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Mo.si6a 3a MOKPETAmk€ MOCTYIIKA 32 CTHIAKC 3Balkhba BUIIIH HAYYHH CapaJJHHK

Momum Haygno Behe MucTHTyTa 32 dusuky y beorpany na, y ckiamy ¢ [IpaBHIIHHKOM O MOCTYIIKY
U HauMHy BpEIHOBAakAa W KBAaHTUTATUBHOM HCKa3MBalby HAYYHO-UCTPOKUBAYKHX pe3y.Tara
UCTpaXKuBaya, IOKpeHe MOCTYIaK 3a MOj U300p y 3Bare BUIIM HAyYHHU CapaJHHUK.
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Hayuynom Behy UHcTHTYTa 32 pusuky y Beorpany

IIpeaver: Mumbeme pyKoBoaHona npojexkra o u3bopy Ap Muioma Pagomuha y 3same
BHIIIH HAYYHH CaApaIHHK

Hp Munom Panomwuh je 3anocnen y Jlaboparopuju 3a npuMeHy padyHapa y HaylH, y OKBUPY
HamoHaiHor LeHTpa W3y3eTHUX BPEIHOCTH 3a W3y4YaBambe KOMIUIEKCHUX cuctema MHcTuTyTa
3a Qu3uky y beorpaay M aHraxoBaH je Ha IPOjEeKTY OCHOBHHX HUCTpaXKHBamba MUHMCTApCTBA
IIPOCBETE, HayKe M TexXHosomKor pas3Boja PemyOmuke CpbObuje OH171017, nmox HasuBoM
"Moaenpame 1 HyMEpUUKe CUMYJIAlMje CIOKEHNX BUIICYECTHYHUX (Pusnukux cucrema”. Ha
IIOMEHYTOM TIPOjeKTy paJd Ha MpOoyYaBamy EJIEKTPOHCKMX TPAHCIIOPTHUX OCOOMHA
MaTepyjajia, Kao ¥ JMHAMMKE KDHCTaJlHE DEIIeTKe y MPHUCYCTBY jaKWX Kopejianuja u
neypehenoctu. C 0631poM J1a HCIymaBa CBe npe/iBulieHe ycnoBe y ckiany ca [IpaBuaIHMKOM O
NOCTYNKY, HAYMHY BpEIHOBAabAa ¥ KBAHTUTATMBHOM HCKa3UBalky HAYyYHOMCTPAKUBAYKUX
pesynrara ucrpaxuada MIIHTP, carnmacan cam ca mokpeTameM MOCTyNKa 3a U300p Ap
Muioma Pagowuha y 3Bame BUIIM HAyYHU CapaHUK.

3a cacraB xomucuje 3a u3dop aAp Mwuioma Pajgomuha y 3Bame BHINNM HAay4YHH CapajHMK
HpeITaKeM:

(1) ap Hapko TanackoBuh, HayuHu caBeTHUK, MHCTUTYT 3a pusuky y Beorpany,

(2) np AntyH banax, Hayunu caBeTHUK, IHCTUTYT 3a usuky y beorpany,

(3) axanemuk 3opaH Ilonosuh, Hay4ynu caBeTHUK, MHCTUTYT 32 dusuky y Beorpany,

(4) mpod. np Bophe Cnacojesuh, peroau npodecop Pusuykor ¢akyirera Y HuBep3uTeTa y
beorpany.

PykoBoaunar npojexra

/(4/4)// RSN

Tip AHTyH banax
Hay4HU CaBETHUK



2. BUOTPA®CKH MOJAITN KAHIVJIATA

Musomr Panowuh je pohen 19. 10. 1984. rogune y JleckoBity. 3aBpIIHO je CreLUjaTu30BaHO
MareMaTuiko ojiesbere y I1pBoj kparyjeBaukoj rumuazuju 2003. kao hak renepanuje. Hakon
TOra yNHCAo je OCHOBHE cTyauje Ha PusnukoM Qaxynrery YHuBepsuteta y beorpany, cmep
Teopujcka u ekcnepuMeHTanHa gusuka. TokoMm ctyauja je Ouo crunenaucra Ponpanyje 3a
pa3Boj HAy4HOT M YMETHHUKOr moamiiatka u ¢ponganmje Crynenuna. [lumnimomupao je 2008.
roMHE ca TmpoceyHoM oreHoM 9.92. JlumioMcku paja moa HasuBoMm ,,[IpoBoaHoCT
HeypeheHor Mertasa y Onu3uHM MoOTOBOr MeTasl-u30jaTtop Ipenasa” ypaauo je y
JlaGoparopuju 3a npuMeHy padyHapa y Haymu y WHctuTyTy 32 Qu3uky y beorpamy mon
pykoBoactBoM 1np Jlapka TamackoBuha u 3a mera je mobuo Harpaxy ,,Jp Jbybommp
Thupxosuh”.

JlokTopcke cTyauje Ha cMepy ,,Pu3nka KOHAEH30BaHOT cTama Marepuje” Mmmom Panomuh
je 3amoueo 2008. rogmae mom meHTOpcTBOM Ap Jlapka TanmackoBmha. Om xpaja 2008. mo
janyapa 2011. roguHe je Ono anraxxoBaH y Jlaboparopuju 3a IpuMeHy padyHapa y HaylH Kao
CTUNEHucTa MUHHCTapCTBa MPOCBETE HAYKE U TEXHOJIOMIKOT pa3Boja Ha MPOJEKTy OCHOBHUX
UCTpaXkuBama ,,MojenoBambe W HyMEpUUYKE CHMYJALHUje CIOXKEHUX (U3NYKUX cuctema’
ON141035. Ox 01. 01. 2011. Mo Pamowmuh je 3amocien y MHCTUTYTY 3a pHu3uKy Kao
HCTpakuBad capaaHuk Ha npojektuma ON171017: ,,Monenupame 1 HyMEpHUUIKE CHMYJIAIlH]je
KOMIUTEKCHUX ¢u3nukux cuctema” u MNN45018: ,,HaHOCTpyKTypHHU MYATH()YHKIIMOHATHH
MaTepHjaJii 1 HAHOKOMIIO3UTH . Y TOM NEpHOy je OMO aHTa)XOBaH Ha BUIIE OMIaTepaTHUX
nipojekara ca rpynama u3z Hemauke u ®@paniycke. Y 3Bambe HayqHOT capaJHHKa u3abpaH je
26. debpyapa 2015. romuae. O centemOpa 2014. 1o okrodbpa 2016. roqune ap Pamomuh je
paano Kao MOCTAOKTOPCKU MCTpaxkuBay y rpynu npod. ap Jdurepa @onxapaa Ha MHCTUTYTY
3a Qu3uKky yHuBep3uteTa y AyrcOypry y Hemaukoj. ¥ Tom mepuoay je 6M0 M aHra)KoBaH y
HacTaBU Kao acucTeHT. Ilo moBpaTKy ca MOCTJOKTOPCKOI YcaBpllaBamka, HACTaBHO je
aHraxxmaH Ha npojektry OWM171017 u nHactaBuo capaamy ca rpynoM npod. donxapna,
nocebno ca mpod. ap JluBujyom Kuonuenom. Ox 2018. romune np Pamomuh pykoBomu
OunarepaqHUM HpOjeKToM, ca rpynoMm npod. Kuonuena mox HasuBom ,,HepaBHOTEKHU
TPAHCHOPT JAKOKOPETUCAHUX METATUYHHUX cUCTeMa .

['maBHe HayuHe TeMe KaHIWAaTa Cy MpoydyaBame TPAHCIOPTHHX, €IEKTPOHCKUX OCOOMHA U
JMHAMUKE PeIIeTKE jaKOKOPEIHCAaHUX CUCTEMa Yy PaBHOTEKHOM M HEPABHOTEKHOM PEXHUMY.
VY TpeHyTKy MojaHOIIeHa OBOT M3BemTaja, Munom Pagomwuh je koaytop ykymnHo 31 pana u
caorrTema, o kojux 1 y kareropuju M21a, 14 y xareropuju M21, 2 y kareropuju M22, 1y
kateropuju M32 u 13 y xareropuju M34. Yxynan 6poj uurara panosa kanauaara je 109 (100
He padyHajyhu camonuTare), ca XUpIIOBUM HHAEKCOM 7.

Munom Panomuh je cBoje 3HaWE 3HAYajHO MPOMIMPUO yuemheM Yy BEIUKOM Opojy
MPECTMXKHUX HaydyHux Imkona: Simons Collaboration Summer School, Simons Collaboration
on the Many Electron Problem, Stony Brook, NY, SAD 2016, SPICE-Workshop, On Bad
Metal Behavior in Mott Systems, Mainz, Germany 2015, Autumn School on Correlated
Electrons, Julich, Germany 2013, Les Houches Doctoral training, Les Houches, France
2012, Theory Winter School, NHMFL, FSU, Talahassee, USA 2012, Autumn-School Hands-
on LDA+DMFT, Julich, Germany, 2011, Advanced School in High Performance and GRID
Computing, ICTP, Trieste, Italy, 2009, European School on Magnetism 2009, Timisoara,



Romania, 2009, xao u ABOMECEYHUM CTyIHjCKUM OopaBkoM y HanmonanHoj nabopatopuju 3a
jaka MartetHa rnoJba Ha J{p>xaBHOM yHuBep3utery ®nopune 2012. roqune.

Hana 17. jyna 2014. roqune, Munom Pagowuh je ogOpaHno MOKTOPCKY AMCEPTALM]y MOA
Ha3uBoM: “Influence of disorder on charge transport in strongly correlated materials near the

>

metal-insulator transition”.



3. HPEIVIEJ HAYYHE AKTUBHOCTH

Hayuno-ucrpaxuBauku pax ap Mwoma Panomuha je y obmactu teopujcke Gusnke
KOHJICH30-BaHOT CTama Marepuje. 3a BpeMe TOKTOpckux cryauja y beorpamy (2008-
2014) xanguaat ce 6aBHO MPOyUYABAKHEM jaKO KOPETHCAHUX ENEKTPOHCKHX CHUCTeMa, U
UCTPAXHUBAaKbUMa CIIEKTPOHCKE CTPYKType W JWHAMHKE pEIIeTKE MHUKTHIA U
XalIKOTeHH1a MpenasHux Mmetana. Jlokropupao je Ha temu ‘“‘Influence of disorder on
charge transport in strongly correlated materials near the metal-insulator transition”,
ypahenoj mox pykoBoactBoM 1ap Jlapka TanackoBwha. JlaGopaTopwju 3a TpHMEHY
padyHapa y Haylli M HacTaBJba MPOYYaBamkhE jaKO KOPEIHCAHUX MarepHjaja y OJH3HHU
METa-|30J1aTop Mpesasa.

HayuHo-ucTpaskuBadka akTHBHOCT KaHHaTa 00yXBaTa MpoydyaBame:
* YTUIIAja jJAKUX EJIEKTPOHCKHUX KOpesalyrja Ha eJIeKTPOHCKE M TPAHCIIOPTHE
OCOOMHE JaKOKOPEIMCAaHUX MaTeprjajia y PaBHOTE)KHOM H HEPABHOTEIKHOM
peKUMYy,
* CyHeprnpoBOIHUX (pa3za eIeMeHTaIHOT Ou3MyTa,
* TMHAMUKE PEIICTKE U IEKTPOHCKE CTYPKTYpe MHUKTUIA, XaJTKOreHUIa U
OKCHJIa TPEIa3HUX MeTaa,
* yTuIaja Heype)eHOCTH Ha TPaHCIIOPTHE OCOOHMHE, jaKO KOPEITHCAaHUX
SNEKTPOHCKHUX CUCTEMA.
VY HapeTHHM OJIeJbIINMa YKPATKO CY IPUKA3aH! INIABHU HAYYHU PE3yITaTH TOOUjeHH y
OKBHpY HaOpOjaHUX TeMa.

3.1 YTuuaj eJIeKTPOHCKHUX KOpeauHuja HAa eJeKTPOHCKe W TPAHCIOPTHe 0COOMHE
jAaKOKOpeJIMCAHUX MATepHjaJjia Y PABHOTEKHOM U HEPABHOTEKHOM PEKUMY

Yo4eHo je Ja BenuKa Kiaca Marepujalia, ToMyT jeUbeha ca Mpea3HuM eIeMEeHTUMA,
TEHIKUM 3eMJbaMa, ojpeleHe Kilace OpraHCKUX MaTepujaja, 4ecTo He MOry OuTu
KBaHTHTATHBHO, Tla YaK HU KBAIWTATHBHO OIMHUCAHE TEPOHMjOM (YHKIMOHAJIA T'YCTHHE
(density functional theory - DFT) Koja mpenctaBjba CTaHAAp M IOJAa3HY TAyKy CBUX
IpopadyyHa CBOjCTaBa MaTepHjajia M3 NMPBUX NPUHIMIA. Jake, JOKAIHE EJIEKTPOHCKE
Kopenalyje cy Mperno3Hare Kao IMaBHU HenocTajyhu edekar koju HUje onarosapajyhe
ypadyHat y okBupy DFT-a. Ctora je o1 U3y3eTHe BaXKHOCTH UCITUTHBAKE yYTHUIAja OBUX
Kopenanyja Ha pasiuuuTe ocobuHe Marepujasnia. Merone kopuimiheHe Yy OBHM
UCTpaXHMBambUMa MOTy OuTH Bul)eHe kKao mpomupema DFT mnpopadyHa yKIbYYHBaHEM
JaKMX JIOKaJTHUX EJEKTPOHCKUX Kopelalldja Ha HUBOY JIWHAMUYKE TEOpUje CPEIHer
noJba. PazBujeHNM MozeniMa je HCITMTHBAH YTHIA] OBUX KOpealyja Ha eeKTPOHCKE U
TPaHCIIOPTHE OCOOMHE jaKOKOPEINCAHUX MaTepujana.

Y panay [1] (u3 nucte pamoBa) je pa3BUjeH METOJ 3a W3payyHABamkbe PABHOTCIKHHX H
HEPaBHOTE)KHUX OCOOMHA jaKOKOPETMCAHWX HAHO CHCTEMa Ha HHCKUM TeMIleparypama
U3 TpBUX MpUHIMNA. Meron KOMOHMHYje Teoujy (YHKIMOHANIA TYCTUHE, TEOpHUjy
KBaHTHOT TpPaHCIOpPTa, MpOpadyHe HYMEpUYKe pEeHOpMalu3alioHe rpyme (numerical
renormalization group - NRG) W peHOpManM30BaHy TEOPH]y cymeprepTypoarje
(renormalized super-perturbation theory - rSPT). UcnuTuBaH je yTuiaj pasinduTHX
reomeTpuja uHTEepdejca (Ha aTOMCKOM HHBOY) M3Mel)y MoJeKyla U eNeKTpoja, IITO je
oMorhmino moOpo crharame wu3paduyHate u usMepeHe Koupo Temmeparype u



KapaKTEepUCTUYHUX TPaHCHIOPTHUX ocoOuHa. [lomohy HEpaBHOTEXKHUX MpopadyHa
(rSPT), mporiemeHa je 007acT MOY3JaHOCTH PAaBHOTEKHUX TNpOpadyHa TPAHCMHUCH]E
(DFT+NRG) 3a mpoBOAHOCT Ha KOHAYHOM HamoHy. Pe3ynratu mokasyjy /1a oBaj METO.
oMoryhaBa KBaJUTaTHBaH yBHJ y OCOOHMHE CIIOjeBa MOJIEKYJla ca METajluMa Kajia Cy TH
criojeBM aMop(HM, WIM HEAOBOJBHO ofpeheHn U Ja MOXke Ja TOpyXd U TyH
KBAaHTUTATHBHU OITMC EKCIIEPUMEHTA KaJa je KOHTAKT J0OPO KapaKTepHU30BaH.

Pan [6] mpencTaBipa mpoydaBame edekaTa jakux JOKATHHUX EJIEKTPOHCKUX KOpelnalyja,
Ha HHMBOY BUIIeOpOHMTATHOT Xabapaoror Mojeia, Ha EJIEKTPOHCKY CTPYKTYpy
nanagujyma. Kopumhena je xomOunauuja (DFT+DMFT). YpauyHaBameM OBHX
Kopenampja je TO0O0OJBIIaHO Cllarake EKCIEPHUMEHTATHO HW3MEPEHE U TEOPHjCKO
u3padyHaTe KOHCTAHTE peIIeTKE M MOIyJla CTUIUBMBOCTH. YOUEHO je Ja jake
€JIEKTPOHCKE Kopenaiuje kopuryjy camo onapehene nenose depmujee chepe. Takohe
Cy pa3MaTpaHH HeJloKaHiu edexTtu nopehemem ca GW metomoM. YTBpAWIMA CMO Ja 3a
pelaTUBHO Malie BPETHOCTH JIoKaiHe KyloHOBe MHTEpakiuje W XyHIOBOT CIIpe3arha
DFT+DMFTw GW merona He MOKa3yjy 3Ha4ajHe pa3iiuKe.

Y pany [7] je npemiokeH METO]| 3a U3pauyyHaBamkbe TPAHCMUCH]E KPO3 jaKOKOpEITHUCaHE
XETepPOCTPYKType KoMOUHYyjyhu TeopHujy (QyHKIHOHAla TYCTUHE U TUHAMHUYKY TEOpHU]Y
cpeawer nosba (DFT+DMFT) y HepaBHOTe)XHO] mocTtaBiy. OBa komMOuHammja je
OCTBapeHa TaKo IITO je MHOTOYECTHYHA COTICTBEHA CHEpruja u3padyHara y 0a3ucy CBUX
€IEeKTpOHa M 1npebaueHa y 0a3uc JIOKAJM30BAaHUX €JIEKTPOHA Yy  OOJHUKY
nceynonoreHnujana. [lomohy oBe Merome cy mpoydyaBaHu e(QEKTH jake JIOKaTHe
UHTEpaKIMje €JCKTPOHa M KOHAYHE TeMIleparype Ha TPAHCUCH]y KpO3 METaJHY
xerepocTpykrypy CugCoCuyg. llokazaHo je JOKaJHE jake eJEKTPOHCKE Kopelnalyje
yMamyjy YKYIIHY TpaHCMHCH]Y Ha DepMHjeBOM HUBOY (ITPEBACXOIHO YMamwyjyhu Mame
MOMYH-EH CIMCHKH KaHall), IOK Ce ’heHa CIIMHCKA ToJjlapu3annja yBehana.

3.2 lIpoyuyaBame cynepnpoBoaHuX (a3a e1eMeHTATHOT OU3MYTa

[Iparehm  WHTEH3WMBHA  UCTpaXWBamba  CYNEPHPOBOJHOCTH Yy  Kymopatuma |
CYIIepIIPOBOHUIIMMA Ha 0a3u TBokha, jeTHOCTaBHUJU MaTepHjaid, Kao eleMEHTaIHA
jenumera, WIN jeIUBbEmha Ca jeTHUM aTOMOM Cy MPHUBYKJIA BENUKY maxmby. CKopamma
UCTpaXHMBama Cy IOKa3ana Jia YIpPKOC HHXOBO] jeIHOCTABHOCTH, OHA IPEICTABIhA]y
Oorar MoJIMToH 32 OTKPUBAkE HOBUX ()eHOMEHA Y HEKOHBEHIIMOHATHUX OCOOWHA. JeqHO
O]l Haj3aHUMJbUBHJUX TaKBHX JCIUIbCHA je CBakako Ou3myT. Hamme, Om3myTt je
KOMIICH30BaHM IOJyMeTall, INTO 3HAa4d Ja HMa BpJiO JTyOOK TMCEeyIompolen Ha
depmujeBom HMBOY on /0% HOocWola HaenexTpHcama Mo el W Ja je KOHIEHTpaluja
€JIEKTPOHA je/lHaKa KOHIIEHTpAlliju IIyIJbuHA. 300T Tora je OM3MyT BpJIO OCET/bUB Ha
MIPOMEHY CTOJhAIBIX IMapamMeTapa, HIIp. IPUTUCKA, TEMIIEPAType, T/, & U CIIMH-OPOUT
MHTEpaKIMja 3Ha4yajHO yTUYE Ha HEeroBe OCOOMHE.

Pan [2] je npBu y HU3Y paloBa KOjU c€ 0aBe MCTPAXKUBAKBEM CYIIEPIPOBOJIHUX CTarbha
OU3MyTa TOJA MPUTHCKOM. YCIIeA MPUTHCKA OM3MYT NpoJia3d Kpo3 BHIIE CTPYKTYpHHUX
¢dasHux mpemaza. Y OBOM paay jeé HCTPaKMBaHA IPHPOJAA CYNEPHPOBOTHOCTH Y
MOHOKJIMHUYHO] (a3u Ousmyrta (Bi-I[) koja je mpucyTHa Ha 2.80 GPa.
ExcriepuMeHTamHy Hajga3W Ccy MOAPXKAHU M TOTBPHEHM TEOPHjCKUM NpOpadyHHMaA
6asupanuM Ha EnmamGeproBoj Teopuju momnasehu o npBux npuHuuna. IlpukazaHo je
OJIMYHO CJlarame CYNEpIpOBOJHE KPUTHYHE TEMIepaType W KPUTHYHOT MarHETHOT



nojea u3Mel)y eKkcriepuMeHTa M TEeOopHje W NMPOpavyyHH Cy ITOKa3alu Aa OU3MyT y OBOj
(a3u uMa cpey jaunHy CyNEpIpOBOTHOT CIIpe3ama.

3.3 IIpoyuyaBawe AMHAMHKE pelleTKe M eJEKTPOHCKe CTYpPKType HHHMKTH/A,
XAJIKOTeHH/1a M OKCH/IA NPeIa3HUX MeTaja

Tpeha Tema je BezaHa 3a mpopauyHe €JIEKTPOHCKE U (POHOHCKE CTPYKType (IMHAMHKe
pelIeTKe) pa3sHUX jeIHiberha, YIIaBHOM AMXATKOreHuAa W 122 cymepnpoBOAHUKA.
IIpopauyHu eneKTpOHCKE CTPYKType Cy BpILIEHH y OKBHUPY Teopuje (yHKIMOHAIa
TYCTHHE, JIOK je JAMHAaMHKa pelIeTKe IpoydyaBaHa IOMOhy mnepTypOaTHBHE TeopHje
dbynakuonana ryctune (Density functional perturbation theory - DFPT).

Panx [3] npencraBiba TpoyudaBame JMHAMHKE pemieTke cyinduma TBoxha. VY
EKCTIIepUMEHTIIAaHUM (POHOHCKUM CIIEKTpUMa YOUYEHE Cy aHOMalldje Kojeé ce OmieaAajy y
nojaBu gofatHuX (oHoHckMX Moza. llopekno THX Moaa Koje ce Hamaze y Mpoleny
n3Mel)y onTHYkux Moza je yTBpheHo NeTasbHUM IpopadyHuMa rmomohy meprypOaTHBHE
Topuje (yHKIMOHANa TrycThuHe. HeaBocMHUCIEHO je Toka3aHO Ja cy ABO(OHOHCKHU
MPOIIECH OJI'OBOPHU 32 FbMXOB HACTAHAK, a KA0 MEXaHMW3aM HHXOBOT HCIOJhaBamkba y
EKCTIIepUMEHTY Ipero3Hara je eneKTpoH-(OHOH HHTEepaKIIK]ja.

Y panosuma [4, 5, 8,9, 11, 12, 13, 17], ucniutuBaHa je JUHAMHKA peUIeTKE U (POHOHCKE
KapaKTepUCTHKE ofipel)eHnX IUXalKoreHWJaa ¥ CyNeprnpoBOJHMKAa Ha 0a3u TrBoxha,
nomohy mneptypbatuBHe TOpHje ¢yHKIMOHaNa ryctuHe. l[lpencraBmeHo je A00po
cnarame (POHOHCKMX (peKBeHIMja y IeHTpy bpuieHoBe 30He, MoOHjeHHX mTOMOhy
npopavyyHa W W3MepeHHX PaMaHOBOM criekTpockomnujoM. CBH MOJIOBH OCIWIIOBaHa
YOUEHH y €KCIIEPHMEHTY CYy MpPaBUJIHO CHMETPHjCKH OKapakTepucanu. [IpoydaBaH je u
JOKYMEHTOBaH YTHWId] TeMIlepaType W JONupama Ha (OHOHCKE CIEKTpe |
KOMEHTapHCaH YTHIA] eJIeKTpOoH-POHOH mHTepakiuje. Komx marepujana koju mocemyjy
MarHeTHu ¢a3Hu mpena3, JOKYMEHTOBaH je yTHIa] MarHETHOT ypehema Ha (pOHOHCKe
CTIEKTpE.

Pan [10] nmpencraBiba mpoyuaBawe S=2 “spin-ladder” cuctema BaFe2Se20 mnomohy
PamanoBe crnekTpockonuje W (POHOHCKMX TMpopauyHa. AHAIU30M TeMIepaTypHe
3aBHCHOCTH TOjEJMHAX MOJOBA YOUCHO j& AYTOIOMETHO, aHTH(EepOMarHeTHO ypeheme
ucnon T=240K. M3mepenu cnekTpu Mokasyjy U MocTojarbe MarHOHCKOT KOHTUHYMa KOjH
HecTaje Ha TemnepaTypu T=623K, mTo mpencraBiba TeMIepaTypy Ha K0joj ce HapylIaBa
KpPaTKOJIOMEHTHO MarHeTHO ypeheme.

VY capagmu ca rpynama ca @apmaneyrckor U TeXHONOMKOr GaKyyiTeTa IpoydaBaHH Cy
BHOpAIIMOHU CIEKTpU MojieKyna uOynpodena paa [16]. 3a kpucramHe CTpyKType
CauMIbEHE OJ BEIIMKUX OPTaHCKHUX MOJIEKYy/la je KapaTepUCTHYHO TOCTOjambe jaKHX
KOBJICHTHHUX Be3a M cllabux BaH Jiep BancoBux y ucto Bpeme. Ob6a Tuma Be3a ce Mory
npoydaBaTtu rnmomohy PamaHOBE CIIEKTpOCKOIHje, MTO MpeICTaB/ba HEONXOAaH KOpakK y
KapaKTepHU3alrju TJIaBHUX (PU3NYKO-XEMHUjCKUX CBOjCTBA M UCITUTHBAIY CTaOMIIHOCTU U
TpaHchopmaIje jenumbema Ha MoJiekynapHoMm HuBoy. [lomohy DFPT wmetone cy
NpoydaBaHH BUOpAIIIOHM MOJOBHM MOJIEKYJa, KOJH C€ I0jaBJbyjy y PamanoBuM
CIIEKTPHMa Ha HUCKUM CHeprujama.



3.4 VYruuaj HeypeheHocTM Ha TPAHCHOPTHe OCOOMHE, JaK0 KOPeJIHCAHUX
€JIEKTPOHCKHX CHCTeMA

OcobuHe Matepujana y OJM3WHU METall-U30J1aTop Ipesa3a Cy MOCeOHO MHTepEeCaHTHE
300r BEIMKE OCETJHMBOCTH Ha Majle MPOMEHE CIOJbAllbUX Iapamerapa MOIyT
TeMIeparype, MPUTHUCKA W MarHeTHOT 10Jba, WIM Ha JONHpamke Mmarepujaia. MoOTOB
METaN-u30J1aTop Mpeia3 HacTaje yclel jakuX eNeKTPOH-EJIEKTPOH HHTEpaKluja |
npejcTaB/ba MPUMEpP KBAaHTHOT (pa3HOT mpena3a. Haj3aroHeTHHjU KBAHTHU KPUTHYHU
(eHOMEeHH ce T0jaBJbyjy y jaKO KOpEJNHMCaHHM METalliMa, Kao IITO Cy JieType aroMa
PETKHX 3eMalba, KynpaTh M APYTHd OKCHIM MpelasHUX MeTana y Oau3uHA MOTOBOT
npenasa. EnekTpoHu y oBUM MaTepujaiima cy Herje Ha roja myTa u3Mel)y cio0oaHux u
MOTIYHO JIOKAJTM30BaHUX. Jako MehyenekTpoHCKo pacejame JTOBOAM 0 HEKOXCPEHTHUX
eKCIUTAIIMja KOje TPECYIHO YTHUYYy Ha TPAaHCIOPTHE U TepMOJMHAMUUKe ocodmnHe. Kako
ce OBE OCOOMHE Memajy MoJ yTHllajeM HeypeheHOCTH je BpJo HeTPUBHjaTHO M BEeoMa
BaXXHO THTame, MoceOHO uMajyhu y By J1a Cy MHOTH jJaKO KOpEJIMCAHW MaTepHjaliv
HECTEXHOMETPHjCKa jelMibemha Na je HeypeheHOCT, OJHOCHO OJICTYName OJ UIcaHe
NEPUOUYHOCTH, HEN30EIKHO.

Kibyd y pasymeBamy OcCOOMHAa OBHX CHCTEMa JISKM y XBaTamy Yy KOIITal ca
HEKOXEPEHTHUM ekcuuTanmjamMa. OBaj 3ajaTak je HEJIOCTHKAH ako Ce OCTaHe Y
okBHpuMa Teopuje DPepMHjeBHX TEYHOCTH. YTpaBo 300T Tora je pa3BHjeHa JMHAMHUYKA
Teopuja cpeamer nosba (DMFT) u meHa yonTemha Koja YKbyuyjy HeypeheHOCT — Koja
MCTOBPEMEHO YCIICITHO OINHUCYje U HEKOXEPEHTHE MpOoIlece Ha BUIIMM TeMIleparypama U
JlanmayoBe KBa3W-4eCTHIIE, a KOja TPEJCTaBJba INIABHH TEOPHJCKH METOI Y PaJOBHMa
KaH/IM/aTa.

Y pany [14] (M21 amcra), TOKa3aHO je Ja YuTaBa (aMmiIMja EKCIEPUMEHTATHUX
KpUBUX OTIOPHOCTH Yy (yHKUMjU Temmeparype Ha Si MOSFET-uma i GaAs/AlGaAs
XETepOCTpYKTypamMa MOXKe Ja ce KoJalchpa Ha jelHy KpHUBY, Kaga ce TemIeparypa
CKaJlupa ca TeMIepaTypoM KoxepeHije. OBa TemmepaTypa je TMpOICHEHa Kao
TeMIieparypa Ha KOjOj OTIOp JOCTH)KE MakCUMyM. YTBpHEHO je 1a je Temmeparypa
KOXEPCHIIMje  WHBEP3HO  MPOIOpIHOHANHA  e(peKTHBHO]  Mach  paspeheHor
JTBOJIMMEH3UOHAIHOT €JIeKTpOHCKOM raca y Si MOSFET-uma. CiuuHu pe3yiTatu ce
no0ujajy ¥ aHaJu30M pelliemka jeHOCTaBHOr XabapJoBor mojena 3a MOTOB MeTal-
n3onatop npena3. OBU pe3ynaTaTtd ykasyjy Ja jako MelyelneKTpOHCKO pacejame, a He
HeypeheHocT, noMuHAHTHO ojapehyje ocobmne MOSFET-a y THMPOKOM HWHTEPBATY
KOHIIEHTpaIMja U TeMIepaTypa y 6au3yHu 2D MeTan-u3oiarop mpenasa.

Y paay [15], ucnutuBan je yrunaj HeypeheHocTH Ha ocoOuMHE jako MHTeparyjyhmx
eJIeKTpOHCKUX cuctema. HeypeheHnoct (HeuncTohe, nonupame, 1uciokaiuje) cy, y Behoj
WA Markb0j MEPH, YBEK MPHUCYTHE Y CHHTE3HW MaTepHjajia ¥ MOTY Jia UMajy BeoMa BEJTMKH
yTHI[A] HA BHUXOBAa CBOjCTBA. Y TIOMEHYTOM paay ce ucnuryje MelhycoOHU yTuIaj
HeypeheHoCTH W jakuX €NeKTPOHCKHMX Koperamnuja (MHTEpaKIfja) Ha MeTal-u30JaTop
npena3. [IpoywyaBan je HeypeheHu mnomymomymeHn Xa0aplioB MOIEN y OKBUDPY
IMHAMHUYKE TEOPHje€ CPENIber Mojba M HEHUX yomiuTema. KoHkpeTHo, kopuinheHa je
anpoKcHMallija KOXepEeHTHOT MOTeHIIMjaja 3a ciay4aj ciabe 10 yMmepeHe HeypeheHocTu.
YoueHo je 1a mpy KOHCTaHTHO] MHTEPAKIU]jU, HeypeheHOCT epeKTUBHO MUPU MPOBOIHY
30Hy W CHUCTeM ynajbaBa on MotoBor mpena3a. KpuBe OTIOpHOCTH WMajy CIHYHY
HEMOHOTOHY TEMIIEpPAaTYpHY 3aBHCHOCT y OJM3MHM MOTOBOT Tpena3a Kao M Yy YHUCTOM



cirydajy. BpenmHocT 3a MakcHMMaliHy MeTajHy OTIIOPHOCT IpeJia3u KBa3H-KiIacHuHy MoT-
Jode-Peren rpanuity 3a pen BenuduHe. J[py/leoB MUK y ONTUYKO] IPOBOIHOCTH OTICTaje
YaK M KaJia je OTIOpHOCT ymnopemuBa ca Mot-Jode-Peren rpanumom. OBa Teopuja je
ycresa Jia OnuIle TaBHU edekar HeypeheHOCTH YOoUeH y eKClIepuMeHTHMa, a TO je Jia ca
noBehamweM HeypeheHOoCTH OTHOpHOCT cucTteMa omana (y ciydajy ciabe 10 yMmepeHe
HeypeheHnoctn).

CBH OBH paJIOBU UMajy U3pAKEHY HYMEPHUUKY KOMIIOHEHTY H 33 FbHXOBY peaiu3allujy cy
OWJTM HEONXOTHHW padyHapCKU pecypcH Koju Cy Ha pacmnonaramy y Jlaboparopuju 3a
NpUMEHy padyHapa y Hayi MHcTuTyTa 3a Gusuky. Takohe, OBUM pagoBUMa je OTIIoYeTa
KOHKpeTHa capaama ca Jlaboparopujom 3a PamanoBy cniektpockomnujy ca MHCTHTYTA 32

busuKy.



4.  EJIEMEHTH 3A KBAJIUTATUBHY OIIEHY HAYYHOT JOIPUHOCA
KAHJIMJIATA

4.1 KBasurer HaydyHHUX pe3yiarara
4.1.1 Hay4yHu HUBO M 3HAYaj pe3yJTaTa, YTUIaj HAYYHUX PaJoBa

p Munom Pagomuh je y cBoM nocagamimeM paay o6jasuo 17 pagosa M20 kateropuje
y MehyHapogaum yaconucuma ca ISI nucte u 14 caommrema, on Kojux 1 y kateropuju
M21a, 14 y xareropuju M21, 2 y xareropuju M22, 1 y xareropuwju M32 u 13 y
Kateropuju M34.

VY nepuomy HakoH omryke HayuHor Beha o mpemiory 3a CTHIAmkE MPETXOIHOT
HAy4YHOT 3Bama, JIp Munom Pamomuh je o6jaBumo 17 pamoBa y wmehynapomHum
yacornrcuma ca ISI nucre u caomnmrema Ha Mel)yHapoHUM KOHQepeHIrjama, o1 Kojux 1
y kareropuju M21a, 8 y xareropuju M21, 1 y xareropuju M32 u 7 y xareropuju M34.

Kao mer Haj3Ha4YajHUjUX paioBa KAHIUIATa MOTY C€ y3ETH:

1. M. M. Radonji¢, D. Tanaskovi¢, V. Dobrosavljevi¢ and K. Haule, Influence of
disorder on incoherent transport near the Mott transition, Phys. Rev. B 81,
075118 (2010), utupan 13 myra,

2. M. M. Radonji¢, D. Tanaskovi¢, V. Dobrosavljevi¢, G. Kotliar, and K. Haule,
Wigner-Mott Scaling of Transport Near the Two-dimensional Metal-insulator
Transition, Phys. Rev. B 85, 085133 (2012), nutupan 14 nyTa,

3. N. Lazarevi¢, M. M. Radonji¢, D. Tanaskovi¢, R. Hu, C. Petrovic and Z. V.
Popovié, Lattice Dynamics of FeSb2, J. Phys. Cond. Matt. 24, 255402 (2012),

4. W. H. Appelt, A. Droghetti, L. Chioncel, M. M. Radonji¢, E. Munoz, S.
Kirchner, D. Vollhardt, and 1. Rungger: Predicting the Conductance of Strongly
Correlated Molecules: the Kondo Effect in Perchlorotriphenylmethyl/Au
Junctions, Nanoscale 10, 17738 (2018), uutupas 1 nyT,

5. R. Khasanov, M. M. Radonji¢, H. Luetkens, E. Morenzoni, G. Simutis, S.
Schoenecker, W. H. Appelt, A. Ostlin, L. Chioncel, and A. Amato:
Superconducting Nature of the Bi-II Phase of Elemental Bismuth, Phys. Rev. B
99, 174506 (2019), uutupan 1 myT.

[TpBu pan je OMO MOTa3HAa OCHOBA TOKTOPCKE IUCEpTaNHje KaHauaara. Y mbemy je
UCIIUTUBAaH Mel)ycoOHM yTHIa] Heype)eHOCTH M jJaKuX eJNEeKTPOHCKUX KOopemaluja
(uHTEpaKIMja) Ha MeTan-u3o0JaTop npenas. [loMmohy HymMepuukuXx cuMysanuja, KaHauaar
je mpoywaBao Heypehenum mnomynomymeHu XabapIoB MOJENT Yy OKBUPY JHHAMHYKE
TEOpHje CPEIIbEr 1M0Jba U IBEHUX yONITekha. KopucTro je anpokcumariujy KOXepeHTHOT
MoTeHIMjana 3a ciy4aj cinabe mo ymepeHe HeypeheHoctu. YTBpamo je na mpwu
KOHCTaHTHO] MHTEpaKIUju, HeypeheHOCT e()EeKTUBHO NIMPH MPOBOJIHY 30HY M CHUCTEM
ynasbaBa of MotoBor mpenasa. [lokaszao je na KpuBe OTHOPHOCTH HMajy CIHUYHY
HEMOHOTOHY TEMIIEPAaTypHY 3aBHCHOCT y OJM3MHM MOTOBOT TIpeiia3a Kao My YHUCTOM
Clly4ajy U J1a BPEAHOCT 32 MaKCUMAaJIHYy METaJIHy OTIOPHOCT Ipelia3d KBa3H-KIACHYHY
Mort-Jode-Peren rpanuity 3a pex BenuuuHe. [[pyneoB MUK y ONTHYKOj MPOBOJHOCTH
OlCTaje 4YaKk M Kaja je oTHopHocT ymopeamBa ca Mot-Jode-Peren rpanumom. Oba
TEOpHja je ycrena Jia omnuile raBHu edekar Heype)eHOCTH yOoueH y eKCIepUMEHTUMA



Ha ofjpe)eHNM jaKOKOpEeIMCaHHM OPTraHCKUM jeMIbelhHUMa, a TO je Ja ca noBehameM
HeypeheHocTH OTIOpHOCT cucTeMa omaja (y cirydajy ciiadbe 1o ymepene HeypeheHoctn).

Jpyru pag ce 0aBU MPUPOAOM METAJ M30JIATOp Tpeias3a y IBOJUMEH3HMOHATHIM
EJIEKTPOHCKMM TacOBHMa M JIOKYMEHTYje BadHIHOCT BurHep-Mor crieHapuja y OBHM
cucremuma. Hanme, kaHaumaT je mokazao Ja 4YuTaBa (paMumiMja eKCriepHMEHTATHUX
KpUBHUX OTIOPHOCTH y (yHKIUju Temneparype Ha Si MOSFET-uma i GaAs/AlGaAs
XETepOCTPYKTypamMa MOXKe Ja ce KoJlalchpa Ha jelHy KpHUBY, Kaga ce TemIeparypa
CKalMpa ca TeMmIeparypoM KoxepeHiuje. OBa Temmeparypa je TMpOICHEHA Kao
TeMIieparypa Ha KO0jOj OTIOp JOCTHKE MakKCMMyM. YTBPAHO je Ja je TemIeparypa
KOXEPEHIIMje  WHBEP3HO  MpomoplHoHaiHa  e(DeKTuBHO]  Macu  paspeheHor
JIBOJTMMEH3UOHATTHOT eJeKTpOoHCKOM Taca y Si MOSFET-uma. CnudHe pesyirare je
I00MO M aHAIM30M pelieka XabapaoBor Mojena 3a MOTOB MeTal-u30JaTop mpedas.
AHanM30M TEOPHJCKUX U EKCIEPUMEHTAJTHUX pe3ylTara YTBPAHO j€ Ja jako
MeljyeneKTpoHCKO pacejambe, a He HeypeheHocT, momMuHAHTHO oxapehyje ocoOune
MOSFET-a y mupoKOM HWHTEpBally KOHIIEHTpalWja W Temmeparypa y Ommsyau 2D
METaJ-MU30J1aTop Mpesiasza.

Tpehu pan je teopujcko excrnepumeHTanHu. [lpencraBiba neTasbHy CTYIOUjY
IMHAMUKE PElIeTKe TUXaJIKOreHHa KOjy je KaHIuIaT peajan30Bao Momohy mpopadyHa
U3 TMPBUX MPHUHIMNA U TepTypOaTWBHE TeopHje (YHKIMOHANA TycTUHE. TeopHjcKu
pe3ynraty cy oMOryhuiu MpaBHIHY aCHTHAIM]y €KCIIEPUMEHTATHUX (POHOHCKHUX MOJA,
Kao W JIOTIPHHENIH O0jallkhelhy aHOMalhja YOUCHUX Y EKCIIEPHUMEHTAIIHOM CIIEKTpY.
HcTtoBpemMeHO je  TpHUKa3zaHO OMIMYHO  cjaramke u3Mel)y  Teopujckux o
EKCIIEPUMEHTATHUX Pe3yJITara.

YeTBpTH pajl YBOIM OKBHD 32 HCTPAXHBAKE JAKOKOPEITUCAHUX HAHOCHCTEMA M3
NPBUX MPHHLIUNA. Y BEMY je KaHIUIaT paJuo Ha pa3BHjalby METO/A 32 M3pauyHaBambe
PABHOTE)KHUX W HEPABHOTEIKHUX OCOOMHA JaKOKOPEIMCAHMX HAHO CHCTEMa Ha HUCKUM
TeMreparypamMa W3 TpBUX NpuHOHNA. Metox KomOuHyje Teopujy (yHKIHMOHAIA
T'YCTHHE, TEOPHjy KBaHTHOT TPAHCIIOPTa, MpOpadyyHe HyMEpPHUYKE PEHOPMAIM3alMOHE
rpylie ¥ pEeHOpPMaJM30BaHy TEOpHjy cymnepreprypbanuje. Kanmunar je ocMHCIHO U
pa3BUO HAa4YMH Ja YKOMOHMHYje TeopHjy (yHKIMOHada TYyCTUHE Y HEPaBHOTEKHO]
MOCTaBLU ca TeopujoM AHAEpcoHOBe HeuucTtohe (Anderson impurity Al), xopuctehu
TeopHjy KBaHTHOT TpaHcropTa. [lomohy A/ Teopuje je yKibyuno MHOTOYECTUYHE eeKTe
U edekTe jakux JIOKATHHX Kopenamuja. Peanmm3oBao je Al xopuctehu mpopadyHe
HYMEpHUYKEe PEHOpPMaJIM3allMOHE TPyIe 3a paBHOTEKHE cucteme. To je omoryhmio
M3padyHaBamke KapaKTePUCTUYHUX TPAHCTIOPTHUX OCOOWHA (M3MEHEHUX IO/ YTHIIAjeM
jakux JjokamHux kopenanuja) u Konmo temmeparype. Boamo je ucnutuBame yTHIlaja
pa3MuuMTUX TeoMmeTpHja uHTepdejca (Ha aTOMCKOM HHBOY) u3Mely Moliekyna |
€JIEKTPOo/Ia, IITO je MOBEJO 0 JoOpor ciarama KoHI0 TemmepaType u TpaHCIIOPTHHUX
0ocoOWHa ca eKCIIEpUMEHTOM. Y3 MUHUMAaJIHE U3MEHE, 0Baj METO MOXE J1a c€ IPUMEHU
U Ha HUCTPaXHMBamkE TPAHCIIOPTHUX OCOOMHA XerepocTpykrypa. I[lopemmo je oBako
no0ujeHe pe3yniraTe ca HepaBHOTSXKHUM MpopauyHuMma (rSPT), na Ou mporeHno o0JacT
MOY3JITaHOCTH PaBHOTEXKHHUX MpopadyHa TpaHcmucuje (DFT+NRG) 3a mpoBOJHOCT Ha
KOHAUYHOM HaroHy. Pe3ynraTu moka3syjy Aa oBaj MeTon oMoryhaBa KBaJUTaTHBaH YBUA Y
0COOWHE CIIojeBa MOJIEKYJIa ca MeTaluMa KaJla Cy TH CIOjeBH aMOP(HHU, HITH HEJOBOJHHO
onpeheHn W J1a MOXe Ja MPYXH M MyH KBAaHTUTATHBHHU OIKUC CKCIIEPHMEHTa Kana je
KOHTAKT I0OPO KapaKTepU30BaH.



[letn pan mpeacTaBiba MCTPaXKHBAKE CYINEPIPOBOJAHUX CTaka €ICMEHTATHUX
jenumerma. Y KOHKPETHOM CIIydajy UCIIUTHUBAHO j€ CYNEepPIPOBOJHO CTamhe OM3MyTa Mo
MPUTUCKOM. 300T CBOjUX OCOOWHA M YHI-EHHIIC Ja j€ KOMIICH30BaHU MOJIyMETal U MMa
U3paXKEHY CIUH-OPOUT MHTEPAKLHjy, OM3MYT je, y MHOTOUEMY, JeIMHCTBEH E€IEMEHT U
M0J] TMPUTHUCKOM TIPOJIa3u KPO3 BHIIE CTPYKTYPHUX (a3sHHX Tpenaza. Y OBOM pany
KaH/JWUJAT je UCTPaXHBAO MPHUPOIY CYNEPIPOBOJHOCTH MOHOKIMHUYHE (haze Ou3MmyTa
(Bi-1I) xoja ce peanusyje nox nputuckom oa 2.80 GPa. Ilomohy Enmnambeprose Teopuje,
a momazehw o MPBUX MPUHIMIA, W3padyyHAo je, MOpen APYIHX KapaKTepUCTHUYHUX
0CcOOMHA, KPUTHYHY TEMIIEpaTypy CYHEepHIpPOBOAHOCTH U KPUTHYHO MarHETHO MOJbE KOjU
ce OIMYHO CJIaXy Ca EKCIePHUMHTAJIHUM BpPEAHOCTHMA W THME IOJPKA0
eKCIIepUMEHTaIHE Haia3e. To je o W3y3eTHE BaXHOCTH, jep ce oBa (a3a Temko
peanmsyje y eKCIepUMEHTATHUM YCIOBUMA W IOCTOje WHAMIIMjE Ja je MeTacTaOuiTHa.
Takohe je u ucruTao yTuiaj CnuH-opOUT MHTEPAKIIM]je, 3a KOjJy C€ MCIOCTABHUIIO Ja Urpa
BEOMa 3HAYajHy YJIOTY Y OBOM CHCTEMY.

4.1.2 Ilo3uTHBHA HUTUPAHOCT HAYIYHHX paloBa KaHAUIATa

IMpema 6a3u momaraka Web of Science ma man 30. okrodpa 2019. roamue, paaoBu
KaHauTaTa cy uutupand ykynHo 109 myta, omHocHo 100 myrta He pauyHajyhu
camorurare. [Ipema ucroj 6a3zu, XupioB HHIEKC KaHauaaTa je 7. PeneBaHTHU MOAaIy O
IUTUPAHOCTH ca UHTepHET cTpaHuile Web of Science 6aze cy maTu HaKOH CIUMCKa CBUX
paznoBa (oaesbak 6).

4.1.3 IlapaMeTpn KBAJIUTETA YACOMMUCA

buran enemeHT 3a MpolleHy KBAaJIUTETa HAyYHUX pPE3yNiTaTa je U KBATUTET Yacomuca y
KOjUMa Cy paJoBH 00jaB/beHH, OMHOCHO HHUXOB UMNAKT (axtop — UD. ¥V kateropujama
M21a, M21, M22, M32 u M34 kaanuzaar je o0jaBuo pajoBe y cienehuM gacomucuma,
NIpU YeMy Cy TIOIByueHH OpOjeBU OJHOCE Ha pajioBe 00jaBJbeHEe HAKOH oiyTyke Haydnor
Beha o TpeyIoTy 3a CTHIIalkhe MPETXOAHOT HAyqHOT 3Bakba:

* 1 pan 'y Nanoscale (UD = 7.367),

* 6 + 4 panoBa y Physical Review B (U® = 3,836 3a 4 pana, UD = 3.736 3a 2 pana,
Nd =3.767 3a 2 pana, UD = 3.774 3a 2 pana),

* 1 + 2 pana 'y Journal of Physics: Condensed Matter (AP = 2,346 3a 1 pan, D = 2.546
3a 2 pana),

* 1 pan y Journal of Nanoparticle Research (1® = 2,278),
* 1 pany Solid State Communications (1® = 1.897),

* 1 pan y Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy (N®
=2.353),

* 2+ 2 panay Symposium on Condensed Matter Physics — SFKM (6e3 N®),
* 5 pana'y DPG Spring Meeting (6e3 D),

* 1+ 1pany APS March Meeting (6e3 D),

* 1 pan y New Generation in Strongly-Correlated Electron Systems (6e3 UD),
* 2 pana'y HP-SEE User Forum 2012 (6e3 D),



Ykynan ¢akrop yTHmaja pagoBa kKanmugara je 59.231, a y mepwomy HaKOH
omryke Hayunor Beha o mpemsiory 3a cTuiiame MpeTXoIHOT HayYHOT 3Bama Taj (hakTop je
34.807. Yaconucu y KojuMa je KaHAuIaT 00jaBJbUBA0 CY M0 CBOM yTJIEAY BeoMa ICHEeHU
y obnmactuMa kojuMa mpunazajy. Mehy muma ce noce6Ho uctuuy: Nanoscale, Physical
Review B, Journal of Physics: Condensed Matter v Journal of Nanoparticle Research.

JlogatHu OMONMMOMETPHUJCKU TOKa3aTeJbu y Be3W ca 00jaBJbeHHM paJoBHMa
KaHu1aTa HakoH outyke Haydror Beha o mpesiory 3a cTUIame MPETXOTHOT HAYYIHOT
3Bama JIaTH Cy y J0w0j Tabenu. OHa caapku uMmnakt gaxtope (MD) panosa, M 6o10Be
pajioBa TO CPIICKO] KaTeropw3alliji HAyYHOHCTPAKHUBAYKUX PE3yTara, Ka0 W UMIIAKT
(dakTop HOpMalM30BaH Mo MMMakTy nutupajyher uianka (CHUII). V tabenmu cy nare
VKyITHE BPEIHOCTH, Ka0 M BPEJHOCTH CBUX (haKTOpa YCPENHEHUX 1O Opojy WiIaHaka |
o Opojy ayTopa Mo 4WIaHKy, 3a pafoBe o0jaBibeHe y kareropujama M20.

no M CHUII
VYKymHO 34.807 74 10.301
VYepenweHo 1o uiaHKy 3.867 8.222 1.145
VYepenmweno no ayropy 3.852 8.161 1.132

4.1.4 CteneH caMOCTAJIHOCTH U CTeNeH yyemha y peajqu3anuju pagoBa y HAy4HUM
LHEHTPUMA Yy 3eM/bH U HHOCTPAHCTBY

Kanmunar je Bonehu ayrop 9 pamosa, npyru ayrop 6 pamoBa, Tpehu aytop 2 pana,
YeTBpPTHU ayTop 9 panoBa, netu ayrop 4 paaa u mectu ayrop 1 pana, ox ykynHo 31 paza.
Ha panoBuma koju cy o0jaBibeHH y nepuosy HakoH ominyke Hayunor Beha o mpemory 3a
CTHIIAEhE MPETXOMHOT 3Bamha, KaHAUAAT je Boaehu aytop 3 pana, npyru ayrop 2, Tpehu
aytop 1 pana, ueTBpTH aytop 6 panoBa, netu ayrop 4 paaa u mectu ayrop | paga, on
yKymHO 17 pagoBa. Y eKCIepUMEHTAIIHO TEOPHjCKUM PaJloBHMa TJIe je KaHAWAAT JPYyTH,
Tpehu, YeTBPTH, WK METH ayTOp je Y CTBApH MPBU O ayTOpa KOjHU Cy OMIIM 3aTyKEeHH 3a
npopadvyHe, TEOPHjCKH JIeo paza u nopeheme ca ekcriepuMeHToM. TakBUX pajosa je 7.

[lpu wm3pagm cBux mnyOnukanuja ap Mwunom Panomuh je ydecTBoBao y
KOHKpETHO] (opmynanuju mnpodiema, IUCKYCHJHU, HHETOBOM peIllaBamby IPUMEHOM
OOMMHHMX HYMEPHUYKHUX CHMYJalldja M ampOKCMMAaTHBHUX AHAIMTUYKHX TEXHHKA,
aHanu3u JoOMjeHMX TonaTaka (M mopehemy ca eKCepuMeHTHMa y oapeheHuM
ClIy4ajeBUMa), Ka0 U 'y CaMOM IHUCAY.

TokoMm m3pane nokropcke aucepranuje y JlabopaTopuju 3a mpuMeHy padyHapa y
HayllM, KaHAMJAT je a0 KJby4aH JONPHHOC pasyMeBamy yTulaja HeypeheHoctH y
JaKoKopeIucaHuM marepujainuma u MehycoOHe kommerunuje u3Mmely jakux kopenaiyja
u Heypehenoctn. Takohe je moka3zao Aa Ccy jake Kopenalyje Haj3HA4ajHUju MEXaHH3aM
KOju Yy MHOTOME ofipelyje TpaHCIOpTHE OCOOMHE JBOJMMEH3MOHAIHUX EJIEKTPOHCKUX
racoBa W TOApPXKAao je ciIuKy BurHep-MoT creHapuja y OBUM cHcTeMUMa. TOKOM
3aBpIIHUX TOJMHA H3PaJe JIOKTOPCKE Te3e, KAHIHMIAT je YCIIOCTaBHO IUIOJOTBOPHY
capaamy ca LlenTpom 3a (pu3MKy YBpCTOT CTarka M HOBE MaTepHjajie ca MHCTUTYTa 3a
¢bu3uky. Y OKBUpY T€ capajime Cy NpoydyaBaHE CIIEKPTOHCKE OCOOMHE M JUHAMHUKA
pelIeTKe YITIaBHOM JHMXallKoreHuaa, W 122 cymepnpoBoanuka. Kangunmar je umao
3HauajHy yiory y Bohemwy aumiomcke teze Harame benuh.



