




Биографија Ане Худомал
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Преглед научне активности Ане Худомал

Током  мастер  студиjа,  истраживање  Ане  Худомал  било  jе  фокусирано  на  проналажење  и

карактеризацију  периодичних  решења  за  класичан  проблем  три  тела  која  међусобно  интерагују

гравитационом силом. Њутнов проблем три тела је један од најстаријих нерешених проблема физике

и математике, формулисан у 17. веку, а до првих решења за периодичне орбите дошли су Ојлер и

Лагранж у 18. веку. У последњим деценијама употреба модерних рачунара је омогућила интензиван

нумерички  приступ  и  систематизацију  нових  класа  решења.  У  сарадњи  са  др  Вељком

Дмитрашиновићем и др Милованом Шуваковом са Института за физику у Београду, Ана Худомал је

испитивала  гравитационе  таласе  које  би  емитовала  три  тела  која  се  крећу  по  новооткривеним

орбитама и показала да би овакви системи могли бити извори детектабилних сигнала. Поред тога,

Ана је радила на проналажењу нових периодичних орбита, као и на потврди и објашњењу линеарне

везе између периода орбите и броја симбола у алгебарском опису њене топологије, која представља

уопштену верзију трећег Кеплеровог закона.

На докторским студијама, под руководством др Иване Васић са Института за физику у Беграду, Ана

Худомал се у свом научном раду бави особинама ултрахладних квантних гасова у присуству јаких

синтетичких магнетних поља. Проучавање ултрахладних квантних гасова је важна тема савремене

физике. Настанак ове области је подстакнут потрагом за Бозе-Ајнштајн кондензатом - стањем које је

предвиђено  постулатима  квантне  статистичке  физике  уведеним  почетком  двадесетог  века.  Први

Бозе-Ајнштајн кондензати у системима ултрахладних атома су остварени 1995. године и овај успех је

награђен Нобеловом наградом за физику 2001. године. У раним експериментима коришћени су слабо

интерагујући  бозонски  атоми,  што  је  одговарајући  режим  за  постизање  кондензата.  Данас  се  у

системима  ултрахладних  атома  проучавају  различити  физички  режими,  што  ове  системе  чини

правим квантним симулаторима. Посебно је интересантно што се у овим системима јачина и тип

међуатомских интеракција могу контролисати, па интеракције могу бити слабе или јаке, кратко- или

дугодометне.  Увођењем  стојећих  светлосних  таласа  реализовани  су  периодични  потенцијали  за

атоме,  што  је  омогућило  проучавање  модела  налик  моделима  физике  чврстог  стања.  Ипак,

компонента која је дуго била недоступна је јако синтетичко магнетно поље, које може да делује на

неутралне атоме кроз Лоренцову силу. Почев од 2013.  године,  јака синтетичка магнетна поља се

успешно реализују у периодично вођеним оптичким решеткама. На овај начин може се реализовати

један  од  основних  модела  физике  кондензованог  стања,  Харпер-Хофштетер  модел.  Важна

карактеристика овог модела су тополошке инваријанте енергетских зона‚ тзв. Чернови бројеви, који

су у основи квантног Холовог ефекта.

Недавно мерење Черновог броја је прекретница која је означила реализацију тополошке енергетске

зоне у системима хладних атома. Подстакнута овим експериментом, Ана Худомал је истраживала

одговор  некохерентних  бозона  на  спољашњу  силу  у  вођеним  оптичким  решеткама.  Применом

апроксимативног аналитичког развоја по инверзној фреквенцији вођења, кандидаткиња је показала

присуство додатних чланова у ефективном Хамилтонијану и испитала њихов утицај на тополошке



карактеристике ефективног Хамилтонијана. Главни фокус овог истраживања је био на улози слабих

атомских  интеракција,  које  су  укључене  у  опис  употребом  теорије  средњег  поља.  Користећи

нумеричке симулације  и  аналитичке увиде,  кандидаткиња је  утврдила  да  интеракције  доприносе

атомским прелазима између различитих енергетских зона ефективног модела,  чиме се усложњава

експериментална процедура у складу са очекивањима. Међутим, добијени резултати такође показују

да слабе атомске интеракције олакшавају мерење Черновог броја на неколико начина. Како се очекује

да мерење Черновог броја постане рутински алат у блиској  будућности - први корак у припреми

занимљивијих тополошких фаза - досада добијени резултати везани за ефекте слабих интеракција су

од значаја и за будуће експерименте. 
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Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit
gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the
corresponding luminosities for the 13þ 11 recently discovered three-body periodic orbits in Newtonian
gravity. These waves clearly allow one to distinguish between their sources: all 13þ 11 orbits have
different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to
13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.

DOI: 10.1103/PhysRevLett.113.101102 PACS numbers: 04.30.Db, 04.25.Nx, 95.10.Ce, 95.30.Sf

Direct detection of gravitational waves [1,2] ought to
come about in the foreseeable future, due to the substantial
effort made at the operational and/or pending detectors. One
of the most promising candidates for astrophysical sources
of gravitational waves are the coalescing, i.e., inspiraling
and finally merging binary compact stars [3,4]. Binary
coalescence is the only source for which there is a clear
prediction of the signal and an estimate of the detection
distance limit, as general relativists have completed numeri-
cal simulations of mergers of compact binaries, such as
neutron stars and/or black holes, Refs. [5–7].
Slowly changing, quasiperiodic two-body orbits are

weak sources of gravitational radiation, Refs. [8,9]—only
accelerated collapse leads to an increase in energy loss. The
major part of the emitted energy in a binary coalescence
comes from the final merger of two neutron stars, or black
holes, that produces an intense burst of gravitational
radiation. Of course, such mergers are one-off events,
never to be repeated in the same system, so their detection
is subject to their (poorly known) distribution in our
Galaxy. It is therefore interesting to look for periodic
sources of intense gravitational radiation.
There is now a growing interest in three-body systems as

astrophysical sources of gravitational waves, Refs. [10–12].
These early works did not find a substantial increase in the
luminosity (emitted power) from representative three-body
orbits belonging to three families that were known at the
time, Refs. [13–22], over the luminosity from a comparable
periodic two-body system [23]. The luminosity of a
(quadrupolar) gravitational wave is proportional to the
square of the third time derivative of the quadrupole
moment, see Refs. [8,9], which, in turn, is sensitive to
close approaches of two bodies in a periodic orbit [24].
Thus, getting as close as possible to a two-body collision
without actually being involved in one, is a desirable
property of the radiating system.

Recently 13 new distinct periodic orbits belonging to 12
(new) families have been discovered in Ref. [25], as well as
11 “satellite orbits” in the figure-eight family [26]. Some of
these three-body orbits pass very close to binary collisions
and yet avoid them, so they are natural candidates for
periodic sources of intense gravitational radiation.
In this Letter we present our calculations of quadrupolar

waveforms, Fig. 1, and of luminosities, see Table I and
Fig. 2 of gravitational radiation emitted by the 13þ 11
recently discovered periodic three-body gravitating orbits,
Refs. [25,26]. We have also calculated waveforms of all
published Broucke-Hadjidemetriou-Henon (BHH) orbits
[14–20], which we omit from this Letter for the sake of
brevity, and because they are closely related to Henon’s
“criss-cross” one, studied in Ref. [10]. The waves of the
13þ 11 new orbits show clear distinctions in form and
luminosity, thus ensuring that they would be distinguishable
(provided their signals are strong enough to be detected).
We consider systems of three equal massive particles

moving periodically in a plane under the influence of
Newtonian gravity. The quadrupole moment Iij of three
bodies with equal masses mn ¼ m, (n ¼ 1; 2; 3) is
expressed as Iij ¼

P
3
n¼1 mxinx

j
n, where xin is the location

of nth body, and the spatial dimension indices i and j run
from 1 to 3 (with x1 ¼ x, x2 ¼ y, x3 ¼ z). The reduced
quadrupole Qij is defined as Qij ¼ Iij − 1

3
δij

P
3
k¼1 Ikk.

The gravitational waveforms denoted by hTTij are,
asymptotically,

hTTij ¼ 2G
rc4

d2Qij

dt2
þO

�
1

r2

�
; ð1Þ

where r is the distance from the source, Refs. [8,9]. Here,
TT means (i) transverse (

P
3
i¼1 h

TT
ij n̂

i ¼ 0) and (ii) trace-
less (

P
3
i¼1 h

TT
ii ¼ 0), where n̂i denotes the unit vector of

the gravitational wave’s direction of propagation. The two
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independent waveforms hþ;× of a quadrupolar gravita-
tional wave propagating along the z axis, Refs. [8,9] can
be expressed as

hþ ¼ 2G
c4r

X3

i¼1

mið_x2i þ xiẍi − _yi2 − yiÿiÞ; ð2Þ

h× ¼ 2G
c4r

X3

i¼1

miðẍiyi þ 2 _xi _yiþxiÿiÞ; ð3Þ

where r denotes the distance from the source to the
observer. We set the units of G ¼ c ¼ m ¼ 1 throughout
this Letter.
Here the coordinate axes x and y are chosen so that they

coincide with the orbits’ two (reflection) symmetry axes,
when they exist, i.e., when the orbits are from class I, as
defined in Ref. [25]. Otherwise, e.g., when only a single
point reflection symmetry exists, as in class II orbits, the x,
y axes are taken to be the eigenvectors of the moment-of-
inertia tensor. The rotation angle necessary for each orbit to
be aligned with these two axes is given in Table I [27].
The first gravitational radiation waveforms for periodic

three-body systems were studied in Refs. [10–12]. They
calculated the quadrupole radiation waveforms for three
periodic orbits of the following three-equal-mass systems:
(i) of the Lagrange “equilateral triangle” orbit [13], (ii) of
Henon’s “criss cross” [19], and (iii) of Moore’s “figure
eight” [21]. These three orbits are characteristic

representatives of the (only) three families of periodic
three-body orbits known at the time. Reference [10] found
distinct gravitational waveforms for each of the three
families, thus suggesting that one might be able to
distinguish between different three-body systems as
sources of gravity waves by looking at their wave-
forms [28].
In the meantime 13þ 11 new orbits belonging to 12 new

families have been found, Refs. [25,26]. The families of
three-body orbits can be characterized by their topological
properties viz. the conjugacy classes of the fundamental
group, in this case, the free group on two letters (a, b),
Ref. [29]. The free group element tells us the number of
times the system’s trajectory on the shape sphere passes
around one or another (prechosen) two-body collision point
within one period. Every time the system is close to a two-
body collision the (relative) velocities, accelerations, and
the third derivatives of relative coordinates increase, so that
the luminosity of gravitational radiation also increases; i.e.,
there is a burst of gravitational radiation. This argument can
be made more quantitative by appealing to two-body results
of Ref. [8], as is shown in footnote [30].
We show the gravitational radiation waveforms hþ;× in

Fig. 1, emitted by three massive bodies moving according
to the orbits from Refs. [25,26] belonging to these families,
where Eqs. (2) and (3) are used as the definitions of the two
waveforms.
First, we note that all of the calculated three-body orbits’

waveforms are distinct [31], thus answering (in the

TABLE I. Initial conditions and periods of three-body orbits. _x1ð0Þ, _y1ð0Þ are the first particle’s initial velocities in the x and y
directions, respectively, T is the period of the (rescaled) orbit to normalized energy E ¼ −1=2, Θ is the rotation angle (in radians)
and hPi is the mean luminosity (power) of the waves emitted during one period. Other two particles’ initial conditions are specified by
these two parameters, as follows: x1ð0Þ ¼ −x2ð0Þ ¼ −λ, x3ð0Þ ¼ 0, y1ð0Þ ¼ y2ð0Þ ¼ y3ð0Þ ¼ 0, _x2ð0Þ ¼ _x1ð0Þ, _x3ð0Þ ¼ −2_x1ð0Þ,
_y2ð0Þ ¼ _y1ð0Þ, _y3ð0Þ ¼ −2_y1ð0Þ. The Newtonian coupling constant G is taken as G ¼ 1 and the masses are equal m1;2;3 ¼ 1.

Name _x1ð0Þ _y1ð0Þ λ T ΘðradÞ hPi
Moore’s figure eight 0.216 343 0.332 029 2.574 29 26.128 0.245 57 1.35 × 100

Simo’s figure eight 0.211 139 0.333 568 2.583 87 26.127 0.277 32 1.36 × 100

ðM8Þ7 0.147 262 0.297 709 3.008 60 182.873 0.269 21 2.46 × 100

I.A.1 butterfly I 0.147 307 0.060 243 4.340 39 56.378 0.034 78 1.35 × 105

I.A.2 butterfly II 0.196 076 0.048 690 4.016 39 56.375 0.066 21 5.52 × 106

I.A.3 bumblebee 0.111 581 0.355 545 2.727 51 286.192 −1.090 4 1.01 × 105

I.B.1 moth I 0.279 332 0.238 203 2.764 56 68.464 0.899 49 5.25 × 102

I.B.2 moth II 0.271 747 0.280 288 2.611 72 121.006 1.138 78 1.87 × 103

I.B.3 butterfly III 0.211 210 0.119 761 3.693 54 98.435 0.170 35 3.53 × 105

I.B.4 moth III 0.212 259 0.208 893 3.263 41 152.330 0.503 01 7.48 × 105

I.B.5 goggles 0.037 785 0.058 010 4.860 23 112.129 −0.406 17 1.33 × 104

I.B.6 butterfly IV 0.170 296 0.038 591 4.226 76 690.632 0.038 484 1.23 × 1013

I.B.7 dragonfly 0.047 479 0.346 935 2.880 67 104.005 −0.406 199 1.25 × 106

II.B.1 yarn 0.361 396 0.225 728 2.393 07 205.469 −1.015 61 2.33 × 106

II.C.2a yin-yang I 0.304 003 0.180 257 2.858 02 83.727 0.659 242 1.31 × 105

II.C.2b yin-yang I 0.143 554 0.166 156 3.878 10 83.727 −0.020 338 1.31 × 105

II.C.3a yin-yang II 0.229 355 0.181 764 3.302 84 334.877 0.472 891 7.19 × 1010

II.C.3b yin-yang II 0.227 451 0.170 639 3.366 76 334.872 0.254 995 7.19 × 1010
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positive) the question about their distinguishability posed in
Ref. [10]. In Fig. 1 we also show the gravitational wave-
form of one “old” orbit: Simo’s figure eight, (discovered in
2002) belonging to the figure-eight family. Simo’s figure
eight is an important example, as it is virtually

indistinguishable from Moore’s one, and yet the two have
distinct gravitational waveforms, see our Fig. 1, and Fig. 2
in Ref. [10]. That is so because these two figure-eight
solutions have distinct time dependences of the hyperradius
R, where R2 ∼ ð1=mÞδij

P
3
k¼1 Ikk, so that the two orbits

have different quadrupolar waveforms.
Note, moreover, the symmetry of the waveforms in

Fig. 1 with respect to reflections of time about the midpoint
of the period T=2: this is a consequence of the special
subset of initial conditions (vanishing angular momentum
and passage through the Euler point on the shape sphere)
that we used. There are periodic three-body orbits,
such as those from the BHH family, that do not have this
symmetry.
The gravitational waveforms’ maxima range from 20 to

50 000 in our units, with the energy fixed at E ¼ −1=2.
This large range of maximal amplitudes is due to the
differences in the proximity of the approach to two-body
collisions in the corresponding orbits. One can explicitly
check that the bursts of gravitational radiation during one
period correspond to close two-body approaches.
As stated above, the (negative) mean power loss hdE=dti

of the three-body system, or the (positive) mean luminosity
(emitted power) of quadrupolar gravitational radiation hPi,
averaged over one period, is proportional to the square of the
third time derivative of the (reduced) quadrupole moment

Qð3Þ
jk , hdE=dti ¼ −hPi ¼ − 1

5
ðG=c5ÞP3

j;k¼1 hQð5Þ
jk

_Qjki ¼
− 1

5
ðG=c5ÞP3

j;k¼1 hQð3Þ
jk Q

ð3Þ
jk i, (for an original derivation

see Refs. [8,9], for pedagogical ones, see Refs. [1,2]). But,
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FIG. 1 (color online). The gravitational radiation quadrupolar
waveforms hþ;× × r as functions of the elapsed time t in units of
the period T, for two periodic three-body orbits (in units of
Gm=c2; we have set G ¼ m ¼ c ¼ 1 throughout this Letter) and
r is the radial distance from the source to the observer. Dotted
(blue) and solid (red) curves denote the þ and × modes,
respectively. Top: Simo’s figure eight, Ref. [22]; and bottom:
orbit I.B.1 Moth I. Note the symmetry of these two graphs under
the (time-)reflection about the orbits’ midpoint T=2 during one
period T.
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FIG. 2 (color online). The instantaneous (time unaveraged) luminosity P of quadrupolar gravitational radiation emitted from
periodic three-body orbits as a function of the elapsed time t in units of the period T. Note the logarithmic scale for the luminosity
P (y axis). Top left: Moore’s figure eight; second from top left: I.A.2 butterfly II; third from top left: II.B.7 dragonfly; bottom left: I.B.1
moth I; top right: ðM8Þ7, second from top right: I.A.3 bumblebee; second from bottom right: I.B.5 goggles; bottom right: II.B.6
butterfly IV.
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Qð3Þ
jk are proportional to the first time derivatives of the

gravitational waveforms Qð3Þ
jk ¼ ðd=dtÞQð2Þ

jk ∝ ðd=dtÞhþ;×.
The peak amplitudes of gravitational waveforms hþ;×, in
turn, grow in the vicinity of two-body collisions [30], which
explains the burst of gravitational radiation as one approaches
a two-body collision point.
The mean and instantaneous luminosities, expressed in

our units, of these orbits, normalized to E ¼ −1=2, are
shown in Table I and Fig. 2, respectively. Note that in
Table I we show only three orbits belonging to the figure-
eight family: Moore’s, Simo’s, and the stable choreography
ðM8Þ7; they have all the same order of magnitude of the
mean luminosity [32], whereas the butterfly I and butterfly
II orbits, which belong to the same topological family, have
mean luminosities that differ by more than a factor of 40.
Generally, the mean luminosities of these orbits cover 13

orders of magnitude, ranging from 1.35 (Moore’s figure
eight) to 1.23 × 1013 (I.B.6 butterfly IV) in our units; see
Table I. The peak instantaneous luminosities have an even
larger range: 20 orders of magnitude; see Fig. 2. Here, the
symmetric form of the instantaneous (time unaveraged)
power P ¼ 1

5
ðG=c5ÞP3

j;k¼1 Q
ð3Þ
jk Q

ð3Þ
jk was used. This gives

us hope that at least some of these three-body periodic
orbits can, perhaps, lead to detectable gravitational radia-
tion signals.
It is a different question if some or all of these sources of

gravitational radiation would be observable by the present-
day and the soon-to-be-built gravitational wave detectors:
that strongly depends on the absolute values of the masses,
velocities, and the average distances between the three
celestial bodies involved, as well as on the distribution of
such sources in our Galaxy.
Moreover, note that all of the newly found and analyzed

three-body orbits have zero angular momentum, and many
of them are unstable. It is well known [16–20] that by
changing the angular momentum within the same family
of three-body orbits, the stability of an orbit changes as
well. So, it may happen that a previously stable orbit turns
into an unstable one, and vice versa. For this reason it
should be clear that a careful study of gravitational-
radiation-induced energy- and angular-momentum dissi-
pation is necessary for these orbits [33]. Moreover, if
realistic results are to be obtained, post-Newtonian
approximations will have to be applied in the future.
Such relativistic corrections are most important at large
velocities, i.e., precisely near close approaches that are so
crucial for large gravitational radiation. Thus, the present
Letter is meant only to highlight the possibilities in this
field, and should be viewed as an invitation to join in the
more realistic future studies.
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Realization of strong synthetic magnetic fields in driven optical lattices has enabled implementation of
topological bands in cold-atom setups. A milestone has been reached by a recent measurement of a finite Chern
number based on the dynamics of incoherent bosonic atoms. The measurements of the quantum Hall effect in
semiconductors are related to the Chern-number measurement in a cold-atom setup; however, the design and
complexity of the two types of measurements are quite different. Motivated by these recent developments, we
investigate the dynamics of weakly interacting incoherent bosons in a two-dimensional driven optical lattice
exposed to an external force, which provides a direct probe of the Chern number. We consider a realistic driving
protocol in the regime of high driving frequency and focus on the role of weak repulsive interactions. We find that
interactions lead to the redistribution of atoms over topological bands both through the conversion of interaction
energy into kinetic energy during the expansion of the atomic cloud and due to an additional heating. Remarkably,
we observe that the moderate atomic repulsion facilitates the measurement by flattening the distribution of atoms
in the quasimomentum space. Our results also show that weak interactions can suppress the contribution of some
higher-order nontopological terms in favor of the topological part of the effective model.

