1. NoTnucaHu 3axTeB KaHAMAATA 32 NOKpPeTakbe NOCTYNKa
Hukona 3 Netposuh



HayuyHom Behy UHcTuTyTa 3a dU3unkKy, beorpag

beorpag 28.10.2018.

Mpepametr: Monba 3a nokpeTare U36opa y 3Barbe BULLM HAayYHU CapagHUK 3a Hukony 3.
Netposuha

Monnm Bac ga y cknagy ca 3akoHOM O Hay4HOM paay Kao 1 [MpaBUAHUKOM O NOCTYMKY,
HauYMHY BpeHOBaHa U KBAHTUTAaTUBHOM UCKa3nBaky HAayYHOUCTPAXKUBAUYKUX pe3ynTaTa
UCTpaXKMBaya NokpeHeTe moj n3bop y 3earbe BULLIN HAYYHU CAPAOHUK. Ognyka o mom
n3bopy y 3Barbe Hay4YHM CapafHUK AoHeceHa je 28. Anpuna 2014. loanHe 1 0Baj 3axTeB 3a
n36op ce nokpehe y TPEHYTKY KOju oAroBapa peaoBHOj npoueaypu.

Y npunory:

1. MNoTnucaHu 3axTeB KaHAMAATA 3a NOKPeTakbe NOCTyrnKa.

Muw/bere pykoBoAMOLA NPOjeKTa ca Npesaorom Komucuje Koja he nmucatu
nssewTaj. OBO MUL/bEHE CafPKM U NOTBPAY O PpyKoBONHerYy 3a4aTKOM Ha
NPOjeKTY HA KOjeM CaM aHra*KoBaH.

3. Crpy4Ha buorpaduja KaHanaaTa.

Mpernen Hay4yHe aKTUBHOCTU KaHAMAATa — Npernes rnaBHUX UCTPAXKUBAYKNX
Tema W NOCTUTHYTUX pe3y/aTaTa ca Har1aCKkoM Ha Nepuoa, HaKoH NPeTXo4HOor
nsbopa.

5. EnemeHTV 3a KBAaZIMTATUBHY aHaNM3y paga KaHAnAaTa pa3BpCTaHu no
CTaBKama y cknagy ca NMpunorom 1 MNpaBunHuKa, y3 ob6aBesHe paoKase 3a
CBaKy O/, HaBeAEHMX CTaBKMU.

6. EnemeHTV 32 KBAHTUTATMBHY aHaNU3y paja KaHAWAATA NPUKA3aHU Y BUAY
oarosapajyher gena tabene n3 Mpunora 4 MNpasuaHWKa, Pa3BPCTaHM y CKAaay ca
Mpunosnma 2 n 3 MpasunHuKa.

7. Cnucak ob6jaB/beHUX pagoBa M Apyrux Ny6anKaunja passpcTaH no saxkehum
KaTeropujama nponucaHmum MpasuaHukom. MNMpunmkom nsbopa y 3sarba BULWN
Hay4YHW capafHUK N Hay4YHU CaBETHUK, NOTPEOHO je jacHO M34BOjUTU pagoBe
ob6jaB/beHe HAKOH NpeTxoaHOr n3bopa y 3Batse.

8. TMNopaum o UMTUPaAHOCTM KaHauaaTa, nocebHo 6poj umtaTta 6e3 ayTounTarta.
MpunoxkeHu cy 1 nogaum u3s 6ase Web of Science.

9. 3a KaHampate Koju ce bMpajy y 3Batbe Hay4YHW CapagHUK Uan ce NpBu NyT
6upajy y 3Barbe y Cpbunju NnoTpebHO je NPUNOKUTU U AOKTOPCKY AnNaomy (Mnu
yBepere 0 4OKTOpMpamy), Koja mopa buTK HoCTpudMKOoBaHa, Kag cy y
NUTaky KaHAMAATU KOjU CY je CTEKN Y MHOCTPAHCTBY.

Huje npunoxeHo - OBo Huje npsu n3bop y 3eare!



10. Konuje objaB/beHnx pafoBa M Apyrux nybamkaumnja HakoH NpeTxoaHor
nsbopa y 3Bare (Bep3uje U3 yaconuca, 360pHMKa ancTpakaTa, UTa.).

11. Peweme o NnpeTxoaHOM M360py Yy 3Batbe (3a KaHamaaTe Koju Beh nmajy
Hay4YHO 3Bakbe NPUIMKOM M360pa Y BULIE 3Batbe UK pen3bopa).
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Ap Hukona 3 NMetposuh,

HAay4YHU CapagHUK

MHcTUTYT 3a dM3KKy, beorpag



2. NMpegmeTr: Muwsbere pyKkoBoguoua npojeKkta gp AywaHa
JoBaHoBMha 0 noKpeTarwy U3bopa y 3Bakbe BULLN HAYYHU CapagHUK
3a Hukony 3. NeTtpoBuha

2.a MNoKpeTare NOCTYNKa je y peaoBHOM POKY-KaHAMAaT je usabpaH y 3sarve 30. Anpuna
2014.



HayuHom Behy UHcTUTyTa 33 $PU3KKy, Beorpap,

beorpag 25.11.2018.

MpeameT: Muwberbe pykoBoAKOL,A MPOjeKTa O NOKpeTakby M360pa y 3Barbe BULLM HAYUHU
capagHuk 3a Hukony 3. MNetposuha

Op Hukona 3. Metposuh je aHraxkosaH Ha npojekty 171006 nog pykoBoAacTBOM ap [yliaHa
JosaHoBuha noa Hacnosom: "HenuHeapHa AMHamMUKa JIOKaNIM30BaHMX CaMOOPraHU30BaHMX

CTPYKTypa Yy N1a3mu, HaHO-KOMMNO3UTHUM MaTePUjaNiuMa, TEHHUM U GOTOHMYHUM KPUCTaNMMa U
yNTpaxnagHUM KoHAeH3aTuma."

Hukona MNetposuh ce 6aBu matemaTMykoM GU3MKOM NPUMEHEHOM Mpe CBEra Ha cUcTeme y
He/INHEeapHOj oNTUL M.

Ha osom npojekty Hukona Metposuh pykoBoau 3agatkom: '"AHaIMTUUKA peLlera HeNIMHEeaPHUX
jegHaymHa y ontuym."

Muwberba cam Aa je Konera Merposuh 3340B0/LUO CBE YC/I0BE NPONUCaHE 3aKOHOM O Hay4YHOM
pasy Kao u MNpaBUIIHUKOM O MOCTYMNKY, HA4YMHY BPeAHOBAatba M KBAaHTUTAaTUBHOM MCKa3uBaky
HayYHOMUCTPAXKMBAYKMUX pe3ynTaTa UCTPAXKMBaYa M NOKa3ao 3HayajaH CTerneH CamocCTasiHoCTU Y

Hay4YHOM pagy Te NnoAprkaBaM MOKPETabe MOCTYNKa 3a Heros u3bop y 3Barbe BULIKM HAyYHU
CapagHuK.

3a cactaB Komucuje 3a usbop gp Hukone 3. MeTpoBuha y 3Bartbe BULIM HAay4HU CapagHUK
npeanarxem:

1. [Op Mwunana MNetposuha, Hay4Hor caBeTHMKa UHCTUTYTa 3a dUsKKy beorpag,
2. [Op HajpaHa Anekcuha, Hay4yHOr caBeTHUKa MHCTUTYTa 3a pu3smKy beorpag,
3. [Op *KeskKa WWbmnBaHYaHWHa, HayyHor caseTHUKa MHH BuHua

Pyxoso,qwnau, npojekta 171006
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3. CtpyyHa buorpaduja KaHgunaata Hukona 3 NMerposuh

Hukona MeTtposuh je pohen 12. 03. 1980. roanHe y beorpaay.

3aspwmno je MatemaTtmuKky N'MmHasmjy 1999. rogmHe Kao y4yeHUK reHepaunje ca NpoceKkom
5.00. Y rmumHasuju ce TaKMUYMO Ha TaKMUYerMMa M3 GU3MKe U MaTeMaTUKe Ha CBUM
HMBOMMA HAUMOHANHUX TakKMMYerba. Ha mehyHapoaHUM TakMUuYerMMa je OCBOjMO BULIE
mefasba 0f, Kojux Tpeba w3aBojutM aBe cpebpHe M jeaHy OpoH3aHy Mepasby Ha
MehyHapogHuMm onMmnujagama M3 matematumke. 3axBasbyjyhm TMmM ycnecuma noctao je
cTMneHgmcTa MMHUCTapCTBa 3a HayKy M TEXHOOLWKM PasBo;j.

Aunnomupao je pu3nMKy U matemaTuky y jyHy 2003. roaumHe Ha MacadyceTc MHCTUTYTY 3a
TexHonorujy (Massachusetts Institute of Technology) ca npocekom 4.5 (Ha ckanu og 0 go 5).
Ounnomckn pag je 6Mo Ha Temy KOAOBa 3a WCMNpaB/bakbe rpelaka Yy KBaHTHUM
Komnjytepuma: “Constructing an Infinite Class of Perfect Codes”, ca oueHom b (9). MeHTOp
je 6uo npod. Ucak YyaHr (Isaac Chuang).

Ob6jaBno je ca jow Tpu Koaytopa Kkbury “The IMO Compendium” ca cBum 3agaumma
npeanoxeHnm Ha MehyHapoaHUM maTemaTUYyKUmM onmmnujagama (Springer Verlag, Berlin,
2006). OyroroavuwmbK je capafdHUK McTpaxkmBayKor ueHTpa leTHuua u uynaH [p>kaBHe
KOMMUCUje 33 TaKMU4Yerba M3 MaTemaTuke. Kao ynaH Komucuje 3a Takmuyera u3 pusmnke
Y4Y4eCTBOBAO je Y NPMMAPEMU U OLLEHM 3a[aTaka Ha HAUMOHAHUM TaKMUYEHMMA.

Op 2004. rogmHe Hukona MeTtposuh je y pagHom ogHocy ca MHcTUTyTOM 33 PU3BKKY Yy
beorpagy. Hberos cratyc je 3amp3HyT o4 asrycrta 2005. roanHe Kaga o4/1a3m Ha TeKcawku
A&M yHusepsutetr y Kartapy (Texas A&M University at Qatar) roe je 3anocneH Kao
NabopaTopmjCKM KOOPANHATOP U paau Takohe Kao acucTeHT cee A0 jyna 2012. roauHe, Kaaa
ce Bpaha y WMHctutyT 33 ®Pu3smky. Y centembpy 2012. rogmHe je u3abpaH y 3Bakbe
UCTparkmBaya capafgHuKa. [OKTOPCKY AucepTauunjy nog HacnoBom: “TayHa TanacHa wu
CONINTOHCKA pellera reHepanncaHe HennHeapHe LpeanHrepose jegHauynHe” je ogbpaHmo
16. okTo6pa 2013. roanHe Ha Pusmykom dbakynTeTy YHMBep3uTeTa y beorpaay.

Y 3Barbe Hay4yHU capagHuK M3abpaH je 3. maja 2014. Y beorpagy. AHraXoBaH je Ha NpPojeKkTy
171006 nop pykosoactBom aAp [lywaHa JoBaHosuha 'HenuMHeapHa AMHamMuKa
JIOKANN30BaHMX  CaMOOPraHU30BaHWX  CTPYKTypa Yy  NAA3MM,  HaHO-KOMMO3UTHUM
MmaTepujanmma, Te4HUM 1 GOTOHUYHMUM KPUCTAIMMA U YATPAXNALHUM KOHAEeH3aTUma'.

OrKemoeH je ca cynpyrom TawaHoOM M nma asoje aeue: bopuca n Emunujy.



4. Hukona 3 NetpoBuh: [lperneg HayuyHe aKTUBHOCTU

OnwTK nogauu o aktusHoctuma Hukona 3 Nerposuha
Mog pykoBoacTBOM meHTopa npod. ap Munmsoja bennha, Hukona MeTtposBuh je noveo
2005. rogmHe ga ce 6aBM U UCTPAXKMBaAHMMA Y HEZIMHEAPHO] ONTULM.