TokoM mOCTIOKTOpPCKOr ycaBpuiaBamba y rpynu mnpod. durtepa donxapaa u
npod. JluBujy Kuonuena, kaHauAar je paauo Ha HCTpaXKMBamkbUMa YTHIAja jaKHX
Kopenalyja Ha pa3He Marepujajie y paBHOTEXKHO] W HEPABHOTEKHO] IOCTaBIH.
Kopumrhenu meronu cy 6a3upaHu Ha MpopadyHUMa U3 MPBUX MPUHIUTA Y KOMOWHAIIHM]H
ca MeToAMMa KOjU ypJbUyHaBajy jake eJeKTpOHCKE Kopenanuje Oa3upaHe Ha
JluHaMHUUKO] Teopuju cpeamer mosba. OBO Cy BpJO aKTyellHE TeMe, a TEeOopHjcKa
UCTpa)KMBamka CUCTEMa Yy HEPAaBHOTEKHO] MOCTABIM Cy paHOM pa3Bojy. [lo moBparky
KaH/JWJAT je HAaCTaBHO capaamy ca rpynom npod. Jlusmy Kuonuema, u3z AyrcOypra,
Hemauka ca xojum mma Ounarepannu mnpojekar. Capagma ca LlentpoMm 3a ¢usuky
YBPCTOI CTarkba W HOBE Marepujajie je aKTyeldHa CBE BpEME OJ YCIOCTaBJbamba H
npomupeHa Ha rpymy npod. Pymn Xakena ca Banrep Majcaep unctutyTta y ['apXuHry,
Munxen, Hemauka.

Kangunar uma wmehynaponny capaawmy ca mnpod. JluBujy Kuonuenom y
AyrcOypry, npod. durepom donxapaom y AyrcOypry, nmpod. MBanom Pynrepom y
Jlonmony, mpod. Pymn Xakenmom y Mwunxeny u np. Pycremem KamranoBum ca Ilon
epep wHcTuTyTa y Bunureny y IlBajuapckoj.Ckopamisy pagoBH HacTaid Kao
pesyaratr MelyHapoaHe capalime Cy BUAHM Y JIMCTU MyOiMKalMja KaHAWJaTa, JTOK je
HEKOJIMKO PajioBa TPEHYTHO y (a3u mpurpeme.

4.2 AnraxoBame y popmMupamy HaAy4YHUX KaJpoBa

Kanmumar ap Munom Pamomuh je mMao 3HadajHy yinory y BohemYy IHWIUIOMCKE Te3e
Hatame benuh mro ce Moxke BUIETH y 3aXBaTHUIH TE3€.

[Tpunor: auruiomcka te3a Harame benuh, 3axBanauna.

3a BpeMe MOCTIOKTOpCKOr OopaBka Ha YHuBep3uTeTy y AyrcOypry, KaHAMZar je
aKTMBHO Y4€CTBOBAO y HACTaBU Ha OCHOBHHM, cTyaujama ®dusuukor dakynrera. buo je
ACHCTEHT-TYTOp Ha BekOaMa W3 BHUIIE MNpeAMETa, Ka0 M acCHCTeHT KOjU MNpUIpema
Marepujaje, UCTIHTE.

[Tpunor: nucmo npod. JIuujy Kronuena.
4.3 Hopmupame Opoja KoayTOPCKHMX PagoBa, NATEHATAa M TEXHUYKHUX pPeliemha

17 pamoBa kanmuaara 00jaBJbeHUX HAKOH ojuTyKe Hayunor Beha o mpeasory 3a cTuiiame
MIPETXOHOT HAYyYHOT 3Bama, crajajy y cieaehe kareropuje:

. y KaTeropujy paaoBa ca HyMEpHUYKAM CHMYJIalijaMa KOju Ce MPH3HAjy ca MyHHM
Opojem M GomoBa 10 TIeT KoayTopa cranajy pagosu [1, 6, 7, 20, 22, 23, 24, 251 u
HOPMHUPAHHM CY Y CKiaay ca [IpaBHIHHKOM,

. y KaTeropujy eKCIepUMEHTaTHUX PagoBa y MPHUPOTHO-MATEeMAaTUYKUM HayKaMa
KOjU Cce Tpu3Hajy ca myHuM OpojeM M 0GomoBa 70 cegam KoayTopa Cranajy
panosu [2, 3,4, 5, 8,9, 18, 19, 21] u HopMupanu cy y cknaay ca [IpaBunHukom.

Hakon nopmupama npema [IpaBunnuky, 6poj M 6010Ba koje je KaHAMJIAT OCTBAPHO

HakoH oryke Hayunor Beha o mpemiory 3a cTuilamke MPETXOJHOT HAyYHOT 3Bamba Ce

Mema ca 79 Ha 52.42, 0THOCHO | TIOCIe HOpMHpamka KaHauaaT uma Behu 0poj 6010Ba o7

3axTeBaHor. [Iputom Tpeba y3eT y 003up aa je y BehuHu pajoBa yKJbyueHO 3 WM BUIIE

Pa3IMYUTUX TPyTa U3 Pa3TUIATAX HHCTUTYIIN]A.



4.4 PykoBoheme npojekrumMa, NOTNPOjeKTUMA M NPOjeKTHUM 3a/1allUMa

Kangunar pykoBomu OummarepaqHuM MpojekToM ca HemaukomM moa  Ha3uBOM
,,HEepaBHOTEKHU TPAHCIIOPT jJOKOKOPEIMCAHNUX TTOyMETATHYHUX CHCTEMA .

[Tpuor: O6aBemTeme MUHICTAPCTBA O OJI0OPEHOM OUIaTepaIHOM MPOjEeKTY

Kanmunar ydectByje Ha mpojekty ON171017: ,,Monenupame u Hymepuuke
Cumynanmje CIIOKeHUX BUIIEYSCTHYHUX CUCTEMA‘,

4.5 AKTHBHOCT Y HAYYHMM U HAYYHO-CTPYYHHUM JAPYIITBUMA

Kanmunar je wian Onceka 3a MpUMEmeHY U padyHapcky ¢usuky JpymTsa duszndapa
Cpouje.

[Tpunor: mucmo wianoBuMa ozceka [[pymrea ¢puszmuapa Cpowuje.

Penienzent je 3a wacommce Physical Review A, Physical Review B wu Physical
Review E Amepuukor apymrTsa pusndapa.

[Tpusnor: mucma ypeIHUIITBA YaCOIKCA PEIICH3EHTY.
4.6 YTUIajHOCT HAYYHMX pe3yJTara

YTHUIAJHOCT HAyYHUX pe3yiTaTa KaHauaaTa je HaBeleHa y oJie/bKy 4.1 OBOT' JOKYMEHTA.
[Tyn crincak pajosa je Aar y oJieJbKy 6, a Moaly O MUTUPAHOCTH Ca HHTEPHET CTPAHHUIIC
Web of Science 6a3e cy qaTn HaKOH CITUCKA CBHX pajioBa KaH/IHJIaTa.

4.7 KoHkpeTaH J0NPHUHOC KAHAMATA Yy PeaIU3alMjH PA/I0BAa Y HAYYHUM LEHTPUMA
y 3eMJbU U MHOCTPAHCTBY

Kangunar je 3HauajHO IOTPUHEO CBAKOM Pajay y YHjoj MPHUIPEMH je ydecTBoBao. CBH
pamoBu o0jaBJbeHH y TIEpUOAY HakoH ominyke Haywunor Beha MHctutyTa 3a QU3HMKy 0
Npe/IOTy 3a CTHIAEe MPETXOMHOT HAYYHOT 3Bama Cy ypal)eHu y capajmbu ca Kolerama
U3 3eMJbe U uHOocTpaHcTBa. [p Pagomuh je nMao KIby4HH JONIPHHOC MyOJIMKaljamMa Ha
kojuma je mpBu ayrtop (3 pama) m npyrmayrop (2 pama). Takohe je mmao Kibydad
JTONIPUHOC Y TEOPHjCKO, EKCIICPUMEHTAITHUM PaJIOBHMa y KOjuMa je Tpehu, 4eTBpTH, win
MeTH ayTop, a Y CTBapH je MPBHU O] ayTopa KOju Cy OWIM 3aqyKeHH 3a MpopadyHe,
TEOPHjCKH €0 pana U nopeheme ca ekcriepuMeHTOM (7 pamoBa). TOKOM U3paje OBHX
pajioBa, KaHAMIAT jeé OMTHO YTHIIA0 HA CaM TOK HCTPaKHBamba, Pajdo Ha Pa3BOjy H
u3Bohemy oarosapajyhux HyMEepUUYKUX CHUMYyJAllMja, aHAJIW3H PEICBAHTHUX MMOJaTaKa M
JTMCKYCHjH, Ha TEOPHJCKUM M AHAIWTHYKHM IPOpPaYyHHMMa, METOIMMAa M TEXHHKaMa
MPUCTyIa POOJIeMUMa, TUCAKY PalloBa, a Takohe je y4ecTBOBaO M 'y KOMYHHKAIIUjU Ca
pELIeH3eHTUMa TIPUITUKOM TIPUIIPEME PaioBa 3a 00jaBJbUBAE.

4.8 YBoaHa npegaBamba Ha KOH(epeHIMjaMa U Ipyra npeiaBama
VY mepuony HakoH omityke Haydnor Beha o mpemsiory 3a cTuiame HPeTXOIHOT 3Bamba,

KaHJIMJAT je oApkao cienehe mpenaBame MO MO3UMBY Ha MehyHapomaHOM cKyIry, Koje je
IITaMITaHO Y U3BOAY (Kareropuja M32):



. Milo§ M. Radonji¢, Rustem Khasanov, Liviu Chioncel and Alex Amato,
Superconducting Nature of Elemental BismuthUnder Pressure, The 20th
Symposium on Condensed Matter Physics — SFKM 2019, Belgrade, Serbia.

HpI/IJIOI‘I IMMO3UBHO MHUCMO, JIMCTA MO3BAHUX IICpAaBada Ca MHTCPHET CTPAHC U U3BOA H3
KIBbUI'C allCTPpaKaTa Cca aliCTPaKTOM U IMIPOIrpaMCKHUM KOMUTCTOM.

Kanaunar je takohe onpxkao W mpenaBame No no3uBy Ha UMHCTHTYTYy 3a DH3HKY,
VYuuBep3utera 'y AyrcOypry:

. Milo§ Radonji¢, Phonon anomalies in FeS, 11.12.2017, Institute of Physics
Augsburg, University of Augsburg, Augsburg, Germany.

[Tpunor: mucmo npod. JIusujy Kuonyena.
OcrTasna caomniiTema KaHaAUaaTa Ha MeljyHapoHUM KoHpepeHjama (kateropuja M34):

. Milos Radonjic, Ivan Rungger, and Liviu Chioncel, Non-Equilibrium transport
study in strongly correlated hetero structures, 80th Annual Conference of the
DPG and DPG Spring Meeting, Regensburg, Germany, 6 - 11 March 2016, TT —
78.59.

. Milos Radonjic, Darko Tanaskovic, and Vladimir Dobrosavljevic, Influence of
strong disorder on incoherent transport near the Mott transition: Statistical
DMFT approach, 79th Annual Meeting of the DPG and DPG Spring Meeting,
Berlin, Germany, 15 - 20 March 2015, TT — 71.16.

[Tpe mouetka mocTaoKa y AyrcOypry KaHIUIAT je oJpKao mpeaaBame Ha MHCTUTYTY 3a
¢bu3uky YHuBep3uTeTa y Ayrcoypry:

. Milo$ Radonyjié, Influence of disorder on charge transport in strongly correlated
materials near the metal-insulator transition, 15.10.2014, Institute of Physics
Augsburg, University of Augsburg, Augsburg, Germany.



5.  EJIEMEHTH 3A KBAHTUTATUBHY OLIEHY HAYYHOT JOIPUHOCA
KAHIWIATA

OcTBapeHHu pe3yJTaTH y nepuoay HakoH omiyke Hayunor Beha o npeniory 3a ctuname
NMPETXOHOT HAYYHOT 3BambhAa:

Kareropuja M 6onoBa no Bpoj panosa Yxynno M Hopmupaunu
pany 0onoBa opoj M 6oxoBa
M21la 10 1 10 6.25
M21 8 8 64 42.24
M32 1.5 1 1.5 1.5
M34 0.5 7 3.5 243

ITopehewe ca MUHMMATHMM KBAHTHTATHBHUM YCJI0BUMA 32 U300p y 3Bal-€¢ BUIIM HAYYHH

CapaJHUK:
OctBapeHo, OctBapeHo,
Munumanuau 6poj M 6omosa M GonoBa 6e3 HOPMHPaHU
HOpMHpamba 6poj M 60110Ba
VYKymHO 50 79 52.42
MI10+M20+M31+M32+M33+M41+M42+M90 | 40 75.5 49.99
M11+M12+M21+M22+M23 30 74 48.49

[Ipema 6a3u momataka Web of Science Ha nan 31. okroOpa 2019. rogune, pagoBu KaHauTaTa Cy
nuTthpanu ykynHo 109 nmyta, oqaocHo 100 myTa He pauyHajyhu camouutarte. [Ipema ucroj 6a3u,
XupIIoB WHEKC KaHIuaaTa je 7.
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Peny6nuka Cpbuja MICTATYT 3A OFRTRY
MUHUCTAPCTBO INIPOCBETE, PN R: HE: 20 “Ba Lild

HAYKE M TEXHOJIOWIKOT PA3BOJA | — s
KOMHCI/I]a 34 CTHIAKB€ HAYYHHUX 3Bakba

Bpoj:660-01-00042/506 oAl 361 /4
26.02.2015. roqune - 4
Beorpangn

Ha ocHoBy wunana 22. craBa 2. ynaHa 70. craB 5. 3akOHa O HAYYHOMCTPaXXHBAYKO]
nenatHocTH ("Cryx6enu rnacauk Peny6nuke Cp6uje”, 6poj 110/05 u 50/06 — ucripaBka u 18/10),
yjgaHa 2. ctaBa 1. u 2. Tauke 1 — 4.(npuno3u) u unana 38. IlpaBuiHEKa O OCTYNKY W HauHHY
BpEJHOBaMka M KBAaHTHTATHUBHOM MCKa3WBamby HAyYHOMCTPAXUBAYKHUX pe3ysiTaTa HCTPakKuBaya
("CnyxOGenu riacauk Peny6iuxe Cp6uje”, 6poj 38/08) u 3axTeBa Koju je moHeo

Huciuuiuyiu 3a ¢pusuxy y Beozpady

Komrucuja 3a cTuname HayqHUX 3Bama Ha CEIHUIH oapxkano] 26.02.2015. roaune, qoHena je

OJIYKY
O CTULHABY HAYYHOI 3BAIbA

Ap Muaow Paoowuh

CTHYE HAYYHO 3BAMbE
Hay4nu capaonuk

y obacTu IpUPOJHO-MAaTEMAaTHYKKUX HAayKa - (pU3uKa

OF P A 3J OXEBE
Huciuuwwyw 3a ¢pusuxy 'y beozpady

yTBpaHo je npemtor 6poj 1193/1 ox 23.09.2014. roguune Ha cequunu HayyHor Beha MHcTHTyTA
u noxHeo 3axteB Komucuju 3a cruname HayuyHHX 3Bama Opoj 1249/1 ox 03.10.2014. roaune 3a
JIOHOIIEHE OJUTyKe O UCITYHhE€HOCTH yCJI0Ba 3a CTUIIamke Hay4yHOT 3Bamba Hay4Hu capaonux.

Komucuja 3a cruname HaydHUX 3Bama j€ MO MPETXOJHO NMPHOABIHEHOM ITO3UTHBHOM
MHIUBeY MaTuuHOr HaydHOr onxdopa 3a (pU3MKY Ha ceIHHUIM oapxaHoj 26.02.2015. roaune
pa3Marpaia 3axTeB U yTBpJUJA J1a UIMEHOBaHU UCIyWaBa ycjoBe u3 wiana 70. craB 5. 3akoHa o
HayuHoucTpakuBaukoj naenaTHocTd ("Ciyx6enu rnacuk Pemy6mmke Cp6mje", 6poj 110/05 u
50/06 — ucnpaska u 18/10), wiana 2. craBa 1. u 2. Tauke 1 — 4.(mpusio3u) u wiana 38. [IpaBuianka
O MOCTYNKy M Ha4yuHy BpeJHOBama M KBAaHTUTATHBHOM HCKAa3WBalby HAyYHOHCTPAKHBAYKUX
pesynrara ucrpaxuBada ("CiyxOenu rinacHuk PenyOmuke Cp6uje", 6poj 38/08) 3a crumame
Hay4HOT 3Bama Hay4Hu capaonuk, na je oiIy4nia Kao y U3pelr OBe OIIyKE.

JloHOIIIEHEM OBE OJTyKe MIMEHOBAHH CTHYE CBa IIpaBa KOja My Ha OCHOBY b€ 10 3aKOHY
NpUITANajy.

Omiyky HOCTAsWTH MOAHOCHOLY 3aXTEBA, MMCHOBAHOM Y. apXWBM MHHHCTapcTBa
IPOCBETe, HAyKe M TEXHC. IOUIKOT pa3Boja y beorpamy. "GP B2
MNPEACEJHUK KOMUCHUJE {{j_IIP)KA&'BHI/I CEKPETAP
JAp CranucaaBa Cromuh-I'pyjuunh, \ JAp Aixekcanaap beanh

HAaY4YHH CaAaB€THHK



Diplomski rad

Odredivanje fononskog spektra
gvozde-telurida

Student: Natasa Belié
Mentor: Darko Tanaskovié

Fizicki fakultet
Univerzitet u Beogradu



Ovaj diplomski rad uraden je u Laboratoriji za primenu racunara v naucs
na Institutu za fiziku u Beogradu. Posebno bih Zelela da se zahvalim
mentoru dr Darku Tanaskovicu na rukovodenju izrade ovog rada, kolegi
Milosu Radongiéu na velikoj pomoci prilikom realizacije teze, kao i kolegi
Nenadu Lazarevicu iz Centra za fiziku cvrstog stanja © nove materijale na

Institutu za fiziku.

Ovaj rad posvecujem mojoj dragoj porodici i voljenom Vangi zbog njihove

lyubavi, razumevangja i izuzetne podrske tokom svih ovih godina.

U Beogradu, Maj 2012
Natasa Beli¢



Universitit
Augsburg
University

Universitat Augsburg — Theoretische Physik 11l — 86135 Augsburg Professor Dr. Liviu Chioncel
. ‘e s Theoretische Physik IlI
Dr. Milos Radonji¢ Zentrum fiir Elektronische Korrelationen und Magnetismus
Assistant Research Professor Institut fiir Physik
Universitat Augsburg
Web: http://www.scl.rs/milos 86135 Augsburg
Phone: +381 11 3713 073
Fax: +381 11 3162 190 Dienstgebaude:
Physik-Gebaude Sid (EKM)
Scientific Computing Laboratory Universitatsstrae 1, Raum 404
Institute of Physics Belgrade 86159 Augsburg

Pregrevica 118, 11080 Belgrade, Serbia
Telefon +49 (0) 821 598 - 3716

Telefax +49 (0) 821 598 - 3725

liviu.chioncel@physik.uni-augsburg.de
www.physik.uni-augsburg.de/theo3

05.10.2019

To whom it may concern,

I herewith confirm that Dr. Milo$ Radonji¢ has worked as a Post-Doctoral Research Assistant at the Center for
Electronic Correlations and Magnetism, Theoretical Physics III, Institute of Physics, University of Augsburg in
the period 01.09.2014 - 31.08.2016.

During this period, beside the regular research activities, Dr. Radonji¢ was involved in teaching. He was

conducting the exercise clases in Mathematical Concepts part I and II (bachelor level, first and second
semester students) and the classes of Computational Physics (Master level students).

Sincerely,

Prof. Dr. Liviu Chioncel


http://www.scl.rs/milos
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Peny6nuka Cpbuja
MHUHHUCTAPCTBO ITPOCBETE,
HAVYKE U TEXHOJIOLLKOI
PA3BOJA
bpoj: 451-03-01732/2017-09/5
Harym: 24.01.2018.
beorpan, Hemamwuna 22-26

HNHctuTyT 3a Qusnky
- Ip Musnow Pagowuh -

[Iperpesuua 118
11 000 beorpan

[TowrroBanu rocnoauue Pagowuhy,

O6asemraBamo Bac na je y okBupy Ilporpama OunarepaiiHe HayuHe u
TexXHoJIoLIKe capanme usmely Penybanke Cpbuie n Capesne PenyOnuke Hemauke, a Ha
OCHOBY CIPOBEAEHUX TNpoleaypa OLeHe Mpojekara y obe Ap)kaBe, yCBOjeHa JIMCTa 3a
(huHaHCUpamwe MpojeKaTa y JABOTOAHUIIEEM MEPUOJY ca MoyeTkoM peanusanuje ox 0l.
janyapa 2018. ronune.

Ca 3agoBosbcTBOM Bac oOasemraBamo na je Bawm mpojekar “Hepasnomedicru
MpaHcnopm jakoKopeIucanux nojiymemanuynux cucmema’ o100peH 3a GpuHaHCcHparbe.

Cepxa OopaBka wuctpaxkuBaya y Peny6muum Cpbuju, oanocHo CaBe3Hoj
Peny6nuuu Hemaukoj, no oBom JaBHOM mo3uBy, Tpeba Ja JONpPHUHECE Ja/beM
yHarpehemwy capaiwmbe M KOHCTUTYHCawy IPOJeKTHOr THUMa, y3 yuelnhe Miiaamx
MCTpaXkKMBaya, Kao U reHepucary HOBOT MPOJEKTHOT MpeUIora KojuM OU ce KOHKYpHCasio
y mnporpamy HORIZON 2020 wim gapyrum mnporpamuma ca wmehyHapoaHuMm
(puHaHCUpaEM.

VY ckiony oBor [lporpama, MUHHMCTapcTBO MpOCBETE, HAyKE W TEXHOJIOLIKOT
pazBoja Penybnuke Cpbuje, punancupahe TpolikoBe MpeBo3a CPICKUX HMCTpakuBaya
u3mely ceauiiTa MHCTUTYLMja Koje capalyjy M TpOIUKOBE CMellTaja ¥ JHEBHHI@A 3a
HeMauke ucTpaxupaye. Ha cprckoj cTpaHu, MakcuMaiHa mnpeaBulieHa u3/Bajama IO
MIPOJEKTHOM LMKJIycy ¢y y u3Hocy 10 3.000 eBpa y 1MHapCKOj NPOTUBBPEIHOCTH.



Hemauka ctpaHa cHocuhe TpOILIKOBE MpeBO3a HEMAuKUX HCTpakuBada u3mely
ceqMIITa MHCTUTYLHMja Koje capalyjy M TpolLIKOBe cMmellTaja M JHEBHMIA 3a CPIICKE
ucTpaxkuBaue. Ha HemMaukoj cTpaHu, MakcuMalHa rnpejiBuheHa u3ziBajama 1o npojekTHOM
LUKIyCy ¢y y u3Hocy 10 7.000 eBpa.

3axTeBH 3a pedyHIalMjy TPOLIKOBA MyTOBamba CPICKUX UCTPAKUBAya, OJHOCHO
TpouikoBa OOpaBKa HEMAuKHUX HCTpaKMBaua, JA0CTaBJ/bajy ce Ha o0pacily KOju MOXKETe
npey3eT Ha MHTEpHET aJpecu MHUHHMCTapcTBa, y OrpaHkKy MeljyHapoaHa HaydHa
capajma, y3 oarosapajyhy nparehy noxkymeHranujy.

PykoBoauonun ono0peHux mpojekara 3a (UHaAHCHpambe, QY)KHH Cy Ja JO0CTaBe
FOJAMILGM M 3aBPUIHM M3BEILUTAj O peaju3alMju MpojeKkTa, y poKy oa 15 naHa HakoH
3aBplleTKa MPOjeKTHEe roJMHE, OJHOCHO HAaKOH 3aBplLIETKa MpojekTa, y Gopmu Koja ce,
Takohe, Hajma3M Ha MHTEpHET aapecd MuHucTapcTtBa. CacTaBHU /€0 M3BelITaja Cy W
NpUJIO3M KOJU cajpxke pe3ynrare OuiaTepasHOr MpojeKTa HIp.. JIKCTa YYeCHHKa
3ajeJHAUKE paJMOHMLE M areH/ja; ancTpakT ca JUCTOM y4YeCHHKA, Ha3MBOM MpoOjeKTa u
Ha3MBOM MOTEHLMjAJIHOT MPOrpamMa WJIM jaBHOT M03MBA HAa KOjU €€ alUIhIKpa ca TEMOM
KOja TPOUCTHYE M3 OBE Capajmbe; pajHa Bep3Mja MM KOomMja 00jaBJbeHOr pajga y
melhyHapoiHOM yaconucy W/uiau MehyHapoaHoj KoHdepeHLuju, 1 JIp.

HUudopmanmja o cBUM 0A00peHMM NpojeKTMMa oO0jaB/beHa je Ha WHTEPHET
CTPaHMIIM MUHHMCTApCTBA IPOCBETE, HAYKE U TEXHOJIOLIKOT Pa3Boja.

HcTtoBpemeHno 6ux keneo na Bam yecTturam Ha 0J0OpEHOM MPOjEKTY M MOKETUM
YCIIEIIHY peaii3alyjy MpojeKTHUX aKTUBHOCTH.

C nomToBameM,




sednica Saveta DFS za naucna istrazivanja i vis...

Subject: sednica Saveta DFS za naucna istrazivanja i visoko obrazovanje
From: "Tatjana Vukovic" <tanja37@rcub.bg.ac.rs>

Date: 12/9/16, 10:28 PM

To: yqog@afrodita.rcub.bg.ac.rs, ljubica.davidovic@ipb.ac.rs,
igor.franovic@ipb.ac.rs, cevizd@vinca.rs, tanja37@rcub.bg.ac.rs,
mpantic@df.uns.ac.rs, dugic@kg.ac.rs, nenad81@pmf.ni.ac.rs,
adzic@ff.bg.ac.rs, nenad.vranjes@ipb.ac.rs, marko.vojinovic@ipb.ac.rs,
ibozovic@vinca.rs, majab@ipb.ac.rs, jovana.nikolov@df.uns.ac.rs,
savovic@kg.ac.rs, ddrag@pmf.ni.ac.rs, kstankovic@etf.bg.ac.rs,
Ipopovic@aob.bg.ac.rs, vladimir.sreckovic@ipb.ac.rs, vborka@vinca.rs,
prodanvc@df.uns.ac.rs, jovana.petrovic@df.uns.ac.rs, ssimic@kg.ac.rs,
dgaja@junis.ni.ac.rs, micic@aob.rs, zcvetkovic@aob.bg.ac.rs,
marija.mitrovic@ipb.ac.rs, ivana.vasic@scl.rs, ivana.vidanovic@ipb.ac.rs,
natasabi@vinca.rs, bradaric@vinca.rs, djordjes@ff.bg.ac.rs, knez@ff.bg.ac.rs,
milica@df.uns.ac.rs, skubi@uns.ac.rs, tosa@kg.ac.rs, jovana@etf.bg.ac.rs,
mancev@pmf.ni.ac.rs, jelena.maljkovic@ipb.ac.rs, sanja.tosic@ipb.ac.rs,
dusborka@vinca.rs, galijas@ff.bg.ac.rs, hekata@ff.bg.ac.rs, savke@uns.ac.rs,
ristic@kg.ac.rs, ljupcoh@vinca.rs, marina.lekic@ipb.ac.rs,
aleksandar.krmpot@ipb.ac.rs, jovanap@vinca.rs, asimovic@kg.ac.rs,
matavulj@etf.bg.ac.rs, brdrljaca@gmail.com, gsasa@pmf.ni.ac.rs,
nikola.skoro@ipb.ac.rs, srdjan.marjanovic@ipb.ac.rs, ebukvic@ff.bg.ac.rs,
obrat@ff.bg.ac.rs, teodora.gajo@df.uns.ac.rs, kovac@kg.ac.rs,
cvetic_j@etf.bg.ac.rs, Emilija.Zivanovic@elfak.ni.ac.rs,
marko.nikolic@ipb.ac.rs, milos.radonjic@ipb.ac.rs, bobagal@vinca.rs,
m.mudrinic@vinca.rs, nizoran@ff.bg.ac.rs, sstevan@ff.bg.ac.rs,
zokip@pmf.ni.ac.rs, mkradovic@junis.ni.ac.rs, nstevanovic@kg.ac.rs,
arsosk@etf.bg.ac.rs, kuki@ff.bg.ac.rs, zoran.mijic@ipb.ac.rs,
momirm@vinca.rs, goran_poparic@ff.bg.ac.rs, natasa.todorovic@df.uns.ac.rs,
draganastrbac@uns.ac.rs, pavlovic@pmf.ni.ac.rs, dragana@kg.ac.rs,
goran.ristic@elfak.ni.ac.rs, ljiljana.gulan@pr.ac.rs, nesicli@pmf.ni.ac.rs,
bojan.nikolic@ipb.ac.rs, sjokic@vin.bg.ac.rs, ilijamaricl@gmail.com,
mico@ff.bg.ac.rs, imre.gut@df.uns.ac.rs, sogi@uns.ac.rs, vpetrovic@kg.ac.rs

Postovane kolege,
Zakazujem sednicu Saveta DFS za naucna istrazivanja i visoko obrazovanje

za petak 16. decembar u 16h,
na Fizickom fakultetu u Beogradu, u Fizickom amfiteatru (soba 661).

Predlazem sledeci dnevni red:

Izbor sekretara Odeljenja

Obavestenje o Kongresu fizicara Srbije

Predlog za promenu Pravilnika o radu Odeljenja za NIVO
Izbor predsednika odseka

Razno

U WNR

U prilogu je komletan spisak clanova Odseka u Odeljenju sa e-mail
adresama. Predsednici i sekretari Odseka koji su navedeni u spisku su
kolege koji su do sada obavljale te funkcije, a i dalje su clanovi odseka.

Kako bismo bili efikasni, molim clanove svakog od Odseka da se pre sednice
dogovore o predlogu za Predsednika svog odseka.

1of2 10/31/19, 8:11 PM



sednica Saveta DFS za naucna istrazivanja i vis...

Za clanove DFS koji nisu iz Beograda, DFS snosi troskove puta: uz
autobusku kartu, odnosno racun za gorivo, 1 to fiskalni i gotovinski na

Drustvo Fizicara Srbije

Cara Dusana 13, Beograd

PIB 107450409

Maksimalni iznos koji pokriva DFS za gorivo je 10 din. po kilometru.
Srdacan pozdrav,

Prof. dr Tatjana Vukovic

Predsednik Odeljenja

— Attachments:

SastavNIVO _2016-tabele.doc 27 bytes
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Review request RADONJIC_

1of3

Subject: Review_request RADON]IC NG
From: pra@aps.org

Date: 3/29/19, 1:44 PM

To: milos.radonjic@ipb.ac.rs

Re:

Dear Dr. Radonjic,

We would appreciate your review of this manuscript, which has
been submitted to Physical Review A.

Comments from the editor:

Does this manuscript contain enough new and significant physics to
warrant publication in the Physical Review? We append the
submittal letter from the authors.

Thank you for your help.
Yours sincerely,

Franco Dalfovo
Associate Editor
Physical Review A

Email: pra@aps.org
https://journals.aps.org/pra/

Opening for submissions soon, Physical Review Research is a new open
access, multidisciplinary journal offering the Physical Review
experience and quality you value and trust. Learn more and sign up for
alerts.

https://journals.aps.org/prresearch
@PhysRevResearch on Twitter

We ask that you download the manuscript and return your report via:

ABSTRACT:

10/31/19, 11:26 AM



Resub review request RADON]JIC _

1of5

Subject: Resub_review_request RADON)IC | IEGNG
From: prb@aps.org

Date: 5/11/17, 3:42 PM

To: milos.radonjic@ipb.ac.rs

Re:

Dear Dr. Radonjic,

We would appreciate your review of this manuscript, which has
been submitted to Physical Review B.

Comments from the editor:

We append previous correspondence, including your report. Is the
response of the authors to all the previous recommendations
satisfactory?

Thank you for your help.
Yours sincerely,

Ashot Melikyan
Associate Editor
Physical Review B

Email: prb@aps.org
http://journals.aps.org/prb/

Editorial: Highlighting Impact and the Impact of Highlighting
http://journals.aps.org/prb/edannounce/PhysRevB.92.210001

We ask that you download the manuscript and return your report via:

Alternatively, you may send your completed Referee Response Form
by email to prb@aps.org. If you use email, eith

er reply to this
message or give as the subject "Report RADONJIC_

ABSTRACT:

10/31/19, 8:35 PM



Review_request RADONJIC ||

1of3

Subject: Review_request RADON)IC NN

From: pre@aps.org
Date: 5/9/18, 12:12 AM
To: milos.radonjic@ipb.ac.rs

Re:

Dear Dr. Radonjic,

We would appreciate your review of this manuscript, which has
been submitted to Physical Review E.

Comments from the editor:

Physical Review editors would like your help in maintaining high
standards for our journal. Is this paper important to the field?
Does it significantly advance physics?

Thank you for your help.
Yours sincerely,

Serena Bradde
Associate Editor
Physical Review E

Email: pre@aps.org
http://journals.aps.org/pre/

Celebrating 125 Years of the Physical Review
https://journals.aps.org/125years #PhysRev125

We ask that you download the manuscript and return your report via:

Alternatively, you may send your completed Referee Response Form

by email to pre@aps.org. If you use email, either reply to this
message or give as the subject "Report RADONJIC _

ABSTRACT:

10/31/19, 11:25 AM



I[To3mBHO rcMO 3a npepaBame Ha COKM 2019

Subject: [1o3mBHO NnUcmo 3a npepasarbe Ha COKM 2019

From: Zeljko Sljivancanin <zeljko@vinca.rs>

Date: 6/27/19, 12:46 PM

To: lvana Vasic <ivana.vasic@ipb.ac.rs>, Milan Damnjanovic
<yqgog@rcub.bg.ac.rs>, Nenad Lazarevic <nenad.lazarevic@ipb.ac.rs>, Zorica
Konstantinovic <zorica.konstantinovic@ipb.ac.rs>, Aleksandar Matkovic
<aleksandar.matkovic@ipb.ac.rs>, Ilvanka Milosevic <ivag@rcub.bg.ac.rs>,
Milica Milovanovic <milica.milovanovic@ipb.ac.rs>, Marija Mitrovic Dankulov
<marija.mitrovic@ipb.ac.rs>, Velimir Radmilovic <vrradmilovic@Ilbl.gov>,
Velimir Radmilovic <vrradmilovic@tmf.bg.ac.rs>, Rastko Vasilic
<rastko.vasilic@ff.bg.ac.rs>, Miljko Sataric <bomisat@neobee.net>, Djordje
Spasojevic <djordjes@ff.bg.ac.rs>, Mihajlo Vanevic <m_vanevic@gmx.com>,
"Zoran V. Popovic" <zoran.popovic@ipb.ac.rs>, "Zoran S. Popovic"
<zpopovic@vinca.rs>, Monika&Milan <tadic@mts.rs>, Rados Gajic
<rados.gajic@ipb.ac.rs>, Marko Spasenovi¢
<spasenovic@nanosys.ihtm.bg.ac.rs>, Vladimir Djokovic
<djokovic@vinca.rs>, Igor Popov <igorpopov77@yahoo.com>, Vladimir
Damljanovic <vladimir.damljanovic@ipb.ac.rs>, Sanja Janicevic
<sanja.janicevic@pmf.kg.ac.rs>, Ljuba Budinski Petkovic <ljupka@uns.ac.rs>,
Igor Franovic <igor.franovic@ipb.ac.rs>, Jaksa Vucicevic
<jaksa.vucicevic@ipb.ac.rs>, Milos Radonjic <milos.radonjic@ipb.ac.rs>,
Borislav Vasic <borislav.vasic@ipb.ac.rs>, Vasil Koteski <vkotes@vinca.rs>,
Antun Balaz <antun@ipb.ac.rs>, Nenad Vukmirovic
<nenad.vukmirovic@ipb.ac.rs>, "Milan Rajkovic @vinca.rs"
<milanr@vinca.rs>

CC: sfkm@ipb.ac.rs, zeljko@vinca.rs

ITomroBana KOJ'IGFI/IHI/H_IG/ KoJ€ra,

3aJI0BOJBCTBO MU je J1a Bac y nMe HayyHOT KOMHUTETa [MO30BEM Ja OAPKHUTE MpeAaBame M0 MO3UBY
u nipencraBute Baie HoBe HayuHe pe3ynrare Ha Aomahoj koHdepenuju COKM 2019, koja he ce
onpkaru o 7. 1o 11. okrobpa 2019. ronune y beorpany. Pesynrare moxkere npeacrasutu Bu ninm
HEKO Of wiaHoBa Baie ucTpaxuBayke rpyne 3a Kora cMmarpare Jia je CYIITHHCKH JIOTPUHEO
IbUXOBO] peain3aiuju.

Monum Bac na ce o 15. jyna peructpyjere u nouiajbeTe ancTpakt Bamier npenapama.

Bumre nuadopmarija o koHpepeHnju MoxeTe Hahu Ha HHTEPHET aipecH
http://stkm2019.ipb.ac.rs/.

Y ume nporpamckor u opranuzanronor komurera COKM 2019, cpnauno Bac no3apassbam.
Kesmko IlI;puBanyanuH,

xonpencenasajyhu COKM 2019

Dr. Zeljko Sljivancanin

Vin¢a Institute of Nuclear Sciences (020)
P.0.Box 522, 11001 Belgrade, Serbia

1of1l 10/31/19, 7:07 PM



Home Page

Committees PROGRAM Gallery BOOK OF ABSTRACTS Local Information

Symposium on Condensed Matter Physics

Invited Speakers

Invited Speakers at National Symposium on Condensed Matter Physics

Marco Aprili, PS-CNRS Université Paris-Sud, France

Stefano Baroni, Scuola Internazionale Superiore di Studi Avanzati, Italy
Wolfgang Belzig, University of Konstanz, Germany

Emil Bozin, Brookhaven National Laboratory, USA

Harald Brune, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Liviu Chioncel, University of Augsburg, Germany

Gyula Eres, Oak Ridge National Laboratory, USA

Laszlo Forro, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Rudi Hackl, Walther Meissner Institute, Germany,

Igor Herbut, Simon Fraser University, Canada

Kurt Hingerl, Johannes Kepler University, Linz, Austria

Liv Hornekaer, Aarhus University, Denmark

Zoran lkoni¢, Univsity of Leeds, UK

Vladimir Juri¢i¢, Nordita, KTH Royal Institute of Technology and Stockholm University, Sweden
Milo§ Knezevic, Berlin Institute of Technology, Germany

Hechang Lei, Renmin University

Marjana Lezai¢, Forschungszentrum Jiilich, Germany

Zoran Miskovi¢, University of Waterloo, Canada

Danilo Nikoli¢, UniversitatKonstanz,Konstanz,Germany

Francois Peeters, University of Antwerp, Belgium

Maria Peressi, University of Trieste, Italy

Cedomir Petrovic, Brookhaven National Laboratory, USA

Hyejin Ryu, Korea Institute of Science and Technology

Milan Radovi¢, Paul Scherrer Institute, Switzerland

Nicolas Regnault, Ecole Normale Supérieure Paris, France

Rastko Sknepnek, University of Dundee, UK

Frank Steglich, MPICPfS Dresden and Zhejiang University

Bosiljka Tadi¢, Jozef Stefan Institute, Slovenia

Jack Tuszynski, University of Alberta, Canada

Dieter Vollhardt, University of Augsburg, Germany

Rok Zitko, Jozef Stefan Institute, Slovenia

Qingming Zhang, Lanzhou University and Institute of Physics, Chinese Academy of Science
Vladimir Damljanovi¢, Institute of Physics Belgrade

Marija Mitrovi¢-Dankulov, Institute of Physics Belgrade

Sasa Dmitrovi¢, Faculty of Physics, University of Belgrade

Vladimir Bokovi¢, Institute of Nuclear Sciences Vinca, Belgrade

Igor Franovi¢, Institute of Physics Belgrade

Sanja Janicievi¢, Institute of Physics Belgrade

Zorica Konstantinovié, Institute of Physics Belgrade

Nenad Lazarevi¢, Institute of Physics Belgrade

Aleksandar Matkovi¢, Institute of Physics, Montanuniversitat Leoben, Austria
Ivana R. Milosevi¢, Institute of Physics Belgrade

Ivanka Milosevi¢, Faculty of Physics, University of Belgrade

Milica Milovanovi¢, Institute of Physics Belgrade

Jovan Odavié, Institut fiir Theorieder Statistischen Physik, RWTH Aachen University
Marko Petrovié, Department of Physics & Astronomy, University of Delaware
Igor Popov, Institute for Multidisciplinary Research, Belgrade

Milo§ Radonji¢, Institute of Physics Belgrade

Milan Rajkovi¢, Institute of Nuclear Sciences Vinca, Belgrade

Marko Spasenovié, Institute of Chemistry, Technology and Metallurgy (IHTM),
DPorde Spasojevié, Faculty of Physics, University of Belgrade

Borislav Vasi¢, Institute of Physics Belgrade

Jaks$a Vucicevi¢, Institute of Physics Belgrade

A SiteOrigin Theme

Serbian

Belgrade, 7-11th October 2019

Conference photo

Latest news

Conference photo

October 8, 2019

Please join us at Wednesday at 13.30h in
front of the SASA building for conference
photo.

Changes in the program

October 6, 2019

Please note changes in the program for
Monday morning session and Tuesday
afternoon session.

Book of Abstracts is online
October 2, 2019
Book of abstracts is online!

PROGRAM IN ONLINE!

September 20, 2019

Preliminary schedule for SCMP conference
is online!

Participation fee in cash

August 15, 2019

Everyone having issues with payment from
abroad can pay participation fee in cash at
conference opening (payment confirmation
will be provided on-site).

Conference Poster

7-11th October 2019
Memp Beioce s

The 20th Symposium on
Condensed Matter Physics

s s @ P



/-11th October 2019
Belgrade, Serbia

http://www.sfkm.ac.rs/

The 20th Symposium on
Condensed Matter Physics

BOOK OF ABSTRACTS

i s
SR AR R

iebl s e mm

University of Belgrade,
Faculty of Physics

Vinca Institute Serbian Academy Ministry of Education, Science and
of Nuclear Sciences of Sciences and Arts Technological Development,
Republic of Serbia

Institute of Physics Belgrade



The 20th Symposium on Condensed Matter Physics - SFKM 2019, Belgrade - Serbia

Conference Chair

Cedomir Petrovic, Brookhaven
National Laboratory, USA

Zeljko Sljivan&anin, Vinca Institute of
Nuclear Sciences Serbia

Organizing Committee

Jelena Pesi¢, Institute of Physics
Belgrade

Andrijana Solaji¢, Institute of Physics
Belgrade

Petar Mali, Faculty of Sciences,
University of Novi Sad

Jelena Pajovi¢, Faculty of Physics,
University of Belgrade, Serbia

Srdan Stavri¢, Vinca Institute of Nuclear
Sciences

Svetislav Mijatovi¢, Faculty of Physics,
University of Belgrade, Serbia

Bozidar Nikoli¢, Faculty of Physics,
University of Belgrade, Serbia — chair

Organized by
Institute of Physics Belgrade
Faculty of Physics, University of Belgrade
Vinca Institute of Nuclear Sciences

Serbian Academy of Sciences and Arts

Program Committee

Ivan Bozovi¢, Brookhaven National
Laboratory, USA

Vladimir Dobrosavljevi¢, Florida State
University, USA

Milan Damnjanovi¢, Faculty of Physics,
University of Belgrade, Serbia

Vladimir Djokovié, Vinca Institute,
University of Belgrade, Serbia

Gyula Eres, Oak Ridge National
Laboratory, USA

Laszlé Forrd, Ecole Polytechnique
Fédérale de Lausanne, Switzerland
Rados Gajié, Institute of Physics Belgrade,
University of Belgrade, Serbia

Igor Herbut, Simon Fraser University,
Canada

Zoran Tkonié¢, University of Leeds, UK
Ivanka MiloSevi¢, Faculty of Physics,
University of Belgrade, Serbia

Branislav Nikoli¢, University of Delaware,
USA

Cedomir Petrovic, Brookhaven National
Laboratory, USA

Dragana Popovié, National High Magnetic
Field Laboratory USA

Zoran S. Popovi¢, Vinca Institute,
University of Belgrade, Serbia

Zoran V. Popovi¢, Institute of Physics,
University of Belgrade, Serbia

Zoran Radovi¢, Faculty of Physics,
University of Belgrade, Serbia

Miljko Satari¢, Faculty of Technical
Sciences, University of Novi Sad, Serbia
Vojislav Stamenkovi¢, Argonne National
Laboratory, USA

Zeljko Sljivanéanin, Vinca Institute,
University of Belgrade, Serbia

Bosiljka Tadi¢, JoZef Stefan Institute,
Slovenia

Milan Tadi¢, School of Electrical
Engineering, University of Belgrade, Serbia
Darko Tanaskovié, Institute of Physics,
University of Belgrade, Serbia



The 20th Symposium on Condensed Matter Physics — SFKM 2019, Belgrade — Serbia

Superconducting Nature of Elemental Bismuth
Under Pressure

Milo§ M. Radonji¢?, Rustem Khasanov®, Liviu Chioncel® and Alex Amato®
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Augsburg, Germany

Abstract. Elemental bismuth has a very rich pressure-dependent phase diagram. At room tempera-
ture, it undergoes a series of structural transitions. Upon cooling all phases become superconducting,
but the superconducting nature between phases is very different. We report the superconductivity in
the Bi-II phase of elemental bismuth (transition temperature 7. ~ 3.94 K at p ~ 2.80 GPa). It was
studied experimentally by means of muon-spin rotation as well as theoretically using the Eliashberg
theory in combination with Density Functional calculations. Experiments reveal that Bi-II is the
type-I superconductor with the zero temperature thermodynamic critical field B.(0) = 32.07(2) mT.
The Eliashberg theory provides an excellent agreement with the experimental critical temperature
and magnetic field and the estimated value for the strong coupling parameter 7,/ @y, suggests that
Bi-1II is an intermediately-coupled superconductor. We also address the superconducting nature of
Bi-I phase. We report the negligible electron-phonon interaction and possible signatures of exciton-
mediated superconductivity.
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FIGURE 1. The temperature dependence of the thermodynamical critical field B, for Bi-II phase

obtained in SR experiments and within the framework of ab-initio Eliashberg calculations using Density
Functional Theory.
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Predicting the conductance of strongly

correlated molecules: the Kondo effect in

Cite this: Nanoscale, 2018, 10, 17738

perchlorotriphenylmethyl/Au junctions

W. H. Appelt,£*® A. Droghetti, 1 L. Chioncel, ©°% M. M. Radoniji¢,® E. Mufioz, ©F
S. Kirchner,? D. Vollhardt® and . Rungger@h

Stable organic radicals integrated into molecular junctions represent a practical realization of the single-

orbital Anderson impurity model. Motivated by recent experiments for perchlorotriphenylmethyl (PTM)

molecules contacted to gold electrodes, we develop a method that combines density functional theory

(DFT), quantum transport theory, numerical renormalization group (NRG) calculations and renormalized
super-perturbation theory (rSPT) to compute both equilibrium and non-equilibrium properties of strongly
correlated nanoscale systems at low temperatures effectively from first principles. We determine the poss-

ible atomic structures of the interfaces between the molecule and the electrodes, which allow us to esti-

mate the Kondo temperature and the characteristic transport properties, which compare well with experi-

ments. By using the non-equilibrium rSPT results we assess the range of validity of equilibrium DFT +

Received 17th May 2018,
Accepted 9th August 2018

DOI: 10.1039/c8nr03991g

rsc.li/nanoscale

1. Introduction

Molecular electronics holds great promise for future appli-
cations in computing, sensing, clean-energy, and even data-
storage technologies." ™ However, a general difficulty so far has
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17738 | Nanoscale, 2018, 10, 17738-17750

NRG-based transmission calculations for the evaluation of the finite voltage conductance. The results
demonstrate that our method can provide qualitative insights into the properties of molecular junctions
when the molecule—metal contacts are amorphous or generally ill-defined, and that it can further give a
fully quantitative description when the experimental contact structures are well characterized.

been the poor characterization of the device structures and
their relationship with the measured conductances and func-
tionalities. For this problem, ab initio simulations based on
density functional theory (DFT)* have proven very successful in
supporting experiments, and they have played a key role in
advancing the field during the last decade.”™ Yet, standard
DFT-based transport schemes for simulations of experimental
molecular junctions have several limitations. The most
prominent of these is the failure to account for the strong
electron correlations leading to the Kondo effect in devices
comprising magnetic molecules, and rigorous treatments and
extensions overcoming this problem are currently under active
development.'**®

In this article, we establish a suitable combination of DFT
and many-body techniques to achieve an unprecedented quan-
titative description of the equilibrium and non-equilibrium
conductance of molecular devices showing Kondo effect. By
using gold/perchlorotriphenylmethyl (PTM)/gold junctions as
a specific example we relate the Kondo temperature to the
electrode-molecule contact geometries, thus matching the
range of variability of the experimental results.'® Furthermore
we address the dependence of the conductance at finite tem-
perature and extend the method to finite bias.

Our multi-scale approach combines DFT, non-equilibrium
Green’s functions (NEGF),"” numerical renormalization group

This journal is © The Royal Society of Chemistry 2018
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(NRG) methods,"®?" and renormalized superperturbation
theory (rSPT).*>** First the contact geometry and electronic
structure of molecular junctions are obtained by DFT + NEGF.
Then the DFT Kohn-Sham (KS) states are projected onto an
effective Anderson impurity model,>*"** which is solved exactly
to obtain the Kondo temperature and the equilibrium zero-
temperature conductance via NRG. Based on these results we
finally compute the non-equilibrium rSPT transport co-
efficients, which encode the behavior of the junctions at low
temperature, finite magnetic field, and finite bias voltage.>

Stable organic radicals contacted to metal electrodes, such
as the PTM molecule on Au, form a practical realization of the
prototypical single-orbital Anderson impurity model,'®*"**3°
and are therefore ideally suited to study the fundamental
aspects of the interaction of magnetic impurities with metallic
surfaces. These aspects include the interplay between the
binding geometry and the energy level alignment with respect
to the surface Fermi energy, as well as the electron correlations
leading to the Kondo effect.

In recent experiments'®*® PTM-radicals were functionalized
with thiophene linkers producing the PTM-bis-thiophene
radical (called PTM-BT in the following to distinguish it from
the bare PTM; see also Fig. 1 for their atomic structures).
These molecules were then integrated into gold mechanically-
controlled break-junctions (MCB]Js) and gold electromigrated
break-junctions (EMBJs) to measure their transport properties.
While at room temperature very low conductance values were
reported,®® at low temperature a zero-bias conductance re-
sonance was observed in many of the junctions, and its Kondo
character verified by temperature- and magnetic field-depen-
dent measurements.’® The low-temperature results indicate
that the PTM radical can preserve the unpaired spin in a solid
state three-terminal configuration, and that it is stable under
mechanical stretching of the electrodes. One of the remarkable
features is the rather high Kondo temperature of about 3 K,
which is largely constant upon stretching of the junction. This
implies that for the junctions that exhibiting Kondo behavior
the contact of the molecule to one of the electrodes is very
strong, and is not affected by the elongation of the junction in
the MCB]J process. In contrast, the background conductance
shows large variations. This can happen upon stretching when
the contact to the second electrode varies significantly, or else
when one of the two electrodes changes its Au-Au bond
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Fig. 1 Relaxed atomic structures of the bare PTM molecule (a) and of
PTM-bis-thiophene (b) (green spheres represent Cl atoms, blue spheres
H, large yellow spheres S, and smaller dark yellow spheres represent C).

This journal is © The Royal Society of Chemistry 2018
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conformation significantly.>”*®* Overall the low-temperature
experimental results point to a structure with highly asym-
metric coupling to the electrodes. In the following we will
show that this hypothesis is indeed confirmed by our
calculations, thus providing a detailed understanding of the
electronic and transport properties of the PTM/gold junctions
at the atomic scale.

The paper is organized as follows. We first discuss the
equilibrium DFT results for a number of possible junction
structures (section 2), and then provide estimates for the
Kondo temperature for these geometries (section 3). For a set
of geometries we then present the linear response transport
properties including the strong electron-electron correlations
obtained by DFT + NEGF + NRG (section 4) and finally extend
the results to finite temperature and finite bias via rSPT
(section 5).

2. DFT calculations

PTM has a propeller-like structure with a central carbon atom
coordinated by the three phenyl rings. In the gas phase, it has
the typical electronic structure of a radical.***' The energy
spectrum has doubly occupied electronic states filled up to the
highest occupied molecular orbital (HOMO). Above the HOMO
there is a further well-separated, singly occupied molecular
orbital (SOMO) with an unpaired electron, giving a total mole-
cular spin quantum number of 1/2. In the PTM, the charge iso-
surface indicates that the SOMO is mainly confined to the
central carbon, while the HOMO and the lowest unoccupied
molecular orbital (LUMO) are largely located on the rest of the
molecule. This is presented more extensively in the ESI section
S2,t while the computational details of our DFT calculations are
given in the ESI section S1.T The difference between the ioniza-
tion potential and electron affinity of the molecule defines the
fundamental gap and corresponds to the charging energy U. In
the absence of any experimental results, we calculate U via total
energy differences®® to be about 4 eV. PTM-BT has a very similar
electronic structure to that of the bare PTM, although the SOMO
is slightly delocalized over the thiophene ligands,'® and this
results in a charging energy smaller by about 0.4 eV. Note that
when the molecule is placed between Au electrodes there is a
significant renormalization of the energy levels and conse-
quently a reduction of the charging energy, which we discuss in
section S2 of the ESI as well as in section 3.2.}

In order to understand the electronic structure of the mole-
cule/Au contact and how this determines the key parameters
affecting the Kondo temperature, we consider a number of
qualitatively different model structures, which are shown in
Fig. 2.

To start, we look at the ideal case of a bare PTM molecule
on a flat Au(111) surface, which we denote as configuration
(CFG) B1 in Fig. 2. The 3-atom Au tip is placed at a rather large
distance, so that the electronic coupling between the molecule
and the tip is negligible with respect to that to the substrate.
Since in MCBJ and EMB]J experiments the Au stretched surface

Nanoscale, 2018, 10, 17738-17750 | 17739
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Fig. 2 Junction geometries for bare-PTM on an Au surface (B1-B4), and for PTM-BT between two Au electrodes (T1-T8), investigated in this paper.
For each junction we specify the broadening of the singly occupied molecular orbital induced by the coupling to the electrodes (I), its position with
respect to Er (e), and the coupling to the left and right electrodes (I'L and I'g, respectively; I" = I' + I'r). All units of the specified quantities are meV.

is expected to be highly corrugated rather than perfectly
flat,>’® we then model a rough Au surface by removing a
number of Au atoms from the perfect Au(111) surface (CFGs
B2 to B4). Finally, we consider a number of break-junction
setups comprising PTM-BT (CFGs T1 to T8). The detailed
contact structure is expected to be different for each individual
experimental conductance trace measurement. The model
junctions considered here include cases with both symmetric
and asymmetric molecule-electrodes coupling. For some struc-
tures the PTM central core is located inside the junction’s
empty gap, whereas for other structures it is physisorbed on
one of the electrodes. Furthermore, the thiophene linkers can
be connected to the electrodes either non-covalently or co-
valently via a sulfur-Au adatom direct bond.

