
Naučnom veću Instituta za fiziku

Predlog za

Godǐsnju nagradu za naučni rad Instituta za fiziku

Sa posebnim zadovoljstvom predlažemo dr Branislava Cvetkovića, vǐseg naučnog sara-

dnika, za godǐsnju nagradu Instituta za fiziku za naučni rad za njegov doprinos razumevanju

Hamiltonove strukture i čestičnog spektra opšte lokalne Poenkareove teorije. Navedeni re-

zultati ostvareni su u periodu od 01.01.2017. do 31.12.2018. godine u okviru projekta

OI 171031 ,,Fizičke implikacije modifikovanog prostor-vremena” na Institutu za fiziku u

Beogradu.

Tema istraživanja. Osnovna tema istraživačkog rada Branislava Cvetkovića odnosi se

na Poenkareovu gradijentu teoriju (skraćeno PG), ili teoriju gravitacije sa torzijom. Ova

teorija nastala je 60-tih godina prošlog veka kao alternativa Ajnštajnovoj Opštoj teoriji

relativnosti (OTR). Alternativne teorije su nastale iz potrebe da se prevazidju ozbiljne

slabosti OTR, kao što su postojanje klasičnih singularnosti (kod crnih rupa i u kosmologiji)

i nemogućnost njene konzistentne kvantizacije. Polazeći od Poenkareove simetrije prostor-

vremena bez gravitacionog polja, koja je u skladu sa svim poznatim eksperimentima u fizici

osnovnih interakcija, PG teorija uvodi gravitaciju lokalizacijom ove simetrije, što joj daje

istaknuto mesto medju alternativnim teorijama gravitacije.

Dosadašnja istraživanja u okviru PG uglavnom su bila ograničena na klasu Lagranžijana

koji čuvaju parnost i koji su kvadratični po jačinama polja. Sezgin i Nivenhojzen su još

osamdesetih godina analizirali čestični spektar PG+ u aproksimaciji slabog polja oko pro-

stora Minkovskog M4, koristeći metod spinskih projektora i zaključili da odsustvo duhova i

tahiona postavlja niz restrikcija na parametre PG+. Najveći mogući broj torzionih modova

koji mogu istovremeno da propagiraju je tri.

Opšti dinamički aspekti PG+, uključujući i identifikaciju propagirajućih stepeni slobode

se najbolje mogu razumeti u okviru Dirakovog pristupa za sisteme sa vezama . Blagojević i

Nikolić su započeli sistematsku Hamiltonovu analizu PG+, fokusirajući se na generičke aspe-

kte teorije, identifikujući podskup primarnih veza koje su uvek prisutne, i koje su povezane
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sa Poenkareovom simetrijom. Ako su odredjeni kritični parametri jednaki nuli Blagojević i

Nikolić su pronašli dodatne primarne veze – ako veze , konstruisali totalni Hamiltonijan i

razmotrili odredjene aspekte procedure konzistentnosti.

Ne postoje fizički argumenti u korist očuvanja parnosti u gravitacionoj interakciji. Mo-

deli koji narušavaju parnost sa svim mogućim kvadratičnim članovima u Lagranžijanu ra-

zmatrani su još osamdesetih godina, ali je nedavno porastao interes za razumevanje kako

osnovne strukture tako i raznih dinamičkih aspekata ovih modela uključujući i kosmološke

primene i talasna rešenja. Posebnu pažnju zavredjuje analiza čestičnog spektra koju je izveo

Karananas u radu:

- G. K. Karananas, The particle spectrum of parity-violating Poincaré gravitational

theory, Classical Quantum Gravity 32, 055012 (2015); Erratum, Classical Quantum

Gravity 32, 089501 (2015).

koristeći formalizam spinskih projektora koji su Sezgin i Nivenhojzen uspešno primenili

u PG+. Iz njegovih rezultata sledi da je skup ,,dobrih” propagirajućih modova značajno

uvećan u odnosu na PG+.

Opis rezultata i ličnog doprinosa kandidata. Branislav Cvetković (u saradnji sa

Milutinom Blagojevićem) razmatrao je generičke apekte Hamiltonove strukture opšte PG

sa narušenjem parnosti i iskoristio ih da ispita čestični spektar tordiona. Koristeći Dirakov

Hamiltonov pristup identifikovali su skupove svih mogućih ako-veza, izraza koji postaju

prave veze ako su odgovarajući kritični parametri jednaki nuli. I ako-veze i njima pridruženi

kritični parametri imaju ključni uticaj na dinamiku PG. Konstruisan je i opšti oblik kano-

nskog Hamiltonijana, koji je odredjen u slučaju kada su svi kritični parametri različiti od

nule. Takodje, razmotreno je i proširenje procedure za slučaj kada su kritični parametri

jednaki nuli.

Osim što je sama po sebi značajna kanoska struktura je veoma blisko povezana sa

čestičnim spektrom PG, čije istraživanje je započeto računanjem svojstvenih vrenosti masa

m2
±(J) torzionih modova spinova J = 0, 1, i 2, zasnovanim na aproksimaciji slabog polja u

gravitacionim jednačinama kretanja oko M4. Kao test konzistentnosti verifikovano je da su

m2
±(J) proporcionalni inverznim vrednostima kritičnih parametara 1/cn, što za posledicu

ima da kadgod je neki od parametara cn jednak nuli odgovarajuće mase m2
±(J) postaju

beskonačne, što sprečava propagaciju odgovarajućeg torzionog moda. Poredjenje masenih

formula sa Karananasovim rezultatima dovelo je do sledećih zaključaka:

� za modove spina-0 i spina-1 rezultati se slažu sa Karananasovim.

� za modove spina-2 postoje značajne razlike koje su najpre uočene u radu:

– M. Blagojević, B. Cvetković, and Y. N. Obukhov, Generalized plane waves in

Poincaré gauge theory of gravity, Phys. Rev. D 96, 064031 (2017).

Odsustvo duhova i tahiona u čestičnom spektru je osigurano pozitivnošću specifičnih

spin-J članova u kanonskom Hamiltonijani, dok se odsustvo tahiona postiže zahtevom
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m2
±(J) > 0. Ovi uslovi postavljaju niz ograničenja na parametre PG koja su detaljno

analizirana i uporedjena sa Karananasovim uslovima. Uslovi za odsustvo duhova se manje

vǐse slažu sa Karananasovim, dok se uslovima za odsutvo tahiona opažaju izvesne razlike.

Najvažnija pronadjena je u sektoru spina-2, gde su dva uslova za odsustvo tahiona medju-

sobno kontradiktorna – nasuprot Karananasovom zaključku.

Analiza koju je izveo Branislav Cvetković razjasnila je strukturu čestičnog spektra opšte

PG i pobolǰsala i ispravila rezultate koje je našao Karanas. Posebno su značajne korekcije

u sektoru spina-2, gde je dobijeno da oba moda ne mogu biti istovremeno propagirajuća čak

ni u slučaju opšte PG sa članovima koji narušavaju parnost. Ovo je zanimljiv i pomalo

neočekivan rezultat nasuprot očekivanjima da će se stroge restrikcije na broj propagirajućih

tordiona u PG+ ,,relaksirati” uvodjenjem novih članova (i parametara) u Lagranžijan. S

druge strane uvedeni elementi Hamiltonove strukture, uključujući i ekstenziju za slučaj kada

su kritični parametri jednaki nuli, predstavljaju dobru polaznu osnovu za dalja istraživanja

nelinearne dinamike PG.

Rezultati su objavljeni u radu:

• M. Blagojević and B. Cvetković, General Poincaré gauge theory: Hamiltonian struc-

ture and particle spectrum, Phys. Rev. D 98, 024014 (2018) ,

i u potpunosti su ostvareni na Insitutu za fiziku u Beogradu.

Statistika radova i impakt rezultata na naučnu oblast. U recenziji rada, M.

Blagojević and B. Cvetković, General Poincaré gauge theory: Hamiltonian structure and

particle spectrum, Phys. Rev. D 98, 024014 (2018), u koju smo imali uvid i koju prilažemo

uz ovaj predlog referi izmedju ostalog kaže:

”This is a very well written comprehensive paper on an important topic. Such a work

has been awaited every since the renewed interest that began with some papers in 2011 (Refs

[21,22,23]). It was hoped that there would be an investigation into the Hamiltonian structure

of the PG, the general Poincaré gauge theory of gravity (including both even and odd parity).

This work goes beyond the expectations...This is a good foundation for further investigation

of the full nonlinear dynamics of PG.”

Rad je izabran za Editors suggestion za mesec jul 2018. godine i objavljen je ,,naslovnoj”

internet strani časopisa Physical Review D.

U toku kalendarske 2017. i 2018. godine Branislav Cvetkovć osim pomenutog rada

kategorije M21 objavio još 5 radova: 1 kategorije M21a i 4 kategorije M21, koji su do

sada citirani 22 puta prema bazi InSpire. Ukupan impakt faktor radova je 26.64. Impakt

dobijenih rezultata se ogleda u kvalitetu časopisa i kroz njihovu citiranost. Značaj radova

dr Cvetkovića odnosi se na razumevanje Hamiltonove strukture i dinamike PG, kao i uopšte

alternativnih teorija gravitacije.

Branislav Cvetković je bio mentor doktorske disertacije Dejana Simića odbranjene 2018.

godine, kao i dva master rada odbranjena 2017. i 2018. godine. Svojim radom i razvijenom

medjunarodnom Branislav Cvetković doprinosi prepoznatiljivosti Grupe za fiziku čestica i

gravitaciju Insituta za fiziku.
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Zbog svega navedenog smatramo da je dr Branislav Cvetković postigao izu-

zetne naučne rezultate u poslednje dve godine u oblasti alternativnih teorija

gravitacije i zadovoljstvo nam je da ga predložimo za Godǐsnju nagradu Instituta

za fiziku.

Beograd, 08.03.2019.

dr Milovan Vasilić

naučni savetnik

Institut za fiziku u Beogradu

prof. dr Branislav Sazdović

naučni savetnik u penziji

Institut za fiziku u Beogradu
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narodnoj olimpijadi iz fizike (Island 1998)
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Osnovne studije: Fizički fakultet Univerziteta u Beogradu, 1998–2002,
student generacije Diplomski rad: Nekomutativna φ4 teorija
Mentor: Prof. Maja Burić
Magistarski rad: Fizički fakultet Univerziteta u Beogradu, 2005
Teza: Kanonska struktura 3D gravitacije sa torzijom
Mentor: Prof. Milutin Blagojević
Doktorat: Fizički fakultet Univerziteta u Beogradu, 2008
Teza: Asimptotska struktura 3D gravitacije sa torzijom
Mentor: Prof. Milutin Blagojević

Akademska karijera 2003–2008, Istraživač pripravnik i istraživač saradnik, Institut za fiziku,
Beograd
2008–2013, Naučni saradnik, Institut za fiziku, Beograd
2013– Vǐsi naučni saradnik, Institut za fiziku, Beograd

Studijske posete 2010, Institute for theoretical physics, TU Vienna, Austria
2009, 2012, 2015 Institute of physics, PUCV, Valparaiso, Chile

Jezici Srpski (maternji)
Enlgleski(čitanje, pisanje, konverzacija)
Nemački (čitanje, pisanje, konverzacija)
Francuski (čitanje, pisanje, konverzacija)

Istraživanje Poenkareova gradijentna teorije gravitacije
Trodimenziona 3D (super)gravitacija
Hamiltonova dinamika sistema sa vezama
AdS/CFT i Kerr/CFT korespondencija

Rad sa studentima 2014-2018 Mentor Dejana Simića
Teza: Lavlokova gravitacija sa torzijom: egzaktna rešenja, kanonka i
holografska struktura, odbranjena 2018. na Fizičkom fakultetu Uni-
verziteta u Beogradu

Predavanja 2012– Kurs na doktorskim studijama ”Teorija gravitacije II”, Fizički
fakultet Univerziteta u Beogradu
2004– Fizika, Matematička gimnazija
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Ostalo Referi za medjunarodne časopise:
Physical Review Letters
Physical Review D
Classical and Quantum Gravity
Journal of physics A: Mathematical and Theoretical
International journal of physics A
European Journal of Physics
Referi za FONDECYT, Čileansku nacionalnu fondaciju za nauku
Član Organizacionih komiteta medjunarodnih konferencija:
2018 Workshop on Gravity, Holography, Strings and Noncommutative
Geometry (Beograd 2018),
Gravity: new ideas for unsovled problems (Divč ibare 2011),
Gravity: new ideas for unsovled problems II (Divčibare 2013),
7th MATHEMATICAL PHYSICS MEETING, 9 - 19 September 2012,
Belgrade, Serbia
Gravity:New Ideas for Unsolved Problems, September 12-14, 2011, Di-
vibare, Serbia 6th MATHEMATICAL PHYSICS MEETING, 14-23
September 2010, Belgrade, Serbia
5th MATHEMATICAL PHYSICS MEETING, 6 - 17 July 2008, Bel-
grade, Serbia
IV Summer School in Modern Mathematical Physics, 3 - 14 September
2006, Belgrade, Serbia

Lične informacija Supruga, Sanja, Inženjer prehrambene tehnologije
Ćerka, Lenka, rodjena 2011

Publikacije

Radovi u časopisima

1. B. Cvetković and D. Simić, Near horizon geometry with torsion, Phys.
Rev. D 99, 024032 (2019).

2. B. Cvetković and D. Simić, Near horizon OTT black hole asymptotic
symmetries and soft hair, Chin. Phys. C 43, 013109 (2019).

3. M. Blagojević and B. Cvetković, General Poincaré gauge theory: Hamil-
tonian structure and particle spectrum, Phys. Rev. D 98, 024014
(2018).
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4. B. Cvetković and D. Simić, A black hole with torsion in 5D Lovelock
gravity, Class. Quantum Grav. 35 (2018) 055005 (13pp).

5. M. Blagojević, B. Cvetković and Y. N. Obukhov, Generalized plane
waves in Poincaré gauge theory of gravity, Phys. Rev. D 96, 064031
(2017).

6. M. Blagojević and B. Cvetković, Generalized pp waves in Poincaré
gauge theory, Phys. Rev D 95, 104018 (2017).

7. B. Cvetković, O. Miskovic and D. Simić, Holography in Lovelock Chern-
Simons AdS gravity, Phys. Rev. D 96, 044027 (2017).

8. B. Cvetković and D. Simić, 5D Lovelock gravity: New exact solutions
with torsion, Phys. Rev. D 94, 084037 (2016).

9. M. Blagojević and B. Cvetković, Conformally flat black holes in Poincaré
gauge theory, Phys. Rev D 93, 044018 (2016).

10. M. Blagojević and B. Cvetković, Vaidya-like exact solutions with tor-
sion, JHEP05(2015)101.

11. M. Blagojević and B. Cvetković, Siklos waves in Poincaré gauge theory,
Phys. Rev. D 92, 024047 (2015).

12. M. Blagojević and B. Cvetković, Siklos waves with torsion in 3D,
JHEP11(2014)141.

13. M. Blagojević and B. Cvetković, Gravitational waves with torsion in
3D, Phys. Rev. D 90, 044006 (2014).

14. M. Blagojević and B. Cvetković, Three-dimensional gravity with prop-
agating torsion: Hamiltonian structure of the scalar sector, Phys.Rev.
D 88, 104032 (2013).

15. M. Blagojević, B. Cvetković, M. Vasilić, Exotic black holes with torsion,
Phys.Rev. D 88, 101501(R) (2013).

16. M. Blagojevic, B. Cvetkovic, O. Miskovic and R. Olea, Holography in
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27. M. Blagojevic and B. Cvetkovic, Self-dual Maxwell field in 3D gravity
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2. M. Blagojević and B. Cvetković, The influence of torsion on the black
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012001.

6
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Objavljeni radovi u 2017. i 2018. godini i
propratni materijal



Subject To_author DR12060 Blagojevi\'c PRD Editors' 
Suggestion

From <prd@aps.org>

To <cbranislav@ipb.ac.rs>

Date 2018-06-05 21:49

Dr. Branislav Cvetkovic
University of Belgrade
Institute of Physics
PO Box 57
11001 Belgrade, SERBIA
cbranislav@ipb.ac.rs

Re: DR12060
    General Poincar\'e gauge theory: Hamiltonian structure and particle
    spectrum
By: M. Blagojevi\'c and B. Cvetkovi\'c

Dear Dr. Cvetkovic,

We are pleased to inform you that we have selected your recently accepted
manuscript to be a PRD Editors' Suggestion.  A small fraction of papers
which we judge to be particularly important, interesting, and well
written is chosen for an Editors’ Suggestion.  Congratulations on
your outstanding paper!

Your manuscript will be featured on the new Physical Review D homepage 
http://journals.aps.org/prd, alongside other highlighted articles.
We request that you send a single square image that illustrates the
science in your article.  For example, a photograph of the experiment, a
micrograph of the system, or a key figure of the manuscript.  Schematic or
illustrative diagrams are also welcome.

Please email your image to prd@aps.org with the manuscript code number in 
the subject and "Suggestion image," or simply reply to this email.

Sincerely,

The PRD Editors



Referee Report: Manuscript Number DR12060
Title: General Poincaré gauge theory: Hamiltonian structure and particle spec-
trum
Authors: M. Blagojević and B. Cvetković.

This is a very well written comprehensive paper on an important topic.
Such a work has been awaited every since the renewed interest that began with
some papers in 2011 (Refs [21,22,23]). It was hoped that there would be an
investigation into the Hamiltonian structure of the PG, the general Poincaré
gauge theory of gravity (including both even and odd parity). This work goes
beyond the expectations. The authors have done even more than was hoped
for. Using the recent (very suitable) general choice of parameters of Ref [27],
they developed the generic Hamiltonian formulation for the PG. All the critical
parameter combinations and all the associated “if constraints” were identified.
From an analysis of the linearized equations the mass eigenvalues for the lin-
earized modes were identified, along with the associated positivity and reality
conditions (no ghosts, no tachyons). These results were compared in detail with
those found by Karananas Ref [25], and the differences discussed in detail. It is
clear that not all the modes can be dynamic. The analysis clarifies the structure
of the particle spectrum of the general PG by improving the results found by
Karananas, in particular the status of the spin-2 sector. All the appropriate
references have been cited. The work also includes some very useful technical
information, e.g., (i) the comparison of parameters with Karananas given in eqs
6.18, (ii) Appendix B has an alternative form of the Lagrangian that allows an
easier comparison to the literature, Refs [22, 25], (iii) Appendix D has a nice
remarkably short and simple, discussion of how to handle if -constraints, and
(iv) Appendix F has nice arguments for simpler sufficient conditions for reality
of the masses. This is a good foundation for further investigation of the full
nonlinear dynamics of PG.

I would be very happy to see this work published in PRD.

Here is a list of problems that were noticed; they all seem to be minor.

1. Eq 2.1a: Change the index m to µ.

2. Eq 2.2: Missing exterior product wedge symbol. Perhaps the authors did
this intentionally, then it should be explained.

3. Eq 2.5: Change ν to µ.

4. Eq 2.9ab: Missing wedge symbols.

5. Eq 3.13c, last line: The (b̄2− b̄5) term seems out of place, this is probably a
typo. As far as I can see there is no way for this term to arise here for spin
2 (such a coefficient belongs to spin 1, see eqs 3.17) and this coefficient is
not propagated to the formulas 3.19, 3.20 or to section 6.3.

6. Eq 4.13bc: Replace = by ≈.

1



7. Eq 5.3: Here and in many subsequent places the notation ∂A is used for
apparently ∂iAi. Although it is not difficult to guess the meaning, maybe
it would be better to explain it at this point.

8. Eq 6.4, first line: The (trM0) in the radical should be squared.

9. Eq 6.5, first equation: The right hand side should be G(�Ui−∂i∂U), only
then will the rhs have vanishing divergence as does the lhs. It seems that
this is just a typo here, as the corresponding terms do appear in eq 6.7a.

10. Sec 7.3, line 1: misspelling: positivity

11. Eq between C.1.b and C.2: nl to nl.
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I. INTRODUCTION

Weyl’s idea of gauge invariance [1] turned out to be
a key principle underlying the dynamical structure
of all the fundamental physical interactions. Following
this idea and the subsequent works of Yang, Mills, and
Utiyama [2], Kibble and Sciama [3] formulated a new
theory of gravity, the Poincaré gauge theory (PG, aka PGT),
based on gauging the Poincaré group of spacetime sym-
metries. In PG, spacetime is characterized by a Riemann-
Cartan geometry, in which the torsion and curvature are
the field strengths associated with the translation and
Lorentz subgroups of the Poincaré group; for more details,
see [4–10].
Earlier investigations of PG were mostly focused on the

class of parity preserving Lagrangians quadratic in the field
strengths; see, for instance, Hayashi and Shirafuji [5] or
Obukhov [11]. We denote this class of models as PGþ.
Sezgin and Niuwenhuizen [12] analyzed the particle
spectrum of PGþ in the weak field approximation around
the Minkowski background M4. Using the absence of
ghosts and tachyons as physical requirements, they found
a number of restrictions on the PGþ parameters that ensure
the propagating torsion modes to be well behaved.
General dynamical aspects of PGþ, including the iden-

tification of its physical degrees of freedom (d.o.f.), are
most naturally understood in Dirac’s Hamiltonian approach
for constrained dynamical systems [13]. Blagojević and
Nikolić [14,15] started a systematic Hamiltonian analysis
of PGþ, focusing on its generic aspects. They identified a
subset of the primary constraints that are always present
(“sure” constraints, associated to the local Poincaré sym-
metry). Moreover, if certain critical parameters vanished,
they found additional primary constraints (“if-constraints”),

constructed the total Hamiltonian, and discussed certain
aspects of the consistency procedure. Further advances in
this direction were made by Cheng et al. [16] and Chen
et al. [17], who found that the nonlinear nature of
constraints may drastically change the number of propa-
gating modes obtained in the linearized analysis. Yo and
Nester [18] made a detailed study of this phenomenon in
PGþ, concluding that there are apparently only two good
propagating torsion modes. For an interesting application
of this result to cosmology, see Shie et al. [19].
There are no physical arguments that favor the con-

servation of parity in the gravitational interaction. Parity
violating models based on the general PG, with all possible
quadratic invariants in the Lagrangian, were considered
already in the 1980s [20], but the subject remained without
wider response. Recently, there has been increased interest
in a better understanding of both the basic structure and
various dynamical aspects of these models, including
cosmological applications and wave solutions [21–27].
In particular, one should mention the analysis of the particle
spectrum carried out by Karananas [25], who made a
suitable extension of the weak field approximation method
used earlier in PGþ [12] and applied it to the general PG.
According to his results, it seems that the set of good modes
that can coexist is significantly enlarged in comparison
to PGþ.
The objective of the present work is to examine the

Hamiltonian structure of the general PG, based on the if-
constraint formalism [14,15,18], and use it to clarify the
physical content of its particle spectrum, calculated in the
weak field approximation around M4. In this regard, a
particularly important role is played by both the critical
parameters appearing in the analysis of the primary con-
straints, and the structure of the canonical Hamiltonian. By
comparing the properties of the particle spectrum to those
found in Ref. [25], we noted certain differences. On the
other side, elements of the Hamiltonian structure developed
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here can be a good starting point for studying the nonlinear
dynamics of PG.
The paper is organized as follows. In Sec. II, we give a

short account of the Lagrangian formalism for the general
PG. In Secs. III and IV, we find the canonical critical
parameters, identify the related if-constraints, and construct
the generic, “most dynamical” canonical Hamiltonian,
determined by the nonvanishing critical parameters.
Then, in Secs. V and VI, we derive the linearized gravi-
tational field equations and use them to identify the mass
eigenvalues of the torsion modes. The conditions for the
absence of ghosts and tachyons, as well as the reality
conditions of the mass eigenvalues, are examined in
Sec. VII. Essential features of the particle spectrum are
either tested by or derived from the Hamiltonian structure
of PG. In contrast to the results obtained in [25], we show
that the two spin-2 torsion modes cannot propagate
simultaneously. In Sec. VIII, we give a short summary
of our results, and six appendices contain useful technical
details, including an outline of the Hamiltonian formalism
describing the case of vanishing critical parameters.
Our conventions are as follows. The Latin indices

ði; j;…Þ are the local Lorentz indices, the Greek indices
ðμ; ν;…Þ are the coordinate indices, and both run over
0,1,2,3; the orthonormal frame (tetrad) is biμ, the inverse
tetrad is hiμ, the Lorentz connection is ωij

μ, and ηij ¼
ð1;−1;−1;−1Þ and gμν ¼ ηijbiμbjν are the metric compo-
nents in the local Lorentz and coordinate frame, respec-
tively; a totally antisymmetric tensor εijkl is normalized to
ε0123 ¼ þ1, and the dual of an antisymmetric tensor Xij

is ⋆Xij ¼ ð1=2ÞεijmnXmn.

II. LAGRANGIAN FORMALISM

In this section, we give a short account of the Lagrangian
formalism for the general parity–violating PG. Basic
dynamical variables are the tetrad field bi ¼ biμdxμ and
the antisymmetric spin connection ωij ¼ ωij

μdxμ ¼ −ωji

(1-forms), which represent the gauge potentials associated
with translations and Lorentz transformations, respectively.
The corresponding field strengths are the torsion and the
curvature (2-forms),

Ti ≔ dbi þ ωi
k ∧ bk ¼ 1

2
Ti

μνdxμ ∧ dxν;

Rij ≔ dωij þ ωi
k ∧ ωkj ¼ 1

2
Rij

μνdxμ ∧ dxν; ð2:1Þ

which satisfy the Bianchi identities

∇Ti ¼ Ri
k ∧ bk; ∇Rij ¼ 0: ð2:2Þ

The underlying spacetime continuum is described by
Riemann-Cartan geometry [7–9].

A. Field equations

The PG dynamics is determined by a Lagrangian
L ¼ LM þ LG, where LM describes matter and its inter-
action with gravity, and LG is the pure gravitational part. In
the framework of tensor calculus, the gravitational field
equations in vacuum are obtained by varying the action
IG ¼ R

d4xLGðbiμ; Tijk; RijklÞ with respect to biμ and ωij
μ.

After introducing the covariant gravitational momenta

Hi
μν ≔

∂LG

∂Ti
μν
; Hij

μν ≔
∂LG

∂Rij
μν
; ð2:3aÞ

and the associated energy-momentum and spin currents

Ei
ν ≔

∂LG

∂biμ ; Eij
μ ≔

∂LG

∂ωij
μ
; ð2:3bÞ

the gravitational field equations take a compact form:

ð1STÞ Ei
ν ≔ −

δLG

δbiμ
¼ ∇μHi

μν − Ei
ν ¼ 0; ð2:4aÞ

ð2NDÞ Eij
ν ≔ −

δLG

δωij
μ
¼ ∇μHij

μν − Eij
ν ¼ 0: ð2:4bÞ

The explicit expressions for the energy-momentum and
spin currents are given by

Ei
ν ¼ hiνLG − Tm

kiHm
kν −

1

2
Rmn

kiHmn
kν;

Eij
μ ¼ −2H½ij�μ: ð2:5Þ

In the presence of matter, the right-hand sides of (2.4a)
and (2.4b) contain the corresponding matter currents.

B. Quadratic PG models

We assume the Lagrangian density LG to contain all
possible quadratic invariants, constructed out of the three
irreducible components of the torsion and the six irreduc-
ible components of the curvature (Appendix A). Relying on
the Lagrangian 4-form given in Ref. [27], one finds that the
corresponding Lagrangian density has the form LG ¼ bLG,
where b ≔ detðbiμÞ and

LG ¼ −ða0Rþ 2Λ0Þ − ā0X

þ 1

2
Tijk

X3
n¼1

ðanðnÞTijk − ān⋆ðnÞTijkÞ;

þ 1

4
Rijkl

X6
n¼1

ðbnðnÞRijkl − b̄n⋆ðnÞRijklÞ: ð2:6Þ

Here, the irreducible components of the field strengths
are defined in Appendix A, the parity even and parity odd
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sectors are described by the parameters ðan; bn;Λ0Þ and
ðān; b̄nÞ, respectively, and the star symbol denotes the
duality operation with respect to the frame indices of the
field strengths. Another form of LG, useful for comparison
with the literature, is given in Appendix B. Knowing LG,
one finds that the covariant momentum densities (2.3a) can
be written in the form Himn ¼ bHimn and Hijmn ¼ bHijmn,
where

Himn ¼ 2
X3
n¼1

ðanðnÞTimn − ān⋆TimnÞ;

Hijmn ¼ LHijmn þH0
ijmn; ð2:7aÞ

and

LHijmn ¼ −2a0ðηimηjn − ηjmηinÞ þ 2ā0εijmn;

H0
ijmn ¼ 2

X6
n¼1

ðbnðnÞRijmn − b̄n⋆ðnÞRijmnÞ: ð2:7bÞ

C. On the choice of Lagrangian parameters

In the Lagrangian (2.6), the two parity sectors are
presented in a very symmetric way, but the set of three
identities (A3a) implies that not all of the parameters
ðān; b̄nÞ are independent. To resolve this issue, we choose
the conditions

ā2 ¼ ā3; b̄2 ¼ b̄4; b̄3 ¼ b̄6; ð2:8Þ

which reduce the number of Lagrangian parameters to
21 − 3 ¼ 18. Note that the above conditions are not unique.
Further freedom in the choice of parameters follows from

the existence of three topological invariants. The Euler and
Pontryagin invariants are defined by the 4-forms

IE ≔ Rij ∧ Rmnεmnij; IP ≔ Rij ∧ Rij; ð2:9aÞ

respectively, whereas the third invariant is based on the
Nieh-Yan identity,

INY ≔ Ti ∧ Ti − Rij ∧ bi ∧ bj ≡ dðbi ∧ TiÞ: ð2:9bÞ

These invariants produce vanishing contributions to the
field equations, which implies that not all of the Lagrangian
parameters are dynamically independent. Indeed, they can
be used to eliminate three more terms from the Lagrangian,
leaving us with the final number of 18 − 3 ¼ 15 indepen-
dent parameters; see Ref. [23]3 for more details. In this
paper, we use only the conditions in Eq. (2.8), allowing
thereby for an easier comparison to the literature.
For a clear understanding of the physical content of PG,

it is convenient to use dimensionless parameters (coupling
constants). The Lagrangian parameters in Eq. (2.6) are not

dimensionless, but the transition to their dimensionless
counterparts can be easily realized by suitable rescalings;
see, for instance, Ref. [27]. However, to make the general
exposition simpler and more compact, we find it useful to
keep the Lagrangian parameters in the form Eq. (2.6),
which corresponds to using the units c ¼ ℏ ¼ 2κ ¼ 1. The
true dimensionless parameters can be reintroduced later
whenever needed.

III. PRIMARY CONSTRAINTS

Hamiltonian structure is by itself a particularly important
aspect of PG as a gauge theory [13]. Moreover, it also offers
dynamical information that is essential for a proper under-
standing of the particle spectrum of PG.
We begin the subject by analyzing the primary con-

straints (PC) of PG. The canonical momenta ðπiμ;Πij
μÞ

associated to the basic Lagrangian variables ðbiμ;ωij
μÞ are

πi
μ ≔

∂LG

∂ð∂0biμÞ
¼ bHi

0μ; Πij
μ ≔

∂LG

∂ð∂0ω
ij
μÞ

¼ bHij
0μ:

ð3:1Þ

Since the field strengths do not depend on the velocities
∂0bi0 and ∂0ω

ij
0, the above relations define ten constraints

that are always present in the theory (“sure” PCs), regard-
less of the values of the coupling constants. They read

πi
0 ≈ 0; Πij

0 ≈ 0; ð3:2Þ

and their existence is directly related to the local Poincaré
symmetry of PG.
Before we proceed, let us note that at each point of a

spatial hypersurface Σ0∶x0 ¼ const, one can define the
unit timelike vector n, normal to Σ0. Then, any spacetime
vector Vk can be decomposed into a component V⊥ along n
and a component Vk̄ in the tangent space of (“parallel” to)
Σ0; that is, Vk ¼ nkV⊥ þ Vk̄, where V⊥ ¼ nkVk and
nkVk̄ ¼ 0 (Appendix C).
To find additional constraints that may appear in

Eq. (3.1), it is useful to define the parallel gravitational
momenta

π̂ik̄ ≔ πi
αbkα ¼ JHi⊥k̄; ð3:3aÞ

Π̂ijk̄ ≔ Πij
αbkα ¼ JHij⊥k̄; ð3:3bÞ

such that π̂ik̄n
k ¼ 0, Πijk̄n

k ¼ 0, and J is defined by
b ¼ NJ, with N ¼ nkbk0. Depending on the values of
the coupling constants, these relations may produce addi-
tional constraints (primary “if-constraints”). In analogy to
the above orthogonal-parallel decomposition of a vector
Vk, one can introduce a similar decomposition of the field
strengths,
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Tikm ¼ Tik̄ m̄ þ ðnkTi⊥m̄ þ nmTik̄⊥Þ ¼ T̄ikm þ T ikm;

ð3:4aÞ

Rijkm ¼ Rijk̄ m̄ þ ðnkRij⊥m̄ þ nmRijk̄⊥Þ ¼ R̄ijkm þRijkm:

ð3:4bÞ

It is very useful for further analysis to know that the parallel
components T̄ikm ≔ Tik̄ m̄ and R̄ijkm ≔ Rijk̄ m̄ are indepen-
dent not only of the “velocities” Ti⊥m̄; Rij⊥m̄, but also of the
unphysical variables ðbi0;ωij

0Þ; for more details, see
Refs. [7,14,15].

A. Torsion sector

The torsion piece of the Lagrangian in Eq. (2.6) depends
on the velocities ∂0biα only through Ti⊥k̄. The linearity of
Hi⊥k̄ in T̄ and T allows us to rewrite Eq. (3.3a) in the form

ϕik̄ ≔
π̂ik̄
J

−Hi⊥k̄ðT̄Þ ¼ Hi⊥k̄ðT Þ; ð3:5Þ

where all possible velocity terms are moved to the right-
hand side. Now, we decompose this equation into irreduc-
ible parts with respect to the group of rotations in Σ0

(Appendix C):

Sϕ ≔
π̂k̄

k̄

J
þ ā2εk̄ m̄ m̄Tk̄ m̄ n̄ ¼ −2a2Tk̄

k̄⊥; ð3:6aÞ

ϕ⊥k̄ ≔
π̂⊥k̄

J
þ 2

3
ða1 − a2ÞTm̄

m̄ k̄ þ
1

3
ð2ā1 þ ā2Þεk̄m̄ n̄T⊥m̄ n̄

¼ 2

3
ð2a1 þ a2ÞT⊥⊥k̄ þ

2

3
ðā1 − ā2Þεk̄m̄ n̄Tm̄ n̄⊥;

ð3:6bÞ

Aϕ{̄ k̄ ≔
Aπ̂ {̄ k̄
J

−
2

3
ða1 − a3ÞT⊥{̄ k̄ −

1

3
ðā1 þ 2ā3Þε{̄ k̄ n̄Tm̄

m̄ n̄

¼ −
2

3
ða1 þ 2a3ÞT ½{̄ k̄�⊥ −

2

3
ðā1 − ā2Þε{̄ k̄n̄T⊥⊥n̄;

ð3:6cÞ

Tϕ{̄ k̄ ≔
Tπ̂ {̄ k̄
J

þ ā1

�
εð{̄m̄ n̄Tk̄Þm̄ n̄ −

1

3
η{̄ k̄ε

k̄ m̄ n̄Tk̄ m̄ n̄

�

¼ −2a1TT{̄ k̄⊥: ð3:6dÞ

Here, the set ðSϕ;ϕ⊥k̄;
Aϕ{̄ k̄;

Tϕ{̄ k̄Þ, defined by the scalar,
vector, antisymmetric, and traceless-symmetric parts of ϕik̄,
represents the set of all possible new constraints. The
mechanism by which these if-constraints become true
constraints is simply explained in the parity even case,
characterized by four critical parameters: a2, (2a1 þ a2),
(a1 þ 2a3), and a1. When some of these parameters vanish,
the corresponding velocity terms on the right-hand sides of

(3.6) also vanish, and consequently, the associated if-
constraints become true constraints. However, if none of
the critical parameters vanishes, there are no new
constraints.
The same mechanism works also in the general PG.

Whereas the critical parameters for Sϕ and Tϕ{̄ k̄ remain
the same as in PGþ, a2 and a1, the structure of the
if-constraints ϕ⊥k̄ and Aϕ{̄ k̄ is more complicated, as the
right-hand sides of Eqs. (3.6b) and (3.6c) depend on two
velocities, T ½m̄ n̄�⊥ and T⊥⊥k̄. To find the related critical
parameters, we first transform Aϕ{̄ k̄ into the axial 3-vector
Aϕk̄ ≔ εk̄

m̄ n̄Aϕm̄ n̄, so that Eq. (3.6c) goes over into

Aϕk̄ ¼
4

3
ðā1 − ā2ÞT⊥⊥k̄ −

2

3
ða1 þ 2a3Þεk̄m̄ n̄Tm̄ n̄⊥: ð3:7Þ

Then, the set of equations involving ðϕ⊥k̄;
Aϕk̄Þ can be

written in the matrix form as

�
ϕ⊥k̄
Aϕk̄

�
¼ 2

3
A

�
T⊥⊥k̄

εk̄
m̄ n̄Tm̄ n̄⊥

�
; ð3:8aÞ

where

A ≔
�

2a1 þ a2 ā1 − ā2
2ðā1 − ā2Þ −ða1 þ 2a3Þ

�
;

detA ¼ −½ð2a1 þ a2Þða1 þ 2a3Þ þ 2ðā1 − ā2Þ2�: ð3:8bÞ

If the matrix A has two distinct eigenvalues, one can
construct the invertible matrix P that transforms A into a
diagonal form, DA ≔ P−1AP. Then, Eq. (3.8a) implies

ϕk̄ ≔ P−1
�
ϕ⊥k̄
Aϕk̄

�
¼ 2

3
DAP−1

�
T⊥⊥k̄

εk̄
m̄ n̄Tm̄ n̄⊥

�
; ð3:9Þ

where the column ϕk̄ represents two diagonalized if-
constraints, and the diagonal elements ofDA are the critical
parameters,

c�ðAÞ ¼
1

2

�
trA�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrAÞ2 − 4 detA

q �
: ð3:10Þ

More details on this construction can be found in
Appendix D. In general, the number of true constraints
in Eq. (3.9) is equal to the number of vanishing critical
parameters.

(i) The critical parameters of the torsion sector are a2,
c�ðAÞ, and a1.

