Hayuynom Behy UHcTUTyTa 32 Qusuky beorpan
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IMpeamer:

MoJi0a 3a nokpeTame NOCTyNnKa 3a u300p y 3Bambe HCTPAKUBAY
CAPAJTHUK

Monum Hayuno Behe MHctuTyTa 32 Pusuky y beorpaiy 11a mokpeHe mocTyiak 3a
MOj B300p Y 3BalbE UCTPAXKUBAY CAPATHHK.

Y 1upuiory JocTaBJbaM:

1. MUIIJBEHEC PYKOBOMOILIA J1A00OpaTOpPH]E ca IPEUIOTOM WIAHOBA KOMUCH]C 32
1300p Y 3BamC;

. CTpyuHy Ouorpadujy;

. TIpErJic]] Hay4YHE aKTUBHOCTH;

. ClIMcaK 00jaBJbCHUX HAYYHUX PaJi0Ba U BUXOBE KOIIM]C;

. IOTBPJIa O YIIMCAHUM JOKTOPCKHUM CTY/I1M]aMa;

. KOIIM]y JUIuIaMa OCHOBHMX M MAacTCp aKaJCMCKHUX CTyAU]ja;

. yBEpew:E 0 1pruxBahecHO] TEMU JIOKTOPCKE JIMCEpTAIH]C.
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beorpan, 13. jyn 2020. ronune

Ipenmer: Munubewe pykoBoauouna Jgadoparopuje o wu3doopy Tujane
PanenxoBuh y 3Bame ucTpaxkuBay capajHuK

Tujana PagenkoBuh je Ouia aHra>koBaHa Ha MPOjJEKTYy OCHOBHUX UCTpaKuBama MUHHCTapCTBa
MpocBeTe, HayKe M TEXHOJOWKOr pa3Boja Pemybmuke CpOuje OH 171031, mon HazuBoM
,»Qu3uyke uMnIUKAyUje Moougukoearoe npocmopspemera ‘. 3amocieHa je y Tpynu 3a
I'paButanyjy, yectune u nosba MuHctuTyTa 3a husuky y beorpany on ampmiia 2018. roaune,
Kaja je uzabpaHa y 3Bame MCTPaXXMBay MPHUIIPABHUK. Pajin Ha TeMU KOHCTpyHCamba yjeIUbeHE
Teopuje KBaHTHe TpaButanuje u marepuje CranmapaHor Mojena y KOHTEKCTY MaTeMaTH4Ke
TeOpHje BHUIIMX KaTeropvja ToJ pykoBojacTBoM ap Mapka BojunoBuha. C o063upom na
UCIylmaBa cBe IHpeaBuleHe yciaoBe Yy ckiany ca [IpaBWIHMKOM O TMOCTYINKY, HayuHY
BpPEIHOBAKk-a U KBAHTUTATUBHOM HCKa3MBamkhy HAyUHOHCTPAXKUBAUKHUX pe3ynaTaTa MUHUCTapCTBA
MIPOCBETE HAayKe U TEXHOJOIIKOT pa3Boja, carjacaH caM ca MOKpPETameM MOCTYIIKA U MpeaIakeM
u36op Tujane PanenkoBuh y 3Bame UCTPaKUBAY CapaHHK.

3a cacra komucuje 3a u300p Tujane PajenkoBuh y 3Bame UCTpaKuBay CapaTHHUK MPEIaKEM:

1) ap Mapko BojunoBuh, Butu Hayunu capaaauk, MactutyT 3a pusuky y beorpany,

2) np bpanucnas liBerkoBuh, Hayunu caBeTHUK, HCTUTYT 3a ¢usuky y beorpany,

3) mpod np Maja bypuh, pemoBHu mnpodecop, Puszuuku (akynTeT YHHUBEp3UTETA Y
beorpany.

np bpanucnas L[BeTkoBuh
HAay4YHH CaBETHUK MHCTHTYTa 3a QU3UKY

pykoBoawmIiIall rpyne 3a ['paBuTanujy, 4ecTUIIE U M0Jba



Buorpadmja TujaHe PageHkoBuh

Tujana PanenkoBuh je pohena 21.3.1992. rogune y beorpany, rae je 3aBpiimia OCHOBHY
mKoidy 1 MaremaTnuky TuMHa3ujy. OCHOBHE akajieMcKe ctyauje Ha DuzndkoM QaxynTery
VYuusepsurera y beorpany, cmep Teopujcka u ekcriepuMeHTanHa pusuka, 3anoyena je 2011.
roguHe M 3aBpumwia jyna 2016. roguHe ca mpocedHoM oneHoMm 9,33. Macrtep akagemcke
CTyadje Ha UCTOM (Qakynrery, cMep TeopHjcka U eKCIepuMeHTa Ha (pU3uKa, 3aBpIIwia je
okToOpa 2017. roguHe ca mpocedHoM ouneHoM 9,33, oaOpaHUBLIM MacTep pajl Ha TeMy
,,KBaHTHa rpaBUTAIlHja HA JI€0-TI0-1€0 PaBHUM MHOTOCTPYKOCTUMA .

Macrep pan je ypahen mox pykoBoiactBoM np Mapka BojunoBuwha, Buler HaydHOT
capannuka MHcturyra 3a ¢pusuky y beorpany. Mactep te3a Harpahena je narpagom “IIpod.
Jby6omup hupkoBuh” 3a Hajoosby MacTep Te3y TokoM mkoicke 2017/2018 ronune.
HoemOpa 2017. roauHe ynucaia je JOKTOPCKe akaJeMcKe cTyanje Ha PU3ndkoMm paxkynTery
Yuuep3utera y beorpany, yka HaydHa 00JIacT KBaHTHA 110Jba, Y€CTHUIIE U TpaBuTanuja. [lox
pykoBoicTBOM Jp Mapka BojunoBmha pamum Ha Temama Be3aHUM 32 yjeIUECHE TEOpHje
KBaHTHE TpaBHTanyje ca MaTeprjoM CTaHAapIHOT MOJENa, y OKBUPY MaTeMaTHYKe TEOpHje
Bumux kateropuja. Ox anpuna 2017. ronune Tujana Pagenkosuh je 3anocnena y MHCTUTYTY
3a ¢u3uky y beorpamy xao mctpaxxumBad MpUIIPABHUK y Tpynu 3a ['paBuTanujy, dyectuue u
1oJjba, 4YMju je pykoBomwnan ap bpanucnaB llBerkoBuh. YuyecTBoBaja je Ha MPOJEKTy
OCHOBHHMX HCTpaxuBama , DOU3NYKEe HWMIUIMKAIKMje MOAM(DHUKOBAHOT MPOCTOPBpEeMeHa”
(OH171031) MuHucrapcTBa npocBeTe, HayKe W TEXHOJIOUIKOr pa3Boja Pernybnuke CpOuje,
KOjUM je pyKkoBoauia rnpo¢ ap Maja Bypuh.

Jlo cana je moxahana HEKOJIMKO IIKOJIA 3a JIOKTOPAHJIE U y4ecTBOBaja Ha KOH(epeHIujama,
mehy kojuma cy: 10th MATHEMATICAL PHYSICS MEETING: School and Conference on
Modern Mathematical Physics, Belgrade, Serbia (2019); Twistors and Loops Meeting
"Théorie des twisteurs et gravitation quantique a boucles", Marseille, France (2019); BS2019:
SEENET-MTP Balkan School on High Energy and Particle Physics: Theory and
Phenomenology, loannina, Greece (2019); "Quantum Gravity in Paris" conference, Paris,
France (2019); Workshop on Gravity and String Theory "New ideas for unsolved problems
III" Zlatibor, Serbia (2018); CERN-SEENET-MTP PhD Training Program "High Energy and
Particle Physics: Theory and Phenomenology", Nis, Serbia (2018); Summer School on High
Energy Physics, Petnica, Serbia (2018); Workshop on Gravity, Holography, Strings and
Noncommutative Geometry, Belgrade, Serbia (2018); CERN-SEENET-MTP PhD Training
Program "New Trends in High Energy Theory", Sofia, Bulgaria (2017); School and
Conference on Modern Mathematical Physics, Belgrade, Serbia (2017).

Ha Konerujymy nokropckux cryauja @usmukor Qakynrera YHuBep3utera y beorpany,
oapxkanom 1. 7. 2020. roamHe, omoOpeHa je HEeHa TeMa JOKTOPCKE AMCEepTaluje IOoJ
HAcJIOBOM ,,KBaHTHa rpaBHTallMja U BUILE I'PaTUjeHTHE TeopHje’, a 3a MeHTopa je oxpehen
1np Mapko Bojunosuh.

Ho cana, Tujana PanenkoBuh uma jenan pan o0jaBbeH y "aconucy kareropuje M21, jenan
pax o0jaBJbeH y Yacomucy kareropuwje M22, Kao W jeqHO caomiuTeme ca mehyHapomgHor
CKyMa mramnaso y nenuau (M33).
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IIperaen nayune aktuBHoctu Tujane Panenxkosuh

Tujana PagenkoBuh ce y cBoM HaydHOM panxy 0aBu MpoOIeMHUMa KBaHTHE IPABUTALIN]C U H>CHOT
yjeauIbeba ca OCTamuM (PyHIAMCHTATHUM CHIIaMa.

Hocamamsy Hay4dHO WCTpakuBauku pan Tujane PamenkoBuh, mMoxke ce Kinacu(uUKOBaTH Y
crieaehe OCHOBHE TpaBLIE:

1. ®opmymucame 2BF, oamnocno 3BF  gejectBa, ca Be3ama 3a  Janr-Mwicoso,
Knaju-TopmonoBo, [upakoso, BajmoBo u Majopana mnojke, y UHTCpaKOUjH ca
Ajnmrraju-KapranoBoM rpaBuTanyjoM y oOIWKYy MpHiaroheHoM 3a crpoBoherbe mpoueaype
KOBapHjaHTHE KBAaHTHU3AIH]C.

2. TlpBu KOpak KaHOHCKE KBAaHTH3ALMOHE MPOLECAYpe: XaMUITOHOBA aHaIN3a TOMOJOMIKOT
3BF nejctBa.

1. dopmysmcame 2BF, oanocno3BF nejecrBa, ca Besama 3a Janr-Muicoso,
Kaaju-I'opnonoso, JupakoBo, Bajinoso m Majopana mno/be, y MHTCPAKUHjH €a
Ajamraja-Kapranosom rpasuranmjoMm y o0iauky npuiaarohenom 3a cnposolheme
npoueaype KOBApPHjaHTHE KBAHTH3auHWje (KBaHTH3aLMOHA NPOUECAYPa CHHHCKE
MEcHE)

[ocmarpana je renepanuzanuja BF Teopuje y dhopManusMy Teopuje Kareropuja - T3B. 2BF
omnocuo 3BF Teopuja, ca oaromapajyhom 2- rpynoM, ogHOCHO 3 - TpymoM, T'paIdljeHTHHX
cumerpuja. Koncrpyucano je 2BF nejctBo Koje Aaje oaropapajyhy nunamuky 3a Janr-MumcoBo
MoJbe KOje HWHTEparyje ca TpaBuUTalujoM, Kao W oarosapajyha3BF nejcTBa Koja OMNHUCY]Y
Knaju-TopmonoBo, /[upakoBo, Bajmoo u Majopana mose, Yy UWHTCpaKUWju ca
Ajnmrraja-KapranoBom rpaBuTanmjoM. JejcTBO je Hamucano y oONHKy 30Mpa TOMOJIOMIKOT Aea
M CEKTOpa ca Be3ama, mpuiaroheHo 3a cupoBolerbe KOBapHjaHTHE KBAHTH3AMOHE MPOLEIYpE
KapakTECpUCTUYHE 3a Mojene cnuHcke mneHe. [permwmcan je nenoxkynan CrangapaHu MOACT Y
OoBOM OOJHMKY W TIpero3HaTa j¢ HOBa rpyna cUMETpHje Koja oxpehyje cmektap marepuje
MIPUCYTHE Y TCOPH]jH.

2. IIpBH KoOpak KAHOHCKE KBAHTH3aWMOHE mnpoueaype: XaMWJITOHOBA aHAIM3a
TonoJiomwkor 3BF nejcrBa

XaMUITOHOBAa aHaIM3a TCOPHjC j€ HEOMXOAAH MPBU KOPaK KAaHOHCKE KBAaHTH3AHOHC
IpoLIeAype, KOjU HaM J03BOJbaBa Aa (JOPMYIIMIIEMO KBAHTHY TCOPH]Y 3a CHCTEME KOjH MTOCEIY]Y
rpagujeHTHy CcuUMeTpHjy. Ypahena je Xamunronosa ananu3a 3BF aejcTBa Koje oaromapa
TOTIOJNOIIKOM CEKTOPY CKaJlapHE CICKTPOIWHAMUKE Y WHTEpakuuju ca Ajumrtaju-Kapranosom
rpaBuTanujoM. JJoOujene cy Be3e MpBe Kiace U BE3¢ IPyre Kiace MpUCYTHE Y TCOPHUjH, anreopa
BC3a y TCOPHjH, Ka0 W TCHEPATOp TPaaWjeHTHUX TpaHcopMmanuja W Bapujaudje Gopmu
Bapujabia W IHLUXOBHUX KOHJYTOBaHMX HMITyJca KOj¢ OATOBapajy OBHMM TpaHcdopmanujama
CUMETpHjE.
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1 Introduction

The quantization of the gravitational field is one of the most prominent open problems in
modern theoretical physics. Within the Loop Quantum Gravity framework, one can study
the nonperturbative quantization of gravity, both canonically and covariantly, see [1-3] for
an overview and a comprehensive introduction. The covariant approach focuses on the
definition of the path integral for the gravitational field,

Z = /Dg eslal | (1.1)

by considering a triangulation of a spacetime manifold, and defining the path integral as
a discrete state sum of the gravitational field configurations living on the simplices in the
triangulation. This quantization technique is known as the spinfoam quantization method,
and roughly goes along the following lines:

1. first, one writes the classical action S[g] as a topological BF action plus a simplicity
constraint,



2. then one uses the algebraic structure (a Lie group) underlying the topological sector
of the action to define a triangulation-independent state sum Z,

3. and finally, one imposes the simplicity constraints on the state sum, promoting it
into a path integral for a physical theory.

This quantization prescription has been implemented for various choices of the action, the
Lie group, and the spacetime dimension. For example, in 3 dimensions, the prototype
spinfoam model is known as the Ponzano-Regge model [4]. In 4 dimensions there are
multiple models, such as the Barrett-Crane model [5, 6], the Ooguri model [7], and the
most sophisticated EPRL/FK model [8, 9]. All these models aim to define a viable theory
of quantum gravity, with variable success. However, virtually all of them are focused on
pure gravity, without matter fields. The attempts to include matter fields have had limited
success [10], mainly because the mass terms could not be expressed in the theory due to
the absence of the tetrad fields from the BF sector of the theory.

In order to resolve this issue, a new approach has been developed, using the categorical
generalization of the BF action, within the framework of higher gauge theory (see [11] for a
review). In particular, one uses the idea of a categorical ladder to promote the BF' action,
which is based on some Lie group, into a 2B F action, which is based on the so-called 2-group
structure. If chosen in a suitable way, the 2-group structure should hopefully introduce
the tetrad fields into the action. This approach has been successfully implemented [12],
rewriting the action for general relativity as a constrained 2BF action, such that the tetrad
fields are present in the topological sector. This result opened up a possibility to couple
all matter fields to gravity in a straightforward way. Nevertheless, the matter fields could
not be naturally expressed using the underlying algebraic structure of a 2-group, rendering
the spinfoam quantization method only half-implementable, since the matter sector of the
classical action could not be expressed as a topological term plus a simplicity constraint,
which means that the steps 2 and 3 above could not be performed for the matter sector of
the action.

We address this problem in this paper. As we will show, it turns out that it is necessary
to perform one more step in the categorical ladder, generalizing the underlying algebraic
structure from a 2-group to a 3-group. This generalization then naturally gives rise to the
so-called 3BF action, which proves to be suitable for a unified description of both gravity
and matter fields. The steps of the categorical ladder can be conveniently summarized in
the following table:

categorical algebraic linear topological degrees of
structure structure structure action freedom
Lie group Lie group Lie algebra BF theory | gauge fields
) Lie crossed differential Lie
Lie 2-group 2BF theory | tetrad fields
module crossed module
. Lie 2-crossed | differential Lie scalar and
Lie 3-group 3BF theory
module 2-crossed module fermion fields




Once the suitable gauge 3-group has been specified and the corresponding 3 BF action
constructed, the most important thing that remains, in order to complete the step 1 of the
spinfoam quantization programme, is to impose appropriate simplicity constraints onto
the degrees of freedom present in the 3BF' action, so that we obtain the desired classical
dynamics of the gravitational and matter fields. Then one can proceed with steps 2 and 3
of the spinfoam quantization, hopefully ending up with a viable model of quantum gravity
and matter.

In this paper, we restrict our attention to the first of the above steps: we will construct a
constrained 3BF" action for the cases of Klein-Gordon, Dirac, Weyl and Majorana fields, as
well as Yang-Mills and Proca vector fields, all coupled to the Einstein-Cartan gravity in the
standard way. This construction will lead us to an unexpected novel result. As we shall see,
the scalar and fermion fields will be naturally associated to a new gauge group, generalizing
the notion of a gauge group in the Yang-Mills theory, which describes vector bosons. This
new group opens up a possibility to use it as an algebraic way of classifying matter fields,
describing the structures such as quark and lepton families, and so on. The insight into
the existence of this new gauge group is the consequence of the categorical ladder and
is one of the main results of the paper. However, given the complexity of the algebraic
properties of 3-groups, we will restrict ourselves only to the reconstruction of the already
known theories, such as the Standard Model (SM), in the new framework. In this sense, any
potential explanation of the spectrum of matter fields in the SM will be left for future work.

The layout of the paper is as follows. In subsection 2.1 we will give a short overview
of the constrained BF actions, including the well-known example of the Plebanski action
for general relativity, and a completely new example of the Yang-Mills theory rewritten
as a constrained BF model. In the subsection 2.2 we also introduce the formalism of the
constrained 2BF actions, reviewing the example of general relativity as a constrained 2BF
action, first introduced in [12]. In addition, we will demonstrate how to couple gravity in
a natural way within the formalism of 2-groups. Section 3 contains the main results of
the paper and is split into 4 subsections. The subsection 3.1 introduces the formalism of
3-groups, and the definition and properties of a 3BF' action, including the three types of
gauge transformations. The subsection 3.2 focuses on the construction of a constrained
3BF action which describes a single real scalar field coupled to gravity. It provides the
most elementary example of the insight that matter fields correspond to a gauge group.
Encouraged by these results, in the subsection 3.3 we construct the constrained 3 BF' action
for the Dirac field coupled to gravity and specify its gauge group. Finally, the subsection 3.4
deals with the construction of the constrained 3 BF action for the Weyl and Majorana fields
coupled to gravity, thereby covering all types of fields potentially relevant for the Standard
Model and beyond. After the construction of all building blocks, in section 4 we apply
the results of sections 2 and 3 to construct the constrained 3BF action corresponding to
the full Standard Model coupled to Einstein-Cartan gravity. Finally, section 5 is devoted
to the discussion of the results and the possible future lines of research. The appendices
contain some mathematical reminders and technical details.

The notation and conventions are as follows. The local Lorentz indices are denoted
by the Latin letters a,b,c,..., take values 0,1, 2,3, and are raised and lowered using the



Minkowski metric 7, with signature (—, 4, +,+). Spacetime indices are denoted by the
Greek letters i, v, ..., and are raised and lowered by the spacetime metric g, = n.e® Mebl,,
where e, are the tetrad fields. The inverse tetrad is denoted as e/,. All other indices that
appear in the paper are dependent on the context, and their usage is explicitly defined in
the text where they appear. A lot of additional notation is defined in appendix A. We work
in the natural system of units where c=h =1, and G = Zg, where [, is the Planck length.

2 BF and 2BF models, ordinary gauge fields and gravity

Let us begin by giving a short review of BF and 2BF theories in general. For additional
information on these topics, see for example [11, 13-18].

2.1 BF theory

Given a Lie group G and its corresponding Lie algebra g, one can introduce the so-called
BF action as

SBF—/M <B/\./r>g. (2.1)

Here, F = da+ a A« is the curvature 2-form for the algebra-valued connection 1-form « €
AY(My,g) on some 4-dimensional spacetime manifold My. In addition, B € A%(My,g)
is a Lagrange multiplier 2-form, while (_,_)y denotes the G-invariant bilinear symmetric
nondegenerate form.

From the structure of (2.1), one can see that the action is diffeomorphism invariant,
and it is usually understood to be gauge invariant with respect to G. In addition to these
properties, the BF' action is topological, in the following sense. Varying the action (2.1)
with respect to B? and o, where the index 3 counts the generators of g (see appendix A
for notation and conventions), one obtains the equations of motion of the theory,

F=0, VB=dB+aAB=0. (2.2)

From the first equation of motion, one immediately sees that « is a flat connection, which
then together with the second equation of motion implies that B is constant. Therefore,
there are no local propagating degrees of freedom in the theory, and one then says that the
theory is topological.

Usually, in physics one is interested in theories which are nontopological, i.e., which
have local propagating degrees of freedom. In order to transform the BF action into
such a theory, one adds an additional term to the action, commonly called the simplicity
constraint. A very nice example is the Yang-Mills theory for the SU(N) group, which can
be rewritten as a constrained BF' theory in the following way:

12
S = /BI/\F]—f—)\I/\ <BI—Mab15“/\5b> +¢abl (Mabjscdef5cA5dA66A5f—gUF‘]/\éa/\éb> .
g

(2.3)
Here F = dA+ AN A is again the curvature 2-form for the connection 4 € A'(My, su(N)),
and B € A%*(My,su(N)) is the Lagrange multiplier 2-form. The Killing form g;; =



(17, TJ>5u(N) o fr frr® is used to raise and lower the indices I, J, ... which count the gen-
erators of SU(N), where f1 ;% are the structure constants for the su(N) algebra. In addition
to the topological B A F term, we also have two simplicity constraint terms, featuring the
Lagrange multiplier 2-form A’ and the Lagrange multiplier 0-form ¢®!. The 0-form M_;
is also a Lagrange multiplier, while g is the coupling constant for the Yang-Mills theory.

Finally, 6% is a nondynamical 1-form, such that there exists a global coordinate frame
in which its components are equal to the Kronecker symbol §¢, (hence the notation 6%).
The 1-form ¢ plays the role of a background field, and defines the global spacetime metric,
via the equation

N = 77ab5au5bv ) (2.4)

where 7,, = diag(—1,+1,+1,+1) is the Minkowski metric. Since the coordinate system
is global, the spacetime manifold My is understood to be flat. The indices a,b,... are
local Lorentz indices, taking values 0,...,3. Note that the field §* has all the properties
of the tetrad 1-form e® in the flat Minkowski spacetime. Also note that the action (2.3) is
manifestly diffeomorphism invariant and gauge invariant with respect to SU(NV), but not
background independent, due to the presence of §¢.

