rl,r27r3)|\11k,l(r1,r2,r3)|2:(1/2+/\)«4/m~AM:2k+3l,

where Wy, ; are normalized, fully antisymmetric wave functions for three electrons,*?

classified by integers k£ > 0;1 > 1, and the total angular momentum of the state is
M = (2k + 31). The calculated Aps are shown in the Table 1.

The matrix elements are illustrated by their rescaled values Vi = (1/24 ) -
Ajpr—ok13l, in the cases when A = —1 and A = 0 in Fig. 2. What is remarkable is
that according to the Table 1, VM e = 0.5, and VM e = 0.7, and are quite close
to the ratios of the relevant matrlx elements from the perturbation theory in the
second LL, ~ 0.4, and ~ 0.7, respectively, that favor the Pfaffian physics.*3

Thus the CS description is able to capture the sign — a negative one of necessary
PPs when A < —1/2, and their relative magnitude for relevant, those first three PPs
in the Pfaffian case. Therefore, we are encouraged to probe the PH Pfaffian case
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Table 1. Matrix elements in the LLL. Reprinted with permission from Ref. 19 © the American
Physical Society.

v [[ 3 | 5 [ 6 [ 7 | 8 | 9 |
221/10080 1/(240v/21
Ay 1/24 | 1/48 | 7/240 | 1/80 2/105 / /( )
1/(240+/21) 1/120
Ay ~0.526 | ~0.022
1 0.5 0.7 0.3 ~ 0.475
Apr=3 ~ 0.022 0.2

0,000 - M

-0,005

-0,010

-0,015

(1/243) A,

-0,020

0,020 -

0,015

0,010

(1/243) A,

0,005

0,000

3 5 6 7 8 9 10

Fig.2. (Color online) Matrix elements of three body PPs in the LLL for A = —1 (above) and A = 0
(bottom). (We plotted two values, diagonal matrix elements in the two-dimensional subspace, in
the case when M = 9.) Reprinted with permission from Ref. 19 (C) the American Physical Society.

for certainly A > 0. (We can identify the A = 0 case with composite fermion Fermi
liquid case.) But we have to be aware that in the effective description by Hgg,
the estimate that we can make for LL mixing parameter (in general the ratio of
characteristic interaction energy and cyclotron energy) is |[A41/2|, and that for any
considerable A 2 1/2 for which PH Pfaffian correlations are relevant, we have to
include higher LL(s) (i.e. not only the base LL — the LLL in the CS description).
Thus in the PH Pfaffian case, we have to include (three-body) PPs for at least
one more LL. The calculated PPs (more precisely their rescaled (m/4)Vys values)
for two LLs when A\ = 1 are illustrated in Fig. 3. While calculating these PPs, we
had to include the natural cut-off [g in the field-theoretical description, to suppress
divergences in the second LL. We can conclude from Fig. 3 that in the case of PH
Pfaffian, there is an abrupt decrease in the positive values of three-body PPs at
M = 7 in the base (LLL) level and also at M = 5, when two of three electrons are in
the higher (second) LL. This can be compared with the usual (truncated) model for
Pfaffian with only non-zero, positive potential Vj;—3; there is no three fermion state
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0,05-
0,04
0,03
0,02

(1/242) A,

0,01
0,00
0,05
0,04
0,03
0,02

(1/242) A,

0,01
0,00
0,05
0,04
0,03
0,02

(1/243) A,

0,01

0,00
3 5 6 7 8 9 0 M

Fig. 3. (Color online) Three-body PP matrix elements for A = 1 (PH Pfaffian case) in the second
LL (top), for states with two particles in the second LL and one in the LLL (middle), and (all
three) in the LLL (bottom). Reprinted with permission from Ref. 19 (© the American Physical
Society.

with M = 4, and the V5 PP that is connected with the characteristic three-body
angular momentum for Pfaffian in the LLL, M = 5, is zero.3% In the case of the
PH Pfaffian, the characteristic angular momentum is M = 7 in the LLL, and thus
the abrupt decrease(s) in the values of three-body PPs that we may associate with
the PH Pfaffian pairing correlations. The (almost) monotonic decrease of PPs when
all three particles are in the second LL suggests that the space of two LLs may be
necessary, but also sufficient for the realization of the PH Pfafian correlations. The
important question, which needs further investigation, is whether these correlations
are associated with a gapped state. The most recent suggestion for the realization
of PH Pfaffian is in Ref. 44.

5. Conclusions and Outlook

In this review, we have demonstrated that the CS field-theoretical approach can
be useful and informative in the description of Pfaffian and anti-Pfaffian states —
well-established candidate states for the explanation of gapped states at half-integer
filling factors in the FQHE. It can capture the pairing nature of these states, when
the basic gauge-field constraints are taken into account in a generalized Dirac ef-
fective description of the problem. The effective Dirac description originates from
the physics inside a base LL, which, when isolated (in the case of the Coulomb
problem) possesses PH symmetry. To stabilize Pfaffian or anti-Pfaffian, we have to
break this symmetry by a mass (of definite sign) term in the Dirac theory.
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The physics of an isolated base LL in the Dirac effective description suggests
a possible existence of a PH symmetric Pfaffian state.” We find that this solution
is relevant only when a significant PH breaking (mass) is included in the Dirac
description. Considering a non-relativistic limit of the description we find that
interaction parameters that describe the influence from the higher (second) LL
must be non-perturbatively included in a model interaction for PH Pfaffian (beside
the ones from the base (lowest) LL). This may be helpful in the effort to stabilize
and detect PH Pfaffian correlations in numerical experiments.
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Diagrammatic expansions are a central tool for treating correlated electron systems. At thermal equilibrium,
they are most naturally defined within the Matsubara formalism. However, extracting any dynamic response
function from a Matsubara calculation ultimately requires the ill-defined analytical continuation from the
imaginary- to the real-frequency domain. It was recently proposed [A. Taheridehkordi er al., Phys. Rev. B
99, 035120 (2019)] that the internal Matsubara summations of any interaction-expansion diagram can be
performed analytically by using symbolic algebra algorithms. The result of the summations is then an analytical
function of the complex frequency rather than Matsubara frequency. Here we apply this principle and develop
a diagrammatic Monte Carlo technique which yields results directly on the real-frequency axis. We present
results for the self-energy X(w) of the doped 32 x 32 cyclic square-lattice Hubbard model in a nontrivial
parameter regime, where signatures of the pseudogap appear close to the antinode. We discuss the behavior
of the perturbation series on the real-frequency axis and in particular show that one must be very careful when
using the maximum entropy method on truncated perturbation series. Our approach holds great promise for
future application in cases when analytical continuation is difficult and moderate-order perturbation theory may

be sufficient to converge the result.
DOI: 10.1103/PhysRevB.101.075113

I. INTRODUCTION

Interacting lattice fermions are one of the central subjects
in condensed matter theory. Especially in two dimensions, a
full many-body solution for even the simplest models (e.g., the
Hubbard model) is a formidable task. In recent decades, great
progress has been achieved using Monte Carlo algorithms for
the summation of various diagrammatic expansions. The main
advantage of this approach is that the approximations can be
controlled; i.e., convergence of the results with respect to the
control parameters can be systematically verified. The control
parameters of the calculations are most commonly the lattice
size and the maximal perturbation order. Some algorithms
[1-16] are very efficient for small systems but have not yet
reached very large lattice sizes, while others [17-24] can
address the thermodynamic limit directly but are limited in
the number of perturbation orders that can be computed.

In thermal equilibrium, expansions are naturally formu-
lated within the Matsubara formalism, with all the propagators
defined in imaginary time/frequency. Therefore, to obtain
dynamic response functions, one needs to perform the ana-
lytical continuation from the imaginary- to the real-frequency
domain. This procedure is notoriously ill defined and becomes
especially difficult when the Matsubara axis data contain sta-
tistical noise, as is the case with all Monte Carlo results. The
problem is further exacerbated with increasing temperature.
As the discrete imaginary Matsubara frequencies spread out
and move away from the real axis, the statistical noise chips
away more and more information from the Matsubara data.
The most common way of analytically continuing a noisy

2469-9950/2020/101(7)/075113(14)
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result is the maximum entropy method (MEM) [25,26], but
it requires “the default model,” an a priori qualitative knowl-
edge of the real-frequency spectrum that may not always be
available; it is difficult to control and estimate the error bars
of any such procedure.

Analytical continuation is a common hurdle in finite-
temperature calculations, and it came up recently in the study
of transport in the optical lattice realizations of the Hubbard
model [16,27]. It turns out that the direct-current resistivity
is particularly difficult to extract from the imaginary-axis
current-current correlation function. But even the self-energy
is often interpreted only on the imaginary axis [24], as an-
alytical continuation is considered ultimately unreliable. This
particularly hinders the progress in the study of the pseudogap
phase and superconductivity in the cuprates, where one would
like to compare the momentum-resolved spectral function
to experiments [28,29]. The ability to reliably calculate the
spectral function becomes even more important in view of
the recent photoemission measurements (ARPES) in the cold-
atom realizations of the Hubbard model [30].

There are alternative routes that avoid analytical continu-
ation altogether (Keldysh formalism [7-14,31], exact diago-
nalization techniques [16,32—-34]), but those have so far been
limited to impurity models or small lattice sizes. It is therefore
of primary importance to try to develop methods that avoid the
analytical continuation, but are not limited by lattice size.

As was recently proposed [35], an opportunity lies in
symbolic algebra algorithms. One can implement a recursive
transformation to perform analytically all the internal Mat-
subara frequency summations for any interaction-expansion

©2020 American Physical Society
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diagram, for any quantity. The result of the Matsubara fre-
quency summations is an analytical expression for the contri-
bution of a given diagram to the given dynamic quantity, in
the whole of the complex-frequency plane, rather than just in
the discrete set of points along the imaginary axis. The general
idea is, however, not entirely new; at perturbation order 2, the
Matsubara summations for the self-energy diagrams can be
carried out by hand, which leads to the well-known real-axis
iterative perturbation theory (RAIPT) [36-38]. Similarly, the
bubble diagrams can be easily rewritten in terms of real fre-
quencies, which has applications in the GW method [39-41]
and the calculation of optical conductivity within the Kubo
formalism [42-44]. In the context of diagrammatic Monte
Carlo, however, obtaining the analytical expression for each
diagram of interest is only a part of the problem. In fact,
there are several immediate obstacles in applying the algo-
rithmic Matsubara summations in a calculation of quantities at
perturbation order > 3.

Here we address these problems and successfully develop
and test a diagrammatic Monte Carlo technique that yields
results directly on the real-frequency axis, yet can treat
very large systems. We present solutions for the momentum-
resolved self-energy for a doped 32 x 32 Hubbard lattice,
in a nontrivial parameter regime where results are almost
converged at order 5. Our results show that in this regime
precursor signatures of the pseudogap are visible in the real-
frequency antinodal self-energy. We also show that the trunca-
tion of the perturbation series leads to noncausal features that
challenge the use of MEM to obtain real-frequency data from
Matsubara axis results.

II. MODEL

We solve the Hubbard model on the square lattice
H=—t Z CZ,'CUj +U Zﬂm‘nu —u an‘, (D
a,(i,]) i o,i

where Cj”» /Coi create/annihilate an electron of spin o at the
lattice site i. The hopping amplitude between the nearest
neighbors is denoted 7, and we set D = 4¢ as the unit of
energy. The density operator is n,; = cf”-c,,i, the chemical
potential p, and the on-site Hubbard interaction U. We re-
strict ourselves to paramagnetic solutions with full lattice
symmetry.

III. METHOD
A. Symbolic algorithm

Following similar steps to those in Ref. [35], we first
define the Hartree-shifted bare Green’s function of the model
Ggi(ia)) = [iw — e(k)]™!, where we absorbed the chemical
pofential and the Hartree shift in the dispersion ¢(k), i.e.,

e(k) = —u + Un, — 21(cos ky + cosky), )

where k = (k,, k,) is the momentum. For the sake of clarity
we omit the integer index n in the fermionic Matsubara
frequency, iw = iw, = i(2n + 1)n T, where T is temperature.
We reserve the subscript in iw for denoting different Matsub-
ara variables. We denote n, the density per spin evaluated in
the interacting problem.

The self-energy X can be written as a series in the interac-
tion amplitude U,

00 Ny
T(io) = Y (U Y DY (iw), 3)
N=1

a=1

where N is the perturbation order, Ay is the number of distinct
diagrams in the given expansion, o enumerates the diagrams,
and Dg "* is the contribution of ath diagram in the Nth order.
If the diagrams are written in terms of the Hartree-shifted
bare propagator there is no need for tadpole insertions in the
topology of the diagrams (see Appendix A 8).

The contribution of a general diagram to the bare series for
self-energy written in terms of G} (iw,) is given by

DY (iw) =

1
SR ; :
Ki...ky V Z(s,j)elcy si2; — S(Z(s,j)elcy Skj)
iQ] ...iQM

“

N, = NbN "* is the number of fermionic loops (bubbles) in the
given diagram: each bubble carries one independent fermionic
frequency and momentum. Each interaction carries a bosonic
frequency iv = iv, = 2nnr T and momentum, but some are not
independent due to conservation laws. We denote M the total
number of independent degrees of freedom, each consisting of
a frequency and momentum (i€2;, k), where i€2 can be either
fermionic or bosonic. There are 2N — 1 Green’s functions in
each diagram, indexed by y. Each Green’s function depends
on a certain subset of the internal degrees of freedom and
possibly the external variables, indexed j € [0, M] (we take
ko =k, iQ2) = iw), and each entering with a sign s = %1
in the corresponding sums. The Green’s function y is fully
defined by a set of sign/index pairs K, = IC;}’ *“. The Green’s
functions may not be unique; i.e., it is possible that IC, = .
For the discussion of the Feynman rules leading to the general
expression Eq. (4), we refer the reader to the classic textbook
Ref. [45]. For a worked-out example of Eq. (4) in the 4th order
of perturbation, see Appendix A 3.

As a function of any given internal Matsubara frequency
i, and for a fixed choice of the remaining internal and
external degrees of freedom, the contribution to self-energy
from any given diagram (N, ) has the form of a product of
poles,

Dy(iw) = (=)™ Z Pznm, )
¢~ Zy

ki...ky i€ vV
(182} je

where P and z,, implicitly depend on the rest of the internal
and external variables, and here we assume that y goes only
over the unique Green’s functions that depend on the given
iQ, and m, € N is the number of appearances of the yth
Green’s function in the diagram. Using the partial fraction
expansion, and an analytic expression for the derivative of a
product of an arbitrary number of poles (see Appendix A 1),
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we can perform the transformation
1 GO
l:[(z—zy)"” Xy:;(z—zy)’
(=1 2

Clpyr sy €NOY:D 1y pyr=my, —r

1—[ (m, + p, — D! 1 ©)

pyl(my, — ! (z, — Z;/)mv""l’y’ ’

Y'#Y
Here C . .. denotes all combinations of a non-negative-integer
p per pole y’ # y, such that the total sum of p’s is equal
to m, — r. Therefore, after selecting one internal Matsubara
variable, the full expression can be rewritten as a sum of poles
in that Matsubara variable. Then, one may proceed to perform
the Matsubara summation of each term using

L S e )
(i —z) (r—1)! !

iQ

with n = %1 for bosonic/fermionic Matsubara frequency. n,
is the Bose/Fermi distribution function. Here we can immedi-
ately get rid of the complex part of z because

8;n,,(a) + iQn/) == n/az)nn’-n(w)» (8)

where 7" = —1 or +1 denotes whether i€2, is fermionic
or bosonic Matsubara frequency, respectively. Note that the
derivatives 0"n can be expressed analytically for the purpose
of precise numerical evaluation (details in Appendix A 4).

Now the remaining Matsubara variables appear only in
the denominators of fractions which can again be interpreted
as poles with respect to these variables, and the procedure
can be applied recursively until we have gotten rid of all the
Matsubara variables. For a detailed example of the symbolic
algorithm and an illustration of Eq. (5), see Appendix A 3.

The final result has the form of a sum of poles on the real
axis

A
D)= (D% Y Y ——— 9
k() = (=1) L G wn )

withw, =3, s’;s(z(w)em sk;), which is a series of terms
equal up to the sign s), = %1 to the dispersion ¢, evaluated at
various possible linear combinations of the internal/external
momenta, as they appear in the Green’s functions (indexed
y). The series can be of any length < 2N — 1 and include an
arbitrary subset of y’s. The amplitude for each (unique) pole
(@, my ) is given by a large sum of terms of the general form

A=) % I1 ﬁ [ 107 n, (@es). (10)
s S ¢ s o

a, b are integers, m positive integers. w;. and w,. have the
same general form as w,, but do not necessarily coincide with
any of the w, ’s, and may differ from one another. The products
over ¢ and o may be of various lengths including 0. »’s (and
thus A, ’s) are implicitly dependent on the internal and external
momenta.

The symbolic forms for A, and w, need be obtained only
once for any given diagram, independently of the choice
of the lattice geometry, parameters of the Hamiltonian, or

temperature. See Appendix A 2 for numbers of poles w, and
terms in A, at various perturbation orders.

B. Application in diagrammatic Monte Carlo

Evaluating the prefactor A, numerically is not straightfor-
ward for several reasons.

First, the terms in A, containing at least one ratio 1/w™ or
a bosonic 0"n,(w) will diverge if the corresponding w goes
to zero. For any finite lattice this will occur regularly during
the Monte Carlo sampling, but even in the thermodynamic
limit, @ can approach arbitrarily close to zero. Our solution
for this problem is to add small shifts to a certain choice of ¢’s
appearing in w. This is done at the symbolic level, in a way
that |w| can never be smaller than a given value that we set to
be ~107'° to 107° depending on the perturbation order. Note
that even this will cause the terms in A, to be very large by
absolute value (order as large as 10°), yet they will cancel
to produce contributions to A, of order < 1. This greatly
exceeds the capability of standard precision arithmetic which
handles only around ~16 digits. We have found the solution in
using multiple precision floating point types which can store
more digits and allow for subtraction of large numbers, as
required in our algorithm. The additional approximation made
by numerical shifts can be controlled, and we have checked
on several examples that the result is insensitive to the precise
choice of the numerical parameters (size of the shifts and the
choice of the floating point precision). Surely, the shifts can
be always made smaller if the precision is made greater, but
this has an adverse effect on performance. For more details
see Appendix A6.

Next, one needs to perform the remaining sums over mo-
menta, numerically. For smaller lattices it is possible to do the
full summation, but otherwise we employ a flat-weight Monte
Carlo (see Appendix B; for an alternative algorithm useful in
the case of local self-energy, see Appendix A 7). In each step,
we select randomly the internal momenta k| . .. K, evaluate
all A,, and permanently store the triplets (w,, m,,A,). We
perform “on the fly” integration for any reappearing values
of w,. Even for modest lattice sizes, the number of possible
values of w, will be very large. To avoid immense outputs,
we project £(k) on a uniform energy grid, so that linear
combinations of &’s and thus w,’s always fall on the same
uniform grid. The small shifts discussed in the previous
paragraph also fall on a uniform grid of a much smaller step,
so there will generally be several values of w, concentrated
around each point in the “big” & grid. This way, the number
of different values of w, one can obtain is determined by the
resolution of the energy grid, i.e., the step Ae. Again, this is
a well-controlled approximation, and one can easily push the
resolution so that the approximation is negligible compared to
statistical noise. See Appendix A 5 for details.

Note also that it is essential for performance to store
the different values of w,, w;¢, w,c and the corresponding
0"n,(w), and reuse them whenever possible during the Monte
Carlo sampling.

The Monte Carlo run is then performed for a given choice
of the external momentum, temperature, lattice geometry, and
the Hartree-shifted chemical potential & — Un, (the doping
can be determined a posteriori). Once enough measurements
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FIG. 1. Calculation for the 32 x 32 Hubbard lattice at two values of U, T = 0.1D, and i — Un, = 0.1D. These parameters correspond to
densities per spin indicated in the rightmost panels, i.e., dopings (U = 1) &~ 9% and (U = 1.5) ~ 5%. Left: Imaginary part of the self-energy
Im ¥(w + in), at a distance n = 0.3D from the real axis, for various k vectors. Different lines correspond to different maximal perturbation
orders in the calculation, Ny, Gray-shaded curve is the piecewise-trapezoid fit at n = i0™, obtained with resolution Aw = 1.6n. Right: The
corresponding filled part of the spectral function, broadened with 1, and interpolated in k space. The result is obtained with 5.12 x 107 Monte

Carlo steps per diagram.

of (w,, m,,A,) have been collected, the result for Xy (z) for
any z and any U can be obtained using Eq. (9) and then
Eq. (3) (with iw — 7). However, the result is a discrete set
of poles on the real axis, and requires regularization, simi-
larly to exact diagonalization techniques. If it were just the
simple poles on a dense uniform energy grid with a step Ae,
one could easily interpret Im Xk (w + i07) as continuous, but
known with a finite resolution, simply through Im Xy (w, +
i0T) = —mA,/As. An analogous scheme could be performed
even for higher-order poles on a uniform grid, order by
order [46].

The problem is that the poles are not only on a uniform
grid, but rather cluster around the grid points, due to the small
numerical shifts discussed previously. It is also impossible to
separate poles according to their order because multiple poles
can combine to effectively form a single higher-order pole.
This makes it very difficult to construct a binning scheme
that would reinterpret the result directly on the real axis. A
better strategy is to use broadening, i.e., evaluate the self-
energy slightly away from the real axis, X(w + in). In our
calculation, statistical noise dominates close to the real axis;
thus we take 7 just large enough so that X(w + in) is a smooth
function of w.

To recover the desired w + 0™ result, one can perform a fit
based on the obtained X(w + in) and the Hilbert transform

Im =fit(¢g)
E—.
(w+in)—¢
This procedure becomes trivial with n — 0; it treats all fre-
quencies on equal footing and is much better defined than
Y(iw,) — X(w + i0T) whenever 1 is small. Let us emphasize
that the only limitation in taking a small 7 is the numerical

noise: when the statistical error bars are small, the procedure
is very reliable, numerically stable, and does not require

S(w+in) = —%fd (11)

additional input (such as the default model for MEM). This is
illustrated in the Appendix B, where the algorithm is bench-
marked against the numerical renormalization group (NRG)
[47] for the solution of an Anderson impurity model [48].

IV. RESULTS

We have benchmarked our method carefully on several
simple examples (see Appendix B). We now consider a
32 x 32 cyclic Hubbard lattice at temperature 7 = 0.1D and
w — Ungy = —0.1D (hole doping). In this case we benchmark
our method against 8th-order ¥ Det [22,23] in imaginary
frequency and find excellent agreement (see Appendix B 5).

In Fig. 1 we show the results for Im X(w + in) close to
the real axis (finite n < # T, lower than the first fermionic
Matsubara frequency). Closer than this, stronger noisy fea-
tures start to appear. Let us emphasize that the statistical noise
is far more pronounced on the real axis; i.e., convergence on
the imaginary axis does not necessarily imply convergence
on the real axis. Different lines represent calculations with
different maximal perturbation orders Np,x, at 6 characteristic
k points and 2 values of U. The shaded region is a piecewise
trapezoid Im Xf(w + i0%) obtained with resolution Aw =
1.6n.

At U = 1D fifth-order diagrams contribute very little and
the result is practically converged with respect to Nyax. At
U = 1.5D, the result is not fully converged by order 5, but
is apparently close to convergence. We observe several non-
causal features Im Xy (w) > 0. At large negative w, this hap-
pens at k = (0, 0) at order 4, but is then fixed by order 5. At
large positive w, the problem appears at order 5, and is likely
to be fixed by higher orders in perturbation. These noncasual
features do not appear to be artifacts of the statistical noise
but rather a result of the truncation of the perturbation series.

075113-4



REAL-FREQUENCY DIAGRAMMATIC MONTE CARLO AT ...

PHYSICAL REVIEW B 101, 075113 (2020)

This calls for great caution in the use of MEM. Indeed, MEM
performed with built-in causality is bound to miss any such
features and may compensate for them in an uncontrolled
way.

It is interesting that in most cases Im X(w) features two
broad peaks with a dip around w = 0. However, at U = 1.5D
around k = (0, ), a third peak appears close to w = 0. We
interpret this peak as a precursor for the pseudogap behavior:
as temperature further decreases at this doping (around 5%),
the peak may approach w = 0 and induce a larger, insulating-
like self-energy as observed in imaginary-time calculations,
e.g., Ref. [24].

Finally, the panels on the right present the filled part of
the corresponding k-resolved spectral functions. These plots
are relevant for recent spectral function measurements in
optical lattice realizations of the Hubbard model [30]. One can
observe that the spectral function preserves the general form
of the noninteracting limit, but spans a bigger energy range
and becomes more incoherent (wider lines of lesser intensity)
as interaction is increased.

V. CONCLUSIONS AND PROSPECTS

We have resolved the main conceptual issues regarding
the application of algorithmic Matsubara summations in the
context of diagrammatic Monte Carlo. This includes the pre-
cision and efficiency concerns in the evaluation of the pole
amplitudes, as well as the extraction of the real-axis results.
There is a possibility for further optimization which will likely
allow us to push the method to higher perturbation orders in
the future.

We demonstrate that our method is readily useful in
the study of the single-particle spectra in the intermediate-
coupling regime of the Hubbard model, which has been the
subject of recent publications [30,49,50]. Finally, our method
holds great promise for future work in the cases where an-
alytical continuation is particularly difficult. These include,
for example, high temperature and calculations of the current-
current correlation function A(w) [16]. Our approach even
allows for a straightforward restriction to a selected window
of energies; if one is interested in dc resistivity, one may
calculate A(w) only at very low frequency and that way gain
an important speedup.

ACKNOWLEDGMENTS

We are grateful to Rok Zitko for providing NRG data.
The exact-diagonalization results were obtained using the
PyED code, written by Hugo Strand [51]. The continuous-
time interaction expansion algorithm [1,2] was developed
using the TRIQS [52] library. Computations were performed
on the PARADOX supercomputing facility (Scientific Com-
puting Laboratory of the Institute of Physics Belgrade) and
ALPHA cluster (College de France) as well as using HPC
resources from GENCI (Grant No. A0050510609). We thank
Mihailo Cubrovié¢ for his help with the preparation of the
manuscript. J.V. acknowledges funding provided by the In-
stitute of Physics Belgrade, through the grant by the Ministry
of Education, Science, and Technological Development of the
Republic of Serbia.

APPENDIX A: FORMALISM DETAILS
1. Derivation of Eq. (6)

The partial fraction expansion employs the residue theo-
rem, and the textbook expression reads

1
1:[ (z—2z)™

1 my,—r 1
—ZZZ_Zy)r m _r)|zli>z a l_[(

m,°
Z—ZI Y
V'#Y v)

(A

The derivative of a product of poles can be expressed in the
following way:

n 1 — (—1)\?
lejm—(l)n! >

C{PVGNO}ZZV py=n

1—[(’"1/ +p, — D! 1 (A2)

pylmy — DY (2 =z, ymter

Here the sum goes over all combinations C of a choice of a
non-negative-integer p per pole y, such that their sum is n.
Putting together the equations Eq. (A1) and Eq. (A2), one
obtains Eq. (6).
The derivation of Eq. (A2) relies on performing

3:Lf (@8] = [3:£(2)g(2) + f(2)[3:8(2)] and 8 = 5 =

—mym, recursively. Having these in mind, it is clear
Cy.

that the final result will consist of a number of terms, each
term being a product of the original poles, some with in-
creased orders. In each term, we will have acted with the
derivative upon each pole y a certain number of times p,, > 0,

so as to use up all the derivatives, i.e., Zy Dy =n. For each

pole that is acted upon at least once, this leads to 3. = ),,,V =
(=DPrmy,(my, +1)...(my, +p, — Hence the
overall sign ]_[V(—l)"y = (—1)". However, we can apply
derivatives in any order, so there is also a combinatorial
factor corresponding to permutation of multisets n!/ (]_[y pyh)
(number of distinct anagrams of an n-long word consisting of
unique letters indexed by y, each appearing p, times in the
word).

Let us check and illustrate Eq. (A2) on a simple example,
where one can carry out the derivatives by hand. Say

93 1 1
‘z—u @—2n)

1
D=y

= —6(4 ! ! +3 ! !
z—u G- G@-uPk-n)
, 1 N 1 1 ) A3)
C-—2)P G-} @-z2)GE-2)
We can immediately identify the prefactor (—1)"n! =
(—1)33! = —6. Also, we see there are 4 terms corresponding

to 4 possible choices of (pg, p2) such that p; + p, =n =3,
respectively,

C =1{(,3),(,2),(2,1),(3,0)}. (A4)
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TABLE 1. Numbers of poles and terms in the symbolic expres- k;
sion obtained by analytical Matsubara summations.

N N, poles N ;ﬁj&s N terms N, l?rI:ns
2 1 1 4 4
3 2 2 12-14 13 1 1
4 34 35 16-70 29.7 : :
5 4-8 5.6 32-482 97.9 1 1
6 5-14 8.9 32-5092 296.2 : . . :
I I I I
:qo :(h :—(h :—QO
I I I I
I I I I
I I I I
I I I I
Now the prefactors ]_[y (m, + p, — D!/[p,!(m, — 1)!] can : : : :
be evaluated for each combination | | | !
(I+0-D!IQ+3-D! 14 : > : > : > :
0,3): 010! 3111 —T;— , k +qo k+qo+aq: k+qo
(1.2): (I1+1-D'2+2-1! 13! FIG. 2. An example of a momentum-labeled 4th-order diagram
» &) 101 111 =75 = on the lattice.
10! 211! 12! (AS)
2.1 a+2-nr@+1-nt 2120 5 2. Numbers of poles and terms per diagram
’ 210! 11! 201 , Equation (9) in the main text is the final result of Matsubara
A+3-DI2+0-1)! 3! summations for a given diagram. It is a sum of a a certain
(3,0): 310! ot T3 number Npes of distinct poles (wy, my), each with Niepms

distinct terms in the amplitude A,. We tabulate in Table I
the range and the geometrical average (typical value) of these
numbers for each perturbation order N.

all of which we can readily identify on the right-hand side of
Eq. (A3).

J

3. Results of symbolic algebra

We present here an example of the analytic expression for the contribution of a self-energy diagram. We choose the 4th-order
diagram presented in Fig. 2. We start from the expression of the form Eq. (4):

Dilio) = (=17 Y Y > >

ki,k; 90,91 iwy,iw; ivo,ivy

X Gl g (0 + v0)GYL o g (0 + ivo + V)G (0 + iv0)GY (i) G (i) — iv0)GY (i) GYh - iy — ivy)

=)0 ) ).

ki,k; Q0.q1 iw,iw; ivg,iv|

2
1 1 1 1 1 1
X\ —— — . . . . . . . . (A6)
W+ 1V — Ektqy / 1@+ 1V + V] — Ekpqotq, W1 — €k, L] — IVy — €k —q, (W2 — Ek, LWy — V] — Ek,q,

Here we have already imposed momentum conservation, which leaves only two internal bosonic frequencies/momenta to be
summed over (independent momenta carried by fermions and vertices are denoted in Fig. 2). For the sake of notational brevity,
here, as well as in the rest of this Appendix, we take gx = (k).

The first step in performing the analytical Matsubara frequency summations is to choose one internal Matsubara frequency,
and then isolate the factors (poles) which depend on it. Say we choose ivg. We can regroup the factors conveniently:

Dy(iw)

R IPIDIDS

ki, k) 90,91 iwy, iy vy
1 1 1 | . .
lwy — 8k] lwy — 8](2 lwy — 1V — 8kz—(11 ivo [lUO - (_lw + 8k+q0)] Wy — (_lw — 1V + 8k+q0+Q1) vy — (lw] _ Ek]—qo)

(A7)

X
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Now the expression has the form of a product of poles with respect to ivy [Eq. (5)], where the rest can be considered a prefactor
(denoted P). The product of poles can be then transformed using the main transformation Eq. (6):

Dy(iw)

1 1 !
= (-1 Z Z Z Z (0] — &, W) — &, I — 1V — &k,

ki.k2 Q0,41 iwy,iwy ivy

1 1 -1

X
. . 2 . . . . .
{ [zw1 — Ekj—qo — (—iw + 8k+q0)] W] = €k—qp — (—iw —iv; + 5k+qo+q1) v ivo — (iwy — 8k1—q0)

1 —1 1

+
[—i> — ivi + Eksqorq, — (—i® + Ekpqy)]” TIO T VI F Elcrgotar (i — exy—qy) 5= Vo — (=i — V1 + Excrqoq))

-1

2
[( : )
—iw + €ktq, — (i@ — V] + Ekigotq) ) —I® + Ektq, — (@1 — €k —q,)

1 -1 2 1
—Iiw + Exqq — (=i — V] + Ekyqptq,) \ —i® + Expq, — (I0] — €k —gq,) ™ ivg — (—iw + extqo)

1 —1 1

—iw + Eirgy — (—i0 = V1 + Ektgora) —I0 + Ergy — (01 = €1 —a0) 5 [ivg — (i + Exergy)]

(A8)

We can now evaluate the Matsubara frequency summations per ivy, using Eq. (7) and then Eq. (8). Then, the denominators can
be simplified at the symbolic level:

Diliw)=(=1>Y_ Y Y > : 1 1

iw] — &, lwy — €k, Iwy — V] — Ek,—
ki,k 90,91 iwy,iwy ivy ! ky 72 ky 72 ! k-

1 1

X
. . 2 . . .
{ (la) +iw] — &k —qy — 8k+q0) o T 1V T 10] — €kj—qo — €k+qo+q

1 -1
2
+ (=)"nF (Extqota,)
. 2 i s _ qo+4qi
(—lV] + Ektqotq; — 8k+q0) 10 — 1w) — V1 + Ek+qo+qr T Eki—q

(=)’ nr(—ex—q)

2
|:( : ) -
Vi + €ktqy — Ek+aota —iw — 0] + Extqo T Eki—qo

1 ( - )2]( UG
; ; ; —) np(€k
V] + Ek4qy — Ek+qo+q \ —IO — 101 + Ekpqy T Ek—qo Ptk
1 -1

V1 + Ektqy — Ek+qotq i@ — IO] + Ekyqy T Ek—qo

(—)*onr (sk+qo)}. (A9)

The procedure can now be repeated for the next choice of the Matsubara variable.

We now present the final result of the symbolic algorithm for the diagram presented in Fig. 2. The diagram contributes one
second-order pole and two simple poles. The number of terms in the amplitudes for each pole is 16, 24, and 16, respectively. To
display the expression easily, we only show several representative terms in the amplitude of each pole:

D)= (=17 ) ) {(Hgk 1

2
— Eky—qp — €
K1k Q0. Q1 ki—qo k+q<>)

1

ke ~ Ektgotar — fko—qi T Ektq
1

€k, — Ektqotar — Eko—qi T Ektqp
1

€k, — Ektqotar ~ Flo—aqi T Ektq
1

€k, — Ektqo+qr — Eko—qi T Ek+qo

X |:I’lp (Skz—ql)”F (8k]_q0)nF (8k+‘I0+Q1) A nr (Sk"r%)

+np (Skz—m)nF (81(1—(10)’13(8'(2 - ‘Skz—(h) nr (5k+q0)

=1 (Exo-q ) 1r (81, )1 (Ecrap+ar) nr (xrq,)

—nr (gkz)nF (Skl—QO)nB(gkz - 8k2-‘]1) nr (8k+q0) +- :|
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1

— €ki—qp

Z+ ek, — &k+qp

X [”F (SkZ—QI)nF (‘Skn—qo)”F (8k+qo+q1) o
2

+np (8k2—q1 )nF (8kl )nF (8k+qo+q, )nB (<9k1

~ Ek+qotaq

- Skl—%)

ong (8k+(Io)
— &k—q; T Ektqo

1

2
(8kz + Ektqo — Ek+qotq — Ekzﬂl])

1

—nF (Ekz)nF (eklfqo)nF (8k+q0+ql)

€k, — Ektqo+a; — Fko—q; T Ek+qp

ong (8k+4I0 )

1

—nF (Skz)nF (Skl)nB(gkz - Ssz(h)

(8k2
1

— Ek+qo+a

ona)+ ]

— Eky—q T 8k+q<;)2

2+ &k, + &k — Ektqotar ~ Eko—q

— &ki—q

1

X [nF (81(2—‘11)nF (gkl—qo)nF (8k+QO+¢I1)

X ng (_8k2 + Ektqot+q T 81(2*111)

+nF (ekzﬂh)nF (skI*QO)nF (8k+%+q1)n3(8k1

(—&k, + Ektqotar + Eko—q,

- 8k+q0 )2

1

2
— Ektqy T Ektqota T Eko—q)

1 0) (_8k2

1

—nF (EkZ)nF (€k1*q<))nF (€k+flo+¢h)

x np (=i, + ekrqrrar + Elo—q)) T ] }

4. Calculation of Fermi/Bose function derivatives

In the numerical evaluation of the amplitudes of the poles
[Ac; Eq. (9) and Eq. (10)], we use the general expression for
the derivatives of the Fermi/Bose distribution function,

(! fr et

,

oy (@) = —p" Z oy (A1)
with f,; € Ny tabulated here:

r\k 0 1 2 3 4 5 6
0 1

1 0 1

2 0 1 2

3 0 1 6 6

4 0 1 14 36 24

5 0 1 30 150 240 120

6 0 1 62 540 1560 1800 720

5. Dispersion on an equidistant grid

We present here in detail the numerical trick that we
use to avoid unmanageable outputs from the Monte Carlo
summation. For a given lattice size (in our case 32 x 32), we
approximate e so that it takes on values only from a given

(_Skz + Ektqo+a T Ek—q

— Eirq))’

(A10)

(

set E of equidistant numbers spanning the bandwidth (in our
case the number of points is Nz = 151). The new approximate
dispersion therefore has the property

& € B,Vk (A12)
with
N~—l
= {mingey + JAS} (A13)
and
maxg&k — Mingé&k
Ae = , (A14)
Nz —1
1.001 SO —
Pl x_ — original
0.75 approx
0.50 4 x/‘f
0.25 4 : L
¥ 0.001 oo
-0.25 1 j(
-0.50 1 ’ /\/:x Y
-0.75 1 ><>< i\l
/(\/ )\,:
—1.00{ 20 p
©0,0) ©.m) () ©,0)

k

FIG. 3. Approximation of the dispersion used to avoid unman-
ageable outputs.
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and is determined simply by choosing the closest value to the With a sufficiently dense grid E, the approximation be-
original dispersion: comes negligible. We present the approximate &, we used
in our calculations in comparison to the exact dispersion

gk = closest(E, ek). (A15) in Fig. 3.

J

6. Multiple precision algebra and regulators

To illustrate the need for multiple precision algebra, we focus here on the simplest example, which is the second-order
diagram. The Matsubara summations here can be easily carried out by hand:

Dy (iw)
=(=1) Y Y GGy i + in)Gily (i — iv)
io',iv K',q
1 1 1
= (~1
( )in/.;\)é i — &g i + 1V — Epqq iw — iV — Ek_q

B Z nr(ex)np(ex+q — &x) + nr(ex Inp(—ek—q) — Nr(Ek1q)NB(Ek+q — &x) — NF(Ek4q)NF (—Ek—q)

- (A16)
I — &x+q — Ek—q T &K’

k'.q

We see that the final result has four terms in total, and that the two terms featuring ng diverge as ¢ — 0, or equivalently as¢ — 0,
i.e., &k — 0, VK. Nevertheless, the contribution of the diagram is finite as the following limit is well defined:

lim [np (O)np(e) — np(e)np(e)] = i (ALT)

However, in numerical implementation one cannot simply let ¢ — 0 in the above expression as ng becomes ill defined. We find
the solution in adding small shifts in the symbolic expression. At second order, it suffices to associate a small shift € to gi:

Di(io) > ) 1

a I — Ekyq — Ek—q + &k T €

x[np(ew + €np(ewrq — e — €) + np(ew + €np(—ex—q) — np (Ex+q)NME(Ex+q — k' — €) — np(wiq)nFp(—Ek—q)].  (A18)

That solves the problem as nz will no longer be ill defined even when q = 0. However, depending on the size of € and , the two
problematic terms may become large. Consider € = 1072° and 8 = 1. In that case the terms featuring np can become as big as
10?°. The subtraction of two numbers of size 10?° that are different only by i will fail if performed in standard (double) precision,
as it handles only up to ~16 digits. While in the case of the second-order diagram one can clearly use a larger € and avoid any
problems, at higher perturbation orders there will be products of several diverging ng, multiplied also with expressions of the
type 1/0, and ever larger shifts would be needed; increasing the numerical shifts would eventually start introducing noticeable
systematic error. The solution is then to use larger floating point data types that can store more digits. In our implementation we
use the GNU Multiple Precision Arithmetic (GMP) C++- library and its Python wrapper GMPY?2 and use floating point type of
350 bits, and we keep the shifts perturbation-order dependent, ~10~12+V,

(

7. Monte Carlo application to local self-energy and

We also devise an algorithm to treat directly the local self-
energy. This algorithm relies on rewriting the diagrams in real
space. In notation analogous to Eq. (4), the contribution of a 1 or o
general real-space diagram has the following form: = —;Im Z €™ Gk(e +1i07)

k

Diyiy (iw) = (=% >~ 3" = e,

1
pr(e) = —=ImGy (e +i0")
/4

i]...iN,l iQ]..iQM k
/ dey...desy 1 | pr<y;io...iN.;§8y) . (A19) =2 Y [cos(k-r)+cos(ko’r)|5 .. (A21)
y Z(s,j)EICV Slacj — &y O<ky ky<m

where ko*r = k,r, — kyr,. The above can be evaluated nu-

where i; denote the lattice sites where the interaction vertices merically to high precision. It is important to note that

are positioned (the first and last are the external site indices).
The energy integrals come from the Hilbert transform / de pr_0.0)(€) = 1 (A22)

. ImG.(g +i0™)

iw—¢

1
Grliw) = —— / d (A20) / de prs0.0)(€) = 0. (A23)
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Now note that only p actually depends on the choice of
lattice sites. We rewrite the expression in a way that is more
revealing:

Diyiy (i) = (=1 >

/a’el . .d82N_1 1_[
i€21..102y v

1
X .
Z(s,j)ele SIS2j — &y

For a given choice of ¢’s and i’s, this is formally the same
as what we had in Eq. (4) in the main text. A completely
analogous symbolic algebra algorithm can be used to resolve
the Matsubara summations, but the results will be different.
The difference from the k-space case is that all the &’s
are now independent, which will lead to different analytical
expressions for each diagram. The final expressions will,
however, have the same general form [Eq. (9) and Eq. (10)
in the main text], yet slightly simplified: now one obtains only
simple poles because no two Green’s functions are identical,
ie., m, =1,Vy. In fact, even in the k-space case, higher-
order poles appear only in dressed diagrams; a skeleton series
would not have this feature. After the analytical summation
of the Matsubara frequencies, the remaining expression to be
evaluated has the form

Z pr()’liomiN)(Sy). (A24)

ij...dyg

A
D @) = (<1% [ de..deav Y
— 7=
[T D preininte), (A25)
Y i]...iNfl
where A and w implicitly depend on ¢ . . . &oy—1. The remain-

ing variables to be summed over now include both the energies
¢ and the lattice sites i. Note, however, that A and @ do not
depend on the i’s, so recalculating them for each configuration
of i’s would be inefficient. We are immediately inclined to use
Hy Zi, iy Pr(viio..iv)(€y) as the weight for Monte Carlo over
the space of ¢’s. We recall the general expression

[ f@wx)dx > cemcqu f()sgn[w ()]

J w(x)dx > cemc(u) SENw )]
where MC(|w]) is the Markov chain constructed with respect
to |w| as the weight. Therefore it is necessary that the overall
integral of our weight function is known and nonzero. How-

ever, this will only be the case if iy = iy. First, the integrals
over our proposed weight decouple:

/d81 dew [T DD rvionin(Ey)
v

iy

— Z l_[/d8ypr(y:io.~i1v)(8)/)'

iy v

. (A20)

(A27)

We see that the only contribution comes from the choice
ip =1i; = ... =iy in which case r(y;iy...iy) = (0,0), Vy,
and so each integral over energy equals 1, and the total
integral of the weight is also equal 1. Otherwise, if iy # iy,
there will always be at least one nonlocal p,(¢) involved, the
integral of which is 0. Therefore, the proposed weight has
total integral zero for any nonlocal self-energy component and
cannot be used in this purpose. Nevertheless, one can use it

for calculating the local self-energy. Furthermore, in a local
problem, e.g., Anderson impurity [48], this scheme can be
used straightforwardly without the summations over lattice
sites. We use it in our Anderson impurity benchmark below.

8. Diagram topologies

In Fig. 4 we present all the topologies of the interaction-
expansion diagrams up to order 5. Full lines are the Hartree-
shifted bare propagators, and the dashed lines are interactions.
All the drawn diagrams went into calculation of the self-
energy in Fig. 1.

APPENDIX B: BENCHMARK

Here we benchmark our method in the following cases:

(i) atomic limit against analytic result;

(i1) 4-site Hubbard chain against exact diagonalization
(ED) [511;

(iii) 4 x 4 lattice against numerically exact Rubtsov algo-
rithm, continuous-time interaction-expansion quantum Monte
Carlo (CTINT) [1,2,52];

(iv) single Anderson impurity problem against the approx-
imative NRG [47];

(v) 32 x 32 lattice against imaginary-time diagrammatic
Monte Carlo, ¥ Det, up to 8th order in perturbation theory
[22,23].

1. Atomic limit

We start by benchmarking our method in the case of the
half-filled Hubbard atom. It corresponds to setting t = 0, u =
U/2 (and n, = 0.5 in the definition of the Hartree-shifted
bare propagator). As there is no longer k dependence in the
dispersion, the k sums now reduce to a single term, and
each diagram needs to be evaluated only once, for gx = 0.
As explained in Appendix A 6, this cannot be done straight-
forwardly because it would lead to divergent terms in the
analytical expression, namely of the form ng(0) and 1/0 [see
Eq. (10) and the example Eq. (A10)]. The numerical treatment
boils down to adding small shifts to a certain number of
&’s at the symbolic level so that zeros are avoided in the
arguments of np and denominators of fractions, and only then
letting the original £’s go to zero (say, &x,—q, —> €k,—q, + ¢
&k, = &k, + 2¢, and so on, simultaneously across all terms in
a given diagram; the shifts are integer multiples of ¢ which we
set depending on perturbation order ¢ = 10~'2*V; the choice
of &’s to be shifted is nonunique). This will a priori lead to
systematic numerical error and here we check whether the
numerical treatment is satisfactory (the atomic limit is the
worst case scenario in this respect).

First, we recall the analytical expression for the self-energy
beyond the Hartree shift:

2
£, = L
4 iw,

(BI)

It can be shown that this expression corresponds to the second-
order diagram in the U series written down in terms of the
Hartree-shifted bare propagator. The contribution of higher
orders is zero “order by order,” but individual higher-order
diagrams are not necessarily zero. Therefore, it is a stringent
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FIG. 4. Hartree-shifted self-energy series up to Sth order. The
numbers of diagrams per order are 1, 2, 12, 70, 515, . .. starting from
the second order, respectively.
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FIG. 5. Benchmark in the case of an isolated Hubbard atom at
half filling. Big panel: Our method (GC) is compared to the analytical
expression. Smaller panels on the right: Self-energy contributions
order by order; the only contribution comes from the second-order
diagram.

check of our method to show that the higher orders truly
cancel.

We present the results in Fig. 5. We evaluate all the dia-
grams up to and including the 6th order, atafixedU =T = 1.
The total series is in excellent agreement with the analytical
result (big panel). On the smaller panels on the right, we
examine the contributions order by order (X" denotes contri-
bution at order N). Indeed, the only contribution comes from
the second-order diagram, while the contributions of higher
orders are negligible. However, the numerical error grows
with approaching the real axis, and with growing order. The
real part of self-energy coming from the 6th-order diagrams
already reaches 107>. This is expected, as we use bigger
numerical shifts in higher-order diagrams. Alternatively, one
would need to drastically increase the floating-point precision
in the evaluation of higher-order diagrams, which is not
suitable for lattice computations, so we do not consider this
approach; rather, we keep the floating-point precision fixed
across orders.

In the atomic limit, the real-frequency self-energy cannot
be reliably extracted from our method. This is, however, a
somewhat pathological case where the self-energy is a single
simple pole at w = 0. Due to numerical shifts and cutting
the series at finite order, our numerical self-energy here is
composed of multiple poles of various orders at various small
frequencies ~¢. Very close to the real axis, these numerical
artifacts become apparent, and the method is of little use.

2. 4-site Hubbard chain

Next, we benchmark our method in the case of the half-
filled 4-site cyclic Hubbard chain at temperature 7 = 0.2D =
0.8t (note that the actual half-bandwidth in this case is 2¢).
This small system can be solved using exact diagonalization
(ED). In our method, the k summations go over only 4 points
and can be performed fully, so we denote our method GC
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FIG. 6. Benchmark in the case of the 4-site cyclic Hubbard chain
at half filling.

(gray code). In this case we go up to order 4 [due to particle-
hole (PH) symmetry, the order 5 does not contribute, but order
6 we cannot fully sum].

We present our result in Fig. 6. The agreement is excellent
atU = 1D, yet at U = 1.5D higher orders become important.

Similarly to the atomic limit, the self-energy in the 4-site
chain is composed of a relatively small number of poles
on the real axis, and does not form a smooth frequency
spectrum. On the other hand, having that g takes on only
three distinct values (—0.5, 0, 0.5), our method can yield
poles only at frequencies which are integer multiples of 1/2
(plus/minus small numerical shifts). The immediate question
is then, How does one recover the correct self-energy even
with an infinite self-energy series? One would expect the poles
in self-energy to appear at various different frequencies and
even move continuously with increasing U, yet our analytical
expression seemingly does not support that. The answer is
that all the higher-order poles ultimately merge into (shifted)
simple poles through

o0
> -
k z—a

k=1 <

(B2)

and that way recover the correct physical result. Note, how-
ever, that the principle part of the Laurent series Eq. (B2) cut
at a finite order no longer resembles a simple pole at n < q,
irrespective of the maximum order in the series. Therefore,
it makes no sense to look at ¥(w + in) results at small 7.
One reasoning is that we should take n proportional to the

u—Uny,=0.1D, T=0.2D, U=1D
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FIG. 7. Benchmark of the method in the case of 4 x 4 cyclic
Hubbard cluster.

distance between the poles we get, which is in this case 0.5.
We therefore compare our result to ED at n = 0.6 which is
just below the first Matsubara frequency 7 T and find similarly
good agreement to that on the imaginary axis.

Again, our method cannot be used to reliably extract
discrete spectra on the real axis. Fitting the result at n = 0.6
to a causal and piecewise constant spectrum on the real axis
does reproduce the correspondingly binned ED result, but the
detailed pole structure cannot be inferred.

3. 4 x 4 lattice

We now turn to the 4 x 4 cyclic Hubbard cluster. This sys-
tem cannot easily be solved with ED, so we use the Rubtsov
algorithm continuous-time interaction expansion Monte Carlo
(CTINT) which is numerically exact. However the compar-
ison can now only be made on the imaginary axis. In our
method, full k summations can be performed up to order 5.

In Fig. 7 we show the results at u — Un, = 0.1D, T =
0.2D, k = (0,0). Additionally, we show the GC results
for different perturbation-order cutoffs Ny, =2...5. At
U = 1D the agreement is excellent and the perturbation series
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seems converged at order 5. At U = 1.5D the agreement is
solid, but 5th order still makes a sizable contribution.

As for the real-frequency spectrum, there is a similar prob-
lem as in the 4-site chain case: dispersion now assumes only
the values (1, 0.5, 0), and again one obtains poles only at
integer multiples of 0.5 plus an integer multiple of u — Un, .
Although discrete, the exact self-energy spectrum is expected
to be much denser, and any kind of fit to the n ~ 0.5 result
is likely to miss details of it. Our method is suitable only for
continuous spectra, as we will show in the following sections.

4. Anderson impurity
To test our method in the continuous spectrum case,
we start with the simplest possible model: the Anderson
impurity model with a semicircular bath. We consider only
the PH-symmetric case. The Hartree-shifted bare propagator
is given by

Gy (2) = (B3)

72— A®2)

This model can be solved approximately using numerical
renormalization group (NRG). NRG yields the self-energy
directly on the real axis.

In our method, we utilize the real-space algorithm intro-
duced in Appendix A 7, with the important simplification that
there are no sums over lattice sites. We discretize the energy
(200 points between —1 and 1), and perform Monte Carlo
integration for the ¢ integrals using the product ]_[V p(ey) as
the weight.

A priori, now we should be able to approach the real axis
to around n ~ 1/100. However, the statistical error now also
plays the role, and we find that Im ¥(w + in) becomes noisy
below 1 ~ 0.05D. Nevertheless, this should be sufficient to
resolve all the details of the spectrum. We compare our results
to NRG at n = 0.05 and find excellent agreement (Fig. 8).
Note that we do not impose PH symmetry, but the result
is PH-symmetric apparently within the level of noise in the
curve. Next, we fit our result at 7 = 0.05D to a PH-symmetric
piecewise-trapezoid spectrum on the real axis with resolution
~0.1 and compare to the NRG result on the real axis. The
agreement is excellent, and the resolution is sufficient to
capture all the features in Im Z(w + i01).

5. 32 x 32 lattice

Finally, we benchmark our method in the 32 x 32 Hub-
bard lattice case. The best available result is that of the

32x32 lattice, 2k(iwp,), T=0.1D, u —Ungs= —0.1D
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FIG. 9. Matsubara self-energy on the 32 x 32 Hubbard lattice: benchmark against the ¥ Det method at 8th order.
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imaginary-time ¥ Det diagrammatic Monte Carlo calculation,
performed up to 8th order. We compare the two methods on
the Matsubara axis in Fig. 9.
At U = 0.5D the agreement is excellent, and the calcula-
tion is clearly converged by order 5, but clearly not by order 2.
At U = 1D higher orders still contribute, and there is
a bit of discrepancy at low frequency. From the real-

frequency results (Fig. 1 in the main text), however, it
is clear that the self-energy is qualitatively converged, al-
though some corrections are expected with inclusion of higher
orders.

We do not benchmark using U = 1.5 data, as in that case
the higher orders are expected to contribute more, and results
are not expected to coincide.
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Recent experiments on cold atoms in optical lattices allow for a quantitative comparison of the
measurements to the conductivity calculations in the square lattice Hubbard model. However, the available
calculations do not give consistent results, and the question of the exact solution for the conductivity in the
Hubbard model remained open. In this Letter, we employ several complementary state-of-the-art numerical
methods to disentangle various contributions to conductivity and identify the best available result to be
compared to experiment. We find that, at relevant (high) temperatures, the self-energy is practically local,
yet the vertex corrections remain rather important, contrary to expectations. The finite-size effects are small
even at the lattice size 4 x 4, and the corresponding Lanczos diagonalization result is, therefore, close to the

exact result in the thermodynamic limit.

DOI: 10.1103/PhysRevLett.123.036601

Theoretical study of transport in condensed matter
systems with strong interactions is very difficult. In many
cases there are no long-lived quasiparticles and the
conventional Boltzmann theory of transport provides
little insight. Progress can only be made using bona fide
many-body approaches to simplified lattice models or
effective field theories where approximations are made in
a controlled manner. [1-9] Even then, as only a few
specifics of a real system enter the model, the comparison
to relevant experiments can only be made at a qualitative
level. This changed very recently when Ref. [10] reported
a measurement of transport in a quantum simulator of the
fermionic Hubbard model in two dimensions (2D). The
experiment is performed on cold lithium atoms in an
optical lattice, a controllable setup free from disorder,
phonons, and other complications of realistic materials. It
is well justified to compare at the quantitative level such
experimental result for conductivity with the Hubbard
model calculations.

Reference [10] found that two state-of-the-art methods,
namely, the finite-temperature Lanczos method (FTLM)
and the dynamical mean field theory (DMFT) give con-
ductivities that differ by up to a factor %, and only FTLM
shows a solid agreement with the experiment. At high
temperatures 7 2 ¢ relevant to these observations (for
instance, in cuprates where the hopping parameter 7=
0.3 eV the corresponding temperature is well above the
melting temperature), one expects the correlation lengths to
be short and the approximations made in the two methods
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to apply. Our aim is to reveal the physical origin of this
discrepancy and to establish a numerically exact solution in
the regime 7/t = 1 relevant for optical lattice experiments,
as well as other narrow band systems, such as organic
superconductors [11], low temperature phase of TaS, [12],
twisted bilayer graphene [13], and monolayer transition
metal dichalcogenides [14], such as 17-NbSe, [15].

It is useful to recall that the mentioned numerical
methods belong to two distinct general approaches:
(A) one solves an isolated finite cluster of lattice sites,
as representative of the thermodynamic limit [7,8,16];
(B) one solves an effective, self-consistently determined
“embedded” cluster, which provides propagators of infinite
range, yet limits the range of electronic correlations
[17-25]. The diagrammatic content of the self-energy in
the two approaches is sketched in Fig. 1(a). Approach B
captures longer distance quantum fluctuations and, there-
fore, is assumed to converge more quickly with cluster size
at the price of an iterative solution of the (embedded)
cluster, as opposed to the “single-shot” calculation in
approach A. FTLM solves a 4 x 4 isolated cyclic cluster
and belongs to A. DMFT is an embedded cluster calcu-
lation (B) with the cluster size one, and therefore, it
approximates the self-energy by a purely local quantity.

Therefore, there are three possible sources of discrep-
ancy between the DMFT and FTLM results for resistivity:
(i) nonlocal correlations which are encoded in the nonlocal
corrections to self-energy, present in FTLM but beyond
the DMFT approximation; (ii) quantum fluctuations at
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FIG. 1. (a) Ilustration of the type of self-energy diagrams that

are captured by isolated cluster and embedded cluster (in
particular cellular DMFT), and the respective difference in the
Brillouin zone (discrete vs continuous). (b) Separation of a
susceptibility into the bubble and the vertex corrections part.

distances beyond the linear size of the FTLM cluster;
DMEFT captures them through an effective fermionic bath;
(iii) vertex corrections, included within FTLM but
neglected within DMFT where one calculates only the
bubble contribution. We recall that the two-particle cor-
relation functions can be split into the disconnected part
(“the bubble”) and the connected part (“vertex correc-
tions”), as shown in Fig. 1(b). The bubble captures only
the single-particle scattering off the medium, described by
the self-energy which enters the full Green’s function. The
collective excitations come from the particle-hole scatter-
ing, and are present only in the vertex corrections.
Whereas the contribution of the connected part is always
important for charge susceptibility [26-28], in the
large dimensionality limit the vertex corrections to con-
ductivity cancel [29] (the full vertex F loses kk’ depend-
ence and the current vertex is odd v_y, = —uvy, unlike the
charge vertex which is even). In finite dimensions, how-
ever, the vertex corrections do contribute to conductivity
as discussed previously in several approximative
approaches at low temperatures [30-36]. Based on the
Ward identity, one could think that when the correlations
are approximately local, the vertex corrections become
negligible [30,32]. We show that this expectation is not
satisfied [37] and that, despite the nonlocal self-energy
being practically negligible at 7 = 0.3D, the vertex cor-
rections still amount to a sizable shift in dc resistivity.
Additionally, we show that long-distance quantum fluc-
tuations have little effect on dc conductivity, thus, a 4 x 4
isolated-cluster calculation is sufficient to obtain exact
results for the bulk model.

Model.—We consider the Hubbard model on the square
lattice

H= —tz cj,,-cgj + UZ”M”M _/"Znoi’ (1)
o.(i.J) i ol

where cii /c,; creates or annihilates an electron of spin o at
the lattice site i. The hopping amplitude between the
nearest neighbors is denoted ¢, and we set D = 4¢ as the
unit of energy. We also take lattice spacing a = 1, and
h=e=1. The density operator is n, = CLCai, the
chemical potential y, and the on-site Hubbard interaction
U. Throughout the Letter, we keep U = 2.5D, which
corresponds to the (doped) Mott insulator regime, and
assume paramagnetic solutions with full lattice symmetry.

Formalism.—The conductivity is defined in terms of the
current-current correlation function

Aglin) =3 e [ are i) @

where 7 is imaginary time, iv, = 2inzT is the bosonic
Matsubara frequency, r; = (x;,y;) denotes the real-space
vector of the site i. The current operator j is defined as
Ji= —itZ”cZicm_n.@;x) + H.c. where n.n.(i;x) denotes
the nearest neighbor in the x direction. We are interested
in longitudinal, uniform conductivity og’, (w), so we
adopt a shorthand notation A(iv,)= quo(iyn) and
o(w) = o4 y(w). The optical conductivity is given by
[38] o(w) = —(i/w)[Alw) — Alw = 0)], where A(w) is
the analytical continuation of A(iv,) to the real axis,
i.e., the inverse of the Hilbert transform

The second equality in Eq. (3) is due to ImA(w = 0) = 0.
The direct-current (dc) conductivity is defined as
64c = Reo(w = 0) = ImA'(w = 0), and the dc resistivity
is then py. = 1/0y..

In order to better identify and understand the importance
of various processes for the transport, we also calculate the
charge susceptibility y. = d{(n)/du, which corresponds to
the charge-charge correlation function [39]. Both y. and A
can be separated into the bubble and the vertex corrections
part [40], Fig. 1. In all quantities, the superscript “disc”
denotes the bubble contribution, and the superscript
“conn,” the vertex corrections part.

Methods A.—We solve an isolated cyclic 4 x 4 cluster
using the FTLM [41,42] method and both 4 x 4 and 8 x 8
using quantum Monte Carlo calculations [the continuous-
time interaction-expansion algorithm (CTINT) [20,43]]
Both methods yield numerically exact solutions of the
representative finite-size model. In FTLM, we calculate
o(w), while CTINT yields A(iv,), as well as the self-energy
Z,;;(iw,) and the Green’s function G;;(iw,) [44]. Note that
both CTINT and FTLM allow for a direct calculation of the
full current-current correlation function, and that we need
not evaluate the full vertex function F at any stage of the
calculation.
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FIG. 2. Charge susceptibility (upper) and dc resistivity (lower) as a function of temperature, at different levels of doping.
The color between the curves denotes the physical origin of the difference. Dashed curves denote just the bubble contribution, solid lines

the full result.

In the isolated cluster calculations, one faces several
finite-size effects stemming from the finite range of the bare
electronic propagator [41,42]. Most importantly, this not
only limits the range of electronic correlations, but also
affects the diagrammatic content of short range correla-
tions: diagrams with distant interaction vertices are not
captured (Fig. 1). One may see this equivalently in the k
space as a discretization of the Brillouin zone, which affects
the internal momentum summations in all self-energy and
full vertex diagrams.

Methods B.—We solve the embedded clusters of size
2x1 and 2 x 2 within the cellular DMFT (CDMFT)
scheme [45] and the 4 x 4 cluster within the dynamical
cluster approximation (DCA) scheme [46], both using
CTINT. (Unlike the isolated cluster case, the bare propa-
gator entering CTINT here takes into account the effective
medium.) The single-site DMFT calculations (cluster size
N. =1) are done using both the CTINT and the approx-
imative real-frequency numerical renormalization group
method as impurity solvers.

In CDMFT, an electron can travel infinitely far between
two scatterings, but a self-energy insertion in the corre-
sponding diagrammatic expansion can only be of limited
range (see Fig. 1). In DCA, the approximation is made in
reciprocal space and amounts to allowing the electron to
visit k states otherwise not present in the finite cluster [24].

Results.—The top panels of Fig. 2 show the temperature
dependence of y, for several values of doping p = 1 — (n).
One sees that, in the high-temperature regime 7 2 0.3D,
the results of different methods (solid curves) all agree and
tend toward the atomic limit, as expected for a thermody-
namic quantity.