DOI: 10.1103/PhysRevA.98.053625

I. INTRODUCTION

Ultracold atoms in optical lattices provide a perfect plat-
form for quantum simulations of various condensed-matter
phenomena [1]. Yet, since charge-neutral atoms do not feel the
Lorentz force, a big challenge in this field was realization of
synthetic magnetic fields. After years of effort, artificial gauge
potentials for neutral atoms were implemented by exploiting
atomic coupling to a suitable configuration of external lasers
[2,3]. These techniques were further extended to optical lat-
tices, leading to the realization of strong, synthetic, magnetic
fields. As a result, important condensed-matter models—the
Harper-Hofstadter [4] and the Haldane model [5]—are nowa-
days available in cold-atom setups [6–9]. The key property
of these models is their nontrivial topological content. In the
seminal TKNN paper [10] it was shown that the quantization
of the Hall conductivity observed in the integer Hall effect can
be directly related to the topological index of the microscopic
model—the Chern number.

Cold-atom realizations of topological models exploit peri-
odic driving, either through laser-assisted tunneling [6,7] or
by lattice shaking [8]. Using Floquet theory [11,12], a period-
ically driven system can be related to the time-independent ef-
fective Hamiltonian that corresponds to a relevant condensed-
matter system. The mapping is known as Floquet engineering
and its important features in the context of optical lattices are
discussed in Refs. [13–20]. Because of important differences
of cold-atom setups and their condensed-matter counterparts,
new quench protocols for probing topological features were
proposed [21–25]. Following up on these studies, the de-
flection of an atomic cloud as a response to external force
was used to experimentally measure the Chern number in a
nonelectronic system for the first time [26].

While Floquet engineering is a highly flexible and pow-
erful technique, it poses several concerns. One of the main
open questions is related to the interplay of driving and
interactions which can heat up the system to a featureless,
infinite-temperature regime according to general considera-
tions [27,28]. In particular, it is shown that an initial Bose-
Einstein condensate in a periodically driven optical lattice
may become unstable due to two-body collisions [29] or
through the mechanism of parametric resonance [28,30–36].
The preparation protocol, stability and a lifetime of strongly
correlated phases, expected in the regime of strong interac-
tions under driving is a highly debated topic at the moment
[28,37,38].

In order to further explore the role of weak atomic inter-
actions in probing topological features, here we consider the
dynamics of weakly interacting incoherent bosons in a driven
optical lattice exposed to an external force. The setup that we
consider includes all basic ingredients for the Chern-number
measurement [22,26]—the Chern number of the topological
band can be extracted from the center-of-mass motion of
atomic cloud in the direction transverse to the applied force.
We assume an ideal initial state where the lowest topological
band of the effective model is almost uniformly populated.
The optimal loading sequence necessary to reach this state is
considered in Refs. [39,40]. Following the recent experimen-
tal study [26], we assume that atoms are suddenly released
from the trap and exposed to a uniform force. We perform nu-
merical simulations for the full time-dependent Hamiltonian
and take into account the effects of weak repulsive interac-
tions between atoms within the mean-field approximation. We
make a comparison between the dynamics governed by the
effective and time-dependent Hamiltonian and delineate the
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contribution of interactions to the center-of-mass response and
to the overall cloud expansion dynamics. Our results show that
interactions lead to the undesirable atomic transitions between
topological bands [41], but we also find that a weak atomic
repulsion can facilitate the Chern-number measurements in
several ways.

The paper is organized as follows. In Sec. II we describe
the model and introduce a method that we apply for the
description of incoherent bosons. In Sec. III we address the
dynamics of noninteracting incoherent bosons, and then in
Sec. IV we address the regime of weak repulsive interactions.
Finally, we summarize our results in Sec. V. Appendixes A
to F provide further details.

II. MODEL AND METHOD

In this section, we first present the driven model introduced
in Ref. [26], and then derive the corresponding effective model
and discuss its basic characteristics. At the end, we explain our
choice of the initial state and outline the method that we use
to treat the dynamics of weakly interacting incoherent bosons.

A. Effective Floquet Hamiltonian

Interacting bosons in a two-dimensional optical lattice can
be described by the Bose-Hubbard Hamiltonian

ĤBH = −Jx

∑
l,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m)

− Jy

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m)

+ U

2

∑
l,m

n̂l,m(n̂l,m − 1), (1)

where â
†
l,m and âl,m are creation and annihilation operators

that create and annihilate a particle at the lattice site (l, m) =
laex + maey (a is the lattice constant), n̂l,m = â

†
l,mâl,m is the

number operator, Jx and Jy are the hopping amplitudes along
ex and ey , and U is the on-site interaction. In the derivation
of the model (1) we use the single-band tight-binding approx-
imation [1]. Although the experimental setup [26] is actually
three dimensional, with an additional confinement in the third
direction, our study is simplified to a two-dimensional lattice.

In order to engineer artificial gauge field in the experiment
[26], hopping along ex was at first inhibited by an additional
staggered potential

Ŵ = �

2

∑
l,m

(−1)l n̂l,m, (2)

and then restored using resonant laser light. The experimental
setup can be described by a time-dependent Hamiltonian

H̃ (t ) = ĤBH + V̂ (t ) + Ŵ , (3)

where V̂ (t ) is a time-dependent modulation

V̂ (t ) = κ
∑
l,m

n̂l,m

[
cos

(
lπ

2
− π

4

)
cos

(
ωt − mπ

2
+ φ0

)

+ cos

(
lπ

2
+ π

4

)
cos

(
−ωt − mπ

2
+ π

2
+ φ0

)]
,

(4)

κ is the driving amplitude, and ω = � is the resonant driving
frequency. We set the relative phase φ0 between the optical-
lattice potential and the running waves used for laser-assisted
tunneling to φ0 = π/4.

Using Floquet theory, the time-evolution operator corre-
sponding to the Hamiltonian (3) can be represented as

Û (t, t0) = e−iŴ t e−iK̂ (t )e−i(t−t0 )Ĥeff eiK̂ (t0 )eiŴ t0 , (5)

where Ĥeff is the full time-independent effective Hamiltonian
that describes slow motion and K̂ (t ) is the time-periodic kick
operator that describes micromotion [13,14].

For the moment, in this subsection we first consider the
noninteracting model U = 0. We also assume that the driving
frequency ω is the highest energy scale, but that it is still low
enough that the lowest-band approximation used in deriving
Eq. (1) is still valid. In the leading order of the high-frequency
expansion, the effective Hamiltonian Ĥeff is given by

Ĥeff,0 = J ′
x

∑
l,m

[ei((m−l−1)π/2−π/4)â
†
l+1,mâl,m + H.c.]

− J ′
y

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m), (6)

where the renormalized hopping amplitudes are J ′
x = Jxκ√

2ω
=

Jy and J ′
y = Jy (1 − 1

2
κ2

ω2 ). A schematic representation of this
model is presented in Fig. 1(a). The unit cell is shaded
and the full lattice is spanned by the vectors R1 = (4, 0)
and R2 = (1, 1). Particle hopping around a plaquette in the
counterclockwise direction acquires a complex phase −π

2 and
the model is equivalent to the Harper-Hofstadter Hamiltonian
[4] for the case α = 1/4 [4]. The explicit form of the kick
operator K̂ (t ) from Eq. (3) is given in Appendix A.

Following Refs. [13,14], we find that additional corrections
of the order J 2

x /ω contribute to the system’s dynamics and we
introduce another approximation for the effective Hamiltonian

Ĥeff,1 = Ĥeff,0 + J 2
x

ω

∑
l,m

(−1)l (2â
†
l,mâl,m

+ â
†
l+2,mâl,m + â

†
l−2,mâl,m). (7)

The derivation of Hamiltonian (7) is given in Appendix A and
its schematic representation is given in Fig. 1(b). The J 2

x /ω

correction introduces next-nearest-neighbor hopping along x

direction with opposite signs for lattice sites with either even
or odd x-coordinate l. This term does not change the total
complex phase per plaquette, but the unit cell is now doubled
and thus the first Brillouin zone is halved. A similar term
was engineered on purpose in order to implement the Haldane
model [8].

In the next subsection we investigate properties of energy
bands of both effective Hamiltonians, Ĥeff,0 and Ĥeff,1. We
use the units where h̄ = 1 and a = 1. Unless otherwise stated,
we set the parameters to the following values: lattice size
100 × 100 sites, hopping amplitudes J ′

x = Jy = 1 ≡ J , and
the driving amplitude κ = 0.58ω. This value of the driving
amplitude was chosen to be the same as in the experiment
[26]. In order to set the renormalized hopping amplitude
along ex to J ′

x = 1, the initial hopping amplitude has to be

053625-2
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FIG. 1. Schematic representation of the model. The unit cells
are shaded. (a) Effective Hamiltonian without correction, Ĥeff,0 (6).
Vertical links correspond to real hopping amplitudes (along ey direc-
tion), while the horizontal links to the right of lattice sites labeled
A, B, C, and D correspond to complex hopping amplitudes with
phases 3π

4 , π

4 , − π

4 , and − 3π

4 , respectively (when hopping from left
to right). (b) Effective Hamiltonian with correction, Ĥeff,1 (7). Red
lines represent positive next-nearest-neighbor hopping amplitudes
(connecting uppercase letters), while the blue lines represent negative
next-nearest-neighbor hopping amplitudes (connecting lowercase
letters). Nearest-neighbor hopping amplitudes are the same as in (a).

Jx = √
2ω/κ = 2.44, and the correction term is therefore pro-

portional to J 2
x /ω = 5.95/ω, so it cannot be safely neglected

unless the driving frequency is very high.

B. Band structure

Momentum-space representations of the effective Hamil-
tonians Ĥeff,0 and Ĥeff,1, denoted by Ĥeff,0(k) and Ĥeff,1(k),
respectively, are derived in Appendix B. Band structures for
the effective Hamiltonian Ĥeff,0 without the J 2

x /ω correction,
Eq. (B1), as well as for the effective Hamiltonian Ĥeff,1

including the correction term, Eq. (B2), are shown in Fig. 2
for the two values of driving frequencies ω = 20 and ω = 10.

The Hamiltonian Ĥeff,0 is the Harper-Hofstadter Hamilto-
nian for the flux α = 1/4. It has four energy bands, where
the middle two bands touch at E = 0 and can therefore be
regarded as a single band; see Fig. 2(a). The topological
content of these bands is characterized by the topological
index called the Chern number. The Chern number is the
integral of the Berry curvature [42] over the first Brillouin
zone divided by 2π ,

cn = 1

2π

∫
FBZ

�n(k) · dS, (8)

where n denotes the band number and the Berry curvature
is �n(k) = i∇k × 〈un(k)|∇k|un(k)〉, expressed in terms of
eigenstates of the effective Hamiltonian |un(k)〉. The Chern
numbers of the three well-separated bands are c1 = 1, c2 =
−2, and c3 = 1.

Because the correction from Eq. (7) includes next-nearest-
neighbor hopping terms, the elementary cell in real space
is doubled [see Fig. 1(b)] and, as a consequence, the first
Brillouin zone for the Hamiltonian Ĥeff,1 is reduced by a
factor of 2 compared to Ĥeff,0. There are now eight lattice
sites in the unit cell and eight energy bands, but the number
of gaps depends on the driving frequency. The new bands
touch in pairs, in such a way that there are always maximally
three well-separated bands. When the driving frequency is
high enough, the correction is small and the gaps between
the three bands remain open; see Fig. 2(b). The original band
structure of Ĥeff,0 is recovered in the limit ω → ∞. The
Berry curvature and the Chern number can be calculated using
the efficient method presented in Ref. [43]. Our calculations
confirm that the Chern numbers of Ĥeff,1 are equal to those
of Ĥeff,0 (c1 = 1, c2 = −2, and c3 = 1), as long as the gaps
between the energy bands are open. The gaps close when the
driving frequency is too low, see Fig. 2(c), and the Chern
numbers of the subbands can no longer be properly defined.

C. Dynamics of incoherent bosons

We need to take into account a contribution of weak, repul-
sive interactions. Full numerical simulations of an interacting
many-body problem are computationally demanding, so we
need a reasonable, numerically tractable approximation. To
this end we will use the classical field method [44], which
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FIG. 2. Energy bands of the effective Hamiltonians. (a) Ĥeff,0(k) Eq. (B1), which is without the J 2
x /ω correction term. (b) Ĥeff,1(k)

Eq. (B2), which includes the correction term. Driving frequency ω = 20; gaps are open. (c) Same as (b), but with ω = 10. Gaps are closed.
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belongs to a broader class of truncated Wigner approaches
[45]. This method is similar to the approach used to treat
incoherent light in instantaneous media [46,47], known in
optics as the modal theory.

The underlying idea of the method is to represent the
initial state as an incoherent mixture of coherent states |ψ〉,
âl,m|ψ〉 = ψl,m|ψ〉 [44]. This is explained in more detail in
Appendix C. In our study, we sample initial configurations of
these coherent states with

|ψ (t = 0)〉 =
Nm∑
k=1

eiφk |k〉, (9)

where φk ∈ [0, 2π ) are random phases and the states |k〉
correspond closely to the lowest-band eigenstates of Ĥeff.
Each of Nsamples initial states is time evolved and physical
variables can be extracted by averaging over an ensemble of
different initial conditions.

The time evolution of each of these coherent states is
governed by

i
dψl,m(t )

dt
=

∑
ij

Hlm,ij (t )ψi,j (t ) − F m ψl,m(t )

+U |ψl,m(t )|2ψl,m(t ), (10)

where Hlm,ij (t ) = 〈l, m|Ĥ (t )|i, j 〉 are matrix elements of
Ĥ (t ) from Eq. (3), F is the external force, and interactions
U contribute with the last, nonlinear term. Formally, Eq. (10)
takes the form of the Gross-Pitaevskii equation [48–50]. The
performances and limitations of the method are discussed and
reviewed in Ref. [51].

For comparison, we also consider the related time evolu-
tion governed by the effective Hamiltonian

i
dψl,m(t )

dt
=

∑
ij

heff
lm,ijψi,j (t ) − F m ψl,m(t )

+U |ψl,m(t )|2ψl,m(t ), (11)

where heff
lm,ij = 〈l, m|ĥeff|i, j 〉, with ĥeff being either Ĥeff,0

from Eq. (6), or Ĥeff,1 from Eq. (7). Equation (11) should
be considered only as a tentative description of the sys-
tem: the mapping between Ĥ (t ) and Ĥeff is strictly valid only
in the noninteracting regime and the interaction term may
introduce complex, nonlocal, higher-order corrections [27].
However, we expect their contribution to be small in the limit
U → 0, and for time scales which are not too long [52–55].

In the following we use Nm = 300 modes and accom-
modate Np = 300 particles per mode, so in total in the
simulations we have N = NmNp = 90 000 bosons. Typical
densities in real space are up to 100 particles per site and
we choose the values of U in the range U ∈ [0, 0.05]. Other
parameters: J ′

x = Jy = 1, κ/ω = 0.58, ω = 10, 20, and F =
0.25J/a. The correction terms are non-negligible in this
frequency range. In practice, we first numerically diagonalize
the Hamiltonian (C2) from Appendix C and set our parameters
in such a way that the lowest Nm modes have high overlap
with the lowest band of the effective model. In the next step,
we sample initial configurations (9). For each of Nsamples =
1000 sets of initial conditions we then time evolve Eq. (10)
and extract quantities of interest by averaging over resulting

TABLE I. Four different cases: the same effective Hamiltonian
is always used for the initial state and band definitions, either with
or without the correction. The evolution is governed either by the
time-dependent Hamiltonian or by the same effective Hamiltonian
as the one that was used for the initial state and calculation of band
populations.

Case Initial state Band populations Evolution

1 Ĥeff,1 Ĥeff,1 Ĥeff,1

2 Ĥeff,1 Ĥeff,1 Ĥ (t )

3 Ĥeff,0 Ĥeff,0 Ĥeff,0

4 Ĥeff,0 Ĥeff,0 Ĥ (t )

trajectories. This value of Nsamples is chosen to be high enough,
so that the fluctuations are weak. We present and discuss
results of our numerical simulations in the following sections.

III. NONINTERACTING CASE

We start by addressing the dynamics of noninteracting
bosons. In this case we set U = 0 in Eq. (10) and numerically
solve the single-particle Schrödinger equation without further
approximations. Our aim is to numerically validate and com-
pare the two approximations, Eqs. (6) and (7), for the effective
Hamiltonian. To this purpose, we juxtapose results of the
two approximative schemes with the numerically exact results
obtained by considering the full time evolution governed
by Ĥ (t ). For clarity, the four different time evolutions that
we consider in this section are summarized in Table I. We
calculate the center-of-mass position x(t ) and plot the results
in Fig. 3. In this way we also find the regime of microscopic
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FIG. 3. Anomalous drift x(t ). Dashed purple lines: numerical
simulations using the time-dependent Hamiltonian Ĥ (t ) (cases 2 and
4 from Table I). Solid green lines: effective Hamiltonians Ĥeff,1 (c)
and (d) and Ĥeff,0 (a) and (b) (cases 1 and 3). Dotted black lines:
theoretical prediction (14) from γeff,1(t ) or γeff,0(t ). (a) Initial states
and band populations obtained using the effective Hamiltonian Ĥeff,0

without the correction (cases 3 and 4). Driving frequency ω = 20.
(b) ω = 10. (c) Hamiltonian Ĥeff,1 with the J 2

x /ω correction (cases 1
and 2). Driving frequency ω = 20. (d) ω = 10.
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parameters where the Chern-number measurement can be
optimally performed.