Hukona [MeTpoBuh ce 6aBM NpoHanaxerem ers3akTHUX pelera 3a LWKUPOoKe Kiaace
He/IMHEeapHMUX €BONIYTUBHUX NApUMjaHUX  AndEepeHUMjanHUX jeAHAYMHa, YraBHOM
Kopuctehn ce meTofoM eKcnaH3uje no Jakobujesnm enmntuykum dyHKLuMjama. OBaj meTos,
NPUMeHEH je Aocag Ha HEKONMKO 06nKa HennHeapHe LpeauHrepose jegHauynHe, Kao U
Ha jeaHaumHy [poc-MutaesBckor. Takohe, Aocag je KOPUCTMO WM TaKo3BaHY CaMO-CAUYHY
MeToAy M y3 TO pagMo NNHeapHYy aHanu3y CTabuaHOCTM A06MjeHUX pellerba. TPEHYTHO je
aHra)oBaH Ha npojekty MuHuctapcrea npocsete 1 Hayke OMN171006 nog pykoBoACTBOM Ap
[JywaHa JosaHosuha.

Hukona Metposuh je pocag objasmo 20 paposa y yrneaHum mehyHapogHMM 4aconucmma,
O/ KojuXx je jeaaH objaB/beH y NpecTUKHOM Yaconucy Physics Review Letters. YKynaH 6poj
LUMTaTa HberoBmx paaosa Ao caga je 352, npema ISI Web of Knowledge.

BaxHO je nopen HayyHUX pe3yntaTa HAaNOMEHYTU U BULIEroAullkbKM NefarowKkn pag ap
Hukone MNeTtposuha Kao acucteHTa Ha Tekcac A&M yHuMBep3uTeTy, rae je 3a 7 reHepaumja
CTyaeHaTa gprkao sexxbe n nabopatopujy nU3 mexaHuKe, eNleKTPOMArHeTUKe U mMogepHe
¢u3mKe. Y TOKY CBOT UCTPAXKMBAYKOr pasa, ap Hukona MNetposuh je Takohe 6no n meHTOp
HajTaNIEHTOBAHMjUM CTYAEHTUMA, KOju Ccy noa okpumbem npod. Ap Mwunusoja Bbenuha
A0O6MNM NPUNKKY A3 y4ecTBYjy Y HayYHOM UCTParKMBakby M Byay Ko-ayTopu Ha HUKOAMHMM
pagosuma.

AKTMBHOCTM Npe u3bopa y 3Barbe Hay4HU capagHUK U ONUC HEroBUX AONPUHOCA

Hukona MNetposuh ce y cBom paay 6aBMo npumeHoOM 1 MoanMdUKaLNjoM Tako3BaHe MeToae
pa3Boja No JakobujeBMM enunTUYHUM dyHKUMjama, y LW/by NPOHafaXKera HOBMX Kiaca
€r3akTHUX W QHAIMTUYKUX pelerba MYNTUOUMEH3UOHUX TFeHEepPaIMCaHUX HEeIMHEeaPHUX
WpeanHrepoBux jegHaumMHa, Kao M pyrux jeaHaunHa. K/byyHu OOMNpPUHOC KaHAMAATA je
6una reHepanusauvja metoge JakobujeBux enuNTUUYHMX OYHKUMja Ha HenuMHeapHy
LWpeanHrepoBy jefHauYMHy ca KybuuyHom HenuHeapHolwhy y 3 AMMeH3Mje, Koja je aoTan,
NPEeTXOAHO NpUMerbeHa Ha 2 AMMeH3uje, y pady Yy Kojem je n Hukona lMetposuh 6umo
YK/byyeH. Pag y Kome cy OBM pe3ynTath npeseHToBaHM je objas/weH y Physical Review
Letters M noctao je BMCOKO UUTMPAHW pag Koju je OTBOpMO UuUeny jeaHy nogobnact
matemaTtmyke ¢pusmke. [lobujeHn cy n TamHU U CBETAN CONUTOHM, y 0ba cnyyaja ca u bes
npoctopHor u4upna. KoHTponuwyhu napametap JakobujeBux o¢yHKumja pobuja ce
CO/IMTOHCKM Tanac Kao rpaHMYHKU Cyyaj pellerba Koja onucyjy 6eckoHavaH Hu3 nyTyjyhux



Tanaca. JobujeHa pewera UMajy BennKy GAeKCMBUNHOCT y 3aBUCHOCTU 0f, NapameTapa
jeAHauYnHe — KoeduumjeHaTa gudpaKkumje, HeAMHeaAPHOCTH, U rybuTaKa; jeauHO jeaaH oA
TPM nNapameTpa mopa 6utn geduHucaH y GYHKUMjU OCTanmx. 3a pasInKy o4 NPEeTXoaHMUX
pafoBa Ca jeAHAYMHOM y 2 AMMEH3Mje, Yy OBOM HOBOM paay je ynora umpn ¢yHKUMje
KOHAYHO pasjalwHbeHa.

Y HapeagHum pagoBuMa je meToda JakobujeBux ennnTuuHmMx dyHKUMja moandumkoBaHa Aa
61 ce NnpoHalwna pelera 3a C/ly4aj HOpManHe gucrnepsuje, Koju MMa MHOTo WKupy GUanyKy
NPMMeHY of C/yyaja aHoOMasiHe aucrnepsuje u aotad Huje 6uo ypaheH. Op MeTtposuh je
OTKPMO Ha KOjM Ha4YMH Aa ce NpoMeHn obaMK peluera Kako 6w ce ysena y 063uMp aHTU-
CMMETpPUja BpeMeHa Y OAHOCY Ha ocTane TpaHchep3He Bapujabne. Mako ce pUanYKKM cuctem
HOpMa/He guchneps3nje KBAaANTAaTUBHO 3HATHO Pa3/IMKyje o4 CAyyaja aHOMasHe aucnepsuje,
nokasano ce ga ce moaMdPuKaumjom camMo HEKOZIMKO NapameTapa mory Aobutn pewerba u
3a 0Baj C/y4aj.

MeToaa JakobujeBux ennnTUUHMX OYHKUMjA je 3aTUM reHepanncaHa Ha cucTeme ca
HennHeapHowhy Buwer cTeneHa, MNPUrogHOM MoauMdUKaALMjOM CTeneHa pellera. Y3
oapeheHe cneuudunyHe ycnose npoHaheHa Ccy CONMTOHCKA pellerha M 33 KybuyHo-
KBUHTMYHM (qubic-quintic) un 3a KyBbMYHO-KBUHTMYHO-CceNTMYHK (qubic-quintic-septic) moaen.
OBO WUCTparkMBatbe je OTBOPMAO MOryhHOCT €BEHTYa/IHOr HajaXKera pellera ca
catypabunHom HennHeapHouwhy.

Motom je Hukona lMeTposuh npumeHno metoay Ha jeaHaunHy [poc-MNuTtaesckor (Gross-
Pitaevski), Koja uma o06auK HenuHeapHe LUpeanHrepoBe jeaHauMHE ca YK/by4dyjeHUM
napabonnyHum noteHuujanom. Hukona MeTtposuh je ycTtaHoBMO Aa je Hajnpe noTpebHo
pewnTn Tako3BaHy Pukatujesy (Riccati) andepeHumjanHy jeaHaunHy pga 6u ce pgobuno
pewere jegHaymHe [poc-MNuTtaesckor. C ob63npom Ha To pa je PuKatujeBy jeaHaumHy
Hemoryhe peLlnTr y ONwTemM CAydajy, KaHaAnaaT je UCTPaXKMO CydajeBe Koju MMajy no3HaTa
pewera a 04, GU3MYKOr Cy 3Ha4yaja. 3a KOHCTAHTHE BPEeAHOCTM MapameTpa audpakumje m
jaunHe noteHuujana AobMO je pellera Koja onaaajy UM UMajy CUHIynapuTeT U yTBPAKNO Aa
je pewetrba Koja onagajy moryhe ctabunmnsoBatM g0AaTHMM Hanajakbem eHepruje (gain) y
TayHo oapeheHoj mepu. Ca gpyre cTpaHe, 3a CUHYCONAHU 06NMK NnapameTpa audpakumje m
jaunHe noteHumMjana aobuo je ctabmaHa TanacHa M CO/IMTOHCKA pellersa. Ap MeTposuh u
ctyaeHT AHac An bactamu, Kome je Hukona 61Mo meHTOp, cy yTBpAMAN Aa je moryhe 3a
KOMMMKOBaHuWje 061MKe napameTapa cBeCcTM PuKaTujeBy jefiHauMHy Ha pelunBy AMHEapHy
jeaHaunHy apyror cteneHa, y KOM cAaydajy ce Aobuja LIMPOKA Knaca HOBUX pellera
jeAHaunHe [poc-NMnTaeBCKU, YK/bYYMB U pellerwa 3a caydaj Pewbaxose (Feschbach)
pe3oHaHLue. Pewera gobujeHa 6u morna MMmaTu LWUMPOKY NPMMEHY ca 0631pom Ha To ga ce
jeaHaunHa [poc-MNuTaeBckn Kopuctn y npoydaBawby bBo3-AjHwTajHoBMx (Bose-Einstein)
KOHAeH3aTa.



KaHauaat je aabe mogmdrMKoBao MeToAy 3a CAy4vaj Aa NoTeHUMjan Huje napabonnykm Hero
JIMHeapaH M y TOM cayyvajy cy npoHaheHa pellera 3a KOHCTAaHTHY BPeAHOCT MapameTpa
andpakumje n jaunHe notTeHUKnjana, 3a cMHyconaanaH obanK oBa ABa NapameTapa, Kao 1 3a
oba melliaHa ciyYaja, Tj. Kaj je jeaaH og napameTapa KOHCTAHTaH a Apyru CUHyconaanaH.

MeTtona je op ctpaHe [p [etpoBuha Takohe no npBM NyT NpUMereHa W Ha
OBOKOMMOHEHTHe, T3B. MaHaKoB/beBE CUCTEME, TayHWje Ha MNap KO- WM  KOHTpa-
nponarupajyhux tanaca. NpoHaheHa cy pelwena 3a C/yyaj Kaj je o4HOC YKpLTeHo-dpasHe
(cross-phase) n camo-dasHe (self-phase) moaynaumje jegHak 3. YNpKoc ToOme WTO HUje 6uno
moryhe oBom meTogom fobutn onwTa pewera MaHaKoOB/bEBOT CUCTEMA, CUCTEME Ca OBUM
04HOCOM ABejy moaynaumja je moryhe HanpasuTu.

