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IEEESTEC Student project conference (2014)

Danijel Danković

Sedma studentska konferencija “IEEESTEC 7th Student project conference” održana je 27. novembra 2014. godine na Elektronskom fakultetu

u Nišu (http://ieee.elfak.ni.ac.rs/). Konferenciju su organizovali studentski ogranak IEEE SB Niš, EESTEC LC Niš i Elektronski fakultet u Nišu, u

saradnji  sa  IEEE  Serbia  and  Montenegro  Section,  IEEE  Electron  Devices/Solid-State  Circuits  Chapter  i  IEEE  Microwave  Theory  and

Techniques Chapter.

Na sastanku IEEE SB Niš  i  EESTEC LC Niš  održanom krajem marta 2014. godine podržana je inicijativa za organizovanjem konferencije

“IEEESTEC 7th Student project conference”. IEEE Sekcija Srbija i Crna Gora je podržala ovu inicijativu.

Poziv  za  konferenciju  poslali  smo autorima radova sa  prethodnih  konferencija,  svim studentskim organizacijama u  Srbiji,  studentskim

ograncima IEEE-a, članovima IEEE Sekcije Srbija i Crna Gora. Ukupan broj pristiglih radova je 48 (iz oblasti: elektronika, mikroelektronika,

telekomunikacije, automatika, energetika, računarstvo i informatika, �zika, mobilnost studenata... ). Svi radovi su prošli fazu recenziranja, pri

čemu je za svaki rad obezbeđeno minimum po pet recenzija. U procesu recenziranja pomogla su 38 nastavnika i saradnika Elektronskog

fakulteta u Nišu. Na osnovu prispelih recenzija izabrana su tri najbolje ocenjena rada:

1. nagrada

Rad: Programiranje LED kocke pomocu Raspberry mikroračunara

Autori: A. Kostić, D. Aleksić

Institucija: Matematički fakultet u Beogradu - Astro�zika, Prirodno-matematicki fakultet, Niš

2. nagrada

Rad: Wordarium - aplikacija za interaktivno učenje stranih reči

Autori: P. Antić, P. Živanović, M. Janković

Institucija: Elektronski fakultet, Niš

3. nagrada

Rad: Optimizacija i skaliranje energije 3D struktura samoorganizovanih magnetnih čestica

Autori: M. Dašić

Institucija: Univerzitet u Beogradu, Institut za �ziku, Laboratorija za primenu računara u nauci

U kategoriji Rad sa najboljom praktičnom realizacijom, a na osnovu Odluke Organizacionog odbora Konferencije dodeljene su nagrade:
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Institucija: Elektronski fakultet u Nišu

2. nagrada

Rad: Sistem za kontrolu radnog vremena i pristupa laboratoriji realizovan na Raspberry Pi platformi

Autori: N. Živković, M. Milojević, N. Nikolić, B. Majkić, S. Stošović

Institucija: VTŠ Apps Tim, Visoka tehnička škola strukovnih studija u Nišu

3. nagrada

a) Rad: WEB kontrola osvetljenja u pametnoj kući

Autori: J. Krstić, D. Stajić

Institucija: Elektrotehnička škola Nikola Tesla, Niš

b) Rad: Projektovanje sistema za brojanje posetilaca u realnom vremenu uz pomoć TSOP senzora

Autori: M. Mitić, N. Krstić, Đorđe Veličković

Institucija: Elektronski fakultet u Nišu

Na  osnovu  prispelih  radova  Elektronski  fakultet  u  Nišu  je  izdao  Zbornik  radova  “IEEESTEC  7th  Student  project  conference”  ,  ISBN:

978-86-6125-114-6. Urednici Zbornika radova su: Prof. dr Ninoslav Stojadinović, prof. dr Bratislav Milovanović, prof. dr Vera Marković, prof. dr.

Goran S. Đorđević i doc. dr Danijel Danković. Konferencija je organizovana od strane Organizacionog odbora koji su činili: Doc. dr Danijel

Danković,  predsednik  konferencije  i  Dušan  Vučković,  Darko  Todorović  i  Miloš  Marjanović,  potpredsednici  konferencije.  Sekretarijat

konferencije činili  su studenti  Elektronskog fakulteta u Nišu: Damir Nešić,  Saša Dević,  Nikola Vučić,  Sandra Ilijin,  Miroslav Božić,  Željko

Kalezić, Nikola Simić, Dragana Dimitrijević, Đorđe Veličković, Miloš Mitić i Neda Dinić. Zbornik je tehnički uredio Miloš Marjanović.

Konferenciju su svečano otvorili prorektor Univerziteta u Nišu, prof. dr Zoran Nikolić, dekan Elektronskog fakuleta u Nišu, prof. dr Dragan

Jankovič i prodekan Elektronskog fakulteta u Nišu, prof. dr Zoran Perić.

Najbolji  radovi u obe kategorije usmeno su prezentovani.  Svi radovi (uključujući  i  nagrađene) su prezentovani kao poster radovi u holu

Elektronskog fakulteta u Nišu. Pored mesta za postavljanje postera u četvoročasovnom radu autori su koristili  i  ppt prezentacije, prikaz

simulacija na računaru, svojih maketa i gotovih proizvoda. Sami autori su anketom za najinteresantnii rad izabrali:

1. nagrada

Rad: Pametna ruka (Smart hand)

Autori: J. Krstić, L. Petrović, M. Mihajlović, M. Dimitrijević, M. Radomirović, S. Krstić, R. Mitić

Institucija: Elektrotehnička skola Nikola Tesla , Niš

Odlukom Organizacionog odbora Konferencije za najbolji rad IEEESTEC konferencije, predložen za IEEE Region 8 Student Paper Contest

2015 (http://www.ieeer8.org/category/student-activities/awards-and-contests/student-paper-contest) izabran je:

1. nagrada

Rad: Primena digitalnih �ltara u kriptogra�ji

Autori: M. Petrović

Institucija: Elektronski fakultet u Nišu

Svi autori su kao promotivni materijal IEEESTEC konferencije dobili: zbornika radova, disk, blok i kesu. Autorima najboljih radova uručene su

diplome i prigodne nagrade, dar prijatelja konferencije.

Učesnici konferencije su bili iz sledećih ustanova: Elektronski fakultet u Nišu, Prirodno matematički fakultet u Nišu, Visoka tehnička škola

strukovnih studija u Nišu, Elektrotehnički fakultet u Beogradu, Institut za �ziku, Univerzitet u Beogradu, Fakultet za �zičku hemiju, Univerzitet

u Beogradu, Matematički fakultet u Beogradu, Matematički institut SANU, Vojna Akademija, Beograd, University of Sarajevo, Facaulty of

Electrical  Engineering,  Knjazevačka gimnazija,  Tehnička skola Rade Metalac,  Leskovac,  ETŠ  Nikola Tesla,  Niš,  Ei  PCB Factory Niš,  IRC

ALFATEC Niš, Universitatea Politehnica din Bucuresti, Tennessee Tech University - TTU.

Nadamo se da će naredne godine ova konferencija biti još bolje organizovana i jos masovnija.
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4. AZd�mqZd 
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Razmatrana je upotreba termostata za odr�a-

vanje inicijalne temperature grafena, kao i sluèaj

bez datog termostata. Zakljuèak je da ne treba

primeniti termostat i da se sistem za vreme traja-

nja simulacije od 5 ps stabilizuje u dovoljnoj

meri. Takoðe, inicijalna kinetièka energija vodo-

nika kljuèno odreðuje efikasnost grafena, dok je

njegova temperatura parametar daleko manjeg

uticaja.
Grafen je odlièna zaštita metala od vodonika

kada atomi vodonika imaju male poèetne ener-

gije. Postoji prag koji poèetna energija vodonika

mora da preðe da bi došlo do difuzije i taj prag je

na 8 ± 3 eV. Na nekim inicijalnim energijama vo-

donika manjim od praga difuzije, za koje je ko-

eficijent adsorpcije najveæi, grafen se mo�e

koristiti za skladištenje atoma vodonika. Prema

tome, u sluèaju visoke refklesije grafen se mo�e

koristiti kao zaštita metala, a u sluèaju visoke

adsorpcije mo�e se koristiti za skladištenje atoma

vodonika.
Istra�ivanje se mo�e unaprediti posmatra-

njem atoma vodonika koji imaju brzinu usme-

renu pod datim uglom u odnosu na ravan metalne

ploèice. Osim toga, zanimljivo je detaljno ispitati

kako lokacija na kojoj atom vodonika pada na

grafen utièe na njegovu interakciju sa atomima

ugljenika u grafenu.

Zahvalnost. Zahvaljujemo se svojim mento-

rima Miljanu Dašiæu i Igoru Stankoviæu, èlano-

vima Laboratorije za primenu raèunara u nauci

Instituta za fiziku Univerziteta u Beogradu. Ta-

koðe, zahvaljujemo se rukovodiocu seminara

fizike Vladanu Pavloviæu sa Prirodno-Matema-

tièkog fakulteta Univerziteta u Nišu. Pomenutim

Slika 6. Zavisnost termodinamièkih parametara od vremena za razlièite poèetne energije atoma vodonika. a)
kinetièka energija grafena b) kinetièka energija vodonika c) potencijalna energija sistema d) pritisak. Sve
simulacije su za poèetnu temperature grafena od 800 K.

Figure 6. Dependence of thermodynamic parameters with time for different initial energies of hydrogen atoms.
a) kinetic energy of graphene b) kinetic energy of hydrogen c) potential energy of the system d) pressure. All
simulations are for an initial graphene temperature of 800 K.
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Nikola Petreski i Mihailo Radojeviæ

Analiza i razvoj modela
konaènih dipolnih heliksa

Tema ovog rada su heliksi sastavljeni od ko-
naènog broja èvrstih dipolnih sfera, poznati pod
terminom konaèni dipolni heliksi. Èvrste dipolne
sfere intereaguju preko dve vrste interakcija:
dipol-dipolnom interakcijom i tvrdom interak-
cijopm èvrstih sfera. Iako je sistem na prvi
pogled jednostavan, ispoljava kompleksno po-
našanje usled prirode dipol-dipol interakcije,
koja je anizotropna i dugodometna. Analizirali
smo razne sluèajeve interackije heliksa sa prob-
nom dipolnom sferom i sa identiènim heliksom,
pri èemu su uzete u obzir razlièite magnetizacije
heliksa, takozvana ST (single-thread) i MT (mu-
lti-thread) magnetizacija. Prvi deo rada pred-
stavlja detaljnu analizu interakcija u kojima
uèestvuju dipolni heliksi, a drugi deo je vezan za
razvoj modela konaènih dipolnih heliksa. Na-
ime, formirali smo i ispitali dve vrste modela he-
liksa koje predstavljaju pojednostavljenu zamenu
za heliks, i proverili koliko mogu reprodukovati
zadate interakcije.

Uvod
Èestice sa stalnim dipolnim momentom, kao

što su magnetne kuglice, poznate su po samo-
asemblirajuæim osobinama. Magnetne strukture
su popularne zato što imaju široku primenu u
nanoelektronici i biotehnologiji (Whitesides i
Grzybowski 2002). Što se tièe znaèaja tubularnih
i helikoidnih struktura, u biologiji su to rele-
vantni samoasemblirajuæi objekti koji su pro-
naðeni u nekim vrstama bakterija i u æelijskim
mikrotubulama. Magnetne nanoèestice mogu se
rasporediti tako da grade helikse, što je vrlo

interesantno da se na nano nivou mogu napraviti
ovakve strukture (Sellmayer 2002; Zeng et al.
2002).

U ovom radu posmatrano je ponašanje he-
likoidnih struktura sastavljenih od konaènog
broja èvrstih dipolnih sfera, poznati pod termi-
nom konaèni dipolni heliksi. Pored toga modelo-
vane su i uprošæene strukture poèetnog heliksa i
ispitivana je njihova efikasnost. Dipolne sfere
interaguju preko dve vrste interakcija: dipol-
-dipolna interakcija i tvrda interakcija èvrstih
sfera.

Konkretno smo u ovom radu dipolne helikse
implementirali u softverskom paketu Matlab.
Kako se sve èestice opisuju preko prostornih ko-
ordinata i dipolnog momenta (magnetizacije)
potrebno je postaviti ih u poèetnu konfiguraciju,
pri èemu konfiguracija podrazumeva prostorni
raspored i magnetizaciju. Pokazano je prethod-
nim radovima da interakcija izmeðu magnetnih
sfera mo�e dovesti do formiranja 3D struktura,
ali da dimenzionalnost struktura zavisi od broja
èestica u sistemu N. Naime, razmatrano je kako
se èestice rasporeðuju tako da imaju minimalnu
energiju (takozvani ground state). Za mali broj
èestica (N = {2, 3}) formiraju se lanci, za veæi
broj èestica (3 < N < 14) formiraju se prstenovi,
dok za N > 14 optimalne strukture su heliksi.
Jasno vidimo prelaz od 1D preko 2D do 3D stru-
ktura zavisno od broja èestica u sistemu (Bon-
cheva et al. 2005).

U prvom delu rada detaljno je opisana dipol-
-dipol interakcija i naèin formiranja heliksa.
Takoðe, ovaj deo rada posveæen je ispitivanju za-
visnosti energije dipol-dipol interakcije i sile od
nametnutih uslova, poput promene rastojanja
izmeðu ispitivanih struktura ili magnetizacije.
Imamo sluèajeve interakcije heliksa sa probnom
èesticom i sa identiènim heliksom. Pored ovoga,
posmatran je i sluèaj kada dolazi do promene

Nikola Petreski (2000), Šabac, Grmiæska 3,
uèenik 3. razreda Šabaèke gimnazije

Mihailo Radojeviæ (2000), Šabac, Kralja
Dragutina 8, uèenik 3. razreda Šabaèke
gimnazije

MENTORI:

Miljan Dašiæ, Institut za Fiziku, Beograd

Igor Stankoviæ, Institut za Fiziku, Beograd
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tima) i probna èestica. Za alternirajuæe dipolne
momente mora biti paran broj kuglica u lancu
kako bi se poništile x i y komponente uzastopnih
kuglica.

Na osnovu rezultata sa grafika na slici 24
mo�e se zakljuèiti da je nemoguæe formirati za-
menu za helikoidnu strukturu u vidu modela koje
smo mi izabrali. Razlog ovome je poklapanje
datih rezultata po x osi a ne poklapanje po z osi.
Ovo se dešava zato što svaka èestica poèetnog
heliksa ima z komponentu magnetnog momenta
dok kod naših modela nemaju sve èestice z kom-
ponentu. U ovom sluèaju ponovo mo�emo uoèiti
osetljivost dipol-dipol interakcije. Iako su mo-
deli napravljeni tako da magnetni momenti po
komponentama imaju istu sumu nije moguæe
modelovati na ovaj naèin uprošæeniju strukturu
zbog ugla magnetizacije.

Zakljuèak

Primeæeno je da intezitet ukupne sile i ener-
gija opadaju pri udaljavanju od poèetnog heliksa
i kod probne èestice a i kod slo�enijih struktura
kao što su heliksi. Pri rotaciji heliksa oko koordi-
natne ose dobijene su oscilacije ukupnog intezi-
teta sile i energije, simetriène u odnosu na ugao
od � rad. Ovo je posledica razlièitog ugla mag-
netizacija i trenutne konfiguracije èestica. Postoji
magièni ugao pri kojem je energija interakciie
izmeðu dva heliksa jednaka 0, ali nije jedinstven
kao za sluèaj dve èestice veæ zavisi od broja èes-
tica u heliksu. Energija interakcije izmeðu dva
heliksa je maksimalna ako su magnetni momenti
paralelni, dok je minimalna kada su meðusobno
normalni. Uprošæeni modeli ne mogu zameniti
poèetnu helikoidnu strukturu. Rad se mo�e pro-
širiti dodavanjem novih modela i ukljuèivanjem
spolašnjeg magnetnog polja.
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Nikola Petreski and Mihailo Radojeviæ

Analysis and Development of the
Model of Finite Dipole Helices

Topic of this paper is helicoides composed of
the finite number of solid dipole spheres, known
as the finite dipole helix. Solid dipole spheres
have two types of interactions, such as: dipole -
dipole interaction and hard interaction of solid
spheres. Although at first glance it can be done
simple, such a system exhibits complex behavior
due to the nature of the dipole-dipole interaction,
which is long-term and anisotropic. We explored
various cases of helix interaction with the test di-



pole sphere, as well as identical helix, taking into
account the different dipole orientations of the
helix, the so-called ST (single-thread) and MT
(multi-thread) dipole orientations. The first part
of our paper presents detailed analysis of the in-
teractions involving final dipole helix, and the
other part is related to the development of the
model of given helix. In modeling, the aim is to
replace the helix with a simplified structure that
includes a ring and a chain, and to check if such a
simplified structure on interaction behaves as a
model helix. We have also formed two types of
helix that represent a simplified substitute for
helix and check how much they can reproduce
the given interactions.
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A platform for nanomagnetism – assembled
ferromagnetic and antiferromagnetic dipolar
tubes†

Igor Stanković, *a Miljan Dašić,a Jorge A. Otálorab and Carlos García c

We report an interesting case where magnetic phenomena can transcend mesoscopic scales. Our system

consists of tubes created by the assembly of dipolar spheres. The cylindrical topology results in the

breakup of degeneracy observed in planar square and triangular packings. As far as the ground state is

concerned, the tubes switch from circular to axial magnetization with increasing tube length. All magne-

tostatic properties found in magnetic nanotubes, in which the dipolar interaction is comparable to or

dominant over the exchange interaction, are reproduced by the dipolar tubes including an intermediary

helically magnetized state. Besides, we discuss the antiferromagnetic phase resulting from the square

arrangement of the dipolar spheres and its interesting vortex state.

1. Introduction

Whether a system behaves as classical or quantum is usually
determined by the ratio between its spatial dimension and
quantum coherence length. Even so, there are cases where the
actual size dependent behavior seems to be an illusion and
transcending the scales is possible, thus allowing the study of
fundamental aspects hardly accessible at the original size.
Spin-ice frustration1–4 is an example, wherein the micro- and
mesoscopic rules that govern the spin orientation of such
systems can become very subtle and hard to understand.
Nevertheless, Venderbos et al.5 and Mellado et al.6 have shown
that similar frustrated states can also arise in arrangements of
macroscopic dipolar rotors via classical magnetic interactions,
furthermore, showing phenomena that are not visible in their
microscopic counterpart. In this paper, we present a similar
scenario of scale transcendence, relating magnetic nanotubes
(MNTs) to self-assembled dipolar magnetic spheres arranged
in tubular structures, named here dipolar tubes. The spheres
can have radii from 10 nm to macroscopic neodymium balls. A
peculiar feature of this comparison is that the tubular geome-

try of dipolar tubes breaks-up the continuous degeneracy of
the ground states in the two dimensional (2D) lattices of
dipolar spheres.7,8 As a result, we expect a number of new
stable states in the tubular geometry. The curvature-induced
feature opens the inquiry on its impact on the energy barriers
that separate and stabilize the novel magnetic states, which
will be addressed in this manuscript.

Given the lack of exchange interaction in dipolar tubes, it is
most reasonable to compare them with dipolar interaction
dominated MNTs where the exchange interaction is negligible.
Since in MNTs the dipolar interaction dominated state is circular
(magnetization polarized azimuthally), it can be expected that
transcendence exists only with a similar circular state in
dipolar tubes. As we show in the manuscript, it is found that
the scale transcendence strikingly goes beyond this trivializa-
tion. In a ground state, the stray field created by MNTs should
be minimal. This condition stems from micromagnetic
considerations9–11 wherein the magnetostatic energy is
minimized due to the dipolar part of the energy. Apart from
the circular state, axial and helical ground states in MNTs
have been predicted theoretically12,13 ‡ and confirmed
experimentally.14–18 In the axial state, the magnetization is par-
allel to the nanotube’s axis in the center of the tube and gradu-
ally turns into circular magnetization at the nanotube ends. In
the helical state, the magnetization is never completely aligned
with the tube’s axis resulting in a circulating component of the
magnetization.12,13 The helical and axial states spontaneously
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emerge when the dipolar interaction is comparable to the
exchange interaction. Both states occur when nanotube’s
radius is a few tens of times larger than the exchange length.
The axial state appears when the MNT length is around two to
three orders of magnitude larger than its diameter, whereas
the helical state is a transition configuration to the circular state
that appears when the length of the tube is further reduced.
Most of the previous studies on magnetic nanotubes have
focused on magnetic configurations as a function of geometry
for specific material parameters. Only recently Salinas et al.19

applied a generic model to discover that helical phases possess
a high level of metastability relevant to magnetization reversal
modes. Still, the origin of small energy differences between the
states remained unclear. The axial and helical states create a
small stray field13 or exponential decaying in the case of infinite
structures, and therefore they could also exist in dipolar tubes.20

The cylindrical magnetic geometry of MNTs has advantages
for applications despite evident fabrication problems. In fact,
the elongated geometry, azimuthal symmetry, and curvature of
nanotubes bring reproducibility, robustness, and extra stability
to nanotube’s equilibrium states and magnetization
dynamics,12,13,21–25 which makes MNTs attractive for
buffering, transport and processing information using their
equilibrium states, and domain wall dynamic and spin-wave
excitations. In this sense, the proper understanding and
characterization of equilibrium states in MNTs is, thus, a man-
datory task. Under this scenario, mimicking the magnetic
equilibrium features of nanotubes with dipolar tubes can
facilitate and encourage developments towards alternative
techniques intended to reduce the complexity of experiments.
The minimal energy structures of dipolar particles have been
investigated in recent theoretical studies.26,27 The tubular form
of the ground state together with outstanding self-assembly
properties of dipolar particles28,29 present motivation for their
application as a platform for testing concepts with MNTs. For
instance in experiments, tubular and helical architectures with
dipolar particles were obtained via DNA ligations,30,31

confinement,32–34 bulk interactions – magnetic Janus col-
loids,35 and asymmetric colloidal magnetic dumbbells.36

Another interesting system with respect to magnetic order is
the two dimensional self-assembled super lattices of magnetic
cubes. The magnetic cubes are synthesized with two most
probable orientations: axial [001]37 and along the principal
diagonal of the crystal, i.e., cube, [111],38 but the possibility of
less trivial orientations should not be discounted. As a result
of the interplay of square packing and magnetization defined
by their crystal structure, we find axially magnetized anti-ferro-
magnetic states in the case of [001] and vortex in the case of
[111] magnetized cubes.39,40 At this point, we would like to
draw attention to two recently developed techniques with
which dipolar tubes could be realised: (i) two-photon lithogra-
phy41 nano-printers can fabricate complex three-dimensional
structures with the resolution of up to 300 nm. The two-photon
lithography technique was used to fabricate nanostructures
out of polymer, metallic,42 and recently magnetic43 materials.
Such printed structures could be used as a template for the

self-assembly of magnetic particles with rhombic and square
lattices. (ii) The second technique comes from micro-fluidics.
The tubular structures of magnetic particles can be created by
the conformal covering of the cylindrical conductive wire
surface by assisting the self-ordering process of magnetic micro-
spheres44 via the application of a circular electromagnetic field
induced by an injected electrical current along the wire.

With the aim of addressing our results, linking self-assem-
bly, geometry, and magnetization states in dipolar tubes, this
paper is organized as follows: section 2 introduces the dipolar
interaction model and methods used. We discuss self-organiz-
ation on cylindrical confinement in section 3, and in silico

hierarchical degeneracy breakup of the infinite square and tri-
angular lattices with an introduction of curvature in section
4. We also present a systematic study of the ground state con-
figurations and energies resulting from the interplay between
the tube’s length and curvature for triangular and square
arrangements in section 4. The final section, section 5, gives
the conclusion and outlook.

2. Models and methods
2.1. Magnetic interaction model

Magnetic nanoparticles can have complex coupling involving
both dipolar and exchange interactions. The atomic exchange
interaction is relevant up to a length scale of 10 nm.45 Thus,
dipolar coupling dominates in the formation of the structures
on the length scales 10 nm–100 μm, with many potential
applications.30–35 We characterize the system using dipole–dipole
interaction potential: it is assumed that each particle carries
identical dipolar (magnetic) moment with magnitude m ¼ ~mij j,
where ~mi ¼ ðmi

x;mi
y;mi

zÞ defines the dipolar moment of particle i.
The potential energy of interaction Uð~rijÞ between two point-
like dipoles with centers located at~ri and~rj can be written as:

Uð~rijÞ ¼
μ0

4π

~mi � ~mj

rij3
� 3

ð~mi �~rijÞð~mj �~rijÞ
rij5

� �

; ð1Þ

for rij ≥ d or ∞ otherwise, where rij ¼ j~rijj ¼ j~rj �~rij and d is
particle’s diameter. It is convenient to introduce the energy
scale defined by U↑↑ ≡ μ0m

2/4πd3 that physically represents the
repulsive potential value for two parallel dipoles in contact
standing side by side, as clearly suggested by the notation.
Thereby, the total potential energy of interaction in a given
structure Utot is given by

Utot ¼
X

i>j

Uð~rijÞ: ð2Þ

One can then define the reduced potential energy of inter-
action u (per particle) of N magnetic spheres. It reads:

uN ¼ Utot

U""N
; ð3Þ

which will be referred to as the cohesive energy. The cohesive
energy of a particle is directly related to the energy required to
take it out from the structure. Lower cohesive energy means it
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takes more energy to disintegrate the structure. The higher is
the absolute value of cohesive energy the more stable is the
structure. For a particular two particle head-to-tail configur-
ation (i.e., →→), we get u2 = −1 per particle.

There is significant flexibility in tuning the physical and
chemical properties of magnetic particles. In particular, col-
loids can be synthesized either from a pure magnetic material
like hematite with a small spontaneous magnetization (IsFeO ≈

2.2 kA m−1), or large in the case of magnetite or cobalt ferrite
(IsCoFe ≈ 480 kA m−1).46,47 In the case of core–shell particles, a
design freedom is obtained by the adjustable core to shell
ratio. Here, in particular, we consider that all magnetic par-
ticles have the same magnetic moment. We assume that the
particles are silica–hematite core–shell particles with outer dia-
meter d = 50 μm and hematite core dcore = 10 μm.48 Assuming
a single domain particle behavior, the magnetic moment m is
expressed as m = IsFeOv = 1.15 A μm2, where v ≈ 500 μm3 is the
volume of the magnetic part of the particle. The result in this
work should be independent on the particle material or size.
To facilitate comparison, we present results in the scaled units
with the reference magnetic interaction energy U↑↑ = 10−18 J
calculated for hematite core/shell particles. For reference
energy we take the minimum of magnetic cohesive energy of
two particles in contact. The reference magnetic energy U↑↑ is
therefore equal to 256kBT, where T = 300 K is the temperature
and kB is the Boltzmann’s constant. The maximal magnetic
field generated by one particle at the center of the mass of the
other particle (placed side by side) is B0 = μ0m/(2πd3) = 1 μT.
The size of the magnetic core has a strong influence on the
energy scale: for dcore = 20 μm, we would obtain magnetic
moment m = IsFeOv = 9.2 A μm2, and magnetic energy depends
on the square of magnetic moment U↑↑ = 67 × 10−18 J, i.e., 1.6
× 104kBT. As a result, one could tune the level of degeneracy
described in latter sections with the size of the core. Also, by
changing the core to shell ratio we tune the balance of inter-
action between particles and of particles with the field created
by a conducting wire.

2.2. Isotropic interaction

When the dipolar coupling is strong, such as in nanocrystals,
the particle assembly is determined unequivocally by the
dipolar coupling and the particle shape. Here, we are interested
in moderately interacting magnetic particles since we want to
avoid the spontaneous formation of the clusters. Self-assembly
requires to take advantage of forces that dominate on the
micron scale and below (magnetic, contact, and van der Waals),
resulting in different device designs and functionalities.49

We describe the effect of isotropic contact and van der
Waals interactions between the spherical particles using a
minimal model, i.e., as soft-core beads, that interact isotropi-
cally by means of a truncated and shifted Lennard-Jones
potential. The interaction is defined as: Ucut

LJ (r) = ULJ(r) −

ULJ(rcut), r < rcut and Ucut = 0, r ≥ rcut, where rcut is the distance
at which the potential is truncated, and ULJ(r) is the convention-
al Lennard-Jones (LJ) potential, i.e., ULJ(r) = −4ε[(σ/r)12 − (σ/r)6].
The parameter ε corresponds to the energy scale of the

interaction and σ is related to the characteristic diameter of
the beads d, i.e., σ = d/21/6 and d = 50 μm. The choice of the rcut
value determines the nature of the potential Ucut

LJ (r): repulsive,
which is also known as Weeks–Chandler–Andersen (WCA)
potential for truncated Lennard-Jones potential in minimum
rcut = 21/6σ, and attractive for a commonly chosen rcut = 2.5σ.
The presence of attractive interactions between particles is
reminiscent of a Stockmayer fluid, a simple and convenient
model for representing ferrofluids50,51 or lattice of particles
stabilized by dipolar coupling.52

The colloidal structures analyzed here are modeled to rep-
resent the colloidal magnetic particles that have iron oxide
inclusions inside the silica shell: attractive part of isotropic
interaction; we choose a weak interaction between particles,52

εa = 3.5 × 10−19 J (εa = 0.3U↑↑ for dcore = 10 μm) and rcut = 125 μm
for particles with diameter d = 50 μm. The value of the sphere
repulsive contact potential is taken as εr = 7 × 10−16 J for par-
ticles with the same diameter d = 50 μm (i.e., εr = 10U↑↑). The
magnitude of the attractive part of potential and interaction
range can be varied by controlling the colloidal charge number
or surface composition.53

We study the system by means of Langevin molecular
dynamics computer simulations (described in the following
subsection): our spheres are represented by WCA potential,
and carry a magnetic point dipole in their centers. A weak iso-
tropic van der Waals (vdW) attraction between the spheres is
included for a more realist approach to an experimental solu-
tion of colloidal particles. In the experiment, the colloidal par-
ticles are stabilized against irreversible agglomeration by vdW
forces, either by polymers grafted to the surface, or manipulat-
ing the ionic content of the fluid. The vdW attraction between
the spheres provides additional stability to the lattice com-
posed of assembled tubes after the electromagnetic field has
been switched-off. As such, our results can be scaled to
different shell materials, i.e., polystyrene and silica oxide, but
the conclusions of this minimal model should be generic.

2.3. Interaction with conductive wire

We place the conductive wire in a suspension of spherical
magnetic particles. The conductive wire is an elegant way to
cover the cylindrical surface with magnetic particles. Such a
system has been recently implemented by Bécu et al. with
paramagnetic particles.44 When replacing paramagnetic par-
ticles with magnetic particles, the magnetic fields of the ferro-
magnetic particles and the electromagnetic field generated by
the conductive wire become independent. As a result, we
obtain an additional tuning parameter – a ratio between mag-
netization of the particle and electromagnetic field or current
of the wire. Still, the system parameters should be carefully
selected to avoid the formation of kinetically trapped clusters
or arcs of particles attached to the wire.

We consider a situation in which colloidal suspension is
placed in the vicinity of the current conducting wire. A wire
with outer diameter 2Rw = 50–100 μm is connected along the
z-direction. In order to generate an electromagnetic field able
to attract particles at the surface of the wire, significant cur-
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rents must go through the wire, giving rise to fields of several
mT at the wire surface. Recent similar experiments with para-
magnetic particles indicate that a 50 μm wire can support cur-
rents of up to 0.5 A for several minutes and up to 0.8 A for a
short time, creating electromagnetic fields up to B = 3.2 mT,44

i.e., Bw = μI/π(2Rw + d ) for dw = 50 μm wire and d = 50 μm
particle.§ We will show how the interactions between the par-
ticles and of particles with the wire can be balanced to obtain
single wall tubes. Our design based on ferromagnetic particles
has a freedom of tuning the ratio between two magnetic forces:
interparticle magnetic force Fmm and electromagnetic force
between ferromagnetic particles and the conductive wire FmI,
i.e., magnitude of magnetic force between two particles
depends on the square of their magnetic moments and the
force between particles and conducting wire depends linearly
on the magnetic moment. At the same time, magnetic moment
is proportional to the cube of the core’s diameter allowing the
variation of the ratio for up to three orders of magnitude, there-
fore this ratio can be anywhere between FmI/Fmm = 1–1000 (the
single wall tubes will be created only at the higher ratios).

2.4. Langevin molecular dynamics

Langevin molecular dynamics (MD)54 was used to study the
self-assembly in the vicinity of the wire under the influence of
an electromagnetic field of uninsulated conductive wire. The
total force of implicit solvent on each particle has the form:
~f ¼~fc þ~ff þ~fr, where fc is the conservative force of inter-
particle interactions and of particles with the wire, ff = −(m/ξ)v
is a frictional drag or viscous damping term proportional to

the particle’s velocity, and h fri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBTm=ξ
p

is the random
Brownian force of the solvent. The random force term is
treated as a Gaussian process that adheres to the fluctuation–
dissipation theorem. The rotational degrees of freedom are, of
course, governed by the equations of motion for the torque
and angular velocity of a sphere. Since evolution in time is not
of primary concern in this study, the values of mass, inertia
and translational/rotation friction coefficients are physically
inconsequential to the final state of the system. An estimate of
time, per MD step, can be obtained for 50 μm-sized colloidal

particles with dcore = 20 μm as t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mspd2=U""
p

¼ 80 ms (mass
of the core–shell hematite/silica particle M = 10 μg). The total
length of the MD simulation was thus estimated to be of the
order of 15 minutes (i.e., about 1000 s).

2.5. Energy minimization

The energies of finite tubes were independently computed
using 10–103 initial configurations with random magnetiza-

tion (depending on the size of the system). The procedure
included two steps: in the first step ‘overdamped’ equations of
rotational motion of each particle were integrated with respect
to the torque excreted on a particle (same equation as in
Langevin molecular dynamics equations as in the previous
section). The parameters used correspond to motion in a
highly viscous fluid where angular velocity is proportional to
torque, i.e., in the limit where no acceleration takes place, in
order to avoid any oscillations. In the second step, the result-
ing configurations were used as the input to a rigorous conju-
gate gradient minimization algorithm.55 The second step was
required since ‘overdamped’ rotational motion converges
slowly towards the ground state¶ for a prescribed geometry.
The energies of the resulting configurations were compared –

about 10% of configurations had the same energy, in the limit
of numerical precision of about δu/u = 10−7, corresponding to
the ground state. The minimization procedure always finds
dipole moments tangential to the cylindrical surface, cf. ref. 20.

2.6. Geometry of tubes

We refer to tubes made by stacking of rings.∥ In AA-tubes all
constitutive rings are exactly aligned, cf. Fig. 1(a), and in AB-
tubes every ring is shifted by half of the particle’s diameter, in
respect to its preceding ring, cf. Fig. 1(b). Alternatively, AA- or
AB-tubes could be generated by rolling square or triangular
lattices with cylindrical confinement, respectively.

Particle i-positions in AA tubes are calculated as: xi =
R cos(2πi/N), yi = R sin(2πi/N), and zi = ⌊i/N⌋d, where ⌊x⌋ is the
greatest integer function and gives the largest integer less than
or equal to x, while N is the number of particles in a constitu-
tive ring. To simplify the discussion, we refer to N also as
curvature since there is a correspondence with the tube’s
geometrical curvature R/d = 1/2 sin(π/N), e.g., we obtain

R=d ¼
ffiffiffi

2
p

=ð
ffiffiffi

3
p

� 1Þ � 1:3 for N = 8 ring.
One of the ways to obtain AB tubes is stacking of a pair of

two successive rings.** In both rings particle positions are cal-
culated based on their index i: xi = R cos(2πi/N + θi), yi =
R sin(2πi/N + θi), and zi = ⌊i/N⌋Δz, where θi is the angular
displacement of rings θi = πmod(⌊i/N⌋,2)/N and

§To favor the comparison with previous research on paramagnetic particles, we

present here results for wires with 2Rw = 100 and 130 μm and particles with

50 μm diameter. Ohmic heating limits the current through wire and is pro-

portional to the square of the current and wire radius. Since the electromagnetic

field B is linearly proportional to the current and inversely proportional to the

distance of centers of the particle and wire, the power is P ∝ B2(1 + d\Rw)
2.

Therefore, we should note that the increase of the wire diameter allows higher

electromagnetic field for similar dissipation.

¶A simple example of a discrete ground state is two dipole cases: put two dipoles

next to each other and let them orient freely in three dimensional space, they

will align their moments in a head to tail configuration (coaxially).

∥Apart from self assembly on the micro-scale, it is possible to construct tubes

described in this subsection manually on the macroscopic (millimetre) scale.

The neodymium magnetic spheres are widely available and applicable for build-

ing model systems.56 Neodymium magnets are made of a sintered alloy of iron,

neodymium, and boron (Nd2Fe14B). The coercive field strength is about

106 A m−1. Thus, the neodymium magnets can withstand high external magnetic

fields. The remanence of 1 to 1.5T is at the same time not larger than that in

other magnetic materials. All tubes constructed in this section can be therefore

built with neodymium magnets.

**The tubes can also be created, in analogy to carbon nanotubes, by rolling a

ribbon of a triangular lattice on a cylinder surface.20 The cylindrical geometry is

infinite in one direction and we can, in analogy with crystal lattices, generate

tubes by periodical reproduction of a curved patch (unit cell) along the helical

backbone with spanning vectors ð~a1;~a2Þ. This curved unit cell has n1 particles

along the~a1 direction and n2 particles in the~a2 direction.
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Δz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 � 2R2½1� cosðπ=NÞ�
p

is the displacement between
successive rings along AB tube’s axis and i = 1,Ntube. The total
number of particles in the tube Ntube is a multiple of the
number of particles in ring N and the number of rings Nrings,
i.e., Ntube = Nrings.

In addition to stacking of the rings, the tubes can be
created by rolling a ribbon with a square or triangular lattice
on a cylindrical surface. The right side panel in Fig. 1(b) shows
an edge of the ribbon creating exactly the same structure as
that by stacking of rings (see also ESI movies 1–4†). In fact,
every ordered tubular structure can be generated by reproduc-
tion of a curved unit cell along the helical lines defined
through curved spanning vectors in analogy to crystals in two
dimensions. This curved unit cell has n1 and n2 particles along
two spanning directions.20

Still, there are geometrical limits for a ribbon with a
defined structure (i.e., square, rhombic or triangular). Like in
carbon nanotubes, ribbons of assembled particles can be
rolled at specific and discrete (“chiral”) angles. The chiral
angle can take values 0 < Θ < 30° for triangular lattices and 0 <
Θ < 45° for square lattices, where Θ is the angle between the
thread of particles and tangent to the cylinder radius57 (in
Fig. 1). Here, we will demonstrate how combination of the
rolling angle and radius decides the tube’s properties with
respect to magnetic state energies. We show AB and ZZ tubes
which have different chiralities, Θ = 0° and 30°, in Fig. 1(b)
and (c), respectively. The circular arrangement of the AB tube
corresponds to, the so called, armchair carbon nanotube equi-
valent. The curvature of the two structures is also similar
RAB/d = 1.932 and RZZ/d = 1.945, while the number of particles

in a constitutive ring is different, N = 12 and 14 for AB and ZZ
tubes, respectively. An arrangement, circular or helical in the
AB tube and axial or helical in the ZZ tube, corresponds to a
possible choice of magnetization of tubes that is aligned with
their lattice structure.

3. Ampère force driven assembly

The central mechanism driving the adhesion of particles on a
conductive wire is an interplay between dipolar forces between
particles and radial attractive Ampère force. The electro-
magnetic field of the conducting wire is strong enough to
determine the orientation of all dipole moments. In order to
obtain a single layer of magnetic particles, the Ampère force
should dominate inter-particle dipolar forces. Here, we should
point out that the Ampère force generated by the current in
the wire depends linearly on the magnetic moment of the par-
ticles while magnetic dipolar interactions scale quadratically.
Besides, there are symmetric and short-range forces between
colloidal particles due to their surface design. We base our
analysis on a simplest analytically tractable model for constitu-
tive ring rearrangement and comparison with the MD
simulations.

In the following two sections, we first give analytical results
for Ampère force driven processes. After that, we compare
these analytical results with the ones obtained by computer
simulation for moderate and strong currents. We will show
that only sufficiently strong current is able to pull and attach
all particles to the wire’s surface.

3.1. From self-assembled chain to ring

The first agglomeration phenomenon analyzed analytically is
the strength of the curved electromagnetic field needed to
reduce the radius of an arc built by magnetic particles. An
elongated chain (or cluster of chains) should overcome the
elastic barrier preventing its bending into the ring under the
influence of a circular electromagnetic field. The origin of the
resistance to deformation can be understood in terms of a
transition from local (chain) to global energy minima, corres-
ponding to a ring or stacking of the rings.26,58 For simplicity,
we assume that the magnetic spheres have a magnetization
that follows the curvature of the arc (i.e., part of the ring) and
that the arc backbone follows electromagnetic field stream-
lines (i.e., co-centered with wire).

To do so, we consider a thin wire (rdist/Rwire > 1). An arc with
curvature d/R can be obtained by calculating the particle posi-
tions based on their index i in Euclidian space: xi = rdist cos(θi),
yi = rdist sin(θi), and respective magnetization mi

x = cos(θi + π/2),
mi

y = sin(θi + π/2), where θ is the angular displacement of
particles θ = 2arcsin(d/2rdist) and d the particle diameter. The
combined resistive magnetoelastic force tries to straighten the
chain and reduce its curvature d/rdist, see dashed lines for N =
4,6,12 particles in Fig. 2(a). Due to the circular nature of the
electromagnetic field, the curvature d/rdist of the arc is inverse
of its distance from the wire rdist. The magneto-elastic force F

Fig. 1 Illustration of (a) AA, (b) AB, and (c) ZZ tubes. The tubes are

wrapped around the confinement cylinder. Tubes can be created via

ring stacking (highlighted). A single ring is enough in the case of AA and

ZZ tubes. We show that AB tubes can be created in two ways. The first

way is by a pair of successive rings in the case of the AB tube (left panel,

see ESI movie 1†). The second way is by wrapping of the ribbon with a

triangular lattice on cylindrical confinement (right panel, see ESI movie

2†). In the right panel of the AB tube, the edge of the ribbon with 12

threads is denoted. The ZZ tube can be created in three ways, stack-

ing of zig-zag rings (pictured), wrapping 14 filaments parallel to the

tube’s long axis, or 14 thread ribbons oblique to the axis (see ESI movies

3 and 4†). The AB tube has a chiral angle Θ = 0°. The lattice structure of

the ZZ tube is triangular, like one of the AB tubes, while chirality is

different, i.e., Θ = 30°.
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increases up to the point when the arc ends start to attract
each other, cf., bold black line connecting maxima of force
curves for different arcs in Fig. 2(a). The critical force for the
chain with N = 4 particles has a maximum F = 30 pN at distance
rdist = 50 μm and N = 6 particles has F = 15 pN at rdist = 70 μm.
Thereafter, the deformation of the chain becomes irreversible.
The magneto-elastic force decreases with increasing curvature
d/rdist and changes the sign. The negative force means that
after that point the arc closes on its own. Also, one can observe
that while the critical force diminishes with distance – the
highest necessary critical current is for thin wire and short
arcs (i.e. for three particle arc). The critical force is inversely

proportional to the distance, i.e., F ∼ 1/rdist. The current
needed to generate sufficient electromagnetic field, I ≈ 0.02 A,
is therefore independent of the chain length.

3.2. Attaching particles to the surface of the wire

We also observe that for a moderate current the long arc closes
into a ring with a radius larger than the radius of the wire
(Rwire). How does this ring finally attach to the surface of the
wire? What is the critical force and current required to break
the rings by spiral deformation? The transformation from a
large ring to the adapted wire diameter involves a destabilizing
field able to tear apart a ring by pulling a part of it inwards to
the surface of the wire (rdist > Rwire). The energy per particle of
the single ring is:

urðNÞ ¼ � 1
4
sin3 π

N

� �

X

N�1

k¼1

cos
2πk
N

� �

þ 3

sin3 πk

N

� � : ð4Þ

Similarly, the approximate expression for the force required
to break the ring is given by (see also Fig. 2(a)),

FsðNÞ ¼ � 3
8
sin3 π

N

� �

X

N�1

k¼1

k

cos
2πk
N

� �

þ 3

sin3 πk

N

� � : ð5Þ

Since the Ampère force reaches its strongest value in the
wire surface, the ring will break in the vicinity at this position.
We can therefore estimate the critical current to be I =
2π(d + Rwire)

2F/μ0m, as shown in Fig. 2(b). The current required
to break a ring is more than three times higher than the current
needed to close an arc and increases with the wire radius. Still,
the increase is slow (I ∼ Rα

wire, where α < 1) and is compensated
without the increase in current density through the wire.

The magnetic particles stick (or diffuse) on top of the tri-
angular lattice formed on the cylindrical surfaces. Following
compaction, the remaining beads coming from solvent try to
pop-in between the constitutive rings of the tube. In numerical
analysis, we use the fact that a ring configuration compensates
for the dipole moment and the total dipole moment is zero
within the ring. In far field, the electromagnetic field of the
ring resembles a multipole, i.e., the electromagnetic field
drops with the distance as 1/rN+2, where N is the number of
particles in the ring. The self-screening of inter-ring dipolar
interactions takes place as soon as the rings are separated by
more than one particle size. Therefore, the change in total
energy depends dominantly on the distance of the touching
rings, i.e., the change in their interaction energy,

uirðNÞ ¼ � 1
8
sin3 π

N

� �

�
X

N�1

k¼0

2 3þ cos
πð2k þ 1Þ

N

� �	 


sin2 π 2k þ 1ð Þ
2N

� �

þ dz2Sk

dz2 sin2 π 2k þ 1ð Þ
2N

� �

þ sin2 π

N

� �

	 
5=2

ð6Þ

Fig. 2 Critical (a) force and (b) current required to bend and close an

arc of particles and form a ring, break the ring, or insert particle

between the two rings. The dependence of the forces on distance from

the center of the wire rdist is shown. The ring is broken when Ampère’s

force pushes one side of the ring inside (spirally deforming ring). The

evolution of the force with the distance from wire rdistance is also shown

in figure (a) with dotted line for N = 4,6, and 12 particles. The critical

current depends on wire radius Rwire since particles become further

away from the center. The magnetic moment of the particle is

1.15 A μm2.
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where dz is the distance between touching rings and

Sk ¼
X

i¼0;1;2

ð�1Þi 2
i

� �

cos½πð2ðk þ iÞ � 1Þ=N�. We estimate the

force FiðNÞ ¼ 6=
ffiffiffi

2
p� �

@uir Nð Þ=@dz needed to push the particle

between the two rings in contact, i.e., at a distance:

dzcN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The resulting critical force and current depend on the wire
radius as shown in Fig. 2(a) and (b), respectively. For wire of
Rwire = 65 μm, on which 8 particles of d = 50 μm could form a
ring, the critical current is I = 0.4 A.

3.3. Dynamics of assembly

We simulate the Ampère force driven assembly of colloidal
magnetic particles on a cylindrical confinement. The snap-
shots of evolution of the configuration with time are given in
Fig. 3 and animations are given in the ESI as movies 5–7.† We
model the dynamics of assembled particles with dipolar coup-
ling in the presence of the circular electromagnetic field gener-
ated by the electrical current going through a conductive
cylindrical wire which, at the same time, serves as a geometrical
constraint.

In MD simulations at moderate currents, cf. the inset in
Fig. 3(a), we observe the formation of chains composed of an
oriented collection of magnetic dipoles, increasingly curved by
the electromagnetic field as they approach, and eventually

attach to the wire. This process is schematically given in
Fig. 2(a). The resistance to bending increases as the particles
approach the wire. The chain finally bends due to the fact that
the dipoles cannot align with both, the electromagnetic field
lines and with each other’s magnetic axis. In this frustrated
configuration, the magnetic field of each dipole exerts a torque
on all other dipoles.

At sufficiently high currents we observe that the system
becomes rapidly compact, see Fig. 3(b). We also observe,
between t = 185 s and t = 190 s in Fig. 3(b),†† how the last par-
ticle coming from solvent pushes the already formed triangu-
lar lattice structure forming a metastable single stranded helix.
In this metastable state, the helix backbone and electromag-
netic field are not aligned, resulting in mechanical strain on
the whole structure. At t = 350 s, we observe that the system
shears back into a stable state (tube) with constitutive rings
aligned with the electromagnetic field.

Finally, we should note that a square lattice can only be
obtained by self assembly on a square patterned surface. This
corresponds also to the state-of-the-art in the literature.41 The
latter one is limited to the self assembly of finite sized struc-
tures. Nano-scale printing allows realization of curved conduc-
tors with a complex surface geometry and opens an interesting
playground for generating different packings of magnetic
spheres. The Joule heating limits the current through a

Fig. 3 Snapshots of MD simulations at moderate (a) IRw
2/m = 1 and strong (b) IRw

2/m = 50 currents are shown. (a) For IRw
2/m = 1, we observe

chains form as an oriented collection of magnetic dipoles, increasingly curved by the electromagnetic field as they approach, and eventually attach

to the wire. The particles in contact with wire at t = 1000 s are colored differently. The animation is given as ESI movies 5 and 6† (top and side

views). (b) At strong currents, IRw
2/m = 50, Ampère force inserts particles into the triangular lattice. Insets between t = 53 s and 54 s show particles

while entering moving (shear) tube’s structure turning it into a quasi-stable single stranded helix. The particles belonging to successive rings are

colored differently at t = 185 s to visualize this process. After some time, t = 190 s, the helix shears back into a tube with rings of magnetic particles

conforming electromagnetic field lines. The animation is given as ESI movie 7.† The magnetic moment of the particle is 1.15 A μm2, the wire radius is

(a) Rw = d = 50 μm and (b) Rw = 1.3d = 65 μm, and the current is (a) I = 0.46 mA and (b) I = 23 mA.

††The particles are colored differently to visualize the movement.
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100 μm wire to 0.5 A.44 Therefore, the magnetic moment of the
particle is limited by the total magnetic moment of the particle
and should be m < IRw

2/50 = 25 A μm2, taking into account the
whole size of the particle. The total magnetic moment of the
particle is controlled by the volume of the ferromagnetic core
and choice of the magnetic material. Once the dipolar tube
had been formed, the particles would stay in place after the
wire is removed. The tubular structures are mechanically
stable also at finite temperatures (see movie 8 in the ESI†). We
should highlight that the wire is not only a confinement struc-
ture but an efficient way to control the magnetic configuration
of these tubes.

4. Magnetization of dipolar tubes

In this section, we analyze the implication of curvature and
size effects on the energy landscape of triangular and square
lattices. The isotropic interaction between the particles and
the particles with the wire, which now serves only as a rigid
cylindrical confinement, does not have influence on magnetic
dipole orientation.

4.1. Characteristics of triangular and square lattices

First, we investigate the dependence of ground state energy on
magnetization. All dipoles in the triangular lattice are parallel
and allowed to rotate only around a fixed axis orthogonal to the
plane, see Fig. 4(a), for numerical details cf. ref. 59. There is a
continuous ground state for any in-plane angle θ with cohesive
energy value uAB ≃ −2.7586,‡‡ see also ref. 7 and 8. For a
square two dimensional lattice, similarly, there is a continuous
degeneracy of its ground state, described in Fig. 4(b) and (c). A
continuous state, in this case, involves a unit cell of four par-
ticles. The moments in a unit cell are synchronously coupled
and in our notation take directions θ, π − θ, π + θ, and −θ, in
the anti-clockwise direction as shown in Fig. 4(b). The ground
states found are obviously antiferromagnetic, with the total
dipole moment within the cell conserved and equal to zero.
The most striking is the so-called vortex state for θ = π/4 with a
fully enclosed circulation of the magnetic dipole moment
within the unit cell. The ground state cohesive energy value is
uAA ≃ −2.5494.§§ We will use the calculated ground state
energy value as an absolute point for comparison of energies of
different states in tubes with square or triangular lattice struc-
tures. We should note that both antiferromagnetic states are
observed in systems of square particles as a result of the inter-
play between the magnetization defined by crystallinity of the
cubes and the structure of the two dimensional super lattice. Commonly, magnetic cubes are represented by single dipoles

placed in the center. While this is a good approximation for
many systems, it only takes into account about 50% of the total
volume of the cube and is neglecting the effect of the corners.
Therefore one could expect degeneracy breakup due to asym-
metry of the shape of the cubes. Still, the cubes are synthesized
very often with curved edges, i.e., as superballs, exhibiting a
continuous transformation of shape from an ideal cube to a
sphere60 and they are expected to self assemble in structures

Fig. 4 Visualization of degenerate states in infinite (a) triangular and (b)

square lattices, i.e., respectively AB and AA packings. The dipoles are

depicted as arrows located in the center of the spheres. In the case of

the triangular lattice the unit cell consists of a single particle and in the

case of the square lattice it consists of four particles (gray). (c) An energy

landscape for the square lattice is shown with respect to two θ1 and θ2

out of four magnetic moments in the unit cell. Other two moments

were oriented so the energy of the system is minimal. One can observe

a flat valley of degenerate ground state, θ2 = −θ1, with energy uAA ≃

−2.5494. The saddle point which represents a uniformly magnetized

square plane with energy u
sdd
AA = −2.26 is also marked. The curves are

drawn through the discrete points and are smooth. The results are in

principle scale independent. The reference magnetic energies are U↑↑ =

10−18 J and 67 × 10−18 J, i.e., 256kBT and 1.6 × 104
kBT, for particles with

magnetic moments m = 1.15 A μm2 and 9.2A μm2, respectively, where

T = 300 K is the temperature and kB is the Boltzmann’s constant.

‡‡The energy of the continuous ground state of the

triangular lattice independent of the in-plane angle θ is

uAB ¼ �2ζð3Þ þ 16π2
X
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k¼1

X
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cosðklπÞK0ðkl
ffiffiffi
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§§The energy of the continuous ground state of the square lattice is
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with a square symmetry.61 An extent of degeneracy breakup
remains to be analyzed during this shape-shift.

4.2. Degeneracy break-up with curvature

Wrapping of the plane around the confinement cylinder will
make the system quasi one-dimensional and break degeneracy.
We will discuss repercussions of degeneracy breakup on cohe-
sive energy for different dipole orientations. We analyze first
the degeneracy breakup in infinite tubes: according to tube’s
cylindrical geometry, we represent the dipole moment of the
i-th particle in cylindrical coordinates like:

~mi ¼ miϕ~eϕ þmiz~ez; ð8Þ

with constraints m2 = miϕ
2 + miz

2 (i = 1,…N). The parallel com-
ponent with respect to tube’s axis is given by mz and the
orthogonal component is mϕ (i.e., mϕ is tangential to cylinder’s
circumstance). In Fig. 5, we follow the dependence of energy
on angular parameter θ, miz = m sin(θ). We find that the axial
magnetization (i.e., θ = π/2) of dipole moments represents the
ground state for both AA- and AB-tubes, and circular magneti-
zation (i.e., θ = 0) is the most unfavorable as seen in Fig. 5.

Between circular and axial magnetization (i.e., 0 < θ < π/2),
we observe a continuous increase of energy with increasing cir-

cular alignment of magnetization. These transition states, we
call vortex in the case of square AA tubes and helical in the
case of triangular AB tubes, e.g., θ = π/4 in Fig. 5(a) and (b),
respectively. The cohesive energy, of different configurations
shown in Fig. 5, converges to a continuously degenerate state
with increasing curvature N, following the power law, uN −

u∞ ∼ N−2, cf. the inset in Fig. 5.
Configurations (A1), (B1), (C1), (D1), and (E1) are shown in

Fig. 7. The results are in principle scale independent. In this
work, we have used in all examples length scale d = 50 μm.

4.3. Magnetization states in finite tubes

We will go one step further and consider finite tubes which
consist of Nrings stacked rings. Tube’s length influences
ground state dipole orientation on both global and local levels.
The competition between the two geometrical parameters, (i)
curvature N and (ii) tube length Nrings, leads to different poss-
ible magnetic states of the tube. The energies of ground states,
at a prescribed number of rings Nrings and for two curvatures
N = 8, 12, are given in Fig. 6 for AA and AB tubes (i.e. square
and triangular tubular structures).

Points (A2), (B2), (C2), (D2) and (E2) from the state diagram
are chosen as illustrative examples in Fig. 9. The results are in
principle scale independent. We used length scale d = 50 μm.

Finite AA tubes. For square AA stacked tubes with N = 12 cur-
vature, the circular magnetization state is stable for (2 ≤

Fig. 5 Dipolar cohesive energy spectrum of configurations for dipole

orientations shown in Fig. 4 on a curved surface of the infinitely long

tube with (a) square AA and (b) triangular AB tubes. Breaking of degener-

acy with respect to angle θ due to the curvature, i.e., proportional to the

number of particles in the constitutive ring N, is shown. The axial mag-

netization corresponds to θ = π/2. The inset shows convergence of

dipolar cohesive energies for θ = 0, and π/4 to infinite two dimensional

plane value u (for square lattice uAA = −2.5494 and for triangular lattice

uAB = −2.7586). The reference magnetic energies are U↑↑ = 10−18 J and

67 × 10−18 J, i.e., 256kBT and 1.6 × 104
kBT, for particles with magnetic

moments m = 1.15 A μm2 and 9.2A μm2, respectively, where T = 300 K is

the temperature and kB is Boltzmann’s constant.

Fig. 6 Reduced cohesive energy profiles u as a function of the number

of rings Nrings for AA and AB tubes with curvatures N = 8 and 12.

Configurations for points (A1), (B1), (C1), and (E1) are shown in Fig. 7 and

(A2), (B2), (C2), (D2) and (E2) in Fig. 9. The curves are plotted through the

discrete points and serve as guide to the eye, all points lie on the curves,

and only a few listed and analysed points are shown. Before points (A1)

and (B2) the magnetization is ideally circular and the energy decrease is

only driven by the addition of new rings. The results are in principle

scale independent. Two possible choices for reference magnetic energy

could be U↑↑ = 10−18 J and 67 × 10−18 J, i.e., 256kBT and 1.6 × 104
kBT, for

particles with magnetic moments m = 1.15 A μm2 and 9.2A μm2,

respectively, where T = 300 K is the temperature and kB is Boltzmann’s

constant.
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Nrings ≤ 9) rings. It turns out that circular magnetization is the
ground state of short tubes, relative to their constitutive ring
size N. The circular magnetization case Nrings = 9 is illustrated
in Fig. 7(A1). The change in magnetization towards axial is
abrupt for Nrings = 10 and curvature N = 12, see Fig. 7(B1). We
observe a local antiferromagnetic circulation formed almost
over the whole length except in terminal rings. The dipoles in
the middle of the tube are only slightly misaligned with tube’s
axis (i.e., for angle 0.12π). As a result of change in the magnetic
order we observe, Fig. 6, that the slope of cohesive energy
changes from Nrings = 9 to 10, i.e., between points (A1) uAA

12,9 =
−2.4534 and (B1) uAA

12,10 = −2.4589. Extending further the
tube length Nrings ≥ 13, we observe a well formed axial anti-
ferromagnetic state with chains of alternating magnetization
parallel to the tube axis.

The state diagram of AA tubes is given in Fig. 8. The calcu-
lated equilibrium states are given for different curvatures and
lengths of AA. The coloring method in the state diagram is
based on the local order parameter, conveniently defined as:

χL=2 ¼ j2hðmz=mÞ2iL=2 � 1j; ð9Þ

where (mz/m)2 is the scaled intensity of local magnetization in
the axial direction and 〈 〉L/2 is the average in the middle of the
tube (z = L/2).¶¶ The idea of the order parameter is to visualize
transition states (between axial and circular). Magnetic states
which do not match with axial nor circular states in the
middle of the tube are also referred to as vortex states in AA
tubes. The order parameter measures the misalignment of ~m

from the geometry of the tube, it is χL/2 = 1 in circular, i.e.,
(mz/m)2 = 0, and axial states, i.e., (mz/m)2 = 1, i.e., white areas
comprising points (A1) and (E1) in Fig. 8 (cf. also Fig. 7). The

state diagram contains three regions corresponding to the
three classes of equilibrium states. We observe pure circular
magnetization with no axial dipole component for short tubes.
In the transition state, there is a change from the dominantly
axial orientation of dipoles in the middle of the tube (z = L/2)
to a vortex-like orientation at tube’s ends (z = 0,L). We observe
that a transition from a vortex to an axial state follows roughly
a linear trend for 4 ≤ N ≤ 14. For N = 16 this trend is broken
and the transition occurs earlier (after a single additional ring
and not two). The resulting local order parameter is very small,
χL/2 ≈ 0. This is all a result of a strong local circulation, i.e.,
θ ¼ π=4; mϕ ¼ mz ¼ m=

ffiffiffi

2
p

, cf. value of χL/2 at point (D1) in
Fig. 8 and also visualization in Fig. 7.

Finite AB tubes. In the case of AB stacked tubes (triangular
lattice), for N = 12 curvature, the circular state is stable for (2 ≤

Nrings ≲ 70) rings. After that, only dipoles in the middle of the
tube significantly start to change magnetization, cf. Fig. 9(A2)
and (B2). Only when the local order parameter, χL/2 ≈ 0, we
observe a change in the dependence of cohesive energy on
tube’s length Nrings, cf. Fig. 9(C2) and Fig. 6 for Nrings = 85. The
energy for configuration (C2) is uAB

12,85 = −2.6895. The simi-
larity of observed state transitions with increasing length of
the dipolar tube to state transitions observed in solid magnetic
nanotubes is striking.13,18 This is surprising due to the
absence of the exchange interaction in dipolar tubes. We call
the transition state χL/2 ≈ 0 the helical state. The helical state,
both in solid and dipolar tubes, is a result of the interplay
between tube’s curvature and length. We find three equivalent

Fig. 7 Illustrative examples of characteristic ground state magnetization

for tubes with AA stacking. Configurations (A1), (B1), (C1) and (E1) are

obtained with curvature N = 12, and (D1) with N = 16. Fig. 8 State diagram of AA tubes. It is shown in 2D tube length-curva-

ture parameter space, i.e., L(R) or Nrings(N), with clear indication of axial,

circular and transitional vortex magnetization states. The coloring

method based on order parameter χL/2, defined in eqn (9), is applied.

The order parameter χL/2 is zero in axial and circular magnetic states, i.e.,

when the magnetic texture is parallel to tube geometry, and equal to

unity when the magnetic structure is turned by 45° (i.e. equidistant from

axial and circular magnetization).

¶¶ In the case of even number of rings, i.e., Ntot = 2k, we take two rings above/

below z = L/2.
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states: clockwise, anti-clockwise and symmetric, within
numerical accuracy, as a result of broken symmetry.

There are three clear differences between transitions from
circular to axial states in AA and AB tubes, as seen in Fig. 8
and 10:

• The transition occurs at smaller tube lengths in the case
of AA tubes, i.e., in AA-tubes for curvature N = 12 transition is
at Nrings ≈ 10 while for AB-tubes it will occur at Nrings ≈ 80;

• For AA tubes, the circular state sharply changes into the
transitional vortex state when the threshold length is reached.
In the case of AB tubes, the transition through the helical state
is gradual with increasing length;

• Edge effects at tube’s ends, i.e., in the vicinity of z = (0,L),
are much stronger in AB tubes than in the case of AA tubes,
i.e., in AB-tubes for curvature N = 12 they extend over ΔNrings =
30 rings on each side of the tube, compared to only up to
ΔNrings = 3 rings.

It is insightful to compare the energies of obtained finite
tubular magnetizations with the limits of an infinite planar tri-
angular and square lattice. In the case of AB tubes for N = 12,
Nrings = 200, we obtain uAB

12,200 = −2.7203 and an energy devi-
ation of about 15% from the infinite triangular plane case.
This is essentially due to the edge effects that are still non-neg-
ligible. For much shorter AA tubes, i.e., N = 12, Nrings = 35, we
are with uAB

12,35 = −2.5233 within 10% from the infinite plane
case.

At this point we would like to draw a comparison with
solid-state MNTs. In MNTs the magnetic properties are mainly
defined by dipole–dipole and exchange interactions, wherein
the latter stems from quantum mechanical considerations.
Exchange is a short-range interaction that, in micromagnetic
approximation, is typically characterized by the exchange
length (lex) that is not larger than a few tens of nanometers.
The quantum mechanics signature in magnetic states of nano-
tubes can be neglected whether by choosing curvature R ≫ lex
or reducing the exchange length to zero. The magnetic equili-

brium states of MNTs are mostly defined according to the ratio
between MNT dimensions, such as their length L and radius
R. The radii RF ∼ ηlex and RV ≈ γlex are critical transition radii
with η = 1–10 and γ = 10–50. In MNTs with L ≥ R and R < RF
uniform axial states are the preferred ground states. At RF < R < RV
and L ≫ R the magnetization is in the axial state (i.e., only
the center of the tube is axially magnetized), and if the length
is reduced to L ≈ R magnetization turns into the circular state.
The helical state appears as a transition state between the axial
and circular states as a result of a reduction of the tube’s length.
All these states have been predicted theoretically12,13 and
measured experimentally just recently.14–18 Thus, solid state
MNTs with weak or comparable exchange interaction regard-
ing the dipolar interaction will exhibit a circular magnetic
order. This is not the case in dipolar tubes, consisting of dis-
crete (nano- or even micro-particles), where exchange inter-
action is not present. And still, we could find all states seen in
MNTs (circular, helical, and axial). We also observe similar
tendencies with respect to the tube’s size. We find the circular
state in short, the helical intermediary state in medium, and
the axial state in long dipolar tubes.

The principal difference between the AA- and AB-tubes is
the total magnetic moment. For AA-tubes the total magnetic
moment is zero. In the case of AB-tubes, the axial and helical
states have a finite total magnetic moment, just like MNT
counterparts. Fig. 11 shows the dependence of magnetic field
intensity on radial distance from the center of AA and AB
tubes. The magnetic field at the closest approach of the probe
particle Δr/d = 1 is always smaller than the magnetic field of a
single constitutive particle B/B0 = 1 in side by side ↑↓ configur-

Fig. 9 Illustrative examples of characteristic ground state magnetiza-

tion for tubes with AB stacking. Fig. 10 State diagram of AB tubes. It is shown in 2D tube length-curva-

ture parameter space, i.e., L(R) or Nrings(N), with clear indication of axial,

circular and transition helical states. The coloring method χL/2, defined

in eqn (9), is applied. The order parameter χL/2 is zero in axial and circular

magnetic states, i.e., when the magnetic texture is parallel to tube geo-

metry, and equal to unity when the magnetic structure is turned by 45°

(i.e. equidistant from axial and circular magnetization).
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ation. The vortex state in the AA tube results in a BD1(1)/B0 =
0.09, while in the case of AB tubes BE2(1)/B0 = 0.19. The smal-
lest structure shown in Fig. 11 has more than 200 constitutive
particles, i.e., the (D1) AA tube in the vortex state. In all three
cases of the finite tubes, the intensity of magnetic field far
from the tube follows the power law on distance, i.e., B ∼ Δr−3

for Δr/L ≫ 1. Only in axially magnetized infinite AB tubes the
magnetic field exponentially decays with distance Δr/d and
therefore fulfills flux closure, cf. also ref. 62. This result is not
surprising from the micromagnetic point of view since in a
finite object a singularity-free solution cannot exist for topolo-
gical reasons.63 Only if the system is infinite at least in one
dimension, micromagnetic solutions may be constructed. As a
result, magnetostatic energy is minimized, leading to similar
ground states in finite MNTs and dipolar tubes, that tend to
reduce the stray field but cannot make it negligible.

4.4. Chirality and degeneracy breakup

In this section, we would like to point out, how chirality of the
structure influences the energy barriers between different
states in dipolar tubes. The ribbons of assembled particles can
be rolled at different (“chiral”) angles Θ. In our self assembly
experiment, combination of the magnetic field along the wire
and the circular electromagnetic field will result in creating
ferromagnetic tubes with a specific chiral angle. We will only
briefly analyse limiting cases which are actually the most
interesting ones from the point of the metastability (i.e.,
energy differences between different states). Antiferromagnetic
tubes need to be created on a cylindrical structure with a tilted

pattern. The radius of these tubes will depend on the lattice
structure (i.e., square or triangular) and chiral angle. Here, we
will demonstrate how the combination of the rolling angle and
radius decides the tube’s energy. In the previous section, we
have calculated energies of different states for tubes obtained
by stacking of the rings. In the following text, we will follow
energy gains and losses due to change in the chirality (orien-
tation) of tube’s lattice with its axis Θ = 30° in triangular and
Θ = 45° in square lattices.

First, we will compare the energy of the infinite AB tube
shown in Fig. 5(b) and the ZZ tube shown in Fig. 1(c). While
the ZZ-tube is aligned with the tube’s axis, the ribbon generat-
ing AB tube is rolled under a 60° angle, see Fig. 1(b). The
energy of the circular state in Fig. 5(b) is ucircularAB = −2.694 for
the unit ring of N = 12 particles and θ = 0. The helical state (θ =
π/3), in Fig. 5(a), is more energetically favorable, uhelicalAB =
−2.7315. The axially magnetized state has energy uaxialAB =
−2.7441 for θ = π/2. The difference between circular and axial
state energies is small, i.e., less than 2% of the total energy.
Already at moderate curvatures, i.e., R/d = 1.932, the difference
in the infinite triangular plane value (uAB

∞) is small, uaxialAB −

uAB
∞

≈ 0.015 or roughly 0.5% of the total energy value. If we
chose chirality to align the tube’s structure with its axis, as in
ZZ tubes shown in Fig. 1(c),∥∥ the energy converges faster to
the infinite triangular plane value. The energy difference, for
the system shown in Fig. 1(c), is uaxialZZ − uAB

∞
≈ 0.001.

Improved convergence of the axial state comes with a marginal
increase of energy difference to circular and helical states of
less than 3% of the total energy value. The energies of circular
and helical states, for the ZZ tube in Fig. 1(c), are u2

circular =
−2.618 and u2

helical = −2.7, respectively. We can conclude that
by changing chirality we can manipulate energy differences
between different states.

The AA tube’s square lattice is aligned with the tube’s axis,
see Fig. 5(a). What will happen if we turn the tube’s lattice
structure by 45°? We show the configurations and results of
energy calculations in Fig. 12. To demonstrate the stability of
the structure it is also realized with neodymium magnetic
spheres. The striking feature is a comparably small energy
increase of u∞

helical
− u∞

vortex = 1.8 × 10−4, cf. Fig. 12(c). This
means that in realization with a finite temperature this system
would be degenerate. Since an infinite tube can never be rea-
lized, one could ask how significant is the influence of the
edges? In this context we calculate energies of finite tubes con-
sisting of N = 208 particles, i.e., which correspond exactly to
the helical and vortex configurations shown in Fig. 12(A) and
(B), and obtain values u208

vortex = −2.4527 and u208
helical =

−2.4495, respectively. Therefore, at least in these two finite con-
figurations the energy is relatively close to each other (within
2%) and to that of infinite tubes (i.e., within 5%). In contrast
to AA tubes in the previous section, the local magnetic order of
finite and infinite tubes shown in Fig. 12 is quite similar. The

Fig. 11 Dependence of the intensity of the magnetic field B from radial

distance Δr = r − R from the center of dipolar tubes, where R is the tube

radius. The magnetic field is given for the (D1) AA tube in the vortex

state L/d = 13 long and with curvature N = 16, (A2) the circularly magne-

tized AB tube with L/d ≈ 53 and N = 12, (E2) the axially magnetized AB

tube with L/d ≈ 98 and N = 12, and the uniformly axially magnetized

infinite AB tube with the same curvature (N = 12). The distance Δr/d = 1

is the distance of the closest approach of the particle to the tube. The

configurations of AA and AB tubes are shown in Fig. 7 and 9, respect-

ively. We used length scale d = 50 μm. Reference magnetic field is B0 =

1 μT for two particles with magnetic moments 1.15 A μm2.