The equations of motion are obtained by varying the action (2.3) with respect to the
variables ¢!, M, AT, By, and M, respectively (note that we do not take the variation
of the action with respect to the background field §%):

Mapreaef0° NSE NSNS — Fr NG, NS, =0, (2.5)
—vawAM+CM%M$AMA&AN=o, (2.6)

—dB; + f1/5 B AN AT +d(C% 160 A y) — f115CP Kb Ay ANAT =0, (2.7)
Fr+A =0, (2.8)

zx—ffA@MwAab—o, (2.9)

From the algebraic equations (2.5), (2.6), (2.8) and (2.9) one obtains the multipliers as
functions of the dynamical field A”:

1 1 1
d bl bed 1 d
Maupr = —€apedF 17, (7" = @Ea “F'ed, Aab=Frap, Brab = —€abedF 1.

48 29
(2.10)
Here we used the notation Fyq, = F7,,,0,"05", where we used the fact that 6, is invertible,
and similarly for other variables. Using these equations and the differential equation (2.7)
one obtains the equation of motion for gauge field A’,

Y, Flen = g, Flen 4 gl AT R~ . (2.11)

This is precisely the classical equation of motion for the free Yang-Mills theory. Note that
in addition to the Yang-Mills theory, one can easily extend the action (2.3) in order to
describe the massive vector field and obtain the Proca equation of motion. This is done
by adding a mass term

1
—EmMmMMW%MMA&AﬁAM (2.12)



to the action (2.3). Of course, this term explicitly breaks the SU(NN) gauge symmetry of
the action.

Another example of the constrained BF' theory is the Plebanski action for general
relativity [15], see also [13] for a recent review. Starting from a gauge group SO(3,1), one
constructs a constrained BF' action as

S= [ BuaAR™+ ¢uweaB™ N B™. (2.13)
My

Here R™ is the curvature 2-form for the spin connection w®, By, is the usual Lagrange
multiplier 2-form, while ¢4pcq is the Lagrange multiplier O-form corresponding to the sim-
plicity constraint term B® A B@. It can be shown that the variation of this action with
respect to Bgp, w™ and Dabed Eives rise to equations of motion which are equivalent to
vacuum general relativity. However, the tetrad fields appear in the model as a solution
to the simplicity constraint equation of motion B* A B = 0. Thus, being intrinsically
on-shell objects, they are not present in the action and cannot be quantized. This renders
the Plebanski model unsuitable for coupling of matter fields to gravity [10, 12, 19]. Never-
theless, as a model for pure gravity, the Plebanski model has been successfully quantized
in the context of spinfoam models, see [1, 2, 8, 9] for details and references.

2.2 2BF theory

In order to circumvent the issue of coupling of matter fields, a recent promising approach
has been developed [12, 19-23] in the context of higher category theory [11]. In particular,
one employs the higher category theory construction to generalize the BF' action to the
so-called 2BF' action, by passing from the notion of a gauge group to the notion of a gauge
2-group. In order to introduce it, let us first give a short review of the 2-group formalism.

In the framework of category theory, the group as an algebraic structure can be under-
stood as a specific type of category, namely a category with only one object and invertible
morphisms [11]. The notion of a category can be generalized to the so-called higher cat-
egories, which have not only objects and morphisms, but also 2-morphisms (morphisms
between morphisms), and so on. This process of generalization is called the categorical
ladder. Similarly to the notion of a group, one can introduce a 2-group as a 2-category
consisting of only one object, where all the morphisms and 2-morphisms are invertible. It
has been shown that every strict 2-group is equivalent to a crossed module (H LYe! ),
see appendix A for definition. Here G and H are groups, § is a homomorphism from H to
G, while > : G x H — H is an action of G on H.

An important example of this structure is a vector space V' equipped with an isometry
group O. Namely, V' can be regarded as an Abelian Lie group with addition as a group
operation, so that a representation of O on V is an action > of O on the group V, giving
rise to the crossed module (V 20 ,>), where the homomorphism 0 is chosen to be trivial,
i.e., it maps every element of V' into a unit of O. We will make use of this example below
to introduce the Poincaré 2-group.

Similarly to the case of an ordinary Lie group G which has a naturally associated
notion of a connection «, giving rise to a BF' theory, the 2-group structure has a naturally



associated notion of a 2-connection («, ), described by the usual g-valued 1-form « €
AY(My,g) and an h-valued 2-form B € A%(My,b), where b is a Lie algebra of the Lie
group H. The 2-connection gives rise to the so-called fake 2-curvature (F,G), given as

F=da+aAha—-083, G=dB+an”p. (2.14)

Here o A¥ 8 means that a and (8 are multiplied as forms using A, and simultaneously
multiplied as algebra elements using >, see appendix A. The curvature pair (F,G) is called
fake because of the presence of the 9 term in the definition of F, see [11] for details.

Using these variables, one can introduce a new action as a generalization of the BF
action, such that it is gauge invariant with respect to both G and H groups. It is called
the 2BF" action and is defined in the following way [16, 17]:

SQBFZ/M <BA]—“)9+(C’/\Q>;,, (2.15)

where the 2-form B € A?(My, g) and the 1-form C € A'(My, ) are Lagrange multipliers.
Also, (-, -)g and (_, _)y denote the G-invariant bilinear symmetric nondegenerate forms for
the algebras g and b, respectively. As a consequence of the axiomatic structure of a crossed
module (see appendix A), the bilinear form (_,_), is H-invariant as well. See [16, 17] for
review and references.

Similarly to the BF action, the 2B F action is also topological, which can be seen from
equations of motion. Varying with respect to B and C' one obtains

F=0, G=0, (2.16)
while varying with respect to o and S one obtains the equations for the multipliers,

ABa — gag? By A a? —>0a"Cy A B =0, (2.17)
dCy — 8,%Ba 4 >ad’Cp A a® = 0. (2.18)

One can either show that these equations have only trivial solutions, or one can use the
Hamiltonian analysis to show that there are no local propagating degrees of freedom (see
for example [21, 22]), demostrating the topological nature of the theory.

An example of a 2-group relevant for physics is the Poincaré 2-group, which is con-
structed using the aforementioned example of a vector space equipped with an isometry

group. One constructs a crossed module by choosing
G =8S0(3,1), H=R*, (2.19)

while > is a natural action of SO(3,1) on R*, and the map 0 is trivial. The 2-connection
(a, B) is given by the algebra-valued differential forms

a=wM,y, B =P, (2.20)

where w® is the spin connection, while M, and P, are the generators of groups SO(3, 1)
and R*, respectively. The corresponding 2-curvature in this case is given by

F = (dw®+w Aw®) My, = R My, G = (dB%+w%ABY)P, = V3P, = G°P,, (2.21)



where we have evaluated A" using the equation My, > Pe = np.FP,). Note that, since 0 is
trivial, the fake curvature is the same as ordinary curvature. Using the bilinear forms

<Mab7 Mcd>g = NalcMbd] 5 <Paa Pb>f) = Tab » (2'22)

one can show that 1-forms C'® transform in the same way as the tetrad 1-forms e® under
the Lorentz transformations and diffeomorphisms, so the fields C* can be identified with
the tetrads. Then one can rewrite the 2BF' action (2.15) for the Poincaré 2-group as

Sopr = / B% A Ry +ea ANVSB. (2.23)
My

In order to obtain general relativity, the topological action (2.23) can be modified by
adding a convenient simplicity constraint, like it is done in the BF case:

S = B A Rgp + €a A VB — Agp A (B“b—

gabede A ed) . (2.24)
My

16712
Here )\, is a Lagrange multiplier 2-form associated to the simplicity constraint term, and
l, is the Planck length. Varying the action (2.24) with respect to By, €q, Wap, Bo and Agp,
one obtains the following equations of motion:

Rap — Aap =0, (225)
1
, abed \€ A e = 2.2
VB +8Wl%€bd Ne 0, (2.26)
VBap — € N By =0, (2.27)
Ve, =0, (2.28)
1
Bab _ abed . —0. 29
167rl12)€ ecNeqg=10 (2.29)

The only dynamical fields are the tetrads e®, while all other fields can be algebraically
determined, as follows. From the equations (2.28) and (2.29) we obtain that VB = 0,
from which it follows, using the equation (2.27), that ej, A B = 0. Assuming that the
tetrads are nondegenerate, e = det(e®,) # 0, it can be shown that this is equivalent to
the condition % = 0 (for the proof see appendix in [12]). Therefore, from the equa-
tions (2.25), (2.27), (2.28) and (2.29) we obtain

1
)\ab,uy = Rab,uu ) 5(1#1/ = 07 Bab,uzz = Wsabcdec#edy y wab# = Aab# . (230)
p

Here the Ricci rotation coefficients are defined as

N El

i §<Cabc _ Ccab + Cbca)equ , (231)

where
¢ = elype”  (Due®y — Dpey) . (2.32)



Finally, the remaining equation (2.26) reduces to
Eabed RN el =0, (2.33)

which is nothing but the vacuum Einstein field equation R, — % guwR = 0. Therefore, the
action (2.24) is classically equivalent to general relativity.

The main advantage of the action (2.24) over the Plebanski model and similar ap-
proaches lies in the fact that the tetrad fields are explicitly present in the topological
sector of the theory. This allows one to couple matter fields in a straightforward way, as
demonstrated in [12]. However, one can do even better, and couple gauge fields to gravity
within a unified framework of 2-group formalism.

Let us demonstrate this on the example of the SU(N) Yang-Mills theory. Begin by
modifying the Poincaré 2-group structure to include the SU(NN) gauge group, as follows.
We choose the two Lie groups as

G =S0(3,1) x SUN), H=R*, (2.34)

and we define the action > of the group G in the following way. As in the case of the
Poincaré 2-group, it acts on itself via conjugation. Next, it acts on H such that the
SO(3,1) subgroup acts on R* via the vector representation, while the action of SU(N)
subgroup is trivial. The map 0 also remains trivial, as before. The 2-connection («, )
now obtains the form which reflects the structure of the group G,

o= wabMab + Alr; , 8=pBP,, (2.35)

where A’ is the gauge connection 1-form, while 77 are the SU(N) generators. The curvature
for « is thus
F=R®My+ Flry,  FI=dA! + fifA7 A AK. (2.36)

The curvature for § remains the same as before, since the action > of SU(N) on R* is
trivial, i.e., 77 > P, = 0. Finally, the product structure of the group G implies that its
Killing form (., ), reduces to the Killing forms for the SO(3,1) and SU(XV), along with the
identity <Mab7 TI)E =0.

Given a crossed module defined in this way, its corresponding topological 2BF ac-
tion (2.15) becomes

SZBF:/ B® ARy + B ANFr+e, ANVS, (2.37)
My

where B! € A%(My,su(N)) is the new Lagrange multiplier. In order to transform this
topological action into action with nontrivial dynamics, we again introduce the appropriate
simplicity constraints. The constraint giving rise to gravity is the same as in (2.24), while
the constraint for the gauge fields is given as in the action (2.3) with the substitution
0% — e

S = B® AR+ BUAFr+e4 AVBY— Ay A (B“b—

gbede, A ed> (2.38)
My

167rl%

12
+ A A <B[ — —Mgpre* A €b> + C:ab[ (Mablgcdefec ANet Aet nef — g[JFJ N eg N eb) .
g



It is crucial to note that the action (2.38) is a combination of the pure gravity action (2.24)
and the Yang-Mills action (2.3), such that the nondynamical background field §* from (2.3)
gets promoted to a dynamical field e*. The relationship between these fields has already
been hinted at in the equation (2.4), which describes the connection between 6% and the
flat spacetime metric 7,,,. Once promoted to e, this field becomes dynamical, while the
equation (2.4) becomes the usual relation between the tetrad and the metric,

Juv = nabea,uebu ) (2.39)

further confirming that the Lagrange multiplier C'* should be identified with the tetrad.
Moreover, the total action (2.38) now becomes background independent, as expected in
general relativity. All this is a consequence of the fact that the tetrad field is explicitly
present in the topological sector of the action (2.24), establishing an improvement over the
Plebanski model.

By varying the action (2.38) with respect to the variables Bapy, Wap, Ba, Aab, (%1, Mypr,
By, M, Al and €%, we obtain the following equations of motion, respectively:

R — )" =0, (2.40)
VB® —clep gt =0, (2.41)
Ve =0, (2.42)
1
Bapy — T6m l2€abcd€ A et =0, (2 43)
Mablecdefec/\edAe Nel —Frne,Nep=0, (2.44)
——)\]/\e ANel + (e gere Ne nef Nel = (2.45)
g
Fr+Xr=0, (2.46)
12
B[—fMablea/\ebIO, (2 47)
g
—dB[+BK/\gJ[KAJ+d( I ea/\eb) CKbea/\eb/\gJ[KAJ:O, (2 48)
1 24
vﬁa 25abcd)‘bc/\e *7Mab1)\ /\6
iy g
+4Cef Meflaabcdeb/\ec/\ed—2CabIFI/\eb:O. (2.49)

In the above system of equations, we have two dynamical equations for e® and A!, while
all other variables are algebraically determined from these. In particular, from equa-
tions (2.40)—(2.47), we have:

e
)\abw/ :Rab,ulu Ba,uu =0, Wabp = Aab,ua Aavi =Favr, Buu[ = _%5,uupanU]7 (2'50)
1 d 1 Qv po b abl __ 1 uvpo b
Babuu S lzgabcde n€ v, Mabl—_@[‘: F, N 6 p€ o ¢ 4698 F,uu e’ p€ o-

Then, substituting all these into (2.48) and (2.49) we obtain the differential equation of
motion for A’

Vo FI = 9, F 1P 4 P\ FIN 4 fp T AT FRPE = 0, (2.51)

~10 -



where F)‘W is the standard Levi-Civita connection, and a differential equation of motion
for e%,

1 1
JW”—§¢WR:8M§TW, TWEaiE(EmUW%¢W+4FWﬂ%”). (2.52)

The system of equations (2.50)—(2.52) is equivalent to the system (2.40)—(2.49). Note that
we have again obtained that 8% = 0, as in the pure gravity case.

In this way, we see that both gravity and gauge fields can be represented within a
unified framework of higher gauge theory based on a 2-group structure.

3 3BF models, scalar and fermion matter fields

While the structure of a 2-group can successfully accommodate both gravitational and
gauge fields, unfortunately it cannot include other matter fields, such as scalars or fermions.
In order to construct a unified description of all matter fields within the framework of higher
gauge theory, we are led to make a further generalization, passing from the notion of a 2-
group to the notion of a 3-group. As it turns out, the 3-group structure is a perfect fit
for the description of all fields that are present in the Standard Model, coupled to gravity.
Moreover, this structure gives rise to a new gauge group, which corresponds to the choice
of the scalar and fermion fields present in the theory. This is a novel and unexpected result,
which has the potential to open up a new avenue of research with the aim of explaining
the structure of the matter sector of the Standard Model and beyond.

In order to demonstrate this in more detail, we first need to introduce the notion of
a 3-group, which we will afterward use to construct constrained 3BF' actions describing
scalar and fermion fields on an equal footing with gravity and gauge fields.

3.1 3-groups and topological 3BF' action

Similarly to the concepts of a group and a 2-group, one can introduce the notion of a
3-group in the framework of higher category theory, as a 3-category with only one object
where all the morphisms, 2-morphisms and 3-morphisms are invertible. It has been proved
that a strict 3-group is equivalent to a 2-crossed module [24], in the same way as a 2-group
is equivalent to a crossed module.

A Lie 2-crossed module, denoted as (L Sgla ,>,{_,_}), is a algebraic structure
specified by three Lie groups G, H and L, together with the homomorphisms ¢ and 0, an
action > of the group G on all three groups, and a G-equivariant map

{(,}:HxH=>L.

called the Peiffer lifting. See appendix A for more details.

In complete analogy to the construction of BF and 2BF topological actions, one
can define a gauge invariant topological 3BF' action for the manifold My and 2-crossed
module (L N & G,>,{_,_}). Given g, h and [ as Lie algebras corresponding to the
groups G, H and L, one can introduce a 3-connection (a, 3,) given by the algebra-valued

- 11 -



differential forms o € A'(My,g), B € A>(My,h) and v € A3(My,1). The corresponding
fake 3-curvature (F,G,H) is then defined as

F=da+aAa—08, G=dB+aA” B -6y, H=dy+aAN"~v+{BAB}. (3.1)

see [24, 25] for details. Then, a 3BF action is defined as
Spr = [ (BAF)y+(CAGy+ (DA, (3.2)
My

where B € A%(My,g), C € AY(My,h) and D € A°(My,[) are Lagrange multipliers. The
forms (,-),, (- -), and (., -); are G-invariant bilinear symmetric nondegenerate forms on
g, b and [, respectively. Under certain conditions, the forms (_, *>h and (_,_), are also
H-invariant and L-invariant, see appendix B for details.

One can see that varying the action with respect to the variables B, C' and D, one
obtains the equations of motion

F=0, G=0, H=0, (3.3)

while varying with respect to «, 3, 7y one obtains

dB, — gaﬁ’wa A Oé’B — DMbe A B+ DaBADA A ’}/B =0, (3.4)
dCy — 0" Ba + >aa"Ch A a® +2X (" Da A P =0,
dDy — >aaPDp A a®+6,4°C, =0. (3.6)

Regarding the gauge transformations, the 3BF action is invariant with respect to
three different types of transformations, generated by the groups G, H and L, respectively.
Under the G-gauge transformations, the 3-connection transforms as

1

o =g lag+gldg, B =g'>8, Y=g, (3.7)

where g : My — G is an element of the G-principal bundle over M,. Next, under the
H-gauge transformations, generated by n € A'(My,h), the 3-connection transforms as

o =a+0dn, B =F+dnp+d A" n—nAn, A =v—{F An}—{nnApB} (38)

Finally, under the L-gauge transformations, generated by 6 € A%(My, ), the 3-connection
transforms as

o =a, B'=p—4d0, v =ry—df —aAdb. (3.9)

As a consequence of the definition (3.1) and the above transformation rules, the curvatures
transform under the G-gauge transformations as

F—g ' Fyg, G—g'>g, H—g '>H, (3.10)
under the H-gauge transformations as

F = F, G—-G+FnN"n, H—H—-{G An}+{nAG}, (3.11)

- 12 —



and under the L-gauge transformations as
F=F, g—g, H—>H—-FAN 6. (3.12)

For more details, the reader is referred to [25].

In order to make the action (3.2) gauge invariant with respect to the transforma-
tions (3.7), (3.8) and (3.9), the Lagrange multipliers B, C' and D must transform under
the G-gauge transformations as

B — ¢ 'By, C—gl>C, D—g¢g'>D, (3.13)
under the H-gauge transformations as
B — B+C'NTn—nAPyAP D, C — C+DANYy+ DAYy, D — D, (3.14)
while under the L-gauge transformations they transform as
B—B-DASH, C—C, D—D. (3.15)

See appendix B for details, for the definition of the maps T, D, X1, Xs, S, and for the
notation of the A7, AP, A%, A%2 and A® products.

3.2 Constrained 3BF action for a real Klein-Gordon field

Once the topological 3BF' action is specified, we can proceed with the construction of the
constrained 3BF action, describing a realistic case of a scalar field coupled to gravity. In
order to perform this construction, we have to define a specific 2-crossed module which
gives rise to the topological sector of the action, and then we have to impose convenient
simplicity constraints.
We begin by defining a 2-crossed module (L LNy e ,>,{_,_}), as follows. The
groups are given as
G=80(3,1), H=R'  L=R. (3.16)

The group G acts on itself via conjugation, on H via the vector representation, and on L
via the trivial representation. This specifies the definition of the action >. The map 9 is
chosen to be trivial, as before. The map § is also trivial, that is, every element of L is
mapped to the identity element of H. Finally, the Peiffer lifting is trivial as well, mapping
every ordered pair of elements in H to an identity element in L. This specifies one concrete
2-crossed module.

Given this choice of a 2-crossed module, the 3-connection («, 3,7) takes the form
a=w’My, B=pP., v=11, (3.17)

where I is the sole generator of the Lie group R. From (3.1), the fake 3-curvature (F,G,H)
reduces to the ordinary 3-curvature,

F=R®M,, G=VpB'P, H=dy, (3.18)

~13 -



where we used the fact that G acts trivially on L, that is, My, > 1 = 0. The topological
3BF action (3.2) now becomes

Sspr= | BARp+ea ANV +dy, (3.19)
My
where the bilinear form for L is (I,I), = 1.

It is important to note that the Lagrange multiplier D in (3.2) is a 0-form and trans-
forms trivially with respect to GG, H and L gauge transformations for our choice of the
2-crossed module, as can be seen from (3.13), (3.14) and (3.15). Thus, D has all the hall-
mark properties of a real scalar field, allowing us to make identification between them, and
conveniently relabel D into ¢ in (3.19). This is a crucial property of the 3-group structure
in a 4-dimensional spacetime and is one of the main results of the paper. It follows the
line of reasoning used in recognizing the Lagrange multiplier C* in the 2BF action for the
Poincaré 2-group as a tetrad field e®. It is also important to stress that the choice of the
third gauge group, L, dictates the number and the structure of the matter fields present in
the action. In this case, L = R implies that we have only one real scalar field, correspond-
ing to a single generator I of R. The trivial nature of the action > of SO(3,1) on R also
implies that ¢ transforms as a scalar field. Finally, the scalar field appears as a degree of
freedom in the topological sector of the action, making the quantization procedure feasible.

As in the case of BF and 2BF theories, in order to obtain nontrivial dynamics, we need
to impose convenient simplicity constraints on the variables in the action (3.19). Since we
are interested in obtaining the scalar field ¢ of mass m coupled to gravity in the standard
way, we choose the action in the form:

S = B A Ry, + ea ANV + ¢ dy
My
1
— A A Bab _ abed A
ab < 167rlg6 Ce N Ed

1
ANy — =Hgpee® A P ANeC) + AP A (Hypoe® ey Aee Aep — do Neg Aep
2 f

— ﬁm%ﬁ%abcde“ Aeb AeCAel. (3.20)
Note that the first row is the topological sector (3.19), the second row is the familiar
simplicity constraint for gravity from the action (2.24), the third row contains the new
simplicity constraints corresponding to the Lagrange multiplier 1-forms A and A* and
featuring the Lagrange multiplier 0-form Hg., while the fourth row is the mass term for
the scalar field.
Varying the total action (3.20) with respect to the variables Bgp, Waps Bas Aaby Nabs 7,
A, Hape, ¢ and e® one obtains the equations of motion:

R® _)\® =0,  (3.21)
VB® —elepnpgtl =0,  (3.22)
Ve =0, (3.23)
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By — ——=¢cabede’ /\6 =0, (3.24)

1
167 l2
Haypee eg A e A ef—dpANe,Ney =0, (3.25)
d¢ — A =0, (3.26)

1
v — §Habcea Aeb Aef =0, (3.27)

—%)\/\e“ ANeP Ael +eTAP NegNe. Nep =0, (3.28)
d'y—d(A“b/\ea/\eb) - %m deapeae® NP NeC Aet =0, (3.29)

VB, + o ZQeadeAbC/\e +3Habc)\/\e A€+ 3HY eppeghos N eb A el
—2Aq Ado A€ —2i|m PEapeae® NeS Ned = 0. (3.30)

The dynamical degrees of freedom are ¢® and ¢, while the remaining variables are alge-
braically determined in terms of them. Specifically, the equations (3.21)—(3.28) give

(&
)\ab,uu = Rab,ul/ ) Wabu = Aab,u ) Yuvp = _iffuupaaU(ba
1 1
Aabu T gu,\s)‘”pgf)yqﬁe pe oy B =0, Bapw = oy l2€abcde Medy, (3.31)
Habc_i Hrpo g a b _c A =0
_665 Lpet e’ ey p=0up.