AKTUBHOCTM nocne n3bopa y 3Bakbe HayuyHU CapagHUK M ONUC NEeT UCTaKHYTUX PajoBa U3
TOr Nnepuopa

Op npetxoaHor usbopa Hukona MetposBuh je objaBno pecetr pagoBa y mehyHapoaHMM
yaconucmMma og Yera 5 y yaconucuma Kateropuje M21la v gBa y 4aconucuma Karteropuje
M21. Kao nocebHo 3HayajHM uCTMYy ce cneaehux neT pagoBa o4 KOjux npBa ABa
AEMOHCTPMpPajy AOMMHAHTaH YyAeo KaHAugata Te npeactaB/bajy  AOKas  Herose
CaMOCTa/IHOCTH

PagoBu ca LOMMHAHTHOM Yy/10rOM KaHAMAaTa

1. Ap HuKkona Metposuh y oBom nepuoay aosBpwmo pag [19] y Kojem ce aHanusmpa
CTabuNHOCT MHOrobpojHUX pellerba Koje je AobuMo meTogom pasBoja Mo JakobujeBum
enmMNTUYHUM PyHKLMjama 06jaBMO Y HEKOZIMKO BUCOKO UUTUPAHUX PagoBa Y MPECTUNRHUM
yaconucuma y nepuoay og 2008. go 2011. rogmHe. Y capaamu ca ap HajgaHom Anekcnhem
n npod. ap Munusojem bennhem, ypaheHa je aHann3a cTabUAHOCTU pellerba HEeIMHEeaPHE
WpeanHrepose jegHavymHe ca HOPMaJIHOM M @aHOMAJIHOM AUCNEP3UjOM U jegHaunHe poc-
MuTajesckor. Hajnpe je ypaheHa TpaHcdopmaunja Koja HenuHeapHy LUpeauHreposy
jeAHaunHy ca guctpubympaHnm KoeduumjeHTUMa CBOAM Ha jeAHaAYMHY Ca KOHCTAHTHUM
KoeduumjeHTMMA. 3aTUM je KOHCTpyucaH oarosapajyhu JlarpaH:KunjaH n nod NPeTnocTaBKkom
nocTojatba MoAynaunoHe HecTabuaHocTM cy aobujeHe jegHauyMHe 33 HUXOBY LLESIOKYMHY
aMmnAuTyay, Tj. HEeH peanaH W umarMHapaH geo, y OyHKUMjM opf TanacHor 6poja
nepTtypbaumja. 3aTum je cuctem jegHaumHa peweH aa 6u ce gobuno ga Am napameTpu
ANBEPrUpajy UAn He n TUMe OApeansIo A3 NN pellerwa UMajy cTabunHoct. YTBpheHo je gay
CBMM CANy4vajeBMMA pellerba Nnoceayjy WAM anconytHy cTtabuaHocT mam ctabunHocT ys3
NMPUCYCTBO TaKO3BaHOI MeHakuparba Aucnepsuje, Tj. anTepHMpara 3Haka KoeduumjeHTa
aucnepsnje y3 nomoh meTtamaTepujana. AnconyTHa ctabunHocT je yTtBpheHa y Tpu
ANMEH3Mje 32 TAMHe CO/IMTOHE Y aHOMA/THOj ANCNEP3NjK, N 3a CBET/Ie BPEMEHCKe CO/IMTOHe
y HOPManHOj Aucnep3unju, AOK je y ABe AMMeEH3Mje anconyTHa ctabunHoct ytepheHa 3a cee
TamHe conutoHe. OBM pe3ynTaTu Cy NPOBEPEHM KOMMjyTEPCKMM CMMynaumjama n gobujeHo



je CKOpo MOTNyHO cnarakbe y peweruma 6e3 ympna u u3y3eTHO A06PO KBANUTATUBHO
Ccnararbe Koje y cBakoM c/iy4ajy notephyje KpuTepujyme anconytHe ctabunHoctn y
pewerwnma ca ympnom. Ap. Hukona MeTpoBuh je Kao npBM ayTop Yy4ecTBOBaO Y CBUM
acnekTama OBOr paja OCUM KOMMNjyTEPCKMUX cCumMmynauumja.

2. Ap Hukona Metposuh je y oBom nepmogy Hanucao u pag [18] y kome je jeanHum aytop. OH
je reHepanuncao ceBoje meTofe 3Ha cucTteme HenmHeapHux LpeanHreposux jegHauunHa rge
cTeneH HeJIMHeapPHOCTU HUje LLeo H6poj, Kao 1 rae NocToje ABA YNaHa, jefaH ca gynno sehum
cteneHom og apyror. OBo je ypaheHo nomohy TpaHcdopmaumje Koja je cBoamMna CUCTEM Ha
cuctem ca KoeduumjeHTMMa uLenobpojHor cteneHa. [locebHa na)kwa je nocseheHa
TAKO3BAaHMM KYOMUYHO-KBUHTUYHMM CUCTEMMMA KOZ KOjuUX Cy HaheHe BennKe Knace HOBMUX
pellerba jep ce cay4yaj ca TUM BPeAHOCTMMA MCMOCTaB/ba Kao cneunjanaHd cayyaj. lobmjeHa
CY He camo pellera 3aCHOBaHa Ha JakobunjeBoj ennnTUYHOj YHKLUMjM, HETO N pellera Koja
cagprke Tako3BaHW uupn. HapasHO, CBM NpopayyHW U pesyaTaTtn y pagy cy uM3BefeHu o
cTpaHe Op. Hukone MNetposuha.

Onuc ocTanux penpeseHTaTUBHUX PajoBa

Hukona MeTpoBuh ce y nouyeTky y cBom paay 6aBMo npumeHOM M MoaudUKauujom
TaKO3BaHe MeTode pasBoja no JakobujeBMM enunTuyHUM  QyHKUMjama, Yy UUby
NPOHANAXKeta HOBUX KNAca ErsakTHUX M aHA/IMTUYKUX pellerba MYyATUAUMEH3NOHUX
reHepanncaHux HeanHeapHux LLpeanHreposux jeaHauymMHa, Kao U Apyrux jeaHavymHa. HakoH
MOYETHUX pe3ynTaTa YK/bYYEHUX Yy HEroBy AOKTOPCKY AWCepTauMjy, OH je NPOoLWMpUO CBOj
OOMEH paga u npoaybuo capagky ca Koserama 3 KuHe Koje ce 6aBe canyHom obnawhy.

3. Y capaatbum ca npodpecopom Bennunr *oHrom (Wei-Ping Zhong), Hukona je yyectBoBao y
pagy Ha yTtBphuMBary MOCTOjatba KOHTPOMCAHUX NAPaboNUYHO-LUMANHAPUYHUX OUBIBUX
Tanaca (rogue waves) [14]. OuB/bn Tanacu cy TPEHYTHO BP/IO aKTyenHa Tema y CBeTy
He/NMHeapHe ONTUKe (@ U Wupe) jep HacTajy M3HEHaga M MMajy BENWKU WHTEH3UTET, Te
FUXOBO MpPOy4YaBakbe je jako BUTHO y UM/by yCcnewHe NpPUMeHe HeNMHEeapHUX ONTUYKMUX
cuctema. Y pagy cy aobujeHn AmB/bM TanacuM uvja amnavtyaa je nponopuuoHanHa
napabonnyHo-UMANHAPUYHOj dyHKUMju. p Hukona MeTposuh je yuecTBoBao y HanaxKery 1
npoBepu UCNPaBHOCTU JaTUX peLleHba.

3atum je ap Hukona MeTtpoBuh yyecTtBOBaO y AYyroroAmMH0j U NAOAOHOCHO] capatu ca
dusunyapem us KuHe Cunmnjy Cyom (Si-Liu Xu). Y cepuju on HekonuKo pagosa ap Hukona
MeTposuh je fa0 BENMKKM JONPUHOC Yy peannsaumju naeja, NpoBepu Ta4HOCTU, NPaB/beEHY
nAycTpaumja n nucamy pagoBa Koje je 3ajegHo ca ap Cyom objasuo.

4. Y pagy [15] je KopuwheHa Tako3BaHa camoc/MyHa TpaHcdopmaumja ga 6bu ce gobuna
pelwera HeNnHeapHe TpoaumeH3noHe LlpeanHrepoBe jefHayMHe C YETBPTUM CTENEHOM
HennHeapHOCTU. [Jo6MjeHn cy U TaMHM U CBETAW COJIMTOHM KAO pellerba 33 HEKOJIMKO
PasANUMTUX MaTeMaTUykux obanka KoeduumjeHTa audpakumje M NpoyyaBaHO je
ANHAMMYKO NOHAaLlLaHe CBETNIOCTM Y AATUM CpeguHamMa.



5. Y paay [16] cy HaheHa pewera 3a (3+1)-gumeH3noHy HenunHeapHy LUpeauHreposy
jeAHauMHy ca HeuenobpojHMm cTeneHoM M Tako3BaHuM [T (parity-time) cumeTpuyHUM
noteHumjanom. YpaheHa je TpaHchopmaumja chMyHOCTM 1 fobujeHe jegHaumHe Takse Aa 3a
CBakKM 06AMK pellera NOCTOjU oarosapajyhv noTeHUMjan TakaB f[a je OpUrMHaAHa
HennHeapHa LpeauHrepoBa jegHaunMHa ucnykweHa. OBo oTBapa MOryhHOCT Hana)kema
pelwera NOKANN30BAHMX Y CBUM TpaHCHEpP3HMM KOOpAMHATaMa, TaKO3BAHUX CBETNOCHMUX
MeTaKa.

Onuc npeocranux pagosa

Y paagy [17] u3 KaTeporuje M2la, HaheHa cy pelwera HenuHeapHe LUpeanHrepose
jeaHaYMHe 4YeTBpPTOr CTeneHa y UMAMHOPUYHMM KOOpAMHATama. 3a napameTtap Be3aH 3a
amnauTyay je gobujeHa KOHAYeHTHa XunepreomeTpujcka audepeHuMjanHa jeaHayvmHa
ynja cy pewemra TakosBaHe CoHuHe dyHKUMje. YTBphHEHO je aa cy peluersa cTabunHa Kag je
TOMOJIOLWKO HaeneKkTpucare mame og 1, a HectabunHa Kag je sehe og, 2.

Y paagy [20] u3 kateropuje (M21) HaheHa cy pelwera y HennHeapHoj LpeanHreposoj
jeaHaumHu ca MT-CMMETPUYHMM NOTEHUMjASIHOM U CYNPOTCTaB/bEHUM HENUHEeaPHOCTUMA
cteneHa 3 u 2k+1. JobujeHa cy NOKann30BaHa pellera y CBUM KoopAuHaTama Ha 6asu
xmnepboanYKor cekaHca.

Y paay [25] 3 kateropuje (M51) cy HaheHa peluerba 3a HEJIOKAHU U HEeZIMHEAPHU CUCTEM,
nedrMHUCAH ABema jeAHAYMHaMma, jeHOM 33 apellere M APYyrom Koja ogpehyje jaumHy
MHOEKCca npenamama y [atoj Tauyku. [obujeHa pelwera ce 3acHMBajy Ha Jakobujesum
ennTuyHum dyHKumjama. Hajasaa, ypaheHa je ocHOBHa aHanm3a ctabunHoctn u ytepheHo
Aa Cy 33 Be/IMKe anconyTHe BpeaHOCTU KoeduumnjeHTa andpakumje pewerba ctabunHa, 40K
Yy MaJIMM BpeaHOCTMMA HacTajy HecTabuaHocTu.

Y paay [21] u3 kateropuje (M22) cy HaheHa pellerba 3a ABOKOMMOHEHTY He/NHEeapHY
WpeauHrepoBy jeaHa4ynHy Koja cy 3acHoBaHa Ha lNeperpuHosum, AKkmegujesmum 1 Maosum
pelwernuma.

KoHauHo, y paay [22] u3 kaTeropuje (M23) je ap Hukona MeTtposuh y capagru ca CBOjUM
ctyaeHTom Mousom BOXpom Halao pellera 3aCHOBaHA Ha onwTem O6/MKY ennunTuyHe
AndepeHumjanHe jegHaunHe rae je KBagpaT M3BOAA jefiHaK OMwTeM MOJIMHOMY YeTBpTOr
cTeneHa opurMHanHe ¢GyHKUMje, AaKne rae ce 3a pPas/IMKy o4, jegHaunHe 3a Jakobujesy
eNnNTUYHY GYHKUMjY YK/bYYyjy YnaHoBm npsor u Tpeher cteneHa. HaheHa cy pelwera Ha
OoCHoBY BajepwTpacoBe enmMnTnyHe ¢yHKUMje U HAa OCHOBY OMLITUX EAUNTUYHUX PYHKLM)a
KOje HUCY CUMETPUYHE Y OAHOCY Ha Cpeatby BPeAHOCT MaKCMMyMa U MUMUMYMa GyHKUM]e.