At lower temperatures, the nonlocal correlations show
up. Away from half-filling, FTLM and DCA yield a charge
susceptibility that increases with lowering temperature, yet
in DMFT, it saturates, instead. The enhancement of charge
susceptibility at low 7 comes from the antiferromagnetic
fluctuations [7]. The difference between the DCA and the
DMEFT is used to characterize the importance of nonlocal
correlations (green shading). They also manifest them-
selves in the growth of nonlocal self-energy at low T (thin
dashed-dotted lines). The DCA and the FTLM results do
not completely coincide; the difference (pink shading)
comes from the longer-distance quantum fluctuations.
The discretization of the Brillouin zone in FTLM can be
somewhat ameliorated by the twisted-boundary conditions
(TBC) scheme [47]. As expected, TBC is closer to DCA
(black line), but one needs a better method to capture the
full effect of longer-range processes.

We have also separately evaluated the bubble contribu-
tion y9¢ to y. (dashed lines) and observe that it is
substantially larger than the full result y,.
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The bottom panels of Fig. 2 show the temperature
dependence of resistivity pg. as calculated from the bubble
term in the DMFT (dashed line) and the full result from
FTLM (solid line). Strikingly, even in the temperature
range T 2 0.3D where the behavior of y,. collapsed to that
of the atomic limit, the DMFT and FTLM are shown to
yield significantly different results with a lower value of
resistivity found in the FTLM.

To understand the origin of this difference, we take a
closer look at the data at T = 0.5, p = 0.1 that we show in
Fig. 3. In panel (a) we compare the self-energies found in
the DMFT, CDMFT 2 x 1, and the CTINT calculation for
the isolated 4 x 4 and 8 x 8 clusters. Not only is the nearest
neighbor self-energy (top) found to be 2 orders of magni-
tude smaller than the local one (bottom), but also the local
parts of the self-energies show excellent agreement. Thus,
neither nonlocal correlations (neglected in DMFT) nor
long-range processes (neglected in 4 x 4) play an important
role for the self-energy at this temperature.

Might long-range processes play a more important
role for the conductivity? One can readily investigate the
role of long-range processes for the bubble part of the
conductivity. This is done by calculating the conductivity
in the DMFT formulated for the 4 x 4 lattice, which
amounts to discretizing the Brillouin zone [in both the
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FIG. 3. All panels: p = 0.1, T = 0.5D. a) Benchmark of self-
energy and inspection of its leading non-local component. b)
Comparison of the optical conductivity between various methods.
c) See text. d) Real-space resolution of the vertex corrections
along two spatial directions (CTINT 8 x 8 result).

self-consistency condition and internal bubble summation,
Fig. 1(b)]. Figure 3(b) compares the optical conductivity
obtained in this way (denoted by DMFT 4 x 4) to the
infinite lattice DMFT result and to the FTLM one. The
DMFT and the DMFT 4 x 4 are close: the long-range
processes clearly do not account for the discrepancy
between the DMFT and the FTLM either. Therefore, the
difference between the DMFT and FTLM conductivities
mostly comes from the vertex corrections.

To further verify this result, we have also evaluated the
current-current correlation function A(iv,,) in CTINT 4 x 4,
and deduced the connected part by A" (iv,) = A(iv,)—
A% (iu,,), which is shown by the blue squares in Fig. 3(c).
These points fall on the blue line which is obtained by the
Hilbert transform to the imaginary axis [Eq. (3)] of the
difference in o(w) between the FTLM and the DMFT 4 x 4
[see Supplemental Material (SM) [48] for details and other
p, T]. Note that the magnitude of A" at the Matsubara
frequencies is rather small, consistent with the Ward
identity A" (i = 0) ~ Xy 04, G (i00,)0, S (i, ),
that associates A“"(ir,) with 0y Xy (see SM [48] for
further discussion). The conductivity is, however, deter-
mined by the slope, —0,ReA(iv)|,_y+ = o(w = 0) = oy,
and the contribution from A" is not small but comparable
to the bubble term. The slope of the red line which
corresponds to the difference between the DMFT 4 x 4
and DMFT is small, reflecting the practically negligible
finite-size effects in the bubble.

The shape of A®™ is difficult to reconstruct with
analytical continuation from noisy data at the Matsubara
frequencies (see SM [48]), which we circumvented by
using FTML.

Might the impact of vertex corrections change if larger
systems are considered? The added longer distance com-
ponents of A{®™ could be sizeable, and even the short
distance components might change due to improved dia-
grammatic content captured by the bigger cluster. We have
performed the CTINT 8 x 8 computation to address this
question. In Fig. 3(c), we compare A®"™(jv,) between
4 x 4 and 8 x 8 clusters (blue squares and black stars) and
observe that they are equal within the statistical error bars
(about the size of the square symbol). As for the longer
distance components, we analyze the vertex corrections
term as a function of real-space vector A{™(iv,) and
present the results in Fig. 3(d). Indeed, the values drop
rapidly with distance, and the range of A®™ is clearly
captured by the 4 x 4 cluster. Furthermore, the difference in
the full A between 4 x 4 and 8 x 8 clusters (purple crosses)
appears to coincide with the finite size effects in the
bubble (red line and dots) obtained entirely independently
with DMFT.

Small finite-size effects are also indicated from a
comparison of the frequency moments of FTLM o(®) in
the high-7 limit with the exact values from Ref. [8], where
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we find an excellent agreement within <0.2% (see
SM [48]).

It is important to note that apart from reducing the dc
resistivity, the vertex corrections have a characteristic effect
on the frequency dependence of optical conductivity [see
Fig. 3(b) and SM [48]]. The high-frequency peak in
o(w) obtained from DMFT is centered at precisely
@ = U = 2.5D. This peak describes single-particle tran-
sitions between the Hubbard bands. The inclusion of
vertex corrections brings about multiparticle excitations
which move this peak towards lower frequencies, as
noted previously in a slightly different context (see
Refs. [49-51]).

Conclusions.—In the high-temperature T 2 t, (doped)
Mott insulator regime of the Hubbard model, the single-
particle self-energy is almost local, yet the vertex correc-
tions to dc resistivity persist. This finding applies to the
optical lattice investigation in Ref. [10], and explains why
the DMFT results disagree with the experiment. On the
other hand, we demonstrate that the long-distance quantum
fluctuations play a negligible role, and thus, the 4 x 4
isolated cluster becomes representative of the thermody-
namic limit. Therefore, the corresponding FTLM result is
close to exact, and is an important benchmark for the
experiment in Ref. [10] and future cold atoms experiments.

We cannot access, with the same confidence, the regime
below T ~t 1In principle, determinantal quantum
Monte Carlo algorithms allow access to larger lattices
and, thus, lower temperatures (see Ref. [8]), but the
analytical continuation presents a possible source of sys-
tematic error which is difficult to detect and estimate (see
SM [48] for a detailed analysis using the implementation of
the maximum entropy method taken from Ref. [52]). Our
results highlight the need for developing real-frequency
diagrammatic methods, like the one proposed recently
in Ref. [53].

Finally, our results suggest that proper account of the
vertex corrections is needed at all temperatures. The
discrepancies between the experimental observations and
the DMFT, such as those observed in the case of hcp-Fe
[54] or in Sr,RuO, [55] should not be interpreted only in
terms of nonlocal correlations. Very recently [36], this
conclusion has been shown to be valid even at much weaker
coupling and in various other models.
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Here we present a detailed analysis of the numerical
results that we perform to disentangle the different con-
tributions to the optical conductivity and identify the
source of discrepancy between DMFT and FTLM. The
analysis is performed on the imaginary axis where we
can obtain the results from CTINT. Note that at high
temperature, the Matsubara frequencies are far apart
and the values of A(iv,) are insensitive to the details
of o(w). We illustrate this in Fig. S1 where we show
that, on the Matsubara axis, the FTLM and DMFT
A(ivy,) results are almost indistinguishable. However,
the discrepancy is not below the level of noise in our
numerics and we are able to reconstruct this difference
from three different contributions, namely the finite-size
effects, non-local self-energy effects and vertex correc-
tions, all obtained independently using combinations of
other methods. However, in the present context, we find
the CTINT method useful only as a tool for benchmark-
ing, since the analytical continuation from the imagi-
nary to the real axis introduces a systematic error, and
a precise o4, value is difficult to extract from A(ivy,).
In Section I we present our imaginary axis analysis of
the results, and in Section II we discuss the difficulty of
analytical continuation. Then, in Section IIT we bench-
mark our FTLM result against analytically computed
frequency moments of the optical conductivity. In Sec-
tion IV we discuss the details of the pole-broadening
procedure used in FTLM.

I. DETAILED BENCHMARK

In Fig. S2 we show the detailed comparison and cross-
checks between the different methods in 12 doping-
temperature (p,T) points in the Hubbard model phase
diagram at U = 2.5D = 10t. The continuous lines are
obtained by the Hilbert transform from the real-axis to
the continuous imaginary variable o(w) — A(iv), and
then taking the difference between the different meth-
ods, as written in the legend. The question we are ad-
dressing in the main text and that is considered in fur-
ther detail here is the physical origin of the difference
difference between DMFT and FTLM 4 x 4, presented

p=0.1T=0.5
i
0.06 1 ..m- DMFT
k FTLM 4x4
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—~ 0.04 1
2
= 003
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FIG. S1. Current-current correlation function A(iv,) in

FTLM and DMFT (the dashed and dotted lines are guides
to the eye).

on Fig. S2 by the orange lines.

We can readily inspect the effect of finite cluster size
on the bubble A4, This is given by the red line
which presents the difference between DMFT 4 x 4 and
DMFT. Red circles are obtained independently on the
Matsubara axis without any analytical continuation, di-
rectly from DMFT data (DMFT here is performed with
CTINT solver), and present an additional cross-check of
our analytical continuation of the self-energy which was
used to obtain o(w) in DMFT. We note that the statis-
tical noise coming from CTINT in the single-site DMFT
solution is very small, and the Padé analytical contin-
uation of X(iw,) can be successfully performed. The
optical conductivities agree closely (within few percent)
between QMC and the numerical renormalization group
(NRG) solution.

We can also compare the red line with the difference
between the full A from CTINT 8 x 8 and 4 x 4 (purple
crosses). The agreement is solid: it appears that the
only difference between the 8 x 8 and 4 x 4 clusters is
the finite-size effects in the bubble Ad%¢ and that the
finite-size effects disappear entirely already at cluster
size 8 X 8. Note, however, that finite-size effects mostly
pertain to the overall integral of o(w) (i.e. A(iv = 0)),
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and have little impact on ogqc.

The blue line presents the difference between FTLM
4 x 4 and DMFT 4 x 4, which is by construction the or-
ange line minus the red line, i.e. the difference between
DMFT and FTLM 4 x 4, up to the finite-size effects in
the bubble.

The blue squares and black stars are the vertex correc-
tions A" as obtained from CTINT 4 x 4 and 8 X 8: at
T > 0.5D their agreement is excellent, and even at the
lowest temperature it is likely within the statistical error
bars of the method. At the lowest temperature there is
some discrepancy but mostly due to increased statistical
error in CTINT. The problem particularly pronounced
at the biggest doping, where our CTINT 8 x 8 calcu-
lation suffers from the sign problem and failed to con-
verge properly in the available computational time (384
cpu*days per point).

We have inspected also the self-energies and found ex-
cellent agreement between CTINT 8 x 8 and 4 x 4 (see
Fig.3a in main text, other data not shown). We ob-
serve that the range of X, is at most 2 lattice spacings,
which means that the longer distance components that
are captured by the 8 x 8 cluster are unlikely to have a
measurable effect on any observable.

We cross check our results by calculating A" (iv = 0)
from the Ward identity".

Aconn(iy = 0) =27 Z Vk Z Gi(’twn)akl Zk(iwn)

k W

and present it using the dark-green cross. Here we have
constructed X (iw,, ) on the lattice (64 x64 grid Brillouin
zone) using the Fourier transform of the short-distance
¥ components available on the 4 x 4 cluster, which also
allowed us to take the derivative analytically. Again, the
agreement with the corresponding blue square and black
star is within the roughly estimated statistical error of
CTINT at all temperatures.

In most cases the blue line (difference between FTLM
4 x 4 and DMFT 4 x 4) passes through the blue squares
(vertex correction from CTINT 4 x 4). However, at iv =
0 there appears to be a systematic deviation, and the
blue line passes below the blue square. This we can link
to the effect of non-local self-energy on the bubble which
we calculate from the CTINT 4 X 4 results and present
as green color triangles. Indeed, the green triangles are
mostly negligible except at ¥ = 0 where they are slightly
negative.

We check our decomposition by summing the green tri-
angles, blue squares and red circles, and comparing
them to the orange line. Within statistical error bars,
the total difference between FTLM4 x 4 and DMFT ap-
pears to come from 1) finite-size effects in the bubble,
2) effects of non-local self-energy in the bubble and 3)
vertex corrections.

Note, however, that the effects of non-local self-energy
on the bubble are small and visible only at the lowest
temperature, and related only to the overall integral of
o(w), i.e. the kinetic energy. The only measurable effect
on o(w = 0) = —0,A(iv)|, o+ appears to come from
the vertex corrections. We additionally cross check this
by analytically continuing ¥, from CTINT 4 x 4 and
using it together with DMFT X, (w) that we already
have on the real-axis from NRG solver, to construct
Yk(w) and calculate 04¢(w = 0) . The difference from
the pure DMFT result is negligible in relative terms
except at p = 0 and lowest T" where o4, becomes very
small. We present the corresponding slope in A(iv) with
green color dashed lines and see that it is much smaller
that the slope of the blue line, and even in the opposite
direction.

Based on the above analysis we conclude that at T' 2
0.3D, finite-size effects and the effect of non-local self-
energy on 045¢ become negligible, and that the vertex
corrections o{.™" are already well converged with re-
spect to the cluster size at the size 4 x 4. This builds
confidence that our FTLM 4 x4 is close to exact solution

of the bulk Hubbard model.

II. UNCERTAINTIES IN THE ANALYTICAL
CONTINUATION OF A(iv,)

In this section we thoroughly test the Maximum En-
tropy analytical continuation (MaxEnt) of the Matsub-
ara current-current correlation function A(iv,) — o(w).
We find that the result is strongly biased towards the
model function used in MaxEnt continuation, and there-
fore discard the CTINT results for o(w) in favor of
FTLM 4 x 4 which requires no analytical continuation.

In Fig. S3 we compare o(w) and A(iv) between FTLM
and DMFT. As a function of continuous imaginary vari-
able, A(iv) is displayed by a line, and the Matsubara
frequencies are indicated with crosses. Note that only
the values at the Matsubara frequencies A(iv,) serve as
the input for MaxEnt. We see that most of the differ-
ence between FTLM and DMFT is encoded between the
first two Matsubara frequencies in A(iv). In particular,
the dc conductivity is given by cqc = —9, A(iV)], S0+,
which is hard to estimate based on A(iv,). Although
there is a one-to-one correspondence between any given
function on the real axis and its Hilbert transform on
the imaginary axis, any amount of noise in A(iv,) and
a truncation of Matsubara frequencies is likely to lead
to loss of critical information necessary to distinguish
between two similar o(w).

Fig. S4 shows the optical conductivity obtained by the
analytical continuation of the current-current correla-
tion function A(iv,) from CTINT. We use the im-
plementation of the Maximum Entropy method from
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Ref. 2. We put the error bar dA(iv,) = 10~%. Below
this value the MaxEnt o(w) starts to acquire noisy and
manifestly wrong features, due to overfitting. This value
of 10~ also agrees with the deviation in A(iv, ) between
CTINT 4 x 4 and FTLM, attributed to the statistical
noise in CTINT. We perform annealing similar to Ref.
we apply MaxEnt at temperature T = 0.5D, using ei-
ther FTLM (left column) or DMFT (middle column)
o(w) at T = 0.7 as the default model. MaxEnt is then
done at T'= 0.3D, using the result of previous MaxEnt
as the default model. The right column in Fig. S4 shows
the resulting dc resistivities.

We see that the result of the analytical continuation
strongly depends on the initial model function at high
temperature. Furthermore, when the initial model is
given by FTLM, the result at T' = 0.3 still tends to de-
viate towards the DMFT solution. The reason for this
is that the Drude-like peak in DMFT is broader than in
FTLM, and the MaxEnt generally tends to make the
spectrum smoother. This means that even with the
correct default model at the highest temperature, the
error bar introduced by annealing can easily erase any
information about the vertex corrections and produce a
result comparable to just the bubble contribution that
one can safely obtain from DMFT(NRG). When the ini-
tial default model is taken to be DMFT, the error bar
goes up to 50 percent, and the results typically resemble
the DMFT solution.

Instead of choosing as the default model the FTLM re-
sults, which are computationally expensive to obtain
(around one month on 32 cores with 80 GB of RAM
for single choice of boundary conditions), it may ap-
pear reasonable to try and start the annealing using the
high-T' expansion” result at the highest temperature.
However, as shown in Ref. 3 even high-T" expansion is
not trivial to calculate, and can only yield o(t) results
up to t &~ 1 (¢ here is real time). In Fig. S5 we illustrate
how the short time conductivity holds little information
about o4c as ogqc ~ [ dtReo(t). The error made in the
high-T" expansion then propagates in MaxEnt, and can
lead to wrong results.

Finally, it should be noted that with increasing tem-
perature, Matsubara frequencies spread out, leaving
less and less information to be extracted from even a
slightly noisy A(ivy,). We conclude that doing MaxEnt
on CTINT 8 x 8 even with the corresponding FTLM
4 x 4 default model would not bring any information
other than what is already contained in FTLM. Our
analysis highlights the importance of developing meth-
ods that calculate the current-current correlation func-
tion directly on the real frequency axis.

III. COMPARISON WITH THE MOMENTS
FROM THE HIGH-TEMPERATURE
EXPANSION

In the high-T' limit with o(w) « 1/T, the frequency
moments p = 5= [*. o(w)wFdw can be calculated re-
liably or even analytically ™" as the expectation values of
certain commutators between the Hamiltonian and the
current operator. Despite the difficult to reconstruct
o(w), and in particular o4 from such moments with
high confidence’, the moments still provide a firm test
of the numerical approaches.

By using the real frequency o(w) obtained with FTLM,
we calculate frequency moments in the high-T" limit for
U = 15D and p = 0.2. Such moments can be com-
pared to the exact values reported in Ref. 3. We find
that our FTLM moments py, for £ = 0 — 8, which have
main contributions from o(w) in the regime |w| < 4D
(i.e. up to w about 2D above the upper edge of the
Hubbard band), deviate from the exact moments by
< 0.2%. Some lower moments show even smaller de-
viation (see Table S1), which suggest FTLM correctly
reproduces high-T behavior with small finite size effects.
Our higher moments (k 2 10) show systematic larger
deviation from the exact results due to high frequency
cutoff at w > 5D in our FTLM results.

T — oo values of the FTLM moments are obtained by
fitting T dependence of 2Ty to a + b/T? in the tem-
perature range between 5D and 10D. The numerical
uncertainties given in brackets in the Table S1 are ob-
tained as a standard deviation in the fitting procedure.

2T i, (exact) |27 g (FTLM)

k
0| 096 0.96001(9)
2| 16.5888 16.554(4)
4] 879.206 879.4(2)
6| 713504 71525(20)
8

7.95719-10% | 7.963(2)-10°

TABLE S1. Exact frequency moments 27'uy taken from
Ref. 3 and the moments from integrating FTLM o(w) (here
the units of ¢t = D/4 = 1 are used). The numbers in the
brackets are estimates of numerical uncertainty for the last
digits. Small deviations of FTLM moments from exact val-
ues suggest small finite size effects in the high-T" limit.

IV. BROADENING IN FTLM

Optical conductivity calculated with FTLM on a finite
cluster is strictly a set of delta functions in frequency
space. The number of such delta functions grows with
the number of many-body states, leading to a high den-
sity for the used cluster sizes. Still, the delta functions
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from up to t ~ 10. DMFT and FTLM practically coincide
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need to be broadened to get a smooth spectra, repre-
sentative of the thermodynamic limit. The value of the
broadening needs to be appropriate: sufficiently large
to remove the finite-size artifacts, but not large enough
to over-broaden the real features of the spectrum”"°.

In our case we use Gaussian broadening, with the broad-
ening parameter chosen as the parameter for which og4c
is not changing or shows smallest change with broaden-
ing, a choice to which we refer as the optimal one. See
Fig. S6. This prescription works also for finite and
high frequencies, where the delta functions are denser

and the spectra are smooth even with smaller broaden-
ing parameter. The used optimal broadening parame-
ter is substantially smaller than the width of the Drude
peak and we estimate the broadening uncertainty of pqc
within FTLM to be below 10%.

It is worth noting that that with increasing broadening
the ogq. drops monotonically. Since in all cases oq. in
DMF'T is lower, there must always be a certain broaden-
ing level that reproduces the DMFT result for o4, but
not simultaneously o(w) at all frequencies. We have
checked that the broadening level needed to reproduce
04c from DMFT is about 10 times the optimal one, and
becomes comparable to the width of the Drude peak.
This choice of broadening leads to severe modification
in the shape of o(w), especially of the high-frequency
peak which is otherwise well determined already by a
fine binning of delta functions or with a tiny broaden-
ing. Therefore, we exclude such large broadening from
consideration.

Finally, we note that for the calculation of A(iv,) from
o(w) obtained by FTLM with Hilbert transform, Eq. (3)
in the main text, no broadening is needed due to integra-
tion and that even if the broadened o (w) is used, A(iv,,)
change by the order of 107°, which is smaller than the
symbol size in Fig. 3 (main text) and in Fig. S2 and is
also below the CTINT noise level.

optimal @

0.08 4

0.06 .

0.04 L
0.01

0.
broadening parameter [D]

FIG. S6. Representative dependence of o4. from FTLM on
the broadening parameter and the optimal parameter ac-
cording to the minimal change of o4c with broadening. Data
are for p=10.1 and T = 0.5D.
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We study Cooper pairing in the Dirac composite fermion (CF) system. The presence of the mass term in the
Dirac CF description (which may simulate Landau level mixing), i.e., breaking of particle-hole (PH) symmetry
in this system, is a necessary condition for the existence of a PH Pfaffian-like topological state. In the scope
of the random-phase approximation (RPA) and hydrodynamic approach, we find some signatures of pairing at
finite frequencies. Motivated by this insight, we extend our analysis to the case of a different but still Dirac
quasiparticle (CF) representation, appropriate in the presence of a mass term, and discuss the likelihood of PH
Pfaffian and Pfaffian pairings in general. On the basis of gauge field effects, we find for a small Dirac mass, an
anti-Pfaffian or Pfaffian instability depending on the sign of mass, while for large mass (Landau level mixing),
irrespective of its sign, we find a PH Pfaffian-like instability.

DOI: 10.1103/PhysRevB.98.115107

I. INTRODUCTION

The fractional quantum Hall effect (FQHE) [1] is a
remarkable effect of electrons confined to two dimensions. In
the presence of a strong, perpendicular to the plane magnetic
field, the phase space of the strongly correlated system is
further confined into Landau levels (LLs) and quantized.
At special fillings of LLs, when the system is described by
special ratios of the number of electrons per number of flux
quanta, highly entangled states of FQHE are established. In
experiments, the effect is seen by measuring the fractionally
quantized Hall conductance, which stays constant, at the
particular value of fractional filling factor, as the magnetic
field or density is varied.

The Laughlin state [2] with its generalizations describes
the effect at odd denominator filling factors. A surprise came
with the experimental detection of FQHE at filling factor
5/2, i.e., half-filling of the second LL (SLL) [3]. The Cooper
pairing was invoked to explain the effect. Assuming spinless
(frozen spin) electrons, at half-filling of active (second) LL,
in the regime of experiments, the most natural BCS pairing
function in the real space, which can be associated with an
antisymmetric matrix, is a Pfaffian wave function [4]. Thus we
expect Cooper pairing due to phase-space constraints—gauge
field effects in a field theory description, in the presence of the
repulsive Coulomb interaction.

However, the realization of the pairing correlations even
for spinless fermions is not unique. We may envision a the-
oretical construct, an isolated half-filled LL with the exact
particle-hole symmetry that can be explored in numerical
experiments. The early pairing proposal—Pfaffian or Moore-
Read state [4]—does not possess the particle-hole symmetry,
and, under particle-hole exchange the Pfaffian transforms into
an anti-Pfaffian state [5,6]. The Pfaffian and anti-Pfaffian
equally participate in the ground state of the half-filled SLL
with Coulomb interaction [7]. The system with the particle-
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hole symmetry requires for its field-theoretical description
a special Dirac composite fermion (DCF) representation of
constitutive classical electrons and their strong correlations
[8]. On the basis of this representation a proposal was made
for a special Pfaffian that respects the particle-hole symmetry,
the so-called PH Pfaffian [8].

Arguments were given in Refs. [9-13] that the PH Pfaffian
in the particle-hole symmetric setting, i.e., half-filled LL is
an unstable, critical state. Arguments based on numerics were
first given in Ref. [12]. Nevertheless, the PH Pfaffian type of
pairing seems relevant from the experimental point of view,
as argued in Ref. [14], despite LL mixing (absence of the
particle-hole symmetry) and disorder effects.

Inspired by the recent experiment described in Ref. [15]
that measured the thermal Hall conductance of the paired
state at filling 5/2, and found that the measured value is
consistent with the conductance of PH Pfaffian, we would
like to check if a PH Pfaffian-like state may be realized in
the absence of the PH symmetry, i.e., in the presence of LL
mixing, but without disorder. The possibility for PH Pfaffian
physics due to disorder effects is considered in Refs. [14,16—
18], see also Ref. [19], while in Ref. [20], a proposal is
made that the result of the experiment may be still consistent
with the anti-Pfaffian state, due to an insufficient equilibration
of edge modes. Very recently, this proposal is criticized in
Ref. [21].

In this work we discuss the effective Cooper pairing chan-
nel of the system at half-filling in the scope of the DCF theory
with a mass term. The mass term of the DCF theory represents
a term that breaks the particle-hole symmetry of electrons
confined in an LL and represents an LL mixing.

The paper is organized as follows. In Sec. II, we review
arguments for the criticality of the PH Pfaffian in a particle-
hole symmetric setting, and argue why a symmetry-breaking
mass in the DCF theory is necessary to stabilize the PH
Pfaffian. In Sec. III, we discuss the effective Cooper pairing
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channel in the DCF theory in the presence of a mass term, and
recover only some finite frequency pairing correlations. This
is followed by a discussion in Sec. IV, which uses a different
form of the DCF theory to analyze the Cooper pairing of
modified CFs, in which a usual BCS problem emerges from
a gauge field description of constraints. The Pfaffian family
solutions of the problem are described and conclusions can be
found in Sec. V.

II. PH PFAFFIAN AS A CRITICAL STATE IN A
HALF-FILLED LANDAU LEVEL

A. PH Pfaffian as a critical state in a (particle-hole symmetric)
half-filled Landau level

In this section, we will review arguments given in Ref. [11]
for the critical nature of the PH Pfaffian state, and, in addition,
relate the PH Pfaffian physics in a half-filled Landau level to
the critical behavior and transition between Pfaffian and anti-
Pfaffian [5], and discuss how general the arguments for the
critical nature of PH Pfaffian are.

In the following, we will denote by a PH Pfaffian state,
a FQHE state, at filling factor 1/2 (half-filled Landau level)
with Pfaffian (p-wave pairing) correlations that is invariant
under particle-hole (PH) transformation. The correlations are
expected to be in the opposite sense of rotation with respect
to the one set by external magnetic field. [This is corroborated
by available constructions based (a) on the Laughlin-Jastrow
ansatz, Eqs. (1) and (2) below, at the PH symmetric filling
factor on sphere, and (b) on the DCF theory.] On the other
hand, we will denote by PH Pfaffian, a state with Pfaffian
correlations in the opposite sense of rotation with respect to
the one set by an external magnetic field that may or may not
have the PH symmetry. The PH Pfaffian is a generalization
of PH Pfaffian. A Pfaffian state with the PH symmetry was
mathematically defined as an s-wave pairing instability of
an effective description by Dirac composite fermions at half-
filling. That is known in the literature as the Son’s proposal
for the PH (symmetric) Pfaffian [8].

Based on a mean-field analysis, we will argue that the
PH Pfaffian and its PH Pfaffian extensions, in the presence
of the PH symmetry (i.e., in a system with PH symmetric
Hamiltonian), describe critical states and thus they can not
describe gapped topological phase(s) in half-filled LLs.

First, we will examine the underlying physics behind the
states with the so-called negative flux insertion, either macro-
scopically (the number of the inserted negative flux quanta
is of the order of the size of the system) as in Ref. [22],
or microscopically (the number of the inserted negative flux
quanta is of the order of one) as in Ref. [14], that induces
p-wave pairing in the opposite sense of the rotation with
respect to the one set by the external field. These states can
be described as PH Pfaffian states. As long as we are not
sure of the fate of the PH symmetry in these constructions
we will consider them as PH Pfaffians. Here we should
note that for the states in Egs. (1) and (2) below, which we
classify as the PH Pfaffian constructions, recent numerical
investigations demonstrate high degrees of the PH symmetry
[12,13].

A negative flux Pfaffian (a PH Pfaffian), which is also a
lowest LL (LLL) wave function, was introduced in Ref. [22]
as

Yy, = PLLL[S{H(Z?] - 271)2 X H(Z?Z - ij)z}

< [T -7 (1)

where {z; = x; +iy;,i = 1,..., N,} are the electron coordi-
nates, we omitted the Gaussian factors, Py projects to the
lowest LL, and the symmetrizer S symmetrizes between two
groups, 1 and 2, in which the particles are equally distributed.
This is a state with the number of flux quanta equal to Ny =
3N, —3—-2(N,/2—1)=2N, — 1, i.e., with a PH symmet-
ric shift. An algebraic procedure introduced in Ref. [23] may
be followed to generate possible edge states, i.e., a sector, if
the system is incompressible. Namely, the proposition applied
in the procedure is that if we consider bulk quasihole coherent
state constructions, we can use them to generate edge states
of an incompressible state. The method proved successful in
the Pfaffian case especially so because, in that case, the edge
states can be defined as those that make energy zero subspace
of a model interaction for which the ground state—Pfaffian
model wave function—is also a zero-energy state. In the case
of the state in (1), we are not aware of the existence of a model
interaction, and, furthermore, we do not know if the state is
incompressible. Nevertheless, we may examine which states
well-known, well-motivated quasiparticle bulk constructions
can generate as low-momentum states. If the state is incom-
pressible, these states we expect will make the edge sector.
The analysis was done in Ref. [24], and the states recovered
in this way, under the assumption of the incompressibility,
would make a counterpropagating Majorana edge branch,
together with the charged boson edge branch. The analysis
missed a neutral copropagating neutral boson, whose states
can be described as insertions in the antiholomorphic part of
the wave function, of holomorphic differences of symmetric
polynomials belonging to two groups of particles under a sym-
metrizer. (The antiholomorphic differences, i.e., their linearly
independent combinations under symmetrization, make the
states of the counterpropagating Majorana edge branch.)

Next to the construction in (1) we can consider a PH
Pfaffian state:

1
Wzp=PuL| Pf{—+ -y |, @
ZF LLL|: f{(z?‘—z?)}n(z" Zl):| @)

which was introduced in Ref. [14]. Here,

N/2

1
Pf!(zf—zj)} N;Sgnpn

il (173(21'71) - Z}F)(zz’))

1

3)

In this case, an analysis of the edge states can include only
antiholomorphic Majorana (neutral fermion) constructions
described in the Moore-Read (holomorphic Pfaffian) case in
Ref. [23]. Thus next to the charged boson we have only a
single counterpropagating Majorana.

At this stage, it is interesting to note that in one of the
papers that introduced the anti-Pfaffian physics, in Ref. [5],
two out of three states that may appear at the transition
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between Pfaffian and anti-Pfaffian, have the same edge
physics as described here for the states in (1) and (2).

In the following, we will demonstrate that the states in (1)
and (2), which may describe electrons in half-filled LLs, are
in fact critical states, i.e., gapless and unstable states. For that
we will consider a simplified (mean field) version of the Son’s
theory—the DCF theory [8]—that describes the Fermi-liquid-
like state of Dirac CFs, in a half-filled, i.e., PH symmetric,
Landau level. Thus we consider a massless Dirac fermion, at
finite density, with s-wave pairing among spinor components,
and neglect the presence of the gauge field, i.e., its fluctuations
around zero value. In the chirality basis, i.e., in the basis of
Dirac eigenstates without pairing, see Ref. [11] for details, we
can express the pairing term. which pairs spinor components
a and b as

Y, (k)W (—k)

ks
:_57[%(1()%( k) + v (VY (-k)], @)

where k = |k| and ky = k, + ik,. The fermion fields W, and

W_ represent definite chirality (eigenstates of %) particle
(positive energy) and hole (negative energy) states. As the
relevant low-energy physics is around a finite chemical po-
tential, for the description of the pairing physics we may use
the following low-energy, decoupled from higher modes, BCS
Hamiltonian,

Hpcs =

> k= W, (k)
k

+) {%%Asm(k)%(—k) + Hc} Q)
k

We arrived to the usual form of the p-wave spinless fermion

pairing Hamiltonian as can be found in Ref. [25] except that

here we have linearly dispersing fermions, and not a fully

specified A function in the pairing part. With respect to the

notation of Ref. [25], the pairing function can be identified as

ky

Af = ——A,. 6

K X (6)

The algebra of the Bogoliubov problem (Ref. [25]) leads to
the following expression for the Cooper pair wave function:

- _ / dk exp(lkr)(k—ék) %
Ay

where & = k — u, and Eﬁ = Elf + |Ax|?. We are interested
in the long-distance behavior, and thus the behavior of Ak
for small momenta around k = 0. For . > 0, finite chemical
potential and density of the system that we consider here, the
long distance behavior is determined by the behavior of Ay,
i.e., Ay [see Eq. (6)] for small k. In the small k limit, we are
motivated to consider two cases:

1
(a)lim Ay — const., when g, ~ — (8)
k—0 z|z|
and
. 1
(b)lim Ay ~ k = |k|, when g, ~ —. C)
k—0 Z

For the usual choice of the direction of the magnetic field
B =B é,, B <0 (instead of B > 0 as is implicit in the DCF
theory because the density of Dirac CFs is proportional to B)
we would have in (49) and (9), instead of z, in fact z*. Thus,
in the long-distance limit, when we can neglect the projection
to a definite LL, the case (9) corresponds to wave functions in
(1) and (2), because [26]

S{l—[(z;"l - z;‘-l)2 X l_[(z,’»‘z — zj‘-z)z}
1

and thus the pairing with the Cooper pair wave function, g, ~
1*, is present in both wave functions. Thus we can conclude
that in order to reproduce the pairing encoded in the wave
functions (1) and (2) we need nonanalytic behavior in the
small k limit, lim;_, o A; ~ k = |K|.

Thus, for the states in Eqgs. (1) and (2), we cannot have
a Landau-Ginzburg type of description (together with the
fermionic part, see below), as we would expect to have for a
well-defined, stable pairing phase. A question may be raised,
whether in this argument for the critical nature of these states,
we are allowed to use the region around |k| = 0 to describe
the pairing instabilities of Dirac CFs, with the understanding
that the Dirac description is only well-defined near k| =
kr. However, a complete theory (description) of a pairing
instability involves both regions; the one around |k| = kr and
the one around [k| = 0, associated with the long-wavelength,
low-energy description with a bosonic variable (an order
parameter Ay in the mean-field description) associated with
the pairing.

On the other hand, the introduction of an analytical s-
wave pairing in the DCF theory would lead to the following
Lagrangian density:

L=igy" @, +iax + (igAr)xoyx +Hc.)
~ ~ vV -~
+|<au—2iaH)As|2—u|As|2—5|As|“. an

The theory is invariant under C P (charge conjugation +
parity) transformation

CPX()(CP) " = o x(), 12)

where r = (x, y) and v’ = (x, —y), though the pairing term
up to a gauge transformation. This invariance corresponds
to the invariance under the PH transformation of real elec-
trons [8]; the introduced s-wave pairing constitutes the Son’s
proposal for the PH Pfaffian. With the usual s-wave pairing
behavior, lim;_.o Ay — Const., and neglecting the influence
of gauge field, as before, we can arrive to the following
characteristic long-distance behavior:

1 ; 1
g~ —|1e,— ), (13)
z|z| z*|z|

which should enter the Pfaffian part of the PH Pfaffian,

Wpy = PLLL[Pf{m} [ G-z :|

(14)
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We will list two reasons why this state can be considered only
as a gapless (critical) state. (a) If we attempt to generate an
edge Majorana sector using Wpy, and the method of Ref. [23],
we will not be able to separate (bulk) charge modes from
the usual Majorana counterpropagating edge modes, because
this is possible only for the peculiar form of the Cooper

pair wave function with g, ~ i* (b) The universal, long-
| ,

distance behavior g, ~ e is also a characteristic behavior
of the critical system of classical (nonrelativistic) fermions at
the transition from weak to strong coupling as described in
Ref. [25].

Though we commented in the beginning that we are apply-
ing the mean-field approach and neglect gauge field fluctua-
tions, our approach is in fact quite general, and can reach con-
clusions that are not biased. Namely, once we assume PH Pfaf-
fian pairing instabilities, by the very assumption of the pairing
order parameters of the underlying Dirac composite fermions,
we expect, due to the Anderson-Higgs mechanism, that the
gauge field (that couples to the fermions) will be expelled
from the low-energy physics, and therefore our assumption
and approach concerning the nature of PH Pfaffian is justified.
The arguments, in this section, are given in the long-distance
limit, when the magnetic length can be neglected with respect
to distances considered and thus the projection to the LLL
in Egs. (1), (2), and (14) can be omitted. The limit charac-
terizes the universal, low-energy physics, which we argue is
gapless, and this should be valid even when the projection is
included and the system is characterized as a whole in a half-
filled LL.

Thus the state with a manifest PH symmetry, the PH
Pfaffian in the half-filled LL, can be only a critical state. This
state may correspond to the (third) state that characterizes
the transition between Pfaffian and anti-Pfaffian state in Ref.
[5]. According to the analysis of Ref. [5] we may expect that
this state is the lowest energy state at the transition between
Pfaffian and anti-Pfaffian state, i.e., a “real” critical state,
while other two states, in (1) and (2), may represent excited
states at the point of the transition with an exact particle-hole
symmetry. [The two states in (1) and (2), correspond to the
other two states of the same reference, due to their edge
spectrum. ]

B. Particle-hole symmetry breaking and the
criticality of PH Pfaffian

It is interesting to introduce a mass, i.e., a particle-hole
symmetry breaking term in the previously discussed descrip-
tion of the pairing instabilities in a fixed Landau level. We
will assume the analytic (limg_.o Ay ~ const) description,
discussed in the previous section. At the particle-hole sym-
metric point, m(mass) = 0. Away from this point, for A; = 0,
we have a simple Dirac description of the Hamiltonian with
the following 2 x 2 matrix,

m  k_
H= [k+ _m], (15)
for the following choice for gamma matrices y° = 03, ! =
io,, and yz = —io, and we set the Dirac velocity, vy = 1. In

this case,
1
v, (k) = m[(lﬂ + E)W, (k) +k_¥,(k)] (16)
and
1
v_(k) = m[(’" — EYW,(k) + k_W,(k)], (17)

where E = /|k|? + m?2. We find that

k
()W (k) = — WL ()W (k)

m k+
-z H‘h(k)‘lf—(—k)

ke
+ 7E v_(k)W_(—K). (18)
We immediately see that in this case, with respect to the
Eq. (4), we do not have nonanaliticity for k =0 (if Ay is a
constant in that limit). Thus, for m # 0, we have a description
similar to the ordinary p wave in Ref. [25], that reproduces
Pfaffian pairing in the opposite direction with respect to the
one set by the external magnetic field, as discussed in the
previous section, but with a mixing term ~W (k)¥_(—k).
A straightforward solution of the Bogoliubov (BCS) prob-
lem gives a BCS ground state, where W, degrees of freedom
pair as g ~ %, while interband correlations are described with

&r ™~ ﬁ Thus the implied ground-state wave function in the
effective long-wavelength description is

1
Wppr = Pf{m} H(Zk - )% (19)
i T

This leads to the conclusion that the particle-hole symmetry
breaking mass term may stabilize the PH Pfaffian -like state
in (19). This is a very interesting, counterintuitive conclusion,
which was originally suggested in Ref. [11], in the context
of singlet and triplet pairings of spinor components, in the
presence of a mass term. Here we showed that the same
conclusion can be reached by considering only the s-wave
(singlet) pairing [Eq. (18)] in the presence of a mass term.
Although this simple scenario seems quite plausible, the
numerical investigations of the second Landau level (SLL)
(for which we expect that is dominated by the Pfaffian
physics) imply that the physics around the particle-hole sym-
metric point is dominated by a nonuniversal influence of the
short-range part of the Coulomb interaction, which is hard to
capture by field theoretical means. Namely, the investigation
in Ref. [7] clearly shows the (Schroedinger cat) mixing of
Pfaffian and anti-Pfaffian at the particle-hole symmetric point,
and their relevance for the nearby physics. The most recent
investigations in Refs. [12,13] point out that the state in Eq. (2)
is likely an excited state in the half-filled SLL (compare with
our identification above), and has very high overlap with the
composite Fermi liquid (CFL) wave function [27,28]. Thus,
although the DCF theory seems a very good description of the
half-filled LLL, it has to be modified to capture the nonuni-
versal physics in the SLL. But, by modifying the Coulomb
interaction in the SLL, one may increase the overlap of the
exact ground state with the state in (2) or stabilize the CFL
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state [13]. Thus a relevant question may be whether a mass
term in the DCF theory may induce pairing irrespective of
the details of the projected to an LL Coulomb interaction.
Therefore we are motivated to study the DCF theory in the
presence of a mass term in order to see if this may induce
pairing correlations and a pairing instability of the PH Pfaffian
kind [Eq. (19)].

III. THE DIRAC COMPOSITE FERMION THEORY WITH
A PARTICLE-HOLE SYMMETRY BREAKING TERM

In this section, we will consider the usual formulation of
the DCF theory, with a mass term, in the RPA approximation
in order to find the effective Cooper channel and examine pair-
ing correlations. A different formulation of the same theory
we will discuss in the next section.

A. The Dirac composite fermion theory with a particle-hole
symmetry breaking term: an introduction

We start by examining the DCF theory in the presence
of PH symmetry breaking mass term. The generalized La-
grangian can be found in Ref. [29] and is given by the
following expression,

- 1 1 -
L=iyy" @, +ia)y + -—adA+ —AdA —myy,
4 8
(20)

where x is the Dirac CF field, a, is an emergent U(1)
gauge field, the Chern-Simons terms are abbreviated as
" A,0,A; = AJA, n=0,x,y, and we have omitted the
Coulomb interaction and higher order terms. As a conse-
quence, we have the following equations, by differentiating
with resect to A,

dA  da
T 4n o 4n
where J, is the electron density current, and, by differentiating
with resect to a,,

Je @1

dA
VT 4
where Jy, is the Dirac composite fermion density current.

As discussed in Ref. [29], transport coefficients like the Hall
conductance can be found from the implied form of currents,

(22)

Je = Lé(E —e) (23)
4
and
. L,
Jy = EGE, (24)

where € is the unit antisymmetric tensor with components
€' =0,eY = —e’ =1, together with the relationship that
we have to extract from the theory,

1
Jy = Eﬁoe, (25)

where 6p represents the Dirac composite fermion conduc-
tance tensor. To find 6p, we need to find the polarization

tensor I1,,,
jY =Ty a’, (26)

which may be identified in the RPA treatment of the theory:
the expansion of the effective action to second order in a”,
after the integration of fermion fields in the functional formal-
ism, or directly calculating

" = —itr[y" Sr(x, y)y"Sr(y, x)1, 27)

where

iSp(x, y) = Ty )P, (28)

i.e., the composite fermion propagator (7 is the time ordering
and the expectation value is with respect to the ground state
of noninteracting fermions). In calculating (27), we encounter
(ultraviolet) divergences, which come from the presence of the
infinite sea of negative energy solutions. There are two ways
to regularize the theory: (a) dimensional and (b) Pauli-Villars
regularization. The physical meaning of these two possibil-
ities, when considering Berry curvature contributions of the
positive and negative energy band to the Hall conductance,
is that in the dimensional regularization we combine (add)
the contributions, while in the Pauli-Villars regularization
we consider the contribution only from the positive band.
(For the Berry curvature contributions of the two bands see
Ref. [29].) The dimensional regularization at the neutrality
point [pu(chemical potential) = 0], and in the presence of
a mass gives an unphysical prediction for the Hall conduc-
tance (=%eh—z), i.e., a half integral quantum Hall effect of
noninteracting fermions. But at a finite chemical potential,
and in the absence of mass the Hall conductance is zero.
This result or consequence is at the basis of the DCF theory
(that is defined at a finite chemical potential), which results
in the precise value of the Hall conductance of electrons

= %eh—z, dictated by the particle-hole symmetry, even in the
presence of disorder. Thus the dimensional regularization is
the assumed regularization in the DCF theory. On the other
hand, the Pauli-Villars regularization gives a so-called parity
anomaly, a half of the unit of the Hall conductance even in
the absence of a mass. Later, we will explore the role of
the Pauli-Villars regularization, when we consider a smooth
connection between the DCF theory and the HLR theory
[30]. Thus this type of regularization is important when we
switch the quasiparticle representation from the one based
on the Read’s construction [31] (the DCF theory) to the one
based on the usual Chern-Simons construction [32] (the HLR
theory [33]).

We obtained the polarization tensor IT*V(Kk, w), in the
hydrodynamic approximation, i.e., when |k| < kg, in the
presence of the mass term. The results can be found in
Appendix A.

B. The Cooper channel in the Dirac composite fermion theory
with a particle-hole symmetry breaking term

In this section, we will extend the approach applied in
Refs. [9,10] to the case with the particle-hole symmetry
breaking mass term. Namely, in Ref. [9], in order to study the
possibilities for pairing within the DCF theory, the Coulomb
interaction was considered as an additional term in the theory
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described by Eq. (20) with m = 0. An effective Coulomb
interaction was found by a projection of fermion operators
to the low-energy sector around |k| = kg of positive en-
ergy solutions. The BCS interaction or Cooper channel of
the effective interaction for the p-wave (PH Pfaffian) pair-
ing was found to be repulsive and in no way conducive
for the pairing. The investigations in Refs. [9,10] included,
at the RPA level, modifications of the effective interaction due
to the fluctuations of the gauge field (a, ), but the conclusion
was the same. In this section, we would like to find out the
effective Cooper channel, within the RPA approach, in the
presence of a mass term.

To investigate the possibility for a stable pairing phase, we
will look for the expression of the effective interaction in the
imaginary time formalism, but fix 7 (temperature) = 0. In the
Euclidean space-time, we have

Lr=vey’(d: +al) Ve +Ye(—iy)(V +iag)yg
— ey e + mypye, (29)

where we consider the situation with a constant magnetic field
and, thus, the Fermi system at a finite chemical potential 1.
We can get (29) from (20) by a naive analytical continua-
tion T = it. We may introduce Euclidean gamma matrices
ye = Y and g = (—i)y, but to make an easier contact with
previous calculations and literature, we will keep a Minkowski
set: Yo = 03 and y = io. We introduce the gauge field propa-
gator by the functional integration over fermionic degrees of
freedom,

/DlZ/EDI//E exp{—fdrdx[EE]}

215;”1
= exp —fdxfdyT(x—y)a“ma”(y) . (30)
Therefore

Dov(x —y) =ty Ge(x, YGp(y. 0, (1)

where

Ge(x,y) = —(T[Ye)Fe()), (32)

and x and y are points in the Euclidean space-time. We
present explicit expressions for D, in the hydrodynamic
approximation, in Appendix B.

With the addition of the Coulomb interaction to Lg
[Eq. (29)], its contribution to the propagator of the vector
potential a;, i = x, y can be found by considering

fdq [dw1 (q X a(—q)) 2me? (q X a(q))
SLE = - .
@) 2 47 €q 47

(33)

To get the effective interaction among fermions, at the RPA
level, we integrate out gauge fields in the transverse gauge
(V - a = 0). If we define the fermion density-current as

—_ = j/’«, (34)

Salg
for the effective four-fermion interaction, we get

Vin(x = y) = =3 Dy (x = NTH)T"(y),  (35)

where by D,,, we denoted the gauge-field propagator with the
Coulomb interaction contribution. The propagator D,,, can be
found in Appendix B.

To find the second quantized expressions for the currents
and the interaction, we use the following expansion for the
fermionic operator,

ik_ 1 .
‘IJE(X)— ; I:E_m]mexp{lkx} ck+ e,

(36)

where we did not write the negative energy contribution.
To describe the Cooper channel we project all momenta to
the Fermi circle, i.e., k4 = k, =ik, = kr exp{£i6}. Starting
from the defining expression

Jo(x) = Bp()pWp(x) = WE(x)WE(x), (37
we find an effective expression for the density operator,

O e I

m . [(G—0)]] +
+1 ; sin {T Ck, Cky - (38)
Defining the transverse part of the current operator by

Jr(ki —ky) = ig x Vg(k))y¥e(ky), (39

where q = k; — k; § = %, we find the effective expression
to be

k 6, —0 sin | €20
jT(kl—kz)zi—Fexp{i(zz l)}x {5}
"

Note the presence of the sine function which ensures the
hermiticity of the operator [\7; (q) = Jr(—q)]. This part is
missing in Ref. [9].

If we denote the components of D~! by

-1 _ 1QIOO ﬁOT
D (qv (l)) - I:ﬁOT ﬁTT} ) (41)

the effective interaction potential is
Vim (qﬂ CL))

1 A
= — = — - H j _ j
[MgoIlrr — (I'IOT)2][ 7 Jo(=)Jo(q)

+ oo Jr (=) Tr (@) — 2Flor To(—@)Tr ()], (42)

We can find the effective Cooper channel, by taking expres-
sions for the components of the gauge field propagator (B3)—
(B5) with ky = iw, where w is real, inserting the components
in the expression for the effective interaction in (42), and
choosing momenta to describe a Cooper pair scattering.
Before a closer look at the effective Cooper channel, we
may note that always ﬁoo(iw, k) <0 and fITT(iw, k) >

0. In the static limit (@ = 0), we have go(0,k) = —£,
ﬁTT(O, k) :0‘(4‘5‘)2’ and fIOT(O, k) = 0. In this case, the
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Cooper channel is

Cooper(q p— k = 0)

1nt

1 O — 6, O — 0,) 77
i |:COS(k p)—l—iﬁsin(k p):|
ITgo(0, q) 2 7 2

1 ("F)z , Pt
+ — | — expf{i(6k — Op)}crcpcl i C—p-
7700, @) \ 1 PATKTPT kTR

(43)

In the scope of the hydrodynamic approximation, i.e., 6 ~
Op, we find repulsive behavior and no cause for a Cooper
instability even in the massive case.

The second limit we want to consider is a finite frequency
limit o 3> aplk|]. We have ITg(w, k)~ —4& “’Fa')"') ~ 0,
77 (w, k) ~ = +a(4ﬂ)2, and o7 (w, k) & —‘G%lkL The
effective Cooper channel can be described with two terms: (a)
density-current part,

VSt (q = p -k, 0)
47 sin Bt O—0p) , .m . (6 —0p)
= e Gt 2 o sin o
s BB 12 T
x expf{i (6 — GP)}clicpcikc,p; (44)
(b) density-density part,
C r _
Vo, M@ =p -k o)

k2 (Bk—6p)
_ <47T/~'L)2 4 (471)2 (2kF)|SIH k 5 ’
- 2

m (2kp)2|sm —(9"20") ’
2
X | cos M + lﬂ Sin M
2 I 2
x expli (B — Bp)}etepc cp. (45)

In the density-density part, we have extremely singular re-
pulsive interaction present at finite frequencies, i.e., a repul-
sive singular interaction that describes the physics of excited
states. We do not see any cause for a real Cooper instability,
except that in the density-current part we can recognize some
pairing correlations. This motivates a search for a different
quasiparticle representation in which the pairing correlations
may be better captured and exposed.

IV. PAIRING CORRELATIONS WITHIN A DIFFERENT
QUASIPARTICLE REPRESENTATION

In this section, we will consider a different formulation
of the DCF theory with a mass term. This will enable us,
on the level of equations of motion, to deduce the effective
Cooper channel of different Dirac quasiparticles from the ones
discussed in the preceding section. The channel, derived from
purely gauge field effects, supports the Pfaffian family of
instabilities, and we will examine the ensuing phase diagram
as a function of the Dirac mass.

We may also consider the addition of the mass term to
the Dirac composite fermion theory by adopting the following

form of the Lagrangian [30]:

1
L=ixy" (0, —Haﬂ)x—i- dA—i—S—AdA
m 1
———ada —mj¥x. (46)
|m| 87

Note the presence of the Chern-Simons term for gauge field
a’. In this case (to recover the identical results for the re-
sponse with respect to the previous formulation), we have to
adopt the Pauli-Villars way of regularizing the theory. Why we
discuss this, to say, a redundant formulation? It is important
to notice that with a simple redefinition of the gauge field in
(46), and in the large mass limit, we can recover the HLR or
anti-HLR [35] theory depending on the sign of mass [30]. See
Appendix D for details.

By differentiating with resect to A,, the Lagrangian density
in (46), we get

7 dA  da A7
=i tar @7

where J, is the electron density-current, and, by differentiat-
ing with resect to q,,,

= |m| 47’ (48)
where J, is the Dirac composite fermion density-current.
Thus the Dirac composite fermion density-current in this
case is determined, on the classical level, by the fluctuations
of the gauge field, just as in usual Chern-Simons theories
[32,33]. These theories are based on the quasiparticle (com-
posite fermion) constructions via “flux tube”—unitary trans-
formations of the original electrons, and not with “vortex”—
Laughlin quasihole constructions [31] of quasiparticles. The
usual Chern-Simons theories (at the RPA level) can recover
the Jastrow-Laughlin correlations [32] as a part of magneto-
plasmon (cyclotron energy) dynamics, while in the “vortex”
constructions they are, in a way, frozen and built in quasi-
particles. This distinction may be important when discussing
the presence of pairing correlations. In the DCF limit, at the
RPA level, both formulations give the same response, because
they describe the response of “vortex” construction, using
different regularization schemes. However, at the classical
level [Eqs. (22) and (48)], their predictions may differ, be-
cause the distinction between the quasiparticle perspectives
is preserved. Thus, although, at the RPA level, we find the
absence of pairing correlations for “vortex” constructions
(Sec. III), the fact that some pairing correlations are present in
the high-energy, i.e., the high-frequency sector in the density-
current part of the interaction, gives us an expectation that
by adopting different quasiparticle representation, we may
recover the pairing correlations in the low-frequency or static
limit.

The problem, as described by Eq. (48), is formally identical
to the problem discussed in Ref. [34] in the context of the
graphene Dirac electrons in FQHE regime. Following the
analysis of Ref. [34], for a fixed valley, definite spin, Dirac
electrons, of the gauge field a” induced interaction between
current and density of Dirac particles in the presence of a mass
term, we can arrive at the effective form of the pairing channel,
Eq. (25) in Ref. [34].
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Let us discuss the details that lead to the p-wave pairing
channel or attractive interaction for a definite, negative sign
of the mass, m < 0. The equality in Eq. (48) will lead to
the following integral expression for the gauge field a”,
a =ay +iay,

’
a(r) =2 / dr'i—~—=_5p,(r'), (49)
Ir —r|?

where 8p, (r') represents the fermion density with respect to
the constant value given by the fixed strength of the external
magnetic field that we assume. In the following, we will
analyze the statistical interaction defined as the one between
the current of Dirac fermions and the field a;;i = x, y:

Ve = xv'aix. (50)
We work in the following representation of y matrices:

y=03, yl=ion, y?=—io. (51)

In this representation, we have the following expression for
the statistical interaction:
-7

o 0 =
Vy = —i2 / dr'sp, (x| (r)[_ e T }x(r), (52)
[r—r'|2

and 8p, (r') = xT(@)x (@) — 5, where 5 is a constant (ex-
ternal flux density). The constant part gives no contribution
to Vi;.

On the other hand, the presence of the mass term in the
Dirac system leads to the following eigenproblem,

m—e€ k_
ki —m — €

]X(k) =0, (53)

where a positive eigenvalue € = /|k|> + m? = E, corre-
sponds to the following eigenstate:

xe = [’" ’ E“}; (54)
L ks JV2ERGEGEm)

As we consider relevant only (positive energy) states around
kr, we will keep only these states in the expansion over k
eigenstates of field x (r), and, further, only consider the BCS
pairing channel in Vy,. Thus

x(r) = \/%_V ¥exp{ikr}xb~<k>ak +oe, (59)

and

2 : 1
BCS 2 : T T
. = — a, dpd . d_
st 8V ~ KPP By Ep(m + Ex)(m + Ep)

ﬁ [m + Ep:|
0 D+
x [(m + Ex)(m + Ep) +k_p]. (56)

We used fdr% exp{ikr} = ii—f. The terms with the coeffi-
cient k_p, give a p-wave channel contribution (for spinless
fermions),

0
x[m+ E; k_] )
Tk —p_

k_p
m{em + Ex + E,)(m + Ex)(m + E,)
—|pl*(m + Ey) — |kI*(m + E,)}. (57)

These terms give the following contribution:
2
BCS Tt
Vp = mﬁ Zakapafka,p
k.p

kIl pl

_— 58
Ek'Eplk_p|2 ( )

x exp{—i (0 — 0,)}
where we see that because of the assumed sign of the mass,
m < 0, we have an attractive pairing channel. We will discuss
in more detail the effective interaction and possible pairing
solutions below, but in the following we will make a few
general comments. We see from Eq. (58) that only for nonzero
mass we can have pairing. Also the chirality of the induced
p-wave pairing can be identified. Notice the different phase
factors in VBCS with respect to Ref. [34]. That comes from
a different overall phase in eigenstates that we used in the
fermion field expansion in Eq. (55) and the one used in
Ref. [34]. Both representations lead to a special chirality
pairing function g(r):

|r1|iinoog(r) ~ f(ll‘l)i—'- (59)

The function f(|r|) depends on the details of the small k
behavior of the order parameter. The self-consistent equa-
tion for the pairing function, A} = 2& (a;iaT_k), where Elf =
(Ex — n)* + | Axl?, implied by Eq. (58), with the assumption
that |Ag| is the largest around |k| = kp, gives us the small
k behavior, Af ~ k,, and thus g(r) ~ f However, again
we have to take into account that the assumed direction of
the external magnetic field in the Son’s formalism is B =
Bé., B>0, becﬁause }he uniform Dirac composite fermion
density is py, =V x A = B > 0. For the usual setup, with
B < 0, the analysis implies g(r) ~ L, i.e., Pfaffian pairing
of the opposite chirality with respect“to the one given by the
external field. The same conclusions, i.e., an attractive pairing
channel with special PH Pfaffian chirality pairing hold true
for m > 0 as can be easily checked. Thus, for large enough
mass, we may expect that the interaction term due to the
gauge field [Eq. (58)] can lead to the PH Pfaffian-like pairing
instability, but for very large m, the pairing interaction is
suppressed. [For large m, in the scope of the HLR theories as
shown in Appendix D, any pairing (Pfaffian and anti-Pfaffian)
correlations that come from the current-density interaction are
obstructed by a three-body interaction, and do not give a clear
scenario that comes from the constrained dynamics of the
system.]

A more careful examination of the Cooper channel interac-
tion in Eq. (58), which we may begin by angular integration in
a BCS self-consistent equation, shows that the pairing interac-
tion is extremely singular and would overcome any repulsive,
short-range or Coulomb, interaction. Also the interaction in
Eq. (58) does not correspond exactly to the statistical interac-
tion that is usually connected with the Pfaffian physics as de-
scribed in Ref. [36]. Thus we need to examine more carefully
all the terms that follow from Eq. (56). A complete discussion
can be found in Appendix C. The picture that emerges from
the detailed analysis in Appendix C is very simple: for large
|m|, irrespective of the sign of mass, we may expect a PH
Pfaffian-like state, but for small |m|, depending on its sign,
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we have anti-Pfaffian, for m > 0, and Pfaffian state form < 0.
Due to considerable numerical support for anti-Pfaffian under
LL mixing in the SLL [37], we may identify the case with
the positive mass to the one of the SLL. Furthermore, the
identification of Pfaffian and anti-Pfaffian for opposite sign
of m, i.e., particle-hole symmetry breaking that is not large is
consistent with the numerics (in the SLL) [7].

However, we should be aware of the absence of pairing
in the LLL, and that our analysis based on the gauge field
description only, is not sufficient for the explanation of the
physics in the LLL. We need to include Coulomb repulsive
interactions among electrons. This inclusion in the Chern-
Simons theories, especially the DCF theory is not an easy task,
because a part of the influence of the interactions is built in
the gauge dynamics. We may try to include a bare Coulomb
interaction with densities that correspond to those of the Dirac
quasiparticles [of the theory in the Eq. (46)] as a consequence
of Egs. (47) and (48). The singular behavior of the Coulomb
law can suppress any pairing correlations that follow from
the gauge field description and constraints. Thus we need to
include the interactions in a way that reflects the physics of
a fixed LL to explain the dichotomy of the physics in the
LLL and SLL, i.e., a Fermi-liquid-like state, and topological
paired state, respectively, i.e., to include more intra-Landau
level physics in the DCF theory. The way to achieve that is to
include a term that represents the interaction of the effective
dipoles of the Read’s construction with an electric field as
discussed in Refs. [38,39]. As explained in Ref. [39], the
inclusion of this physics amounts to a change in the expression
of the Coulomb interaction of the form

o o

—_—— (60)
lal gl + Fzalql?

where we assumed a static case, i.e., no external fields except
for the uniform, constant magnetic field B, and m* represents
an effective parameter (mass) in the long distance limit. In
the following, we briefly recapitulate how we can reach the
modified interaction in (60). First, we note that in a functional
formulation we can introduce a scalar field ¢ that decouples
the Coulomb term in the inverse space as

2na
8L, = —|q—|5,0(—q)5,0(Q)

S p(—q)do(Q) + 2'i'¢>(—q)¢><q). 61)
T

The scalar represents a potential that a particle experiences
due to other particles. On the other hand, Galilean invariance
allows an extra term in the kinetic part of the DCF theory [38],

8L, = iuix 3 x, (62)

where u; is the local drift velocity, u; = €;; %, i =x,y.This

term represents an interaction between the (local) electric field
and dipoles of the composite fermion quasiparticles, which are
propotional to quasiparticle momenta [38]. If we introduce a
mass parameter, m*, to relate the momenta of quasiparticles to
their (local) velocity u, we may represent (62), in the inverse
space, as

mul’p _ . P
2 2B?

8L, = lql*¢(—q)p(q),  (63)

where p = ﬁ with Ip = 1/kp, the magnetic length, is the
density of the system. Integrating field ¢ in the functional
representation of the theory, with £, and 8L, included, we
reach (60). Thus the BCS channel in Eq. (C3) with a modified
Coulomb interaction in Eq. (60) may represent a good starting
point for the investigation of the pairing instabilities at half-
filling in the presence of the PH symmetry breaking mass m.

The role of the modified Coulomb interaction is crucial
for the existence of paired states. For m* finite, we have
to deal with a singular repulsive interaction at this level of
approximation, which will preclude any pairing as is the case
in the LLL. For m™ infinite, the effects of the interaction will
be obliterated, and we will have the pairing scenario as is the
case in the SLL. Moreover, in this case, for |m| (LL mixing)
large, we may expect the PH Pfaffian-like state, which is
stabilized with |m| in a uniform system and a consequence
of the constrained gauge field description. Nevertheless, we
should note that the PH Pfaffian effective (attractive) interac-
tion scales as N\%\ (with respect to those of Pfaffian and anti-
Pfaffian for small |m|), and thus it is suppressed in magnitude
with large |m|.