First, we consider the basic Harper-Hofstadter Hamiltonian
(6) and select the occupied modes |k〉 of the initial state (C1)
as eigenstates of the model from Eq. (9) for ĥeff = Ĥeff,0. As
explained in the previous section, at the initial moment t0 =
0, the confinement is turned off and the force F = −F ey is
turned on. As a consequence of the applied external force and
the nonzero Chern number of the lowest band of the model
(6), the particles exhibit an anomalous velocity in the direction
perpendicular to the force [56]. In the ideal case, when the
lowest band is fully populated, the theoretical prediction for
the center-of-mass position in the ex direction is [26]

x(t ) = x(t0) + c1
2Fa2

πh̄
t, (12)

where c1 = 1 is the Chern number (8) of the lowest band.
However, even in the ideal case, due to the sudden quench
of the linear potential, a fraction of particles is transferred to
the higher bands. To take this effect into account, the authors
of Ref. [26] introduced a filling factor γ (t )

γ (t ) = η1(t ) − η2(t ) + η3(t ), (13)

where ηi (t ) are populations of different bands of Hamiltionian
(6) from Eq. (C4) in Appendix C and the plus and minus signs
in Eq. (13) are defined according to the Chern numbers c1 =
1, c2 = −2, and c3 = 1. The final theoretical prediction is
then [26]

x(t ) = x(t0) + c1
2Fa2

πh̄

∫ t

0
γ (t ′)dt ′. (14)

In Fig. 3(a) we consider the anomalous drift for a high
value of the driving frequency ω = 20, where we expect
the expansion in 1/ω to be reliable. We find an excellent
agreement between the prediction (14) (dotted black line)
and numerical calculation based on Ĥeff,0 (solid green line).
However, some deviations between the full numerical results
(dashed purple line) and the results of the approximation
scheme (solid green line) are clearly visible. These deviations
are even more pronounced for ω = 10, Fig. 3(b).

Now we turn to the effective model (7). In this case we
select the modes of the initial state as eigenstates of Eq. (9)
for ĥeff = Ĥeff,1. Moreover, we also consider band populations
(C4) of the same model. In the case when ω = 20, Fig. 3(c),
the anomalous drift obtained using the effective Hamiltonian
(7) (solid green line) closely follows the theoretical prediction
(14). Moreover, from the same figure we can see that the
effective Hamiltonian Ĥeff,1 reproduces the behavior of the
time-dependent Hamiltonian very well. All three curves al-
most overlap for intermediate times (5–40 ms); see Fig. 3(c).
We attribute the long-time (>45 ms) deviations to the finite-
size effects introduced by the next-nearest-neighbor hopping
terms, which cause the atomic cloud to reach the edge of
the lattice faster. This effect is explained in more detail in
Sec. IV B.

For a lower driving frequency ω = 10, the effective and the
time-dependent Hamiltonians do not agree so well anymore;
see Fig. 3(d). The finite-size effects can be observed even
earlier in this case (around 25 ms). This happens because the
next-nearest-hopping terms are inversely proportional to the
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FIG. 4. Time evolution of the filling factor γ (t ) for driving
frequency ω = 20. Solid purple lines: evolution governed by the
time-dependent Hamiltonian Ĥ (t ) (cases 2 and 4 from Table I).
Dashed green lines: evolution governed by the effective Hamiltonian
Ĥeff,1 or Ĥeff,0 (cases 1 and 3). Dotted black lines: green lines shifted
in order to compare them with purple lines. Shift is chosen so
that the two lines approximately overlap. (a) Initial states and band
populations obtained using the effective Hamiltonian Ĥeff,0, which is
without the J 2

x /ω correction term (cases 3 and 4). (b) Hamiltonian
Ĥeff,1 which is with the correction term (cases 1 and 2).

driving frequency. It is interesting to note that the prediction
(14) is close to numerical data for short times even in this case
when the gaps of the effective model are closed, see Fig. 2(c),
and the Chern number of the lowest band is not well defined.
In fact, it is surprising that the anomalous drift even exists in
this case, as all subbands are now merged into a single band.
We attribute this effect to our choice of the initial state. When
the gaps are closed, it is hard to set the parameters in such
a way that the lowest band is completely filled. The top of
this band usually remains empty and the particles thus do not
“see” that the gap is closed.

Time evolution of the filling factor γ (t ) is plotted in Fig. 4
for four different cases from Table I—evolution using the
effective Hamiltonian without correction Ĥeff,0 [γeff,0(t ), case
3, dashed green line in Fig. 4(a)], the effective Hamiltonian
with correction Ĥeff,1 [γeff,1(t ), case 1, dashed green line in
Fig. 4(b)], or the time-dependent Hamiltonian Ĥ (t ) [γ (t ),
cases 2 and 4, solid purple lines]. At the initial moment γ (t0 =
0) < 1, because the initial state was multiplied by the operator
e−iK̂ (0). This introduces a shift between γ (t ) and γeff,1(t ).
Apart from the shift, these two curves behave similarly, unlike
the γeff,0(t ) curve that exhibits completely different behavior.
Because of this, we use only γeff,1(t ) to estimate the value of
the prediction (14).

We find that the values of γeff,1(t ) for ω = 20 are high:
�0.95; see Fig. 4. For this reason, up to 50 ms the center-of-
mass position x(t ) exhibits roughly linear behavior with some
additional oscillations. Interestingly, the anomalous drift x(t )
exhibits quadratic behavior on short time scales in all cases
from Fig. 3. In Appendix D, we explain this feature using the
time-dependent perturbation theory and Fermi’s golden rule.

IV. INTERACTING CASE

We now investigate the effects of weak repulsive interac-
tions. We work in the high-frequency regime and set ω = 20.
As shown in Sec. II B, for U = 0 the effective Hamiltonian
with correction, Ĥeff,1, is in this case equivalent to the Harper-
Hofstadter Hamiltonian with flux α = 1/4. Moreover, the
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same approximative form of the full effective model accu-
rately reproduces the behavior of the time-dependent Hamil-
tonian up to 50 ms and thus provides a good starting point for
the study of weakly interacting particles. We first consider the
anomalous drift of the center of mass of the atomic cloud and
then we inspect the expansion dynamics more closely in terms
of atomic density distributions in real and momentum space.

A. Anomalous drift and dynamics of band populations

To simulate the dynamics of many incoherent bosons, we
use the classical field method presented in Sec. II C and
propagate Eq. (10) in time. We assume that at t0 = 0 atoms are
uniformly distributed over the lowest band of Ĥeff,1. For this
reason, the initial state is the same as the one that we use in the
noninteracting regime. In this way, the dynamics is initiated
by an effective triple quench: at t0 = 0 the confining potential
is turned off, atoms are exposed to the force F = −F ey , and
also the interactions between particles are introduced. The
total number of particles is set to N = 90 000, which amounts
to approximately 100 particles per lattice site in the central
region of the atomic cloud. We consider only weak repulsion
U � 0.05.

The anomalous drift x(t ) obtained using the full time-
dependent Hamiltonian is shown in Fig. 5(a) for several
different values of the interaction strength U . In comparison
to the noninteracting regime, we find that the weak repulsive
interactions inhibit the response of the center of mass to the
external force. In particular, at t = 50 ms the drift is reduced
by about 15% for U = 0.005 and it is further lowered by an
increase in U . Finally, at U = 0.05, the anomalous drift is
barely discernible. Interestingly, for weak U ∈ (0.001, 0.01)
we find that the drift x(t ) in the range of t ∈ (10, 50) ms
looks “more linear” as a function of time in comparison to
the noninteracting result.

We now analyze the anomalous drift in terms of the filling
factor γ (t ) and compare the results of Eq. (10) with the
description based on Eq. (11). By solving Eq. (11) we obtain
the filling factor γeff,1(t ) following Eq. (C4) and present

our results in Fig. 5(b). Whenever the results of Eq. (10)
reasonably agree with the results obtained from Eq. (11), we
are close to a steady-state regime with only small fluctuations
in the total energy, as Eq. (11) preserves the total energy of
the system. In this regime, during the expansion dynamics
the interaction energy is converted into the kinetic energy and
atoms are transferred to higher bands of the effective model.
Consequently, the filling factor γeff,1(t ) is reduced. Typically,
we find three different stages in the decrease of γeff,1(t ).

In an early stage, t � t1 = 5 ms, a fast redistribution of
particles over the bands of the effective model sets in due to
the sudden quench of U . The factor γeff,1(t ) decays quadrat-
ically as a function of time down to γeff,1(t1) ≈ 0.75 for
U = 0.01, and γeff,1(t1) ≈ 0.25 for U = 0.05. In this process
the interaction energy of the system is quickly lowered as
described in Appendix E. At later times t > 5 ms, we observe
a linear decay of the filling factor γeff,1(t ) as a function of
time, that finally turns into an exponential decay at even later
times (t > 10 ms). Similar regimes are observed in other dy-
namical systems. For example, a decay rate of an initial state
suddenly coupled to a bath of additional degrees of freedom
exhibits these three stages [57]. The initial quadratic decay is
often denoted as “the Zeno regime.” For longer propagation
times, Fermi’s golden rule predicts the linear decay. At even
longer time scales, when the repopulation of the initial state
is taken into account, the time-dependent perturbation theory
yields the exponential regime, known under the name of the
Wigner-Weisskopf theory [57].

We now investigate this last regime in more detail. For
the population of the lowest band η1(t ), an exponential decay
function f (t ) = a + b e−ct provides high quality fits for t ∈
(10, 50) ms; see Fig. 6(a) for an example. Similarly, the pop-
ulations of two higher bands can also be fitted to exponential
functions. The obtained exponential decay coefficients c for
the lowest band population are plotted as a function of the
interaction strength U in Fig. 6(b). The resulting dependence
is approximately quadratic: c(U ) = α0 + α1U + α2U

2. For
small values of U , the exponents c(U ) obtained for the
dynamics governed by Ĥ (t ) and Ĥeff, 1 agree very well and
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Ĥ(t)
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exhibit linear behavior. At stronger interaction strengths U �
0.03, the approximation of Eq. (11) becomes less accurate as
it omits the quadratic contribution in c(U ) found in the full
time evolution. In addition, the values of the exponents c are
affected by the force strength F and driving frequency ω.

As we now understand some basic features of γeff,1(t ), we
make an explicit comparison between the numerical results
for the anomalous drift and the expectation (14). The dashed
lines in Fig. 5(a) correspond to the theoretical prediction
(14) calculated from γeff,1(t ). For the intermediate interaction
strengths U � 0.01, we find a very good agreement between
the two. From this we conclude that the interaction-induced
transitions of atoms to higher bands are the main cause of the
reduced anomalous drift x(t ) as a function of U . When the
interactions become strong enough (U ∼ 0.02), the numerical
results start to deviate from the theoretical prediction (14) with
γeff,1(t ). In this regime, Eq. (11) does not provide a reliable
description of the dynamics, as higher-order corrections need
to be taken into account.

B. Real and momentum-space dynamics

So far we have considered the averaged response of the
whole atomic cloud. We now inspect the expansion dynamics
in a spatially resolved manner. The real-space probability
densities at the initial moment and after 50 ms (75 driving
periods) are shown in Figs. 7 and 8, and the corresponding
momentum-space probability densities in Appendix F.

At the initial moment, the atomic cloud is localized in
the center of the lattice. By setting r0 = 20 in the confining
potential of Eq. (C2) and populating the lowest-lying states,
we fix the cloud radius to r = 20, Fig. 7(a). The cloud density
is of the order of 100 atoms per lattice site and a weak density
modulation is visible along x direction. After the confining
potential is turned off, and the external force in the −ey

direction is turned on, the cloud starts to expand and move
in the +ex direction. As shown in the previous subsection,
the band populations and therefore the anomalous drift are
significantly altered by the interaction strength, and this is also
the case with the expansion dynamics; see Figs. 7 and 8.

In the noninteracting case, Fig. 7(b), the atomic cloud
nearly separates into two parts moving in opposite directions
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FIG. 7. Real-space density distribution, noninteracting case U =
0. (a) Initial state. (b) After 50 ms (75 driving periods), evolution
using the time-dependent Hamiltonian Ĥ (t ). (c) Evolution using
effective Hamiltonian without correction Ĥeff,0. (d) Evolution using
effective Hamiltonian with correction Ĥeff,1.

along x axes (while the center of mass still moves in the +ex

direction). By comparing Fig. 7(c) and Fig. 7(d), we conclude
that this effect stems from the next-nearest-neighbor hopping
along x present in the effective Hamiltonian (7), as it does
not happen in the effective model without the correction term
(6). This type of separation was already observed in Ref. [22],
where the next-nearest-neighbor hopping terms were also
present. When the interactions between particles are included,
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lution using the time-dependent Hamiltonian Ĥ (t ), U = 0.01. (b)
Same with U = 0.05. (c) Evolution using the effective Hamiltonian
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this separation is not so prominent [Fig. 8(a), U = 0.01],
and it almost completely disappears when the interactions are
strong enough [Fig. 8(b), U = 0.05]. This is also the case
when the evolution is governed by the effective Hamiltonian
Ĥeff,1; see Figs. 8(c) and 8(d). Atomic cloud widths dx =√

〈x2〉 − 〈x〉2 during the expansion are plotted in Fig. 9. We
observe a slow expansion of the cloud in y direction, Fig. 9(b),
and much faster expansion along x direction, Fig. 9(a), which
comes about as a consequence of the cloud separation. On top
of this, we observe that the interactions enhance expansion
along y. Surprisingly, the opposite is true for the dynamics
along x. This counterintuitive effect is often labeled as self-
trapping and its basic realization is known for the double-
well potential [58,59]. In brief, strong repulsive interactions
can preserve the density imbalance between the two wells,
as the system cannot release an excess of the interaction
energy. In our case, the situation is slightly more involved
as the cloud splitting is inherent (induced by the corrections
of the ideal effective Hamiltonian). Apart from this, due to
the driving the total energy is not conserved. However, our
numerical results indicate that the interaction energy is slowly
released in the second expansion stage, Fig. 14. Effectively,
in this way the interactions cancel out the contribution of the
next-nearest-neighbor hopping and favor the measurement of
the properties of the model (6). In Fig. 10(a) we show that
deviations between different approximations based on Ĥ (t ),

Ĥeff,1, and Ĥeff,0 in the anomalous drift x(t ) nearly vanish at
U = 0.01.

Another desirable effect might be that the interactions
make the momentum-space probability density more ho-
mogeneous, see Appendix F, so that the real-space prob-
ability density becomes more localized. We can quantify
momentum-space homogeneity using the inverse participation
ratio R(t ) = 1∑

i P 2
i (t )

, where Pi (t ) = |ψi (t )|2 is the probability

that the state ψi is occupied at time t . Minimal value of
the inverse participation ratio (IPR) is 1 and it corresponds
to a completely localized state, while the maximal value is
equal to the total number of states (in our case 10 000) and
corresponds to the completely delocalized state, where the
particles have the same probability of being at any quasi-
momentum k. As stated before, the first Brillouin zone of
the lowest band has to be as homogeneously populated as
possible in order to properly measure the lowest band Chern
number. From Fig. 10(b), we see that IPR increases in time
when the interaction coefficient U is large enough, so we
can conclude that the interactions are actually beneficial for
measuring the Chern number, as they can “smooth out” the
momentum-space probability density. In Fig. 10(c) we give
estimates for the Chern number that can be extracted from
our numerical data for different values of U . We find the best
estimate c1 ∼ 0.99 for the intermediate interaction strength
U ∼ 0.01.

C. Staggered detuning

Here we briefly consider the effects of staggered detuning
that was introduced in the experimental study [26] during the
loading and band mapping sequences. This detuning can be
described by an additional term

δ

2

∑
l,m

[(−1)l + (−1)m]n̂l,m (15)

in the Hamiltonians Ĥ (t ) and Ĥeff,1. We will ignore the
higher-order [at most O( 1

ω2 )] corrections that this term intro-
duces to the effective Hamiltonian. Staggered detuning does
not break the symmetry of the effective Hamiltonian Ĥeff,1,
but if δ is large enough, it can cause a topological phase
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FIG. 10. (a) Comparison of anomalous drifts obtained from evolution using the time-dependent Hamiltonian Ĥ (t ) (solid purple line),
effective Hamiltonian without correction Ĥeff,0 (dashed green line) and effective Hamiltonian with correction Ĥeff,1 (dotted black line).
Intermediate interaction strength U = 0.01. U is given in units where J = 1. (b) Time evolution of the inverse participation ratio in momentum
space for several different values of U . Evolution is performed using the time-dependent Hamiltonian Ĥ (t ). When the interactions are strong
enough, IPR approaches the maximal possible value (10 000 in this case), which is equal to the total number of states and corresponds to the
completely delocalized state. U is given in units where J = 1. (c) Chern number of the lowest band obtained for different interaction strengths
as the ratio of the theoretical prediction for the anomalous drift and numerical results: c1(t ) = ( 2Fa2

πh̄

∫ t

0 γeff,1(t ′)dt ′)/[x(t ) − x(t0)].
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FIG. 11. Lowest band Chern numbers extracted from numerical
data for several different values of detuning δ. Purple circles: non-
interacting case, U = 0. Green triangles: U = 0.01. Blue squares:
theoretical values of the lowest band Chern number c′

1. A topological
phase transition is visible at δc ≈ 1.38. The lines between points are
only a guide to the eye.

transition and make all bands topologically trivial. By numer-
ically calculating the Berry curvature and Chern numbers c′

i ,
we find that this transition occurs at δc ≈ 1.38 J ; see Fig. 11.
This value is lower than the one for the ordinary Harper-
Hofstadter Hamiltonian for α = 1/4, which is δc = 2 J [26],
due to the different hopping amplitudes J ′

x and J ′
y , and due to

the additional J 2
x /ω correction that we consider.

We now investigate how this topological transition can be
probed through the dynamical protocol used in the exper-
iment. We again numerically calculate the anomalous drift
and the evolution of the filling factor, but now with staggered
detuning (15) included in the Hamiltonian Ĥinitial (C2) used
to obtain the initial state, in the equations of motion (10) and
(11), and in the definitions of the band populations ηi (t ) (C4).
Using these results, we repeat the procedure for the extraction
of the lowest band Chern number from numerical data that
was carried out in the previous section. The Chern number
obtained by comparing the anomalous drift to the prediction
calculated from the filling factor is then averaged over the
time interval t ∈ (20, 40) ms. This interval was chosen in
order to avoid the initial quadratic regime and the finite-
size effects at later times. The resulting lowest band Chern
numbers for several different values of detuning δ in both the
noninteracting case and the case of intermediate interaction
strength U = 0.01 are presented in Fig. 11.

We can see that the calculated value of the Chern number
decreases from c1 = 1 to c1 = 0 with increasing detuning
δ. The obtained value of the Chern number is lower than 1
even before the phase transition occurs. This is due to our
choice of the initial state, which is not perfectly homogeneous
in momentum space. Close to the phase transition, both the
energy bands and the Berry curvature have pronounced peaks
at the same regions of the first Brillouin zone, and these
regions are initially less populated. Because of this, the Berry
curvature at these regions contributes less to the anomalous
drift, which lowers the measured Chern number. This effect is

somewhat reduced by the interactions, as they smooth out the
momentum-space probability density, and might also cancel
out the detuning term. Similar interplay of interactions and
staggering was observed in the fermionic Hofstadter-Hubbard
model [60]. The obtained results are in line with experimental
measurements [26].