5. ENEMEHTU 3A KBAITTUTATUBHY OLIEHY HAYYHOI IONPUHOCA
KAHAUAATA: HUKOJ1A 3 NETPOBUR

5.1 KBanutet Hay4yHuUX pesyatara
5.1.1 Hay4yHu HMBO M 3Hau4aj pe3yATaTa, YTULAj HAyYHUX pajoBa

Op Hukona 3 MeTtposuh je y gocafawmoj Kapujepu 61M0 ayTop MAM KoayTop y3 AaBakbe
K/byYHOr gonpuHoca y yKynHo 20 pafa W ABa pafa ca KoHobepeHumja, 0b6jaB/beHUX Y
mehyHapogHum 4vaconucuma ca ISI nucte. Op Tora je 9 papgoBa y Kateropuju M2la
(mehyHapoaHM uYaconucu W3y3eTHUX BPeaHoCTM), 6 y KaTeropuju M21 (BpPXYHCKM
mehyHapoaHu yaconucu), 3 (1) y kateropuju M22 n 2 (1) y kateropmju M23.

Y nepuoay HakoH oanyke HayyHor Beha o npeasory 3a cTuuare NPeTXOAHOr HayyHor
3Baba, Ap HuKona 3 MNetposuh je ob6jaBmo 9 pagoBsa y yaconncuma ca ISI amcre. Og tora je 5
y 4aconucuma Kateropumje M2la (mehyHapogHu 4yaconucu W3y3eTHUX BpepHocTH), 2y
Yyaconucuma KaTeropuje M21 (BpxyHCKM mehyHapoaHu udaconucu), 1 y 4vaconucmma
Kateropuje M22 n 1 y yaconucmma Kateropuje M23. Takohe je nybankoBao v jegaH papg
M51 y Boaehem MHANjCKOM Yaconucy U3 onTUKE.

YTUuaj Hay4yHUX pagoBa ce BUAM Ny cekumnjm 5.1.2. Kpo3 npukasaHy ymtupaHoct. Ogpxao je
W ABa npejasakba Mo NO3UBY Ha HAYYHUM CKYNnoBMMaA.

Kao HajsHauyajHMjux neT pagoBa KaHAMAATa Mory ce y3eTu (6pojesu pedepeHue cy
KOH3UCTEHTHW Ca KOHAaYHOM IMCTOM PaZoBa U3 cekuuje 7):
[18] N. Z. Petrovié, “Spatiotemporal traveling and solitary wave solutions to the generalized

nonlinear Schrodinger equation with single-and dual-power law nonlinearity,” Nonlinear
Dynamics 93 (4), 2389-2397 (2018) IF=4.339 (8/134) SNIP=1.75

[19] N. Z. Petrovi¢, N.B. Aleksi¢, M. Beli¢, “Modulation stability analysis of exact
multidimensional solutions to the generalized nonlinear Schrodinger equation and the
Gross-Pitaevskii equation using a variational approach,” Optics Express 23 (8), 10616-10630
(2015) IF=3.148 (14/90) SNIP=1.67

[14] W. P. Zhong, L. Chen, M. Beli¢, N. Petrovié, “Controllable parabolic-cylinder optical
rogue wave,” Phys. Rev. E 90 (4), 043201 (2014)  IF=2.288 (5/54) SNIP=1.14

[15] S. L. Xu, N. Petrovi¢, M. R. Beli¢, “Exact solutions of the (2+ 1)-dimensional quintic
nonlinear Schroédinger equation with variable coefficients,” Nonlinear Dynamics 80 (1-2),
583-589 (2015) IF=3.000 (8/135) SNIP=1.47

[16] S. L. Xu, N. Petrovié, M. R. Beli¢, W. Deng, “Exact solutions for the quintic nonlinear
Schrédinger equation with time and space,” Nonlinear Dynamics 84 (1), 251-259 (2016)
IF=3.464 (8/133) SNIP=1.54



[JeTtasmaH onuc neT oaabpaHMx pagoBa Koju je Beh npe3eHTMpaH y o4e/bKy 4. a Koju
YK/by4yje 1 ABa paga KOju ce KOPUCTE KAo A0Ka3 32 CAaMOCTa/IHOCT KaHAmMAaaTa a
WUCTOBPEMEHO ¢y U3 rpynaumje M21a nam M21.

PapoBu ca LOMUHAHTHOM Y/IOrOM KaHaupata

1. Op Hukona Metposuh y oBom nepuoay amospwuno pag [19] (no pedepeHuama w3
KOMMNJIETHE /INCTE PafoBa) Y KojeM ce aHanAn3mnpa CTabuiHOCT MHOrobpojHUX peLlerba Koje
je [obro meTogom passoja no JakobujeBMm ennnTuiHMM PyHKLUMjama 06jaBMO Y HEKOIMKO
BMCOKO LMUTUPAHUX pagoBa y NPecTMHMM 4vaconucuma y nepuogy og 2008. go 2011.
roguHe. Y capaghu ca gp HajaaHom Anekcuhem m npod. ap Munmsojem bennhem, ypaheHa
je aHanm3a ctabunHocTM pewwera HeanHeapHe LWpeanHrepose jegHauymMHe ca HOPMAJHOM U
aHOMaNHOM aucrnep3vjom W jegHaumHe [poc-MutajeBckor. Hajnpe je ypaheHa
TpaHchopmaumja Koja HenuHeapHy LpeanHrepoBy jeaHaumHy ca  gucTpubympaHum
KoepuUMjeHTUMA CBOAM HA jeAHAYMHY Ca KOHCTAHTHMM KoeduuumjeHTMMa. 3aTum je
KOHCTpyucaH ogrosapajyhu JlarpaHKujaH 1 nog, npeTnoCcTaBKOM NOCTOjakba MOAY/NALMOHe
HecTabunHocTK cy AobujeHe jegHaAYMHe 3@ HUXOBY LLENOKYNHY aMNAnTyAy, Tj. beH peanaH
M uUMmarvHapaH geo, y ¢yHKUMjM oA TanacHor 6poja neptypbaumja. 3atmm je cuctem
jeAHauYnHa peweH ga 6u ce pobuno ga M napameTpu AMBEPrUpPajy UAM He U TUMe
oApeaunno A anu pewera MMajy ctabunHoct. YTepheHo je Aa y CBMM CyyajeBUMA pellera
noceayjy WAM anconyTHy CTabuAHOCT WMAM  CTAabUAHOCT Y3 NPUCYCTBO TAKO3BaHOr
MEeHaXuparba Aucnepsuvje, Tj. anTepHUparba 3HaKa KoeduuujeHTa agucnepsunje y3 nomoh
meTamaTtepujana. AnconyTHa ctabunHoct je ytBpheHa y Tpu AMMEH3Mje 3a TaMHe CO/IMTOHE
Y QHOMAJ/IHOj AMCMEeP3njU, N 3a CBET/IE BPEMEHCKE COIMTOHE Y HOPMAJIHOj AMUCMEepP3nju, OOK
je y ABe AuMeH3mje anconytHa crtabunHocT ytBpheHa 3a csBe TamHe conuToHe. OBu
pe3ynTaTu cy MNPOBEPEHU KOMMjyTEPCKMM cuUMynaumjama U obujeHo je CKOpo MOTNYHO
cnarame y pelwermma 6e3 umpna 1 nsyseTHo A06po KBANIMTATUBHO Cnarakbe Koje y CBakom
cny4yajy notephyje KpuTepujyme anconytHe cTabuaHoOCTM y pellersuma ca ympnom. p.
Hukona MeTpoBuh je Kao NpBM ayTOp Y4ecTBOBAO Yy CBMM acMeKTama OBOr paga OCuMm
KOMNjyTEPCKUX CMMYTaLuja.

2. Op Hukona MNeTtposuh je y oBom nepuoay Hanmcao v pag, [18] y kome je jeanHu aytop. OH
je reHepanncao cBoje meToge 3Ha cUCTeMe HesMHeapHux LpeanHreposux jegHauvymHa rae
CTeneH HeJIMHEeapHOCTM HUje Leo 6poj, Kao 1 rae NocToje ABa YnaHa, jeaaH ca gynno sehum
cTeneHom og, apyror. OBo je ypaheHo nomohy TpaHchopmaumje Koja je cBogmMna CUCTEM Ha
cuctem ca KoeduumjeHTMMa uLenobpojHor cteneHa. [locebHa naxkwa je nocseheHa
TAKO3BaHUM KYOUUYHO-KBMHTUYHMM CUCTEMMMA KOJ, KOjuUX Cy HaheHe BennKe Knace HOBMX
pellerba jep ce cay4vaj ca TUM BPpeAHOCTMMA MCMOCTaB/ba Kao crneunjanaH cayyaj. JobujeHa
CY He camo pellera 3aCHOBaHa Ha JakobunjeBoj enunTuYHOj PYHKUMjK, HETO U pellera Koja
cagp)ke Tako3BaHW umpn. HapasHO, CBM NPOpPavYyHU U pe3ynTaTm y paay Cy M3BeAEeHU of,
cTpaHe ap Hukone Metposuha.



Onuc ocTanmx penpeseHTaTUBHUX paaoBa

Hukona MetpoBuh ce y noyeTky y cBOm pagy 6aBvo npumeHom M moauduKaumjom
TaKO3BaHe MeTode pasBoja no JakobujeBMM enunTMdyHUM  GyHKUMjama, Yy UUby
NPOHaNaXKeHa HOBUX K/aca er3akTHUX W aHa/JIMTUYKUX pellera MyATUAMMEH3NOHUX
reHepasancaHmnx HennHeapHux LpegmHrepoBmx jegHaumHa, Kao U Apyrux jeaHauymHa. HakoH
NMOYETHUX pe3ynTaTa YK/bYYEeHUX Yy HEroBy AOKTOPCKY AMCepTauujy, OH je NpoLMpUo CBOj
AOMEH paga v npoaybumo capaakby ca Konerama mns KuHe Koje ce 6aBe chmyHom obnawhy.

3. Y capaatbu ca npodecopom Beununr *oHrom (Wei-Ping Zhong), Hukona je yuectBoBao y
pagy Ha yTBphMBarby MNOCTOjakba KOHTPOIMCAHWUX MAPaboANYHO-LUAMHAPUYHUX OUB/bUX
Tanaca (rogue waves) [14]. OuB/bK Tanacu cy TPEHYTHO BP/IO aKTye/lHa Tema y CBeTy
HeNMHeapHe ONTUKe (@ M Wwupe) jep HacTajy M3HEHaZa M MMajy BENWKM WHTEH3UTeT, Te
FUXOBO MpPOy4YaBakbe je jako BUTHO y UM/by yCrnewHe NpUMeHe HeMHEeapHUX OMNTUYKMUX
cuctema. Y pagy cy pobujeHn AMB/bM Tanacu uuja aMnauMTyga je NponopuMoHasHa
napabonnyHo-uNMAnMHAPUYHOj dyHKumMju. p Hukona MeTposuh je yuecTBoBao y HanaxKery u
npoBepu UCMPaBHOCTU AaTUX peLleHba.

3atum je gp Hukona Metposuh yyecTBoBao y Ayrorogvmboj M NAOAOHOCHO] capagku ca
¢u3myapem mns KuHe Cunujy Cyom (Si-Liu Xu). Y cepuju on HekonuKo pagosa ap HuKkona
MeTtposuh je fao BENMKKM JONPUHOC Y peanusaumju uaeja, NpoBepu TaYHOCTU, NpaB/bekby
nnycTpaumja u nucamy pagosa Koje je 3ajegHo ca ap Cyom objasuo.

4. Y pagy [15] je kopuwheHa Tako3BaHa camoc/nMyHa TpaHcdopmaumja ga 6bu ce gobuna
pelwera HelnHeapHe TpoaumeH3noHe LlpeanHrepoBe jeaHayMHe C YETBPTUM CTENEHOM
HennHeapHOCTU. [JobWjeHn cy M TamMHM U CBETIN CONUTOHM KAO pellera 3a HEeKOUKO
PasNMUUTUX MaTeMaTUYKMX obamka KoeduumjeHTa Aaudpakumje M  NpoyyvyaBaHo je
AVNHAMMYKO NOHALLAHEe CBETNIOCTM Y AATUM CpeguHama.

