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Поштовани, 
 
Велико ми је задовољство да предложим др Игора Франовића, вишег научног сарадника, за 
Годишњу награду за научни рад Института за физику у Београду, за његов допринос развоју 
концепта ексцитабилности и увођење нових аналитичких редукционих метода за 
проучавање стохастичке динамике спрегнутих ексцитабилних система. 
 
У периоду релевантном за доделу Годишње награде, односно током 2018. и 2019. године 
(претходне две календарске године), кандидат је објавио 8 радова категорије М20, од чега 3 
рада категорије М21а и 3 рада категорије М21, као и 2 рада категорије М22, на основу чега 
га номинујем за награду (списак радова и сви радови су у прилогу). Сем у једном раду 
категорије М21, др Франовић је на свим осталим радовима водећи аутор (први аутор на 3 рада 
и последњи аутор на 4 рада). У питању су публикације са укупним импакт фактором 18.933 у 
изузетним часописима као што су Chaos, Physical Review E, EPL, и Chaos, Solitons and Fractals. 
Ове публикације су већ цитиране 12 пута (без аутоцитата) према бази Scopus (видети прилог). 
Поред тога, кандидат је у овом периоду одржао 5 предавања по позиву категорије М32 на 
међународним конференцијама, као и једно саопштење категорије М33 и 3 саопштења 
категорије М34. 
 
Истраживачки рад др Франовића обухвата области теорије нелинеарне динамике, стохастичких 
процеса и теорије комплексних мрежа. Он се бави теоријском анализом самоорганизације и 
генеричких форми емергентног понашања у комплексним системима, чија је локална динамика 
представљена моделима спрегнутих осцилатора или ексцитабилних јединица. У свом раду 
користи концепте и методе из неколико различитих области физике, укључујући теорију 
нелинеарне динамике, статистичку физику и теорију комплексних мрежа, док се као главна 
мотивација и потенцијалне области примене добијених резултата истичу опис, предвиђање и 
контрола колективног понашања неуронских мрежа и других биолошких система. 
 
У ширем контексту, проучавање емергентних феномена заснованих на синхронизацији великог 
броја елемената, као главном принципу самоорганизације који даје квалитативно нове форме 
понашања које није могуће предвидети или извести из особина локалне динамике, представља 
парадигму за карактеризацију макроскопске динамике бројних реалних система, од физике, 
хемије и биологије, преко инжењерства и технологије, до социологије и економије. При том, 
класа ексцитабилних система, чије је карактеристично понашање одређено тиме што им се 
параметри налазе у близини бифуркације која преводи систем из стационарног стања у 
осцилаторни режим, налази се у фокусу савремених истраживања како због теоријског значаја, 
тако и због могућности практичне примене, пре свега у биофизици. Комплексности 
колективног понашања система спрегнутих ексцитабилних јединица доприносе особине 
локалне динамике, која типично подразумева вишеструке временске скале, значајан утицај 



 
 
шума и кашњења у интеракцијама, као и организација по схеми модуларних комплексних 
мрежа, како на структурном, тако и на функционалном нивоу. Проучавање емергентне 
динамике на оваквим системима већ је довело до настанка значајних нових теоријских 
концепата, као што су методе анализе различитих форми пропагативних и локализованих 
патерна активности, технике анализе стабилности и бифуркација система стохастичких 
диференцијалних једначина са и без кашњења, као и установљење појма адаптивних мрежа. 
 
Овде су укратко истакнути најзначајнији резултати кандидата из радова на основу којих је 
номинован за Годишњу награду: 
 
1. У раду Two Scenarios for the Onset and Suppression of Collective Oscillations in Heterogeneous 

Populations of Active Rotators [V. Klinshov and I. Franović, Phys. Rev. E 100, 062211 (2019)], по 
први пут су аналитички одређени локална структура и области стабилности генеричких 
макроскопских режима у популацијама с динамичком хетерогеношћу, састављеним од 
ексцитабилних и осцилаторних јединица. Динамичка хетерогеност (алтернативно диверзитет), 
тј. неуниформност параметара локалне динамике, је фундаментална карактеристика неуронских 
и других биолошких система, чији је утицај досад третиран првенствено нумеричким, а не 
аналитичким методама. У раду др Франовића, као парадигматски модел посматрана је 
популација спрегнутих активних ротатора, при чему је диверзитет реализован тако што је 
уведено да су локални бифуркациони параметри, који код осцилатора представљају 
интринзичну фреквенцију, дистрибуирани према унапред задатој дистрибуцији вероватноће. 
Анализа режима макроскопске динамике обављена је екстензијом От-Антонсеновог (Ott-
Antonsen) редукционог метода на популације с динамичком хетерогеношћу јединица, при чему 
су као бифуркациони параметри разматране карактеристике дистрибуције локалних 
фреквенција ротатора (средња вредност и ширина дистрибуције). Откривено је да постоје три 
режима макроскопске динамике, и то: (1) глобално хомогено стање мировања, где се сви 
ротатори налазе у ексцитабилном стању; (2) глобално осцилаторно стање, где су локалне 
осцилације ротатора парцијално синхронизоване; (3) хетерогено макрокопски стационарно 
стање, где се неке јединице налазе у ексцитабилном, а друге у осцилаторном режиму, при чему 
су њихове локалне активности несинхронизоване. Анализом стационарних решења за локални 
параметар поретка, добијених на основу интегро-диференцијалне От-Антонсенове једначине, 
као и увођењем макроскопског параметра ексцитабилности, први пут је непосредно показано 
како интеракције модификују локални праг ексцитабилности, доводећи до појаве различитих 
макроскопских режима. Детаљна бифуркациона анализа показала је да су области стабилности 
појединих стања задата сложеним бифуркационим сценариом, организованим око три 
бифуркације кодимензије два (Богданов-Такенс бифуркација, cusp бифуркација, fold-
хомоклинична бифуркација). Поред моностабилних домена, по први пут су пронађени 
бистабилни домени, који одговарају коегистенцији између макроскопских стационарних стања, 
или коегзистенцији стационарног и осцилаторног режима. Такође, по први пут је показано да 
колективна мода може да настане путем два различита сценарија, заснованим или на Хопф-овој 
или седло-чвор бифуркацији на инваријантном кругу (saddle-node on invariant circle). При том, 
пронађено је и да прелазак из хомогеног у хетерогено макроскопско стационарно стање с 
повећањем диверзитета може да укључује хистерезис. Екстензијом методе за анализу 
стабилности стационарних решења От-Антонсенове једначине, показано је да сложени 
бифуркациони сценарио између макрокопских режима опстаје и у случају система с кашњењем 
у интеракцијама, а нумерички је утврђено да слично важи и у случају када је локална динамика 
пертурбована шумом.  

 
2. У раду Leap-frog Patterns in Systems of Two Coupled FitzHugh-Nagumo Units [S. R. Eydam, I. 

Franović, and M. Wolfrum, Phys. Rev. E 99, 042207 (2019)] показан је нови генерички механизам 
настанка патерна у спрегнутим ексцитабилним системима на вишеструким временским 
скалама, заснован на повећаној осетљивости система на пертурбацију у околини канард прелаза 



 
 

између осцилација мале амплитуде (subthreshold осцилација) и релаксационих осцилација. 
Конкретно, на примеру бинарног мотива идентичних Фицхју-Нагумо (FitzHugh-Nagumo) 
неурона са слабим линеарним интеракцијама, демонстриран је и објашњен настанак патерна 
алтернирајуће активности, познатих као leap-frogging или leader-switching патерни. 
Истраживање др Франовића је показало да садејство локалне multiscale динамике и слабе 
одбојне интеракције у системима спрегнутих ексцитабилних јединица може да доведе до појаве 
периодичних или хаотичних решења карактерисаних алтернирајућим редоследом емитовања 
импулса између јединица. У квалитативном смислу, то представља значајан искорак у односу 
на класичну парадигму за проучавање неуронских система, која се типично односи на 
феномене синхронизације. Такође, leap-frogging решења су раније добијана једино у случају 
јаких нелинеарних интеракција између неуронских осцилатора. Насупрот томе, у раду је 
показан механизам настанка патерна алтернирајуће активности организован око феномена 
експлозије канарда у системима са једноставним линеарним интеракцијама. Појава leap-frog 
патерна квалитативно је објашњена као последица повећане осетљивости релаксационих 
осцилација Фицхју-Нагумо јединица на пертурбацију за вредности параметара система 
непосредно изнад канард прелаза. У том случају, примена чак и веома слабе пертурбације може 
да одведе орбиту система далеко од релаксационе осцилације, индукујући једну или серију 
сукцесивних subthreshold осцилација, због чега је заједничка карактеристика свих 
алтернирајућих решења је да садрже осцилације мале амплитуде, комбиноване с 
релаксационим осцилацијама велике амплитуде. Применом метода нумеричке континуације 
извршена је класификација различитих периодичних режима leap-frogging динамике, при чему 
је базична подела на асиметрична решења и решења с просторно-временском симетријом. 
Користећи нумеричку path-following методу, одређена је област стабилности најједноставнијег 
leap-frog периодичног решења, за коју је експлицитно показано да има облик locking конуса 
усмереног ка канард прелазу декуплованог система. У близини врха конуса, откривен је 
комплексан бифуркациони сценарио, који укључује бифуркације кодимензије два, у којем 
различити типови решења с различитим симетријама мењају стабилност.   

 
3. У раду Phase-sensitive Excitability of a Limit Cycle [I. Franović, O. E. Omel'chenko, and M. 

Wolfrum, Chaos 28, 071105 (2018)] концепт ексцитабилности је први пут проширен на системе у 
којима је атрактор гранични круг. Као главни пример, разматране су релаксационе осцилације 
FitzHugh-Nagumo система, као парадигматског модела неуронске динамике. За разлику од 
класичног случаја ексцитабилне равнотеже, утврђено је да нови тип ексцитабилног понашања 
одликује неуниформност, у смислу да се ексцитабилност манифестује само ако пертурбација 
делује на одређеном сегменту периодичне орбите. Из тог разлога, овакав нови вид 
ексцитабилне динамике назван је ексцитабилност осетљива на фазу. Експлицитно је показано 
да ексцитабилност граничног круга укључује и универзалне особине класичног случаја, наиме 
нелинеарно понашање са прагом (threshold) и појаву карактеристичног немонотоног одговора 
система у присуству шума. Нелинеарно понашање са прагом објашњено је применом slow-fast 
анализе засноване на теорији сингуларних пертурбација. Утврђено је да улогу скупа за праг 
(threshold set) обавља максимални канард, експоненцијално танак слој орбита које на одређеном 
сегменту леже близу периодичне орбите релаксационих осцилација. У контексту немонотоног 
одговора система на шум, показано је да садејство ексцитабилности периодичне орбите и шума 
доводи до инверзне стохастичке резонанце, која подразумева да фреквенција осцилација 
пертурбованих шумом има минимум на интермедијерној вредности интензитета шума. Појава 
резонанце објашњена је на основу компетиције два ефекта, наиме ефикасности ексцитације и 
деградације нелинеарног одговора система.  

 
4. У радовима Clustering Promotes Switching Dynamics in Networks of Noisy Neurons [I. Franović and 

V. Klinshov, Chaos 28, 023111 (2018)] и Stimulus-evoked Activity in Clustered Networks of 
Stochastic Rate-based Neurons [I. Franović and V. Klinshov, Eur. Phys. J. - Spec. Top. 227, 1063 
(2018)] објашњен је механизам настанка макроскопске варијабилности на модуларним 



 
 

(кластерованим) неуронским мрежама и њен утицај на индуковану активност мреже. 
Макроскопска варијабилност је емергентни феномен који се опажа на временским скалама 
много дужим од карактеристичног времена локалне динамике неурона, а манифестује се кроз 
појаву спорих стохастичких флуктуација средње фреквенције емитовања импулса мреже. 
Споре флуктуације последица су кохерентних спонтаних прелазака неурона између тзв. up-
стања повећане активности неурона и тзв. down-стања релативног мировања неурона. Значај 
овакве колективне алтернирајуће (switching) динамике огледа се у томе што представља 
динамичку парадигму за одређене процесе учења и меморије у кортексу. У радовима др 
Франовића су утврђени услови за појаву алтернирајућe динамикe, с акцентом на садејство 
различитих типова шума и хетерогености у топологији мреже. Применом методе средњег поља 
(mean-field method), по први пут је развијен ефективни модел колективне динамике за 
модуларну неуронску мрежу, при чему је њена колективна динамика приказана преко 
спрегнутих стохастичких mean-field система који одражавају активности појединачних 
кластера. Бифуркационом анализом ефективних модела у термодинамичком лимесу утврђене 
су разлике у генеричким механизмима алтернирајуће динамике код некластерованих случајних 
мрежа и кластерованих мрежа. Код некластерованих мрежа, механизам је аналоган понашању 
стохастичке честице у потенцијалу са два минимума (double-well potential), тако да је зависност 
switching фреквенције од шума могуће представити Крамерсовим законом. Код модуларних 
мрежа, показано је да кластеровање непосредно подстиче мултистабилност колективне 
динамике доводећи до појаве хетерогених стања с нарушеном симетријом, што значајно утиче 
на повећање робусности switching феномена. У случају индуковане динамике, применом 
бифуркационе анализе на одговарајућим ефективним моделима, показано је да однос између 
стимулуса и одговора мреже квалитативно зависи од њене конфигурације и примењеног 
протокола стимулације. При том, утврђено је да су процеси ексцитације у кластерованим и 
статистички хомогеним разуђеним случајним мрежама значајно различити, при чему је 
ексцитација хомогене мреже типично нижа него код кластероване мреже. Додатно, одговор 
кластероване мреже фундаментално зависи од примењеног протокола стимулације, при чему 
тзв. „циљана стимулација“ (targeted или focused stimulation) усмерена на одређени кластер 
доводи до квалитативно другачијег резултата у односу на тзв. „дистрибуирану стимулацију“ 
(distributed или diffused stimulation), где је идентична фракција јединица мреже пертурбована 
независно од припадности неурона појединим кластерима. 

 
5. У раду Inverse Stochastic Resonance in a System of Excitable Active Rotators with Adaptive Coupling 

[I. Bačić, V. Klinshov, V. I. Nekorkin, M. Perc, and I. Franović, EPL 124, 40004 (2018)] 
демонстриран је нови генерички сценарио инверзне стохастичке резонанце (ИСР), феномена у 
коме фреквенција стохастички пертурбованих осцилација постаје минимална на 
интермедијерној вредности шума. Ефекат је објашњен на примеру система два стохастичка 
активна ротатора с адаптивним интеракцијама, као парадигматског модела који укључује три 
типичне особине неуронских система: ексцитабилност локалне динамике, синаптичку 
пластичност и шум. Док су раније предложени сценарији ИСР били засновани искључиво на 
бистабилности локалне динамике, у раду др Франовића је утврђено да ИСР генерички настаје у 
системима с вишеструким карактеристичним временским скалама. У конкретном случају, 
раздвајање локалне динамике (брзи подсистем) и динамике јачине веза (спори подсистем) 
регулисано је брзином адаптације. Ефекат ИСР је уочен за интермедијерне брзине адаптације, 
где стохастичка динамика система подразумева алтернирање (switching динамику) између 
метастабилних стања која одговарају коегзистентним атракторима детерминистичке верзије 
система (два стабилна еквилибријума и два гранична круга, при чему је сваки пар атрактора 
повезан изменском симетријом). Показано је да се механизам ИСР заснива на biased switching-
у, тј. чињеници да систем значајно више времена проводи у квазистационарним стањима него у 
метастабилним осцилаторним стањима. Користећи методе анализе система са вишеструким 
временским скалама (multiscale analysis), укључујући разматрање тзв. layer и reduced проблема, 
откривено је да адаптивна динамика веза појачава резонантни ефекат, преводећи јачину веза у 



 
 

област параметара у којима атрактор стационарног стања брзог подсистема мења карактер, 
постајући стабилни фокус уместо стабилног чвора. 

 
6. У раду Noise-induced Switching in Two Adaptively Coupled Excitable Systems [I. Bačić, S. Yanchuk, 

M. Wolfrum, and I. Franović, Eur. Phys. J. - Spec. Top. 227, 1077 (2018)], применом технике 
стохастичког усредњавања (stochastic averaging), извршена је екстензија метода анализе 
система на вишеструким временским скалама (multiscale analysis) на стохастичке системе. 
Увођењем оваквог иновативног приступа, показано је да код неуронских мотива с адаптивним 
интеракцијама, коефекат шума и адаптивности доводи до два квалитативно различита, 
генеричка типа алтернирајуће (switching) динамике, у зависности од брзине адаптације. 
Адаптивност, чији је типичан пример пластичност синапси између неурона, подразумева да се 
карактеристике интеракција мењају у зависности од локалне динамике јединица, а настале 
промене у интеракцијама принципом повратне спреге додатно модификују динамику јединица. 
У случају спорије адаптације, switching динамика се одвија између две моде осцилација 
изазваних шумом (noise-induced oscillations), тако да шум индукује флуктуације на бржој и 
споријој карактеристичној скали. Настанак две осцилаторне моде, које се одликују различитим 
редоследом емитовања импулса јединица, повезан је с инваријантношћу детерминистичке 
динамике система на измену индекса јединица (exchange symmetry). У случају интермедијерне 
брзине адаптације, switching динамика укључује метастабилна стања која одговарају 
коегзистентним атракторима детерминистичке верзије система (два стабилна еквилибријума и 
два гранична круга, при чему је сваки пар атрактора повезан изменском симетријом). Као 
интересантну чињеницу, показано је да се при интермедијерној адаптацији, у широкој области 
параметара појављује тзв. biased switching, при чему систем много више времена проводи у 
квасистационарним стањима него у осцилаторним метастабилним стањима. Интерпретација 
добијених резултата у контексту односа структурних неуронских мотива, задатих тополошком 
конфигурацијом веза, и функционалних мотива, одређених смером протока информација, 
указује да је у општем случају могућа коегзистенција више функционалних мотива на једном 
структурном мотиву. С друге стране, садејство адаптивности, шума и ексцитабилне локалне 
динамике омогућава споре стохастичке флуктуације између различитих функционалних 
мотива. 

 
7. У раду Nonlinear Dynamics Behind the Seismic Cycle: One-dimensional Phenomenological Modeling 

[S. Kostić, N. Vasović, K. Todorović, and I. Franović, Chaos Soliton. Fract. 106, 310 (2018)], др 
Франовић се бавиo интердисциплинарним истраживањем, које подразумева примену теорија 
нелинеарне динамике и стохастичких процеса на моделовање комплексног понашања 
сеизмичких раседа, геолошких структура одговорних за настанак земљотреса. Конкретно, 
увођењем меморијског ефекта у типични модел трења између масивног блока и контактне 
површине монокомпонентног раседа, третиран је проблем механизма настанка апериодичних 
временских серија на једноставним (монокомпонентним) раседима. Користећи метод 
бифуркационе анализе система диференцијалних једначина с кашњењем, показано је да 
екстензија канонског Burridge-Knopoff модела може да генерише релевантне форме комплексне 
динамике, укључујући и прелаз између асеизмичког и сеизмичког понашања.  

 
На основу описаних резултата колеге Франовића јасно је да његов досадашњи рад представља 
значајан допринос развоју физике комплексних система, нелинеарне динамике и 
статистичке физике, као и неким другим научним областима, што је доказ 
интердисципланарног карактера његовог истраживања. У Институту за физику у Београду, др 
Франовић је увео нове методе у проучавање емергентних феномена у системима под 
утицајем шума и кашњења у интеракцијама. Знања и искуства које је стекао у теоријском 
моделирању, аналитичким методама и техникама анализе динамике комплексних система 
успешно преноси млађим сарадницима у Лабораторији за примену рачунара у науци у оквиру 
Центра изузетних вредности за изучавање комплексних система. 



 
 
Др Игор Франовић има широку научну сарадњу са групама из Немачке, Русије и Словеније. 
Ментор је на докторским студијама једној студенткињи чија одбрана докторске тезе се очекује 
током ове године, а такође је и ментор једне мастер тезе, чија припрема је у току. Руководио је 
билатералним пројектом са Немачком у периоду од 2017. до 2018. године, а у оквиру Центра 
изузетних вредности за изучавање комплексних система руководи истраживањем на 
потпројекту Емергентна динамика на комплексним мрежама: стохастички ефекти, кашњење 
у интеракцијама, адаптивност. 
 
У својој досадашњој каријери, колега Франовић је објавио 36 радова у међународним 
часописима категорије М20, као и једно поглавље у монографији М13. Одржао је једно 
предавање по позиву на међународним конференцијама категорије М31, 6 предавања по позиву 
на међународним конференцијама категорије М32, 6 саопштења категорије М33 и 8 саопштења 
категорије М34 (комплетан списак је дат у прилогу). Од 36 радова категорије М20, др 
Франовић је чак 23 објавио у часописима изузетних вредности категорије М21а, као што 
су Physical Review Letters, Scientific Reports, Chaos, Communications in Nonlinear Science and 
Numerical Simulation, Nonlinear Dynamics и Physical Review E. Према бази Scopus, радови др 
Франовића су до сада укупно цитирани 157 пута (без аутоцитата). Према бази Web of Science, 
његови радови су укупно цитирани 136 пута (без аутоцитата), уз h=8. Докази о цитираности 
према бази Scopus су дати у прилогу. Такође, од децембра 2017. године др Франовић је 
Associate Editor у врхунском међународном часопису Chaos, Solitons and Fractals (ИФ 3.064 за 
2018. годину)  из области нелинеарне динамике, у издању Elsevier-а. 
 
На крају, желео бих да потврдим и чињеницу да колега Франовић испуњава и све формалне 
услове за доделу награде: сви резултати за које је номинован су остварени у целости или 
делимично на Институту, објављени су током претходне две календарске године и 
представљени су на редовном семинару на Институту (SCL семинар одржан 24. маја 2018. 
године). 
 
Имајући све наведено у виду, са задовољством предлажем др Игора Франовића за 
Годишњу награду за научни рад Института за физику у Београду. 
 
 
У Београду, 28. 04. 2020. године 

 
 
 
 

др Антун Балаж, научни саветник 
руководилац Центра изузетних вредности 

за изучавање комплексних система 
 



Биографија др Игора Франовића 
 
 
Др Игор Франовић је рођен 25. фебруара 1979. године у Београду. Завршио је Пету 
београдску гимназију као ученик генерације 1997. године, након чега је уписао 
основне студије на Физичком факултету Универзитета у Београду, смер теоријска и 
експериментална физика. Дипломирао је 2002. године с просечном оценом 9.43, 
одбранивши дипломски рад под називом "Анализа Јан-Телеровог ефекта на примеру 
прелазног метал-комплексa [Cr(NH3)6]3+" под руководством проф. др Драгољуба 
Белића. Магистарске студије на истом факултету, смер теоријска физика 
кондензованог стања, завршио је с просечном оценом 10,00, а  магистарску тезу под 
насловом Перколациони фазни прелази на просторно-временским фракталним 
структурама у ex-vivo и in-vitro неуронским културама одбранио је 2011. године под 
менторством доц. др Владимира Миљковића. Докторат под насловом Collective 
dynamics and self-organisation of stochastic neuronal systems influenced by synaptic time 
delay одбранио је 2013. године на Физичком факултету Универзитета у Београду под 
руководством др Николе Бурића. У оквиру тезе су анализиране аналогије у процесу 
самоорганизације колективне активности између система спрегнутих аутономних 
осцилатора и система куплованих ексцитабилних јединица, при чему је применом 
методе средњег поља развијен ефективни модел макроскопске динамике популације 
ексцитабилних јединица изложених шуму и кашњењу у интеракцијама. 
 
Од 2004. до 2006. године Игор Франовић је на Физичком факултету, као стипендиста 
Министарства науке и заштите животне средине, учествовао на пројекту Фазни 
прелази и нелинеарне појаве у биолошким и неорганским материјалима, којим је 
руководио проф. др Сава Милошевић. Од јануара  2008. године до јануара 2011. године 
био је запослен као истраживач приправник на истом факултету у Београду, у оквиру 
пројекта Фазни прелази и карактеризација неорганских и органских система, којим је 
руководио проф. др Мићо Митровић. Од јануара 2011. до марта 2014. године био је 
запослен на Физичком факултету као истраживач приправник, а затим и као 
истраживач сарадник у оквиру пројекта ОН171015 Министарства просвете и науке 
Републике Србије под називом Фазни прелази и карактеризација неорганских и 
органских система, којим руководи проф. др Сунчица Елезовић-Хаџић. 
 
Др Игор Франовић је од марта 2014. године запослен у Лабораторији за примену 
рачунара у науци у оквиру Центра изузетних вредности за изучавање комплексних 
система Института за физику у Београду. Од 2014. до 2019. године је био ангажован на 
националном пројекту ОН171017, Моделирање и нумеричке симулације сложених 
вишечестичних система, којим је руководио др Антун Балаж. У оквиру овог пројекта, 
др Франовић је руководио потпројектом Самоорганизација у спрегнутим 
ексцитабилним системима. Тренутно, др Франовић руководи истраживањем на 
потпројекту Емергентна динамика на комплексним мрежама: стохастички ефекти, 
кашњење у интеракцијама, адаптивност у оквиру Центра изузетних вредности за 
изучавање комплексних система. У децембру 2014. године изабран је у звање научни 
сарадник, а маја 2019. године у звање виши научни сарадник. 
 
Истраживачки рад др Франовића обухвата области теорије нелинеарне динамике, 
стохастичких процеса и теорије комплексних мрежа, а као водеће теме истраживања се 
издвајају самоорганизација у системима спрегнутих ексцитабилних јединица, развој 
редукционих метода и методе средњег поља за анализу стабилности и бифуркација 



система обичних и стохастичких диференцијалних једначина, анализа динамике 
система на вишеструким временским скалама, као и коефекти топологије, шума и 
кашњења у интеракцијама на динамику структурних и функционалних неуронских 
мрежа. 
 
Његов досадашњи рад укључује 36 радова у међународним часописима, као и једно 
поглавље у монографији М13, 1 предавање по позиву М31, 6 предавања по позиву 
М32, 6 саопштења категорије М33 и 8 саопштења категорије М34. Од 36 радова, чак 23 
је објављено у часописима изузетних вредности категорије М21а, као што су Physical 
Review Letters, Scientific Reports, Chaos, Communications in Nonlinear Science and 
Numerical Simulation, Nonlinear Dynamics и Physical Review E. Према бази Scopus, 
радови др Франовића до сада имају 157 хетероцитата. Према бази Web of Science, 
његови радови су укупно цитирани 136 пута (без аутоцитата), уз h=8. 
 
Др Франовић је добитник награде за најбољег младог истраживача Физичког 
факултета у Београду за 2013. годину. Има развијену међународну научну сарадњу с 
истраживачким групама из Русије, Немачке и Словеније. Ментор је на докторским 
студијама Иве Бачић на Физичком факултету у Београду, чија одбрана се очекује 
током 2020. године (тема Self-organization in coupled excitable systems: interplay between 
multiple timescale dynamics and noise је одбрањена пред Колегијумом докторских 
студија 2019. године), а такође је и ментор на изради мастер тезе Николе Потпаре на на 
Физичком факултету у Београду. Поред тога, др Франовић је јуна 2019. године био 
члан комисије за одбрану докторске тезе Себастијана Ејдама на Техничком 
универзитету у Берлину. 
 
Др Франовић је у периоду од 2017. до 2018. био руководилац билатералног пројекта 
сарадње између Републике Србије и Савезне Републике Немачке Emergent Dynamics in 
Systems of Coupled Excitable Units. Такође, др Франовић је Associate Editor у врхунском 
међународном часопису Chaos, Solitons & Fractals (ИФ 3.064 за 2018. годину). 
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The classical notion of excitability refers to an equilibrium state that shows under the influence of
perturbations a nonlinear threshold-like behavior. Here, we extend this concept by demonstrating
how periodic orbits can exhibit a specific form of excitable behavior where the nonlinear threshold-
like response appears only after perturbations applied within a certain part of the periodic orbit,
i.e., the excitability happens to be phase-sensitive. As a paradigmatic example of this concept, we
employ the classical FitzHugh-Nagumo system. The relaxation oscillations, appearing in the oscil-
latory regime of this system, turn out to exhibit a phase-sensitive nonlinear threshold-like response
to perturbations, which can be explained by the nonlinear behavior in the vicinity of the canard tra-
jectory. Triggering the phase-sensitive excitability of the relaxation oscillations by noise, we find a
characteristic non-monotone dependence of the mean spiking rate of the relaxation oscillation on the
noise level. We explain this non-monotone dependence as a result of an interplay of two competing
effects of the increasing noise: the growing efficiency of the excitation and the degradation of the
nonlinear response. Published by AIP Publishing. https://doi.org/10.1063/1.5045179

The classical concept of excitability refers to a specific non-
linear response of a system to perturbations of its rest
state. While for small perturbations the system reacts only
with a linear relaxation directly back to the rest state, for
larger perturbations above a certain threshold it reacts
with a large non-linear response, called excitation. Such
a behavior can be observed, for example, when a neuron
in the quiescent state receives a presynaptic impulse and
reacts with the emission of a spike. Until the non-linear
response has terminated, the system is not susceptible
to further excitations. Only after the system has again
reached the rest state, can it be excited again. We study
here the case where the rest state is not a stationary state
but a stable periodic orbit. Then, the response of the sys-
tem to perturbations may be nonuniform along the orbit.
Of particular interest is the case where the non-linear
response to perturbations above threshold appears only in
a certain part of the periodic orbit. We call this situation
phase-sensitive excitability and demonstrate that the oscil-
latory regime of the FitzHugh-Nagumo system can serve
as an example for this type of behavior. It is well known
that for other parameter values, the FitzHugh-Nagumo
system has an excitable equilibrium. In this case, a pertur-
bation above threshold induces a response in the form of
a single spike. We present a completely different scenario.
Perturbations are now applied to the regime of periodic
spiking. If these perturbations act close to the passage near
the unstable equilibrium, they may evoke a response in
the form of a subthreshold oscillation and in this way pre-
vent the system for a certain time from spiking. There
are many cases where the triggering of an excitable sys-
tem by noise can result in a characteristic non-monotone

a)Electronic mail: franovic@ipb.ac.rs
b)Electronic mail: omelchen@wias-berlin.de
c)Electronic mail: wolfrum@wias-berlin.de

dependence of the system behavior on the noise intensity.
This also holds for our example of the oscillatory regime
of the FitzHugh-Nagumo system, where we can demon-
strate that the spiking frequency becomes minimal at an
intermediate noise level.

I. INTRODUCTION

In their groundbreaking work from 1946, Wiener and
Rosenblueth,1 having observed propagating contractions in
the cardiac muscle, developed the fundamental concept of
an excitable system: exciting a state of rest by perturbations
above a certain threshold, the system reacts with a non-
linear response. Subsequently, the system needs a certain time,
called the refractory period, until it can be excited again.
This concept provided an extremely successful framework for
understanding a large variety of real-life systems.2 Beginning
from biological systems, where it describes not only cardiac
tissue3 but also certain functionalities of organisms,4,5 and
behavioral aspects of individuals, or of whole populations,6,7

it has been translated to gene regulatory networks,8 chemical
reactions,9 laser systems,10 and semiconductors,11 and last but
not least, it has become one of the key principles of theoretical
neuroscience.12–16

We extend the concept of excitability by considering as
the rest state of the system a stable periodic orbit rather than an
equilibrium. In this case, the nonlinear threshold-like response
may additionally depend on the phase of the oscillation at
which the impulse acts such that an excitation may occur only
if a super-threshold perturbation is applied within a certain
part of the periodic orbit. We shall use the regime of relaxation
oscillations in the FitzHugh-Nagumo system as an example

1054-1500/2018/28(7)/071105/6/$30.00 28, 071105-1 Published by AIP Publishing.
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FIG. 1. Phase plane for (1) with
b = 0.99, ϵ = 0.05, I(t) = 0: relaxation
oscillation orbit (green), maximal canard
(red), and nullclines (dash-dotted). Inset:
region close to the unstable equilibrium.
In the region of phase-sensitive excitabil-
ity (green stripe), the maximal canard
passes close to the relaxation oscillation
orbit such that small perturbations may
deviate a solution to make an extra round
trip around the unstable equilibrium.

of this general concept of phase-sensitive excitability. In the
context of neuroscience, this spiking regime can already be
considered as the “excited state” of a neuron. Nevertheless,
here we shall consider this periodic regime as the “rest state”
in the sense of Refs. 1 and 2 and shall study its nonlinear
threshold-like response to perturbations, which in this case
manifests as a reduced spiking activity. Note that in Ref. 17
a similar model was considered but with the rest state given
by the subthreshold oscillations and with the excited state
associated to the large-amplitude oscillations. Using multi-
scale techniques and the canard trajectories, we shall ana-
lyze in detail the specific mechanism realizing the non-linear
excitations in our system.

In Ref. 18, it has been pointed out that excitable sys-
tems can respond to noise in a specific way, showing a
characteristic non-monotone dependence on the noise level.
Such effects have been studied extensively and the FitzHugh-
Nagumo system in the regime of an excitable equilibrium
represents one of the classical examples.18–20 There, it is
the mean spiking regularity of noise-induced oscillations that
shows a characteristic maximum, called coherence resonance,
at an intermediate noise level. Our study of the FitzHugh-
Nagumo system in the oscillatory regime will demonstrate
that also the relaxation oscillation shows a non-monotone
response to noise: here, however, it is the mean spiking rate
that shows a characteristic minimum at an intermediate noise
level. This effect is most pronounced for intermediate values
of the time-scale separation (ε ≈ 0.05), while in the singu-
lar limit ε → 0, the effect disappears. This is the reason
why the effect has not been observed in the detailed study
of Muratov and Vanden-Eijnden,21 where the behavior of
the FitzHugh-Nagumo system under the influence of noise
has been investigated by singular perturbation techniques.
We believe that our parameter regime can be adequate in
the context of neuroscience and that the effect of phase-
sensitive excitability may be of importance both for determin-
istic inputs in coupled network systems and for the case of
stochastic input signals.

II. THE FITZHUGH-NAGUMO OSCILLATOR

Our basic example for the mechanism of phase-sensitive
excitability is the FitzHugh-Nagumo system

εẋ = x −x3/3 −y,

ẏ = x + b + I(t). (1)

In the context of neuroscience, x and y correspond to the neu-
ronal membrane potential and the ion-gating channels, respec-
tively. The time-dependent input signal I(t) can be used to
resemble intrinsic noise in the opening of the ion-channels.22

The smallness of the parameter ε reflects the time-scale sepa-
ration between the dynamics of x and y. The system has been
extensively studied as a slow-fast system, using the singular
limit ϵ → 0, cf. Ref. 23 for an overview on the determinis-
tic case and Refs. 2, 19, 20, and 24–26 for different scenarios
with noise. Classical results for the case without input sig-
nal I(t) show that system (1) undergoes a supercritical Hopf
bifurcation at b = 1 such that for decreasing b a branch of
small-amplitude oscillations of period O(

√
ε) appears. Then,

for b = bc ≈ 1 −ε/8, there is a rapid transition to large-
amplitude relaxation oscillations of period O(1).27 From the
neuroscience point of view, this corresponds to the transition
from the quiescent state to the spiking regime via subthreshold
oscillations. In order to explain the mechanism of phase-
sensitive excitability, we consider the slow-fast structures in
the phase space for the relaxation oscillations at b < bc in
the system (1). Figure 1 shows the relaxation oscillation orbit
together with the nullclines of the vector field. During the
passage close to the unstable equilibrium, located at the inter-
section of the nullclines, the relaxation oscillation orbit is
excitable in the following sense: there is an exponentially thin
layer of trajectories, called maximal canard, such that any per-
turbation large enough to elevate the state from the periodic
orbit to a point above these trajectories will cause the sys-
tem to make at least one loop around the unstable equilibrium
before proceeding again along the relaxation oscillation orbit.
Smaller perturbations or perturbations in directions below
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the relaxation oscillation orbit will not give rise to such a
response.

The maximal canard trajectories are characterized by the
fact that they follow the whole unstable branch of the slow
manifold, which in first approximation is given by the part
of the nullcline y = x −x3/3 lying in between the two folds,
cf. Ref. 28. Already exponentially small deviations from the
maximal canard cause the solutions to rapidly depart from it,
traveling in either direction towards one of the stable branches
of the slow manifold (dotted curves in Fig. 1). A maximal
canard trajectory can readily be determined numerically by
selecting an initial condition closely below the upper fold
(x, y) = (1, 2/3), and from there integrating backward in time.
Following one of the canard trajectories in this way, one finds
a region where it passes extremely close to the relaxation
oscillation orbit. Along this part of the relaxation oscillation
orbit, the maximal canard acts as a threshold for perturba-
tions such that super-threshold perturbations cause a nonlinear
response with an extra excitation loop around the unstable
equilibrium.

III. RESPONSE TO NOISE

Having understood the response of the system to single
impact perturbations of different size, we examine now the
response to Gaussian white noise

I(t) = Dξ(t),

of varying amplitude D. Figure 2 shows typical realizations of
trajectories for three different levels of noise. The plots show
that for low noise level (a), the noise-induced excitation loops
occur rarely and are well confined by the spiral structure of the
maximal canard. For increasing noise level (b), they become
more frequent, but at the same time they get increasingly
blurred by the noise. For the largest noise level (c), the preva-
lence of the small excitation loops decreases again since the
efficiency of the confinement by the deterministic maximal
canard is reduced.

To study this process in more detail, we introduce a
Poincaré section at

x = x0 = −0.99, y < x0 −x3
0/3, (2)

i.e., we record passages through a vertical line extending
below the unstable fixed point. In Fig. 3(a), we show the
sampled return times $T between successive crossing events,
obtained for the same noise levels as used in Fig. 2. The his-
tograms show that for all three noise levels one can clearly
distinguish between return times $T ≈ TR corresponding to
relaxation oscillation cycles and those corresponding to exci-
tation loops $T ≈ TE. For the time trace shown in Fig. 3(b),
we have shaded the corresponding time intervals accord-
ingly. Panel (c) shows the corresponding variances σR,E for
each of the two separate peaks of the return time distribu-
tion, and panel (d) shows their relative size for varying noise
level D. One can observe that there is a prevalence of exci-
tation loops for intermediate values of the noise level D ≈
10−2. Above this value, the variances for each of the peaks
start to increase, indicating an increasing degradation of the
nonlinear response by noise. The excitation loops delay the

FIG. 2. Response of the relaxation oscillation to different levels of noise: (a)
D = 0.003, (b) D = 0.01, and (c) D = 0.03. Left panels: noisy trajectories in
the phase plane together with the deterministic relaxation oscillation orbit and
maximal canard. Top panels: corresponding time traces x(t) from the panels
above. Bottom panels: longer time traces indicating the prevalence of noise
induced small excitation loops for the middle noise level D = 0.01.

occurrence of the next spike and thus affect the mean spik-
ing rate of the system ⟨R⟩, measured as the average number
of large-amplitude oscillations per time. Figure 4 shows that
the spiking rate exhibits a non-monotone dependence with
increasing noise level D, where the minimum of ⟨R⟩ coincides
with the maximal fraction of small excitation loops shown in
Fig. 3(d).

Note that this effect is most pronounced for intermedi-
ate values ε ≈ 0.05 of the time-scale separation. This is due
to the fact that the duration of the excitation loop, given to
the leading order by the linearization at the unstable equilib-
rium, which is a weakly undamped center, scales like O(

√
ε).

Hence, the delaying effect on the spikes and the consequent
decrease of the spiking rate become small in the singular limit.

IV. EXCITATION EFFICIENCY AND DEGRADATION

The non-monotone dependence of the spiking rate ⟨R⟩(σ )

can be explained as the result of two competing effects of
the increasing noise: the increasing efficiency of the excita-
tion and the degradation of the nonlinear response. To study
this competition in more detail, we consider the return times
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FIG. 3. (a) Sampled return times $T
between subsequent crossings of the
Poincaré section (2) for different noise
levels. The two peaks in the distribu-
tions correspond to relaxation oscillations
$T ≈ TR (red) and noise-induced exci-
tation loops $T ≈ TE (blue). (b) Time
trace for D = 0.01 with respective time
intervals $T colored accordingly. [(c)
and (d)] Variances σR,E and relative size
nE/nR from the two separate peaks of the
return time distributions for varying noise
level.