B. Curvature sector

For the curvature sector, we use the linearity of H0
ij⊥k in

R̄ and R to rewrite Eq. (3.3b) in the form
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Φijk̄ ≔
Πijk̄

J
−Hij⊥k̄ðR̄Þ ¼ H0

ij⊥k̄
ðRÞ: ð3:11Þ

The content of the object Φijk̄ is described by two three-
dimensional (3d) tensors, Φijk̄ ¼ ðΦ⊥|̄ k̄;Φ{̄ |̄ k̄Þ. The irre-
ducible decomposition of Φ⊥|̄ k̄ takes the form defined
in (C4):

SΦ≡Π⊥k̄
k̄

J
þ 6a0 þ

1

2
ðb4 − b6ÞRþ 1

2
ðb̄2 þ b̄3Þεk̄ m̄ n̄R⊥k̄ m̄ n̄

¼ ðb4 þ b6ÞR⊥⊥ −
1

2
ðb̄2 − b̄3Þεk̄ m̄ n̄Rk̄ m̄ n̄⊥; ð3:12aÞ

AΦ⊥|̄k̄≡
AΠ⊥|̄ k̄

J
þðb2−b5ÞAR|̄k̄−

1

2
ðb̄2þ b̄5ÞAðε|̄m̄n̄R⊥k̄m̄n̄Þ

¼ðb2þb5ÞAR⊥|̄⊥k̄−
1

2
ðb̄2− b̄5ÞAðε|̄m̄n̄Rm̄n̄k̄⊥Þ;

ð3:12bÞ

TΦ⊥|̄ k̄≡
TΠ⊥|̄ k̄

J
þðb1−b4ÞTR|̄k̄þ

1

2
ðb̄1þ b̄2ÞTðε|̄m̄ n̄R⊥k̄ m̄ n̄Þ

¼ ðb1þb4ÞTR⊥|̄⊥k̄−
1

2
ðb̄1− b̄2ÞTðε|̄m̄ n̄Rm̄n̄⊥k̄Þ:

ð3:12cÞ

The irreducible parts of Φ{̄ |̄ k̄ ¼ −Φ|̄ {̄ k̄ are the pseudosca-
lar, the vector, and the traceless symmetric part; see (C5):

PΦ≡
PΠ
J
þ12ā0þðb2−b3Þεk̄ m̄ n̄R⊥k̄ m̄ n̄− ðb̄1þ2b̄2þ b̄3ÞR

¼−ðb2þb3Þεk̄ m̄ n̄Rk̄m̄n̄⊥−2ðb̄2− b̄3ÞR⊥⊥; ð3:13aÞ

VΦ{̄ ≡
VΠ{̄

J
− ðb4 − b5ÞR⊥{̄ þ

1

2
ðb̄2 þ b̄5Þεk̄ m̄ n̄R{̄ k̄ m̄ n̄

¼ ðb4 þ b5ÞR{̄⊥ − ðb̄2 − b̄5Þε{̄ k̄ n̄R⊥k̄⊥n̄; ð3:13bÞ

TΦ{̄ |̄ k̄ ≡
TΠ{̄ |̄ k̄

J
þ ðb1 − b2ÞTR⊥|̄ k̄ {̄ − TH0−

{̄ |̄⊥k̄
ðR̄Þ

¼ ðb1 þ b2ÞTR{̄ |̄⊥k̄ − ðb̄1 − b̄2ÞTðε{̄ |̄ n̄ΣR⊥n̄⊥k̄Þ:
ð3:13cÞ

In Eqs. (3.12) and (3.13), the underlined objects do not
contain velocities, R ≔ Rm̄ n̄

m̄ n̄ and R{̄ |̄ ≔ R{̄ n̄|̄
n̄, the super-

script Σ denotes symmetrization, and H0−
{̄ |̄⊥k̄

in Eq. (3.13c)

denotes the parity odd part of the covariant momentum,

TH0−
{̄ |̄⊥k̄

ðR̄Þ ¼ −
T
	
1

4
εk̄

m̄ n̄½ðb̄1 þ 2b̄2 þ b̄5ÞR{̄ |̄ m̄ n̄

þ ðb̄1 − b̄5ÞRm̄ n̄ {̄ |̄�


:

Looking at the type of velocities appearing in the
above equations, one can see that the critical parameters
can be found by grouping these equations into suitably
chosen pairs.

1. Spin-0 pair

Consider first Eqs. (3.12a) and (3.13a), which contain
the same set of velocities, R⊥⊥ and εk̄ m̄ n̄Rk̄ m̄ n̄⊥. They can
be written in the matrix form as

� SΦ
PΦ

�
¼ B0

�
R⊥⊥

εk̄ m̄ n̄Rk̄ m̄ n̄⊥

�
; ð3:14aÞ

where

B0 ≔
�

b4 þ b6 − 1
2
ðb̄2 − b̄3Þ

−2ðb̄2 − b̄3Þ −ðb2 þ b3Þ

�
;

detB0 ¼ −ðb4 þ b6Þðb2 þ b3Þ − ðb̄2 − b̄3Þ2: ð3:14bÞ

In analogy to what we found in the previous subsection, the
critical parameters are the eigenvalues of B0, c�ðB0Þ, and
the related column of the if-constraints reads

0Φ ≔ P−1
0

� SΦ
PΦ

�
¼ D0P−1

0

�
R⊥⊥

εk̄ m̄ n̄Rk̄ m̄ n̄⊥

�
; ð3:15Þ

where P0 is the matrix that diagonalizes B0, D0 ¼
P−1
0 B0P0.

2. Spin-1 pair

Similarly, after transforming AΦ⊥{̄ |̄ into AΦk̄ ≔
εk̄

m̄ n̄Φ⊥m̄ n̄, Eq. (3.12b) becomes

AΦ{̄ ¼ ðb2 þ b5Þε{̄m̄ n̄R⊥m̄⊥n̄ þ ðb̄2 − b̄5ÞR{̄⊥; ð3:16Þ

and the matrix form of Eqs. (3.16) and (3.13b) reads

� AΦ{̄
VΦ{̄

�
¼ B1

�
ε{̄
m̄ n̄R⊥m̄⊥n̄

R{̄⊥

�
; ð3:17aÞ

where

B1 ≔
�

b2 þ b5 b̄2 − b̄5
−ðb̄2 − b̄5Þ b4 þ b5

�
;

detB1 ¼ ðb4 þ b5Þðb2 þ b5Þ þ ðb̄2 − b̄5Þ2: ð3:17bÞ

As before, the critical parameters are c�ðB1Þ, and the
if-constraints are determined by the matrix P1 that
diagonalizes B1,

1Φ{̄ ≔ P−1
1

� AΦ{̄
VΦ{̄

�
¼ D1P−1

1

�
ε{̄
m̄ n̄R⊥m̄⊥n̄

R{̄⊥

�
: ð3:18Þ

GENERAL POINCARÉ GAUGE THEORY: HAMILTONIAN … PHYS. REV. D 98, 024014 (2018)

024014-5



3. Spin-2 pair

To find the critical parameters in the spin-2 sector,
it is convenient to replace TΦ{̄ |̄ k̄ with the expression
TΦ{̄ k̄ ≔ Tðε{̄m̄ n̄Φm̄ n̄ k̄Þ. Indeed, TΦ{̄ k̄ refers to the same set
of velocities that appears in Eq. (3.12c),

TΦ{̄ k̄ ¼ ðb1 þ b2ÞTðε{̄m̄ n̄Rm̄ n̄⊥k̄Þ þ 2ðb̄1 − b̄2ÞTR⊥{̄⊥k̄;

ð3:19Þ

which allows Eqs. (3.12c) and (3.19) to be written in the
matrix form

� TΦ⊥|̄ k̄

TΦ|̄ k̄

�
¼ B2

� TR⊥|̄⊥k̄

Tðε|̄m̄ n̄Rm̄ n̄⊥k̄Þ

�
; ð3:20aÞ

where

B2 ≔
�

b1 þ b4 − 1
2
ðb̄1 − b̄2Þ

2ðb̄1 − b̄2Þ b1 þ b2

�
;

detB2 ¼ ðb1 þ b2Þðb1 þ b4Þ þ ðb̄1 − b̄2Þ2: ð3:20bÞ

Hence, the critical parameters are c�ðB2Þ, and the column
of if-constraints has the form

2Φ|̄ k̄ ≔ P−1
2

� TΦ⊥|̄ k̄

TΦ|̄ k̄

�
¼ D2P−1

2

� TR⊥|̄⊥k̄

Tðε|̄m̄ n̄Rm̄ n̄⊥k̄Þ

�
:

ð3:21Þ

(ii) The critical parameters in the curvature sector are
c�ðB0Þ; c�ðB1Þ, and c�ðB2Þ.

C. Critical parameters and if-constraints

Since the if-constraints belong to irreducible represen-
tations of 3d rotations, they are characterized by a specific
spin content. Their structure is best understood by grouping
them into pairs with definite spin, as shown in Table I. In
this classification, the parity eigenvalues are absent since
parity is not conserved.
The generic set of the critical parameters c�ðFÞ, F ¼ A,

B0, B1, B2, is defined provided the parity odd parameters in
F do not vanish; see Appendix D. Hence, the limit of the
final expressions c�ðFÞ when these parameters tend to zero
is not well defined. However, since in that case F is already
diagonal, one can identify c� directly from F.

The total number of the primary if-constraints is
10 × 3 ¼ 30, the same as the number of the parallel
canonical momenta (3.3). The if-constraints and the asso-
ciated critical parameters have a decisive influence on the
structure of the canonical Hamiltonian.

IV. HAMILTONIAN

The procedure for constructing the canonical (and total)
Hamiltonian in PGþ is well known [7,14,15,18], but its
extension to PG, although in principle straightforward, is
technically rather complicated.
Starting with the standard definition of the canonical

Hamiltonian density,

Hc ¼ πi
α∂0biα þ

1

2
Πij

α∂0ω
ij
α − bL; ð4:1Þ

one can rewrite it in the Dirac-ADM form,

Hc ¼ NH⊥ þ NαHα −
1

2
ωij

0Hij þ ∂αDα; ð4:2Þ

where N and Nα are the lapse and shift functions (see
Appendix C), and

Hij ¼ 2π½iαbj�α þ∇αΠij
α;

Hα ¼ πi
βTi

αβ þ
1

2
πij

βRij
αβ − bkα∇βπk

β;

H⊥ ¼ πi
k̄Ti⊥k̄ þ

1

2
Πij

k̄Rij⊥k̄ − JL − nk∇βπk
β;

Dα ¼ bi0πiα þ
1

2
ωij

0Πij
α: ð4:3Þ

Since H⊥ is the only term that depends on the form of the
Lagrangian, explicit construction of the whole Hc reduces
just to the construction of its dynamical piece H⊥. In this
process, we focus our attention on the “most dynamical”
case when all the critical parameters are nonvanishing
(that is, when none of the if-constraints becomes a true
constraint). Such an assumption is sufficient for our study
of the particle spectrum of PG. Extension of the formalism
to include vanishing critical parameters is outlined in
Appendix D.

A. Torsion sector

Isolating the torsion contribution to LG, one finds the
corresponding part of H⊥,

HT⊥ ¼ 1

2
ϕi⊥k̄T

i⊥k̄ − JL̄T2 − nk∇βπk
β; ð4:4aÞ

where L̄T2 ¼ LT2ðT̄Þ does not contain velocities. In order
to express the velocities in terms of the phase-space
variables, we decompose the first term into four irreducible
parts:

TABLE I. Critical parameters and if-constraints.

Spin Critical parameters If-constraints

0 a2, c�ðB0Þ Sϕ; ð0ΦÞ�
1 c�ðAÞ; c�ðB1Þ ðϕk̄Þ�; ð1Φk̄Þ�
2 a1, c�ðB2Þ Tϕ{̄ k̄; ð2Φ{̄ k̄Þ�
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ϕi⊥k̄T
i⊥k̄ ¼ ϕ⊥k̄T

⊥⊥k̄ þ 1

2
Aϕ{̄ε

{̄
m̄ n̄Tm̄ n̄⊥

þ Tϕ{̄ k̄
TT{̄⊥k̄ þ 1

3
SϕTk̄⊥k̄: ð4:4bÞ

If a1, a2 ≠ 0, the velocities from the last two terms can be
directly eliminated using Eqs. (3.6a) and (3.6d),

1

3
SϕTk̄⊥k̄ þ Tϕ{̄ k̄

TT{̄⊥k̄ ¼ 1

6a2
SϕSϕþ 1

2a1
Tϕ{̄ k̄

Tϕ{̄ k̄: ð4:5aÞ

Continuing with the first two terms in (4.4b), we note that
for detA ≠ 0, one can use the relation A−1 × ð3.8aÞ to
eliminate the velocities. Introducing the notation
φk̄ ≔ ðϕ⊥k̄;

Aϕk̄ÞT , the result takes a compact matrix form,

�
ϕ⊥k̄;

1
2
Aϕk̄

��
T⊥⊥k̄

εk̄m̄ n̄Tm̄ n̄⊥

�
¼ 3

2 detA
φT
k̄
Tφk̄;

T ≔
�
2a1 þ a2 ā1 − ā2
ā1 − ā2 −ða1 þ 2a3Þ=2

�
; detT ¼ 1

2
detA:

ð4:5bÞ

Hence, the resulting form of HT⊥ reads

HT⊥ ¼ 1

2
Jϕ2

T − JL̄T2 − nk∇βπk
β;

ϕ2
T ≔

1

6a2
SϕSϕþ 1

2a1
Tϕ{̄ k̄

Tϕ{̄ k̄ þ 3

2 detA
φT
k̄
Tφk̄: ð4:6Þ

B. Curvature sector

In a similar manner, one finds the curvature contribution
to H⊥:

HR⊥ ¼ 1

4
Φijk̄R

ij⊥k̄ − JL̄R2 − a0Rm̄ n̄
m̄ n̄ þ ā0εm̄ n̄ k̄R⊥m̄ n̄ k̄;

ð4:7aÞ

where L̄R2 ¼ LR2ðR̄Þ does not contain velocities, and

Φijk̄R
ij⊥k̄ ¼ 2

3
SΦR⊥⊥ − AΦk̄ε

k̄ m̄ n̄R⊥m̄⊥n̄ þ 2TΦ⊥|̄ k̄
TR⊥|̄⊥k̄;

−
1

6
PΦε{̄ |̄ k̄R

{̄ |̄⊥k̄ þ VΦ{̄R{̄ k̄⊥k̄

−
1

2
TΦ{̄ k̄Tðε{̄m̄ n̄Rm̄ n̄⊥k̄Þ: ð4:7bÞ

Summing up the scalar and pseudoscalar term from the
expression (4.7b) and using the relation B−1

0 × ð3.14aÞ to
eliminate the velocities, one obtains

2

3
SΦR⊥⊥ þ 1

6
PΦε{̄ |̄ k̄R

{̄ |̄ k̄⊥ ¼ J
1

6 detB0

ð0ÞΦTR0
ð0ÞΦ;

R0 ¼
�
−4ðb2 þ b3Þ 2ðb̄2 − b̄3Þ
2ðb̄2 − b̄3Þ b4 þ b6

�
; detR0 ¼ 4 detB0;

ð4:8Þ

where ð0ÞΦT ≔ ðSΦ; PΦÞ.
Similarly, the sum of the axial vector and vector term,

combined with B−1
1 × ð3.17aÞ, yields

− AΦk̄ε
k̄ m̄ n̄R⊥m̄⊥n̄ þ VΦ{̄R{̄⊥ ¼ −J

1

detB1

ð1ÞΦT
{̄ R1

ð1ÞΦ{̄;

R1 ¼
�

b4 þ b5 −ðb̄2 − b̄5Þ
−ðb̄2 − b̄5Þ −ðb2 þ b5Þ

�
; detR1 ¼ − detB1;

ð4:9Þ

where ð1ÞΦT
{̄ ¼ ðAΦ{̄; VΦ{̄Þ.

Finally, using B−1
2 × ð3.20aÞ, the sum of the two tensor

terms is given by

2TΦ⊥|̄ k̄
TR⊥|̄⊥k̄ −

1

2
TΦ{̄ k̄Tðε{̄m̄ n̄Rm̄ n̄⊥k̄Þ

¼ J
1

4 detB2

ð2ÞΦT
{̄ k̄R2

ð2ÞΦ{̄ k̄;

R2 ¼
�
4ðb1 þ b2Þ 2ðb̄2 − b̄1Þ
2ðb̄2 − b̄1Þ −ðb1 þ b4Þ

�
; detR2 ¼ −4 detB2;

ð4:10Þ

where ð2ÞΦT
{̄ k̄ ≔ ðTΦ⊥{̄ k̄;

TΦ{̄ k̄Þ.
Summing up the above three contributions, one obtains

the expression for HR⊥ as

HR⊥ ¼ 1

4
JΦ2

R − JLR2ðR̄Þ − a0Rm̄ n̄
m̄ n̄ þ ā0εm̄ n̄ k̄R⊥m̄ n̄ k̄;

Φ2
R ≔

1

6 detB0

ð0ÞΦTR0
ð0ÞΦ −

1

detB1

ð1ÞΦT
{̄ R1

ð1ÞΦ{̄

þ 1

4 detB2

ð2ÞΦT
{̄ k̄R2

ð2ÞΦ{̄ k̄: ð4:11Þ

The complete expression H⊥ ¼ HT⊥ þHR⊥ will be used
in Sec. VII to formulate the conditions for the positivity of
energy of the isolated spin modes.

C. Consistency conditions

The complete canonical Hamiltonian of PG, with
H⊥ ¼ HT⊥ þHR⊥, is calculated by assuming that none of
the critical parameters is vanishing. In the next step, one
can construct the total Hamiltonian that generates the
temporal evolution of dynamical variables. Since the only
primary constraints are the sure constraints (3.2), the total
Hamiltonian is given by

GENERAL POINCARÉ GAUGE THEORY: HAMILTONIAN … PHYS. REV. D 98, 024014 (2018)

024014-7



HT ¼ Hc þ uiπi0 þ
1

2
uijΠij

0; ð4:12Þ

where ui and uij are canonical multipliers.
By construction, the componentsHij,Hα, andH⊥ of the

canonical Hamiltonian do not depend on the unphysical
variables bi0 and ωij

0. Hence, by demanding that the
primary constraints be preserved during the time evolution,
one finds the set of secondary constraints,

H⊥ ≈ 0; Hα ≈ 0; Hij ≈ 0: ð4:13Þ

General arguments, based on the existence of local
Poincaré invariance, show that these constraints are first
class [13]; see also [28]. Hence, the Dirac consistency
algorithm is completed at the level of the secondary
constraints (4.13).
The present PG model has N1 ¼ 20 first-class con-

straints and N2 ¼ 0 second-class constraints. Since the
number of the Lagrangian variables is N ¼ 40 (16 tetrad,
plus 24 connection components), the number of the
Lagrangian d.o.f. is N� ¼ ð2N−2N1−N2Þ=2¼ 20. They
are the same as those found in the weak field approximation
of PG: 2 massless spin-2 modes and 18 massive torsion
modes (two spin-0, six spin-1, and ten spin-2 modes).
However, we shall show that not all of these d.o.f. are
physically acceptable, in contrast to earlier expectations
[25]. To do that, we will first calculate the mass eigenvalues
m2

�ðJÞ for the torsion modes with spin J ¼ 0, 1, 2.

V. LINEARIZED FIELD EQUATIONS

In this section, we start our analysis of the particle
spectrum of PG by deriving the weak field approximation
of the gravitational field equations (2.4) around the
Minkowski background M4; for consistency, we assume
Λ0 ¼ 0. Such an approximation is based on the following
weak field expansion of the basic dynamical variables,

biμ ¼ δiμ þ b̃iμ þO2; ωij
μ ¼ ω̃ij

μ þO2:

To simplify the notation, we omit writing the tilde sign and
the symbol O2, with an implicit understanding of their
effects. Furthermore, we find it technically convenient to
use the following abbreviations:

An ¼ an − a1; Bn ¼ bn − b1;

Ān ¼ ān − ā1; B̄n ¼ b̄n − b̄1: ð5:1Þ

A. First field equation

In the first field equation (2.4a), the covariant momentum
associated to torsion has the form

Himn ¼ 2a1Timn þ
2

3
A2ðηimVn − ηinVmÞ þ 2A3εimnlAl;

− ā1Tirsε
rs
mn −

2

3
Ā2εimnsVs

þ 2Ā3ðηimAn − ηinAmÞ; ð5:2Þ
where ā2 ¼ ā3 yields Ā2 ¼ Ā3. Then, after calculating the
linearized form of Ei

ν,

Ei
ν ¼ 2a0Gν

i − ā0ðRmnkiε
mnkν þ hiνXÞ

¼ 2a0Gν
i − 2ā0Xi

ν;

the linearized (1ST) takes the form

Ein ¼ ∂mHimn − 2a0Gni þ 2ā0Xin

¼ −2a1∂mTinm þ 2

3
A2ð∂iVn − ηin∂VÞ

− 2A3εinmk∂mAk þ 2

3
Ā2εinmk∂mVk

þ 2Ā2ð∂iAn − ηin∂AÞ − 2a0Gni

þ 2ðā0 − ā1ÞXin ¼ 0; ð5:3Þ

where we used (E3), and ∂V ≔ ∂iVi, ∂A ≔ ∂iAi.

B. Second field equation

Using the formulas obtained in the weak field approxi-
mation,

∇μ
LHij

μn ¼ 2a0ðTn
ij − δni Vj þ δnjViÞ

− ā0εijrsðTn
rs − δnrVs þ δnsVrÞ;

2H½ij�n ¼ −
4

3
ð2a1 þ a2Þηn½iVj� þ 2ða1 þ 2a3ÞεijnkAk

−
4

3
Ā2εijnkVk − 4Ā3ηn½iVn�; ð5:4Þ

the linearized form of (2ND) reads

Eijn ¼ ∂mH0
ijmn þ 2a0ðTn

ij − δni Vj þ δnjViÞ
− ā0εijrsðTn

rs − δnrVs þ δnsVrÞ þ 2H½ij�n ¼ 0:

ð5:5aÞ
Using the double duality relations for the curvature, see

Appendix C in Ref. [29], the term ∂mH0
ijmn is found to have

the form
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∂mH0
ijmn ¼ ðb2 þ b1Þ∂mðηirΨjs − ηjrΨisÞεrsmn þ

1

6
B3εijmn∂mX

þ ðb4 þ b1Þ½ð∂iΦjn − ηin∂mΦjmÞ − ði ↔ jÞ� þ 1

6
B6ðηjn∂i − ηin∂jÞR

þ B5½ð∂iR̂½jn� − ηin∂mR̂½jm�Þ − ði ↔ jÞ� − B̄5∂mðηirR̂½js� − ηjrR̂½is�Þεrsmn

þ ðb̄2 − b̄1Þ½ð∂iΨjn − ηin∂mΨjmÞ − ði ↔ jÞ� þ 1

6
B̄3ðηjn∂i − ηin∂jÞX

− ðb̄4 − b̄1Þ∂mðηirΦjs − ηjrΦisÞεrsmn −
1

6
B̄6εijmn∂mR: ð5:5bÞ

VI. PARTICLE SPECTRUM

The particle spectrum of PG contains important infor-
mation of its physical content. Recently, Karananas [25]
made a detailed analysis of this problem by extending the
spin-projection operator formalism, used earlier in the
context of PGþ [12], and applying it to study the PG field
excitations around the Minkowski background. His work
resulted in the mass formulas for the spin-0, spin-1, and
spin-2 massive torsion modes, together with the related
restrictions on the parameter space, stemming from the
requirements for the absence of ghosts and tachyons.
In this section, we study the same problem by analyzing

the linearized field equations along the lines presented in
[5]. The obtained results are tested by verifying their
compatibility with the expressions for the critical param-
eters found in the canonical analysis, whereas the absence
of ghosts and tachyons is studied in the next section.

A. Spin-0 modes

The spin-0 sector is determined by the traces of the
field equations Ein, ∂iEijn, and ∂kð⋆EÞkln, where ⋆Ekln ≔
ð1=2ÞεklijEijn is the dual of Eijn:

− a2∂V − 3ā2∂Aþ a0Rþ ā0X ¼ 0;

ðb4 þ b6Þ□Rþ ðb̄3 − b̄2Þ□X þ 4ð2a0 þ a2Þ∂V
þ 12ðā2 − ā0Þ∂A ¼ 0;

ðb2 þ b3Þ□X − ðb̄3 − b̄2Þ□R − 12ða0 þ 2a3Þ∂A
þ 8ðā2 − ā0Þ∂V ¼ 0: ð6:1Þ

With X ¼ 3∂A, the first equation can be used to express R
in terms of ∂V and ∂A, whereupon the remaining two
equations are written in the matrix form as

ðK0□þ 4a0N0ÞU ¼ 0; ð6:2aÞ

K0¼
�
a2ðb4þb6Þ −3a0ðb̄2− b̄3Þ−3ðā0− ā2Þðb4þb6Þ
a2ðb̄2− b̄3Þ 3a0ðb2þb3Þ−3ðā0− ā2Þðb̄2− b̄3Þ

�
;

N0¼
� ð2a0þa2Þ −3ðā0− ā2Þ
−2ðā0− ā2Þ −3ða0þ2a3Þ

�
; U¼

�∂V
∂A

�
:

ð6:2bÞ

The determinants of K0 and N0 are given by

detK0 ¼ 3a0a2½ðb4 þ b6Þðb2 þ b3Þ þ ðb̄2 − b̄3Þ2�;
detN0 ¼ −3½ð2a0 þ a2Þða0 þ 2a3Þ þ 2ðā0 − ā2Þ2�:

ð6:2cÞ

For detK0 ≠ 0, one can multiply (6.2a) by K−1
0 , and obtain

the Klein-Gordon equation for the massive spin-0 torsion
modes,

ð□þM0ÞU ¼ 0; M0 ¼ 4a0K−1
0 N0: ð6:3Þ

The masses of these modes are given by the eigenvalues of
the mass matrix M0,

m2
�ð0Þ ¼

1

2

�
trM0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrM0Þ2 − 4ðdetM0Þ

q �

¼ 2a0
detK0

�
trf0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrf0Þ2 − 4 det f0

q �
; ð6:4aÞ

where f0 ≔ ðdetK0ÞK−1
0 N0, and

trf0 ¼ 3a0ð2a0 þ a2Þðb2 þ b3Þ− 12a0ðā0 − ā2Þðb̄2 − b̄3Þ
− 3½a2ða0 þ 2a3Þ þ 2ðā0 − ā2Þ2�ðb4 þ b6Þ;

detf0 ¼ ðdetK0ÞðdetN0Þ: ð6:4bÞ

It is interesting to note that detK0 is proportional to the
product of two critical parameters, a2 and detB0, character-
izing the spin-0 sector of the set of if-constraints (see
Table I). Hence, when the critical parameters vanish, we
have detK0 ¼ 0, the mass eigenvalues (6.4) become
infinite, and consequently, the spin-0 modes do not
propagate. In the linear regime, this mechanism provides
a Lagrangian description of the dynamical role of if-
constraints.
As a further test of our mass formula (6.4), we calculated

its form in the parity-even sector ðā0; ān; b̄nÞ ¼ 0, and
found the well-known result for the spin-0� torsion modes:

m2þð0Þ ¼
4a0ð2a0 þ a2Þ
a2ðb4 þ b6Þ

; m2
−ð0Þ ¼ −

4ða0 þ 2a3Þ
ðb2 þ b3Þ

:
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B. Spin-1 modes

To understand the linearized dynamics of the spin-1 sector, it is convenient to start with the antisymmetric part of (1ST),
E½ij�, and its dual, ⋆Eij. Taking derivatives of these equations yields

1

3
ð2a1 þ a2Þð□Vj − ∂j∂VÞ þ Ā3ð□Aj − ∂j∂AÞ þ 2A0∂iR̂½ij� þ 2Ā0∂iX½ij� ¼ 0;

ða1 þ 2a3Þð□Aj − ∂j∂AÞ − 2

3
Ā2ð□Vj − ∂j∂VÞ − 2A0∂iX½ij� þ 2Ā0∂iR̂½ij� ¼ 0:

Then, the solutions for ∂mR̂½mi� and ∂mX½mi� are found to be given in the matrix form as

2

�−∂mR̂½mi�
∂mX½mi�

�
¼ Gð□Ui − ∂ið∂UÞÞ; Ui ¼

�
Vi

Ai

�
; g ≔ A2

0 þ Ā2
0;

G ≔
1

g

� 1
3
½A0ð2a1 þ a2Þ − 2Ā0Ā2� ½A0Ā2 þ Ā0ða1 þ 2a3Þ�

− 1
3
½Ā0ð2a1 þ a2Þ þ 2A0Ā2� −½Ā0Ā2 − A0ða1 þ 2a3Þ�

�
: ð6:5Þ

Next, consider the trace of (2ND), ηjkEijk, and of its dual, ηjk⋆Eijk. Using the identities (E4), these trace components
take the form

− 2ðb4 þ b5Þ∂mR̂½mi� þ 2ðb̄2 − b̄5Þ∂mX½mi� þ
1

2
ðb4 þ b6Þ∂iR −

1

2
ðb̄2 − b̄3Þ∂iX

þ 2ð2a0 þ a2ÞVi − 6ðā0 − ā2ÞAi ¼ 0; ð6:6aÞ

− 4ðb̄2 − b̄5Þ∂mR̂½mi� − 4ðb2 þ b5Þ∂mX½mi� þ ðb̄2 − b̄3Þ∂iRþ ðb2 þ b3Þ∂iX

− 8ðā0 − ā2ÞVi − 12ða0 þ 2a3ÞAi ¼ 0: ð6:6bÞ

Using the expressions for ∂mR̂½mi� and ∂mX½mi� found in (6.5), and the expression for R determined by the trace of (1ST),
Eqs. (6.6) multiplied by −2g can be written in the matrix form as

ðK1□ − 4gN1ÞUi þ ðL1 − K1Þ∂ið∂UÞ ¼ 0; ð6:7aÞ

where

K1 ¼ B0
1ðgGÞ; B0

1 ≔ −2
�

b4 þ b5 b̄2 − b̄5
2ðb̄2 − b̄5Þ −2ðb2 þ b5Þ

�
;

N1 ¼
� ð2a0 þ a2Þ −3ðā0 − ā2Þ
−4ðā0 − ā2Þ −6ða0 þ 2a3Þ

�
; Ui ¼

�
Vi

Ai

�
;

L1 ¼ −
g
a0

�
1 0

0 2

�
K0 ¼ −4gN1M−1

0 : ð6:7bÞ

The determinants of K1 and N1 are given by

detK1 ¼
8

3
gðdetAÞðdetB1Þ;

detN1 ¼ −6½ða0 þ 2a3Þð2a0 þ a2Þ þ 2ðā0 − ā2Þ2�: ð6:7cÞ

When detK1 ≠ 0, one can multiply Eq. (6.7a) by K−1
1 and obtain the matrix Klein-Gordon equation for the massive spin-1

torsion modes,
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ð□þM1ÞŨi ¼ 0; M1 ≔ −4gK−1
1 N1;

Ũi ≔ Ui þM−1
0 ∂iU; ∂iŨi ¼ 0: ð6:8Þ

The eigenvalues of the mass matrix M1 are given by

m2
�ð1Þ ¼

−2g
detK1

�
trf1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrf1Þ2 − 4 det f1

q �
; ð6:9aÞ

where f1 ≔ ðdetK1ÞK−1
1 N1, and

det f1 ¼ ðdetN1ÞðdetK1Þ;
trf1 ¼ 4ðb2 þ b5Þ½ð2a0 þ a2Þ½ða0 − a1Þða1 þ 2a3Þ − ðā0 − ā1Þ2� þ 2ða0 − a1Þðā0 − ā2Þ2�

þ 4ðb4 þ b5Þ½ða0 þ 2a3Þ½ða0 − a1Þð2a1 þ a2Þ − 2ðā0 − ā1Þ2� þ 2ða0 − a1Þðā0 − ā2Þ2�
þ 8ðb̄2 − b̄5Þ½−ð2a0 þ a2Þða0 þ 2a3Þðā0 − ā1Þ þ 2½ða0 − a1Þ2 þ ðā0 − ā1Þ2�ðā0 − ā2Þ
− 2ðā0 − ā1Þðā0 − ā2Þ2�: ð6:9bÞ

The determinant of K1 is the product of two critical
parameters associated to the spin-1 sector (see Table I).
A discussion of what happens when at least one of these
parameters vanishes is given in Appendix D.
In the parity even sector, our mass formula (6.9) yields

the familiar result for the spin-1� torsion modes:

m2þð1Þ ¼
6ða0 − a1Þða0 þ 2a3Þ
ða1 þ 2a3Þðb2 þ b5Þ

;

m2
−ð1Þ ¼

6ða0 − a1Þð2a0 þ a2Þ
ð2a1 þ a2Þðb4 þ b5Þ

:

C. Spin-2 modes

Although, in principle, the analysis of the spin-2 sector is
not much more complicated than the one for the spin-1
case, the fact that there are lots of variables makes the
general procedure rather complex and difficult to follow. In
Ref. [27], the mass eigenvalues of the spin-2 torsion modes
were found by studying a class of exact wave solutions,
defined by an ansatz that creates only the tensorial
irreducible part of the torsion, whereas the vector and
axial vector parts vanish. This motivates us to simplify the
present discussion by considering a dynamical system with
vanishing spin-0 and spin-1 modes, Vi ¼ 0 and Ai ¼ 0.
The physical content of such a system is described solely
by the spin-2 tensor tijk (Appendix A). Such a technical
simplification does not influence the final result for the
spin-2 mass eigenvalues.
The adopted assumptions have two additional conse-

quences: X ¼ 0, which follows from X ¼ 3∂A; and R ¼ 0,
which follows from the trace of (1ST). To analyse the
spin-2 sector, we need the symmetrized version of (1ST),

−a1Θik − a0Φik þ Ā0Ψik ¼ 0; ð6:10Þ

where Θik ≔ ∂mtikm ¼ ∂mTðikÞm, as follows from the def-
inition (A1) of tikm. Moreover, we also need two equations
that follow from (2ND), ∂mEmðikÞ, and ∂mð⋆EÞmðikÞ:

ðb1 þ b4Þ½□Φik − 2∂ði∂mΦkÞm� þ B̄2½□Ψik − 2∂ði∂mΨkÞm�
− 2A0Θik − 2Ā0Ψik ¼ 0; ð6:11aÞ

ðb1 þ b2Þ½□Ψik − 2∂ði∂mΨkÞm� − B̄4½□Φik − 2∂ði∂mΦkÞm�
− 2Ā0Θik þ 2A0Ψik ¼ 0: ð6:11bÞ

SinceΦik has a nontrivial Riemannian part associated to the
massless graviton, a proper description of the torsion spin-2
modes is obtained by using Eq. (6.10) to eliminateΦik from
Eqs. (6.11):

ðb1 þ b4Þ□ð−a1Θik þ Ā0ΨikÞ þ a0B̄2□Ψik

− 2a0ðA0Θik þ Ā0ΨikÞ ¼ 0; ð6:12aÞ

a0ðb1 þ b2Þ□Ψik − B̄2□ð−a1Θik þ Ā0ΨikÞ
− 2a0ðĀ0Θik − A0ΨikÞ ¼ 0: ð6:12bÞ

These equations can be compactly represented in the matrix
form as

ðK2□þ 2a0N2ÞUik ¼ 0; ð6:13Þ

where

K2 ≔
�

a1ðb1 þ b4Þ −Ā0ðb1 þ b4Þ − a0ðb̄2 − b̄1Þ
−a1ðb̄2 − b̄1Þ Ā0ðb̄2 − b̄1Þ − a0ðb2 þ b1Þ

�
;

N2 ≔
�
A0 Ā0

Ā0 −A0

�
; Uik ≔

�Θik

Ψik

�
:
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For detK2 ≠ 0, Eq. (6.13) is equivalent to

ð□þM2ÞUik ¼ 0; M2 ≔ 2a0K−1
2 N2; ð6:14Þ

where M2 is the mass matrix of the spin-2 torsion mode.
The matrices K2 and N2 are of the same form as

those found in Ref. [27], Eq. (4.50), up to inessential
differences in conventions. Hence, the mass eigenvalues
are also the same. Expressed in terms of the matrix
f2 ¼ ðdetK2ÞK−1

2 N2, they are given by

m2
�ð2Þ ¼

a0
detK2

�
trf2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrf2Þ2 − 4 det f2

q �
; ð6:15aÞ

where

det f2 ¼ ðdetK2ÞðdetN2Þ;
trf2 ¼ −a0ða0 − a1Þðb1 þ b2Þ − 2a0ðā0 − ā1Þðb̄2 − b̄1Þ

þ ½−a1ða0 − a1Þ þ ðā0 − ā1Þ2�ðb1 þ b4Þ:
ð6:15bÞ

As expected, the determinant of K2 is proportional to the
product of the critical parameters given in the third line of
Table I,

detK2 ¼ −a0a1 detB2; detN2 ¼ −ðA2
0 þ Ā2

0Þ: ð6:16Þ

In the parity-even sector, the above formulas produce the
well-known result,

m2þð2Þ ¼
2a0ða0 − a1Þ
a1ðb1 þ b4Þ

; m2
−ð2Þ ¼

2ða0 − a1Þ
b1 þ b2

:

The above procedure can be extended to the case
with nonvanishing spin-0 and spin-1 terms. After a
straightforward but rather clumsy calculation, we found
that the new terms do not influence the mass eigenvalues,
they only modify the spin-2 state Uik. A compact form of
the result reads

Uik → Ũik

≔ Z

�
Ūik − G∂ðiUkÞ þ

1

3
HðM−1

0 ∂i∂kU þ ηikUÞ
�
;

ð6:17aÞ

where

Z ≔
1

a1

�
−a0 Ā0

0 a1

�
; Ūik ≔

�Φik

Ψik

�
;

H ≔
1

a0

�
a2 3ðā2 − ā0Þ
0 −2a0

�
: ð6:17bÞ

The role of Z is to replace Φik in Ūik by its form obtained
from the symmetrized (1ST). The spin-2 nature of Ũik is
ensured by the properties ∂iŨik ¼ 0, ηikŨik ¼ 0. In fact,
these properties are sufficient to completely determine Ũik.

D. Comparison with Karananas’ mass formulas

Our mass formulas are found to be consistent with the
expressions for the canonical critical parameters, displayed
in Table I. A more detailed test can be conducted by
comparing them to the recent calculations of Karananas
[25]. The first step in this direction is to compare the
Lagrangian (5) in Ref. [25] with our expression (B1).
Although the procedure is straightforward, a number of
misprints found in Ref. [25] complicate the process.
Nevertheless, we established the following correspondence
between the related parameters:

a0 ¼ λ; ā0 ¼ Λ ¼ 0;

a1 ¼ λþ t1; a2 ¼ 2ð−λþ t3Þ;
a3 ¼ ð−λþ t2Þ=2;
ā1 ¼ −2t5; ā2 ¼ ā3 ¼ −t4;

b1 ¼ 4ðr1 − r3Þ; b2 ¼ 4r3;

b3 ¼ 4ðr2 − r3Þ; b4 ¼ 4ðr1 − r3 þ r4Þ;
b5 ¼ 4ðr3 þ r5Þ; b6 ¼ 4ðr1 − r3 þ 3r4Þ;
b̄1 ¼ r7 − 3r8; b̄2 ¼ b̄4 ¼ r7 þ r8;

b̄3 ¼ b̄6 ¼ −4r6 þ r7 þ r8; b̄5 ¼ −3r7 þ r8: ð6:18Þ

The remaining part of the comparison is rather simple. By
substituting the above expressions into Eqs. (6.4) and (6.9),
one finds that the resulting mass eigenvalues for the spin-0
and spin-1 torsion modes exactly reproduce the respective
result that Karananas gives in his Appendix A. Moreover,
we also found that, with the exception of minor differences,
our mass formula (6.15) for the spin-2 modes is in agree-
ment with his result (A.3.5); see also subsection IV.E in
Ref. [27]. Although the difference is small, it might be
responsible for more serious discrepancies in the physical
properties of the spin-2 modes, found in the next section.