5. Y paay [16] cy HaheHa peluera 3a (3+1)-aMmeH3noHy HenuHeapHy LpeauHreposy
jeAHauYnHy ca HeuenobpojHUm cteneHom M TakosBaHum MT (parity-time) cumeTpuyHUM
noteHumjanom. YpaheHa je TpaHchopmaumja cnmyHocTm n gobujeHe jegHauymHe Takse Aa 3a
CBakM 0OAMK pelwera NocToju oarosapajyhu noTeHUMjan TakaB Aa je OPUrMHaAHA
HennHeapHa LUpeanHrepoBa jegHaumMHa ucnykweHa. OBo oTBapa MoOryhHOCT Hanaxkera
pelera NOKaAN30BaHMX Y CBMM TPAHCBEP3HMM KOOPAMHATAMA, TaKO3BaHMUX CBET/IOCHMUX
MeTakKa.

e OcTane nokasatesbe, NogesbeHe y gse rpyne (A v b), npoueryje MOD:

1 A 0o 5 nsabpanHux pagosa - MpukasaHo 5 pagosa

yTuuajHoct (ysumajyhu y o63mp n 2.6) BehuHa
pagoBa u3s Kateropuje M21a u M21. [Ba paga
umajy npeko 100 uurtata no cuctemy Google
Scholar.




[0AaTHU 6nbnmomeTpujckn nokasaresbn*

MpukasaHa Tabena

WMCTAKHYTOCT, CAMOCTA/JIHOCT, AY)WMHA pajoBsa,
Paposu y Bogehum yaconucuma nonyt Physical
Review Letter, pagoBsu ca npeko 100 uuraTa.
CamocTaslHOCT MNOKasaHa Yy  4vaconucuma
Hajsuwer paHra M21 u M21a, Kao u y octanum
yaconucuma.

NPMMeEH/bUBOCT, Harpage- O63upom pa je pagp,
NpeTe}XXHO TEOPUjCKOr KapaKTepa He nocToje
TeXHU4Ke peanusauymje. Unak Tematuka ce
OAHOCM Ha nNpoOCTUpabe CBET/NIOCTU nopep,
OCTazIor U KPO3 TaNacoBoAe Kao U peanusaumjy
KBAaHTHO MHXXEHEPCKUX CUCTEMA Y OKBUpY
ONTMKE MONYyT KBaHTHUX payyHapa na uma
WHAUPEKTHY NPUMEHUBOCT.

JopaTHn BubanomeTpujckm nokasatesbm (Tauka 2 MN1N) cy:

N M cHUAN
YKynHO 24,526 76 11.19
Yepeprero |, e 7.6 1.24
Mo YNaHKy
YepearweHo | 1 5e 30.75 4.629
no ayTopy

5.1.2 MNo3uTUBHA LUTUPAHOCT HAYYHUX Pafo0BaA KaHAUAATa

Mpema 6a3m WOS pagoBu KaHAMAaTa Cy UMTMPaHW YKynHo 352 nyTta, AOK je 6poj
umTaTa 6e3 aytoumtata 308. Mpema uctoj 6a3m H-nHaekc kaHamnaara je 8.

Mpwunor: nogaun o UMTUPAHOCTU Ca MHTEPHET cTpaHunue WOS.

Ha 6a3u Google Scholar uma 515 uutarta (Wwto yk/bydyje n 54 umntata Krbure IMO
Compendium) u H ¢akTop 10.

Huje npumeheHa HMjegHa WMHCTaHUA HEraTMBHe UMTUPAHOCTU a Yy OPOjHUM CayyajeBMMa
MmeToge W3 padoBa 3a Koje je OCHOBHM pJonpuHocT gao Hukona 3 [letposuh cy
npumerbmMBaHe y Apyrum nybamkaunjama.

5.1.3 NMNapameTpu KBanUTETa Yaconuca

Uy nepuoay npe 1y nepmoay nocne nsbopa KaHanaat je sehmHom objaB/bnBao pagose y
yaconucuma Kateropuje M2la u M21. YKynaH ¢aktop yTuuaja (36up mmnakt daKkropa)
pafoBa KaHauaaTa je 49,448, a y nepuoay HakoH oanyke HaydHor seha o npegnory 3a
CTUUaHe MPeTXoAHOr HayyHor 3Bakba Taj daKktop je 24,526. KaHampaat je objaB/bMBao



pafoBe Yy HajyrneaHnjum Yaconucmma m3 werose obnactu. MocebHo ce mehy UMa nUctuuy:
Phys. Rev. Lett., Nonlinear Dynamics, Physical Review A 1 E. n Optics Express.

Y Kateropuju M2la, M21, M22 n M23 KaHauaat je objaBno pagose y cnegehum
Yyaconucuma, rge cy NMocebHO 03HAYEHM OHM YACOMUCK Y KOjUMa je KaHauAaaT 06jaB/bMBa0 Y
nepuoay HakoH oanyke HayyHor Beha o npegnory 3a cTMuakbe NPeTXo4HOr Hay4yHor 3Bakba:

Mpe npeTxogHor usbopa:
e 1 pag y Phys. Rev. Lett 2008 M21a,
e 4 paga Phys. Rev. E (2010 3 puta 2011) M21a+ 3M21
e 1 pag Phys Rev A (2008) M21a,
e 1 papg Optics Letters (2009) M21a
¢ 1 rad Physica Scripta M22
e 1 pag Acta Physica Polonica A 212, 729 (2007) M23,
¢ 1 pag Electronic J Diff. Equations (2010 ) M23
HanomeHa: MMnaKT pakTopu 3a yaconuce y Kojuma cy nyb6nMkoBaHu pagoBsu npe nsbopa y
NPOLLNO 3Bake Cy HaBegeHU y MNCTK NybanKaumja.

Nocne npetxogHor usbopa (ognyke HayyHor seha)
e 4 paga y Nonlinear Dynamics M21a (2015)(M® = 3.000 8/135), 2 x (2016)(Ud = 3.464
8/133), (2018)(M® = 4.339), M21a
e 1 pag y Physical Review E M21 (2014) (U =2.288 4/54), M21a

e 1 pag y Europhysics Letters M21 (2016) (M® = 1.957 23/79), M21
e 1 pag y Optics Express M21 (2015) (Md =3.148 14/90),M21

e 1 pag y Journal of Optics M22 (2015) (M® = 1.847 36/90), M22
e 1 pag y Optical and Quantum Electronics M23 (2016) (M® = 1.055 70/92), M23

5.1.4 CTeneH camOCTa/IHOCTU U cTeneH yyewha y peanusaumju pagosa y HaydHUm
LLeHTPMMA Y 3eM/bU U UHOCTPAHCTBY

Kanamnaat je jeguHun aytop y jeaHoOm paay y Yaconucy M21la kateropuje a sogehu aytop y
ocam pagoBsa (Tpu oa npowsor usbopa). Takohe, nocne npetTxoaHor M3bopa Mma pag ca
CTYAEHTOM A0AMMNAOMCKMX cTygmja y 4daconmucy M23 KaTeropuje Optical and Quantum
Electronics. Mpe n3bopa je 6Mo Boaehu aytopa Ha WeCT pagoBa, a MMa jedaH paj camo ca
CTYLEHTOM AOAMNNOMCKMX CTyamja. Ha cBMm TMM pagoBMMa je [0 OCHOBHM AOMPUHOC
peanusaunjm uenora paga a 3Ha4yajHo je y4ecTBOBAO Ha CBMM OCTa/IMM PagoBMMa.

Kao gpyrv aytop 430 je HajBaXKHWjM MaTEMATUMUKM AONPUHOC pagy nybankosaHom y Phys.
Rev. Lett. Y cBuM pagoBMma [a0 je OCHOBHM AOMNPUHOC TEXHMKAMa 3a pellaBarbe
He/IMHeapHUX jegHauynHa. Tume Ce MOXKe 3aK/byyUTW Ja OH MMa jacaH AOMEH r1aBHUX



[ONPUMHOCA KOjU Cy Yy MaTemMaTM4YKOM TpPeTMaHy jeAHauMHa Koje ce peluaBajy nNpBoO
aHa/IMTUYKKM KaKo 61 HYMepuUKKM Npobaem camor pellaBakba 610 TpakTabunaH.

Mpu u3pagm ceux nybanKaumja KaHAMAAT je y4eCcTBOBAO Yy Pa3BOjy MeToAa U HYMepPUUYKUM
CMMynaumjama TEOPUJCKMX MOZEeNa, Kao U Y 3aBPLIHOj aHANU3N HENMHEeapPHUX GeHOMEHA U
nucary pagosa.

[Ba paga, npema 3axTeBMMa 3a M3bop y 3Batbe BULIM HAyyHW capafHuK, ogabpaHa aa
WNYCTPYjy CaMOCTaNHOCT KaHAWAaTa U Herose OCHOBHe AOMNPUMHOCE CYy paHWje OMMCaHu
AeTasbHuje y cekumjn 4. ny cekumjn 5.1 . To cy:

1. [18] N. Z. Petrovi¢, “Spatiotemporal traveling and solitary wave solutions to the
generalized nonlinear Schrodinger equation with single-and dual-power law nonlinearity,”
Nonlinear Dynamics 93 (4), 2389-2397 (2018)

Pag je peannsoBao NOTNYHO CaMOCTaNAHO Of UAeje, peanmsaymje Teopumje n pelaBakba CBMX

jeAHa‘-IMHa 40 NnCakba paga n oaroeopa peueHseHTuma.

2.[19] N. Z. Petrovié, N.B. Aleksi¢, M. Beli¢, “Modulation stability analysis of exact
multidimensional solutions to the generalized nonlinear Schrodinger equation and the
Gross-Pitaevskii equation using a variational approach,” Optics Express 23 (8), 10616-10630
(2015)

IF=3.148 (14/90) SNIP=1.67

Y npuKasy paga KaHanaaTa (cekumja 4) onMcaHu cy AONPUHOCK KaHaAMAaTa vy Apyrum
pafoBMMa a TO je NMOHOB/bEHO W Y aHANIN3K NeT pafoBa.

5.1.5 Harpaae
Huje o6aBe3HO 3a TpaXKeHo 3Batbe.

BpeaHe nomeHa cy n 6pojHe Harpage Ha TaKMUYEHUMA U3 MaTeMATUKE U GU3UKe Y
CpeamO0j WKOAU U Ha cTyaunjama yKbydyjyhu aBe cpebpHe v jeaHy 6poH3aHy meaasby Ha
MehyHapoaHUM MaTEMATUYKMM ONIMMNNjagaMa.

OcBojeHa je noxBana Ha MPEeCTUXKHOM CTYAEHTCKOM TaKMUUYeHy 13 maTemaTuke MNatHam
(William Lowell Putnam) y CAL.

5.2 AHraxkoBaHoCT y popmuparby HayyHUX KagpoBa

Tokom 6opaBKa Ha YHUBep3uTeTy y KaTapy KaHAMAaT je pyKoBOAMO AUNIOMCKMM pagoBMma
BULLE cTyaeHaTa. Y Tom nepuoay Huje 6uno moryhe opraHM3oBaTM AOKTOPCKe CTyauje Ha
TOM 0AcCeKy YHMBEp3UTeTa asin 0 KOMMNAEKCHOCTM NpojeKaTa Kojuma je pyKoBOAMO pagom
CTyAeHaTa roBOpM M UYMHEHWLA Ja je ca jegHuMM CTyaeHToM nyb6aMKoBao TpWu paja Yy
yaconucy Phys Rev E a ca apyrum aBa paga y yaconucy Physica Scripta.



Paguo je y Komucujama [pywTBa matematuyapa v apywTtsa dusMuyapa Ha npunpemu
3a/,aTaKa 33 TaKMMYerba 13 GU3NKe U MaTEMATUKA U HA HbUXOBOM OLeHbMBakbY. YYecTBOBao
je y npunpemama mnagmMx matematudapa. Kebura peweHux npobnema ca MehyHapogHux
MaTeMaTUYKMX ONMMMMjaZa je OCHOBHM YyLUBEHMK 3a MpUNpeme 3a TaKMWUYera CByAa Y
ceTy, 6buna je umtnpaHa (54 npema cepsucy Google scholar) y HU3y HayyHux pagosa w3
obnactTn neparorvje M HactaBe MaTemMaTUKe, Kao M pafa Ca TaZIeHTOBAaHUM CTyAeHTUMMA.
Tpeba HanomeHyTU ga ce KaHgMAaTt 6aBn MatemaTuikom GU3MKOM Te [a je MaTemMaTUKa
OCHOBHM anaT y eroBom paay.