$T̃ , associated to the Poincaré section (2) with x0 = −0.2.
In this case, the excitation loops do not lead to additional
crossing events and the corresponding return time $T̃ mea-
sures the round trip time of each relaxation oscillation together
with the included excitation loops. For small noise, the cor-
responding histograms in Fig. 5(a) show distributions with
well separated peaks centered around $T̃ ≈ TR + kTE, where
k ∈ {0, 1, 2, 3, . . . } counts the number of excitation loops
between two successive Poincaré events. We observe that for
D < 10−2 there is not only an increasing number of such
excitation loops, cf. Fig. 3(d) but also an increasing num-
ber of multiple successive excitation loops. This can be seen
from the corresponding probabilities of successive loops for
varying noise intensity D given in Fig. 5(b). It underlines
the increasing efficiency of the excitation process, driven by

FIG. 4. Non-monotone response to noise of a phase-sensitive excitable peri-
odic orbit: mean spiking rate ⟨R⟩ of the relaxation oscillations of (1) shows a
characteristic minimum at an intermediate noise level D ≈ 10−2.

noise in the subcritical range D < 10−2. Above this value, the
degradation effect takes over, which consists in the loss of cor-
relation between the number of included excitation loops and
the total duration of the corresponding relaxation oscillation
cycle.

In order to quantify the degradation effect, we have cal-
culated the noise-dependence of the correlation coefficient
δ between the number k of small loops the unit performs
between the two successive passages of the Poincaré cross-
section, and the first return time $T̃ being in the corre-
sponding interval [TR + (k −1

2 )TE, TR + (k + 1
2 )TE]. Evalu-

ating numerically this correlation coefficient, we see the onset
of a strong decay above the critical noise level of D < ≈
10−2, indicating the degradation of the nonlinear response, see
Fig. 5(c). Similar effects have been described in Refs. 29 and
30 as noise-induced linearization.

V. DISCUSSION AND OUTLOOK

It is important to remark that a periodic orbit emerging in
a transition from an excitable equilibrium, as it happens in the
FitzHugh-Nagumo system, does not necessarily inherit phase-
sensitive excitability from the excitability of the preceding
equilibrium. This can be seen, e.g., for the active rotator

θ̇ = 1 + b −sin θ + Dξ(t), θ ∈ R/2πZ, (3)

where a saddle-node infinite period (SNIPER) bifurcation
at b = 0 mediates a transition from excitable to oscillatory
behavior. However, the periodic solution at b = 0.02 shows
no phase-sensitive excitability, and the dependence of the
spiking rate on the noise level is monotone, cf. Fig. 6(a). On
the other hand, for the FitzHugh-Nagumo system with a noise
term

√
D/εξ(t) added to the fast variable x so to resemble the
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FIG. 5. (a) Histograms of first return
times $T̃ to a Poincaré section (2) with
x0 = −0.2. (b) Relative frequency of two
successive excitation loops. (c) Correla-
tion coefficient between the number of
excitation loops in a relaxation oscillation
cycle and its duration $T̃ .

action of synaptic noise,22 the excitable behavior and the non-
monotone dependence can be observed in a similar way, cf.
Figs. 4 and 6(b).

The presented concept of phase-sensitive excitability
establishes a natural extension of the classical concept of
excitability of equilibria to periodic orbits, offering a gen-
eral framework for describing certain nonlinear effects in
driven or interacting oscillatory systems. It resembles the
main properties of the classical case:

(i) nonlinear threshold-like response to perturbation impulses
and

(ii) non-monotone response to noisy inputs of increasing
amplitude.

The nature of the non-monotone dependence on the noise
level for phase-sensitive excitability in the regime of relax-
ation oscillations of the FitzHugh-Nagumo system is qual-
itatively distinct from the two classical cases concerning
the FitzHugh-Nagumo model where the rest state is given
by an excitable equilibrium or conforms to the regime of
subthreshold oscillations before the canard explosion (b >

bc ≈ 1 −ϵ/8). In both the classical examples, the excited
state conforms to a relaxation oscillation (spike), and the
applied noise affects the regularity of noise-induced oscil-
lations such that it becomes maximal for the optimal noise
intensity.17–20 The qualitative similarity between these two
cases is to be expected because the subthreshold oscilla-
tions become indistinguishable from an equilibrium in the

FIG. 6. (a) Monotone mean spiking rate ⟨R⟩ of
the active rotator (3). (b) Non-monotone mean
spiking rate of the relaxation oscillations of (1)
with I(t) = 0 and adding instead noise of varying
levels to the fast variable.
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singular limit ϵ → 0. As opposed to that, our scenario of
phase-sensitive excitability involves the regime of relaxation
oscillations as the rest state, the subthreshold oscillations con-
form to the excited state, and the applied noise affects the
mean spiking frequency such that it becomes minimal at an
intermediate noise level.

In the context of neuroscience, the resonant effect con-
sisting in a reduction of the spiking frequency of neural
oscillators within a certain range of intermediate noise levels
has been referred to as inverse stochastic resonance. Such an
inhibitory action of noise has been observed experimentally31

and has also been discussed in several model studies, con-
cerning the impact of external or intrinsic noise on single32–34

or coupled neurons.35,36 The effect has been suggested as a
potential paradigm for computational tasks that either require
reducing the neuronal spiking frequency without chemical
neuro-modulation or involve generating episodes of bursting
activity in neurons that are not endogenously bursting. The
generic mechanism behind the effect has typically been linked
to bistability of the underlying deterministic dynamics, which
exhibits coexistence between an equilibrium and a stable limit
cycle. For such a scenario, the noise induces a switching
between the corresponding metastable states, with the spik-
ing frequency decreasing at a certain range of intermediate
noise levels where the transition rate from the quasi-stationary
to oscillatory state becomes much smaller than the one in
the opposite direction. The noise-driven effect reported here
is based on a qualitatively distinct mechanism, because the
deterministic dynamics is monostable, and the excitations off
the limit cycle emerge due to phase-sensitive excitability of
the associated orbit, derived from the multi-scale structure of
the system.

Revisiting earlier work on coupled oscillator systems, one
can find instances where effects that could be explained as
a result of phase-sensitive excitability have been reported.
Indeed, some of the results in Ref. 37 about space-time pat-
terns in a coupled network of FitzHugh-Nagumo oscillators
seem to be based on the phase-sensitive excitability of the
relaxation oscillations. Also, the alternating behavior reported
in Ref. 38 could possibly be an effect of phase-sensitive
excitability. These examples may underline the importance of
the abstract concept as such, offering a general framework and
a unifying view for a variety of closely related phenomena.
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094101 (2012).
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Macroscopic variability is an emergent property of neural networks, typically manifested in

spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes.

We investigate the conditions that facilitate switching dynamics, focusing on the interplay between

the different sources of noise and heterogeneity of the network topology. We consider clustered

networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model

where the network dynamics is described by a set of coupled second-order stochastic mean-field sys-

tems representing each of the clusters. The model provides an insight into the different contributions

to effective macroscopic noise and qualitatively indicates the parameter domains where switching

dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate

that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider

parameter region compared to the case of a non-clustered network with sparse random connection

topology. Published by AIP Publishing. https://doi.org/10.1063/1.5017822

The striking feature of neuronal systems is that variability

is reflected on two fundamentally different levels. While

there is substantial knowledge on microscopic variability

associated to spike trains of individual neurons, much less

is known about macroscopic variability, which is a form

of emergent behavior in neural networks. Macroscopic

variability involves considerably longer timescales than

the microscopic one, whereby its signature activity con-

sists in slow rate oscillations, reflected in spontaneous

alternation between the distinct network states. The latter

are typically referred to as the UP and the DOWN states,

such that in the UP state, both the firing rates and the syn-

aptic conductances of neurons are elevated relative to the

DOWN state. The switching dynamics between the collec-

tive states is especially relevant for activity of neocortical

pyramidal neurons and is believed to facilitate or mediate

different types of learning and memory. In this paper, we

investigate the key ingredients behind switching dynam-

ics, focusing on the interplay of different sources of noise

and the network topology. In particular, we consider a

clustered network of rate-based neurons and derive an

effective model which describes its collective activity in

terms of coupled second-order stochastic mean-field sys-

tems representing the particular clusters. The effective

model is used to qualitatively analyze the mechanisms

behind the switching dynamics in the non-clustered and

clustered networks, comparing the associated parameter

domains. For a homogeneous random network, where

all neurons comprise a single cluster, switching is found

only within a small parameter region in the vicinity of the

pitchfork bifurcation, with the underlying mechanism

resembling the motion of a noise-driven particle in a

double-well potential. We demonstrate that clustering

plays a facilitatory role with respect to switching dynam-

ics, enhancing the network multistability compared to the

case of a homogeneous random network.

I. INTRODUCTION

The fascinating feature of neuronal dynamics is that vari-

ability appears in a twofold fashion. For single units, one

observes the spike-train variability,1 reflected in that the same

input sequence applied to a given neuron under identical

experimental conditions gives rise to different neuronal

responses. Apart from the variability on the short timescale,

one also encounters variability as an emergent network phe-

nomenon2–4 associated to much longer timescales.5 The hall-

mark of macroscopic variability is irregular slow rate

oscillations,6,7 alternatively called up-down states (UDS),8–10

which comprise large amplitude, low frequency (0.1–2 Hz)

spontaneous fluctuations between the collective UP and

DOWN states.11 These states are characterized by clearly dis-

tinct firing rates and synaptic conductances, whereby the UP

state involves neurons with depolarized membrane potential,

elevated firing rates, and increased synaptic conductances rel-

ative to those in the DOWN state.12–15 Switching is induced

by coherent activity of a large number of neurons and has been

observed in cortical assemblies in-vivo during quiet wakeful-

ness, sleep, and under the influence of anesthetic agents, as

well as in certain in-vitro preparations.8,10,16–18 UDS are the

prominent form of spontaneous activity of neocortical pyrami-

dal neurons, facilitating coordination of temporal interactions

between neocortex and hippocampus,12,19,20 which is funda-

mental to several types of learning and memory.19,21–23

The issue of the mechanisms that give rise to macro-

scopic variability as an emergent network phenomenon has

remained unresolved, but there are two general directions of
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research.24 One connects the slow rate fluctuations to deter-

ministic networks with balanced massive excitation and inhi-

bition,4,25,26 which leaves the collective dynamics highly

sensitive to fluctuations. The other direction relates slow

rate oscillations to bistability or multistability in attractor

model networks where alternation between the coexisting

states emerges due to noise,27,28 which acts as the finite-size

effect.29–31 In this paper, we develop the latter framework by

examining the interplay of stochastic neuronal dynamics and

heterogeneous network topology on the onset and robustness

of slow rate oscillations. In particular, we consider a network

of rate-based neurons, focusing on how the different sources

of noise, combined with the clustered network topology,

give rise to slow stochastic fluctuations of the mean-rate.

A qualitative insight into the mechanisms behind the slow

fluctuations and the associated parameter domains is gained

by developing an effective model of network activity, where

the collective dynamics is described by coupled stochastic

mean-field systems representing each of the clusters. The

effective model for the clustered network with random inter-

and intra-cluster connectivity is derived here for the first

time, using the approach which incorporates the Gaussian

closure hypothesis.32–34 As an intermediate result, we deter-

mine how the different sources of noise from local dynamics

as well as statistical heterogeneity of the connection topology

contribute to noise at the macroscopic level. This presents

generalization of our previous work, where we have consid-

ered bistability and slow fluctuations in a network with sim-

ple random connection topology.30,35

Investigating the impact of clustered topology on collec-

tive dynamics is biologically plausible, given that neural net-

works with statistically inhomogeneous wiring are inherent to

mammalian neocortex,36,37 where the clustered structures with

stronger synapses and increased connection probability make

up the so-called cell assemblies. Earlier studies have indicated

that clustered connectivity could give rise to bistability or mul-

tistability,4,25,38 potentially allowing for switching dynamics

between interacting populations, considered as a likely para-

digm for decision-making processes during perception or cog-

nition. In this study, we demonstrate that clustering promotes

multistability, thereby substantially enhancing the parameter

domain admitting the slow rate fluctuations, as compared to a

network with simple random connection topology.

The paper is organized as follows. In Sec. II, we present

the key points of the derivation of the effective model for

collective dynamics of the clustered network, explicitly dem-

onstrating how the neuronal noise and network heterogeneity

contribute to different finite-size effects. In Sec. III, we ana-

lyze how the network multistability and switching dynamics

are influenced by the clustered topology. It is first indicated

that in the absence of clustering, switching occurs in a rela-

tively narrow parameter domain, whereby its mechanism

resembles the noise-driven motion of a particle in a double-

well potential. Then, we show that by introducing clustering,

one enhances the network multistability, which ultimately

makes the switching phenomenon considerably more robust.

In Sec. IV, we provide a brief summary and discussion of the

results obtained.

II. DERIVATION OF THE MEAN-FIELD MODEL

We consider a network comprising N neurons arranged

into clusters, such that intra-cluster connectivity is larger

than the connectivity between neurons from different clus-

ters. The local dynamics of a given neuron i from cluster X
follows the rate model30,35,39,40

drXi

dt
¼ �kXrXi þ HðvXiÞ þ

ffiffiffiffiffiffiffiffiffi
2DX

p
nXiðtÞ; (1)

where kX defines the rate relaxation time, nXiðtÞ denotes the

intrinsic neuronal noise which typically derives from stochas-

tic opening of ion-gating channels, whereas H is the nonlinear

gain function, whose form will be specified further below.

The total input to a neuron vXi ¼ uXi þ IX þ
ffiffiffiffiffiffiffiffi
2BX

p
gXiðtÞ con-

sists of a synaptic input uXi ¼
P

Y jYX

P
j aYXjirYj and the

external bias current IX, while fluctuations in the embedding

environment are accounted for by synaptic (external) noise

gXiðtÞ, characterized by BX. The coupling scheme is given by

the adjacency matrix aYXji 2 f0; 1g, with the notation aYXji

referring to the link which projects from neuron j in cluster

Y to neuron i from cluster X. Coupling weights between

two clusters or within a single cluster are assumed to be

homogeneous, whereby we adopt the scaling jYX ¼ KYX=N.

To improve readability, a summary of the most relevant nota-

tion is provided in Table I. Both external and intrinsic fluctua-

tions are represented by Gaussian white noise terms which

satisfy hhnXiðtÞnYjðt0Þii¼ hhgXiðtÞgYjðt0Þii¼ dXYdijdðt� t0Þ and

hhnXiðtÞgYjðt0Þhi ¼ 0.

The mean-field model involves a Gaussian closure

hypothesis,32–34,41 such that the collective dynamics of each

cluster X is described by the mean-rate RX and the associated

variance SX

RX ¼
1

NX

X
i

rXi � hrXii:

SX ¼ hr2
Xii � R2

X; (2)

where NX¼ nxN is the size of the cluster X, whereas h�i refers

to averaging over the neurons within the given cluster. The

network behavior will be represented in terms of dynamics

of interacting mean-field systems, each attributed to the

TABLE I. Summary of notation in Sec. II.

kX Relaxation time of units in cluster X

DX Intensity of internal noise in cluster X

BX Intensity of external noise in cluster X

IX External current to cluster X

UX Average input to cluster X

NX � nXN Size of cluster X

KYX Strength of couplings projecting from cluster

Y to cluster X

jYX � KYX=N Normalized coupling strength

aYXji Element of adjacency matrix characterizing links

projecting from neuron j of cluster Y to neuron i in cluster X

pYX Connection probability from cluster Y to cluster X

RX Mean rate of cluster X

SX Rate variance in cluster X
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particular cluster. Our immediate goal is to derive a second-

order stochastic mean-field (macroscopic) model for an

arbitrary cluster by appropriately averaging the local (micro-

scopic) neuronal dynamics. To this end, we first introduce an

Ansatz regarding the local variables,30,35 which will ulti-

mately allow us to treat the nonlinear threshold term HðvXiÞ.
In particular, one assumes that rXi may be written as rXi

¼ RX þ
ffiffiffiffiffi
SX

p
qXi,

42 where qXi is a set of variables that satis-

fies hqXii ¼ 0; hq2
Xii ¼ 1, as follows from definition (2).

Using the Ansatz, the total input vXi to the neuron may be

rewritten as vxi ¼ UX þ dvXi, where

UX ¼ IX þ
1

N

X
Y

KYXpYXNYRY ; (3)

dvXi ¼
1

N

X
Y

KYXRY�YXi þ
1

N

X
Y

KYX

ffiffiffiffiffi
SY

p
rYXi: (4)

In particular, Eq. (3) presents the assembly-averaged input to

cluster X, with pY X denoting the connectedness probability

from cluster Y to cluster X. The deviation dvXi from the aver-

age input UX contains two terms, namely, the “topological”

and the “dynamical” one, whereby �YXi ¼
P

j aYXji � pYXNY

accounts for the deviation from the average number of connec-

tions pYXNY , and rYXi ¼
P

j aYXjiqYj describes the effect of

local rate fluctuations. Equations (3) and (4) enable one to

expand HðvXiÞ about UX, which proves crucial for deriving the

reduced system for cluster dynamics. In particular, one obtains

HðvXiÞ ¼ H0X þ H1XdvXi þ H2Xdv2
Xi, where we have intro-

duced notation H0X�HðUXÞ;H1X¼ dH
dvXi
ðUXÞ;H2X¼ 1

2
d2H
dv2

Xi

ðUXÞ.
From the latter expression and the definition of RX, one obtains

dRX

dt
¼ �kXhrXii þ H0X þ 2BXH2X þ H1XhC1Xi

þH2XhC2Xi þ
ffiffiffiffiffiffiffiffiffi
2DX

p
hnXiðtÞi; (5)

with hC1Xi and hC1Xi given by

hC1Xi ¼
1

N

X
Y

KYXRYh�YXii þ
1

N

X
Y

KYX

ffiffiffiffiffi
SY

p
hrYXii

þ
ffiffiffiffiffiffiffiffi
2BX

p
hgXii; (6)

hC2Xi ¼
1

N2

X
YZ

KYXKZXRYRZh�YXi�ZXii

þ 1

N2

X
YZ

KYXKZX

ffiffiffiffiffiffiffiffiffiffi
SYSZ

p
hrYXirZXii

þ 2

N2

X
YZ

KYXKZXRY

ffiffiffiffiffi
SZ

p
h�YXirZXii

þ 2
ffiffiffiffiffiffiffiffi
2BX

p

N

X
Y

KYXRYh�YXigXiðtÞi

þ 2
ffiffiffiffiffiffiffiffi
2BX

p

N

X
Y

KYX

ffiffiffiffiffi
SY

p
hrYXigXiðtÞi: (7)

In order to calculate the final expression for the cluster mean-

rate, one has to estimate the terms containing �Y Xi and rY Xi

and the associated averages. We have been able to carry this

out in a systematic fashion, assessing the order of each term.

Ultimately, the stochastic mean-field model will include sto-

chastic terms as finite-size effects, whereby we neglect the

terms whose order is higher than Oð1=NÞ. In Subsection II A,

we briefly discuss how one may determine the contributions

from each term comprising hC1Xi and hC2Xi.

A. Evaluating the finite-size effects

Let us first address the terms �YXi, which by definition

present the deviation from the average number of links

pYXNY projecting from cluster Y to a given node i of subas-

sembly X. From the theory of complex networks, it is known

that the average over the ensemble of different network

configurations, which we denote by ½��, is ½�YXi� ¼ 0, whereas

the associated variance is ½�2
YXi� ¼ pYXð1� pYXÞNY . By these

arguments, it follows that h�YXii contributes to a constant

random parameter dependent on the particular network

configuration, which is manifestation of the quenched ran-

domness introduced by fixing the given configuration. The

variance of such a term between the different configurations

is approximately ½h�YXii2� ¼ pYXð1�pYXÞNY

NX
� fpYX NY=NX, wherefpYX ¼ pYX for the sparse connectivity pYX � 1 and fpYX ¼ 0

in the limit of strong connectivity p � 1. Note that the divi-

sion by NX comes from the fact that the variance of a sum of

independent random variables is equal to the sum of varian-

ces of the given variables. The terms h�YXi�ZXii may be

treated in a similar fashion, though one has to distinguish

between the cases Y¼Z and Y 6¼ Z. If Y¼ Z, one may clearly

use the estimate ½h�2
YXii� ¼ pYXð1� pYXÞNY � pYXNY , while

if Y 6¼ Z, the terms h�YXi�ZXii contribute to a random constant

parameter, whose variance over the ensemble of different

network configurations may be evaluated as ½h�YXi�ZXii2�
¼ pYXNYpZXNZ=NX.

The terms containing rY Xi may heuristically be

approached as follows. From the definition, it follows that

rYXi ¼
P

j aYXjiqYj ¼
P

j2CYXi
qYj, i.e., the sum runs over the

subassembly of neurons from cluster Y which project to neu-

ron i from cluster X. By construction, such subassembly con-

tains a small number of units pYXNY , if the connectivity

between clusters Y and X is sparse (pYX � 1). In the limit of

strong connectivity (pYX � 1), one has the sum rYXi � 0,

because the departure from the limit case pY X¼ 1 due to the

subset of neurons that do not project from Y to Xi is small.

Though one cannot say a priori anything regarding the distri-

bution of qYj, in the first approximation, one may consider

them as a set of normally distributed random variables of

zero mean and unit variance. This enables us to treat rY Xi as

a set of normally distributed random variables of zero mean

and variance pYXNY . Also note that the correlation rYXkrYXl

¼
P

i;j aYXikaYXjl ¼ p2
YXNY , which is small due to smallness

of pYX, such that all the terms rYXi may be taken as

uncorrelated.

The above arguments imply that hrYXii may be evaluated

as effective noisy terms of zero mean and variance ½hrYXii2�
¼ ð1� fpYXÞNY=NX. By the above line of arguments, it may

explicitly be shown that the variables r2
YXi can effectively be
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treated as random variables whose mean and variance satisfy

½r2
YXi� ¼ pYXNY and ½r4

YXi� � ½r2
YXi�

2 ¼ 2p2
YXN2

Y , respectively.

B. Equations of the mean-field model

The results from Subsection II A enable us to systemati-

cally evaluate the contributions from all the terms on the

r.h.s. of (6) and (7). Focussing on (6) first, one finds that the

three associated terms give rise to finite-size effects of differ-

ent nature. In particular, the first term contains an effective

random parameter associated to the given network configura-

tion and may be written as 1
N KYXRY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pYXNY=NX

p
c1, where c1

is a Nð0; 1Þ variable. The latter should not be confound with

noise, as c1 can be treated as a random parameter. The sec-

ond element from the r.h.s. of (6) contributes to pseudo-

noise of the order Oð1=NÞ, which is given by 1
N KYX

ffiffiffiffiffi
SY

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pYXNY=NX

p
c2ðtÞ. One refers to it as pseudo-noise because it

fluctuates randomly in time, but does not derive from the

actual microscopic noise. The third term on the r.h.s. of (6)

presents the sum of local external noises, which gives rise to

a genuine macroscopic noise
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2BX=NX

p
nXðtÞ.

As far as hC2Xi is concerned, the terms containing

h�YXi�ZXii and hrYXirZXii for Y¼ Z together provide the

Oð1=NÞ deterministic finite-size effect of the form 1
N K2

YXpYXnY

ðR2
Y þ SYÞ. The remaining contribution from such terms for

Y¼Z and Y 6¼ Z amounts to random constant parameters and

pseudo-noises, respectively, whose intensity is of the order

OðN�3=2Þ and as such can be neglected. As an illustration,

we state that the terms involving h�YXi�ZXii for Y 6¼ Z may

be evaluated as 1
N2 KYXKZXRYRZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pYXpZXNYNZ=NX

p
, which is

indeed OðN�3=2Þ. Finally, averaging over all the terms at the

r.h.s. of (7) containing the genuine noises gXiðtÞ at the macro-

scopic level provides stochastic effects of the order Oð1=N2Þ,
which can also be neglected within our mean-field model.

Collecting all the results stated so far, one arrives at the

following equation for the dynamics of the cluster mean-

rate:

dRX

dt
¼ �kXRX þ H0X þ 2BXH2X

þH2X

X
Y

K2
YXpYXnYðR2

Y þ SYÞ=N

þ
ffiffiffiffiffiffiffi
WX

p
bðtÞ þ

ffiffiffiffiffiffi
XX

p
g; (8)

where the “macroscopic” noise is of intensity WX

¼ 1
N ð2DX þ 2BXH2

1XÞ þ 1
N H2

1X

P
Y K2

YXpYX
NY

NX
SY , and the asso-

ciated random variable bðtÞ is Gaussian distributed. The mac-

roscopic noise is made up of three terms which may be

interpreted as follows. The two terms in the first bracket rep-

resent the contribution from the local intrinsic and external

noise translated to macroscopic level, whereby the latter is

manifested as multiplicative, rather than the additive noise.

The third term is of different character and essentially reflects

the impact of local fluctuations in the input provided to each

neuron within the cluster. Apart from this, Eq. (8) also

contains a random term where g is just a constant random

number Nð0; 1Þ, whereas the associated intensity is XX

¼ 1
N H2

1X

P
Y K2

YXpYX
NY

NX
R2

Y . Note that the latter factor derives

from the topological “uncertainty” effect related to quenched

randomness, in a sense that each particular network realiza-

tion is characterized by distinct deviations from the average

connectivity degree.

Starting from the definition and applying the It�o deriva-

tive, one may use analogous methods to obtain the final equa-

tion for the variance SX. We omit the details of the lengthy

calculation, but just state that here we also neglect the deter-

ministic finite-size correction of the order of Oð1=NÞ, as well

as all the noisy terms and the terms related to uncertainty

parameter derived from the particular network realization.

The final equation for the variance then becomes

dSX

dt
¼ �2kXSX þ 2BXH2

1X þ 2DX: (9)

Equations (8) and (9) make up the second-order stochastic

mean-field model describing the collective activity of each

cluster within the network. To complete the model, it is nec-

essary to specify the gain function H. In general, the gain

function should meet the requirements that it is zero for suffi-

ciently small input and that it saturates for large enough

input, whereas for intermediate input values, H should just

be smooth and monotonous. For convenience of analytical

study,30,35 we adopt the following form of H:

HðQÞ ¼
0; Q 	 0;

3Q2 � 2Q3; 0 < Q < 1;

1; Q 
 1:

8><
>: (10)

III. ANALYSIS OF THE MEAN-FIELD MODEL AND
SWITCHING DYNAMICS

In order to demonstrate the facilitatory role of clustering

on switching dynamics more explicitly, we first investigate

how the switching emerges in case of statistically homoge-

neous random network and then draw comparison to scenario

the involving clustered network topology. In both instances,

the analysis of the mean-field model in the thermodynamic

limit N !1 is used to gain qualitative insight into the param-

eter domains supporting coexistence of different stationary

states. The latter is a necessary ingredient for the onset of slow

rate fluctuations, which emerge due to the finite-size effect. It

will be demonstrated that the switching dynamics in clustered

and non-clustered networks are based on different mecha-

nisms, which we relate to the finding that clustering promotes

network multistability.

A. Slow rate fluctuations in a non-clustered network

Let us first consider the deterministic dynamics of the non-

clustered network with uniform coupling strengths. Given that

this case has been analyzed in detail in our previous papers,30,35

here we provide only a brief summary of the main results.

The network behavior is described by the deterministic

part of the system Eqs. (8) and (9), whereby (4) implies that

the average input to each neuron amounts to U ¼ I þ KpR
¼ I þ aR, with a ¼ Kp being the connectivity parameter.

Note that S generally affects the R dynamics only via Oð1=NÞ
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terms, which contribute to the small deterministic correction

term and the macroscopic noise. Thus, in the thermodynamic

limit, one may neglect the S evolution and replace it with the

corresponding stationary value S0 ¼ ðBXH2
1 þ DÞ=k. For sim-

plicity, we adopt k¼ 1 in the remainder of the paper. In order

to analyze the stability of (8) in the limit N !1, it is conve-

nient to rewrite it in terms of the average input U as30,35

dU

dt
¼ �2aU3 þ 3aU2 � 12aBU � U þ 6aBþ I: (11)

Equation (11) always admits at least one stable station-

ary state. For the given external noise B, the onset of bistable

regime is associated to the pitchfork bifurcation that occurs

at ap ¼ 2=ð3ð1� 8BÞÞ and Ip ¼ ð1� apÞ=2. From this cusp

point emanate two branches of saddle-node bifurcations,

which outline the bistability “tongue” where the UP and the

DOWN states characterized by the high and low mean-rates

coexist, cf. Fig. 1(a). In particular, the upper curve corre-

sponds to creation of the UP state, whereas the lower curve

coincides with annihilation of the DOWN state. Within the

coexistence region, the two stable states are separated by the

unstable state, cf. Fig. 1(b), whereby the level of the unstable

state decreases with a. This confines the attraction basin of

the DOWN state, facilitating the prevalence of the UP state

at higher connectivity. Figure 1(c) further shows that for

increasing B, the bistability domain gets shifted toward

larger a. Note that the change of a is achieved by increasing

the coupling strength K while the connectedness probability

p¼ 0.2 is kept fixed to conform to the case of sparse random

network, which maintains certain biological plausibility.

The mechanism behind switching dynamics in the non-

clustered network may be explained by analyzing the finite-

size effect and is reminiscent of the noise-driven motion of a

particle in a double-well potential. The analogy lies in the

fact that the macroscopic noise, as the finite-size effect,

allows for the network mean-rate to jump between the min-

ima of the potential, which correspond to the two stationary

levels of the deterministic part of the mean-field model, see

the example of R(t) series in Fig. 2(a). Replacing S by its sta-

tionary value, Eq. (8) for the stochastic dynamics of the

mean-rate may be written in term of U as

dU

dt
¼ � dV

dU
þ

ffiffiffiffi
W
p

n; (12)

where V presents the potential VðUÞ ¼ aU4=2� aU3

þð6aBþ 1=2ÞU2 � ð6aBþ IÞU þOð1=NÞ, whereas the

macroscopic noise amounts to W ¼ a2ð2þ a2Þ½36BU2

ð1� UÞ2 þ D�=N. In the vicinity of the pitchfork bifurcation,

V indeed has the shape of a double-well potential, as illus-

trated in Fig. 2(b).

The described switching mechanism is generic, in a sense

that one expects to observe it close to bifurcation inducing the

bistability, but is not robust, given that the physically mean-

ingful switching rates are obtained in the sufficiently small

parameter domain about the bifurcation value. Beyond this

area, the potential barrier becomes too high for the noise to

overcome it, making the switching events extremely unlikely.

In principle, the macroscopic noise WðUÞ is multiplica-

tive, which makes finding the analytical expression for the

underlying transition rates extremely difficult. Nevertheless,

in a first approximation, the setup may be reduced to the

classical Kramers problem43 if W is replaced by its mean Wm

obtained by averaging over the U values between the two

potential wells. Figure 3(a) illustrates that Wm may be con-

sidered representative for the whole range of WðUÞ values,30

especially given that the macroscopic noise is well bounded

FIG. 1. Analysis of the mean-field model of a non-clustered random network in the thermodynamic limit N !1. (a) Bistability domain (highlighted region)

in the ðI � aÞ plane is bounded by two branches of saddle-node bifurcations. The latter meets at the cusp point CP, located at ðIp; apÞ, where the pitchfork bifur-

cation occurs. External noise is set to B¼ 0.004, whereas D¼ 0.02. (b) RðaÞ dependence within the bistability tongue ðI ¼ 0:15;B ¼ 0:004Þ shows coexistence

between the UP and the DOWN state. (c) Shift of bistability domain for increasing B 2 f0; 0:004; 0:01; 0:02g.

FIG. 2. Slow rate fluctuations illus-

trated by the R(t) series in (a) and the

associated stationary probability distri-

bution f(R) in (b). The results are

obtained numerically for I ¼ 0:15; a
¼ 0:7;B ¼ 0:004;D ¼ 0:02 and the

network size N¼ 400. The dashed-

dotted lines in (a) indicate the UP and

DOWN levels of the corresponding

mean-field model in the thermody-

namic limit. The solid line in (b)

presents the double-well potential V,

cf. Eq. (12).
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within the relevant U interval. Within this framework, the

first passage time between the two wells can be determined

via the Kramers formula44–46

TU6!U7
� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jV00ðUmaxÞjV00ðU6Þ
p exp

VðUmaxÞ � VðU6Þ
Wm

� �
;

(13)

where U6 refer to the two minima of the double-well poten-

tial, whereas Umax denotes the location of its maximum. The

total transition rate is then given by h ¼ 1=ðTUþ!U�

þTU�!UþÞ. For a values in vicinity of the pitchfork bifurca-

tion, the last expression may be used to compare with the

numerical findings, cf. Fig. 3(b). One finds qualitative

matching of the prediction derived from the mean-field

model and the simulation within two aspects: (i) the region

where hðaÞ is positive corresponds well to the region where

the exact system exhibits slow rate fluctuations, and (ii) the

order of the predicted h values is the same as the one

obtained from simulations.

B. Switching dynamics in clustered networks

In Subsection III A, we have shown that switching in

homogeneous random networks is confined to the parameter

domain in close vicinity of the pitchfork bifurcation. The

main goal here is to demonstrate that switching in clustered

networks is based on the paradigm that clustering promotes

networks multistability. The outcome is that the switching

phenomenon gains on robustness, in a sense that it can be

found for parameter regions where it cannot be observed in

statistically homogeneous random networks.

We shall show that sufficiently strong clustering sup-

ports multistability by giving rise to network states which do

not exist in the non-clustered case. The increased number of

network levels derives from the states with broken symme-

try, where subsets of clusters occupy different levels, lying

either in the UP or the DOWN state. By analyzing the mean-

field model in the thermodynamic limit, we find that such

multistability can be achieved only by varying the connectiv-

ity features of the network (topological heterogeneity), rather

than by introducing the parameter heterogeneity over the

subsets of network clusters. With increased multistability,

the stochastic terms contributing to finite-size effect may

cause the network to cross to another level just by inducing

the switching event within a single cluster. The slow rate

oscillations are then naturally supported by the fact that the

impact of the finite-size effect is more pronounced for indi-

vidual clusters than for the entire network.

Though the system Eqs. (8) and (9) are quite general in a

sense that they may be applied to a network comprising an

arbitrary number of clusters of arbitrary sizes, for simplicity,

we address here the case where the network consists of m
equal clusters of size Nc ¼ N=m. Clustering algorithm consists

in rearranging the links from the homogeneous random net-

work, such that the average connectedness probability p¼ 0.2

is preserved. We introduce additional clustering parameter g to

characterize topological heterogeneity, cf. Table II for the sum-

mary of notation relevant for Sec. III B. Parameter g presents

the ratio between the intra-cluster and cross-cluster connectiv-

ity, ain and aout, respectively, such that ain ¼ gaout with g> 1.

Larger g implies stronger clustering, whereby the limiting case

g¼ 1 describes the non-clustered network, whereas the case

g!1 corresponds to the network of disconnected clusters.

One may show that ain and aout can be expressed in terms of

the connectivity of the original homogeneous network a as

ain ¼
gm

m� 1þ g
a; aout ¼

m

m� 1þ g
a: (14)

This allows us to compare the relevant parameter domains

between the homogeneous and the clustered networks.

Let us now focus on the scenario where l clusters occupy

state Ra, and m – l clusters lie at Rb. While the homogeneous

state has the permutation symmetry Rm with respect to

exchange of all the cluster indices, the solutions we consider

now have a reduced symmetry Rl � Rm�l. One may analyze

the stability and bifurcations of the corresponding mean-field

model in the thermodynamic limit N !1, cf. (11). The

model is given by

dRa

dt
¼ �2U3

aðRa;RbÞ þ 3U2
aðRa;RbÞ

þ 6Bð1� 2UaðRa;RbÞÞ � Ra

dRb

dt
¼ �2U3

bðRa;RbÞ þ 3U2
bðRa;RbÞ

þ 6Bð1� 2UbðRa;RbÞÞ � Rb; (15)

where the average input to the two groups of clusters reads

UaðRa;RbÞ ¼ I þ a
m� 1þ g

ðgþ l� 1ÞRa þ ðm� lÞRb½ �;

UbðRa;RbÞ ¼ I þ a
m� 1þ g

lRa þ ðgþ m� l� 1ÞRb½ �:

(16)

As for the non-clustered network, the variances Sa and Sb

can be substituted by their respective stationary values

FIG. 3. (a) Macroscopic noise W as a function of the mean-input X. The dot-

ted line indicates the average Wm over the relevant X range. (b) The solid

line shows hðaÞ dependence obtained for the mean-field model via the

Kramers formula (13). Dots denote the switching rates obtained numerically

for I ¼ 0:15;B ¼ 0:004;D ¼ 0:02, and N¼ 400.

TABLE II. Summary of notation in Sec. III B.

a � Kp Connectivity parameter of the homogeneous network

m Total number of clusters

ain Intra-cluster connectivity

aout Inter-cluster connectivity

g � ain=aout Clustering parameter

d � 1=ðg� 1Þ Inverse clustering parameter
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S�i ¼ ðBXH2
i þ DÞ=k, with i 2 fa; bg. Using (16), one may

express Ra and Rb in terms of Ua and Ub via

Ra ¼
Ua � I

a
þ m� l

aðg� 1Þ ðUa � UbÞ;

Rb ¼
Ub � I

a
þ l

aðg� 1Þ ðUb � UaÞ:
(17)

Inserting the latter expressions into (15), we obtain that the

steady states of the mean-field model satisfy

I � f ðUaÞ þ dðm� lÞðUb � UaÞ ¼ 0;

I � f ðUbÞ þ dlðUb � UaÞ ¼ 0:
(18)

In (18), f ðUiÞ is given by f ðUiÞ ¼ 2aU3
i � 3aU2

i þ ð1
þ12BaÞUi � 6Ba, which implies that the terms I � f ðUiÞ
have exactly the same form as the r.h.s. of (11) for the homoge-

neous random network. For convenience, we have introduced

the inverse clustering parameter d ¼ ðg� 1Þ�1
, whereby the

limit d!1 corresponds to the non-clustered network, while

the case d! 0 coincides with ultimate clustering, i.e., the sce-

nario where the network comprised effectively independent

clusters. The system (18) naturally possesses the symmetry

with respect to exchanging l and m – l together with Ua and Ub

(l$ m� l;Ua $ Ub).

Our interest lies with the inhomogeneous states where

the respective stationary levels of the two groups of clusters

are different, R�a 6¼ R�b. The analysis of (18) reveals that apart

from the homogeneous states described in Sec. III A, one

may indeed find one or two coexisting inhomogeneous states

depending on the inverse clustering parameter d under fixed

ðm; l; I;BÞ. While the system (15) and the subsequent Eqs.

(16)–(18) can describe a network of arbitrary number of

equal clusters, the analysis below is focused on the network

of m¼ 5 clusters. This is chosen as a minimal paradigmatic

example, convenient since due to symmetry, the cases l¼ 1

and l¼ 2 exhaust all the possible inhomogeneous solutions.

Onset of inhomogeneous states is investigated in detail

by constructing the d� I bifurcation diagrams (see Fig. 4).

The left and the right plots refer to cases l¼ 1 and l¼ 2,

respectively, with the remaining network parameters fixed to

a ¼ 0:8;B ¼ 0:004. For d values less than the level indicated

by the red dotted line in Fig. 4(b), there exists an I interval

where two inhomogeneous solutions can coexist, whereas

above the given d, one can find only monostable inhomoge-

neous states.

Note that the region of coexistence between the two inho-

mogeneous states admits a total of 9 solutions of the mean-

field model (15), cf. the notation in Fig. 4(b), whereas in the

two domains with a single genuine clustered regime, one finds

a total of 7 solutions of the mean-field model. Most of the

curves indicated in Fig. 4 correspond to saddle-node bifurca-

tions. In particular, the transitions from regions with 1 to

regions with 3 solutions and vice versa coincide with creation

or annihilation of the homogeneous states already described in

Sec. III A. Also, the boundary between regions with 5 and 7

solutions is given by the branches of saddle-node bifurcations

which meet at the cusp point where the pitchfork bifurcation

occurs. Exceptions to this paradigm are the transitions involv-

ing regions with 3 and 5 solutions of the mean-field model.

The latter present fold bifurcations of the inhomogeneous

states within the symmetry subgroup Rl � Rm�l, whereby the

emanating branches correspond to an unstable fixed point and

a saddle point.

A more detailed picture of the inhomogeneous states and

their stability domains relative to homogeneous states may be

obtained by analyzing the corresponding R(I) bifurcation dia-

grams for fixed ðm; l;B; d; aÞ. The plots in Fig. 5 are provided

for ðd; IÞ values supporting the coexistence of two inhomoge-

neous states. The top and the bottom panels refer to cases

l¼ 1 and l¼ 2, respectively. In each panel, the left and the

middle plots indicate the states occupied by the groups of

l and m – l clusters, respectively, whereas the right plot con-

cerns the entire network (left and middle plots superimposed).

FIG. 4. Bifurcation diagrams dðIÞ for the inhomogeneous solutions of the mean-field model (15). (a) corresponds to case l¼ 1, whereas (b) refers to case l¼ 2.