We may ask ourselves what is the physical meaning of the
m* infinite limit in the SLL. In this case, the local drift velocity
should go to zero and thus the potential that other particles
make for a given one is flat, i.e., the correlation hole does
not exist and particles are free to pair. That this indeed may
be the case in the SLL, we have indications from numerical
experiments that find larger size of hole excitations in the SLL
than in the LLL in the FQHE regime at filling factors 1/3 and
7/3 [40,41].

The numerical solutions of the BCS self-consistent
equation:

Ak
Ay =-— ij Yoz (64)

for channels I = 1, 3, —1, with A} = | Ag|e'!%, are described
in Fig. 1. Details concerning Eq. (64) and its solutions can be
found in Appendix E. The parameter m in Fig. 1 is measured
in units of energy, (Avr)kr, and this dimensionless quantity
along x axis on the right-hand side of Fig. 1, can be described
in the following way. First, we rewrite the quantity with the
Fermi velocity and explicit physical constants:

mDv%
hvpkr  h

mpvr C mp

B = EvFﬁs

where mp is the mass of DCFs, Ig =,/ f—g is the magnetic

length, and kp = i On the other hand, the coefficient of the
LL mixing is the ratio of the characteristic Coulomb energy
and cyclotron energy:

(65)

V. e moc  esJec m,

- = , 66
how. lp eB iR VB (66)

where m, is the mass of electron. Thus the plotted (dimension-
less) parameter m may be identified with LL mixing if mp =

%mg, i.e., the mass of DCF is the electron mass multiplied

. , 2 .
with a “fine-structure constant” of DCFs, ;TF characteriz-

ing the relative strength of the Coulomb interaction. The
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FIG. 1. The solutions of the self-consistent BCS problem. (Left column) Radial direction k-dependent pairing amplitude for various values
of m. Channel [/ = 1 solution only depends on |m|, while / = 3 and [ = —1 channel solutions are symmetric with the sign flip of m (see
Appendix E 3). (Upper right) Dependence of the maximum of the pairing amplitude on m (always found at the Fermi level kr). (Lower right)
Total energy of the different pairing solutions compared to the normal state energy. Gray vertical lines denote the transition between different /
channels. Color in the background corresponds to the energetically favorable channel at the given m. We identify [ = 3 and —1 channels with
an anti-Pfaffian and Pfaffian state, respectively, and / = 1 channel with a PH Pfaffian-like state.

identification seems plausible, although we do not have an
explicit proof; we expect that the prediction of the phase
diagram that follows from the theory, up to physical constants,
depends solely on the unique parameter of the system, Ig =
77> and thus the dimensionless parameter in Fig. 1 should
represent LL mixing.

The LL mixing in experiments is of order 1, although it
can be large as 4-8 [42,43], and with the above identification
we may expect the anti-Pfaffian (/ = 3) to be the dominant
instability in the SLL from the phase diagram in Fig. 1, though
the critical m [for the transition into the PH Pfaffian-like state
(I = 1)], may be estimated to be m, = 1.2, and thus the role
and possibility for the development of a PH Pfaffian-like state,
at sufficiently large LL mixing in a uniform system should not
be underestimated or excluded.

We have confidence in our predictions, because the global
features of the phase diagram in Fig. 1 are in agreement
with numerical experiments in the SLL. (a) At m =0, a
Schrodinger cat superposition of Pfaffian and anti-Pfaffian
is present as in Ref. [7], and depending on the sign of the
mass for m # 0 we have Pfaffian or anti-Pfaffian. (b) The

PH Pfaffian-like state is continuously connected to the excited
composite FL state at m = 0 in an agreement with Ref. [13].
However, this does not mean that with an absolute certainty
we can expect a PH Pfaffian-like state at large enough LL
mixing in the SLL. This is because we do not possess the
precise knowledge of the phenomenological parameter m* as
a function of the Dirac mass, m. The parameter m* enters
Eq. (60) and controls the effectiveness of the pair breaking
due to the repulsive Coulomb interaction. We expect that for
smaller values of Dirac mass, the parameter m™ is infinite and
pairing is present, but, for some large m, the parameter m™ will
become finite and an HLR-type of CFL will be established. As
we do not know the precise value of m for which this drastic
change will occur, we can not say beyond which large enough
m the pairing scenario of Fig. 1 will not be realized.

V. DISCUSSION AND CONCLUSIONS

We showed that a complete DCF theory (introduced in
Refs. [38,39]) may describe both the paired and FL state
of the SLL and LLL, respectively, if we treat the parameter
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m* in (60) as a phenomenological long-distance parameter,

which (in the scope of our treatment) is necessarily infinite
in the paired states. The m™* is necessarily finite in the limit
of large Dirac mass, m, (HLR theory) and in that region
we should expect known results (no pairing). For small m,
in the SLL, m* must be infinite to allow for pairing of the
(anti-)Pfaffian type consistent with numerics (see Fig. 1). But
interestingly enough, we reveal (Fig. 1) a strong competition
between an anti-Pfaffian and a PH Pfaffian-like state for
intermediate Dirac mass m although we can not claim the
absolute relevance of the PH Pfaffian-like state because we
do not know the behavior of m* in that region. However,
it seems likely and the results of Fig. 1 are suggestive
that a PH Pfaffian-like state [Eq. (19)] may play a role in
experiments.

In this work, we discussed the effective Cooper pairing
channel of the system at half-filling in the scope of the DCF
theory with a mass term. The mass term of the DCF theory
represents a term that breaks the particle-hole symmetry of
electrons confined in an LL and represents an LL mixing.
Solely on the basis of a gauge field description, we find
for small Dirac mass an anti-Pfaffian or Pfaffian instability

J

. d*p
iSr(x,y) = 0(x" - yO)/ @2 2po

d2
(vp +mB(P° — wyexp(—ip(x — y)} — 60 — x°) / P

depending on the sign of the mass, consistent with numerical
investigations of the SLL [7], while for large mass (LL mix-
ing), irrespective of the mass sign, we find a PH Pfaffian-like
instability.

ACKNOWLEDGMENTS

We would like to thank Vladimir Juri¢i¢ and Michael
Peterson for discussions. We also thank Nordita Institute for
hospitality during the final stages of this work. This research
was supported by the Ministry of Education, Science, and
Technological Development of the Republic of Serbia under
Project ON171017.

APPENDIX A: THE POLARIZATION TENSOR

The derivation of the polarization tensor (K, ko) in the
massive case, in the hydrodynamic approximation, can be
done following and generalizing the procedure described in
the massless case in Ref. [44]. We start from the fermion
propagator in Eq. (28) as described in Ref. [45],

1
(27)? 2py

. d’p .
X (yp +m)f(n — po)exp{—ip(x — y)} — 6" —x°) / s >—(yp —m)explip(x — y)}, (Al
(27)* 2po
where py = /p? +m?2, px = pox® — px, and yp = y°py — yp. Using the theta function representation,
d _ 0_ ,0
0" — y0) = — _a).exp{ za)(x. yOl (A2)
2mi w—+in
we arrive at
iSp(x —y) = / / ——— exp{—in(x’ — y) +ip(x —y)}
(2m)
! 0 +}
X |iy p Hiv ———Q |, (A3)
[ w — po+in@(po— ) — 6 — po)) “ w+po—in P
[
where statistics inside integrals for |k| < kp) is
Q=1<1+y_m m> (A4) G( | +k|2+ 2 )
P Po po ) q " *
and ~ 0 \/|q|2+m2—u~|—|k|¢cos¢
lql* + m?
1 m
Q= 5(1 _yp_+ ypyp) (A5) ~ 0(/|q? + m? —
0 0

To get the form of the fermion operator in Ref. [44], we can
shift the frequency variable w as w — @ + . To find

" = —itr[y"Sp(x, y)y"Sr(y, x)l, (A6)
we need to generalize the trace calculations, frequency, and
momentum integrals. The main approximation in the momen-
tum integrals for the external momentum Kk, |k| <« kp, u, and
internal momentum q, |q| ~ kr (constrained by the Fermi

+ K| S(VIql* +m* — pycosd, (A7)

kr
JkE +m?

where kr = /u? — m?, and ¢ is the angle between vectors
k and q. Here an important difference with respect to the

massless case is the appearance of the factor k’;"' =
Ftm

detailed analysis leads to a conclusion that to get I[T*" in the
massive case we have to rescale the external momenta Kk in the
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kr

massless case with a factor oy = ie., Kk — ark. In

particular,

% (ko, k) = 1% (ko, a k), (A8)

% (ko, k) = ap T (ko, ark)
k m

ikjm
TOi\Tar T2

Hij (k07 k) = a%«“ lj (k()v Ole),

—I 1190 ko, aFk)) (A9)

(A10)

where by [, u,v=0,i, j we denoted the components of
the polarization tensor in the massless case, and, furthermore,
we can see the antisymmetric (Hall conductance) contribution
in IT%, due to the presence of the mass term.

The components of the polarization tensor in the massless
case, f[“"(ko, k), can be found in Ref. [44], and they are

l"’—[()()(ko’ k) = Hl(ko’ k)’

K
1% (ko, k) = ko—~— IT;(ko, k),

k|2
o kK kK’ k2
MY (kg, k) = [ 8 — — ko, —_— ko, K),
(ko, k) ( |k|2> I1; (ko, k) + K[ k2 I1;(ko, k)
(Al1)
where
k2 k2
ko, k) = —— | 02,22 — 1 — io(—k?), [ —2 |, (A12)
2 —k2
" 2
I, (ko, k) = —1I1;(ko, k Al3
1 (ko, k) T 1(ko, k), (A13)
and k? = k} — |k|*.

The antisymmetric contribution in Eq. (A9) is expected
from the Berry curvature contributions in the scope of the
relativistic quantum mechanics [29], and here the Hall con-
ductance can be recovered to be gy = — - m

4m A/ k%--&-mz ’

It is important to comment that due to the infinite Dirac
sea, we have divergent contributions to the polarization tensor
(when doing the calculation according to the definition). As
discussed in the main text, the DCF theory as defined in
Eq. (20) requires dimensional regularization in order to re-
cover finite I[T*". We used the version of the DCF theory given

J

m 2w 1

BCS T
a, dpa a_py————————=
k9pd_kd-p

o Ex - Eplk —p|?

st |m|w

X {—IPIZ(m + Ey) — [k[*(m + E,) +4mk_p, +

in Eq. (46) and the associated Pauli-Villars regularization to
recover T1#".

APPENDIX B: THE PROPAGATOR OF THE GAUGE FIELD

To find @;& defined in Eq. (31), we need to switch from
Minkowski to Euclidean space-time. According to the defini-
tion of Dw}, we need only to take into account the change in
the fermion propagator, which amounts to taking i instead
of w at T (temperature) = O in the Fourier transform of the
fermion propagator described in Eqs. (A3)—(AS). Thus we
have to repeat the steps that we took to calculate IT*¥ taking
into account this change. The components of D! are formally
equal to the expressions in Eqgs. (A8)—(A11) and (A13), i.e.,
23;3 (ko, k) = I, (ko, k), with IT,; (ko, k) equal to

. 7 1
Hl(k()sk):g —1+W )
1— S5
ko

(BI)

where ky is purely imaginary.

In the transverse gauge, Va = 0, and if we denote by o =
27:—?2, the Coulomb coupling constant, the inverse of the gauge
field propagator is

_ lQIOO lAIOT
D (koK) = | ~ LT B2
(ko, k) |:1_[or HTTi| (B2)
where
Moo = I (ko, ark), (B3)
1 m N
for = —4——|k| > K| 1T ko, oK), (B4)
T 2u
. k2 k2 — o2 |K|? . 1
Mpr = —£ — 20 —F"" ,(ky, ark k| ——.
L v E 1(ko, ark) + | |(47t)2
(B5)

Here we defined the transverse component of the gauge field
to be ar = ik x a(k) and it is understood that k is purely
imaginary.

APPENDIX C: THE EFFECTIVE COOPER CHANNEL
AND POSSIBLE PAIRINGS

We can rewrite the Cooper channel interaction in Eq. (56),
taking into account both possibilities for the sign of mass,

(k_py )2

W(Ek +E, +2m)(Ey —m)(E, — m)}.

(CDH

We expect that in a self-consistent BCS equation the most important contribution will come from the region in which k ~ p, due
to the denominator in the equation above. To explore this limiting behavior, we can divide terms in curly brackets as follows:

[—lplz(m + E) — kPP (m + Ep) + 2m(k_py + ki po) +

(Ex + E, +2m)(Ey

(Ex + Ep + 2m)(Ey

—m)(E, —m)

—m)(E, —m)

APIE ((k-p1)* + (k+p_)2)}

2mk_pL —kop_
+[ m(k_py —kip_)+ TEE

((k_ps)* — <k+p>2)}. (C2)
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The first part in the square brackets is an even function of (6, — ;) and as k — p the part is of the order of (6, — 6x)?. The
second part is leading and dominant because in the same limit it is of the order of (6, — 6;). The Cooper channel can be cast in
the following form:

2 1 i sin(6, — 6k) m isin2(6, — 6y)
VS = = D aapala- {— | = = (B o Ep o+ 2m)(Eg = m)(Ep — m)——
’ 8ka1;” B Ep k—pP  m] ' ’ k —pl?
rA—1) cos(0, —6r) — 1 m cos2(6, —6;) — 1
+ 4|m||Kk||p| — Alm||K||p| —————F—— — - (Ex + Ep, + 2m)(Ex —m)(E, —m) ,
lk —pl? k —p|? |m| ! g lk —p|?
(€3)
where 5 = KCHPE The following analysis of the effective Cooper channel in Eq. (C3) is based on considerations similar to

2[K|[p|
those described in the case of classical composite fermions Pfaffian pairing in Ref. [36].

For m > 0 and m large, the Cooper channel can be approximated as

o i sin(6, — 6;)
BCS . 2T taoal - e o
VB ~ Zakapa_kafp 2m| { A —cos(0, — 6k) 1}.

(C4)

Thus, as previously discussed, the implied angular momentum pairing is Ay ~ (alaik) ~ ¢'% i.e., a PH Pfaffian-like pairing.

For m > 0 and m small, the Cooper channel can be approximated as
2 1 m expi2(0, —6;) — 1
BCS Tt P p — Yk
Vo v kE akapa_ka,pEk.Ep — |m|(Ek+Ep+2m)(Ek —m)(E, —m) k—pP

(C5)

By doing the angular integration first in the implied BCS self-consistent equation, we find that the pairing A} ~ e'% is
suppressed, and that Ay ~ ¢3% is the dominant pairing. The pairing in the same direction of PH Pfaffian, with angular
momentum equal to 3, can be identified as an anti-Pfaffian instability. For m < 0 and |m| small, the sign of the effective Cooper
channel in Eq. (C5) is switched. This changes the chirality of the implied pairing, and we find that now A} ~ e~ is the
dominant pairing, which we can identify with a Pfaffian instability. For m < 0 and |m| large, the effective channel is

2 . 1 i sin(6, — 6 expi2(6, —6r) — 1
VIS~ 22 Y alapalyay —2|m|{ fsinp — 00, expi20p — 0 )}, (C6)
8V o Ex - Ep A —cos(8, — k) A —cos(6, — 6)
and we recover again a PH Pfaffian-like instability, A} ~ e/%:.
[
APPENDIX D: CLASSICAL HLR FERMIONS AT where ¢ represents the deviation from the uniform magnetic
HALF-FILLING AND PAIRING INSTABILITIES field configuration of the CS gauge field a,: ¢, = a, + A,
It is interesting to probe the large |m| limit of the La- such that
grangian glvenr: by Eq. (46). In th}S limit and after redefinitions _Spy = —V xc. (D3)
a, = a, + WA > the Lagrangian becomes 4
m In this nonrelativistic case, the effective statistical density-
Lot = |—|8—ada + <l do + ap + ﬁAo>I/f current interaction is given by
2 - cj
m V =——c[ iVy) — iV ]——. (D4
—Z W( +ai+mA,»)w = = g LGV = (VYT = S (D)
= Using Eq. (D3), in parallel to Egs. (48) and (8) in the relativis-
(1 - ‘Z—‘) 1 tic case, we can express the interaction as
+ —— —AdA. (D1)
2 4n x —x'
. /
If m > 0, we have the usual Lagrangian of HLR (up to a Va = 2m| / r’|2 TP Jy18p(r). (D3)

Coulomb interaction term that we omitted), which, based )
on the mean-field approximation, leads to the description  If we introduce momentum space states,
of composite fermion liquid (CFL). On the other hand, for
m < 0, we have exactly the Lagrangian of Ref. [35], which Y(r) = L Zexp{ikr} Ck, (D6)
in the same approximation describes anti-CFL, i.e., a Fermi Vv
liquid of composite holes. . 1 ) ;
The HLR theory (m > 0 case) is described by the follow- k) = ig / dr exp{—ikr} j(r)
ing kinetic term of the Hamiltonian density:
— Z(Zq — k) ¢} ckiq. (D7)

Kzﬁ( iV 4OV + ey, (D2) UV :
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Thus

[%
ArVa(r) = ml 2= laP

qxp ;

Cp Cp—q clT Clyq- (D8)

We get the BCS channel by taking 1 = —p. If we let p — k
and q — k — p, we have

- —iV x k
Z Va(K) = Z :: B ck Cp cT_k C_p. (DY)
k
Now we should note that
k. — p_k
pxk="2% _2ip * (D10)

Direct comparison of Eq. (D9) with Eq. (58) shows that a
p wave of opposite chirality with respect to the one of PH
Pfaffian, i.e., a Pfaffian p wave, is the statistical interaction
implied BCS pairing instability of classical HLR CFs.

The diamagnetic term in Eq. (D2), i.e., the term ~c¢? ¥y
makes an interesting three-body interaction in the real space:

7 rp—ri3 I;—r3
/dl’aVst(I‘s) ~ /drl/drzfdr3 > -
[ry —r3]* [ry —r3|

X 8p(r1)dp(r2)p(r3), (D1T)

whose sign is fluctuating and this interaction represents a
disordering factor.

We can easily repeat the analysis in the anti-CFL case
and find that the current-density statistical interaction favors
opposite chirality pairing with respect to the Pfaffian but of
composite holes. This special pairing state of composite holes
can be identified with an anti-Pfaffian [35]. However, again
the additional, fluctuating sign three-body interaction, next to
the attractive channel exists.

APPENDIX E: BCS SELF-CONSISTENT PROBLEM AND
ITS SOLUTIONS

We start with the relevant parts of BCS mean-field the-
ory and follow the notation of Ref. [25]. The effective
Hamiltonian is

1
Keir = Z {&C;r(ck + §<A*C—k0k + AClCT_k>}, (E1)

k
VIK|? + m?2. The

and in our case & = E; — u, with E; =
Bogoliubov transformation is

Qg = UKCk — UkCT_k, (E2)
with
w_ =& —&)
Uk - Ai’; ’
l? = (1 4 gk) (E3)
Ek
1 &k
2
=-(1-
|kl 2( 5k>
and & = VE + | Axl*.

On the other hand, if we start with a Cooper channel
interaction and do the BCS mean-field decomposition with

bl = c;[(cT .

Y Vig b by =D Vip(bl)bp + Y Vighi(bp)
k,p k,p k.p
— > Vi (b (by). (E4)
K,
and specify u_x = ux = uy and v_y = —vy, then

*
P
7 Z Vkp CkC

= Z Vkp((ukak + v ) (—vgok + ukaT_k)% (ES)
k

ie.,
* A*
P _ * _ _ k
= ; ViU = ; Vo(D)ye  (EO)
and thus Eq. (64) in the main text.

1. BCS equation in polar coordinates k — (k, 6;)

We simplify the expression in Eq. (C3) to obtain

2 1

isin(0, — 6;)
8V E.-E,

p
[

— |:11—|(Ek + E, + 2m)(Ex — m)(E, — m)
expli2(8, — 60} — 1]
lk — pl?

kp —

(E7)

For a fixed angular momentum channel, A} = | Ak e, we
do first the integration over the angular variable, 6 —6,,
in Eq. (64) [or Eq (E6) and after the change from sum to
integral: Y-, — 75 [ dk]. We use

2 : :
0 sin 6
I, =/ d@slnmﬁ —2r(A— /A2 —1)", (ES)
0

—cos 6

m=1, 2, 3, with A = k;,:; to get
1 2 )
Vi, = 7 / d(O — 0,)e" Vi, (E9)
0
forl =1, 3, —

In particular, for [ = 1 in (E9), we use (E8) to express the
following integral:

2T . .
o —isin(6 — 6
/ (6 — 6,000 ~1SO 6
0

A —cos(Oy —6,) (E10)
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and

2 —i2(6c—6,) _ 27 —i(0—0,) _ ,i(6x—6,)
e ’ 1 e »—e »
/ d(Ox — 6,)e' % 910— / d(6 —6)) =0,
0 0

—cos(Ox — 6,) A —cos(Bx — 6,)
(E11)
for ! = 3 in (E9), we have
2 ) —isin(@, — 6
/ dO — gp)eﬁ(@r@p)M =1 (E12)
0 A —cos(Gx —0),)
and
2 e i20c=0,) _ | 2 ) e~ iO—0,) _ ,i(0:=0,)
/ d(6 — 6,)e %) = / d(O — 6,)e >0 =20, (E13)
0 A —cos(6y —6,) 0 A —cos(O —6,)
and similarly for / = —1. In this way, we can get the following expressions for Vk’p, =1, 3, —1:
2
I _
Vip = SE—E[—ZImI(?» — VA2 =1, (E14)
2 E,— E E,+E 2
Vi = g | -2l — Vi - - eSS BRI T )
P SEp Ek P k
and
2 E E,+E 2
o = 2ml( — /32— 1) 4 2 L I E I Ey £ Bt 2m) TRl (i)
F 8E, Ex |m pk
Note that we take

3

k
, P <

A — )\2—1={

2 2_ 2 2
2 —1= \/W% —1= \/k4+§zz_pzzk2 22— NP A¢ this point, we choose /(k? — p2)? = |k*> — p?|, which then

2kp
leads to Eq. (E17). Other choices lead to an unphysical V that does not decay to zero with large k and p and diverges at k = 0
or p = 0. The general expression for V in the three cases of interest/ = 1, 3, —1 is given by

=7 (E17)

ik

2z 1l (Ep, —m)(Exy —m)(E, + Ex +2m)
! = m[— 2sgn(l) [m| ry, — (1 = &.1)sgn(l)sgn(m)—L _y? Ter |- (E18)
[
where &, , is the Kronecker delta, equal 1 when x =y and and thus
otherwise 0. Finally, we need to solve
Eo = (QKef|€2) — ZVkp
|Ak|=—i/w ap p v, 20l (E19)
2 Jo t 51) ’ _ _Z & — (Ek ") _ Z (E22)
pz 5k 2 5,,’

with Vklp defined in Eq. (E18). Note that |Ak| only depends

on k. In the second term (after the infinite volume limit), we need to

integrate over 6 and 6. Because Af A, = |A||Ap|e! %60,
a change of variables, 6, =6 +6, and 6_ =6 —0,, is
appropriate to apply. The function under integral f (6, 6,) ~
For the BCS ground state [€2) for which o [$2) = 0, aftera  i1=0,)y;  has a periodicity under translations for (multiples

2. Ground-state energy

simple algebra, we have of) 27 of O and of 0,,. After a short analysis of mappings, we
can conclude
(QUKr|Q) ==Y = g 5 (E20) 2 2
: | an [ do,r00.6,
To make assessment of the implied ground-state energies we 4n 2
first note that / do. / do_f(6-)
i Ak
(by) = ——=. (E21) =2r d9 f-). (E23)
2 gk 0
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Therefore the ground-state energy density for a fixed angular

momentum / instability, A} = [Ak e, is
1 E — - 1 0
El = — ak k= Em ) / dp p
2n) 2 @2m)? Jo
| Akl [Ap]
dk k Vi, — 2 E24
. /0 w2828, (29
3. Proof of symmetry between / = —1 and 3 channels
The two pairing channels corresponding to / = —1 and 3
satisfy a symmetry relation
Vi m) = Vi (=m) (E25)

and therefore the solutions for these two channels are equal up
to a sign-flip of m. Here we present the proof of Eq. (E25).

J

(a—m)b—m)a+b+2m)=

= a’b + b*a + 2mab — ma* — mab — 2m’a — mab — mb®

First, we note that Ey(m) = Ex(—m), as E, = ~/k% + m?.
Therefore E; is an implicit function of |m|. For the sake
of clarity, we introduce Ay,(m)= 8;—”51 and Ay,(m) =
Ayp(—m). We also introduce a = E and b = E,,. We focus
here on the case k < p but an analogous proof can be easily

given for the case k > p,

k3
Vklp 2<p(m) = Akp(m)li_2|m|F

(a—m)b—m)a+b+2m) k2:|
— sgn(m) —

pk p2]
(E26)

We now separate the second term into parts which are even
and odd with respect to m:

(ab —am — bm +m*)(a + b + 2m)

—2m?*b + m?a + m*b + 2m®

= a’b + b*a — m*(a + b) — m(a* + b*> — 2m*). (E27)
Now we perform a change of variables i1 = —m:
(a—m)(b—m)(a+b+2m)=a’b+b*a—m*(a+b)+ma®+b*—2n?)
= (a —m)(b —im)(a + b+ i) + 2m(a* + b* — 2m?). (E28)
We now use sgn(x) = —sgn(—x), and sgn(x)x = |x| to obtain
k3 (a —m)(b—m)a+b+2m) k> a’ + b> —2m?* k?
=A —2|m|— 7 — 2| ———|. (E29
Vi (—i) k,,<m>[ |5 -+ sgn(ii) i o+ 2 pz] (E29)
We rewrite the additional term using k, p, and 7:
a’ 4+ b* =2 = k* +m® 4 p? +m* — 2 = k* + p? (E30)
and
K>+ p? k2 Bk
E =@+ )=+~ (E31)
kp p p P
The terms cancel and we finally obtain
- - _ k _ (a—m)(b—m)a+b+2m)k? —
Vi p(—ii) = Akp(m)l:2|m|; + sgn(i) ok } Vi s, (). (E32)

4. Numerical solution

We solve Eq. (E19) numerically, using the forward-
substitution algorithm. We start from an initial guess for |Ay|
(in practice |Ai| = 1073, Vk) and then recalculate it from the
RHS of Eq. (E19) iteratively until it converges. We take as the
criterion for convergence

maxj | APV — Agld|

1073k
maxk|A26W| <107k

(E33)

It takes 30—130 iterations to satisfy the convergence criterion.
We keep kr = 1 to set the unit.

We perform the integration on the RHS of Eq. (E19) using
the trapezoid rule. The integrand function on the RHS is very

(

sharply peaked around kp. To properly resolve the integrand
function, we discretize k using a logarithmic grid,
]Ej — eamin+NL.k(amux7amin)

Jj €10, Ni) (E34)

with N = 500, amin = —30, and amnax = 4. The logarithmic
grid is placed on both sides of kp, to include all points
given by

1+k;>0.

We add the k = 1 point by hand. Therefore our grid can
resolve peaks at kr that have a width >e~3, which is
near the limitation of double precision numeric type. The
logarithmic grid is particularly important for the / = 1 case

115107-16



PAIRED STATES AT 5/2: PARTICLE-HOLE PFAFFIAN ...

PHYSICAL REVIEW B 98, 115107 (2018)
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FIG. 2. Integrand function in the final iteration for / = 1, m = 0.4, and kr = 1. Examples are given for three different k. The sharp peak
at kx has a width ~10~° and is properly resolved using a logarithmic grid.

at low m, where the integrand is most sharply peaked. We
illustrate our grid and the integrand function in Fig. 2. We

have checked that the results do not depend on the numerical
parameters.
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The Luttinger-Ward functional (LWF) has been a starting point for conserving approximations in many-body
physics for 50 years. The recent discoveries of its multivaluedness and the associated divergence of the two-particle
irreducible vertex function I" have revealed an inherent limitation of this approach. Here we demonstrate how
these undesirable properties of the LWF can lead to a failure of computational methods based on an approximation
of the LWE. We apply the nested cluster scheme (NCS) to the Hubbard model and observe the existence of an
additional stationary point of the self-consistent equations, associated with an unphysical branch of the LWF. In
the strongly correlated regime, starting with the first divergence of I', this unphysical stationary point becomes
attractive in the standard iterative technique used to solve DMFT. This leads to an incorrect solution, even in the
large cluster size limit, for which we discuss diagnostics.

DOI: 10.1103/PhysRevB.97.125141

The Luttinger-Ward functional (LWF) @ is a central object
in the quantum many-body theory of strongly correlated
fermionic systems. @ [1] is defined as the interacting part of
the Legendre transform of the free energy with respect to the
bare propagator G [2]. It is a functional of the full propagator
G, formally equal to the sum of all vacuum skeleton diagrams
[3,4]. ® has been the basis of many approximations in the field
over the last decades.

Dynamical mean-field theory (DMFT) [5,6] and its cluster
extensions [7—10] are a class of ®-derivable approximations
with a systematic control parameter: the size N, of the cluster.
They interpolate between DMFT (N, = 1) and the exact
solution of the lattice model for N, = co. Cluster methods
allow to treat the Mott physics a la DMFT and to include
short-range spatial correlations. They have led to significant
progress in recent years, in particular on the Hubbard model
[11-58]. Cluster DMFT methods are formulated in terms
of one (or a few) auxiliary quantum impurity models in a
noninteracting bath encoded in the bare propagator G. The
bath is determined self-consistently in such a way that the
impurity Green function G'™ coincides with some (local)
components of the Green function of the lattice model G'**.
This representability property, i.e., the possibility to find G for
a given G'™ in a quantum impurity model lies at the very heart
of DMFT methods [6,59].

Surprisingly, it was recently discovered [60—62] in simple
strongly correlated models that the functional ®[G] is in fact
multivalued, i.e., has multiple branches. As a consequence, the
relation G[G] cannot always be inverted in quantum impurity
models as several G yield the same Green function G. This has
deep consequences for numerical methods in some parameter
regimes. The crossing of two branches of @ leads to diver-
gence of the two-particle irreducible vertex I" [61,63—66] and
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therefore the breakdown of the parquet decomposition
[65,67,68]. Moreover, at strong coupling, the bold diagram-
matic series can converge to an incorrect result, as was checked
explicitly using a bold quantum Monte Carlo algorithm [60].
Similar pathological behavior was observed in the context of
G W-like approximations of ® [69].

In this paper, we show that the multivaluedness of &
has unexpected and severe consequences in certain cluster
DMFT methods, and can potentially lead to incorrect results.
Concretely, we study the nested cluster DMFT scheme (NCS)
[5,52,70], which is an early example of the recently introduced
self-energy embedding theory (SEET) [71-75]. NCS is a
particularly interesting scheme since it addresses the main
drawbacks of the most widely used cluster methods: cellular
DMFT (CDMEFT) [9] and the dynamical cluster approximation
(DCA) [7]. It is a real-space cluster method which is transla-
tionally invariant (unlike CDMFT) and yields a continuous
self-energy in reciprocal space (unlike DCA). In the classical
limit, it reduces to the well-known Bethe-Kikuchi method of
classical statistical physics [5,52].

We solve the NCS for the Hubbard model and compare it to
benchmarks established with converged large DCA clusters.
At weak to moderate couplings the scheme is stable and
performs very well. Even at strong coupling, there is a physical
solution, which is very close to the benchmarks already at
moderate cluster size. However, (i) in the standard iterative
method used to solve the DMFT equations, this solution is
unstable towards an unphysical solution characterized by a
noncausal Weiss field; (ii) as the cluster size increases, this
stable unphysical solution converges to an incorrect result; and
(iii) this occurs in the strong-coupling regime as delimited by
the generalization of the divergences of the irreducible vertex
observed in Refs. [61-65,76,77].

©2018 American Physical Society
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FIG. 1. For all panels, the temperature is 7/D = 0.125. (a) Color plot of [6G| = |g§8“‘f‘(i wp)

— G (iwo)l/ |g3gmft(i wp)|; black crosses are

data points, red crosses are points where the reverse impurity solver does not converge. (Left inset) Slices for fixed doping, showing discontinuity
vs U for § = 7% and 9%. (Right inset) Hybridization (local) of G*™ (top, green) and G™" (bottom, red), for U = 2 and § = 0 showing its
causality violation. (b) Vertex divergences, where the real part of an eigenvalue &; of =" crosses zero for single-site DMFT (dashed line)
and 2 x 2 CDMFT (colored circles). Color encodes Im ¢; at the given point; colored stripes are guides for the eyes. (Inset) Ime; vs doping
for the bottom two groups of circles for 2 x 2 CDMFT. (c) Color plot of [§Z| = [ImZga™ (iwp) — Im B (iwp)|/IIm EE™ (i cwy)], i.€., the
difference between the imaginary part of the local self-energy for 2 x 2 NCS and the 2 x 2 CDMFT (the latter is close to the exact solution,

see Appendix A 1 and Fig. 3).

We consider the Hubbard model on a square lattice:
H=—t Z C;rgcja — Mznia + Uann,'i, (D
{ io i

ij)o
! creates a fermion with spin o at site i. The density

where ¢;
operatorisn;, = cja ¢is- The nearest-neighbor hopping ampli-
tude is ¢, the on-site interaction U and the chemical potential
W. D = 4t is the unit of energy. We use the CT-INT algorithm
to solve the quantum impurity model [78,79].

Let us first address the representability issue of the Green
function G by a Weiss field G in a cluster impurity model.
We consider a 2 x 2 CDMFT calculation for 7/D = 0.125
and various U and dopings 8, where it yields a quantitatively
good solution as compared to converged large cluster DCA
benchmarks (see Fig. 3). The CDMFT self-consistency equa-
tion reads [9] G™P[G] = G'**[G] with

G*™[Gliw) = Y (o + p — & — T™P[G)iw,)) ™",

keRBZ

where é; is the dispersion over the superlattice of clusters,
RBZ is the reduced Brillouin zone and '™ (resp. G'™) is
the impurity cluster self-energy (respectively, Green function).
The CDMFT equations are solved with the usual iterative
technique for DMFT; given G at iteration i, the impurity
model yields £™P[G?] and the next iteration GU*V is given
by

GU+D = (Gle[gD]! 4 mimP[gY)!, )
Starting from the converged CDMFT solution G™ we
then implement a reverse quantum impurity solver [60]: we
seek a bare propagator G' of the cluster model such that
GmP[Grev] = GOt with a similar iterative method as in

Eq. (2) but with G'*°[GD] replaced by G, which remains
fixed in the calculation.

In Fig. 1(a), we present the relative difference between
the local component of the converged CDMFT Weiss field
Gedmft 5nd the result of the reverse impurity solver G''. We
observe three regions. At weak coupling, the reverse impurity
solver yields G as naively expected. At strong coupling
and high doping, the reverse solver does not converge. At
strong coupling and low doping, G progressively deviates
from GS9™_ even though they both yield the exact same Green
function G*™, As soon as G™ is different from GImit jt
acquires a noncausal hybridization function A [80] as shown
in the inset of Fig. 1(a). Indeed, A(7) is not concave over the
full [0, 8] interval and therefore has a corresponding spectral
function with negative parts. This calculation demonstrates the
existence of multiple branches of & for the 2 x 2 impurity
problem by exhibiting explicitly two G (and hence X) giving
the same G, see also Refs. [60,61,63-65,77]. We will see below
that a similar phenomenon occurs in NCS.

It is interesting to note that in the reverse impurity calcu-
lation at low doping § < 5%, one first finds G*¥ = G<™t for
small interactions U < 1.25 and then continuously switches
to an unphysical solution for G as U is increased. This
means that the physical branch of & crosses the unphysical
branch. As has been discussed in the particle-hole sym-
metric case [61], this crossing has to be accompanied by
a divergence of the corresponding two-particle irreducible
vertex function I', since it is the second derivative of &
with respect to G. We generalize the results of Refs. [63—
65] to the doped case and map these divergences of I' in
the 2 x 2 CDMEFT case, to obtain a characterization of the
strong-coupling region, which is not linked to the details
of an iterative algorithm. Given the two-particle propagator
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G322 1 = 5l (@)@ + Q)] (@ + )y (@) and
the single-particle Green function G, I' can be calculated with

the inverse Bethe-Salpeter equation
F?z;uklﬂ = :32[[)((?]_] - [XCQ]_]]ija),kla)” &)

where X8 = —Gi(i0)G ji(io + iQ)B8y.» and T =
G928+ G8% i — 2G ji(@)G (@) Bdgo. The inverse is
assumed to be in combined indices (ijw) and (lkw'), where
w,w’ denote fermionic and €2 bosonic Matsubara frequencies.
If %.(i€2) as a matrix has an eigenvalue &; = 0, it is singular
and I' diverges at the given i2. While in single-site DMFT
at particle-hole symmetry, the eigenvalues of %.(i2 = 0) are
purely real by symmetry, it is no longer necessarily true
here [65].

Figure 1(b) shows trajectories in the (§,U) plane where the
real part of an eigenvalue of X, crosses zero for single-site
DMFT and 2 x 2 CDMFT. In single-site DMFT, at half-
filling, there are three I' divergences in the examined range
of interaction, in agreement with Ref. [64]. As we go to finite
doping, the divergence close to U = 1.8 disappears immedi-
ately as the corresponding eigenvalue acquires an imaginary
part. However, the divergences close to U = 1.2 and 1.5
extend up to § ~ 5% where they merge. For higher doping, the
divergences disappear because the corresponding eigenvalues
acquire an imaginary part. In CDMFT, the behavior is very
similar except that each divergence is split into four, the two
middle ones occurring simultaneously. Hence we conjecture
(see also Refs. [61,63—65]) that the divergences in I" are not
an artifact of the single-site model but rather survive and
multiply in the cluster impurity model. Finally, in the left inset
of Fig. 1(a), we see that for § > 6%, the unphysical solution
appears discontinuously when U is increased, in agreement
with the absence of a divergence in I'.

Let us now turn to the NCS. It approximates ® by @),
defined as its restriction to the set of real-space two particle
irreducible (2PI) diagrams that involve lattice points lying
within a box of shape L x L. &%) can be expressed as a
linear combination of the LWFs ®;,; of a L x L cluster
and the LWF of its subclusters, with appropriate weights that
eliminate the double counting of diagrams. Each cluster LWF
is associated to an impurity model, via the representability
property. The lattice self-energy %'3® is therefore a linear
combination of the self-energies of the impurities. This couples
the impurity models together and the baths adjust so that, e.g.,
the impurity Green function is the same for every site of every
cluster. This method was introduced for a two site cluster (a
dimer) in Ref. [70], see also Refs. [5,52,81].

A priori, solving large nested clusters seems like a daunting
task, requiring to solve a large number of coupled impurity
problems, one for every subcluster of the L x L cluster.
However, as shown in Appendix C2, it is sufficient to solve
only four coupled clusters since

PGl =) Drar[Glere] = Prornr[Glepin]

— ¢LXL,1[G|CiLxL—|] + ¢L,1XL,1[G|CiL—1xL—1],
“

where C* is the cluster of shape n x p whose bottom-left
lattice point is 7, and G| the restriction of the Green
function to this cluster (i.é., the set {Gim}; o). If we
assume rotational invariance, the last two terms gi\’/e the same
contribution and the method can be solved using three coupled
cluster impurity models. We present the full formalism for the
NCS with several examples in Appendix C.

We solve the NCS using the standard iterative method of
solution for DMFT equations as in Eq. (2). At weak coupling,
the NCS yields a solution in excellent agreement with large
DCA cluster benchmarks (see Fig. 3). However, at strong
coupling the situation is more complex. First, in Fig. 1(c),
we observe that the 2 x 2 NCS gives a poor result compared
to CDMFT in the strong-coupling region delimited by the
divergences of I' discussed above. We then solve larger
clusters L =2, 3, 4, and 6 to examine the convergence of
the method with the cluster size. We observe an unexpected
and severe problem: the nested cluster scheme converges for
L — oo but to an incorrect solution even though formally

oW 2% ¢ Fig. 2(a) and Appendix A4 we show the
momentum dependent self-energies obtained for L = 4 and 6;
they are very close to each other, indicating convergence, but
quite far from the benchmarks.

To gain further insight, we study the convergence of
the L =4 case at strong coupling iteration by iteration. In
Fig. 2(b), we plot the difference between successive G, for
U/D=1and U/D=2,§=0. At U/D =1 convergence
is roughly exponential until the level of Monte-Carlo noise
is reached. However, for U/D =2, we observe that the
self-consistency is almost converged after three iterations [the
green point on Fig. 2(b)] to an unstable solution before finally
converging to another solution of the equation (red point).
Remarkably, in Fig. 2(a), we see that this unstable (green)
solution is almost perfectly on top of the benchmark, contrary
to the stable (red) one.

Furthermore, we observe two pathologies of the stable (red)
solution, which can be used as diagnostics in the absence
of benchmarks. First, the inset of Fig. 2(b) shows the local
hybridization function of both solutions (at the corner of the
L x L cluster), Agaple and Aypgable- Astable Clearly violates
causality at U/D = 2, similarly to the reverse impurity solver
studied above, while Aynsaple 1S fine. Moreover, we see in
Fig. 2(c) that this effect appears as a function of U for U > 1.2,
i.e., exactly when the solution deviates from the benchmark (or
CDMEFT in this case). Second, the Ag.pie bath does not decay
in the large L limit at strong coupling (U/D = 2), contrary
to U/D =1, as illustrated in the inset of Fig. 2(a). Contrary
to CDMFT or DCA, the NCS does not impose A =0 for
every converged solution for L — oo, but only the weaker
condition X' = ©iMP 4 A (see Appendix A4 and Fig. 8 for
further discussion). For the physical solution, we conjecture
that A — 0 for L — oo: the large cluster will be a Hubbard
model with no bath. The unphysical solution converges on the
other hand to a certain resummation of the bold diagrams series.

For CDMFT and DCA, the standard iterative method of
solution is iteratively causal [7,9], i.e., one can prove that the
bath stays causal at each iteration (and therefore at conver-
gence). Hence the causality violation of the bath cannot occur
and the solution stays on the physical branch. The NCS does
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not have this property, which, as we have seen, has drastic
consequences on the stability of the physical solution in the
iterative procedure. In the dimer case, NCS was already known
to yield noncausal self-energies at low temperatures and strong
coupling [5,70]. However, in previous works [52,82], this was
simply interpreted as the signature of an insufficiently large
cluster, i.e., a defect that the large L should cure.

To summarize, the nested cluster is a translationally invari-
ant, real-space cluster method with a physical solution very
close to numerically exact benchmarks already at moderate
cluster sizes, both at weak and strong coupling. However,
the multivaluedness of the LWF leads to an instability of the
standard iterative procedure of solution in the strong-coupling
region (as delimited by the divergence of the irreducible vertex
I') towards an unphysical solution, even in the infinite cluster
limit. This failure is signaled by causality violations of the
hybridization function. All this points to the importance of
distinguishing between a cluster method and the iterative
procedure used to solve its equations. An important challenge
is therefore to design new ways of solving the cluster DMFT
equations that are guaranteed to stay on the physical branch of
the LWF and stabilize the “hidden” physical solution, e.g.,
by implementing the “shifted-action” [83] proposal in this
context. Alternatively, one can use cluster methods based on
higher-order functionals (TRILEX [54,56,57], QUADRILEX
[55]). We believe these are less likely to be multivalued, as
it would require the existence of two systems with identical
single-particle but also higher-order correlation functions,
which is a priori harder to achieve. Moreover, going to higher-
order functionals would correspond to adding more degrees
of freedom to the solution, which in itself could remove the
multivaluedness.
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APPENDIX A: BENCHMARKS

In this section, we present results for various cluster
DMFT methods applied to the two-dimensional square-lattice
Hubbard model as introduced in the main text. We pay
special attention to the nested cluster scheme (NCS), which
is discussed in detail in Appendix C. Detailed summary of
other cluster DMFT methods is provided in Appendix D.

We first present an extensive benchmark against exact
results (Appendix A1), which we use in the main text to
determine the quality of solutions and to identify problematic
regimes. We then address in particular the causality violations
in the problematic region (subsection A 2). In Appendix A3,
we provide a comparison between two variants of the nested
cluster scheme, differing in the nested quantity (self-energy
versus cumulant). In Appendix A 4, we discuss the stable and
unstable solution of the nested equations.

1. Comparison against exact results

In Fig. 3, we show the results of cluster DMFT methods
for the Hubbard model, at various cluster sizes, in the four
corners and the center of the phase diagram examined in
the main text. The temperature is 7/D = 0.125. At half-
filling, ReXj,.(iw,) = U/2 by symmetry, so we omit this
data. The nonlocal part Sk(iwy) = Tk(iw,) — Tiecliow,) we
present at the lowest Matsubara frequency, along a triangular
path enclosing the irreducible Brillouin zone. With stars we
denote the best available result: at half-filling, we have DCA
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FIG. 3. Benchmark of DMFT and various cluster DMFT methods. Hubbard model square lattice, temperature 7/D = 0.125. We present
separately the local and the nonlocal parts of self-energy, Sy = Zy — Zjoc. Color denotes cluster size, symbols/line styles different methods.
Stars denote the best available result. Agreement is excellent in all points except point B: NCS converges to a wrong solution, PCDMFT 2 x 2
is considerably worse than in other points, and DCA™ converges very slowly with cluster size, while being a poor approximation at small cluster
size. In other points, NCS 4 x 4 performs well, but at 6 x 6 amplification of statistical noise becomes a problem (see text for details).

N, =98, and away from half-filling, the biggest cluster is
8 x 8 (N, = 64). These results are converged with respect
to cluster size, and can be considered exact solutions of the
Hubbard model.

The presented CDMFT result is the self-energy periodized
by Eq. (D17) (in Appendix D2 below). In DCA, we are
showing only the values at coarse-grained wave vectors K (see
Appendix D4).

We first concentrate on the points other than point B. We
see excellent agreement of all methods. The local part is
captured correctly already at 2 x 2 cluster size. DCA typically
overestimates the amount of k dependence at 2 x 2, then
underestimates it at 4 x 4, and is mostly converged at 6 x 6.

DCAT has a similar behavior (2 x 2 not shown for the sake of
clarity). CDMFT and PCDMFT give almost the same result,
and are on top of the benchmark except for the real nonlocal
part in point E, where the overall shape is correct, but the
amplitude is overestimated slightly; PCDMFT also noticeably
misses the local imaginary part in point A. Nested cluster
performs well, and at 4 x 4 cluster size is even more accurate
than DCA around k = (0,0). In point E, it does not converge
at any cluster size. Away from half-filling and at cluster size
6 x 6, statistical noise amplification in nested cluster becomes
significant (see Appenidx C 1b for details). It is particularly
noticeable in the local part of self-energy at high Matsubara
frequencies, in points C and D. Also in these points, there is a
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peaklike feature around k = (7r,77) in the nonlocal imaginary
part. It comes from the numerous long distance self-energy
components, which are small and comparable to the statistical
error bar. These fine details of the solution can not be perfectly
converged due to the statistical noise.

Now we turn to point B. CDMFT 2 x 2 is, again, on top
of the benchmark. DCA behaves no differently than in other
points, and is almost converged at 6 x 6; the local part is
correct already at 2 x 2. On the other hand, DCAT is not on
top of the benchmark even at 8 x 8, and especially the local
part is strongly underestimated: at 8 x 8, it is still worse than
single-site DMFT. The nonlocal part is underestimated as well:
the 6 x 6 calculation is comparable to DCA 4 x 4. PCDMFT,
similarly, underestimates both the local and nonlocal part.
Nested cluster converges to a wrong solution with respect to
N,.: the local part is indistinguishable already between 2 x 2
and 4 x 4, and the nonlocal part between 4 x 4 and 6 x 6.
The local part is underestimated by about 50%, and imaginary
nonlocal part by almost an order of magnitude. The failure
of PCDMFT, NCS, and DCA™ in this particular point is
strongly reminiscent of the failure of bold-diagrammatic QMC
presented in Ref. [60], for the same model parameters: the self-
energy obtained in these methods is more metallic and much
more local than the exact solution. We note that the similar
phenomenon can also be observed in the original DCA™ paper
[48]—in the strongly coupled regime, the N. = 16 DCA*
self-energy result is much more local and metallic than that
of the DCA at the same cluster size.

In conclusion, in this phase diagram, the best performing
2 x 2 method is CDMFT. We take it as a reference method
for benchmarking on a denser (§,U) grid [Fig. 1(c) in the
main text, and Fig. 4 below]. At 4 x 4 cluster size, in the
points where it works, NCS does have an advantage over
CDMFT and DCA. DCA 4 x 4 coarse-graining is still quite
crude—due to symmetries of the lattice, it yields only six
independent self-energy components; NCS at the same size
yields ten independent self-energy components, and captures
longer distance processes. In DCA, interpretation of the results
in real space is problematic; NCS results can be looked at in
both r and k space. CDMFT is also problematic at 4 x 4. At

this size, both the translational symmetry and the homogeneity
within a supercell are broken, and the periodization becomes
even less straight-forward. Finally, we note that in pointB, even
though NCS fails with forward substitution algorithm, there
still appears to be a stationary point of the NCS equations
(Fig. 2 in main text), which is in better agreement with the
exact result than DCA at the same cluster size.

We finalize our analysis by a high-resolution benchmark
of DMFT and 2 x 2 cluster methods (DCA, DCA™, and
PCDMFT), analogous to Fig. 1(c) in the main text. In Fig. 4,
we present the deviation from the exact result of these methods.
DMFT and DCA perform uniformly well across the phase
diagram, and are at most ~5% away from the correct result. No
features can be associated with the I" divergence trajectories.
On the other hand, NCS, DCA™ and PCDMFT all fail in
similarly shaped regions around point B, but give good results
in other regimes. In DCA™' and PCDMFT the coincidence of
the problematic region with the I'-divergence trajectories is
less conclusive, but we can similarly connect the failure with
the noncausality of the hybridization function. It is, however,
unclear whether a correct stationary point is present in these
methods at all.

2. Causality properties

In this section, we analyze the causality properties of various
quantities in the cluster methods presented above. Quantities
like Green’s functions, self-energies, and hybridization baths
should have Lehmann spectral representation. The diagonal
components of these quantities, should satisfy in real frequency

ImX;;(w) < 0, (A1)

where X stands for G, X, G, or A. This has implications for
the shape of these objects in imaginary time:

1 e~ @
X,’i(T) = ;/da)mlmxu(Q)), (A2a)
2n ,—Tw
2n 1
Br X,’i(‘l.') = ; dwmImX”(w)
<0, neN (A2b)

125141-6



PRACTICAL CONSEQUENCES OF THE LUTTINGER-WARD ...

PHYSICAL REVIEW B 97, 125141 (2018)

latt latt 2
Gloc (T) ZIoc (T) gOO(T) aT A00(7->
0.0 ‘ : ‘ 0.05 : ‘ 0.0 ‘ ‘ ‘ 0.00 ‘ ‘ ;
— nested
— DCA {7002
—  CDMFT -0.04
PCDMFT 4
DCA+ —0.06
T-0.08
T1-0.1
0=0% 010
-0.6 0.00
T/D =0.125
—-0.01
-0.1} |
-0.02
—0.2f 1-0.03
-0.3} 1-0.04 1-0.02} :
—0.05
-0.4} 1
-0.06
_05 . . . 0.07 . . ‘ 0.04 ‘ ‘ ‘
2 4 6 8 0 2 4 6 8 0 2 4 6 8
T T T T T

FIG. 5. Causality analysis of relevant quantities, in various cluster methods at 2 x 2 cluster size. Temperature 7'/ D = 0.125, square lattice.
Atstrong coupling, DCA™ and NCS have pronounced inflection points in A(tr), PCDMFT in the second derivative of A(t). Gray lines extrapolate
the linear component close to 7 = 0 and S. Other quantities are all causal, including the bare propagator on the impurity. Increasing the cluster
size in DCA™" improves the causality in A, but notin NCS. In the upper right panel, NCS result is omitted for the sake of clarity [the noncausality

is already obvious in Agy(7)].

All even-order derivatives with respect to T must be nega-
tive. This rules out the appearance of inflection points in X;;(t)
and any of its even-order derivatives.

In Fig. 5, we present the results for the local G, ¥ on
the lattice, as well as the diagonal components of the bare
propagator G and the hybridization function A on the impurity,
allinimaginary time. All methods used are at2 x 2 cluster size.
In NCS we present the impurity quantities only for the biggest
cluster. In all methods at 2 x 2, all the diagonal components of
G and A are the same by symmetry (in DCA/DCA™ this holds
at any cluster size).

We see that all the quantities except the hybridization
bath are causal. At U/D = 1, there is a slight violation of
(A2b) in the second derivative of A in NCS, PCDMFT and
DCA™, but it is a tiny effect. In this regime, small fluctuations
in the noncausal direction do not cause problems for these
methods and the result is correct. However, it is clear that
these methods do not impose causality on the hybridization
function strictly, which then leads to problems at strong
coupling. At U/D = 2, we see a strong violation of (A2b)
in NCS, a clear inflection point in A(r) in DCA™Y, and
in PCDMFT there is an inflection point in 33A(‘L’). Here
we observe a similar trend in DCA', NCS and PCDMFT:
Apo(t ~ B/2)1s generically overestimated (by absolute value)
with respect to DCA and CDMFT, respectively (note that the
difference in the bath between DCA/DCA™ on one side and
CDMFT/PCDMFT/NCS on the other is due to a different way
of closing self-consistency in these two groups of methods:
k-space versus r-space clusters; see Appendix D). The bigger
Ago(t ~ B/2) translates to having a bigger bath at the low
frequency—the observed noncausal bath is also bigger, and as
we see in Fig. 2 in the main text, in NCS it does not even decay
with increasing cluster size.

3. Cumulant versus self-energy nesting

In Fig. 6, we compare the two variants of the NCS: one
embeds either the cumulant g, or the self-energy X (for details
see Appendix C4). The results are compared to a 50-site DCA
calculation. The temperature is 7/D = 0.0625 and the (hole)
doping is 20%.

We present results for the simplest dimer calculation (2 x 1,
see Appendix C5a), the double dimer 2 + 2 [see Eq. (C42)
and the corresponding section], and the 2 x 2 calculation
(Appendix C5c). We see that the resultis solid already at2 + 2,
and is overall improved at 2 x 2. However, it is clearly not yet
converged, and looking at the nonlocal part, the convergence
is not monotonic. This is clearly expected at such small cluster
size.

We observe that the cumulant variant performs slightly
better, but the difference is almost negligible. We have checked
that none of the features of the failure of NCS depend on the
choice of the nested quantity (g or X). In the problematic
region, the cumulant variant converges to almost exactly the
same wrong solution as the self-energy variant.

4. Unstable and unphysical solutions

In Fig. 7, we present the self-energy for the apparently
unstable (green line) and the stable solution (red line) in NCS
4 x 4, compared to the exact benchmark (from Fig. 3). We
observe that the unstable solution is in excellent agreement
with the exact benchmark, even better than DCA of the same
size cluster. The stable solution on the other hand, is much more
metallic and much more local. However, it does have the correct
asymptotics and is apparently causal (see Appendix A2).

Even in the large cluster limit, NCS does not guarantee
Yimp . 1t and therefore at large cluster size, a principal
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FIG. 6. Benchmark of the two variants of NCS (cumulant vs self-energy embedding) at small-cluster sizes. Stars denote the best available
result (50-site DCA). The cumulant variant performs only slightly better. 2 x 2 calculation is already very close to the benchmark data.

solution is possible,

Eimp’C[AC] 4 AC ~ ]_‘Czlall[zimp]’ (A3)
where FC projects a lattice quantity onto impurity degrees
of freedom of the cluster C. We check this explicitly in our
unphysical solution in Fig. 8 and find excellent agreement.

APPENDIX B: VERTEX DIVERGENCES

The irreducible vertex function I, contains all possible two-
particle scattering processes that are two-particle irreducible
[2,3,85] in the given channel r (see Fig. 9 for an illustration
of the two-particle reducibility concept). The reducibility
channels are particle-hole (ph), transverse particle-hole (ﬁ),
and particle-particle (pp), depending on which of the exter-
nal indices remain connected after cutting two propagator
lines [85]. I'py in particular corresponds to the second-order
functional derivative of the LWF:

The greek indices combine the orbital and spin index and the
imaginary time, e.g., « = (iy,04,7y)- Thisrelation is illustrated
in Fig. 10 for diagrams of the second order.

The connection between I' and @ is the reason why I' is
sensitive to the multivaluedness of the LWF: it diverges along
the lines in the phase diagram where two branches of the LWF
cross [61] [see Fig. 1(a) in the main part]. However, note that
also I'pp can diverge in some cases [63,64]. One can define the
irreducible vertex function in the “charge” channel as I'. =
Ipn,p444 + T'ph,4444 Where we have omitted the time/frequency
and orbital indices for clarity.

In this paper, we are interested in identifying divergences of
I'c. It does not appear explicitly in the cluster DMFT equations,
so we only need to calculate it at the end of the self-consistency
loop. Note that due to the LWF construction of the methods, we
calculate it only from the correlation functions on the impurity.

1. The Bethe-Salpeter equation

In general, 'y, can be calculated from the Green’s function
G and the four-point correlation function

828 [G] wo' 1 / ’
Tonapys = —5o— X002 i = = el (@) o (@ + D) (0 + Do (@)
aB  16=61G,. %] B
52P[G] B1) — Gi(w)Gp(w)Bdao
SGaﬁSGyzS G=G[Gy, %] +5G,J’Gli(w)ij(a) + Q)ﬂaw,w” (BZ)
0.0 0.3 : :
K ; *
—0.2¢ —02f b A e
3 * w
S-0.4] & : :
3 g 0dp A Y
Z-06 ¥ A
) nested 4 x 4, unst. 0.0
é —0.8l +— nested 4 x 4, stable. ] i3
% ¥ DCA 98A El
-1.0f — —0.1
i( .
1 2 3 45 6 7 8 60 0 o 0oy 60 ©om o (0,0)
Wy, k

FIG. 7. Temperature 7/D = 0.125,U/D = 2,5 = 0, NCS 4 x 4. Red line: converged solution (stable, unphysical); green line: solution
after 3 iterations (almost converged, physical, unstable); stars: DCA 98A (exact benchmark).
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FIG. 8. Temperature 7/D = 0.125,U/D =2, =0, NCS 4 x
4. The unphysical solution retains a finite hybridization function even
in the large cluster limit, such that £ = %™ 4+ A_ Quantities are
presented at the center of the biggest cluster.

where we have assumed SU(2) symmetry and absence of spin-
orbit interactions. First, we calculate the general x4, and then
calculate the charge channel simply via

Xae = Xapt + Xapl- (B3)

From this object, one can obtain the full vertex function F¢,
which contains all the possible two-particle scattering pro-
cesses (including the reducible ones). It is identical to the four-
point correlation function with amputated incoming/outgoing
two-point propagators

FEpd = D G @G (@ + Qx5 oy
mnop
Gl (@+ Q)G (). (B4)

I'. is linked to F by the corresponding Bethe-Salpeter equation
(BSE). The BSE can be understood as a Dyson Equation at the
two-particle level [86], and it reads

ww' Q2 ree 'Q ww"Q U
Fcz]kl = Cljkl ercumncon(w)
o’ mnop
14 ' Q
X Gup( + ) f)o,[sz (BS)

e X ;

> 4

FIG. 9. Scattering diagrams can be classified according to their
two-particle reducibility. If after cutting two Green’s function lines,
the diagram is separated into two vertex diagrams, with the external
indices @ and B in one and y and § in the other, the diagram is reducible
in the ph channel.

52
5Ga56G s =

52 «a 0
5C55Cs = B:‘C:)‘(7 +

FIG. 10. (Top) Second-order functional derivative of the second-
order contribution to ® generates diagrams reducible in the pp and ph
channel. (Bottom) The ph-reducible diagrams can only be obtained
by functional derivatives of nonskeleton vacuum diagrams which are
not found in ®.

The diagrammatic representation of BSE is presented in
Fig. 11.

One can invert the BSE to obtain a closed expression for I".
After rewriting the vertex quantities as matrices with respect

to the properly grouped indices for a given transfer frequency
Q ww'Q

Q, V(l iont ko) = Vi the BSE becomes a matrix equation

0 ag . 1 Y

F2 =1 +ﬂ—rc Qe (B6)
where

X008 = —Guiw)Gj(io +iDPsww. (BT
A few algebraic steps then yield
L0711 L q1-!
=l - T) (B8)

where we have defined the so-called generalized susceptibility
[85]

Xe = Xo + Xac- (B9)

The matrix %3° is always invertible. This does not necessarily
hold for the generalized susceptibility .. As it approaches a
singular matrix, I'. diverges.
While the analysis of I divergences can be performed for
an arbitrary transfer frequency €2, we here focus only on the
= O case. {7 is a symmetric matrix. In a single-site model

at particle-hole symmetry, it is also purely real, which makes it
Hermitian, and its eigenvalues purely real. In cluster-impurity
models, and/or away from ph symmetry, it can have complex
elements, and its eigenvalues are no longer necessarily real
[65].

— > o .Z

m D k

FIG. 11. Diagrammatic representation of the Bethe-Salpeter
equation in the charge channel. Empty circles denote an ingoing
connector of a vertex function, while black dots correspond to
outgoing ones.
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2. Eigenvalues and divergences

In this part, we present the procedure for determining the
divergence trajectories of the irreducible vertex function, I'.
At a fixed temperature 7/D = 0.125, in the (6,U) phase
diagram discussed in the main text, we determine trajectories
U4=123.(8), where d indexes different divergences, counting
from the low U (U? < U%, d < d').

From Eq. (B8), it is clear that I'$*=" diverges when an
eigenvalue of 5= goes through zero. The dimension of the
matrixis M = N, x ch, where N, is the number of fermionic
frequencies stored, and N, is the number of sites in the cluster.
We start by solving the eigenproblem for )N(CQ:O. We fully diag-
onalize this matrix at each discrete value of U (U;) at a fixed
doping J, and obtain a set of M eigenvectors and eigenvalues
{(v},eD)}ic0.m). In single-site DMFT, at the lowest U, the real
part of all eigenvalues is positive (Reg; > 0). Therefore, as we
iterate over the interaction values Uy, it is straightforward to
detect when the real part of an eigenvalue crosses zero—it is
whenever a new eigenvalue with the negative real part appears.
However, with this simple method, the error bar for U“(8)
is given by the interaction step U;;; — U;. Furthermore, this
method could potentially miss an event where between two U;’s
two eigenvalues cross zero, one becoming negative, the other
one positive. This is particularly important in CDMFT 2 x 2
where there are many negative eigenvalues present already at
the lowest U. Furthermore, we would like to know the exact
value of the imaginary part of the eigenvalue (Ime;) when its
real part is crossing zero—if it is nonzero (Img; # 0), U 4(8)
at that point does not correspond to an actual divergence of I'.

One can do better by connecting the eigenvalues ef ac-
cording to matching eigenvectors and then interpolating &/ —
g (U). U%($) is then defined by Reg;(U?) = 0. We start from
the lowest U (I = 0), and for each eigenvector v/ we search

i
for an eigenvector Vé.“, such that |v! - V§»+1| is maximal. After
!

this is done for all eigenvectors v;, one proceeds with the
next / until all the eigenvector/eigenvalue pairs are connected
across the entire range of U. This procedure is, however, not
entirely straightforward, especially when the step in U is big.
The eigenbasis rotates with changing U, and in a given U
step, different eigenvectors may “exchange.” In the single-site
DMFT calculation, we had to additionally require that ef is
smooth to avoid getting eigenvalues mixed up. In CDMFT
2 x 2, the vector space is much bigger and we encountered
no such problems. Note also that, as doping is changed, the
eigenvectors change considerably, and we were unable to
reliably connect the eigenvalues at the same U, but different
values of doping.