V. CONCLUSIONS

Motivated by the recent experimental results reporting the
Chern numbers of topological bands in cold-atom setups,
we studied numerically bosonic transport in a driven optical
lattice. The considered driving scheme and the range of micro-
scopic parameters were chosen to be close to those in a recent
experimental study [26]. The driving frequency was set to be
high enough in order to avoid strong energy absorption for the
relevant time scales. Additionally, the system was restricted to
a two-dimensional lattice, even though the actual experimen-
tal setup had continuous transverse degrees of freedom. This
restriction stabilizes the system [29,31,41] and leads to lower
heating rates than those in the experiment. It corresponds to
the case of strongly confined third dimension.

We investigated bosonic dynamics for the full time-
dependent Hamiltonian, the effective Floquet Hamiltonian,
and included the effects of weak repulsive interactions be-
tween atoms using the mean-field approximation. In the non-
interacting case, we found that the effective Hamiltonian and
its band structure depend on the frequency of the drive ω

through an additional J 2
x /ω correction term. The initial state

was set as a mixture of incoherent bosons homogeneously
populating the lowest band, but a possible direction of future
research could be to simulate the full loading sequence of an
initial Bose-Einstein condensate and to try to obtain the inco-
herent state through driving, as it was done in the experiment.

The main focus of this work is on the effects of weak in-
teractions. For a weak atomic repulsion, atomic transitions to
higher effective bands obtained in our simulations mainly oc-
cur due to a release of the initial interaction energy during the
atomic-cloud expansion. Although the effect is undesirable,
it can be properly taken into account in the extraction of the
Chern number. At larger interaction strengths, the transitions
are more pronounced as the system absorbs energy from the
drive. In this regime the good agreement between the full and
effective description is lost and the measurement should be-
come more complicated. In addition to causing redistribution
of atoms over bands, our results show that weak interactions
can also be beneficial in measuring the Chern number. Their
desirable effect comes about due to smoothening the atomic
distribution over the topological band and due to canceling
out the contribution of some less relevant terms to the bosonic
dynamics.
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APPENDIX A: EFFECTIVE MODEL

After a unitary transformation into the rotating frame ψ̃ =
e−iŴ tψ , where ψ̃ and ψ are the old and the new wave
functions, and Ŵ is the staggered potential, the new time-
dependent Hamiltonian that describes the experimental setup
is given by [26]

Ĥ (t ) = Jy

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m) + V̂ (+1)eiωt + V̂ (−1)e−iωt + U

2

∑
l,m

n̂l,m(n̂l,m − 1), (A1)

where

V̂ (+1) = κ/2
∑
l,m

n̂l,mg(l, m) − Jx

∑
lodd,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m), (A2)

V̂ (−1) = κ/2
∑
l,m

n̂l,mg∗(l, m) − Jx

∑
leven,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m), (A3)

g(l, m) = cos(lπ/2 − π/4)ei(φ0−mπ/2) + cos(lπ/2 + π/4)ei(mπ/2−φ0−π/2). (A4)

The kick operator is given by

K̂ (t ) = 1

iω

(
V̂ (+1)eiωt − V̂ (−1)e−iωt

) + O

(
1

ω2

)
(A5)

and the effective Hamiltonian by

Ĥeff = Ĥ0︸︷︷︸
Ĥ

(0)
eff

+ 1

ω
[V̂ (+1), V̂ (−1)]︸ ︷︷ ︸

Ĥ
(1)
eff

+ 1

2ω2
([[V̂ (+1), Ĥ0], V̂ (−1)] + [[V̂ (−1), Ĥ0], V̂ (+1)])︸ ︷︷ ︸

Ĥ
(2)
eff

+O

(
1

ω3

)
. (A6)

If we assume that the driving frequency is high and interactions are weak, the interaction term and almost all O( 1
ω2 ) terms

can be neglected. After substituting Eqs. (A1), (A2), and (A3) into Eq. (A6) we obtain

Ĥ
(0)
eff = − Jy

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m), (A7)

Ĥ
(1)
eff = 1

ω

[
κ

2

∑
l,m

â
†
l,mâl,mg(l, m) − Jx

∑
lodd,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m),

(A8)
κ

2

∑
l,m

â
†
l,mâl,mg∗(l, m) − Jx

∑
leven,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m)

]
= Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4.

We will now separately calculate each term:

Ĥ1 = − Jxκ

2ω

∑
lodd,m,l′,m′

g∗(l′,m′)[â†
l+1,mâl,m + â

†
l−1,mâl,m, â

†
l′,m′ âl′,m′ ]

= − Jxκ

2ω

∑
lodd,m

[(g∗(l, m) − g∗(l + 1,m))â†
l+1,mâl,m + (g∗(l, m) − g∗(l − 1,m))â†

l−1,mâl,m], (A9)

Ĥ2 = − Jxκ

2ω

∑
leven,m,l′,m′

g(l′,m′)[â†
l′,m′ âl′,m′ , â

†
l+1,mâl,m + â

†
l−1,mâl,m]

= Jxκ

2ω

∑
leven,m

[(g(l, m) − g(l + 1,m))â†
l+1,mâl,m + (g(l, m) − g(l − 1,m))â†

l−1,mâl,m], (A10)

Ĥ3 = J 2
x

ω

∑
lodd,m,l′even,m

′
[â†

l+1,mâl,m + â
†
l−1,mâl,m, â

†
l′+1,m′ âl′,m′ + â

†
l′−1,m′ âl′,m′ ]

= J 2
x

ω

∑
lodd,m

(2â
†
l+1,mâl+1,m + â

†
l+3,mâl+1,m + â

†
l−1,mâl+1,m − 2â

†
l,mâl,m − â

†
l+2,mâl,m − â

†
l−2,mâl,m)

= J 2
x

ω

∑
l,m

(−1)l (2â
†
l,mâl,m + â

†
l+2,mâl,m + â

†
l−2,mâl,m), (A11)
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Ĥ4 = κ2

4ω

∑
l,m,l′,m′

g(l, m)g∗(l′,m′)[â†
l,mâl,m, â

†
l′,m′ âl′,m′ ] = 0. (A12)

Using trigonometric identities and

g(l, m) − g(l ± 1,m) = ±
√

2( sin[(2l ± 1 − 1)π/4]ei(π/4−mπ/2) + sin[(2l ± 1 + 1)π/4]ei(mπ/2−3π/4)), (A13)

we can rewrite the sum of terms (A9) and (A10) in a more convenient form:

Ĥ1 + Ĥ2 = Jxκ√
2ω

∑
l,m

(ei[(m−l)π/2−π/4]â
†
l,mâl−1,m + e−i[(m−l−1)π/2−π/4]â

†
l,mâl+1,m). (A14)

The only O( 1
ω2 ) (Ĥ (2)

eff ) term that cannot be neglected in the parameter range that we use is [26]

Jy

2

κ2

ω2

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m). (A15)

Finally, the effective Hamiltonian becomes

Ĥeff,1 = Jxκ√
2ω

∑
l,m

(ei[(m−l−1)π/2−π/4]â
†
l+1,mâl,m + e−i[(m−l)π/2−π/4]â

†
l−1,mâl,m) − Jy

(
1 − 1

2

κ2

ω2

)∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m)

(A16)

+ J 2
x

ω

∑
l,m

(−1)l (2â
†
l,mâl,m + â

†
l+2,mâl,m + â

†
l−2,mâl,m), (A17)

with the renormalized nearest-neighbor hopping amplitudes J ′
x = Jxκ√

2ω
= Jy and J ′

y = Jy (1 − 1
2

κ2

ω2 ), and a next-nearest-neighbor

along ex hopping term proportional to J 2
x

ω
in (A17).

APPENDIX B: EFFECTIVE HAMILTONIAN IN MOMENTUM SPACE

If we choose the unit cell as in Fig. 1(a) [lattice sites A = (1, 0), B = (2, 0), C = (3, 0), and D = (4, 0)], the momentum-space
representation of the effective Hamiltonian without correction Ĥeff,0 (6) is given by a 4 × 4 matrix

Ĥeff,0(k) =

⎛
⎜⎜⎜⎜⎜⎝

0 J ′
xe

−i 3π
4 − J ′

ye
−ik·R2 0 J ′

xe
−i 3π

4 −ik·R1 − J ′
ye

ik·(R2−R1 )

J ′
xe

i 3π
4 − J ′

ye
ik·R2 0 J ′

xe
−i π

4 − J ′
ye

−ik·R2 0

0 J ′
xe

i π
4 − J ′

ye
ik·R2 0 J ′

xe
i π

4 − J ′
ye

−ik·R2

J ′
xe

i 3π
4 +ik·R1 − J ′

ye
ik·(R1−R2 ) 0 J ′

xe
−i π

4 − J ′
ye

ik·R2 0

⎞
⎟⎟⎟⎟⎟⎠, (B1)

where R1 and R2 are the lattice vectors R1 = (4, 0) and R2 = (1, 1) and k is in the first Brillouin zone, which is given by the
reciprocal lattice vectors b1 = π

2 (1,−1) and b2 = 2π (0, 1).

When the J 2
x

ω
correction is included in the effective Hamiltonian, Ĥeff,1 (7), the unit cell is doubled, see Fig. 1(b), and the first

Brillouin zone is therefore halved. If we now choose the lattice sites a = (1, 0), B = (2, 0), c = (3, 0), D = (4, 0), A = (2, 1),
b = (3, 1), C = (4, 1), and d = (5, 1) for the unit cell, the momentum-space representation of the effective Hamiltonian will be
an 8 × 8 matrix

Ĥeff,1(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2J2
x

ω
J ′

xe
−i 3π

4 − J2
x
ω

(1 + eik·R1 ) J ′
xe

−i( 3π
4 −k·R1 ) 0 −J ′

ye
ik·R2 0 −J ′

ye
ik·R1

J ′
xe

i 3π
4

2J2
x

ω
J ′

xe
−i π

4
J2
x
ω

(1 + eik·R1 ) −J ′
y 0 −J ′

ye
ik·R2 0

− J2
x
ω

(1 + e−ik·R1 ) J ′
xe

i π
4 − 2J2

x
ω

J ′
xe

i π
4 0 −J ′

y 0 −J ′
ye

ik·R2

J ′
xe

i( 3π
4 −k·R1 ) J2

x
ω

(1 + e−ik·R1 ) J ′
xe

−i π
4

2J2
x

ω
−J ′

ye
−ik·(R1−R2 ) 0 −J ′

y 0

0 0 0 −J ′
ye

ik·(R1−R2 ) 2J2
x

ω
J ′

xe
−i 3π

4
J2
x
ω

(1 + eik·R1 ) J ′
xe

−i( 3π
4 −k·R1 )

−J ′
ye

−ik·R2 0 −J ′
y 0 J ′

xe
i 3π

4 − 2J2
x

ω
J ′

xe
−i π

4 − J2
x
ω

(1 + eik·R1 )

0 −J ′
ye

−ik·R2 0 −J ′
y

J2
x
ω

(1 + e−ik·R1 ) J ′
xe

i π
4

2J2
x

ω
J ′

xe
i π

4

−J ′
ye

−ik·R1 0 −J ′
ye

−ik·R2 0 J ′
xe

i( 3π
4 −k·R1 ) − J2

x
ω

(1 + e−ik·R1 ) J ′
xe

−i π
4 − 2J2

x
ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)
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FIG. 12. Eight energy subbands of Ĥeff,1(k) for the driving frequency ω = 20. Subbands 1 and 2 form the lowest band with Chern number
c1 = 1, subbands 3, 4, 5, and 6 form the middle band with c2 = −2, and subbands 7 and 8 form the highest band with c3 = 1.

with the lattice vectors R1 = (4, 0) and R2 = (2, 2). The
reciprocal lattice vectors are then b1 = π

2 (1,−1) and b2 =
π (0, 1).

The energy bands of Ĥeff,1(k) are shown in Figs. 2 and 12.

APPENDIX C: DESCRIPTION OF INCOHERENT BOSONS

In a typical condensed-matter system constituent particles
are electrons. Due to their fermionic statistics, at low enough
temperatures, and with Fermi energy above the lowest band,
that band of the topological model is uniformly occupied,
and consequently the transverse Hall conductivity can be
expressed in terms of the Chern number (8) [10]. In con-
trast, weakly interacting bosons in equilibrium form a Bose-
Einstein condensate in the band minima and only probe the
local Berry curvature [21].

Yet in the experiment [26] the Chern number was suc-
cessfully measured using bosonic atoms of 87Rb. This was
possible because in the process of ramping up the drive (4),
the initial Bose-Einstein condensate was transferred into an
incoherent bosonic mixture. Conveniently, it turned out that
the bosonic distribution over the states of the lowest band
of the effective Floquet Hamiltonian was nearly uniform.
Motivated by the experimental procedure, we model the initial

bosonic state by a statistical matrix

ρ(t = 0) =
Nm∏
k=1

|k,Np〉〈k,Np|, (C1)

where the states |k〉 = a
†
k|0〉 approximately correspond to the

lowest-band eigenstates of Ĥeff and each of these Nm states is
occupied by Np atoms |k,Np〉 = N (a†

k )Np |0〉.
A procedure for selecting the states |k〉 is described in

Refs. [22,26]. In order to probe the Chern number of the low-
est band, the states |k〉 should correspond closely to the
lowest-band eigenstates of Ĥeff. At the same time, in the
experiment in the initial moment the atomic cloud is spatially
localized. According to Refs. [22,26] the optimal approach is
to consider a steep confining potential and to use the low-lying
eigenstates of

Ĥinitial = ĥeff +
(

r

r0

)ζ

, (C2)

where in our calculations ĥeff is either Ĥeff,0 from Eq. (6)
or Ĥeff,1 from Eq. (7) and the parameters of the confining
potential are set to r0 = 20, ζ = 20.
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Ĥeff,0

FGR1

FGR2

FIG. 13. Population in higher bands, comparison of numerical results (solid line) with the Fermi’s golden rule in the first and second
approximation (dashed lines). Band populations are calculated for an initial BEC in an eigenstate of the effective Hamiltonian and then
averaged over (approximately) all states in the first band. (a) Initial state and evolution from the effective Hamiltonian with correction Ĥeff,1,
Eq. (7). (b) Without the correction, Ĥeff,0, Eq. (6).

The dynamics of the initial state (C1) is induced by a
double quench: at t0 = 0 the atomic cloud is released from
the confining potential and exposed to a uniform force of
intensity F along the y direction. During the whole procedure
the driving providing the laser-assisted tunneling, defined in
Eq. (4), is running.

The main observables of interest are the center-of-mass
position along x direction

x(t ) =
〈∑

l,m

l|ψl,m(t )|2
〉

(C3)

and the population of the ith band of the effective model

ηi (t ) =
〈 ∑

|k〉∈ith band

∣∣∣∣∣∑
l,m

αk∗
lmψlm(t )

∣∣∣∣∣
2〉

, (C4)

where the states |k〉 = ∑
l,m αk

lm|l, m〉 correspond to the eigen-
states of the effective model. Here, angle brackets 〈 〉 denote
averaging over Nsamples sets of initial conditions.

In the case of noninteracting particles, these and other
quantities can be numerically accessed by solving the single-
particle time-dependent Schrödinger equation for Nm differ-
ent initial states |k〉. This is equivalent to sampling the initial
state according to Eq. (9).

In the end, we give two technical remarks. First, all our
calculations are done in the rotating frame; see Eq. (A1) in
Appendix A. The staggered potential (2) is removed in this
way. Second, in the case when the evolution is governed by
the time-dependent Hamiltonian (10), the initial state is mul-
tiplied by the operator e−iK̂ (0) in order to properly compare
these results to the ones obtained from the evolution governed
by the effective Hamiltonian (11); see Eq. (5).

APPENDIX D: INITIAL QUADRATIC REGIME

For simplicity, we will consider only the case without
the confining potential and with very weak force F = 0.01.

The initial state is a Bose-Einstein condensate in one of the
eigenstates of the effective Hamiltonian. The results are later
averaged over all first band eigenstates.

Fermi’s golden rule predicts that the probability for transi-
tion from an initial state ψi to a final state ψf , induced by
a perturbation �Ĥ , is proportional to the square of matrix
elements |〈ψi |�Ĥ |ψf 〉|2. In this case, the perturbation is
�Ĥ = F ŷ. If we assume that the probability of a particle be-
ing in the initial state is always Pi (t ) = |ψi (t )|2 ≈ 1, Fermi’s
golden rule predicts [61]

P
FGR1
i→f (t ) = 1

h̄2 |〈ψi |�Ĥ |ψf 〉|2t2. (D1)

If we now also consider transitions from the other states to
the initial state, but keep the assumption that the populations
in other states are small Pj �=i (t ) = |ψj �=i (t )|2 � 1, the time-
dependent perturbation theory then predicts [61]

P
FGR2
i→f (t ) = |〈i|�Ĥ |f 〉|2 1 − 2 e− �

2h̄
t cos

(Ef −Ei

h̄
t
) + e− �

h̄
t

(Ef − Ei )2 + �2

4

,

(D2)

where � = 2π
h̄

|〈i|�Ĥ |f 〉|2 and Ei (Ef ) is the energy of the
initial (final) state.

We plot the numerical results and both theoretical predic-
tions from Fermi’s golden rule in Fig. 13. Here we can see
that all three curves agree well for short times, the second
approximation longer remains close to the numerical results,
and that the initial quadratic regime is reproduced by theory.
This is the so-called quantum Zeno regime [57].

APPENDIX E: ENERGY

Time evolution of kinetic and interaction energy per par-
ticle for different interaction strengths is plotted in Fig. 14.
Here we define the kinetic energy per particle as the expec-
tation value of the time-dependent Hamiltonian (A1) divided
by the total number of particles Ekin(t ) = 1

N
〈∑l,m,i,j ψ∗

l,m(t )
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FIG. 14. (a) Kinetic energy per particle (expectation value of the time-dependent Hamiltonian Ekin(t ) = 1
N

〈∑l,m,i,j ψ∗
l,m(t )

Hlm,ij (t )ψi,j (t )〉 divided by the total number of particles N ) for several different interaction strengths. (b) Interaction energy per particle

Eint (t ) = 1
N

U

2 〈 ∑
l,m |ψl,m(t )|2[|ψl,m(t )|2 − 1]〉. U is given in units where J = 1.

Hlm,ij (t )ψi,j (t )〉, while the interaction energy per particle

is Eint (t ) = 1
N

U
2 〈∑

l,m |ψl,m(t )|2[|ψl,m(t )|2 − 1]〉. Both ener-
gies grow with increasing interaction coefficient U .

When the interactions are strong enough and after long
enough time, the atoms become equally distributed between
the eigenstates of the Hamiltonian Ĥ (t ). As the energy
spectrum of Ĥ (t ) is symmetric around zero, the expectation
value of Ĥ (t ) (kinetic energy) should be zero when all
bands are equally populated. We can see this in Fig. 14(a),
where the kinetic energy approaches zero at t ≈ 50 ms for the
case U = 0.05.

The interaction energy at first rapidly decreases, as the
cloud rapidly expands after turning off the confinement

potential V̂conf , and after that continues to slowly decrease as
the cloud slowly expands; see Fig. 14(b).