In (b), the total number of solutions obtained for the mean-field model within the different parameter domains is indicated. The regions with 1 and 3 solutions

admit only homogeneous states, while the region with 5 solutions contains unstable inhomogeneous states. The regions with 7 and 9 solutions facilitate mono-

stable inhomogeneous states and coexistence between the two inhomogeneous states, respectively. The bistability between inhomogeneous states arises only

for sufficiently strong clustering below the red dotted line, cf. the bifurcation diagrams in Fig. 5 and Fig. 6 obtained for the d level just above the red line and

the d value indicated by the green dashed line, respectively. The remaining network parameters are m ¼ 5;B ¼ 0:004; a ¼ 0:8.
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One clearly distinguishes between the regions where

only one inhomogeneous solution is stable (either l clusters

in the DOWN state and m – l in the UP state or vice versa)

and the central I region where two inhomogeneous solutions

coexist. For instance, in the bottom panel, coexistence of two

inhomogeneous states is found for I 2 ð0:0866; 0:1135Þ,
whereas the regions with l clusters UP or DOWN as the only

inhomogeneous solutions are given by I 2 ð0:0845; 0:0866Þ
and I 2 ð0:1135; 0:1156Þ. The presentation scheme is such

that the solid (dashed) lines indicate the stable (unstable)

branches of solutions. Note that the top-most (red solid line)

and the bottom-most curves (blue solid line) in both panels

indicate the homogeneous states. In case of inhomogeneous

states, the color coding is such that Ra and Rb corresponding

to the same solution are assigned with the same color. As

expected, the stability domains of the inhomogeneous states

are smaller than the regions supporting the homogeneous

states.

In Fig. 6, the R(I) bifurcation diagrams for lower cluster-

ing (larger d) are shown, which no longer admits bistability

between the inhomogeneous states. The top and the bottom

panels again refer to cases l¼ 1 and l¼ 2, respectively. From

both panels, one learns that the two I intervals, where single

inhomogeneous solutions exist, are separated by the I interval

FIG. 5. Bifurcation diagrams R(I) for strong clustering d ¼ 0:004, cf. the level denoted by the green dashed line in Fig. 4(b). Panels (a) and (b) correspond to

cases l¼ 1 and l¼ 2, respectively. The left and middle columns refer to states of particular groups of clusters Ra and Rb. The latter are superimposed in

the right column to indicate the possible network states. The stable solutions are given by the solid lines, and the unstable branches are shown by the gray

dashed lines. The Ra and Rb states corresponding to the same solution are presented by the same color. The remaining system parameters are m ¼ 5;
B ¼ 0:004; a ¼ 0:8.

FIG. 6. Bifurcation diagrams R(I) in case of weak clustering d ¼ 0:0151, the value just above the level indicated by the red dotted line in Fig. 4(b). The top

and bottom panels correspond to cases l¼ 1 and l¼ 2, respectively. The presentation style is the same as in Fig. 5. The remaining network parameters are

m ¼ 5;B ¼ 0:004; a ¼ 0:8.
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where only the two homogeneous states are available. A

more detailed view of the basins of attraction of the particular

states can be obtained by examining the vector fields for the

relevant I values, cf. Fig. 7.

To gain a more general understanding of the multistabil-

ity of the mean-field model (15), one should note that it is

affected by two types of parameters, namely (i) the ones

associated to homogeneous network and (ii) those character-

izing the clustering. System (18) implies that the case of ulti-

mate clustering (d¼ 0) leads to the same type of dynamics as

that of a homogeneous network. Consequently, the area of

bistability of the homogeneous network corresponds to the

maximal multistability of the clustered network: each cluster

may either be in the UP or the DOWN state, which yields

mþ 1 different stable solutions in total. Bistability of the

homogeneous network has been addressed in Fig. 1 and has

been examined in greater detail in our earlier papers.30,35

The main novelty here concerns the impact of the cluster-

ing degree and its interplay with a;B, and m. As already indi-

cated in Fig. 4, reduction of the clustering degree, i.e.,

increase of d, leads to gradual extinction of the inhomoge-

neous states via saddle-node bifurcations. Nevertheless, we

have established that the stronger average network connectiv-

ity a allows for the inhomogeneous states to occur at lower

clustering, as corroborated by the shift of the relevant d region

to higher values when a is increased under all the other

parameters fixed (not shown). Also, one finds that the d region

admitting inhomogeneous states reduces under increasing

noise B.

In order to investigate the effect of the number of clusters

m, one may introduce the ratio l ¼ l=m and rewrite Eq. (18) as

I � f ðUaÞ þ dmð1� lÞðUb � UaÞ ¼ 0;

I � f ðUbÞ þ dmlðUb � UaÞ ¼ 0:
(19)

It follows that for the given ration l, the bifurcations in the

system depend only on the product md. The latter implies

that the increase in the number of clusters m leads to the onset

of the relevant bifurcations for smaller d. In other words, the

more clusters present in the network, the stronger clustering

is required to support the same level of multistability.

The analysis on multistability of the clustered network

derived from the mean-field model is qualitative in character,

but allows one to classify all the network states and gain under-

standing of the mechanism behind the switching dynamics.

The qualitative character of the predictions is reflected in that

the mean-field model becomes the least accurate in vicinity of

bifurcations where fluctuations are most pronounced, such that

the finite-size effect prevails. Nevertheless, via the mean-field

approach, one is also able to compare the effect of certain sys-

tem parameters on the dynamics of the homogeneous and the

clustered network. In particular, we are interested in compari-

son with respect to parameters I and a. For the homogeneous

network, one finds the bistability tongue, whereby the switch-

ing dynamics occurs in close vicinity of the cusp. Using the

model (15), we have constructed analogous d� I bifurcation

diagrams for the clustered network with fixed a. Our goal is to

apply these results to explicitly demonstrate that multistability

promoted by the clustered topology plays the facilitatory role

with respect to switching dynamics. This is easily understood

intuitively, as additional multistability induced by clustering

implies more network levels distributed less widely. Then,

switching between different levels becomes more efficient

because it may be achieved just by alternations within individ-

ual clusters, and the finite-size effect within the clusters is

more pronounced given their smaller size compared to the

whole network.

To illustrate the impact of clustering on the onset of slow

rate oscillations, we consider an example where the system

parameters B; I; a are fixed to B ¼ 0:01; I ¼ 0:0513; a ¼ 0:9,

respectively. For the given B, the selected ða; IÞ values lie

deep within the bistability tongue of the homogeneous ran-

dom network, viz., far from the cusp point, cf. Figure 1(c).

The corresponding time series of the network mean-rate

RNðtÞ and the associated stationary probability distribution

obtained for the full system Eq. (1) are shown in Fig. 8. The

latter corroborates that indeed no switching can be observed

for the given parameter set in case of the homogeneous net-

work. Nevertheless, for the sufficiently large g (small d), the

clustered network exhibits strong switching dynamics for the

same ðI; aÞ values, see the results for the full system Eq. (1)

in Fig. 9. In Fig. 9(a), the sequences from the mean-rate

dynamics of individual clusters RiðtÞ and the network rate

RNðtÞ are shown, whereas in panel (b), the corresponding

probability distributions are provided. Note that the network

parameters are selected from the domain supporting maximal

multistability, i.e., the region where the mean-field model

(15) admits 9 different solutions, allowing for the coexistence

of two inhomogeneous states within the same Rl � Rm�l sym-

metry subgroup.

FIG. 7. Vector field plots indicating basins of attraction for the different types solutions of the mean-field model (15) in the (Ra, Rb) plane. The bias current I
increases systematically from (a)-(e). The plots correspond to the example indicated in Fig. 5(b). The network parameters are m ¼ 5;B ¼ 0:004;
d ¼ 0:004; a ¼ 0:8.
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The results in Figs. 8 and 9 indicate a good qualitative

agreement between the dynamics of the full system and the

effective model, in a sense that the analysis of the mean-field

model can anticipate the parameter values where one may

observe the switching dynamics in the full system. Naturally,

the levels of the effective model obtained for the clustered

network correspond to metastable states of the full system,

whereby switching between them occurs due to the finite-size

effects.

IV. CONCLUSION

In this paper, we have analyzed the interplay of clustered

topology and different types of noise on the spontaneous activ-

ity of networks of rate-based neurons. Clustered topology

appears to be biologically relevant,4,25,49 as the recent research

on the microstructure of cortical networks has indicated that

the small clusters of excitatory neurons are significantly over-

represented.36,47 In real neural networks, the clusters may be

important as functional units performing certain tasks48 or may

constitute processing units adapted to receiving a certain type

of stimuli.50–52 We have demonstrated that clustering affects

the collective dynamics of neural networks in a nontrivial fash-

ion by promoting multistability such that spontaneous slow

rate fluctuations gain on robustness.

From the theoretical perspective, our main contribution

consists in derivation of the reduced system which describes

the network activity in terms of interacting mean-field mod-

els representing each of the clusters. Typically, the reduced

models address the two limit cases of a globally connected

network32–34 or a network with the random sparse connectiv-

ity,30,35 such that the fluctuations of input between the units

are small. The model presented here interpolates between

these two scenarios, as the intra-cluster connectivity is

strong, whereas the inter-cluster connectivity is weaker. We

have identified three types of finite-size effects, including the

small deterministic correction term, the macroscopic noise,

and the topological uncertainty derived from the fact that

each particular network realization features distinct devia-

tions from the average connectivity degree. The macroscopic

noise is a multiplicative one and incorporates three different

sources of randomness, describing the impact of local neuro-

nal noise on collective activity and the fluctuations in the

input received by each of the units. Interestingly, the local

intrinsic noise translates to additive macroscopic noise,

whereas the microscopic external noise is reflected as multi-

plicative noise at the macroscopic level.

It has been demonstrated that the mean-field model can

be used to qualitatively analyze the spontaneous activity of

FIG. 8. Absence of switching dynam-

ics for the non-clustered network

beyond the vicinity of pitchfork bifur-

cation. In (a), the time trace of the

network mean-rate RNðtÞ for the full

system (1) is shown, whereas in (b),

the corresponding stationary probabil-

ity distribution f(R) is provided.

The network parameters are a ¼ 0:9;
I ¼ 0:05;B ¼ 0:01;N ¼ 500. Note that

the selected ða; IÞ values lie within the

B¼ 0.01 bistability tongue, but far

from the cusp point, cf. Fig. 1(c).

FIG. 9. Example of switching dynamics in the clustered network. Panel (a) shows the time traces of mean-rates of individual clusters RiðtÞ; i 2 f1;…; 5g and

the network RNðtÞ obtained by simulating the full system (1). In panel (b), the corresponding probability distributions f(R) for the single clusters and the net-

work are presented. The network parameters are m ¼ 5;B ¼ 0:01; a ¼ 0:9; I ¼ 0:0513; d ¼ 0:01;N ¼ 500. The fact that clustering promotes multistability

allows for the switching dynamics to occur in the much broader ðI; aÞ domain than for the homogeneous random network, cf. Fig. 1(c) and the time series in

Fig. 8.
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the clustered network. The mechanism behind slow rate fluc-

tuations has been explained by considering the stability and

bifurcations of the mean-field model in the thermodynamic

limit. The latter also allowed us to contrast the cases of the

non-clustered and clustered network. In the non-clustered net-

work, the crucial ingredient to slow rate fluctuations is that

the network parameters lie close to pitchfork bifurcation. The

evolution of the mean-rate may then locally be described by

the paradigm of noise-driven motion of a particle in a double-

well potential, so that its local minima coincide with the UP

and DOWN states of the network. Such mechanism is per se
generic, but lacks robustness, as it is confined to a small vicin-

ity of the pitchfork bifurcation. The key effect of introducing

clustering consists in the increased multistability of the net-

work, facilitated by the onset and coexistence of states where

different groups of clusters lie in the UP or the DOWN states.

This promotes the switching dynamics, making it more effi-

cient in a sense that alternation between the different network

levels can be achieved just by changing the states of individ-

ual clusters rather than the whole network. Alternations within

single clusters are naturally more likely since the finite-size

effect associated to macroscopic noise is more pronounced.

This way, the switching phenomenon gains on robustness,

extending into the parameter domains where it cannot be

observed for the non-clustered network.

The importance of clustered topology for macroscopic

variability has earlier been indicated for the networks of spik-

ing neurons with balanced excitatory-inhibitory input.4,24,25,53

However, with such local dynamics, slow fluctuations of the

mean network activity cannot even be observed for a simple

random network topology, which implies that clustering

indeed plays the crucial role in inducing the switching behav-

ior. Thus, our results on the rate-based neurons together with

the previous work on spiking neurons suggest that promoting

of slow rate fluctuations by clustered topology may indeed be

a universal phenomenon independent on the particular model

of local neuronal dynamics.

In view of the fact that the spontaneous activity of real

neurons may indeed be described as a doubly stochastic

process,54–56 combining the fluctuations on short and long

timescales, the presented work has been aimed at providing

theoretical tools for analysis of macroscopic variability in

neural networks and its relation to microscopic dynamics

and the network topology. We believe that the same

method can be used to analyze the evoked activity of the

network, examining the impact of clustering on the net-

work’s response to external stimulation. Also, our research

so far has been confined to networks of excitatory neurons,

but we believe that the same theoretical framework can

readily be used to analyze the complex behavior of net-

works with both excitatory and inhibitory neurons. One

expects that the presence of inhibitory subassembly should

have a nontrivial impact both to spontaneous and evoked

network activities.
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In present paper, authors examine the dynamics of a spring-slider model, considered as a phenomeno- 

logical setup of a geological fault motion. Research is based on an assumption of delayed interaction 

between the two blocks, which is an idea that dates back to original Burridge–Knopoff model. In con- 

trast to this first model, group of blocks on each side of transmission zone (with delayed interaction) is 

replaced by a single block. Results obtained indicate predominant impact of the introduced time delay, 

whose decrease leads to transition from steady state or aseismic creep to seismic regime, where each 

part of the seismic cycle (co-seismic, post-seismic and inter-seismic) could be recognized. In particular, 

for coupling strength of order 10 2 observed system exhibit inverse Andronov–Hopf bifurcation for very 

small value of time delay, τ≈0.01, when long-period (T = 12) and high-amplitude oscillations occur. Fur- 

ther increase of time delay, of order 10 −1 , induces an occurrence of a direct Andronov–Hopf bifurcation, 

with short-period (T = 0.5) oscillations of approximately ten times smaller amplitude. This reduction in 

time delay could be the consequence of the increase of temperature due to frictional heating, or due to 

decrease of pressure which follows the sudden movement along the fault. Analysis is conducted for the 

parameter values consistent with previous laboratory findings and geological observations relevant from 

the seismological viewpoint. 
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1. Introduction 

It is generally considered that process of accumulation and re-

lease of stress along the seismogenic faults always obeys the same

rule: period with no movement along the fault (or with aseismic

creep), when the stress is being accumulated, is followed by its

sudden release, which could be further succeeded by the partial

emission of the remained stored energy. These three periods, for-

mally known as inter-seismic, co-seismic and post-seismic, respec-

tively, constitute a single seismic cycle, which could be manifested

at regular time intervals (for the strongest seismic events), or, more

likely, occurrence of seismic events appears as a random process

following Poisson distribution [1] . From the seismological view-

point previous studies on properties of a seismic cycle resulted in

sufficiently accurate characterization of each of the aforementioned

periods. It is well known that inter-seismic deformation indicates

depth of the zone that will eventually rupture seismically [2] and
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E-mail address: srdjan.kostic@jcerni.co.rs (S. Kosti ́c). 

i  

b  

[  

https://doi.org/10.1016/j.chaos.2017.11.037 
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he rate at which stress is accumulating along the fault zone [3] .

he very end of this inter-seismic period could be marked by the

ccurrence of foreshocks as small partial releases of the stored po-

ential energy before the main event. On the other hand, post-

eismic deformation is usually driven by the preceding co-seismic

tress change [3] and it could be as large as the fault slip during

he main seismic event. Observed post-seismic behavior includes

oroelastic deformation [4] , frictional afterslip [5] and viscoelastic

elaxation [6] . Similarly to the inter-seismicposteriod, post-seismic

art of the seismic cycle could be marked by the occurrence of af-

ershocks, as sudden releases of the remaining stored energy with

ignificantly smaller magnitude in comparison to the main seismic

vent. 

From the purely mechanical viewpoint, it is commonly consid-

red that alternation of seismic cycles could be described by ir-

egular stick-slip behavior [7] . For a simple frictional system, like

ommonly used spring-block model, the occurrence of stick-slip

s due to a difference in static and kinetic friction, i.e. once the

lock starts to slide the friction drops suddenly to a lower level

8] . It is generally considered that surface roughness and normal
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tress level play main role in “pushing” the spring-block model

nto stick-slip regime [9] . In present analysis, we analyze only the

ffect of friction on dynamics of spring-block model, by assuming

ome small constant value of normal stress which does not signif-

cantly affect the dynamics of the model. This could correspond

o shallow parts of the Earth’s crust, or parts where horizontal

tresses are much higher that vertical ones, due to significant ef-

ect of tectonics and surface erosion which reduced the thickness

f the overlying layers. 

Results of the pioneer work of Burridge and Knopoff [10] on

ynamics of a simple spring-block model set a solid base for suc-

eeding laboratory and theoretical research of seismogenic fault

otion. The main outcome of their work is that distribution of

isplacement sums (i.e. earthquake magnitudes) follows two key

acrosesimologic laws: Gutenberg–Richter and Omori–Utsu power

aw distribution. This finding enabled succeeding researchers a

ide specter of additional analyzes, from the purely seismologi-

al [11,12] , across the tribological [13,14] to purely dynamical [15] .

hese “dynamical” research are primarily in our focus, since they

howed that for a certain parameter range, dynamics of spring-

lock models exhibit a regular transition between different dy-

amical regimes, with the eventual occurrence of chaotic dynam-

cs [16,17] . Nevertheless, former studies did not treat the problem

f seismic cycle per se , except from our previous paper, where we

nalyzed the impact of transient seismic wave on the dynamics

f spring-block model, which resulted in transition between dif-

erent seismic cycles [18] . One of the goals of the present analysis

s to match different dynamical regimes of a spring-block model to

ppropriate phases of seismic cycles. In particular, the performed

nalysis should provide answers to the following questions: (1)

hat are the relevant parameter ranges for which the dynamic of

he spring-block model enters the stick-slip regime, (2) what are

he main dynamical features of that regime and (3) what does

t mean for the real conditions in Earth’s crust. In that way, we

ill be able to reveal the main controlling mechanism behind the

egularity of seismic cycle. One should note that, besides seismol-

gy, nonlinear models in general have been successively applied in

ther areas of natural sciences, as well [19–24] . 

Besides the analogy with the macroseismological laws, another

mportant outcome of the original work of Burridge and Knopoff

oncerns a delayed transition of motion among two sets of blocks,

ndicating possible highly complex dynamical behavior. In partic-

lar, they showed that displacement among two boundary group

f blocks in an one-dimensional chain is being transmitted with

 certain time delay, whose order of unit corresponds to the vis-

osity of the middle set of blocks. Although this finding opened a

ot of possibilities for investigating the cause and consequences of

uch a feature, it was not taken into consideration in succeeding

tudies. Effect of time delay was previously only implicitly intro-

uced in friction term [25,26] , and between the neighboring blocks

n an one-dimensional chain of blocks with rate-dependent fric-

ion law [27] . In present paper, we analyze the transition between

ifferent seismic cycles considering the delayed interaction among

he blocks with a rate-and state-dependent friction law. In con-

rast to our previous work, delayed interaction is assumed between

he blocks exhibiting rate-and state-dependent friction law, which

orresponds well to the laboratory observations of rock friction.

lso, present analysis is conducted for the values of parameters

hich are either observed in reality or in laboratory conditions.

e consider that this behavior is also relevant from the view-

oint of seismology, since different friction conditions along the

ault (e.g. different thickness and physico-mechanical properties of

ault gouge, impact of pore fluid, etc.) could cause a delayed tran-

ition of motion among different parts of the active seismogenic

ault. 
m  
To sum up, the main idea of the present study is to deter-

ine the main dynamical mechanism by which the fault motion

odel reaches stick-slip like oscillations, as an appropriate dy-

amical state of a seismic fault motion which includes the inter-

eismic, co-seismic and post-seismic regime. Thereby, dynamics of

he relevant model is examined for the parameter values meaning-

ul from the viewpoint of seismology, under the influence of the

ssumed delayed interaction of variable strength. Introduction of

ew influential parameters is motivated by the previous laboratory

ndings, with the aim of modeling the effect of changeable friction

roperties along the fault. The analysis is conducted using both an-

lytical and numerical methods, former of which involved the ap-

lication of local bifurcation analysis for the model with constant

ime delay whose results are corroborated numerically. 

. Model development 

.1. Original model of fault motion 

Our numerical simulations of a spring-block model are based

n the system of equations coupled with Dieterich–Ruina rate-and

tate-dependent friction law [16] : 

. 

= −
(
ν

L 

)(
θ + B log 

(
ν

ν0 

))
. 
u 

= ν − ν0 

. 
= 

(
− 1 

M 

)(
ku + θ + A log 

(
ν

ν0 

)) (1) 

here parameter M is the mass of the block and the spring stiff-

ess k corresponds to the linear elastic properties of the rock

ass surrounding the fault [28] . According to Dieterich and Kil-

ore [29] the parameter L corresponds to the critical sliding dis-

ance necessary to replace the population of asperity contacts. The

arameters A and B are empirical constants, which depend on ma-

erial properties. Variables u and ν represent displacement and ve-

ocity, while θ denotes the state variable describing the state of

he rough surface along which blocks are moving [30] . Parame-

er V 0 represents the constant background velocity of the upper

late Fig. 1 ). For convenience, system ( (2) is non-dimensionalized

y defining the new variables θ ’, v’, u’ and t’ in the following way:

= A θ ’, v = v 0 v’, u = Lu’, t = (L/v 0 )t’ , after which we return to the use

f θ , v, u and t . This non-dimensionalization puts the system into

he following form: 

. 

= −ν( θ + ( 1 + ε ) log ( ν) ) 
. 
u 

= ν − 1 

. 
= −γ 2 [ u + ( 1 /ξ ) ( θ + log ( ν) ) ] 

(2) 

here ε = (B − A)/A measures the sensitivity of the velocity re-

axation, ξ = (kL)/A is the nondimensional spring constant, and

= (k/M) 1/2 (L/v 0 ) is the nondimensional frequency [16] . As it was

reviously shown [18] , a supercritical direct Andronov–Hopf bifur-

ation curve occurs for the following parameter values ε = 0.27,

= 0.5 and γ = 0.8, leading from equilibrium state to regular pe-

iodic oscillations. 

.2. Fault motion model under study 

We analyze the dynamics of two coupled blocks Fig. 1 ), whose

otion is governed by the following system of first-order ordinary
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Fig. 1. Setup of the analyzed model. 
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Fig. 2. General scheme of a shear stress variation during the motion of analyzed 

model shown in Fig. 1 . 
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differential equations, starting from the original system (1) : 

˙ θ1 = −
(

V 1 

L 1 

)
·
(
θ1 + B 1 ln 

(
V 1 

V 0 

))
˙ 
 1 = V 1 − V 0 

˙ V 1 = (−1 /M 1 ) [ k 1 U 1 − k (U 2 (t − τ ) −U 1 (t)) + θ1 + A 1 ln (V 1 /V 0 ) ] 

˙ θ2 = −
(

V 2 

L 2 

)
·
(
θ2 + B 2 ln 

(
V 2 

V 0 

))
˙ 
 2 = V 2 − V 0 

˙ V 2 = ( −1 /M 2 ) [ k 2 U 2 − k ( U 1 ( t − τ ) − U 2 ( t ) ) + θ2 + A 2 ln ( V 2 /V 0 ) ] 

(3)

Here we introduced time delay between the two coupled

blocks. In this way, we simulate the original model of Burridge

and Knopoff [10] , where two blocks actually represent two bound-

ary sets of blocks, and the effect of the middle set of blocks (with

different viscosity properties in comparison to other two sets) is

replicated by the delayed interaction between the two blocks. 

Appropriate non-dimensionalization puts the system (3) into

the following form: 

θ . 
1 = −V 1 · ( θ1 + ( 1 + ε 1 ) ln V 1 ) 

 

. 
1 = V 1 − 1 

V 

. 
1 = γ 2 

1 

(
−U 1 + c 1 ( U 2 ( t − τ ) − U 1 ( t ) ) −

(
1 

ξ1 

)
( θ1 + ln ( V 1 ) ) 

)
θ . 

2 = −V 2 · ( θ2 + ( 1 + ε 2 ) ln V 2 ) 

 

. 
2 = V 2 − 1 

V 

. 
2 = γ 2 

2 

(
−U 2 + c 2 ( U 1 ( t − τ ) − U 2 ( t ) ) −

(
1 

ξ2 

)
( θ2 + ln ( V 2 ) ) 

)
(4)

where c i = k/k i , i = 1,2; θ1new 

= θ1old /A, V new 

= V old /V 0 , U new 

= U old /L,

t new 

= (L/V 0 )t old , ε = (B − A)/A, ξ = (kL)/A, γ = (k/M) 1/2 (L/V 0 ) .

In present paper, we consider that ε 1 = ε 2 = ε , γ 1 = γ 2 = γ ,

ξ 1 = ξ 2 = ξ and c 1 = c 2 = c . 

3. Choice of the relevant parameter values 

As it is commonly known, dynamics of any system is predomi-

nantly controlled by an action of a few control parameters, whose

tuning induce corresponding transitions between different dynam-

ical regimes. Thereby, variations of control parameters should be

performed within the relevant intervals, i.e. by taking the parame-

ter values which are of interest either from theoretical viewpoint,

or which are observed in laboratory conditions or in situ . 

Original model (2) has three main control parameters that pre-

determine its dynamics. As it was previously indicated, parameter

ε denotes the ratio of stress drop and stress increase during the

fault motion ( Fig. 2 ). According to the results of previous studies

[5] , this ratio needs to be positive in order to capture the velocity-

weakening behavior, i.e. for (B −A) > 0 one could observe the unsta-
le dynamics relevant from the viewpoint of seismology. Previous

esearch showed that this condition is fulfilled at depths in Earth’s

rust where the most crustal earthquake foci are located, approx-

mately between 5 and 15 km [5] . Below and above this zone,

arameter ε has negative values, indicating velocity-strengthening

ehavior, which secures the stable dynamics of fault motion. Re-

arding the relevant values of parameter ε, preceding laboratory

ndings on friction properties of granite samples (since continental

rust is mostly composed of granite) indicated that parameters A

nd B are of the order of magnitude 10 −3 [31] , with ratio (B −A)/A

n the interval [ −0.17,0.36], which indicates that meaningful values

f ε could be taken from the interval [ −1,1] ( Table 1 ). One should

ote that present analysis is constrained only to the dynamics of

rustal faults, since fault motion in the subduction zones is under

revailing gravitational influence, which is not examined in this

tudy. It should also be emphasized that in present analysis we

bserve only the velocity weakening behavior, so negative values

f dimensionless stress ratio are not examined. 

Parameter ξ is defined as a function of spring stiffness k L , block

ass M and stress increase A. Stiffness k L is related to the spring

y which blocks are attached to the upper moving plate, which ac-

ording to Brown et al. [32] needs to be much more flexible than

pring connecting the blocks (whose stiffness is described by k C ),

ince the distance between the interacting blocks along the fault is

uch smaller than the dimension of the driving plate. In present

nalysis if one takes that the value of k C is around 1, than parame-

er k L could take values two order of units smaller, k L = 10 −2 . This

urther means that relevant values of parameter c (k C /k L ) are of

0 2 order of unit. Regarding the block mass, we assume that M

akes very small values (order of unit of 10 −6 ), since, in present

nalysis, we do not analyze the effect of gravity (normal stress),

ut dynamic instability is assumed to occur due to effect of fric-

ion and delayed interaction. Hence, analysis is conducted for al-

ost massless blocks. When all of these assumptions, constraints

nd previously obtained results are taken into consideration, one

rrives at the relevant values of ξ of the order of 10 −1 ( Table 1 ). 
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Table 1 

Relevant parameter values for the analysis. 

Parameter Relevant value from the previous studies (order of unit) Reference 

Stress increase: A 10.3 − 19.9 × 10 −3 [25] 

Stress drop: B 12.1 − 20.3 × 10 −3 [25] 

Spring stiffness between the upper plate and the block: k L k L << k C (10 −2 ) [26] 

Critical slip distance: L 10 −2 [27] 

Velocity of the driving plate: V 0 1 [16] 

Controlling parameters 

Parameter Relevant value from the previous studies (order of unit) Adopted interval for present analysis 

ε = (B −A) / A [ −0.17,0.36] [ −1,1] 

ξ = k L × M/A 10 −1 [0,1] 

γ = (k L /M) 1/2 × (L/V 0 ) 1 [0,2] 
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Fig. 3. Diagram τ (c), for the fixed values of parameters ε = 0.4, ξ = 0.5 and γ = 0.8 

(limit cycle of the starting system). Andronov–Hopf bifurcation curves denotes the 

transition from limit cycle (LC) to equilibrium state (EQ) and again to limit cycle 

(LC). Qualitatively similar diagrams are obtained for other parameter values for the 

initial conditions near the equilibrium point. 

Fig. 4. Diagram τ ( ε), for the fixed values of parameters c = 100, ξ = 0.5 and γ = 0.8 

(limit cycle of the starting system). Andronov–Hopf bifurcation curve denotes the 

transition from the initial limit cycle (LC) across the equilibrium state (EQ) and 

again to limit cycle (LC). Qualitatively similar diagrams are obtained for other pa- 

rameter values for the initial conditions near the equilibrium point. 
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a  
Relevant values of parameter γ are determined by taking into

he consideration the spring stiffness k L , block mass M, critical

lip distance L and velocity of the upper driving plate V 0 . Accord-

ng to Scholz [33] , critical slip distance L represents a displace-

ent needed to make a transition between the steady-state fric-

ion regimes ( Fig. 2 ). Its recommended value is 10 −2 order of unit.

egarding the velocity of the upper driving plate, V 0 , its relevant

alue is determined by the stationary solution of system (2) , which

s ( θ ,U,V) = (0,0,1) according to Erickson et al. [16] . Hence, we take

 0 = 1 as a meaningful value of the upper plate velocity. Concern-

ng these appropriate values of k L , M, L and V 0 , one finds that rel-

vant value of γ is of a single order of unit ( Table 1 ). 

One should note that the value of time delay is observed in

omparison with the oscillation period relevant from the seismo-

ogical viewpoint. In present paper, authors consider time delay as

elevant for those values which are significantly smaller that the

orresponding oscillation period. This is in correspondence with

he proposal by Burridge and Knopoff, who took time delay signif-

cantly smaller for the part of the fault that exhibits viscous slip-

ing rather that the parts that move by fracture. 

. Results 

Regarding the local bifurcation analysis, the considered delay

ifferential equation (DDE) system is treated numerically using

DE BIFTOOL, having the obtained results further corroborated by

he Runge-Kutta 4th order numerical method. System (4) has only

ne stationary solution, namely ( θ1 ,U 1 ,V 1 , θ2 ,U 2 ,V 2 ) = (0,0,1,0,0,1) ,

hich corresponds to steady sliding. We proceed in the stan-

ard way to determine and analyze the characteristic equation of

4) around a stationary solution (0,0,1,0,0,1). Details of the analysis

re given in Appendix . 

Next we shall analyze the effect of stationary time delay cou-

led with the influence of coupling strength c and the main con-

rol parameters of the observed system, namely ε, ξ and γ . All the

nalyzes were done for the limit cycle as the starting dynamical

egime of the initial observed system ( τ = 0), which is considered

s a co-seismic regime. 

Fig. 3 shows the Hopf bifurcation curves in τ -c diagram. For

he relevant range of values for coupling strength (10 2 order of

nit), observed system exhibit inverse Andronov–Hopf bifurcation,

rom the initial oscillatory regime, with period T ≈12, to equilib-

ium state (fixed point), for very small value of time delay, τ≈0.01.

ncrease of time delay, e.g. τ = 0.3, for c = 100, induces an occur-

ence of a direct Andronov–Hopf bifurcation, with the appearance

f regular periodic oscillations, with period T = 0.5. Regarding the

scillation amplitudes, direct Andronov–Hopf bifurcation triggers

pproximately ten times smaller displacements. 

Effect of the interaction of time delay and dimensionless stress

atio ε is given in Fig. 4 . As in the previous case, an inverse su-

ercritical Andronov–Hopf bifurcation curve occurs with the in-
rease of τ , introducing the change of dynamical regime from the

imit cycle (for the values of ε > 0.27) to equilibrium state, and fur-

her again to regular periodic oscillations (for τ > 0.3), with the oc-

urrence of direct bifurcation. Qualitatively similar behavior is ob-

erved when τ and nondimensional frequency γ are simultane-

usly varied ( Fig. 5 ). With the increase of time delay, for constant

alue of γ , both inverse and direct supercritical Andronov–Hopf bi-

urcation occurs. 

In the case when τ and ξ are varied, while other parameters

re held fixed for the equilibrium state of the original system (2) ,
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Fig. 5. Diagram τ ( γ ), for the fixed values of parameters c = 100, ξ = 0.5 and ε = 0.4 

(limit cycle of the starting system). Andronov–Hopf bifurcation curve denotes the 

transition from equilibrium state (EQ) to limit cycle (LC). Qualitatively similar di- 

agrams are obtained for other parameter values for the initial conditions near the 

equilibrium point. 

Fig. 6. Diagram τ ( ξ ), for the fixed values of parameters c = 100, ε = 0.4 and γ = 0.8 

(limit cycle of the starting system). Andronov–Hopf bifurcation curve denotes the 

transition from the limit cycle (LC) across the equilibrium state (EQ) to limit cycle 

(LC). Qualitatively similar diagrams are obtained for other parameter values for the 

initial conditions near the equilibrium point. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Transition between seismic cycles in oscillatory regime of spring-slider dy- 

namics. Black line denotes the change of friction (state variable), red line is for dis- 

placement, while blue line indicates the change of velocity. 
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there is an Andronov–Hopf bifurcation curve occurs from the equi-

librium state to regular periodic oscillations ( Fig. 6 ). 

5. Discussion 

Results of the performed analysis are new and meaningful for

both the nonlinear dynamics and seismology. From the viewpoint

of nonlinear dynamics, present analysis is relevant from the phe-

nomenological aspect. In particular, the obtained results indicate

that by assuming the delayed interaction between the blocks, one

can observe two phenomena: inverse and direct Andronov–Hopf

bifurcation. It should be emphasized that this feature is observed

for the values of time delay about 4 × 10 2 order of unit smaller

than the corresponding period of regular oscillations of the start-

ing system (for τ≈0). 

From the seismological aspect, interpretation could be interest-

ing if one looks in the opposite direction. In particular, if the ex-
stence of delayed interaction among different fault segments is

ustified, considering different viscous properties of fault gouge,

han starting dynamical regime should be with introduced positive

alue of time delay. This means that the starting system is prob-

bly in equilibrium state (fixed point), which is proved to occur

ith the introduction of time delay. However, further increase of

ime delay induces the transition to regular periodic oscillations,

hich certainly could not be considered as the onset of co-seismic

egime, for two main reasons. Firstly, frequency of displacements

s very high, i.e. oscillation period is approximately 0.5, which is

ear the value of time delay (0.3), where the bifurcation point oc-

urs. Such large value of time delay could hardly be expected in

atural conditions. Secondly, displacement amplitude is about ten

imes smaller than for the starting system, which is also not likely

o happen, since the majority of displacement along the fault takes

lace during the earthquakes, i.e. in the co-seismic regime. Hence,

n order to “force” the examined system with the included time

elay to enter the co-seismic regime, one needs to analyze the

onditions which lead to the reduction of viscosity effect. Certainly,

eaker impact of viscosity is expected in high temperature and

ow pressure conditions, which are the two conditions usually sat-

sfied during the fault movement. In particular, the unconsolidated

ngular shaped rock material that constitutes the fault gouge ex-

ibits high friction, which further induces the increase in temper-

ture. Also, during the fault movement, fault itself is released of

he pressure generated by the strong tectonic forces acting in op-

osite directions along the fault. In particular, heat generated dur-

ng frictional sliding is a substantial component of the energy bud-

et of earthquakes [34,35] . When time delay is significantly small

 τ � 0.01), fault enters the co-seismic dynamical regime, where

egular periodic oscillations have low-frequency (i.e. high period,

 ≈12), and rather large amplitude (around 1.2 − 2.0 in our numer-

cal simulations). Certainly, case with τ = 0 is out of the question,

ince main assumption of the analysis is that delayed interaction

s inherent property of the compound fault. 

Once the examined model is in oscillatory regime, one could

asily recognize the co-seismic, post-seismic and inter-seismic

egime, latter of which represent short-term occurrence ( Fig. 7 ).
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ne should note that such dynamics, relevant from the viewpoint

f seismology, is observed for the parameter values adopted using

he previous laboratory findings. 

. Conclusion 

In present paper, authors examine dynamics of a spring-slider

odel as a setup of fault movement. Examined model is composed

f two blocks with delayed interaction, which mimics delayed in-

eraction among a group of blocks from the original Burridge–

nopoff model. Analysis is conducted for the parameter values rel-

vant from the seismological viewpoint, based on the previous lab-

ratory findings and seismological observations. Main goal of the

esearch was to establish the background dynamics of a seismic

ycle, including the transition from steady state or aseismic creep

o stick-slip-like seismic regime, with alternation of inter-seismic,

o-seismic and post-seismic cycles. 

Results of the performed analysis indicate the following. Intro-

uction of small time delay, significantly smaller when compared

o the period of oscillatory regime, leads to transition from fixed

oint (equilibrium state) to periodic oscillations (limit cycle). From

he viewpoint of seismology, these findings indicate a key role of

he interaction among different parts of a compound fault in gen-

ration of seismogenic motion. More closely, effect of viscosity of

 fault zone plays a crucial role in transmission of a movement

long the fault. From the standpoint of earthquake phenomenol-

gy, one could consider regular periodic oscillations as an exam-

le of stick-slip like regime, with the successive shifts between

he co-seismic regime (increasing velocity branch and decreasing

riction), post-seismic regime (decreasing velocity branch and in-

reasing friction) and inter-seismic regime (quasi-stationary veloc-

ty branch). On the other hand, some authors could consider the

hole oscillatory regime as a representative of a co-seismic fault

ovement [36] . 

Another interesting outcome of the present research lies in the

pecific effect of the main controlling parameters, which were pre-

iously indicated as the most relevant for the modeled fault dy-

amics [16] . Apparently, ratio of stress drop to stress increase (pa-

ameter ε), for the range of other parameters’ values relevant from

he seismological viewpoint and for the assumed delayed interac-

ion as inherent property of fault dynamics, induces the transition

rom equilibrium state to periodic oscillations. Regarding the ef-

ect of other two parameters, γ and ξ , related to the stiffness of

he spring connecting the blocks and the upper driving plate, re-

ults obtained imply that a change from steady state or aseismic

reep to seismic fault motion occurs with the increase of γ and

. However, these parameters are considered as constants for the

bserved system, so it is highly unlikely to expect their significant

hanges during the fault motion. The expected changes of these

arameters are either small or these changes are slow from the

iewpoint relevant for the duration of seismogenic fault motion. 

As for the effect of coupling strength c , increase of c for the

elevant range of parameter values ( > 10 2 ) leads to the change of

ynamical regime only for rather high values of time delay, which

s certainly not expected in the real conditions along the fault zone

n the Earth’s crust. Hence, in this case, time delay plays again the

ignificant role, in a way that the reduction of time delay could

ead to the onset of co-seismic regime. 