In Fig. 12, we present the results from the single-site
DMFT calculation. Here we have data at § = 0,2%,6%,
10%, and 16%. On the top left panel, results for U%(8) are
presented with colored circles; the color represents the imag-
inary part of the eigenvalue crossing zero (color code is in
the inset). The dashed lines are guides for the eye, and are
also presented on Fig. 1(a) in the main text. The total count
of negative eigenvalues as a function of U; is given on the
top right panel. We see that at § = 0,2%, eigenvalues cross
zero one by one. Then at § = 6% and 10%, we see that two
eigenvalues cross zero in the same U step. In the bottom panels,
we plot the interpolation ¢;(U) obtained after connecting the

eigenvalues at different values of U. We present only the first
two eigenvalues to cross zero in the examined range of U.
We note that these eigenvalues are the highest valued ones at
the lowest U. At § = 16%, no eigenvalues have the real part
cross zero, and instead we present the two mutually complex
conjugate eigenvalues, which are the biggest ones at the lowest
U, and thus apparently correspond to the two eigenvalues
crossing zero at the lower §’s. We see that at low § we have
two separate eigenvalues which are purely real and cross zero at
different values of U. Then at 6% doping, the two eigenvalues
crossing zero are mutually complex conjugate, and cross zero
at the same time, but with finite imaginary parts of opposite
signs. As doping is further increased, the two eigenvalues
remain mutually complex conjugate and have the real part grow
towards positive values such that at § = 16% they no longer
cross zero. The imaginary part grows with both doping and
interaction.

In Fig. 13, we present the result from CDMFT 2 x 2.
We show the result for the first eight eigenvalues to cross
zero. These are separated in two groups of four (yielding
U?(8) withd = 14 and d = 5-8), and each group apparently
corresponds to one of the two eigenvalues crossing zero in
single-site DMFT. At higher U, there is another group of four
eigenvalues crossing zero (d = 8-11, not shown), apparently
corresponding to the 3rd divergence in single-site DMFT. The
two middle eigenvalues in all groups are mutually complex
conjugate [the ones yielding U4(8) withd = 2,3,d = 6,7, and
d = 10,11]. At$§ = 3%, we see that the first two groups merge
at around U = 1.8 (d =1 withd = 5,2 with d = 6, and so
on). This point is denoted with the vertical gray dashed line.
The merging of eigenvalues occurs at different U for various
dopings, along the gray dashed line on the phase diagram in the
inset. At§ = 8%, there are still eight eigenvalues crossing zero,
but they have only three distinct real parts: first and last doubly
degenerate and the middle one is four times degenerate. After
merging, the imaginary part of the eigenvalues grows from
zero, both with U and §, similarly to the single-site DMFT
case.

Note that we have performed the analogous analysis also
in DCA, DCA™, and PCDMFT. The overall picture is very
similar. The only qualitative difference is the presence of
additional crossings of zero at low U in DCA/DCAT™. These,
however, occur with a very big imaginary part and do not
correspond to singular behavior of T.

APPENDIX C: NESTED CLUSTER SCHEME

In this section, we present the fully general formalism of
the self-energy embedding theory (SEET) and then focus on
its application to infinite lattice systems (NCS). The main idea
is to approximate the Luttinger-Ward functional & (LWF)
by a sum of functionals, including counter terms to cancel
double counting of diagrams. By now it is clear that combining
different LW functionals is a very general approach, and can
lead to a great variety of approximations. For example, one can
rederive within the SEET framework also the GW+EDMFT
method [75,87]. Moreover, CDMFT can be viewed as a special
case of NCS, where no counter terms are needed in the
construction of the LWEF.

125141-10



PRACTICAL CONSEQUENCES OF THE LUTTINGER-WARD ..

PHYSICAL REVIEW B 97, 125141 (2018)

DM

all

200 9 T T/ w 40 T T T
L/ H 7 g o =0%
’ = 35" |e—o 5=2%
1.75F / ] @©
' )7 > 30] |®® 9=6%
¢ - .6 GCJ oo §=10%
~ 7
150} N 1.2 257 1
Q e ()
\ /// qJ 20*
ST 2
: T += 15} 4
>
-mﬂﬂlmml ! ! I ! Wlﬂﬂm- ()] 1.0+ ]
1.00F  -3.0-2.5-2.0-1.5-1.0-0.50.0 0.5 1.0 1 €
Y= 05 i
log;o|Ime; | o
075 | | | | | | | # 00 ad o o o Soo =N |
0 2 4 6 8 10 12 14 16 06 08 10 12 14 16 18 20
5 (%] U/D
15
+— §=0%
10}---
+—+ §=2% 5
»—
»—x
-5
— §=10%
o -10
— 6=16% S S
_15 [ T T T s [ T T T
06 08 10 12 14 16 18 20 06 08 10 12 14 16 18 20
U/D U/D

FIG. 12. Single-site DMFT calculation. Temperature 7/D = 0.125, square lattice. Upper left: the colored points denote where the real part
of an eigenvalue of %.(i€2 = 0) crosses zero; the color denotes the imaginary part at that point, with respect to the color bar in the inset; gray
dashed lines are eye-guides, used also in the Fig. 1 in the main text. Upper right: the number of negative eigenvalues; at § > 5% two eigenvalues
cross zero at the same time. Bottom panels: evolution of the first two eigenvalues crossing zero, with U and 6. They remain purely real before
becoming mutually complex conjugate. No eigenvalues cross zero at § = 16%.

We develop a general algorithm to obtain NCS based LWF
approximations and the corresponding self-energy expressions
with no doubly counted diagrams, given a set of independent
clusters one wishes to solve. Also, it was not clear previously
whether pushing the cluster size will also increase the number
of impurity problems one needs to solve. Here we prove that in
the simplest scheme (square clusters), one needs to solve only
three impurity problems, regardless of the cluster size.

1. General formulation

Consider a system with single-particle degrees of freedom
i € L. At this point these may be lattice sites, or more general
orbitals, and the system may or may not be infinite. The exact
Luttinger-Ward functional depends on all the components of

the Green’s function

®[G] = O[{Gij}i,jer]- (CDH

Consider now an approximation of the Luttinger-Ward func-
tional, such that it is a sum of functionals, each depending
on components of G that connect only a certain subset C of
orbitals 7, i.e., components of G within a “cluster” C C L:

>~y dclGlcl (€2)
CeC
with
Glc ={Gijlijec, (C3)

where |¢ denotes the restriction of the orbital-space domain
of the Green’s function to the cluster C. It is assumed that the
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FIG. 13. 2x2 CDMFT calculation. Temperature 7/D = 0.125,
square lattice. Evolution of first eight eigenvalues to cross zero, with
U and §.

clusters are mutually independent,
cgcyecec,
and cover the entire system
Jec=c.
cec

However, if any of the clusters are overlapping,
ic,c'ecC:CNC #{}, (C4

then we are double-counting diagrams constructed entirely
from G components connecting the orbitals present in both C
and C’. To avoid this, we need to add functional counter terms,
each dependent only on G;; within an overlap of clusters in C.

C={A,B,C}
O ={D,E,F,G}
U=1{AD,G)

FIG. 14. Tllustration of reasoning in SEET. C sets of orbitals
are chosen. O are all possible overlaps. I/ are sets independent by
symmetry that one needs to solve in practice.

In general,

D[G]~ Y PclGlcl+ Y pc PclGlel  (CS)

ceC CeO

where O is the set of all possible overlaps between any number
of nonidentical clusters in set C, i.e.,

o= | {ﬂc} \c,
nel2,Ne] Cq.eC

a=1

which is ilustrated on Fig. 14. N¢ is the size of the set C. p¢
are appropriately chosen integer prefactors, possibly negative
or even Zzero.

We emphasize that NCS is defined only by the choice of C;
the set O and prefactors p¢ are then determined uniquely by
the requirement that no diagrams are counted more than once.
We can rewrite more simply

DG~ Y pcPclGlcl, (C6)
CeCUO

where pcec = 1. Hereinafter, summation ) . is assumed to
go over C U O unless stated differently. Finally, the prefactors
pc must satisfy for each C

Y. pe=1 (&)

which means that the contribution of diagrams that involve
orbitals from a given cluster C are taken into account exactly
once. In Appendix C3, we present an algorithm to find pc¢
which satisfy this requirement.

a. Obtaining self-energy from the functional

Anticipating that the formalism will be used for the lattice
systems below, and to avoid introducing new notation, here we
assume that the system is a lattice, with lattice sites {i}. Note,
however, that the considerations presented here are still fully
general.

The self-energy is given by the functional derivative with
respect to the Green’s function

0P[{G s}, isec]
Top = pc ———L——— , (C8)
Xc: G pa G=G[Go.%]
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where «, 8, ... are combined indices defined in Appendix B.
We can obtain it by solving a set of impurity problems

=) / / drdt'c] (O[=(G);'], (T = Tes s ()

1JeC,o

+U Y / drcl (T)c] (Dey 1(T)ep 1(T) (C9)

IeC
corresponding to each cluster C, under the condition that

G (iw,) = Gt (i), (C10)

where i¢ ; is the mapping between the index I of a site within a

cluster C and its index i within the lattice. The Green’s function

on the lattice is a matrix in site indices
G*iwy) = [(iw, + )l — £ (C11)

and the self-energy approximation on the lattice is given by

latt __ imp C
Eij - Z bc Elc,ffcz’
C2{i,j}

(C12)

where I ; is the mapping between the site index on the lattice
and in the cluster C, inverse of the previously defined ic ;.
Note that up to now we have not used any lattice symmetries.
Therefore, this prescription can be used for solving (finite-size)
disordered and inhomogenous lattice models (e.g., one could
write down a cluster extension of real-space DMFT).

b. Application to lattice models

When there are symmetries in the system Hamiltonian,
one should choose C in a way that does not artificially
break those symmetries. For example, if there is translational
symmetry on the lattice, clusters must be arranged uniformly
across the entire lattice; if there is rotational symmetry, the
arrangement must be the same along equivalent directions. A
simple realization of a translationally and rotationally invariant
set C for a square lattice would include 2 x 2 plaquettes on
all possible positions on the lattice. On the contrary, if the
plaquettes are only tiled over the system, with no overlaps (as is
the case in CDMFT), the translational symmetry is artificially
broken.

If translational, rotational, and mirror symmetry are present,
the number of clusters one actually needs to solve is reduced—
one solves only one cluster of each different shape and/or
size. Due to translational invariance, the position of the cluster
on the lattice does not make a difference, just its shape/size.
Due to rotational symmetry, quantities on clusters of the same
(nonsquare) shape, but different orientation, can be inferred
one from another.

Translational symmetry also allows to rewrite the lattice
quantities as functions of the real-space vector rather than
matrices in site index. The self-consistency condition can be
rewritten as

G o) =G, o (o). (C13)

The Green’s function on the lattice, again, is calculated from
the approximated self-energy

—ik-r

Glatt — e—ik-rG}éltt — € ,

SR A S
(C14)
Ell(atl — Z eik-rziatt’ (C15)

reBL
which is given by a general expression

=3 arcrs B (C16)

Ced 1J

The sum runs only over a set of clusters ¢/ C C independent
by lattice symmetry, as illustrated on Fig. 14. If both trans-
lational and rotational symmetries are present, I/ contains a
single choice of a cluster, of each size and shape, and the
sum over /J accounts for all the shifts and rotations of the
same cluster on the lattice. Note that Zc ;7 ar,c,1,y =1 and
ar.c.1.7 ™~ Or, T —Tie - Because some bonds on the cluster
correspond to the same real-space vector and can have the same
self-energy due to the symmetries of the cluster, one is free to
choose which one to use, so ar ¢, s is not uniquely defined.
More importantly, Y ", ; lar.c,1,s| ~ N.. This is a problematic
property of the method and is the reason why the limit N, — 0o
does not guarantee the exact solution, and is the reason for an
undesirable amplification of statistical noise when clusters are
big.

Large-cluster limit. As cluster size increases, the difference
in self-energy between different clusters becomes smaller, and
the self-energy on the clusters becomes more uniform. On the
other hand, the coefficients ar ¢ ;; grow by absolute value
roughly proportionally to N., while their total sum remains
1. This means that in the limit N. — o0, an infinitesimal
difference between the self-energies in different clusters and
at different positions in the same cluster, all corresponding to
the same real-space vector, can in principle be amplified such
that

latt impC_
2r=l‘ic,,*l‘jc_, - ElJ 1.

(C17)

Whether this happens or not depends on whether the coeffi-
cients ar ¢ 7.y grow more quickly than do decay the difference
between clusters and the inhomogeneity within them. On
the other hand, in the N. — oo limit, we have G, — G,

where Gi)mp denotes the static part of the bare propagator on

the impurity (G = [[Gy™]™! — A]™"). So, if Tt £ £imp e
must have a nonzero A to satisfy the self-consistency condition
[recall Eq. (C10)]

[[Ggmp]*l _A_ Eimp]*l _ [[G()]71 _ Elall]fl_ (C18)

Because of this, NCS does not guarantee that in the N, — oo
limit we arrive at the exact solution. A way of checking is to
see whether the hybridization function falls off with increasing
cluster size.

Amplification ~ of  noise. Having  the  property
Y c1yarc.,y =1, when coefficients are large by absolute
value, leads to amplification of QMC statistical error. The
problem can be reduced by using symmetries of the clusters,
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but may prove prohibitive at very large cluster sizes. On the
other hand, an approximate solution not involving a stochastic
impurity solver, can be safely pushed to bigger cluster sizes.

2. Square cluster case

For the special case that C contains all L x L square clusters
of the lattice, the nested cluster approximation for & can be
written down explicitly for arbitrary size L. It turns out that the
only overlaps C € O with p¢ # 0 are the clusters of shape L —
IxL,LxL—1landL —1x L — 1,i.e., ®isapproximated
by [Eq. (4) from the main text]

oD = Z Prxr[Glere] + Protxr-1[Gler-1x1-1]
i

— @151 [Glei-t] = ®ruro1[Glein]. (C19)

Here, G|c denotes the Green’s function with the orbital-
domain restricted to the sites within cluster C [recall Eq. (C3)].

The notation CI.L" “L denotes a rectangular cluster with width
L, and height L, with its bottom left site sitting at lattice site i.
In the following, we prove that &) contains only the diagrams
which can fitin a cluster L x L, and counts each exactly once.

a. Proof of Eq. (4)

Let us consider any one diagram of ®'3 in real space. This
defines the (finite) set of lattice sites D = {i} contained in it.
Denoting the coordinate as i = (i,,i,), we define

n = max(i,) — min(i,) + 1, (C20)
ieD ieD

p = max(i,) — min(i,) + 1. (C21)
ieD -~ ieD

Then (n,p) is the shape of the smallest rectangular cluster
containing the diagram (with n = p = 1 in the local case).

Let us first count the number of times the diagram appears
in), &y « L,[G| Ly ]. This count is identical to the number
of ways to place a cluster of shape (n, p) into one of shape
(Ly,Ly), ie., f(Ly+1—=n)f(Ly+1— p), where f(x)=
x6(x) and 6 is the Heaviside function. Therefore the number
of times the diagram appears in ®), with proper weights, is
given by

R=fL+1-nmf(L+1-p)+ f(L—n)f(L—Dp)
—fL=—n)f(L+1—=p)— f(L+1—=n)f(L—p).
Whenever n < L and p < L we have (denotinga =L + 1 —
nb=L+1-p)
R=(L+1=n)L+1=p)+(L—n)L~p)
—(L—-n)L+1—p)—(L+1—=n)L-—p)
=ab+@—-1D)b—-1)—(@—1)b—ab—-1)
=1
while otherwise R = 0 by the definition of f. QED.
Note that even with the knowledge of p¢ for all subclusters,
one still needs to write down the expression for 3 latt[ yimp],
We discuss the way this is done in the following sections,

including nested schemes more general than the square cluster
case discussed here.

3. Algorithm for self-energy coefficients

Deriving expressions for the self-energy when C clusters
are taken to be bigger than 2 x 2 becomes very cumbersome,
and should not be done by hand. Here we present a general
algorithm for a uniform and rotationally invariant arrangement
of solid rectangular clusters (solid meaning there are no sites
missing in the rectangle; a more general algorithm can be
devised, but we don’t present it here). No symmetries are
assumed in the beginning, and the first part of the algorithm
gives the fully general expression for E}?“ at a given choice
of ij. In the second part, the symmetries of the lattice and the
clusters are used to fully simplify the expressions.

The algorithm finds the subset of clusters and the cor-
responding coefficients p¢ that appear in the expression
Eq. (C12), for a given ij on the lattice. The prefactors p¢
are determined so as to satisfy Eq. (C7). The algorithm finds
all the clusters in C and their overlaps O containing the given
two sites i and j (i = j allowed), orders them by size, and
then assigns the prefactors starting from biggest clusters, i.e.,
the ones in C for which we know pccec = 1. For the rest of
the clusters C, the prefactors p¢ of their superclusters C’ O C
are taken into account to ensure that the contribution of C is
taken exactly once. The procedure is “one pass” because the
coefficients of smaller clusters cannot affect the coefficients
for the bigger ones.

(1) Define the nested scheme by picking a set of independent
rectangular clusters, defined by the size in each direction
(Ly,L,) (independent meaning no cluster can be fit into
another). Note that the placement of these clusters on all
possible positions on the lattice, with all possible orientations,
constructs the set of clusters C.

(2) For each pair of the lattice indices ij (“bond” if i #
j or “site” if i = j), perform the following (if you know
there are symmetries, this part can be performed for only the
independent bonds/sites).

(i) Determine all possible positions of all the clusters such
that they contain the bond/site in question i j. These form a set
of clusters defined by size and position (x,y,L,,L,), and the
position is assumed to correspond to the left-bottom site of the
cluster.

(i1) Determine all the overlaps between the clusters obtained
in the previous step. Overlaps themselves form a set of clusters
defined by size and position (x,y,L,,Ly). Note that under
present assumptions, any overlap of clusters from O is also
an overlap of clusters inC (C N C' € O,VC,C’ € O).

(iii) Group by shape all the clusters obtained in the pre-
vious two steps, independently of position and rotation, i.e.,
(x1,y1,Lx,Ly) goes together with (x2,y5,L,,L,).

(iv) Order the groups according to N, = L,L, [or
max(L,,L,)], from biggest to smallest clusters, and place them
“left to right,” so that no cluster contains a cluster to the left
of it, but may or may not contain clusters to the right of it.
Because clusters in the same group are of the same size, but
different position and/or orientation, no cluster can contain a
different cluster in the same group.

(v) Assign a prefactor p(c) to each cluster ¢ in each group.

(vi) For each group g, starting from biggest clusters (left-
most). (a) For each cluster ¢ in the group g, do a weighted count
of how many times it is contained in the clusters in the groups
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FIG. 15. Four snapshots of the algorithm for getting the self-
energy coefficients; 4 x 4 nested scheme; coefficients are calculated
for an ij bond (red line) corresponding to the real-space vector
r = (2,1); clusters are sorted by size; the prefactors p are determined
starting from the biggest clusters for which we know pc = 1; the red
cluster is the one for which p¢ is determined at the given step; green
clusters are the ones that contain the red cluster. See text for details.

left to it. Weighted means to take into account the prefactor of
the cluster in which c is found to be contained. In other words,
obtain the number P = )__, p(c’), where the sum goes over all
clusters ¢/, which contain c¢. Then set the prefactor of ¢ to be
p(c) =1 — P. This assures that the total contribution of the
cluster ¢ is 1. The coefficients of the smaller clusters, which
are yet to change cannot affect this value. By construction, the
clusters in C have p(c) = 1; they are not contained in any other
clusters, so P = 0.

(vii) For the bond i, the expression for self-energy is now

Y= Z P(C)E;C,,-,Jc,.f’
C

where ¢ runs over all clusters in all groups, and I.; and J. ;
are determined trivially for each cluster c. The algorithm is
visualized in Fig. 15.

a. Use of symmetries

When there are symmetries, we want to simplify the expres-
sion for self-energy by identifying identical contributions in
the sum over clusters. First, if there is translational symmetry,
clusters of the same shape but different position will have
the same self-energy. If there is rotational symmetry, again,
clusters of the same shape but different orientation must have
the same 3:€. We therefore only solve clusters of different
shape/size, and the sum over all C is replaced by the sum
over independent clusters and a sum over the bonds 7 J [recall

i e e [ o B

2R3 583 2 £ <

FIG. 16. After the use of symmetries, the result from the final step
in Fig. 15 simplifies to what is shown in this figure. One needs to solve
only three different clusters, and take into account a smaller number
of bonds on each cluster, for a given real-space vector.

Eq. (C16)]. Second, Z',"}pc may not be the same for every /J
corresponding to the same real-space vector, but clusters will
in general have some symmetries, and one is able to use them to
simplify the expressions further. It is straightforward to identify
groups of identical bonds/sites. Then, the sum over all /J is
replaced by a sum over only the independent bonds/sites 1J
on a given cluster, and the prefactors are adjusted accordingly.

Recall now the self-consistency condition in the nested
cluster scheme Eq. (C13). Unlike G€ and ™€ when con-
vergence is reached, GIEPC will be the same for any choice
of 1J corresponding to the same real-space vector. We find it
beneficial for the stability of the loop and the maximal level of
convergence reached if this symmetry of G™P€ is imposed in
each iteration, and if the cluster symmetries are imposed on G ¢
and X™PC, The simplification of the self-energy expression
one obtains after using cluster symmetries is visualized in
Fig. 16 (see caption).

4. Nesting the cumulant

Here we discuss a different variant of the nested cluster
approximation, corresponding to cumulant embedding rather
than self-energy embedding theory. The benchmark of this
method in comparison with the self-energy nesting variant is
presented in Fig. 6.

One can in principle define a functional I of the Green’s
function such that its derivative yields the cumulant, instead of
self-energy

A

T[]
G
The cumulant is the full-Green’s function stripped of the bare
hopping processes, so that

(C22)

Glioy) = g(iwy) + gliwn) i Gliwy), (C23)
ie.,
Gliwy) = [§ (iwn) — 117", (C24)
where 7 is the hopping matrix. In K space,
Grliw,) = grliw,) + gr(iwy) ex Gr(iwy) (C25)
Giliwy) = —F7—, (C26)
8k (iwy) — ex
which leads to the identity
gliwy) = [(w, + I — S(iw)]™ (C27)

125141-15



J. VUCICEVIC er al.

PHYSICAL REVIEW B 97, 125141 (2018)

nested 2 x 2

nested 2 + 2

nested 2 x 1

@

o

FIG. 17. Clusters contributing to the local self-energy in different kinds of simple nested schemes.

and the inverse is

S(iwy) = (iwy + Wi — g7 ((w,). (C28)

So, we can construct the cumulant on the lattice g from
the cumulants on the impurities, the same way we did for the
self-energy. The self-energy on the lattice can be obtained as

S Gw,) = io + 1 — (8%wn)

but this expression is ill-defined at high frequency, so it is
important to avoid using it in the DMFT loop. Therefore, in
each iteration, we construct Gt directly from the cumulant
using Eq. (C26), and calculate the self-energy only in the post-
processing of the results.

We expect that the cuamulant variant works better whenever
the cumulant is shorter ranged than the self-energy. In practice,
we find that the cumulant version does a slightly better job, but
the difference is not big (see Appendix A 3).

(C29)

5. Simple examples and summary of equations
a 2x1

This example was originally presented in Ref. [70]. We
rederive it only for pedagogical purposes.

For simplicity, we introduce a shorthand notation i + x to
denote the index of the nearest neighbor of the site i in the +x
direction, and similarly i — x,i + y, ....Recall also the cluster
notation C2*!' = {i,i +x}, C/** = {i,i + y} and C*' = {i}.

Let us approximate LW functional such that it contains
diagrams that involve at most two nearest-neighboring lattice
sites

C= {C?XI}W U {Cilxz}w' (C30)

This means we want to solve at most a two-site impurity
problem. As for all possible overlaps of the clusters in C, one
can easily verify

O ={CNClceee ={C*},. (C31)

which means we will need to take care of double counting.
Each overlap cluster is contained in four clusters in C,
C}Xl C C»2Xl Cle C C2Xl
i i ’ i ]

i—x

Ci1><1 C Ci1><2’ Ci1X1 C Cll><2

i—y?’

(C32)

which means that we are counting diagrams which involve only
the local Green’s function four times at each site. To have them

taken into account only once, we need to subtract the DMFT

functional (D1) three times at each site, i.e., pcco = —3,
@~ 3 (:[6] 2] + 9G] 1] 301 [G 1 ).
l (C33)

Now we write the clusters explicitly to perform the derivatives
that yield the self-energy. The local component is given by

0

i = ———
G 4

Z O {Grm Yrme 48] — 3P1[Gul

defx.y}

09[Gy]
0G;;

- ¥ 002 [{Gimbimetiive)] _ 4
sef{x,y,—x,—y} BG”

(C34)

and the nearest-neighbor components (with § = x,y)

iits =

d
3Gi+5,i Z Z ©2[{Glm}lnle[l’,1/+a/}]

I defx.y}

- 3Z¢'1[Gu]>
1

0D [{Gumbimegi,i+a]
0G 15, '

When there is translational, mirror, and rotational symmetry,
the contribution to the local part coming from four different
nearest-neighbor pairs will be the same, and the self-energy on
all nearest-neighbor bonds will be the same (see Fig. 17),

(C35)

latt _ imp2x1 impIx1 latt _ simp2x1
Er=(0,0) - 4200 - 32:00 .Y =(0,1) — Y

and the self-consistency is

imp2x1 __ impIx1 _ ~latt imp2x1 __ ~latt
GOO/]I - GOO - Gr:(O,O)’ GOI/IO - Gr (1,0§.C37)

b. Long-distance dimers

In this section, we present a nested cluster scheme where
self-energy at an arbitrary real-space vector is approximated by
the self-energy of a corresponding two-site impurity problem.
The expression for ® and X'* can be worked out analytically.

Let us define i +ny, +n, to be the index of the lattice
site at the real-space vector r =r; + n,e, +n,e,. We can
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FIG. 18. Illustration of Eq. (C38). By placing the green set of
dimers starting from each site, one covers all the dimers on the lattice,
up to Manhattan distance 2(L — 1). Each site is involved in (2L —
1)> — 1 different dimers (red site goes with all the sites in the red
square).

approximate the LW functional in such a way that it contains
diagrams which involve at most two sites, but at a distance not
bigger than L — 1 in both directions (maximum Manhattan
distance 2L — 2). We define the cluster notation Cl.(n‘“”’) =
{i,i +ny +n,}. Analogously to Eq. (C33), one can prove the
following approximation has no double counting:

2t

i nye(~=L,L) nye(0,L)
nye(0,L) ny=0

+Q2=QL=1)) ®[G|om].

@[ (G ]

(C38)

This is illustrated in Fig. 18. For example, the site with red
outline is involved in dimers with all the sites within the red
square, of which there are (2L — 1)*> — 1.

With translational/rotational/mirror symmetry, we get for
the self-energy

latt imp (ny,ny)
21r=(o,0) = E My, 0, Loy '
nye(0,L)

ny€[0,n,]
+Q2—Q@L -1zt
Elatt _ Eimp (ny,ny)

r=(ny,ny) — <01 ’

(C39)

where in the bottom row, 0 < n, < L,0 < ny < ny. My, n, is
the multiplicity of the (nonzero) real-space vector r = n,e, +

nyey
4, ny=0vn,=0vn,=n,
Myny = {8, otherwise (C40)
and the self-consistency reads
imp (ny,ny) _ ~implx1 _ ~Jatt imp (nx,ny) _ ~latt
Gooyn =Gy =G Z0.0 Goio = Gra=(nx,n).)'
(C41)

The simplest example is the 2 4- 2 scheme corresponding to
L = 2, where we just take the dimer as in the previous example,
and add the diagonal one {i,i + x,i 4+ y} (see Fig. 17):

latt _ imp (0,1) imp (1,1) imp 1x1
XiZ00) = 4Zgp + 4% —TXy

I

imp (0,
o = St (C42)

latt _ imp(L,1)
Xz = S .
Here we are solving three impurity problems: two of them
two-site and one single-site.

c.2x2

Here we discuss the special case of the square clusters
scheme presented in Appendix C2, with L = 2. It corresponds
toplacing asquare 2 x 2 cluster on all possible positions on the
lattice. The @ approximation is given by Eq. (4) with L = 2.

We can write it more explicitly

O =3 " Dy[{Gumhimeiitrity.itety)]

=3 > ®lGinhmeiira] + Y ®1[Gil.
) i

i de{x,y
(C43)

Now let us apply the derivative with respect to different
components of the Green’s function to get the expressions for
self-energy:

d
Ziizm Z

lelii—x,i—y,i—x—y}

Pu{Grm Yrmett,1ax 14y 11x1y}]

= > > ®lGrwhweniin] + @1l{Gi}l |,

selx,y} leli,i—8)

(C44)
Yiigx = BG? ‘ Z Q4 Grm Yom et 14x 14y, 14x+y}]
X0 yefivi—y)
— O2[{Gimimepi,i+n)]
Ziitxgy = 3Gii+y,i Qu{Gimtimetiitxityitaiyy]-  (C45)

With full translational/rotational/mirror symmetry, clusters
with same size and shape must give identical contributions
to the self-energy. Following considerations analogous to
Egs. (C34) and (C35), we arrive at the final expression which
connects the self energy on the lattice with the one in three
different impurity problems (2 x 2, 2 x 1, and 1 x 1, see
Fig. 17):

latt _ imp2x2 imp2x1 imp 1x1
X 0.0 = 4Xgo — 4%, + 20 s
latt _ imp2x2 imp2x1
z:r:(l,()) - 2201 - EOl ’

E[l:dt[ D imp2x2

=(1,1) = <03 ’ (C46)
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and the self-consistency condition is given by

imp2x2 _ imp2x1 _ ~implIx1 __ ~latt imp2x2 _ ~imp2x1 _ ~latt imp2x2 _ latt
G00/11/22/33 - GOO/II - GOO - Gra:(O,O)’ G01/13/32/20/10/... - GOI/IO - Gra:(O,l)’ G03/3()/12/21 - Gra:(l,l)' (C47)
d 4x4

Using the algorithm (C3) and lattice symmetries, we can now automatize the derivation of expressions for the self energy.
Here we present as an example the expressions for the 4 x 4 nested scheme, where C contains all possible positions of a 4 x 4
cluster, and ® approximation is given by Eq. (4) with L = 4.

6 7 8| Y o0 D89 0 1
3 4 5 4 5 6 7 4 5 6 7
0 1 2 0 1 2 3 0o 1 2 3
E:.Eil(o’()) — +4E(i)n(1)p4><4 + 8Ei]rr11p4><4 + 4E;n;p4><4 _ Sz(i)rgp4x3 _ 4222p4><3 + 4E(i)n(;p3><3 _ 82i]rr]lp4><3
+4Eiln;p3><3 _ 4Eijn51p4><3 + Zin;p3x3’

imp 4x4 imp 4 x4 imp4 x4 imp4 x4 imp4x3 imp4x3
B = HTET T AT L 2B amp e azlr e oniw

—422;21)4)(3 +42(i)nzp3><3 _ 421‘lrgp4x3 + 2Eilr2p3><3 _ 2Zilrr21p4x3 _ Eijrgp4><3’
E}-azn(l,]) — +22(i)n;p4><4 +4Eilr2p4x4 +2Ei]r2p4><4 + 2:;rrllg4><4 _4E(i)r2p4><3 _4Ei112p4><3 +2E(i)r2p3><3 _4Eilrr61p4><3 +2Ei]rglp3><3’
E:-Zil(z’()) — +4E(i)n;p4><4 + 4Eilr191p4><4 _ 4E(i)n;p4><3 _ 22Lr2p4><3 _ 22:(i)n;;p4><3 + Zz(i)n;pfixfi _ zziln;p4><3 + 2:ilrr;pf*3><3’
E:‘a:n(z’l) — +2E(i)ngp4><4 + 2Eilrrllg4x4 + 2Eilr2p4><4 _ 22:(i)n;p4><3 _ 22:i1n71p4><3 _ 22:(i)n;p4><3 + 2E(i)n;p3><3 _ Eilnilg4><3’
B = +2EI 2T am e g,

latt _ imp4x4 imp 4 x4 imp4x3 imp4x3
Tlao =12X0 2% —2%); =247
latt . imp4x4 imp4x4 imp4x3
Yo =12Xy; Xy —2E; T,

latt _ imp4x4 imp4x3
Xlo =12, — o s

Ja imp 4 x4
Er:tt(3,3) = +EE)HI§ :
In practice, we calculate self-energy for all vectors r = (x,y) such that y < x, up to x = max¢L,(C) — 1, and the rest is filled
by lattice symmetry (analogously to Eq. (D17d) further below). In Eq. (C48), we have also used the symmetries of the clusters.
The groups of equivalent bonds on all three clusters are given below in curly brackets (inversion symmetry ij = ji is implicit):

(C48)

6 7 8
3x3:/13 4 5
0o 1 2
{(0,0), (2,2), (6,6), (8,8)}; {(0,1), (0,3), (2,1), (2,5), (6,3), (6,7), (8.,5), (8,D};
{(0,2), (0,6), (2,8), (6,8)}; {(0,4), 2,4), (6,4, 8,H}; {(0,5), (0,7), (2,3), (2,7), (6,1), (6,5), (8,1), (8,3)};
{(0,8), 2,6)}; {(1,1), (3,3), (5,5), (7.7}; {(1,3), (1,5), (3,7), 5.D};
{(1,4), 3,4), 5,4), (7.4}, {(1,D), 3,9} {44} (C49)
8 9 10 11
4x3:/4 5 6 7
0o 1 2 3

{(0,0), 3,3), (8,8), (11,11)};
{(0,4), 3,7), 8,4), (11,N)};
{(0,7), 3.4), 8,7, (1L,.4)};
{(0,10), (3.9), (8,2), (11, D}
{d,4), 2,7, 9.4), 10,1}

{0,1), 3.2), (8,9), (11,10)};
{(0,5), (3,6), (8,5), (11,6)};
{(0,8), B3,1D};

{(0,11), 3.8)};
{(1,5), 2,6), (9,5), (10,6)};

1251

{0,2), 3,1)
{(0,6), (3,5). (
{(0,3), (8,1D)};

{(1,2), (9,10)}
{(1,6), (2,5). (

41-18

» (8,10), (11,9)};
8,6), (11,5)};

9,6), (10,5)};

{0,9), 3,10), (8,1), (11,2)};
{d,1), (2,2), 9,9), (10,10)};
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{(1,7), (2,4), 9,7), (10,4)};

{(1,9), 2,10)}

{(1,10), 2.9 {44, (1.7} {4.5), (7.0}

{4.6), (7.5)}; {4.D}: {(5.5), (6,6)}; {(5,6)}. (C50)
12 13 14 15
pxaz|® 9101

0 1 2 3

{(0,0), (3,3), (12,12), (15,15)}; {(0,1), (0,4), (3,2), (3,7), (12,8), (12,13), (15,11), (15,14)};

{(0,2), (0,8), (3,1), (3,11), (12,4), (12,14), (15,7), (15,13)}; {(0,3), (0,12), (3,15), (12,15)};

{(0,5), (3,6), (12,9), (15,10)}; {(0,6), (0,9), (3,5), (3,10), (12,5), (12,10), (15,6), (15,9)};

{(0,7), (0,13), (3,4), (3,14), (12,1), (12,11), (15,2), (15,8)}; {(0,10), (3,9), (12,6), (15,5)};

{(0,11), (0,14), (3,8), (3,13), (12,2), (12,7), (15,1), (15,4)}; {(0,15), (3,12)};

{1, 2,2), 4,4), (1,7), (8,8), (11,11), (13,13), (14,14)}; {(1,2), (4,8), (7,11), (13,14)};

{(1,4), 2,7), (8,13), (11,14)}; {(1,5), (2,6), (4,5), (7,6), (8,9), (11,10), (13,9), (14,10)};

{(1,6), (2,5), (4,9), (7,10), (8,5), (11,6), (13,10), (14,9)}; {(1,7), (2,4), (4,13), (7,14), (8,1), (11,2),
(13,11), (14,8)};  {(1,9), (2,10), (4,6), (7,5), (8,10), (11,9), (13,5), (14,6)};

{(1,10), (2,9), (4,10), (7,9), (8,6), (11,5), (13,6), (14,5)};

{(1,11), (2,8), (4,14), (7,13)}; {(1,13), (2,14), (4,7), (8,1D)}; {(1,14), (2,13), (4,11), (7,8)};

{(5,5), (6,6), (9,9), (10,10)};  {(5,6), (5.9), (6,10), (9,10)}; {(5,10), (6,9)}. (C51)

APPENDIX D: CLUSTER DMFT METHODS

Here we summarize the (cluster) DMFT methods used in
this paper.

The forward-substitution algorithm for the generic clus-
ter DMFT scheme is presented in Fig. 19. Cluster DMFT
methods differ in the cluster-impurity action, self-consistency
condition, and the self-energy mapping X'*[Xi™P]—these
properties we state for each method in the following sections.
Where possible, we also state the LW functional approximation
which leads to the given method.

1. Single-site DMFT

Single-site DMFT [5] is the limiting case of all cluster
DMFT methods, corresponding to cluster size N, = 1. It can
be derived as the local approximation of the LW functional.
While the exact LW functional depends on all components of
the Green’s function, in DMFT it depends only on the local
components G;;:

O[{Gijlvij] ~ l{Giilvil = Y ®[Gil. (D)

The second step is specific to local interactions, and is crucial to
obtain a self-consistent scheme involving a single-site impurity
problem.

The impurity action involves degrees of freedom of a single
lattice site

§= Z// dtdt'cH(D)[-G; "It — e, (t')

+U / dref (T)e} (T)ey (D)ey (o). (D2)

(

The self-consistency condition requires that the local Green’s
function on the lattice is the same as the one on the impurity,

G™(iw,) = G'im) = Y G(iw,), (D)
keBZ
where
Gl (iw,) = (Gohliw) — %)) . (D4)
The self-energy approximation reads
T (iwn) ~ ZMP(0,) (D5)
as 821 CD[G”]/E)GU ~ 6,j8d>[G,,]/8G” The bare-
propagator on the lattice
1
Goxliwy) = ———— (D6)
LWy + 1 — €k

is determined by the chemical potential © and the bare
dispersion gx. On the square-lattice with only nearest-neighbor
hopping, it is given by

ek = —2t(cosky + cosky). D7)

2. Cellular DMFT (CDMFT)

Cellular DMFT rewrites the lattice problem in terms of
supercells, as illustrated on Fig. 20 [9,11-26,88]. The lattice-
site index is replaced by a double index: the index of the
supercell and the index of the site within the supercell:

i — (l,I), Gij — Gl’[,j‘].

We denote with ,j, ... the index of the supercell, and with
I,J, ... the index of the site within the supercell. From here,
the derivation proceeds just as in single-sitt DMFT—one may
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GO = [[]_—c. [Glm,(,H 1 +Zimp(}|}7l GCe —

e

Ximp Cy

Glatt — [GEI _ Zlatt]—l

ylatt Elatt[{ximp C}VC]

[

- 1 . ., 71—t
PP gCN“ — |:[]:CNM [Gla((H 4 Elmp(/“‘u}

o @
PR Zimp CNM

| e |

Cay latt 1 imp Ca -1
[F(GRH]] 7 + %

Zimp Ca

FIG. 19. Forward substitution solution of a generic cluster DMFT method. N, is the number of independent impurity problems one needs
to solve. In all methods except nested cluster, N;; = 1. In nested cluster, it can be any number, but in the simplest scheme N;; = 3 independently
from the cluster size. The loop starts with an initial guess for £, FC[G'*'] project G"* onto degrees of freedom of impurity C. Convergence

is reached when G'™ ¢ = FC¢[G"™"] for each C.

view CDMFT as “single-supercell DMFT.” The approximated
LW functional then depends only on Green’s function compo-
nents within a single supercell

®[{Gijlvi 1~ ®[{Gii}vi]l = Z (G, (D8)

where with “hat” we denote matrix objects: G; ;j 18 a matrix in
the space of the I, J indices. Impurity action is given by

§= Z // deT/C;I(‘[)[—gAU_I]IJ(‘[ - T/)CO',](T/)

1J,0
—l—UZ/dtc;,(r)cf,(r)cw(r)c“(t) (DY)
1

and the self-consistency condition reads

G™(iw,) = Gitio) = ) G,
keRBZ

(D10)

where RBZ stands for “reduced Brilloun zone.” Note however,
that in the derivation below we also rescale the lattice constant
a — a/2 so that no extra prefactors appear in the expressions,

CDMFT 2 x 2

PCDMFT 2 x 2

FIG. 20. Gray circles are lattice sites. Light gray squares are
supercells. A site is denoted by the supercell index i and its index
within the supercell /. In CDMFT, the self-energy is nonzero only
between sites within a single supercell (green and red lines). In
PCDMFT, it is copied by hand onto intercell bonds (dashed green
and red lines). ¢ is the hopping amplitude, a the lattice spacing, and
e, , are the superlattice vectors.

and the RBZ extends from 0 to 27t along both axes. The lattice
Dyson equation now involves a matrix inversion

G iwy) = (GyLliw,) — £ Giw,)) ™. (D11)
The self-energy approximation is simply
St Giw,) ~ SMP(iw,). (D12)

Note that, physically, the self-energy is put exclusively on
bonds within a supercell, and not on bonds between supercells.
This artificially breaks the translational symmetry of the lattice.

The bare propagator and the dispersion need to be rewritten
in the supercell language. Here we present the expressions in
the simple 2 x 2 tiling (e,,,/a — 2ex ,/a):

Gox(iwy) = [(iw, + )i — 17", (D13)
Sk =1t -y, (D14)
ulky)  u(ky)
RS u(ky)
= ey atko [ P
w(ky)  u*(ky)
u(k) =14 e '*. (D16)

The drawback of this approach is that no simple interpre-
tation of the result in terms of the original, translationally
invariant lattice is possible. To obtain a translationally invariant
self-energy, which can be plotted in the original BZ requires a
post-processing step, or “periodization.” In the present case,

ZE:(O,O) = E(i)rgp’ (D17a)
=00 = LN (D17b)
= = S (D17¢)

The real-space vectors r are given in the basis of the original
lattice vectors. The rest of the real-space vectors can be filled
in by symmetry

per _ sper _ sper
2:r:()c,y) - 2:r:(:l:)c,:ty) - 2:r:(:l:y,:i:)c)

(D17d)

125141-20



PRACTICAL CONSEQUENCES OF THE LUTTINGER-WARD ...

PHYSICAL REVIEW B 97, 125141 (2018)

and then we can Fourier transform to k space:

et =) ek (D17e)
r

Note that periodization is an ad hoc procedure that does not
have a clear physical interpretation in terms of the LW approx-
imation. Also, the physical quantity that is being periodized
can be chosen arbitrarily, and different choices will in general
lead to different results.

3. Periodized CDMFT (PCDMFT)

The idea of PCDMFT [6,8,49,50,52] is that the periodiza-
tion should be performed in each DMFT iteration, and that
the self-consistency should be closed using the translationally
invariant Green’s function, rather than the superlattice one.
This scheme cannot be simply derived from an approximation
of the LW functional. The impurity action remains the same as
in CDMFT, Eq. (D9).

The idea of PCDMFT can be achieved either by placing the
missing self-energies on the superlattice (see Fig. 20)

S 0,) ~ TP (i) + TP (1w, )il + S (i, )idi

= 2" (iw,) o (I + fiy + ), (D18)
where o denotes element-wise product, and
wi (k)
N wa(Kk)
= " s D19
Wk wz(k) ( )
wi(K)

wi(K) = 1+ e ™ o7k 4 g7tk (D20)
wa(k) = 1+ e e 7R (D21

or, equivalently, by periodizing the self-energy with Eq. (D17)
and rewriting the self-consistency condition with

per per per per
Gr:(O,O) Gr:(O, 1) Gr:(O, 1) Gr:(l D
per per per per
Aimp Gr:(O, 1) Gr:(O,O) Gr:(l, 1) Gr=(0, 1) 2
G - Gper Gper Gper Gper ’ (D 2)
r=(0,1) r=(1,1) r=(0,0) r=(0,1)
per per per per
Gr:(l,l) Gr:(O,l) Gr:((),l) Gr:(O,())
where
—ik-
GPer — —ik-rGPer _ et
r Z e k — Z G_1 . 2:per . .
keBZ kesz Gox(i@n) — Xy (iwn)
(D23)

The final result is the translationally invariant self-energy,
which solves Eq. (D22).

Note there is another variant of PCDMFT method (proposed
inRef. [51]) where the self-energy is periodized with additional
coefficients, so that it is rigorously causal. In the present
case, this method would correspond to restoring translational
invariance on the lattice the following way:

B iw,) ~ £™(iw,) o (I + Sk + Ty).

We observe that this method corrects the local part of self-
energy in the difficult regime compared to regular PCDMFT,

but the nonlocal part is strongly underestimated throughout the
phase diagram (results not shown).

4. Dynamical cluster approximation (DCA)

In DCA [7,27-45] method, the conservation of momentum
in LW diagrams is approximated by [27,33]

K —k = q — K(&) - K(k) = K(q), (D24)

where K represents the “coarse-grained” BZ points, which is
illustrated on Fig. 21. The coarse-grained BZ contains only a
certain finite and discrete subset of wave vectors. The notation
K(k) means “the coarse grained wave vector closest to the
wave vector K.” Because of the relaxation of momentum
conservation, the diagrams factorize: the LW functional still
depends on all G components, but only through their sums:

2. G

keP(K)

P[{Gilw] = P = O[{Gklvk]. (D25)
VK

Here, P(K) is the set of fine-grain wave vectors k that are
closest to the coarse-grained wave vector K (Voronoi patch [89]
around K). This approximation leads to a piecewise-constant
self-energy in k space, because of

90[Gk] _ 9[Gk] Gk _
3Gx 3Gk Gk

The impurity action is given by

§= Z// dth/C;F,K(f)[ - g;,l (t — )]eox ()
K.,o

d0P[Gk]
0Gk

Skepk).  (D26)

+U Z /drC{KJrQ(r)cIK,,Q(I)C¢,K'(T)CT,K(T)’
K.K.Q

(D27)

and it corresponds to a finite cyclic cluster in real space R.

(27, 2m)
[ ] [ ] ([ ] [ ]
k. ® [ ] .I< k)
v k) k

0.0k
Coarse-grained BZ

FIG. 21. DCA approximates momentum-conservation. Lattice
self-energy at wave vector k is obtained from the impurity self-energy
at the closest coarse grained wave vector K. Therefore it is constant
within each Voronoi patch P(K). The example presented is the 4 x 4
scheme.
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Self-consistency condition reads

GRPliw) = GRl(io) = Y GM(iw,).
keP(K)

(D28)

As already mentioned, the self-energy on the lattice is simply

S iw,) = Sy iwn). (D29)

Note that more general coarse-graining schemes exist, and that
P(K) does not necessarily present a Voronoi patch around the
wave vector K. Patches may have different shapes [29], and
may even be interlaced [46]. In the present paper, we only use
the simplest scheme where patches are Voronoi patches, and
all have the same shape.

5. Continuous self-energy DCA (DCA')

DCA"[46-48] aims at improving the interpretation of the
impurity self-energy in terms of the self-energy on the lattice.
A piecewise constant self-energy is strongly counter intuitive
and hard to compare to other methods. It is a natural step to
try and interpolate the coarse-grained self-energy to obtain a
smooth self-energy on the lattice. However, this scheme does
not have a clear derivation as a LW functional approximation.
Furthermore, the interpolation can be done in various ways, and
the method is not uniquely defined. In this paper we implement
(and present here) the version of the method as proposed in the
original paper, Ref. [48].

The impurity action is the same as in DCA, Eq. (D27).

The difference from DCA is the addition of a self-
consistency condition that needs to be satisfied:

Zx i) = Zgo) = ) B Gw,).
keP(K)

(D30)

Here, 1% js a smooth function of k. Note that for a given
Tk ', Tl is not uniquely defined. This self-consistency con-
dition imposes

Tl = S, (D31)
but in general
T # Ik (D32)

While a general interpolation of Eﬁn P is unlikely to satisfy
the condition (D30), a Bayesian approach can be employed
to find the most probable interpolation that does satisfy it.
The method used is Richardson-Lucy deconvolution, and it
is performed with respect to an interpolation of Zp" — .
such that

S =g, (D33)
One starts from an initial guess for ' (say, ZL"‘“ = ilimp),
and iterates
iimp
1 1 K
DI i 5 S (D34)
K eP(k) k”eP (k') K"

until convergence is reached. Here, P(k) denotes a patch of the
same shape/size as the Voronoi patches of the coarse-grained
BZ, but centered at the fine-grain wave vector k. The final

0.64
0.62
0.60
0.58
0.56
0.54
0.52
0.50
b0 0 = 00)
k

—  Re%™ (iw,)

—_ Reii(mp (twy)

LI ReZiIznp (twy)

- -+ what would be ReZ}*" (iw,) in DCA

FIG. 22. Example of various quantities appearing in DCA™. Pa-
rameters of the calculation: U/D = 1.4,§ = 8%, and T/D = 0.125.

result has the property

Simp _

imp (D35)

> mE vk,

k'eP(k)

which satisfies a stronger requirement than necessary.

Note also that the actual interpolation is performed not on
i™P_ but on an auxiliary quantity E which is by construction
more local than the self-energy. The method of interpolation
proposed is the Wannier interpolation

Ex(io) = (R (w,) — sgn(w,)ia) ", (D36)
Er = Ze*f‘“‘ Ek, (D37)

K
B =) e"®Eg, (D38)

R

S0P = B (w,) + sgn(@pia, o > 0. (D39)

Note that &y does not necessarily satisfy all the lattice sym-
metries. One way to restore lattice symmetries is to calculate

it as
_ 1 ik-MR —
k_N_E E € &R,
MR

where M runs over all the symmetry operations on the lattice,
of which there are Nj;. On the square lattice there are Ny, = 8
operations (R, ;, = £R ) (y.x)), Which restore the eightfold
symmetry in Ex. Examples of different self-energy quantities
appearing in DCA™ are given in Fig. 22 and compared to the
piecewise-constant interpolation that is used in standard DCA.

an

(D40)
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We present an embedded-cluster method, based on the triply irreducible local expansion formalism. It
turns the Fierz ambiguity, inherent to approaches based on a bosonic decoupling of local fermionic
interactions, into a convergence criterion. It is based on the approximation of the three-leg vertex by a
coarse-grained vertex computed from a self-consistently determined cluster impurity model. The computed
self-energies are, by construction, continuous functions of momentum. We show that, in three interaction
and doping regimes of the two-dimensional Hubbard model, self-energies obtained with clusters of size
four only are very close to numerically exact benchmark results. We show that the Fierz parameter, which
parametrizes the freedom in the Hubbard-Stratonovich decoupling, can be used as a quality control
parameter. By contrast, the GW + extended dynamical mean field theory approximation with four cluster
sites is shown to yield good results only in the weak-coupling regime and for a particular decoupling.
Finally, we show that the vertex has spatially nonlocal components only at low Matsubara frequencies.

DOI: 10.1103/PhysRevLett.119.166401

Two major approaches have been put forth to fathom the
nature of high-temperature superconductivity. Spin fluc-
tuation theory [1-8], inspired by the early experiments on
cuprate compounds, is based on the introduction of
phenomenological bosonic fluctuations coupled to the
electrons. It belongs to a larger class of methods, including
the fluctuation-exchange (FLEX) [9] and GW approxima-
tions [10,11], or the Eliashberg theory of superconductivity
[12]. In the Hubbard model, these methods can formally be
obtained by decoupling the electronic interactions with
Hubbard-Stratonovich (HS) bosons carrying charge, spin,
or pairing fluctuations. They are particularly well suited for
describing long-range modes. However, they suffer from
two main drawbacks: without an analog of Migdal’s
theorem for spin fluctuations they are quantitatively uncon-
trolled; worse, the results depend on the precise form of the
bosonic fluctuations used to decouple the interaction term,
an issue dubbed the “Fierz ambiguity” [13—18].

A second class of methods, following Anderson [19], puts
primary emphasis on the fact that the undoped compounds
are Mott insulators, where local physics plays a central role.
Approaches like dynamical mean field theory (DMFT) [20]
and its cluster extensions [21-25], which self-consistently
map the lattice problem onto an effective problem describing
a cluster of interacting atoms embedded in a noninteracting
host, are tools of choice to examine Anderson’s idea. Cluster
DMEFT has indeed been shown to give a consistent qualitative
picture of cuprate physics, including pseudogap and super-
conducting phases [26-54]. Compared to fluctuation theo-
ries, it a priori comes with a control parameter, the size N . of

0031-9007/17/119(16)/166401(7)
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the embedded cluster. However, this is of limited practical
use, since the convergence with N_. is nonmonotonic for
small N [33], requiring large N .s, which cannot be reached
in interesting physical regimes due to the Monte Carlo
negative sign problem. Thus, converged cluster DMFT
results can only be obtained at high temperatures [55].
There, detailed studies [56—58] point to the importance of
(possibly long-ranged) spin fluctuations, calling for a uni-
fication of both approaches. First steps in this direction have
been accomplished by diagrammatic extensions of DMFT
[59-80], and by the single-site triply irreducible local
expansion (TRILEX) formalism [81,82], which interpolates
between long-range and Mott physics and describes aspects
of pseudogap physics and the d-wave superconducting
dome [83].

In this Letter, we turn the Fierz ambiguity into a con-
vergence criterion in the cluster extension of TRILEX. Like
fluctuation approaches, cluster TRILEX is based on the
introduction of bosonic degrees of freedom. Like cluster
DMFT, it maps the corresponding electron-boson problem
onto a cluster impurity problem. The latter is solved for its
three-leg vertex, which is used as a cluster vertex correction
to the self-energies. This approach improves on fluctuation
approaches by endowing them with a control parameter, thus
curing the absence of a Migdal theorem. In some parameter
regimes, it can solve the cluster DMFT large-N . stalemate by
instead requiring minimal sensitivity to the Fierz parameter
as a convergence criterion of the solution.

To illustrate the method, we focus on the two-
dimensional Hubbard model, the simplest model to describe
high-temperature superconductors. Its Hamiltonian reads

© 2017 American Physical Society
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H = Ztlj Cis jG + UznzTnziﬁ (1)

ijo

where c . (¢;,) creates (annihilates) an electron of spin o at
Bravais sne r;, 1;; is the hopping matrix [with (next-)nearest-
neighbor hopping 7 ()], and U the local electronic repulsion.
We set t = —0.25 and use D = 4t as the energy unit.

The first step of the TRILEX method consists in decou-
pling the interaction term with HS fields. There are several
possible such decouplings. Here, we choose [84] to express
the interaction in the charge and longitudinal spin channel
(“Ising decoupling”), i.e, up to a density term

Unjyn, ZEUC n;n; +2

with n =ny +n; and s* = ny —n . This holds provided
U — U® = U, or, equivalently,

Ursisi. 2)

U = aU, UP = (a—1)U. (3)

The Fierz parameter o materializes the freedom in
choosing the charge-to-spin fluctuation ratio. The right-
hand side of Eq. (2) is decoupled with a charge and a spin
boson, resulting in an electron-boson coupling problem
[81,82]. Its fermionic and bosonic interacting Green’s
functions are given by the Dyson equations:

1

io+ pu —e(k)
un

1-U"P(q,iQ)

G(k,iw) = (4a)

-X(k,iw)’

Wh(q,iQ) = (4b)
e(k) is the Fourier transform of 7;; e(k) = 2t[cos(k,)+
cos(ky)] + 4t cos(k,) cos(k,), u the chemical potential,
n=ch, sp, and iw (iQ) the fermionic (bosonic)
Matsubara frequencies. The self-energy X(k,iw) and
polarization P"(q, i) are given by the exact Hedin
expressions

= > Gk +q.iw +iQ)
N q.iQ

x W(q, iQ)Af, (iw, i), (5a)

P(q.iQ) =2 G(k + q.io + iQ)G(k. im) AL, (iw. iQ).

Kk.iw

(5b)

Ajq(i®,iQ) is the interacting electron-boson vertex.

TRILEX approximates it with a vertex computed from a
self-consistent impurity model. In previous works [81,82],
this impurity model contained a single site.

There are several ways to extend the TRILEX method to
cluster impurity problems, like in DMFT. Here, we consider
the analog of the dynamical cluster approximation (DCA
[21,22,25]), and use periodic clusters so as not to break the
lattice translational symmetry, at the price of discontinuities

in the momentum dependence of the vertex function. Other
cluster variants such as a real-space version, inspired from
cellular DMFT [23,24], are also possible, but break trans-
lation invariance and require arbitrary reperiodization
procedures.

We straighforwardly generalize the single-site impurity
model of TRILEX to a cluster impurity model defined by
the action

S = [ einl-

ijo

/ / Z{n,,uc T )+ s US (r=7)s5, )
(6)

The indices i, j =1, ..., N, stand for the cluster positions
R;, R; (shown in Fig. 1 along with the cluster momenta
{Ki}i—1. n.)- Cipr and c;,, are conjugate Grassmann fields,
7 denotes imaginary time. Since we have introduced a
charge and a spin bosonic mode, the impurity action
contains interactions in both channels [U"(7) and
UP(7)]. They are a priori retarded due to the nonlocal
character of P(q,iQ)

This impurity model is used to compute the cluster
impurity vertex A?mp(K, Q; iw, iQ) with a continuous-time
quantum Monte Carlo algorithm with a hybridization
(interaction) expansion for N.=1 (N.,=2, 4) (as
described in Supplemental Material 11.C [84]). Next, in
the spirit of DCA, we want to use A! (K, Q;iw, iQ) to
approximate the momentum dependence of the lattice
vertex A;’(q(ia}, iQ) by a coarse-graining procedure. We

recall that DCA consists in coarse-graining the cluster

Nyj(e=7)}jor

imp (

27

Pk, K2

. . “ . .
. . 112 R3 .R4 . .
. . lll o .
Ri Ro|
FIG. 1. Cluster geometry: real (left) and reciprocal (right)

space, for N. =2 (top) and N, =4 (bottom). e, and e,
(u; and u,) are the unit vectors of the Bravais (super)lattice.
The colored patches P, are of equal area.
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self-energy as X(k,iw) =) g0k (k)Zin, (K, iw), where
Zimp(K, iw) is the cluster impurity self-energy, and
Ok (k) = 1 if k belongs to Brillouin-zone patch Py, and
vanishes otherwise. For the vertex function, the passage

from Afmp(K, Q;iw, Q) to an approximate lattice vertex

A (i, iQ) is not as straightforward. There are several
possible coarse grainings for the vertex that reduce to
single-site TRILEX for N. =1 and are exact in the
N, = oo limit, e.g.,

ALy lio, iQ) » EgeKm(k + )00 (@) Al (K, Qs i, i),
K,

(7a)

Ay (i, i1Q) ~ Z@K )0k ok + )AL (K, Qs io, iQ).

(7b)

We use a different coarse graining for £ and for P: we
substitute (7a) in (5a) [(7b) in (5b)] to compute (K, i)
[P"(q,iQ)], whence

==Y > G o+ iQWE (i)
7.K.Q q.iQ
n NS
X Almp(K,Q, i, i), (8a)
1(q.iQ) =2) > G/ dio +iQ)GE (iw)
K.Q k,io

n RS
X Almp(K, Q;im, iQ), (8b)
with XK (iw) = 0 (k)X (k, iw) (for X = G and W). As
convolutions of continuous functions of k (G and W) with a
piecewise-constant function (A), X and P are continuous in
k by construction.
Finally, the cluster dynamical mean fields G;;(z) and
r’ . . . .
U; j(r) are determined by imposing the following self-
consistency conditions,

Gimp(K, iw)[G, U] = G (iw), (%a)
Winp(Q. iQ)[G. U] = W, (iQ). (9b)

The left-hand sides are computed by solving the impurity
model. The right-hand sides are the patch-averaged
lattice Green’s functions G (iw)=) xep, G(k,iw) and
W (i) =3 4ep, W"(4.iQ). The determination of G and
U" satistying Egs. (9a), (9b) is done by forward recursion
(see Supplemental Material 11.B, [84])

We have implemented this method and studied it in three
physically distinct parameter regimes: (A) Weak-coupling
regime at half-filling (U/D =0.5, 6§ =0%, pD =16
f = 0) at half-filling, (B) Intermediate-coupling regime
at large doping (U/D =1, 6§ = 20%, D = 16, f' = 0) at
large doping, (C) Strong-coupling regime at small doping
(U/D=14, §=4%, pD =38, ¢/t =-0.3) at small

doping (the Mott transition occurs at U,./D ~ 1.5 within
plaquette cellular DMFT [89]). We solve at point A, B, C
for different values of a.

In the absence of any approximation, every HS decou-
pling, hence every value of «, yields the same result: the
exact solution does not depend on a. The cluster TRILEX
approximation a priori breaks this property, but as N,
increases, we expect the a dependence to become weaker.
We propose to use the weak a dependence for a given N,
i.e., the existence of a plateau for at least a range a, as a
(Fierz) convergence criterion. That this criterion is sufficient
to establish convergence is an assumption, which we test
here using exact benchmarks for points A, B, and C. Indeed,
in these regimes, determinant quantum Monte Carlo (QMC)
calculations and/or DCA can be converged and give a
numerically exact solution of the Hubbard model, albeit
at a significant numerical cost.

We start with point A. In Fig. 2, we show the self-energy
Y(k,iwg) for cluster sizes of N.=1 (single-site),
2 (dimer), and 4 (plaquette) and for three different values
of a. As expected, the dependence on « decreases with ...
At N, = 4, the self-energy is almost independent on . The
a dependence for N. =1, 2, 4 is further illustrated in
Fig. 3: the N, = 4 results show an extended plateau that is
narrower or nonexistent for N, = 1, 2.

The benchmarks, using numerically exact determinant
QMC [90] computed with N, = 16 x 16 sites, are also
presented on Figs. 2 and 3. We observe a very good

ReX(k,iwy) ImX (k,iw, )

0_277[_ N,=1 === N,=2 N,=4 @@ QMC, N, =256 —0.015
0.26} » ] 1 0.020
0.25} 1

{-0.025
0.24p- B

»
0.23f “_03 | {-0.030
0.27} 1 {-0.015
026 . 1 1-0.020
0.25} 1
024 . {-0.025
0.23} «—05 1-0.030
0.27} 1 {-0.015
026 x 4 -0.020
025 _~& ! =~
0_24',. o o {-0.025
0.23f w07 | {-0.030
00 @) mm  0000 @) (o 0.0
k k
FIG. 2. Point A (U/D =0.5, §=0%, pD =16, ¢ =0).

ReX(k, img) (left) and ImZ (K, iwg) (right) for N, = 1, 2, 4 for
various values of a (from top to bottom), along the path
(0,0) = (#.0) — (m, x) — (0,0). Solid lines: TRILEX. Dashed
lines: GW + EDMFT (N, = 4). Pentagons: determinant QMC
(only a subset of K points is shown for better visibility).
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ReS(kiw,) [08 V-1 88 52 66 51|
0.26} ] lo.26
0.25} ] lo.25
0.24} = . ] == =" lo.2a
0.23} k = (0,0) 1 = (n/2,0) 10.23
0.26| ./ | % l0.26
0.25 o ] lo.25
0.24} 1 10.24
0.23t - k = (m7/2) 10.23
0.26} o ﬁ lo.26
0.25} ] lo.25
0.24} E 10.24
0.23} k = (m,7) k = (n/2,7/2) 10-23

0.0 02 0.4 0.6 08 1.0 0002 04 06 08 10
(e} «

FIG. 3. Dependence of ReZ(k, iwy) on «a for different momenta
(Point A: U/D = 0.5, § = 0%, D = 16, ' = 0). Black dashed
lines: QMC.

agreement between N. = 4 and the benchmark data, both
for the real and imaginary parts of the self-energy, which
validates the Fierz criterion in this regime. We also observe
that for @ = 0.5, the results are in agreement with the
converged values regardless of N .. This can be understood
by noticing that @ = 0.5 corresponds to the values of U”
used in the random phase approximation (RPA), which is
correct to second order in U.