A representative DFT projected density of states (PDOS) is
shown in Fig. 3 (see ESI section S1f for the computational
details). When the molecule is in contact with the Au electro-
des, the SOMO DOS can be modeled approximately by a half-
filled Lorentzian-like peak close to the Fermi energy, Er. Note
that while we refer to the state as SOMO also when the mole-
cule is on the Au substrate for consistency, its occupation can
generally deviate from one in this case. The full width at half
maximum (FWHM) of the SOMO peak corresponds to its elec-
tronic coupling to the Au substrate, I',>* which can be calcu-
lated by using the projection scheme recently developed in

17740 | Nanoscale, 2018, 10, 17738-17750

T T T T T

B Molecule
0l — Central carbon |}
8
m | -l
0 A ="l ik J L ] 1 | _A
-2 -1 0 1 2
E-E, (eV)

Fig. 3 LDA projected density of states (PDOS) for the configuration T1.
The peak at the Fermi energy corresponds to the singly occupied mole-
cular orbital, which defines our Anderson impurity, and is located mainly
on the central carbon atom of the PTM.

ref. 24. The results for each model geometry considered are
indicated in Fig. 2 along with the DFT SOMO on-site energy, &,
relative to Er. These values are the parameters required for the
evaluation of the Kondo temperature.

As a matter of notation we label the structures with the
propeller-like PTM parallel (perpendicular) to the surface, as
“parallel” (“perpendicular”) configurations. For the idealized
case of a bare PTM on a flat Au(111) surface, we find that the

This journal is © The Royal Society of Chemistry 2018
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molecule is physisorbed with an energy difference between the
“parallel” configuration (B1) and the “perpendicular” configur-
ation (not shown) of about 335 meV, favoring the “parallel”
configuration. The equilibrium position of the central C atom
is located at about 5.18 A from the top Au layer. For this con-
figuration there is a negligible charge-transfer from the surface
to the molecule, and the PTM preserves its unpaired electron,
with I' ~# 7 meV and therefore very small.

On the corrugated surface (CFG B2) the molecule can bind
better to the Au, since part of its phenyl rings can move into
regions where the Au surface has a dip. In CFG B2 an Au atom
is located below the central C atom of the bare-PTM. This
atom is then removed in the CFG B3, while it is kept as the
only atom from the top-most Au surface in the CFG B4.
Comparing the I-values for these structures allows us to esti-
mate the effect of Au atoms directly in contact with the central
C atom of the PTM. For CFG B2 we find the occupation of the
SOMO to be 1.40 electrons, indicating that a partial electron
transfer between the gold and the molecule has occurred. In
fact, the SOMO DOS peak lies below Er (¢ = —54 meV). The
increased charge transfer indicates an increased screening of
the transferred electrons by the Au surface atoms, which is
due to the molecule moving closer to the Au surface, in par-
ticular to the Au atom closest to the core of the PTM molecule.
In general an increase in the screening also leads to a
reduction of U (see the discussion in the ESI section S271). We
note that the results for the charge transfer obtained for non-
spin-polarized calculations are approximately the same as
those obtained in spin-polarized calculations in the ESI
section S2.} The electronic coupling of 114 meV for CFG B2 is
much larger than the one for the PTM on flat Au(111). An ana-
lysis of the origin of such a large coupling shows that it is
mainly due to the Au atom underneath the central C atom of
the PTM. In fact, for CFG B3, where this central Au adatom is
removed, the coupling drops to 23 meV, while it remains large
for CFG B4, where only this Au adatom is kept of the top Au
surface layer.

Finally, we consider the model break-junctions (CFGs T1 to
T8). In these cases, we use only the “perpendicular” configur-
ation, since the “paralle]” PTM-BT configuration would require
very large simulation cells, which are beyond our current com-
puting resources. The results allow us to infer the general
trends for the electronic coupling of the radical center to the
Au electrodes through the thiophene linkers (see Fig. 2). As
can be seen the computed values of I" vary over almost one
order of magnitude, from 26 to 126 meV. We note that in
break-junctions I is the sum of two contributions, I';, and Ik,
representing the electronic coupling to the left and right lead,
which we calculate individually with the method outlined in
ref. 24. In general we find that I';, or I'; are large when there
are Au atoms close to the thiophene linkers, such as for 7'y, in
CFG T7. A bond between the sulfur atoms and a protruding Au
atom also increases the coupling. On the other hand, the coup-
ling is low when such a bond is absent, and when the angle
between the thiophene and the Au is larger, such as for I'; in
CFG T1.

This journal is © The Royal Society of Chemistry 2018
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3. Kondo effect

3.1. Formulation of the single impurity Anderson problem

The PTM in contact with the leads is modeled by a single
impurity Anderson Model (SIAM), which has the
Hamiltonian®?

Hsiam = Ha + He + Hiyp, (1)

Hq = Eedndn + Unainay,
o
He = ZSkn/c,a,
k.o

Hyp = Y Vi (djck,a + Cz(,da>,

k.o

where Hy describes the electrons of spin ¢ localized at the
impurity site, which are created (annihilated) by the operator
d; (d,), with ng, = did, being the corresponding number
operator; g4 is the orbital energy, U the charging energy,

and (ng) =), <d,7:d(,> the occupation, where the bracket (---)

denotes the thermal expectation value. For the PTM molecule
the impurity site is the SOMO. Note that ¢4 does not coincide
with e in Fig. 3, since the on-site Coulomb interaction is
already partially accounted for in KS-DFT, and this contri-
bution has to be subtracted, so that eq = € — eq0.>>** Here eq. is
the so-called double counting correction, whose exact
expression is not known except for certain limiting cases, and
several approximations have been introduced in the literature.*®
In general &q. depends on U, and in the commonly used
“fully localized limit” it is given by eq. = Un3T'—1/2),"* where
n{tr is the DFT occupation of the impurity. A comprehensive
discussion of the difficulties arising when combining DFT with
such an Anderson impurity model and more generally the dyna-
mical mean field theory is given in ref. 45 and 46. Note that
instead of the Anderson impurity model one can also use other
methods to treat the highly correlated subsystem, such as for
example embedded correlated wavefunction schemes.'’"*®
A review of the advantages and limitations of various embedd-
ing schemes that link many-body calculations for a subsystem
to an environment treated at the DFT level is given in ref. 49.

Since in an experimental setting the occupation can be set
by applying a gate voltage, here we treat ¢4 as an adjustable
parameter, independent of the DFT results, and choose its
value to ensure a specified occupation of the impurity orbital.
We will also investigate how the results depend on the char-
ging energy U, and will provide estimates of possible values of
U for PTM/Au geometries.

In eqn (1) H, describes the effective bath of electrons with
momentum k and spin ¢, which are created (annihilated) by
the operator c;(, (¢k,,) and with number operator 7y, = c}:_gck,g.
The effective bath includes the electrons in the Au leads, as
well as those in the molecular orbitals, except for the SOMO.
We note that the chemical potential in the Hamiltonian
eqn (1) is set to zero by shifting both the bath and impurity
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energies &4 and ¢, by an additive constant. This does not affect
the properties of the system. Furthermore, in zero-temperature
calculations we will refer to the chemical potential 4 = 0 as the
Fermi energy Er = 0, which is most commonly used in first
principles calculations.

Finally, Hyg, accounts for the hybridization between the
bath and the impurity, with V; corresponding to the hybridiz-
ation matrix element. Accordingly, we can define the hybridiz-
ation function A(E) = ReA(E) + iImA(E), with

ImA(E) = —n E|Vk\25(E — &), (2)
k
ReA(E) = %PJdE’%, (3)

and the coupling strength I'(E) = —2ImA(E). The DFT results
for I'(Er = 0) for several PTM/Au contacts are presented in the
previous section, and the results are shown in Fig. 2.

3.2. Estimation of the Kondo temperature

In order to obtain a first estimate of the Kondo temperature for
different junctions presented in Fig. 2, we assume a constant
(energy independent) coupling I = I'(Er = 0). The Anderson
model then maps onto the Kondo model while approaching the
so-called local moment limit, where |eq| > I' and |eq + U| > T,
(na ~ 1)°° (see ESI section S37 for details), and the Kondo tem-
perature is given by the Haldane equation®">*

1 slallg ]
kBGL = 5 vIUe" d”’('i s (4)

with —U < &4 < 0. The results obtained with this expression are
shown in Fig. 4, and are compared with the NRG calculations
in the next subsection. The experiments in ref. 16 show that
the SOMO of the PTM is close to half-filling and that it can be
brought to exact half-filling by applying a gate voltage to the
system. Here we therefore consider only this half-filled case,
and the effects of small deviations from half filling are pre-
sented in section 5. We note that if the molecule is partially
charged, then in general 6;, increases compared to the charge

B1
B2
B4
T2
T4
TS

% - B2 (NRG)
& €1 B4 (NRG)
G © T4 (NRG)

U (V)

Fig. 4 Kondo temperature, 0, as function of the charging energy, U,
obtained using egn (4) with ¢4 = —U/2, and NRG solutions for the exact
system- and energy-dependent hybridization function. The corres-
ponding electrodes—molecule configurations are illustrated in Fig. 2.
The horizontal orange region illustrates the experimental range of
Kondo temperatures of about 1-3 K.16
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neutral state,”® so that the values for half filling represent a
lower limit for the theoretical results. The values of I" for each
structure are taken from Fig. 2, and at half-filling for a par-
ticle-hole symmetric SIAM we have g4 = —U/2. For large enough
U all curves in Fig. 4 decay exponentially with U, and the slope
of the exponential decay is inversely proportional to I', so that
the configurations with the largest I" have the slowest decay,
and therefore the highest 0;, for a given value of U.

Experimentally it is found that 6;, is approximately constant
upon stretching of the junction, which indicates a highly asym-
metric coupling, where the molecule preserves the contact geo-
metry to one electrode, while the contact with the other elec-
trode is elongated. In other words, the molecule is strongly
bound to one of the electrodes, which may correspond to the
core of the PTM-BT lying flat on a rough Au surface with the
thiophene linkers bridging both sides of the junction.

This conclusion is supported by calculations for the CFGs
B2, B4 and T4 structures, which have the largest values of I,
and which all show asymmetric couplings. The calculated 6y,
values lie in the experimental range if U is equal to about 1 eV.
This charging energy is considerably smaller than the gas
phase value of about 4 eV, and we ascribe this reduction of
U to the charge screening by the electrons in the Au surface
(see ESI section S27). A value for the change of U due to screen-
ing can be calculated using a number of methods,” for mole-
cules on general corrugated and irregular metal surfaces con-
strained DFT (cDFT) has been shown to give good results.>*>’
Alternatively, here we estimate it by approximating the metal
surface as a plane, and by using a classical image charge
model with a molecule between two metal electrodes® to
capture this effect. In this way we calculate that a gap
reduction of about 3 eV corresponds to ideal planar Au electro-
des at a distance of about 2.7 A from the center of the mole-
cule. This number is similar to the distance of 3.4 A for the
CFG B2 structure. The remaining difference can be due to
either an overestimated theoretical gas phase gap, or due to
the experimental atomic structures having an even stronger
binding between molecule and electrodes than CFG B2.

For the structures with small I" the value of U that brings 6,
in the experimental range is very small, and goes below the
expected possible range. Such junctions are therefore expected
to exhibit a 6;, well below the experimentally accessible tem-
peratures. This is consistent with the experimental evidence
that only a fraction of the molecular junctions, which we attri-
bute to those with the largest I', exhibit a Kondo state at an
experimentally accessible temperature. Overall our results
confirm that the molecule lies flat on a rough Au surface when
it exhibits Kondo behavior, since only such structures allow for
small binding distances and strong electronic coupling.

3.3. NRG calculations

In order to confirm the trends for 6;, obtained with the simpli-
fied model eqn (4), and to evaluate the conductance in the
presence of electronic correlations, we integrate NRG calcu-
lations in the method. We consider the SIAM representing the
PTM/Au structures with the largest I' (CFGs B2, B4 and T4), for

This journal is © The Royal Society of Chemistry 2018
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which in the previous subsection have estimated the Kondo
temperatures to lie in the experimental range. For each junc-
tion we calculate ImA(E) in eqn (2) by using DFT + NEGF with
the method presented in ref. 24, and the results are shown in
Fig. 5. While the value around Ey is similar for all cases, there
are pronounced differences in the energy dependence. The
NRG calculations then allow us to verify whether the approxi-
mation of a constant I" used so far is applicable for these rea-
listic atomic structures. The real part is obtained with the
Kramers-Kronig relation, eqn (3). Further details about the
NRG calculations are presented in the ESI section S4.f The
many-body self-energy calculated with NRG is then used to
evaluate the zero-bias and zero-temperature transmission in
the presence of strong correlations in the next section.

The Kondo temperature is extracted from the impurity con-
tribution to the magnetic susceptibility ys(6)"° (see ESI section
S51). In Fig. 6 we present y4(6) for the B4 geometry, where the

“ImA(E) (eV)

0 0.5 1
EE, (eV)

Fig. 5 Negative imaginary part of the hybridization function calculated
using the DFT + NEGF method, and used as input for the NRG calcu-
lation, for the three configurations with the largest hybridizations (B2,
B4, T4) (see Fig. 2). High energy contributions are truncated as outlined
in the ESI section S4.}

0.2

0.15—

2

kO %, /(g1p)
(=}
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e—o U=0.5eV
0.05— o—o U=1.0eV
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0¢ 4 ) 0 2 4

log (O/CWGL)

Fig. 6 Main graph: The universal function displaying the temperature
dependent scaling function (gMB)ZF(GchHL) = kgbys against log(0/cwby).
Inset: The impurity occupation as a function of the rescaled on-site
energy ¢4 + U/2. The on-site energy obtained within DFT is indicated as
the vertical dashed line.
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inset shows the small deviation of the impurity occupation nq4
from the half-filled case (nq = 1). We find that y4(6) always
follows the same universal behavior as long as the interaction
strength is large enough (U > 0.5 eV). A crossover is observed
from the high 6 local moment regime, where kpfy,/(gus)* = 1/4,
to the low @ strong correlation limit, where kpOy./(gus)’* = 0;
here g is the Landeé-factor and pp the Bohr magneton."® We
find that for U values above U = 0.5 eV the curves can
be collapsed onto a single universal function. Note that for
U = 0.5 eV one can already recognize the deviation from the
universal behavior as a dip in the high 0 susceptibility.

The collapse of the susceptibilities is interpreted as a uni-
versality due to the formation of a Kondo-singlet. In the local
moment regime the static spin-susceptibility scaled by the
Kondo-temperature follows the same universal curve,*® where
the scaling function F(x) is defined by>*

(]‘:Z)SZ - (CWHHL> ’ )

and where ¢y is the so called Wilson number, which is a
model-dependent constant (see ESI section S31). Here, the
Kondo temperature 6y, plays the role of a scale invariant in the
renormalization group (RG) language. This means that systems
with different initial parameters end up in the same low temp-
erature fixed point after mode elimination(RG-flow towards the
same fixed point).>! This gives rise to the universal behavior in
Fig. 6 at low 6. The value for 6, is obtained in the standard way
from the condition that the universal function at 6 = cw6y, is
F(1) = 0.07."> In Fig. 4 the values of 6 calculated in this way
are displayed as dashed lines. Importantly, they agree rather
well with those obtained using the approximate eqn (4),
showing that the approximation of a constant I is valid for
this system. The NRG results therefore also confirm the con-
clusion that for the three structures with large I" the value of 6;,
is in the experimental range for U~ 1 eV.

4. Electron transmission

To evaluate the transport properties of this system we add the
zero-temperature NRG self-energy, X(E, 6 = 0), to the DFT +
NEGF Green’s function via the Dyson equation and compute
the resulting energy-dependent transmission function, T¢(E,
0 = 0), in the presence of many-body correlations not captured
at the standard DFT-KS level.>****° As outlined in the ESI sec-
tions S7 and S8, the linear response zero-temperature conduc-
tance, Go = G(V =0, 8 = 0) = dI(V, 8 = 0)/dV|y - o, is given by:
2

Go = 2 Ti(Br, 0 = 0), (6)
where e is the electron charge, 4 the Planck constant and 2¢*/h
the quantum of conductance. Note that we have also implicitly
assumed that there is no external magnetic field, whose
effect will be considered in the next section. When I';, > I'y
(I', < I'y) this can be extended to finite V as G(V, 0) ~ (2€°/h)
T(—eV, 0) (G(V, 0) ~ (2¢*/h)T(+eV, 0)). As discussed in the
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previous sections, we expect the Au/PTM/Au system exhibiting
Kondo behavior to have such a highly asymmetric coupling.
This condition is indeed fulfilled for CFGs B2 and B4, and to a
minor extent also for CFG T4, so that the energy dependence
of the transmission approximately corresponds to the voltage
dependence of the conductance. Note that for such highly
asymmetric coupling the dominant effect of the voltage is a
shift of the molecular energies due to its induced local electric
field, while for the case of approximately symmetric coupling
(I'y = I'y) the current induced non-equilibrium change of occu-
pation gives an additional important contribution and there-
fore needs to be taken into account. In the next section we will
therefore generalize these relations and provide the non-
equilibrium relations for the conductance that are also valid
for arbitrary values of 'y, and I'k.

As outlined in ref. 24 and in the ESI section S7,7 the total
transmission function is the sum of the elastic transmission,
T, and of the inelastic impurity transmission, Tg a5, so that
Ty = T + Troar- The elastic transmission has contributions from
electrons flowing through the impurity, T,;, from the back-
ground transmission, T, and from interference terms, Ty (T =
Tar + Tg + Ty). Notably, at zero-temperature, for a system in the
Kondo regime one has Trai(Er) = 0, because the imaginary
part of the impurity many-body self-energy vanishes at Er in
accordance with the Fermi-liquid picture.’

The calculated low energy transmissions for the B2, B4 and
T4 configurations are presented in Fig. 7. Here U is set to 1 €V,
since this is the charging energy that provides a Kondo temp-
erature in the experimental range. The results for different
values of U are shown in the ESI section S7.1 One can clearly
identify the Kondo peak around Eg, which has a width of the
order of 1 meV, in good agreement with the experiments.'®

B2
[ B B

£ 0.0004 0.0004
Z
&
£0.0002 0.0002
s
=

0 0
5 0.0004 0.0004
‘7
4
5]
£0.0002 0.0002
&

Fig. 7 Zero-bias transmission including the zero-temperature NRG
self-energy for the B2, B4 and T4 structures, and for U = 1.0 eV. Here T
is the total coherent transmission, T; is the total transmission including
incoherent effects, Ty is the coherent transmission component of the Al
itself, Ty is the coherent background transmission, T, is the interference
term, and Ty is the incoherent transmission. The total transmission is
then Ty = T + Tra, With T = Ty + Tg + T,. Note the different scales of the
transmission-axis for B2, B4 and T4.
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The overall dominant contribution comes from T, for all
cases. While the background transmission and interference
terms are negligible in the highly asymmetric setups (CFGs B2
and B4), they are rather large in the break-junction geometry
T4. Importantly, while in the B2 and B4 geometry the trans-
mission values are very small, for the T4 break-junction con-
figuration they can reach values up to 0.8, and such variations
are indeed found in experiments.'® In the present case the
magnitude of both the background transmission and of the
Kondo peak become large for symmetric coupling (I}, ~ I'r),
while they progressively decrease as the coupling becomes more
asymmetric. However, we point out that the background trans-
mission may generally be very large if the overlap between the
Au electrodes is large or if the electrodes are very broad. In that
case one may still have I';, > I'y for the molecule itself, but the
background current will be much larger than that flowing
through the molecule. Therefore, for a comparison between
theory and experiments for the Kondo conductance itself ideally
one needs to separate out the background conductance. While
this is difficult to do in experiment, our simulation scheme
allows to perform this separation for each atomic configuration.
In Fig. 7 we also plot the incoherent transmission Tg »; and T =
T + Trar, Which determines the measured conductance. As
stated above, Ty a1 vanishes at Eg, while it leads to a further
overall enhancement of the transmission spectrum away from
it. It therefore does not affect the zero-bias and zero-tempera-
ture conductance, but it plays an important role at finite bias
and finite temperatures, as discussed below.

Although the results shown so far are obtained for zero
temperature, we can obtain an estimate of the temperature
dependence of the full width at half maximum (FWHM, W) of
the Kondo peak in the DOS by performing a low energy expan-
sion of the SIAM DOS. For the system investigated here we con-
sider the half-filled particle-hole symmetric case, and moreover,
since I < U, we are in the so-called strong correlation regime.>®
As shown in the ESI section S6,t in such a regime the depen-
dence of the FWHM on temperature for a SIAM with energy-
independent hybridization A = I'/2 is approximately given by:

20202 2
w(0,4) = A2v2 \/1+<nk‘i29+1> —1. (7)
24

Here A is the renormalized quasi-particle spectral width,
A =zA, and z=[1 — O R(Z(E,0 = 0))E:EF]71 is the so called
wave-function renormalization factor.>**® Note that here we
use the zero temperature limit of X(E, 0), since we perform the
perturbation expansion around 6 = 0, but in general z can also
be evaluated at finite temperature by using the finite-tempera-
ture X(E, ) in its definition above. Furthermore, in the
particle-hole symmetric regime 4 is related to the Kondo tem-
perature as>®

kBHL = & (8)

1A

Note that the relation in eqn (7) is different from the widely
used form given in ref. 57, since in that reference the energy
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dependence of the real part of the many-body self-energy is
neglected. In the ESI section S61 we show that W(6, 4) from
eqn (7) reproduces rather well the NRG results up to tempera-
tures of about 26;.

In experiments, 8;, can be obtained by fitting eqn (7) and (8)
to the measured temperature dependent data for the FWHM of
the conductance peak. Note that this is somewhat larger than
the FWHM of the DOS due to the additional temperature
induced broadening of the Fermi distribution of the electrons
(see ESI section S87).

From our NRG calculations we can extract effective values
of A for the three configurations B2, B4 and T4, which take
into account the energy-dependent hybridization at an average
level (see ESI section S67). The resulting values, together with
the corresponding Kondo temperatures, are shown in Table 1.
Note that the values for 6;, calculated in this way are in good
agreement with the values calculated directly from the NRG
susceptibility (Fig. 4). In Fig. 8(a) we present the resulting
temperature dependent FWHM for all three systems calculated
using eqn (7) and the parameters in Table 1.

Finally, within the approximation considered in this
section we also estimate the temperature dependence of the
normalized conductance of the Anderson impurity at zero-
bias. If one neglects the interference terms (77 ~ 0), then one
can write G(V, 0) = GV, 0) + Gg(V; 0), where Gy is the back-
ground conductance originating from Tj, and Gy is the con-
ductance due to Ty; + Tr a1- The temperature dependence of Gy
is usually small, and for small V also the voltage dependence
can be neglected, so that we set Gz to be a constant back-
ground conductance. Within the approximations used in this
section, the temperature dependence of G, is derived in the
ESI section S8 (eqn (S29) of the ESIt) to be

GAI(():a)Nlil‘l 0 2:177‘_’2 ks6\? (9)
Go 16 \ 6, aA)’

where G, = G(0, 0). If accurate experimental data are available
at low 0, then the mapping of the measured temperature
dependent conductance profile to this equation allows to
determine the experimental #;. However, in many experiments
including also those for Au/PTM/Au junctions in ref. 16, the
low temperature conductance data is too noisy, so that 6, is
estimated from the high temperature data. Since no analytic

Table 1 Renormalized quasi-particle spectral width, 4, and corres-
ponding Kondo temperature 6, calculated with egn (8), as well as wave-
function renormalization factor, z, for the configurations B2, B4, T4
(note that 4 and z given here are denoted as Ay and zy in the ESI
section S6 and in Table S1). For U = 1 eV we also give the value of U/z4,
with the values of A4 = I'/2 taken from Fig. 2

B2 B4 T4
4., (K) 1.91 1.96 4.09

A (mev) 0.210 0.215 0.449

z 0.00315 0.00326 0.00598
UlnA 5.63 5.44 5.05
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Fig. 8 (a) Full width at half maximum of the Kondo peak in the DOS, W,

calculated with the model eqgn (7); (b) normalized impurity conductance
as function of temperature using the function in eqn (10), for the B2, B4
and T4 configurations. The results are compared to experimental data
from ref. 16, denoted as “Exp,” and "Exp,".

expression is available for the whole temperature range, in ref.
58 a functional form is introduced in order to fit calculated
NRG results in ref. 59. The proposed fitting curve is:

(10)

Gm(0,0) 1 ’
Gy 1+ (9/@1{)2 ’

where 0 = (2 — 1)7?6, and 0 and s are phenomenological
parameters. The value of 6 sets the temperature at which the
conductance is reduced by a factor 2 (Gai(0, Ox) = Gai(0, 0)/2).
The second order expansion of this relation leads

9 2
to Ga1(0,0)/Ga(0,0) ~ 1 —s(21/5 — 1) (9—) . As outlined in
K

the ESI section S8,} for the particle-hole symmetric SIAM one
can approximate 6x ~ 6. Furthermore, the condition that the
second order expansion needs to be equal to the form given in
eqn (9) then sets the value of s to be s x 0.20.

A comparison of the temperature dependent conductance
obtained using eqn (10) for the B2, B4 and T4 structures with
the experimental data in ref. 16 is plotted in Fig. §(b). The
experimental normalized conductance agrees rather well with
the calculated curves, in particular with the one for T4, which
has the highest Kondo temperature of all the calculated struc-
tures. We denote as “Exp,” and “Exp,” the data for the two sets
of experiments presented in Fig. 3c and d of ref. 16, respect-
ively. When extracting the experimental Anderson Impurity
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conductance one has to first subtract the background conduc-
tance, Gg. Our calculations show that the background conduc-
tance depends significantly on the detailed atomic structure,
as shown by the values of Tj in Fig. 7. However, in experiments
only the total conductance is accessible. One can approximate
the background conductance by the conductance at zero bias
for a very large applied magnetic field, which can be extracted
from Fig. 3g-h of ref. 16. In this way we extract the ratio of
background conductance to the total conductance at zero bias
and zero temperature to be about 0.29 for Exp,, and 0.34 for
Exp,.

While the results presented in this section show good
agreement with the experiments in ref. 16, the limitation is
that the equations are all based on the assumption of a par-
ticle-hole symmetric system, which is not generally the case.
Indeed, in ref. 16 it is also shown that by applying a gate
voltage the occupation of the SIAM can be systematically
changed. At particle-hole symmetry the system is characterized
by a single energy scale, kg0;, and eqn (7)-(10) reflect this
property. Away from particle-hole symmetry, however, this no
longer holds and corrections to these formulas enter.
Furthermore, the condition that 77, is very different from 'y
does not apply for a general system. In the next section we will
therefore extend the method to the general non-equilibrium
case, and also to the case away from particle-hole symmetry
within a perturbative approach.

5. Non-equilibrium relations:
renormalized super-perturbation
theory

In this section we account for finite-temperature (6 > 0) and
general finite-bias (V # 0) effects by using the renormalized
super perturbation theory (rSPT) described in ref. 22, 23 and
60. The rSPT corresponds to a perturbative method organized
around the particle-hole symmetric strong coupling fixed
point considered in the previous sections. While for the PTM/
Au system considered here we always have U > A, the
ISPT relations are in principle valid for arbitrary values of U,
and account for deviations from the particle-hole symmetry at
a perturbative level. It is based on the insight that at the
strong-coupling fixed point the equations have the form of an
Anderson model, albeit with renormalized parameters.’®
These parameters are the renormalized hybridization, A,
which has been introduced in the previous section (4 = zA),
the renormalized energy level, &;, which is given by &; = (eq +
U/2)/A, and the renormalized interaction energy, U, defined
in the ESI section S9.f We introduce the rescaled
renormalized interaction # = U/nA, which lies in the range
from 0 for small U to 1 for very large U (see Fig. S91). In this
section we present results as function of &;, which determines
the deviation from the particle-hole symmetric case, and
which can be tuned experimentally by applying a gate
voltage.'®
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The Kondo temperature ¢; near the strong coupling fixed
point is obtained as kzfy = ((gug)’/4) Lirré(;(s)fl,60 with the

6 = 0 limit of the static spin susceptibility®®

2
timyz, = 424,001 + 0dn(0.0))

(11)
and where Ay (E = 0, 0 = 0) = 2 'Ap(E = 0, @ = 0) denotes the
equilibrium quasi-particle renormalized spectral density at the
Fermi energy. Note that for the particle-hole symmetric refer-
ence system this definition of 6y, is equivalent to the one pre-
sented in section 3 (see also ESI section S37). Up to second
order in &4 we have

Api(0,0) = [RA(1 + (1 —i2)%&4%)] " (12)

Inserting this into eqn (11) yields the Kondo temperature

2+2(1—a)°4s* wd (13)

kBaL = 4 ’

1+

14 (1 —@)%842

which is a generalization to finite & and to arbitrary U of the
result for the symmetric SIAM in the strong coupling limit
given in eqn (8).

A central issue is the relation between renormalized and
bare parameters, which is encoded in the wave-function renor-
malization factor z. The renormalization factor z = A/A can be
obtained from NRG for a general energy-dependent hybridiz-
ation function, and from Bethe ansatz for the case of a con-
stant energy-independent hybridization function.>® A compari-
son between z calculated for a constant hybridization function
A(E) = A(Eg) = I'/2 using Bethe ansatz and the NRG is shown as
function of the interaction energy in Fig. 9, and demonstrates

' ' | —— flat DOS (Bethe ansatz)
i ¢ flat DOS (NRG) )
IR O B2(NRG) -
-‘9 B4 (NRG) -
0.8 v T4 (NRG) |
. 1%
N 0.6
04+
0.2
05— YR S B
U/ (RA(E,))
Fig. 9 (Main graph) Comparison between the wave-function renormali-

zation factor, z, calculated using NRG, for a constant hybridization func-
tion (black diamonds), and for the three configurations B2 (turquoise
filled disks), B4 (pink open triangles), and T4 (white open rectangles).
The Bethe ansatz solution for the same constant hybridization used in
the NRG calculation is shown as the red solid line. Inset: Wave-function
renormalization factor from the main graph plotted on a semi-logarith-
mic scale.
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that they agree well. To address the question of the effect of an
energy-dependent hybridization function on z, we also calcu-
late z using NRG and with the full energy-dependent A(E) for
the B2, B4, and T4 structures (Fig. 5). Importantly, we find that
they also agree rather well with the results for constant hybrid-
ization, showing that the low energy SIAM is largely dominated
by the hybridization function around the Fermi energy. Based
on these results we therefore calculate z and # for the rSPT
expansion using the Bethe ansatz for the particle-hole sym-
metric SIAM with constant hybridization A(Eg) = I/2 (see
Fig. S9 in the ESI section S97), where the values of I for each
configuration are given in Fig. 2.

In order to generalize the relations for the conductance, we
first evaluate the equilibrium conductance, G, = Ga(V = 0,
0 = 0, B = 0), defined in eqn (6) and (S18) of the ESL{ away
from the particle-hole symmetry. Here we have explicitly noted
that we consider the reference case with zero magnetic field
(B). This results to

_232 4l I'r

Gy = ——————-"2mAx(0,0).
0 hFL+FR AI(7)

(14)

Then the extension of rSPT to current-carrying steady states
allows us to evaluate the non-linear low-voltage conductance
for finite temperatures and also magnetic fields, which has the

form:22,23,60
Go — Gal(V,6,B) (kB9)2 (‘g“‘BB) 2
————— =(Cy| —— =+ —_—
Go ‘4 L4

(15)

+ cy (—~ )Z—CVEd (—,. )
A A
Cov (—~ )2 (—~) Z+CSVE (—~ ) (—~) 2.
A A ¢ A A

This result can be obtained by expanding Gai(6, V; B) up to
second order in eV/A, kgf/A, and gugB/A. The relations for the
expansion coefficients are presented in the ESI section S9,t
and extend the second order coefficients in U given in ref. 22
to arbitrarily large values of U. Note that the equilibrium trans-
mission calculations, presented in the previous section and in
the ESI section S8,1 allow to extract the values of ¢y = 7* and
also ¢y = 3/2 in the strong coupling limit (i = 1) and at particle-
hole symmetry (&4 = 0), and for highly asymmetric coupling to
the electrodes (eqn (S29) in the ESI}). Using the general rSPT
relations given in the ESI section S97 one can see that as long
as # = 1 and &4 = 0 these values are valid for arbitrary /', and
Iy, so that they are independent of the level of asymmetry in
the electronic coupling to the electrodes. Note that an impor-
tant advantage of the rSPT approach is that it is not restricted
to these limiting cases, and it is valid for arbitrary values of
the parameters, which is a consequence of the fact that it is a
truly non-equilibrium method.

The rSPT expansion coefficients calculated for the B2, B4,
and T4 structures are displayed in Fig. 10 as a function of the
local level energy &4 = (¢4 + U/2)/A. As noted above, in an experi-
ment this can be modified by applying a gate voltage. We use
the Bethe ansatz & = 0 for the values of U/nA give in Table 1,
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Fig. 10 The dependence of the conductance coefficients in eqn (15) on
the deviation from particle-hole symmetry, determined by #4 = (¢4 +
U/2)/A(Ef), for the configurations B2, B4 and T4. The mathematical
relations for the coefficients are given in the ESI section S9,1 and the
parameter ¢ = 3(I'./Tr)/(1 + I'./Tr)? in those equations, which determines
the asymmetry of the electronic coupling to the left and right electro-
des, follows from the values of I'r and I'L in Fig. 2 as (s> = 2.6 x 1074,
(pa = 2.6 X 107*, and {14 = 0.568. The dimensionless Coulomb repulsion
U/(rA(Eg)) for the effective Anderson model applicable to each system is
presented in Table 1.

which then result to @ = 0.99999418 for the B2 structure, & =
0.99999088 for B4, and i = 0.99997705 for T4. These values are
all very close to 1, and indeed replacing them with 1 leads to
essentially the same results, confirming that the Au-PTM
system is in the strong coupling limit. The coefficients there-
fore differ only due to the changes in I'1/I'g, for which we use
the DFT values given in Fig. 2. Since ¢y and cp are linear-
response properties and do not depend on I7/Ig, they are
identical for all configurations. Consequently, ¢g and cg can
also be calculated via NRG. A comparison for these two quan-
tities between rSPT and NRG is given in ref. 23, where a rather
good agreement is found up to moderate values of &;.

The effect of the contact asymmetry, as captured by the
ratio I'1/Ig, affects the value of the finite voltage coefficients,
as clearly seen in the lower part of Fig. 10. At particle hole sym-
metry (&4 = 0) the influence of the contact asymmetry vanishes,
except for cgy. A more detailed analysis of this effect is pre-
sented in Fig. 11, where we show ¢y as function of I't/I'y for
different value of & and U. It can be seen that the overall vari-
ations of ¢y are rather large, and only as the system goes into
the strongly interacting regime (large U) the effect of contact
asymmetry becomes small, and it completely vanishes for very
large U and &4 = 0, where it reaches the limiting value of 3/2
discussed above. Note that around I'p/['x = 1 (symmetric coup-
ling) ¢y varies quadratically for small variations of I't/I'y
around 1 (see also ESI section S97).
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Fig. 11 The dependence of the transport coefficient ¢y, obtained
from the rSPT, is displayed as a function of the asymmetry in the con-
tacts I'L/I'r, for different values of the dimensionless Coulomb repulsion
U/(n4) and local level energy (e4 + U/2)/A.

The rSPT provides a consistent description of the low-temp-
erature, low-field, low-bias transport properties of the
Anderson model. When the parameters are calculated from
DFT + NEGF, and combined with NRG and/or Bethe ansatz,
the method allows for an effectively first principles calculation
of all the transport parameters. If the atomic structure is well
defined, as is the case in STM experiment of molecules or
other adsorbates on flat surfaces,” the approach is predictive
on a quantitative level. When the structure is not known, as is
the case for the PTM/Au system considered here, the approach
allows to estimate ranges of possible electronic coupling coeffi-
cients, interactions energies and deviations from the particle-
hole asymmetry. In this case the results give a qualitative gui-
dance to experiments as to which atomic structures are
expected to lead to Kondo physics in a measurement.

6. Conclusions

The theoretical modeling of Kondo physics in nanoscale
devices is usually limited to fitting the parameters of a SIAM
to conductivity measurements. Due to this adjustment of the
parameters to the experiment such an approach is therefore
not predictive, and the question whether it captures the right
physics for a given experiment is therefore open. Moreover, it
does not provide any information on the relationship between
the device structure and its conductance as well as its elec-
tronic interactions. In order to overcome this limitation and
provide a predictive model here we present a scheme that
obtains the required parameters of the SIAM from DFT calcu-
lations for realistic atomic structures. Importantly, conduc-
tance measurements are inherently a non-equilibrium process,
and our novel scheme combining DFT, NEGF, NRG and rSPT
is designed to capture such effects. We derive the equations
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that relate the equilibrium density of states to the non-equili-
brium conductance versus voltage curves, which is necessary to
interpret experimental conductance measurements in terms of
the electronic and atomic structure of the system. With this
approach it is therefore possible to calculate the electronic and
non-equilibrium transport properties of strongly correlated
molecular junctions in a systematic and predictive way effec-
tively from first principles.

We employ the method for the description of the recently
measured Au/PTM/Au break-junctions. The main limitation of
break-junction experiments is that the statistical nature of the
measurements does not allow a direct understanding of the
atomic structures responsible for the conductance and its vari-
ations. First-principles calculations are therefore essential to
gain a full atomistic insight on the system properties. While
state of the art DFT + NEGF can only be applied to weakly cor-
related systems, the method presented here is proven to over-
come this limitation. In fact, for the Au/PTM/Au break-junc-
tion we show how the molecule-electrode contacts affect the
energy level alignment, charge transfer, hybridization and,
ultimately, the Kondo temperature and conductance.
Importantly, we show that while the Kondo temperature
depends only on the total hybridization of the molecules with
the electrodes, the experimental conductance depends also on
the relative coupling to left and right electrodes, since those
determine the current flow. Our projection scheme allows us
to obtain these required individual electronic couplings from
DFT, and with these we are able to evaluate the low bias con-
ductance versus voltage curves by means of the rSPT. For PTM
molecules weakly coupled to the electrodes, as is the case for a
molecule on an idealized perfectly flat Au surface, we predict
the Kondo temperature to lie below the experimentally accessi-
ble limit. In contrast, for asymmetric junctions with molecules
on a corrugated Au surface, where the central carbon atom has
a good electronic contact with the Au, the calculated Kondo
temperature is in good agreement with experiments. These
results are consistent with the experimental finding, where
only a limited number of junctions exhibit Kondo features in
the conductance at the accessible low temperatures.

Finally, we note that for experimental setups, where the
atomic structure is well characterized, such as for certain
adsorbates or defects on flat metal surfaces, the method will
enable quantitative comparisons with low-noise experiments.
By eliminating free parameters it can therefore lead to a sys-
tematic understanding of the non-equilibrium Kondo physics
of molecular systems. The inclusion of the rSPT allows to
predict systematic changes in non-linear transport at low
voltage, temperature and magnetic field, which cannot be
addressed directly from state of the art calculations of the
transmission coefficient alone. Such changes can be induced
experimentally, for example by varying the scanning tip height,
which modifies the asymmetry in the electronic coupling to
the electrodes, and these can then be calculated effectively
from first principles with the approach presented here. Our
method therefore paves the way toward the rational design of
Kondo systems, and the possibility of performing systematic

This journal is © The Royal Society of Chemistry 2018
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comparisons with unprecedented accuracy between theory and
experiments.
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The superconductivity in the Bi-II phase of elemental bismuth (transition temperature 7, ~ 3.92 K at pressure
p =~ 2.80 GPa) was studied experimentally by means of the muon-spin rotation as well as theoretically by using
the Eliashberg theory in combination with density functional theory calculations. Experiments reveal that Bi-II is

a type-I superconductor with a zero temperature value of the thermodynamic critical field B.(0) >~ 31.97 mT. The
Eliashberg theory approach provides a good agreement with the experimental 7. and the temperature evolution
of B.. The estimated value for the retardation (coupling) parameter kg7 /wy, = 0.07 (w, is the logarithmically
averaged phonon frequency) suggests that Bi-II is an intermediately coupled superconductor.

DOI: 10.1103/PhysRevB.99.174506

I. INTRODUCTION

Bismuth is element 83 in the periodic table. It is a brittle
metal with a silvery white color. Its complex and tunable elec-
tronic structure exhibits many fascinating properties that often
defy the expectations of conventional theories of metals. Most
notably, measurements on bismuth provided the first evidence
of quantum oscillations and the existence of the Fermi surface,
thereby experimentally confirming the underlying paradigm
of all modern solid state physics [1,2].

At ambient pressure bismuth is a compensated semimetal
with an exceptionally low carrier concentration of one free
charge carrier per about 10° atoms [3]. The Fermi surface
consists of tiny electron- and hole-like pockets giving rise to a
highly anisotropic effective mass, which can become as low as
~1073 that of the electron mass in some directions [4]. Such
properties lead to the highest Hall coefficient, the largest dia-
magnetism, and an exceptionally small thermal conductivity
which sets bismuth to be quite different compared to other
metals [5].

Upon application of pressure at room temperature, Bi
undergoes a series of structural transitions [6]:

Bi-1 “2%" Bi-it 2% Bi-tm 2% Bi-V < 220 GPa.
Upon cooling, all the above phases become superconducting
with the transition temperature (7¢) of 7. ~ 0.53 mK for Bi-I,
T. ~ 3.9 K for Bi-II, T. ~ 7 K for Bi-IIl, and T, ~ 8.5 K
for Bi-V, respectively [7-16]. The superconductivity in Bi-I
and Bi-III phases were found to be of type I and type II,
respectively [12-16]. Much less information is known for

; .
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other Bi phases. In particular, the Bi-I to Bi-II and Bi-II to
Bi-III transitions are well established at room temperature,
while their low temperature behavior leads to contradicting
results. References [17-22] suggest that the Bi-III phase forms
at 2.7 GPa at room temperature, while the Bi-II to Bi-III (or
possibly Bi-I to Bi-III) phase boundary occurs at pressures
p 2 3.0 GPa at 0 K. The Bi-II phase likely extends down
to 200 K only, where the Bi-I-II-III triple point may occur
[20,22]. On the other hand, the superconducting Bi-III phase
was observed at pressures of ~2.7 GPa by several other
research groups, as well as by us [13-16]. Some groups have
also reported superconductivity in Bi-II phase at pressures of
~2.5 GPa with T, ~ 4 K [7,10,22]. It is worth to note here,
that a pure Bi-II phase has never been observed alone, but
always appeared as an admixture to the Bi-I or Bi-III phases
[10,13,15]. It seems, therefore, likely that the Bi-II phase
becomes metastable at low temperatures.

This paper presents the results of an experimental and
theoretical study of the Bi-II superconductor. The bulk
Bi-II phase (T; ~ 3.92 K at p >~ 2.80 GPa) was stabilized by
approaching it from the preformed Bi-III one (7. >~ 7.05 K
at p~2.72 GPa, Ref. [16]). Muon-spin-rotation (uSR)
measurement reveal that the magnetic induction (B) in a
cylindrical Bi-II sample (with the magnetic field applied per-
pendicular to the cylinder axis) is separated between normal
state (BN = B., B. is the thermodynamical critical field) and
superconducting (Bs = 0) domains thus indicating that Bi-II
is a superconductor of type I. The zero temperature thermo-
dynamic critical field was found to be B.(0) >~ 31.97 mT.
The Eliashberg theory provides a good agreement with the
experimental critical temperature (~~3.95 K), the zero temper-
ature critical field (~36.6 mT), and the temperature evolution
of B.(T). The estimated value for the retardation parameter

©2019 American Physical Society
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FIG. 1. (a) The distribution of fields in a type-II superconductor in the vortex state (left panel) and the corresponding magnetic field
distribution function P(B) (right panel). (b) The schematic representation of nucleation of a plate-like type-I superconductor in normal state
(Bn = B.) and superconducting (Bs = 0) domains (left panel). An ordered laminar structure is formed with an additional in-plane component
B;, after Refs. [23,24]. The right panel is the P(B) distribution in type-I superconductor. (c) Fourier transform of TF-SR time spectra measured
at external field Bex >~ 20 mT reflecting the P(B) distribution in the Bi-II sample above (T = 2.5 K) and below (7 = 0.5 and 2.0 K) the
superconducting transition temperature [7.(20 mT) =~ 2.3 K]. (d) The contour plot of the P(B) distribution measured at B, =~ 20 mT. (e) The
temperature dependence of the thermodynamical critical field B, for the Bi-II sample obtained in @SR experiments with the applied field
Bex = 3, 10, 20, and 30 mT. The dashed line is the temperature evolution of the “theoretical” B, 1 obtained within the framework of ab initio
Eliashberg calculations using density functional theory. The solid line is the same B, r(T") curve with T, = 3.922 K and B.(0) = 31.97 mT

adjusted from the fit (see text for details).

kgT./wi, =~ 0.07 (wyy, is the logarithmically averaged phonon
frequency) suggests that Bi-II is an intermediately coupled
superconductor.

II. EXPERIMENT

The Bi sample and the pressure cell were the same as
used in our previous experiments for studying Bi-III super-
conductivity (Ref. [16]). The transformation of the Bi sample
from the Bi-III to Bi-II phase was made by allowing the
sample volume to increase inside the pressure cell [25], and
ac susceptibility (ACS) measurements reveal the presence of
a sharp superconducting transition at 7. ~3.92 K at p ~
2.80 GPa. The amount of Bi-III phase admixture, obtained
in the ACS experiments, does not exceed 10%—15% (see the
Supplemental Material, Ref. [25]). The transverse-field (TF)
1SR experiments were carried out at the wE1 beam line by us-
ing the dedicated General Purpose Decay (GPD) spectrometer
(Paul Scherrer Institute, Switzerland). The details of TF-uSR
experiments performed under pressure are provided in the
Supplemental Material, Ref. [25], and in Refs. [26-28].

Due to its microscopic nature, the wuSR technique
allows one to directly distinguish between type-I and
type-II superconductors, since both superconductivity types
are characterized by very different magnetic field distributions
[P(B)’s] inside the specimen. An ordered flux-line lattice
(FLL) of the type-II superconductor has the field distribution
and the corresponding P(B) which are shown schematically
in the left and right panels of Fig. 1(a). The calculations were
performed within the framework of the London model with
the Gaussian cutoff for a triangular FLL (B¢x = 20 mT, the

magnetic penetration depth A = 200 nm, and the coherence
length £ = 50 nm; see the Supplemental Material, Ref. [25]).
The asymmetric magnetic field distribution function P(B)
centers in the vicinity of Be. It is characterized by two cutoffs
fields and by the peak shifted below B. [see the right panel
at Fig. 1(a), and, e.g., Refs. [31,32] and references therein].
A type-I superconductor expels a magnetic field completely,
apart from a layer at the surface of thickness A. However, in
samples with a finite demagnetization factor n, a separation
between superconducting domains (with Bs = 0) and normal
state domains (with By = B. > Be) can occur [see the left
panel at Fig. 1(b) showing schematically the nucleation of a
platelike sample on S/N domains, and, e.g., Refs. [33—36] and
references therein]. In this case, P(B) consists of two, B =0
and B = B., lines [right panel of Fig. 1(b)]. Such distributions
(without, however, the B = 0 line) were reported in earlier
1SR measurements on type-I superconductors Sn, Pb, and In
[37-40], and in recent experiments on BeAu [41,42].

Figure 1(c) shows the Fourier transform of few represen-
tative TF-uSR time spectra (the pressure cell background
subtracted) measured at B.x = 20 mT. Figure 1(d) represents
the contour plot of the corresponding Fourier intensities. The
overall behavior shown in Figs. 1(c) and 1(d) corresponds
to the response of a type-I superconductor with a nonzero
demagnetization factor n in an applied field B.x of B.(1 —
n) < Bex < B [see the discussion above, Fig. 1(b) and Refs.
[37-42]]. Indeed, the P(B) distributions at 7 ~ 0.5 and 2.0 K
split into two peaks with the first one at B =0 and the
second one ~12 and ~5 mT higher than the applied field By,
respectively. With increasing temperature, the intensity of the
B = 0 peak decreases until it vanishes at 7 >~ 2.3 K, while the
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TABLE I. Experimental and calculated material parameters for various bismuth phases. T; is the superconducting transition temperature,
B, is the thermodynamical critical field, B, is the upper critical field, Ay is the electron-phonon coupling constant, yy is the normal state
electronic specific heat coefficient [25], wy, is the characteristic phonon frequency, and kgT./w, is the retardation (coupling) parameter. n/a

means the parameter is not available.

T B. B N kgT./wi
Superconductivity (K) (mT) (T Xel—ph (erg cm3K™?) Wi (meV) References
Bi-I type-I 0.00053 0.0052 - 0.236 399 n/a n/a [12,29,30]
Bi-II type-1 3.92 31.97 - - - - - This work, experiment
Bi-II type-1 3.95 36.6 - 1.02 2206 4.69 0.072 This work, theory
Bi-III type-11 7.05 73.6 2.6 2.75 n/a 5.51 0.110 [14-16]
Bi-V n/a 8.50 n/a n/a n/a n/a n/a n/a [10,15]

intensity of the B > Bk peak increases by approaching 7' =~
2.3 K and saturates above it [Figs. 1(c) and 1(d)]. The position
of the B > By peak shifts in the direction of B all the way up
to ~2.3 K and coincides with B¢ for higher temperatures. The
intensities of the B = 0 and B > B peaks are proportional
to the volume fractions of the superconducting (Bs = 0) and
the normal state (By = B.) domains. The disappearance of
the B = 0 peak above 2.3 K corresponds to the transition of
the sample into the normal state [7.(B = 20 mT) =~ 2.3 K].
The position of the B > B peak represents the temperature
evolution of the thermodynamical critical field B, [red dashed
line in Fig. 1(d)].

Note that our uSR data exclude the possibility of type-II
superconductivity in Bi-II. Additionally, the zero temperature
critical field was found to be half the value of B.(0) >~ 73 mT
reported in Ref. [13]. Field scans at 7 = 0.25, 2.1, and 3.0 K
with 1-mT steps (from 0.3 to 35 mT) and temperature scans
at Bex = 3, 10, 20, 30, and 35 mT with 0.125 K steps (from
0.25 to 8.0 K) do not show any FLL-type uSR response. No
superconductivity was detected at Bex = 35 mT down to the
lowest temperature of the experiment (~0.25 K) and for all
applied fields at 7 > 4 K. The fact that no FLL signal was
observed above 4.0 K, suggests also that the admixture of the
Bi-III phase (7. ~ 7 K as is detected in the ACS experiment;
see the Supplemental Material, Ref. [25]) is minimal in the
sample volume. Our results imply, therefore, that within the
full range of temperatures (0.25 < 7 < 8.0 K) and fields
(0.3 < Bex < 0.35 mT) studied, the Bi-II phase of elemental
bismuth behaves as a typical type-I superconductor.

The temperature dependence of the thermodynamical crit-
ical field B, as determined from the measured field value
in the normal-state domain [B. = By, see Figs. 1(b), 1(c)
and 1(d)], is shown in Fig. 1(e). The points are obtained
with several applied fields (Bex = 3, 10, 20, and 30 mT) and
they overlap within certain temperature and field regions. The
reason for such overlapping is caused by the intermediate state
formation condition: B¢(T) (1 — n) < Bex < Bc(T), showing
that similar B.(T ) can be obtained for different B, ’s [37—40].

III. THEORY

The obtained experimental data were compared with quan-
titative predictions based on ab initio Eliashberg calculations
using density functional theory (DFT). The details of calcula-
tions are given in the Supplemental Material, Ref. [25]. The

experimental and calculated material parameters for the Bi-II
phase are summarized in Table I.

Figures 2(a) and 2(b) display the phonon density of
states (DOS), the Eliashberg electron-phonon spectral func-
tion [a?F (w)], and the integrated electron-phonon coupling
constant: Aej_pp(w) = 2 fow %“,”azF (). In the high frequency
limit Aej_pp Was estimated to be Aej_ph(w — 00) 2 1.02. The
logarithmically averaged phonon frequency wy,, representing
a characteristic phonon energy mediating the pairing [43], was
calculated via

2 Cdo ,
W = exp —a'F(w)ho ),
)”elfph 0 w

and found to be w}, = 4.69 meV.

The dashed line in Fig. 1(e) represents the temperature
evolution of B, 1(T') computed from the free energy difference
between the normal and superconducting states (AF) via
B.(T) = ~/—8mw AF (hereafter the index “T” accounts for
the parameter obtained from the theory). AF was calculated
within the strong-coupling Eliashberg theory following the
approach developed by Bardeen and Stephen [44]. The transi-
tion temperature 7. v = 3.95 K and the zero temperature value
of the thermodynamical field B, 1(0) = 36.6 mT are found.
Scaling the B.(T') curve further allows direct comparison with
the experimental data. The adjusted curve with 7, ~ 3.922 K
and B;(0) ~ 31.97 mT is shown by the solid line in Fig. 1(e).

In order to better visualize the difference between the
theory and the experiment, the deviation function D(T'/T;) =
B.(T)/B.(0) — (1 — [T/T.]?) is plotted in Fig. 2(c). For com-
parison, the weak coupling BCS results are also shown.
Obviously, the BCS theory underestimates the experimental
D(T/T.) and a significant improvement is obtained using the
Eliashberg theory. Although some quantitative discrepancies
remain, the main features are captured.

Many thermodynamic quantities, like the condensa-
tion energy or the specific heat jump AC(T:)/ynT. =
Ces(Te)/yNT. — 1, can be expressed directly by using the
derivative of D(T'/T;) as follows [45]:

ey

2
oD(T/T.
/L) e
8([T/Tc] ) (T/Tc)2=1
Here yy is the electronic specific heat coefficient in the normal

state (see the Supplemental Material, Ref. [25], for the yN
estimate) and C.s(7T")/ynT- is the electronic specific heat in the

AC(T)  B.(0Y
wle 2T
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FIG. 2. (a) Calculated phonon density of states. (b) Calculated Eliashberg electron-phonon spectral function (red solid line) and integrated
electron-phonon coupling strength A._p, (green dashed line). (c) The deviation function D(T' /T.) = B.(T)/B.(0) — (1 — [T/ T.1%). The solid
blue and dashed lines correspond to the Eliashberg and the BCS approach, respectively.

superconducting state. We proceed with the direct numerical
calculation of Cs(T') within the Eliashberg theory (see the
Supplemental Material, Ref. [25]). The heat capacity jump
AC(T)/y~nT: =~ 2.40 was found, which is large in comparison
with the universal BCS value of 1.43. Such a large jump in the
specific heat for Bi-II is certainly accessible for calorimetric
measurements.