3axBasbyjyhu Tome aa je KaHAMAAT 6MO npucyTaH y [OXM HA HEroBOM YHMUBEP3UTETY je
OpraHM30BaH TOKOM HEKO/IMKO roguHa TYPHUP U NPUNPEMEe CTyAeHaTa M3 AeCeTak OKOJIHUX
3emasba 3a ydyewhe Ha MehyHapogHMM MaTemaTUYKMM oaMMNujagama. [locne oanacka
Hasag y beorpag nocTojana je MHMUMjaTMBA [a Ce OH aHraxyje fa HacTaBu pag, Ha
opraHusaumju npunpema WTo je peasM30BaHO CaMo TOKOM jefHe LUKO/ICKe roanHe.

5.3 Hopmupatrbe 6poja KOAyTOPCKUX PaA0Ba, NaTeHaTa U TEXHUUKUX peLlerba

CeM pagoBM KagmpaTa ce 6asupajy Ha MHTEH3MBHO] aHANMUTMUYKOj TEOPMUjU KOja ce mocne
MOXKe HyMepuykM obpaguTn jep pellaBartbe HenuMHeapHuUx npobnema Huje pewmBso
MCK/bYYMBO aHanuTMyknM. W nopepn tora BehuHa pagoBa KaHAMAATa je ca TPU UAN Makbe
KOayTopa a HEeKO/IMKO pajoBa KOjU MMajy YeTUpWU KoayTopa CYy CBAKAKO AOMMHAHTHO Yy
AOMEHY MHTEH3MBHUX HYMEPUYKMX NpopadyHa. 36or Tora Hema noTpebe Aa ce Hopmanuayjy
pafosu.

5.4 PyKoBohere npojekTuma, NoTNpPojeKTMmMa 1 NpojeKTHUM 3a4aumma

KaHauaaT pyKoBOAWM MPOJEKTHUM 33aZ4aTKOM "AHOAUMUYKO pewasare HeauHeapHux
jedHauuHa y onmuuyu" y oOKBMpYy npojekta OH171006 "HenuHeapHa OuHAMUKQ
/I0KA/IU308AHUX CAMOOP2AHU308AHUX CMPYKMypa Yy M1a3Mu, HAHO-KOMMO3UMHUM
mamepujanuma, mevyHuUM U (pOMoOHUYHUM KpUCMAAumMa U yampaxaadHuUm KoHoeH3amuma"
nog, pykosoactsom ap [ywaHa JosaHosuha.

MoTBpAaa pykosogmoua npojekta ga Hukona Metposuh pykoBoam 3a4aTKOM je AaTa Kao Aeo
MUL/bEHA PYKOBOAMOLLA MpPOjeKTa O OMpaBAAHOCTM MOKpeTarba MOCTynKa 3a wusbop
KaHAnaaTa y 3Bakbe.

5.5 AKTMBHOCT Y HAQYy4YHUM M HAaYYHO-CTPYYHMUM APYLUTBUMA U OCTA/IM NOKA3aTe/bu ycnexa y
Hay4YHO-CTPY4YHOM pagy

Kanampat je 6o ynaH KomucKja 3a Takmmyerse [pywtea pusnyapa Cpbuje n Apywrsea
matemaTtmyapa Cpbuje.



OH je 6M0O M joll yBEK jecTe 4iaH KoMUcHKje 3a MmehyHapoaHa TakMmuyerba M3 maTemaTUKe.
YuyecTBOBAO je y cacTaB/bakby 3aZaTaka 3a CBE HMBOE TaKMUYEHA U Y NpUNpemama TMma 3a
MehyHapogHy MmatemaTuyKy oAnauMmnujagy W gpyra mehyHapogHa Takmuyera U3
MaTeMaTuKe.

Y okBupy oBe ceKkuuje Tpeba npukasatu cBe peneBaHTHE MOKas3aTes/be, KOju Cy Yy CBPXY
npoueHe nogesbeHun y age rpyne, Au b:

5.5 A PeueHsuje y yaconucmma:

PeLeH3nja pagoBa y UCTaKHYTUM MehyHapoAHMM Yaconmucuma (HaBegeHU Cy CaMo HEKM 0f,
CKOpaLWHUX NpumMmepa):

1. Nonlinear Dynamics

Yaconuc kateropumje M21a

2. Communications in Nonlinear Science and Numerical Simulation

Manuscript Draft
Manuscript Number:

Article Type: Research Paper

Yaconuc kateropuje M21a

3. The European Physical Journal Plus

...
--Manuscript Draft--

TS H

Yaconuc kateropuje M22

4. Optical and Quantum Electronics

--Manuscript Draft--



Manuscript Number:
Full Title:
Article Type: Original Research
[The SGEM; longitudinal wave equation in a MEE circular|
Keywords: rod; complex, hyperbolic,
trigonometric function solutions.

Yaconuc kateropuje M23

5. SpringerPlus

I I
QD
>
[
wn
(@)
=

ipt Draft--
Manuscript Number: _
Full Title: ]
.
_ rticle Type:

Yaconuc kateropuje M22
6. Review of J. Phys.l

manuscript:

“

itle:
Yaconuc kateropuje M21

7. Review of Optics Communications

5.5 b lNpepaBarba No NO3UBY:

HakoH npetxoaHor n3bopa y 3Barbe, KaHAMAAT je oap»Kao cnegeha npegasatsa:

1. Nikola Z Petrovi¢ "General analytic solutions to the various forms of the nonlinear Schrédinger
equation using the Jacobi elliptic function expansion method" 6th International Conference on
Photonics July 31- August 01, 2017 Milan, Italy
(https://optics.physicsmeeting.com/abstract/2017/general-analytic-solutions-to-the-variousforms-

of-the-nonlinear-schr-dinger-equation-using-the-jacobi-elliptic-function-expansion-method)



https://optics.physicsmeeting.com/abstract/2017/general-analytic-solutions-to-the-variousforms-of-the-nonlinear-schr-dinger-equation-using-the-jacobi-elliptic-function-expansion-method
https://optics.physicsmeeting.com/abstract/2017/general-analytic-solutions-to-the-variousforms-of-the-nonlinear-schr-dinger-equation-using-the-jacobi-elliptic-function-expansion-method

MpunoxeHa je Npenncka ca NO3MBOM M3 Koje ce BUAM Aa je y NUTakby npeaasakbe No nosmey, Beb
CTpaHMUa ca pagom (nyb6/MKOBaHWU Cy pafoBM ca KOHepeHuMje Ha Beb CTpaHWUM U NoTBpAE O
NPUCYCTBY Ha KOHdEpEeHLMjN.

2. Nikola Z Petrovi¢ "General analytic solutions to the various forms of the Nonlinear Schrédinger
Equation using Jacobi eliptic function expansion method'" 10th Photonics Workshop Kopaonik 26.2-
2.3.2017. ISBN978-86-82441-45-8 Institut za fizku Beograd str. 36

MpunosKeHa je Npenuncka ca NO3MBOM U3 Koje ce BUAM Aa je Y NUTakby NpegaBatbe No Nosmey, Konuja
paga v ogroeapajyhe cTpaHuLe M3 KibUre ancTpakara.

1A Hay4yHM  opgbopu  (apywTsa,
yaconucu)

2 A peueH3uje (Yaconucu, NPojeKTH)

3|6 Hay4Ha Tena (MMNHTP, gpkasa)

4|b Hay4HW oabopu KoHbepeHuMja

5|6 npeaasarba no nNo3mey

5.6 YTMLLAQjHOCT Hay4yHUX pe3yaTaTa

OBae noHaB/bamo ofesbak 4.1.3 y3 aonyHy.

Y Kateropuju M21a, M21, M22 n M23 kaHanaaT je objasmo pagose y cnegehum
Yyaconucmma, rae cy NocebHO 03Ha4YeHM OHKM YaCOMNUCK Y KOjUMa je KaHauaaT o6jaB/bUBAO Yy
nepuoay HakoH oanyke HayyHor Beha o npeasiory 3a cTuuakbe NPeTxoAHOr HayYyHOr 3Bakba:

Mpe npeTxogHor usbopa:
e 1 pagy Phys. Rev. Lett 2008 M213,
* 4 papga Phys. Rev. E (2010 3 puta 2011) M21a+ 3M21
e 1 pag Phys Rev A (2008) M21a,
¢ 1 pag Optics Letters (2009) M21a
¢ 1 rad Physica Scripta M22
e 1 papg Acta Physica Polonica A 212, 729 (2007) M23,
e 1 papg Electronic J Diff. Equations (2010 ) M23

Nocne nperxoaHor usbopa (ognyKe HayuyHor Beha)
¢ 4 papgay Nonlinear Dynamics M21a (2015)(M® = 3.000 8/135), 2 x (2016)(U®d = 3.464
8/133), (2018)(U® = 4.339), M21a
e 1 paa y Physical Review E M21 (2014) (M® = 2.288 4/54), M21a

e 1 pag y Europhysics Letters M21 (2016) (M® = 1.957 23/79), M21
e 1 pag y Optics Express M21 (2015) (Md =3.148 14/90),M21



e 1 pap y Journal of Optics M22 (2015) (Md = 1.847 36/90), M22
e 1 pag y Optical and Quantum Electronics M23 (2016) (MU® = 1.055 70/92), M23

YKynaH ¢akTop yTuuaja (36mp nmnakT dakTopa) pagosa KaHamMaata je 49,448, a y nepuoay
HaKoH oanyke HayuyHor Beha o npepnory 3a cTUUAHke MNPETXOAHOr HayyHOr 3Bakba Taj
¢dakTop je 24,526. KaHgupat je ob6jaB/bMBaO pafoBe Yy HajyrnegHuMjum Yaconmcmma u3
tberose obnactn. MocebHo ce mehy wUMma uctmyy: Phys. Rev. Lett.,, Nonlinear Dynamics,
Physical Review E. n Optics Express.

Mpema 6a3m WOS pagoBuM KaHAMAATa CYy UMTMPaHW YKynHo 352 nyTta, AOK je 6poj
umnTaTa 6e3 aytoumutata 308. MNpema nctoj 6asm H—-MHAEKC KaHanaaTa je 8.

Mpwnor: nogaum o0 ULMTUPAHOCTU ca UHTepHeT cTpaHuue WOS.

Ha 6a3u Google Scholar uma 515 uutarta (Wwto yk/bydyje n 54 untata Krbure IMO
Compendium) u H ¢akTop 10.

Huje npumeheHa HUjeaHa MHCTaHUA HeraTMBHE UMTUPAHOCTM a Yy BpOjHUMM ciyyajeBuMMa
MeToge M3 padoBa 3a Koje je OCHOBHM aonpuHocT aao Hwukona 3 Metposuh cy
npumerunBaHe y Apyrum nybankaumnjama.