These considerations also provide a possibility to discuss
the applicability of the approximative method introduced in
Sec. IV. As we work in the regime of high frequency ω =
20, we find that for weak interaction, at short enough times
of propagation, the energy is approximately conserved. At
stronger values of U � 0.01 we observe a slow increase in
the total energy on the considered time scales. In both cases
we do not find the onset of parametric instabilities [31]. If
present, these instabilities are signaled by an order of magni-
tude increase in energy on a short time scale, that we do not
find.
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FIG. 15. Momentum-space density distribution in all bands, η1(k) + η2(k) + η3(k). U is given in units where J = 1. Left: evolution using
the time-dependent Hamiltonian Ĥeff,1. Right: evolution using the time-dependent Hamiltonian Ĥ (t ). (a), (b) Initial state. (c), (d) Final state
after 50 ms (75 driving periods), noninteracting case U = 0. (e), (f) U = 0.01. (g), (h) U = 0.05.
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In addition, the two-body interaction can deplete the occu-
pancies of initial coherent modes [29,41] and limit the validity
of our approach. In principle, these types of processes can be
addressed by including quantum fluctuations along the lines
of the full truncated Wigner approach [45]. Yet, we set our
parameters in such a way that these additional contributions
are small.

APPENDIX F: MOMENTUM-SPACE DENSITY
DISTRIBUTION

The momentum-space probability densities at the initial
moment and after 75 driving periods (50 ms) are shown in
Fig. 15. The interactions deplete the lowest band, but also
smooth out the density distribution.
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Abstract
We test numerically the recently proposed linear relationship between the 
scale-invariant period Ts.i. = T|E|3/2, and the topology of an orbit, on several 
hundred planar Newtonian periodic three-body orbits. Here T is the period of 
an orbit, E is its energy, so that Ts.i. is the scale-invariant period, or, equivalently, 
the period at unit energy |E| = 1. All of these orbits have vanishing angular 
momentum and pass through a linear, equidistant configuration at least once. 
Such orbits are classified in ten algebraically well-defined sequences. Orbits 
in each sequence follow an approximate linear dependence of Ts.i., albeit with 
slightly different slopes and intercepts. The orbit with the shortest period in 
its sequence is called the ‘progenitor’: six distinct orbits are the progenitors of 
these ten sequences. We have studied linear stability of these orbits, with the 
result that 21 orbits are linearly stable, which includes all of the progenitors. 
This is consistent with the Birkhoff–Lewis theorem, which implies existence 
of infinitely many periodic orbits for each stable progenitor, and in this way 
explains the existence and ensures infinite extension of each sequence.
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1.  Introduction

There is no general solution to the Newtonian three-body problem [1], so particular solutions, 
such as periodic orbits, are of special interest. Up until five years ago, only three topologically 
distinct families of periodic orbits were known [2–5], with the latest two discoveries being 
received with some fanfare. No theorem guaranteeing the existence of further periodic solu-
tions was known at the time. Indeed contradictory claims [6], and counterclaims [7] in the 
1950s and 1960s led to some confusion, which was (only partially) resolved by subsequent 
numerical discoveries—the corresponding formal existence proofs for these orbits are still 
being sought, and only in a few rare examples, have been supplied—for a brief history of this 
problem up to mid 1970’s see section 16 in Broucke [8], and for subsequent developments, 
see section I in [9].

The questions of existence, density and distribution of stable orbits is of some importance 
for astronomy: stable orbits have at least a fighting chance of being produced in astrophysi-
cal processes and, therefore, of being subsequently observed. These questions can only be 
addressed by explicit discovery, or construction of new stable orbits7. Therefore any reliable 
new source of information about periodic orbits, even if it is (only) empirical and incomplete, 
ought to be welcomed by the community and subjected to further tests.

Several hundred demonstrably distinct families of periodic orbits have been found by 
numerical means over the past few years [9–14]. This progress in numerical studies has led to a 
new, wholly unexpected insight into the distribution of periodic orbits, that was, at first, rather 
tentative: soon after the papers [5, 10] appeared a relationship between an orbit’s period and its 
topology was observed—at first just in one class of orbits [10], and then more generally [15]. 
The initial set of orbits was fairly ‘sparse’, consisting of only about 45 orbits, so the observed 
regularities had large gulfs yet to be filled. In the meantime we have continued our search for 
new orbits, as well as tests of their stability, amounting to more than 200 orbits, this time with a 
clear indication that their number grows without bounds as the scale-invariant period increases, 
and still following the linear dependence of an orbit’s period on its topology [9].

Here we present a new, detailed numerical test of the previously observed regularities, 
based on more than 200 orbits, as well as several new regularities regarding (probably) infi-
nite sequences of orbits. Moreover, we present a semi-empirical observation about the rela-
tion between stability of certain orbits and the existence of infinite sets of periodic orbits, as 

6 ‘However, the existence of periodic solutions for the general three-body problem has been considered a somewhat 
controversial question in the last few years. Vernić (1953) has published a detailed study containing a mathemati-
cal proof of the non-existence of periodic solutions other than the Lagrange solutions. Later it is seen that Merman 
(1956) and Leimanis (1958) have questioned Vernić’s non-existence proof. More recently Arenstorf (1967) has pub-
lished a new existence proof for periodic solutions of the general problem, although his work contains no examples, 
whereas Kolenkiewicz and Carpenter have numerically computed a periodic solution with masses and configuration 
of the Sun–Earth–Moon system. Jefferys and Moser (1966) have also published existence proofs for almost periodic 
solutions in the three-dimensional case. However, the most convincing explicit examples of periodic solutions 
have recently been obtained numerically by Szebehely and Standish (1969), and Peters (1967). Their publications 
definitely settle the question of whether the general problem has non-trivial periodic solutions, although all of their 
examples are rather specialized; i.e. collision orbits or zero total angular momentum orbits’.
7 Only roughly one out of ten of the newly discovered orbits are linearly stable [9, 14].
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related by the Birkhoff–Lewis theorem [16], as well as some analytic arguments about the 
causes of the linear relation between the period and topology, that still remain without rigor-
ous proofs. These arguments have evolved from the study [44] of the three-body system in 
the so-called strong Jacobi–Poincaré potential, which system is simpler than the Newtonian 
one, and therefore allows certain theorems about the existence of solutions to be proven and 
analytical arguments to be made. The extension of these analytic arguments to the Newtonian 
three-body system may seem straightforward at first, but a closer inspection might prove more 
complicated. We have tried and pointed out lacunae in our arguments, in the hope that experts 
will either complete the proofs, or definitely disprove the conjectures.

If our numerical and empirical arguments withstand a more rigorous mathematical scru-
tiny, they should have: (1) significant implications for the distribution of periodic three-body 
orbits in all homogeneous potentials with singularities at the two-body collision points: at 
least one such potential (the Coulomb one) is of direct physical interest; and (2) ready gener-
alizations for 4-, 5-, ... n-body periodic orbits in the Newtonian potential.

In this paper, after the present Introduction, in section 2 we provide the necessary preliminaries 
for our work. Then in section 3 we provide more than 200 periodic zero-angular-momentum 
orbits and identify their topologies using two integers, nw and n̄w, defined in section 2. There 
we test their Ts.i. versus (nw + n̄w) relationship(s) and refine the quasi-linear rule, equation (2), 
by classifying the new orbits into ten algebraically well-defined sequences. In section 4 we 
study the linear stability of three-body orbits, which leads us to the identification of six orbits 
as progenitors of ten sequences of orbits. There, we offer a possible explanation for the exist-
ence of infinitely many orbits in each sequence, in terms of the Birkhoff–Lewis theorem, 
which we do not prove in this case, however. In section 5 we offer a possible explanation of the 
observed linear regularities, using the virial theorem and the analyticity of the action. Finally, 
in section 6 we summarize and discuss our results, as well as present some open questions. 
Appendices A–E are devoted to various necessary technical topics, that would distract the flow 
of our arguments, if they were kept in the main text.

2.  Preliminaries: topology and period of periodic three-body orbits

For a quantitative relationship between topology and period to be possible one has to have an 
algebraic method for the description of an orbit’s topology. There are several such methods in 
the literature, variously based on the braid group B2, [2], on the free group F2 on two elements 
[17], and on three symbols [18], see appendices B and C.

The original discovery of the linear relationship between period and topology was based on 
Montgomery’s free group method [17], which was used to identify and label periodic orbits.

The topology of a periodic three-body orbit O can be algebraically described by a finite 
sequence of symbols, e.g. letters (a, b) and (A, B), that we shall call ‘word’ wO

8, as defined in 
[17], and presented in detail in [19], and briefly reviewed in appendix B. For an alternative 
method of assigning symbols to a topology, see appendix C.

With such an algebraic description one could, for the first time, search for relations between 
topological and dynamical properties of orbits. At first, the curious approximate linear func-
tional relation

Ts.i.(wk
8)

Ts.i.(w8)
≡ T(wk

8)|E(wk
8)|3/2

T(w8)|E(w8)|3/2 � k = 1, 2, 3, ... ,� (1)

8 More precisely, the conjugacy class of the free group element.
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was noticed between the periods T, energies E and the free-group elements w8 = (ab)(AB) 
for the figure-eight orbit [3] and their topological-power satellite orbits with topologies 
wk = [(ab)(AB)]

k, (k = 1, 2, 3, · · ·). We define ‘topological-power satellite’ orbits as those 
whose topologies can be described as k times repeated topology, i.e. integer powers wk of 
the simplest (‘progenitor’) orbit described by the word w [10]. Here ≃ means equality within 
the estimated numerical precision of [10]. In the meantime, with improved numerics, several 
cases have been found where this relation breaks down at higher decimal places.

Initially, only the ‘topological-power satellites’ of the figure-eight orbit were known9, but, 
in the meantime new examples of topological-power satellites10 have been found to obey equa-
tion  (1) within their respective numerical errors. This naturally raises the question: why do 
only some orbits have topological-power satellites and not others? We shall argue below that 
the linear stability of the shortest-period (‘progenitor’) orbit plays a crucial role in this regard.

Following this observation, [15] investigated all of the 45 orbits known at the time and not 
just the topological-power satellites, and observed the following more general11 quasi-linear 
relation

Ts.i.(w)
Ts.i.(wp)

� Nw

Nwp

=
nw + n̄w

nwp + n̄wp� (2)
for three-body orbits with zero angular momentum. Here Nw = nw + n̄w is one half of the 
minimal total number of letters12, in the free group element w = w(O) characterizing the 
(family of) orbit O, and similarly for wp = w(progenitor), the word describing the progeni-
tor orbit in a sequence, where nw is the number nw = 1

2 (na + nb), of small letters a, or b, and 
n̄w = 1

2 (nA + nB) is the number of capital letters A, or B.
Equation (2) suggested ‘at least four and at most six’ distinct sequences among the 45 

orbits considered in [15]. Precise algebraic definitions of these sequences, analogous to the 
definition wk of the topological-power satellites, were not known at the time, again due to the 
dearth of distinct orbits13. This clearly demanded further, finer searches to be made.

Equation (2) predicts (infinitely) many new, as yet unobserved orbits together with their 
periods; if true, even approximately, equation (2) would be a spectacular new and unexpected 
property of three-body orbits, that would open new insights into the Newtonian three-body 
problem, as well as provide help in practical searches to find new orbits. Therefore equa-
tion (2) merits a thorough investigation, which we shall attempt below. The scope, of course, 
is limited by the number and type of available orbits.

3.  Classification of orbits in sequences

Using equation (2) we predicted the periods and numbers of letters of new orbits, and then 
searched for them, with the results first reported in [9]. We did so by first identifying the 
linearly stable orbits among the original 13 orbits, and then by ‘zooming in’ our search on 
smaller windows around the stable orbits. Thus we found new periodic orbits that have ‘filled’ 

9 With one exception: the yarn orbit wyarn = (babABabaBA)3 = w3
moth I, where wmoth I = babABabaBA in [5].

10 E.g. of the ‘moth I’ orbit, as well as several topological-power satellites of three other orbits, see [9, 20, 39].
11 Equation (1) is manifestly a special case of equation (2).
12 Here, by ‘minimal total number of letters’ we mean the number of letters after all pairs of adjacent identical small 
and capital letters, such as aA, have been eliminated, as explained in [9].
13 Many distinct satellite orbits’ points almost overlapped on the Ts.i. − Nw graph, due to identical values of Nw and 
similar periods, which further reduced the number of distinct data points. Moreover, there were significant ‘gaps’ 
between the data points, as well as one ‘outlier point’ (orbit), in figure 1 in [15], that was roughly 8% off the conjec-
tured straight line.
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many of the ‘gaps’ in the older versions of the Ts.i. − Nw graph, see figure 1(a), the website 
[20] and the supplementary notes (stacks.iop.org/JPhysA/51/315101/mmedia). The ‘outlier’ 
point, in figure 1 in [15], has become just another orbit in a new sequence with a slightly 
steeper slope on the same graph. The totality of the Ts.i. − Nw points is shown in figure 1.
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Figure 1.  (a) Left panel: the scale-invariant periods |E|3/2T(w) of more than 200 
presently known zero-angular-momentum three-body orbits versus one half of the 
number of all letters in the free-group word w describing the orbit, Nw = nw + n̄w, 
where nw is the number of small letters a, or b, and n̄w is the number of capital letters 
A, or B in the word w. (b) Right panel: same as (a), only in terms of the number of 
symbols n123 in the sequence of symbols (1,2,3) describing the topology of the orbit, 
see appendix C. Color code: (1) red  =  sequence I—butterfly I; (2) green  =  sequence 
II—dragonfly; (3) dark blue  =  sequence III—yin-yang; (4) pink  =  sequence IVa—
moth I; (5) light blue  =  sequence IVb—butterfly III; (6) yellow  =  sequence IVc—
moth III; (7) black  =  sequence V—figure-eight; (8) orange  =  sequence VI—yarn; (9) 
grey  =  sequence VII—moth; (10) empty circles  =  other.

Table 1.  Typical (non-minimal) free group elements’ w structure for orbits in various 
sequences, their progenitors, the line parameters c1, c2, where the Ts.i.(Nw) dependence 
is fitted as f (x) = c1x + c2. Not all words w(ni) in any particular sequence need have 
the presented structure, however, see supplementary notes.

Sequence  
number and 
name Free group elementw(n) progenitor c1 c2

I butterfly I (n, n) (AB)2(abaBAB)n(ab)2(ABAbab)n Schubart 9.957 ± 0.011 −0.2 ± 0.2
II dragonfly 
(n, n)

bA(baBA)naB(abAB)n isosceles 9.194 ± 0.004 0.04 ± 0.06

III yin-yang 
(n, n)

(abaBAB)na(babABA)nA S-orbit 9.8667 ± 0.0003 0.002 ± 0.004

IVa moth I 
(n, n + 1)

(abAB)nA(baBA)nB moth I 9.34 ± 0.06 0.7 ± 0.7

IVb butterfly III 
(n, n + 1)

[(ab)2(AB)2]nb[(ba)2(BA)2]na butterfly III 9.967 ± 0.012 −0.3 ± 0.3

IVc moth III 
(n, n + 1)

(babABA)nA(abaBAB)nB Schubart 9.94 ± 0.04 −1.2 ± 0.7

V figure-eight 
(n, n)

(abAB)n figure-8 9.2377 ± 0.0014 −0.03 ± 0.02

VI moth I—yarn 
(2n, 3n)

[(abAB)A(baBA)B]n moth I 9.683 ± 0.002 0.01 ± 0.02

VIIa moth (n, n) (abAB)(n+1)a(baBA)nb Schubart 9.61 ± 0.07 −0.2 ± 0.7

VIIb moth (n, n) (abaBAB)(n+1)b(babABA)na Schubart 9.88 ± 0.04 −0.7 ± 0.5
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It is clear that the scale-invariant periods Ts.i. do not lie on one straight line, but rather on 
several lines with slightly different slopes, emerging from a small ‘vertex’ area, forming a 
(thin) wedge-like structure in figure 1. All the newly found orbits passing through an Euler 
configuration, see supplementary notes, fit into one of ten sequences, where the fourth (‘moth 
I’) sequence in [15] has now been divided into three: (a) ‘moth I (n, n + 1)’; (b) ‘butterfly 
III–IV (n, n + 1)’; (c) ‘moth III (n, n + 1)’. Moreover, we found two entirely new sequences: 
(1) ‘VIIa moth (n, n)’ and (2) ‘VIIb moth (n, n)’, and one sequence of pure ‘topological-power 
satellites’ of the moth I orbit.

Each of these ten sequences has an algebraic pattern of free-group elements, see table 1, 
associated with it. Here we use the sequence label (n, m) to denote the general form of 
(nw, n̄w) in that sequence: for example (n, n) means that nw and n̄w are equal integers: 
n = nw = n̄w = 1, 2, 3, . . .. Then, n can be used to label orbits within the sequence, see supple-
mentary notes. By setting n  =  0, or n  =  1, in the second column of table 1, in each sequence, 
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Figure 2.  The scale-invariant periods |E|3/2T(w) of zero-angular-momentum three-body 
orbits versus one half of the number of all letters in the free-group word w describing 
the orbit, Nw = nw + n̄w, where nw is defined as in figure 1. (a) Top left: sequence I—
butterfly I, ; (b) top right: sequence II—dragonfly; (c) center left: sequence III—yin-
yang; (d) center right: sequence IVa—moth I; (e) bottom left: sequence IVb—butterfly 
III; (f) bottom right: sequence IVc—moth III. The blue points at the lower ends of 
sequences are the progenitors of the respective sequences, see the text. Progenitors of 
sequences II, III and IVc, that involve collisions were not used in the fitting procedure, 
so the validity of the linear Ansatz for these sequences can be evaluated by inspection.
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we can read off the topology of their respective progenitor, which is shown in the third column 
of table 1.

The individual Ts.i. − Nw graphs are shown in figures 2 and 3, and their free-group patterns 
are in table 1. The agreement of separate sequences with the linear functional Ansatz, equa-
tion (2), see figures 1(b)–(d), is much better than for the aggregate of all orbits, Figure 1, but 
the (root-mean-square) variations of line parameters (c1, c2) reported in table 1 are generally 
larger than the estimates numerical errors, thus indicating that equation (2) is still approximate,  
and not exact, even in these sequences.

Whereas the approximate empirical rule equation  (2) now appears established, and its 
extension to ever-longer periods just a technical difficulty, some deeper questions remain 
open. For example, the raison d’être of so many periodic orbits remains obscure, let alone the 
linear relation among their periods.

4.  Linear stability and progenitor orbits

Perhaps the first hint at a solution to this puzzle was given in [39], where it was noticed that the 
topological satellite orbits in the Broucke–Hadjidemetriou–Hénon (BHH), [8, 35, 36, 40–43], 
family of orbits with non-zero angular momentum, exist only when their progenitor is linearly 
stable. There is a theorem, due to Birkhoff and Lewis [16], see also section 3.3 (by Jürgen 
Moser) in [25], which holds for systems with three degrees-of-freedom and implies the exis-
tence of infinitely many periodic orbits14. So, whereas the Birkhoff–Lewis theorem might solve 

Figure 3.  Same as in figure 2, except for the following sequences: (a) top left: sequence 
V—figure-eight; (b) top right: sequence VI—yarn; (c) bottom left: sequence VIIa—
moth III (n, n); (d) bottom right: sequence VIIb—moth III (n, n). The progenitors of 
sequence VIIa and VIIb were not used in the fitting procedure.