IV. CONCLUSIONS

To conclude, the superconductivity in the Bi-II phase of
elemental bismuth was studied experimentally by means of
muon-spin rotation, as well as theoretically using the Eliash-
berg theory in combination with density functional theory
calculations. Experiments reveal that the magnetic induction
in the cylindrical Bi-II sample is separated into the normal
state and superconducting domains thus suggesting that Bi-II
is a superconductor of type I. The transition temperature and
the zero temperature thermodynamic critical field were found
to be T, ~ 3.92 K and B.(0) >~ 31.97 mT, respectively. The
electronic and the superconducting properties of Bi-II were
computed from first principles. Following the phenomenolog-
ical approach of Carbotte [46], the strong coupling correc-
tions were embodied via the retardation parameter kg7t /.
Including retardation effects, the Eliashberg theory provides
better agreement with the experimental data than the weak
coupling BCS approach. The theory values for the critical
temperature (7. 7 >~ 3.95 K) and the zero temperature critical
field B, 7(0) = 36.6 mT, as well as the temperature evolution
of B.(T) are in agreement with the experiment. The specific
heat jump, as estimated from the deviation function D(T'/T.),
was found to be AC(T.)/ynT: = 2.40, which is large in com-
parison with the universal BCS value of 1.43. The ab initio
calculations result in the value of the retardation parameter
kgT./wn =~ 0.07 and put Bi-II in the category of intermediate

coupling superconductors, being away from the very strong
coupling limit kgT;/w;, =~ 0.25. Finally, our analysis reveals
that the Cooper pairing in Bi-II is a consequence of balance
between the electron-phonon attraction and a significant direct
Coulomb repulsion. Compared to our previous study of Bi-III
[16], the retardation effects in Bi-II were found to be less
efficient than in Bi-III. While Bi-III is a type-II strong-coupled
superconductor [14-16], the Bi-II and Bi-I are type-I super-
conductors with the intermediate (present study) and weak-
coupling (Ref. [30]) strength, respectively (see also Table I
summarizing experimental and calculated material parameters
for various bismuth phases). In this respect the high pressure
1SR experiments, as those presented here and in Ref. [16]
on elemental Bi, are essential tools to elucidate the nature of
the interplay between structural and superconducting phases
in conventional superconductors.
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‘We present results from light scattering experiments on tetragonal FeS with the focus placed on lattice dynamics.
We identify the Raman active A, and B, phonon modes, a second order scattering process involving two acoustic
phonons, and contributions from potentially defect-induced scattering. The temperature dependence between 300
and 20 K of all observed phonon energies is governed by the lattice contraction. Below 20 K the phonon energies
increase by 0.5-1 cm™!, thus indicating putative short range magnetic order. Along with the experiments we
performed lattice-dynamical simulations and a symmetry analysis for the phonons and potential overtones and
find good agreement with the experiments. In particular, we argue that the two-phonon excitation observed in a
gap between the optical branches becomes observable due to significant electron-phonon interaction.

DOI: 10.1103/PhysRevB.97.054306

I. INTRODUCTION

In the iron based superconductors (IBS) magnetic order,
structure, nematicity, and superconductivity are closely inter-
related. Upon substituting atoms in the parent compounds the
properties change in a way that the shape of the Fermi surface
is generally believed to play a crucial role. Yet, the magnetic
properties were found recently to be more complex and to
depend also on the degree of correlation in the individual d
orbitals contributing to the density of states close to the Fermi
surface [1-3].

The influence of correlation effects seems to increase from
the 122 systems such as BaFe,As; to the 11 chalcogenides
FeTe, FeSe, and FeS [4,5]. Surprisingly, the properties of the 11
class members differ substantially although they are isostruc-
tural and isoelectronic [3,6]: FeSe undergoes a structural
transition at 7y ~ 90 K and displays electronic nematicity [7].
While long-range magnetic order cannot be observed down to
the lowest temperatures [7—10] the thermodynamic properties
and the Raman spectra strongly support the presence of short-
ranged magnetism [11,12]. Below 7 ~ 9 K superconductivity
is observed [13] in pristine FeSe. In mono-layer FeSe 7, can
reach values close to 100 K [14,15].
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The replacement of Se by Te leads to slightly off-
stoichiometric Fe ., Te which exhibits a simultaneous magne-
tostructural transition near 67 K [16] but is not superconducting
[17,18]. Finally, FeS having a superconducting transition at
T, ~ 5 K [19] remains tetragonal down to the lowest temper-
atures [20]. It is still an open question whether tetragonal FeS
hosts magnetic order. Obviously, the iron-chalcogenides are at
the verge of various neighboring phases and very susceptible to
small changes in the lattice and electronic structure. Yet direct
access to the competing phases is still very difficult in FeTe
and FeS because of the variation of the crystal quality across
the families.

Here, we choose a slightly different approach and do not
look directly at the electronic but rather at the lattice properties
in FeS close to potential instabilities and use the Raman-active
phonons as probes. We identify the A;, and B;, modes,
a two-phonon scattering process, and a fourth mode from
either defect-induced scattering or second-order scattering as
well. These results are in good agreement with numerical
calculations. Furthermore the temperature dependence of all
phononic modes supports the results reported in Refs. [21,22],
where emerging short range magnetic order at approximately
20 K was reported.

II. EXPERIMENT

Single crystals of FeS were synthesized as described else-
where [23]. Before the experiment the samples were cleaved
in air.

©2018 American Physical Society
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FIG. 1. Raman spectra of FeS at T = 80 K measured with light
polarizations as indicated. The inset shows the crystal structure of FeS
and the polarization directions with respect to the crystal orientation.

Calibrated customized Raman scattering equipment was
used for the experiment. The samples were attached to the cold
finger of a He-flow cryostat having a vacuum of approximately
5 x 107> Pa. For excitation we used a diode-pumped solid state
laser emitting at 575 nm (Coherent GENESIS). Polarization
and power of the incoming light were adjusted in a way that
the light inside the sample had the proper polarization state and,
respectively, a power of typically P, = 3 mW independent of
polarization. The samples were mounted as shown in the inset
of Fig. 1. The crystallographic axes are a and b with |a| = |b|.
The ¢ axis is parallel to the optical axis. @’ and b’ are rotated
by 45° with respect to a and b. The laser beam reached the
sample at an angle of incidence of 66° and was focused to a
spot of approximately 50 nm diameter. The plane of incidence
is the bc plane. By choosing proper in-plane polarizations of
the incident and scattered light the four symmetry channels
Ajg, Aag, Big, and By, of the Dyy, space group can be accessed.
Additionally, for the large angle of incidence, exciting photons
being polarized along the b axis have a finite c-axis projection
and the E, symmetry can also be accessed. For the symmetry
assignment we use the 2 Fe unit cell (crystallographic unit cell).

The observed phonon lines were analyzed quantitatively.
Since the phonon lines are symmetric and I'.(T') < o(T') the
intrinsic line shape can be described by a Lorentz function
with a central temperature dependent energy w(7') and a width
I'L(T) (FWHM). The widths turn out to be comparable to the
resolution o of the spectrometer. Therefore, the Lorentzian
needs to be convoluted with a Gaussian having width ' = o.

III. THEORY

The electronic structure and the phonon dispersion were
calculated using density functional theory (DFT) and den-
sity functional perturbation theory (DFPT), respectively, [24]
within the QUANTUM ESPRESSO package [25]. The calculations
were performed with the experimental unit cell parameters
a=3.6735A, c =5.0328 A, and z = 0.2602, where  is the
height of the sulfur atoms above the Fe plane in units of the
c axis [26]. We used the Vanderbilt ultrasoft pseudopotentials
with the Becke-Lee-Yang-Parr (BLYP) exchange-correlation
functional and s and p semicore states included in the valence
for iron. The electron-wave-function and density energy cut-

offs were 70 Ry and 560 Ry, respectively, chosen to ensure
stable convergence of the phonon modes. We used a Gaussian
smearing of 0.01 Ry. The Brillouin zone was sampled with a
16 x 16 x 16 Monkhorst-Pack k-space mesh. Our electronic
structure and phonon calculations are in agreement with
previously reported results [27,28].

The experimental positions of the S atoms entail a nonzero
z component of the force of 6 x 1072 Ry/ag acting on them
with ag the Bohr radius. However, the relaxation of the z
positions of the S atoms would result in a large discrepancy
between the calculated and experimental energies of the optical
branches [28], whereas the phonon frequencies calculated from
experimental structure parameters are in good agreement with
the experiment (see Table II). When using the measured lattice
parameters, including atomic positions, some of the acoustic
phonons are unstable and do not have a linear dispersion at
small k. Upon relaxing the atomic positions the acoustic dis-
persion becomes linear and the energies at the zone boundary
decrease slightly. The energies of the optical branches, on the
other hand, increase by some 10%. Having all this in mind,
we choose to use the experimental lattice parameters stated
above. In this sense our calculations should be understood as
a compromise.

The phonon dispersion and the density of states were
calculated on a 6 x 6 x 6 Monkhorst-Pack k-point mesh, and
the dispersion is interpolated along the chosen line. The
calculated phonon dispersions of the experimental and relaxed
structures qualitatively coincide and display similar shapes and
a gap. Discrepancies only appear in the absolute energies.

The selection rules for two-phonon processes were calcu-
lated using the modified group projector technique (MGPT)
[29], which avoids summing over an infinite set of space group
elements.

IV. RESULTS AND DISCUSSION
A. Polarization dependence

Raman spectra of FeS for four linear polarization config-
urations at a sample temperature of 7 = 80 K are shown in
Fig. 1. Three peaks can be identified at 215,265, and 305 cm~".
The symmetric peak at 215 cm™! shows up for aa, bb, and
a'b’ polarizations, but vanishes for ba polarization. Hence the
excitation obeys Bj, selection rules and can be identified as
the out-of-phase vibration of iron atoms along the ¢ axis. The
strongest slightly asymmetric peak at 305 cm™! obeys Aj,
selection rules with contributions of order 5% in ba and a'b’
polarizations from either leakage or defect-induced scattering.
An asymmetric Fano-type line shape can be acquired by cou-
pling a phonon to an electronic continuum. However, as shown
in Fig. 6 in the Appendixes, we find that the superposition of
two symmetric, yet spectrally unresolved peaks gives a better
agreement with the data than the description in terms of a Fano
function. The stronger peak at 305 cm™~! has Aj, symmetry
with some remaining leakage. We therefore identify this mode
with the in-phase vibration of sulfur atoms along the ¢ axis. The
second peak, labeled P2, appears in spectra with parallel light
polarizations and vanishes in ba, but has some contribution in
a’b’ polarizations, suggesting mixed A;, and B;, symmetry.
The third peak, labeled P1, is symmetric and appears only in
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FIG. 2. Raman spectra of FeS in bb polarization projecting A, +
B, + E, symmetries measured at temperatures given in the legend.

The inset shows the light polarizations with respect to the crystal
orientation.

spectra with parallel light polarizations and thus has pure Ay,
symmetry.

B. Temperature dependence

For properly assigning all observed modes and for getting
access to putative phase transitions we studied the temperature
dependence. Figure 2 shows Raman spectra in bb polarization
at 8, 40, and 300 K. The three peaks shift to higher energies
upon cooling. The fourth peak P2 cannot be resolved in the
raw data and can only be analyzed after a fitting procedure
(see Appendix B). The peak energies w(7') and the (intrinsic)
linewidths I'L(T") were determined as described at the end of
Sec. II. All four modes show a monotonous increase in energy
and decrease in linewidth upon cooling as shown in Fig. 3.
Below 20 K the increase in the energies accelerates. We first
address this overall behavior and disregard the anomaly around
50 K for the moment.

The shift and narrowing of all modes can be explained
in terms of lattice contraction using a constant Griineisen
parameter y and anharmonic decay into other phonon modes,
respectively. The change in the (Lorentzian) linewidth I' (T')

is given by [30]
2)“+':Ph>. (1
exp (5;5) — 1
The zero temperature limits I'; o and @y were obtained by
extrapolating the respective experimental points of I'L (7') and
w(T)intherange 20 < T < 50 Kto T = 0 (Fig. 3). With the
phonon-phonon coupling Aph.pn being the only free parameter
the temperature dependence of I'(7) can be described as
shown by red dashed lines in Fig. 3. The phonon energy w(7T)
contains contributions from both the anharmonic decay and the
lattice contraction, which depends essentially on the thermal
occupation of the phonons, and can be written as [31]

V(T) =V,
Vo

)]
- + e
(ﬁwo exp (51:7) — 1

(T = FL,O(l +

o(T) = a)o|:1 -y

L L L 5
0 50 100 150 200 250 300
Temperature (K)

FIG. 3. Temperature dependence of energy and width of the four
observed phonon modes in FeS. Black squares show the phonon
energies w; open circles denote the phonon linewidths I'.. The red
dashed and solid lines represent the temperature dependencies of
the phonon linewidths and energies according to Egs. (1) and (2),
respectively. For better visualizing the low-temperature part, the data
of this figure are plotted on a logarithmic temperature scale in Fig. 8
of Appendix D.

V(T) and Vj, are the volumes of the unit cell at temperatures
T and T — 0, respectively. The numbers for the calculations
are taken from Ref. [20]. The second term describes the effect
of phonon damping on the line position in the harmonic approx-
imation. Using Apppn from Eq. (1), the Griineisen parameter
y is the only free parameter and is assumed to be constant.
The temperature dependencies w(T') resulting from the fits are
plotted in Fig. 3 as solid red lines. The numerical values for
parameters y and Ap,pn Obtained from the T'-dependent energy
and linewidth are compiled in Table I.

Below 20 K and around 50 K anomalies are found in the
experimental data as follows:

(i) At 50 K the peak energies of all four modes deviate
significantly from the otherwise smooth temperature depen-
dence. The nearly discontinuous increase in energy could
be reproduced for the A, phonon and peak P2 in multiple
measurements. For the B, phonon and mode P1 the anomaly
is not as clearly reproducible. The energy anomalies do not
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TABLEI. Symmetry, Griineisen constant y, and phonon-phonon
coupling parameter Aphph Of the four experimentally observed modes.

Mode Symmetry y Aph-ph
S Ay, 2.2 1.68
Fe B, 34 0.31
P1 Ajg 2.4 0.25
P2 Aj, + By, 2.2 0.31

have a correspondence in the linewidth. As there is neither
an abrupt change in the lattice constants [20] nor any other
known phase transition close to 50 K the origin of this anomaly
remains unexplained although we consider it significant.

(i1) Upon cooling from 20 K to 4 K all four modes exhibit
sudden, yet small, increases in energy. The changes in width
are heterogeneous in that the A;, mode narrows and the B,
mode broadens. No clear tendencies can be derived for modes
P1 and P2. Sudden changes in the temperature dependence
typically indicate phase transitions. Yet, no phase transition has
been identified so far. However, the anomaly at 20 K coincides
with the emergence of short range magnetic order as inferred
from two uSR studies [21,22]. Susceptibility measurements
on a sample from the same batch were inconclusive. On the
other hand, the XRD data show a small anomaly in the lattice
parameters and the unit cell volume does not saturate at low
temperature but rather decreases faster between 20 K and 10 K
than above 20 K [20]. This volume contraction by and large
reproduces the change in the phonon energies as can be seen
by closely inspecting the low-temperature parts of Fig. 3 (see
also Fig. 8). Hence the indications of short-range magnetism in
FeS found by SR have a correspondence in the temperature
dependence of the volume and the phonon energies.

Clear phonon anomalies were observed at the onset
of the spin density wave (SDW) phases in 122 systems
[32-34] and of the more localized magnetic phase in FeTe [35],
whereas continuous temperature dependence of the phonons
was found in systems without long-range magnetism [36,37].
Upon entering the SDW state in the 122 systems the A, (As)
mode softens abruptly and narrows by a factor of 3, whereas
the By, (Fe) mode stays pinned and narrows only slightly [32].
The strong coupling of the As mode to magnetism was traced
back to the interaction of the Fe magnetic moment with the
Fe-As tetrahedra angle [38], which goes along with a change
of the c-axis parameter. In Fe 1, Te the roles of the B, and
A1, modes are interchanged [35,39,40]. In contrast, all four
modes observed here in FeS harden below T* ~ 20 K being
indicative of a type of magnetic ordering apparently different
from that in the other Fe-based systems.

Very recently, commensurate magnetic order with a wave
vector of q = (0.25,0.25,0) was found in FeS below Ty =
116 K using neutron powder diffraction [41]. In the Raman
spectrano anomalies can be seen around 120 K even if the range
is studied with fine temperature increments of 10 K as shown
in Appendix C. However, a small change in the temperature
dependence of the c-axis parameter is observed around 100 K
by XRD [20], which could be related to this type of magnetic
order. Since the influence on the volume is small there is no
detectable impact on the phonons.

TABLE II. Raman active phonon modes in t-FeS. Shown are the
symmetries, the theoretical predictions for the experimental lattice pa-
rameters at 7 = 0, and the atoms involved in the respective vibrations.
The experimental energies in the third column are extrapolations to
T = 0 of the points measured between 20 K and 50 K.

Phonon energy (cm™!)

Symmetry Calculation Experiment  Atomic displacement
Ay, 316.1 305.3 S

B, 2204 215.8 Fe

E, 231.6 Fe, S

E, 324.8 Fe, S

C. Analysis of the modes P1 and P2

Based on the energies, the selection rules, and the tempera-
ture dependence we first clarify the phononic nature of the two
lines P1 and P2, which cannot as straightforwardly be identified
as lattice vibrations as the in-phase sulfur and out-of-phase iron
vibrations at 305.3 and 215.8 cm~!. Second we derive their
origin from the phonon density of states (PDOS) calculated
for the zero-temperature limit.

All experimental energies for T — 0 were derived from the
points at low temperature as described in Sec. IV B (see also
Fig. 3). The results for the modes at the I" point are summarized
in Table II and can be directly compared to the results of the
calculations. The discrepancies between the experimental and
theoretical energies for the Raman-active phonons are smaller
than 4%. The price for this accuracy in the optical energies is
an instability and possibly too high energies in the acoustical
branches at small and, respectively, large momentum (see
Sec. III).

The unidentified peaks P1 and P2 appear in the spectra
measured with aa polarization, where none of the electric
fields has a projection on the ¢ axis. Thus they cannot have E,
symmetry obeying ca and cb selection rules. In addition, the
observed energies would be relatively far off of the calculated
energies (see Table II). Both peaks exhibit temperature de-
pendencies similar to those of the two Raman-active phonons
and the Griineisen parameters are close to the typical value
[42] of 2 and similar to those of the Raman-active phonons.
The phonon-phonon coupling parameters Ayp_py derived from
the temperature dependence of the linewidths are close to 0.3
similar to that of the B;g phonon. A,ppn of the Aj, phonon
is roughly five times bigger for reasons we address later. Yet,

because of the small prefactor (I'r o/ ﬁw@z = 0(1073), the
contribution of phonon-phonon coupling to the temperature
dependence of w(7T) remains negligible in all cases and
the phonon energies are essentially governed by the lattice
contraction. These considerations demonstrate the phononic
origin of the peaks P1 and P2.

In the second step we try to identify the phonon branches
to which P1 and P2 can be related. To this end the full
phonon dispersion and density of states (PDOS) were derived
as described in Sec. III and are plotted in Fig. 4.

Independent of using the relaxed or experimental structure,
P1 is located in the gap of the (theoretical) PDOS and cannot
result from first order defect-induced Raman scattering. What
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FIG. 4. Phonon dispersion of t-FeS. (a) Brillouin zone with high
symmetry points and lines [43]. (b) Phonon dispersion along the
directions as indicated and phonon density of states (PDOS). The
gray-shaded area marks the gap in the phonon dispersion. The disper-
sion shown here is derived using experimental lattice parameters. For
this reason some of the acoustic phonons are unstable and do not have
a linear dispersion around the I" point. Upon relaxing the structure
the acoustic dispersion becomes linear at I', and the energies at the
zone boundary decrease slightly. The energies of the optical branches,
on the other hand, increase by some 10%. M’ = (0.4,0.4,0.0) and
A’ =(0.4,0.4,0.5). The experimental energies of the four observed
modes are shown as black lines.

alternatives exist for explaining P1? If we exclude exotic
explanations such as a collective mode for the reasons given
above the energy of wp; = 265 cm~! can only be obtained by
the sum of two phonon modes having equal energy wp; /2 and
momenta k and —k (for maintaining the ¢ & 0 selection rule).
As shown for various transition metal compounds including
TiN, ZrN, or NbC second-order phonon Raman scattering can
occur in the presence of defects [44]. Then first-order scattering
being proportional to the PDOS (modulo energy and symmetry
dependent weighting factors) is expected to be also substantial
if not stronger. Although our crystals are slightly disordered
there is no indication of substantial intensity at energies with
high PDOS as can be seen by directly comparing Figs. 1 and
4(b). Alternatively, second-order scattering can originate in
enhanced electron-phonon coupling [45]. In either case the
energies of two phonons add up as they get excited in a
single scattering process. Generally, no selection rules apply
for second order Raman scattering and the resulting peak would
appear in all symmetry channels [46]. Exceptions exist if the
phonon wave vectors coincide with high-symmetry points or
lines of the Brillouin zone.

From the phonon dispersion alone several phonon branches
having k and —k and energies in the range around wp; /2 could
add up to yield 265 cm™! (see Fig. 4). However, as explained in
Appendix F and shown in Table III for the space group P4/nmm

of t-FeS, the A1, selection rules of P1 exclude all nonsymmetric
combinations of branches (right column of Table III). On the
other hand, all symmetric combinations include A, selection
rules for the two-phonon peak (left column of Table IIT) and
one has to look essentially for a high PDOS in the range wp; /2.
As shown in Fig. 4(b) the PDOS has a maximum in the right
energy range. Since the maximum results from momenta away
from the high-symmetry points or lines (see Fig. 4) which alone
lead to pure A1, symmetry one expects also intensity in By, and
E, symmetry as opposed to the experiment. For exclusive A,
selection rules only seven possibilities exist. Since phase space
arguments favor modes having a flat dispersion in extended
regions of the Brillouin zone the I', M, and/or A points are
unlikely to give rise to P1, and only the lines S = A — Z, ¥ =
I' =M, and V = A — M remain. The dispersion along the
S or ¥ branch contributes very little to the PDOS. On the
high-symmetry line V a doubly degenerate branch would have
a flat dispersion [see Fig. 4(b)] and contributes substantially
to the PDOS but the energy of 150 cm™! differs by 13%
from the expected energy of 132.5 cm™!. Instead of arguing
about the accuracy of the theoretical phonon energies (see
Sec. III) we looked at the dispersion close to but not strictly
on V where the contribution to Bj, and E, symmetries is
expected to be still very small, e.g., along M’ — A’ [Fig. 4(b)].
A detailed inspection shows that the maximum of the PDOS
between 130 and 140 cm~! comes from there. This explains
both the selection rules and the energy of P1 to within a few
percent.

Peak P2 cannot be explained in terms of one of the two E,
phonons either. As opposed to P1 it is not inside the gap of
the PDOS and thus can originate from either first or second
order scattering. If P2 originates in second order scattering
in the same fashion as P1 there are five possibilities yielding
A1g + B, but not E, selection rules. As explained in the last
paragraph only the branches A =T — X and U = Z — R may
contribute. For the low PDOS there we consider also first order
defect-induced scattering for P2 to originate from. In fact, the
PDOS possesses its strongest maximum 5 cm~! below the
(theoretical) A, phonon exactly where P2 is found. In spite
of the very high PDOS here, the peak is weak explaining
the negligible contributions from first order defect-induced
scattering at lower energies. The high PDOS between 300 and
325 cm~! may also be an alternative yet less likely explanation
for the weak contributions in crossed polarizations in the
energy range of the A, phonon (Fig. 1).

Finally, we wish to clarify whether the large phonon-phonon
coupling k?ﬁ_’;h found for the A;, Raman-active mode (see
Table 1) is related to the appearance of P1. Due to the close
proximity of the energies the A, mode apparently decays
into states close to those adding up to yield P1. The decay
is less restricted by symmetry leaving more options. For both
processes the phonon-phonon coupling has to be substantial
with the order of magnitude given by kgﬁ_f,h ~ 1.7. Phonon-
phonon coupling is present in any type of material because
of the anharmonic potential. Defects enhance this effect [44].
Since FeS is a metal the phonon-phonon coupling goes at least
partially through electronic states and may be indicative of
enhanced electron-phonon coupling, A.ph, as described, e.g.,
in Ref. [45]. The related contribution to Aypp, is then expected
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TABLE III. Two-phonon processes in FeS. The symmetry group of the FeS system is the space group P4/nmm. For products of irreducible
representations (IRs) in the left column Raman active modes (RM) in decomposition are given in the right one. Raman active modes of FeS
are 'Y (A1), I'S (By,), and two double degenerate I'Y (E,). I'f" comes from vibrations of S atoms, Iy from Fe ones, and both atom types
contribute with one pair of I'Y modes. For complex representations (V) 234 and all W) the double index indicates that the real representation
is used, for example, Vi3 = V| @ V" = V| @ V3. Irreducible representations of the space group given in Ref. [53] are used.

Overtones

RM
in decomposition

IR products
(phonon states)

Combinations

RM
in decomposition

IR products
(phonon states)

(T2 G =1,2,3,4) Al
(5] Aig, By,
(X)) G =12) Aig, Big, Eg
[(M;)*] (i =1,2,3,4) Ay
()]G =1.23.4) Ay,
(AN’ =1,2,3,4) Ay, By
[(Vi3)2], [(Vaa)?1, [(V5)*] Ay
[(W13)*], [(Was)?] Ay, By, E,
[(YD?] Aig, Big, Eg
[(ZEY]1 G =1,2,3,4) Al
[(Z5)*] Aig, By,
[(A)*] (i =1.23,4) Ay
[(R)*1( =1,2) Aig, Big, Eg
(S =1,2,3,4) Ay
(UM G =1,2,3,4) Ay, Big
[(AD*] (i =1,2,3,4) Ay,
[(A5)?] Ay, By,
[(T1)*] Ay, Big, Eg

Merrter! (h=4=4) B,
MNerii=1234h==%) E,

X1 ®X; E,

M, @ My, M3 @ My By,

M; @ M3, M @ My, My @ M3, M> @ My E,
T 05,505, By,
Ti®¥35 LI Q0840235 Q% E,
AL @Ay, A1 @ Az, Ay @ Ay, A3 Q@ Ay E,
Viz ® Voy ry

Viz® Vs, Vo ® Vs ry

Wiz @ Wy r:
Zh®@Zi, Zh @ Z! (h = %) By,

Zhe 2zl (i=1234h=4%) E,

Al ® Az, A3 ® Ay By,

Al QA3 Al ®@ Ay, A2 ® A3, Ay @ Ay E,
R ® R, E,

$1® 82,8588 By,
S1®83,51 Q84,585,508 E,
U@U, Ui @Us, U@ U,,Us ® Uy E,
AL ® Ay, A3 ® Ay By
Ar®As (i =1,2,3,4) E,

to be proportional to )‘Zl—ph' This conclusion is compatible

with early results on the branch-dependent electron-phonon
coupling in LaFe AsOF, where the strongest effects are reported
for some I'-point modes and the acoustic branches with inter-
mediate to large momenta [47]. k;‘hl_f)h > 1 and the two-phonon
peak P1 indicate that the electron-phonon coupling is possibly
larger than in the other Fe-based systems and reaches values up
to unity. In BaFe, As;, as an example from the pnictide family,
)»gl_ph ~ (1-4) x 1072 < Aphph ~ 0.1 is reported [32,48,49].
On the other hand, one finds )‘Zl-ph ~ 0.4 < Aphph ~ 0.9 for
the E, phonon in MgB,, being generally believed to be a
conventional superconductor [50,51]. Thus one may speculate
whether Acjpn might be even large enough in FeS to account
for a T, in the 5 K range.

V. CONCLUSION

We have studied and identified phonons in tetragonal FeS
by Raman scattering. For the A, sulfur and B,z iron mode
the DFT and DFPT calculations agree to within a few percent
with the experiment. A third observed peak within a gap in
the theoretical phonon density of states can be identified as a
second order scattering process involving two phonons. Both
the selection rules, based on the modified group projector tech-

nique, and the energy are in agreement with the experiment. A
fourth mode identified close to the A, sulfur phonon can be
traced back to the biggest maximum of the PDOS and is most
likely activated by a small amount of defects.

The temperature dependence of all four modes is governed
by the contraction of the lattice, but shows anomalies at
50 K and below 20 K. The anomaly observed at 20 K has
a correspondence in the thermal expansion [20] and uSR
experiments [21,22], which indicate short-range magnetic
order. The long-range magnetic order observed recently by
neutron diffraction experiments [41] below Ty = 116 K has
no correspondence in the Raman spectra.

The appearance of two-phonon scattering indicates strong
phonon-phonon scattering, which is likely to originate from
an electron-phonon interaction being enhanced in comparison
to other pnictides and chalcogenides. We argue that in FeS
the 7, can in principle entirely result from electron-phonon
interaction.
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APPENDIX A: MAGNETIZATION MEASUREMENTS

Figure 5 shows magnetization measurements on a t-FeS
sample from the batch studied in small applied fields. Measure-
ments were done on a Quantum Design MPMS XL-7 SQUID
magnetometer by cooling the sample to 2 K and sweeping
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FIG. 6. Decomposition of the asymmetric phonon peak at
305 cm~!. Measured data are shown as black dots. The orange line
shows the sum of two Voigt profiles shown as blue and green lines,
respectively. The convolution of Fano and Gaussian (red line) deviates
in the peak flanks and the nearby continuum.
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FIG. 7. Temperature dependence of A}, and B,, phonon modes in

the temperature range between 80 K and 300 K. Black squares denote
the phonon energies; open circles denote the phonon linewidths.

the temperature at 0.1 K/min. When cooled without applied
field (ZFC, black curve) the sample shows a superconducting
transition with onset at 4.5 K and a center of the transition
at 3.6 K. When cooled in an applied field the magnetization
decreases only weakly in the superconducting state indicating
strong pinning.

APPENDIX B: DECOMPOSITION
OF THE LINE AT 305 cm™!

The peak at 305 cm™! at low temperatures shows a sig-
nificant asymmetry towards lower energies (see also Fig. 1).
Coupling of the A, phonon mode to an electronic continuum
by strong electron-phonon coupling would result in a line shape
given by the convolution of a Fano function and a Gaussian, the
latter representing the resolution of the spectrometer. We find,
however, that this does not yield a satisfactory description of the
measured line shape as can be seen from the red curve in Fig. 6,
and thus conclude that the asymmetry of the peak stems from
the overlap of two peaks which cannot be resolved separately.
The corresponding line shape is the sum of two Lorentzians
convoluted with a Gaussian which governs the resolution of
the setup. Due to the distributivity of the convolution this is
identical to the sum of two Voigt functions sharing the same
width T'g of the Gaussian part. The overall spectral shape is
shown in Fig. 6 as an orange line and agrees excellently with the
data. The two contributing lines are shown in blue and green.
From the selection rules (see Fig. 1) we identify the blue curve
as the in-phase vibration of sulfur atoms in A, symmetry. The
green line denotes a second mode P2, the origin of which is
discussed in the main text.
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FIG. 8. Temperature dependence of energy and width of the four
observed phonon modes in FeS on a logarithmic scale. The data
is identical to Fig. 3 of the main text. Black squares show the
phonon energies w; open circles denote the phonon linewidths I'r.
The red dashed and full lines represent the temperature dependence
of the phonon linewidths and energies according to Egs. (1) and (2),
respectively. The region below 20 K is shaded light gray. Since the
data for the volume are limited to the range above 10 K the theoretical
curves for the phonon energies (full red lines) end at 10 K.

APPENDIX C: DETAILED TEMPERATURE DEPENDENCE
FOR 80 < T < 300 K

Figure 7 shows the temperature dependence of the energies
w and linewidths I'(T) (FWHM) from 80 K to 300 K mea-
sured in temperature increments of 10 K. Raman scattering
measurements were performed using a Jobin Yvon T64000
Raman system in micro-Raman configuration. A solid state
laser with 532 nm line was used as an excitation source.
Measurements were performed in high vacuum (10~% mbar)
using a KONTI CryoVac continuous helium flow cryostat with
0.5 mm thick window. Laser beam focusing was accomplished
using a microscope objective with x50 magnification. The
samples were cleaved right before being placed in the vacuum.
As can be seen from Fig. 7, there is no deviation from the
standard temperature behavior around 120 K.

APPENDIX D: TEMPERATURE DEPENDENCE
ON A LOGARITHMIC SCALE

To better illustrate the behavior of the phonons at low
temperatures Fig. 8 shows the experimental data and the
theoretical curves from Fig. 3 of the main text on a logarithmic
temperature scale. The region below 20 K is shaded light gray.
As explained in Sec. IVB all four modes show an increase
in energy below 20 K instead of the expected saturation,
indicative of the putative onset of short range magnetic order.
This effect manifests itself also in an incipient decrease of the
unit cell volume [20] and is visible in the theoretical results
for the phonon energies (full red lines). No clear tendency can
be seen for the linewidths. The energy anomaly found around
50 K is discussed in the same section.

APPENDIX E: SECOND SAMPLE BATCH

Figure 9 shows Raman spectra on a t-FeS sample from
a different batch (E256) taken at 7 = 310 K. The sample
was oriented the same way as described in the main text. All
three modes are visible for parallel light polarizations (bb), but
vanish for crossed polarizations (ba), confirming the selection
rules observed in the sample described in the main text. The
inset shows magnetization measurements on a sample from
batch E256 similar to the ones described in Appendix A. The
superconducting transition sets in at 4.1 K.

APPENDIX F: SELECTION RULES FOR TWO-PHONON
PROCESSES AND MGPT

In the multiphonon scattering process the system goes
from an initial vibrational state (ground vibrational state)
[0,0, ...) to a final multiphonon state |n,,n,, ...), where n,
is the number of phonons in the same state p and p stands
for the entire set of quantum numbers (quasimomentum &,
angular momentum quantum number m, etc.). For two-phonon
processes the final vibrational state is the state with two
phonons in the same quantum state (double-phonon or the
first overtone state) or with two phonons in different states
(combination state). The corresponding matrix element for

T T T
40t g P 0r A1Q+P2 B
30t 521" 1
= P R N B
0 2 4 6 8
20-T=310K Temperature (K) i

P — L ] |

275 300 325

0 L
175 200 225 250
Raman Shift @ (cm™)

FIG. 9. Raman spectra of a t-FeS sample from a different batch
taken at 7 = 310 K in polarizations as given in the legend. The
inset shows magnetization measurements on a sample from this batch
similar to Appendix A.
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two-phonon Raman scattering is

0,...,n,,0,...1R|0,0, ...),n, = 2,overtones,
0,...,n,,0,...,n,,...1R|0,0,...),

n, =n, = l,combinations, (F1)

where R is the Raman tensor. This matrix element should be a
scalar or should transform as unit representation of the system
space group S. The standard approximation for the Raman
tensor in infinite wavelength-light approximation for the non-
resonant case is the polarizability tensor, which transforms as
the (symmetrized) square of the vector representation, DR(S).
Decomposition of D?(S) gives irreducible representations of
the Raman active modes. The ground vibrational state trans-
forms as unit representation, whereas the final two-phonon
state transforms as symmetrized square, [(D*(S ))?], of the
corresponding irreducible representation D*(S) (overtones) or
the direct product of two irreducible representations D*(S) ®
D" (S) (combinations). Symmetrization in the case of over-
tones comes from the bosonic nature of phonons. The matrix
element [Eq. (F1)] transforms as reducible representation

[(D"(S))’] ® D™(S), for overtones, or
D"(S) ® D*'(S) ® D®(S), for combinations.  (F2)

It is a scalar if the decomposition of the representations
shown above contains the unit representation or, equivalently,
if the intersection of decompositions of [( D*(S))?*] or D*(S) ®
D*(S) and D(S) is a nonempty set. To obtain selection rules
for two-phonon processes, following Birman’s original method
[52], it is enough to find the decomposition of [(D*(S))*]
(for overtones) and D*(S) ® D" (S) (for combinations) for
all irreducible representations. If there is any representation

of the Raman active mode in those decompositions then
that overtone or two-phonon combination is symmetrically
allowed in the Raman scattering process. The decomposition
of the (symmetrized) square of the vector representation is
straightforward and is actually a finite dimensional point group
problem. On the other hand, decomposition of [(D"™(S))?]
or D*(S) ® D (S) for any irreducible representation could
be a difficult task because space groups are infinite. In the
standard method based on character theory summation over
all group elements is used and it is a problem in the infinite
case. Therefore, it is necessary to apply a method which avoids
summation over group elements. As is proven in Ref. [29]
the modified group projector technique (MGPT) uses only
group generators and finite dimensional matrices. Actually,
the decomposition D(S) = @, f}, DW(S) of the arbitrary
reducible representation D(S) into irreducible representations
is effectively a determination of the frequency numbers f}.
The MGPT expression for frequency numbers involves group
generators s; only:

s
fp=TcF (H F(D(s;) ® DW(s,-»). (F3)
i=1
Here S is the number of group generators, F'(X) is the projector
on the subspace of the fixed points of the operator X, and
Tr is the matrix trace (sum of the diagonal matrix elements).
Consequently, the problem is reduced to calculation of the
S + 1 projector to the fixed points. Technically, one looks for
the eigenspaces for the eigenvalue 1 of each of the operators
D(s;) ® D™ (s;), finding projectors on them, then multiplies
the corresponding projectors, and repeats the procedure for the
whole product from Eq. (F3). The trace of the final projector
gives the corresponding frequency number.
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Small influence of magnetic ordering on lattice dynamics in TaFe; ,sTe;

M. Opacié,! N. Lazarevi¢,! D. Tanaskovié,” M. M. Radonjié,> A. Milosavljevi¢,! Yongchang Ma,>*
C. Petrovic,? and Z. V. Popovi¢'->
Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118,
11080 Belgrade, Serbia
2Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade,
Pregrevica 118, 11080 Belgrade, Serbia
3Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
4School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
SSerbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
(Received 12 September 2017; published 16 November 2017)

Raman scattering spectra of zigzag spin chain TaFe, ,sTe; single crystal are presented in a temperature range
from 80 to 300 K. Nine Raman active modes of A, and B, symmetry are clearly observed and assigned by probing
different scattering channels, which is confirmed by lattice dynamics calculations. Temperature dependence of
the Raman modes linewidth is mainly governed by the lattice anharmonicity. The only deviation from the
conventional behavior is observed for A, symmetry modes in a vicinity of the magnetic phase transition at
Ty ~ 200 K. This implies that the electron-phonon interaction weakly changes with temperature and magnetic
ordering, whereas small changes in the spectra near the critical temperature can be ascribed to spin fluctuations.

DOI: 10.1103/PhysRevB.96.174303

I. INTRODUCTION

The discovery of superconductivity in La(O;_,F,)FeAs
in 2008 [1] initiated an intensive search for new iron-based
superconducting materials, in order to obtain better under-
standing of their physical properties and the mechanism of
high-T, superconductivity [2—4]. Novel iron-based materials,
however, are not only superconducting, but can also exhibit
various types of magnetic ordering. In some cases the magnetic
phase transition is continuous [5-8], whereas in others it
is accompanied by structural changes [9-15], or even by
a nanoscale coexistence of antiferromagnetic (AFM) and
superconducting domains [16—18].

TaFe;;,Te; was synthesized and characterized about 25
years ago [19,20]. It is a layered system consisting of FeTe
chains, along the b axis, separated by a Ta/Te network
in between; see Fig. 1. These layers are parallel to the
natural cleavage plane. There are also additional Fe ions,
Fe2,randomly occupying interstitial sites [21-23]. TaFe; 1, Tes
features anisotropic charge transport with metallic resistivity
within the plane and insulating in the direction normal to
the FeTe layers [23]. The first study of magnetic structure
implies that TaFe;,,Tes is composed of double zigzag spin
chains with antiferromagnetic ordering of Fel spins [22]. The
newest neutron diffraction measurements suggest that spin
ordering within zigzag chains is ferromagnetic, whereas these
zigzag chains couple antiferromagnetically [23], as shown in
Fig. 1(b). However, the exact interaction mechanism is not
clearly resolved.

There is a similarity between TaFe;,,Tes and the exten-
sively studied Fe;4,Te compound since they are correlated
bad metals which order antiferromagnetically below Ty =~
200 K and 70 K, respectively [10,23], both having rather
large magnetic moments on Fe ions, ~2 ug/Fe. TaFe ., Tes,
however, forms ferromagnetic (FM) zigzag spin chains which
couple antiferromagnetically between the layers, whereas the
Fe spins in Fe(1,Te form a bicollinear AFM structure. The
magnetic phase transition in Fe;,Te is accompanied by the
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structural change from a tetragonal to a monoclinic, as opposed
to TaFe 4, Te; where a continuous transition to the AFM phase
is observed in thermodynamic and transport measurements
[22]. Just like in Fe;y,Te, interest in spin chain and ladder
materials [24] stems not only from their block-AFM states
similar to parent compounds of iron-based superconductors
[25], but also from superconductivity. It is worth noting that
spin 1/2 copper oxide ladder structures host a spin gap
and superconductivity upon doping [26-28]. In contrast to
superconductivity in copper oxide ladder materials that was
rather rare and with critical temperatures rather small when
compared to highest achieved in copper square lattices [29,30],
iron-ladder materials feature 7,’s similar to the highest found
in Fe-based superconductors [31].

Raman spectra provide additional information on magnetic
ordering and electron-phonon coupling. There exist several
Raman studies of the phonon spectra of iron based materials
near the superconducting or magnetic phase transition [32,33].
While no anomalies were observed in 1111 compounds
[34,35], the Raman spectra show anomalous behavior near
the spin density wave (SDW) transition in some of the 122 and
11 compounds [15,36-38], which was ascribed to the phonon
renormalization due to the opening of the SDW or supercon-
ducting gap, or to the structural transition. Large anomalies
were observed also in ferromagnetic K,Co,_,Se; [5], which
was ascribed to the effect of electron-phonon coupling and
spin fluctuations. Fe;,,Te phonon spectra feature unusually
large anomalies near the magnetic phase transition, as seen
in sudden changes in the phonon frequencies and linewidths,
due to the phonon modulation of magnetic interactions and
structural phase transition [11-13]. Therefore, it is of interest
to examine lattice dynamics in the normal state of iron-spin
chain and ladder materials and compare it to materials like
Fey,Te. To the best of our knowledge, there are no published
data on lattice dynamics of TaFe;,Tes.

In this paper we present polarized Raman scattering spectra
of TaFe, »5Te; single crystal measured in a temperature range
from 80 to 300 K. Nine out of 15 Raman active modes are

©2017 American Physical Society
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FIG. 1. (a) Structure of the TaFe, sTe; single crystal together
with the natural cleavage plane [101]. x = 1/4/2(101) and y = (010)
correspond to our laboratory system. (b) A view of the TaFe, ,5Tes
structure along the b axis. Two neighboring chains of Fel spins point
in a parallel direction, forming a ferromagnetic zigzag chain, whereas
spins of neighboring zigzag chains order antiferromagnetically. One
should note that Fe2 is present with occupancy of 0.25.

observed and assigned using the selection rules for different
polarization configurations and lattice dynamics calculations.
In a sharp contrast to the related FeTe compound, TaFe; »sTes
Raman spectra do not show significant changes near Ty ~
200 K, which clearly indicates that the phase transition is
continuous. Temperature dependence of the frequency and
linewidth is conventional, driven by the anharmonicity effects,
except very near Ty where some of phonon lines slightly
broaden which should be the consequence of spin fluctuations
near the critical temperature. These results indicate very small
changes in the electron-phonon coupling and in the Fermi
surface in the measured temperature range.

II. EXPERIMENT AND NUMERICAL METHOD

Single crystals were grown using the self-flux method, as
described elsewhere [19]. Raman scattering measurements
were performed on freshly cleaved (101)-oriented samples,
using Jobin Yvon T64000 Raman system, equipped with a
nitrogen-cooled CCD detector, in the backscattering micro-
Raman configuration. The 532 nm line of a solid state laser
was used as an excitation source. A microscope objective with
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50x magnification was used for focusing the laser beam. All
measurements were performed at low laser power, to reduce
local heating of the sample. For low temperature measurements
KONTI CryoVac continuous flow cryostat with 0.5 mm thick
window was used. All spectra were corrected for the Bose
factor. For extracting the data from the Raman spectra, phonon
modes were fitted with a Lorentzian profile.

The electronic structure is calculated for stoichiometric
TaFeTes; in the paramagnetic phase within the density func-
tional theory (DFT), and the phonon frequencies at the I'-point
are obtained within the density functional perturbation theory
(DFPT) [39], using the QUANTUM ESPRESSO package
[40]. We have used projector augmented wave (PAW) pseu-
dopotentials with Perdew-Burke-Ernzerhof (PBE) exchange-
correlation functional with nonlinear core correction and
Gaussian smearing of 0.01 Ry. The electron wave function and
the density energy cutoffs were 64 Ry and 782 Ry, respectively.
The Brillouin zone is sampled with 8 x 8 x 8 Monkhorst-Pack
k-space mesh. The phonon frequencies were calculated with
the unit cell size taken from the experiments and the relaxed
positions of atoms within the unit cell. The forces acting on
individual atoms in the relaxed configuration were smaller than
10~* Ry/a.u.

III. RESULTS AND DISCUSSION

TaFe ., Te; crystallizes in the monoclinic crystal structure,
which is shown in Fig. 1. The space group is P2;/m (unique
axis b), with two formula units per unit cell [19,20]. The
experimental values of the unit cell parameters are a =
7.436 A, b =3.638A, ¢ = 10.008 A, and g = 109.17°. All
atoms (including the excess Fe), are at 2e Wyckoff positions,
with fractional coordinates given in Table I.

The factor group analysis (FGA) for P2;/m space group
yields the following normal mode distribution at the I' point:

I'Raman = 10A; + 5B,,
'k =4A,+ 8B,
TCacoustic = Au + 2Bu‘

The Raman spectra were measured from the (101) plane
of the sample, which is the natural cleavage plane [23,42].
From the Raman tensors given in Table II, the A, phonon
modes are expected to be observable in the (xx) and (yy)
scattering configurations. The B, modes can be observed only
in (xy) polarization configuration.

TABLE 1. Experimental fractional coordinates of TaFe,,sTes
taken from Ref. [19]. In the parentheses are the calculated values
for TaFeTes.

Atom type X y z

Ta 0.8340 (0.8331) 0.25 0.3007 (0.2987)
Fel 0.6147 (0.6223) —-0.25 0.0890 (0.0988)
Fe2 0.7686 0.25 —0.0047
Tel 0.4392 (0.4326) 0.25 0.1860 (0.1637)
Te2 0.9835 (0.9842) —-0.25 0.1589 (0.1584)
Te3 0.2179 (0.2192) 0.25 0.4970 (0.5028)
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TABLE II. Upper panel: atomic species (all of them are at 2e Wyckoff positions) and the contribution of each atom to the I"-point phonons,
the corresponding Raman tensors for the TaFeTe; single crystal (P2, /m space group) [41]. Lower panel: the calculated (for the stoichiometric
TaFeTe;) and experimental phonon energies at 100 K (for the TaFe, ,sTe; single crystal).

Atoms

Irreducible representations

Ta, Fel, Tel, Te2, Te3

2A, + A, + B, + 2B,

Raman tensors

A a 0 d 0 e O
Riy=[0 b 0 =le o ¥
d 0 ¢ 0O f O
Raman active Infrared active
Symmetry Calc. (cm™) Expt. (cm™") Symmetry Calc. (cm™) Expt. (cm™")
Y 362 Al 08
B! 43.8 B! 54.9
B§ 57.9 61.6 Bf 94.4
AZ, 63.8 62.3 Ai 101.4
A3 753 68.5 B 1113
Ag 104.4 90 Ai 131.1
B;, 105.1 B;‘ 143.2
Ai, 124.6 Bi 160.4
B 1272 130.4 B 188.6
A:, 149.8 155 BZ 227.9
Al 164.9 165 Al 231.1
A3 191 B} 289.4
B 217.1 2223
Az, 241.9 223.9
Al 276.22

Raman scattering spectra of TaFe;»sTes single crystals,
measured at 100 K in three different polarization configura-
tions, are presented in Fig. 2. By using the selection rules,
we assign the Raman peaks appearing in the (xx) and (yy)
polarization configuration as the A, ones. This conclusion
is supported by the lattice dynamics calculations, given in
Table II. By comparing the calculated values of A, mode
energies with those of the peaks appearing in the (xx) and
(yy) spectra, we can unambiguously assign four Raman modes

(A%, Ag, A;, and Ag). The broad structure around 65 cm™!

probably originates from the Aé and A; modes, although
the contribution of the A; mode (with calculated energy of
42.7 cm™!) cannot be excluded. The peaks at 57.9 cm~! and
130 cm~! that are clearly visible in (xy) but absent in (yy)
configuration are assigned as B; and Bg modes, respectively.
The low intensity peak at ~220 cm~!, that becomes clearly
observable at low temperatures, is tentatively assigned as B;

mode, although the contribution from the leakage of Ag mode
cannot be excluded. The origin of the two very broad structures
at about 70 cm™! and 160 cm™!, which are pronounced in
the (xy) configuration, is not completely clear. Aside from
providing additional charge, Fe2 atoms may contribute to
momentum transfer scattering, in line with the pronounced
quasielastic continuum, present in all the scattering con-
figurations. Consequently, contribution from single-phonon
scattering away from I" point becomes observable, which is
theoretically predicted [43,44] and experimentally observed

[45,46]. Although we cannot exclude the possibility of two-
and, in particular, double-phonon contributions, we believe it
is less likely due to the nature of the processes and since they
usually have more pronounced contribution to A channel (for
arbitrary irreducible symmetry w of Cy;, holds 4 @ 1 > A).
The normal modes of the selected A, and B, vibrations,
as obtained by the lattice dynamics calculations, are shown in
Fig. 3. The low energy B; mode represents vibrations of Te
and Ta atoms which tend to elongate the (Ta,Fe)Te tetrahedra
in the xy plane. Bg phonon originates mainly from Ta and Te
atom vibrations in directions opposite to each other, whereas
Ag mode represents dominantly vibrations of another Te atom

in the xy plane. AZe and Ag, modes originate from the vibrations
of Fe and Te atoms which tend to rotate the tetrahedra around
the x axis.

The DFT calculations are in very good agreement with
the measured Raman spectra, specially having in mind the
strength of electronic correlations in iron based compounds
and the presence of additional Fe2 atoms in the measured
sample. We restricted to the nonmagnetic DFT calculations.
This is because small changes in the phonon energies due to
the magnetic ordering cannot be reliably captured since the
DFT does not treat strong correlation and spin-fluctuations
effects. Our DFT calculations for the electronic band structure
agree with the results from Ref. [42]. The calculated electronic
dispersions are in rather good agreement with the ARPES
measurements [42], which indicates that the main effect of the
interstitial Fe2 ion is to provide additional charge and shift
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TaFe Te3

2 1.25
A, A T=100K

Intensity (arb. units)

50 100 150 200 250
Wave number (cm™)

FIG. 2. Polarized Raman scattering spectra of TaFe, »5Te; single
crystal measured at 100 K in various polarizations. The notation in
parentheses indicates the polarization directions of the incident and
scattered light according to Fig. 1(a). Inset: surface of the probed
TaFe, 55 Tes single crystal.

the Fermi level. This conclusion is supported with a small
difference between the relaxed and experimental fractional
coordinates; see Table 1.

FIG. 3. Unit cell of TaFeTe; single crystal with the displacement
patterns of several A, and B, Raman modes. Arrow lengths are
proportional to the square root of the interatomic forces.

PHYSICAL REVIEW B 96, 174303 (2017)

Aj/A; (yy) (xy)

Intensity (arb. units)

50 100 150 200 250 100 150 200 250
Wave number (cm”)  Wave number (cm™)

FIG. 4. Temperature dependent Raman scattering spectra of
TaFe, 5sTe; single crystal in the (yy) (left panel) and (xy) (right
panel) polarization.

In order to analyze the changes of the Raman spectra
near the AFM transition at Ty =~ 200 K, we have performed
measurements in a temperature range from 80 K up to
300 K. Raman spectra of TaFe; »sTes single crystal, measured
at different temperatures in the (yy) and (xy) scattering
configurations, are given in Fig. 4. In the following, we perform
the temperature analysis of the energy and the linewidth for
five most clearly observed modes.

The temperature dependence of the Raman mode energy is
usually described with [47,48]

wi(T) = wo; + A (vi,i(T)) + ANC)), (1

where w; is a temperature independent contribution to the
Raman mode energy. The second term represents a change of
the phonon energy induced by the lattice thermal expansion
and depends on the Griineisen parameter y; and the thermal
expansion coefficient o;(T'). The term AiA describes the anhar-
monicity induced change of the Raman mode energy which is
a function of the anharmonic constant C;. Both AI.V and AI.A
have qualitatively the same temperature dependence. Since
there are no reported experimental data on the temperature
dependence of the lattice parameters for TaFe ., Tes, we didn’t
attempt to fit the data, and the black dotted lines in Figs. 5
and 6 are guides to the eye. The w;(T) curves follow the
“standard” [5,15,37,49,50] continuous decrease in energy with
temperature, with very small anomalies near Ty except for the
A} mode.
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FIG. 5. Temperature dependence of the energy and linewidth for
the B; and B; Raman modes of the TaFe, »sTe; single crystal. The
red lines are fitted according to Eq. (2), whereas black lines are guides
to the eye.

The temperature dependences of the linewidth of selected
B, and A, modes are given in the right panels of Figs. 5
and 6, respectively. While the Bg and Bg phonon modes do
not show significant deviation from the usual behavior due
to the anharmonicity effects, with gradual broadening with
increasing temperature, the A;, AZ,, and Az modes exhibit
moderate additional broadening above 200 K. The red lines
present a fit to the standard formula for the temperature
dependent linewidth due to the anharmonicity [11,47,51]:

2
ri(T) = Fo,i<1 + m) + A, (2)

where 'y ; is the anharmonic constant and A; is the constant
term due to the disorder and electron-phonon interaction
[52]. The deviation from these anharmonicity curves is most
pronounced around Ty (see the insets of Fig. 6).

We can observe that all Raman modes have moderate
linewidth and exhibit small anomalies near Ty. This shows
that the phase transition is continuous, in agreement with
the thermodynamic and transport measurements [22]. Small
anomalies in the phonon spectra, which are restricted only to
the vicinity of the phase transition, imply that the electron-
phonon interaction of Raman active modes does not change
with temperature. This is in agreement with the recent
ARPES measurements which show negligible change of the
Fermi surface across the AFM transition [42], indicating that
the magnetic transition is not driven by the Fermi surface
instability. The anomalies in the linewidth of some phonon
modes near Ty are likely the signature of the increased
scattering by spin fluctuations near the phase transition [51,53].
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FIG. 6. Energy and linewidth of the Aj, A7, and A} Raman
modes of the TaFe, ,sTe; single crystal as a functlon of temperature
The red lines are plotted according to Eq. (2), and the black dotted
lines are guides to the eye. The insets represent deviations of the
Raman mode linewidth from the anharmonic form.

