Hayuynom Behy UucTuTyTa 32 pusuky beorpan

beorpan, 21. noBem6ap 2019. ronune
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MoJi0a 3a mokpeTame MOCTYNKA 32 peu300p y 3Bambe HAYYHHU CapaTHUK

O063upoM 1a ucIymaBaM KpUTEPHjyMe IIPOITMCaHe O] cTpaHe MHUHHCTApCTBA MTPOCBETE, HAYKE U
TEXHOJIOIIKOT Pa3Boja 3a CTUIAkhC 3Baba HAYYHU capaJHuK, MojuM Haydyno Behe MHcTuTyTa 32
¢usuky beorpaa na mokpeHe MOCTYIaK 3a MOj PEH300p Y HABEICHO 3BALC.
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buorpaguja np Jyimje Hlhenanosuh

Jymmja Thenanosuh (1980) pohena je y beorpay rae 3aBpiiaBa OCHOBHY M CPEIbY
mkony (Tpehy Georpancky rumuasnjy). OCHOBHE akaZeMCKe CTyauje Ha MaTeMaTuakom
dakynrery YHuBep3utera y beorpany, cmep Actpodusuka 3aBpmiaBa 2008. rongune ca
IIPOCEYHOM OLIeHOM 8.27.

Axkaznemcke 2009/2010. ronunae ynucyje ToKTopcke cryanje Ha u3ndkom GakyaTeTy
VYuusepsutera y beorpany, cmep [lpumemena u komnjyrepcka ¢pusnka koje 3aBpiasa 2014.
roguHe. JIokTopcKy aucepralujy noja Ha3uBoM Penakcayuona ceojcmea mooena cyooughyzugrnoz
eaca Ha mpoyeanoj peuwiemku paauna je y Jlabopatopuju 3a mpuMeHy padyHapa y HayIu
WucrtutyTa 3a pusuky noxa pykoroactsoM ap Cinobonana BpxoBia, HayqHOT caBeTHHUKA
WNucrturyra 3a pusuky y beorpany.

Y Unctutyty 3a dusuky 3amnociena je o 2011. ronuae. AHra)xoBaHa je Ha IIpOjeKTy
MunHcTapcTBa 32 MPOCBETY M HAayKy “Mozenupame 1 HyMEepHIKe CUMYJIAIUje CIOKEHUX
BunlieyectTnyHux cuctema” ON171017. Ha momeHnyToM npojekTy 6aBu ce HyMEpUUKUM U
eKCTIEpUMEHTAITHAM TPOYYaBabEM IPOoIIeca Y pa3HUM HEPAaBHOTEKHUM CHCTEMHUMA, Kao IITO Cy
MIOPO3HU MaTepujaiu, CTAaKIaCTU CUCTEMH U IpaHylapHu Matepujanu. Jlo nu3bopa y 3Bame
Hay4JHOT capajHuka o0jaBuia je 2 panga kateropuje M21 u jenan pan kareropuje M22. YaecHUK
j€ HeKOoIMKO Mel)yHapo HMX IIKoJa U KOH(epeHIMja Ha KOjuMa je MpeaAcTaBuiia cBoja
UCTPAXUBAbA.

V 3Bame HayyHM capagHuk u3adpana je 25.3.2015. roqune. Ox Tor TpeHyTKa 00jaBuia je
4 pana xareropuje M21 u jenan pan xkateropuje M23. Ha iBa pana je npBu ayTop.

IIpernen nayuyne aktusHocTH Ap Jyauje [lhenanosuh

Jynuja [lThenanosuh 3amouena je cBoj UCTpaxuBauku paj y JlabopaTopuju 3a npuMeHy
pauyHapa y Hayuu MHcututyTa 3a pusuxy beorpan 2008. ronune, rae je 3anocinena og 2011.
roguHe. On 2015. ronune unax je Jlaboparopuje 3a cTaTUCTHUKY (PU3UKY KOMITJIEKCHUX
cucrema.

Hayune o6nactu kojuma ce 6aBuiia 00yxBaTajy IpoydaBame TPAHCIIOPTHUX CBOjCTaBa
pasypeheHux cucrema, Kao MITO Cy MOPO3HU MaTepHjalii, CTAKJIACTH CUCTEMH U TpaHyJlapHU
Marepujaau. OCHOBHU ITUJbEBH HEHOT pajia OmiH ¢y 60Jb€ pazyMeBame (eHOMEHA aHOMAITHE
nudysuje y cicTeMUMa Kao IITO Cy MUKPO-TIOPO3HU MaTepUjaln U cynep-oxJaleHe TeYHOCTH.
OcumM Tora, HalpaBuia je UICKOpaK Ka HOBOJ MpoOIeMaTHIIX Koja je 0aBH NMpoydyaBambHUMa HEKUX
KOMIUIEKCHUX cHCcTeMa IPUMEHOM agent-based moena.

IIpersien ocHOBHMX pe3yJiTaTa Hay4YHHMX HcTpaxkuBama Jynuje lllhenanosuh Ouhe
NPe3eHTOBAH Yy BUY pe3uMea pajoBa Koje je o0jaBuia y Mel)ynHapoaHum yaconucuma.

e D. Stojiljkovi¢, J. R.S¢epanovi¢, S. B. Vrhovac and N. M. Svrakié, "Structural properties
of particle deposits at heterogeneous surfaces™, J. Stat. Mech.: Theory and
Experiment, P06032, (2015). (M21a)

N3y4aBanu cy mporiecu Jeno3uIlHje YeCTHIa Ha XeTePOreH!M CcyrcTpatumMa. MeTtos cirydajHe
CEKBEHIIM]jaJTHe aJICOPIIHje je KopullheH 3a aHaTu3y JIeNo3ulije CPEepHUX HAHO-YEeCTUIIa Ha
HeyHU(POPMHOM TUTaHApHOM cyricTpaTy. HeyHndopMHOCT MOBPIIMHE j€ MOJIeIOBaHA IlbeHUM



MPENOKPUBakEeM KBaapaTHUM henrjama gukcHe opjerTanuje. [Ipu Tome ce henuje pacnopel)yjy
Yy YBOPOBHMMA KBaJ[paTHE PEIIETKe. Y MOy Ce MPETIIOCTaBlba Jia ce ajacopiuja chepHe
YeCTHIIC BPIIIM CaMO YKOJIMKO C€ F-CH LIEHTAp Hajla3 YHyTap Heke kBanapartHe hemumje. CBojcTBa
cHCTeMa y CTamy MPEKPUBEHOCTH 3aryliema je aHaJu3upaHa 3a kBajaparHe henuje paznux
BEIMYMHA U MHULMjAIHUX TYCTHHA MPENOKpuBama. HyMepuukum cumynaiyjaMa aHaJIu3upHa je
KMHETHKA Tpoleca aJCopIILHje U CTPYKTYpa ACTO3UTa y cTamy 3arymema. CpyKTypHa CBOjCTBa
MOKpHBaYa Cy aHATM3UPaHa KOpHUIThemheM pairjaaHe TucTpudynuje g(r) u TucTpudyiuje
Delaunay-se cno6oaue 3anpemune P(v). [Ipomenom Benuunne henuja u pacrojama usmMel)y mux
Moryhe je u3y4yaBaTu JMHAMUKY IIpolieca aJcopIiyje Ha TpaHuid u3Mely nemnosuiuje Ha
KOHTHHYaJTHOM CYIICTPATy | JETO3UIIUje Ha JUCKPETHOM CyICcTpaty (perierkn). Pesynratu
nokasyjy na 3a henuje uuja je crpanuna mama oj (12) 05y KOj€ ce Hajia3e Ha IOBOJbHO MaJIoM
pacTojamy, aCHMIITOTCKH MPUIJIa3 CHCTEMa TYCTHHH 3arylliekha je anre0apcku, Kao y ciydajy
Kaja je cynctpaT xomoreH. Ca mosehamem pacrojama u3mely henmja mopact rycrune cucrema
Ka TYCTHHHU 3aryllemha Yy TOKY BpeMeHa I0CTaje CBEe OJMKU eKCIIOHEHIIN]ATHO] 3aBUCHOCTH.
Jpyrum peunma, mpeuiokeH! MOJET I03B0JbaBa MHTEPIIONAIN]y KHHETHKE JeTI03UInje n3mely
KOHTHHYAJTHOT U JJUCKPETHOT CYIICTpaTa, a8 THME ¥ U3y4aBamke MEXaHH3aMa KOju JI0BOIE JI0
MPOMEHE aCHMIITOTCKOT MOHAIIaka MIOKPUBEHOCTH CyOcTpara. Pesynraru cyrepuiry na
MOPO3HOCT JEMO3UTa MOKE OMTH KOHTPOJIMCAHA BEJIMUYUHOM U OOJIUKOM a/icopOyjyhux
(npenenoHoBaHMX) henuja 1 aHU30TPONHjOM BUXOBe Aeno3uiyje. Jynuja [llhenanosuh
y4eCcTBOBAJIA j€ Y aHAJIM3U U MHTEIPETAU]H JOOHjEHUX pe3yiTaTa.

e J.R. Séepanovié, D. Stojiljkovié, Z. M. Jaxsi¢, Lj. Budinski-Petkovi¢ and S. B. Vrhovac,
"Response properties in the generalized random sequential adsorption model on a
triangular lattice", Physica A: Statistical Mechanics and its Applications, 451, 213 - 226,
(2016). (M21)

Ha Mozaeny peBep3nOuiIHe CEKBEHIIM]AJIHE aICOPIIIIH]E aHAIM3UPaHE Cy MOTYhHOCTH
ONTHMHU3AIIM]€ Mpolieca KOMIAaKTU(HUKaLM]e TpaHyJapHUX MaTepHujaia IpoMeHaMa UHTEH3UTeTa
excrepHe mooyze. [usb uctpaxkupama je 00 UCTPAXKUTH KaKo MTPOMEHE BEpOBaTHONE
JIecopIiiuje yop3aBajy, Wi YCIOpaBajy MmopacT ryCTUHE TOKOM Mpolieca peBep3nOniIHe
Jeno3uiyje. AHaIU3UPaH je yTULa) TeOMETPU]CKUX CBOjCTaBa JIeMOHOBaHUX 00jeKaTa Ha
OJITOBOp CHCTEMa Ha TPEHYTHY NepTypOarujy BepoBaTHohe necopruuje (Tj. Ha TPEHYTHO
CMameme NHTeH3uTeTa nodyze). [locebHa naxma je mocBeheHa cUMETPHjCKUM CBOjCTBUMA
o0jekaTa y MOJIeNy, jep ce OHa MOT'Y JIOBECTH y Be3y ca MaTepHjaJIHUM CBOjCTBUMA IPaHyJapHOT
MaTepHjaa (HeelIacTUYHOCT, TUCUITATUBHOCT Cy/lapa U KOe(PUIIMjEeHT Tpema rpanya).
[Tokazano je ma ce mpoiiec peBep3uOUITHE ACTIO3UIN]€ BUCOKO CHMETPUIHUX 00jeKaTa 3HaTHO
JIOIIIH]j€ ONITUMHU3Y]jE O JICTIO3UIM]e 00jeKaTa HUKE CHMETPH]E YKOJIUKO ce BepoBaTHOha
JIECOPIIIIHj€ CKOKOBUTO MEHa. Pazior 3a To cy MeMopHujcKu e(heKTH KOju OMTHO 3aBUCE OJT
poTalMoHe cUMeTpHje objekaTa. AHAIM30M JIBO-BPEMEHCKE KopenaluoHe (pyHKIMje TYCTHHE
MOKa3aHo je J1a Cy MEMOPHjCKHU e(peKTH 3HATHO BHILE U3PAKEHU KOJI Ipolieca JIeMO3UIInje
o0jekaTa Buiie cumerpuje. OBaj pe3ynTar yka3yje Ha TO J1a je polec KoMIakTH(UKaluje
rpyOuX M M3Pa3UTO HEENACTUYHMX TPaHyJia 3HATHO TeXe e(PUKACHO ONTUMH30BATH BPEMEHCKH



3aBUCHOM TT0Oy0M. OCHUM TOTa, aHAJIM30M IPOIleca PEBEP3UOITHE ICTTO3UIIN]e OMHAPHUX
cMemia o0jekara pa3HUX POTAIIMOHMX CHMETpPHja TIOKa3aHo je Aa TUHAMUYKH OATOBOP CUCTEMa
Ha HarIy IpOMEHY HHTEH3UTETa o0y 1e KOHTPOJIUIe 00jeKaT HUXKE CUMETpH]e. Jynnja
[IThemanoBuh je u3rpaauiaa Mojel, y4eCTBOBaJIA y IPUKYILUbaky M0IaTaKa, BbIHXOBO] aHATN3H,
WHTENPETAlU]j! U TIHCAKkY paja.

e 7Z.M. Jaksi¢, M. Cvetkovié, J. R. géepanovié, I. Loncarevi¢, Lj. Budinski-Petkovi¢ and
S. B. Vrhovac, "The electrical resistance decay of a metalic granular packing”,
Eur. Phys. J. B, 90, 108, (2017). (M23)

Pa3BujeH je ekcriepuMEeHT KOjUM je M3ydaBaHa eJIeKTPUYHA IPOBOTHOCT IPaHyIapHOT
Marepujaja y yCJIOBUMa MaJIUX CTpYyja (10'3 A). Mepema cy mokasana Jia je y OlicaHoM
CTPYjJHOM PEKUMY, OTIHOPHOCT IpaHyIapHOT MaTepyrjaia BEIMYHHA KOja Ce MCHa Y TOKY
BpemeHa. [Ipenmer nctpaxuBama je Onia oBa BEoOMa Criopa pejakcamnja IpoBOJHOCTH.
AHanmm3upaHu Cy y3pOolLH HBEHOT HacTaHKa. Mepema Cy U3BpIleHa Ha TpaHyJIapHUM TaKOBamkbUMa
(dbopMupaHUM Yy jeTHOj U 1B AUMEH3HUje. Mepema Ha IIaHApHUM TpaHyJIapHUM MaKOBamkUMa
omoryhagajy ycrocrasibame Be3e n3Mel)y mpoBOAHOCTH U MHUKPOCTPYKTYpPAJIHUX CBOjCTaBa
cucrema. Takole je aHanu3upan yTuiaj eeKTUBHE IPABUTAIIH]C HA CICKTPUYHY POBOJIHOCT
rpaHy/IapHOT cucTeMa. Mepema Cy Tokasaja Jia 3a IopacT MPOBOJAHOCTU CTATUYKOT
rpaHy/IapHOT MaKOBamba HUCY OJIrOBOPHE CTPYKTYpHE MpoMeHe cuctema. [locroje jake
SKCTIICpUMCHTAIHE UHIMKAIUje J1a 10 TOpacTa MPOBOJHOCTH JI0JIa3U HCKJbYIHBO 300T Mpoleca
KOjH Ce JIOKAJIHO JICIIaBajy Ha I10jeIMHAaYHUM KOHTaKTUMa u3Mel)y rpanysa.

JenaH o1 OCHOBHMX IMJbeBa OMIIa je U3Tpajiba eJIeKTPO-MEXaHUYKOT MOJiesla KOHTaKTa KOju
MO’KE pEnpolyKOBAaTH BeOMa CIIOPY BPEMEHCKY penakcalyjy npoBogHocTH. [Ipeaioxkenn mozen
KOHTAaKTa MOYMBA Ha CYOOpAMHAIIN]Y CTOXAaCTUYKUX Tipolieca. [IpeTnocrasspa ce na
MUKPOKOHTAKTH KOjU TIOCTOj€ Y 00IaCTH HOUpa JIBE TpaHysie HACTA]y U HECTA]y yCIIe
TepMaTHO-MeXaHUYKuX edekara. OBaj CTOXaCTUUYKH MPOIIEC CE CIPEkKE ca APYTHM MPOIECOM
KOJU Ae(QUHHUILE Tpajalbe BpEMEHCKUX MHTEpBajia u3Mal)y y3acTOIMHUX IPOMEHA CTaka HEKOT
MHUKpOKOHTaKTa. [IpernocraBibajyhu 1a ce oBM CilydajHU BpeMEHCKH UHTEPBAIM T€HEPUIY U3
¢dyHKIIM]a pacnojienie Koje HeMajy KOHauHe MOMEHTe, CyOOpIMHAINjOM ce 1001]ja pe3ynTyjyhu
IpoIleC KOjH je onucaH (ppakMOHUM KUHETUYKOM jeiHaunHOM. J[oOujeHa jefHaunHa ce MOXe
aHAJIMTUYKYU PEIIUTH YUMe ce 1o0uja leTasbaH KBaHTUTATUBHU OMKC BPEMEHCKE pellakcalyje
MPOBOTHOCTH. EKCIIEpUMEHTATHO j€ MOKa3aHo je Ja C€ BpPEeMEHCKa €BOTYIIH]ja MPOBOAHOCTH
Mocke onrcatu Mittag-Leffler dpynkiujom, mro je y carmacHOCTH ca NPEASIOKEHUM MOJIETIOM.
Jymuja lThenanoBuh je yuecToBana y U3rpajmby U peaau3airji eKCIIepUMEHTa, aHATN31
pe3yiraTta, Kao U 'y ’bUXOBOj UHTEPIIPETALIN]H.

e Lj. Budinski-Petkovié, I. Longarevi¢, D. Dujak, A. Karag, J. R. Séepanovi¢, Z. M. Jaksi¢
and S. B. Vrhovac, "Particles morphology effects in random sequential adsorption™,
Phys. Rev. E, 95, 022114, (2017). (M21)



AHanu3upaHa je TMHaMuKa mpolieca JAerno3uiyje “Hapacrajyhux’” o0jekara pa3HuUX 00OJIHMKa Ha
IJIaHAPHO] TpUaAHTyIapHOoj penieTku. O0jeKTH cy TeHepPHCAaHU Kao caMOHenpecenajyhe meTme Ha
TpuaHryjaapHoj pemeTku. [Ipu Tome BennunHa objekara je moctynHo ypehaBana
“HamMoTaBameM”’ MIETHE HA HEKOJIMKO Pa3IMYUTHX HaunHa. Ha Taj HauuMH ce 100ujajy BenuKe
KOJIEKIIM]je 00jeKaTa pa3sHUX BeMYMHA U CUMeTpHja (TB3. “HapacTajyhu’” TpOyriioBH, pOMOOBH U
IeCTOyrIOBH). Pe3ynraTu mokasyjy na omny4yjyhu yTriaj Ha JHHAMHKY KacHe (ase
JIETIO3UIIHje UMa peJl oce cumeTpuje o0jekra. HalheHo je na je mpuiazak rpaHUIM 3arylicmha
SKCTIOHEHIIMjaJIaH 33 CBE OOJIMKE M J]a € KHHETHUKA TOT MPOoIeca yCIopaBa ca omaameM peaa
cumetpuje objekata. Bpeme penakcanuje ¢ je HICKIbYUHBO ojipeheHo penom cumerpuje o0jexTa
Ns ¥ BaXXKK 6=6/Ns3a TPOYTaOHY peIIEeTKY. 3a Majie 00jeKTe I'yCTHHA 3aryliema Op30 ornajaa ca
mopacToM BelnuuHe o0jekaTta 6e3 003upa Ha 00JIMK. AJIM 3a IOBOJEHO BEJIMKE 00jE€KTE MpOMEeHa
00JIMKa JalieKo BUIIIE yTUYE HA BETMYMHY T'PaHHIIE 3arylIeha HETO IPOMEHA BEIMYHHE.
BepoBarnoha 3a ymeTame HOBOT 00jekTa Ha penieTky P(n) ce Moke onucaTi mpou3BOI0M
CTeTeHe U CyOCeKCIIOHeHIIMjaTHe (DYHKIIH]j€ Y IIUPOKOM OIICETy T'YCTHHA HCIIO/ TYCTHHE
3arymema. [Ipu ToMe, ToBeficHH Cy Y Be3y mapameTapa ¢ura BepoBatHohe P(n) ca
JECKpPUITOpUMa 00JIMKa KOjuMa Cy OKapaKTepucaHH JienoHoBaHu o0jektu. Jynuja [lThenanosuh
YUYECTBOBAJIA j& Y U3TPaIlbi MOJIETIa U Pean3allijyd BEeOMa 3aXTEBHUX HyMEPUIKUX CUMYJIaluja,
Ka0 M y aHAJIM3U U MHTENPETALN]jU JTOOUjEHUX pe3yJiTaTa.

e J R géepanovié, A. Karag, Z. M. Jaksi¢, Lj. Budinski-Petkovi¢, and S. B. Vrhovac,
"Group chase and escape in the presence of obstacles",
Physica A: Statistical Mechanics and its Applications, 525, 450 - 465, (2019). (M21)

Pa3Bujen je Mojen rpymmHor JioBa M OErcTBa KOjUM j€ aHAIM3UpaHa JUHAMUKA €BOJTYIIH]E IBE
BpCTe (JI0Balla U )KPTBU) Y OKPYKEBY Koje caJpku mpenpeke. O06e BpcTe MOTy yTHIIATH Ha CBOj€
KpeTame Ha OCHOBY''BU3yeHe" Mepleniyje yHyTap KOHauHOT OIcera nocMarpama. Y MoJely
Cy aHaJIM3UpaHa JIBa aJlfOpUTMa Tparama 3a ’KpTBama 1 uzderaBama jgosana. Monte Carlo
CHMYJIaIfje Cy U3BpLICHE Ha KBAaJPaTHO] PELIETKH, IPU YeMy Cy MpenpeKe MpeicTaB/beHe
o0jexTuMa pa3HMX o0sinKa 1 BeanuuHa. [TokasaHo je 1a BpeMeHcKa eBoiylirja Opoja sKpTBH
MOXe OUTH onrcaHa CyOeKCIIOHEHITH]jaTHOM (PYHKIIMjOM 0e3 003upa J1a Ju Cy Mpenpexe
npucyTHe uinu He. KapakTepucTnyHo Bpeme KUBOTa KPTBH j€ cTeneHa (PyHKIM]a BbUXOBE
noueTHe ryctune. [lopehene cy BpemeHcke 3aBUCHOCTH Opoja )KpTBU 3a pa3HE OICere
nepIeniyje Kojom pacnosiaxy ooe Bpcre. Jynuja [llhemanosuh je nunnummpana oBa uCTpaxxuBama,
U3rpajuia HyMepHUKe MoJIesIe M YUeCTBOBaJa y MUCAky paja.

Toxom centemOpa 2017. ronune 6una je yuecHuk koHpepenuuje YUCOMAT y Xepuer Hosowm,
Llpna I'opa, rae je oapxana npeaasame noj HazuBoM Particle morphology effects in random
sequential adsorption.

Toxom 2019. moHOBO je ydecToBaBasia Ha UCTOj KOH(EPEHIINjH TJE je TPECTaBUIIa PaJl MO
HaszuBoM Group chase and escape in the presence of obstacles.



EnemenTn 3a KBAJIUTATUBHY OLCHY HAYYHOI TOIIPUHOCA

1. KpaauTeT HAy4YHHX pe3y/Tara

1.1 3navaj HAy4yHUX pe3yaTaTa

HcnnTrBame rpaHyIapHUX MaTeprjaia je BeoMa akTyenHa 00acT pu3nke TOKOM
nocyeke 1Be U 1o aernenuje. OcobruHe rpaHnyJapHUX CUCTEMa MOTY CE€ CXBAaTUTH
aHAJIN30M HBUXOBHX MHKPOCTPYKTYPAIHUX CBOjCTaBa, KOje C€ BEOMa TEUIKO MOTY JOOUTH
y eKcriepuMeHTHMa. BeoMa 3axTeBHE HyMEpHUKE CUMYIIallije MOJIEKYIapHO-
JMHAMHUYKOT THUIIA CY jeJ]aH OJ] ITyTeBa Ka OCTBapemy UCTOT Iiiba. Mehyrum, yecto ce
npuberaBa U3rpajbu HyMEpHUKHX MOJIeNia KOjU IMUTUPA]y OBaKBE CHCTEME U MOTY 1aTh
3HA4YajaH yBUJ Y BUXOBO MOHaNIamke. KaHauaaTkuma je Ha pellaTuBHO jeTHOCTaBHOM
MOJIEITy peBep3UOMIIHE CEKBEHIIMjATHE a/ICOPIIIHje aHATU3upaia MoryhHOCTH
ONITHMU3AIM]je TpoLieca KOMIaKTH(UKaIMje TpaHyIapHUX MaTepHjaia IpoMeHama
WHTEH3HUTETa eKcTepHe modyxae. [lpu Tome je mocebHa nakma nmocseheHa CHMETpHjCKUM
CBOjCTBHMa 00jeKaTa y MOJIeNy, jep CE OHA MOTY JJOBECTH y Be3y ca MaTepujaTHUM
CBOjCTBMMaA IpaHyJapHOT MaTepujaia (HeeIacTUIHOCT, JUCUIIATHBHOCT Cy1apa 1
Koe(UIIMjeHT Tpema rpanyna). JlooujeHu pe3ynraTi ykasyjy Ha TO Jia je TpoIiec
KOMITaKTH(HKAIMje TPYOHX U U3PA3UTO HESNIACTUYHUX TPaHysIa 3HATHO TeXe e(hUKACHO
ONITUMH30BATH BPEMEHCKH 3aBHCHOM MTOOYIOM O] TIpOIIeca Yy CHCTEMHMA ca c1abo
JVCUTIATHBHUM TpaHyJaMa.

Jymuja lllhenanoBuh je camocTanHO HaNpaBHUia HCKOPAK Ka N3ydaBamby KOMILIEKCHUX
crcTeMa Koju ce Mory onucatu agent-based Mmonenuma. Monenu 0Bai-kpTaa cy HIOHOBO
MOCTAJIM aKTyeIHH y nocienmwux 20 roanHa 3axBajbyjyhu pa3Bojy KOMjyTepCKUX
TeXHHKa. Pa3BojeM OpruHaiHOr MOJiella OHa je yKa3aja Ha pa3He yTHLaje Koje
XETEPOreHOCTH OKPYKeHa (MMPUCYCTBO MPEIpeKa) MOTY Ja UMajy Ha BpEMEHCKY
€BOJIYLIM]Y areHara y ciy4ajeBuMa rpyIHor JOBa.

1.2. ITapameTpu KBaUTETa Yacomuca

e 1 pany mehynapomHom yaconucy u3y3etHux Bpeanoctu Journal od Statistical
Mechanics (IF = 2.404, SNIP = 0.728)

e | BpxyHcku MelyyHapoauu yaconuc Physica A (IF =2.500, SNIP = 1.214)

e | ucraknyru Melhynapoauu yaconuc European Physical Journal B (IF = 1.368, SNIP =
0.635)

e 1 BpxyHcku MehyHapoauu yaconuc Physical Review E (IF = 2.380, SNIP = 1.005)

e 1 BpxyHcku mehynapoanu yaconuc Physica A (IF =2.500, SNIP =0.214)

VYkynan umnak ¢akrop uzHocu 11.152.

1.3 lMoganm o MUTHPAHOCT

[Tpema 3BanmuHOj SCOpUS 6a3u panosu Jynuje lllhemanosuh cy ykynHo nurupann 10
myTa 6e3 ayromnurara. [Ipema oBoj 6a3u XupiioB HHAEKC KaHAUJATKUEE H3HOCH H=2.



1.4 JTonaTHU OMOIMOMETPH]CKU TTOKA3aTEIbU

JlonatHu OMOIMOMETPH]CKH MMapaMeTpH Cy NMpUKa3aHu y ciienehoj Tadenu:

no M CHUII
VYKyITHO 11.152 37 4.796
YcepenmeHo 1mo 2.231 7.4 0.959
YJIAHKY
YcepenmeHo mo 2.064 6.852 0.888
ayTopy

2. Hopmupame 0poja KOayTOPCKUX PaJ0Ba, IATEHATA M TEXHUYKHUX peliemha

JIBa paga KaHIUJATKUILE UMajy BUIIE Of 5 ayTopa, oMHOCHO jenan M21 uma 6, npyru M23 7
ayTopa, TaKko Jia OHU HE Uy ca IIyHOM TEXUHOM, Ma YKYIHO M 60/10Ba KaHUIATKUILE Ca
HOpMHpameH u3Hocu 34.81 6ooBa.

3. Yuemhe y npojekTuMa, NOTHPOjeKTUMA H IPOjeKTHUM 3aJalMMa

Kannunarkuma je yaecTBoBaia Ha ciieichuM mpojeKTrma:
e 1pojekaT MuHHMCTapcTBa MPOCBETE, HAYKE U TEXHOJIOUIKOT pa3Boja Pemybnuke Cpouje
ON171017: Monenupame 1 HyMEpUUYKe CUMYJIAIUje CII0KEHUX BUIIEYECTUYHUX
cucrema.

4. YTHnaj Hay4YHux pesyiarara

VYTunaj Hay4HuX pe3yiTara KaHIuJaTKUE ce orjena y Opojy LuTaTa Koju Cy HaBe/IeH! y
TaykH 1. OBOT MpHJIOra, Kao U y MPUJIOTY O HUTHPAHOCTH U EneMeHTuMa 3a KBaJIMTaTUBHY U
KBaHTUTATUBHY OLIEHY HAay4yHOT JAONpHHOCcA. Y Tauku 1. je Takole onmucaH 3Ha4aj HAy4YHUX
pesyaTara.

5. KonkperaH 10NpHHOC KaHAWATA y peaju3aliju paioBa y HAyYHUM
HEeHTPHUMA y 3eM/bH U HHOCTPAHCTBY

KangunaTkuma je cBe CBOje HCTpaXMBauKe aKTHBHOCTH peajin3oBaiia y MHCTUTHTY 3a

¢uzuky beorpan. Kannuaatkuma je nana Outad JOMPUHOC 00jaBJbEHUM PaloBUMA.

Bben nompuHOC ce orniesa y oBIagaBamky HyMEPHUKOM MPOLIEAYPOM M N3TPaH-OM MOJIENA,
n00Hjamy, MHTEPIpETaljy 1 MPE3eHTAUjH HYMEPHUUKUX PEe3yaTaTa, TEOPHjCKOM MOOOIbIIAY
MoJIieTia, THCakby PaioBa U YIECTBOBAKY Y €KCIIEPUMEHTHMA.



EaemenTu 3a KBAHTUTATHUBHY OLICHY HAYYHOI JONIPHUHOCA

OctBapenu M-0010BH 110 KaTeropujama myoauKanuja

Kareropuja M-6010Ba 110 bpoj nybnukaruja YkynHno M-6010Ba
nyOJIMKanuju
M2la 10 1 10
M21 8 3 24
M23 3 1 3
M33 0.5 2 1

IHopeheme ocTBapenor 6poja M-6010Ba ca MUMHMMAJIHUM YCJI0BHMA
NOTPeOHUM 3a pen300p y 3Balbe HAYYHOI capaJHuKa

[TorpebHO OctBapeHo
YkynHo 16 38
M10+M20+M31+M32+M33+M41+M42 10 38
M11+M12+M21+M22+M23 6 37
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Abstract. The random sequential adsorption (RSA) approach is used to analyze
adsorption of spherical particles of a fixed radius on nonuniform flat surfaces
covered by rectangular cells. The configuration of the cells (heterogeneities) was
produced by performing RSA simulations to a prescribed coverage fraction Hécen).
Adsorption was assumed to occur if the particle (projected) center lies within a
rectangular cell area, i.e. if sphere touches the cells. The jammed-state properties
of the model were studied for different values of cell size « (comparable with the
adsorbing particle size) and density 9(()(:611). Numerical simulations were carried out
to investigate adsorption kinetics, jamming coverage, and structure of coverings.
Structural properties of the jammed-state coverings were analyzed in terms of the
radial distribution function g(r) and distribution of the Delaunay ‘free’ volumes
P(v). It was demonstrated that adsorption kinetics and the jamming coverage
decreased significantly, at a fixed density Gécen), when the cell size « increased.
The predictions following from our calculation suggest that the porosity (pore
volumes) of deposited monolayer can be controlled by the size and shape of
landing cells, and by anisotropy of the cell deposition procedure.