Concerning the predominant effect of delayed coupling on dy-

amics of fault motion, further research could include the analy-

is of time varying delay on fault motion. Such an assumption is

ustified from the seismological viewpoint, since one could expect

hanges of friction properties along the fault zone in a reasonable

eriod of time. From the standpoint of nonlinear dynamics, in-

roduction of coupling with variable delay would certainly induce
ore complex behavior and, maybe, indicate some new dynamical

echanisms in the background of earthquake nucleation. 
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ppendix 

Linearization of the system (4) and substitution θ1 = A 1 e 
λt ,

 1 = B 1 e 
λt , V 1 = C 1 e 

λt , θ2 = A 2 e 
λt , U 2 = B 2 e 

λt , V 2 = C 2 e 
λt and with

 1 (t- τ ) = B 1 e 
λ(t- τ ) and U 2 (t- τ ) = B 2 e 

λ(t- τ ) results in a system of al-

ebraic equations for the constants A 1 , B 1 , C 1 , A 2 , B 2 and C 2 . This

ystem has a nontrivial solution if the following is satisfied: 

−( λ + 1 ) 

[ 
λ
(
λ + γ 2 

1 

(
1 

ξ1 

))
· D 

+ γ 2 
1 ( 1 + c 1 ) · D + γ 2 

1 c 1 e 
−λτ ( λ + 1 ) γ 2 

2 c 2 e 
−λτ

]
+ λ( 1 + ε 1 ) γ

2 
1 

(
1 

ξ1 

)
· D = 0 (1A) 

here: 

 = 

∣∣∣∣∣
−( λ + 1 ) 0 −( 1 + ε 2 ) 

0 −λ 1 

−γ 2 
2 

(
1 
ξ2 

)
−γ 2 

2 ( 1 + c 2 ) −
(
λ + γ 2 

2 

(
1 
ξ2 

))
∣∣∣∣∣

The Eq. (1A) is the characteristic equation of the system (4) and

an be written in the following form: 
 

−(λ+ 1) 
[ 
λ
(
λ+ γ 2 

1 

(
1 

ξ1 

))
+ γ 2 

1 ( 1 + c 1 ) 

] 
+ λ( 1 + ε 1 ) γ

2 
1 

(
1 

ξ1 

)} 

·

 = ( λ + 1 ) 
2 γ 2 

1 γ
2 

2 c 1 c 2 e 
−2 λτ (2A)

n which we substitute λ= i ω to obtain: 

{ [ 
ω 2 γ 2 

1 

(
1 
ξ1 

)
+ ω 2 −γ 2 

1 ( 1+ c 1 ) 
] 
+ iω 

[ 
ω 2 −γ 2 

1 ( 1+ c 1 ) −γ 2 
1 

(
1 
ξ1 

)
+ ( 1+ ε 1 ) γ 2 

1 

(
1 
ξ1 

)] } 
D 

γ 2 
1 
γ 2 

2 
c 1 c 2 [ −ω 2 +1+ i 2 ω ] 

= 

 cos ( 2 ωτ ) − i sin ( 2 ωτ ) 

(3A) 

The resulting two equations for the real and imaginary part of

3A) after squaring and adding give an equation for each of the

arameters, c 1 , c 2 , ε 1 and ε 2 in terms of the other parameters, ω,

, γ 1 and γ 2 , and after division, an equation for τ in terms of

he parameters ω, μ, γ 1 , γ 2 , ε1 , ε2 , ξ 1 and ξ 2 . In this way, one

btains parametric representations of the relations between τ and

he parameters, which correspond to the bifurcation values λ= i ω.

he general form of such relations is illustrated by the following

ormula for ε1 as a function of ω: 

( 1 + ε 1 ) 1 / 2 = −F ±
√ 

F 2 − G 

2 

H 

(4A) 

here F, G and H are abbreviations for the following terms: 

F = 

(
ω 

[ (
ω 

2 − γ 2 
1 ( 1 + c 1 ) − γ 2 

1 

(
1 

ξ1 

))
B + AD 

] (
−ω 

2 + 1 

)

−2 

[ 
AB − ω 

2 
(
ω 

2 − γ 2 
1 ( 1 + c 1 ) − γ 2 

1 

(
1 

ξ1 

))
D 

] )
·

ω γ 2 
1 

(
1 

ξ1 

){
B 

(
−ω 

2 + 1 

)
+ 2 ω 

2 D 

}

+ 

((
AB − ω 

2 
(
ω 

2 − γ 2 
1 ( 1 + c 1 ) − Dγ 2 

1 

(
1 

ξ1 

)))(
−ω 

2 + 1 

)

+ B ω 

2 
(

2 

(
ω 

2 − γ 2 
1 ( 1 + c 1 ) − γ 2 

1 

(
1 

ξ1 

))
+ AD 

))



316 S. Kosti ́c et al. / Chaos, Solitons and Fractals 106 (2018) 310–316 

 

 

 

 

 

 

 

C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

 

[  

 

 

 

 

 

[  

 

 

[  

 

[  

 

 

 

[  

 

G = 

[(
ω γ 2 

1 

(
1 

ξ1 

){
B 

(
−ω 

2 + 1 

)
+ 2 ω 

2 D 

})2 

+ 

(
ω 

2 γ 2 
1 

(
1 

ξ1 

){ 

B 

(
1 + 

1 

μ

)
− D 

(
−ω 

2 + 1 

)} )2 
]

·

[ ((
ω 

[ (
ω 

2 − γ 2 
1 ( 1 + c 1 ) − Bγ 2 

1 

(
1 

ξ1 

))
+ AD 

] (
−ω 

2 + 1 

)

−2 

[ 
AB − D ω 

2 
(
ω 

2 − γ 2 
1 ( 1 + c 1 ) − γ 2 

1 

(
1 

ξ1 

))] ))2 

+ 

+ 

((
AB − ω 

2 
(
ω 

2 − γ 2 
1 ( 1 + c 1 ) − Dγ 2 

1 

(
1 

ξ1 

)))(
−ω 

2 + 1 

)

+ ω 

2 
(

2 

(
ω 

2 − γ 2 
1 ( 1 + c 1 ) − Bγ 2 

1 

(
1 

ξ1 

))
+ AD 

))2 

−

−
(((

−ω 

2 + 1 

)2 + 2 ω 

2 
)(

γ 2 
1 γ

2 
2 c 1 c 2 

))2 
]

H = 

(
γ 2 

1 

(
1 

ξ1 

)
ω 

{
B 

(
−ω 

2 + 1 

)
+ 2 ω 

2 D 

})2 

+ 

(
ω 

2 γ 2 
1 

(
1 

ξ1 

){
2 B − D 

(
−ω 

2 + 1 

)})2 

(5A)

and A, B and D are: 
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On the other hand, for c 1 as a function of ω: 
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(7A)

where F,G and H are the same as in (7). 

For τ as a function of ω: 
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where k is any nonnegative integer such that τ k ≥ 0 , and J and K
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where A, B and D are the same as in (8), and C stands for the

following term: 
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We consider the macroscopic regimes and the scenarios for the onset and the suppression of collective
oscillations in a heterogeneous population of active rotators composed of excitable or oscillatory elements. We
analyze the system in the continuum limit within the framework of Ott-Antonsen reduction method, determining
the states with a constant mean field and their stability boundaries in terms of the characteristics of the rotators’
frequency distribution. The system is established to display three macroscopic regimes, namely the homogeneous
stationary state, where all the units lie at the resting state, the global oscillatory state, characterized by the
partially synchronized local oscillations, and the heterogeneous stationary state, which includes a mixture
of resting and asynchronously oscillating units. The transitions between the characteristic domains are found
to involve a complex bifurcation structure, organized around three codimension-two bifurcation points: a
Bogdanov-Takens point, a cusp point, and a fold-homoclinic point. Apart from the monostable domains, our
study also reveals two domains admitting bistable behavior, manifested as coexistence between the two stationary
solutions or between a stationary and a periodic solution. It is shown that the collective mode may emerge via
two generic scenarios, guided by a saddle-node of infinite period or the Hopf bifurcation, such that the transition
from the homogeneous to the heterogeneous stationary state under increasing diversity may follow the classical
paradigm, but may also be hysteretic. We demonstrate that the basic bifurcation structure holds qualitatively in
the presence of small noise or small coupling delay, with the boundaries of the characteristic domains shifted
compared to the noiseless and the delay-free case.

DOI: 10.1103/PhysRevE.100.062211

I. INTRODUCTION

The onset of a collective mode mediated via a transition to
synchrony is a fundamental paradigm of macroscopic behav-
ior in a broad variety of fields, ranging from neuroscience and
other biologically inspired models to chemistry, technology,
and social science [1,2]. A classical approach within the the-
ory of nonlinear dynamics is to regard populations exhibiting
a collective mode as macroscopic oscillators [3–5], which can
then interact with other populations or be subjected to external
stimuli. In this context, we investigate an important problem
of the emergence and the suppression of collective oscillations
in populations comprised of units with nonuniform intrinsic
parameters, which are drawn from a certain probability dis-
tribution. Such nonuniformity is a manifestation of variability
[6–9], a ubiquitous feature that often makes it more realistic to
consider heterogeneous rather than homogeneous assemblies.
Depending on the particular application, variability may alter-
natively be referred to as diversity, heterogeneity, impurities,
or quenched noise. In many cases, the diversity can be large

*vladimir.klinshov@ipfran.ru
†franovic@ipb.ac.rs

enough to give rise to qualitative differences in individual
dynamics of units, such that some of the active elements
within a population may be self-oscillating while the others
are excitable.

The classical Kuramoto paradigm [10] addresses the sce-
nario where the diversity is manifested at the quantitative level
alone, since all the units are considered to be self-oscillating.
There, the continuous transition to synchrony occurs once
the coupling between the oscillators becomes strong enough
to overcome the effects of diversity [2,11]. Nevertheless, the
diversity alone has been shown to be capable, under appro-
priate conditions, to enhance the response of an assembly
to external forcing or to promote synchronization [7,8,12].
Moreover, in the case of heterogeneous assemblies made up of
excitable and oscillatory units rather than the oscillators alone,
it has been demonstrated that the transition to synchrony with
increasing diversity may be classical or reentrant, depending
on the particular form of the units frequency distribution
[13]. For such a setup, it has also been indicated that the
collective firing emerges via a generic mechanism where the
entrainment of units is degraded by increasing diversity [8].

In the present paper, we investigate the regimes of macro-
scopic behavior, as well as the scenarios for the onset and
the suppression of collective oscillations in a heterogeneous
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population made up of oscillatory and excitable units, consid-
ering a model of active rotators with global sine coupling. Our
analysis relies on the Ott-Antonsen reduction method [14,15],
based on the ansatz that the long-term macroscopic dynamics
of such systems settles on a particular invariant attractive man-
ifold. We first provide an exact description of macroscopic
stationary states featuring a constant mean field and then
determine the bifurcations that outline the stability boundaries
of the characteristic domains. While the stationary states and
the associated self-consistency equation are obtained for an
arbitrary distribution of natural frequencies, the subsequent
bifurcation analysis is carried out for a uniform frequency
distribution on a bounded interval, which has the advantage of
allowing for analytical tractability. We establish the complete
bifurcation structure and demonstrate two generic scenarios
for the emergence and the suppression of the collective mode.
While the scenario featuring the successive onset and sup-
pression of oscillations under increasing diversity has earlier
been reported to be universal for heterogeneous populations
with various distributions of the units’ frequencies [12,13],
the other scenario, which involves a hysteretic behavior due
to existence of bistability regions, is reported here for the first
time, as far as we know.

Apart from diversity, the two additional ingredients in-
fluencing the dynamics in neuronal and other biophysical
systems are coupling delays and noise [16–18]. In particular,
realistic models often have to include explicit coupling delays
in order to describe the effects of finite velocity of signal prop-
agation or the latency in information processing [17,19–23].
On the other hand, creating coarse-grained models inevitably
requires one to incorporate different sources of noise [24–31].
Both coupling delay and noise may play an important role
in the collective dynamics of a population. For example, in
systems consisting just of excitable units, it is well known
that the noise may play a constructive role, contributing to
the onset of collective firing via synchronization of local
noise-induced oscillations [32–35]. Concerning the effect of
coupling delays, the standard Kuramoto model with uniform
delays has been shown to exhibit the discontinuous rather
than the continuous transition between the incoherent and
coherent states, further having the synchronization frequency
suppressed by the delay [11,36].

Our study evinces the robustness of the general physical
picture, inherited from the noiseless and the delay-free case,
in the presence of small coupling delay and small noise.
While the impact of small delay may be analyzed within
the local stability approach we developed, the Ott-Antonsen
method in principle does not allow one to treat stochastic
assemblies. Only quite recently, an approach involving the
so-called circular cumulants [37,38] has been developed to
incorporate a first-order correction to the Ott-Antonsen theory,
which accommodates for the effects of noise. We perform
numerical analysis of the system dynamics in presence of
small noise and complement it with qualitative arguments.

The paper is organized as follows. In Sec. II, we present the
details of the model and provide the continuum limit formula-
tion for the delay- and the noise-free setup, obtaining the Ott-
Antonsen equation for the local order parameter. Section III
comprises the analytical results on the local structure of the
macroscopic stationary states and the related self-consistency

equation, derived for an arbitrary frequency distribution. In
Sec. IV, the stability and bifurcation analysis of the stationary
states is carried out for a particular distribution of frequencies,
comparing the stability boundaries of the characteristic do-
mains to those obtained in numerical experiments. In Sec. V,
it is shown that the basic bifurcation scenario persists in
presence of small noise or small coupling delay. Section VI
contains our concluding remarks.

II. MODEL DYNAMICS AND THE CONTINUUM
LIMIT FORMULATION

We consider a heterogeneous assembly of N globally cou-
pled active rotators described by:

θ̇i(t ) = ωi − a sin θi(t ) − K

N

∑
j

sin[θi(t )

− θ j (t − τ ) + α] + σηi(t ), i = 1, . . . N, (1)

where the phase variables are θi ∈ S1 and the local dynamics is
governed by the nonisochronicity parameter a and the natural
frequency ωi. Regarding the term “natural frequency,” note
that it will be used for convenience to describe the intrinsic
parameter involving the quenched randomness, even though
some units may exhibit excitable, rather than oscillatory,
behavior. The frequencies are distributed according to the
probability density function g(ω) that satisfies

∫ ∞
−∞ g(ω)dω =

1 and is characterized by the mean value � and the width 	,
which we here explicitly refer to as the diversity parameter.
The individual unit rotates uniformly with the frequency
ωi for a = 0 only, whereas for a > 0 its rotation becomes
nonuniform, having the rotation direction dependent on the
sign of ωi. The relation between ωi and the parameter a
underlies the excitability feature of autonomous dynamics.
In particular, ωi constitutes the bifurcation parameter, such
that for fixed a, an isolated unit lies in the excitable regime
if |ωi| < a. In this case, the unit possesses a stable node,
whereas the characteristic nonlinear threshold-like response is
mediated by an unstable steady state. At |ωi| = a, an isolated
unit undergoes a saddle-node of infinite period (SNIPER)
bifurcation toward the oscillatory regime. The interactions are
assumed to be uniform across the population, and are charac-
terized by the coupling strength K , the coupling phase-lag α,
and the coupling delay τ . The effect of random fluctuations
is represented by the white Gaussian random forces ηi of
intensity σ 2, which act independently on each unit [〈ηi(t )〉 =
0, 〈ηi(t )η j (t )〉 = δi jδ(t − t )].

As already indicated, in this and the following section we
apply the Ott-Antonsen framework [14,15] to investigate the
collective dynamics of an heterogeneous assembly of active
rotators in the delay- and the noise-free case τ = σ = 0.
To this end, let us introduce the Kuramoto complex order
parameter, which represents the center of mass of all rotators:

R(t ) = ρ(t )eiψ (t ) = 1

N

∑
j

eiθ j (t ), (2)

such that (1) can be rewritten as

θ̇i = ωi − a

2i
(eiθi − e−iθi ) + K

2i
[Re−i(θi+α) − Rei(θi+α)], (3)
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where the bar denotes the complex conjugate. In the ther-
modynamic limit N → ∞, the macroscopic state of the sys-
tem can be described by the probability density function
f (θ, ω, t ), which, for the considered moment t , gives the rel-
ative number of oscillators whose phases and frequencies are
θi(t ) ≈ θ , ωk ≈ ω. The normalization condition required for
the probability density function is

∫ 2π

0 f (θ, ω, t )dθ = g(ω).
Given the conservation of oscillators, f (θ, ω, t ) has to fulfill
the continuity equation

∂ f

∂t
+ ∂

∂θ
( f v) = 0, (4)

where the velocity is just

v(θ, ω, t ) = ω − a

2i
(eiθ − e−iθ ) + K

2i
[Re−i(θ+α) − Rei(θ+α)].

(5)
In the last expression, we have used the form of the Kuramoto
mean field in the thermodynamic limit N → ∞,

R(t ) =
∫ ∞

−∞
dω

∫ 2π

0
f (θ, ω, t )eiθ dθ, (6)

According to the Ott-Antonsen ansatz [14,15], the long-term
dynamics of the continuity equation (8) settles on a particular
manifold of the form

f (θ, ω, t ) = g(ω)

2π

{
1 +

∞∑
n=1

[zn(ω, t )einθ + zn(ω, t )e−inθ ]

}
,

(7)

where the complex amplitude z(ω, t ) is such that |z(ω, t )| �
1. Introducing the assumption (7) into (4), one finds that
z(ω, t ) satisfies the Ott-Antonsen equation

ż(ω, t ) = iωz + (1 − z2)
a

2
+ K

2
Re−iα − K

2
Reiαz2. (8)

Quantity z(ω, t ) should be interpreted as the frequency-
dependent local order parameter, in the sense that it quantifies
the degree of synchrony of oscillators whose intrinsic frequen-
cies ωi lie within a small interval around the given frequency
ω. In the continuum limit, the global and the local order
parameter are connected by the self-consistency condition

R = Gz =
∫ ∞

−∞
g(ω)z(ω)dω, (9)

which follows from the definition (6) and the ansatz (7). Note
that (8) presents a generalization of the corresponding result
in Ref. [13] for a �= 1, α �= 0.

III. STATIONARY SOLUTIONS OF THE
OTT-ANTONSEN EQUATION

Within this section, our aim is to characterize the micro-
scopic structure of the stationary solutions, finding the means
to classify them by applying the self-consistency condition
(9). To do so, one first looks for the solutions of the Ott-
Antonsen equation (8) for which the Kuramoto mean field
R(t ) = ρ(t )eiψ (t ) is constant. In particular, we substitute the
solution of the form z(ω, t ) = r(ω, t )eiϕ(ω,t ) into (8), which

ultimately results in

ṙ = B

2
(1 − r2) cos φ,

rφ̇ = ωr − B

2
(1 + r2) sin φ, (10)

having introduced the notation

B =
√

a2 + K2ρ2 + 2aKρ cos(ψ − α),

β = arctan
Kρ sin(ψ − α)

a + Kρ cos(ψ − α)
,

φ = ϕ − β. (11)

From the system (10), one infers that the quantity B, which
depends only on the coupling strength and the mean field,
plays the role of the macroscopic excitability parameter. This
follows from the fact that the microscopic structure of the
stationary state is self-organized in a way that the assembly
splits into two groups, according to the relation between the
respective natural frequencies ωi and B. In particular, one
group is comprised of rotators in the excitable regime, whose
intrinsic frequencies satisfy |ω| < B, whereas the other group
consists of rotating units, whose intrinsic frequencies satisfy
|ω| > B. Another indication on the role of B can be obtained
if the definitions of B and β from (11) are applied to transform
the original equation for the dynamics of rotators (1) into θ̇i =
ωi − B sin (θi − β ), which just conforms to a set of forced
active rotators. From the level of single unit’s dynamics, B is
then classically referred to as the resistivity parameter in the
sense that it reflects the rotator’s ability to modify its natural
frequency.

Taking a closer look into the dynamics of the two sub-
assemblies following from (10), one finds that for |ω| < B
there exist two steady states, given by

r∗(ω) = 1, φ∗(ω) = arcsin
ω

B
, (12)

and

r∗(ω) = 1, φ∗(ω) = π − arcsin
ω

B
, (13)

whereby our latter stability analysis will show that only the
solution (12) is stable. For the units within the rotating group
|ω| > B, the only steady state reads

r∗(ω) = |ω|
B

−
√

ω2

B2
− 1

φ∗(ω) = π

2
sgnω. (14)

In order to fully quantify the stationary solutions of the Ott-
Antonsen equation (8), one has to obtain an explicit expres-
sion for the macroscopic excitability parameter B. In order to
do so, we invoke the self-consistency equation (9). Applying
the latter to the stationary state z∗(ω) = r∗(ω)eiφ∗(ω)+iβ given
by (12) and (14), one obtains

ρei(ψ−β ) = i�

B
+

∫
|ω|<B

dωg(ω)

√
1 − ω2

B2

− i

B

∫
|ω|>B

dωg(ω)ω

√
1 − B2

ω2
, (15)
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where � =
∫ ∞
−∞ ωg(ω)dω refers to the mean value of the fre-

quency distribution. Separating for the real and the imaginary
part of (15) and after some algebra, one ultimately arrives at
the self-consistency equation for B of the form:

f (B) = B2 − a2 − 2K[ f1(B) sin α + f2(B) cos α]

+ K2 f 2
1 (B) + f 2

2 (B)

B2
= 0, (16)

where

f1(B) = � −
∫

|ω|>B
dωg(ω)ω

√
1 − B2

ω2
,

f2(B) =
∫

|ω|<B
dωg(ω)

√
B2 − ω2. (17)

Note that the analogous expression has been obtained in
Ref. [13] but only for the particular case a = 1, α = 0. The
results so far apply for an arbitrary distribution of natural
frequencies g(ω). In order to carry out an explicit analysis
on the stability of stationary states, including determining
the associated stability boundaries and characterization of
the transitions between the different collective regimes, we
confine the remainder of the study to a particular case of g(ω),
namely a uniform distribution of frequencies on a bounded
interval.

IV. STABILITY OF THE STATIONARY SOLUTIONS OF
THE OTT-ANTONSEN EQUATION

Within this section, we specify the general results from
Sec. III to an example of a uniform distribution of natural
frequencies g(ω) defined on an interval ω ∈ [ω1, ω2]:

g(ω) =

⎧⎨
⎩

0, ω < ω1

γ , ω1 < ω < ω2

0, ω > ω2

, (18)

where γ = 1/(ω2 − ω1) derives from the normalization con-
dition. The given distribution is characterized by an average
� = ω1+ω2

2 and the width 	 = ω2 − ω1. The advantage of
making such a choice of frequency distribution is that it allows
for a full analytical treatment of the self-consistency equation
(16) for the macroscopic excitability parameter. In particular,
the integrals (17) then read

f1(B) =

⎧⎨
⎩

� − γ [F1(ω2) − F1(ω1)], B < ω1

� − γ F1(ω2), ω1 < B < ω2

�, B > ω2

, (19)

where

F1(ω) = |ω|
2

√
ω2 − B2 + B2

2
ln

B

|ω| +
√

ω2 − B2
, (20)

and

f2(B) =

⎧⎨
⎩

0, B < ω1

γ
[

π
4 B2 − F2(ω1)

]
, ω1 < B < ω2

γ [F2(ω2) − F2(ω1)], B > ω2

, (21)

with

F2(ω) = |ω|
2

√
B2 − ω2 + B2

2
arcsin

ω

B
. (22)

Considering the uniform frequency distribution (18), we
have carried out the stability and bifurcation analysis of the
Ott-Antonsen equation (8). The main control parameters are
the characteristics of g(ω), namely its mean � and the width
	, while the remaining system parameters a, K , and α are
kept fixed. Note that the stability analysis of (8) requires one
to rewrite it as a real system in order to eliminate the complex
conjugation [39–41]. The analysis per se involves lineariza-
tion of the Ott-Antonsen equation for variations around the
stationary solution (12)–(14) and consists in determining how
the Lyapunov spectra of the stationary states depend on �

and 	. While the technical details of the calculation are
elaborated in the Appendix, the analysis we provide below
will include characterization of the stationary solutions of
the Ott-Antonsen equation (8) and the associated stability
domains, as well as the description of the mechanisms behind
the onset and the suppression of collective oscillations. The
analytical results are corroborated by numerical experiments
carried out on a heterogeneous assembly of N = 104 active
rotators.

The microscopic structure of the stationary regimes and
the fashion in which their number and stability depend on
the characteristics of g(ω) may conveniently be explained in
terms of the solutions of the self-consistency equation (16)
for the parameter B. A typical form of the function f (B)
for the considered domain of (�,	) values is illustrated in
Fig. 1. The three roots of f (B), denoted by B1 > B2 > B3,
correspond to the stationary solutions of the Ott-Antonsen
equation (8). In particular, the macroscopic regime associated
to B1 presents a global rest state, because the macroscopic
excitability parameter is so large that the frequencies of all
the units lie below it. Given its microscopic structure, where
the local dynamics is solely excitable, this state can also be
termed a homogeneous stationary state. The corresponding
time series θi(t ) and the evolution of the modulus of the
Kuramoto order parameter ρ(t ) = |R(t )| are illustrated in

1 2 3 4 5 6

-0.8

-0.4

0

0.4

0.8

FIG. 1. Typical form of the function f (B) and the three solutions
B1 > B2 > B3 of the self-consistency equation (16). The system
parameters are as follows: a = 1, K = 5, α = 0, � = 0.87, and
	 = 6.
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FIG. 2. Bifurcation diagram in the (�, 	) plane, constructed by the method of stability analysis described in the Appendix. The remaining
system parameters are fixed to a = 1, K = 5, α = 0. The two branches of saddle-node bifurcations (blue solid lines) emanate from the cusp
point CP, where the pitchfork bifurcation occurs. From the Bogdanov-Takens point (BT) emanate the Hopf bifurcation curve (H), indicated by
the red solid line, and a branch of saddle-homoclinic bifurcations (SH), shown by the green dashed line. The upper branch of folds meets SH
at the fold-homoclinic point (FH). The bullets indicate the parameter values associated to the time series in Fig. 4.

Fig. 4(a). We shall demonstrate below that the global rest
state may disappear in a fold bifurcation. In contrast to the
macroscopic regime given by B1, the stationary state corre-
sponding to B3 is typically a heterogeneous one, involving a
subassembly of excitable units (|ωi| < B3) and a subassembly
of oscillating units (|ωi| > B3), see the example of the time
series in Fig. 4(c). In Ref. [13], the heterogeneous stationary
state is referred to as the asynchronous state, because spiking
activity may be observed at the level of single units, but the
macroscopic dynamics per se does not exhibit a collective
mode. The heterogeneous state, as shown in greater detail
below, may undergo either a fold or Hopf bifurcation scenario.
The stationary state associated to B2 conforms to a saddle
within the relevant (�,	) domain, undergoing fold bifurca-
tions either with B1 or B3 or providing for the separatrices in
case of the two observed bistable regimes.

The bifurcation diagram in Fig. 2 shows how the number
and stability of the stationary solutions of the Ott-Antonsen
equation (8) changes under variation of the parameters of
the frequency distribution � and 	. The diagram features
five characteristic domains I–V and is organized around three
codimension-2 bifurcation points, namely (i) the cusp point
(CP), which corresponds to a symmetry-breaking pitchfork bi-
furcation; (ii) the Bogdanov-Takens point (BT), which unfolds
into Hopf (H) and saddle-homoclinic (SH) bifurcation curves;
and (iii), the fold-homoclinic point (FH), where a branch of

saddle-node bifurcations meets a curve of homoclinic tangen-
cies of a limit cycle. The upper and the lower branch of folds,
which emanate from the cusp, correspond to the coalescence
of the state B2 with B1 and B3, respectively. The former or
latter branch has been obtained by solving for the parameters
where the local minimum or maximum of the function f (B)
crosses the zero level. The Hopf bifurcation curve has been
determined by the local stability analysis of the stationary
state B3. While such local analysis cannot provide for the
saddle-homoclinic branch, its existence follows from the gen-
eral structure of the Bodganov-Takens bifurcation [42,43].

In the following, we provide a detailed description of the
regimes underlying domains I–V, illustrating the associated
phase portraits, cf. Fig. 2, and explaining the bifurcations that
outline their stability boundaries. At the cusp point CP, the
two branches of saddle-node bifurcations coalesce, cf. the two
blue solid lines in Fig. 2. In terms of the stationary states
B1–B3 from Fig. 1, to the right of CP there exists only a
stable fixed point B2. Following the pitchfork bifurcation, B2

becomes a saddle, whereas two stable nodes, B1 and B3, are
created. The parameter region admitting only a single stable
stationary state, be it B1, B2, or B3, is denoted by V in Fig. 2.
Decreasing the diversity, the stability of B1 is influenced only
by a fold bifurcation, whereas the character and stability of
B3 are influenced by the fold and Hopf bifurcations, derived
from the Bogdanov-Takens point. We have evinced that while
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FIG. 3. Oscillation frequency of the periodic solution ωosc in
terms of diversity 	, calculated along the Hopf bifurcation curve.
One observes that the frequency tends to zero while approaching the
Bogdanov-Takens point. The parameters a, K , and α are the same as
in Fig. 2.

approaching BT, the frequency of oscillations ωosc expectedly
tends to zero, see Fig. 3. Along the lower branch of folds
B2 and B3 get annihilated, so that from the right of this
curve and to the cusp point, the only stable stationary state
of the system is the node B1. The Hopf bifurcation curve
that emanates from the BT point affects the stability of the
stationary state B3, such that it becomes unstable for smaller
diversities. This implies that within the region IV, bounded by
the Hopf curve to the right and the two fold curves on the
left, one observes bistability between two stationary states,
namely the stable node B1 and the stable focus B3, which

are separated by the stable manifold of the saddle B2, cf. the
corresponding phase portrait in Fig. 2. Reducing diversity,
B3 undergoes a supercritical Hopf bifurcation (H), whereby
immediately to the left of the Hopf curve (region III), one
finds bistability between a small limit cycle and the stable node
B1, again separated by the stable manifold of the saddle B2.
The time series illustrating the microscopic and macroscopic
dynamics of the oscillatory states born from the Hopf bifurca-
tion for two different parameter sets, (�1,	1) = (0.87, 6.76)
and (�2,	2) = (0.93, 6.78), are provided in Fig. 4(b) and
Fig. 4(e).

Consistent with the Bogdanov-Takens scenario, the limit
cycle born from the Hopf bifurcation is destabilized via a
homoclinic tangency to the saddle B2, which is reflected by
a branch of saddle-homoclinic bifurcations (SH) emanating
from BT, see the green dashed line in Fig. 2. Using the
local stability approach described in the Appendix, we are
not able to trace the stability of a limit cycle per se but have
been able to qualitatively verify the disappearance of the limit
cycle by numerical means. The SH curve terminates at the
fold-homoclinic point (FH), where it meets the upper branch
of fold bifurcations. At FH, the stable manifold of the saddle
B2 touches the invariant circle. Decreasing diversity further
away from the saddle-homoclinic bifurcation, cf. region I,
the system exhibits a stable node B1 and has two additional
unstable fixed points, namely the saddle B2 and the unstable
focus B3.

At the upper branch of folds, under increasing diversity, the
stable node B1 and the saddle B2 collide and disappear. For 	

values less than that of the FH point, the fold takes place on the
invariant circle, giving rise to a SNIPER bifurcation. Crossing
the SNIPER bifurcation either by increasing � or 	, the
collective dynamics of the system exhibits a transition toward
the macroscopic oscillatory state. The latter is characterized
by synchronous local oscillations of a large period, cf. the
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FIG. 4. Local and collective dynamics within the characteristic parameter domains indicated in Fig. 2. In the top row are provided the
examples of the time series ρ(t ) = |R(t )|, while in the bottom row are shown the corresponding local time series θi(t ) normalized over 2π . The
particular parameter values of the frequency distribution (indicated by bullets in Fig. 2) are (�, 	) = (0.87, 6.64) in (a), (�,	) = (0.87, 6.76)
in (b), (�,	) = (0.87, 7) in (c), (�,	) = (0.93, 6.6) in (d), and (�,	) = (0.93, 6.78) in (e). The remaining system parameters are the same
as in Fig. 2.
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FIG. 5. Characteristic transition sequences between the different macroscopic regimes under increasing diversity for a fixed value of �.
The states are described by the time-averaged modulus of the Kuramoto order parameter 〈ρ(t )〉t (left column) and the associated variance
μ (right column). The mean frequencies are � = 0.9 in (a), � = 0.892 in (b), and � = 0.884 in (c). The classical scenario of transitions is
recovered in (a), whereas the two hysteretic scenarios involving passage over one or two bistability regions, indicated by shading in (b) and
(c), are reported for the first time as far as we know.

time series in Fig. 4(e). For this reason, it is also called the
synchronous state in Ref. [13]. For diversities to the right of
the FH point, the saddle-node annihilation of B1 and B2 no
longer occurs on an invariant circle. Thus, the only attractor
within region VI corresponds to a small limit cycle emerging
from Hopf destabilization of B3. For increasing diversity, B3

gains stability by undergoing the inverse Hopf bifurcation, as
already indicated above.

A. Classical and hysteretic transitions
between macroscopic regimes

Having characterized all the regimes of macroscopic ac-
tivity and the associated stability domains, we focus on the
scenarios leading to the onset and the suppression of the
collective mode in heterogeneous populations, an issue of out-
standing importance in the theory of coupled dynamical sys-
tems. By the classical paradigm [13], the systematic increase
of diversity under fixed mean frequency induces a sequence of
transitions between the three regimes of collective dynamics,
namely the global rest state, the synchronous state (corre-
sponding to macroscopic oscillations), and the asynchronous

state (a heterogeneous state displaying mixed excitable and
oscillatory local dynamics). Our study demonstrates that,
apart from this, there exist two novel generic scenarios of
transitions involving a hysteretic behavior. To gain a deeper
insight into this problem, we have plotted how the time-
averaged modulus of the Kuramoto mean-field ρ(t ) = |R(t )|
and the associated variance μ =

√
〈ρ2〉t − 〈ρ〉2

t change under
variation of the diversity 	 for the three characteristic mean
frequencies � ∈ {0.9, 0.892, 0.884}, cf. Fig. 5. In order to
reveal the potential bistable behavior, we have carried out
sweeps in the directions of the increasing and the decreasing
	 applying the method of numerical continuation, where the
initial conditions for the system with incremented 	 coincide
with the final state at the previous 	 value.

The classical sequence of transitions is indeed recovered
for � = 0.9, see Fig. 5(a). There the onset of the collective
mode is guided by a SNIPER bifurcation, mediating a tran-
sition from the homogeneous stationary state B1 to a periodic
solution. The suppression of the collective mode is induced by
an inverse Hopf bifurcation that stabilizes the heterogeneous
stationary state B3, which is analogous to the Kuramoto-type
scenario where the system desynchronizes under increasing

062211-7



VLADIMIR KLINSHOV AND IGOR FRANOVIĆ PHYSICAL REVIEW E 100, 062211 (2019)

6.55 6.6 6.65 6.7 6.75 6.8 6.85 6.9 6.95

  Δ
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9
Ω

I

II V

III

IV

FIG. 6. The (	,�) parameter plane divided into regions with
different macroscopic dynamics: the monostable stationary state
(dark blue, regions I and V), monostable limit cycle (light blue,
region II), bistability with two coexisting stationary states (green,
region IV), and bistability between a stationary state and a limit
cycle (yellow, region III). The parameter values are the same as
in Fig. 2. Superimposed are the corresponding bifurcation curves
obtained analytically within the Ott-Antonsen framework.

disorder. For � = 0.892, we have established a hysteretic
transition scenario, emerging due to a passage through a
bistability region III from Fig. 2, which admits coexistence
between the homogeneous stationary state B1 and the periodic
solution created from B3, cf. Fig. 5(b). In this case, the onset
of a collective mode is induced by a Hopf bifurcation, while
its suppression is controlled by the homoclinic tangency of
the limit cycle. For � = 0.884, the sequence of transitions
remains hysteretic but becomes more complex, see Fig. 5(c).
In particular, by increasing the diversity, one traverses over
two bistability regions, denoted by III and IV in Fig. 2. While
the first one is qualitatively the same as for � = 0.892, the
second one supports two coexisting stationary states, associ-
ated to B1 and B3. Nevertheless, the onset and the suppression
of the collective mode per se follow the same scenario as the
one described in Fig. 5(b). Note that the described transition
sequences are observed if the mean frequency � is sufficiently
large.

In order to evince the generic character of the described
scenarios and confirm the theoretical predictions regarding the
parameter domains supporting the collective oscillations, we
have carried out an extensive numerical study of the system’s
dynamics in terms of the parameters 	 and �, see Fig. 7. In
particular, using numerical continuation, we have performed
bidirectional sweeps over the (�,	) plane, keeping one
of the parameters fixed while the other one was varied, in
analogy to the method already described in relation to Fig. 6.
This allowed us to partition the (�,	) plane into different
regions according to the number and the type of the supported
attractors. Comparison of the boundaries of these regions with
the bifurcation curves from Fig. 2, which are shown overlaid,
corroborates an excellent agreement between the theory and
the numerical results.
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FIG. 7. (a) Characteristic domains of macroscopic behavior in
the (�,	) plane for coupling delay τ = 0.3. Color coding, as well
as the remaining system parameters, are the same as in Fig. 6.
Superimposed are the bifurcation curves obtained by the local sta-
bility approach described in the Appendix. (b) Critical diversity
	H corresponding to the Hopf destabilization of the state B3 in
dependence of τ for fixed � = 0.88.

We have also examined whether the qualitative picture
described so far persists under variation of the coupling
strength K . It turns out that the general bifurcation structure
holds qualitatively, which indicates the robustness of the
scenarios underlying the transitions between the different col-
lective regimes. Still, one notes that under increasing coupling
strength, the cusp point and the Hopf bifurcation curve shift
to a larger diversity (not shown).

V. IMPACT OF SMALL COUPLING
DELAY AND SMALL NOISE

In this section, the goal is to demonstrate that the physical
picture described so far for the noiseless and the delay-free
case qualitatively also holds in presence of small noise or
small coupling delay. The small-noise scenario concerns a
range of noise levels where the applied perturbation typi-
cally cannot give rise to noise-induced oscillations but may
rather evoke only rare spikes, so that the prevalent fraction
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of units within the excitable subassembly remains at the
quasistationary state. The small-delay scenario refers to delay
values which are significantly less than the typical period of
local oscillations, such that no delay-induced oscillations or
multistability can emerge [44–46]. Essentially, our intention
is not to perform an exhaustive exploration of the effects of
noise or coupling delay but rather to confine the analysis to the
cases where these two ingredients cannot evoke qualitatively
new forms of collective behavior compared to the noiseless
and delay-free case. We have carried out extensive numerical
simulations to establish how the boundaries of the five char-
acteristic domains in the (�,	) plane are modified due to the
action of small noise or small coupling delay.

A. Effects of small coupling delay

The effects of small coupling delay are illustrated in
Fig. 7(a), which shows the characteristic domains of macro-
scopic behavior in the (�,	) plane for the delay τ = 0.3.
One observes an excellent agreement between the bifurcation
curves, obtained analytically by the local stability approach
described in the Appendix, and the associated stability bound-
aries of the domains. In particular, introducing the coupling
delay does not affect the very coordinates of the stationary
states of the Ott-Antonsen equation (8), meaning that the
branches of fold bifurcations remain unchanged relative to
the delay-free case. Nevertheless, the key effect of the delay
is that the Hopf bifurcation of the state B3, which underlies
one of the scenarios for the onset of the collective mode,
shifts to a smaller diversity compared to the delay-free case.
This implies that the delay promotes multistable behavior,
in the sense that the bistability domain IV, characterized by
the coexistence between the stable stationary states B1 and
B3, becomes broader due to the impact of delay, cf. the
green highlighted region in Fig. 7(a). From another point of
view, the latter also suggests that the coupling delay promotes
the onset of the collective mode via Hopf destabilization of
the stationary state B3 but suppresses the scenario where
B1 and B2 undergo the SNIPER bifurcation. In Fig. 7(b)
it is explicitly shown how the critical diversity 	H associ-
ated to Hopf bifurcation decreases with τ when � is kept
fixed.

B. Effects of small noise

In contrast to the impact of coupling delay, the small noise
is found to influence the effective positions of both the fold
and the Hopf bifurcation curves, cf. Fig. 8(a), where the five
characteristic domains for the noise level σ = 0.3 are shown
together with the analytical curves for the noiseless case.
The primary effect of small noise is to promote the onset
of the collective mode mediated via the SNIPER bifurcation,
in the sense that for a fixed mean frequency �, macroscopic
oscillations can be observed for the diversity 	 smaller than
those in the noiseless case. As a consequence, one observes
that the critical diversity 	SN at which the fold between the
states B1 and B2 takes place reduces under increasing σ , as
indeed shown in Fig. 8(b) for the fixed � = 0.88. Nonethe-
less, noise also shifts the location of the Hopf bifurcation
relevant for the stability of the state B3, see Fig. 8(a). This
may be interpreted as a disordering effect of noise, in the sense
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FIG. 8. (a) Characteristic domains of macroscopic dynamics in
the (�,	) plane for the noise level σ = 0.3. The color coding
and the remaining system parameters are the same as in Fig. 6.
Superimposed are the bifurcation curves obtained analytically for the
noise-free case σ = 0. (b) Decrease of the critical diversity 	SN with
σ , corresponding to the saddle-node annihilation of the states B1 and
B2 for fixed � = 0.88.

that the transition from the regime of macroscopic oscillations
(domain II) to the asynchronous regime (domain V) occurs at
the diversity smaller than that for the noise-free case. Also
note that the bistability regions III and IV shrink as compared
to the noiseless case.