∥∥ In the ZZ tube, particles form chains (so called, filaments) parallel to the

tube’s axis.
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reason is that the tubes finish the crown (zig-zag) ring which
prevents formation of a continuous head–tail magnetic order.

5. Conclusion and outlook

In the first part of the paper, we demonstrate that using mag-
netic particles with a permanent dipolar moment gives

additional design freedom for an experiment recently pro-
posed. Injection of an electrical current into a conductor wire
induces an electromagnetic field. The radial gradient of this
field owns the ability to attract magnetic beads. The particles,
therefore, assemble on the wire surface. We explored the inten-
sity of the electromagnetic field that leads to a transformation
of the clusters attached to the wire into a single layer tubular
structure. We further analyse the limits on the injected cur-
rents to minimize the Joule heating and steer the particle
assembly. In this regard, we have found a realistic range of cur-
rents and resulting electromagnetic fields at which the assem-
bly of spheres and its magnetic orientation are stable and con-
trollable. Our results are generic and can be scaled to many
different systems. Once the current is switched off, the circular
electromagnetic field disappears, and the particles stay
assembled held by interparticle interactions. From this point
on, the magnetization of colloidal particles turns and relaxes
to the equilibrium configuration.

In the second part of the paper, we studied the curvature-
induced breakup of the continuously degenerated state when a
two-dimensional ribbon of spheres is curved and transferred
to the cylinder. We show that different ferromagnetic states,
observed previously,20,26 are a result of curvature induced
energy barriers that lift the continuous degeneracy in the tri-
angular lattice. We performed a systematic investigation of the
degeneracy break-up as a function of the tube length and
packing symmetry (square or triangular), which lead to a
number of equilibrium magnetic states of dipolar tubes. For
triangular packing, we show that dipolar tubes transcend the
scale. Their equilibrium states mimic the ground magnetiza-
tion of magnetic nanotubes where the dipolar interaction is
either comparable or dominate over the exchange interaction.
Indeed, we found the circular state in short tubes, the axial
state in long tubes, and the helical state in between. This is an
important conclusion since it shows that all these states could
exist in magnetic nanotubes also without exchange inter-
actions. We find that the planar square lattice has a continu-
ously degenerate antiferromagnetic state. In tubes with the
square lattice, we have found remarkable magnetic vortex con-
figurations formed spontaneously. Such a configuration was
observed previously only in a system of magnetic cubes due to
intricate relation between the crystallinity of the cubes and
packing. Antiferromagnetic states have no analogous in the set
of magnetic ground states in continuum magnetic nano-
tubes13,21 and are remarkable due to their curvature-induced
stability and non-colinear texture. Indeed, these non-colinear
states can be very attractive for further research on magnetiza-
tion dynamics (reversal processes mediated by domain wall
propagation and spin-waves) due to the macroscopic scale of
dipolar tubes, and therefore less complexity in experiments.

In the context of curvilinear nanomagnetism,13,25 the
present theoretical result could represent a departure point
and alternative means to test and explore equilibrium and
dynamic magnetic properties at macroscopic scales. The
dipolar tubes present an alternative technique to reduce the
complexity of experiments and a platform to prove concepts

Fig. 12 The helical (a) and vortex (b) anti-ferromagnetic states realized

with neodymium magnets (in upper panels) and magnetization pattern.

The energy spectrum of configurations (c) for the same infinite

configuration with respect to angle θ, where θ1 = θ, θ2 = −θ, θ3 = π + θ,

and θ4 = π − θ. The case θ = π/4 corresponds to helical and θ = 0, π/2

vortex state. The chiral angle, i.e., the angle between thread of particles

and tangent to cylinder radius, is θ = 45° and is also marked in the planar

scheme of the system in panel (c). To convert results in real units, for

example the reference magnetic energies U↑↑ = 10−18 J or 67 × 10−18 J

could be used that correspond to 256kBT or 1.6 × 104
kBT, in cases of

particles with magnetic moments m = 1.15 A μm2 or 9.2A μm2, respect-

ively, where T = 300 K is the temperature and kB is Boltzmann’s

constant.
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for applications in magnonics at more accessible parameters
(reduced frequencies and macroscopic wavelengths). The
experimental realization of cylindrical magnetic objects is very
demanding since curvature effects might be overshadowed by
wall pinning on imperfections, such as grain boundaries and
edges.21 The realization of presented quasi-one-dimensional
or edge free ferromagnets and antiferromagnets would create
an accessible platform for testing concepts of spin-based elec-
tronics (e.g., Cherenkov-like spin wave emission22,64 or curva-
ture induced non-reciprocities in magnonics25,65) and infor-
mation technologies by getting around a requirement of
robust magnetic uniformity at temperatures of technological
relevance. An additional application of the tubular assemblies
of dipoles could be modeling of the ordered planar systems
due to the absence of the lateral edges in curved geometry and
low energy barriers. Macroscopic dipoles were, for instance,
successfully used to study frustrated states in spin glasses.6

Although the previous approach cannot be applied straight-
forwardly to ordered planar structures, since edge effects could
overshadow properties like the response to magnetization
reversal, it can motivate further studies on this topic.
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Structure and cohesive energy of dipolar helices

Igor Stanković,*a Miljan Dašića and René Messinab

This paper deals with the investigation of cohesive energy in dipolar helices made up of hard spheres. Such

tubular helical structures are ubiquitous objects in biological systems. We observe a complex dependence of

cohesive energy on surface packing fraction and dipole moment distribution. As far as single helices are

concerned, the lowest cohesive energy is achieved at the highest surface packing fraction. Besides, a striking

non-monotonic behavior is reported for the cohesive energy as a function of the surface packing fraction.

For multiple helices, we discover a new phase, exhibiting markedly higher cohesive energy. This phase is

referred to as ZZ tube consisting of stacked crown rings (reminiscent of a pile of zig-zag rings), resulting in a

local triangular arrangement with densely packed filaments parallel to the tube axis.

1 Introduction

Particles with permanent dipole moments, such as magnetic
particles, are well known for their outstanding self-assembly
properties.1–3 In biology, tubular and helical structures are
relevant self-assembled objects, for instance, found in bacterial
flagella4 and microtubules.5,6 Other instances of such tubular/
helical structures can be found in various materials with specific
building units that can be: carbon atoms,7 coiled carbon nano-
tubes,8 DNA,9 nanoparticles,10 or amphiphilic molecules.11–13 Self
organization of cubic magnetic nanoparticles14 and asymmetric
colloidal magnetic dumbbells15 into helical architectures were
recently reported without the need for pre-existing templates.

On a more theoretical side, hard spherical particles confined in
narrow cylinders spontaneously assemble into helical structures16,17

and this is also seen experimentally.18 Hard-spheres with permanent
moment can be employed as a paradigm for more complex helical
molecular superstructures,19 or microtubules.20,21 The pioneering
theoretical work of Jacobs and Bean22 and later that of de Gennes
and Pincus23 shed some light on the microstructure of self-
assembled unconstrained (spherical) dipoles. More recently, the
paper24 advocated the ground states of self-assembled magnetic
structures. The authors proved that for a sufficiently high number
of particles the ground state is obtained via ring stacking
into tubes.24 On the other hand, Vella et al.25 showed an
illustrative example in which a macroscopic straight portion
of the chain spontaneously wraps itself building a tube. At
larger scales, the Janus chain model was able to reproduce well
the formation of superstructures and double helical conformations

of amphiphilic molecules.26,27 The competition between toroidal
and rod-like conformations, as possible ground states for DNA
condensation, was studied using a polymer chainmodel function
of stiffness and short range interactions.28,29 Also the recently
introduced polymorphic dynamics model30,31 was able to reproduce
the behavior of the microtubule lattice based on a rough under-
standing of underlying atomic level processes. The general scientific
problem of understanding the processes by which building blocks
(dipoles) self-assemble and obtain their functionality is highly
challenging.32–36

The goal of this paper is to address the intimate link between
microstructure and cohesive energy. Tubular helical structures
can be obtained either (i) through ring stacking or (ii) by rolling
one ormultiple helices on a confining cylindrical surface (Section 2).
The dipolar interaction model is introduced and a link between
the dipole distribution and the microstructure is established
in Section 3. In Section 4, starting from the most simple case
corresponding to a single helix, we discuss the relationship
between the surface packing and the resulting macroscopic
properties such as the cohesive energy or overall polarization.
Then, the more complex situation of multiple helices with densely
packed constitutive particles is addressed. There, the degree of
alignment (especially in the ground state) between the dipole
moment orientation and the helix axis is analyzed.

2 Geometry of helices
2.1 Geometry of the single helix

In the framework of this paper, helices are composed of hard
spherical particles and confined to a cylinder’s surface, i.e., the
helices are created by rolling threads on the cylindrical surface
of radius Rcyl. Geometrical parameters that define a single helix
are: the azimuthal angular shift G between the centers of two
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successive particles and the radius of the helix R = Rcyl + d/2,
where d stands for the hard sphere diameter, see Fig. 1. The radius
R represents physically the distance of the closest approach
between the cylinder axis and the center of the spherical particle.

The Cartesian coordinates of particle i in a single helix are
calculated as: xi = Rcos(iG), yi = Rsin(iG), and zi = iDz, where i A Z
and assuming that one particle is at (x,y,z) = (R,0,0). The distance
between the centers of each two successive particles along the
helix axis is labelled Dz, see Fig. 1. When constructing a helix, its
radius R and the azimuthal angular distance G have to be chosen
in a way that ensures non-overlapping of hard spheres. The non-
overlapping constraint is expressed for any two particles i, j as

r ij

�� �� � d. Since the helix thread is connected everywhere, any

two successive particles are touching. We can obtain Dz as a

function of other two variables: Dz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 2ðcosG� 1ÞR2

p
.

Thereby, variables Dz, R and G are not independent. Clearly,
with decreasing Dz (i.e., increasing G) helices become more
compact. Because of the connectivity, every particle in a helix
has at least two neighbors, i.e., the coordination number, nc, is
always greater or equal than two (nc Z 2). The highest packing
density of the particles for the prescribed confinement radius R
will be achieved when the successive helix turns touch. In this
situation of touching turns, the coordination number nc can be
either four or six. Therefore, in general, nc A {2, 4, 6}, where the
case nc = 2 corresponds to non-touching turns. Based on the
coordination number nc, we can classify helices as follows (see
Fig. 2a–c). Examples of helices with two neighbors nc = 2 and
four neighbors nc = 4 at a prescribed cylindrical confinement,
e.g., R/d = 1.78, are sketched in Fig. 2a and b, respectively. For
a number of well-defined radii, as discussed later in this
paper, densely packed helices with six neighbors (nc = 6) can
be formed, see Fig. 2c. In the following sections, we will also
investigate stacked rings forming the so-called tubes, also
depicted in Fig. 2d–f.

2.2 Order parameters for single helices

The surface packing fraction, Z = S/Savail, is defined as the ratio
of the area S = pd2/4 covered by one particle and the area
available for one particle Savail, in an unrolled configuration.

Following the definition of the surface packing density we
obtain:†

Z ¼ d2

8DzR
: (1)

For comparison we are also going to derive the packing fraction
for the tubes:‡
� The surface packing fraction of AA tubes is given by

ZAA = Nringd/8RAA for an AA tube with Nring particles per ring
and the confinement radius RAA/d = 1/[2sin(p/Nring)], see Fig. 2d
for a microstructure with RAA/d = 1.93.

Fig. 1 Illustration of a single helix with the relevant geometrical parameters
(R,G,Dz) labelled. The bold line connecting spherical particle centers
represents the backbone of the helix. In the upper part of the figure, the
azimuthal dipole moment orientation a is defined in a local coordinate
system with its origin corresponding to the particle center. The z0-axis is
parallel to the cylinder axis.

Fig. 2 Illustration of different classes of helices, based on the coordination number nc = 2, 4, and 6. (a) Helix with non-touching turns (nc = 2). (b) Helix
with touching turns (nc = 4). (c) Densely packed helix (nc = 6). The other panels illustrate the so-called (d) AA, (e) AB, and (f) ZZ tubes. The tubes can be
created by strict axial stacking of unit rings. For AA and AB tubes unit rings are flat, whereas, for ZZ tubes the unit ring has a crown shape (reminiscent of
the pile of ‘zig-zag’ rings). The radii of AA and AB tubes are the same R/d = 1.93.
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� Similarly, for AB tubes, the packing fraction is ZAB = Nringd
2/

8RABDzAB, with RAB = RAA. Here, the elevation DzAB between two
consecutive rings is:

DzAB ¼ ðd=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cosðp=NÞ � cos2ðp=NÞ

q
: (2)

� For ZZ tubes, the packing fraction is ZZZ = Nringd/8RZZ, with the

confinement radius RZZ=d ¼
ffiffiffi
3
p

= 4 sin p=Nring

� �� �
.

To further characterize the helical microstructures, we
introduce an additional geometrical order parameter x which
is valid for nc = 4 and 6. This order parameter connects an
individual reference particle 0 located at -

r0 in the helix with its
two neighbors: its immediate successive particle 1 in the turn
(-r01 = -

r1 �
-
r0) and a neighboring particle 2 from the next turn

(-r02 =
-
r2 �

-
r0), see Fig. 3(a).

The angular coordination order parameter is conveniently
defined as:

x ¼ 2
~r01 �~r02j j

d2
: (3)

In the two limiting cases, the angular coordination order
parameter has values: xmin = 0, for a locally square lattice on a
cylinder (e.g., AA tubes, check Fig. 2d) and xmax = 1, for a locally
triangular lattice (e.g. AB tubes, check Fig. 2e). In all other
cases, the value of the angular coordination order parameter x
is between those two extreme values, i.e., 0 o x o 1.

2.3 Multiple helices at high surface packing fraction

The densely packed helices (nc = 6) can be created, in analogy
with carbon nanotubes, by rolling a ribbon of a triangular
lattice on a cylinder surface.37 We deal with cylindrical geometry,
infinite in one direction. We can generate these helical structures
by periodical reproduction of a curved patch (unit cell) along the
helical line with spanning vectors (-a1,

-
a2). This curved unit

cell has n1 particles along the
-
a1 direction and n2 particles in the

-
a2 direction.§

Since we deal with hard spheres and we aim to build very
dense structures, the parameter space (R,Dz,n1,n2) is significantly
restricted. We are going to find out that only two of these
parameters are independent. There exists a relationship linking
the elevation angleY = arcsin(Dz/d) and the confinement radius
R, see ref. 37. Bearing in mind that for any pair (n1,n2) or
equivalently (n2,n1), we have a unique corresponding structure

with nc = 6, one arrives at the following two independent
equations:

Y n1; n2ð Þ ¼ arctan

ffiffiffi
3
p

n2

2n1 þ n2

 !
(4)

and

180� ¼ n1 arcsin
d

4R

� 	
2n1 þ n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n12 þ n22 þ n1n2
p

" #

þ n2 arcsin
d

4R

� 	
2n2 þ n1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n12 þ n22 þ n1n2
p

" #
:

(5)

We have solved those two equations and obtained the sets (Y,R/d)
shown in Fig. 4. For each value of R there are two different values
of Y, symmetric around Y = 301, which correspond to lattice
constant pairs (n1,n2) and (n2,n1), respectively. The (n1,n2) pairs
are actually identical structures with opposite chirality.38 The six-
fold rotational symmetry of the lattice restricts Y A [01,601].

We now look into properties of (n1,n2) pairs in order to
characterize the multi-thread structure of six neighbor helices
(nc = 6). First, we identify the link between nc = 6-tubes and the

Fig. 3 (a) Illustration of a helix made of hard spheres, helix backbone
(solid line), and the vectors connecting a reference particle 0 located at
(x,y,z) = (R,0,0) with its neighbors: an immediate successive particle 1 in the
turn located at (r~01) and a neighboring particle 2 from the next thread turn
at (r~02). (b) An overview of the principal geometrical parameters of nc = 4
and 6 helices: elevation angleY and azimuthal angular shifts G1 and G2 (see
eqn (7)). In our notation, densely packed directions along the helical
superstructure are called threads. The corresponding elevation distances
of successive particles along helix axes Dz1,2 (see eqn (9)) are also given for
two possibilities for the rolling of the same helix configuration.

† The available area per particle is Savail = 2pRDz, where the distance between
successive particles along the tube axis is Dz. We take for the surface covered by
particle S = pd2/4, i.e., neglecting curvature. This results in a small overestimation
of the packing fraction (less then 2% for large curvatures, e.g., R=d ¼

ffiffiffiffiffiffiffiffi
3=2

p
).

‡ The tubes are obtained via ring stacking. It is convenient to calculate the
surface packing fraction as the ratio of the area covered by the particles in a unit
ring and the available area per ring. The surface covered is S = Nringpd

2/4. The
available area per ring is Savail = 2pRDz, where Dz is the distance between
successive rings. The distance between successive rings is Dz = d for AA and ZZ
tubes.
§ The values n1 and n2 can be seen as the two possible widths of the ribbon
generating the same helical structure.
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(n1,n2) pair values. The pairs (0,n2) and (n1,0) leading to Y = 601
and 01, respectively, represent AB tubes, cf. Fig. 4. The pairs
with n1 = n2 corresponding to Y = 301 lead to ZZ tubes that are
characterized by constitutive straight filaments parallel to the
ZZ tube axis, see Fig. 2f. The curve with n1 = 1 (with n2 Z 3)
corresponds to a single helix, n1 = 2 (with n2 Z 3) to a double
helix, n1 = 3 (for any n2 Z 4) to a triple helix, and more generally
an n1-helical structure is obtained when n2 Z n1 + 1.¶

We employ Cartesian coordinates to express positions of
particles in an n-helix similarly to the single helix case, using
two indices, i A Z and j = {1,n}:

xi+jn = Rsin(iG1 + jG2)

yi+jn = Rcos(iG1 + jG2)

zi+jn = iDz1 + jDz2. (6)

In eqn (6), G1 represents the azimuthal angular shift between
each two consecutive particles along a given thread and G2 is
the angular shift between threads, i.e., densely packed directions
in a superstructure, see Fig. 3(b). The azimuthal angle G1 is
merely provided by:

G1 ¼ arccos 1� dffiffiffi
2
p

R
cosY

� 	2
" #

: (7)

The angular shift G2 between threads is more delicate to derive.
Knowing that starting from the reference particle it is possible
to reach the same particle position following two paths along
threads (in -

a1 or -
a2-direction), one can arrive at a relation

linking G1 and G2: 3601 = (n1 + n2)G1 � n2G2.
The dependence of angular parameters G1 and G2 on the

reduced helix radius R/d is displayed in Fig. 5, forYo 30 in the

single helix (n2 = 1, n1 Z 4), the double helix (n2 = 2, n1 Z n2)
and the quadruple helix (n2 = 4, n1 Z n2).

As the helix radius R/d increases, the value of G1 monotonically
decreases, since additional particles are added to a turn. The
angular parameter G2 monotonically decreases only for n2 = 1.
The scenario becomes qualitatively different at n2 Z 2 where
non-monotonic behavior is found, see Fig. 5. This feature can be
rationalized as follows. The smallest compatible radii R with
n2 Z 2 and Y o 301 are obtained when n1 = n2 (cf. Fig. 4)
corresponding to Z tubes where G2 = 0. Besides that, G2 tends
to zero for the vanishing cylinder curvature (R/d - N). These
are the reasons why the profile of G2(R/d) is non-monotonic
when n2 Z 2.

The surface packing fraction of densely packed multiple
helices is simply obtained by multiplying the surface packing
fraction of a single helix with the number of threads n2 (Zmulti = n2Z,
see eqn (1)):

Zmulti ¼ n2
d2

8Dz1R
; (8)

where the elevation distance Dz1 (shown in Fig. 3b) is given by:

Dz1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4R2 sin2

G1

2

� 	s
: (9)

The calculated surface packing fraction of single (n2 = 1),
double (n2 = 2), and quadruple (n2 = 4) helices is shown in
Fig. 6. At a given confinement curvature (fixed R/d), adding
threads results in higher surface packing fraction, see Fig. 6.

3 Dipole moments
3.1 Dipolar interaction model

We now want to address the situation where the constitutive
particles are dipolar. Each particle carries an identical dipole
moment in magnitude, m = |-

mi|, where
-
mi = (mx

i , m
y
i ,m

z
i) defines

Fig. 4 Phase diagram in the (Y,R/d)-plane showing possible unit cells
characterized by (n1,n2) pairs. Solid lines represent unit cells with n2 fixed,
and the dashed ones represent unit cells with n1 fixed. The three horizontal
lines (dot-dashed) correspond to tubes.

Fig. 5 Dependence of azimuthal angular shift parameters G1 and G2

stemming from the corresponding spanning vectors a~1, a~2, respectively,
on a reduced helix radius R/d, for single (n2 = 1), double (n2 = 2), and
quadruple (n2 = 4) helices.

¶ In our notation, multiple helices are named after the smallest unit patch
dimension, i.e., the smallest number of generating threads.
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the dipole moment of particle i, see also Fig. 1. The potential
energy of interaction U(-rij) between two point-like dipoles
whose centers are located at -

ri and
-
rj can be written as:

U ~rij
� �

¼ C
1

rij3
~mi � ~mj � 3

~mi �~rij
� �

~mj �~rij
� �

rij2


 �
(10)

for rij Z d or N otherwise, where C represents a constant that
depends on the intervening medium, and rij = |

-
rij| = |

-
rj�

-
ri|. It is

convenient to introduce the energy scale defined by Umm � Cm2/d3

that physically represents the repulsive potential value for two
parallel dipoles in contact standing side by side as clearly
suggested by the notation. Therefore, the total potential energy
of interaction in a given structure Utot is given by

Utot ¼
X
i;j
i4 j

U ~rij
� �

: (11)

One can then define the reduced potential energy of interaction
u (per particle) of N magnetic spheres. It reads u = Utot/(UmmN),
which will be referred to as the cohesive energy.

Since we are dealing with infinitely long structures (in one
direction), we shall consider only periodic structures in that
direction that greatly facilitate the calculation of the cohesive
energy. The method of choice is provided by the Lekner sum for
systems with periodicity in one direction.39 The central feature
in the Lekner method is the choice of the periodic cell. For
nc = 2, 4, we can always find helical parameters with a finite
number of particles in the unit cell. The periodicity is achieved
by imposing a condition on the angular shift parameter G that a
helix has to make an integer number of turns within the unit cell.

3.2 Dipole moment orientation prescribed by helix threads

Because of the symmetry it is intuitive to envision dipole moments
following helix threads. In order to have dipole moments tangential
to the helical backbone, we introduce two components of dipole
moments. The parallel component with respect to the helix axis
is given by mz = mDz/d and the orthogonal one is given by

~mxyj j ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðDz=dÞ2

p
. Hence, the dipole moment of particle i

in the single thread helix reads: mx
i = �mxysin(iG), my

i = mxy

cos(iG), and mz
i = mz.

In the multi-thread case, the Cartesian dipole moment
components are given by:

mx
i, j = �mxysin(iG1 + jG2)

my
i, j = mxycos(iG1 + jG2)

mz
i,j = mDz/d, (12)

where i A Z is the internal particle label within a thread and
j = {1,n2} stands for the thread’s label. In dense helices (nc = 4, 6)
dipole moments can follow two directions -

a1 and
-
a2. In Fig. 7,

representative dipole moment distributions are shown.

3.3 Energy minimization

In general, the dipole moments do not have to follow thread
structure. To find the dipole moment distribution that yields
minimal energy, we first perform minimization of the cohesive
energy using a constrainedminimization algorithm.24,40 A randomly
oriented dipole moment is assigned to every particle of the helical
structure in the following way: dipole moment is defined in the
spherical coordinate system. Two important features stemming
from these energy minimization calculations are:

(i) Dipole moments are tangential to the cylinder’s surface.

Fig. 6 Surface packing fraction Z, see eqn (8) as a function of reduced
helix radius R/d for single (n2 = 1), double (n2 = 2), and quadruple (n2 = 4)
helices.

Fig. 7 The representative structures including dipole moment distributions
are displayed. For AB tubes with patch parameters (n1,n2) = (8,0) dipole
distributions which correspond to spanning unit cell vectors (a) a~1 (oblique to
cylinder’s axis), (b) a~2 (closer to cylinder’s axes), and (c) ground state dipole
distribution. For a single helix (n1,n2) = (9,1) dipole distributions which
correspond to (d) a~1 and (e) a~2 (closer to helix axes) spanning vectors,
and(f) ground state dipole distribution. For a double helix (n1,n2) = (8,2)
dipole distributions which correspond to (g) a~1, (h) a~2 (closer to helix axes)
spanning vectors, and (i) the ground state dipole distribution. In the case of
ZZ tubes (j) a~1 and (k) a~2 dipole distributions are shown. The ground state of
ZZ tubes follows a~2 dipole distribution (parallel to cylinder’s axis).
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(ii) The component of dipole moment in the z-axis direction
mz for a given structure is identical for all particles.8

Therefore we need just one angular parameter to characterize
the dipole moment orientation. We choose the dipole moment
angular parameter, a A [�1801,1801], relative to the z-axis, see
Fig. 1. Doing so we arrive at:

mx
i, j = �msin(a)sin(iG1 + jG2)

my
i, j = msin(a)cos(iG1 + jG2)

mz
i, j = mcos(a), (13)

where the indices i and j have the same meaning as in eqn (12).
Consequently, the angular parameter a is most of the time a
unique variable, at prescribed helical structures, entering into
the energy minimization routine.

4 Cohesion energy and microstructure
4.1 Compression of a single helix

A simple way to deform a helix is to compress (or extend) it
along its axis, i.e., the z-direction, while ensuring the dipole
moments follow the thread (for details of implementation, see
Section 3.2). Compression of a helix results in a continuous
increase of its surface packing fraction Z. Fig. 8 shows the
evolution of cohesive energy uR with the surface packing fraction
Z for a single helix with reduced radius (R/dC 1.7, chosen in the
vicinity of nc = 6 point). Recalling geometrical considerations in
Section 2.1 the increase of the azimuthal angular shift G at
prescribed curvature results in a continuous decrease of Dz and
compression of the helix. The compression process begins with

a fully extended helix (i.e., Z - d/8R E 0.073) where the chain
stands up with Dz/d = 1, and the cohesive energy of infinite
chain u C �2.404.24 The compression ends when two successive
turns of the helix touch, i.e., the coordination number of particles
in the helix changes from nc = 2 to nc = 4.

We also address the minimal energy of the helix with respect
to the dipole moment distribution (i.e., not necessarily prescribed
by tangentially following the helix). From Fig. 8, we observe that
uR = uR(Z) is non-monotonic. We can identify two regimes:
� At small packing fractions up to Z t 0.4 (with no touching

turns), the compression of the helix requires energy input and
therefore cohesive energy increases. The reason for this is that
two distant consecutive turns of the helix experience weaker
attraction upon increasing Z.
� In the regime of high Z \ 0.4 where successive turns are

allowed to be close or even touching, the cohesive energy starts
to decrease as Z increases, i.e., the helix would compress on its
own without input of energy. This is a consequence of enhanced
attraction caused by the discreteness of the constitutive dipolar
beads, see ref. 41.

The overall polarization order parameter hmzi is also analysed
in Fig. 8. During most of the course of the helix compression,
see Fig. 8, a dipole moment orientation following the helix
corresponds to the ground state structure up to Z E 0.8, cf.
points C and D in Fig. 8 (for details of ground state calculations,
see Section 3.3). Only for very high packing fractions, i.e., Z 4 0.8,
the ground state dipole orientation starts to rapidly deviate from
the helix direction accompanied by a significant reduction in
cohesive energy (see points E and F in Fig. 8). The highest difference
in hmzi occurs for ZE 0.887, where nc = 4 helix with touching turns
is formed, and the energy difference uER � uFR C 0.06.

4.2 From the square to triangular arrangement for a single
helix

Having successfully parameterized helices and introduced dipole
moments, it is natural to ask how cohesive energy depends on
structural changes and especially on curvature. With increasing
curvature the structure will change from the triangular to square
arrangement and vice versa through a continuous series of
rhombic configurations. We first study in detail systems with
dipole moments following the spanning vector that are most
oblique to helix axes, see Fig. 7d. For the sake of comparison
with tubes (AA/AB tubes), we also chose dipole moments that are
building vortices along the rings for them, cf. Fig. 7a. Motivation
for that choice stems from a previous study,24 where we have
shown that finite AB tubular systems are energetically favor-
able, see Fig. 7a (dipole moment orientation is perpendicular to
the tube’s axis).

The surface packing fraction Z (eqn (1)), the angular coordination
order parameter x (see eqn (3)), and the cohesive energy per particle
uR (eqn (11)) are plotted versus the reduced helix radius R/d in Fig. 9.

Fig. 8 Compression of a single helix on a cylindrical confinement with a
fixed radius (R/d C 1.7). Dependence of cohesive energy (upper left panel)
and the overall polarization order parameter, i.e., the axial component of
the dipole moment (in lower left panel), on the packing fraction is shown
for two characteristic dipole moment orientations: one that follows the
helix, i.e., the spanning vector a~1 and the ground state dipole moment
orientation obtained by energy minimization. Comparative microstructures
at different Z values (A–F) are depicted on the right panel. Configurations (A,
B, C and E) correspond to a dipole moment distribution following the helix
whereas configurations D and F correspond to ground state distributions.

8 We have found that under some circumstances the dipole moment orientations
alternate, i.e., antiferromagnetic-like coupling between the neighboring threads.
This actually occurs with any AA tube. Similar behavior is reported for some
moderately dense nc = 4-helical structures.
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Actually, the energy and structural properties change in an
oscillatory quasi-periodic manner and they are enveloped from
both sides with the properties of AA and AB tubes, see Fig. 9. In
Fig. 10 behavior of these observables is depicted within one
period (R/d A [2.09,2.26], arbitrary chosen). In one period, the
number of particles (n) in a constitutive ring of (AA/AB) tubes is
increased for one, i.e., from n-ring to n + 1-ring. Within this
period, the order parameter changes from x = 0, i.e., square
arrangement, to x = 1, i.e., triangular arrangement, via a continuous
rhombic transformation, see Fig. 10a. The radii of densely packed
helices are roughly in the middle between two corresponding
(AB/AA) tube radii, see Fig. 10a. This is a result of the radial
constraint and the excluded volume. Though in a single thread
helical structure we cannot close rings in the plane perpendicular to
the cylinder axis, one can nevertheless realize a full 3601 helix turn
with roughly n + 1/2 particles. We observe discontinuity and strong
asymmetry of the angular coordination order parameter x at the
mid-period (R(13,1)/dE 2.17), see Fig. 10a. This is due to a change in
the number of lateral threads n2, see Fig. 7e for illustration, at the
mid period going from n2 = 9 to n2 = 10, see Fig. 10a.

With decreasing curvature, the surface packing fraction increases
globally, see Fig. 9b. We observe oscillatory behavior as the system
continuously evolves from the square to triangular arrangement and
vice versa. The AA and AB tubes still roughly bound have the values
taken by the surface packing fraction. At the helix radius R/d4 3.4,
see Fig. 9b, we are already within 3% of the asymptotic expected
values in the planar case. In contrast to the angular coordination
parameter x, the surface packing density Z is continuous every-
where, compare Fig. 10a and b. Moreover, at mid-period the
Z value is slightly (and systematically, see Fig. 9b) above the
interpolated stemming from AB tubes (see Fig. 10b). In Fig. 9b
and c, it can be clearly seen that the profiles of energy oscillations
uR and the surface packing fraction Z are anti-correlated. The
mid-period values uR coincide with interpolated stemming from
AB tube radii (confirmed by Fig. 9c and 10c).

4.3 Looking for the ground state

At this point, we would like to discuss mechanisms which govern
the minimal energy dipole moment orientation near the mid-
period transition point (more details about implementation are
provided in Section 3.3). There are three privileged directions in

Fig. 9 Dependence of (a) the angular coordination order parameter x, (b)
the packing density Z and (c) the cohesive energy uR on the helix radius
R/d, for a~1 dipole orientation. AA and AB tube points are clearly indicated,
they bracket the parameter values of helices, like a kind of envelope (solid
and dashed lines connecting the tube points are power law fits).

Fig. 10 Dependence of (a) the angular coordination order parameter x,
(b) the packing density Z and (c) the cohesive energy uR on the helix radius
R/d, for a segment in the vicinity of R(13,1)/d = 2.17 of Fig. 9. Tubes AA and
AB are represented by discrete points since they can be formed only with a
fixed number of particles in a ring, the fitted (power law) curves serve only
as a guide to the eye. The point which represents the dense helix with
(n1,n2) = (13,1) and R(13,1)/d = 2.17 is marked with a rectangle.
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a helix: two which follow helix spanning vectors (determined by
-
a1,

-
a2) and the third one which is the direction of the helix axis.

These privileged directions come into play in two competing
mechanisms:
� The first mechanism is typically dictated by first neighbor

interactions which favor dipole moments following the thread
directions.
� The distant–neighbor interactions favor the distribution of

dipole moments parallel to the helix axis.
We can justify these two mechanisms as follows. It is well

known for a small finite system that rings are formed with dipole
moments building vortices, cf. ref. 24.When a helix turn is projected
along the z-axis, the resulting figure is highly reminiscent of the
vortex discussed above. The head to tail configuration is favored
at long distances, explaining the second advocated mechanism.

The abrupt change in polarization (or magnetization) in the
direction of the axis hmzi, seen in Fig. 11b, is correlated with
the discontinuous change in the angular coordination order
parameter x in the vicinity of transition, see Fig. 10a. At the
mid-period point R(13,1)/d = 2.17 magnetization in the direction
of the axis hmzi is close to one, but not exactly one, see Fig. 11.

For the sake of comparison with tubes (AA/AB tubes), we
choose dipole moments that are parallel with the helix axis, see
Fig. 7c. The fact that the system is able to relax its dipole
moment orientation to the ground state results inmore dependence
of energy on confinement curvature around the mid-point. The
degree of asymmetry of uR is stronger around the transition point,
see Fig. 11b, than in the excited state in Fig. 10c. The ground state
calculations confirm the high stability of AB tubes (see Fig. 10c).

4.4 Cohesion energy for multiple helices at high surface
packing fraction

In this part, we consider the high surface packing fraction regime
with nc = 6. Some representative structures including dipole
moment streamlines are displayed in Fig. 7. The streamlines
following spanning unit cell vectors -

a1 (oblique to the helix axis)
and -

a2 (more aligned to the helix axis) are also shown.** Dipole
moment distributions in the ground states are also indicated for
comparison in Fig. 7. In analogy with the study of a single helix
case (see Section 4.2), we start analysis with a dipole moment
distribution prescribed by tangentiality with the thread backbone.
In Fig. 12, cohesive energy for the -

a1-generated dipole moment
distribution is shown for different helical structures.

The cohesive energy in a planar triangular lattice, uNC�2.759,
represents the energy value which will be reached asymptotically
(R/d - N) for all considered structures. As already found for
AB tubes in ref. 24, cohesive energy exhibits the scaling law of
the form uR � uN B R�2, see Fig. 12. The cohesive energies of
all three helices and AB tubes are weakly dependent on the
number of threads for -

a1-generated dipole moment distribution.

Fig. 11 Dependence of (a) cohesive energy uR and (b) the overall polari-
zation order parameter hmzi on the helix radius R/d (in the ground state),
for a chosen segment of Fig. 9. Tubes AA and AB are represented by
discrete points since they can be formed only with a fixed number of
particles in a ring, the fitted (power law) curves serve only as a guide to the
eye. The point which represents the dense helix with (n1,n2) = (13,1) and
R(13,1)/d = 2.17, is marked with a rectangle.

Fig. 12 Dependence of cohesive energy uR on the helix radius R/d, for
single, double, and quadruple helices at high surface packing fraction, and
AB tubes, with a~1 dipole orientation.

** It is possible to polarize the helix by a homogeneous external field parallel to its
axis. For symmetry reasons, a reversal of the magnetic field should result in the
reversal of the dipole orientation. In the case of magnetic dipoles, it should also be
possible to polarize the system to follow a~1 and a~2 spanning vectors by combination
of a curling magnetic field of electric current flowing through the confining cylinder
and the homogeneous external magnetic field parallel to its axis.
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This is in accordance with surface packing fraction behavior
reported in Fig. 6. A comparison with the azimuthal angular shift
parameter G1, see Fig. 5, and the corresponding cohesive energy
(for -

a1-generated dipole moment distribution) clearly reveals a
correlation between these two quantities.

In Fig. 13, cohesive energy for -
a2-generated dipole moment

distribution is compared with ground state energy for a different
number of threads. There exists an analogous correlation (as
discussed for -

a2-dipole distribution) between the azimuthal shift
G2 and the resulting cohesive energy, compare Fig. 5 and 13.

The smallest compatible radius R for multi thread helices
(n2 = 2, 4) is obtained for ZZ tubes (n1 = n2). In Fig. 13, the
corresponding radii read R(2,2)/d = 0.61 and R(4,4)/d = 1.13. In
this case the -

a2 and ground state dipole moment orientations
are the same, see Fig. 7k. Strikingly, ZZ tube ground states
converge very fast to the expected planar value uN at the
smallest accessible radii, i.e., the largest curvature, within less
than 1% of the planar case, see Fig. 13 for R(2,2)/d = 0.61. A
structural similarity of ZZ tubes, with typical experimental
images of microtubules is striking, see Fig. 7k. Structurally,
ZZ tubes can be created by closing the rectangular strip on a
cylinder and decomposition into chains which are analogous to
biological filaments which the microtubules are made of.

5 Conclusions

We have presented a study about cohesive energy of helical
structures composed of hard spheres with permanent dipole
moments. Helices were created by replication of a particle or
patch (of particles) on a confining cylindrical surface. Even for
the most simple situation, namely the single thread helix, a
non-trivial behavior is found when monitoring the cohesive
energy as a function of surface packing (i.e., axial compression).
In particular, we observe a non-monotonic dependence of the

cohesive energy on the packing fraction (or equivalently the
amount of compression) as a result of a delicate interplay of
dipole–dipole interactions and excluded volume effects. The
lowest cohesive energy is achieved at the highest packing fraction
with touching turns. In parallel, the magnetization (or polarization)
order parameter, i.e., the mean dipole moment per particle in hmzi,
also exhibits a striking non-monotonic behavior as a function of
the extent of compression. In the regime of very high surface
packing fraction with local triangular arrangement compatible
with certain cylinder radius (R) vs. particle diameter (d) ratio
(R/d), a pronounced cohesive energy is found. Concomitantly,
the magnetization order parameter indicates a sharp change in
the dipole moment orientation, which tends to be parallel to
the helix axis.

Finally, we compare cohesive energies of dense multiple
(i.e., double or quadruple) helices, as well as, AB and ZZ-tubes
made up of stacking rings that can also be seen as special
multiple helices. A remarkable finding is the enhanced cohesive
energy for the ZZ-tube structure. The latter already emerges at
strong substrate curvature with cohesive energies very close to that
obtained at vanishing curvatures. In these ZZ-tube structures, an
alignment of the helix threads with its axis is a microstructural
signature for this low cohesive energy. As a final note, we would
like to emphasize that our model mimics nicely the geometry and
microstructure of microtubules. It could also provide a possible
clue about the self-assembly mechanisms and cohesion within
microtubular structures.
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and J. P. Rabe, Adv. Mater., 2008, 20, 3204–3210.

14 G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Kral
and R. Klajn, Science, 2014, 345, 1149–1153.

15 D. Zerrouki, J. Baudry, D. Pine, P. Chaikin and J. Bibette,
Nature, 2008, 455, 380–382.

16 G. Pickett, M. Gross and H. Okuyama, Phys. Rev. Lett., 2000,
85, 3652–3655.

17 E. C. Oguz, R. Messina and H. Loewen, EPL, 2011, 94, 28005.
18 M. A. Lohr, A. M. Alsayed, B. G. Chen, Z. Zhang, R. D. Kamien

and A. G. Yodh, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2010, 81, 040401.

19 A. Mershin, A. A. Kolomenski, H. A. Schuessler and D. V.
Nanopoulos, BioSystems, 2004, 77, 73–85.

20 E. D. Spoerke, G. D. Bachand, J. Liu, D. Sasaki and B. C. Bunker,
Langmuir, 2008, 24, 7039–7043.

21 M. Cifra, J. Pokorny, D. Havelka and O. Kučera, BioSystems,
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A B S T R A C T

In the current work we present a new modelling approach for simulating meso–scopic phenomena related to
lubrication of the piston ring–cylinder liner contact. Our geometry allows a variable confinement gap and a
varying amount of lubricant in the gap, while avoiding the squeeze-out of the lubricant into vacuum. We have
implemented a coarse grain molecular dynamics description of an ionic liquid as a lubricant which can expand
into lateral reservoirs. The results have revealed two regimes of lubrication, an elasto-hydrodynamic one under
low loads and one with low, velocity-independent specific friction, under high loads. The observed steep rise of
normal forces at small plate-to-plate distances is an interesting behaviour that could potentially be exploited for
preventing solid–solid contact and wear.

1. Introduction

Friction accounts approximately for one-third of the fuel energy
consumed in passenger cars [1], therefore a deeper understanding of
the lubrication mechanisms in engineering systems is necessary.
Atomic-scale simulations can provide important insights which are
necessary for understanding the underlying mechanisms that can affect
the system behaviour, such as structural changes in lubrication layers
during shear as well as the interaction between lubricants and surfaces.
The field of computational lubricated nanotribology has been well
established over the last decades [2,3] and the availability of increased
computational resources is allowing the application of such methods in
cases with increasing complexity. Recent studies of nanoscopic friction
based on Molecular Dynamics (MD) include, for example, the study of
fatty acids [4] and ionic liquids ILs [5] as lubricants. Wear reduction
demands and the drive to keep friction low, have led to reduced
lubricant film thickness down to only a few molecular layers [6–9]. MD
can enable us to access and understand the behaviour of very thin films
which are subjected to compression and shearing between walls [6–8].

Our specific goal is to achieve a representation of the tribological
system which is relevant to automotive powertrain applications. As
approximately 45% of the engine friction losses occur in the piston
assembly [1], our initial target is to mimic the conditions observed in
the piston ring–cylinder liner contact, in terms of pressure, tempera-
ture and shear rates. In addition, in order to be able to achieve length–

and time–scales that can be of relevance to the real–life systems, it is
necessary to apply appropriate simulation methodologies, such as the
use of coarse grain molecular dynamics [10–13].

In recent years, the application of ILs as advanced lubricants is
being studied with a steadily increasing interest [14]. The use of ILs as
both neat lubricants and additives for engine lubrication has been
considered [15–17]. Significant improvements on friction and wear
reduction have been observed experimentally [16], rendering this
concept of potential interest to industry. However, unravelling the
mechanism of nanoscopic friction in ILs together with their structure
poses a great scientific challenge, and so far few studies in this direction
have been performed, e.g., Ref. [18]. ILs are molten salts typically
consisting of large-size organic anions and cations. Physical properties
of ILs, such as negligible vapour pressure, high temperature stability
(they do not evaporate or decompose at temperatures of interest for
automotive industry) and high ionic conductivity render them poten-
tially relevant to lubrication. In addition, their properties can be
modified by an applied voltage using confining surfaces which are
charged in order to build up an electric field across the nanoscale film.
The applied potential can affect the structure of IL layers and lead to
externally controllable lubricating properties [18,19]. There is also
significant flexibility in tuning the physical and chemical properties of
ILs which can affect lubrication such as viscosity, polarity and surface
reactivity by varying their atomic composition as well as the anion–
cation combination. An important observation is that ILs confined
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between surfaces feature alternating positive and negative ionic layers,
with an interlayer separation corresponding to the ion pair size [20,21].

Previous work employing Lennard-Jones fluids has provided in-
sights on the complete dynamic diagram of confined liquids including
wall slip, shear banding, solid friction, and plug flow. In terms of fluid
complexity these studies have mainly employed mono-atomic systems,
and only a few authors have considered mixtures of molecules [22,23].
In addition to inherently being a mixture of cation and anion
molecules, ILs involve long range Coulomb interactions inducing long
range order on far greater scales than the IL itself [5,9,24]. Detailed
investigation of ILs as lubricants at the nanoscale is therefore essential
for exploring the potential of implementing them in lubrication
systems.

In this study, we apply a coarse-grained model for the description of
nanoscopic friction mediated by a liquid lubricant because based on
recent studies [18,19,21] it was shown that if the molecules interact via
non-bonded potentials (Lennard-Jones and Coulombic), this can
capture all main physical attributes of the IL-lubricated nanotribolo-
gical system.

This paper is organised as follows: Section 2 introduces the MD
setup of the solids and lubricants used, while the motivation for the
choices made is provided. In Section 3, the structural properties of the
modelled IL under bulk and confined conditions are discussed. The
results stemming from the friction MD simulations are then presented
in Section 4 followed by some concluding remarks in Section 5.

2. Model

Under typical operation of internal combustion engines, the condi-
tions inside the combustion chamber vary significantly. Temperature
can range from 300 K to values higher than 2000 K, while pressure
ranges from atmospheric to values higher than 10 MPa [1]. The piston
reciprocates with a sinusoidal velocity variation with speeds varying
from zero to over 20 m/s. The time required for one revolution of the
engine is of the order of 10 ms, while the total distance travelled by the
piston over this period is of the order of 0.2 m. Such scales are typically
modelled using continuum mechanics simulations. However such
simulations cannot provide the physical insight which is necessary
for understanding the molecule–dependent processes that affect the
tribological phenomena. For this purpose, we have developed a coarse
grain MD configuration that can provide useful insights to molecular
processes, while remaining relevant to conditions observed in real–life
systems. More specifically, in this section we will describe a setup of
MD simulations developed with the aim of building a framework that
incorporates meso–scale features of the piston ring–cylinder liner
system and permits an efficient implementation of different solid
surfaces and lubricants.

2.1. Geometry

All MD simulations in this study were performed using the
LAMMPS software [25]. The geometry used in our friction simulations
is shown as a schematic in Fig. 1, along with the dimensions of our
system as well as the number of the MD particles used. The simulation
setup was loosely inspired by previously published research by others
[5,18,19,21]. By implementing such a geometry we have attempted to
achieve: (i) a realistic particle squeeze–out behaviour with the forma-
tion of two lateral lubricant regions (in a similar manner to the
simulations of Capozza et al. [21]) and (ii) a system that allows the
lubricant to be externally pressurised. For the description of the solid
surfaces we have combined rigid layers of particles moving as a single
entity on which the external force or motion is imposed, denoted by
“Top Action” and “Bottom Action” in Fig. 1(A), with thermalised layers
(denoted by “Top Thermo” and “Bottom Thermo”) in which particles
vibrate thermally at T=330 K. The Nose-Hoover NVT thermostat is
used to control the temperature. As in previous MD simulations

[9,18,19,21,24], under similar operating conditions, the details of the
adopted dissipation scheme are not expected to change the essence of
the system response on mechanical deformation. The relaxation time of
the Nose-Hoover NVT thermostat for the lubricant and the solids is
200 fs (cf. Ref. [9]). The plates were treated as rigid bodies, with the
lower one being fixed and the upper one subjected to a z-directed force
Fz (the load) as shown in Fig. 1(A) and driven along x direction at a
constant velocity. The solid plates were made up of densely packed
atomic layers at a FCC (111) lattice arrangement. Periodic boundary
conditions were applied in the x and y directions. The bottom plate can
therefore be considered to be infinite, while the top plate is surrounded
by vacuum pockets on its sides, so called lateral reservoirs, in which the
lubricant can freely expand. The lateral reservoirs were implemented as
a mechanistic way for allowing the lubricant to be dynamically
squeezed in or out as an external load or velocity is applied, or due
to local fluctuations during the simulation progression. At the same
time, the lubricant remains an infinite continuous body in x and y
directions, similar to the conditions observed in a real tribological
system from a meso–scopic point of view. This is especially important
if the system experiences partial or complete crystallisation under
compression, cf. Section 4 and Fig. 8.

While the total number of considered lubricant molecules is
constant, the finite upper plate width and the resulting free space
enables the particles to be squeezed-out even to the extent where due to
structural changes the lubricant ceases wetting the solid plates. The
number of lubricant molecules effectively confined inside the gap can
therefore dynamically change depending on the loading conditions.
This is important for exploring the possible states of a mechanical
system of particles that is being maintained in thermodynamic
equilibrium (thermal and chemical) with a lubricant reservoir (i.e.,
void spaces in tribological system). The nano-tribological system is
open in the sense that it can exchange energy and particles, realising an
effectively grand-canonical situation, cf. Fig. 1(b) and Ref. [26].

2.2. Solids and lubricant model

By using our simulation setup, we aim to study the lubrication
properties of several lubricants. As a first step, in the current study we
have implemented an ionic liquid as a lubricant. On the atomic level
ILs are usually made up of large-size irregular organic anions and
cations often including long alkyl chains. In the current work we have
applied a simple coarse-grained model for its description, consisting of
a charged Lennard-Jones system where anions and cations have
different radii as already exploited in previous studies in the literature
[21]. According to that, we have implemented a Lennard-Jones (LJ)
12-6 potential combined with a Coulombic electrostatic potential:
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Parameters σ{ϵ , }ij ij define the LJ potential between different types
of particles i j, = A, C, P which refer to anions, cations and solid plate
atoms, respectively. The numerical values for each pair are listed in
Table 1. The diameter of cations was set to σ = 5 ÅCC and anions to
σ = 10 ÅAA , in order to explore the effect of asymmetry of ion sizes
(similar to Ref. [21]). Atoms of the solid plates have a diameter of
σ = 3 ÅPP . The plates consist of nine densely packed layers in a FCC
(111) lattice.

The ions were modelled as coarse grain particles, the charge of
which was set to elementary: q e= −A and q e=+C , i.e.,
e = 1.6 × 10 C−19 . The ionic liquid is neutral, so the total number of
cations and anions is the same: N N N= = /2C A IL . In the present
simulations, the number of ions used was N = 2500IL . The dielectric
constant was set to ϵ = 2r to account for the dielectric screening, as in
Refs. [19] and [21]. The LJ potential has a short-range impact, since it
vanishes rapidly as the distance increases r∝ −6, while the Coulombic
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potential has a long-range impact, r∝1/ . To handle long–range inter-
actions, we have used a multi-level summation method (MSM) [27],
since it scales well with the number of ions and allows the use of mixed
periodic and non-periodic boundaries that are featured in our setup. To
sum up, IL ions and plate atoms interact with each other via LJ
potentials. In addition a Coulombic electrostatic potential is added in
ion-ion interactions.

In engineering applications, the lubricant molecules typically
interact with metal surfaces. Computationally efficient many–body
potentials such as embedded atom method (EAM) potential [28,29]
can be applied for the description of such solids. Such schemes have
been employed extensively for modelling a wide range of systems
including metals [29] and metal-metal oxide interfaces [30]. In
addition, in order to account for the induced charges on the metallic
conductor surface by the ions, the Drude-rod model developed by Iori
and Corni [31] which consists of the addition of an embedded dipole
into each metal atom, thus rendering it polarisable, has been applied in
previous studies [5]. Since in our initial stage of IL tribological
behaviour research, modelling the elasticity of metallic plates plays a
secondary role, we have selected a simplified model in which plate
atoms interact strongly with each other if they belong to the same plate,
i.e., ϵ = 120 kCal/molPP , as opposed, to a very weak interaction between
the different plates ϵ = 0.03 kCal/moltop/bottom . Furthermore, even
though the typical engineering systems are often metallic, our initial

coarse grain MD study of liquid dynamics according to the applied
conditions justified the implementation of a simpler solid system which
does not feature substrate polarisation. Finally, it is possible that the
actual surfaces might feature carbon coatings or depositions, in which
case the surface polarisation can be of secondary importance.

The starting configuration for our MD simulations was obtained via
a relaxation process. In order to obtain a stable and reproducible initial
configuration, the relaxation was performed through a stepwise
increase of absolute ion charge at steps of Δ q e| | = /10i , i=A, C. Each
time the charge of the ions was increased, a minimisation of the
system's energy through conjugated gradient method was performed.
In this way, the system characteristics were gradually converted from
pure LJ to a Coulomb interaction dominated system through a series of
stable configurations.

As we are aiming at understanding the lubricant behaviour at meso-
scopic conditions observed in a ring–liner system, we have attempted
to include in our MD model the potential IL pressurisation that can
occur due to the liquid flow resistance, as well as the variable pressure
arising from the reacting gas in the combustion chamber. Inserting gas
molecules directly in the simulation for this purpose would require a
reduction of the time step due to higher thermal velocities of the gas. In
turn, the computational cost would increase significantly making
simulations impossible to run in realistic computational time.
Therefore, in order to understand the effect of external pressure on
the IL behaviour, we have applied a repulsive force between the
topmost rigid solid layer and the IL particles in the form of a truncated
and shifted LJ potential. Two cases with cut-off distances at 15 Å and
4 Å above the outermost top plate layer were studied so that the IL
inside the confinement gap would remain outside the influence zone of
this mechanistic force. By appropriate selection of the LJ parameters
for this potential, the resulting external pressures applied on the
unconfined surface of the IL were 120 kPa and 250 kPa, respectively.

Fig. 1. (A) Schematic of the simulation setup shown as yz cross-section. There are two solid plates at the top and bottom of the system, consisting of two regions: at the outermost ones
the particles are moving as a single entity (Top/Bottom Action) and at the innermost ones the particles are at a controlled temperature (Top/Bottom Thermo). The thermalised layers are
in direct contact with the lubricant while the action layers are used to impose external velocity and/or force to the solid plates. (B)–(D) Side views of the typical simulation configuration
and key dimensions of the geometry. (B) Side (xz) view with respect to the shear direction. (C) Front (yz) view in the direction of the top plate motion. (D) Top (xy) view of the system.
The solid plates are made up of FCC (111) atomic layers. The ionic liquid is composed of an equal number of cations (blue spheres) and anions (red spheres). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
List of LJ parameters used in simulations.

Pair ij ϵij [kCal/mol] σij [Å]

CC 0.03 5
AA 0.03 10
CA 0.03 7.5
PC 0.3 4
PA 0.3 6.5
PP 120 3
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3. Probing ionic liquid's internal structure behaviour

3.1. Solidification and melting of bulk ionic liquid

In order to confirm that the IL used in our MD simulations remains
in a liquid state for the conditions of interest, its liquid–solid and
solid–liquid phase transitions were initially studied. A bulk IL config-
uration was prepared by placing the same number of cations and
anions N N= = 1000c a into a 3D periodic box, with pressure kept
constant at 100 kPa. Phase transitions were then achieved via the
application of linear ramping to the temperature, in a similar approach
to the calculations performed in Ref. [21].

Starting from an initial temperature T = 330 K1 where the IL is in
liquid state, the temperature was decreased linearly down to
T = 180 K2 . The absolute rate of temperature change was:
dT dt/ = 1.67 K ns−1. A liquid–solid phase transition was observed
during the IL cooling. After reaching T = 180 K2 , the temperature was
increased back to the initial value of 330 K. This heating process caused
with its turn a solid–liquid phase transition. In Fig. 2 the IL internal
energy change EΔ int and temperature T are shown as functions of time
t. The temperature profile follows the applied conditions and its
superimposition to internal energy change allows the observation of
the dynamic behaviour of the liquid. By plotting the averaged internal
energy change of the IL against its temperature in Fig. 3, the hysteresis
behaviour in the solidification–melting cycle is clearly observed, while
the phase transition locations can be clearly defined. It can be seen that
during the cooling process, the internal energy of IL linearly decreases
until the temperature reaches T = 190 Kls , at which point a sharp drop
is observed. This indicates a first order thermal phase transition
(liquid–solid). During the heating process, a similar sharp jump of
energy is observed at T = 305 Ksl which corresponds to an opposite
phase transition (solid–liquid). The obtained results are in a good
agreement with Ref. [21] and confirm that the IL is behaving as a liquid
for temperatures higher than 310 K, under atmospheric pressure
conditions. In the rest of our calculations a temperature value of
T=330 K was applied, in order to allow a liquid state that is combined
with local solidification under elevated contact pressure conditions.

3.2. Ionic liquid structure in thin film

The confinement has a profound influence on the structure of ILs in
thin films [20,26,32]. The confining surfaces can induce ordering of the

particles in their vicinity. The resulting structure and forces are a result
of the interplay between the limited volume and the particles which fill
the space. In Fig. 4, the force-distance characteristic of our system is

Fig. 2. (Left): Bulk internal energy change and temperature of the ionic liquid as a function of simulation time. (Right) Snapshots of ion arrangement at liquid (A), (C) and solid (B)
state.

Fig. 3. Bulk internal energy change of the ionic liquid as a function of temperature. The
internal energy was calculated by averaging on segments of TΔ = 0.5 K .

Fig. 4. Dependence of normal force Fz on plate-to-plate distance dz. Eight characteristic
points A B C D E F G H{ , , , , , , , } with corresponding interplate distances

d = {11, 14, 17, 20, 22, 24, 27, 32} Åz are marked on the F d( )z z curve. The horizontal

solid line denotes Fz=0 pN. The dashed line connects the points obtained from the
simulation and serves as a visual guide.
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presented. The solid horizontal line denotes the zero normal force level
(i.e., Fz=0). A non-monotonous behaviour of the normal force Fz acting
on the top plate can be observed as the plate-to-plate distance is
changing. This distance corresponds to the gap between the plates
where the IL is under confinement. The points d F( , )z z were obtained
through our simulations, while the dashed line serves as a visual guide.
It can be seen that the normal force strongly depends on the inter–
plate distance and that it also becomes negative in certain regions. This
can be translated as the IL striving to reduce the plate-to-plate distance
due to adhesion phenomena. These changes of the normal force are
correlated with the extraction and inclusion of IL layers into the gap, as
already observed experimentally, cf. Ref. [20]. During the performed
simulations, the cationic-anionic layers were squeezed out in pairs, in
order to keep the system locally neutral, as observed in experimental
studies [20,26,32–34].

Concerning the realisation of the simulations presented in Fig. 4,
the inter–plate gap was modified in the following manner: the top plate
was displaced towards the bottom one with a constant velocity vz=5 m/
s. For d < 17 Åz the velocity was reduced to vz=1 m/s. At each
calculation point shown in Fig. 4, the top plate was kept fixed for a
period of time t = 50 psstatic , during which period the average value of
the normal force was calculated. The process was repeated until a
distance d = 11 Åz min, was reached.

In order to understand the dynamic evolution of our system,
snapshots of the system from the MD simulations corresponding to
several characteristic points in the F d( )z z curve were selected and
studied in more detail. Fig. 5 shows the configuration and ion density
distribution along the z–direction for eight characteristic points
A B C D E F G H{ , , , , , , , }, corresponding to plate-to-plate distances

d = {11, 14, 17, 20, 22, 24, 27, 32} Åz respectively. The ions are delib-
erately depicted smaller than their LJ radii in order to allow a direct
observation of the layering. The position of the atomic centres of the
innermost atomic layers of the top and bottom plate are indicated in
Fig. 5 as zT and zB respectively. As the bottom plate was fixed, zB
remains constant while zT changes with the top plate displacement.

A general feature observed under all conditions was the fact that the
cations always formed the layer closest to the bottom plate. The reason
is the smaller size of the cations σ( = 5 Å)CC compared to the anion
species σ( = 10 Å)AA . Following this, a second layer was induced by the
first one and populated only by anions. The distance between the first
and the second layer from the bottom is in the range of 1 − 2.5 Å,
meaning that while the centres of mass of the particles are in different
layers, the layers themselves overlap as their distance is smaller than
the particle diameters. In the rest of this section, the changes in the
number of layers as the inter–plate gap is reduced will be presented
and correlated with the changes in the normal force Fz which is acting
on the top plate.

For the minimum simulated plate-to-plate distance dz=11 Å,
shown in Fig. 5(A) we can observe a pronounced peak in the anion
density distribution close to the bottom plate which is aligned with a
well-defined anionic layer inside the gap. The anion peak is marked
with the “1CU” annotation. In the case of cations, there are two peaks
attached below and above the anionic peak. This situation corresponds
to the formation of two incomplete cationic layers inside the gap. With
increasing plate-to-plate distance dz the normal force Fz is decreasing,
with a sign change of Fz at dz=12.7 Å. In the range d12.7 Å < < 15.7 Åz

the normal force remains negative. This means that the IL is pulling the
plates together, since the ions strive to reduce their interlayer distance,
as well as the distance between themselves and the plate atoms. Such
behaviour is typically observed in systems exhibiting layering transi-
tion, already seen in systems of both neutral molecules [2] and ILs
[20]. With further increase of dz the force becomes positive again, and
reaches a local maximum at the point (C) in Fig. 4. At this point we
observe a change in the number of anion layers confined in the gap
from one to two, as shown in Fig. 5(C).

In Fig. 5(C), the plate-to-plate distance is dz=17 Å and the two
bottom peaks of the anion/cation density distribution, denoted by
“1CU” and “2C”, are inside the gap. A third smaller anion/cation
density peak, denoted by “2U” in Fig. 5(C), is the result of the ordering
initiated at the bottom plate's surface and is actually outside the
confinement gap. The vertical distance between the peaks “2C” and
“2U” is approximately 3.5 Å and corresponds to the effect of the
compression of the IL from the top plate. Further increase of the plate-
to-plate distance results in a continuous decrease of the normal force
without a sign change as the positions of peaks “2C” and “2U” become
aligned, cf. Fig. 5(D) for a distance dz=20 Å. Further increase of the
inter–plate distance results once more in a reversal of the sign of the
normal force (i.e., F < 0z for 21 Å d< < 23.5 Åz ). At the mid point
between the plates a broad maximum of cation density distribution can
then be observed, see Fig. 5(E). The cations, as smaller particles, have a
tendency to fill the space between the more stable anionic layers. When
the anions also start to form a third layer at the midpoint between the
two plates the corresponding cationic peak of density becomes sharper
and the normal force becomes positive again, see Fig. 5(F). In this case
the cations can form a layer more easily while the anions remain
scattered. This is the opposite behaviour to the one typically observed,
where the larger anions tend to order more strongly due to the
excluded volume effect [35]. From Fig. 5(F) to Fig. 5(G) an interesting
transition can be observed, during which the single well resolved cation
peak disappears and a less pronounced cation–anion pair peak takes its
place. Finally in Fig. 5(H) at dz=32 Å, we observe the clear formation of
three anion and four cation peaks.

Considering engineering applications, the steep rise of the normal
force at small plate-to-plate distances, i.e., d < 14 Åz can be beneficial
for protecting against solid-solid contact and consequent wear. On the
other hand, there is also a strongly decreasing trend of maximal normal
force which can be sustained by the system as the number of ion layers
confined between the plates increases, i.e., for two cation layers the
maximal force F = 3 pNz max, , while for three it is F = 0.25 pNz max, . In our
model, the Lennard-Jones interaction between the plates and the ions
is ten times stronger than between the ions themselves. The ion layers
closest to the plates are therefore more stable than the layers in the
midpoint of the gap (see Fig. 5(F)). As a result, the three layer system
becomes less dense, and can build up a lower normal force compared to
the two layer system (in Fig. 5(C)).

4. Friction simulations

Following the detailed study of the static system, we turn our focus
to dynamic conditions, where there is a relative motion between the
plates in x direction and as a result frictional forces can be observed.
The dynamics of the plates impact the IL and result in an overall
longitudinal force acting on each solid body. In order to evaluate the
trends of specific friction we have performed simulations at different
plate velocities and at two interplate distances. The simulations have
been performed for a broad range of top plate velocities v = 0.1x , 0.2,
0.5, 1, 2, 5, and 10 m/s, with the bottom plate kept fixed. We have
compared cases with different external pressures applied on the IL
p = 0ext , 120 and 250 kPa and two distinct plate distances dz=17 and
27 Å. The simulations were performed as follows: Points (C) and (G) in
Fig. 5 were chosen as the starting configurations. The simulations ran
until the top plate had covered a distance of dx=50 Å in x direction.
Therefore cases with lower velocities required increased total time. The
forces acting on the top plate were monitored, as shown in Fig. 6 for a
randomly chosen case. It was observed that the normal force remained
roughly the same after the onset of the simulation. Steady–state
conditions were assumed following a displacement of dx=10 Å, and
then average values were calculated using the statistics until the
completion of the simulation.

The results for the specific friction are shown as a function of sliding
velocity in Fig. 7. The specific friction F F〈 〉/〈 〉x z is defined as the ratio of
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the time averaged frictional and normal force Fx and Fz respectively
and is different to the Coulomb friction coefficient μ F F= ∂ /∂x z. In our
simulated cases we have observed either a weak or a logarithmic
dependence of specific friction on velocity. The numerical values were
fitted to a linear function of the form F F a v v b〈 〉/〈 〉 = log( / ) +x z x ref , where
v = 1 m/sref . The coefficients a b, obtained from the simulation data are
listed in Table 2. A reasonable fit to the linear regression curve can be
observed for most cases. In the case of p = 120 kPaext , the system is
potentially in a transition between the two significantly different cases
of zero and high pressure, which can explain the poorer quality of the
fit to the linear curve. The logarithmic dependence indicates typical
elasto-hydrodynamic lubrication conditions [36]. On the other hand,
the weak dependence of specific friction on velocity has also been
observed in previous studies of IL lubrication, cf. Refs. [5,24].

4.1. Impact of ionic liquid confinement gap

The influence of plate-to-plate distance on specific friction was
initially analysed, while the applied external pressure on the IL pext was
kept equal to zero. In contrast to previous studies of IL lubrication

Fig. 5. Snapshots of system configurations at points A B C D E F G H{ , , , , , , , } from Fig. 4 and corresponding density distribution of anions/cations along the z-axis. The position of the

atomic centres of the innermost layer of the top and bottom plate is denoted by zT and zB, respectively. The bottom plate is fixed and z = 21 ÅB . The ions are deliberately depicted smaller

than their LJ radii in order to allow a direct observation of the layering. In Figures (A) and (C) the annotations indicate the anion layer vertical order from the bottom (1, 2, 3) and the
lateral placement: (C)onfined and (U)nconfined.

Fig. 6. Temporal evolution of total normal and axial forces acting on sliding surface for
plate-to-plate distance dz=27 Å and top plate axial velocity vx=10 m/s. Dashed lines
show the raw numerical data which are smoothed using the solid lines for a clearer
identification of temporal trends.
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[5,24], our system showed a strong crystalline order induced by
confinement. The normal force was roughly ten times higher in the
case of the smaller plate-to-plate distance, i.e., for dz=17 Å compared
to dz=27 Å. On the other hand, the lateral force Fx remained at similar
levels, therefore leading to a sharp decrease of the specific friction
values. At the same time, the weaker confinement and the smaller
normal force for dz=27 Å resulted in a steeper slope of the curve
F F〈 〉/〈 〉x z .

In order to understand the potential correlation of the IL structure
with the arising frictional forces, the confinement zone was observed in
detail using Fig. 8, where a side view (left side) and top view (right side)
of the system is shown. In the top view, the system is shown with the
solid and IL particles above the upper plate plane removed. In this plot
the ions are depicted with their corresponding LJ radii in order to
achieve a realistic visualisation of the structure. The anions form a
locally cubic structure, cf. right panel Fig. 8(A), while the crystal
direction of the cubic structure is indicated with dashed lines. If we
look into the structure of the IL in the confinement zone, Fig. 8(A) and
(B), we can observe a single, well resolved crystal structure in the case
of dz=17 Å, while in the case of dz=27 Å some defects are present. It
can also be observed that outside the gap, the IL remains in a
disordered, liquid state.

Further clarification can be attained by plotting the ion density
distribution profiles inside and outside the gap in Figs. 9(A) and (B). It
can be observed that at the plate-to-plate distance dz=17 Å, both cation
and anion peaks of density distribution function inside the gap are
narrow and sharp. In addition, both the anion and cation peaks in each
paired layer are located at approximately the same z location. These
findings confirm that under these conditions the IL is in a crystalline,
“solid-like” state with minimum disorder. In the case of a wider gap
dz=27 Å the anion peaks next to the walls remain narrow, with a third
broader one appearing in the centre. The cation arrangement is more
dispersed, with double peaks appearing above and below each anion

peak. These statistics indicate a more layered, less strictly ordered
state. The difference in the extent of confinement induced crystal-
lisation is a probable reason for the observed steep slope of specific
friction since the observed defects can interact more strongly with the
upper plate at higher velocities and contribute to the increase of
friction force. Our observations show some similarity to the behaviour
previously seen in Lennard-Jones systems where systems at pressures
above a certain critical value and at sufficiently low velocities exhibited
such behaviour. In these studies, cf. Ref. [8], the shape of fluid
molecule was identified as the main parameter that controls crystal-
lisation through the promotion or prevention of internal ordering.

4.2. Impact of ionic liquid pressurisation

In addition to the impact of different confinement gaps, the effect of
IL pressurisation was studied, while the inter–plate distance was kept
constant. More specifically, a gap of dz=27 Å was used, while different
pressures p = 0ext , 120 and 250 kPa were applied, using the approach
described in Section 2.2.

Through observation of Fig. 9(B)–(D), it can be seen that the
application of external pressure prevents the wetting of the side walls of
the top plate and leads to a distinct crystallisation of the unconfined IL.
On the other hand, the ion density profiles inside the confinement zone
are moderately influenced.

The friction results for increasing values of applied pressure are
consistent with the observations in the previous subsection, with
specific friction decreasing as the order of the IL increases. It can be
seen that for high external pressure, i.e., p = 250 kPaext , the slope of the
specific friction curve almost vanishes.

Fig. 8(C) shows that for p = 120 kPaext the local cubic structure

Fig. 7. Dependence of specific friction F F〈 〉/〈 〉x z on velocity at external pressures p = 0ext ,

120 and 250 kPa and inter-plate distances dz=17 and 27 Å. The error bars represent the
standard deviation of the average values obtained from the simulation data. The curves
showing the specific friction trends were obtained by linear regression and the
corresponding parameters are listed in Table 2.

Table 2
Results for the coefficients a b, in the relation F F a v v b〈 〉/〈 〉 = log( / ) +x z x ref , where
v = 1 m/sref . The results were obtained using the least-squares method.

Case a b R2

(A) dz=17 Å, p = 0 kPaext −0.0006(2) 0.0039(2) 0.63

(B) dz=27 Å, p = 0 kPaext 0.016(5) 0.036(3) 0.72

(C) dz=27 Å, p = 120 kPaext 0.007(2) 0.017(2) 0.26

(D) dz=27 Å, p = 250 kPaext 0.002(1) 0.003(1) 0.62
Fig. 8. Side (yz) and top (xy) views of snapshots from four separate friction simulations.
The top views correspond to the planes marked with dashed lines in the side views and do
not include the solid and IL particles above the upper plate plane. The ions are depicted
according to their LJ radii in order to visualise the crystalline structures. The dashed
lines in the top views denote the crystal direction of self-formed cubic structures.
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induced by confinement between the plates served as a nucleus for
further crystallisation between the plates and a well ordered single
crystallite was formed in this region. Outside the confinement zone
another crystallite was formed with a different orientation. Further
increase of external pressure to p = 250 kPaext forced the IL in the void
space to crystallise, while at the same time the IL in the confinement
zone was converted to a number of smaller crystallites, cf. Fig. 8(D) and
9(D).