14 In [12], it was conjectured that the topological-power satellites of the figure-eight orbit are a consequence of the 
Poincaré–Birkhoff theorem [22], see also section 24 in [23] and section 2.7 in [24], as applied to the figure-eight 
orbit. That conjecture is incorrect, however, because the Poincaré–Birkhoff theorem applies only to systems with 
two degrees-of-freedom, to which class the planar three-body problem does not belong.
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one part of the puzzle, it does not say anything about the relation of topologies and periods. 
There is, however, another (the so-called ‘twist’) condition underlying this theorem, which 
we shall not try to check here—we simply conjecture that the Birkhoff–Lewis theorem holds 
for the linearly stable periodic three-body orbits. Linear stability of periodic orbits is tested 
numerically, see below, and thus the conjecture of Birkhoff–Lewis theorem can be falsifed.

We have analyzed linear stability of all zero-angular-momentum three-body orbits and 
tabulated the linearly stable ones in table 2. The Floquet exponents νj, and the linear stability 
coefficients λj = exp(±2πiνj), are the standard ones, as defined in [9]. We note that two orbits, 
‘butterfly III’ and ‘moth I’, lie at the origins of two ‘linear sequences15’ of ‘non-topological-
power satellite’ orbits observed among the original 13 orbits [15].

Thus, the manifest candidates for progenitors are: (1) ‘figure-eight’ for the sequence V 
‘figure-eight (n, n)’; (2) ‘butterfly III’ for the sequence IVb ‘butterfly III (n, n + 1)’; and (3) 
‘moth I’ for the sequences IVa ‘moth I (n, n + 1)’ and VI ‘moth I—yarn (2n, 3n)’. These three 
progenitors are collisionless orbits with three degrees-of-freedom, that are linearly stable.

Next we extend this reasoning to sequences of periodic three-body orbits with collisional 
progenitors.

	(1)	�The parent orbit of sequence II ‘dragonfly (n, n)’ is Broucke’s isosceles triangle orbit  
[37, 38], that involves two-body collisions. This orbit always stays in an isosceles triangle 
configuration, thus eliminating one degree-of-freedom, and is linearly stable [37, 38], so 
it also satisfies the Poincaré–Birkhoff theorem.

	(2)	�The parent orbit of the ‘yin-yang’ sequence is the collisional ‘S-orbit’ of [4, 11]16.

Table 2.  The Floquet exponents νj, where λj = exp(±2πiνj) define the linear stability 
coefficients of linearly stable periodic three-body orbits.

Label ν1 ν2

S-orbit 0.131 093 0.470 591
Moore 8 0.298 093 0.00 842 275
NC1 (87) 0.27 216 0.158 544
V.17.H (O13  =  817) 0.31 573 0.0002 988

V.17.I (O14  =  817) 0.0435 411 0.00 262 681

V.17.J (O15  =  817) 0.0435 411 0.00 262 681
II.11.A (bumblebee) 0.137149 0.0325 135
IVa.2.A (moth I) 0.159013 0.491 881
IVa.4.A (moth II) 0.108 451 0.0886 311
IVb.3.A (butterfly III) 0.378 728 0.00 173 642
I.5.A 0.170 764 0.001 476
I.14.A 0.443 006 0.000 121 435
II.17.B 0.138 698 0.0335 924
III.13.A.β 0.175 816 0.000 655 417
IVb.9.A 0.194 186 0.000 561 819
IVc.12.B 0.0863 933 0.00 394 124
IVc.17.A 0.0442 047 0.00 206 416
VIIa.11.A 0.416 228 0.0088 735
VIIb.7.A 0.27 753 0.0360 425
VIIb.9.A 0.216 455 0.0584 561
VIIb.13.A 0.0621 421 0.0141 894

15 The orbits ‘moth I’ and ‘moth II’ have different topologies, but belong to the same sequence.
16 See the initial condition #20 in table I in [11].
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	(3)	�The Schubart orbit [34] is the progenitor of four sequences: I, IVc, VIIa and VIIb, see 
table 1 and supplementary notes. The Schubart orbit is linearly stable in three spatial 
dimensions, [35, 36], but due to its collinear nature, it has only two degrees-of-freedom. 
As it has two degrees-of-freedom, it satisfies the Poincaré–Birkhoff theorem [22–24], 
which also predicts the existence of infinitely many orbits17.

Thus, we have shown a definite correlation between the sequences in table 1 and linear 
stability of the progenitor orbit in each sequence.

5.  Virial theorem and analyticity of the action

The remaining mysteries are: (i) why are the Ts.i.(Nw) graphs linear, and (ii) why are the slopes 
of different sequences so close to each other? 

Our answers to these questions are still not proven in a sufficiently rigorous way. Therefore, 
we shall present them here in the same, or similar way, as they were discovered; otherwise the 
motivation, and the weak points of our arguments might be lost.

It should be clear that the mere formulation of Ts.i. = T|E|3/2 depends crucially on the 
homogeneity of the Newtonian potential: the exponent 3/2 follows from the Newtonian poten-
tial’s degree of homogeneity α = 1, see [15, 19]. So, one may ask if the same, or similar behav-
iour occurs in other homogeneous potentials? A (partial) answer to this question was provided 
in [44], where periodic three-body orbits in the so-called strong potential Vα=2(r) � −1/r2 
and their relation to topology were studied, which has led to our proposed answer to question 
(i). The strong potential Vα=2(r) � −1/r2, is also homogeneous, see appendix D.

It was shown in [44] that the periodic solutions to the three-body problem in the strong 
potential form sequences, very much like those in the Newtonian potential shown in section 3, 
but their periods do not increase linearly with the topological complexity Nw of the orbit. 
Rather, it is the action integral, Smin � Nw, that rises linearly with Nw, which fact can be under-
stood using Cauchy’s residue theorem, which is based on the analyticity of the action integral,

Sα=2
min = −2

∫ T

0
Vα=2(r(t))dt,

where r(t) is a periodic solution to the equations-of-motion (e.o.m.) at fixed energy E  =  0, 
see appendix E.

But, in the Newtonian potential the action of (any) periodic orbit is proportional to its 
period Sα=1

min (T) = 3|E|T , see equation (D.5), derived in appendix D.2. So, the scale-invariant 
period Ts.i. must depend in the same way on the topological complexity Nw of the orbit as the 
corresponding action Sα=1

min (T). The question now arises if the same argument as in [44], about 
the analyticity of the action Sα=1

min (T) can be extended to the Newtonian potential? 
In the Newtonian potential this argument becomes more complicated because the hyper-

radius R = |Z| is not constant in Newtonian three-body orbits, and the problem becomes one in 
the calculus of two complex variables, see appendices A and E. This leads to new possibilities 
that have not been considered thus far. Indeed, the second complex variable in the Newtonian 
potential immediately leads to the possibility that there is a pole in the second complex vari-
able Z, which could lead to non-zero contributions to the integral, and thus change the Ts.i.(Nw) 
functional dependence, under right conditions.

Assuming that the variation of periodic orbits in the second complex variable Z is limited 
such that no new poles arise in the action integral, see appendix E, we may conclude that

17 We see that one colliding orbit is the progenitor of more than one sequence of collisonless orbits.
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Sα
min =

(
α+ 2
α− 2

)
E T � Nw.

This cannot be true in general, however: a moment’s thought shows that the linear depend
ence cannot hold in the harmonic oscillator, as all harmonic oscillatory motions have the 

same period there. More formally, equation Sα
min =

(
α+2
α−2

)
E T , implies that the action of a 

periodic orbit in the harmonic oscillator always vanishes Sα=−2
min = 0. Moreover, we note that 

the action integral equation (D.4) must have (at least one) pole if the residue theorem should 
hold. Consequently, there is an upper bound on the exponent: α � 0, for which this kind of 
action-topology dependence can exist.

These arguments provide also a (possible) answer to question (ii) above, as the slope of of 
the Ts.i.(Nw) graph depends on the residue(s) at the same poles in all sequences, the main dif-
ference being the ordering of circles around the poles, i.e. of the Riemann sheet(s) one is on 
(‘crossings of branch cuts’), see appendix E.

Of course, the foregoing arguments do not constitute a mathematical proof—the miss-
ing dots on the i’s and crosses on the t’s, or, perhaps more interestingly, counter-arguments/
proofs—ought to be supplied by the interested reader.

6.  Summary, discussion and outlook

We have shown that:

	(1)	�The presently known periodic three-body orbits with vanishing angular momentum and 
passing through an Euler configuration, can be classified into 10 sequences according to 
their topologies. Each sequence probably extends to infinitely long periods, and emerges 
from one of six linearly stable (shortest-period) progenitor orbits.

	(2)	�Numerically, the scale-invariant periods of orbits in each sequence obey linear depend
ences on the number of symbols in the algebraic description of the orbit’s topology.

	(3)	�There is a possible explanation for the existence of this infinity of periodic orbits, in the 
form of Birkhoff–Lewis theorem, provided that each progenitor orbit also satisfies the 
‘twist’ condition [16].

	 (4)	�Some of the longer-period orbits are linearly stable: (a) the seventh satellite of ‘figure-eight’ 
orbit18; (b) moth II, which lies in, but is not the progenitor of the ‘moth I’ sequence; and (c) 
the ‘bumblebee’ orbit, which lies in, but is not the progenitor of the ‘dragonfly’ sequence.

We note that in 1976 [35], Hénon established the linear stability of many orbits with non-
vanishing angular momenta (L �= 0) in the Broucke–Hadjidemetriou–Hénon family. The top-
ological-power satellites of these linearly stable BHH orbits were discovered only recently 
[39], where an L �= 0 version of the period-topology linear dependence equation  (2) was 
checked numerically, as well. The agreement there is also (only) approximate, as a small, but 
numerically significant discrepancy exists.

Furthermore, [44] indicates that a linear dependence of the action, but not of the period, 
on the topology exists also in the case of periodic three-body orbits in the so-called strong 
Jacobi–Poincaré potential, which is in agreement with the virial theorem, see appendix D. The 
argument in [44] can be extended to the Newtonian potential, but it becomes a complicated 
question in the calculus of two complex variables19.

18 The stability of ‘figure-eight’ orbit was established in [32, 33].
19 Indeed, the second complex variable in the Newtonian potential immediately leads to new possibilities: there is 
a pole in the second variable, which could lead to non-zero contributions, and thus change the Ts.i.(Nw) function, 
under right conditions.
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Our results are generic, so they imply that similar linear relations may be expected to hold 
for 3-body orbits in the Coulombian20, and in all other homogeneous potentials containing 
poles.

Moreover, similar functional dependences might also hold for 4-, 5-, 6-body etc orbits in 
the Newtonian potential.

Our results also raise new questions:

	(1)	�Each of the six progenitors generates a family of orbits, at different masses and non-
vanishing angular momenta, e.g. the Schubart colliding orbit [34], generates the BHH 
family of collisionless orbits with non-zero angular momenta, that describe the majority 
of presently known triple-star systems. The remaining five progenitors may now be 
viewed as credible candidates for astronomically observable three-body orbits, provided 
that their stability persists under changes of mass ratios and of the angular momentum. 
Those dependences need to be explored in detail.

	(2)	�Checking the ‘twist’ condition of the Birkhoff–Lewis theorem, for each progenitor orbit, 
is a task for mathematicians, as is the explanation of the topologies of the so-predicted 
orbits: why do these sequences exist and not some others? 

	(3)	�The question of existence of other stable two-dimensional colliding orbits, and of new 
sequences of periodic orbits that they (may) generate. Rose’s new linearly stable colliding 
orbits [13] are particularly interesting in this regard. Turning the foregoing argument 
around, one can use any newly observed sequence of orbits to argue for the the existence 
of its, perhaps as yet unknown, progenitor.

	(4)	�A remaining mystery is why are the slopes of different sequences so close to each other? 
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Appendix A. Three-body variables

The graphical representation of the three-body system can be simplified with the use of trans-
lational and rotational invariance—by changing the coordinates to the Jacobi ones [30]. Jacobi 
or relative coordinates are defined by two relative coordinate vectors, see figure A1:

20 Several such periodic orbits have been found in [45, 46], but their topological classification was not considered.
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ρ =
1√
2
(r1 − r2), λ =

1√
6
(r1 + r2 − 2r3).� (A.1)

Three independent scalar variables can be constructed from Jacobi coordinates: ρ2, λ2  and 

ρ · λ. The overall size of the orbit is characterized by the hyperradius R =

√
ρ2 + λ2 . These 

scalar variables are connected to the unit vector with Cartesian components [17]:

n̂ =

(
2ρ · λ

R2 ,
λ2 − ρ2

R2 ,
2(ρ× λ) · ez

R2

)
.� (A.2)

Therefore, every configuration of three bodies (shape of the triangle formed by them, inde-
pendent of size) can be represented by a point on a unit sphere. This sphere is called the 
shape-sphere.

Every relatively periodic orbit of a three-body system is therefore represented on the shape-
sphere by a closed curve (collisionless solutions), a finite open section of a curve (free-fall 
and colliding solutions), or a point (Lagrange–Euler solutions). One example, the figure-eight 
orbit, is illustrated in figure A2.

Figure A1.  The two three-body Jacobi coordinates ρ,λ.

Figure A2.  The shape-space sphere: the figure-eight orbit (solid black curve); three 
two-body collision points (red), singularities of the potential, lie on the equator.
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The north and the south pole of the shape-sphere correspond to equilateral triangles, while 
the equator corresponds to degenerate triangles, where the bodies are in collinear configura-
tions (syzygies). There are three points on the equator that correspond to two-body collision 
points—the singularities of the potential, see figure A2.

Two orbits with identical representations on the shape-sphere are considered to be the 
same solution. For example, periodic orbits subjected to symmetry transformations, such as 
translations, rotations, dilations, reflections of space and time, all have identical curves on the 
shape-sphere and are counted as one.

Size or energy scaling, r → αr, and the equations  of motion imply t → α3/2t  [31]. 
Therefore, the velocity scales as v → v/

√
α , the total energy scales as E → α−1E, and the 

period T as T → α3/2T . Consequently, the combination |E|3/2T is invariant under scale trans-
formations and we call it scale invariant period Ts.i. = |E|3/2T . It is always possible to remove 
one of the three scalar variables by changing the hyper-radius to the desired value by means 
of these scaling rules.

Appendix B.  Montgomery’s topological identification method

A curve corresponding to a collisionless periodic orbit can not pass through any one of the 
three two-body collision points. Stretching this curve across a collision point would there-
fore change its topology. The classification problem of closed curves on a sphere with three 

Figure B1.  The two elements (a, b) of the free group.

Figure B2.  Stereographic projection of a sphere onto a plane. Three two-body collision 
points (solid red) lie on a meridian (dashed circle), with one of them being at the north 
pole (denoted by the letter N).
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punctures is given by the conjugacy classes of the fundamental group, which is in this case the 
free group on two letters (a,b), see figure B1.

This abstract notation has a simple geometric interpretation: it classifies closed curves in 
a plane with two punctures according to their topologies. The shape sphere can be mapped 
onto a plane by a stereographic projection using one of the punctures as the north pole, see 
figure B2. The selected puncture is thusly removed to infinity, which leaves two punctures in 
the (finite) plane. Any closed curve on the shape sphere (corresponding to a periodic orbit) can 
now be classified according to the topology of its projection in the plane with two punctures. 
Topology of a curve can be algebraically described by a ‘word’—a sequence of letters a, b, A 
and B—which is, more formally, an element of the free group F2. Here a denotes a clockwise 
full turn around the right-hand-side puncture, b the counter-clockwise full turn around the 
left-hand-side puncture (see figure B1), and the upper case letters denote their inverse ele-
ments a-1  =  A and b-1  =  B.

A specific periodic orbit can be equally well described by several different sequences of 
letters. As there is no preferred starting point of a closed curve, any other word that can be 
obtained by a cyclic permutation of the letters in the original word represents the same curve.

The conjugacy class of a free group element (word) contains all cyclical permutations of 
the letters in the original word. For example, the conjugacy class of the free group element aB 
also contains the cyclically permuted word Ba. The class of topologically equivalent periodic 
orbits therefore corresponds not merely to one specific free group element, but to the whole 
conjugacy class.

Time-reversed orbits are represented by the inverse elements of the original free group ele-
ments. Naturally, they correspond to physically identical solutions, but they generally form 
different words (free group elements) with different conjugacy classes.

Another ambiguity is related to the choice of the puncture to be used as the north pole of 
the stereographic projection (of the sphere onto the plane). A single loop around any one of the 
three punctures on the original shape sphere (denoted by a or b) must be equivalent to the loop 
around either of the two remaining punctures. But as can be seen in figure B2, a simple loop 
around the third (‘infinite’) puncture on the shape sphere corresponds to aB, a loop around 
both poles in the plane. Therefore, aB must be equivalent to a and b.

Some periodic solutions have free group elements that can be written as wk = wk (a, b, 
A, B), where w = w (a, b, A, B) is a word that describes some solution, and k is an integer. 
Such orbits will be called topological-power satellites. For example, the orbits with free group 
element (abAB)k are called figure-eight (k) satellites, and are all free from the stereographic 
projection ambiguity.

Appendix C. Tanikawa and Mikkola’s (syzygy) method of topological 
identification

There is an alternative method of assigning a sequence of three symbols, in this case three 
digits (1,2,3), to any given ‘word’ in the free group F2. It has been proposed for collisionless 
orbits, by [18], see also [21], to use the sequence of syzygies (collinear configurations) as a 
symbolic dynamics for the 3-body problem.

The rules for converting ‘words’ consisting of letters a, b, A, B into ‘numbers’ con-
sisting of three digits—(1, 2, 3)—are as follows: (i) make the substitution a  =  12, A  =  21, 
b  =  32, B  =  23; (ii) 11  =  22  =  33  =  empty sequence (‘cancellation in pairs rule’). So, for 
example:
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	(1)	�The symbolic sequence corresponding to the BHH family of orbits, aB  =  1223  =  13 
is equivalent, by way of cyclic permutations, to: a  =  12 and to B  =  23, as one 
would expect intuitively. Thus we see that the ‘lengths’ Nn, i.e. the number of sym-
bols in a sequence are identical for all three symbolic sequences representing the 
BHH family, Nn(13) = Nn(12) = Nn(23), unlike the Montgomery’s method, where 
Nw (aB)  �=  Nw (a)  =  Nw (B). This indicates that the ‘lengths’ Nn(w) are good algebraic 
descriptors of the complexity of an orbit’s topology.

	(2)	�The symbolic sequence abAB  =  (12)(32)(21)(23)  =  12322123  =  123123  =   
(123)2 corresponding to the figure-eight orbit is now manifestly invariant under cyclic 
permutations, 1 → 2 → 3 and 1 → 3 → 2, whereas it is so only in a non-manifest way in 
the two-letter scheme. Here, also, the ‘length’ Nn(w) is also a good algebraic descriptor of 
the complexity of an orbit’s topology.