Keywords: adsorbates and surfactants (theory), stochastic processes (theory)
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1. Introduction

Recent developments in new and emerging technologies have generated increased demand
for nano and micro-sized particles with carefully tailored properties for use in applications
such as photonics, micro-electronics, plasmonics, biosensors, bio-medical devices, etc. In
many applications, such nanoparticles are often integrated onto surfaces in the form of
deposits in order to achieve improved performance and/or new functionalities of the final
product. Thus, in addition to specific requirements for particles of definite shape, size,
internal structure, surface properties or chemical composition, it is also important to be
able to manipulate collective arrangements of such particles with firm control over the
morphology and structure of their surface layers. To achieve this goal, the supporting
surfaces are frequently prepatterned to form the templates favoring particle attachments
at specific locations [1,2], or dimples, or along specified shapes, regular or otherwise [3,4].
With the use of photolithographic techniques, high-power lasers [1], chemical treatments,
etc, such surface modifications are routinely realized on the microscale, but the trend is
towards the nanosize patterning [1-4].

In contrast with homogeneous surfaces, the prepatterned heterogeneous substrates are
designed with preferential attachment sites, or regions [4]. Thus, it is of theoretical and
experimental interest to understand and analyze how specific surface modifications affect
the morphology of deposited layers, late-stage kinetics of attachment, etc. Our analysis,
described below, focuses on structural properties of particle deposits and is applicable
to the presence of randomness in surface patterning on the scales comparable to particle
size.
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Specifically, in the present work, we report a study of the irreversible deposition of
spherical particles on flat nonuniform substrates covered by rectangular cells onto which
the particles can adhere. The adsorption sites (landing cells) have finite size, comparable
with the adsorbing particle size. We consider the process of the irreversible random
sequential adsorption (RSA) of fixed size disks (projection of spherical particles). RSA is
a process in which the objects of specified shape are randomly and sequentially deposited
onto a substrate [5-10]. The particle-particle interaction is incorporated by rejection
of deposition overlap (the hard sphere model), while the particle-substrate interaction
is modeled by the irreversibility of deposition. Adsorption attempt of a particle at a
randomly chosen cell is abandoned if there is an overlap with a previously adsorbed one,
at the same or at a neighboring cell. Since the dominant effect in RSA is the blocking
of the available surface area, after sufficiently long time a jammed state is reached when
there is no more possibility for a deposition event on any landing cell. In this work we
focus on the jammed-state properties.

There is a well-developed literature on irreversible adsorption on heterogeneous
surfaces where particles are represented as hard spheres that bind to adsorption sites
[10-15]. Our present model represents a generalized version of deposition on a random
site surface (RSS), where the sites are represented by randomly distributed points [11,13].
Adamczyk et al [14] has extended the RSS model to the situation where the size of the
landing sites, in the shape of circular disks, is finite and comparable with the size of
adsorbing spheres. The available surface function, adsorption kinetics, jamming coverage,
and the structure of the particle monolayer were determined as a function of the site
density and the particle/site size ratio.

The motivation of our present work comes from Margues et al [16] and Aratdjo et
al [17], who investigated the adsorption of disk-shaped particles on a patterned substrate.
The pattern consisted of equal square cells centered at the vertices of a square lattice. They
studied the effect of the presence of a regular substrate pattern and particle polidispersity
on the deposit morphology and density, as well as on the in-cell particle population. A
specific distribution function was used to describe the degree to which the cell pattern
affects the overall structure of the adsorbed layer for various values of cell size and cell-cell
separation parameters. It was found that the structural organization of the deposit could
be latticelike, locally homogeneous, and locally oriented.

The present work is focused on the effect of the presence of randomness in substrate
pattern on the structural properties of the disordered jammed state. Our aim is to quantify
structural changes of the jamming covering associated with different cell size and density.
Analysis at the ‘microscopic’ scale is based on the Voronoi tessellation [18]. Voronol tessel-
lation divides a two-dimensional region occupied by disks into space filling, nonoverlapping
convex polygons. Further, the Delaunay triangulation is used to quantify the volume dis-
tribution of pores P(v) for disk monolayers deposited on a heterogeneous substrate. This
quantity has been widely used to characterize the structure of disordered granular pack-
ings and to quantify the structural changes during compaction process [19-23]|. We choose
as our additional tool of exploration the shape of radial correlation function g(r) [24].
This is because this function provides a simple yet powerful encoding of the distribution of
interparticle gaps. We also study the effect of the presence of a regular substrate pattern
on the temporal evolution of the coverage fraction 6(¢) and the pore distribution P(v).
The pattern consists of an array of cells centered on the vertices of a square lattice [16,17].
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The following section 2 describes the details of our numerical simulations. We present
simulation results and discussions in section 3. Finally, section 4 contains some additional
comments and concluding remarks.

2. Model and numerical simulation

We study irreversible monolayer deposition of identical disks (sphere projections) with
hard-core exclusion on a prepared flat nonuniform substrate. The substrate heterogeneities
are represented by non-overlapping rectangular cells that are randomly placed and fixed
on the substrate surface. The basic assumption of our model is that a particle can only
be adsorbed if it is in contact with one of the cells, i.e. if the center of its disk-shaped
projection lies within one of the rectangles. The substrates can be prepared in a number of
ways by arranging the rectangles to form different patterns, e.g. by placing the midpoint
of rectangles at the vertices of a square or triangular lattice (regular pattern), or by
performing random deposition (random pattern), the procedure adopted in our work. We
consider particles of fixed radius, comparable with the typical geometrical cell length.
Moreover, we assume that the size of the particles is much larger than the length scale
between binding sites, so that adsorption over the length scales of cell linear dimensions
can be regarded as an off-lattice process. We impose the condition that deposited particles
can neither diffuse along, nor desorb from the substrate on the time scales of the dense
coverage formation. These assumptions are typical of the RSA model.

The simplest RSA model is defined by the following three rules: (i) objects are
placed one after another at a random position on the substrate; (ii) adsorbed objects
do not overlap; and (iii) adsorbed objects are permanently fixed to their spatial positions.
The kinetic properties of a deposition process are described by the time evolution of
the coverage 0(t), which is the fraction of the substrate area covered by the adsorbed
particles. Within a monolayer deposit, each adsorbed particle affects the geometry of all
later placements. Due to the blocking of the substrate area by the previously adsorbed
particles, at large times the coverage approaches the jammed-state value 65, where only
gaps too small to accommodate new particles (provided their centers fall within landing
cells) are left in the monolayer.

The entire simulation procedure consisted of two main stages:

1. The simulation area was covered with identical rectangles (or squares) to a prescribed
coverage fraction Qéceu) < egcell)’ where Q(]CGH) is the jamming coverage for landing cells.
During this stage the usual RSA simulation algorithm was used. In this way we are
able to prepare the randomly patterned heterogeneous substrate with a statistically
reproducible density Géceu).

2. Then, for each initially prepared configuration, we switch the cell deposition events off
and initiate a random deposition of disks, with diameter dy, by choosing at random
their position within the simulation area. The overlapping test between disks was
carried out by considering the distances between the disk centers. A disk deposition
attempt fails if disk’s center falls outside the deposited landing cells, or if the arriving
disk overlaps at least one of previously adsorbed ones.
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The Monte-Carlo simulations are performed on a planar continuous substrate of size
Lx L = (256dy)? with periodic boundary conditions. In calculations, the time ¢ is gradually
increased by an increment 6t, given by 0t = 7wr2/L? each time an attempt is made to
deposit a disk of radius 79 = dy/2. Consequently, we define dimensionless parameter
t = Natmr% / L?, where N, is the overall number of attempts to place disk particles. The
dimensionless adsorption time ¢ was set to zero at the beginning of the second stage. By
plotting 6(t) versus the adsorption time ¢, defined above, one can simulate the kinetics of
particle adsorption.

For purposes of our modeling, each landing cell is a rectangle with sides a and b
(b < a) whose midpoint is located on a continuous substrate. The cells can take arbitrary
orientations, but in some numerical simulations we have introduced anisotropy in the
deposition procedure for landing cells. This simple modification introduces a preferential
direction in the deposition process and, depending on the aspect ratio of deposited
rectangles, imposes specific ‘patterning’ on the deposited layer. We rescale the lengths
relative to the diameter of the disks dy, and define three dimensionless parameters:

a b
[ —_ 1
@ 27”07 ﬁ 27“0 ( )
o
v = (2)
e(cell)

0

The parameter v (an average distance between cell centers) is a meaningful measure only
if the landing cells are squares (a = b).

For a fixed values of parameters o and [, simulations were carried out for various
values of Hécen), ranging from 0.10 to 0.50. For each case, the simulations are carried out
up to 10! deposition attempts, or up until L? x 10* consecutive deposition attempts are
rejected. The results are obtained by averaging over 100 simulation runs.

3. Results and discussion

In the first part of this section simulation results are presented and discussed for random
deposition of identical disks on nonuniform substrates covered by squares of arbitrary
orientation. We characterize the jammed state in terms of radial distribution function of
distances between the particle centers and distribution of the Delaunay ‘free’ volumes.
After that, further analysis is extended to adsorption of disks on rectangular cells
deposited with arbitrary or fixed orientation.

3.1. Circles on squares

First, we consider the irreversible deposition of disks of fixed diameter dy = 1 whose
centers are inside the square cells arranged randomly at the surface. Depending on the
cell size «, one can place one or more disk centers inside each cell. We are interested
in the range of a where the number of disks adsorbed per cell is a small number
(less than five). For o < 1/v/2, at most a single disk can be adsorbed at any given
square cell. We denote this case as single particle per-cell adsorption (SPCA). For
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squares with o > 1/4/2, more than a single disk can be placed in the square cell,
and we denote this as multiparticle per-cell adsorption (MPCA). The cases of up-to-
two, -three and -four disks per square cell are obtained, respectively, for « in the ranges
1/V2 <a< (1+v3)/(2v2), 1+v3)/(2v2) < a < 1,and 1 < a < v/2. In other
words, the numbers {oy, : k = 1,2,3,4} = {1/v2, (1 ++3)/(2v2), 1, v/2} determine
the size of the largest cell in which at most £ = 1, 2, 3, 4 disks can be deposited,
respectively.

The effect of density of landing cells on the adsorption process is illustrated
in figure 1 by snapshots of the jammed-state coverings for (a) 9(()0611) = 0.3 and (b)
" = 0.5, for two values of the cell size o, namely, oy = V2 ~ 1.41 (figure 1(a))
and as = (1 +/3)/(2v/2) = 0.966 (figure 1(b)). For low values of 9(()0611), adsorption on a
given cell is weakly affected by disks previously adsorbed on neighboring cells. Therefore,
most of the cells shown in figure 1(a) contain at least three discs. However, in the case
shown in figure 1(b) one can see a significant impact of the cell-cell excluded volume
interaction on the cell population. Although each cell has enough area to accommodate
up to two disks, only one disk is deposited on most of the cells.

Qécell)

3.1.1. Densification kinetics. Kinetics of the irreversible deposition of disks is illustrated
in figures 2(a)—(e) where the plots of time coverage behavior 6(t) are given for the five
values of coverage fraction of landing cells, Qéceu) =0.1, 0.2, 0.3, 0.4, 0.5. Here the plots of
such time-dependence are shown for various values of the cell size, oy, (k = 1,2,3,4). It can
be seen that for a fixed density of landing cells 95““), jamming coverage 03 = lim;_, . (%)
decreases with increasing the cell size ay. This effect is clearly visible in the case of the
lowest density of the landing cells Géceu) = 0.1 (figure 2(a)), when the average distance
between the squares v (equation (2)) is several times larger than the diameter of the
disks. Then, the cell-cell separation is large enough so that adsorption on a given cell
is negligibly affected by disks previously adsorbed on neighboring cells. Therefore, for
sufficiently low densities Qécen) < 0.2, the global kinetics of deposition is determined by
the kinetics of independent adsorption processes on finite-size substrates (landing cells)
with specific boundary conditions (disks can be adsorbed on finite o X o square as long as
their centers are within the square). Consequently, for this range of Hécen) values, formula
0y = (/402)(n)6\ " gives very close estimation of the jamming density 6, where (n) is
the mean number of disks per cell. The dashed (black) line in figure 3 shows the simulation
results for the mean number of particles per cell (n) as a function of the cell size «v in the
noninteracting cell-cell adsorption regime (i.e. in the case of single cell on a substrate).
Consider now the case of up-to-two disks per square cell (ap = (1 +v/3)/(2v/2) =~
0.966), when (n) < 1.6 (see, figure 3). Then, during the deposition process, disk can
be adsorbed at the position inside the cell that blocks the chance for other disks to be
adsorbed on the same cell at later times. Consequently, the probability of having a second
adsorbed particle in any given cell is smaller than the probability of having at least one
particle adsorbed on it. Similar reasoning applies as « crosses ag, Qu,.... In addition,
in figure 3 we show simulation results for the probability that the configurations with
only one disk, or n = 2,...,5 disks, occur on square cell of size a in the noninteracting
cell-cell adsorption regime. If @ = a; ~ 0.707, each landing cell (square) can contain no
more than one disk. If @ = as ~ 0.966, the number of cells with one and two disks is

doi:10.1088 /1742-5468 /2015 /06 /P06032 6


http://dx.doi.org/10.1088/1742-5468/2015/06/P06032

Structural properties of particle deposits at heterogeneous surfaces

-GS = e N L
.\@-‘fls‘ o‘.’}i} s‘*@%&“ﬁ?k?’@ s‘:ﬂﬁ
SROaO B Sl
15, GRS AR S2
D ST s LT
i W) .S
e e el o SIS IER

S
<o

75
i
]
XD
)
9

00N
Je L ROV
\.\ @ @‘t‘)( !

£

Figure 1. Typical jammed-state configuration of a region of size 30 x 30 in units
of the disk diameter do, for (a) 0°" = 0.3, oy = V2 ~ 1.41, and (b) 65" = 0.5,
az = (14 3)/(2v2) ~ 0.966.

approximately equal (figure 3). However, if density Qéceu) is unchanged, then the increasing
of the cell size a; — a5 reduces the total number of landing cells on the substrate by a
factor ~ 2. Reduction in number of adsorbed disks is a consequence of these two effects.
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Figure 2. Shown here is the time evolution of the coverage fraction 6(t) for the
five values of density of landing cells, 9(()ce11) = 0.1 (a), 0.2 (b), 0.3 (c), 0.4 (d),
0.5 (e). The curves in each graph correspond to various values of the cell size,
ar (k= 1,2,3,4), as indicated in the legend. The acont line shows the time
dependence of the coverage 6(t) for RSA of disks on a continuous substrate. The
entire aont curve can be seen in plot (e).
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Figure 3. Simulation results for the probability that the configurations with
n=1,2,...,5 disks occur on square cell of size a in the noninteracting cell—cell
adsorption regime (left-hand axis). The dashed line is plotted against the right-
hand axis and gives the simulation results for the average number of particles per
cell (n) as a function of the cell size o in the noninteracting cell-cell adsorption
regime.

This discussion indicates that the jamming density 65 decreases with cell size « at fixed
density 6°".

As can be seen from figure 2, the time coverage behavior 0(t) is markedly slowed down
with the increase of the cell size a for the fixed density of landing cells 96cell). Indeed,
in MPCA case the large times are needed for filling of small isolated vacant targets
on landing cells, remaining in the late stages of deposition. Furthermore, in this regime,
density curves 6(t) show a noticeable slowing down of deposition process at coverages that
are significantly smaller than jamming densities. Coverage growth starts to slow down at
the moment when the number of adsorbed disks reaches the number of landing cells. After
this initial filling of the landing cells, adsorption events take place on isolated islands of
partially occupied cells. This extends the time interval between successful consecutive
adsorption events and causes a slowing down of the densification.

The results for the time evolution of the coverage 0(t) in the case of up-to-two disks
per square cell (v = ag) are shown in figure 4 for various values of Qéceu). Qualitatively
similar results are obtained with landing cells of other sizes a. As expected, the jamming
density #; increases with higher coverage fraction of landing cells Gécen). At high values
of Gécell) < 0.5 when v ~ 1, a disk attempting adsorption can overlap with a previously
adsorbed one belonging to a different cell, resulting in a failed adsorption attempt. This
excluded volume interaction between particles during adsorption at different cells causes
even slower asymptotic approach of the coverage fraction 6(¢) to its jamming limit. In
addition, the analysis of the time evolution of the coverage 6(t) was carried out for
deposition on square cells centered at the vertices of a square lattice. Consequently, the
temporal evolution of the coverage 0(t) obtained for regular substrate pattern are included

in figure 4. Here, the size o and density GSCGH) of landing cells are the same as those used in
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Figure 4. Temporal behavior of the coverage 6(t) for various values of 6’(()6611) in the
case of up-to-two disks per square cell (cell size: ag = (1 +/3)/(2v/2) = 0.966).
The curves correspond to various values of density Goceu = 0.1-0.5, as indicated
in the legend. Thick lines represent results obtained for regular substrate pattern
while thin lines are results for random pattern case.

our previous calculations for random pattern case. It can be seen that lower values of the
jamming coverage fraction are reached by the deposition process involving randomness
in the pattern compared to a deposition process in the presence of a regular substrate
pattern, regardless of the value of the density Hécen).

Below we try to characterize quantitatively the time dependence of the approach to the
jammed state at large times. Depending on the system of interest modeled by RSA, the
substrate can be continuous (off lattice) or discrete. Asymptotic approach of the coverage
fraction 0(t) to its jamming limit, §; = 6(t — o0), is known to be given by an algebraic
time dependence for continuous substrates [25-29]:

0(t) ~ 0y — At (3)

where A is a constant coefficient and d is interpreted as substrate dimension [26] in case of
spherical particles adsorption or, more generally, as a number of degrees of freedom [30].
For lattice RSA models, the approach to the jamming coverage is exponential [31-36]:

O(t) ~ 05 — A exp(—t/o), (4)

where parameters 65, Af, and ¢ depend on the shape and orientational freedom of
depositing objects [34,36].

Representative examples of the double logarithmic plots of the first derivative of
coverage 0(t) with respect to time ¢ are shown in Figure 5(a), for various values of the
cell size, ap (K = 1,2,3,4), and for high density of landing cells, Hécen) = 0.5. The time
derivatives of 0(t) are calculated numerically from the simulation data. In the case of the
algebraic behavior of the coverage fraction 6(t) (equation (3)), a double logarithmic plot
of the first time derivative % x t~h s a straight line. One can see that curves shown
in figure 5(a) are straight lines in the late stage of deposition process. However, the same

is not valid for all values of densities of landing cells Qécen). The double logarithmic plots
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Figure 5. Test for the presence of the algebraic law (3) in the approach of the
coverage 6(t) to the jamming limit for different densities of landing cells: (a)
0(()0611) = 0.5, and (b) Qéceu) = 0.1. The curves in each graph correspond to various
values of the cell size, ay (k = 1,2,3,4), as indicated in the legend. Straight line
sections of the curves show where the law holds. The dashed black line has slope
—3/2 and is a guide for the eye.

of the numerically calculated derivatives of #(t) for the data obtained in the case of low
density of landing cell Géceu) = 0.1 are shown in figure 5(b). As it can be seen, at the very
late times of the deposition process the plot of the first derivative of coverage fraction
0(t) with respect to time ¢ is not linear on a double logarithmic scale, indicating that the
approach to the jamming limit is not consistent with the power law behavior given by
equation (3). The deviation from the power law is particularly pronounced in the case of
single particle per-cell adsorption (SPCA).

Kinetics of the irreversible deposition under SPCA conditions is illustrated in figure 6
where a logarithmic plots of 65 — 6(t) versus t are shown for various densities of landing
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Figure 6. Plots of 6; — 6(t) versus t in the single particle per-cell adsorption
case for various densities of landing cells 8" = 0.1-0.5. The solid lines are the
exponential fit of equation (4).

cells Hécen). These plots are straight lines for the late times of deposition, suggesting that
in the case of SPCA the approach to the jamming limit is indeed exponential, as in lattice
RSA models. Indeed, the kinetics of deposition in SPCA case is determined by the kinetics
of adsorption processes on finite-size landing cells. The difference relative to the lattice
RSA is in the particle positions, which here are uncertain within the order of the size of
the cell.

3.1.2. Radial distribution function. Here we compare quantitatively the structural
characteristics of jamming coverings corresponding to different values of the cell size «
for various densities Héceu). In order to gain basic insight into the ‘microstructure’ of the
jammed state, we first consider the radial distribution function g(r) (or pair-correlation
function) which gives information about the long-range interparticle correlations and their
organization [24]. In absence of external forces, the pair correlation function can be
calculated from expression

o) = 5 2xalt), )
mrAr
where r is the radial coordinate, S is the surface area, N is total number of particles
adsorbed over this area, and N, is the averaged number of particles within the annulus
of the radius r and the thickness Ar. In figure 7(a) we compare the radial distribution
function ¢(r) at various densities Géceu) = 0.1-0.5 in the SPCA case. As expected, the
random deposition process never leads to correlation distances between the deposited
particles exceeding two or three particle diameters. The position of the first peak measures
typical distances between the closest disks. Decreasing the value of Qéceu) in the SPCA case
increases the uncertainty in the position of the particles which leads to peak broadening.
The shape of radial distribution g(r) is more structured at higher densities, showing higher
first and second peaks, because, when the system gets denser, particles will be deposited
closer to one another. As can be seen from figure 7(a), the minima of ¢g(r) curves shift to
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Figure 7. Radial distribution function g(r) for jamming coverings as a function
of separation r (in units of the disk diameter dy) for various values of the cell
size oz (a) a1 = 1/v/2, (b) ao = (1 ++3)/(2v2), (¢) az =1, (d) oy = V2. The
curves in each graph correspond to various values of density Gocen = 0.1, 0.2,
0.3, 0.4, 0.5, as indicated in the legend.

shorter distances (~ \/§) when the density Géceu) increases. At a very low densities, the
broad minima are located near the distance ~2dy. Indeed, since the particles are added
at random, the probability that disks are connected as a three-bead chain is negligible.
The results for g(r) in the MPCA case are shown in figures 7(b)—(d). The shape of the
radial distribution function g(r) is significantly affected by the values of the cell size a.
In the case of up-to-two disks per square cell (figure 7(b)) the peak which appears at unit
distance is the most pronounced for low densities of landing cells Gg)cen). For low values of
Hécen), one expects a lower impact of the cell-cell excluded volume interaction on the cell
population. However, as Qéceu) increases, the first peak of g(r) becomes broader because
excluded volume interaction with disks belonging to neighboring cells reduces the average
number of adsorbed disks per cell. This is opposite to what is observed under SPCA
conditions (figure 7(a)), where the distance to the closest disk, on average, is determined

by the distance of the nearest-neighbor landing cells.
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The comparison of figures 7(b) and (c) shows that the results for g(r) in the case of
up-to-two and up-to-three disks per square cell are very similar. This arises as a direct
consequence of the fact that cells with sizes as &~ 0.966 and a3 = 1 have very similar
population of particles (see figure 3). Figure 7(d) shows the radial distribution function

. : : o (cell) . o . :
g(r) of jamming coverings at several densities ; ’ obtained in simulations carried out
with the cell size of oy = /2. For this value of the parameter «, each cell is of sufficient
size to accommodate up to four particles. As can be seen in figures 7(b)—(d), increasing
the value of parameter o in the MPCA case increases the uncertainty in the position of
the disk within the cell, i.e. it leads to peak broadening.

3.1.8. Volume distribution of the pores. Further analysis is based on the Voronoil
tessellation, which allows us to unambiguously decompose any arbitrary arrangement of
disks into space-filling set of cells. Given a set A of discrete points in the plane 7 (centers
of disks), for almost any point = € 7 in the plane 7 there is one specific point a; € A
which is closest to z. The set of all points of the plane which are closer to a given point
a; € A than to any other point a; # a;, a; € A, is the interior of a convex polygon P;
usually called the Voronoi cell of a;. The set of the polygons {P;}, each corresponding
to (and containing) one point a; € A, is the Voronoi tessellation corresponding to A,
and provides a partitioning of the plane 7. Voronoi cells are convex and their edges join
at trivalent vertices, i.e. each vertex is equidistant to three neighboring disks. Two disks
sharing a common cell edge are neighbors. In this work, the Quickhull algorithm [37]
is used to compute the Voronoi diagrams in MATLAB® for a given set of disks on
a plane.

The jammed-state coverings are analyzed in terms of volume distributions of the pores.
The convenient definition of a pore is based on the Delaunay triangulation (DT), which is
a natural way to subdivide a 2D structure of disks into a system of triangles with vertices
at the centers of neighboring disks. Consequently, the circle circumscribing a Delaunay
triangle has its center at the vertex of a Voronoi polygon. In this work we define the pore
as a part of the Delaunay triangle not occupied by the disks (Delaunay ‘free’ volume)

[21,22]. The pore volume v is normalized by the ‘volume’ of the disks, vy = d3w/4. In
figure 8 we show Delaunay triangulation of typical jammed-state covering obtained for the
same conditions as in figure 1(a) (87" = 0.3, ay = V2 ~ 1.41). Looking at the diagram
of figure 8, one can observe variations in the area of Delaunay triangles, which indicates
the presence of pores of various sizes in the deposit.

Here we consider the probability distribution P(v) of the Delaunay ‘free’ volume wv.
The distribution function P(v) represents the probability of finding a pore with volume
v. Fluctuations in the measurements of P(v) are reduced by averaging over 100 different
simulations, performed under the same conditions. We compare volume distribution of the
pores P(v) for jamming coverings corresponding to different values of the cell size o and
various densities of landing cells Hécen), as illustrated in figures 9(a)—(e). Here, the pore
distributions P(v) obtained for densities Hécen) = 0.1, 0.2, 0.3, 0.4, 0.5 have been plotted.
At very low value of Qéceu) = 0.1 (figure 9(a)), the curves of volume distribution P(v)
are asymmetric with a quite long tail on the right-hand side, which progressively reduces
while the cell size « increases at the fixed density. At the same time, the distribution
P(v) becomes narrower and more localized around the low values of the pore volume v.
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Figure 8. Delaunay triangulation of a set of points (centers of disks). Diagram
corresponds to jammed-state covering obtained for density of landing cells
Géceu) = 0.3 and cell size ay = V/2; see figure 1(a) for a typical configuration.
The red dots are centers of the adsorbed disks. Length is measured in units of
the disk diameter dg.

This behavior of the distribution P(v) was not observed for all densities of landing cells
" = 0.1-0.5 (see figures 9(a)—(e)). For densities 61" > 0.2, the pore distributions
P(v) obtained for deposition on square cells of size ap and ag are broader and shifted
to higher values of volumes v compared to the pore distribution P(v) corresponding to
SPCA case (a1). Qualitative interpretation of this result is given below.

In the case of up-to-four disks per square cell (oy = \/5), we observe the appearance of
pronounced peak of P(v) at low values of v, approximately at v = 0.15-0.20. It is easy to
understand which kind of local configuration contributes mostly to this peak of the P(v).
The Delaunay cells with free dimensionless volume vy, = V3 /m—1/2 ~ 0.051 correspond
to the local arrangements of hexagonal symmetry, when three disks are all in touch with
each other with centers on the vertices of a unilateral triangle. The cells with free volume
Vquad = 2/m — 1/2 ~ 0.13 correspond to the local configurations of quadratic symmetry,
when centers of four touching disks are positioned on the vertices of a square. These are
minimal values of pore volumes that can be formed with three and four disks deposited
on a single landing cell of size ay = +/2. However, the probability that the previously
described structures of quadratic and hexagonal symmetry arise during the process of
random deposition is negligibly small. Therefore, the ‘free’ volumes formed with random
deposition of disks into a single cell are larger than the minimal values v,e, =~ 0.051 and
Uquad ~ 0.13, so that observed peak of P(v) is around v < 0.20.

doi:10.1088,/1742-5468 /2015 ,/06,/P06032 15


http://dx.doi.org/10.1088/1742-5468/2015/06/P06032

Structural properties of particle deposits at heterogeneous surfaces

AN A — -
P NG —_
k \“- 1 N ———- 0
Y LSEi )& ——
" !/ N %’\ € i \ T Qeont,
f N AU N,
~ \, [ 2\
2 N H 5
SO 3\ 05 I AA\\:\
| ) "\
i PN :
i TN\ © 05 1 15 2 25
05+ I ‘:A\:\. v
SN
\A:.
N S

Figure 9. Main panel: Volume distribution of the pores P(v) for jamming
coverings at different values of density of the landing cells corresponding to
Géce“) = 0.1 (a), 0.2 (b), 0.3 (c), 0.4 (d), 0.5 (e) are shown in the case of random
pattern. The curves in each graph correspond to various values of the cell size,
ay (k=1,2,3,4), as indicated in the legend. The acont line shows distribution
P(v) for jamming covering in the case of the irreversible disks deposition on a
continuous substrate. Insets: Volume distribution of the pores P(v) for jamming
coverings obtained from simulations carried out using the heterogeneous surface
covered by square cells centered at the vertices of a square lattice. The size «
and density Hécen) of landing cells are the same as those used in the main panel.

At high values of density of landing cells Qécen) = 0.5 (figure 9(e)), distribution
P(v) obtained under SPCA conditions becomes very similar to pore volume distribution
for RSA of disks on a continuous substrate, as expected. The results for the volume
distribution of the pores P(v) obtained in the cases of up-to-two and up-to-three disks
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Figure 10. Various types of Delaunau triangles (T1-T3) depending on the
position of vertices.

per square cell are almost identical at all densities Qéceu) (see figure 9). The similarity of
these distributions at small values of pore volumes can be explained by the results shown
in figure 3. Small pores appear due to the presence of configurations with three or more
disks on a single landing cell. But, in the case of up-to-three disks per square cell, the
number of in-cell configurations with three disk is considerably smaller than the number
of configurations with one or two disks. Consequently, broad maximum in P(v), centered
at v = 0.4-0.6 is caused by contribution of large pores formed mostly in the space between
the landing cells.

Further, we study the effect of the presence of a regular substrate pattern of squares
on volume distribution of the pores P(v). Distributions P(v) for jamming coverings
corresponding to Qéceu) = 0.1-0.5 and different values of the cell size oy (k = 1,2,3,4)
are shown in insets of figure 9. At low density of landing cells Hécell) = 0.1 and for large
cell size o > ay = /2 (see inset of figure 9(a)) we observe the appearance of three peaks
of P(v). The first peak at v ~ 0.2 is due to Delaunay triangles with their vertices inside
a single landing cell (see T1 triangle in figure 10). The third peak at v &~ 8 corresponds
to Delaunay triangles with vertices located in different landing cells (see T3 triangle
in figure 10). Central peak at v &~ 2 arises due to Delaunay triangles with two vertices
belonging to single cell, while the third one is located in a neighboring cell (see T2 triangle
in figure 10). The first peak at very low values of pore volumes v does not appear for the
smaller landing cells, a« = oy, as, as. Indeed, if @ < a3, the Delaunau triangles that lie
within a single landing cell are very rare (ov = a3) or they can not exist (a < ag). In the
case of single particle per-cell adsorption (o = ) vertices of each Delaunay triangle are
located in three different cells, so that distribution P(v) has only one broad maximum.
As can be seen from insets of figure 9, the difference between distribution P(v) for regular
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Figure 11. Radial distribution function g(r) for jamming coverings as a function
of separation 7 (in units of the disk diameter dy) obtained from simulations
carried out using the heterogeneous surface covered by rectangles of arbitrary

orientation. The curves correspond to various values of density Héceu) = 0.1, 0.2,
0.3, 0.4, 0.45, as indicated in the legend.

substrate pattern of squares and for random pattern case decreases with the increase of
the cell density 6.