VII. PHYSICAL RESTRICTIONS ON THE
SPACE OF PARAMETERS

In this section, we study the physical requirements of
the absence of ghosts (E > 0), the absence of tachyons
(m2 > 0), and the reality (m2 real) in the spectrum of
torsion modes. Our approach is based on the Hamiltonian
analysis developed in Secs. III and IV, subject to the
assumption that all the critical parameters are nonvanish-
ing, or equivalently, that all the torsion modes are propa-
gating. In what follows, we shall examine whether such an
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assumption is compatible with the adopted physical
requirements.
Our general strategy is the following. The conditions of

the positivity of energy can be read from the dynamical
component HR⊥ of the canonical Hamiltonian; see
Eq. (4.11). By introducing the matrices

FJ ≔
1

detBJ
RJ; J ¼ 0; 1; 2;

these conditions can be expressed by demanding that the
eigenvalues of Fj be positive. Using the general formula
for the eigenvalues of a 2 × 2 matrix [see (3.9)], one can
express these conditions in a more practical form as

EJ > 0∶ detFJ > 0; trFj > 0: ð7:1Þ

The absence of tachyons is effectively described by the
conditions of positivity of the eigenvalues m2

�ðJÞ of the
mass matrices MJ:

m2
�ðJÞ > 0∶ detMJ > 0; trMJ > 0: ð7:2Þ

Moreover, the presence of square roots in the mass
eigenvalues requires to check their reality:

m2
�ðJÞ real∶ ðtrMJÞ2 − 4 detMJ > 0: ð7:3Þ

By applying these general physical criteria to the specific
spin-J sectors, one obtains a set of restrictions on the
original Lagrangian parameters. An important goal of our
analysis is to clarify the issue of their mutual (in)consis-
tency. We shall always use a0 > 0, the condition that
ensures the correct limit to GR.

A. Spin-0 sector

1. Positivity of energy

The energy of the spin-0 modes is positive if the
eigenvalues of the matrix F0 ¼ R0= detB0 are positive.
Since detR0 ¼ 4 detB0, the first condition detF0 > 0
implies that detB0 > 0, or, equivalently,

ðb2 þ b3Þðb4 þ b6Þ þ ðb̄2 − b̄3Þ2 < 0; ð7:4aÞ

⇒ ðb2 þ b3Þðb4 þ b6Þ < 0: ð7:4bÞ

Then, the second condition takes the form tr R0 > 0. In
combination with Eq. (7.4b), it yields the relations

b2 þ b3 < 0; b4 þ b6 > 0; ð7:5Þ

which coincide with those appearing in PGþ. The inde-
pendent conditions are the condition Eq. (7.4a) and, for
instance, the first one in Eq. (7.5),

ðb2 þ b3Þðb4 þ b6Þ þ ðb̄2 − b̄3Þ2 < 0; b2 þ b3 < 0:

ð7:6Þ

These two conditions coincide with the first two relations
found in Eq. (48) of Ref. [25] (the third relation is
redundant).

2. Positivity of m2
�ð0Þ

The mass matrix M0 of the spin-0 torsion modes has the
form (6.3),

M0=4a0 ¼ K−1
0 N0 ¼

1

detK0

f0; detK0 ¼ −3a0a2 detB0:

ð7:7Þ

The positivity of its eigenvalues is expressed by the
conditions detM0 > 0 and trM0 > 0:

detN0

detK0

> 0;
1

detK0

trf0 > 0: ð7:8Þ

Since detB0 > 0, they take the form

a2 detN0 < 0; ð7:9aÞ

a2trf0 < 0: ð7:9bÞ

As shown in Appendix F, these general conditions can be
transformed into an unexpectedly simple form, in which the
parameters ðbnb̄nÞ are completely absent:

a2½ð2a0 þ a2Þða0 þ 2a3Þ þ 2ðā0 − ā2Þ2� > 0;

a2ð2a0 þ a2Þ > 0: ð7:10Þ

Returning to the parameters introduced in Eq. (6.18), this
result takes the form

ðt3 − λÞðt2t3 þ t24Þ > 0; ðt3 − λÞt3 > 0:

The first formula is equivalent to Karananas’s result [25],
but the second one is different.

B. Spin-1 sector

1. Positivity of energy

Starting with F1 ≔ R1= detB1 and using detR1 ¼
− detB1, the first condition for the positivity of energy,
detF1 > 0, reads

detB1 ≡ ðb2 þ b5Þðb4 þ b5Þ þ ðb̄2 − b̄5Þ2 < 0; ð7:11aÞ

⇒ ðb2 þ b5Þðb4 þ b5Þ < 0: ð7:11bÞ
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The second condition, written as trR1 < 0 and combined
with Eq. (7.11b), yields

b2 þ b5 > 0; b4 þ b5 < 0; ð7:12Þ

which is the PGþ result. As the two independent con-
ditions, we choose

ðb2 þ b5Þðb4 þ b5Þ þ ðb̄2 − b̄5Þ2 < 0; b4 þ b5 < 0:

ð7:13Þ

Again, there is a complete agreement with the first two
relations in Eq. (49) of [25], whereas the third relation is
redundant.

2. Positivity of m2
�ð1Þ

To make the technical exposition more compact, we
introduce the following notation:

μ2 ≔ 2a0 þ a2; μ3 ≔ a0=2þ a3;

k2 ≔ 2a1 þ a2; k3 ≔ a1=2þ a3:

detA ¼ −2½k2k3 þ ðā1 − ā2Þ2�;
detN1 ¼ −12½μ2μ3 þ ðā0 − ā2Þ2�:

The mass matrix of the spin-1 torsion modes was found in
subsection VI B,

M1 ¼ −4gK−1
1 N1 ¼ −

4g
detK1

f1;

detK1 ¼
8

3
gðdetAÞðdetB1Þ; ð7:14Þ

with g≡ A2
0 þ Ā2

0. The positivity of the mass eigenvalues is
expressed by the requirements

detN1

detK1

> 0;
1

detK1

trf1 < 0: ð7:15Þ

Since detB1 < 0, these conditions are equivalent to

ðdetAÞðdetN1Þ < 0; ð7:16aÞ

ðdetAÞtrf1 > 0: ð7:16bÞ

The expression for trf1 is given in subsection VI B; see also
Appendix F.
A simple inspection of Eq. (7.16a) shows that it can be

realized by detA < 0, detN1 > 0, or vice versa, whereas,
as shown in Appendix F, Eq. (7.16b) can be replaced by
a much simpler expression. The resulting conditions,
equivalent to Eq. (7.16), are defined in (F7):

ðiÞ k2k3 þ ðā1 − ā2Þ2 < 0; μ2μ3 þ ðā0 − ā2Þ2 > 0;

μ3k2A0 − 2μ3Ā2
0 þ A0ðā0 − ā2Þ2 < 0;

ðiiÞ k2k3 þ ðā1 − ā2Þ2 > 0; μ2μ3 þ ðā0 − ā2Þ2 < 0;

μ3k2A0 − 2μ3Ā2
0 þ A0ðā0 − ā2Þ2 > 0: ð7:17Þ

As before, they do not depend on the parameters ðbn; b̄nÞ.
Going over to the parameters defined in Eq. (6.18), the
relations (i) read

ðt1 þ t2Þðt1 þ t3Þ þ ðt4 − 2t5Þ2 < 0; t2t3 þ t24 > 0;

t2ðt21 þ 4t25Þ þ t1ðt2t3 þ t24Þ > 0:

The first two inequalities in the set (i) coincide with those
found in Ref. [25]; the third one is a bit different, but the
whole complementary set (ii) is missing.

C. Spin-2 sector

1. Positivity of energy

The first condition for the positivity of the eigenvalues
of F2 ¼ R2= detB2, detF2 > 0, combined with detR2 ¼
−4 detB2, takes the form

detB2 ≡ ðb1 þ b2Þðb1 þ b4Þ þ ðb̄2 − b̄1Þ2 < 0; ð7:18aÞ

⇒ ðb1 þ b2Þðb1 þ b4Þ < 0: ð7:18bÞ

The second condition combined with Eq. (7.18b) yields
relations that are also valid in PGþ,

b1 þ b2 < 0; b1 þ b4 > 0: ð7:19Þ

The two independent conditions are

ðb1 þ b2Þðb1 þ b4Þ þ ðb̄2 − b̄1Þ2 < 0; b1 þ b2 < 0:

ð7:20Þ

Comparing these conditions to the first two relations in
Eq. (50) of Ref. [25], one finds a complete agreement (the
third relation is redundant).

2. Positivity of m2
�ð2Þ

The mass matrix for the spin-2 modes is found in
subsection VI C:

M2 ¼ 2a0K−1
2 N2 ¼

2a0
detK2

f2;

detK2 ¼ −a0a1 detB2;

detN2 ¼ −½ða0 − a1Þ2 þ ðā0 − ā1Þ2�:

The positivity of the mass eigenvalues is expressed by the
requirements
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detN2

detK2

> 0;
2a0

detK2

trf2 > 0: ð7:21Þ

The condition detN2 < 0 implies detK2 < 0, whereupon,
relying on detB2 < 0, one obtains

a1 < 0; ð7:22aÞ

trf2 < 0; ð7:22bÞ

where trf2 is calculated in subsection VI C.

3. Is the spin-2 sector free of ghosts and tachyons?

Let us recall that in PGþ, the conditions a1 < 0 and b1 þ
b2 < 0 imply trf2 > 0, so that one of the two spin-2�
modes is always a tachyon, as is well known. In what
follows, we will prove, somewhat unexpectedly, that the
same conclusion also holds in the general PG.
To show this, we rewrite trf2 in a compact notation as

trf2 ¼ α2ðb1 þ b2Þ þ β2ðb̄2 − b̄1Þ þ γ2ðb1 þ b4Þ;
α2 < 0; ð7:23aÞ

where the coefficients α2, β2 and γ2 can be read from
Eq. (6.15b),

α2 ¼ −a0ða0 − a1Þ; β2 ¼ −2a0ðā0 − ā1Þ2;
γ2 ¼ −a1ða0 − a1Þ þ ðā0 − ā2Þ2;

and α2 < follows from Eq. (7.22a). Since b1 þ b4 > 0, one
finds

trf2
b1 þ b4

¼ α2
b1 þ b2
b1 þ b4

þ β2
b̄2 − b̄1
b1 þ b4

þ γ2: ð7:23bÞ

Having in mind the first relation in Eq. (7.20), written as

b1 þ b2
b1 þ b4

þ x2 < 0; x ≔
b̄2 − b̄1
b1 þ b4

;

we find it useful to rewrite Eq. (7.23b) in an equivalent
form,

trf2
b1 þ b4

¼ α2

�
b1 þ b2
b1 þ b4

þ x2
�
þ F2ðxÞ;

F2ðxÞ ≔ −α2x2 þ β2xþ γ2: ð7:23cÞ

A critical argument in our analysis comes from the
observation that the discriminant of the quadratic function
F2ðxÞ, Δ2 ¼ β22 þ 4α2γ2, is automatically negative,

Δ2 ¼ 4a0a1½ðā0 − ā1Þ2 þ ða0 − a1Þ2�
¼ −4a0a1 detN2 < 0: ð7:24Þ

Next, since α2 < 0 (the parabola F2 opens upward) and
Δ2=α2 > 0 (minimum of F2 is positive), it follows that
F2ðxÞ > 0 for any x. Hence, using Eq. (7.20), one obtains
the result

trf2 > ðb1 þ b4ÞF2ðxÞ > 0; ð7:25Þ

which contradicts to (7.22b). Thus,
S2. The two no-tachyon conditions in Eqs. (7.22a) and
(7.22b) are mutually exclusive; hence, the two spin-2
torsion modes cannot be simultaneously physical.

Such a conclusion is not in agreement with the result found
by Karananas [25].

4. No-ghost conditions: spin-2 versus spin-1 sector

The no-ghost conditions for spin-1 and spin-2 sectors are
in contradiction to each other. Indeed, Eq. (7.12) implies
that b2 > b4, whereas Eq. (7.19) implies that b4 > b2.
Hence, only one of these two sectors can be physical. The
result is in agreement with the Corrigendum in [25].

D. Reality conditions

The structure of the general reality conditions in
Eq. (7.3) looks rather cumbersome. However, after replac-
ing jtrf0j, jtrf1j, and jtrf2j with their minimal values,
calculated from the inequalities (F3), (F6), and (7.25),
respectively, the reality conditions in Eq. (7.3) transform
into

spin0∶ ðb4 þ b6Þ2a2 detN0 þ 12a0ð2a0 þ a2Þ2 detB0 < 0;

spin1∶ gðb2 þ b5Þ2ðdetAÞðdetN1Þ− 24α21 detB1 < 0;

spin2∶ ðb1 þ b4Þ2a1 detN2 þ 4a0ða0 − a1Þ2 detB2 > 0;

ð7:26Þ

see Sec. VI and Appendix F. These formulas are much
simpler than Eq. (7.3), but they represent only sufficient
conditions for the reality of the corresponding mass
eigenvalues.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we investigated generic aspects of the
Hamiltonian structure of the general parity-violating PG,
and used them to study the torsion particle spectrum [30].
Making use of Dirac’s Hamiltonian approach, we iden-

tified the set of all if-constraints, the expressions that
become true constraints if the corresponding critical
parameters cn vanish. Both the if-constraints and the
associated critical parameters have a crucial influence on
the PG dynamics. Then, we constructed the generic form of
the canonical HamiltonianHc, determined by taking all the
critical parameters to be nonvanishing. An extension of the
procedure to allow for a proper treatment of the vanishing
critical parameters is outlined in Appendix D.
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Apart from being important by itself, the Hamiltonian
structure introduced here turns out to be intrinsically related
to the particle spectrum of PG. To examine that subject, we
first calculated the mass eigenvalues m2

�ðJÞ of the torsion
modes with spin J ¼ 0, 1, and 2, relying on the weak field
approximation of the gravitational field equations around
M4. As a test of the results, we verified that m2

�ðJÞ are
proportional to the inverse critical parameters 1=cn. As a
consequence, whenever some of cn vanish, the correspond-
ing values of m2

�ðJÞ become infinite, thereby preventing the
associated torsion modes from propagating. This is consis-
tent with the canonical effects of the vanishing critical
parameters in PGþ (in the weak field approximation). A

comparison of our mass formulas to those found by
Karananas [25] leads to the following conclusions:
(k1)For the spin-0 and spin-1 torsion modes, our results

confirm those of Karananas.
(k2)For the spin-2 modes, there are certain differences,

noted already in Ref. [27].
The absence of ghosts (positivity of energy) in the

particle spectrum is ensured by demanding the positivity
of the specific spin-J terms in the canonical Hamiltonian,
whereas the conditions for the absence of tachyons are
defined by the requirement m2

�ðJÞ > 0. A detailed analysis
shows that these requirements can be formulated as
follows:

Spin 0∶ ðb2 þ b3Þðb4 þ b6Þ þ ðb̄2 − b̄3Þ2 < 0; b2 þ b3 < 0;

a2½ð2a0 þ a2Þða0=2þ a3Þ þ ðā0 − ā2Þ2� < 0; a2ð2a0 þ a2Þ > 0.

Spin 1∶ ðb2 þ b5Þðb4 þ b5Þ þ ðb̄2 − b̄5Þ2 < 0; b4 þ b5 < 0;

ðiÞ ð2a1 þ a2Þða1=2þ a3Þ þ ðā1 − ā2Þ2 < 0; ð2a0 þ a2Þða0=2þ a3Þ þ ðā0 − ā2Þ2 > 0;

ða0 − a1Þ½ða0=2þ a3Þð2a1 þ a2Þ þ ðā0 − ā2Þ2� − 2ða0=2þ a3Þðā0 − ā1Þ2 < 0;

ðiiÞ an alternative set of conditions; obtained by ðiÞ → ð−1Þ × ðiÞ:
Spin 2∶ ðb1 þ b2Þðb1 þ b4Þ þ ðb̄2 − b̄1Þ2 < 0; b1 þ b2 < 0;

the conditions for the absence of tachyons aremutually exclusive: ð8:1Þ

The results for the absence of ghosts (first line in each spin
sector) are identical to those of Karananas, whereas the
formulas describing the absence of tachyons show a
number of less or more serious differences. In particular,
the whole set of conditions (ii) in the spin-1 sector is
missing in Karananas’s analysis, but the most important
difference is found in the spin-2 sector, where the two
conditions for the absence of tachyons are in contradiction
to each other, in contrast to Karananas’s conclusion.
The presence of square roots in the expressions for the

mass eigenvalues m2
�ðJÞ requires us to verify their reality.

A sufficient form of the reality conditions, compactly
presented at the end of Sec. VII, is much simpler than
their general form.
In conclusion, our analysis clarifies the structure of the

particle spectrum of the general PG by improving the results
found by Karananas, in particular the status of the spin-2
sector. On the other hand, elements of the Hamiltonian
structure introduced here, including its extension to the case
of vanishing critical parameters outlined in Appendix D, are
a good starting point for further investigation of the full
nonlinear dynamics of PG.
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APPENDIX A: IRREDUCIBLE DECOMPOSITION
OF THE FIELD STRENGTHS

The torsion tensor has three irreducible pieces:

ð2ÞTimn ¼
1

3
ðηimVn − ηinVmÞ;

ð3ÞTimn ¼ εimnkAk;

ð1ÞTimn ¼ Timn − ð2ÞTimn − ð3ÞTimn ¼
4

3
ti½mn�; ðA1aÞ

where

Vn ≔ Tk
kn; Ak ≔

1

6
εkrstTrst;

timn ≔ TðimÞn þ
1

3
ηnðiVmÞ −

1

3
ηimVn: ðA1bÞ

The Riemann-Cartan curvature tensor can be decomposed
into six irreducible pieces:
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ð2ÞRijmn ¼
1

2
ðηikΨjl − ηjkΨilÞεklmn;

ð3ÞRijmn ¼
1

12
Xεijmn;

ð4ÞRijmn ¼
1

2
ðηimΦjn − ηjmΦinÞ − ðm ↔ nÞ;

ð5ÞRij ¼ 1

2
ðηimR̂½jn� − ηjmR̂½in�Þ − ðm ↔ nÞ;

ð6ÞRijmn ¼
1

12
Rðηimηjn − ηjmηimÞ;

ð1ÞRijmn ¼ Rijmn −
X6
a¼2

ðaÞRijmn; ðA2aÞ

where

R̂im ≔ Ricim ¼ Rinm
n; R ≔ Ricmm;

Xij ≔
1

2
Rikmnε

kmn
j; X ≔ Xn

n;

Φij ≔ RicðijÞ −
1

4
ηijR; Ψij ≔ XðijÞ −

1

4
ηijX: ðA2bÞ

The above definitions are the tensor counterparts of the
corresponding formulas given in terms of the differential
forms; see [27,29]. They imply the following relations
characterizing the parity-odd sector:

Tijk⋆ð2ÞTijk ¼ Tijk⋆ð3ÞTijk;

Rijkl⋆ð2ÞRijkl ¼ Rijkl⋆ð4ÞRijkl;

Rijkl⋆ð3ÞRijkl ¼ Rijkl⋆ð6ÞRijkl; ðA3aÞ

and also

Tijk⋆ð1ÞTijk ¼ ð1ÞTijk⋆ð1ÞTijk;

Rijkl⋆ð1ÞRijkl ¼ ð1ÞRijkl⋆ð1ÞRijkl;

Rijkl⋆ð5ÞRijkl ¼ ð5ÞRijkl⋆ð5ÞRijkl: ðA3bÞ

APPENDIX B: ALTERNATIVE FORM OF
THE LAGRANGIAN

In this appendix, we rewrite our Lagrangian (2.6) in an
equivalent form that allows an easier comparison to the
literature [22,25]:

LG ¼ −ða0Rþ 2Λ0 þ ā0XÞ þ LT2 þ LR2 ;

LT2 ¼ h1TijkTijk þ h2TimnTnmi þ h3VmVn

þ εmnklðh̄4Ti
mnTikl þ h̄5Tmn

iTkliÞ; ðB1aÞ

LR2 ¼ 1

2
ðf1RijmnRijmn þ f2RijmnRimjn þ f3RijmnRmnij

þ f4RicimRicim þ f5RicimRicmi þ f6R2Þ

þ 1

2
εmnklðf̄7RmnklRþ f̄8RijmnRij

kl

þ f̄9RmnijRkl
ij þ f̄10RmnijRij

klÞ: ðB1bÞ

The parameters ðhn; h̄nÞ and ðfn; f̄nÞ can be expressed in
terms of the “irreducible” parameters appearing in
Eq. (2.6), as follows:

h1 ¼
1

6
ð2a1 þ a3Þ; h2 ¼

1

3
ða1 − a3Þ;

h3 ¼ −
1

3
ða1 − a2Þ;

h̄4 ≔ −
1

24
ð4ā1 þ ā2 þ ā3Þ; h̄5 ≔ −

1

6
ð2ā1 − ā2 − ā3Þ;

ðB2aÞ

and

f1 ≔
1

12
ð2b1þ 3b2þb3Þ; f2 ≔

1

3
ðb1−b3Þ;

f3 ≔
1

12
ð2b1− 3b2þb3Þ; f4 ≔−

1

2
ðb1þb2−b4−b5Þ;

f5 ≔−
1

2
ðb1 −b2−b4þb5Þ; f6 ≔

1

12
ð2b1− 3b4þb6Þ;

f̄7 ≔
1

24
ð2b̄1− b̄3− b̄6Þ; f̄8 ≔−

1

16
ðb̄1þ b̄2þ b̄4þ b̄5Þ;

f̄9 ≔−
1

16
ðb̄1− b̄2− b̄4þ b̄5Þ; f̄10 ≔−

1

8
ðb̄1− b̄5Þ:

ðB2bÞ

Relying on the existence of three topological invariants
(2.9), Karananas [25] imposed three conditions on the
Lagrangian parameters in (B1): ā0, f6, f̄8 ¼ 0.

APPENDIX C: ð3 + 1Þ DECOMPOSITION
OF SPACETIME

The dynamical content of canonical constraints is greatly
clarified by using a decomposition of tensor fields with
respect to the subgroup of 3d rotations in the spatial
hypersurface Σ0∶ x0 ¼ const.
Let eα be a basis of three coordinate tangent vectors in

Σ0, eα ¼ ∂αðα ¼ 1; 2; 3Þ, and n the unit normal to Σ0,
nk ¼ hk0=

ffiffiffiffiffiffi
g00

p
. The four vectors (n, eα) define the

so-called ADM basis of tangent vectors in spacetime.
The decomposition of the vector e0 in the ADM basis is
given by
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e0 ¼ Nnþ Nαeα; ðC1aÞ

where N and Nα, known as the lapse and shift functions,
respectively, are linear in bk0:

N ¼ e0n ¼ nkbk0 ¼ 1=
ffiffiffiffiffiffi
g00

q
;

Nα ¼ e0eβ3gβα ¼ hk̄
αbk0 ¼ −g0α=g00: ðC1bÞ

Introducing the projectors on n and eα, given respec-
tively by

ðP⊥Þlk ¼ nknl; ðPjjÞlk ¼ δlk − nknl;

one can express a spacetime vector Vk in terms of its
orthogonal (to Σ0) and “parallel” (living in the tangent
space of Σ0) components:

Vk ¼ nkV⊥ þ Vk̄; ðC2Þ

where V⊥ ≔ nkVk and Vk̄ ≔ Vk − nkV⊥. Here, we use a
convention that a bar over an index k denotes its parallel
projection, so that nkVk̄ vanishes. The objects V⊥ and Vk̄
are respectively a scalar and a vector with respect to 3d
rotations in Σ0.
Consider now a second-rank tensor, Xik. Its orthogonal-

parallel decomposition reads

Xik ¼ niX⊥k̄ þ ninkX⊥⊥ þ nkX{̄⊥ þ X{̄ k̄: ðC3Þ

Here, X⊥k̄ is a vector and X⊥⊥ a scalar with respect to 3d
rotations, whereas the irreducible parts of X{̄ k̄ are its trace,
antisymmetric, and traceless symmetric parts:

SX ≔ Xk̄
k̄;

AX{̄ k̄ ≔ X½{̄ k̄�; TX{̄ k̄ ≔ Xð{̄ k̄Þ −
1

3
η{̄ k̄X

m̄
m̄;

X{̄ k̄ ¼ AX{̄ k̄ þ TX{̄ k̄ þ
1

3
η{̄ k̄

SX: ðC4aÞ

As a consequence,

X{̄ k̄Y{̄ k̄ ¼ AX{̄ k̄
AY{̄ k̄ þ TX{̄ k̄

TY{̄ k̄ þ
1

3
SXSY: ðC4bÞ

Now, it is straightforward to extend these considerations
to any tensor. As a particularly interesting example, we
consider the spacetime tensor Xijk ¼ −Xjik, which is
decomposed into the set of spatial tensors ðX⊥|̄⊥; X⊥|̄ k̄;
X{̄ |̄⊥; X{̄ |̄ k̄Þ. The irreducible parts of X{̄ |̄ k̄ ¼ −X|̄ {̄ k̄ are
the pseudoscalar, the vector, and the traceless symmetric
tensor, respectively:

PX ≔ ε{̄ |̄ k̄X{̄ |̄ k̄;
VX{̄ ≔ X{̄ k̄

k̄;

TX{̄ |̄ k̄ ≔ X{̄ð|̄ k̄Þ þ
1

2
η{̄ð|̄VXk̄Þ −

1

2
η|̄ k̄

VX{̄: ðC5aÞ

The tensor part satisfies the cyclic identity TX{̄ |̄ k̄ þ TXk̄ {̄ |̄ þ
TX|̄ k̄ {̄ ¼ 0. The epsilon tensor ε{̄ |̄ k̄ is defined by ε{̄ |̄ k̄ ≔
ε⊥{̄ |̄ k̄ and satisfies the identities

ε{̄ |̄ k̄ε
m̄ n̄ k̄ ¼ −ðδm̄{̄ δn̄|̄ − δm̄|̄ δ

n̄
{̄ Þ;

ε{̄ n̄ k̄ε
m̄ n̄ k̄ ¼ −3δm̄{̄ ; εm̄ n̄ k̄ε

m̄ n̄ k̄ ¼ −6:

The related decomposition formulas read:

X{̄ |̄ k̄ ¼
4

3
TX½{̄ |̄�k̄ − ηk̄½{̄VX|̄� −

1

6
ε{̄ |̄ k̄

PX;

X{̄ |̄ k̄Y{̄ |̄ k̄ ¼
4

3
TX{̄ |̄ k̄TY{̄ |̄ k̄ þ VX{̄VY{̄ −

1

6
PXPY: ðC5bÞ

APPENDIX D: GENERAL CONSTRUCTION
OF H⊥

In this appendix, we discuss the general structure ofH⊥,
including the case when some of the critical parameters
vanish. In a simplified but self-evident notation, the
relations that define critical parameters have the following
typical form (see Sec. III):

φ ¼ FV; ðD1Þ

where

φ ≔
�
φ1

φ2

�
; F ≔

�
a b̄

c̄ d

�
; V ≔

�
V1

V2

�
:

Here, φ represents the if-constraints, V are the correspond-
ing velocities, and F is the matrix with eigenvalues c1, c2.
Since F is chosen to represent A, B0, B1 or B2, the
parameter c̄ is proportional to b̄, c̄ ¼ κb̄. If b̄ ¼ 0, the
matrix F is already diagonal, and the construction ofH⊥ is
quite simple. When b̄ ≠ 0, which is typical for the parity-
violating PG, the matrix F needs first to be diagonalized.
The diagonal form D of F is constructed as

D ¼ P−1FP; P ≔
�

−b̄ −b̄
a − c1 a − c2

�
;

D ¼
�
c1 0

0 c2

�
; ðD2Þ

where P is invertible provided detP ¼ b̄ðc2 − c1Þ ≠ 0, and

P−1 ¼ 1

detP

�
a − c2 b̄

−aþ c1 −b̄

�
:

Left multiplication of (D1) by P−1 yields

φ0 ¼ DV 0; ðD3aÞ
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where φ0 ≔ P−1φ and V 0 ≔ P−1V, or, equivalently,

φ0
1 ¼ c1V 0

1; φ0
2 ¼ c2V0

2: ðD3bÞ
To construct the related F-part of H⊥, note that its

typical form reads

HF⊥ ¼ φTQV ≡ φ0TðPTQPÞV 0; Q ≔
�
q1 0

0 q2

�
;

ðD4Þ
see Sec. IV. Further discussion depends on the specific
values of c1 and c2.
(1) When c1, c2 ≠ 0, Eq. (D1) implies V ¼ F−1φ, and

HF⊥ ¼ φTQF−1φ coincides with the result found in Sec. IV.
(2) The case c1 ¼ c2 ¼ 0 is rather trivial: both if-constraints
φ0
n become true constraints that appear in the total

Hamiltonian, butHF⊥ ¼ 0. (3) Finally, when only one critical
parameter vanishes (which requires detF ¼ 0), say c2 ¼ 0,
then φ0

2 ¼ 0 (a new constraint), V 0
2 remains undetermined,

and φ0
1 ¼ c1V 0

1. Hence, Eq. (D4) implies that

HF⊥ ¼ ðb̄2q1 þ d2q2Þ
1

c1
ðφ0

1Þ2 þ φ0
1ðb̄2q1 − adq2ÞV 0

2:

ðD5Þ
The result can be also expressed in terms of the original if-
constraints φn by noting that φ0

2 ¼ 0 implies φ0
1 ¼ −φ1=b̄.

The factor 1=c1 in the first term shows a typical dependence
on the critical parameters, known from PGþ, whereas the
second term, linear in the undetermined velocity V 0

2, can be
absorbed into the total Hamiltonian; see [14,15,23]. The
presence of an extra constraint φ0

2 requires us to complete the
whole consistency procedure.
In the context of the weak field approximation, the form

of HF⊥ in Eq. (D5) determines the no-ghost conditions for
the case (3):

detF ¼ ad − b̄ c̄ ¼ 0; σc1 > 0; ðD6Þ
where σ is the sign of (b̄2q1 þ d2q2) and c1 ¼ aþ d.
Now, we have a comment on kind of “non-analiticity” of

the above results. Since the assumption b̄ ≠ 0 ensures the
regularity of the matrix P, the diagonal matrix D in
Eq. (D2) has no valid limit for b̄ → 0. Hence, the
expressions for cn when b̄ ¼ 0 cannot be obtained by
taking the limit b̄ → 0 of the generic result. However, since
the matrix F for b̄ ¼ 0 is already diagonal, the critical
parameters cn can be obtained directly from F. The same
conclusion also holds for the form of HF⊥.

APPENDIX E: LINEARIZED BIANCHI
IDENTITIES

In Secs. V and VI, many technical simplifications were
obtained with the help of the linearized Bianchi identities,

εμνλρRij
νλρ ¼ 0; εμνλρ∂νTiλρ ¼ εμνλρRiνλρ; ðE1Þ

and their consequences. In particular, the first identity
implies that

∂kXik ¼ 0; ∂iGik ¼ 0; ðE2Þ
where Gik ≔ Ricik − ð1=2ÞηikR, and the second identity
yields

Xi
j ¼ −

1

2
εjkmn∂kTimn; X ¼ 3∂A;

εijmnRijmk ¼ 2Xk
n − δnkX;

2Ric½mn� ¼ −∂kTkmn þ 2∂ ½mVn�: ðE3Þ
As a consequence,

∂mΦim ¼ ∂mR̂½im� þ
1

4
∂iR; ∂mΨim ¼ ∂mX½mi� −

1

4
∂iX:

ðE4Þ

APPENDIX F: SIMPLIFIED CONDITIONS FOR
THE ABSENCE OF TACHYONS

In this appendix, we derive a simplified form of the
conditions (7.9) and (7.16), describing the absence of
tachyons in the spin-0 and spin-1 sectors, respectively;
the spin-2 sector is discussed in subsection VII C.

1. Spin-0 sector

The expression for trf0, found in subsection VI A, can be
represented in a suitable form as

1

3
trf0 ¼ α0ðb2 þ b3Þ þ β0ðb̄2 − b̄3Þ þ γ0ðb4 þ b6Þ;

ðF1aÞ
where

α0 ¼ a0ð2a0 þ a2Þ; β0 ¼ 4a0ðā2 − ā0Þ;
γ0 ¼ −½a2ða0 þ 2a3Þ þ 2ðā0 − ā2Þ2�:

After dividing this equation by ðb4 þ b6Þ > 0, one obtains

trf0
3ðb4 þ b6Þ

¼ α0
b2 þ b3
b4 þ b6

þ β0
b̄2 − b̄3
b4 þ b6

þ γ0:

By noting that the first relation in Eq. (7.6) can be written as

b2 þ b3
b4 þ b6

þ x2 < 0; x ≔
b̄2 − b̄3
b4 þ b6

;

we find it useful to rewrite Eq. (F1a) in the form

trf0
3ðb4 þ b6Þ

¼ α0

�
b2 þ b3
b4 þ b6

þ x2
�
þ F0ðxÞ;

F0ðxÞ ≔ −α0x2 þ β0xþ γ0: ðF1bÞ
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Further analysis is based on an important property of the
quadratic function F0ðxÞ, based on Eq. (7.9a); its discrimi-
nant, Δ0 ¼ β20 þ 4α0γ0, is always negative,

Δ0 ¼ −4a0a2½ð2a0 þ a2Þða0 þ 2a3Þ þ 2ðā0 − ā2Þ2�
≡ ð4=3Þa0a2 detN0 < 0: ðF2Þ
Similar considerations applied to a2trf0 modify

Eq. (F1b) by an overall multiplicative factor a2. To simplify
the discussion, we introduce a suitable notation: α00 ≔ a2α0
and F0

0ðxÞ ≔ a2F0ðxÞ. Note that the discriminant Δ0
0 of the

new function F0
0ðxÞ remains negative. Now, we are ready to

prove the following statement:
S0. Given Δ0 < 0, the condition α00 ≡ a2α0 > 0 is
equivalent to a2trf0 < 0.

To prove this equivalence, we start by assuming α00 > 0,
which implies

a2trf0 < 3ðb4 þ b6ÞF0
0ðxÞ: ðF3Þ

Moreover, the parabola F0
0ðxÞ opens downward, and

Δ0
0=α

0
0 < 0 (negative at vertex) ensures that F0

0ðxÞ < 0

for any x. Hence, a2trf0 < 0, what was to be shown.
The reverse statement a2trf0 < 0 ⇒ α00 > 0 can be

easily proven by reductio ad absurdum, that is, by showing
that α00 < 0 implies a2trf0 > 0, which is a contradiction.
The statement S0 allows us to replace Eq. (7.9b) with the

much simpler condition a2 > 0.

2. Spin-1 sector

For the spin-1 sector, we first rewrite trf1 in the form

1

4
trf1 ¼ α1ðb4 þ b5Þ þ β1ðb̄2 − b̄5Þ þ γ1ðb2 þ b5Þ;

ðF4aÞ
where

α1 ≔ 2μ3k2A0 − 4μ3Ā2
0 þ 2A0ðā0 − ā2Þ2;

β1 ≔ −4μ2μ3Ā0 þ 4ðA2
0 þ Ā2

0Þðā0 − ā2Þ − 4Ā0ðā0 − ā2Þ2;
γ1 ≔ 2A0μ2k3 − μ2Ā2

0 þ 2A0ðā0 − ā2Þ2:

After dividing by ðb2 þ b5Þ > 0, one can rewrite Eq. (F4a)
in a suitable form

1

4ðb2 þ b5Þ
trf1 ¼ α1

�
b4 þ b5
b2 þ b5

þ x2
�
þ F1ðxÞ;

F1ðxÞ ≔ −α1x2 þ β1xþ γ1; x ≔
b̄2 − b̄5
b2 þ b5

: ðF4bÞ

As a consequence of Eq. (7.16a), the discriminant Δ1 of the
quadratic function F1ðxÞ is automatically negative,

Δ1 ≔ 16ðA2
0 þ Ā2

0Þ½μ2μ3 þ ðā0 − ā2Þ2�½k2k3 þ ðā1 − ā2Þ2�

≡ 2

3
ðA2

0 þ Ā2
0ÞðdetN1ÞðdetAÞ < 0: ðF5Þ

To relate our considerations to the properties of
ðdetAÞtrf1, we multiply Eq. (F4b) by detA, and introduce
a suitable notation α01 ≔ ðdetAÞα1 and F0

1ðxÞ ≔ ðdetAÞ×
F1ðxÞ. The new discriminant Δ0

1 is also negative. Now, one
can prove the following statement:

S1. For Δ1 < 0, the condition α01 ≡ ðdetAÞα1 < 0 is
equivalent to ðdetAÞtrf1 > 0.

The proof goes as follows. Starting with α01 < 0, one
obtains

ðdetAÞtrf1 > 4ðb2 þ b5ÞF0
1ðxÞ: ðF6Þ

Then, by noting that the parabola opens upward (α01 < 0)
and Δ0

1=α
0
1 > 0 (positive at vertex), one concludes that

F0
1ðxÞ > 0. Hence, ðdetAÞtrf1 > 0.
As before, the reverse statement ðdetAÞtrf1 > 0 ⇒

α01 < 0 can be proven by showing that α01 > 0 leads to
ðdetAÞtrf1 < 0, which is a contradiction.
The condition Δ1 < 0, combined with ðdetAÞα1 < 0,

can be realized in two ways:

ðiÞ detA > 0; detN1 < 0; α1 < 0:

ðiiÞ detA < 0; detN1 > 0; α1 > 0: ðF7Þ
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gravity theory, Phys. Rev. D 95, 084028 (2017).

[27] M. Blagojević, B. Cvetković, and Y. N. Obukhov, Gener-
alized plane waves in Poincaré gauge theory of gravity,
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Poincaré gauge theory, Phys. Rev. D 36, 1679 (1987).

[29] M. Blagojević and B. Cvetković, Generalized pp waves in
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A family of exact vacuum solutions, representing generalized plane waves propagating on the (anti-)de
Sitter background, is constructed in the framework of Poincaré gauge theory. The wave dynamics is defined
by the general Lagrangian that includes all parity even and parity odd invariants up to the second order in
the gauge field strength. The structure of the solution shows that the wave metric significantly depends on
the spacetime torsion.
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I. INTRODUCTION

The gauge principle, which was originally formulated by
Weyl in the context of electrodynamics [1], now belongs to
the key concepts which underlie the modern understanding
of dynamical structure of fundamental physical inter-
actions. Development of Weyl’s idea, most notably in
the works of Yang, Mills and Utiyama [2,3], resulted in
the construction of the general gauge-theoretic framework
for arbitrary non-Abelian groups of internal symmetries.
Sciama and Kibble extended this formalism to the space-
time symmetries, and proposed a theory of gravity [4,5]
based on the Poincaré group—a semidirect product of the
group of spacetime translations times the Lorentz group.
The importance of the Poincaré group in particle physics
strongly supports the Poincaré gauge theory (PGT) as the
most appropriate framework for description of the gravi-
tational phenomena.
The “translational” gauge field potentials (corresponding

to the subgroup of the spacetime translations) can be
consistently identified with the spacetime coframe field,
whereas the “rotational” gauge field potentials (correspond-
ing to the local Lorentz subgroup) can be interpreted as the
spacetime connection. This introduces the Riemann–Cartan
geometry on the spacetime manifold, since one naturally
recovers the torsion and the curvature as the Poincaré gauge
field strengths [6–16] (“translational” and “rotational” one,
respectively). The gravitational dynamics in PGT is deter-
mined by a Lagrangian that is assumed to be the function of
the field strengths, the curvature and the torsion, and the
dynamical setup is completed by including a suitable matter
Lagrangian.