Note that:

	 1.	�As stated above, the numbers 1, 2, and 3 can be viewed as denoting syzygies, i.e. crossings 
of the equator on the shape sphere, in one of three corresponding segments on the said 
equator, where the index of the body passing between the other two is used as a symbol.

	 2.	�Each symbol is its own inverse, which accounts for the ‘cancellation in pairs’ rule21. 
This circumstance leads to the reduction (by a factor of two) of the number of symbolic 
sequences denoting one topology, as the time-reversed orbit has an identical symbolic 
sequence to the original one (which is not the case in the two-letter scheme); and

	 3.	�That the cyclic permutation symmetry indicates irrelevance of which syzygy is denoted 
by which digit.

In this way, we have restored the three-body permutation symmetry of the problem into the 
algebraic notation describing the topology of a periodic three-body orbit, albeit at the price of 
having three symbols, rather than two. This restoration of permutation symmetry also implies 
an absence of the ‘automorphism ambiguity’ [15]. Such three-symbol sequences have been 
used e.g. in [18, 21] to identify the topology of periodic three-body orbits.

The length of a sequence of symbols necessary to describe any given topology generally 
increases by a factor close to 1.5 as one switches from two letters Nw to three digits Ns, as 
symbols used, i.e. Ns � 1.5Nw. The precise value of this proportionality factor (�1.5) is not 
important for our purposes, as we shall be concerned with the length(s) of symbolic sequences 
with a well-defined algebraic form, such as w1(w2)nw3(w4)n , where n = 1, 2, 3, · · ·. In such a 
case, the following relation holds N[w1(w2)

nw3(w4)
n] � N[w1w3] + nN[w2w4] using either set 

of symbols for wi. Only the value of the slope parameter changes as one switches from one set 
to another. Of course, it is an additional mystery if and when the slopes of different sequences 
happen to coincide.

Appendix D.  Virial theorem and the action of periodic orbits in homogeneous 
potentials

D.1. The Lagrange–Jacobi identity and the virial theorem

We know that the Lagrange–Jacobi identity [30],

21 This is only possible for periodic orbits that form closed loops on the shape sphere; otherwise one would have to 
define one symbol for crossing the equator from above and another one for crossing from below.
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1
2

dG
dt

= 2Ktotal + αVα
total,� (D.1)

where G =
∑N

i=1 qi · pi is the so-called virial, gives a relation between kinetic Ktotal =
∑

i Ki 
and potential energy Vα

total, for homogeneous potentials with homogeneity degree −α. One 
example of such a homogeneous potential is the sum of two-body terms 

∑
i<j Vα(rik), where 

Vα(rik) � −1/rαik  is a power-law interaction . Here rik is the distance between two particles, 
and α is a positive real number.

For periodic motions, with period T, this identity can be integrated to yield

1
2

∫ T

0
dt

dG
dt

=
1
2
(G(T)− G(0)) = 0

=

∫ T

0
(2Ktotal + αVα

total)dt
�

(D.2)

which tells us that the time integral of the kinetic energy is related to the time integral of the 
potential energy:

∫ T

0
dtKtotal = −α

2

∫ T

0
dtVα

total.

Energy conservation

E = Ktotal + Vα
total

implies

E =
1
T

∫ T

0
(Ktotal + Vα

total)dt =
1
T

∫ T

0
(−α

2
Vα

total + Vα
total)dt

which leads to the equipartition of energy (or ‘virial’) theorem:

E =

(
α− 2
−2

)
1
T

∫ T

0
Vα(r(t))dt ≡

(
α− 2
−2

)
〈Vα(r)〉� (D.3)

E =

(
α− 2
α

)
1
T

∫ T

0
K(ṙ(t))dt ≡

(
α− 2
α

)
〈K(ṙ(t))〉� (D.4)

which holds exactly for periodic orbits. This, in turn, reduces the action S to one or another 
time integral.

D.2. The action for three-body orbits in a homogeneous potential

The (minimized) action of a periodic n-body orbit in a homogeneous potential Vα(r) � −1/rα 
is

Smin =

∫ T

0
L(q(t), q̇(t))dt =

∫ T

0
(T(ṙ(t))− Vα(r(t))) dt,

leads to

Sα
min(T) =

(
α+ 2
α− 2

)
E T ,� (D.5)
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which depends only on the energy E and period T of the orbit. Note the singularity on the 
right-hand-side of equation (D.5) at α = 2, which demands that E  =  0 in that case. For the 
Newtonian case, α = 1, equation (D.5) leads to

Sα=1
min (T) = −3ET = 3|E|T ,

as claimed in [15].

Appendix E.  Complex variables and analytic properties of the action

Here we follow closely appendix C in [44]. The minimized action Sα
min =

∫ T
0 L(q(t), q̇(t))dt of 

a periodic orbit q(t) in the homogeneous (power) potential Vα(r), written as a time integral of 
twice the kinetic energy K over period T,

Sα
min(T) =

(
α+ 2
α

) 3∑
i=1

∫ T

0

p2
i

2m
dt =

(
α+ 2
α

) 3∑
i=1

∫ ri(T)

ri(0)
pi · dri� (E.1)

where m  =  1, can be expressed as a closed-contour integral of two complex variables. After 
shifting to the relative-motion variables, (ρ,λ), one finds

Sα
min(T) =

(
α+ 2
α

)(∫ ρ(T)

ρ(0)
pρ · dρ+

∫ λ(T)

λ(0)
pλ · dλ

)
.

The real Jacobi two-vectors ρ and λ may be replaced with two complex variables

zρ = ρx + iρy, zλ = λx + iλy,

so that the action Sα
min, can be rewritten as a (double) closed contour integral in two complex 

variables:

Sα
min(T) =

(
α+ 2
α

)(∫ zρ(T)

zρ(0)

ż∗ρdzρ +
∫ zλ(T)

zλ(0)
ż∗λdzλ

)
.

Note that the periodicity of motion ρ(0) = ρ(T), λ(0) = λ(T) implies zρ(T) = zρ(0) and 
zλ(T) = zλ(0), which makes this integral a closed contour one

Sα
min =

(
α+ 2
α

)(∮

Cρ

ż∗ρdzρ +
∮

Cλ

ż∗λdzλ

)
.

If there were only one complex variable, then the so-defined function would be analytic. 
Indeed, the action of two-body elliptic motion in the Newtonian potential has been evaluated 
using Cauchy’s residue theorem in section 18.16 of [26], and in section 11.8 in [27]. With two 
complex variables, there is no such guarantee, however. Moreover, the residue theorem for 
functions of two complex variables is a more complicated matter, see [48–51].

The existence and positions of poles in this (double) contour integral are not mani-
fest in its present form; the same integral is given by equation  (D.3) in appendix D.2, 

Sα
min(T) =

(
α+2
−2

) ∫ T
0 Vα(r(t))dt, due to the virial theorem, however, where the potential 

Vα(r(t)) is known to have three singularities (simple poles) at three binary collisions and the 
time-evolution dependence r(t) of the periodic orbit, which parametrizes the contour. For the 
Newtonian potential α = 1 the binary collisions are regularizable, and this integral has been 
studied by Sundman [28] with the result that the functions rk(u), 1 � k � 3, are holomorphic 
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in a strip |Im u| < δ of the complex plane u ∈ C  which contains the real axis, see section 2.3 
in [29]. Since Sα=1

min (T) = S(T) = −
( 3

2

)
u(T), we know that the trajectories rk(S), 1 � k � 3 

are holomorphic functions of the action S in a strip |Im S| < δ of the complex plane S ∈ C  
which contains the real axis.

Note the following implications of this result: (1) for non-singular potentials (α < 0) there 
are no poles in the potential, and consequently no poles encircled by the contour, so the resi-
due vanishes; (2) for singular potentials (2 > α > 0) there are poles in the potential, but the 
residue depends on the integration contour, i.e. on the trajectory on the shape sphere and its 
topology w; (3) if the integration contour, i.e. the trajectory on the shape sphere repeats k times 
the topologically equivalent path, then, for singular potentials (2 > α > 0), the residue equals 
k times the single path residue.

Next, we switch from the real (ρ,λ), or complex (zρ, zλ) Cartesian Jacobi variables to 
the curvilinear hyper-spherical variables: the real hyper-radius R and the overall rota-
tion angle Φ = 1

2 (ϕρ + ϕλ), and the two angles parametrizing the shape-sphere, e.g. 
(θ = (ϕρ − ϕλ),χ = 2Tan−1( ρλ )). Here (ϕρ,ϕλ) are the angles subtended by the vectors 
(ρ,λ) and the x-axis. Equivalently, we may use the complex variables Z, defined by (R,Φ) and 
z, defined by way of a stereographic projection from the shape-sphere parametrized by (θ,χ).

The variable Z has limited (bounded) variation for all periodic orbits (with zero angular 
momentum) studied in this paper. Indeed, the value of R = |Z| = 0 occurs only in the ‘tri-
ple collision’ (‘der Dreierstoss’) orbits, which does not happen in our case. The condition 
Φ  =  const. is trickier, however, because there are ‘relatively periodic’ solutions with vanish-
ing angular momentum (L  =  0) and a non-zero change ∆Φ �= 0 of angle Φ over one period. 
All of the orbits considered in this paper are absolutely periodic, i.e. they have ∆Φ = 0 over 
one period, so this caveat does not apply. Therefore one may eliminate the complex variable 
Z from further consideration, at least for the orbits considered here, and the problem becomes 
(much) simpler.

Thus, we see that the complex integration contour Cz relevant to Cauchy’s theorem, 
Smin = 2iπ

∑
Res, for the considered periodic orbits, is determined solely by the orbit’s tra-

jectory on the shape sphere: the only poles relevant to this contour integral are the two-body 
collision points on the shape sphere. Consequently, the periodic orbits’ minimized action 
(integral) is determined (predominantly) by the topology of the closed contour on the shape 
sphere, i.e. by the homotopy group element of the periodic orbit, unless there is a closed con-
tour in the Z = (R,Φ) variable, as well.

Repeated k-fold loops of the contour lead to k times the initial integral, i.e. 
Smin(wk) = 2kiπ

∑
Res = kSmin(w), or, equivalently Ts.i.(wk) = kTs.i.(w), as observed in 

topological satellite orbits in section 3. Crossings of branch cuts22 provide for the change of 
residue(s) of the pole(s) at different values of k, which may account for the different values of 
Res, i.e. for different slopes of Ts.i.(Nw) graphs in different sequences.

Detailed study of analytic properties of the action should be a subject of interest to pure 
mathematicians, however, [47].

ORCID iDs

V Dmitrašinović  https://orcid.org/0000-0003-0192-921X

22 We have shown in [44] that in the strong potential each of the three poles is also a logarithmic branch cut, which 
implies a complicated structure of branch cuts and different residues. Similar situation ought to be expected in the 
Newtonian potential as well.
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Different condensed matter systems, such as elec-
trons in a crystal lattice, can be simulated using ul-
tracold atoms in optical lattices. Unlike electrons,
atoms are electrically neutral and therefore do not
feel the effects of magnetic field. Artificial gauge
potentials have been recently realized in cold-atom
experiments with periodically driven optical lattices
[1, 2]. In such systems, atoms subjected to a constant
external force gain an anomalous velocity in the direc-
tion transverse to the direction of the applied force.

Taking into consideration realistic experimental
conditions, we perform numerical simulations in or-
der to investigate the dynamics of atomic clouds and
relate it to the Chern number of the effective model.
We consider incoherent bosons and the full time-
dependent Hamiltonian. The effects of weak repulsive
interactions between atoms are taken into account us-
ing the mean-field approximation.

Our results show that driving, external force and
interactions all cause heating and transitions to
higher bands, which have significant effects on the
dynamics. It turns out that weak interactions can be
beneficial, because they make the momentum-space
probability density more homogeneous. In the future,
we also plan to study the details of the atomic-cloud
expansion dynamics, and to simulate the full loading
sequence of an initial Bose-Einstein condensate, as it
was done in the experiment [2].

Figure 1: Density profile of an atomic cloud during ex-
pansion dynamics after release from a trap in the presence
of an artificial gauge field and external force.

[1] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat,
T. Uehlinger, D. Greif, and T. Esslinger, Nature
515, 237 (2014).

[2] M. Aidelsburger, M. Lohse, C. Schweizer, M.
Atala, J. T. Barreiro, S. Nascimbène, N. R.
Cooper, I. Bloch, and N. Goldman, Nat. Phys.
11, 162 (2015).
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Talk Q 35.1 Tue 14:00 K 1.022
Artificial gauge potentials in periodically driven optical lat-
tices: numerical simulations of atomic transport — •Ana
Hudomal1, Ivana Vasić1, Hrvoje Buljan2, Walter Hofstetter3,
and Antun Balaž1 — 1Scientific Computing Laboratory, Center for
the Study of Complex Systems, Institute of Physics Belgrade, Uni-
versity of Belgrade, Serbia — 2Department of Physics, University of
Zagreb, Croatia — 3Institut für Theoretische Physik, Johann Wolf-
gang Goethe-Universität, Frankfurt am Main, Germany

Artificial gauge potentials have been recently realized in cold-atom
experiments with periodically driven optical lattices [1,2]. In such sys-
tems, atoms subjected to a constant external force gain an anomalous
velocity in the direction transverse to the direction of the applied force.
Taking into consideration realistic experimental conditions, we perform
numerical simulations in order to investigate the dynamics of atomic
clouds and relate it to the Chern number of the effective model. We
use the full time-dependent Hamiltonian and take into account the
effects of weak repulsive interactions between atoms. The results are
compared to the semiclassical approximation.

[1] G. Jotzu et al., Nature 515, 237 (2014).
[2] M. Aidelsburger et al., Nature Phys. 11, 162 (2015).

Talk Q 35.2 Tue 14:15 K 1.022
Experimental characterization and control of Floquet states
in a periodically driven two-body quantum system — •Kilian
Sandholzer, Rémi Desbuquois, Michael Messer, Frederik Görg,
Joaqúın Minguzzi, Gregor Jotzu, and Tilman Esslinger — Insti-
tute for Quantum Electronics, ETH Zürich, Zürich, Switzerland

Floquet engineering is a powerful tool to modify properties of a static
system such as opening topological gaps or controlling magnetic or-
der. The versatility of cold atom experiments offers the possibility to
implement many of these schemes. Nonetheless, preparing a certain
Floquet state that has the desired properties in this out-of-equilibrium
situation is a more difficult task, especially when the driving frequency
is close to a characteristic energy scale of the system. In this work, we
prepare fermionic atoms in a driven optical lattice such that the system
can be described by two interacting particles on a double well poten-
tial with a periodically modulated tilt. In the case of near-resonant
driving we achieve to enter adiabatically individual Floquet states by
using a two-step ramping protocol. In addition, the fast coherent dy-
namics inherently connected to the drive are studied in detail. Finally,
an analytical derivation of the effective time-independent Hamiltonian
of the realized system is presented and then compared to numerical
studies and experimental data.

Talk Q 35.3 Tue 14:30 K 1.022
Dynamics of driven interacting many-body systems —
•Michael Messer, Frederik Görg, Kilian Sandholzer, Joaqúın
Minguzzi, Rémi Desbuquois, and Tilman Esslinger — Institute for
Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland

Periodic driving can be used to coherently control the properties of
a many-body state and to engineer new phases which are not acces-
sible in static systems. The successful implementation of a periodi-
cally driven Fermi-Hubbard model on a 3D hexagonal lattice offers the
possibility to explore the intriguing dynamics of Floquet many-body
systems. A theoretical analysis of driven many-body Hamiltonians is
inherently challenging, however, in combination with our experiments
a deeper understanding seems feasible.

By controlling the detuning between shaking frequency and interac-
tions, and setting a variable strength of the periodic drive, we achieve
independent control over the single particle tunneling and the magnetic
exchange energy. This control allows us to investigate the dynamics
and build-up of nearest-neighbor spin-spin correlations. Furthermore,
we explore possible mechanisms behind the formation of correlations in
interacting Floquet systems. In addition, we can analyze the creation
of double occupancies, as one mechanism to form excitations.

Talk Q 35.4 Tue 14:45 K 1.022
Enhancement and sign change of magnetic correlations in
a driven quantum many-body system — •Frederik Görg1,
Michael Messer1, Kilian Sandholzer1, Joaqúın Minguzzi1, Gre-
gor Jotzu1,2, Rémi Desbuquois1, and Tilman Esslinger1 —
1Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzer-
land — 2Max Planck Institute for the Structure and Dynamics of Mat-

ter, 22761 Hamburg, Germany

Strong periodic driving can be used to control the properties of inter-
acting quantum systems. In solid state experiments, ultrashort laser
pulses are employed to tune the charge order as well as magnetic and
superconducting properties of materials. At the same time, continuous
driving has been used in cold atom experiments to engineer novel ef-
fective Floquet-Hamiltonians which feature for example a topological
bandstructure. We realize a strongly interacting Fermi gas in a peri-
odically driven hexagonal optical lattice and investigate its charge and
magnetic properties. We first demonstrate that in the high-frequency
regime, the effective description of the many-body system by a renor-
malized tunnelling amplitude remains valid by comparing our results to
an equivalent static system. When driving at a frequency close to the
interaction energy, we show that anti-ferromagnetic correlations can
be enhanced or even switched to ferromagnetic ordering. Our observa-
tions can be explained by a microscopic model, in which the particle
tunnelling and magnetic exchange energies can be controlled indepen-
dently. Therefore, Floquet engineering constitutes an alternative route
to experimentally investigate unconventional pairing.

Talk Q 35.5 Tue 15:00 K 1.022
Manipulating and probing excitations of a Chern insulator by
Floquet engineering an optical solenoid — •Botao Wang, Nur
Ünal, and André Eckardt — Max Planck Institute for the Physics
of Complex Systems, Dresden, Germany

The realization of artificial gauge fields in optical lattice systems has
paved a way to the experimental investigation of various topological
quantum effects. Here we propose a realistic scheme for realizing tun-
able local (solenoid type) artificial magnetic fields by means of Floquet
engineering. We show that such an optical solenoid field can be used
to coherently manipulate and probe Chern insulator states of the Hof-
stadter Hamiltonian. In particular, we investigate the possibility to
create local quasiparticle and quasihole excitations, to coherently pop-
ulated edge modes, and to achieve quantized charge pumping. All
these effects are manifested on the spatial density distributions, which
can be measured directly in quantum-gas microscopes.

Talk Q 35.6 Tue 15:15 K 1.022
Characterizing topology by dynamics: Chern number
from linking number — •Matthias Tarnowski1,2, Nur Ünal3,
Nick Fläschner1,2, Benno Rem1,2, André Eckardt3, Klaus
Sengstock1,2,4, and Christof Weitenberg1,2 — 1Institut für Laser-
physik, Universität Hamburg, 22761 Hamburg, Germany — 2The
Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
— 3Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer
Straße 38, 01187 Dresden, Germany — 4Zentrum für Optische Quan-
tentechnologien, Universität Hamburg, 22761 Hamburg, Germany

Topology plays an important role in modern solid state physics de-
scribing intriguing quantum states such as topological insulators. It is
an intrinsically non-local property and therefore challenging to access,
often studied only via the resulting edge states. Here, we report on
a new approach by connecting the Chern number with the dynamical
evolution of highly excited states of the system and demonstrate it ex-
perimentally with cold atoms in hexagonal optical lattices. We study
the contour of dynamically created vortex pairs in momentum space
following a sudden quench into the system of interest and infer the
Chern number of the post-quench Hamiltonian from the topology of
the contour, quantified by the linking number with the static vortices.
Our work exploits a direct mapping between two topological indices
and allows detecting topology by the naked eye.