The reported results show a dual nature of IL lubrication, with EHL
characteristics at low to medium pressures and confinement gaps that
allow more than two distinct anion/cation pair layers to form. At higher
pressures and smaller distances which can be translated as mixed
lubrication conditions the IL is transformed to a solid-like body, while
specific friction decreases to low values which are independent of the
sliding velocity. This behaviour can be beneficial in engineering
applications such as the piston ring–cylinder liner system, where it
can be assumed that the IL crystallisation can potentially aid in
preventing the solid contact between the surfaces, along with the
associated high friction and wear.

5. Conclusions

In the current study we have implemented a MD simulation setup
in order to study the behaviour of model ionic liquids confined between
plates which are in close proximity while being in relative motion. Our
MD setup was developed in a way that allows the meso–scopic study of
the lubrication processes in automotive applications such as the piston
ring – cylinder liner interaction inside the internal combustion engine.
More specifically, our geometry was selected in order to allow a variable
lubricant confinement gap combined with a varying lubricant quantity
in the gap, while avoiding the squeeze-out of the lubricant into vacuum.
Odd-number layering and near-wall solidification was observed be-
tween the solid plates, similar to published experimental findings. Our
friction simulations have uncovered an interesting behaviour of ILs,
with a logarithmic dependence of specific friction on velocity hinting at
elasto-hydrodynamic lubrication at low loads. This behaviour comple-
tely changed under more critical conditions of high load, with specific
friction decreasing to lower values and becoming independent of

sliding velocity. This behaviour was strongly correlated with the
internal structure of the IL and can provide guidance for implementing
lubrication concepts that can lead to friction reduction in internal
combustion engines.
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Molecular dynamics investigation of the influence
of the shape of the cation on the structure and
lubrication properties of ionic liquids†

Miljan Dašić, a Igor Stanković *a and Konstantinos Gkagkas b

We present a theoretical study of the influence of the molecular geometry of the cation on the

response of ionic liquids (ILs) to confinement and mechanical strain. The so-called tailed model includes

a large spherical anion and asymmetric cation consisting of a charged head and a neutral tail. Despite its

simplicity, this model recovers a wide range of structures seen in ILs: a simple cubic lattice for small

tails, a liquid-like state for symmetric cation–tail dimers, and a molecular layer structure for dimers with

large tails. A common feature of all investigated model ILs is the formation of a fixed (stable) layer of

cations along solid plates. We observe a single anionic layer for small gap widths, a double anionic layer

for intermediate ones, and tail-to-tail layer formation for wide gaps. The normal force evolution with

gap size can be related to the layer formed inside the gap. The low hysteretic losses during the linear

cyclic motion suggest the presence of strong slip inside the gap. In our model the specific friction is low

and the friction force decreases with tail size.

1 Introduction

Ionic liquids (ILs) are two-component systems composed of large
asymmetric and irregularly shaped organic cations and anions.
The feature of irregularity is important as it effectively prevents
low-temperature ordering and crystallisation. Therefore, ILs are
usually in the melted or glassy state. The physical properties of ILs
like negligible vapour pressure, high-temperature stability, and
high ionic conductivity and also a great variety of ILs and their
mixtures highlight them as potentially relevant to lubrication.1,2

A large number of variations in IL composition are possible,
estimated at the order of magnitude of 1018 different ILs.3 From
their variety stems the possibility of tuning their physicochemical
properties which can affect lubrication such as viscosity, polarity,
surface reactivity by varying their atomic composition, and the
cation–anion combination. Hence, it would be advantageous if we
could deduce general relations between the molecular structure
and anti-wear and lubrication properties of ILs.

Since 2001, when ionic liquids were first considered for
lubrication applications,4 there has been a large number of
experimental studies in that direction. It has been observed that

the alkyl chain length of the cations affects the IL’s viscosity,1

melting point1 and pressure–viscosity coefficients.5 Related spe-
cifically to lubrication, Dold et al.3 and Minami6 explored the
impact of the cationic alkyl chain’s length on the tribological
properties of ILs. ILs considered in those references have the same
cation but different anions (symmetric hexafluorophosphate
[PF6]

� and asymmetric bis(trifluoromethylsulfonyl)imide [Tf2N]
�,

respectively). Still, while Minami observed that the coefficient of
friction (COF) decreases from 0.25 to 0.15 with the increase of alkyl
chain length nC = 2 to 12 (nC is the number of carbon atoms), Dold
et al. observed that the COF increases from 0.025 to 0.1. The IL’s
wetting properties are also sensitive to its molecular geometry.
ILs exhibit different wetting behaviours depending on the anion
size:7–9 from the absence of wetting to partial or complete wetting.
A well-studied IL, [BMIM]+[PF6]

�, exhibits full wetting at the
interface with mica substrates.7,8 In contrast, [BMIM]+[TFSI]�

shows partial wetting on mica.8,9 In these examples, the ILs have
the same cation and different anions.

An important observation about the structure of confined
ILs is their arrangement into positively and negatively charged
ionic layers and adsorption onto solid surfaces.10,11 These ionic
adsorption layers should reduce friction and prevent wear,
especially in the case of boundary lubrication.10 The wear is
reduced primarily in two ways: via high load-carrying capability
and self-healing of adsorbed IL layers. Still, these two processes
seem conflicting with each other since high load-carrying cap-
ability requires strong adsorption of the lubricant to the surface,
while self-healing requires high mobility.12 Understanding the
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driving forces between them requires relating the molecular
structure and flow properties of confined ILs. Kamimura et al.13

evaluated the tribological properties of different ionic liquids
using a pendulum and ball on disk tribo testers. They considered
ILs consisting of imidazolium cations with different alkyl chain
lengths and [Tf2N]

� anions as lubricants. Their main observation
is that the increment of alkyl chain length can reduce the friction
and wear of sliding pairs in the elastohydrodynamic lubrica-
tion (EHL) regime as a consequence of the increased viscosity.
Generally, the conclusion is that longer alkyl chains lead to better
tribological performance. Related to the impact of alkyl chain
length on the structure of ILs, Perkin et al.14 experimentally
achieved the formation of tail-to-tail bilayers of cations when their
alkyl chain length was large, in case of confinement between solid
surfaces. Their observations are in accordance with other experi-
mental investigations of IL lubricants.15–17 In this work, we have
obtained similar configurations via numerical simulations of ILs
confined between two solid plates, where tail-to-tail formation in
the middle of the interplate gap is visible.

In this theoretical study, we apply a coarse grained Molecular
Dynamics (MD) simulation setup consisting of two solid plates
and an IL placed between them. Our simulation setup also
includes lateral reservoirs into which the IL can dynamically
expand.18 The focus of our study is on the systematic investiga-
tion of the flow properties and lubrication mechanisms of ionic
liquids modelled with a generic coarse grained model which
considers a variable shape of the cation. We investigate the
impact of cationic tail size on the structural and tribological
properties of ILs via molecular dynamics simulations. Such an
idea is meaningful since previous theoretical studies have
pointed out that confinement modifies the behaviour of ILs,
and despite their good wetting nature, slip is present at the
plates.19 Coulombic interactions in ILs induce long-range
ordering,19–21 which in turn can influence their lubrication
response. Recently, there have been substantial modelling efforts
towards the investigation of ILs as lubricants.22–24 Coarse
grained approaches, being less computationally expensive, have
an advantage for reaching the length- and time-scales that can be
of relevance to the systems of industrial interest. Previously,
coarse grained MD simulations25–31 were used to study thin
lubricant films subjected to shearing between solid plates.

We outline the content of this paper: the Model section describes
the interactions taken into account and the MD simulation setup.
The focus of the Bulk ionic liquids section is first on obtaining the
relaxed structures and then on calculating the viscosity coefficients
of bulk ionic liquids. In the following Confined ionic liquids section
we present and discuss the static and dynamic behaviours of
confined ionic liquids. This section also presents the results of the
friction behaviour of confined ILs. We present the overview of
contributions in the Discussion section followed by the Conclusion.

2 Model

In this study, we have applied a generic coarse grained IL model,
introduced in ref. 24. In this model, the anion is represented as a

negatively charged large-sized spherical particle, while the cation
is a dimer consisting of a positively charged small-sized sphe-
rical particle (i.e. cationic head), and a neutral spherical particle
(tail) attached to the corresponding cationic head via an elastic
spring, see Fig. 1. Since the cationic tail is the principal feature of
the model used in this paper, we will refer to it as a tail model
(TM). The asymmetry of the cation leads to amorphous (glassy)
states for realistic values of interaction parameters (e.g., for
hydrocarbons), in contrast to the simplest coarse-grained
model of an IL known as a salt-like model (SM), where both
cations and anions are spherical. The SM has already been
exploited in previous studies.18,22,24,32 Despite its obvious advan-
tage of simplicity, in order to avoid crystallization, the SM relies
on a very weak non-bonded Lennard-Jones interaction, which
makes any comparison with real ILs only qualitative. In addi-
tion, the SM cannot account for molecular asymmetry featured
in real ILs. Nevertheless, the SM has been proven to be quite
useful for the development of the simulation methodology, as it
reduces computational complexity and enables faster equili-
bration (e.g., for obtaining static force–distance characteristics
as in ref. 18). More complex extensions of TM coarse grained
models can involve several tails of different sizes, like in ref. 22.
For simplicity reasons, we restrict our considerations in this
study to a single neutral tail of variable size. Although a whole
cationic dimer is an entity which actually represents a cation, in
order to be more concise we refer just to the cationic head as
the cation.

2.1 Interaction model

In cation–tail dimers an elastic spring connects cations and
neutral tails, enabling the tail’s freedom of moving indepen-
dently from its cation, since their connection is not rigid,
cf. Fig. 1. Interatomic interactions taken into consideration in
our MD simulations are: (i) non-bonded Lennard-Jones (LJ) and

Fig. 1 Schematic representations of (a) anion and (b) cation molecules
in a TM. The anion is represented by a spherical particle with a diameter
sA = 10 Å. The cation molecule consists of a charged head with a diameter
sC = 5 Å and a neutral tail. In order to be more concise, we refer just to the
cationic head as the cation. The cation and its tail are connected using a
spring with length L = (sC + sT)/2. The size of the tail has been varied
and (a) TM3, (b) TM5 and (c) TM9 ionic liquids have tail diameters of 3,
5 and 9 Å, respectively. The molecular asymmetry is a feature of real ionic
liquids and the chosen parameters resemble [BMIM]+[PF6]

� IL properties,
cf. ref. 22 and 23.
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Coulombic electrostatic interactions and (ii) bonded inter-
action (an elastic spring potential in cation–tail pairs):

Vab rij
� �

¼ 4eab
sab
rij

� �12

� sab
rij

� �6
" #

þ 1

4pe0er

qiqj

rij
; (1)

where i, j = 1, . . ., N are particle indices, and N is the total
number of particles. Particles can be of different types a, b = A, C,
T, P, which refer to anions, cations, tails, and solid plate atoms,
respectively. Interaction of tails (i.e., at least one of the indices a,
b = T) with all other atom types, including tails themselves, is
implemented using a purely repulsive potential. The ionic liquid
is electro-neutral, i.e., the numbers of cations and anions are the
same. All MD simulations in this study were performed using the
LAMMPS software.33 More details are provided in the ESI.†

2.2 Model parameters

In this study we have fixed the diameters of the cationic heads
and anions at sC = 5 Å and sA = 10 Å, respectively. Such a choice
respects the asymmetry that exists in ILs and it is consistent
with other models, as well as, for example, the [BMIM]+[PF6]

�

ionic liquid, cf. ref. 18 and 22–24. The solid plate atoms have a
diameter of sP = 3 Å. We have taken into consideration three
different tailed-models of the IL depending on the tail size,
which is defined by its Lennard-Jones sT parameter: a small-tail
cationic dimer (i.e., TM3 with sT = 3 Å), a symmetric cationic
dimer (i.e., TM5 with sT = sC = 5 Å) and a large-tail cationic
dimer (i.e., TM9 with sT = 9 Å), see Fig. 1. Drawing a comparison
with the experiment in ref. 3 and 6, the TM IL mimics a folded
alkyl chain and the radius of the sphere is related to the
gyration radius of the chains. Depending on the length of the
alkyl chain, the sphere has a smaller or larger radius. Thus,
the size of a sphere which represents a neutral tail in TM ILs
does not compare directly with the alkyl chain length. However,
we can make a qualitative analogy. While the representation of
the alkyl chain as a neutral LJ sphere does not include all the
microscopic level features, we will show that the three selected
radii, i.e., sT = {3, 5, 9} Å, result in clear differences in the bulk
properties of the ILs and their lubrication response.

Each cation–tail pair is connected via an elastic spring
defined by the next two parameters: elastic constant K =
80 kcal mol�1 Å�2 and equilibrium length of the spring
L = (sC + sT)/2. To account for the dielectric screening, the
dielectric constant is set to er = 2 as in ref. 18, 23 and 24. The
strength of the LJ interactions between different charged parts
of ions (a, b = A, C) is eab = 1.1 kcal mol�1. The LJ parameters are
chosen to compare well with one of the most widely studied
ionic liquids, [BMIM]+[PF6]

�, cf. ref. 22 and 23. The charges of
ions are set to elementary: qC = +e and qA = �e, where e = 1.6 �
10�19 C. The tails interact with all other particle types repul-
sively. The strength of the ion–substrate interaction was tuned
to ensure complete wetting, eaP = 5.3 kcal mol�1, where a = A, C,
T.‡ All the values of the {eab,sab} parameters used in our

simulations are listed in the ESI.† The cross-interaction para-
meters are calculated using Lorentz–Berthelot mixing rules.

3 Bulk ionic liquids
3.1 Bulk structure

An initial configuration for a bulk ionic liquid was obtained by
a random placement of ions (NC = NA = 1000) into a cubic
simulation box with periodic boundary conditions in all three
directions. The simulation box volume was chosen to ensure
that the resulting pressure after the relaxation of the IL struc-
ture is comparable to the one experienced by a thin confined IL
film studied in the following section of this paper. In the case of
the present system the pressure is p E 10 MPa, which corre-
sponds to a normal force of 1 nN acting on a surface of 104 Å2.
Relaxation of the internal energy and pressure for the three TM
ILs is presented in detail in the ESI.†

Fig. 2 presents the xy cross-sectional snapshots of bulk IL
configurations at the end of relaxation simulations, again for
(a) TM3, (b) TM5 and (c) TM9. These results have clearly
revealed a strong dependence of the IL’s structure on the tail
size. It can be observed that (i) small tails in TM3 lead to cubic
crystalline arrangement of ions, (ii) symmetric cationic dimers
in TM5 enable a liquid-like state of the IL, and (iii) large tails in
TM9 dictate ordering in the way that ions form layers with tails
in-between.

These results are in agreement with experimental observa-
tions of the relationship between the length of the alkyl chain
and the structure of a bulk IL.34 When the cation alkyl chain is
short, the Coulombic forces are dominant, enabling order. We
observe this kind of result with TM3. Alkyl chains must be long
enough in order to suppress the Coulombic interactions, e.g.
the number of C atoms nC E 12, which corresponds to the tail
length of (nC� 1)�1.53 Å = 16.83 Å, taking into account that a C–C
bond has a length of 1.53 Å. The suppression of Coulombic
interactions results in the absence of order, as we obtain with
TM5, cf. Fig. 2(b). However, the tail should not be too large since
large tails tend to arrange into a separate layer. This leads to a
reappearance of layered structural ordering, like in the case of
TM9, cf. Fig. 2(c). This layering can take place even when the
cohesive interaction between the tails is absent, since in our TM
IL the pair-interaction of tails with all other particles is repulsive.

3.2 Bulk IL viscosity characteristics

We have calculated the viscosity using non-equilibrium (NEMD)
simulations of the three TM IL systems in a box with periodic
boundary conditions in all three directions under different
shear rates. Since in bulk simulations the whole simulation
box is sheared, the shape of the box changes. Therefore, we use
the so-called SLLOD thermostat35,36 (more details are provided
in the ESI†). For each value of _g in the range 0.01–10 ns�1, we
have calculated the average shear stress from three stress tensor
components: t = (txy + txz + tyz)/3. The average shear stress t and
shear rate _g are related by

t = Z� _ga, (2)

‡ Only when the strength of the ion–substrate LJ interaction equals the strength of
the inter-ionic LJ interaction, partial wetting is observed, i.e., eaP = 1.1 kcal mol�1,
as reported in the ESI.†
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where Z is the generalised viscosity coefficient and a is an
exponent. In addition to the NEMD method of simulation box
shearing, we have also calculated the zero shear rate viscosity
ZGK using the Green–Kubo (GK) relation for the three model
ILs, as the integral of the stress tensor auto-correlation func-
tions, see ref. 37 and 38.

In Fig. 3 we present the dependence of the average shear
stress t on the shear rate _g for the TM3, TM5 and TM9 bulk ILs.
We notice that the average shear stress remains within the
same order of magnitude in the TM3 and TM9 systems,
although the shear rate changes by four orders of magnitude.
As a result, the corresponding values of the exponent a are low,
i.e. aTM3 = 0.15 � 0.02 and aTM9 = 0.12 � 0.04. The bulk ILs in

the case of TM3 and TM9 are ordered. The presence of order
results also in high values of their Green–Kubo viscosities, i.e.
ZGKTM3 = 4.72 mPa s and ZGKTM9 = 1.67 mPa s. In contrast to that, we
observe a more than two orders of magnitude change in the
average stress tensor component in the case of symmetric cations
and a liquid-like bulk structure (TM5). We have obtained aTM5 =
0.8 � 0.1, which is relatively close to a Newtonian viscous fluid,
i.e., a = 1. The viscosities determined via shearing simulations
and via the GK relation in the case of TM5 are different; however,
they are of the same order of magnitude: ZTM5 = 0.1435mPa s and
ZGKTM5 = 0.6144 mPa s.

4 Confined ionic liquids

For the study of ILs under confinement, we use the MD
simulation setup of ILs under confinement shown in Fig. 4.
The ionic liquid is placed between two solid plates: a bottom
plate which is continuous in two dimensions (in the xy-plane)
and a top plate which is infinite in one dimension (along the
x-axis) and features lateral reservoirs in the other, i.e., along the
y-axis. This design allows long-range ordering of the ILs on
the surface while at the same time creating quasi-micro-canonical
conditions inside the interplate gap. We use this setup through-
out the paper in order to investigate both the static and dynamic
behaviours of the confined IL, as well as its lubrication perfor-
mance. We keep the simulation setup geometry fixed, and we
change the IL. Additional implementation details can be found
in the ESI.†

4.1 Equilibrium behaviour of confined ionic liquids

Confinement induces layering in IL thin films.18,39 In order
to understand how an interplay between layering and the

Fig. 3 Average shear stress t as a function of shear rate _g of the TM3, TM5
and TM9 bulk ILs. We have conducted shear simulations for the shear rates
in a range of four orders of magnitude ( _g = 0.01–10 ns�1). The lines are
obtained by fitting the points with eqn (2).

Fig. 2 Configuration snapshots of bulk (a) TM3, (b) TM5 and (c) TM9 ionic liquids, with tail diameters of 3, 5 and 9 Å, respectively. We may notice that
each configuration snapshot represents a different state, i.e. the TM3 bulk IL crystallizes into a tilted simple cubic crystal structure, oriented along the face
diagonal; the TM5 bulk IL is in a liquid state; the TM9 bulk IL crystallizes into crystal planes with alternating ionic-tail layers, oriented along the
face diagonal as well.
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molecular geometry of ILs alters the load bearing capability of
the thin films, we calculate the quasi-static force–distance
characteristics. We follow the evolution of the normal load Fz
acting on the top plate as a function of interplate distance dz.
To ensure static conditions, the interplate distance is changed
through a series of alternating steps, called move and stay,
related to the movement of the top plate and subsequent
relaxation of the IL structure, respectively. We describe in detail
the simulation procedure in the ESI.† The results for the force–
distance characteristics of the three TM ILs are presented in
Fig. 5, where three different markers correspond to the three IL
models. The normal force Fz strongly and non-monotonically
depends on the distance dz. These changes in the normal force
Fz are correlated with the squeezing in and out of cation/anion
layer pairs into the gap, as already observed experimentally40

and theoretically.18 The normal force becomes negative (Fz o 0)
only in the case of small tails (TM3). The negative values are
a result of the IL trying to reduce the plate-to-plate distance
due to the adhesion forces inside the IL. The increasing tail
size seems to reduce the effect of adhesion: for large tails
(TM9) the normal force at the minimum is close to zero, while
for symmetric cation molecules (TM5) it becomes positive
(Fz = 2 pN).

For all three curves corresponding to the three TM ILs we
can identify three characteristic ranges of the plate-to-plate
distance dz: the initial segment (11 Å r dz r 13.8 Å) character-
ized by a monotonic and steep decrease of the normal force Fz;
interval I (13.8 Å r dz r 19.8 Å) characterized by the presence
of local minima and maxima peaks of the normal force Fz, and
interval II and beyond (dz Z 19.8 Å) characterized by a continuous
and gentle decrease of the normal force Fz, where in all three cases
the normal force practically becomes zero when dz 4 32 Å.

We will briefly describe the segments of the Fz(dz) curves,
pointing out similarities and differences between the different
IL models. In the initial segment, i.e., for small gaps dz o 13 Å,
the normal force Fz is practically the same for all three systems,
meaning that it does not depend on the tail size. The steep
increase of the normal force with compression in the range
dz o 13 Å is a sign of a very high resistance of the single anionic
layer left in the gap to squeeze out. On the other hand, at large
gap values (i.e., dz 4 32 Å), the normal loads Fz in all three TM
ILs are similar and small. We can conclude that at large gaps
there is a low resistance of the IL to the gap changes. Significant
differences in the force–distance curves depending on the tail
size exist only in interval I, i.e., 13.8 År dz r 19.8 Å. In the case
of TM3, the Fz(dz) characteristic curve has two local minima and
maxima and one saddle point; in TM5 there are two local
minima and maxima; and for TM9, there is one local minimum
and maximum.

4.1.1 IL layer structure inside the gap. In Fig. 6 we show the
ionic density distribution along the z axis for the three IL
models, at points A to E, i.e., dz = {13.8, 15.5, 18.0, 19.8, 25.8} Å.
A common feature of all investigated IL models is the formation
of fixed cationic layers along the whole length of the solid plates
(top and bottom). The fixed layers and their stability are a result
of strong LJ interactions between the plates and ions. In
general, the smallest particles form the first layer next to the
plates: for TM3 these particles are tail particles (which are part
of the cation–tail pair), while for TM5 and TM9 these particles
are the cations. The consecutive layers are formed inside the
interplate gap via combined volume exclusion and Coulombic
interactions, and their ordering is consistent with the fixed
layers. As a result, tails migrate to the plates in TM3, mix with the
cationic layer when the cation–tail dimer is symmetric in TM5,
and finally mix into the anionic layer when they are large in TM9.

Fig. 4 Schematic of the simulation setup shown as a yz cross-section.
The dimensions of the system along the y and z axes, together with the
directions of the imposed normal load Fz and lateral velocity Vx, are noted.
The total system length in the x direction is 125 Å. There are two solid
plates at the top and bottom of the system (more details on the simulation
configuration are given in the ESI†). The different regions have different
colours. The ionic liquid is composed of equal numbers of cation–tail pairs
and anions (particles can be visually distinguished: cations – blue spheres,
tails – cyan spheres, and anions – red spheres).

Fig. 5 Dependence of normal force Fz on plate-to-plate distance dz. Five
characteristic points denoted {A, B, C, D, E} with the corresponding
interplate distances dz = 13.8, 15.5, 18.0, 19.8, and 25.8 Å, respectively,
are marked in the figure. They are chosen in the way that: point A is located
in the proximity of a local minimum for all three cases; point B corresponds
to a local maximum for TM5; point C is located in the proximity of a local
minimum for TM3 and TM5; point D is located in the proximity of a local
maximum for TM3 and TM5; and point E is chosen according to the
condition DE ¼ AD. For reference, the black horizontal line denotes
Fz = 0. The lines connecting points (averages of normal force) serve as
visual guides.
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Since Coulombic interactions cause the layering with alternating
charge signs, layers of anions always separate the cation layers.

We focus on analysing the changes in the segment between
points A and D, i.e., interval I. The normal force Fz changes
rapidly and non-monotonically with dz in interval I, cf. Fig. 5.
For the minimum of Fz in the vicinity of point A, i.e., for plate-
to-plate distance dAz = 13.8 Å, we can observe a well-defined
anionic layer in Fig. 6 (the corresponding snapshots of configu-
rations are given in the ESI†). The most interesting change
takes place during the A- B transition when the single layer of
anions is split into two layers, cf. Fig. 6. As a result, the normal
force Fz increases and reaches a local maximum in the proxi-
mity of point B, i.e., for plate-to-plate distance dBz = 15.5 Å. We
observe that additional anion–cation pairs are pulled inside the
gap in Fig. 7. We also observe that the two anionic layers in
Fig. 6 for point B and the one for point A have the same maximum
number density. As we increase dz further, the number of anionic
layers confined inside the gap remains unchanged and the normal
load Fz decreases slowly. At the same time, the number of ions
inside the gap steadily increases with gap width. Nevertheless, this
increase is not sufficient to keep the density of the IL inside of the
gap constant (cf. Fig. 7). Looking into the changes in the spatial
distribution of the IL components, as more cation–anion pairs are
pulled into the gap (going from A - E), we observe a steady
increase of the concentration of anions in the layer next to the
bottom plate. In the case of TM5 we have an increase from nATM5 =
18 atoms per nm3 to nDTM5 = 27 atoms per nm3, cf. Fig. 6. When we
further look at configuration snapshots for TM3 and TM5, a
formation of additional layers inside the gap is visible, between
points C and D. This can also be clearly observed in Fig. 6 and
results in a smaller maximum around dz = 19 Å, in Fig. 5. We can
conclude that the normal force–plate distance characteristics are
not correlated with the number density of the IL molecules inside
the gap, but with the layer formation as seen in Fig. 6.

Fig. 6 Ionic density distribution of ions inside the interplate gap of (a) TM3,
(b) TM5 and (c) TM9 in characteristic points {A, B, C, D, E} selected in the static
force–distance characteristics presented in Fig. 5. The positions of the atomic
centres of the innermost atomic layers of the (moving) top and (fixed) bottom
plates are labeled zA–ET and zB, respectively. The five characteristic points,
denoted {A, B, C, D, E}, have the corresponding interplate distances
dz = zT � zB = 13.8, 15.5, 18.0, 19.8, and 25.8 Å, respectively.

Fig. 7 Evolution of the number of confined ionic liquid (IL) molecules
(bottom curves) and density (top curves) inside the gap with gap width
dz for TM3, TM5 and TM9 at characteristic points {A, B, C, D, E} selected
from the static force–distance characteristics (Fig. 5). The corresponding
axes for the number of IL molecules and the density are given on the
left and right sides, respectively. The densities at characteristic points for
the dynamic cases (intervals I and II) are also given, i.e., I1,2,3 and II1,2. The
five characteristic points denoted {A, B, C, D, E} in the static and I1,2,3 and
II1,2 dynamic cases have the same corresponding interplate distances
dz = 13.8, 15.5, 18.0, 19.8, and 25.8 Å, respectively.
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As the interplate distance dz increases further, from point D
to E, we notice additional cations in the middle of the gap and
the formation of a third cationic layer in all three systems. We
can make an interesting observation: for all three models the
tails in the middle of the confinement are grouped into three
regions: one overlapping with cations at z = 34 Å and two
located between the cationic and anionic layers, i.e., z = 30 and
38 Å, cf. in Fig. 6. This outcome is reminiscent of the findings
from ref. 14, where the authors have experimentally obtained
the formation of the tail-to-tail bilayer of cationic dimers in
case the alkyl chain length is oversized.

4.1.2 IL crystallinity: the influence of the gap. We show the
xy cross-sectional snapshots in Fig. 8 in order to observe the
IL’s in-plane structure at the cross-section just below the top
plate. We mark the boundaries of the top plate spatial region
with the vertical dashed lines. The central area of the panels in
the figure corresponds to the interplate gap region and it repre-
sents a half of the total cross-section’s width in the y direction,
while the remaining area corresponds to the lateral reservoirs.
The solid lines mark the orientation of crystal grains in those
areas, where we can observe the presence of structural ordering.
In the case of TM3, we observe the presence of partial triangular
ordering only at point B when the structure is the most
compressed. We do not notice any crystallization for symmetric

dimers (TM5), which confirms that the symmetric tail prevents
ordering both under confinement and in the bulk. Contrary to
the previous two cases, we observe crystallization for all con-
figurations with the large tail (TM9). Additionally, we observe
changes in the type of crystalline structure. While in the lateral
reservoirs a triangular lattice arrangement is always present,
depending on the amount of compression we observe triangular
lattice arrangements at points A and D and square lattice arrange-
ments at points B and C. Even more surprisingly, the order is lost
when the tail-to-tail bilayer is formed at point E.

4.2 Cyclic extension and compression of confined ILs

The top plate was moved between the two limiting points of
intervals I (dAz r dz r dDz ) and II (dDz r dz r dEz ). We investigated
the dynamic behaviour of the confined IL thin film during the
cyclic movement of the top plate along the z axis, i.e., the
interplate gap was periodically extended (extension half-cycle)
and compressed (compression half-cycle). We investigated our
system at three velocities Vz = {0.1, 1, 10} m s�1, but we did not
observe any velocity dependent differences in the system beha-
viour. The confined ionic liquid lubricant responds to the cyclic
movement of the top plate with a hysteresis in normal force
Fz(dz) shown in Fig. 9. We present the detailed results of
TM5’s dynamic behaviour in panels (a) and (c) of Fig. 9. Also,
in panels (b) and (d) of the same figure, we present together
the smooth average cycles of our three IL models (TM3, TM5,
and TM9).

4.2.1 Narrow gap: normal force hysteresis. We will now
discuss in detail the response of TM5 to the cyclic motion of the
top plate, in interval I shown in Fig. 9(a). Ten compression–
extension cycles are shown (thin lines) with an average cycle
superimposed on them (thick line). We identify three points of
interest: {I1, I2, I3}, i.e., the two terminal points of the cycle and
the point with the maximal normal force, respectively. These
three points also correspond to points {A, D, B}, respectively,
in the quasi-static characteristics shown in Fig. 5. Point I3 corre-
sponds to the maximum of normal force Fz both in the cyclic
compression cycle and in the static characteristics of TM5,
which makes the comparison more straightforward.

The normal force Fz decreases down to a value close to zero
during the extension half of the I1 - I2 cycle. The anion–cation
pairs are pulled into the gap from the lateral reservoirs as the
gap is extended and at point I2 an additional anionic layer is
fully formed inside the gap. Actually, instead of the two fixed
layers of cations which shared one anionic layer, we obtain two
separate anionic layers. The total number of ions pulled in is
about 60 atoms or 0.22 atoms per (nm2 ns) at 1 m s�1 plate
linear speed. In the first part of the compression half-cycle,
I2 - I3, the ions are compressed and the density and the
normal force Fz increase. Somewhat surprisingly, we observe
that an equal number of ions flow out, while the normal force
increases, i.e., I2 - I3 and during its sharp decrease, I3 - I1
(cf. Fig. 7). The sharp decrease of the normal force Fz in the
I3 - I1 segment is therefore a result of two processes: out-flow of
the ions from the gap and the collapse of the anionic double layer
and its rearrangement into a single anionic layer. The resulting

Fig. 8 Configuration snapshots (xy cross section) of TM3, TM5 and TM9
at five characteristic points {A, B, C, D, E}. The five characteristic points,
denoted {A, B, C, D, E}, have the corresponding interplate distances
dz = 13.8, 15.5, 18.0, 19.8, and 25.8 Å, respectively (see also Fig. 5).
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final density rdynIL = 1.95 atoms per nm3 of the system is slightly
higher than in the static case rstatIL = 1.85 atoms per nm3,
cf. Fig. 7. The value of the normal force Fz at point I1 is similar,
i.e., Fz = 4 pN, in both the static and dynamic cases.

In Fig. 9(b), we observe that each one of the three investi-
gated ionic liquids (TM3, TM5, and TM9) exhibits different
behaviour in the average Fz(dz) cycle during the extension and
compression half-cycles. First, at the onset of the extension
half-cycle, i.e. at point I1, the normal force Fz has a positive
value for symmetric cations (TM5), it is close to zero for large
tails (TM9), and it is negative for small tails (TM3). Somewhat
surprisingly, the normal force increases for both TM ILs with
asymmetric cations (TM3/TM9), while it decreases for sym-
metric cations (TM5). The reason for this behaviour is the
strong interaction of the fixed layers of ions adjacent to the
plates with the plate particles. This interaction drives as many
ions inside the gap as possible, resulting in the non-intuitive
behaviour of the normal force due to the interplay of density
and intra-IL LJ interactions. During the compression half-cycle
for all three ILs the maximal normal force sustained was about

50% smaller than that in the quasi-static case, i.e., for TM5 the
maximal force is Fmax

z = 17 pN in the dynamic case and Fmax
z =

40 pN in the static case (see Fig. 5 and 9(b)). This observation
indicates that the top plate’s motion prevents the IL from filling
the gap. We can also conclude that the mechanical response is
mainly due to the rearrangement of the fixed layer and that the
mobility of the IL molecules is too low to significantly increase
the normal force resisting the compression. If we analyse the
rate of mass transfer outside of the gap, we conclude that there
is a substantial slip, which results in a lower normal force.
Without slip at a velocity Vz = 1 m s�1, the normal force calculated
based on the bulk viscosity coefficient would be roughly two
orders of magnitude higher.

4.2.2 Wide gap: monotonic force–distance characteristics. The
expansion–compression force–inter-plate distance characteristics
for interval II in the case of TM5 are given in Fig. 9(c). The
difference from the quasi-static extension/compression in Fig. 5
is the monotonic behaviour during the strike. The quasi-static
characteristics in interval II featured local minima and maxima
in the case of TM3 and TM5. In the dynamic case, there are only

Fig. 9 The results of dynamic extension–compression cycles are shown for intervals I and II. In panels (a) and (c) we present dynamic Fz(dz)
characteristics in the case of TM5 for intervals I and II, respectively; thin lines represent the hystereses of ten dynamic cycles, and the solid line on top of
them is the smooth average hysteresis. There is also a solid horizontal line which corresponds to Fz = 0. In (a) points I1, I2, and I3 denote representative
points: I1 – starting point, I2 – ending point, I3 – global maximum of the Fz(dz) curve. In (c) points II1 and II2 denote representative points: II1 – starting
point and II2 – ending point. The arrows show the direction of hysteresis (extension I/II1 - I/II2 followed by compression I/II2 - I/II1). In panels (b) and (d)
we show together the smooth average hystereses Fz(dz) of our three TMs, for intervals I and II, respectively. The starting and ending points and arrows are
denoted, analogous to panels (a) and (c).
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two characteristic points (starting and ending points) {II1, II2} and
a monotonically changing normal force between them. In the
extension half-cycle there is a continuous decrease of the normal
force Fz followed by its continuous increase in the compression
half-cycle. The difference between the cycles in the normal force
is small. In the dynamic characteristics of interval II the layer
structure is similar to that of the static case, i.e., two fixed layers
stay-in-place and the tail double layer is formed during the
extension half-cycle (the configuration snapshots are given in
the ESI†). In contrast to interval I, the formation of the additional
layer of tails is not a result of the ions flowing from the lateral
reservoirs into the gap. The density inside the gap is 10% higher
in the dynamic case and a few atoms (less than 30) are displaced
during the cycle. We should note that the gap is also 50% larger
in interval I compared to interval II; therefore, the decrease in
density is even less striking. Actually, the cyclic motion has a
tendency to increase the density inside the gap. Since there is no
large displacement of the ions in and out of the gap in interval II,
there is also no maximum of the normal force Fz, similar to the
one we have seen in the case of interval I, cf. Fig. 9(a). In order to
make comparisons of different TM ionic liquidmodels, in Fig. 9(d)
we show together the Fz(dz) average cycle dynamic characteristics
of all three IL models (TM3, TM5, TM9) for interval II. Compared
to interval I, the tail size does not have such a pronounced impact
on Fz(dz) hysteresis curves in interval II.

4.2.3 Energy losses due to cyclic expansion–compression.
At this point, we would like to quantify how the processes
arising during the dynamic cyclic movement of the top plate
contribute to energy losses. We calculate the area covered during
the extension–compression cycle (i.e., the area inside the Fz(dz)
hysteresis). This area is equivalent to the work invested per
average dynamic cycle, i.e., the hysteretic energy losses. We show
the dependence of the energy losses on the tail size for both
intervals I and II in Fig. 10. We observe a clear tendency of the
increase of the invested work per dynamic cycle, with the
increase of the tail diameter. This is primarily due to the larger
volume occupied by the tails, resulting in larger normal forces

resisting compression. There is a striking difference in the
amount of invested work between the two intervals I and II
(e.g. 27 pN Å for interval I of TM9 compared to 5 pN Å for
interval II of TM9). This difference is proportional to the maximal
normal force, which is sustained by the systems in the two
intervals (cf. Fig. 5).

4.3 Tribological behaviour of confined ionic liquids

We have conducted static and dynamic characteristic analysis
of the three generic IL models, focusing on the influence of
their molecular structure on their anti-wear performance. In
order to obtain a full picture, it is crucial to determine the IL’s
friction behaviour under different shear conditions. In this
section we apply a relative motion between the plates by moving
the top plate along the x-axis (see Fig. 4) and we observe the
resulting frictional force (also along the x-axis, i.e., Fx). We have
performed two types of friction simulations: (i) at a constant top
plate’s velocity Vx = 2 m s�1, the simulations are performed at
different fixed values of the gap: dz = 12 Å to 25.5 Å; and (ii) at a
fixed gap dz = 15 Å the top plate’s lateral velocity takes five
different values: Vx = {0.1, 0.3, 1.0, 3.0, 10.0} m s�1. In all friction
simulations, the total distance covered by the top plate was
Dx = 100 Å in the x direction.

The dependence of the time-averaged frictional force hFxi on
the interplate gap dz for the three IL models is shown in Fig. 11.
The points obtained in the simulations are shown as markers.
Linear fits through these points are provided as visual guides.
For TM3, we observe a decrease of the frictional force hFxi with
the size of the gap. On the other hand, the frictional force
weakly depends on the interplate gap width in the case of TM5
and TM9 ILs. Both the TM3 and TM9 ILs have high zero shear-
rate (Green–Kubo) bulk viscosities correlated with the extent of
their ordering, i.e., ZGKTM3 4 ZGKTM9 4 ZGKTM5. When comparing their

Fig. 10 Energy losses per average cycle as a function of the tail size for
intervals I and II of dynamic extension–compression cycles.

Fig. 11 Average frictional force hFxi acting on the top plate as a function
of the plate-to-plate distance dz for confined TM3, TM5 and TM9 ionic
liquid lubricants. In the case of TM3 there is a clear linear dependence
showing the decrease of frictional force intensity with gap increase, while
in the case of TM5 and TM9 the frictional force is practically constant and
does not depend on the gap.
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tribological performances in a thin film, we can conclude that
there is no correlation since the TM5 IL has the highest average
frictional force. In Fig. 12, we show the dependence of the
specific friction hFxi/hFzi on the top plate’s lateral velocity Vx in
the case of TM5. We obtain specific friction values of the order
hFxi/hFzi E 0.01, which are comparable to the results of Dold
et al.3 for symmetric [PF6]

� anions. We also observe a similar
tendency of decreasing friction force with respect to tail size, as
reported in the same ref. 3.

The specific friction hFxi/hFzi is defined as the ratio of the
time averaged frictional hFxi to normal hFzi force and it is
different from the Coulombic friction coefficient m = qFx/qFz.
Consistently with our previous results for model ionic liquids,
we have observed a logarithmic dependence of the specific friction
on the lateral velocity, cf. ref. 18. The numerical values are fitted
to a linear function of the form hFxi/hFzi = a log(Vx/Vref) + b,
where Vref = 1 m s�1. The coefficients of the linear fit took the
following values: a = 0.001 and b = 0.008. A reasonable fit to
the linear regression curve can be observed. The logarithmic
dependence indicates typical elastohydrodynamic lubrication
(EHL) conditions.41

5 Discussion

Ionic liquids interact via long-ranged Coulombic forces and
their models require high-performance computational resources.
This opens a question of the minimal model needed to capture
the properties of the molecular processes governing lubrication
mechanisms and the macroscopic performance relevant for
engineering applications. In this paper, we investigate a generic
tailed-model (TM) of ionic liquids (ILs), which includes an
asymmetric cation consisting of a positively charged head and
a neutral tail of variable size and a large spherical negatively
charged anion. We observe that, though simple, this model
results in striking differences in the equilibrium IL bulk
structure governed by the tail size relative to the cationic head:
(i) a simple cubic lattice for small tails, (ii) a liquid-like state for

symmetric cation–tail dimers, and (iii) a molecular layer struc-
ture for large tails.

We have investigated the influence of the molecular structure
of a cation dimer on the response of three ILs to confinement
and mechanical strain using molecular dynamics simulations.
The properties of the three IL models are compared in and out of
equilibrium. We have related the evolution of the normal force
with inter-plate distance to the changes in the number and
structure of the confined IL layers. We find that the density
inside the gap has a secondary effect on the evolution of the
normal force. We observe that symmetric molecules offset intra-
IL adhesion due to the ordering of the IL. As a result, the thin
layer of symmetric IL molecules exhibits non-negative normal
force independent of the gap width. In analogy to the experi-
mental observations, a tail-to-tail bilayer is formed for wide gaps
in all three investigated model ILs. A mutual feature of all the
investigated model ILs is the formation of fixed (stable) layers of
cations along the solid plates. The fixed layer formation is a
result of strong LJ interaction between the plates and ions.
A consequence of the fixed layer stability is a steep increase of
the normal force at small interplate gaps. The steep increase of
the normal force is an effect useful for preventing solid–solid
contact and the accompanying wear. The tails attached to the
cations in the fixed layer migrate with increasing tail size. Small
tails form the first layer next to the plates. For symmetric
molecules the tails form a mixed layer with cations, while large
tails form a mixed layer with anions.

We have explored the dynamic behaviour of IL thin films
under cyclic extension–compression movements of the top plate.
Two intervals of the interplate distances are investigated: a
narrow gap interval, where the anionic layer is split into two,
and a wide gap interval, where a tail-to-tail layer is formed. For
the narrow gap interval, we observe a significant flow of ions
during the cyclic motion of the top plate. A sharp decrease of the
normal force at the final stage of compression is not only a
consequence of the density change due to the flow, but is also a
result of merging of the two anionic layers that repel each other
by the electrostatic Coulomb forces into a single one. The
mobility of ions in/out of the gap is driven by their interaction
with plates, i.e., filling of the fixed layers. As a result, for the
narrow gap, the number of ions that entered the gap is 50%
smaller in the dynamic case than in the static case. This results in
a smaller density inside the moving narrow gap. The difference
between the dynamic and static cases for the wide gap was even
more striking. The number of ions that entered the gap is 80%
smaller in the dynamic case than in the static case. Surprisingly,
in the wide gap the density is higher in the dynamic case due to
the lack of mobility of ions. The invested work per average cycle
increases with tail size for all three IL models. As one could
expect, the invested work is higher for the narrow gap where the
number of confined ions/ionic layers changes during the cycle.
Nevertheless, the low hysteretic losses suggest the presence of
strong slip inside the gap, facilitating in- and out-flow of ions in
the gap. An increase of the tail size reduces the friction force in
our model. Depending on the tail size, the friction force decreases
with increasing gap for small tails and it increases for large tails.

Fig. 12 Specific friction
hFxi
hFzi

dependence on the top plate’s lateral velocity

Vx in the case of TM5.
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6 Conclusion

Understanding the interplay between the different processes
taking place in thin lubricant films is important due to the
conflicting demands imposed on how IL lubricants should
behave in dynamic confinement. On the one hand, a high
load-carrying capability requires strong adsorption of the lubri-
cant to the surface, while, on the other hand, fast self-healing
and low friction require high mobility/low viscosity. Our results
confirm that the behaviour of ILs in confinement can be
unrelated to their bulk behaviour, and therefore, it should be
possible to achieve simultaneously, typically conflicting, low
friction and good anti-wear performance. A search for optimal
IL lubricants, using either synthesis and test methods or state-
of-the-art computer-aided molecular design methods,42 should
take into account the micro-scale properties of lubricating thin
films (e.g., normal force vs. number of layers characteristics), in
which the effects of molecular-level processes are more pro-
nounced. Directing the optimisation efforts towards the micro-
scale would enable a better differentiation of the qualities of
different ionic liquids.
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Abstract. We present a molecular dynamics study of the effects of confinement on the lubrication and flow
properties of ionic liquids. We use a coarse-grained salt model description of ionic liquid as a lubricant
confined between finite solid plates and subjected to two dynamic regimes: shear and cyclic loading. The
impact of confinement on the ion arrangement and mechanical response of the system has been studied
in detail and compared to static and bulk properties. The results have revealed that the wall slip has a
profound influence on the force built-up as a response to mechanical deformation and that at the same
time in the dynamic regime interaction with the walls represents a principal driving force governing the
behaviour of ionic liquid in the gap. We also observe a transition from a dense liquid to an ordered and
potentially solidified state of the ionic liquid taking place under variable normal loads and under shear.

1 Introduction

In this work, the lubricating ability and flow properties of
salt model ionic liquids (ILs) containing salt-like spherical
cations and anions are studied. ILs are molten salts typ-
ically consisting of large-size organic cations and anions.
The thermochemical stability, negligible vapor pressure,
viscosity, wetting performance and other physicochemical
properties of ILs are important factors contributing to the
interest in their research for lubricant applications [1, 2].
In addition, their properties can be modified by an ap-
plied voltage using confining charged surfaces in order to
build up an electric field across the nanoscale film. The
applied potential can affect the structure of IL layers and
lead to externally controllable lubricating properties [3–5].
There is also a significant flexibility in tuning the physical
and chemical properties of ILs which can affect lubrication
such as viscosity, polarity and surface reactivity, by vary-
ing their atomic composition as well as the cation-anion
combination. The thermal stability and negligible vapor
pressure of ILs enable their usage at a high temperature.

� Contribution to the Topical Issue “Flowing Matter, Prob-
lems and Applications”, edited by Federico Toschi, Ignacio
Pagonabarraga Mora, Nuno Araujo, Marcello Sega.

a e-mail: mdasic@ipb.ac.rs
b e-mail: igor.stankovic@ipb.ac.rs

Regarding the ability of ionic liquids to dynamically
penetrate between surfaces, i.e. wetting, sometimes it is
considered that a low contact angle of the lubricant indi-
cates the affinity between the liquid and the surface, since
the liquid is more likely to stay in the area in which it
was initially placed. It is also expected that a lubricant is
going to penetrate into small-gap components. However,
the effect of wettability of the ionic liquids is not under-
stood well. The wetting of plate surfaces such as mica is
known to be partial by at least some ILs [6, 7]. Lubrica-
tion necessarily involves intimate molecular features of the
liquid-solid plate interface, related with those mechanisms
determining the ionic liquid’s wetting of the plate. When
ILs are used as lubricants, their ions are ordered into lay-
ers and adsorbed onto surfaces [8]. These adsorption layers
can reduce friction and wear, particularly in the case of
boundary lubrication [8].

An important observation is that ILs confined be-
tween surfaces feature alternating positive and negative
ionic layers, with an interlayer separation correspond-
ing to the ion pair size [9, 10]. However, determining
the structure of ILs during flow and the mechanism of
nanoscopic friction with ILs as lubricants, poses a great
scientific challenge, and so far a few studies in this di-
rection have been performed [3]. ILs involve long-range
Coulombic interactions inducing long-range order on far
greater scales than the IL itself [11–13]. Recent studies of
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IL lubricants [3–5, 10] have shown that if the molecules
interact via non-bonded potentials (Lennard-Jones and
Coulombic potential), this can capture all main physical
attributes of the IL-lubricated nanotribological system.
Therefore, molecular-scale simulations can provide impor-
tant insights which are necessary for understanding the
differences in the flow behaviour between bulk and con-
fined liquid lubricants and the mechanisms behind, such
as boundary layers formation in case of shearing and/or
applied normal load.

For this study, we utilize our previously developed
coarse-grained molecular dynamics (MD) simulation setup
consisting of two solid plates, and an ionic liquid lubricant
placed between them [10]. The motivation for the chosen
values of relevant model parameters (i.e., velocities, pres-
sures, temperatures, time duration of simulations) comes
from potential applications of ILs as lubricants in automo-
tive industry. Under typical operation of internal combus-
tion engines, the conditions inside the combustion cham-
ber vary significantly. Temperature can range from 300K
to the values higher than 2000K, while pressure ranges
from atmospheric to the values higher than 10MPa [14].
The piston reciprocates with a sinusoidal velocity varia-
tion with speeds varying from zero to over 20m/s, with a
typical speed being around 1m/s. The time required for
one revolution of the engine is of the order of 10−2 s, while
the total distance travelled by the piston over this period is
of the order of 0.2m. Such scales are typically modelled us-
ing continuum mechanics simulations. However, such sim-
ulations cannot provide the physical insight which is neces-
sary for understanding the molecule-dependent processes
that affect the tribological phenomena. Therefore, we have
impemented a coarse-grained MD simulation setup which
can, inter alia, provide useful insights to lubrication mech-
anisms of piston ring-cylinder liner contact in automotive
engines.

The determination and design of new applicable lu-
bricants require the understanding of both general and
specific behaviours of liquids when exposed to nanoscale
confinement, shearing and normal load. In this study our
focus is on determining the general features of ILs as
nanoscale lubricants. Hence, we have chosen the model
of a generic IL which is simple in order to provide a wide
perspective of the relevant mechanisms governing the IL
lubrication principles.

This paper is organized as follows: sect. 2 introduces
the model and MD simulation setup of the solids and lu-
bricants used, while the motivation for the choices made
is provided. In sect. 3 the structure and viscosity charac-
teristics of the bulk ionic liquid are presented. Section 4
deals with the static and dynamic behaviour of confined
IL. It also presents the results of confined IL’s shear be-
haviour. Section 5 includes an overview of the principal
observations and conclusions.

2 Model

The model used in this work is a coarse-grained model
of IL which has already been exploited in previous stud-

ies [3–5,10] and it is known as SM model (salt-like model).
It is a charged Lennard-Jones system consisting of cations
and anions. There are two types of interatomic interac-
tions in our system and both of them are non-bonded:
Lennard-Jones (LJ) potential and Coulombic electrostatic
potential. In the current work we are comparing bulk and
confined IL properties. Therefore, there are three differ-
ent atom types taken into consideration: i) cations, ii) an-
ions and iii) solid plate atoms. Between all types of atoms
we apply the full LJ 12-6 potential, with the addition
of the Coulombic electrostatic potential for the interac-
tions between ions. In our system the cations and the an-
ions are charged particles, while the solid plate atoms are
electroneutral. Accordingly, we have implemented a LJ
12-6 potential combined with a Coulombic electrostatic
potential:

V (rij) = 4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]

+
1

4πε0εr

qiqj

rij
.

(1)
Parameters {εij , σij} define the LJ potential between

different types of particles: i, j = A,C,P which refer to
anions, cations and solid plate atoms, respectively. The
diameter of cations and anions is set to σCC = 5 Å and
σAA = 10 Å, respectively. The mass of cations and anions
is mC = 130 g/mol and mA = 290 g/mol, respectively. The
asymmetry of ion sizes is typical in many experimentally
explored systems and the parameters have already been
explored in the literature, cf. refs. [5, 10]. The atoms of
the solid plates have a diameter of σPP = 3 Å. The mass
of the solid plate atoms is mP = 65 g/mol. The LJ po-
tential has a short-range impact, since it vanishes rapidly
as the distance increases ∝ r−6, while the Coulombic po-
tential has a long-range impact, ∝ 1/r. To handle long-
range interactions, we have used a multi-level summation
method (MSM) [15], since it scales well with the number
of ions and allows the use of mixed periodic (in x and
y directions) and non-periodic (in z-direction) boundary
conditions, which are present in our simulation setup with
confined IL. On the other hand, in our simulation setup
with bulk IL, periodic boundary conditions are applied in
all three directions ({x, y, z}). Ions are modelled as coarse-
grained particles, the charge of which is set equal to ele-
mentary: qC = +e and qA = −e, i.e., e = 1.6 · 10−19 C.
The dielectric constant is set to εr = 2 to account for the
dielectric screening, as in refs. [4, 5, 10].

In this study, modelling the elasticity of metallic plates
plays a secondary role (central role belongs to the lateral
and normal forces created by the lubricant). Therefore, we
have selected a simplified model in which plate atoms in-
teract strongly with each other if they belong to the same
plate, i.e., εPP = 120 kCal/mol, as opposed, to a very
weak interaction between the different plates εtop/bottom =
0.03 kCal/mol. The parameter εPP is so strong in order
to ensure that the initial configuration of the solid bod-
ies will basically remain unchanged (apart from high fre-
quency oscillations). Furthermore, even though typical en-
gineering systems are often metallic, our initial coarse-
grained MD studies of liquid behaviour according to the
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Table 1. List of LJ parameters used in simulations.

Pair ij εij (kCal/mol) σij (Å)

CC 0.03 5

AA 0.03 10

CA 0.03 7.5

PC 0.3 4

PA 0.3 6.5

PP 120 3

applied conditions justified the implementation of a sim-
pler solid system which does not feature substrate polar-
ization, cf. ref. [10]. Finally, it is possible that the actual
surfaces might feature carbon coatings or depositions, in
which case the surface polarization can be of secondary
importance.

In table 1 we are presenting the values of {εij , σij}
parameters used in our model. Arithmetic mixing rules
for the LJ parameters are applied: εij = √

εi · εj , σij =
(σi + σj)/2.

3 Bulk ionic liquid

All MD simulations in this study were performed using
the LAMMPS software [16]. The bulk ionic liquid is im-
plemented by randomly placing a chosen number of ions
(NC = NA = 1000) into a 3D simulation box that is peri-
odic in all three directions. In order to make the bulk IL
comparable with its confined counterpart, we have cho-
sen a simulation box volume which enables the pressure
experienced by the confined IL. More specifically, for the
present system, the pressure is p ≈ 1MPa. The Nose-
Hoover NVT thermostat was used to control the temper-
ature and was set to T = 330K. The system was relaxed
for ttot = 3 · 107 fs until the internal energy had converged
and the pressure had approached the desired value. The
simulation timestep was dt = 0.5 fs. We have obtained
pressure stabilization at 〈p〉 = 1.1MPa with a side length
of the cubic simulation box at L = 99 Å. The energy re-
laxed to a value of 〈Eint〉 = 0.7597 kCal/mol. The molar
and mass density of the bulk IL is ρn = 3400mol/m3 and
ρm = 719 kg/m3, respectively.

We have calculated the viscosity in two ways: using the
Green-Kubo relation since the viscosity of a system can
be represented as an integral of the autocorrelation func-
tion [17], and using non-equilibrium molecular dynamics
simulations with different shear strains.

In the non-equlibrium shearing simulations, the bulk
IL is placed into a triclinic (non-orthogonal) simulation
box with periodic boundary conditions applied in all three
directions. Due to the deformation of the simulation box,
every point in the box has an additional velocity compo-
nent (a so-called streaming velocity). In order to prevent
the streaming velocity from affecting the thermal kinetic
energy, we use the so-called SLLOD thermostat [18, 19].
The SLLOD thermostat accounts for the streaming veloc-

Fig. 1. Dependence of the Green-Kubo (GK) viscosity coef-
ficient ηGK on the simulation time ts in the case of the bulk
ionic liquid. The time needed to obtain the viscosity coefficient
is around trel = 5ns.

ity which depends on an atom’s position within the sim-
ulation box and it needs to be accounted for controlling
the temperature.

Controlled shearing of the simulation box results in a
stress acting on IL, which is quantified via the stress ten-
sor. The relation between the stress tensor τij components
and the shear rate γ̇ij of the corresponding shear strain εij ,
with coefficient of viscosity ηij as a proportionality con-
stant is τij = ηij · ˙γij , where ij = {xy, xz, yz}. We have
applied three independent shear strains (εxy, εxz, εyz). For
each of them we have calculated its corresponding stress
tensor component (τxy, τxz, τyz). All shear strains were the
same: εxy = εxz = εyz = ε = 1 leading to the shear rate of
γ̇ = ε · 1

ttot
= 1

ttot
, where ttot is the total simulation time

of the shearing simulations. We have performed simula-
tions at four orders of magnitude of the total simulation
time: ttot = {0.1, 1, 10, 100}ns, and thus at four orders of
magnitude of the corresponding shear rate. In this way
we wanted to check the quality of our relaxation proce-
dure and if there are shear rate dependence changes in
the system. We have iterated the shearing simulations (at
a shearing velocity of 1m/s) using the output of the pre-
vious run as the input of the next run, obtaining higher
strains (up to a strain of 5). We did not observe a strain
dependence in the response of the system, meaning that
the result is unaffected if the strain is further increased.

In fig. 1, we show the time relaxation of the Green-
Kubo viscosity coefficient, which stabilizes around ηGK =
0.2039mPa · s. The configuration snapshot of the bulk IL
at the end of the simulation (cf. fig. 2) shows that the ions
remain randomly positioned, like they were at the start
of simulation, which indicates the liquid state of the bulk
ionic liquid. The simulations for all three shear strains
give similar values of stress components, and resulting val-
ues are shown in fig. 3. The points {γ̇, τ} were obtained
via shearing simulations and the solid line was obtained
according to τ = ηGK · γ̇, where ηGK was obtained via
the Green-Kubo relation. Hence, we conclude that the re-
sults of shearing simulations are in agreement with the
results of the relaxation simulation and therefore there
are no changes in the bulk system which are shear rate
dependent.
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Fig. 2. Configuration snapshot (yz cross-section) of a bulk IL
at the end of relaxation simulation. Cations are represented as
smaller blue spheres and anions as larger red spheres.

Fig. 3. Average stress tensor component τ as a function of
the shear rate γ̇ of a bulk SM ionic liquid. We have conducted
shearing simulations on four orders of magnitude of the shear
rate γ̇, therefore with three orders of magnitude span, which
is followed by three orders of magnitude span of τ . Points are
obtained via shearing simulations and the solid line is obtained
according to τ = ηGK · γ̇, where ηGK is obtained via the Green-
Kubo relation.

4 Confined ionic liquid

In order to study the properties of our ionic liquid un-
der confinement, we use a setup consisting of two solid
plates (so-called Top and Bottom plates) and ionic liquid
lubricant placed between them. Such simulation setup has
been introduced and described in detail in our previous
paper [10], hence at this point we will describe it briefly.
The geometry is shown as a schematic in fig. 4(a) together
with the number of the coarse-grained particles used. In
fig. 4(b) we show a configuration snapshot of our system
in yz cross-section. By implementing such a geometry we
have attempted to achieve a realistic particle squeeze-out
behaviour with the formation of two lateral lubricant re-
gions in a similar manner to the simulations of Capozza
et al. [5]. For the description of the solid surfaces we have
combined rigid layers of particles moving as a single en-
tity on which the external force or motion is imposed, de-

noted by “Top Action” and “Bottom Action” in fig. 4(a),
with thermalized layers, denoted by “Top Thermo” and
“Bottom Thermo” in which particles vibrate thermally
at T = 330K. The particles in the Top and Bottom ac-
tion layers are moved as rigid bodies and particles in the
thermo layers are allowed to move thermally. In this way,
we prevent a progressive deformation of the plates during
the cyclic movement. The thermo layers only vibrate ther-
mally since a strong LJ interaction holds them together.
The ionic liquid is neutral in total, so the total number
of cations and anions is the same: NC = NA = NIL/2. In
the present simulations the total number of IL atoms is
NIL = 2500.

The plates are driven along the x-direction at a con-
stant velocity Vx, as shown in fig. 4(a). The solid plates
are made up of nine atomic layers at a FCC (111) lattice
arrangement. Periodic boundary conditions are applied in
the x and y directions, while the simulation box is kept
fixed in the z-direction. The Bottom plate can therefore
be considered to be infinite, while the Top plate is sur-
rounded by the lateral reservoirs, in which the lubricant
can freely expand. The lateral reservoirs are implemented
as a mechanistic way for allowing the lubricant to be dy-
namically squeezed in or out as an external load or velocity
is applied. The number of lubricant molecules effectively
confined inside the gap can dynamically change depending
on the loading conditions. This is important for explor-
ing the possible states of a mechanical system of particles
that is being maintained in thermodynamic equilibrium
(thermal and chemical) with a lubricant reservoir (i.e.,
void spaces in tribological system). The nano-tribological
system is open in the sense that it can exchange energy
and particles, realizing an effectively grand-canonical sit-
uation [20,21].

We have shown that our bulk IL is a Newtonian fluid:
the validity of the τ = ηGK ·γ̇ relation over the whole range
of shearing rate γ̇ supports that fact. Our model does not
assume the nature of the viscous response of IL. Only
based on simulation results we conclude that the bulk salt
model (SM) IL behaves as a Newtonian fluid. For a dif-
ferent choice of parameters one could obtain power law
or solid-like behaviour. On the other hand, confinement
has a profound influence on the structure of ILs in thin
films [9,10,20,22], therefore when the same IL is confined
it does not behave as a Newtonian fluid, as we will show
in the rest of the paper.

The confining surfaces can induce ordering of the par-
ticles in their vicinity. We have used simulations to ob-
tain the static force-distance characteristic [10]. In order
to determine a reliable static force-distance characteristic,
at each calculation point we have to ensure the system is
in equilibrium. Concerning the realization of those sim-
ulations the interplate gap is modified in the following
manner: the gap is increased or decreased (i.e., the Top-
Bottom plate distance is changed) with a constant velocity
Vz = 5m/s for a move period of time tmove = 20ps; there-
after, we apply conjugated gradient minimization on the
ions in order to minimize their internal energy and relax
them after the move period. As the energy minimization
is performed, the ions take positions which ensure their
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Fig. 4. (a) Schematic of the simulation setup shown as yz cross-section. There are two solid plates at the top and bottom of the
system (i.e. Top and Bottom plates, names are chosen according to their position along the z-axis), consisting of two regions: at
the outermost ones the particles are moving as a single entity (Top/Bottom Action) and at the innermost ones the particles are
thermalized at a controlled temperature (Top/Bottom Thermo). The thermalized layers are in direct contact with the lubricant
while the action layers are used to impose external velocity and/or force to the solid plates. (b) Front (yz) view with respect
to the shear direction. A typical simulation configuration and key dimensions of the geometry are given. The solid plates are
made up of FCC (111) atomic layers. The ionic liquid is composed of an equal number of cations and anions (cations: smaller
blue spheres; anions: larger red spheres).

minimal internal energy and the Top plate stays fixed for
a stay period of time tstay = 50ps, during which period
the average value of the normal force is calculated; that
value is presented as a simulation point in Fz(dz) static
characteristic, cf. fig. 5. In order to avoid systematic errors
due to the initial position or direction, the plate movement
is performed in different directions and from different ini-
tial configurations, hence fig. 5 shows the averaged values
of several realizations.

4.1 Equilibrium behaviour of confined ionic liquid

A non-monotonous behaviour of the normal force Fz act-
ing on the Top plate can be observed in fig. 5 as the
plate-to-plate distance changes from one point at which
system is equilibrated to another, using the previously de-
scribed procedure. The points (dz, Fz) have been obtained
through our simulations, while the dashed line serves as a
visual guide. It can be seen that the normal force strongly
depends on the interplate distance. The presence of nega-
tive values of normal force Fz can be understood as the IL
trying to reduce the plate-to-plate distance due to adhe-
sion phenomena. These changes of the normal force are
correlated with the extraction and inclusion of IL lay-
ers into the gap, as already observed experimentally, cf.
ref. [9]. During the performed stationary state simulations,
the cationic-anionic layers were squeezed out in pairs, in
order to keep the system locally neutral, as observed in
experimental studies [8, 9, 20,22,23].

There is a strongly decreasing trend of the maximal
normal force which can be sustained by the system as
the number of ionic layers confined between the plates in-
creases, i.e., for the two ionic layers the maximal force
F I

z,max = 3pN, while for the three ionic layers it is
F II

z,max = 0.25 pN. In our model, the Lennard-Jones in-
teraction between the plates and the ions is ten times
stronger than between the ions themselves. The ionic lay-

Fig. 5. Dependence of the normal force Fz acting on the
Top plate on the plate-to-plate distance dz. Five character-
istic points {I1, I2, I3, II1, II2} with corresponding interplate
distances dz ≈ {14, 20, 17, 22, 27} Å are marked on the Fz(dz)
curve. Also, the two characteristic intervals of dz are labeled,
where the interval I is bounded by the points I1 and I2, while
the interval II is bounded by the points II1 and II2. The hor-
izontal solid line denotes Fz = 0pN. The dashed line connects
the points obtained from the simulation and serves as a visual
guide.

ers closest to the plates are therefore more stable than
the layers in the midpoint of the gap (interval II). As
a result, the three-layer system becomes less dense and
can build up a lower normal force compared to the two-
layer system. We have selected two intervals of interest for
the interplate distance which capture the presence of local
maxima and subsequent minima of the normal force Fz ac-
companied with the compression of IL. This corresponds
to the expulsion of a cation-anion layer pair from the gap.
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Fig. 6. Configuration snapshots (yz cross-section) accompanied with ionic density distribution along the z-direction in three
representative points of the interval I: {I1, I2, I3}. Left panels correspond to the static case of Top plate’s movement, while right
panels correspond to the dynamic case of Top plate’s movement.

The intervals are: dI
z = [14.2, 20] Å, dII

z = [22, 27] Å, and
they are labeled as I and II, respectively. In order to un-
derstand the changes of the system configurations and to
correlate them with the changes of the interplate distance,
snapshots of the system from the MD simulations corre-
sponding to several characteristic points of the intervals
I and II have been selected and studied in more detail:
I1,2, II1,2 which correspond to the limits of the intervals,
and the local maximum of the interval I, labeled as I3.

The left vertical panel of fig. 6 shows the system con-
figuration in the yz cross-section and the ionic density
distribution along the z-direction obtained in the equi-
librium force-distance simulations for the three charac-
teristic points of the interval I: {I1, I2, I3}, correspond-
ing to plate-to-plate distances dz = {14.2, 20, 17.2} Å, re-
spectively. In fig. 7 the left vertical panels show analo-
gous results for the two characteristic points of the in-
terval II: {II1, II2}, corresponding to plate-to-plate dis-
tances dz = {22, 27} Å, respectively. The ions are depicted
smaller than their LJ radii in order to allow a direct obser-
vation of the layering. The positions of the atomic centres
of the innermost atomic layers of the Top and Bottom
plates are labeled in figs. 6 and 7 as zT and zB respec-
tively. As the Bottom plate is kept fixed during the whole
simulation, zB remains constant while zT changes with the
Top plate displacement. A general feature observed under

all conditions was the formation of cationic layer close to
the plates. The reason is the smaller size of the cations
(σCC = 5 Å) compared to the anions (σAA = 10 Å). Fol-
lowing, the second layer gets induced by the first one (due
to Coulombic interaction) and it is populated by anions.
The distance between the first and the second layer from
the bottom is in the range of 1–2.5 Å, meaning that while
the centres of mass of the particles are in different layers,
the layers themselves overlap as their distance is smaller
than the particle diameters.

From fig. 7 we observe that the anionic monolayer
thickness is roughly 7 Å and corresponds to 10/

√
2 Å, i.e.,

the anions are placed in the centers of the squares formed
by the cations of the neighboring layers (the diameter of
an anion is 10 Å). In addition to the yz cross-section con-
figuration snapshots together with the ionic density distri-
bution along the z-axis, shown in the left panels of figs. 6
and 7 for the cases of intervals I and II, respectively,
we have prepared the xy cross-section configuration snap-
shots, shown in the left panels of figs. 8 and 9.

4.2 Cyclic compression of confined ionic liquid

We have investigated the dynamic behaviour of the IL
during a periodic linear movement of the Top plate along



Eur. Phys. J. E (2018) 41: 130 Page 7 of 12

Fig. 7. Configuration snapshots (yz cross-section) accompanied with ionic density distribution along the z-direction in two
representative points of the interval II: {II1, II2}. Left panels correspond to the static case of Top plate’s movement, while
right panels correspond to the dynamic case of Top plate’s movement.

Fig. 8. Configuration snapshots (xy cross-section) in three rep-
resentative points of the interval I: {I1, I2, I3}. Left panels cor-
respond to the static case of Top plate’s movement, while right
panels correspond to the dynamic case of Top plate’s move-
ment. We have highlighted the confined region with dashed
lines (Top plate’s width along the y-axis is a half of the total
system’s width) and also we have sketched crystallization pat-
terns with solid lines. Periodic boundary conditions are applied
in the x and y directions, while simulation box, which is cubic,
is kept fixed in the z-direction.

the z-axis, between the two limiting points of the inter-
vals I and II. The space between the solid plates was
in this way periodically expanded and compressed. Peri-
odic movements of the Top plate were performed at three

Fig. 9. Configuration snapshots (xy cross-section) in two rep-
resentative points of the interval II: {II1, II2}. Left panels cor-
respond to the static case of Top plate’s movement, while right
panels correspond to the dynamic case of Top plate’s move-
ment. We have highlighted the confined region with dashed
lines (Top plate’s width along the y-axis is a half of the to-
tal system’s width) and also we have sketched crystallization
patterns with solid lines.

constant velocities Vz = {0.1, 1, 10}m/s but no velocity-
dependent differences in the system behaviour were ob-
served. We have performed ten cycles in order to deter-
mine how much the cycles differ and to determine a statis-
tically reliable average cycle. The confined ionic liquid lu-
bricant responds to the cyclic movement with a hysteresis
in the normal force Fz(dz) as shown in fig. 10. We present
both raw data of all cycles (thin solid lines) and a smooth
average cycle (thick solid line). In the case of interval I
there are three points of interest {I1, I2, I3}, correspond-
ing to the points noted in fig. 5. Points I1 and I2 are the
starting and ending point, respectively, and the point I3
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corresponds to the maximum of the normal force Fz in
the smooth average cycle. We observe that between each
two of those points there are clear tendencies in the aver-
age cycle of the normal force Fz(dz). First, in the segment
I1 → I2, i.e. in the extension half of the cycle, there is a
continuous increase of the normal force Fz from negative
values up to the value around zero in point I2. In point I1

there is one anionic layer confined in the gap and normal
force Fz has a negative value. With the dynamic increase
of the gap ions are pulled in from lateral reservoirs into
the gap. In point I2 an additional cationic-anionic layer
pair is fully formed in the gap, hence increasing the num-
ber of confined anionic layers to two. Next, there is the
segment I2 → I3 where the ions are compressed within
the gap, which is consistent with the continuous increase
of normal force Fz. In this segment, the normal force Fz

takes positive values meaning that the ionic liquid shows
resistance to the compression but does not flow out. After
that, in segment I3 → I1 there is a sharp decrease of nor-
mal force Fz which is correlated with the squeezing-out of
the additional cationic-anionic layer taken in from the lat-
eral reservoirs during the extension half-cycle. During the
compression half-cycle there is a return to the initial state
I1, where the gap contains one compact anionic layer.