Moreover, we compare our results with the self-energy
obtained by the GW + EDMFT [60-66] method for

ReX(k,iw,)

-_— N, =2

Im¥(k,iw, )
== N =4 Yk DCA, N, =50] |

[ — N, =1

@0 (mm
k

FIG. 4. Z(k,iwg) at point B (U/D =1, 6 = 20%, D = 16,
' = 0). Same conventions as Fig. 2. Dashed lines: GW +EDMFT.
Stars: DCA from Ref. [55].

N. = 4. GW + EDMFT can be regarded as a simplification
of TRILEX where the vertex corrections are neglected in
the nonlocal self-energy contribution. This explains why
the GW 4+ EDMFT results are, independently of a, quite
close to the single-site TRILEX results: the vertex fre-
quency and momentum dependences are weak in the low-U
limit. Besides, they are different from the cluster TRILEX
results and from the exact solution, except for the RPA
value of @ (@ = 0.5) where both methods give results close
to the exact solution.

At point B (Fig. 4), the agreement between the bench-
marks and the real and imaginary parts of the self-energy,
for all values of a (with more important deviations for
a = 0.3), is very good for N. = 4. Contrary to the weak-
coupling limit, no value of « in the single-site case matches
the exact solution. This points to the importance of non-
local corrections to the three-leg vertex. This observation is
further corroborated by looking at the GW + EDMFT
curve. There, the agreement with the exact result is quite
poor, while being similar to the single-site result, like in the
weak-coupling limit (for @ = 0.3, a spin instability pre-
cludes convergence of GW + EDMFT and cluster TRILEX
for N, = 2). This discrepancy shows that as interactions are
increased, the vertex frequency and momentum depend-
ence play a more and more important role in the nonlocal
self-energy, as discussed below. These conclusions are also
valid for local observables (see Supplemental Material
II.C [84]).

At the strong-coupling point C (Fig. 5), similarly to the
previous regimes, the N, = 4 self-energy is almost inde-
pendent of «, and in good agreement with the converged

ReX(k,iw, ) Im¥(k,iw, )
‘ ‘ — Nu:4‘ * % DCA, N, =64 1-0.15

0.80f |mmm N =1

— N, =2

0.50} a=0.7

©0) 0 (mm 0000 ) (mm) ©,0)
k k

FIG. 5. X(k,iw,) at point C (U/D = 1.4, § =4%, D =8,
'/t = —0.3). Same conventions as Fig. 2. Dashed lines: GW+
EDMFT. Stars: DCA.
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K K
FIG. 6. Point B (U/D =1, §=20%, pD =16, ¢ =0),
a=0.5. Impurity vertex Al (K,Q;iw,,iQ) at K,Q €

imp
[(0,0), (0, 7), (, 7)]*> (the value is color coded in the square
area surrounding each blue point) in the charge (left) and spin
(right) channels, for increasing bosonic Matsubara frequency
(from top to bottom).

(DCA) solution (especially for its real part). GW +
EDMFT at N, =4 is quite far from the exact result, as
can be expected from the previous discussion.

Finally, we analyze the momentum and frequency depend-
ence of the vertex, illustrated in Fig. 6. At low Matsubara
frequencies, the vertex acquires a momentum dependence
(especially in the charge channel), while it is essentially local
at high frequencies. In other words, the largest deviations to
locality occur at small frequencies only (see also
Supplemental Material II1.D [84]). The nonlocal components
are smaller or much smaller than the local component,
especially for large Matsubara frequencies. This gives an
a posteriori explanation of the qualitatively good results of
the single-site TRILEX approximation. More importantly,
the fact that the momentum dependence is confined to low
frequencies suggests optimizations for the vertex paramet-
rization and computation.

In conclusion, we have presented a first implementation of
the cluster extension of the TRILEX method. For a broad
interaction and doping range of the two-dimensional
Hubbard model, we obtain, for an embedded cluster with
only four impurity sites, continuous self-energies in close
agreement with the exact result obtained with comparatively
expensive large-cluster lattice QMC and DCA calculations.

Cluster TRILEX is based on the computation and
momentum coarse graining of the three-leg vertex function:
it thus comes at a cost lower than cluster methods based on
four-leg vertices [78,79], but it a priori suffers from the
Fierz ambiguity. We have shown that this ambiguity can be
turned into a practical advantage in two ways: First and
foremost, we have shown that proximity to the exact
solution coincides with stability with respect to the Fierz
parameter o [91]. With this necessary condition, one can
assess, at a given (possibly small) cluster size, the accuracy
of the solution. Second, in some regimes, there exists a
value of a for which accurate results can be reached for
smaller cluster sizes. By allowing us to extract more
information from smaller embedded TRILEX clusters,
the Fierz convergence criterion paves the way to a con-
trolled exploration of low-temperature phases such as
superconducting phases, where cluster DMFT cannot be
converged in practice.

We acknowledge useful discussions with M. Ferrero and
A. Georges. We especially thank W. Wu for providing us
determinant QMC numerical data for the benchmark results
of point A and DCA data for point C, as well as J. LeBlanc
for providing us the DCA data (from Ref. [55]) for point B.
This work is supported by the FP7/ERC, under Grant
Agreement No. 278472-MottMetals. Part of this work was
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(Grant No. 2016-t2016056112). Our implementation is
based on the TRIQS toolbox [92].
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This Supplemental Material is organized as follows: in
Section I, we show results corresponding to another de-
coupling than the Ising decoupling used in the main
text, namely the Heisenberg decoupling. In Section II,
we give the technical details relevant to the implementa-
tion of the cluster TRILEX method. Finally, in Section
II1, we give supplementary data to complement the fig-
ures and discussion of the main text.
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Figure S.1. Point A in the Heisenberg decoupling (U/D =
0.5, 6 = 0%, BD = 16). ReX(k,iwo) (left column) and
Im>(k,iwo) (right column) for N. = 1,2,4 for various val-
ues of the Fierz parameter « (from top to bottom), along the
path (0,0) — (7,0) — (w,7) — (0,0). Solid lines: TRILEX.
Dashed lines: GW+EDMFT (N, = 4). Pentagons: deter-
minant QMC (N, = 256; only a small subset of K points is
shown for a better visibility).
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Figure S.2. Point B in the Heisenberg decoupling (U/D =1,
0 = 20%, SD = 16). Same conventions as Fig. S.1. Stars:
DCA from Ref. 1, N. = 50.

I. SELF-ENERGY IN THE HEISENBERG
DECOUPLING: a AND N. DEPENDENCE AND
COMPARISON TO EXACT BENCHMARKS

In the main text, we have chosen to decouple the inter-
action with charge and longitudinal spin bosons (a de-
coupling sometimes called the “Ising” decoupling). One
can alternatively use the “Heisenberg” decoupling, which
consists in decomposing the interaction as follows (up to
a density term):

1 1
Unipn;y = iUChnmi + §pr (s7s7 4+ s¥s? +s7s7) (1)

where s/ = S ¢l ol ¢ior (with of the Pauli matri-

ces). This equality holds whenever U — 3U®P = U, or
in other words

U = (3a— 1)U, UP = (a—2/3)U (2)
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Figure S.3. Point C in the Heisenberg decoupling (U/D =
1.4, 6 = 4%, BD = 8). Same conventions as Fig. S.1. Stars:
DCA from Ref. 2, N. = 64

This leads, after a Hubbard-Stratonovich transforma-
tion, to four bosonic modes, one in the charge channel
and three in the spin channel (we refer the reader to [3]
for more details and for the modified equations for the
self-energy and impurity action).

In Figs (S.1-S.2-S.3), we show the self-energies obtained
for the three characteristic points studied in the main
text (A, B and C) for different values of the Fierz pa-
rameter « and cluster size N..

The observations with respect to o dependence are very
similar to those made in the main text. This further
underlines the main conclusion of the paper: even in
this quite different decoupling, the results are similar to
those obtained within the Ising decoupling of the main
text.

II. TECHNICAL DETAILS OF CLUSTER
TRILEX

A. Fourier conventions and patching details
1. Spatial Fourier transforms

k is a Brillouin zone momentum (black dots in Fig. S.4).

Direct transforms We define:

27
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Figure S.4. Example of discretization of the Brillouin zone
with niate = ngk X ng k points (here nx = 4) for N, = 2 (left
panel) and N, = 4 (right panel)
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2. Cluster Fourier transforms

K and Q are cluster momenta (green disks in Fig. S.4)

Direct transforms We define:
1 K- (R —R.
Jk = ﬁze KRR g, (5)
c ..
ij
1 _iK-(Ri—R.)—iQ-(Rs—R.:
gKyQEﬁZe K- (Ri—R;)—iQ-(Ry R])gijk (6)
€ gk

with i,5,k=1... N,.

Reciprocal transforms We define:
fig =D TR fie (7)
K
gije = y_ e KETRIHARAR) gy o (8)
KQ

where ) 1 fk is shorthand for Nic Zivz’l Ix,-

3. Temporal Fourier transforms

iw (resp. i) denotes fermionic (resp. bosonic) Mat-

subara frequencies, and are shorthand for iw,, = %W

(resp. iQy, = #5*7). B is the inverse temperature.



Direct transforms We define:
B .
fu= [ drers, (9)
0
B
Giw.i0 = // drdr'e iwT+iQT’ Gzt (10)
0
Reciprocal transforms We define:
fT = Z eiiw‘rf'iw (11)
9r.r = Z Z e_iUJT_iQT Giw,iQ (12)
iw i

Here, >, f(iw) is
(and Y, f(i€2) for 1 5 Zz"_‘i‘mmax

shorthand for 3 ZZT_"nmax fliwy)

[ (i)

4. Patching and discretization

In DCA, the k integrals can be replaced with integrals
on the density of states, e.g.

1
GK(ZM) = - -
kGZPK W+ [ — ek — Eimp(Ka ZW)
[ —RE
oo WA p—E— Eirnp(I<7 iw)

where Dk (e) = >y cp, 0(¢ — €k) is the noninteracting
density of states of patch K. This density of states can
be precomputed once and for all for a given dispersion
and patches with a very large number of k points to
obtain a very good accuracy.

By contrast, in cluster TRILEX, the self-energy is a
function of k instead of K, forbidding this substitution
and keeping the number of k points finite (this number
is primarily limited by memory and computation time
requirements, but it can be large due to the low cost of
the computation of ¥(k,iw): we typically discretize the
Brillouin zone in ny x ny points, with ny = 32).

This requires extra care when defining the theta func-
tions Ok (k) defined in a loose way in the main text.
0k (k) is precisely defined as the overlap of the area sur-
rounding a given k point with the patch Pk, divided
by the total area surrounding the k point. This area is
illustrated in Fig. S.4 for the case nx = 4. For instance,
the k point of coordinates (1,1) has Ox—o,0)(k) = 1/4,
while that of coordinates (1,2) has fx—(o,r) (k) = 1/2.
Correspondingly, >y p, is precisely defined as

kePk Z?klxnke ( 1)

i e o0 0 0 !
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Figure S.5. The cluster TRILEX loop

B. Cluster TRILEX Loop

As in Refs , we solve the cluster TRILEX equations
by forward recursion, with the following steps (illus-
trated in Fig. S.5):

1. Start with a guess X(k,iw), P"(q,iQ2)

2. Compute G(k,iw) and W"(q,i?) (Egs (4)) and
then G(K,iw) and W7(Q, i) (Egs. (10))

3. Compute G(K,iw) and U"(Q,iQ2) by substituting
Eqgs (9) into the impurity Dyson equations, i.e
G(K,iw) = [Gx' (iw) + Simp (K, iw)] ~ (14a)

-1

U(Q,iQ) = HWS} (i) + P (QiQ)|  (14b)

4. Solve the impurity model, Eq. (6), for its ex-
act vertex A (K, Q;iw, i) (see Section 1T C for

imp
more details).

5. Compute X(k,iw) and P"(q,i?) (Egs (5))
6. Go back to step 2 until convergence of ¥ and P".

As in Refs 4 and 5, and as justified in Ref. 3 for the
single-site impurity case, in the equations presented in
the main text and in the loop presented above, we have
implicitly approximated the impurity’s electron-boson
vertex with the bare electron-boson vertex or, in other
words, we have assumed the ¢ function, introduced in
Ref. 3, to be negligible.
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Figure S.6. Retarded interaction U (iQ2) in the charge (left
column) and spin (right column) channels, for « = 0.3
(top row), 0.5 (middle row), 0.7 (bottom row), at point
B (U/D =1, 4§ = 20%, BD = 16, t' = 0, Ising decou-
pling). Dots: local component (¢,5 = 0,0). Triangles:
nearest-neighbor component (¢,7 = 0,1, for N. = 2 and
N; = 4 only). Squares: next-nearest-neighbor component
(i, = 0,3, for N. = 4 only).

C. Solution of the Impurity Model
1. Impurity solver

The impurity model, defined by Eq. (6), is solved using
a continuous-time quantum Monte-Carlo algorithm[6].
For N, = 1, we refer the reader to Ref. 3 for details. For
N, > 1, contrary to the single-site case, the densities n!
are no longer good quantum numbers due to the intra-
cluster hopping terms. This precludes the use of the
hybridization expansion algorithms, which can be used
with retarded interactions only if the operators involved
in the retarded interactions are good quantum numbers,
and in which only correlators between operators which
are good quantum numbers can be easily measured. We
therefore use an interaction-expansion (CT-INT) algo-
rithm, described e.g. in Ref. Here, for the mea-

surement of the three-point function )Zijﬂ”p”,(i, gy kT, 7
(defined in Eq. (20) below), we use a straightforward
operator-insertion method.

We observe that in all the parameter regimes studied
in the main text (points A, B and C), the interactions
Z/I{j (7) are static and local to a very good approximation:

Ul(r) = U'6;6, (15)

This is illustrated in Fig. S.6 for point B. Thus, in prac-
tice, we do not have to use the retarded interactions.
This simplifies the numerical computation since the de-
pendence of the Monte-Carlo sign problem on CT-INT’s
density-shifting parameter a,(s) (see e.g. Eq. (145) of
Ref. 7) is less simple than in the case of static interac-
tions.

2. Computation of Gimp(K,iw) and Wimp(Q,i€2)

Gimp (K, iw) and Wiyp(Q,i€2) are obtained by comput-
ing the spatial and temporal Fourier transforms (defined
in Section ITA) Gimp(K, iw) and Xfrg;(Q, i) of the im-
purity’s Green’s function and density-density response

functions:

Glmp (i, 53 7) = —(Ti (1)} (0)) imp (16a)
X5 (153 7) = (T (7)1 (0) i (16b)
and by using the identity
W (Q,i9) = (17)
UN(Q, i) — UT(Q,I)X ™ (Q, iU (Q, i)

where the passage from spin (o,0’) to channel (7) in-
dices is done using the expressions:

=ch
Xt =20 + X)) (18a)
XIsP =200 — k) (18b)

and the connected component is:
Ximp (55 J590) = Xinp (453982 — () (n]) Bdic (19)

3. Computation of the cluster vertex Ai"mp

(K, Q; iw, i)

The computation of A}l (K, Q;iw, i) is done by mea-
suring the three-point function

Xifp;g (i, g, k7, 7)) = <Tcio(7—)cj'a(0)nk0’(T/)>imp (20)

The vertex, written in cluster coordinates R;, R;, Ry,
is then computed as:



A0y g, kyiw, Q) = Z G;nlp(p,j; w + iQ)G;nlp(i, q; iw)

pgr

X L= U] (i Q)R (b, 0, 1)
(21)

with the expression in the charge and spin channel:

_3,n=ch 3,
K=t = gl 4+ iy (22a)
~3, _ ~3, ~3,
X = gl — ity (22b)

and the connected component defined as:

oo (5 i, i) = (23)

imp

Koo (1 4, k5 i, 190) + Gip (4, § iw)njl Bi

A"(i, 4, k;iw,iQ) is  then Fourier-transformed to
Al (K, Q;iw, i) (see Section ITA, Eq. (6)).

imp

In practice, instead of directly performing a temporal
<3,
lmapa

Fourier transform to compute X277 (4, j, k; iw, iQ2) from

)Zirfp” (i, 7, k;T,7"), we first compute the connected com-
ponent Xf’n?pconn(z Jyk;7,7') [defined in Eq. (23)], which
is smooth and Wlthout discontinuities, perform a cubic
spline interpolation of it, and then Fourier transform it
to Matsubara frequencies. This allows us to use a small
number (typically n, = n. = 100) of 7,7’ points in the
measurement.

D. Self-energy decomposition

In this section, we show that the coarse-grainings intro-
duced for the vertex allow for a numerically convenient
decomposition of ¥ and P.

Following a procedure very similar to that described in
section I1.D.3 of Ref. 3, we decompose Egs (5) as follows:

S(K, iw) = Simp (6,7 = 0, 0; iw) (24a)
- Z My DD G oW B AL, (K, Qs iw, i0)
K,Q q,iQ2
P"(q, iQ) = P}, (i,j = 0,0;iQ) (24b)
+2 Z Z GE:quw—i-iQGk,lwA?mp(Ka Q; iw, ZQ)
K,Qk,iw

where we have defined the nonlocal components:

X(k,iw) = X (k, iw) ZX (k, iw) (25)

with X =G or W.

Indeed, decomposing Eq. (5a) using Eq. (25), and ex-
panding, one obtains four terms, two of which vanish.
The two remaining terms are given in Eq. (24a). The
first term is given by Xipp (00, iw):

DR N PR

K,Q i \ Kk

)0k +q(k )}

Z Wia(d')bq(q) Aﬁmp(K7 Q;iw, iN2) (26)

- zmn S 3 (Grnlk ) (W)
X éema (K’ 1q>9q<q) AR (K, Qiw, i) (27)
=— Z > my Z > Gtk +d)Win(d)Aj 4
= Zkz(kn' iw t
= ;&R =0,iw)
= Bimp (0, 0; iw) (28)

A similar result holds for P.

In the second terms of Eqs (24a-24b), the summands
decay fast for large Matsubara frequencies thanks to
the fast decay of the nonlocal component G(k,iw) and

W(q,i9).
Asin Ref. 3, we furthermore split A into a “regular part”
A"re8 which vanishes at large frequencies

AT (G, 4, ks iw, i) = A(4, 4, k; iw, Q) — 17(1, 4, k; i9)
(29)
and a remainder [7(if2) corresponding to the high-

frequency asymptotics of the three-point function:

Do -un”

p

(i, 7, k; i) = Yk, pri)s; (30
J

The term containing A™"°8(i, j, k; iw, i€2) has a quickly
decaying summand thanks to G, W and A™2. We com-
pute it in Matsubara frequencies and real space after a
fast Fourier transform of G and W (see Eq (4)). This is
the bottleneck of the computation of the self-energy as
it scales as O(N2Ny log N, N2) (where N, is the num-
ber of Matsubara frequencies used and Ny the number
of k points in the disctretized first Brillouin zone). The
term containing 1" (4, j, k; i) can be computed entirely
in imaginary time and real space, with a computational
complexity of O(N,, log N, Ny, log Ny N2).

 (iw, 182)
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Figure S.7. Dependence of Im¥(k, iwo) on the Fierz param-
eter a for different k points at point A (U/D = 0.5, § = 0%,
BD = 16, t' = 0, Ising decoupling).

III. SUPPLEMENTARY DATA

A. Additional data for the Fierz criterion:
a-dependence of Im>

In Figure S.7, we complement the data of Fig. 3 of
the main text by giving the data for the imaginary
part. Similarly to the real part, the imaginary part
shows plateaus for given ranges of o which are more
pronounced for N, = 4, which is the cluster size for
which the self-energy is the closest to the exact bench-
mark result.

B. Continuity of the self-energy

In Fig. S.8, we show the lowest Matsubara component
of the self-energy obtained in the dynamical cluster ap-
proximation (DCA) and the one obtained within cluster
TRILEX, using Eq. (24a). While the DCA self-energy
is piecewise constant in the Brillouin zone (with dis-
continuities at the patch edges), the cluster TRILEX
self-energy is continuous by construction, similarly to
what is achieved by the DCA™ method|8, 9], but with-
out arbitrary interpolation schemes.

C. Local components of ImG and Im¥

In Fig. S.9, we display the local components G}, and
Yimp and compare them to benchmark results obtained

cluster TRILX

WWWWWWWhs NNWWWWwWwww b

COOO0O0O0000 CO0000O0O00O0O
FNWUONOO DORNWIOIOO

T oy
o

B
El

Figure S.8. X(k,iwo) in the upper quadrant of the first Bril-
louin zone, at point B (U/D = 1, § = 20%, 8D = 16,
t' =0, a = 0.5, Ising decoupling). Left column: DCA, right
column: cluster TRILEX. First two rows: real part, last
two rows: imaginary part. Odd rows: N. = 2, even rows:
N. = 4.

with DCA (N, = 50, Ref. 1). The N. = 4 cluster
TRILEX data is the closest to the benchmark data, ir-
respective of the value of a.

D. Vertex

1. Momentum dependence of the vertex

In Figures S.10 and S.11, we show the dependence of
the vertex on the cluster momenta K and Q for points
A and C (point B is shown in the main text).
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Figure S.9. (Point B: U/D = 1, § = 20%, 8D = 16, t' = 0,
Ising decoupling). Imaginary part of the local components of
Gioc (left column) and iy, (right column) for for o = 0.3
(top row), 0.5 (middle row), 0.7 (bottom row) and differ-
ent N.. Solid lines: TRILEX. Dashed lines: GW+EDMFT
(N. = 4). Black stars: DCA result from Ref. 1, N. = 50.

Figure S.10. Weak-coupling parameters (Point A, U/D =
0.5, § = 0%, BD = 16, t' = 0, @ = 0.5, Ising decoupling).
Same conventions as Fig. 6 of the main text.
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In Figures S5.12, S.13 and S.14, we show all the inequiva-
lent vertex components Aimp (4, j, k; iw, i€2) for the three
regimes of parameters (respectively point A, B and C)
studied in the main text. While the largest component
is the local component (4,7, k = 0,0,0), some nonlocal
components are non-negligible.

Figure S.11. Strong-coupling parameters (Point C, U/D =
14, 6§ = 4%, BD = 8, t'/t = —0.3, a = 0.5, Ising decou-
pling). Same conventions as Fig. 6 of the main text.
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Impurity cluster vertex A (4,7, k;iw, iQ2) in the charge and spin channels, at fixed fermionic Matsubara frequency wo.
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We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to supercon-
ducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory
supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that,
in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d-wave superconducting dome as a
function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX
can capture d-wave pairing using only a single-site effective impurity model. We also systematically explore
the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a
clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a
combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally,
we study within G W+EDMFT the low-temperature d-wave superconducting phase at strong coupling in a region

of parameter space with reduced AF fluctuations.

DOI: 10.1103/PhysRevB.96.104504

Strongly correlated electron systems such as high-
temperature superconductors pose a difficult challenge to
condensed-matter theory. One class of theoretical approaches
for this problem focuses on the effect of long-range spin
fluctuations [1-6]. They neglect vertex corrections in an
Eliashberg-type approximation for the electronic self-energy
and predict a d-wave superconducting order.

Another class of approaches focuses, following the seminal
work of Anderson [7], on the fact that high-temperature
superconductors are doped Mott insulators. In the recent
years, progress has been made in this direction with cluster
extensions [8—12] of dynamical mean field theory (DMFT)
[13]. These methods have been shown to capture the essential
aspects of cuprate physics, such as Mott insulating, pseudogap,
and d-wave superconducting phases [14-39]. Cluster DMFT
methods can be converged with respect to the cluster size at
relatively high temperature [40,41], including in the pseudogap
region [42], but not at lower temperatures and in particular in
the superconducting phase.

Several approaches beyond cluster DMFT have been
proposed recently [43-61]. In Refs. [62,63], the TRiply irre-
ducible local EXpansion (TRILEX) approach was introduced.
It consists in a local approximation of the electron-boson
vertex extracted from a quantum impurity model with a self-
consistently determined bath and interaction, in the spirit of
DMFT. TRILEX interpolates between DMFT at strong inter-
action and the weak-coupling Eliashberg-type spin-fluctuation
approximation at weak interaction. It is able to simultaneously
describe Mott physics and the effect of long-range bosonic
fluctuations. Hence, it unifies the two theoretical approaches
mentioned above in the same formalism.

The main purpose of this paper is to study d-wave supercon-
ductivity in the Hubbard model within the single-site TRILEX
approach. Contrary to DMFT, where d-wave superconducting
correlations can by construction be captured only within
multisite (cluster) impurity models, here we only need to solve
a single-site impurity model. We also compare TRILEX to

2469-9950/2017/96(10)/104504(22)

104504-1

two simpler approaches, GW+EDMFT and GW, which can
be viewed as further approximations of the electron-boson
vertex in TRILEX. We show that TRILEX yields a d-wave
superconducting dome at strong coupling.

We also study the dependence of the superconducting
critical temperature 7, on the choice of the tight-binding
parameters at weak coupling using the GW method. While T
is enhanced by strong antiferromagnetic fluctuations, we find
aregion of parameter space where the superconducting transi-
tion occurs at a higher temperature than the antiferromagnetic
instability of the method. At this point, we stabilize and study
a superconducting solution below 7, within GW+EDMFT.
We also identify a choice of dispersion where, at 16% doping,
we have a pronounced maximum of 7 in the space of hopping
parameters, which seems to persist even at strong coupling.

The paper is organized as follows: In Sec. I, we describe
the Hubbard model studied in this paper. In Sec. II, we
generalize the TRILEX equations to superconducting phases
via the Nambu formalism, and discuss their simplifications
GW and G W+EDMEFT. In Sec. 111, we describe the numerical
methods and details used to solve the equations. In Sec. 1V,
we turn to the results. We first describe the phase diagram
(Sec. IV A) within TRILEX and G W+EDMFT, and then focus
on the weak-coupling regime (Sec. IV B) where, using the GW
method, we scan the space of the nearest- and next-nearest-
neighbor hopping parameters in search of dispersions with a
weak antiferromagnetic instability where it is possible to reach
a paramagnetic superconducting phase. The two dispersions
which we thus identify are investigated in more detail at strong
coupling with G W+EDMFT in Secs. IV C and IV D.

I. MODEL

We solve the Hubbard model on the square lattice with
longer-range hoppings, defined by the Hamiltonian

H = Ztijcj(,cja - Mzﬂia + UZ”I’T”I’L (D
i

ijo io
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FIG. 1. Definition of the tight-binding parameters on the square
lattice.

with #,j indexing lattice sites. cli (cy;) denotes creation
(annihilation) operators, n,; = cj,ic(,,- the density operator, i
the chemical potential, and U the onsite Hubbard interaction.
The hopping amplitudes, depicted on Fig. 1, are given by

r;=r;te,

ri=r;te e
, Ip=r;x2e,
0, otherwise

2

where e, , are the lattice vectors in the x and y directions. The
bare dispersion is therefore

ek = 2t(cos ky + cosky) + 41’ cosk, cosk,
+ 2t"(cos 2k, + cos 2ky). 3)

When t' =¢" =0, the half-bandwidth is D = 4|z|, but
nonzero t’',t” in general make the bandwidth larger. Here-
inafter, we express all quantities in units of D, unless stated
differently.

II. FORMALISM

The main goal of this paper is to study the superconducting
(SC) phase of the two-dimensional Hubbard model within
the TRILEX approach introduced in Refs. [62,63]. TRILEX
is based on a bosonic decoupling of the interaction and a
self-consistent approximation of the electron-boson vertex
A with a quantum impurity model. The decoupling of the
onsite interaction is done by an exact Hubbard-Stratonovich
transformation, leading to a model of noninteracting electrons
coupled to some auxiliary bosonic modes representing charge
and spin fluctuations.

We also study two methods which can be regarded as sim-
plifications of the TRILEX method, namely, G W+EDMFT
[54-59] and GW [64,65]. In G W +EDMEFT, vertex corrections
are neglected in the nonlocal part of the self-energy and polar-
ization. As both decay to zero, this additional approximation
is negligible at very long distances. Due to the full treatment
of the local vertex corrections, GW+EDMFT can capture
the Mott transition, and we use it to obtain superconducting
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results in the doped Mott insulator regime. In the G W method,
vertex corrections are neglected altogether, and the self-energy
and polarization are entirely calculated from bold bubble
diagrams. The GW equations do not require the solution of
an auxiliary quantum impurity model and are therefore less
costly to solve. This additional approximation is justified only
at weak coupling (see, e.g., Ref. [57] for an illustration of its
failure at large U), and there we use it to explore a large region
of (t',t",T,n,) parameter space (T denotes temperature, n,
occupancy per spin).

Finally, let us stress that, in this paper, we use only
single-site impurity models. Cluster extensions of TRILEX
are discussed in our different work [66]. They naturally incor-
porate the effect of short-range antiferromagnetic exchange J
and give a quantitative control on the accuracy of the solution.

A. Superconducting Hedin equations

In this section, we derive the Hedin equations [64,65,67]
which give the self-energy and polarization as functions
of the three-leg vertex function. The derivation holds in
superconducting phases and is relevant for fluctuations not
only in the charge channel [68], but also in the longitudinal
and transversal spin channels.

1. Electron-boson action

The starting point of the TRILEX method, as described in
Ref. [63], is the following electron-boson action:

Sevlesc™ @l = ¢ [=Gy'] oo + 50a[ =Wy '] 5
+ )"uvaczcv(pa ’ (4)

where c; and ¢, are Grassmann fields describing fermionic
degrees of freedom, while ¢, is a real bosonic field de-
scribing bosonic degrees of freedom. Indices w,v stand for
space, time, spin, and possibly other (e.g., band) indices
n = (r,,7,,0,,...), where r, denotes a site of the Bravais
lattice, 7, denotes imaginary time, and o, is a spin index
(oy € {1,4]). Indices o, B denote o = (ro,To, 1y, ... ), Where
1, indexes the bosonic channels. Repeated indices are summed
over. Summation ) _  is shorthandfor} _, g >, foﬂ dt.Go
(resp. Wy qp) is the noninteracting fermionic (resp. bosonic)
propagator.

Action (4) can result from the exact Hubbard-Stratonovich
decoupling of the Hubbard interaction of Eq. (1) with bosonic
fields ¢, but it can also simply describe an electron-phonon
coupling problem.

In this work, we are interested in a generalization of
TRILEX able to accommodate superconducting order. To
this purpose, we rederive the TRILEX equations starting
from a more general action, written in terms of Nambu
four-component spinors. The departure from the usual two-
component Nambu-spinor formalism is necessary to allow for
spin-flip electron-boson coupling in the action. Such terms
do appear in the Heisenberg decoupling of the Hubbard
interaction (see Sec. II A 2).
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We define a four-component Nambu-Grassmann spinor
field as a column vector

C?i(f)
ci(t)
CI,‘(T) ’
c4i(T)

V(1) = )

where i stands for the lattice site r;. In combined indices,
analogously to (4), a general electron-boson action can be
written as

S W81 = 39 [-Gg '], ¥ — 30u[ Wy '], p 0
+ 30 ¥ikiva ¥y, (6)

where u,v is a combined index u = (r,,7,,q,,...), with
a,b,c,... € {0,1,2,3} a Nambu index comprising the spin
degree of freedom. The sum is redefined to go over all Nambu
indices ), =Y g2 . foﬁ dt. Bold symbols are used for
Nambu-index-dependent quantities.

This action does not depend on the conjugate field of ¥
because ¥; already contains all the degrees of freedom of the
action (4) at the site i. The partition function corresponding
to the bare fermionic part of the action has the following
form [69]:

/ D[W]es ¥ 4w = (det A)?, @)

which is valid for any antisymmetric matrix A. Due to the
unusual form of the action (no conjugated fields), the right-
hand side is not the determinant of A, but its square root,
i.e., the Pfaffian. We can redefine the propagators/correlation
functions of interest as

G =—(V, V), ®)

Wep = = (9o — (9a))(Pp — (D)), ®

X2 = (W, W, ) — (¥, W,)(¢s). (10)

The “conn” superscript denotes the connected part of the
correlation function. The renormalized vertex is defined by

Auve =[G 1uu[G™ e [W s x 2™, an

wxp

Actions (6) and (4) are physically equivalent, namely, their
partition functions coincide:

Z= / D[W, ple S5 1¥9] = / Dlc,c* pleSnle:c 0]

(12)
for an appropriate choice of Gy and L. Yet, they are not
formally identical to each other, i.e., one cannot reconstruct (6)
from (4) by mere relabeling ¢ — ¥, uv — uv (note the ab-
sence of Grassmann conjugation and the additional prefactors
in the Nambu action). Therefore, one must rederive the Hedin
equations which connect the self-energy and polarization with
the full propagators G and W and the renormalized vertex A.
We present the full derivation using equations of motion in
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Appendix A 2; here we just present the final result:

Zuv = _)\'uwawa WaﬁAxuﬂ + %)“uvo( WO,a/S (‘I’yA’_VZ/S‘IIZ>7
(13a)

Paﬂ = %xuw,anquvAux,ﬁ- (13b)

Compared to the expressions in the normal case, there are
extra factors % in the Hartree term [second line in Eq. (13a)] and
polarization [Eq. (13b)]. These factors come from the fact that
with four-spinors, the summation over spin is performed twice.
Note that the Hartree term can in principle have a frequency
dependence if the bare electron-boson vertex has a dynamic
part. On the other hand, the term beyond Hartree may as well
contribute to the static part of the self-energy, if the bosonic
propagator and the bare electron-boson vertex contain a static
part. In all the calculations in this paper, the Hartree term is
static and is the sole contributor the static part of self-energy.
We will thus henceforth omit the Hartree term, as it can be
absorbed in the chemical potential.

2. Connection to the Hubbard model

In this section, we specify the bare propagators and vertices
such that action (6) corresponds to the Hubbard model (1).
We then rewrite the Hedin equations under the assumption of
spatial and temporal translational symmetry.

The Hubbard-Stratonovich transformation leading from
Eqg. (1) to an action of the form (4) relies on decomposing
the Hubbard interaction as follows:

1
Unm}’l[l = EZU’n,’nll (14)
I

withn; =Y, clo! c,,and I running within {0,z} (“Ising
decoupling”) or {0,x,y,z} (“Heisenberg decoupling”) (o is
the 2 x 2 identity matrix, o*/7/% are the usual Pauli matrices).

This identity is verified, up to a density term, whenever

Ut —u®=u (15a)
in the Ising decoupling, or
Ut —3u® =y (15b)

in the Heisenberg decoupling. We have defined Uh = U°
and U? = U* = U”Y = U*. Equations (15a) and (15b) leave
a degree of freedom in the choice of UM and U. Here,
the choice U* = UY = U* stems from the isotropy of the
Heisenberg decoupling (contrary to the Ising decoupling); it
can describe SU(2) symmetry-broken phases. In the rest of the
paper, we denote all quantities diagonal in the channel index

with the channel as a superscript.
To make contact with the results of Ref. [70], for GW we

will use the Ising decoupling with
U =u/2,

U® =-U/2, (16a)

while in TRILEX and GW+EDMEFT (unless stated differ-
ently) we will use the Heisenberg decoupling with

Uh=uv/2, UP=-U/6 (16b)
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because the antiferromagnetic (AF) instabilities discussed in
Sec. III D, which violate the Mermin-Wagner theorem, are
weaker in this scheme.

The equivalence of the action (6) with the Hubbard model
is accomplished by setting

Go,ij(f)
0 0 0 =Gy, ji(—1)
_ 0 0 G()’,'j(l') 0
- 0 —Go,j,‘(—‘f) 0 0 ’
Go,ij(7) 0 0 0
(172)

where i, j denote lattice sites, and

Goij(r) = Y e MGy (i),
iwk
(17b)

1
Gliw) = ———.
ok(iw) P R——

The 4 x 4 matrices are written in Nambu indices. The bare
vertex reads as

)mvoz = 5ruru5rurv51ﬂa [51“.1:‘, : )vld]ayau (183)
with
8t,,,tg'
8r+ T
Oepr, = ot (18b)
us Ty 5% +
et 2,
and
1 1
I Tt
—O'I —O'I
A= N , W , (18¢)
%)) %1
1 1
o o

Thus, this vertex is local and static. The bare bosonic
propagators are also local and static, as well as diagonal in
the channel index:

W (0) = 8i;8:U". (19)
Our Hubbard lattice Nambu action reads as (in explicit indices)
ngambulz‘l”(ﬁ]
1 , _ / /
=3 Z // dtdt' W, (7)[-G, l]m’jb(r — )W (7")

i,j,a,b
1
3222 f dr ¢/ (O[-UH ™19/ (1)
i 1
1
+ 2 Z Z / dt ¢i[(t)‘1’ia(f))~£b‘l’ib(t). (20)
i 1

3. Translational invariance, singlet pairing, and SU(2) symmetry

In this paper, we restrict ourselves to phases with no break-
ing of translational invariance. With translational invariance
in time and space, the propagators depend on frequency and
momentum, and are matrices only in the Nambu index. We
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rewrite the Hedin equations derived above in the special case
of the Hubbard action

Taklio) == 3 Y M Gepsqlio +iQ)

QiQ cd I

X Wi QAL g (0,0 9), (21a)
. 1 . .
Pl(iQ) = 5 DY MeGrakiqlio +i9)
K,iw a,b,c,d
X Geg k(i0)A Yy (0,0 Q). (21b)

Similarly (see Appendix A 4 for details),

Atgapi0.iQ) = > [G (0 +iQ)], [G} ()],
cd
. -1 conn . .
< [WG )] xpeor (i.,iQ).  (22)
Furthermore, we restrict ourselves to SU(2) symmetric
phases, and allow only for singlet pairing, therefore,

(€} () (0) = (€] (D)} () =0. (23)
We allow no emergent mixing of spin
(X (D)ey (M) = (c](T)e1(0)) = 0. (24)

These assumptions simplify the structure of the Green’s
function in Nambu space

—FK(iw) —Gi(iw)
. G(iw) —Ff(iw)
Gli®) = Rw) —Giliw) " :
Giliw) Fiio)
(25)

where the normal and anomalous Green’s functions read as

Gij(r — 7) = — (en(0)c (@), (26)

Fij(t — ') = — (c};(0)c} (7). 27

Under the present assumptions, Gi(t) is real, therefore,
Gi(—iw) = G{(iw). Here, note that SU(2) symmetry and
lattice inversion symmetry imply F;;j(t) = F;;j(—7) = Fj;;(7)
[this can be proven by rotating ¢, — (=)t ¢z]. Therefore,
if Fi;(t) is real, Fx(iw) is also purely real. In this paper, we
consider only purely real F;;(z).

Similarly, the block structure of the self-energy is given by

Sf(k(iw) Yk(iw)

Tlio)= | i —E(0)  Sk(io)
k

—Si(iw)

Yk (iw)
—Sk(iw)

(28)

3 and S are the normal and anomalous self-energies defined
by the Nambu-Dyson equation

Gy ' (iw) = Gy (iw) — Tk(iw), (29)

where the inverse is assumed to be the matrix inverse in Nambu
indices. Componentwise, under the present assumptions, the
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Nambu-Dyson equation reads as

[Goil i) = Sii)]|
Gyl i) — Tyl )|’ + ISuiw)?
—Sk(iw)
|Gl (i) — Zk(io)| + IS

Grliw) =

(30a)

F(iw) = Ob)

Furthermore, due to SU(2) symmetry, the full bosonic prop-
agator will be identical in the x, y, and z channels, so we
define

ch, I=0

sp, [ =x,y,z @D

n(l) = {
and have W* = W? = W? = W*P, and similarly for the
renormalized vertex. This will simplify the calculation of
the self-energy in the Heisenberg decoupling scheme, as the
contribution coming from x and y bosons is the same as the
one coming from the z boson. The bosonic Dyson equation is
then always solved in only two channels:

un

W) = ———
a (1S - UTPI(Q)

(32)
B. TRILEX, GW+EDMEFT, and GW equations

1. Single-site TRILEX approximation for d-wave
superconductivity

The single-site TRILEX method consists in approximating
the renormalized vertex by a local quantity, obtained from an
effective single-site impurity model

SNambu [‘I’ ’¢]

imp,eb

_ % / / dr ATV (D=6 (T — )W (T)
l IV _ I\—1 — I,/
+2Z//drdr¢<r>[ UM — el ()

1
+5 > / dt ¢' ()W, (OA], W,(7). (33)
1

Solving the TRILEX equations amounts to finding G(iw) and
U(i€2) such that the full propagators in the effective impurity
problem (33) coincide with the local components of the ones
obtained on the lattice, namely, we want to satisfy

Y Guio)G.UI = Gimplio) G U], (34a)
k

> WG UL = Wi (QIG.U],

q

(34b)

where the vertex of Eq. (21) is approximated by the impurity
vertex

Akq = Aimp[gau]- (35)

In this paper, we allow only strictly d-wave superconduct-
ing pairing. Thus,

Z Fe(iw) = 0, (36)
k
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which means that the anomalous components of the local
Green’s function Gy, will be zero. Therefore, at self-
consistency [Eq. (34a)], the impurity’s Green’s function is
normal and thus the anomalous components of the bare
propagator on the impurity must vanish:

Go2/20/13/31 = 0. 37

This means that the impurity problem will be identical to the
one in the normal-phase calculations, which can be expressed
in terms of the original Grassmann fields

Simp,eb[c*,ca ?]

=> // drdt'ci()[—G 7't — T)co (1))
T % ZI: // dtdt' ¢’ (O)[—UH (T — He!(r)

+ > f dt ¢! (D) (DML e (T), (38)

1,0,0’

where the bare vertices (slim symbols denote the impurity
quantities) are given by Pauli matrices A!_, = o/ ,. After
integrating out the bosonic degrees of freedom, one obtains
an electron-electron action with retarded interactions:

Simp,celc”,c] = // ,Zczﬁ(r)[—g"(r = )lee (7))

+ % // Xl:nl(t)ul(r —Hn'@). (39)

This single-site impurity problem is solved using the numeri-
cally exact hybridization-expansion continuous-time quantum
Monte Carlo (CTHYB or HYB-CTQMC [71,72]), employing
the segment algorithm. The transverse spin-spin interaction
term is dealt with in an interaction-expansion manner [73].
See Ref. [63] for details.

Under the present assumptions, the approximation for the
renormalized vertex entering the Hedin equations (21) is

Ap(i0,iQ) = Al (i0,iQ)

Afg g
|y (A1)’
Al Al
(Alp)" (Alw)’
x (iw,i), (40)

where o denotes the elementwise product [A o B];; = A;; B;;
(see Appendix A 5 for details).

We obtain Ai”mp from the three-point correlation function
on the impurity using

Al (0,iQ)
Ty " (0,1 Q)
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where
Xi?{]g,conn(l-w’ig) = // eirw+ir/§2 (42)
(er (@R OR"(T))imp + Gimp(T)(n")imp)  (43)
and
B .
Gimpliew) = — fo 4T &7 e (DO imp, (“4)
B .
Winp(i€2) = —/O dt e (((t) — (PN(B0) — (D)) imp
(45)
=UIRQ) — L{(iQ)Xi’r’np(iQ)L{(iQ), (46)

B
Ximp(12) = /0 dt ™ (" (Dn"(0))imp — (")) (47)

We can now write the final expressions for the self-energy
and polarization:

ko) ==Y my Y Graglio+iQWI QAL ((0.iQ).

n q,iQ2
(48a)
Sk(iw) = — Z(—)Pvm,, Z Fyqlio +iQ)
n q.i2
X WA ((i0,iS), (48b)
PR =2 Griqlio + iQ)Gi(0) Al (i0.iQ)
K,iw
+ ()2 Fiyqlio +iQ) Fio) Al (i0.iQ)
K,iw
(48¢)

with pey = 1, psp = 0, mey, = 1. These equations hold in both
the Heisenberg (mg, = 3) and Ising (my, = 1) decoupling
schemes. In the expression for the polarization [Eq. (48c)],
we have used lattice inversion symmetry and the symmetries
of A and G. Under the present assumptions, P is purely real
(see Appendix A 3 for details).

2. GW+EDMFT

The GW+EDMFT approximation can be regarded as a
simplified version of TRILEX where, in the calculation of the
nonlocal (r # 0) part of self-energy and polarization [second
line of Egs. (51a), (51b), and (51c) below], an additional
approximation is made:

Al i0,iQ) ~ 1. (49)

The efficiency is gained because one need not measure
the three-point correlator "™ in the impurity model. The
local self-energy and polarization still have vertex corrections,
but are identical to ¥ and P on the impurity, which can
be computed from only two-point correlators. Furthermore,
the calculation of the nonlocal parts of the self-energy and
polarization can now be performed in imaginary time, as
opposed to the explicit summation over frequency needed in
Egs. (51a), (51b), and (51c).
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3. GW

If we approximate the renormalized vertex by unity even in
the calculation of the local part of self-energies, we obtain
an approximation similar to the GW approximation, with
the important difference that we are using a decoupling in
both charge and spin channels, unlike the conventional GW
approaches which are limited to the charge channel. This
additional approximation eliminates the need for solving an
impurity problem, as now even the local self-energy and
polarization are calculated by the bubble diagrams (48a),
(48b), and (48c), simplified by Eq. (49).

To summarize, the exact expressions for the self-energy and
boson polarization are compared to the approximate ones in
GW, EDMFT, G W+EDMFT, and TRILEX in Fig. 2.

4. Normal-phase calculation

In the normal phase, the further simplification is that
Fx(iw) = 0. Therefore, Sx(iw) =0 and the Dyson equa-
tion (30a) reduces to the familiar form

1
io+p—ex— Zk(iw)

Giw) = (50)
III. METHODS

A. Numerical implementation of the Hedin equations

As shown in Ref. [63], it is numerically advantageous to
perform the computation in real space and to split the self-
energy and polarization in the following way:

Te(i®) = 8 Timp(iw) — Y my Y Grlio +iQ)
n

[19]
x WAL ((0,i), (5la)
Seiw) = =Y (=)P1my Y Frlio +iQ)
n iQ
X We((i QA (0,i9), (51b)

PIiQ) = 8 P1,(iQ) +2) Grlio+iQG _(iw)

X Afpli@,iQ) + ()72 ) Frlio +iQ)

x F_r(iw)AT

imp({@,1€2), (51c)
where X (iw) = (1 — 8;)X(iw). In the presence of lattice
inversion symmetry, X, = X_,. The impurity’s self-energy

and polarization are defined as

Simp(iw) = G~ (iw) — Gl (i), (52a)
Pip(i9) = UG = (Wi, ()1
oy
— Kl (52b)

1 — U imp(i2)°

B. Solution by forward recursion

In practice, the TRILEX, G W+EDMFT, and GW equa-
tions can be solved by forward recursion:
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Self-energy up to Hartree shift

Boson Polarization

z“ij(i(’)n) Pij(il)m)

local non-local local non-local

i=j #] i=j i#]

. ! ! !
EXACT e-b I ZA?_\" D N @ @
i moq ¢ m i - i i o i

i j i i
TRILEX A @ CRN
GW+EDMFT Jiﬁ. /_“j“_ﬂ/ @ <>
ow > | <>

FIG. 2. Self-energy/polarization approximations in various methods based on a Hubbard-Stratonovich decoupling, compared to the exact
expression. The renormalized electron-boson vertex is either approximated by a local dynamical quantity or by the bare vertex. Orange triangle
denotes the exact renormalized vertex, with full spatial dependence; gray triangle denotes the local approximation of the vertex. Colored circles
denote terminals of the propagators and the vertex and the (local) bare vertex at a given site; different colors denote different lattice sites i j/m.
Internal site indices are summed over, but when the vertex is local, only a single term in the summation survives.

(1) Start with a given Xk(iw) and P,;’(iQ), and (for SC
phase only) Sk(iw) and (for TRILEX and G W+EDMFT only)
Yimp(iw) and Piﬁm(iQ) (for instance set them to zero, or use
EDMEFT results).

(2) Compute the new Gg(iw) and W(;] (i2) and (for SC
phase only) Fx(iw) from Egs. (30a), (32), and (30b).

(3) (TRILEX/GW+EDMFT only) Impose the self-
consistency conditions (34a) and (34b) by reversing the
impurity Dyson equations (52a) and (52b), such that

— -1

-1
Gliw) = {ZGk(z‘a»} + Zimp(i@) |, (53a)
k

— -1

-1
UiQ) = {Z Wg(isz)} + PI(9)

q

. (53b)

(4) (TRILEX/GW+EDMFT only) Solve the impurity
model with the above bare fermionic and bosonic propagators:
compute Gimp, Ximps (n")imp» and (for TRILEX only) j 370
and from them iy, [Eq. (52a)], Piﬁlp [Eq. (52b)], and
(TRILEX only) Aip [Eq. (41)].

(5) Compute Xk(iw) and P(f (i2) and (for SC phase only)
Sk(iw) with Egs. (51a), (51c¢), and (51b).

(6) Go back to step 2 until convergence is reached.

C. Superconducting temperature 7,

In order to determine the superconducting transition tem-
perature 7,, we solve a linearized gap equation (LGE). At
T = T., the anomalous part of the self-energy S vanishes.
Linearizing Eq. (30b) with respect to S and plugging it into
Eq. (51b) leads to an implicit equation for 7, featuring only

the normal component of the Green’s function

Se(iw) = =Y (=) Fe(io + iQW(QA™(i0,iQ),
n,iQ2

Fy(io,) = =Sk(ion)|Gr(iwy))I*. (54)

Using four-vector notation k = (k,i®), we obtain

A=Y (=)Pmy|GEYPWL AT, (55)

n=ch,sp
A S = Sk (56)

This is an eigenvalue problem for S. In practice, it is more
convenient to consider the spectrum of the operator A:

AwSp = AS}. (57)

The eigenvalues A and the eigenvectors S} depend on the
temperature 7. The critical temperature 7, is therefore given
by

)‘m(Tc) =1,

where A, is the largest eigenvalue of A. In other words, T = T,
when the first eigenvalue crosses 1. In addition, the symmetry
of the superconducting instability is given by the k dependence
of S for the corresponding eigenvector.

In practice, we first solve the normal-phase equations, and
then solve the LGE (54) by forward substitution. Starting from
an initial simple d,2_,2-wave form

Sk(fwp) = (8n,0 + 8p,—1)(cOS ky — cOS ky), (58)

we use the power method [74] to compute the leading
eigenvalue of the operator A. We do this in a select range of
temperature for the given parameters (U,n,#,#’,t”) and monitor
the leading eigenvalue A,,(T). If we observe a T, [A,,(T) > 1)],
we can then use the eigenvector S as an initial guess to
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stabilize the superconducting solution using the algorithm
from Sec. IIIB. We have also examined other irreducible
representations of the symmetry group and found that this
d-wave representation is the one with highest 7, in agreement
with Refs. [75,76].

D. AF instability

As documented in Refs. [62,63], the TRILEX equations
present an instability towards antiferromagnetism below
some temperature Tar (see also Refs. [70,75]). The
antiferromagnetic susceptibility x° is related to the
propagator of the boson in the spin channel via

WR(iQ) = U — UP P U™.

They both diverge at T = Tarp because the polarization
becomes too large [the denominator in (32) vanishes]. This
instability, which is an artifact of the approximation for
the two-dimensional Hubbard model, violates the Mermin-
Wagner theorem. For many values of #,¢”, this AF instability
prevents us from reaching the superconducting temperature 7.

This AF instability also exists in conventional cluster
DMFT methods (cellular DMFT, DCA) [21,77,78]. Yet, in
most works, it is simply ignored by enforcing a paramagnetic
solution (by symmetrizing up- and down-spin components). In
TRILEX, however, we do not have this possibility. Indeed, the
antiferromagnetic susceptibility directly enters the equations
(via W), and its divergence makes it impossible to stabilize
a paramagnetic solution of the TRILEX equations at a
temperature lower than Tag. For a precise definition of Tar
in the present context, see Appendix C.

In the following, we circumvent this issue in two ways:
either by extrapolating the temperature dependence of the
eigenvalue of the linearized gap equation to low temperatures,
despite the AF instability (Sec. IV A, with tight-binding
values t’,t” relevant for cuprate physics), or, in Sec. IVB,
by finding other values of ¢',¢”, where the Fermi surface shape
is qualitatively similar to the cuprate case, but where the AF
instability occurs at a temperature lower than 7.

IV. RESULTS AND DISCUSSION

A. Phase diagram

First, using the linearized-gap equation (LGE) method
described in Sec. III C, we compute the SC phase boundary
from high temperature, for t' = —0.2¢, t” = 0, a physically
relevant case for the physics of cuprates. We set U/D = 4 in
order to be above the Mott transition threshold at half-filling
(we recall that for the square lattice, U./D ~ 2.4 within
single-site DMFT [49]). The results are presented on Fig. 3.

The top panel presents the largest eigenvalue of the LGE
as a function of temperature, for TRILEX and G W+EDMFT.
The calculation becomes unstable due to AF instability before
we can observe A, > 1. The extrapolation of 1,, towards low
temperature is not straightforward. We use an empirical law

Am(T) = aexp(bT? + cT?) (59)

to fit the data and extrapolate to lower temperature. This
form can be shown (see Appendix C) to provide a very
good fit to similar computations in the Dynamical Cluster
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FIG. 3. Top panel: the leading eigenvalue of the linearized gap
equation in TRILEX and G W+EDMFT. Bottom panel: SC critical
temperature in both methods for U/D = 4, (¢',t") = (—0.2¢,0). The
dashed lines represent the AF instability (see text).

Approximation (DCA) and DCA* methods, from the data
of Refs. [22,77]. We perform the fit and extrapolation with
y = 0.3 for GW4+EDMFT and y = 0.45 for TRILEX, and
get the result for 7, reported with solid lines on the bottom
panel. The error bars shown are obtained by fitting and
extrapolating with y varied in the window 0.3-0.6. The error
bars coming from the uncertainty of the fit for a fixed y and
a detailed discussion of the fitting procedure can be found
in Appendix C. The dashed lines denote the temperature
of the antiferromagnetic instability, below which no stable
paramagnetic calculation can be made.

For all values of y, the raw data at high temperature for
both methods indicate a similar dome shape for 7, vs §, where
§ is the percentage of hole doping: §[%] = (1 — 2n,) x 100
(ny = % corresponds to half-filling). The fact that 7, vanishes
at zero § can be checked directly, but we cannot exclude that
it vanishes at a finite, small value of 6. The optimal doping in
both methods is found to be around 12%. At half-filling, both
methods recover a Mott insulating state, and A,,(7) is found
to be very small. We observe that TRILEX has a higher 7,
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FIG. 4. Comparison of 7.(8) in GW and G W+EDMFT methods
at weak coupling U/D =1, t' =t" = 0. The dotted line is the
order parameter A at T = 0 from a 2 x 2 CDMFT+ED calculation,
replotted from Ref. [78] (scale on the right).

than G W+EDMFT, showing that the effects of the renormal-
ization of the electron-boson vertex are non-negligible in this
regime.

These results for 7.(8) are qualitatively comparable to the
results of cluster DMFT methods, e.g., the four-site CDMFT +
ED computation of Refs. [78—80] or the eight-site DCA results
of Ref. [81]. In particular, Ref. [79] reportsa 7.,/ D = 0.0125 at
doping § = 13% in a doped Mott insulator, which falls halfway
between the TRILEX and G W +EDMEFT results. Furthermore,
the optimal doping in Ref. [78] seems to coincide with our
result, while in Ref. [79] it is somewhat bigger (around 20%).
We emphasize, however, that here we solve only a single-
site quantum impurity problem, and obtain the d-wave order,
which is not possible in single-site DMFT due to symmetry
reasons.

Let us now turn to the weak-coupling regime (U/D = 1).
We present in Fig. 4 the SC temperature in the GW and
GW+EDMFT approximations within the Ising decoupling
[for the A(T') plot, see Appendix C]. Both methods give similar
results, which justifies using the faster GW at weak coupling.
In contrast to the larger-U case, one does not obtain the dome
versus doping due to the absence of Mott insulator at § = 0.

We compare our results with the order parameter at 7 = 0
obtained from a 2 x 2 CDMFT++ED calculation [78]. The
general trend observed is similar: optimal doping is zero,
and there is a quick reduction of 7, between 12% and 16%
doping.

As for the value of T,, we compare to the result presented
in Ref. [77]. Here, a DCA™ calculation with a 52-site cluster
impurity,atU/D = 1,t' =" = 0,8 = 10%, predicts T,/ D ~
0.06. With the same parameters, GW gives T,./D = 0.21,
GWHEDMEFT gives T, /D = 0.27, hence overestimating 7.

B. Weak coupling

As explained in Sec. IIID, in order to study the SC
phase itself, we need to identify a dispersion for which 7,
is above Tagr. To achieve this, we first scan a large set of
parameters t’,t” with the G W approximation at weak coupling.
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FIG. 5. GW calculation of d-wave T, (left panels) and Tr (right
panels) at U/D = 1,t = —1.0, for different values of n, as functions
of (#,¢”). t' and t” are sampled between (and including) —0.7 and
0.3 with the step 0.1. n is taken between (and including) 0.38 and 0.5
(i.e., the half-filling) with the step 0.02.
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FIG. 6. GW calculations at U/D = 1, t = —1. Dashed lines denote T, full lines 7. Inset: color map for ex. Gray contours denote bare

Fermi surfaces at examined values of doping. The red line corresponds to the Fermi surface with maximum 7.

Indeed, at weak coupling, we can approximate TRILEX
by GW, which is faster to compute (there is no quantum
impurity model to solve). We look for a (¢',t”) point for
which not only Tar > T,, but also the shape of the Fermi
surface is qualitatively compatible with cuprates. We find
a whole region of parameters where this is satisfied, and
then use these parameters in a strong-coupling computation
with GW+4+EDMFT and TRILEX. Whether a weak-coupling
computation is a reliable guide in the search for ¢',t” with
maximal T, at strong coupling remains open and would require
a systematic exploration with cluster methods. However, at
least in one example (shown below), this assumption will
provide us with an appropriate choice of hopping amplitudes
that allows us to stabilize a superconducting solution in the
doped Mott insulator regime.

Figure 5 presents the computation of the AF instability
(Tar) and the SC instability (7.) in GW, for U/D =1 and
various #',t” (¢t = —1.0 is held fixed) and various dopings.
The temperature is taken from 0.2 down to the lowest
accessible temperature, but not below 0.01 in cases where
the extrapolation of A(T") yielded no finite 7,.. The temperature
step depends on T' (smaller step at lower T'; see Appendix C
for an example of raw data).

The first observation is that the region of high 7, broadly
coincides with the region of high Txpr. This is expected as in
G W the attractive interaction comes from the spin boson, and
a high-valued and sharply peaked W*P is clearly necessary
for satisfying the gap equation (54) with A = 1. However, the
maximum of 7, with respect to (¢/,#”) at a fixed n does not
coincide with the maximum of Tp, thus indicating that there
are factors other than sharpness (criticality) of the spin boson
which contribute to the height of 7,. While the maximum

of Tap is found rather close to ¥ = ¢” = 0 at all dopings, the
maximum in 7 starts from (¢',t") = (—0.6, — 0.4)atn = 0.38
and gradually moves as n is increased. It is only at half-filling
that the two maxima are found to coincide. Furthermore, while
ataroundt’ =¢t" =0 andt ~ t"” one sees Tar > T, this trend
is gradually reversed as t” is made more and more negative,
such that around ¢ ~ t” + 0.4 one usually sees a finite 7, in
the absence of a finite Tag.

In Fig. 6, we plot Tar and T, vs doping for different values
of t/,t”. The corresponding dispersion (color map) and Fermi
surfaces (gray contours; red for the maximal 7,) are presented
in the insets.

3(7‘~J cuprates /%
0.2—7777"'9’%;;'; """ pt.B@ ;@
AN ‘S
; RES EII‘?? 3
LA 4 xT and T,
0.0F Gy @ X Lgnd T
LN Y -
: (O
w —0.2F i SO maxT,a,t,nfo,zxs
AL
@pt C L ‘
04 i . max,T,,a,t,n,, 0,4,4,,,,
‘ oA
—0.6f 3,,,,,m,ax,T atn=042.. ]
. ‘ >
\ \

-0.6 0 4 -0.2 0 0 0 2
t//
FIG. 7. Sketch of the GW phase diagramat U/D = 1,1 = —1.0

based on Fig. 5. Points A, B, and C are of special interest, and are
further studied at strong coupling.
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FIG. 8. T, for dispersions B and C at weak and strong couplings.

Finally, in Fig. 7, we summarize the observations from
Fig. 5. The blue dot denotes the global maximum of 7, and
Tar. The dashed gray lines denote the directions of the slowest
and quickest decay of antiferromagnetism. The red ellipses
denote the regions of maximal 7, at various dopings. The

Occupancy per spin n,
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FIG. 9. Evolution of various quantities within the superconduct-
ing dome at dispersion point C, using GW+EDMFT, U/D =4,
T =0.005D. The T., as obtained from ,,(T), is denoted by the
gray area. Quantities are scaled to fit the same plot. The gray dashed
horizontal line denotes the temperature at which the data are taken,
relative to the (scaled) 7.. The vertical full line denotes the end of
the superconducting dome at the temperature denoted by the dashed
horizontal line, i.e., denotes the doping where all the anomalous
quantities are expected to go to zero.
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yellow region is where one finds little antiferromagnetism, but
still a sizable T,. The green region corresponds to dispersions
relevant for cuprates [82]. The points A, B, and C are the
dispersions that we focus on and for which we perform
TRILEX and GW+EDMFT computations. Point B is most
relevant for the cuprates, and was analyzed in Fig. 3. Point C
has Tar < T, which allows us to converge a superconducting
solution at both weak and strong coupling. We analyze it in
the next subsection. Point A is where we observe a maximal
T, at 16% doping, and we focus on it in Sec. IV D.

C. Nature of the superconducting phase at strong coupling

In this section, we study the dispersion C (¢,¢',t") =
(-1, — 0.3, — 0.6). In Fig. 6, we have determined that at weak
coupling (U/D = 1), the superconducting temperature 7, is
larger than the AF temperature: we can therefore reach the

GW+EDMFT T/D =0.005 pt.C

SC

0.7+ ; — §=28% |{
0.6l A normal — 5—20% ||
3 0.5 ; — =12% ||

50.4} ~ — 0=8%

O ¢
o

GW+EDMFT T/D =0.005 pt.C

sC

An(w)

A

— 6=28% |4

normal — 5=20% |]

-J‘>U'I®‘\IO|—INLUJ>U1®\ICO

An(w)

Ay

o0 = N W

—-0.05 0.00 0.05 0.10 0.15

w

.15 -0.10

FIG. 10. Top panel: spectral function versus frequency, at the
antinodal wave vector, defined by ny,\—(x.i,any) = 0.5, obtained by
maximum entropy method [83] from Gk(iw,). U/D =4, T/D =
0.005 for doping 6 = 8%, 12%, 20%, 28%. Bottom panel: zoom-in
at low frequencies.
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n, =0.46 (6 =8%)

n, =0.40 (6 =20%
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FIG. 11. Color plots of various quantities in the first Brillouin zone, at lowest Matsubara frequency. G W+EDMFT calculation at point C
dispersion, U/ D = 4. Temperature is below 7., T /D = 0.005. All plots correspond to the superconducting phase unless stated differently. The
three numbers defining the color-bar range correspond to three columns (different dopings) in the figure.

superconducting phase numerically (see Appendix D). It turns
out that at strong coupling, the AF instability is also absent.
This allows us to stabilize superconducting solutions in the
doped Mott insulator regime. We also perform a calculation
restricted to the normal phase for all parameters in order to
compare results to the ones in the SC phase. For simplicity,

in this section we will present only G W+EDMFT results for
U/D = 4.