HajuuTtnpaHnujun pagosu y uenoj Kapujepu cy npema Google Scholar :

1. Analytical light bullet solutions to the generalized (3+ 1)-dimensional nonlinear
Schrédinger equation, M Beli¢, N Petrovi¢, WP Zhong, RH Xie, G Chen, Physical review letters
101 (12), 123904 (2008), uutaTa: 147

2. Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schrodinger
equation with distributed coefficients WP Zhong, RH Xie, M Beli¢, N Petrovi¢, G Chen, LYi,
Physical Review A 78 (2), 023821 (2008) uuTaTa: 117

3. The IMO Compendium: A Collection of Problems Suggested for the International
Mathematical Olympiads: 1959-2009 Second Edition, D Djuki¢, V Jankovi¢, | Mati¢, N
Petrovi¢, Springer Science & Business Media npso nsgarse (2006) apyro nsaarse (2011),
umTaTa: 54

4. Exact spatiotemporal wave and soliton solutions to the generalized (3+ 1)-dimensional
Schrodinger equation for both normal and anomalous dispersion, NZ Petrovié, M Beli¢, WP
Zhong, RH Xie, G Chen, Optics letters 34 (10), 1609-1611 (2009), uuTtaTa: 34

5. Spatiotemporal wave and soliton solutions to the generalized (3+ 1)-dimensional Gross-
Pitaevskii equation, NZ Petrovi¢, M Beli¢, WP Zhong, Physical Review E 81 (1), 016610
(2010), ymTaTa: 32

6. Controllable parabolic-cylinder optical rogue wave, WP Zhong, L Chen, M Beli¢, N
Petrovi¢, Physical Review E 90 (4), 043201 (2014), uuTaTa: 21



5.7 KoHKpeTaH aonpuHOC KaHAuAaTa y peanusaumju pagoBa Yy HaydyHMM LEHTPUMMaA Y
3eM/bU U UHOCTPAHCTBY

CBM pagoBM KaHaMAaTa cnagajy y LOMEH HeNMHeapHe ONTUKE OAHOCHO LUMpPE NOCMATPaHo
obnactv OnTuKa M3 gomeHa GM3MYKMX HayKa. JeaaH pajg Koju ce 6aBu AnMHamuKkom Bose
Einsten KoHAeH3aTa cnaga BuLe y AOMEH aTOMCKe U MoJiekynapHe ¢pusunke.

KaHaupat npeasoan akTUBHOCTU Y AOMEHY aHAIUTUUYKUX peLlera HeIMHeapHUX jeadHavymHa
npe ceera y AOMeEHY He/IMHeapHe ONTMKe aan U y3 MOryhHOCT nNpuMmeHe Ha cucteme y
He/JIMHeapHOj aTOMCKOj U MONEKYNAPHOj GU3NLM U KBAHTHUM KOMNjyTEpUMA.

KanamnaaT Mma akTUBHY capamby U 3ajegHMUYKe nyb/iMKaumje ca uctpaxkmpadymma y obnactu
HeNMHeape ONTUKE M He/lMHeapHe AWMHAMMKE, Kao M matemaTuyke d¢usuke: npod. ap
Mwunusoj Benuh, YHusepautet Texas A&M, [oxa Kartap, Cuanjy Cy (Si-Liu Xu), Wkona
€/1eKTPOHCKOT U MHPOPMALMOHOT UHXKEeHePUHTa, Xy-ben yHuBep3uTEeT HayKe U TEXHONOruje,
CjeHuH, KnnHa, BennuHr XKonr (Wei-Ping Zhong), WWyHae nonutexHmnukm dakyntet, WyHae,
KuHa.

5.8 YBoaHa npepasarba Ha KOHpepeHuMjama 1 apyra npepasama

HakoH npeTtxogHor n3bopa y 3Batbe, KaHAMAAT je oapkao cnegeha npesasatba:

1. Nikola Z Petrovi¢ "General analytic solutions to the various forms of the nonlinear Schrédinger
equation using the Jacobi elliptic function expansion method" 6th International Conference on
Photonics July 31- August 01, 2017 Milan, Italy
(https://optics.physicsmeeting.com/abstract/2017/general-analytic-solutions-to-the-variousforms-

of-the-nonlinear-schr-dinger-equation-using-the-jacobi-elliptic-function-expansion-method)

MpunoxeHa je npenncka ca NO3MBOM M3 Koje ce BUAW Aa je y NuTakby npeaaBakbe Mo Nosuey, Beb
CTpaHMUa ca pagom (nyb6/MKOBaHWU cy pafoBM ca KOHpepeHuMje Ha BebO CTpaHWUM U NOTBpAE O
NpUCycTBY Ha KOHbEepPeHUMjn.

2. Nikola Z Petrovi¢ "General analytic solutions to the various forms of the Nonlinear Schrédinger
Equation using Jacobi eliptic function expansion method" 10th Photonics Workshop Kopaonik 26.2-
2.3.2017. ISBN978-86-82441-45-8 Institut za fizku Beograd str. 36

MpunosKeHa je Npenuncka ca NO3MBOM U3 Koje ce BUAM Aa je Y NMTakby npeaaBarbe no nosmey, Konuja
paga v oarosapajyhe cTpaHuLe U3 Kkbure ancrpakara.
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https://optics.physicsmeeting.com/abstract/2017/general-analytic-solutions-to-the-variousforms-of-the-nonlinear-schr-dinger-equation-using-the-jacobi-elliptic-function-expansion-method

Fwd: Re: Honorable Speaker at Photonics 2017

Subject: Fwd: Re: Honorable Speaker at Photonics 2017
From: Nikola Petrovic <nzpetr@ipb.ac.rs>

Date: 27.10.2018. 03.38

To: zoran@phy.bg.ac.rs

———————— Original Message --------

Subject: Re: Honorable Speaker at Photonics 2017
Date: 2017-04-07 18:19

From: Nikola Petrovic <nzpetr@ipb.ac.rs>

To: photonics@conferenceseries.net

Dear Photonics 2017,
I accept your invitation to participate as a speaker.
I just have a couple of questions regarding registration:

Do I select the ordinary registration fee or one as a delegate?

Is there a way to pay via a Credit Card that does not involve Stripe or PayPal? These
kinds of services still aren't active in Serbia.

What is the deadline for abstract submission?

Is the 100% fee only for the poster to be visible online and not for the poster sessions
on Day 2?

Regards,
Dr. Nikola Petrovi¢

On 2017-03-22 08:34, Photonics 2017 wrote:
DEAR DR. NIKOLAZ.PETROVI,

We are pleased to invite you to the “6TH INTERNATIONAL CONFERENCE ON
PHOTONICS” which is scheduled to be held on JULY 31- AUGUST @1, 2017
Milan, Italy. The Conference deliberations will be on the theme “NEW
RESEARCH HORIZONS: PHOTONICS IN A CHANGING WORLD™.

It's a privilege to invite you to participate in this prestigious
conference as a speaker/delegate. We believe that your contribution to
this field is unparalleled and your presence in the conference will be
greatly beneficial for Future growth.

We kindly request you to submit the Invited Talks at Photonics
Conference [1]

Should you have any queries, please do not hesitate to drop us a mail.

Kindest Regards,

Elisa Walker

Photonics 2017

57 Ullswater Avenue, West End
Southampton, Hampshire

United Kingdom, S018 3QS
photonics@conferenceseries.net

1of2 2.12.2018.18.19



Fwd: Re: Honorable Speaker at Photonics 2017

20f2

You are receiving this email because of your relationship with the

sender. To safely unsubscribe or modify your subscription settings
please click here [2]

[1]

http://mailmx.maildirectalpha.com/misc/pages

/link/url:~bnpwZXRyQGlwYi5hYy5yc34xXNDkwMTY2NjQ1fjMOMZzEzXzQ1MzM1fjIwMTcwM35U~http:

//photonics.conferenceseries.com/abstract-submission.php

[2]

http://mailmx.maildirectalpha.com/misc/pages/subscribe

/MzQzMTNFNDUzMzV+bnpwZXRyQGlwYi5hYy5yc34wXON+MTQ5MDE2N]jYONQ==

Institute of Physics Belgrade
Pregrevica 118, 11080 Belgrade, Serbia
http://www.ipb.ac.rs/

2.12.2018.18.19
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USA & Americas
Particle Physics 2018, USA
(https://optics.physicsmeeting.com/2017/recommended-
global-conferences.php#usa)
Fluiddynamics 2019, USA
(https://optics.physicsmeeting.com/2017/recommended-
global-conferences.php#usa)
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Astronomy 2019, UK (https://optics.physicsmeeting.com
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Magnetism Conference 2019, UAE
(https://optics.physicsmeeting.com/2017/recommended-
global-conferences.php#europe)
Bio-Med Meet 2019, UAE

Asia Pacific
Optics-Laser 2019, Japan
(https://optics.physicsmeeting.com/2017/recommended-
global-conferences.php#asia)
Optical Fibre 2019, Japan
(https://optics.physicsmeeting.com/2017/recommended-
global-conferences.php#asia)

Condensed Matter Physics 2019, USA (https://optics.physicsmeeting.com/2017/recommended- ()
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0
Search Search 1000+ Events
Scientific Program
Conference Series Ltd invites all the participants across the globe to attend 6" International .
Conference on Photonics Milan, Italy . Submit your Abstract ' i ion.php)
or e-mail to ¥
& photonics@conferenceseries.net
(mailto i ies.net)
& photonics@physicsconferences.org
(mailto: i .org)
& photonics@physicsconferences.org
(mailto: i .org)
Scientific Program Day 1 (https://optic: I i ?day -35878&date=2017-08-01)

Day 1: July 31, 2017
N

Keynote Forum
Dan Botez (https://optics.physicsmeeting.com/speaker/2017/dan-botez-university-of-wisconsin-madison-usa)
University of Wisconsin-Madison, USA

Keynote: High-internal-efficiency quantum cascade lasers: the road to mid-infrared lasers of 40% CW wall-plug efficiency
i i i 17/high-internal-effici t de-l th d-to-mid-infrared-I

of40-cw-wall-plug-efficiency) N

Time : 09:30-10:00

Biography:

Dan Botez is Philip Dunham Reed Professor in the Department of Electrical and Computer Engineering at University of
Wisconsin (UW) - Madison. In 1976, he obtained a PhD degree in Electrical Engineering from University of California, Berkeley.
He has carried out and led research in semiconductor lasers at RCA Labs, Princeton, NJ and TRW Research Center, Redondo
Beach, CA before joining, in 1993, the faculty at UW-Madison. His research interests lie in three areas of semiconductor-laser
physics: high-power, coherent edge-emitting lasers; high-power, coherent grating-coupled surface-emitting lasers; and quantum
cascade lasers. The first two are based on one- and two-dimensional, high-index-contrast, photonic-crystal structures,
respectively, for insuring both long-range spatial coherence and stable operation under continuous-wave (CW) driving conditions.
The third involves electron transitions between the sub-bands of multi-quantum-well structures and is focused on achieving high-efficiency CW
operation in the mid-infrared wavelength range: 3-10 microns, via multi-dimensi ion-band engi 9

Abstract:

The internal efficiency h; of quantum cascade lasers (http://optics.physicsmeeting.com/) (QCLs) is the factor in the expression for the external
if ial efficiency that all ge (i.e., the injection efficiency) and lasing-photon-transition efficiencies. For
conventional QCLs the h; values have been found to be rather low: 50-60% in the 4.5-6.0 pm wavelength range and 57-67% in the 7-11 pm
wavelength range; with, until recently, no clear explanation why that was the case. With the advent of i ier-leakag with
fast, efficient carrier extraction out of the active regions of QCLS, the h; values have steadily increased and are approaching their fundamental
upper limit of ~ 90% for mid-infrared (IR)-emitting devices. We will review the developments that led to high h; values throughout the mid-IR
range. Ci ion-band has led to the so-called step-taper active-region (STA) QCLs which have provided h; values
30-50% higher than in conventional QCLs over both the 4.5-6.0 um and 7-11 pm ranges. A d-high, single-facet, conti
wave (CW) power, for 8.0 um-emiting QCLs, of 1.0 Watt has been achieved from STA-type QCLs. Furthermore, the recognition that the
fundamental limit for h; (i.e., 90%) is 34% higher than the h; value employed a decade ago when determining the fundamental limit for the wall-
plug efficiency of mid-IR QCLs, has led to the realization that wall-plug efficiencies = 40% can be achieved for 4.5-5.0 pm-emitting QCLs. The
practical benefits of achieving such high performance from mid-IR emitting lasers (http://optic: com/) will be
discussed as well.
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\Wareiangth
Wall-plug-efici limits for mid-infrared-emitting QCLs

Recent Publications

. Kirch J et al (2016) 86% internal differential efficiency from 8-9 pm-emitting, step-taper active-region quantum cascade lasers. Optics
Express 24: 24483-24494.