We should note that the distributions of cations and
anions in the dynamic case for interval I bear close re-
semblance. Let us now discuss the changes in the num-
ber of confined ionic layers as a function of the inter-
plate distance and correlate them with the changes in the
normal force Fz acting on the Top plate: in the range
dz = [11, 14.2] Å the normal force Fz acting on the Top
plate has a steep decrease, reaching the minimum at point
I1. For the point I1 at dz = 14.2 Å, cf. fig. 6, we can ob-
serve a pronounced peak in the anion density distribution
which is aligned with a well-defined anionic layer inside the
gap. In the case of cations, there are two peaks attached
below and above the anionic peak. This situation corre-
sponds to the formation of two incomplete cationic layers
inside the gap. The value of normal force Fz is negative
and in point I1 it has the deepest minimum when con-
sidering the whole Fz(dz) characteristic. With increasing
plate-to-plate distance dz the normal force Fz is increas-
ing, with a sign change of the normal force Fz around
dz = 15.7 Å in the equilibrium case and dz = 17.8 Å in
the dynamic case, cf. figs. 5 and 10(a), respectively. This
means that before this point the IL is pulling the plates
together, since the ions strive to reduce their interlayer dis-
tance. After this point, for Fz > 0, enough ions are pulled
inside the gap and the IL now pushes the plates apart.
Such behaviour is typically observed in systems exhibiting
layering transition, already seen in systems of both neu-
tral molecules [24] and ILs [9]. With reversing into com-
pression in fig. 10(a), the normal force Fz reaches a local
maximum in the point I3 at dz = 17.2 Å. This is actually
the location of the maximum in the equilibrium case as
well. With the further decrease of dz beyond the point I3

there is a continuous decrease of the normal force up to
the distance dz = 14.2 Å as IL starts flowing out of the
gap. Still, one should note that there are two differences
between the two systems: i) the sign of the normal force in

Fig. 10. This figure presents the results of dynamic extension-
compression cycles in the intervals I and II. In panel (a) we
present dynamic Fz(dz) characteristic in the interval I: thin
lines represent the hystereses of ten dynamic cycles, the solid
line on top of them is the smooth average hysteresis. There is
also a solid horizontal line which corresponds to Fz = 0. Panel
(b) is analogous to the panel (a), just it presents the results in
the interval II.

point I2 and ii) the magnitude of the normal force at local
maximum I3. In the case of cyclic (dynamic) movement
of the plates, the normal force is positive Fz > 0, i.e. the
IL keeps pulling apart the plates at point I2 and the max-
imum of the normal force in the point I3 (F dyn

z = 1pN)
is lower than in the equilibrium case (F eql

z = 3pN). Both
observations indicate that the plate’s motion is prevent-
ing the ionic liquid to fully fill the void space of the gap.
Also, there is a substantial slip during the ejection of IL
from the gap, which results in a lower normal force. Oth-
erwise, if no slip would be present the maximum normal
force at velocity Vz = 1m/s should be about two orders of
magnitude higher based on the bulk viscosity coefficient
calculated in the previous section.

Partial filling of the gap due to the motion of the walls
is even better observable in the results for the interval II.
While the equilibrium characteristic has a local maximum,
cf. fig. 5, in the dynamic case there are only two charac-
teristic points (starting and ending point {II1, II2} and
a monotonously increasing normal force between them.
At point II1 at dz = 22 Å in the static case, we notice
that at the midpoint between the plates there is a broad
maximum of the cation density distribution, see fig. 7.
In the static case we notice that, similar to the transi-
tion from one to two anionic layers within the interval I,
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there is a transition from two to three anionic layers within
the interval II, which happens in proximity of the point
dz = 24 Å. At point II2 we notice two sharp anionic layers
in the proximity of the plates and the third anionic layer
which is broader, less sharp and positioned in the middle
of the interplate gap, cf. fig. 7. In the dynamic case the
number of layers remains the same in the interval II, they
just get separated during the extension; and a creation of
additional ionic layers by the ions flowing from the lateral
reservoirs into the gap does not take place, cf. fig. 7.

We can conclude that in a confined system with strong
interaction between the walls and the IL, the major driv-
ing force that pulls IL into the gap between the plates
is the interaction with the wall atoms rather than the
inter-IL interactions. In order to visualize what happens
in the vicinity of the plates, we are presenting snapshots
of xy cross-section configurations in the intervals I and
II, check figs. 8 and 9, respectively. Even on a cursory
look, one sees that the phase behaviour of the confined
IL is complex: in fig. 8, we observe a salt-like ordering
taking place in all representative points {I1, I2, I3} of the
equilibrium configurations. In the dynamic case the IL ex-
hibits some level of ordering for a small gap (I1) and it is
amorphous in the other two points. On the other hand, in
fig. 9 there was no movement of the IL in and out of the
gap and the IL formed a two-dimensional square crystal
{II1, II2} on both surfaces during the dynamic case. In
the equilibrium configurations, there are probably enough
ions in the gap that allow the IL to obtain its liquid-like
character.

At this point, we would like to quantify how could
the processes described above contribute to the energy
losses. If two macroscopically smooth surfaces come into
contact, initially they only touch at a few of these asperity
points. A motion of two bodies in contact lubricated by an
ionic liquid would involve the generation of new contacts
and the separation of the existing ones. Ionic liquids are
characterized by strong Columbic interactions between the
particles. By calculating the area covered within the aver-
age cycle of the Fz(dz) curves in fig. 10, we calculate the
amount of work invested per average dynamic cycle, i.e.,
the hysteretic energy losses. There is a big difference in the
amount of invested work in the two intervals: 3.5236 pN · Å
for the interval I compared to 0.2844 pN · Å for the inter-
val II, where the vertical displacement of the Top plate in
the two intervals is roughly the same (Δdz ≈ 5 Å). This
is consistent with a strongly decreasing trend of the max-
imal normal force which can be sustained by the system
as the number of ionic layers confined between the plates
increases, i.e. for the two ionic layers the maximal normal
force F I

z,max = 3pN, while for the three ionic layers it is
F II

z,max = 0.25 pN, corresponding to the two maxima of the
equilibrium force-distance characteristic in fig. 5.

4.3 Shear behaviour of confined ionic liquid

In order to study the behaviour of our confined IL un-
der shearing, we apply a relative motion between the
plates along the x-direction. The Bottom plate is kept

Fig. 11. Dependence of the frictional force divided by the
contact area of the Top plate with IL lubricant 〈Fx〉/Sxy on
the interplate distance dz. The three representative points
{P1, P2, P3} are marked. Points obtained in simulations are
shown as circle markers, accompanied with errors along the
y-axis. Linear fit through those points is shown as a solid line.
In the inset dependence of specific friction 〈Fx〉/〈Fz〉 on the
interplate distance dz is shown, with y-axis in log scale. Sim-
ulation points are shown as circle markers, while the dashed
line serves as a visual guide.

Fig. 12. Dependence of the frictional force divided by the
contact area of the Top plate with IL lubricant 〈Fx〉/Sxy on
the Top plate’s lateral velocity Vx = 0.1–10 m/s. The error bars
represent the standard deviation of the average values obtained
from the simulation data. The lines showing the friction trends
are obtained by linear regression.

fixed and a constant velocity Vx is imposed on the Top
plate. We are interested in establishing how does the lat-
eral (frictional) force Fx depend on the confinement gap
dz = {12, 14, 18, 22, 25} Å.

In fig. 11 we are showing the dependence of the time
averaged frictional force divided by the contact area of
the Top plate and the IL lubricant, i.e. 〈Fx〉/Sxy on the
interplate distance dz. We observe a linear increase of the
frictional force per contact area with the increase of the
interplate distance, with a slope of 4 nN/μm3. In the in-
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Fig. 13. Configuration snapshots (yz cross-section) accompanied with ionic density distribution along the z-direction in three
representative points {P1, P2, P3}. Left panels correspond to the start of friction simulations t = 0, while right panels correspond
to the end of friction simulations t = 3 ns. Top plate’s lateral velocity is set to Vx = 2m/s, the total simulation time is
ttot = 3 ns, hence all friction simulations have run until the Top plate had covered a distance of dx = Vx · ttot = 60 Å along the
x-direction.

set of fig. 11, we are showing the dependence of specific
friction defined as the ratio of the time averaged frictional
and normal force 〈Fx〉/〈Fz〉 on the interplate distance dz.
By comparing fig. 11 with the results for the bulk liquid
in fig. 3 we observe that there is no correlation with the
lubricant viscosity (i.e., otherwise frictional force would
be three orders of magnitude higher). This leads us to the
assumption that our pressurized systems, whether they
form a crystalline lattice or not, do not lie in a typical hy-
drodynamic regime and operate under full slip conditions
in which the ionic liquid moves together with one of the
walls. As there is no solid-solid contact between the two
surfaces, but lubrication through very thin, highly viscous
films which are solid-like, mixed or dry lubrication are the
two potential regimes that can describe the observed con-
ditions. A parametric study on different shearing veloci-
ties Vx = 0.1–10m/s at two wall separations dz = 17, 27 Å
provides additional information for the characterization of
the tribological regime of our system. In fig. 12 one can
observe a logarithmic (weak) dependence of the frictional
force per contact area on lateral velocity of the Top plate’s

movement which is consistent with the observations of pre-
vious studies of IL lubrication, cf. refs. [11, 13].

From fig. 11 we have selected three representative
points with dz = {12, 18, 25} Å labeled as {P1, P2, P3},
respectively. We provide an overview of the yz configu-
ration cross-sections together with ionic density distribu-
tions along the z-axis (cf. fig. 13) at the simulation onset
t = 0 and after t = 3ns. In the panels of fig. 14 we have
highlighted the confined region with dashed lines (the Top
plate’s width along the y-axis is a half of the total system’s
width) and we have also sketched crystallization patterns
with solid lines. In figs. 13 and 14 we show initial configu-
rations at the input of friction simulations, together with
the final configurations obtained after the friction simu-
lations. We observe that any initial crystallization is not
lost due to the lateral motion of the Top plate, but only
slightly modified due to the motion, which suggests that
the lateral movement does not alter the ordering. This is
a significant finding since the longitudinal movement does
alter the local order (it destroys the crystal structure for
small gaps and induces it in larger ones).
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Fig. 14. Configuration snapshots (xy cross-section) in three
representative points {P1, P2, P3}. Left panels correspond to
the start of friction simulations t = 0, while right panels cor-
respond to the end of friction simulations t = 3ns. We have
highlighted the confined region with dashed lines (Top plate’s
width along the y-axis is a half of the total system’s width)
and also we have sketched crystallization patterns with solid
lines. Top plate’s lateral velocity is set to Vx = 2 m/s, the
total simulation time is ttot = 3 ns, hence all friction simula-
tions have run until the Top plate had covered a distance of
dx = Vx · ttot = 60 Å along the x-direction.

5 Conclusions

In the current work we have used a molecular dynamics
simulation setup in order to study the response of a model
ionic liquid to imposed mechanical deformation. The prop-
erties of bulk and confined ionic liquid have been inves-
tigated under both static and dynamic conditions. First,
we have shown that the Green-Kubo viscosity coefficient
fits the shearing simulation results of our bulk salt model
ionic liquid, indicating its liquid state. Our simulation re-
sults have shown the significant impact of the confinement
and interaction with the walls on the ionic liquid response
to mechanical deformation. The force-distance hysteresis
surface under cyclic loading is smaller than one would ex-
pect considering only the viscosity value of the liquid. The
simulations have also shown the transition from a liquid
to a highly dense and ordered, potentially solidified state
of the IL taking place under variable normal load and un-
der shear. The wall slip has a profound influence on all
the forces which arise as a response to the mechanical
deformation. We also observe that the interaction of the
IL with the walls represents a principal driving force for
all processes observed in the dynamic regime for a range
of studied velocities. If sufficient time is allowed for the
system to reach equilibrium, inter-ionic interactions pull
more ionic liquid inside the confinement gap.

Ionic liquids feature strong long-ranged Coulombic
forces and their models require significant computational

effort. Coarse-grained models, such as the salt model im-
plemented in the current study, are useful for bridging
the gap between the molecular processes that control the
lubrication phenomena and the macroscopic performance
in engineering applications. The implementation of sim-
plified models that describe fundamental physicochemical
phenomena at a reduced computational cost can provide
deep insights which shed light onto the mechanisms and
processes that can render ILs as potentially interesting
lubricant candidates.
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Abstract— The aim of this project is to examine relevant carrier 
(electrons/holes/photons) dynamics of a Quantum Dot 
Semiconductor Optical Amplifier (QD SOA) using pump-probe 
experiment and programming numerical simulations of a QD 
SOA. The speed of the carrier dynamics in a QD SOA is ultrafast 
because the transitions happen at picosecond timescale. We 
assume Auger dominated and phonon assisted mechanisms. 
Greater importance of Auger processes was obtained, which is a 
common result in the literature [3], [8]. Standard transitions 
between energy levels of a QD were used with the addition of the 
direct transition between Wetting Layer and Ground State. 
Pump-probe experiment has been performed. The gain and 
phase dynamics were time resolved for different currents. Three-
exponential fit of those results was done and the timescales were 
exctracted as functions of the current.  

Key words-Quantum Dot; Semiconductor optical amplifier; 
carriers; dynamics; pump-probe  

I.  INTRODUCTION 
Understanding of the ultrafast dynamics of semiconductor 

materials is extremely important in order to develop and 
improve next generation photonic sources. Ultrafast pump-
probe measurements have been used to experimentally 
investigate the gain and phase recovery dynamics of QD SOAs 
- [1], [2], [3]. Main part of a QD SOA is optical cavity (active 
region) that is made between p-type and n-type layers. 
Essencialy this device is a P-N junction because the band 
structure of an inverse populated P-N junction is the best 
structure for stimulated emission of light. In order to achieve 
the inverse population a SOA is pumped by injected current. 
The amplification happens by stimulated emission. The gain G 
of an QD SOA is its most important parameter. It is defined as 
the ratio of output over input power. A QD SOA consists of a 
large number of Quantum Dots grown in the Wetting Layer 
which is made of Quantum Wells. A simple Quantum 
Mechanical model of a QD would be a potential pit with finite 
height, therefore the energy levels possible into QD are discrete 
and depend on the depth of that potential pit, which means they 
depend on the size of a QD. Because of that, we use energy 
broadening in the model. Carrier dynamics includes radiative 
and non-radiative recombinations. In radiative recombinations, 
electron-hole pair is recombined with the presence of a photon 
which can be emitted or apsorbed. In nonradiative 

recombinations, photons are not present. Main radiative 
processes are spontaneous emission, amplified emission and 
absorption. Nonradiative processes are phonon assisted and 
Auger mediated recombinations. The transition between two 
states can be either a capture or an escape. If a carrier goes 
from higher level to lower, it is called capture and the transition 
from lower to higher energy level is an escape. 

II. MODEL 
The carriers we are dealing with are electrons in the 

conduction band (CB) and holes in the valence band (VB). 
Photons are created in recombine processes between electrons 
and holes from corresponding energy levels. We assume the 
existence of three different energy states for both CB and VB. 
The energy lowest is Ground State(GS), Excited State(ES) is 
higher energy state of excited carriers and Wetting layer(WL) 
corresponds to the reservoir of particles which is pumped by 
the current that supplies the power to the device. 

 A real QD SOA device is built of a huge number of 
quantum dots. Therefore, we divide GS and ES energy levels 
into ensembles of quantum dots with given energy and WL is 
one constant energy level, similar to Moreno et al[7]. This 
division gives us a model of a device consisting of different 
quantum dots, with different sizes and potential barriers and 
also leads to inhomogenous broadening of the emitted photons. 
The energy range of the simulation is between 0.919 and 1.18 
eV. NumberSteps is the number of pieces that we are using. It 
was shown that resolution of 150 pieces is enough for good 
accuracy. Energy step is calculated as: 

sNumberStep
EEEstep

minmax −=  

The meaning of the broadening shown in Figure 1. is that 
the device should give that shape of the spectrum as the output, 
therefore we set the resolutions for each energy piece. The 
distribution is Gaussian with a full width half maximum 
(FWHM) of  35 meV for both GS and ES, like in [7]. We have 
chosen the peaks of the emission: nmGS 1300=λ and 

nmES 1165=λ        
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Figure 1. Inhomogenuous broadening of the GS and ES 

The resolution of k-th part of the GS is calculated as a ratio 
of those two integrals of Gaussian distribution. The value of 
resolution is between 0 and 1 because it measures the ratio of 
integration over stepE  interval around given energy divided by 
the integration over full energy scan. 
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For the ES it is simmilar and the ratio of those two integrals is 
multiplied by 1.5. The Lorentzian function is used to describe 
that emission does not happen only for certain energy 
difference, but it can happen between k-th and j-th piece with 
the probability given by narrow Lorentzian distribution, 
meaning that photons of k-th energy can be produced after k-th 
and j-th piece recombine. 
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where Γ is factor of  homogenous broadening: Γ = 7.5 meV. 

As usual in this area, the heart of the model are ratio 
equations. The ratio equations in this project are similar to 
those in [7] and [8] meaning that electron and hole equations 
are like in [8] and photon equations are like in [7] with the 
difference that in our model both Auger and phonon assisted 
processes are included. Also, a direct transition between WL 
and GS is added as additional connection between the levels 
that was not considered in [7] and [8]. The carrier dynamics 
equations are considered separately for electrons, holes and 
photons, but they are all coupled. Basically, we are solving 1 
equation for electron WL, 1 for hole WL, NumberSteps*6 (for 
electron and hole GS and ES and for GS and ES photons) 
which means 902 coupled differential equations in total. GS 
photons are photons got in the radiative recombinations 
between the ground states of CB and VB, and ES photons are 
got in the processes between the excited states of CB and VB. 

The GS photons equation (for ES photons it is simmilar) for 
i-th energy slice is: 
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Equation for WL of electrons and holes: 
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where res(k) corresponds to resES(k) or resGS(k) and Nw* 
means the opposite carrier’s WL density. 

The electron/hole equation for i-th energy slice of ES (for GS it 
is simmilar) is 
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where Nw, Ne and Ng are the normalized carrier densities of 
the WL, ES and GS, respectively. Photon populations of GS 
and ES are Pg and Pe, respectively. The index (i) or (k) counts 
the number of i-th or k-th energy slice. In the program there is 
(t) index which means a function of time, but we skip it here. 
Important feature of the rate equation models is that the 
dynamics of the capture/escape processes and the 
recombination processes can be expressed using the parameter 
α which can take the integer values 1 or 2 depending on the 
dominant process we want to include into the model equations. 
The parameterization for the capture/escape terms is like in[8]: 

1=α corresponds to phonon assisted process and 
2=α corresponds to an Auger mediated process. In Auger 

processes there is a collision of two carriers, therefore density 
is squared. Terms (1-Ng) and (2-Ne) are Pauli blocking factors, 
meaning that maximal value of normalized densities of carriers 
in GS and ES are limitied to 1 and 2, respectively. The ES is 
two times more dense, therefore we use factor 2. The physical 
interpretation is that saturation of GS (Ng = 1) stops further fill 
of GS and because of that, term (1-Ng) in the capture processes 
to GS becomes zero, so further filling is blocked because GS is 
already full. This type of blocking factor is not used for the WL 
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because it has constantly being refilled by the current J, so Nw 
can take arbitrary high value. A serious numerical model has to 
include huge number of parameters in order to describe the 
system better. Using form abτ  we represent the carrier lifetime 
due to the transition from energy level a to energy level b. 
Those parameters are of great importance because the essence 
of the whole simulation is to calculate the time response of the 
QD SOA, solving the system of coupled equations in time 
domain. Every process that happens has its average lifetime, 
for electrons and for holes separately. It is possible to get fine 
results only by using appropriate values for those time 
parameters. For example, carrier lifetime of 10 ps means that in 
average 10 picoseconds will go until that carrier performs the 
transition. We assume that capture times are constant and using 
formula 

Tk
E

capesc
Be

Δ

= ττ  

we calculate the escape times.                                                                                         

III. SIMULATION 
Presented model is implemented in Mathematica. First 

part of the code consists of the constants, parameters and the 
calculations for the broadening (Gaussian integrals and 
Lorentzian function). After that, equations are written and all 
initial conditions set to zero. The system of the equations is 
solved using NDSolve (StiffnessSwitching Method). 

The gain temporal changes of an QD SOA are of the key 
importance for its performance, so we examine it, in the 
simulation and using pump-probe experiment. In the 
simulation, gain is calculated using photon populations.    

IV. PUMP-PROBE EXPERIMENT 

A. General idea 
Pump–probe measurements are used to obtain information 

on ultrafast phenomena. The general principle goes like this. A 
sample gets hit by a pump beam, which causes a perturbation 
in the sample. After an adjustable time delay that is controlled 
using time delay stage, a probe pulse hits the sample and its 
transmission is measured. By measuring the probe signal as a 
function of the time delay, it is possible to obtain information 
on the decay of the pump generated excitation. The temporal 
resolution of the experiment is limited only by the pulse 
duration, so we need the laser that generates ultrashort pulses. 

Pump pulse is used to provide initial depletion of the 
amplifier, Non-equilibrium carrier distribution results in 
changed transmittance (gain/absorption and refractive index), 
which are affecting following probe pulse, changing its 
amplitude and phase. Carriers returning then to equilibrium 
state are affected by different radiative and non-radiative 
processes such as phonon or Auger assisted recombination.  
Such processes affect recovered time traces, so by proper 
choice of experimental conditions it is possible to pinpoint 
processes governing dynamics in the device. 

Detection part of the system has to be also more 
complicated a the pump and probe beams cannot be spatially 
separated. In simplest case they can be cross-polarized, but due 
to the strong anisotropy of QD’s this type of measurement 
won’t provide full information on the carrier relaxation. In 
addition both beams have often the same wavelength and 
intensity of probe pulses is very low, on the level of few 100’s 
of nW. The solution is provided by heterodyne probe detection, 
based on a fact that overlapping two waves with high 
frequencies f1 and f2 will produce a beating signal with a small 
frequency Δf equal to the difference of frequencies of original 
waves.  

Heterodyning is commonly used in many types of detection 
systems as it allows detecting weak, high frequency signals 
using slow detectors of average sensitivity – most common 
example is a radio. Usually one of the signals is produced by 
local oscillator (LO) of known frequency and the other has 
external source e.g. in case of radio it is input amplifier, or 
laser beam passing through the tested device.  

These two signals are in our case reference and probe 
pulses, whose frequencies are shifted by f1=79MHz and 
f2=80MHz, respectively. As amplitude and phase between 
reference pulses are stable, both amplitude and phase of the 
beating signal depend only on the probe beam. 
Characterization of this beating signal provides information 
about device gain and refractive index properties in function of 
delay between pump and probe pulses.  

 
Figure 2. Pump-probe optics schematic 

B. Technical details about the experiment 
Power of the pump and probe beam (before coupling to the 

waveguide) was 500 µW and 20 µW. Pump probe always has 
higher power because it perturbates the system and probe is 
used for collecting the data about that perturbation. We have 
used Single Color (SC) pump-probe which means that central 
wavelength of both pump and probe is 1.3 µm. Bandwith of the 
spectrum had Full Width Half Maximum (FWHM) of 20 nm. 
Pusle duration was 300 fs which is related to the time 
resolution of the experiment. Pump and probe beam had the 
same Transverse Electric (TE) polarization. The experiment 
was done at the room temperature (sensor was stable showing 
~ Co20 ). In pump-probe experiments it is possible to pump and 
probe both GS and ES. We have used pumping and probing of 
GS only. 
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The main difficulties in the pump-probe and in device 
characterization were to align every mirror and optical element 
proper and to couple enough amount of light into the Single 
Mode Fiber (SMF) in order to perform spectrum analysis or 
some other measurement. 

V. RESULTS AND DISCUSSION 

A. Characterization of the device 
The QD SOA device we were using in the experiments has 

sample number: QD DO1421, It comes from Innolume 
company. We got the layer of numeruous devices and then the 
devices were extracted by the employees in fabrication labs. 
First of all, the device was mounted and put on the optical 
bench. It was connected to the current source and optical-
current characteristic was measured using a powermeter. In the 
Figure 3. optical-current characteristic of three different QD 
SOAs grown on the same layer is given. 

Figure 3. Optical-current characteristic of the SOA-s 

There is no treshhold current which means that the devices 
are not lasers, they act as amplifiers. After we confirmed the 
devices are amplifiers, the spectrum analysis was performed. 
For 10mA we notice that only the GS emittes and on 100mA 
GS is higher but on currents > 100mA, it will go to saturation 
and the ES starts to rise. 

B. One single QD SOA simulation 
The simulation of a single QD SOA by solving the model 

equations has given fine results. The curves are smooth and 
stable. After turning on the device, stady state is achieved after 
some time. Stady state means that the carrier densities and 
photon populations are constant. The time required to achieve 
stady state extracted from the simulation results is about 20 to 
50 picoseconds. It is in a good agreement with the times from 
the experiment. In the experiment, we first measure the optical-
current characteristic to prove that the device is a SOA, and 
after that, using pump-probe gain and phase recovery are got. 
The same procedure is in the simulation. First we plot optical-

current characteristic which is normalised number of photons 
(Pg and Pe) as a function of current. In a for loop we change 
the current and solve the equations for every current. The 
photons number is taken at phoTime=20ps because that is the 
time when solutions become stable. We got the saturation of 
GS emission which happens in the experiment as we can see 
the saturation of GS on spectrum diagrams. The ES emission 
increases with the increase of the current and the curve looks 
similar to those in Figure 3.   

The time plots of GS and ES gains were got. We can notice 
two different regimes – absorption and gain regime, as reported 
in [3]. The absorption regime happens on low current when 
inverse population is not achieved. GS absorption was got for 
simulation current of J=0.5 and ES absorption was got for 
J=0.9. The gain regime happens on high current when inverse 
population is achieved. Both GS and ES gain regimes were got 
for J=5. Comparing the values of GS and ES photons 
populations in absorption and gain regime, we can conclude 
that ES is affected by the current changes stronger than GS. 

 
Figure 4. GS photons optical-current characteristic 

 

 
Figure 5. ES photons optical-current characteristic 

 

In Figures 6. and 7. ES photons population is shown with 
Auger processes and without them, respectively. Without 
Auger processes we didn’t get stady state in 50ps time range 
which means that the device is not stable. When we include 
Auger processes, ES photons population goes to stady state 
after ~20ps which is reasonable time. 
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Figure 6. ES photons population time resolved (Auger included) 
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Figure 7. ES photons time resolved (Auger excluded) 

 

C. Ensembles of Quantum Dots on different energies 
The results of the simulation that considers different energy 

levels and broadening of the light are shown. The comparison 
of the results with direct transition WL GS and without 
that transition is made. We were using different timescales, 
200ps for the simulation with WL GS and 1000 ps for the 
simulation without that transition because it was expected to 
get faster response with additional process. As we can see in 
those plots, additional process does not make a big difference 
in both the stable values and tmes needed for achieving stable 
response. The only difference is that results with WL GS 
are more compact for GS electrons and holes, meaning that 
time resolved carrier densities for different energy levels within 
GS more converge to one curve than in the model without 
additional transition where divergence of the results is higher. 
More expected result is to get divergence because different 
energy levels should have different densities of carriers 
because escape lifetimes directly depend on the energy 
differences between the levels.  
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Figure 8. GS electron occupation time resolved (with WL GS) 
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Figure 9. GS electron occupation time resolved (without WL GS) 

 

D. Results of the pump-probe experiment 
In the pump-probe experiment time delay between pump 

and probe beam is changing and the gain and phase are 
measured as functions of the time delay. This gives us the time 
recovery of the device. Depending on the current that is 
injected into the device, there are two different regimes – 
apsorbtion and gain. 

The absorption regime plot is given for 10mA and gain 
regime plot is given for 50mA. 

On the lower current inverse population is not achieved. 
When pump beam enters the cavity of the device it gets 
apsorbed. An electron from the VB apsorbs a photon of the 
pump beam and goes to the CB leaving a hole in the VB. This 
leads to higher number of relevant carriers in both bands. 
When the probe beam arrives after the time delay we set, there 
are conditions for the emission and gain increases, recovers to 
the constant level in the stady state. On the other side, in the 
gain regime inverse population is achieved because of the 
higher current. When the pump beam arrives the gain 
instantenuously increases because the conditions for the 
stimulated emission are already satisfied. As the time delay 
increases, gain changes decrease because the probe beam sees 
lower inverse population due to the emission that goes all the 
time. After some amount of time device goes to stady state and 
gain changes keep being constant when time delay increases. It 
is obvious that recovery time in the absorption regime is higher 
than in the gain regime. It indicates that apsorbtion processes 
are the slowest component in the ultrafast carrier dynamics. 

 
Figue 10. Gain changes on 50 mA 
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Figure 11. Gain changes on 10 mA 

The three-exponential decay fit is performed using Origin’s 
fitting tool and ExpDecay3 function. It reads: 
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where A1, A2 and A3 are the amplitudes of exponential decay 
components and t1, t2 and t3 are time constants in those 
exponential decays. The three exponential fit indicates that 
there are three components of carrier dynamics in a QD SOA – 
ultrafast, medium and slow.  

VI. CONCLUSIONS AND FURTHER WORK 
Pump-probe measurements of gain and phase recoveries of 

a QD SOA have been performed. The fitting with three-
exponential decay is successfull and three different timescales 
are extracted and ploted as a function of current. The plots are 
simmilar to the results in [8]. Removing of the Auger processes 
from the model equations causes slower response and the 
solutions that do not correspond to the experimental results, 
therefore we have concluded that they affect the dynamics 
strongly. Adding the direct transition WL GS does not 
make a big difference in the solutions and for GS it leads to 
lower divergence of the results, therefore there are not 
advantages in adding that process to the model equations.  

Results of single QD SOA simulations have shown good 
agreement with the experimental results which means that it is 
possible to use the ratio equations from this project to model a 
QD SOA.  

When the broadening was introduced, the simulation has 
become complicated. The main problem is that we need to use 
large number of parameters with unknown values, so 
estimations have to be made. All of the model equations are 
coupled and changing of one parameter (carrier lifetime for a 
certain process or energy level) strongly affects the solution of 
the system. In the experiment we extracted three different 
timescales but it is impossible to connect them to every 
particular time parameter in the model.   

Spectrum plots of carrier densities and photon populations 
as functions of wavelength have been made but they were not 
good enough, so there is a huge space of improving the 
simulation in order to achieve better spectrum characteristics of 
the light emitted by the QD SOA.   
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Minimum Drop-Loss Design of Microphotonic
Microring-Resonator Channel Add-Drop Filters

Miljan Dašić and Miloš A. Popović, Member, IEEE

Abstract—Microring-resonator filters have important appli-
cations as filtering elements in microphotonic circuits. In this
paper, we address the question of optimum design of resonator-
based add-drop filters in the presence of finite losses, and show
that symmetric coupling provides the optimum design. This
conclusion contravenes previous work on this subject, and the
oft-cited critically coupled resonator case. While the minimum
bandwidth of a resonant filter is ultimately limited by intrinsic
losses, i.e. the intrinsic Q, we show that the symmetric design
can approach twice as narrow a linewidth as a critically coupled
design for the same losses, in principle. We present a coupled-
mode theory (CMT) model, and a complete electromagnetic
device design example based on finite-difference time-domain
field simulations which validates our conclusions.

Index Terms—Microring resonators, channel add-drop filters,
coupled mode theory, filter synthesis, power splitters.

I. INTRODUCTION

INTEGRATED silicon based photonics has many promising

applications in optical telecommunications, optoelectron-

ics and optical signal processing [1]–[4]. The integration of

silicon photonics and electronic circuits offers the prospect

of low energy devices, circuits and systems for applications

including on-chip and processor-to-memory interconnects [3],

[4], as well as photonic analog-to-digital converters [5]. Other

applications include nonlinear and quantum optical devices for

applications in quantum information and computing [6].

An important photonic device, and one of the earliest

concepts realized in integrated photonics, is the resonant

channel add-drop filter. Microring resonators are particularly

well suited for add-drop filter applications [7], [8] because

of their traveling wave structure that allows for a natural

separation of the four ports (in, through, drop, add in Fig. 1),

without the use of circulators. Detailed techniques have been

worked out for synthesizing standard Butterworth, Chebyshev

[1], [9], and more advanced [10] filter responses.

These filter synthesis techniques have primarily dealt with

lossless structures. However, radiation and scattering losses are

not insubstantial in strong-confinement photonics, with typical

losses of 2-3 dB/cm [4] and radiation Q’s on the order of

250,000 in silicon, and higher in some other material systems.

Regardless of the magnitude of the loss, it begins to play a

major role for narrow enough bandwidth filters, when the total
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input thru

drop add

Fig. 1. Schematic of a single microring-resonator add-drop filter showing
the parameters used in the CMT model.

Q approaches the loss Q, Qo. Therefore it is of interest to

investigate the optimal design of filters in the presence of loss.

Some prior work has already addressed this issue in photon-

ics [11], and considerably more in circuit and microwave the-

ory. Here, we show that the design of single-microring filters

that provides minimum loss calls for symmetric coupling to the

input and drop bus. This is in contradiction with the critically

coupled design claimed to provide optimum transmission e.g.

by Vörckel et al. [12] explicitly, and often assumed optimal

in other work (e.g. [13]).

II. COUPLING OF MODES IN TIME (CMT) MODEL

Coupled-mode theory in time (CMT) provides a simple

model that affords all of the necessary physics of the reso-

nant add-drop filter problem, including resonance, loss and

coupling to ports. The system of equations that describes a

single-resonator filter excited by a monochromatic input wave

si(t) at angular frequency ω is [1], [2]

d

dt
a(t) = jωa(t) = (jωo − r)a(t)− j

√
2resi(t)

st(t) = si(t)− j
√
2rea(t) (1)

sd(t) = −j
√
2rda(t)

where |a|2 is the energy amplitude of the ring resonant mode,

and si, st, and sd are the power-normalized amplitudes of

input, through and drop port waves [2] (Fig. 1). With input

wave si incident, some excitation is picked up by the resonator,

and the remaining field propagates on to the through port.

It then interferes with the light leaving the resonator in the

through port and is carried away by through-port wave st.
The energy stored in the resonator is |a|2 and according to

Eq. (1) the energy amplitude a(t) decays at the total rate r,
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comprising a decay rate describing external coupling to the

input port, re, the drop port, rd, and a loss mechanism, ro:

r = re + rd + ro (2)

The decay rates are related to decay time constants as ri =
1/τi, for i ∈ {e, d, o}. Since τ is a field time constant, the

associated photon lifetime (1/e-intensity time) is τ/2.

The drop-port response of the device is found from Eq. (1),∣∣∣∣sdsi
∣∣∣∣
2

=
4rerd

(ω − ωo)2 + r2
(3)

The response is Lorentzian, with a 3dB (full width at half

maximum, FWHM) bandwidth of δω3dB = 2r.

Unlike a full scattering model using transfer matrices [2],

[14], the CMT model treats only given resonances (here, ωo)

of the ring and does not include geometry information that

would reveal properties such as the free spectral range (FSR).

III. OPTIMAL AND CRITICAL COUPLING

Given a certain loss Q, Qo, and corresponding loss rate ro =
ωo/(2Qo), our objective is to find the optimum choice of ring-

waveguide couplings re, rd in order to maximize on-resonance

efficiency of transmission to the drop port, |sd/si|2. The CMT

model, because of its simplicity, lends itself to closed-form

analytical synthesis.

To find the optimum solution, we first note that the trans-

mission efficiency, see Eq. (3), not surprisingly decreases with

increasing loss, ro. On the other hand, increasing re and rd
with a fixed ro increases transmission, but also bandwidth,

thus providing lower loss for a different filter. Therefore, we

must ask for the best design of a fixed bandwidth. This was

neglected in Ref. [12], and is the cause of its erroneous claim

that critical coupling provides the minimum drop loss. Fixing

bandwidth means fixing total rate r, according to δω3dB = 2r,

and together with a fixed loss, ro, leaves only one undeter-

mined degree of freedom, since from Eq. (2), rd = r−re−ro.

Maximizing with respect to the remaining (input) coupling

rate re, gives the optimal couplings for maximum drop port

transmission

re = rd =
r − ro

2
(4)

It is instructive to compare this solution to the critical coupling

solution of the same bandwidth [1], [13] which leads to

re = rd + ro =
r

2
(5)

A comparison of the transmission efficiency of the optimal

(symmetric) and critical-coupling designs is given in Fig. 2,

showing that the symmetric design is indeed optimal for

maximizing dropped on-resonant power. We define normalized

bandwidth α ≡ Δω3dB/Δωo as the ratio of total bandwidth

2r to intrinsic (loss limited) bandwidth 2ro. Substitution of

Eqs. (4,5) into (3) yields the efficiency of the symmetric and

critically coupled designs for various relative bandwidths α:∣∣∣∣sdsi
∣∣∣∣
2

=

(
1− 1

α

)2

(6)

∣∣∣∣sdsi
∣∣∣∣
2

= 1− 2

α
(7)
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Fig. 2. Minimizing the impact of loss on a single filter stage: comparison
of symmetric (optimal) and critically coupled single-ring filter designs for
different normalized bandwidths, α (ratio of total bandwidth to loss-limited,
intrinsic bandwidth).

This comparison is useful in the design process to determine

the narrowest bandwidth that supports a desired transmission

to the drop port, or the maximum transmission achievable at

a certain bandwidth, given known linear losses. Fig. 2 and

Eqs. (4–5) show that the optimum symmetric design has a

minimum bandwidth limit of Δfo, while the critically coupled

design has a minimum bandwidth of 2Δfo. In the limit of

a large relative bandwidth α, the loss plays a negligible

role and the two solutions can be verified by to be equal

by a first-order Taylor series expansion in α−1 of Eqs. (4–

5). For 3dB transmission, the symmetric case can reach

α =
√
2/(

√
2 − 1) ≈ 3.412 times the intrinsic linewidth,

while the critically coupled case is limited to α = 4 intrinsic

linewidths, a difference of ∼20%.

IV. ELECTROMAGNETIC DESIGN

We next verify these results on a hypothetical lossy device

design, via full-wave finite-difference time-domain (FDTD)

numerical simulations [15]. We first use numerical simulations

to design the example filter and relate the physical geometry

to CMT variables such as re, rd and ro, and then verify the

total device performance against the CMT model by simulating

the entire device’s response using FDTD. Without loss of

generality, we consider a two-dimensional (2D) model in TE

polarization, because all relevant physics is in the plane. The

theory applies, however, to arbitrary resonator type (microring,

photonic crystal cavity, etc.), in 2D (e.g. toy models) or 3D

(real devices), and for arbitrary choices of excitation mode

(e.g. polarization) and loss mechanism. In our example, we

consider bending loss as the source of loss, but the approach

treats equally absorption, roughness-induced scattering, etc.

Fig. 1 shows the geometry of the device. First, the bus and

ring waveguide widths are chosen to be the widest that still

give single mode slab operation in the 1.55μm wavelength

range. For core and cladding indices nco = 3.5 and ncl =
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1.45, the waveguide width is wg = 0.24μm. The microring

resonator radius is chosen next, purposefully small enough to

result in substantial radiation losses, so that we can test our

design approach for filters with lossy resonant elements. A

circularly bent waveguide is known to produce radiation loss

due to bending that exponentially increases with decreasing

radius [16]. We use a two-dimensional mode solver for bent

slab waveguides [17] to find a radius for which the radiation Q,

Qo ≈ 1, 000. This amounts to selecting a radius at which the

real part of the propagation constant forms an integer number

of wavelengths in one round trip at 1550 nm, and the imaginary

part of the propagation constant yields the losses, and the target

loss Q (Qo ≈ ko(dβR/dko)/(2βI)). This radiation Q, Qo,

determines the minimum possible 3 dB linewidth known as

the intrinsic linewidth, Δfo = fo/Qo, due to decay rate ro.

The closest radius to a Qo of 1,000 and 1550nm resonance is

an outer radius of Ro = 0.78μm.

Next we choose the gaps that correspond to calculated

coupling rates re, rd in the presence of loss, ro. The evanescent

field that exists in the cladding is responsible for coupling

between the bus waveguide and the ring waveguide. The

fraction of power coupled to the ring normalized to the input

bus power is termed the power coupling coefficient, k2. Since

the evanescent field decays exponentially far from the core,

larger gaps between the bus and the ring lead to smaller

coupling coefficients as [2], [14]

k2(g) ≈ k2oe
−γ(g−go). (8)

where ko ≡ k(go). In high-index-contrast, strong-confinement

structures, this dependence deviates from purely exponential

dependence, but rigorous FDTD simulations provide the exact

relationship between the coupling coefficients and the bus-

ring gap. Hence, to capture the data in a physically consistent

model, we take the log of k2 vs. gap, which is nearly linear

and fit it to a low-order polynomial to account for higher-order

effects captured in the full-wave simulation [8]

ln k2(g) = p3 + p2g + p1g
2. (9)

From this type of fit, the coupling geometry of the device can

be chosen to obtain desired re,rd. Finally, for a given loss

Q, Qo (i.e. ro), we use FDTD simulations to simulate the

full device design to confirm the analytic solutions obtained

using the CMT model and Eqs. (4–5) in both the optimal and

critically coupled case. We give one design example in this

paper, for α = 2.5. From the chosen microring cavity design,

and corresponding radiation loss ro, we obtain total bandwidth

2r = 2roα, and the corresponding re and rd for the symmetric

and critical designs. To connect the power coupling coefficient

to the CMT model, we use the first-order correspondence [1]

k2i ≈ 2ri
ΔfFSR

for i ∈ {e, d} (10)

where the FSR is ΔfFSR ≡ c
2πRng

, c is the speed of light

in vacuum and ng ≈ 3.62 is the ring group index found in

modesolver simulations. Using Eq. (9), the coupling gaps are

gi =
−p2 −

√
p22 − 4p1(p3 − ln k2i )

2p1
for i ∈ {e, d} (11)
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Fig. 3. Spectra of through and drop ports calculated in FDTD simulations
and drop port calculated using the CMT model for a) optimally coupled and
b) critically coupled microring resonator channel add-drop filters on α = 2.5
A good matching of the analytic CMT solution with numerically simulated
FDTD is observable. The insets are showing spectra on dB scale.

In Fig. 3, spectral responses resulting from FDTD simulations

are shown for optimal and critically coupled filters for α =
2.5. Overlapping the data is the CMT model of the target

design, showing very good matching. CMT and FDTD spectra

significantly differ only at far off-resonant detuning, where

drop port transmission is less than −30 dB. The reason for

this disagreement is that the CMT model here has included

only one resonance, while a physical microring cavity has a

finite FSR and repeating resonances. Hence, the FDTD drop

response levels off on the left (shorter wavelength side) and

right (longer wavelength side) because it is about to rise into

another peak one FSR away. The left and right sides of the

FDTD response are unequal because dispersion results in the

FSR becoming smaller with increasing wavelength. We have

verified that equally good agreement can be obtained for other

values of the normalized bandwidth α. The on-resonant drop

loss is plotted (points) alongside the analytic response (lines)

in Fig. 2 and confirms the analytic model of the optimum
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filters showing the electric field propagation in the structures. Geometrical parameters are also provided. This is a snapshot under continuous-wave excitation
on-resonance and it shows that more power is dropped for optimally coupled device.

symmetric and critical designs, respectively.

Figure 4 shows field snapshots of FDTD simulations of the

α = 2.5 designs whose spectra are in Fig. 3. While pulsed

excitation was used to obtain full spectral response data in a

single simulation, the snapshots are taken in the steady state

with continuous-wave excitation at the resonant wavelength,

for simpler interpretation. Fields are shown with excitation

amplitudes on the same scale. More power is seen dropped

by the symmetric design in Fig. 4(a) even though the critical

case has less through-port transmission (it also radiates more).

The guided fields look ‘wobbly’ because of the significant

presence of radial radiation from the ring in the total field.

An additional interesting observation is the larger steady-state

field enhancement in the critically-coupled cavity in Fig. 4(b)

even though both have the same total Q (r). This is because

the input coupling re is stronger for the critically coupled case.

Hence, the symmetric design is not only more efficient but also

less sensitive to nonlinear resonance shifting and nonlinear loss

due to Kerr nonlinearity and two-photon absorption.

V. CONCLUSION

We showed that the optimum design of a drop filter, in the

context of minimizing on-resonance insertion loss, is a design

with a symmetric coupling configuration. A CMT model

shows that the symmetric design approaches a 2-fold narrower

loss-limited bandwidth, and allows 20% narrower passbands

for 3 dB insertion loss. We constructed an example geometry

using mode solver and FDTD simulations of a microring cavity

and directional couplers, and verified that the complete device

has the CMT-predicted response from full-wave simulations

of the entire device. We also noted that the symmetric design

is in addition more robust to nonlinearities.
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Abstract—The aim of this paper is to use theoretical 

models of coupled microring resonator filter to show its 
operation and to apply those calculations in order to 
maximize drop port power. Coupled microring resonators are 
one of fundamental elements in photonic devices. They have 
good resonator characteristics useful for filter applications, 
because arbitrary -3dB bandwidth and FSR(Free Spectral 
Range) are easily designed. Theoretical models include T-
matrix (Transfer Matrix) and CMT (Coupling of Modes in 
Time). A comparison of those models is shown. CMT model is 
applied in optimization of transmission to the drop port.  

Key words-model; transfer matrix; coupling of modes in 
time; microring; resonator; filters;  

I. INTRODUCTION 

INTEGRATED silicon based photonics has many 
promising applications in optical telecommunications, 
optoelectronics and optical signal processing [1]–[4]. The 
integration of silicon photonics and electronic circuits 
offers the prospect of low energy devices, circuits and 
systems for applications including on-chip and processor-
to-memory interconnects [3], [4], as well as photonic 
analog-to-digital converters [5]. Other applications include 
nonlinear and quantum devices for applications in quantum 
information and computing [6]. An important photonic 
device, and one of the earliest concepts realized in 
integrated photonics, is the resonant channel add-drop 
filter. Microring resonators are particularly well suited for 
add-drop filter applications [7], [8] because of their 
traveling wave structure that allows for a natural separation 
of the four ports (in, through, drop, add). 
 

II. TRANSFER MATRIX  MODEL 

In the Fig. 1. schematic drawing of a ring resonator 
coupled to two bus waveguides is shown. In transfer matrix 
model we have two linear systems. First one has optical 
signal amplitude inputs of 1a and 2a , and outputs of 1b and 

2b . It represents coupling of the first bus to the ring with 

coupling coefficient of ik , while the other linear system 
represents coupling of the second bus to the ring with  

 
 

Fig. 1. Schematic of a microring-resonator add-drop filter showing 
the parameters used in the T matrix model 

 
coupling coefficient of 0k , where optical amplitude inputs 

are 3a  and 4a  while outputs are 3b  and 4b .  In transfer 
matrix model we want to solve next matrix equation 
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Optical signals 1a  and 2a are coming from input ports, 1b  
leaves the system at through port and optical signal 

4b leaves the system at drop port. The goal is to determine 
transfer matrix T . We solve it using next three matrix 
equations. First two stand for the linear systems that model 
couplings of the buses to the ring while third one is about 
the phase constraint for the signals propagating in the 
microring resonator [2], [9].  
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In Eq. 4 j is imaginary one, Rβπ is the product of 
propagation constant and half of the circumference of the 
ring and term R is inner radius of the ring. The expression 
for beta is 

                                
λ
πβ 2×= gn                                (5) 

where gn is group refractive index. We use notation: 
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When matrix equations are written in developed form, we 
obtain 
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Together with the phase constraints 
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The algorithm is to solve Eq. 7.4 for 3a and to obtain 2b in 

terms of 4a and 4b using Eq. 8.1. Then plug in 3a to Eq. 

7.3  which leads to an expression of 3b in terms of 

( 4a , 4b ). We were using Eq. 8.1, Eq. 7.3 and Eq. 7.4. In 
similar way using Eq. 8.2, Eq. 7.1 and Eq. 7.2 we solve 

2a and 2b in terms of ( 1a , 1b ). Then we have to combine 
expressions obtained by this separate solvings using 

constraint equations (Eq. 8.1 and Eq. 8.2) which leads to 
this solution 
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like in Eq. 1, where expressions for transfer matrix 
elements are 
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Here 12T represents normalized drop port power and 22T  
represents normalized through port power. Now we apply 
those expressions from Eq. 10 to calculate spectral 
response of a filter made of two bus waveguides that are 
coupled to the microring-resonator. We have chosen free 
spectral range of 2 THz and -3dB bandwidth of 40 GHz. It 
is known that free spectral range of a microring-resonator 
is determined by ring’s radius [2]. 
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gg ππ 22
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Taking the Eq. 12 from reference [1] and using 
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f
cd

f
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2=⇒= λλ                 (12) 

gives us the relation for -3dB bandwidth 
                        FSRkf dB 22

3 ⋅=Δ⋅ −π                       (13) 
 
Therefore we define normalized coupling                                  

          
FSR

f dB

2
3−Δ×= πξ                            (14) 

 
Delay in group time is calculated using this formula                                

       
df
dtg
Φ−=

π2
1

                         (15)   

where Φ is the phase and f is the frequency.       
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                 Symmetric coupling ξ== oi kk  
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Fig. 2. Frequency spectra of T-matrix elements’  
amplitude, phase and group time delay -  (a), (b), (c) 

        Assymetric coupling ξξ 3,2 == oi kk  
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Fig. 3. Frequency spectra of T-matrix elements’  
amplitude, phase and group time delay -  (a), (b), (c) 
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In Fig. 2 and Fig. 3 frequency spectra of T-matrix 
elements’ amplitude, phase and group time delay are given, 
in symmetric and chosen asymmetric case, respectively. 
We can notice that symmetric coupling affords 100% 
transmission to the drop port. In the phase and group time 
delay plots we can notice differentiation of the bus lines, 
caused by the asymmetric coupling.  
 

III. COUPLING OF MODES IN TIME (CMT) MODEL  

 Coupled-mode theory in time (CMT) provides a 
simple model that affords all necessary physics of the 
resonant add-drop filter problem, including resonance, loss 
and coupling to input and output ports [1,2,6].  The system 
of equations that describes a single-resonator filter excited 
by a monochromatic input wave at angular frequency ω is 
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where a(t) is energy amplitude of the ring resonant mode, 
si, st, sd, are the power-normalized amplitudes of input, 
through and drop port waves [2].  With input wave si 
incident, some excitation is picked up by the resonator, and 
the remaining field interferes with that leaving the 
resonator in the through port and is carried away by 
through-port wave st.  The energy stored in the resonator is 
|a(t)|2 and according to Eqs. (16) the energy amplitude a(t) 
decays at a total rate r, comprising decay rates describing 
external coupling to the input port, re, to the drop port, rd, 
and to loss mechanisms, ro: 

 r = re + rd + ro  (17) 

The coupling rates re and rd are determined in the 
evanescent-coupling geometry in Fig. 8 by the size of the 
ring-waveguide coupling gaps [1,9].  The decay rates are 
related to decay time constants as ri = 1/τI, for i = {e,d,o}. 
Since τ is a field time constant, the associated photon 
lifetime of the resonant cavity (which measures decay of 
intensity) is τ/2. 

The through-port and drop-port responses of the device 
can be found from Eqs. (16) as 

 st

si

2

= (ω −ω0 )2 + (r0 + rd − re )2

(ω −ω0 )2 + (r0 + rd + re )2
 (18) 

 sd

si

2

= 4rerd

ω −ω0( )2 + r2
 (19) 

The drop-port response is Lorentzian, with a full 3dB  
bandwidth Δω3dB = 2r. 

Unlike a full scattering model (T matrix model) using 
transfer matrices, the CMT model addresses only one 
resonant mode of the ring and does not include geometry 
information that can define a free spectral range (FSR).  

Resonant frequencies are determined by the resonant 
condition 

 
eff

m Rn
cmf

π2
=  (20) 

where c is the speed of light in vacuum, R is the ring 
resonator radius, and neff is the (frequency dependent) 
effective index of the guided mode.  The FSR is given by 

                            
ΔfFSR = c

2π Rng                          
(21) 

where gn  is group effective index of the guided mode. 
 

    
 

Fig. 4. Schematic of a single microring-resonator add-drop filter showing 
the parameters used in the CMT model. 

 
 

IV. CORRESPONDENCE OF CMT AND T-MATRIX 
MODELS 

We have derived T-matrix and CMT models of 
coupled microring resonator filters. Now we will compare 
those models. In Fig. 5 we show wavelength spectra of 
amplitude in linear and db scale. The task is to connect 
coupling coefficients oi kk ,  from T-matrix model with 

decay rates de rr , . There is a direct relation [1] 

                                   
FSRkr nm ×= 22                             (22) 

for m = {e,d} and n={i,o}. Using normalized couplings 
from Eq. (14) we obtain expression for decay rates as 
 

                                    
dBfr 3−Δ⋅= π                              (23) 

 
We are showing the results of comparison for symmetric 
coupling, with zero losses. One disadvantage of T-matrix 
model is that it does not model losses while CMT model 
includes losses. On the other side, T-matrix shows free 
spectral range and multiple resonances while CMT model 
has only one resonant wavelength. In Fig. 5(b) we can 
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notice that deviation of CMT Lorentzian from T-matrix 
trace is bigger on dB scale than on linear scale in Fig.5 (a). 
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Fig. 5. Comparison of CMT and T-matrix models (wavelength spectra of 
amplitude) linear (a) and dB scale (b) 
 

V. OPTIMAL AND CRITICAL COUPLING 

We apply CMT model in order to optimize drop port 
transmission. Fixing the bandwidth means fixing the total 
rate r, according to Eq. (17) and, together with a fixed loss 
rate, there is only one degree of freedom left. Taking the 
first derivative of Eq. (19) in respect to er and setting this 
to zero gives 

 
2

0rrrr de
−

==  (24) 

From setting Eq. (18) to zero on-resonance, we derive the 
couplings of critically coupled filter 

 0rrr de +=  (25) 
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Fig. 6. CMT transmission (drop port, through port and losses) in optimally 
and critically coupled filters – (a), (b) 

 
In Fig. 6 transmission spectra of through and drop port is 
given for optimally and critically coupled filters. A 
comparison of the transmission efficiency of the optimal 
symmetric [Eq. (24)] and critical coupling [Eq. (25)] 
designs is given in Fig. 7, showing that the symmetric 
design is indeed optimal for maximizing dropped on-
resonant power.  We define a normalized bandwidth, α , 
by normalizing the 3dB bandwidth Δf3dB by the intrinsic 
linewidth Δfo due to the loss rate ro, i.e. loss Q, Qo.  
Substitution of the solutions of Eq. (24) and Eq. (25) into 
Eq. (19) provides the normalized efficiency of the 
symmetric and critically coupled designs given in Eq. (26). 
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VI. CONCLUSION 

Transfer matrix model of a photonic microring-
resonator channel add-drop filter has been solved and 
applied to design a filter with chosen free spectral range 
(FSR) and -3dB bandwidth ( dBf3Δ ). The results of those 
calculations are given for symmetric and asymmetric 
coupling. CMT model was solved and applied in order to 
maximize drop port power of a single ring filter. We have 
determined how to choose optimal couplings and then 
compared this to the case of critical coupling. This 
comparison is useful in the design process to determine the 
narrowest bandwidth that supports a desired transmission 
to the drop port, or the maximum transmission achievable 
at a certain bandwidth, given known linear losses. Fig. 7 
and Eqs. (26) show that the optimum symmetric design has 
a minimum bandwidth limit of Δfo, while the critically 
coupled design has a minimum bandwidth of 2Δfo.  In the 
limit of a large bandwidth α, the loss plays a negligible role 
and the two solutions can be verified by a first-order Taylor 
series expansion of Eqs. (26) to be equal.   
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Abstract—Calculation of magnetic field and supercurrent 
distribution has been performed, using modified London model. 
We have written a simulation in MATLAB that calculates a 
mixed state of type-II superconductors. Starting point of the 
calculations was magnetic field distribution. Supercurrent 
distribution was obtained from the magnetic field distribution, 
according to the Ampere’s law. It has been shown that it is 
possible to extract the vortex-core size from the profile of 
supercurrent distribution. Dependence of the vortex-core size 
upon the cutoff parameter is provided. Two basic cases of the 
vortex lattice (VL) have been used – square and triangular 
lattice. 

Key words-superconductors; type-II; mixed state; London 
model; vortex lattice (VL); vortex-core size; simulation; MATLAB 

I.  INTRODUCTION 
Superconductivity (SC) is a physical phenomenon 

characterized by vanishing of the electric resistivity in different 
materials and alloys when they are cooled down below a 
certain temperature, known as the critical temperature (Tc). 
Beside the stepwise decrease of the specific electric resistivity 
to zero, it was observed that a superconductor pushes out the 
magnetic flux, when placed in an external magnetic field. This 
appearance is called Meissner effect. The explanation is that 
surface supercurrents are induced and their magnetic field 
cancels out the external magnetic field. Inside the 
superconductors, electric field is E = ρJ = 0 (since ρ = 0), 
therefore only surface currents can exist. Under the condition T 
< Tc , there is a surface supercurrent whose magnetic field 
completely cancels out external magnetic field, under the 
condition that external magnetic field is smaller than the 
critical field (H < Hc). The value of critical field depends on 
the temperature. It decreases from its maximum value Hc(0) to 
the zero value at critical temperature (Hc(Tc) = 0). When one 
places already cooled superconductor (T < Tc) in a magnetic 
field bigger than critical field at that temperature (H > Hc(T)),  
material loses SC characteristics and Meissner effect does not 
happen. In principle, one can define superconductivity as a 
characteristic behaviour of a given material.  SC exists in a 
certain space of parameters, like  H(T) defined by the values of 
magnetic field H and temperature T. 

There are two possible cases, depending exclusively on the 
kind of the SC material. In type-I superconductors, when H = 
Hc(T), whole sample returns to a normal state, when magnetic 
induction B completely penetrates into the sample. In type-II 
superconductors, when H < Hc1(T), where Hc1 is the lower 
critical field, magnetic induction does not penetrate into the 
sample and this is called – superconducting state. When H > 
Hc2(T), where Hc2 is the upper critical field, sample returns to a 
normal state, with full penetration of the magnetic induction. 
Under the condition Hc1(T) < H < Hc2(T), there is a partial 
penetration of magnetic induction into the sample. Regular 
microscopic structure with alternate placements of normal and 
superconducting areas settles, this is known as the mixed state. 
In the mixed state magnetic induction enters the sample partly, 
as magnetic vortex lines. Alexei Abrikosov won a Nobel prize 
in physics for his prediction about the mixed state. He 
predicted that some materials could preserve SC in strong 
magnetic fields by allowing the external magnetic field to 
penetrate the sample as a periodic arrangement of quantized 
flux lines, this is a vortex lattice (VL) [1].  

The basis of Abrikosov’s model of the mixed state is 
phenomenological Ginzburg-Landau (GL) theory. The 
structure of the VL is, within the GL theory, characterized by 
the two fundamental length scales. Those are magnetic field 
penetration depth - λ and coherence length - ξ.  The first 
phenomenological theory of superconductivity was London 
theory. A major triumph of the equations of this theory is their 
ability to explain the Meissner effect. Their equation shows 
that magnetic induction in the superconductor decays 
exponentially with the distance from the surface. It means that 
a superconductor in Meissner state is not ideal because 
magnetic induction penetrates into the sample on the length 
scale of λ – London penetration depth. One way of explaining 
the other parameter, coherence length, is that it defines the 
length scale over which the transition between normal and SC 
areas in the mixed state happens. There are different 
experimental techniques that investigate the mixed state of 
type-II superconductors. One of the most powerful among 
them is the muon spin rotation technique.   

Muon spin rotation is an experimental technique used to 
measure local magnetic fields inside the sample. It can probe 
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magnetic induction in the bulk of a superconductor in a vortex 
lattice state [3]. Those measurements can determine the vortex-
core size.  

 

 
Figure 1.  Hc(T) characteristic for type-I and type-II superconductors 

II. LONDON MODEL 
There are different models for the description of magnetic 

field distribution of the mixed state in type-II superconductors. 
The aim of those models is to extract data from muon spin 
rotation experiments. The difference between the models is in 
their ability to take into account various effects which can be 
measured in the experiments. In phenomenological London 
model, magnetic field for a perfect flux-line lattice (FLL) [3] is 
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where the sum goes over the reciprocal lattice vectors G
r

of the 
FLL. Here Φ0 is a flux quantum with its normalized value of 
2π. Parameter S is the area of the vortex lattice unit cell. Vector 
rr is the radius vector in the xy plane, it determines the position 
of the point in which magnetic field is calculated. Parameter λ 
is the penetration depth in the Meissner state. In reference [5] 
the temperature dependence of λ is given in the Eq. 2. 
However, we are dealing with a simplified model that does not 
account for the temperature dependence, so parameter λ has a 
fixed normalized value. 

III. MODIFIED LONDON MODEL 
London model used for the analysis of the experimental 

data does not account for the spatial dependence of the order 
parameter and it breaks down at distances on the order of 
coherence length from the vortex core center, B(r) diverges. To 
correct this, the sum over G

r
can be truncated by multiplying 

each term in Eq. 1 by a cutoff function F(G), where G is the 
module of G

r
. One important fact is that the adequate form of 

F(G) depends on the precise spatial dependence of the order 
parameter in the vortex core, which in general depends on 
temperature and magnetic field. Modified London model has 
the analytical expression for F(G) in the form of a smooth 
Gaussian cutoff factor [3] 
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Magnetic field distribution in modified London model is 
given as 
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Brandt determined the values of α by solving Ginzburg-
Landau (GL) equations [5]. Furthermore, Laiho et al. have 
shown that α is temperature dependent [2]. They have 
determined the temperature and magnetic field dependences of 
the cutoff function used in the modified London model. These 
calculations show that the London model with the proper cutoff 
function provides a reasonable description of the magnetic field 
distribution of the FLL in type-II superconductors.  

IV. VORTEX LATTICE CONFIGURATION 
Before the calculation of magnetic field, shape of the vortex 

lattice has to be fixed. The shape of the VL is determined by 
the unit vectors [4] 
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where a  is the lattice constant  

H
a 0Φ

=  

The range for H is 0 < H < 1. The lattice characteristic angle θL 
is the angle between 1r

r
 and 2r

r
. Two basic shapes are 

considered in this paper: square lattice (θL = 90°) and triangular 
lattice (θL = 60°). By introducing reciprocal unit vectors 
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that define reciprocal lattice vector G
r

, where n and m are 
integers 
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Area of the vortex unit cell is calculated as 
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The sum over reciprocal lattice vector G
r

is symmetric.  

It means that integers (n,m) take the values from the interval 

                                  { } lmnl ≤≤− ,                                  (8) 

Value of l  is determined under the cutoff condition [5], 
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From the Eq. 6 we obtain the value of G 
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A. Square lattice 
In the case of square lattice, Eq. 10 simplifies to 
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Since 
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Combining Eq. 9 and Eq. 12 gives us 
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According to Eq. 5,
a
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1 = , therefore Eq. 13 becomes 
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B.  Triangular lattice 
In the case of triangular lattice, Eq. 10 simplifies to 
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Maximum value of G is  
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Combining Eq. 9 and Eq. 16, gives us 
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V. CURRENT DISTRIBUTION 
Magnetic field distribution over a chosen xy mesh has been 

calculated, according to Eq. 3. Next parameter of a type-II 
superconductor we want to calculate is the vortex-core size. 
One of possible ways for defining a vortex-core size is 
provided in [6]. It is defined from the supercurrent density near 
the vortex center. At the vortex center supercurrent density is 
equal to zero, since that part of the superconductive material is 
not in SC state. The absolute value of supercurrent density 
reaches its maximum value at the distance R0 from the vortex 
center. This distance is the vortex-core size. When there is an 
analytical expression for the magnetic field, current distribution 
is easily calculated. According to the Ampere’s law (IV 
Maxwell’s equation) 

                                    )()( rhrJ rrrrr
×∇=                            (19) 

Magnetic field points along the z-direction. By solving the 
determinant that corresponds to the vector product from Eq. 19, 
the expression for current distribution is obtained 
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 Let us calculate the x and y components of the current: 
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Intensity of the current in a given point of the xy mesh is 

                             ( ) ( ) ( )22 rJrJrJ yx
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VI. RESULTS 
Magnetic field and current distribution of modified London 

mode have been calculated, in the cases of square and 
triangular vortex lattices. We show the results for ξh = 0.18. 
Furthermore, the values of vortex-core size have been extracted 
from the profile of the current distribution. Dependence of 
vortex-core size upon the cutoff parameter has been found. 

A.  Square lattice 
In Fig. 2 and Fig. 3 top view and side view of magnetic 

field distribution in square lattice case are shown, respectively. 

   

 
Figure 2.  Top view of magnetic field distribution (square lattice) 

 

 
Figure 3.  Side view of magnetic field distribution (square lattice) 

It is confirmed that the lattice constant extracted from Fig. 2 is 
equal to the lattice constant given in the simulation. In Fig. 3 
we can observe that magnetic field has maximum value in the 
core center and symmetrically drops down around the core 
center. In Fig. 4 and Fig. 5 top view and side view of current 
distribution are shown. 

          

 
Figure 4.  Top view of current distribution (square lattice) 

 

 
Figure 5.  Side view of current distribution (square lattice) 

One can notice the square lattice in Fig. 4, with the proper 
lattice constant. In Fig. 5 one can observe that current has 
minimum value in the core center and symmetrically rises up 
around the core center, in “volcano-like” shape.  

B. Triangular lattice 
Fig. 6 and Fig. 7 top view and side view of magnetic field 

distribution in triangular lattice case are shown, respectively. 
One can notice the triangular lattice in Fig. 6, with the lattice 
constant equal to the lattice constant calculated in the 
simulation. In Fig. 7 one can observe that magnetic field has 
maximum value in the core center and symmetrically drops 
down around the core center.  

      In Fig. 8 and Fig. 9 top and side view of current distribution 
are presented. Similar to the square lattice case, current has 
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minimum value in the core center, and rises up symmetrically 
around the core center. 

 
Figure 6.  Top view of magnetic field distribution (triangular lattice) 

 

 
Figure 7.  Side view of magnetic field distribution (triangular lattice) 

 

 
Figure 8.  Top view of current distribution (triangular lattice) 

 
Figure 9.  Side view of current distribution (triangular lattice) 

 
Now when we have the current distribution, next step is to 

plot its profile and extract the vortex-core size. As stated in [6] 
(Fig. 6 (b)) vortex core size is the distance from the vortex 
centre at which supercurrent density has maximum value. In 
Fig. 10 profile of the supercurrent distribution is presented, for 
ξh = 0.18. 

 

 
Figure 10.  Profile of the current distribution (ξh = 0.18) 

 
The vortex-core size does not depend on the lattice shape, 

for one value of ξh it is the same for both lattices. The profile 
along x-axis is presented, it is the same along y-axis, due to 
symmetry. The xy mesh includes three vortex cores along both 
axes. This plot has been obtained by observing one arbitrary 
chosen vortex core. In Fig. 11 the dependence of vortex-core 
size on the cutoff parameter is shown. 
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.  
Figure 11.  Vortex-core size in function of the cutoff parameter 

VII. CONCLUSION 
Magnetic field and supercurrent distribution have been 

calculated according to the modified London model. The 
results have met expectations, meaning that the lattice shape 
with proper lattice constant has been obtained. Distributions 
correspond to the mixed state of a type-II superconductor. 
Vortex-core size has been obtained from the profile of the 
supercurrent distribution. Plot of the vortex-core size versus 
cutoff parameter shows that they are on the same order of 
magnitude and that an increase of the cutoff parameter causes 
the increase of the vortex-core size. Future work may include 
the analysis and application of the models that include 
temperature dependance, which will allow comparison and 
matching of the calculations with experimental results. 
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Abstract—This paper is dealing with tubular structures composed 
through the self-assembly of magnetic hard spheres, in a given 
geometric confinement. Since the structures are tubes, geometric 
confinement is a cylinder with a given radius (confinement 
radius). Interaction of interest is magnetic dipole-dipole 
interaction, therefore a detailed analysis of it is provided. Next 
step is formation of the structures. We are analyzing infinitely 
long tubes, therefore an efficient method (Lekner method) for 
summing the dipole-dipole interactions of 1D periodical systems 
(periodical along one direction, the z-axis) is implemented in 
MATLAB. One of the main goals is determination of 
energetically favoured configurations, so a comparison of the 
tubes’ energy has been done. 

Key words-calculations; geometrical packing; binding energy; 
magnetic; tubes; MATLAB 

I.  INTRODUCTION 
Self-assembly of magnetic particles is an interesting and 

relevant research topic which investigates the ways of forming 
regular structures composed of magnetic particles, in a fixed 
geometric confinement. Interaction between each two particles 
is magnetic dipole-dipole interaction [1]. What is a magnetic 
particle? It is a hard sphere which is a magnet (it has magnetic 
dipole moment). Why is this topic attractive? First of all, it is 
relevant from the theoretical point of view, since the dipole-
dipole interaction is a long-ranged (~1/r3, r is the distance) and 
unisotropic interaction. Applications of magnetic structures are 
numerous, especially in nanoelectronics and biotechnology. 
For example, in nanotechnology, mixtures of self-assembled 
magnetic particles can lead to the formation of very strong 
magnets [2,3]. Interaction between magnetic planar layers can 
lead to 3D structures with a great potential for the 
microfabrication of electronic devices [4]. Ground states of 
microstructures in ferofluid monolayers, in which the 
interaction is magnetic dipole-dipole interaction, have been 
investigated [5]. In the paper [6] self-assembled magnetic 
structures with minimal energy (ground state) have been found. 
It has been shown that as the number of particles, N, increases, 
the dimensionality of the ground state structures increases as 
well. For a small number of particles (N = {2, 3}), a chain is 
the ground state. For (3 < N < 14), a chain closes into a ring. In 

the end, for a sufficiently big number of particles (N > 13) 
ground state is obtained via ring stacking. There is a clear 
transition with the increase of N, since a chain is 1D, a ring is 
2D and stacked rings is a 3D structure. The subject of this 
paper is investigation of 3D structures (infinitely long tubes) 
formed via ring stacking into tubes. In the first part of this 
paper, a detailed analysis of the magnetic dipole-dipole 
interaction is performed, in order to better understand self-
assembly of magnetic particles. There are two specific 
geometrical packings of the rings into tubes (square and 
triangular), leading to so called, AA and AB tubes. Our goal is 
to form a certain structure and calculate its binding energy, 
which is a result of the dipole-dipole interactions of each pair 
of particles that are building it. Once a structure is built 
geometrically, its dipole orientation (also called magnetization) 
should be defined. We have introduced three different 
magnetizations (ST/MT/ZZ magnetization) and compared their 
impact on the energy. Also, for a fixed magnetization, a scan 
over a wide range of confinement radii has been done, in order 
to understand how does the energy change when the 
confinement radius increases. When the confinement radius 
goes to infinity, then a convergence to corresponding lattice 
plane happens [6], which confirms the accuracy of the 
implemented summation method.    

II. MAGNETIC DIPOLE-DIPOLE INTERACTION 
Interaction for modelling the self-assembly of hard 

magnetic spheres is magnetic dipole-dipole interaction.  
It occurs between two particles with magnetic moments m1 and

 m2. Potential energy of this interaction has the form: 
 

        ( ) ( ) ( )( )
⎥⎦
⎤

⎢⎣
⎡ ⋅⋅

−
⋅

= 5
122121

3
21

12 3
r

rmrm
r

mmCrU dd

rrrrrr
r

   (1)  

In the above equation, constant C is: 
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and the position vector connecting the two particles is r12 = r1 
– r2. Distance between the particles is the moduo of this vector 
and we note it as r. Let us assume that magnetic moments 
belong to the same plane.