Note that from the equations (3.22), (3.23) and (3.24) it follows that 8% = 0, as in the
pure gravity case. The equation of motion (3.29) reduces to the covariant Klein-Gordon
equation for the scalar field,

(V. VF—m?) ¢ =0. (3.32)
Finally, the equation of motion (3.30) for e* becomes:
RH — L MR = 8rl% TH TH = 9o ¢ — L g (0,009 + m*¢?) (3.33)
59" It =8l ; = 59" (0p00"¢ +m7¢7) . :

The system of equations (3.21)—(3.30) is equivalent to the system of equations (3.31)—(3.33).
Note that in addition to the correct covariant form of the Klein-Gordon equation, we have
also obtained the correct form of the stress-energy tensor for the scalar field.

3.3 Constrained 3BF action for the Dirac field

Now we pass to the more complicated case of the Dirac field. We first define a 2-crossed
module (L Sada ,>,{-,-}) as follows. The groups are:

G=850(3,1), H=R'  L=R¥G), (3.34)

where G is the algebra of complex Grassmann numbers. The maps J, § and the Peiffer
lifting are trivial. The action of the group G on itself is given via conjugation, on H
via vector representation, and on L via spinor representation, as follows. Denoting the
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8 generators of the Lie group R3(G) as P, and P®, where the index o takes the values
1,...,4, the action of G on L is thus given explicitly as

1 1
My, > P, = 5(o—ab)ﬁapﬁ, My, > P = —i(aab)aﬁpﬁ, (3.35)

where o4 = %[’ya, ), and 7y, are the usual Dirac matrices, satisfying the anticommutation
rule {Ya, M} = —21ap.

As in the case of the scalar field, the choice of the group L dictates the matter content
of the theory, while the action > of G on L specifies its transformation properties. To see
this explicitly, let us construct the corresponding 3BF' action. The 3-connection («, 3 ,7)
now takes the form

a=w My,  B=p"P.,  7=7"Pa+7.P%, (3.36)

while the 3-curvature (F,G,H), defined in (3.1), is given as

F=R"M,,G =VBP,, (3.37)
« 1 ab a B = 1 ab - B lo' o « i «
H= dry + 5"‘] (Uab) BY P, + d'Yoz - iw VB(O'ab) o | PY = (V’V) P, + (’YV)QP ,

where we have used (3.35). The bilinear form (_, ), is defined as
(Pa,P3), =0, (P PP) =0, (P,PP)=-60, (P" Pg)=03. (338
Note that, for general A, B € [, we can write
(A,B),=A'B'gr;,  (B,A),=DB'Alg;. (3.39)

Since we require the bilinear form to be symmetric, the two expressions must be equal.
However, since the coefficients in [ are Grassmann numbers, we have A’ B’ = —B7 A’ so
it follows that g7 = —g7. Hence the antisymmetry of (3.38).

Now we use the properties of the group L and the action > of G on L to recognize
the physical nature of the Lagrange multiplier D in (3.2). Indeed, the choice of the group
L dictates that D contains 8 independent complex Grassmannian matter fields as its com-
ponents. Moreover, due to the fact that D is a O-form and that it transforms according
to the spinorial representation of SO(3,1), we can identify its components with the Dirac
bispinor fields, and write

D =P, + 1o, P%, (3.40)

where it is assumed that ¢ and 1 are independent fields, as usual. This is again an
illustration of the fact that information about the structure of the matter sector in the
theory is specified by the choice of the group L in the 2-crossed module, and another main
result of the paper.

Given all of the above, now we can finally write the 3BF action (3.2) corresponding
to this choice of the 2-crossed module as

— _ =
Sspr = / BY A Rap + e ANVB+ (FV)at® + %o (VY)*. (3.41)
My
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In order to promote this action into a full theory of gravity coupled to Dirac fermions, we
add the convenient constraint terms to the action, as follows:

— _ -
5=/ B® A Rap + e AVB" + (FV)ath® + 1ha (V)"
4
1

— A A Bab . abed A

ab < 167rl§€ ecNed

a - i a b cr7.d 3 a i a b e/ d o
—A%A (’Ya—6€abcd€ N e’ N e (P )a) + Aa A (’y +6€abcde N e’ N e“(y) )
—imqﬁws A eP A el A el + 2mil2 sy bAel A Be (3.42)

12 abcd€ € € e Ty YV ¥ Eabed® € . .

Here the first row is the topological sector, the second row is the gravitational simplicity
constraint term from (2.24), while the third row contains the new simplicity constraints for
the Dirac field corresponding to the Lagrange multiplier 1-forms A* and A,. The fourth row
contains the mass term for the Dirac field, and a term which ensures the correct coupling
between the torsion and the spin of the Dirac field, as specified by the Einstein-Cartan
theory. Namely, we want to ensure that the torsion has the form

T, =Veq = 27l}sq, (3.43)

where
Sa = i€apege® N 601/}’}/5’}/d1/) (3.44)

is the spin 2-form. Of course, other couplings should also be straightforward to imple-
ment, but we choose this particular coupling because we are interested in reproducing the
standard Einstein-Cartan gravity coupled to the Dirac field.

Varying the action (3.42) with respect to Bay, A%, Ja, 7%, A%, Aa, Ya, ¥, €%, 3% and

w® one obtains the equations of motion:

R® — X% =0, (3.45)

By Eabed’ N et = 0, (3.46)

1
1672
(V)™ —A* =0, (3.47)
(0V)a — Aa =0, (3.48)

7 _
Yo — ggabcdea A eb A ec(w’}/d)a = 07 (349)

A% 4 é&abcdea AP Aef(vh)® =0, (3.50)

dy* +wg A AP+ é)\ﬁ A Eapeae® A €® A ecydo‘g + %maabcde“ A el A el A edp®
+i2nl e apeqe® A€’ A B (157)* =0, (3.51)

d¥a — Y8 A WPl + %Xﬂ A Eapede® A € A ecyd'ga — %mz—:abcdea Aeb Ael A ediﬁa
—i2ml2eqpea® A €” A B (y57%)a =0, (3.52)
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) — 7 _
VBa+ 2€abcd)\bc Aed — §€abcd)\a Aeb A 66(7/}7(1)04 + §5abcd)\a Aeb A 6c(7d¢)a
1 — _
—gsabcdeb A e A etmaptp — Anliegpeac’ A BYysy™p =0, (3.53)
Ve, — i27rl§5abcdeb A eiysyip =0, (3.54)

1 -1
VBay = ef A By + Vg 1as Wl + e, 1]y = 0. (3.55)

The dynamical degrees of freedom are e®, ¥ and 1),, while the remaining variables are
determined in terms of the dynamical variables, and are given as:

1 c _d a o «@ 3 S
Bapuw = Wgabcde we v, A uw = (v,ud]) ) Aap = (wvu)aa
p
Yapvp = ieabcdea,uebuecp(qz)’yd)a ) ’Ya,uup = _igabcdeauebuecp('ydw)a ’ (3'56)
>\ab,uu = Rab;w ) wab,u = Aabu + Kab,u .

Here K “bu is the contorsion tensor, constructed in the standard way from the torsion tensor,
whereas from (3.54) we have
T, =Veq = 27l2sq, (3.57)

which is precisely the desired equation (3.43). Further, from the equation (3.46) one obtains

1
VBab — —Wﬁade (ec /\ ved) . (358)
p

Substituting this expression in the equation (3.55) it follows that

1
2egpeae” A <— Vel 4 5d> —eu NPy =0. (3.59)

8

The expression in the parentheses is equal to zero, according to the equation (3.54). From
the remaining term ef, A B = 0 it again follows that

B=0. (3.60)

Using this result, the equation of motion (3.51) for fermions becomes

o
éeabcdea Aeb A <2ec A~V + %ec Aet — 3(Vec)7d> Y =0. (3.61)

Using equation (3.54), the last term in the parentheses vanishes, and the equation reduces
to the covariant Dirac equation,

—
(iv*e! oV —m)Y =0, (3.62)

where e, is the inverse tetrad. Similarly, the equation (3.52) gives the conjugated Dirac
equation:

R
Y(IV ety +m) =0. (3.63)
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Finally, the equation of motion (3.53) for tetrad field reduces to

uv 1uu 2 v v Z'_u<—>a 1 v, ~a<_>

RMY — 29 R = 8rl, T, ™ = iw’y Veet ip — 59“ w<m V,elq — Qm)w, (3.64)
o o =

Here, we used the notation V = V —V. The system of equations (3.45)—(3.55) is equivalent

to the system of equations (3.56), (3.60), (3.62)—(3.64). As we expected, the equations

of motion (3.57), (3.62), (3.63) and (3.64) are precisely the equations of motion of the

Einstein-Cartan theory coupled to a Dirac field.

3.4 Constrained 3BF action for the Weyl and Majorana fields

A general solution of the Dirac equation is not an irreducible representation of the Lorentz
group, and one can rewrite Dirac fermions as left-chiral and right-chiral fermion fields that
both retain their chirality under Lorentz transformations, implying their irreducibility.
Hence, it is useful to rewrite the action for left and right Weyl spinors as a constrained
3BF action. For simplicity, we will discuss only left-chiral spinor field, while the right-
chiral field can be treated analogously. Both Weyl and Majorana fermions can be treated
in the same way, the only difference being the presence of an additional mass term in the
Majorana action.
We being by defining a 2-crossed module (L Smlaq ,>,{_,_}), as follows. The
groups are:
G=850(3,1), H=R'  L=RYG). (3.65)

The maps 0, 6 and the Peiffer lifting are trivial. The action > of the group G on G, H
and L is given in the same way as for the Dirac case, whereas the spinorial representation

reduces to

1 1 :
My, > P = i(aab)aﬁpﬁv Meap > Py = 5(5’(117)5@})

5 (3.66)

b__—ab_l( a=b b=a
- !

where o® 0%’ — 0°5%), for 0 = (1,7) and 6% = (1, —37), in which & denotes

the set of three Pauli matrices. The four generators of the group L are denoted as P“ and
P, where the Weyl indices a, & take values 1, 2.
The 3-connection («,3,7v) now takes the form corresponding to this choice of Lie
groups,
a=wM,, B8 =B°P,, ¥ =vaP* + 74P, (3.67)

while the fake 3-curvature (F,G,H) defined in (3.1) is
F=R®M,,, G=VpBP,, (3.68)

1 ab/ _ab\B « ~ 1 _abyae =f3 = 1o _g &
H = d’ya+§w (0’ )a’yg Pe + d7 +§wab(a )67 PdE(V’y)aP +(’)/V) P, .

Introducing the spinor fields 1, and 1® via the Lagrange multiplier D as
D = o P® + %Py, (3.69)
and using the bilinear form (_, _), for the group L,

(P, PP) =&, (P, Py) =esny, (PP

8 5>[:0a <Pdap'6>[:0> (3.70)

~19 —



where €2 and €44 are the usual two-dimensional antisymmetric Levi-Civita symbols, the
topological 3BF action (3.2) for spinors coupled to gravity becomes

— _ — .
Sspr= [  B™ARap+ea AVB + 0% A (V7)o +Pa A(GV)* (3.71)
My
In order to obtain the suitable equations of motion for the Weyl spinors, we again introduce
appropriate simplicity constraints, so that the action becomes:

— _ — .
S = B® A Rap + eq AVBY+ 4% A (V) a + s A (FV)E
My
1
_ )‘a A Bab _ abcd e A
b ( 6r2°  © ed)

7 i _ . 7 .
— A% A (’Ya + éfabcdea Aeb A ecddaBIﬁB) A <’}/a + gffabcd,ea Aeb A ecada'glbg)

— 47Tl§€abcd€a VAN e VAN ﬂc(i/;da'ddﬁl/)g) . (372)
The new simplicity constraints are in the third row, featuring the Lagrange multiplier
1-forms A\, and A%. Also, using the coupling between the Dirac field and torsion from

Einstein-Cartan theory as a model, the term in the fourth row is chosen to ensure that the
coupling between the Weyl spin tensor

Sa = i€aped€’ N €° ¢a0daﬁ,1z}/3 , (3.73)

and torsion is given as:
T, = 4rl2sq . (3.74)
The case of the Majorana field is introduced in exactly the same way, albeit with an

additional mass term in the action, of the form:

1 -
— Emeabcde“ A e’ A el A e (g + Path®) . (3.75)

Varying the action (3.72) with respect to the variables Bay, A%, Ya, 7, Aay AY, Ya,
%, e, B% and w™ one again obtains the complete set of equations of motion, displayed
in the appendix C. The only dynamical degrees of freedom are 1y, 1% and e®, while the
remaining variables are algebraically determined in terms of these as:

1 _. _.
AP, =R™,, . Bapuw = W%Zabcdecuedy, Aap = Vita, N =V,0%, (3.76)
p

. b d . 7h ~d . b _dd
Yauvp = Z<€cnl)cclea,u€ Vecpa aﬁ'wﬁ ) 'Yaw/p = Zgabcdeaue lxech aﬁ¢,8 y  Waby = Aabu + Kab,u .

In addition, one also maintains the result 8 = 0 as before. Finally, the equations of motion
for the dynamical fields are

5Pt Vs =0, 0% 56t VP =0, (3.77)
and

4 1 v 14
R — 5g"R = 8rl2 TH (3.78)
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where

_ ; _ 1, _ _
T = Lot Vi + ;wabe”bv“w -3 (wa“e*avw it Vab) . (3.79)

N | =

Here we have suppressed the spinor indices. In the case of the Majorana field, the equations
of motion (3.76) remain the same, while the equations of motion for v, and ¢* take the

form .
i0% 5 oV’ —mipa =0, i6°Pet Y ahg —map* =0, (3.80)
whereas the stress-energy tensor takes the form
v l T =b v v b v n
™ = iwa (& bvuw‘i' §¢0_ e bV“w
(3.81)

— g“yé ilza'aeAaV)ﬂ/J + iwa“ekavw - %m (ww + QE@E) :

4 The Standard Model
The Standard Model 3-group can be defined as:

G =80(3,1)xSU(3)xSU(2)xU(1), H=R* L =R*YC)xR*G)xR*(G)xR*G),
(4.1)
where C denotes the field of complex numbers. The motivation for this choice of the group

L is given in the table below.

1. lepton generation

red color
1. quark generation

green color
1. quark generation

blue color
1. quark generation

().

(o)

(ur)r

(ug)r

(up) R

(d’I‘)R

(dg)r

(dp)r

We see that in order to introduce one generation of matter one needs to provide 16
spinors, or equivalently the group L has to be chosen as L = R%(G). As there are three
generations of matter, the part of the group L that corresponds to the fermion fields in

the theory is chosen to be L = R%(G) x R%(G) x R%(G). To define the Higgs sector one
Jr

needs two complex scalar fields ( ), or equivalently the scalar sector of the group L is

0
given as L = R*(C).

The maps 9, § and the Peiffer lifting are trivial. The action of the group G on itself
is given via conjugation. The action of the SO(3,1) subgroup of G on H is via vector
representation and the action of SU(3) x SU(2) x U(1) subgroup on H is via trivial repre-
sentation. The action of the SO(3,1) on L is via trivial representation for the generators
corresponding to the scalar fields, i.e. the R*(C) subgroup of L, and via spinor represen-
tation for the every quadruple of generators corresponding to the fermion fields, given as
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in the section 3. The information how spinors transform under the SU(3) x SU(2) x U(1)
group is encoded in the action of that subgroup of G on L, as specified in the table above.
For simplicity, in the following, only one family of the lepton sector and only electroweak
part of the gauge sector of the Standard model is considered.

The groups are chosen as:
G =950(3,1) xSU(2) x U(1), H=R* [Pt = RI6G) x RY(C). (4.2)
The 3-connection then takes the form

o= wabMab + WIT] + AY | B =pB"P,, (4.3)
v = ,yaLPOCZ + ’ydEPdL + ’yaRPaR + ’YdRPdR + ’)/dpa .

Here the indices I, J, ... take the values 1,2,3 and counts the Pauli matrices, generators
of the group SU(2), the indices L. I,... take the values 1,2 and count the components of
left doublet, R denotes the right singlet (e~ )z and right singlet (ve)z, and indices @, b, . . .
take values 1,2 and count the components of the scalar doublet. It is also useful to define
i = (L, R) which takes values 1, ...,4.

The action of the group G on L is defined as:

1 1 ;
Mgy, > P%; = i(o'ab)aﬂpﬁi, My > Pyi = 5(5ab)BdPﬁ'iv My > P; =0,

1 T’ 1 T’
TIDPaizi(UI)L P TIDPaizi(UI)L P
1 ~
T[DPQRZO, T]DP@RZO, T[DP~=§(UI)%PB,
YDPQE/:*PO‘L, YDPaeR:*QPaeR, YDPQVR:*QPQVR, Y>> P =P,
Y > Pdi = _Pdiy Y > PdeR = _2Pc'xeRa Y > PO'WR = _2PduR- (44)

The 3-curvatures are given as:

F=R®M,, + F'T; + FY, G =VpeP,,

H=(Vy )aPO‘E + (WEV)O‘P(X + (Vy )aPaR + (’VRV)O‘PQ +dyeP;.
The topological 3BF' action is defined as:
b T — _ = — . ~
5 / BuR™ + BIFT + BF + ¢aVA% +0°-(V7)a + 66/ (3:V)% + d°dya.  (4.6)

At this point, it is useful to simplify the notation and denote all indices of the group G by
&, of the group H by a and L by A. In order to promote this action to a full theory of
first lepton family coupled to electroweak gauge fields, Higgs field, and gravity, we again
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introduce the appropriate simplicity constraint, as follows

S:/B&/\f@+e&/\gd+DAA’H/‘
+< —Cy M e/\e)/\)\d—(yA—e A el /\ecC ach)/\)\A
+¢%, A (Mabaadeefec NeqgNeeNep— F&Ae. A ed>
+ CabA A <MabcA€Cdef€d N ee N ef — FA Neg N\ eb)
— capeae® A" et Net (Ve DADPDC 4 My DADP + Ly, DADP DO DP)
— Ami 12 eqpege® NP A BED ATdA BDB , (4.7)
where:
Ba = |Ba Br B}, ]:d:{Rab Fr F}Ta DA_{waL Yai VR Var ¢a],
i T o _ e 2 = d T o - o -
HE=1(Vvp)a (V)" (VYpda (T2V) d%} VA= [’y L YL YR Yag ’m} :
o= [aeb a7 cta=lo et o) cti=em o],
A= AaL AL Aar AR A&} T, Mega = [5abcd Mear Mcd] ;

Mape 4 = _gabcdgdaBQZﬁL Eabedd PP €abcd0da/g?§ﬁR Eabedd PP Mabea ] .

The matrices CO‘ C’A Mjg, Yipes Ligep and TdA ~» are constant matrices, and
carry the information about gauge coupling constants, mass of the Higgs field, Yukawa
couplings and mixing angles, Higgs self-coupling constant and torsion coupling, respectively.

5 Conclusions

Let us summarize the results of the paper. In section 2 we have given a short reminder
of the BF theory and described how one can use it to construct the action for general
relativity (the well known Plebanski model), and the action for the Yang-Mills theory
in flat spacetime, in a novel way. Passing on to higher gauge theory, we have reviewed
the formalism of 2-groups and the corresponding 2BF theory, using it again to construct
the action for general relativity (a model first described in [12]), and the unified action
of general relativity and Yang-Mills theory, both naturally described using the 2-group
formalism. With this background material in hand, in section 3 we have used the idea
of a categorical ladder yet again, generalizing the 2BF theory to 3BF theory, with the
underlying structure of a 3-group instead of a 2-group. This has led us to the main insight
that the scalar and fermion fields can be specified using a gauge group, namely the third
gauge group, denoted L, present in the 2-crossed module corresponding to a given 3-group.
This has allowed us to single out specific gauge groups corresponding to the Klein-Gordon,
Dirac, Weyl and Majorana fields, and to construct the relevant constrained 3 BF' actions
that describe all these fields coupled to gravity in the standard way.
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The obtained results represent the fundamental building blocks for the construction of
the complete Standard Model of elementary particles coupled to Einstein-Cartan gravity
as a 3BF action with suitable simplicity constraints, as demonstrated in section 4. In
this way, we can complete the first step of the spinfoam quantization programme for the
complete theory of gravity and all matter fields, as specified in the Introduction. This is
a clear improvement over the ordinary spinfoam models based on an ordinary constrained
BF theory.

In addition to this, the gauge group which determines the matter spectrum of the
theory is a completely novel structure, not present in the Standard Model. This new
gauge group stems from the 3-group structure of the theory, so it is not surprising that
it is invisible in the ordinary formulation of the Standard Model, since the latter does
not use any 3-group structure in an explicit way. In this paper, we have discussed the
choices of this group which give rise to all relevant matter fields, and these can simply be
directly multiplied to give the group corresponding to the full Standard Model, encoding
the quark and lepton families and all other structure of the matter spectrum. However,
the true potential of the matter gauge group lies in a possibility of nontrivial unification
of matter fields, by choosing it to be something other than the ordinary product of its
component groups. For example, instead of choosing R®(G) for the Dirac field, one can try a
noncommutative SU(3) group, which also contains 8 generators, but its noncommutativity
requires that the maps 6 and {_, -} be nontrivial, in order to satisfy the axioms of a
2-crossed module. This, in turn, leads to a distinction between 3-curvature and fake 3-
curvature, which can have consequences for the dynamics of the theory. In this way, by
studying nontrivial choices of a 3-group, one can construct various different 3-group-unified
models of gravity and matter fields, within the context of higher gauge theory. This idea
resembles the ordinary grand unification programme within the framework of the standard
gauge theory, where one constructs various different models of vector fields by making
various choices for the Yang-Mills gauge group. The detailed discussion of these 3-group
unified models is left for future work.