The density of states (DOS) at the Fermi level is not large.
This can be concluded from the ARPES experiments [42]
which have shown three bands crossing the Fermi level but with
strong dispersion, while several relatively flat bands are found
only well below the Fermi level. The DFT calculations also
give moderate values for the DOS, N(Ef) ~ 1 eV! /f.u., after
the Fermi level is shifted due to the additional charge provided
by the Fe2 atoms. This value for the DOS also suggests that the
electron-phonon coupling is not strong in TaFe; s Tes, since it
is proportional to N(EF).

TaFe|»sTe; has a similar moment size as Feri,Te, ~
2 p/Fe. However, the differences in the magnetic ordering and
crystal structure cause different phonon properties of these two
compounds. Namely, the phonon lines in the Raman spectra of
Fey4,Te have very large linewidth and pronounced anomalies
both in the frequency and in the linewidth near the first order
phase transition [11,13]. Small anomalies in the Raman spectra
of TaFe; »5Tes as compared to Fe 1, Te can be ascribed to the
continuous, second order nature of the AFM transition and
smaller electron-phonon coupling due to lower DOS at the
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Fermi level. Also, the monoclinic angle g in the TaFe; 5sTes
unit cell significantly differs from 90° and therefore the form
of the vibrational modes is different.

IV. CONCLUSION

In summary, we have performed the Raman scattering
study of the zigzag spin chain TaFe;,sTes single crystal,
together with the lattice dynamics calculations of TaFeTes.
By analyzing the Raman spectra in different polarization
configurations and using numerical calculations we have
assigned nine Raman active modes predicted by the FGA.
Very good agreement between the experimental frequencies
and those calculated for the stoichiometric compound shows
that the excess iron atoms weakly influence the phonon
energies but provide momentum conservation for the phonon
scattering away from I' point. The temperature dependence
of the frequency and the linewidth of the B, Raman modes
looks conventional, governed by the anharmonicity effects.
While in a broad temperature range the behavior of the A,
modes is also conventional, there are clear anomalies near

PHYSICAL REVIEW B 96, 174303 (2017)

the AFM transition. The anomalies in the frequency and the
linewidth are in the form of small kinks near Ty . This implies
that the electron-phonon interaction and the DOS at the Fermi
level are approximately constant in the measured temperature
range. The increase in the linewidth near Ty is likely due to
the coupling of spin fluctuations and vibration near the second
order phase transition.
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Abstract

CrossMark

Polarized Raman scattering spectra of the K,Co,_,Se, single crystals reveal the presence of
two phonon modes, assigned as of the A, and B, symmetry. The absence of additional modes
excludes the possibility of vacancy ordering, unlike in K,Fe,_,Se,. The ferromagnetic (FM)
phase transition at 7, ~ 74 K leaves a clear fingerprint on the temperature dependence of the
Raman mode energy and linewidth. For T > T; the temperature dependence looks conventional,
driven by the thermal expansion and anharmonicity. The Raman modes are rather broad due to
the electron—phonon coupling increased by the disorder and spin fluctuation effects. In the FM
phase the phonon frequency of both modes increases, while an opposite trend is seen in their
linewidth: the A;, mode narrows in the FM phase, whereas the Bj, mode broadens. We argue
that the large asymmetry and anomalous frequency shift of the B, mode is due to the coupling
of spin fluctuations and vibration. Our density functional theory (DFT) calculations for the
phonon frequencies agree rather well with the Raman measurements, with some discrepancy
being expected since the DFT calculations neglect the spin fluctuations.

Keywords: Raman spectroscopy, electron—phonon, lattice dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

In the last few years considerable attention was focused on the
iron-based superconductors in an effort to gain deeper insight
into their physical properties and to determine the origin of
high-T, superconductivity [1-4]. Discovery of superconduc-
tivity in alkali-doped iron chalcogenides, together with its

6 Present address: Advanced Light Source, E O Lawrence Berkeley National
Laboratory, Berkeley, CA 94720, USA

0953-8984/16/485401+8$33.00

uniqueness among the iron based superconductors, challenged
the physical picture of the superconducting mechanism in iron
pnictides [S]. The absence of hole pockets even suggested the
possibility for the different type of pairing mechanism [6].
Another striking feature in K,Fe,_,Se, was the presence of
the intrinsic nano to mesoscale phase separation between an
insulating phase and a metallic/superconducting phase [7-10].
The insulating phase hosts antiferromagnetically, J5 x5
ordered iron vacancies, whereas the superconducting stripe-
like phase is free of vacancies [7]. The theoretical study of

© 2016 IOP Publishing Ltd  Printed in the UK
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Huang et al [11] revealed that proximity effects of the two
phases result in the Fermi surface deformation due to inter-
layer hopping and, consequently, suppression of supercon-
ductivity. On the other hand, a large antiferromagnetic order
protects the superconductivity against interlayer hopping, thus
explaining relatively high T, in K,Fe,_,Se, [11]. However, the
correlation between the two phases and its impact on super-
conductivity are still not fully understood.

Although the absolute values of resistivity are much
smaller for the Ni-member of the K,M,_,Se, (M = transition
metal) series than for the iron member, this material does not
exhibit superconductivity down to 0.3K [12]. As opposed to
K Fe,_,Se, vacancy ordering has not been observed in the
K,Ni,_,Se, single crystal [13]. These materials, together with
the Co- and Ni-doped K,Fe,_,Se; single crystals, have very
rich structural, magnetic and transport phase diagrams. This
opens a possibility for fine tuning of their physical proper-
ties by varying the sample composition [14, 15]. First results
obtained on K,Co,_,Se; single crystal revealed the ferromagn-
etic ordering below 7, ~74K, as well as the absence of the
superconducting phase [16].

Raman spectroscopy is a valuable tool not only for meas-
uring vibrational spectra, but it also helps in the analysis of
structural, electronic and magnetic properties, and phase
transitions. There are several recent studies of the influence of
the antiferromagnetic order, [17, 18] ferromagnetism, [19, 20]
and magnetic fluctuations [21] on the Raman spectra.

In this paper the Raman scattering study of the K,Co,_,Se>
single crystal (x =0.3, y=0.1), together with the lattice
dynamics calculations of KCo,Se,, is presented. The polar-
ized Raman scattering measurements were performed in the
temperature range from 20K up to 300K. The observation
of only two Raman active modes when measuring from the
(00 1)-oriented samples suggests that the K,Co,_,Se; single
crystal has no ordered vacancies. The temperature depend-
ence of the energy and linewidth of the observed Raman
modes reveals a clear fingerprint of the phase transition. A
large linewidth of the Bj, mode and its Fano line shape indi-
cate the importance of spin fluctuations.

The rest of the manuscript is organized as follows. Section 2
contains a brief description of the experimental and numerical
methods, section 3 are the results, and section 4 contains a
discussion of the phonon frequencies and linewidths and their
temperature dependencies. Section 5 summarizes the results.

2. Experiment and numerical method

Single crystals of K,Co,_,Se, were grown by the self-flux
method, as described in [12]. The elemental analysis was per-
formed using energy-dispersive x-ray spectroscopy (EDX)
in a JEOL JSM-6500 scanning electron microscope. Raman
scattering measurements were performed on freshly cleaved
(00 1)-oriented samples with size up to 3 x 3 x 1 mm?, using
a TriVista 557 Raman system equipped with a nitrogen-
cooled CCD detector, in a backscattering micro-Raman con-
figuration. The 514.5nm line of an Ar*/Kr™ ion gas laser was
used as an excitation source. A microscope objective with
50 x magnification was used for focusing the laser beam. All

Figure 1. Unit cell of KCo,Se; single crystal, together with the
displacement patterns of the Aj, and Bj, Raman modes.

measurements were carried out at low laser power, in order to
minimize local heating of the sample. Low temperature mea-
surements were performed using KONTI CryoVac continuous
flow cryostat with 0.5mm thick window. Spectra were cor-
rected for the Bose factor.

The electronic structure of the ferromagnetic (FM) and
paramagnetic (PM) phases is calculated within the density
functional theory (DFT), and the phonon frequencies at the
I'-point are obtained within the density functional perturba-
tion theory (DFPT) [22]. All calculations are performed using
the QUANTUM ESPRESSO package [23]. We have used
projector augmented-wave (PAW) pseudo-potentials with
Perdew—Burke-Ernzerhof (PBE) exchange-correlation func-
tional with nonlinear core correction and Gaussian smearing of
0.005 Ry. The electron wave-function and the density energy
cutoffs are 40 Ry and 500 Ry, respectively. The Brillouin zone
is sampled with a16 x 16 x 8 Monkhorst—Pack k-space mesh.
The phonon frequencies were calculated with relaxed unit cell
parameters and, for comparison, with the unit cell size taken
from the experiments and the relaxed positions of only Se
atoms. The forces acting on individual atoms in the relaxed
configuration were smaller than 10~* Ry/a.u. and the pressure
smaller than 0.5 kbar.

3. Results

KCo,Se; crystallizes in the tetragonal crystal structure of
ThCr,Sip-type, I4/mmm space group, which is shown in
figure 1. The experimental values of the unit cell parameters
are a = 3.864(2) A and ¢ = 13.698(2) A [24]. The potas-

,%, %), and
Se atoms at 4e: (0,0, z) Wyckoff positions, with the exper-
imental value z = 0.347.

The KCo,Se, single crystal consists of alternatively
stacked K ions and CoSe layers, isostructural to the KFe,Se,
[25]. Factor group analysis for the I4/mmm space group yields
a normal mode distribution at the Brillouin-zone center, which
is shown in table 1. According to the selection rules, when
measuring from the (00 1)-plane of the sample, only two

sium atoms are at 2a: (0,0, 0), Co atoms at 4d: (O
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Table 1. Atomic types with their Wyckoff positions and the contribution of the each site to the I'-point phonons, the Raman tensors and the

selection rules for the K,Co,_,Se; single crystal (I4/mmm space group).

Atoms Wyckoff positions Irreducible representations
K 2a Ay +E,
Co 4d A+ Big+ E;+ E,
Se 4e Ay + Ay +E;+E,
Raman tensors
lalexpiy, 0 0 |clexpig, 0 0

IéAlg = 0 lalexpig, 0 IéBlg = 0 —|clexpig. O

0 0 |blexpip, 0 0 0

0 0 |elexpig 0 0 0
Re,= o o o0 Re=[0 0 Iflexpig

lelexpig, O 0

0 ‘f|expi§0f 0

Activity and selection rules
IRaman = A1g(Qrtyys 0zz) + BiglQux—yy) + 2Eg(Quz, )
Tir = 2A,(Ellz) + 2E.(E| %, E|ly)
Lacoustic = Ay + Ey

modes (A g and By,) are expected to be observed in the Raman
scattering experiment. Displacement patterns of the exper-
imentally observable Raman modes are illustrated in figure 1.
The Ay, (B1,) mode represents the vibrations of the Se (Co)
ions along the c-axis, whereas the E, modes (which are not
observable for our scattering configuration) involve the vibra-
tion of both Co and Se ions within the (00 1)-plane.

Figure 2 shows polarized Raman scattering spectra of the
K.Co,_,Se, single crystal, measured from the (00 1)-plane
of the sample at room temperature, in different sample ori-
entations. Only two modes, at about 187 and 198 cm~!, are
observed, which is in agreement with the selection rules for
(00 1)-oriented samples. In some iron-chalcogenide com-
pounds, the appearance of additional Raman active modes
due to the iron vacancy ordering and, consequently, symmetry
lowering, has been observed [8, 26]. The absence of additional
phonon modes in figure 2 suggests that in K,Co,_,Se; single
crystals vacancy ordering does not occur in our samples.

Selection rules imply that the A, mode may be observed for
any sample orientation, provided that the polarization vector
of the incident light e; is parallel to the scattered light polariza-
tion vector e,, whereas it vanishes if these vectors are perpend-
icular. On the other hand, the intensity of the B, mode strongly
depends on the sample orientation (Ig, ~ |c[*cos*(0 + 23),
where 6 = Z(e;,e;) and G = Z(e;,x)) [8]. This implies that,
in parallel polarization configuration (f = 0°), the intensity
of the B, mode is maximal when the sample is oriented so
that e;||x, gradually decreases with increasing 3 and finally
vanishes for § = 45° In crossed polarization configuration
(8 = 90°), Bi, mode intensity decreases from its maximal
value for 3 = 45° to zero, which reaches when 8 = 0°. From
figure 2 it can be seen that the intensity of the Raman mode
at about 187cm~! coincides with theoretically predicted
behavior for the Bj, mode; thereby, this phonon mode is
assigned accordingly. The phonon mode at ~198 cm™", which
is present in Raman spectra only for the parallel polarization
configuration (f = 0°) and whose intensity is independent on

(arb. units)

Z(X,Yo)Z | s
PR T S T | .
0 15 30 45 Xy 0
BC)

Integrated intensity

15 30 45
B

1 _
1 Z(XX,)Z

Intensity (arb. units)

160 200 240 160 200 240

Wavenumber (cm™) Wavenumber (cm™)

Figure 2. Upper panel: integrated intensity of the observed Raman
modes as a function of the crystal orientation with respect to the
laboratory axes X¢ and y,. In order to estimate the intensity of the
modes, phonon at 198 cm~! was fitted with Lorentzian, whereas

an asymmetric Raman mode appearing at 187 cm™! was fitted

with Fano line shape. Lower panel: Raman scattering spectra of
K.Co,_,Se; single crystal measured at room temperature, in various
sample orientations (x = (100),y = (010)).

the sample orientation, can be assigned as the A, mode. The
intensity ratio of the two Raman modes can be obtained from
the spectrum measured in (f = 0°, 8 = 0°) scattering geom-
etry as Ip, /14, ~ 1.38. Having in mind that the A;; mode inten-
sity is given by [8] I, ~ |a|* cos? 0, the ratio of the appropriate
Raman tensor components can be estimated as |c|/|a| =~ 1.17.
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Table 2. Optimized lattice constants and internal coordinate zge in
the FM and PM solution.

a(A) c(A) Zse
FM™! 3.893 13.269 0.350
pMmre! 3.766 13.851 0.368
FMfixed 3.864 13.698 0.3486
pMfixed 3.864 13.698 0.3496
Exper. 3.864 13.698 0.347

Note: The next two rows give the relaxed zse when the unit cell size is taken
from the experiment, and the last row contains the atomic positions from the
experiment [24].

The experimentally determined frequencies are com-
pared with those obtained with DFT numerical calculations.
The experimental lattice constants [24] are shown in table 2,
together with their values from the DFT calculation which
relaxes or keeps fixed the unit cell size. The DFPT phonon
frequencies obtained using the fully relaxed atomic positions
in both FM and PM phases are given in table 3, with the corre-
sponding values obtained with the fixed unit cell size and
relaxed only fractional coordinate zs. given in the parenthesis.
The equilibrium atomic positions in the FM solution are given
by a =3.893 A, ¢ = 13.269 A, and zg. = 0.350. The corre-
sponding phonon frequencies are 199.5 cm™! for Aj, mode
and 171.2 cm™~! for B;, mode. When we enforce the PM solu-
tion, we obtain a = 3.766 A, ¢ = 13.851 A, and zs, = 0.368,
and 212.6 cm™!, 176.6 cm™! for the frequencies of the A, and
Bigmode, respectively. These values agree rather well with the
experimental data, and agree with recently published numer-
ical results [27]”. They can be used to confirm the experimental
assignment of the modes, but cannot resolve subtle changes of
the phonon frequencies near the FM—PM transition. This level
of discrepancy is expected for metallic materials with magn-
etic ordering since the DFT calculations neglect spin fluctua-
tions, as discussed in some detail in the next section (see also
[21]). A rather large difference between the calculated fre-
quencies in the two phases is due to the relatively large change
in the unit cell size. This difference between the unit cell sizes
in the FM and PM phases is overestimated in the calculation
which neglects spin fluctuations. For comparison, we also cal-
culated the frequencies keeping the experimental values of the
unit cell size, and relaxing just the coordinate zg. of the Se
atoms, which is often done in the case of iron based supercon-
ductors and related compounds [21]. This gives zse = 0.3486
in the FM solution and zs. = 0.3496 in the PM solution, while
the change in the phonon frequencies between the two solu-
tions is much smaller, see table 3 and a discussion in section 4.

Polarized Raman scattering spectra of K,Co,_,Se, single
crystals, measured at various temperatures from the (00 1)-
plane of the sample, are presented in figure 3. The orientation
of the sample is chosen so that each of the observable modes
appears in a different polarization configuration. A pro-
nounced feature in the spectra is an asymmetric Fano profile
of the B, mode, persisting down to low temperatures, as well
as its large linewidth compared to isostructural K.Fe,_,Se,
[8, 28]. This feature should by mainly due to the spin

" There is typo in table 3 of [27] in the frequency of the Bj, mode.

fluctuations influencing the Bj, vibrational mode which
modulates the distances between the magnetic Co atoms. A
detailed discussion of the frequency and linewidth temper-
ature dependence is given in the next section.

4. Discussion

There are several factors that affect the phonon frequen-
cies (energies) and linewidths, and their changes across the
FM-PM transition. In general, the temperature dependence
of the phonon frequency of the mode i, w;(T), is influenced
by thermal expansion and magnetostriction, anharmonicity
effects, electron—phonon and magnetic exchange interaction
(spin-phonon coupling) [29, 30]

wi(T) — wi(Ty) = Awi(T) = (Awiar + (Aw;)anh
+(Awi)el—ph + (Awi)sp—ph~ (1)

The first term is the frequency shift due to the change of the
unit cell size caused by the thermal effects and magnetostric-
tion. (Aw;)ann is the anharmonic frequency shift. (Aw;)ei—ph
appears due to the change in the electron—phonon interac-
tion primarily influenced by changes in the electronic spec-
trum near the Fermi level, and (Aw;)sp—pn is the spin-phonon
contribution caused by the modulation of exchange interac-
tion by lattice vibrations.

In our case of K,Co,_,Se,, for temperatures above Tc, wi(T')
decreases and I;(T) (full width at half-maximum, FWHM)
increases with increasing temperature for A, and By, modes,
similar as in the Raman spectra of many other materials.
However, they show anomalous behavior near T, see figure 4.
In the following, we analyze w;(T") and I}(T") more closely.

4.1. Phonon frequencies

The frequencies of the A;, and Bj, modes change by less than
2 percent in the temperature range between 20K and 250K.
The red solid lines in figures 4(a)—(c) represent the fits of the
phonon energy temperature dependence (see below), following
the frequencies of the two modes in the high-temperature PM
phase. The red dotted line is the extrapolation to 7= 0. For
T > T., the temperature dependence of the frequency looks
conventional for both modes: the frequency decreases with
increasing temperature. This behavior is expected both due
to the thermal expansion and the anharmonicity. These two
effects can be standardly analyzed as follows.

The temperature dependent frequency of the vibrational
mode i is given by

wi(T) = wo ;i + Ai(T), (2)

where wy; denotes the temperature independent term and
A(T) can be decomposed as [19, 31, 32]

A(T) = A + AL 3)

AY describes a change of the Raman mode energy as a conse-

quence of the lattice thermal expansion and can be expressed
with [31]
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Table 3. The experimental phonon energies measured at 20K in the FM phase and the extrapolated value to 0K from the PM phase (see

the text).
Experiment Experiment Calculation Calculation
Symmetry Activity FM (cm™ 1) PM (cm™}) FM (cm ™) PM (cm™}) Main atomic displacements
Ay Raman 201.9 201.3 199.5 (193.2) 212.6 (193.1) Se(z)
By, Raman 195.3 194.2 171.2 (172.7) 176.6 (168.1) Co(z)
£ Raman 93.1 (100.7) 92.7 (99.0) Co(xy), Se(xy)
g
Ez Raman 237.9 (237.6) 257.2 (235.6) Co(xy), Se(xy)
n IR 115.1 (99.0) 113.7 (102.9) K(z), Se(-z)
2 IR 2467 (241.4) 2509 (241.4)  Co(z), K(-2)
£ IR 97.9 (95.0) 100.1 (95.0) K(xy)
£ IR 239.0(229.7)  231.0(229.9)  Cof(xy), Se(-xy)

Note: The phonon frequencies at the I' point are calculated with fully relaxed atomic positions. The frequencies obtained with only relaxed internal

coordinate are given in parenthesis.

[T A
A AN 120K MY

Intensity (arb.units)

1 L 1 L L L
150 200 250 150 200 250
Wavenumber (cm™) Wavenumber (cm™)

Figure 3. Temperature dependent Raman spectra of K,Co,_,Se;
single crystal in parallel (left panel) and crossed (right panel)
polarization configuration (x¢ = %(1 10),y) = %(I 10)). The

solid lines represent fits of the experimental spectra with the
Lorentzian (A, mode) and the Fano profile (B, mode).

AV -3 [ " a(rar
; =wo,i| e 0 — 11, 4)

where ~; is the Griineisen parameter of the Raman mode i
and a(T) is the thermal expansion coefficient of a considered
single crystal. A? represents the anharmonic contribution to
the Raman mode energy. If we assume, for simplicity, that
anharmonic effects are described by three-phonon processes,
this term is given by [31, 33]

20 pi
A_ p—psi
Af = —Ci(l + it ] 1), ®)

where C is the anharmonic constant and A,_,; is a fitting
parameter which describes the phonon—phonon coupling,
including the nonsymmetric phonon decay processes.

The relative importance of the thermal expansion and
anharmonicity to frequency changes is, to the best of our
knowledge, not yet firmly established for pnictides and

chalcogenides. In several cases [13, 17] the anharmonic
formula, equation (5), is used for the w(T) fit. We follow
here the arguments from [19, 28, 34] that w(T") is dominated
by the thermal expansion. To the best of our knowledge, the
thermal expansion coefficient a(T) of the K,Co,_,Se, single
crystal is unknown. For estimating the lattice thermal expan-
sion contribution to the phonon energy change, the coefficient
a(T) for FeSe, given in [35], is used. The best fit shown in our
figure 4 is obtained with wy 4, = 201.3 cm™!, My = 1.23 and
wo,p, = 1942cm™!, yp = 17.

There exists a shift in phonon frequencies as the temper-
ature is lowered below T.. This shift does not show clear dis-
continuity (as well as the corresponding shift in the linewidths)
and no additional modes are registered in the Raman spectra,
which suggest that the FM-PM transition is continuous,
without structural changes. There are several causes of the
sudden frequency change as the sample gets magnetized. It
can change due to the magnetostriction, modulation of the
magnetic exchange by lattice vibrations (spin-phonon cou-
pling), and due to the changes in the electron—phonon inter-
action due to spin polarization and changes in the electronic
spectrum.

The effect of spin-phonon interactions, caused by the
modulation of magnetic exchange interaction by lattice vibra-
tions, may be quantitatively examined within the framework
developed in [29] for insulating magnets, and recently applied
also to several itinerant ferromagnets [36—39]. In this model,
the shift of the Raman mode energy due to the spin-phonon
interaction is proportional to the spin—spin correlation func-
tion (S;]S;) between nearest magnetic ions. This term should
have the same temperature dependence as (M (T)/My)?, where
M(T) is the magnetization per magnetic ion at a temperature 7
and M is the saturation magnetization,

2
AW(T) = wex(T) — wie(T) o & (M) .
My

where wg(T') is the extrapolation from the high-temperature
data. This model does not predict the sign of the phonon energy
shift—softening or hardening. From the inset in figure 4(c) it
can be seen that the B;, mode energy renormalization scales
well with the (M(T)/M,)? curve. However, the effect of the
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Figure 4. Temperature dependence of the energy and linewidth for the A, (a), (b) and By, (c), (d) Raman modes of the K,Co,_,Se, single
crystal. Solid lines are a theoretical fit (see the text) and the dotted lines are the extrapolation to the FM phase. Upper inset: temperature
dependence of the B, mode frequency, compared with the (M(T)/M(0))? curve. Lower inset: measure of the electron-mediated photon—

phonon coupling (1/g) of the Bj, mode as a function of temperature.

magnetostriction (change of the unit cell size due to the mag-
netization) cannot be excluded based just on this plot, espe-
cially since the Aj, mode corresponding to the vibrations of
nonmagnetic Se ions also shows a similar shift in frequency.

The DFT calculations can give us some guidance for
understanding of the changes of the phonon frequencies and
linewidths, but one has to be aware of its limitations. The DFT
calculations (see table 2) give a rather large magnetostriction,
i.e. rather large change in the size of the unit cell between the
FM and PM phases (a changes by 3.2% and c by 4.3%). This
leads to very large changes in the phonon frequencies, see
table 3. The calculated frequencies are lower in the FM phase,
as opposed to the experimental data. This already points to
the limitations of the DFT calculations, which is expected
near the phase transition. A similar conclusion is also pre-
sent in [21]. The DFT ignores spin fluctuations which often
leads to quantitative discrepancy in various physical quanti-
ties [40] and, in some cases, even predicts wrong phases. In
the case of K,Co,_,Se;, the DFT calculations correctly pre-
dict the FM ground state, but the calculated magnetic moment
m = 0.947 pg is much larger than the experimental value
m~0.72 pg [16]. This already shows the importance of cor-
relations and quantum fluctuations which are neglected within
the DFT. Strong correlation effects can be captured using
screened hybrid functional [41] or within the dynamical mean
field theory combined with DFT (LDA+DMFT) [42], which
is beyond our present work.

Since the magnetostriction effects are overestimated in the
DFT calculations with relaxed unit cell size, we repeated the
DFT (DFPT) calculations keeping the experimental value for
the unit cell size and relaxing only the fractional coordinate
(positions of the Se atoms). This is often done in the litera-
ture on iron based superconductors and related compounds
[21]. Our calculated frequencies are given in the parenthesis

in table 3. We see that the frequency changes between the two
phases are small, in better agreement with the experiment.

4.2. Phonon linewidths

The phonon linewidths of the A, and B;, modes are very large,
La,~10cm™and I} g ~ 20 cm ™', which implies the impor-
tance of disorder (impurities, nonstoichiometry, lattice imper-
fections) in measured samples. In general, the broadening of the
phonon lines can be a consequence of the electron—phonon inter-
action, disorder, spin fluctuations and anharmonicity effects.
The temperature dependence of the linewidth in the PM phase
is, however, very weak, which indicates that the anharmonicity
effects are small. The DFT calculation of the linewidth is usually
based on the Allen’s formula, [43] Iy ; = TN (Ep)Aq, iwi ;- Here,
N(Ep) is the density of states (DOS) at the Fermi level, Ay ; is
the electron—phonon coupling constant, and wfl, ; s the phonon
frequency of the mode i and wavevector q. A straightforward
implementation of Allen’s formula in the q — 0 limit corre-
sponding to the I" point is, however, unjustified, as explained
for example in [44, 45]. In addition, structural disorder and
impurities break the conservation of the momentum, which
means that phonons with finite wave vectors also contribute to
the Raman scattering spectra. The standard DFT calculation
for the Brillouin zone averaged electron—phonon coupling con-
stant A gives too small value to explain the large width of the
Raman lines in pnictides and chalcogenides, [33] and several
other metallic systems like MgB, [44] and fullerides [46]. A
correct estimate of the phonon linewidth can be obtained only
by explicitly taking into account the disorder and electron scat-
tering which enhances the electron—phonon interaction, [44,
46] which is beyond the standard DFT approach and scope of
the present work.
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The Raman mode linewidth is not directly affected by the
lattice thermal expansion. Assuming that the three-phonon
processes represent the leading temperature dependent term
in the paramagnetic phase, full width at half-maximum, I;(T),
is given by

20p—p.i
E(T) = FO,i(l + W) ‘|‘Ai- (7)

The first term represents the anharmonicity induced effects,
where Ip; is the anharmonic constant. The second term A;
includes the contributions from other scattering channels,
i.e. structural disorder and/or coupling of phonons with other
elementary excitations, like particle-hole and spin excitations.
These effects, typically, depend very weakly on temperature,
but can become important near the phase transition. The best fit
parameters are \,_,; = 0.2 for both modes, A4, = 6.6 cm ™'
and Ag, =173 cm'. The value Ij; = 2cm™' is adopted
from [28] for related compound K,Fe,_,Se,, where the
anharmonic effects dominate the temperature dependence.
We see that \,_,; assumes values much smaller than 1. Small
and sometimes irregular changes in I;(T') are also observed
in other materials whose Raman spectra are considered to
be dominated by spin fluctuations [21, 33]. Therefore, we
believe that a simple separation of I}(T") to the anharmonic
and temperature independent term, which works well in
many systems, is not appropriate for itinerant magnetic sys-
tems like K, Co,_,Se,. We conclude that the spin fluctuations
and electron—phonon coupling are likely to affect the line-
width even above T..

The electron—phonon interaction strength is proportional to
the density of states at the Fermi level N(Eg). Our DFT calcul-
ations for the DOS agree with those in [47]. The calculated
DOS in the FM phase, N(Eg) = 3.69 eV~ is smaller than,
N(Eg) = 5.96 eV~!, in the PM phase. (Though, in reality, it is
possible that the DOS significantly differs from the one given
by the DFT calculations due to the spin fluctuations and dis-
order effects.) Therefore, one expects that the phonon line is
narrower in the FM phase than in the PM phase. This is indeed
the case for the A;, mode, but the opposite is observed for the
B, mode.

It is also interesting to note that the By, mode is much
more asymmetric than the A;, mode and almost twice
broader. These two observations are in striking similarity
with the Raman spectra in the quasi-one-dimensional super-
conductor K,Cr3Ass [21]. In this material the vibrational
mode that modulates the distance between the magnetic
Cr atoms also features large asymmetry and linewidth. In
our case, the distances between the magnetic Co ions are
modulated by the vibrations of the B, mode, see figure 1.
This leads us to the conclusion that the anomalous features
of the Bj, mode are the consequence of spin fluctuations
coupled to the electronic structure via lattice vibrations (in
addition to the magnetostriction and spin polarization, which
change the electronic spectrum near the Fermi level and,
therefore, affect the electron—phonon interaction for both
modes). It should be noted that similar anomalous properties
of Bi; phonon were experimentally observed in the cuprate
high-temperature superconductor YBa,Cu3O7 [48, 49], and

explained as a consequence of the out-of-phase nature of
this mode which couples to oxygen-oxygen in-plane charge
fluctuations [50-52]. In the case of iron-based superconduc-
tors and related compounds, the chalcogen atoms and Fe (or
Co) are not in the same plane and phonons of A, symmetry
can also directly couple with the electrons. A satisfactory
agreement of theory and Raman experiments remains to be
established [53].

The asymmetric By, phonon line can be described by the
Fano profile [21, 36, 54, 55]

(c+9)°
Tre ®

I(w) =1y
where € = 2(w — wo)/T', wp is the bare phonon frequency,
I is the linewidth. Iy is a constant and ¢ is the Fano asym-
metry parameter. It serves as a measure of a strength of the
electron—phonon coupling: an increase in |1/g| indicates an
increase in the electron—phonon interaction, more precisely,
an increase in the electron-mediated photon—phonon coupling
function [51, 53]. From the inset of figure 4(d) it can be seen
that |1/¢| increases as the temperature is lowered and reaches
the highest values around 7, when the spin fluctuations are
the strongest. Spin fluctuations increase the electron—phonon
scattering, similarly does the disorder. Technically, the elec-
tronic Green function acquires an imaginary component of the
self energy due to the spin fluctuations, and this implies the
increase in the damping term in the phonon self-energy, as
explained in, e.g. [44]. This leads us to conclude that the spin
fluctuations strongly enhance the electron—phonon interaction
for the By, vibrational mode affecting its frequency and line-
width near T..

5. Conclusion

In summary, the Raman scattering study of the K,Co,_,Se,
(x =0.3,y = 0.1) single crystals and lattice dynamics calcul-
ations of the KCo,Se,, have been presented. Two out of four
Raman active phonons are experimentally observed and
assigned. The lack of any additional modes indicates the
absence of vacancy ordering. The Raman spectra show sudden
changes in the phonon energy and linewidth near the FM-PM
phase transition. Above 7, the energy and linewidth temper-
ature dependence of the A, and B, modes look conventional,
as expected from the thermal expansion and anharmonicity
effects. The linewidth, though, has very weak temperature
dependence even above 7. which may be the consequence
of the proximity of the phase transition and spin fluctuations.
The B, vibrational mode has particularly large linewidth and
features a Fano profile, which is likely the consequence of
the magnetic exchange coupled to the vibrations of the Co
atoms. Interestingly, the A;, mode linewidth decreases below
T., whereas the linewidth of the Bj, mode increases. The
DFT calculations generally agree with the measured phonon
frequencies. However, fine frequency differences in the two
phases cannot be correctly predicted since the DFT calcul-
ations do not account for the spin fluctuation effects.
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Including on-site electronic interactions described by the multiorbital Hubbard model we study the correlation
effects in the electronic structure of bulk palladium. We use a combined density functional and dynamical
mean-field theory, LDA+DMFT, based on the fluctuation exchange approximation. The agreement between the
experimentally determined and the theoretical lattice constant and bulk modulus is improved when correlation
effects are included. It is found that correlations modify the Fermi surface around the neck at the L point while
the Fermi surface tube structures show little correlation effects. At the same time we discuss the possibility of
satellite formation in the high-energy binding region. Spectral functions obtained within the LDA+DMFT and
GW methods are compared to discuss nonlocal correlation effects. For relatively weak local Coulomb interaction
and Hund’s exchange coupling the LDA+DMFT spectra show no major difference in comparison to GW.

DOL: 10.1103/PhysRevB.93.155152

I. INTRODUCTION

Transition metals have their density of states characterized
by a partially filled narrow d band, superimposed on a
broad free-electron-like sp band. The shape of the d band
especially in the 3d series is a consequence of the construction
of the d orbitals, as they overlap only to a limited extent
with orbitals on neighboring atoms and consequently the
hopping integrals between d orbitals are small, as is the
bandwidth. This points towards the importance of short-range
strong Coulomb repulsion for the 3d elements. An additional
ingredient in the 3d series is the appearance of magnetism. In
a partially filled shell of a free atom the exchange interaction
between electrons favors the parallel alignment of electron
spins (Hund’s rule). In solids, electrons of the extended
states and orbitals experience the competition between the
kinetic energy favoring no spin alignment and the exchange
interaction favoring spin alignment. If the band is narrow
the energy gain from the exchange interaction may win and
the spin alignment is favored. In this sense, the occurrence
of magnetism in the 3d series is a consequence of the
narrowness of the 3d band. A quantitative theory to explain
the electronic structure and hence the physical properties
of 3d elements has been consistently developed during the
past decades in the form of the combined density functional
theory (DFT) and dynamical mean-field theory (DMFT) [1-4],
which is generally referred to as the LDA+DMFT method
[4,5] (where LDA stands for local density approximation).
In the LDA+DMFT scheme the LDA provides the ab initio
material-dependent input (orbitals and hopping parameters),
while the DMFT solves the many-body problem for the
local interactions. Therefore, the LDA+DMFT approach is

2469-9950/2016/93(15)/155152(11)
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able to compute, and even predict, properties of correlated
materials. Theoretical results obtained with LDA+DMFT can
be compared with experimental data obtained, for example,
by photoemission spectroscopy (PES) [6,7]. In particular, this
technique measures spectral functions, i.e., the imaginary part
of the one-particle Green’s function, and thus determines
correlation-induced shifts of the spectral weight. Indeed, most
experimental investigations on the electronic structure of the
3d metal Ni rely on PES [8,9]. Braun et al. [10] demonstrated
the importance of local correlations in Ni by exploiting
the magnetic circular dichroism in bulk sensitive soft x-ray
PES measurements. One of the dominant correlation effects
observed in the PES data for Ni is the satellite peak situated
at 6 eV below the Fermi level [11-13]. This feature is not
captured by LDA, but it is well explained by LDA+DMFT
[12]. LDA4-DMEFT also reproduces the correct width of the
occupied 3d bands and the exchange splitting [11,12,14].

As LDA+DMFT is very successful for 3d elements, this
motivates us to investigate the applicability of LDA+DMFT
to 4d transition-metal elements. Transition metals from the
4d series have larger bandwidths compared to that of the 3d
elements and correspondingly larger kinetic energies, which
will favor an itinerant bandlike picture over an atomiclike
localized picture and somewhat weaker correlation effects. In
our present study we focus on the 4d metal palladium. Despite
being in the same group as Ni in the periodic table, the physical
properties of Pd are very different, so a theoretical study
including local and nonlocal correlation effects is particularly
desirable. The electronic structure of Pd has been widely
studied, both from a fundamental physics points of view
and in its industrial applications as catalysts and hydrogen
storage. As a late 4d transition-metal element, Pd is not far
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from the ferromagnetic instability: it has a high density of
states at the Fermi level and a large Stoner enhancement in
the magnetic susceptibility [15]. On expansion (for a larger
lattice constant) Pd turns ferromagnetic, as shown by DFT
calculations [16]. Experimental studies involving PES have
been used in the search for signatures of electronic correlations
in Pd such as the existence of satellites in the spectral
function [17,18]. Liebsch [19,20] investigated the satellite
formation mechanism in detail using many-body methods,
pointing out the importance of taking electron-hole and hole-
hole scattering into account by ladderlike summations in the
T -matrix formulation. Martensson and Johansson predicted a
satellite in PES for Pd [21] at 8 eV binding energy, which is in
good agreement with later experimental findings (~ 8.5 eV)
by Chandesris et al. [17]. The method employed in Ref. [21]
was semiempirical, using thermodynamic input data. In this
study we discuss the satellite formation in Pd using ab inito
self-consistent state-of-the-art calculations as well.
Complementary information can be obtained from the
analysis of the Fermi surface. Features of the Fermi surface can
be experimentally probed by photoemission spectroscopy and
de Haas—van Alphen (dHVA) measurements. The so-called
Kohn anomalies [22] may appear in the phonon dispersion
relations of metals, arising from virtual scattering of conduc-
tion electrons from state k to K’ connected by nesting vectors
q. The appearance of a Kohn anomaly in Pd, however, is
still debated [23,24]. Therefore, the determination of possible
Fermi-surface nesting in Pd remains of high interest.
Palladium is perhaps the best studied high-susceptibility
paramagnet and played an important role in elucidating several
aspects of the theory of spin fluctuations. Among the elements,
Pd is traditionally taken as the best candidate for observing
spin fluctuations because of its high electronic density of states
and large Stoner enhancement in the magnetic susceptibility.
Specific heat experiments [25] showed a reduction in the
electronic specific heat coefficient of 7% in a magnetic field
of about 10 T, suggesting that strong spin fluctuations do
appear in Pd. The reduction of spin-fluctuation contributions
to the electronic specific heat at high magnetic fields is
well established theoretically by several works: Doniach and
Engelsberg [26], Berk and Schrieffer [27], Béal-Monod and
co-authors [28,29], and many others. In their classical works,
the Crabtree group experimentally investigated the evidence
of spin fluctuations in Pd by measuring the cyclotron effective
masses and the amplitude of the dHvA effect as a function
of the magnetic field [30,31]. These typical measurements
provide in principle information about spin-fluctuation contri-
butions to the conduction electron properties. While the former
allows one to obtain information about the density of states
at the Fermi level, which determines the electronic specific
heat, the latter measures the difference in volume between the
spin-up and spin-down Fermi surfaces, which determines the
magnetization. The absence of significant field dependence
of the cyclotron effective mass and the spin splitting factor
[30,31] implies that the spin-fluctuation contributions to the
electronic specific heat and static spin susceptibility x =
M/ H are not appreciably affected by applied fields up to 13
T. This is consistent with the theoretical estimations made
by Brinkmann and Engelsberg [32] and Hertel et al. [33]
that magnetic fields much larger than 13 T are required
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to suppress the spin fluctuations in Pd. Highly accurate
LDA calculations were performed to estimate the parameters
entering in Moriya’s spin-fluctuation theory [34]; in particular
the Landau functional for Pd was used to connect critical
fluctuations beyond the local density approximation with
the band structure. The magnetic properties and dynamical
fluctuations in Pd were discussed recently by Larson et al.
[35]. It was pointed out [35] that the key parameter for the
nontrivial properties of Pd is the mean-square amplitude of
the spin fluctuations, which is a nonlocal quantity determined
by the momentum-dependent spin susceptibility in a large part
of the Brillouin zone, and therefore nonlocality is expected to
play a significant role in the physical properties. It is one of
the aims of this work to identify local and nonlocal correlation
effects on the spectral function by comparing results obtained
via LDA4+DMFT and GW methods [36].

The results presented here include the electronic structure,
the Fermi surface and nesting vectors of Pd, and the satellite
formation in the high-binding-energy region of the density
of states. Most of our results have been obtained within
the full-potential linearized muffin-tin orbitals (FPLMTO)
method implemented within the RSPt code [37], which has
previously proven to be able to accurately determine ground-
state quantities within LDA+DMFT for 34 transition metals
[38,39]. Self-consistent quasiparticle GW calculations have
also been performed [40,41], which allows us to discuss the
effect of nonlocal electronic correlations in Pd. The paper
is organized as follows: Section I is an introduction. In
Sec. II we present computational methods and details of the
calculations. Section III A presents the total-energy data, from
which we extract the optimal U and J values matching the
experimental and the calculated equilibrium lattice parameters.
We also present results concerning the onset of ferromagnetic
long-range order upon lattice expansion. In Sec. IIIC the
calculated spectral function of palladium is shown, and the
relation to the photoemission satellite is discussed in detail.
The effect of nonlocal correlations is discussed in Sec. III D.

II. COMPUTATIONAL METHODS AND DETAILS
A. The LDA+DMFT method

Correlation effects in the valence Pd 4d orbitals were
included via an on-site electron-electron interaction in the form
%Zi{m’a} Umm’m”m/”cimgC,‘Tmfgfcim’”a’cim”a~ Here, Cimo (Cimo')
annihilates (creates) an electron with spin ¢ on the orbital
m at the lattice site i. The Coulomb matrix elements U,/ m"
are expressed in the usual way [42] in terms of Slater integrals.
Since specific correlation effects are already included in the
local spin-density approximation (LSDA), so-called “double-
counted” terms must be subtracted. To take this into account,
we employed the interpolation double-counting scheme [43].
For the impurity solver a fluctuation exchange (FLEX) [44]
type of approximation was used for the multiorbital case
[45-47]. In contrast to the original formulation of FLEX [44],
the spin-polarized 7-matrix FLEX (SPTFLEX) is employed
for the present calculations, which treats the particle-particle
and the particle-hole channel differently [45—47]. While the
particle-particle processes are important for the renormaliza-
tion of the effective interaction [48], the particle-hole channel
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describes the interaction of electrons with the spin fluctuations,
which represents one of the most relevant correlation effects
in Pd. In addition, the advantage of this computational scheme
lies in the treatment of the Coulomb matrix elements in a
full spin and orbital rotationally invariant form, relevant for
realistic materials.

B. The self-consistent quasiparticle G W method

In recent years, first-principles calculations involving the
GW approximation [36] have become more popular. In par-
ticular self-consistent GW formulations are promising because
they can more accurately calculate quantities like band gaps
as compared to “one-shot” GW approaches [41]. In these
methods, the first step is to compute the band structure of
the solid, usually within DFT-LDA. The density response
function is then calculated by the random-phase approximation
(RPA) and employed to evaluate the dielectric function and the
screened Coulomb interaction W. The matrix elements of the
self-energy are added as corrections to the LDA eigenvalues,
and the effective potential is self-consistently updated. In spite
of the simplified formalism of calculation, as compared to that
of the full GW scheme, a good agreement with experiment
for several materials has been obtained [41]. In this study
we employed the quasiparticle self-consistent GW (QSGW)
method [40,41]. Our main object of interest is the self-energy-
corrected eigenvalue for band n and Bloch vector k,

Exn = €xn + Zign Ay, (1)

where the operator A Xy, = (Wk,| Z(r,r',éx;) — Vie(r) |Wky).-
The self-energy is given in terms of the Green’s function
and the screened Coulomb interaction W: X(r,r',w) =
i [do' G(r,r' ,w — )W(r,r ,w)e . From the slope of
the real part one can obtain the renormalization factor

-1
8ReEkn(a))i| | ®

Zyn = 1 -
: |: ow

In a direct comparison with the LDA+DMFT results, GW
calculations reveal if significant nonlocal correlation effects
occur in Pd.

C. Technical details

The LDA+DMFT calculations were done using the
FPLMTO code Rspt [37] as a base for the underlying
density functional theory calculations. The RSPt calculations
were based on the local-density approximation with the
parametrization of Perdew and Wang [49] for the exchange-
correlation functional. Three kinetic energy tails were used,
with corresponding energies 0.3, —2.3, and —1.5 Ry. Pal-
ladium is a face-centered-cubic metal, and the Kk-mesh we
used had the size 16 x 16 x 16 for the equations of state,
24 x 24 x 24 for the other calculations, and Fermi-Dirac
smearing with 7 =400 K (the same temperature as was
used for the imaginary-frequency Matsubara mesh). The
muffin-tin radius was set to 2.45 Bohr atomic units (a.u.)
and was kept constant throughout all unit-cell volumes.
For the charge density and potential angular decomposition,
inside the muffin-tin spheres, a maximum angular momentum
Imax = 8 was set. The calculations included spin-orbit coupling
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and scalar-relativistic terms within the muffin-tin spheres,
unless otherwise noted. The SPTFLEX impurity solver was
implemented in the Matsubara domain, and we used 2048
imaginary frequencies and an electronic temperature of 400 K.
The analytic continuations of the self-energy from imaginary
frequencies to the real energy axis in the complex plane were
performed by Padé approximants [50].

The QSGW scheme used in this study is implemented
into the LMSuite package [40,41], which is based on the
full-potential linear muffin-tin orbitals code by M. Methfessel
et al. [51]. The muffin-tin radius was chosen to be 2.63 a.u, and
the integration of the Brillouin zone (BZ) was mapped with
24 x 24 x 24 k-points. For the GW calculation, we reduced
the k-points to 6 x 6 x 6 [41]. A double-x basis set with
Imax = 4 was used, including the semicore 4 p states with local
orbitals. This basis set allows for an accurate description of the
high-lying conduction-band states. Spin-orbit coupling was
included within the muffin-tin spheres.

We point out that both the RSPt and the QSGW methods
employ the full-potential linearized muffin-tin orbital basis
set, but using different implementations. As can be seen in
Sec. III D, this causes no major differences between the RSPt
and the QSGW LDA results.

III. RESULTS AND DISCUSSION

A. Equation of state

We begin our study by showing that LDA+DMFT can
accurately determine the equilibrium lattice constant and bulk
modulus, the two most important ground-state properties. The
Coulomb and exchange parameters U and J used in the DMFT
calculations are considered adjustable parameters in this study.
In principle, they can be calculated from first principles too
[52]. In this section we adjust the U and J values such that
the calculated equation of state (EOS) energy-volume curve
reproduces the experimental lattice constant (see Table I for a
collection of experimental lattice constants from the literature).

In Fig. 1 (top), EOS curves for different values of U
and J are presented. The experimental volume has been
marked out. The equilibrium volume V; and bulk modulus
By for each of the curves can be seen in Table II. One

TABLE 1. Experimental lattice constants a (and equivalent unit-
cell volume) of palladium from various sources, as a function of
temperature.

T (K) a(A) a(au.) Volume (a.u.?) Ref.
853 3.9184 7.4047 101.50 [53]
673 3.9088 7.3866 100.76 [53]
297 3.9049 7.3792 100.45 [54]
296 3.8904 7.3518 99.34 [53]
296 3.8902 73514 99.32 [53]
120 3.8830 73378 98.77 (53]
23 3.8907 7.3524 99.36 [54]
0 3.881 7334 98.62 [55]
ob 3.877 7.326 98.32 [55]

“Estimated from room temperature using linear thermal expansion
coefficient; see Ref. [55].
PCorrected for zero-point anharmonic expansion; see Ref. [55].
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FIG. 1. Equation of state curves. Top: Effect of increasing U.
LDA (red) comparedto U = 1.0eV, J = 0.3eV (green); U = 1.1¢eV,
J =0.3¢eV (turquoise); and U = 1.3 eV, J = 0.4V (blue). Bottom:
Effect of altering J while keeping U fixed, for U = 1.0 eV (dashed
line) and U = 1.3 eV (solid line).

TABLEII. Equilibrium volumes Vj, and bulk moduli B, extracted
from equation-of-state fitting function (Birch-Murnaghan), for differ-
ent sets of U and J parameters. The experimental volume 99.3 a.u.?
is taken from the room-temperature data of Ref. [53], which differs
from the 7 = 0 K data by <1%. The experimental bulk modulus is
189 GPa [56].

U (eV) J (eV) Vo (a.u?) By (GPa)
0 0 95.94 226.6
1.0 0.3 99.02 190.6
0.4 98.92 192.2
0.6 99.03 192.2
0.8 99.05 193.2
1.1 0.3 99.92 181.7
1.3 0.4 101.74 167.7
0.6 101.42 171.9
0.8 101.31 174.7
3.0 0.3 127.91 122.3
0.9 124.07 124.2
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observes (Fig. 1, top) that U = J =0 eV (red curve), i.e.,
the LDA, underestimates the volume, which is commonly
known. The generalized gradient approximation (GGA) to the
exchange-correlation potential, as pointed out for Pd in Ref.
[57] (data not shown here), overestimates the lattice constant
and leads to a ferromagnetic ground state and is therefore
unsuitable. As the value of U is increased, the computed lattice
constant approaches the experimental value from below. For
U = 1.0 eV the calculated V| and B, for different exchange
parameters J are given in Table II, and the values are closer
to experiment than the LDA value. The effect of varying the
exchange parameter J on the EOS can be observed in Fig. 1
(bottom, dashed lines). The equilibrium volumes are tabulated
in Table II and give a standard deviation of 0.05 a.u.?, which
is of the same order as the scattering in the data for room
temperature (see 7 = 296 K in Table I). At U = 1.1 eV and
J = 0.3 eV, V is overestimated compared to the experimental
value, while By is underestimated. Increasing U to 1.3 eV
leads to an even larger V) and a smaller By. Varying J at this
value of U gives a standard deviation of 0.18 a.u.?, which
is an order of magnitude larger than the standard deviation
at U = 1.0 eV. The effect of exchange J on the volume is
larger for U = 1.3 eV than for U = 1.0 eV, but it is still below
the experimentally observed thermal expansion (see Table I).
The increase of J (for a fixed U = 1.3 eV) decreases the
equilibrium volume, which is opposite to the trend given by
increasing U. However, this is a small effect and not relevant
to this study. By increasing U even further to 3 eV, the same
trend of increasing Vj and decreasing By is maintained (see
Table II).

Based on the results presented in this section, U = 1.0 eV
and J =0.3 eV can be taken as a reasonable choice to
reproduce the lattice constant and bulk modulus in our
LDA+DMEFT calculations.

B. Ferromagnetic instability

It is known that palladium is on the verge of ferromag-
netism, having a large density of states at the Fermi level
D(Er) leading to a large static susceptibility. An early theory
that tried to explain the magnetic transition in itinerant electron
systems was the Stoner model. According to this model, a
magnetic state is favored over a nonmagnetic state when
the criterion D(Eg)I > 1 is fulfilled, where I is the Stoner
parameter [58]. This criterion points to the possibility of
inducing magnetic order by increasing D(E r). In some cases,
this can be achieved by reducing the effective dimensionality of
the system. To create magnetic order, attempts have been made
to lower the dimensionality of Pd systems, e.g., by creating
nanoparticles and nanowires [59—61] or thin films [62]. There
are also density functional theory studies that indicate that
bulk palladium turns ferromagnetic as the volume is expanded
[16,63-65].

In Fig. 2 the magnetic moment in units of wp is plotted
as a function of lattice constant. For the LDA, within the
scalar-relativistic approximation (red curve), a magnetic onset
is brought about at a lattice constant of 7.65 a.u. This is about
4% larger than the experimental lattice constant, which is in
accordance with previous studies, where the magnetic onset
varies between a 1% and 6% increase of the lattice constant.
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FIG. 2. Magnetic moment calculated as a function of volume,
within the LDA (red circles) and within LDA+DMFT (green circles),
forU = 1.0eVand J = 1.3 eV.Relativistic effects were treated using
the scalar-relativistic approximation.

Hong and Lee [65] point out that this variance could be due
to the sensitivity of D(E ) on the k-point mesh and show that
D(EF) is difficult to fully converge even at dense mesh sizes.
Note that the curve reaches a maximum (about 0.4 5) and
then decreases toward zero magnetic moment at large lattice
constants. A full charge transfer to the d states has then been
accomplished, leading to fully occupied d states with no net
magnetic moment [16].

We next calculated the magnetic moment as a function of
increasing lattice constant within the LDA4+DMFT scheme,
using the scalar-relativistic approximation, and setting U =
1.0 eV and J = 0.3 eV (Fig. 2, green curve). The magnetic
transition is pushed further upwards in volume, compared to
the scalar-relativistic LDA curve (red), giving a transition first
into a “low-moment” and then into a “high-moment” state. We
also note that the LDA+DMFT curve more or less coincides
with the LDA curve at larger lattice constants. The system is
then close to having a fully occupied d band, where correlation
should have a negligible effect. Therefore, DMFT is able
to capture some dynamical spin-fluctuation effects, and this
could explain the suppression of the magnetic moment at those
intermediate volumes, where the LDA still produces noticeable
moments.

C. Density of states and Fermi surface
1. Spectral functions and the formation of satellite structure

The density of states (DOS) at the experimental lattice con-
stant is presented in Fig. 3. Including electronic correlations,
for increased values of the local Coulomb parameter U, in the
higher-binding-energy region a satellite structure develops. We
tuned J for fixed U and saw no significant change in DOS (not
shown). Hence, the satellite position is mostly insensitive to
the value of the exchange parameter J.

The quasiparticle weights Z = (1 — E)Re[E(E)]/&)ElEF)’1
for the different U, shown in Fig. 3, are in the range
Z =0.975-0.916 for U = 1—4 eV. These correspond to
effective mass ratios m*/mypa = Z~' =1.03—1.09, where
mipa 1S the LDA band mass. This should be compared
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FIG. 3. Total density of states as a function of the Coulomb
interaction U. Note that the peak closest to the Fermi level (marked
by A) is pinned and that the lowest-lying peak (C) decreases in
intensity while a satellite structure is formed for high binding
energies (see inset). Corresponding quasiparticle weights Z = (1 —
8Re[2(E)]/8E|EF)*1 are given in the upper left corner.

: . _ X o
with Mp heat /mipa = 1.66, where mg, ., is estimated from

electronic specific heat measurements and my pya is taken from
band-structure calculations [66,67], which is considerably
larger than what we obtain in this study. It should be noted
that the electron-phonon coupling A..pn is not included in
our self-energy, and previous theoretical studies have shown
this quantity A.pn to be in the range 0.35-0.41 [68,69].
Recent angle-resolved PES (ARPES) by Hayashi et al. [67]
estimated the electron-phonon coupling to be A, ~ 0.39,
and the electron-electron and electron-paramagnon coupling
t0 be Ace+ Aepara A 0.08, leading to an effective mass
M arpps/ MDA = 1 4+ A & 1.5. Using Hayashi ef al.’s [67]
value for A..pn, together with our calculated self-energy, the
effective mass is m*/mypa = 1.42—1.48, for U = 1—4 eV.
This is in good agreement with Hayashi et al. [67], but still
underestimates the value from specific heat measurements. It
should be noted that our quasiparticle weights Z are averaged
over the BZ, while Ref. [67] investigated specific paths in
the BZ, being also a surface-sensitive study. The overall
magnitude, however, is similar as this comparison shows.