3.2. Circles on rectangles

We have also performed numerical simulations of random deposition of identical disks on
heterogeneous surfaces covered by rectangles of arbitrary orientation. In these simulations,
each landing cell is a rectangle with sides & = 8 and 5 =1 (in units of the disk diameter
dp). The choice of the value of aspect ratio o/f plays important role in our model.
Increasing of the aspect ratio of the landing cells (rectangles) leads to the formation
of domains of increased regularity. The chosen value of a/f = 8 is large enough to
provide patterned substrate that is significantly different from the surfaces in the case
with the square cells. We have verified that usage of a different, but large, values of
aspect ratio /3 gives quantitatively very similar results leading to qualitatively same
phenomenology.

To characterize the jammed state we studied radial distribution function g(r) and
probability distribution P(v) of pore volume v for different values of density of landing
cells: Héceu) =0.1, 0.2, 0.3, 0.4, 0.45. Figure 11 shows the corresponding results for radial
distribution function g(r). Comparing the results from figures 7(b)—(d) and 11, one can
see that the first peak near r/dy = 1 and local maximum at r/dy 2 2 of g(r) are more
pronounced in the case of elongated rectangular cells than in the case of multi-particle
adsorption (MPCA) at squares. This emergence of a better local order is a correlation
effect that develops during the deposition stage, due to the formation of arrays of disks
along a single elongated rectangular cells.

Figure 12 compares volume distribution of the pores P(v) for jamming coverings

corresponding to different densities Géceu). Similar to the case of MPCA on square cells,
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Figure 12. Volume distribution of the pores P(v) obtained from simulations
carried out using the heterogeneous surface covered by rectangles of arbitrary
orientation. The curves correspond to various values of density Gécen) =0.1, 0.2,
0.3, 0.4, 0.45, as indicated in the legend. Distribution P(v) for jamming covering
in the case of the irreversible disks deposition on a continuous substrate is shown
for comparison.

here we observe the peak of P(v) at small values of v &~ 0.2. As previously mentioned,
such small pores are feature of coverings which occurs when three or more particles can
be adsorbed on a single cell. The observed peak of the distribution P(v) broadens when
density Héceu) increases. Deposition of elongated objects at high densities is characterized
with compact domains of parallel objects and large islands of unoccupied substrate area.
Figure 13 shows typical snapshot of the jammed-state covering obtained for rectangular
cells of arbitrary orientation and density 60°™" = 0.45. Relatively high local packing of
nearly parallel adsorbed rectangles reduces the number of disks effectively adsorbed at
a cell. This process is associated with the appearance of larger interstitial voids, which
causes the peak broadening.

It is now useful to explore the interplay between the anisotropy in deposition procedure
for landing cells and structural characteristics of jamming coverings. In this case the
orientation of rectangular cells is fixed to the one preferential direction. The configuration
formed in the long time regime is made up of a large number of domains; see figure 14
for typical configuration. As expected, any such domain contains parallel cells all close to
each other. This produces better packing of landing cells and higher impact of the cell-cell
excluded volume interaction on the average cell population. Hence, anisotropic deposition
of landing cells lowers the average cell population, which enhances the appearance of larger
pores, resulting in a peak broadening. Volume distributions of pores P(v) for jamming
coverings of disks corresponding to anisotropic deposition of cells are shown in figure 15
with thick lines, while the case of arbitrarily oriented cells from figure 12 is drawn with
thin lines for comparison. Figure 15 clearly shows enhanced peak broadening of P(v)
in the case of anisotropic deposition of landing cells, which is consistent with previous
discussion.
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Figure 13. Typical jammed-state configuration of a region of size 30 x 30 (in
units of the disk diameter dy), for Hécen) = 0.45. Orientation of rectangular
cells with sides @ = 8 and 8 = 1 is arbitrary. Deposition of elongated objects
(cells) is characterized with domains of nearly parallel objects and large islands
of unoccupied space.

4. Concluding remarks

We investigated numerically RSA of disk-shaped particles on a nonuniform substrates,
with focus on the jammed-state properties. A surface heterogeneities consisting of square
cells and elongated rectangles were considered. The influence of the cell size and density
of landing cells on kinetics of deposition process, and on morphological characteristics of
the coverings were studied.

We found that for a given density of landing cells, the highest jamming coverage and
the fastest kinetics of the deposition process can be achieved in the SPCA case. Due to the
fact that the densification kinetics is dictated by geometric exclusion effects, the coverage
kinetics is severely slowed down in the MPCA case.

To examine the short scale structure in the jammed-state coverings, we evaluated the
radial correlation function ¢(r) which measures the particle density-density correlation at
distance r for various shapes and sizes of the landing cells. The oscillation of g(r) quickly
decays for all densities of landing cells Géceu), which means that long-range order does not
exist in the system. In the MPCA case, the peak of g(r) which appears at unit distance
is the most pronounced for low densities of landing cells Hécen). This is opposite to what
is observed under SPCA conditions when the shape of radial distribution g(r) is more

structured at higher densities "
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Figure 14. Typical jammed-state configuration of a region of size 30 x 30 (in
units of the disk diameter dj,) for Hécem = 0.45. Orientation of rectangular cells
with sides o = 8 and § = 1 is fixed to the horizontal direction.
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Figure 15. Volume distribution of the pores P(v) obtained from simulations
carried out using the heterogeneous surface covered by rectangles of fixed
orientation (thick lines) and arbitrary orientations (thin lines). The curves

correspond to various values of density 0(()0611) =0.1,0.2,0.3, 0.4, 0.45, as indicated
in the legend.

Morphology of deposited disks has also been analyzed through the distribution of pore
volumes. This distribution is sensitive to small structural changes of the covering and
therefore describes the degree to which the cell size and cell density affects the deposit
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morphology. Delaunay ‘free’” volumes have a distribution with a long tail, particularly at
low densities Qécen). We have found that the distribution P(v) becomes narrower and more
localized around the low values of v with increasing of Qécen). In the case of the largest cells
(v > ay = V/2), we have observed the pronounced peak of P(v) at low values of v = 0.15-
0.20, which appears due to presence of configurations with three or more disks on a single
landing cell. We have also studied the influence of a regular substrate pattern on volume
distribution of the pores P(v). At low densities Hécen), distribution function P(v) shows
a well developed peaks which correspond to the various types of Delaunay triangles,
as shown in figure 10. Cell-cell excluded volume interaction increases with the cell
density Géceu), so that distribution P(v) for regular substrate pattern of squares becomes
similar to P(v) for random pattern case at densities near jamming limit for RSA of
square cells.

Numerical simulations of random deposition on heterogeneous substrates covered by
elongated rectangles have shown that the shape of the pore distribution function P(v)
is affected by the anisotropy in deposition procedure for landing cells. It is shown that
anisotropic deposition of landing cells lowers the average cell population and reduces the
number of small pores. Our results suggest that the porosity of deposit (pore volumes) can
be controlled by the size and shape of landing cells, and by anisotropy of cell deposition
procedure. It must be emphasized that radial correlation function g(r) for jamming
coverings of disks corresponding to anisotropic deposition of rectangles is quite similar
to g(r) for the case of isotropic landing-cell pattern and is not detailed here.
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HIGHLIGHTS

Reversible RSA of objects of various shapes on a 2D triangular lattice is studied.
We study the response of the model to an abrupt change in desorption probability.
Short-time response strongly depends on the symmetry properties of the shapes.
Density correlations decay slower for more symmetrical shapes.

We observe the weakening of correlation features in multicomponent systems.
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Article history: The out-of-equilibrium dynamical processes during the reversible random sequential ad-
Received 23 August 2015 sorption (RSA) of objects of various shapes on a two-dimensional triangular lattice are stud-
Received in revised form 18 December 2015 ied numerically by means of Monte Carlo simulations. We focused on the influence of the

Available online 2 February 2016 order of symmetry axis of the shape on the response of the reversible RSA model to sud-

den perturbations of the desorption probability P;. We provide a detailed discussion of the

Keywords: . . significance of collective events for governing the time coverage behavior of shapes with
Random sequential adsorption s . . . . . .
Desorption different rotational symmetries. We calculate the two-time density-density correlation

Short-term memory effects function C(t, t,,) for various waiting times t,, and show that longer memory of the initial
Triangular lattice state persists for the more symmetrical shapes. Our model displays nonequilibrium dynam-
ical effects such as aging. We find that the correlation function C(t, t,,) for all objects scales

as a function of single variable In(t,,)/ In(t). We also study the short-term memory effects

in two-component mixtures of extended objects and give a detailed analysis of the contri-

bution to the densification kinetics coming from each mixture component. We observe the

weakening of correlation features for the deposition processes in multicomponent systems.
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1. Introduction

The understanding of random sequential adsorption (RSA) model has attracted large attention as a paradigmatic approach
towards irreversibility, as well as due to the strong departure of the process from equilibrium behavior. In the RSA model [1],
particles are added randomly and sequentially onto a substrate without overlapping each other. RSA model assumes that
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deposited particles can neither diffuse along, nor desorb from the surface. The kinetic properties of a deposition process are
described by the time evolution of the coverage 6(t), which is the fraction of the substrate area covered by the adsorbed
particles. Within a monolayer deposit, each adsorbed particle affects the geometry of all later placements. Due to the blocking
of the substrate area, at large times the coverage approaches the jammed-state value 6;, where only gaps too small to fit new
particles are left in the monolayer.

In pursuit of understanding the various aspects of the adsorption phenomenon large number of studies have taken
place. A comprehensive survey on RSA and cooperative sequential adsorptions is given by Evans [2]. Other surveys include
Privman [3-5], Cadilhe et al. [4], Senger et al. [6], and Talbot et al. [7].

In many real physical situations it is necessary to consider the possibility of desorption of deposited particles [8-10].
Adsorption-desorption processes are important in the binding of ions to a Langmuir monolayer [11], and in many catalytic
reactions. Binding and unbinding of kinesin motors to microtubules [ 12], of myosin to actin filaments, and of proteins to DNA
are commonly studied biological examples. Possibility of desorption makes the process reversible and the system ultimately
reaches an equilibrium state when the rate of desorption events balances the rate of adsorption events. The kinetics of the
reversible RSA is governed by the ratio of adsorption to desorption rate, K = k. /k_. For large values of K, there is a rapid
approach to density 6 = ), followed by a slow relaxation to a higher steady-state value 6., [13-16].

The reversible RSA model is frequently used by many authors to reproduce qualitatively the densification kinetics
and other features of weakly vibrated granular materials [9,17,10]. The phenomenon of granular compaction involves the
increase of the density of a granular medium subjected to shaking or tapping [ 18-23]. The relaxation dynamics is extremely
slow, taking many thousands of taps to approach the steady state, and it slows down for lower vibration intensities. The
final steady-state density is a decreasing function of the vibration intensity [23]. Dynamics of the reversible RSA model
depends on the excluded volume and geometrical frustration, just as in the case of granular compaction. This model can be
regarded as a simple picture of a horizontal layer of a granular material, perpendicular to the tapping force. As a result of
a tapping event, particles leave the layer at random and compaction proceeds when particles fall back into the layer under
the influence of gravity. The ratio of desorption to adsorption rate 1/K = k_ /k, within the model plays a role similar to the
vibration intensity I" in real experiments [24] (I" is defined as the ratio of the peak acceleration of the tap to the gravitational
acceleration g).

One of the striking features of granular materials are the memory effects observed by measuring the short-time response
to an instantaneous change in the tapping acceleration I" [25]. For a sudden decrease in I” it was observed that on short-time
scales the compaction rate increases, while for a sudden increase in I” the system dilates for short times. This behavior is
transient and after several taps there is a crossover to the “normal” behavior, with the relaxation rate becoming the same
as in constant vibration intensity mode. Furthermore, Nicolas et al. [26] have also shown that periodic shear compaction
exhibits a nontrivial response to a sudden change in shear amplitude. The rapid variation of volume fraction induced by the
sudden change of shear angle is proportional and opposite to the angle change. The short-term memory effects observed in
granular materials are reflected in the fact that the future evolution of the packing fraction 6 after time t,, depends not only
on the 6(t,,), but also on the previous tapping history. It is important to note that the parking lot model (PLM, 1D off-lattice
reversible RSA model) [24,9,27,17] is a widely used model which can reproduce qualitatively the short-term memory effects
of a weakly vibrated granular material. In Ref. [ 10] we have presented the detailed studies of the short-term memory effects
in the framework of a two-dimensional reversible RSA model on a square lattice.

An important issue in two-dimensional deposition is the influence of the shape of the adsorbed particle. It is well known
that the size, aspect ratio and symmetry properties of the object have a significant role in the processes of both irreversible
and reversible deposition. The numerical analyses for the irreversible deposition of various shapes and their mixtures on a
triangular lattice [28,29] establish that the approach to the jamming limit follows the exponential law with the rate depen-
dent mostly on the order of symmetry axis of the shape. In the reversible case of deposition on a triangular lattice [15,30],
we have found that the coverage kinetics is severely slowed down with the increase of the order of symmetry of the shape.

The main goal of the present study is to investigate the interplay between the response of the reversible RSA model
to sudden perturbations of the desorption probability P; and the symmetry properties of deposited shapes. Numerical
simulations of adsorption-desorption processes are performed for various shapes on the triangular lattice, shown in Table 1.
These shapes are made of self-avoiding walks of the same length £ = 2, but they differ in their symmetry properties. The
response in the evolution of the density 0(t) to a change in the desorption probability P, at a given time t,, is accompanied
by transformation of the local configurations in the covering. Essentially, collective (two-particle) events are responsible
for the evolution of 6 for & > ;. Size of the objects and their symmetry properties have a significant influence on these
collective events, thus affecting the kinetics of the deposition process [15,31,30]. Since we focus our interest on the influence
of symmetry of the object on the response of the system to sudden perturbation of the desorption probability Py, it is
necessary to analyze the processes with the objects of the same size. In this paper we also study the response of two-
component mixtures of extended objects (see, Table 1) to sudden perturbations of the desorption probability P;. We did carry
out a detailed analysis of the contribution to the densification kinetics coming from each mixture component. Finally, we
study the nonequilibrium two-time density-density correlation function C(t, t,,). We focus, in particular, on the influence
of symmetry properties of the shapes on the decay of C(t, t,,) and aging effects. This work provides for the first time the link
between the short-term memory effects and intrinsic properties of the shapes.

Recently, we have analyzed the growth of the coverage 6 (t) above the jamming limit to its steady-state value 6., within
the framework of the adsorption-desorption model of dimers in one dimension [32]. We reported a numerical evidence
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Table 1

Various shapes (x) of length ) = 2 on a triangular lattice. Here né” denotes the order of the symmetry axis
of the shape (x), s® is the object size, and (JJ(X) is the jamming coverage. The numbers in parentheses are the

numerical values of the standard uncertainty ofGJ(X) referred to the last digits of the quoted value.

(%) Shape n® s® ) 9J<X>

A) — 2 2 0.8362(4)
(B) -/ 1 15 2 0.8345(5)
© A 3 1 0.7970(4)

that the time needed for a system to reach the given coverage 6 can be significantly reduced if P; decreases both stepwise
and linearly (continuously) over a certain time domain. Based on the results in the present paper, one would expect that the
growth of the coverage in the case of the two-dimensional reversible RSA model can also be accelerated by decreasing the
desorption rate during the deposition process. However, our results indicate that the efficiency of this process depends on
the symmetry properties of the deposited objects. This must be taken into account when developing an optimal protocol
which significantly hastens the process for achieving high coverage densities.

The paper is organized as follows. Section 2 describes the details of the simulations. We give the simulation results and
discussions in Section 3. Finally, Section 4 contains some additional comments and final remarks.

2. Definition of the model and numerical simulation

The depositing shapes are modeled by directed self-avoiding walks on a triangular lattice. A self-avoiding shape of length
£ is a sequence of distinct vertices (wy, . . . , @) such that each vertex is a nearest neighbor of its predecessor. Consequently, a
walk of length ¢ covers £ + 1 lattice sites. On a triangular lattice objects with a symmetry axis of first, second, third, and sixth
order can be formed. Rotational symmetry of order n, also called n-fold rotational symmetry, with respect to a particular
axis perpendicular to the triangular lattice, means that rotation by an angle of 277 /n; does not change the object. In Table 1
three different shapes that can be made by self-avoiding walks of length ¢ = 2 are shown. It should be noted that size s of
an object is taken as the greatest projection of the walk that makes the object on one of the six directions. Thus the size of
adotiss = 0, the size of a one-step walk is s = 1, and for example the size of the second object (B) in Table 1iss = 1.5 in
lattice spacing.

The Monte Carlo simulations are performed on a triangular lattice of size L> = 120 x 120. At each Monte Carlo step
adsorption is attempted with probability P, and desorption with probability Py. In the simulations of deposition processes
with desorption, the kinetics is governed by the desorption to adsorption probability ratio I" = P4/P, [33,34]. Since we are
interested in the ratio I, in order to save computer time, it is convenient to take the adsorption probability to be P, = 1,
i.e., to try an adsorption at each Monte Carlo step.

We start with an initially empty triangular lattice. Adsorption and desorption processes perform simultaneously with
corresponding probabilities. For each of these processes, a lattice site is chosen at random. In the case of adsorption, we
attempt to place the object with the beginning at the selected site. If the selected site is unoccupied, one of the six possible
orientations is chosen at random and deposition of the object is tried in that direction. We fix the beginning of the walk
that makes the shape of length ¢ at the selected site and search whether all successive £ sites are unoccupied. If they are
empty, we occupy these ¢ 4 1 sites and place the object. If, however, any of the ¢ sites are already occupied, the deposition
attempt is rejected and the configuration remains unchanged. This scheme is usually called conventional or standard model
of deposition. The other strategy to perform an RSA, where we check all possible directions from the selected site, is named
the end-on model [28]. On the other hand, if the attempted process is desorption and if the selected site is already occupied
by a previously adsorbed object, the object is removed with probability P; from the layer.

Adsorption-desorption processes on discrete substrates display a surprisingly complex kinetics [9,35]. Here we consider
the case of rapid adsorption and slow desorption (I" = P3/P, < 1). Then there exist two time scales controlling the
evolution of the coverage 6 (t). The first stage of the process is dominated by adsorption events and the kinetics displays an
RSA-like behavior. With the growth of the coverage the desorption process becomes more and more important. Increasing
the coverage over the jamming limit is possible only due to the collective rearrangement of the adsorbed particles in order
to open a hole large enough for the adsorption of an additional particle. We are interested in the approach to the equilibrium
coverage in this later, post-jamming time range.

Periodic boundary conditions are used in all directions. The time t is counted by the number of adsorption attempts and
scaled by the total number of lattice sites L2. The data are averaged over 10 independent runs for each shape and each
desorption probability. The finite-size effects, which are generally weak, can be neglected for object sizes <L/8 [36].

Furthermore, during the simulation of irreversible deposition we record the number of inaccessible sites in the lattice.
A site is inaccessible if it is occupied or it cannot be the beginning of the shape. The jamming limit 6; is reached when the

number of inaccessible sites is equal to the total number of lattice sites. Values of jamming coverages GJ(X) for three objects

x) € {(A), (B), (C)} of length £ = 2 are given in Table 1. Fig. 1 shows a typical snapshot configuration at coverage fraction
6 = 0.89 obtained in the case of P; = 0.0045 for line-segments of length £ = 2 (object (A) from Table 1).
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Fig. 1. Snapshot of pattern formed during the reversible deposition of object (A) from Table 1 correspond to coverage fraction 6 = 0.89, and P; = 0.0045.
Nodes of the grid corresponding to the beginning of the walk that makes the shape are indicated by large open points. Empty nodes are marked with black
points. A lattice of size L = 60 x 60 is used.

3. Results and discussion

In order to analyze the response of the reversible RSA model to sudden perturbations of the desorption probability Py, we
have carried out series of Monte Carlo simulations for objects (A), (B), and (C), all of them starting from an empty lattice. The

system was evolved at a fixed desorption probability P(l) At a certain time, t,,, the value of the desorption probability P“)

was instantaneously changed to another value Pé ). The variations of coverage 6 (t) in the case of object (A), for three different
values of t,, are reported in Fig. 2. It must be emphasized that the same kind of numerical experiments for objects (B) and
(C) produce qualitatively similar results for the time evolution of the coverage 6 (t). First, in Fig. 2 we show the response of
the system to the desorption probability shift from P, “) = 0.0045 to P(Z) = 0.0015 at the times t,, = 139, 205, 307 needed
for a system to reach the coverages 6,, = 0.87, 0.88, 0 89, respectively, in the process of reversible RSA with P“) = 0.0045.

As it can be seen, when P, (1) > P the compaction rate of the perturbed system first increases on short-time scales. After
a transient, compaction slows down and the rate of compaction crosses over to the one observed at constant desorption
probability P(z) .

Fig. 2 also shows typical response of the system at short times after an abrupt change of the desorption probability
from P“) = 0.0015 to P(Z) = 0.0045 at the times t,, = 304, 441, 639 needed for a system to reach the coverages

6, = 0.87,0.88, 0.89, respectively, in the process of reversible RSA with Pé” = 0.0015. For P(l) < P(z) we find a short-
term response of the system opposite to the previous case. First, as the desorption probability is 1ncreased, one observes a

decompaction. Later on, the larger desorption probability P‘;z) begins to prevail and the compaction proceeds faster, at the

normal rate for constant Péz). In addition, the comparison (not shown here) of the density relaxations 6 (t) at various changes
in the desorption probability P, indicates that the amplitude of the jump in the compaction rate is larger for larger jump of
the desorption probability AP; = |P(2) Pd“) |. The probabilities of Pd“) = 0.0015 and Pf) = 0.0045 are chosen to provide
a wide density range 6 € (0.86, 0.89) for all three objects where desorption probability can be abruptly changed. We have
verified that usage of different, but sufficiently small, values of desorption probabilities P(l) and P<2) gives quantitatively
similar results leading to qualitatively same phenomenology.

This shows that the system has some memory of its history at t,,. Memory effect implies that the system can be found
in states, characterized by the same coverage fraction 6, that evolve differently under further reversible deposition with
the same desorption probability Py [17]. This is illustrated in the inset of Fig. 2. The points M and N correspond to states
with equal coverage fraction 6, = 0.8686, equal value of P; = 0.0045, but different further evolution. Their responses to
the same desorption probability P, are different: covering M becomes looser whereas covering N pursues its compaction. In
other words, the density evolution 6 (t) after the points M and N depends not only on the density 6., but also on the previous
tapping history. The memory of the history up to the density 6. is encoded in the arrangement of the objects in the covering.



J.R. Scepanovic et al. / Physica A 451 (2016) 213-226 217

0.94 |

092

0(t)

091

0.88
0861 ——0.0015-00045
10 10° 10*
t
Fig. 2. Time evolution of the coverage 6(t) for object (A) when the desorption probability is changed from P;” = 0.0045 to Pé” = 0.0015 (from

P{" = 0.0015 to P¥ = 0.0045) at times t,, = 139, 205, 307 (t,, = 304, 441, 639) needed for the system to reach the coverages 6,, = 0.87, 0.88, 0.89,
respectively, in the process of reversible RSA with Pd(” = 0.0045 (P‘(IU = 0.0015). Inset: Zoom up on the region around t,, = 304 (6(t,,) = 0.87) when
the desorption probability switches from Pé” = 0.0015 to Pf) = 0.0045. The points M and N correspond to states with equal density 8. = 0.8686, equal

value of P;Z) = 0.0045, but different further evolution.

Interpretation of these results for all objects (A), (B), and (C) is quite straightforward using the results of Refs. [37,9,
34]. The compaction rate just before t,, is determined by the desorption probability Py4(t,, — 0) and by the fraction of the
substrate, @ (t,, — 0), that is available for the insertion of a new particle. The quantity & (t,, — 0) (the insertion probability)
strongly depends on the state of the system, but it is not unambiguously determined by the coverage fraction 6(t,, — 0) at
the same instant [9,10]. When Py is abruptly lowered, the first effect is that the particles tend to decrease the fraction of
the substrate that is available for deposition of new particles, and the layer becomes more compact. Therefore the rate of
compaction first increases with respect to the unperturbed case. At larger times, however, the compaction is slowed down
by the creation of a denser substrate and smaller fraction of the layer that is available for the insertion of a new particle.

When the desorption probability P, is suddenly increased at t,,, the first effect is decompaction. On short-time scales,
the interplay between the insertion probability and desorption probability leads to the fast density changes. During this
transient stage the fraction of the substrate that is available for the insertion of a new particle is an increasing function
of time. After this transient interval, the adsorption events prevail, and the compaction proceeds faster. Growing of the
insertion probability, @ (t), during the transient time, leads to the more efficient densification afterwards.

Here we focus our interest on the influence of the order of symmetry axis of the shape on the response of the reversible
RSA model to sudden perturbation of the desorption probability P;. Consequently, we considered series of numerical
experiments where the short-term memory effects were analyzed for the three systems. In this set of experiments the
objects (A), (B), and (C) were deposited to the same density 8,, with desorption probability Pé” . After the density 6,, was

achieved, desorption probability P; was switched from Pé]) to P;z) (Pf) < Pé”). In Fig. 3 we show the time evolution of
the density 6(t) during the deposition of objects (A), (B), and (C), when the desorption probability P is changed from
P;l) = 0.0045 to P;z) = 0.0015. Here, the results for three different values of 6,, are reported, namely, 0.87, 0.88, and 0.89.
The time origin for each experiment has been taken at the time when the system reached the prescribed density ,,. In Fig. 4
the same set of numerical experiments is carried out, with the only difference that in this case the desorption probability is
changed from Pé” = 0.0015 to Pt(iz) = 0.0045. These simulations show that the short-time response to an instantaneous
change in desorption probability P, strongly depends on the symmetry properties of the shapes. From Figs. 3 and 4, it follows
that the change in the compaction rate on short-time scales is less pronounced as order of symmetry axis of the shape n;
increases.

Qualitative interpretation of these results can be attained by exploiting the mechanism of collective events for governing
the late-time changes in the coverage fraction (9(t) > 6). In the following, we restrict ourselves to the case of weak
desorption (large values of K = P,/Py), when the system of adsorbed particles evolves continuously toward an equilibrium
disordered state. When a value of 8 is reached, the rare desorption events are generally followed by immediate readsorption.
The total number of particles is not changed by these single particle events. Essentially, collective events are responsible for
the evolution of coverage fraction 6 above the jamming limit 6. The rearrangement of state corresponding to 6 > 6, to its
steady-state value 6, is dominated by the following two-particle processes:

(a) in one process (“2 — 1”), responsible for decreasing the number of deposited objects by 1, two adjacent objects leave
and a single one comes in their stead;
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Fig. 3. Time evolution of the coverage 6 (t) for objects (A), (B), and (C) when the desorption probability is changed from P‘f,l) = 0.0045 to Pf) = 0.0015
at the times t,, needed for the system to reach the coverages 6,, = 0.87, 0.88, 0.89 in the process of reversible RSA with Pé” = 0.0045. The time origin

for each experiment has been taken at the time when the system reached the prescribed density 6,,.
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Fig. 4. Time evolution of the coverage 6 (t) for objects (A), (B), and (C) when the desorption probability is changed from P,;l) = 0.0015 to Pf) = 0.0045

at the times t,, needed for the system to reach the coverages 6,, = 0.87, 0.88, 0.89 in the process of reversible RSA with P(f,” = 0.0015. The time origin
for each experiment has been taken at the time when the system reached the prescribed density 6,,.

(b) the opposite process (“1 — 2”) results in adding an extra object to the lattice: an object exits and leaves a space big
enough for two objects.

The rate of the “2 — 1" process has three contributions. First, an object must leave the lattice. Then, an adjacent object must
leave before the hole left by the first object fills. Finally, the big hole must be blocked by a badly sited object. In the opposite,
“1 — 2” process, the void left by the object must be large enough for two objects. Note that the first incoming object must
park with a sufficient precision in order to leave enough space for the second object.

It is obvious that the process “1 — 2" has an overall rate proportional to P; (P; < 1). Since the process “2 — 1” includes
two consecutive desorption events, it is plausible that its overall rate is proportional to (Py)?> < Py < 1. That is the main
reason why, for coverages that are not close to the steady-state value, the collective event “1 — 2” is more frequent than the
opposite event “2 — 1”. This regime persists until the coverage is very close to the equilibrium value. Since the coverage
fraction O(t) increases and the available surface function @ decreases, the overall rate at which the density increases is
progressively reduced. The efficiency of desorption relative to adsorption increases, and the process reaches a steady state
in which the rate of the “2 — 1" process is balanced by the “1 — 2" process.

Note that in Ref. Kolan et al. [24], the authors calculated the transition rates for the collective processes “1 = 2” in the
case of a 1D RSA model and found that these rates account for the additional slow time scales. Ghaskadvi and Dennin [11]
directly monitored the transition rates for the two-particle processes “1 = 2" as part of the simulation. They have directly
confirmed the importance of multiparticle transitions “1 = 2” for governing the late time behavior of the system.
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Fig.5. Two-time density-density correlation function C(t, t,,) for objects (a) (A), (b) (B), and (c) (C), as a function of t —t,,. The waiting time t,, corresponds
to the time needed for the system to reach the coverage 6,, = 0.88. The solid lines represent the temporal behavior of C(t, t,,) obtained for the fixed
desorption probabilities P; = 0.0015, 0.0045, as indicated in the legend. The dashed lines represent the temporal dependence of C(t, t,,) obtained from

the runs during which an abrupt change of desorption probability PC(IU = 0.0045 — Pd(z) = 0.0015 (Pd“) =0.0015 — PC(IZ) = 0.0045) occurs at instant t,,,
as indicated in the legend.

Now we try to explain how the order of symmetry axis of the shape changes the dynamics of the collective processes.
Symmetry properties of the shapes have a significant influence on the filling of small isolated targets on the lattice. Indeed,
there is only a restricted number of possible orientations in which an object can reach a previously opened location,
provided the location is small enough. A shape with a symmetry axis of higher order has a greater number of possible
orientations for deposition into small isolated locations on the lattice, and therefore enhanced probability of single-particle
readsorption. This extends the mean waiting time between consecutive two-particle events “1 — 2", responsible for the
density growth above 6, and causes a slowing down of the density growth. On the contrary, for the asymmetrical shapes
(angled objects) there is a greater probability for blocking the neighboring sites. The noticeable drop in the probability of
single-particle readsorption for the asymmetrical shapes is thus a clear consequence of the enhanced frustration of the
spatial adsorption. Therefore, desorption process effectively opens holes that are large enough for insertion of two or more
particles. This reduces the mean waiting time between consecutive multiparticle events which leads to more rapid growth
of the density. When Py is abruptly lowered, such a different object view is the cause of the enhanced density growth in
the case of asymmetrical shapes as compared to those in the case of more round (symmetric) shapes. When the desorption
probability P, is suddenly increased, decompaction rate of the perturbed system on short-time scales is larger for shapes
with a symmetry axis of lower order (Fig. 4). This is a consequence of the fact that unlike for the more symmetrical
objects, much less orientations are allowed for irregular and asymmetric shapes falling in the isolated selective target
spaces.