In Fig. 8, we show the superconducting temperatures at
U/D = 1and4. Contrary to point B, in point C strong coupling
seems to strongly enhance superconductivity. Also, the SC
dome extends to higher dopings.
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In Fig. 9, we show the results for the both the anomalous
self-energy and Green’s function, as well as the imaginary
part of the normal self-energy, in both the normal phase and
superconducting solution, antinodal and nodal regions.

The imaginary part of the normal self-energy is larger at
antinodes than at nodes and is growing when approaching
the Mott insulator. When going from the normal phase to the
SC phase, the imaginary part of the self-energy is strongly
reduced at the antinode and weakly reduced at the node. The
difference between the normal and SC solutions (light blue
area) is roughly proportional to the anomalous self-energy
in the SC phase (blue line). Note that we observe a similar
phenomenon even at weak coupling (see Appendix D).

In Fig. 10, we plot the spectral function at the antinodes
at low temperature, in the normal and in the superconducting
phases. At low doping, we observe at low energy a pseudogap
in the normal phase and the superconducting gap in the SC
phase. The result obtained here is qualitatively different to
the one obtained using eight-site DCA cluster by Gull et al.
[18,81]. In the cluster computations, the superconducting gap
is smaller than the pseudogap, i.e., the quasiparticle peak at the
edge of the SC gap appears within the pseudogap. It is not the
case here. Also, we do not see any “peak-dip-hump” structure.
Note that we are, however, using different parameters (for
the hoppings #',#”, the interaction U and the doping §). It is
not clear at this stage whether these qualitative differences
are due to this different parameter regime or to an artifact of
the single-site TRILEX method, e.g., the lack of local singlet
physics in a single-site impurity model. Further investigations
with cluster-TRILEX methods are necessary in the SC phase.

In Fig. 11, we plot various quantities at the lowest Mat-
subara frequency, as a function of k. In the first two rows we
compare the anomalous self-energy and the pairing amplitude.
Both are clearly of d-wave symmetry. The pairing amplitude
has a different order of magnitude (see Appendix A 6 for an
illustration of the dependence between F, G, X, and §). In
the third and fourth rows, we show the imaginary part of
the Green’s function in the SC and normal phases. Due to
the absence of long-lived quasiparticles in this sector, the
maximum of Fi is moved towards the nodes, and does not
coincide with the maximum of Sk. At small doping, the Fermi
surface in both cases becomes less sharp and more featureless,
due to proximity to the Mott insulator. In the next two rows
we show the imaginary part of the normal self-energy. In
the superconducting phase, ImXy is strongly reduced in only
antinodal regions, and thus flattened (made more local). In
the last row, we show the nonlocal part of the propagator for
the spin boson. At large doping, we observe a splitting of
resonance at (77,7r) which corresponds to incommensurate AF
correlations (see, e.g., Ref. [84] for a similar phenomenon).
Having that the Green’s function at around k = (0,0) is quite
featureless, and that the boson is sharply peaked at zero
frequency, the shape of the spin boson around q = (7r,7) is
similar to the self-energy at around k = (;r,7r). This pattern is
observed at all three dopings.

D. Strong coupling 7, at point A

At weak coupling, we have observed in Sec. IV B that the
dispersion point A [(¢,t',t") = (—1, — 0.5, — 0.2)] presents
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FIG. 12. Top panel: evolution of the LGE leading eigenvalue ,,
with temperature at points A and B, in a GW+EDMEFT calculation.
Bottom panel: the extrapolated T, in both cases, including a TRILEX
calculation at point A.

a pronounced maximum in T.(¢',t”) at 16% doping (see
Fig. 5). Here, we investigate that point at strong coupling using
GW+EDMFT and TRILEX and find that also at U/D = 4,
the T, is substantially higher than in points B and C (see
Fig. 12). Here, T, is below Txr and the result is again based on
extrapolation of A. The proposed fitting function in this case
does not perform as well and the extrapolation is less reliable,
but GW+EDMFT and TRILEX are in better agreement than
in the case of point B. A further investigation using cluster
methods is necessary since, apart from Refs. [76,80,85], little
systematic exploration of 7,(¢',¢”) has been performed.

V. CONCLUSION

In this work, we have generalized the TRILEX equa-
tions and their simplifications GW+EDMFT and GW to
the case of paramagnetic superconducting phases, using the
Nambu formalism. We also generalized the corresponding
Hedin equations. We have then investigated within TRILEX,
GW+EDMFT, and GW the doping-temperature phase di-
agram of the two-dimensional single-band Hubbard model
with various choices of hopping parameters. In the case
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of a bare dispersion relevant for cuprates, in the doped
Mott insulator regime, both TRILEX and GW-+EDMFT
yield a superconducting dome of d,>_,>-wave symmetry, in
qualitative agreement with earlier cluster DMEFT calculations.
Let us emphasize that this was obtained at the low cost of
solving a single-site impurity model. At weak coupling, we
have performed a systematic scan of tight-binding parameter
space within the GW approximation. We have identified the
region of parameter space where superconductivity emerges
at temperatures higher than antiferromagnetism. With one
of those dispersions, we studied the properties of the su-
perconducting phase at strong coupling with G W+EDMFT.
We also addressed the question of the optimal dispersion for
superconductivity in the Hubbard model at weak coupling. At
16% doping, we identify a candidate dispersion for the highest
d wave T,, which remains to be investigated in detail at strong
coupling (e.g., with cluster DMFT methods).

The next step will be to solve in the SC phase the recently
developed cluster TRILEX methods [66]. Indeed, the single-
site TRILEX method contains essentially an Eliashberg-type
equation with a decoupling boson, and a local vertex (com-
puted from the self-consistent impurity model) which has no
anomalous components. The importance of anomalous vertex
components and the effect of local singlet physics (present in
cluster methods) is an important open question. Note that the
framework developed in this paper can also be used to study
more general pairings and decoupling schemes in TRILEX,
e.g., the effect of bosonic fluctuations in the particle-particle
(i.e., superconducting) channel.

Finally, let us emphasize that the question of superconduc-
tivity in multiorbital systems like iron-based superconductors
is another natural application of the TRILEX method, in
particular in view of the strong AF fluctuations in these
compounds. In this multiorbital case, being able to describe
the SC phase without having to solve clusters (which are
numerically very expensive within multiorbital cluster DMFT
[86,87]) could prove to be very valuable.
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APPENDIX A: DETAILS OF DERIVATIONS
1. Relation between x* and ¥°

Let us define the following correlation functions:

Xowa = (¥ ¥0s), (Ala)
Xoke(r) = (W, W,) (), (Alb)
X = (WL V(WA 00 F,)), (Alc)
Xose(r) = (W, W ) (Wokiua W), (Ald)
Xt = T — K- (Ale)
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In this section, we derive useful relations between these
quantities.

Let us introduce source fields in the electron-boson action
[Eq. (6)]:

So " 1W.¢] = =[Gy — F],, Wy — 36[ Wy '], 400

+ %d)a‘pu)‘uva\l’v - Ha¢a- (A2)
We may now write
2 9’z
Xiva =T 23R ag ’ (A3)
Z OF,,0Hy |p g
2 0z 0Z
Xina® =~73 A9
Z aFuu F,H=0 8H01 F,H=0

Let us now integrate out the bosonic degrees of freedom in
Eq. (A2). We obtain

Z= / D[] "1V (AS)
with
1 1
Sé\éambu[‘l,] — E‘I’u[_Gal + Fl,¥, + EWO,aﬂ
WX ye ¥ Yiksup W
x (H, - 220 Hp — —=rr).
2 2
(A6)

‘We now perform the derivatives of Eqs. (A3) and (A4) using
the new expression (AS), yielding

s _ ol ly,w,lw ( 2)‘1'*1"“)5‘1'"’ (A7)
Xuve = 2 u U2 157+ ) s
] ] \I’XA'XU) ‘I’w

X = —2<5wuwv><zwo,aﬂ<—2>+>. (A8)

Thus, we have, for the full correlator, as well as for the
connected and disconnected parts,

Xovw = 3Wo.upXoup- (A9)

2. Derivation of Hedin equations from equations of motion

In this section, we derive the Hedin equations of the main
text using the Dyson-Schwinger equation-of-motion technique
[69] already used in Ref. [63].

a. Equation of motion for the self-energy

Since the functional integral of a total derivative vanishes

/p[q,]w =0 (A10)
ow,
for any f and g, we have
Bg[‘l’ Af[¥]
deg f
-~ = oo (2 e,
(Al11)

which comes directly from the Leibniz derivation rule for
Grassmann variables. deg f denotes the degree of the polyno-
mial f in the variable W. Let us now assume f[¥] = e~ 5%l =

%60 %s and g[W] = h[W]e~¥), with & containing an odd
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number of Grassmann fields. f has an infinite number of terms,
but all are products of an even number of ¥ fields. We obtain

_/D dh —h _ﬂ e—<50+V)
0w, oW,

=[6G,'],, / D[W]W, he” Y.

On the left-hand side we have again used the Leibniz rule with
deg h assumed to be odd, hence, the extra minus sign. On the
right-hand side similarly, deg ¥ = 1, and G, ,lw = -G, 1W,
the % prefactor is canceled. Both integrals are now averages

with respect to the action S = Sy 4+ V, namely,
oh av
|\ =
ow, v,
Let us now consider the case when & =W¥,, and
V is the interacting part of the electron-electron action

(A6), with the source field H set to zero, ie., V =
%[W()]aﬁ(‘pu)‘uwa‘I’w)(‘lly)‘yzﬂ‘llz)‘ We get

-[Gy'],, (Wuh[¥]).  (A12)

Sev + §[Wolaphrua - 4(W, W (¥, k5 W,))  (A13)
= _[G(;l]xw(‘l’w‘pv)- (A14)
Multiplying both sides by G( and using Eqs. (Ala) and (A9),

Guv = Gow = 56G0.ux Wo.aphcwa K iup
= Gouw — Gouxrrwa X o
= Gouw — Gouxhewa (Xped™ + S Woup Xyon®)
= Gouv — Gouxrxuwa GuyWap Ay 3Gy
— Gouxhrwa s Wo.up(Wyhy5¥:)(—Guy). (A15)
Since the self-energy is defined as
G = Gouv + Goux iy G, (A16)
we obtain
v = —AuwaGux Wap Axup + Auva s Wo.ap (W yAyp W)

(A17)
The second term is the Hartree term (note the % factor). The

Fock term is included in the first term.

b. Equation of motion for the polarization

Real fields ¢ commute with the derivative, so the Leibniz
rule is simpler. Analogously to Eq. (A11),

L\
/D[dJ‘I’ Flo.¥] g[‘i ]
Y
3116, )
Dl ,¥] Rk Al8
/[¢ (a% 6.¥].  (AIB)

Similarly to Eq. (A12), by taking f[¢,W¥] = e~50l¥:¢] where
So is the noninteracting part of the electron-boson action (4),
and V[W,¢] = 1W,1,,5¥,¢s, one has

oh 1\1:x W, h =—[w! h Al19
@_E uluvy v [¢] —_[ 0 ]yﬂ((bﬁ [¢]) ( )

PHYSICAL REVIEW B 96, 104504 (2017)

Again, note the minus sign in the left-hand side [to be
compared with Eq. (A12)] coming from the bosonic nature
of the field ¢. For h = ¢y — (¢q),

Sya = My (¥uWo(ba — (¢a)))
= —[W5'], 5 (@5 — (@) (a — (@)
Multiplying by Wy and using Egs. (10) and (11), we obtain
Wso = Wose + Wo sy zluvy)(iucsm
= Wosa + Wo.sy §)~uvy GGy Arw g Wee.
With the definition of P as
Wse = Wo.sa + Wosy Py Wea, (A20)
we identify
Pyp = 3oy GuxGuuAup. (A21)

Note the extra prefactor i compared to the normal-case

2
expression.

3. Proof that P is real

In the derivation of Eq. (48c) we have used the symmetries
of G, F, and A. It turns out that the imaginary part of A does
not play a role in the summation and that the polarization is
strictly real.

The renormalized vertex has the following symmetries [63]:

Aliw, —iQ) =
Ao, —iQ) =

Aliw—iQ,iQ),
A(—iw,if).

(A22a)
(A22b)

Under the present assumptions, all components of the Green’s
function (G and F) have the property

Xx(—iw) = Xg(iw),
Xk(iw) = X_k(iw).
Therefore,
Z Xi(i0) Xk iqlio + iQ)A(0,iQ)
ki

= Z Xi(—iw) Xy iq(—iw + iQA(—iw,iQ)
K,iw

=Y Xu(—io)Xiq(—iw +iQA (0, —iQ)
K,iw

= Xi(—io) Xipq(—iw + iQA* (0 — iQ.iQ)
K,iw

=Y Xi(—ie — i) Xpiq(—ie)A (i) iQ)
Kk,iow'

- Z Xp(io + Q)X (o)A (0 ,iQ)
K, i

(A23)
*
= [Z X _w_qlio) + iQ)X_k/(ia)’)A(ia)’,iQ)]

K iw

- [Z Xkurq(ia)’+iQ)Xkr(ia)’)A(iw’,iQ):| , (A24)

K i
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which proves that the polarization is real. In the derivation of the first term in Eq. (48c), we have used the equality between
Eqgs. (A23) and (A24). Then, for any real valued F, we furthermore have Fx(iw) = Fx(—iw), which gives us

Y Aio) Ferqlio + iDAG@,i2) = Y Fqlio + iQRGo) A (0,i2) = Y Foqlio + iQ) Fio)ReA(io,i),
K,iw K,iw K,iw

(A25)

which is what we use in the derivation of the second term in Eq. (48c).

4. Fourier transforms: Hedin equations with translational symmetry

Here, we derive Eq. (22). A completely analogous derivation can be used for Egs. (21). For the sake of clarity, we omit the
spatial indices, as the spatial Fourier transform (FT) is completely analogous to the temporal FT:

—1 —1 —1 3, i (T, —Tw 1,
Ao =[G N [G W gy = Y. € ™G (i),
w,0,0",Q,Q
x eiw’(fx—fn)[G—l(iw/)]axaueiQ(Ta—fﬂ)(Wla (i Q))—leiw”(r.,,—rx)-k—iﬂ’(rﬁ—rx)xz,wctznn,lw (i ,i%)
— Z eia)ru—iw’tu-‘riﬂru eir}(a)/—a)”—Q')eirw(w”—w)eirﬁ(ﬂ/—ﬂ)
w,0 0", 2,
X [G™ (0,0, [G ™ (0 )0, (W () x 2™ (i 00”,i Q). (A26)

Applying the (implicit) integration over times produces Kronecker delta functions at 0’ = w, o = w4+ Q, and Q = Q.
Therefore,

Zeiw(l’u*T|))+iQ(Tm*T1;)A1n (0,Q) = Zeiw(r“7r,j)+iQ(ra71:,,)[G71(iwl + Q)]auaw[Gil(ia)’)]avtav(WI“(iQ))71x3’°°“"’1"(iw,i§2).
w2

ayay Ay dx
[019]
(A27)
We now reinstate the momentum indices, and obtain Eq. (22) by identifying the summands on both sides of the equation:
. -1 1, R L
Aty ap(i®.iQ) =[G (i + )], [G ()], (Wi Q) xpoor (i0.iQ). (A28)

Here, summation over c,d is implicit.

5. Ajmp from Ay,
Here, we prove Eq. (40). In the Hubbard model we have
I
D WA W. =20 (1p). (A29)
yz

On the impurity (33), where we have no anomalous components,

) {c3(De (0n' (7)) ) (c3(Dey (0)n' (7))
30 1 _m| len(@eiOn’(x") {c)(T)c (O)n' (z"))
Kae) = [ w =) (€5 (D), On’ () (i @ern’ @y |- A
{cr(m)e; O’ (z) {er(D)e;On' ()
The % prefactor in (A9) cancels the prefactor 2 in (A29). If we define
T~ (1,7) = (e (DO (1) = S X 30T Ty Tinw " (T.7) = (ep (DO (7)) = S X, 3o(T.T).
we can rewrite
(~73)’
53,1
x31=02 (0, iQ2) = U (i) *Zimp (iw,if), (A31a)
mp :l:(_),(.fn:ll[))*
i
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£ ity
Ximp " ,iQ) = (=i u' ()|

More compactly,

Xim(i,iQ) =U' (AN o

=31
Ximp
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where A’ and o have been defined in main text. For I = 0,z, we have used

/ eiw(rfr’)JriQ(r”fr’)<C?(T)CT(T/)n1(rH)> — _/
7,7/, 7"

— _/ e—iw(r’—r)+iQ(r”—H—r—t’)(CT(T/)C?(T)nI(T//)) — _/
o

= ~Timp(—i0 = i2,iQ) = —Fi(—iw, — i) = —(Fplie.i2)"

and

(X (@er (O)ny () £ny (TH]) =

and similar considerations for I = x,y. Expressions com-

pletely analogous to (A31a) and (A31b) hold for the connected

part of x°. Plugging these in Eq. (22) together with Eq. (A9),
Gl

imp
_ Gi_ml *

" (o) (i)

imp

Giplio) = G

_(Gi_mlp)*
(A35)

and

(4 (D} (O)[ny () — ny (2] = (ey(T)e](0)ei(T)ey (1)
(A36)

immediately yields Eq. (40). Equation (A36) holds in presence
of SU(2) symmetry. It can be proven by applying a 7r /2 rotation
around the y axis (n* — —n*,n* — n*,n’ - n¥),ie., c, >
[CXP(_%%Uy)]o,a/Co’ = \%(Ca + (_)BJ'TCG'):
{(er (D} O)ny () — ny (1)
= 5{[er(T) — e (D€ 0) = ¢} (0)]
x [=c5(T)ey(T) = ¢} (ep(T)])
= JU[—c, (D) O} (T )er(T)])
+ ([=er (DGO (T)ey (O] (A37)

and then rotating the operators of the first term on
the right-hand side by m around the y axis {c, —
[CXP(_ZE”Uy)]a,a’Ca’ = (_)ST’"CFI}'

7,7/, T

53, 1\*
(=)
o i), (A31b)
(_Xi?ﬁg)
Kip
(Ziwp)” (Zitap)”
Kivp
- . (iw,i2), (A32)
(Xi%ﬁé)* (Xi?hé)*
Kivp
eiw('rfr’)JriQ(r”fr’) <CT(T/)C¥(T)I’II('L'”)>
e—i(w+Q)(r/—r)+iQ(r”—f)<CT(T/)C?(_C)n1(t//)>
(A33)
(] (T)ey (O)ny (") £ 1y (T)]) (A34)

[
6. Relation between S, F, X, and G

Here, we emphasize that the order of magnitude of the
anomalous self-energy S and that of the pairing amplitude
F are not the same, as illustrated on Fig. 13. The pairing
amplitude has a strongly nonmonotonous dependence on
the anomalous self-energy. At a given normal self-energy,
there is a “sweet spot” where a small anomalous self-energy

102 @ k=(0,7), &, =0, p—ReX(iw, ) =0

= |ImG|, [ImX|=0.0
== |F, ImE|=0.0

10* —  ImG|, [ImX|=0.0625 |3
== |F, ImX|=0.0625
= |ImG/|, ImX|=1.0
100 -- }H, \I‘m‘z\ :‘LO
= |ImG/, |ImX|=16.0
10-1 == |F, Im3|=16.0
10
\\
1073t - : A\ :
10° 10° 10* 10° 10> 10’

Anomalous self energy S

FIG. 13. The anomalous Green’s function (or pairing amplitude
F) and the normal Green’s function G as functions of the anomalous
self-energy S at various values of fixed normal self-energy X. All
quantities are taken at the lowest Matsubara frequency iw,, at the
antinodal wave vector k = (0,7), assuming particle-hole symmetry
[€k=0,- = 0and u — ReZy_( »)(iw,) = 0]. The antinode in this case
is precisely at the Fermi surface.
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produces a very strong superconducting pairing. As soon as the
anomalous self-energy starts gapping out the Green’s function,
this affects also the pairing amplitude as no pairing is possible
in the absence of long-lived quasiparticles. In general, strong
superconducting gap and normal self-energy diminish both the
Green’s function and the pairing amplitude.

APPENDIX B: NUMERICAL DETAILS

The numerical parameters in our calculations include the
following:

(i) The number of k points in the first Brillouin zone,
discretized as a grid N, x Ni; we take it to be temperature
dependent, growing as temperature is lowered, to be able
to capture increasingly sharp Fermi surface, and gain extra
precision when the spin boson is nearly critical:

T Ni
0.06+ 32
0.03-0.06 48
0.005-0.03 64
0-0.005 96

(i1) The cutoff frequency iwn,x for the Green’s functions,
and the frequency above which the data are replaced by the
high-frequency tail fit iwg;. Throughout the paper we use
iwg = 14.0 and i wpax = 30. The actual number of Matsubara
frequencies taken is therefore temperature dependent.

(iii)) The number of T points is taken simply as the number
of frequencies times 3.

(iv) The mixing ratio for the polarization between it-
erations; in GW we take P°4: P"™ —=0.95:0.05. In
GW+EDMFT and TRILEX, we use P14 : P"¥ = (0.7 : 0.3.

(v) Number of iterations performed and the level of
convergence reached; in G W we start from the non-interacting
solution, and perform up to 70 iterations. In the supercon-
ducting phase, we perform 150 iterations. In GW+EDMFT
and TRILEX, we start from DMFT solution at the highest
temperature, and then use the GW+EDMFT solution as
the initial guess at lower temperature, and perform up
to 30 iterations. In all cases, we reach convergence level
max;,, |Gloc,neW(iwn) _ Gloc,old(l-wn)| S 1073'

(vi) The parameter y used in the LEV extrapolation; in
GW for Fig. 5 we use y = 0.5.

APPENDIX C: EXTRAPOLATION OF THE LOWEST
EIGENVALUE

Because of the AF instability in the methods used in this
paper, there is a need for extrapolating the results for the
leading eigenvalue [LEV, A(T)] in the linearized gap equation
(LGE) to lower temperatures. In Fig. 14 we show some
examples of this procedure. The A(T') results are contrasted
with maxg iy, U Py (iv,,) which is shown to approach 1 at
finite temperature. Below this temperature, a stable calculation
is not possible. For the precise definition of Tar shown in
figures in Secs. IVB and IV A, we follow Ref. [70], and
identify it with the condition maxg,, U™ Pg’(iv,) = 0.99
(this value is denoted with a horizontal black line in the bottom
two panels of Fig. 14).
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GW, U=1D, t=-1.0, ¢ =—0.3, t"=—0.6

n=0.38
n=0.40

a—a n=042

LEV X
!

10t}

<< n=0.44
> n=0.46
e—e n=0.48

=—a =050

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
T7, v=0.5

GW, U=1D, t=-1.0, ¥ =0.0, t"=0.0

10°
~<
>
4

10*

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
T7, v=05
GW, U=1D, t=-1.0, t'=-0.3, t"=—0.6
1.00—
L e— n=0.38

0.99— !
= 0.98[ s n=0.42||
_g T e << n=0.44
= 0.97 > n=0.46|
a7 e n=0.48
% 0.96¢ =—a n=0.5 ||
£0.95
=3
§ 0.94f

0.93}

0.92 ‘ ‘ : : : :

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
T

GW, U=1D, t=-1.0, ¥ =0.0, t"=0.0

L00———

0.80 ‘ : : ‘ .
0.00 0.02 004 006 0.08 010 0.12 0.14
T

FIG. 14. Extrapolation of A(T') (see text).

The LEV A(T) is found to follow a simple law and we
perform a parabola fit
log M(T) ~ a + bTY + cT? = f(T.0), (C1)

with § = a,b,c, to extrapolate it to lower temperatures.
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0.0 DCA* N,=52, U/D=1, n=0.45

data| |
fit

-0.2

—0.4f

logA

—0.6!
-0.8t

—1.0¢

-1.2 : : :
0.20 0.25 0.30 0.35 0.40
T7, v=0.4, T-range of data: 0.005—0.025D

0.0 DCA N, =24, U/D=1, n, =0.425

—0.5¢
—1.0
—1.5¢
-2.00
—2.5¢
-3.0r
—3.5¢
—4.0r

—4.5 ‘ ‘ ‘ ‘
00 02 04 06 08 1.0

T7, v=0.52, T-range of data: 0.006—0.249D

data |1
fit

logA

FIG. 15. InDCA and DCA™, one observes a behavior very similar
to whatis seen in G W. Data are replotted from Refs. [22,77] and fitted
to the phenomenological form (C1) with ¢ = 0. See text for a more
detailed discussion.

Interestingly, a similar A(T") behavior is observed in DCA
and DCA™ calculations (see Fig. 15). The fact that the
general temperature-dependent behavior of the LEV (as found
in the LGE) is captured correctly with respect to DCA
indicates that the leading contribution to I'?%, and therefore
the superconducting glue, is indeed bosoniclike, dominated by
the random-phase-approximation-like processes. Otherwise,
one would expect a slower decay of A(T") with temperature in
DCA than observed in GW, as here the decay is determined
primarily by the gradual decondensation of the spin boson.
This notion has been investigated thoroughly in Ref. [89]
where the authors have found both the spin-spin correlation
and the pp-irreducible vertex from a full DCA calculation
to be in excellent agreement with simple random-phase-
approximation estimates.

In the main text (Sec. III C), we have estimated the error bar
on the extrapolation of the lowest eigenvalue by varying the
parameter y (see Fig. 3). Here, we give a method to determine
the prediction interval for the extrapolation at fixed y. We
choose the parameters corresponding to point B (Fig. 7) to
illustrate this method.

PHYSICAL REVIEW B 96, 104504 (2017)

Following standard statistics (see, e.g., Ref. [90], Sec.
13.8.1), we proceed as follows:

(i) For a given doping n, we carry out a least-squares fit
of the N data points (7;,2A;) to Eq. (C1): this yields optimal
least-square parameters 0 = a*,b*,c*.

(ii) For a given temperature Tj (not necessarily in the same
range as the data points), the prediction interval at 100(1 —

a)% is given by the two extremal values

fuie(To) = f(T0,0) £ Gtapn_3y/ 1+ V5[V V] g,

where o is the empirical variance
;X
7 = —— ) (oghi — f(T;,6))%,
v N_3§<Og f(T:,9))
1y 18 defined as

[e ]
/ Py(t)dt = «,
ta, N

o,

where Py(¢) is the probability density function of the Student
distribution function. V is the N x 3 matrix

Vii = of
Y005 g
and vy the column vector:
af
vy = — .
o 39}‘ T=T,

The corresponding prediction intervals (at 68%) are shown in
the upper panel of Fig. 16. They are used to compute the error
bars shown in the lower panel of the same figure.

Especially in GW+EDMFT, the fit is found to be of high
quality and as the extrapolation is not carried far away from
the range of data points, the prediction intervals are found
to be small. In TRILEX, the fit is of poorer quality and the
prediction intervals are comparable to the uncertainty due to
free parameter y .

APPENDIX D: SUPERCONDUCTING PHASE AT WEAK
COUPLING

Here, we compare the results of the below-7, calculation:
GW at weak coupling (Fig. 17) vs GW+EDMEFT at strong
coupling (Fig. 9), at the same dispersion, point C. We observe
that in the weak-coupling case, the normal self-energy remains
constant with doping, while at strong coupling it grows by a
factor of about 5 in a similar range of doping, as Mott insulating
phase at half-filling is approached. In the normal phase and
at weak coupling, the self-energy becomes smaller as half-
filling is approached, while the trend is the opposite at strong
coupling. On the other hand, the onset of the anomalous self-
energy in the antinodal regions also seems to reduce the normal
self-energy in these regions, therefore making the normal-
self energy more local. This seems to be a generic feature,
not only associated with the doped Mott insulator regime. It
is particularly interesting that the reduction in Im¥ seems
proportional to S in both cases.
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FIG. 16. Error bars determined by standard Bayesian statistics
method at a fixed y = 0.45.
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Occupancy per spin n,
0.5 0.48 0.46 0.44 0.42 0.4 0.38
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FIG. 17. Evolution of various quantities within the supercon-
ducting dome at dispersion point C, GW calculation, U/D =1,
T/D = 0.002. The T,, as obtained from A,,(T), is denoted by the
gray area. Quantities are scaled to fit the same plot. The gray dashed
horizontal line denotes the temperature at which the data are taken,
relative to the (scaled) 7.. The vertical full line denotes the end of
the superconducting dome at the temperature denoted by the dashed
horizontal line, i.e., denotes the doping where all the anomalous
quantities are expected to go to zero.
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The interplay between Mott and Anderson routes to localization in disordered interacting systems gives rise
to different transitions and transport regimes. Here, we investigate the phase diagram at finite temperatures
using dynamical mean-field theory combined with typical medium theory, which is an effective theory of the
Mott-Anderson metal-insulator transition. We mainly focus on the properties of the coexistence region associated
with the Mott phase transition. For weak disorder, the coexistence region is found to be similar to that in the
clean case. However, as we increase disorder, Anderson localization effects are responsible for shrinking the
coexistence region, and at sufficiently strong disorder (approximately equal to twice the bare bandwidth) it
drastically narrows, the critical temperature 7, abruptly goes to zero, and we observe a phase transition in the
absence of a coexistence of the metallic and insulating phases. In this regime, the effects of interaction and

disorder are found to be of comparable importance for charge localization.

DOI: 10.1103/PhysRevB.92.125143

I. INTRODUCTION

The Mott mechanism of localization [1] is an emergent
phenomenon in which a large local Coulomb repulsion
suppresses double occupation, which prevents charge transport
in a half-filled system. Strongly correlated electron materials,
such as transition-metal oxides [2-5] and some organic
salts [6-10], exhibit a Mott metal-insulator transition due to
the effectively strong Coulomb repulsion that exists between
electrons occupying a narrow valence band. Below the critical
temperature 7, this transition is of first-order and one observes
a region where metal and insulator coexist [4-6,8].

The presence of disorder also leads to localization of
electron wave functions, a phenomenon known as Anderson
localization [11,12]. In this case, the energetic mismatch
between neighboring sites prevents charge transport in the
lattice. These two mechanisms of localization—Mott and
Anderson—combine in nontrivial ways, sometimes reducing,
sometimes enhancing each other’s effects. Recently, the
interplay between interaction and disorder has received much
attention, mainly through three different perspectives. First,
due to the investigation of the many-body localization [13],
a novel paradigm arose for understanding localization in
disordered and interacting quantum systems at nonzero tem-
perature. Second, very recently, models of disordered and
interacting systems have been simulated with cold atoms
in optical lattices [14,15]. Finally, the disorder and the
effective interaction strength can be systematically tuned by
doping [3,5,9,16,17], or even x-ray irradiation [10,18].

Over the past few decades, considerable progress has been
made in the description of strongly correlated materials and
the Mott metal-insulator transition (MIT) through dynamical
mean-field theory (DMFT) [19]. In this method, a lattice
model of interacting electrons is mapped to the Anderson
impurity model with a conduction bath that needs to be
calculated self-consistently. To describe disorder, the simplest
treatment is within the coherent potential approximation
(CPA) [20]. The CPA can be easily combined with the DMFT
[21-28] by considering an ensemble of impurities surrounded
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by an average bath, which is the same for each electron.
This approach thus does not describe the spatial fluctuations
associated with the Anderson localization. Near the Anderson
transition, the distribution of the local density of states (DOS)
changes from Gaussian to log-normal [29,30], implying that its
arithmetic average value does not provide a proper description
of the system. The typical medium theory (TMT) [31] provides
a simple method that can effectively describe the Anderson
localization. The central quantity in TMT is the typical
density of states, defined as the geometric average of the local
DOS [32], which plays the role of the order parameter for
the Anderson localization. The TMT method was carefully
tested for the noninteracting system [31,33,34], and it was
successfully applied to the interacting case within the TMT-
DMEFT approach [35], elucidating the full nonmagnetic phase
diagram for the disordered half-filled Hubbard model and
the precise nature of the Mott-Anderson critical point [36].
The TMT-DMFT approach also allows for a spin-dependence
analysis of the DOS, which enables one to include the effects
of long-range magnetic order in disordered and interacting
systems [37].

In this paper, we perform a TMT-DMFT calculation at
finite temperatures. We explore the entire nonmagnetic phase
diagram, with a particular focus on the effects of disorder on the
Mott metal-insulator coexistence region. We carefully com-
pare the TMT-DMFT and CPA-DMFT results with the goal
of precisely determining the Anderson localization effects, de-
scribed only within the former method. We find that the TMT-
DMEFT coexistence region is at comparatively lower values of
the interaction U, while the critical temperature 7, is higher
than in CPA-DMFT. The width of the coexistence region,
however, quickly decreases with disorder. At disorder strength
W ~ 2B, where B is the bandwidth in the clean noninteracting
system, TMT-DMFT predicts 7, to abruptly go to zero, as
opposed to the CPA-DMFT solution, where the coexistence
region asymptotically shrinks to a single point as disorder is in-
creased to infinity. In the regime W 2 2B, the MIT takes place
at U ~ W, which causes Anderson and Mott mechanisms to
become equally important for the properties of the system.

©2015 American Physical Society
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The paper is organized as follows. In Sec. II we briefly
present the TMT-DMFT method for the solution of the
disordered Hubbard model, and the (U,W) phase diagram
is shown is Sec. III. Sections IV and V show details of the
metal-insulator transition in the presence of weak, moderate,
and strong disorder. Section VI contains conclusions.

II. TMT-DMFT METHOD

We consider the Hubbard model with random site energies,
given by the Hamiltonian

H=—t Z(ci,cj(T +H.c)+U annu + Z(si — Wiy

(ij)o i ic

where cjg (cis) creates (destroys) an electron with spin o on
site i, n;, = cjgcia, t is the hopping amplitude for nearest-
neighbor sites, U is the on-site repulsion, and ¢; is the random
on-site energy, which follows a uniform distribution P(e) of
width W, centered in &; = 0. We study the half-filled particle-
hole symmetric lattice by setting the chemical potential
equal to U/2. In general, transition-metal oxides and organic
salts described by the Hubbard model can exhibit both
antiferromagnetic and paramagnetic Mott insulating phases.
In this work, we focus on the paramagnetic solution, which is
present even at zero temperature in frustrated lattices.

Within TMT-DMFT, the lattice model describing a dis-
ordered correlated system is mapped onto an ensemble of
single-impurity problems, corresponding to sites with different
values of the on-site energy, each being embedded in a
typical effective medium that needs to be calculated self-
consistently. The TMT-DMFT self-consistent procedure can
be summarized as follows [31,36]: By considering an initial
guess for the (typical) bath A(w) surrounding the impurities,
we solve an ensemble of impurity problems, which give us
local Green’s functions G(w,e;) from which local spectra
plw,e;) = —%ImG(w,si) are obtained. The typical DOS is
then calculated by the geometric average of the local spectra,

Pryp(@) = exp [ f de P(e)In p(w,E)},

and the typical Green’s function is obtained through the
Hilbert transform, Gy,(w) = f_oooo da)%. For lattices with

AV — (%“’)2, in the clean non-

semicircular DOS, po(w) =

interacting limit (Bethe lattice with infinite coordination
number), the self-consistent loop is closed by calculating
a new bath according to A(w) = tzthp(w). To solve the
single-impurity problems, in this work we use the iterative
perturbation theory (IPT) on the real axis [38,39]. In this case,
we do not need analytic continuation. This is an important
advantage of this method since the TMT self-consistency
relation is based on the local DOS.

III. PHASE DIAGRAM

Figure 1 presents the TMT-DMFT phase diagram of the
disordered Hubbard model obtained at a small temperature,
T = 0.008. Here and throughout the paper, we define the
noninteracting bandwidth B = 4t as the unit of energy.
In the phase diagram, the black and pink circles correspond to

’
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FIG. 1. (Color online) (U,W) phase diagram obtained within
TMT-DMFT for the disordered Hubbard model at 7 = 0.008. The
description of the different symbols/colors used is given in the text.

the metallic and the insulating spinodal lines of the first-order
Mott phase transition; these two lines delimit the metal-
insulator coexistence region. The green triangles indicate a
transition between a metal and a Mott insulator in the absence
of a well-defined coexistence region (see Sec. V for details),
while the blue stars indicate a transition between a metal
and a correlated Anderson insulator. Finally, the red squares
correspond to a crossover between the two insulators, which
takes place at W ~ U.

To differentiate the phases and build the phase diagram,
we have analyzed the behavior of the typical DOS at the
Fermi level [pyp(0)], the frequency-integrated typical DOS
(N), and the site occupation as a function of the on-site
energy. As an example, these quantities are presented in
Fig. 2 for the particular case of U = 1.75 and T = 0.008.
For this set of parameters, as disorder W increases, the
system goes from the Mott insulator to the Anderson insulator,
crossing an intermediate metallic phase (see Ref. [40], for
example, for a discussion about the presence of an intermediate
metallic phase when disorder increases). The Mott insulator
is characterized by a gap in the typical DOS [p4,(0) = 0]
and a finite frequency-integrated typical-DOS N [see panel
(a)], as well as a single occupation of all sites [see panel (b)].
The metallic phase, on the other hand, features a quasiparticle
peak in the typical DOS, nonzero integrated DOS N, and a
variable site occupation rn;. Finally, the correlated Anderson
insulator shows a vanishing typical DOS, indicating that
all the states are localized and as such do not contribute
with spectral weight to the typical DOS [31,35]. For this
reason, the frequency-integrated typical DOS goes to zero
when the system approaches the Anderson insulator, and
thus it can be used as an order parameter that signalizes this
transition. Furthermore, within the TMT-DMFT, the Anderson
insulating phase corresponds to a two-fluid phase [36]: it
consists of empty and doubly occupied sites, characteristic of
noninteracting Anderson insulators, as well as singly occupied
sites, characterizing Mott localized states [see the results for
W = 4 in panel (b)].

We find good agreement between our diagram and others
known in the literature at 7 = 0 [35,36]. The most relevant
effects of finite but small temperature are over the Mott
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FIG. 2. (Color online) TMT-DMFT results for U = 1.75 and
T = 0.008. According to the phase diagram of Fig. 1, as disorder
W increases, the system goes from the Mott insulating phase to the
metallic phase and finally to the Anderson insulating phase. These
transitions are identified (and the phase diagram is built) by looking
at the behavior of the quantities shown in the two panels of the present
figure: (a) frequency-integrated typical DOS, N, and typical DOS at
the Fermi level, pyy,(0), as a function of W, and (b) site occupation
per spin as a function of the site energy, normalized by the disorder
distribution width, W. The inset shows an example of the typical DOS
in the metallic phase (red long-dashed line), as well as in the Mott
(black dashed line) and the Anderson (green solid line) insulating
phases.

coexistence region, which spans a smaller range of U in
comparison with the 7 = 0 case. The real axis IPT impurity
solver makes it possible to solve TMT-DMFT equations for
a broad range of parameters and several temperatures. In the
following, we concentrate on the range of parameters near the
phase transition, and, in particular, near the coexistence region
of metallic and insulating solutions.

IV. MOTT TRANSITION FOR WEAK AND MODERATE
DISORDER W < 2B

In this section, we analyze the coexistence region
for weak and moderate disorder, which corresponds to
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FIG. 3. (Color online) Hysteresis curves for the DOS at the Fermi
level obtained by increasing and decreasing U at a fixed temperature
T =0.01. The curves enclose the coexistence region. The open
squares were obtained within CPA-DMFT, while the filled circles
correspond to TMT-DMFT results.

W < W*, W* = 1.7. At this regime, the critical U for the Mott
transition is greater than the disorder strength. Although the
phase transition described within TMT-DMFT is qualitatively
similar to that of CPA-DMFT, some Anderson localization
effects are already observed.

A. Coexistence region

To obtain the coexistence region within CPA-DMFT or
TMT-DMFT for a fixed temperature 7 < T,, we start from
a metallic initial bath and increase U to find U., which
corresponds to the interaction value at which p(0) goes to
zero, indicating the disappearance of the quasiparticle peak
in the DOS. Alternatively, when starting from an insulator,
by decreasing U we find U,.;, where p(0) becomes finite,
indicating the closure of the gap at the Fermi level. This
procedure allows us to obtain hysteresis curves of p(0) as
a function of U, which enclose the coexistence region (see
Fig. 3 for examples of these hysteresis curves). For a given
W, we can repeat this procedure for different temperatures
and determine the two spinodal lines, U, (T) and U (T),
defining the coexistence region. The temperature at which the
two spinodal lines merge gives the critical temperature, T,
which corresponds to a second order critical end point.

Figure 4 shows the coexistence region obtained as described
above for the clean case (W =0) and for a disordered
system (W = 0.8), both within TMT-DMFT and CPA-DMFT.
According to our results, when disorder is added to the system,
the critical U at which the transition occurs increases in com-
parison with the clean case. This happens because the general
effect of disorder is to broaden the bands, as shown in Fig. 5,
when the CPA-DMFT calculation is performed inside both the
metallic and the insulating phases. Another general effect of
disorder seen in the results of Fig. 4 is that the temperature
of the second-order critical point decreases with disorder,
in agreement with previous CPA-DMFT calculations [26].
These general consequences of disorder do not depend on
the inclusion of Anderson localization effects, since they are
observed even within the CPA-DMFT approach.
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FIG. 4. (Color online) Spinodal lines enclosing the coexistence
region for the clean system (W = 0) and the disordered case (W =
0.8) obtained within both TMT-DMFT and CPA-DMFT.

To carefully study the effects of Anderson localization, we
compare the results obtained within TMT-DMFT with those of
CPA-DMFT. As can be seen in Fig. 4 for W = 0.8, the critical
U at which the transition occurs is smaller within TMT-DMFT
than within CPA-DMFT. Moreover, a narrower coexistence
region is observed within the former. To understand these
results, one should consider that the wave-function localization
starts at the band edges and that localized states do not
contribute with spectral weight to the typical DOS. For these
reasons, in the presence of Anderson localization, narrower
bands are observed in comparison with CPA-DMFT results,
both in the metallic and the insulating phase, as can be seen
in Fig. 6. This is the opposite effect to that described in the
previous paragraph regarding the effects of adding disorder
to a clean system. As a consequence, the coexistence region
within TMT-DMFT is seen in between that of a clean system
and that obtained within CPA-DMFT for the same value of
disorder.

From the TMT-DMFT and the CPA-DMFT hysteresis
curves shown in Fig. 3, we see that the Anderson localization
effects over the coexistence region become more important
as the disorder increases. As W approaches W* ~ 1.7, the
width of the TMT-DMFT coexistence region vanishes, and we
were not able to observe the hysteresis even at the lowest
temperatures 7 = 0.005 (see Sec. V). In contrast, in the
CPA-DMEFT solution [26], the coexistence region with finite
small 7 is observed even for very large W.

T T T T T T T T T T
1.2F 0.6
~0.8F 0.4 ~
3 3
Q Q
0.4 0.2
0.0 0.0

FIG. 5. (Color online) Average DOS obtained within CPA-
DMFT for different values of disorder at fixed temperature 7 = 0.01.
Disorder broadens the bands in both the metallic (left panel, for
U = 1) and the insulating (right panel, for U = 3) phase.
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FIG. 6. (Color online) Typical (TMT-DMFT) and average (CPA-
DMFT) values of the DOS as a function of frequency showing that
Anderson localization effects start at the band edges, since both
localized and extended states contribute to the average DOS, while
only extended ones contribute to the typical DOS. The left panel
shows results for U = 1.5, while those in the right panel are for
U =1.6,bothat T =0.01.

B. Crossover regime and the critical temperature 7,

As seen in Fig. 3, the coexistence region shrinks as disorder
increases, making it difficult to obtain the critical temperature
T, from the merging of the two spinodal lines. One alternative
is to determine 7, from the results obtained above it, that is,
in the crossover region between metal and insulator. This was
shown to be possible in the clean case, and in the present work
we extend this analysis to the disordered system.

The quantum Widom line (QWL) associated with the Mott
transition is defined in Refs. [41-44] in analogy with the
classical Widom line [45] as the instability (crossover) line
above the critical end point (U, T,). It starts at the critical end
point and goes to higher temperatures (above the coexistence
region) as a continuation of the first-order phase-transition
line. It is associated with the (zero-temperature) quantum
critical point, which is masked by the coexistence region in
the case of the Mott transition. The QWL can be defined from
the free-energy functional F[G(iw,)], and it can be used
to determine 7, from the behavior at higher temperatures,
as explained (for the clean case) in Refs. [41,42]. With the
objective of applying the QWL analysis to obtain 7, in the
disordered case, here we review this procedure.

The Landau free-energy functional of the Hubbard model
as a functional of G(iw,) is given by

F[G(iw)] = =T1* ) GXiwy) + FimplGliw,)],

where the first term represents the energy needed to form
the bath around a given site, and the second term describes
the energy of the electron at the impurity level surrounded
by the bath, that is, the free energy of the single-impurity
problem. The DMFT (TMT-DMFT) equations are obtained
by minimizing F;[G(iw,)] with respect to G(iw,).

The curvature A of the above free-energy functional with
respect to U is finite and minimal along the crossover
line and is zero at the second-order critical point. This curva-
ture can be identified with the convergence rate of the iterative
DMEFT calculation [41,42], that is, A(U,T) corresponds to the
slope of the convergence rate In{Im[G"(0) — G1~1(0)]} as a
function of the step “it” of the iterative calculation. Repeating
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FIG. 7. (Color online) QWL analysis for the disordered system
with W = 0.8 described by TMT-DMFT. See the text for the
explanation of the results in each panel.

the calculation for different values of 7', we obtain the curve
Amin = A(T)|y*, where U* is the point at which A is minimum
for a given T. This line can be extrapolated, to Amin|7=7, =0,
since the curvature of the free-energy functional is zero at the
second-order critical point.

The procedure is illustrated in Fig. 7 for the disordered
system with W = 0.8. For each value of U, we obtain
the free-energy curvature A from the convergence rate of
the typical Green’s function through the iterative steps, as
presented in (a) for T = 0.025. For a fixed temperature and
different values of U, we obtain the corresponding A(U)|r
curve. Repeating this procedure for different temperatures, we
obtain the set of curves A(U)|r presented in Fig. 7(b). The
minima Api, of these curves are shown in panel (c), and we
obtain 7, as the temperature at which A, = 0. Finally, panel
(d) shows the crossover line obtained from data in panel (b),
T, obtained through the QWL analysis (gray horizontal line),
and the two spinodal lines. We conclude that the 7, calculated
from the QWL analysis coincides with the 7, obtained from the
merging of the two spinodal lines that define the coexistence
region.

In Fig. 8, we show the QWL and the critical temperatures
obtained from them as we vary the system disorder, both
within TMT-DMFT and CPA-DMFT. For disorder strengths
W 2 1.6, we find a nonlinear behavior of the TMT-DMFT
convergence rate as a function of the iteration step; we
were thus unable to use the QWL analysis discussed above
to evaluate T, for very large disorder. For W < 1.7, both
methods predict that 7, decreases when W increases [see also
the inset in Fig. 8(a)]. The critical temperature 7, is higher
within TMT-DMFT than within CPA-DMFT, although the
coexistence region becomes (very) narrow in the presence of
Anderson localization effects (TMT-DMFT results). However,
T, always remains finite within CPA-DMFT even for very
large disorder strength [26], whereas we do not observe the
coexistence region for W 2 1.7 in TMT-DMFT (see the next
section). Our numerical TMT-DMFT solution indicates that
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FIG. 8. (Color online) QWL and coexistence regions obtained
within TMT-DMFT (a) and CPA-DMFT (b) for different values
of disorder (CPA-DMFT coexistence regions for W > 1.2 were
obtained from Ref. [26]). The horizontal lines represent 7, obtained
from the corresponding QWL, calculated as exemplified in Fig. 7 (c).
The inset shows these 7. values as a function of disorder.

T, abruptly drops to zero as the coexistence region disappears
for W = 1.7.

V. MOTT-ANDERSON TRANSITION FOR STRONG
DISORDER W > 2B

Within the TMT-DMFT calculation, as we increase disor-
der, the value of the critical U becomes closer to the disorder
width W. For U ~ W ~ 2B both Mott and Anderson routes
to localization become equally relevant, and it becomes the
most difficult to precisely understand the mechanism of the
MIT. In Fig. 9, we show the results for W = 2.0 at T = 0.01.
The transition is seen to take place at U = 2.09. Moreover, if
we look at the results for the typical DOS at the Fermi level
when U increases, as well as when U decreases [see panel (a)],
we observe no hysteresis, even if we decrease the temperature
down to 7' = 0.005, in contrast to the results shown in Fig. 3.
Since pyp(0) becomes zero, the system certainly goes through
a MIT—but to what type of insulator does the system go?

To answer this question, we first look at the frequency-
integrated typical DOS N, which can be considered an order
parameter in the case of the Anderson transition, as discussed
in the beginning of the paper. As can be seen in Fig. 9(a),
N becomes very small but is still finite when pgy,(0) — 0,
suggesting that the transition is not of the Anderson type. The
nature of the transition can finally be confirmed by analyzing
the occupation number per spin 7n; as a function of the site
energy close to the transition, which can be seen in panel
(b). As U increases toward the MIT, all sites become singly
occupied, which is a characteristic of the Mott insulator.
Although of the Mott type, the Hubbard subbands are strongly
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FIG. 9. (Color online) Results obtained within TMT-DMFT for
W =2.0atT = 0.01. Panel (a) presents the typical DOS at the Fermi
level obtained by increasing U (black circles) and decreasing U (red
stars); no coexistence region is observed. In the same panel, we can
also see the frequency-integrated typical DOS N as a function of
U. The inset shows the typical DOS as a function of frequency for
U = 2.08 (black solid line) and U = 2.10 (red dashed line). Finally,
panel (b) presents the occupation number per spin as a function of
the site energy as the transition is approached.

reduced for this value of W, as can be seen in the DOS
presented in the inset, which is consistent with our expectation
that both Mott and Anderson routes to localization are relevant
in this regime of U ~ W.

Interestingly, our analysis of Fig. 9 suggests that for
W = 2.0 there exists a transition between a metal and a
Mott insulator in the absence of a coexistence region. Indeed,
according to the phase diagram (Fig. 1), the same behavior is
observed in a small range around U &~ W = 2. According to
Figs. 3 and 8, TMT-DMFT predicts that the coexistence region
will become (very) narrow when the system is in the U < W
regime and disorder increases. When the system enters the
U ~ W regime, the two spinodal lines seem to merge and no
coexistence is observed, suggesting that 7, abruptly goes to
zero due to the Anderson localization effects. Our results are in
general agreement with the 7 = 0 phase diagram of Ref. [35]
while presenting a much more detailed analysis of the MIT
with the vanishing coexistence region.

For W 2> 2.3, one can find a direct crossover between
the two insulators, Mott and correlated Anderson, without
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an intermediate metallic phase; this crossover is represented
by red squares in our diagram of Fig. 1. To distinguish
between the two insulators, we have looked at the occupation
number as a function of site energy, as exemplified in Fig. 2.
Our results show that when W < U, all the sites are singly
occupied, characterizing a Mott insulator; when W > U, on
the other hand, there are sites with energy larger than U/2,
which are empty, sites with energy smaller than —U /2, which
have double occupancy, and also sites occupied with one
electron, characterizing the two-fluid behavior of the correlated
Anderson insulator. According to these results, as might have
been expected from the two-fluid picture of the Mott-Anderson
insulator [36], the crossover between the two insulators is seen
to take place at W ~ U.

VI. CONCLUSIONS

In this work, we studied Mott and Anderson routes to
localization by using a combination of dynamical mean-field
theory (DMFT) and typical medium theory (TMT) to solve
the disordered Hubbard model. According to our TMT-DMFT
results, Anderson localization has important effects near
the Mott transition, especially on the coexistence region of
metallic and insulating phases that exists below a critical
temperature 7. In the presence of small and moderate disorder
W, the TMT-DMFT transition is qualitatively similar to that
in the CPA-DMFT case (which does not describe localization
due to disorder), and the main precursors of Anderson
localization are seen in the narrowing of the coexistence
region in comparison with CPA-DMFT. As the disorder
increases further, for W 2> 2B (where B is the bandwidth for
U = W = 0), the transition occurs at U =~ W and our results
indicate that Anderson and Mott routes to localization become
equally important. The critical temperature 7, abruptly goes
to zero for W = W*~ 1.7B. For 1.7B < W ~U < 2.3B,
the typical DOS at the metal-insulator transition is strongly
reduced, but the states are nearly half-filled irrespective of
the on-site energy, indicating dominantly Mott character of
the MIT, although no coexistence region is observed. For even
larger disorder, W > 2.3, there is a crossover between the Mott
and the correlated Anderson insulator.

The observation of a Mott transition without a coexistence
region suggests that the nature of the transition has changed
from first to second order as disorder increases. For the clean
system, it has been shown [41] that at T just above T, the re-
sistivity as a function of temperature shows a scaling behavior
that is compatible with an assumption of quantum criticality.
In other words, despite the presence of a coexistence region
between the metallic and the Mott insulating phases at small
temperatures, at intermediate temperatures the system seems to
be controlled by a hidden quantum critical point. Very recently,
an experimental work on k-organics confirmed the presence of
this quantum critical regime at intermediate temperatures [44].
In this respect, it will be very important to compare the
TMT-DMFT phase diagram and charge transport with the
experiments on disordered correlated systems. Preliminary
results [46] on introducing disorder by x-ray irradiation show
that U, indeed increases with disorder while T, also decreases
and seems to vanish at some finite disorder.
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Bad-metal (BM) behavior featuring linear temperature dependence of the resistivity extending to well
above the Mott-Ioffe-Regel (MIR) limit is often viewed as one of the key unresolved signatures of strong
correlation. Here we associate the BM behavior with the Mott quantum criticality by examining a fully
frustrated Hubbard model where all long-range magnetic orders are suppressed, and the Mott problem can
be rigorously solved through dynamical mean-field theory. We show that for the doped Mott insulator
regime, the coexistence dome and the associated first-order Mott metal-insulator transition are confined to
extremely low temperatures, while clear signatures of Mott quantum criticality emerge across much of the
phase diagram. Remarkable scaling behavior is identified for the entire family of resistivity curves, with a
quantum critical region covering the entire BM regime, providing not only insight, but also quantitative

understanding around the MIR limit, in agreement with the available experiments.

DOI: 10.1103/PhysRevLett.114.246402

Metallic transport inconsistent with Fermi liquid theory
has been observed in many different systems; it is often
linked to quantum criticality around some ordering phase
transition [1,2]. Such behavior is notable near quantum
critical points in good conductors, for example in heavy
fermion compounds [3,4]. In several other classes of materi-
als, however, much more dramatic departures from con-
ventional metallic behavior are clearly observed, where
resistivity still rises linearly with temperature, but it reaches
paradoxically large values, well past the Mott-Ioffe-Regel
(MIR) limit [5,6]. This bad-metal (BM) behavior [7] was first
identified in the heyday of high-temperature superconduc-
tivity, in materials such as La,_,Sr,CuO, [8]. While the
specific copper-oxide family and related high-7'. materials
remain ill-understood and marred with controversy, it soon
became clear that BM behavior is a much more general
feature [6] of materials close to the Mott metal-insulator
transition (MIT) [9]. Indeed, it has been clearly identified
alsoin various oxides [10,11], organic Mott systems [12—14],
as well as more recently discovered families of iron pnictides
[15]. Despite years of speculation and debate, so far its clear
physical interpretation has not been established.

To gain reliable insight into the origin of BM behavior, it
is useful to examine an exactly solvable model system,
where one can suppress all possible effects associated with
the approach to some broken symmetry phase, or those
specific to low dimensions and a given lattice structure. This
can be achieved by focusing on the maximally frustrated
Hubbard model, where an exact solution can be obtained
by solving dynamical mean-field theory (DMFT) equa-
tions [16] in the paramagnetic phase. Although various
aspects of the DMFT equation have been studied for more
than twenty years, only very recent work [17,18] established
how to identify the quantum critical (QC) behavior

0031-9007/15/114(24)/246402(5)
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associated with the interaction-driven Mott transition at
half-filling.

Here we present a large-scale computational study across
the entire phase diagram, showing that qualitatively differ-
ent transport behavior is found in doped Mott insulators.
Our study reveals a clear and quantitative connection
between BM phenomenology and the signatures of Mott
quantum criticality, including the characteristic mirror
symmetry [19] of the relevant scaling function. We dem-
onstrate that the associated QC region, featuring linear
temperature dependence of resistivity around the MIR limit,
corresponds to a fully incoherent transport regime. In
contrast, the coherent Fermi liquid (FL) regime and even
the resilient-quasiparticle regime [20,21] do emerge at lower
temperature, but here the resistivity remains well below
the MIR limit. Our results provide strong evidence that
bad-metallic behavior represents a universal feature of
high-temperature transport close to the Mott transition,
presenting intriguing parallels with recent ideas based on
holographic duality [22,23].

Phase diagram.—We consider a single-band Hubbard
model defined by the Hamiltonian

H = —tz (clTch[, +H.c.) + UZ”iT”ii - ch};cw,
(i.j),0 i i,o

where ¢ stands for the nearest-neighbor hopping amplitude,
U is the on-site interaction, and p denotes the chemical
potential. The creation and annihilation operators for spin
orientation ¢ are denoted by chand ¢y and n;, = c};c ic- We
solve the DMFT equations using the continuous-time quan-
tum Monte Carlo (CTQMC) algorithm for the impurity
solver [24-26]. We focus on the paramagnetic solution which
is a physically justified assumption for frustrated lattices. We

© 2015 American Physical Society
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use the semielliptic bare density of states and set the half-
bandwidth D = 1 as the unit of energy. This corresponds to
the infinitely dimensional Bethe lattice, as well as the fully
connected lattice with random hopping amplitudes [16].
At half-filling, strong enough on-site interaction U opens
a spectral gap at the Fermi level and produces the Mott
insulating state [16]. The Mott insulator can also be
destroyed by adding electrons to the system, i.e., raising
the chemical potential 4. When y reaches the upper Hubbard
band, the system is once again conducting [20]. In both
cases, at low temperature the transition is of the first order,
and features a pronounced jump in the value of resistivity
and other quantities [27]. Around the first-order transition
line, a small coexistence region is present, where both
metallic and insulating phases are locally stable. Our
calculations show (see the Supplemental Material, Secs. I
and I [28]) that the critical end-point temperature 7'.(U) for
the doping-driven transition rapidly drops with increasing
interaction, and at U = 4 it already is less than 10% of that
at half-filling. This is illustrated in Fig. 1(a). At the critical
end-point (red dots), the two solutions merge, and above it
no true distinction between the phases exists; only a rapid
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FIG. 1 (color online). (a) Phase diagram of the maximally
frustrated Hubbard model. The quantum critical scaling is
observed in the green region which extends to lower temperatures
as T, (red dots) is reduced. (b) Color plot of the resistivity in the
(¢, T) plane for U = 4. The quantum Widom line (see text) passes
through the crossover region where the resistivity is around the
MIR limit. The coexistence region (gray) is barely visible on the
scale of this plot.

crossover is observed upon variation of U or p. Previous
work [17,18] examined the vicinity of the interaction-driven
MIT at half-filling; here we analyze the broad finite temper-
ature crossover region between the half-filled Mott insulator
and the doped Fermi liquid state [27,34-36]. This bad-metal
regime, displaying very different transport behavior than
that found at half-filling, is the main focus of this work.

In Fig. 1(b), we color-code the resistivity in the (u,T)
plane, calculated for U = 4. The resistivity is given in units
of the Mott-Ioffe-Regel limit pygr Which is defined as the
highest possible resistivity in a Boltzmann semiclassical
metal, corresponding to the scattering length of one lattice
spacing. Numerical value for pyr is taken consistently
with Ref. [21]. At p = U/2, the system is half-filled. At
approximately y = U — D = 3, the Fermi level enters the
upper Hubbard band, and a first-order doping-driven MIT
is observed at temperatures below 7, = 0.003D. While the
chemical potential is within the gap, a clear activation
behavior, p ~ efs/T, is found at low temperatures. On the
metallic side of the MIT, due to the strong electron-electron
scattering, the resistivity grows rapidly with temperature,
and typical Fermi-liquid behavior is observed only below
rather low coherence temperature T (denoted with the
gray dashed line).

Quantum critical scaling.—In the standard scenario for
quantum criticality [1,9], the system undergoes a zero-
temperature phase transition at a critical value of some
control parameter g = g., and within a V-shaped finite
temperature region, physical quantities display scaling
behavior of the form A(g,T) = A.(T)F[T/(g— g.)%].
Mott MIT is a first-order phase transition [37], but the
corresponding coexistence region is confined to extremely
low temperatures, and at temperatures sufficiently above
the critical end-point T'., the quantum effects are expected
to set in [1], and restore the QC behavior.

To test the QC scaling hypothesis in the case of a Mott
transition, one must first identify the appropriate g.(T)
instability trajectory [17,18] which enters the argument of
the scaling function (for illustration, see the Supplemental
Material, Fig. 2 [28]). g.(T) marks, on the phase diagram, a
trajectory where the system is least stable (i.e., is found in
equal proximity to both the metal and the insulator), and is
therefore most prone to fluctuations. The relevant thermo-
dynamic stability is most easily determined from the
curvature A of the free energy functional F|[G(iw,)] near
its global minimum; this can be numerically determined
by monitoring the convergence rate in the DMFT self-
consistency loop [17]. Having in mind the analogy of this
definition with the standard Widom crossover line for
classical liquid-gas transitions [38], we refer to the insta-
bility line as the “quantum Widom line” (QWL) [18].

We carried out a careful A analysis for the doped Mott
insulator (see the Supplemental Material, Sec. III [28]), and
we display the resulting QWL trajectory x*(7') as an orange
line in all plots [throughout this Letter, an asterisk in the
superscript indicates physical quantities evaluated along the
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QWL; e.g., p*(T) is resistivity calculated at temperature 7
at 4 = u*(T)]. The QC region (green) spreads above the
critical end point (red points and dotted line) and quickly
extends to much lower temperatures as 7, is reduced
[Fig. 1(a)]. The QWL, separating the metalliclike and
the insulatinglike behavior, marks the center of the corre-
sponding QC region, where the resistivity curves are
expected to display the scaling behavior of the form

p(u.T) = p*(T)F[T/Ty(dp)]. (1)

Here the parameter T, should assume power-law depend-
ence on the deviation from the QWL: T(du) ~ du®, with
du = p— p*(T).

To check validity of the scaling hypothesis, Eq. (1), we
calculate the resistivity along the lines parallel to the QWL,
as shown in Fig. 2(a). We find that, for the doped Mott
insulator, the resistivity shows very weak temperature
dependence along the QWL. In particular, above
T = 0.08, it follows the line of constant resistivity which
coincides with the MIR limit, p*(7 > 0.08) = pyr (in
contrast to the behavior previously established at half-
filling [17,18], where p > pyr along the QWL). In fact, all
curves converge precisely to the MIR limit at high temper-
atures, suggesting its fundamental role in characterizing the
metal-insulator crossover for doped Mott insulators. The
curves also display the characteristic bifurcation upon
reducing temperature, and a clear change in trend upon
crossing the QWL. The scaling analysis confirms that all
the curves indeed display fundamentally the same func-
tional dependence on temperature, and that they all can be
collapsed onto two distinct branches of the corresponding
scaling function [Fig. 2(b)]. The scaling exponent has been
estimated to be zv = 1.35 £ 0.1 for both branches of the
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FIG. 2 (color online). (a) Family of resistivity curves calculated
along lines parallel to the QWL (orange). (b) Upon rescaling the
temperature with adequately chosen parameter 7', the resistivity
curves collapse and reveal mirror symmetry of metalliclike and
insulatinglike behavior around the QWL. T, depends on the
distance from the QWL as Ty (du) ~ du®, with zv =~ 1.35.

scaling function, which display mirror symmetry [17,19]
over almost two decades in T /T, and the scaling covers
more than 3 orders of magnitude in resistivity.