As far as the spinfoam quantization programme is concerned, having completed the
step 1 (as outlined in the Introduction), there is a clear possibility to complete the steps 2
and 3 as well. First, the fact that the full action is written completely in terms of differential
forms of various degrees, allows us to adapt it to a triangulated spacetime manifold, in the
sense of Regge calculus. In particular, all fields and their field strengths present in the
3BF action can be naturally associated to the appropriate d-dimensional simplices of a
4-dimensional triangulation, by matching O-forms to vertices, 1-forms to edges, etc. This
leads us to the following table:

d | triangulation dual triangulation form fields field strengths
0 vertex 4-polytope 0-form b, Vg, VO

1 edge 3-polyhedron I-form | w?®, Al e®

2 triangle face 2-form e, B Reb FI T@
3 tetrahedron edge 3-form Yy Yy 7Y ge

4 4-simplex vertex 4-form H, Hg, H
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Once the classical Regge-discretized topological 3BF action is constructed, one can
attempt to construct a state sum Z which defines the path integral for the theory. The
topological nature of the pure 3BF action, together with the underlying structure of the 3-
group, should ensure that such a state sum Z is a topological invariant, in the sense that it is
triangulation independent. Unfortunately, in order to perform this step precisely, one needs
a generalization of the Peter-Weyl and Plancharel theorems to 2-groups and 3-groups, a
mathematical result that is presently still missing. The purpose of the Peter-Weyl theorem
is to provide a decomposition of a function on a group into a sum over the corresponding
irreducible representations, which ultimately specifies the appropriate spectrum of labels
for the d-simplices in the triangulation, fixing the domain of values for the fields living on
those d-simplices. In the case of 2-groups and especially 3-groups, the representation theory
has not been developed well enough to allow for such a construction, with a consequence of
the missing Peter-Weyl theorem for 2-groups and 3-groups. However, until the theorem is
proved, we can still try to guess the appropriate structure of the irreducible representations
of the 2- and 3-groups, as was done for example in [12], leading to the so-called spincube
model of quantum gravity.

Finally, if we remember that for the purpose of physics we are not really interested in a
topological theory, but instead in one which contains local propagating degrees of freedom,
we are therefore not really engaged in constructing a topological invariant Z, but rather
a state sum which describes nontrivial dynamics. In particular, we need to impose the
simplicity constraints onto the state sum Z, which is the step 3 of the spinfoam quantization
programme. In light of that, one of the main motivations and also main results of our paper
was to rewrite the action for gravity and matter in a way that explicitly distinguishes the
topological sector from the simplicity constraints. Imposing the constraints is therefore
straightforward in the context of a 3-group gauge theory, and completing this step would
ultimately lead us to a state sum corresponding to a tentative theory of quantum gravity
with matter. This is also a topic for future work.

In the end, let us also mention that aside from the unification and quantization pro-
grammes, there is also a plethora of additional studies one can perform with the constrained
3BF action, such as the analysis of the Hamiltonian structure of the theory (suitable for
a potential canonical quantization programme), the idea of imposing the simplicity con-
straints using a spontaneous symmetry breaking mechanism, and finally a detailed study
of the mathematical structure and properties of the simplicity constraints. This list is of
course not conclusive, and there may be many more interesting related topics to study in
both physics and mathematics.
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A Category theory, 2-groups and 3-groups

Definition 1 (Pre-crossed module and crossed module) A pre-crossed module
(H LA G ,r>) of groups G and H, is given by a group map 0 : H — G, together with a
left action > of G on H, by automorphisms, such that for each hi,ho € H and g € G the
following identity hold:

gohg ' =0(g>h).

In a pre-crossed module the Peiffer commutator is defined as:
(h1,h2)p = hihahy'O(h1) > hy .

A pre-crossed module is said to be a crossed module if all of its Peiffer commutators are
trivial, which is to say that
(Oh) > W = hh'h 1,

i.e. the Peiffer identity is satisfied.

Definition 2 (2-crossed module) A 2-crossed module (L SH S G, >, {—, —}) is
given by three groups G, H and L, together with maps 0 and § such that:

riumla,

where 00 = 1, an action > of the group G on all three groups, and an G-equivariant map
called the Peiffer lifting:
{-,—}:HxH—1L.

The following identities are satisfied:

1. The maps 0 and § are G-equivariant, i.e. for each g € G and h € H:
g>0(h)=0(gr>h), g>o(l) =d(ge1),

the action of the group G on the groups H and L is a smooth left action by automor-
phisms, i.e. for each g,91,92 € G, hi1,hs € H, l1,lo € L ande € H, L:

91> (g2>€) = (q1g2)>e, g>(hih2) = (g>h1)(g>ha), g>(lil2) = (9>11)(g>12),

and the Peiffer lifting is G-equivariant, i.e. for each hi, ho € H and g € G:
g {h1,ha} ={g > h1, g1 ha};
2. the action of the group G on itself is via conjugation, i.e. for each g,go € G:

9> 90=9909 *;
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3. In a 2-crossed module the structure (L LN H, ') is a crossed module, with action of
the group H on the group L is defined for each h € H andl € L as:

hs'1=1{6(1)"", h},

but (H LA G ,1>) may not be one, and the Peiffer identity does not necessary hold.
However, when 0 is chosen to be trivial and group H Abelian, the Peiffer identity is
satisfied, i.e. for each h, h' € H:

S(hy>h =hh' Bt

4. 6({h1,ha}) = (h1, ha)p, Vhi,ho € H,

5. [, la] ={0(lh),0(l2)}, Viy,ly € L. Here, the notation [I,k] = k™ k™1 is used;
6. {hiha, hs} = {h1, hahshy ' }0(h1) > {ha,hs},  Vhy, ho,hs € H;

7. {h1,hohs} = {h1, ha}{h1, hs}{(h1, h3>51,8(h1) > hal, Vhi, ho,hs € H;

8. {8(1),h}{h,6(D)} =1(d(h) > 171), Vhe H, VleL.

Definition 3 (Differential pre-crossed module, differential crossed module)

A differential pre-crossed module (b LA g,0>>) of algebras g and b is given by a Lie algebra
map 0 : b — g together with an action > of g on b such that for each h € b and g € g:

d(g > h) = [g,0(h)].
The action > of g on b is on left by derivations, i.e. for each hy,hy € b and each g € g:
g [ﬁlﬂ EQ] = [gDhlv hZ] + [hl’ QDﬁQ] :

In a differential pre-crossed module, the Peiffer commutators are defined for each h1,ho € b
as:

(h1, ho)p = [h1, ho] — O(h1) > ho .

The map (hi, ho) € h x h = (h1, ha)p € b is bilinear g-equivariant map called the Peiffer
paring, i.e. all h1,hs € b and g € g satisfy the following identity:

g > (h1,h2)p = (g > h1,ha) + (k1,9 > ha)p.

A differential pre-crossed module is said to be a differential crossed module if all of its
Peiffer commutators vanish, which is to say that for each hi,hs € b:

O(h1) > ho = [h1, ha].

Definition 4 (Differential 2-crossed module) A differential 2-crossed module is given
by a complex of Lie algebras:

[=bh—=g,
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together with left action > of g on b, [, by derivations, and on itself via adjoint represen-
tation, and a g-equivariant bilinear map called the Peiffer lifting:

{= —}:bxb—I
Fizing the basis in algebra Ty € [, t, € h and 7, € g:
(T4, Tg] = fap® Tc, (ta,to] = fap“te, [T, 8] = fap” Ty s
one defines the maps 0 and § as:
Nta) = 0" Ta, 6(Ta) = 04" ta,
and action of g on the generators of I, h and g is, respectively:
Ta> Ty =>asPTs, Ta D ta = Dad’ th, Toa D> T8 = D>ag’ Ty .

Note that when n is g-valued differential form and w is [, § or g valued differential form
the previous action is defined as:

n>w=n"ANw?>os B Tx, N> w=n"Aw’ >0t nbw:na/\wﬁfaﬂm.
The coefficients XabA are introduced as:

{ta: to} = Xap*Ta -
The following identities are satisfied:

1. In the differential crossed module (L Ny , ) the action >' of b on | is defined for
each h € h andl €l as:
he'l=—{6(1), b},

or written in the basis where tq >' Ty = ' 4P Tg the previous identity becomes:
> aa” = =04 Xpa " ;
2. The action of g on itself is via adjoint representation:
>ap” = fag”
3. The action of g on h and | is equivariant, i.e. the following identities are satisfied:
00" fop? = >ad"D” 04 Daa’ = >aaPoB";
4. The Peiffer lifting is g-equivariant, i.e. for each hy,hy € b and g € g:

g>{hy, ho} = {g> hy,ho} +{hy, g> ho},
or written in the basis:

B A A A
Xab DaB” =Dad X" + >ab Xae ;

— 98 —



5. 0({hy, ho}) = (hy, ho) p Vhy, hy €1, i.ec.

A
Xab 5Ac = fabC - 8aOé|>osz;

6. ulv £2] = {5@1)7 5@2>} ) Vél, LQ € [; i.e.

fap® = 04%08" X% ;

7. {[ly, hal, hg} = 0(ly) > {ha, hs} +{hy, [hg, hsl} —(hy) > {hy, b} —{hy, [hy, hs]}
Vhy, hy, hy € b, i.e.

{[~, ho), hs} = {0(hy)>ho, hg} —{0(he)>hy, hy} —{hy, {hy, 3} }+{hs, 6{h1,q, h3}},
fabdXch - 8aOé)(bcADozAB + Xadbecd - 8bal>ozAB)(acA - deBfacd )
8. {hy, [hy, hs]} = {0 {hy, ho},hs} — {5 {hy, b3}, ho} Vhy, hy, hy €1, i.e.
Xoa foed = XapP05 X g — XoeBop X" ;
9. {6(1), b} +{h, 6(1)} = —0(h) > L, Viel, VYheb,ie

5Aa abB + 5AaXbaB = _8ba|>o¢AB .

Note that the property 6. implies that either trivial map ¢§ or the trivial Peiffer lifting imply
that L is an Abelian group. Conversely, if L is Abelian, property 6. implies that either the
map J or the Peiffer lifting is trivial, or both.

In the case of an Abelian group H and trivial map 0, among the aforementioned
properties the only non-trivial remaining are:

L. 0{hy, hy} =0, Vhy,hy € b;

2. [l L] ={0(ly), 6(Ly) }, Vil €l
3. {6(1), b} = —{h, ()}, Vheh, Viel.

A reader intrested in more details about 3-groups is referred to [25].

B The construction of gauge-invariant actions for 3BF' theory
Symmetric bilinear invariant nondegenerate forms are defined as:
(Ta,T)t=9gasB, {tasto)y = Gab , (Ta, T8)g = Gas -
They satisfy the following properties:
e (_,_)q is G-invariant:

(9709, 9759 Vg = (7o, T8)g, Vg€ G;
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e (_,_)y is G-invariant:
(9> ta,g>to)y = (ta,to)y, Y9E€G,
and, when (H 2% a ,I>) is a crossed module, consequently H-invariant:

(htoh™ '  htyh ™)y = (O(h) > to,0(h) > ty)y = (ta, ts)y, Vh € H;

e (_, ) is G-invariant:
(g Ta,g>Tp)=(Ta,Tp)1, V9€G,

and in the case when the Peiffer lifting or the map § is trivial consequently H-

invariant:
<h >’ Ta,h >’ TB>[ = <TA — {5(TA), h} ,T'g — {(S(TB), h}>[ = <TA ,TB>[, Vh e H.

From the H-invariance of (_,_); and properties of a crossed module (L LN H,>')
follows L-invariance:

(ATAl ATl = (6(1) ' Ta,6(1) >' Tg)y = (Ta,Tg), VIeL.

From the invariance of the bilinear forms follows the existence of gauge-invariant topological
3BF action of the form:

Supr :/M (BAF)g+(CAGy+ (D AH, (B.1)

where B € A%2(My,g), C € AY(My,b) and D € A°(My,[) are Lagrange multipliers, and
F € A2 (My,g), G € A3(My,b) and H € A*(My,1) are curvatures defined as in (3.1).
Written in the basis:

1 1

F— §fauu7'ad$u Adz”, G = gg“lwptadﬂl Adz” A dxf,
1

H = @’HAWWTAda:“ Adx” Adx? Adx?,

the coefficients are:
T = 00y — 0,0% + f,%0” a7y, — 1,0
G o = 0uBp + 0uB pu + 0pB%
+ a8 ar® + 0% B > ab” + % pB B ab® — 7 upda®
H oo = 0y oo — 0 poss + 00y o — 007 pp
+28% 8 00 X any ™ = 2B8%upBvo X (ary ™ + 280 B up X fany

A

B B A B A B A
+04a;f)/ vpoe>aB _aau7 poul>aB +04ap'7 o> aB _aaa’)/ wpPaB

Note that the wedge product A A B when A is a O-form and B is a p-form is defined
as ANB = I[%!ABM,,,Mde“1 Ao A\ xhe,
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Given G-invariant symmetric non-degenerate bilinear forms in g and b, one can define
a bilinear antisymmetric map 7 : h x h — g by the rule:

(T(hy, hy),g)g = —(hy, g ho)s, Vhy, hy €H, Vgeg.

See [17] for more properties and the construction of 2BF' invariant topological action using
this map. To define 3BF' invariant topological action one has to first define a bilinear
antisymmetric map S : [ X [ — g by the rule:

<5(l1,£2),g>g=—<£1,g>£z>r, Vi,V €1, VQGG-
Note that (_, )4 is non-degenerate and
(, g>£2>r = —<Q>L17 by = —(ly, QDL1>I» Vg € g, Vi, I, el

Morever, given g € G and [y, [, € [ one has:

S(g> 1y, 9> 1) = g8, b)g_la

since for each g € g and [y, [, € [:

(9. 97'8(g> 1, 9> 1)g)g = (999~ S(g> 1y, 9> 1y))q

=—((9g9 > g, g L)
=—(g>L,bL)i={(g,5, L)),

where the following mixed relation has been used:
g>(g>10) = (999 ) > g 1. (B.2)
We thus have the following identity:
S(g> 1y, ) + S, g ) =g, Sy, b)) -
As far as the bilinear antisymmetric map S : I X [ — g, one can write it in the basis:
S(Ta,Tp) = Sa“Ta,
so that the defining relation for S becomes the relation:
SAB“9op = — >olB CQA]C~
Given two [-valued forms 7 and w, one can define a g-valued form:
wAS n= wA ANBS AR Ta .

Now one can define the transformations of the Lagrange multipliers under L-gauge trans-
formations (3.15).
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Further, to define the transformations of the Lagrange multipliers under H-gauge
transformations one needs to define the bilinear map &7 : [ x h — b by the rule:

(X1(L hy), ho)y = —(L, {hy, ho})r, Vhy, hy €b, Viel,
and bilinear map A5 : [ X h — § by the rule:
(Xa(l, ha), hy)y = —(L {hy, ho})r, Vhy, hy €h, VIEL
As far as the bilinear maps X7 and X5 one can define the coefficients in the basis as:
X (Tata) = Xiaa"ty,  Xo(Tarta) = Xoua'ty.
When written in the basis the defining relations for the maps X} and X5 become:
X1 Gac = —Xpa gan X2 Gac = —Xav" g -

Given [-valued differential form w and h-valued differential form 7, one defines a h-valued
form as:
w /\X1 n= wA A ﬂa/YlAabtb s w /\X2 n = wA AN T]anAabtb .

Given any g € G, [ € l and h € § one has:
Xi(g>1, g7 > h) =g X(L b), Xo(g>1, g>h) =g~ > Xl h),

since for each hy,ho € hand [ € [:

<h27 gil > Xl(g I>L g >h1)>b = <g [>th Xl(g [>L g Dhl»b = <g I>£7 {g Dhlv g >h2}>[
<g I>L g {hla ﬁ2}>[ = <L {hla ﬁ2}>[ = <h27 Xl(la ﬁ1)>b )

and similarly for X'5. Finaly, one needs to define a trilinear map D : h x h x [ — g by the
rule:

(D(hy, hy, 1), g)g = —(l, {g > Iy, Ao}, Vhy, hy €, VIEIL Vgeg,
One can define the coefficients of the trilinear map as:
D(ta, ts, Ta) = Daba“Ta
and the defining relation for the map D expressed in terms of coefficients becomes:
Daba’Gop = — Daa ‘XaPgas -

Given two h-valued forms w and 7, and l-valued form &, the g-valued form is given by the
formula:
w/\Dn/\Df Iwa/\nb/\fADabABTﬁ.

The following compatibility relation between the maps X; and D hold:

<D(h17 ﬁQa D? Q>g = <‘)(1(L g>ﬁ1)7 ﬁ2>ha vﬁla ﬁ2 S b> Vl € [7 VQ €g, (B3)
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which one can prove valid from the defining relations in terms of the coefficients. One can
demonstrate that for each hy, hy € h,l €l and g € G:

D(g> hy, g hy, g> 1) = gD(hy, by, 1) g~*

)

since for each hy, hy € h,l €, g€ gand g € G:

(¢7'D(g> by, g1> by, 9> 1)g, g)g = (D(g > by, g 1> hz, 9> 1), 999 )
Xi(g>1, 999" > g hy), g hyy
Xi(g>1, g> g > hy), g ho)y
g>Xi(l, g > hy), g ho)y

Xi1(l, g > hy), ho)y

D(hh h2a 7) >ga

where the relation (B.2) and the compatibility relation (B.3) were used. We thus have for
each hy, hy € b, L € [ and g € g the following identity:

{
=
=
=
=
=

D(g>ﬁ1> &27 L) +D(h17 QDQQa £) +D(b15 h27 gbé) - [g7 D(hla h27 l)] .

Now one can define the transformations of the Lagrange multipliers under H-gauge trans-
formations as in (3.14).

C The equations of motion for the Weyl and Majorana fields

The action for the Weyl spinor field coupled to gravity is given by (3.72). The variation of
this action with respect to the variables By, A%, Vo, 7%, Aas A%, Y, Y%, €%, ¢ and w®
one obtains the complete set of equations of motion, as follows:

Rab . )\ab _ 0’
1
Bay — 167 l2 ———Eabed” N el = =0,
Vipa + Ao =0,
Vi + 24 =0,
—Ya + éfabcdea A e? A eCol g&ﬁ =0
—7% + éeabcde ANeb Ae adaﬁw/g =0,
‘ 38
VY — 6€abcde A e A efo? /\ =0,

/)
V’V —Béabcde /\6 Ne O'daﬁ)\g—o

VBa + ——5Cabca’ A e + 2€abcde A €€ A (Maa P + A\00? )

8m 12
—8mil2Eapcae” B (1/)a(0’d)a51/_’ﬁ) =0
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Ve, — 47rl12,5abcdeb A€l A (had?Pepg) =0,
1 1 e ¢
VB —ejo A By = 5700 Vs — 740" 507 = 0.

In the case of the Majorana field, one adds the mass term (3.75) to the action (3.72). Then,
the variation of the action with respect to Bap, ¥, 7%, 74, Aas AY, Ya, @?, e, 8% and wyy
gives the equations of motion for the Majorana case, as follows:

Rab . )\ab _ O,
1
Bay — 167 l2€abcde /\6 =0,
_vwa + AOt = 07
—Vy* + A =0,

i _ .
~* — gsabcde“ Ael A 661/15(6”[)50‘ =0,

1
Ya — =Eabea€® A €® A eclbﬁ(ffd)ﬁd =0,

6
/L' .
Vy* + gé“abcd)\ﬁ Ae® Aed A ec(ad)ag — 5 meapea® A e’ N el N el
—4iml? SEabed” N e’ A Bcwﬁ( )ﬁo‘ =0,
_ ) a b cl= B 1 a c d
Vs + éeabchﬁ Ne* Ne’ Ne (O‘ o — 6m5abcd€ Aeb A el A ey,

*4i7‘(’l§5abcd€a A 6b VAN ﬁciﬁﬁ(gd)gd =0,

i .
Vﬂa Eabcd)\bc A 6 + 2€abcd)\ A 6 A €C¢ ( ) o + §€abcd)\a AN eb A ecwﬁ(ad)gd

1
8 l2
—%meabcdeb A€ A e (PP + Patp®) — 87Til;2;5abcdebﬁc(d)a(ad)aﬁ'd_ﬁ) =0

Ve, — 4z'7rl12,€abcdeb A e (wa(ad)af}iﬁﬁ.) =0,
VB~ efa A iy — 5005 — 5Tale™) 7" =0,
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Abstract: The higher category theory can be employed to generalize the BF action to the so-called
3BF action, by passing from the notion of a gauge group to the notion of a gauge 3-group. The theory
of scalar electrodynamics coupled to Einstein—Cartan gravity can be formulated as a constrained 3BF
theory for a specific choice of the gauge 3-group. The complete Hamiltonian analysis of the 3BF action
for the choice of a Lie 3-group corresponding to scalar electrodynamics is performed. This analysis is
the first step towards a canonical quantization of a 3BF theory, an important stepping stone for the
quantization of the complete scalar electrodynamics coupled to Einstein-Cartan gravity formulated
as a 3BF action with suitable simplicity constraints. It is shown that the resulting dynamic constraints
eliminate all propagating degrees of freedom, i.e., the 3BF theory for this choice of a 3-group is
a topological field theory, as expected.

Keywords: Hamiltonian analysis; higher gauge theory; BF theory; topological theory; scalar
electrodynamics

1. Introduction

The vast majority of physics community agrees that the quantum theory of gravity is necessary,
even if they disagree on the quantization approach. The theory of loop quantum gravity is one of
the well-formulated possible candidates for the desired theory of quantum gravity [1-3]. There are
two approaches within the theory—the canonical and the covariant quantization method. The covariant
quantization method is focused on obtaining a generating functional, by considering a triangulated
spacetime manifold and defining the functional as a state sum over all configurations of a field living
on simplices of the triangulation [2].

One of the key tools in the covariant quantization approach is the so-called BF theory. Given a Lie
group G and its corresponding Lie algebra g, one considers a g-valued connection 1-form A, and its
corresponding field strength 2-form F = dA + A A A. Multiplying F with a g-valued Lagrange
multiplier 2-form B and integrating over a four-dimensional spacetime manifold M, one obtains the
action of the BF theory,

Spr[A, B] = /M (BAF),,

where (_,_) is a G-invariant non-degenerate symmetric bilinear form. The BF theory derives its

name from t}fe symbols B and F for the Lagrange multiplier and the field strength present in the action.
As it is defined, the BF theory is topological, containing no local propagating degrees of freedom.
Therefore, for the purpose of building physically relevant actions, attention usually focuses not on
the pure BF theory, but rather on the theory with constraints. The constrained BF models are based
on deformations of the BF theory [4], by adding constraints to the topological BF action that promote

some of the gauge degrees of freedom into physical ones. The well known example is the Plebanski
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model for general relativity [5]. Constrained BF models represent a starting point in the spinfoam
approach to the construction of quantum gravity models [2].

The main shortcoming of building a quantum gravity model using a BF theory is the fact that it is
very hard, if not impossible, to write the action for matter fields (specifically scalar and fermion fields)
in the form of a constrained BF theory. Thus, the spinfoam quantization method is limited to pure
gravity, and the problem of consistently coupling matter fields to gravity in this framework becomes
highly nontrivial. One of the proposed ways to circumvent this issue is to generalize the notion of a BF
theory using the mathematical apparatus of higher category theory.

The higher category theory [6] can be employed to generalize the BF action to the so-called
nBF action, by passing from the notion of a gauge group to the notion of a gauge n-group
(for a comprehensive review of n-groups see for example [7], and also Appendix C). Specifically,
the notion of a 3-group in the framework of higher category theory is introduced as a 3-category with
only one object where all the morphisms, 2-morphisms and 3-morphisms are invertible. Based on
this generalization, recently a constrained 3BF action has been introduced, which describes the full
Standard Model coupled to Einstein-Cartan gravity [8].