Below we try to further quantitatively characterize the out-of equilibrium dynamics in our system. Specifically, we
have evaluated the two-time density-density correlation function, C(t, t,), and qualitatively analyzed its dependence
on symmetry properties of the shapes. The normalized two-time density-density correlation function is defined as
follows,

(9(t)0(tw)) - <6(t)> (e(tw»

C(t, tw) = (92(tw)> — (9(&0))2

.o t=ty, (1)
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Fig. 7. Shown here is the time dependence of the coverage fraction 6®+(© for the mixture (B) + (C) and its components for two different values of
desorption probability, P; = 0.0015, 0.0045. Black (red) and grey (light blue) lines represent the results obtained for P; = 0.0045 and P; = 0.0015,
respectively. The solid lines represent the temporal behavior of the coverage fraction 8 ®+©(t) (left-hand axis). The dashed and dotted lines are plotted
against the right-hand axis and give the coverage fraction versus time t of the component shapes (C), 8 (t) (dashed), and (B), #® (t) (dotted). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where the angular brackets (- - -) denote an average over independent runs. In order to obtain reasonable statistics, it is
necessary to average over many independent runs (typically 10%). Out of equilibrium, C(t, t,,) is a function of both times, t
and t,,,.

In Fig. 5 we show the behavior of the correlation function C(t, t,,) for objects (A), (B), and (C). The waiting time t,,
corresponds to the time needed for a system to reach the coverage 6,, = 0.88. Numerical simulations for other densities,
6, = 0.87,0.89, produce qualitatively similar results for the time evolution of the correlation function C(t, t,,). In each
plot of Fig. 5, the temporal dependence of C(t, t,,) is displayed for the fixed desorption probabilities, P; = 0.0015, 0.0045.
For comparison, we also show the temporal dependence of C(t, t,,) calculated from 10* independent runs during which
an abrupt change of desorption probability Pél) = 0.0045 — Péz) = 0.0015 (Pél) = 0.0015 — Pf) = 0.0045) occurs
at instant t,,. Correlation function obtained from the numerical simulation in which there is an instantaneous change of

desorption probability Pd(]) — P(gz), interpolates between two correlation functions calculated for constant desorption

probabilities Pél) and Pf). At short times, this correlation function behaves as C(t, t,,) obtained in the case when the
desorption probability has the constant value Pé” = 0.0045 (Pél) = 0.0015). However, its long time behavior is consistent
with the decay of C(t, t,,) obtained in the case when the desorption probability has the constant value P;z) = 0.0015 (Pf) =
0.0045). By comparing the three panels in Fig. 5, it is obvious that global properties of the correlation function C(t, t,,) of
the density fluctuations depend on the order of symmetry axis of the shape n;: as n; grows, the correlation decays slower. In
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Fig. 8. Snapshot of pattern formed during the reversible deposition of mixture (B)+ (C) ((B)-red, (C)-blue) from Table 1 correspond to (a) coverage fraction
§®+© — 0.88, and (b) steady-state coverage 627 = 0.9066. Nodes of the grid corresponding to the beginning of the walk that makes the shapes are
indicated by large open points. Empty nodes are marked with black points. A lattice of size L> = 60 x 60 and P; = 0.0045 are used. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

other words, longer memory of the initial state persists for the more symmetrical shapes. Indeed, the increase of the order
of symmetry of the shape enhances the rate of single particle readsorption. This extends the time needed for a system to
forget the initial configuration. However, the correlation curves do not differ qualitatively and they have similar shapes for
all objects.

It is well known that the aging properties of the system are characterized by specific scaling properties of C(t, t,,). For
example, in the Tetris and Ising frustrated lattice gas models, it was found that the relaxation of C(t, t,,) is given by the
form [38]:

In[(t, + t5)/7]
Clt,ty) = (1 — Cog) ———— = + Coos 2
(t, ty) = ( ) [ttt/ (2)
where 7, t; and ¢, are fitting parameters. The above behavior is found in our model. In Fig. 6 we show the behavior of
the correlation function C(t, t,,) for objects (A), (B), and (C), when P; = 0.0015. The waiting times t,, correspond to the
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Fig. 9. Time evolution of coverage fraction §®+© for the mixture (B) + (C) when the desorption probability is changed from P;” = 0.0045 to

P =0.0015 (from P{" = 0.0015 to P\’ = 0.0045) at the time t,, = 126 (t,, = 182) needed for the system to reach the coverage §+© = 0.88, in the

process of reversible RSA with Pél) = 0.0045 (Pé1> = 0.0015). The time origin for each experiment has been taken at the time when the system reached
the prescribed density 6,,.

time needed for a system to reach the coverages 6,, = 0.87,0.88, 0.89. For all the shapes, the typical aging behavior
is observed: the larger t,, the longer memory of the initial state persists. The inset of Fig. 6 illustrates that when the
two-time correlation function C(t, t,,) is plotted as a function of In[(t,, + t;)/t]/In[(t + t;)/7] the data for all three
objects collapse onto single curve. This figure clearly demonstrates the existence of the single universal master function.
It is interesting that the parameter t; is equal for all objects, t; = 1760. However, parameter T depends on the shape:
T(A) = 81, 7(B) = 210, t(C) = 43. The shapes of higher order of symmetry n; have lower values of scaling parameter t.

3.1. Memory effects in mixtures

In the following, we shall investigate the role that the mixture composition and the symmetry properties of component
shapes play in the deposition process. We shall mainly concentrate on the response of the reversible RSA model to sudden
perturbations of the desorption probability P, in the case of binary mixtures, composed of the shapes of different rotational
symmetries but of the same number of segments.

Consider the two-component mixture of objects (B) and (C) with the symmetry axis of ngB ) = 1and ngc) = 3 order,
respectively. The reversible RSA process for a binary mixture is as follows. From a large reservoir of shapes, that contains
the shapes (B) and (C) with equal fractional concentrations, we choose one shape at random. We randomly select a lattice
site and try to deposit the chosen shape in the same manner as in the case of the reversible RSA of pure depositing objects.
Each adsorption attempt is followed by a desorption one with probability P;. The quantity of interest is the fraction of total
lattice sites, 09®+(©(t), covered by the deposited objects (B) and (C) at time t.

Fig. 7 shows the time dependence of the partial coverages 8® (t) and 6(© (t) resulting from the reversible RSA of the
binary mixture of (B) and (C) shapes, for two values of desorption probability, P; = 0.0045, 0.0015. For shape (C) of higher
order of symmetry nﬁc) = 3, the partial coverage 0©(t) is a monotonously increasing function of time and has the same
general features as the coverage ®+(© (t) for the mixture (B) 4+ (C). On the other hand, for shape (B) of lower order of

symmetry n{ = 1, the partial coverage 6® (t) is not monotonic in time. When the coverage 8 ®+© (¢) approaches to

the coverage fraction that is equal to the jamming limit QJ(B)HC) = 0.8624, the partial coverage 6® (t) reaches a broad
(B)
o0

maximum. This is followed by a slow relaxation of 8 (t) to the smaller steady-state value 05 . At late enough time, when
the coverage fraction is sufficient to make the geometry of the unoccupied sites complex, there is a strong dependence of
the adsorption rate on the adsorbed shape [28,15]. Then, both rotational symmetry of the shapes and desorption events
manage the single-particle readsorptions on the lattice and, eventually, allow replacements of the less symmetric particles
by the more symmetric ones. This is reflected in the gradual decrease of the coverage fraction with time for the shape with
the symmetry axis of lower order. Our results confirm that, for sufficiently high coverages of a mixture, the large times
coverage fraction of more symmetric shapes exceeds the coverage fraction of less symmetric ones [31]. The steady-state
value of the coverage fraction of the mixture components is always larger for the shapes with the symmetry axis of higher
order ns [31]. In Fig. 8 we compare the geometric status of the representative snapshots of patterns formed during the
reversible deposition of mixture (B) + (C). The snapshots are taken at the times t,, needed for the system to reach (a) the
coverage 0®+©O(t, )y = 0.88, and (b) the steady-state coverage 9£)+(C> = 0.9066 in the process of reversible deposition
with P; = 0.0045. In Fig. 8(a) the partial coverage of triangles (C) (6 (t,,) = 0.4375) is slightly smaller than that of angled
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Fig. 10. Shown here is the response of the mixture (B) + (C) to the desorption probability shift P(;” — Pf). Black (red) lines represent the results
obtained for the abrupt change Pé” = 0.0045 — P‘52> = 0.0015 at the time t,, needed for the system to reach the coverage G,f)*(c) = 0.88 in the process
of reversible RSA with P;D = 0.0045. Grey (light blue) lines represent the results obtained for the abrupt change Pl(jl) = 0.0015 — Pf) = 0.0045 at the
time t,, needed for the system to reach the coverage §®+© = 0.88 in the process of reversible RSA with P{"’ = 0.0015. The solid lines represent the
temporal behavior of the coverage fraction 8®+© (t) (left-hand axis). The dashed and dotted lines are plotted against the right-hand axis and give the
coverage fraction versus time t of the component shapes (C), € (t) (dashed), and (B), 8® (t) (dotted). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Cltt,)
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Fig. 11. Two-time density-density correlation function C(t, t,,) for the mixture (B) + (C), as a function of t — t,,. The waiting time t,, corresponds to
the time needed for the system to reach the coverage ®+(© = 0.88. The solid lines represent the temporal behavior of C(t, t,,) obtained for the fixed
desorption probabilities P; = 0.0015 and 0.0045, as indicated in the legend. The dashed lines represent the temporal dependence of C(t, t,,) obtained
from the runs during which an abrupt change of desorption probability P;” = 0.0045 — Pf) = 0.0015 (P;” = 0.0015 — Pf) = 0.0045) occurs at
instant t,,, as indicated in the legend.

objects (B) (9®(t,,) = 0.4433). However, at the steady-state density 9;?*“) = 0.9066 (Fig. 8(b)) the partial coverage
fraction is larger for the shape with symmetry axis of higher order, i.e. 9&9 = 0.5266 > 9;5) = 0.3800.

Fig. 9 shows typical short-term memory effects after an abrupt change of the desorption probability P, for the mixture
(B) + (C) and for pure component shapes, (B) and (C). Desorption probability P, is switched from Pél) = 0.0045 to

Péz) = 0.0015 and vice-versa, at the time t,, needed for a mixture to reach the coverage 6,, = 0.88. Again, we observe
that after several adsorption/desorption events the “anomalous” response ceases and there is a crossover to the “normal”
behavior, with the relaxation rate becoming the same as in the constant forcing mode. However, it is interesting to note
that during this transient stage, the temporal evolution of the total coverage fraction #®+(© (t) is very similar to the one
observed for the shape with the symmetry axis of lower order. Hence, the dynamics of the short-time response of the mixture
(B) + (C) to sudden perturbation of the desorption probability P, is usually determined by the shape (B) of lower order of
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Fig. 12. Two-time density-density correlation function C(t, t,,) for objects (B), (C), and mixture (B) 4+ (C), as a function of t — t,,. The waiting time t,,
corresponds to the time needed for the system to reach the coverage 6,, = 0.88 when the desorption probability has the constant values (a) PC(IU = 0.0045,
and (b) P{" = 0.0015.

symmetry, nﬁB ) = 1. Fig. 10 puts into evidence the temporal behavior of the partial coverage fraction for component shapes
(B) and (C) during the transient time. As in the case of pure lattice shapes, we observe that the change in the compaction
rate on short-time scales is less pronounced for the component shape of higher symmetry order.

In Fig. 11 we show the temporal dependence of C(t, t,,) (see, Eq. (1)) for the mixture (B) 4 (C), when the waiting time t,,
corresponds to the time needed for a system to reach the coverage 6{®+(© = 0.88. Correlation function C(t, t,,) is displayed
both for the fixed desorption probabilities, P; = 0.0015, 0.0045, and for the cases with abrupt changes of desorption
probability P;,” = 0.0045 — Péz) = 0.0015, and P;” = 0.0015 — Péz) = 0.0045 at instant t,,. As for the pure lattice

shapes, correlation functions calculated for the mixture (B) + (C) in the case of perturbed systems (AP; = Pé” - Péz) <0)

interpolates between the two correlation functions obtained for the systems with constant desorption probabilities PV,

and Pd(z).

It is instructive to compare the temporal behavior of the correlation function C(t, t,,) for the mixture with results for
C(t, t,) in the case of reversible deposition of pure component shapes. In Fig. 12 we show the time evolution of C(t, t,,)
during the deposition of objects (B), (C), and the mixture (B) + (C), for the waiting time t,, needed for a system to reach the
coverage 0,, = 0.88 when the desorption probability has the constant values Pél) = 0.0045 (Fig. 12(a)) and Pgl) = 0.0015
(Fig. 12(b)). We can clearly see that for short times, C(t, t,,) for the mixture (B) + (C) decays in a similar way as for shape (B)
with the symmetry axis of lower order, n§B ) = 1. This changes slightly at intermediate times, when the correlation function
C(t, t,) for the mixture starts to decay faster than the density correlations of component shapes. Hence, we observe the
weakening of correlation features in multicomponent systems.
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4. Conclusions

Along this paper, we have studied the nonequilibrium response of reversible RSA model to an instantaneous change in
the value of desorption probability P;. We have performed extensive simulations of reversible deposition using objects of
different rotational symmetries on a triangular lattice. The shapes are made by self-avoiding lattice steps. First, it was shown
that the change in the compaction rate has opposite sign than that of the modification of the desorption probability Py, in
contrast with the long-time behavior, where the relaxation is faster for larger P;. These results are in a qualitative agreement
with the observations in experiments on granular compaction [25]. Further, our numerical simulations have shown that
the short-time response to an instantaneous change in the desorption probability P, strongly depends on the symmetry
properties of the shapes. We have found that the dynamical behavior is severely slowed down with the increase of the order
of symmetry of the shape. When the desorption probability P, is suddenly decreased/increased, compaction/decompaction
rate of the perturbed system on short-time scales is larger for shapes with symmetry axis of lower order. We have also
pointed out the importance of collective events for governing the short-time coverage behavior of shapes with different
rotational symmetry.

We have also considered the nonequilibrium two-time density-density correlation function C(t, t,,). We have observed
that decay of the correlation function C(t, t,,) depends on the order of symmetry axis of the shape n;. It was confirmed
that the density correlation decays slower for more symmetrical shapes. Eq. (2) states that, for the long enough times, the
correlation C(t, t,,) is a function of the ratio In(t, )/ In(t). Such scaling behavior is in agreement with the Ising frustrated
lattice gas model and the Tetris model [38], but in contrast with the parking lot model [27], for which a t/t,, behavior has
been observed.

Special attention has been paid to the mixtures containing objects of various shapes, but made of the same number of
segments. It was found that the dynamics of the short-time response of the mixture to sudden perturbation of the desorption
probability P, is determined by the shape of lower order of symmetry. In addition, our results confirm the weakening of
correlation features for the deposition processes in multicomponent systems.
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Abstract. We report on measurements of the electrical conductivity on a two-dimensional packing of
metallic disks when a stable current of ~1 mA flows through the system. At low applied currents, the
conductance o is found to increase by a pattern o(t) = 0o — AcEs[—(t/7)%], where E, denotes the
Mittag-Leffler function of order @ € (0, 1). By changing the inclination angle 6 of the granular bed from
horizontal, we have studied the impact of the effective gravitational acceleration gegr = gsiné on the
relaxation features of the conductance o(t). The characteristic timescale 7 is found to grow when effective
gravity gem decreases. By changing both the distance between the electrodes and the number of grains in the
packing, we have shown that the long term resistance decay observed in the experiment is related to local
micro-contacts rearrangements at each disk. By focusing on the electro-mechanical processes that allow
both creation and breakdown of micro-contacts between two disks, we present an approach to granular
conduction based on subordination of stochastic processes. In order to imitate, in a very simplified way,
the conduction dynamics of granular material at low currents, we impose that the micro-contacts at the
interface switch stochastically between two possible states, “on” and “off”, characterizing the conductivity
of the micro-contact. We assume that the time intervals between the consecutive changes of state are
governed by a certain waiting-time distribution. It is demonstrated how the microscopic random dynamics
regarding the micro-contacts leads to the macroscopic observation of slow conductance growth, described

by an exact fractional kinetic equations.

1 Introduction

The electrical resistance of a granular packing is a combi-
nation of the individual resistances of both the grains and
the contacts between them [1]. Such a combination is a
strong function of global properties concerning the grain
assembly (packing size and density, external loads) and
local properties at the contact scale of two grains (surface
state, roughness, degree of oxidation, presence of impu-
rities). Understanding the electrical conduction through
real granular materials is a complicated many body prob-
lem since particles may have simultaneously broad distri-
butions of sizes and strongly varying morphologies.

The main contribution to the overall conductivity of
the packing of metallic grains comes from the contact
resistances, which may have two origins: tunneling [2]
and constrictions [3]. The tunneling resistances may have
very high values, but especially concern metallic powders
coated by thin oxide film. On the other hand, constriction
resistances are due to the narrowness of the conducting
path owing to the small contact area between two parti-
cles. Actually, any contact is made of a number of touching
points rather than by well-defined surface.

% e-mail: vrhovac@ipb.ac.rs

Experiments on the electrical properties of granu-
lar systems have been performed in the past. In 1890,
Branly [4] discovered the extreme sensitivity of the con-
ductivity of metal filling to an electromagnetic wave.
The Branly’s effect is an instability of the electrical
conductance that appears in oxidized granular metallic
material under mechanical loading [5-9]. Electrical con-
duction within metallic granular packings displays other
interesting properties. Indeed, in both 1D and 2D granu-
lar systems at low current, the wide distribution of contact
resistances results in a logarithmic behavior for the volt-
age/current characteristics [10]. At high enough current,
the voltage saturates due to the local welding of micro-
contacts between grains [11]. Furthermore, electrical con-
duction shows a large sensitivity on the small mechanical
and thermal perturbations of the packing [12,13]. Origin of
these large non-Gaussian conductance fluctuations should
be found in local micro-contact rearrangements at each
grain rather than collective rearrangements of grains in-
side the packing.

Although many experiments have been performed for
studying electrical aspects of granular matter, only few
reports [14,15] can be found for describing the tempo-
ral evolution of the electrical resistance R(t) in packing
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of metallic grains when a stable current flows through the
system. Dorbolo et al. [14] measured the electrical resis-
tance in a 2D system and found that the decay process
in the case of injected currents 35 < I < 50 mA may
be decomposed into three phases. At first the resistance
decreases during the first minute, after that the curves
R(t) are stabilized during ~10% s before decreasing again.
However, for lower injected currents 10 < I < 25, the
resistance R(t) is a monotonically decreasing function. It
would be interesting to find out where such unusual be-
havior comes from. Dorbolo et al. [14] suggested that the
long term decay of the electric resistance R(t) seems to be
related to the enhancement of contacts themselves. The
aim of this work is to investigate the regime of very small
electric currents I ~ 1 mA in order to gain a better un-
derstanding the origin of the slow electrical resistance re-
laxation in granular packing.

We focus on the electrical transport within 2D packing
of metallic disks directly connected to an electrical source.
A fixed current has been injected during a few hours and
conductance o(t) = 1/R(t) has been recorded at regular
intervals. Experiments were performed for two different
inclination angles 6 of the granular bed from horizontal.
Consequently, we have considered the impact of the effec-
tive gravitational acceleration geg = gsin@ on the relax-
ation features of the conductance o(t). We could change
the distance between the electrodes, i.e. the number of
grains in the packing. In this way we were able to com-
pare the influence of large force chain rearrangements with
impact of local micro-contact rearrangements at each disk
on overall electrical conductivity of the packing.

We have tried to fit different functional forms to the
slow temporal relaxation of o(t) obtained in the exper-
iments, looking in particular at the relaxation functions
proposed in the experimental and numerical studies of
disordered systems [16]. We have found that the most
suitable functional form for our experimental data is the
Mittag-Leffler law (1) (corresponding mathematical defi-
nitions are provided later in the text; see Egs. (2) and (3)).
The main question that needs an answer is whether equa-
tion (1) represents only a convenient fitting expression or
it has a more fundamental meaning, associated to some
peculiar dynamical events which are dominant in the con-
ductance relaxation. We would like to elucidate this point
more thoroughly in order to develop a dynamic model
for the electric contact between two grains based on the
stochastic fractional process that captures this relaxation
dynamics.

A typical rough surface of metallic grain may include
many small contacts of varying sizes. Our model assumes
the electrical current flow is between two contiguous bulk
conducting materials and the current flows through the
conducting a-spots or constrictions (micro-contacts) [3].
The model does not explicitly account for quantum ef-
fects or the spreading resistance resulting from the thin
film micro-contacts. Our approach is based on the proba-
bilistic formalism of limit theorems which provides tools to
relate the non-differentiable nature of microscopic dynam-
ics of components in complex systems to the macroscopic
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description of such systems in the form of fractional oper-
ators [17-20]. We suppose that there are only two possible
states of micro-contacts, referred to as “switched on” and
“switched off”. In order to imitate, in a very simplified
way, the relaxation features of conductance o(t) under low
currents, we impose that the micro-contacts at interface
switch stochastically between two possible states. Starting
with the description of the two-state system evolution as
a Markovian process, we develop the analysis on a sub-
ordinated random process. The process differs from the
Markovian ones by the temporal variable becoming ran-
dom [19]. This generalization is of a stochastic origin and
produces the fractional operator in the resulting evolu-
tion equation for the conductance. The evolution equation
is capable of reproducing a wide range of experimental
behavior.

In the following section, we present the experimental
set-up and describe the experimental procedures. The ex-
perimental results are reported and discussed in Section 3.
Definition of the model and discussion on the physical in-
terpretation of the model parameters are given in Sec-
tion 4. In the same section results of numerical simulation
are presented, discussed, and wherever possible compared
with analytical results. Finally, we summarize our findings
in Section 5.

2 Experiment

Let us now describe our experimental set-up, which is pre-
sented in Figure 1. Experiments were carried out on a 2D
granular medium, i.e. the motion of the grains was con-
fined to a plane. The granular packing is constituted of
metallic cylinders of millimetric size contained in a rectan-
gular box made of two parallel glass plates, with an inner
gap of thickness 3.4 mm, slightly larger than the height of
the cylinders, h = 3.00 £ 0.01 mm. The lateral walls of the
box delimit a rectangular frame of height H = 340 mm
and an adjustable width of typically L = 300 mm. We
can change the distance between the lateral walls, i.e. the
number of grains in 2D packing, to separate local behavior
from collective behavior. The box is secured on a heavy
plane able to be inclined at different rates (5°-20° s~ 1)
so that we could set an arbitrary inclination angle 6 from
the horizontal. The angle of inclination 6 is measured by
means of a goniometer fixed to the plane. See Figure 1b
for a sketch of this angle definition.

The cylinders of diameter d = 6.00 £ 0.05 mm were
used to prepare the monodisperse packings containing
about 2400 grains. Disordered packings are prepared by
pouring grains onto an initially horizontal glass plate at
once. Then, they are spread until a flat layer is obtained,
where the cylinders are randomly deposited without con-
tact between them and at rest. The angle of the plane is
then slowly increased up to the angle 6 = 45° or 6 = 85°,
at constant angular velocity. These final inclination angles
correspond to a value larger than the static Coulomb angle
of friction between the metallic grains and the glass plate,
which is around 25°. During the plane rotation, grains
therefore freely slide downward and reach a mechanically
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rectangular box

heavy plane .
granular packing
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Fig. 1. (a) Photograph of the experimental setup. (b)
Schematic diagram of the experimental setup (side view). The
hatched area indicates the granular packing and 6 is the incli-
nation angle of the packing from the horizontal.

stable state. This way we control the balance of tangential
and normal gravitational force on the layer and thus the
contact network (and certainly also force network) inside
the granular material. The measured packing fractions of
these disordered packings are p = 0.78—0.80 + 0.01. Par-
tially ordered packings are obtained by using the same
initial procedure followed by the vibration of the inclined
plane with a hammer-like device installed below the con-
tainer. The packing fraction of densely packed systems is
p = 0.81-0.86 + 0.01. Those densities are far from the
close packing limit p., = 7/2v/3 =~ 0.91 [21].

The bottom side of the rectangular box is electrically
insulated. The current is injected to the packing side and
not to only one grain. Long electrical contacts are disposed
on two opposite lateral walls of the box. Electrical contacts
are connected by cables to a Fluke 8008A Digital Mul-
timeter which allows to measure the resistance. During
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Fig. 2. Typical temporal evolutions of the resistance R(t) ob-
tained for an injected current I = 1 mA and an inclination
angle 0 = 85° (solid lines). The corresponding values of the
conductance o(t) are given on the right axis (dashed lines).
The different curves are obtained for several disordered pack-
ings prepared by using the same procedure.
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the experiment, we have recorded the temporal evolution
of the electrical resistance R(t) of a metallic grains heap
when a stable current flows through the system. A fixed
current of I =1 mA is injected during ~20-100 min and
the resistance R(t) is sampled every 5 s. Different mate-
rials have been used for the electrodes (brass and stain-
less steel). We observed that the main relaxation features
of conductance o(t) do not qualitatively depend on the
electrode material. After each measurement of resistance
R(t), effective gravitational force on the grains is reduced
to zero by placing the container in a horizontal position,
and we rearrange the cylinders which creates new contacts
for the next measurement.

The experimental setup has a high sensitivity to ther-
mal perturbations and mechanical vibrations. It should
be noted that we controlled the ambient humidity and
temperature of the laboratory. The experimental repro-
ducibility is qualitatively good although the exact values
of conductance may exhibit fluctuations from one packing
preparation to another.

3 Experimental results and discussion

In Figure 2, typical variations of the resistance R(t) are
shown versus time for an injected current / = 1 mA and an
inclination angle 8 = 85°. Also included in Figure 2 is the
temporal evolution of the conductance o(t) for the same
experimental conditions. We observe that for the fixed in-
jected current, the initial resistance for different packings
differs from one another. This should be attributed to the
changes in the contact network during the formation of
new packings. It must be noted that the initial resistance
dependence on the injected current in the range between
10 and 65 mA has been extensively analyzed in the experi-
ments by Dorbolo et al. [14], that suggested that the initial
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resistance decreases with the injected current. As seen
in Figure 2, resistance R(t) decreases very slowly with
time for each packing. Our measurements have suggested
that resistance R(t) continues to decrease toward some
saturation value. With the compacted (partially ordered)
granular medium we made the same experiments and ob-
tained qualitatively the same long-time behavior of the
conductivity. Such behavior of the electrical conductivity,
Dorbolo et al. [14] was demonstrated in the experiments
at higher currents, 10 mA < I < 25 mA.

Looking for a function that gives the best fit to the
temporal evolution of the conductance o(t) in the case of
very low injected currents I ~ 1072 A, we have obtained
that the best agreement with our experimental data gives
the Mittag-Leffler function. The fitting function we have
used is of the form

o(t) = 0o — Ao Eo(—(t/T)%), (1)
where 04, Ao, 7, and « are the fitting parameters. Pa-
rameter 7 determines the characteristic time of the tem-
poral evolution of conductance o = o(t), and « measures
the rate of conductance relaxation on this time scale. The
parameter o, is the asymptotic value of the conductance
o(t) when t — oo, and Ao = 0 — 0(0).

In equation (1), E, denotes the Mittag-Leffler function
of order o € (0,1) [22]. It is defined through the inverse
Laplace transform £

Eo[—(t/7)*] =L [(u+7""u'"*)"], (2)

from which the series expansion

Bl = 3 S

n=0

(3)

can be deduced; in particular, Eq(—t/7) = exp(—t/T).
The Mittag-Leffler function interpolates between the ini-
tial stretched exponential form

Eu [—(t/7)%] ~ 1(t) = exp [— Wﬂ, t<,

I'l+a«
(4)
and the long-time power-law behavior

1

Eo [=(t/7)%] ~ Pa(t) = Ta—a)

/7))~ t>r1. (5)

In Figure 3 we compare the temporal evolution of the
conductivity o(t) obtained when the experiment is per-
formed for two different inclination angles of the plane,
0 = 85°, 45°. In the same figure the fits to the Mittag-
Leffler law (Eq. (1)) are also given, demonstrating that
it is excellently obeyed. The two fitting parameters are
7(85°) = 1.46 x 10* s, a(85°) = 0.461 for § = 85°, and
7(45°) = 2.68 x 10° 5, (45°) = 0.327 for § = 45°. In addi-
tion, the inset of Figure 3 compares the evolution of nor-
malized conductivity o, (t) = (o(t) —0(0))/(0c —(0)) =
1 — E[—(t/7)*] for the two values of inclination angle,
0 = 85°, 45°. It can be seen that the relaxation dynam-
ics gets slower (7(85°) < 7(45°)), and the evolution of the
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Fig. 3. Temporal evolution of the conductivity o(t) obtained
for two different inclination angles of the plane, § = 85°, 45°.
The thin (black) lines are the Mittag-Lefler fits of equation (1),
with parameters 7(85°) = 1.46 x 10* s, «(85°) = 0.461, and
7(45°) = 2.68 x 10° s, a(45°) = 0.327. Inset: temporal evolu-
tion of the normalized conductance o, (t) = (o(t)—0(0))/(00c—
0(0)) =1— E[—(t/7)?] for § = 85°, 45°.
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Fig. 4. Time evolution of the conductivity o(¢) when the in-
clination angle 0 is changed from 6; = 85° to 62 = 45° and
vice versa in different time instants.
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conductivity o(t) toward the saturation value takes place
on much wider time scale ((85°) > a(45°)) when the ef-
fective gravity geg = ¢ sin 6 decreases.

Figure 4 shows the rapid variation of the electrical con-
ductivity o(t) of granular packing induced by the abrupt
change of the effective gravity gest = gsin 6. In this exper-
iment, the inclination angle 6 is changed from 6; = 85° to
f> = 45° and vice versa in three different time instants.
For a sudden decrease in geg(61) — gefr(2) it is observed
that on short-time scales the conductivity o decreases
rapidly, while for a sudden increase in gefr(62) — gesr(61)
the conductivity increases for short times. This behav-
ior is transient, and after short time the usual increasing
rate of conductivity o(t) growth is recovered. In addition,
the rapid variation of the electrical conductivity induced
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by a sudden change of the inclination angle # is propor-
tional to the angle change, Af = |61 —02| (not shown here).

Our findings for the behavior of the electrical conduc-
tivity, shown in Figures 3 and 4, clearly demonstrate that
a granular material in the case of the higher values of ef-
fective gravity has a higher electrical conductivity. This is
in agreement with experiments and numerical simulations
examining the effect of gravity on the force network and
microstructural properties of granular packings [23-27].
As gravity decreased, the spatial distribution of the force
chain network changed from a dense, tangled network to
one consisting of less tangled, longer chains. Intuitively,
we would expect that shorter chains can support greater
stress since there are fewer potential failure points. Thus,
packings with more branching in their force chain network,
induced by higher values of effective gravity are macro-
scopically stronger and more electrically conductive, since
there are more pathways available for stress and electric
current transmission.

Previously described “geometrical” contact disorder
which arises from the lowering of the number of real con-
tacts when the effective gravity decreases is not the sole
cause that induces the abrupt changes of conductivity
shown in Figure 4. Additionally, the “physical” contact
disorder appears because some contacts are good trans-
mitters, other are not. As the stress increases, some con-
tacts may become active in turn, as the contact area may
be cleaned of oxide coating or some other impurities. Con-
sequently, the number of active contacts increases with
the effective gravity. This effect contributes to the con-
ductance due to the growth of the conducting network.