In principle, one observes that the structure of the charac-
teristic domains is qualitatively preserved with introduction
of small noise, but the associated stability boundaries shift
to the left with respect to the noiseless case. This can be
understood by the following qualitative reasoning. The impact
of small noise on the local dynamics of the nodes can roughly
be interpreted as a perturbation of the intrinsic frequency ωi.
To corroborate this, in Fig. 9 we illustrate how the effective
oscillation frequencies of single units ωeff,i, calculated numer-
ically as the inverse of the respective mean oscillation periods,
change in the presence of noise σ = 0.3. One finds that a
certain fraction of units whose intrinsic frequencies ωi lie
closest to the excitability threshold ω = 1 acquire a nonzero
effective frequency, i.e., manifest noise-induced oscillations,
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FIG. 9. Effective oscillation frequencies of uncoupled units ωeff

for the noiseless case (black dots) and under noise intensity σ 2 =
0.09 (red dots) as a function of the intrinsic parameters ωi. The
dashed line indicates the excitability threshold ω = 1. The frequency
distribution g(ω) is characterized by � = 2, 	 = 4.

while the excitable units further away from the threshold
remain quasistationary. Nonetheless, the impact of noise on
the self-oscillating units is reflected as a small increase of
their effective frequency. Thus, in qualitative terms, the effect
of small noise amounts to enhancing the effective frequency
of the units near the threshold ω = 1. Since this effect is
symmetrical for positive and negative ω, the average assembly
frequency � remains unchanged, whereas the variance of the
associated distribution increases proportionally to the noise
intensity. Therefore the introduction of small noise should
lead to similar effects as the increase of diversity 	.

VI. SUMMARY AND CONCLUSION

Considering a heterogeneous assembly of active rota-
tors displaying excitable or oscillatory local dynamics, we
have classified the associated macroscopic regimes and have
demonstrated the generic scenarios for the onset and the
suppression of collective oscillations. The analytical part of
the study has been carried out within the framework of Ott-
Antonsen theory applied for the delay- and noise-free system
in the continuum limit, which enabled us to determine the
three macroscopic stationary states in case of an arbitrary
distribution of natural frequencies. The main qualitative in-
sight into the microscopic structure of stationary states is
that the population may in principle split into the excitable
and the rotating subassembly, with the division depending
on the relationship between the respective natural frequency
of a rotator and the macroscopic excitability parameter. In
this context, we have identified a homogeneous equilibrium
where the units typically lie at rest, as well as a heterogeneous
(mixed) collective stationary state, composed of units either
in the excitable regime or the oscillatory regime. The local
approach to stability and bifurcation analysis of the station-
ary states we have derived allowed us to address both the
delay-free case and the case where the system’s behavior is

influenced by coupling delay. The analysis has been specified
to the particular case of a uniform frequency distribution on
a bounded interval. While the stationary states have been
determined earlier for a similar, but a less general model [13],
the stability analysis, as presented here, has been carried out
for the first time.

We have demonstrated that the complex bifurcation
structure underlying the stability boundaries of the different
macroscopic regimes is organized by three codimension-two
bifurcation points, including the Bogdanov-Takens point, the
cusp point, and the fold-homoclinic point. Our analysis has
revealed the existence of five characteristic domains, three of
which support the monostable collective behavior, while two
admit bistability, involving either the coexistence between two
stable stationary states or the coexistence between a stationary
and a periodic solution. We have found that, depending on
the mean frequency, the onset and the suppression of the
collective mode may emerge via two qualitatively different
scenarios under variation of diversity. In particular, for a
smaller mean frequency, the onset of collective oscillations
under decreasing diversity occurs due to a Hopf destabiliza-
tion of a stationary state, whereas the oscillations are termi-
nated via a saddle-homoclinic bifurcation. Nevertheless, for
a sufficiently large mean frequency, increasing the diversity
gives rise to collective oscillations in a SNIPER bifurcation,
while the suppression of oscillations is due to an inverse Hopf
bifurcation.

The classical paradigm concerning the sequence of transi-
tions between the collective regimes in heterogeneous systems
under increasing diversity involves three characteristic states,
namely the global rest state; the synchronous state, character-
ized by macroscopic oscillations; and the asynchronous state,
based on mixed excitable and oscillatory local dynamics [13].
In addition to this paradigm, our analysis has revealed two
novel scenarios, which are hysteretic and involve a passage
through one or two bistable domains. By the first scenarios,
the transition from the global rest state to the asynchronous
state occurs via two bistable regimes, the first involving a
coexistence between a periodic solution and the rest state
and the second one featuring coexistence between the rest
state and the asynchronous state. The second hysteretic sce-
nario is similar, but the intermediate stage involves only the
coexistence between the homogeneous and the oscillatory
state.

Combining theoretical methods and numerical experi-
ments, we have shown that the basic bifurcation structure
from the delay- and noiseless case persists in the presence
of small noise or small coupling delay. Nevertheless, these
two ingredients are found to modify the stability boundaries of
the five characteristic domains. In particular, due to coupling
delay, the position of the Hopf bifurcation curve is shifted
toward the smaller diversity, which effectively promotes the
Hopf-mediated onset of macroscopic oscillations and also
enhances the parameter domain supporting bistability. Noise
is seen to affect both the fold and the Hopf bifurcations,
whereby the effective position of the fold or Hopf curve is
shifted to smaller mean frequency or smaller diversity. At the
level of macroscopic behavior, this is reflected as the promo-
tion or suppression of the onset of macroscopic oscillations
via SNIPER or Hopf bifurcation scenario, contributing in
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addition to a reduction of the two bistability domains. While
the described bifurcation structure appears to be generic for
the considered type of frequency distribution, remaining qual-
itatively similar under the influence of small noise or small
coupling delay, it would be interesting to examine whether
and how it is modified for a substantially different form of a
frequency distribution, such as a bimodal one.
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APPENDIX: CALCULATION OF THE STABILITY OF THE
STATIONARY SOLUTION OF

THE OTT-ANTONSEN EQUATION

Here we elaborate on the method applied to calculate
the stability of the stationary solutions of the Ott-Antonsen
equation (8). In particular, we first introduce the expressions
z(ω, t ) = x(ω, t ) + iy(ω, t ) and R(ω, t ) = X (ω, t ) + iY (ω, t )
for the local and the global order parameters, respectively,
transforming (8) to

ẋ = F (x, y, X,Y ) = a

2
(y2 − x2 + 1) − ωy

− Kxy(Y cos α − X sin α) − K

2
(X cos α + Y sin α)

× (x2 − y2) + K

2
(X cos α + Y sin α)

ẏ = G(x, y, X,Y ) = −axy + ωx − Kxy(Y sin α + X cos α)

+ K

2
(Y cos α − X sin α)(x2 − y2)

+ K

2
(Y cos α − X sin α). (A1)

The linearization of Ott-Antonsen equation (8) for vari-
ations ξ = (δx, δy)T , � = (δX, δY )T of the stationary solu-
tion (x0, y0) can then succinctly be written in the matrix
form as

dξ (ω, t )

dt
= A(ω)ξ (ω, t ) + B(ω)�(t ), (A2)

where the matrices of derivatives are

A(ω) =
(

∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

)
, B(ω) =

(
∂F
∂X

∂F
∂Y

∂G
∂X

∂G
∂Y

)
. (A3)

Assuming that the variation ξ (ω, t ) satisfies the ansatz
ξ (ω, t ) = ξ (ω)eλt , and similarly �(t ) = �eλt , (A2) becomes

[A(ω) − λI]ξ (ω) + B(ω)� = 0, (A4)
where I denotes the identity matrix. As shown in Ref. [40],
the continuous Lyapunov spectrum consists of the eigenval-
ues of the matrix B(ω) for all ω ∈ [ω1, ω2]. In our case,
the continuous spectrum turns out to be always stable or
marginally stable, such that the stability of the stationary
solutions is determined by the discrete spectrum. In order
to obtain the discrete spectrum, we multiply (A4) from the
left by g(ω)[A(ω) − λI]−1 and integrate over ω obtaining
C(λ)� = 0, where

C(λ) = I +
∫ ∞

−∞
dωg(ω)[A(ω) − λI]−1B(ω). (A5)

The discrete Lyapunov spectrum can then be calculated by
numerically solving the system det C(λ) = 0.

In the case of nonzero coupling delay, the same type of
analysis remains valid, while one has to replace X and Y in
the r-hand side of (A1) by their delayed counterparts X (t −
τ ) and Y (t − τ ). This leads to the same matrix C(λ) as in
(A5), with the only difference being the substitution of B(ω)
by B(ω)e−λτ .
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We study a system of two identical FitzHugh-Nagumo units with a mutual linear coupling in the fast variables.
While an attractive coupling always leads to synchronous behavior, a repulsive coupling can give rise to
dynamical regimes with alternating spiking order, called leap-frogging. We analyze various types of periodic
and chaotic leap-frogging regimes, using numerical path-following methods to investigate their emergence and
stability, as well as to obtain the complex bifurcation scenario which organizes their appearance in parameter
space. In particular, we show that the stability region of the simplest periodic leap-frog pattern has the shape of a
locking cone pointing to the canard transition of the uncoupled system. We also discuss the role of the timescale
separation in the coupled FitzHugh-Nagumo system and the relation of the leap-frog solutions to the theory of
mixed-mode oscillations in multiple timescale systems.

DOI: 10.1103/PhysRevE.99.042207

I. INTRODUCTION

The FitzHugh-Nagumo system is a classical model of neu-
ronal dynamics. As the simplest, yet paradigmatic example
of a coupled neuronal system, we investigate here a pair of
two identical FitzHugh-Nagumo units with a weak mutual
coupling. Such a network motif of two coupled neurons has
been considered as a basic building block of central pattern
generators [1] and the complex neural networks of the cortex
[2–5]. The dynamics of such systems has typically been in-
vestigated in the framework of the synchronization paradigm
[6–8], focusing on the stability of states with phase-locked
firing and their potential role in rhythmogenesis [9]. Never-
theless, a remarkable property of these simple circuits is that
they are also able to generate complex activity patterns where
the interspike intervals show complex dynamics. A typical
example of such patterns is the so-called leap-frog dynamics
[10], sometimes also called leader-switching dynamics [11],
where the units exchange their order of firing within each
oscillation cycle. Such a regime has so far been associated
exclusively to class I neural oscillators coupled via strong
synapses with complex nonlinear dynamics [12–16]. In the
present paper, we investigate the emergence of leap-frogging
dynamics in a system of two classical FitzHugh-Nagumo units
interacting only via a small linear coupling. The emerging
complex dynamical patterns can be explained as a result
of the timescale separation between the activator and the
recovery variable. For a single unit, the timescale separation
is crucial for the mechanism inducing the rapid change in
the amplitude from small subthreshold oscillations to large
relaxation oscillations. Introducing a repulsive coupling in the

*sebastian.eydam@wias-berlin.de

fast variables, the leap-frog patterns emerge in locking cones
generated by a complex bifurcation scenario immediately
at this transition. The alternation in the spiking order of
the units arises from trajectories containing both the small-
amplitude subthreshold oscillations and the large-amplitude
relaxation oscillations. Such a behavior involving interspersed
small- and large-amplitude oscillations, called mixed-mode
oscillations [17–20], is a typical phenomenon in slow-fast
systems with at least two slow variables and has been studied
extensively by geometric singular perturbation methods for
the limit of infinite timescale separation. In particular, a three-
dimensional version of the FitzHugh-Nagumo system has
been used as a classical example for mixed-mode oscillations,
see, e.g., Ref. [20] and references therein. Singular perturba-
tion techniques have been also applied to coupled nonidentical
mixed-mode oscillators [21] and for the synchronization of
weakly coupled slow-fast oscillations [22].

Coupled systems of two identical oscillators have specific
symmetry properties, which at vanishing coupling induce
an additional degeneracy. First numerical studies of coupled
slow-fast oscillators can already be found in Refs. [23,24],
where a detailed exposition of the four-dimensional slow-fast
structure is given. Due to the symmetry-induced degeneracy,
for such systems the existing theoretical results for mixed-
mode oscillations do not apply directly. We will present here
a first numerical exploration of a system of two identical
FitzHugh-Nagumo units with symmetric mutual coupling.
Our approach will be a detailed bifurcation analysis using
path-following methods at finite values of the timescale sepa-
ration. We perform this both for the degenerate case of small
coupling, where we find an essentially new dynamical sce-
nario, and for larger coupling, where the leap-frog dynamics
is organized in a way that conforms to the general results on
mixed-mode oscillations.

2470-0045/2019/99(4)/042207(9) 042207-1 ©2019 American Physical Society
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The dynamics of the considered system of two identical
FitzHugh-Nagumo units is given by

dv1,2

dt
= v1,2 − v3

1,2/3 − w1,2 + c(v2,1 − v1,2),

dw1,2

dt
= ε(v1,2 + b), (1)

where the symmetric linear coupling acts in the fast variables
v1,2. The small parameter ε facilitates the timescale sepa-
ration between the fast variables vi and the slow variables
wi. In the context of neuroscience, the former represent the
neuronal membrane potentials, whereas the latter correspond
to the coarse-grained activities of the membrane ion-gating
channels. For a single unit, the parameter b mediates the tran-
sition from the quiescent regime for b > 1 to the oscillatory
regime for −1 < b < 1. Due to the timescale separation, this
is accompanied by a canard transition from small-amplitude
subthreshold oscillations to the large-amplitude relaxation
oscillations. We invoke some basic results derived from sin-
gular perturbation theory about the slow-fast structure of the
uncoupled FitzHugh-Nagumo unit in Sec. II.

Since the parameters b and ε are taken to be identical for
both units, system Eq. (1) possesses a Z2-symmetry, being
equivariant with respect to exchanging the indices by

σ : (v1,w1, v2,w2) �→ (v2,w2, v1,w1).

This leads to the appearance of solutions with different sym-
metry types, reflecting the different states of in-phase and
anti-phase synchronization, which will be discussed in Sec. II
which concerns the basic types of solutions bifurcating from
the stationary regime. Close to the canard transition of the
uncoupled system, there appear various types of periodic and
chaotic leap-frog patterns in the system with repulsive cou-
pling. Using the software package AUTO [25] for numerical
bifurcation analysis by continuation methods, in Sec. III we
investigate in detail the complex bifurcation scenarios respon-
sible for the onset of the different types of leap-frogging
dynamics. We conclude the paper with an outlook in Sec. IV,
discussing the relation of our results to earlier findings on
leap-frog dynamics in models of neuronal systems.

II. BASIC DYNAMICAL REGIMES

We begin our investigation of system Eq. (1) by collecting
simple stationary and periodic solutions together with their
stability and symmetry properties. In the symmetric regime

v1 = v2 and w1 = w2, (2)

the coupling term vanishes and the dynamics Eq. (1) is
governed by a single FitzHugh-Nagumo system, where the
units display simultaneously the well-known transition from
the quiescent regime with a unique stable equilibrium for
b > 1 to the oscillatory regime for b < 1, mediated by a
supercritical Hopf bifurcation at b = 1. Due to the timescale
separation 0 < ε � 1, the bifurcating branch of periodic solu-
tions displays a characteristic transition from small-amplitude
harmonic oscillations of period O(1/

√
ε) to large-amplitude

relaxation oscillations of period O(1/ε), called a canard
transition. This scenario has been extensively studied within
the framework of singular perturbation theory, viz. in the
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FIG. 1. (a) Variation of the period T along the branch of
synchronous periodic solutions for varying b and fixed ε = 0.05.
(b) Phase portraits of selected periodic solutions: a subthreshold
oscillation for bc < b < bH (blue solid), the canard trajectory bc = b
(green dotted), a relaxation oscillations with bc > b (red dotted-
dashed), corresponding to the square, the triangle, and the disk,
in (a) respectively, and the cubic nullcline (dashed black). The
corresponding values of b are indicated by the colored dots in (a).
(c) Location of the canard transition bc for varying ε. Numerical
path-following of the periodic solution with maximal period (green
line) is compared to asymptotic formula Eq. (3), shown dashed.

limit ε → 0; see, e.g., Ref. [18] for a recent overview. In
Fig. 1 we illustrate the canard transition in the symmetric
regime, showing numerical results obtained by path-following
methods [25]. In Fig. 1(a) we have fixed ε = 0.05, display-
ing the varying period along the branch of periodic orbits
emerging from the Hopf-bifurcation at b = bH = 1. Note the
nearly vertical transition from small to large periods at the
canard transition b = bc. The phase portraits of the three orbits
shown in Fig. 1(b), selected before, after, and immediately
at the transition, indicate that the change in the period is
accompanied by a transition from small to large amplitudes
via canard trajectories that follow the unstable part of the slow
manifold, which is close to the critical manifold w = v −
v3/3. From the neuroscience perspective, this corresponds to a
transition route from the quiescent state to the spiking regime
via subthreshold oscillations. A detailed asymptotic analysis
reveals that the leading order approximation for the location
bc of the canard transition is given by

bc ≈ (1 − ε/8), (3)

see Ref. [26]. In Fig. 1(c) we show that for small ε > 0 this
expression (dashed line) provides indeed a good approxima-
tion for the actual location of the canard transition (solid green
line), which we obtained numerically by path-following in ε

the trajectory of maximal period, sometimes called maximal
canard [green curve in Fig. 1(b)]. Recall that both the regimes
of stable equilibrium and of subthreshold oscillations are
excitable [27,28] in a sense that a strong enough perturbation

042207-2
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FIG. 2. Stability region (checkered pattern) of the symmetric
equilibrium Eq. (5) in the (b, c) plane, bounded by in-phase Hopf in-
stability (vertical blue line) and antiphase Hopf instability (diagonal
red line). The antiphase Hopf bifurcation changes from supercritical
to subcritical in a generalized Hopf point (GH), where a fold curve
of the antiphase synchronous limit cycles emerges (green line). DH
denotes the resonant double Hopf point for the decoupled system at
(b, c) = (1, 0).

may elicit a large excursion in phase space, i.e., a spiking
response in the form of a single relaxation oscillation.

The full system Eq. (1), which can be rewritten in coordi-
nates longitudinal and transversal to the symmetry subspace
Eq. (2),

vL,T = v1 ± v2, wL,T = w1 ± w2, (4)

has a slow-fast structure with two fast and two slow variables.
For small coupling c, the corresponding critical manifolds
and fast fibers are given trivially as a direct sum of the
corresponding objects for each of the units. It can be easily
seen that the only stationary state of Eq. (1) is the symmetric
equilibrium

(v1,w1, v2,w2) = (−b,−b + b3/3,−b,−b + b3/3), (5)

obtained from the single FitzHugh-Nagumo unit. While the
symmetry-preserving Hopf bifurcation at b = 1 in the coupled
system is analogous to the Hopf bifurcation of the single
FitzHugh-Nagumo unit and does not depend on the coupling
parameter c, in the coupled system the symmetric equilibrium
may also undergo symmetry-breaking bifurcations. In particu-
lar, it may become unstable via a Hopf bifurcation to antiphase
synchronized periodic solutions of the form

v1(t ) = v2

(
t + T

2

)
, w1(t ) = w2

(
t + T

2

)
, (6)

where T > 0 is the period. Using the longitudinal and
transversal coordinates Eq. (4) one obtains the condition

c = 1 − b2

2
(7)

for this antiphase Hopf instability of the synchronous equi-
librium Eq. (5). In Fig. 2, the associated bifurcation curve
is shown in the (b, c) plane together with the in-phase Hopf
instability at b = 1. For attractive coupling c > 0, the stabil-
ity region (checkered pattern) of the symmetric equilibrium
Eq. (5) is bounded by the in-phase Hopf instability, shown by

FIG. 3. Stability regions of basic periodic solutions in the (b, c)
plane for ε = 0.1: in-phase synchronous oscillations (blue diagonal
stripes); antiphase synchronous subthreshold oscillations (red dot-
ted); coexistence of in-phase and antiphase subthreshold oscillations
(purple filled); asynchronous oscillations—successive spiking (yel-
low squared). Bifurcation curves delineating the stability bound-
aries: in-phase Hopf instability (vertical blue line); antiphase Hopf
instability (diagonal red line); fold of antiphase synchronous limit
cycles (left boundary of the lower dotted region, green); subcritical
period doubling of in-phase subthreshold oscillations (left boundary
of the lower striped region, purple); subcritical symmetry breaking
pitchfork of in-phase subthreshold oscillations (right boundary of
the lower striped region, light blue); supercritical period doubling of
asynchronous oscillations (boundary of the squared region, orange).
Canard transition at b = bc (black dashed); see Fig. 1.

the blue line, while for repulsive coupling c < 0, the stability
boundary is given by the antiphase Hopf Eq. (7). For larger
negative values of c, this bifurcation is subcritical, such that no
stable branch of antiphase synchronized oscillations emerges.
The criticality changes in a generalized Hopf (Bautin) point,
labeled as GH in Fig. 2. From this point emanates a curve of
folds of limit cycles, shown by the green line in Fig. 2. The
two Hopf bifurcation curves intersect in the resonant double
Hopf point (DH) located at (b, c) = (1, 0). Note that this
point belongs to the line c = 0 where the system decouples,
thus behaving neutral with respect to all symmetry-breaking
perturbations.

Figure 3 shows the stability regions and the associated
stability boundaries of the periodic solutions. For attractive
coupling c > 0, all synchronous oscillations are stable (blue
diagonal striped region), undergoing at b = bc the canard
transition from small- to large-amplitude oscillations as in
the case of a single unit; cf. Fig. 1. For repulsive coupling
c < 0, the situation is more complicated. There is a small
region (red dotted in Fig. 3) above the generalized Hopf
point and the emanating fold of limit cycles (green curve)
where one finds stable antiphase synchronized oscillations.
Note that after a secondary bifurcation, the fold of limit
cycles (green curve) is no longer a stability boundary of the
antiphase synchronized oscillations (dashed part of the curve).
Surprisingly, there are also stable in-phase synchronized so-
lutions for repulsive coupling c < 0. They are confined to a
narrow region immediately below the canard transition, which
is bounded by a curve of period doubling (left, purple line) and
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FIG. 4. Time traces and phase portraits of stable coexisting in-
phase synchronous (a) and antiphase synchronous (b) subthreshold
oscillations. Parameters (ε, b, c) = (0.1, 0.9885, −0.0005) belong
to the coexistence region (purple in Fig. 3). Variables v1,2(t ) are
shown in red (solid) and blue (dotted), whereas the coupling term
�v = c(v2 − v1) is indicated in green color (dash-dotted).

a curve of symmetry-breaking pitchfork bifurcations (right,
light blue line). In particular, for small negative coupling, one
encounters a region of bistability, where both the in-phase and
antiphase synchronized oscillations are stable (purple-shaded
region in Fig. 3). Figure 4 illustrates coexisting stable in-phase
and antiphase synchronous solutions computed for the pa-
rameters (ε, b, c) = (0.1, 0.9885,−0.0005) from this region.
Note that the coexistence region is confined to subthreshold
oscillations prior to the canard transition at b = bc.

Apart from the in-phase and antiphase synchronous
regimes, there may also appear periodic solutions without
any symmetry. For repulsive coupling c < 0 and beyond the
canard transition, i.e., b < bc, there is a large parameter region
admitting a stable regime of successive spiking, with both
units performing relaxation oscillations shifted in phase. The
stability region of this successive spiking, shown in yellow
(square pattern) in Fig. 3, is bounded by a curve of supercriti-
cal period doubling (right, orange line). Figures 5(a) and 5(b)
provide the time traces and phase portraits for the regime of
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FIG. 5. Time traces and phase portraits of stable asymmetric
successive spiking: (a) before period doubling (b = 0.98625) and
(b) after several period doubling bifurcations (b = 0.98692). The
remaining parameters are (c, ε) = (−0.01, 0.1). Colors and line
styles are as described in the caption of Fig. 4.

successive spiking before period doubling and after several
period doubling bifurcations, respectively. Note that in Fig. 3
several bifurcation curves point toward the canard transition,
thus creating a complex scenario where the different dynami-
cal regimes with different symmetry properties bifurcate and
interchange their stability. This indicates that a detailed study
of the limit ε → 0, c → 0 could reveal the dependence of
all these bifurcations on ε and in this way explain the whole
scenario by an unfolding of the corresponding singularity.

Moreover, there is a region, indicated in white in Fig. 3,
where none of the periodic solutions described above is stable.
We demonstrate below that in this region the system exhibits
several periodic or chaotic regimes characterized by the fact
that the trajectory of each unit comprises large relaxation
oscillation loops as well as smaller loops of a size comparable
to that of subthreshold oscillations. This phenomenon of
such so called mixed-mode oscillations has been extensively
studied using geometric singular perturbation methods for the
limit ε → 0. They are known to arise generically in slow-fast
systems with two slow variables and a folded node singu-
larity. Let us very briefly recall the corresponding slow-fast
geometry of system Eq. (1), see also Ref. [24]. Following
the classical approach (see, e.g., Ref. [18]), we find the fold
condition for the two-dimensional critical manifold as(

1 − v2
1

)(
1 − v2

2

)
= c

(
2 − v2

1 − v2
2

)
.

For c = 0, this provides two lines of folds, intersecting at
the point v1 = v2 = −1. At b = 1, the symmetric equilibrium
Eq. (5) passes through this intersection of folds (DH point
in Fig. 2). At the same time, the slow flow across the folds
vanishes along the whole pair of intersecting lines of folds
and hence violates also the usual genericity assumption on
a folded singularity. An unfolding at small c �= 0 of this
degenerate situation involves the interplay of two small quan-
tities. As a first step, we will explore these mixed-mode type
dynamics without invoking the singular limit where these
two quantities tend to zero. Instead, we use simulations and
numerical path-following techniques to describe the bifurca-
tion scenario for finite values of ε. Comparing the results of
the numerical bifurcation analysis for different values of ε

will also provide some information about possible scalings
between the two small quantities.

III. COMPLEX DYNAMICAL REGIMES
AT THE CANARD TRANSITION

To numerically examine the different types of solutions of
system Eq. (1), we have performed a parameter sweep with
respect to b at fixed c = −0.01 and ε = 0.1; see Fig. 6. The
scan is performed by a numerical continuation according to
the following procedure: after each increment in the sweeping
parameter b, we use the final state of the preceding simulation
as an initial condition, then discard a transient, and sample the
return times Tn between consecutive crossings of the Poincaré
section w1 = −2/3. The robustness of the numerical results
has been verified for different simulation step sizes of the
fourth-order Runge-Kutta scheme, which has been used in all
of our simulations. Sweeping has been carried out in forward
(increasing b, red points) and backward direction (decreasing
b, black points), allowing us to detect potential coexisting
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FIG. 6. Sampled return times Tn between consecutive cross-
ings of the hyperplane w1 = −2/3 for varying b and (c, ε) =
(−0.01, 0.1). Red and black points correspond to different sweeping
directions in b.

stable regimes. Note that the return times Tn ≈ 50 correspond
to a single round trip of the unit j = 1 along the relaxation
oscillation orbit, while the return times Tn < 30 correspond
to a round trip following a subthreshold oscillation orbit. In
Fig. 6, one can identify the regime of successive spiking
in regions I and II, the in-phase subthreshold oscillations in
regions II–IV, and the antiphase subthreshold oscillations in
region VII. In addition, we find the periodic regime displayed
in Fig. 7(a), which is the only attractor in region V and
coexists with the in-phase subthreshold oscillations in region
IV. Note that due to the space-time symmetry Eq. (6), the
phase portraits of the trajectories of both units in the (v,w)

plane coincide. This periodic regime can be characterized as
follows. Within one period, each unit performs two round
trips along the relaxation oscillation orbit and one round trip
along a subthreshold oscillation orbit. The spikes of the two
units again occur with a phase shift as in the successive
spiking regime. However, as a result of the inlaid subthreshold
oscillations, the spiking order gets reversed for every pair of
successive relaxation oscillations. This regime of alternating
spiking order with a single subthreshold oscillation performed
between each pair of successive spikes is referred to as simple
leap-frogging. We shall discuss the underlying bifurcation
scenario and its dependence on the slow-fast structure of the
system in the following section.

In region VI, one observes chaotic behavior, interrupted by
some small parameter intervals of more complicated periodic
behavior. Chaotic mixed-mode oscillations have already been
numerically observed in Ref. [29] for a periodically forced
slow-fast oscillator. Examples of chaotic orbits are shown in
Figs. 7(e) and 7(f). More complicated periodic orbits from
some of the periodic windows in region VI are provided in
Figs. 7(b)–7(d). The periodic orbits in Figs. 7(b) and 7(d)
carry the space-time symmetry Eq. (6), which leads to a
similar exchange in the spiking order as the leap-frog orbit
in Fig. 7(a). The periodic solution in Fig. 7(c) is asymmetric,
displaying successive spikes with fixed spiking order similar
to Fig. 4(a), but interspersed with several almost antiphase
subthreshold oscillations.

A. Simple leap-frogging

The dynamical regime of leap-frogging illustrated in
Fig. 7(a) is a periodic regime where successive spikes occur
with an alternating spiking order. The alternation is induced
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FIG. 7. Time traces and phase portraits of selected trajectories from regions V and VI in Fig. 6: Simple leap frogging in (a); periodic orbits
with space-time symmetry in (b) and (d); asymmetric periodic orbit with several subthreshold oscillations in between successive spikes in (c);
chaotic regimes in (e) and (f). Other parameters and colors and line styles are as described in the caption of Fig. 4.
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FIG. 8. (a) Branch of simple leap-frog solutions for varying b
and fixed c = −0.01, ε = 0.1. The stability region (solid curve) is
bounded by two folds of limit cycles (yellow square and red cross).
At all other folds (e.g., green circle) both branches are unstable
(dashed curves). (b) Phase portraits of limit cycles at the folds from
panel (a), square (dotted), cross (solid), and circle (dashed).

by a subthreshold oscillation of the leading unit, whereby the
lagging unit, passing without such a small loop, can overtake
the current leader and spike the next time first. During the next
spiking event, the units follow an analogous scenario but with
interchanged roles, which results in the space-time symmetry
Eq. (6). Figure 8(a) provides the branch of leap-frogging
solutions for varying b and fixed (c, ε) = (−0.01, 0.1). The
branch has the shape of a closed curve and is stable only
within a small region bounded by two folds of limit cycles. A
continuation of these folds in the two parameters (b, c), shown
as black curves, provides the purple stability region shown in
Fig. 9(a). The latter has the shape of a linear cone and points
to the canard transition of the uncoupled periodic regime at
(b, c) = (bc, 0). However, for the chosen value of ε = 0.1,
the exact bifurcation structure in the vicinity of this point
could not be reliably resolved numerically. Therefore, to gain
a better understanding of the bifurcation structure at the tip
of the stability cone, we increased the value of ε. Figure 9(b)
shows the associated stability region in the (b, ε) plane. For
the fixed values of ε = 0.15 and ε = 0.2, we calculated again
the stability cones in the (b, c) plane, see the green and blue
regions in Fig. 9(a). For these larger values of ε, it becomes
apparent that the cones are clearly detached from the line
c = 0, and that the sharp tip of the cone is actually formed
by a single smooth curve of fold bifurcations. However, there
is a codimension-two point close to the tip where a curve of
symmetry-breaking pitchfork bifurcations crosses through the
fold and becomes the stability boundary of the leap-frogging
regime. The pitchfork curves are plotted in red in Fig. 9. For
larger ε = 0.15 [see the green stability cone in Fig. 9(a)],
we observe another cusp point where the branch of stable
leap-frogging folds over, such that its stability region is again
delineated by a fold (black curves in Fig. 9).

For ε = 0.2 we were able to completely resolve the bifur-
cation scenario in the vicinity of the tip; see Fig. 10. At small
coupling c = −0.00195 the branch of leap-frogging solutions
emerges as a small bubble [panel (I)]. For stronger coupling,
this closed branch folds over and a further pair of folds

FIG. 9. (a) Stability regions of the simple leap-frog solutions
in the (b, c) plane for fixed ε ∈ {0.2, 0.15, 0.1} are shown in blue,
green, and purple, respectively. The vertical dashed lines of corre-
sponding color indicate the location bc(ε) of the canard transition
of the synchronous oscillations. (b) Stability regions of the simple
leap-frog solutions in the (b, ε) plane for fixed c = −0.012. In
both panels, the stability regions are bounded by curves of fold
bifurcations (solid black lines) and curves of pitchfork bifurcations
(shown by red color). Triangles and squares indicate pitchfork-fold
interaction and cusp points.

emanates from a cusp point. Moreover, through symmetry-
breaking pitchfork bifurcations, there appears a branch of
asymmetric leap-frogging solutions, which is also folded in
an increasingly complex fashion, sometimes even featuring
a small region of stability [see panel (II)]. Another type of
codimension-two bifurcation points are 1:1 resonances, which
give rise to branches of torus bifurcations. Figure 9 shows
that for smaller ε, this complicated bifurcation scenario is
contracted to a small vicinity of the canard transition of the
uncoupled periodic regime at (b, c) = (bc, 0). The presum-
ably exponential scaling of this contraction would clarify why
already for ε = 0.1 the bifurcations at the tip of the cone could
not be reliably resolved by our numerics.

B. Multiple leap-frogging

We have observed that the stable simple leap-frog solutions
emerge already at very weak negative coupling and are ac-
companied with a regime of complicated or chaotic mixed-
mode oscillations. However, for stronger negative coupling,
one finds a different scenario. In Fig. 11 we show different
dynamical regimes for varying parameter b, now with c =
−0.1, while ε is fixed again to 0.1. Similar to Fig. 6, we
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FIG. 10. (a) Bifurcations of the simple leap-frogging solutions in the (b, c) plane for ε = 0.2. (b) Enlarged view of the region where the
complexity of the bubble increases. Bifurcation curves: folds of limit cycles (black), pitchfork bifurcations (red), torus bifurcations (green),
also indicated by the labels LP, BP, and TR in panel (b), respectively. Solid curves indicate bifurcations delimiting the stability region; Dashed
bifurcation curves involve only unstable states. Codimension-two bifurcations: cusps of limit cycles (squares), pitchfork-fold (triangles), torus
(green circles). (I)–(III) Solid curves indicate stable branches of leap-frogging solutions with folds points (stars) and pitchfork bifurcations
(circles), dashed curves indicate unstable branches. Asymmetric branches emerging from pitchfork bifurcations (red circles) are shown in red.
The chosen values of c are indicated in panels (a) and (b).

have for each b value sampled the return times between
consecutive Poincaré events where one of the units crosses
v j = −b in increasing direction. For this stronger repulsive
coupling we find a sequence of periodic patterns with a

20
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60

0.995 1.015 1.035 1.055 1.075 1.095

T
n

b

FIG. 11. Sampled return times between consecutive Poincaré
events of v1 = −b (red) or v2 = −b (black) for varying b and fixed
(c, ε) = (−0.1, 0.1).

gradually increasing number of subthreshold oscillations be-
tween two subsequent relaxation oscillations. Beginning from
the regime of successive spiking at the left edge of the dia-
gram, the system switches to the simple leap-frogging regime,
characterized by two sightly different return times Tn ≈ 50
corresponding to round trips along the relaxation oscillation
orbit and a single return time Tn < 30 corresponding to the
subthreshold oscillation following only after every second
spike. Due to the symmetry Eq. (6) and the alternating spiking
order, the units leave an identical trace in the respective return
times. The time traces typical for the subsequent dynamical
regime at larger b are shown in Fig. 12(a). Here, the sub-
threshold oscillations follow after each spike, which results
in an asymmetric solution with fixed leader and laggard unit,
distinguished by slightly different return times for the small
loop and the relaxation oscillation. Note that the subthreshold
oscillations, performed almost in antiphase, allow for the units
to interchange the leadership twice. This is why we call this
regime double leap-frogging. Increasing b further, we find
another regime, again with the space-time symmetry Eq. (6)
and an alternating spiking order, now caused by a triple in-
terchange of leadership while performing the small loops; see
Fig. 12(b). The following periodic regimes for larger b exhibit
a further increasing number of subthreshold oscillations and
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FIG. 12. Time traces and phase portraits of double leap-frogging
at b = 1.05 (a) and triple leap-frogging at b = 1.065 (b). Other
parameters are (c, ε) = (−0.1, 0.1). Colors and line styles are as
described in the caption of Fig. 4.

are successively either of the asymmetric type with fixed
spiking order or of the type with the space-time symmetry and
an alternating order of spiking, characterized by an even and
odd number of leadership exchanges, respectively.

We have examined the stability regions of the double leap-
frogging regime for varying c and different values of ε; see
Fig. 13. In contrast to the case of simple leap-frogging, these
regions do not extend to a close vicinity of the degeneracy
at c = 0. Under varying ε, their position with respect to the
parameter b does not adapt to the canard transition bc(ε) of
the symmetric oscillations (vertical dashed lines), as in case of
the simple leap-frogging. The stability boundaries are outlined

FIG. 13. Stability regions of the double leap-frog solutions in
the (b, c) plane for fixed ε ∈ {0.2, 0.15, 0.1} are presented in blue
(bottom), green (middle), and purple (top), respectively. The left
boundary of each region is given by a curve of period doubling
bifurcations (orange), whereas the right one is provided by a fold
curve (black). The vertical dashed lines of corresponding color
indicate the location bc(ε) of the canard transition of the synchronous
oscillations.

by curves of period doubling (orange) and curves of fold
bifurcations (black) and do not involve any codimension-two
bifurcations. This scenario for larger negative coupling, which
is characterized by subsequent periodic patterns with different
numbers of large relaxation oscillations and small loops,
conforms, except for the different symmetry types, to the
results of the asymptotic theory of mixed-mode oscillations
at a folded node singularity.

IV. DISCUSSION AND OUTLOOK

In the present study, we have demonstrated that a variety
of complex leap-frog patterns may emerge in a simple sys-
tem comprised of two FitzHugh-Nagumo units with linear
repulsive coupling in the fast variables. This complex dynam-
ical scenario appears for parameter values in a vicinity of
the canard transition of the uncoupled system and involves
periodic solutions of different symmetry types. For larger
repulsive coupling we obtain periodic regimes combining
different numbers of small subthreshold and large relaxation
oscillations, which resemble the general results for mixed-
mode oscillations in slow-fast systems. For almost vanishing
coupling, where the system gains an additional degeneracy,
the situation is different. The stability region of the regime
of simple leap frogging has the shape similar to a locking
cone that approaches extremely close to the canard transition
at vanishing coupling. Close to the tip of the cone, we have
found a complex bifurcation scenario, which for decreasing
ε is contracted to a close vicinity of the degenerate canard at
c = 0. This contraction happens at a very fast and presumably
exponential rate, such that already for moderately small values
of ε a reliable numerical treatment became unfeasible and it
would be a challenging task to perform an analytical study of
this scenario in the singular limit ε → 0.

Qualitatively, the onset of the leap-frog patterns may be
explained as a result of a strong sensitivity to perturbations
of the relaxation oscillation of a single FitzHugh-Nagumo
unit just above the canard transition. There, already very
small perturbations applied during the passage near the fold
singularity of the slow manifold can deviate the trajectory
away from the relaxation oscillation, giving rise to one or
several loops conforming to subthreshold oscillations. Such
a behavior of phase-sensitive excitability and the resulting
response to excitations by noise of a single FitzHugh-Nagumo
unit has been studied in Ref. [30]. Similar phenomena where
the excitations arise from interactions in more complex net-
works have been studied in Ref. [31].

So far, the conditions relevant for the emergence of leap-
frog patterns have mostly been considered within the context
of neuroscience, especially in terms of relation to synchro-
nized states. It has been known that such patterns cannot
be obtained within the framework of weak-coupling theory
for a pair of phase oscillators, because alternating order of
firing cannot be described by reduction to an autonomous
flow on the corresponding torus [32–34]. Thus, it was first
believed that to observe the leap-frog solutions, one has to
complement the phase oscillator dynamics by a complex
synaptic coupling involving a finite synaptic time constant
[12]. The suggested alternative has been to augment the
simple phase dynamics by an additional negative phase branch
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corresponding to strong hyperpolarization after the spiking
event, as in case of the quadratic integrate-and-fire neuron
model [12]. With regard to relaxation oscillators, the leap-
frog patterns have first been observed as near-synchronous
states where the complete phase synchronization is perturbed
by strong inhibitory or excitatory coupling [13,14]. Later
research focused on class I neural oscillators represented by
Wang-Buszáki [15] or Morris-Lecar model [12,35]. In both
instances, it has been found that the appropriate inhibitory
noninstantaneous synaptic dynamics is crucial for the onset of
leap-frog dynamics. In particular, in the case of Morris-Lecar
oscillators, such patterns are facilitated by the fact that the
strong coupling causes the neurons to become transiently
trapped in the subthreshold (excitable) state during a certain
interval of the oscillation cycle, which allows for the exchange
of the spiking order between the units [12]. In contrast to
the above studies, we do not suggest a specific physiological
mechanism, but discuss the general case of a system of weakly

coupled excitable units and show how the mechanism behind
the exchange of leadership involves subthreshold oscillations,
typically observed in class II neural oscillators [17,18,20]. In
this sense our small negative linear coupling term can be seen
as the essence of how qualitatively a local linearization of a
more complicated functional dependence has to act to induce
the leap-frog patterns.
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PACS 05.40.Ca – Noise
PACS 87.19.ln – Oscillations and resonance

Abstract – Inverse stochastic resonance is a phenomenon where an oscillating system influenced
by noise exhibits a minimal oscillation frequency at an intermediate noise level. We demonstrate
a novel generic scenario for such an effect in a multi-timescale system, considering an example
of emergent oscillations in two adaptively coupled active rotators with excitable local dynamics.
The impact of plasticity turns out to be twofold. First, at the level of multiscale dynamics,
one finds a range of intermediate adaptivity rates that give rise to multistability between the
limit cycle attractors and the stable equilibria, a condition necessary for the onset of the effect.
Second, applying the fast-slow analysis, we show that the plasticity also plays a facilitatory role
on a more subtle level, guiding the fast flow dynamics to parameter domains where the stable
equilibria become focuses rather than nodes, which effectively enhances the influence of noise.
The described scenario persists for different plasticity rules, underlying its robustness in the light
of potential applications to neuroscience and other types of cell dynamics.