As a first step to the study of the Hamiltonian structure of such theories, in this work, we discuss
the simplest nontrivial toy example, namely the theory of scalar electrodynamics coupled to gravity.
The standard way to define scalar electrodynamics coupled to gravity is by the action:

1

S:/d‘ix\/fg [—16

e 188" Fuvkoo + 8V, Vo — mPg | 1)

Here, g,y is the spacetime metric, ¢ = det(g,y) is its determinant, R is the corresponding
curvature scalar, and [, is the Planck length, its square being equal to the Newton’s gravitational
constant, l% = G, in the natural system of units # = ¢ = 1. The total covariant derivative V of the
complex scalar field ¢ is defined as V¢ = (9, +igA,)¢$, and thus coupled to the electromagnetic
potential A, via the coupling constant g (the electric charge of the field ¢). See Appendix A for more
detailed notation. In the next section, we will reformulate this model as a classically equivalent
constrained 3BF theory for a specific choice of the gauge 3-group. Moreover, for reasons of simplicity,
in the Hamiltonian analysis, we will focus only on the topological sector, disregarding the simplicity
constraints. The Hamiltonian structure of the theory is important for various reasons, primarily for the
canonical quantization program.

The layout of the paper is as follows. In Section 2, we introduce the 3-group structure
corresponding to the theory of scalar electrodynamics coupled to Einstein—Cartan gravity and the
corresponding constrained 3BF action. Section 3 contains the Hamiltonian analysis for the topological,
3BF sector of the action, with the resulting first-class and second-class constraints present in the theory,
and their mutual Poisson brackets. In Section 4, we analyze the Bianchi identities that the first-class
constraints satisfy, which enforce restrictions in the sense of Hamiltonian analysis, and reduce the
number of independent first-class constraints present in the theory. Section 5 focuses on the counting
of the dynamical degrees of freedom present in the theory, based on the results from Sections 3 and 4.
Encouraged by these results, in Section 6, we construct the generator of the gauge symmetries for
the topological theory and we find the form variations of all variables and their canonical momenta.
Finally, Section 7 is devoted to the discussion of the results and the possible future lines of research.
The Appendices contain various technical details.

The notation and conventions are as follows. The local Lorentz indices are denoted by the Latin
letters a,b,c, ..., take values 0,1, 2,3, and are raised and lowered using the Minkowski metric #,,
with signature (—, +, +, +). Spacetime indices are denoted by the Greek letters y,v,..., and are
raised and lowered by the spacetime metric gy = #,p€" Heb v, where e, are the tetrad fields.
The inverse tetrad is denoted as e;, so that the standard orthogonality conditions hold: e? e}, = 67
and e“ue’; = 0J,;,. When needed, spacetime indices will be split into time and space indices,
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denoted with a 0 and lowcase Latin indices i, 7, ..., respectively. All other indices that appear in
the paper are dependent on the context, and their usage is explicitly defined in the text where they
appear. The antisymmetrization over two indices is introduced with the factor one half that is
Alaylag.an 1lar] = % (Auyas..an 1an — Aanay..a, 1a; ), and the total antisymmetrization is introduced as

A[ﬂl...ﬂn] = % ZUGSV, (_1)Slgn(0) Aug(l)...ug(m .

2. Scalar Electrodynamics as a Constrained 3BF Action

Let us begin by providing a short introduction into the construction and structure of a 3BF theory,
after which we will impose appropriate simplicity constraints, in order to obtain the equations of
motion for scalar electrodynamics coupled to gravity.

As was discussed in detail in [8], one formulates a topological 3BF action by specifying a particular
gauge Lie 3-group. It has been proved that any strict 3-group is equivalent to a 2-crossed module [9,10].
A gauge theory for the manifold M, and 2-crossed module (L 5 H3G ,>,{_,_}) can be
constructed for the following choice of the three Lie groups as:

G=50(3,1)xU(1l), H=R* L=R2
The maps d and 4 are chosen to be trivial. The action of the algebra g on h and [ is chosen as:

Mab > P, = |>ab,cd Pd = 5[a\d77|h]c Pd = U[b\c PM , TP, =0,
Mg, >P4 =0, TPy =10,8Pp

@)

where M,;, denote the six generators of s0(3, 1), T is the sole generator of u(1), P, are the four generators
of R* and P4 are the two generators of R?. In the previous expression, the action of the algebra u(1) on
the algebra R? is defined via
1 0
B .
> = .
A =1 [0 _11

The action of the algebra g on itself is by definition given via the adjoint representation and, for
the choice g = s0(3,1) x u(1), one obtains

Mgy > Moy = Dap 0a Mg = fa ca” M, = aaMpe + o Mag — HacMpg — 1paMac, -
My>T=0, T>My=0, ToT=0,

as the consequence of the direct product structure and the Abelian nature of the subgroup U(1).
The Peiffer lifting
{_,_}:HxH—=L

is also trivial, i.e., all the coefficients X, are equal to zero:
{Pa, Py} = Xay"Ta = 0. (4)

Given Lie algebras g, b, and I, one can introduce a 3-connection («,f,7) given by the
algebra-valued differential forms a € Al(My,g), B € A 2(My,h) and v € A3(My,l).
The corresponding fake 3-curvature (F, G, #) is then defined as:

F=da+aAa—098, G=dp+an®B—06y, H=dy+ar®y+{BAB}, )



Symmetry 2020, 12, 620 4 0of 21

see [9,10] for details. For this specific choice of a 3-group, where « = w + A, given by the algebra-valued
differential forms w € A!'(My,50(3,1)), A € A} (My,u(1)), B € A>(My,R*) and v € A3(My,R?),
the corresponding 3-curvature (F, G, H) is defined as

= RPMy+FT = (dw®+ ' Aw?P) )My +dAT,
G = G, = (dB*+ w'y ABY)Pa, (6)
= HAPA = (d’YA+|>BAA/\’)/B)PA.

Note that the connection w? is not present in the last expression, as follows from the definition of

the action > and the Peiffer lifting {_, _}, see Equations (2) and (4):
H = dy+aA®y+{BAB}
= dyPs + (wMy + AT) AP (v4P4)
= dyAPs + WP AyAM, > Py + ANYAT > Py 7)
= dyAPy+ ANy >4 BPg
= (dy* +ptANnyB)Py,.

The coefficients of the differential 2-forms F and R?, 3-form G, and 4-form H are:

Fu = Ay — Ay,

Rabyv —_ aywabv _ akuhy + wacwabv _ wacvwchﬂ ,

Gluvp = P v +0uB o + 9By + Wby Blup + W v B pu + @0 p Bluv 8)
HAyupa = ay'YAvpa - av'YApUy + ap'YAva - aa')’Ayvp

+Dp AAu”Yvaa - ‘>BAAV'YBpay + ‘>BAAp'YBU;4v - ‘>BAA17')’Byvp .
Now, one can define a gauge invariant 3BF action as:
5331::/ ((B/\]—')g+<C/\Q)h+<DAH>[) , ©9)
My

where B € A%(My,s0(3,1)), C € AY(My,R?*) and D € A°(My,R?) are Lagrange multipliers.
The forms (_,_) . <—’—>b and (_,_) are G-invariant bilinear symmetric nondegenerate forms on g, h
and [, respectively, defined as

(Map, Mea) g = Sab,edr (T, T)g=1, (Maw,T)g=0, (Pa,Po)y=28uw, (Pa,Ps) =845,
where

1 0 0 1
8ab,cd = Ma[c|b|d] » 8ab = [0 1] ’ 8AB = [1 0] '

Identifying the Lagrange multiplier C* as the tetrad field ¢?, and the Lagrange multiplier D4 as the
doublet of scalar fields ¢,

¢ =" Py = pP + ¢*Ps,
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based on their transformation properties as discussed in [8,11], the Lagrangian of the action (9) obtains
the form:

1 1 1 1
S3Br = //vt d*x ewpg(g By R o Qb ca + 1 By Fopo + 31 ¢ Gl vpr Qab + 1 1P oo gap) - (10)
Im, ! !

Varying the action with respect to all the variables, one obtains the equations of motion:

’ varied variable ‘ equation of motion ‘ ’ varied variable ‘ equation of motion ‘
5B Ry =0 OB F=0
S VBap — € A By =0 SA dB+ ¢4 >ptyB =0 1)
de” Ga=0 5p° Ve, =0
st Vya=0 sy Vs =0

Since one is interested in the doublet of scalar fields ¢** of mass m and charge g minimally
coupled to gravity and electromagnetic field, we impose additional simplicity constraint terms to
the topological action (9), in order to obtain the appropriate equations of motion equivalent to the
equations of motion for the action (1):

5— /M B% ARy +BAF+es ANV + pa V™
“ 4

—Agp A (B”b - gede ed>

16713
1
+ A4 A (’)/A — EHabcAea Ael A ec> + APA A <HabCA€Cdef€d Nee N\ ef — VaNes A €b> (12)

12
+AA <B — ?Mabe” A eb> + % (Mubscdgfec ANl Aef Aef —F e, A eb)

— ﬁqu‘)A P eapeae Nel Nef Net

For the notation used here and the equations of motion obtained by varying the action (12),
see Appendix A.

The dynamical degrees of freedom are the tetrad fields e”, the scalar doublet (])A, and the
electromagnetic potential A, while the remaining variables are algebraically determined in terms
of them, as shown in Appendix A. The equation of motion for the field ¢** reduces to the covariant
Klein-Gordon equation for the scalar field,

(Vuv*—m?) gs =0. (13)
The differential equation of motion for the field A is:
V=Y, = %(vab’q =B 4 — da 5 AV“¢B) = ig (ng* ¢ — 4>*V<p) . (4
Finally, the equation of motion for e” becomes:

RMW — %gWR = 8nly T,
1 1 (15)
— A A 2 A
TH = Vg Vgl — S8 (vp¢A VPOA + mPpa ) 4 (Fpo FP7gH" + 4FMPE,") .
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3. The Hamiltonian Analysis

The Hamiltonian analysis of the constrained 3BF action (12) for scalar electrodynamics is
exceedingly complicated to study. A testament to this is the level of complexity of the constrained
2BF formulation of general relativity [12], which is merely one sector in the action (12). Therefore,
in this paper, we will limit ourselves to the topological sector of the theory, namely the unconstrained
3BF theory (9), which consists of the terms in the first row of Equation (12), and is written in full
detail in Equation (10). One should be aware that this restriction changes various properties of the
theory. Namely, the simplicity constraints (everything but the first row in Equation (12)) substantially
modify the dynamics of the theory—they increase the number of local propagating degrees of freedom
of the theory, a property that was known since the original Plebanski model [5]. On the other hand,
the unconstrained 3BF theory (9) is important even in its own right, and the Hamiltonian analysis may
give important insight into the structure of both the unconstrained and the constrained theory.

In what follows, the complete Hamiltonian analysis for the action (9) is presented, see [13] for
an overview and a comprehensive introduction of the Hamiltonian analysis. The Hamiltonian analysis
for a 2BF action is performed in [12,14-16].

Under the standard assumption that the spacetime manifold is globally hyperbolic, My = R x X3,
the Lagrangian of the action (9) has the form:

1 1 1
L3pr = / &% ;u/pa Bah uv R o0 8ab,cd + 7 B;wFpU + 31 ea” gbvpa 8ab T 4 ‘PAHBprU gAB) . (16)

4

The canonical momentum 77(g) corresponding for the canonical coordinate g from the set of all
variables in the theory, q € {B”b uvs w"by, Buy, Ay, %, B v, 4,4 uvp }, is obtained as a derivative of
the Lagrangian with respect to the appropriate velocity,

6L

H(Q)Em,
giving:
RB) = 0, (@t = 0By,
(B = 0, w(A¥ _ %eowavp, ”
mr(e)a" = 0, (B = fGOF‘VPeap,
w(¢)a = 0, ()P = MR,

Since these momenta cannot be inverted for the time derivatives of the variables, they all give rise
to primary constraints:

P(B)w"" = m(B)aw P(w)g! = m(w)ap! — %P By =0,

P(B)W = n(B)W~ P(A = m(AM— 1B, ~0, )
Ple)a = m(e)at = P(B)a = m(B)al" +e%MPesp ~ 0,

P(p)a = m($)a=0, P(y)at? = 7t(7)a""P — WPy 0.

Here, the symbol “~” denotes the so-called “weak” equality, i.e., the equality that holds on
a subspace of the phase space determined by the constraints, while the equality that holds for any
point of the phase space is referred to as the “strong” equality and it is denoted by the symbol “=".
The expressions “on-shell” and “off-shell” are used for weak and strong equalities, respectively,
and henceforth will be used in this paper.
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The fundamental Poisson brackets are defined as:

{B®(x), m(B)e(y)} = 40°:8°40°1,67, 6 (¥ —7),
{w(2), m(@)ad" ()} = 20%0°40" 6P (T ~7),
{ Buv(x), 72(B)*(y) } = 267,67, 00)(Z - 7)),
{Au(x), 7(A) ()} = FueOE-), .
{e"u(x), m(e)y"(v) } = %6, 00N (T~ 7),
{Bw(x), (B ()} = 26%060,0%,)6%)(F~7),
{¢"(x), m(¢)p(y) } = poP(F-7),
{7 wp(x), T(NE*F1 ()} = 31645 6%,6P,67, 6% (F 7).
Using these relations, one can calculate the algebra between the primary constraints,
{P(B)(x), P(w)ed'(y) } = 467067 6O (¥ ~7),
{P(BY(x), P(A) ()} = MFeBN(F—7),
{P(e)™, P(B)"(y) } = 0§y (x) 0BT~ 7), @
{P(@)*(x), P (y)} = o460 ~7),
while all other Poisson brackets vanish. The canonical on-shell Hamiltonian is defined by
He = /23d35c’[}17r(B)abW BB+ 5 71(w)as" Doy + 2 (B QpBy + (A By, |
(21

1 1
+ 7t(e)a" Aoy + En(,@aw 0B v + 7T ($) A aODA + an(')’)Awp aO'YA;u/p - L.

Rewriting the Hamiltonian (21) such that all the velocities are multiplied by the first class
constraints and therefore in an on-shell quantity they drop out, one obtains:

H.=— d3x Vifk l:ZBabOi Rﬂbjk + =

1
g 5 BoiFik + a0 G"ijk + B0iV jeak

(22)
1 1 1 1
+ Ewabo <viBubjk — eali ﬁb]jk) + 540 (aiBjk t394 08 A ’YBijk> + Z’YAOiijCPA] :

This expression does not depend on any of the canonical momenta and it contains only the fields
and their spatial derivatives. By adding a Lagrange multiplier A for each of the primary constraints we
can build the off-shell Hamiltonian, which is given by:

1
Hr = Het [ d3fHA(B)””WP(B>abF‘”+§A(w)“byP<w>ab”+EMB);WP(B)W+A(A)HP(A)F‘
X3

FAO WP+ ZMBY P (B + M) P9) 4 + 3 AN g P |

(23)
Since the primary constraints must be preserved in time, one must impose the

following requirement:
P={P,Hr}~0, (24)
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for each primary constraint P. By using the consistency condition (24) for the primary constraints
P(B)ay”, P(w)a”, P(B)", P(A)°, P(e)a", P(B)a", and P(7) 4%,

s,
w
N
<
=
Q

0, P(w)a’~0, PB)Y~0, PA)°~0,

. . . i y 25
P(e)ao ~0, P(‘B)aOl ~0, P(')’)AOZ] ~0, ( )
one obtains the secondary constraints S,
SR)w' = "Ry =0, S(VB)ay = €Y (ViBgpik — efa)i Biojjk) =0,
S(F) = 3% Fp~0, S(VB) = 3%K(9;Bj+ 5 ¢a >p A 7Pi) =0,
. y (26)
8(G)a = 3" Gup =0,  S(Ve)' = eViey =0,
S(Vp)al = e"FVipa~0,

while in the case of P(B)y/*, P(w)yX, P(B)¥, P(A), P(e),X, P(B)s*, P(¢)a and P(y)a"* the
consistency conditions

. g (27)
Ple)d =0,  P(B)S~0, P(p)am0, P(7)a"* =0,
determine the following Lagrange multipliers:
Mw)a' = Viwgo, ABYT ~ 20l B 4, % > 4 9P,
MA) & 9 A, AP 2V B0 — wyy B,
AMP)A  ~ A AgeB, Me)at ~ Viel— w0, (28)
AB)ap'T & 2V + ey 0By — 2604 1By O + 200, By Y,
M) AR — A0 s 4By ik 4 iy 0K iy 10k 7k 00

Note that the consistency conditions leave the Lagrange multipliers
AB) o, M@)o, ABli,  AMA, A, AP, AN (29)

undetermined. The consistency conditions of the secondary constraints do not produce new constraints,
since one can show that

SR = {S(R)™, Hr} = wlilyo SRV,

S(VB) = {S(VB), Hr} = —>pt P S(Ve)aT,

S(G)” = {8(9)", Hr} = Book S(R)™* — ™ S(G)y,

S(Ve)' = {S(Ve)', Hr} = oS(R)a' — wa’oS(Ve)y', (30)
S(Vp)aT = {S(V$)a¥, Hr} = Ag>a"S(Ve)s”,

S(F)! = {S(F)’, Hr} = 0,

S(VB)w = {S(VB)w, Hr} = S(R)jac" B ok + @ia)0S (VB) p)c

—Blalok S(Ve) b + €(ajo S(G) 1) -
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Then, the total Hamiltonian can be written as

Hr = [ &% [ G080 @) + 3w @(w) + ME) B(B) +A(4)° ©(4)
F AL D)+ AR DB+ ZA) AT (m) o
- %BubOi D(R)™ — %%ho ®(VB)™ — By ®(F)' — Ag ®(VB)

1 )
— a0 P(G)" — Baoi P(Ve)™ — 5705 D(V)M|,

where
®(B)"™; = P(B)"y, o(y)4; = P(r) i,
D(w)® = P(w)™y, (F) = S(F)' —9;P(B)7,
®(B); = P(B)oi, DR)™ = S(R)™ —V;P(B)"Y,
P(A) = P(A)o, @(G)" = S(G)" + ViP(e)* — § Buij P(B)™7, )
d(e)" = P(e)%, D(Ve)' = 8(Ve)" —V,;P(B)" + 3 ey; P(B)™7,
@(B); = P(B)i, D(VP)AT = S(VP)AT + ViP(y)A T —>p* ¢P P(B)T,
®(VB) = S(VB)+aP(A) + ;, ik 2a P P(7)87 — pa 24 P(9)P,
S(VB) = S(VB)Y + ViP(w)™ + B P(B)T — 26l P(e) M7 — pll P() 117,
are the first-class constraints, while
x(B)a™ = P(B)w™,  x(BY*=P(BY*,  x(e)a' = P(e)d, X(@)a=P(¢)a -
x(@a' =P@a',  x(A) =PA)Y,  x(B)aT =P,  x(7)a" =P(7)a",
are the second-class constraints.
The PB algebra of the first-class constraints is given by:
{@(9)*(x), ©(Ve)y'(y) } = —O(R)%(x)s¥(x-7),
{®(G)"(x), @(VB)ue(y)} = 207 @(G)q(x) 0¥ (X —7),
{®(Ve)'i(x), ®(VB)pe(y)} = 20°5@(Ve)qi(x) 63 (¥~ 7)), -
{®(R)™(x), D(VB)e(y)} = —40l9 d(R)Y;i(x)sC) (¥ —7),
{®(VB)®(x), ®(VB)qa(y)} = —4dll @(VB)Y 4 (x) ) (¥ —7),
{®(VB)(x), 2(VP)al(y)} = —2084 &(Ve)p(x)s®) (¥ —7).
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The PB algebra between the first and the second-class constraints is given by:

ORI (), x(@)ed ()} = 405 x(B) (1)) (2 - ),
(@01 (), x@d (1)) = 207 x(e) (W) (%~ ),
(2@ xBF0} = (B,
{@(Ve) (), x(@)edl )} = 28 x(B)ig ()60 (F - ),
[@(Ve) (), x(@i)} = 5x(B)% 607,
{O(VB)IE(x), x(@)a (1)} = 40 x(w)yy 60 (),
[O(VB)(), x(AV ()} = 2x(A) 6z —7), )
[R(VB)IE(x), X))} = 200 x(B) 60 (x —y),
[R(VB) (), XA )} = 2a® ()5 ()60~ 7),
[R(VB)™(x), x(Blea* ()} = 404 x(B)y T 6) (2~ ),
[R(VBIE(x), x(e)' ()} = 200 x(e) 6 (x - ),
[(VB)), x@)a)) = 5P ax(@)s() 6D (@),
[R(V)i(), x(AFW)} = — o5 a6 (T - 7),
{O(V)Yi(x), x(@)s)} = — 5" x(Bi(x) 60~ 7)

The PB algebra between the second-class constraints has already been calculated, and is given
in Equations (20).

4. The Bianchi Identities

In order to calculate the number of degrees of freedom in the theory, one needs to make use of the
Bianchi identities (BI), as well as additional, generalized Bianchi identities (GBI) that are an analogue of
the ordinary BI for the additional fields present in the theory.

One uses BI associated with the 1-form fields w® and ¢?, as well as the GBI for the 1-form A.
Namely, the corresponding 2-form curvatures

b — Juwt 4w AW, T :de”—i—w”h/\eb, F=dA, (36)

satisfy the following identities:

MV, R, =0, (37)
e (Vu T — R, ebp) -0, (38)
MOV, Fyp = 0. (39)

Choosing the free index to be time coordinate A = 0, these indentities, as the time-independent
parts of the Bianchi identities, become the off-shell restrictions in the sense of the Hamiltonian analysis.
On the other hand, choosing the free index to be a spatial coordinate, one obtains time-dependent
pieces of the Bianchi identities, which do not enforce any restrictions, but can instead be derived as
a consequence of the Hamiltonian equations of motion.
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There are also GBI associated with the 2-form fields B**, B and p°. The corresponding 3-form
curvatures are given by

s% —dB® 420wl ABM,  P=dB, G'=dp*+wyAB. (40)

Differentiating these expressions, one obtains the following GBI:

1
eMivp <3v/\ Sabyvp _ R[ﬂ\c/w Bclb}vp> =0, (41)
e/vaa/\ P;wp =0, (42)
2
eMmvp (3V)\ Gaw/p — Rﬂb)\y ﬁbvp) =0. (43)

However, in four-dimensional spacetime, these identities will be single-component equations,
with no free spacetime indices, and therefore necessarily feature time derivatives of the fields.
Thus, they do not impose any off-shell restictions on the canonical variables.

Finally, there is also GBI associated with the 0-form ¢. The corresponding 1-form curvature is:

QA =do? + >t ANgE, (44)

so that the GBI associated with this curvature is:

ehmve (VVQAP — % >p A vagbB) =0. (45)

This GBI consists of 12 component equations, corresponding to six possible choices of the
free antisymmetrized spacetime indices Ay, and the 2 possible choices of the free group index A.
However, not all of these 12 identities are independent. This can be seen by taking the derivative of the
Equation (45) and obtaining eight identities of the form

>p A e, Fupp? =0, (46)

which are automatically satisfied because of the GBI (39). One concludes there are only four
independent identities (45). Now, fixing the value A = 0, one obtains the time-independent components
of both Equations (45) and (46),

3 1
eViik (VJQAk —5 >pB A ij(PB> =0, (47)

and
I>BA€01]kaiF]'k(PB =0. (48)

Of these, there are six components in Equation (47), but, because of the two components of
Equation (48), there are overall only four independent GBI relevant for the Hamiltonian analysis.