In the past, investigations of PGT were mostly focused
on the class of models with quadratic parity symmetric
Lagrangians of the Yang-Mills type, expecting that the
results obtained for such a class should be sufficient to
reveal essential dynamical features of the more complex
general theory, for an overview see [17]. Recently, how-
ever, there has been a growing interest for the extended
class of models with a general Lagrangian that includes
both parity even and parity odd quadratic terms, see for
instance [18–23]. An important difference between these
two classes of PGT models is manifest in their particle
spectra. Generically, the particle spectrum of the parity
conserving PGT model consists of the massless graviton
and eighteen massive torsion modes. The conditions for the
absence of ghosts and tachyons impose serious restrictions
on the propagation of these modes [24–29]. In contrast, a
recent analysis of the general PGT [30] shows that the
propagation of torsion modes is much less restricted. This is
a new and physically interesting dynamical effect of the
parity odd sector.
Based on the experience stemming from general rela-

tivity (GR), it is well known that exact solutions play an
important role in understanding gravitational dynamics. An
important class of these solutions consists of the gravita-
tional waves [31–35], one of the best known families of
exact solutions in GR. For many years, investigation of
gravitational waves has been an interesting subject also in
the framework of PGT [36–45], as well as in the metric-
affine gravity theory which is obtained in the gauge-
theoretic approach when the Poincaré group is extended
to the general affine symmetry group [46–54]. Noticing that
dynamical effects of the parity odd sector of PGT are not
sufficiently well known, recently one of us [55] has studied
exact plane wave solutions with torsion in vacuum,
propagating on the flat background, for the case of the
vanishing cosmological constant Λ. In another recent work
[56] complementary results have been obtained, when the
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generalized pp waves with torsion were derived as exact
vacuum solutions of the parity even PGT, but for the case of
a nontrivial Λ ≠ 0. In the present paper, we merge and
extend these investigations by constructing the generalized
plane waves with torsion as vacuum solutions of the general
quadratic PGT with nonvanishing cosmological constant.
The resulting structure offers a deeper insight into the
dynamical role of the parity odd sector of PGT.
The paper is organized as follows. In the next Sec. II we

present a condensed introduction to the Poincaré gauge
gravity theory, giving the basic definitions and describing
the main structures; more details can be found in [6–9]. In
Sec. III we start with representing an (anti)-de Sitter
spacetime as a gravitational wave and use the properties
of the plane-fronted electromagnetic and gravitational
waves discussed in [57] to formulate an ansatz for the
gravitational wave in the Poincaré gauge gravity. The
properties of the resulting curvature and torsion 2-forms
are studied. In Sec. IV the set of differential equations for
the wave variables is derived. It is worthwhile to note that
the functions which describe the wave’s profile satisfy a
system of linear equations, even though the original field
equations of the Poincaré gauge theory are highly non-
linear. Solutions of this system are constructed, and their
properties are discussed. We demonstrate the consistency of
the results obtained with the particle spectrum of the
general Poincaré gauge gravity model. Finally, the con-
clusions are outlined in Sec. V.
Our basic notation and conventions are consistent with

[7]. In particular, Greek indices α; β;… ¼ 0;…; 3, denote
the anholonomic components (for example, of a coframe
ϑα), while the Latin indices i; j;… ¼ 0;…; 3, label the
holonomic components (dxi, e.g.). The anholonomic vector
frame basis eα is dual to the coframe basis in the sense that
eα⌋ϑβ ¼ δβα, where ⌋ denotes the interior product. The
volume 4-form is denoted η, and the η-basis in the space of
exterior forms is constructed with the help of the interior
products as ηα1…αp ≔ eαp⌋…eα1⌋η, p ¼ 1;…; 4. They are
related to the ϑ-basis via the Hodge dual operator �, for
example, ηαβ ¼ �ðϑα ∧ ϑβÞ. The Minkowski metric
gαβ ¼ diagðþ1;−1;−1;−1Þ. All the objects related to
the parity-odd sector (coupling constants, irreducible pieces
of the curvature, gravitational wave potentials, etc) are
marked by an overline, to distinguish them from the
corresponding parity-even objects.

II. BASICS OF POINCARÉ GAUGE GRAVITY

The gravitational field is described by the coframe ϑα ¼
eαi dx

a and connection Γα
β ¼ Γiα

βdxi 1-forms. The trans-
lational and rotational field strengths read

Tα ¼ Dϑα ¼ dϑα þ Γβ
α ∧ ϑβ; ð2:1Þ

Rα
β ¼ dΓα

β þ Γγ
β ∧ Γα

γ: ð2:2Þ
As usual, the covariant differential is denoted D.

The gravitational Lagrangian 4-form is (in general) an
arbitrary function of the geometrical variables:

V ¼ Vðϑα; Tα; Rα
βÞ: ð2:3Þ

Its variation with respect to the gravitational (translational
and Lorentz) potentials yields the field equations

Eα ≔
δV
δϑα

¼ −DHα þ Eα ¼ 0; ð2:4Þ

Cαβ ≔
δV
δΓα

β ¼ −DHα
β þ Eα

β ¼ 0: ð2:5Þ

Here, the Poincaré gauge field momenta 2-forms are
introduced by

Hα ≔ −
∂V
∂Tα ; Hα

β ≔ −
∂V
∂Rα

β ; ð2:6Þ

and the 3–forms of the canonical energy–momentum and
spin for the gravitational gauge fields are constructed as

Eα ≔
∂V
∂ϑα ¼ eα⌋V þ ðeα⌋TβÞ ∧ Hβ

þ ðeα⌋Rβ
γÞ ∧ Hβ

γ; ð2:7Þ

Eα
β ≔

∂V
∂Γα

β ¼ −ϑ½α ∧ Hβ�: ð2:8Þ

The field equations (2.4) and (2.5) are written here for
the vacuum case. In the presence of matter, the right-hand
sides of (2.4) and (2.5) contain the canonical energy-
momentum and the canonical spin currents of the physical
sources, respectively.

A. Quadratic Poincaré gravity models

The torsion 2-form can be decomposed into the 3
irreducible parts, whereas the curvature 2-form has 6
irreducible pieces. Their definition is presented in the
Appendix.
The general quadratic model is described by the

Lagrangian 4-form that contains all possible quadratic
invariants of the torsion and the curvature:

V ¼ 1

2κc

�
ða0ηαβ þ ā0ϑα ∧ ϑβÞ ∧ Rαβ − 2λ0η

− Tα ∧ X3
I¼1

½aI �ððIÞTαÞ þ āI ðIÞTα�
�

−
1

2ρ
Rαβ ∧ X6

I¼1

½bI �ððIÞRαβÞ þ b̄I ðIÞRαβ�: ð2:9Þ

The Lagrangian has a clear structure: the first line is linear
in the curvature, the second line collects torsion quadratic
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terms, whereas the third line contains the curvature
quadratic invariants. Furthermore, each line is composed
of the parity even pieces (first terms on each line), and the
parity odd parts (last terms on each line). The dimension-
less constant ā0 ¼ 1

ξ is inverse to the so-called Barbero-
Immirzi parameter ξ, and the linear part of the Lagrangian
—the first line in (2.9)—describes what is known in the
literature as the Einstein-Cartan-Holst model. A special
case a0 ¼ 0 and ā0 ¼ 0 describes the purely quadratic
model without the Hilbert-Einstein linear term in the
Lagrangian. In the Einstein-Cartan model, one puts
a0 ¼ 1 and ā0 ¼ 0.
Besides that, the general PGT model contains a set of the

coupling constants which determine the structure of quad-
ratic part of the Lagrangian: ρ, a1, a2, a3 and ā1; ā2; ā3,
b1;…; b6 and b̄1;…; b̄6. The overbar denotes the constants
responsible for the parity odd interaction. We have the
dimension ½1ρ� ¼ ½ℏ�, whereas aI, āI, bI and b̄I are dimen-
sionless. Moreover, not all of these constants are indepen-
dent: we take ā2 ¼ ā3, b̄2 ¼ b̄4 and b̄3 ¼ b̄6 because some
of terms in (2.9) are the same in view of (A14)–(A16).
For the Lagrangian (2.9) from (2.6)–(2.8) we derive the

gauge gravitational field momenta

Hα ¼
1

κc
hα; ð2:10Þ

Hα
β ¼ −

1

2κc
ða0ηαβ þ ā0ϑα ∧ ϑβÞ þ

1

ρ
hαβ; ð2:11Þ

and the canonical energy-momentum and spin currents of
the gravitational field

Eα ¼
1

2κc
ða0ηαβγ ∧ Rβγ þ 2ā0Rα

β ∧ ϑβ

− 2λ0ηα þ qðTÞα Þ þ 1

ρ
qðRÞα ; ð2:12Þ

Eα
β ¼

1

2
ðHα ∧ ϑβ −Hβ ∧ ϑαÞ: ð2:13Þ

For convenience, we introduced here the 2-forms which are
linear functions of the torsion and the curvature, respec-
tively, by

hα ¼
X3
I¼1

½aI �ððIÞTαÞ þ āIðIÞTα�; ð2:14Þ

hαβ ¼
X6
I¼1

½bI �ððIÞRα
βÞ þ b̄IðIÞRα

β�; ð2:15Þ

and the 3-forms which are quadratic in the torsion and in
the curvature, respectively:

qðTÞα ¼ 1

2
½ðeα⌋TβÞ ∧ hβ − Tβ ∧ eα⌋hβ�; ð2:16Þ

qðRÞα ¼ 1

2
½ðeα⌋Rβ

γÞ ∧ hβγ − Rβ
γ ∧ eα⌋hβγ�: ð2:17Þ

By construction, (2.14) has the dimension of a length,
½hα� ¼ ½l�, whereas the 2-form (2.15) is obviously dimen-
sionless, ½hαβ� ¼ 1. Similarly, we find for (2.16) the

dimension of length ½qðTÞα � ¼ ½l�, and the dimension of

the inverse length, ½qðRÞα � ¼ ½1=l� for (2.17).
The resulting vacuum Poincaré gravity field equa-

tions (2.4) and (2.5) then read:
a0
2
ηαβγ ∧Rβγþ ā0Rα

β∧ϑβ−λ0ηαþqðTÞα þl2
ρq

ðRÞ
α −Dhα¼0;

ð2:18Þ

a0ηαβγ ∧ Tγ þ ā0ðTα ∧ ϑβ − Tβ ∧ ϑαÞ
þhα ∧ ϑβ − hβ ∧ ϑα − 2l2

ρDhαβ ¼ 0: ð2:19Þ

The contribution of the curvature square terms in the
Lagrangian (2.9) to the gravitational field dynamics in
the Eqs. (2.18) and (2.19) is characterized by the parameter

l2
ρ ¼

κc
ρ
: ð2:20Þ

Since ½1ρ� ¼ ½ℏ�, this new coupling parameter has the
dimension of the area, ½l2

ρ� ¼ ½l2�.

III. GRAVITATIONAL WAVES IN POINCARÉ
GAUGE GRAVITY

Gravitational waves are of fundamental importance in
physics, and recently the purely theoretical research in this
area was finally supported by the first experimental
evidence [58–60]. A general overview of the history of
this fascinating subject can be found in [61–63].

A. (Anti)-de Sitter spacetime as a wave

Let us now discuss the four-dimensional manifold which
can be viewed as an “(anti)-de Sitter spacetime in the wave
disguise”. As before [55], we use the same local coor-
dinates which are divided into two groups: xi ¼ ðxa; xAÞ,
where xa ¼ ðx0 ¼ σ; x1 ¼ ρÞ and xA ¼ ðx2; x3Þ. Hereafter
the indices from the beginning of the Latin alphabet label
the coordinates σ and ρ parametrizing the wave rays,
a; b; c… ¼ 0, 1, whereas the capital Latin indices,
A;B;C… ¼ 2, 3, refer to coordinates xA on the wave front.
The coframe 1-form is chosen as a direct generalization

of the ansatz used in [55,57]:

ϑ̂0̂ ¼ q
2p

½ðÛ þ 1Þdσ þ dρ�; ð3:1Þ
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ϑ̂1̂ ¼ q
2p

½ðÛ − 1Þdσ þ dρ�; ð3:2Þ

ϑ̂Â ¼ 1

p
dxA; A ¼ 2; 3: ð3:3Þ

Here the three functions are given by the following
expressions:

Û ¼ −
λ

4
ρ2; ð3:4Þ

p ¼ 1þ λ

4
δABxAxB; ð3:5Þ

q ¼ 1 −
λ

4
δABxAxB: ð3:6Þ

The constant parameter λ is an arbitrary real number (which
can be positive, negative or zero). As a result, the line
element reads

ds2 ¼ 1

p2
fq2ðdσdρþ Ûdσ2Þ − δABdxAdxBg: ð3:7Þ

The key object for the description of the wave configu-
rations is the wave 1-form. On the basis of the earlier results
[55], we introduce a wave 1-form k as

k ≔ dσ ¼ p
q
ðϑ̂0̂ − ϑ̂1̂Þ: ð3:8Þ

By construction, we have k ∧ �k ¼ 0. As before, the wave
covector is kα ¼ eα⌋k. Its (anholonomic) components are
thus kα ¼ p

q ð1;−1; 0; 0Þ and kα ¼ p
q ð1; 1; 0; 0Þ. Hence, this

is a null vector field, kαkα ¼ 0.
The corresponding Riemannian connection Γ̂β

α is deter-
mined from

dϑ̂α þ Γ̂β
α ∧ ϑ̂β ¼ 0; ð3:9Þ

and it reads explicitly (recall that a; b;… ¼ 0, 1 and
A;B;… ¼ 2, 3)

Γ̂0̂
1̂ ¼ Γ̂1̂

0̂ ¼ −
λρ

2
k; ð3:10Þ

Γ̂B
a ¼ p

q
ϑ̂aeB⌋d

�
q
p

�
; ð3:11Þ

Γ̂B
A ¼ 1

p
ðϑ̂BeA⌋dp − ϑ̂AeB⌋dpÞ: ð3:12Þ

Substituting (3.4)–(3.6), we straightforwardly find the
curvature:

R̂β
α ¼ λϑ̂β ∧ ϑ̂α: ð3:13Þ

Thus, the coframe and connection ðϑ̂α; Γ̂β
αÞ, described by

(3.1)–(3.3) and (3.10)–(3.12), represent the geometry of a
torsionless (3.9) spacetime of constant curvature (3.13).
Depending on the sign of λ, we have either a de Sitter or an
anti-de Sitter space.
We mark the corresponding geometrical quantities by the

hat over the symbols. This geometry will be used as a
starting point for the construction of the plane wave
solutions in the Poincaré gauge gravity with nontrivial
cosmological constant.
It is worthwhile to note that the wave vector field k is a

null geodesic in this geometry:

k ∧ �k ¼ 0; k ∧ �D̂kα ¼ 0: ð3:14Þ
B. Generalized plane wave ansatz

We will construct new gravitational wave solutions in
Poincaré gauge gravity theory by making use of the ansatz
for the coframe and for the local Lorentz connection

ϑα ¼ ϑ̂α þ U
2

q
p
kαk; ð3:15Þ

Γα
β ¼ Γ̂α

β þ q
p
ðkαWβ − kβWαÞk: ð3:16Þ

Here the function U ¼ Uðσ; xAÞ determines the wave
profile. The ansatz for the local Lorentz connection is
postulated as a direct analogue of the construction used
earlier in [55], and the vector variable Wα ¼ Wαðσ; xAÞ
satisfies the same orthogonality property, kαWα ¼ 0, which
is guaranteed by the choice

Wα ¼
�
Wa ¼ 0; a ¼ 0; 1;

WA ¼ WAðσ; xBÞ; A ¼ 2; 3:
ð3:17Þ

Consequently, the generalized ansatz for the Poincaré
gauge potentials—coframe (3.15) and connection (3.16)
—is described by the three variables U ¼ Uðσ; xBÞ and
WA ¼ WAðσ; xBÞ. These should be determined from the
gravitational field equations.
The ansatz (3.15) and (3.16) can be viewed as a non-

Riemannian extension of the Kerr-Schild-Kundt construc-
tion developed recently [64–67] in general relativity and in
modified gravity models. The original Kerr-Schild con-
struction [34] in GR is underlain by the existence of
preferred null directions. In our approach, the metric
defined by the coframe (3.15) can be written in a typical
Kerr-Schild form

gij ¼ ĝij þ
q
p
Ukikj; ð3:18Þ

where ĝij is the spacetime metric of the (anti)-de Sitter line
element (3.7), and ki ¼ ∂i⌋k ¼ ∂i⌋dσ ¼ ð1; 0; 0; 0Þ is the
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null vector with respect to both ĝij and gij. On the other
hand, the orthogonality property of the vector Wα that
defines the radiation piece of the connection (3.17),
kαWα ¼ 0, ensures typical radiation structure of the
Riemann-Cartan field strengths, the torsion and the
curvature.
The line element for this ansatz has the same form (3.7),

with a replacement

Û → Û þ p
q
U: ð3:19Þ

It is important to stress that the wave 1-form k is still
defined by (3.8), which however can be recast into

k ¼ dσ ¼ p
q
ðϑ0̂ − ϑ1̂Þ: ð3:20Þ

Consequently, the anholonomic components of the wave
covector kα ¼ eα⌋k still have the values kα ¼ p

q ð1;−1; 0; 0Þ
and kα ¼ p

q ð1; 1; 0; 0Þ. As before, this is a null vector
field, kαkα ¼ 0.
One may wonder why does the factor q

p appear in the
ansatz (3.15) and (3.16). After all, it is always possible to
absorb it by redefining U and WA. However, it is conven-
ient to keep this factor explicitly by noticing that the
combination q

p k
α ¼ ð1; 1; 0; 0Þ has the constant values. It

becomes clear then that the following differential relations
are valid:

dk ¼ 0; d

�
q
p
kα

�
¼ 0: ð3:21Þ

Moreover, although Dkα no longer vanishes, we find

k ∧ D

�
q
p
kα

�
¼ k ∧ D̂

�
q
p
kα

�
¼ 0: ð3:22Þ

Taking this into account, we straightforwardly compute the
torsion 2-form

Tα ¼ −k ∧ q
p
kαΘ; ð3:23Þ

where we introduced the 1-form

Θ ¼ 1

2
dU þWαϑ

α; ð3:24Þ

with the differential d ≔ ϑAeA⌋d ¼ dxA∂A that acts in the
transversal 2-space spanned by xA ¼ ðx2; x3Þ.
The structure of the torsion is qualitatively the same as in

the case of the vanishing parameter λ, see [55]. The
structure of curvature is more nontrivial, though. A direct
computation yields a 2-form

Rα
β ¼ λϑα ∧ ϑβ − k ∧ q

p
ðkαΩβ − kβΩαÞ; ð3:25Þ

where we introduced the vector-valued 1-form with the
components

Ωα ¼
�Ωa ¼ 0; a ¼ 0; 1;

ΩA ¼ D̂WA þ λ
2
UϑA; A ¼ 2; 3:

ð3:26Þ

The transversal covariant derivative is defined by

D̂WA ¼ dWA þ Γ̂B
AWB: ð3:27Þ

Note that the Riemannian de Sitter connection (3.12)
appears here (more exactly, the corresponding components
of the Riemann-Cartan connection (3.16) coincide with the
Riemannian components: ΓB

A ¼ Γ̂B
A).

Let us describe the geometry of the transversal 2-space
spanned by xA ¼ ðx2; x3Þ explicitly. The volume 2-form
reads η ¼ 1

2
ηABϑ

A ∧ ϑB ¼ 1
p2 dx2 ∧ dx3, where ηAB ¼

−ηBA is the 2-dimensional Levi-Civita tensor (with
η23 ¼ 1). Obviously this is a non-flat space. The corre-
sponding Riemannian connection (3.12) yields a nontrivial
curvature R̂B

A ¼ λϑB ∧ ϑA of a 2-dimensional de Sitter
space. The volume 4-form of the spacetime manifold reads

η ¼ ϑ0̂ ∧ ϑ1̂ ∧ ϑ2̂ ∧ ϑ3̂ ¼ q2

2p2 k ∧ dρ ∧ η. For the wave 1-

form we find the remarkable relation

�k ¼ −k ∧ η: ð3:28Þ

We will denote the geometrical objects on the transversal
2-space by underlining them; for example, a 1-form
ϕ ¼ ϕAϑ

A. The Hodge duality on this space is defined
as usual via �ϑA ¼ η

A
¼ eA⌋η ¼ ηABϑ

B. With the help of
(3.28), we can verify

�ðk ∧ ϕÞ ¼ k ∧ �ϕ: ð3:29Þ

The new 1-forms (3.24) and (3.26) have the obvious
transversality properties:

k ∧ �Θ ¼ 0; k ∧ �Ωα ¼ 0; kαΩα ¼ 0: ð3:30Þ

In accordance with (3.17) and (3.26), we have explicitly:

Θ ¼ ϑA
�
1

2
D̂AU − δABWB

�
; ð3:31Þ

ΩA ¼ ϑB
�
D̂BWA þ λ

2
UδAB

�
: ð3:32Þ

Here we denoted D̂A ¼ eA⌋D̂. Applying the transversal
differential to (3.24), and making use of (3.26), we find
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dΘ ¼ Ωα ∧ ϑα: ð3:33Þ

In essence, this is equivalent to the Bianchi identity DTα ¼
Rβ

α ∧ ϑβ which is immediately checked by applying the
covariant differentialD to (3.23) and using (3.25). Note that
it is crucial to use (3.21).
A further refinement of the generalized wave ansatz will

be considered in Sec. IV C.

C. Irreducible decomposition
of gravitational field strengths

Irreducible parts of the torsion and the curvature are as
follows. The second (trace) and third (axial trace) irreduc-
ible part of the torsion are trivial, ð2ÞTα ¼ 0 and ð3ÞTα ¼ 0,
and the first (pure tensor) piece is nontrivial:

ð1ÞTα ¼ Tα ¼ −k ∧ q
p
kαΘ: ð3:34Þ

At the same time, the curvature pieces ð3ÞRαβ ¼ ð5ÞRαβ ¼ 0,
whereas

ð6ÞRαβ ¼ λϑα ∧ ϑβ; ð3:35Þ

and for I ¼ 1, 2, 4:

ðIÞRαβ ¼ 2k ∧ ðIÞΩ½αkβ�
q
p
: ð3:36Þ

Here ð1ÞΩα þ ð2ÞΩα þ ð4ÞΩα ¼ Ωα, and explicitly we have

ð1ÞΩα ¼ 1

2
ðΩα − ϑαeβ⌋Ωβ þ ϑβeα⌋ΩβÞ; ð3:37Þ

ð2ÞΩα ¼ 1

2
ðΩα − ϑβeα⌋ΩβÞ; ð3:38Þ

ð4ÞΩα ¼ 1

2
ϑαeβ⌋Ωβ: ð3:39Þ

The transversal components of these objects are con-
structed in terms of the irreducible pieces of the 2 × 2

matrix D̂BWA: symmetric traceless part, skew-symmetric
part and the trace, respectively. Using (3.32), we derive
ðIÞΩA ¼ ðIÞΩA

Bϑ
B, with

ð1ÞΩA
B ¼ 1

2
ðD̂BWA þ D̂AWB − δABD̂CWCÞ; ð3:40Þ

ð2ÞΩA
B ¼ 1

2
ðD̂BWA − D̂AWBÞ; ð3:41Þ

ð4ÞΩA
B ¼ 1

2
δABðD̂CWC þ λUÞ: ð3:42Þ

One can demonstrate the following properties of these
1-forms:

ϑα ∧ ð1ÞΩα ¼ 0; ϑα ∧ ð2ÞΩα ¼ ϑα ∧ Ωα; ð3:43Þ

ϑα ∧ ð4ÞΩα ¼ 0; eα⌋ð1ÞΩα ¼ −eα⌋Ωα; ð3:44Þ

eα⌋ð2ÞΩα ¼ 0; eα⌋ð4ÞΩα ¼ 2eα⌋Ωα; ð3:45Þ

kαð1ÞΩα ¼ −
1

2
keα⌋Ωα; kαð2ÞΩα ¼ 0; ð3:46Þ

kαð4ÞΩα ¼ 1

2
keα⌋Ωα; k ∧ �ð2ÞΩα ¼ 0; ð3:47Þ

k ∧ �ð1ÞΩα ¼ −k ∧ �ð4ÞΩα ¼ −
1

2
kαϑβ ∧ �Ωβ: ð3:48Þ

IV. FIELD EQUATIONS

Let us now turn to the quadratic Poincaré gauge model
with the general Lagrangian (2.9), and allow for a nontrivial
cosmological constant λ0.
Substituting the torsion (3.34) and the curvature (3.35),

(3.36), into (2.14) and (2.15), we find

hα ¼ −kαZ
q
p
; ð4:1Þ

hαβ ¼ λb6ηαβ þ λb̄6ϑα ∧ ϑβ − 2k½αZβ� q
p
; ð4:2Þ

where we introduced the 2-forms

Z ¼ a1 �ðk ∧ ΘÞ þ ā1k ∧ Θ; ð4:3Þ

Zα ¼
X

I¼1;2;4

½bI �ðk ∧ ðIÞΩαÞ þ b̄Ik ∧ ðIÞΩα�: ð4:4Þ

Making use of (3.30) and (3.43)–(3.48) we can show that

k ∧ hα ¼ 0; k ∧ �hα ¼ 0; kαhα ¼ 0: ð4:5Þ

As a result, substituting (4.2) into (2.16) and (2.17), we find

qðTÞα ¼ 0 and

qðRÞα ¼ 2λ
q
p
kαf−ðb4 þ b6Þ �keβ⌋Ωβ

þ ðb̄2 − b̄6Þk ∧ ϑβ ∧ Ωβg: ð4:6Þ
With an account of the properties (4.5), one can check that

Dhα ¼ −D̂
�
kαZ

q
p

�
; ð4:7Þ

Dhαβ ¼ −D̂
�
2k½αZβ�

q
p

�
þ λb6ηαβμ ∧ Tμ

þ λb̄6ðTα ∧ ϑβ − Tβ ∧ ϑαÞ: ð4:8Þ
The transversal nature of Θ and ΩA leads to a further

simplification. In particular, using (3.29), we recast (4.3)
and (4.4) into
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Z ¼ k ∧ Ξ; ZA ¼ k ∧ ΞA; ð4:9Þ

where we have introduced the 1-forms

Ξ ¼ a1 �Θþ ā1Θ; ð4:10Þ

ΞA ¼
X

I¼1;2;4

½bI �ðIÞΩA þ b̄IðIÞΩA�: ð4:11Þ

A. Wave equations

After all these preparations, we are in a position to write
down the gravitational field equations for the quadratic
Poincaré gauge model (2.9). Substituting the gravitational
wave ansatz (3.15)–(3.16) into (2.18), we derive the first
equation

ð3a0λ − λ0Þηα þ
q
p
kα �kðeβ⌋ΩβÞ½a0 − 2λl2

ρðb4 þ b6Þ�

þ q
p
kαk ∧ fϑβ ∧ Ωβ½ā0 þ 2λl2

ρðb̄2 − b̄6Þ� − dΞg ¼ 0:

ð4:12Þ

Contracting this with kα, we find the value of the constant
parameter in the wave ansatz:

λ ¼ λ0
3a0

; ð4:13Þ

and with an account of (3.28) and (4.10) we recast
(4.12) into

½a0 − 2λl2
ρðb4 þ b6Þ�ϑA ∧ �ΩA þ a1d �Θ − ½ā0 þ ā1 þ 2λl2

ρðb̄2 − b̄6Þ�ϑA ∧ ΩA ¼ 0: ð4:14Þ

The first two terms describe the parity-even model, whereas the last term accounts for the parity-odd sector.
Similarly, by gravitational wave ansatz (3.15)–(3.16) in (2.19), we obtain the second equation

ka
q
p
k ∧ fða0 þ a1 − 2λl2

ρb6ÞϑB ∧ �Θþ ðā0 þ ā1 − 2λl2
ρb̄6ÞϑB ∧ Θ − 2l2

ρD̂ΞBg ¼ 0: ð4:15Þ

Note here that the ½ab� and ½AB� components in (2.19) are satisfied identically, and only the mixed ½aB� components give
rise to the result (4.15).
Equation (4.14) and the expression inside the curly bracket in (4.15) are both 2-forms on the 2-dimensional transversal

space spanned by xA ¼ ðx2; x3Þ, and thus (4.14) and (4.15) describe a system of three partial differential equations for the
three variablesU ¼ Uðσ; xBÞ andWA ¼ WAðσ; xBÞ. Substituting (3.31) and (3.32), we recast (4.14) and (4.15) into the final
tensorial form

A0ðD̂AWA þ λUÞ þ a1

�
D̂AWA −

1

2
Δ̂U

�
− Ā0η

ABD̂AWB ¼ 0; ð4:16Þ

−A1

�
WA −

1

2
D̂AU

�
þ Ā1ηAB

�
WB −

1

2
D̂BU

�
þ l2

ρðb̄1 − b̄2Þ½D̂AðηBCD̂BWCÞ þ ηABD̂
BðD̂CWC þ λUÞ�

þl2
ρðb1 þ b4Þ

�
−Δ̂

�
WA −

1

2
D̂AU

�
þ λ

�
WA −

1

2
D̂AU

�
− D̂AðD̂BWB þ λUÞ þ D̂A

�
D̂BWB −

1

2
Δ̂U

��
¼ 0: ð4:17Þ

The 2-dimensional transversal space has the (anti)-de Sitter
geometry and the corresponding covariant Laplacian reads

Δ̂ ¼ δABD̂AD̂B ¼ p2Δ; ð4:18Þ
where Δ ¼ δAB∂A∂B is the usual Laplace operator.
Note that b̄4 ¼ b̄2. Here we denoted WA ¼ δABWB and

D̂A ¼ δABD̂B, and introduced the convenient abbreviations
for the combinations of the coupling constants,

A0 ¼ a0 − 2λl2
ρðb4 þ b6Þ; ð4:19Þ

Ā0 ¼ ā0 þ ā1 þ 2λl2
ρðb̄2 − b̄6Þ; ð4:20Þ

A1 ¼ a0 þ a1 þ 2λl2
ρðb1 − b6Þ; ð4:21Þ

Ā1 ¼ ā0 þ ā1 þ 2λl2
ρðb̄1 − b̄6Þ: ð4:22Þ

The transversal covariant derivatives do not commute,

ðD̂AD̂B − D̂BD̂AÞWC ¼ R̂ABD
CWD ¼ 2λδC½AWB�; ð4:23Þ

and we used this fact when deriving (4.16) and (4.17).
Direct consequences of (4.23) are:

ηBCD̂BD̂CWA ¼ ληABWB; ð4:24Þ
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ðΔ̂D̂A − D̂AΔ̂ÞU ¼ λD̂AU: ð4:25Þ

It is worthwhile to notice that the derivatives of WA

appear in (4.16)–(4.17) only in combinations

Ω ≔ eα⌋Ωα ¼ D̂AWA þ λU; ð4:26Þ

Φ ≔ �d �Θ ¼ D̂AWA −
1

2
Δ̂U; ð4:27Þ

Φ̄ ≔ �dΘ ¼ −ηABD̂AWB; ð4:28Þ

which have a clear geometrical meaning in terms of the
curvature and the torsion.
The system (4.16)–(4.17) always admits a nontrivial

solution for arbitrary quadratic Poincaré gauge model with
any choices of the coupling constants. There are some
interesting special cases.

B. Torsionless gravitational waves

The torsion (3.23) vanishes when Θ ¼ 0 which is
realized, see (3.24) and (3.31), for

WA ¼ 1

2
δABD̂BU: ð4:29Þ

Substituting this into (4.16), we find

A0fΔ̂U þ 2λUg ¼ 0; ð4:30Þ

whereas (4.17) reduces to

l2
ρðb̄1 − b̄2ÞηABD̂BfΔ̂U þ 2λUg

−l2
ρðb1 þ b4ÞD̂AfΔ̂U þ 2λUg ¼ 0: ð4:31Þ

Accordingly, we conclude that the well-known torsionless
wave solution of GR with the function U satisfying

p2ΔU þ 2λU ¼ 0 ð4:32Þ

is an exact solution of the generic quadratic Poincaré gauge
gravity model. This is consistent with our earlier results on
the torsion-free solutions in Poincaré gauge theory [16].
Moreover, the torsionless wave (4.29)–(4.30) represents

a general solution for the purely torsion quadratic class of
Poincaré models, since this is the only configuration
admitted by the system (4.16)–(4.17) for bI ¼ b̄I ¼ 0.

C. Torsion gravitational waves

The torsion-free ansatz (3.9) can be generalized to

WA ¼ 1

2
δABD̂BðU þ VÞ þ 1

2
ηABD̂BV̄; ð4:33Þ

with V ≠ 0. The two scalar functions V ¼ Vðσ; xAÞ and
V̄ ¼ V̄ðσ; xAÞ define the non-Riemannian piece of the
connection, stemming from torsion:

Θ ¼ −
1

2
ðdV þ �d V̄Þ

¼ −
1

2
ϑAðD̂AV − ηABD̂

BV̄Þ: ð4:34Þ

For the above choice, the metric and torsion contributions
to the connection are described in a rather symmetric way,
in terms of the three potentials (U;V; V̄). In particular, we
find for (4.26)–(4.28):

Ω ¼ 1

2
ðΔ̂V þ Δ̂U þ 2λUÞ; ð4:35Þ

Φ ¼ 1

2
Δ̂V; Φ̄ ¼ 1

2
Δ̂ V̄ : ð4:36Þ

Substituting (4.33) into (4.16) and (4.17), we derive

A0Ωþ a1Φþ Ā0Φ̄ ¼ 0; ð4:37Þ

D̂A

�
−
1

2
A1V −

1

2
Ā1V̄ − l2

ρðb1 þ b4ÞΩ − l2
ρðb̄1 − b̄2ÞΦ̄

�

þηABD̂
B

�
−
1

2
A1V þ 1

2
Ā1V̄ − l2

ρðb1 þ b4ÞΦ̄þ l2
ρðb̄1 − b̄2ÞΩ

�
¼ 0: ð4:38Þ

One needs to pay attention to the noncommutativity of the covariant derivatives and use (4.23)–(4.25).
As a result, we obtain the system of the three linear second order differential equations for the three functions U, V, V̄:

A0ðΔ̂V þ Δ̂U þ 2λUÞ þ a1Δ̂V þ Ā0Δ̂ V̄ ¼ 0; ð4:39Þ

−l2
ρðb1 þ b4ÞðΔ̂V þ Δ̂U þ 2λUÞ − A1V − l2

ρðb̄1 − b̄2ÞΔ̂ V̄ −Ā1V̄ ¼ 0; ð4:40Þ

l2
ρðb̄1 − b̄2ÞðΔ̂V þ Δ̂U þ 2λUÞ þ Ā1V − l2

ρðb1 þ b2ÞΔ̂ V̄ −A1V̄ ¼ 0: ð4:41Þ
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D. Solution for potentials

Before starting the analysis of solutions, one can notice
that the system (4.40) and (4.41) is actually not equivalent
to the original equation (4.38). Indeed, by taking the
covariant divergence (applying D̂A) and by taking
the covariant curl (applying ηABD̂B) of (4.38), we derive
the pair of equations where on the right-hand sides of (4.40)
and (4.41) one finds not zeros but arbitrary functions, say,
αðσ; xAÞ and βðσ; xAÞ, which are harmonic, in the sense that
they both satisfy equations Δ̂α ¼ Δ̂β ¼ 0. However, one
then immediately notices that with the help of redefinitions

V → V þ v; Δ̂v ¼ 0; ð4:42Þ

V̄ → V̄ þ v̄; Δ̂ v̄ ¼ 0; ð4:43Þ

we can always remove these nontrivial right-hand sides and
come to the system (4.40) and (4.41).
In other words, a solution of the system (4.39)–(4.41)

admits the gauge transformation (4.42)–(4.43), under
which the potentials V and V̄ can be shifted by arbitrary
harmonic functions. Such gauge transformed potentials are
of course still solutions of the Poincaré gauge field
equations (4.37) and (4.38). What is important, however,
the curvature and the torsion remain invariant under the
redefinition (4.42)–(4.43) of potentials: (4.35) and (4.36)
obviously are not affected by the arbitrary harmonic
functions.
Now, as a first step, we substitute ðΔ̂V þ Δ̂U þ 2λUÞ

from (4.39) into (4.40) and (4.41). The resulting system
reads

l2
ρΔ̂fa1ðb1 þ b4ÞV þ ½−A0ðb̄1 − b̄2Þ þ Ā0ðb1 þ b4Þ�V̄g
− A0A1V − A0Ā1V̄ ¼ 0; ð4:44Þ

l2
ρΔ̂fa1ðb̄1 − b̄2ÞV þ ½A0ðb1 þ b2Þ þ Ā0ðb̄1 − b̄2Þ�V̄g
− A0Ā1V þ A0A1V̄ ¼ 0: ð4:45Þ

After solving this system, we can use the potentials V
and V̄ to substitute them into (4.39) which then becomes
an inhomogeneous differential equation for the metric
potential U:

A0ðΔ̂U þ 2λUÞ ¼ −ða1 þ A0ÞΔ̂V − Ā0Δ̂ V̄ : ð4:46Þ
For the parity-even models with āI ¼ 0, b̄I ¼ 0, hence
Ā0 ¼ 0 and Ā1 ¼ 0, the system (4.44)–(4.45) reduces to the
two uncoupled equations

a1ðb1 þ b4Þl2
ρΔ̂V − A0A1V ¼ 0; ð4:47Þ

ðb1 þ b2Þl2
ρΔ̂ V̄þA1V̄ ¼ 0; ð4:48Þ

recovering the result of [56].