Copyright c© EPLA, 2018

Introduction. – Noise in coupled excitable or bistable
systems may induce two types of generic effects [1]. On
the one hand, it can modify the deterministic behavior
by acting non-uniformly on different states of the sys-
tem, thus amplifying or suppressing some of its features.
On the other hand, noise may give rise to completely
novel forms of behavior, typically based on crossing the
thresholds or separatrices, or involving enhanced stabil-
ity of deterministically unstable structures. In neuronal
systems, the constructive role of noise at different stages
of information processing, referred to as “stochastic facili-
tation” [2,3], mainly comprises resonant phenomena. A
classical example is the stochastic resonance [4], which
allows for the detection of weak subthreshold periodic
signals. A more recent development concerns the ef-
fect of inverse stochastic resonance (ISR) [3,5–12], where
noise selectively reduces the spiking frequency of neuronal
oscillators, converting the tonic firing into intermittent
bursting-like activity or a short-lived transient followed

(a)E-mail: franovic@ipb.ac.rs

by a long period of quiescence. The name of the effect
should be taken cum grano salis, because in contrast to
stochastic resonance, it involves no additional external sig-
nal: one rather observes a non-monotonous dependence of
the spiking rate on noise variance, whereby the oscilla-
tion frequency becomes minimal at a preferred noise level.
Such an inhibitory effect of noise has recently been shown
for cerebellar Purkinje cells [11], having explicitly demon-
strated how the lifetimes of the spiking (“up”) and the
silent (“down”) states [13–15] are affected by the noise
variance. ISR has been indicated to play important func-
tional roles in neuronal systems, including the reduction
of spiking frequency in the absence of neuromodulators,
suppression of pathologically long short-term memories,
triggering of on-off tonic spiking activity and even opti-
mization of information transfer along the signal propaga-
tion pathways [3,7,9,11].

So far, theoretical studies on ISR have mostly con-
cerned the scenario where a single neuron exhibits bistable
deterministic dynamics, featuring coexistence between a
limit cycle and a stable equilibrium. Such bistability is
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typical for Type-II neurons below the subcritical Hopf bi-
furcation, e.g., classical Hodgkin-Huxley and Morris-Lecar
models [3,6–8]. There, applying noise induces switching
between the metastable states, but at an intermediate
noise level, one surprisingly finds a strong asymmetry of
the associated switching rates, which makes the periods
spent in the vicinity of equilibrium much longer than the
periods of spiking activity.

An important open problem concerns conditions giving
rise to ISR in coupled excitable systems, where noise influ-
ences the emergent oscillations. Here we address in detail
this issue, as it may be crucial to understanding the preva-
lence of the effect in neural networks, whose activity de-
pends on the interplay of excitability, coupling properties
and noise. Synaptic dynamics typically involves the plas-
ticity feature, which makes self-organization in neuronal
systems a multi-timescale process: the short-term spiking
activity unfolds on a quasi-static coupling configuration,
while the slow adjustment of coupling weights depends on
the time-averaged evolution of units.

Motivated by the findings in neuroscience, we focus on
the onset of ISR in a simplified, yet paradigmatic system
of two adaptively coupled stochastic active rotators with
excitable local dynamics. Active rotators are canonical for
Type-I excitability and may be seen as equivalent to the
theta-neuron model. Adaptivity is introduced in a way
that allows continuous interpolation between a spectrum
of plasticity rules, including Hebbian learning and spike-
time-dependent plasticity (STDP) [16–18].

We demonstrate a generic scenario for the plasticity-
induced ISR, where the system’s multiscale structure, de-
fined by the adaptivity rate, plays a crucial role. On a
basic level, plasticity gives rise to multistable behavior in-
volving coexisting stationary and oscillatory regimes. An
additional subtlety, which we show by the fast-slow anal-
ysis, is that the plasticity promotes the resonant effect by
guiding the fast flow toward the parameter region where
the stable fixed points are focuses rather than nodes.

The paper is organized as follows. In the next sec-
tion the details of the model and the numerical bifurca-
tion analysis of the deterministic dynamics are presented.
The third section contains the results on the ISR effect
and the supporting conditions. In the fourth section the
fast-slow analysis is applied to explain the mechanism by
which plasticity enhances the system’s non-linear response
to noise. Apart from providing a brief summary, in the
last section we also discuss the prevalence of the observed
effect.

Model and bifurcation analysis of deterministic
dynamics. – Our model involves two stochastic active
rotators interacting by adaptive couplings [19–22],

ϕ̇1 = I0 − sin ϕ1 + κ1 sin (ϕ2 − ϕ1) +
√

Dξ1(t),

ϕ̇2 = I0 − sin ϕ2 + κ2 sin (ϕ1 − ϕ2) +
√

Dξ2(t),
κ̇1 = ε(−κ1 + sin(ϕ2 − ϕ1 + β)),
κ̇2 = ε(−κ2 + sin(ϕ1 − ϕ2 + β)),

(1)

where the phases {ϕ1, ϕ2} ∈ S1, while the coupling
weights {κ1, κ2} are real variables.

The excitability parameters I0, which one may interpret
as external bias currents in the context of neuroscience,
are assumed to be identical for both units. For such a
setup, the deterministic version of (1) possesses a Z2 sym-
metry, being invariant to the exchange of units’ indices.
The uncoupled units undergo a SNIPER bifurcation at
I0 = 1, with the values I0 < 1 (I0 > 1) corresponding to
the excitable (oscillatory) regime. We consider the case of
excitable local dynamics, keeping I0 = 0.95 fixed through-
out the paper, such that the oscillations may emerge only
due to the coupling terms and/or noise. The scale sepa-
ration between the fast dynamics of the phases and the
slow dynamics of adaptation is adjusted by the parameter
ε � 1. The fast variables are influenced by independent
white noise of variance D such that ξi(t)ξj(t′) = δijδ(t−t′)
for i, j ∈ {1, 2}. Conceptually, adding stochastic input to
the fast variables embodies the action of synaptic noise in
neuronal systems [23].

The modality of the plasticity rule is specified by the
parameter β, whose role may be understood by invok-
ing the qualitative analogy between the adaptation dy-
namics in classical neuronal systems and the systems of
coupled phase oscillators. This issue has first been ad-
dressed in [24–26], and a deeper analysis of the correspon-
dence between the phase-dependent plasticity rules and
the STDP has been carried out in [19]. In particular, it
has been shown that the plasticity dynamics for β = 3π/2,
where the stationary weights between the oscillators with
smaller/larger phase differences increase/decrease, quali-
tatively resembles the Hebbian learning rule [25,26]. Nev-
ertheless, when β = π, the coupling weights encode a
causal relationship between the spiking of oscillators by
changing in the opposite directions, in analogy to an
STDP-like plasticity rule. Our interest lies with the β
interval interpolating between these two limiting cases.

Using bifurcation analysis of the deterministic dynam-
ics of (1), we first show how the modality of the plasticity
rule influences the number of stationary states, and then
explain how the onset of oscillations depends on adap-
tivity rate. The bifurcation diagram in fig. 1 indicates
that the number and the stability of fixed points of (1)
change with β in such a way that the system may pos-
sess two, four or six fixed points. Due to invariance to
Z2 symmetry, one always finds pairs of solutions shar-
ing the same stability features. We consider the plastic-
ity rules described by β ∈ (3.298, 4.495), cf. the shaded
region in fig. 1, where the system has two stable fixed
points lying off the synchronization manifold ϕ1 = ϕ2, as
well as four unstable fixed points. The bifurcations oc-
curring at the boundaries of the relevant β interval are
as follows. At β = 3.298, the system undergoes a su-
percritical symmetry-breaking pitchfork bifurcation giving
rise to a pair of stable fixed points off the synchroniza-
tion manifold. For β = 4.495, this pair of stable fixed
points collides with a pair of unstable fixed points off
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Fig. 1: (Color online) Bifurcation diagram for the fixed points
of (1) with D = 0 under variation of β. Solid lines refer to
stable fixed points, while dashed and dotted lines correspond
to saddles of unstable dimension 1 and 2, respectively. Shad-
ing indicates the considered range of plasticity rules. The two
fixed points independent on β belong to the synchronization
manifold. The remaining parameters are I0 = 0.95, ε = 0.05.

the synchronization manifold, getting annihilated in two
symmetry- related inverse fold bifurcations. Note that the
weight levels typical for the two stable stationary states
support effective unidirectional interaction, in a sense that
one unit exerts a much stronger impact on the dynamics
of the other unit than vice versa. When illustrating the
effect of ISR, we shall mainly refer to the case β = 4.2.
For this β, the two stable focuses of (1) at D = 0 are
given by (ϕ1, ϕ2, κ1, κ2) = (1.177, 0.175, 0.032,−0.92) and
(ϕ1, ϕ2, κ1, κ2) = (0.175, 1.177,−0.92, 0.032). Within the
considered β interval, the two stable fixed points of the
coupled system exhibit excitable behavior, responding to
external perturbation by generating either the successive
spikes or synchronized spikes [21].

The onset of oscillations for the deterministic version
of (1) relies on the interplay between the plasticity rule,
controlled by β, and the adaptation rate, characterized
by ε. In fig. 2(a) are shown the results of parameter sweep
indicating the variation of κ1 variable, σκ1 = max(κ1(t))−
min(κ1(t)), within the (β, ε) parameter plane. The sweep
indicates the maximal stability region of the two emerging
periodic solutions, related by the exchange symmetry
of units indices. The data are obtained by numerical
continuation starting from a stable periodic solution, such
that the final state reached for the given parameter set is
used as initial conditions of the system dynamics for incre-
mented parameter values. One observes that for fixed β,
there exists an interval of timescale separation ratios ε ∈
(εmin, εmax) admitting oscillations, see fig. 2(b). Within
the given ε range, the system exhibits multistability
where periodic solutions coexist with the two symmetry-
related stable stationary states. The lower threshold for
oscillations, εmin, reduces with β, whereas the upper
boundary value, εmax, is found to grow as β is enhanced.
Note that the waveform of oscillations also changes as
ε is increased under fixed β. In particular, for smaller
ε, the waveforms corresponding to the two units are
rather different. Nevertheless, around ε ≈ 0.06 the system
undergoes a pitchfork bifurcation of limit cycles, such that
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Fig. 2: (Color online) Onset of oscillations in (1) for D = 0.
(a) Variation σκ1 of the coupling weight κ1 in the (β, ε)-plane.
(b) Mean coupling weights 〈κ1〉(ε) and 〈κ2〉(ε) for oscillatory
(thick lines) and stationary states (thin lines) at β = 4.2.
(c) Variation σκ1(ε) and σκ2(ε), presented as in (b). Shad-
ing in (b) and (c) indicates the ε interval admitting the stable
periodic solutions.
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Fig. 3: (Color online) (a) Mean spiking rate 〈f〉 in terms of
D for ε ∈ {0.06, 0.08, 0.1}. The curves exhibit a character-
istic minimum at an intermediate noise level. (b)–(d) Time
traces ϕ1(t) and ϕ2(t) for noise levels below, at and above
the resonant value. The remaining parameters are I0 = 0.95,
β = 4.2, ε = 0.06.

the oscillatory solution gains the anti-phase space-time
symmetry ϕ1(t) = ϕ2(t+T/2), κ1(t) = κ2(t+T/2), where
T denotes the oscillation period [21].

Numerical results on ISR. – Inverse stochastic
resonance manifests itself as noise-mediated suppression
of oscillations, whereby the frequency of noise-perturbed
oscillations becomes minimal at a preferred noise level.
For system (1), we find such an effect to occur generically
for intermediate adaptivity rates, supporting multistabil-
ity between the stationary and the oscillatory solutions,
as described in the previous section. A family of curves
describing the dependence of the oscillation frequency on
noise variance 〈f〉(D) for different ε values is shown in
fig. 3. All the curves corresponding to ε ≥ εmin(β) show
a characteristic non-monotonous behavior, displaying a
minimum at the optimal noise intensity. For weaker noise,
the oscillation frequency remains close to the determinis-
tic one, whereas for much stronger noise, the frequency
increases above that of unperturbed oscillations. The dis-
played results are obtained by averaging over an ensemble
of 1000 different stochastic realizations, having excluded
the transient behavior, and having fixed a single set of ini-
tial conditions within the basin of attraction of the limit
cycle attractor. Nevertheless, we have verified that the
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Fig. 4: (Color online) (a)–(c) Stationary distribution P (ϕ1) for the noise levels below, at and above the resonant value. System
parameters are I0 = 0.95, β = 4.2 and ε = 0.06. From the three observable peaks, the middle one, prevalent in (a) and (c), refers
to the metastable state associated to the oscillatory mode of (1) for D = 0. The two lateral peaks, dominant in (b), correspond
to quasi-stationary states derived from the stable equilibria of the deterministic version of (1). (d) Bimodality coefficient for
the stationary distribution of κ1, bP (κ1), as a function of D. The three curves refer to ε = 0.06 (diamonds), ε = 0.08 (circles)
and ε = 0.1 (squares).
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Fig. 5: (Color online) (a) and (b): transition rates from the stability basin of the limit cycle to the fixed point, γLC→FP (D)
and vice versa, γFP→LC(D), numerically obtained for ε = 0.06 (squares) and ε = 0.1 (circles). The remaining parameters are
I0 = 0.95, β = 4.2. (c) Determinant of the Jacobian calculated along the limit cycle orbit as a function of the phase variable.
The quantity provides an indication of the sensitivity of certain sections of the orbit to external perturbation. Blue and red
colors correspond to ε = 0.06 and ε = 0.1, respectively.

qualitatively analogous results are obtained if for each
realization of stochastic process one selects a set of ran-
dom initial conditions lying within the stability basin of
the periodic solution. The suppression effect of noise de-
pends on the adaptivity rate, and is found to be more pro-
nounced for faster adaptivity. Indeed, for smaller ε, ϕ(t)
series corresponding to the noise levels around the min-
imum of 〈f〉(D) exhibit bursting-like behavior, whereas
for larger ε, noise is capable of effectively quenching the
oscillations, such that the minimal observed frequency ap-
proaches zero.

The core of the described effect concerns switching
dynamics between the metastable states associated to
coexisting attractors of the deterministic version of sys-
tem (1). To illustrate this, in fig. 4 we have considered
the stationary distributions of one of the phase vari-
ables, P (ϕ), for the noise levels below, at and above the
minimum of the 〈f〉(D), having fixed the remaining pa-
rameters to (β, ε) = (4.2, 0.06). The distribution P (ϕ)
is characterized by two lateral peaks, reflecting the two
symmetry-related quasi-stationary states, and the area
around the central peak, corresponding to the oscillatory
mode. For small noise D = 0.0015, see fig. 4(a), and
very large noise D = 0.006, cf. fig. 4(c), the central
peak of P (ϕ) is expectedly prevalent compared to the two
lateral peaks. Nevertheless, the switching dynamics for

D = 0.0025, the noise level about the minimum of 〈f〉(D),
is fundamentally different, and the corresponding distribu-
tion P (ϕ) in fig. 4(b) shows that the system spends much
more time in the quasi-stationary states than performing
the oscillations. The onset of ISR in the dynamics of fast
variables is accompanied by the increased bimodality of
the stationary distribution of the couplings, see fig. 4(d).

In order to observe the non-monotonous response of
the system’s frequency to noise, the geometry of the
phase space has to be asymmetrical with respect to the
separatrix between the coexisting attractors in such a
way that the limit cycle attractor lies much closer to
the separatrix than the stationary states. Such structure
of phase space gives rise to asymmetry in switching
dynamics, whereby at the preferred noise level around the
minimum of 〈f〉(D), the transition rate from the stability
basin of the limit cycle attractor to that of stationary
states γLC→FP becomes much larger than the transition
rate in the inverse direction, γFP→LC . Figures 5(a)
and (b) corroborate that the dependences γLC→FP (D)
and γFP→LC(D) are qualitatively distinct: the former
displays a maximum at the resonant noise level, whereas
the latter just increases monotonously with noise. The
fact that ISR is more pronounced for higher adaptivity
rates is reflected in that the curve γLC→FP (D) for ε = 0.1
lies substantially above that for ε = 0.06, see fig. 5(a).
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Fig. 6: (Color online) Mean spiking rate 〈f〉 as a function of β
and D for fixed ε = 0.05. The results evince the robustness of
the ISR effect with respect to different plasticity rules.

To understand why the interplay of adaptivity rate and
noise yields a stronger resonant effect for larger ε, we have
investigated the susceptibility of the limit cycle attractor
to external perturbation. In particular, fig. 5(c) shows how
the determinant of the Jacobian calculated along the limit
cycle orbit change for ε = 0.06 (blue line) and ε = 0.1 (red
line), respectively. For smaller ε, one may identify two
particular points where the determinant of the Jacobian
is the largest, i.e., where the impact of external pertur-
bation is felt the strongest. This implies that noise is
most likely to drive the systems trajectory away from the
limit cycle attractor around these two sections of the orbit,
which should lie closest to the boundary to the stability
basins of the stationary states. Such a physical picture
is maintained for larger ε, but one should stress that the
sensitivity of limit cycle attractor to external perturbation
substantially increases along the entire orbit, cf. fig. 5(c).
In other words, faster adaptivity enhances the impact of
noise, contributing to a more pronounced ISR effect. This
point is addressed from another perspective in the next
section.

We also examine the robustness of ISR to different
modalities of the plasticity rule specified by β. Figure 6
shows how the average oscillation frequency changes with
β and D for fixed ε = 0.05. The non-linear response to
noise, conforming to a resonant effect with a minimum of
oscillation frequency at an intermediate noise level, per-
sists in a wide range of β, essentially interpolating between
the Hebbian-like and the STDP-like adaptive dynamics.

Fast-slow analysis: role of plasticity in the reso-
nant effect. – Though ISR is observed for intermediate ε,
here we show that the fast-slow analysis may still be
applied to demonstrate a peculiar feature of the mecha-
nism behind the resonant effect. In particular, we find
that the plasticity enhances the resonant effect by driv-
ing the fast flow dynamics toward the parameter domain
where the stationary state is a focus rather than a node. It
is well known that the response to noise in multi-timescale
systems qualitatively depends on the character of station-
ary states. Indeed, by using the sample-paths approach
and other advanced techniques, it has already been shown

that such systems may exhibit fundamentally different
scaling regimes with respect to noise variance and the
scale-separation ratio [27,28]. Moreover, the resonant ef-
fects may typically be expected in the case in which quasi-
stationary states are focuses [27], essentially because the
local dynamics around the stationary state then involves
an eigenfrequency.

Within the standard fast-slow analysis, one may ei-
ther consider the layer problem, defined on the fast
timescale, or the reduced problem, concerning the slow
timescale [29]. For the layer problem, the fast flow dynam-
ics ϕ1(t;κ1, κ2), ϕ2(t;κ1, κ2) is obtained by treating the
slow variables κ1 and κ2 as system parameters, whereas in
the case of the reduced problem, determining the dynamics
of the slow flow (κ1(t), κ2(t)) involves time-averaging over
the stable regimes of the fast flow of the layer problem.
The fast flow can in principle exhibit several attractors,
which means that multiple stable sheets of the slow flow
may emerge from the averaged dynamics on the different
attractors of the fast flow. Our key point concerns the dy-
namics of the slow flow, which requires us to first classify
the attractors of the fast flow.

The fast flow dynamics is given by

ϕ̇1 = I0 − sinϕ1 + κ1 sin (ϕ2 − ϕ1),
ϕ̇2 = I0 − sinϕ2 + κ2 sin (ϕ1 − ϕ2),

(2)

where κ1, κ2 ∈ [−1, 1] are considered as additional system
parameters. One may formally obtain (2) by setting ε = 0
in (1) with D = 0. We find that the fast flow is monos-
table for most of the (κ1, κ2) values, exhibiting either a
stable equilibrium or a limit cycle attractor, see fig. 7(a).
In general, the fast flow admits either two or four fixed
points, and a more detailed physical picture, including
the associated bifurcations, is presented in [21]. The sta-
bility region of the oscillatory regime, outlined by the red
color, has been calculated by numerical continuation start-
ing from a stable periodic solution. Bistability between a
stable fixed point and a limit cycle is observed only in a
small area near the main diagonal κ1 = κ2. Within the
region featuring oscillatory regime, each periodic solution
obtained for (κ1, κ2) above the main diagonal has a Z2

symmetry-related counterpart below the diagonal. Typi-
cally, the periodic solutions emanate from SNIPER bifur-
cations, which make up two branches where either κ1 or
κ2 are almost constant and close to zero.

Using the results from the analysis of the layer problem,
our goal is to determine the vector fields corresponding
to the stable sheets of the slow flow. We have numeri-
cally obtained the dynamics of the slow flow by a standard
two-step approach [19,30]. First, for fixed values (κ1, κ2),
we have determined the time-averaged dynamics of the
fast flow (2), 〈ϕ2 − ϕ1〉t = h(κ1, κ2), whereby the averag-
ing 〈·〉t is carried out over a sufficiently long time interval,
having excluded the transient behavior. As already in-
dicated, such an average depends on the attractor of the
fast flow for the given (κ1, κ2). If the fast flow possesses
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Fig. 7: (Color online) (a) Attractors of the fast flow (2) in terms of κ1 and κ2, now treated as free parameters. The fast flow
is typically monostable, admitting either a stable fixed point (FP) or a stable limit cycle (LC), apart from a small region of
bistability (FP+LC) around the main diagonal. (b) Vector field of the slow flow (3) determined by considering only the stable
regimes of the fast flow for β = 4.2, I0 = 0.95. Within the yellow-highlighted regions, the stable fixed point of the fast flow is
a focus rather than the node. The displayed orbit (κ1(t), κ2(t)) corresponds to a switching episode from the oscillatory state
to the quasi-stationary state and back (evolution direction indicated by arrows). Panels (c) and (d) show the time traces of
phases and couplings during the switching episode. (e) Conditional probability pF (D) for ε = 0.06 (blue squares) and ε = 0.1
(red circles).

a stable fixed point, then 〈ϕ2 − ϕ1〉t = ϕ∗
2 − ϕ∗

1, which
corresponds to the slow critical manifold of the system.
For (κ1, κ2) where the attractor of the fast flow is a peri-
odic solution, 〈ϕ2−ϕ1〉t amounts to the time average over
the period. Averaging over a periodic attractor of the fast
flow is a standard approximation [30], quite natural when
describing the influence of oscillations in the fast flow to
the dynamics of the slow flow.

As the second step, the obtained time averages are sub-
stituted into the coupling dynamics

κ̇1 = ε[−κ1 + sin(h(κ1, κ2) + β)],
κ̇2 = ε[−κ2 + sin(−h(κ1, κ2) + β)].

(3)

The system (3) allows one to determine the vector fields
on the stable sheets of the slow flow, which correspond to
the attractors of the fast flow. In fig. 7(b), the vector fields
associated to each of the attractors (fixed point or limit
cycle) are presented within its respective (κ1, κ2) stability
region. In the small region of the (κ1, κ2)-plane support-
ing coexisting stable solutions of the fast flow, the corre-
sponding vector field of the slow flow is given on multiple
overlapping sheets, since the value of the average f(κ1, κ2)
depends on the initial conditions.

Within the above framework, one is able to explain a
subtle influence of adaptivity on the mechanism behind
the ISR. To this end, in fig. 7(b) we have projected a
typical example of the (κ1(t), κ2(t)) trajectory of the full
system (1) corresponding to a switching episode between
the metastable states associated to a limit cycle attractor
and a stable equilibrium of the deterministic system, see
the time traces in figs. 7(c), (d). One observes that for
the oscillating regime, the coupling dynamics always re-
mains close to the SNIPER bifurcation of the fast flow, cf.
fig. 7(a), which makes the oscillations quite susceptible to
noise. Recall that the fast flow is typically monostable.
Thus, switching events in the full system are naturally
associated to the fast flow undergoing the SNIPER bifur-
cation: either a direct one, leading from the oscillatory to
the stationary regime, or the inverse one, unfolding in the

opposite direction. For (κ1, κ2) values immediately after
the SNIPER bifurcation toward the quiescent state, the
stable equilibrium of the fast flow is a node. Nevertheless,
for the noise levels where the effect of ISR is most pro-
nounced, we find that the coupling dynamics guides the
system into the region where the equilibrium is a stable
focus rather than a node, see the yellow highlighted re-
gion in fig. 7(b). We have verified that this feature is a
hallmark of the resonant effect by numerically calculating
the conditional probability pF that the events of crossing
the SNIPER bifurcation are followed by the system’s orbit
visiting the (κ1, κ2) region where the stable equilibrium is
a focus. The pF (D) dependences for two characteristic ε
values at fixed β = 4.2 are plotted in fig. 7(e). One learns
that pF (D) has a maximum for the resonant noise levels,
where the corresponding curve f(D) displays a minimum.
In other words, the fact that the coupling dynamics drives
the fast flow to the focus-associated regions of the (κ1, κ2)-
plane results in trapping the phase variables for a longer
time in the quasi-stationary (quiescent) state. Small noise
below the resonant values is insufficient to drive the system
to this region, whereas for too large a noise, the stochastic
fluctuations completely take over, washing out the quasi-
stationary regime. Note that for the faster adaptivity rate,
the facilitatory role of coupling becomes more pronounced,
as evinced by the fact that the curve pF (D) for ε = 0.1
lies above the one for ε = 0.06.

Discussion. – In the present paper, we have demon-
strated a novel generic scenario for the onset of ISR, which
involves an interplay between the local excitability fea-
ture and the adaptive dynamics of the couplings. For
the example of two active rotators with coupling plastic-
ity, we have shown that the spiking frequency correspond-
ing to emergent oscillations varies non-monotonously with
noise, displaying a minimum at a preferred noise level.
Though the model per se is simplified, the underlying
paradigm is relevant for combining the two core features
of typical neuronal systems. The effect derives from the
multi-timescale structure of the system, whereby the scale
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separation between the local and the weight dynamics is
tuned via adaptivity rate. Within a range of intermedi-
ate adaptivity rates, the deterministic dynamics of the full
system exhibits multistability between the limit cycle at-
tractors and the stable equilibria, each appearing in pairs
due to the systems invariance to Z2 symmetry. Applying
the standard fast-slow analysis, we have shown that the
resonant effect with noise is in fact plasticity-enhanced:
plasticity promotes the impact of noise by guiding the fast
flow toward the parameter domain where the stable equi-
libria become focuses instead of nodes. This mechanism
increases the trapping efficiency by which the noise is able
to deviate the systems trajectory from the metastable os-
cillatory states to the non-spiking regime. For faster adap-
tivity, the resonant effect is found to be more pronounced
in a sense that the frequency dependence on noise shows
deeper minima. Our scenario has proven to persist in a
wide range of plasticity rules, interpolating between the
cases analogous to Hebbian learning and STDP.

In earlier studies, observation of ISR has mostly been
confined to Type-II neurons with intrinsic bistable dynam-
ics, as in case of Hodgkin-Huxley or Morris-Lecar neurons
near the subcritical Hopf bifurcation [3,6–9]. Even in case
of networks, the macroscopic ISR effect has been linked
to dynamical features of single units, only being modu-
lated by the details of synaptic dynamics and the network
topology [10]. In contrast to that, our results show that
ISR may not rely on bistability of local dynamics, but
may rather emerge due to the facilitatory role of coupling,
here reflected in the interplay of multiscale dynamics and
plasticity. Another distinction from most of the previous
studies is that our scenario concerns Type-I units. For
this class of systems, it is known that the dependence of
the oscillating frequency of a single unit with noise is just
monotonous [3,12], so that the resonant effect can only
be observed in case of coupled units. So far, the latter
case has been analyzed only once [5], but the underlying
scenario is different from ours insofar as it involves static,
rather than the adaptive couplings, and the effect per se
is confined to a narrow region of the parameter space.

Quite recently, the onset of ISR has been reported for a
single Fitzhugh-Nagumo oscillator [12], which is the first
observation of the effect for Type-II neuron model in the
vicinity of the supercritical Hopf bifurcation. Similar to
the scenario we elaborated, ISR there also derives from
the multiscale structure of the system. However, the ac-
tual mechanism behind the effect is associated to phase-
sensitive (non-uniform) excitability of a limit cycle orbit
conforming to relaxation oscillations [12]. These findings
and the results here suggest that ISR may indeed provide
a generic means of controlling and optimizing the firing
rate in multi-timescale systems, which can be applied to
neuronal activity, calcium signaling and other types of cell
dynamics.
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PACS 05.40.Ca – Noise
PACS 87.19.ln – Oscillations and resonance

Abstract – Inverse stochastic resonance is a phenomenon where an oscillating system influenced
by noise exhibits a minimal oscillation frequency at an intermediate noise level. We demonstrate
a novel generic scenario for such an effect in a multi-timescale system, considering an example
of emergent oscillations in two adaptively coupled active rotators with excitable local dynamics.
The impact of plasticity turns out to be twofold. First, at the level of multiscale dynamics,
one finds a range of intermediate adaptivity rates that give rise to multistability between the
limit cycle attractors and the stable equilibria, a condition necessary for the onset of the effect.
Second, applying the fast-slow analysis, we show that the plasticity also plays a facilitatory role
on a more subtle level, guiding the fast flow dynamics to parameter domains where the stable
equilibria become focuses rather than nodes, which effectively enhances the influence of noise.
The described scenario persists for different plasticity rules, underlying its robustness in the light
of potential applications to neuroscience and other types of cell dynamics.

Copyright c© EPLA, 2018

Introduction. – Noise in coupled excitable or bistable
systems may induce two types of generic effects [1]. On
the one hand, it can modify the deterministic behavior
by acting non-uniformly on different states of the sys-
tem, thus amplifying or suppressing some of its features.
On the other hand, noise may give rise to completely
novel forms of behavior, typically based on crossing the
thresholds or separatrices, or involving enhanced stabil-
ity of deterministically unstable structures. In neuronal
systems, the constructive role of noise at different stages
of information processing, referred to as “stochastic facili-
tation” [2,3], mainly comprises resonant phenomena. A
classical example is the stochastic resonance [4], which
allows for the detection of weak subthreshold periodic
signals. A more recent development concerns the ef-
fect of inverse stochastic resonance (ISR) [3,5–12], where
noise selectively reduces the spiking frequency of neuronal
oscillators, converting the tonic firing into intermittent
bursting-like activity or a short-lived transient followed

(a)E-mail: franovic@ipb.ac.rs

by a long period of quiescence. The name of the effect
should be taken cum grano salis, because in contrast to
stochastic resonance, it involves no additional external sig-
nal: one rather observes a non-monotonous dependence of
the spiking rate on noise variance, whereby the oscilla-
tion frequency becomes minimal at a preferred noise level.
Such an inhibitory effect of noise has recently been shown
for cerebellar Purkinje cells [11], having explicitly demon-
strated how the lifetimes of the spiking (“up”) and the
silent (“down”) states [13–15] are affected by the noise
variance. ISR has been indicated to play important func-
tional roles in neuronal systems, including the reduction
of spiking frequency in the absence of neuromodulators,
suppression of pathologically long short-term memories,
triggering of on-off tonic spiking activity and even opti-
mization of information transfer along the signal propaga-
tion pathways [3,7,9,11].

So far, theoretical studies on ISR have mostly con-
cerned the scenario where a single neuron exhibits bistable
deterministic dynamics, featuring coexistence between a
limit cycle and a stable equilibrium. Such bistability is
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typical for Type-II neurons below the subcritical Hopf bi-
furcation, e.g., classical Hodgkin-Huxley and Morris-Lecar
models [3,6–8]. There, applying noise induces switching
between the metastable states, but at an intermediate
noise level, one surprisingly finds a strong asymmetry of
the associated switching rates, which makes the periods
spent in the vicinity of equilibrium much longer than the
periods of spiking activity.

An important open problem concerns conditions giving
rise to ISR in coupled excitable systems, where noise influ-
ences the emergent oscillations. Here we address in detail
this issue, as it may be crucial to understanding the preva-
lence of the effect in neural networks, whose activity de-
pends on the interplay of excitability, coupling properties
and noise. Synaptic dynamics typically involves the plas-
ticity feature, which makes self-organization in neuronal
systems a multi-timescale process: the short-term spiking
activity unfolds on a quasi-static coupling configuration,
while the slow adjustment of coupling weights depends on
the time-averaged evolution of units.

Motivated by the findings in neuroscience, we focus on
the onset of ISR in a simplified, yet paradigmatic system
of two adaptively coupled stochastic active rotators with
excitable local dynamics. Active rotators are canonical for
Type-I excitability and may be seen as equivalent to the
theta-neuron model. Adaptivity is introduced in a way
that allows continuous interpolation between a spectrum
of plasticity rules, including Hebbian learning and spike-
time-dependent plasticity (STDP) [16–18].

We demonstrate a generic scenario for the plasticity-
induced ISR, where the system’s multiscale structure, de-
fined by the adaptivity rate, plays a crucial role. On a
basic level, plasticity gives rise to multistable behavior in-
volving coexisting stationary and oscillatory regimes. An
additional subtlety, which we show by the fast-slow anal-
ysis, is that the plasticity promotes the resonant effect by
guiding the fast flow toward the parameter region where
the stable fixed points are focuses rather than nodes.

The paper is organized as follows. In the next sec-
tion the details of the model and the numerical bifurca-
tion analysis of the deterministic dynamics are presented.
The third section contains the results on the ISR effect
and the supporting conditions. In the fourth section the
fast-slow analysis is applied to explain the mechanism by
which plasticity enhances the system’s non-linear response
to noise. Apart from providing a brief summary, in the
last section we also discuss the prevalence of the observed
effect.

Model and bifurcation analysis of deterministic
dynamics. – Our model involves two stochastic active
rotators interacting by adaptive couplings [19–22],

ϕ̇1 = I0 − sin ϕ1 + κ1 sin (ϕ2 − ϕ1) +
√

Dξ1(t),

ϕ̇2 = I0 − sin ϕ2 + κ2 sin (ϕ1 − ϕ2) +
√

Dξ2(t),
κ̇1 = ε(−κ1 + sin(ϕ2 − ϕ1 + β)),
κ̇2 = ε(−κ2 + sin(ϕ1 − ϕ2 + β)),

(1)

where the phases {ϕ1, ϕ2} ∈ S1, while the coupling
weights {κ1, κ2} are real variables.

The excitability parameters I0, which one may interpret
as external bias currents in the context of neuroscience,
are assumed to be identical for both units. For such a
setup, the deterministic version of (1) possesses a Z2 sym-
metry, being invariant to the exchange of units’ indices.
The uncoupled units undergo a SNIPER bifurcation at
I0 = 1, with the values I0 < 1 (I0 > 1) corresponding to
the excitable (oscillatory) regime. We consider the case of
excitable local dynamics, keeping I0 = 0.95 fixed through-
out the paper, such that the oscillations may emerge only
due to the coupling terms and/or noise. The scale sepa-
ration between the fast dynamics of the phases and the
slow dynamics of adaptation is adjusted by the parameter
ε � 1. The fast variables are influenced by independent
white noise of variance D such that ξi(t)ξj(t′) = δijδ(t−t′)
for i, j ∈ {1, 2}. Conceptually, adding stochastic input to
the fast variables embodies the action of synaptic noise in
neuronal systems [23].

The modality of the plasticity rule is specified by the
parameter β, whose role may be understood by invok-
ing the qualitative analogy between the adaptation dy-
namics in classical neuronal systems and the systems of
coupled phase oscillators. This issue has first been ad-
dressed in [24–26], and a deeper analysis of the correspon-
dence between the phase-dependent plasticity rules and
the STDP has been carried out in [19]. In particular, it
has been shown that the plasticity dynamics for β = 3π/2,
where the stationary weights between the oscillators with
smaller/larger phase differences increase/decrease, quali-
tatively resembles the Hebbian learning rule [25,26]. Nev-
ertheless, when β = π, the coupling weights encode a
causal relationship between the spiking of oscillators by
changing in the opposite directions, in analogy to an
STDP-like plasticity rule. Our interest lies with the β
interval interpolating between these two limiting cases.

Using bifurcation analysis of the deterministic dynam-
ics of (1), we first show how the modality of the plasticity
rule influences the number of stationary states, and then
explain how the onset of oscillations depends on adap-
tivity rate. The bifurcation diagram in fig. 1 indicates
that the number and the stability of fixed points of (1)
change with β in such a way that the system may pos-
sess two, four or six fixed points. Due to invariance to
Z2 symmetry, one always finds pairs of solutions shar-
ing the same stability features. We consider the plastic-
ity rules described by β ∈ (3.298, 4.495), cf. the shaded
region in fig. 1, where the system has two stable fixed
points lying off the synchronization manifold ϕ1 = ϕ2, as
well as four unstable fixed points. The bifurcations oc-
curring at the boundaries of the relevant β interval are
as follows. At β = 3.298, the system undergoes a su-
percritical symmetry-breaking pitchfork bifurcation giving
rise to a pair of stable fixed points off the synchroniza-
tion manifold. For β = 4.495, this pair of stable fixed
points collides with a pair of unstable fixed points off
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Fig. 1: (Color online) Bifurcation diagram for the fixed points
of (1) with D = 0 under variation of β. Solid lines refer to
stable fixed points, while dashed and dotted lines correspond
to saddles of unstable dimension 1 and 2, respectively. Shad-
ing indicates the considered range of plasticity rules. The two
fixed points independent on β belong to the synchronization
manifold. The remaining parameters are I0 = 0.95, ε = 0.05.

the synchronization manifold, getting annihilated in two
symmetry- related inverse fold bifurcations. Note that the
weight levels typical for the two stable stationary states
support effective unidirectional interaction, in a sense that
one unit exerts a much stronger impact on the dynamics
of the other unit than vice versa. When illustrating the
effect of ISR, we shall mainly refer to the case β = 4.2.
For this β, the two stable focuses of (1) at D = 0 are
given by (ϕ1, ϕ2, κ1, κ2) = (1.177, 0.175, 0.032,−0.92) and
(ϕ1, ϕ2, κ1, κ2) = (0.175, 1.177,−0.92, 0.032). Within the
considered β interval, the two stable fixed points of the
coupled system exhibit excitable behavior, responding to
external perturbation by generating either the successive
spikes or synchronized spikes [21].

The onset of oscillations for the deterministic version
of (1) relies on the interplay between the plasticity rule,
controlled by β, and the adaptation rate, characterized
by ε. In fig. 2(a) are shown the results of parameter sweep
indicating the variation of κ1 variable, σκ1 = max(κ1(t))−
min(κ1(t)), within the (β, ε) parameter plane. The sweep
indicates the maximal stability region of the two emerging
periodic solutions, related by the exchange symmetry
of units indices. The data are obtained by numerical
continuation starting from a stable periodic solution, such
that the final state reached for the given parameter set is
used as initial conditions of the system dynamics for incre-
mented parameter values. One observes that for fixed β,
there exists an interval of timescale separation ratios ε ∈
(εmin, εmax) admitting oscillations, see fig. 2(b). Within
the given ε range, the system exhibits multistability
where periodic solutions coexist with the two symmetry-
related stable stationary states. The lower threshold for
oscillations, εmin, reduces with β, whereas the upper
boundary value, εmax, is found to grow as β is enhanced.
Note that the waveform of oscillations also changes as
ε is increased under fixed β. In particular, for smaller
ε, the waveforms corresponding to the two units are
rather different. Nevertheless, around ε ≈ 0.06 the system
undergoes a pitchfork bifurcation of limit cycles, such that
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Fig. 2: (Color online) Onset of oscillations in (1) for D = 0.
(a) Variation σκ1 of the coupling weight κ1 in the (β, ε)-plane.
(b) Mean coupling weights 〈κ1〉(ε) and 〈κ2〉(ε) for oscillatory
(thick lines) and stationary states (thin lines) at β = 4.2.
(c) Variation σκ1(ε) and σκ2(ε), presented as in (b). Shad-
ing in (b) and (c) indicates the ε interval admitting the stable
periodic solutions.
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Fig. 3: (Color online) (a) Mean spiking rate 〈f〉 in terms of
D for ε ∈ {0.06, 0.08, 0.1}. The curves exhibit a character-
istic minimum at an intermediate noise level. (b)–(d) Time
traces ϕ1(t) and ϕ2(t) for noise levels below, at and above
the resonant value. The remaining parameters are I0 = 0.95,
β = 4.2, ε = 0.06.

the oscillatory solution gains the anti-phase space-time
symmetry ϕ1(t) = ϕ2(t+T/2), κ1(t) = κ2(t+T/2), where
T denotes the oscillation period [21].