In order to better understand the reasons for the long
term decay of the electric resistance, we have made the fol-
lowing experiment. The distance between the lateral walls
of the box (electrodes) is reduced to d(1 + v/2). In this
channel, six, nine or twelve disks are arranged to form
square packing as illustrated in Figure 5a. This packing
can easily be reproduced before each experiment. For the
given configurations, each conductive path between the
electrodes always includes only three disks. Therefore, the
total number of possible conductive paths is equal to 5,
9, and 13, for configurations with 6, 9, and 12 disks, re-
spectively. For configurations with small number of possi-
ble conductive paths, one should expect to detect abrupt
changes in the resistance as a result of forming new con-
ductive paths or termination of existing ones. However,
Figure 5b shows that the resistance decreases continuously
for all three configurations of disks. This means that the
number of conductive paths does not change, but their
conductivity increases over time. The fact that the decay
of the resistance still holds for six disks (or five conductive
paths), suggests that the origin of these changes is local.
Consequently, long term resistance decay observed in the
experiment is not related to large force chain rearrange-
ments, but to individual microcontacts between two disks
that rearrange.

It must be stressed that the time behavior of the con-
ductance o(t) in experiments with reduced distance be-
tween the lateral walls (electrodes) is consistent with the

Page 5 of 12
electrodes
insulator
(a)
55 T
6 disks
9 disks
5 12 disks 7
4.5
4
35
G
~
25 \‘.,,___“__
~——‘.-—_—‘u————
2
1.5
i
0.5
0 500 1000 1500 2000 2500 3000
t[s]
(b)

Fig. 5. Experiment with reduced distance between the lateral
walls (electrodes). (a) Sketch of the 2D experimental setup.
(b) Temporal evolutions of the resistance R(t) obtained for
configurations with 6, 9, and 12 disks shown on plot (a).

Mittag-Leffler law (1). According to equation (1), we get

Aco(t) _ O — o(t)
Ac(0) 00 —a(0)

= Ea(=(t/7)%). (6)

Temporal evolution of the quantity Ac(t)/Ac(0) for the
configuration with 9 disks (see Fig. 5) is shown in Figure 6
on double logarithmic scale together with the Mittag-
Leffler fitting function E,(—(¢/7)%). In addition, Figure 6
shows the functions @4 (t) and P5(¢) (see Egs. (4) and (5))
determined by fitting the conductance behavior o(t) to
the Mittag-Leffler functional form (1).

The observed slow resistance decay might be related
to the roughness of the surface of the disks. When
two surfaces meet, and because no surface is perfectly
smooth, asperity peaks or “a-spots” from each surface
meet at the interface and form contact areas [3]. In this
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Fig. 6. Shown here is the double logarithmic plot of the tem-
poral evolution of the normalized conductance deviation from
the asymptotic value, Ao (t)/Ac(0) = (000 — (1)) /(0 —(0))
(Eq. (6)). Data for o(t) are obtained for configuration with
9 disks in the experiment with reduced distance between the
electrodes (Fig. 5). The solid (blue) line is the Mittag-Leffler
function Fqo(—(t/7)%), with parameters 7 = 815.3 s, a = 0.628,
and oo = 0.497. The dashed lines give the functions @ (¢) and
D(t) (see Egs. (4) and (5)), as indicated in the legend. The
solid vertical line indicates the characteristic time 7 = 815.3 of
the temporal evolution of conductance o(t).
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Fig. 7. Schematic diagram of current flow through a contact
spot. The electrical connection between the two surfaces takes
place at discrete solid spots, also known as a-spots or asperities,
based on the roughness of the surfaces. These spots determine
the true size of the contact area that can be as small as only a
fraction of the nominal contact area.

way, when two disks are brought into contact, the sur-
face irregularities of each disk create a large number of
conducting micro-channels. The presence of the micro-
contacts leads to a constriction of the current lines on
tiny areas. Figure 7 shows a graphical representation of
a contact area and contacting a-spots. Instead of passing
uniformly through the oxide layer, electric current prefers
to be divided in a large number of micro-currents following
conducting micro-channels [2,3,11,13]. The convergence of
the electrical current through the conducting a-spots is
known as the constriction resistance or commonly the con-
tact resistance [1]. With a small contact region comes a
large contact resistance. Consequently, the flow of the cur-
rent through the micro-contacts contributes to their heat-
ing by Joule effect and causes a softening or even melting
some of them. At the same time, the mechanical stabi-
lization of the discs, initiated by thermal perturbations,
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Fig. 8. Schematic picture of the dynamic model of the electric
contact between two grains described in the text.

leads to the local micro-contact rearrangements at each
disk, during which the new micro-contacts can be created.
These electro-mechanical processes then allow both cre-
ation and breakdown of the micro-contacts between two
disks. Adaptation of the micro-contacts to the flow of the
electric current leads to a larger effective contact surface,
thereby making the resistance of contact smaller.

4 Definition of the model and numerical
simulation

Previous findings allow us to build a dynamic model of the
electric contact between two grains that provides a very
slow relaxation of electrical conductivity observed in the
experiments. Our model can be regarded as a very sim-
ple picture of the interface between two metallic grains
which is composed of a large number of micro-contacts.
We consider a one-dimensional lattice, with N micro-
contacts located at its lattice points (see Fig. 8). Each
micro-contact can take two possible states, referred to as
“switched on” () and “switched off” (7). A configuration
of the contact is uniquely defined by N orientation vari-
ables {A,|n =1,..., N}, with A,, = +1 denoting a micro-
contact in state “on” (|), and A,, = 0 denoting a micro-
contact in state “off” (7). To each micro-channel n in the
state “on”, we assigned the same resistance, r, = r(¢),
When micro-channel n is in the state “off”, its resistance
is too high and no current flows through it, so that we
formally take r, = oco.

At first, we can try to model the contact interface,
naively, by a continuous-time stochastic dynamics, de-
scribed by the following general kinetic equations:

dpH)
L = oD () — w0, (")
dp(M
L =0V () —wip D e), ®)

where p(1)(t) and p)(t) are the probabilities for finding
the micro-contact in the states “off” and “on” at time
t, respectively. Here, w|1 and w) represent, respectively,
the constant transition probability rate from the state
“off 7 to the state “on”, and from the state “on” to the
state “off 7. The term w Hpm describes transition into the
state “on” from the state “off”, and w; lp(l) corresponds
to transition out of the “on” into the other state “off”.
Since the micro-channels of conduction are connected in
parallel, the total contact conductance o(t) = 1/R(t)
is expressed as the sum of their individual conductances
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on =1/, = l/r(c) o9

An()0'9 = gmaxp™V (1), (9)

] =

o(t) =

Il
-

n

where gpmax = No'© is the conductance when all micro-
contacts are in the state “on”. We have two limits: p) =
1 when 0 = opax (resistance is minimal) and pH) =0
dp(l) —0and dp(T)

dt dt
—00 t—o0
equations (7) and (8) they become a set of two algebraic
equations whose solution provides the steady-state values
of the conductance o(0):

when o = 0. Setting =0in

w
U(OO) = Umaxp(l)(oo) = Jmax%a (10)
where w = w|1 + wq is the total transition probability
rate. This steady state will be reached by the system from

any initial configuration. Assume that for ¢ = 0:

M(0) = w p(i)(o) _ w

11
o, 2 ay

p

where N and N are the number of micro-contacts
in the states “off” and “on”, respectively. Without loss
of generality we assume that for ¢ = 0 the states “off”
dominate, i.e. N(D(t = 0) > N (¢ = 0). The solution
of equations (7) and (8) with initial conditions (11) is
straightforward. Accordingly, the conductance of the con-
tact (Eq. (9)) grows exponentially in time towards the
steady state value:

o(t) = (o) — [0(00) — o(0)] exp(—wt),  (12)
where 0(0) = 0maxpP(0) = Tmax NV (t = 0)/N is the
conductance at the moment ¢ = 0, when an electric current
is turned on.

Not unexpectedly, this simplified model does not de-
scribe the behavior of a real electrical contact between
metallic grains at low applied current, i.e. it is not a
good approximation for the conduction dynamics. Our
model requires substantial addition and extension in or-
der to have the ability to properly capture the slow re-
laxation dynamics of conductivity observed in the experi-
ments. The main physical idea of our approach is that the
time intervals between the successive micro-contact clos-
ing/opening are governed by a certain waiting-time distri-
bution t(t). This function governs the random time inter-
vals between single microscopic jumps “on” (]) < “off”
(1) of the micro-contacts. Actually, in our model the evo-
lutions of the number of micro-contacts in the states “on”
and “off” are subordinated by another random process.
Random switching of micro-contacts between the states
“on” and “off 7 are parent random processes Y (t) in the
sense of subordination (see Egs. (7) and (8)). Recall that a
subordinated process Y[U(t)] is obtained by randomizing
the time clock of a random process Y (t) using a random
process U(t). The latter process is referred to as the ran-
domized time. The new clock generalizes the deterministic
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time clock of the kinetic equation for the Markovian pro-
cess (Egs. (7) and (8)).

Now we consider in more details the evolution of
the number of micro-contacts in the states “on” and
“off 7. These are parent random processes in the sense
of subordination. Consider a sequence T;, i = 1,2,...
of non-negative, independent, identically distributed ran-
dom variables which represent the waiting time intervals
between single microscopic jumps “on” (|) < “off” (1)
of the micro-contacts. If the waiting times 7; belong to
the strict domain of attraction of an a-stable distribu-
tion (0 < a < 1), their sum n=Y/* Y | T;, n € N con-
verges in distribution to a stable law with the same index
a [17,28,29]. The continuous limit of the discrete counting
process {N¢}i>0 = max{n € N|Y i | T; < t} is the hit-
ting time process S(t) (also called the first passage time).
We choose the nondecreasing random process S(t) for a
new time clock (stochastic time arrow). The probability
density of the process S(t) has the following form [30]:

1
pg(ta T) = % /Br u® texp(ut — Tu®)du = t~F, (tla) ,

(13)
where Br denotes the Bromwich path and j = v/—1. The
function F,(z) can be expanded as a Taylor series:

“ k(1 —a—ka)’

(14)

where I'(+) is the gamma function. The probability den-
sity p3J(t,7) determines the probability to be at the in-
ternal time (or so-called operational time) 7 on the real
time ¢ [29,31].

The stochastic time arrow can be applied to the kinetic
equations (7) and (8). Take the process S(t) as a subordi-
nator. It accounts for the amount of time when an micro-
contact does not change its state. If p()(7) and p(1(7),
taken from equations (7) and (8) as probability laws of the
parent process, depend now on the local time 7, then the

resulting probabilities pg})(t) and pg)(t) after the subor-
dination are determined by the integral relations

PO () = / e g3tV (), (15)
pD(t) = / e gm0, (16)

Now the relaxation of conduction o(t) is defined by two
stochastic processes, random switching of micro-contacts
and random waiting times between these events. The ratio
of micro-contacts in the state “off” (1) and another in the
state “on” (|) is subordinated by the process S(t). In other
words, the new relaxation process (Egs. (15) and (16)) is
obtained by randomizing the time clock of the continuous-
time stochastic dynamics (Egs. (7) and (8)) using the ran-
dom process S(t) [29,31]. The stochastic time clock has a
clear physical sense. The electrical connection between the
two surfaces takes place at discrete solid a-spots in random
points of time.
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The equation describing the present model takes the
form similar to equations (7) and (8), but the derivatives
of first order become fractional of order 0 < o < 1 deter-
mined by the index of the process S(t). In the following,
using properties of the stochastic time clock, we derive the
corresponding master equation with the fractional deriva-
tive of time, along the lines of references [31-33]. Let us
present equations (7) and (8) in compact form

d
a?

where p(t) = [p)(t) p1 (1)
tion rate operator:

N R
o= .
Wil —win
It is important to note that the operator @ is independent
of time. Equation (17) can be written in the integral form

(t) =@ p(t), (17)

T .
] and @ denotes the transi-

(18)

p(t) = p(0) + / e o p(r). (19)

The Laplace transform of equation (19) gives the relation

@ p(s) = sp(s) — p(0), (20)
where the Laplace transform £ is defined as:
Lo =plo) = [ dresp(-stp). (21
0

In the Laplace space the probabilities p.(t) =

W oDl ”
[pa (t) pa (t)} (see Egs. (15) and (16)) take the most

simple form
Pa(s) = s*7'p(s%),

since p3(s,7) = s* Lexp(—7s*) [34]. When the operator
w acts on the Laplace image p,(s) (Eq. (22)), we obtain
DPa(s) = s"1op(s?) = 577 (s°p(s%) — p(0))

= 5"Pa(s) — s 'p(0).

(22)

(23)

The inverse Laplace transform £7' of the latter expres-
sion (23) gives the abstract partial differential equation
with the fractional derivative of time:

Pa(t) = p(0) + oDy @ Pa(t). (24)

Here we use the fractional Riemann-Liouville integral op-
erator defined via the formula

1 t

D7f(t)= —— [ dr (t—7)""'f(1), O0<a<l
D70 = s [ (=), 0<a<,
(25)
with  the convenient property L[oD; “f(t)] =
s7*f(s) [35]. Using equation (24) and taking into
account that o(t) = Umaxpg})(t), we obtain that the
deviation Ao (t) = o(o0) — o(t) of the conduction o(t)

Eur. Phys. J. B (2017) 90: 108

from its steady-state value o(oo) obeys the fractional
differential equation

Ao (t) = Ac(0) —w [oD; *Ac(t)] (26)
where w = w)1 + wy) is the total transition probabil-
ity rate and o(o0) is defined by equation (10). In equa-
tion (26), the fractional derivative on the rhs describes a
process which is subordinated to the simple micro-contact
switching; the subordination is defined by the «-stable
waiting time distribution. By differentiating equation (26)
with respect to time and with the help of the formula [35]

d —a —a
oD (1) = oD} (1), (21)
it is found that
& Aa(t) =~ oD} Ap(t), (28)

where 7, = W™V = (w); +wy )~V Equation (28) is an
integro-differential equation. The Riemann-Liouville op-
erator oD}~ * introduces a convolution integral with the
power-law kernel M(t) oc t*~2. The parameter 7, may
be interpreted as a generalized relaxation time. Indeed,
the solution of equation (28) can be expressed in terms of
the Mittag-Leffler function E, of order « via [35,30]

Ac(t) = Ac(0)E, {— (i)a} . (29)

Tr

Let us briefly describe the algorithm used in our numeri-
cal simulation. At each Monte Carlo step one lattice site
is selected at random, and one of the two possible transi-
tions between the two different states of the micro-contact
is chosen at random. The choice of the transition from the
state “off” to the state “on” occurs with probability p1,
and from the state “on” to the state “off ” with probabil-
ity pt;. The transition probabilities obey the normaliza-
tion condition p 1 +p1; = 1. When the attempted process
is an “off” — “on” tramsition, and if randomly chosen
micro-contact is in the “off 7 state, its state switches form
“off” to “on”. On the contrary, if randomly chosen micro-
contact is in the “on” state the attempt is abandoned.
When the attempted process is an “on” — “off” tran-
sition, and provided that the selected micro-contact is in
the “on” state, its state is changed from the “on” to “off”.
Otherwise, we reject the switching trial. Switching pro-
cesses at micro-contacts are assumed to happen instanta-
neously or at least in negligible time.

The random time 7 between the successive micro-
contact closing/opening attempts is extracted from a resi-
dence time distribution ¢ (7). We assume that the waiting-
time intervals T; between single microscopic jumps “on”
(1) < “off” (1) of the micro-contacts belong to the strict
domain of attraction of an a-stable distribution (0 < o <
1) [17,28]. In that case, the probability that T; is greater
than some number ¢ > 0 (tail probability) is asymptoti-
cally a power law, i.e. P(T; > t) x t~* as t — oo [28].
Accordingly, decreasing of the parameter « in the range
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(0,1) increases the contribution of long waiting-time inter-
vals T; during the relaxation process. A suitable possible
choice for a residence time distribution ¥ (7) is the Mittag-
Leffler distribution defined by

0(r) = - Bal~(r/)"), (30)
T

where E,, is the Mittag-Leffler function of order « € (0, 1)
and the constant v is the time-scaling parameter. The ba-
sic role of the Mittag-Leffler waiting time probability den-
sity in the time fractional continuous time random walk
(CTRW) has become well known by the seminal paper of
Hilfer and Anton [37]. The probability density () for
the waiting times can be numerically calculated by the
series expansion (3). This method produces a pointwise
representation of the density on a finite interval. Random
numbers can then be produced by rejection, most effi-
ciently with a look-up table and interpolation. More con-
venient is the following inversion formula by Kozubowski
and Rachev [38,39]:

. I

where u,v € (0,1) are independent uniform random num-
bers, v is the scale parameter, and 7 is a Mittag-Leffler
random number. For o« = 1, equation (31) reduces to
the inversion formula for the exponential distribution,
i.e. 7 = —vlnu. In each computational step the time
t and the conductance o are updated, t — t + 7 and
o — o+ Ao, where Ao € {£0(9,0}. Reiterating this
algorithm, the full conductance growth above the initial
value 0(0) = omax NV (£ = 0)/N to the steady-state limit
o(o0) (Eq. (10)) can be computed.

The time-scaling parameter v in equation (31) is cal-
culated using the procedure detailed in references [40,41].
The quantities w1 = (p;1/N)v~* and wy| = (p1| /N)v=°
in the fractional kinetic equation (28) are referred to as the
fractional “off” — “on” and “on” — “off” rates. Using
the normalization condition for the transition probabili-
ties, i.e. p|1 + p1; = 1, one obtains that

Wit wry
Pl =—"", P} =—7", (32)
wip +wry wip +wry
and "
v=(N(wy +w)) ' (33)

In that case, the results of simulations are independent of
the number of micro-contacts in the system. The fractional
rates can be chosen as

1
Wit = Wi WS wﬁ, (34)
where v = py)/p;1. We impose that the parameter w >
0 in equation (34) depends only on the micromechanical
properties of the contact, i.e. w does not depend on the
injected current I and the effective gravity geg = gsinf
(an inclination angle @ of the plane) in the experiment. In
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fact, the form (34) of the fractional rates ensures that the
total rate wj; +wy] = w # f(7) is independent on the
parameter 7.

The crucial parameter which determines the final
steady-state conductance o(c0) and controls the dynam-
ics, is the ratio v = py/p;1 = wi/wp. According to
equation (10), the steady-state value of the conductivity
o(00) is determined by

1

T (35)

U(OO) = Omax

The conductance o(c0) is a decreasing function of the pa-
rameter v > 0 and varies between 0 (v — 00) and omax
(y=0).

It is important to note that the coefficient « is not in-
dependent as far as its functional dependence on the pa-
rameter 7 is concerned. We postulate that the parameters
0 < a <1 and vy > 0 obey a simple relation:

(36)

The value of parameter « decreases monotonically from
unity as a function of the parameter . This relationship
can be justified by the following phenomenological argu-
ment. Mapping the model on to the experiment, “on” —
“off” event is associated with the opening of a micro-
contact, whereas an “off” — “on” event is associated
with the closing of a micro-contact. The number of micro-
contacts in the state “off” and another in the state “on” is
controlled by the parameter v = p1|/p; . Higher values of
the effective gravity gog mean stronger interaction between
the contact surfaces, thereby reducing the possibility of
termination of micro-contacts, and stimulates the process
of creating new ones. Therefore, it is acceptable to suppose
that increasing the effective gravity geg corresponds to re-
duction of the parameter . Consequently, equation (35)
indicates that the steady-state value of the conductivity
o(o0) increases with the increasing of the effective grav-
ity gefr. Furthermore, from equation (36) it follows that
higher values of effective gravity are consistent with the
greater values of the parameter «. Increasing of the pa-
rameter « in the range (0, 1) decreases the contribution of
long waiting-time intervals T; during the relaxation pro-
cess, because P(T; > t) < t~* as t — oo [28]. This causes
that the relaxation dynamics gets faster when the effec-
tive gravity geg increases, in accordance with our experi-
ment. Analogously, in the present model, parameter ~ has
higher values for the lower values of effective gravity geg-
In addition, decreasing of the parameter a (Eq. (36)) in-
creases the contribution of long waiting-time intervals T;
during the relaxation process. Accordingly, evolution of
the conductivity o(t) toward saturation value takes place
on much wider time scale when the effective gravity geg
decreases, which is consistent with the results of the ex-
periment. Now it can be concluded that the parameter ~
within a model plays a role similar to that of the intensity
of effective gravity ges in real experiments.
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Fig. 9. Temporal evolution of the conduction o(¢) obtained
through Monte-Carlo simulations (solid lines) and analyti-
cally (dashed lines) for various values of parameter vy =
3/7, 2/3, 1, 3/2. Two curves, for the same value of v = 2/3,
demonstrate that the same steady-state will be reached by the
system from any initial configuration.

The growth of a generalized relaxation time 7, with ~
can be accurately described by the exponential law:
T = 10 exp(Yo - Y)- (37)
Indeed, inserting expressions 79 = In(1/w) # f(v) and
7o = 1/w # f(vy) into equation (37), and eliminating ~
with the help of relation (36), we can obtain the expres-
sion for the generalized relaxation time, 7, = w™ %/ (see
Eq. (28)).

Now, we present and discuss numerical results regard-
ing the temporal evolution of the conductivity o(t). All
numerical simulations were performed on a system of
N = 25 micro-contacts. The parameter w was chosen to be
w = 1072. In order to sufficiently diminish statistical fluc-
tuations, it is necessary to average over many independent
runs for each value of the parameter . Therefore, curves
of the o(t) relaxation reported here are averages of 10* in-
dependent simulations. A detailed description for the com-
putation of the averages can be found in reference [40].

Variation of the conductance o(t) with time for sev-
eral values of parameter ~ is presented in Figure 9. We
have observed that the relaxation of the conductance gets
slower when the parameter 7 increases. The simulation
curves are in a good qualitative agreement with our ex-
perimental data, since the parameter v has higher val-
ues for lower values of the effective gravity geg. Actually,
for small values of the effective gravity we obtain higher
values for the relaxation times 7 and lower values of the
asymptotic conductance o(o0). In the same figure, the re-
laxation curves obtained analytically by equation (29) are
also given, demonstrating that the Mittag-Leffler law (29)
is excellently obeyed in our simulations. For very small
values of v, i.e. for high values of geg, there is a rapid
approach to the asymptotic conductance o(c0), and con-
sequently the parameter « reaches a value close to 1 (see
Eq. (36)). Since E4[—(t/7)*] — exp(—t/7) when a — 1,
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Numerical simulation: ,=9/1 1 — v,=2/3

...... M-L funet. (,=9/11, 2,=0.55)

— — = M-L funct. (1=2/3, 0,=0.60) =
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t

(a)

Numerical simulation: Y, 2213 > Yz:d/ll
...... M-L funct. (4,=2/3, c,=0.60)

— — = M-L funct. (y,=9/11, 0,,=0.55) .
14 + E
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° 10! 10 10° 10* 10° 10° 107 108
t

(b)

Fig. 10. Time evolution of the conductance o(t) when the
parameter « is switched (a) from v1 = 9/11 (a1 = 0.55) to
v2 = 2/3 (a2 = 0.60) and (b) from v1 = 2/3 (a1 = 0.60)
to v2 = 9/11 (a2 = 0.55), at a time t, = 10* (solid curves).
The dotted and dashed curves, obtained analytically by equa-
tion (29), correspond to the processes at constant 1 and 7.

the slow relaxation feature disappears in the regime of
strong external forces.

Next we show that the proposed model reproduces
qualitatively the rapid variation of the electrical conduc-
tivity o(t) of granular packing induced by the abrupt
change of the effective gravity geg = gsinf (see Fig. 4).
Since the parameter v within a model plays a role simi-
lar to that of the intensity of the effective gravity gegs in
our experiment, we simulate the abrupt change of geg as
an instantaneous change of the parameter v in our model.
Figure 10 shows a typical change of the electrical conduc-
tivity in our model after an abrupt change of the param-
eter . In Figure 10a the parameter ~ is switched from
v1 = 9/11 (a1 = 0.55) to 72 = 2/3 (s = 0.60) at
tw = 10% We observe that after the transient interval,
the rapid growth of o(t) ceases and there is a crossover
to the “normal” behavior, with relaxation rate becoming
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the same as in the case of constant value of parameter
~v. When v = py;/py1 is abruptly lowered, the first ef-
fect is that the system tends to decrease the fraction
of opened micro-contacts, so that conductance becomes
larger. Therefore the rate of conductivity growth increases
with respect to the unperturbed case. At larger times,
however, the relaxation of o(t) is slowed down by the
creation of smaller fraction of the micro-contacts that is
available for transition from the state “off” to the state
“on”. In Figure 10b we show the response of the sys-
tem to instantaneous shift of parameter v from v, = 2/3
(a1 = 0.60) to y2 = 9/11 (g = 0.55) at a time t,, = 10%.
We observe an effect opposite to the previous case, i.e. we
find that the conductance o(t) drops immediately follow-
ing t,,. Both numerical results are qualitatively consistent
with our experimental results shown in Figure 4.

5 Concluding remarks

We have reported experiments on the electrical conductiv-
ity in 2D packings of metallic disks at fixed injected cur-
rent of I = 1 mA. This work provides experimental and
theoretical additions to the studies of references [14,15]
mostly carried out in the regime of higher currents (I >
10 mA). The scenario of the evolution of the conductance
depends on both the injected current and external forces
acting on the packing. In this paper, we have attempted to
give some insights into the mechanisms by which granular
materials handle slow relaxation of electrical conductivity
in the regime of very low injected currents and without
external load.

We have experimentally investigated the conductance
of 2D packings of metallic disks for different values of the
effective gravity geg. We have shown that evolution of the
conductivity o(t) toward saturation value takes place on
much wider time scale when the effective gravity geg de-
creases. We have fitted the time dependences of the con-
ductance o(t) with the Mittag-Leffler function (1). The
characteristic timescale 7 (Eq. (1)) is found to grow when
the effective gravity geg decreases. By changing both the
distance between the electrodes and the number of grains
in the packing, it was shown that the long-term resis-
tance decay observed in the experiment is not related to
large force chain rearrangements, but to individual micro-
contacts between two disks that rearrange. Hence, this
long-term decay seems to be related to the enhancement of
the contacts themselves. The behavior of granular material
is thus completely different from a metallic bulk material.
When the current is switched on, the metallic wire pro-
duces heat. This change in temperature makes the electri-
cal conductance decrease. On the other hand, in the case
of granular material, the opposite effect occurs. The lo-
cal micro-contact rearrangements at each grain influence
the conduction by increasing it. Consequently, in the case
of granular material with weak links between conductive
grains, electrical measurements have to be carefully im-
plemented. The intensity of the injected current, external
load and surface state of grains are seen to be relevant
parameters.
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These results were used as a basis for building of a
dynamic model of the electric contact between two grains
which is composed of a large number of micro-contacts.
Actually, we have developed an artificial, but instructive
model of a contact which can be regarded as a very sim-
ple picture of the interface between two metallic grains.
We impose that the micro-contacts at the interface switch
stochastically between the two states (“on” and “off”).
By appropriately choosing this random process, one can
provide the essential ingredients in our model to repro-
duce the slow relaxation of the electrical conductivity and
mimic the rapid variation of the conductance o(t) induced
by the abrupt change of the effective gravity geg. We think
that the success of the model in emulating the experi-
ments indicates that the dominant physical mechanisms
have been correctly identified. Even though the model is
simple enough as to be analytically tractable, the theoret-
ical results are corroborated by numerical simulations of
the corresponding stochastic fractional processes.
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The properties of the random sequential adsorption of objects of various shapes on a two-dimensional triangular
lattice are studied numerically by means of Monte Carlo simulations. The depositing objects are formed by
self-avoiding lattice steps, whereby the size of the objects is gradually increased by wrapping the walks in several
different ways. The aim of this work is to investigate the impact of the geometrical properties of the shapes
on the jamming density 6; and on the temporal evolution of the coverage fraction 6(¢). Our results suggest
that the order of symmetry axis of a shape exerts a decisive influence on adsorption kinetics near the jamming
limit 0y. The decay of probability for the insertion of a new particle onto a lattice is described in a broad range
of the coverage 6 by the product between the linear and the stretched exponential function for all examined
objects. The corresponding fitting parameters are discussed within the context of the shape descriptors, such
as rotational symmetry and the shape factor (parameter of nonsphericity) of the objects. Predictions following
from our calculations suggest that the proposed fitting function for the insertion probability is consistent with the
exponential approach of the coverage fraction 6(¢) to the jamming limit 6y.

DOLI: 10.1103/PhysRevE.95.022114

I. INTRODUCTION

Understanding various aspects of random sequential ad-
sorption (RSA) has a great scientific and industrial importance
as it has been linked to a wide range of applications in
biology, nanotechnology, device physics, physical chemistry,
and materials science [1-4]. Depositing objects range in
size from micrometer scale down to nanometer scale, and
depending on the application in question, the objects could
be colloidal particles, polymer chains, globular proteins,
nanotubes, DNA segments, or general geometrical shapes,
such as disks, polygons, etc.

The RSA model adsorption process considers sequential
addition of particles on the n-dimensional substrate such that
at each time step only one particle is added on the substrate at
a randomly selected position. During the process of addition,
newly added particles are forbidden from overlapping with
the already adsorbed particles, and any attempt of adsorption
resulting in an overlap is rejected. The adsorbed particles are
permanently fixed at their spatial positions so that they affect
the geometry of all later placements. This leads to slowing of
the rate of adsorption due to unavailability of the surface for
further addition. The most common parameter to characterize
the kinetic properties of a deposition process is the coverage
0(t), defined as the ratio of the number of occupied sites at
time ¢ and the total number of sites. Due to the blocking of
the substrate area by the already randomly adsorbed particles,
at large times the coverage 6(¢) approaches the jammed-state
value 6y, where only gaps too small to fit new particles are left
in the monolayer.

The RSA models are broadly classified into continuum
models and lattice models on the basis of the nature of the
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substrate. The long-term behavior of the coverage fraction
0(t) is known to be asymptotically algebraic for continuum
systems [5—8] and exponential for lattice models [9-12]. For
the latter case the approach of the coverage fraction 6(¢) to its
jamming limit 6y is given by the time dependence:

Oy — 0(1) ~ exp(—t/0), (D

where parameters 0y and o depend on the shape, orientational
freedom of depositing objects, and the dimensionality of the
substrate [11,12].

An important issue in RSA is the influence of the shape of
depositing objects on kinetics of irreversible deposition and
on the morphological characteristics of coverings. RSA of
many different geometric objects has been studied for both
continuum and lattice models in order to determine the signif-
icance of particle anisotropy in formation of the jammed-state
coverings. For this purpose, the jamming coverings generated
by RSA on continuous substrates have been analyzed for
depositing particles of various shapes, such as spherocylinders
and ellipsoids [13,14], rectangles [15,16], starlike particles
[17,18], and polymers [19,20]. Results obtained for anisotropic
particles show that jamming coverage reaches its maximum
when the long-to-short particle axis ratio is approximately
1.5-2.0 [13,16]. Recently Ciesla et al. have performed an
extensive numerical simulation of the RSA of smoothed
n-mers, spherocylinders, and ellipses [21-23] in order to find a
shape which maximizes the jamming coverage. It is found that
the highest packing fraction is obtained for ellipses having the
long-to-short axis ratio of 1.85, which is the largest anisotropy
among the investigated shapes.