5. Number of Degrees of Freedom

Let us now show that the structure of the constraints implies that there are no local degrees of
freedom (DoF) in a 3BF theory. In the general case, if there are N initial fields in the theory and there
are F independent first-class constraints per space point and S independent second-class constraints
per space point, then the number of local DOF, i.e., the number of independent field components,
is given by

n=N-F— g . (49)
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Equation (49) is a consequence of the fact that S second-class constraints are equivalent to
vanishing of S/2 canonical coordinates and S/2 of their momenta. The F first-class constraints are
equivalent to vanishing of F canonical coordinates, and since the first-class constraints generate
the gauge symmetries, we can impose F gauge-fixing conditions for the corresponding F canonical
momenta. Consequently, there are 2N — 2F — S independent canonical coordinates and momenta and
therefore 2n = 2N — 2F — S, giving rise to Equation (49).

In our case, N can be determined from the Table 1, giving rise to a total of N = 120 canonical
coordinates. Similarly, the number of independent components for the second class constraints is
determined by the Table 2, so that S = 70.

Table 1. The number of components for all fields present in the theory.

w0y Ay B Y'wp Bw Bu ey ¢

24 4 24 8 36 6 16 2

Table 2. The number of components for the second class constraints present in the theory.

x(B)a™  x(BY*  x(e)a' x(@)a x(w)aw' x(A)  x(B)a  x(v)al*

18 3 12 2 18 3 12 2

The first-class constraints are not all independent because of BI and GBI. To see that, take the
derivative of ®(R)%! to obtain

. g 1 g
Vi®(R)™ = FV, R + ERC[ﬂlijP(B)Clb]l] . (50)

The first term on the right-hand side is zero off-shell because elik ViR”b k= 0, whichisa A =0
component of the BI (37). The second term on the right-hand side is also zero off-shell, since it is
a product of two constraints,

L1 ..
Rl p(B) I = EEOiij(R)C[“‘kP(B)C“’W =0. (51)

Therefore, we have the off-shell identity

V,®(R)¥ =0, (52)

which means that six components of ®(R)"' are not independent of the others. In an analogous

fashion, taking the derivative of ®(F )i, one obtains
. y 1 3
9;®(F)" = % 0;Fj + 5 Fi P(B)". (53)

The first term on the right-hand side is zero off-shell because etk 9;F ik =0, whichisaA =0
component of the GBI (37). The second term on the right-hand side is also zero off-shell, since it is a
product of two constraints,

F;P(B)T = %eoljk S(F)*P(B)i = 0. (54)

Therefore, we have the off-shell identity

9;®(F)' =0, (55)



Symmetry 2020, 12, 620 13 of 21

which means that one component of ®(F)’ is not independent of the others. Similarly, one can
demonstrate that

1 . 1 1
Vid(Ve)' - 5 ®(R)a' e’ + ZGOl]kS(R)ubk P(B)’; = §€O”k (Vz'Tajk — Rapij ebk) : (56)

The right-hand side of the Equation (56) is the A = 0 component of the BI (38), so that Equation (56)
gives the relation:

1 .
Vid(Ve)s' = 5 ®(R)g' e =0, (57)

where we have omitted the term that is the product of two constraints. This relation means that four
components of the constraints ®(Ve),’ and ®(R),;’ can be expressed in terms of the rest. Finally,
one can also demonstrate that

1 . .
Vi®(Ve)a - €0ikl B4 S(F) x ()8 + 8 4 ¢pp O(F)/
(58)
1 ; ) 1
+ 5 €oitm >B A P(B)T S(V¢)s"™ = "k (ViQAk +5 >B A Fix ¢B> ,
which gives
Vi®(V) 4l + % >B 4 pp ®(F) =0, (59)

for A = 0 component of the GBI (45), where we have again used that the product of two contraints
is zero off-shell. This relation suggests that six components of two first-class constraints, ®(V¢) 47
and ®(F)/, are not independent of the others. However, in the previous section, we have discussed
that only four of these six identities are mutually independent, which means that we have only
four independent identities (59). A rigorous proof of this statement entails the evaluation of the
corresponding Wronskian, and is left for future work.

Taking into account all of the above indentites (52), (55), (57), and (59), we can finally evaluate
the total number of independent first-class constraints. From the Table 3, one can see that the total
number of components of the first-class constraints is given by F* = 100. However, the number
of independent components of the first-class constraints is F = 85, obtained by subtracting the six
relations (52), one relation (55), four relations (57) and four relations (59).

Table 3. The number of components for the first class constraints present in the theory. The identities (52),
(55), (57), and (59) reduce the number of components which are independent. This reduction is explicitly
denoted in the table.

2B’ ®(B) @()a (W) ®(A) P(B)d’ (VA @(R)w' P(F) @(G)a ®(Ve)sd @(VB)w ®(VB) @(Ve)al

18 3 4 6 1 12 6 18—-6 3-1 4 12-4 6 1 6—4

Therefore, substituting all the obtained results into Equation (49), one gets

n:120—85—§:0, (60)

which means that there are no propagating DoF in a 3BF theory described by the action (10).

6. Generator of the Gauge Symmetry

Based on the results of the Hamiltonian analysis of the action (10), it can also be interesting to
calculate the generator of the complete gauge symmetry of the action. The gauge generator of the theory
is obtained by using the Castellani’s procedure (see Chapter V in [13] for details of the procedure),
and one gets the following result (see Appendix B for details of the calculation):
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G = [ (Vo)) — 3R + 3 (Vo)D) — 3 R(TE
90€;)@(B)! — €;®(F)! + (dpe)D(A) — e®(VB)
€")D(e)q — €"®(G)a + (Voe" ) )P(B)a’ — " P(Ve)a!
+ %(VoeAij@(’Y)Aij - %GAi@(V(P)A”
e (,B[a|0ip(,8)\b]i +efapP(e)y + B[a|c0iP(B)C\b]i) — €7a0ij > P(7)PY

+ eBoiP(B)™ + e, eboP<B>ahf) .

+(
+(Vo
(61)

Here, e, i, €" ab €;, €, €%, € and el ij are the independent parameters of the gauge transformations.

Furthermore, one can employ the gauge generator to calculate the form-variations for all canonical
coordinates and their corresponding momenta, by computing the Poisson bracket of the chosen variable
A(t, %) and the generator (61):

SoA(t, %) = {A(t,%),G}. (62)

The results are given as follows:

Sow™y = Ve, Sort(w)ay’ = =260 i71(B) )" — 260 T0(w) ),
+2ep,70(e) 1y + 2€ 10T (B) " s
Sw™; = Ve, Sot(w)ay' = —2€p" 7T(B) ey — 260 i (@) g’
+2¢(a) 70(e) )+ 26(a) 77 (B) 1)
+2%5 V7 j1€ap i + €7 By
80BMg; = Ve + ellieltly 607t(B)ap” = 2€[yc 7(B)jy,
+2¢elalegIbl o, + e[ﬂ\lglb]ol.,

§oB™ij = 2V[;e ) + 2elleBltl 807(B)ay = 2€(y. (B)Y,

el ol elelghl,
oAy = dpe, sor(A)° = =3t B am(y)sY,
SA; = O, Som(A) = Yk9ier — gety B 4 (y)B,
%0Boi = doei, sort(B)* = 0,
60Bij = 20pe+etjPags,  Sm(B)] = —e%kde,
6% = Vo€ —e"Bpoi, Somt(B)a” = —eum(B)PY + 3€7(B) ",
SoB%i = 2V[je)) — € Buij, Sort(B)a’l = —ea (B)"V + 5€” (B)n'l

ik et

Soely = Ve —eey, So7(e)s® = —eq7(e)” + 3% (B) ™,
dpe?; = Ve* —eey, Sorr(e)s! = —eg t(e)lt 4 €Viik ( Vjj€ajx) + eabﬁbjk)

+%€bj n(B)ubij ’
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Sortoj = Voelij—ePoj >4, Sort(7)a% = erBam(y)p",
Sov%ie = —erPip o+ Viedi  Gom(v)a* = epal (”('Y)Bijk + €Oiik 4’3) ,
—Vietic + Vieli;, (63)
sop? = egP >4y, bomt(¢)a = —enPam(p)p+ %660’77‘ > A vBijk
—% >apelijn(B) — %60% Viedic,

These transformations are an extension of the form-variations in the case of the Poincaré 2-group
obtained in [17].

7. Conclusions

Let us summarize the results of the paper. In Section 2, we have demonstated in detail how to use
the idea of a categorical ladder to introduce the 3-group structure corresponding to the theory of scalar
electrodynamics coupled to Einstein—Cartan gravity. We have introduced the topological 3BF action
corresponding to this choice of a 3-group, as well as the constrained 3BF action which gives rise to
the standard equations of motion for the scalar electrodynamics. In order to perform the canonical
quantization of this theory, the complete Hamiltonian analysis of the full theory with constraints has to
be performed, but the important step towards this goal is the Hamiltonian analysis of the topological
3BF action. This has been done in Section 3. Here, the first-class and second-class constraints of
the theory, as well as their Poisson brackets, have been obtained. In Section 4, we have discussed the
Bianchi identities and also the generalized Bianchi identities, since they enforce restrictions in the
sense of Hamiltonian analysis, and reduce the number of independent first-class constraints present
in the theory. With this background material in hand, in Section 5, the counting of the dynamical
degrees of freedom present in the theory has been performed and it was established that the considered
3BF action is a topological theory, i.e., the diffeomorphism invariant theory without any propagating
degrees of freedom. In Section 6, we have constructed the generator of the gauge symmetries for
the theory, and we found the form-variations for all the variables and their canonical momenta.

The results obtained in this paper represent the straightforward generalization of Hamiltonian
analysis done in [15] for the Poincaré 2-group, and a first example of the Hamiltonian analysis of
a 3BF action. The fact that the theory was found to be topological is nontrivial, since it relies on the
existence of the generalized Bianchi identities, which have been identified for the first time. In addition
to that, it was demonstrated that the algebra of constraint closes, which is an important consistency
check for the theory. There is another very interesting aspect of the constraint algebra. Namely,
one can recognize, looking at the structure of Equations (34) that the subalgebra generated by the
first-class constraint ®(V¢) 47/ is in fact an ideal of the constraint algebra because the Poisson bracket
between this constraint and all other constraints is again proportional to that constraint. It is curious
that precisely the constraint ®(V¢) 4" is the only one related to the Lie group L from the 3-group,
according to its index structure, and also that the structure constant of the ideal is determined by
the action > of the group G on L. Let us also note that the action > appears as well in the structure
constants of the algebra between the first-class and second-class constraints.

The results of this work open several avenues for future research. From the point of view of
mathematics, the relationship between the algebraic structures mentioned above should be understood
in more detail. More generally, one should understand the correspondence between the gauge
group generated by the generator (61) and the 3-group structure used to define the theory. This is
not viable in the special case of the 3-group discussed in this work, but instead needs to be done
in the case of a generic 3-group, where homomorphisms ¢ and d and the Peiffer lifting {_,_} are
nontrivial. From the point of view of physics, the obtained results represent the fundamental building
blocks for the construction of the quantum theory of scalar electrodynamics coupled to gravity, as
well as a convenient model to discuss before proceeding to the Hamiltonian analysis and canonical
quantization of the full Standard Model coupled to gravity, formulated as a 3BF action with suitable
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constraints [8]. Both the Hamiltonian analysis of constrained 3BF models and the corresponding
canonical quantization programme need to be further developed in order to achieve these goals.
Our work is a first step in this direction.

Finally, let us note in the end that the above list of topics for future research is by no means
complete, and there are potentially many other interesting topics that can be studied in this context.
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Abbreviations

The following abbreviations are used in this manuscript:

LQOG Loop Quantum Gravity

BI Bianchi Identities

GBI Generalized Bianchi Identities
DoF  Degrees of Freedom

PB Poisson Bracket

Appendix A. The Equations of Motion for the Scalar Electrodynamics

The action of scalar electrodynamics coupled to Einstein—-Cartan gravity is given in the form (12):

5— /M B% ARy +BAF+ea ANV + pa V™
- 4

—Agp A <B”b — ——_gbedg A ed)

167(1%

1
+ A4 A (fyA — EHabCAe” AeP A ec> + AA A (HabcASCdefed NeeNep —VpaNeg A €b> (AT)
12
+AA (B — ?Mabe“ A eb> +g% (Mabecdgfec Nt At Nef —FAe,n eb)

— ﬁmZsz P eapeae Nel Nef Aet

Varying the total action (12) with respect to the variables By, B, w,p, Ba, Aaps AbA 'yA, A, Hupea,
4 ab My, A, A, 4)A and €%, one obtains the equations of motion:

R?P — A% =, (A2)
F+A=0, (A3)

VB? — el ppltl =, (A4)
Ve' =0, (A5)

B* ! ele. ney =0, (A6)

B 16712
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HahCAstefed/\ee/\ef—V(pA/\ea/\eb =0, (A7)
Vs —Aa=0, (A8)
1 a b ¢
'YA_EHubcAe Ne Ne =0, (A9)
1
—E/\AAe“AebAec+eCdefA”hA/\ed/\ee/\ef:0, (A10)
c d e f_ _
Mpecgepe” Ne" Ne" Nel —F Neg Ney =0, (A11)
12 a b ab c d e f
—?/\Ae New + Pecqere Net NeP Nel =0, (A12)
12
B-— EMﬂbeﬂ Ael =0, (A13)
—dB + d(gabeu A eb) —$pa>B A’)/B — AabA |>B AP Neg Ney = 0, (A14)
1
Vya—V(A? 4 Neg Ney) — Emz Patapeae” N P Anefne? =0, (A15)
1 3
VB + mgabcd)\bc Aet + EHubCA/\A NeP Net +3H AeyyqAopa N Aef
p
1
—2Agpa AVPA Nl — ZEmZ(PA e peac N e A et (Al6)

24
— ;Mab)\ Aeb + 4CefMEf€abcd€b A Aet — 20, F N ef =0.

The dynamical degrees of freedom are the tetrad fields e?, the scalar field ¢*, and the
electromagnetic potential A, while the remaining variables are algebraically determined in terms
of them. Specifically, Equations (A2)-(A13) give

1

ab ab A oA
/\abyv = Rahyv/ w oy = A W Y wvp = _?efyvpav o,

abA  _ 1 Avpo A a b a _ c d
A w= 1768;1)& P Vyp©e € o, B w = 0, Babyv = Wsabcde u€ v,
14

1
HA = a7V g eelyety, Ay = Vgt (A17)
1

/\yv = Fyv ’ Byv = _EsyvpanU/

1 1
Mab — @EZWPUF}W eapehg , Cub — @S;WPUFHV eapeba )

Note that from the Equations (A4)—(A6) it follows that 3* = 0, as in the pure gravity case. The

equation of motion (A15) reduces to the covariant Klein-Gordon equation for the scalar field coupled

to the electromagnetic potential A,
(vyvﬂ - mz) ¢4 =0. (A18)

From Equation (A14), we obtain the differential equation of motion for the field A:

VFR =j", it = %(VVCPA > App — pa>p AV"<PB) =iq (V¢* ¢— 47*V<P) : (A19)
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Finally, the equation of motion (A16) for e? becomes:

RM — 1gWR = 8nly T,
2 (A20)

1 1
TH = VHp, VA — 58" (VP¢A VA + mPP, ¢A) I (Foo FP7gM" + 4FFPE,Y) .

The system of Equations (A2)—(A16) is equivalent to the system of Equations (A17)-(A20).

Appendix B. The Calculation of the Gauge Generator

The gauge generator of the theory is obtained by the standard Castellani procedure (see [13] for
an introduction). One starts from the generic form for the generator,

L1 1 ;1 1
G = /z 339C(§(ao€”'hz')C;1ubZ + ieabiGOabl + E(aoeab)Glﬂb + EeabGOab
v &3
+ (do€; G1i —|—€'G0i + (dpe)G1 + €Gy
(do€i) i (90€) . | (A21)
+ (90€”)G1a + €"Goa + (90€”i)G1a' + € Goa'
1 1 y
+ E(aOGAij)GlAl] + §€Asz0A”) ,
where the generators Gy and G; are obtained by the standard prescription [13]:
G1 = Cprc,
Go+{Gi, Hr } = Cprc, (A22)
{Go, Hr } = Cprc,
where Cprc is a primary first-class constraint. For example, one choses Gigp' = ®(B)y'. From
the conditions
Goap' +{ ®(B)ap', Hr } = Goap' + P(R)ap’ = Cprc,
(A23)

{ Goa', Hr } = Cprc* = { Cprc — ®(R)w', Hr },

we solve for Gy,’ by determining Cprc from the second equation. Evaluating one PB, one can reexpress
the second equation in the form:

{Cprc, Hr } = Cprc™ + 2o 0@ (R) p)i’ = { 20(o"0P(B) )’ Hr } - (A24)
From the second equality, we recognize that
Cprc = 2w "oP(B)n)d' (A25)
which can then be substituted into the first condition above, giving
Goap' = 2[a 0®(B) jyjd’ — P(R)ap' - (A26)
One thus obtains

1 o1 . 1 1 .
E(aoeabi)(cl)abl + EeubiGOabl = Evoeabiq)(B)abl - Eeab@(R)abl-

The other Gy and G; terms are obtained in a similar way, and the generator (61) is derived.
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Appendix C. Introduction to 3-Groups

The notion of a 3-group is usually introduced in the framework of higher category theory [6].
In category theory, every group can be understood as a category which has only one element,
and morphisms which are all invertible. The group elements are then individual morphisms that
map the category element to itself, while the group operation is the categorical composition of the
morphisms. In such a case, the axioms of the category guarantee the validity of all axioms of a group.
This kind of construction can be generalized to 2-groups, 3-groups and, in general, n-groups. Namely,
a 2-group is by definition a 2-category which has only one element, and whose morphisms and
2-morhisms (i.e., morphisms between morphisms) are invertible. Similarly, a 3-group is by definition
a 3-category which has only one element, while its morphisms, 2-morphisms, and 3-morphisms
are invertible.

The above definition of a 3-group is very abstract, and while theoretically very important, in itself
not very useful for practical calculations and applications in physics. Fortunately, there is a theorem
of equivalence between 3-groups and the so-called 2-crossed modules, which are algebraic structures
with more familiar properties [9,10]. For the applications in physics, attention focuses on the so-called
strict Lie 3-groups, and their corresponding differential (Lie algebra) structure, which corresponds to
the differential Lie 2-crossed module. Let us therefore give a brief overview of the latter.

A differential Lie 2-crossed module (I 2 h 2 g, >, {_, _}) is given by three Lie algebras g, h and [,
mapsJ : [ — hand d: h — g, together with a map called the Peiffer lifting,

{_,_}:bxph—=1I, (A27)

and an action > of the algebra g on all three algebras.
Let us introduce the bases in the three algebras, 7, € g, t; € h and T4 € [, and structure constants
in those bases, as follows:

[ta, 6] = fap Ty, [ta te] = fa‘te, [TaTs] = fap“Tc. (A28)
Now, the maps d and J can be written as
Ita) = 00" T,  6(Ta)=0a"ta, (A29)
and the action of the algebra g on g, h and [ as:
Wl Tp =D’ Ty, Talte=Dwlty, Tu>Ta=0ua®Ts. (A30)
Finally, the Peiffer lifting can be encoded into coefficients X,;,” as:
{ta, to} = X" Ta- (A31)

A differential Lie 2-crossed module has the following properties (we write all equations in the
abstract and their corresponding component forms, side by side):

1. The action of the algebra g on itself is via the adjoint representation, i.e., Vg, g1 € g:
g g1 =g 8], Dap” = fap” - (A32)
2. The action of the algebra g on algebras h and [ is g-equivariant, i.e, Vg€ g, h e h,l e l:
d(g>h) =gra(h), 3P fup” = >aa 0y, (A33)

s(g1) =gr4(1), 57" Bua” = ua® 8" (A34)
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3. The Peiffer lifting is a g-equivariant map, i.e., for every g € gand hy, hy € b:
g {h,hp} = {g>hy,p}+{h, g}, Xap? Bap? = Daa® Xop™ + B Xac™ . (A35)
4. For every hy, hy € b, the following identity holds:
6({h1, ho}) = [h1, o] — 3(ly) > ha, Xap? 045 = fur =" by (A36)
5. Forallly, I € |, the following identity holds:
[h, ] = {6(h), (1)} , fap® = 064" 08" X © . (A37)
6. Forall hy,hy, h3 € b:

{[Mm, ha], h3} = 9(h1) > {hy, h3} + {h1, [ha, h3]} —O(hy) > {hy, h3} — {hy, [h1, h3]}

" (A38)
fabd Xch = aalx XbcA |>rxAB + XﬂdB fhcd - aba |>1xAB XacA - thB facd .
7. Forall hy, hy, hs € b:
{hl/ [hZI h3]} = {5 {hl/ hZ} /h3} - {5 {h]/ h3}/ hZ} ’
Ag d B d A Bsdy A (A39)
Xad” foc"' = Xap” 0" X" — Xac” 0" Xap” .
8. Foralll € land Vh € b:
(), B} + (0, 60} = —aW) =1, 264" X(uy® = 0 baa®.  (AdD)

Finally, when dealing with various algebra valued differential forms, one multiplies them as
differential forms using the ordinary wedge product A, and simultaneously as algebra elements using
one of maps defined above. For example, the product with an action A" of the g-valued n-form p on
the h-valued m-form # is defined as:

1
p AP = e 0% gt vy T > g A AL da A DX A A
T-m- (A41)
= o P e v Paa b, daft AL daf Adx" A A dxv
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ABSTRACT

We provide several examples of higher gauge theories, constructed as gener-
alizations of a BF model to 2BF and 3BF models with constraints. Using the
framework of higher category theory, we introduce appropriate 2-groups and 3-
groups, and construct the actions for the corresponding constrained 2BF and
3BF theories. In this way, we can construct actions which describe the correct
dynamics of Yang-Mills, Klein-Gordon, Dirac, Weyl, and Majorana fields coupled
to Einstein-Cartan gravity. Each action is naturally split into a topological sector
and a sector with simplicity constraints. The properties of the higher gauge group
structure opens up a possibility of a nontrivial unification of all fields.

1. Introduction

The quantization of the gravitational field is one of the fundamental open
problems in modern physics. There are various approaches to this prob-
lem, some of which have developed into vast research frameworks. One of
such frameworks is the Loop Quantum Gravity approach, which aims to
establish a nonperturbative quantization of gravity, both canonically and
covariantly [1, 2, 3]. The covariant approach is slightly more general, and
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focuses on providing a possible rigorous definition of the path integral for
the gravitational field,

Z = /Dg ¢Sl (1)

This is done by considering a triangulation of a spacetime manifold, and
defining the path integral as a discrete state sum of the gravitational field
configurations living on the simplices in the triangulation. This quanti-
zation technique is known as the spinfoam quantization method, and is
performed via the following three steps:

(1) one writes the classical action S[g] as a constrained BF action;

(2) one uses the Lie group structure, underlying the topological sector of
the action, to define a triangulation-independent state sum Z;

(3) one imposes the simplicity constraints on the state sum, promoting it
into a triangulation-dependent state sum, which serves as a definition
for the path integral (1).