 
In such a case, they have two 

components, one normal to the direction of r12,
 
mn

 
and the 

other one parallel to it, mp.
 
It leads to the expression for the 

potential energy: 
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In the next figure, a sketch of the two dipoles that we are 
analyzing is shown. 

 

 

 

 

 

 

Figure 1.  A sketch of two dipoles interacting via magnetic dipole-dipole 
interaction 

Potential of their interaction has been derived. Let us normalize 
the values of the variables in it: 
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Vectors m1
 
and m2

 
form the angles θ1 and θ2 with the direction 

of vector r12. Let us write: 
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There is a compact expression for the potential: 
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Let us test how does the potential depend on the mutual 
orientation of the dipoles. We are scanning the angle θ1 in 
1000 points over the full range,, and angle θ2 takes selected 
values. In Fig. 2 the potential depending on the mutual dipole 
orientation is shown. Potential has a minimum when the 

dipoles are parallel to vector r12 and they point to the same 
direction. It has a maximum when the dipoles have opposite 
directions, parallel to vector r12.

 
The same stands if the dipoles 

are normal to vector r12,
  

just the absolute values of the 
potential are smaller. Stars indicate the higher absolute value 
minimum and maximum, while triangles indicate lower 
absolute value minimum and maximum.  

Figure 2.  Potential of the dipole-dipole interaction depending on the dipole 
orientation 

From the previous analysis, we have learned that two dipole 
orientations are of interest: parallel and normal to the vector 
r12.

  
Distance was kept fixed and the dipole orientation was 

being changed. Now, we will keep the orientation fixed, but 
the distance will be changing.  
In Fig. 3 a sketch of two dipoles parallel to the position vector 
r12 is shown. This system corresponds to the minimum marked 
with a star  in Fig. 2. 

 

 

 

 

 

 

 

 

Figure 3.  A sketch of two dipoles parallel to the position vector 

In Fig. 4 dependence of potential on distance is shown. 
Obviously, absolute value of interaction potential decreases as 
the distance increases. This is an example of attraction 
between two dipoles. In Fig. 5 a sketch of two dipoles normal 
to the position vector r12

 
is shown. This system corresponds to 

the maximum marked with a triangle in Fig. 2.  
In Fig. 6 dependence of potential on distance is shown. The 
same remark applies here, absolute value of interaction 
potential decreases as the distance increases. This is an 
example of repulsion between two dipoles.  
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Figure 4.  Dependence of the interacion potential on the position of dipole 2 

 

 

 

 

 

 

 

 

 

Figure 5.  A sketch of two dipoles normal to the position vector 

Figure 6.  Dependence of the interaction potential on the position of dipole 2 

This was the analysis of two systems of interest based on the 
general picture presented in Fig. 2. On the other side, from the 
Eq. 3, we can conclude that for a specific dipole orientation, 
interaction potential will be equal to zero [7]. We came up 
with a sketch shown in Fig. 7, in order to find out how does 
the system look like when this is the case. In Fig. 8 
dependence of potential on distance is shown. When the angle 
is equal to the magic angle, potential is equal to zero. From the 
Eq. 3 we can derive what should be the angle α which causes 
the dipole-dipole interaction potential to be equal to zero.  
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Angle α = 54.74° is the magic angle, interaction potential goes 
through the zero value at the x-coordinate (see Fig. 8) which 
corresponds to this angle. For this system, there is a switch of 
potential's sign, so there are both, attraction and repulsion 
between two dipoles. 
 
 
 

 

 

 

 

 

 

Figure 7.  An illustration of the magic angle in the  dipole-dipole interactions 

Figure 8.  Dependence of the interaction potential on the position of dipole 2 

III. CALCULATION OF THE BINDING ENERGY 
In this chapter, a method for calculating the binding 

energy of a tubular structure is provided. Since we are 
analyzing infinitely long tubes, an efficient method for 
summing the dipole-dipole interactions of 1D periodical 
structures (periodical along one direction, the z-axis) had to be 
found. There are two well known and widely applied methods 
for this type of calculations, those are Ewald summs and 
Lekner method. Ewald sums are usually used for 2D 
periodical systems, while Lekner summation method 
converges faster in the 1D case, therefore we decided to 
implement Lekner method. The key feature of Lekner method 
is the choice of a periodic cell. It is a part of the infinite 
structure which is being replicated. Since we are dealing with 
tubes, one has to define its cell which is being replicated along 
the tube's axis (z – axis). Energy of an infinitely long tube is 
calculated as a sum of the self and cross energy. In next 
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expressions, we are dividing by N, since the energy is defined 
per particle, which allows a comparison of different structures 
with different number of particles in a cell. 
Self energy represents the interaction energy of a selected 
particle in a cell, with all of its copies in the other cells. Total 
self energy is got as a sum over all particles in a cell, where 
number of particles in one cell is equal to N.  
Self energy is given as [8]:  
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Cross energy represents the interaction energy of a selected 
particle in a cell, with all other particles of the same cell and 
with all their copies in the other cells. Total cross energy is got 
as a sum over all particles in a cell, i = {1, N}, j = {1, N} [8]: 
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In the above equation, the cross energy is got as a sum of cross 
potentials of pairs of particles (i, j). Cross potential is defined 
as a sum of four sums. In those sums a modified Bessel 
function of the second kind, zero and first order, K0

 
and K1 

appears, respectively. In the following text, those sums are 
presented. 
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Method for calculation of the binding energy of 1D infinitely 
long periodic structures is presented briefly. Goal of this paper 
is geometric formation and calculation of the binding energy of 
structures with minimal energy. Since the dipole orientation 
dictates the interaction potential, energy minimization means 
finding the optimal dipole orientation. 
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IV. GEOMETRIC FORMATION OF THE STRUCTURES 
        In this paper we are analyzing tubes composed of 
magnetic particles. A specific configuration of a tube is 
defined by the geometry and the dipole orientation. There are 
two possible tube's geometries depending on the ring stacking. 
If the rings are stacked one on top of each other, those are AA 
tubes. Otherwise, if the rings are stacked in the way that there 
is one particle in the upper ring between two particles in the 
lower ring, those are AB tubes. There are only two ways of 
ring stacking, but there is a huge number of different dipole 
orientations. We took both stackings, and three well-defined 
dipole orientations. Those dipole orientations are called: 
single-thread (ST), multi-thread (MT) and ZZ dipole 
orientation. ST means that dipoles follow one thread that is 
tangential to the contour of the tube. MT means that dipoles 
follow multi threads of which the tube is composed, while ZZ 
means that all the dipoles are parallel to the z-axis. We have 
analyzed all three chosen dipole orientations for AA and AB 
tubes. When calculating binding energy of an infinite periodic 
structure using Lekner method, the key task is to define the 
periodic cell. In an AA tube, a cell is one ring. In an AB tube, 
a cell is composed of two rings. Normalization of the system 
includes dimension and energy scales. The diameter of every 
particle is d = 1. The distance between two particles is 
calculated from centre to centre, which means that the distance 
between two touching particles is equal to 1. On the other side, 
it is very convenient to introduce energy scale, so the energy is 
not defined in joules or electronvolts, but rather in arbitraty 
units [a. u.]. Energy scale is defined via repulsive potential of 
two touching dipoles standing side by side. The dipole 
moment is also normalized so that the length of dipole 
moment vector is equal to 1. Now we will explain geometric 
formation of the structures. For a tube, the basis is a ring 
composed of magnetic particles. In Fig. 9 the cross-section of 
a tube is presented.  
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Figure 9.  A sketch of the tube’s cross-section 

A ring is composed of N touching particles. Angular distance 
between two successive particles is 

N
πθ 2

=Δ for an arbitraty 

chosen i-th particle, its angular position in respect to the 
positive x-semiaxis is 

N
ii

πθ 2
=  . Let us look at the triangle 

ABC in Fig. 9. Since the distance between touching particles 
is equal to 1, then BC = 1/2. There are relations:  
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Therefore, the relation between ring's radius and number of 
particles is: 

                                 
( )N

R
/sin2

1
π

=                             (13) 

A. Formation of AA tubes 
In AA tubes, a periodic cell is one ring. Next array of 

equations defines coordinates of the particles, i = {1, N}. 
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Dipole moments are defined in the next way, i = {1, N}. 
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In the case of AA tubes, period along the z-axis is Lz = 1. 

B. Formation of AB tubes 
In AB tubes, periodic cell is a pair of rings. There are two 

arrays of equations, one for the lower ring, and another one for 
the upper ring. For the lower ring, coordinates of the particles 
are defined like in the case of AA tubes. There was a problem 
defining the z-coordinates of upper ring particles, which was  
solved using the definition of the distance between touching 
particles. Let us look at two arbitrary chosen particles in the 
lower ring (particles A and B) and one particle in the upper 
ring (particle C), which is placed between them. As it stands 
AC = BC = 1, from this condition we can derive how much 
are the upper ring particles displaced compared to the lower 
ring particles, along the z direction: 

              ( ) ( )221 CACA yyxxz −−−−=Δ             (16) 

In the upper ring, coordinates of the particles are those: 
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In this case, period along the z-axis is Lz = 2 .zΔ  
V. RESULTS OF THE STRUCTURE AND ENERGY 

CALCULATIONS 
In this chapter, results of the structure and energy 

calculations are presented. In Fig. 10, a geometry of one tube 
configuration is shown, obtained via MATLAB calculations. 
We are showing how does the tube (AA tube) look like in a 
side and in a top view. 

 

Figure 10.  A side and a top view of an AA tube 

In Fig. 11 and Fig. 12, dependence of binding energy on the 
confinement radius for AA and AB tubes is shown, including 
three different magnetizations. 
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Figure 11.  Energy in function of the confinement radius for different 
magnetizations (AA tube) 

Figure 12.  Energy in function of the confinement radius for different 
magnetizations (AB tube) 

It is clear that for a fixed packing geometry (AA or AB), 
binding energy decreases as the magnetization changes from 
ST and MT into ZZ. Tubes with ZZ dipole orientation have 
minimal binding energy, and therefore they are the most stable 
tube configurations. When the confinement radius goes to the 
infinity, energy of all differently oriented tubes (ST/MT/ZZ) 
converges into the energy of an infinite plane. Energy of a 
square lattice plane is Esquare = –2.258, all AA tubes converge 
into a square lattice plane. Energy of a triangular lattice plane 

is Etriangular = –2.759, all AB tubes converge into a triangular 
lattice plane. 

VI. CONCLUSION 
We have developed MATLAB simulations which form 

tubular structures composed of magnetic particles and 
calculate its binding energy. Both AA and AB ring stackings, 
including three different magnetizations, have been 
investigated.  

From the results, we conclude that all those tube 
configurations are stable, since their binding energy is 
negative. For a fixed packing geometry (AA or AB), binding 
energy decreases as magnetization changes in the way:  
ST - MT - ZZ. For a fixed magnetization, AB tubes have 
lower energy than AA tubes. Since AB tubes are more densely 
packed than AA tubes, we may say that bigger packing density 
implies lower binding energy and more stable structures. 
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Modeling the behaviour of confined dipolar and
ionic systems

Abstract

In this doctoral thesis confined dipolar and ionic systems have been modelled and

investigated, namely dipolar tubes and helices composed of dipolar hard spheres and

ionic liquids. Mutual for those systems is the fact that their structure and behaviour

are dominated by long-range interactions, i.e., dipole-dipole interaction in case of

dipolar systems and Coulombic interaction in case of ionic systems. The feature

of pronounced ordering of formed configurations and possibility of manipulating

them via externally applied fields (magnetic/electric field in case of magnetic/elec-

tric dipoles and electric field in case of ions) attract attention of condensed matter

physics.

The first part of this doctoral thesis, which is dedicated to dipolar systems, is

dealing with the investigation of the structure and cohesive energy in tubes and

helices composed of dipolar hard spheres. A complex dependence of cohesive energy

on surface packing fraction and dipole moment orientation has been observed. In

case that single-thread helices are considered, the lowest cohesive energy is achieved

at the highest surface packing fraction. Besides that, an interesting non-monotonic

behaviour of the cohesive energy as a function of the surface packing fraction has

been obtained. In case of multi-thread helices, a new phase, showing remarkably

lower cohesive energy, has been determined. This phase is referred to as ZZ tube

and it consists of threads following the confining cylinder’s axis, labeled as the z

axis, in terms of both spatial and dipole moment orientation. Actually, in case of

ZZ tubes dipolar hard spheres are arranged into a local triangular lattice, with

densely packed threads following the z axis.

In the scope of this doctoral thesis dipolar configurations under the condition

of cylindrical confinement are considered, meaning that dipolar spheres are placed

on a confining cylinder. First question which arises is what are the possible config-

urations, since there is an interplay between the two components, i.e., positioning



and dipole moment orientation of the particles. For a fixed geometry, only certain

dipole moment orientations lead to stable configurations. The above mentioned two

components can be treated as independent variables, while dependent variable is the

cohesive energy emerging from the dipole-dipole interactions. Accordingly, geome-

try is kept fixed, while dipole moment orientation is varied and the dependence of

cohesive energy on dipole moment orientation is determined. In an analogous way,

dipole moment orientation is kept fixed, while geometry is varied, i.e., the radius

of confining cylinder, leading to the dependence of cohesive energy on geometry.

Besides the cohesive energy, some other dependent variables are considered, like

the total polarization of a dipolar configuration. Except from the theoretical rele-

vance, dipolar tubes and helices represent model systems which might be useful for

other scientific areas. Modeling of dipolar tubes and helices might provide better

understanding of certain biological structures (for example, microtubules) or macro-

molecules (protein folding is dominated by electric dipole-dipole interactions). Due

to the mechanical flexibility of dipolar structures and possibilities of manipulating

them by external electric or magnetic fields, they might be useful in the synthesis

of electronic devices.

In the second part of this doctoral thesis, which is dedicated to ionic systems, a

molecular dynamics (MD) based modeling approach for simulating mesoscopic phe-

nomena related to lubrication with ionic liquid (IL) lubricants has been developed.

In that approach, geometry of the system allows a variable confinement gap between

solid plates and consequently a varying amount of lubricant in the gap. A coarse

grain MD description of: (i) IL lubricant, which can expand into lateral reservoirs,

and (ii) FCC (111) structured solid plates has been employed. Namely, two models

of IL: (a) the salt-like model (SM) and (b) the tailed model (TM) have been imple-

mented. In case of (a) SM model, IL consists of spherical cations and anions, while

in case of (b) TM model, a neutral spherical tail is attached to the cation via an

elastic spring. Three relevant TM models have been examined by varying the size

of neutral tail. The effects of confinement on flow and lubrication properties of SM

and TM ionic liquids, that were subjected to dynamic regimes of cyclic loading and

shearing, have been investigated. The impact of confinement on ionic arrangement



and mechanical response of SM and TM ionic liquids has been studied in detail and

compared to bulk properties. In case of TM models the influence of the molecular

geometry of the cation on the response of IL to confinement and imposed mechan-

ical deformations (normal load, cyclic loading and shearing) has been investigated.

Although it is simple, TM model recovers a wide range of structures seen in bulk

ILs: simple cubic lattice for small tails, liquid-like state for symmetric cation-tail

dimers, and layering for large tails. The dependence of normal force on interplate

gap can be related to ionic layering inside the gap. In investigated TM models of

IL, specific friction is low and friction force decreases with neutral tail size. As a

concluding remark, it has been found that the size of neutral tail from cation-tail

dimer has a huge impact on structure and tribological behaviour of confined ionic

liquids.

Ionic liquids are composed of large asymmetric and irregularly shaped organic

cations and anions. Irregularity effectively prevents low-temperature ordering and

crystallization of ILs, hence they are usually in the melted or glassy state. Physical

properties of ILs: negligible vapour pressure, high-temperature stability, high ionic

conductivity, chemical stability and possibility of external control, make them rele-

vant to various applications. Modeling of ionic liquids is an interesting problem from

the theoretical point of view due to their ordering and possibility of manipulating

them via external electric fields. On the other side, ionic liquids are high quality

lubricants used for friction reduction and wear prevention and modeling of ILs gives

an insight about their industrial applications.

Keywords: dipolar hard spheres, tubes, helices, Lekner summation, ionic liq-

uids, tribological behaviour, molecular dynamics

Scientific field: Physics

Research area: Condensed matter physics

UDC number: 538.9



Modelova�e ponaxa�a prostorno ograniqenih

dipolnih i jonskih sistema

Sa�etak

U ovoj doktorskoj tezi modelovani su i ispitani prostorno ograniqeni

dipolni i jonski sistemi, taqnije dipolne tube i heliksi sastav	eni od dipol-

nih qvrstih sfera i jonske teqnosti. Zajedniqko za ove sisteme je qi�enica

da su im struktura i ponaxa�e prete�no odre�eni dugodometnim interakci-

jama, dipol-dipolnom interakcijom u sluqaju dipolnih sistema, odnosno Ku-

lonovom interakcijom u sluqaju jonskih sistema. Odlika naglaxenog struk-

turnog ure�iva�a formiranih konfiguracija i mogu�nost manipulacije �ima

preko eksterno prime�enih po	a (magnetno/elektriqno po	e u sluqaju magnet-

nih/elektriqnih dipola, odnosno elektriqno po	e u sluqaju jona) privlaqe

pa��u sa aspekta fizike kondenzovane materije.

Prvi deo ove doktorske teze, koji je posve�en dipolnim sistemima, bavi

se istra�iva�em strukture i kohezione energije u tubama i heliksima koji

su sastav	eni od dipolnih qvrstih sfera. Dobijena je kompleksna zavisnost

kohezione energije od povrxinske gustine pakova�a i orijentacije dipolnih

momenata. U sluqaju jednostruko namotanih heliksa, najni�a koheziona en-

ergija postignuta je pri najvixoj povrxinskoj gustini pakova�a. Pored toga,

dobijena je zanim	iva nemonotona zavisnost kohezione energije od povrxinske

gustine pakova�a. U sluqaju vixestruko namotanih heliksa otkrivena je nova

faza, koja pokazuje primetno ni�u kohezionu energiju. Ova faza nazvana je ZZ

tuba, a sastoji se od niti koje prate osu konfiniraju�eg cilindra, oznaqenu

kao z osa, u smislu prostorne i orijentacije dipolnih momenata. Zapravo, u

sluqaju ZZ tuba dipolne qvrste sfere su ure�ene u lokalno trougaonu rexetku,

sa gusto pakovanim nitima koje su paralelne sa z osom.

U okviru ove doktorske teze razmatrane su dipolne konfiguracije pri

uslovu cilindriqnog prostornog konfinira�a, xto znaqi da su dipolne sfere

postav	ene na konfiniraju�i cilindar. Prvo pita�e koje se postav	a jeste



koje su mogu�e konfiguracije, sa obzirom da postoji preplita�e dve kom-

ponente, prostornog pozicionira�a i orijentacije dipolnih momenata qes-

tica. Za fiksiranu geometriju, samo odre�ene orijentacije dipolnih momenata

dovode do stabilnih konfiguracija. Pomenute dve komponente mogu se treti-

rati kao nezavisne promen	ive, a zavisna promen	iva je koheziona energija

usled dipol-dipolnih interakcija. Prema tome, geometrija je fiksirana, a

dipolna orijentacija se varira i odre�uje se zavisnost kohezione energije od

orijentacije dipolnih momenata. Na analogan naqin, dipolna orijentacija je

fiksirana, a geometrija se varira, recimo radijus konfiniraju�eg cilindra,

xto dovodi do zavisnosti kohezione energije od geometrije. Osim kohezione

energije, razmatrane su i druge zavisne promen	ive, kao xto je ukupna po-

larizacija dipolne konfiguracije. Pored teorijskog znaqaja, dipolne tube

i heliksi predstav	aju modelne sisteme koji mogu biti korisni u drugim

nauqnim oblastima. Modelova�e dipolnih tuba i heliksa mo�e pru�iti

bo	e razumeva�e odre�enih bioloxkih struktura (na primer, mikrotubula)

ili makromolekula (savija�e proteina dominantno je odre�eno elektriqnim

dipol-dipolnim interakcijama). Usled mehaniqke fleksibilnosti dipolnih

struktura i mogu�nosti za manipulaciju �ima preko eksternih magnetnih ili

elektriqnih po	a, date strukture mogu biti korisne u sintezi elektronskih

ure�aja.

U drugom delu ove doktorske teze, koji je posve�en jonskim sistemima,

razvijen je pristup u modelova�u na bazi molekularne dinamike (MD) za

simulira�e mezoskopskih fenomena povezanih sa podmaziva�em jonskim teq-

nostima. U tom pristupu, geometrija sistema omogu�ava promen	ivi konfini-

raju�i procep izme�u qvrstih ploqa i poslediqno promen	ivu koliqinu pod-

mazivaqa u procepu. Prime�en je opis na bazi MD ukrup�ava�a skala: (i)

jonske teqnosti kao podmazivaqa koji se mo�e proxiriti u lateralne rezevoare

i (ii) FCC (111) strukturiranih qvrstih ploqa. Naime, implementirana su

dva modela jonske teqnosti: (a) model na bazi soli (SM) i (b) model sa re-

pom (TM). U sluqaju (a) SM modela jonska teqnost se sastoji od sferiq-

nih kationa i aniona, dok je u sluqaju (b) TM modela neutralni sferiqni



rep vezan za kation elastiqnom oprugom. Ispitana su tri relevantna TM

modela varira�em veliqine neutralnog repa. Istra�eni su efekti konfini-

ra�a na protica�e i podmazivaqke osobine SM i TM jonskih teqnosti koje

su izlo�ene dinamiqkim re�imima cikliqnog pu�e�a i smica�a. Uticaj

konfinira�a na ure�iva�e jona i na mehaniqki odziv SM i TM jonskih teq-

nosti deta	no je prouqen i upore�en sa osobinama datih jonskih teqnosti u

balku. U sluqaju TM modela ispitan je uticaj molekularne geometrije kationa

na odziv jonske teqnosti pri konfinira�u i pri zadatim mehaniqkim defor-

macijama (normalna sila, cikliqno pu�e�e i smica�e). Iako jednostavan,

TM model rekonstruixe xiroki opseg struktura vi�enih kod balk jonskih

teqnosti: jednostavna kubiqna rexetka za male repove, teqno sta�e za simet-

riqne kation-rep dimere i ure�iva�e u slojeve za velike repove. Zavisnost

normalne sile od veliqine procepa izme�u qvrstih ploqa mo�e se povezati sa

ure�iva�em jona u slojeve unutar procepa. U ispitanim TM modelima jonske

teqnosti, specifiqno tre�e je malo, a sila tre�a opada sa porastom veliqine

neutralnog repa. Kao zak	uqna napomena mo�e se navesti da je ustanov	eno da

veliqina neutralnog repa iz kation-rep dimera ima veliki uticaj na struk-

turu i triboloxko ponaxa�e konfiniranih jonskih teqnosti.

Jonske teqnosti su sastav	ene od velikih asimetriqnih organskih kationa

i aniona nepravilnog oblika. Nepravilnost oblika spreqava ure�iva�e na

niskim temperaturama i kristalizaciju jonskih teqnosti, tako da su jonske

teqnosti uglavnom u top	enom ili staklastom sta�u. Fiziqke osobine jonskih

teqnosti: zanemar	iv pritisak pare, visokotemperaturna stabilnost, visoka

jonska provod	ivost, hemijska stabilnost i mogu�nost eksterne kontrole qine

ih relevantnim za razliqite primene. Modelova�e jonskih teqnosti je in-

teresantan problem sa teorijskog stanovixta usled strukturnog ure�iva�a i

mogu�nosti za manipulaciju jonskim teqnostima preko eksternih elektriqnih

po	a. Sa druge strane, jonske teqnosti su visoko kvalitetni podmazivaqi

koji se koriste za sma�e�e tre�a i spreqava�e haba�a, a modelova�e jonskih

teqnosti daje uvid o �ihovim industrijskim primenama.
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Chapter 1 Introduction

1.1 General overview

In this doctoral thesis there are two research topics involving systems with long-

range interactions, namely structures composed of dipolar hard spheres and ionic

liquids. Investigation of dipolar hard spheres is directed towards exploring the co-

hesive energy-packing relations, while investigation of ionic liquids is dedicated to

determining the structure, flow properties and tribological behaviour of confined

ionic liquids. In a higher instance the topics share two important aspects which

unify them: long-range interactions and accentuated self-assembly behaviour. Both

dipole-dipole interaction in dipolar systems and Coulombic interaction in ionic sys-

tems are long-ranged. An interaction V (r) depending on the distance between the

interacting particles r as V (r) ∝ r−p is considered to be long-range interaction if

it meets the condition: p ≤ nd, where nd is the dimensionality of the system. In

case of the dipole-dipole interaction, which has the same functional form (up to a

constant) for magnetic and electric dipoles, it stands Vdd ∝ r−3, while in case of

Coulombic interaction VClb ∝ r−1. In case of a 3D system, i.e., nd = 3, both of the

mentioned interactions meet the criterion of being long-range interactions. Another

mutual feature of both of those systems is accentuated self-assembly under the con-

ditions of spatial confinement. Dipolar hard spheres self-assemble into tubes and

helices on a confining cylinder. It is possible to obtain ordering of ionic liquid into

regular cationic-anionic layers, starting from a random arrangement of ions, in case

that ionic liquid is placed into a gap between two solid surfaces. A common conse-

quence of long-range interactions is ordering of the particles on length scales which

are much longer than the size of the particles itself. One might expect that the na-
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ture of long-range interactions combined with the conditions of spatial confinement

should lead to the emerging of ordered and stable structures. The systems that have

been investigated in this thesis are 3D and they are also infinite: (i) tubular and

helical dipolar structures are 1D infinite and periodic, (ii) ionic liquid is 2D infinite.

Besides the self-assembly under conditions of spatial confinement, mutual for both

systems is rich behaviour in terms of state and phase transitions.

1.2 Confined dipolar systems

Particles with permanent dipole moment are known for outstanding self-assembly

properties [1–3]. Self-assembly of hard dipolar spheres is an active research topic

dedicated to the investigation of the mechanisms by which ordered dipolar struc-

tures form. To be more precise, we are focused on the self-assembly of spatially

confined dipolar systems. Spatial confinement imposes formation of specific struc-

tures, e.g., cylindrical confinement imposes self-assembly of particles into tubular

and helical structures. Interaction of each pair of dipolar particles is the dipole-

dipole interaction, which is described by the same term (up to a constant) in case

of both magnetic and electric dipoles. Therefore, we consider structures composed

of dipolar hard spheres in a general case. Depending on given examples in nature

or technology, we compare considered structures with building elements composed

of particles with permanent magnetic or electric dipole moment. Self-assembly of

dipolar particles and a large number of different ways for their application have al-

ways been attracting interest due to a spontaneous transition from disordered into

ordered state. This topic is attractive because it is relevant from theoretical point of

view since dipole-dipole interaction is a long-range and anisotropic interaction which

leads to the complexity of structures formed via dipole-dipole interaction. Besides

that, examples of dipolar structures in nature and technology are numerous, espe-

cially in biology and some areas of nanotechnology.

Generally speaking from the aspects of geometry and without the need for the

presence of dipole-dipole interaction in given examples, tubular and helical struc-

tures are basic structural elements in many biological systems. Those structures are
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important building blocks of cells. Illustrative examples include bacterial flagella [4]

and microtubules [5, 6]. Additional examples of tubular and helical structures can be

found in various materials with specific building blocks, which can be: coiled carbon

nanotubes [7], DNA molecule [8], nanoparticles [9], amphiphilic molecules [10–12].

In biology there is an example of magnetotactic bacteria whose dynamics is espe-

cially sensitive under external magnetic field, so that microstructures formed by

those bacteria can be manipulated via application of external magnetic field [13].

Another example of the importance of dipole-dipole interaction in biology is the

formation of proteins. All processes in protein formation, i.e., folding of individual

aminoacids into a secondary structure and later-on formation of tertiary and qua-

ternary structures, depend on electric dipole-dipole interactions [14, 15]. Formation

of erythrocytes, which have a vital importance for human health, is realized through

several steps. Each of those steps includes electric dipole-dipole interactions. Any

kind of mutation which harms the dipole-dipole interaction suppresses proper for-

mation of erythrocytes, which as a response disables their capability of transporting

oxygen in the blood system.

In nanotechnology self-assembly of binary mixtures of magnetic nanoparticles

can lead to the synthesis of very strong magnets [16]. Interaction between magnetic

planar layers can enable formation of 3D structures with a great potential of applica-

tions in microfabrication of electronic devices [17]. Ground states of microstructures

in ferofluid monolayers, in which the interaction between magnetic particles is the

dipole-dipole interaction, have been studied in detail [18].

In the following text an overview of the accomplishments in experimental and

numerical studies of helical structures’ formation is given. Self-assembly of cubic

magnetic nanoparticles [19] and colloidal magnetic clusters [20] into helical struc-

tures has been accomplished experimentally, without the need for the pre-existing

templates. Another result following this research line tells that hard spherical par-

ticles confined inside narrow cylinders spontaneously group themselves into helical

structures. This has been achieved both via numerical simulations [21, 22] and

experimentally [23]. Hard spheres with a permanent dipole moment can be uti-

lized as a model for describing more complex helical molecular structures [24] and

3



1. Introduction

microtubules [25, 26].

The overview of the topic related to the self-assembly of dipolar particles should

mention the pioneering theoretical work of Jacobs and Beans [27] followed by the

work of De Gennes and Pincus [28]. Those works have provided the insight into

the microstructure of self-assembled spatially free spherical dipoles. More recently,

ground states of self-assembled magnetic structures have been thoroughly investi-

gated via numerical simulations [29]. The results of that paper have shown that for

the number of particles N ≥ 14 ground state is obtained via ring stacking into tubes.

In the experimental work [30] mechanical properties of the chains, rings and tubes

composed of ferromagnetic hard spheres of macroscopic dimensions (e.g., diameter

of particles is 6 mm) have been investigated. Besides that, the authors of that

work have provided an illustrative example which shows a spontaneous wrapping

of a straight chain into a tube. A general scientific problem of understanding the

mechanisms via which the building blocks, i.e. dipolar hard spheres, self-assemble

into structures and gain functionality is demanding and has a wide scientific impor-

tance [31–34].

In this thesis one of the two directions of research is dedicated to the modeling of

confined dipolar systems. By confinement we assume cylindrical confinement, i.e.,

dipolar hard spheres are constrained to compose a configuration on top of an imag-

ined cylinder, at a cylinder’s prescribed radius. Following this problem definition,

we systematically investigate long tubes and helices. The tubes are formed via ring

stacking, i.e., by periodical repeating of an unit cell containing a ring along an axis.

The helices are formed by rolling of one or multiple threads on a cylindrical confine-

ment surface. In terms of geometry, rolling is very much like 1D crystal formation,

which is conducted by replicating a patch of dipolar spheres on a cylindrical con-

finement surface along the helix backbone. There is an endless number of different

helical configurations, but we point out that the densely packed structures exist at

well-defined points in parameter space.

In Reference [35], very much in analogy to carbon nanotubes (CNTs), it was

shown that densely packed helices are defined by two numbers: lattice patch dimen-

sions n1, n2. The lattice patch dimension n1 is an integer which counts the number
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of spheres in one full turn around the confining cylinder and it is directly related to

the radius of a helix. An increase of n1 corresponds to the increase of the radius of

a helix. On the other side, the lattice patch dimension n2 is an integer which counts

the number of threads building up the helix and equivalently it counts the number of

spheres along the confining cylinder’s surface between two consecutive helix turns.

Realizing the fact that helix formation is dictated by those two preferential direc-

tions, i.e., turns around the cylinder’s surface (related to n1) and threads along the

cylinder’s surface (related to n2), we have decided to assign to the particles dipole

moments following those two preferential directions. We have defined ~a1 and ~a2

dipole moment orientations. In both of them the dipole moment of a certain sphere

points to its consecutive sphere, where in the first case consecutive spheres com-

pose turns around the confining cylinder, while in the second case they follow the

threads along the cylinder’s surface. Besides those two dipole moment orientations

assigned according to the geometrical features of helices, we have performed energy

minimization in order to obtain dipole moment orientation which corresponds to

the ground state and that type of dipole moment orientation is called ground state

dipole moment orientation. We show that pairs (n1, n2) represent the two numbers

of threads which can generate geometrically the same densely packed helices, how-

ever those helices are energetically completely different depending on the type of

their dipole moment orientation. We should mention that densely packed tubes are

basically sub-classes of helices (similar to armchair and zig-zag CNTs) for special

cases of the values of lattice patch dimensions n1, n2.

1.2.1 Outline of the research on cylindrically confined dipolar

systems

The goal of the study of confined dipolar systems, i.e., dipolar tubes and helices,

is to address the intimate link between the microstructure and cohesive energy. In

order to do so, it was necessary to precisely define the geometry, establish dipole

moment orientations and appropriately calculate cohesive energy. The research deal-

ing with confined dipolar systems (except for the parts related to introduction and
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conclusions) is placed in the chapter Confined dipolar systems, which consists of five

sections. In the section Geometry of helices and tubes composed of hard spheres the

geometry is explained in details. Next, the dipolar interaction model is introduced

and a link between the dipole distribution and the microstructure is established in

the section Dipole moments. Speaking in terms of cohesive energy, since the dipolar

hard spheres interact via two interaction potentials: potential of hard spheres and

dipole-dipole interaction potential, an appropriate method for summing the dipole-

dipole interactions should be implemented. Once that task is realized, an efficient

energy minimization method for determining the ground state of dipolar structures

should be introduced. In the section Methods the Lekner-type method for summing

the dipole-dipole interactions which we have implemented for calculating the cohe-

sive energy of considered dipolar structures is presented. Besides that, the method

for obtaining the ground state dipole moment orientation of a given dipolar struc-

ture is presented as well. At that point, after the geometry, dipole moments and

method for treating long-range dipole-dipole interactions are established, it is pos-

sible to switch the focus to configuration-cohesive energy relations. Namely, in the

section Degeneracy in 2D triangular and square lattice and properties of tubes it is

shown that triangular and square lattices of dipolar hard spheres posses degeneracy

in terms of cohesive energy, which breaks-up with curvature in case of AA and AB

tubes. In the following section Cohesive energy-packing relations in dipolar helices

starting from the simplest case corresponding to a single-thread helix, the relation-

ship between the surface packing and the resulting macroscopic properties, such as

cohesive energy or overall polarization, is discussed. Then, the more complex situa-

tion of multi-thread helices with densely packed constitutive particles is addressed.

There, the degree of alignment (especially in the ground state) between dipole mo-

ment orientation and helix axis is analyzed. In the section Confined dipolar systems

of the chapter Conclusions, the conclusions and possible connections of the investi-

gated model system with some real systems, namely with biological microtubules,

are given.
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1.3 Motivation for the research of ionic liquids

Tribology is the name of a multidisciplinary scientific area which is related to the

phenomena of friction, lubrication and wear. In tribology, the knowledge and com-

petences of physics, chemistry and high performance computing are overlapped and

combined [36]. Term nanotribology is related to the specific branch of tribology

which studies the phenomena of friction, lubrication and wear at the nanoscale.

Scientific discipline of computational nanotribology has been well-established in the

last couple of decades [36, 37]. Powerful computational resources enable application

of the methods of computational nanotribology in the cases of increasing complexity.

There are numerous systems which are of interest in the field of computational

nanotribology, however we have focused on ionic liquids. They are a promising

candidate for the applications as a high quality lubricant, especially in automotive

industry. Bearing that in mind, our investigation in the framework of this topic is

directed towards the understanding of physical properties of ionic liquids related to

the friction, lubrication and wear phenomena. After gaining a relevant expertise, we

might realize the potential of using ionic liquids as a lubricant in automotive indus-

try. Let us start the considerations with this, in a certain way surprising fact, that

approximately one-third of the fuel energy in a passenger car is consumed by fric-

tion [38]. Therefore, understanding of the lubrication mechanisms in an automotive

vehicle’s engine is highly important. Numerical simulations at the molecular scale

can provide insights which are necessary for understanding the mechanisms govern-

ing the system’s behaviour, such as structural changes in the lubricant layers during

shearing and normal load application, as well as the interaction between the lubri-

cant and solid surfaces. In recent studies of the nanoscopic friction phenomenon,

based on the Molecular Dynamics (MD) method, ionic liquids are considered as a

lubricant [39]. The width of lubricating films of just a few molecular layers is relevant

for suppressing wear and achieving low friction [40–43]. In 2001, for the first time

it was published that ionic liquids have a great potential as lubricants. Since then,

they attract attention in the field of tribology due to their remarkable characteris-

tics relevant for lubrication and wear prevention, when compared to conventional
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lubricating oils which are generally used. The number of publications dealing with

ionic liquids is constantly increasing, in both forms of journal articles and industrial

patents. Therefore, there is a wide interest for this topic from both fundamental

and industrial aspects [44].

In industrial applications, there are considerations of using ionic liquids as a neat

lubricant and as an additive [45–47]. Significant improvements in friction and wear

reduction have been achieved experimentally [46]. Namely, in Reference [46] the

authors have achieved coefficient of friction reduction for 60% and wear reduction

for three orders of magnitude. They have added and mixed certain ionic liquids with

synthetic lubricating oils.

Understanding and description of nanoscopic friction in ionic liquids, as well as

their structure under imposed conditions, represents a challenging scientific problem

and so far there have been just a couple of studies in this direction, e.g., Refer-

ences [48, 49]. Detailed studies of ILs at the nanoscale using the methods of com-

putational physics provide a wider perspective as compared to experimental studies

where the investigation is restricted to certain ILs which posses certain values of

relevant physical parameters. On the other side, in simulations ILs are considered

in a generic way and it is possible to explore a wide range of parameter values.

Practically, it means that simulations enable the design of favourable characteristics

of ILs, and later–on it is possible to experimentally synthesize certain ILs, based

on the simulated ones.

In this thesis one of the two directions of research is dedicated to the modeling

of confined ionic systems, namely ionic liquids (ILs). In order to better understand

the structure and behaviour of confined ionic liquids, we investigate the same ionic

liquids in the bulk state, as well. We have started from the basis, by implementing

and studying the simplest IL model which includes a positively charged spherical

cation and a negatively charged spherical anion, i.e., SM (salt-like model). This

was followed by the implementation and investigation of a more realistic IL model

which includes a positively charged spherical head connected by an elastic spring

with a neutral spherical tail and a negatively charged spherical anion, i.e., TM

(tailed model). Our interest in modeling ionic liquids comes from its scientific im-
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portance. However, we bear in mind potential applications of ILs as high quality

lubricants, hence we guide our research towards exploring IL lubricating properties.

Simulation setup with two solid plates between which IL is confined, is designed

with the aspirations of probing IL lubricating abilities. To enclose this exposé, in

this section we provide general introduction into ionic liquids, which is followed by

the introduction into SM and TM model based studies, respectively.

Ionic liquids are two-component systems composed of large asymmetric and ir-

regularly shaped organic cations and anions. The feature of irregularity is important

as it is effectively preventing low-temperature ordering and crystallization. There-

fore, ILs are usually in the melted or glassy state. Physical properties of ILs like

negligible vapour pressure, high-temperature stability, high ionic conductivity and

also a great variety of ILs and their mixtures highlight them as potentially relevant

to lubrication [44, 50]. In addition, their properties can be modified by an applied

voltage using confining charged surfaces in order to build–up an electric field across

the nanoscale film. The applied potential can affect the structure of IL layers and

lead to externally controllable lubricating properties [49, 51, 52].

A large number of variations in IL composition is possible, estimated at the or-

der of magnitude of 1018 different ILs [53]. From their variety stems the possibility

of tuning their physicochemical properties which can affect lubrication such as vis-

cosity, polarity, surface reactivity by varying their atomic composition, as well as the

cation-anion combination. Hence, it would be advantageous if we could deduce the

general relations between the molecular structure and the anti-wear and lubrication

properties of ILs.

Previous work employing Lennard-Jones fluids has provided insights into the

complete dynamic diagram of confined liquids, including wall slip, shear banding and

solid friction. In terms of fluid complexity these studies have mainly employed mono-

molecular systems, and only a few authors have considered mixtures of molecules [54,

55]. In addition to inherently being a mixture of cation and anion molecules, ILs

involve long-range Coulombic interactions inducing long-range order on far greater

scales than the IL itself [39, 43, 56]. Detailed investigation of ILs as lubricants

at the nanoscale is therefore essential for exploring the potentials of implementing
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them in lubrication systems.

Our specific goal, related to industrial applications of IL lubricants, is to achieve

a representation of the tribological system which is relevant to automotive power-

train applications. As approximately 45% of the engine friction losses occur in the

piston assembly [38], our initial target is to mimic the conditions observed in the

piston ring–cylinder liner contact, in terms of pressure, temperature and shear rates.

In addition, in order to be able to achieve length– and time– scales that can be of

relevance to the real–life systems, it is necessary to apply appropriate simulation

methodologies, such as the use of coarse grain molecular dynamics [57–60].

1.3.1 Salt model of ionic liquid

The focus of our study employing the SM ionic liquid, which contains salt–like

spherical cations and anions, is on investigating lubricating ability and flow proper-

ties of ILs. Regarding the ability of ionic liquids to dynamically penetrate between

surfaces, i.e. wetting, sometimes it is considered that a low contact angle of the

lubricant indicates the affinity between the liquid and the surface, since the liquid is

more likely to stay in the area in which it was initially placed. It is also expected that

a lubricant is going to penetrate into small–gap components. However, the effect of

wettability of the ionic liquids is not understood well. The wetting of plate surfaces

such as mica is known to be partial by at least some ILs [61, 62]. Lubrication

necessarily involves intimate molecular features of the liquid–solid plate interface,

related with those mechanisms determining the ionic liquid’s wetting of the plate.

When ILs are used as lubricants and, as such, confined between solid plates, their

ions are ordered into layers and adsorbed onto surfaces [63]. These adsorption layers

can reduce friction and wear, particularly in the case of boundary lubrication [63].

Recent studies of IL lubricants [49, 51, 52, 64] have shown that if the molecules

interact via non–bonded potentials (Lennard–Jones and Coulombic potential), this

can capture all main physical attributes of the IL–lubricated nanotribological sys-

tem. Therefore, molecular–scale simulations can provide important insights which

are necessary for understanding the differences in flow behaviour between bulk and

confined liquid lubricants and the mechanisms behind, such as boundary layers for-
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mation in case of shearing and/or applied normal load.

We utilize our coarse grain MD simulation setup consisting of two solid plates

and an ionic liquid lubricant placed between them [64]. The motivation for the

chosen values of relevant model parameters (i.e. velocities, pressures, temperatures,

time duration of simulations) comes from potential applications of ILs as lubricants

in automotive industry. Under typical operation of internal combustion engines,

the conditions inside the combustion chamber vary significantly. Temperature can

range from 300 K to the values higher than 2000 K, while pressure ranges from

atmospheric to the values higher than 10 MPa [38]. The piston reciprocates with

a sinusoidal velocity variation with speeds varying from zero to over 20 m/s, with

a typical velocity being around 1 m/s. The time required for one revolution of the

engine is of the order of 10−2 s, while the total distance travelled by the piston over

this period is of the order of 0.2 m. Such scales are typically modeled using contin-

uum mechanics simulations. However, such simulations cannot provide the physical

insight which is necessary for understanding the molecule–dependent processes that

affect the tribological phenomena. Therefore, we have implemented a coarse grain

MD simulation setup which can, inter alia, provide useful insights into lubrication

mechanisms of piston ring–cylinder liner contact in automotive engines. Our sim-

ulation setup consists of two solid plates and an IL placed between them. It also

includes lateral reservoirs into which the IL can dynamically expand.

The determination and design of new applicable lubricants require understanding

of both general and specific behaviour of liquids when exposed to nanoscale confine-

ment, shearing and normal load. In accordance with those facts, our focus is on

determining general features of ILs as nanoscale lubricants. Hence, we have chosen

the model of a generic IL which is simple in order to provide a wide perspective of

relevant mechanisms governing the IL lubrication principles.

1.3.2 Tailed model of ionic liquid

Since 2001., when ionic liquids were first considered for lubrication applications [65],

there has been a large number of experimental studies in that direction. It has been

observed that the alkyl chain length of the cations affects the IL viscosity [44],
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melting point [44] and pressure-viscosity coefficients [66]. Related specifically to

lubrication, References [53, 67] explored the impact of cationic alkyl chain’s length on

the tribological properties of ILs. ILs considered in those references have the same

cations but different anions: symmetric hexafluorophosphate [PF6]− and asymmetric

bis(trifluoromethylsulfonyl) imide [Tf2N ]−, respectively. Still, while the authors of

Reference [67] observed that the coefficient of friction (COF ) decreases from 0.25 to

0.15 with the increase of alkyl chain length nC = 2 to 12 (nC is the number of carbon

atoms), the authors of Reference [53] observed that the COF increases from 0.025

to 0.1. The IL′s wetting properties are also sensitive to its molecular geometry. ILs

change wetting behaviour depending on the anion size [61, 62, 68]: from the absence

of wetting to partial or complete wetting. A well–studied IL [BMIM ]+ [PF6]−

exhibits full wetting at the interface with mica substrates [62, 68]. On contrary,

[BMIM ]+ [TFSI]− shows partial wetting on mica [61, 62]. In these examples, ILs

have the same cation and different anions.

An important observation about the structure of confined ILs is their arrange-

ment into positively and negatively charged ionic layers and adsorption onto solid

surfaces [63, 69]. These ionic adsorption layers should reduce friction and prevent

wear, especially in the case of boundary lubrication [63]. The wear is reduced pri-

marily in two ways: via high load-carrying capability and self-healing of adsorbed

IL layers. Still, these two processes seem conflicting with each other since high load-

carrying capability requires strong adsorption of the lubricant to the surface while

self-healing requires high mobility [36]. Understanding the driving forces between

them requires relating the molecular structure and flow properties of confined IL.

In Reference [70] the authors have evaluated tribological properties of different ionic

liquids by pendulum and ball on disk tribo testers. They have considered ILs con-

sisting of imidazolium cations with different alkyl chain length and [Tf2N ]− anion as

lubricants. Their main observation is that the increment of alkyl chain length can re-

duce friction and wear of sliding pairs in the elastohydrodynamic lubrication regime

(EHL) as a consequence of increased viscosity. Generally, the conclusion is that

longer alkyl chains lead to better tribological performance. Related to the impact of

alkyl chain length on the structure of ILs, in Reference [71] the authors have experi-
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mentally obtained the formation of tail–to–tail bilayers of cations if their alkyl chain

length is large, in case of confinement between solid surfaces. Their observations

are in accordance with other experimental investigations of IL lubricants [72–74].

It is worth of mentioning that we have obtained similar configurations via numerical

simulations of ILs confined between two solid plates, where tail–to–tail formation

in the middle of the interplate gap is visible.

The focus of our TM model based study is on the systematic investigation of the

flow properties and lubrication mechanisms of ionic liquids modeled with a generic

coarse grain model which considers a variable shape of the cation. We investigate

the impact of cationic tail size on the structural and tribological properties of ILs

via MD simulations. Such an idea is meaningful since previous theoretical studies

have pointed out that confinement modifies the behaviour of ILs and despite the

good wetting nature, the slip is present at the plates [43]. Coulombic interactions

in ILs induce long-range ordering [39, 43, 56], which in turn can influence their

lubrication response. Previously, coarse grain MD simulations [40–42, 57–60] were

used to study thin lubricant films subjected to the shearing between solid plates.

1.3.3 Outline of the research on model ionic liquids

The research dealing with ionic systems (except for the parts related to introduction

and conclusions) is presented in chapter Ionic liquids, which consists of four sections.

Let us present them briefly in the following text. A method of choice for studying

the structure and lubrication characteristics of ionic liquids at the nanoscale, in the

framework of this doctoral thesis, is Molecular Dynamics (MD) method. Accord-

ingly, in section Methods MD method and LAMMPS code for molecular dynamics

are introduced. This is followed by section Simulation setup and models of ionic

liquid which describes the SM and TM models of ionic liquid in detail, as well as

the implementedMD simulation setup. The focus of Bulk ionic liquid section is first

on obtaining the relaxed structure and then on calculating the viscosity coefficient

of bulk SM and TM ionic liquids. In the following Confined ionic liquid section,

static and dynamic behaviour of confined SM and TM ionic liquids are presented

and discussed. This section also presents the results of confined IL′s tribological
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behaviour. In chapter Conclusions, section Ionic liquids, conclusions and prospects

of future directions in the investigation of ILs from both, theoretical and industrial

aspects, are given.
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Chapter 2 Confined dipolar systems

2.1 Geometry of helices and tubes composed of hard spheres

2.1.1 Geometry of helices

2.1.1.1 Geometry of single-thread helices

In the framework of this study, helices are composed of hard spherical particles and

they are confined to a cylinder’s surface, i.e., the helices are formed by rolling threads

of hard spherical particles on the cylindrical surface of radius Rcyl [75]. Geometrical

parameters that define a single helix are: the azimuthal angular shift Γ between

the centers of two successive particles and the radius of the helix R = Rcyl + d/2,

where d stands for the hard sphere diameter, see Figure 2.1. The radius R physically

represents the distance of the closest approach between cylinder axis and center of

the spherical particle. The Cartesian coordinates of particle i in a single helix are

calculated as:

xi = R cos (iΓ) ,

yi = R sin (iΓ) ,

zi = i∆z, (2.1)

where i ∈ Z and assuming that one particle is at (x, y, z) = (R, 0, 0). The distance

between the centers of each two successive particles along the helix axis is labelled

as ∆z, see Figure 2.1. When constructing a helix, its radius R and azimuthal

angular distance Γ have to be chosen in a way which ensures non-overlapping of

hard spheres. The non-overlapping constraint is expressed for any two particles i, j
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2. Confined dipolar systems

Figure 2.1: Illustration of a single thread helix with relevant geometrical parameters
(R,Γ,∆z) labelled. The black bold line connecting spherical particle centers repre-
sents backbone of the helix. In upper part of the figure, the azimuthal dipole moment
orientation α is defined in a local coordinate system with its origin corresponding
to the particle center. The z′ axis is parallel to the cylinder axis.

as |−→rij | ≥ d. Since the helix thread is connected everywhere, any two successive

particles are touching. Starting from Equation 2.1 we can obtain ∆z as a function

of other two variables, i.e., as a function of R and Γ. Let us write down Equation 2.1

taking the values of the index i = 1, 2: x1 = R cos Γ, y1 = R sin Γ, z1 = ∆z;x2 =

R cos (2Γ) , y2 = R sin (2Γ) , z2 = 2∆z. Distance between the centers of those two

successive spheres is equal to the sphere diameter d, hence it stands:

d =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (2.2)
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Taking the relations: x2 − x1 = R (cos 2Γ− cos Γ), y2 − y1 = R (sin 2Γ− sin Γ),

z2 − z1 = ∆z, and replacing them into Equation 2.2 we obtain:

d2 = R2 (cos 2Γ− cos Γ)2 +R2 (sin 2Γ− sin Γ)2 + ∆z2. (2.3)

From Equation 2.3 we obtain:

d2 = R2
(
cos2 2Γ− 2 cos 2Γ cos Γ + cos2 Γ + sin2 2Γ

−2 sin 2Γ sin Γ + sin2 Γ
)

+ ∆z2. (2.4)

Bearing in mind the relations of trigonometry: sin2 x+cos2 x = 1, sin 2x = 2 sin x cosx,

cos 2x = cos2 x− sin2 x, we obtain:

d2 = 2R2 (1− cos Γ) + ∆z2. (2.5)

Rearrangement of the previous equation leads to the relation expressing ∆z as a

function of R and Γ:

∆z =
√
d2 + 2(cos Γ− 1)R2. (2.6)

Thereby, variables ∆z, R and Γ are not independent. Clearly, with decreasing ∆z

(i.e., increasing Γ) helices become more compact. Because of the connectivity, every

particle in a helix has at least two neighbors, i.e., the coordination number, nc, is

always greater or equal than two (nc ≥ 2). We define coordination number of a helix

as the number of neighbors each particle has, with the exception in case of particles

at helix ends, since they have less neighbors. The highest packing density of the

particles for prescribed helix radius R will be achieved when successive helix turns

touch. In this situation of touching turns, the coordination number nc can be either

four or six. Therefore, in general, nc ∈ {2, 4, 6}, where the case nc = 2 corresponds

to non-touching turns. Based on the coordination number nc, we can classify helices

as follows (see Figure 2.2(a)-(c)). Examples of helices with two neighbors nc = 2

and four neighbors nc = 4 at a prescribed cylindrical confinement, e.g., R/d = 1.78,

are sketched in Figure 2.2(a) and (b), respectively. For a number of well-defined
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Figure 2.2: Illustration of different classes of helices, based on coordination number
nc = {2, 4, 6}. (a) Helix with non-touching turns (nc = 2). (b) Helix with touching
turns (nc = 4). (c) Densely packed helix (nc = 6). The other panels illustrate, the
so called, (d) AA, (e) AB, and (f) Z tubes. The tubes can be created by strict
axial stacking of unit rings. For AA and AB tubes unit rings are flat, whereas, for
Z tubes the unit ring has a ’zig-zag’ shape. The radii of AA and AB tubes are the
same R/d = 1.93.

radii, as discussed in details in the coming sections, densely packed helices with six

neighbors (nc = 6) can be formed, see Figure 2.2(c). In the following sections of

this chapter, we will also investigate stacked rings forming the so-called tubes, also

depicted in Figure 2.2(d)-(f).

2.1.1.2 Order parameters for single-thread helices

The surface packing fraction is defined as the ratio of the area S = πd2/4 covered by

one particle and the area available for one particle Savail, in an unrolled configuration:

η = S/Savail. (2.7)

Since the distance along the z axis between successive particles is ∆z, by param-

eterization of the helix backbone we obtain for arc length covered by one particle

L1 = [(ΓR)2 + (∆z)2]1/2. The available area per particle is Savail = (2π/Γ)∆zL1.
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Following the definition of the surface packing density we obtain:

η =
d2

8∆zR
. (2.8)

For comparison we are going also to derive packing fraction for the tubes:

• The surface packing fraction of AA tubes is given by:

ηAA = Nringd/8RAA, (2.9)

for an AA tube with Nring particles per ring and the confinement radius

RAA/d = 1/ [2 sin (π/Nring)], see Figure 2.2(d) for a microstructure withRAA/d =

1.93.

• Similarly, for AB tubes, the packing fraction is:

ηAB = Nringd
2/8RAB∆zAB, (2.10)

with RAB = RAA. Here, the elevation ∆zAB between two consecutive rings is:

∆zAB = (d/2)
√

2 + 2 cos (π/N)− cos2 (π/N). (2.11)

• For Z tubes, the packing fraction is:

ηZ = Nringd/8RZ, (2.12)

with confinement radius RZ/d =
√

3/ [4 sin (π/Nring)].

To further characterize the helical microstructures, we introduce an additional

geometrical order parameter ξ which is valid for nc = 4 and 6. This order parameter

connects an individual reference particle 0 located at ~r0 in the helix with its two

neighbors: its immediate successive particle 1 in the turn ((~r01 = ~r1 − ~r0) and a

neighboring particle 2 from the next turn (~r02 = ~r2 − ~r0), see Figure 2.3(a). The
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Figure 2.3: (a) Illustration of a helix made of hard spheres, helix backbone (solid
line), and the vectors connecting a reference particle 0 located at (x, y, z) = (R, 0, 0)

with its neighbours: an immediate successive particle 1 in the turn located at (~r01)
and a neighbouring particle 2 from the next thread turn at (~r02). (b) Overview
of the principal geometrical parameters of nc = 4, 6 helices: elevation angle Θ and
azimuthal angular shifts Γ1 and Γ2 (see Equation 2.17). The corresponding elevation
distances of successive particles along helix axes ∆z1,2 (see Equation 2.20) are also
given for two possible rolling of the same helix configuration.

angular coordination order parameter is conveniently defined as:

ξ = 2
|−→r01 · −→r02|

d2
. (2.13)

In the two limiting cases, the angular coordination order parameter has values:
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ξmin = 0, for a locally square lattices on a cylinder (e.g., AA tubes, check Fig-

ure 2.2(d)) and ξmax = 1, for a locally triangular lattice (e.g. AB tubes, check

Figure 2.2(e)). In all other cases, the value of the angular coordination order pa-

rameter ξ is between those two extreme values, i.e., 0 ≤ ξ ≤ 1.

2.1.1.3 Geometry of multi-thread helices

The densely packed helices (nc = 6) can be created, in analogy with carbon nan-

otubes, by rolling a ribbon of a triangular lattice on a cylinder surface [35]. We deal

with cylindrical geometry, infinite in one direction. We can generate these helical

structures by periodical reproduction of a curved patch (unit cell) along the helical

line with spanning vectors (~a1,~a2). This curved unit cell has n1 particles along the

~a1 direction and n2 particles in the ~a2 direction. The values n1 and n2 can be seen

as the two possible widths of the ribbon generating the same helical structure.

Since we deal with hard spheres and we aim to build very dense structures,

the parameter space (R,∆z, n1, n2) is significantly restricted. We are going to find

out that only two of these parameters are independent. There exists a relationship

linking the elevation angle Θ = arcsin(∆z/d) and the confinement radius R, see

Reference [35]. Bearing in mind that for any pair (n1, n2) or equivalently (n2, n1),

we have a unique corresponding structure with nc = 6, one arrives at the following

two independent equations:

Θ(n1, n2) = arctan

( √
3n2

2n1 + n2

)
(2.14)

and

π = n1 arcsin

[(
d

4R

)
2n1 + n2√

n2
1 + n2

2 + n1n2

]

+n2 arcsin

[(
d

4R

)
2n2 + n1√

n2
1 + n2

2 + n1n2

]
. (2.15)

We have solved those two equations in Mathematica software package [76] and ob-

tained the sets (Θ, R/d) shown in Figure 2.4. For each value of R there are two
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different values of Θ, symmetric around Θ = 30̊ , which correspond to lattice con-

stant pairs (n1, n2) and (n2, n1), respectively. The (n1, n2) pairs are actually identi-

cal structures with opposite chirality [77]. The six-fold rotational symmetry of the

lattice restricts Θ ∈ [0̊ , 60̊ ].

We now look into properties of (n1, n2) pairs in order to characterize the multi-

thread structure of six neighbor helices (nc = 6). First, we identify the link between

nc = 6-tubes and the (n1, n2) pair values. The pairs (0, n2) and (n1, 0) leading

to Θ = 60̊ and 0̊ , respectively, represent AB tubes, check Figure 2.4. The pairs

with n1 = n2 corresponding to Θ = 30̊ lead to Z tubes that are characterized by

constitutive straight filaments parallel to the Z tube axis, see Figure 2.2(f). The

curve with n1 = 1 (with n2 ≥ 3) corresponds to a single helix, n1 = 2 (with n2 ≥ 3)

corresponds to a double helix, n1 = 3 (for any n2 ≥ 4) corresponds to a triple helix,

and more generally an n1-helical structure is obtained when n2 ≥ n1 +1. We employ

Cartesian coordinates to express positions of particles in an n−helix similarly to the

single helix case, using two indices, i ∈ Z and j = {1, n}:

xi+jn = R sin (iΓ1 + jΓ2) ,

yi+jn = R cos (iΓ1 + jΓ2) ,

zi+jn = i∆z1 + j∆z2. (2.16)

In Equation 2.16, Γ1 represents the azimuthal angular shift between each two con-

secutive particles along a given thread and Γ2 is the angular shift between threads,

i.e., densely packed directions in a superstructure, see Figure 2.3(b). The azimuthal

angle Γ1 is merely provided by :

Γ1 = arccos

[
1−

(
d√
2R

cos Θ

)2
]
. (2.17)

The angular shift Γ2 between threads is more delicate to derive. Knowing that

starting from the reference particle it is possible to reach the same particle position

following two paths along threads (in ~a1- or ~a2-direction), one can arrive at a relation
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Figure 2.4: State diagram in the (Θ, R/d)-plane showing possible unit cells charac-
terized by (n1, n2) pairs. Solid lines represent unit cells with n2 fixed, and the dashed
ones represent unit cells with n1 fixed. The three horizontal lines (dot-dashed) cor-
respond to tubes.

linking Γ1 and Γ2:

2π = (n1 + n2)Γ1 − n2Γ2. (2.18)

The dependence of angle parameters Γ1 and Γ2 on the reduced helix radius R/d is

displayed in Figure 2.5, for Θ < 30̊ in the single helix (n2 = 1, n1 ≥ 4), the double

helix (n2 = 2, n1 ≥ n2) and the quadruple helix (n2 = 4, n1 ≥ n2). In our notation,

multi-thread helices are named after the smallest unit patch particle dimension, i.e.,

the smallest number of generating threads. As the helix radius R/d increases, the

value of Γ1 monotonically decreases, since additional particles are added to a turn.

The angular parameter Γ2 monotonically decreases only for n2 = 1. The scenario

becomes qualitatively different at n2 ≥ 2 where non-monotonic behavior is found,

see Figure 2.5. This feature can be rationalized as follows. The smallest compatible
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Figure 2.5: Dependence of azimuthal angular shift parameters Γ1,Γ2 coming from
corresponding spanning vectors ~a1,~a2, respectively, on reduced helix radius R/d, for
single thread (n2 = 1), double thread (n2 = 2), and four-thread (n2 = 4) helices.

radii R with n2 ≥ 2 and Θ < 30̊ , are obtained when n1 = n2 (check Figure 2.4)

corresponding to Z tubes where Γ2 = 0. Besides that, Γ2 tends to zero for vanishing

cylinder curvature (R/d → ∞). These are the reasons why the profile of Γ2(R/d)

is non-monotonic when n2 ≥ 2. The surface packing fraction of densely packed

multiple helices is simply obtained by multiplying the surface packing fraction of a

single helix with the number of threads n2 (ηmulti = n2η, see Equation 2.8):

ηmulti = n2
d2

8∆z1R
, (2.19)

where the elevation distance ∆z1 (shown in Figure 2.3(b)) is given by:

∆z1 =

√
d2 − 4R2 sin2

(
Γ1

2

)
. (2.20)

The calculated surface packing fraction of single (n2 = 1), double (n2 = 2), and

quadruple (n2 = 4) helices is shown in Figure 2.6. At a given confinement curvature

(fixed R/d), adding threads results in higher surface packing fraction, see Figure 2.6.
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Figure 2.6: Surface fraction η, see Equation 2.19 as a function of reduced helix radius
R/d for single thread (n2 = 1), double thread (n2 = 2), and four-thread (n2 = 4)
helices.

2.1.2 Tubes as sub-sets of helices

We refer to tubes made by stacking of rings. In AA tubes all constitutive rings

are exactly aligned, see Figure 2.2(d), and in AB tubes every ring is shifted for

half of the particle’s diameter, in respect to its preceding ring, see Figure 2.2(e).

Alternatively, AA or AB tubes could be generated by rolling of square or triangular

lattices on cylindrical confinement, respectively.

Particle i−positions in AA tubes are calculated as:

xi = Rcos(2πi/N),

yi = Rsin(2πi/N),

zi = bi/Ncd, (2.21)

where bxc is the greatest integer function and gives the largest integer less than or

equal to x, while N is the number of particles in a constitutive ring. To simplify

discussion, we refer to N also as curvature since there is a correspondence with the

tube’s geometrical curvature R/d = 1/2 sin(π/N), e.g., we obtain R/d =
√

2/(
√

3−
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1) ≈ 1.3 for N = 8 ring.

One of the ways to obtain AB tubes is stacking of a pair of two successive rings.

Total number of particles in the tube Ntube is a multiple of the number of particles

in the ring N and the number of rings Nrings, i.e., Ntube = Nrings ·N .

In both rings particle positions are calculated based on their index i = 1, Ntube:

xi = R cos (2πi/N + θi) ,

yi = R sin (2πi/N + θi) ,

zi = bi/Nc∆z, (2.22)

where θi is angular displacement of rings:

θi = π mod (bi/Nc, 2)/N (2.23)

and the displacement between successive rings along AB tube’s axis is:

∆z =
√
d2 − 2R2[1− cos (π/N)]. (2.24)

We have already explained when discussing the Figure 2.4 that densely packed tubes,

i.e. AB and Z tubes, can be seen as sub-classes of helices. Bearing this in mind,

in addition to stacking of the rings, we point out that the tubes can be created by

rolling a ribbon with square or triangular lattice on a cylindrical surface. In fact,

every ordered tubular structure can be generated by reproduction of a curved unit

cell along helical lines defined through curved spanning vectors in analogy to crystals

in two dimensions. This curved unit cell has n1 and n2 particles along two spanning

directions ~a1 and ~a2, respectively.

2.2 Dipole moments

2.2.1 Dipolar interaction model

We have explained the geometry of helices and tubes composed of hard spheres in

section 2.1 of this chapter. In this section we want to address the situation where the
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constitutive particles are dipolar. Each particle carries an identical dipole moment

in magnitude, m = |~mi|, where ~mi = (mx
i ,m

y
i ,m

z
i ) defines the dipole moment of

a particle i, see also Figure 2.1 in section 2.1. The potential energy of interaction

U (~rij) between two point-like dipoles whose centers are located at ~ri and ~rj can be

written as:

U(~rij) = C
1

r3
ij

[
~mi · ~mj − 3

(~mi · ~rij)(~mj · ~rij)
r2
ij

]
, (2.25)

for rij ≥ d or ∞ otherwise, where C represents a constant that depends on the

intervening medium, and rij = |~rij| = |~rj − ~ri|. It is convenient to introduce the

energy scale defined by U↑↑ ≡ Cm2/d3 that physically represents the repulsive po-

tential value for two parallel dipoles at contact standing side by side, as clearly

suggested by the notation. Therefore, the total potential energy of interaction in a

given structure Utot is given by:

Utot =
∑
i,j
i>j

U(~rij). (2.26)

One can then define the reduced potential energy of interaction u (per particle) of N

magnetic spheres. It reads u = Utot /(U↑↑N), which will be referred to as the cohesive

energy. Since we are dealing with infinitely long structures (in one direction), we

shall consider only periodic structures in that direction, so this imposed condition

greatly facilitates the calculation of the cohesive energy. Our method of choice is the

Lekner-type summation method for systems with periodicity in one direction which

we have presented in section 2.3. The central feature in Lekner-type methods is the

choice of the periodic cell. For structures with coordination number nc = 2, 4 we

can always find helical parameters with a finite number of particles in the unit cell.

The periodicity is achieved by imposing a condition on the angular shift parameter

Γ that a helix has to make an integer number of turns within the unit cell.

2.2.2 Relevant dipole moment orientations

Taking into account the symmetry of helices it is intuitive to assume dipole moments

following helix threads. In order to have dipole moments tangential to the helical
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Figure 2.7: The representative structures including dipole moment distributions are
displayed. For AB tube with patch parameters (n1, n2) = (8, 0) dipole distributions
which correspond to spanning unit cell vectors (a) ~a1 (oblique to cylinder’s axis),
(b) ~a2 (closer to cylinder’s axes), as well as, (c) ground state dipole distribution. For
single thread helix (n1, n2) = (9, 1) dipole distributions which correspond to (d) ~a1

and (e) ~a2 (closer to helix axes) spanning vectors, as well as, (f) ground state dipole
distribution. For double thread helix (n1, n2) = (8, 2) dipole distributions which
correspond to (g) ~a1, (h) ~a2 (closer to helix axes) spanning vectors, and (i) ground
state dipole distribution. In case of Z tube (j) ~a1 and (k) ~a2 dipole distributions are
shown. Ground state of Z tube follows ~a2 dipole distribution (parallel to cylinder’s
axis).

backbone, we introduce two components of dipole moments. The parallel component

with respect to the helix axis (we have chosen to orient a helix along the z direction)
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is given by:

mz = m∆z/d, (2.27)

and the orthogonal one is given by:

|~mxy| = m

√
1− (∆z/d)2. (2.28)

Hence, the dipole moment of a particle i in the single thread helix reads:

mx
i = −mxy sin (iΓ) ,

my
i = mxy cos (iΓ) ,

mz
i = mz. (2.29)

In the multi-thread case, the Cartesian dipole moment components are given by:

mx
ij = −mxy sin (iΓ1 + jΓ2) ,

my
ij = mxy cos (iΓ1 + jΓ2) ,

mz
ij = m∆z/d, (2.30)

where i ∈ Z is the internal particle label within a thread and j = {1, n2} stands

for the thread’s label. In dense helices (nc = 4, 6) dipole moments can follow two

directions ~a1 and ~a2.

In general, the dipole moments do not have to follow helix threads. In order to

find the dipole moment orientation that ensures minimal cohesive energy, we perform

minimization of the cohesive energy using a constrained minimization algorithm

which we have presented in section 2.3.

We have considered three relevant dipole moment orientations: ~a1 and ~a2 orien-

tations which are defined by the helix threads and the ground state dipole moment

orientation, which is determined via cohesive energy minimization procedure. In

Figure 2.7, representative dipole moment distributions are shown.
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2.3 Methods

In this chapter we present the methods applied in the study of confined dipolar sys-

tems. We have carefully and in details derived the Lekner-type summation method

for summing the dipole–dipole interactions in 1D periodic dipolar systems, check

appendix A. In subsection 2.3.1 we present the overview of available methods for

summing the dipole-dipole interactions of infinite periodic structures, followed by

our selection of the proper method and the final expressions of the Lekner-type

method that we have implemented. Next, we describe the energy minimization

method which we have used for determining the ground state dipole orientation of

our dipolar structures.

2.3.1 Methods for summing the dipole-dipole interactions of

infinite periodic structures

2.3.1.1 Overview of available methods

Energy of a dipolar structure with finite number of particles can be calculated via

direct summation of potential energies of the dipole-dipole interaction (DDI) of

every pair of particles. On the other hand, we might be interested in calculating the

energy of infinite periodic dipolar structures. As DDI is a long-range interaction,

a proper approach is needed. We present a brief overview of available numerical

techniques for summing the long-range interactions of spatially periodic structures.

In case of 3D periodic structures a standard method of choice for summing the

long-range interactions is the Ewald method [78]. Besides the periodicity in all three

spatial dimensions, there are three-dimensional systems having the periodicity in one

or two dimensions, let us note them as 1D and 2D periodic systems. Hence, those

are 3D systems possessing the periodicity along one- or two- dimensions. Ewald

type methods for these kinds of periodic systems have been established [79–84].

For example, a 2D Ewald method for the electrostatic [79–81] and dipole-dipole

interactions [79, 80] has been developed. Such a method computes properly the

long range DDI, however its disadvantage is the bad scaling of computational time
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with the number of dipoles N (i.e., it scales ∝ N2). A computationally more efficient

method for summing DDI in a 2D periodic system has been presented in [82]. It

represents a modification of the previously mentioned computationally inefficient

2D Ewald method since its computational time scales ∝ N . A mutual feature of

Ewald type methods [79–81] is the need for an arbitrary convergence parameter

necessary for the control of the accuracy of summations. Convergence parameter

is a numerical factor related to computation and without physical interpretations.

The modified 2D Ewald method [82, 83] requires one additional parameter, while

the modified 1D Ewald method requires even two additional parameters [84].

Summation techniques which avoid the usage of convergence parameters are ad-

vantageous, leading to both the reduction of complexity and computational time.