The kinetics of the deposition process is strongly depen-
dent on geometrical properties of the objects. For instance,
Khandkar et al. [24] have studied RSA of zero-area symmetric
angled objects on a continuum substrate for the full range
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(0°-180°) of values of the arm angle ¢ and have observed that
6y — 6(t) ~ t* as expected. Value of the exponent o exhibits
a crossover near ¢ = 0° or 180 ° and is significantly lower in
the case of the angled objects than in the case of needles.

Formation of random deposits of extended objects on
discrete substrates and their properties have been extensively
studied in many different contexts and using a number of
different tools, including irreversible deposition [11,25,26],
an adsorption-desorption model [27-29], random deposition
with diffusional relaxation [30-32], and percolations [33-35].

Wang and Pandey [36] have studied the kinetics and
jamming coverage in RSA of self-avoiding walk chains on
a square lattice and found that the jamming coverage 6;
decreases with the chain length with a power law. They
observed a crossover from a power-law variation of the
coverage fraction 6(¢) in the intermediate time regime to an
exponential growth in the long time, especially for short chains.

Budinski and Kozmidis [11,26] have carried out extensive
simulations of irreversible deposition using objects of different
sizes and rotational symmetries on a square and triangular
lattice. They reported that shapes with the symmetry axis of
a higher order have lower values of o [Eq. (1)], i.e., they
approach their jamming limit more rapidly. This confirms
the crucial role of the geometrical character of the objects
in deposition dynamics.

The main goal of the present study is to extend the
analysis in Ref. [11] to large collections of objects of various
shapes that can be made by self-avoiding random walks on
a triangular lattice. The large number of examined objects
represents a good basis for testing the impact of the geometrical
properties of the shapes on the jamming density 6y and on the
temporal evolution of the coverage fraction 6(¢). We address
the following questions regarding the influence of the shape
on the rapidity of the approach to the jamming state. First, we
investigate the interplay between the size and the symmetry
properties of depositing shapes. This is an important question
because the slowing of the dynamics in the RSA model can
be understood as a consequence of steric effects that make
certain insertions of particles infeasible owing to an effective
high local density on the lattice. Second, we analyze whether
there is some intrinsic property of the objects that, in addition to
symmetry, also promotes or suppresses rare adsorption events
which take place on isolated islands of connected unoccupied
sites at the late times of the deposition process.

For this purpose we use the concept of the shape factor
to measure the circularity of depositing objects. The shape
factor (parameter of nonsphericity) was introduced by Moucka
and Nezbeda [37], for tracking the change in structure
as a liquid-like system approaches a disordered jammed
state. Shape factor, ¢, is defined as the degree to which a
particle is similar to a circle, taking into consideration the
smoothness of the perimeter. This means the parameter ¢
is a measurement of both the particle form and roughness.
Thus, the farther away from a perfectly round and smooth
circle that a particle becomes, the higher the ¢ value. The
shape factor is a dimensionless value. Moreover, we gener-
alize the definition of the shape factor for planar geometric
figures [see Eq. (6)] to make it applicable to the objects
made by directed self-avoiding walks on the two-dimensional
lattice.
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In this paper the shape factor ¢ is associated with the
evolution of probability for the insertion of a new particle onto
a lattice during the deposition process. This work provides
a closer insight into the behavior of the insertion probability
during the irreversible deposition of extended objects. The
decay of the insertion probability is described in a broad range
of the coverage 6 by the product between linear and stretched
exponential function for all examined objects. We discuss the
fitting parameters from the proposed fitting function within the
context of the shape descriptors, such as rotational symmetry
and shape factor of the objects.

The paper is organized as follows. Section II describes
the details of the simulations. The approach of the coverage
fraction 6(¢) to the jamming limit 0y is analyzed in Sec. IIT A.
Section IIIB is devoted to the analysis of the behavior
of probability for the insertion of a particle onto a lattice
during the deposition process. Finally, Sec. IV contains some
additional comments and final remarks.

II. DEFINITION OF THE MODEL
AND THE SIMULATION METHOD

The depositing objects are modeled by self-avoiding walks
on the planar triangular lattice. A self-avoiding shape of length
£ is a sequence of distinct vertices (wy, . . . ,«p) such that each
vertex is a nearest neighbor of its predecessor, i.e., a walk of
length ¢ covers j = £ + 1 lattice sites. Starting from a dimer,
size of the objects is gradually increased by wrapping the walks
in several different ways. Formation of wrapping triangles 7 is
shown in Table L. In a similar way, rhombuses R ; and hexagons
H; of larger sizes j = 2,3, ...,30 are obtained by wrapping
as shown in Tables II and III, respectively. In this manner,
wrapping objects of larger sizes occupy all comprised sites on
the lattice.

On a triangular lattice objects with a symmetry axis of
first, second, third, and sixth order can be formed. Rotational
symmetry of order ny, also called n-fold rotational symmetry,
with respect to a particular axis perpendicular to the triangular
lattice, means that rotation by an angle of 2w /n, does not
change the object. The values of the order of symmetry axis n;
are given in Tables I-1III for all wrapping triangles, rhombuses,
and hexagons. We concentrate here on the influence of
the order of symmetry axis of the shape on the kinetics
of the adsorption process. Special attention is paid to the
comparison of the results for lattice objects of different
rotational symmetries but of the same number of segments.

Ateach Monte Carlo step a lattice site is selected at random.
If the selected site is unoccupied, we fix the beginning of the
walk that makes the chosen shape T; (or R;, H;) at this site.
Then we randomly pick one of the six possible orientations
on the lattice with equal probability, start the corresponding
£-step walk in that direction, and search whether all successive
£ sites are unoccupied. If so, we occupy these j = £ + 1 sites
and place the object. If the attempt fails, a new site and a
new direction are selected at random. This scheme is usually
called the conventional or standard model of RSA. The other
strategy to perform an RSA, where we check all possible
directions from the selected site, is named the end-on model
[11]. The jamming limit is reached when no more objects can
be placed in any position on the lattice. Since the local domain
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TABLE 1. Wrapping triangles, T;. The colors are associated with
different order n, of the symmetry axis. For each shape, 6; is the
jamming coverage and o is the relaxation time [Eq. (1)].

Shape (T) j ng o 6y
. 2 2 3.03 0.9141
o 3 3 1.97 0.7969
l 4 1 5.99 0.7741
ﬁ 5 1 6.01 0.7605
A 6 3 2.04 0.7210
/.i 7 1 5.97 0.6901
ZA 8 | 6.09 0.6993
é 9 1 5.99 0.7101
zé‘ 10 3 2.00 0.6816
{} 11 1 5.83 0.6493
é.l 12 1 571 0.6624
.ék 13 1 5.97 0.6683
& 14 1 5.94 0.6816
:f 5 5: 15 3 2.01 0.6572
é;\. 16 1 5.81 0.6263
§§ 17 1 5.80 0.6368
:§§ 18 1 6.05 0.6445
£§§ 19 1 5.95 0.6518
£§§ 20 1 5.90 0.6633
é& 21 3 1.99 0.6407
iggi 2 1 5.56 0.6119
:( E S ‘: 23 1 6.05 0.6197
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TABLE L. (Continued.)

Shape (7) j ng o Oy
; ; ; t 24 1 5.89 0.6286
; 2 ; : 25 1 5.98 0.6323
; E g : 26 1 5.79 0.6406
; E S ; 27 1 5.92 0.6498
; E 5 ; 28 3 1.93 0.6286
; E % ; 29 1 5.86 0.6016
; E S ; 30 1 592 0.6079

structures for the end-on model are more dense than those of
the conventional model, the jamming limit 0; for the end-on
model is slightly larger than that for the conventional model.

It is well established that correlations in RSA decay
extremely fast [1,6,38]. Therefore, one can obtain high-
precision results numerically on relatively small lattices, with-
out worrying about finite-size effects [39—41] and averaging
over not too many runs because the system is self-averaging.
Numerical studies have shown that the finite-size effects on
the lattice of size L can be neglected for object sizes <L/8
[10]. Consequently, Monte Carlo simulations are performed
on a triangular lattice of size L = 240. Periodic boundary
conditions are used in all directions. The time ¢ is counted
by the number of attempts to select a lattice site and scaled
by the total number of lattice sites N = L? = 57600. The
simulation data are averaged over 1000 independent runs for
each depositing object.

III. RESULTS AND DISCUSSION

A. Particle jamming and late-stage deposition kinetics

First, we report and discuss the numerical results regarding
the influence of the order of the symmetry axis of the shape
on the kinetics of the deposition processes. The simulations
have been performed for all wrapping triangles, rhombuses,
and hexagons from Tables I-III. Figure 1 shows the plots of
In[6; — 6(¢)] versus ¢ for three wrapping triangles (73, T4, Ts)
and hexagons (Hy, H7, Hi9), and for two wrapping rhombuses
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TABLE II. Wrapping rhombuses, R;. The colors are associated
with different order n; of the symmetry axis. For each shape, 0; is the
jamming coverage and o is the relaxation time [Eq. (1)].

Shape (R;) j ng o 6y

oo 2 2 3.02 0.9141
s 3 1 6.03 0.8345
d 4 2 3.08 0.7591
A 5 1 6.00 0.7605
Sod 6 2 3.00 0.7299
;< 7 1 5.08 0.7075
F 8 1 6.01 0.6956
o 9 2 2.99 0.6792
‘_/’_’:—’7_. 10 1 5.98 0.6706
E 11 1 5.78 0.6885
E 12 2 2.90 0.6716
M 13 1 6.01 0.6506
i;f 14 1 6.04 0.6531
ﬁ 15 1 6.01 0.6463
é7 16 2 2.99 0.6428
ﬁ 17 1 6.02 0.6332
fz:?j 18 1 6.00 0.6439
@ 19 1 5.72 0.6549
/A::?? 20 2 2.97 0.6416
/@7 21 1 5.79 0.6224
/5—77 2 1 5.99 0.6258
@:7 23 1 578 0.6254
@ 24 1 6.02 0.6226
@7 25 2 2.79 0.6220
@ 26 1 5.95 0.6126
@ 27 1 5.90 0.6199
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TABLE II. (Continued.)

Shape (R;) j ng o 6y

@ 28 1 5.71 0.6260
@ 29 1 5.97 0.6349
i@/ 30 2 3.10 0.6236

(R3, Rg), so that it contains results for shapes of all symmetry
orders. Lines with four different slopes are plotted in Fig. 1,
showing the late times of the deposition process corresponding
to objects of different symmetry order, n, = 1,2,3,6, as
indicated in the legend. Following the objects formed by
walks of increasing length (e.g., 73 and T4), we can see that
objects differing in only one self-avoiding lattice step can have
significantly different values of the relaxation time o. On the
other hand, for a given value of symmetry order n;, these plots
are parallel lines in the late stages of the deposition process for
shapes of very different lengths (e.g., H; and H}g). This means
that for a given ny, rapidity of the approach to the jamming
state is not affected by the length of the shape. Consequently,
order of symmetry of the shape has an essential influence in
the late times of the deposition process. To further confirm
this notion, we have calculated the values of the parameter o
[Eq. (1)] from the slopes of the In[6y — 6(¢)] versus ¢ curves in
the late times of the process. Parameter o determines how fast
the lattice is filled up to the jamming coverage 6y. The values
of relaxation time o are given in Tables I-III for all examined

FIG. 1. Plots of In(6; — 6(¢)) vs t for wrapping triangles T3, Ty,
Ts, thombuses Rj3, Rg, and hexagons Hy, H;, Hy9 from Tables I-111.
The curves correspond to various values of the order of symmetry
axis of the shape, n,, as indicated in the legend. Additionally, the
slanted straight lines with the slope —1/0 = —1,—-1/2,—1/3,—1/6
are shown, indicating the late-time RSA behavior and are guides for
the eye.

022114-4



PARTICLE MORPHOLOGY EFFECTS IN RANDOM ...

TABLE III. Wrapping hexagons, H;. The colors are associated
with different order n; of the symmetry axis. For each shape, 0; is the
jamming coverage and o is the relaxation time [Eq. (1)].

Shape (H}) j ng o 0y
Ve 2 2 2.99 0.9141
e 3 3 1.99 0.7970
g 4 2 2.94 0.7591
.Z> 5 1 6.01 0.7604
2} 6 1 6.00 0.7347
7 6 0.98 0.6697
D, 8 1 5.78 0.6923
@ 9 1 5.99 0.6857
@ 10 2 2.97 0.6813
@ 11 | 6.00 0.6665
@ 12 3 2.01 0.6508
@ 13 1 5.98 0.6431
@ 14 2 3.00 0.6457
@ 15 1 5.99 0.6433
@ 16 1 6.00 0.6623
@ 17 1 6.05 0.6472
@ 18 1 6.01 0.6367
19 6 1.02 0.6147
@ 20 1 6.05 0.6163
@ 21 1 579 0.6352
@ 22 1 6.01 0.6265
@ 23 1 6.03 0.6293
@ 24 2 2.98 0.6327
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TABLE IIL. (Continued.)

Shape (H;) j Ny o 6y

@ 25 1 6.01 0.6204
@ 26 1 5.94 0.6190
@ 27 3 2.01 0.6136
@ 28 1 5.98 0.6057
@ 29 1 5.76 0.6099
@ 30 2 2.83 0.6119

objects. Approximate values of the parameter o for the four
classes of objects of different symmetry are found to be the
following:

o =~ 6.0 for the shapes with a symmetry axis of first order,
ng=1;

o ~ 3.0 for the shapes with a symmetry axis of second
order, ny = 2;

o =~ 2.0 for the shapes with a symmetry axis of third order,
ng = 3;

o =~ 1.0 for the shapes with a symmetry axis of sixth order,
ng = 6.

This means that the approach to the jamming limit is
faster for more regular and symmetric shapes. At large times,
adsorption events take place on islands of unoccupied sites.
The individual islands act as selective targets for specific
deposition events. In other words, there is only a restricted
number of possible orientations in which an object can reach
a vacant location, provided the location is small enough. For
a shape of a higher order of symmetry n,, there is a greater
number of possible orientations for deposition into a selective
target on the lattice. Hence, the increase of the order of
symmetry of the shape enhances the rate of single particle
adsorption. This shortens the mean waiting time between
consecutive deposition events and the approach to the jamming
state is faster.

Figures 2(a)-2(c) show the dependence of the jamming
coverage 6y on the number j of sites covered by an object
for wrapping triangles (a), rhombuses (b), and hexagons (c).
Numerical values of the obtained jamming coverages 6y are
also given in Tables I-III for all examined wrapping shapes.
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FIG. 2. Jamming coverages 0 for all wrapping (a) triangles 7,
(b) rhombuses R}, and (c) hexagons H;, from Tables I-III. Here j =
2, ...,30denotes the number of sites covered by an object. Numerical
values of the symmetry order n, of the shapes are given in the square
brackets above the corresponding plot symbols.

From Fig. 2 it is evident that for small values of j <7,
jamming coverages 6y decrease very rapidly with the size of the
objects. A noticeable drop in the jamming coverage 6 is thus
a clear consequence of the enhanced frustration of the spatial

PHYSICAL REVIEW E 95, 022114 (2017)

adsorption. However, adding a single node to large objects does
not result in a significant increasing in their size. Therefore,
changing the shape of the large objects has considerably more
influence on the jamming density than increasing the object
size. For example, jamming coverages for objects 71; and T»;
from Table I are almost identical, although they are of different
sizes. The presented results in Fig. 2 also suggest that there is
no correlation between the order of symmetry axis n; of the
shape and the corresponding values of the jamming density
0;. It is interesting that, for the wrapping hexagons [Fig. 2(c)],
the jamming density 6y reaches a local minimum for the most
regular hexagons H; and Hj9 with symmetry axis of sixth
order, ny = 6, while the jamming density 6; for object H;g of
low symmetry order, n; = 1, is greater than 6y for the wrapping
hexagons that cover more than j = 11 sites.

In order to gain a better insight into the complex kinetics
of the adsorption processes of wrapping objects it is useful
to analyze in particular the temporal evolution of probability
for the insertion of a new particle onto a lattice. Insertion
probability p; for the object j at time ¢ is calculated from the
expression

pj = L j=1,2,3,...,30, ()

where

¢j = é(6ng’) + 50 +4n$ 4300 + 20 + n(sj)). 3)
Here n,((] ) is the total number of sites at which the beginning of
the walk that makes the shape j can be placed, whereby the
deposited object j at each available site can be oriented in k
(k =0, ...,5) different ways. We emphasize that the first step
determines the orientation k of the object. In Eq. (2), N denotes
the total number of lattice sites, N = L2. The quantities
n,(cj ), k=0,1,2,3,4,5 are calculated numerically from the
simulation data. Let us remark that a different choice of the
head of the object (the beginning of the walk) does not change
the value of the coefficient ¢;. We have verified that usage of
a different head for all examined objects gives quantitatively
the same results for coefficients ¢; and probabilities p;.

Below we try to characterize quantitatively the time and
density dependence of the insertion probability p; during
irreversible deposition of wrapping triangles 7';, thombuses
R;, and hexagons H;. In Fig. 3(a) the coefficients c; [Eq. (3)]
are plotted as a function of the number n of randomly deposited
objects for all wrapping triangles 7; (Table I). Numerical
simulations for wrapping rhombuses R; and hexagons H;
(Tables II and III) produce qualitatively similar results for the
evolution of coefficients ¢;(n) during the deposition process.
At very early times of the process, deposited objects do not
“feel” the presence of the others, and c;(n) =nc;(1) for
sufficiently low densities 6. Therefore, at the very early times,
the plot of the coefficients ¢; with respect to # is linear on a
double logarithmic scale with the slope 1. At higher densities,
“excluded volumes” for deposited objects begin to overlap,
leading to slowing of the linear growth of the coefficients c;
with n. In Fig. 3(b) we show the behavior of coefficients c¢;(0)
in the late stages of deposition process. As can be seen from
Fig. 3(b), the final value N = L? = 57600 of coefficients ¢ i
is reached when the coverage 6 of the system approaches
the jammed-state value 6;. The curves c;(6) shift to lower
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FIG. 3. The coefficients ¢; [Eq. (3)] as a function (a) of the
number n of deposited objects, and (b) of the coverage 6, in the late
stage of the deposition process, for all wrapping triangles 7; (Table I).
The horizontal line represents the final value N = L* = 57600 of the
coefficients c; that is reached when the coverage 6 approaches to the
jamming limit 8,. The solid black line has slope 1 and is a guide for
the eye.

densities 6 when the object size increases. Some of the lines
¢j(0) intersect with the other ones in the late stage of the
process when the influence of the shape on the densification
kinetics becomes very important.

The results for the insertion probability p; are shown in
Fig. 4 for the same wrapping objects as in Fig. 1. Insertion
probability p; is a monotonically decreasing function of the
coverage fraction 6 for all the shapes. When the coverage 6
approaches the jamming limit 6}, the probability p; decreases
very rapidly with 6 and vanishes at 6;.

B. Properties of the insertion probability:
Role of rotational symmetry of the shapes

In the following, we try to find a universal functional type
that describes the decay of the insertion probability p; for
all shapes in a broad range of the coverage 6. In addition,
the proposed function p; = f(6) should be consistent with
the exponential approach of the coverage fraction 6(¢) to the
jamming limit 6y [Eq. (1)]. Looking for a function that gives
the best fit to probability p;, we have tried a wide set of
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
)

FIG. 4. Shown here is the insertion probability p; vs the coverage
0 for triangles T3, Ty, Ts, thombuses Rj, Rq, and hexagons H,, H7,
H\o from Tables I-III.

phenomenological fitting functions for relaxation processes in
many complex disordered systems [42]. The best agreement
with our simulation data was obtained by the fitting function
of the form

6 A
pj@) = A(l — —) exp(—Xr10™?)
Oy

0 0\
a(i-g)eo () |

where A, A1, and X, are the fitting parameters, and
0'9(j) = D (NI, (5)

Parameter 6()(j) determines the characteristic density scale,
and exponent A, measures the decay rate of the probability
p;(6) on this scale. Interestingly, Ludewig et al. [43] have
proposed that the decrease of the grain mobility with the
packing fraction during the granular compaction is well
described by the empirical law of the form (4).

In Fig. 5 some representative results for the insertion
probability p;(0) are shown together with the fitting functions
of the form (4). The fitting parameters are obtained by
using the nonlinear fitting routine FMINSEARCH in MATLAB®
(MathWorks, Natick, MA). This is an implementation of
the Nelder-Mead simplex algorithm [44], which minimizes
a nonlinear function of several variables. For each shape,
a fitting procedure is carried out within a certain range of
coverage ¢ below 05, where the probability p; is lower than
p; = 0.15. The cutoff probability p; =0.15 is chosen to
provide a wide density range within which the fitting procedure
is implemented for all wrapping shapes. For most shapes, the
cutoff probability p; = 0.15 corresponds to the densities that
are 30%—40% lower than the corresponding jamming limit
0y. We have verified that usage of different, but sufficiently
small, values of the cutoff parameter p gives quantitatively
similar results for fitting coefficients leading to qualitatively
same conclusions.

The data for fitting parameters A; and X, for all wrapping
triangles 7; from Table I are plotted in Fig. 6. The parameters
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107
0.9

FIG. 5. The decay of the insertion probability p;(6) for the same
objects as in Fig. 4 in the range of coverage 6 where the corresponding
probability p; is lower than p$ = 0.15 (thin horizontal line). The
continuous superimposed lines are the fits according to Eq. (4).
The fitting parameters A; and A, are reported in Fig. 6.

FIG. 6. Parameters (a) 1| and (b) X, of the fit (4) for all wrapping
triangles from Table I. Numerical values of the symmetry order n; of
the shape j are given in the square brackets above the corresponding
plot symbols.
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FIG. 7. Characteristic density 6 (Eq. (5)) for all wrapping
triangles 7; from Table I (solid symbols, left-hand axis). The opened
symbols are plotted against the right-hand axis and give the values of
the shape factor ¢(j) for all wrapping triangles T;. The characteristic
density () is anticorrelated with the shape factor ¢ ().

Ap and X, depend both on the symmetry order and on
the size of the object. The size dependence of the fitting
parameters is more pronounced for the parameter A ;. However,
the most striking feature is that the fitting parameters A,
and X, exhibit a local minima for wrapping triangles of
the highest symmetry order, n; = 3. It is important to note
that the fitting procedure for wrapping rhombuses R; and
hexagons H; from Tables II and III produce qualitatively
similar results for the dependence of the fitting parameters A;
and A, both on the symmetry order n; and on the size j of the
object.

We have also considered the behavior of the characteristic
density 8 [Eq. (5)] as a function of the object size j. Figure 7
shows the variation of the parameter 6’ with j for all wrapping
triangles T;. It is obvious that the symmetry order n, of the
shape is not correlated with the characteristic density 6)(j)
for various objects. The behavior of #)(j) differs from case
to case. For example, for shapes j = 4,7,11,16,22,29 formed
by adding a node to the triangle of the highest symmetry order
(ny = 3), 69(j) has a local minima. On the other hand, for
shapes j = 5,9,14,20,27 formed by removing a node from the
triangle of the highest symmetry order (n; = 3), (/) has a
local maxima.

Previous findings suggest that we should consider the
connection of deposition kinetics with some of the new
geometrical properties of the extended objects. For this
purpose we use the concept of the shape factor, which is a
dimensionless measure of deviation of the extended objects
from circularity. Let us first mention the definition of the shape
factor in the case of planar geometric figures. Shape factor ¢
(parameter of nonsphericity) combines the circumference C
and the surface S of the planar figure [37,45]. It is defined
as

C2

= ©6)

¢
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FIG. 8. Construction of the polygon determined by the first
neighboring sites on the lattice for the wrapping triangles 7 and
Ts, thombus Rg, and hexagon Hy. The shape factor of the extended
object is equal to the shape factor (6) of the polygon of the first
neighboring sites on the lattice.

For a square ¢ =4/m ~ 1.273, for a regular pentagon
¢ =m/5tan(r/5) ~ 1.156, and for a regular hexagon ¢ =
6/+/372 ~ 1.103. Generally, for a regular N-sided polygon
we have ¢ = (N/m)tan(r/N), which sets a lower bound for
other N-sided polygons. Thus a circular structure has a shape
factor ¢ = 1, while for a convex polygon, the more anisotropic
is the polygon, the higheris ¢ > 1.

In the case of extended objects on a triangular lattice, the
above definition of the shape factor (6) must be generalized.
Each lattice shape can be surrounded by the first neighboring
sites on the lattice. These nodes unambiguously define a
polygon containing the given object. For example, the polygon
of the first neighboring sites for a monomer (j = 1) is a
hexagon; the constructions of such polygon for wrapping
triangles T and Ty, thombus Rg, and hexagon Hg are shown
in Fig. 8. Thus, the shape factor of the extended object is
equal to the shape factor (6) of the polygon defined by the first
neighboring sites on the lattice.

Values of the shape factor ¢(j) for all wrapping triangles
T; are given in Fig. 7 together with the corresponding
characteristic densities 0)(j). We can see that 8©)(j) increases
with j > 2 if ¢(j) decreases and vice versa. In other words,
positions of the local maxima (minima) of 9 J) coincide with
position of the local minima (maxima) of ¢(j). Qualitatively
the same behavior of the shape factor ¢(j) and the parameter
0“(j) is found in the cases of wrapping rhombuses R; and
hexagons H;. Indeed, in Figs. 9 and 10 we show that the
characteristic density 6(“)(j) is anticorrelated with the shape
factor ¢ (j) for the wrapping rhombuses R; and hexagons H;.

Figure 11 illustrates that when the product between the
shape factor and the characteristic density, £(j) x 8(j), is
plotted as a function of the object size j, the data for wrapping
triangles 7, thombuses R;, and hexagons H; collapse onto
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1.45

e(c)

1.15

FIG. 9. Characteristic density 8 [Eq. (5)] for all wrapping
rhombuses R; from Table II (solid symbols, left-hand axis). The
opened symbols are plotted against the right-hand axis and give
the values of the shape factor () for all wrapping rhombuses R;.
The characteristic density 6)(j) is anticorrelated with the shape
factor ¢(j).

a single curve. This figure demonstrates the existence of the
single universal master function of the form

F(j)=¢()x090)=1-C{1 —exp[—1( — 2]},
(7)

where the two fitting parameters are C; = 0.525 and C, =
0.685. This result strongly suggests that, for various objects
of the same length, the characteristic density 6)(j) of
more rounded shapes exceeds the 6)(j) of the elongated
ones. Indeed, in Fig. 12 we show the parameter 8© as a
function of the shape factor ¢ for various triplets of triangles,
rhombuses, and hexagons (7;,R;,H;) of the same size,

1.22

1.18

1.16 »r

O(C)

1.14

1.12

FIG. 10. Characteristic density 8 [Eq. (5)] for all wrapping
hexagons H; from Table III (solid symbols, left-hand axis). The
opened symbols are plotted against the right-hand axis and give
the values of the shape factor ¢(j) for all wrapping hexagons H;.
The characteristic density 6)(j) is anticorrelated with the shape
factor ¢(j).
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0.4 . . 1 . . L

FIG. 11. The product between the shape factor and characteristic
density, ¢(j) x 0)(j), as a function of the object size j for
all wrapping triangles 7;, rhombuses R;, and hexagons H; from
Tables I-III. The black solid curve is the stretched exponential fit
of Eq. (7).

Jj =14,17,19,22,25,28,30. For each triplet (7},R;,H;), our
data confirm that the parameter 6’ decreases with the shape
factor ¢.

Now, it is necessary to establish a connection between the
proposed fitting function p;(6) [Eq. (4)] and the exponential
approach of the coverage fraction 6(¢) to the jamming limit
6y [Eq. (1)]. It is easy to show that the following differential
equation,

o , 9 6 \*
EZJPJ‘(Q):JA(l—G—J)eXP[—(%) }, (8)

describes the temporal evolution of the coverage 6(¢) in the
late stages of deposition process. Let 6(t) = jn(t)/L? be the
fraction of total lattice sites covered by the deposited objects of

H j=30 -~
7 =28 v |
0.46 & 15
N =22 -
Lo J=19 oA
0.44 . j:17 I N
H A 14
O, H e ,
042 - = T Rp
LW, N
3 04t 1
] R
038 |- .
TR
0.36 Sl ‘@\.‘.g 1
0.34 v ,
T
&7
032 . . . ‘ ‘ ‘ .
L1 115 12 1.25 13 135 1.4 1.45 15

FIG. 12. Characteristic density 6 [Eq. (5)] as a function of
the shape factor ¢ for various triplets of triangles, rhombuses and
hexagons (T;,R;,H;) of the same size, j = 14,17,19,22,25,28,30.
The letter above the plot symbol indicates the object type. Sizes of
the objects for the corresponding triplets are given in the legend.
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FIG. 13. Functions ®,(6) and ®,(0) [Egs. (9) and (10)] obtained
by fitting Eq. (4) to the insertion probability data for wrapping
triangles 75 and 737 in the case of p} = 0.15. The solid lines give
the fitting function p;(6) = ®,(6)P»(0) [Eq. (4)]. The dot-dashed
lines give the approximation p;(6) = ®(6)exp [—(6,/6©Y?], as
indicated in the legend. Approximation (11) is applicable in the
narrower density range in the case of the large object 75; than in the
case of the dimer 7. The parameters of the fit (4) are ) = 0.8313,
A2 = 3.6964 for shape T», and §© = 0.3619, A, = 2.5266 for shape
Ty;. The thin vertical lines indicate the values of jamming coverage
for shapes T, (6; = 0.9141) and T»; (6; = 0.6498).

size j attime ¢ [n(¢) denotes the number of objects adsorbed at
time ¢]. Since the time ¢ is counted by the number of adsorption
attempts and scaled by the total number of lattice sites L, the
number of deposited objects is increased by p; L* per unit time
t — t + 1. Therefore, the coverage at time ¢ + 1 is equal to
0(t + 1) = jln(t) + p;L*1/L? so that 6(t + 1) — 6(t) = jp;
is the increase of the coverage per unit time. Since (¢t 4 1) —
0(t) ~ db/dt, we getdf /dt = jp;. Finally, we obtain Eq. (8)
assuming that function (4) describes the decay of the insertion
probability p; for all shapes in a wide range of the coverage 0
just below 6.

Unfortunately, differential equation (8) cannot be solved
analytically. However, Eq. (8) can be simplified and solved
if we restrict ourselves to the consideration of the very late-
time behavior of the deposition process. The right side of
differential Eq. (8) is proportional to the product between linear
@, and stretched exponential function ®,, which are given by

P,0) = A(l — 92)’ )

J

0\
d>2(0)=exp|:—<%> } (10)

There is a significant difference in the behavior of these
functions near the jamming density for all examined objects.
Figure 13 shows the functions ®;(0) and ®,(6) obtained by
fitting Eq. (4) to the insertion probability data in the late stage
of the deposition processes for wrapping triangles 7, and T>;.
Since the time derivative of coverage d6 /dt vanishesatt — oo
and ®, — exp [—(6;/0©)] > 0, t — o0, it is obvious that
the function ®; is essential for controlling the kinetics of
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FIG. 14. Relaxation time ¢ calculated from the expression (13)
for all wrapping triangles (Table I). Results are given for three values
of threshold p;.' = 0.12, 0.02, 0.002, as indicated in the legend. The
full circles correspond to values of o in Table I. Open circles
correspond to values 6/n,(j) [Eq. (14)] for j = 2, ...,30. Numerical
values of the symmetry order n,(j) of the shape are given in the square
brackets above the x axis.

adsorption process near the jamming limit 6;. Our further
analysis deals with the rapidity of the approach to the jammed
state, so that we can introduce the following approximation:

6\ 0\
ein=ol-() oo -(2) ]

for 6 5 6. (11)

This approximation allows us to solve Eq. (8). Accordingly,
the coverage fraction of the system 6 grows exponentially in
time towards the jamming state value 6;:

o) = OJ[l — exp <—L>] for 6 6y, (12)
o

where

L men(ul) _ e [(#)]
a JjA a JA '

Consequently, the function (4) that we have proposed to
characterize the insertion probability p; is compatible with
the exponential approach (1) to the jamming limit 6;.