Bad-metal behavior.—We demonstrated the emergence
of clearly defined quantum critical behavior through an
analysis of the (u, T) phase diagram, with du = pu — p* as
the scaling parameter. From the experimental point of view,
it is, however, crucial to identify the corresponding QC
region in the (6,7) plane and understand its implications
for the form of the resistivity curves for fixed level of
doping p(T')|s. By performing a careful calculation of the
5(u, T) dependence (see the Supplemental Material, Fig. 4
[28]), it is straightforward to replot our phase diagram and
resistivity curves in the (8, T') plane. Remarkably, we find
that the quantum critical scaling region covers a broad
range of temperatures and dopings, and almost perfectly
matches the region of the well-known bad-metal transport
[21,39], characterized by the absence of long-lived quasi-
particles and linear p(T)|s curves. We first analyze the
(6,T) phase diagram in detail, and then establish a
connection between the slope of p(T)|s curves in the
bad-metal regime and the QC scaling exponent vz.

In Fig. 3(a), we show the phase diagram of the doped
Mott insulator. At 7 = 0, the Mott insulator phase is found
exclusively at zero doping. At low enough temperature and
finite doping, characteristic Fermi liquid behavior is always
observed. Here, the resistivity is quadratic in temperature,
while a clear Drude peak is observed at low frequencies
in optical conductivity and density of states (see the
Supplemental Material, Fig. 5 [28]). The coherence temper-
ature Tgp is found to be proportional to the amount of
doping 8, however, with a small prefactor of about 0.1, in
agreement with Refs. [20,21]. In a certain temperature
range above T, a Drude peak is still present as well as the
quasiparticle resonance in the single-particle density of
states, but the resistivity no longer follows the FL T?
dependence. This corresponds to the resilient-quasiparticle
(RQP) transport regime, which was carefully examined in
Ref. [21]. At even higher temperatures, the temperature-
dependent resistivity at fixed doping p(T)|; enters a
prolonged linear regime [see Fig. 3(b)] [40], which is
accompanied by the eventual disappearance of the Drude
peak around the MIR limit. This behavior is usually
referred to as the bad-metal regime [21]. The resistivity
is comparable to the MIR limit throughout the BM region,
and the QWL (as determined from our thermodynamic
analysis) passes through its middle.

The region of linear p(7T')|s dependence is found to be
completely encompassed by the QC scaling region between
the dashed lines on Fig. 3(a) (see the Supplemental
Material, Sec. VI [28]). We therefore expect that the
emergence of the linear 7 dependence of the resistivity,
as well as the doping dependence of its slope, should be
directly related to the precise form of the corresponding
scaling function. Indeed, at high temperature and close
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FIG. 3 (color online). (a) DMFT phase diagram of the doped
Mott insulator on a frustrated lattice. The bad-metal (green)
region matches perfectly the region of quantum critical scaling.
(b) The bad-metal regime features linear temperature dependence
of resistivity with the slope roughly proportional to an inverse
power law of doping which we find to be a consequence of
underlying quantum criticality.

to the QWL, the argument of the scaling function
x =du/T"% is always small, and the scaling function
can be linearized, viz., F(x) ~ 1 + Ax + - - -. We find that
the coefficient A has the numerical value A ~ —0.74. The
functional form for p(T)|; close to the QWL is then directly
determined by the behavior of the scaling parameter x(7)|5.
We find that x(7')|, is a linear function in a wide range of
temperatures around 7%(5). Then, close to the QWL,
the resistivity is well approximated by a linear function
of the form

Ox

(1)~ @){ 1+ a5

T~ T*(5) } @

5,T=T*(5)
Furthermore, the slope of the scaling argument at the QWL
can be expressed as (0x/0T)|5 r_r-(5) = {x*(8)(dT"*/d5)x
[T%(5)]"/=}~1, where y*(8) = (06/0u)|r—r-(5)- Here, we
observe that the charge compressibility is nearly constant

along the QWL, y*(8) =~ y* = 0.33 (see the Supplemental
Material, Fig. 6 [28]), which may be interpreted as
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FIG. 4 (color online).  Resistivity given by (a) the semianalytical
formula obtained from the scaling hypothesis, (b) DMFT result,
and (c) the experimental result on cuprate La,_,Sr,CuO,4 samples
from Ref. [8].

another manifestation of the quantum critical behavior
we identified. 7*(5) is approximately a linear function
T*(6) ~ Ko+ K6, where K~2 and K, is small. In
Fig. 3(b), we compare the approximation stated in
Eq. (2) with the DMFT result and find excellent agreement.

Finally, noting that for § > 5%, p*(8) = pmr, We arrive
at the central result of this Letter,

pacem(T)ls ~ par[1 + C57V/(T — K§)). (3)

In the quantum critical bad-metal regime, the resistivity has
a linear temperature dependence with the slope decreasing
as a power —1/zv of doping. This demonstrates a direct
connection of the universal high-temperature behavior in
the bad-metal regime with the (zero-temperature) quantum
phase transition. The MIR limit of the resistivity is reached
at temperature roughly proportional to the amount of
doping, T*(8) &, since the doping level sets the main
energy scale in the problem. The result of this simplified
scaling formula is color-plotted in Fig. 4(a) (with C = 0.69,
K =197, and zv =1.35) and shown to capture the
features of the full DMFT solution at high temperatures.
Discussion.—Sufficiently systematic experimental stud-
ies of doped Mott insulators, covering an appreciable range
of doping and temperature, remain relatively scarce. Still,
approximately linear temperature dependence of the resis-
tivity at high temperatures with a slope that decreases with
doping has been observed, most notably in the seminal
work of Takagi et al. [8] on La,_,Sr,CuO,. To make a
qualitative comparison with our theory and to highlight a
universal link of bad-metal behavior and quantum critical-
ity associated with the Mott metal-insulator transition, in
Fig. 4 we color code the reported experimental data; here
the temperature is shown in units of Ty at 20% doping
and the resistivity is given in units of pygr, Which in this
material is estimated as 1.7 mQcm. The experimental
results presented in Fig. 4(c) cover the temperature range
of 150-1000 K at 5% to 30% doping. Here one observes a
striking similarity between DMFT theory and the experi-
ment, as already noted in early studies [39-41]. We
established this result by focusing on an exactly solvable
model, where all ordering tendencies are suppressed, and
single-site DMFT becomes exact. Real materials, of course,
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exist in finite (low) dimensions where systematic correc-
tions to DMFT need to be included [42—45]. In many cases
[46-48], these nonlocal corrections prove significant only
at sufficiently low temperatures. Then our findings should
be even quantitatively accurate in the high-temperature
incoherent regime, as in the very recent experiments on
organic materials [49] for the case of half-filling.
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I. NUMERICAL DETAILS: THE DMFT LOOP
AND THE IMPURITY SOLVER

We have used the CTQMC impurity solver as imple-
mented by K. Haule in Ref. 1. We have used 4 — 6 x 10°
Monte Carlo steps. When T > 0.14, the high frequency
tail was calculated from the atomic limit and Hubbard-
I approximation was used otherwise. At high temper-
atures, 10-15 DMFT iterations were usually sufficient
to reach the self-consistent solution with the accuracy
|G (iwp) — G (iwp)| = 107*, where wy = £7T. In the
coexistence region, we used a larger number of DMFT
iterations (up to 30) to test the stability of the obtained
solution.

II. DETERMINATION OF T,
T. from the position of the spinodals

The first order phase transition is most easily observed
by looking at the occupation number. At very low tem-
perature, while the chemical potential is within the spec-
tral gap, filling is roughly a constant, i.e. n(u) =~ 0.5.
When the chemical potential reaches the upper Hubbard
band, a quasi particle peak forms abruptly at its lower
edge causing an immediate transfer of spectral weight
from the lower Hubbard band to the vicinity of the Fermi
level [2, 3]. This is observed as a jump in the occupancy
from nearly half-filling to around 2-3% doping. An in-
sulating solution is not possible when p is in the upper
Hubbard band, hence its bottom edge determines the
insulating (right) spinodal. However, a metallic solu-
tion is possible even when g is in the gap. This type
of state features an in-gap quasi-particle peak [4] and is
observed in the coexistence region. The lowest value of
the chemical potential at which the quasi particle peak
can survive constitutes the metallic (left) spinodal. The
disappearance of the QP peak at the metallic spinodal is
also abrupt, and occurs at finite doping. Therefore, there
is a range of doping that is not achievable locally at any
value of the chemical potential, but only globally through
phase separation. With increasing temperature, the for-
bidden doping range shrinks and disappear together with
the hysteresis loop, precisely at T, [5, 6]. Note also, that

the range of forbidden doping vanishes at T'= 0 as well,
where a metallic solution is possible even at infinitesimal
doping [2], although in this case particle-hole symmetry
is broken and p # U/2. In Supplementary Figure 1la,b
we show the hysteresis curves of the occupancy for two
values of interaction U. The position of spinodals and
the width of the coexistence region are easily determined
from the jumps in n(u). We considered the lowest tem-
perature at which no coexistence is observed to be the
critical temperature. Note also that due to the numeri-
cal error of the CTQMC, some unphysical doping is ob-
served in the insulating state at the lowest temperatures.
We were not able to obtain physically meaningful results
below T ~ 0.0015 and this is the lowest temperature at
which we have found the method to be reliable. The nu-
merical error from the CTQMC becomes significant at
low temperature and a precise assessment of T.’s lower
than = 0.002 proves very difficult. The coexistence re-
gions at the two values of U are shown in Supplementary
Figure 1c and d. The T = 0 position of the left spinodal
is taken from the ED calculation found in [4] and seems
to fit well our finite temperature results.

T. from the charge compressibility

The alternative way of determining 7. is by looking at
the uniform charge susceptibility x = g—z. Precisely at
the critical point, x is divergent and above T, there is a
line of maxima in x(u)|. Furthermore, it can be shown

[7] that close to the critical point x~! ~ %. This
is useful as one can extrapolate the values of x,1 (T) to
lower temperatures and see where it goes to zero. How-
ever, such method is of inferior accuracy compared to the
direct observation of the coexistence, and we use it only
for cross-checking of our results. In Fig. 1le we show such

calculation in the case of U = 3.2.

T. from the )\ analysis

In Supplementary Figure 1f we plot the values of A
along the instability line (see the next Section). Close to
the the critical point, it is very difficult to make a precise
estimate of the DMFT convergence rate, as high con-
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Figure 1: Coexistence region of the first-order doping-

driven Mott metal-insulator transition can be deter-
mined in different ways. (a),(b),(c),(d) The position of
spinodals can be determined from the jumps in the occupa-
tion number. In the coexistence region, two types of solution
are possible, depending on the initial guess in the DMFT pro-
cedure. This is observed as a hysteresis loop in the occupation
number and other quantities. (e),(f) Precisely at the critical
point, physical quantities often have extremal values (zero or
infinity). By extrapolating such quantities from higher tem-
peratures, one can estimate the critical temperature. (e) The
maxima of the inverse charge compressibility with respect to
the chemical potential can be extrapolated to obtain a good
estimate for T,. (f) The values of A along the instability line
1" (T') become scattered and overestimated close to the critical
point, due to numerical error from the CTQMC. This makes
it unpractical to to use extrapolation of A\* for estimation of
Te.

vergence is not achievable at all. The low temperature
values are therefore much more scattered and system-
atically overestimated. Although in principle one could
estimate T, from higher temperatures by extrapolating
A(T) = AM(p*(T), T), the numerical noise makes such a
method very impractical. Further difficulty lies in the
possibility of A*(T') changing trend before going to zero,
which introduces additional systematic error to the esti-
mate of T,.

III. QUANTUM WIDOM LINE AND THE )\
ANALYSIS

In our previous work [8], we have discussed a possible
generalization of the Widom line (originally defined in the
context of classical liquid-gas transitions [9]), to strictly
zero-temperature (quantum) phase transitions (see Sup-
plementary Fig. 2). The most natural way of defining
such a quantum Widom line is by looking at the free-
energy landscape around the ground state of the system,
as it is well defined in all physical models. Regardless
of the specifics of the phase transition, precisely at the
critical point, the free energy minimum is flat, i.e. its cur-
vature A is zero. At higher temperatures, this leads to a
line of minima in \ with respect to the parameter that is
driving the transition (at half-filling we had g—g = 0).
It is at those minima that the fluctuations are most pro-
nounced - the system is “equally close” to the two com-
peting phases and thus the least stable. Now we utilize
this concept in the case of doping-driven Mott transition,
and at each temperature search for the minimum value
of A\ with respect to the chemical potential.

In practice, we calculate A by monitoring the con-
vergence rate of the iterative DMFT procedure [10].
Given the model parameters, the free energy functional
Fu,r,u|G(iwy)] yields a smooth manifold in the Hilbert
space of the Green’s functions. Being Taylor expandable,
the local environment of any free-energy minimum has to
be parabolic. Thus, in the advanced stage of the DMFT
procedure, i.e. close to the self-consistent solution, a
steady, exponential convergence should be observed. The
curvature A is then directly related to the exponent of

9:(T)
9. g g

QCP | order PT

Figure 2: Standard QCP scenario is modified in the
case of the Mott MIT. At low temperature, the Mott
MIT is of (weakly) first order character, and features a co-
existence region (gray) where both phases are locally stable.
However, at temperatures sufficiently above the (very low)
critical temperature T, the QC scaling holds (green). The
critical transition-driving parameter g. is replaced by a more
general, temperature dependent quantity. Below 7. this is
the line of first order transition g.(7") where the two states
are equally favorable. Above 7. it is the line of "maximal
instability" of the ground state (see text), or the quantum
Widom line g* (7).



the functional dependence of the difference between the
consecutive solutions versus the iteration index. When
determining the convergence rate, however, it is not al-
ways sufficient to look at the Green’s function in only
the lowest Matsubara frequency, and one must use the
generalized Raileigh-Ritz (RR) formula [11]

_ G = GG, - G
Ai*l*z |G — Gi |2 ’ (1)

where ¢ stands for the iteration index, and ideally, A =
lim;_, o A\;. However, the highest achievable level of con-
vergence is determined by the amount of statistical noise
in the CTQMC result, and when it is reached, G(iw,,)
just fluctuates around the self-consistent solution, and
no further convergence is observed. Especially near the
critical point, CTQMC error becomes substantial and a
high convergence can not be reached at all. Here, typi-
cally only a few iterations are available for the estimation
of \ as most of the parabolic region is below the level of
numerical noise, and one must look carefully for the range
of iterations in which a steady exponential convergence
is observed.

The result presented with gray dots in Fig. 3a is ob-
tained by employing the RR formula from equation (1) at
each iteration i, and then taking the average over the set
of 5 consecutive iterations that shows the least variance,
i.e. the one corresponding to the period of the steadiest
exponential convergence.

Away from half-filling, however, there are additional
difficulties. Namely, G(iw,) is complex, which means
that it has additional degrees of freedom as compared to
its purely imaginary analogue at particle-hole symmetry.
Thus, the fluctuations encountered in the convergence
rate of G(iw,) are more severe, and the A-analysis is
harder to perform compared to the half-filled case. This
is why the data points presented with gray dots in Fig. 3
exhibit considerable scattering, but the overall trend is
still rather obvious. In all of the calculations regarding
the quantum critical (QC) scaling analysis, we use the
smooth fit (orange dashed line) as the instability line and
denote it with p*(T). Note that no other smoothing has
been performed on the data, and all the minima are es-
timated automatically from the raw A results. Although
there are considerable error bars on each p*(T) value, the
high resolution in temperature increases the certainty of
the result.

It is interesting that p*(T) is very close to the line of
maxima of the second derivative of the occupation num-

. . 2 . .
ber versus the chemical potential, 272 = max. This is
T

the place where n(u) changes trend, and as expected, the
instability line separates the metallic-like and insulating-
like behavior on the phase diagram. Also note that p*(7)
roughly follows an iso-resistive curve and so the resis-
tivity does not change considerably along the instability
line. At T > 0.08 p* is found to be constant and equal
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Figure 3: The instability line p*(7) (orange dashed)
corresponds to the minima in A(y)|r, which is re-
lated to the convergence rate of the DMFT loop. (a)
The precision of A results is limited by the statistical noise
in CTQMC. However, the minima in A(u)|r are still clearly
present, and p*(7") can be determined with satisfactory ac-
curacy. At high temperature, QWL is found to coincide with
the iso-resistive curve of the MIR limit (black dashed), which
is then used to extrapolate the QWL to temperatures above
T = 0.14, where A-analysis is no longer reliable. (b) The
QWL is also very close to the point where occupancy n(u)|r
changes trend, i.e. has a maximum of the second derivative.
The line of maxima in d?n/du®|r can also be considered a
crossover line between metallic and insulating behavior (light
blue dotted line on panel (a)).

to the Mott-Ioffe-Regel (MIR) limit. Above T = 0.14,
A-analysis can not give reliable results as the minimum
in A(u)|r becomes very shallow, i.e. of depth compa-
rable to the level of numerical noise. Throughout the
paper we extrapolate the instability line to high temper-
atures 7" > 0.14 by imposing the criterion p* = pumir-
Also note that at very low temperature, the actual form
of p(u*(T),T) depends strongly on the precise values
of u*(T') because, in this region, the resistivity changes
rapidly with the chemical potential.



IV. ANALYTICAL CONTINUATION AND
CALCULATION OF RESISTIVITY

The straightforward application of the maximum en-
tropy method (MEM) [12, 13] for analytical continua-
tion of the Green’s function can in some cases lead to
unphysical results. In the metallic phase, this method
tends to overestimate the height of the quasi-particle
(QP) peak in the single-particle energy spectrum given
by —1ImG(w+i0"). Sometimes in those cases, the imag-
inary part of the self-energy falsely goes to zero at several
frequencies (usually two or four), yielding an unphysical
vanishing DC resistivity. Given the analytically contin-
ued Green’s function on the real axis, the self-energy is
obtained from the DMFT self-consistency condition

Sw) = w+ i — G (w) - 2G(w), (2)
and the imaginary part of the above equation reads
Im¥(w) = ImG(w)(|G(w)| 72 — t2). (3)

It is immediately obvious that |G(w)| = 1/t yields
Im¥(w) = 0, at any frequency. When there is an unphys-
ical excess of QP weight, precisely this is seen, usually at
the edges of the QP peak. This makes the conductivity
integral divergent and the DC resistivity exactly zero.

We find that much better results are obtained by per-
forming MEM on the spectral function

1
iwn + pu—e — X(iwy)

Ale,iwy) = (4)

The self-energy is then easily extracted from the real-axis
result

Y(ew)=wtp—c— A7 e, w). (5)

Temperature T

Chemical potential y

Figure 4: Lines of constant doping intersect with the
QWL (orange), along which the resistivity is equal to
the MIR limit p,,, ..

Density of States -ImG
1 ainjesadwa)

Frequency w

Figure 5: Evolution of the density of states with in-
creasing temperature. At low temperature there is a clear
quasiparticle peak in the density of states. The quasiparticle
peak gradually disappears in the bad metal regime which is
centered around the QWL. The orange line is the density of
states at the QWL. The data are shown for the fixed chemical
potential ¢ = 3.5 and U = 4, which corresponds to roughly
15 % doping.

This procedure should in principle yield the same self-
energy for any value of €, but in practice this is not found
to be the case. However, a good estimate of ¥(w) is
obtained by averaging the results of each continuation,
ie.

N
Sw) = 5 3 Sleisw) )

Similarly, one could first calculate the Green’s function

Gm:/mwmwm (7)

and then get the self-energy from the DMFT self-
consistency. In practice, we have used 40 values of
e, equally spaced within the energy range of the non-
interacting band, and found that the systematic and nu-
merical error of MEM gets canceled by the averaging. We
have found that in this approach, physically meaningful
solutions are always obtained, results are more consis-
tent and have less numerical noise, but at the expense of
performing a much larger number of analytical continua-
tions. Where available, we cross-checked our results with
the findings in Ref. 14 where the analytical continuation
is performed via Pade approximant on the high-precision
CTQMC data, and found very good agreement.

Given the self-energy on the real axis ¥ (w), the optical
conductivity of the system can be calculated using the
Kubo formula [2]

o(w)=0, / / dedv®(e)A(e, V) Ale, VW)M ’

T ®



where A(e,v) = —(1/7)Im(e+pu—v—X(g)) ™!, f denotes
the Fermi function, ®(g) = ®(0)[1—(¢/D)?]*/2, and 0, =
2me? /h. We present the resistivity results in the units of
P = BD/e?®(0), consistently with Ref. 14. We have
calculated the resistivity p,. = 0~ 1(w — 0) in the whole
(1, T) plane. In Supplementary Figure 4 we show the
lines of constant resistivity and constant doping in the
(1, T) plane. An example of the evolution of the density
of states with temperature is shown in Supplementary
Figure 5.

V. CHARGE COMPRESSIBILITY

The QWL is defined in purely thermodynamic terms,
from the free energy functional, and as such can be ex-
amined for any model. In fact, it does not even require
the presence of a first order transition line with finite T..
It is therefore important to explore physical properties
other than the resistivity along and near the QWL. It is
striking that the charge compressibility is nearly constant
along the QWL, and has intermediate value between the
one in almost incompressible Mott insulator and Fermi
liquid, see Fig. 6.
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Figure 6: Color plot of the charge compressibility has
the "fan-like" form, as generally expected for quan-
tum criticality. The compressibility is approximately con-
stant along the QWL.

VI. BOUNDARIES OF THE QC SCALING
REGION

Around the quantum Widom line the resistivity is well
approximated by a function of only one argument, such
that

. T) =" (0F (51 ). )

where p*(T) = p(u*(T),T) is the resistivity along the
QWL. This behavior, typical for the quantum criticality,

is shown in Fig. 2 in the Main Text, where the resistiv-
ity curves are collapsed on the metallic and insulating
branch. The explicit form of the scaling function can be
obtained from an equivalent scaling equation

ol T) = 0" (F (775 ). (10)

with the advantage of F(z) being a smooth analytical
function in x. Then, the scaling function F(z) can be
obtained by plotting the DMFT resistivity data versus
the argument x = Tf%v and performing a numerical fit.
This is shown in Supplementary Figure 7a. F(z) is ap-
proximately linear on the logarithmic scale which implies
that F(z) ~ 1057, where B ~ —0.33. This analytical
form is consistent with the mirror symmetry of the scal-
ing formula near the QWL, F(z) = 1/F(—z). We can
see that the scaling region goes beyond the mirror sym-
metry of the scaled resistivity curves, especially on the
metallic side of the QC region.

The scaling region can be estimated from the color
plot of the relative error 7 = |ppayrrr — 108%|/pprrrr,
which is shown in Supplementary Figure 7b. The bound-
aries of the QC scaling region defined by r < 10% are
shown with gray dashed lines and correspond to the val-
ues Tmin = —1.0 and xyma = 1.5. Note that they coin-
cide with the g = 3.0 line (red dashed; it corresponds
to chemical potential being at the lower edge of the up-
per Hubbard band), and the knee-like feature in p(T)|s
curves (blue dashed; it corresponds to the boundary of
the linear resistivity bad metal region). It is obvious from
this plot that the QC scaling region completely matches
the region of typically bad metallic temperature depen-
dence of the resistivity.

The boundaries of the QC scaling region can alterna-
tively be estimated simply by looking at Fig. 7a and ob-
serving the maximum and minimum values of x for which
the DMFT results fall on a single well defined curve. This
yields zmin = —1.0 and . = 1.5. These lines are also
shown in Fig. 7b (gray dashed) and are in good agree-
ment with the independent estimate based on relative
error r.

Finally, the region of mirror-symmetry can be esti-
mated by plotting the DMFT resistivity data | log p% as a
function of y = T'/du*” (shown in Fig. 7c) and observing
the lowest y at which the two branches of data are found
to coincide. This analysis yields ypi, =1 = Ixmin/max|_1v
in agreement with other approaches.
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The experimentally established phase diagram of the half-filled Hubbard model features the existence of three
distinct finite-temperature regimes, separated by extended crossover regions. A number of crossover lines can
be defined to span those regions, which we explore in quantitative detail within the framework of dynamical
mean-field theory. Most significantly, the high-temperature crossover between the bad metal and Mott-insulator
regimes displays a number of phenomena marking the gradual development of the Mott insulating state. We
discuss the quantum critical scaling behavior found in this regime, and propose methods to facilitate its possible
experimental observation. We also introduce the concept of quantum Widom lines and present a detailed discussion
that highlights its physical meaning when used in the context of quantum-phase transitions.
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I. INTRODUCTION

Strongly correlated materials exhibit a variety of phases
whose properties often lack a complete microscopic
understanding.! The most interesting new aspect of this class
of materials is a possibility to tune the system through
two or more different ground states separated by quantum
critical points (QCPs).2 Such QCPs are often difficult to
directly approach and investigate, not only because they reside
at 7 = 0, but also because various additional instabilities
and orders emerge in their immediate vicinity. Nevertheless,
understanding them is of chief importance, because they often
control rather extended finite-temperature quantum critical
regions displaying universal properties and featuring scaling
behavior of all quantities.

Quantum critical points have been experimentally iden-
tified and studied in several classes of physical systems,
ranging from heavy fermion metals®* to conventional® and
even high-temperature superconductors.® In most of these,
however, the QCP is obtained when quantum fluctuations
become sufficiently strong to suppress an appropriate ordering
temperature—for magnetic, structural, or superconducting
order—down to T = 0. When this happens, then concepts
familiar from the very successful theory of classical crit-
ical phenomena can be utilized and naturally extended to
a quantum regime.> Indeed, most conventional theoretical
approaches follow the Landau theory paradigm’ and examine
the impact of thermal and quantum fluctuations of appropriate
order parameters, as describing the corresponding patterns of
spontaneous symmetry breaking.

Should most exotic phenomena, then, be regarded as
manifestations of some form of (static or fluctuating) order, as
Slater speculated even in the 1930’s,® or should fundamentally
different classes of quantum-phase transitions exist? The first
viewpoint was at the origin of the Hertz (weak coupling)
approach”!” to quantum criticality, which, despite its formal
elegance, resulted in only modest successes. The latter,
however, was at the core of pioneering ideas of Mott'!
and Anderson,'> who provided a complementary perspective.
According to their views, strong electronic correlations are
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able destroy the metallic state even in the absence of any
ordering, leading to the formation of the Mott insulating
state. The existence of broad classes of Mott insulators is,
of course, beyond the doubt at this time. And while most order
antiferromagnetically at low temperature, they indeed remain
robustly insulating (gaps often in the electron volt range) even
well above the corresponding Néel temperature. 31

The nature of the phase transition between the metallic and
the insulating phase—the Mott transition—has, in contrast,
remained highly controversial and subject to much debate.
Because the two phases share the same symmetries, the clear
distinction between them is apparent only at 7 = 0. Should a
direct and continuous transition between a paramagnetic metal
and a paramagnetic Mott insulator exist at 7 = 0, it would
represent the most obvious example of a QCP outside the
Landau paradigm, unrelated to any mechanism of spontaneous
symmetry breaking. Unfortunately, in most familiar situations,
the Mott metal-insulator transition is also accompanied by
simultaneous magnetic, charge, structural, or orbital ordering,
considerably complicating the situation and fogging the issues,
both from the theoretical and the experimental perspective.

Still, it is a well established experimental fact that in all
known cases, the characteristic temperature scale 7., below
which many of such “intervening” phases are found, is quite
small, as compared to both basic competing energy scales:
the Fermi energy Er measuring the quantum fluctuations,
and the Coulomb repulsion U that opposes the electron
motion. As a result, a very sharp crossover between metallic
and insulating behavior is observed even at T > T,, for all
physical quantities. The key issue thus remains: What is the
main physical mechanism controlling this finite-temperature
metal-insulator crossover? Should it be viewed as a quantum
critical regime dominated by appropriate order-parameter
fluctuations, or is it, as postulated by Mott and Anderson,
a dynamical phenomenon not directly related to any ordering
tendency.

To clearly and precisely address this question, one must (1)
suppress all ordering tendencies, at least in the relevant tem-
perature range, and (2) understand and describe the remaining
physical processes controlling the resulting finite-temperature

©2013 American Physical Society
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crossovers, and the corresponding quantum critical region, if
one exists. From the theoretical point of view, this ambitious
goal is generally very difficult to achieve, at least for realistic
model systems. The task is hard, because standard perturbative
approaches, which are so well suited to describe Fermi-surface
instabilities and the associated competing orders, are quite
incapable in describing the Mott physics. The situation, how-
ever, improved with the development of dynamical mean-field
theory (DMFT) method,'® which capitalizes on performing a
local approximation for appropriate self-energies and vertex
functions, yet which provides a completely nonperturbative
description of strong correlation effects. Its physical content is
most clearly revealed by focusing at the “maximally frustrated
Hubbard model” (MFHM)'®!7 with long-range and frustrating
intersite hopping (see below), where the DMFT approximation
becomes exact.

The MFHM, because it is maximally frustrated, displays no
magnetic or any other kind of long-range order across its phase
diagram. It does display, however, a precisely defined Mott
metal-insulator transition at low temperature, precisely in the
fashion anticipated by the early ideas of Mott and Anderson.
It has been studied by many authors, ever since the beginning
of the DMFT era some 20 years ago,'® yet, surprisingly,
some of its basic features have remained ill understood
and even confusing. Most studies focused on characterizing
the low-temperature behavior, where a strongly correlated
Fermi liquid (FL) forms on the metallic side of the Mott
transition.'® At low temperatures, this FL phase is separated
from the Mott insulator by an intervening phase coexistence
region (see Fig. 1), and the associated first-order transition
line (FOTL) terminating at the critical end point (CEP) at
T = T.." The behavior in the immediate vicinity of the CEP
has attracted much recent attention’>?! but, unsurprisingly (as
any other finite-temperature CEP), it display scaling behavior
of the standard classical liquid-gas (Ising) universality class.'”
Indeed, several experiment reporting transport in this regime
have successfully been interpreted”” using these classical
models.

Quantum

Bad met critical

Temperature

insulator

Fermi liquid

Coexistence .

Interaction

FIG. 1. (Color online) Phase diagram of the half-filled maximally
frustrated Hubbard model. The background is an actual color map of
the resistivity obtained using the IPT impurity solver (see the text):
Blue, small resistivity; red, large resistivity.
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But what about the supercritical (7" > T.) behavior? Its
rough features have been investigated by many authors,'®
who identified several regimes and complicated crossovers
connected to them, but no simple and plausible physical
picture has emerged. Most importantly, almost no one has
attempted to interpret the features of this high-temperature
regime in terms of ideas or concepts of quantum criticality.
The complication, of course, comes from the presence of the
coexistence dome at T < T,, which confuses the issues, and,
at least at first glance, makes the situation seem incompatible
with the standard paradigm of quantum criticality.

Our very recent work,!” however, provided a new per-
spective. It made two key observations. (1) The characteristic
temperature scale of the coexistence dome T, < Er,U: The
physics associated with it should, at 7 > T, be little affected
by its presence, and thus behave just as if 7, ~ 0, and an
actual QCP would exist separating the two phases. (2) To
reveal the possible quantum critical scaling associated with
the proposed “hidden” QCP, one must follow a judiciously
chosen trajectory (sometimes called the “Widom line”?%24),
as in almost any standard critical phenomenon. This work also
demonstrated'” remarkable scaling of the resistivity curves,
displaying all features expected of quantum criticality. The
resistivity around this line exhibits a characteristic “fan-
shaped” form, surprisingly similar to experimental findings
in several systems," 2?1227 reflecting gradual crossover
from metallic to insulating transport. The scaling behavior
in this high-temperature crossover regime was thus argued
to encapsulate the universal features of finite-temperature
transport near the metal-insulator transition.

The work of Ref. 17 focused on behavior close to the
“instability line” and the associated quantum critical scaling
regime around it. It should be noted, however, that several
other finite-temperature crossover lines have been discussed
by other authors'®?*?-30 to characterize the metal-insulator
region. The exact relationship between these different ideas
and approaches—for the same model—thus remained an
open and rather confusing issue that needs to be carefully
investigated and understood. This important task is the chief
subject of this paper, where we present a detailed and very
precise characterization of all the crossover regimes across the
entire phase diagram for the maximally frustrated Hubbard
model at half filling, within the paramagnetic solution of
dynamical mean-field theory. We carefully characterize the
relevant crossover lines employing all the various proposed
criteria used for their definitions. Two fundamentally distinct
crossover regions are identified: one referring to the thermal
destruction of long-lived quasiparticles and the other to
the gradual opening of the Mott gap. The instability line,
as previously determined from a thermodynamic analysis,'”
belongs to the latter region, and is found to lie very near to
the line of inflection points in the resistivity curves log p(U).
The scaling of resistivity curves found around both of these
lines is analyzed and discussed from the perspective of hidden
quantum criticality and its experimental observation. In the
end, we outline the generalized concept of the Widom lines,
and argue that they gain a new fundamental meaning in
the context of quantum-phase transitions, which opens an
avenue to put our results into a more general theoretical
framework.
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FINITE-TEMPERATURE CROSSOVER AND THE QUANTUM ...

II. PHASE DIAGRAM

We consider a single band Hubbard model at half filling,

H=—-1Y (clcjo+He)+UD nyny, (1)
(i,j)o i

f
1o
operators, n;, = cj(,cig, t is the nearest-neighbor hopping
amplitude, and U is the repulsion between two electrons on
the same site. We use a semicircular density of states, and the
corresponding half bandwidth D = 27 is set to be our energy
unit. We focus on the paramagnetic DMFT solution, which
is formally exact in the limit of large coordination number,
including the maximally frustrated Hubbard model.'®!” The
DMEFT provides a unique theoretical framework, as it works
well in the entire range of model parameters, thus treating
all the relevant phases and regimes on an equal footing. It
is, however, most reliable at high temperatures,3 1-34 when the
correlations are more local, and this is precisely the regime of
primary interest of this paper. To solve the DMFT equations
we utilize both the iterated perturbation theory'® (IPT) and
the numerically exact continuous time quantum Monte Carlo
(CTQMC).>>36 The results obtained with these two methods
are found to be in very good agreement. In this section we
concentrate on IPT results, which cover the entire phase
diagram and do not suffer from numerical noise. Figures in
the rest of the paper are the QMC results.

The phase diagram in the U-T plane is shown in Fig. 1. The
DMEFT solution reproduces the three regimes found close to
the metal-insulator transition (MIT): Fermi liquid, bad metal,
and Mott insulator, in qualitative agreement with experiments
on various Mott systems.'® We begin their characterization by
first analyzing the behavior of the resistivity in the relevant
range of parameters.

The DMFT expression for the calculation of DC resistivity,
p = 1/o(w — 0), is given by'®

+00 +oo
o= naof davz(e)DO(s)/ (— ﬂAz(&w)), ()

. dw

where ¢;_ and c;, are the electron creation and annihilation

where A(s,w) = —%Im G(e,w), v(e) = /(412 —&2)/3.
D°(e) = 525v/4> —¢? is the noninteracting density of

states (DOS), and f is the Fermi function. The calculation
of resistivity from the IPT results is straightforward as this
method is defined on the real axis. To calculate the resistivity
from the QMC results, one first needs to perform the analytical
continuation, which we carry out using the maximum entropy
method.?’

Our quantitative IPT results are replotted in Fig. 2, where
the value of resistivity is color coded, with white stripes
separating the consecutive orders of magnitude between 1073
and 103, In this plot, as well as in the rest of the paper, the
resistivity is given in the units of p,, ., the maximal metallic
resistivity in the semiclassical Boltzmann theory, defined as
the resistivity of the system when the scattering length is
equal to one lattice spacing.’®3° At zero temperature, the
metallic resistivity vanishes, while the Mott insulator has an
infinite resistivity. With increasing temperature, the difference
between the two states becomes less and less pronounced.
(Between the spinodals, both metallic and insulating solutions
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FIG. 2. (Color online) Resistivity (in units of p,, ) calculated in
the entire U-T plane. The white stripes follow the lines of equal
resistivity and separate the orders of magnitude in the resistivity.
Spinodals are denoted with thick black lines, and the first-order phase
transition line is dashed.

are possible, but in this plot only the metallic resistivity
is shown.) In the intermediate correlation, U < U,, high-
temperature, 7 > T,, regime, the resistivity is comparable
or even larger than p,, , but it still (weakly) increases with
temperature, which is characteristic for the “bad metal” regime
observed in several Mott systems.

It is remarkable how this way of presenting the data im-
mediately creates the familiar “fan-shape” structure, generally
expected for quantum criticality.> At high temperatures all the
white constant-resistivity stripes seem to converge almost to
the same point U ~ U,. The perfect convergence, however,
is interrupted by the emergence of the coexistence done at
T < T., but such behavior is exactly what one expects for
“avoided quantum criticality,”** consistent with the physical
picture proposed in Ref. 17.

Different regions of the phase diagram are also distin-
guished by the qualitatively different form for the temperature
dependence of the resistivity. To make this behavior even more
apparent, we follow a commonly used procedure to display
the data around QCPs, compute the logarithmic derivative of
resistivity with respect to the temperature, i.e., the “effective
exponent’40:41

B(T,U) = dlog p(U,T)/dlog T, 3)

which is presented in color-coded form in Fig. 3.

On the metallic side, at the lowest temperatures, one finds
a typical metallic dependence of the form p ~ T2 and here
we have = 2 (white). Far from the transition, this regime
survives up to relatively high temperatures, but eventually
the temperature dependence of the resistivity starts gradually
slowing down, displaying behavior sometimes described as
“marginal Fermi-liquid” transport (green, B ~ 1). Closer to
the transition, this is preceded by an increase in the effective
exponent (red), which is a reflection of the existence of the
critical end point in which 8 diverges (yellow). Very close to
the transition, a maximum of the resistivity is reached at some
temperature (pink) and the trend of the resistivity increase is
then reversed. On the other side of the phase diagram, deep in
the Mott insulator, one finds typical activation curves which
exhibit the exponential drop in the resistivity with increasing
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FIG. 3. (Color online) The effective resistivity exponent (8 =
dlogp/dlogT) calculated in the entire U-T plane illustrates the
different transport regimes (see the text).

temperature, due to the gap in the excitation spectrum (black
and purple). However, just above the coexistence dome, one
finds an intermediate regime, where the behavior is generally
insulating because the resistivity decreases with temperature,
but the gap is not yet fully open, and the temperature
dependence deviates from exponential (blue). This region is
sometimes referred to as the “bad insulator.”

III. CROSSOVER LINES

In the previous section we have characterized the different
regimes in the vicinity of the Mott MIT: Fermi liquid, bad
metal, and Mott insulator. However, apart from the coexistence
region, the properties of the system change continuously in
the entire phase diagram. The lines separating the different
regimes are thus a matter of convention and many definitions
can be found in literature proposing the criteria for their
distinction.

In Fig. 4 we present the lines corresponding to various
definitions of a crossover line between the Fermi-liquid and
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FIG. 4. (Color online) Various definitions for the crossover lines
between the Fermi liquid and the bad metal. The meaning of each
definition is illustrated on a smaller panel to the right. The results are
obtained with the QMC.
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the bad metal regimes. The definition of each line is illustrated
on a smaller panel on the right, where the corresponding
feature in the resistivity and other relevant quantities is marked
with the dots of the same color. The dark blue line (a) is
defined by p = 0.1p,,,, and it roughly corresponds to the Fermi
coherence temperature Tgp, (the temperature above which the
temperature dependence of resistivity is no longer quadratic).
The corresponding small panel (a) shows the resistivity as
a function of temperature, plotted for three different values
of U. The dotted horizontal line marks p = 0.1p, . The
arrow denotes the direction of increase of U. The light blue
line (b) corresponds to the inflection point of the resistivity,
d’p(w = 0)/dT? =0, and the green line (c) is determined
as the inflection point of the spectral density at the Fermi
level with respect to the temperature, d>A(w = 0)/dT? = 0.
These are illustrated on smaller panels (b) and (c) where the
dc resistivity and A(w = 0) are plotted versus the temperature,
for three different values of U. The inflection points are
marked with the dots of color corresponding to the (b)
and (c) lines on the main panel. The additional two dotted
lines are (d) the quasiparticle weight at zero temperature
defined by Z =[1 —dIm E(ia),,)/da)n|wﬂ_,0]’1 and (e) the
zero temperature local spin susceptibility x. Both quantities
are divided by 10 to fit in the temperature range of the plot
and to be more easily compared to the crossover lines. It is
evident that the coherence temperature is roughly proportional
to the quasiparticle weight at zero temperature, but with
the prefactor 0.1, Tr (U) ~ 0.1Z(U). As compared with the
doped Hubbard model,*>* Ty is higher but still distinct
from the temperature corresponding to p,, .. in agreement
with the experiments on organic materials.>***> The quasi-
particle weight Z is weakly temperature dependent and the
Drude peak in the opticalal conductivity is still pronounced
for p S Py,

In contrast with these lines, one can also define the lines
separating the bad metal from the (bad) Mott insulator. In
Fig. 5, we present several criteria for their definition. In
analogy to line (a) of Fig. 4, one can use the resistivity to
distinguish between the two regimes. The dark blue line (a)
plotted here connects the points where the resistivity is equal

10°
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FIG. 5. (Color online) Various definitions for the crossover lines
between the bad metal and the Mott insulator. The meaning of each
definition is illustrated on a smaller panel to the right. The results are
obtained with the QMC.
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to the one found precisely at the critical end point, which we
estimate to be roughly 10p,, . The light blue line (b) marks
the inflection point of logarithmic resistivity as a function of
U [0%log p(U,T)/dU? = 0]. It is a well pronounced feature
up to high temperatures, and it is a direct consequence of
the discontinuity across the FOTL at T < T,. These two are
illustrated on the small panel to the right, where log p(U)
is plotted at three different temperatures. The dark blue dots
are the intersections of these lines with the dotted, 10p,,,,
line. The inflection points are marked with the light blue
dots, and are found at slightly lower values of U. Another
natural definition for the crossover is the 8 = 0 line (c), as
it marks the place where the trend of resistivity growth is
reversed. At its right-hand side, the resistivity decreases with
temperature, which is a sign of insulating behavior. This is
illustrated on the corresponding small panel, where log p(T)
is plotted for three different values of U and the maxima are
marked with the green dots. The double occupancy n, has an
obvious change in trend on crossing line (d). Here, the second
derivative 8%n,/9dU? has a sharp maximum, and separates the
two distinct regimes of n,(U), both almost linear but with
different slopes. This is apparent on the small panel (d), where
double occupancy is plotted as a function of U at various
temperatures.

It is striking that these lines almost coincide, in sharp
contrast to what is seen in Fig. 4. Although the opening of
the gap is very gradual, it is possible to pinpoint the boundary
between the two regimes and actually divide the supercritical
part of the phase diagram into metallic and insulatinglike
regions. In the following section we present an overview of
the instability line, another definition for a metal-insulator
crossover line, and explain how it helps reveal a very peculiar
property of the Hubbard model, which is very suggestive
when it comes to interpreting the Mott MIT in terms of
quantum-phase transitions.

IV. INSTABILITY LINE AND QUANTUM
CRITICAL SCALING

It is a well established phenomenon that in the vicinity
of quantum critical points, at finite temperatures, physical
observables display a characteristic quantum critical scaling.’
A very good example of this is the transport in high-mobility
two-dimensional electron gases, in particular, in metal-oxide-
semiconductor field-effect transistors (MOSFETs).! There is
overwhelming evidence that they exhibit a zero temperature
metal-insulator transition at a critical concentration of charge
carriers.” It is experimentally observed in these systems that
the value of resistivity at finite temperatures above the quantum
critical point (n.,T = 0) is a function of only n = n — n. and
T, which is considered a hallmark of quantum criticality. As
shown in Fig. 6(a), *’ the resistivity curves collapse onto two
branches: The resistivity is first divided by the “separatrix”
pc(T) = p(n.,T) which weakly depends on the temperature,
and then the temperature is scaled by 7,(n) = |6n|"?, yielding

p(n.T) = p(T)f(SnT~'"%), )

The mechanism behind the physical picture of MOSFETs
is still elusive,’ but a similar physical picture is seen is
various spin systems, where the physics is well understood.”
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FIG. 6. (Color online) (a) Experimental results: Conductivity
scaling in high-mobility Si MOSFETSs presents a textbook example
of quantum critical scaling (taken from Ref. 47). (b) DMFT QMC
results: Resistivity scaling strongly reminiscent of what is seen in
MOSFETs. After dividing p(U,T') with the value of resistivity on the
instability line p.(T') (see the text) and then rescaling the temperature
with an appropriately chosen parameter 7y(8U ), the resistivity curves
collapse onto two branches.

When there is a well defined order parameter, the separatrix
corresponds to the line of zero symmetry-breaking field, which
is trivially a straight vertical line emanating from the quantum
critical point.

Although our model does feature a FOTL, the critical
temperature is actually very low (7, ~ 0.03), which makes
it reasonable to pursue a description of its supercritical
region from the perspective of quantum criticality. This is the
approach that we have taken in a recent work,'” where we have
shown that in the Hubbard model, a quantum critical scaling of
the resistivity curves does indeed hold [Fig. 6(b)]. There is an
obvious analogy between the interaction U in our model and
the carrier density n in MOSFETs, but it was not immediately
clear what line U.(T') should correspond to the separatrix in
our model. The phase transition in the Hubbard model does
not break any symmetries and the first-order transition line
is curved, which indicated that U, has possibly a nontrivial
temperature dependence.
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A. The instability line

Starting from the thermodynamic arguments,'**? we have

defined the instability line U*(T') as the line which corresponds
to the minimum curvature of the free-energy functional
FlG(iw,)] with respect to U 29 Above T, the system has a
unique ground state which corresponds to the minimum of
FIG(iwy)]. In this minimum, the curvature of F[G(iw,)] is
determined by the lowest eigenvalue A of the fluctuation matrix

1 32 FIG]
2T ¢2 aG(ia)m)aG(ia)n) G=GpmFT

where §G(iw,) = G(iw,) — Gpmrr(iw,), and Gpwmrr is the
self-consistent solution of the DMFT equations. As explained
in detail in the Supplemental Material of Ref. 17, A can be
obtained by monitoring the rate of convergence in the DMFT
iteration loop. Close to the self-consistent solution, the differ-
ence between the consecutive solutions drops exponentially,
with an exponent proportional to 1. We have

G — G = 6G" = e "Gy (iwy), (©6)

where G, is the eigenvector of M corresponding to its lowest
eigenvalue A.

The curvature A is actually a very general quantity that
describes the response of the system to an infinitesimal external
perturbation, which may be a time-dependent field of an
arbitrary form. As such, A is very important in describing a
thermodynamical state close to the Mott MIT, since it has a
fundamentally dynamic nature. Indeed, A vanishes precisely
at the critical end point, as the free-energy functional becomes
flat around Gpypr. This is directly connected to the critical
slowing down of dynamics, which manifests as the vanishing
of a characteristic frequency scale. Above T, A is related to
the local stability of a given thermodynamic state and has
a minimum precisely where the system is the least stable,
or where its proximity to either competing phase is equal.
Therefore, the instability line which connects the minima
of A vs U is the closest analogy to the lines of the zero
symmetry-breaking field in systems with an order parameter.

The instability line is presented in Fig. 1 and indeed
it represents a boundary between a metallic and insulating
transport. It lies among the other crossover lines from Fig. 5
(see also Sec. V). Its physical meaning is illustrated in Fig. 7.
The middle column shows the DOS along the instability line
for three different temperatures. While the DOS at the Fermi
level is strongly suppressed, the gap is not yet fully open. The
left column shows the density of states in the metallic phase
following a trajectory parallel to the instability line: There is a
clear quasiparticle peak at low temperatures, which gradually
disappears as the bad metal region is reached by increasing the
temperature. At larger U (right column) the system is in the
insulating phase with a fully open Mott gap, featuring activated
transport.

, &)

mn —

B. Free-energy calculation

To further illustrate the physical meaning of the instability
line, we explore the free-energy landscape in the Hilbert space
of Green’s functions. For this we closely follow the procedure
described in Ref. 49. The iterative self-consistency procedure
used to solve the DMFT equations converges towards a local
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FIG. 7. (Color online) Density of states (QMC results) along
the instability line U*(T) (middle column), and along the parallel
trajectory for smaller (left column) and larger U (right column).

minimum of the corresponding Ginzburg-Landau free-energy
functional F[G], which, in the Hilbert space of the Matsubara
Green’s functions G(iw,), takes the form

f[G] = ﬁmp[G] + Fbath[G]
= FimplGl — T Y _ G*(iw,), (7)

where the first term is the free energy of the impurity site in the
presence of the Weiss field A = 2G, while the second term is
the energy cost of forming the Weiss field around a given site.

The DMFT self-consistency condition, typically reached
via an iterative procedure, is then regarded as a saddle-point
equation derived from the extremum condition of such a
Ginzburg-Landau functional. The physical DMFT solution
corresponds to the local stationary point of F[G], where a
gradient vector g = 0F[G]/9G becomes zero. However, in
the coexistence region below T, two such local minima are
found. They correspond to physical solutions (metallic Gy
and insulating Gy), and are separated by an unstable solution
(a local maximum or a saddle point).

We can visualize the shape of the infinitely dimensional
free-energy surface by calculating F[G] along a single direc-
tion going through the self-consistent Gpypr. Below T, we
do this along the direction connecting the two solutions, which
can be parametrized as G(/) = (1 — )Gy — [G,. Above T,
where there is only one solution, we follow the eigenvector
G; with G(I) = Gpwmrr + [G;. The relative change of the
free energy is calculated*’ as an integral AF(l) = F[G(l)] —
FIGupmrr] = 2T [} dl'e; - g[G(I')], where ¢ is the unit
vector of the followed direction [e; = (G — G1)/|Gy — Gy
below 7. and ¢; = G, /|G, | above T.]. The gradient vector
takes the form g = Ginp(G) — G, with Giy,p(G) the output of
the impurity solver used in the DMFT procedure, and G is the
input—effective medium (hybridization bath) Green’s function.

Figure 8(a) shows the free-energy landscape around Gpwer,
precisely at the instability line. The curvature of the global
minimum vanishes as one approaches 7., which is consistent
with eigenvalue X being zero at this point. Below T, there are
two minima and the instability line is no longer well defined,
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FIG. 8. (Color online) Free-energy landscape (IPT results): (a)
Along the “zero field” line (§U = 0). At T > T, the curvature of
the free energy increases with temperature, and it is zero at 7 = T,.
Below T, at the first-order transition line, metallic and insulating
solutions have the same free energy. (b) Along the “finite field” line
(U = —0.05). At T > T, the curvature of the free energy is greater
than in the “zero field” case. In the coexistence region one of the
minima is energetically favored. Note that the spacing between AF
curves for different temperatures is arbitrary.

but it is logically continued to the line of the first-order phase
transition, where two possible solutions are of the same energy.
On Fig. 8(b), we move along a parallel trajectory, defined
by §U # 0. It is immediately obvious that A never reaches
zero and that in the coexistence region one of the solutions
is energetically favored. This physical picture is common to
various models. For example, it is seen in the Ising model in
an external field, where the analogy is between the strength of
the magnetic field and U in our case.

C. Quantum critical scaling

While the instability line is determined from the free-energy
analysis, a novel physical perspective is obtained by looking at
the transport properties in its vicinity. We have demonstrated!’
that around this line, all resistivity curves can be collapsed onto
two branches: We first divide each resistivity curve by the
resistivity along the instability line (the “separatrix™) p.(T) =
p(T,8U = 0), and then rescale the temperature for each curve
with an appropriately chosen parameter T5(8U ) to collapse the
data onto two branches [Fig. 6(b)]. The family of resistivity
curves displays characteristic quantum critical scaling of the
form

p(T,8U) = p(T) f(T/T5(8U)), ®)

with T,(8U) ~ |8U|*". The scaling parameter 7, displays
power-law scaling with the same exponents for both scaling
branches and falls sharply as U — U*, which is consistent
with the quantum critical scenario. The resistivity scaling holds
in the temperature range roughly between 27, and 4T, as
depicted in Fig. 1. We estimate the exponent zv to be around
0.6 when IPT is used to solve the DMFT equations. The scaling
procedure with the data obtained with the CTQMC impurity
solver gives a slightly larger critical exponent with an error
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FIG. 9. (Color online) Possible phase diagram of a generalized
Hubbard model. The observed scaling (valid in the green region)
may be due to a quantum critical point that is unreachable by the
simple two-parameter half-filled Hubbard model. An additional, third
parameter (here marked with X) could drive T, to zero at some critical
value, and extend the region of validity of the scaling formula in the
U-T plane.

bar due to numerical noise of the data and due to the analytical
continuation.

We emphasize the difference in the proposed quantum
critical scaling and classical scaling in the immediate vicinity
of the critical end point (classical critical region in Fig. 1). It
has been already carefully studied theoretically,'>*° and even
observed in experiments,”” revealing the classical Ising scaling
in this regime. In contrast, the scaling parameter in our formula
is T rather than |T — T,| and the value of the exponent does not
fit any of the known universality classes. The scaling region
in our analysis is significantly broader and the collapse of the
resistivity curves is observed in a large temperature region
above the critical end point.

A stringent test of the proposed quantum critical transport
scenario would be on systems with reduced critical tempera-
ture T,. Figure 9 presents a schematic phase diagram with an
additional parameter driving 7, to zero at some critical value
X, and merging U,, U,», and U, into a single, quantum critical
point. If this were the case, the quantum critical region would
extend down to zero temperature. For a simple half-filled
Hubbard model, the critical temperature can be reduced, e.g.,
by the disorder’! or particle-hole asymmetry, but still remains
finite. Therefore, other models should be considered, also
away from half filling,’>>* which have a significantly reduced
coexistence region and where the proposed scaling may give
a more direct evidence of the quantum criticality. In some of
these models the coexistence region was not even detected, and
then the eigenvalue analysis can also be used as an ultimate test
for its existence. It would be also very interesting to explore a
possible quantum critical scaling in the external electric field
within the nonlinear /-V regime,’ similar as in the experiments
on Si MOSFETs.>* This seems especially important in light
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of the recent discovery of devices displaying novel resistive
switching in narrow gap Mott insulators.> Finally, the concept
of the instability line above the quantum critical point, which
is based on the thermodynamic analysis, is very general and
can be applied to other physical systems (e.g., interacting spins
in an external field), and the scaling analysis can be tested on
physical quantities other than the resistivity.

V. SCALING AROUND THE INFLECTION-POINT LINE

As stated in the previous section, the curvature A must
be directly related to an appropriate relaxation rate of a
system perturbed away from the equilibrium, a quantity that
in principle should be possible to measure on any system.
However, it is currently very hard to make such measurements
on the Mott systems and precisely determine the instability
line. Our calculations, however, show that it lies just among
the crossover lines that separate the bad metal and the Mott
insulator, so it might not be necessary to know its exact position
to observe quantum criticality. In the following, we present a
scaling analysis that can be performed around the resistivity
inflection-point line (or any of the other crossover lines) to
test the scaling hypothesis. As it turns out, the scaling is
a robust feature, not particularly sensitive to the choice of
U.(T), as already tested in experiments on various organic
Mott systems.’®

We first observe that the resistivity curves display almost
a perfect mirror symmetry when plotted on the log scale
[Fig. 6(b)]. This puts a strong constraint on the functional
form of the scaling function f (as we show below) and also
indicates that the resistivity curve along the inflection-point
line, dlog p(U)/0U = 0, could also serve as the separatrix.
The mirror symmetry requires that

F) =1/f(=p. €))

For the above to be satisfied, the function f must be of the
form

f) =", (10)

where & is an antisymmetric function of y. It is clear that
f(0) = 1 and therefore 2(0) = 0. & must also be smooth, so it
can be represented as a Taylor series with only odd terms,

h(y)=ay +by> +---. (1)

In our calculations, it turns out that only the linear term is
significant, and here we show how this can be tested. First
we make a substitution of variables T/6U% — sUT /%" and
then take the logarithm of both sides of the scaling formula to
obtain

] <P(UC(T) +8U,T)
p(UAT),T)
If the mirror symmetry is satisfied, then

(p(Uc(T) +48U.T)
pUAT),T)

which means that the precise form of 4(y) can be deduced by
plotting the left-hand side of the above equation as a function
of y = 8UT "/ and then making a fit of a polynomial curve
to the data. This is possible because in the region where the

) =log (fSUT™'").  (12)

) = h@UT V™), (13)
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FIG. 10. (Color online) The symmetric and asymmetric part of
the scaling function, A, and h,, at various temperatures. The small
value of h,(y) shows that the mirror symmetry of resistivity curves
is present. The &, (y) curves collapse around the inflection-point line,
which shows that the exponent, zv = 0.953, is well evaluated. Fitting
a third-order polynomial to /,(y) in the range where these curves
collapse can reveal the exact form of the scaling formula. In our
calculations only the linear term is significant.

scaling formula is valid, all the data points should collapse onto
a single curve. To test whether A(y) is truly antisymmetric, it
is convenient to first split it into symmetric and antisymmetric
parts, h(y) = hs(y) + ha(y), where h;(y) = 5[h(y) + h(=y)]
and h,(y) = %[h(y) — h(—y)]. If the resistivity is mirror
symmetric, i, should be 0 and A, should be equal to 4. In
Fig. 10 we plot these functions around the inflection-point line
and find & to be negligible. Also, it is easily seen that A(y)
is purely linear in the region where the data points perfectly
collapse on a single curve.

Now it is clear that there are two conditions that U.(T') has
to satisfy for the scaling with mirror symmetry to be possible.
First, if we take the partial derivative over U at both sides of
the equation, we get

dlog p(U,T :
% =aT = +bSUT 5 +---. (14

If h(y) is a linear function, then only the first term in the above
equation remains, which means that the logarithm of resistivity
is alinear function of U in the entire region in which the scaling
formula holds. Even if there are higher terms in 4(y), the above
has to be true at least close to U, (small §U), where the linear
term is dominant in any case. This imposes a constraint on
U.(T), such that it has to be in a region where the second
derivative of logarithmic resistivity is zero, or at least small,

9’ log p(U,T) _
oU?

This derivative is color coded in the (U,T) plane in Fig. 11
so that yellow color corresponds to a small absolute value.
As it is readily verified, the above condition is not fulfilled
anywhere exactly [except precisely at the log p(U) inflection-
point line by its definition], but all of the crossover lines lie
in the region where this condition is approximately satisfied.
There is an additional requirement for U.(T) which is not in

0. (15)
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FIG. 11. (Color online) The instability line lies among the other
crossover lines. log p(U) is linear in this crossover region, which
allows for the scaling formula to be valid.

any way implied by definition of any of the crossover lines.
Namely, the first derivative of the logarithmic resistivity has
to be decreasing along U.(T') as a power law of temperature.
This can be shown by taking the limit U — 0 in Eq. (14),

dlog p(U,T)

x T_z%.
oU U,

(16)

The above holds regardless of the value of the cubic (or any
higher) term coefficient. One can even use this to give a good
assessment of the exponent zv, by fitting such an experimental
(or theoretical) curve to a power law as shown in Fig. 12. As
it is seen here, the derivative Eq. (16) calculated along the
inflection-point line fits well to a power-law curve of exponent
—0.95, but only above roughly 27,. The same analysis of the
IPT results yields a slightly lower value of zv = 0.63.
Finally, an estimate of how well the scaling works can be
made by comparing the value of resistivity obtained by the
scaling formula and the one measured in experiment or, as it

8 T T T T
] data +
fit: bT /a, a=0.953 b=0.392 Aa=0.16% 4

dinp/dU
o |Uc(T)

o o ~N
a o o ;N o»
T T T T T T

*
%
»
I
.
J
1 1 1 1 1

»
[$)
T

FIG. 12. (Color online) The derivative of resistivity with respect
to U [0p(U,T)/3U|y,,] along the inflection-point line. Above
roughly 27, it fits well to a power-law curve of exponent —0.95. This
can be used to evaluate the value of the scaling formula exponent.
At lower temperatures the decrease in resistivity is faster, and the
behavior deviates from the power law, and the scaling formula fails
at temperatures below 27.
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FIG. 13. (Color online) Relative error of the scaling formula color
coded in the U-T plane. The dotted lines are the boundary of the
scaling region. The two green filaments below 27, are where the
scaling formula intersects with the actual DMFT result.

is in our case, calculated from the DMFT solution. In Fig. 13
it is shown how the scaling formula works within the 5%
error bar in a large region, for the inflection-point line. This
result is qualitatively the same for the other crossover lines.
It is important to note that in the case of the instability line
(and all the other crossover lines other than the inflection-point
line), one is able to improve the quality of scaling by using
different exponents zv depending on sgn(§U), and that way
compensate for the lack of exact mirror symmetry. Also, when
only the linear term in /(y) is used, slightly lowering the value
of zv obtained from the power-law fitting procedure typically
broadens the region of validity of such a scaling formula.

In conclusion, the log p(U) inflection-point line is easily
observable in experiment and our calculations show that it
lies very close to the instability line. The analysis presented
here indicates that the quantum critical scaling previously
found to hold around the instability line should also be
observable around the inflection-point line. We show that the
scaling formula that is valid around this line displays almost
a perfect mirror symmetry of resistivity curves. In general,
mirror symmetry, or “duality,” should not be considered a
necessary ingredient for a quantum critical scaling. In fact, we
find that the scaling is of better quality around the instability
line, although it is slightly less symmetric.

It is also very important to examine how the resistivity
changes along the separatrix, and our results are presented in
Fig. 14. In this crossover region, the resistivity far exceeds the
Mott limit and is only weakly dependent on temperature. We
find that along the instability line, the resistivity is roughly a
linear, increasing function of 7'. Along the inflection-point line
and p(7T') = max lines, the resistivity is slowly decreasing. We
note that these results, however, must be model specific. Above
the critical end point, the resistivity is strongly dependent on
U, and a small change in the shape or position of these lines
can cause a significant change in the temperature dependences
of resistivity presented in Fig. 14.

VI. WIDOM LINES

The notion of a crossover line is very general and different
physical motivations can be used for its precise definition. The
concept of the Widom crossover line is, however, more strict
and relies on one fundamental principle.
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FIG. 14. (Color online) Resistivity (in units of p,, ) along the
crossover lines is weakly dependent on temperature and much larger
than the Mott limit.

The Widom line was originally defined in the context
of liquid-gas phase transition,’’ and as the line connecting
the maxima of the isobaric specific heat as a function of
pressure (dC,/dp = 0), above T.. It was conceived as a
logical continuation of the first-order phase transition line to
supercritical temperatures. C), is divergent along the first-order
transition line, which directly causes the maxima in C),
present above the critical temperature. This concept is easily
generalized to include all the lines that mark features directly
caused by nonanalyticities due to a phase transition.’® As
such, a Widom line can be defined for any quantity that
exhibits either a divergence or a discontinuity because of a
phase transition, and thus a maximum or an inflection point
above T..

Very recently,” in the supercritical region of an argon
liquid-gas phase diagram, an unexpected nonanalyticity has
been found in sound velocity dispersion curves, precisely at
the Widom line. The authors give a new depth and physical
meaning to the concept, by observing that there is no single
supercritical fluid phase, and that the Widom line actually
separates two regimes of fluidlike and gaslike dynamical
behavior. This finding makes it clear that the Widom lines
should not be exclusively connected with the thermodynamics
of the system. The changes in transport that follow certain
features in thermodynamic quantities can also be used for
making a meaningful and possibly even equivalent definition
of the Widom line. The significance of this concept was
recognized once more>*>? in the context of hole-doped high-T,
superconductors, where the characteristic temperature 7* of
the pseudogap phase is shown to correspond to the Widom line
arising above a first-order transition at critical doping.

In the above sense, we emphasize that the quantum
critical scaling observed in our model can also be easily
connected with the concept of Widom lines, giving them
new physical importance in the context of quantum-phase
transitions. One can immediately recognize that the log p(U)
inflection-point line and the instability line both qualify as
generalized Widom lines—they emanate from the critical end
point, separate regions of metallic and insulating behavior,
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and mark features that are directly caused by nonanalyticities
due to the phase transition. The quality of the scaling and
the close proximity of these two lines may even indicate a
profound connection between them. As the proposed physical
concept may well surpass the scope of the Hubbard model
and Mott physics, a definition of the instability line can be
very useful. Contrary to the inflection-point line, it is based on
a purely thermodynamical quantity, i.e., the free energy, and
can be defined for an arbitrary model. It does not require the
presence of the finite-temperature critical point (which makes
a conceptual difference with the work?**° on hole-doped
cuprates) and can be used to introduce the Widom line concept
to exclusively zero temperature quantum-phase transitions.