For example, such a method for summing long-range Coulombic interactions in pe-

riodic systems has been originally introduced by Lekner [85]. Since it opened a new

direction in the field of long-range interaction summations, this type of approach has

been known under the term Lekner summation. Modifications and improvements

based on Lekner’s work [85] led to the development of Lekner–type methods [86–88].

In Lekner–type methods [85–88] the forces are calculated first and the interaction

energy is obtained by integrating the force expressions. On the other side, an ap-

proach has been introduced in which the expression for the interaction energy is

directly derived [89, 90]. In the next two References [89, 90] Coulombic interaction

is considered, while in Reference [91] the approach is applied to the DDI.

To conclude our overview, there are several Ewald type [78–84] and Lekner–

type [85–88] methods for summing both Coulombic and dipole-dipole interactions

in all possible cases of periodicity of the system (i.e., 1D, 2D or 3D periodic systems).

2.3.1.2 Selection of the proper method

We are interested in calculating the energy of infinite 1D periodic dipolar tubes

and helices. We have arbitrary chosen to orient them along the z axis, so they are

periodic along this direction. According to that we have chosen the Lekner–type

method for summing the DDI of 1D periodic systems, presented in [91].

Let us explain the key features of this method. An infinite dipolar structure is
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represented by its elementary cell which is periodically replicated along the z axis.

Interaction energy of a structure (i.e., structure’s cohesive energy) is determined as

a sum of self energy Eself and cross energy Ecross, which are calculated based on the

elementary cell of that structure. Elementary cell is infinitely replicated along the

z axis in both directions, hence we might speak about the particles in the cell and

about their images in the replicas of the cell. Knowing this, we define the self energy

as a sum of the interactions of a given particle from the elementary cell with all its

images. On the other side, the cross energy includes interactions of a given particle

with all other particles belonging to the elementary cell and with all their images.

In Reference [91] the authors consider the DDI which decays with the distance

between the dipoles ∝ r−3, hence the expressions for the self and cross energy are

derived for this type of long-range interaction. Our opinion was that it might be

useful to round-up the derivation and come up with the expressions for the self

and cross energy in function of parameter s which is defined by setting that the

DDI decays with the distance ∝ r−2s. Once we accomplish this and derive closed-

form expressions in function of s, we can simply set s = 3/2 and obtain the final

expressions for the self and cross energy in case of DDI.

2.3.1.3 Application of the derived Lekner-type method in case of infinite

1D periodic dipolar structures

We have derived the expressions which define the self energy Eself and cross energy

Ecross in a Lekner type method for summing the DDI in case of 1D periodic struc-

tures. Since our investigation considers 1D periodic infinite dipolar helices, this

method is appropriate for calculating their cohesive energy. We can state that the

cohesive energy of a dipolar structure corresponds to the potential energy of DDI

between the hard dipolar spheres which the structure is composed of. In every struc-

ture we should determine its periodic cell and within this cell we should calculate

the self and cross energy. Expression for the self energy A.10 is the same in case of

any periodic cell. On the other hand, we should carefully choose the expression for

the cross energy depending whether the condition −→ρij 6= 0 does or does not apply,

the indices i and j can take any value from the range 1, N , where N is the total

32



2. Confined dipolar systems

number of particles in the periodic cell. As in case of infinite dipolar tubes and

helices the elementary cell of every structure fulfills the condition −→ρij 6= 0, we take

the expression A.120 for the cross energy. Hence, the total energy of an infinite

dipolar tube or helix, where N is the total number of particles in its periodic cell,

is computed using the next expression:

Etot = Ecross + Eself =
1

2

N∑
i=1

N∑
j=1,j 6=i

{
−8π

L2
z

[
2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ3
ij

− (−→µi ρ · −→µj ρ)
ρij

]

×
+∞∑
k=1

k cos
(
kηzij

)
K1

(
kηρij

)
−16π2

L3
z

[
(−→µi ρ · −→ρij)µzj + (−→µj ρ · −→ρij)µzi

ρij

]
×

+∞∑
k=1

k2 sin
(
kηzij

)
K1

(
kηρij

)
−16π2

L3
z

[
(−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ2
ij

− µziµzj
]

×
+∞∑
k=1

k2 cos
(
kηzij

)
K0

(
kηρij

)
− 2

Lz

[
2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ4
ij

− (−→µi ρ · −→µj ρ)
ρ2
ij

]}
+

1

L3
z

N∑
i=1

[
|−→µi ρ|

2 − 2(µzi )
2
]
ζ(3). (2.31)

Cohesive energy of a dipolar structure is defined per particle, hence we just have to

divide Etot by the number of particles in the periodic cell:

Ecohesive = Etot/N. (2.32)

2.3.2 Energy minimization method for obtaining ground state

dipole orientation of dipolar structures

In dipolar structures’ analysis an obvious question which arises is related to the

determination of the dipole moment orientation of a structure. By this term dipole

moment orientation we consider a logical and meaningful rule of orienting the dipole
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moment of each particle. We have deduced that dipole orientations which follow

the thread structure (i.e., ~a1 and ~a2 dipole orientation) are relevant, since there

is a tight relation between the geometry of a dipolar structure and a favourable

dipole orientation. Dipolar structures which we consider are spatially 3D structures,

however with a 1D periodicity along the z direction. Hence, there are two threads

a structure is made of: a circular thread (leading to ~a1 dipole orientation) and a

slanted thread (leading to ~a2 dipole orientation). We have asked ourselves how would

an optimal dipole orientation look like, i.e., a dipole orientation which minimizes the

cohesive energy of a structure. Besides that, we should in general determine dipole

orientations which allow a negative cohesive energy: Ecohesive < 0, i.e., realistically

possible configuration of dipolar spheres. To do so, we perform minimization of

cohesive energy using a constrained minimization algorithm [29, 92], namely the

fmincon minimization procedure from Matlab software package [93]. The name

of the fmincon procedure has been constructed according to its purpose which is

function minimization under constraints. Minimization procedure fmincon [93] finds

a minimum of a constrained nonlinear multivariable function. Its mathematical

definition is given as:

minf (x) over x under the constraints:

c (x) ≤ 0, ceq (x) = 0, A · x ≤ b, Aeq · x = beq, lb ≤ x ≤ ub,

where b and beq are vectors, A and Aeq are matrices, c (x) and ceq (x) are functions

which return vectors, f (x) is a function being minimized which returns a scalar

value. The argument x over which minimization is performed can be a vector or a

matrix, lb and ub are the lower and upper boundaries for the argument x, respec-

tively, hence they are the same data type as x, i.e., a vector or a matrix. A dipolar

structure has a given fixed geometry which is not subjected to minimization, hence

the particles stay in place during the minimization. Their dipole moments −→µi are

subjected to minimization. A randomly oriented dipole moment is assigned to every

particle of a dipolar structure, defined in the spherical coordinate system using two

angles: θ and ϕ. Those angles are standard coordinates of a spherical coordinate
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system. Each particle i is assigned with a randomly oriented dipole moment, where

θi ∈ [0, π] and ϕi ∈ [0, 2π]. Mathematically speaking, we can write down the previ-

ous considerations (bearing in mind that rand (1) returns a random real number in

the range [0, 1]) as:

θi = π · rand (1) ,

ϕi = 2π · rand (1) . (2.33)

The dipole moment of i-th particle, i.e., −→µi = (µxi , µ
y
i , µ

z
i ) in spherical coordinate

system is:

µxi = sin (θi) cos (ϕi) ,

µyi = sin (θi) sin (ϕi) ,

µzi = cos (θi) , (2.34)

where i = 1, N , with N being the total number of particles in a dipolar structure.

The function which we minimize is the cohesive energy of a given dipolar struc-

ture, i.e., f = Ecohesive and the argument x = θ1, θ2, ..., θN ;ϕ1, ϕ2, ..., ϕN . The lower

and upper boundaries are: lb = 0, 0, ..., 0; 0, 0, ..., 0 and ub = π, π, ..., π; 2π, 2π, ..., 2π,

respectively. We have determined two important features emerging from energy min-

imization computations employing the fmincon procedure [93]:

(i) dipole moments are tangential to the confining cylinder’s surface, and

(ii) component of a dipole moment in the z-axis direction mz of a given dipolar

structure is identical for all particles.

We have found that under some circumstances the dipole moment orientations alter-

nate, i.e., we have obtained the antiferromagnetic-like coupling between the neigh-

bouring threads. This actually occurs with any AA tube. Similar behaviour is

reported for some moderately dense nc = 4-helical structures. Therefore, we need

just one angular parameter to characterize the dipole moment orientation. We

choose the dipole moment angular parameter, α ∈ [−π, π], relative to the z axis, see
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Figure 2.1. Doing so we arrive at:

mx
ij = −m sin (α) sin (iΓ1 + jΓ2) ,

my
ij = m sin (α) cos (iΓ1 + jΓ2) ,

mz
ij = m cos (α) , (2.35)

where the indices i and j have the same meaning as in Equation 2.30. Consequently,

the angular parameter α is most of the time a unique variable, at prescribed helical

structures, entering into the energy minimization procedure. Obtaining an optimal

dipole orientation which leads to the minimal cohesive energy of a certain dipolar

structure, in other words obtaining ground state dipole orientation, comes down to

determining the right value of the angular parameter α. In general, except for some

cases where we have obtained the antiferromagnetic-like dipole orientation, dipole

moments of all particles are parallel, building the same angle α with the z axis

direction.

To sum up, we have started with the most general case of each particle having

an independent and randomly oriented dipole moment. Application of the fmincon

minimization procedure [93] significantly narrowed down the diversity of possible

dipole orientations, leading to just one scalar parameter α determining the ground

state dipole orientation. This is a significant finding, meaning that for obtaining the

ground state dipole orientation of a dipolar structure we do not need computationally

demanding fmincon procedure [93] anymore. Just a simple direct search over the

range of α, using a reasonable precision (i.e., α ∈ [−π, π] with a step of 10−3), solves

our optimization problem.

2.4 Degeneracy in 2D triangular and square lattice and prop-

erties of tubes

2.4.1 Ground state of 2D triangular and square lattice

First, we investigate the dependence of ground state energy on dipole moment ori-

entation. All dipoles in triangular lattice are parallel and allowed to rotate only
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around a fixed axis orthogonal to the plane, see Figure 2.8(a). There is a continuous

ground state for any in-plane angle θ with cohesive energy value uAB ' −2.7586,

which is the cohesive energy of an infinite triangular two dimensional lattice. This

value is defined as [94, 95]:

uAB = −2ζ(3) + 16π2

+∞∑
k=1

+∞∑
l=1

cos (klπ)K0

(
kl
√

3π
)
. (2.36)

For an infinite square two dimensional lattice, similarly, there is a continuous de-

generacy of its ground state, described in Figure 2.8(b)-(c). A continuous state,

in this case, involves a unit cell of four particles. The moments in a unit cell are

synchronously coupled and in our notation take directions θ, π − θ, π + θ, and −θ,

in anti-clockwise direction in Figure 2.8(b). The ground states found are obviously

antiferromagnetic, with the total dipole moment within the cell conserved and equal

to zero. The most striking is the so-called vortex state for θ = π/4 with a fully en-

closed circulation of the magnetic dipole moment within the unit cell. The ground

state cohesive energy value is uAA ' −2.5494, which is the cohesive energy of an

infinite square two dimensional lattice. This value is defined as [94, 95]:

uAA = −2ζ(3) + 16π2

+∞∑
k=1

+∞∑
l=0

k2 {K0 [4k(l + 1)π]−K0 [2k(2l + 1)π]} . (2.37)

We will use the calculated ground state energy value as an absolute point for compar-

ison of energies of different states in tubes with square or triangular lattice structure.
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Figure 2.8: Visualization of degenerate states in infinite (a) triangular and (b) square
lattice, i.e., AB and AA packings, respectively. The dipoles are depicted as arrows
located in the center of the spheres. In case of triangular lattice the unit cell consists
of a single particle (as noted in panel (a) of this figure) and in case of square lattice it
consists of four particles (as noted in panel (b) of this figure). (c) Energy landscape
for square lattice is shown with respect to two θ1 and θ2 out of four magnetic
moments in the unit cell. Other two moments were oriented so the energy of the
system is minimal. One can observe a flat valley of degenerate ground state, θ2 =

−θ1, with energy uAA ' −2.5494. The saddle point which represents square plane
with uniform dipole moment orientation with energy usdd

AA = −2.26 is also marked.
The curves are drawn through the discrete points and they are smooth. The results
are in principle scale independent.
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2.4.2 Degeneracy break-up with curvature in case of AA and

AB tubes

Wrapping of the plane around the confinement cylinder will make the system quasi

one-dimensional and break the degeneracy [96]. We will discuss repercussions of the

degeneracy breakup on cohesive energy for different dipole moment orientations.

We analyze the degeneracy breakup in infinite tubes: according to tube’s cylindri-

cal geometry, we represent the dipole moment of the i−th particle in cylindrical

coordinates like:

~mi = miφ ~eφ +miz~ez, (2.38)

with constraints m2 = m2
iφ + m2

iz (i = 1, . . . , N). The parallel component with

respect to tube’s axis is given by mz and the orthogonal component is mφ (i.e., mφ

is tangential to cylinder’s circumstance). In Figure 2.9, we follow the dependence of

energy on angular parameter θ, miz = m sin (θ). We find that axial dipole moment

orientation (i.e., θ = π/2) represents the ground state for both AA and AB tubes

while circular orientation (i.e., θ = 0) is the most unfavorable, as seen in Figure 2.9.

Between circular and axial dipole moment orientation (i.e., for the range 0 <

θ < π/2), we observe a continuous decrease of cohesive energy with increasing axial

alignment of dipole moment orientation. These transition states we call vortex in

case of square AA tubes and helical in case of triangular AB tubes, e.g., θ = π/4 in

Figures 2.9(a) and (b), respectively. The cohesive energy of different configurations

in Figure 2.9 converges to a continuously degenerate state with increasing curvature

N following the next power law (see inset in Figure 2.9):

uN − u∞ ∼ N−2. (2.39)
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Figure 2.9: Cohesive energy spectrum of configurations for dipole orientations in
Figure 2.8 on a curved surface of the infinitely long tube for (a) square AA and (b)
triangular AB tubes. Breaking of degeneracy with respect to angle θ due to the
curvature, i.e., proportional to the number of particles in the constitutive ring N ,
is shown. The axial dipole moment orientation corresponds to θ = π/2. The inset
shows convergence of cohesive energies for θ = 0 and θ = π/4 to the infinite two
dimensional planar value u (for square lattice uAA = −2.5494 and for triangular
lattice uAB = −2.7586).

2.5 Cohesive energy-packing relations in dipolar helices

We have described geometry of helices and tubes composed of hard spheres in sec-

tion 2.1. In the following section 2.5 we have introduced dipolar interaction model

and three relevant dipole moment orientations. Setting up the geometry and dipole

moments represents a preparation for the key considerations which are dedicated to

the investigation of cohesive energy-configuration relations of dipolar helices (and
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dipolar tubes, as their sub-classes). A dipolar configuration is determined by the

next two components: (i) structure by means of geometry (how are the hard spheres

positioned spatially) and (ii) dipole moment orientation (how are the dipole mo-

ments of those hard spheres oriented). Two dipolar configurations can be identical

in structure, but can have different dipole moment orientation, and vice versa they

can have a different structure and the same dipole moment orientation. In this chap-

ter we present our findings about the relations of both configurational components

with cohesive energy in case of dipolar configurations under investigation.

2.5.1 Compression of a single-thread helix

A simple way to deform a helix is to compress (or extend) it along its axis, i.e., the

z-direction, while ensuring the dipole moments follow the thread. Compression of a

helix results in a continuous increase of its surface packing fraction η. Figure 2.10

shows the dependence of cohesive energy uR on the surface packing fraction η for a

single helix with reduced radius (R/d ' 1.7, chosen in the vicinity of nc = 6 point).

Recalling geometrical considerations in section 2.1 the increase of the azimuthal

angular shift Γ at prescribed curvature results in a continuous decrease of ∆z and

in a compression of a helix. The compression process begins with a fully extended

helix (i.e., η → d/8R ≈ 0.073) where the chain stands up with ∆z/d = 1, and the

cohesive energy of an infinite chain is u ' −2.404 [29]. The compression ends when

two successive turns of the helix touch, i.e., the coordination number of particles in

the helix changes from nc = 2 to nc = 4. We also address the minimal energy of the

helix with respect to the dipole moment orientation (i.e., not necessarily prescribed

by tangentially following the helix). From Figure 2.10, we observe that uR = uR (η)

is non-monotonic. We can identify two regimes: (i) At small packing fraction up

to η ≤ 0.4 (with no touching turns), the compression of the helix requires energy

input and therefore cohesive energy increases. The reason for this is that two dis-

tant consecutive turns of the helix experience weaker attraction upon increasing η.

(ii) In the regime of high η ≥ 0.4 where successive turns are allowed to be close or

even touching, the cohesive energy starts to decrease as η increases, i.e., the helix

would compress on its own without the input of energy. This is a consequence of
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Figure 2.10: Compression of single thread helix on a cylindrical confinement with
fixed radius (R/d ' 1.7). Dependence of cohesion energy (upper left panel) and axial
component of the dipole moment (lower left panel) on packing fraction is shown for
two characteristic dipole moment orientations: one that follows the thread structure,
i.e., spanning vector ~a1, and ground state dipole moment orientation obtained by
full energy minimization (check subsection 2.3.2 of section 2.3) . The illustrations of
characteristic structures and corresponding dipole moment orientations are provided
as well, in the panels on the right side.

enhanced attraction caused by the discreteness of the constitutive dipolar spheres,

see Reference [97]. The overall polarization order parameter 〈mz〉 is also analyzed

in Figure 2.10. During most of the course of the helix compression, see Figure 2.10,

a dipole moment orientation following the helix corresponds to the ground state

structure up to η ≈ 0.8, check points C and D in Figure 2.10 (the details of ground

state calculations are presented in section 2.3). Only for very high packing frac-

tions, i.e., η > 0.8, the helix direction is accompanied by a significant reduction in

cohesive energy (see points E and F in Figure 2.10). The highest difference in 〈mz〉
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occurs for η ≈ 0.887, where nc = 4 helix with touching turns is formed, and the

energy difference is uER − uFR ' 0.06. Corresponding values of axial dipole moment

component mz for points E and F are mE
z ' 0.12, mF

z ' 0.88, respectively.

2.5.2 From square to triangular arrangement of a single-thread

helix

The crucial question which we ask about dipolar helices and tubes is: how does their

cohesive energy depend on structural changes and especially on curvature (quanti-

fied by the helix radius R). With increasing curvature the structure changes from

the triangular to square arrangement and vice versa through a continuous series

of rhombic configurations. We study first in detail systems with dipole moments

following the spanning vector that are most oblique to helix axes, see Figure 2.7(d).

For the sake of comparison with tubes (AA/AB tubes), we also chose dipole mo-

ments that are building vortices along the rings, check Fig 2.7(a). Motivation for

that choice stems from a previous study [29], where it has been shown that finite

AB tubular systems are energetically favorable, see Figure 2.7(a) (dipole moment

orientation is perpendicular to the tube’s axis).

The surface packing fraction η (Equation 2.8), the angular coordination order pa-

rameter ξ (Equation 2.13), and the cohesive energy per particle uR (Equation 2.26),

are plotted versus the reduced helix radius R/d in Figure 2.11. Actually, the en-

ergy and structural properties change in an oscillatory quasi-periodic manner and

they are enveloped from both sides with the properties of AA and AB tubes, see

Figure 2.11. In Figure 2.12 behavior of these observables is depicted within one

period (R/d ∈ [2.09, 2.26], which has been chosen arbitrary). In one period, the

number of particles (n) in a constitutive ring of (AA/AB) tubes is increased for

one, i.e., from n-ring to n+ 1-ring. Within this period, the order parameter changes

from ξ = 0, i.e., square arrangement, to ξ = 1, i.e., triangular arrangement, via a

continuous rhombic transformation, see Figure 2.12(a). The radii of densely packed

helices are roughly in the middle between two corresponding (AB/AA) tube radii,

see Figure 2.12(a). This is a result of the radial constraint and excluded volume.
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Figure 2.11: Dependence of (a) angular coordination order parameter ξ, (b) packing
density η and (c) cohesive energy uR on helix radius R/d, for ~a1 dipole orientation.
AA and AB tube points are clearly indicated, they bracket the parameter values of
helices, like a kind of envelopes (solid and dashed lines connecting the tube points
are power law fits).
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Figure 2.12: Dependence of (a) angular coordination order parameter ξ, (b) packing
density η and (c) cohesive energy uR on helix radius R/d, for a segment in vicinity
of R(13,1)/d = 2.17 of Figure 2.11. AA and AB tubes are represented with discrete
points since they can be formed only with a fixed number of particles in a ring, the
fitted (power law) curves serve only as a guide to the eye.

Though in a single thread helical structure we cannot close rings in the plane per-

pendicular to the cylinder axis, one can nevertheless realize a full 360̊ helix turn

with roughly n + 1/2 particles. We observe discontinuity and strong asymmetry of
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the angular coordination order parameter ξ at the mid-period (R(13,1)/d ≈ 2.17),

see Figure 2.12(a). This is due to a change of the number of lateral threads n2, see

Figure 2.7(e), at the mid period going from n2 = 9 to n2 = 10, see Figure 2.12(a).

With decreasing curvature, the surface packing fraction increases globally, see Fig-

ure 2.11(b). We observe oscillatory behavior as the system continuously evolves

from the square to triangular arrangement and vice versa. The AA and AB tubes

still roughly bound the values taken by the surface packing fraction. At the helix

radius R/d > 3.4, see Figure 2.11(b), we are already within 3% of the asymptotic ex-

pected values in the planar case. In contrast to the angular coordination parameter

ξ, the surface packing fraction η is continuous everywhere, compare Figures 2.12(a)

and (b). Moreover, at the mid-period the η value is slightly (and systematically,

see Figure 2.11(b)) above the interpolated value stemming from AB tubes (see Fig-

ure 2.12(b)). In Figure 2.11(b) and (c), it can be clearly seen that the profiles of

energy oscillations uR and the surface packing fraction η are anti-correlated. The

mid-period values uR coincide with interpolated values stemming from AB tube

radii (confirmed by Figures 2.11(c) and 2.12(c)).

2.5.2.1 Looking for the ground state

At this point, we would like to discuss mechanisms which govern the minimal energy

dipole moment orientation near the mid-period transition point (more details about

implementation are provided in section 2.3). There are three privileged directions

in a helix: two which follow helix spanning vectors (determined by ~a1,~a2) and the

third one which is the direction of the helix axis. These privileged directions come

into play in two competing mechanisms: (i) The first mechanism is typically dic-

tated by first neighbor interactions which favor dipole moments following the thread

directions. (ii) The distant-neighbor interactions favor the distribution of dipole mo-

ments parallel to the helix axis. We can justify these two mechanisms as follows. It

is well known for a small finite system that rings are formed with dipole moments

building vortices, see Reference [29]. When a helix turn is projected along the z-axis,

the resulting figure is highly reminiscent of the vortex discussed above. The head

to tail configuration is favored at long distances, explaining the second advocated
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mechanism. The abrupt change in dipole orientation in the direction of the axis

〈mz〉, seen in Fig 2.13(b), is correlated with the discontinuous change in the angular

coordination order parameter ξ in the vicinity of transition, see Figure 2.12(a). At

the mid-period point R(13,1)/d = 2.17 dipole orientation in the direction of the axis

〈mz〉 is close to one, but not exactly one, see Figure 2.13. For the sake of comparison

with tubes (AA/AB tubes), we choose dipole moments that are parallel with the

helix axis, see Figure 2.7(c). The fact that the system is able to relax its dipole

moment orientation to the ground state results in more dependence of energy on

confinement curvature around the mid-point. The degree of asymmetry of uR is

stronger around the transition point, see Figure 2.13(b), than in the excited state

in Figure 2.12(c). The ground state calculations confirm the high stability of AB

tubes (see Figure 2.12(c)).

2.5.3 Cohesive energy of multi-thread helices at high surface

packing fraction

In this part, we consider the high surface packing fraction regime with nc = 6. Some

representative structures including dipole moment streamlines are displayed in Fig-

ure 2.7. The streamlines following spanning unit cell vectors ~a1 (oblique to the helix

axis) and ~a2 (more aligned to the helix axis) are also shown. It is possible to polarize

the helix by a homogeneous external field parallel to its axis. For symmetry reasons,

a reversal of the external field should result in the reversal of the dipole orientation.

In the case of magnetic dipoles, it should also be possible to polarize the system

to follow ~a1 and ~a2 spanning vectors by combination of a curling magnetic field of

electric current flowing through the confining cylinder and the homogeneous exter-

nal magnetic field parallel to its axis. Dipole moment distributions in the ground

states are also indicated for comparison in Figure 2.7. In analogy with the study of

a single helix case, we start analysis with a dipole moment distribution prescribed

by tangentiality with thread backbone. In Figure 2.14, cohesive energy for the ~a1-

generated dipole moment distribution is shown for different helical structures. The

cohesive energy in a planar triangular lattice, u∞ ' −2.759, represents the energy
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value which will be reached asymptotically (R/d → +∞) for all considered struc-

tures. As already found for AB tubes in Reference [29], cohesive energy exhibits

the scaling law of the form uR − u∞ ∼ R−2, see Figure 2.14. The cohesive energies

of all three helices and AB tubes are weakly dependent on the number of threads

for ~a1-generated dipole moment distribution. This is in accordance with surface

packing fraction behavior reported in Figure 2.6. A comparison with the azimuthal

angular shift parameter Γ1, see Figure 2.5, and the corresponding cohesive energy

(for ~a1-generated dipole moment distribution) clearly reveals a correlation between

there two quantities. In Figure 2.15, cohesive energy for ~a2-generated dipole moment

distribution is compared with ground state energy for different number of threads.

There exists an analogous correlation (as discussed for ~a2-dipole distribution) be-

tween the azimuthal shift Γ2 and the resulting cohesive energy, compare Figures 2.5

and 2.15. The smallest compatible radius R for multi thread helices (n2 = 2, 4)

is obtained for ZZ tubes (n1 = n2). In Figure 2.15, the corresponding radii read

R(2,2)/d = 0.61 and R(4,4)/d = 1.13. In this case the ~a2 and ground state dipole mo-

ment orientations are the same, see Figure 2.7(k). Strikingly, ZZ tube ground states

converge very fast to the expected planar value u∞ at the smallest accessible radii,

i.e., the largest curvature, within less than 1% of the planar case, see Figure 2.15

for R(2,2)/d = 0.61. A structural similarity of ZZ tubes, with typical experimental

images of microtubules is striking, see Figure 2.7(k). ZZ tubes can be created by

closing the rectangular strip on a cylinder. We should notice the structural charac-

teristic of ZZ tubes’ decomposition into chains which are analogous to filaments in

microtubules.
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Figure 2.13: Dependence of (a) cohesive energy, and (b) polarization in the direction
of z axis mz on helix radius R/d (in the ground state), for a chosen segment of
Figure 2.11. AA and AB tubes are represented with discrete points since they can
be formed only with a fixed number of particles in a ring, the fitted (power law)
curves serve only as a guide to the eye. The point which represents the dense helix
with (n1, n2) = (13, 1) and R(13,1)/d = 2.17, is marked with a rectangle.
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Figure 2.14: Dependence of cohesive energy uR on helix radius R/d, for different
families of helices having {1, 2, 4} threads, and AB tubes, with ~a1 dipole orientation.

Figure 2.15: Dependence of cohesive energy uR on helix radius R/d, for different
families of helices having {1, 2, 4} threads, and AB tubes, with ~a2 and optimized
dipole moment orientation.
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Chapter 3 Ionic liquids

3.1 Methods

In this section we present the methods applied in the study of ionic systems. First we

explain the basics of the molecular dynamics (MD) method. Next, we give a short

overview of the LAMMPS code for MD simulations, since all MD simulations

presented in this thesis were performed using the LAMMPS software package [98].

3.1.1 Molecular Dynamics method

Molecular dynamics (MD) represents a simulation technique which generates trajec-

tories of a system of N particles by numerical time integration of Newton’s classical

mechanics equations of motion [99]. An MD simulation is defined by: the interac-

tion potential by which the particles interact, initial conditions (IC) and boundary

conditions (BC). Let us consider a system of N particles (check Figure 3.1) in a

volume V . The Newton’s equations of motion for the system of N particles are:

m
d2~ri

dt2
= ~Fi (~r1, ~r2, ..., ~rN) , i = 1, ..., N, (3.1)

where ~ri are the position vectors and ~Fi are the forces acting on the particles of

a system. It is often case in MD simulations that the forces can be derived from

interaction potential functions U (~r1, ~r2, ..., ~rN), representing the potential energy of

the system:
~Fi (~r1, ~r2, ..., ~rN) = −∇̃riU (~r1, ~r2, ..., ~rN) . (3.2)

Equation 3.2 is consistent with the conservation of the total energy. We might define

mechanical energy of the system as: E = K +U , where kinetic energy is defined as:
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K =
N∑
i=1

1

2
mi

(
d~ri

dt

)2

, (3.3)

and potential energy is defined as:

U = U
(
~rN (t)

)
, (3.4)

where ~rN (t) denotes position vectors of all N particles in the system. We emphasize

that E should be a conserved quantity, if the system is isolated. The potential of

an isolated system (no external forces present) can be written in the simplest case

as a sum of pairwise interactions:

U =
N∑
i=1

N∑
j>i

u (rij) , (3.5)

where ~rij = ~ri−~rj, rij = |~rij| and i > j eliminates the double counting of the particle

pairs. Practically it means that the forces acting on the particles are resultants of

the forces coming from the individual interactions with the rest of the particles:

~Fi =
N∑
j 6=i

~fij, ~fij = −du (rij)

drij

· ~rij

rij

. (3.6)

According to the Newton’s third law it stands: ~fji = −~fij. Computational effort of

solving the equations of motion 3.1 is proportional to N2 and is mostly related to

the force computations. Accordingly, to speed-up the computations it is desirable to

express the forces analytically. In order to further more reduce the computational

effort, it is a standard practice in MD simulations to cut off the potential at some

limiting distance, i.e., we neglect the potential if the distance between two interacting

atoms is rij > rcut, where rcut is reasonably chosen. For example, in case of the

Lennard-Jones potential (standard potential in MD simulations) usually it is set

that rcut = 2.5 · σ, where σ determines the length scale.

In principle, we might treat an MD simulation as a numerical experiment [100],

hence the methodology is practically the same like in a real experiment, as we can

see in the schematic of a typical MD simulation in Figure 3.2.
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x

y

z ri(t)

N particles

Figure 3.1: Illustration of an MD system with N particles.

[System setup]

sample selection

(interaction potential, N, IC, BC)

[Equilibration]

sample preparation

(achieve T, p)

[Simulation run]

property average

(run selected number of timesteps)

[Output]

data analysis

(calculation of system properties)

Figure 3.2: Basic schematic of an MD simulation.

In the first step we should setup the system, which means: selecting a proper

interaction potential, choosing the number of particles in the system and setting up
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their properties (shape, mass, charge), defining initial and boundary conditions. The

subsequent step, after the system setup has been done, is the system equilibration

which means achievement of desired temperature and pressure (macroscopic prop-

erties which depend on the microstate of the system). After the system setup and

equilibration are done, simulation is run a given number of simulation steps and

averaged characteristics are calculated (for example, radial distribution function

g (r)). In the end, output data is analyzed and based on that, the desired quanti-

ties are computed. Besides equilibrium MD simulations, there are non–equilibrium

molecular dynamics (NEMD) simulations. For example, a system is exposed to

perturbation or high external forces and its response is analyzed, like in simula-

tions of mechanical deformations. We have used NEMD simulations in the way

that shearing of the simulation box (mechanical deformation) was imposed, and by

analyzing bulk IL′s response to the imposed shearing, we have determined IL′s vis-

cosity coefficient. There are five key components of MD simulations and those are:

(i) initial conditions (IC), (ii) boundary conditions (BC), (iii) force computation,

(iv) integrator and (v) computation of system’s characteristics.

3.1.1.1 The Lennard-Jones potential

The most common pair potential for describing the interaction of van der Waals

systems is the Lennard-Jones potential (LJ potential), given by the formula:

ULJ (rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (3.7)

where rij is the distance between the atoms i and j. The ε parameter defines

the strength of the LJ interaction and the σ parameter defines the length scale.

LJ potential is strongly repulsive at short distances, it crosses zero at rij = σ,

i.e., ULJ (rij = σ) = 0. LJ potential reaches its minimum ULJ (rm) = −ε at

rm = 21/6σ ≈ 1.1225σ and it has an attractive tail at long distances. Values of

the parameters {ε, σ} are chosen to model physical properties of a real system.

For example, LJ potential was initially proposed to model liquid argon. Let us

now analyze the two terms from the square brackets of Equation 3.7. The term
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∝ r−12
ij dominates at short distances and it models the repulsion due to the non-

bonded overlap of electronic orbitals. It might have an arbitrary form meaning that

other exponents or even other functional forms are possible. However, we should

think about minimizing the computational effort, hence in most cases this form with(
σ
rij

)12

is fine. The term ∝ r−6
ij dominates at long distances and models the van

der Waals forces caused by the dipole-dipole interactions due to the fluctuation of

dipoles. These weak forces are responsible for the bonding character of systems like

rare gases, such as argon or krypton. The interaction force due to the interaction

via LJ potential, see Equation 3.7 is:

~fij =
48ε

r2
ij

[(
σ

rij

)12

− 1

2

(
σ

rij

)6
]
~rij. (3.8)

As the force is expressed analytically, this is advantageous in terms of the reduction

of computational effort.

3.1.1.2 Thermodynamic properties

Key thermodynamic properties of anMD system are the temperature and pressure.

Temperature of the system might be introduced via mean kinetic energy of the

system:

1

2N

N∑
i=1

mi

(
d~ri

dt

)2

=
3

2
kBT ⇒ T =

1

3NkB

N∑
i=1

mi

(
d~ri

dt

)2

. (3.9)

By expressing the temperature T in function of the kinetic energy K we obtain the

next relation:

T =
2K

3NkB
. (3.10)

In case that we consider the temperature T and the density ρ as independent vari-

ables, we might express the energy of the system E and the pressure p. These

quantities link the microscopic and macroscopic level and can be easily measured in

an MD simulation. We should mention that in an MD simulation usually the en-

ergy is conserved, while the temperature fluctuates, hence the average temperature
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〈T 〉 should be used instead of T . Pressure is defined by the formula:

pV = NkBT +
1

3
〈
N∑
i=1

~ri · ~Fi〉. (3.11)

In case of a pair potential this formula is:

pV = NkBT +
1

3
〈
N∑
i<j

~rij · ~fij〉. (3.12)

Bearing in mind the relation 3.10 between the temperature T and the kinetic energy

K, we express the pressure p as:

p =
ρ

3N
〈2K +

N∑
i<j

~rij · ~fij〉. (3.13)

Contrary to the total energy Etot = K + U which should be conserved during a

simulation, the temperature and the pressure fluctuate and should be averaged over

a chosen number of timesteps.

3.1.1.3 Analysis of the key components of a typical molecular dynamics

simulation

In the following text we briefly analyze the key components of a typicalMD simula-

tion, which include: (i) initial conditions (IC), (ii) boundary conditions (BC), (iii)

force computation, (iv) integrator and ensemble and (v) computation of system’s

characteristics [99].

(i) Initial conditions (IC)

As Newton’s equations of motion are ordinary differential equations of the second

order, initial conditions are defined as:

~rN (t = 0) = ~rN
(0)

;
d~rN

dt
(t = 0) =

d~rN
(0)

dt
. (3.14)

Generating of IC is simple for ordered systems like crystals, but in case of amorphous

solids or for polymer chains it should be treated carefully. Setting the IC is important
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rcut

Figure 3.3: Illustration of periodic boundary conditions (PBC). Trajectories of
only the atoms in the central cell, also known as supercell (square filled with gray)
are explicitly followed. The supercell is infinitely replicated in a given 2D or 3D

space. In this figure we show an example of a 2D system with periodic boundaries
in both directions in a plane. An atom (let us label it as referent atom) from the
supercell interacts with other atoms from the supercell, as well as with the atoms
from neighbouring copies of the supercell, under the condition that their distance
from the referent atom is within the cutoff radius. Interaction is neglected in case
the distance is larger than the cutoff radius.

because often it causes errors. For example, if the particles are positioned too close

at the beginning of a simulation, the forces between them get too high.

Related to assignment of initial velocities, it should be taken into account that

each independent degree of freedom should carry kinetic energy of kBT/2. Such

57



3. Ionic liquids

a condition can be met by taking initial velocities from the Maxwell-Boltzmann

distribution.

(ii) Boundary conditions (BC)

The behaviour of finite systems is quite different from the behaviour of infinite

systems. The number of particles for simulating bulk properties of macroscopic

systems has an important role, unless we simulate clusters of atoms in which case

the number of constituents is well-defined. No matter how large the simulated

system is, the number of particles N is negligible as compared to the number of

particles contained in a macroscopic system (at the order of 1021to1023). In case of

macroscopic systems just a small fraction of the particles are located close to the

boundaries (walls of the container in which the system is placed). In case of a typical

liquid with the order of magnitude of N = 1021 particles, the number of particles in

the vicinity of the walls is at the order of N2/3 = 1014, which means that 1 out of 107

is a surface particle. Therefore, in systems like liquids the fraction of particles in the

vicinity of the walls is negligible. In modern MD simulations the typical number of

particles which can be handled is at the order of 106 particles. In such a system, the

fraction of the surface particles is more significant and the behaviour of the system

is very impacted by the surface effects. An efficient solution for solving the finite-

size problem and for minimizing the surface effects is the application of periodic

boundary conditions. When periodic boundary conditions are applied the particles

are enclosed in the simulation box, which is replicated to infinity by translation in

all three directions {x, y, z} completely filling the space. When a particle enters or

leaves the simulation box, an image particle leaves or enters the simulation box,

hence the number of particles is kept constant. Accordingly, the surface effects are

suppressed. Summing up the previous discussion, we note that there are two types

of boundary conditions: isolated (IBC) and periodic (PBC) boundary conditions

(for the illustration of PBC check Figure 3.3). IBC are suitable for the analysis of

clusters and molecules, while PBC are suitable for the analysis of bulk materials.

There are mixed boundary conditions as well, where the system is periodic along

one or two dimensions, but not in all three dimensions. In case of PBC a system of

particles is surrounded by vacuum, those particles interact between each other and
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do not interact with anything outside the system, except in case that some external

force is introduced.

(iii) Force computation

Equation of motion for the i-th particle can be written as [99]:

mi
d2~ri

dt2
= −

∑
j 6=i

∂U (ri − rj)
∂ (ri − rj)

, i = 1, ..., N. (3.15)

Computation of the right-hand side of the above equation is the key step which

consumes the most computational time in MD simulations, so the efficiency of that

computation is of crucial importance. For long-range Coulombic interaction there

are special algorithms which break it into two terms: one term represents short-

range interaction and the other term represents smooth interaction, like a field.

Both of those terms can be computed efficiently in different ways. When PBC are

applied, movement of particles within the basic cell is monitored and the basic cell

is surrounded by its periodic copies. A consequence of the application of PBC is

that each particle i in the simulation box interacts not only with the other particles

in the box, but with their images also. This means that the number of interacting

pairs is very large. However, this obstacle us usually overcome by setting a cutoff

distance, since the interaction of two particles separated by a distance larger than

the chosen rcut is neglected. There is the term minimum image criterion which

claims that among all images of a particle we should consider only the closest ones

and neglect the others.

(iv) Integrator and ensemble

Newton’s equations of motion represent a set of ordinary differential equations of

the second order, which can be very nonlinear. Transforming them into ordinary

differential equations of the first order in 6N -dimensional space
{
~rN , ~vN

}
, general

numeric algorithms for solving ordinary differential equations can be applied, such

as Runge-Kutta method. However, general numeric algorithms are rarely applied

in MD simulations, because the existence of Hamiltonian enables more accurate

integration algorithms, such as predictor-corrector integrator. There are three main

ensembles: micro-canonical, canonical and grand-canonical ensemble. They are dis-
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tinguished based on the distribution of initial conditions. When the system is defined

by a certain ensemble, it should strictly follow equations of motion, with conserved

mechanical energy. Ensemble and integrator are often grouped since there is a class

of methods which generate desired ensemble under time integration. In a micro-

canonical (NVE) ensemble, system is isolated from the changes in the number of

particles (N), volume (V ) and energy (E). It corresponds to an adiabatic process

in which there is no heat exchange. Micro-canonical MD trajectory can be seen

as exchange of potential and kinetic energy, under the condition that the total en-

ergy is conserved. In a canonical (NV T ) ensemble, the number of particles (N),

volume (V ) and temperature (T ) are conserved. Canonical ensemble is often called

constant temperature molecular dynamics (CTMD). In NV T ensemble the energy

of endothermic and exothermic processes is exchanged with a thermostat. There

is a large number of thermostat algorithms which add or remove energy keeping

temperature constant. It is not easy to obtain canonical distribution of spatial ar-

rangement and velocities using thermostat algorithms. A wide and relevant topic

is which thermostat should be chosen and how its parameters should be set, how

does that depend on the system size, how to choose the timestep and integrator.

Grand-canonical ensemble represents possible states of a system of particles which is

kept in thermodynamic equilibrium (thermal and chemical) with a reservoir. System

is considered to be open, in a sense that it can exchange the energy and particles

with a reservoir and accordingly, possible states of a system differ in terms of to-

tal energy and total number of particles. Volume is the same in all possible states

of a system. Thermodynamic variables of a grand-canonical system are chemical

potential and temperature. It is called (µVT ensemble, since each of those three

quantities is an ensemble constant. There are two main classes of MD integrators:

(i) low-order integrators like leapfrog, Verlet, velocity Verlet which is characterized

by easy implementation and stability, and (ii) predictor-corrector integrators which

are characterized by high accuracy for large timesteps.

- Examples of integrators

We present common integrators in MD simulations, namely: (i) The Leapfrog al-

gorithm, (ii) The Verlet algorithm and (iii) The Velocity Verlet algorithm. In
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all three examples the integration of Newton’s equations of motion is done with a

small timestep δt. In the following text index i is used for an i-th particle where

i = 1, ..., N , where N is the total number of particles in the system. Its position,

velocity and acceleration are labeled as ~ri, ~Vi = d~ri
dt
,~ai = d2~ri

dt2
, respectively.

(i) The Leapfrog algorithm

In the Leapfrog algorithm the velocities are first computed at the time moment t+ δt
2

and these are used to compute the positions ~ri, at the time moment t+ δt:

~ri (t+ δt) = ~ri (t) + ~Vi

(
t+

δt

2

)
δt. (3.16)

In this way, the velocities leap over the positions, then the positions leap over the

velocities:
~Vi

(
t+

δt

2

)
= ~Vi

(
t− δt

2

)
+ ~ai (t) δt. (3.17)

The advantage of this algorithm is that the velocities are explicitly calculated. How-

ever, the disadvantage is that the velocities are not calculated at the same time

moment as the positions. The velocities at the time moment t can be computed as:

~Vi (t) =
1

2

[
~Vi

(
t− δt

2

)
+ ~Vi

(
t+

δt

2

)]
. (3.18)

(ii) The Verlet algorithm

New positions and velocities of particles are computed after every timestep. Position

of a particle i in time moment t + δt can be computed via Taylor expansion over

degrees of timestep δt:

~ri (t+ δt) = ~ri (t) + δt
d~ri

dt
(t) +

1

2
δt2

d2~ri

dt2
(t) +

1

6
δt3

d3~ri

dt3
(t) + ... (3.19)

In a similar way, position of particle i in previous timestep can be written as:

~ri (t− δt) = ~ri (t)− δtd~ri

dt
(t) +

1

2
δt2

d2~ri

dt2
(t)− 1

6
δt3

d3~ri

dt3
(t) + ... (3.20)

Summing of previous two equations leads to the expression which determines posi-
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tion of particle i in time moment t+ δt

~ri (t+ δt) = 2~ri (t)− ~ri (t− δt) + δt2
d2~ri

dt2
(t) +O

(
δt4
)
. (3.21)

This integrator is called Verlet algorithm, as we can see from Equation 3.21 it

uses positions and accelerations at time moment t and positions at time moment

t− δt to compute new positions at time t+ ∆t. The Verlet algorithm does not use

explicit velocities. There are two main advantages of the Verlet algorithm: (i) its

straightforwardness, and (ii) reasonable storage requirements. The disadvantage is

the algorithm’s moderate precision. Acceleration of particle i is determined from

Newton’s equation of motion:

d2~ri

dt2
= − 1

mi

∑
j 6=i

∂U (ri − rj)
∂ (ri − rj)

. (3.22)

Position of a particle is computed with precision of δt4 as it is noted with O (δt4).

Velocity of particle i in time moment t can be determined from its positions in time

moments t+ δt and t− δt with precision of O (δt3), by subtracting the equation for

~ri (t− δt) from the equation for ~ri (t+ δt):

d~ri

dt
=
~ri (t+ δt)− ~ri (t− δt)

2δt
+O

(
δt3
)
. (3.23)

Positions and velocities of all particles in a system are computed in each step ofMD

simulation, producing complete time evolution of the system. In order for this time

evolution to be of high accuracy, integration timestep δt should be much shorter

than the shortest characteristic time of the system. Simple Verlet integrator is used

for systems with constant number of particles, constant volume and constant total

energy, which is micro-canonical (NVE) ensemble.

(iii) The Velocity Verlet algorithm

In the Velocity Verlet algorithm, positions, velocities and accelerations at time mo-

ment t are used for computing position at time moment t+ δt:

~ri (t+ δt) = ~ri (t) + ~Vi (t) δt+
1

2
~ai (t) δt2. (3.24)
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For computing velocity at time moment t + δt, velocity at time moment t and

acceleration at time moments t and t+ δt are used:

~Vi (t+ δt) = ~Vi (t) +
1

2
[~ai (t) + ~ai (t+ δt)] δt. (3.25)

(v) Computation of system’s characteristics

A big advantage of MD simulations is their applicability at the level of classical

atoms. All characteristics which are well defined in classical and statistical me-

chanics can be computed. The two main problems to be taken into account when

performing MD simulations, are accuracy and efficiency. System’s characteristics

can be roughly divided into four categories:

(1) Structural characteristics, for example radial distribution function

(2) State equation, for example phase diagrams, static response like coefficient of

thermal expansion

(3) Transport characteristics, for example viscosity, thermal conductivity, diffusivity

(4) Non-equilibrium response - for example plastic deformation

Physical quantity 〈A〉 is determined as mean value of its values A (t) in time mo-

ments t during a long time interval (large number n of MD steps) after initial

relaxation during long enough time (with relaxation time t0) [99]:

〈A〉 =
1

n

n∑
j=1

A (t0 + jδt) . (3.26)

If simulation is long enough so that the system can achieve equilibrium state (if

simulation is much longer than all relaxation times), this time averaging of quantity

〈A〉 is equivalent to the ensemble averaging.

3.1.2 LAMMPS code for molecular dynamics

An usual algorithm for developingMD simulations can be roughly divided into next

subsequent steps:

(i) geometric formation of the simulation setup

(ii) definition of the atom types and their attributes (e.g., shape, mass, charge)
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(iii) definition of the interactions between all atom types

(iv) implementation of the model and MD simulation of a certain physical phe-

nomenon, (e.g., in our case we simulate effects related to nanoscopic tribological

behaviour of ionic liquids)

(v) storage of the relevant data and its analysis with the goal of obtaining results

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a well-

known and widely usedMD code [98]. Development ofMD simulations in LAMMPS

code can be roughly divided into three subsequent phases:

(a) pre-processing, which includes points (i), (ii), (iii) from the above list

(b) processing, actually this is MD simulation which corresponds to the point (iv)

from the above list and

(c) post-processing, which corresponds to the point (v) from the above list

Processing is done via development of LAMMPS scripts, while for pre- and post-

processing we write codes in C programming language. MD simulations are com-

putationally highly demanding since we work with systems that contain tens of

thousands of atoms. The key advantage of LAMMPS is parallelization, which

means that LAMMPS codes can be run on a supercomputer. We write Linux

bash scripts for submitting simulations to the supercomputer, as well as for the ef-

ficient manipulation with the output files. For visualization we use VMD (Visual

Molecular Dynamics) software package [101].

3.1.2.1 Multi-level summation method for summing long-range Coulom-

bic interactions

Long-range Coulombic interactions are treated in LAMMPS with methods that

work in the inverse k-space [102–104]. In our LAMMPS simulations we apply the

Multi-level summation (MSM) method which maps the charge of atoms onto a

3D mesh and uses hierarchy of several levels of coarse-graining of the mesh on

which it directly computes Coulombic interaction. Competitive methods to MSM

method for summing Coulombic interactions are Ewald and Particle Particle Particle

Mesh (PPPM) methods, but they can be applied in case of a 3D simulation just

if periodic boundary conditions are present along all three directions. On the other
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side, MSM method can be applied in case of a 3D simulation without restrictions

related to periodic boundary conditions, i.e., it can be applied for non-periodic as

well as for mixed periodic and non-periodic boundary conditions. When we work

with bulk ILs, our system is periodic in all three directions. On the other side,

in case of confined ILs, our system is periodic along the x and y directions and

it is fixed along the z direction. Actually, we might state that our system with

confined IL includes mixed periodic (along two directions) and non-periodic (along

one direction) boundary conditions, hence MSM method is adequate for treating

long-range Coulombic interactions in our simulations.

3.2 Simulation setup and models of ionic liquid

3.2.1 Simulation setup

We have developed our simulation setup bearing in mind lubrication role of IL,

hence it consists of two solid plates and IL which is confined between them and

also present in the lateral reservoirs. Schematic of simulation setup together with

configuration snapshots in three cross-sections, i.e., xz, yz, xy cross-sections which

are exported from the VMD (Visual Molecular Dynamics program [101]) is shown

in Figure 3.4 in case of SM model and in Figure 3.5 in case of TM model (e.g.,

diameter of neutral tail is arbitrary chosen to be the same as the diameter of cationic

head). Schematic in simulation setup figures (i.e., Figures 3.4 and 3.5) indicates the

number of particles used and the imposed normal load Fz and lateral velocity Vx. In

VMD configuration snapshots dimensions of the system along the three axes, i.e.,

x, y, z, are noted. The simulation setup was loosely inspired by previously published

research by others [39, 49, 51, 52]. By implementing such a geometry we have at-

tempted to achieve:

(i) a realistic particle squeeze–out behaviour with the formation of two lateral lu-

bricant regions (in a similar manner to the simulations of Capozza et al. [52]) and

(ii) a system that allows the lubricant to be externally pressurized.

For the description of the solid surfaces we have combined rigid layers of particles

moving as a single entity on which the external force or motion is imposed, denoted
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Figure 3.4: (a) Schematic of the simulation setup shown as yz cross-section. There
are two solid plates at the top and bottom of the system, consisting of two regions: at
the outermost ones the particles are moving as a single entity (Top/Bottom Action)
and at the innermost ones the particles are at a controlled temperature (Top/Bottom
Thermo). The thermalized layers are in direct contact with the lubricant while the
action layers are used to impose external velocity and/or force to the solid plates.
(b)-(d) Side views of the typical simulation configuration and key dimensions of the
geometry. (b) Side (xz) view with respect to the shear direction. (c) Front (yz)
view in the direction of the Top plate motion. (d) Top (xy) view of the system. The
solid plates are made up of FCC (111) atomic layers. The ionic liquid is composed
of an equal number of cations (blue spheres) and anions (red spheres).

by "Top Action" and "Bottom Action" in Figures 3.4 and 3.5 (a), with thermalized

layers (denoted by "Top Thermo" and "Bottom Thermo") in which particles vibrate

thermally at T = 330 K.

The Nose-Hoover NV T thermostat is used to control the temperature. As in

previous MD simulations [43, 49, 51, 52, 56], under similar operating conditions,

the details of the adopted dissipation scheme are not expected to change the essence

of the system response on mechanical deformation. The relaxation time of the

Nose-Hoover NV T thermostat for the lubricant and the solids is 200 fs (check Ref-

erence [43]). The plates were treated as rigid bodies, with the lower one being fixed
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Figure 3.5: Schematic of the simulation setup shown as yz cross-section. Dimensions
of the system along the y and z axes, together with the directions of the imposed
normal load Fz and lateral velocity Vx are noted. The total system length in the
x direction is 125 Å. There are two solid plates at the top and bottom of the
system. Ionic liquid is composed of an equal number of cation–tail pairs and anions
(cations: blue spheres; tails: cyan spheres; anions: red spheres). (a) Schematic of
the simulation setup presented as yz cross-section, showing the number of atoms in
each region. (b) Side (xz) view of the system showing the dimensions along the x
and z direction. (c) Side (yz) view of the system. (d) Top (xy) view of the system
showing the dimension along the y direction.

and the upper one subjected to a force oriented along the z direction, i.e., normal

load Fz , as shown in Figures 3.4 and 3.5 (a) and driven along the x direction at a

constant velocity Vx. The solid plates were made up of densely packed atomic layers

at a FCC (111) lattice arrangement. Periodic boundary conditions were applied in

the x and y directions. The Bottom plate can therefore be considered to be infinite,

while the Top plate is surrounded by vacuum pockets on its sides, the so called

lateral reservoirs, in which the lubricant can freely expand. The lateral reservoirs

were implemented as a mechanistic way for allowing the lubricant to be dynami-

cally squeezed in or out as an external load or velocity is applied, or due to local

fluctuations during the simulation progression. At the same time, the lubricant re-

mains an infinite continuous body in the x and y directions, similar to the conditions
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observed in a real tribological system from a mesoscopic point of view. This is espe-

cially important if the system experiences partial or complete crystallization under

compression, check Figure 3.29 in section 3.4. While the total number of considered

lubricant molecules is constant, the finite upper plate width and the resulting free

space enable the particles to be squeezed-out into the lateral reservoirs. The number

of lubricant molecules effectively confined inside the gap can therefore dynamically

change depending on the loading conditions. This is important for exploring the

possible states of a mechanical system of particles that is being maintained in ther-

modynamic equilibrium (thermal and chemical) with a lubricant reservoir (i.e., void

spaces in tribological system). The nanotribological system is open in the sense

that it can exchange energy and particles, realizing an effectively grand-canonical

situation, check Figures 3.4 and 3.5 (c) and Reference [105].

3.2.2 Models of ionic liquid

In this subsection we present implementation details about the modeled solid plates

and IL lubricants in case of SM and TM models of ionic liquid, respectively.

3.2.2.1 Salt model of ionic liquid

The model used in this work is a coarse–grained model of IL which has already been

exploited in previous studies [49, 51, 52, 64] and it is known as SM model (salt–

like model). It is a charged Lennard–Jones system consisting of cations and anions.

There are two types of interatomic interactions in our system and both of them are

non–bonded: Lennard–Jones (LJ) potential and Coulombic electrostatic potential.

In the current work we are comparing bulk and confined IL properties. Therefore,

there are three different atom types taken into consideration: (i) cations, (ii) anions

and (iii) solid plate atoms. The solid plates consist of nine densely packed layers in

a FCC (111) lattice arrangement. Between all types of atoms we apply full LJ 12-6

potential, with the addition of Coulombic electrostatic potential for the interactions

between ions. In our system the cations and the anions are charged particles, while

the solid plate atoms are electroneutral. Accordingly, we have implemented a LJ
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12-6 potential combined with Coulombic electrostatic potential:

Vαβ (rij) = 4εαβ

[(
σαβ
rij

)12

−
(
σαβ
rij

)6
]

+
1

4πε0εr

qiqj
rij

, (3.27)

where i, j = 1, . . . , N are particle indices, and N is the total number of particles.

Parameters {εαβ, σαβ} define the LJ potential between different types of particles:

α, β ∈ {A,C, P} which refer to anions, cations and solid plate atoms, respectively.

The diameter of cations and anions is set to σCC = 5 Å and σAA = 10 Å, respec-

tively. The mass of cations and anions is mC = 130 g/mol and mA = 290 g/mol,

respectively. The asymmetry of ion sizes is typical in many experimentally explored

systems and the parameters have already been explored in literature, check Refer-

ence [52, 64]. The atoms of the solid plates have a diameter of σPP = 3 Å. The mass

of the solid plate atoms is mP = 65 g/mol. The LJ potential has a short–range im-

pact, since it vanishes rapidly as the distance increases ∝ r−6, while the Coulombic

potential has a long–range impact, ∝ 1/r. To handle long–range interactions, we

have used a multi–level summation method (MSM) [104], since it scales well with

the number of ions and allows the use of mixed periodic (in x and y directions) and

non-periodic (in z direction) boundary conditions, which are present in our simula-

tion setup with confined IL. On the other hand, in our simulation setup with bulk

IL, periodic boundary conditions are applied in all three directions ({x, y, z}). Ions

are modeled as coarse grain particles, the charge of which is set equal to elementary:

qC = +e and qA = −e, i.e., e = 1.6 · 10-19 C. The dielectric constant is set to εr = 2

to account for the dielectric screening, as in Refs. [51, 52, 64].

In engineering applications, the lubricant molecules typically interact with metal

surfaces. Computationally efficient many–body potentials such as embedded atom

method (EAM) potential [106, 107] can be applied for the description of such solids.

Such schemes have been employed extensively for modeling a wide range of systems

including metals [107] and metal-metal oxide interfaces [108]. In addition, in order

to account for the induced charges on the metallic conductor surface by the ions, the

Drude-rod model developed by Iori and Corni [109] which consists of the addition

of an embedded dipole into each metal atom, thus rendering it polarizable, has been
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applied in previous studies [39]. In this study, modeling the elasticity of metallic

plates plays a secondary role (central role belongs to IL lubricant). Therefore, we

have selected a simplified model in which plate atoms interact strongly with each

other if they belong to the same plate, i.e., εPP = 120 kCal/mol, as opposed, to

a very weak interaction between the different plates εtop/bottom = 0.03 kCal/mol.

The parameter εPP is so strong in order to ensure that the initial configuration of

the solid bodies will basically remain unchanged (apart from high frequency oscil-

lations). Furthermore, even though typical engineering systems are often metallic,

our initial coarse grained MD studies of liquid behaviour according to the applied

conditions justified the implementation of a simpler solid system which does not

feature substrate polarization, check Reference [64]. Finally, it is possible that the

actual surfaces might feature carbon coatings or depositions, in which case the sur-

face polarization can be of secondary importance. In the Table 3.1 we present the

values of {εαβ, σαβ} parameters used in our model. Cross-interaction parameters are

calculated by Lorentz-Berthold mixing rules: εαβ =
√
εα · εβ and σαβ = (σα + σβ) /2.

The starting configuration for our MD simulations was obtained via a relaxation

process. In order to obtain a stable and reproducible initial configuration, the re-

laxation was performed through a step-wise increase of absolute ion charge at steps

of ∆|qi| = e/10, i = {A,C}. Each time the charge of the ions was increased, a mini-

mization of the system’s energy through conjugated gradient method was performed.

In this way, the system characteristics were gradually converted from pure LJ to a

Coulomb interaction dominated system through a series of stable configurations. As

we are aiming at understanding the lubricant behaviour at mesoscopic conditions

observed in a ring–liner system, we have attempted to include in ourMD model the

potential IL pressurization that can occur due to the liquid flow resistance, as well

as the variable pressure arising from the reacting gas in the combustion chamber.

Inserting gas molecules directly in the simulation for this purpose would require a

reduction of the time step due to higher thermal velocities of the gas. In turn, the

computational cost would increase significantly making simulations impossible to

run in realistic computational time. Therefore, in order to understand the effect of

external pressure on the IL behaviour, we have applied a repulsive force between
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Table 3.1: List of LJ parameters of SM model of ionic liquid.
pair αβ εαβ [kCal/mol] σαβ [Å]

CC 0.03 5
AA 0.03 10
CA 0.03 7.5
PC 0.3 4
PA 0.3 6.5
PP 120 3

the topmost rigid solid layer and the IL particles in the form of a truncated and

shifted LJ potential. Two cases with cut-off distances at 15 Å and 4 Å above the

outermost Top plate layer were studied so that the IL inside the confinement gap

would remain outside the influence zone of this mechanistic force. By appropriate

selection of the LJ parameters for this potential, the resulting external pressures

applied on the unconfined surface of the IL were 120 kPa and 250 kPa, respectively.

3.2.2.2 Tailed model of ionic liquid

In this study, we have applied a generic coarse grained IL model, introduced in

Reference [52]. In this model, the anion is represented as a negatively charged

large–sized spherical particle, while the cation is a dimer consisting of a positively

charged small–sized spherical particle (i.e. cationic head), and a neutral spherical

particle (tail) attached to the corresponding cationic head via an elastic spring, see

Figure 3.6 and Reference [110]. Since the cationic tail is the principal feature of the

model used in this paper, we will refer to it as tail model (TM). The asymmetry

of the cation leads to amorphous (glassy) states for realistic values of interaction

parameters (e.g., for hydrocarbons), in contrast to the simplest coarse–grained model

of IL known as SM model (salt–like model), where both cations and anions are

spherical. The SM model has already been exploited in previous studies [49, 52, 64,

111]. Despite an obvious advantage of simplicity, in order to avoid crystallization,

the SM model relies on a very weak non-bonded Lennard-Jones interaction which

makes any comparison with real IL only qualitative.
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Figure 3.6: Schematic representation of (a) anion and (b) cation molecules in TM
model. The anion is represented by a spherical particle with a diameter σAA = 10 Å.
The cation molecule consists of a charged head with a diameter σCC = 5 Åand a
neutral tail. In order to be more concise, we refer just to cationic head as the cation.
The cation and its tail are connected by a spring with length L = (σC +σT)/2. The
size of the tail has been varied and (a) TM3, (b) TM5 and (c) TM9 ionic liquids
have a tail diameter of 3, 5 and 9 Å, respectively. The molecular asymmetry is a
feature of real ionic liquids and chosen parameters resemble [BMIM ]+ [PF6]− IL

properties, check References [49, 51].

In addition, the SM model cannot account for molecular asymmetry featured in

real ILs. Nevertheless, the SM model has been proven to be quite useful for the

development of the simulation methodology, as it reduces computational complexity

and enables faster equilibration (e.g., for obtaining static force-distance characteris-

tics as in Reference [64]). More complex extensions of TM coarse grain models can

involve several tails of different size, like in Reference [49]. For simplicity reasons,

we restrain our considerations in this study to a single neutral tail of a variable size.

Although a whole cationic dimer is an entity which actually represents a cation, in

order to be more concise we refer just to cationic head as the cation. One might raise

a question what are the reasons for the attaching of a neutral tail to a cation? First

of all, real ILs usually include cations that consist of the cationic head (positively

charged) and alkyl chain (neutral part of cation). Alkyl chains can have different

lengths (different number of C atoms). Furthermore, the tail enhances the general
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tendency of ILs to form a glass rather than a crystal at low temperatures [52]. As

the previous studies have shown, the shape of IL molecules may affect their layering

structure [49]. According to that, the central question which we address in this

study is how does the tail size affect the structure, static and dynamic behaviour,

as well as, lubrication properties of a generic IL represented via tailed–model.

- Interaction model

In the current work we are dealing with both bulk and confined ILs. Hence, in

case of simulation setup with confined ILs, there are two solid plates consisting of

solid plate atoms. To sum up, in total there are four different atom types taken into

consideration:

(i) cations, (ii) tails, (iii) anions and (iv) solid plate atoms.

In cation–tail dimers an elastic spring connects cations and tails enabling the tail’s

freedom of moving independently from its cation, since their connection is not rigid.

Interatomic interactions taken into consideration in our molecular dynamics simu-

lations are:

(i) non–bonded interactions (Lennard–Jones (LJ) and Coulombic electrostatic po-

tential) and

(ii) bonded interaction (elastic spring potential in cation–tail pairs). The next equa-

tion defines the interaction potential:

Vαβ (rij) = 4εαβ

[(
σαβ
rij

)12

−
(
σαβ
rij

)6
]

+
1

4πε0εr

qiqj
rij

, (3.28)

where i, j = 1, . . . , N are particle indices, and N is the total number of particles.

Particles which comply to the interaction potential written in the above equation,

i.e., Equation 3.28, can be of different types: α, β ∈ {A,C, P} which refer to anions,

cations and solid plate atoms, respectively. On the other hand, interaction of tails

with all other atom types, including tails themselves, is implemented using a purely

repulsive potential, namely a shifted and cut LJ 12-6 potential. It means that full

LJ 12-6 potential is shifted up for the value of potential well depth (ε) and cut at

the distance corresponding to the potential well minimum (rcut = 21/6σ). The next
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equation defines the above mentioned interaction potential:

Vαβ (rij) = εαβ + 4εαβ

[(
σαβ
rij

)12

−
(
σαβ
rij

)6
]
, rij ≤ 21/6σαβ (3.29)

and Vαβ (rij) = 0, rij > 21/6σαβ, where in Equation 3.29 at least one of indices

α, β = T which refers to tails. The ionic liquid is electroneutral, i.e., the number of

cations and anions is the same. The total number of ionic liquid molecules (cation–

tail dimers and anions) is NIL = 3000. Therefore, the total number of ions is

NC = NA = 1000 and the number of tails is NT = NC = 1000.

- Model Parameters

In this study we have fixed the diameter of the cationic heads and anions to σCC =

5 Å and σAA = 10 Å, respectively. Such choice respects the asymmetry that exists in

ILs and it is consistent with other models, as well as, for example [BMIM ]+ [PF6]−

ionic liquid, check Reference [49, 51, 52, 64]. The solid plate atoms have a diameter

of σPP = 3 Å. We have taken into consideration three different TM models of IL

depending on the tail size which is defined as Lennard–Jones σTT parameter: small–

tail cationic dimer (i.e., TM3 model with σTT = 3 Å), symmetric cationic dimer

(i.e., TM5 model with σTT = σCC = 5 Å) and large–tail cationic dimer (i.e., TM9

model with σTT = 9 Å). The values of the tail size are chosen to take into account

their relation to the size of the cationic head which is σCC = 5 Å, hence our choice

can be described as: tail size less–, equal to– and greater than– the size of cation.

Drawing a comparison with the experiment in Refs. [53, 67], the TM IL mimics

a folded alkyl chain and the radius of the sphere is related to the gyration radius of

the chains. Depending on the length of the alkyl chain, the sphere has a smaller or

lager radius. Thus, the size of a sphere which represents a neutral tail in TM ILs

does not compare directly with the alkyl chain length. However, we can make a

qualitative analogy. While the representation of the alkyl chain as a neutral LJ

sphere does not include all the microscopic level features, we will show that the

three selected radii, i.e., σTT = {3, 5, 9} Å, result in clear differences of the bulk

properties of ILs and their lubrication response. Each cation–tail pair is connected

via identical elastic spring defined by the next two parameters: elastic constant
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Table 3.2: List of LJ parameters of TM models of ionic liquid; the tail size is
denoted by σTT since it is variable.

pair αβ εLJ
αβ [kCal/mol] σαβ [Å]

CC 1.1 5
AA 1.1 10
TT 1.1 σTT

CA 1.1 7.5
CT 1.1 (5 + σTT) /2

AT 1.1 (10 + σTT) /2

PC 5.3 4
PA 5.3 6.5
PT 5.3 (3 + σTT) /2

PP 120 3

K = 80 kcal/molÅ2 and equilibrium length of the spring l0 = (σCC + σTT) /2. The

strength of the LJ interactions between different charged parts of ions (i, j = {A,C})

is εij = 1.1 kcal/mol. The LJ parameters are chosen to compare well with one of

the most widely studied ionic liquids [BMIM ]+ [PF6]−, check Reference [49, 51].

The charge of ions is set to elementary: qC = +e and qA = −e, where e = 1.6 ·

10-19 C. The strength of the ion-substrate interaction was tuned to ensure complete

wetting, εαP = 5.3 kcal/mol, α ∈ {A,C, T}. Only when the strength of ion-substrate

LJ interaction εαP equals the strength of inter-ionic LJ interaction εαβ, partial

wetting is observed, i.e., εαP = 1.1 kcal/mol, where α, β ∈ {A,C, T} (more details

about the wetting behaviour of TM ionic liquids are provided in section 3.3 in

the subsubsection 3.3.2.3). In the table 3.2 we present the values of {εαβ, σαβ}

parameters used in our models. Cross-interaction parameters are calculated by

Lorentz-Berthold mixing rules: εαβ =
√
εα · εβ and σαβ = (σα + σβ) /2.

3.3 Bulk ionic liquid

The main focus of our research is oriented towards revealing the properties and

behaviour of confined IL, since IL accomplishes its lubricating role when confined
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between solid surfaces. The length scale of confinement we are interested in is

expressed in nanometers, hence the nanoscale confinement affects the structure and

behaviour of IL. In order to better understand the effects of nanoconfinement

on IL, we should first understand the IL itself, which means that we should first

characterize bulk IL. For this purpose we have relaxed bulk IL and determined its

viscosity characteristics, as well as its wetting behaviour. This section is dedicated

to our study of bulk IL in case of SM model (subsection 3.3.1) and in case of three

representative TM models (subsection 3.3.2).

3.3.1 Bulk salt model of ionic liquid

3.3.1.1 Solidification and melting of bulk salt model of ionic liquid

In order to confirm that the SM modeled IL used in our MD simulations remains

in a liquid state for the conditions of interest, its liquid–solid and solid–liquid phase

transitions have been studied. The bulk ionic liquid was implemented by randomly

placing a chosen number of ions (NC = NA = 1000) into a 3D simulation box

that is periodic in all three directions, with pressure kept constant at 100 kPa.

Phase transitions were then achieved via the application of linear ramping to the

temperature, in a similar approach to the calculations performed in Reference [52].

Starting from an initial temperature T1 = 330 K where the IL is in a liquid state,

the temperature was decreased linearly down to T2 = 180 K. The absolute rate of

temperature change was: |dT | /dt = 1.67 K ns−1. A liquid–solid phase transition

was observed during the IL cooling.

After reaching T2 = 180 K, the temperature was increased back to the initial

value of T1 = 330 K. A solid–liquid phase transition was observed during this heating

process. In Figure 3.7 the IL internal energy change ∆Eint and temperature T are

shown as functions of time t. The temperature profile follows the applied conditions

and its superimposition to internal energy change allows the observation of the

dynamic behaviour of the liquid. By plotting the averaged internal energy change

of the IL against its temperature in Figure 3.8, the hysteresis behaviour in the

solidification–melting cycle is clearly observed, while the phase transition locations
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Figure 3.7: (Left panel): Bulk internal energy change and temperature of the ionic
liquid as a function of simulation time. (Right panel) Snapshots of ion arrangement
at liquid (A), (C) and solid (B) state.

can be clearly defined. It can be seen that during the cooling process, the internal

energy of IL linearly decreases until the temperature reaches Tls = 190 K, at which

point a sharp drop is observed. This indicates a first order thermal phase transition

(liquid–solid). During the heating process, a similar sharp jump of energy is observed

at Tsl = 305 K which corresponds to an opposite phase transition (solid–liquid).

The obtained results are in a good agreement with Reference [52] and confirm that

the IL behaves as a liquid for temperatures higher than 310 K, under atmospheric

pressure conditions. In the rest of our calculations a temperature value of T = 330 K

was applied, in order to allow a liquid state that is combined with local solidification

under elevated contact pressure conditions.