To analyze the system (4.44)–(4.45), let us rewrite it in
matrix form

Δ̂V −MV ¼ 0; M ≔
A0

l2
ρ
F; ð4:49Þ

where we combined the potentials into a single object, a “2-
vector” V ¼ ðVV̄Þ, and the 2 × 2 matrix F ¼ K−1N is
constructed from

K ¼
�a1ðb1 þ b4Þ Ā0ðb1 þ b4Þ − A0ðb̄1 − b̄2Þ
a1ðb̄1 − b̄2Þ A0ðb1 þ b2Þ þ Ā0ðb̄1 − b̄2Þ

�
;

N ¼
�A1 Ā1

Ā1 −A1

�
: ð4:50Þ

One immediately notices the simple structure of the matrix
N which is manifest in the properties

N2¼ðA2
1þ Ā2

1Þ
�
1 0

0 1

�
; detN¼−ðA2

1þ Ā2
1Þ: ð4:51Þ

One can solve the matrix differential equation (4.49) by
diagonalizing this system. To achieve this, one needs to find
the eigenvalues of the matrix M and to construct the
corresponding eigenvectors. Let m2 be an eigenvalue of
the matrix M. It is determined from the corresponding
characteristic equation detðM −m2Þ ¼ 0 which has the
meaning of the dispersion relation for the mass:

l4
ρm4 detK þ l2

ρm2A0trðNKÞ − A2
0ðA2

1 þ Ā2
1Þ ¼ 0: ð4:52Þ

The coefficients of the quadratic equation (4.52) are
constructed from the coupling constants of the gauge
gravity model. From (4.50) we have explicitly:

detK ¼ a1A0½ðb1 þ b4Þðb1 þ b2Þ þ ðb̄1 − b̄2Þ2�; ð4:53Þ

trðNKÞ ¼ ða1A1 þ Ā0Ā1Þðb1 þ b4Þ − A0A1ðb1 þ b2Þ
þ ða1Ā1 − A0Ā1 − Ā0A1Þðb̄1 − b̄2Þ: ð4:54Þ

For the parity-even models with āI ¼ 0, b̄I ¼ 0, hence
Ā0 ¼ 0 and Ā1 ¼ 0, the dispersion equation (4.52) reduces
to

½l2
ρm2a1ðb1 þ b4Þ − A0A1�
× ½l2

ρm2A0ðb1 þ b2Þ þ A0A1� ¼ 0; ð4:55Þ

and hence we recover the result (4.47)–(4.48).
General case with parity-odd terms in the Lagrangian is

more complicated. No obvious simplification of (4.52) is
visible.
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Having found the eigenvalues m2
1 and m2

2 of the mass
matrix M as the two roots of the quadratic equation (4.49),
one can construct the matrix P that transforms M to its
diagonal form. For M12 ≠ 0, the latter reads

P ¼
� −M12 −M12

M11 −m2
1 M11 −m2

2

�
: ð4:56Þ

Multiplying Eq. (4.49) by P−1, one then obtains

Δ̂V 0 −M0V 0 ¼ 0; ð4:57Þ

where

M0 ≔ P−1MP ¼
�
m2

1 0

0 m2
2

�
; ð4:58Þ

and V 0 is the eigenvector of M, corresponding to the
eigenvalues m2

1 and m2
2:

V 0 ¼
�
V 0
1

V 0
2

�
¼ P−1V

¼ 1

detP

� ðM11 −m2
2ÞV þM12V̄

−ðM11 −m2
1ÞV −M12V̄

�
: ð4:59Þ

Recalling Δ̂ ¼ p2Δ, we thus recast the system of the
field equations (4.44) and (4.45) into a diagonal form

p2ΔV 0
n −m2

nV 0
n ¼ 0; ð4:60Þ

with n ¼ 1, 2. The solutions for V 0
n are given in terms of the

hypergeometric functions 2F1ða; b; c; zÞ, see [56]. Similar
construction exists in the case M21 ≠ 0.
Now, we can return to (4.46) to find the solution for U.

Each solution for V 0
n defines the corresponding solution

V ¼ PV 0 ð4:61Þ

of (4.49). Inserting these solutions for V and V̄ on the right-
hand side of (4.46), this equation becomes an inhomo-
geneous differential equation for U. Its general solution is
given as a general solution of the homogeneous equation
plus a particular solution of the inhomogeneous equation,
U ¼ Uh þUp. Note that Uh coincides with the general
vacuum solution of GR, see (4.32). The solution for U
obtained by choosing Uh ¼ 0 has a very interesting
interpretation. Indeed, in that case U reduces just to the
particular solution Up, the form of which is completely
determined by the torsion potentials ðV; V̄Þ. A similar
mechanism was found also in the parity even sector [56].
Clearly, there are many other solutions for Uh, and
consequently, for U. In each of them, the influence of
torsion on the metric is quite clear.

E. Masses of the torsion modes

In order to get a deeper understanding of the role of the
torsion in our gravitational wave solution, it is important to
examine the mass spectrum of the associated torsion
modes. Having found the matrix F ¼ K−1N with the help
of (4.50), the solutions of the characteristic equation (4.52)
can be conveniently represented in terms of the matrix f ¼
ðdetKÞF as

m2
� ¼ A0

2l2 detK
ðtrf �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrfÞ2 − 4 det f

q
Þ: ð4:62Þ

This is an exact formula for the mass eigenvalues m2
�

associated to the gravitational wave. It is worthwhile to
notice that trf ¼ −trðNKÞ, and det f ¼ ðdetNÞðdetKÞ.
The particle spectrum of PGT has been calculated only

with respect to the Minkowski background [24–29], and
never for the (anti)-de Sitter spacetime. Accordingly, we
can compare the result (4.62) with those existing in the
literature only for the values of m2

� in the limit of the
vanishing cosmological constant. In the limit of λ → 0, we
have

trf ¼ −½a1ða0 þ a1Þ þ ðā0 þ ā1Þ2�ðb1 þ b4Þ
þ a0ða0 þ a1Þðb1 þ b2Þ þ 2a0ðā0 þ ā1Þðb̄1 − b̄2Þ;

det f ¼ −a0a1½ða0 þ a1Þ2 þ ðā0 þ ā1Þ2�
× ½ðb1 þ b2Þðb1 þ b4Þ þ ðb̄1 − b̄2Þ2�;

detK ¼ a0a1½ðb1 þ b2Þðb1 þ b4Þ þ ðb̄1 − b̄2Þ2�: ð4:63Þ

As a first test, we apply the formula (4.62) to the parity
even sector of PGT. One can straightforwardly see that the
corresponding values ofm2

� coincide with the masses of the
spin-2� torsion modes, known from the literature [24];
compare also with [56]. This is consistent with (4.55).
A more complete verification can be done by comparing

(4.62) with the recent work of Karananas [30], which
presently offers the only existing calculation of the com-
plete mass spectrum for the most general PGT with both
parity even and parity odd sectors included. A comparison
of the Lagrangian (5) of Ref. [30] with our expression (2.9)
is straightforward, although one should be careful since the
paper [30] contains numerous misprints. As a result, we
establish the following relations between our and
Karananas’ coupling constants (we use the notation t0
instead of Karananas’ λ to distinguish it from our cosmo-
logical term):

a0 ¼ 2κct0; ā0 ¼ 0; ð4:64Þ

a1 ¼ 2κcð−t1 − t0Þ; ð4:65Þ

a2 ¼ 4κcð−t3 þ t0Þ; ð4:66Þ
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a3 ¼ κcð−t2 þ t0Þ; ð4:67Þ

ā1 ¼ 4κct5; ð4:68Þ

ā2 ¼ ā3 ¼ 2κct4: ð4:69Þ

b1 ¼ 4ρð−r1 þ r3Þ; ð4:70Þ

b2 ¼ 4ρð−r3Þ; ð4:71Þ

b3 ¼ 4ρð−r2 þ r3Þ; ð4:72Þ

b4 ¼ 4ρð−r1 þ r3 − r4Þ; ð4:73Þ

b5 ¼ 4ρð−r3 − r5Þ; ð4:74Þ

b6 ¼ 4ρð−r1 þ r3 − 3r4Þ; ð4:75Þ

b̄1 ¼ ρð−r7 þ 3r8Þ; ð4:76Þ

b̄2 ¼ b̄4 ¼ ρð−r7 − r8Þ; ð4:77Þ

b̄3 ¼ b̄6 ¼ ρð4r6 − r7 − r8Þ; ð4:78Þ

b̄5 ¼ ρð3r7 − r8Þ: ð4:79Þ

Substituting the expressions for aI, bI and āI , b̄I into (4.63),
one finds that the resulting values of m2

� in (4.62) exactly
reproduce the result (A.3.5) of Karananas’ paper [30] (after
correcting a number of his misprints), which displays the
spin-2� torsion modes.
Thus, we conclude that the massive spin-2� torsion

modes turn out to be an essential ingredient of our
gravitational wave, in the sense that these massive torsion
modes determine the structure of the wave profile encoded
in the functions V, V̄ and U. This is a remarkable result if
one recalls that the particle spectrum of PGT is derived
from the linearized equations of motion, whereas our
gravitational waves are exact solutions of the full nonlinear
field equations.

V. DISCUSSION AND CONCLUSION

In this paper, we have found a family of the exact
vacuum solutions of the most general PGT model with all
possible parity even and parity odd linear and quadratic
invariants in the Lagrangian (2.9), and with a nontrivial
cosmological constant λ0 ≠ 0. This family represents gen-
eralized plane waves with torsion, propagating on the
(anti)-de Sitter background. The present paper extends
the results obtained recently in [55,56].
The underlying construction can be understood as a

generalization of the Kerr-Schild-Kundt ansatz from the
Riemannian to the Riemann-Cartan geometry of PGT. An
essentially new element in this extended formalism is the

ansatz for the local Lorentz connection Γα
β, the radiation

piece of which is constructed in terms of the null covector
field k. The generalized plane wave ansatz (3.15)–(3.16)
ensures that the torsion 2-form Tα and the radiation piece of
the curvature 2-form Sαβ ≔ Rαβ − λϑα ∧ ϑβ satisfy the
radiation conditions

k ∧ �Tα ¼ 0; k ∧ �Sαβ ¼ 0; ð5:1Þ

k ∧ Tα ¼ 0; k ∧ Sαβ ¼ 0; ð5:2Þ

Tα ∧ �Tβ ¼ 0; Sαβ ∧ �Sρσ ¼ 0: ð5:3Þ

These relations represent an extension of the well-known
Lichnerowicz criterion for identifying gravitational waves
[68] (see also [32]), based on analogy with the electro-
magnetic waves, to the framework of the PGT.
In the limit of vanishing torsion, the generalized plane

waves with torsion reduce to the family of the Riemannian
pp waves on the (anti)-de Sitter background. The pp
waves are classified as solutions of Petrov type N, since the
corresponding Weyl tensor satisfies the special algebraic
condition kαCαβμν ¼ 0, see [34,35]. This criterion can be
naturally extended to a Riemann-Cartan geometry of
PGT as

kαð1ÞRαβμν ¼ 0; ð5:4Þ

where ð1ÞRαβμν is the first irreducible part of the curvature
tensor, see [55,56]. The validity of (5.4) for the generalized
plane waves with torsion confirms that they are also of
type N.
The spacetime torsion is an essential ingredient of the

generalized gravitational wave solution; its dynamical
characteristics are described by the two potentials V and
V̄, satisfying the matrix equation (4.49). The mass matrix
M is of particular importance for the physical interpretation
of the torsion. We demonstrate that, in the limit of λ → 0,
the eigenvalues of M coincide with the values of the mass
square the spin-2� torsion modes, identified in the work of
Karananas [30]. Generically, wave front profile of a
generalized plane wave with torsion is thus determined
by two spin-2 massive torsion modes and the massless
graviton, produced by the third, coframe potentialU (which
enters the spacetime metric).
It is interesting to note that there exist particular solutions

for which the metric potential is completely determined by
the torsion. For such solutions, the motion of a spinless test
particle is effectively determined by the spacetime torsion.
The results obtained in this work were checked with

the help of the computer algebra systems Reduce and
Mathematica.
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APPENDIX: IRREDUCIBLE DECOMPOSITION
OF THE TORSION AND CURVATURE

The torsion 2-form can be decomposed into the three
irreducible pieces, Tα ¼ ð1ÞTα þ ð2ÞTα þ ð3ÞTα, where

ð2ÞTα ¼ 1

3
ϑα ∧ ðeν⌋TνÞ; ðA1Þ

ð3ÞTα ¼ 1

3
eα⌋ðTν ∧ ϑνÞ; ðA2Þ

ð1ÞTα ¼ Tα − ð2ÞTα − ð3ÞTα: ðA3Þ

The Riemann-Cartan curvature 2-form is decomposed
Rαβ ¼ P

6
I¼1

ðIÞRαβ into the 6 irreducible parts

ð2ÞRαβ ¼ − �ðϑ½α ∧ Ψ̄β�Þ; ðA4Þ

ð3ÞRαβ ¼ −
1

12
�ðX̄ϑα ∧ ϑβÞ; ðA5Þ

ð4ÞRαβ ¼ −ϑ½α ∧ Ψβ�; ðA6Þ

ð5ÞRαβ ¼ −
1

2
ϑ½α ∧ eβ�⌋ðϑγ ∧ XγÞ; ðA7Þ

ð6ÞRαβ ¼ −
1

12
Xϑα ∧ ϑβ; ðA8Þ

ð1ÞRαβ ¼ Rαβ −
X6
I¼2

ðIÞRαβ; ðA9Þ

where

Xα ≔ eβ⌋Rαβ; X ≔ eα⌋Xα; ðA10Þ

X̄α ≔ �ðRβα ∧ ϑβÞ; X̄ ≔ eα⌋X̄α; ðA11Þ

and

Ψα ≔ Xα −
1

4
ϑαX −

1

2
eα⌋ðϑβ ∧ XβÞ; ðA12Þ

Ψ̄α ≔ X̄α −
1

4
ϑαX̄ −

1

2
eα⌋ðϑβ ∧ X̄βÞ: ðA13Þ

Directly from the definitions (A1)–(A3) and (A4)–(A9),
one can prove the relations

Tα ∧ ð2ÞTα ¼ Tα ∧ ð3ÞTα ¼ ð2ÞTα ∧ ð3ÞTα; ðA14Þ

Rαβ ∧ ð2ÞRαβ ¼ Rαβ ∧ ð4ÞRαβ ¼ ð2ÞRαβ ∧ ð4ÞRαβ; ðA15Þ

Rαβ ∧ ð3ÞRαβ ¼ Rαβ ∧ ð6ÞRαβ ¼ ð3ÞRαβ ∧ ð6ÞRαβ; ðA16Þ

whereas Tα ∧ ð1ÞTα ¼ ð1ÞTα ∧ ð1ÞTα and Rαβ ∧ ð1ÞRαβ ¼
ð1ÞRαβ ∧ ð1ÞRαβ and Rαβ ∧ ð5ÞRαβ ¼ ð5ÞRαβ ∧ ð5ÞRαβ.
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We analyze holographic field theory dual to Lovelock Chern-Simons anti–de Sitter (AdS) gravity in
higher dimensions using first order formalism. We first find asymptotic symmetries in the AdS sector
showing that they consist of local translations, local Lorentz rotations, dilatations and non-Abelian gauge
transformations. Then, we compute 1-point functions of energy-momentum and spin currents in a dual
conformal field theory and write Ward identities. We find that the holographic theory possesses Weyl
anomaly and also breaks non-Abelian gauge symmetry at the quantum level.
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I. INTRODUCTION

The AdS/CFT correspondence [1] relates the fields in
(dþ 1)-dimensional asymptotically anti–de Sitter (AAdS)
space and correlators in a d-dimensional conformal field
theory (CFT). These two theories are dual in the asymptotic
sector of gravity, such that the weak coupling regime of
one is related to the strong coupling regime of another.
For a weak gravitational coupling, the bulk theory is well
described by its semiclassical approximation, leading to the
form of the duality most often used.
Since its discovery, the correspondence tools have

been applied to many strongly coupled systems, giving
rise to new insights into their dynamics, for example in
hydrodynamics [2] and condensed matter systems such as
superconductors [3].
On the other hand, much effort has been invested in

analyzing the duality in semiclassical approximation of a
bulk theory, with twofold purpose. First, it enables us to
test the conjecture itself. Second, it helps us to gain the
knowledge about strongly coupled systems which are
nonperturbative and not very well understood. However,
most of this investigation deals with Riemannian geometry
of bulk spacetime, see for example [3–8], while a more
general structure based on Riemann-Cartan geometry,
where both torsion and curvature determine gravitational
dynamics, is mostly underinvestigated. One of the first
studies of Riemann-Cartan holography used first order
formalism to obtain a holographic dual of Chern-Simons
AdS gravity in five dimensions [9]. After that, in three
dimensions, holographic dual to the Mielke-Baekler model
was analyzed in [10], and to the most general parity-
preserving three-dimensional gravity with propagating
torsion in [11]. The physical interpretation of torsional
degrees of freedom as carriers of a nontrivial gravitational

magnetic field in 4D Einstein-Cartan gravity was discussed
in [12].
Studying holographic duals of gravity with torsion has

many benefits. Since its setup is more general, it also
contains the results of torsion-free gravity. One of the very
important features is that treating vielbein and spin con-
nection as independent dynamical variables simplifies
calculations to great extent. In Ref. [11], it was shown
that for three-dimensional bulk gravity conservation laws of
the boundary theory take the same form in Riemann-Cartan
and Riemannian theory when the boundary torsion is set
to zero. Thus, it is possible to treat vielbein and spin
connection as independent dynamical variables and repro-
duce Riemannian results in the limit of zero torsion. In this
work, we extend the results of [11] to all odd dimensions
in case of holographic theory dual to Lovelock-Chern-
Simons AdS gravity, by reproducing the conservation laws
with respect to diffeomorphisms, Weyl and local Lorentz
symmetry using first order formalism after taking a
Riemannian limit.
Working in the framework of gravity with torsion also

leads to richer boundary non-Abelian symmetries, as it is
explicitly demonstrated for the particular model studied in
this paper.
We analyze a holographic structure of Lovelock Chern-

Simons AdS Gravity [13,14] in asymptotically AdS spaces.
The key feature of this model is that it possesses a unique
AdS vacuum, which is multiply degenerate in odd D ≥ 5
dimensions. Unlike general Lovelock-Lanczos [15] gravity,
it contains only two free parameters—gravitational con-
stant κ and the AdS radius l. This theory also features a
symmetry enhancement from local Lorentz to AdS gauge
symmetry. Degenerate vacuum makes the linear perturba-
tion analysis not applicable around the AdS background.
The holographic study in AAdS spacetimes, however, is
nonperturbative, because the gravitational fields in a dual
theory are not dynamical but they play the role of external
sources for the CFT matter. Indeed, the holographic theory
will remain fully nonlinear in gravitational fields, which
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will be explicitly shown in Sec. IV. On the other hand, these
theories couple successfully to external sources [16], which
are stable in the framework of Lovelock Chern-Simons
(LCS) supergravities [17].
The paper is organized as follows. In Sec. II we

introduce the holographic ansatz for the fundamental
dynamical variables and we arrive to their radial expan-
sion in the asymptotic sector. Expressed in terms of the
metric, it reduces to Fefferman-Graham expansion [18].
We also analyze corresponding residual gauge sym-
metries which leave this ansatz invariant. In Sec. III we
focus to the holographic quantum theory and derive the
Noether-Ward identities. In Sec. IV we focus on Chern-
Simons–AdS gravity in arbitrary odd dimensions and
compute 1-point functions in the corresponding dual
theory, which are energy-momentum and spin currents.
We show that translational and Lorentz symmetries are
present also at the quantum level, but the Weyl anomaly
and non-Abelian anomaly arise, breaking the conformal
and non-Abelian symmetries quantically, the former
being proportional to the Euler density up to a divergence.
Our results generalize the ones of [9] from five to arbitrary
dimensions. Our calculations are simplified to great extent
by using the results of [19]. Section V contains conclud-
ing remarks, while appendices deal with some technical
details.
Our conventions are given by the following rules. On a

D ¼ dþ 1-dimensional spacetime manifold M, the latin
indices ði; j; k;…Þ refer to the local Lorentz frame, the
greek indices ðμ; ν; ρ;…Þ refer to the coordinate frame. The
symmetric and antisymmetric parts of a tensor Xij are
XðijÞ ¼ 1

2
ðXij þ XjiÞ and X½ij� ¼ 1

2
ðXij − XjiÞ, respectively.

The dþ 1 decomposition of spacetime is described in
terms of the suitable coordinates xμ ¼ ðρ; xαÞ, where ρ is a
radial coordinate and xα are local coordinates on the
boundary ∂M. In the local Lorentz frame, this decom-
position is expressed by i ¼ ð1; aÞ.

II. HOLOGRAPHIC ANSATZ

We are interested in a gravitational theory which
possesses a local AdS symmetry. The presence of local
spacetime translations and spacetime rotations introduces
naturally the vielbein and the spin connection as the
fundamental fields. Our goal is to gauge fix this symmetry
by imposing a set of conditions on the fundamental fields
in a such a way that it singles out a particular coordinate
frame which is suitable for a description of a holograph-
ically dual theory. This frame should be consistent with
the known Fefferman-Graham coordinate choice used on
the Riemannian manifold. All the properties that follow
from this gauge-fixing are purely kinematical and can be
applied to any gravity invariant under local AdS group. To
include the dynamics we focus, in particular, on Lovelock-
Chern-Simons gravity.

A. AdS gauge transformations

In a theory with local AdS symmetry, the fundamental
fields are components of a gauge field (1-form) for the
AdS group SOðD − 1; 2Þ (see Appendix A) and is
defined by

A ¼ 1

l
êAPA þ 1

2
ω̂ABJAB; ð2:1Þ

where l is the AdS radius. For the sake of simplicity,
we set l ¼ 1. Gauge transformations, parametrized by
λ ≔ ηAPA þ 1

2
λABJAB, act on the gauge field as

δ0A ¼ Dλ ¼ dλþ ½A; λ�; ð2:2Þ
wherefrom we get the transformation law of the funda-
mental fields,

δ0êA ¼ ∇̂ηA − λABêB;

δ0ω̂
AB ¼ ∇̂λAB þ 2e½AηB�: ð2:3Þ

Here, the ω̂-covariant derivative is ∇̂ηA ≔ dηA þ ω̂ABηB.
The AdS field strength F ¼ dAþ A ∧ A has components

F ¼ T̂APA þ 1

2
FABJAB; ð2:4Þ

which are the torsion 2-form T̂A and AdS curvature FAB,

T̂A ¼ 1

2
T̂A

μνdxμ ∧ dxν ¼ dêAþ ω̂AB ∧ êB;

FAB ¼ 1

2
FAB

μνdxμ ∧ dxν ¼ dω̂ABþ ω̂AC ∧ ω̂C
Bþ êA ∧ êB:

ð2:5Þ

The wedge product sign is going to be omitted for
simplicity from now on in the text. The global AdS space
is described by a Riemannian manifold (T̂A ¼ 0), whose
AdS curvature vanishes (FAB ¼ 0), and where the
Riemannian curvature R̂AB ¼ dω̂ABþ ω̂AC ∧ ω̂C

B becomes
explicitly constant, R̂AB ¼ −êA ∧ êB.

B. Radial expansion and residual
gauge transformations

We use the radial foliation with the local coordinates
xμ ¼ ðρ; xαÞ and the Lorentz indices decomposed corre-
spondingly as A ¼ ð1; aÞ. The asymptotic boundary of the
manifold is located at the constant radius ρ ¼ ρ0. For
convenience we set ρ0 ¼ 0.

1. Gauge fixing

There are two types of local symmetries, small and large,
depending on how they behave asymptotically. Small local
symmetries are characterized by the parameters which go to
zero at infinity and all other local symmetries are large.
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Small gauge symmetries act trivially on boundary fields
and must be considered as redundancies in the theory, i.e.,
they must be gauge fixed. A good gauge choice should fix
all small gauge transformations and should lead to a well-
posed boundary value problem, meaning that the form of a
residual symmetry in the bulk is completely determined by
the boundary values of the symmetry parameters. Note that
the large gauge transformations do not have to be fixed by a
gauge choice. For more details, see Ref. [20].
Local transformations at our disposal are spacetime

diffeomorphisms and local AdS transformations. Let us
first focus on local AdS symmetry. A good gauge fixing for
our purposes is the one where the spacetime is AAdS and
where residual gauge transformations contain conformal
transformations on the boundary.
The last condition is introduced because we want to have

a CFT as a holographic theory. Too strong gauge fixing can
overkill all residual transformations and give rise to a trivial
holographic theory. Since the bulk theory is gauge invariant
only up to boundary terms, different gauge fixings can lead
to nonequivalent boundary theories.
Another important observation is that, in the metric

formulation of Riemann gravity, according to the theorem
of Fefferman-Graham (FG) [18], in any AAdS space
there is a coordinate choice so that the metric can be
cast in the FG form, that is, with ĝρρ ¼ 1=ð2ρÞ2, ĝρα ¼ 0

and ρĝαβðρ; xÞ regular on the boundary ρ ¼ 0. Thus, a
gauge-fixing choice of the vielbein and spin connection
must be such that the corresponding metric acquires the
FG form.
The number of gauge parameters of AdS group is DðDþ1Þ

2
,

implying that we need the same number of gauge con-
ditions. We impose the following D conditions on the

vielbeins êAρ and DðD−1Þ
2

conditions on connection ω̂AB
ρ:

êAρ ¼ −
1

2ρ
δ1

A; ω̂AB
ρ ¼ 0: ð2:6Þ

In the choice of the gauge fixing one has to keep in mind
the invertibility of vielbein. Therefore, all êAρ components
cannot be set to zero. Furthermore, although in principle a
choice of the radial coordinate is arbitrary, we want to have
the Fefferman-Graham coordinate frame, where the metric
component gρρ behaves as 1=4ρ2, generalized to first order
formalism, which implies the above behavior of the radial
component of the vielbein.
To find residual transformations, we look at the restric-

tions on gauge parameters imposed by the gauge conditions
(2.6) and we find that they have to satisfy

∂ρη
1 ¼ 0; ∂ρη

a −
1

2ρ
λ1a ¼ 0;

∂ρλ
ab ¼ 0; ∂ρλ

1a −
1

2ρ
ηa ¼ 0: ð2:7Þ

The equations in η1 and λab are straightforward to solve. To
find ηa and λ1a, we combine the corresponding differential
equations and obtain for the parameter ηa

ρ2∂2
ρη

a þ ρ∂ρη
a −

1

4
ηa ¼ 0: ð2:8Þ

This is the Euler-Fuchs equation which solution takes the
form ηaðρÞ ∼ ρk. Hence, from (2.8) we get k2 ¼ 1

4
and

consequently the general solution is given by

η1ðρ; xÞ ¼ uðxÞ; ηaðρ; xÞ ¼ 1ffiffiffi
ρ

p αaðxÞ þ ffiffiffi
ρ

p
βaðxÞ;

λabðρ; xÞ ¼ λabðxÞ; λ1aðρ; xÞ ¼ −
1ffiffiffi
ρ

p αaðxÞ þ ffiffiffi
ρ

p
βaðxÞ:

ð2:9Þ

We see that our gauge choice is good, as desired, because
symmetry parameters in the whole bulk are determined by a
few arbitrary functions u, αa, βa and λab defined on the
boundary. We still have to identify an asymptotic symmetry
group defined by these parameters.
The residual gauge parameters which describe asymp-

totic symmetry group naturally induce a change of the basis
in the Lie algebra J�a ¼ Pa � J1a, so that the Lie-algebra
valued gauge parameter has the form

λ ¼ uðxÞP1 þ
1ffiffiffi
ρ

p αaðxÞJ−a þ ffiffiffi
ρ

p
βaðxÞJþa þ 1

2
λabðxÞJab:

ð2:10Þ
The AdS algebra in terms of the new generators reads

½Jþa ; J−b � ¼ 2Jab þ 2ηabP1; ½J�a ; J�b � ¼ 0;

½Jab; J�c � ¼ −ηacJ�b þ ηbcJ�a ; ½P1; Jab� ¼ 0;

½P1; J�a � ¼ �J�a : ð2:11Þ

2. Radial decomposition of gauge field
and field strength

Up to now the results are valid for any theory possessing
AdS gauge symmetry. From now on we concentrate on
Chern-Simons AdS gravity. For holography, one needs to
know how the fields evolve along the radial direction and to
study their near-boundary behavior. Since the radial compo-
nents are already fixed by the gauge condition (2.6), now we
have to determine the behavior of the spatial components.
To this end, we can use invariance of gravity under

general coordinate transformations. In Ref. [21], it was
shown that onlyD − 1 spatial diffeomorphisms are linearly
independent on gauge generators, in a physical system
where time evolution was analyzed. In our case, we look at
the radial quantization of a Hamiltonian, because we are
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interested in radial evolution of the fields from the bulk to
the boundary. Thus, our independent diffeomorpisms act
only in the transversal section of spacetime, that is, as
xα → xα þ ξαðρ; xÞ. Furthermore, we know that the radial
diffeomorphisms are broken by the boundary set at constant
radii, so this choice of quantization is natural in our case.
Thus, we have D − 1 transversal diffeomorphisms to

gauge fix. In Ref. [21] it was shown that, in any generic
Chern-Simons gauge theory (AdS in our case), there is an
on-shell identity Fρα ¼ FαβNβ, with D − 1 arbitrary func-
tions Nβ related to the transversal diffeomorphisms
ξαðρ; xÞ. Therefore, to gauge fix them, we can just set
theD − 1 functions to zero, Nβ ¼ 0. As a consequence, we
also get Fρα ¼ 0 or, equivalently, T̂A

ρα ¼ FAB
ρα ¼ 0.

These conditions are particular for Chern-Simons theory
and they arise from its dynamics. Interestingly, they can be
exactly solved using the gauge fixing (2.6), also written
as Aρ ¼ − 1

2ρP1. Rewriting the AdS Lie-algebra valued

condition Fρα ¼ 0 as ðdAþ A2Þρα ¼ 0, we get

∂ρAα −
1

2ρ
êaαJa1 þ

1

2ρ
ω̂1a

αPA ¼ 0:

This first order differential equation in Aαðρ; xÞ can be
exactly solved, given the initial condition

Aαð0; xÞ≡ eaαðxÞJþa þ kaαðxÞJ−a þ 1

2
ωab

αðxÞJab: ð2:12Þ

The solution is

Aαðρ; xÞ ¼
1ffiffiffi
ρ

p eaαðxÞJþa þ ffiffiffi
ρ

p
kaαðxÞJ−a þ 1

2
ωab

αðxÞJab:

ð2:13Þ

In components, this solution leads to the radial expansion
of the gravitational fields expressed in terms of the
boundary fields eaα, kaα and ωab

α,

êaα ¼
1ffiffiffi
ρ

p ðeaα þ ρkaαÞ;

ω̂1a
α ¼ −

1ffiffiffi
ρ

p ðeaα − ρkaαÞ;

ω̂ab
α ¼ ωab

α: ð2:14Þ

Thus, this is a generalization of the FG expansion of the
bulk metric. Indeed, the metric ĝμν ¼ êAμêBνηAB takes the
FG form since the line element can be written as

ds2 ¼ 1

4ρ2
dρ2 þ 1

ρ
ðgαβ þ 2ρkðαβÞ þ ρ2kaαkaβÞdxαdxβ;

ð2:15Þ

where gαβ ≔ ηabeaαebβ and kαβ ≔ eaαkaβ. We conclude
that the FG expansion is finite. Finite FG expansion is
typical for Chern-Simons gravity [9] and also for general
relativity when the Weyl tensor vanishes [8].
The induced metric γαβ is defined by γαβ ¼ ρĝαβ. The

coefficients in the radial expansion of γαβ are

γð0Þαβ ¼ gαβ; γð1Þαβ ¼ 2kðαβÞ;

γð2Þαβ ¼ kaαkaβ; γðnÞαβ ¼ 0; n ≥ 3: ð2:16Þ

From the radial expansion of the field strength we get on
the boundary

Fa1 ¼ 1ffiffiffi
ρ

p ðTa − ρ∇kaÞ; T̂1 ¼ −2eaka;

Fab ¼ Rab þ 4e½akb�; T̂a ¼ 1ffiffiffi
ρ

p ðTa þ ρ∇kaÞ; ð2:17Þ

where Ta ¼ ∇ea and Rab ¼ dωab þ ωa
cω

cb.
Physical interpretation of the boundary fields can be

found from their transformation law under the residual
(boundary) gauge transformations.

3. Residual gauge transformations

The complete transformation law of the basic dynamical
variables in the bulk that include the spacetime diffeo-
morphisms is given by

δ0êAμ ¼ ∇̂μη
A − λABêBμ − ∂μξ

νêAν − ξν∂νêAμ;

δ0ω̂
AB

μ ¼ ∇̂μλ
AB þ 2ê½AμηB� − ∂μξ

νω̂AB
ν − ξν∂νω̂

AB
μ;

ð2:18Þ

where the last two terms of each line are the Lie derivatives
with respect to ξμ. If we make the following redefinition of
parameters,

ηA → ηA þ ξμêAμ;

λAB → λAB þ ξμω̂AB
μ; ð2:19Þ

transformations (2.18) take the following form:

δ0êAμ ¼ ∇̂μη
A − λABêBμ þ ξνT̂A

μν;

δ0ω̂
AB

μ ¼ ∇̂μλ
AB þ 2ê½AμηB� þ ξνFAB

μν: ð2:20Þ

Due to the condition Fρα ¼ 0, the transformation laws
(2.20) of êAρ and ω̂AB

ρ with redefined parameters (2.19)
take the same form as in the case when diffeomorphisms are
absent in the transformation law (2.18). Therefore, intro-
duction of diffeomorphisms does not effectively change the
result (2.9).
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From the transformation law for ωab
α, it follows that ξα

does not depend on ρ. The complete transformation law of
the gauge fields under residual transformations reads

δ0eaα ¼ ∇αα
a − λabebα þ ueaα − ξβ ;αeaβ − ξβ∂βeaα;

δ0kaα ¼ ∇αβ
a − λabkbα − ukaα − ξβ ;αkaβ − ξβ∂βkaα;

δ0ω
ab

α ¼ ∇αλ
ab þ 4e½aαβb� þ 4k½aααb�

− ξβ ;αω
ab

β − ξβ∂βω
ab

α; ð2:21Þ

with

η1 þ ξρ

2ρ
¼ uðxÞ; ξα ¼ ξαðxÞ: ð2:22Þ

Let us note that the residual diffeomorphisms do not change
the condition Fρα ¼ 0, as expected. Their form shows that
our gauge choice is good.
In holography it is important for the boundary to be

orthogonal to the radial direction. That is why we shall
impose an additional condition ê1α ¼ 0, which puts the
bulk vielbein in the block-diagonal form with the only one

boundary component eaαðxÞ. The extra condition reduces
the asymptotic symmetries because the parameter βa is not
independent any longer,

βa ¼ eaα
�
1

2
∂αuþ kbααb

�
: ð2:23Þ

The generators of the asymptotic group cannot be deter-
mined straightforwardly because a change of the basis of
the Lie algebra necessary to identify this subgroup is
nonlinear, that is, it depends on the point of spacetime.
We shall deduce the algebra directly from the action on the
fields.
Independent transformations acting on the fields are

transversal diffeomorphisms or local translations δTðξÞ,
local Lorentz rotations δLðλÞ, local Weyl or conformal
transformations δCðuÞ and non-Abelian gauge transforma-
tions δGðαÞ. Each transformation can be seen as generated
by some generator Ta through the commutator, for example
½δGðα0Þ; δGðα00Þ� ¼ α0aα00b½Ta; Tb�, and similarly for all
other transformations. In that way, the asymptotic algebra
closes as

½δTðξ0Þ; δTðξ00Þ� ¼ δTð½ξ0; ξ00�Þ; ½δCðuÞ; δGðαÞ� ¼ δCðα · ∂uÞ − δLð~λÞ − δGðuαÞ;
½δTðξÞ; δLðλÞ� ¼ δLðξ · ∂λÞ; ½δGðα0Þ; δGðα00Þ� ¼ −δCð ~uÞ − δLðΛÞ;
½δTðξÞ; δCðuÞ� ¼ δCðξ · ∂uÞ; ½δLðλ; δGðαÞ� ¼ δGðλ · αÞ;
½δTðξÞ; δGðαÞ� ¼ δGðξ · ∂αÞ; ½δLðλÞ; δCðuÞ� ¼ 0;

½δLðλ0Þ; δLðλ00Þ� ¼ δLð½λ0; λ00�Þ; ½δCðu0Þ; δCðu00Þ� ¼ 0; ð2:24Þ

where ½ξ0; ξ00�α ¼ ξ0 · ∂ξ00α − ξ0 · ∂ξ00α is the Lie bracket and
½λ0; λ00�ab ¼ λ0acλ00cb − λ00acλ0cb is the group commutator.
We also introduced the contraction ξ · ∂ ¼ ξβ∂β and the
matrix multiplication ðλ · αÞa ¼ λabαb, and defined the
auxiliary Lorentz parameters ~λab ¼ 2α½a∂b�u and Λab ¼
4kc½aðα0cα00b� − α00cα0b�Þ, as well as the Weyl parameter
~u ¼ 4k½ab�α0aα00b.
The above brackets are computed by acting on eaα, but

their form is field independent. The boundary diffeomor-
phisms, Lorentz rotations and Weyl dilatations close in the
standard way and they form the Weyl subgroup.
Furthermore, the non-Abelian extension is realized non-
linearly, because the parameters Λ and ~u explicitly depend
on the field kab. To understand better the origin of such
non-Abelian transformations, let us note that

δGðαÞeaα ¼ ð∂αα
βÞeaβ þ αβ∂βeaα þ αβωabebα þ αβTa

αβ;

ð2:25Þ

where αβ ¼ αaeaβ. Therefore, the gauge transformations
can be cast in the form

δGðαÞeaα ¼ −δTðαβÞ − δLðωab
βα

βÞ þ αβTa
αβ: ð2:26Þ

Shifting the parameters as ξβ → ξβ þ αβ and λab → λab þ
ωab

βα
β helps us identify the independent non-Abelian

gauge transformations δGðαÞeaα ¼ αβTa
αβ. From (2.25)

and the above relation we easily conclude that non-
Abelian gauge transformations act on the boundary viel-
bein independently if and only if torsion is nonvanishing. In
the case of vanishing torsion non-Abelian gauge trans-
formations stop to be independent and they can be
represented as composition of local translations and local
Lorentz rotations with the suitable redefinition of param-
eters. Similar conclusion holds when one acts on the
boundary spin connection because it is an independent
field only if the torsion is nonvanishing.
Let us now, for completeness, inspect the action of the

transformations (2.21) on the metric gαβ ¼ eaαeaβ. We
obtain

δ0gαβ ¼ −ξγ ;αgγβ − ξγ ;βgαγ − ξγ∂γgαβ þ 2ugαβ

þ eaβ∇αα
a þ eαα∇βα

α:
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Similarly, as in the case of vielbein, the action of the
non-Abelian gauge transformations on the metric reads

δGðαÞgαβ ¼ −δTðαÞgαβ þ 2αγTðαβÞγ: ð2:27Þ

Again, we conclude that in the case when torsion
vanishes the action of non-Abelian gauge transformations
on the metric reduces to local translations with the
already mentioned redefinition of parameters [4]. The
above transformation law of the metric is not usual in
field theories, but is not surprising because we started
with local AdS symmetry which mixes vielbein and spin
connection.