Numerical results on ISR. – Inverse stochastic
resonance manifests itself as noise-mediated suppression
of oscillations, whereby the frequency of noise-perturbed
oscillations becomes minimal at a preferred noise level.
For system (1), we find such an effect to occur generically
for intermediate adaptivity rates, supporting multistabil-
ity between the stationary and the oscillatory solutions,
as described in the previous section. A family of curves
describing the dependence of the oscillation frequency on
noise variance 〈f〉(D) for different ε values is shown in
fig. 3. All the curves corresponding to ε ≥ εmin(β) show
a characteristic non-monotonous behavior, displaying a
minimum at the optimal noise intensity. For weaker noise,
the oscillation frequency remains close to the determinis-
tic one, whereas for much stronger noise, the frequency
increases above that of unperturbed oscillations. The dis-
played results are obtained by averaging over an ensemble
of 1000 different stochastic realizations, having excluded
the transient behavior, and having fixed a single set of ini-
tial conditions within the basin of attraction of the limit
cycle attractor. Nevertheless, we have verified that the
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and vice versa, γFP→LC(D), numerically obtained for ε = 0.06 (squares) and ε = 0.1 (circles). The remaining parameters are
I0 = 0.95, β = 4.2. (c) Determinant of the Jacobian calculated along the limit cycle orbit as a function of the phase variable.
The quantity provides an indication of the sensitivity of certain sections of the orbit to external perturbation. Blue and red
colors correspond to ε = 0.06 and ε = 0.1, respectively.

qualitatively analogous results are obtained if for each
realization of stochastic process one selects a set of ran-
dom initial conditions lying within the stability basin of
the periodic solution. The suppression effect of noise de-
pends on the adaptivity rate, and is found to be more pro-
nounced for faster adaptivity. Indeed, for smaller ε, ϕ(t)
series corresponding to the noise levels around the min-
imum of 〈f〉(D) exhibit bursting-like behavior, whereas
for larger ε, noise is capable of effectively quenching the
oscillations, such that the minimal observed frequency ap-
proaches zero.

The core of the described effect concerns switching
dynamics between the metastable states associated to
coexisting attractors of the deterministic version of sys-
tem (1). To illustrate this, in fig. 4 we have considered
the stationary distributions of one of the phase vari-
ables, P (ϕ), for the noise levels below, at and above the
minimum of the 〈f〉(D), having fixed the remaining pa-
rameters to (β, ε) = (4.2, 0.06). The distribution P (ϕ)
is characterized by two lateral peaks, reflecting the two
symmetry-related quasi-stationary states, and the area
around the central peak, corresponding to the oscillatory
mode. For small noise D = 0.0015, see fig. 4(a), and
very large noise D = 0.006, cf. fig. 4(c), the central
peak of P (ϕ) is expectedly prevalent compared to the two
lateral peaks. Nevertheless, the switching dynamics for

D = 0.0025, the noise level about the minimum of 〈f〉(D),
is fundamentally different, and the corresponding distribu-
tion P (ϕ) in fig. 4(b) shows that the system spends much
more time in the quasi-stationary states than performing
the oscillations. The onset of ISR in the dynamics of fast
variables is accompanied by the increased bimodality of
the stationary distribution of the couplings, see fig. 4(d).

In order to observe the non-monotonous response of
the system’s frequency to noise, the geometry of the
phase space has to be asymmetrical with respect to the
separatrix between the coexisting attractors in such a
way that the limit cycle attractor lies much closer to
the separatrix than the stationary states. Such structure
of phase space gives rise to asymmetry in switching
dynamics, whereby at the preferred noise level around the
minimum of 〈f〉(D), the transition rate from the stability
basin of the limit cycle attractor to that of stationary
states γLC→FP becomes much larger than the transition
rate in the inverse direction, γFP→LC . Figures 5(a)
and (b) corroborate that the dependences γLC→FP (D)
and γFP→LC(D) are qualitatively distinct: the former
displays a maximum at the resonant noise level, whereas
the latter just increases monotonously with noise. The
fact that ISR is more pronounced for higher adaptivity
rates is reflected in that the curve γLC→FP (D) for ε = 0.1
lies substantially above that for ε = 0.06, see fig. 5(a).
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Fig. 6: (Color online) Mean spiking rate 〈f〉 as a function of β
and D for fixed ε = 0.05. The results evince the robustness of
the ISR effect with respect to different plasticity rules.

To understand why the interplay of adaptivity rate and
noise yields a stronger resonant effect for larger ε, we have
investigated the susceptibility of the limit cycle attractor
to external perturbation. In particular, fig. 5(c) shows how
the determinant of the Jacobian calculated along the limit
cycle orbit change for ε = 0.06 (blue line) and ε = 0.1 (red
line), respectively. For smaller ε, one may identify two
particular points where the determinant of the Jacobian
is the largest, i.e., where the impact of external pertur-
bation is felt the strongest. This implies that noise is
most likely to drive the systems trajectory away from the
limit cycle attractor around these two sections of the orbit,
which should lie closest to the boundary to the stability
basins of the stationary states. Such a physical picture
is maintained for larger ε, but one should stress that the
sensitivity of limit cycle attractor to external perturbation
substantially increases along the entire orbit, cf. fig. 5(c).
In other words, faster adaptivity enhances the impact of
noise, contributing to a more pronounced ISR effect. This
point is addressed from another perspective in the next
section.

We also examine the robustness of ISR to different
modalities of the plasticity rule specified by β. Figure 6
shows how the average oscillation frequency changes with
β and D for fixed ε = 0.05. The non-linear response to
noise, conforming to a resonant effect with a minimum of
oscillation frequency at an intermediate noise level, per-
sists in a wide range of β, essentially interpolating between
the Hebbian-like and the STDP-like adaptive dynamics.

Fast-slow analysis: role of plasticity in the reso-
nant effect. – Though ISR is observed for intermediate ε,
here we show that the fast-slow analysis may still be
applied to demonstrate a peculiar feature of the mecha-
nism behind the resonant effect. In particular, we find
that the plasticity enhances the resonant effect by driv-
ing the fast flow dynamics toward the parameter domain
where the stationary state is a focus rather than a node. It
is well known that the response to noise in multi-timescale
systems qualitatively depends on the character of station-
ary states. Indeed, by using the sample-paths approach
and other advanced techniques, it has already been shown

that such systems may exhibit fundamentally different
scaling regimes with respect to noise variance and the
scale-separation ratio [27,28]. Moreover, the resonant ef-
fects may typically be expected in the case in which quasi-
stationary states are focuses [27], essentially because the
local dynamics around the stationary state then involves
an eigenfrequency.

Within the standard fast-slow analysis, one may ei-
ther consider the layer problem, defined on the fast
timescale, or the reduced problem, concerning the slow
timescale [29]. For the layer problem, the fast flow dynam-
ics ϕ1(t;κ1, κ2), ϕ2(t;κ1, κ2) is obtained by treating the
slow variables κ1 and κ2 as system parameters, whereas in
the case of the reduced problem, determining the dynamics
of the slow flow (κ1(t), κ2(t)) involves time-averaging over
the stable regimes of the fast flow of the layer problem.
The fast flow can in principle exhibit several attractors,
which means that multiple stable sheets of the slow flow
may emerge from the averaged dynamics on the different
attractors of the fast flow. Our key point concerns the dy-
namics of the slow flow, which requires us to first classify
the attractors of the fast flow.

The fast flow dynamics is given by

ϕ̇1 = I0 − sinϕ1 + κ1 sin (ϕ2 − ϕ1),
ϕ̇2 = I0 − sinϕ2 + κ2 sin (ϕ1 − ϕ2),

(2)

where κ1, κ2 ∈ [−1, 1] are considered as additional system
parameters. One may formally obtain (2) by setting ε = 0
in (1) with D = 0. We find that the fast flow is monos-
table for most of the (κ1, κ2) values, exhibiting either a
stable equilibrium or a limit cycle attractor, see fig. 7(a).
In general, the fast flow admits either two or four fixed
points, and a more detailed physical picture, including
the associated bifurcations, is presented in [21]. The sta-
bility region of the oscillatory regime, outlined by the red
color, has been calculated by numerical continuation start-
ing from a stable periodic solution. Bistability between a
stable fixed point and a limit cycle is observed only in a
small area near the main diagonal κ1 = κ2. Within the
region featuring oscillatory regime, each periodic solution
obtained for (κ1, κ2) above the main diagonal has a Z2

symmetry-related counterpart below the diagonal. Typi-
cally, the periodic solutions emanate from SNIPER bifur-
cations, which make up two branches where either κ1 or
κ2 are almost constant and close to zero.

Using the results from the analysis of the layer problem,
our goal is to determine the vector fields corresponding
to the stable sheets of the slow flow. We have numeri-
cally obtained the dynamics of the slow flow by a standard
two-step approach [19,30]. First, for fixed values (κ1, κ2),
we have determined the time-averaged dynamics of the
fast flow (2), 〈ϕ2 − ϕ1〉t = h(κ1, κ2), whereby the averag-
ing 〈·〉t is carried out over a sufficiently long time interval,
having excluded the transient behavior. As already in-
dicated, such an average depends on the attractor of the
fast flow for the given (κ1, κ2). If the fast flow possesses
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Fig. 7: (Color online) (a) Attractors of the fast flow (2) in terms of κ1 and κ2, now treated as free parameters. The fast flow
is typically monostable, admitting either a stable fixed point (FP) or a stable limit cycle (LC), apart from a small region of
bistability (FP+LC) around the main diagonal. (b) Vector field of the slow flow (3) determined by considering only the stable
regimes of the fast flow for β = 4.2, I0 = 0.95. Within the yellow-highlighted regions, the stable fixed point of the fast flow is
a focus rather than the node. The displayed orbit (κ1(t), κ2(t)) corresponds to a switching episode from the oscillatory state
to the quasi-stationary state and back (evolution direction indicated by arrows). Panels (c) and (d) show the time traces of
phases and couplings during the switching episode. (e) Conditional probability pF (D) for ε = 0.06 (blue squares) and ε = 0.1
(red circles).

a stable fixed point, then 〈ϕ2 − ϕ1〉t = ϕ∗
2 − ϕ∗

1, which
corresponds to the slow critical manifold of the system.
For (κ1, κ2) where the attractor of the fast flow is a peri-
odic solution, 〈ϕ2−ϕ1〉t amounts to the time average over
the period. Averaging over a periodic attractor of the fast
flow is a standard approximation [30], quite natural when
describing the influence of oscillations in the fast flow to
the dynamics of the slow flow.

As the second step, the obtained time averages are sub-
stituted into the coupling dynamics

κ̇1 = ε[−κ1 + sin(h(κ1, κ2) + β)],
κ̇2 = ε[−κ2 + sin(−h(κ1, κ2) + β)].

(3)

The system (3) allows one to determine the vector fields
on the stable sheets of the slow flow, which correspond to
the attractors of the fast flow. In fig. 7(b), the vector fields
associated to each of the attractors (fixed point or limit
cycle) are presented within its respective (κ1, κ2) stability
region. In the small region of the (κ1, κ2)-plane support-
ing coexisting stable solutions of the fast flow, the corre-
sponding vector field of the slow flow is given on multiple
overlapping sheets, since the value of the average f(κ1, κ2)
depends on the initial conditions.

Within the above framework, one is able to explain a
subtle influence of adaptivity on the mechanism behind
the ISR. To this end, in fig. 7(b) we have projected a
typical example of the (κ1(t), κ2(t)) trajectory of the full
system (1) corresponding to a switching episode between
the metastable states associated to a limit cycle attractor
and a stable equilibrium of the deterministic system, see
the time traces in figs. 7(c), (d). One observes that for
the oscillating regime, the coupling dynamics always re-
mains close to the SNIPER bifurcation of the fast flow, cf.
fig. 7(a), which makes the oscillations quite susceptible to
noise. Recall that the fast flow is typically monostable.
Thus, switching events in the full system are naturally
associated to the fast flow undergoing the SNIPER bifur-
cation: either a direct one, leading from the oscillatory to
the stationary regime, or the inverse one, unfolding in the

opposite direction. For (κ1, κ2) values immediately after
the SNIPER bifurcation toward the quiescent state, the
stable equilibrium of the fast flow is a node. Nevertheless,
for the noise levels where the effect of ISR is most pro-
nounced, we find that the coupling dynamics guides the
system into the region where the equilibrium is a stable
focus rather than a node, see the yellow highlighted re-
gion in fig. 7(b). We have verified that this feature is a
hallmark of the resonant effect by numerically calculating
the conditional probability pF that the events of crossing
the SNIPER bifurcation are followed by the system’s orbit
visiting the (κ1, κ2) region where the stable equilibrium is
a focus. The pF (D) dependences for two characteristic ε
values at fixed β = 4.2 are plotted in fig. 7(e). One learns
that pF (D) has a maximum for the resonant noise levels,
where the corresponding curve f(D) displays a minimum.
In other words, the fact that the coupling dynamics drives
the fast flow to the focus-associated regions of the (κ1, κ2)-
plane results in trapping the phase variables for a longer
time in the quasi-stationary (quiescent) state. Small noise
below the resonant values is insufficient to drive the system
to this region, whereas for too large a noise, the stochastic
fluctuations completely take over, washing out the quasi-
stationary regime. Note that for the faster adaptivity rate,
the facilitatory role of coupling becomes more pronounced,
as evinced by the fact that the curve pF (D) for ε = 0.1
lies above the one for ε = 0.06.

Discussion. – In the present paper, we have demon-
strated a novel generic scenario for the onset of ISR, which
involves an interplay between the local excitability fea-
ture and the adaptive dynamics of the couplings. For
the example of two active rotators with coupling plastic-
ity, we have shown that the spiking frequency correspond-
ing to emergent oscillations varies non-monotonously with
noise, displaying a minimum at a preferred noise level.
Though the model per se is simplified, the underlying
paradigm is relevant for combining the two core features
of typical neuronal systems. The effect derives from the
multi-timescale structure of the system, whereby the scale
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separation between the local and the weight dynamics is
tuned via adaptivity rate. Within a range of intermedi-
ate adaptivity rates, the deterministic dynamics of the full
system exhibits multistability between the limit cycle at-
tractors and the stable equilibria, each appearing in pairs
due to the systems invariance to Z2 symmetry. Applying
the standard fast-slow analysis, we have shown that the
resonant effect with noise is in fact plasticity-enhanced:
plasticity promotes the impact of noise by guiding the fast
flow toward the parameter domain where the stable equi-
libria become focuses instead of nodes. This mechanism
increases the trapping efficiency by which the noise is able
to deviate the systems trajectory from the metastable os-
cillatory states to the non-spiking regime. For faster adap-
tivity, the resonant effect is found to be more pronounced
in a sense that the frequency dependence on noise shows
deeper minima. Our scenario has proven to persist in a
wide range of plasticity rules, interpolating between the
cases analogous to Hebbian learning and STDP.

In earlier studies, observation of ISR has mostly been
confined to Type-II neurons with intrinsic bistable dynam-
ics, as in case of Hodgkin-Huxley or Morris-Lecar neurons
near the subcritical Hopf bifurcation [3,6–9]. Even in case
of networks, the macroscopic ISR effect has been linked
to dynamical features of single units, only being modu-
lated by the details of synaptic dynamics and the network
topology [10]. In contrast to that, our results show that
ISR may not rely on bistability of local dynamics, but
may rather emerge due to the facilitatory role of coupling,
here reflected in the interplay of multiscale dynamics and
plasticity. Another distinction from most of the previous
studies is that our scenario concerns Type-I units. For
this class of systems, it is known that the dependence of
the oscillating frequency of a single unit with noise is just
monotonous [3,12], so that the resonant effect can only
be observed in case of coupled units. So far, the latter
case has been analyzed only once [5], but the underlying
scenario is different from ours insofar as it involves static,
rather than the adaptive couplings, and the effect per se
is confined to a narrow region of the parameter space.

Quite recently, the onset of ISR has been reported for a
single Fitzhugh-Nagumo oscillator [12], which is the first
observation of the effect for Type-II neuron model in the
vicinity of the supercritical Hopf bifurcation. Similar to
the scenario we elaborated, ISR there also derives from
the multiscale structure of the system. However, the ac-
tual mechanism behind the effect is associated to phase-
sensitive (non-uniform) excitability of a limit cycle orbit
conforming to relaxation oscillations [12]. These findings
and the results here suggest that ISR may indeed provide
a generic means of controlling and optimizing the firing
rate in multi-timescale systems, which can be applied to
neuronal activity, calcium signaling and other types of cell
dynamics.
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Abstract. Understanding the effect of network connectivity patterns
on the relation between the spontaneous and the stimulus-evoked net-
work activity has become one of the outstanding issues in neuroscience.
We address this problem by considering a clustered network of stochas-
tic rate-based neurons influenced by external and intrinsic noise. The
bifurcation analysis of an effective model of network dynamics, com-
prised of coupled mean-field models representing each of the clusters,
is used to gain insight into the structure of metastable states char-
acterizing the spontaneous and the induced dynamics. We show that
the induced dynamics strongly depends on whether the excitation is
aimed at a certain cluster or the same fraction of randomly selected
units, whereby the targeted stimulation reduces macroscopic variabil-
ity by biasing the network toward a particular collective state. The
immediate effect of clustering on the induced dynamics is established
by comparing the excitation rates of a clustered and a homogeneous
random network.

1 Introduction

Characterizing the structure of spontaneous emergent activity in neuronal pop-
ulations, and the fashion in which it is modulated by the sensory stimuli, is
fundamental to understanding the principles of information processing in the cortex.
The generic patterns of spontaneous cortical dynamics, called slow rate fluctuations or
UP–DOWN states, involve switching between the episodes of elevated neuronal and
synaptic activity, and the stages of relative quiescence [1–3]. Alternation between UP
and DOWN states is orchestrated by coherent action of individual neurons, with the
observed rates typically lying in the range from 0.1 to 2 Hz [3]. Slow rate fluctuations
give rise to macroscopic variability in the cortex [4,5], underlying in vivo activity
during quiet wakefulness, sleep or under anesthesia [1,6,7], and even featuring in var-
ious in vitro preparations [8,9]. Our paper focuses on the open issues concerning the
ingredients that affect the relationship between the stimulus-evoked and the ongoing
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dynamics of neural assemblies, as well as the way the induced activity depends on
the stimulus.

The research on induced patterns in sensory cortical areas has surprisingly shown
that regardless of the type of stimuli, these patterns exhibit remarkable similarity
to those of the idling activity [10–13]. In fact, the onset of UP–DOWN states has
been recorded while performing perceptual tasks, but has also been found crucial
to pyramidal neurons of neocortex, where it facilitates certain forms of learning and
memory consolidation [1,14–17]. Such data evince that typical evoked activity pat-
terns are drawn from a limited ”vocabulary” already present within the spontaneous
dynamics [10], whereby the sampling ability is pinned by the form of sensory stim-
uli. The striking similarity between the ongoing and the induced cortical activity is
now considered as a generic feature of cortical dynamics, verified at increasing levels
of structural complexity [18]. Certain experimental studies have linked the similar-
ity to nontrivial properties of cortical connectivity, suggesting that it confines the
pool of potential activity patterns [18]. By this paradigm, the structure of patterns
reflects the modular (clustered) architecture of cortical networks, whereby certain pat-
terns are activated by stimulating particular local subcircuits, known as the leader
sites [19]. Conceptually, investigating the impact of clustered topology on different
aspects of collective dynamics is biologically plausible [5,20], as recent research indi-
cates strong prevalence of clustered over the homogeneous connectivity in cortical
networks [21–24]. Clustering has already been shown to enable task-specialization,
maintaining of high levels of neuronal activity, or adaptation to certain types of
stimuli [25,26].

Here, we examine how the interplay of modular network architecture and noise
influences the relation between the spontaneous and induced macroscopic activity,
as well as how the macroscopic variability is affected by the different types of net-
work stimulation. We analyze a model of a clustered network of noisy rate-based
neurons [27–29], employing a second-order effective model of collective dynam-
ics to gain insight into the structure of network’s metastable states. While the
spontaneous activity consists of noise-induced fluctuations between the metastable
states, we show that the specific type of stimulation, targeted at a certain clus-
ter, biases the network toward a particular state, thereby reducing the macroscopic
variability.

The origin of macroscopic variability, as an emergent network phenomenon, has
so far been treated within two different frameworks, one associating slow rate fluc-
tuations to deterministic networks, where balanced massive excitation and inhibition
render the collective dynamics highly sensitive to fluctuations, and the other, which
ties the slow rate fluctuations to multistability in attractor model networks, such that
switching between coexisting states emerges due to noise, whose action amounts to a
finite-size effect. In our recent paper [27], we have applied the latter approach, com-
paring the switching dynamics in clustered networks relative to random (statistically
uniform) networks with the same average connectivity, having shown that clustering
promotes multistability, thereby enhancing the switching phenomenon and its robust-
ness. Here, the use of effective model of collective dynamics derived in [27] is extended
to capture the response of random and clustered networks to external stimuli. In case
of clustered networks, we compare the effects of two different stimulation protocols,
including (i) the targeted stimulation, where an increased bias current is introduced
only to units in a certain cluster, and (ii) the distributed stimulation, where the same
fraction of randomly selected neurons is excited. It is found that due to modular
architecture, the two stimulation scenarios may give rise to fundamentally different
responses of the network.

The paper is organized as follows. In Section 2, we introduce the model of net-
work dynamics and present the effective model of its macroscopic behavior. Section 3
contains the bifurcation analysis of the effective model of a clustered network in
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the thermodynamic limit, applying it to anticipate the induced dynamics of the
network. In Section 4, we compare the numerical results to the predictions of the
mean-field model. Section 5 provides a brief summary and discussion on the obtained
results.

2 Network dynamics: full and the effective model

We consider an m-cluster network comprised of N neurons, assuming random connec-
tivity both within and between the clusters. The intra-cluster connectivity, specified
by connectedness probability pin, is more dense than the cross-connectivity pout,
whereby the degree of topological heterogeneity is characterized by the clustering
parameter g = pin/pout. Larger g implies stronger clustering, such that the limit-
ing case g = 1 describes the non-clustered (homogeneous random) network, while the
case g →∞ corresponds to a network of uncoupled clusters. The clustering algorithm
involves rewiring of a sparse random network, and thus preserves the average con-
nectedness probability, set to a biologically plausible level p = 0.2. The parameters
pin and pout can be linked to p via pin = gm

m−1+gp and pout = m
m−1+gp, which allows

one to explicitly compare the relevant parameter domains between the homogeneous
and the clustered network.

The local dynamics follows a stochastic rate model [27–31]

drXi

dt
= −λXrXi +H(vXi) +

√
2DξXi(t), (1)

where rXi is the firing rate of neuron i from cluster X, λX defines the rates relaxation
time, and H is the nonlinear gain function, whose argument is the total input to a
neuron vXi. The latter is given by vXi = uXi + IX +

√
2BηXi(t), where uXi is the

synaptic input uXi = κ
∑

Y

∑
j aY XjirY j and IX denotes the external bias current.

The coupling scheme is specified by the adjacency matrix aY Xji ∈ {0, 1}, such that
aY Xji stands for the link projecting from neuron j in cluster Y to neuron i in cluster
X. Coupling weights are assumed to be homogeneous and scale with the network
size as κ = KY X/N . The random perturbations in the microscopic dynamics derive
from two distinct sources of noise. In particular, the external noise, characterized by
B, and the intrinsic noise, described by D, are introduced to account for the action
of synaptic and ion-channel noise, respectively. All the associated fluctuations are
independent and are given by Gaussian white noise.

Note that the form (1) is quite general, in a sense that by choosing different H,
one may interpolate between different classes of models, including Wilson–Cowan or
Hopfield model. From a broader perspective, a plausible gain function should meet
three simple requirements: it should drop to zero for sufficiently small input, exhibit
saturation for large enough input, and just be monotonous for intermediate input
values. Here, the form of H

H(U) =


0, U ≤ 0,

3U2 − 2U3, 0 < U < 1,

1, U ≥ 1.

(2)

is selected to make the analysis of macroscopic dynamics analytically tractable
[27–29]. Note that the qualitative physical picture associated to the collective multi-
stable behavior in assemblies of neurons with rate-based dynamics does not depend
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on the particular choice of the gain function. This point has been extensively elab-
orated in [30], and we have also numerically verified that the results presented here
persist for the Heaviside-like gain function.

2.1 Effective model of clustered network dynamics

The effective model of network dynamics is comprised of coupled mean-field models
representing the activities of particular clusters. Typically, the effective models of
network behavior concern either the case of random sparse connectivity or the case
of full connectivity. In this context, our model can be seen as interpolating between the
two standard scenarios, featuring dense intra-cluster connectivity and sparse inter-
cluster connections. The applied mean-field approach involves a Gaussian closure
hypothesis [32–35], such that the collective dynamics of each cluster X is described
by the mean-rate RX and the associated variance SX

RX =
1

NX

∑
i

rXi ≡
〈
rXi

〉
SX =

〈
r2Xi

〉
−R2

X , (3)

where 〈·〉 denotes averaging over the neurons within the given cluster. For each of
the clusters, we use the bottom-up approach to obtain the second-order stochastic
equations of macroscopic behavior. With the detailed derivation of the effective model
already provided in [27], here we only briefly outline the two main steps necessary
to carry out the appropriate averaging over the microscopic dynamics, namely the
Ansatz on local variables and the Taylor expansion of H function.

The Ansatz on local variables consists in writing rXi as rXi = RX +
√
SXρXi [36],

where {ρXi} is a set of variables satisfying 〈ρXi〉 = 0, 〈ρ2Xi〉 = 1, as readily follows
from definition (3). The introduced Ansatz is applied to rewrite the total input to a
neuron as vxi = UX + δvXi, where

UX = IX + κ
∑
Y

pY XNYRY (4)

presents the assembly-averaged input to cluster X, pY X denotes the connectedness
probability from cluster Y to cluster X, and NY is the size of cluster Y . The deviation
δvXi from the average input UX consists of two terms:

δvXi = κ
∑
Y

RY νY Xi + κ
∑
Y

√
SY σY Xi. (5)

The first term accounts for the topological effect associated to the deviation νY Xi =∑
j

aY Xji − pY XNY from the average number of connections pY XNY , whereas the

second term captures the effect of local rate fluctuations, contained within the fac-
tor σY Xi =

∑
j

aY XjiρY j . Equations (4) and (5) allow one to average the terms

containing the gain function by developing H(vXi) about UX up to second order.
This leads to H(vXi) = H0X + H1XδvXi + H2Xδv

2
Xi, having introduced notation

H0X ≡ H(UX), H1X = dH
dvXi

(UX), H2X = 1
2

d2H
dv2

Xi
(UX).
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Following a number of intermediate steps elaborated in [27], one arrives at the
effective model of network dynamics stated in terms of interacting finite-size mean-
field models describing the cluster dynamics. The effective model is given by

dRX

dt
= −λXRX +H0X + 2BXH2X +H2X

∑
Y

K2
Y XpY XNY

(
R2

Y + SY

)/
N2

+
√
ΨXβ(t) +

√
ΩXη,

dSX

dt
= −2λXSX + 2BXH

2
1X + 2DX , (6)

and involves three types of finite-size effects, including the small deterministic correc-
tion term, the effective “macroscopic” noise of intensity ΨX , as well as the quenched
randomness, accounting for the fact that each particular network realization features
distinct deviations from the average connectivity degree. The macroscopic noise is
multiplicative

ΨX =
1

N

(
2DX + 2BXH

2
1X

)
+

1

N
H2

1X

∑
Y

K2
Y XpY X

NY

NX
SY , (7)

and incorporates three terms: the first two describe how the local external and
intrinsic noise are translated to macroscopic level, whereas the third one reflects
the impact of local fluctuations in the input arriving to each neuron in the clus-
ter. At variance with the time-varying stochastic term featuring β(t), the effect of
quenched randomness in (6) is characterized by a constant random term of magni-
tude ΩX = 1

NH
2
1X

∑
Y

K2
Y XpY X

NY

NX
R2

Y , with η being just a constant random number

N (0, 1).
In the SX dynamics, for simplicity we omit all the finite-size effects, including

the deterministic correction and the stochastic terms. One may do so because the
variance SX only affects the O(1/N) terms in the dynamics of RX .

3 Bifurcation analysis of the effective model in the
thermodynamic limit

In this section, we carry out the bifurcation analysis of the system (6) in the limit
N →∞ to characterize the response of a clustered network to external stimuli. Our
focus is on the scenario of targeted stimulation, where an increased bias current
is applied to a certain cluster, while the rest of the network remains unperturbed.
The stimulation is provided in the form of a rectangular pulse, whose duration ∆ is
sufficiently long such that the network is allowed to reach the new metastable state.
Our analysis will address the issues of why the evoked states of the network are similar
to those occurring within the spontaneous activity, and how the stimulus biases the
network dynamics to a particular collective state. Note that the system (6) holds for
networks of an arbitrary number of clusters of arbitrary sizes, but for simplicity we
consider the case of m equal clusters of size Nc = N/m.

In our previous study, the model (6) has been analyzed in case where the entire
network receives homogeneous external current I. Here, we deal with inhomoge-
neous stimulation, conforming to a paradigm with l clusters delivered the current
IA, whereas the remaining ones are influenced by IB . One is interested into solutions
where the mean activity of the unperturbed clusters equals RB , whereas the state of
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Fig. 1. (a) Bifurcation diagram R(I) for the non-clustered network subjected to homoge-
neous stimulation. The network parameters are α = 0.8, B = 0.004, D = 0.02 and g = 1.
(b) Bifurcation diagram for the clustered network m = 5 influenced by the homogeneous
stimulation: bias current I against logarithm of the clustering coefficient g. The numbers
indicate how many coexisting attractors exist within the given region.

the excited clusters RA may be different. Neglecting the finite-size effects O(1/N), it
follows that the network dynamics is given by

dRA

dt
= −RA − 2UA

(
RA, RB

)3
+ 3UA

(
RA, RB

)2
+ 6B

(
1− 2UA

(
RA, RB

))
dRB

dt
= −RB − 2UB

(
RA, RB

)3
+ 3UB

(
RA, RB

)2
+ 6B

(
1− 2UB

(
RA, RB

))
, (8)

where the average input to the two subsets of clusters reads

UA

(
RA, RB

)
= IA +

α

m− 1 + g

[(
g + l − 1

)
RA +

(
m− l

)
RB

]
UB

(
RA, RB

)
= IB +

α

m− 1 + g

[
lRA +

(
g +m− l − 1

)
RB

]
, (9)

having α = Kp denote the network coupling parameter.
Prior to analyzing the induced dynamics of the network, let us briefly consider

the spontaneous activity, which is in this framework represented by a setup with
homogeneous bias currents IA = IB = I. In case of a non-clustered network (g = 1),
one observes bistability in a certain interval I ∈ [I1, I2] [29], provided the coupling
parameter α is sufficiently large. The corresponding bifurcation diagram R(α) in
Figure 1a contains two stable branches associated to the UP and DOWN states of the
network. Introducing sufficiently strong clustering promotes multistability, giving rise
to network states which do not exist in the non-clustered case. The increased number
of network levels derives from the states with broken symmetry, where subsets of
clusters may lie in their respective high or low states [27]. For such inhomogeneous
collective states, the system symmetry is reduced from the permutation group Σm

(permutation of all cluster indices), to a subgroup of the type Σl ⊗ Σm−l, where
l ∈ {1, 2, ,m − 1}. Given that each cluster may either lie in the low or the high
state, the maximal multistability of a network comprised of m clusters is m+ 1. To
provide an example, in Figure 1b is shown a bifurcation diagram in the (g, I) plane
for a modular network m = 5. There, one observes that maximal multistability is
facilitated by the clustering parameter g ' 100.

Note that the external noise B acts in (8) as a bifurcation parameter, influencing
the number and position of stationary states in the thermodynamic limit. Figure 2a
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Fig. 2. (a) Bifurcation diagram in the (B, I) for the non-clustered network subjected to
homogeneous stimulation. The remaining parameters are α = 0.8, D = 0.02 and g = 1.
(b) Shift of the maximal multistability region in the (g, I) plane for a clustered net-
work m = 5. The red solid lines outline the maximal multistability domain for noise level
B = 0.004, whereas the blue dotted lines and the green dashed lines correspond to B = 0.01
and B = 0.015, respectively.

shows the bifurcation diagram referring to spontaneous activity of the non-clustered
network in the (B, I) plane, obtained under fixed connectivity α = 0.8. The bistability
region again lies between two branches of fold bifurcations (red curves) that meet at
the cusp point, where a pitchfork bifurcation occurs. One finds that for fixed I, there
always exists a B value above which a non-clustered network can no longer support
bistable behavior. For the spontaneous dynamics of a clustered network, it can be
shown that the region of maximal multistability in the (g, I) plane, bounded by
two curves of fold bifurcations intersecting at the pitchfork bifurcation, reduces and
shifts toward stronger clustering under increasing B, cf. Figure 2b. In other words,
for higher external noise, one requires larger clustering in order to observe maximal
multistability in the network.

To investigate the scenario of a targeted stimulation, we analyze the network’s
response by looking into solutions of (8) for l = 1, such that the stimulated cluster
occupies the state different from the remaining clusters. The clustering coefficient g
and the stimulation current IA are considered as control parameters, while the remain-
ing parameters α = 0.8, B = 0.004, and IB = 0.1 are such that the spontaneous
dynamics of the associated homogeneous random network with I = IB pertains to
bistability region in Figure 1a. The (g, IA) bifurcation diagram explaining the action
of targeted stimulation is plotted in Figure 3a. For IA ≈ IB and strong enough clus-
tering, the network possesses four stable steady states, which can readily be traced
in the limit of ultimate clustering g →∞. Indeed, suppose that a network is decom-
posed into a set of non-interacting clusters, and that IA and IB lie within the interval
[I1, I2] from Figure 1a. Then, each of the clusters is bistable, which gives exactly four
stable steady states in the full system (8). The area of maximal multistability, where
both the stimulated cluster and the resting network may either occupy the low or
the high state, extends to moderate clustering g ∼ 100. In Figure 3b, the four stable
steady states of the effective model are denoted by OLL, OLH , OHL and OHH . Note
that the first and second index refer to states of the stimulated cluster and the rest of
the network, respectively, whereby L/H indicates the low/high level, and U denotes
the unstable state.

As the stimulation IA increases, the system undergoes a saddle-node bifurcation
in which the states OLH and OUH are annihilated, see the curve C1 in Figure 3a.
Then the system passes to the area with 3 stable steady states, with the correspond-
ing phase portrait shown in Figure 3c. Further growth of IA causes the states OLL

and OUL to collide, cf. the curve C2 in Figure 3a, such that the system becomes
bistable, as corroborated by the phase portrait in Figure 3d. For small g, very
strong simulation IA leads to a collision and disappearance of the steady states OHL
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Fig. 3. (a) Bifurcation diagram IA(g) of system (8), with the number of coexisting solutions
indicated for particular regions. The remaining parameters are fixed to α = 0.8, B = 0.004,
D = 0.02, m = 5 and IB = 0.1. (b–d) Phase portraits associated to system (8) under
increasing IA.

and OHU , see the curve C3 in Figure 3a, whereby the system becomes monostable.
Note that the decrease of IA (targeted inhibition) gives rise to a similar scenario.
When IA is systematically reduced, the system first becomes tristable with coexist-
ing states OLL, OLH and OHH , then bistable and eventually passes to monostability
domains.

4 Numerical results: targeted vs. distributed stimulation

In this section, our aim is to first explicitly demonstrate that the effective model (8)
can successfully predict the response of a clustered network in case of targeted stimu-
lation. Nevertheless, we shall also show an interesting effect evincing that the response
of modular networks to external stimulation is strongly dependent on the character of
stimulation, i.e. the fashion in which it is distributed to neurons within the network.

In Figure 4, the response of a clustered network m = 5 to a targeted stimula-
tion is compared against the induced dynamics of the effective model analyzed in
Section 3. Note that the numerical experiments concerning the full system (1) have
been carried out on a relatively small network comprised of N = 300 neurons, which
corresponds to only 60 neurons per cluster, having fixed the noise levels to D = 0.02
and B = 0.004. Given the relatively small cluster size, one would expect strong fluc-
tuations in the network dynamics. Nevertheless, it will be shown that even under
such conditions, the mean-field analysis performed in case of thermodynamic limit
still remains qualitatively valid, in a sense of being able to qualitatively capture the
induced behavior of the network.
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Fig. 4. (a) Response of a clustered network (m = 5) to a stimulus of intensity IA and
duration ∆ introduced to cluster 5 at the moment T0. Notation Ri, i ∈ [1, 5] refers to mean-
rates of particular clusters, whereas RN stands for the collective network activity. Panels
(b) and (c) show excitation and relaxation processes of the network in the (RA, RB) plane,
respectively. The system’s orbit is superimposed on the vector field of the effective model (8),
obtained for (IA, IB) = (0.12, 0.1) in (b) and IA = IB = 0.1 in (c). The remaining parameters
are g = 250, B = 0.004, D = 0.02.

The scenario of targeted stimulation unfolds in such a way that before introducing
the stimulation, all the clusters occupy the low state and are influenced by the same
current IA = IB = 0.1. Then, at the moment T0 = 500, a rectangular pulse of elevated
bias current IA = 0.12 is introduced solely to cluster 5. The pulse is maintained
for a sufficiently long time ∆ = 500, such that the network is allowed to reach the
new metastable state. Note that during the stimulation, IA lies very close to the
bifurcation curve C2 from Figure 3a. Therefore the state OLL is weakly stable, and
the finite-size fluctuations may easily drive the system away from it, as indicated by
the time traces in Figure 4a. In Figure 4b, we have plotted the excitation orbit of
the network in the (RA, RB) plane in order to demonstrate that the system switches
between the metastable states anticipated by the effective model (8). In particular, the
vector field provided in the background presents the flow of system (8) for (IA, IB) =
(0.12, 0.1). One observes that the network rapidly leaves the vicinity of the state OLL

and switches to OHL, conforming to the path where a single cluster, described by
RA, is perturbed by the stimulation, whereas the remaining clusters, associated to
RB , remain unaffected.

We have also examined the relaxation process of the network after the termination
of the stimulus at t = T0 + ∆. In Figure 4c, the relaxation orbit is plotted against
the vector field of the system (8) for IA = IB = 0.1. As predicted by the effective
model, the state OHL lies far from bifurcations, which makes it relatively stable, in
a sense that the network may spend quite a long time in its vicinity. However, the
fluctuations induced by the finite-size effect eventually drive the network back to the
homogeneous DOWN state OLL.

The dependence of the networks response on the stimulation magnitude IA is
illustrated in Figure 5. The response is characterized by the ”excitation rate” γ,
defined as the average fraction of excited neurons at the moment T0 + ∆ just after
the stimulus has ceased, having performed averaging over an ensemble of 80 stochastic
realizations. Since the targeted stimulation may only give rise to excitation of a single
cluster, γ in this case is merely the probability of cluster excitation. The response
function γ(IA) exhibits threshold-like behavior, with the rising stage triggered at
IA ≈ 0.11 and completed at IA ≈ 0.12, cf. the blue solid line with empty circles. Note
that the latter value is in perfect agreement with the prediction of the bifurcation
diagram in Figure 3a. For large IA, the excitation rate saturates at γ = 1/m = 0.2,
which implies that only a single cluster is excited regardless of how large IA becomes.
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Fig. 5. Excitation rate, i.e. fraction of excited clusters γ in terms of IA for the different
stimulation scenarios. The circles and squares refer to targeted and distributed stimulation
of a clustered network (m = 5, g = 250), respectively, whereas the diamonds indicate the
response of a homogeneous random network (g = 1). The empty symbols connected by solid
lines denote γ values at the moment T0 +∆ when the stimulation is terminated. The solid
symbols connected by the dotted lines show γ at the moment T1 after the stimulation has
ceased, cf. Figure 4a. The remaining network parameters are B = 0.004, D = 0.02 and
IB = 0.1.

In general, the persistence of the elevated state does not depend on the applied
stimulation magnitude IA, but is rather determined by the relaxation speed of the
state the network occupies at the moment T0 +∆ when the stimulation is terminated.
In order to analyze the features of the relaxation process, we have measured the
excitation rate γ at a later moment T1 = 1250, sufficiently long after the excitation
pulse has ceased, cf. the blue dotted line connecting the filled circles in Figure 5.
Since in the case of targeted stimulation one always encounters the same excited
state with only a single cluster perturbed, it is natural to expect proportionality
between the excitation rate immediately after the stimulation (moment T0 +∆) and
at a later moment T1. Our results corroborate that the elevated state may indeed
persist considerably longer than the triggering pulse.