3.3.1.2 Relaxation simulations

We have revealed the solidification and melting phase transitions of bulk SM ionic

liquid, under the condition of atmospheric pressure. The subsequent step was to
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Figure 3.8: Bulk internal energy change of the ionic liquid as a function of temper-
ature. The internal energy was calculated by averaging on segments of ∆T = 0.5K.

make the bulk IL comparable with its confined counterpart and to do so we had

to determine simulation box volume which enables the pressure experienced by the

confined IL. More specifically, for the present system of bulk SM ionic liquid

confined between the solid plates (c.f. Figure 3.4), the pressure was p ≈ 1 MPa.

The Nose–Hoover NV T thermostat was used to control the temperature and was set

to T = 330 K. The system was relaxed for ttot = 3 · 107 fs until the internal energy

had converged and the pressure had approached the desired value. The simulation

timestep was dt = 0.5 fs. We have obtained pressure stabilization at 〈p〉 = 1.1 MPa

with a side length of the cubic simulation box at L = 99 Å. The energy relaxed to a

value of 〈Eint〉 = 0.7597 kCal/mol. The molar and mass density of the bulk IL was

ρn = 3400 mol/m3 and ρm = 719 kg/m3 respectively.

3.3.1.3 Viscosity characteristics

We have calculated the viscosity in two ways: using the Green–Kubo relation since

the viscosity of a system can be represented as an integral of the auto-correlation
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Figure 3.9: Dependences of internal energy Eint and pressure p on simulation time
ts in case of bulk SM ionic liquid. Solid line in p (ts) plot denotes the value of target
pressure p = 1 MPa (p ≈ 10 atm).

function [112], and using non–equilibrium molecular dynamics simulations with dif-

ferent shear strains.

In the non–equilibrium shearing simulations, the bulk IL is placed into a triclinic

(non–orthogonal) simulation box with periodic boundary conditions applied in all

three directions. Due to the deformation of the simulation box, every point in the

box has an additional velocity component (a so called streaming velocity). In order to

prevent the streaming velocity from affecting the thermal kinetic energy, we use the

so-called SLLOD thermostat [113, 114]. The SLLOD thermostat accounts for the

streaming velocity which depends on an atom’s position within the simulation box
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Figure 3.10: Configuration snapshot (yz cross–section) of a bulk IL at the end of
relaxation simulation. Cations are represented as smaller blue spheres and anions
as larger red spheres.

and it needs to be accounted for controlling the temperature. Controlled shearing of

the simulation box results in a stress acting on IL, which is quantified via the stress

tensor. The relation between the stress tensor components τij and the shear rate γ̇ij

of corresponding shear strain εij, with coefficient of viscosity ηij as a proportionality

constant is:

τij = ηij · γ̇ij, (3.30)

where ij = {xy, xz, yz}. We have applied three independent shear strains (εxy, εxz, εyz).

For each of them we have calculated its corresponding stress tensor component

(τxy, τxz, τyz). All shear strains were the same, i.e., εxy = εxz = εyz = ε = 1 leading

to the shear rate of:

γ̇ = ε · 1

ttot

=
1

ttot

, (3.31)

where ttot is the total simulation time of the shearing simulations. We have per-

formed simulations at four orders of magnitude of the total simulation time: ttot =

{0.1, 1, 10, 100} ns, and thus at four orders of magnitude of the corresponding shear

rate. In this way we wanted to check the quality of our relaxation procedure and if

there are shear rate dependence changes in the system. We have iterated the shear-

ing simulations (at a shearing velocity of 1 m/s) using the output of the previous
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Figure 3.11: Dependence of Green–Kubo (GK) viscosity coefficient ηGK on simula-
tion time ts in case of bulk SM ionic liquid. The time needed to obtain the viscosity
coefficient is around trel = 5 ns.

run as the input of the next run, obtaining higher strains (up to a strain of 5). We

did not observe a strain dependence in the response of the system, meaning that the

result is unaffected if the strain is further increased.

In Figure 3.11, we show the time relaxation of the Green–Kubo viscosity coef-

ficient, which stabilizes around ηGK = 0.2039 mPa · s. The configuration snapshot

of the bulk IL at the end of the simulation (check Figure 3.10) shows that the ions

remain randomly positioned, like they were at the start of simulation, which indi-

cates the liquid state of the bulk ionic liquid. The simulations for all three shear

strains give similar values of stress components, and resulting values are shown in

Figure 3.12. The points {γ̇, τ} were obtained via shearing simulations and the solid

line was obtained according to τ = ηGK · γ̇, where ηGK was obtained via Green–Kubo

relation. Hence, we conclude that the results of shearing simulations are in agree-

ment with the results of relaxation simulation and therefore there are no changes in

the bulk system which are shear rate dependent.

3.3.1.4 Wetting properties

Besides the necessary relaxation of bulk IL and determination of its viscosity charac-

teristics, the liquid–solid interface should be well–known so that we can understand
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Figure 3.12: Average stress tensor component τ in function of the shear rate γ̇ of
a bulk SM ionic liquid. We have conducted shearing simulations on four orders
of magnitude of the shear rate γ̇, therefore with three orders of magnitude span,
which is followed by three orders of magnitude span of τ . Points are obtained via
shearing simulations and solid line is obtained according to: τ = ηGK · γ̇, where ηGK

is obtained via Green–Kubo relation.

the behaviour of liquids confined between solid plates. Accordingly, it is important

to investigate the wetting properties of modeled ILs. For this purpose we examine

the wetting properties of SM ionic liquid by placing an IL droplet consisting of

NIL = 2000 ions, i.e., NC = NA = 1000, above a neutral solid plate (where the term

above means a higher z coordinate) which consists of one atomic layer in a FCC

(111) lattice.

Wetting properties simulation consist of two parts: (1) movement of the solid

plate at a constant velocity of Vz = 1 m/s towards the IL droplet, which promotes

the contact of IL droplet with the plate. Due to the LJ interaction between the

ions and solid plate atoms, the IL droplet starts covering the plate. The ending

configuration of this part (1) simulation is used as the starting configuration of the

part (2) simulation in which the solid plate rests and a long simulation time of

ts = 5 ns is given to the ionic liquid, so that it can spread over the plate. In the end
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Figure 3.13: Results of wetting properties simulation in case of SM ionic liquid.
Left panels show yz cross–section, while right panels show xy cross–section of the
system consisting of an SM ionic liquid droplet and a solid plate.

of the part (2) simulation, the ionic liquid is placed on the solid plate in the way that

it forms a cationic-anionic layer over the whole plate, with an amorphous droplet

in the center of the plate. We might conclude that, for the value of the strength of

ions-plate LJ interaction, i.e., εIP = 0.3 kCal/mol, SM ionic liquid completely wets

the given solid plate (LJ interaction parameters {σαβ, εαβ} are taken from Table 3.1

in subsubsection 3.2.2.1 of section 3.2). In Figure 3.13 we show the results of wetting

properties simulation in three vertical panels: the top one shows the yz (in the left-

83



3. Ionic liquids

hand side of the panel) and xy (in the right-hand side of the panel) configuration of

the system at the start of part (1) simulation. The middle panel shows the same two

configurations of the system at the end of part (1) simulation, which is taken as the

start of part (2) simulation. The bottom panel shows the same two configurations

of the system at the end of part (2) simulation.

3.3.2 Bulk tailed models of ionic liquid

3.3.2.1 Relaxation simulations

In an analogous way like in the case of bulk SM ionic liquid, check subsubsec-

tion 3.3.1.2, we have performed relaxation simulations in case of three representative

TM ionic liquids. An initial configuration for a bulk TM ionic liquid was obtained

by a random placement of ions (NC = NT = NA = 1000) into the simulation box

(cube) with periodic boundary conditions in all three directions. We have chosen

the simulation box volume which ensures, after the relaxation of the IL structure,

the pressure comparable to the one experienced by confined IL. In case of the

present system the pressure was p ≈ 10 MPa, which corresponds to the normal force

of 103 pN acting on a surface of 104 Å2 (see Figures 3.5 and 3.35). We provide

implementation details related to the relaxation simulations: a Nose–Hoover NV T

thermostat at T = 330 K is used to control the temperature; the system is relaxed

for ttot = 3 × 107 fs until internal energy converges and pressure approaches the

desired value of p ≈ 100 atm; simulation timestep is dt = 0.5 fs.

Table 3.3: Overview of the results of relaxation simulations: σTT is the tail size, L
is the side length of cubic simulation box, trel is the estimated relaxation time, 〈p〉
and 〈Eint〉 are the mean values of pressure and internal energy respectively, averaged
over the time span trel ≤ t ≤ ttot, where ttot is the total simulation time.

σTT [Å] L [Å] trel [ns] ttot [ns] 〈p〉 [atm] 〈Eint〉 [kCal/mol]

3 104.5 11 30 95.31 −0.62

5 110 0 19 103.81 −0.57

9 129 20 30 118.21 −0.54
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Figure 3.14: Dependences of internal energy Eint and pressure p on simulation time
ts in case of bulk (a) TM3, (b) TM5 and (c) TM9 ionic liquid. Solid lines in p (ts)

plots denote the value of target pressure p = 10 MPa (p ≈ 100 atm) in all cases.

In Table 3.3 we are showing the overview of the relevant parameters of relaxation

simulations, for TM3, TM5 and TM9 bulk IL. In Figure 3.14 we are showing the

dependences of bulk IL′s internal energy Eint and pressure p on simulation time

ts for bulk (a) TM3, (b) TM5 and (c) TM9 ionic liquid. Figure 3.15 presents

the xy cross–section snapshots of bulk IL configurations at the end of relaxation

simulations for (a) TM3, (b) TM5 and (c) TM9 model. Those results have clearly

revealed a strong dependence of IL′s structure on the tail size. We have obtained

three completely different outcomes of relaxation simulations in terms of internal

energy and structure (check Figure 3.14), depending on the tail size.

- Tail significantly smaller than cation (TM3 model)

We can notice three different segments (check Figure 3.14(a)) in the dependences of

internal energy and pressure on simulation time. First, there is a smooth decrease

of both parameters over the time interval of t ≤ 10 ns. The first segment is followed

by a sudden drop of Eint and p in the time interval 10 ≤ ts ≤ 11 ns. For ts ≥ 11 ns

both system parameters remain stable in terms of their average values. Therefore,

we might estimate the relaxation time as trel ≈ 11 ns. Actually, the values of Eint and

p are oscillating around their averages (a common result in MD simulations) which

remain fixed in the time span trel ≤ ts ≤ ttot. Since the temperature is thermostated
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at T = 330 K we might not speak about a phase transition, but those sharp drops

of internal energy and pressure are a demonstration of a state transition. Structural

changes consistently follow the changes in system parameters, hence there is a clear

transition from initially randomly positioned atoms into an ordered structure. We

might conclude that a small tail does not affect the cationic–anionic ordering into a

cubic lattice, which arises due to Coulombic interaction. We should emphasize that

the obtained cubic lattice is not an ordinary simple cubic lattice, but it is tilted.

Ionic layers are oriented in the way that they follow the face diagonal of the cube.

A conclusion is that TM3 bulk IL does not stay in initially assigned liquid state

during the relaxation process, but it leaves the relaxation process as an ordered

structure (check Figure 3.15(a)).

- Tail of the same size like cation (i.e. symmetric cationic dimer, TM5

model)

Both system parameters Eint and p remain stable (check Figure 3.14(b)) and with

practically the same average values throughout the whole simulation, indicating

that a state transition does not happen. The structure of bulk IL remains the same

during the simulation, which is consistent with the behaviour of those parameters.

We can claim that relaxation of bulk TM5 ionic liquid gives a liquid state as the

outcome (check Figure 3.15(b)).

- Tail significantly larger than cation (TM9 model)

There is a continuous and smooth decrease of both Eint and p over a long time

span ts ≤ 20 ns (check Figure 3.14(c)). Later during the relaxation simulation

those parameters remain stable, hence we estimate the relaxation time in this case

as trel ≈ 20 ns. It is almost two times longer than the relaxation time of TM3

model. Structural changes are consistent with system parameters’ changes, hence

we notice a clear state transition from initially randomly positioned atoms into an

ordered structure (check Figure 3.15(c)). We can state that a large tail enables

cationic-anionic ordering, which arises due to Coulombic interaction. All layers are

oriented along the face diagonal of the cube and they are composed of alternating

ionic and tail layers, namely ionic layers consisting of two cationic–anionic sublayers

separated by tail layers consisting of two tail sublayers. Tail sublayers are organized
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Figure 3.15: Configuration snapshots of bulk (a) TM3, (b) TM5 and (c) TM9 ionic
liquid (i.e., with tail of diameter 3, 5 and 9 Å, respectively). We may notice that each
configuration snapshot represents a different state, i.e. TM3 bulk IL crystallizes into
a tilted simple cubic crystal structure, oriented along the face diagonal; TM5 bulk
IL is in liquid state; TM9 bulk IL crystallizes into crystal planes with alternating
ionic–tail layers, oriented along the face diagonal as well.

in the way that the tails of cationic sublayers in successive ionic layers belong to the

tail layer which separates those successive ionic layers. Simply said, the structure

looks like this: ionic layer (consisting of two cationic–anionic sublayers) - tail layer

(consisting of two tail sublayers) - ionic layer - tail layer and so on.

These observations are in agreement with Reference [115] in which the authors

discuss the relationship between the length of alkyl chain and the structure of bulk

IL. When the cationic alkyl chain is short Coulombic forces are dominant, enabling

ordering. We observe this kind of result with TM3 model. Alkyl chain must be

long enough in order to suppress Coulombic interaction, e.g. number of C atoms

nC ≈ 12, which corresponds to (nC−1) ·1.53 Å = 16.83 Å of tail length, taking into

account that a C-C bond has a length of 1.53 Å. Suppressed Coulombic interaction

suppresses lattice arrangement, as we obtain with TM5 model. However, alkyl chain

should not be too long since cohesive interactions increase with the length of non-

polar groups. This leads to a reappearance of structural ordering, like in the case of

TM9 model.
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Figure 3.16: Dependence of Green–Kubo (GK) viscosity coefficient ηGK on simu-
lation time ts in case of bulk TM5 ionic liquid. The time needed to obtain the
viscosity coefficient is around trel = 10 ns.

3.3.2.2 Viscosity characteristics

In an analogous way like in the case of bulk SM ionic liquid, we have calculated

the viscosity coefficient of bulk TM ionic liquids using non–equilibrium molecular

dynamics (NEMD) simulations with different shear strains, taking configurations

obtained by relaxation. For each value of the shear rate γ̇ in the range 0.01−10 ns-1,

we calculate the average stress tensor component: τ = (τxy + τxz + τyz) /3. The

average stress tensor component τ and shear rate γ̇ are connected by the relation:

τ = η · γ̇α, (3.32)

where η is a generalized viscosity coefficient and α is an exponent. Besides the

NEMD method of simulation box shearing, we have also calculated the viscosity

coefficient using Green-Kubo (GK) relation. In Figure 3.16, we show the time

relaxation of the GK viscosity coefficient of bulk TM5 ionic liquid, which stabilizes

around ηGK = 0.62 mPa · s. In Figure 3.17 we present the dependence of the average

stress tensor component τ on the shear rate γ̇ for TM3, TM5 and TM9 bulk IL.

We notice that the average tensor component stays within the same order of

magnitude in TM3 and TM9 cases, although the shear rate changes four orders
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Figure 3.17: Average stress tensor component τ in function of shearing rate γ̇ of
TM3, TM5 and TM9 bulk IL. We have conducted shearing simulations with four
orders of magnitude of the shearing rate (γ̇ = 0.01−10 ns-1). The lines are obtained
by fitting the points with Equation 3.32.

of magnitude. Contrary to that, in case of TM5 model there is a two orders of

magnitude change of the average stress tensor component. We have obtained ordered

bulk IL in case of TM3 and TM9 model, hence their values of α are low, i.e.

αTM3 = 0.15 ± 0.02, αTM9 = 0.12 ± 0.04. We have obtained rather high values of

their GK viscosity coefficients, i.e. ηGK
TM3 = 4.72 mPa · s, ηGK

TM9 = 1.67 mPa · s, which

makes sense due to their ordered structure. In case of TM5 model we have obtained

αTM5 = 0.8 ± 0.1, which is fair enough close to the viscous fluid, i.e., α = 1. This

is in accordance with the liquid-like state of TM5 model, as obtained in relaxation

simulations, check Figure 3.15(b). Viscosity coefficients determined via shearing

simulations and via GK method in case of TM5 model are different, however they

are of the same order of magnitude: ηTM5 = 0.1435 mPa · s, ηGK
TM5 = 0.6144 mPa · s.

3.3.2.3 Wetting properties

Analogously to the case of SM ionic liquid, we have determined the wetting prop-

erties of TM ionic liquids. The relaxed bulk IL obtained via relaxation simulations
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represents the input of wetting simulations, i.e. a liquid droplet (with a cubic shape

initially) is placed on a neutral solid plate which consists of one atomic layer in a

FCC (111) lattice. The LJ interaction parameters take the values εII = 1.1 kCal/-

mol and εIP = 5.3 kCal/mol in all cases (i.e. for TM3, TM51 and TM9 model)

except in case of TM52 model where they are equal (i.e. εII = εIP = 1.1 kCal/mol),

where εII, εIP correspond to ion–ion and ion–plate LJ interaction, respectively. The

results of wetting simulations are presented in Figure 3.18. We have obtained par-

tial wetting (to lower or higher extent) in all cases except in case of TM52 model

in which practically there is no wetting. We notice that with the increase of the

tail size σTT the wetting angle increases, i.e. partial wetting becomes weaker. The

wetting process occurs in the way that a mixed cationic–anionic layer forms right

next to the surface (a monolayer coating), and the rest of ions get "spilled" over this

first layer. The tail size affects the quality of wetting. Neutral tails are responsible

for the weakening of Coulombic interaction between the cations and anions. The

formation of a monolayer coating is a mutual mechanism of wetting for every tail

size, but the spilling of ions over that first layer becomes lower with the increase of

the tail size. Comparison of TM51 and TM52 cases indicates that the strength of

εIP parameter affects the wetting properties strongly. We have obtained a transition

from partial to non– wetting behaviour when changing the value of εIP from 5.3 to

1.1 kCal/mol. This result is in agreement with Reference [49] where they conclude

that the increase of LJ interaction between IL and substrate increases the quality

of wetting.

3.4 Confined ionic liquid

We have learned about the characteristics of bulk IL and consequently prepared

for exploring the confined IL, which is the main focus of our modeling of ionic

liquids. This section is dedicated to the study of confined IL in case of SM model

(subsection 3.4.1) and in case of three representative TM models (subsection 3.4.2).

Each of those subsections includes three subsubsections, which are dealing with the

static and dynamic force-distance characteristics of given ILs, as well as with their
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Figure 3.18: Wetting properties results in case of: (a) TM3, (b) TM51, (c) TM52

and (d) TM9 model of IL. Left panels show yz cross–section of the system, while
right panels show xy cross–section of the system.
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tribological behaviour.

3.4.1 Confined salt model of ionic liquid

We have shown that our bulk IL is a Newtonian fluid: the validity of τ = ηGK · γ̇

relation over the whole range of shearing rate γ̇ supports that fact. Our model does

not assume the nature of viscous response of IL. Only based on simulation results we

conclude that bulk salt model (SM) IL behaves as a Newtonian fluid. For a different

choice of parameters one could obtain power law or solid like behaviour. On the

other hand, confinement strongly impacts the structure of ILs in thin films [64, 69,

105, 116], therefore when the same IL is confined it does not behave as a Newtonian

fluid, as we will show in the rest of this section.

3.4.1.1 Static force-distance characteristic

The confinement has a profound influence on the structure of ILs in thin films [69,

105, 116]. The confining surfaces can induce ordering of the particles in their vicinity.

The resulting structure and forces are a result of the interplay between the limited

volume and the particles which fill the space.

We have used MD simulations to obtain the static force–distance characteristic.

In order to determine a reliable static force–distance characteristic, at each calcula-

tion point we have to ensure that the system is in equilibrium. Concerning the real-

ization of those simulations the interplate gap is modified in the following manner:

the gap is increased or decreased (i.e., the Top–Bottom plate distance is changed)

with a constant velocity Vz = 5 m/s for a move period of time tmove = 20 ps; there-

after, we apply conjugated gradient minimization on the ions in order to minimize

their internal energy and relax them after the move period. As the energy minimiza-

tion is performed, the ions take positions which ensure their minimal internal energy

and the Top plate stays fixed for a stay period of time tstay = 50 ps, during which

period the average value of the normal force is calculated; that value is presented

as a simulation point in Fz (dz) static characteristic, check Figures 3.19 and 3.21.

The process was repeated until a distance dz,min = 11 Å was reached. In order to

avoid systematic errors due to the initial position or direction, the plate movement
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is performed in different directions and from different initial configurations, hence

Figures 3.19 and 3.21 show the averaged values of several realizations.

- Detailed analysis of the static force-distance characteristic

In Figure 3.19, the static force-distance characteristic of our system is presented.

The red horizontal line denotes the zero normal force level (i.e., Fz = 0). A non–

monotonous behaviour of the normal force Fz acting on the Top plate can be ob-

served as the plate-to-plate distance is changing. This distance corresponds to the

gap between the plates where the IL is under confinement. The points (dz, Fz) have

been obtained through our simulations, while the dashed line serves as a visual guide.

It can be seen that the normal force strongly depends on the interplate distance. The

presence of negative values of normal force Fz can be understood as the IL trying

to reduce the plate-to-plate distance due to adhesion phenomena. These changes

of the normal force are correlated with the extraction and inclusion of IL layers

into the gap, as already observed experimentally, check Reference [69]. During the

performed stationary state simulations, the cationic–anionic layers were squeezed

out in pairs, in order to keep the system locally neutral, as observed in experimental

studies [63, 69, 105, 116, 117]. In order to understand the structural evolution of

our system, snapshots of the system from the MD simulations corresponding to

several characteristic points in the Fz (dz) curve from Figure 3.19 were selected and

studied in more detail. Figure 3.20 shows the configuration and ionic density distri-

bution along the z–direction for eight characteristic points {A,B,C,D,E, F,G,H},

corresponding to plate-to-plate distances dz = {11, 14, 17, 20, 22, 24, 27, 32} Å re-

spectively. The ions are deliberately depicted smaller than their LJ radii in order to

allow a direct observation of the layering. The position of the atomic centers of the

innermost atomic layers of the Top and Bottom plate are indicated in Figure 3.20 as

zT and zB respectively. As the Bottom plate was fixed, zB remains constant while

zT changes with the Top plate displacement.

A general feature observed under all conditions was the formation of cationic

layer close to the plates. The reason for this is the smaller size of the cations

(σCC = 5Å) compared to the anions (σAA = 10Å). Following this, the second layer

gets induced by the first one (due to Coulombic interaction) and it is populated by
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Figure 3.19: Dependence of normal force Fz on plate-to-plate distance dz. Eight
characteristic points {A,B,C,D,E, F,G,H} with corresponding interplate dis-
tances dz = {11, 14, 17, 20, 22, 24, 27, 32} Å are marked on the Fz (dz) curve. The
horizontal solid line denotes Fz = 0 pN. The dashed line connects the points obtained
from the simulation and serves as a visual guide.

anions. The distance between the first and the second layer from the bottom is in

the range of 1 − 2.5 Å, meaning that while the centers of mass of the particles are

in different layers, the layers themselves overlap as their distance is smaller than

the particle diameters. From Figure 3.20 we observe that the anionic monolayer

thickness is roughly 7Å and corresponds to 10/
√

2Å, i.e., the anions are placed

in the centers of the squares formed by the cations of the neighboring layers (the

diameter of an anion is 10Å). We will present the changes in the number of layers

as the interplate gap is reduced and correlate them with the changes in the normal

force Fz which is acting on the Top plate.

For the minimum simulated plate-to-plate distance dz = 11 Å, shown in Fig-

ure 3.20(A) we can observe a pronounced peak in the anion density distribution

close to the Bottom plate which is aligned with a well-defined anionic layer inside

the gap. The anion peak is marked with the 1CU indication. In the case of cations,

there are two peaks attached below and above the anionic peak. This situation
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Figure 3.20: Snapshots of system configurations at points {A,B,C,D,E, F,G,H}
from Figure 3.19 and corresponding density distribution of cations/anions along the
z axis. The position of the atomic centers of the innermost layer of the Top and
Bottom plate is denoted by zT and zB, respectively. The Bottom plate is fixed and
zB = 21 Å. The ions are deliberately depicted smaller than their LJ radii in order
to allow a direct observation of the layering. In Figures (A) and (C) the annotations
indicate the anion layer vertical order from the bottom (1, 2, 3) and the lateral
placement: (C)onfined and (U)nconfined.

corresponds to the formation of two incomplete cationic layers inside the gap. With

increasing plate-to-plate distance dz the normal force Fz is decreasing, with a sign

change of Fz at dz = 12.7 Å. In the range 12.7 Å< dz < 15.7 Å the normal force
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remains negative. This means that the IL is pulling the plates together, since

the ions strive to reduce their interlayer distance, as well as the distance between

themselves and the plate atoms. Such behaviour is typically observed in systems

exhibiting layering transition, already seen in systems of both neutral molecules

[36] and ILs [69]. With further increase of dz the force becomes positive again, and

reaches a local maximum at the point (C) in Figure 3.19. At this point we observe a

change in the number of anion layers confined in the gap from one to two, as shown

in Figure 3.20(C). In Figure 3.20(C), the plate-to-plate distance is dz = 17 Å and

the two bottom peaks of the anion/cation density distribution, denoted by 1CU

and 2C, are inside the gap. A third smaller anion/cation density peak, denoted by

2U in Figure 3.20(C), is the result of the ordering initiated at the Bottom plate’s

surface and is actually outside the confinement gap. The vertical distance between

the peaks 2C and 2U is approximately 3.5 Å and corresponds to the effect of the

compression of the IL from the Top plate. Further increase of the plate-to-plate

distance results in a continuous decrease of the normal force without a sign change

as the positions of peaks 2C and 2U become aligned, check Figure 3.20(D) for a

distance dz = 20 Å. Further increase of the interplate distance results once more in

a reversal of the sign of the normal force (i.e., Fz < 0 for 21 Å < dz < 23.5 Å). At

the midpoint between the plates a broad maximum of cation density distribution

can then be observed, see Figure 3.20(E). The cations, as smaller particles, have a

tendency to fill the space between the more stable anionic layers. When the anions

also start to form a third layer at the midpoint between the two plates the corre-

sponding cationic peak of density becomes sharper and the normal force becomes

positive again, see Figure 3.20(F). In this case the cations can form a layer more

easily while the anions remain scattered. This is the opposite behaviour to the one

typically observed, where the larger anions tend to order more strongly due to the

excluded volume effect [118]. From Figure 3.20(F) to Figure 3.20(G) an interest-

ing transition can be observed, during which the single well resolved cation peak

disappears and a less pronounced cation–anion pair peak takes its place. Finally

in Figure 3.20(H) at dz = 32 Å, we observe the clear formation of three anion and

four cation peaks. Considering engineering applications, the steep rise of the normal
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force at small plate-to-plate distances, i.e., dz < 14 Å can be beneficial for protecting

against solid-solid contact and consequent wear.

- Analysis of the static force-distance characteristic over intervals

There is a strongly decreasing trend of the maximal normal force which can be

sustained by the system as the number of ionic layers confined between the plates

increases, i.e., for the two ionic layers the maximal force F I
z,max = 3 pN, while

for the three ionic layers it is F II
z,max = 0.25 pN. In our model, the Lennard-Jones

interaction between the plates and the ions is ten times stronger than between the

ions themselves. The ionic layers closest to the plates are therefore more stable than

the layers in the midpoint of the gap (interval II). As a result, the three-layer system

becomes less dense and can build up a lower normal force compared to the two-layer

system.

We have selected two intervals of interest for the interplate distance which cap-

ture the presence of local maxima and subsequent minima of the normal force Fz

accompanied with the compression of IL. This corresponds to the expulsion of

a cation–anion layer pair from the gap. The intervals are: dIz = [14.2, 20] Å,

dIIz = [22, 27] Å, and they are labeled as I and II respectively. In order to un-

derstand the changes of the system configurations and to correlate them with the

changes of the interplate distance, snapshots of the system from theMD simulations

corresponding to several characteristic points of the intervals I and II have been

selected and studied in more detail: I 1,2, II 1,2 which correspond to the limits of the

intervals, and the local maximum of the interval I, labeled as I3.

The left vertical panel of Figure 3.22 shows the system configuration in the yz

cross-section and the ionic density distribution along the z–direction obtained in the

equilibrium force–distance simulations for the three characteristic points of the inter-

val I : {I 1, I 2, I 3}, corresponding to the interplate distances dz = {14.2, 20, 17.2}Å,

respectively. In Figure 3.23 the left vertical panels show analogous results for the two

characteristic points of the interval II : {II 1, II 2}, corresponding to the interplate

distances dz = {22, 27}Å, respectively. In addition to the yz cross–section configu-

ration snapshots together with the ionic density distribution along the z axis, shown

in the left panels of Figures 3.22 and 3.23 for the cases of intervals I and II, respec-
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tively, we have prepared the xy cross–section configuration snapshots, shown in the

left panels of Figures 3.24 and 3.25.
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Figure 3.21: Dependence of normal force Fz acting on the Top plate on interplate
distance dz. Five characteristic points {I 1, I 2, I 3, II 1, II 2} with corresponding
interplate distances dz ≈ {14, 20, 17, 22, 27} Å are marked on the Fz (dz) curve. Also,
the two characteristic intervals of dz are labeled, where the interval I is bounded
by the points I 1 and I 2, while the interval II is bounded by the points II 1 and II 2.
The horizontal solid line denotes Fz = 0 pN. The dashed line connects the points
obtained from the simulation and serves as a visual guide.
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Figure 3.22: Configuration snapshots (yz cross–section) accompanied with ionic
density distribution along the z direction in three representative points of the interval
I : {I 1, I 2, I 3}. Left panels correspond to the static case of Top plate’s movement,
while right panels correspond to the dynamic case of Top plate’s movement.

3.4.1.2 Dynamic force-distance characteristic

We have investigated the dynamic behaviour of the IL during a periodic linear

movement of the Top plate along the z axis, between the two limiting points of the

intervals I and II. The space between the solid plates was in this way periodically

expanded and compressed. Periodic movements of the Top plate were performed at

three constant velocities Vz = {0.1, 1, 10} m/s but no velocity dependent differences

in the system behaviour were observed. We have performed ten cycles in order to

determine how much do the cycles differ and to determine a statistically reliable

average cycle. The confined ionic liquid lubricant responds to the cyclic movement

with a hysteresis in the normal force Fz (dz) as shown in Figure 3.26. We present
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Figure 3.23: Configuration snapshots (yz cross–section) accompanied with ionic
density distribution along the z direction in two representative points of the interval
II : {II 1, II 2}. Left panels correspond to the static case of Top plate’s movement,
while right panels correspond to the dynamic case of Top plate’s movement.

Figure 3.24: Configuration snapshots (xy cross–section) in two representative points
of the interval II : { II 1, II 2}. Left panels correspond to the static case of Top
plate’s movement, while right panels correspond to the dynamic case of Top plate’s
movement. We have highlighted the confined region with dashed lines (Top plate’s
width along the y axis is a half of the total system’s width) and also we have sketched
crystallization patterns with solid lines.
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Figure 3.25: Configuration snapshots (xy cross–section) in three representative
points of the interval I : {I 1, I 2, I 3}. Left panels correspond to the static case
of Top plate’s movement, while right panels correspond to the dynamic case of Top
plate’s movement. We have highlighted the confined region with dashed lines (Top
plate’s width along the y axis is a half of the total system’s width) and also we have
sketched crystallization patterns with solid lines. Periodic boundary conditions are
applied in the x and y directions, while simulation box, which is cubic, is kept fixed
in the z direction.

both the raw data of all cycles (thin solid lines) and a smooth average cycle (thick

solid line). In the case of interval I there are three points of interest {I 1, I 2, I 3},

corresponding to the points noted in Figure 3.21. Points I 1 and I 2 are the starting

and ending point respectively and the point I 3 corresponds to the maximum of the

normal force Fz in the smooth average cycle. We observe that between each two of

those points there are clear tendencies in the average cycle of the normal force as a

function of the interplate distance Fz (dz). First, in the segment I 1 →I 2, i.e., in the

extension half of the cycle, there is a continuous increase of the normal force Fz from

negative values up to the value around zero in point I 2. In point I 1 there is one

anionic layer confined in the gap and normal force Fz has a negative value. With the
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dynamic increase of the gap ions are pulled–in from lateral reservoirs into the gap.

In point I 2 an additional cationic–anionic layer pair is fully formed in the gap, hence

increasing the number of confined anionic layers to two. Next, there is the segment

I 2 →I 3 where the ions are compressed within the gap, which is consistent with the

continuous increase of the normal force Fz. In this segment, the normal force Fz takes

positive values meaning that the ionic liquid shows resistance to the compression

but does not flow out. After that, in segment I 3 →I 1 there is a sharp decrease of

the normal force Fz which is correlated with the squeezing–out of the additional

cationic-anionic layer taken in from the lateral reservoirs during the extension half–

cycle. During the compression half–cycle there is a return to the initial state I 1,

where the interplate gap contains one compact anionic layer. We should note that

the distributions of cations and anions in the dynamic case for interval I bear close

resemblance. Let us now discuss the changes in the number of confined ionic layers

as a function of the interplate distance and correlate them with the changes in the

normal force Fz acting on the Top plate: in the range dz = [11, 14.2] Å the normal

force Fz acting on the Top plate has a steep decrease, reaching the minimum at

point I 1. For the point I 1 at dz = 14.2 Å, check Figure 3.22, we can observe a

pronounced peak in the anion density distribution which is aligned with a well–

defined anionic layer inside the gap. In the case of cations, there are two peaks

attached below and above the anionic peak. This situation corresponds to the

formation of two incomplete cationic layers inside the gap. The value of normal

force Fz is negative and in point I 1 it has the deepest minimum when considering the

whole Fz (dz) characteristic. With increasing plate-to-plate distance dz the normal

force Fz is increasing, with a sign change of normal force Fz around dz = 15.7 Å in

the equilibrium case and dz = 17.8 Å in the dynamic case, check Figures 3.21 and

3.26(a), respectively. This means that before this point the IL is pulling the plates

together, since the ions strive to reduce their interlayer distance. After this point,

for Fz > 0, enough ions are pulled inside the gap and the IL now pushes the plates

apart. Such behaviour is typically observed in systems exhibiting layering transition,

already seen in systems of both neutral molecules [36] and ILs [69]. With reversing

into compression in Figure 3.26(a), the normal force Fz reaches a local maximum
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Figure 3.26: This figure presents the results of dynamic extension–compression cy-
cles in the intervals I and II. In panel (a) we present dynamic Fz (dz) characteristic
in the interval I : thin lines represent the hystereses of ten dynamic cycles, solid line
on top of them is the smooth average hysteresis. There is also a solid horizontal
line which corresponds to Fz = 0. Panel (b) is analogous to the panel (a), just it
presents the results in the interval II.

in the point I 3 at dz = 17.2 Å. This is actually the location of the maximum in the

equilibrium case as well, check Figure 3.21. With the further decrease of dz beyond

the point I 3 there is a continuous decrease of the normal force up to the distance

dz = 14.2 Å as IL starts flowing out of the gap. Still, one should note that there
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are two differences between the two systems:

(i) the sign of the normal force in point I 2 and

(ii) the magnitude of the normal force at local maximum I 3.

In the case of cyclic (dynamic) movement of the plates, the normal force is positive

Fz > 0, i.e. the IL keeps pulling apart the plates at point I 2 and the maximum

of the normal force in the point I 3 (F dyn
z = 1 pN) is lower than in the static case

(F stat
z = 3 pN). Both observations indicate that the plate’s motion is preventing

the ionic liquid to fully fill the void space of the gap. Also, there is a substantial

slip during the ejection of IL from the gap, which results in a lower normal force.

Otherwise, if no slip would be present the maximal normal force at velocity Vz =

1 m/s should be about two orders of magnitude higher based on the bulk viscosity

coefficient calculated in section 3.3.

Partial filling of the gap due to the motion of the walls is even better observable

in the results for the interval II. While the equilibrium characteristic has a local

maximum, check Figure 3.21, in the dynamic case there are only two characteristic

points (starting and ending point {II 1, II 2} and a monotonously increasing normal

force between them. At point II 1 at dz = 22 Å in the static case, we notice that

at the midpoint between the plates there is a broad maximum of the cation density

distribution, see Figure 3.23. In the static case we notice that, similar to the tran-

sition from one to two anionic layers within the interval I, there is a transition from

two to three anionic layers within the interval II, which happens in proximity of the

point dz = 24 Å. At point II 2 we notice two sharp anionic layers in the proximity

of the plates and the third anionic layer which is broader, less sharp and positioned

in the middle of the interplate gap, check Figure 3.23. In the dynamic case the

number of layers remains the same in the interval II, they just get separated during

the extension and a formation of additional ionic layers by the ions flowing from the

lateral reservoirs into the gap does not take place, check Figure 3.23.

We can conclude that in a confined system with strong interaction between the

walls and the IL, the major driving force that pulls IL into the gap between the

plates is the interaction with the wall atoms rather than the inter–IL interactions.

In order to visualize what happens in the vicinity of the plates, we are presenting
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snapshots of xy cross–section configurations in the intervals I and II, check Fig-

ures 3.24 and 3.25, respectively. Even on a cursory look, one sees that the phase

behaviour of the confined IL is complex: in Figure 3.24 there was no movement of

the IL in and out of the gap and the IL formed a two–dimensional square crystal on

both surfaces during the dynamic case. In the equilibrium configurations, there are

probably enough ions in the gap that allow the IL to obtain its liquid–like character.

On the other hand, in Figure 3.25, we observe a salt–like ordering taking place in

all representative points {I1, I2, I3} of the static configurations. In the dynamic case

the IL exhibits some level of ordering for a small gap (I1) and it is amorphous in

the other two points.

At this point, we would like to quantify how could the processes described above

contribute to the energy losses. If two macroscopically smooth surfaces come into

contact, initially they only touch at a few of these asperity points. A motion of two

bodies in contact lubricated by an ionic liquid would involve the generation of new

contacts and the separation of the existing ones. Ionic liquids are characterized by

strong Coulombic interactions between the particles. By calculating the area covered

within the average cycle of the Fz (dz) curves in Figure 3.26, we calculate the amount

of work invested per average dynamic cycle, i.e., the hysteretic energy losses. There

is a big difference in the amount of invested work in the two intervals: 3.5236 pN ·Å

for the interval I compared to 0.2844 pN · Å for the interval II, where the vertical

displacement of the Top plate in the two intervals is roughly the same ∆dz ≈ 5 Å).

This is consistent with a strongly decreasing trend of the maximal normal force which

can be sustained by the system as the number of ionic layers confined between the

plates increases, i.e. for the two ionic layers the maximal normal force F I
z,max = 3 pN,

while for the three ionic layers it is F II
z,max = 0.25 pN, corresponding to the two

maxima of the static force–distance characteristic in Figure 3.21.

3.4.1.3 Tribological behaviour of confined salt model of ionic liquid

- Tribological behaviour under different conditions in terms of interplate

gap and external pressure

Following the detailed study of the static and dynamic system, we turn our focus to
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exploring tribological behaviour of confined SM ionic liquid under given conditions.

Namely we impose a relative motion between the plates in the x-direction and as a

result frictional forces can be observed. The dynamics of the plates impact the IL

and result in an overall longitudinal force acting on each solid body. In order to eval-

uate the trends of specific friction we have performed simulations at different plate

velocities and at two interplate distances. The simulations have been performed for

a broad range of the Top plate velocities Vx = {0.1, 0.2, 0.5, 1, 2, 5, 10} m/s, with the

Bottom plate kept fixed. We have compared cases with different external pressures

applied on the IL: pext = {0, 120, 250} kPa and two different interplate distances

dz = 17 and 27 Å. The simulations were performed as follows: Points (C) and (G)

in Figure 3.20 were chosen as the starting configurations. The simulations ran until

the Top plate had covered a distance of dx = 50 Å along the x-direction.

Table 3.4: Results for the coefficients a, b in the relation 〈Fx〉/〈Fz〉 = a log(Vx/Vref )+
b, where Vref = 1 m/s. The results were obtained using the least-squares method.

Case a b R2

(A) dz = 17 Å, pext = 0 kPa -0.0006(2) 0.0039(2) 0.63
(B) dz = 27 Å, pext = 0 kPa 0.016(5) 0.036(3) 0.72
(C) dz = 27 Å, pext = 120 kPa 0.007(2) 0.017(2) 0.26
(D) dz = 27 Å, pext = 250 kPa 0.002(1) 0.003(1) 0.62

Therefore, the cases with lower velocities required an increased total time. The forces

acting on the Top plate were monitored, as shown in Figure 3.27 for a randomly

chosen case. It was observed that the normal force remained roughly the same

after the onset of the simulation. Steady–state conditions were assumed following

a displacement of dx = 10 Å, and then average values were calculated using the

statistics until the completion of the simulation. The results for the specific friction

〈Fx〉/〈Fz〉 are shown as a function of the sliding velocity Vx in Figure 3.28. The

specific friction 〈Fx〉/〈Fz〉 is defined as the ratio of the time averaged frictional

and normal force Fx and Fz respectively and is different to the Coulomb friction

coefficient µ = ∂Fx/∂Fz. In our simulated cases we have observed either a weak

or a logarithmic dependence of specific friction on velocity. The numerical values
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Figure 3.27: Temporal evolution of total normal and axial forces acting on sliding
surface for the interplate distance dz = 27 Å and Top plate axial velocity Vx =

10 m/s. Dashed lines show the raw numerical data which are smoothed using the
solid lines for a clearer identification of trends.

were fitted to a linear function of the form 〈Fx〉/〈Fz〉 = a log (Vx/Vref ) + b, where

Vref = 1 m/s. The coefficients a, b obtained from the simulation data are listed in

Table 3.4. A reasonable fit to the linear regression curve can be observed for most

cases. In the case of pext = 120 kPa, the system is potentially in a transition between

the two significantly different cases of zero and high pressure, which can explain the

poorer quality of the fit to the linear curve. The logarithmic dependence indicates

typical elasto-hydrodynamic lubrication conditions [119]. On the other hand, the

weak dependence of specific friction on velocity has also been observed in previous

studies of IL lubrication, check Reference [39, 56].

- Impact of ionic liquid confinement gap and pressurization

The influence of the interplate distance on specific friction was initially analyzed,

while the applied external pressure on the IL pext was kept equal to zero. In contrast
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Figure 3.28: Dependence of specific friction 〈Fx〉/〈Fz〉 on velocity Vx at external
pressures pext = {0, 120, 250} kPa and interplate distances dz = 17 and 27 Å. The
error bars represent the standard deviation of the average values obtained from the
simulation data. The curves showing the specific friction trends were obtained by
linear regression and the corresponding parameters are listed in Table 3.4.

to the previous studies of IL lubrication [39, 56], our system has shown a strong

crystalline ordering induced by confinement. The normal force was roughly ten times

higher in the case of the smaller interplate distance, i.e., for dz = 17 Å compared

to dz = 27 Å. On the other hand, the lateral force Fx remained at similar levels,

therefore leading to a sharp decrease of the specific friction values. At the same

time, the weaker confinement and the smaller normal force for dz = 27 Å resulted

in a steeper slope of the curve 〈Fx〉/〈Fz〉.

In order to understand the potential correlation of the IL structure with the aris-

ing frictional forces, the confinement zone was observed in detail using Figure 3.29,

where a side view (left side) and top view (right side) of the system is shown. In

the top view, the system is shown with the solid and IL particles above the upper

plate’s plane removed. In this plot the ions are depicted with their corresponding

LJ radii in order to achieve a realistic visualization of the structure. The anions
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form a locally cubic structure, check right panel Figure 3.29(A), while the crystal

direction of the cubic structure is indicated with the dashed lines. If we look into

the structure of the IL in the confinement zone, Figure 3.29(A) and (B), we can

observe a single, well-resolved crystal structure in the case of dz = 17 Å, while in

the case of dz = 27 Å some defects are present. It can also be observed that outside

the gap, the IL remains in a disordered, liquid state.

Further clarification can be attained by plotting the ionic density distribution

profiles inside and outside the gap in Figures 3.30(A) and (B). It can be observed

that at the plate-to-plate distance dz = 17 Å, both cation and anion peaks of

density distribution function inside the gap are narrow and sharp. In addition, both

the anion and cation peaks in each paired layer are located at approximately the

same z location. These findings confirm that under these conditions the IL is in

a crystalline, "solid-like" state with minimum disorder. In the case of a wider gap

dz = 27 Å the anion peaks next to the walls remain narrow, with a third broader

one appearing in the center. The cation arrangement is more dispersed, with double

peaks appearing above and below each anion peak. These statistics indicate a more

layered, less strictly ordered state.
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Figure 3.29: Side (yz) and top (xy) views of the snapshots from four separate friction
simulations. The top views correspond to the planes marked with dashed lines in
the side views and do not include the solid and IL particles above the upper plate
plane. The ions are depicted according to their LJ radii in order to visualize the
crystalline structures. The dashed lines in the top views denote the crystal direction
of self-formed cubic structures.
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Figure 3.30: Density distributions of ions along the z axis inside (dashed lines) and
outside (solid lines) the confinement zone between the solid plates for configurations
shown in Figure 3.29. The position of the atomic centers of the innermost layer of
the Top and Bottom plate is denoted with zT and zB, respectively. Bottom plate is
fixed with zB = 21 Å.

The difference in the extent of confinement-induced crystallization is a probable

reason for the observed steep slope of specific friction since the observed defects

can interact more strongly with the upper plate at higher velocities and contribute

to the increase of friction force. Our observations show some similarity to the be-

haviour previously seen in Lennard-Jones systems where systems at pressures above

a certain critical value and at sufficiently low velocities exhibited such behaviour. In

these studies, check Reference [42], the shape of fluid molecule was identified as the

main parameter that controls crystallization through the promotion or prevention

of internal ordering.

In addition to the impact of different confinement gaps, the effect of IL pressur-

ization was studied, while the interplate distance was kept constant. More specifi-

cally, a gap of dz = 27 Å was used, while different pressures pext = {0, 120, 250} kPa

were applied.
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Through observation of Figure 3.30(B)-(D), it can be seen that the application

of external pressure prevents the wetting of the side walls of the Top plate and leads

to a distinct crystallization of the unconfined IL. On the other hand, the ion density

profiles inside the confinement zone are moderately influenced.

Friction results for increasing values of applied pressure pext are consistent with

the observations from Figure 3.28 with specific friction decreasing as the ordering of

the IL increases. It can be seen that for high external pressure, i.e., pext = 250 kPa,

the slope of the specific friction curve almost vanishes.

Figure 3.29(C) shows that for pext = 120 kPa the local cubic structure induced

by confinement between the plates served as a nucleus for further crystallization

between the plates and a well-ordered single crystallite was formed in this region.

Outside the confinement zone another crystallite was formed with a different orien-

tation. Further increase of external pressure to pext = 250 kPa forced the IL in the

void space to crystallize, while at the same time the IL in the confinement zone was

converted to a number of smaller crystallites, check Figures 3.29(D) and 3.30(D).

The reported results show a dual nature of IL lubrication, with EHL character-

istics at low to medium pressures and confinement gaps that allow more than two

distinct anion/cation pair layers to form. At higher pressures and smaller distances,

which can be translated as mixed lubrication conditions, the IL is transformed into a

solid-like body, while specific friction decreases to low values which are independent

of the sliding velocity. This behaviour can be beneficial in engineering applications

such as the piston ring–cylinder liner system, where it can be assumed that the IL

crystallization can potentially help in preventing the solid contact between the solid

surfaces, along with the associated high friction and wear.

- Shear behaviour of confined salt model of ionic liquid

In order to study the behaviour of our confined SM ionic liquid under shearing

we apply a relative motion between the plates along the x direction. The Bottom

plate is kept fixed and a constant velocity Vx is imposed on the Top plate. We are

interested in establishing how does the lateral (frictional) force Fx depend on the

confinement gap dz = {12, 14, 16, 18, 22, 25} Å. In Figure 3.31 we are showing the

dependence of the time averaged frictional force divided by the contact area of the
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Figure 3.31: Dependence of the frictional force divided by the contact area of the
Top plate with IL lubricant 〈Fx〉/Sxy on the interplate distance dz. The three
representative points {P1, P2, P3} are marked. Points obtained in simulations are
shown as circle markers, accompanied with errors along the y axis. Linear fit through
those points is shown as a solid line. In the inset dependence of specific friction
〈Fx〉/〈Fz〉 on the interplate distance dz is shown, with y axis in log scale. Simulation
points are shown as circle markers, while the dashed line serves as a visual guide.

Top plate and the IL lubricant, i.e. 〈Fx〉/Sxy on the interplate distance dz. We

observe a linear increase of the frictional force per contact area with the increase

of the interplate distance, with a slope of 4 nN/µm3. In the inset of Figure 3.31,

we are showing the dependence of specific friction defined as the ratio of the time

averaged frictional and normal force 〈Fx〉/〈Fz〉 on the interplate distance dz. By

comparing Figure 3.31 with the results for the bulk liquid in Figure 3.12 we observe

that there is no correlation with the lubricant viscosity (i.e., otherwise frictional

force would be three orders of magnitude higher). This leads us to the assumption

that our pressurized systems, whether they form a crystalline lattice or not, do not

lie in a typical hydrodynamic regime and operate under full slip conditions in which

the ionic liquid moves together with one of the walls. As there is no solid–solid

contact between the two surfaces, but lubrication through very thin, highly viscous

films which are solid–like, mixed or dry lubrication are the two potential regimes
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Figure 3.32: Dependence of the frictional force divided by the contact area of the Top
plate with IL lubricant 〈Fx〉/Sxy on the Top plate’s lateral velocity Vx = 0.1−10 m/s.
The error bars represent the standard deviation of the average values obtained from
the simulation data. The lines showing the friction trends are obtained by linear
regression.

that can describe the observed conditions. A parametric study on different shearing

velocities Vx = 0.1−10 m/s at two wall separations dz = 17, 27 Å provides additional

information for the characterization of the tribological regime of our system. In

Figure 3.32 one can observe a logarithmic (weak) dependence of the frictional force

per contact area on lateral velocity of the Top plate’s movement, which is consistent

with the observations of previous studies of IL lubrication, check Refs. [39, 56].

From Figure 3.31 we have selected three representative points with dz = {12, 18, 25}Å

labeled as {P1, P2, P3} respectively. We provide an overview of the yz configuration

cross–sections together with ionic density distributions along the z axis (check Fig-

ure 3.33) at the simulation onset t = 0 and after t = 3 ns. In the panels of

Figure 3.34 we have highlighted the confined region with dashed lines (the Top

plate’s width along the y axis is half of the total system’s width) and we have also
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Figure 3.33: Configuration snapshots (yz cross–section) accompanied with ionic
density distribution along the z direction in three representative points {P1, P2, P3}.
Left panels correspond to the start of friction simulations t = 0, while right panels
correspond to the end of friction simulations t = 3 ns. Top plate’s lateral velocity is
set to Vx = 2 m/s, total simulation time is ttot = 3 ns, hence all friction simulations
have run until the Top plate had covered a distance of dx = Vx · ttot = 60 Å along
the x direction.

sketched crystallization patterns with solid lines. In Figures 3.33 and 3.34 we show

initial configurations at the input of shearing simulations, together with the final

configurations obtained after the shearing simulations. We observe that any ini-

tial crystallization is not lost due to the lateral motion of the Top plate, but only

slightly modified due to the motion, which suggests that the lateral movement does

not alter the ordering. This is a significant finding since the longitudinal movement,

i.e., movement along the z-axis does alter the local ordering (it destroys the crystal

structure in small gaps and induces it in larger ones).
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Figure 3.34: Configuration snapshots (xy cross–section) in three representative
points {P1, P2, P3}. Left panels correspond to the start of friction simulations t = 0,
while right panels correspond to the end of friction simulations t = 3 ns. We have
highlighted the confined region with dashed lines (Top plate’s width along the y
axis is a half of the total system’s width) and also we have sketched crystallization
patterns with solid lines. Top plate’s lateral velocity is set to Vx = 2 m/s, total
simulation time is ttot = 3 ns, hence all friction simulations have run until the Top
plate had covered a distance of dx = Vx · ttot = 60 Å along the x direction.

3.4.2 Confined tailed models of ionic liquid

For the study of TM ionic liquids under confinement, we use the MD simulation

setup of ILs under confinement shown in Figure 3.5 in section 3.2. We use that

setup throughout this section in order to investigate both the static and dynamic

behaviour of confined TM ionic liquids, as well as, their lubrication performance.
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We keep the simulation setup geometry fixed, and we change the ionic liquid.

3.4.2.1 Static force-distance characteristic

Confinement induces layering in IL thin films [64, 116]. In order to understand

how does an interplay between layering and molecular geometry of TM ionic liq-

uids alter the load bearing capability of IL thin films, we calculate the quasi-static

force-distance characteristic. We follow the evolution of the normal load Fz acting

on the Top plate as a function of the interplate distance dz. In order to ensure static

conditions, the interplate distance is changed through a series of alternating steps,

calledmove and stay steps, related to the movement of the Top plate and subsequent

relaxation of the IL structure, respectively. We provide a detailed description of the

procedure of modifying the interplate gap in the simulations of the static behaviour

of confined ionic liquid: Top plate is moved along the z axis at a constant velocity

Vz = 5 m/s for a period of time tmove = 5 ps; During the move period the elastic

constant of cation–tail bonds takes its original value of K = 80 kCal/molÅ2. After

the transition regime happening during the move period finishes, we apply conju-

gate gradient (CG) minimization (for the details about CG minimization method

check ) on the ions, in order to minimize their internal energy and relax them after

the move period. As the ion minimization procedure is done, ions take positions

which ensure their minimal internal energy. In case of SM model of IL, ion mini-

mization procedure performs fine, enabling well–relaxed IL [64]. However, we have

noticed that in case of TM models of IL, due to a rather high value of the elastic

constant of cation–tail bonds, ion minimization procedure does not perform fine.

The key action of minimization procedure is the repositioning of the charged parti-

cles (i.e. cations and anions), since they interact strongly via Coulombic potential.

Cations are bonded to neutral tails via bonds, hence they do not have that much

freedom to rearrange during the minimization procedure, compared to anions. We

have solved this problem by taking a low value of the elastic constant (i.e., 1% of

its original value, Kmin = K/100 = 0.8 kCal/molÅ2) during the ion minimization

procedure. As the ion minimization procedure finishes, elastic constant K gradu-

ally increases and restores to the original value. This gradual increase is realized

117



3. Ionic liquids

via subsequent steps in which elastic constant takes the values from the next list:

K ∈ {0.8, 2, 4, 10, 20, 40} kCal/molÅ2, where elastic constant takes each of the listed

values for a period of time ∆t = 2.5 ps. As the elastic constant gets restored to the

original value, Top plate stays fixed for another 2∆t = 5 ps during which period the

average value of the normal force Fz is calculated and that value is presented as a

simulation point in Fz (dz) static characteristic, i.e., in Figure 3.35. Hence, a stay pe-

riod is made up of: ion minimization procedure with elastic constantKmin = K/100,

the stepwise increase of K for 6∆t = 15 ps and the calculation of the average value

of the normal force Fz with the original elastic constant K for 2∆t = 5 ps. In total,

the time duration of the stay period is tstay = 20 ps. In order to avoid a systematic

error due to the initial position or direction, the Top plate movement is performed

in different directions and from different initial configurations, hence Figure 3.35

shows the averages. The Top plate movement procedure consisting of move and

stay periods is repeated until the distance dminz = 11 Å is reached.

The results for the force-distance characteristic of the three TM ILs are pre-

sented in Figure 3.35, where three different markers correspond to the three IL

models. The normal force Fz strongly and non-monotonically depends on the dis-

tance dz. These changes of the normal force Fz are correlated with the squeezing

in and out of cation/anion layer pairs into the gap, as already observed experimen-

tally [117] and theoretically [64]. The normal force becomes negative, i.e., Fz < 0

only in the case of small tails (TM3). The negative values are a result of the IL try-

ing to reduce the plate-to-plate distance due to the adhesion forces inside of IL. The

increasing tail size seems to reduce the effect of adhesion: for large tails (TM9) the

normal force at the minimum is close to zero, while for symmetric cation molecule

(TM5) it becomes positive, i.e., Fz = 2 pN. For all three curves corresponding to

the three TM ionic liquids we can identify three characteristic ranges of the plate-

to-plate distance dz:

Segment(1): initial segment (11 Å≤ dz ≤ 13.8 Å) characterized by a monotonous

and steep decrease of the normal force Fz

Segment(2): interval I (13.8 Å≤ dz ≤ 19.8 Å) characterized by the presence of local

minima and maxima peaks of the normal force Fz, and
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Figure 3.35: Dependence of normal force Fz on interplate distance dz. Five charac-
teristic points denoted with {A,B,C,D,E} with corresponding interplate distances
dz = 13.8, 15.5, 18.0, 19.8, 25.8 Å, respectively, are marked in the figure. They are
chosen in the way that: point A is located in the proximity of a local minimum for
all three cases; point B corresponds to a local maximum for TM5 model; point C
is located in the proximity of a local minimum for TM3 and TM5 model; point D
is located in the proximity of a local maximum for TM3 and TM5 model; point E
is chosen according to the condition DE = AD. For reference, the black horizontal
line denotes Fz = 0. The lines connecting points (averages of normal force) serve as
visual guide.

Segment(3): interval II and beyond (dz ≥ 19.8 Å) characterized by a continuous

and gentle decrease of the normal force Fz, where in all three cases the normal force

practically becomes zero when dz > 32 Å.

We will briefly describe the segments of Fz (dz) curves, pointing out similarities and

differences between the different IL models. In the initial segment, (i.e., for small

gaps dz < 13 Å), the normal force Fz is practically the same for all three systems,

meaning that it does not depend on the tail size. The steep rise of the normal force

with compression in the range dz < 13 Å is a sign of a very high resistance of the

single anionic layer left in the gap to squeezing out. On the other hand, at large gap

values (i.e., dz > 32 Å), the normal load Fz in all three TM ionic liquids is similar

and small. We can conclude that at large gaps there is a low resistance of IL to the
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gap changes. Significant differences in the force-distance curves, depending on the

tail size, exist only in the interval I, (i.e., 13.8 Å≤ dz ≤ 19.8 Å). In the case of the

TM3 model, the Fz (dz) characteristic has two local minima and maxima and one

saddle point, in the TM5 model there are two local minima and maxima, and in

the TM9 model, there is one local minimum and maximum.

In the present setup, IL lubricant remains an infinite continuous body in x and

y directions. However, there is a difference in IL′s structure depending on the fact

whether it is confined inside the gap between the Top and Bottom plate or it is

located in the lateral reservoirs (LRs), see Figure 3.38. Ionic liquid confined inside

the gap forms alternating cationic–anionic layers, while ionic layering in LRs is less

pronounced beyond first two layers, see Figure 3.38. Besides that, from Figure 3.38,

we notice that in all three systems the layer closest to the solid plates is formed by

cation–tail dimmers. We might label the layers formed alongside the solid plates as

fixed layers, since they always form first. Inside the interplate gap ionic ordering is

dictated according to the layers formed next to the solid plates:

(i) Bottom plate - cation–tail layer - anionic layer, looking from the bottom,

(ii) Top plate - cation–tail layer - anionic layer, looking from the top, where bottom

and top correspond to the position along the z axis.

In Figures 3.36 and 3.37 we present 5 × 3 panels of configuration snapshots for 5

chosen characteristic points of 3 TM models. The atoms are depicted keeping the

ratios of their sizes.
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3. Ionic liquids

Figure 3.36: Configuration snapshots (xy cross section) of TM3, TM5 and
TM9 models in five characteristic points {A,B,C,D,E}. Five characteristic
points, denoted with {A,B,C,D,E}, have corresponding interplate distances dz =

{13.8, 15.5, 18.0, 19.8, 25.8} Å, respectively (see also Figure 3.35).

- IL structure inside and outside the interplate gap

In Figure 3.39 we are showing the ionic density distribution along the z axis for
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Figure 3.37: Configuration snapshots (yz cross section) of TM3, TM5 and TM9

models in five characteristic points {A,B,C,D,E} (see also Figure 3.35). This
figure presents the changes taking place in the confined ionic layers as the interplate
distance changes in case of static force–distance simulations.

the three IL models, in points A to E, i.e, dz = {13.8, 15.5, 18.0, 19.8, 25.8} Å. A

common feature of all investigated IL models is the formation of fixed cationic layers

along the whole length of the solid plates (Top and Bottom plate). The fixed layers

and their stability are a result of strong LJ interactions between the plates and ions.

In general, the smallest particles form the first layer next to the plates.
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3. Ionic liquids

Figure 3.38: Configuration snapshots (yz cross section) of TM3, TM5 and TM9

models in a characteristic point A marked in Figure 3.35. This figure represents an
illustration of ionic layering.

For TM3 the first layer to the plates is formed by the tail particles (which are

part of the cation-tail pair), while for TM5 and TM9 models these particles are

the cations. The consecutive layers are formed inside the interplate gap via com-

bined volume exclusion and Coulombic interactions and their ordering is consistent

with the fixed layers. As a result, tails migrate to the plates in TM3 model, they

mix with the cationic layer when cation-tail dimer is symmetric in TM5 model,

and finally they mix into the anionic layer when they are large in TM9 model.

Since Coulombic interactions cause the layering with alternating charge sign, an-

ionic layers always separate cationic layers. We focus on analyzing the changes in

the segment between the points A and D, i.e., the interval I. The normal force Fz
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(b) TM5 ( T = 5 [Å])

(c) TM9 ( T = 9 [Å])

(a) TM3 ( T = 3 [Å])
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Figure 3.39: Ionic density distribution of ions inside the interplate gap of (a) TM3,
(b) TM5 and (c) TM9 models in characteristic points {A,B,C,D,E} taken from
the static force–distance characteristic presented in Figure 3.35. The positions of the
atomic centers of the innermost atomic layers of the (moving) Top and the (fixed)
Bottom plate are labeled as zA−ET and zB, respectively.
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(b) TM5 ( T = 5 [Å])

(c) TM9 ( T = 9 [Å])

(a) TM3 ( T = 3 [Å])
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Figure 3.40: Ionic density distribution of ions outside the interplate gap of (a) TM3,
(b) TM5 and (c) TM9 models in characteristic points {A,B,C,D,E} taken from
the static force–distance characteristic presented in Figure 3.35. The positions of the
atomic centers of the innermost atomic layers of the (moving) Top and the (fixed)
Bottom plate are labeled as zA−ET and zB, respectively.
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changes rapidly and non-monotonically with the interplate distance dz in the inter-

val I, check Figure 3.35. For the minimum of Fz in the vicinity of point A, i.e., for

the interplate distance dAz = 13.8 Å, we can observe a well-defined anionic layer in

Figure 3.39. The most interesting change takes place during the transition A →

B when the single layer of anions is split into two layers, check Figure 3.39. As a

result, the normal force Fz increases and reaches a local maximum in the proximity

of point B, i.e., for plate-to-plate distance dBz = 15.5 Å. We observe that additional

anion-cation pairs are pulled inside the gap in Figure 3.41. We also observe that

the two anionic layers in Figure 3.39 for point B and the one for point A have the

same maximum number density. As we increase dz further, the number of anionic

layers confined inside the gap remains unchanged and the normal load drops slowly.

At the same time, the number of ions inside the gap steadily increases with the gap

width. Nevertheless, this increase is not sufficient to keep the density of IL inside

of the gap constant (check Figure 3.41). Looking into the changes in the spatial

distribution of IL components, as more cation-anion pairs are pulled into the gap

(going from A → E), we observe a steady increase of the concentration of anions in

the layer next to the Bottom plate. In the case of TM5 model we have an increase

from nATM5 = 18 atoms/nm3 to nDTM5 = 27 atoms/nm3, check Figure 3.39. When we

further look at configuration snapshots for TM3 and TM5 model, a formation of

additional layers inside the gap is visible, between the points C and D. This can also

be clearly observed in Figure 3.39 and results in smaller maximum around dz =19 Å,

in Figure 3.35. We can conclude that the form of the normal force-plate distance

characteristic is not correlated with the number density of the IL molecules inside

the gap, but the layer formation seen in Figure 3.39. As the interplate distance dz

increases further, from point D to E, we notice additional cations in the middle of

the gap and formation of a third cationic layer in all three systems. We can make

an interesting observation that for all three models the tails in the middle of the

confinement are grouped in three regions: with cations at z = 34 Å, and in the

middle between cationic and anionic layers, i.e., z = 30, 38 Å, check in Figure 3.39.

This outcome is reminiscent of the findings from Reference [71] where the authors

have experimentally obtained the formation of the tail–to–tail bilayer of cationic
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Figure 3.41: Evolution of the number of confined ionic liquid (IL) molecules (bottom
curves) and density (top curves) inside the gap with gap width dz for TM3, TM5

and TM9 models in characteristic points {A,B,C,D,E} selected from the static
force–distance characteristic (Figure 3.35). The corresponding axes for the number
of IL molecules and the density are given on the left and right side, respectively.
The densities at characteristic points for the dynamic cases (intervals I, II) of TM5

model are also given, i.e., I1,2,3 and II1,2, for the purpose of comparison with the
static case of TM5 model.

dimers in case the alkyl chain length is oversized. In Figure 3.42 we present how do

the number of confined IL molecules and density depend on the interplate distance

dz in dynamic cases for TM3, TM5 and TM9 models. In all three TM models, we

notice the same tendencies for both NIL and ρIL dependences on dz.
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Figure 3.42: Evolution of the number of confined ionic liquid (IL) molecules (bottom
curves) and density (top curves) inside the gap with gap width dz for TM3, TM5

and TM9 models for the dynamic cases (intervals I, II), i.e., I1,2,3 and II1,2. The
corresponding axes for the number of IL molecules and the density are given on the
left and right side, respectively.

- IL crystallinity: influence of the gap

We show the xy cross-section snapshots in Figure 3.36 in order to observe the IL′s

in-plane structure at the cross-section just below the Top plate. We mark the

boundaries of the Top plate spatial region with the vertical dashed lines. The

central area of the panels in Figure 3.36 corresponds to the interplate gap region

and it represents a half of the total cross-section’s width in the y direction, while

the remaining area corresponds to the lateral reservoirs. The solid lines mark the

orientation of crystal grains in those areas, where we can observe the presence of

structural ordering. In the case of TM3 model, we observe the presence of partial

triangular ordering only at point B when the structure is the most compressed. We

do not notice any crystallization for symmetric dimers (TM5 model), which confirms

that the symmetric tail prevents ordering both under confinement and in the bulk.

Contrary to the previous two cases, we observe crystallization for all configurations
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with the large tail (TM9 model). Additionally, we observe changes in the type of

crystalline structure. While in the lateral reservoirs a triangular lattice arrangement

is always present, depending on the amount of compression we observe triangular

lattice arrangements in points A and D and square lattice arrangements in points

B and C. Even more surprisingly, the order is lost when the tail–to–tail bilayer is

formed in point E.

3.4.2.2 Dynamic force-distance characteristic

The Top plate was moved between the two limiting points of the intervals I (dAz ≤

dz ≤ dDz ) and II (dDz ≤ dz ≤ dEz ). We have investigated the dynamic behaviour

of the confined IL thin film during the cyclic movement of the Top plate along

the z axis, i.e., the interplate gap was periodically extended (extension half–cycle)

and compressed (compression half–cycle). We have investigated our system at three

velocities Vz = {0.1, 1, 10} m/s, but we did not observe any velocity dependent

differences in the system behaviour. The confined ionic liquid lubricant responds to

the cyclic movement of the Top plate with a hysteresis in normal force Fz (dz) shown

in Figure 3.43. We present the detailed results of the TM5 model dynamic behaviour

in (a) and (c) panels of Figure 3.43. Also, in (b) and (d) panels of the same figure,

we present together smooth average cycles of our three IL models (TM3, TM5, and

TM9).

- Narrow gap (interval I ): normal force hysteresis

We will now discuss in detail the response of the TM5 model to the cyclic motion of

the Top plate, in the interval I shown in Figure 3.43(a). Ten cycles of compression-

extension are shown (thin lines) with an average cycle superimposed on them (thick

line). We identify three points of interest: {I 1, I 2, I 3}, i.e., the two terminal points

of the cycle and the point with the maximal normal force, respectively. These three

points also correspond to the points {A,D,B} respectively, in the static characteris-

tics shown in Figure 3.35. Point I 3 corresponds to the maximum of normal force Fz

both in the cyclic compression cycle and in the static characteristic of TM5 model,

which makes the comparison more straightforward.

The normal force Fz decreases down to a value close to zero during the extension
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Figure 3.43: The results of dynamic extension–compression cycles are shown for the
intervals I and II. In the panels (a) and (c) we present dynamic Fz (dz) characteristic
in case of TM5 model, for the intervals I and II, respectively; thin lines represent
the hystereses of ten dynamic cycles, solid line on top of them is the smooth average
hysteresis. There is also a solid horizontal line which corresponds to Fz = 0. In
(a) points I 1, I 2, I 3 denote representative points: I 1 - starting point, I 2 - ending
point, I 3 - global maximum of the Fz (dz) curve. In (c) points II 1 and II 2 denote
representative points: II 1 - starting point and II 2 - ending point. The arrows show
the direction of hysteresis (extension I/II 1 → I/II 2 followed by compression I/II 2

→ I/II 1). In the panels (b) and (d) we show together smooth average hystereses
Fz (dz) of our three TM ionic liquids, for the intervals I and II, respectively. Starting
and ending points and arrows are denoted, analogous to the panels (a) and (c).

half of the cycle I 1 →I 2. The anion-cation pairs are pulled into the gap from the

lateral reservoirs as the gap is extended and at point I 2 an additional anionic layer is

fully formed inside the gap. Actually, instead of the two fixed layers of cations which

share one anionic layer, we obtain two separate anionic layers. The total number of

ions pulled in is about 60 atoms or 0.22 atoms/(nm2ns) at 1 m/s plate linear speed.

In the first part of the compression half-cycle, I 2 →I 3, the ions are compressed and

the density and the normal force Fz increase. Somewhat surprisingly, we observe that
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an equal number of ions flows out while the normal force increases, i.e., I 2 →I 3 and

during its sharp drop I 3 →I 1 (check Figure 3.41). The sharp decrease of the normal

force Fz in the segment I 3 →I 1 is therefore a result of two processes: out-flow of the

ions from the gap and the collapse of the anionic double layer and its rearrangement

into a single anionic layer. The resulting final density ρdyn
IL = 1.95 atoms/nm3 of

the system is slightly higher than in the static case ρstat
IL = 1.85 atoms/nm3, check

Figure 3.41. The value of the normal force Fz at point I 1 is similar, i.e., Fz = 4 pN

in both static and dynamic case.