So far, this quantization prescription has been implemented for various
choices of the gravitational action, of the Lie group, and of the spacetime
dimension. For example, in 3 dimensions, historically the first spinfoam
model is known as the Ponzano-Regge model [4]. In 4 dimensions there are
multiple models, depending on the choice of the Lie group and the way one
imposes the simplicity constraints [5, 6, 7, 8, 9]. While these models do
give a definition for the gravitational path integral, none of them are able
to consistently include matter fields. Including the matter fields has so far
had limited success [10], mainly due to the absence of the tetrad fields from
the topological sector of the theory.

In order to resolve this issue, a new approach has been developed, using
the framework of higher gauge theory (see [11] for a review). In particu-
lar, one uses the idea of a categorical ladder to generalize the BF action
(based on a Lie group) into a 2BF action (based on the so-called 2-group
structure). A suitable choice of the Poincaré 2-group introduces the needed
tetrad fields into the topological sector of the action [12]. While this result
opened up a possibility to couple matter fields to gravity, the matter fields
could not be naturally expressed using the underlying algebraic structure
of a 2-group, rendering the spinfoam quantization method inapplicable.
Namely, the matter sector could indeed be added to the classical action,
but could not be expressed itself as a constrained 2B F theory, which means
that the steps 1-3 above could not be performed for the matter sector of
the action, but only for gravity.

This final issue has recently been resolved in [13], by passing from the
2-group structure to the 3-group structure, generalizing the action one step
further in the categorical ladder. This generalization naturally gives rise
to the so-called 3BF' action, which turns out to be suitable for a unified
description of both gravity and matter fields. The steps of the categorical
ladder and their corresponding structures are summarized as follows:
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categorical algebraic linear topological degrees of
structure structure structure action freedom
Lie group Lie group Lie algebra BF theory gauge fields
. Lie crossed differential Lie

Lie 2-group module crossed module 2BF theory | tetrad fields
. Lie 2-crossed differential Lie scalar and

Lie 3-group module 2-crossed module 3BF theory fermion fields

The purpose of this paper is to give a systematic overview of the con-
structions of classical BF, 2BF and 3BF actions, both pure and con-
strained, in order to demonstrate the categorical ladder procedure and the
construction of higher gauge theories. In other words, we focus on the step
1 of the spinfoam quantization programme.

The layout of the paper is as follows. Section 2 deals with models based
on a BF theory. First we discuss the pure, topological BF theory, and
then pass on to the the physically more interesting Yang-Mills theory in
Minkowski spacetime and the Plebanski formulation of general relativity.
In Section 3 we study the first step in the categorical ladder, namely models
based on the 2BF theory. After introducing the pure 2BF theory, we study
the relevant formulation of general relativity [12], and then the coupled
Einstein-Yang-Mills theory. Then, in Section 4 we perform the second step
in the categorical ladder, passing on to models based on the 3BF' theory.
After the introduction of the pure 3BF model, we construct constrained
3BF actions for the cases of Klein-Gordon, Dirac, Weyl and Majorana
fields, all coupled to the Einstein-Cartan gravity in the standard way. As
we shall see, the scalar and fermion fields will be naturally associated to a
new gauge group, generalizing the purpose of a gauge group in the Yang-
Mills theory, which opens up a possibility of an algebraic classification of
matter fields. Finally, Section 5 contains a discussion and conclusions.

The notation and conventions are as follows. The local Lorentz in-
dices are denoted by the Latin letters a,b,c, ..., take values 0,1, 2,3, and
are raised and lowered using the Minkowski metric n,, with signature
(—,+,+,+). Spacetime indices are denoted by the Greek letters p,v, ...,
and are raised and lowered by the spacetime metric g, = nabea#eby, where
e?, are the tetrad fields. The inverse tetrad is denoted as e#,. All other
indices that appear in the paper are dependent on the context, and their
usage is explicitly defined in the text where they appear. We work in the
natural system of units where c=h =1, and G = lg, where [, is the Planck
length.

2. BF theory

We begin with a short review of BF theories. See [14, 15, 16] for additional
information.
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2.1. Pure BF theory

Given a Lie group G, and denoting its corresponding Lie algebra as g,
one introduces the pure BF action as follows (we limit ourselves to the
physically relevant case of 4-dimensional spacetime manifolds My):

SBFZ/M <B/\]:>g. (2)

Here, F = da+a A« is the curvature 2-form for the algebra-valued connec-
tion 1-form a € AY(My,g), and B € A*(My,g) is a Lagrange multiplier
2-form, while (_,_)y denotes a G-invariant bilinear symmetric nondegener-
ate form.

One can see from (2) that the action is diffeomorphism invariant, and
it is also gauge invariant with respect to G, provided that B transforms as
a scalar with respect to G.

Varying the action (2) with respect to B? and o, where the index 3
is the group G index (which counts the generators of g), one obtains the
following equations of motion,

FP=o, VB? =dB’ + £ a7 AB° =0, (3)

where f75ﬁ are the structure constants of the Lie group GG. From the first
equation of motion, one immediately sees that « is a flat connection, mean-
ing that o = 0 up to gauge transformations. Given this, the second equa-
tion of motion implies that B is constant. Therefore, there are no local
propagating degrees of freedom, and the theory is called topological.

2.2. Yang-Mills theory

In physics one is usually interested in theories which are not topological, i.e.,
which have local propagating degrees of freedom. As a rule of thumb, one
recognizes that the theory does have local propagating degrees of freedom if
one of the equations of motion is a second-order partial differential equation,
usually featuring a D’Alambertian operator [J in some form. In order to
transform the pure BF action into such a theory, one adds an additional
term to the action, commonly called the simplicity constraint. The resulting
action is called a constrained BF theory. A nice example is the Yang-
Mills theory for the SU(N) group in Minkowski spacetime, which can be
rewritten as a constrained BF theory in the following way:

12
S = /BI AFL 4 A A (BI By Y /\5b)

g (4)
¢ (Maprcaed® N6TN O NS — grsFT N ou A &y) .

Here FF = dA + A A A is again the curvature 2-form for the connection
A e AY(My,5u(N)), and B € A%(My,su(N)) is the Lagrange multiplier
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2-form. The Killing form g7y = (77 7TJ>5u(N) x frelfrr X is used to raise
and lower the indices I, J, ... which count the generators of SU(N), while
f1;% are the structure constants for the su(N) algebra. In addition to
the topological B A F' term, there are also two simplicity constraint terms
present, featuring two Lagrange multipliers, a 2-form A and a 0-form (.
The 0-form Mgy is also a Lagrange multiplier, while ¢ is the coupling
constant for the Yang-Mills theory.

Finally, 6% is a nondynamical 1-form, such that there exists a global co-
ordinate frame in which its components are equal to the Kronecker symbol
0%, (hence the notation ¢%). The 1-form ¢ plays the role of a background
field, and defines the global spacetime metric, via the equation

Nuy = nabéauébu ) (5)

where 7., = diag(—1,+1,+1,+1) is the Minkowski metric. Since the co-
ordinate system is global, the spacetime manifold M, is understood to be
flat. The indices a,b,... are local Lorentz indices, taking values 0, ..., 3.
Note that the field 6% has all the properties of the tetrad 1-form e® in the
flat Minkowski spacetime. Also note that the action (4) is manifestly dif-
feomorphism invariant and gauge invariant with respect to SU(N), but not
background independent, due to the presence of §¢.

Varying the action (4) with respect to the variables ¢*, M, Al, By,
and M\, respectively (but not with respect to the background field 6%), we
obtain the equations of motion:

Map1€edef0 NS NSENST — Fr Adu NGy =0, (6)
—1;>\1Aé“A5b+§"“acdef60/\5dA5eA5f =0, (7)

—dBr + f115Brg AN AT +d(C% 100 A6y — f115C Kb NSy ANAT =0, (8)
Fr+X =0, (9)

12
Br — =M 60 N6° =0, (10)
g

From the equations (6), (7), (9) and (10) one obtains the multipliers as
algebraic functions of the field strength F' wv for the dynamical field Al

1 1

My = @&zbchICd, Cabl _ ZEGdeFIcch
! ) (11)

Atab = Flrab, Brab = 5—€abedF' 1 -

29
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Here we used the notation Fj, = F7,,0,"6p"”, and similarly for other vari-
ables, where we exploited the fact that 6, is invertible. Using these equa-
tions and the differential equation (8) one obtains the equation of motion
for gauge field A’ s

V FP = 0,F'0 4 [yt AT PR = 0. (12)

This is precisely the classical equation of motion for the free Yang-Mills
theory. Note that this is a second-order partial differential equation for the
field A! > and moreover contains the [ operator in the first term.

In addition to the Yang-Mills theory, one can easily extend the action (4)
in order to describe the massive vector field and obtain the Proca equation
of motion. This is done by adding a mass term

1
71m2AI#AIVn“”eabcd6a A8 A8 A 59 (13)
to the action (4). Of course, this term explicitly breaks the SU(N) gauge
symmetry of the action.

2.3. Plebanski general relativity

The second example of the constrained BF theory is the Plebanski action
for general relativity [16, 14]. Using the Lorentz group SO(3,1) as a gauge
group, one constructs a constrained BF action as

S = Bay A R® 4 ¢apea B N B (14)
My

Here R is the curvature 2-form for the spin connection w?, By, is the
usual Lagrange multiplier 2-form, while ¢4 is the additional Lagrange
multiplier O-form multiplying the term B% A B¢ to form a simplicity con-
straint. It can be shown that the variation of this action with respect to
Bap, w™ and ¢apeq gives rise to the equations of motion of vacuum general
relativity. However, in this model the tetrad fields appear only as a solution
of the simplicity constraint equation of motion B%® A B¢ = 0. Therefore,
being intrinsically on-shell objects, the tetrad fields are not present in the
action itself and cannot be quantized. This renders the Plebanski model
unsuitable for coupling of matter fields to gravity [10, 12, 20]. Neverthe-
less, regarded as a model for pure gravity, the Plebanski model has been
successfully quantized in the context of spinfoam models [8, 9, 1, 2].

3. 2BF theory

In this section we perform the first step of the categorical ladder, general-
izing the algebraic notion of a group to the notion of a 2-group. This leads
to the generalization of the BF theory to the 2BF theory, also sometimes
called BFCG theory [11, 17, 18, 19].
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3.1. Pure 2BF theory

In order to circumvent the issue of tetrad fields not being present in the
Plebanski action, in the context of higher category theory [11] a recent
promising approach has been developed [12, 21, 22, 23, 20, 24]. As an
essential ingredient, let us first give a short review of the 2-group formalism.

Within the framework of category theory, the group as an algebraic
structure can be understood as a category with only one object and in-
vertible morphisms [11]. Additionally, the notion of a category can be
generalized to the so-called higher categories, which have not only objects
and morphisms, but also 2-morphisms (morphisms between morphisms),
and so on. This process of generalization is called the categorical ladder.
Using this process, one can introduce the notion of a 2-group as a 2-category
consisting of only one object, where all the morphisms and all 2-morphisms
are invertible. It has been shown that every strict 2-group is equivalent to

a crossed module (H 4a ,>), see [13] for detailed definitions. Here G and
H are groups, 0 is a homomorphism from H to G, while > : G x H - H
is an action of G on H.

Similarly to the case of an ordinary Lie group G which has a naturally
associated notion of a connection «, giving rise to a BF' theory, the 2-
group structure has a naturally associated notion of a 2-connection («, 3),
described by the usual g-valued 1-form o € A'(My,g) and an h-valued
2-form 8 € A%(My,b), where b is a Lie algebra of the Lie group H. The
2-connection gives rise to the so-called fake 2-curvature (F,G), given as

F=datara—088, G=df+aA”§. (15)

Here a A 8 means that o and 3 are multiplied as forms using A, and simul-
taneously multiplied as algebra elements using >, see [13]. The curvature
pair (F,G) is called “fake” because of the presence of the additional term
0f in the definition of F [11].

Using the structure of a 2-group, or equivalently the crossed module,
one can generalize the BF action to the so-called 2BF action, defined as
follows [17, 18]:

S2BF:/M (B/\.F>g+<0/\g>;,. (16)

Here the 2-form B € A%(My,g) and the 1-form C € A'(My,b) are La-
grange multipliers. Also, (-, _)q and (_,_)y denote the G-invariant bilinear
symmetric nondegenerate forms for the algebras g and b, respectively. As
a consequence of the axiomatic structure of a crossed module (see [13]),
the bilinear form (_,_)y is H-invariant as well. See [17, 18] for review and
references.

Similarly to the BF action, the 2BF action is also topological, which
can be seen from equations of motion. Varying with respect to B* and C'®
one obtains

F*=0, G“=0, (17)



258 T. RADENKOVIC AND M. VoOJINOVIC

where indices a count the generators of the group H. Varying with respect
to a® and % one obtains the equations for the multipliers,

dBo — gag" By A’ —>0a"Cy A B =0, (18)
dCy — 3,%Ba 4 Bad’Cy A a® = 0. (19)

We can again see that the equations of motion are only first-order and
have only very simple solutions (note that this is not a sufficient argument
for the absence of local propagating degrees of freedom — a counterexam-
ple is the Dirac equation, being a first-order partial differential equation
which does have propagating degrees of freedom). One can additionally
use the Hamiltonian analysis to rigorously demonstrate that there are no
local propagating degrees of freedom [22, 23]. Thus the 2BF theory is also
topological.

3.2. General relativity

An important example of a crossed module structure is a vector space V'
equipped with an isometry group O. Namely, V can be regarded as an
Abelian Lie group with addition as a group operation, so that a represen-
tation of O on V is an action > of O on the group V, giving rise to the

crossed module (V 20 ,>>), where the homomorphism 0 is chosen to be
trivial (it maps every element of V' into a unit of O).

We can employ this construction to introduce the Poincaré 2-group.
One constructs a crossed module by choosing

G=50(3,1), H=R* (20)

The map 0 is trivial, while [> is a natural action of SO(3,1) on R*, defined

by the equation
Moy > P = n[bcpa} ) (21)

where Mg, and P, are the generators of groups SO(3,1) and R*, respec-
tively. The action > of SO(3,1) on itself is given via conjugation. At
the level of the algebra, conjugation reduces to the action via the adjoint
representation, so that

Mab > Mcd - [Mab 5 Mcd] = 77acl]\4'bc - nachd + lecMad - nbdMac . (22)
The 2-connection (v, 3) is given by the algebra-valued differential forms

a=w"My, f=pF, (23)

b

where w® is called the spin connection. The corresponding 2-curvature in
this case is given by

F = (dw® 4w Aw®) My, = R®M,,
(24)
G = (df*+w% ABY)P, = VpB*P, =GP,
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Note that, since 9 is trivial, the fake curvature is the same as ordinary
curvature. Introducing the bilinear forms

<Mab ) MCd>g = Na[cMlbd) > <Pa ) Pb>h = Tab (25)

one can show that 1-forms C'® transform in the same way as the tetrad
1-forms e® under the Lorentz transformations and diffeomorphisms, so the
fields C'® can be identified with the tetrads. Then one can rewrite the pure
2BF action (16) for the Poincaré 2-group as

Sopp = / B A Rgp + €q AN V2. (26)
My

Note that the above step of recognizing that C* = e® was crucial, since we
now see that the tetrad fields are explicitly present in the 2BF action for
the Poincaré 2-group.

In order to promote (26) to an action for general relativity, we add a
convenient simplicity constraint term:

S = B“”/\Rab+ea/\Vﬁ“—/\ab/\(B“b—

gbede, N ed> . (27)
My

1671’[12)

Here A,y is a Lagrange multiplier 2-form associated to the simplicity con-
straint term, and [, is the Planck length. Note that the term “simplicity
constraint” derives its name from the fact that the constraint imposes the
property of simplicity on B® — a 2-form is said to be simple if it can be
written as an exterior product of two 1-forms.

Varying the action (27) with respect to Bap, €4y Wap, Ba and Agp, we
obtain the following equations of motion:

Rap — Aap =0, (28)
1
VB + —=eapear Ne? =0, (29)
87'('[1%

VBup —ejqNBy =0, (30)
Ve, =0, (31)
L g®de Neg=0. (32)

167Tl§

Given this system of equations, all fields can be algebraically determined in
terms of the tetrads e, as follows. From the equations (31) and (32) we

obtain that VB = 0, from which it follows, using the equation (30), that
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eja\ Bp) = 0. Assuming that the tetrads are nondegenerate, e = det(e®,) #

0, it can be shown that this is equivalent to % = 0 [12]. Therefore, from
the equations (28), (30), (31) and (32) we obtain

1
)\ab,uzz = Rab,ul/, ﬁauu =0, Bab,uzz = jgabcdecuedu ) wab# = Aab,u .
87Tlp
(33)
Here the Ricci rotation coefficients are defined as
1
Aab# = 5(Cabc _ Ccab + cbca)ec‘u ’ (34)
where
™ = etype” (Due®y — Dpey) (35)

The last equation establishes that the spin connection 1-form w? is ex-

pressed as a function of the tetrads, which then implies the same for the
curvature 2-form R%. Finally, the remaining equation (29) then reduces to

Eabed R N el =0, (36)

which is nothing but the vacuum Einstein field equation,

1
R, — ig’“/R =0.

Therefore, the action (27) is classically equivalent to general relativity.

3.3. Einstein-Yang-Mills theory

As we have already mentioned above, the main advantage of the action (27)
over the Plebanski model lies in the fact that the tetrad fields are explicitly
present in the topological sector of the action. This allows one to couple
matter fields in a straightforward way [12]. However, one can do even more
[13], and couple the SU(N) Yang-Mills fields to gravity within a unified
framework of 2-group formalism.

Namely, we can modify the Poincaré 2-group structure to include the
SU(N) gauge group, as follows. We choose the two Lie groups as

G = S0(3,1) x SU(N), H =R, (37)

and we define the action > of the group G in the following fashion. As in
the case of the Poincaré 2-group, it acts on itself via conjugation. Next,
it acts on H such that the SO(3,1) subgroup acts on R* via the vector
representation (21), while the action of the SU(N) subgroup is trivial,

P, =0, (38)
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where 77 are the SU(N) generators. The map 0 also remains trivial, as
before. The form of the 2-connection (a, ) now reflects the structure of
the group G,

= WabMab + AITI s ﬁ = ﬁaPa ) (39)

where A’ is the gauge connection 1-form. Next, the curvature for a then
becomes

F=R®My+Flrp,  Fl=dA' + fiTA7 A AKX (40)

The curvature for § remains the same as before, because of (38). Finally,
the product structure of the group G implies that its Killing form (_, ) g

reduces to the Killing forms for the SO(3,1) and SU(N), along with the
identity (Mg, 7'[>g =0.

Given a crossed module defined in this way, its corresponding pure 2B F
action (16) becomes

SQBF:/ B® A Rup + B A Fr + e, ANV, (41)
My

where B! € A%(My,su(N)) is the new Lagrange multiplier. The action
(41) is topological, and again we add appropriate simplicity constraint
terms, in order to transform it into action with nontrivial dynamics. The
constraint giving rise to gravity is the same as in (27), while the con-
straint for the gauge fields is given as in the action (4) with the substitution
6% — e Putting everything together, we obtain:

S = B® ARy + B A Fr 4 e4 A VB
My

12
— Xap N (Bab €ab6dec A €d> + AA (B[ — —Mgpre® A eb)
g

B 167‘(‘112)

+ ¢abt (Mabjscdefec Nel et Nel — graFT Aeg A eb> .

(42)
It is crucial to note that the Yang-Mills simplicity constraints in (42) are
obtained from the Yang-Mills action (4) by substituting the nondynamical
background field 6% from (4) with a dynamical field e*. The relationship
between these fields has already been hinted at in the equation (5), which
describes the connection between 6° and the flat spacetime metric 7,,.
Once promoted to e%, this field becomes dynamical due to the presence
of gravitational terms, while the equation (5) becomes the usual relation
between the tetrad and the metric,

Juv = nabea,uebu ) (43)
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further confirming the identification C'* = e®*. Moreover, the total action
(42) now becomes background independent, as expected in general relativ-
ity. All this is a consequence of the fact that the tetrad field is explicitly
present in the topological sector of the action (27), and represents a clear
improvement over the Plebanski model.

Taking the variations of the action (42) with respect to the variables
Bab, Wabs Bar Nab, €L, My, Br, M, Al and e®, we obtain equations of
motion. Similarly as before, all variables can be algebraically expressed as
functions of A’ and e® and their derivatives:

)\abuu = Rabuu ) /Bauu = 07 Waby = Aabuy )\ab[ = FabI )
e
o c d
B;,LVI = _%Euypan I, Babuu = @&zbcde n€ v,
1 1
Meayr = ——46g€“”p"FuyI el ¢ = —4695“””"&”1 e®pels .
(44)

In addition, we obtain two differential equations — An equation for A’,
VBt = 1Pt 4 Ty PN frp T AT PR =0, (45)

where I )\/w is the standard Levi-Civita connection, and an equation for e,

1
R — g™ R = 8rl2 TH (46)
where
o= L (Fpo" FP7 1g" + 4FFP 1 F,0T) (47)
= 4g po 19 ILp .

In this way, we see that both gravity and gauge fields can be successfully
represented within a unified framework of higher gauge theory, based on a
2-group structure. A generalization from SU(N) Yang-Mills case to more
complicated cases such as SU(3) x SU(2) x U(1) is completely straightfor-
ward.

4. 3BF theory

While the structure of a 2-group can successfully describe both gravitational
and gauge fields, unfortunately it cannot accommodate other matter fields,
such as scalars or fermions. In order to remedy this drawback, we make
one further step in the categorical ladder, passing from the notion of a 2-
group to the notion of a 3-group. As it turns out, the 3-group structure is
excellent for the description of all fields that are present in the Standard
Model, coupled to gravity. Moreover, a 3-group contains one more gauge
group, which is novel and corresponds to the choice of the scalar and fermion
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fields present in the theory. This is an unexpected and beautiful result, not
present in ordinary gauge theory.

As before, we will begin by introducing the notion of a 3-group, and
constructing the corresponding 3BF action. Afterwards, we will modify
this action by adding appropriate simplicity constraints, giving rise to the-
ories with expected nontrivial dynamics. Along the way, we shall see that
scalar and fermion fields are being treated pretty much on an equal footing
with gravity and gauge fields.

4.1. Pure 3BF theory

Similarly to the concepts of a group and a 2-group, one can introduce the
notion of a 3-group in the framework of higher category theory, as a 3-
category with only one object where all the morphisms, 2-morphisms and
3-morphisms are invertible. Also, in the same way as a 2-group is equivalent
to a crossed module, it was proved that a strict 3-group is equivalent to a
2-crossed module [25].

A Lie 2-crossed module, denoted as (L S8 G,>,{-,-}), is an
algebraic structure specified by three Lie groups G, H and L, together
with the homomorphisms § and 0, an action > of the group G on all three
groups, and a G-equivariant map

{_,}:HxH-=L.

called the Peiffer lifting. The maps 0, §, > and the Peiffer lifting satisfy
certain axioms, so that the resulting structure is equivalent to a 3-group
[13].