III. NOETHER-WARD IDENTITIES

The AdS/CFT correspondence between the D-
dimensional AdS space and d-dimensional CFT identifies
the quantum effective action in CFT with the classical
gravitational action in AdS space for given boundary
conditions. Thus, let us assume that the renormalized
effective action in a holographic theory, Iren½e;ω�, has an
extremum for Dirichlet boundary conditions on the inde-
pendent fields, which are the vielbein, eaα, and the spin
connection, ωab

α, so that its variation takes the form

δIren½e;ω� ¼ −
Z

ddx

�
ταaδ0eaα þ

1

2
σαabδ0ω

ab
α

�
:

ð3:1aÞ

The tensor densities,

ταa ¼ −
δIren
δeaα

; σαab ¼ −
δIren
δωab

α
; ð3:1bÞ

are the energy-momentum and spin currents of our
dynamical system.
The holographic theory is invariant under d-dimensional

diffeomorphisms with the parameter ξα and the local
Lorentz transformations with the parameter λab. The con-
servation law of the corresponding Noether current reads

eaβ∇ατ
α
a þ ταaTa

αβ þ
1

2
σαabRab

αβ

þ 1

2
ωab

βð∇ασ
α
ab − 2τ½ab�Þ ¼ 0; ð3:2aÞ

∇ασ
α
ab − 2τ½ab� ¼ 0; ð3:2bÞ

which is also known as the generalized conservation laws
of ταa and σαab. Note that if the second Noether identity
(3.2b) is fulfilled, the last term in (3.2a) can be omitted.
We shall keep this term, however, because it modifies the
conservation law in cases when there are quantum
anomalies.

The invariance of Iren under Weyl transformations leads
to the additional conservation law,

τ −∇βσ
a
a
β ¼ 0; ð3:2cÞ

where τ ≔ τaa is the trace of the energy-momentum tensor.
Finally, invariance under the non-Abelian gauge trans-

formations leads to

∇ατ
α
a − 2σbbckac − 2σbcakcb ¼ 0: ð3:2dÞ

In Ref. [9], it was proposed that these residual gauge
transformations contain the information about the chiral
anomaly of the fermions in holographic CFT, encoded in
the completely antisymmetric part of the spin current.
Gravitational dynamics in the bulk is described by

nonvanishing torsion, but it may happen that some sol-
utions on the boundary are Riemannian. For such solutions,
the boundary connection ωab

α takes its Riemannian value
~ωab

α ¼ ~ωab
αðeÞ and can be expressed in terms of the

vielbein eaα in the following way:

~ωabα ¼
1

2
ðcabc − ccab þ cbcaÞecα;

caαβ ≔ ∂αeaβ − ∂βeaα: ð3:3Þ

Although boundary connection is no more independent
dynamical variable, the Noether-Ward identities keep
the form (3.2), but now ωabα takes on the Riemannian
value ~ωabα.
From the Riemannian renormalized action ~Iren ¼

Iren½eaα; ~ωα�, we get that the related spin current Σα ≔
−δ~Iren=δωα vanishes, while the energy-momentum current
Θα

a ≔ −δ~Iren=δeaα acquires an additional contribution

Θα
a ¼ ~ταa −

1

2
~∇βð ~σβαa − ~σa

βα þ ~σαa
βÞ; ð3:4Þ

where ~X denotes the Riemannian limit of a tensor X. The
Noether identities for the action ~Iren are found to be

eaβ ~∇αΘα
a − ~ωab

βΘ½ab� ¼ 0; ð3:5aÞ

Θab ¼ Θba; ð3:5bÞ

Θ ¼ 0: ð3:5cÞ

Let us remind that, as we concluded at the end of the
previous section, the non-Abelian gauge transfor-
mations are not independent for Riemannian solutions,
thus in this case there are only three independent Noether
identities (3.5).
When the Lorentz invariance is fulfilled, (3.5a) reduces

to the usual form Dαðe−1Θα
βÞ ¼ 0, where Dα is the
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Riemannian covariant derivative. The relations (3.5b) and
(3.5c) are the standard Riemannian conditions for the
Lorentz and Weyl invariance, respectively.
After using the condition of vanishing torsion, Tabc ¼ 0,

the identity ½ ~∇α; ~∇β�fa ¼ ~Rabαβfb and the Bianchi identity,
~Rabcd þ ~Racdb þ ~Radbc ¼ 0, enable us to write the expres-
sions (3.5) as

eaβ ~∇α~τ
α
a þ

1

2
~σαab ~R

ab
αβ þ

1

2
~ωab

βð∇α ~σ
α
ab − 2~τ½ab�Þ ¼ 0;

ð3:6aÞ
~∇α ~σ

α
ab − 2~τ½ab� ¼ 0; ð3:6bÞ

~τ − ~∇β ~σ
a
a
β ¼ 0: ð3:6cÞ

Hence, the Riemannian identities (3.5a), (3.5b) and (3.5c)
coincide with those obtained from (3.2a), (3.2b) and (3.2c)
in the limit Tabc → 0, as expected. Therefore, taking
torsionless limit and calculating Noether-Ward identities
gives an equivalent result as first calculating the Ward
identities and taking torsion zero [22]. This is important
when we do not know whether the torsion vanishes.
Therefore, one may safely work in first order formalism
assuming the boundary conditions and gauge fixing pre-
sented previously.

IV. LOVELOCK-CHERN-SIMONS GRAVITY

A. Action and equations of motion

The Lovelock-Lanczos gravity [15] in first order for-
mulation is described by the action

IL ¼
X½D=2�

p¼0

αpLp; ð4:1aÞ

where αp are arbitrary coupling constants and Lp is
dimensionally continued Euler density in D dimensions,

Lp ¼ εi1i2…iDR
i1i2…Ri2p−1i2pei2pþ1…eiD: ð4:1bÞ

Here p is the power of the curvature tensor in the
polynomial Lp. We omit writing the wedge product for
the sake of simplicity.
Lovelock-Lanczos gravity possesses numerous black

hole solutions with Riemannean geometry [23–25],
although some choices of the coupling constants fαpg
exhibit a causality problem in the dual CFT [26], or have
instable geometries [27,28]. Generic Lovelock gravity
without torsion possesses the same number of degrees
of freedom as general relativity [29]. With torsion, or
when the parameters take the critical values, the
dynamical content of Lovelock-Lanczos gravity might
change. Solutions in these cases are known as well, for
example the ones with Riemann-Cartan geometry in five-
dimensional gravity [30,31] and supergravity [32].

In odd-dimensional case D ¼ 2nþ 1, the special choice
of coefficients αp ¼ κ

2nþ1−2p
n
p defines theory with the

unique (degenerate) AdS vacuum, known as LCS AdS
gravity. Alternatively, LCS action can be constructed as a
Chern density by taking the topological invariant, Chern
form dLCS ¼ εi1j1…injnF

i1j1…Finjn , and writing LCS by
using holonomy operator [14,33]. Then, an equivalent
form of LCS action is given by

ILCS ¼ κ

Z
M

Z
1

0

dtεA1B1A2B2…AnBnC

×
Yn
k¼1

ðR̂AkBk þ t2êAk êBkÞêC: ð4:2Þ

Dropping the indices for simplicity, the above expression
reads

ILCS ¼ κ

Z
M

Z
1

0

dtεðR̂þ t2ê2Þnê

¼ κ

Z
M

Xn
k¼0

n
k

1

2kþ 1
εR̂n−kê2kþ1; ð4:3Þ

where we used the binomial expansion to perform an
integration over t.
Equations of motion are obtained from the variation of

the action (4.3) with respect to fundamental variables êA

and ω̂AB. Variation with respect to ê yields

CA ≔ εAA1B1…AnBn

Yn
k¼1

FAkBk ¼ 0; ð4:4Þ

which can be split into 1 and a components,

C ≔ ε1a1b1…anbn

Yn
k¼1

Fakbk ¼ 0; ð4:5aÞ

Ca ≔ εa1ba2b2…anbnF
1b
Yn
k¼2

Fakbk ¼ 0: ð4:5bÞ

Variation with respect to ω yields

CAB ≔ εABA1B1…An−1Bn−1C

Yn−1
k¼1

FAkBk T̂C ¼ 0; ð4:6Þ

and can be split into ½1a� and ½ab� components,

C̄a ≔ ε1aa1b1…an−1bn−1c

Yn−1
k¼1

Fakbk T̂c ¼ 0; ð4:7aÞ

Cab ≔ ε1aba1b1…an−1bn−1

×
Yn−2
k¼1

FakbkðFan−1bn−1 T̂1 þ ðn − 1ÞF1an−1 T̂bn−1Þ:

ð4:7bÞ
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Let us note that T̂a ¼ 0 is a particular solution of the
equations (4.7) belonging to the Riemannian subclass of all
solutions of the theory. Also, the global AdS space
(Fab ¼ 0) is a particular solution of all equations of motion.

B. 1-point functions

In this section we calculate the renormalized gravita-
tional LCS action in the classical approximation. Then we
use the AdS/CFT correspondence to promote it to the
quantum effective action in a holographic CFT, and
compute the holographic 1-point functions.
The variation of the LCS action reads

δILCS ¼ nκ
Z
∂M

Z
1

0

dtεABCA1B1…An−1Bn−1
δω̂ABêC

×
Yn−1
k¼1

ðR̂AkBk þ t2êAk êBkÞ: ð4:8Þ

To perform a near-boundary expansion of the fields, let us
first rewrite the following quantity in terms of the AdS
tensor:

R̂AkBK þ t2êAk êBk ¼ FAkBk þ ðt2 − 1ÞêAk êBk :

The first term in the above expression is independent of ρ
since on the boundary ê1 ¼ 0, and therefore the particular
components expand as

R̂akbk þ êak êak ¼ Fakbk ;

R̂ak1 þ êak ê1 ¼ 1ffiffiffi
ρ

p ðTak − ρ∇kakÞ: ð4:9Þ

Plugging these expansions in the variation of the action, we
find

δILCS ¼ nκ
Z
∂M

εδω̂
Xn−1
k¼0

n − 1

k
ð−1Þkð2kÞ!!
ð2kþ 1Þ!! Fn−k−1ê2kþ1;

ð4:10Þ

where we used the beta function to solve the inte-

gral
R
0
1dtðt2 − 1Þk ¼ ð−1Þkð2kÞ!!

ð2kþ1Þ!! .
Variation (4.10) is divergent on the boundary, that is, in

the limit ρ → 0 and extraction of physical quantities requires
its renormalization, or removal of divergences. For related
work on Riemannian Lovelock gravity, see Ref. [5].
The procedure for obtaining finite results consists in

introducing a regulating surface at ρ ¼ ϵ and adding the
counterterms which cancel all divergent contributions as ϵ
tends to zero [8,34]. Equivalently said, the divergent terms
in a variation of an action have to be represented as total
variations of local terms integrated over boundary. In
general, the computation of the total variation can be
substantially simplified after noting that the conditions
for the application of the theorem [19] are fulfilled in our
case. For an alternative proof of the theorem [19], see
Appendix C. The theorem [19] states that the terms which
are asymptotically divergent or zero (when ρ → 0) can
always be represented as total variations of local boundary
functionals. Therefore, we can discard all ρα (α ≠ 0) terms
in the expression (4.10) and keep only the ρ0-terms. For the
form of the ρα-terms (α ≠ 0), see Appendix B. Note that the
counterterms can contain arbitrary local finite part which is
nonphysical and depends on a renormalization scheme. The
divergent counterterms are local and there is finite number
of them. They also depend on only one coupling constant κ.
Counterterms in Riemannian gemetry were calculated
in Ref. [35].
Keeping only the finite terms, we obtain the variation of

the regularized action Iren ¼ ILCS þ Ict in the form

δIren ¼ −2nκε
�
δωT

Xn−2
l¼0

�
n − 2

l

� ð−1Þl22lþ1ðn − 1Þ
lþ 1

ðRþ 4ekÞn−2−lelklþ1

− δe
Xn−1
l¼0

�
n − 1

l

� ð−1Þl22lþ1

lþ 1
ðRþ 4ekÞn−1−lelklþ1

�
; ð4:11Þ

where T ¼ ∇e is the boundary torsion tensor. Comparing
to (3.1), the spin and energy-momentum currents are given
by, respectively,

σab ¼ −nκε1abT
Xn−1
l¼1

�
n − 1

l

�
4lRn−1−lel−1kl; ð4:12Þ

τa ¼ κε1a
Xn
l¼1

�
n

l

�
4lRn−lel−1kl; ð4:13Þ

and they correspond to the vacuum expectation values of
the quantum CFT operators, the spin current Sab and the
energy-momentum of the conformal matter T a,

σab ¼ hSabiCFT; τa ¼ hT aiCFT: ð4:14Þ

Using these representations of the 1-point functions of the
CFT operators, we can study their quantum conservation
laws, that is, the Noether-Ward identities.
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C. Anomalies

The equations (3.2) describe classical conservation laws
in a holographic theory invariant under diffeomorphisms,
conformal transformations and non-Abelian gauge trans-
formations. Since now we know the form of the corre-
sponding quantum currents, we can also check the quantum
conservation laws. If the law is not satisfied, then the
quantum theory possesses a quantum anomaly.
In this section we explore the Ward identities and check

for the existence of quantum anomalies: Lorentz anomaly
Aab, diffeomorphism anomaly Āa, conformal anomaly A
and gauge anomaly Aa. It is well known that there are two

types of non-Abelian anomalies, covariant and consistent.
All the anomalies we compute here are covariant, i.e., they
transform covariantly under gauge symmetries.

1. Lorentz Ward identity

The conservation law for Lorentz symmetry is given by
Eq. (3.2b), so we have to calculate the quantity

Aab ¼ ∇σab − 2e½aτb�: ð4:15Þ

Using the expressions (4.12) and (4.13) for the quantum
currents, we find

Aab ¼ −4nκεab
�
2ðn − 1ÞT∇k

Xn−2
l¼0

Xn−2−l
m¼0

�
n − 2

l

��
n − 2 − l

m

�
4mðlþmþ 1ÞRn−2−l−melþmklþm

þ eckc
Xn−1
l¼0

Xn−1−l
m¼0

�
n − 1

l

��
n − 1 − l

m

� ð−1Þl22lþ2mþ1ðlþmþ 1Þ
lþ 1

Rn−1−l−melþmklþm�
�
:

It turns out that Aab can be completely expressed in terms of
the field equations, that means that it vanishes,

Aab ¼ −4nκCab ¼ 0: ð4:16Þ

Therefore, there is no Lorentz anomaly in the holographic
theory because the Lorentz symmetry is conserved also
quantically. This is an expected result, since the Lorentz
symmetry is usually broken in the actions that are not parity
invariant.

2. Ward identity for diffeomorphisms.

The conservation law for local translations has the
form (3.2a),

Āa ¼ ∇τa −
�
IaTbτb þ

1

2
IaRbcσbc

�
; ð4:17Þ

where Ia is the contraction operator with the spacetime
index projected to the tangent manifold using the inverse
vielbein eaα. Plugging in the quantum currents (4.12) and
(4.13), one can show that the conservation law is
satisfied,

Āa ¼ 4nκðkbaCb − C̄aÞ ¼ 0: ð4:18Þ

Therefore, there is no gravitational anomaly, as expected.

3. Conformal Ward identity

The conservation law for local Weyl transformations can
be read off from Eq. (3.2c) as

A ¼ eaτa þ∇ðeaIbσabÞ; ð4:19Þ

where eaτa is the trace of energy-momentum tensor, so A is
also called the trace anomaly. Using the field equations and
discarding the total divergence, one can show that the trace
anomaly has the form

eaτa ¼ κεa1b1a2b2…anbnR
a1b1Ra2b2…Ranbn ¼ κEnðRÞ:

ð4:20Þ

Thus, the holographic anomaly is nonvanishing and, up to a
divergence, proportional to the Euler density EnðRÞ ¼ εRn,
as expected in a CFT dual to a higher-dimensional AdS
gravity [36]. Since the Weyl anomaly is topological
invariant, it is of the type A, according to the general
classification of conformal anomalies given in Ref. [37].

4. Ward identity for gauge symmetry

The conservation law for non-Abelian gauge transfor-
mations is given by Eq. (3.2d) as

Aa ¼ ∇τa − 2ðebσbckac þ kbσbaÞ: ð4:21Þ

Using (4.12) and (4.13), as well as the equations of motion,
we can express it as
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Aa ¼ −2nκε1bIaTb
Xn−1
l¼0

�
n − 1

l

� ð−1Þl22lþ1

lþ 1
ðRþ 4ekÞn−1−lelklþ1

− 4nκε1bcT

�
1

2
IaRbc − 2ebkac

�Xn−2
l¼0

�
n − 2

l

� ð−1Þl22lþ1ðn − 1Þ
lþ 1

ðRþ 4ekÞn−2−lelklþ1

þ 8nκε1aT
Xn−2
l¼0

�
n − 2

l

� ð−1Þl22lþ1ðn − 1Þ
lþ 1

ðRþ 4ekÞn−2−lelklþ2 ≠ 0: ð4:22Þ

The above holographic anomaly is in general nonvanishing,
but it cancels out when the torsion is equal to zero, as
expected. Indeed, when Ta ¼ 0, the non-Abelian gauge
symmetry is not independent, but it can be expressed in
terms of the diffeomorphisms, which are conserved at the
quantum level. Another derivation of this result is possible
by noting that in this particular case the spin tensor vanishes
and both Eqs. (3.2a) and (3.2d) reduce to

~∇α ~τ
α
α ¼ 0: ð4:23Þ

Again non-Abelian gauge anomaly vanishes since Aa ¼ 0.

V. CONCLUDING REMARKS

We analyzed a holographic dual of Lovelock Chern-
Simons AdS gravity in an arbitrary odd dimension and
calculated corresponding holographic currents and anoma-
lies in the quantum CFT. First part of the work is devoted to
the kinematics of gravitational theory with AdS gauge
symmetry. After motivating a gauge fixing suitable for a
holographc analysis, we calculated residual (asymptotic)
symmetries. Then we focused to Chern-Simons AdS
gravity. We concluded that the largest asymptotic symmetry
consists of local translations and rotations (local Poincaré
group), local Weyl rescalings and, in the presence of torsion
on the boundary, of non-Abelian gauge symmetry. If the
torsion on the boundary is zero, then a non-Abelian
symmetry is not independent any longer and reduces to
local Poincaré transformations.
We found holographic representations of the energy-

momentum and spin tensors in a dual theory, which we
identified with the corresponding 1-point functions in CFT,
in the presence of sources. We also computed their
conservation laws and obtained that some of quantum
symmetries are broken, leading to quantum anomalies.
Explicitly, we obtained that local translations and rotations
are symmetries of the quantum theory, while Weyl rescal-
ings and non-Abelian gauge symmetry are anomalous.
Similarly as in five dimensions [9], the trace anomaly is
proportional to the Euler density and is therefore of the
type A.
Because of nonlinearity of the model and working in

higher-dimensional Riemann-Cartan space, the regulariza-
tion of the action was quite involved. However, with the

help of a general renormalization theorem shown in
Appendix C, it was possible to circumvent an explicit
construction of divergent counterterms and extract directly
its finite part. An alternative proof of the theorem is given
in Ref. [19].
One of the open questions left for future work is an

application on non-Abelian gauge transformations to the
calculation of chiral anomaly. Namely, in Ref. [9] it was
suggested that the chiral anomaly is related to the com-
pletely antisymmetric component of the torsion tensor.
Another question would be to find a different gauge fixing
of either transversal diffeomorphisms or local AdS sym-
metry, in order to obtain an infinite radial expansion of the
fields, and possibly the type B anomaly. This would
describe an inequivalent holographic theory. Finally, we
are also interested in introducing a gauge fixing which
breaks relativistic covariance in an arbitrary Poincaré gauge
theory, and is suitable for the formulation of Lifshitz
holography. These last topics is the work in progress.
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APPENDIX A: ADS ALGEBRA

The algebra of generators JĀ B̄ ¼ −JB̄ Ā (Ā; B̄ ¼ 0;
1;…; D) of AdS group SOðD − 1; 2Þ if given by

½JĀ B̄; JC̄ Ē� ¼ ηB̄ C̄JĀ Ē þ ηB̄ C̄JĀ Ē − ηĀ C̄JB̄ Ē − ηB̄ ĒJĀ C̄;

ðA1Þ
where ηĀ B̄ ¼ ð−1; 1;…; 1|fflfflffl{zfflfflffl}

D−1

;−1Þ. Introducing the splitting of

indices Ā ¼ ðA;DÞ and with

PA ¼ JAD;

JAB ¼ −JBA; A; B ¼ 0; 1;…; D − 1; ðA2Þ
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the algebra (A1) (after taking into account that ηDD ¼ −1)
takes the familiar form

½PA; PB� ¼ JAB;

½PA; JBC� ¼ ηABPC − ηACPB;

½JAB; JCE� ¼ ηBCJAE þ ηAEJBC − ηACJBE − ηBEJAC:

ðA3Þ

APPENDIX B: VARIATION OF LCS ACTION

In this appendix we present the nonvanishing parts of the
variation of LCS action given by Eq. (4.10),

δILCS ¼
Xn
j¼0

1

ρj
δIj: ðB1Þ

We find the following terms, with 1 ≤ j ≤ ðn − 2Þ:

δIn ¼ εa1a1b1…an−1bn−1cδe
aecK−ðn−1Þ;

δIn−1 ¼ εaba1b1…d1cδω
abec∇edJ−ðn−2Þ

þ εa1a1b1…an−1bn−1c½δeaecK−ðn−2Þ þ ðδeakc − δkaecÞK−ðn−1Þ�;
δIj ¼ ε1abcda1b1…δωab½ec∇edJ−ðj−1Þ − ðec∇kd − kc∇edÞJ−j − kc∇kdJ−ðjþ1Þ�

− ε1aca1b1…an−1bn−1 ½δeaecK−ðj−1Þ þ ðδeakc − δkaecÞK−j − δkakcK−ðjþ1Þ�;
δI0 ¼ ε1abcda1b1…δωab½ec∇edJ1 − ðec∇kd − kc∇edÞJ0 − kc∇kdJ−1�

− ε1aca1b1…an−1bn−1 ½δeaecK1 þ ðδeakc − δkaecÞK0 − δkakcK−1�; ðB2Þ

and

Kα ¼
Xn−1
l¼0

�
n − 1

l

�
ðRþ 4ekÞn−l−1Alαel−αklþα;

Jα ¼ ðn − 1Þ
Xn−2
l¼0

�
n − 2

l

�
ðRþ 4ekÞn−l−2Alαel−αklþα;

ðB3Þ

where

Alα ¼
ð−1Þl4ll!2

ð2lþ 1Þðl − αÞ!ðlþ αÞ! : ðB4Þ

APPENDIX C: ALTERNATIVE PROOF
OF THE RENORMALIZATION THEOREM

In this appendix we show an alternative derivation of the
results of Ref. [19].
Theorem 1 A surface counterterm can be added to an

action of any classical field theory in the bulk to cancel
all the terms which depend on the radial coordinate in an
on-shell variation, if any of the following conditions are
satisfied:

(i) The bulk has the topology R × ∂M;
(ii) The boundary has a finite number of disjoint pieces

and near each one the bulk looks like R × ∂M.
Here, ∂M is any manifold without boundary with the
coordinates xα and the radial coordinate is labeled by ρ. If
the fields have asymptotic expansion near the boundary of
the form ϕi ¼ P

nf
i
nðρÞϕi

nðxαÞ, where finðρÞ are functions

that depend only on ρ and ϕi
nðxαÞ are (ρ-independent)

boundary fields, then the counterterm is a local functional
of the boundary fields.
Let the action in ðDþ 1Þ-dimensional bulkM be defined

in language of differential forms as

S ¼
Z
M
L: ðC1Þ

A variation of the action (C1) takes the form

δS ¼
Z
M
δL ¼

Z
M
e:o:m:þ

Z
M
dDþ1LB

D ðC2Þ

where e.o.m are the terms proportional to the equation of
motion. Formula (C2) is also valid without integral and it
will be used in that form later. By using the Stoke’s
theorem, we can write the last term in (C2) asZ

M
dDþ1LB

D ¼
Z
∂M

LD; ðC3Þ

where the boundary of M is placed at fixed distance ρ ¼ ε
near (but not equal) zero and LD ≔ LB

Djρ¼ε. Let ∂M be a
boundary at each ρ. The most general D-form LD near the
boundary is

LB
D ¼ LD þ dρ ∧ V; ðC4Þ

where V is an arbitrary (D − 1)-form. The exterior deriva-
tive in the bulk can be decomposed near the boundary as

dDþ1 ¼ ∂ρdρþ d; ðC5Þ
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where d is the exterior derivative at the boundary and dρ is
the derivative along the direction ρ. From Eqs. (C2), (C4)
and (C5), we get on-shell

δL ¼ dρ ∧ ∂ρLD − dρ ∧ dV: ðC6Þ

Equivalently, this can be rewritten as

∂ρLD ¼ δU þ dV ðC7Þ

where δL ¼ dρ ∧ δU. Hence, from (C7) it follows that

LD ¼ δAþ dBþ RðxαÞ ðC8Þ

where A ¼ R
dρU, B ¼ R

dρV and RðxαÞ does not depend
on ρ. This conclusion is valid under the assumption that the
right side of Eq. (C7) is integrable and that the derivative
and integral mutually commute. Therefore, LD is a sum of a
total variation, exact form and a function which does not
depend on ρ.
Consequently, we get

Z
∂M

LD ¼ δ

Z
∂M

Aþ
Z
∂M

R; ðC9Þ

where we used the fact that an integral of the exact form dB
vanishes due to the Stoke’s theorem and because the
boundary of a boundary is an empty set. After substituting
(C9) into (C2) we obtain on-shell

δðS − SctÞ ¼
Z
∂M

R; ðC10Þ

where Sct ¼
R
∂M A. Since R is ρ independent, the expres-

sion (C10) is well defined at the boundary ρ ¼ 0. Thus, all
ρ-dependent terms can be eliminated by adding a suitable
counterterm. An important observation is that this counter-
term is unique. Given an asymptotic solution of the field
equations, a near-boundary behavior is fixed. Furthermore,
the counterterm is obtained from the Lagrangian, thus it
depends on the same parameters. In other words, we do not
include new parameters in the theory. If the starting
Lagrangian has a finite number of parameters, so it does
the renormalized Lagrangian.
As the counterterm is obtained as a primitive function of

local functions, it is not necessarily local. The near-
boundary expansion method is, however, able to determine
only local counterterms.
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Starting from the generalized pp waves that are exact vacuum solutions of general relativity with a
cosmological constant, we construct a new family of exact vacuum solutions of Poincaré gauge theory, the
generalized pp waves with torsion. The ansatz for torsion is chosen in accordance with the wave nature of
the solutions. For a subfamily of these solutions, the metric is dynamically determined by the torsion.
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I. INTRODUCTION

The principle of gauge symmetry was born in the work
of Weyl [1], where he obtained the electromagnetic field by
assuming local Uð1Þ invariance of the Dirac Lagrangian.
Three decades later, the Poincaré gauge theory (PGT) was
formulated by Kibble and Sciama [2]; it is nowadays a
well-established gauge approach to gravity, representing a
natural extension of general relativity (GR) to the gauge
theory of the Poincaré group [3,4]. Basic dynamical
variables in PGT are the tetrad field bi and the Lorentz
connection ωij ¼ −ωji (1-forms), and the associated field
strengths are the torsion Ti ¼ dbi þ ωi

k ∧ bk and the
curvature Rij ¼ dωij þ ωi

k ∧ ωkj (2-forms). By construc-
tion, PGT is characterized by a Riemann-Cartan geometry
of spacetime, and its physical content is directly related to
the existence of mass and spin as basic characteristics of
matter at the microscopic level. An up-to-date status of
PGT can be found in a recent reader with reprints and
comments [5].
General PGT Lagrangian LG is at most quadratic in the

field strengths. The number of independent (parity invari-
ant) terms in LG is nine, which makes the corresponding
dynamical structure rather complicated. As is well known
from the studies of GR, exact solutions have an essential
role in revealing and understanding basic features of the
gravitational dynamics [6–9]. This is also true for PGT,
where exact solutions allow us, among other things, to
study the interplay between dynamical and geometric
aspects of torsion [5].
In the context of GR, one of the best known families of

exact solutions is the family of pp waves: it describes
plane-fronted waves with parallel rays propagating on the
Minkowski background M4; see, for instance, Ehlers and
Kundt [6]. There is an important generalization of this
family, consisting of the exact vacuum solutions of GRwith
a cosmological constant (GRΛ) such that for Λ → 0, they
reduce to the pp waves in M4. We will refer to this family
as the generalized pp waves, or just ppΛ waves for short.

In contrast to the pp waves in M4, the wave surfaces
of the ppΛ waves have constant curvature proportional to
Λ. The family of the ppΛ waves belongs to a more general
family, known as the Kundt class of type N, labeled
KNðΛÞ. Details on the KNðΛÞ spacetimes can be found
in the monograph by Griffiths and Podolský [9]; see also
Refs. [10–12]. In this paper, we start from the Riemannian
ppΛ waves in GRΛ and construct a new family of the ppΛ
waves with torsion, representing a new class of exact
vacuum solutions of PGT. The torsion is introduced relying
on the approach used in our previous paper [13]. The
present work is motivated by earlier studies of the exact
wave solutions in PGT [14], and is regarded as a comple-
ment to them.
The paper is organized as follows. In Sec. II, we give a

short account of the Riemannian ppΛ waves, including the
relevant geometric and dynamical aspects, as a basis for
their extension to ppΛ waves with torsion. In Sec. III, we
first introduce an ansatz for the new, Riemann-Cartan (RC)
connection, the structure of which complies with the wave
nature of a RC spacetime. The ansatz is parametrized by a
specific 1-form K living on the wave surface, and the
related torsion has only one, tensorial irreducible compo-
nent. Then, we use the PGT field equations to show that the
dynamical content of K is described by two torsion modes
with the spin-parity values JP ¼ 2þ and 2−. In Sec. IV, we
find solutions for both the metric functionH and the torsion
function K, in the spin-2þ sector and for λ > 0; < 0 and
¼ 0. It is shown that K has a decisive influence on the
solution forH, and consequently, on the resulting metric. In
Sec. V, we shortly discuss solutions in the spin-2− sector,
which are found to be much less interesting. Section VI
concludes the exposition with a few remarks on some
issues not covered in the main text, and the Appendices are
devoted to certain technical details.
Our conventions are as follows. The latin indices

ði; j;…Þ refer to the local Lorentz (co)frame and run
over (0, 1, 2, 3), bi is the tetrad (1-form), and hi is the
dual basis (frame), such that hibk ¼ δik. The volume 4-form
is ϵ̂ ¼ b0 ∧ b1 ∧ b2 ∧ b3, the Hodge dual of a form α is
⋆α, with ⋆1 ¼ ϵ̂, and the totally antisymmetric tensor is
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defined by ⋆ðbi ∧ bj ∧ bk ∧ bmÞ ¼ εijkm and normalized
to ε0123 ¼ þ1. The exterior product of forms is implicit,
except in Appendix B.

II. RIEMANNIAN ppΛ WAVES

In this section, we give an overview of Riemannian ppΛ
waves using the tetrad formalism [15], necessary for the
transition to PGT.

A. Geometry

The family of ppΛ waves is a specific subclass of the
Kundt spacetimes KNðΛÞ, labeled by KNðλÞ½α¼ 1;β¼ 0�;
for the full classification of the KNðΛÞ spacetimes, see
Refs. [9,10]. In suitable local coordinates xμ ¼ ðu; v; y; zÞ
(see Appendix A), the metric of the ppΛ waves can be
written as

ds2 ¼ 2

�
q
p

�
2

duðSduþ dvÞ − 1

p2
ðdy2 þ dz2Þ; ð2:1aÞ

where

p ¼ 1þ λ

4
ðy2 þ z2Þ; q ¼ 1 −

λ

4
ðy2 þ z2Þ;

S ¼ −
λ

2
v2 þ p

2q
Hðu; y; zÞ; ð2:1bÞ

with λ being a suitably normalized cosmological constant,
and the unknown metric function H is to be determined
by the field equations. The coordinate v is an affine
parameter along the null geodesics xμ ¼ xμðvÞ, and u is
retarded time such that u ¼ const are the spacelike
surfaces parametrized by xα ¼ ðy; zÞ. Since the null
vector ξ ¼ ξðuÞ∂v is orthogonal to these surfaces, they
are regarded as wave surfaces, and ξ is the null direction
(ray) of the wave propagation. The vector ξ is not
covariantly constant, and consequently, the wave rays
are not parallel and the wave surfaces are not flat. For
λ → 0, the metric (2.1) reduces to the metric of pp waves
on the M4 background, which explains the term gener-
alized pp waves, or ppΛ waves.
Next, we choose the tetrad field (coframe) in the form

b0 ≔ du; b1 ≔
�
q
p

�
2

ðSduþ dvÞ;

b2 ≔
1

p
dy; b3 ≔

1

p
dz; ð2:2aÞ

so that ds2 ¼ ηijbi ⊗ bj, where ηij is the half-null
Minkowski metric:

ηij ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

1
CCCA:

The corresponding dual frame hi is given by

h0 ¼ ∂u − S∂v; h1 ¼
�
p
q

�
2∂v;

h2 ¼ p∂y; h3 ¼ p∂z: ð2:2bÞ

For the coordinates xα ¼ ðy; zÞ on the wave surface, we
have

xc ¼ bcαxα ¼
1

p
ðy; zÞ; ∂c ¼ hcα∂α ¼ pð∂y; ∂zÞ;

where c ¼ 2, 3.
Starting from the general formula for the Riemannian

connection 1-form,

ωij ≔ −
1

2

�
hi⌋dbj − hj⌋dbi − ðhi⌋hj⌋dbkÞbk

�
;

one can find its explicit form; for i < j, it reads

ω01 ¼ λvb0−
1

q
ðλyb2þ λzb3Þ; ω02 ¼ λy

q
b0; ω03 ¼ λz

q
b0;

ω12 ¼ λy
q
b1 −

q2

p
∂ySb0; ω13 ¼ λz

q
b1−

q2

p
∂zSb0;

ω23 ¼ 1

2
ðλzb2 − λyb3Þ: ð2:3aÞ

Introducing the notation i ¼ ðA; aÞ, where A ¼ 0, 1 and
a ¼ ð2; 3Þ, one can rewrite ωij in a more compact form:

ω01 ¼ λvb1 −
2

qp
ðbc∂cpÞ;

ωAc ¼ −
2

qp
bA∂cpþ kA

q2

p2
b0∂cS;

ω23 ¼ −
1

p
ðb2∂3p − b3∂2pÞ; ð2:3bÞ

where ki ¼ ð0; 1; 0; 0Þ is a null propagation vector, k2 ¼ 0.
The above connection defines the Riemannian curvature

Rij ¼ dωij þ ωi
mω

mj; for i < j, it is given by

Rij ¼
�
−λb1bc þ k1b0Qc; for ði; jÞ ¼ ð1; cÞ
−λbibj; otherwise;

ð2:4aÞ

where Qc is a 1-form introduced by Obukhov [15],
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Qc ¼ −∇
��

q
p

�
2

hc⌋dS

�
þ
�
q
p

�
3

hc⌋

�
d

�
p
q

�
∧ dS

�
;

and d ¼ dxα∂α is the exterior derivative on the wave
surface. In more details

Q2 ¼ q
2p

½2qp∂yySþ ðq − 4Þλy∂yS − qλz∂zS�b2

þ q
2
½2q∂yzS − λz∂yS − λy∂zS�b3;

Q3 ¼ q
2p

½2qp∂zzSþ ðq − 4Þλz∂zS − qλy∂yS�b3

þ q
2
½2q∂yzS − λz∂yS − λy∂zS�b2:

As a consequence, Rij can be represented more
compactly as

Rij ¼ −λbibj þ 2b0k½iQj�: ð2:4bÞ

The Ricci 1-form Rici ≔ hm⌋Ricmi is given by

Rici ¼ −3λbi þ b0kiQ;

Q ¼ hc⌋Qc ¼ qp
2

�
∂yyH þ ∂zzH þ 2λ

p2
H

�
; ð2:5Þ

and the scalar curvature R ≔ hi⌋Rici reads

R ¼ −12λ: ð2:6Þ

B. Dynamics

1. ppΛ waves in GRΛ

Starting with the action I0 ¼ −
R
d4xða0Rþ 2Λ0Þ, one

can derive the GRΛ field equations in vacuum,

2a0Gn
i − 2Λ0δ

n
i ¼ 0; ð2:7aÞ

where Gn
i is the Einstein tensor. The trace and the traceless

piece of these equations read

Λ0 ¼ 3a0λ; Rici −
1

4
Rbi ≡ b0kiQ ¼ 0: ð2:7bÞ

As a consequence, the metric function H must obey

∂yyH þ ∂zzH þ 2λ

p2
H ¼ 0: ð2:8Þ

There is a simple solution of these equations,

Hc ¼
1

p
ðAðuÞqþ BαxαÞfðuÞ; ð2:9Þ

for which Qa vanishes. This solution is trivial (or pure
gauge), since the associated curvature takes the background

form, Rij ¼ −λbibj; moreover, it is conformally flat, since
its Weyl curvature vanishes. The nontrivial vacuum sol-
utions are characterized by Q ¼ 0, but Qc ≠ 0; their
general form can be found in [10].

2. ppΛ waves in PGT

To better understand the relation between GRΛ and PGT,
it is interesting to examine whether ppΛ waves satisfying
the GRΛ field equations in vacuum are also a vacuum
solution of PGT. It turns out that a more general version of
the problem has been already solved by Obukhov [4].
Studying the PGT field equations for torsion-free configu-
rations, he proved the following important theorem:
T1. In the absence of matter, any solution of GRΛ is a
torsion-free solution of PGT.
It is interesting to note that the inverse statement, that any
torsion-free vacuum solution of PGT is also a vacuum
solution of GRΛ, is also true, except for three specific
choices of the PGT coupling constants.

III. ppΛ WAVES WITH TORSION

In this section, we extend the ppΛ waves that are
vacuum solutions of GRΛ to a new family of the exact
vacuum solutions of PGT, characterized by the existence of
torsion.

A. Ansatz

The main step in constructing the ppΛ waves with
torsion is to find an ansatz for torsion that is compatible
with the wave nature of the solutions. This is achieved by
introducing torsion at the level of connection.
Looking at the Riemannian connection (2.3), one can

notice that its radiation piece appears only in the ω1c

components:

ðω1cÞR ¼ q2

p2
ðhcα∂αSÞb0:

This motivates us to construct a new connection by
applying the rule

∂αS → ∂αSþ Kα; Kα ¼ Kαðu; y; zÞ; ð3:1aÞ

where Kα is the component of the 1-form K ¼ Kαdxα on
the wave surface. Thus, the new form of ðωijÞR reads

ðωicÞR ≔ ki
q2

p2
hcαð∂αSþ KαÞb0; ð3:1bÞ

whereas all the other nonradiation pieces retain their
Riemannian form (2.3).
The geometric content of the new connection is found by

calculating the torsion:
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Ti ¼ ∇bi þ ωi
mbm ¼ ki

q2

p
b0ðb2Ky þ b3KzÞ

¼ ki
q2

p2
b0bcKc: ð3:2Þ

The only nonvanishing irreducible piece of Ti is ð1ÞTi.
The new connection modifies also the curvature, so that

its radiation piece becomes

ðR1cÞR ¼ k1b0Ωc; Ωc ≔ Qc þ Θc; ð3:3aÞ

where the term Θc that represents the contribution of
torsion is given by

Θ2 ¼ q
2p

½ð2qp∂yKy − pKyλy − qKzλzÞb2

þ ð−2qp∂zKy þ pKyλz − qKzλyÞb3�;
Θ3 ¼ q

2p
½ð2qp∂zKz − pKzλz − qKyλyÞb3

þ ð−2qp∂yKz þ pKzλy − qKyλzÞb2�:

The covariant form of the curvature reads

Rij ¼ −λbibj þ 2b0k½iΩj�; ð3:3bÞ

and the Ricci curvature takes the form

Rici ¼ −3λbi þ b0kiΩ; Ω ≔ hc⌋Ωc ¼ Qþ Θ: ð3:3cÞ

The torsion has no influence on the scalar curvature:

R ¼ −12λ: ð3:3dÞ

Thus, our ansatz defines a RC geometry of spacetime.