Talk Q 35.7 Tue 15:30 K 1.022
1D fermionic Floquet topological insulators with Hubbard in-
teraction — •Haixin Qiu1 and Johann Kroha1,2 — 1Physikalisches
Institut and Bethe Center for Theoretical Physics, Universität Bonn,
Nussallee 12, 53115 Bonn, Germany — 2Center for Correlated Matter,
Zhejiang University, Hangzhou, Zhejiang 310058, China

The fermionic Rice-Mele model is a standard model for quantum
ratchet transport in periodically driven, one-dimensional, bipartite
chains. In the adiabatic limit, this model exhibits quantized transport
(Thouless pump), while in the limit of fast drive quasistatic approxi-
mations with effective hopping parameters are possible. Here we study
the Rice-Mele model with periodic drive of both, the hopping ampli-
tudes and the onsite energy modulation,in the intermediate regime

1
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Recent cold atom experiments have realized artificial gauge fields in periodically modulated optical lattices 

[1,2]. We study the dynamics of atomic clouds in such systems by performing numerical simulations using the 

full time-dependent Hamiltonian and compare results with the semiclassical approximation. Under constant 

external force, atoms in optical lattices with flux exhibit an anomalous velocity in the transverse direction. We 

investigate in detail how this transverse drift is related to the Berry curvature and Chern number, taking into 

account realistic experimental conditions. 

 

REFERENCES 

[1] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Nature 515, 237 

(2014). 

[2] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, 

N. Goldman, Nat. Phys. 11, 162 (2015). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Mainz 2017 Thursday

the Feshbach resonance.

Poster Q 53.10 Thu 17:00 P OG2
Spin and Charge Correlation Measurements in the 2D
Hubbard Model — Jan Drewes1, Luke Miller1,2, Eugenio
Cocchi1,2, Chun Fai Chan1, Nicola Wurz1, •Marcell Gall1,
Daniel Pertot1, Ferdinand Brennecke1, and Michael Köhl1 —
1Physikalisches Institut, University of Bonn, Wegelerstrasse 8, 53115
Bonn, Germany — 2Cavendish Laboratory, University of Cambridge,
JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom

We experimentally study the emergence of correlations in an ultracold,
fermionic 2D lattice system, representing a realisation of the Hubbard
model. Our ability to precisely tune the system parameters over a
large range and the possibility to simultaneously detect the density
distribution of both spin components in-situ enables us to examine the
emergence of density and spin correlations as a function of doping in-
teraction strength and temperature. In addition we gain from the mea-
surement of the equation of state insight into the full thermodynamics
of the 2D Hubbard model. To improve our preparation and detection
capabilities, we use a spin spiral technique which allows us to detect
the spin structure factor at arbitrary wave vectors. Further we employ
a spatial light modulator to reshape the underlying trapping potential
of the optical lattice to realize the homogeneous Hubbard model and
reach lower temperatures by redistributing entropy between different
spatial regions.

Poster Q 53.11 Thu 17:00 P OG2
BEC of 41K in a Fermi Sea of 6Li — Rianne S. Lous1,2, Is-
abella Fritsche1,2, •Fabian Lehmann1,2, Michael Jag1,2, Emil
Kirilov1,2, Bo Huang1, and Rudolf Grimm1,2 — 1IQOQI, Austrian
Academy of Science, Innsbruck, Austria — 2Inst. for Experimental
Physics, University of Innsbruck, Innsbruck, Austria

We report on the production of a double-degenerate Fermi-Bose mix-
ture of 6Li and 41K. In our experimental sequence the potassium atoms
are sympathetically cooled by the lithium atoms, which are evapora-
tively cooled in an optical dipole trap. We obtain 104 41K atoms with
a BEC fraction close to 1 and a T/TF ≈ 0.05 with 105 6Li atoms in
each spin state. To measure the temperature of our fermionic sample
we use the 41K BEC as a tool for thermometry. As the system is
in thermal equilibrium we evaluate the condensed fraction of our 41K
atoms and extract the temperature of the atoms. To investigate the
properties of the 6Li-41K mixture near the inter-species Feshbach res-
onance at 335.8 G we use another scheme of evaporation around 300 G
which enables us to achieve similar temperatures. We explore both
the repulsive side and attractive side of the Feshbach resonance and
observe phase separation for strong repulsive interactions and collapse
for attractive interactions. This work is supported by the Austrian
Science Fund FWF within the SFB FoQuS.

Poster Q 53.12 Thu 17:00 P OG2
Probing Many-body physics with an ultra-narrow clock tran-
sition in an Ytterbium quantum gas — •Bodhaditya Santra1,
Benjamin Abeln1, Bastian Hundt1, André Kochanke1, Thomas
Ponath1, Anna Skottke1, Klaus Sengstock1,2, and Christoph
Becker1,2 — 1Zentrum für Optische Quantentechnologien, Univer-
sität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany —
2Institut für Laserphysik, Universität Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany

During the last decade ultracold fermionic alkaline earth quantum gas
attracted a lot of attention due to their unique properties such as long-
lived meta-stable state, an ultra-narrow optical clock transition, SU(N)
symmetric interactions as well as the existence of an interorbital Fes-
hbach resonance. In particular fermionic Yb quantum gas allow for
quantum simulation of lattice systems with orbital degrees of freedom,
like the Kugel-Khomskii model or the Kondo lattice model (KLM).

We will present recent progress of the Hamburg Yb experiment to-
wards realizing the KLM and correlated KLM, including measurements
on spin polarized as well as on interacting Fermi gases with an im-
proved clock laser setup.

This work is supported by the DFG within the SFB 925 and the
Marie Curie Initial Training Network QTea.

Poster Q 53.13 Thu 17:00 P OG2
Local control of transport in an atomic quantum wire: from
one scanning gate to a finite size lattice — •Samuel Häusler1,
Martin Lebrat1, Dominik Husmann1, Laura Corman1, Sebas-
tian Krinner1, Shuta Nakajima2, Jean-Philippe Brantut1, and
Tilman Esslinger1 — 1Institute for Quantum Electronics, ETH

Zürich, 8093 Zürich, Switzerland — 2Department of Physics, Grad-
uate School of Science, Kyoto University, Kyoto 606-8502, Japan

Building on the holographic shaping of optical potentials and a high-
resolution microscope, we demonstrate the local control of fermionic
lithium atoms flowing through a one-dimensional structure. We first
image the transport through a quantum wire, in a way similar to the
scanning gate technique applied to solid state devices. By scanning
the position of a sharp, repulsive optical gate over the wire and mea-
suring the subsequent variations of conductance, we spatially map the
transport at a resolution close to the transverse wavefunction inside
the wire. The control of the gate at the scale of the Fermi wavelength
makes it sensitive to quantum tunnelling. Furthermore, our knowledge
of the optical potential allows a direct comparison of the experimental
maps with a numerical and an analytical model for non-interacting
particles.

The flexibility offered by our setup makes it relatively simple to
imprint more complex structures. By projecting several consecutive
scatterers, a lattice of variable length can be built inside the quantum
wire. This opens the path to study metal-insulator physics with strong
attractive interactions.

Poster Q 53.14 Thu 17:00 P OG2
Interacting Anyons in a One-Dimensional Optical Lattice —
•Martin Bonkhoff, Kevin Jägering, Sebastian Eggert, and Axel
Pelster — State Research Center OPTIMAS and Fachbereich Physik,
Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany

We analyze in detail the properties of the one-dimensional Anyon-
Hubbard model, which can be mapped to a corresponding Bose-
Hubbard model with a density-dependent Peierls phase via a gener-
alized Jordan-Wigner transformation [1]. At first we extend the mod-
ified version of the classical Gutzwiller-mean-field ansatz of Ref. [2] in
order to obtain the pair-correlation function for both the bosonic and
the anyonic system. A comparison of the resulting quasi-momentum
distributions with high-precision DMRG calculations reveals in general
a parity breaking, which is due to anyonic statistics. Afterwards, we
determine how the boundary of the superfluid-Mott quantum phase
transition changes with the statistical parameter. We find in accor-
dance with Ref. [1] that the statistical interaction has the tendency to
destroy superfluid coherence.

[1] T. Keilmann, S. Lanzmich, L. McCulloch, and M. Roncaglia,
Nat. Commun. 2, 361 (2011)

[2] G. Tang, S. Eggert, and A. Pelster, New J. Phys. 17, 123016
(2015)

Poster Q 53.15 Thu 17:00 P OG2
Creating topological interfaces and detecting chiral edge
modes in a two-dimensional optical lattice — •Frederik
Görg1, Nathan Goldman2, Gregor Jotzu1, Michael Messer1,
Kilian Sandholzer1, Rémi Desbuquois1, and Tilman Esslinger1

— 1Institute for Quantum Electronics, ETH Zurich, Zurich, Switzer-
land — 2CENOLI, Université Libre de Bruxelles, Brussels, Belgium

The appearance of topological properties in lattice systems caused by
a non-trivial topological band structure in the bulk is closely related to
the existence of chiral edge modes via the bulk-edge correspondence.
These edge states appear at the interface of two spatial regions with a
distinct topology, which for example naturally arise at the boundaries
of a sample surrounded by vacuum. In cold atom systems, these edge
modes are difficult to detect, since the underlying harmonic trapping
potential does not feature sharp boundaries. Therefore, we propose a
different method to design topological interfaces within the bulk of the
system. We illustrate this scheme by an optical lattice realization of
the Haldane model, where a spatially varying lattice beam leads to the
appearance of distinct topological phases in separated regions of space.
The versatility of the method allows to tune the position, the localiza-
tion length and the chirality of the edge modes. We numerically study
the propagation of wave packets in such a system and demonstrate
the feasibility to experimentally detect chiral edge states. Finally, we
show that the edge modes, unlike the bulk states, are topologically pro-
tected against the effects of disorder, which makes a random potential
a powerful tool to detect edge states in cold atom setups.

Poster Q 53.16 Thu 17:00 P OG2
Transport dynamics in optical lattices with flux — •Ana
Hudomal1, Ivana Vasić1, Walter Hofstetter2, and Antun
Balaž1 — 1Scientific Computing Laboratory, Center for the Study
of Complex Systems, Institute of Physics Belgrade, University of Bel-
grade, Serbia — 2Institut für Theoretische Physik, Johann Wolfgang
Goethe-Universität, Frankfurt am Main, Germany
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Recent cold atom experiments have realized artificial gauge fields in
periodically modulated optical lattices [1,2]. We study the dynamics
of atomic clouds in these systems by performing numerical simula-
tions using the full time-dependent Hamiltonian and comparing these
results to the semiclassical approximation. Under constant external
force, atoms in optical lattices with flux exhibit an anomalous velocity
in the transverse direction. We investigate in detail how this transverse
drift is related to the Berry curvature and Chern number, taking into
account realistic experimental conditions.

[1] G. Jotzu et al., Nature 515, 237 (2014).
[2] M. Aidelsburger et al., Nature Phys. 11, 162 (2015).

Poster Q 53.17 Thu 17:00 P OG2
Towards the investigation of collective scattering in
nanofiber-trapped atomic ensembles — •Adarsh S. Prasad,
Jakob Hinney, Samuel Rind, Philipp Schneeweiss, Jürgen Volz,
Christoph Clausen, and Arno Rauschenbeutel — TU Wien -
Atominstitut, Stadionallee 2, 1020 Wien, Austria

We realize an efficient optical interface between guided light and laser-
cooled atoms which are arranged in two linear arrays in a two-color
evanescent-field dipole trap created around an optical nanofiber [1]. In
this configuration, the probability of a nanofiber-guided photon being
absorbed and then re-emitted into free space by a trapped atom is as
high as 10%. For a periodic array of atoms, interference of the fields
scattered by different atoms result in a collective emission into a cone
with a well-defined angle with respect to the fiber axis. We plan to
study this collective emission and its dependence on various experimen-
tal parameters. The next step will be to adjust the periodicity of the
atomic array to fulfill the Bragg condition such that fiber-guided light
is strongly back-reflected [2]. Here, the interaction between the atomic
array and the fiber-guided light depends strongly on the polarization
of the light field. In particular, light that is polarized in (orthogonal
to) the plane of atoms will be weakly (strongly) reflected. We want
to implement such highly reflecting atomic arrays, which could then
be used to implement cavity quantum electrodynamics experiments in
which the resonator itself is made of quantum emitters.
[1] E. Vetsch et al., Phys. Rev. Lett. 104, 203603 (2010).
[2] Fam Le Kien et. al., Phys. Rev. A 90, 063816 (2014).

Poster Q 53.18 Thu 17:00 P OG2
Setup of a new micro-structured linear Paul trap with in-
tegrated solenoids and reduced axial micromotion — •H.
Siebeneich, D. Kaufmann, T. Gloger, P. Kaufmann, M. Johan-
ning, and ch. Wunderlich — Department Physik, Universität
Siegen, 57068 Siegen, Germany

We present the status of a new 3d segmented ion trap setup with
integrated solenoids, in which an improved design allows for a sub-
stantial reduction of axial micromotion and for an increased magnetic
gradients. Our trap consists of three layers of gold plated alumina,
where the segmented outer layers provide the trapping potentials [1],
and the middle layer contains solenoids that are used to create a mag-
netic field gradient [2]. The gradient gives rise to coupling between
the ions’ internal and motional states. The trap is mounted on a ce-
ramic chip carrier that, at the same time, acts as an ultra-high vacuum
interface, featuring about 100 thick-film printed current and voltage
feedthroughs. The thick film interface has been improved by replacing
previously used Ag-Pd layers by Au layers which reduced their resis-
tivity by a factor of eight. The previously high resistivity used to be a
a bottleneck for achieving high solenoid currents and thus a magnetic
gradient. The shape of the solenoids was redesigned, leading to an
expected reduction of axial micromotion by four orders of magnitudes.
[1] S.A. Schulz et al.: Sideband cooling and coherent dynamics in a
microchip multi-segmented ion trap, New Journal of Physics, Volume
10, April 2008 [2] D. Kaufmann et al.: Thick-film technology for ultra
high vacuum interfaces of micro-structured traps, Appl Phys B (2012)
107:935-943

Poster Q 53.19 Thu 17:00 P OG2
Design and construction of a Perpetual Atom Laser Machine
— •Chun-Chia Chen, Shayne Bennetts, Benjamin Pasquiou, and
Florian Schreck — Institute of Physics, University of Amsterdam,
Amsterdam, The Netherlands

We have developed a machine aimed at producing a perpetual atom
laser, a long standing goal within atomic physics. Continuous pro-
duction of Bose-Einstein condensate (BEC) or an atom laser requires
two incompatible cooling processes, laser cooling a gas sample, then
cooling evaporatively until degeneracy is reached. In order to produce
a perpetual output these stages take place simultaneously in different

parts of our machine. To protect the condensate from scattered pho-
ton heating we use a combination of physical separation, baffles and a
”transparency” beam. Our machine has now demonstrated a perpet-
ual MOT of 2× 109 88Sr atoms with temperatures as low as 20µK on
a 7.4-kHz wide laser cooling transition with a continuous loading rate
of 7×108 atoms/s. Using a different set of parameters and location we
have also demonstrated a perpetual MOT of 2× 108 88Sr at 2µK with
a loading rate of 9 × 107 atoms/s which we have successfully loaded
into a dipole trap. By switching to the 0.5% abundance 84Sr isotope
we are able to evaporate to BECs of 3×105 84Sr atoms. Critically, for
the second location we have validated the effectiveness of our architec-
ture in protecting a BEC from scattered broad-linewidth laser cooling
light, which is used in the first cooling stages. We will describe our
design and the performance demonstrated so far.

Poster Q 53.20 Thu 17:00 P OG2
Optical trapping of neutral mercury — •Holger John and
Thomas Walther — Technische Universität Darmstadt, Institut für
Angewandte Physik, Schlossgartenstraße 7, 64289 Darmstadt

Laser-cooled mercury constitutes an interesting starting point for var-
ious experiments, in particular in light of the existence of bosonic and
fermionic isotopes. On the one hand the fermionic isotopes could be
used to develop a new time standard based on an optical lattice clock
employing the 1S0 - 3P0 transition. Another interesting venue is the
formation of ultra cold Hg-dimers employing photo-association and
achieving vibrational cooling by employing a special scheme.

The laser system is based on an interference-filter stabilized external
cavity diode laser with excellent spectral properties combined with a
home built non-cryogenic fiber amplifier for the 1015nm fundamental
wavelength with a slope-efficiency of more than 35 % delivering up to
4W of pump limited output power. The fundamental wavelength is fre-
quency doubled twice to reach the cooling transition at 253.7 nm. The
challenging requirements meeting the natural linewidth of 1.27 MHz
are mastered by use of a ULE reference resonator.

After integrating a 2D-MOT as an atom source to the vacuum sys-
tem the first measurements of ultra-cold atoms with the new laser
system will be reported.

Poster Q 53.21 Thu 17:00 P OG2
Diffusion of Single Atoms in Bath — •Daniel Adam, Fa-
rina Kindermann, Tobias Lausch, Daniel Mayer, Felix Schmidt,
Steve Haupt, Michael Hohmann, Nicolas Spethmann, and Artur
Widera — TU Kaiserslautern, Department of Physics, Kaiserslautern,
Germany

Diffusion is an essential phenomenon occurring in various systems such
as biological cells, traffic models or stock markets. While most systems
are well described by standard Brownian motion, anomalous diffusion
can lead to markedly different dynamical properties.

Experimentally, we study the diffusion of individual atoms illumi-
nated by near-resonant light and trapped in a periodic potential. All
relevant parameters such as damping coefficient and potential hight
can be controlled in order to realize different diffusive regimes.

We explore the amount of information contained in the Kramers
rate, i. e. the rate at which a diffusing atom can escape from a po-
tential well. Furthermore we exploit the excellent control over the
optical trapping potential and study the diffusion of the atom in a
time-varying periodic trap, complemented by numerical simulations of
the dynamics.

Poster Q 53.22 Thu 17:00 P OG2
Kinetic Monte Carlo simulation of percolation in driven-
dissipative Rydberg gases — •Stephan Helmrich, Philipp Fab-
ritius, Graham Lochead, and Shannon Whitlock — Physikalisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Hei-
delberg

Directed percolation is perhaps the most prominent example of a
unique class of phenomena which exhibit genuine non-equilibrium
phase transitions and non-trivial critical behaviour. We explore
whether highly tunable gases of ultracold atoms excited to long-range
interacting Rydberg states can serve as a clean experimental realisation
of percolation phenomena in two and three dimensions. The mecha-
nism investigated is the cooperative excitation of Rydberg atoms trig-
gered when the excitation laser is resonant for atoms within a charac-
teristic distance of another Rydberg atom (facilitated excitation). To
simulate the dynamics of this system we use a kinetic Monte Carlo al-
gorithm which is able to reproduce many of the experimental features
of laser excited Rydberg gases. We investigate the scaling behavior
for the fraction of Rydberg excitations (active sites) and their spa-
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