Equation (13) is a functional relationship between the
relaxation time o and the parameters A, A1, and A, in the fitting
function (4). Our previous findings concerning the kinetics of
the deposition process clearly confirm that the relaxation time
o in Eq. (1) is inversely proportional to the order of symmetry
axis n; of the shape:

(13)

o= E (14)

ng
It is interesting to verify whether the Eq. (13) gives the values
of the parameter o that are in accordance with the symmetry
order n; of the shape [Eq. (14)]. Figure 14 shows the values of
the relaxation time o obtained from the expression (13) for all
wrapping triangles (Table I). For each object, the values of the
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parameters A, A1, and A, in Eq. (13) were calculated by fitting
the function (4) to the insertion probability data for three values
of the cutoff probability pjf =0.12, 0.02, 0.002. It is obvious
that Eqgs. (13) and (14) give approximately equal relaxation
times ¢ in the case of more symmetric shapes (n; = 2,3;
j =2,3,6,10,15,21,28). However, the values of parameter
o obtained by Eq. (13) in the case of asymmetric shapes
(ng = 1) are not well fitted by integer 6/n; = 6 [Eq. (14)].
These deviations are particularly high for the large objects.
The reasons for these differences can be seen in Fig. 13.
Comparing the insertion probabilities near the jamming state
for the objects T, and 757, one can see that approximation (11)
is applicable in the narrower density range in the case of the
large object 7,7 than in the case of the dimer 7. Accordingly,
the lowering of the cutoff value p¢ reduces the deviation of the
relaxation time o, calculated from Eq. (13), from the integer
value of 6 (see Fig. 14). The presented results provide a further
justification for the choice of function (4) to describe the decay
of the insertion probability p; for all extended shapes on the
triangular lattice.

IV. SUMMARY

RSA kinetics of particles of various shapes on flat two-
dimensional homogeneous surfaces depends generally on
the shape anisotropy and on the number of degrees of
freedom. However, in the case of irreversible deposition on
planar lattices, the kinetics of the late stage of deposition is
determined exclusively with the symmetry properties of the
shapes. To demonstrate this, we have performed extensive
numerical simulations of the RSA using the shapes of different
number of segments and rotational symmetries on a triangular
lattice. The shapes are made by self-avoiding lattice steps,
whereby the size of the objects is gradually increased by
wrapping the walks in several different ways.

As expected, the approach to the jamming limit was found
to be exponential for all the shapes. It was shown that the
coverage kinetics is severely slowed with the decrease of the
order of symmetry of the shape. We have also pointed out that
the relaxation time o [Eq. (1)] is inversely proportional to the
order of symmetry axis n, of the shape, o = 6/n,. We found
that for small objects, jamming coverages 6y decrease very
rapidly with the size of the objects, regardless of their shape.
But for sufficiently large objects it turned out that changing the
shape has considerably more influence on the jamming density
than increasing the object size.

Special attention is paid to the behavior of probability p;
for the insertion of a new particle onto a lattice during the
deposition process. The insertion probability p; is found to
decay with the coverage 6 according to Eq. (4). It is shown that
the characteristic density 0)(j) [see Eq. (4)] is anticorrelated
with the shape factor {(j) of the objects. In addition, our
data confirm that, for objects of the same length, parameter
6 decreases with the shape factor ¢. Consequently, this
work provides the link between the behavior of the insertion
probability p; and the intrinsic properties of the shapes.

We have established a connection between the proposed
fitting function [Eq. (4)] for the decay of the insertion
probability and the exponential approach of the coverage
fraction 6(¢) to the jamming limit 0y [Eq. (1)]. It was shown
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that the obtained functional relationship (13) between the
relaxation time o and the fitting parameters in expression (4)
gives the values of the parameter o that are in accordance with
the symmetry order n; of the shape [Eq. (14)].

It must be stressed that the presence of desorption and dif-
fusional relaxation of particles changes some of the important
properties of the RSA. When desorption is introduced in RSA
processes, slowing of the deposition dynamics occurs with
increasing of symmetry order of the shapes [29]. Furthermore,
the presence of diffusion only hastens the approach to the
final disordered state [32]. As expected, the behavior of
the insertion probability during the reversible deposition of
extended objects look very different in comparison with the
irreversible case. When desorption of the objects is present,
insertion probability first follows the corresponding RSA

PHYSICAL REVIEW E 95, 022114 (2017)

curve until it reaches a value close to the equilibrium one
at which point it plateaus and evolves very weakly towards the
equilibrium [46]. Consequently, function (4) is not suitable to
describe the decreasing of the insertion probability toward its
equilibrium value during the reversible RSA.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education,
Science, and Technological Development of the Republic of
Serbia under Projects ON171017 and 11145016, and by the
European Commission under H2020 project VI-SEEM, Grant
No. 675121. Numerical simulations were run on the PARA-
DOX supercomputing facility at the Scientific Computing
Laboratory of the Institute of Physics Belgrade.

[1] J. W. Evans, Random and cooperative sequential adsorption,
Rev. Mod. Phys. 65, 1281 (1993).

[2] V. Privman (ed.), Nonequilibrium Statistical Mechanics in
One Dimension (Cambridge University Press, Cambridge, UK,
1997), (a collection of review articles).

[3] V. Privman, guest editor, Colloids Surf. A 165, 1 (2000),
(a collection of review articles).

[4] A. Cadilhe, N. A. M. Aratjo, and V. Privman, Random sequen-
tial adsorption: From continuum to lattice and pre-patterned
substrates, J. Phys.: Condens. Matter 19, 065124 (2007).

[5] J. Feder, Random sequential adsorption, J. Theoret. Biol. 87,
237 (1980).

[6] R. H. Swendsen, Dynamics of random sequential adsorption,
Phys. Rev. A 24, 504 (1981).

[7] Y. Pomeau, Some asymptotic estimates in the random parking
problem, J. Phys. A: Math. Gen. 13, L193 (1980).

[8] B. Bonnier, Random sequential adsorption of binary mixtures
on a line, Phys. Rev. E 64, 066111 (2001).

[9] M. C. Bartelt and V. Privman, Kinetics of irreversible multilayer
adsorption: One-dimensional models, J. Chem. Phys. 93, 6820
(1990).

[10] S. S. Manna and N. M. Svraki¢, Random sequential adsorption:
Line segments on the square lattice, J. Phys. A: Math. Gen. 24,
L671 (1991).

[11] Lj. Budinski-Petkovi¢ and U. Kozmidis-Luburi¢, Random se-
quential adsorption on a triangular lattice, Phys. Rev. E 56,
6904 (1997).

[12] Lj. Budinski-Petkovi¢, S. B. Vrhovac, and I. Loncarevié,
Random sequential adsorption of polydisperse mixtures on
discrete substrates, Phys. Rev. E 78, 061603 (2008).

[13] P. Viot, G. Tarjus, S. M. Ricci, and J. Talbot, Random
sequential adsorption of anisotropic particles. I. Jamming limit
and asymptotic behavior, J. Chem. Phys. 97, 5212 (1992).

[14] J. D. Sherwood, Random sequential adsorption of lines and
ellipses, J. Phys. A 23, 2827 (1990).

[15] R. D. Vigil and R. M. Ziff, Random sequential adsorption of
unoriented rectangles onto a plane, J. Chem. Phys. 91, 2599
(1989).

[16] R. D. Vigil and R. M. Ziff, Kinetics of random sequential
adsorption of rectangles and line segments, J. Chem. Phys. 93,
8270 (1990).

[17] M. Ciesla and J. Barbasz, Random packing of regular polygons
and star polygons on a flat two-dimensional surface, Phys. Rev.
E 90, 022402 (2014).

[18] M. Ciesla and P. Karbowniczek, Random sequential adsorption
of starlike particles, Phys. Rev. E 91, 042404 (2015).

[19] M. Ciesla, Continuum random sequential adsorption of polymer
on a flat and homogeneous surface, Phys. Rev. E 87, 052401
(2013).

[20] P. B. Shelke and A. V. Limaye, Dynamics of random sequential
adsorption (RSA) of linear chains consisting of n circular discs
role of aspect ratio and departure from convexity, Surf. Sci.
637-638, 1 (2015).

[21] M. CieSla, Properties of random sequential adsorp-
tion of generalized dimers, Phys. Rev. E 89, 042404
(2014).

[22] M. Ciesla, G. Pajk, and R. M. Ziff, Shapes for maximal coverage
for two-dimensional random sequential adsorption, Phys. Chem.
Chem. Phys. 17, 24376 (2015).

[23] M. Ciesla, G. Pajak, and R. M. Ziff, In a search for a
shape maximizing packing fraction for two-dimensional random
sequential adsorption, J. Chem. Phys. 145, 044708 (2016).

[24] M. D. Khandkar, A. V. Limaye, and S. B. Ogale, Shape Effects
in Random Sequential Adsorption of Zero-Area Angled Objects
on a Continuum Substrate, Phys. Rev. Lett. 84, 570 (2000).

[25] G. C. Barker and M. J. Grimson, Random sequential adsorption
of lattice shapes onto a square lattice, Mol. Phys. 63, 145 (1988).

[26] Lj. Budinski-Petkovi¢ and U. Kozmidis-Luburié¢, Jamming
configurations for irreversible deposition on a square lattice,
Physica A 236, 211 (1997).

[27] R. S. Ghaskadvi and M. Dennin, Reversible random sequential
adsorption of dimers on a triangular lattice, Phys. Rev. E 61,
1232 (2000).

[28] Lj. Budinski-Petkovi¢ and U. Kozmidis-Luburi¢, Adsorption-
desorption processes of extended objects on a square lattice,
Physica A 301, 174 (2001).

[29] Lj. Budinski-Petkovi¢, M. Petkovié, Z. M. Jaksi¢, and S. B.
Vrhovac, Symmetry effects in reversible random sequential
adsorption on triangular lattice, Phys. Rev. E 72, 046118
(2005).

[30] V. Privman, Dynamics of nonequilibrium deposition,
Colloids Surf. A 165, 231 (2000).

022114-12


https://doi.org/10.1103/RevModPhys.65.1281
https://doi.org/10.1103/RevModPhys.65.1281
https://doi.org/10.1103/RevModPhys.65.1281
https://doi.org/10.1103/RevModPhys.65.1281
https://doi.org/10.1016/S0927-7757(99)00436-7
https://doi.org/10.1016/S0927-7757(99)00436-7
https://doi.org/10.1016/S0927-7757(99)00436-7
https://doi.org/10.1016/S0927-7757(99)00436-7
https://doi.org/10.1088/0953-8984/19/6/065124
https://doi.org/10.1088/0953-8984/19/6/065124
https://doi.org/10.1088/0953-8984/19/6/065124
https://doi.org/10.1088/0953-8984/19/6/065124
https://doi.org/10.1016/0022-5193(80)90358-6
https://doi.org/10.1016/0022-5193(80)90358-6
https://doi.org/10.1016/0022-5193(80)90358-6
https://doi.org/10.1016/0022-5193(80)90358-6
https://doi.org/10.1103/PhysRevA.24.504
https://doi.org/10.1103/PhysRevA.24.504
https://doi.org/10.1103/PhysRevA.24.504
https://doi.org/10.1103/PhysRevA.24.504
https://doi.org/10.1088/0305-4470/13/6/006
https://doi.org/10.1088/0305-4470/13/6/006
https://doi.org/10.1088/0305-4470/13/6/006
https://doi.org/10.1088/0305-4470/13/6/006
https://doi.org/10.1103/PhysRevE.64.066111
https://doi.org/10.1103/PhysRevE.64.066111
https://doi.org/10.1103/PhysRevE.64.066111
https://doi.org/10.1103/PhysRevE.64.066111
https://doi.org/10.1063/1.458952
https://doi.org/10.1063/1.458952
https://doi.org/10.1063/1.458952
https://doi.org/10.1063/1.458952
https://doi.org/10.1088/0305-4470/24/12/003
https://doi.org/10.1088/0305-4470/24/12/003
https://doi.org/10.1088/0305-4470/24/12/003
https://doi.org/10.1088/0305-4470/24/12/003
https://doi.org/10.1103/PhysRevE.56.6904
https://doi.org/10.1103/PhysRevE.56.6904
https://doi.org/10.1103/PhysRevE.56.6904
https://doi.org/10.1103/PhysRevE.56.6904
https://doi.org/10.1103/PhysRevE.78.061603
https://doi.org/10.1103/PhysRevE.78.061603
https://doi.org/10.1103/PhysRevE.78.061603
https://doi.org/10.1103/PhysRevE.78.061603
https://doi.org/10.1063/1.463820
https://doi.org/10.1063/1.463820
https://doi.org/10.1063/1.463820
https://doi.org/10.1063/1.463820
https://doi.org/10.1088/0305-4470/23/13/021
https://doi.org/10.1088/0305-4470/23/13/021
https://doi.org/10.1088/0305-4470/23/13/021
https://doi.org/10.1088/0305-4470/23/13/021
https://doi.org/10.1063/1.457021
https://doi.org/10.1063/1.457021
https://doi.org/10.1063/1.457021
https://doi.org/10.1063/1.457021
https://doi.org/10.1063/1.459307
https://doi.org/10.1063/1.459307
https://doi.org/10.1063/1.459307
https://doi.org/10.1063/1.459307
https://doi.org/10.1103/PhysRevE.90.022402
https://doi.org/10.1103/PhysRevE.90.022402
https://doi.org/10.1103/PhysRevE.90.022402
https://doi.org/10.1103/PhysRevE.90.022402
https://doi.org/10.1103/PhysRevE.91.042404
https://doi.org/10.1103/PhysRevE.91.042404
https://doi.org/10.1103/PhysRevE.91.042404
https://doi.org/10.1103/PhysRevE.91.042404
https://doi.org/10.1103/PhysRevE.87.052401
https://doi.org/10.1103/PhysRevE.87.052401
https://doi.org/10.1103/PhysRevE.87.052401
https://doi.org/10.1103/PhysRevE.87.052401
https://doi.org/10.1016/j.susc.2015.02.015
https://doi.org/10.1016/j.susc.2015.02.015
https://doi.org/10.1016/j.susc.2015.02.015
https://doi.org/10.1016/j.susc.2015.02.015
https://doi.org/10.1103/PhysRevE.89.042404
https://doi.org/10.1103/PhysRevE.89.042404
https://doi.org/10.1103/PhysRevE.89.042404
https://doi.org/10.1103/PhysRevE.89.042404
https://doi.org/10.1039/C5CP03873A
https://doi.org/10.1039/C5CP03873A
https://doi.org/10.1039/C5CP03873A
https://doi.org/10.1039/C5CP03873A
https://doi.org/10.1063/1.4959584
https://doi.org/10.1063/1.4959584
https://doi.org/10.1063/1.4959584
https://doi.org/10.1063/1.4959584
https://doi.org/10.1103/PhysRevLett.84.570
https://doi.org/10.1103/PhysRevLett.84.570
https://doi.org/10.1103/PhysRevLett.84.570
https://doi.org/10.1103/PhysRevLett.84.570
https://doi.org/10.1080/00268978800100121
https://doi.org/10.1080/00268978800100121
https://doi.org/10.1080/00268978800100121
https://doi.org/10.1080/00268978800100121
https://doi.org/10.1016/S0378-4371(96)00374-3
https://doi.org/10.1016/S0378-4371(96)00374-3
https://doi.org/10.1016/S0378-4371(96)00374-3
https://doi.org/10.1016/S0378-4371(96)00374-3
https://doi.org/10.1103/PhysRevE.61.1232
https://doi.org/10.1103/PhysRevE.61.1232
https://doi.org/10.1103/PhysRevE.61.1232
https://doi.org/10.1103/PhysRevE.61.1232
https://doi.org/10.1016/S0378-4371(01)00354-5
https://doi.org/10.1016/S0378-4371(01)00354-5
https://doi.org/10.1016/S0378-4371(01)00354-5
https://doi.org/10.1016/S0378-4371(01)00354-5
https://doi.org/10.1103/PhysRevE.72.046118
https://doi.org/10.1103/PhysRevE.72.046118
https://doi.org/10.1103/PhysRevE.72.046118
https://doi.org/10.1103/PhysRevE.72.046118
https://doi.org/10.1016/S0927-7757(99)00412-4
https://doi.org/10.1016/S0927-7757(99)00412-4
https://doi.org/10.1016/S0927-7757(99)00412-4
https://doi.org/10.1016/S0927-7757(99)00412-4

PARTICLE MORPHOLOGY EFFECTS IN RANDOM ...

[31] C. Fusco, P. Gallo, A. Petri, and M. Rovere, Random sequential
adsorption and diffusion of dimers and k-mers on a square lattice,
J. Chem. Phys. 114, 7563 (2001).

[32] I. Loncarevié, Z. M. Jaksié, S. B. Vrhovac, and Lj. Budinski-
Petkovié, Irrevesible deposition of extended objects with diffu-
sional relaxation on discrete substrates, Eur. Phys. J. B 73, 439
(2010).

[33] G. Kondrat, Impact of composition of extended objects
on percolation on a lattice, Phys. Rev. E 78, 011101
(2008).

[34] Lj. Budinski-Petkovi¢, I. Loncarevié, M. Petkovi¢, Z. M. Jaksic,
and S. B. Vrhovac, Percolation in random sequential adsorption
of extended objects on a triangular lattice, Phys. Rev. E 85,
061117 (2012).

[35] N. I. Lebovka, Y. Yu. Tarasevich, D. O. Dubinin, V. V. Laptev,
and N. V. Vygornitskii, Jamming and percolation in generalized
models of random sequential adsorption of linear k-mers on a
square lattice, Phys. Rev. E 92, 062116 (2015).

[36] J.-S. Wang and R. B. Pandey, Kinetics and Jamming Cover-
age in a Random Sequential Adsorption of Polymer Chains,
Phys. Rev. Lett. 77, 1773 (1996).

[37] F. Moucka and I. Nezbeda, Detection and Characterization of
Structural Changes in the Hard-Disk Fluid Under Freezing and
Melting Conditions, Phys. Rev. Lett. 94, 040601 (2005).

PHYSICAL REVIEW E 95, 022114 (2017)

[38] E. L. Hinrichsen, J. Feder, and T. Jssang, Geometry of random
sequential adsorption, J. Stat. Phys. 44, 793 (1986).

[39] J. W. Evans, D. R. Burgess, and D. K. Hoffman, Irreversible ran-
dom and cooperative processes on lattices: Spatial correlations,
J. Math. Phys. 25, 3051 (1984).

[40] B. Bonnier, M. Hontebeyrie, Y. Leroyer, C. Meyers, and
E. Pommiers, Adsorption of line segments on a square lattice,
Phys. Rev. E 49, 305 (1994).

[41] N. 1. Lebovka, N. N. Karmazina, Y. Yu. Tarasevich, and
V. V. Laptev, Random sequential adsorption of partially oriented
linear k-mers on a square lattice, Phys. Rev. E 84,061603 (2011).

[42] R. Hilfer, Analytical representations for relaxation functions of
glasses, J. Non-Cryst. Solids 305, 122 (2002).

[43] F. Ludewig, N. Vandewalle, and S. Dorbolo, Compaction of
granular mixtures, Granular Matter 8, 87 (2006).

[44] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,
Convergence properties of the Nelder-Mead simplex method in
low dimensions, SIAM J. Opt. 9, 112 (1998).

[45] P. Richard, J. P. Troadec, L. Oger, and A. Gervois, Effect of the
anisotropy of the cells on the topological properties of two- and
three-dimensional froths, Phys. Rev. E 63, 062401 (2001).

[46] J. Talbot, G. Tarjus, and P. Viot, Adsorption-desorption model
and its application to vibrated granular materials, Phys. Rev. E
61, 5429 (2000).

022114-13


https://doi.org/10.1063/1.1359740
https://doi.org/10.1063/1.1359740
https://doi.org/10.1063/1.1359740
https://doi.org/10.1063/1.1359740
https://doi.org/10.1140/epjb/e2010-00010-1
https://doi.org/10.1140/epjb/e2010-00010-1
https://doi.org/10.1140/epjb/e2010-00010-1
https://doi.org/10.1140/epjb/e2010-00010-1
https://doi.org/10.1103/PhysRevE.78.011101
https://doi.org/10.1103/PhysRevE.78.011101
https://doi.org/10.1103/PhysRevE.78.011101
https://doi.org/10.1103/PhysRevE.78.011101
https://doi.org/10.1103/PhysRevE.85.061117
https://doi.org/10.1103/PhysRevE.85.061117
https://doi.org/10.1103/PhysRevE.85.061117
https://doi.org/10.1103/PhysRevE.85.061117
https://doi.org/10.1103/PhysRevE.92.062116
https://doi.org/10.1103/PhysRevE.92.062116
https://doi.org/10.1103/PhysRevE.92.062116
https://doi.org/10.1103/PhysRevE.92.062116
https://doi.org/10.1103/PhysRevLett.77.1773
https://doi.org/10.1103/PhysRevLett.77.1773
https://doi.org/10.1103/PhysRevLett.77.1773
https://doi.org/10.1103/PhysRevLett.77.1773
https://doi.org/10.1103/PhysRevLett.94.040601
https://doi.org/10.1103/PhysRevLett.94.040601
https://doi.org/10.1103/PhysRevLett.94.040601
https://doi.org/10.1103/PhysRevLett.94.040601
https://doi.org/10.1007/BF01011908
https://doi.org/10.1007/BF01011908
https://doi.org/10.1007/BF01011908
https://doi.org/10.1007/BF01011908
https://doi.org/10.1063/1.526021
https://doi.org/10.1063/1.526021
https://doi.org/10.1063/1.526021
https://doi.org/10.1063/1.526021
https://doi.org/10.1103/PhysRevE.49.305
https://doi.org/10.1103/PhysRevE.49.305
https://doi.org/10.1103/PhysRevE.49.305
https://doi.org/10.1103/PhysRevE.49.305
https://doi.org/10.1103/PhysRevE.84.061603
https://doi.org/10.1103/PhysRevE.84.061603
https://doi.org/10.1103/PhysRevE.84.061603
https://doi.org/10.1103/PhysRevE.84.061603
https://doi.org/10.1016/S0022-3093(02)01088-8
https://doi.org/10.1016/S0022-3093(02)01088-8
https://doi.org/10.1016/S0022-3093(02)01088-8
https://doi.org/10.1016/S0022-3093(02)01088-8
https://doi.org/10.1007/s10035-005-0223-0
https://doi.org/10.1007/s10035-005-0223-0
https://doi.org/10.1007/s10035-005-0223-0
https://doi.org/10.1007/s10035-005-0223-0
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1103/PhysRevE.63.062401
https://doi.org/10.1103/PhysRevE.63.062401
https://doi.org/10.1103/PhysRevE.63.062401
https://doi.org/10.1103/PhysRevE.63.062401
https://doi.org/10.1103/PhysRevE.61.5429
https://doi.org/10.1103/PhysRevE.61.5429
https://doi.org/10.1103/PhysRevE.61.5429
https://doi.org/10.1103/PhysRevE.61.5429

Physica A 525 (2019) 450-465

Contents lists available at ScienceDirect

TaTEnEA Micunics

[T
i 113 AppiATORS

Physica A

journal homepage: www.elsevier.com/locate/physa =

Group chase and escape in the presence of obstacles N

J.R. S¢epanovi¢?, A. Karac&®, Z.M. Jaksi¢?, Lj. Budinski-Petkovi¢ ¢, S.B. Vrhovac **

Check for
updates

2 Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of
Belgrade, Pregrevica 118, Zemun 11080, Belgrade, Serbia

b polytechnic faculty, University of Zenica, Bosnia and Herzegovina

¢ Faculty of Engineering, Trg D. Obradovica 6, Novi Sad 21000, Serbia

HIGHLIGHTS

Hunting in the presence of obstacles is studied.

Dynamics of smart chasing and escape between two species is studied by MC simulations.
Stretched exponential behavior excellently describes the capture dynamics.

Characteristic time t decreases with the initial density of targets as a power law.
Characteristic timescale t increases with the density of obstacles.

ARTICLE INFO

ABSTRACT

Article history:

Received 13 November 2018

Received in revised form 20 February 2019
Available online 14 March 2019

Keywords:

Group chase and escape
Square lattice

Obstacles
Stretched-exponential function

We study a stochastic lattice model describing the dynamics of a group chasing and
escaping between two species in an environment that contains obstacles. The Monte
Carlo simulations are carried out on a two-dimensional square lattice. Obstacles are
represented by non-overlapping lattice shapes that are randomly placed on the lattice.
The model includes smart pursuit (chasers to targets) and evasion (targets from chasers).
Both species can affect their movement by visual perception within their finite sighting
range o.

We concentrate here on the role that density and shape of the obstacles plays in
the time evolution of the number of targets, Nr(t). Temporal evolution of the number
of targets Nr(t) is found to be stretched-exponential, of the form N;(t) = N;(0) —
SNr(00) (1 - exp[—(t/t)“]), regardless of whether the obstacles are present or not. The
characteristic timescale 7 is found to decrease with the initial density of targets pg
according to a power-law, i.e., T (pg )~7. Furthermore, temporal dependences of the
number of targets Nr(t) are compared for various combinations of chasers and targets
with different sighting ranges, o = 1, 2, in order to analyze the relationship between
the ability of species and the capture dynamics in the presence of obstacles.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The collective motion of interacting living organisms such as bacteria colonies [1-3], amoeba [4-6], cells [7-9], insects
[10,11], fish [12,13], birds [14,15], and humans [16-20] has drawn great attention of researchers from diverse fields in
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the past two decades [21]. Pursuit and evasion problems have a long and interesting history [22]. It is well known that
collective motion of individuals with escape and pursuit behavior serve as a protection mechanisms against chasers. The
goal for chaser (predator) and target (for example, prey) is to choose an efficient motion strategy that optimizes their
respective chances of successful pursuit or evasion. At first, developing computational systems and techniques enabled one
to deal with a two-particle system consisting of one chaser and one target, where there existed a challenging mathematical
problem for obtaining analytical expressions [22]. Also, a class of pursuit-and-evasion problems involving a single evading
prey that is being hunted by N > 1 predators has been modeled and analyzed [23-25]. In addition to these modeling
efforts, extensive research has been devoted to developing multi-agent models that consider the role of multiple predators
and/or preys [26-35].

Kamimura and Ohira [26] have introduced a lattice model to analyze the group spatial chase and escape phenomena.
The model assumes that chasers and targets are initially placed randomly on the square lattice as pointlike particles. Both
species perform independent nearest-neighbor random walks on a lattice following simple dynamical rules, increasing or
decreasing the distance from the nearest particle of the opposite group. Chasers start a direct chase whenever a target
appears within their sighting range. Targets try to evade capture by making a distance of one lattice spacing in a direction
away from the nearest chaser. Target is caught upon the first encounter with a chaser. In their model, although each chaser
independently moves in order to catch one of the nearest targets, some groups of chasers are simultaneously formed. In
the simulation, the chasers form flocks and seem to cooperate to catch the flocks of targets [24,26,33,34,36]. In the basic
version of the model, chasers can sense the positions of the targets at an arbitrary distance. The authors have considered
several extensions to this simplest version of the model, including the search range of chasers and targets, and introduction
of a term designed to account for random fluctuations that are usually present in real systems. Despite its simplicity, the
model is able to reproduce a lot of interesting behaviors [27].

Based on a concept proposed by Kamimura and Ohira [26] we built up a bio-inspired realistic agent-based approach to
model collective chasing and escaping in a discrete space and time with periodic boundary conditions for the case when
the lattice is initially covered with obstacles at various concentrations. The depositing objects (obstacles) are formed by
a small number of lattice steps on the square lattice. Spatial distribution of the obstacles on the lattice is created using
the random sequential adsorption (RSA) method [37,38]. The dominant effect in RSA is the blocking of the available
surface area. When the surface is saturated by the adsorbed objects so that no further objects can be placed, the system
reaches the jamming limit pj. Thus, an element of stochasticity of environment, which is present in any natural system,
is incorporated into the model. It must be emphasized that birth and death processes [39,40] are not considered here,
so the results obtained apply only on the time scales short compared to the typical lifetime of single organisms. The
role of multiple predators and preys has also been studied by using an off-lattice models [41,42], based on the modeling
of the self-propelled organisms by Vicsek et al. and including the chase-escape mechanisms through simple intergroup
pairwise interactions [43]. In such models, an analysis of the impact of geometrically complex boundary conditions, such
as obstacles, would require taking into account a hard core repulsion term in the interaction. However, the lattice-based
models allow easier handling of objects (obstacles) of various shapes and sizes.

For the real life systems, simulation resembles to two animal species fighting for the survival. Obstacles may be trees,
rocks, or anything that is big enough for the evader and pursuer to become “invisible” for the other. The chasers and
evaders can also be human beings, but with different roles, like police officers and robbers, where buildings, grocery
stores and similar objects can be viewed as obstacles.

We study the survival of NOT targets (for example, prey) that is captured by Ng chasers (predators) in the presence
of static obstacles. We have kept the rules governing the dynamics of the processes at the individual level as simple
as possible to focus entirely on the effects of obstacles. Each species has its specific sighting range o in which it can
see the other species. In [26], for each target, the distance to each chaser is calculated as the Euclidean distance. Unlike
the Kamimura and Ohira model [26], distances as well as sighting ranges in the present study are measured by a L'
(“Manhattan”) metric. Manhattan distance between sites P; and P, on a square lattice is equal to the length of all paths
connecting P; and P, along horizontal and vertical segments, without ever going back. Therefore, Manhattan metric more
correctly than Euclidean’s determines the length of the path between two sites in the lattice-based models. In our model,
there are two types of chasers and targets and each of them has its own sighting range o, which describes their skills at
chasing and escaping, respectively. In reality, chasers search for targets in their vicinities. Similarly, targets can recognize
the existence of nearby chasers. Therefore, analysis of the capture dynamics in the present study is limited to species
with two different sighting ranges, i.e.,, 0 = 1, 2. If the value of ¢ equals zero, the movement is equivalent to the random
walkers [26,28,40,44]. It has been confirmed that the idea of animals using blind search strategies does not seem to be
usable since it neglects the role of animals’ smartness and experience in guiding them [45]. We investigate the role that the
density of obstacles plays in the time evolution of the number of targets, Nr(t). A detailed analysis of the contribution to
the capture dynamics coming from the size and the shape of obstacles is carried out. Furthermore, temporal dependences
of the number of targets Nr(t) in the presence of obstacles are compared for various combinations of chasers and targets
with different chasing and avoidance skills in order to analyze the relationship between the ability of species and the
capture dynamics. In particular, we try to find a universal functional type that describes the decrease in the number of
targets Nr(t) in the best way.

We organized the paper as follows. Section 2 describes the details of the model and simulations. In Section 3 results
of numerical simulation are presented and discussed. Finally, Section 4 contains some additional comments and final
remarks.
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2. Definition of the model and the simulation method

The environment where two interacting species coexist is represented by the two-dimensional square lattice of linear
size L with periodic boundary conditions. In our model the lattice is initially occupied by obstacles of various shapes
and sizes at the effective density po. This density is defined as a fraction of sites of the lattice that are occupied by the
obstacles. Linear obstacles are k-mers of length £ =k —1=20,1,...,6, shown in Table 1 as objects (A)-(A7). Extended
shapes that we have used as obstacles are the crosses of two different sizes, shown in Table 2 as objects (C;) and (C3).