B. PGT field equations

Having adopted the ansatz for torsion defined in
Eq. (3.1), we now wish to find explicit form of the PGT
field equations and use them to determine dynamical
content of our ansatz.
As shown in Appendices B and C, the field equations

depend on the structure of the irreducible components of
the field strengths. For torsion, we already know that the
only nonvanishing irreducible component is ð1ÞTi ¼ Ti,
defined in Eq. (3.2). As for the curvature, we note that our
ansatz yields X ¼ 0 and bmRicm ¼ 0, where X is defined in
(B2b). Then, the irreducible decomposition of the curvature
implies (see Appendix B)

ð3ÞRij ¼ 0; ð5ÞRij ¼ 0; ð3:4Þ

whereas the remaining pieces ðnÞRij are defined by their
nonvanishing components as

ð2ÞR1c ¼ 1

2
⋆ðΨ1bcÞ; ð4ÞR1c ¼ 1

2
ðΦ1bcÞ;

ð6ÞRij ¼ −λbibj; ð1ÞR1c ¼ b0
�
ΩðceÞ −

1

2
ηceΩ

�
be;

ð3:5aÞ

where the 1-forms Φi and Ψi are given by

Φi ¼ kib0ðQþ ΘÞ; Θ ¼ qp

�
∂y

�
q
p
Ky

�
þ ∂z

�
q
p
Kz

��
;

Ψi ¼ Xi ¼ −kib0Σ; Σ ¼ qp

�
∂z

�
q
p
Ky

�
− ∂y

�
q
p
Kz

��
:

ð3:5bÞ

Having found ð1ÞTi and ðnÞRij, we apply the procedure
described in Appendix C to obtain the following form of
the two PGT field Eqs. (C3):

ð1STÞ Λ0 ¼ 3a0λ; a1Θ − A0ðQþ ΘÞ ¼ 0; ð3:6aÞ

ð2NDÞ − ðb2 þ b1Þð∇Ψ1Þb2 − ðb4 þ b1Þð∇Φ1Þb3 − 2ða0 − A1ÞT1b3 ¼ 0;

−ðb2 þ b1Þð∇Ψ1Þb3 þ ðb4 þ b1Þð∇Φ1Þb2 þ 2ða0 − A1ÞT1b2 ¼ 0; ð3:6bÞ

where A0 ¼ a0 þ ðb4 þ b6Þλ and A1 ¼ a1 − ðb6 − b1Þλ [16].
Leaving (1ST) as is, (2ND) can be given a more clear structure as follows:
(i) use (1ST) to express Φ1 ¼ b0ðQþ ΘÞ in the form Φ1 ¼ ða1=A0Þb0Θ;
(ii) multiply (2ND) by A0=q.

As a result, the previous two components of (2ND) transform into

A0ðb2 þ b1Þ∂zðpΣ=qÞ þ a1ðb4 þ b1Þ∂yðpΘ=qÞ þ 2A0ðA1 − a0Þðq=pÞKy ¼ 0; ð3:7aÞ

−A0ðb2 þ b1Þ∂yðpΣ=qÞ þ a1ðb4 þ b1Þ∂zðpΘ=qÞ þ 2A0ðA1 − a0Þðq=pÞKz ¼ 0: ð3:7bÞ
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Then, calculating ∂yð3.7aÞ þ ∂zð3.7bÞ and ∂zð3.7aÞ −∂yð3.7bÞ yields the final form of (2ND):

ð∂yy þ ∂zzÞðpΘ=qÞ −m2
2þ

1

p2
ðpΘ=qÞ ¼ 0;

m2
2þ ≔

2A0ða0 − A1Þ
a1ðb1 þ b4Þ

; ð3:8aÞ

ð∂yy þ ∂zzÞðpΣ=qÞ −m2
2−

1

p2
ðpΣ=qÞ ¼ 0;

m2
2− ≔

2ða0 − A1Þ
b1 þ b2

: ð3:8bÞ

The parameters m2
2� have a simple physical interpretation.

In the limit λ → 0, they represent masses of the spin-2�
torsion modes with respect to the M4 background [17],

m̄2
2þ ¼ 2a0ða0 − a1Þ

a1ðb1 þ b4Þ
; m̄2

2− ¼ 2ða0 − a1Þ
b1 þ b2

;

whereas for finite λ,m2
2� are associated to the torsion modes

with respect to the (anti)de Sitter [(A)dS] background.
In M4, the physical torsion modes are required to satisfy

the conditions of no ghosts (positive energy) and no
tachyons (positive m2) [17,18]. However, for spin-2þ
and spin-2− modes, the requirements for the absence of
ghosts, given by the conditions b1 þ b2 < 0 and
b1 þ b4 > 0, do not allow for both m2 to be positive.
Hence, only one of the two modes can exist as a
propagating mode (with finite mass), whereas the other
one must be “frozen” (infinite mass). Although these
conditions refer to the M4 background, we assume their
validity also for the (A)dS background, in order to have a
smooth limit when λ → 0.
One should note that the two spin-2 sectors have quite

different dynamical structures.
(i) In the spin-2− sector, the infinite mass of the spin-2þ

mode implies Θ ¼ 0, whereupon (1ST) yields
Q ¼ 0, which is exactly the GRΛ field equation
for metric. Thus, the existence of torsion has no
influence on the metric.

(ii) In the spin-2þ sector, the infinite mass of the spin-2−

mode implies Σ ¼ 0, whereas (1ST) yields that Q is
proportional to Θ, with Θ ≠ 0. Thus, the torsion
functionΘ has a decisive dynamical influence on the
form of the metric.

In the next section, we focus our attention on the spin-2þ
sector, where the metric appears to be a genuine dynamical
effect of PGT.

IV. SOLUTIONS IN THE SPIN-2+ SECTOR

In this section, we first find solutions of Eq. (3.8a) for the
spin-2þ mode V ¼ ðp=qÞΘ, and then use that V to find
the metric function H and the torsion functions Kα, the

quantities that completely define the geometry of the ppΛ
waves with torsion.

A. Solutions for V = ðp=qÞΘ
The field equation for the spin-2þ sector can be written

in a slightly simpler form as

ð∂yy þ ∂zzÞV −
m2

p2
V ¼ 0; ð4:1Þ

where V ¼ ðp=qÞΘ and m2 ¼ m2
2þ . We have seen in

Appendix A that local coordinates ðy; zÞ are well defined
in the region where p and q do not vanish, which is an
open disk of finite radius, y2 þ z2 < 4jλj−1. Since (4.1)
is a differential equation with circular symmetry, it is
convenient to introduce polar coordinates, y ¼ ρ cosφ;
z ¼ ρ sinφ, in which Eq. (4.1) takes the form

� ∂2

∂ρ2 þ
1

ρ

∂
∂ρþ

1

ρ2
∂2

∂φ2

�
V −

m2

p2
V ¼ 0: ð4:2aÞ

Looking for a solution of V in the form of a Fourier
expansion,

V ¼
X∞
n¼0

VnðρÞðcneinφ þ c̄ne−inφÞ;

we obtain

V 00
n þ

1

ρ
V 0
n −

�
n2

ρ2
þm2

p2

�
Vn ¼ 0; ð4:2bÞ

where prime denotes d=dρ.

1. λ=4 ≡ l− 2 > 0

Let us first consider solutions of the dS type, using a
convenient notation:

x ¼ ρ

l
; μ ¼ ml; ξ ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q 	
:

The general solutions of (4.2b) for n ¼ 0 and n > 0 are
given by

V0 ¼ c1ð1þ x2Þ1−ξ2F1ð1 − ξ; 1 − ξ; 2ð1 − ξÞ;−j1þ x2jÞ
þ c2ð1þ x2Þξ2F1ðξ; ξ; 2ξ;−j1þ x2jÞ; ð4:3aÞ

Vn ¼ c1ðx2Þn=2ð1þ x2Þξ2F1ðξ; ξþ n; 1þ n;−x2Þ
þ c2ðx2Þ−n=2ð1þ x2Þξ2F1ðξ; ξ − n; 1 − n;−x2Þ;

ð4:3bÞ

where cn ¼ cnðuÞðn ¼ 1; 2Þ and 2F1ða; b; c; zÞ is the
hypergeometric function [19].
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2. λ=4 ≡ −l−2 < 2

In the AdS sector, using

ξ̄ ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

q 	
;

the solutions for n ¼ 0 and n > 0 take the following forms:

V0 ¼ c1ð1 − x2Þ1−ξ̄2F1ð1 − ξ̄; 1 − ξ̄; 2ð1 − ξ̄Þ; j1 − x2jÞ
þ c2ð1 − x2Þξ̄2F1ðξ̄; ξ̄; 2ξ̄; j1 − x2jÞ; ð4:4aÞ

Vn ¼ c1ðx2Þn=2ðx2 − 1Þξ̄2F1ðξ̄; ξ̄þ n; 1þ n; x2Þ
þ c2ðx2Þ−n=2ðx2 − 1Þξ̄2F1ðξ̄; ξ̄ − n; 1 − n; x2Þ:

ð4:4bÞ

These solutions are essentially an analytic continuation by
l → il of those in Eq. (4.3).

3. λ= 0

The general solution of Eq. (4.2b) has the form

Vn ¼ c1Jnð−imρÞ þ c2Ynð−imρÞ; n ¼ 0; 1; 2;…

ð4:5Þ
where Jn and Yn are Bessel functions of the first and second
kind, respectively.

B. Solutions for the metric function H

For a given Θ, the first PGT field equation
A0Q ¼ ða1 − A0ÞΘ, with Q defined in (2.5), represents a
differential equation for the metric function H:

ð∂yy þ ∂zzÞH þ 2λ

p2
H ¼ 2ða1 − A0Þ

A0

1

p2
V: ð4:6Þ

This is a second order, linear nonhomogeneous differential
equation, and its general solution can be written as

H ¼ Hh þHp;

where Hh is the general solution of the homogeneous
equation, and Hp a particular solution of (4.6). By
comparing Eq. (4.6) to Eq. (4.1), one finds a simple
particular solution for H:

Hp ¼ σV; σ ¼ 2ða1 − A0Þ
ð2λþm2ÞA0

: ð4:7aÞ

On the other hand, Hh coincides with the general vacuum
solution of GRΛ; see (2.8). Since our idea is to focus on the
genuine torsion effect on the metric, we chooseHh ¼ 0 and
adopt Hp as the most interesting PGT solution for the
metric function H. Thus, we have

Hn ¼ σVn: ð4:7bÞ

C. Solutions for the torsion functions Kα

In the spin-2þ sector, the torsion functions Kα can be
determined from Eq. (3.7), combined with the condition
Σ ¼ 0:

∂yV þm2
q
p
Ky ¼ 0; ∂zV þm2

q
p
Kz ¼ 0: ð4:8Þ

Going over to polar coordinates,

Ky ¼ Kρ cosφ −
Kφ

ρ
sinφ; Kz ¼ Kρ sinφþ Kφ

ρ
cosφ;

the previous equations are transformed into

Kρ ¼ −
1

m2

p
q
∂ρV; Kφ ¼ −

1

m2

p
q
∂φV; ð4:9aÞ

or equivalently, in terms of the Fourier modes,

Kρn ¼ −
1

m2

p
q
∂ρVn; Kφn ¼ −

1

m2

p
q
nVn; ð4:9bÞ

whereKφ ¼ P∞
n¼1ðdneinφ þ d̄ne−inφÞwith dn ¼ −icn, and

similarly for Kρ.

D. Graphical illustrations

Here, we illustrate graphical forms of two specific
solutions by giving plots of their metric functions H and
the typical torsion component T1

02,

H ¼ σV;

T1
02 ¼

q2

p2
K2 ¼

q2

p
Ky ¼ −

1

m2
qð∂ρV cosφ− ρ−1Kφ sinφÞ:

ð4:10Þ

For λ ≠ 0, it is convenient to use the units in which l ¼ 1.
In the dS sector (Fig. 1), the zero modes of both H and

T1
02ðφ ¼ 0Þ are regular functions with a clear-cut wavelike

behavior in the region 0 < x < 1. The plots correspond to
the ppΛ geometry for fixed u, and as u increases, the

0.2 0.4 0.6 0.8 1.0
x

10

5

5

10
H0

0.2 0.4 0.6 0.8 1.0
x

1.5
1.0
0.5

0.5
1.0
1.5

T1
02

FIG. 1. The plots of a solution in the sector λ > 0, in units
l ¼ 1, for n ¼ 0; μ ¼ 100; c1 ¼ 1; c2 ¼ 0; σ ¼ 1. Left: H0.
Right: T1

02ðφ ¼ 0Þ.
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pictures change. In the AdS sector (Fig. 2), the solution is
singular at x ¼ 1, or equivalently at p ¼ 0, and it does not
have a typical wavelike shape. For a discussion of the
singularity at p ¼ 0, see Ref. [11]. We also examined a zero
mode solution (n ¼ 0) in theM4 sector (λ ¼ 0); its shape is
similar to what we have in Fig. 2, but it remains finite
at x ¼ 1.

V. SOLUTIONS IN THE SPIN-2− SECTOR

As we noted at the end of Sec. III, the spin-2− sector is
characterized by Θ ¼ 0 and, as a consequence of (1ST), by
Q ¼ 0. Equation (3.8b) for Σ reads

ð∂yy þ ∂zzÞU −
m2

p2
U ¼ 0; ð5:1Þ

where U ¼ ðp=qÞΣ and m2 ¼ m2
2− . Clearly, the solutions

for U coincide with the solutions for V ¼ ðp=qÞΘ in
Sec. IVA. Furthermore, the metric function H, defined
by Q ¼ 0, has the GRΛ form, and the solutions for the
torsion functions Kα follow from the two equations

∂yU þm2
q
p
Ky ¼ 0; ∂zU þm2

q
p
Kz ¼ 0; ð5:2Þ

the counterparts of those in (4.8).
The fact that the metric of the spin-2− sector is

independent of torsion makes this sector, in general, much
less interesting. There is, however, one solution in this
sector that should be mentioned: it is the solution with
H ¼ 0 for which the metric takes the ðAÞdS=M4 form, and
the complete dynamics is carried solely by the torsion. We
skip discussing details of this case, as they can be easily
reconstructed from the results given in the previous section,
following the procedure outlined above.

VI. CONCLUDING REMARKS

In this paper, we found a new family of the exact vacuum
solutions of PGT, the family of the ppΛ waves with torsion.
Here, we wish to clarify a few issues that have not been
properly covered in the main text.
The essential step in our construction is the ansatz for the

RC connection (3.1), which modifies only the radiation

piece of the corresponding Riemannian connection (2.3). A
characteristic feature of the resulting solution is the
presence of the null vector ki ¼ ð0; 1; 0; 0Þ in the spacetime
geometry. The vector field ki∂i ¼ ðp=qÞ2∂v is orthogonal
to the spatial surfaces u ¼ const, and is interpreted as the
propagation vector of the ppΛ wavewith torsion. Is such an
interpretation justifiable?
Although gravitational waves belong to one of the

best known families of exact solutions in GRΛ, a unique
covariant criterion for their precise identification is still
missing. One of the early criteria of this type was
formulated by Lichnerowicz, based on an analogy with
methods used to determine electromagnetic radiation;
see Zakharov [7]. This criterion can be formulated as a
requirement that the radiation piece of the curvature,
Sij ¼ Rij þ λbibj, satisfies the radiation conditions:

kiSij ¼ 0; εijknkjSkn ¼ 0: ð6:1aÞ

However, when applied to a RC geometry, the
Lichnerowicz criterion can be naturally extended to include
the torsion 2-form:

kiTi ¼ 0; εijmnkmTn ¼ 0: ð6:1bÞ

A direct calculation based on the expressions (3.2) and
(3.3b) shows that both sets of the radiation conditions are
satisfied. This result gives a strong support to interpreting
the ppΛ waves with torsion as proper wave solutions
of PGT.
Looking at the explicit solutions for the ppΛ waves with

torsion, one should note that, in general, the hypergeo-
metric function 2F1ða; b; c; xÞ is singular at x ¼ 1 ðρ ¼ lÞ
[19]; moreover, local coordinates we are using are singular
at both x ¼ 1 and x ¼ 0 (Appendix A). To test the nature of
these singularities, we calculated the following torsion and
curvature invariants:

Ti ∧ ⋆Ti ¼ 0;

R ¼ −12λ; Rij⋆Ri;j ¼ 12λ2ϵ̂;

Rij
klRkl

mnRmn
ij ¼ −48λ3; ð6:2Þ

the fourth order invariant is 96λ4, and so on. All these
invariants are well behaved at x ¼ 1, 0, which might be a
signal that the singularities in question are just the
coordinate singularities. However, according to Wald
[20], the geometric singularities are not always visible in
the field strength invariants. This issue deserves further
clarification.
If the curvature Rij is replaced by its radiation piece Sij,

all the invariants in (6.2) are found to vanish. According to
Bell’s second criterion [7], we have here another result that
supports the wave interpretation of our ppΛ solutions.
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FIG. 2. The plots of a solution in the sector λ < 0, in units
l ¼ 1, for n ¼ 0; μ ¼ ffiffiffi

8
p

; c1 ¼ 0.1; c2 ¼ 0. Left: H0. Right:
T1

02ðφ ¼ 0Þ.
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In GRΛ, the ppΛ waves are algebraically special sol-
utions of Petrov type N; this property can be formulated as
an algebraic condition on the Weyl curvature:Wijmnkm ¼ 0

[9,21]. However, one cannot use the same criterion for
classifying the solutions of PGT, since Wijmn is not an
irreducible part of the RC curvature. The problem can be
overcome by replacing Wijmn with ð1ÞRijmn, which is a
genuine PGT generalization of Wijmn [4]. Using the
expression for ð1ÞRijmn from Eq. (3.5), one can directly
prove the relation

ð1ÞRijmnkm ¼ 0; ð6:3Þ

which is a natural PGT generalization of the Riemannian
condition. The condition (6.3) can be considered as a well-
founded criterion for a family of PGT solutions to be of
type N.
Finally, we wish to stress that a subfamily of the

solutions in the spin-2þ sector reveals an unexpected
dynamical aspect of torsion. Namely, although torsion is
introduced by a minor modification of the Riemannian
connection [see (3.1)], the metric function H in (4.7) is
determined solely by the torsion, and consequently, the
related metric is a genuine dynamical effect of PGT. More
detailed information could be obtained by analyzing the
motion of test particles/fields in the RC spacetimes asso-
ciated to the ppΛ waves with torsion.
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APPENDIX A: ON HYPERBOLIC GEOMETRIES

(A)dS space can be simply represented as a 4D hyper-
boloid H4 embedded in a 5D Minkowski space M5 with
metric ηMN ¼ ðþ;−;−;−; σÞ,

H4∶ X2
0 − X2

1 − X2
2 − X2

3 − σX2
5 ¼ −σl2; ðA1aÞ

where σ ¼ þ1 for a dS space and σ ¼ −1 for an AdS space
[9,23]. The metric on H4 reads

ds2 ¼ dX2
0 − dX2

1 − dX2
2 − dX2

3 − σdX2
5; ðA1bÞ

and its scalar curvature is R ¼ −12σ=l2. The group of
isometries of the dS/AdS spaces is SOð1; 4Þ=SOð2; 3Þ, and
the corresponding topologies are R × S3 for the dS space,
and S1 × R3 for the AdS space (or R4 for its universal
covering).
Going now back to the generalized ppwave metric (2.1),

we note that in the limitH ¼ 0, it describes the background
(A)dS geometry:

ds2 ¼ 2

�
q
p

�
2

duð−2Λv2duþ dvÞ − 1

p2
ðdy2 þ dz2Þ;

p ¼ 1þ Λðy2 þ z2Þ; q ¼ 1 − Λðy2 þ z2Þ: ðA2Þ

As we shall see below, Λ is related to l by 4σΛ ¼ 1=l2;
moreover, Λ > 0 for dS and Λ < 0 for AdS. The two forms
of the metric associated to the hyperboloidH4 are related to
each other by a coordinate transformation [11],

X0 ¼
q
2p

ðuþ vþ Λu2vÞ; u ¼ 2σl
X5 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σðX2

0 − X2
1 − σX2

5Þ
q

X0 − X1

;

X1 ¼
q
2p

ðu − vþ Λu2vÞ; v ¼ X0 − X1

4l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σðX2

0 − X2
1 − σX2

5Þ
q ;

X2 ¼
y
p
; X3 ¼

z
p
; y ¼ 2lX2

lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − σðX2

2 þ X2
3Þ

p ;

X5 ¼
1

2
ffiffiffiffiffiffi
σΛ

p q
p
ð1þ 2ΛuvÞ; z ¼ 2lX3

lþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − σðX2

2 þ X2
3Þ

p : ðA3Þ

Indeed, the coordinates XM in M4 describe the hyperboloid H4,

ðX2
0 − X2

1 − σX2
5Þ − X2

2 − X2
3 ¼ −

1

4Λ
q2

p2
−

1

p2
ðy2 þ z2Þ ¼ −

1

4Λ
¼ −σl2;

and the corresponding metric (A1b), followed by the rescaling v → 2v, coincides with (A2).
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Since local coordinates xμ ¼ ðu; v; x; yÞ are introduced
by the parametrization (A3), they are well defined for

X2
0 − X2

1 − σX2
5 ¼ −

1

4Λ
q2

p2
> 0:

The limiting value q ¼ 0 is not allowed, as it represents the
singularity of the local coordinate system ðu; v; y; zÞ; this
singularity is visible only for Λ > 0. The same conclusion
follows from the fact that the determinant of the metric (A2)
vanishes for q ¼ 0. Furthermore, an inspection of Eq. (A3)
reveals the existence of another singularity, located at
p ¼ 0; it is visible only for Λ < 0. Thus, local coordinates
ðu; v; y; zÞ are restricted to the region where q and/or p do
not vanish: y2 þ z2 ≤ jΛj−1. More on the geometric inter-
pretation of these singularities can be found in Ref. [11].

APPENDIX B: IRREDUCIBLE DECOMPOSITION
OF THE FIELD STRENGTHS

We present here formulas for the irreducible decom-
position of the PGT field strengths in a 4D Riemann-Cartan
spacetime [4,24].
The torsion 2-form has three irreducible pieces:

ð2ÞTi ¼ 1

3
bi ∧ ðhm⌋TmÞ;

ð3ÞTi ¼ 1

3
hi⌋ðTm ∧ bmÞ;

ð1ÞTi ¼ Ti − ð2ÞTi − ð3ÞTi: ðB1Þ
The RC curvature 2-form can be decomposed into six
irreducible pieces:

ð2ÞRij ¼ �ðb½i ∧ Ψj�Þ; ð4ÞRij ¼ b½i ∧ Φj�;

ð3ÞRij ¼ 1

12
X�ðbi ∧ bjÞ; ð6ÞRij ¼ 1

12
Fbi ∧ bj;

ð5ÞRij ¼ 1

2
b½i ∧ hj�⌋ðbm ∧ FmÞ; ð1ÞRij ¼ Rij −

X6
a¼2

ðaÞRij;

ðB2aÞ
where

Fi ≔ hm⌋Rmi ¼ Rici; F ≔ hi⌋Fi ¼ R;

Xi ≔ �ðRik ∧ bkÞ; X ≔ hi⌋Xi; ðB2bÞ
and

Φi ≔ Fi −
1

4
biF −

1

2
hi⌋ðbm ∧ FmÞ;

Ψi ≔ Xi −
1

4
biX −

1

2
hi⌋ðbm ∧ XmÞ: ðB2cÞ

The above formulas differ from those in Refs. [4,24] in
two minor details: the definitions of Fi and Xi are taken

with an additional minus sign, but at the same time, the
overall signs of all the irreducible curvature parts are also
changed.

APPENDIX C: CALCULATING THE PGT
FIELD EQUATIONS

The gravitational dynamics of PGT is determined
by a Lagrangian LG ¼ LGðbi; Ti; RijÞ (4-form), which is
assumed to be at most quadratic in the field strengths
(quadratic PGT) and parity invariant [24]. The form of LG
can be conveniently represented as

LG ¼ −⋆ða0Rþ 2ΛÞ þ 1

2
TiHi þ

1

4
RijH0

ij; ðC1Þ

where Hi ≔ ∂LG=∂Ti (the covariant momentum) and H0
ij

define the quadratic terms in LG:

Hi ¼ 2
X3
n¼1

⋆ðanðnÞTiÞ; H0
ij ≔ 2

X6
n¼1

⋆ðbnðnÞRijÞ:

ðC2aÞ

Varying LG with respect to bi and ωij yields the PGT field
equations in vacuum. After introducing the complete
covariant momentum Hij ≔ ∂LG=∂Rij by

Hij ¼ −2a0⋆ðbibjÞ þH0
ij; ðC2bÞ

these equations can be written in a compact form as [4,24]

ð1STÞ ∇Hi þ Ei ¼ 0;

ð2NDÞ ∇Hij þ Eij ¼ 0; ðC3Þ

where Ei and Eij are the gravitational energy-momentum
and spin currents:

Ei ≔ hi⌋LG − ðhi⌋TmÞHm −
1

2
ðhi⌋RmnÞHmn;

Eij ≔ −ðbiHj − bjHiÞ: ðC4Þ

The above procedure is used in Sec. III B to find the
explicit form of the PGT field equations for the ppΛ waves
with torsion, with the result displayed in Eqs. (3.6), (3.7),
and (3.8). To simplify calculation of the term ∇⋆ð1ÞRij in
∇Hij, we used the identity

1

2
∇⋆Rij ¼ ∇⋆ð2ÞRij þ∇⋆ð4ÞRij; ðC5Þ

that follows from the Bianchi identity ∇Rij ¼ 0 and the
double duality properties of the irreducible parts of the
curvature.
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Abstract
We analyze static spherically symmetric solutions of five dimensional (5D) 
Lovelock gravity in the first order formulation. In the Riemannian sector, 
when torsion vanishes, the Boulware–Deser black hole represents a unique 
static spherically symmetric black hole solution for the generic choice of 
the Lagrangian parameters. We show that a special choice of the Lagrangian 
parameters, different from the Lovelock Chern–Simons gravity, leads to the 
existence of a static black hole solution with torsion, the metric of which is 
asymptotically anti-de Sitter (AdS). We calculate the conserved charges and 
thermodynamical quantities of this black hole solution.

Keywords: Lovelock gravity, torsion, black holes

1.  Introduction

Lovelock gravity [1] represents an intriguing generalization of general relativity, since it is a 
unique, ghost-free higher derivative extension of Einstein’s theory that possesses second order 
equations of motion. As a higher curvature theory, Lovelock gravity has a considerable num-
ber of black hole solutions—see [2–10] and references therein. Many of these possess exotic 
properties, such as zero mass, peculiar topology of the event horizon etc.

This leads us to an old problem of black hole uniqueness—namely, solutions of general 
relativity are highly constrained, but the situation changes drastically in the case of higher 
dimensions. There are new black hole solutions with non-spherical event horizon topology, 
namely black string, black ring and black brane [11]. Often, these exotic black objects suffer 
from various instabilities—for example, black strings and branes have Gregory–Laflamme 
instability [12], and will decay into black holes with spherical horizons. Thus, gravity in 
higher dimensions represents an interesting area of research, full of surprising discoveries, 
whose importance stems from its numerous applications.

Lovelock gravity can be also studied within the framework of Poincaré gauge theory (PGT), 
formulated by Sciamma [13] and Kibble [14] more than half a century ago. PGT is the first 
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2

modern, gauge-field-theoretic approach to gravity obtained by gauging the Poincaré group of 
space-time symmetries, the semidirect product of translations and Lorentz transformations. 
It represents a natural extension of the gauge principle, originally formulated by Weyl within 
electrodynamics and further developed in the works of Yang, Mills and Utiyama, to the space-
time symmetries. The gauge procedure adopted leads directly to a new, Riemann–Cartan 
geometry of space-time, since torsion and curvature are recovered as the Poincaré gauge field 
strengths. The Lagrangian in PGT contains a gravitational part, which is a function of the field 
strengths, the curvature and the torsion, and a suitable matter field Lagrangian.

In the context of Lovelock gravity, this more general setting contains torsionless theory 
as a limit, and represents a starting point for canonical analysis, coupling with matter fields, 
supersymmetric extensions of the theory and holographic applications. Interestingly, unlike 
in the case of Einstein–Cartan theory (first order formulation of general relativity) where all 
solutions of the equations of motion in vacuum are torsion free, the structure of the vacuum 
solutions of the Lovelock gravity is more complicated, because there exist solutions with 
non-vanishing torsion. However, it turns out that exact solutions with torsion are extremely 
difficult to find, since consistency conditions usually lead to an over-constrained system of 
equations. Solutions with non-trivial totally antisymmetric torsion have been studied in [8], 
[15–19]. In this paper, we continue our analysis of the exact solutions of 5D Lovelock gravity 
solutions with torsion, started in [8], and find a new static, spherically symmetric black hole 
solution with torsion with zero mass and entropy. The torsion of the solution possesses both 
tensorial and antisymmetric part. It, unlike the Riemannian Boulware–Deser black hole [20], 
exists for a specific choice of action parameters. This fine tuning of action parameters was first 
noticed by Canfora et al in their paper [15], and represents a different sector from the highly 
degenerate Lovelock Chern–Simons gravity.

The paper is organized in the following way. In the second section, we review basics of 
Poincaré gauge theory and Lovelock gravity in the first order formulation. In section 3 we 
find the black hole solution of 5D Lovelock gravity with torsion, and analyze its properties. 
In particular, we find that the quadratic torsional invariant is singular at r → 0. In section 4, 
we explore the thermodynamics of the previously obtained solution. The appendices contain 
additional technical details.

We use the following conventions: the Lorentz signature is mostly negative; local Lorentz 
indices are denoted by the middle letters of the Latin alphabet, while space-time indices are 
denoted by the letters of the Greek alphabet. Throughout the paper, we mostly use differential 
forms instead of coordinate notation, and the wedge product is omitted for simplicity.

2.  Lovelock gravity

Since the work of Sciamma and Kibble, it has been known that gravity in the first order form
ulation has the structure of Poincaré gauge theory (PGT)—see [21, 22] for a comprehensive 
account. For the reader’s convenience, we briefly review basics of the PGT.

2.1.  PGT in brief

The basic dynamical variables in PGT, playing the role of gauge potentials, are the vielbein 
ei 1-form and the spin connection ωij = −ω ji 1-form. In local coordinates xµ, we can expand 
the vielbein and the connection 1-forms as ei = ei

µdxµ, ωi = ωi
µdxµ. Gauge symmetries of 

the theory are local translations (diffeomorphisms) and local Lorentz rotations, parametrized 
by ξµ and εij respectively.
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From the gauge potentials, we can construct field strengths, namely torsion Ti and curva-
ture Rij (2-forms), which are given as

Ti = ∇ei ≡ dei + εi
jkω

j ∧ ek =
1
2

Ti
µνdxµ ∧ dxν ,

Rij = dωij + ωik ∧ ωk
j =

1
2

Rij
µνdxµ ∧ dxν ,

where ∇ = dxµ∇µ is the exterior covariant derivative.
A metric tensor can be constructed from the vielbein and flat metrics: ηij

g = ηijei ⊗ e j = gµνdxµ ⊗ dxν ,

gµν = ηijei
µe j

ν , ηij = (+,−,−) .

The antisymmetry of ωij in PGT is equivalent to the so-called metricity condition, ∇g = 0. A 
geometry whose connection is restricted by the metricity condition (metric-compatible con-
nection) is called a Riemann–Cartan geometry.

The connection ωij determines the parallel transport in the local Lorentz basis. Because 
parallel transport is a geometric operation, it is independent of the basis. This property is 
encoded into PGT via the so-called vielbein postulate, which implies

ωijk = ∆ijk + Kijk ,

where Δ is Levi-Civita connection, and Kijk = − 1
2 (Tijk − Tkij + Tjki) is the contortion.

2.2.  Action and equations of motion

The Lovelock gravity Lagrangian in the first order formulation can be constructed as the linear 
combination of the dimensionally continued Euler densities Lp, which in D dimensions are 
defined as

Lp = εi1i2...iD Ri1i2 . . .Ri2p−1i2p ei2p+1 . . . eiD .

In 5D, there are three Euler densities and the general form of the action of Lovelock gravity 
[1] is

I = εijkln

∫ (α0

5
eie jekelen +

α1

3
Rijekelen + α2RijRklen

)
.� (2.1)

Variation of the action with respect to vielbein ei and spin connection ωij yields the gravi-
tational field equations

εijkln
(
α0e jekelen + α1R jkelen + α2R jkRln) = 0,� (2.2)

and

εijkln
(
α1ekel + 2α2Rkl) Tn = 0.� (2.3)

3.  Spherically symmetric solution

3.1.  Ansatz

We are looking for a static solution with SO(4) symmetry, which orbits are three-spheres. 
The most general metric which fulfills these requirements in Schwarzschild-like coordinates 
xµ = (t, r,ψ, θ,ϕ) is given by
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ds2 = N2dt2 − B−2dr2 − r2(dψ2 + sin2 ψdθ2 + sin2 ψ sin2 θdϕ2),� (3.1)

where functions N and B depend solely on r, and r ∈ [0,∞), ψ ∈ [0,π), θ ∈ [0,π) and 
ϕ ∈ [0, 2π). The metric (3.1) possesses seven Killing vectors (see appendix A).

The vielbeins ei are chosen in a simple diagonal form

e0 = Ndt, e1 = B−1dr, e2 = rdψ, e3 = r sinψdθ,

e4 = r sinψ sin θdϕ.
� (3.2)

The most general form of the spin connection compatible with Killing vectors (see appendix 
A) is given by

ω01 = A0dt + A1dr, ω02 = A2dψ,

ω03 = A2 sinψdθ, ω04 = A2 sinψ sin θdϕ,

ω12 = A3dψ, ω13 = A3 sinψdθ,

ω14 = A3 sinψ sin θdϕ, ω23 = cosψdθ + A4 sinψ sin θdϕ,

ω24 = −A4 sinψdθ + cosψ sin θdϕ, ω34 = A4dψ + cos θdϕ,

�

(3.3)

where Ai are arbitrary functions of radial coordinate.

3.2.  Solution

The sector with vanishing torsion equations of motion for spherically symmetric ansatz has 
a well-known solution, the Boulware–Deser black hole [20], which exists for the generic 
choice of action parameters. Another solution, which we construct in this paper, possesses 
non-vanishing torsion and is given by the following anzatz:

A0 �= 0, A1 = A2 = A3 = 0, A4 �= 0
N = B.
� (3.4)

By using the adopted anzatz we get that the equations (2.2) reduce to

i = 0, 1 : 2α0r2 − α1 + α1A2
4 = 0,� (3.5a)

i = 2, 3, 4 :
(
2α2 − 2α2A2

4 − α1r2)A′
0 + 6α0r2 + α1(A2

4 − 1) = 0.�
(3.5b)

The non-vanishing field equations (2.3) take the form

ij = 01 : α1r2 + 2α2A2
4 − 2α2 + 4α2rA4A′

4 = 0,� (3.6a)

ij = 12, 13 :
(
α1r2 + 2α2A2

4 − 2α2
)
(NN′ + A0) + 2α1rN2 = 0,� (3.6b)

ij = 23, 24, 34 : −2α2A′
0 + α1 = 0.� (3.6c)

From (3.5a) and (3.6c) we get

A4 =

√
1 − 2α0

α1
r2, A0 =

α1

2α2
r,� (3.7)

where the integration constant in A0 is taken to be zero for simplicity. Equation (3.5b) in con-
junction with (3.6c) yields to the following constraint between coupling constants:
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α2
1 − 12α0α2 = 0.� (3.8)

We consequently get that (3.6a) is identically satisfied, while the (3.6b) takes the form

NN′ +
3N2

r
− α1

2α2
r = 0,

and can be easily solved for N:

N =

√
− α1

8α2

(
r2 −

r8
+

r6

)
.� (3.9)

From (3.8), we conclude that the solution exists in the sector different from the Lovelock 
Chern–Simons gravity. This is exactly the same fine tuning of parameters found by Canfora 
et al in their paper [15], where the solutions that have the structure of a direct product of a 2D 
Lorentzian with a 3D Euclidean constant curvature manifold are constructed.

The explicit form of torsion and curvature is given in appendix C. Let us note that both 
tensorial and antisymmetric part of torsion are non-vanishing unlike in the case of the solu-
tion found by Canfora et  al [16], for which only totally antisymmetric part of torsion is 
non-vanishing.

Let us now introduce the (anti)-de Sitter ((A)dS) radius �

α1

8α2
= − σ

�2 , σ = ±1.� (3.10)

By substituting previous relation into (3.7) and (3.9), we get

A4 =

√
1 +

4σr2

3�2 , N =

√
σ

(
r2

�2 −
r8
+

�2r6

)
.� (3.11)

Note that for the solution to describe a black hole, the following condition must hold:

α1

α2
< 0 ⇔ σ = +1� (3.12)

with an event horizon located at r  =  r+ .
From the constraint (3.8), it follows that the sign of the ratio α0

α1
 is the same as the sign of α1

α2

sgn
(
α0

α1

)
= sgn

(
α1

α2

)
.� (3.13)

If the ratio is positive, the expression for A4 implies that we have the maximum value of the 
radial coordinate, the so called cosmological horizon

r0 =
�
√

3
2

.� (3.14)

Meanwhile, if the ratio is negative, we have no restriction on the value of the radial coordi-
nate, except that it is positive, and in maximally extended space-time goes to infinity. In this 
case, the black hole space-time metric is asymptotically AdS.

3.2.1.  Invariants.  From expressions for curvature and torsion, given in appendix C, we see 
that quadratic torsional invariant reads
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Ti ∧ ∗Ti = −12σ
�2

(
1 −

r8
+

r8

)
ε̂,� (3.15)

which is obviously divergent in r  =  0 for r+ different from zero. Hence, there is a singularity 
of torsion at r → 0. Scalar Cartan curvature is constant,

R =
16σ
�2 ,� (3.16)

while Riemannian scalar curvature is

R̃ =
4σ
�2

(
5 − 3σ�2

2r2 −
3r8

+

r8

)
,� (3.17)

and is divergent for r → 0. The quadratic Cartan and Riemannian curvature invariants both 
vanish:

Rij ∧ ∗Rij = 0, R̃ij ∧ ∗R̃ij = 0.� (3.18)

We can conclude that the black hole obtained in this article is not of the regular type, and 
that it possesses singularity at r  =  0. It is worth noting that solution [16] also possesses singu-
larity of torsion and Riemannian curvature at r  =  0.