Just below the Fermi level a dominant peak, with a relatively
large value of the density of states, is situated with a maximum
atabout —0.15 eV (marked by A) for all investigated U values.
A second major peak (B) is situated in the middle of the valence
band around —2.7 eV at U = 0 and is shifted to approximately
—2.5eV as U is increased. The third major peak (C) is at the
bottom of the d band near —4.7 eV and is shifted towards
—4.4 eV as correlation is increased. The contributions of
different bands to the peaks in the DOS can be inferred by
studying the spectral function along high-symmetry lines in
the BZ; see Fig. 4.

Concerning the high-energy binding region in the pho-
toemission spectra, there exist discrepancies of the order of
0.5 eV between experiment and band-structure calculations,
as pointed out by Kang et al. [70]. The LDA seems to
overestimate the bandwidth of Pd as compared to the measured
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FIG. 4. LDA orbital-resolved spectral functions along high-
symmetry lines in the BZ. Top: e, symmetry. Bottom: #,, symmetry.

PES bandwidth, and some experimental states are located
closer to the Fermi level than the theoretical states [70-73]. It
was proposed [70] that surface and correlation effects could
modify the LDA band structure, explaining the discrepancies.
It is not altogether clear how to separate these two effects
from each other since both bulk and surface states will
contribute to the PES, especially for low photon energies.
Kang et al. [70] performed combined PES and LDA band-
structure calculations for Pd, and their results indicate that the
surface effects could indeed explain the bandwidth narrowing.
However, they also ruled out many-body correlation effects
since they found no trace of a satellite in the PES. The
absence of the satellite might be caused by a missing 4 p-4d
photoabsorption threshold in Ref. [70], since the energy
range (around 55 eV photon energy) does not seem to be
investigated. The experimental photoemission studies in Refs.
[17,18] scan this range and do indeed find a satellite. The 4 p-4d
photoabsorption process can be viewed as follows: A photon
with energy at the 4 p core level will excite a core electron to
the Fermi level. As the 4p core hole is filled by a valence
electron, the resulting valence hole will interact with the
photoabsorbed electron and contribute to the satellite intensity.
Note that the 4 p-4d photoabsorption will affect the satellite
intensity, but not its position [74]. The satellite position will
be determined by the valence hole spectral function, which we
access in our calculations. We cannot capture the contribution
from the core levels on the spectra, and hence the satellite
intensity which we obtain should not be directly compared with
experiment. From comparison with Fig. 3 and the experimental
satellite position 8.5 eV [17], the U value needed to reproduce
the satellite position can be estimated to be between 2 and
3 eV. By including correlations we also get a shift of the
B and C peaks to lower binding energy, in better agreement
with experiment. The B peak position has been measured at
—2.55eV [72], —2.4 eV [18], and —2.5 eV (estimated from
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Ref. [70]), which indicates that the LDA positions this peak at
too-high binding energy (about —2.7 eV in this study) and
that including correlations will improve the peak position
in comparison with experiment. Here we emphasize that no
attempt was made to model the surface states; instead only
bulk calculations were performed. Note that matrix element
effects were also not taken into account in this study.

As shown in Sec. [I A U values above 1.0 eV overestimate
the equilibrium lattice constant. Hence a different U value is
required to match the experimental spectra than the one that
reproduces the equilibrium volume. The same discrepancy was
also encountered for Ni [38,75].

It is interesting to discuss the satellite formation in Pd,
in comparison with Ni. The effect of electron correlations
on energies of one-electron removal from a partially filled
band is described in terms of interactions between three-body
configurations, one hole plus one electron-hole pair, giving
the rise to hole-hole and hole-electron scattering [19,20].
The effectiveness of these scattering processes depends not
only on the strength of the screened on-site electron-electron
interaction, but also on the occupation of orbitals involved
in the scattering process. In particular on the number of
empty d states, necessary for the creation of three-particle
configurations, since no electron-hole pair can be added to
a completely filled band, in the case of nickel where only
the minority-spin band has a sizable number of empty states
available, the creation of a majority-spin hole will be followed
by scattering processes involving only opposite spin electron-
hole pairs. The strength of the interaction for this channel
is proportional to U, while the creation of a minority-spin
hole will involve a scattering with parallel spin electron-hole
pairs only of strength proportional to U — J. In Pd both spin
channels are always symmetric (paramagnetic metal), while
for Ni the exchange splitting redistributes holes in the d bands.
Even for the reduced scattering amplitudes of electron-hole
pairs, the T-matrix formalism generates a satellite structure,
but due to the small satellite weight it is hardly discernible for
valence-state spectroscopy.

2. Fermi surface

The Fermi surface of Pd was extensively studied within
density functional theory formalism [66,76,77]. Here we
present a detailed comparison of the Fermi surface obtained
by different methods including correlation effects. In Fig. 5
(bottom left), we present a cut of the LDA Fermi surface
in the k, — k, plane together with a projection of the three-
dimensional Fermi surface sheets (Fig. 5, top left). The Fermi
surface geometry contains the closed electron surface around
the I" point, and a set of hole ellipsoids at the X points. Open
hole surfaces consists of cylinders, extending in the [100] and
[010] directions (i.e., along the X-W-X paths) and intersecting
in pairs at the symmetry points X; see top right of Fig. 5.
The open hole surfaces are particularly interesting as they
are associated with the large effective masses and contribute
substantially to the density of states near the Fermi level [77].
The Kohn anomaly [22], in the slope of the [££0] transverse
acoustic branch of the Pd phonon dispersion, is attributed
to Fermi surface nesting between these open hole cylinders
(see Ref. [23] and references therein). Previous calculations
also predicted the existence of small L pockets, which were
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FIG. 5. Fermi surfaces. Top left: three-dimensional Fermi surface in the first BZ, projected on the k,-k, plane. Note the X hole pockets
centered at the square faces (blue, hole side; yellow, electron side), the L hole pockets centered at the hexagonal faces (red, hole side; turquoise,
electron side), and the tube hole structures intersecting at the X points (red, hole side; turquoise, electron side). Also note that the L pockets only
exist if spin-orbit terms are included. A large electron surface sheet is centered around the I point (purple). Top right: Hole tube structure as
seen in the extended zone scheme. Bottom left: Cut at k, = 0 within the LDA. Bottom right: Cut at k, = 0 within the LDA+DMFT, U = 1.0eV
and J = 0.3 eV. The three-dimensional Fermi surface was created with the XCrysden software [78].

seen if spin-orbit coupling was taken into account [66,76].
These L pockets were later confirmed by magnetoacoustic
measurements [79].

The orbital character of the Fermi surface sheets can be
determined by investigation of the orbital-resolved spectral
function; see Fig. 4. The tube structure (stemming mostly
from the flat band between the W and the X symmetry points)
has mostly #,, character, which was pointed out already by
Kanamori [80]. The Fermi surface obtained with LDA+DMFT
is also presented in Fig. 5 (bottom right). There is no signif-
icant difference between the Fermi surfaces from LDA and
LDA+DMEFT. The diameters of the tube structures are only
weakly affected. The Fermi-surface nesting vector, believed to
be responsible for the Kohn anomaly in the phonon dispersion
of Pd, is estimated to be q = 27”[0.30,0.30,0], in close
agreement with previous studies [23]. Therefore, the Kohn
anomaly is already well captured at the level of the LDA [23].

D. Local and nonlocal correlation effects

In order to investigate the effect of nonlocal electron
correlations on the electronic structure of Pd, calculations

employing the QSGW method were also performed. The band
structure, the spectral functions, and the Fermi surfaces were
calculated using the experimental volume.

In Fig. 6 (top left) the band structure along high-symmetry
lines within the Brillouin zone is plotted. The bands within the
LDA from RSPt (solid green lines) and from QSGW (dashed
blue lines) coincide well. Turning on correlation effects, the
bands are modified as compared to the LDA result. The
QSGW (red dots) and the LDA+DMFT (blue energy scale)
are nearly coinciding around the Fermi level, and differences
are mainly visible at higher energies. Around the I" point,
for energies between —6 eV and the Fermi level, the QSGW
bands are shifted towards the Fermi level to a larger extent
than the LDA4+DMFT bands. For binding energies larger
than 6 eV, the lowest band is shifted downwards in energy
to a larger extent than the LDA+DMFT bands. The trends
(upwards or downwards shifts in energy) are, however, the
same for both methods, indicating that the U value used in
LDA+DMFT (U = 1.0 eV) is too small to reproduce the
correct quasiparticle eigenvalue position. This was also found
when LDA+DMFT spectral functions were compared with
the experiment in Sec. IITC.
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FIG. 6. Blue color map corresponds to LDA+DMFT, U = 1.0eV, and J = 0.3 eV. Top left: Band structure along high-symmetry directions
in the BZ. Top right: QSGW and LDA+DMFT DOS. Bottom left: Fermi surface cut in the k. -k, plane. Bottom right: Fermi surface cut including

the L point.

The density of states calculated within the QSGW method
(red line) and within LDA (blue line) are also plotted in
Fig. 6 (top right). The effect of correlations is most easily
identified by inspecting the three main peaks in the DOS. In
Fig. 6 (top right), we also show the LDA+DMFT k-integrated
spectral function. The spectral functions within LDA4+DMFT
are calculated along a horizontal complex contour at a distance
8 from the real axis, giving a broadening to the DOS. We
performed LDA density of states calculations within RSPt along
the real axis as well, and found excellent agreement with the
LDA from QSGW (not shown). As correlations are turned
on, similar trends in the three main peaks can be observed
for the QSGW method as within the LDA+DMFT method.
One main difference, however, is that LDA+DMFT can
produce the high-energy satellite, while QSGW cannot. This
can be attributed to the 7-matrix ladder diagrams which are
present in the LDA+DMFT self-energy, but not in the QSGW
self-energy. There exist extensions of the GW formalism that
allow for T-matrix diagrams (see Refs. [81,82]) that are not
included in the present study.

The computed Fermi surface in a cut of the k, -k, plane from
both LDA+DMFT and QSGW is presented in Fig. 6 (bottom
left). Both methods change the Fermi surface slightly. The
topology of the sheets is unchanged, but the k-space volume
enclosed by the sheets shows some effect of correlations. The
largest changes can be seen in the tube structure running along
the X-W-X symmetry directions. In the case of LDA+DMFT
(blue intensity scale) the tube radius is slightly reduced, while
for QSGW (green line) the radius is slightly increased. A
different cut in the BZ, including the L pocket, is shown in
Fig. 6 (bottom right). QSGW and LDA+DMFT display similar
trends in the change of the Fermi surface, mainly the beginning
of a “neck” formation in the I"-L direction and a decreasing
of the L-pocket diameter. Note that within the LDA solution
used as a starting point for the QSGW, the L pocket and the
“tongue” feature are connected along the X-L-X direction.
We found by explicit calculation that this was attributed to
the use of the tetrahedron k-point integration method, which
pushes the hole sheet slightly upwards in energy, creating the
connection.
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To conclude this section, we note that nonlocal effects
captured by the QSGW method on the spectral functions come
close to our LDA+DMFT data.

IV. CONCLUSION

Electron correlations are commonly assumed to affect the
electronic structure of the 3d elements to a larger degree
than in the 4d elements due, in part, to the difference in
d-state bandwidth. By electronic structure calculations within
a LDA+DMFT context, we could show that, even though the
LDA can provide a reasonable description of the electronic
structure of Pd, correlation effects give important contributions
to ground-state and spectral properties. We could improve the
equilibrium lattice constant and bulk modulus from that of the
LDA, and on expansion of the lattice constant Pd was shown
to be ferromagnetic with a magnetic moment suppressed
by spin fluctuations. The spectral function calculated with
LDA+DMFT supported a formation of a satellite in the
high-energy binding region while at the same time improving
the band positions in comparison with experiment. The
spectral function and the Fermi surface showed no major
difference between the LDA4+DMFT and QSGW method, and
in particular the nesting vector in the [§£0] direction was only
slightly changed from its LDA value.

We found that the different Coulomb interaction parameters
are required in order to reproduce the experimental equilibrium
lattice constant on the one hand and the PES satellite on the
other hand. The obtained values, however, fall in the range
1.5-4 eV of the recent constraint RPA calculations of Ref.
[52], where different degrees of screening are considered. A
possible origin of the observed discrepancies might lie in the
ignored nonlocal correlations or the frequency dependence of
U [52,83].

Within the present LDA+DMFT calculations the spin-
fluctuation effects were shown to influence the volume at
which the magnetic transition occurs, pushing it to a higher
value than the LDA one. These results suggests that spin
fluctuations could be important also for the case of low-
dimensional systems, like surfaces, nanoparticles, or epitaxial
thin films of Pd.

Our study confirms the band narrowing and favors the
satellite formation picture reported in some experimental
studies of Pd [17]. Previously, the difference between the

PHYSICAL REVIEW B 93, 155152 (2016)

PES and band-structure calculations has been attributed to
surface effects [70], but our results indicate that correlations
should be also taken into account. This goes along with
the empirical arguments presented in the earlier studies
[18,21]. The LDA+DMFT method should be able to probe
the effect of correlations on the PES on an ab initio
level, and further studies in conjunction with bulk and
surface-sensitive PES should hopefully make it possible
to disentangle surface and correlation effects from each
other.

By performing GW calculations in combination with
DMEFT, the so-called GW+DMFT schema [83], nonlocal
correlations and spin fluctuation can be captured on an equal
footing, which turns out to be the next essential step for the
realistic description of the physical properties of palladium.
Particularly interesting in this context would be momentum-
dependent susceptibilities that correctly address paramagnon
physics, recently observed in the experimental studies of
palladium [84].
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We propose a method to compute the transmission through correlated heterostructures by combining density
functional and many-body dynamical mean field theories. The heart of this combination consists in porting
the many-body self-energy from an all electron basis into a pseudopotential localized atomic basis set. Using
this combination we study the effects of local electronic interactions and finite temperatures on the transmission
across the CuyCoCuy metallic heterostructure. It is shown that as the electronic correlations are taken into account
via a local but dynamic self-energy, the total transmission at the Fermi level gets reduced (predominantly in the
minority-spin channel), whereby the spin polarization of the transmission increases. The latter is due to a more
significant d-electron contribution, as compared to the noncorrelated case in which the transport is dominated by

s and p electrons.

DOI: 10.1103/PhysRevB.92.054431
I. INTRODUCTION

The design of multilayered heterostructures composed
of alternating magnetic and nonmagnetic metals offers
large flexibility in tailoring spin-sensitive electron transport
properties of devices in which the current flow is perpendicular
to the planes. In the framework of ballistic transport, the spin-
polarized conductance and the giant magnetoresistance effect
(GMR) depend on the mismatch between the electronic bands
of the concerned metals near the Fermi level [1,2]. In order to
maximize the spin polarization of current and hence the GMR,
heterostructures including half-metallic materials [3—5] seem
to be the materials of choice. In practice, however, the spin
polarization is never complete due to the presence of defects,
and/or due to intrinsic limitations caused by spin contamina-
tion and spin-orbit coupling [5]. Owing to the technological
relevance, considerable progress has been achieved in the
computational description of multilayered heterostructures.
In particular, the ballistic transport properties have been
addressed by considering the Landauer-Bittiker formalism
[6-9], where the conductance is determined by the electron
transmission probability through the device region, which is
placed between two semi-infinite electrodes. The transmission
probability can be then computed with different electronic
structure approaches, such as the tight-binding [10-13] or the
first-principles density functional theory (DFT) ones [14-16].
Various implementations exist, based on transfer matrix
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[17,18], layer—Korringa-Kohn-Rostoker (KKR) [19,20], or
nonequilibrium Green’s function (NEGF) [21] techniques.

In the context of first-principles calculations, it is known
that, for systems with moderate to strong electron correlations,
the electronic structure, calculated with the “conventional”
DFT local density approximation (LDA) or its generalized
gradient approximation (GGA) extension, is not accurate
enough to account for the observed spectroscopic behav-
ior. A more adequate description is provided within the
dynamical mean field theory (DMFT) [22-24] built on the
LDA framework [25-27]. Since many interesting magnetic
materials fall into this category, the prediction of their electron
transport properties, obtained by combining the Landauer-
Biittiker formalism with DFT [21,28,29], is expected to equally
suffer from an insufficient treatment of correlation effects,
which would be captured by adding DMFT. However, the
full incorporation of correlation effects at the DMFT level
into the transport calculations is not straightforward, not
only because of technical reasons, such as large system
size and lack of corresponding algorithms, but also because
of conceptual difficulties in the development of many-body
solvers in the out-of-equilibrium regime [30]. Attempts to
close this gap include the use of combined techniques,
in which equilibrium-DMFT calculations are performed in
order to obtain the Landauer conductance of atomic contacts
made of transition metals [31,32], or model calculations
[33,34].

Here we propose a two-step approach, in which the
Landauer transmission probability is calculated within the
SMEAGOL NEGEF electron transport code [21,28,29], whereby
the Hamiltonian is obtained from DFT [35]. The many-body
corrections to the Green’s function are evaluated using DMFT

©2015 American Physical Society
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in an exact muffin-tin orbitals (EMTO) based package [36-38],
which uses a screened KKR approach [39]. These corrections
are then passed to SMEAGOL for the calculation of the transport
properties.

This method is applied to investigate the linear-response
transport through a prototypical Cu-Co-Cu heterostructure,
thus accounting for strong electron correlation effects in the
Co monolayer. The attention to this system is drawn by a
significant density of states that develops in the Co layer
in the vicinity of the Fermi level in one spin channel only
(the minority-spin one), whereas the Cu layers contribute with
states at higher binding energies only.

The article is organized as follows. We start with a
general description of the transport problem in the presence
of electronic correlations (Sec. II A). Then the computational
details are outlined in Sec. IIB, and the geometry of the
system considered in our simulations is described in Sec. II C.
Finally, Sec. III presents the main results, and Sec. IV
summarizes and concludes. The appendices deal with the
technical implementation and various tests.

II. METHODS

A. Transport properties in the presence of electronic
correlations

The electronic transport through a device can be addressed
using the Kubo approach, where the central quantity is
the conductivity, and the electrical current is the result of
the linear response of the system to an applied electric
field [40]. Alternatively, in the Landauer-Biittiker formulation
[6-9], the current flow through a device is considered as a
transmission process across a finite-sized scattering region
placed between two semi-infinite leads, connected at infinity to
charge reservoirs. The quantity of interest is the conductance,
which, within linear response, is given by

= SZBz Z / dk T, k), Ep), (1)

where —e is the electron charge, h the Planck constant, and
€%/ h half the quantum of conductance. T, (k;, Er) is the spin-
dependent transmission probability from one lead to the other
for electrons at the Fermi energy and with the transverse wave
vector Kk perpendicular to the current flow (here we assume
that the two spin components do not mix). The integral over
k; goes over the Brillouin zone (BZ) perpendicular to the
transport direction, and Qg7 is the area of the BZ. In the case
when the interaction between electrons involved in transport
is completely neglected, the transmission for a given energy,
E, of the incident electrons can be evaluated as [41]

T,(ky,E) = Tr[T] k), E)G (k| EYT % (ky, E)G (k) E)],
2

where G°(k,E) is the retarded Green’s function of the
scattering region coupled to the leads,

G° (ky, E)=["S(k))—H" (k) — X (k;, E)— X%k, E)] "
(3)
All terms presented are matrices [G? (K, E)],,,, labeled by the
global indices w, v which run through the basis functions at all
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atomic positions in the scattering region. S(k) represents the
orbital overlap matrix, and the energy shift into the complex
plane, et = lims_ o+ (E + i), has been introduced to respect
causality. H? (k) is the Hamiltonian of the scattering region for
spin o’; the right and left self-energies X% (ky, E) and X9 (k|, E)
describe the energy-, momentum-, and spin-dependent hy-
bridization of the scattering region with the left and right leads,
respectively [29]. Therefore, G° (k| , E) is formally the retarded
Green’s function associated to the effective, non-Hermitian
Hamiltonian H (k;, E) = H (k) — 29 (k|, E) — X%k, E),
in which the self-energies act as external energy-, momentum-,
and spin-dependent potentials. In Eq. (2), T'J K, E) =

i[Z(z(R)(k”,E) — ZZIR)(kH ,E)] is the so-called left (right)
broadening matrix that accounts for the hybridization-induced
broadening of the single-particle energy levels of the scatter-
ing region. Importantly, for noninteracting electrons, it has
been proved that the Landauer and the Kubo approaches
are equivalent [42], so that the linear-response transport
properties of a system can be computed with either formalism.
During the last few years, the Landauer approach has been
systematically applied in conjunction with DFT in order to
perform calculations of the conductance of different classes of
real nanodevices [43]. In this combination the DFT provides
a single-particle theory in which the Kohn-Sham eigenstates
are interpreted as single-particle excitations. Although this
approach is only valid approximatively, DFT-based transport
studies have provided insightful results concerning the role of
the band structure in the electron transport process through
layered heterostructures [1,2,44—46].

With the effect of the electron-electron interaction beyond
the DFT explicitly considered, the retarded Green’s function of
Eq. (3) is replaced by the following one, carrying the subscript
“MB” for “many-body”’:

Gk, E) = [€7S(k)) — H (k) — X (k) E)

— 3%, E) — B3,k E)] . (@)
Here, X9,,(k,E) is the many-body self-energy defined
through the Dyson equation X9,,(k),E) = G (k|,E)~' —
GY, B(k”,E)’1 [40]. This accounts for all electron-electron
interaction effects neglected in G°(k;,E). The self-energy
acts as a spin-, momentum-, and energy-dependent potential,
whose imaginary part produces a broadening of the single-
particle states due to finite electron-electron lifetime. In
this work, the many-body self-energy is computed at the
DMEFT level, meaning that X9, ,(k,E) is approximated by
a k-independent quantity X9, ,(E), i.e., a spatially local but
energy-dependent potential. Then, as suggested by Jacob et al.
[31,32], the conductance and the transmission probability are
obtained within the Landauer approach by using Egs. (1)
and (2), where one replaces G° (K, E) by Gfz(ky, E). This
is an approximation, since it neglects vertex corrections due
to in-scattering processes [47,48], which in general increase
the conductivity. But we are not aware of any established
method to compute those vertex corrections to linear-response
transport within the considered framework. In our approach
the Landauer transmission is calculated using the improved
DMFT electronic structure, rather than the DFT one. Note
that the DMFT provides the single-particle excitations of the
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system, whereas the Kohn-Sham DFT eigenvalues formally
do not reveal such quasiparticle states.

B. DMFT-based computational approach

The transport calculations are performed according to
the Green’s function scheme presented above by using the
DFT-based transport code SMEAGOL [21,28,29]. The many-
body self-energy entering in Eq. (4) is calculated using the
EMTO-DMFT method [36-38,49] within a screened KKR
[39] approach. In both codes the Perdew-Burke-Ernzerhof
(PBE) GGA [50] for the exchange-correlation density func-
tional is used. Self-consistent DFT calculations are performed
separately in SMEAGOL and in the EMTO code. The many-body
self-energy is then evaluated after self-consistency in the
EMTO code, and passed to the SMEAGOL Green’s function
to compute the transmission along Eq. (2). SMEAGOL imports
the DFT Hamiltonian from the SIESTA code [35], which uses
pseudopotentials and expands the wave functions of valence
electrons over the basis of numerical atomic orbitals (NAOSs).
The EMTO code, in its turn, uses the muffin-tin construction;
we present a detailed description of the projection of quantities
such as the many-body self-energy from the EMTO basis set
into the NAO basis set (SMEAGOL/SIESTA) in Sec. IT E.

For the EMTO-DMFT calculations, the following multior-
bital on-site interaction term is added to the GGA Hamiltonian
in the EMTO basis: % Zi{m,a} Unm'm'm €}y cfm,a,c,-mma/c,-mma.
Here, c¢ipno (cjmo,) destroys (creates) an electron with spin
o on orbital m at the site i. The Coulomb matrix elements
U pimmrm are expressed in the standard way [51] in terms of
three Kanamori parameters U, U’, and J. Then, within DMFT
the many-body system is mapped onto a multiorbital quantum
impurity problem, which corresponds to a set of local degrees
of freedom connected to a bath and obeys a self-consistently
condition [23,24]. In the present work the impurity problem
is solved with a spin-polarized 7-matrix fluctuation exchange
(SPTF) method [5,26,52]. This method was first proposed by
Bickers and Scalapino [53] in the context of lattice models.
In practice, it is a perturbative expansion of the self-energy
in powers of U, with a resummation of a specific classes of
diagrams, such as ring diagrams and ladder diagrams. The
expansion remains reliable when the strength of interaction U
is smaller than the bandwidth of the bath, which is fulfilled in
the case of Cu-Co-Cu heterostructures and for the considered
values of the Coulomb parameters. The impurity solver we
use is multiorbital, fully rotationally invariant, and moreover
computationally fast, since it involves matrix operations like
inversions and multiplications. The perturbation theory can be
performed either self-consistently, in terms of the fully dressed
Green’s function, or non-self-consistently, as was done in the
initial implementations [49,54]. When the interaction is small
with respect to the bandwidth, no appreciable difference exists
between the non-self-consistent and self-consistent results
[55,56]. Moreover, it was recently shown that bare series
summations with noninteracting Green’s functions converge
to the correct physical self-energy at least for the two-
dimensional Hubbard model [57]. This has to be distinguished
from the DMFT self-consistency, which is employed in both
cases. In the present calculation, we use nondressed Green’s
functions to perform these infinite summation of diagrams.
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Moreover, we consider a different treatment of particle-hole
(PH) and particle-particle (PP) channels. The particle-particle
(PP) channel is described by the T-matrix approach [58]
which yields renormalization of the effective interaction. This
effective interaction is used explicitly in the particle-hole
channel; details of this scheme can be found in Ref. [52]. The
particle-particle contribution to the self-energy is combined
with the Hartree-Fock and the second-order contributions
[59]. The many-body self-energy is computed at Matsubara
frequencies w, = (2n + 1) /B, wheren = 0,1,2, ... and B is
the inverse temperature. The Padé [60] analytical continuation
is employed to map the self-energies from the Matsubara
frequencies onto real energies, as required in the transmission
calculation. Note that since some parts of the correlation effects
are already included in the GGA, the double counting of some
terms has to be corrected. To this end, we start with the
GGA electronic structure and replace the obtained X, (E)
by X9,5(E) — X9,5(0) in all equations of the GGA+DMFT
method [61], the energy E here being relative to the Fermi en-
ergy. This is a common double-counting correction for treating
metals; a more detailed description can be found in [62].

C. Cu-Co-Cu heterostructure setup

The basis set used in the SIESTA and SMEAGOL calculations
is of “double-zeta with polarization” (DZP) quality. In the
“standard” SIESTA basis construction algorithm, there is an
“energy shift” parameter which allows us to control the extent
of basis functions on different atoms in a multielement system
in a balanced way; in our case this parameter was taken to be
350 meV, resulting in basis functions extending to 6.17 ay (Cu
4s), 3.39 ay (Cu 3d), and 6.31 ag (Co 4s). For Co-3d states, a
smaller basis function localization was intentionally imposed,
corresponding to the extension of 4.61 a(, where ag is the
Bohr radius. The basis functions are usually freely chosen and
not subject to optimization; however, in view of their quite
restricted number in SIESTA, it often makes sense to look at
resulting ground-state properties of materials as a benchmark
for the validity, or sufficiency, of a basis. With the above
settings, the relaxed lattice parameters of pure constituents
were found to be a = 3.65A (fcc Cu, 1% larger than the
experimental value) and a = 2.52 ;\, c=4.06A (hep Co, both
within 0.5% of experimental values). Moreover the magnetic
moment per Co atom was 1.65 up ( equal to experiment).

In order to calculate the transport properties, semi-infinite
leads are attached on both sides of the scattering region. We
consider Cu(111)-cut leads, characterized by the ABCABC
atomic plane repetition into the leads, i.e., along the transport
direction henceforth referred to as z. It is assumed that the
ABCABC layer sequence is smoothly continued throughout
the scattering region, including the Co monolayer (see Fig. 1).
To model the scattering region the sequence is repeated and
the Co layer is considered to replace the Cu layer.

In SMEAGOL the Hamiltonian of the scattering region is
matched to that of the leads at the boundary of the scattering
region, thus implying that whatever perturbation is induced
by a scatterer it has to be confined within the scattering
region. In other words, the simulation cell needs to contain
enough Cu layers on each side of the Co layer to “screen”
it completely. We verified that using seven layers on each
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FIG. 1. (Color online) Schematic representation of the supercell
used in calculations. The length of the cell and the distances between
Cul, Cu2, Cu3, Cu4, and Co are given in the text. The unit cell
dimensions of the leads are kept at the relaxed bulk value 3.65 A.
The ABCABC sequence describes the lead periodicity along the 111
direction.

side provides a good agreement between the potential at the
boundaries of our setup with the one from the periodic Cu
leads calculation. The resulting cell geometry is shown in
Fig. 1: the “Lead”+‘“Scattering region”+*“Lead” composes the
SMEAGOL cell, merging on its two ends with the unperturbed
semi-infinite Cu electrodes. A restricted spatial relaxation
within the scattering region was done by SIESTA, whereby the
total thickness of this region varied in small steps, and the z
positions of Cu2, Cu3, and Cu4 layers between the limiting
Cul and the central Co layer were adjusted till the forces fell
below 0.01eV/ A. This resulted in interlayer distances of 2.119
A (Cul-Cu2 and Cu2-Cu3), 2.118 A (Cu3-Cud), and 2.104 A
(Cu4-Co). The length for the supercell along the z direction
resulting from the minimization of the cell total energy was
31.619 A. The relaxed structural parameters obtained within
the GGA were then used in the GGA+DMFT calculation,
and no additional structure relaxation was attempted at the
GGA+DMEFT level.

D. SIESTA and EMTO density of states

In order to demonstrate the reliability of both codes
concerning the electronic structures, we present below the
density of states for the heterostructure (Fig. 2). A rather good
agreement is apparent.

E. Matrix elements of the self-energy in the NAO basis set

The matrix representation of the self-energy operator is
determined by the chosen basis. Within the EMTO basis set it
has the form SRR/fJ%L,RL,(z). Here R and R’ are site indices
while the L symbol labels the orbital quantum numbers. To
compute the transmission/conductance it is desirable to work
within the SIESTA/SMEAGOL basis. We emphasize that the
major part of calculation is done within the SIESTA+SMEAGOL
package.

Since significant methodological differences exists between
SIESTA and EMTO, in the following we discuss the methodol-
ogy of data transfer between the two codes. We describe briefly
the most significant differences. The former (SIESTA) imple-
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FIG. 2. (Color online) Total (unit cell) and Co density of states
computed within the SIESTA and EMTO technique.

mentation uses norm-conserving pseudopotentials, whereas
the latter (EMTO) uses an all-electron formulation. SIESTA
uses no shape approximation with respect to the potential,
whereas EMTO relies on the muffin-tin concept [36,38]. Basis
functions in SIESTA are atom-centered numerical functions,
whose angular parts are spherical harmonics, and radial parts
are strictly confined numerical functions. A tradition finding
its origins in quantum chemistry suggests that, in order to
improve variational freedom of the basis set, more than one
radial function is adopted into the basis for a given angular
combination (/,m), referred to as “multiple-¢” basis orbitals.
Even as SIESTA maintains flexibility in constructing the
basis set out of different “zetas”, possibly including moreover
“polarization orbitals” and allowing a variety of schemes to
enforce confinement, we shall stick in the following to the case
of just “double-¢”,i.e.,2 x 5 = 10basis functions, provided to
accurately describe the 3d states on each cobalt atom. We shall
fix some notation for further reference. The cumulate index of a
basis function will be u = {I/m¢}, where I indicates the atom
carrying the basis function, { numbers the “zeta”s (= 1 or 2
in our case), and the (/,m) is the conventional angular moment
index. It should be noted, however, that SIESTA employs real
combinations of “standard” spherical harmonics, so that the
indices m = —2 through 2 for / = 2 correspond to xy, yz,
3z2 — r?, xz, and x*> — y? d-functions, correspondingly. With
the above notation, the ith eigenstate of the Kohn-Sham
Hamiltonian will expand into the basis functions ¢,, as follows:

Wir) =Y cui g —Ry), )
"

and the variational principle yields the expansion coefficients
[35]. Within the EMTO, the d-orbitals manifold is constructed
using a basis set with real harmonics (physical orbitals repre-
sentation), and the occupation matrix is obtained integrating
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the complex contour Green’s function (properly normalized
path operator) in terms of the exact muffin-tin orbitals
W1 (€,r) corresponding to the energy € [36—38]. On the other
hand, in SIESTA the numerical basis set is not restricted to the
physical orbitals and allows the definition of simple/double
¢ “atomic-like” representations. Enhancing the numerical
atomic orbitals basis vectors does not affect the dimension
of the vector spaces (in both cases the d subspace); however,
it complicates the algebra for the transformation matrix. The
transformation involves the double-zeta basis set, ¢,,, which
for the L(/,m) manifold contains 2(2/ 4+ 1) components split
into the first (2/ 4 1)-single-zeta and the second (2/ + 1)-
double-zeta components. First we write the explicit form for
the EMTO orbital in a vector form forthe L(I =2,m = 2] + 1)
subspace |Wg,(€,r)), and the corresponding SIESTA basis
vector in the double-¢ basis, |¢gL (1)) = (¢! (r),¢* (r)). The
general transformation matrix V,,lf,%f] (e) is defined as the inner
products of Wg/(€,r) with SIESTA’s double-¢ basis, and takes
the form of a dyadic product:

Vi (€) = (Wrp(e,0)| ® [¢re(r) = [Wrr(e,r) [gre(r))
‘/ﬂll; m; (6)

= o . 6

(vn%im,.(e)> ©

The definition Eq. (6) for the V matrix suggests the
possibility of an explicit construction. However, a couple of
obvious ambiguities may arise: (i) the transformation carries
an energy dependence originating from the energy dependence
of the EMTO orbitals [36-38], in contrast to the NAO basis
set that is energy independent; (ii) normalization of the
scattering path operator of EMTO is performed in a particular
screened representation [36—38], a more involved procedure in
comparison with the straight normalization of the NAO basis
set.

Moreover, it is important to keep in mind that the closure
relations that are typically used to build the matrix trans-
formations are valid on the Hilbert space spanned by the
eigenvectors of the Hamiltonian. These relations hold exactly
for the numerical results of each code separately; nevertheless,
the numerical results produced by different codes are not
identical in the mathematical sense. Small differences between
the observables computed with different codes may exist due
to various factors—from unwanted numerical roundoff errors
to incompleteness of the basis sets. This indicates that the
closure relation for the Hilbert space of the EMTO will not
be exact (in the mathematical since) when used in the Hilbert
space spanned by the eigenvectors of SIESTA. Consequently,
we expect that the transformation matrix will fulfill the
usual requirements (i.e., unitarity) only within numerical
inaccuracies.

In view of these formal difficulties in obtaining a basis
transformation to match a multiple scattering method with
a Hamiltonian based scheme we propose an approach using
the fact that expectation values should be independent of the
specific representation. We apply this fundamental concept of
quantum mechanics to the orbital occupation matrix (density
matrix, nm‘.,mj) for the d manifold (i.e.,m;,m; = 1,...,5),and

PHYSICAL REVIEW B 92, 054431 (2015)

TABLE I. Occupation matrix of Co-d orbitals in the Cu-Co-Cu
heterostructure.

m; =Xy yz 22—t X x2—y?

nﬁlMWZO 1 0.629 0.526 0.658 0.526 0.629
N5 0.922 0.925 0.908 0.925 0.922

n,snffnsi“ 0 0.639 0.485 0.784 0.485 0.639
N5 0.935 0.952 0.924 0.952 0.935

we look for a formally similar matrix transformation W':

“rli
2¢ EMTO mi,mj \ _ SIESTA
”m,,m,’)nmimj - nm,»,mj . (7)

ite
(ijvmi Wz;
m;,m;

Equation (7) provides us with a system of equations to
determine the matrix elements of W numerically. Indeed, by
inspecting the diagonal elements of the occupation matrix for
the xy, yz, 72— 72, xz,and x2 — y2 orbitals respectively, we
obtained the data shown in Table I. One should note that in
the physical-EMTO basis the occupation matrix is diagonal.
The corresponding SIESTA occupation matrix has nondiagonal
elements that are about two orders of magnitude smaller than
the diagonal ones.

While the symmetry and the qualitative trends in the
occupations are the same, the exact numerical values are not. In
other words, Eq. (7) is an approximative (numerical) relation;
however, the resulting W matrix reflects the symmetry of
N, m;- The nonzero elements on the diagonal are close to
1 for the first-¢ block and take small imaginary values for
the second-¢ one. The equations Eq. (B1) and (B4) provide
explicit values.

Accordingly, given the matrix elements for the transforma-
tion matrix, the self-energy generated in the EMTO-basis set
can be transferred to the double (multiple) zeta SIESTA basis
set according to

ESIESTA — WZEMTO Wf (8)

III. RESULTS

In this section we discuss the changes in the electronic struc-
ture and in the conductance of a single Co layer sandwiched
between semi-infinite Cu electrodes caused by the inclusion
of the Coulomb interaction at the GGA+DMFT level. The
chosen values for Coulomb and exchange parameters for
the 3d-Co orbitals are U =3 eV and J = 0.9 eV, while no
interaction beyond GGA is considered for the 3d-Cu states
either in the scattering region or in the leads. The values of
U and J are sometimes used as fitting parameters, although
it is possible, in principle, to compute the dynamic electron-
electron interaction matrix elements with good accuracy [63].
The static limit of the energy-dependent screened Coulomb
interaction leads to a U parameter in the energy range between
2 and 4 eV for all 3d transition metals, depending on the
definition of the correlated orbitals [64,65]. As the J parameter
is not affected by screening it can be calculated directly within
LSDA; it turns out to be about the same for all 3d elements,
J =~ 0.9 eV [51]. The sensitivity of results to U and J will be
briefly addressed towards the end of this section. As regards the
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FIG. 3. (Color online) Densities of states calculated by EMTO in
relaxed geometries. Dashed black lines: GGA results; solid red lines:
GGA+DMFT results. (a) Total DOS per scattered region; (b) local
DOS per central Co atom of the heterostructure; (c) local DOS per
atomic sphere of the same size in pure fcc bulk cobalt. The values
of total and local Co magnetic moments for the scattered region are
indicated in (a).

temperature, two values 7 = 80 K and 200 K are addressed.
Smaller temperatures could be considered; however, this
would strongly increase the computational efforts connected
with the analytical continuation of the data onto the real axis.

A. Electronic structure calculations

The total density of states (DOS) for the Cu-Co-Cu
heterostructure is shown in Fig. 3(a). The Co contribution to
the total DOS, attributed to the atomic sphere radius of 2.69 ay,
is presented in Fig. 3(b). For comparison we plot in Fig. 3(c)
the Co DOS in the bulk fcc structure, with the same atomic
sphere radius.

We start with discussing the features of the electronic
structure of bulk Co. For the majority-spin electrons, the
GGA DOS [Fig. 3(c)] is fully occupied. In the minority-spin
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channel, the Fermi level falls between two pronounced peaks
at ~Er % 1 eV. The orbital occupations are shown in Table II.
According to the GGA results the majority spin-up channel has
a nominal d occupation of 4.70 while for minority electrons
the occupation amounts to 2.87. The s electrons carry a
negligible polarization, while p electrons are slightly spin
polarized with a sign opposite to the main d polarization which
establishes a magnetic moment of 1.74 . As a consequence
of the local Coulomb interactions parametrized by U and J
within DMFT, the DOS distribution changes considerably. The
overall broadening is strongly modified by the imaginary part
of the self-energy. The top of the occupied d band in the
majority spin channel is shifted closer to the Fermi level,
and some redistribution of the spectral weight occurs. These
changes do not noticeably affect the occupation of s orbitals;
however, the magnetic moment, mostly due to d electrons, is
significantly reduced from 1.74 pp to 1.41 pug.

Essentially the correlation effects are determined not only
by the magnitude of the local Coulomb parameters (U, J) but
also by the orbital occupations. It was argued [66,67] that elec-
tronic interactions may lead to the creation of either a majority-
spin or a minority-spin hole. As the majority-spin channel is
essentially full, there is effectively no space for excitations just
across the Fermi level. On the contrary, in the minority-spin
channel one finds a high density of electrons which can be
immediately excited, leaving back holes. Such an occupation
asymmetry has consequences concerning possible interaction
channels in the multiorbital Hubbard model: A majority-spin
hole can only scatter with opposite-spin particles, which would
cost an effective interaction U, while a minority-spin hole
may also scatter with parallel-spin particles with the effective
interaction U — J < U [68]. Therefore correlation effects are
expected to manifest themselves differently for majority- and
minority-spin electrons.

Many DOS features of Co in the heterostructure geometry
[Fig. 3(b)] resemble those of bulk cobalt [Fig. 3(c)], the
occupation numbers of which are also given in Table II. As
expected, the spin polarization in s and p channels is very
small; moreover it is opposite to the d electrons, yielding an
overall magnetic moment of 1.63 pp. As compared to the
GGA case for the central Co layer of the heterostructure,
in GGA+DMEFT the Co s- and p-electron spin polarization
changes sign, and the d-electron spin splitting decreases.
In the Cu-Co-Cu heterostructure geometry the Co-d orbitals
experience hybridization with the neighboring Cu-d orbitals

TABLE II. Orbital occupations and magnetic moments for the Cu-Co-Cu heterostructure and bulk Co-fcc. The DMFT calculations have

been performed for T =200 K, U =3¢V, J =0.9eV.

R MOCA 1, DMFT MPMFT
Atom s/ pA/1) ad./1m (1) s/ pU/1) dd./1m (1)
Co bulk-fcc:
Co: (0.34/0.33) (0.39/0.31) (2.87/4.70) 1.74 (0.34/0.33) (0.38/0.35) (3.04/4.50) 1.41
CuyCoCu, scattering region:
Cul-3: (0.36/0.36) (0.33/0.33) (4.78/4.78) 0.00 (0.39/0.39) (0.45/0.45) (4.72/4.72) 0.00
Cud: (0.36/0.36) (0.36/0.33) 4.76/4.79) 0.00 (0.38/0.37) (0.42/0.39) (4.58/4.65) 0.02
Co: (0.33/0.32) (0.33/0.31) (2.96/4.63) 1.63 (0.32/0.33) (0.33/0.37) (2.70/4.13) 1.48
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FIG. 4. (Color online) Orbital-resolved DOS for Cu4 in the
CuyCoCuy heterostructure computed within the GGA (black dashed
line) and GGA+DMEFT (red solid line) for U = 3eVand J = 0.9eV.

which leads to a change in the DOS of the Cu layer in the
vicinity of the Co layer.

Figure 4 depicts the local DOS of the Cu atom closest to
the Co monolayer (indicated Cu4 in Table II). Even as no
on-site interaction terms have been added to the 3d-Cu states,
the Co self-energy has a large impact on the GGA-DMFT
density of states. In fact, the 3d-Cu4 states are strongly coupled
with the correlated 3d-Co states and are dragged towards
the Fermi energy, thus increasing the hybridization with the
4s- and 4p-Cu4 states. In contrast, the three outmost (from
Co) copper layers Cu3, Cu2, Cul have very similar orbital
occupations which slightly differ from those of the Cu4. The
inclusion of interaction in the spirit of DMFT has only a
slight effect upon the orbital occupations within Cu3, Cu2,
and Cul as compared to Cu4 (see Table II). Essentially the
4s- and 4 p-Cu4 orbitals slightly increase in occupation, while
3d orbitals are depleted accordingly. At the same time, the
minority/majority spin contrast gets enhanced: from 4.76,/4.79
in GGA t0 4.58/4.65 in GGA+-DMFT. This can be understood
as the interaction may lead to a renormalization of the DFT
orbitals splitting [69], a one-particle effect, or as a direct
consequence of the behavior of the self-energy around the
Fermi level from many-body correlations. The orbitals respond
almost equally to the renormalization effects. The spectral
weight transfer in the Co layer—a consequence of electron
correlations—modifies slightly, through d-d hybridization, the
spin asymmetry in d holes of the closest copper layer inducing
a magnetic moment.

We note that the temperature dependence of the DOS is
negligible, and the effectiveness of electronic correlations is
not significantly different in the heterostructure, as compared
to the case of pure-Co fcc bulk.

These changes are typical for correlation effects in tran-
sition metals, where the self-energy near the Fermi level
has Fermi-liquid character: for the imaginary part, we have

PHYSICAL REVIEW B 92, 054431 (2015)

—Im¥f, (E) X E 2, whereas the real part has negative slope,
dReXfp (E)/dE < 0. Here E is the energy relative to the
Fermi level, and o numbers the three groups of d states in
hexagonal symmetry, (z%), (xz,yz), and (x> — y2,xy). From
the self-energy we can also evaluate the mass enhancement

[40], which within DMFT amounts to

mN - 2y N (E) ©)
_ — — —Re M s
mp /J 0E MB
where m,, represents the band mass obtained within the GGA
calculations.

The values are given in Table III, and we note that the
enhancement factors for all orbitals are similar, in the range of
1.6—1.8, which indicates that the system is medium correlated.

B. Transport properties

Turning to transport properties, we display in Fig. 5(a) the
total and spin-resolved transmission probabilities computed
with GGA and GGA+DMFT. The spin-resolved transmission
probability, T,(E), is obtained from the k-dependent trans-
mission, Eq. (2), by integrating over all k; points, so that
T,(E) = g Js, 4% T, (K, E). By inspecting Fig. 5(a) it can
be seen that the overall transmission is a smooth function
of energy, and has a rather large value of about 0.5 ¢*/h
in both spin channels for most considered energies, which
reflects the fact that we deal with an all-metal junction. The
results for the transmission Fig. 5(a) can be related to the
density of states results shown in Fig. 3 and Fig. 4. In GGA
the transport is mainly dominated by the Cu-4s, -4p states,
which are transmitted across the Co layer passing through
the Co-4s states, while the Co-3d states do not contribute
significantly to the transmission in this energy range. The
Cu-3d states contribute to the transmission only at energies
below —1.5 eV. Note that the GGA+DMFT transmission
is always smaller than the GGA one. The black arrows in
Fig. 5(a) indicate the energies at which a significant departure
between the GGA+DMFT and the GGA transmission is
observed. Specifically, the spin-down transmission drops at
about 0.3 eV below the Fermi level, where the Co-3d DOS is
high in the DMFT results, while the GGA transmission stays
rather constant. In contrast, the spin-up transmission shows a
“bump” which extends over a region of about 2 eV around
the Fermi level. The slight dip within this bump at about —
0.5 eV is at the same energy as the peak in the Co-3 d DOS,
and represents a Fano-type reduction of transmission in such
a metallic system due to interference of electrons in different
conducting channels [31,32,70]. In our calculations this feature
is a consequence of electronic correlations on the Co atom,
which through the d-d hybridization induce spin-polarization

TABLEIIL Effective mass enhancements (m*/m)™¥ for different
bands of d symmetry, calculated according to Eq. (9) as a function of
the Coulomb and the exchange parameter, U and J.

UEV) J@eV) xv, vz 2 oxw oyn 2

1 0.3 1.551 1.703 1.617 1578 1.737 1.656
2 0.6 1.625 1.797 1.698 1.654 1.837 1.743
3 0.9 1.661 1.791 1.703 1.697 1.856 1.753
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FIG. 5. (Color online) Left: Spin-resolved transmission: majority spins 7} (upper panel), minority spins 7, (middle panel), and total (lower
panel). Black dashed/red solid lines are the GGA/GGA+DMFT results. Right: Transmission spin polarization around the Fermi energy obtained
within the GGA (black dashed) and at finite temperatures 7 = 80 K (red dot dashed), T = 200 K (blue solid). The Coulomb and exchange

parameters are U = 3 eV, J = 0.9 eV.

of the 3d-Cu4 states and simultaneously produce the shift
in the DOS of Fig. 4. In general, we note that for such
all-metal systems the relation between DOS and transmission
is nontrivial, since interference effects can lead to enhanced
transmission also for energies with low DOS; alternatively, for
high DOS the increased number of pathways for electrons can
lead to a decrease of transmission.

From a many-body perspective, the added self-energy
contributes in dephasing the electrons during the flow through
the scattering region, so that the Landauer transmission
computed with the many-body Green’s function is expected
to be reduced in comparison with the DFT case. In principle,
the opposite effect, namely the effective in-flow of electrons
from the many-body self-energy “electrode” into the scattering
region, would tend to increase the transmission. However, this
in-flow process is not included in our calculations, as it is
related to the vertex corrections [47].

The spin polarization of the transmission is computed
according to the formula

T'(Er) — T (EF)

Ep) = ,
PED = o B+ T(Er)

(10)

for either DFT or DFT+DMFT, where T,_4 | is the trans-
mission for the spin channel o. The spin polarization in
transmission obtained by GGA yields pSSA(Er) = 0.18 [see
also Fig. 5(b)], while the GGA+DMEFT value reaches 0.33 at
the Fermi level, and increases up to almost 0.8 at slightly lower
energies. These results demonstrate that electronic correlations
may be decisive and lead to an increase in the spin polarization
of transmission. As seen in Fig. 5(b), the enhancement in the
spin polarization with respect to the GGA result is essentially
temperature independent in the energy range of Er £ 0.5 eV.

Therefore we conclude that the enhanced spin contrast in
transmission is a many-body effect rather than a temperature
fluctuation effect.

Finally, we test how the results for the transmission depend
on the strength of the local Coulomb interaction parameters U
and J. The interaction matrix elements U, ;7 are usually
parametrized using Slater integrals (F¥) with k = 0,2,4 [51].
Accordingly the Hubbard U parameter is constructed as a
simple average over all possible pairs of correlated orbitals
and is identified with the Slater integral U = F°. The other
Slater integrals F2,F* are fitted to the multiplet structure
measured in x-ray photoemission [71]. An empiric relation
has been introduced which connects the magnitude of the
second- and fourth-order Slater integrals, F*/F? ~ 0.625
[72]. The Hund’s exchange J is expressed in terms of F> and
F* which for the d shell takes the form J = (F? + F*%)/14
[73]; therefore the knowledge of the (U,J) pair allows us
to compute all the matrix elements U, m . In Fig. 6(a)
we plot the transmission (computed at 200 K) keeping the
ratio U/J = 1.0/0.3 constant. While scaling the ratio - U/ J
with o = 1,2,3 we observe a monotonic reduction of the
transmission at the Fermi level. This result is expected, as
the matrix elements of the interaction are scaled in magnitude.
In the same time, larger mass enhancement factors are obtained
as « increases (see Table II). Consequently we may conclude
that the heavier the electron is, the smaller is the transmission
at the Fermi level. Within £0.15 eV of the Fermi level, a flat
region in the transmission can be seen. Beyond these ranges,
we note that below the Fermi level, down to — 1 eV from it, the
transmission decreases almost indiscriminately for different
values of (U,J). In the positive energy range up to roughly
+1 eV, on the contrary, the transmission values differ, with
larger (U, J) resulting in lower transmission.
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FIG. 6. (Color online) Transmission for different values of
Coulomb parameters: (a) with a fixed ratio U/J, (b) fixed J, and
(c) fixed U, at T = 200 K.

In Fig. 6(b) we display the dependence on parameters
differently keeping J = 0.9 eV constant and varying U. We
note that with higher U, the flat region centered at E shrinks
a bit, which can be traced back to a stronger presence of d
orbitals in the correlated transmission. The inset of Fig. 6(b)
depicts the “contrast” or spin difference in transmission:
AT(E) = T4(E) — T\ (E). The spin contrast changes slope as
U varies, from markedly positive d(AT)/dE at Eg for U = 2
eV to roughly zero for U = 3 eV.

In Fig. 6(c), on the contrary, the U parameter is kept fixed to
a “good” (yielding large flat region) value U = 3 eV, and two
different values are taken for the J parameter. On increasing J,
the flat region around Ef gets further reduced. Simultaneously
[as seen in the inset and contrary to the behavior depicted in
Fig. 6(b)], AT (E) acquires a negative slope. The change in the
slope is potentially an interesting effect to be exploited in
thermoelectric transport.

IV. CONCLUSION

We propose a method to compute the transmission prob-
ability by combining two different ab initio codes, EMTO
and SIESTA/SMEAGOL. In order to transfer the many-body
self-energy computed within the EMTO code into SIESTA/
SMEAGOL, we use an approximately unitary transformation,
which can be determined by requiring that the expectation
value of the occupation matrix should be representation
independent. The methodology is carried out numerically
for the CusCoCuy heterostructure, and illustrated analytically
for a two-orbital model (see Appendix A). Note that such
a transformation is rather general and can be used for
transferring quantities between two different implementations.
Several tests confirm that the proposed method is robust and
numerically stable.
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Electronic structure calculations are performed using GGA
and GGA+DMFT, assuming a local Coulomb interaction in
the Co layer. We use a fully rotationally invariant Coulomb in-
teraction on cobalt d orbitals. The effective mass enhancement
ratio for all orbitals is in the range of 1.6 to 1.8, suggesting
that we deal with medium correlated system. Concerning the
density of states, the presence of Coulomb interactions leads to
a shift of the majority-spin channel of Co-d orbitals towards the
Fermi level and to a redistribution of the spectral weights. In the
minority-spin channel, the changes are less pronounced. This
difference leads to different correlation effects for the majority-
and minority-spin electrons. All these cause a decrease of the
overall Co magnetic moment (with a predominant d character)
from 1.63 up (GGA) to 1.48 up (GGA+DMFT). With this
combination of methods we have studied the transmission as
a function of temperature and Coulomb parameters, which
reveals the metallic character of the system considered.
Substantial differences in the conducting processes, related to
the presence of local Coulomb interaction in the cobalt layer,
are observed, due to changes in the electronic structure. Gen-
erally the transmission decreases with interaction, although
the relation between changes in the electronic configuration
and the transmission is highly nontrivial, due to interference
effects. With electron correlations properly taken into account,
the total transmission at the Fermi level drops by about
20%, whereas its spin polarization (spin contrast) increases
by about 40%. These effects are entirely a consequence of
the electronic correlation, since the transmission is practically
temperature independent in the range of Er £ 0.5 eV. This
suggests that the enhanced spin contrast in transmission is
predominantly a many-body effect. In order to quantify the
spin polarization effects in the transmission, we study the
transmission difference AT (E). This quantity clearly displays
a strong dependence on the Coulomb parameters.