VII. CONCLUSIONS

In this paper we carefully investigated the finite-
temperature crossover behavior around the Mott transition,
with the goal to provide both theoretical insight and exper-
imental guidance for the search for quantum criticality in
this regime. To obtain quantitative and reliable results that
allow direct comparison with experiments, we performed
these studies within the framework of single-site dynamical
mean-field theory. From the conceptual point of view, this
approach offers an immediate advantage—it is physically very
clear what kinds of mechanisms and processes are captured
by such a theory, and which are not. Most importantly,
such an approach explicitly excludes all mechanisms directly
or indirectly associated with any ordering tendencies, in
agreement with the physical pictures for the Mott tran-
sition introduced by early pioneering ideas of Mott and
Anderson.

More specifically, we focused on a single band half-
filled Hubbard model, which, within DMFT, maps to solv-
ing a Kondo-Anderson magnetic impurity model in a self-
consistently determined bath. The formation of the heavy
Fermi liquid on the metallic side of the Mott transition
is described as a formation of a Kondo-like singlet in the
ground state, similarly as in the early work of Brinkmann
and Rice.?’ In contrast to the Brinkmann-Rice theory, the
DMFT approach is able to quantitatively and accurately
describe the thermal destruction of such a correlated Fermi
liquid, and the resulting coherence-incoherence crossover.
The possibility to systematically and quantitatively describe
this incoherent regime is especially important to properly
characterize the high-temperature crossover behavior above
the coexistence dome, where we obtained clear and precise
signatures of quantum critical behavior. Our results show
remarkable agreement with several experimental systems,®
but future experiments should provide even more precise
tests for our predictions. We expect that close enough to the
quantum critical point all quantities should display appropriate
scaling behaviors. Our work has, so far, focused mostly on
the transport properties, and sufficiently detailed results for
thermodynamic and other quantities are not available at this
time to permit a scaling analysis. The investigation of these
interesting questions is beyond the scope of the present work,
and is left for future studies.

We should mention that ideas closely related to ours
have also been discussed in a series of papers by Senthil
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and collaborators,®' %3 who also seek a description of Mott

quantum criticality unrelated to any ordering phenomena.
This approach, however, focuses on capturing the possible
effects of gapless “spinon” excitations, which may exist on the
insulating side of the Mott transition, but only in the presence
of sufficient and specific magnetic frustration, preventing the
familiar antiferromagnetic order. Because of their gapless
nature, they should remain long lived (e.g., well defined)
only at the lowest temperatures, inducing long-range spatial
correlations in the proposed spin liquid. The corresponding
theory, therefore, focuses on long-distance spatial fluctuations,
which, as in ordinary critical phenomena, are tackled by
appropriate renormalization-group methods. In contrast to our
DMEFT approach, this theory implicitly disregards the strongly
incoherent Kondo-like processes, which may play a dominant
role at sufficiently high temperatures.

The key physical question thus remains: What is the
crossover temperature Tponiocat below which the nonlocal
effects ignored by DMFT become significant? This important
question can, in principle, be investigated by computing sys-
tematic nonlocal corrections to single-site DMFT, a research
direction already investigated by several authors.?'3%* The
recent work already provides some evidence that for a Hubbard
model on a square lattice the nonlocal corrections are very
small well above the coexistence dome (at 7 > T,)* and are
essentially negligible for a frustrated triangular lattice.>> On
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the experimental side, the possible role of nonlocal effects such
as spinons can be investigated by systematic studies of a series
of materials with varying degrees of magnetic frustration.
Such studies are accessible in organic Mott systems, '*!> where
T, ~ 10-20 K, while the magnetic frustration may be varied
using different crystal lattices. In some cases the magnetic
ordering is completely suppressed on the insulating side,%
while in others it remains.% If robust signatures of quantum
criticality in transport are observed at T >> T, in all of these
materials, this finding would provide strong support for the
“local quantum criticality” scenario we proposed that is based
on the DMFT approach.
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We introduce a microscopic model on the honeycomb bilayer, which in the small-momentum limit captures
the usual (quadratic dispersion in the kinetic term) description of bilayer graphene. In the limit of strong
interlayer hopping it reduces to an effective honeycomb monolayer model with also third-neighbor hopping.
We study interaction effects in this effective model, focusing on possible superconducting instabilities. We find
d,>_,> superconductivity in the strong-coupling limit of an effective #/-model-like description that gradually
transforms into d + id time-reversal symmetry-breaking superconductivity at weak couplings. In this limit
the small-momentum order-parameter expansion is (k, + i ky)2 [or (k, — i ky)z] in both valleys of the effective
low-energy description. The relevance of our model and investigation for the physics of bilayer graphene is also

discussed.

DOLI: 10.1103/PhysRevB.86.214505

I. INTRODUCTION

Interaction effects are expected to be important for the
physics of bilayer graphene and may cause a formation of
correlated many-body phases.'-? This needs to be contrasted to
intrinsic monolayer graphene, in which a vanishing density of
states at the Dirac points suppresses the influence of electronic
correlations.>® Recent experiments on suspended bilayer
graphene,*”’ which is free of substrate effects, reveal a gapped
state at and around the charge neutrality point. The state may
be of topological origin® due to the observed*® conductance
of the order of e?/h and may exhibit an anomalous quantum
Hall effect, i.e., a quantum Hall effect at zero magnetic field.
In the most recent experiment on high mobility samples, from
Ref. 7, a completely insulating behavior was found.

From the theory point of view, several proposals were
given®! for the existence of gapped (and gapless) phases at
the charge neutrality point, including those that break the time-
reversal symmetry. Most of them are based on the particle-hole
(excitonic) binding, which is the most natural assumption in
the understanding of a gapped phase at the charge neutrality
point. These theories assume a quadratic dispersion of the
electrons in the low-energy effective description,?’ and direct
hopping between two sublattices in different layers that leads
to the linear dispersion (“triagonal warping”) is neglected. This
assumption is justified if the chemical potential is not exactly
situated at the charge neutrality point.

To explore additional possibilities for gapped phases in
the presence of a finite chemical potential, we discuss here
superconducting instabilities, especially with an eye on the
possibility of topological (fully gapped) superconductivity on
the honeycomb bilayer. Bilayer graphene may be potentially
also viewed as a strongly correlated system with a possibility
to support a layered antiferromagnetic state,'>'* similar to
the Mott physics of high 7, superconductors. The existence
of a layered antiferromagnetic state is supported by the most
recent experiment with high quality samples,” which feature
completely insulating behavior at the charge neutrality point.

There is, so far, no systematic study of superconducting
instabilities in the presence of electron-electron and electron-
phonon interactions on the honeycomb bilayer at finite doping

1098-0121/2012/86(21)/214505(10)
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(see, however, Ref. 21 for fermions in the presence of weak
electron-electron interactions only at zero chemical potential).
To address this question, we study in the present paper a
microscopic model of a single effective honeycomb monolayer
with reduced nearest-neighbor hopping and third-neighbor
hopping, in addition to intersite attractive interactions. The
kinetic term of the effective model is obtained by integrating
out the “high-energy” degrees of freedom from the direct
interlayer hopping (i.e., assuming strong interlayer hopping
in the honeycomb bilayer), and the intersite superexchange
interaction originates from the Hubbard on-site repulsion. This
model is to a certain degree biased to antiferromagnetism and
d-wave superconductivity but preserves the usual low-energy
description of the bilayer graphene.?’ Moreover, in contrast to
the usual low-energy model of bilayer graphene, the present
model accounts for the lattice symmetry of the original model
(the honeycomb bilayer) that may be relevant for the symmetry
of the superconducting order parameters.

Our primary interest here is to find the most probable
symmetry of a superconducting instability on the honeycomb
bilayer together with an understanding of its nature, i.e.,
whether this instability is topological. We also aim at an
understanding of the change in the superconducting order
parameter and correlations as we go from a monolayer
to a few-layer honeycomb lattice. The mean-field solution
of the introduced model yields a time-reversal symmetry-
breaking d + id-wave superconducting state at weak coupling,
which continuously transforms into a d,2_,2-wave type with
increasing interaction. Near 3/8 and 5/8 filling of the &
bands, i.e., near the Van Hove singularity in the density
of states, the Cooper pairing becomes much stronger. Our
conclusion is that the d 4 id superconducting instability is
the leading superconducting instability of the honeycomb
bilayer with strong interlayer hopping at finite doping, and
the same instability may be present in the bilayer graphene
at finite doping. However, due to the presumed smallness of
the coupling constant and order parameter, as well as strong
quantum fluctuations in two dimensions, it may be difficult to
detect this order experimentally in today’s graphene samples.

The remaining part of the paper is organized as follows. In
Sec. IT we define our effective two-band model on an effective

©2012 American Physical Society
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honeycomb lattice with third-nearest-neighbor hopping. The
model is then, in Sec. III, solved by a Bogoliubov-de
Gennes (BdG) transformation for a singlet bond-pairing order
parameter, and we discuss the relevant symmetries. Section [V
presents the phase diagram obtained from a numerical solution
of the BAG equations. In Sec. V, the relevance for the physics of
the bilayer graphene is discussed, and our main conclusions are
presented in Sec. VI. Two appendices summarize analytically
obtained solutions in the weak-coupling BCS limit.

II. MODEL

The honeycomb bilayer lattice consists of two Bernal
stacked honeycomb lattices, each consisting of two triangular
sublattices as illustrated in Fig. 1 such that the unit cell contains
four lattice sites. The Hamiltonian of free electrons on such a
lattice is given by

- 1 Z Z(a by g+ a;,;ﬁbz,}—ﬁ,a +Hc)
—1 Z(a - ay;,+He)
—MEBa,ﬂn¢+ b bija)- ()

Here, the index i = 1,2 denotes the layer and j enumerates
primitive cells. The sum runs over u = iig,i,il,, where

B, ALA, B,
O @, O

(b)

FIG. 1. (Color online) (a) View of Bernal stacked honeycomb
lattices 1 and 2 with corresponding sublattice sites Al, B1 and A2,
B2, respectively. (b) Model reduced to a monolayer model with the
third-neighbor hopping 7 = 2/¢, and the nearest-neighbor hopping
2f (see the text).
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U = a(%,*/?g) and i, = a(%,—*/;) are the primitive vectors
of the lattice, and iy = (0, 0) is an auxiliary vector for
denoting the hopping between sites in the same primitive
cell. The norm of these vectors is |ii| = +/3a, in terms of
the distance a between neighboring sites in each layer, and
t is the associated hopping energy, whereas 7, denotes the
interlayer hopping energy between A sites in two different
layers. The finite chemical potential p takes into account
doping, either due to the electric field effect or to chemically
active adatoms. The operators al 7.0 (diii.o) represent electron
creation (annihilation) on the sublattice site A; of the layer

i with spin o = 4,], and bjn »(bi o) represent those for
electrons on the sublattice site B;. u is the chemical potential.
We use units such that = 1.

By introducing the ilo =
> 7a; ;. explik-j) and  bp, =) b ; , explik- j),
and diagonalizing the Hamiltonian one obtalns the spectrum

Fourier transforms a.;

2

t
=+ 2y? |, 2)

EX(k) = +
(9] )

1
—Hr=
(=D 2+

where a = 1,2, and £ denote four different branches of
dispersion and

*:Ze”}ﬁzl—i—

In their original work,”® McCann and Falko showed that
the four-band model may be simplified to an effective two-
band model if one considers energies much smaller than 7, . In
momentum space, the Hamiltonian in Eq. (1) becomes

ei/?:zl + eilz»ﬁz' 3)

d*k
=3 |, G @
(—t(ral | by i+ vial by 5 +He)
_tl(a '%M“‘HC)_M(“ alok+a o120k
+bf’mlzb,,m,; +b) by ) (5)
If we introduce the spinor
W, (k) = (31,0,12vaz,o,ivbz,o,ﬁab1,a,1€)T’ (6)

the Hamiltonian can be expressed as a 4 x 4 matrix:

- =ty 0 —ty;
- | —t.  —p =ty -
— i k
m@—;%w 0ty —u o |¥®
—tyI;* 0 0 —U
@)
One may further define 2 x 2 matrices Hy = —ul +

t10y, Hyp = —pl,and Hi; = —t(Re yzo, +Imypoy) = Hyy,
such that the eigenvalue equation can be written in the
following form (k indices are implied):

Hyy Hp || W vy
=F , 8
|:H21 H22:||:‘I’2:| |:‘1’2:| ®
from which we obtain

{Hyp — Hy(Hy — E)'Hip} ¥, = EW,. 9
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FIG. 2. (Color online) (a) Noninteracting dispersion and (b) density of states of the projected monolayer model. (c) Linear dispersion in the
vicinity of the K points in the graphene monolayer in comparison to (d) quadratic dispersion in our model. We use f = ¢/¢, for the unit of energy.

If we assume ¢, to be the largest-energy scale and consider the
low-energy limit (E < ), Eq. (9) becomes

2.2
—u E£y2

Hep ¥, = 2w Ry U, = EV,, (10)
e K

with Wy (k) = (b, , .b, . 7).

The two-band model described by the Hamiltonian in
Eq. (10) is also valid in the limit?® where E <« t, < t. For
energies larger than ¢,, one needs to take into account the
other two bands which overlap in energy with those considered
in Eq. (10). In the following sections we use the simplified
two-band model at even larger energies, up to the Van Hove
singularity. Formally, this amounts to increasing artificially
(with respect to the graphene bilayer) the interlayer hopping
t; such that it becomes the largest-energy scale, 7, >> ¢. In that
limit Eq. (10) becomes the exact description of the honeycomb
bilayer for E,r < t; and for the wave vectors of the whole
Brillouin zone. We will adopt that model in the following.

The Hamiltonian in Eq. (10) corresponds, in real space,
to a single-layer honeycomb lattice with nearest-neighbor
and third-neighbor hoppings. Whereas the effective hopping
amplitude of the latter is given by #2/¢, , the effective nearest-
neighbor hopping is twice as large.>* This means that due to
the strong interlayer hopping the complete low-energy physics
is projected onto the B1 and B2 sublattices, which themselves
form a hexagonal lattice (see Fig. 1).

As mentioned above, the model is equivalent to the
graphene bilayer in the small-momentum limit, i.e., for
t?/ty|kal> ~ u < t*/t,, and reproduces correctly the finite
density of states (DOS) at E = 0 of bilayer graphene (Fig. 2).
Finally, the Hamiltonian in Eq. (10) does not take into account

direct hopping between the B1 and B2 sublattices, which
may, though, easily be accounted for by adding —t’yg to
the off-diagonal matrix elements, where ¢’ >~ 0.3 eV is the
associated hopping amplitude. This term yields the so-called
trigonal warping close to the charge neutrality point, which
consists of a splitting of the parabolic band-contact point into
four linear Dirac points.?” However, these Dirac points are
present only at very low energies, for chemical potentials ||
in the meV range, such that the parabolic band approximation
becomes valid even at low dopings. Since we are interested,
here, in moderate doping, we neglect this additional term and
use the effective band the model in Eq. (10) in the following
sections.

Since we consider the effective hopping ¢>/¢, to be small,
and if there is a significant on-site repulsion U, spin-singlet
bonds between B1 and B2 sites are expected to form due to su-
perexchange processes. Therefore, we apply the  — J model
but relax the requirement of the model that double occupation
of sites is excluded. We justify this by our primary aim: to find
the most probable symmetry of the superconducting instability.
As we will be working in the mean-field approximation, we
just assume an effective nearest-neighbor attractive interaction
between electrons on B1 and B2 sublattices, and in doing
this we favor spin-singlet bond formation. The spin-singlet
formation directly follows from the mean-field approach to the
t — J model.?? If the attractive interaction is not too strong, it
can be simply added to Hamiltonian Eq. (10), with the help of
the term

— T opt -
Hi=—=J ) b5 b1iobs jeisbrjiier (D
i
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where J > 0. Now we apply the BCS ansatz by introducing
the superconducting order parameter as a three component
complex vector:

A= (A, Ay ARy,

where the components are defined by

1

fi = pbijabaja, —bjabgay (12

and correspond to the spin-singlet pairing amplitudes of three
inequivalent pairs of nearest neighbors. The interaction part

t2 2.1 ik ot t
H:_ZZ(kak blka+HC +«/_JZ|:ZA3 (bZkai ki_békibl

—uZ(b

Similar to the case of the honeycomb monolayer,??

b + b o P2%0)-
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H; in the mean-field approximation becomes

f
Hycs = «/_JZA (blm 2.7+ | bl]¢ 2;+u¢)+HC
i
+2N ) T|Aal (13)

i

where N is the number of unit cells.

III. BOGOLIUBOV-DE GENNES ANALYSIS
AND PAIRING SYMMETRIES

The complete BCS Hamiltonian in momentum space is
given by

T) + H.c.:|

(14)

we can make our description much more transparent if we apply the following

transformation that diagonalizes the kinetic part of the above Hamiltonian:

)]
bl,lza «/5
where ¢; = arg(y;).

In this basis, where c;,
transforms into

H=Y 1Y e —wel e, + > (—feg — . di, + ﬁJ[Z A cos(k - i — 2<pk)(dT d'y et
/; o o u

diy + Cio
e—i2(p;(d];(r _ C/Za)i| ’ (15)

and dj,, represent the electron states in the upper and lower band, respectively, the Hamiltonian

4

+ ZzA sin(k - ii — Z(pk)(cﬂ dT - dchT_;i)] + Hc} (16)

Here 7 = t?/t, and €; |V7<|Z- The eigenvalues are given by

E; = :l:\/(fe,;)z + 2 427282 + |Ci ) £ 2VA,  (17)

where C; = Y . A cos(k - ii — 200), 8 = 5 A sin(k - ii —
2¢3), and

A = (1 +27°|51)Pe; + 474 (ReCiImS; — ImC;ReSp)”.

(13)

If all Aj are purely real, i.e., there is no time-reversal symmetry
breaking, then the second term in A is zero and the expression
for the dispersion simplifies to

~ 2
E; = :I:\/(te,;:I: VP 2028+ 202C (19)

In this case S; only renormalizes the chemical potential,
whereas C; plays the main role in the description of the
superconducting order parameter. A comparison between the
Bogoliubov energy dispersion in Eq. (19) and the usual BCS
expression shows that C; can be identified with the gap

function. However, this name may be misleading because Cy
does not describe the gap, as in the example in Eq. (22) below.

The symmetry analysis of the order parameter on a
honeycomb lattice?” yields the basis vectors which correspond
to s, dy2_2, and d,, waves, respectively:

A, 1, 1
A=1AQ@ -1, —1). (20)
A, 1, -1

The function C; corresponding to these symmetries is shown
in Fig. 3, in comparison with the monolayer case. The last
two possibilities belong to a two-dimensional (2D) subspace
of irreducible representation of permutation group S3.2* This
means that any superposition of these two order parameters,
which we may identify with the d,>_» [(2,—1,—1) of Eq. (20)
and permutations] and d,, [(0,1,—1) of Eq. (20) and permuta-
tions] solutions of d-wave superconductivity, is possible from
a symmetry point of view. In spite of this principle possibility,
the precise realization of a particular order parameter is a
question of energy calculations. One notices that the spatial
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FIG. 3. (Color online) C; in the first Brillouin zone calculated for three possible symmetries on monolayer and projected bilayer lattices.

point symmetry of the underlying honeycomb lattice is Cs,,
which includes 2 /3 rotations, whereas a transformation from
dy>_ > to d,, involves 7 /4 rotations. The order parameters thus
have a different symmetry than the underlying lattice, as one
may also see in Fig. 3, such that the two order parameters do
not represent degenerate ground states. Indeed we find, within
the BCS mean-field theory, that the d,>_ > solution has a lower
energy than the d;, solution.

This finding needs to be contrasted to the case of p-wave
superconductivity on the square lattice.?' In the latter case,
superpositions of the p, and p, solutions are also permitted
by the symmetry of the order parameter, but both solutions are
related to each other by 7 /2 rotations that respect the point
symmetry of the underlying (square) lattice. The p, and p,
solutions are therefore degenerate.

The above arguments indicate that the C3, symmetry of
the honeycomb lattice is dynamically broken, only through
interactions, via the formation of a d,>_,> order parameter.
This is similar to the findings of Poletti ef al. in the context
of superfluidity of spinless fermions with nearest-neighbor
attraction.’* Also in this case, the C3, symmetry is dynamically
broken. Notice finally that in the small-J limit, i.e., at weak
coupling or in the low-energy limit, the BAdG system recovers
the symmetry of the C3, group but has also an (emergent)
continuous rotational symmetry that will lead to a d,>_» &+
i3 dy, instability (see Appendix A).

In the case of an s-wave order parameter with A =
A (1,1,1), a small-wave-vector expansion (|g|a < 1) around
the K points yields

V3
Sgoq ® t—qxal. (2D

V3
Ciog ® F—5 904, )

2
Thus both couplings are nonzero and no simple effective
picture emerges by looking at the Hamiltonian in Eq. (16).
The lower excitation energy branch can be approximated in

the small-momentum limit as

E; ~ \/;ﬂ —ufeg,,;+ 3J%(Gla) A

~ \Ju2 = 30Bu — (A1), 22)

where we have used ez, - > 9(|qla)*/4.

If the coupling strengths are such that E; has a minimum
at ¢ = 0, that is for (JA)?> > 3uf, a special superconducting
instability may be realized (if other possibilities, order param-
eters, have higher free energy).?> In the absence of trigonal
warping at very low doping, we obtain a time-reversal invariant
superconducting instability with two kinds of Cooper pairs
with p, +ip, and p; — ip, pairings. Due to the forms of Cj
and Sy, in the above Hamiltonian in the small-momentum limit,
p-wave Cooper pairings are expected. For a sufficiently large
chemical potential, one can neglect S; in Eq. (19) and the
system may be unstable towards a p, gapless superconductor,
with gap minima on the Fermi surface, i.e., on a circle.

For A = A(2,—1,—1), the small-momentum expansion
around the K points yields

V)
Cioyqldey2) » —3w&
. qq 23)
Sg i(do_y) X F6-=2A
g1
and for A = A(0,1,—1)
CI?ith?(dxy) ~ 2\/§qiq2y A,
g1
. (24)
(q _qy)

S, +q(de) ~ FV3 xIZJ A.

| 2

The gap function Cy, thus clearly shows the d,>_,> and the d,,
symmetry in Egs. (23) and (24), respectively.
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Notice that one may superpose two waves in the manner

Ci(d £ id) = Cy(dy_ ) + iN3Cydyy) (25)

and

Si(d + id) = Sp(dy_y) + iv/3S;(dyy), (26)

which is identified with the d + id-wave superconducting
phase in the following. In the small-wave-vector limit, the
combined forms of Cy,

Cioiqd +id)~ FiSg 5 ~3(q: +ig,) /11> 27)

and

;d —id)~ iSp . ~3(q —iq))*/1q,  (28)

restore the rotational symmetry—they are indeed eigenstates
of rotation in two dimensions with the value of angular
momentum equal to 2. Thus a fixed complex combination
in real space, either d,>_,> + i3 dyy or dy_y2 — i3 dyy,
leads to the same form of the expansion in small momenta
at both valley points, either Eq. (27) or Eq. (28). Because it
is the same irrespective of the valley K or K’ one obtains
a solution that spontaneously breaks time-reversal symmetry.
Thus we can identify the solution with the broken time-reversal
symmetry d + id state. Something similar happens in the
monolayer case, but the d-wave symmetry is recognized as
a global dependence of the order parameter on the k vector
in the Brillouin zone around the central " point (see Ref. 26)
and p-wave behavior around K + points.”’ In the bilayer case
the time-reversal symmetry breaking d-wave order parameter
emerges as a property of the low-energy small-momentum
effective description around the K points, as shown above.

K¢+q Ki+q

IV. PHASE DIAGRAM

We have found the ground state of our model Hamiltonian
for a broad range of J and n by minimizing the free energy.
At zero temperature, as a function of the order parameter, it is

given by
- > E +2NJZ|AM| (29)

kelBz a==*1

where the first sum is over all wave vectors k in the first
Brillouin zone and two Bogoliubov bands with positive
energies. The ground state is defined as a global minimum
of the free energy in the order-parameter space. In the present
study, we concentrate on superconducting order parameters in
a variational approach, and thus we cannot exclude that other
correlated (nonsuperconducting) phases may have an even
lower energy. In the mean-field approach, superconducting
ground states are expected even for infinitesimal positive
values of J.

The order-parameter space is six-dimensional, because
it is defined by three complex numbers. However, adding
the same phase to all three complex parameters does not
modify the physical state, so one can always make one
of the parameters purely real (we set Ay, , real) and
reduce the order-parameter space dimensionality to 5. We
used the amoeba numerical method?® to directly minimize
the free energy. Five-dimensional minimization often reveals
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FIG. 4. (Color online) (a) Order-parameter amplitude A in the
(u,J) parameter space, obtained by a minimization of the free
energy, (b) single-particle excitation gap, (c) contribution of id,,, and
(d) s-wave component in the ground-state order parameter. The green
dashed line marks where A drops below 10~*. Below this line, our
numerics is not reliable. We use 7 = 2/¢, for the unit of energy.

more than one local minimum, but we were always able to
identify the lowest-lying state to a satisfying level of certainty.
However, for small values of J, the local free-energy minima
are extremely shallow, with energies only slightly lower than
the free energy of the normal state. Such features in the
free-energy landscape are completely clouded by numerical
noise due to the discretization of the first Brillouin zone. Our
numerical calculations are therefore limited to higher values
of J, which give a solution with the amplitude of the order
parameter larger than 10~*. This is marked by the dashed lines
in Fig. 4.

Our results are shown on Fig. 4, where the relevant
quantities are represented by color in the (u,J) plane. The
amplitude of the order parameter is shown in Fig. 5(a).
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FIG. 5. (Color online) (a) Order-parameter amplitude A and (b)
single-particle excitation gap as a function of J, for u = 0.04,0.55,1.
(c—e) The contributions of three relevant symmetry components. The
d,>_,» component is the dominant one for large J. The contribution
of id,, increases with decreasing J until the two contributions are
equal and we find a pure d + id-wave symmetry. We use 7 = 12/t
for the unit of energy. The data are plotted only above the value for
the coupling J which is numerically significant, as mentioned in the
text (see also the dashed green line in Fig. 4).

Upon small to moderate doping, the SC instability increases
and becomes particularly favorable at the filling 5/8, which
corresponds to the chemical potential ©/7 = 1, and the Van
Hove singularity in the noninteracting DOS. For further
doping the SC instability decreases. This gives to Fig. 4(a)
roughly the look of the inverse DOS of Fig. 2(b). The gap
in the single-particle excitations is shown in Fig. 4(b). It
is particularly pronounced in the case of strong mixing of
dy>_y» and id;, symmetry components, as we can see from
Fig. 4(c). The contribution of different pairing symmetries
is defined by the ratio w of different components of A,
where

A= Aje;+iA e+ Ad”é\dn + l'A,‘gl'w édxy =+ Adey? édxz,yz s
(30)

with & = (1,1,1)/+/3, &4, = (0,1,-1)/v/2, and &4, , =
(2,—1,—1)/«/6. Figure 4(c) shows the ratio w(idyy) =
[Aia,,|/IAl, and Fig. 4(d) shows the ratio w(s) = |Ag|/[A].

PHYSICAL REVIEW B 86, 214505 (2012)

The contributions of is and d,, components are negligible in
all cases, and d,>_, is the dominant component.

The numerical results are, for clarity, also shown in Fig. 5
for three chosen values of the chemical potential, wu/f =
0.04,0.55,1. Figure 5(a) shows a sudden increase in the pairing
amplitude with the increasing interaction J (note the logarith-
mic scale on the y axis). For small J, the pairing amplitude is
much larger for u/f = 1, i.e., at the Van Hove singularity, and
in this case the single-particle excitation gap is also larger due
to the strong mixing of d,>_» and id,, symmetries. Contribu-
tions of relevant components are compared in Figs. 5(c)-5(e).
Athigher values of J one has a pure d,>_,> symmetry, whereas
a mixture of d,»_,» and id,, symmetries is found at lower
values of J. The contribution of id,, symmetry increases with
decreasing J, and almost pure d + id symmetries are usually
found at the lowest accessible values of J.

Our numerical calculations were performed on processors
with 8 GB of RAM, which limited the number of k points
in the first Brillouin zone to 4000 x 4000, but we checked
that results do not djffer qualitatively even with a much
sparser 2000 x 2000 k£ grid. A much denser and probably a
nonuniform discretization of the first Brillouin zone would be
needed to probe the weak-coupling behavior of our model,
that is for values of J below the dashed lines in Fig. 4.
Notice, however, that the system in the small-J limit may be
treated analytically within the weak-coupling limit, the results
of which are presented in Appendices A and B, for the cases
of finite and zero chemical potential, respectively.

In this weak-coupling regime and at finite chemical poten-
tial, we find that the d + id superconducting order parameter
yields the lowest mean-field energy, when compared to order
parameters that respect time-reversal symmetry (Appendix A),
in agreement with our numerical results for larger values of
J. In the weak-coupling limit, in the symmetry-protected
subspace of d,>_,» and d,, order parameters the complex

combination d,>_,>» + i\/gdxy leads to a fully gapped system
with no nodes at the Fermi surface. This means that the gap is
proportional to |C;| = const, and maximum gain in the energy
for this superconducting instability is obtained. Notice that this
topological instability is in line with a theorem for the BCS
description, according to which a time-reversal symmetry-
broken 2D superconducting state has a lower free energy, as
compared to time-reversal symmetric ones, when confronted
with two-dimensional representations of the superconducting
order parameter.’! Indeed, as mentioned after Eq. (20), the
d>_y> and d,, components of the order parameter A form a
two-dimensional irreducible representation of the symmetry
group of the honeycomb lattice. Although the theorem of
Ref. 31 was derived for a single band, it is expected also
to apply to the present case at finite doping when the
higher Bogoliubov band is irrelevant for the superconducting
instability. This instability occurs at any strength of attractive
interaction at finite doping since the gap opens as

JA [ 8w _1 } 31)
xexp|————

V3 p(w)J
(see Appendix A), in terms of the DOS p(Ef) at the Fermi
level Ef. This is simply the BCS expression with the pairing
potential equal to J.
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Finally, we notice that the weak-coupling analysis yields
a different picture at zero doping (Appendix B), where
a time-reversal-symmetric superconducting order parameter
(with any real combination of d,>_,> and d,,) is energetically
favored.

V. POSSIBLE RELEVANCE FOR BILAYER GRAPHENE

In the following we will discuss the possible relevance
of our model for the physics of bilayer graphene. With an
estimate?° for the Coulomb on-site repulsion, U ~ 10 eV,
intralayer nearest-neighbor hopping,** t ~ 3 eV, and interlayer
hopping,®® ¢, ~ 0.4 eV, bilayer graphene may have a ten-
dency to develop strongly correlated electron phases. Notice
that, although similar energy scales are found in monolayer
graphene, the latter is to great accuracy described in terms
of (quasi-)free electrons because of a vanishing DOS at the
Fermi level, in the absence of intensive doping.'~> In contrast,
electronic correlations are much more efficient in bilayer
graphene as a consequence of the finite DOS even at the
band-contact points. This finite DOS may also be invoked
when considering screening. Whereas screening is highly
inefficient in monolayer graphene, and one needs then to take
into account the long-range nature of the electronic interac-
tion potential, the screening properties in bilayer graphene
are similar to those in usual 2D electron systems with a
parabolic band dispersion, albeit with a rather small band
mass (~0.05m, in terms of the bare electron mass). In this
sense, an approach based on the Hubbard model, as used here
excluding nearest- and further-neighbor interactions, is better
justified in bilayer than in monolayer graphene. However,
this remains a strong approximation, as in the case of 2D
electrons in GaAs heterostructures, and numerical calculations
indicate that longer-range terms remain relevant also in bilayer
graphene.”

Generally, the interplay between a strong on-site repulsion
U and the hopping terms ¢ and ¢, leads to antiferromag-
netic Heisenberg-type exchange interactions, J ~ /U ~
1eV between nearest neighbors in the same layer and J, ~
ti /U ~ 16 meV between nearest neighbors in opposite layers.
Although clear evidence for antiferromagnetism is lacking
in bilayer graphene, the quadratic dispersion of juxtaposed
conduction and valence bands (together with the nonzero
density of states) favor antiferromagnetic fluctuations.’> Be-
cause the low-energy electrons move preferentially on the B1
and B2 sublattice sites, one needs to estimate an effective
exchange interaction between them that may be obtained
from a perturbative expansion, Jegr ~ J2J | /13 ~t*/U3 ~
100 meV.

Remember that the effective hopping parameter in the
projected honeycomb lattice (between the B1 and B2 sites)
is a more subtle issue because it is derived in the limit where
t; > t,in contrast to the natural order in bilayer graphene. In
order to make a comparison between our effective model and
that of bilayer graphene, in view of the correlated phases we
consider, it is therefore more appropriate to define the effective
hopping indirectly from the value of Jeg and U, Jegr ~ tesz /U,
which yields a value of f. ~ 1eV that should replace the
value 7 in the previous sections.
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Therefore modeled with two effective parameters, Je and
t.tr, bilayer graphene may be compared with the effective hon-
eycomb lattice considered in our paper and the corresponding
t — J model. The main feature of bilayer graphene appears to
be that Jgr ~ 0.1%.¢ < fefr, and in considering the relevance
of our model we should confine ourselves to weak couplings
and small or moderate dopings; because we simplified the
high-momentum physics of the bilayer (by considering the
large ¢; limit) we should confine ourselves to lower dopings.
First one sees from Fig. 4 that the gaps are in the meV
range (2 to 5 meV for the maximal gaps) if one considers
the energy scale . ~ J ~ 1 eV. Thus our results indicate
very small energy scales that are unlikely to be resolved in
today’s graphene samples. Furthermore we should use .
and J for t and J for the exponent in the weak-coupling
analysis in Appendix A. Because we estimate fef/ Jegr ~ 10,
the weak-coupling analysis yields an exponential suppression
and gaps below 1 meV, in agreement with our numerical
findings shown in Fig. 4.

VI. CONCLUSIONS

We presented an analysis of a model of a honeycomb
bilayer with attractive interactions that (1) supports d +
i d superconductivity with the canonical effective (low-
momentum) description ~(k, + i ky)2 at both valley points and
(2) transforms at moderate and strong couplings into d,>_»
superconductivity. The implied #J model may be relevant for
future investigations of such a complex and intriguing system
as the graphene bilayer. We discussed the possibility of a
superconducting instability in this framework and concluded
that d + id is the leading superconducting instability in the
case of the graphene bilayer at moderate dopings and low-
energy scales.

We would like to point also to the difference between the
monolayer and bilayer case that follows from the symmetry
analysis of the simple model with attractive interactions and
the ensuing short-range order parameter on both Ilattices.
In the effective description around K points an s wave
and p wave are found’>?° in the monolayer case, and a
p wave and d wave are found in the bilayer case. The
bilayer honeycomb lattice appears at moderate dopings as
yet another stage on which time-reversal symmetry-breaking
d-wave superconductivity may appear (see Refs. 22,33-37 for
moderately doped monolayer) and may be driven by similar
physics as in the case of predicted instabilities at special (very
high) dopings of a honeycomb monolayer.*®*° In the case
we presented, the canonical*® low momentum description,
~(ky + i ky)z, holds due to the quadratically dispersing Dirac
electrons.
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APPENDIX A: WEAK-COUPLING ANALYTICAL
SOLUTION AT FINITE CHEMICAL POTENTIAL

Here, we present briefly the weak-coupling analysis of
superconducting order in the effective bilayer model. In order
to simplify the notation, we use the letter ¢ to denote the
effective hopping 7. The DOS at the Fermi level, p(EFr), is on
the order of the inverse hopping parameter 1/¢. Notice that if
only a parabolic band is taken into account it remains fixed at its
Er = 0 value, but corrections to the parabolic approximation
immediately yield a contribution that varies linearly with
the Fermi level, in agreement with the DOS plotted in
Fig. 2(b).

In the case when A = A(1,1,1), a weak-coupling BCS
analysis that takes into account only electrons in the lower
Bogoliubov band gives

t
JA = /2tE, ex —24J§n—>, (A1)
p( mp(Er)J

with E. as an energy cutoff around the Fermi value, for the
solution, and

SEL E 1
ﬂ:—(JA)ZM)( F)_’ (A2)
N t 437
for the gain in the mean-field energy, 6 Eymp, by the pairing

instability.
The weak-coupling BCS analysis in the case of electron
doping (1 > 0) for d,>_ 2 and dy2_y2 + i V3 dyy gives

A ﬁE ( 87 1 N 1) A3
=—FE.exp|——= =1,
T P\ BeENT T2

for the solution which we denoted by A = A, and

A \/EE ( 87t 1 +1)
=4/ 7 EcX - = P
3P\ T B pENT T2

in the case of the d,, wave. For the energy gain one obtains

(A4)

SEmp(d_y2) 8 Emp(dyy) ) 33
= =—(JA Er)—=, (A5
N N (JAG) p(EF) o (A5)
andforad,_» +i V3 dy, wave one finds
SE¢ 3J3
—ME = —(JA) P(Ep)=— (A6)

N 27

Because of its twice lower mean-field energy, the d,>_,» +
iﬁdxy time-reversal symmetry-breaking instability, which

PHYSICAL REVIEW B 86, 214505 (2012)

we call in short the d wave, is more likely than d,>_,.-
and d,,-wave order parameters. In the large-doping limit, the
energy minimization is also much more efficient for the d
wave than the p, wave, as seen in the small value of the
ratio

OE = exp
SEd. 2E.

_27‘[ x 8 1 (2 _ 1>i| (A7)
V3 p(ER)J \2u ’

for u < % The most natural choice for E,. is to be of the
order of u as a first energy scale when we start from the
smallest one, i.e., J. The time-reversal symmetry-breaking
d-wave solution of our BCS mean-field Hamiltonian is also
expected from a theorem proved in Ref. 31. The theorem was
derived for 2D one-band models that reveal both time-reversal
symmetry and a point symmetry described by the dihedral
group D, [or the O(2) rotation symmetry in the case of
continuum models]. It states that generally a time-reversal
symmetry-breaking superconducting state has a lower free
energy than time-reversal symmetric ones if one is confronted
with a 2D representation of the symmetry group. In the case of
weak coupling that we consider here, i.e., J <« u,and p > 0
(electron doping), we have an effective one-band theory of
electrons to which the theorem can be applied. Also, the
dispersion of the complex d-wave order parameter is more
complicated in our case (than in Ref. 31), as can be seen in
Egs. (17) and (18). But in the weak-coupling limit the J* term
can be neglected in Eq. (18), and we obtain expressions that
are reminiscent of those of Ref. 31.

In the following we investigate more closely an effective
low-energy description of the d-wave instability, in the
case of high electron doping, and discuss only the lower-
energy Bogoliubov band. Therefore our effective Hamiltonian
is

H, = Z(te,; — M)Cgac,;g + Z(A’;CIETCLQ + H.c.), (A8)
ko k

where Ap ~ (k; — iky)2/|k|2. In the weak-coupling BCS
analysis it can be easily shown that the Hamiltonian is
completely equivalent to the one with A ~ (k, — iky)z,
because both Hamiltonians have an effective description on a
Fermi circle defined by e = p. With this adjustment we have
exactly the form of the BCS Hamiltonian studied in Ref. 40
on time-reversal symmetry-breaking superconductors in two
dimensions. In the so-called weak-pairing case for finite . > 0
that we want to study, the minimum of Bogoliubov excitations
moves to finite values of 12, teg = W, i.e., to the Fermi surface
of free particles. The Cooper pair wave function g(¥) may be a
nonuniversal function of |F| where 7 is the relative coordinate
of the pair. On the other hand, the dependence of the function
on the angle of vector 7 is fixed and can easily be derived
in the Bogoliubov formalism to be g(|F|) o § o« (x — iy)2
where z = x + iy is the two-dimensional complex coordinate.
Thus the relative angular momentum of the Cooper pair
is I = —2. The weak-pairing phase is topological, gapped
in the bulk because u > 0, and possesses a doublet of
spin-1/2 Dirac edge modes.*’ In our case, because of the
fermion doubling on the honeycomb lattice and the existence
of the two K points (valleys) [and because around each
one we have the same effective description given by the
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Hamiltonian in Eq. (16)], we expect four Dirac modes on the
edge.

APPENDIX B: WEAK-COUPLING ANALYTICAL
SOLUTION AT ZERO CHEMICAL POTENTIAL

In the weak-coupling limit at & = 0, when both Bogoliubov
bands are taken into account we find for d,>_,> symmetry

E 3 —1le
JAY = =< SR E—— Bl
3 eXP( e B1)

with ¢ = ﬁ%, for the solution, and
SEC? 9

MF d\2
OFME 7 (JADY, B2
N 26‘( ) (B2)

PHYSICAL REVIEW B 86, 214505 (2012)

for the energy gain. On the other hand, for d + id symmetry

we find
: 2E. 3 5
JAd = ‘/——exp SNETE— (B3)
3 2c
and
s Ed+id '
—xf = —9¢ (J A4Fid)?, (B4)
Because
8Ed+id aEd-Hd B
dom = dy =4 (B5)
SEyg SEyp

any real combination of d,>_,> and d., waves is more likely
than the d + id wave.
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We perform a systematic study of incoherent transport in the high temperature crossover region
of the half filled one-band Hubbard model. We demonstrate that the family of resistivity curves
displays characteristic quantum critical scaling of the form p(T, SU) = p (T)f(T/Ty(8U)), with

@ and p.(T) ~T. The corresponding B function displays a “strong coupling” form

B ~ In(p./p), reflecting the peculiar mirror symmetry of the scaling curves. This behavior, which is
surprisingly similar to some experimental findings, indicates that Mott quantum criticality may be acting
as the fundamental mechanism behind the unusual transport phenomena in many systems near the metal-

insulator transition.

DOI: 10.1103/PhysRevLett.107.026401

Many systems close to the metal-insulator transition
(MIT) often display surprisingly similar transport features
in the high temperature regime [1-3]. Here, the family
of resistivity curves typically assumes a characteristic
“fan-shaped” form [see Fig. 1(a)], reflecting a gradual
crossover from metallic to insulating transport. At the
highest temperatures the resistivity depends only weakly
on the control parameter (concentration of charge carriers
[1] or pressure [2,3]), while as T is lowered, the system
seems to ‘“make up its mind” and rapidly converges
towards either a metallic or an insulating state. Since
temperature acts as a natural cutoff scale for the metal-
insulator transition, such behavior is precisely what one
expects for quantum criticality [4]. In some cases [1], the
entire family of curves displays beautiful scaling behavior,
with a remarkable “mirror symmetry” of the relevant
scaling functions [4]. But under which microscopic con-
ditions should one expect such scaling phenomenology?
What is the corresponding driving force for the transitions?
Despite recent progress, such basic physics questions re-
main the subject of much ongoing controversy and debate.

The phenomenon of disordered-driven Anderson local-
ization of noninteracting electrons is at present rather
well understood based on the scaling formulation [5]
and is generally viewed as an example of a 7 = 0 quantum
phase transition. On the other hand, a considerable number
of recent experiments [1] provide compelling evidence
that strong correlation effects—some form of Mott
localization—may be the dominant mechanism [6].
Should one expect similar or very different transport
phenomenology in the Mott picture? Is the paradigm of
quantum criticality even a useful language to describe
high temperature transport around the Mott point? These
issues are notoriously difficult to address, because conven-
tional Fermi liquid concepts simply cannot be utilized
in the relevant high temperature incoherent regime.
In this Letter, we answer this question in the framework

0031-9007/11/107(2)/026401(4)
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PACS numbers: 71.27.+a, 71.30.+h

of dynamical mean-field theory (DMFT) [7], the only
theoretical method that is most reliable precisely at high
temperatures.

Model and DMFT solution.—We consider a single-band
Hubbard model at half filling

H=—Y tj(clciy +cc)+ Y Unmy (1
G.po i

where c}; and c;,, are the electron creation and annihilation
operators, respectively, n;, = c;fac,-(,, t;; is the hopping
amplitude, and U is the repulsion between two electrons
on the same site. We use a semicircular density of states,
and the corresponding half-bandwidth D is set to be
our energy unit. We focus on the paramagnetic DMFT

. 10 ————r —
@ | F L ()

-0.2<8U<+0.2 L 4% o Conc

100 |
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FIG. 1 (color online). (a) DMFT resistivity curves as a func-
tion of temperature along different trajectories —0.2 = oU =
+0.2 with respect to the instability line 6U = 0 (black dashed
line; see the text). Data are obtained by using IPT impurity
solver. (b) Resistivity scaling; essentially identical scaling func-
tions are found from CTQMC (open symbols) and from IPT
(closed symbols).

© 2011 American Physical Society
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solution, which is formally exact in the limit of large
coordination. Here the Hubbard model maps onto an
effective Anderson impurity model supplemented by a
self-consistency condition [7]. To solve the DMFT equa-
tions we use the iterated perturbation theory (IPT) [7] and
cross-check our results with numerically exact continuous
time quantum Monte Carlo (CTQMC) calculations [8,9].
We find, in agreement with previous work [10], that after
appropriate energy rescaling (see below), the two methods
produce qualitatively and even quantitatively identical re-
sults in the incoherent crossover region that we examine.
It is well known that at very low temperatures 7 < T ~
0.03, this model features a first-order metal-insulator tran-
sition terminating at the critical end point 7. (Fig. 2), very
similar to the familiar liquid-gas transition [10]. For
T > T., however, different crossover regimes have been
tentatively identified [7,11], but they have not been studied
in any appreciable detail. The fact that the first-order
coexistence region is restricted to such very low tempera-
tures provides strong motivation to examine the high tem-
perature crossover region from the perspective of ‘“‘hidden
quantum criticality.” In other words, the presence of a
coexistence dome at T < T, < 1, an effect with a very
small energy scale, is not likely to influence the behavior at
much higher temperatures 7 >> T... In this high tempera-
ture regime smooth crossover is found, which may display
behavior consistent with the presence of a “hidden” quan-
tum critical (QC) point at 7 = 0. To test this idea, we
utilize standard scaling methods appropriate for quantum

Ue(T) -
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FIG. 2 (color online). DMFT phase diagram of the fully frus-
trated half filled Hubbard model, with a shaded region showing
where quantum critical-like scaling is found. Metallic U, (T)
and insulating U, (T) spinodals (dotted lines) are found at
T < T,; the corresponding first-order phase transition is shown
by a thick solid line. The thick dashed line, which extends at
T > T,, shows the instability trajectory U*(T), and the crossover
temperature 7}, delimits the QC region (dash-dotted lines). The
inset shows examples of eigenvalue curves at three different
temperatures, with pronounced minima at U*(T) determining
the instability trajectory.

criticality and compute the resistivity curves along judi-
ciously chosen trajectories respecting the symmetries of
the problem.

Instability trajectory formalism.—Previous work has al-
ready recognized [10] that, in order to reveal the proper
scaling behavior close to the critical end point, one has to
follow a set of trajectories parallel to “‘zero field” trajec-
tory U*(T). We thus expect U = U — U*(T) to play the
role of the scaling variable corresponding to a symmetry-
breaking field favoring one of the two competing (metal
vs insulator) phases. By analogy [10,12] to the familiar
liquid-gas transition, we determine the precise location
of such an ““instability trajectory” by examining the cur-
vature of the corresponding free energy functional [13].
This curvature vanishes at 7. and is finite and minimal at
T >T,., along this instability line. Consequently, as in
Refs. [10,13,14], our problem is recast as an eigenvalue
analysis of the corresponding free energy functional
FIG(iw,,)] for which the DMFT Green’s function solution
Gpmrr(iw,) represents a local extremum and can be re-
garded as a vector in an appropriate Hilbert space.

The free energy near such an extremum can be written as
FlG(iw )] = Fo+ T2y, ,6G(iw,)M,,,6G(iw,) + -+,
where

Yo 9> FIG]
mn 2712 aG(iwm)aG(iwn) G=Gpypr

and 8G(iw,) = Gliw,)) — Gpyrr(iow,). The curvature of
the free energy functional is determined by the lowest
eigenvalue A of the fluctuation matrix M. As explained in
Ref. [15], A can be obtained from the iterative solution of
DMEFT equations. The difference of the Green’s functions
in iterations n and n + 1 of the DMFT self-consistency
loop is given by

8G" V(iw,) — G (iw,) = e "5GYiw,), (3)

and therefore A determines the rate of convergence of the
Green function to its solution.

An example of our calculations is shown in the inset in
Fig. 2, where the eigenvalues at several temperatures are
plotted as a function of interaction U/U,. The minima of
these curves define the locus of the instability trajectory
U*(T), which terminates at the critical end point (U, T,),
as shown in Fig. 2. Note that the immediate vicinity 7 = T,
of the critical end point has been carefully studied theo-
retically [10] and even observed in experiments [2],
revealing classical Ising scaling (since one has a finite
temperature critical point) of transport in this regime. In
our study, we examine the crossover behavior at much
higher temperatures 7 > T, displaying very different
behavior: precisely what is expected in presence of quan-
tum criticality.

Resistivity calculation.—To reveal quantum critical
scaling, we calculate the temperature dependence of the
resistivity along a set of trajectories parallel to our insta-
bility trajectory [fixed §U = U — U*(T)]. Resistivity was
calculated by using standard DMFT procedures [7], with

2

026401-2



PRL 107, 026401 (2011)

PHYSICAL REVIEW LETTERS

week ending
8 JULY 2011

the maximum entropy method [16] utilized to analytically
continue CTQMC data to the real axis. The resistivity
results are shown in Fig. 1, where in panel (a) IPT resis-
tivity data for U = 0, £0.025, =0.05, =0.1, £0.15, £0.2
in the temperature range of 7" =~ 0.07-0.2 are presented
(CTQMC data are not shown for the sake of clarity of the
figure). The resistivity is given in units of py;., maximal
resistivity according to the Boltzmann quasiclassical
theory of transport [17]. The family of resistivity curves
above (86U > 0) the “separatrix” p.(T) (dashed line, cor-
responding to U = 0) has an insulatinglike behavior,
while metallic dependence is obtained for 6U < 0.

Scaling analysis.—According to what is generally ex-
pected for quantum criticality, our family of curves should
satisfy the following scaling relation:

p(T, 6U) = p (1) f(T/To(8UV)). “)

We thus first divide each resistivity curve by the separatrix
p(T) = p(T, 8U = 0) and then rescale the temperature,
for each curve, with an appropriately chosen parameter
Ty(8U) to collapse our data onto two branches [Fig. 1(b)].
Note that this unbiased analysis does not assume any
specific form of Ty (8U): It is determined for each curve
simply to obtain optimum collapse of the data [18].
This puts us in a position to perform a stringent test of
our scaling hypothesis: True quantum criticality corre-
sponds to Ty(8U), which vanishes at SU = 0 and displays
power-law scaling with the same exponents for both scal-
ing branches. As seen in Fig. 3(a), T falls sharply as
U = U* is approached, consistent with the QC scenario
but opposite to what is expected in a “classical” phase
transition. The inset in Fig. 3(a) with log-log scale
shows clearly a power-law behavior of T, = ¢|5U|*”, with
the estimated power (zv)¥_, =0.56*0.01 for the
“metallic ” side and (z»)¥'_, = 0.57 = 0.01 for an insu-
lating branch.

We also find [Fig. 3(b)] a very unusual form of our critical
resistivity p.(T), corresponding to the instability trajectory.

Its values largely exceeds the Mott limit, yet it displays
metalliclike but non-Fermi liquidlike temperature depen-
dence p.(T) ~ T. Such puzzling behavior, while inconsis-
tent with any conventional transport mechanism, has been
observed in several strongly correlated materials close to
the Mott transition [17,20]. Our results thus suggest that it
represents a generic feature of Mott quantum criticality.

B function and mirror symmetry of scaled curves.—To
specify the scaling behavior even more precisely, we com-
pute the corresponding B function [4] B(g) = Z}E?, with
g = p./p being the inverse resistivity scaling function.
Remarkably [Fig. 4(a)], it displays a nearly linear depen-
dence on Ing and is continuous through 6U = 0 indicating
precisely the same form of the scaling function on both sides
of the transition—another feature exactly of the form ex-
pected for genuine quantum criticality. This functional form
is very natural for the insulating transport, as it is obtained
even for simple activated behavior p(T) ~ ¢ £/ The fact
that the same functional form persists well into the metallic
side is a surprise, especially since it covers almost an order
of magnitude for the resistivity ratio. Such a behavior has
been interpreted [4] to reflect the ““strong coupling’ nature
of the critical point, which presumably is governed by the
same physical processes that dominate the insulator. This
points to the fact that our QC behavior has a strong coupling,
i.e., nonperturbative character.

The fact that the B function assumes this logarithmic
form on both sides of the transition is mathematically
equivalent [4] to stating that the two branches of the
corresponding scaling functions display ‘“‘mirror symme-
try”” over the same resistivity range. Indeed, we find that
transport in this QC region exhibits a surprisingly devel-
oped reflection symmetry [dashed vertical lines of Fig. 4(a)
mark its boundaries]. Such a symmetry is clearly seen in
Fig. 4(b), where the resistivity p/p, (for SU > 0) and
conductivity o/o. = p./p (8U <0) can be mapped

onto each other by reflection with %‘U) = @ [21].
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FIG. 4 (color online). (a) The B function shows linear in
In(p./p) behavior close to the transition. Open symbols are
for the metallic branch (6U < 0), and closed ones are for the
insulating side (6U > 0); vertical dashed lines indicate the
region where mirror symmetry of curves is found. (b)
Reflection symmetry of scaled curves close to the transition.
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Note that T/T, = 1 sets the boundary of the quantum
critical region, over which the reflection symmetry of
scaled curves is observed. It is depicted by dash-dotted
crossover lines T, in the phase diagram of Fig. 2 [15].

These remarkable features of the B function, and asso-
ciated reflection symmetry, have been observed earlier in
experimental [1,21] and theoretical [4] studies, which
tentatively associated this with disorder-dominated MITs.
Speculation that 8 ~ Ing reveals disorder as the fundamen-
tal driving force for MIT presumably reflects the fact that,
historically, it has first been recognized for Anderson tran-
sitions [5]. Our work, however, shows that such behavior
can be found even in the absence of disorder—in
interaction-driven MITs. This finding calls for rethinking
of basic physical processes that can drive the MIT.

Conclusions.—We have presented a careful and detailed
study of incoherent transport in the high temperature cross-
over regime above the critical end point 7. of a single-band
Hubbard model. Our analysis revealed a so-far overlooked
scaling behavior of the resistivity curves, which we inter-
preted as evidence of hidden Mott quantum criticality.
Precisely locating the proposed QC point in our model is
hindered by presence of the low temperature coexistence
dome, which limits our quantum critical scaling to the
region well above T.. Regarding the nature of transport
in the QC regime, we found that the critical resistivity well
exceeds the Mott limit, and yet it—surprisingly—assumes
a metallic form, in dramatic contrast to conventional
MIT scenarios. These features, together with large
amounts of entropy characterizing this entire regime
[22], prove surprisingly reminiscent of the ‘“‘holographic
duality” scenario [23,24] for a yet-unspecified QC point.
Interestingly, the holographic duality picture has—so far—
been discussed mostly in the context of quantum criticality
in correlated metals (e.g., 7 = 0 magnetic transitions in
heavy fermion compounds). Ours is the first work propos-
ing that the same physical picture could apply to quantum
criticality found at the MIT.

We believe that our results provide a significant new
perspective on QC around the Mott transition and a deeper
understanding of an apparent universality in the high tem-
perature crossover regime. Our method traces a clear ave-
nue for further searches for QC scaling, which are likely to
be found in many other regimes and models.

In particular, it would be interesting to study a corre-
sponding critical regime by going beyond the single-site
DMFT analysis. It was shown in Ref. [19] that inclusion of
spatial fluctuations does not significantly modify the high
temperature crossover region in the half filled Hubbard
model. Consequently, we expect our main findings to
persist. An even more stringent test of our ideas should
be provided in models where the critical end point 7. can
be significantly reduced. This may include studies of the
Mott transition away from half filling [25] or in systems
with frustrations [6,26]. In such situations the proposed
scaling regime should extend to much lower temperatures,

perhaps revealing more direct evidence of the—so far—
hidden Mott QC point. Our ideas should also be tested
by performing more detailed transport experiments in the
relevant incoherent regime, a task that may be easily
accessible in various organic Mott systems [3], where T
is sufficiently below room temperature.
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EIGENVALUE ANALYSIS OF THE FREE
ENERGY CURVATURE

Here we present in detail the procedure that we use
to determine the minimum curvature of the free energy
functional for a given temperature. For simplicity we
concentrate on the Bethe lattice. The Ginzburg-Landau
free energy functional F(G) in the Hilbert space of the
Matsubara Green’s functions G = G (iw,,) is given by [1-

3]
F(C_j) = —TtQéQ + Fimp(é)
= —T¢ Z G? (an) + Fimp(é)a (1)

where the first term is the energy cost of forming the
Weiss field A = ¢2G around a given site, while the second
term is the free energy of an electron at this site in the
presence of the Weiss field.

Close to a local extremum Gy, we can Taylor expand
F(G) in terms of deviation from this point 6G = G — Go:

—

F(G) = F(Go) + Tt 6G(iwm) MypndG (iwn) + . ..

= F(Go) +Tt?6GM6G + ... (2)
where
1 9?F(G)
Munn = 2Tt2 0G (iwn)OG (iwm) | - - ®)
G=Go
We introduce a gradient function
e 1 OF(G) -~ =
= — =M 4
9(G) = 55 Y% oG (4)

and define an iteration-substitution procedure by
G = §G — G(G™), (5)

which gives the minimum of the free energy as the itera-
tion step n — oo. In the case of the free energy functional
given by Eq. (1), we have

9(G) = Gimp(G) = G, (6)

and in the iterative procedure the Green’s function con-
verges to the minimum of the free energy which is at the
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Figure 1: Convergence rate in the iterative solution of DMFT
equations at 7'/T. = 2.33 using IPT impurity solver, panel
(a), and CTQMC impurity solver, panel (b). The dashed
lines in panel (b) are linear fits to the data. The insets are
the corresponding eigenvalues determined by the slopes from
the main panels.

same time also a self-consistent solution of the DMFT
equations, given by the relation G,y (iwy,) = G(iwy).

The curvature of the free energy for interaction U and
temperature 7' can be obtained as follows. The eigenbasis
G, and eigenvalues A\, of matrix M are defined by

MGq = AoGa. (7)
We can expand §G™M as

5G™ = "a(M G, (8)
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Figure 2: Phase diagram obtained with IPT, panel (a), and
CTQMC, panel (b). Temperature and interaction are scaled
by their values at the critical endpoint (TCIPT = 0.046,
TOMC = 0.03 and UIFT =2.472, USMC = 2.3). Red dashed
line is the instability line U*(T), full red line is the line of the
first order MIT, and green and blue dotted lines are left and
right spinodals.

where a((yn) are the coefficients of 6G(™ in the eigenvalue

basis. Substituting into Eq. (5), one obtains

G = Z e P03, (9)
where
B, =—In(1-\,). (10)

For large n the term with lowest B, = B,,, which cor-
responds to the lowest eigenvalue \,, = A, is dominant

sG) — e_nBaoa&OO)éaov n> 1. (11)

Here «g is the coefficient corresponding to the Green
function with the lowest eigenvalue A\. Now it is obvious
that through iterations, the solution G approaches to éo
exponentially along a direction defined by the eigenvec-
tor of M corresponding to its minimal eigenvalue A. The
coefficient B,, and the corresponding eigenvalue A are
then obtained from the slope in the iterative relation

In | G (iwy,) ™D — G(iwn)(")} = const —nB,,, (12)

which follows from Eq. (9).

In practice, to obtain A (and thus the curvature of
free energy), we monitor DMFT loop convergence rate,
G (iwe) ") — G (iw,) (™, in as many iterations as possible
and then linearly fit In (G (iw,) "V — G (iw,)™) versus
iteration index n. Here w, = 7T is the lowest Matsubara
frequency. For small A\, B,, =~ A. We repeat this proce-
dure for different values of U at the same temperature T’
to determine U*(T") in which A(U)|r is minimal. It takes
few iterations of the DMFT loop to enter into the linear
regime given by Eq. (12).

With IPT impurity solver, we can use data from several
tens of iterations to determine the slope B,,, Fig. 1(a).
The solution with CTQMC impurity solver has a statisti-
cal error and the number of iterations is limited before the
difference |G(iw,)™ Y — G(iw,)™| becomes too small
and acquires a large relative statistical error. Neverthe-
less, we were able to determine rather precisely the eigen-
value A and the interaction U*(T') for which it becomes
minimal, Fig. 1(b). The "instability line" corresponding
to the minimum curvature of the free energy is shown in
Fig. 2(a) (IPT phase diagram), and Fig. 2(b) (CTQMC
phase diagram). Error bars in Fig. 2(b) are estimates of
the uncertainty in the position of the instability line.

DETAILS OF THE SCALING PROCEDURE

The resistivity p(T,8U) is calculated along the lines
parallel to the instability line U*(T). Here U = U —
U*(T). The resistivity is fist divided by its value p.(T) at
dU = 0, Fig. 3(a). Then for each U the temperature axis
is scaled by Tj where the scaling parameter Tj is chosen
to collapse the data onto two branches: insulating-like
for U > 0 and metallic-like for §U < 0. The scaling was
done in such a way that data were collapsed on the lowest
curves with 6U = £0.025 as shown in Fig. 3(b). The
scaling parameter T has a power law form Ty = ¢|6U|?”,
where the prefactor ¢ depends on this referent value of
U.

Our data exhibit a reflection symmetry which is seen
in Fig. 4(a), where the resistivity p/p. (for 6U > 0) and
conductivity o/o. = p./p (60U < 0) can be mapped onto
each other by reflection with &Z]) = %fsm.

The standard estimate for the scale (prefactor) of the
crossover temperature is obtained by requiring that the
scaling variable * = T/Ty = 1 at the point where
the scaling function changes its functional form; in our
case this corresponds to the temperature below which
the mirror symmetry of the scaling curves no longer
holds. Before rescaling the prefactor, this is found at
x* = Ts./T, = 0.052. Our final form of scaled data
is shown in Fig. 4(b), where T'/Tj - axis is rescaled by
x* = Ty./T, so that T/T, = 1 sets the boundary of the
quantum critical region. The scaling parameter T as
function of dU is shown in Fig. 5(a) (before rescaling
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with 2*) and in Fig. 5(b) (after rescaling with z*). The
corresponding values for ¢ and zv from the power law fit
are also given.

We can now plot the crossover temperature T} setting
the boundary of QC region on our phase diagram. T = T
condition is equivalent to

To = c|dU(T,)|"* = S|U — U™ (T,)|*", (13)

where U*(T,) is value of U at temperature T = Ty, along
the instability line. This equation implicitly defines the
crossover line T,(U). Alternatively, we can invert this
dependence to describe the same crossover line as Uy(T)

that takes the form
UX(T) = U*(T) + (T/c)"*". (14)

As we can see from this expression, the crossover line ap-
proaches the instability line at low 7" and diverges away
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Figure 5: (a) Scaling temperature Ty vs. U obtained from
scaling procedure shown on Fig. 4(a). (b) Ty vs. 06U after
rescaling by Ts.. The boundary of the quantum critical region
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from it at high 7. The phase diagram including the in-
stability line and the crossover temperature Ty is shown
on Fig. 6.
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