Solving equations of motion (2.2) and (2.3) with seven arbitrary functions is an extremely 
tedious task, which is facilitated by Mathematica and xAct packages.

3.3.  Conserved charges

Conserved charges can be calculated in a number of ways, we decided to make use of Nester’s 
formula [23], the application of which is quite simple in this particular case. In this section, we 
shall restrict the analysis to the asymptotically AdS case, which corresponds to the black hole. 
The covariant momenta stemming from the Lovelock action (2.1) are given by

τi :=
∂L
∂Ti = 0,� (3.19)

ρij =
∂L
∂Rij = 2εijkln

(α1

3
ekel + 2α2Rkl

)
en.� (3.20)

Let us denote the difference between any variable X and its reference value X̄  by ∆X = X − X̄ . 
Reference space-time, in respect to which we measure conserved charges, is given for the zero 
radius of the event horizon r+   =  0. Conserved charges Qξ associated to the Killing vector ξ 
are given by quasi-local surface integrals

Qξ =

∫

∂Σ

B,

where the boundary ∂Σ is located at infinity. With a suitable asymptotic behavior of the fields, 
the proper boundary term reads [23]

B = (ξ � ei)∆τi +∆ei(ξ � τ̄i) +
1
2
(ξ �ωi

j)∆ρi
j +

1
2
∆ωi

j(ξ � ρ̄i
j) ,� (3.21)

where � denotes contraction.
For solution (3.9), by making use of the the results of appendix C, we get the covariant 

momenta
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ρ01 =
4
(
α2

1 − 12α0α2
)

α1
e2e3e4 ≡ 0, ρ02 = −8α1

3
e1e3e4, ρ03 =

8α1

3
e1e2e4,

ρ04 = −8α1

3
e1e2e3, ρ12 =

8α1

3
e0e3e4 − 4α1N

3A4
e0e1e2,

ρ13 = −8α1

3
e0e2e4 − 4α1N

3A4
e0e1e3, ρ14 =

8α1

3
e0e2e3 − 4α1N

3A4
e0e1e4,

ρ23 = 0, ρ24 = 0, ρ34 = 0.� (3.22)
From (3.9), we conclude that the connection takes the same form on the background and 

for r+ �= 0, ωij = ω̄ij. Therefore, formula (3.21) takes the following simpler form:

B =
1
2
(ξ �ωi

j)∆ρi
j.

For the seven Killing vectors ξ(n) (see appendix A) the conserved charges are given by

Q(0) =

∫

∂Σ

ω01
t∆ρ01 = 0,

Q(1) =

∫

∂Σ

− cotψ sin θ
(
ω23

θ∆ρ23 + ω24
θ∆ρ24

)
= 0,

Q(2) =

∫

∂Σ

cotψ cos θ cosϕ
(
ω23

θ∆ρ23 + ω24
θ∆ρ24

)

− cotψ

sin θ
sinϕ

(
ω14

ϕ∆ρ14 + ω23
ϕ∆ρ23 + ω24

ϕ∆ρ24 + ω34
ϕ∆ρ34

)
= 0,

Q(3) =

∫

∂Σ

cotψ cos θ sinϕ
(
ω23

θ∆ρ23 + ω24
θ∆ρ24

)

+
cotψ

sin θ
cosϕ

(
ω14

ϕ∆ρ14 + ω23
ϕ∆ρ23 + ω24

ϕ∆ρ24 + ω34
ϕ∆ρ34

)
= 0,

Q(4) =

∫

∂Σ

cosϕ
(
ω23

θ∆ρ23 + ω24
θ∆ρ24

)

− cot θ sinϕ
(
ω14

ϕ∆ρ14 + ω23
ϕ∆ρ23 + ω24

ϕ∆ρ24 + ω34
ϕ∆ρ34

)
= 0,

Q(5) =

∫

∂Σ

sinϕ
(
ω23

θ∆ρ23 + ω24
θ∆ρ24

)

+ cot θ cosϕ
(
ω14

ϕ∆ρ14 + ω23
ϕ∆ρ23 + ω24

ϕ∆ρ24 + ω34
ϕ∆ρ34

)
= 0,

Q(6) =

∫

∂Σ

(
ω14

ϕ∆ρ14 + ω23
ϕ∆ρ23 + ω24

ϕ∆ρ24 + ω34
ϕ∆ρ34

)
= 0.

� (3.23)
Therefore, we conclude that conserved charges for the black hole with torsion (3.9) van-

ish. In particular, conserved charge Q(0), which corresponds to the energy E of the solution, 
vanishes due to the specific choice of the parameters α2

1 = 12α0α2.

4. Thermodynamics

By demanding that Euclidean continuation of the black hole has no conical singularity, we 
obtain the standard formula for the black hole temperature
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T =
(N2)′|r=r+

4π
.� (4.1)

In the particular case of the solution (3.9) we get

T =
2r+
π�2 .� (4.2)

The temperature is positive because solution (3.9) describes black hole iff condition (3.12) is 
satisfied. Let us note that this type of relation between temperature and the radius of the event 
horizon is unusual for black holes with spherical horizons. The relation (4.2) is standard in 
the case of planar black holes (black branes) or black holes in three space-time dimensions.

4.1.  Euclidean action

Using the equation of motion (2.2), on-shell Euclidean action takes the form

IE = εijklm

∫ (
2α1

3
Rijekelem +

4α0

5
eie jekelem

)
.� (4.3)

After substituting the solution (3.9), we get

IE =

∫ β

0
dt
∫ ∞

r+
dr

∫
dψdθdϕ

4(α2
1 − 12α0α2)

α2
r3 sin2 ψ sin θ,� (4.4)

where the integration over time is performed in the interval [0,β := 1/T]. By using the con-
straint on the parameters (3.8), we conclude that

IE = 0.� (4.5)

From the well-known formula for the entropy

S = (β∂β − 1)IE,� (4.6)

we obtain

S = 0.� (4.7)

This value of entropy is surprising, but it is not uncommon for Lovelock black holes—see for 
instance [24], where black holes with zero mass and entropy are obtained. From Euclidean 
action we can, also, calculate the energy

E = ∂βIE,� (4.8)

and obtain

E = 0,� (4.9)

in accordance with the results of the previous section.

5.  Concluding remarks

We have analyzed static spherically symmetric solutions of Lovelock gravity in five dimen-
sions. For the generic values of the Lagrangian parameters, the theory possesses a well-known 
solution, the Boulware–Deser black hole, while in the sector α2

1 = 12α0α2 we have discov-
ered a new black hole solution with torsion.
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We analyzed basic properties of the obtained solution, which torsion possesses non-vanishing 
tensorial and totally antisymmetric part. The solution has a singularity of torsion and Riemannian 
curvature for r → 0, while the conserved charges, as well as the entropy, vanish.

It is worth stressing that the black hole metric is asymptotically AdS, which is a crucial 
condition for holographic investigation. The solution that describes the space-time which is 
asymptotically dS, with the cosmological horizon located at r0 = α1

2α0
, is not a black hole.

An interesting property of the solution in the asymptotically AdS case is that, in the semi-
classical approximation, its entropy is zero. This means that its number of micro-states is 

‘small’ i.e. it is of order one instead of the expected O( 1
GN

). It would be interesting to see what 
kind of consequences this result has on dual interpretation via gauge/gravity duality.
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Appendix A.  Killing vectors for metric (3.1)

In addition to the ∂∂t Killing vector static and spherically symmetric metric (3.1) possesses six 
Killing vectors, due to the SO(4) spherical symmetry. The complete set of Killing vectors ξµ(i) 
of the metric (3.1) is given by:

ξ(0) = ∂t,
ξ(1) = cos θ∂ψ − cotψ sin θ∂θ,

ξ(2) = sin θ cosϕ∂ψ + cotψ cos θ cosϕ∂θ −
cotψ

sin θ
sinϕ∂ϕ,

ξ(3) = sin θ sinϕ∂ψ + cotψ cos θ sinϕ∂θ +
cotψ

sin θ
cosϕ∂ϕ,

ξ(4) = cosϕ∂θ − cot θ sinϕ∂ϕ,
ξ(5) = sinϕ∂θ + cot θ cosϕ∂ϕ,
ξ(6) = ∂ϕ.

�

(A.1)

The independent Killing vectors are ξ(0), ξ(1), ξ(4) and ξ(6), while the others are obtained as 
their commutators. The invariance conditions of the vielbein under Killing vectors and local 
Lorentz transformations with parameters εi

j are

δ0ei
µ = Lξei

µ + εi
je

j
µ = 0,� (A.2)

where the Lie derivative with respect to ξ is denoted as Lξ , giving that the only non-zero 
parameters of the local Lorentz symmetry are

ε23 = − sin θ

sinψ
, ε34 = − sinϕ

sin θ
.� (A.3)

Using this and the transformation law for spin connection,

δ0ω
ij
µ = Lξω

ij
µ + εi

kω
kj
µ + ε j

kω
ik
µ = 0,� (A.4)

we can derive the most general form of the spherically symmetric spin connection which is 
given in the main text, formula (3.3).
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Appendix B.  Irreducible decomposition of the field strengths

We present here formulas for the irreducible decomposition of the PGT field strengths in a 5D 
Riemann–Cartan space-time [25].

The torsion 2-form has three irreducible pieces:

(2)Ti =
1
4

bi ∧ (hm � Tm) ,

(3)Ti =
1
3

hi � (Tm ∧ bm) ,

(1)Ti = Ti − (2)Ti − (3)Ti .� (B.1)
The RC curvature 2-form can be decomposed into six irreducible pieces:

(2)Rij = −∗(b[i ∧Ψ j]) , (4)Rij = 2
3 b[i ∧ Φ j] ,

(3)Rij = − 1
12 X ∗(bi ∧ b j) , (6)Rij = 1

20 F bi ∧ b j ,

(5)Rij = 1
3 b[i ∧ h j] � (bm ∧ Fm), (1)Rij = Rij −

∑6
a=2

(a)Rij .
�

(B.2a)

where

Fi := hm �Rmi = (Ric)i , F := hi �Fi = R ,

Xi := ∗(Rik ∧ bk) , X := hi �Xi,� (B.2b)
and

Φi := Fi −
1
4

biF − 1
2

hi � (bm ∧ Fm),

Ψi := Xi −
1
4

biX − 1
2

hi � (bm ∧ Xm) .
�

(B.2c)

The above formulas differ from those in [25] in two minor details: the definitions of Fi and 
Xi are taken with an additional minus sign, but at the same time, the overall signs of all the 
irreducible curvature parts are also changed, leaving their final content unchanged.

Appendix C. Torsion and curvature for the solution (3.9)

In this appendix, we give values of torsion and curvature for the black hole solution.

C.1.  Riemannian connection and curvature

The non-vanishing components of the Riemannian connection are given by

ω̃01 = − σ

�2

(
r
N

+
3r8

+

Nr7

)
e0, ω̃12 =

N
r

e2, ω̃13 =
N
r

e3,

ω̃23 =
cotψ

r
e3, ω̃14 =

N
r

e4, ω̃24 =
cotψ

r
e4, ω̃34 =

cot θ

r sinψ
e4.

�

(C.1)

Riemannian curvature reads
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R̃01 =
σ

�2

(
1 −

21r8
+

r8

)
e0e1, R̃02 =

σ

�2

(
1 +

3r8
+

r8

)
e0e2,

R̃03 =
σ

�2

(
1 +

3r8
+

r8

)
e0e3, R̃04 =

σ

�2

(
1 +

3r8
+

r8

)
e0e4,

R̃12 =
σ

�2

(
1 +

3r8
+

r8

)
e1e2, R̃13 =

σ

�2

(
1 +

3r8
+

r8

)
e1e3,

R̃14 =
σ

�2

(
1 +

3r8
+

r8

)
e1e4, R̃04 =

σ

�2

(
1 +

3r8
+

r8

)
e0e4,

R̃23 =
σ

�2

(
1 − σ�2

r2 −
r8
+

r8

)
e2e3, R̃24 =

σ

�2

(
1 − σ�2

r2 −
r8
+

r8

)
e2e4,

R̃34 =
σ

�2

(
1 − σ�2

r2 −
r8
+

r8

)
e3e4.

�

(C.2)

Riemannian scalar curvature is

R̃ = −4σ
�2

(
−5 +

3σ�2

2r2 +
3r8

+

r8

)
.

� (C.3a)
The quadratic Riemannian curvature invariant vanishes

R̃ij ∧ ∗R̃ij = 0.� (C.3b)

C.1.1. Torsion and its irreducible decomposition.  The non-vanishing components of torsion 
are given by

T0 =
3N
r

e0e1, T2 =
N
r

e1e2 +
2A4

r
e3e4,

T3 =
N
r

e1e3 − 2A4

r
e2e4, T4 =

N
r

e1e4 +
2A4

r
e2e3.

�
(C.4)

The non-vanishing irreducible components of torsion are

(1)T0 =
3N
r

e0e1, , (1)T2 =
N
r

e1e2,

(1)T3 =
N
r

e1e3, (1)T4 =
N
r

e1e4,

(3)T2 =
2A4

r
e3e4, (3)T3 = −2A4

r
e2e4, (3)T4 =

2A4

r
e2e3.

�
(C.5)

The 2nd irreducible component of torsion vanishes as in the case of any solution of Lovelock 
gravity, excluding Lovelock Chern–Simons [8]. Quadratic torsional invariant reads

Ti ∧ ∗Ti = −12σ
�2

(
1 −

r8
+

r8

)
ε̂.

� (C.6)
Non-zero components of the (Cartan) curvature are

R01 =
4σ
�2 e0e1, R23 =

4σ
3�2

N
A4

e1e4 +
4σ
3�2 e2e3,

R24 = − 4σ
3�2

N
A4

e1e3 +
4σ
3�2 e2e4, R34 =

4σ
3�2

N
A4

e1e2 +
4σ
3�2 e3e4.

� (C.7)
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Scalar Cartan curvature is constant:

R =
16σ
�2 .

� (C.8)
Quadratic Cartan curvature invariant vanishes:

Rij ∧ ∗Rij = 0.� (C.9)
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Abstract: We study the near horizon geometry of both static and stationary extremal Oliva Tempo Troncoso (OTT)

black holes. For each of these cases, a set of consistent asymptotic conditions is introduced. The canonical generator

for the static configuration is shown to be regular. For the rotating OTT black hole, the asymptotic symmetry is

described by the time reparametrization, the chiral Virasoro and centrally extended u(1) Kac-Moody algebras.
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1 Introduction

The long-standing problem of the origin of black hole
entropy is one of the most important open questions in
contemporary physics. There are many proposals for in-
terpreting the black hole entropy and the corresponding
micro-states, such as: entanglement entropy [1], fuzz-ball
[2] or soft hair on the horizon [3, 4]. The issue has also
been the starting point of many ingenious discoveries,
the most impressive of which is the holographic nature
of gravity [5].

Holographic duality [6] states that the gravitational
theory in an asymptotically anti de Sitter (AdS) space-
time is dual to a non-gravitational theory defined on the
conformal boundary of space-time. Although it is still a
conjecture, there is a large number of results supporting
this statement. Let us mention, for the purpose of this
paper, that holographic duality offers many insights into
the black hole physics, including the black hole infor-
mation paradox and the origin of the black hole micro-
states. In fact, holography provides a a way to derive the
black hole entropy from the near horizon micro-states
via the Cardy formula [7], whose applicability crucially
relies on the existence of 2D conformal symmetry as a
subgroup of the asymptotic symmetry group. In spite
of this, the present understanding of the holographic du-
ality is not sufficient for the most general purpose, and
we need further generalizations. A notable progress rep-
resents the derivation of the Cardy-like formula in the
Warped Conformal Field Theory (WCFT), see ref. [8].

A particularly interesting generalization is given in
[9], where the authors propose that the extremal Kerr

black hole is dual to the chiral 2D CFT. There are in-
dications that this chiral CFT should arise as Discrete
Light Cone Quantized (DLCQ) [10]. More precisely, the
extremal black hole, non necessarily Kerr-like, possesses
an intriguing feature that its near horizon geometry is
an exact solution of the theory. This allows to study the
physics on the horizon by investigating the properties of
the near horizon geometry. For a review of the subject
see [11].

In this article, we analyse the near horizon limit of
a black hole with soft hair known as the Oliva-Tempo-
Troncoso (OTT) black hole [12], which is the solution of
the BHT gravity [13], as well as of the Poincaré gauge
theory of gravity [14] for the special choice of action pa-
rameters. The leading idea of this analysis is a study of
the influence of the hair parameter on the micro-states
of the extremal black hole. The obtained near horizon
geometries exist, without any reference to the extremal
black hole, as independent solutions and are important
on their own.

We first analyse the static OTT black hole, which
becomes extremal for the specific value of the hair pa-
rameter, and obtain the corresponding near horizon ge-
ometry. We then study the asymptotic structure of the
near horizon geometry and obtain the asymptotic sym-
metry group.

We continue with a study of the rotating OTT black
hole which can be made extremal in two different ways:
either by tuning the hair parameter or the angular mo-
mentum. The solution obtained by tuning the hair pa-
rameter, surprisingly, leads to the same near horizon ge-
ometry as in the non-rotating case. The extremal OTT
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black hole with maximal angular momentum leads to
a geometry with a richer structure. We conclude that
the asymptotic symmetry is a direct sum of the time
reparametrization, the Virasoro algebra and the centrally
extended u(1) Kac-Moody algebra. The entropy of the
extremal rotating OTT black hole can be expressed in
terms of the central extension of the Kac-Moody algebra
and the on-shell value of the zero mode Virasoro gener-
ator

S=2π

√

1

2
Lon−shell

0 κ. (1)

Our conventions are the same as in Ref. [14]: the
Latin indices (i,j,k,...) refer to the local Lorentz frame,
the Greek indices (µ,ν,ρ,...) refer to the coordinate
frame, ei is the orthonormal triad (coframe 1-form), ωij

is the Lorentz connection (1-form), the respective field
strengths are the torsion T i=dei+ωi

m∧em and the cur-
vature Rij=dωij+ωi

k∧ωkj (2-forms), the frame hi dual
to ej is defined by hi ej=δi

j, the signature of the metric
is (+,−,−), totally antisymmetric symbol εijk is normal-
ized to ε012 =1, the Lie dual of an antisymmetric form
X ij is Xi :=−εijkX

jk/2, the Hodge dual of a form α is
⋆α, and the exterior product of forms is implicit.

2 Conformally flat Riemannian solutions

in PGT

In the sector with a unique AdS ground state, the
BHT gravity possesses an interesting black hole solu-
tion, the OTT black hole [12]. One of the key features
of this solution is its conformal flatness, such that it is
also a Riemannian solution of PGT in vacuum [14], for
the special choice of the Lagrangian parameters.

The general parity preserving Lagrangian 3-form of
PGT, which is mostly quadratic in field strengths is given
by:

LG = −a0εijke
iRjk−1

3
Λ0εijke

iejek+LT2+LR2 ,

LT2 = T i⋆
(

a1
(1)Ti+a2

(2)Ti+a3
(3)Ti

)

,

LR2 =
1

2
Rij⋆

(

b4
(1)Rij+b5

(5)Rij+b6
(6)Rij

)

. (2)

where (a)Ti and
(a)Rij are irreducible components of the

torsion and the RC curvature, see [15], a0=1/16πG, Λ0

is a cosmological constant, and (a1,a2,a3) and (b1,b2,b3)
are the coupling constants in the torsion and the curva-
ture sector, respectively. In [14], it was shown that any
conformally flat solution of the BHT gravity (in partic-
ular the OTT black hole) is also a Riemannian solution
of PGT, provided that

b4+2b6=0. (3)

The conformal properties of 3D spacetime, where the
Weyl curvature vanishes identically, are characterized

by the Cotton 2-form Ci [16], defined by Ci :=∇Li =
dLi+ωi

mLm where Lm :=Ricm−1
4
Rem is the Schouten 1-

form. The conformal flatness of space-time is expressed
by the condition Ci=0.

By using the BHT condition that ensures the exis-
tence of the unique maximally symmetric background
[14], the identification (3) can be expressed in the fol-
lowing way:

Λ0=−a0/2ℓ
2, b4=2a0ℓ

2 . (4)

3 Canonical generator and conserved

charges

The usual construction of the canonical generator
of the Poincaré gauge transformations, including diffeo-
morphisms and Lorentz rotations [17], makes use of the
canonical structure of the theory. The construction can
be substantially simplified by using the first order for-
mulation of the theory, in which the Lagrangian (3-form)
reads:

LG=T iτi+
1

2
Rijρij−V (e,τ,ρ),

see [15]. In this formulation, τm and ρij are indepen-
dent dynamical variables, the covariant field momenta
conjugate to ei and ωij. The presence of the potential
V ensures the validity of the on-shell relations τi =Hi,
ρij =Hij. These relations can be used to transform LG

into its standard quadratic form (2).
The construction of the canonical generator G in the

first order formulation can be found in [15]. The action
of G on the basic dynamical variables is defined via the
Poisson bracket operation, so that G has to be a differ-
entiable phase space functional. The examination of the
differentiability of G starts from its variation

δG = −
∫

Σ

d2x(δG1+δG2),

δG1 = εtαβξµ
(

eiµ∂αδτiβ+ωi
µ∂αδρiβ+τ i

µ∂αδeiβ

+ρi
µ∂αδωiβ

)

+R, (5a)

δG2 = εtαβθi∂αδρiβ+R. (5b)

Here, Σ is the spatial section of spacetime, the variation
is performed in the set of adopted asymptotic states, R
stands for regular (differentiable) terms, and we use ρi

and ωi, the Lie duals of ρmn and ωmn, to simplify the
formulas. Diffeomorphisms are parametrized by ξµ, and
the parameters of local Lorentz rotations are θi.

The explicit form of the generator of Lorentz rota-
tions, see [15], implies that there is only one possible non-
regular term on the rhs of the variation of the Lorentz
rotations generator G2, which is of the form (5b).

In general δG 6= R, so that G is not differentiable.
This problem can be, in principle, easily solved by go-
ing over to the improved generator G̃ := G+Γ, where
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the boundary term Γ is constructed so that δG̃=R. By
making a partial integration in δG, one finds that Γ is
defined by the following variational equation

δΓ = δΓ1+δΓ2 ,

δΓ1 =

∫

∂Σ

ξµ
(

eiµδτi+ωi
µδρi+τ i

µδei+ρi
µδωi

)

, (6a)

δΓ2 =

∫

∂Σ

θiδρi . (6b)

In many cases the asymptotic conditions ensure the
regularity of the Lorentz rotations generator and Γ2=0.
However, it is worth noting that in the particular prob-
lem we are solving the contribution of the surface term
of the Lorentz rotations generator is non-trivial, as we
shall see in section 5.2.

4 Static OTT black hole orbifold

Extremal static OTT black hole. The metric of the
static OTT black hole is given by:

ds2=N 2dt2−N−2dr2−r2dϕ2 , (7)

where N 2=−µ+br+
r2

ℓ2
. Black hole horizons are located

at:

r±=
1

2

(

−bℓ2±ℓ
√

b2ℓ2+4µ
)

.

The black hole is extremal if the horizons coincide,
r+ = r−. This condition is satisfied when b2ℓ2+4µ= 0.
Let us note that the existence of the extremal black hole
horizon implies b<0.

Orbifold. Let us now consider the following coordinate
transformation:

t→ t

ε
, r→r++ερ. (8)

The metric now becomes:

ds2=
ρ2

ℓ2
dt2− ℓ2

ρ2
dρ2−(r++ερ)2dϕ2 .

In the limit ε→0, the metric (with the prescription ρ→r)
reads:

ds2=
r2

ℓ2
dt2− ℓ2

r2
dr2−r2+dϕ

2 . (9)

It represents a perfectly regular solution, an orbifold.
We choose the triad fields in the simple diagonal form:

e0=
r

ℓ
dt, e1=

ℓ

r
dr, e2=r+dϕ. (10a)

The Levi-Civita connection that corresponds to the triad
field reads

ω0=0, ω1=0, ω2=−e0

ℓ
. (10b)

The curvature 2-form has only one non-vanishing com-
ponent:

R0=0, R1=0, R2=
1

ℓ2
e0e1 , (11a)

the scalar curvature is constant, R=
2

ℓ2
, and the Ricci

and Shoutten 1-forms are given by:

Ric0=
e0

ℓ2
, Ric1=

e1

ℓ2
, Ric2=0,

L0=
e0

2ℓ2
, L1=

e1

2ℓ2
, L2=− e2

2ℓ2
. (11b)

The solution is conformally flat (as the OTT black hole),
i.e. the Cotton 2-form Ci=∇Li vanishes and solves the
equations of motion of both BHT gravity and PGT in
the sector b4+2b6=0.

4.1 Asymptotic conditions

Let us consider the following asymptotic conditions
for the metric in the region r→∞:

gµν∼











O−2 O2 O1

O2 − ℓ2

r2
+O3 O1

O1 O1 O0











, (12)

where On denotes a term with an asymptotic behaviour
r−n or faster. In accordance with (12), the the triad
fields behave as:

eiµ∼









O−1 O3 O2

O1

ℓ

r
+O2 O0

O1 O2 O0









(13)

The condition T i =0, together with (13), gives the fol-
lowing asymptotic behaviour of the spin connection

ωi
µ∼









O1 O2 O1

O1 O3 O1

O−1 O3 O2









(14)

The diffeomorphisms that leave the metric (12) invariant
are given by:

ξt = T (t)+O3 ,

ξr = rU(ϕ)+O0 ,

ξϕ = S(ϕ)+O1 . (15)

Lorentz transformations that leave the asymptotic
conditions invariant are

θ0=O2 , θ1=O2, θ2=O2 . (16)

In terms of the Fourier modes ℓn := δ0(S=einϕ) and
jn :=δ0(U=eimϕ), the algebra of the residual gauge trans-
formations takes the form of a semi-direct sum of the
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Virasoro and the Kac-Moody algebras:

[ℓm,ℓn] = −i(m−n)ℓm+n ,

[ℓm,jn] = injm+n ,

[jn,jm] = 0. (17)

4.2 Algebra of charges

The gauge generator is not a priori well-defined be-
cause, for given asymptotic conditions, its functional
derivatives may be ill-defined, as already mentioned in
section 3. This problem can be solved by constructing
an improved generator, which includes suitable surface
terms [18]. Since our solution is Riemannian, τi=0, re-
lation (6b) reduces to:

δG=

∫

∂Σ

ξµ(ωi
µδρi+ρi

µδωi) (18)

For the particular asymptotic conditions adopted in
this paper, we conclude that the gauge generator is differ-
entiable, so that there is no need for adding any surface
term,

Γ=0. (19)

As a consequence, both the central charge of the Vira-
soro algebra and the level of the u(1) Kac-Moody algebra
both vanish.

5 Near-horizon geometry of rotating

OTT

Rotating OTT black hole. The rotating OTT black
hole is defined by the metric

ds2=N 2dt2−F−2dr2−r2(dϕ+Nϕdt)
2 , (20a)

where

F=
H

r

√

H2

ℓ2
+
b

2
H (1+η)+

b2ℓ2

16
(1−η)

2−µη,

N=AF , A=1+
bℓ2

4H
(1−η),

Nϕ=
ℓ

2r2

√

1−η2(µ−bH),

H=

√

r2−µℓ2

2
(1−η)−b2ℓ4

16
(1−η)2 . (20b)

The roots of N=0 are

r±=ℓ

√

1+η

2

(

−bℓ

2

√
η±
√

µ+
b2ℓ2

4

)

.

The metric (20) depends on three free parameters, µ, b
and η. For η = 1, it represents the static OTT black
hole, and for b=0, it reduces to the rotating BTZ black
hole with parameters (m,j), such that 4Gm := µ and
4Gj :=µℓ

√
1−η2.

The conserved charges of the rotating black hole take
the following form:

E =
1

4G

(

µ+
1

4
b2ℓ2

)

, (21a)

J = ℓ
√

1−η2E. (21b)

The rotating OTT black hole is a three-parameter
solution, so that the extremal limit can be achieved in
two different ways. The first is the same as in the non-
rotating case, by requiring 4µ+b2ℓ2 = 0. As a simple
consequence, the resulting geometry is the same as if the
black hole were non-rotating. This is not a surprising re-
sult if we note that both energy and angular momentum
vanish in this case.

The second way to obtain an extremal black hole is
to take η=0, which means that angular momentum takes
the maximal possible value. This corresponds to the
usual procedure for the Kerr black hole.

The horizon is located at

r0=
ℓ
√
b2ℓ2+4µ

2
√
2

. (22)

The coordinate change is given as

r→r0+ǫr

t→ t

ǫ2
(23)

ϕ→ϕ− t

ℓǫ2
.

An interesting departure from the usual redefinition of
the coordinates in literature is that, in order to obtain a
non-singular metric, we have to scale the time coordinate
with the same parameter as used in the rescaling of the
radial coordinate but to the power of minus two, instead
of the standard minus one.

After changing the coordinates and taking the limit
ǫ→0, we obtain the near-horizon metric

ds2=
32(b2ℓ2+4µ)

b4ℓ4
r4

ℓ4
dt2− ℓ2

r2
dr2−r20

(

dϕ−16r2

b2ℓ5
dt

)2

,

(24)
or

ds2=2r20
16r2

b2ℓ5
dtdϕ− ℓ2

r2
dr2−r20dϕ

2. (25)

It is convenient to further rescale the time coordinate
and obtain a more convenient form of the metric

ds2=
2r2r0
ℓ2

dtdϕ− ℓ2

r2
dr2−r20dϕ

2 . (26)

We again choose the triad fields in the diagonal form

e0=
r2

ℓ2
dt, e1=

ℓ

r
dr, e2=

r2

ℓ2
dt−r0dϕ. (27)

The Levi-Civita connection is given by:

ω01=−2e0

ℓ
+
e2

ℓ
, ω02=

e1

ℓ
, ω12=

e0

ℓ
. (28)
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The solution is maximally symmetric and therefore we
have:

Rij=
1

ℓ2
eiej , Rici=

2ei

ℓ2
, Li=

ei

2ℓ2
, Ci=0. (29)

The rotating OTT black hole for b=0 reduces to the
rotating BTZ black hole. What can be said about the
corresponding near-horizon geometries? If we introduce
ρ=r2, we obtain a near-horizon BTZ black hole geome-
try with two times smaller ℓ, and a different r0 [11]. The
only trace of the hair parameter is hidden in r0, and it
will lead to different values of the central charges. Thus,
we are able to recover the results for the near-horizon
BTZ black hole geometry from those of the OTT black
hole, but not by simply taking b=0.

5.1 Asymptotic conditions

We consider the following asymptotic form of the
metric

gµν∼









O−1 O3 O−2

O3 − ℓ2

r2
+O4 O1

O−2 O1 O0









. (30)

The asymptotic form of the triad fields is chosen in ac-
cordance with the asymptotic behaviour of the metric
(30)

eiµ∼













r2

ℓ2
+O1 O5 O0

O1

ℓ

r
+O3 O0

r2

ℓ2
+O1 O5 O0













(31)

The asymptotic form of the spin connection reads

ωi
µ∼













−r2

ℓ3
+O1 O2 O0

O0 −1

r
+O2 O0

−r2

ℓ3
+O1 O2 O0













(32)

The condition of vanishing torsion T i=0, together with
(31) and (32), leads to the following constraints

ω2
r+ω0

r=O5 , (33a)

ω1
ϕ−

e1ϕ
ℓ
=O2 , (33b)

e0ϕ
ℓ
−e2ϕ

ℓ
+ω2

ϕ−ω0
ϕ=O2 , (33c)

ω2
ϕ−

e2ϕ
ℓ
=O1 , (33d)

ω0
ϕ−

e0ϕ
ℓ
=O1 . (33e)

The diffeomorphisms that leave the metric (30) invariant
are given by

ξt = T (t)+O3 ,

ξr = rU(ϕ)+O1 ,

ξϕ = S(ϕ)+O4 . (34)

Lorentz transformations that leave the asymptotic form
of the triads and the spin connection invariant are

θ0 = ∂rξ
t e

2
t

e1r
+O2 ,

θ1 = −2ξr

r
+∂tξ

t+O4 ,

θ2 =
e0t
e1r

∂rξ
t+O2 . (35)

5.2 Algebra of charges

The improved generator is given by

G̃=G+Γ. (36)

A direct calculation yields the surface term

Γ = −4a0

∫ 2π

0

dϕ
[

T (t)
r2

ℓ2

(

ω0
ϕ−

e0ϕ
ℓ

−ω2
ϕ+

e2ϕ
ℓ

)

+S(ϕ)ωi
ϕeiϕ+(2U(ϕ)+∂tT (t))e

1
ϕ

]

(37)

The charge is finite due to the conditions that follow from
the constraint T i=0. By using the composition law for
the local Poincaré transformations

ξ′′µ = ξα∂αξ
′µ−ξ′α∂αξ

µ ,

θ′′i = ǫijkθ
jθ′k+ξα∂αθ

′i−ξ′α∂αθ
i (38)

we derive the Poisson bracket algebra for the improved
canonical generators (which are also well-defined [19]).
The Virasoro algebra is not centrally extended

{Lm,Ln} = −i(m−n)Lm+n , (39)

{Lm,Jn} = inJm+n , (40)

whereas the Kac-Moody algebra does have a central
charge κ

{Jm,Jn}=−i16πa0mδm+n,0, (41)

whose value is

κ=16πa0=
ℓ

G
. (42)

For related studies, see [20, 21].

The entropy of the extremal OTT black hole S=
πr20
G

can be reproduced in terms of purely algebraic quantities
via a peculiar formula

S=2π

√

1

2
Lon−shell

0 κ, (43)
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where Lon−shell
0 is the value of the Virasoro generator L0

on the shell

Lon−shell
0 =

r20
2ℓG

. (44)

The entropy formula has a striking resemblance to the
entropy formula of [8]. In our case Jon−shell

0 =0, so that
our formula is a consequence of the general expression
for entropy in WCFT if

Lvac
0 − (Jvac

0 )2

2κ
=−κ

8
. (45)

One might intuitively expect that the formula for the
black hole entropy in WCFT should correctly reproduce
the entropy of an extremal OTT black hole. The expec-
tation relies on the resemblance of the algebra (39), (40)
with the Euclidean WCFT algebra, and it is anticipated
that the same derivation as in [8] holds in our case.

6 Sugawara-Sommerfeld construction

It is well-known that the Virasoro algebra can be con-
structed as a bilinear combination of the elements of the
Kac-Moody algebra. We apply this procedure, known as
the Sugawara-Sommerfeld construction [22], to the alge-
bra obtained in the previous section.

First we introduce the auxiliary operators

Kn=
1

2κ

∑

i

JiJn−i, (46)

which obey the following commutation relations

i{Km,Jn} = −nJm+n, (47)

i{Km,Kn} = (m−n)Km+n, (48)

i{Km,Ln} = (m−n)Km+n. (49)

Then, we define generators of the first Virasoro algebra
as

LR
n=Ln−Kn, (50)

which satisfy the commutation relations

i{Jm,Jn} = κmδm+n,0, (51)

i{Jm,L
R
n} = 0, (52)

i{LR
m,L

R
n} = (m−n)LR

m+n. (53)

The generators of the second Virasoro algebra are defined
as

LL
n=−K−n−inαJ−n+

cL

24
δn,0 . (54)

The generators LL
n and LR

n define the two commuting
Virasoro algebras

i{LL
m,L

L
n} = (m−n)LL

m+n+
cL

12
m(m2−1)δm+n,0, (55)

i{LL
m,L

R
n} = 0, (56)

i{LR
m,L

R
n} = (m−n)LR

m+n, (57)

with central charges

cL=12κα2 , cR=0. (58)

In theories with conformal symmetry, it is well-known
that entropy can be reproduced by the Cardy formula.
Sugawara-Sommerfeld construction includes an arbitrary
parameter α, whose value is fixed by requiring that the
Virasoro algebra satisfies certain canonical relations. We
shall fix it by requiring that the Cardy formula

S=2π

√

LL
0 cL

6
+2π

√

LR
0 cR

6
, (59)

reproduces entropy correctly. For the orbifold, the values
of the Virasoro zero modes are

LL
0=

cL

24
, LR

0 =
r20
2ℓG

, (60)

which implies that the Cardy formula, in combination
with (58), gives the entropy

S=
πcL

6
=2πκα2. (61)

Consequently, we get

α2=
r0
2ℓ

. (62)

7 Thermodynamics at extremality

There is an equivalent Cardy formula in which, in-
stead of using the background values of the Virasoro zero
modes, one uses the temperature. Thus, the required
additional piece of information is the temperature of the
dual CFT, which may be derived from the black hole
thermodynamics.

We start from the first law of black hole thermody-
namics

δE=THδS+ΩδJ+Φiδq
i, (63)

where J is the angular momentum, Ω is the angular ve-
locity, qi are additional conserved charges, and Φi are
potentials conjugate to qi. In the case of the extremal
black hole (for more details on extremal black holes and
the first law of thermodynamics, see [23]), for which the
Hawking temperature is zero, TH=0, the first law implies
that energy is a function of the conserved charges

EExt=EExt(JExt,q
i
Ext). (64)

The corresponding generalized temperatures are defined
by

TL=
∂SExt

∂JExt

, Ti=
∂SExt

∂qiExt

, (65)

where TL is the left moving temperature.
The entropy, energy and angular momentum of the

extremal OTT black hole are given by:

SExt=
πr0
G

, EExt=
r20

2ℓ2G
, JExt=

r20
2ℓG

. (66)
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From the variation of the entropy of extremal OTT

δSExt=
δJExt

TL

,

the left moving temperature is determined as

TL=
r0
πℓ

. (67)

In the extremal case, the right moving temperature is
zero

TR=0. (68)

By requiring that the alternative form of the Cardy for-
mula,

SC=
π2

3
TLc

L+
π2

3
TRc

R,

reproduces the entropy of the extremal OTT black hole,
we conclude that cR is undetermined, and that the
left central charge is two times bigger than the Brown-
Henneaux central charge

cL=
3ℓ

G
. (69)

This can be used to fix the constant α appearing in the
Sugawara-Sommerfeld construction. From equation (58)
and the previous formula, we derive

α=
1

2
. (70)

8 Concluding remarks

We investigated the near horizon symmetry of both
static and stationary OTT black holes in the quadratic
PGT. In the static case, the corresponding asymptotic
symmetry is trivial, whereas in the stationary case, the
set of consistent asymptotic conditions leads to a sym-
metry described by time reparametrization and the semi-
direct sum of the centrally extended u(1) Kac-Moody
and the chiral Virasoro algebras. The improved asymp-
totic conditions that follow from the vanishing of tor-
sion (33c) can be further strengthened, thus making time
reparametrization a pure gauge.

The near horizon limit corresponds to deep infrared
sector of the theory, which implies that only the soft
part of the charge survives. This means that the cor-
responding charges represent the soft hair on the black
hole horizon. Formula

S=2π

√

1

2
Lon−shell

0 κ,

shows that there is an intimate relationship between the
black hole entropy and the soft hairs on the horizon, but
more precise statements require further studies.

Using the Sugawara-Sommerfeld construction, we
build the Virasoro algebra as a bilinear combination of
the u(1) Kac-Moody and chiral Virasoro algebras. The
presence of conformal symmetry enables to use the Cardy
formula for entropy, which correctly reproduces the black
hole entropy.
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