In Figure 3.43(b), we observe that each one of the three investigated ionic liquids

(TM3, TM5, and TM9) exhibits different behaviour in the average Fz (dz) cycle

during the extension and compression half-cycle. First, at the onset of the extension

half-cycle, i.e. in the point I 1, the normal force Fz has a positive value for symmetric

cations (TM5 model), it is close to zero for large tails (TM9 model), and it is

negative for small tails (TM3 model). Somewhat surprisingly, the normal force

increases for both TM ILs with asymmetric cations (TM3/TM9 models) while it

decreases for symmetric cation (TM5 model). The reason for this behaviour is the

strong interaction of the fixed layers of ions adjacent to the plates with the plate

particles. This interaction drives as many ions inside the gap as possible, resulting

in the non-intuitive behaviour of the normal force due to an interplay of density and

intra-IL LJ interactions. During the compression half-cycle for all three ILs the

maximal normal force sustained was about 50% smaller than in the quasi-static case,

i.e., for TM5 model the maximal force is Fmax
z = 17 pN in the dynamic case and

Fmax
z = 40 pN in the static case (see Figures 3.43(b) and 3.35). This observation

indicates that the Top plate’s motion prevents the IL to fill the gap. We can also

conclude that the mechanical response is mainly due to a rearrangement of the fixed

layer and that the mobility of the ILmolecules is too low to significantly increase the

normal force resisting to the compression. If we analyze the rate of mass transfer

outside of the gap, we conclude that there is a substantial slip, which results in

a lower normal force. Without slip at a velocity Vz = 1 m/s, the normal force

calculated based on the bulk viscosity coefficient would be roughly two orders of

magnitude higher. Figure 3.44 shows configurations snapshots accompanied with
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Figure 3.44: Configuration snapshots accompanied with ionic density distribution
along the z direction in the three characteristic points (I 1, I 2, I 3) from the panel
(a) of Figure 3.43.

the ionic density distribution along the z direction, for the interval I of dynamic

cycle of TM5 modeled ionic liquid. In the point I 1 there is one compact anionic

layer leading to a rather low positive value of the normal force Fz. In the extension

half–cycle ions from the LRs get taken into the gap. This leads to the formation of

another compact anionic layer, which means that from one compact anionic layer at

the starting point I 1, we arrive at two compact anionic layers at the ending point I 2.

In the return compression half–cycle, those extra ions get pushed back into the LRs,

leading to the reduction of the number of compact anionic layers confined inside the

gap to one.

- Wide gap (interval II ): monotonic force-distance characteristics
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The extension-compression force-distance characteristic for the interval II in case

of TM5 model is given in Figure 3.43(c). The difference from the quasi-static

extension/compression in Figure 3.35 is the monotonic behaviour during the cycle.

The quasi-static characteristics in the interval II featured local minima and maxima

in the case of TM3 and TM5 models. In the dynamic case, there are only two

characteristic points (starting and ending point II 1 and II 2, respectively and a

monotonically changing normal force between them. In the extension half–cycle

there is a continuous decrease of the normal force Fz followed by its continuous

increase in the compression half–cycle. The difference in the normal force between

the cycles is small. In the dynamic characteristic of the interval II the layer structure

is similar to the static case, i.e., two fixed layers stay-in-place and the tail double

layer is formed during the extension half-cycle (check Figure 3.45). In contrast to

the interval I, the formation of the additional layer of tails is not a result of the ions

flowing from the lateral reservoirs into the gap. The density inside the gap is 10%

higher in the dynamic case and a few atoms (less than 30) are displaced during the

cycle. We should note that the gap is also 50% larger in the interval I compared

to the interval II, therefore the drop in density is even less striking. Actually, the

cyclic motion has a tendency to increase the density inside the gap. Since there is no

large displacement of the ions in and out of the gap in the interval II, there is also

no maximum of the normal force Fz, similar to the one we have seen in the case of

the interval I, check Figure 3.43(a). In order to make comparisons of different TM

ionic liquid models, in Figure 3.43(d) we show together Fz (dz) average cycle dynamic

characteristics of all three TM models of ionic liquid (i.e., TM3, TM5, TM9 model)

for the interval II. Compared to the interval I, the tail size does not have such a

pronounced impact on Fz (dz) hysteresis curves in the interval II. Figure 3.45 shows

configurations snapshots accompanied with the ionic density distribution along the

z direction, for the interval II of dynamic cycles of TM5 model IL. In the point

II 1 there are two compact anionic layers opposite to each other leading to a high

positive value of the normal force Fz. In the extension half–cycle the fixed layers

become separated, and a marginal number of cation–tail dimers diffuses from the

lateral reservoirs (LRs) into the gap. However, another anionic layer does not form,
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Figure 3.45: Configuration snapshots accompanied with ionic density distribution
along the z direction in the two characteristic points (II 1, II 2) from the panel (c)
of Figure 3.43.

which means that from the two compact anionic layers with the cationic layer in-

between at the starting point II 1, we arrive at two separated layers in the ending

point II 2 with the tail bi-layer in-between.

- Energy losses due to cyclic extension-compression

At this point, we would like to quantify how do the processes arising during the

dynamic cyclic movement of the Top plate contribute to energy losses. We calculate

the area covered during the extension-compression cycle (i.e., the area inside the

Fz (dz) hysteresis). This area is equivalent to the work invested per average dynamic

cycle, i.e., the hysteretic energy losses. We show the dependence of the energy losses

on the tail size for both intervals I and II in Figure 3.46. We observe a clear tendency

of the increase of the invested work per dynamic cycle, with the increase of the tail

diameter. This is primarily due to the larger volume occupied by the tails resulting

in larger normal forces resisting compression. There is a striking difference in the

amount of invested work between the two intervals I and II (e.g. 27 pN ·Å for the

interval I of TM9 model compared to 5 pN · Å for the interval II of TM9 model).
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Figure 3.46: Energy losses per average cycle in function of the tail size, for intervals
I and II of dynamic extension–compression cycles.

This difference is proportional to the maximal normal force which is sustained by

the systems in the two intervals (check Figure 3.35).

3.4.2.3 Tribological behaviour of confined tailed models of ionic liquid

We have conducted static and dynamic characteristic analysis of the three generic

IL models, focusing on the influence of their molecular structure on the anti-wear

performance. In order to obtain a full picture, it is crucial to determine IL′s friction

behaviour under different shear conditions. In this section we apply a relative motion

between the plates by moving the Top plate along the x-axis (see Figure 3.5 from

section 3.2) and we observe the resulting frictional force (also along the x-axis, i.e.,

Fx). We have performed two types of friction simulations:

(i) at a constant Top plate’s velocity Vx = 2 m/s, the simulations are performed at

different fixed values of the gap: dz = 12 Å to 25.5 Å, and

(ii) at a fixed gap dz = 15 Å Top plate’s lateral velocity takes five different values:

Vx = {0.1, 0.3, 1.0, 3.0, 10.0} m/s.

In all friction simulations, the total distance covered by the Top plate was ∆x =

100 Å in the x direction. The dependence of the time-averaged frictional force 〈Fx〉
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on the interplate gap dz for the three IL models is shown in Figure 3.47. The

points obtained in the simulations are shown as markers. Linear fits through these

points are provided as visual guides. For the TM3 model ionic liquid, we observe a

decrease of the frictional force 〈Fx〉 with the size of the gap. On the other hand, the

frictional force weakly depends on the gap width in case of TM5 and TM9 model

ionic liquids. Both the TM3 and TM9 have high zero shear-rate (Green-Kubo) bulk

viscosities correlated with extent of their ordering, i.e., ηGK
TM3 > ηGK

TM9 > ηGK
TM5. When

comparing with their tribological performance in a thin film we can conclude that

there is no correlation since the TM5 ionic liquid has the highest average frictional

force. In Figure 3.48, we show the dependence of specific friction 〈Fx〉/〈Fz〉 on

the Top plate’s lateral velocity Vx in case of TM5 model ionic liquid. We obtain

specific friction values of the order 〈Fx〉/〈Fz〉 ≈ 0.01 which are comparable to the

result from Reference [53] for symmetric [PF6]− anion. We observe also a similar

tendency of decreasing friction force with respect to tail size, as reported in the

same Reference [53]. The specific friction 〈Fx〉/〈Fz〉 is defined as the ratio of the

time averaged frictional 〈Fx〉 and normal 〈Fz〉 force and it is different from the

Coulombic friction coefficient µ = ∂Fx/∂Fz. Consistently with our previous results

for model ionic liquids, we have observed a logarithmic dependence of specific friction

on the lateral velocity, check Reference [64]. The numerical values are fitted to a

linear function of the form 〈Fx〉/〈Fz〉 = a log (Vx/Vref ) + b, where Vref = 1 m/s. The

coefficients of the linear fit took those values: a = 0.001, b = 0.008. A reasonable fit

to the linear regression curve can be observed. The logarithmic dependence indicates

typical elastohydrodynamic lubrication (EHL) conditions [119].
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on the gap.
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Figure 3.48: Specific friction 〈Fx〉
〈Fz〉 dependence on Top plate’s lateral velocity Vx in

case of TM5 model.
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Chapter 4 Conclusions

In this doctoral thesis two research topics, related to dipolar and ionic systems,

namely tubes and helices composed of dipolar hard spheres and ionic liquids, have

been modeled and investigated. Pronounced ordering under the conditions of spatial

confinement has been obtained in both systems. The ordering is a consequence of the

dominant long-range interactions, i.e., dipole-dipole interaction in dipolar structures

and Coulombic interaction in ionic liquids. In both systems long-range interactions

have led to the ordering that spans the system. A rich phase behaviour, sensitive to:

variations of packing in case of dipolar systems and particle shape in case of ionic

systems, has been obtained.

4.1 Confined dipolar systems

A study about cohesive energy of helical and tubular structures composed of hard

spheres with permanent dipole moments has been presented. Helices were created

by replication of a particle or patch of particles on a confining cylindrical surface.

Even for the most simple situation, namely the single thread helix, a non-trivial

behaviour is found when monitoring the cohesive energy as a function of surface

packing (i.e., axial compression).

In particular, a non-monotonic dependence of the cohesive energy on the packing

fraction (or equivalently the amount of compression) as a result of a delicate interplay

of dipole-dipole interactions and excluded volume effects can be observed. The

lowest cohesive energy is achieved at the highest packing fraction with touching

turns. In parallel, the polarization order parameter, i.e., the mean dipole moment

per particle 〈mz〉, also displays a striking non-monotonic behavior as a function of

the extent of compression. In the regime of very high surface packing fraction with
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local triangular arrangement compatible with certain cylinder radius R over particle

diameter d ratio (R/d), a pronounced cohesive energy is found.

Accordingly, the polarization order parameter indicates a sharp change in the

dipole moment orientation, which tends to be parallel to the helix axis. Finally, co-

hesive energies of dense multiple (i.e., double or quadruple) helices, as well as, AB

and ZZ tubes made up of stacking rings that can also be seen as special multiple

helices have been compared. A remarkable finding is the enhanced cohesive energy

for the ZZ tube structure. The latter already emerges at strong substrate curvature

with cohesive energies very close to that obtained at vanishing curvatures. In these

ZZ tube structures, an alignment of the helix threads with its axis is a microstruc-

tural signature for this low cohesive energy. As a final note, it should be emphasized

that the implemented model of dipolar tubes and helices mimics nicely the geometry

and microstructure of biological microtubules. It could also provide a possible clue

about the self-assembly mechanisms and cohesion within microtubular structures.

4.2 Ionic liquids

4.2.1 Salt model of ionic liquid

In the study conducted in this doctoral research an molecular dynamics (MD) sim-

ulation setup in order to study the behaviour of model ionic liquids (ILs) confined

between plates which are in close proximity while being in relative motion has been

implemented. In the framework of this doctoral thesis theMD setup was developed

in a way that allows the mesoscopic study of the lubrication processes in automo-

tive applications such as the piston ring–cylinder liner interaction inside the internal

combustion engine. More specifically, the geometry was selected in order to allow

a variable lubricant confinement gap combined with a varying lubricant quantity in

the gap, while avoiding the squeeze-out of the lubricant into vacuum. Odd-number

layering and near-wall solidification was observed between the solid plates, similar

to published experimental findings. The friction simulations have uncovered an in-

teresting behaviour of ILs, with a logarithmic dependence of specific friction on

velocity hinting at elasto-hydrodynamic lubrication at low loads. This behaviour
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completely changed under more critical conditions of high load, with specific fric-

tion decreasing to lower values and becoming independent of sliding velocity. This

behaviour was strongly correlated with the internal structure of the IL and can

provide guidance for implementing lubrication concepts that can lead to friction

reduction in internal combustion engines.

Also, the implemented MD simulation setup has been used in order to study

the response of a model ionic liquid to imposed mechanical deformation. The prop-

erties of bulk and confined ionic liquid have been investigated under both static

and dynamic conditions. First, it has been shown that the Green–Kubo viscosity

coefficient fits the shearing simulation results of the bulk salt model ionic liquid,

indicating its liquid state. The simulation results have shown the significant impact

of the confinement and interaction with the walls on the ionic liquid response to

mechanical deformation. The force–distance hysteresis surface under cyclic loading

is smaller than one would expect considering only the viscosity value of the liquid.

The simulations have also shown the transition from a liquid to a highly dense and

ordered, potentially solidified state of the IL taking place under variable normal

load and under shear. The wall slip has a profound influence on all the forces which

arise as a response to the mechanical deformation. It has also been observed that

the interaction of the IL with the walls represents a principal driving force for all

processes observed in the dynamic regime for a range of studied velocities. If suffi-

cient time is allowed for the system to reach the equilibrium, inter–ionic interactions

pull more ionic liquid inside the confinement gap.

Ionic liquids feature strong long–ranged Coulombic forces and their models re-

quire significant computational effort. Coarse grained models, such as the salt model

implemented in the current study, are useful for bridging the gap between the molec-

ular processes that control the lubrication phenomena and the macroscopic perfor-

mance in engineering applications. The implementation of simplified models that

describe fundamental physicochemical phenomena at a reduced computational cost

can provide deep insights which shed light onto the mechanisms and processes that

can render ILs as potentially interesting lubricant candidates.
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4.2.2 Tailed models of ionic liquid

Since ionic liquids interact via long–ranged Coulombic forces and their models re-

quire high–performance computational resources, there rises a question of the min-

imal model needed to capture the properties of the molecular processes governing

lubrication mechanisms and the macroscopic performance relevant for engineering

applications. A generic tailed-model (TM) of ionic liquids which includes: an asym-

metric cation consisting of a positively charged head and a neutral tail of variable

size and a large spherical negatively charged anion has been investigated. It has

been observed that, though simple, this model results in striking differences of the

equilibrium IL bulk structure governed by the tail size relative to cationic head:

(i) simple cubic lattice for the small tail,

(ii) liquid-like state for symmetric cation-tail dimer, and

(iii) molecular layer structure for the large tail.

The influence of the molecular structure of cation dimer on the response of the three

representative ionic liquids to confinement and mechanical strain has been investi-

gated using MD simulations. Properties of three IL models are compared in and

out of equilibrium. The evolution of normal force with inter-plate distance has been

related to the changes in the number and structure of the confined IL layers. It has

been found that the density inside the gap has a secondary effect on the evolution

of the normal force. It has been observed that symmetric molecule offsets intra-

IL adhesion due to the ordering of IL. As a result, the thin layer of symmetric

IL molecules exhibits non-negative normal force independent of the gap width. In

analogy to the experimental observations, a tail–to–tail bilayer is formed for wide

gaps in all three investigated model ILs. A mutual feature of all investigated model

ILs is the formation of fixed (stable) layers of cations along the solid plates. The

fixed layer formation is a result of strong LJ interaction between the plates and ions.

A consequence of the fixed layer stability is a steep rise of the normal force at small

interplate gaps. The steep rise of the normal force is an effect useful for preventing

solid-solid contact and accompanying wear. The tails attached to the cations in the

fixed layer migrate with increasing tail size. Small tails form the first layer next to
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the plates. For symmetric molecules the tails form a mixed layer with cations, while

large tails form a mixed layer with anions.

The dynamic behaviour of IL thin film under cyclic extension–compression move-

ments of the Top plate has been explored. Two intervals of the interplate distances

are investigated: narrow gap interval, where the anionic layer is split into two, and

a wide gap interval where tail–to–tail layer is formed. For the narrow gap interval, a

significant flow of ions during the cyclic motion of the Top plate has been observed.

A sharp decrease of the normal force at the final stage of compression is not only a

consequence of the density change due to the flow, but it is also a result of merging

of two anionic layers that repel each-other by the electrostatic Coulombic forces into

a single one. The mobility of ions in and out of the gap is driven by their inter-

action with plates, i.e., filling of the fixed layers. As a result, for the narrow gap,

the number of ions that entered the gap is 50% smaller in the dynamic case than

in the static case. This results in a smaller density inside the moving narrow gap.

The difference between dynamic and static cases for the wide gap was even more

striking, the number of ions that entered the gap is 80% smaller in the dynamic

case than in the static case. Surprisingly, in wide gap the density is higher in dy-

namic case due to the lack of mobility of ions. The invested work per average cycle

increases with the tail size increase for all three IL models. As one could expect,

the invested work is higher for the narrow gap, where the number of confined ionic

layers changes during the cycle. Nevertheless, the low hysteretic losses suggest the

presence of strong slip inside the gap facilitating in– and out– flow of ions in the gap.

An increase of the tail size reduces friction force in the implemented TM model of

ionic liquid. Depending on the tail size, friction force decreases with increasing gap

for small tails and it increases for large tails.

Understanding the interplay between the different processes taking place in thin

lubricant films is important due to the conflicting demands imposed on how IL

lubricant should behave in dynamic confinement. On the one hand, a high load-

carrying capability requires strong adsorption of the lubricant to the surface, while

on the other hand fast self-healing and low friction require high mobility/low vis-

cosity. The obtained results confirm that the behaviour of ILs in confinement can
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be unrelated to their bulk behaviour and therefore it should be possible to achieve

simultaneously, typically conflicting, low friction and good anti–wear performance.

A search for optimal IL lubricants, either using synthesis and test methods or state-

of-the-art computer-based molecular design methods [120], should take into account

the microscale properties of lubricating thin films (e.g., normal force vs. number

of layers characteristics), in which the effects of molecular-level processes are more

pronounced. Directing the optimization efforts to the microscale would enable us a

better differentiation of the qualities of different ionic liquids.
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Appendix A Lekner-type summation method for 1D

periodic dipolar structures

A.1 Total interaction energy in the selected Lekner–type method

Let us consider N particles with i−th particle (i = 1, N) having a dipole moment −→µi .

Its position is defined as −→ri = (xi, yi, zi). Position vector between dipoles i and j is

given as −→rij = −→ri −−→rj . We use the notation for the projection of the vectors −→rij and
−→µi on the xy plane: −→ρij and −→µi ρ, respectively. Precisely speaking, −→ρij = (xij, yij, 0)

and −→µi ρ = (µxi , µ
y
i , 0). Projection of the above mentioned vectors on the z axis is

noted as: zij and µzi .

This is the expression for the potential energy of the DDI between the dipole −→µi
positioned at −→ri and the dipole −→µj positioned at −→rj :

udd = C

[−→µi · −→µj
r3
ij

− 3
(−→µi · −→rij) (−→µj · −→rij)

r5
ij

]
, (A.1)

where C represents a constant which depends on the intervening medium and for

simplicity reasons we set C = 1 in the following derivations.

Knowing the interaction energy udd in case of a pair of dipoles i and j (i, j = 1, N)

let us form the expression for the total interaction energy of the system whose

elementary cell contains N dipoles. We take into account the fact udd ∝ r−2s which

replaces udd ∝ r−3:

Edd =
1

2

N∑
i,j=1

∑
m′

{ −→µi · −→µj[
ρ2
ij + (zij +mLz)

2]s
−3

[−→µi ρ · −→ρij + µzi (zij +mLz)]
[−→µj ρ · −→ρij + µzj (zij +mLz)

][
ρ2
ij + (zij +mLz)

2]s+1

}
, (A.2)
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where the quantity Lz has a physical meaning of length, i.e., it determines the

periodicity of a structure along the z-direction. The elementary cell contains N

particles and it is positioned in the way that for its each particle i stands zi ≥ 0

(i.e., the lower end of the elementary cell is placed at z = 0). The 1/2 factor

regulates the fact that we consider the interaction of each i, j pair twice, due to the

double sum
∑N

i,j=1. In each i, j pair the i-th particle belongs to the elementary cell,

while the particle j can belong to the elementary cell or to the one of elementary

cell’s copies along the z axis. Hence, m = 0 corresponds to the elementary cell,

while m 6= 0 counts the copies. This is why we define the distance between two

dipoles along the z axis as: zij +mLz. It is clear that m is an integer which counts

how many periods along the z axis is a given copy shifted from the elementary cell.

Summation index m is denoted as m′ in Equation A.2 to mark the fact that for

m = 0 the terms with i = j are excluded, since the dipoles do not auto-interact.

Let us define the lattice sums Ψr(s) and Ξr,ξ(s) for −→r 6= 0 as:

Ψr(s) =
1

L2s
z

∑
m

[(
ρ

Lz

)2

+

(
z

Lz
+m

)2
]−s

, (A.3)

Ξr,ξ(s) =
e−i
−→
ξρ ·−→ρ

L2s
z

∑
m

[(
ρ

Lz

)2

+

(
z

Lz
+m

)2
]−s

e−iξz(z+mLz). (A.4)

By comparing Equations A.3 and A.4 we notice that Ξr,ξ(s) = e−i
−→
ξρ ·−→ρ e−iξz(z+mLz)Ψr(s).

The terms e−i
−→
ξρ ·−→ρ and e−iξz(z+mLz) are introduced in order to enable the conversion

of real-space sums into reciprocal-space sums, in the further steps of derivation.

Quantity
−→
ξ has the physical meaning of reciprocal length and it can be represented

as:
−→
ξ =

(−→
ξρ , ξz

)
,
−→
ξρ = (ξx, ξy).

Using the lattice sums Ψr(s) and Ξr,ξ(s) we can rewrite Equation A.2 coming up

with:

Edd =
1

2

N∑
i=1

N∑
j=1,j 6=i

[−→µi · −→µjΨrij(s) + 3 (−→µi · 5ξ) (−→µj · 5ξ) Ξrij,ξ(s+ 1)|ξ=0

]
+

1

2

N∑
i=1

[
|−→µi |2 − 3 (µzi )

2]Ψ0(s), (A.5)
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where the condition ξ = 0 ensures that the terms intentionally introduced in the defi-

nition of the lattice sum Ξr,ξ(s) in Equation A.4 are e−i
−→
ξρ ·−→ρ = 1 and e−iξz(z+mLz) = 1.

A.2 Derivation of the expression for the self energy

From the expression for the total energy of interaction in Equation A.5 we can

extract the expression for the self energy:

Eself(s) =
1

2

N∑
i=1

[
|−→µi |

2 − 3(µzi )
2
]

Ψ0(s),

⇒ Eself(s) =
1

2

N∑
i=1

[
|−→µi ρ|

2 − 2(µzi )
2
]

Ψ0(s), (A.6)

taking into account that: |−→µi |
2

= |−→µi ρ|
2

+ (µzi )
2.

From Equation A.3 we see that the lattice sum Ψ0(s) for −→r = 0 is:

Ψ0(s) =
1

L2s
z

∑
m 6=0

|m|−2s =
1

L2s
z

(
−1∑

m=−∞

|m|−2s +
+∞∑
m=+1

|m|−2s

)
. (A.7)

A fact that:
−1∑

m=−∞
|m|−2s =

+∞∑
m=+1

|m|−2s, leads to the next form of Equation A.7:

Ψ0(s) =
2

L2s
z

+∞∑
m=+1

|m|−2s. (A.8)

By replacing Ψ0(s) from Equation A.8 into Equation A.6 and according to the

definition of the Riemann zeta function, ζ(s) =
+∞∑
m=+1

m−s, we arrive to the general

expression for the self energy Eself(s):

Eself(s) =
1

L2s
z

N∑
i=1

[
|−→µi ρ|

2 − 2(µzi )
2
]
ζ(2s). (A.9)

By applying s = 3/2 we obtain the expression for the self energy in case of the DDI:
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Eself

(
3

2

)
=

1

L3
z

N∑
i=1

[
|−→µi ρ|

2 − 2(µzi )
2
]
ζ(3), (A.10)

where ζ(3) is a numerical factor with the value of ζ(3) = 1.2020569031... [76].

A.3 Derivation of the expression for the cross energy

Let us start from the expression for the cross energy from Equation A.5:

Ecross(s) =
1

2

N∑
i=1

N∑
j=1,j 6=i

[−→µi−→µjΨrij(s) + 3(−→µi · 5ξ)(
−→µj · 5ξ)Ξrij,ξ(s+ 1)|ξ=0

]
. (A.11)

There are the two lattice sums in Equation A.11 (i.e., Ψr(s), Ξr,ξ(s+1)) which should

be determined. We will calculate them following the procedure presented in [89] by

using the integral representation of the Gamma function [121]:

a−s =
1

Γ(s)

∫ +∞

t=0

ts−1e−atdt. (A.12)

In Equation A.3 we recognize that we might write down:

a =

(
ρ

Lz

)2

+

(
z

Lz
+m

)2

. (A.13)

According to this observation we can rewrite Equation A.3 as:

Ψr(s) =
1

L2s
z

∑
m

a−s. (A.14)

By replacing a in the right-hand side of Equation A.12 with the expression from

Equation A.13 and keeping the left-hand side as a−s we arrive at:

a−s =
1

Γ(s)

∫ +∞

t=0

ts−1e
−
[
( ρ
Lz

)
2
+( z

Lz
+m)

2
]
t
dt. (A.15)
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Now we replace the factor a−s in Equation A.14 with the right-hand side expression

from Equation A.15:

Ψr(s) =
1

L2s
z Γ(s)

∑
m

∫ +∞

t=0

ts−1e
−
[
( ρ
Lz

)
2
+( z

Lz
+m)

2
]
t
dt. (A.16)

In the next step we switch the order of the sum and integral and extract the sum-

mation over m inside the integral:

Ψr(s) =
1

L2s
z Γ(s)

∫ +∞

t=0

ts−1e−( ρ
Lz

)
2
t
∑
m

e−( z
Lz

+m)
2
tdt. (A.17)

We use the general form of the Poisson summation formula [122], thus converting

from the real-space summation to the reciprocal-space summation:

+∞∑
m=−∞

e
−
(
u+c
L0

+m
)2
t

=
(π
t

) 1
2

+∞∑
k=−∞

e
i2πk u+c

L0 e−
π2k2

t . (A.18)

Looking at Equation A.17, we decide to write down those identities: u+ c = z, L0 =

Lz. We apply the Poisson summation formula, taking into account the previously

mentioned identities, therefore coming up with:

∑
m

e−( z
Lz

+m)
2
t =

(π
t

) 1
2

+∞∑
k=−∞

ei2πk
z
Lz e−

π2k2

t . (A.19)

⇒ Ψr(s) =
1

L2s
z Γ(s)

∫ +∞

t=0

ts−1e−( ρ
Lz

)
2
t
(π
t

) 1
2

×

[
+∞∑

k=−∞,k 6=0

ei2πk
z
Lz e−

π2k2

t + 1

]
dt. (A.20)
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At this point we switch the order of the sum and integral, hence the integral comes

inside the sum over k:

Ψr(s) =
π1/2

L2s
z Γ(s)

+∞∑
k=−∞,k 6=0

ei2πk
z
Lz

∫ +∞

t=0

ts−3/2e−( ρ
Lz

)
2
te−

π2k2

t dt

+
π1/2

L2s
z Γ(s)

∫ +∞

t=0

ts−3/2e−( ρ
Lz

)
2
tdt. (A.21)

From Equation A.21 we can extract the integral:

I =

∫ +∞

t=0

ts−3/2e−( ρ
Lz

)
2
te−

π2k2

t dt. (A.22)

We have solved this integral in Mathematica software package [76]:

I = 23/2−s
(
Lz
ρ

)s−1/2

(2πk)s−1/2Ks−1/2

(
2πk

ρ

Lz

)
, (A.23)

where Kn (u) is the modified Bessel function of the second kind [123].

This expression can be simplified in the following manner:

I = 23/2−s
(

2πk
Lz
ρ

)s−1/2

Ks−1/2

(
2πk

ρ

Lz

)
. (A.24)

By replacing the expression for the integral I from Equation A.24 to the sum in the

first term in Equation A.21, we obtain:

+∞∑
k=−∞,k 6=0

ei2πk
z
Lz

[
2

(
πk
Lz
ρ

)s−1/2

Ks−1/2

(
2πk

ρ

Lz

)]
=

+∞∑
k=−∞,k 6=0

ei2πk
z
Lz f(k).

(A.25)

Applying the identity:

cos

(
2πk

z

Lz

)
=
ei2πk

z
Lz + e−i2πk

z
Lz

2
, (A.26)

we come up with the next expression:

+∞∑
k=−∞,k 6=0

ei2πk
z
Lz f(k) =

(
2

+∞∑
k=1

cos

(
2πk

z

Lz

)
f(k)

)
. (A.27)
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Hence, the first term of Equation A.21 is equal to:

π1/2

L2s
z Γ(s)

× 4
+∞∑
k=1

cos

(
2πk

z

Lz

)(
πk
Lz
ρ

)s−1/2

Ks−1/2

(
2πk

ρ

Lz

)
.

So far we have computed the first term in Equation A.21 for k 6= 0 and now we

should compute the second term which corresponds to k = 0, which means that we

should compute the integral:

II =

∫ +∞

t=0

ts−3/2e−( ρ
Lz

)
2
tdt. (A.28)

We notice that Equation A.12 which represents the integral representation of the

Gamma function can be a good starting point for this. Setting the exponent to

s− 1/2 instead of s gives us:

a−(s−1/2) =
1

Γ(s− 1/2)

∫ +∞

t=0

ts−3/2e−atdt, (A.29)

⇒ a−(s−1/2)Γ(s− 1/2) =

∫ +∞

t=0

ts−3/2e−atdt. (A.30)

By comparing the right-hand side of Equations A.30 and A.28 we conclude that we

can say a =
(

ρ
Lz

)2

which enables the solution of the integral II:

II = a−(s−1/2)Γ(s− 1/2). (A.31)

Hence, the second term of Equation A.21 is equal to π1/2

L2s
z Γ(s)

(
ρ
Lz

)1−2s

Γ
(
s− 1

2

)
.

Finally, the expression for the lattice sum Ψr(s) is:

Ψr(s) =
4π1/2

L2s
z Γ(s)

+∞∑
k=1

(
cos

(
2πk

z

Lz

)(
π2k2L2

z

ρ2

)s/2−1/4

Ks−1/2

(
2πk

ρ

Lz

))

+
π1/2

L2s
z Γ(s)

(
ρ

Lz

)1−2s

Γ

(
s− 1

2

)
. (A.32)

The other unknown lattice sum from Equation A.11 is Ξr,ξ(s). Let us apply a

procedure analogous to the previous derivation of the unknown lattice sum Ψr(s).
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In the first step, using the integral representation of the Gamma function from

Equation A.12 and the definition of the parameter a as in Equation A.13 we obtain:

Ξr,ξ(s) =
e−i
−→
ξρ ·−→ρ

L2s
z Γ(s)

∑
m

e−iξz(z+mLz)

∫ +∞

t=0

ts−1e
−
[
( ρ
Lz

)
2
+( z

Lz
+m)

2
]
t
dt. (A.33)

Now we use the complete Poisson summation formula from Equation A.18 (ξz 6= 0)

which leads to:

Ξr,ξ(s) =
e−i
−→
ξρ ·−→ρ π1/2

L2s
z Γ(s)

∫ +∞

t=0

ts−3/2e−( ρ
Lz

)
2
t

+∞∑
k=−∞

ei2πk
z
Lz e−

(2πk+ξzLz)
2

4t dt. (A.34)

By placing the sum in front of the integral (which is the same step like in Equa-

tion A.21) we obtain:

Ξr,ξ(s) =
e−i
−→
ξρ ·−→ρ π1/2

L2s
z Γ(s)

+∞∑
k=−∞

ei2πk
z
Lz

∫ +∞

t=0

ts−3/2e−( ρ
Lz

)
2
te−

(2πk+ξzLz)
2

4t dt. (A.35)

In the expression for Ξr,ξ(s) in Equation A.35 we have encountered the same in-

tegral I like in Equation A.22. By replacing its solution from Equation A.23 into

Equation A.35 we obtain the final expression for the lattice sum Ξr,ξ(s):

Ξr,ξ(s) =
e−i
−→
ξρ ·−→ρ π1/2

L2s
z Γ(s)

+∞∑
k=−∞

ei2πk
z
Lz 23/2−s

(
Lz
ρ

)s−1/2

× (2πk + ξzLz)
s−1/2Ks−1/2

(
|2πk + ξzLz|

ρ

Lz

)
. (A.36)

Simplification of the previous expression leads to:

Ξr,ξ(s) =
2π1/2e−i

−→
ξρ ·−→ρ

L2s
z Γ(s)

+∞∑
k=−∞

ei2πk
z
Lz

(
(ξzLz + 2πk)2 L2

z

4ρ2

)s/2−1/4

×Ks−1/2

(
|ξzLz + 2πk| ρ

Lz

)
. (A.37)

Now, as we have derived the general expression for the lattice sum Ξr,ξ(s), we can

proceed to the derivation of the general expression for the cross energy from Equa-

tion A.11. The next step is the application of the operator:
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(−→µi · 5ξ)(
−→µj · 5ξ),

where due to the simplicity reasons we introduce the variables: ηz = 2πz
Lz

and

ηρ = 2πρ
Lz

. We first apply the next scalar product:

(−→µj · 5ξ) =

(
µxj

∂

∂ξx
+ µyj

∂

∂ξy
+ µzj

∂

∂ξz

)
. (A.38)

We can introduce the substitution A = 2π1/2

L2s
z Γ(s)

and label the part of the function

Ξr,ξ(s) that depends just on ξz as F (ξz):

Ξr,ξ(s) = Ae−i(ξxx+ξyy)F (ξz), (A.39)

F (ξz) =
+∞∑

k=−∞

ei2πk
z
Lz

(
(ξzLz + 2πk)2 L2

z

4ρ2

)s/2−1/4

×Ks−1/2

(
|ξzLz + 2πk| ρ

Lz

)
. (A.40)

Application of the operator (−→µj · 5ξ) on Ξr,ξ(s) gives:

(i)

µxj
∂

∂ξx
Ξr,ξ(s) = µxj (−ix)Ae−i(ξxx+ξyy)F (ξz). (A.41)

(ii)

µyj
∂

∂ξy
Ξr,ξ(s) = µyj (−iy)Ae−i(ξxx+ξyy)F (ξz). (A.42)
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(iii)

µzj
∂

∂ξz
Ξr,ξ(s) = µzjAe

−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

×

[(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
(ξzLz + 2πk)(2s−3)/2 LzKs−1/2(α)

+

(
(ξzLz + 2πk)Lz

2ρ

)(2s−1)/2

ρ
∂Ks−1/2(α)

∂α

]
. (A.43)

In the previous equation, due to the simplicity of the further analysis, the argument

of the modified Bessel functions Ks−1/2 is labeled as α:

|ξzLz + 2πk| ρ
Lz

= α.

In order to obtain the full expression for (−→µj ·5ξ)Ξr,ξ(s), let us make a summation

of all three components computed in the previous equations. Prior to obtaining the

final expression it is convenient to write down the terms that correspond to the x, y

components separately from the terms that correspond to the z component:

Pxy = (−i)
(
µxjx+ µyjy

)((ξzLz + 2πk)Lz
2ρ

)(2s−1)/2

Ks−1/2(α),

Pz = µzj

[(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
(ξzLz + 2πk)(2s−3)/2 LzKs−1/2(α)

+

(
(ξzLz + 2πk)Lz

2ρ

)(2s−1)/2

ρ
∂Ks−1/2(α)

∂α

]
.

The application of the scalar product (−→µj · 5ξ) on the lattice sum Ξr,ξ(s) gives:

(−→µj · 5ξ)Ξr,ξ(s) = Ae−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

(Pxy + Pz) . (A.44)

Bearing in mind the practical importance of simplifying the forthcoming computa-

tions, let us repeat the definition of α and introduce another two variables, β and
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γ:

α = |ξzLz + 2πk| ρ
Lz
,

β = (ξzLz + 2πk)
Lz
2ρ
,

γ = ξzLz + 2πk.

The expression in Equation A.44 can be represented as a sum of three indepen-

dent terms, and each of those terms will be treated separately:

Term C1

C1 = (−i)−→µj ρ · −→ρ Ae−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α), (A.45)

Term C2

C2 = Ae−i
−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
γ(2s−3)/2LzKs−1/2(α), (A.46)

Term C3

C3 = Ae−i
−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α
. (A.47)

The next step is the application of the scalar product

−→µi ·
−→
∇ξ = µxi

∂

∂ξx
+ µyi

∂

∂ξy
+ µzi

∂

∂ξz

on Equation A.44, which produces new terms.

In the mentioned scalar product there are three independent operators which act

on each of the three terms {C1, C2, C3}, hence producing nine new terms, numerated

as Cij, with i ∈ {1, 2, 3} , j ∈ {1, 2, 3}.
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In the next equation we write down the term C11:

Term C11

C11 = µxi
∂

∂ξx

[
(−i)−→µj ρ · −→ρ Ae−i

−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α)

]
. (A.48)

Since it stands
∂

∂ξx
e−i
−→
ξρ ·−→ρ = (−ix)e−i

−→
ξρ ·−→ρ , (A.49)

the final expression for the term C11 becomes

C11 = −xµxi−→µj ρ · −→ρ Ae−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α). (A.50)

In the next equation we write down the term C21:

Term C21

C21 = µyi
∂

∂ξy

[
(−i)−→µj ρ · −→ρ Ae−i

−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α)

]
. (A.51)

Since it stands
∂

∂ξy
e−i
−→
ξρ ·−→ρ = (−iy)e−i

−→
ξρ ·−→ρ , (A.52)

the final expression for the term C21 becomes

C21 = −yµyi
−→µj ρ · −→ρ Ae−i

−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α). (A.53)

In the next equation we write down the term C12:

Term C12

C12 = µxi
∂

∂ξx
Ae−i

−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
×γ(2s−3)/2LzKs−1/2(α). (A.54)
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Taking into account Equation A.49 the final expression for the term C12 becomes:

C12 = −ixµxi µzjAe−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
×γ(2s−3)/2LzKs−1/2(α). (A.55)

In the next equation we write down the term C22:
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Term C22

C22 = µyi
∂

∂ξy
Ae−i

−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
×γ(2s−3)/2LzKs−1/2(α). (A.56)

Taking into account Equation A.52 the final expression for the term C22 becomes:

C22 = −iyµyiµzjAe−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
×γ(2s−3)/2LzKs−1/2(α). (A.57)

In the next equation we write down the term C13:

Term C13

C13 = µxi
∂

∂ξx

[
Ae−i

−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α

]
. (A.58)

Taking into account Equation A.49 the final expression for the term C13 becomes:

C13 = −ixµxi µzjAe−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α
. (A.59)

In the next equation we provide the term C23:

Term C23

C23 = µyi
∂

∂ξy

[
Ae−i

−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α

]
. (A.60)

Taking into account Equation A.52 the final expression for the term C23 becomes:

C23 = −iyµyiµzjAe−i
−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α
. (A.61)

In the next equation we provide the term C31:
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Term C31

C31 = µzi
∂

∂ξz

[
(−i)−→µj ρ · −→ρ Ae−i

−→
ξρ ·−→ρ

+∞∑
k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α)

]
. (A.62)

In the term C31 we encounter two constituents of the expression depending on ξz

(i.e., β(2s−1)/2 and Ks−1/2(α)) and therefore we obtain two terms inside the square

brackets, according to the product rule for derivatives:

C31 = (−i)−→µj ρ · −→ρ µziAe−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

[
(2s− 1)

2
β(2s−3)/2L

2
z

2ρ
Ks−1/2(α)

+β(2s−1)/2ρ
∂Ks−1/2(α)

∂α

]
. (A.63)

In the next equation we write down the term C32:

Term C32

C32 = µzi
∂

∂ξz
Ae−i

−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
×γ(2s−3)/2LzKs−1/2(α). (A.64)

Similarly to the case of term C31 we obtain:

C32 = µziµ
z
jAe

−i
−→
ξρ ·−→ρ

(
Lz
2ρ

)(2s−1)/2

Lz

(
2s− 1

2

)
×

+∞∑
k=−∞

eikη
z

[(
2s− 3

2

)
γ(2s−5)/2LzKs−1/2(α)

+γ(2s−3)/2ρ
∂Ks−1/2(α)

∂α

]
. (A.65)

In the next equation we write down the term C33:
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Term C33

C33 = µzi
∂

∂ξz

[
Ae−i

−→
ξρ ·−→ρ µzj

+∞∑
k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α

]
. (A.66)

Similarly to the previous two terms we obtain:

C33 = µziµ
z
jAe

−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

ρ

[(
2s− 1

2

)
β(2s−3)/2

(
L2
z

2ρ

)
∂Ks−1/2(α)

∂α

+β(2s−1)/2ρ
∂2Ks−1/2(α)

∂α2

]
. (A.67)

As we have obtained all nine terms Cij, i, j ∈ {1, 2, 3}, the next step is grouping

them according to the mutual sum over k or mutual constituent terms.

Group 1

This group includes the sum
∑+∞

k=−∞ e
ikηzβ(2s−1)/2Ks−1/2(α), hence GR1 = C11+C21,

GR1 = − (−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )Ae−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

β(2s−1)/2Ks−1/2(α). (A.68)

Group 2

This group includes the sum
∑+∞

k=−∞ e
ikηz
(
Lz
2ρ

)(2s−1)/2 (
2s−1

2

)
γ(2s−3)/2LzKs−1/2(α),

hence GR2 = C12 + C22,

GR2 = (−i) (−→µi ρ · −→ρ )µzjAe
−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
γ(2s−3)/2LzKs−1/2(α). (A.69)

Group 3

This group includes the sum
∑+∞

k=−∞ e
ikηzβ(2s−1)/2ρ

∂Ks−1/2(α)

∂α
, therefore GR3 = C13 +
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C23,

GR3 = (−i) (−→µi ρ · −→ρ )µzjAe
−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

β(2s−1)/2ρ
∂Ks−1/2(α)

∂α
. (A.70)

Group 4

This group includes the mutual factor µziµzj , therefore GR4 = C32 + C33,

GR4 = µziµ
z
jAe

−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

{(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)(
2s− 2

3

)
γ(2s−5)/2L2

zKs−1/2(α)

+

(
Lz
2ρ

)(2s−1)/2(
2s− 1

2

)
γ(2s−2)/3Lzρ

∂Ks−1/2(α)

∂α

+ρ

(
2s− 1

2

)
β(2s−3)/2

(
L2
z

2ρ

)
∂Ks−1/2(α)

∂α

+β(2s−1)/2ρ2∂
2Ks−1/2(α)

∂α2

}
. (A.71)

Group 5

This group includes the factor (−→µj ρ · −→ρ )µzi , hence GR5 = C31,

GR5 = (−i) (−→µj ρ · −→ρ )µziAe
−i
−→
ξρ ·−→ρ

×
+∞∑

k=−∞

eikη
z

[
(2s− 1)

2
β(2s−3)/2

(
L2
z

2ρ

)
Ks−1/2(α)

+β(2s−1)/2ρ
∂Ks−1/2(α)

∂α

]
. (A.72)

At this point let us overview what have we realized up to this step, towards

obtaining the expression for the cross energy from Equation A.11. We have derived

the expression for Ψr(s) and the expressions for (−→µi · 5ξ)(
−→µj · 5ξ)Ξr,ξ(s), written

down as GRi, i = 1, 5, bearing in mind that (−→µi · 5ξ)(
−→µj · 5ξ)Ξr,ξ(s) =

∑5
i=1GRi.

By applying s = 3/2 in Equation A.11 we obtain the expression for the cross energy

in case of the DDI, hence we should compute the terms: −→µi−→µjΨrij (3/2) and (−→µi ·

5ξ)(
−→µj ·5ξ)Ξrij,ξ(5/2)|ξ=0. We proceed the derivations by determining the first term
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in Equation A.11, i.e., −→µi−→µjΨrij (3/2):

Ψr(3/2) =
4
√
π

L3
zΓ(3/2)

+∞∑
k=1

cos (kηz)

(
πkLz
ρ

)
K1 (kηρ)

+

√
π

L3
zΓ(3/2)

(
ρ

Lz

)−2

Γ(1). (A.73)

Taking into account the facts that Γ(3/2) =
√
π

2
,Γ(1) = 1 [76],

⇒ Ψr(3/2) =
8π

L2
zρ

+∞∑
k=1

k cos (kηz)K1 (kηρ) +
2

Lzρ2
. (A.74)

We might write the scalar product −→µi · −→µj as:

(−→µi ρ, µzi ) ·
(−→µj ρ, µzj) = −→µi ρ · −→µj ρ + µziµ

z
j . (A.75)

⇒ −→µi−→µjΨrij (3/2) =
(−→µi ρ · −→µj ρ + µziµ

z
j

) 8π

L2
zρ

+∞∑
k=1

k cos (kηz)K1 (kηρ)

+
(−→µi ρ · −→µj ρ + µziµ

z
j

) 2

Lzρ2
. (A.76)

We have obtained the first term in Equation A.11 and now we proceed the deriva-

tions by obtaining the second term, i.e., 3(−→µi ·5ξ)(
−→µj ·5ξ)Ξrij,ξ(5/2)|ξ=0. By taking

s = 5/2 and setting ξ = 0 we come up with:

Group 1 (s = 5/2) |ξ=0

GR1 (s = 5/2) |ξ=0 = − (−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

4π2k2K2 (kηρ) . (A.77)
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Group 2 (s = 5/2) |ξ=0

GR2 (s = 5/2) |ξ=0 = (−i) (−→µi ρ · −→ρ )µzj
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

4πkLzK2 (kηρ) . (A.78)

Group 3 (s = 5/2) |ξ=0

GR3 (s = 5/2) |ξ=0 = (−i) (−→µi ρ · −→ρ )µzj
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

4π2k2ρ
∂K2 (kηρ)

∂ (kηρ)
. (A.79)

Group 4 (s = 5/2) |ξ=0

GR4 (s = 5/2) |ξ=0 = µziµ
z
j

2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

{
1

2−1
L2
zK2 (kηρ)

+4Lzπkρ
∂K2 (kηρ)

∂ (kηρ)

+4ρπkLz
∂K2 (kηρ)

∂ (kηρ)

+4π2k2ρ2∂
2K2 (kηρ)

∂ (kηρ)2

}
. (A.80)

Group 5 (s = 5/2) |ξ=0

GR5 (s = 5/2) |ξ=0 = (−i) (−→µj ρ · −→ρ )µzi
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

[
1

4−1
πkLzK2 (kηρ)

+4π2k2ρ
∂K2 (kηρ)

∂ (kηρ)

]
. (A.81)

We notice that in allGRi terms a modified Bessel function of the second kind with

index 2, i.e., K2 (u) figures, together with its first and second derivative. In order to

simplify the above mentioned terms, we express K2 (u), as well as its derivatives, in
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function of K0 (u) and K1 (u). Let us remind about the recurrence relations which

apply to the modified Bessel function of the second kind [123]:

2ν

u
Fν (u) = Fν−1 (u)− Fν+1 (u) , (A.82)

and to its derivative [123]:

∂Fν (u)

∂u
= Fν−1 (u)− ν

u
Fν (u) = Fν+1 (u) +

ν

u
Fν (u) , (A.83)

where Fν (u) = eiπνKν (u).

Utilizing the above mentioned relations and knowing that F0 (u) = K0 (u) , F1 (u) =

−K1 (u) , F2 (u) = K2 (u) we come up with the expression for K2(u) in function of

K0(u) and K1(u):

K2 (u) = K0 (u) +
2

u
K1 (u) . (A.84)

For its first derivative we get:

∂K2 (u)

∂u
= −K1 (u)− 2

u
K2 (u) , (A.85)

where, replacing K2(u) from Equation A.84, we get:

∂K2 (u)

∂u
= −2

u
K0(u)−K1(u)− 4

u2
K1(u). (A.86)

The second derivative ∂2K2(u)
∂u2

is computed straightforward by taking the first deriva-

tive of Equation A.86:

∂2K2 (u)

∂u2
= −2

(
−K0(u)

u2
+

1

u

∂K0 (u)

∂u

)
− ∂K1 (u)

∂u

−4

(
− 2

u3
K1(u) +

1

u2

∂K1 (u)

∂u

)
. (A.87)

From the recurrence relation given in Equation A.83 we obtain:

∂K0 (u)

∂u
= −K1(u),

∂K1 (u)

∂u
= −K2(u) +

1

u
K1(u), (A.88)
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which together with Equation A.84 leads to the final expression for the second

derivative ∂2K2(u)
∂u2

:

∂2K2 (u)

∂u2
= K0(u) +

6

u2
K0(u) +

3

u
K1(u) +

12

u3
K1(u). (A.89)

Now we replace K2(u), ∂K2(u)
∂u

, ∂
2K2(u)
∂u2

(knowing that u = kηρ) in Equations A.77

to A.81, coming up with:

Group 1 (s = 5/2) |ξ=0

GR1 (s = 5/2) |ξ=0 = − (−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

4π2k2

(
K0 (kηρ) +

2

kηρ
K1 (kηρ)

)
,(A.90)

⇒ GR1 (s = 5/2) |ξ=0 = − (−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )

[
8π2

3L3
zρ

2
×

+∞∑
k=−∞

k2eikη
z

K0 (kηρ)

+
8π

3L2
zρ

3
×

+∞∑
k=−∞

keikη
z

K1 (kηρ)

]
. (A.91)

Group 2 (s = 5/2) |ξ=0

GR2 (s = 5/2) |ξ=0 = (−i) (−→µi ρ · −→ρ )µzj
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z

4πkLz

(
K0 (kηρ) +

2

kηρ
K1 (kηρ)

)
,(A.92)

⇒ GR2 (s = 5/2) |ξ=0 = (−i) (−→µi ρ · −→ρ )µzj

[
8π

3L2
zρ

2
×

+∞∑
k=−∞

keikη
z

K0 (kηρ)

+
8

3Lzρ3
×

+∞∑
k=−∞

eikη
z

K1 (kηρ)

]
. (A.93)
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Group 3 (s = 5/2, ξ = 0)

GR3 (s = 5/2) |ξ=0 = (−i) (−→µi ρ · −→ρ )µzj
2

3L3
zρ

2
×

+∞∑
k=−∞

eikη
z

4π2k2

(
− 2

kηρ
K0 (kηρ)−K1 (kηρ)− 4

(kηρ)2K1 (kηρ)

)
(A.94)

⇒ GR3 (s = 5/2) |ξ=0 = (−i) (−→µi ρ · −→ρ )µzj

[
− 8π

3L2
zρ

2
×

+∞∑
k=−∞

keikη
z

K0 (kηρ)

− 8π2

3L3
zρ
×

+∞∑
k=−∞

k2eikη
z

K1 (kηρ)

− 8

3Lzρ3
×

+∞∑
k=−∞

eikη
z

K1 (kηρ)

]
. (A.95)

Group 4 (s = 5/2) |ξ=0

GR4 (s = 5/2) |ξ=0 = µziµ
z
j

2

3L3
zρ

2
×

+∞∑
k=−∞

eikη
z

×
[
2L2

zT1 + 4LzπkρT2 + 4ρπkLzT3 + 4π2k2ρ2T4

]
(A.96)

where the terms T1, T2, T3, T4 are defined as:

T1 = K0 (kηρ) +
2

kηρ
K1 (kηρ) , (A.97)

T2 = − 2

kηρ
K0 (kηρ)−K1 (kηρ)− 4

(kηρ)2K1 (kηρ) , (A.98)

T3 = − 2

kηρ
K0 (kηρ)−K1 (kηρ)− 4

(kηρ)2K1 (kηρ) , (A.99)

T4 = K0 (kηρ) +
6

(kηρ)2K0 (kηρ) +
3

kηρ
K1 (kηρ) +

12

(kηρ)3K1 (kηρ) , (A.100)
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respectively.

⇒ GR4 (s = 5/2) |ξ=0 = µziµ
z
j

[
− 4π

3L2
zρ
×

+∞∑
k=−∞

keikη
z

K1 (kηρ)

+
8π2

3L3
z

×
+∞∑

k=−∞

k2eikη
z

K0 (kηρ)

]
. (A.101)

Group 5 (s = 5/2) |ξ=0

GR5 (s = 5/2) |ξ=0 = (−i) (−→µj ρ · −→ρ )µzi
2

3L3
zρ

2

×
+∞∑

k=−∞

eikη
z [

4πkLzR1 + 4π2k2ρR2

]
, (A.102)

where the terms R1, R2 are defined as:

R1 = K0 (kηρ) +
2

kηρ
K1 (kηρ) , (A.103)

R2 = − 2

kηρ
K0 (kηρ)−K1 (kηρ)− 4

(kηρ)2K1 (kηρ) , (A.104)

respectively.

⇒ GR5 (s = 5/2) |ξ=0 = (−i) (−→µj ρ · −→ρ )µzi

[
− 8π2

3L3
zρ

+∞∑
k=−∞

k2eikη
z

K1 (kηρ)

]
. (A.105)

We can furthermore simplify the Equations A.90 to A.105 applying the relations:

eikη
z

+ e−ikη
z

= 2 cos (kηz) , eikη
z − e−ikηz = 2i sin (kηz) , (A.106)

that allow us to switch from the
∑+∞

k=−∞ summation to the
∑+∞

k=1 summation, where

the case k = 0 should be considered separately. Accordingly, let us resolve the k = 0

case first:

(−→µi · 5ξ)(
−→µj · 5ξ)Ξrij,ξ(5/2)|ξ=0,k=0 =

5∑
i=1

GRi (s = 5/2|ξ=0,k=0 . (A.107)
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Based on the next relations [123]:

u2K1 (u)→ 0, u2K0 (u)→ 0, uK1 (u)→ 1, (A.108)

which are valid when k → 0, setting that u = kηρ we obtain that:

5∑
i=1

GRi (s = 5/2) |ξ=0,k=0 = − 8π

3L2
zρ

3

Lz
2πρ

(−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )

− 4π

3L2
zρ

Lz
2πρ

µziµ
z
j , (A.109)

⇒
5∑
i=1

GRi (s = 5/2) |ξ=0,k=0 = − 4

3Lzρ4
(−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )− 2

3Lzρ2
µziµ

z
j . (A.110)

Now we resolve the k 6= 0 case:

(−→µi · 5ξ)(
−→µj · 5ξ)Ξrij,ξ(5/2)|ξ=0,k 6=0 =

5∑
i=1

GRi (s = 5/2) |ξ=0,k 6=0. (A.111)

Let us modify the expressions for GRi (s = 5/2) |ξ=0 following the Equation A.106:

Group 1 (s = 5/2) |ξ=0,k 6=0

GR1 (s = 5/2) |ξ=0,k 6=0 = − (−→µi ρ · −→ρ ) (−→µj ρ · −→ρ )

[
16π2

3L3
zρ

2
×

+∞∑
k=1

k2 cos (kηz)K0 (kηρ)

+
16π

3L2
zρ

3
×

+∞∑
k=1

k cos (kηz)K1 (kηρ)

]
. (A.112)

Group 2 (s = 5/2) |ξ=0,k 6=0

GR2 (s = 5/2) |ξ=0,k 6=0 = (−→µi ρ · −→ρ )µzj

[
16π

3L2
zρ

2
×

+∞∑
k=1

k sin (kηz)K0 (kηρ)

+
16

3Lzρ3
×

+∞∑
k=1

sin (kηz)K1 (kηρ)

]
. (A.113)
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Group 3 (s = 5/2) |ξ=0,k 6=0

GR3 (s = 5/2) |ξ=0,k 6=0 = (−→µi ρ · −→ρ )µzj

[
− 16π

3L2
zρ

2
×

+∞∑
k=1

k sin (kηz)K0 (kηρ)

− 16π2

3L3
zρ
×

+∞∑
k=1

k2 sin (kηz)K1 (kηρ)

− 16

3Lzρ3
×

+∞∑
k=1

sin (kηz)K1 (kηρ)

]
. (A.114)

Group 4 (s = 5/2) |ξ=0,k 6=0

GR4 (s = 5/2) |ξ=0,k 6=0 = µziµ
z
j

[
− 8π

3L2
zρ
×

+∞∑
k=1

k cos (kηz)K1 (kηρ)

+
16π2

3L3
z

×
+∞∑
k=1

k2 cos (kηz)K0 (kηρ)

]
. (A.115)

Group 5 (s = 5/2) |ξ=0,k 6=0

GR5 (s = 5/2) |ξ=0,k 6=0 = (−→µj ρ · −→ρ )µzi

[
− 16π2

3L3
zρ

+∞∑
k=1

k2 sin (kηz)K1 (kηρ)

]
. (A.116)

We can now compute the summation from Equation A.111:

5∑
i=1

GRi (s = 5/2) |ξ=0,k 6=0 = − 8π

3L2
z

[
2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ3
ij

+
µziµ

z
j

ρij

]

×
+∞∑
k=1

k cos
(
kηzij

)
K1

(
kηρij

)
−16π2

3L3
z

[
(−→µi ρ · −→ρij)µzj + (−→µj ρ · −→ρij)µzi

ρij

]
×

+∞∑
k=1

k2 sin
(
kηzij

)
K1

(
kηρij

)
−16π2

3L3
z

[
(−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ2
ij

− µziµzj
]

×
+∞∑
k=1

k2 cos
(
kηzij

)
K0

(
kηρij

)
. (A.117)

Adding up the result from Equation A.110 for k = 0 to the result from Equa-
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tion A.117 for k 6= 0 we obtain:

(−→µi · 5ξ)(
−→µj · 5ξ)Ξrij,ξ(5/2)|ξ=0 = − 8π

3L2
z

[
2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ3
ij

+
µziµ

z
j

ρij

]
×

+∞∑
k=1

k cos
(
kηzij

)
K1

(
kηρij

)
−16π2

3L3
z

[
(−→µi ρ · −→ρij)µzj + (−→µj ρ · −→ρij)µzi

ρij

]
×

+∞∑
k=1

k2 sin
(
kηzij

)
K1

(
kηρij

)
−16π2

3L3
z

[
(−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ2
ij

− µziµzj
]

×
+∞∑
k=1

k2 cos
(
kηzij

)
K0

(
kηρij

)
− 2

3Lz

×
[

2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)
ρ4
ij

+
µziµ

z
j

ρ2
ij

]
.(A.118)

At this point, let us rewrite the expression defining the cross energy:

Ecross =
1

2

N∑
i=1

N∑
j=1,j 6=i

[−→µi−→µjΨrij(3/2) + 3(−→µi · 5ξ)(
−→µj · 5ξ)Ξrij,ξ(5/2)|ξ=0

]
. (A.119)

From Equation A.76 we take the term −→µi−→µjΨrij (3/2) and from Equation A.118 we

take the term (−→µi · 5ξ)(
−→µj · 5ξ)Ξrij,ξ(5/2)|ξ=0 and multiply it by 3, which leads to
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the final form of the cross energy:

Ecross =
1

2

N∑
i=1

N∑
j=1,j 6=i

{
−8π

L2
z

[
2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ3
ij

− (−→µi ρ · −→µj ρ)
ρij

]

×
+∞∑
k=1

k cos
(
kηzij

)
K1

(
kηρij

)
−16π2

L3
z

[
(−→µi ρ · −→ρij)µzj + (−→µj ρ · −→ρij)µzi

ρij

]
×

+∞∑
k=1

k2 sin
(
kηzij

)
K1

(
kηρij

)
−16π2

L3
z

[
(−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ2
ij

− µziµzj
]

×
+∞∑
k=1

k2 cos
(
kηzij

)
K0

(
kηρij

)
− 2

Lz

[
2 (−→µi ρ · −→ρij) (−→µj ρ · −→ρij)

ρ4
ij

− (−→µi ρ · −→µj ρ)
ρ2
ij

]}
. (A.120)

We should note that the expressions for Ψr(s),Ξr,ξ(s) and consequently for Ecross

are undefined in case −→ρ = 0. Hence, the previously written expressions are valid

under the condition −→ρ 6= 0. For the special case −→ρ = 0, i.e., when two dipoles have

the same x and y coordinate (the position vector connecting them is parallel to the

z axis), the next equation for Ψr(s = 3/2) applies [89]:

Ψr(3/2)|−→ρ =0 = − 1

L3
z

[
Ψ”
(
|z|
Lz

)
+ π3 cos

(
π|z|
Lz

)
sin−3

(
π|z|
Lz

)]
, (A.121)

where Ψ” is the tetra-gamma function [123]. Using Equations A.118 and A.121 we

obtain the cross energy in case −→ρij = 0 as:

Ecross|−→ρij=0 =
1

2

N∑
i=1

N∑
j=1,j 6=i

{
Tp

[
Ψ”
(
|zij|
Lz

)
+ π3 cos

(
π|zij|
Lz

)
sin−3

(
π|zij|
Lz

)]}
,

(A.122)

where the term Tp is defined as:

Tp = −
(−→µi ρ · −→µj ρ)− 2µziµ

z
j

L3
z

. (A.123)
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Appendix B Conjugate gradient method

The conjugate gradient (CG) method represents a general method for minimiz-

ing function f (~x), where f can be any function of argument ~x in N -dimensional

space [124]. In our case, we want to minimize the potential energy of atoms in the

system, hence f = V , where the independent variable ~x are the positions of our

atoms ~ri, i = 1, ..., N . The parameter space over which the minimization is realized

is 3N -dimensional, since it stands that:

~r = (r1x, r1y, r1z, r2x, r2y, r2z, r3x, r3y, r3z, ..., rNx, rNy, rNz) . (B.1)

We can state that we are interested in minimization of the function V (~r). In the

CG method, the gradient of the function, which is in our case the force, since it

stands ~F = −∇V , is used for finding the minimum of the function. The gradient

determines in which direction the function changes the most rapidly. Bearing this

in mind, we can come up with a natural, but not very efficient way to minimize the

energy, which is to always move in the direction of the negative gradient, since neg-

ative gradient means lowering the function value. This method is known as steepest

descent method and for MD systems its algorithm can be defined as [125]:

Step(0): start from the point ~r0 setting up j = 0

Step(1): calculate Vj (~rj) and ~Fj = −∇Vj (~rj)

Step(2): if Vj−1−Vj < ε (where ε is the chosen convergence tolerance, usually at the

order of 10−6) then end the algorithm

Step(3): minimize V
(
~rj + α~Fj

)
by varying the scalar quantity α

Step(4): update ~rj+1 = ~rj + α~Fj; j = j + 1

Step(5): return to the step (1)

The line minimization in step (3) is a one dimensional operation in which the min-
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imum of a function is looked for by moving in a defined direction α~Fj. Let us now

explain how does the line minimization work. The line minimization is a straight-

forward operation which is carried out in two steps [124]:

(i) confirm that there is a minimum and bracket it

(ii) search for that minimum with a given accuracy

Step (i) is easy to conduct: starting from a point ~r and known direction ~F , we

move forward along some direction β ~F . If the following conditions are met (for the

illustration check Figure B.1):

V

(
~r +

β ~F

2

)
< V (~r) , V

(
~r +

β ~F

2

)
< V

(
~r + β ~F

)
, V (~r) < V

(
~r + β ~F

)
(B.2)

then the minimum is bracketed with these three points:{
V (~r) , V

(
~r +

β ~F

2

)
, V
(
~r + β ~F

)}
. (B.3)

In case the above mentioned conditions are not met, we increase β and try again

until we meet the conditions.

As the step (i) of bracketing the minimum is completed, we move on to the step

(ii) of searching for that minimum within the given accuracy. One way of doing

this is applying bisection. However, it turns out that it is better to apply golden

section rule, which means that the new guess for the minimum is distant from either

ends
(

1+
√

5
2
− 1
)
· 100% = 61.803% of the distance between the ends, i.e., points (1)

and (2) from Figure B.1 are the ends in the first iteration of the procedure. Later

on, the bracketing narrows around the minimum with the goal of converging to it.

The golden section rule tells us how should we narrow down the bracketing interval,

i.e., the distance between the ends. Besides the line minimization which includes

bracketing and golden section rule search for the minimum, there is another method

which is called inverse parabolic interpolation. The name comes from the fact that

a parabola is fitted through the points {a, b, c} which correspond to the points (1),

(2), (3) from Figure B.1. Our guess for the minimum of the curve we are looking for,
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1

2

3

V(r)

V(r + F)

V(r + F/2)

4

5
6

Figure B.1: Bracketing a minimum, points (1), (2) and (3) are the initial bracketing
points, jumps to the points (4), (5) and (6), respectively, illustrate the process of
line minimization and convergence towards the minimum of the given red curve.

is the minimum of the fitting parabola x, which is computed by the formula [124]:

x = b− 1

2

(b− a)2 [V (b)− V (c)]− (b− c)2 [V (b)− V (a)]

(b− a) [V (b)− V (c)]− (b− c) [V (b)− V (a)]
. (B.4)

After the current parabola is fitted, we replace one of the ending points a or c by point

x (this depends on which side of point b is current x) and the inverse parabolic inter-

polation is repeated. This process of inverse parabolic interpolation continues until

the minimum is found with the given accuracy. An advanced method of line min-

imization built-up upon the previously presented ones is the Brent’s method [124].

It employs the inverse parabolic interpolation (IPI) and changes to the golden sec-

tion in case that there are problems with IPI. We have explained the basis of the

steepest descent (SD) approach and the Brent’s line minimization. A further step

in advancing the minimization algorithms would be their combination. However,

such a combined minimization method is not too efficient in many-dimensional pa-

rameter spaces because there is a high chance of SD falling into a zig-zag trajectory,

which means that the convergence towards the minimum would be very inefficient.

A question rises: how can we eliminate this obstacle of the steepest descent method

173



Appendix B

2

4

3

1

min1

min2

parabola1 through 

parabola2 through 

1 2 3

1 3 4

Figure B.2: Inverse parabolic interpolation through the points (1), (2) and (3) via
parabola1 leads to the point (4) as that parabola’s minimum, noted as min1. In
the next iteration inverse parabolic interpolation through the points (1), (3) and (4)
via parabola2 leads to that parabola’s minimum, noted as min2, which is closer to
the minimum of the red curve which we are looking for. Further inverse parabolic
interpolations lead to the convergence towards the minimum of the given red curve.

and achieve efficient convergence? The solution comes with the conjugate gradient

(CG) method where a new direction, known as conjugate direction, is chosen and it

depends on the previous direction, hence the zig-zag trajectory can be avoided. Let

us explain what does it mean to have two directions that are conjugate. Let us take

an arbitrary function f (~x) where the argument ~x is N -dimensional and write down

its Taylor series around a certain point ~T [125]:

f (~x) = f
(
~T
)

+
∑
i

∂f

∂xi

xi +
1

2

∑
i,j

∂2f

∂xi∂xj

xixj + ... ≈ c−~b · ~x+
1

2
~x ·A · ~x, (B.5)

where the scalar c is defined as c = f
(
~T
)
, the vector ~b is defined as ~b = −∇f |̃T and

the matrix A is defined as A = ∂2f
∂xi∂xj

|̃T and it is known as the Hessian matrix. Let

us label the previous direction of movement as ~u and the gradient as ~g. We want to
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determine the next direction of movement ~v. Bearing in mind that the gradient and

the previous direction of movement in a current point are orthogonal, i.e., ~g · ~u = 0

and that we want, after the next step, new gradient to be orthogonal to the previous

direction of movement, i.e., ~g∗ · ~u = 0, we come up with the condition:

~u · δ (∇f) = 0 (B.6)

which means that the change of the gradient labeled as δ (∇f) should be also per-

pendicular to the previous direction of movement vecu. We start the derivation from

the quadratic form of the function f , which is given as: f (~x) = c−~b · ~x+ 1
2
~x ·A · ~x.

The gradient of the function f derived from its quadratic form is:

∇f = A · ~x−~b. (B.7)

Now from the Equation B.7 we calculate the change of the gradient ∇f along a

certain distance labeled as δ~x is:

δ (∇f) = A · δ~x (B.8)

and now by setting that δ~x corresponds to the new direction of movement ~v, i.e.,

δ~x = ~v, we return to Equation B.6:

~u · δ (∇f) = ~u ·A · ~v = 0. (B.9)

Summing up the previous discussion, if the relation ~u · A · ~v = 0 holds, we say

that the directions ~u and ~v are conjugate. The main task of the CG method is

the computation of the new direction along which to move, hence the two vectors

~g and ~h are used for the realization of this task. At the start, there are arbitrary

initial vectors ~g0 and ~h0 = ~g0. The next equations define how are they iterated

(i = 0, 1, 2, 3, ...) [124]:

~gi+1 = ~gi − λi

(
A · ~hi

)
,~hi+1 = ~gi+1 + γi

~hi. (B.10)
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In Equation B.10 scalars λi and γi are figuring, they are defined as [124]:

λi =
~gi · ~gi

~hi ·A · ~hi

=
~gi · ~hi

~hi ·A · ~hi

(B.11)

and

γi =
~gi+1 · ~gi+1

~gi · ~gi

. (B.12)

Those vectors ~g and ~h fulfill the orthogonality and conjugation conditions [124]:

~gi · ~gj = 0,~hi ·A · ~hj = 0, ~gi · ~hj = 0 (B.13)

From Equations B.10, B.11, B.12 and B.13, by knowing the Hessian matrix A,

we are able to determine successive conjugate directions ~hi along which the line

minimization is conducted. With n such steps, where n is the dimensionality of the

problem, we can find the minimum of the quadratic form f~x. However, since the

dimensions of the Hessian matrix A are 3N×3N , the dimensionality of the problem

is n = 3N in case of energy minimization of an MD system with N particles. It is

highly inefficient to operate with the Hessian matrix in case of MD systems since

the number of particles in the system N can be up to 106. Hopefully, there is a

theorem which solves the problem by circumventing the usage of the Hessian matrix

A. It claims that if we minimize the function f in the direction ~h to a point ~xi+1,

the new gradient can be calculated as [124]:

~gi+1 = −∇f (~xi+1) (B.14)

In that case, this vector ~gi+1 would be the same as if it had been determined via

Equation B.10. More details and the proof of this theorem can be found in the chap-

ter 10 "Minimization or maximization of functions" of the book [124]. Based on the

previously presented equations we can come up with a sketch of the CG algorithm

for the energy minimization of an MD system consisting of N particles [125]:

Step(0): start from the point ~r0 setting up j = 0, V0 = V (~r0), ~q0 = −∇V (~r0),

~g0 = ~h0 = ~q0
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Figure B.3: Steepest descent method can easily fall into a zig-zag trajectory.

Step(1): minimize V (~rj + α~qj) with respect to the scalar α, after that update

~rj+1 = ~rj + α~qj and compute V (j + 1) = V (~rj+1)

Step(2): if Vj+1−Vj < ε (where ε is the chosen convergence tolerance, usually at the

order of 10−6) then end the algorithm

Step(3): compute ~qj = −∇V (~rj+1) and set Vj = V (~rj+1)

Step(4): compute γ = ~qj · ~qj/~gj · ~gj

Step(5): set ~gj+1 = ~qj

Step(6): set ~hj+1 = ~gj+1 + γ~hj and ~qj+1 = ~hj+1

Step(7): increase the counter of iterations: j = j + 1 and return to the step(1)

The algorithm we have presented is known as Fletcher-Reeves algorithm. Sometimes

it is more efficient to use its modification, known as Polak-Ribiere algorithm. The

only difference between the two algorithms is in the step (4) which is in the later

case [125]:

Step(4)∗: compute γ = (~qj + ~gj) · ~qj/~gj · ~gj.

As a concluding remark, CG method is efficient in finding a local minimum and it

is often the method of choice in MD simulations.
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