As already announced, we also report on an interesting finding that the induced
dynamics of modular networks strongly depends on the applied stimulation proto-
col. In particular, suppose that instead of a targeted stimulation, one introduces an
elevated bias current to the same fraction of neurons as in a single cluster, but just
randomly distributed over the network. We refer to such a scenario as “distributed
stimulation”. In this instance, for sufficiently large stimulation IA, the network may
reach states where substantially more than a single cluster is elicited, in spite of
relatively large clustering coefficient g.

The network excitation rate as a function of IA for the case of distributed stimula-
tion is indicated by the solid red line with empty squares in Figure 5. One immediately
realizes that the impact of the distributed stimulation is quite distinct from that of
the targeted one in two aspects: (i) the IA threshold where it starts to excite a single
cluster is significantly larger than for the targeted stimulation and (ii) for sufficiently
strong stimulation IA, all the clusters may cross to high state.

To gain a deeper insight into how the network’s response is shaped by clus-
tering, we consider an additional scenario, where a certain fraction of neurons is
stimulated in a homogeneous random network g = 1. To allow the comparison, we
have perturbed the same fraction of units as in the clustered network, but here one
cannot distinguish between the targeted and the distributed stimulation protocols
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Fig. 6. Dependence of excitation rate γ on the applied current IA for levels of external
noise B where the network cannot exhibit maximal multistability. The green diamonds
concern the response of a homogeneous random network g = 1 in case where the effective
model exhibits only the DOWN state (B = 0.028, D = 0.02, IB = 0.1). The blue circles
and the red squares refer cases of a targeted and distributed stimulation of a clustered
network m = 5, respectively. In the thermodynamic limit, the parameters of the clustered
network facilitate bistable dynamics between the homogeneous UP and DOWN states (B =
0.018, D = 0.02, g = 60, IB = 0.1). The solid/empty symbols are used the same way as in
Figure 5.

because any subset of units is equivalent. The ensuing excitation rate, plotted in
Figure 5 by the solid green line, indicates a response substantially distinct from
that of a clustered network in case of targeted stimulation, but reminiscent of the
induced dynamics typical for the distributed stimulation. This is so because the
homogeneous network possesses only two metastable states, namely the homogeneous
DOWN and UP states, which implies that one cannot excite only a certain fraction
of units, but can rather excite the entire network. As the DOWN state vanishes
at the bifurcation curve C3 in Figure 3a, the guaranteed excitation of the network
is observed only if IA lies sufficiently close to this curve. The associated threshold
current corresponds to the saturation of the excitation rate observed at IA ≈ 0.19
in Figure 5.

As already indicated, the external noise influences the multistable dynamics of
both the homogeneous and the clustered networks. In Figure 6, it is examined how
the excitation rate changes if the level of external noise B is increased such that
the network can no longer exhibit maximal multistability in the thermodynamic
limit. For the non-clustered network, we have considered the case where the deter-
ministic dynamics is monostable, admitting only the DOWN state. As expected,
stimulating a fraction of neurons with arbitrary strong external current cannot switch
the network to the UP state, cf. the green diamonds in Figure 6. For the clus-
tered network m = 5, the external noise B and the clustering coefficient g have
been set such that the deterministic dynamics exhibits only bistability between
the homogeneous UP and DOWN states. For both the scenarios of the targeted
and distributed stimulation protocols, the excitation rate exhibits a threshold-like
behavior, ultimately reaching the network-wide UP state for a sufficiently strong
stimulation. As predicted by the effective model, the targeted stimulation can no
longer bring the network to a heterogeneous state where only a single cluster is
excited.
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5 Summary and discussion

In the present paper, we have analyzed the induced dynamics of a clustered network
subjected to two types of stimulation protocols, the targeted stimulation and the
distributed stimulation. In the former case, it has explicitly been demonstrated that
the effective model, describing the macroscopic dynamics in terms of coupled mean-
field models associated to each of the clusters, may accurately capture the networks
response, predicting the metastable state reached by the network.

An interesting finding is that the response of a clustered network strongly depends
on the applied stimulation protocol. In particular, in case of a targeted stimulation,
under sufficiently strong clustering, one typically observes that only the targeted
cluster is activated, whereas the remaining clusters are unaffected by the perturbation.
Nevertheless, for the distributed stimulation, applying a sufficiently strong excitation
may result in much richer dynamics, where different forms of elevated states, including
a network-wide high state, may be reached.

Concerning the immediate impact of the modular network architecture, we have
established that the response of a clustered network is drastically different from that
of a statistically homogeneous one even if the same number of randomly selected units
is stimulated. In particular, given the same stimulation magnitude, the excitation rate
of the homogeneous random network turns out to be substantially lower than that of a
clustered network. This distinction derives from the fact that a non-clustered network
cannot exhibit heterogeneous states. As expected, the differences in behavior of the
non-clustered and clustered networks vanish for sufficiently strong stimuli, where the
network-wide excitation becomes the prevalent scenario regardless of the network
structure. In case of a non-clustered network, the reduced model has been shown
to provide a good estimate of the threshold current that guarantees reaching the
elevated state.

The external noise has been found to play a nontrivial role with respect to the exci-
tation process, because it affects the features of the network’s multistable behavior in
the thermodynamic limit. This is a consequence of the fact that the macroscopic
noise derived from the local external noise is multiplicative [37]. The associated
changes in the multistability have been shown to substantially influence the exci-
tation rates in clustered networks for both the stimulation protocols, as well as in the
scenario where the stimulus acts on a certain fraction of neurons in a non-clustered
network.

For the particular stimulation protocol, the properties of the relaxation process
are found not to be determined by the intensity of excitation, but rather by the
state of the network at the moment the stimulation is terminated. One should note
that instances of prolonged relaxation have been observed, especially in the case of
distributed stimulation under higher intensities of the applied current, which facilitate
excitation to the homogeneous UP state. The lifetimes of the metastable states are
also influenced by the level of the external noise, and the underlying effects provide
an interesting topic for future studies. In particular, the impact of multistability on
the relaxation process may consist in inducing nonlinear dependencies of relaxation
times on the noise level, which can manifest as noise-enhanced stability of metastable
states [38,39].

Within the present study, we have explained by the effective model, and cor-
roborated numerically, why the induced dynamics of a clustered network resembles
the spontaneous one, further demonstrating how the stimulation biases the net-
work toward a particular collective state. Recent experimental research indicates
that the external stimulation reduces both the macroscopic and the microscopic
neuronal variability [10,40,41], the latter being associated to randomness in local
dynamics, viz. the spiking series of individual units. While our results may indeed
account for the stimulation-induced decrease of macroscopic variability, one cannot
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infer anything regarding the microscopic variability, since we apply a rate-based
neuron model. In this context, it would be of interest to consider in detail the
induced dynamics of a clustered network of spiking neurons via an effective model,
especially given that the numerical results in [5,13,20] already link the stimu-
lated activity with reduction of both the macroscopic and microscopic neuronal
variability.
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Development of Republic of Serbia under project No. 171017, by the Russian Foundation
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1076 The European Physical Journal Special Topics
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Abstract. We demonstrate that the interplay of noise and plasticity
gives rise to slow stochastic fluctuations in a system of two adaptively
coupled active rotators with excitable local dynamics. Depending on the
adaptation rate, two qualitatively different types of switching behav-
ior are observed. For slower adaptation, one finds alternation between
two modes of noise-induced oscillations, whereby the modes are distin-
guished by the different order of spiking between the units. In case of
faster adaptation, the system switches between the metastable states
derived from coexisting attractors of the corresponding determinis-
tic system, whereby the phases exhibit a bursting-like behavior. The
qualitative features of the switching dynamics are analyzed within the
framework of fast-slow analysis.

1 Introduction

In many complex systems, ranging from biology, physics and chemistry to social sci-
ences and engineering, the interaction patterns are not static, but are rather affected
by the states of constituent units [1–4]. This gives rise to complex feedback mecha-
nisms, where the coupling weights adapt to dynamical processes at the units, which in
turn influences the evolution of units itself. Modeling of such systems is based on the
paradigm of adaptive networks, where self-organization unfolds both at the level of
coupling weights and the collective states of the units, typically involving a separation
of characteristic timescales. The faster and the slower timescales are naturally asso-
ciated to the dynamics of units and couplings, respectively, such that the short-term
evolution of the units occurs on a quasi-static network, whereas the slow changes in
coupling weights depend on the time-averaged dynamics of the units. An important
example of adaptive connectivity is provided by neuronal systems, where the strength
of synaptic couplings is adjusted to the underlying spiking activity via spike-time-
dependent plasticity (STDP), a temporally asymmetric form of Hebbian learning [5],
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promoting causal relationship between the spikes of pre- and postsynaptic neurons
[6–8].

Motivated by the research on neuronal systems, in the present paper we study
a simplified model which incorporates the basic ingredients of neurodynamics, such
as excitability, plasticity and noise. The considered system consists of two adap-
tively coupled active rotators, whose intrinsic dynamics is set to excitable regime
and subjected to noise. The plasticity rule is introduced in such a way that one may
continuously interpolate between the coupling dynamics characteristic to Hebbian
learning and STDP. We demonstrate that the interplay of plasticity and noise may
facilitate two qualitatively different forms of slow stochastic fluctuations, depend-
ing on the adaptation rate. While for slower adaptation the self-organized dynamics
consists of switching between the two modes of noise-induced oscillations, in case of
faster adaptation, the switching dynamics comprises metastable states associated to
attractors of the deterministic system.

In the context of neuroscience, one may compare the considered system to a binary
neuron motif. It is well known that the same structural motif, defined at the level
of anatomy, can support multiple functional motifs [9–12], characterized by different
weight configurations and potentially distinct directions of information flow. In these
terms, our study will show that the co-effect of plasticity and noise may (i) contribute
to the emergence of different functional motifs on top of the given structural one and
(ii) trigger slow alternation between the functional motifs.

So far, the co-effects of noise and the STDP plasticity rule have been analyzed in
systems of two coupled neural oscillators, as well as in networks of oscillators. In case
of two units, multistability between different weight configurations has been found,
surprisingly indicating that noise may stabilize configurations of strong bidirectional
coupling absent in the deterministic system [13]. At variance with this, our study
concerns excitable local dynamics and explicitly addresses the slow stochastic fluctu-
ations between metastable states. For networks of adaptively coupled neural or phase
oscillators, the previous research has mainly focused on the impact of plasticity on the
synchronization behavior. In the absence of noise, several generic forms of macroscopic
dynamics have been identified, including desynchronized or partially synchronized
states with weak couplings, as well as cluster states [14–18]. In presence of noise,
an interesting effect of self-organized noise resistance to desynchronization has been
reported in the case of a network of neural oscillators [19]. In networks of excitable
units, the STDP rule has been shown to give rise to oscillating coupling configurations
that facilitate switching between strongly and weakly synchronized states [20–22].

The paper is organized as follows. The details of the model are introduced in
Section 2. An overview of the underlying deterministic dynamics, characterizing the
impact of plasticity on the stationary states and the onset of emergent oscillations,
is provided in Section 3. Section 4 is dedicated to a fast–slow analysis of the deter-
ministic dynamics, whereas in Section 5 are explained the features of the two generic
types of switching behavior. In Section 6 we provide a summary of our main results.

2 Model
We consider a system of two stochastic active rotators interacting by adaptive cou-
plings, where the dynamics of the phases {ϕ1(t), ϕ2(t)} and the coupling weights
{κ1(t), κ2(t)} is given by

ϕ̇1 = I0 − sinϕ1 + κ1 sin (ϕ2 − ϕ1) +
√
Dξ1

ϕ̇2 = I0 − sinϕ2 + κ2 sin (ϕ1 − ϕ2) +
√
Dξ2

κ̇1 = ε(−κ1 + sin(ϕ2 − ϕ1 + β))

κ̇2 = ε(−κ2 + sin(ϕ1 − ϕ2 + β)), (1)
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where ϕ1, ϕ2 ∈ S1, while κ1 and κ2 are real variables. The rotators are assumed to be
identical, having their local dynamics governed by the excitability parameter I0, which
gives rise to a SNIPER bifurcation at I0 = 1. We focus on the excitable regime, such
that I0 = 0.95 is kept fixed throughout the paper. In this case, the uncoupled system
always converges to a steady state, whereas the collective dynamics emerges due to
interaction and noise. The parameter ε� 1 defines the scale separation between the
fast dynamics of the phases and the slow dynamics of adaptation. White noise of
variance D acts only within the subspace of fast variables, whereby the terms ξ1(t)
and ξ2(t) are independent (ξi(t)ξj(t

′) = δijδ(t− t′) for i, j ∈ {1, 2}). In the context of
neuroscience, I0 can be interpreted as external bias current, whereas the impact of
stochastic terms is analogous to that of synaptic noise. Note that the deterministic
version of (1) is symmetric with respect to the exchange of indices 1↔ 2.

The plasticity rule is controlled by the parameter β, which allows one to interpo-
late between the different adaptation modalities. The analogy between the adaptivity
dynamics in classical neuronal systems and the systems of coupled phase oscillators
has been addressed in [14,23,24], whereas a deeper analysis of the correspondence
between the phase-dependent plasticity rules and the STDP has been provided in
[13]. From these studies, it follows that the scenario found for β = 3π/2, where the
stationary weights increase for smaller phase differences and decrease for larger ones
(“like-and-like” form of behavior), qualitatively resembles the Hebbian learning rule
[23,24]. Nevertheless, in the case β = π, the two coupling weights always change in
opposite directions, which may be interpreted as promoting an STDP-like plasticity
rule. In the present paper, we are interested in the β interval between these two limit
cases, since it admits two coexisting excitable fixed points.

3 Deterministic dynamics of the full system

In this section, we analyze the details of the deterministic dynamics of the full
system (1), considering first the stationary states and the associated excitability
feature, and then focusing on the scenario that gives rise to emergent oscillations.

3.1 Stationary states and excitable dynamics

Fixed points (ϕ∗1, ϕ
∗
2, κ
∗
1, κ
∗
2) of the complete system (1) for D = 0 are given by the

solutions of the following set of equations:

sinϕ∗1 − sin(ϕ∗2 − ϕ∗1 + β) sin(ϕ∗2 − ϕ∗1) = I0,

sinϕ∗2 − sin(ϕ∗1 − ϕ∗2 + β) sin(ϕ∗1 − ϕ∗2) = I0, (2)

with

κ∗1 = sin(ϕ∗2 − ϕ∗1 + β),

κ∗2 = sin(ϕ∗1 − ϕ∗2 + β). (3)

Equation (2) can be solved numerically for any fixed parameter set, or numerical
path-following can be applied in order to study the dependence of the fixed points
on the parameters.

The bifurcation diagram in Figure 1 shows how the number and stability of fixed
points of the full system change with β. In particular, depending on β, there may
be two, four or six fixed points. Due to symmetry, the solutions always appear in
pairs of points sharing the same stability features. Since our study concerns plastic-
ity rules which support excitable fixed points, we have confined the analysis to the
interval β ∈ (3.298, 4.495), where the system has two stable fixed points, which lie off
the synchronization manifold ϕ1 = ϕ2. Apart from that, there are also four unstable
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Fig. 1. (a) Bifurcation diagram for the fixed points of system (1) with D = 0 in the
(β, ϕ1, ϕ2) space. (b) Projection of the bifurcation diagram to (β, ϕ1) plane. The two fixed
points independent on β belong to the synchronization manifold: the red (blue) one is
always longitudinally stable (unstable). The solid lines denote stable fixed points, whereas
the dashed and dotted lines denote saddles of unstable dimension 1 and 2, respectively.

fixed points. The bifurcations associated to the boundaries of the given β interval
are as follows: at β = 3.298 the system undergoes a supercritical symmetry-breaking
pitchfork bifurcation where a symmetry related pair of two stable fixed points off the
synchronization manifold is created, whereas at β = 4.495, this pair meets another
pair of unstable fixed points off the synchronization manifold such that both are
annihilated in symmetry related inverse saddle-node bifurcations. For instance, at
β = 4.1, one finds the symmetry related pair of stable foci given by (ϕ1, ϕ2, κ1, κ2) =
(1.177, 0.175, 0.032,−0.92) and (ϕ1, ϕ2, κ1, κ2) = (0.175, 1.177,−0.92, 0.032). Note
that these weight levels support effective master-slave configurations, where one unit
exerts a much stronger influence on the other unit than vice versa.

The two stable asymmetric fixed points in the interval β ∈ (3.298, 4.495) are
excitable, and may exhibit several different types of response to external pertur-
bations, see the classification in Figure 2. Introducing the perturbations by setting
different initial conditions, we plot in Figure 2 the phase dynamics in the fast sub-
space while keeping the weights (κ1, κ2) fixed. Note that in the case where both units
respond with a single spike, the order of firing is such that the unit with larger initial
phase ϕi(0), i ∈ {1, 2} fires first.

3.2 Onset of oscillations

The onset of emergent oscillations in system (1) with D = 0 depends on the interplay
between the plasticity rule, specified by β, and the speed of adaptation, characterized
by ε. A parameter scan indicating the variation of κ1, Aκ1 = max(κ1(t))−min(κ1(t))
in terms of (β, ε) is shown in Figure 3a. The results are obtained by numerical con-
tinuation beginning from a stable periodic solution, such that the final state reached
for a certain set of (β, ε) values provides the initial conditions for the simulation of
the system at incremented parameter values. By this method, we have determined
the maximal stability region of the periodic solution.

One finds that for a fixed β, there actually exists an interval of timescales sep-
aration ε ∈ (εmin, εmax) admitting oscillations, cf. Figure 3b. The periodic solutions
in this interval coexist with the two symmetry-related stable stationary states. One
observes that the threshold εmin reduces with β, whereas the upper boundary value
εmax grows with increasing β. The detailed bifurcation mechanisms behind the onset
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Fig. 2. Modalities of the response to external perturbation for system (1) with D = 0. The
system parameters are I0 = 0.95, ε = 0.01 and β = 4.212, whereas the initial conditions for
the coupling weights are set to κ1(0) = −0.0077, κ2(0) = −0.846. Depending on the initial
phases (ϕ1(0), ϕ2(0)), one may observe the following regimes: (0) no spikes; (1) the unit
with larger ϕ(0) emits one spike and the other does not; (2) both units emit a single spike,
with the unit with larger ϕ(0) firing first; (3) the unit with larger ϕ(0) emits two spikes and
the other unit emits one; (4) both units spike synchronously.

of oscillations and multistability are beyond the scope of this paper, and essentially
involve an interplay between the fast and slow variables.

Enhancing ε under fixed β gives rise to a supercritical symmetry-breaking
pitchfork bifurcation of limit cycles, indicated by PFL in Figure 3b. Below the
bifurcation, the phases ϕ1(t) and ϕ2(t) maintain a small phase-shift, while the
oscillation profiles κi(t), i ∈ {1, 2} are rather different, see Figures 3d and 3e, respec-
tively. Above the bifurcation, the system gains the anti-phase space-time symmetry
ϕ1(t) = ϕ2(t+ T/2), κ1(t) = κ2(t+ T/2) where T denotes the oscillation period, cf.
the associated waveforms in Figures 3g and 3f.

4 Slow-fast analysis of the deterministic dynamics

The deterministic dynamics in case of slow adaptation, corresponding to a strong
timescale separation between the fast and slow variables, may be analyzed within the
framework of standard fast-slow analysis. In general, one may either consider the
layer problem, defined on the fast timescale, or the reduced problem, which concerns
the slow timescale. Within the layer problem, the aim is to determine the fast flow
dynamics ϕ1(t;κ1, κ2), ϕ2(t;κ1, κ2) by treating the slow variables κ1 and κ2 as param-
eters, whereas the reduced problem consists in determining the dynamics of the slow
flow (κ1(t), κ2(t)) (reduced flow) assuming that the fast flow of the layer problem is
either at a stable equilibrium or at the averaged value of a stable regime.

In this section, we first investigate the fast layer problems. Depending on the
values of the slow variables (κ1, κ2), the fast flow can exhibit several attractors, such
that multiple sheets of the slow flow emerge from the averaged dynamics on the
different attractors of the fast flow.
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Fig. 3. Onset of oscillations in the full system (1) for D = 0. In panel (a) is shown how
the variation Aκ1 of coupling weight κ1 changes in the (β, ε) plane. Panel (b) shows how
the mean coupling weights 〈κ1〉 and 〈κ2〉 of oscillatory states (thick lines) change with ε
under fixed β = 4.212. The thin solid lines indicate the stationary state. In panel (c) are
plotted the analogous dependencies for variation of the oscillation. The dotted lines in (b)
and (c) indicate the ε values corresponding to the time traces in Figure 7, whereas the dashed
lines indicate the boundaries of the ε region supporting the stable periodic solutions. The
symmetry-breaking pitchfork bifurcation of limit cycles is denoted by PFL. In panels (d)–(g)
are shown the waveforms of periodic solutions without and with the anti-phase space-time
symmetry, obtained for ε = 0.03 and ε = 0.09, respectively (see the arrows). The excitability
parameter is fixed to I0 = 0.95.

4.1 Dynamics of the fast flow

Within the layer problem, one studies the dynamics of the fast variables

ϕ̇1 = I0 − sinϕ1 + κ1 sin (ϕ2 − ϕ1)

ϕ̇2 = I0 − sinϕ2 + κ2 sin (ϕ1 − ϕ2), (4)

where κ1, κ2 ∈ [−1, 1] are considered as additional system parameters. Formally,
system (4) is obtained by setting ε = 0 in (1) for D = 0.

The numerically obtained bifurcation diagram in Figure 4a shows that the fast
flow is monostable for most of the (κ1, κ2) values, possessing either an equilibrium or
a limit cycle attractor. The stability boundary of the periodic solution (red curves)
has been obtained by the method of numerical continuation where, beginning from a
stable periodic solution, the initial conditions for incremented parameter values are
given by the final state reached for the previous set of (β, ε) values. The coexistence
between a stable fixed point, lying on the synchronization manifold, and a limit cycle
is found within a small region near the diagonal, see Figure 4a. Let us first classify
the fixed points of the fast flow and then examine the scenarios that give rise to
oscillations.

It can be shown that the fast flow admits either two or four fixed points, with
the associated regions indicated in Figure 4b. In particular, two fixed points FP1 and
FP2 on the synchronization manifold are independent on κ1 and κ2. They are given
by (ϕ∗1, ϕ

∗
2) = (arcsin I0, arcsin I0) and (ϕ∗1, ϕ

∗
2) = (π − arcsin I0, π − arcsin I0). One

may also find two additional fixed points off the synchronization manifold, referred
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Fig. 4. (a) Attractors of the fast flow (4) in terms of κ1 and κ2, now considered as param-
eters. The fast flow is typically monostable, supporting either a stable fixed point (FP)
or a stable limit cycle (LC), apart from a small region around the main diagonal, where it
exhibits bistable behavior. The green dashed curves indicate approximations of two branches
of SNIPER bifurcations, obtained by the method described in the text. The red lines cor-
respond to the numerically determined stability boundaries of the oscillatory solution. (b)
Classification of the fixed points of the fast flow (4). The fixed points are labeled the same
way as in the main text, with their stability indicated as follows: full circles denote stable
fixed points, semi-full circles represent saddle points and white circles correspond to doubly
unstable fixed points. Within the four light-shaded triangular-shaped regions, the doubly
unstable fixed point is a focus, rather than a node. The notation I–VIII refers to parameter
values corresponding to the phase portraits in Figure 5.

to as FP3 and FP4 in Figure 4b. The bifurcations affecting the number and stability
of the fixed points, beginning from the lower left region of the (κ1, κ2) plane, can
be summarized as follows. Along the main diagonal κ1 = κ2, we find two points of
supercritical pitchfork bifurcations (PF), where from the symmetric fixed points the
saddles FP3 and FP4 appear and disappear. Off the main diagonal, the pitchforks
are unfolded into curves of saddle-node (SN) and transcritical bifurcations (TC), see
Figure 4b.

The (κ1, κ2) region featuring stable oscillations almost completely matches the
lower left domain admitting two unstable fixed points. Within this region, each peri-
odic solution obtained for (κ1, κ2) above the main diagonal κ1 = κ2 has a counterpart
in the domain below the main diagonal, related to it by the exchange symmetry of
units indices. Typically, the periodic solutions emerge via SNIPER bifurcations, com-
prising two branches where either κ1 or κ2 remain almost constant and close to zero.
In both cases, the two fixed points that collide and disappear are FP3 and FP4. Nev-
ertheless, such scenarios cannot be maintained in the small (κ1, κ2) region admitting
coexistence between a fixed point and a limit cycle, because the SNIPER bifurcation
is accompanied by a change in the number of fixed points. Our findings suggest that
near the main diagonal, the limit cycle emerges via a heteroclinic bifurcation, where
an orbit connects two saddles lying off the synchronization manifold (not shown).
Note that the orbit of the limit cycle follows the unstable manifold of the saddle
point FP2 on the synchronization manifold. To the left or the right of the main diag-
onal, instead of a heteroclinic bifurcation, one finds homoclinic bifurcations, whereby
a saddle point, either FP3 or FP4, touches the limit cycle orbit. The schematic phase
portraits indicating the stable and unstable manifolds of the fixed points and the limit
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Fig. 5. Schematic phase portraits corresponding to the characteristic regimes of the fast
flow. The panels I–VIII refer to representative parameter values indicated in Figure 4b.
Also, the stability of fixed points is presented the same way as in Figure 4b. The invariant
synchronization manifold is denoted by the red color, whereas the orbit of a stable/unstable
limit cycle is indicated by the solid/dashed blue lines.

cycle for the characteristic regimes of the fast flow, denoted by I–VIII in Figure 4b,
are illustrated in Figure 5.

The two branches of SNIPER bifurcations may readily be approximated for small
values of κ1 and κ2 by a simple scheme, which amounts to reducing the fast flow to
a normal form of saddle-node bifurcation. Suppose first that κ1 � 1 and I0 − 1� 1.
More specifically, let ξ � 1 be a small parameter such that I0 − 1 = ξ (close to the
threshold) and κ1 = γξ, i.e. γ is a rescaling parameter of κ1, allowing for a zoom in
the neighborhood of zero. Then, the steady states are given by the system

1 + ξ − sinϕ1 + ξγ sin(ϕ2 − ϕ1) = 0,

1 + ξ − sinϕ2 + κ2 sin(ϕ1 − ϕ2) = 0. (5)

The first equation in the zeroth order approximation leads to ϕ1 = π/2. Hence, using
the perturbation approach, we have

ϕ∗1 =
π

2
+
√
ξΨ1 + · · · ; ϕ∗2 = Ψ2 + · · · , (6)

where the
√
ξ scaling follows from the Taylor expansion of the function sinϕ1 at π/2.

Inserting (6) into (5), one obtains the system of equations for Ψ1 and Ψ2

1 +
1

2
Ψ2
1 − γ cosΨ2 = 0,

1− sinΨ2 + κ2 cosΨ2 = 0. (7)

From system (7), it is not difficult to see that the saddle-node bifurcation takes place if
the condition 1− γ cosΨ2 = 0 is satisfied. This leads to the parametric representation
κ1 = ξγ = I0−1

cosΨ2
, κ2 = sinΨ2−1

cosΨ2
, of the saddle-node curve for small κ1 values, where

Ψ2 plays the role of the parameter along the curve. An analogous approach may be
used to capture the second branch of saddle-node bifurcations, cf. the green dashed
lines in Figure 4a.
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4.2 Dynamics of the slow flow

We have numerically obtained the dynamics of the slow flow by applying a two-step
approach. First, for fixed values (κ1, κ2), we determine the time-averaged dynamics
of the fast flow (4), 〈ϕ2 −ϕ1〉t = f(κ1, κ2). Here, the averaging 〈·〉t is performed over
a sufficiently large time interval, having eliminated a transient. Hence, this average
depends on the attractor of the fast flow for the given (κ1, κ2). In particular, if the
fast flow possesses a stable fixed point, then 〈ϕ2 − ϕ1〉t = ϕ∗2 − ϕ∗1, where (ϕ∗1, ϕ

∗
2) is

a solution of

I0 − sinϕ∗1 + κ1 sin (ϕ∗2 − ϕ∗1) = 0

I0 − sinϕ∗2 + κ2 sin (ϕ∗1 − ϕ∗2) = 0. (8)

This procedure just results in determining the slow critical manifold of the system.
In case when the attractor of the fast flow is periodic, 〈ϕ2 − ϕ1〉t presents the time
average over the period. Averaging approximation in case of a periodic attractor of
the fast flow constitutes a standard approach [13,25], rather natural for describing
the influence of oscillations in the fast flow on the dynamics of the slow flow. At the
second stage, the obtained time-averages are substituted into the dynamics of the
weights

κ̇1 = ε[−κ1 + sin(f(κ1, κ2) + β)]

κ̇2 = ε[−κ2 + sin(−f(κ1, κ2) + β)]. (9)

The system (9) is used to determine the vector field of the slow flow by taking into
account only the attractors of the fast flow, such that the vector field associated to
each attractor is plotted within its respective stability region, cf. Figure 6.

In regions of the (κ1, κ2) plane where there are coexisting stable solutions of
the fast flow, the corresponding vector field of the slow flow is given on multiple
overlapping sheets, since the value of the average f(κ1, κ2) depends on the initial
conditions. In our case, this occurs only in a small region of coexistence between an
equilibrium and a stable limit cycle.

One should single out two important features of the slow flow: (i) it exhibits two
symmetry-related fixed points in the green and blue regions in Figure 6, and (ii) the
slow vector field is pointed in opposite directions close to the boundary between the
fast oscillatory regime (orange region) and the steady states of the fast flow (blue,
green and white regions). The latter in particular implies that interesting effects
occur close to the border of the oscillatory and the steady state regime of the fast
flow. Moreover, adding noise gives rise to fluctuations around this boundary, which
leads to switching between the quasi-stationary and the fast spiking dynamics. Such
effects are studied in more detail within the next section.

5 Switching dynamics

Our main observation in this section is that the interplay of plasticity and noise
induces slow stochastic fluctuations (switching dynamics), mediating two qualita-
tively different scenarios depending on the speed of adaptation. The latter include
(i) switching between two modes of noise-induced oscillations for slower adaptation
(small ε ' 0.01) and (ii) switching between multiple coexisting attractors of the
deterministic dynamics for faster adaptation (intermediate ε ' 0.05).

In case (i), the impact of noise is twofold: on a short timescale, it gives rise to spik-
ing dynamics, whereas on a long time scale, it induces random transitions between
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Fig. 6. Vector field of the slow flow obtained by taking into account only stable attractors
of the fast flow for β = 4.212, I0 = 0.95. The color coding is as follows: orange color denotes
the region associated to the stable limit cycle of the fast flow, white stands for the stable
fixed point of the fast flow FP1, whereas blue and green color correspond to the two stable
fixed points FP3 and FP4. Within the light-shaded regions, FP3 and FP4 are foci rather
than nodes, cf. Figure 4b.

the two oscillatory modes. In case (ii), the switching dynamics comprises metastable
states derived from two fixed points, as well as two limit cycles associated to emergent
oscillations of the corresponding deterministic system. The key difference between the
effects (i) and (ii) is that for slower adaptation, the system switches between the oscil-
latory modes that do not exist as deterministic attractors. Moreover, the two generic
types of switching are characterized by distinct phase dynamics: for slower adapta-
tion, one finds alternation of patterns with different order of spiking between the
units, whereas for faster adaptation, the phases effectively exhibit bursting behav-
ior, involving a succession between episodes of spiking and relative quiescence. An
overview on how the typical dynamics of couplings changes with ε at fixed β is pro-
vided in Figure 7. Note that the difference between the average coupling weights of
the stable periodic solutions of the deterministic system are much smaller than a typ-
ical distance between the coupling levels for the stationary states. The prevalence of
metastable states is affected by ε so that intermediate adaptation favors oscillatory
modes, whereas the fast adaptation apparently promotes the two quasi-stationary
states. In the next two subsections, we provide further insight into the mechanisms
behind the switching dynamics using the results of the fast-slow analysis.

5.1 Switching dynamics under slow adaptation

As already indicated, ε is here taken sufficiently small, such that it cannot facilitate
emergent oscillations in the full system (1). For ε ' 0.01 and under appropriate noise
levels, one observes noise-induced oscillations [26]. The latter arise via a scenario
involving a multiple-timescale stochastic bifurcation, whereby noise acts only within
the fast subsystem of (1). The onset of oscillations under increasing D occurs in two
stages. In the first stage, the phase dynamics gradually exhibits more induced spikes,



Advances in Nonlinear Dynamics of Complex Networks 1087

5.115.0

10
4

-1

-0.5

0

0.5

1
, 

2

5.115.0

10
4

-1

-0.5

0

0.5

5.115.0

10
4

-1

-0.5

0

0.5

1
, 

2

5.115.0

10
4

-1

-0.5

0

0.5

5.115.0

 Time 10
4

-1

-0.5

0

0.5

1
, 

2

5.115.0

 Time 10
4

-1

-0.5

0

0.5

(a) (b)

(c) (d)

)f()e(

Fig. 7. Switching dynamics under variation of ε. The time traces (κ1(t), κ2(t)) are obtained
for fixed I0 = 0.95, D = 0.006, β = 4.212, whereas ε assumes the following values: (a)
ε = 0.008, (b) ε = 0.02, (c) ε = 0.03, (d) ε = 0.06, (e) ε = 0.09, (f) ε = 0.11.
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Fig. 8. Switching dynamics between the two modes of noise-induced oscillations. Time traces
of the weights are shown in panel (a), whereas panel (b) and (c) display the corresponding
time traces of the phases during the intervals between the dashed lines in panel (a). In panel
(d), the (κ1(t), κ2(t)) projections of the orbits associated to each of the two modes (blue
color), as well as the switching episode, shown in white, are superimposed to the vector field
of the slow flow from Figure 6. The shaded area corresponds to the stable limit cycle. The
system parameters are I0 = 0.95, β = 4.212, ε = 0.01, D = 0.009.

such that the stationary distributions of phases eventually acquire a longer tail reflect-
ing the occurrence of spikes (not shown). Nevertheless, the stationary distributions
P (κi) change appreciably only at the second stage, which takes place for sufficiently
large D. Such a change accompanies the emergence of coupling oscillations. Note that
the system (1) actually exhibits two modes of noise-induced oscillations, character-
ized by the different order of firing between the two units, cf. the time traces of phase
dynamics and the associated evolution of couplings in Figure 8a.

It is interesting to examine whether the vector field of the slow flow from
Section 4.2 can be used to explain the slow stochastic fluctuations of the coupling
weights. To this end, we have superimposed the (κ1(t), κ2(t)) orbits of the two noise-
induced modes, as well as a switching episode, to a vector field of the slow flow from
Figure 6. Note that the orbits typically lie close to the boundary outlining the tran-
sition between the two attractors of the fast flow, featuring non-negligible coupling
weights. Moreover, the two modes are confined to small areas of the (κ1, κ2) plane
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Fig. 9. Time traces of the phases (a) and weights (b) associated to noise-induced switching
between the coexisting attractors of the deterministic system. The results are obtained for
I0 = 0.95, β = 4.212, ε = 0.05, D = 0.004. In panel (c) is provided the deterministic dynamics
of weights obtained for the same parameter values. In panel (d), the (κ1(t), κ2(t)) orbit
corresponding to the interval between the dashed lines in (b) is super-imposed on the vector
field of the slow flow cf. Figure 6.

symmetrical with respect to the main diagonal κ1 = κ2, whereas the switching episode
virtually takes place on the diagonal. Apparently, the noise-induced modes occupy
regions where the oscillations in the fast flow emerge via homoclinic bifurcations,
rather than the SNIPER scenario. Nonetheless, the switching episode seems to involve
the domain featuring coexistence of the two stable sheets of the slow vector field.
Within these sheets, which correspond to two attractors of the fast flow (a stable
node and a stable limit cycle), the vector fields are oriented in opposite directions,
thereby contributing to switching.

5.2 Switching dynamics for faster adaptation

In case of faster adaptation associated to intermediate ε, the switching dynamics
involves four metastable states, derived from the attractors of the deterministic
system. The deterministic multistable behavior includes two symmetry-related sta-
tionary states, as well as two symmetry-related limit cycles. Note that while the two
stable steady states exist for arbitrary small ε and are therefore visible in the slow
flow in Figure 6, the oscillatory solutions disappear for small ε and hence cannot
be observed in the slow flow. The two oscillatory regimes are characterized by the
same phase shift, but the reverse order of firing between the two units. Influenced by
noise, the phases effectively engage in bursting behavior, manifesting slow stochas-
tic fluctuations between episodes of intensive spiking activity and periods of relative
quiescence, see Figure 9a. For a fixed noise level, the prevalence of metastable states,
defined by transition probabilities between them, changes with adaptation speed. One
observes that for ε ' 0.05, the oscillatory dynamics is preferred, whereas for ε ' 0.1,
the quasi-stationary states are more ubiquitous.

A comparison of the (κ1, κ2) orbits displaying switching dynamics and the vec-
tor field of the slow flow from Figure 6 again shows that the former is confined
to the criticality region at the boundary between the stationary and oscillatory
regimes in the fast flow, cf. Figure 9. One should remark on how the transitions
between the different metastable states take place. In particular, from Figure 9b, it is
clear that there can be no direct transitions between the two quasi-stationary states,
but they rather have to be mediated by the system passing through the oscillatory
states. Also, the transition from oscillatory to quasi-stationary states typically occurs
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once the couplings approach a master-slave-like configuration, where the coupling in
one direction is much stronger than the other one. This scenario coincides with the
SNIPER bifurcation of the fast flow described in Section 4.1. The scenario of tran-
sition between the two metastable oscillatory states resembles closely the one from
Section 5.2.

6 Summary

In the present study, we have analyzed a system of two adaptively coupled active
rotators with excitable intrinsic dynamics, demonstrating that the interplay of plas-
ticity and noise may give rise to slow stochastic fluctuations. Two qualitatively
different types of self-organized behavior have been identified, depending on the adap-
tation speed. For slower adaptation, the switching dynamics consists of an alternation
between two modes of noise-induced oscillations, associated to a preferred order of
spiking between the two units. In this case, noise plays a twofold role: on one hand, it
perturbs the excitable local dynamics giving rise to oscillations on a short timescale,
whereas on the other hand, it elicits the alternation between the two oscillatory states
on a long timescale. The underlying phase dynamics shows slow switching between
two patterns distinguished by the different order in which the units are spiking. In
case of faster adaptation, the coupling becomes capable of eliciting emergent oscilla-
tions in the deterministic system [27]. The latter then exhibits complex multistable
behavior, involving two stationary and two oscillatory regimes. Under the influence
of noise, the system undergoes switching between these four different metastable
states, whose prevalence at fixed noise level depends on the speed of adaptation. The
deterministic attractors associated to metastable states are related by the Z2 symme-
try. Thus, a mismatch in excitability parameters would lead to symmetry-breaking,
whereby a small mismatch would induce a bias in switching dynamics, whereas a
larger mismatch, corresponding to a scenario with one excitable and one oscillatory
unit, would completely alter the observed dynamics.

Though the underlying phenomena are not found in the singular limit of infinite
scale separation, the fast-slow analysis we have applied still allows one to explain
the qualitative features of both considered types of switching behavior. Studying the
layer problem, and in particular the vector field of the slow flow, has enabled us to
gain insight into the metastable states and the transitions between them. It has been
demonstrated that the coupling dynamics is always in a state of “criticality”, being
confined to the boundary between the stationary and oscillatory regimes of the fast
flow.

Given that excitability, plasticity and noise are inherent ingredients of neuronal
systems, the obtained results can be interpreted in the context of neuroscience. It is
well known that the backbone of neural networks is made up of binary and ternary
neuron motifs, whereby the structural motifs typically support multiple functional
motifs, essentially characterized by the weight configuration and the underlying direc-
tion of the information flow. With this in mind, the scenario of switching under slow
adaptation may be important, because it implies that a binary motif can display slow
alternation between two effectively unidirectional weight configurations, promoting
opposite direction of information flow. For faster adaptation, one finds multistabil-
ity between unidirectional coupling and bidirectional coupling of moderate strength.
Nonetheless, the underlying phase dynamics, if extended to networks, may be con-
sidered as a paradigm for UP-DOWN states, typical for cortical dynamics [28,29].
Thus, it would be of interest to examine the impact of plasticity in networks of
noisy excitable units, where one may expect different types of emergent behavior,
such as cluster, non-synchronized and partially synchronized states, depending on
the frustration of local dynamics and the impact of noise.
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