Like in the cases of BF' and 2BF actions, we can introduce a gauge
invariant topological 3BF' action over the manifold My for a given 2-crossed

module (L Ny g G,>,{_,_}). Denoting g, h and [ as Lie algebras
corresponding to the groups G, H and L, respectively, one can introduce
a 3-connection (a, 3,7) given by the algebra-valued differential forms « €
AL (My,g), B € A2(My,h) and v € A3(My,1). The corresponding fake
3-curvature (F,G,H) is then defined as

F=dat+ana—09083, G=dB+an” -y,
H=dy+aA" v+ {BAB},

(48)

see [25, 26] for details. Note that ~ is a 3-form, while its corresponding
field strength H is a 4-form, necessitating that the spacetime manifold be
at least 4-dimensional. Then, a 3BF' action is defined as

Sypp — /M (BAF)g+(C NG+ (DAH), (49)
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where B € A?(My,g), C € AL(My,h) and D € A°(My,l) are Lagrange
multipliers. Note that in precisely 4 spacetime dimensions the Lagrange
multiplier D corresponding to H is a O-form, i.e. a scalar function. The
functionals (-, )y, (-,-), and (-, -); are G-invariant bilinear symmetric non-
degenerate forms on g, h and [, respectively. Under certain conditions, the
forms (-, )y and (-, ) are also H-invariant and L-invariant.

One can see that varying the action with respect to the variables B¢,
C® and D? (where indices A count the generators of the group L), one
obtains the equations of motion

F=0, G*=0, H =0, (50)
while varying with respect to a®, 8%, ¥4 one obtains

ABo = gag?By A @® — 50 Cy A B + apDa Ay =0,  (51)
dCy — 0."Ba + Baa"Cy A a® +2X (" Da A B =0, (52)
dDy — >aa®Dp A a®+64°C, = 0. (53)

4.2. Klein-Gordon theory

Now we proceed to demonstrate that one can use the 3-group structure and
the corresponding 3B F’ theory to describe the Klein-Gordon field coupled to
general relativity. We begin by specifying a 2-crossed module, which is used
to construct the topological 3BF theory, and then we impose appropriate
simplicity constraints to obtain the desired equations of motion.

We specify a 2-crossed module (L LA G,>,{-,_}), as follows.
The groups are given as

G=50(3,1), H=R'  L=R. (54)

The group G acts on itself via conjugation, on H via the vector represen-
tation, and on L via the trivial representation. This specifies the definition
of the action >. The map 0 is chosen to be trivial, as before. The map ¢ is
also trivial, that is, every element of L is mapped to the identity element of
H. Finally, the Peiffer lifting is trivial as well, mapping every ordered pair
of elements in H to an identity element in L. This specifies one concrete
2-crossed module which, as we shall see below, corresponds to gravity and
one real scalar field.

Given this choice of a 2-crossed module, the 3-connection («, 3, 7) takes
the form

a=wMy,  B=pP., =11, (55)

where I is the sole generator of the Lie group R. Since the homomorphisms
0 and ¢ are trivial, as well as the Peiffer lifting, the fake 3-curvature (48)
reduces to the ordinary 3-curvature,

F =R®M,, G =VpP,, H =dy, (56)
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where we used the fact that G acts trivially on L, that is, My, > 1 = 0.
This means that the 3-form ~ transforms as a scalar with respect to Lorentz
symmetry. Consequently, its Lagrange multiplier D also transforms as a
scalar, since it also belongs to the algebra [. Since D is also a 0-form, it
transforms as a scalar with respect to diffeomorphisms as well. In other
words, D completely behaves as a real scalar field, so we relabel it into
more traditional notation, D = ¢, and write the pure 3BF action (49) as:

S3BF =/ B® A Rgy + ea ANVBY + $dy, (57)
My

where the bilinear form for L is (I, I); = 1.

The existence of a scalar field in the 3B F action is a crucial property of
a 3-group in a 4-dimensional spacetime, just like identifying the Lagrange
multiplier C* with a tetrad field e® was a crucial property of the 2BF
action and the Poincaré 2-group. We can also see that the choice of the
third gauge group, L, dictates the number and the structure of the matter
fields present in the action. In this case, L = R implies that we have only
one real scalar field, corresponding to a single generator I of R. The trivial
nature of the action > of SO(3,1) on R implies that ¢ transforms as a
scalar field. Finally, the scalar field appears in the topological sector of the
action, making the quantization procedure feasible.

As in the case of BF and 2BF theories, we need to add appropriate
simplicity constraints to the action (57). In order to obtain the Klein-
Gordon field ¢ of mass m coupled to gravity in the standard way, the
action takes the form:

S= [ B®ARy+e, ANV + pdy
My

A (Bab - Eadeec VAN 6d>

167rl12)
1
+ AN (7 — §Habcea Aeb A ec> (58)

+ A% A (HabceSCdefed NeeNep —doAeqg A eb>

— ﬁm%ﬁ%abcdea ANeb Aef Ael.

The first row is the topological sector (57), the second row is the familiar
simplicity constraint for gravity from the action (27), the third and fourth
rows contain the new simplicity constraints featuring the Lagrange multi-
plier 1-forms A and A® and the 0-form H,p., while the fifth row is the mass
term for the scalar field.

The variation of (58) with respect to the variables Bup, Wap, Bas Aabs
Aap, v, A, Hape, @ and e® gives us the equations of motion. As before, all
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variables can be algebraically expressed in terms of the tetrads e® and the
scalar field ¢:

e

)\ab;w = Rab,uz/a wab,u = Aab,u ’ Yuvp = _25,proag¢7
1
Baiw =0, Aabﬂ = r%guASAVpaaugbeapeba ) )\u = 8,u¢7 (59)
1
HYe = — P79, e, el e B = ——apea ey .
Ge ,LL¢ vt p€ o, abuv 87Tl12) abed® p€ v

The equations of motion for e* and ¢, however, are differential equations.
The equation for the scalar field becomes the covariant Klein-Gordon equa-
tion,

(V. VF—m?) ¢ =0, (60)
while the equation for the tetrads is
v 1 v 12
R — g™ R = 8l TH (61)
where )
TH = 9 ¢ — 3 9" (9,00 ¢ + m*¢?) (62)

is the stress-energy tensor for a single real scalar field.

4.3. Einstein-Cartan-Dirac theory

In order to describe the Dirac field coupled to Einstein-Cartan gravity, we
follow the same procedure as for the case of the scalar field, but now we

choose the 2-crossed module (L S a ,>,{-,-}) in a different way, as
follows. The groups are:

G=50(3,1), H=R'  L=R¥G), (63)

where G is the algebra of complex Grassmann numbers. The maps 9, §
and the Peiffer lifting are trivial, as before. The action of the group G on
itself is given via conjugation, on H via vector representation, and on L
via spinor representation, in the following way. Denoting the 8 generators
of the Lie group R3(G) as P, and P%, where the index a takes the values
1,...,4, the action > of G on L is thus given explicitly as

1 1
My > Py, = 5(crab)ﬂapﬁ, My > PY = —i(aab)aﬁpﬁ, (64)

where o4, = %[’ya,’yb], and v, are the usual Dirac matrices, satisfying the
anticommutation rule {vq, 7%} = —274.
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As in the case of the scalar field, the choice of the group L dictates the
matter content of the theory, while the action > of G on L specifies its
transformation properties.

Let us now proceed to construct the 3BF' action. The 3-connection
(o, B,7) takes the form

a=w"My,  B=P0"Pu, 7 =7"PatTulP?, (65)
while the 3-curvature (F,G,H) is given as
F = RabMab, g == vBaPa )
1 1
H= (dva + gwab(%b)“mﬁ> Poﬂr(d% - iwab%(%b)ﬂa) pP* (66)
= IR
= (VY)*Poa+ (7V)aP?,

where we have used (64). The bilinear form (_, _), is defined via its action
on the generators:

(Pa,Pg), =0, (P>, PP), =0,
(67)
<P047PIB>[:_5(€7 <Pavpﬁ>[:(sg'

Note that the bilinear form defined in this way is antisymmetric, rather
than symmetric, when it acts on the generators. The reason for this is the
following. For general A, B € [, we want the bilinear form to be symmetric.
Expanding A and B into components, we can write

(A,B),=A'B’g;;, (B,A),=B'Alg,;. (68)

Since we require the bilinear form to be symmetric, the two expressions
must be equal. However, since the coefficients in [ are Grassmann num-
bers, we have A/B7 = —B7 Al so it follows that g;; = —gs;. Hence the
antisymmetry of (67) — it compensates for the anticommutativity prop-
erty of the Grassman coefficients, making the bilinear form symmetric for
general algebra elements A, B € [.

Now we employ the action > of G on L to determine the transformation
properties of the Lagrange multiplier D in (49). Indeed, the choice of the
group L dictates that D contains 8 independent complex Grassmannian
matter fields as its components. Moreover, due to the fact that D is a
0-form and that it transforms according to the spinorial representation of
SO(3,1), we can identify its components with the Dirac bispinor fields, and
write

D = *Py + o P . (69)

This is again an illustration of the fact that information about the structure
of the matter sector in the theory is specified by the choice of the group L
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in the 2-crossed module, and its transformation properties with respect to
the Lorentz group are fixed by the action r>.

Given all of the above, we write the corresponding pure 3BF action as:

— _ =
S3pr = B A Rap + e ANVB 4+ (FV)at® + %o (VY)*. (70)
My

In order to obtain the action that gives us the dynamics of Einstein-Cartan
theory of gravity coupled to a Dirac field, we add the following simplicity
constraints:

b — _ =
S = BY A Rgp + €4 ANVB* + (AV)at)™ + 1o (Vy)®
My

A (Bab — EQdeec AN ed>

16712
— 22X A —_16 an b/\ C(l;d)
Ve 6 abcd€ € € V)

+ Ao A (’ya + %aabcde“ Ael A ec(’ydw)a>
— %m D) egpeae® NP A e Ae + 27ril12) D57 Eapeac’ A €€ A B2

(71)
Similarly to the previous case of the scalar field, we recognize the topological
sector in the first row, the gravitational simplicity constraint in the second
row, while the third and fourth rows contain the new simplicity constraints
for the Dirac field, featuring the Lagrange multiplier 1-forms A% and A,.
The fifth row contains the mass term for the Dirac field, and a term which
ensures the correct coupling between the torsion and the spin of the Dirac
field. In particular, we want to obtain

T, = Ve, = 27rl§sa , (72)
as one of the equations of motion, where

Sa = Z.ECLbcdeb A GCQ/Z’YWd"lﬁ (73)

is the Dirac spin 2-form. Of course, other alternative coupling choices are
possible, but we choose this one since this is the traditional coupling most
often discussed in textbooks.

~ The variation of the action (71) with respect to By, DL D
Aoy Vo, VY, €%, B¢ and w®, again gives us equations of motion, which can
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be algebraically solved for all fields as functions of €%, 1 and v

1 c _d «@ < «@ 3 S
Babuu = Wgabcde n€ v, A w = (vuw) ) Aau = <wvu)aa
™p
Yoauvp = isabcdeauebuecp(w')/d)a ) 'Ya,twp = _iEabcdea,uebuecp(’}/dw)a )
Ba =0 A =R wab _ Aab =+ Kab
py — U, abpy — Llabuv » ©w = n W

(74)
Here K ab“ is the contorsion tensor, constructed in the standard way from
the torsion tensor. In addition, we also obtain

T,=Ve, = 27rl12,sa , (75)
which is precisely the desired equation (72) for the torsion. Finally, the

differential equations of motion for 1 and 1) are the standard covariant
Dirac equation,

-

(i7"e"aVy —m)y =0, (76)
and its conjugate,

_

(iVpe!ay® +m) =0, (77)
where e, is the inverse tetrad. The differential equation of motion for e®
is

v 1 174 74
RM — ig“ R =8rl2 T, (78)
where ’
T’“’—Z_ae”“ 1“V_'ag Po—2 79
:§¢’Y €a¢—§g Pl iy pea_mwa ( )

“ — —

Here, we used the notation V = V — V. As expected, the equations of
motion (75), (76), (77) and (78) are precisely the equations of motion of
the Einstein-Cartan-Dirac theory.

4.4. Weyl and Majorana fields coupled to Einstein-Cartan grav-
ity

As is well known, the Dirac fermions are not an irreducible representation
of the Lorentz group, and one can rewrite them as left-chiral and right-
chiral irreducible Weyl fermion fields. Hence, it is useful to construct the
2-crossed module and a constrained 3BF' action for left and right Weyl
spinors. For simplicity, we will discuss only the left-chiral spinor field (the
right-chiral can be studied analogously). Additionally, we can also describe
Majorana fermions using the same formalism, the only difference being the
presence of an additional mass term in the Majorana action.
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We soecify a 2-crossed module (L Sgla ,>,{-,-}), in a way similar
to the Dirac case, as follows. The groups are:

G=50(3,1), H=R'  L=RYG). (80)

The maps 0, 0 and the Peiffer lifting are trivial. The action > of the group
G on G, H and L is given in the same way as for the Dirac case, whereas
the spinorial representation reduces to

1 1 :
Mab > P = §(Uab)agpﬁ, Mab > P, = 5(5ab)5dpg)

(81)
where 0% = —% = 1(5%G" — 5%5%), for 0® = (1,7) and &* = (1, —7), in
which & denotes the set of three Pauli matrices. The four generators of the
group L are denoted as P* and P,, where the Weyl indices «, & take values
1,2.

The 3-connection («, 3,7) takes the form

a:wabMab7 B =pB"Pa, ’Y:'Yapa+7dpdv (82)
while the 3-curvature (F,G,H) is
F = R"My, G=Vp"P,

1 . 1 .
H = (Ao + 5w(0") ays) P* + (7 + Swan (0*)577) P (83)

— — .
= (V7)uP* + (V)" Py

The Lagrange multiplier D now contains as coefficients the spinor fields 9,
and %,
D = 1o P + ¢ Py, (84)

and the bilinear form (_, ), for the group L is

<Pavpﬁ>[:€a57 <Pd7PB>[:€d/37
(85)

<PO"P~

), =0, (Pa,P%) =0,

where ¢*? and €4 A€ the usual two-dimensional antisymmetric Levi-Civita

symbols.
The pure 3BF' action (49) now becomes

— _ — .
Supp = / B A Rup + €0 A VB + 0% A (V) + s A (V). (86)
My
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In order to obtain the suitable equations of motion for the Weyl spinors,
we again introduce appropriate simplicity constraints, to obtain:

— _ — .
S = B A Rgy + ea AVB* + 9% A (VY)a + o A (FV)E
My

1
S N Bab . abed A
ab Toniz® e/ o)

— A% A (’Ya + é&zbcd@a Aeb A eCO'daB@ZB) (87)

—da A+ %Eabcde“ A e® A €51 apg)

— 47Tl;€abcd€a AN €b A ﬁc(lﬁdaddﬂdjﬁ) .

The new simplicity constraints, in the third and fourth rows, feature the
Lagrange multiplier 1-forms A\, and A%. Also, in analogy to the coupling
between the spin and the torsion in Einstein-Cartan-Dirac theory, the term
in the fifth row is chosen to ensure that the coupling between the Weyl spin
tensor

Sa = i€apeqe’ N €° waadaﬁ-z/jg (88)
and torsion is given as:
T, = 4nls, . (89)

The action for the Majorana field is precisely the same, but for an additional
mass term in the action:

1 .
—Emeabcdea A€’ A el A e (g + Path?) . (90)
The variation of the action (87) with respect to the variables By, b,
Yar 7Y, Ay A, Yo, VY, e, % and w® gives us the equations of motion,
which can be algebraically solved for all variables as functions of v, ¥“
and e®:

/Ba;u/ =0, )\abuu = Rab;wy )\au = Vmba, j\du = v;ﬂ/;d)

1
Bab/,w = Wgabcdec,ueduy Waby = Aabu + Kabu ) (91)
p

. a b ¢ _d 73 & . a b ¢ =da
Yapvp = €abed€ pn€ v€ po agiﬁﬁ, Y uvp = €abed€ p€ ve€ po Bwﬁ-

In addition, one also obtains (89). Finally, the differential equations of
motion for the spinor and tetrad fields are

§adﬁeﬂavu¢5 =0, Gaa/ﬁ’euavu@z_}ﬁ. =0, (92)
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and

4 ]' v 4

R — Sg"R = 8rl2 TH (93)

where ) )
T %z/‘)abe”bvw n %wabevbv%

1 _ _
59" (0" aVp + 0" Va)

Here we have suppressed the spinor indices, for simplicity. In the case of
the Majorana field, the equations of motion (91) remain the same. The
equations of motion for v, and ¥* obtain the additional mass term,

(94)

iaaaﬁ'e“avudjﬂ. —mipo =0, 10" et Vs — mi® =0, (95)

while the stress-energy tensor becomes
W = E hFlel, \TH f b v x7H,,
T = 2waebv¢+2waebv¢

2[5 0a0 + AT (+59)]
(90

5. Conclusions

Let us summarize the results of the paper. In Section 2 we have introduced
the BF' theory and discussed models based on constrained BF' action, in
particular the Yang-Mills theory in Minkowski spacetime and the Plebanski
formulation of general relativity. Section 3 was devoted to the first step in
the categorical ladder and the 2BF theory. After introducing the notions
of a 2-group, a crossed module, and the corresponding 2BF' theory, we
have studied the 2BF' formulation of general relativity and the Einstein-
Yang-Mills theory. Then, in Section 4 we have performed one more step in
the categorical ladder, and introduced the notions of a 3-group, 2-crossed
module, and the 3BF theory. This structure was employed to construct
the constrained 3BF actions for the cases of Klein-Gordon, Dirac, Weyl
and Majorana fields, each coupled to the Einstein-Cartan gravity in the
standard way. In those descriptions, it turned out that the scalar and
fermion fields are associated to a new gauge group, similar to the gauge fields
being associated to a gauge group in the Yang-Mills theory. This opens up a
possibility of a classification of matter fields based on an algebraic structure
of a 3-group.

All the obtained results serve to complete the first step of the spinfoam
quantization programme, as outlined in the Introduction. This paves the
way to the study of steps 2 and 3 of the programme. Namely, the full action
for gravity, gauge fields and matter is written completely in the langulage of
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differential forms, which can be easily adapted to a triangulated spacetime
manifold, in the sense of Regge calculus. This can be seen in the following
table:

d | triangulation | dual triangulation form fields field strengths
0 vertex 4-polytope 0-form o, Va, U

1 edge 3-polyhedron 1-form | w?, Al e®

2 triangle face 2-form g%, B R FI T
3 | tetrahedron edge 3-form v, Ya, 7° ge

4 4-simplex vertex 4-form H, Ha, H®

This data can be utilized to construct a Regge-discretized topological
3BF action, and from that a state sum Z, giving rise to a rigorous definition

of the path integral
Z = / Dy / D¢ 199 (97)

which is a generalization of (1) in the sense that it adds matter fields
(including the gauge boson sector) to gravity at the quantum level. Being
a topological theory, and given the underlying structure of the 3-group, a
pure 3BF action ought to ensure the topological invariance of the state sum
Z, i.e., Z should be triangulation independent. This step, however, requires
the generalizations of the Peter-Weyl and Plancharel theorems to 2-groups
and 3-groups, which are unfortunately still missing (though there are some
attempts to circumvent them at least in the 2-group case [27, 28]). Namely,
the purpose of the Peter-Weyl and Plancharel theorems is to provide a
decomposition of a function on a group into a sum over the corresponding
irreducible representations, which then specifies the spectrum of labels for
the simplices in the triangulation, and fixes the domain of values for the
fields living on those simplices. In the absence of the two theorems, one
can still try to guess the irreducible representations of the 2- and 3-groups,
as was done for example in the spincube model of quantum gravity [12],
or to try to construct the state sum using other techniques, as was done
in [27, 28]).

Of course, when building a realistic theory, we are not interested in a
topological theory, but instead in one which contains local propagating de-
grees of freedom. Thus the state sum Z need not be a topological invariant.
This is obtained via the step 3 of the spinfoam quantization programme, by
imposing the simplicity constraints on Z. The classical actions discussed in
this paper manifestly distinguish the topological sector from the simplicity
constraints, which have been explicitly determined. Imposing them should
thus be a straightforward procedure for a given Z. Completing this pro-
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gramme would ultimately lead us to a tentative state sum describing both
gravity and matter at a quantum level, which is a topic for future research.

In addition to the construction of a full quantum theory of gravity,
there are also many additional possible studies of the classical constrained
3BF action. For example, a Hamiltonian analysis of the theory could be
interesting for the canonical quantization programme, and some work has
begun in this area [29]. Also, it is worth looking into the idea of imposing
the simplicity constraints using a spontaneous symmetry breaking mecha-
nism. Finally, one can also study in more depth the mathematical structure
and properties of the simplicity constraints. The list is not conclusive, and
there may be many other interesting topics to study.
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maciiep pusuyap

Bpoj: 10529200
Y Beoipagy, 10. aitpuna 2020. iogure

Hexan Pexitiop
Ipoeh. gp Msan Benua Ipoep. gp Msanka Toiosuh
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NPEAION TEME AOKTOPCKE AUCEPTALUIE

LLIkoncka roguHa

KONErTMJYMY JOKTOPCKUX CTYAUIA 20 j_@_ /20 26
TloAauM o CTYAeHTY
Nme / )78 AR
_ Hayuna obnact gucepTtauumje
Mpesnme /gA/;,‘/_,rW/(@y JC [ p A A PPk CEs e 7
ERAV) 7Ac/) 74
Bpoj uHaekca | S22 % /2. a1

Mopaum 0 MEeHTOpPY AOKTOPCKE Auceprauuje

HayuHa obnact | Lvaml v f gy 174 /o4

Nme /&Vﬁ /<

3Barbe \//37"/ XA Cp ] SARAOK K

Mpesume Vo> roeyre

WHctuTyupmja IV ;77 17 28 J<rZ IR

Mpeanor TeMe JOKTOPCKe auceprauuje

Hacnos

\/ 158 GRAQ /oEsMTaE TEORIIE ) KVANTHA ERA\ 7 AL I

Y3 npujaBy TeMe AOKTOpCKe AncepTalyje Konervjymy SOKTOPCKUX CTyAmja, NOTPESHO je MpUIoKNTM
cnepeha goKyMeHTa:

1, CeMMHépCKM pag, (oy>xuHe go 10 cTpaHuua)
2. KpaTKy cTpy4Hy Suorpadwjy nvcaHy y Tpehem auuy jeaHuHe
3. ®doToKoNMjy MHAEKCa ca LOKTOPCKMX CTyAuja

Motnuc MeHTopa /%)%ﬁ_(r /@P'ﬂﬂﬁ/‘%
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Hatym

73 A lebo,

MoTnuc cTyaeHTa
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Muunere Konernjyma aokropckimx ayamja

HakoH obpasnoxerba Teme foKTOpCKe Auceptaupje Konernjym ooktopckux cryauja je TEMY

Hdatym
Mpoge

npuxsato <]
HWje NpuxeaTho
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aH 3a HAayRY WH3MYROT GaKy/TeTa
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