Obstacles cannot overlap and their spatial distribution at density po is generated using the random sequential
adsorption (RSA) method [37,38]. In the case of mixtures of obstacles, at each deposition attempt, one of the objects
that makes the mixture is selected at random and deposition of the selected object is tried in a randomly chosen lattice
site. In this way we are able to prepare the environment in disordered initial state with a statistically reproducible density
po of obstacles. To initialize the model, Ng chasers and Ng targets are randomly distributed as monomers in the lattice.
Each site can be either empty or occupied by one particle: by a chaser or escapee (target) or by a particle that belongs to
an obstacle.

After placing the chasers and the targets up to the chosen densities p§ = N§/L? and pj = Nj /L%, we switch the
species deposition events off and initiate a random diffusive dynamics in the system. At this stage, apart from the hard
core interaction between the species, and between the species and the obstacles, there are simple rules governing the
dynamic processes at the individual level. Movement within the lattice and the population dynamics are modeled as
discrete time processes. At each Monte Carlo step a lattice site is selected at random. If the selected site is unoccupied or
occupied by an obstacle, the configuration remains unchanged and a new site is selected at random. If the selected site
is occupied by a chaser or an escapee, each species follow the hopping rules described below.

Chaser has a certain pursuit region within which it can locate targets; simultaneously, target has an escape zone inside
which it can detect chasers. In other words, each species has its specific sighting range o in which it can see the other
species. By definition, the metric is L', so e.g. the site (x, y) is at distance |x| + |y| from the origin, with lattice spacing
equal to unity. Two types of chasers and targets are used in our model depending on the sighting range o : Chasers-I and
Targets-I have sighting range o = 1, while for Chasers-II and Targets-II, o = 2.

Suppose that Chaser-I is placed in a randomly selected site of the lattice. If the first neighbors of the selected site are
entirely occupied with obstacles and chasers, the chosen chaser stays at its original position. Then, the time ¢ is updated,
t — t+1/L? and the process continues by choosing a new lattice site at random. Suppose that some of the first neighbors
of the selected site are occupied with targets. Then we randomly select a target among them, remove the selected target
from the grid, and move the chosen chaser to this empty place. However, if the first neighbors of the chosen chaser are
not occupied with targets, the chaser executes a jump as long as there is at least one empty nearest neighbor site. In this
case, the chaser is moved to the randomly selected empty adjacent site.

Now, suppose that Target-I is placed in a randomly selected site of the lattice. If there are no empty nearest neighbors
of the selected site, the chosen target does not change its position, and the time increases by 1/L2. If the selected site has
empty adjacent sites, the chosen target moves into one of them randomly.

In our model we introduce chasers and targets with different chasing and avoidance skills, respectively, depending
on the sighting range o. Accordingly, decision for every step both of the Chaser-II and Target-II depends on the species
that are found at the places of second neighbors. Algorithms for movement of species I and II are different only in the
method of selection of the empty neighboring sites for a jump. Species I randomly chooses an empty nearest neighbor
site for a jump. However, Chaser-II moves to the empty adjacent site that is surrounded by the highest number of targets,

n(Tmax), as its first neighbors (see, Fig. 1(a)). On the contrary, Target-II jumps to the empty nearest neighbor site that is

surrounded by the lowest number of chasers, n(cmin), as its first neighbors (see, Fig. 1(b)). If two or more empty nearest

neighbor sites correspond to the same highest/lowest number of targets n{™*"/chasers n{™", one of them is selected at

random. It must be emphasized that Target-II moves to the selected site only if n(cmm) is less than or equal to the number
of chasers surrounding it in its original position. In both cases when the sighting range o is one or two, pursuer and
evader can move only to a neighboring site. Neither chasers nor evaders can see through the obstacles and they make
their decision about the movement without the knowledge of the situation behind the obstacle.

The time t is counted by the number of attempts to select a lattice site and scaled by the total number of lattice sites
N = 2. Since in one Monte Carlo time step each lattice site is randomly checked once on the average, it can be considered
that all chasers and targets are active at all times and that none of the species have a priority in the number of attempts
to make a move. The simulation data are averaged over 100 independent runs for each coverage of obstacles and each
initial chasers and targets concentrations.

The simulations have been performed for a wide range of obstacle densities, pg < 0.45, below the corresponding
percolation thresholds [46,47]. Considering the underlying percolation problem on the lattice, a geometric transition
occurs at the percolation threshold p}, above which the void space falls completely apart into finite clusters. As density of
obstacles is increased above a certain critical value p, the initial large cluster of empty lattice space breaks into tiny non-
communicating components and connectivity between both sides of the lattice disappears. In this case, spatially separated
groups of chasers and targets can be formed on the lattice during the initialization process. Such artificial situations will
not be considered in this paper.
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Fig. 1. Hopping rules for (a) chasers and (b) targets. Diamonds represent their respective sighting ranges, c = 1, 2. The green squares show the
obstacles. Chasers (red circles) look for the nearest target and move to one of the nearest sites in order to catch the target. Targets (blue circles) try
to escape from the nearest chaser. When a target is in a site nearest to a chaser, the chaser catches the target by hopping to the site, and then the
target is removed from the system. Panel (a): Yellow arrow from the chaser to the adjacent site indicates that the Chaser-II hops to the empty site
that is surrounded by the highest number of targets (n(T"“X) = 3). Chaser-I has three choices. Panel (b): Yellow arrow from the target to the adjacent
site indicates that Target-II hops to the empty site that is surrounded by the lowest number of chasers (n
of the number of the nearest targets and chasers are given for the empty adjacent sites.

= 1). Target-I has two choices. Values
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Fig. 2. Time dependences of the number of targets Nr(t) (panel (a)) and of the normalized number of targets Nr(t)/NJ (panel (b)) on the lattices
of size L = 32, 64, and 128, as indicated in legend. The full curves represent the results obtained when obstacles are the binary mixtures of trimers
(A3) and crosses (Cy) of density po = 0.30 (see, Tables 1 and 2). The dashed curves represent the results obtained in the absence of obstacles. Panel
(c): Shown here are the temporal dependences of the number of targets Nr(t) on the lattice of size L = 128, obtained for the same conditions as in
panel (a) (see legend). The black (red) lines are plotted against the left-hand (right-hand) axis. The shaded region represents the standard deviation.
Results shown in panels (a), (b), and (c) are obtained for the same initial densities pg = 0.0439 and pg = 0.0488, for all lattices. Initial values for
the number of chasers/targets are Ng/Ng = 45/50, 180/200, 720/800 for L = 32, 64, 128, respectively.



J.R. Scepanovic, A. Kara¢, ZM. Jaksic et al. / Physica A 525 (2019) 450-465 455
3. Results and discussion

While the number of chasers, N¢(t), remains constant Ng , the number of targets, Nr(t), monotonically decreases along
with the catches. Here we focus on the model that includes species with sighting range o = 2 (Chasers-II + Target-II),
and study the effects of obstacles on the time evolution of the number of targets, Ny(t). In addition, we will compare the
results for all four combinations of previously defined species I and II, as shown in Table 3.

In our model, lattice size L is an arbitrary parameter. In Fig. 2(a) we show the temporal dependence of the number
of targets Ny(t) on the lattices of size L = 32, 64, and 128, when obstacles are the binary mixtures of trimers (A3) and
crosses (Cq) of density po = 0.30 (see, Tables 1 and 2). For comparison, we also plot the temporal dependences of the
number of targets Nr(t) in the absence of obstacles for these three lattices. It is important to note that the initial densities
of chasers pg and targets pg have not changed with the lattice size L. Numerical results for Nr(t) in Fig. 2(a) are given
for the initial densities p§ = 0.0439 and p] = 0.0488, with the same ratio p§/pj = N§/NJ = 0.9 for all the lattices.
In Fig. 2(b), the values of the normalized number of targets NT(t)/Ng versus the time t are presented for the simulation
results shown in Fig. 2(a). It is evident that for the given density of the obstacles pg, the time evolution of the normalized
number of targets Nr(t) /Ng does not depend on the lattice size L. However, for the lattice of fixed size L, time evolution of
NT(t)/Ng depends on the initial number of chasers Ng and targets Ng. We shall return to this point later on in connection
with the relationship between the densities of species and dynamics of the model.

In Fig. 2(c) we show the temporal dependence of the number of targets Ny(t) on the lattice of size L = 128 obtained
for the same conditions as in Fig. 2(a). The shaded strips in Fig. 2(c) indicate an interval of one standard deviation above
and below the estimated mean value. In addition, the double logarithmic plots of the same results are also shown in the
same panel. In this way, a better insight into the values of the standard deviation during the entire process is enabled.
Standard deviations from the average value of Nr(t) are of the order +1% throughout the whole process of interest. In
very late times, when the number of targets disappears, the standard deviation is less than 10%. As it can be seen, the
statistical error bars slightly exceed the line thickness.

It must be stressed that all simulations have been performed in the conditions of sufficiently low densities of agents. In
this way, we have tried to avoid the effects of the self volume [34,48,49]. In reality, chasers and targets are impenetrable
bodies. For example, in an abundant population of prey, the prey species may obstruct each other while trying to escape.
Moreover, at sufficiently large densities of targets, target can be temporarily trapped in “cages” formed by their neighbors
of the same species. Then the motion of target is restricted by a shell of nearest neighbors, and its movement is influenced
by the effect of trapping. However, in our model, agents can be temporarily caged by a dense network of obstacles. In
order to make the analysis of the results simpler, it is necessary that these two effects are not present in simulations at
the same time. Consequently, all simulations are carried out in the conditions of sufficiently low densities of agents.

In the absence of obstacles, simulations are carried out until all targets have been caught by chasers, i.e. Nr(t) = 0.
However, in the presence of obstacles, there may be targets that cannot be eliminated by the chasers. Such targets
are located within clusters of empty sites (“cages”) in which chasers have not been deposited during the initialization
process. The number of inaccessible targets increases with the density of obstacles pg. Fig. 3 shows two typical snapshot
configurations obtained in the case of the binary mixture of obstacles (trimers (A3) and crosses (C;)) of density po = 0.30.
The snapshots are taken at the beginning of the process (t = 1), and after a long enough time (t = 300) when only a few
targets (Nr(300) = 6) are left in the “cages” formed by obstacles.

Now, we present and discuss the numerical results regarding the time evolution of the number of targets Nr(t) in the
absence of obstacles, for several initial densities of chasers pg and targets pg on the lattice of the fixed size L = 128.
The initial numbers of species (Ng, Ng) were chosen as (20, 25), (40, 50), (80, 100), (160, 200), (320, 400), and (640, 800),
so that we have the same ratio NOC/Ng = 0.8 in all simulation runs. Temporal evolution of the normalized number of
targets Nr(t)/N} for various initial densities p; = N§/L* and p} = NJ/L* (provided that p§/p} = 0.8) are presented
in Fig. 4. We observe that the decrease of NT(t)/Ng with time gets drastically slower when the initial densities ,og and
pg decrease. Analyzing the curves in Fig. 4 we find that the decrease of NT(t)/Ng is slower than exponential in time. In
addition, the curves for different values of the initial density of species are very similar in form. In order to provide the
best analytical approximation for the temporal behavior of the number of targets Ny(t), we have probed a wide set of
phenomenological fitting functions for relaxation processes in many complex disordered systems [50]. The best agreement
with our simulation data was obtained by the Kohlrausch-Williams-Watts (KWW) or stretched exponential function. The
fitting function we have used is of the form:

Nr(t) Nr(o0) £\’
i ] ()]

where B is the parameter measuring the deviation from the single exponential form (0 < 8 < 1) and 7 is the characteristic
time. Fits of this stretched exponential form to the simulation data are shown as dashed lines in Fig. 4. Since the asymptotic
number of targets Nr(t) — Nr(00), t > 1, in the absence of the obstacles is equal to zero for all initial densities of species,
the characteristic time 7 can be defined as the time it takes for the simulation curves of NT(t)/Ng to fall to the level of 1/e,
i.e., Nr(t)/NI = 1/e.In the absence of obstacles, the fitting parameter 7 is given in Fig. 5 as a function of the initial density
of targets pj, for two values of the ratio N§ /N = 0.8, 1.0. In numerical simulations with the ratio N5 /NJ = 1.0, the
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Fig. 3. Typical configurations of chasers (red dots) and targets (blue dots) at lattice of size L = 64 in the case of the binary mixture of obstacles
(trimers (As) and crosses (C;)) of density pg = 0.30. The snapshots are taken at the beginning of the process (t = 1, panel (a)), and after long
enough times (t = 300, panel (b)) when only six targets are left on the lattice. Five cages with the remaining targets are marked on the panel (b)
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with thin blue lines. Initial number of chasers/targets is N§ /NJ = 180/200.

initial numbers of species were chosen to be N§ = N} = 25, 50, 100, 200, 400, and 800. It is obvious that the parameter

T seems to be a simple power law of the initial density of targets pg :
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Fig. 4. Temporal evolution of the normalized number of targets NT(t)/NUT obtained in the absence of obstacles on the lattice of the size L = 128,
and for various initial numbers of species (N§, N} ), as indicated in the legend. The dashed curves are the stretched exponential fits of Eq. (1), with
the parameter 7 given in Fig. 5 and B = 0.802. Here, the ratio N§ /N§ = p§/p} = 0.8 is the same in all simulation runs. The horizontal dashed line
indicates the 1/e value.
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O N§/NG=0.8
—— power-law, Eq. (2)
10°F 0 NSNG=1.0
—— power-law, Eq. (2)
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Fig. 5. Fitting parameter 7 of the fit (1), as a function of the initial density of targets pj in the case of the absence of obstacles, for two values
of the initial ratio of chasers to targets N§/NJ = 0.8, 1.0. The straight lines are the fits using Eq. (2). Dependence of T on p} seems to be well
described by the simple power law (2). The values of fitting parameters are A = 0.230, y = 1.252, B = 0.802 for NS /N} = 0.8; for NS /NI = 1.0,
the fitting parameters are A = 0.169, y = 1.261, and 8 = 0.805.

T=A(py)7. (2)

Exponent y is approximately equal to y = 1.256 + 0.006 for all examined ratios Ng/Ng. On the other hand, the
stretching exponent g has the values below one, which confirms the nonexponential functional dependence of Nr(t)/N].
Furthermore, for the fixed value of ratio Ng /Ng the exponent g is rather weakly dependent on the initial density of targets
,og. This provides the collapse of NT(t)/Ng vs. t curves onto a single curve when the time is scaled as t /7. Fig. 6 shows the
time-density superposition of the NT(t)/Ng curves in the case of the ratio Ng/Ng = 0.8, for all initial densities of species

investigated. This figure clearly demonstrates the existence of a single universal master function.
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Fig. 6. Normalized number of targets NT(t)/Ng obtained in the absence of obstacles and rescaled to t/z, for various initial numbers of species

(N§,NJ), as indicated in the legend. Here, the ratio N§/N{ = p§/p} = 0.8 is the same in all simulation runs. The horizontal dashed line indicates
the 1/e value.
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Fig. 7. Temporal evolution of the normalized deviation ANy(t) (Eq. (3)) of the number of targets Nr(t) obtained in the presence of obstacles (A;)
(solid lines) and (C;) (dashed lines) on the lattice of size L = 128, and for various initial numbers of species (Ng, Ng), as indicated in the legend.
Here, the ratio N§/NJ = p§/p3 = 0.8 is the same in all simulation runs. The horizontal dashed line indicates the 1/e value.

In the following, we analyze the time evolution of the number of targets Ny(t) in the presence of obstacles, for various
initial densities of chasers pg and targets pg on the lattice of the fixed size, L = 128. In order to gain a better insight
into the effect of obstacles on the capture dynamics, simulations are performed both for point-like obstacles (A;) and for
obstacles of cruciform shape (C;) covering five lattice sites (see, Tables 1 and 2). Furthermore, the results are obtained
for the various values of density of the obstacles, pg = 0.15, 0.20, 0.25, and 0.30. Let us first focus our attention on the
representative results given in Fig. 7 for the case of density pg = 0.25. Fig. 7 shows the time evolution of the normalized
deviation ANr(t) of the number of targets Nr(t) from the asymptotic value Ny(oo) for various initial densities pg and pg ,
provided that N§ /NI = p§/pl = 0.8. The quantity ANr(t) is defined as

Nr(t) — Nr(oo)

AN = TNy 00)

(3)
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Fig. 8. Fitting parameter t of the fit (1), as a function of the initial density of targets pg in the case of the presence of (a) obstacles (A;), and (b)
obstacles (C;). The curves in each graph correspond to various values of the density of obstacles py = 0.15,0.20, 0.25, 0.30, as indicated in the
legend. All the results are for N§/Nj = 0.8.

As in the case of the absence of obstacles, we observe that the decrease of NT(t)/Ng with time gets slower with the
decrease in the initial densities ,og and pg . Comparing the results from Fig. 7 for different obstacles at the same density
po = 0.25, one can see that the number of targets Nr(t) in the case of point-like obstacles (A;) decreases more slowly in
time than for the case of obstacles of cruciform shape (C;). This change in the capture dynamics is the result of a different
structure of empty space that is formed after the deposition of obstacles of different size up to the chosen coverage
fraction pg. Actually, the mesh structure of the open spaces look very different for the adsorbing point-like obstacles (A1)
in comparison with the extended obstacles (C;) [38,51]. Deposition of the extended obstacles (C;) is characterized by
domains of large islands of unoccupied sites. On the other hand, small obstacles such as monomers (A1) cover the surface
more uniformly, so that the empty space on the lattice is broken into small areas. Such a different free space view is
the cause of the enhanced mobility of species in the case of cruciform shapes (C;) as compared to those in the case of
point-like shapes (A;), resulting in a faster decrease of the number of targets Nr(t) in the former case.

It must be stressed that the stretched-exponential fit (Eq. (1)) also accurately describes the temporal dependence of the
number of targets Nr(t) in the presence of obstacles (not shown here). Dependences of the nonlinear fitting parameter t
on the initial density of targets ,og are shown in Fig. 8 on a double logarithmic scale for various densities of obstacles (A1)
and (Cy), po = 0.15 — 0.30. For all examined densities and obstacle shapes these plots are nearly straight lines, indicating
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Fig. 9. Normalized deviation ANy (t) (Eq. (3)) of the number of targets Nr(t) obtained in the presence of obstacles (A;) (solid lines) and (C;) (dashed
lines) and rescaled to t/7, for various initial numbers of species (N§, N1), as indicated in the legend. For clarity, the data for obstacle (C;) are shifted
to the left (t — t/10). Here, the lattice size is L = 128, density py = 0.25, and the initial ratio of chasers to targets NS /NJ = p§/pl = 0.8 are the
same in all simulation runs. The horizontal dashed line indicates the 1/e value.
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Fig. 10. Parameter B of the fit (1) vs. the density po of the obstacles. Circles and squares correspond to obstacles (A;) and (C;) in Tables 1 and 2,
respectively. Other parameters: L = 128, N§/NJ = p§/p} = 0.8.

that the fitting parameter t is a simple power-law of the initial density of targets pg (see Eq. (2)). As in the case of the
absence of obstacles, we observe that the dynamical behavior of our model is severely slowed down with the decrease
of the initial densities pg and pg . In addition, the characteristic time 7 is found to increase with the density of obstacles
po- As one can see from Figs. 8(a) and 8(b), the increase of t with pg is more pronounced for the lower initial densities
of targets. Indeed, the efficiency of chasing becomes very high at larger densities of targets and weakly dependent on
the presence of obstacles, due to the smaller mean distance between chasers and targets. Then the chasers quickly and
efficiently find the neighboring targets, regardless of whether there are obstacles or not. However, for the lower initial
concentration of targets the presence of obstacles noticeably slows down the dynamics of the system. We notice, the
lower is the concentration of the targets, the longer is the mean distance that a chaser crosses to find a target and catch
it. Along the longer path, chaser will interact with a larger number of obstacles. Therefore, obstacles more effectively
suppress the chasing for lower densities of targets. Also, at sufficiently low densities of targets, obstruction of chasing is
more pronounced at the higher densities of the obstacles.



J.R. Scepanovic, A. Kara¢, ZM. Jaksic et al. / Physica A 525 (2019) 450-465 461

1
— . p0=0
po=0.15
——— pp=030
08 PN\ \ po=0.45

0.6

AN(t)

0.4

0.2

0 ' ‘ 2
10° 10! 10

Fig. 11. Temporal evolution of the normalized deviation ANz(t) (Eq. (3)) of the number of targets Nr(t) obtained in the presence of obstacles (As)
(solid lines) for various densities pg, as indicated in the legend. The dashed line represents the temporal behavior of ANr(t) in the absence of
obstacles. Other parameters: L = 128, N§ /NI = 720/800 = 0.9.
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Fig. 12. Temporal evolution of the normalized deviation ANr(t) (Eq. (3)) of the number of targets Nr(t) obtained in the presence of obstacles
(A1, Ay, ..., A7) of density po = 0.30 (solid lines). The dashed line represents the temporal behavior of ANz(t) in the absence of obstacles. Other
parameters: L = 128, N§ /N = 720/800 = 0.9.

Fig. 9 illustrates that when the normalized deviations ANr(t) (see, Eq. (3)) presented in Fig. 7 are plotted as a function
of t/t, the data for the all initial numbers of targets, Ng = 25, 50, 100, 200, 400 and 800, collapse onto a single curve.
We note that different choices of obstacles give qualitatively similar results. This superposition of ANt vs. t/t curves is
a consequence of the fact that for the fixed values of ratio Ng /Ng and density of obstacles pg, the fitting parameter 8 is
rather weakly dependent on the initial density of targets pg . However, the stretching exponent 8 depends on the density
po of the obstacles. Fig. 10 shows dependence of parameter 8 on density p, for the two types of obstacles ((A1) and (Cy)).
Parameter 8 measures the rate of the chasing process on the time scale determined by the parameter . Consequently,
in the late stage of the chasing process the decay rate of the number of targets Ny(t) for the point-like obstacles (Aq) is
higher than for the extended obstacles (Cy).

Now we consider in more details the influence of the length ¢ and density pg of the linear segments that make the
obstacles on the temporal behavior of the number of targets Nr(t). The simulations have been performed for linear
segments (k-mers) of lengths £ = k — 1, k = 1,2,...,7 (see, Table 1), and for a wide range of obstacle densities,
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Fig. 13. Temporal behavior of the normalized deviation ANy (t) (Eq. (3)) for the four models (Model-ij, i,j = 1, 2) created by combining the two
types of chasers and targets, as shown in Table 3. The solid lines represent the results obtained in the presence of obstacles C, (see, Table 2) at
densities po = 0.15(a), 0.30(b), 0.45(c). The dashed lines represent the temporal behavior of AN(t) in the absence of obstacles. Other parameters:
L =128, N$/N] = 720/800 = 0.9.

po = 0 — 0.45. At first, we present the results of simulations for one representative linear segment, i.e., for the trimer
(A3) at densities po = 0.15, 0.30, 0.45. The corresponding time dependences of the normalized deviation AN7(t) (see,
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Table 1
Jamming coverages ,oj(x) for various k-mers (x) of length ¢*) on a square
lattice. The estimated statistical errors are on the last given digits.

(x) k-mer A pj(x)

1.0

0.9067
0.8465
0.8102
0.7867
0.7699
0.7578

i

Table 2
Jamming coverages ,oj(x) for extended shapes (x) of size s® on a square
lattice. The estimated statistical errors are on the last given digits.

(%) Shape s® pj(x)

(C1) ] 2 0.6988

(@) 4 0.5691

Table 3

Four models created by combining the two types of chasers and targets.
Depending on the sighting range o, chasers and targets with different
chasing and avoidance skills, respectively, can be distinguished.

Model Chaser Target

Model-11 Chaser-1 (6 = 1) Target-1 (o = 1)
Model-12 Chaser-1 (0 = 1) Target-Il (o = 2)
Model-21 Chaser-II (o = 2) Target-1 (o = 1)
Model-22 Chaser-Il (¢ = 2) Target-1l (o = 2)

Eq. (3)) for the aforementioned densities oo are given in Fig. 11 together with the result obtained in the absence of the
obstacles. It can be seen that the capture dynamics gets slower, and the evolution of the number of targets Nr(t) toward
the asymptotic value Nr(oo) takes place on much wider time scale when the density of trimers po increases. We note
that different choices of the linear segments give qualitatively similar results.

In Fig. 12 we compare the temporal evolution of the normalized deviation ANr(t) (see, Eq. (3)) for the linear segments
(k-mers) covering k = 1, 2, ..., 7 lattice sites. Time dependences of ANy(t) are displayed both for the density po = 0.30 of
obstacles, and for the case of lattice without obstacles. In the presence of k-mers, reduction in the number of targets Ny (t)
takes place on the approximately equal time scale for all k-mers. As expected, the decrease of the number of targets Ny (t)
with time is significantly faster in the absence of obstacles. It is interesting that ANr(t) vs. t curves have similar shapes
for all finite-size k-mers (k > 1). As can be seen, for the point-like obstacles (k = 1) the capture dynamics gets slower,
especially in the intermediate time regime. There is an important difference between the deposition of point-like and
elongated obstacles on a square lattice. Deposition of elongated objects is characterized with domains of parallel objects
and large areas of unoccupied sites. Blocking of the lattice area is enhanced with the growth of the obstacle length,
making the surface more porous (unoccupied sites can form open and large pores). On the other hand, the point-like
objects (monomers) cover the surface more uniformly and efficiently. Lower porosity of the surface is responsible for the
reduced mobility of species, and therefore for slower dynamics in the case of the point-like obstacles.

In Section 2 we have introduced the chasers and the targets with different chasing and avoidance skills, respectively.
Depending on the sighting range o, less (o0 = 1) and more (o0 = 2) capable chasers or targets can be distinguished
(see, Table 3). It is now useful to explore the relationship between the ability of species and the capture dynamics. In
Fig. 13 we compare the temporal evolution of the normalized deviation ANr(t) (see, Eq. (3)) for all four combinations
of previously defined species, as shown in Table 3. The results are given for the obstacle C, (see, Table 2) at densities
po = 0.15, 0.30, 0.45, as well as for the lattice without obstacles. By comparing the results for the Model-12 with those
for the Model-22 and Model-11, it can be observed that the less capable chasers or the more capable targets cause a
significantly slower decrease in the number of targets Nr(t) to the asymptotic value Ny(oo). On the contrary, by comparing
results for the Model-21 with those for the Model-22 and Model-11, it is obvious that the less capable targets or the more
capable chasers hasten the dynamics of the chasing process.

As can be seen from Fig. 13 the decrease in the number of targets in the presence of obstacles at sufficiently small
times is faster than in the absence of obstacles, and this effect is more pronounced for the larger densities of obstacles.
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At the beginning of the process, the density of targets is high, so that the mean distance between them is small. As a
consequence, a chaser quickly and efficiently find targets in its own vicinity. At the same time, the obstacles make it
difficult for the targets to escape from the nearest chaser. Therefore, the presence of obstacles increases the efficiency of
chasers in the initial phase of the evolution of the number of targets.

However, in the late chasing stage inversion occurs, i.e., the presence of obstacles slows down the dynamics of the
system (see, Fig. 13). Indeed, the lower is the concentration of the targets, the longer is the time necessary for the chaser
to find a target and catch it. Thus, the mean distance that a chaser crosses between two consecutive catches increases over
time. Along the longer path, chaser will interact with a larger number of obstacles. Therefore, obstacles more effectively
hinder the chasers when the density of the targets becomes small enough.

In models with more capable chasers (Model-22 and Model-21), the presence of obstacles induces larger changes in the
dynamics of the system in the late chasing stage than in the initial phase of the process. At the beginning of the process,
more capable chasers quickly and efficiently find the neighboring targets, regardless of whether there are obstacles or not.
However, less capable chasers interact with a larger number of obstacles between two consecutive catches. Consequently,
in the cases of less capable chasers (Model-11 and Model-12), the differences in the dynamics of the system with and
without obstacles are pronounced even in the initial phase of the evolution of the number of targets.

4. Summary

We have numerically studied a stochastic lattice model describing a group chase and escape with sight-limited chasers
and targets. We take into account the spatial structure of the environment where the species coexist in an explicit way. The
environment heterogeneities are built by randomly selecting a fraction of the sites of the square lattice that are considered
forbidden for the species. Specifically, the obstacles are represented by non-overlapping lattice shapes that are randomly
placed and fixed on the lattice. Our focus in this paper was to investigate the role that density and shape of obstacles plays
in the time evolution of the number of targets, Nr(t). Basic mechanisms responsible for the studied phenomenon were
investigated and for this reason we ignored the birth/death processes. Such processes will be considered in the future
work.

It was shown that the stretched exponential behavior (Eq. (1)) excellently describes the temporal dependence of the
number of targets N7(t) regardless of whether the obstacles are present or not. The characteristic timescale t was found
to decrease with the initial density of targets pg according to a power-law (2), T o ( pg )~7. Furthermore, it was obtained
that the characteristic time 7 increases with the density of obstacles pg. This effect was much more pronounced at the
lower densities pg investigated.

We have considered the behavior of the stretched exponent § (Eq. (1)) as a function of the initial density of targets ,og
and the density of obstacles pg. At the given density of obstacles pp, the exponent § is weakly dependent on the initial
density of targets p], provided the initial ratio of chasers to targets NS /NJ = p§/p{ is constant. However, the stretching
exponent 8, which measures the rate of the chasing process, decreases with the density of the obstacles pg. At the fixed
density po, parameter 8 depends on the shape and size of the obstacles.

The simulations have shown that the time dependences of AN7(t) (Eq. (3)), at the fixed density po, are very similar for
all finite-size k-mers (k > 1). However, slowing down in the capture dynamics was observed in the case of the point-like
obstacles (k = 1). Indeed, randomly deposited monomers cover the lattice more uniformly and therefore efficiently reduce
the mobility of species.

We have discussed the significance of the sighting range o of species for governing the capture dynamics in the
presence of obstacles. It was shown that the less capable chasers/targets (¢ = 1) or the more capable targets/chasers
(0 = 2) slow-down/hasten the dynamics of the chasing process. It was observed that the decrease in the number of
targets in the presence of obstacles at sufficiently small/large times is faster/slower than in the absence of obstacles, and
this effect is more pronounced for larger densities of obstacles. In the case of more capable chasers (o = 2), the presence
of obstacles induces larger changes in the dynamics of the system in the late chasing stage than in the initial phase of
the process. In the case of the less capable chasers (o = 1), differences in the dynamics of the system with and without
obstacles are pronounced in the initial phase of the evolution of the number of targets.

This model can easily be generalized using obstacles of various shapes, describing the system of interest. Features
of the chasers and escapees as well as their capabilities can also be modified according to the system of interest. Our
simulation can describe in a simple manner some real life systems or tools that are still in development, and becoming
more important. Application can be seen even in robotics, especially in unmanned vehicles, designed to avoid obstacles
(something that could be developed in new versions of our simulation) and win certain targets that are fixed or in motion,
depending on its goal. For instance, one can observe a security robot trying to capture and eliminate malicious evader
that is trying to escape. Robot can be instructed not to capture but to follow and monitor the evader (something that
could also be developed in other versions of the simulation) and report its behavior. Just visual monitoring can be greatly
useful in the home caring situations, for example following elderly people and report if there is an emergency.
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