In conclusion, we have shown that electronic correlations
may considerably affect the transmission and spin filter
properties of heterostructures, even though the correlations
would be classified only as “medium” when considering the
effective mass enhancement. Hence results based on studies
neglecting electronic correlations, which are numerous, must
be interpreted with caution.
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APPENDIX A: EXAMPLE: A TWO-ORBITAL MODEL IN THE CUBIC SYMMETRY

We consider a simplified case of a diagonal self-energy corresponding to a two-orbital model in the cubic symmetry. The
self-energy and the “occupation” matrix can be written as

emro, n _ (=1 0\, Emro _ (m1 O
> (z)—(o 22), n _<0 nZ). (A)

In such a case all inner products of the type (W, (e,r)|¢,fq'/. (r)) are zero unless m; = m , such that the transformation matrix has
a generic form:

w0
0 Wy
Wyim©=| (A2)
11 0
2
0 W,
Rewriting Eq. (7),
A i 0 0 0
o wul| (m 0\ (W} o wi o0 0 Ay 0 0 a3
wX 0 0 nm o w¥ o wX o o & o]
0wy 0 0 o0 ar
one finds
i’
1
I 0
0 N
wixeo=| . | (A4)
Vol
0o F
iz
and accordingly the self-energy in the NAO basis set has the form
~1z [~1C =2¢
1% 0 El—nn‘l"‘ 0
~1C ~1C ~2C
0 Tt 0 Ty sl | [ sl
X = 7 2 = 2,1¢ 2¢.2¢ (AS)
L 0 DI 0 T e

0 SRS 0 PN

in which every £/%/¢ is a 2 x 2 block-diagonal matrix. There are a couple of conclusions to be drawn from the above
simplified example: (i) as a consequence of the reduced weight in the second ¢ occupation (at least 10 times smaller
that in the single ¢), the magnitude of the matrix elements of the self-energy in the NAO basis set follow the relation
Tl 5 $162 5 512620, (ii) the existence of only-diagonal orbital occupations does not imply the existence of a unitary
transformation, except for the case of numerical identical values for the occupation matrices in both basis. These observations
do not change when the symmetry is lower than cubic and nonzero matrix elements on the nondiagonal of the occupation matrix
appear.
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PHYSICAL REVIEW B 92, 054431 (2015)

APPENDIX B: TRANSFORMATION MATRIX FOR THE Co-d MANIFOLD IN THE Cu-Co-Cu HETEROSTRUCTURE

This section provides the spin-resolved matrix elements, W4 |, used in the calculation.

1.024 0 0 0 0
0 0.987 0 0 0
0 0 1.096 0 0
0 0 0 0.985 0
W 0 0 0 0 1.024
T— 1 0.178i 0 0 0 0
0 0.218i 0 0 0
0 0 0 0 0
0 0 0 0.218i 0
0 0 0 0 0.178i
The orthogonality can be checked using the following relations:
1.016 0 0 0 0
. 0 0.922 0 0 0
W; Wy = 0 0 1.202 0 0
0 0 0 0.922 0
0 0 0 0 1.016
and
1.048 0 0 0 0 0.182i 0 0
0 0.970 0 0 0 0 0.215: O
0 0 1.202 0 0 0 0 0
0 0 0 0.970 0 0 0 0
t 0 0 0 0 1.047 0 0 0
WiWi=1 o182 0 0 0 0  —002 0 0
0 0.215i 0 0 0 0 —0.048 0
0 0 0 0 0 0 0 0
0 0 0 0.215i 0 0 0 0
0 0 0 0 0.183i 0 0 0
The corresponding transformation matrix for spin-down component reads
0.960 0 0 —0.007 0
0 0.9572 0 0 —0.007
0 0 0.967 0 0
—0.007 0 0 0.957 0
W 0 —0.007 0 0 0.960
YT 0304 0 0  —0.002 0
0 0.337 0 0 —0.002
0 0 0.287 0 0
—0.002 0 0 0.337 0
0 —0.002 0 0 0.304
1.014 0 0 —0.015 0
0 1.029 0 0 —0.015
wiw, = 0 0 1017 0 0
—0.015 0 0 1.029 0
0 —0.015 0 0 1.014
0.922 0 0 —-0.014 0 0.292 0 0
0 0.916 0 0 —0.014 0 0.322 0
0 0 0.935 0 0 0 0 0.278
—0.014 0 0 0.916 0 0 0 0
wow = 0 —0.014 0 0 0.922 0 0 0
VLT 0.297 0 0 0 0 0.092 0 0
0 0.325 0 0 0 0 0.114 0
0 0 0.278 0 0 0 0 0.083
0 0 0 0.325 0 0 0 0
0 0 0 0 0.292 0 0 0
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APPENDIX C: ASSESSMENT OF ACCURACY

In order to test the effect of the numerical inaccuracies
occurring in the transformation matrix on the final results, we
compute the total transmission by using a simplified model for
the transformation matrix:

1z
i _
WModel -

(ChH

where W!¢ = oI and W* = BI, where I is the unity matrix.
The results fora = 0.9, 8 =0.1; ¢ = 0.5, 8 =0.5; and o =
0.1, B = 0.9, respectively are given in Fig. 7. It can be clearly
seen that even for such a crude approximation, the results for
the first model (i.e., with a significant weight of the self-energy
on the first zeta orbital) differ with only a few percent
over large energy domains. For the occupied states, large
values for £ !¢ provide already a good approximation for the
transformation.

PHYSICAL REVIEW B 92, 054431 (2015)

Transmission

| |
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| |
1 2 3

0
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FIG. 7. (Color online) Comparison between the transmission
functions obtained for different model forms of W%,
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We present the Raman scattering spectra of the BaFe,X; (X = S, Se) compounds in a temperature range
between 20 and 400 K. Although the crystal structures of these two compounds are both orthorhombic and
very similar, they are not isostructural. The unit cell of BaFe,S;(BaFe,Ses) is base-centered Cmcm (primitive
Pnma), giving 18 (36) modes to be observed in the Raman scattering experiment. We have detected almost all
Raman active modes, predicted by factor group analysis, which can be observed from the cleavage planes of these
compounds. Assignment of the observed Raman modes of BaFe,S(Se); is supported by the lattice dynamics
calculations. The antiferromagnetic long-range spin ordering in BaFe,Se; below Ty = 255 K leaves a fingerprint
both in the A, and B3, phonon mode linewidth and energy.

DOI: 10.1103/PhysRevB.91.064303

I. INTRODUCTION

Iron-based compounds are one of the top research fields
in condensed matter physics [1]. These materials are not only
superconducting [2] but also form low-dimensional magnetic
structures—spin chains, spin ladders, or spin dimers [3],
similar to the cases of cuprates [4] or vanadates [5].
Properties of iron-based selenide superconductors and other
low-dimensional magnetic phases of iron-chalcogenides are
reviewed in Ref. [6].

BaFe,S; and BaFe;Se; belong to the family of the iron-
based § =2 two-leg spin-ladder compounds. The crystal
structure of these materials can be described as alternate
stacking of Fe-S(Se) layers and Ba cations along the crys-
tallographic a axis (b axis). In the Fe-S(Se) plane, only one-
dimensional (1D) double chains of edge-shared [FeS(Se)]s
tetrahedra propagate along the a axis (b axis), as shown in
Fig. 1. Although the crystal structures of the BaFe,S; and
BaFe,Se; are isomorphic, they are not isostructural. BaFe,S3
crystalizes in a base-centered orthorhombic structure with
Cmcm space group [7]. The unit cell of BaFe,Ses is also
orthorhombic but primitive of the Pmna space group. The
main crystal structure difference of these compounds is an
alternation of the Fe-Fe distances in BaFe,Se; along the chain
direction which does not exist in BaFe,S3, where all distances
between Fe atoms along the chain direction are the same;
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see Figs. 1(b) and 1(c). This difference probably leads to the
diverse magnetic properties of these two compounds at low
temperatures.

BaFe,S;3 is a quasi-one-dimensional semiconductor. The
magnetic susceptibility of BaFe,S;, measured at 100 Oe,
showed the divergence of the field-cooled susceptibility and
zero-field-cooled susceptibility with the cusp at 25 K (freezing
temperature) [8], indicating the presence of short-range mag-
netic correlations and spin-glass-like behavior below 25 K.
On the basis of these observations Gonen et al. [8] proposed
that each [Fe,S3]?>~ chain possess strong intrachain antifer-
romagnetic coupling of Fe ions that is mediated through the
sulfide ions. The combination of antiferromagnetic coupling,
additional crystal field splitting due to neighboring Fe atoms,
and direct Fe-Fe interactions presumably give rise to § =0
ground states in this compound [8].

BaFe,Ses; is an insulator down to the lowest measured
temperature with a long-range antiferromagnetic (AFM) order
with Ty around 255 K and short-range AFM order at higher
temperatures [9-12]. It was shown that a dominant order
involves 2 x 2 blocks of ferromagnetically aligned four iron
spins, whereas these blocks order antiferromagnetically in the
same manner as the block AFM /5 x /5 state of the iron
vacancy ordered A,FesSes [13—15].

To the best of our knowledge there are no data about
the phonon properties of these compounds. In this paper
we have measured polarized Raman scattering spectra of
BaFe, X3(X = S, Se) in the temperature range between 20
and 400 K. We have observed the Raman active optical
phonons, which are assigned using polarized measurements
and the lattice dynamical calculations. At temperatures below

©2015 American Physical Society
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FIG. 1. (Color online) Schematic representation of the BaFe, X3(X = S, Se) crystal structure. (a) Projection of the BaFe,Se; crystal
structure in the (ac) plane. (b) The double chain of Fe-Se tetrahedra connected via common edges along the b axis. (c) The Fe-S double chain
in the (010) projection. w, u, v represents Fe-Fe distances of ladder rungs (w = 0.2697 nm; wx* = 0.2698 nm) and legs (« = 0.2688 nm,
v = 0.2720 nm; v* = 0.2643 nm). Note that in the case of BaFe,S; the Fe atoms form an “ideal” ladder (all Fe-Fe distances along the ladder

legs are equivalent, which is not the case in BaFe,Se;).

Tn = 255 K in BaFe;Se; the Raman modes shows an abrupt
change of energy and linewidth due to the antiferromagnetic
spin ordering.

II. EXPERIMENT AND NUMERICAL METHOD

Single crystals of BaFe, X3(X = S, Se) were grown using
self-flux method with nominal composition Ba:Fe: X = 1:2:3.
Details were described in Ref. [16]. Raman scattering measure-
ments were performed on (110)(sulfide) [(100) (selenide)]-
oriented samples in the backscattering micro-Raman configu-
ration. Low-temperature measurements were performed using
KONTT CryoVac continuous flow cryostat coupled with JY
T64000 and TriVista 557 Raman systems. The 514.5-nm line
of an Ar™/Kr' mixed gas laser was used as excitation source.
The Raman scattering measurements at higher temperatures
were done using a LINKAM THMS600 heating stage.

We calculated phonon energies of the nonmagnetic
BaFe,S(Se); single crystals at the center of the Brillouin
zone. Calculations were performed within the theory of linear
response using the density functional perturbation theory
(DFPT) [17] as implemented in the QUANTUM ESPRESSO
package [18]. In the first step, we obtained the electronic
structure by applying the pseudopotentials based on the
projected augmented waves method with the Perdew-Burke-
Ernzerhof exchange-correlation functional and nonlinear core
correction. Used energy cutoffs for the wave functions and
electron densities were 80 (64) Ry and 960 (782) Ry for
BaFe,S(Se);, respectively. We have carried out the calculation
with experimental values of the BaFe,S(Se); unit cell param-
eters a = 0.87835 nm, b = 1.1219 nm, ¢ = 0.5286 nm [7]
(a =1.18834 nm, b = 0.54141 nm, ¢ = 0.91409 nm [11]),
and the relaxed fractional coordinates; see Table 1. Relaxation
was applied to place atoms in their equilibrium positions in
respect to used pseudopotentials (all forces acting on every
atom were smaller than 10~* Ry/a.u.). The difference between
experimental and relaxed coordinates is less than 3% for almost

all atom coordinates, except for the x direction of the Ba atoms
in BaFe,Ses, which is 6%. Reduction of the x coordinate of
Ba atoms by relaxation leads to an increase of the distance
between the Ba layers. The Brillouin zone was sampled with
8 x 8 x 8 Monkhorst-Pack k-space mesh. Calculated I" point
phonon energies of the BaFe,S; and BaFe,Se; are listed in
Tables II and Table IV, respectively.

The DFPT calculation of the phonon-mode energies is
performed assuming the paramagnetic solution and the com-
parison of energies is performed with the experimental results
at room temperature. The paramagnetic density functional
theory (DFT) solution is metallic, whereas BaFe,Ses is AFM
insulator at low temperatures. Therefore, we have performed
also the spin-polarized DFT calculations, assuming AFM
ordering of 2 x 2 ferromagnetic iron blocks [10-12]. We
find the AFM solution and opening of the gap at the Fermi
level in agreement with earlier DFT calculations by Saparov
et al. [10]. Accordingly, we attempted to calculate the phonon

TABLE I. Experimental and relaxed (in square brackets) frac-
tional coordinates of BaFe,S; (Ref. [7]) and BaFe,Se; (Ref. [11])
crystal structures.

Atom Site X ¥ Z
BaF€2S3

Ba (4c) 0.50[0.50] 0.1859 [0.1817] 0.25[0.25]
Fe (8e) 0.3464 [0.3553] 0.50 [0.50] 0.00 [0.00]
S1 (4c) 0.50[0.50] 0.6147 [0.6051] 0.25 [0.25]
S2 (8g) 0.2074 [0.2108] 0.3768 [0.3945] 0.25[0.25]
BaFeZSe3

Ba (4c) 0.186 [0.175] 0.25 [0.25] 0.518 [0.513]
Fe (8d) 0.493 [0.490] 0.002 [-0.001]  0.353 [0.358]
Sel (4c) 0.355[0.366] 0.25 [0.25] 0.233 [0.230]
Se2 (4c) 0.630[0.613] 0.25 [0.25] 0.491 [0.485]
Se3 (4c) 0.4021[0.415] 0.25 [0.25] 0.818 [0.809]
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TABLE II. Calculated and experimentally observed values of Raman active phonon mode energies (in cm™") of BaFe,S; single crystal.

Calculation Experiment Calculation Experiment
Symmetry relax. (unrelax.) 300 K 100 K Activity Symmetry relax. (unrelax.) 300 K 100 K Activity
Ai, 42.3 (51.2) 39 (xx,yy,22) Bllg 16.7 (63) (xy)
A; 154.2 (156) 157 (xx,yy,22) Blzg 55.1(81.8) 44 48 (xy)
Az 201.9 (167.4) 152 165 (xx,yy,22) Bfg 138.8 (153.1) 127 133 (xy)
Ag 366.9 (294.8) 295 301 (xx,yy,22) Bf‘g 243.5 (221.9) 203 214 (xy)
Ag 385.8 (307.1) 365 372 (xx,yy,z2) Bfg 337.8 (241.6) 332(7) (xy)
B?g 400.2 (330) 374 381 (xy)
leg 107.8 (113.7) 107 109 (x2) B3]g 55.1 (66.8) (v2)
Bfg 224.1 (180.8) 181 193 (x2) B_%g 201.1 (171.1) 181 193 (y2)
ng 347.8 (283.6) (xz) ng 311.2 (308.7) 297 307 (y2)
Bj 369.3 (351.7) (y2)

energies in the spin-polarized case. However, having now
48 atoms in the unit cell, this calculation turned out to
be computationally too demanding. Furthermore, we do not
believe that such a calculations would gives us in this case
important new insights since the number of phonon modes
becomes 2 x 72 — 1 = 143 (one mode is degenerate), and it is
not likely that small splitting of the modes could be compared
with the experiments. Also, the phonon frequencies are not
particularly sensitive on the precise form of the density of
states near the Fermi level (or gap opening) if the overall
spectral function remains similar. Therefore, we believe that
the usage of the nonmagnetic DFT is a reasonable method for
identification of vibrational modes and comparison with the
experimental data.

III. RESULTS AND DISCUSSION
A. BaFe,S;

The BaFe,S; crystal symmetry is orthorhombic, space
group Cmcm and Z = 4 [7]. The site symmetries of atoms
in Cmcm space group are C;, (Ba, S1), C; (Fe), and C;” (S2).
Factor group analysis yields

(C3,):T = Ag + Big + Bsg + Biy + Boy + Bay,
(C3):T = Ag + 2By, + 2By, + Bsg
+Au + 2Blu + 23214 + B3u~
(CY):T =2A, + 2By + Byg + B3y + A,
+ By, + 2By, + 2B3,.
Summarizing these representations and subtracting the acous-
tic (By, + By, + B3,) and silent (2A,) modes, we obtained the

following irreducible representations of BaFe,S; vibrational
modes:

ical
[prres, = SAg(xx,yy.22) + 6B14(xy) + 3Bag(x2)

+4B3(y2) + 4B (E || 2) + 5Bu(E || y)
+4B3,(E || x).

Thus 18 Raman and 13 infrared active modes are expected to be
observed in the BaFe,S; infrared and Raman spectra. Because

our BaFe,S; single-crystal samples have (110) orientation,
we were able to observe all symmetry modes in the Raman
scattering experiment.

The polarized Raman spectra of BaFe,S3, measured from
the (110) plane at 100 K, are given in Fig. 2. Five A, symmetry
modes at about 39, 157, 165, 301, and 373 cm™" (100 K) are
clearly observed for the x'(zz)x" polarization configuration
(x’ =[110], y’ = [110], z = [001]). For parallel polarization
along the y’ axis, the A, and B;, symmetry modes may be
observed. By comparison (y’y’) with (zz) polarized spectrum
we assigned the modes at 48, 133, 214, 332, and 381 cm™!
as the Bj, ones. The intensity of the 332 cm~! mode is at a
level of noise. Because of that, assignment of this mode as Bfg
should be taken as tentative.

For the x/(y'z)x’ polarization configuration both the By,
and the B3, symmetry modes can be observed. Because we
cannot distinguish the B, and B3, by selection rules from
the (110) plane, the assignment of these modes was done with
help of the lattice dynamics calculation; see Table II. Features
between 40 and 100 cm™! come after subtracting of nitrogen

T T
T=100 K

7 T T T — 1 T "
A A A A

Intensity (arb. units)

50 100 150 200 250 300 350 400
Wavenumber (cm™)

FIG. 2. (Color online) The polarized Raman scattering spectra
of BaFe,S; single crystal measured at 100 K. Insets are the normal
modes of the A, A%, A}, and Bf, vibrations. x" = [110], y’ = [110],
and z = [001].
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FIG. 3. (Color online) Experimental values (symbols) and calcu-
lated temperature dependence (solid lines) of the BaFe,S; Raman
mode energies and broadenings. Insets represent the normal modes

of the A3, A3, BY,, and Bj, vibrations.

vibration modes. Bump at about 160 cm™" is a leakage of A3
and Az modes from parallel polarization.

The normal modes of some of A,, B, and Bs, vibrations,
obtained by the lattice dynamics calculations, are given as
insets in Figs. 2 and 3. According to these representations
the lowest energy A;, mode (39 cm™!) originates from the
Ba atom vibrations along the y axis, and the Ai, mode

(157 cm™!) represents dominantly S atom vibrations, which
tend to elongate [Fe,S3]1%~ chains along the y axis. The
Az mode originates from both the sulfur and the iron atom
vibrations, which tend to stretch ladders along the x axis. The
Ag mode (Fig. 3) is sulfur atoms breathing vibrations, and the
Az symmetry mode represents the S and Fe atom vibrations
with the opposite tendency. The Fe atoms vibrate in opposite
directions along the x axis, elongating the ladder, together with
S atom vibrations, which tend to compress ladder structure.

Temperature dependence of the Ay, A3, B;‘g, and B32g mode
energy and linewidth are given in Fig. 3.

In general, temperature dependance of Raman mode energy
can be described with [19]

o(T) = wo + A(T), ey

where @y is temperature-independent contribution to the
energy of the phonon mode, whereas A(7") can be decomposed
in

A(T) =AY + AL )

The first term in Eq. (2) represents change of phonon energy
due to the thermal expansion of the crystal lattice, and is given
by [20]

) 3

where y is the Griineisen parameter of a given mode.

The second term in Eq. (2) is a contribution to the Raman
mode energy from phonon-phonon scattering. By taking into
account only three-phonon processes,

4 A ph-ph
A _ ph-p
A = c(1+—ehw0/2kﬂ_l). @)

PHYSICAL REVIEW B 91, 064303 (2015)

TABLE III. The best fit parameters of BaFe,S; and BaFe,Se;.

Mode symmetry wo(cm™) y Co(cm™) A
BaFe,S;

At 303.72)  3.7Q2) 292) 2.8(5)
Ai, 374.6(2) 2.6(2) 3.3(2) 1.9(3)
Bfg 216.5(2) 4.8(2) 2.0(3) 0.93)
B2, 1953(1) 5202 2.003) 1.0(1)
BaFe,Se;

A 2000(1)  1.6(2) 2.3(1) 0.4(1)
A 272.6(2) 141 23(1) 0.6(1)
A;O 288.1(3) 1.8(2) 5.2(1) 0.3(1)
All 297.14)  14Q2) 5.6(2) 0.4(1)

C and Appph are the anharmonic constant and phonon-phonon
interaction constant, respectively.

Temperature dependence of Raman mode linewidth is
caused only by phonon anharmonicity:

2)‘-ph-ph
I(T) = Fo(l + ST 1 1), (5)

where Iy is the anharmonic constant.

Parameter C is connected with wg and I'y via relation [19]
2
= 2F—O. 6)
wo
wp and I’y can be determined by extrapolation of the cor-
responding experimental data to 0 K. With these parameters
known, we can fit the phonon mode linewidth, using Eq. (5), to
obtain Apypn. Then, by determining parameter C via Eq. (6),
Raman mode energy can be properly fitted, with y as the
only unknown parameter. Using data from Ref. [12] for
the temperature change of the lattice constants of BaFe,Ses
one can perform the corresponding analysis of the Raman

mode energies’ temperature dependance.

The best-fit parameters are collected in Table III. Because
the I'p is very small in comparison to wy, for all modes of both
compounds (Table III), according to Eq. (6) the C anharmonic
parameter becomes very small. Thus, contribution to the
Raman mode energy from the phonon-phonon interaction
can be neglected. In fact, a change of Raman mode energy
with temperature is properly described only with the thermal
expansion term AV, Eq. (3).

The most intriguing finding in Fig. 3 is a dramatic change
of slope of the Ag mode linewidth (energy) temperature
dependence at about 275 K. Because a hump in the inverse
molar magnetic susceptibility [8] and a change of slope of
the electrical resistivity [21] temperature dependence are
observed in BaFe,S; at about the same temperature we
concluded that the deviation from anharmonic behavior for Ag
mode could be related to spin and charge. In fact, many of iron-
based spin-ladder materials have the 3D-antiferromagnetic
phase transition at about 260 K. We believe that in the case
of BaFe,S; the antiferromagnetic ordering of spins within the
ladder legs changes from short-range to the long-range state,
without 3D antiferromagnetic spin ordering (the Néel state)
of the whole crystal. This transition is followed with change
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FIG. 4. (Color online) The x(yy)x, x(zz)X, and x(yz)X¥ polarized
Raman scattering spectra of BaFe,Se; single crystals measured at
room temperature and at 20 K. Vertical bars are calculated values of
the A, and the B3, symmetry Raman active vibrations.

of the electronic structure, which could explain the abrupt
increase of the resistivity at this temperature [21]. A lack of
the BaFe,S; low-temperature crystallographic and transport
properties measurements did not allow a more detailed study of
a possible origin of the phonon energy and linewidth deviation
from the anharmonic picture at about 275 K.

B. BaFe,Se;

The BaFe,;Se; unit cell consists of four formula units
comprising of 24 atoms. The site symmetries of atoms in

PHYSICAL REVIEW B 91, 064303 (2015)

Pnma space group are C;* (Ba, Sel, Se2, Se3) and C; (Fe).
Factor group analysis yields

(C*):T =2A, + 1By + 2Bs, + 1B3,
+Au + 2Blu + 1B2u + 23314’
(C\):T =3A, + 3B, + 3By, +3Bs,
+ 3Blu + 33214 + 3B3u

Summarizing these representations and subtracting the acous-
tic (By, + B, + Bs,) andsilent (4A,) modes, we obtained the
following irreducible representations of BaFe,Se; vibrational
modes:

T, = 11A, + 7By + 1By, + 7Bs,

+11By, + 7By + 11B3,

Thus 36 Raman and 29 infrared active modes are expected
to be observed in the BaFe,Se; vibrational spectra. Because
the BaFe,Se; single crystals have the (100) orientation (the
crystallographic a axis is perpendicular to the plane of the
single crystal), we were able to access only the A, and the B3,
symmetry modes in the Raman scattering experiment.

The polarized Raman spectra of BaFe,Se;, measured from
(100) plane at room temperature and 20 K, for the parallel
and crossed polarization configurations, are given in Fig. 4.
The spectra measured for parallel polarization configurations
consist of the A, symmetry modes. Six modes at about 108,
143.5, 200, 272, 288.7, and 296.5 cm™! (20 K) are clearly
observed for the x(yy)X polarization configuration and three
additional modes are observed at about 63.4, 89, and 115 cm™!
for the x(zz)X polarization configuration. For the x(yz)x
polarization configuration, three Raman active B3, symmetry

TABLE IV. Calculated and experimentally observed values of Raman active phonon mode energies (in cm™") of BaFe,Se; single crystal.

Experiment Experiment
Symmetry Calc. 300 K 20K Activity Symmetry Calc. 300 K 20K Activity
A} 26.5 (xx,yy,22) B,, 25.8 (x2)
AL 375 (xx,yy,22) B3, 48.0 (x2)
Az 48.3 59 63.4 (xx,yy,22) Bé’g 68.7 (x2)
Ay 88.6 88 89 (xx,yy,22) Bj, 88.8 (x2)
Ag 103.0 104.3 108 (xx,yy,22) ng 100.4 (xz2)
Ag 132.4 111 115 (xx,yy,22) Bzﬁg 138.2 (x2)
A 142.0 137 143 (xx,yy,z2) B, 144.5 (x2)
Ag 220.4 195.6 200 (xx,yy,22) B§g 212.9 (x2)
A 258.8 267 272 (xx,yy,22) B, 261.7 (xz)
AY 305.2 280 288.7 (xx,yy,22) By, 303.9 (x2)
A;' 320.2 290 296.5 (xx,yy,22) BZI; 321.5 (xz2)
B}, 56.4 (xy) Bl 56.4 (y2)
B}, 72.8 (xy) B3, 76.7 (y2)
B}, 126.2 (xy) B}, 126.4 (y2)
Bf‘g 191.4 (xy) Bg‘g 190.2 177 183.8 (yz)
Bfg 210.5 (xy) ng 214.9 198 (y2)
Bfg 267.1 (xy) ng 268.8 222.8 228 (yz2)
B], 285.2 (xy) B], 285.7 (y2)
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FIG. 5. (Color online) The polarized Raman spectra of BaFe,Se;
single crystals measured at various temperatures. (a) x(yy)x polar-
ization configuration; (b) x(yz)* polarization configuration.

modes at 183.8, 198, and 228 cm~' (20 K) are observed.
Vertical bars in Fig. 4 denote the calculated energies of the A,
and B3, symmetry modes, which are in rather good agreement
with experimentally observed ones. The results of the lattice
dynamics calculations, together with the experimental data,
are summarized in Table IV.

According to the lattice dynamics calculations the lowest
energy A; mode is dominated by Ba atom vibrations along the
(101) directions and the Ag, mode represents vibrations of Fe
and Se atoms which tend to rotate [Fe,Se;]>~ chains around
of the b axis. The Az mode involves all atom vibrations, which
tend to stretch crystal structure along the (101) directions,
whereas the A? mode originates from Se atom vibrations along
the c axis and the Fe atom vibrations along the (101) directions.
The Ag mode represents vibration of Fe and Se atoms, which
leads to [Fe,Ses]?~ -chain compression along the ¢ axis. The
Ag mode originates from Se and Fe atom vibrations which
stretch [Fe,Se3]?>~ chains along the ¢ axis. Finally, the A;
mode originates from Fe atom vibrations toward each other
along the chain direction together with vibrations of the Se
atoms along the ¢ axis. The normal coordinates of the Az,

Ag, A;O, and A;l modes are given as insets in Fig. 6. As can
be seen from Fig. 6 the Ag mode originates dominantly from
Se atom stretching vibrations, whereas the Ag,, A;,O, and Aél,1

modes represent vibrations of both the Se and Fe atoms. In fact,
the Ag mode represents mostly Se atom vibrations along the ¢

axis, and the A!° mode consists of Fe and Se vibrations along
the ¢ axis, which tend to elongate ladder structure along the b
axis. Finally, the A;l mode represents the Fe atom vibrations
toward each other along the chain axis, together with Se atom
vibrations perpendicular to the chain direction.

By lowering the temperature, the lattice parameters of
BaFe,Se; decrease continuously without the crystal symmetry
change around the magnetic ordering temperature [11,12]
Ty =255 K. Consequently we should expect the Raman
mode hardening, without any abrupt change. Contrary to

PHYSICAL REVIEW B 91, 064303 (2015)
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FIG. 6. (Color online) Experimental values (symbols) and calcu-
lated temperature dependence (solid lines) of BaFe,Se; Raman mode
energies. The best-fit parameters, for the temperature range below
Ty, are given in Table III. Insets represent normal modes of the AZ,
A?, A;O, and ALI vibrations.

expectations, the A, and B3, modes (see Figs. 5, 6, and 7)
sharply increase their energies below the phase transition
temperature Ty, as shown in details in Fig. 6. Because a
significant local lattice distortion (Fe atom displacement along
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FIG. 7. (Color online) Linewidth vs temperature dependence of
(a) A} and A" modes and (b) A3 and A,' modes of BaFe,Se;.
Solid lines are calculated using Eq. (5). The best-fit parameters for a
temperature range below Ty are given in Table III.
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the b axis is as large as approximately 0.001 nm) [11,12]
exists, driven by the magnetic order, we concluded that spin-
phonon (magnetoelastic) coupling is responsible for Raman
mode energy and linewith change in the antiferromagnetic
phase. In fact, the existence of local displacements in the
Fe atoms at Ty have a significant impact on the electronic
structure due to rearrangement of electrons near the Fermi
level [11] and consequently the change in the phonon energy
and broadening. Raman mode linewidth change at about Ty
is clearly observed as deviation from the usual anharmonicity
temperature dependence (solid lines in Fig. 7) for all modes
presented in Fig. 6.

IV. CONCLUSION

We have measured the polarized Raman scattering spectra
of the BaFe,S; and BaFe,Se; single crystals in a temperature
range between 20 and 400 K. Almost all Raman-active
modes predicted by factor-group analysis to be observed
from the cleavage planes of BaFe;S; (110) and BaFe,Se;
(100) single crystals are experimentally detected and assigned.

PHYSICAL REVIEW B 91, 064303 (2015)

Energies of these modes are in rather good agreement with the
lattice dynamics calculations. The BaFe,Se; Raman modes
linewidth and energy change substantially at temperatures
below Ty =255 K, where this compound becomes antifer-
romagneticaly long-range ordered.
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Abstract We present the far-infrared reflectivity
spectra of 5 nm-sized pure and copper-doped
Ce;_Cu,O,_, (x =0; 0.01 and 0.10) nanocrystals
measured at room temperature in the 50-650 cm™'
spectral range. Reflectivity spectra were analyzed
using the factorized form of the dielectric function,
which includes the phonon and the free carriers
contribution. Four oscillators with TO energies of
approximately 135, 280, 370, and 490 cm™! were
included in the fitting procedure. These oscillators
represent local maxima of the CeO, phonon density of
states, which is also calculated using the density
functional theory. The lowest energy oscillator repre-
sents TA(L)/TA(X) phonon states, which become
infrared-active E, modes at the L and X points of the
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Brillouin zone (BZ). The second oscillator originates
from TO() phonon states. The oscillator at
~400 cm™' originates from Raman mode phonon
states, which at the L point of BZ also becomes
infrared-active E, mode. The last oscillator describes
phonons with dominantly LO(I") infrared mode char-
acter. The appearance of phonon density of states
related oscillators, instead of single F,,infrared-active
mode in the far-infrared reflectivity spectra, is a
consequence of the nanosized dimension of the CeO,
particles. The best fit spectra are obtained using the
generalized Bruggeman model for inhomogeneous
media, which takes into account the nanocrystal
volume fraction and the pore shape.

Keywords Nano ceria - Far-infrared spectroscopy -
Phonon density of states - Bruggeman model -
Nanoparticle characterization

Introduction

There are plenty of nanoscopic, microscopic, and
other techniques that are used to study nanosized
materials and structures (Popovic et al. 2011). Among
them, the most frequently used spectroscopic tech-
niques are vibrational (phonon) spectroscopy tech-
niques, such as Raman (R) and infrared (IR). The use
of these techniques for nanostructure characterization
is discussed in Popovié et al. (2011), Gruji¢-Brojcin
et al. (2005), and Cantarero (2013).
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Ultrafine ceria powders represent an important
material for solid oxide fuel cells or catalytic appli-
cations, which are attributed to CeO, remarkable
oxygen-storage capability, i.e., the ability to undergo
rapid redox cycles by releasing and storing oxygen
(Popovic et al. 2012).

In a nanocrystal, the phonons are confined in space,
and all the phonons over the entire Brillouin zone (BZ)
will contribute to the first-order vibrational spectra.
The weight of the off-center phonons increases as the
crystal size decreases, and the phonon dispersion
causes a mode shape change and the frequency shift.
The influence of all these effects on the CeO, Raman
mode intensity, line shape, and energy were discussed
in Popovié et al. (2011) and Cantarero (2013).

Infrared spectroscopy is widely used in the
400-4,000 cm™! spectral range to characterize unw-
ished residuals during the synthesis of CeO, nano-
powders (Orel 1999). To the best of our knowledge
there are no study regarding infrared-active lattice
vibrations in ceria nanocrystals. In this paper, we have
measured room-temperature far-infrared reflectivity
spectra of the pure and copper-doped Ce;_,Cu,O,_,
(x =0, 0.01 and 0.10) nanocrystals in the 50-650
cm~ ! spectral range. In order to assign the obtained
features we performed lattice dynamics calculation of
CeO,. Reflectivity spectra were analyzed using the
factorized form of the dielectric function, which
includes several oscillators and the free carriers
contribution to the dielectric function. The oscillators
represent the phonon density of states (PDOS)-related
IR active modes. The best fit spectra are obtained
using the generalized Bruggeman model for inhomo-
geneous media, which takes into account the volume
fraction of nanopowder and the pore shape.

Experiment and numerical method

Ceria samples were prepared in one step by the
polymeric precursor method (Aratjo et al. 2013). The
sizes of nanocrystals obtained by Raman scattering
technique are about 5 nm. Specific surface area of the
samples (BET-method) were estimated from the N,-
adsorption/desorption isotherms, at liquid nitrogen
temperature, using a Micromeritics ASAP 2000 ana-
lyzer. The infrared reflectivity measurements were
carried out at room temperature with a BOMEM DA-8

@ Springer

Fourier-transform IR spectrometer. A deuterated tri-
glycine sulfate (DTGS) pyroelectric detector was used
to cover the wave number region from 50 to
650 cm™". Spectra were collected with 2 cm ™' reso-
lution, with 1,000 interferometer scans added for each
spectrum.

In order to interpret the experimental data, we have
performed density functional theory calculations
implemented within the QUANTUM ESPRESSO
package (Giannozzi et al. 2009). We have used the
ultrasoft pseudopotentials with PBE exchange—corre-
lation functional with 4f1, 552, 5p6, 5dl, 6s” valence
electrons of cerium and 2s%, 2p* valence electrons of
oxygen. The energy cutoffs for the wave functions and
the electron densities were 60 and 900 Ry, determined
to ensure stable convergence. We have sampled the
BZ with a 32 x 32 x 32 Monkhorst-Pack k-space
mesh.

The phonon frequencies are calculated within
density functional perturbation theory (Baroni et al.
2001), over the BZ sampled with 8 x 8 x 8 Monk-
horst—Pack q-point mesh. We have calculated the
PDOS using that mesh, and the phonon dispersion
curves are obtained from interpolation along the
chosen path.

Results and discussion

Cerium dioxide crystallizes in the fluorite-type cubic
crystal structure (Fig. 1), space group Fm3m (no. 225),
in which Ce is located in (4a) (0,0,0), surrounded by
eight oxygen atoms located at (8c) (1/4, 1/4, 1/4)
Wyckoff positions. This structure has one infrared
(F2,) and one Raman (F,) active mode, each of them
being triple degenerated. The normal modes of these
vibrations are sketched in Fig. 1. The F,, mode
represents vibrations of both the Ce and O atoms in
opposite directions, whereas F», mode originates from
the stretching vibrations of only oxygen atoms around
Ce. In the CeO, single crystals and polycrystalline
samples, the infrared and Raman active modes appear
at 283/596 cm ™! (wro/wro) (Marabelli and Wachter
1987; Santha et al. 2004) and 465 cm™! (R) (Kou-
rouklis et al. 1988; Weber et al. 1993; Nakajima et al.
1994), respectively. In our less than 5 nm CeO,_,
nanocrystals (Popovi¢ et al. 2012) the Raman mode is

centered at about 456 cm ™.
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Fig. 1 The normal modes of the infrared (/,,) and Raman (F»,) active lattice vibrations of CeO, (Color online)

Because our nano CeO, samples are inhomogeneous
(they consist of CeO, nanoparticles and air pores) we
have applied the effective medium approximation
(EMA) method to calculate infrared reflectivity of
inhomogeneous media, taking into account the macro-
scopic volume fractions and local microstructural geom-
etry (Gruji¢-Brojcin et al. 2005; Gonzalez et al. 1997,
Spanier and Herman 2000; Bruggeman 1935). Two
widely used effective medium theories are the Maxwell—
Garnett theory (Maxwell-Garnett 1904) and the Brugg-
eman theory (Bruggeman 1935). In both theories the
effective dielectric constant does not depend explicitly on
the size of the grains or inclusions occurring inside the
medium. Maxwell-Garnett approximation treats the
effective medium as consisting of a matrix in which are
embedded inclusions of a specific shape, where the
fraction of the inclusions is very small (<0.15), so that the
inclusions are spatially separated and can be treated as a
perturbation (Spanier and Herman 2000; Saarinen et al.
2003; Gehr et al. 1997). The other widely used approx-
imation is the Bruggeman’s, which has no such limita-
tions, and can be used for entire range of fraction values
from O to 1. That was the reason why we used Bruggeman
approach for analysis of infrared reflectivity spectra of
inhomogeneous CeO, nanocrystals.

As nanophase CeO, is a porous material with a
relatively large specific surface (see Table 1), the
porosity of the nanopowder is included in modeling its
dielectric function. The best agreement between
calculated and experimental results is obtained by
the generalized Bruggeman EMA (B-EMA), which
introduces the effect of pore shape using the adjustable
depolarization factor L for ellipsoidal voids (L = 1/3

for spherical cavities and 1/3 <L <1 for prolate
spheroidal cavities).

Similar to the B-EMA, in the generalized Brugg-
eman model (Gruji¢-Brojcin et al. 2005, 2006; Spanier
and Herman 2000), porous nanopowder with effective
dielectric function &g is assumed to be an inhomoge-
neous media composed of nanopowder (&4,,) and air
(&air = 1) with volume fractions f .., and f;., respec-
tively. The basic Bruggeman model is modified to
include the influence of porosity:

( €nano — Eeff )f
nano
Eeff 1+ L(snano - Seff)

+ < Eair — Eeff ))fair —0 (1)

getf + L&air — Eeff

Generally, a decrease of nanopowder volume fraction
results in a decrease of reflectivity and broadening of
the IR features, due to the greater air fraction in the
powder. Also, the decrease of depolarization factor L,
from prolate spheroidal voids (L = 1) to spherical
pores (L = 1/3), leads to the increase in the reflectiv-
ity, with characteristic IR features becoming more
pronounced (Grujié¢-Brojcin et al. 2005).

Since the analysis of the far IR reflectivity spectrum
of ceria nanopowders has revealed a presence of a
plasmon mode, it was necessary to include both
contributions of the phonon and the plasmon (free
carrier contribution) to the dielectric function. There-
fore, the factorized form of dielectric function has
been decomposed into a sum of two independent terms
(Gonzalez et al. 1997; Gruji¢-Brojcin et al. 2006;
Gervais 1983):
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Table 1 The characteristic TO and LO phonon frequencies
(w) and damping factors (y) (all given in cm™ ) of Ce_
«Cu,0,_, nano- and poly-crystals, used in the fitting procedure

together with the corresponding plasmon parameters for pure,
1, and 10 % Cu-doped CeO, samples

Parameters 0 % Cu 1 % Cu 10 % Cu 10 nm nano Polycrystal
oto (Y10) 135 (190) 137 (220) 137 (300) 130 (132) 135 (130)
oLo (YLo) 155 (95) 147 (180) 147 (180) 160 (188) 161 (187)
orto (Y10) 282 (37) 280 (28) 280 (25) 273 (57) 272 (25)
oo (YLo) 375 (180) 380 (165) 385 (180) 280 (108) 416 (137)
or1o (Y10) 370 (100) 360 (95) 370 (140) 448 (159) -

oro (YLo) 407 (100) 407 (150) 407 (120) 468 (105) -

oto (Y1o) 490 (180) 480 (140) 485 (180) 493 (113) 428 (157)
oLo (YLo) 580 (10) 580 (60) 585 (40) 585 (385) 587 (47)
wro (Y10) - - - 333 (67) -

wLo (JLo) - - - 350 (38) -

p (p) 390 (400) 385 (580) 320 (550) 100 (50) -

Jhano 0.80 0.83 0.86

Pore shape L 0.74 0.70 0.70

Specific surface area Sggr (mZ/g) 40 40 44

Average pore diameter (nm) 10.8 124 9.1

The fitting parameters from Bruggeman model (powder volume fraction f;.,, and the pore shape L) together with the specific surface
area and pore diameter values are listed for each nanopowder sample

2 2 i 2
d Opp; — O +i0YLo; w,
g(w)=c¢ _
2 ge el P 2 . .
L ot — 0 + o), o(w —iy,)

(2)

where wy o ; and wr are longitudinal and transverse
frequencies of the jth oscillator, y; o jand yro j are their
corresponding dampings, w, (y,) is the plasma
frequency (damping), and ¢, is the high-frequency
dielectric constant.

Figure 2a shows the PDOS of CeO,. This PDOS is
in complete agreement with previously published ones
(Marabelli and Wachter 1987; Nakajima et al. 1994;
Giirel and Eryigit 2006; Buckeridge et al. 2013).

The CeO; IR reflectivity spectra of polycrystalline
sample (Santha et al. 2004) and 10-nm particle size
undoped CeO, nanocrystal are given in Fig. 2b, c,
respectively. These spectra are fitted using dielectric
function model, Eq. (2), with parameters given in
Table 1. In the case of the polycrystalline sample three
oscillators are used to obtain a rather good agreement
with experimental data. The lowest energy oscillator
with TO energy of 135 cm ™! represents phonon states
from the X and L point of BZ. Other two oscillators
represent F,, mode. Appearance of two instead of one
IR active mode in this spectral range is related to the
anharmonicity (Santha et al. 2004). In the case of the

@ Springer
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Fig. 2 a The phonon density of states of CeO,. b The IR
reflectivity spectra of polycrystalline CeO, sample (Santha et al.
2004); ¢ nanocrystalline undoped CeO, sample (particle size
~10 nm). Solid lines represent the calculated reflectivity
spectra obtained by the fitting procedure based on Eq. (2), with
the parameters given in Table 1 (Color online)

nanosized sample (Fig. 2c) five oscillators are
included in the fitting procedure, as well as, plasma
term (see Table 1). Origin of these oscillators will be
discussed later.

The influence of nanopowder volume fraction and
the pore shape on the IR reflectivity spectra is analyzed
in Fig. 3a—c, which show the IR reflectivity spectra
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calculated with the generalized B-EMA, with the
variation of powder volume fraction f;,,, and fixed
value of depolarization factor (pore shape factor)
L = 0.33,0.75, and 0.90, respectively. The spectra are
calculated with the set of parameters corresponding to
the pure CeO, sample, listed in the Table 1 (0 % Cu),
whereas fjano 18 varied from 0.5 (50 % of CeO, powder
in porous sample) to 1 (nonporous powder). The pore
shape factor L = 0.33 defines ideally spherical pores
and for given TO/LO parameters, the best volume
fraction fit corresponds to values of f,.,, between 50
and 60 % of powder content in the sample (Fig. 3a).
The pore shape factor L = 0.75 defines pores with
elongated structure, as indicated in Fig. 3b. For given
TO/LO parameters (Table 1) the best volume fraction
fit corresponds to values of f.,, around 80 % of
powder content in the sample. In Fig. 3c the variation
of powder volume fraction f;.,, with depolarization
factor L = 0.90 is shown. The pore shape factor
L = 0.90 corresponds to extremely elongated pores.

For given TO/LO parameters (Table 1) the best
volume fraction fit corresponds to values of f ..o
between 80 and 90 % of powder content in the sample.

The pore shape variation is analyzed in Fig. 3d—f. In
Fig. 3d the calculated spectrum for powder volume
fraction fh.0 = 1, i.e., nonporous powder is shown
together with experimental IR reflectivity of the pure
CeO, sample. The spectrum is calculated with the set
of parameters corresponding to the pure CeO, sample,
listed in Table 1 (0 % Cu), whereas the pore shape
factor (L) variation has no influence in this calculation.
Figure 3e, f show the IR reflectivity spectra calculated
with the generalized Bruggeman EMA with powder
volume fraction of 80 % and 50 %. The pore shape
factor varied from L = 0.3-0.9. It may be noticed that
in both cases, the intensity of the reflectivity is getting
lower with the increase in pore shape factor. For given
TO/LO parameters (Table 1) the best pore shape fit is
obtained for values of L from 0.7 to 0.8 (Fig. 3e),
corresponding to the area of elongated pores. These

0.7 — . . . . . 0.7 — . . . . 0.7 — . . . . .
0.6 0.6 =1.04 06
0.9
05 05 081 05
0.7 k
0.4 0.4 { 04
0.6
0.3 0.3 054 o3
02 0.2 { 02
2
S 01t 0.1 {4 041
o
a 00 1 1 1 1 1 00 1 1 1 1 OO 1 1 1 1
< 100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600
3 07 0.7 — . . . . .
E 0.6 06F fnano=0'5 _ |
05 05} 05 1
04h 045 0.6 l i
¢ ]

0.3

0.2

0.1

0.0—

0.3

0.2

0.1

0.0

100 200 300 400 500 600

100 200 300 400 500 600

100 200 300 400 500 600

Wavenumber (cm™)

Fig. 3 The IR reflectivity spectra calculated with the general-
ized B-EMA. a The volume fraction of nanopowder is in the
range from 0.5 to 1.0 and the pore shape factor L = 0.33
(spherical shape of pores); b pore shape factor L = 0.75
(elongated pore structure); ¢ pore shape factor L = 0.90
(extremely elongated pore structure); d the IR reflectivity
spectra calculated with the generalized B-EMA with the volume

fraction of the nanopowder f.,o = 1 (nonporous powder);
e fixed volume fraction of nanopowder (f;ano = 0.8) with pore
shape factor varying from 0.3 to 0.9; f fixed volume fraction of
nanopowder (fyano = 0.5) with pore shape factor varying from
0.3 to 0.9. Experimental IR reflectivity spectrum (red curve) of
pure CeO, sample (0 % Cu) is given for comparison (Color
online)
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results correspond to those shown in Fig. 3b. Finally, in
Fig. 3f the best pore shape fit is obtained for values of
L around 0.3, corresponding to ideally spherical pores.

By analyzing the results shown in Fig. 3, we came
to the following conclusions:

(i) Bruggeman EMA model can be used to fit the
experimental reflectivity spectra of inhomo-
geneous nanomaterials, in our case CeO,
nanocrystals.

(i) The B-EMA model parameters that best
describe the experimental CeO, reflectivity
spectra are close to fhano = 0.8 and L = 0.75.
(see Fig. 3b). Refinement of these parameters
for samples under investigation gives values
shown in Table 1.

(iii))  The very good agreement between the calcu-
lated and the experimental spectra illustrated
in Fig. 4 suggests that the use of more specific
model, which may include the pore shape
distribution, instead of the B-EMA general
and simple model, is not necessary.

In Fig. 4 experimental IR reflectivity spectra of
5 nm-sized pure, 1, and 10 % Cu-doped CeO, samples
are shown, together with the corresponding spectra
calculated with the generalized B-EMA. Fitting
parameters for these spectra are listed in Table 1. As
can be seen from Table 1, four oscillators with TO
energies of approximately 135, 280, 370, and
490 cm™' were included in the fitting procedure,
Eq. (2), for 5 nm-sized CeO, samples. These

0.6

10% Cu doped CeO,
04}

1 1
1% ICu doped ICeO2

Reflectivity, R

1 ' 1
luindoped CeO,’

100 200 300 400 500 600 7
Wavenumber (cm™)

Fig. 4 Experimental IR reflectivity spectra of pure, 1, and 10 %
Cu-doped CeO, samples, with the corresponding spectra
obtained by the fitting procedure based on Eq. (2) and the
generalized B-EMA, Eq. (1). Parameters are given in Table 1
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oscillators represent local maxima of the PDOS. The
lowest energy oscillator represents TA(L)/TA(X) pho-
non states, which become IR-active E, modes (Bucke-
ridge et al. 2013) at the L and X points of BZ. The
second oscillator originates from TO(I") phonon states.
The oscillator at ~400 cm™" originates from Raman
mode phonon states which at the L point of BZ also
becomes IR-active E, mode (Buckeridge et al. 2013).
The last oscillator describes phonons with dominantly
LO(I") IR mode character. The appearance of PDOS-
related oscillators, instead of single F», IR-active mode
in the far-infrared reflectivity spectra, is a consequence
of the nanosized dimension of the particles, as
mentioned earlier. Besides that, the oscillator energies
appear at lower energies than the maxima of PDOS.
This is also related to the particle size. In fact, in
nanoceria the unit cell dimensions abruptly increase by
particle size reduction (Tsunekawa et al. 2000; Wu
et al. 2004). Consequently, the PDOS softens with the
particle size lowering due to an increase in the internal
strain, as it was discussed in Buckeridge et al. (2013).
A small variation in the frequencies of TO (LO)
modes of the pure and doped samples is noticed,
whereas the damping parameters are clearly affected
by the variation between pure and doped samples.
Plasmon modes are registered in all samples, with
significant plasma frequency decrease and damping
parameter increase with Cu doping. The values of
parameters used in the generalized Bruggeman EMA
are varied with doping: similar porosity has been
estimated in all studied samples. Namely, the volume
fraction parameter is estimated from f;,,, = 0.80 in
pure CeO, (which means 80 % of CeO, fraction in a
porous sample) to 0.86 in 10 % Cu-doped CeO,
sample. The depolarization factor L, defining pore
shape is estimated as 0.74 in pure CeO, sample and
slightly lower (0.70) in doped samples, therefore
describing pores filled with the air as very elongated.
Comparing these with textural measurement results,
we find that in the 10 % Cu-doped sample, the
reduction of L and an increase in volume fraction is
correlated with a decrease of pore diameter and an
increase in specific surface area (see Table 1).

Conclusion

We have measured the unpolarized far-infrared reflec-
tivity spectra of the CeO, nanocrystals at room
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temperature. Reflectivity spectra were analyzed using
the factorized form of the dielectric function, which
includes the phonon and plasmon contribution to the
dielectric function. The best fit spectra are obtained
using the generalized Bruggeman model for inhomo-
geneous media, which takes into account the volume
fraction of CeO, nanocrystal and the air pore shape.
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Superconducting Nature of Elemental Bismuth
Under Pressure

Milo§ M. Radonji¢?, Rustem Khasanov®, Liviu Chioncel® and Alex Amato®

4Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics
Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
bLaboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
“Augsburg Center for Innovative Technologies, and Center for Electronic Correlations and
Magnetism, Theoretical Physics III, Institute of Physics, University of Augsburg, D-86135
Augsburg, Germany

Abstract. Elemental bismuth has a very rich pressure-dependent phase diagram. At room tempera-
ture, it undergoes a series of structural transitions. Upon cooling all phases become superconducting,
but the superconducting nature between phases is very different. We report the superconductivity in
the Bi-II phase of elemental bismuth (transition temperature 7. ~ 3.94 K at p ~ 2.80 GPa). It was
studied experimentally by means of muon-spin rotation as well as theoretically using the Eliashberg
theory in combination with Density Functional calculations. Experiments reveal that Bi-II is the
type-I superconductor with the zero temperature thermodynamic critical field B.(0) = 32.07(2) mT.
The Eliashberg theory provides an excellent agreement with the experimental critical temperature
and magnetic field and the estimated value for the strong coupling parameter 7,/ @y, suggests that
Bi-1II is an intermediately-coupled superconductor. We also address the superconducting nature of
Bi-I phase. We report the negligible electron-phonon interaction and possible signatures of exciton-
mediated superconductivity.
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FIGURE 1. The temperature dependence of the thermodynamical critical field B, for Bi-II phase

obtained in SR experiments and within the framework of ab-initio Eliashberg calculations using Density
Functional Theory.

REFERENCES

1. R. Khasanov, M. M. Radonji¢, H. Luetkens, E. Morenzoni, G. Simutis, S. Schoenecker, W. H. Appelt,
A. Ostlin, L. Chioncel, and A. Amato, Phys. Rev. B99, 174506 (2019).
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Lattice dynamics and phonon anomalies in FeS

A. Baum®®, A. Milosavljevi¢®, N. Lazarevi¢®, M.M. Radonji¢?, B.
Nikoli¢®, M. Mitschek®®, Z. Inanloo Maranloo?, M. Séepanovic®, M.
Gruji¢ — Broj&in®, N. Stojilovi¢', M. Opel?, Aifeng Wang?, C. Petrovic?,
Z.V. Popovi¢® and R. Hackl?

Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
®Fakultit fiir Physik E23, Technische Universitit Miinchen, 85748 Garching, Germany
“Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of
Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
IScientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics
Belgrade, University of Belgrade,Pregrevica 118, 11080 Belgrade, Serbia
®*Faculty of Physics, University of Belgrade, Studentski trg 12, Belgrade, Serbia
'Department of Physics and Astronomy, University of Wisconsin Oshkosh, Oshkosh, Wisconsin 54901,
USA
9Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory,
Upton, New York 11973-5000, USA
"Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

Abstract. Crystal structure, magnetic ordering and nematic phase are closely interrelated in the iron-
based superconductors. Although isostructural and isoelectronic, properties of 11 chacogenides, FeSe,
FeTe and FeS, differ significantly. Whereas FeSe undergoes a nematic and structural phase transition at
90 K, togeather with superconductivity below 9 K, and no traces of long-range magnetic ordering, FeTe
is not superconducting but exhibits magnetostructural phase transition at temperature of 67 K. The last
member of the familly, FeS, have a superconducting transition at 5 K, and remains tetragonal down to
lowest temperatures.

Here, we present results of Raman scattering experiment on tetragonal FeS, and analysis of vibrational
properties close to potential instabilities [1]. Besides A4 and B;q modes assignation, which is in a good
agreement with DFT calculations, third peak whitin a gap of calculated phonon density of states can be
indentified as a result of second order scattering process. Both, selection rules for two-phonon
processes, based on modified group projector technique and energy are in a good agreement with the
experiment. A fourth mode, close to A;q could originate from either deffect-induced scattering or
second order scattering as well. The temperature dependence of all four modes is governed by the
contraction of the lattice, with anomalies at 50 K and below 20 K. The anomaly observed at 20 K has a
correspondence with previously reported results of short-range magnetic ordering. The presence of two-
phonon scattering indicates strong phonon-phonon scattering, which is likely to originate from an
electron-phonon interaction being enhanced in comparison to other pnictides and chalcogenides.

REFERENCES

1. A. Baum, A. Milosavljevi¢, N. Lazarevi¢, M. M. Radonji¢, B. Nikoli¢, M. Mitschek, Z. I. Maranloo,
M. Séepanovié¢, M. Gruji¢-Brojéin, N. Stojilovi¢, M. Opel, A. Wang, C.Petrovic, Z.V.Popovi¢, and
R.

Hackl, Phonon anomaliesin FeS, Phys.Rev.B 97, 054306 (2018).
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O 57.1 Wed 15:00 H9
First-principles quantum transport simulations including
strong correlation effects — eANDREA DrocuETTI!, WILHELM
AppeLT?, Liviu CHIONCEL?, MiLos Raponiié?, ENRIQUE MuRoz?,
STEFAN KIRCHNER®, DaviD Jacos!, DIETER VOLLHARDT?, ANGEL
RuBio%, and Ivan RUNGGER? — 1University of the Basque Coun-
try (Spain) — 2University of Augsburg (Germany) — 3University
of Belgrade (Serbia) — “Pontificia Universidad Catolica de Chile —
5Zhejiang University (China) — Max Planck Institute for the Struc-
ture and Dynamics of Matter (Germany) — 7National Physical Labo-
ratory (UK)

When magnetic molecules are brought into contact with metals the
electron-electron interaction leads to the appearance of the correlated
Kondo state. In this talk we will present the results of first-principles
calculations for the electronic structure and the linear-response con-
ductance of radical molecules adsorbed on metallic surfaces in the
Kondo regime [Phys. Rev. B 95, 085131 (2017), Nanoscale 10, 17738
(2018)]. In particular we will outline the methodological approach
as implemented in the Smeagol electron transport code and we will
benchmark the results against experiments. The method relies in the
first place on the combination of Density Functional Theory with the
Green’s functions technique. We will explain how a molecular devices
is projected onto an effective Anderson impurity problem, which is then
solved either by continuum time quantum Monte Carlo or numerical
renormalization group. Finally, we will describe some work-in-progress
aimed at computing transport properties beyond linear-response.

O 57.2 Wed 15:15 H9

Density functional theory for transport through correlated

systems — oSTEFAN KuUrRTH — Univ. of the Basque Country
UPV/EHU, San Sebastian, Spain — IKERBASQUE, Basque Foun-
dation for Science, Bilbao, Spain — Donostia International Physics

Center DIPC, San Sebastian, Spain

A recently proposed density functional formalism to describe electronic
transport through correlated systems in the steady state uses both the
density on the junction and the steady current as basic variables. The
corresponding Kohn-Sham system features two exchange-correlation
(xc) potentials, a local xc potential and an xc contribution to the bias,
which are universal functionals of the basic variables.

A recent parametrization of the xc potentials for the single-impurity
Anderson model correctly incorporates both the Kondo and Coulomb
blockade regimes. It allows for calculation of currents and differential
conductances at arbitrary bias and temperature at negligible numeri-
cal cost but with the accuracy of sophisticated renormalization group
methods. A time-local version of this functional is used to study the
Anderson model under the influence of both DC and AC biases. We
observe interaction-induced shifts of the photon-assisted conductance
peaks, supression of the Kondo plateau at zero temperature and lifting
of Coulomb blockade at finite temperature.

O 57.3 Wed 15:30 H9
Exact factorization of the many-electron wave function —
eCamiLLA PELLEGRINI', ANTONIO SANNA!, and EBErHARD K. U.
Gross!2 — 'Max Planck Institute of Microstructure Physics, Wein-
berg 2, 06120 Halle, Germany — 2Fritz Haber Center for Molec-
ular Dynamics, Institute of Chemistry, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel

The exact factorization approach [1], originally developed for a system
of electrons and nuclei, is extended to a system of electrons only. This
allows for a two-particle Schroedinger equation, which uniquely defines
the exact effective interaction between two electrons in the medium.
This interaction differs from the effective interaction, W, used in many-
body Green’s function techniques. In particular, it is spin-dependent.
We illustrate the formalism for the simplest case of exchange interac-
tions only.

[1] A. Abedi, N.T. Maitra, E.K.U. Gross, PRL 105, 123002 (2010).

O 57.4 Wed 15:45 H9
Many-body spectral functions from steady state density func-
tional theory — eDavip Jacos! 2 and STEFAN KurTH!2:3 — 1Dpto.
de Fisica de Materiales, Universidad del Pais Vasco UPV/EHU, San

Location: H9

Sebastian, Spain — 2IKERBASQUE, Basque Foundation for Science,
Bilbao, Spain — 3DIPC, San Sebastian, Spain

We present a scheme to extract the true many-body spectral function
of an interacting many-electron system from an equilibrium density
functional theory (DFT) calculation [1]. To this end we devise an
ideal STM-like setup and employ the recently proposed steady-state
DFT formalism (i-DFT) which allows to calculate the steady current
through a nanoscopic region coupled to two biased electrodes [2]. In
our setup one of the electrodes serves as a probe ("STM tip"). In
the ideal STM limit of vanishing coupling to the tip, the system to be
probed is in quasi-equilibrium with the "substrate" and the normalized
differential conductance yields the exact equilibrium many-body spec-
tral function. Moreover, from the i-DFT equations we derive an exact
relationship which expresses the interacting spectral function in terms
of the Kohn-Sham one. Making use of i-DFT xc functionals that cap-
ture Coulomb blockade as well as Kondo physics, the method yields
spectral functions for Anderson impurity models in good agreement
with NRG calculations. It is thus possible to calculate spectral func-
tions of interacting many-electron systems at the cost of an equilibrium
DFT calculation.

References: [1] D. Jacob and S. Kurth, Nano Lett. 18, 2086 (2018)
[2] G. Stefanucci and S. Kurth, Nano Lett. 15, 8020 (2015)

O 57.5 Wed 16:00 H9

Magnetic phase transitions induced by pressure and magnetic

field: the case of antiferromagnetic USb2 — eLEONID SAN-
DRATSKII — Max Planck Institute of Microstructure Physics, Halle,
Germany

Fascinating phenomena observed under applied pressure and magnetic
field are currently attracting much research attention. Recent exper-
iments have shown that application of the pressure or magnetic field
to the USb2 compound induce the transformations of the ground-state
antiferromagnetic (AFM) up-down-down-up structure to, respectively,
ferromagnetic (FM) or ferrimagnetic configurations. Remarkably, the
magnetic critical temperature of the FM state, induced by pressure, is
more than two times smaller than the Neel temperature of the ground
state. We performed density-functional theory (DFT) and DFT+U
studies to reveal the origin of the unusual magnetic ground-state of the
system and the driving mechanisms of the phase transitions. We in-
vestigate both the magnetic anisotropy properties and the parameters
of the interatomic exchange interactions. To study pressure-induced
effects we carry out calculations for reduced volume and demonstrate
that the AFM-FM phase transformation indeed takes place but de-
pends crucially on the peculiar features of the magnetic anisotropy.
We also explain why the magnetic field that couples directly to the
magnetic moments of atoms leads to the phase transition to the ferri-
magnetic state whereas the pressure that does not couple directly to
magnetic moments results in the FM structure.

O 57.6 Wed 16:15 H9
Charge localization at a weakly coupled molecule-metal
system studied by linear expansion A-self-consistent field
density-functional theory (ASCF-DFT) — eHapi H. Arerih2,
DANIEL CORKEN3, REINHARD MAURER3, F. STeEran Tautzl?2,
and CHRIsTIAN WaGNERD2 — 1Peter Griinberg Institut (PGI-3),
Forschungszentrum Jiilich, Germany — 2JARA-Fundamentals of Fu-
ture Information Technology — 3Department of Chemistry, University
of Warwick, Coventry, United Kingdom

Predicting the charge arrangements at the interface between molecules
and metals represents a formidable challenge for semi-local approxima-
tions to Density Functional Theory (DFT). This could become even
more critical when molecules are only weakly coupled to the metal.
Single-molecular devices based on such weak coupling have recently
been created by molecular manipulation with a scanning probe micro-
scope (SPM), where a single PTCDA (perylene-tetracarboxylic dian-
hydride) molecule was placed in a free-standing upright configuration
either on a SPM tip [1] or on a pedestal of two adatoms on the Ag(111)
surface [2]. There are indications that the mechanism stabilizing these
unexpected configurations is linked to an integer charge transfer cre-
ating a singly occupied molecular orbital. We use the ASCF-DFT
method [3] to confine charge on the LUMO of the PTCDA and study
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TT 49.7 Wed 15:00 Poster D
Superconductivity in doped tungsten oxide: a first princi-
ples description — e AnTONIO SANNAL, CaMILLA PELLEGRINT!, and
HeNNING GLAWE? — 'Max Planck Institute of microstructure physics,
Halle (Saale), Germany — 2Max Planck Institute for the structure and
dynamics of matter, Hamburg, Germany

Tungsten Oxide (WOg3), its bronzes (M;WO3), oxygen vacant
(WO3_2) and fluorine doped (WO3_,F;) are a family of crystals
showing a large variety of electronic properties, including supercon-
ductivity. Most measurements report a consistent scenario of low T,
although there have been some reports on possible high-T. low dimen-
sional and metastable superconductivity in sodium doped surfaces, at
the W/WOg3 interface and upon H doping. We attempt a characteriza-
tion of superconductivity in doped WO3 by ab initio methods, focusing
on the two key questions:

- Are the stable low temperature superconducting phases driven by
conventional electron phonon pairing? or, like in BaBiOgs, conven-
tional approaches fail and the correct pairing mechanism is still an
open problem.

- Can electron phonon coupling, in any geometry and doping regime,
provide enough coupling strength to lead to high-T.?

TT 49.8 Wed 15:00 Poster D
Effects of self-consistency in mean-field theories of disordered
systems: Superconductor Insulator Transition — eMATTHIAS
StosiEk and FERDINAND EvVERs — Institute of Theoretical Physics,
University of Regensburg, Germany

Our general interest is in aspects of self-consistency with respect to
disorder in the mean-field treatment of disordered interacting systems.
The example we here consider is the Superconductor Insulator Tran-
sition (SIT), where the superconducting gap is calculated in the pres-
ence of short-range disorder. Our focus is on disordered films with
conventional s-wave pairing that we study numerically employing the
negative-U Hubbard model within the standard Bogoliubov-deGennes
approximation. The general question that we would like to address
concerns the auto-correlation function of the pairing amplitude: Does
it qualitatively change if full self-consistency is accounted for? Our re-
search might have significant impact on the understanding of the SIT,
if extra correlations appear due to the self-consistency condition that
turn out sufficiently long-ranged. Such correlation effects are ignored
in major analytical theories. To study the long-range behavior of the
order parameter correlations, the treatment of large system sizes is
necessary. Due to the self-consistency requirement, the relevant sizes
(e.g. 108 sites) are numerically very expensive to achieve. For this
reason, we have developed a parallelized code based on the Kernel
Polynomial Method. We present data that indicates the existence of
very long ranged (power-law) correlations that may indeed change the
critical behavior in a significant way.

TT 49.9 Wed 15:00 Poster D
Dynamics of nanostructured superconductors in curl-free
vectorpotentials — eBJORN NieDzIELSKI and JAMAL BERAKDAR —
Martin-Luther-Universitat Halle-Wittenberg, Insitut fiir Physik, Ger-
many

In the theory of macroscopic quantum materials, like superconductors,
the electromagnetic vectorpotential plays a crucial role. We show for
nanoscopically structured superconductors how vectorpotentials with
zero curl can be used to manipulate the state of such a system. It
is demonstrated how a relation between flux quantization and the
Aharonov-Bohm effect can be used to drive and control superconduct-
ing tunneling devices in a non-invasive way.

TT 49.10 Wed 15:00 Poster D
Spin effects in a superconductor in proximity to an antifer-
romagnetic insulator — AxkasapEepP KaMRrAl, @ ALI REZAEI?, and
WoLrcaNGg BeLzic? — !Center for Quantum Spintronics, Depart-
ment of Physics, NTNU, Norway — 2Department of Physics, Univer-
sity of Konstanz, Germany

Inspired by recent feats in exchange coupling antiferromagnets to an
adjacent material, we demonstrate the possibility of employing them
for inducing spin-splitting in a superconductor, thereby avoiding the
parasitic effects of ferromagnets employed to this end. We derive the
Gor’kov equation for the matrix Green’s function in the superconduct-
ing layer, considering a microscopic model for its disordered interface
with a two-sublattice magnetic insulator. We find that an antiferro-
magnetic insulator with effectively uncompensated interface induces a

large, disorder-resistant spin-splitting in the adjacent superconductor,
thereby addressing the feasibility of a wide range of devices involving
spin-split superconductors. In addition, we find contributions to the
self-energy stemming from the interfacial disorder. Within our model,
these mimic impurity and spin-flip scattering, while another breaks
the symmetries in particle-hole and spin spaces. The latter contribu-
tion, however, vanishes in the quasi-classical approximation and thus,
does not significantly affect the superconducting state. Our results
illustrate the potential of antiferromagnets for superconducting spin-
tronics avoiding stray fields usually accompanying ferromagnets.

[1] Akashdeep Kamra, Ali Rezaei, Wolfgang Belzig, arXiv:1806.10356
(2018); accepted in PRL

TT 49.11 Wed 15:00 Poster D

Phonon anomalies in FeS — eLranDER Prish2, ANDREAS
Baum!b2, ANa MiLosavLievié®, NENAD Lazarevié3, MiLos M.
Raponiié3, Bozmar Nikorié*, MEeRLIN MirscHECK! 2, ZAHRA

INANLOO MaRANLOOY, Masa Scéepanovié3, MirjaNa GRUJIG-
Broicin®, NENAD StoiiLovié®?, Martuias OpeL!, ArrENG WaNG®,
CepoMIrR PrTROVICS, ZorAN V. Porovié® 7, and Rubpt Hackr! —
IWalther-Meissner-Institut, 85748 Garching, Germany — 2Fakultit
fiir Physik, Technische Universitat Miinchen, 85748 Garching, Ger-
many — SInstitute of Physics Belgrade, 11080 Belgrade, Serbia —
4Faculty of Physics, University of Belgrade, Belgrade, Serbia —
5Department of Physics and Astronomy, University of Wisconsin
Oshkosh, Oshkosh, WI 54901, USA — 6Condensed Matter Physics
and Materials Science Department, Brookhaven National Laboratory,
Upton, NY 11973, USA — 7Serbian Academy of Sciences and Arts,
11000 Belgrade, Serbia

Tetragonal FeS is studied using Raman spectroscopy. We identify the
A14 and B14 phonon modes, a second order scattering process, and
contributions from potentially defect-induced scattering. The temper-
ature dependence between 300 and 20 K of all observed phonon energies
is governed by the lattice contraction. The increase in energy of all
modes below 20 K may indicate short range magnetic order. Lattice-
dynamical simulations and a symmetry analysis for potential overtones
are in good agreement with the experiments. The two-phonon exci-
tation observed in a gap between the optical branches presumably
becomes observable due to significant electron-phonon interaction.

TT 49.12 Wed 15:00 Poster D
Microscopic phase diagram of LaFeAsO single crys-
tals under pressure: A Mossbauer study — ePHIiLIPP
MaTerRNE!, WENLI B1%!, Jivong Zuaol!, MicnareL Yu Hul, RuEa
KAPPENBERGER®?#, SABINE WURMEHL?'#, SAICHARAN ASWARTHAMS,
BernDp Btcuner®4, and EseN Ercan ArLp! — Argonne National
Laboratory, Lemont, IL 60439, USA — 2Department of Geology, Uni-
versity of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
— 3Leibniz Institute for Solid State and Materials Research (IFW)
Dresden, D-01069, Germany — “Institute of Solid State and Materials
Physics, TU Dresden, D-01069 Dresden, Germany

We investigated a LaFeAsO single crystal by means of synchrotron
Mossbauer spectroscopy under pressure up to 7.5 GPa and down to 13
K and provide a microscopic phase diagram. A continuous suppression
of the magnetic hyperfine field with increasing pressure was found and
it completely vanishes at ~ 7.5 GPa which is in contrast to the be-
haviour in polycrystalline samples where the magnetic order vanishes
at ~ 20 GPa. We discuss the sample dependence of the magnetic order
among different single and polycrystalline samples and its relationship
to the structural parameters.

[1] P. Materne et al., Phys. Rev. B. 98, 174510 (2018)

TT 49.13 Wed 15:00 Poster D
Observation of a highly ordered vortex lattice in LiFeAs
— oSVEN HorrMANN!, CHRISTIAN SaLAzAR!, Pavio KHANENKO!,
DANNY BauMaNnN!, RONNY SCHLEGEL!, SAICHARAN ASWARTHAM!,
I. Morozov?, BERND BUcHNER!, and CurisTian Hess! — 1IFW
Dresden, Helmholtzstrafie 20, D-01069 Dresden — 2MSU, Leninskiye

Gory 1, R-119991 Moscow

Unlike other Fe-based superconductors, LiFeAs is a stoichiometric su-
perconductor, showing no trace of nematic order, charge ordering or
magnetic ordering and no Fermi surface nesting, while still maintaining
a fairly high transition temperature. To gain additional information
about the order parameter in this material we performed low temper-
ature scanning tunneling microscopy and spectroscopy measurements.
Differential conductance maps revealed a highly ordered vortex lat-
tice, even at high magnetic fields. These findings contradict previous
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Physics, Karlsruhe, Germany

IrTes is distinguished by a structural phase transition whose origin is
not understood up to the present day [1]. We grew crystals using the
self-flux method starting from the reagents iriudium and tellurium and
got specimen with varying amounts of IrTes and IrzTeg, analyzed by
x-ray powder diffraction. We studied the transition near T = 280 K
in magnetization measurements down to T = 1.8 K probing also for
superconductivity, which was reported for intercalated samples [2]. Re-
sults indicate that the structural transition happens over an extended
range in temperature and superconductivity is absent in our samples.
Ir3Teg is not studied to such an extent as IrTea. In previous publi-
cations a structural phase transition is reported [3]. We characterized
the transition by performing magnetization measurements and X-ray
diffraction.
[1] G. L. Pascut et al., PRL 112, 086402 (2014)
[2] J. J. Yang et al., PRL 108, 116402 (2012)
[3] L. Li et al., PRB 87 (2013).

TT 78.56 Thu 15:00 Poster D
Angle-Resolved Photoemission Spectroscopy of rare earth

LaSby — MarTEO MICHIARDI!, ¢ FABIAN ARNOLD!, G. SHWETHAZ,

V. KANCHANAZ, VAITHEESWARAN GANAPATHY®, KARL FREDERIK
FaercH FisueEr!, AxeL Svane!, Marco Biancui!, Bo BRUMMER-
sTEDT IVERSEN!, and PriLiP HorMANN! — 1 Aarhus University, Den-

mark — 2IIT-Hyderabad, India — 2University of Hyderabad, India

Several rare earth diantimonides have been found to exhibit intrigu-
ing electronic properties such as anisotropic linear and non-saturating
magnetoresistance. Among these materials, LaSbs is not only consid-
ered for application in magnetoresistive devices but it is also found
to be superconducting at low temperatures and it is investigated as
candidate material to host charge density wave phases. Despite the
several studies on its transport properties, the electronic structure of
LaShbs is still largely unknown. Here we present an angle-resolved pho-
toemission spectroscopy and ab-initio calculation study of LaSb2(001).
The observed band structure is found to be in good agreement with
theoretical predictions. Our results reveal that LaSby is a semimetal
with a strongly nested two-dimensional Fermi surface. The low energy
spectrum is characterized by four massive hole pockets and by four
shallow, strongly directional, electron pockets that exhibit Dirac-like
dispersion. We speculate on the possibility that this peculiar electronic
structure drives the magnetoresistance to its quantum limit, explaining
its unconventional behavior.

TT 78.57 Thu 15:00 Poster D
Ground state properties of MnB, — eJAN LENNART WINTER!,
Nico STeINKI', DIRK ScHULZE GRACHTRUP!, DIRK MENZEL!, STE-
FAN SULLow!, ARNO KNAPPSCHNEIDER?, and BARBARA ALBERT? —
nstitut fiir Physik der Kondensierten Materie, TU Braunschweig,
Germany — 2Eduard-Zintl-Institut fiir Anorganische und Physikalis-

che Chemie, TU Darmstadt, Germany

Recently, single crystalline MnB,4 was synthesized for the first time,
yielding microscale crystals with dimensions of the order of 200 pum
[1]. Based on band structure calculations, it was argued that the ma-
terial is semiconducting as result of a Peierls distortion. Conversely, in
a study of polycrystalline material it was concluded that the material
is a weakly ferromagnetic metal [2].

To establish if MnBy is a semiconductor we have carried out single
crystal four point resistivity measurements. For this purpose a setup
for measuring microscale samples was developed and characterized.
Qualitatively, we find semiconducting behavior (increasing resistivity
for decreasing temperature), although a band gap could not be derived
because of a non-linear Arrhenius plot. Our data are consistent with
MnBy4 being a pseudogap/small gap material as proposed in [1]. A
pronounced sample dependence of the transport properties points to
the presence of impurity states. For the single crystals no ferromag-
netic signatures could be obtained, suggesting an extrinsic cause of it
in polycrystalline material.

[1] A. Knappschneider et al., Angew. Chem. 126, 1710 (2014)
[2] H. Gou et al., PRB 89, 064108 (2014)

TT 78.58 Thu 15:00 Poster D
Scaling of the Optical Conductivity in the Transition
from Thermal to Many-Body Localized Phases — eRoBIN
STEINIGEWEG!, JAcEK HERBRYcHZ, FRANK PoLLMANN?, and WoL-
FRAM BRENIG* — 1University of Osnabriick — 2CCQCN and Univer-
sity of Crete — 3SMPIPKS Dresden — “4Technical University Braun-
schweig

We study the frequency dependence of the optical conductivity Re o(w)
of the Heisenberg spin-1/2 chain in the transition from thermal to
many-body localized phases induced by the strength of a spatially
random magnetic field. Using the method of dynamical quantum typ-
icality, we calculate the real-time dynamics of the spin-current au-
tocorrelation function and obtain the Fourier transform Reo(w) in
high frequency resolution and for system sizes L much larger than
L ~ 14 accessible to standard exact-diagonalization approaches. We
unveil that the low-frequency behavior of Re o(w) is well described by
Reo(w) = ogqc+a|w|®, with @ & 1 in a wide range of the thermal phase
and up to the many-body localized phase. We particularly detail the
decrease of og. as a function of increasing disorder for strong exchange
anisotropies. We further find that the temperature dependence of oq.
is consistent with the existence of a mobility edge.

TT 78.59 Thu 15:00 Poster D
Non-Equilibrium transport study in strongly correlated het-
ero structures — eMiros Raponsic!2, Ivan RuncGer?, and Liviu
CHuioNciL! — 1Center for Electronic Correlations and Magnetism, TP
III, Institute of Physics, University of Augsburg, D-86135 Augsburg,
Germany — 2Scientific Computing Laboratory, Institute of Physics
Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Ser-
bia — 3Mathematics and Modelling, National Physical Laboratory,
Hampton Rd, Teddington, Middlesex, UK, TW11 OLW

The effects of local electronic interactions and finite temperatures
upon the non-equilibrium transport properties across the metallic het-
erostructure Cug CoCuy are studied. Results are obtained by combin-
ing DFT and equilibrium DMFT solver on one side, and DFT and
non-equilibrium steady state impurity solver based on second order
perturbation in Hubbard interaction U, on the other side. Results of
these two methods are compared for the transmission. It is shown that
local, but dynamical electronic correlations reduce the total transmis-
sion at the Fermi level, and also increase the spin polarization. The
multi-orbital non-equilibrium steady state impurity solver is formu-
lated in the Keldysh Green’s function formalism and allows us an ac-
cess to all non-equilibrium quantities, such as non-equilibrium steady
state current.

TT 78.60 Thu 15:00 Poster D
Self-consistent Born approach to strongly correlated electron
systems in non-equilibrium — e GERHARD DorN — TU Graz, Aus-
tria
The self-consistent Born master equation method is apt to describe
the non-equilibrium behaviour of strongly correlated electron systems
which are weakly coupled to non-interacting leads.

The poster compares the self-consistent Born approach with different
other methods, like Born Markov master equation or Cluster Perturba-
tion Theory (CPT), and shows the improvements according to correct
representation of the Coulomb blockade or of the lead induced level
broadening.

TT 78.61 Thu 15:00 Poster D
Boundary-driven dissipative quantum chains in large exter-
nal fields — eZaLa Lenarcic! and Tomaz Prosen? — !Institute
for theoretical physics, University of Cologne, D-50937, Germany —
2Faculty for mathematics and physics, University of Ljubljana, SI-1000
Ljubljana, Slovenia

We treat the nonequilibrium transport as a consequence of a combined
driving: from a pseudo-force, originating in the bias in Markovian pro-
cesses at the system’s boundaries, and from a real force due to an
external field gradient g. For strong field gradients a systematic per-
turbation theory of the steady state current and slowest decay modes
of the density matrix can be formulated for a general inhomogeneous
XXZ spin 1/2 chain. From the explicit asymptotic expression for the
current it is clear that by combining both drivings arbitrarily large
current rectification can be achieved under g — —g in the presence of
interaction. Moreover, via tailored field profiles one can obtain further
control over the strength of stationary current.

[1] Z. Lenar¢i¢ and T. Prosen, PRE 91, 030103(R) (2015).

TT 78.62 Thu 15:00 Poster D
Combining ab initio wavefunction methods with dynamical
mean-field theory: A feasibility study with NiO — eDaNIIL
ToLour-MANTADAKIS, MARC HOEPPNER, THEODOROS TSATSOULIS,
ANDREAs GRUENEIS, and PHiLIPP HANSMANN — Max Planck Insti-
tute for Solid State Research, Stuttgart, Germany
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Time: Wednesday 10:30-13:00

TT 47.1 Wed 10:30 H21
Phonon renormalization in LaCoO3 by inelastic neutron and
x-ray scattering — eMaxiMiLiaN Kavurnu!, Frank WEeBER!, and

Jonn-PauL CasteLLan®2 — lnstitut fiir Festkorperphysik, Karl-
sruher Institut fiir Technologie — 2Laboratoire Léon Brillouin, CEA
Saclay

LaCoOs3 exhibits two broad magnetic-electric transitions, a diamag-
netic to paramagnetic spin-state transition at Tggs ~ 100K and a
metal-insulator transition at Tjp;; =~ 500 K. The spin transitions on
heating are proposed to be as follows [1]: from a homogeneous LS
state to a mixed Low-Spin/High-Spin (LS/HS) state with strong spin-
charge fluctuations at T=Tgg and, subsequently, into a homogeneous
HS state at T=Tj;;. The lattice participates in the state mixture
by expansion of CoOg octahedra around the HS sites, while the ones
around LS sites have a reduced size [2]. The originally proposed static
order [2] has not been observed experimentally and, hence, the ordering
is expected to be dynamic and short-ranged. We investigated the lat-
tice dynamical properties of LaCoO3 using inelastic neutron scattering.
Based on detailed ab-initio lattice dynamical calculations (performed
in our institute), we aim for a comprehensive understanding of lattice
dynamics in LaCoO3. The above discussed crossovers and spin state
order should be reflected in the lattice degrees of freedom via quasi
elastic scattering and phonon renormalization effects.

[1] M. Karolak et al., PRL 115, 046401 (2015)

[2] J. B. Goodenough, J. Phys. Chem. Solids 6, 287 (1958)

TT 47.2 Wed 10:45 H21
Excitonic transition in (Pr,Ca)CoO3 family — eJaN KUNES and
PaveL AucusTinskY — Insitute of Physics, AS CR, Prague

The members of (Pr1_,Yy)1—Ca;CoO3 family exhibit a continuous
phase transition accompanied by disappearance of the fluctuating mo-
ment of Co and increase of resistivity by several decades. Most in-
triguing feature of the low temperature phase is breaking of the time
reversal symmetry without presence of ordered atomic moments. We
will argue that the experimental observations are explained by con-
densation of atomic size excitons, which gives rise to ordered mag-
netic multipoles. We will present model calculations performed with
dynamical-mean field theory, which demonstrate general features of
the excitonic condensation. In addition, we will present results of ma-
terial specific LDA+U calculations which uncover the excitonic order
in Prg.5YCag.5Co03 and explain its low temperature behavior.

[1] J. Kune, P. Augustinsky, PRB 90, 235112 (2014).

TT 47.3 Wed 11:00 H21
Theoretical study of spin-state transition in LaCoO3; using
LDA+MLFT — eEvceENy GoreLov!, Icor KRIVENKO?, MICHAEL
KaroLak?®, and ALEXANDER LICHTENSTEIN'?2 — lEuropean XFEL
GmbH Albert-Einstein-Ring 19, 22761 Hamburg, Germany —
2University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
— 3University of Wiirzburg, Sanderring 2, 97070 Wiirzburg, Germany

LaCoO3 demonstrates variety of phase transitions due to compet-
ing interactions governing it’s electronic structure, including metal-to-
insulator transition around Ta500 K and gradual spin-state transition
around T~80-120 K. In this work we focus on spin-state transition,
and use theoretical approach of M. Haverkort, taking into account
transition metal ion and it’s octahedral oxygen surrounding [1]. This
approach allow us to calculate the resonant Co L2 3 X-ray absorp-
tion spectra (XAS), using ab-initio calculated model parameters, i.e.
nearest neighbors hopping matrix. The calculations are performed for
experimental crystal structures for different temperatures in the range
of 5-600 K [2]. In our calculations we include Co 3d orbitals with full
Coulomb vertex, and five ligand orbitals, constructed from 2p orbitals
of O atoms, forming the octahedra around Co ion. We discuss changes
in the XAS spectra induced by thermal expansion of the lattice, as
well as caused by change of electron temperature.
[1] M. W. Haverkort, M. Zwierzycki, and O. K. Andersen,

PRB 85, 165113 (2012)
[2] P. G. Radaelli and S.-W Cheong, PRB 66, 094408 (2002)

TT 47.4 Wed 11:15 H21
Construction of effective low-energy interactions for three-
orbital cuprate models with electronic correlation —

Location: H21

1 3

eCorNELIA HiLLE!, Xiaopong Cao?, CARSTEN HONERKAMPS,
PumLipp HansMANN2, and SABINE ANDERGASSEN! — !Institut fiir
Theoretische Physik, Universitdt Tibingen, Tiibingen, Germany —
2Max Planck Institute for Solid State research, Stuttgart, Germany —
3Institute for Solid State Theory, RWTH Aachen, Aachen, Germany

Real materials typically have involved bandstructures and a many-
body solution of the full Hamiltonian is not feasible. To identify the
most relevant degrees of freedom we often start from ab initio single
particle (e.g. DFT, Hartree Fock, GW) calculations and integrate out
states of high energy remaining with a low-energy effective Hamilto-
nian. For basically all transition metal oxides this procedure leads
to the question if and how to include oxygen 2p states explicitly. We
present effective low-energy interactions for three-orbital cuprate mod-
els calculated in a cRPA framework. We find effective copper d-state
interactions which are strongly dynamically screened by transitions
involving the oxygen 2p states.

TT 47.5 Wed 11:30 H21
Self-consistent GW+EDMFT simulation of SrVO3s - Hubbard
vs. plasmon physics — eLEwIN BorHNKE!, FREDRIK NILSSONZ,
FERDI ARvASETIAWANZ, and PHILIPP WERNER! — !University of Fri-

bourg, Switzerland — 2Lund University, Sweden

SrVOs3 has been considered a prototypical strongly correlated metal
for more than a decade Its (inverse) photoemission spectra [1] show a
characteristic three peak structure close to the Fermi level.

We develop a multi-orbital GW +extended dynamical mean-field
theory [2,3| framework, applying approximations of increasing rigor
to orbital subsets of increasing degree of correlation with the goal of
unbiased finite temperature ab-initio calculations of materials classes
with relevant local and non-local many-body correlations.

‘We use a suitable continuous time quantum Monte Carlo impurity
solver (CT-Hyb) [4] to deal with the frequency dependence of the ef-
fective impurity interaction and a tailored Matsubara frequency im-
plementation of the GW-algorithm to solve self consistency cycle.

For SrVO3 we find that the screening from nonlocal Coulomb inter-
actions substantially reduces the effective local interaction, suppressing
the Hubbard bands. At the same time, plasmon satellites are formed
that are consistent with experimental observations. [1]

[1] K. Morikawa, T. Mizokawa, K. Kobayashi, A. Fujimori, H. Eisaki,
S. Uchida, F. Iga, and Y. Nishihara, PRB 52, 13711 (1995)

[2] S. Biermann, F. Aryasetiawan, and A. Georges,
PRL 90, 086402 (2003)

[3] T. Ayral, S. Biermann, and P. Werner,
PRB 87, 125149 (2013)

[4] E. Gull, et al. RMP 83, 349 (2011)

15 min. break

TT 47.6 Wed 12:00 H21
The electronic structure of palladium in the presence
of many-body effects — eANDREAs OsTLIN'2, WILHELM
AppeLT®!, Icor b1 Marco?, WEmwEI Sun?, MiLos Raponuict,
MICHAEL SEKANIA', LEVENTE ViTos®%° and Liviu CHioNcEL3:!
— ITheoretical Physics III, Center for Electronic Correlations and
Magnetism, Institute of Physics, University of Augsburg, D-86135
Augsburg, Germany — 2Department of Materials Science and Engi-
neering, Applied Materials Physics, KTH Royal Institute of Technol-
ogy, SE-10044 Stockholm, Sweden — 3 Augsburg Center for Innovative
Technologies, University of Augsburg, D-86135 Augsburg, Germany —
4Department of Physics and Astronomy, Division of Materials Theory,
Uppsala University, Box 516, SE-75120 Uppsala, Sweden — 5Research
Institute for Solid State Physics and Optics, Hungarian Academy of
Sciences, P.O. Box 49, H-1525 Budapest, Hungary

Including on-site electronic interactions described by the multi-orbital
Hubbard model we study the correlation effects in the electronic struc-
ture of bulk palladium within the framework of combined density func-
tional and dynamical mean field theory, DFT+DMFT, using the fluc-
tuation exchange approximation. The agreement between the exper-
imentally determined and the theoretical lattice constant and bulk
modulus is improved when correlation effects are included. At the
same time we discuss the possibility of satellite formation in the high
energy binding region. Investigation of non-local correlation effects
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within the GW method is also performed.

TT 47.7 Wed 12:15 H21
Phase separation in Y(63Cag.37TiO3 — eTnHoMas KorTHE!,

BERNHARD ZIMMER!, RAPHAEL GERMAN!, ALEXEI BARINOVZ,

ALEXANDER KoMarek!3, FuLvio ParMIGIANIZ, MARKUS BRADEN!,
and PauL vaN LoosprecHT! — 1II. Physikalisches Institut, Univer-
sitéit zu Koln — 2Elettra Sincrotrone, Trieste (Italy) — 3Max-Planck-

Institut fiir Chemische Physik fester Stoffe, Dresden

We have investigated the domain structure and Raman response of
Yo.63Cap.37TiO3 single crystals which show a clear metal-to-insulator
transition at ca. 170 K, with a wide hysteresis in the resistivity ranging
down to ca. 50 K. We observe by use of a conventional optical micro-
scope the appearance of two distinct regions at temperatures below ca.
200 K, with a characteristic length scale of order of 10 pm. By means
of Raman spectroscopy we can identify the regions to correspond to
the metallic and insulating domains, and follow the evolution of the
domains as function of temperature down to 5 K. Preliminary results
of spacially resolved PES confirm the presence of electronically distinct
regions on the pm scale at low temperature.

TT 47.8 Wed 12:30 H21
Breathing Mode Distortion and Magnetic Order in Rare-
Earth Nickelates RNiO3 — e ALEXANDER HamMmPEL and CLAUDE
EDERER — Materials Theory, ETH Ziirich, Switzerland

Rare-earth nickelate perovskites display a rich and not yet fully un-
derstood phase diagram, where all RNiO3 compounds with R from
Sm to Lu undergo a non-magnetic metal-insulator transition (MIT).
This transition is connected to a lattice distortion, which can be de-
scribed as breathing mode of the oxygen octahedra surrounding the Ni
cations. Between 100-250 K the RNiO3 compounds undergo a mag-
netic transition to an antiferromagnetic (AFM) state, with a wave-

vector k = [iii] relative to the underlying simple cubic perovskite
structure.

Here, we use density functional theory and its extensions (DFT+U,
DFT+DMFT) together with distortion mode analysis to explore the
interplay between lattice distortions, magnetic order, and the strength
of the local Coulomb interaction U in rare earth nickelates. Our re-
sults show a strong dependency of the breathing mode amplitude on
the magnetic order, with a much larger breathing mode obtained for
the AFM state compared to the ferromagnetic case. Furthermore, we
demonstrate that DFT+U is able to capture the correct trends of the
lattice distortions across the nickelate series.

TT 479 Wed 12:45 H21
Metal-insulator transition in 2D antiferromagnet FePS3
upon applied pressure — eMarTHEW JoHN Coak!, CHARLES
ROBERT SEBASTIAN HaINEs!2, and SIDDARTH SHANKAR SAXENAl —
ICavendish Laboratory, University of Cambridge — 2CamCool Re-

search Ltd, UK

FePS3 belongs to a rich family of structurally and magnetically quasi-
two-dimensional compounds, with a magnetic ground state in which
spins are ordered as ferromagnetic chains coupled antiferromagneti-
cally. At ambient pressure, it is an insulator with a direct gap of
approximately 0.5 eV and a room temperature resistivity of approxi-
mately 104 Qcm.

We present the results of resistivity measurements under pressures
up to 110 kbar for this material. The insulating phase is suppressed
at a pressure in the range 40-70 kbar giving way to a new metallic
phase. Interesting intermediate behaviour is seen at pressures around
the transition as the gap closes. At high pressure, the resistivity de-
velops linear temperature dependence with an upturn in resistivity
which may indicate a low temperature phase transition or impurity
scattering.
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2:54PM (C21.00003 Study of magnetic and magnetocaloric properties of monoclinic and tri-

clinic spin chain CoV;0g, MOUMITA NANDI, PRABHAT MANDAL, Saha Institute of Nuclear Physics, 1/AF Bidhannagar Kolkata, India
— We have investigated magnetic and magnetocaloric properties of both monoclinic and triclinic phases of CoV20Og from magnetization and heat capacity
measurements. Conventional and inverse magnetocaloric effects have been observed in both phases of CoV20g. For a field change from 0 to 7 T, maximum
values of magnetic entropy change and adiabatic temperature change reach 11.8 J kg—! K—! and 9.5 K respectively for monoclinic CoV2Og while the corre-
sponding values reach 12.1 J kg=! K—! and 13.1 K for triclinic CoV2Og. Particularly for triclinic CoV2Og, the magnetocaloric parameters are quite large in low
or moderate field range. Apart from this, we have constructed magnetic phase diagram of monoclinic CoV2Og where field-induced complex magnetic phases
appear below a certain critical temperature 6 K when external magnetic field is applied along crystallographic easy axis.

3:06PM C21.00004 Entanglement properties of the bond alternating Heisenberg chain with

general 1nteger SPINS , SHOHEI MIYAKOSHI, Chiba Univ, SATOSHI NISHIMOTO, IFW Dresden, TU Dresden, YUKINORI OTHA, Chiba Univ
— Symmetry protected topological (SPT) phases are a gapped phase under a given symmetry. Unless any symmetries that protect the SPT phases are broken,
the SPT phases can be distinguished from each other. Recently, it was pointed out that the entanglement spectrum of the many-body state characterizes such
SPT phases. In particular, the degeneracy of the entanglement spectrum reflects the corresponding symmetries and edge states of the system. Motivated by
recent studies of the SPT phases, we study the bond-alternating Heisenberg model with general integer spins and clarify the entanglement properties of the
ground state using the density matrix renormalization group method. In particular, this model has the intermediate phase at S > 1 due to the bond alternation.
The entanglement properties of this phase in the case of S > 2 have not been studied sufficiently because of the numerical difficulties under an extremely small
spin-gap situation. We studied the case of S = 1,2,3 using the antiperiodic boundary condition. Under the antiperiodic boundary condition, we found that
the doubly degenerate spectra which characterize the intermediate phase can be observed in the entanglement spectrum. We will also discuss the effect of the
single-ion uniaxial anisotropy.

3:18PM C21.00005 Finite temperature dynamics of spin-1/2 chains with symmetry breaking

interactions! , SALVATORE R. MANMANA, ALEXANDER C. TIEGEL, THOMAS PRUSCHKE, Institute for Theoretical Physics, University of Goet-
tingen, ANDREAS HONECKER, LPTM, Université de Cergy-Pontoise — | will discuss recent developments for flexible matrix product state (MPS) approaches
to calculate finite-temperature spectral functions of low-dimensional strongly correlated quantum systems. The main focus will be on a Liouvillian formulation.
The resulting algorithm does not specifically depend on the MPS formulation, but is applicable for any wave function based approach which can provide a
purification of the density matrix, opening the way for further developments of numerical methods. Based on MPS results for various spin chains, in particular
systems with Dzyaloshinskii-Moriya interactions caused by spin-orbit coupling and dimerized chains, | will discuss how symmetry breaking interactions change
the nature of the finite-temperature dynamic spin structure factor obtained in ESR and neutron scattering experiments.

IWe acknowledge funding by the Helmholtz Virtual Institute ”New States of Matter and Their Excitations”.

3:30PM (C21.00006 Magnetic Spin Relaxation Probed with Sweep Speed Dependent

(jOGI‘ClVlty1 , THOMAS GREDIG, MATTHEW BYRNE, Department of Physics and Astronomy, California State University Long Beach — The magnetic
spin relaxation of finite-length iron chains has been investigated in iron phthalocyanine thin films by means of sweep speed dependence on magnetic coercivity.
The Fe(ll) ions are embedded in a carbon matrix and molecules self-assemble during vacuum sublimation, so that the Fe(ll) cores form well-separated chains of
1.3 nm and tunable chain lengths within the polycrystalline thin film. The average length of the chains is controlled through deposition variables and ranges from
30 nm to 300 nm. The coercivity strongly increases with chain length in this regime. This may be an interesting experimental realization of a low-dimensional
finite-sized Ising model. The coercivity dependence on chain length and sweep speed is described with an Ising model based on Glauber dynamics.

1Research support from NSF under grant DMR, 0847552.

3:42PM C21.00007 ANISOTROPIC PHASE DIAGRAM OF THE FRUSTRATED SPIN
CHAIN ($-TeVQy. , F. WEICKERT, M JAIME, N HARRISON, B. L. SCOTT, Los Alamos Natl Lab, A. LEITMAE, L. HEINMAA, R STERN,
O JANSON, NICPB Tallinn, Estonia, H. BERGER, EPFL, Lausanne, Switzerland, H ROSNER, MPI CPfS, Dresden, Germany, A. A. TSIRLIN, Augsburg
University, Germany — We will present experimental as well as theoretical data on 3-TeVO4 a candidate for the Ji-J2 chain model with ferromagnetic J;
“-18 K and antiferrromagnetic J2 “48 K coupling constants. The T' — H magnetic phase diagram is revealed by measurements of the magnetization, specific
heat, magnetostriction, and thermal expansion on oriented single crystals at temperatures between 0.5 K and 50 K and in magnetic fields up to 50 T. The
high field data were taken in a capacitor bank-driven pulsed magnet at NHMFL — LANL and complemented with measurements in a superconducting magnet.
Our comprehensive study allows for the first time a detailed mapping of the phase diagram in both directions, H Il ab and H Il c. We find clear evidence for 5
different phases including full polarization of the magnetic moments above 23 T that is only weakly dependent on the crystal orientation. Surprisingly, the phase
boundary at the saturation field splits into two distinct lines below 5 K. The magnetic phases occurring at fields below 10 T show significant magnetic anisotropy
between H Il ab and H Il c. The nature of the different phases and regions in 3-TeVOy is still far from being understood, but our results will stimulate further
research on this interesting model compound.

3:54PM C21.00008 Unusual features of magnetism in transition-metal-doped phthalocyanines

Cs32H16NgTM (TM = Mn, Fe, Co, Ni, Cu) , ZHENGJUN WANG, MOHINDAR S. SEEHRA, Department of Physics and Astronomy,
West Virginia University — Transition-metal-doped phthalocyanines (TMPc), semiconductors with potential optoelectronic applications [1], are planar molecules
with the TM atom at the center bound to four N atoms and forming a linear chain along the monoclinic b-axis. Because of this symmetry, the ground states of
TMPc often violate the Hunds' rules; e.g. the S = 3/2 state for d® Mn(ll) in 3-MnPc, S = 1/2 state for the d7 Co(ll) in 3-CoPc, and S=0 for Ni(ll) in NiPc.
The magnetic properties of TMPc are also affected by the stack angle § between the orientation of the molecular plane and the b-axis, § being 65(45) for «
(8) phase [2]. For 8-CoPc, our M vs. T data fits well with the Bonner-Fisher model for S = 1/2 AFM Heisenberg linear chain [3] yielding the Co?t-Co?t
exchange constant J/kg = - 1.5 K. For 8-MnPc , a long-presumed ferromagnet with Tc & 9 K [4], our magnetic studies show it to be an Ising chain magnet
with Arrhenius magnetic relaxation governed by J/kg = 2.6 K and the zero-field splitting D/kg = 8.3 K. In 8-MnPc, the absence of A-type peak in specific
heat and no peaks in ac susceptibilities near the quoted T¢ = 9 K confirms the absence of long range order (LRO). Instead we argue that LRO is absent in
B-MnPc as D >J makes the spins in a chain parallel but canted with respect to spins in neighboring chains. [1]G. Mattioli et al, Phys. Rev. Lett. 101, 126805
(2008); [2]Z. Wang et al, IEEE Trans. Mag. 51, 2700104(2015); [3]J. Bonner & M. Fisher, Phys. Rev. 135, A640 (1964); [4]Y. Taguchi et al, J. Magn. Magn.
Mater.301, 1229 (2007).
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means of the Constrained RPA method (157 elements).

TT 71.13 Wed 15:00 Poster B
Multi-spin multi-channel Kondo box problem — eMIREK
HANSEL, ANDREJ SCHWABE, and MICHAEL PoTTHOFF — Institut fiir
Theoretische Physik, Universitdt Hamburg

In a quantum box, where one or several quantum spins are coupled by a
weak antiferromagnetic local exchange J to a system of non-interacting
conduction electrons, the standard Kondo effect is cut by the finite
system size. The residual finite-size Kondo effect can be described
by perturbation theory in J. We show that the effective low-energy
physics is given by a central-spin model where typically each impu-
rity spin couples to the spin of a completely delocalized conduction-
electron eigenstate at the Fermi edge. Different screening channels
are given for the case of orthogonal eigenstates. We discuss the gen-
eral case of several spins and several channels by analyzing various
geometries, e.g., one-dimensional chains and two-dimensional lattices
with different boundary conditions, and different geometrical setups of
the impurity spins. The couplings in the effective central-spin model
and the resulting magnetic structure are calculated as functions of the
conduction-electron density and the geometry.

TT 71.14 Wed 15:00 Poster B
Towards a Matrix Product State based description of steady-
state non-equilibrium physics in 1D correlated quantum sys-
tems using Lindblad driving — eFRAUKE ScHwARz!, IRENEUSZ
WEYMANN?, JAN voN DELFT!, and ANDREAS WEICHSELBAUM! —
1Physics Department, Arnold Sommerfeld Center for Theoretical
Physics and Center for NanoScience, Ludwig-Maximilians-Universitét,
Munich, Germany — 2Faculty of Physics, Adam Mickiewicz Univer-
sity, Poznan, Poland

The Kondo effect in quantum impurity models in equilibrium is well-
understood by means of the Numerical Renormalization Group (NRG).
To extend the description of Kondo physics to situations of steady
state non-equilibrium, we want to combine the ideas of NRG with
the Lindblad approach to open quantum systems. For this purpose,
we introduce additional reservoirs described by Lindblad terms in the
Liouville equation which restore the continuum properties of the dis-
cretized leads that are coupled to the impurity. This enables us to
define the temperature and the chemical potential for each lead inde-
pendently. To reduce the dimensionality of the problem we employ
the stochastic quantum trajectory approach to solve the underlying
Lindblad equation.

Several ideas on how to define adequate Lindblad operators will be
presented together with their implications for the calculation of the
quantum trajectories based on Matrix Product States.

TT 71.15 Wed 15:00 Poster B
Temperature dependent properties in the infinite-
dimensional Hubbard model with a magnetic field — eMARKUS
Durscuke!, Liviu CuionceL?»2, and Junya OTsuki® — ! Theoretical
Physics III, Center for Electronic Correlations and Magnetism, Insti-
tute of Physics, University of Augsburg, D-86135 Augsburg, Ger-
many — 2Augsburg Center for Innovative Technologies, University of
Augsburg, D-86135 Augsburg, Germany — 3Department of Physics,
Tohoku University, Sendai 980-8578, Japan

We investigate the temperature and field dependence of the spectral
function, the effective mass enhancement and the magnetisation of the
infinite-dimensional Hubbard model in a magnetic field. We compare
results for different interaction strengths at half-filling, near half-filling
and quarter-filling. These are achieved by using dynamical mean-field
theory (DMFT) with a continuous-time quantum monte carlo (CT-
QMC) impurity solver and are compared with some NRG results.
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Influence of strong disorder on incoherent transport
near the Mott transition: Statistical DMFT approach
— eMirLos Raponsic!2, Darko Tanaskovic?, and VLADIMIR
DoBrosavLiEvIc? — 1Center for Electronic Correlations and Mag-
netism, Theoretical Physics III, Institute of Physics, University of
Augsburg, D-86135 Augsburg, Germany — 2Scientific Computing
Laboratory, Institute of Physics Belgrade, University of Belgrade, Pre-
grevica 118, 11080 Belgrade, Serbia — 3Department of Physics and
National High Magnetic Field Laboratory, Florida State University,
Tallahassee, Florida 32306, USA

We present the study of disordered half-filled Hubbard model within

the Statistical dynamical mean field theory, which is a unique theoret-
ical method reliable and controllable in a wide temperature, disorder
and interaction range. We have successfully applied this method, for
the first time, on the finite size cubic lattice, at finite temperature.
The results show that the finite size effects are negligible already on
the lattice with 6%6*6 sites (except at the lowest temperatures, deep in
the Fermi liquid regime). Also we confirmed that disorder is strongly
screened on the metallic side of the Mott MIT and that inelastic scat-
tering is dominant outside of the Fermi liquid region. We defined a
local resistivity and proposed a resistor network method for calculat-
ing lattice dc resistivity. Two types of sites can be identified: strongly
correlated - with the local occupation close to 1, and weakly correlated
- away from local half-filling. Strongly correlated sites are responsible
for strong, non-monotonic temperature dependence of the resistivity.
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Electronic correlations and spin-orbit coupling in d* osmates
— oVLADISLAV PokorNY! and JaN Kungs? — Center for Electronic
Correlations and Magnetism, Institute of Physics, University of Augs-
burg, Germany — 2Institute of Physics, Academy of Sciences of the
Czech Republic, Prague, Czech Republic

We employ the combination of the density functional theory and
the dynamical mean-field theory to investigate the electronic corre-
lations in heavy transition metal compounds with partially filled t24
levels such as d* osmates which were prepared recently. Using the
hybridization-expansion, continuous-time quantum Monte Carlo impu-
rity solver we study the combined influence of electron correlations and
spin-orbit coupling effects on the the electronic and magnetic structure
of these systems.
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NMR on the quantum critical ferromagnet YbNiyPy: Ev-
idence for a large basal plane local anisotropy — eRAJIB
SARKAR!, Marco GUNTER!, CorNELIUS KRELLNER?, MICHAEL
Baenttz?, Curistorn GeBEL?, and Hans-HeEnniNe Krauvss! —
HFP, TU Dresden, D-01069 Dresden, Germany — 2MPI-CPFS, D-
01187 Dresden, Germany — 2Goethe University Frankfurt, D-60438
Frankfurt am Main, Germany

In the last 10 years there was growing evidence both from theoretical
work and experimental observations that a ferromagnetic (FM) quan-
tum critical point (QCP) cannot exist in a pure system, because the
transition becomes first order before reaching the QCP. Therefore the
recent report of clear evidence for a FM-QCP in the heavy fermion
compound YbNiyP2 attracted considerable attention. While the Bra-
vais lattice of this compound is tetragonal, resulting in isotropic in-
plane macroscopic magnetic properties, the local symmetry on the Yb
site (and on the P-site) is lower, orthorhombic. Therefore some in-
plane anisotropy of local magnetic properties is expected, which could
however not yet been studied because of the absence of related effects
on macroscopic properties. We performed 3P NMR. investigations
on a grain aligned polycrystalline sample of YbNigPy. We observed
three structures in the NMR spectra, which present quite different T-
dependence of the respective Knight shifts. An analysis of these results
provides a clear evidence for strong local in-plane anisotropy of the Yb-
moment due to the orthorhombic crystal electric field. Implication for
the magnetic ordered state shall be discussed.
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Single crystal growth of the heavy fermion compounds
YbRh>Sis and YbNisP2 — eConstanTIN Burzke, KRISTIN
KriemT, and CorNELIUS KRELLNER — Physikalisches Institut, Goethe
Universitat Frankfurt, 60438 Frankfurt am Main, Germany

Heavy fermion systems are model systems to unravel the exciting
physics around quantum-phase transitions. Studying these emergent
phenomena necessitates the preparation of large and high-quality sin-
gle crystals. We report on the optimization of the single crystal growth
for two Yb-based quantum critical materials, YbRh2Sis and YbNigP2.
The prototype heavy-fermion system YbRhsSis is situated extremely
close to an unconventional antiferromagnetic (AF) quantum critical
point (QCP). The AF ordering (Tnx = 70 mK) can be further lowered
by chemically induced negative pressure using Ir-substitution. The
QCP is reached for an Ir-substitution of x &~ 0.1 in Yb(Rh1_xIrx)2Si2
[1]. Here, we report on the optimization of the crystal growth of
the substitution series as well as of the unsubstituted compound.
We also report on our attempts to determine the melting point of
YbRhsSiz and present a phase analysis of the molten compound. In
the heavy fermion metal, YbNigPs, a ferromagnetic (FM) transition
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