2.Botez D, Chang C-C, Mawst L J (2016) Temperature sensitivity of the elect ptical istics for mid-infrared: itting quantum
cascade lasers. J. Phys. D: Applied Physics 49: 043001.
3.Botez D et al. (2013) i ion-band i ing for izing the i (cw) wallplug iencies of mid-

infrared quantum cascade lasers. IEEE Journal Selected Topics in Quantum Electronics 19 (4): 1200312,
4. Kirch J et al. (2012) Tapered active-region quantum cascade lasers for suppression of carrier-leakage currents. Electron Lett. 48: 234.

5. Botez D et al. (2010) of the key ~electro-optical istics for mid-infra-red emitting quantum cascade
lasers. Applied Physics Letters 97: 071101.

Keynote Forum

Manyalibo J Matthews (https://optics.physicsmeeting.com/speaker/2017/manyalibo-j-matthews-lawrence-
livermore-national-laboratory-usa)

Lawrence Livermore National Laboratory, USA

Keynote: L ing laser materials pi i the di between laser damage and laser machining
- llopti i i ing-l i ing-the-di betv

and-laser-machining)

Time : 10:00-10:30

Biography:
Manyalibo J Matthews currently serves as Deputy Group Leader in the Optical Materials and Target Science group in MSD. He
holds a PhD in Physics from MIT and a BS in Applied Physics from UC Davis. His research interests at LLNL include novel
in I: isted material ing (e.g. metal additive d s based CVD, of
metal films, non-contact laser polishing of glass), optical damage science, vibrational spectroscopy and in-situ optical
of transient . Prior to LLNL, he was a Member of Technical Staff at Bell Labs and worked on materials
characterization of optical devices using novel i i it induced birefri in planar
optical devices and research in advanced broadband access networks. He is a Fellow of the Optical Society of America.

Abstract:

In the decades since the invention of the laser, new applications and discoveries in materials science have continued year after year as laser
sources evolve and more areas of research exploit them. The transformation of materials using focused, high irradiance laser beams
fundamentally involves multiple physical phenomena such as optical tion (http://optic i ing.com/), heat transport, structural
mechanics and material phase transitions. For example, nonlinear absorption of nanosecond pulsed laser light can lead to a nano-scale thermal
runaway effects and subsequent damage, which can be detrimental in the operation of high power laser (http://optics.physicsmeeting.com/)
systems. On the other hand, laser processing of materials often involves ablative removal of material or transformations which rely on efficient
coupling of laser energy into a work piece. In both cases, I terial i i is essential for the optimization of the high
power optical system design (http://optics.physicsmeeting.com/). In this talk, we will present a few examples of high photon flux laser material
processing, using both experiment and finite element modeling to understand energy deposition, heat transport and material transformation.
Specifically, we will explore the conditions which bring about optical damage in ultraviolet Q-switched laser optics and compare these conditions
to those used in typical microscale laser materials (http:/optic: i com/) i jies. Among the laser processing
techniques discussed, we will focus on microsecond-pulsed, resonant IR laser heating for laser micro-machining and metal powder bed additive
manufacturing (3D printing). We will discuss how our results can be used to elucidate material behavior, optimize processing and develop new
technologies based on laser modified materials.

X

Laser damage Laser micro-sachining Lasser 30 printing

g 0 ] i . 30 grinting.
Recent Publications

1.C AR Chapman, L Wang, J Biener, E Seker, M M Biener, and M J Matthews (2016) Engineering on-chip nanoporous gold material
libraries via precision photothermal treatment. Nanoscale. 8:785-795.

2. M J Matthews, G Guss, S A Khairallah, A M Rubenchik, P J Depond and W E King (2016) Denudation of metal powder layers in laser
powder bed fusion processes. Acta Materialia. 114:33-42.

3. M J Matthews, S T Yang, N Shen, S Elhadj, R N Raman, G Guss, | L Bass, M C Nostrand and P J Wegner (2015) Micro-shaping,

polishing, and damage repair of fused silica surfaces using focused infrared laser beams. Advanced Engineering Materials. 17:247-254.

4.JH Yoo, JB In, | Sakellari, R N Raman, M J Matthews, S Elhadj, C Zheng and C Grigoropoulos (2015) Directed dewetting of amorphous
silicon film by a donut-shaped laser pulse. 26: 165303.

5. M J Matthews (2015) Simulating laser-material interactions, Laser Focus World 51: 33-38.
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Keynote Forum

Shien-Kuei Liaw (https://optics.physicsmeeting.com/speaker/2017/shien-kuei-li; 1ational-taiwan-uni ity
of-science-and-technology-taiwan-1663771806)

National Taiwan University of Science and Technology, Taiwan

Keynote: WDM bidi i optical wireless icati i i i 17/wd
optical-wireless-communications)

Time : 10:50-11:20

Biography:
Shien-Kuei Liaw received Double Doctorate from National Chiao-Tung University in Photonics Engineering and from National
Taiwan University in Mechanical Engineering, respectively. He joined the Chunghua Telecommunication, Taiwan, in 1993. Since
then, he has been working on Optical Communication and Fiber Based Technologies. He joined the Department of Electronic
r \ Engineering, National Taiwan University of Science and Technology (NTUST) in 2000. He has ever been Director of the
« ¥ Optoelectronics Research Center and the Technology Transfer Center, NTUST. He was a Visiting Researcher at Bellcore (now
Telcordia), USA for six months in 1996 and a visiting Professor at University of Oxford, UK for three months in 2011. He owned
six US patents, and authored or coauthored for 250 journal articles and i i i He earned many
domestic honors and international honors. He has been actively for asa chair, technical program
chair, organizing committee chair, steering committee and/or keynote speaker. He serves as an Associate Editor for Fiber and Integrated Optics.
Currently, he is a Distinguished Professor of National Taiwan University of Science and Technology (NTUST), Vice President of the Optical
Society (OSA) Taiwan Chapter and Secretary-General of Taiwan Photonic Society. His research interests are in Optical Sensing, Optical
Communication and Reliability Testing.

Abstract:

In this talk, high-speed free space optics ion (http://optic: i ing.com/) (FSO) jies will be reviewed and introduced.
Then we will design and demonstrate two proposed FSO schemes. The first scheme is bi-directional short-range free-space optical (FSO)
communication with 2x4x10 Gb/s capacity in wavelength division multiplexing (WDM) channels short transmission distance. The single-mode-

fiber components are used in the optical terminals for both optical i (http://optics.| i com/) and receiving functions. The
measured power penalties for bi , fc h | WDM FSO ication are less than 0.8 dB and 0.2 dB, compared with the back-to-
back link and uni-directic ission system, iy The second scheme is hybrid optical fiber (http:/optics.physicsmeeting.com/) and

FSO link in outdoor environments such as cross bridge or inter-building system. A sensor head is used for monitoring the condition of bridge, and
in the case of the bridge being damaged the transmission path could be changed from fiber link to FSO link to ensure data link connectivity. In
both cases, the single-mode-fiber (SMF) components are used in the optical terminals for both optical transmitting and receiving functions. The
influences of environmental factor including window glasses, air turbulence and rainfall will also be addressed. The colorless and colored window
glasses introduce losses under various incident angles, but did not induce substantial power penalties. The air turbulence induces extra
transmission loss and instability in the received power. Raindrops are the most influential environmental factor. The bit error rate (BER) test
shows that raindrops result in a seriously impaired BER to interrupt the ission i After

improvement, these proposed transmission structures show potential applications for outdoor transmission under various natural weather
conditions.

Keynote Forum
Carl C Jung (https://optics.physicsmeeting.com/speaker/2017/carl-c-jung-ccj-software-germany)

CCJ Software, Germany

Keynote: Twisted and turned layers — no problem for ITE ion Tr ission Elli )
; ; i i d-turned-1 blem-for-ited

ellipsometry)
Time : 11:20-11:50

Biography:

Carl C Jung has his expertise in finding mathematical models for engineering, physical and physical chemistry questions and
them in and ion software. His way led from amperometric biosensors (Cambridge University,

UK), via biophysics employing florescence (Max Planck Institute, Frankfurt a M) to display technology and ellipsometry (IDM,

Berlin and Potsdam). Here the presented topic was generated. Thereafter he returned to biophysics and fluorescence (Bayreuth

University), and after one year in research management (Fraunhofer, Munich) he finally performed and

studies on the heating of bond wires used in integrated circuits by electronic engineers (Robert Bosch Center for Power

Electronics, Reutlingen).

Abstract:

If looking at optically thin layers or thin films with an anisotropic structure, the main applications of such films are in display technology. There are
different ways, such layers can be used: as polarisers, if absorbing, as retarders, if transparent, as photo-alignment films, if very thin and with a
specific surface, that can be used to align other attaching films during an annealing step in fabrication. Of course, the optical properties of the
resulting display depend on the quality of the layers used to produce it. Therefore, we developed a new method, which can very accurately
determine the three-dimensional refractive index and its orientation in a thin layer. Even fims, whose properties vary in the direction

perpendicular to the film plane, can be studied with success. We loyed a of ission in two different media - immersion
transmission ellipsometry and reflection ellipsometry at one single y (http://optics.physi ing.com/)is  the
measurement of the alteration of the polarization state of light transmitted or reflected by the layer o film studied. The accuracy of the method
was very high to reflection elli in only one medium. If compared to combined transmission and reflection
measurements in air, we also reached a drastic impi . The method of i i y is a signil step forward in
the pment of ni ive optical i methods for thin films with complex anisotropic structure.

I

i}

|

I 4
Figure 1: Three normally indistinguishable sets of data can be expanded by il i . Depicted is the ellipsometric

A in ion under i The first 3 figures are the refractive indices of the film. Then wavelength in ym, and
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immersion and substrate index follow.

1. Jung C, Stumpe J (2015) i i y (ITE) for the ination of orientation gradients in i layers.
Appl. Phys. B DOI 10.1007/500340-013-5729-2.

2. Jung C, Stumpe J (2005) Immersion transmission ellipsometry (ITE) — a new method for the precise determination of the 3D indicatrix of
thin films. Appl. Phys. B 80:231-238.

3. Jung C, Stumpe J, Peeters E, van der Zande B (2005) A novel way for the full characterisation of splayed retarders using the Wentzel-
Kramers-Brillouin (WKB) method. Jpn. J. Appl. Phys. 44: 4000-4005.

Keynote Forum

Fabienne Michelini (https://optics.physicsmeeting.com/speaker/2017/fabienne-michelini-aix-marseille-
university-france)

Aix Marseille University, France

Keynote: Energy transfer ics in ji i under ulty hort itation pulses from ilibrit Green’s
function i i i il 171¢ gy-ti fel ics-i jf i d
e on T s frimen Fomv N

P q 9

Time : 11:50-12:20

Biography:

Fabienne Michelini has worked on the theoretical/numerical building of empirical models within the k-p method to understand the
electronic of realistic conder tter systems. In parallel, she has gained a great expertise in high performance
computing for large-scale numerical problems. For the last years, she has investigated the transport properties of opened
quantum structures for novel nanodevices using effective methods within the Green function formalism. She is now focusing on
time-dependent and non-linear regimes of with light for ic and thermoelectric applications at
the nanoscale.

Abstract:

The problem of energy transfer (http://optics.physicsmeeting.com/) is emerging as one of the most crucial issues of our occidental societies. At a
fundamental level, how energy flows at the nanometre scale is gaining specific interests due to its implications in both alternative energy

production and basics of quantum ics (http://optic: i ing.com/). The nature of our work is hence two-fold. In the first part,
we provide a definition of energy current operator in the Hei ion, while ing certain conditions which an operator shall
fulfill. The obtained ion is to tati as steady-state situations. We implement this definition to derive time-dependent

energy current using non-equilibrium Green’s function formalism, which represents a suitable approach for calculating measurable quantities in
opened nanosystems. The second part applies these developments to molecular junctions sandwiched in between two thermal reservoirs.
Molecular electronic devices are indeed a promising alternative to standard electronic switches due to their fast response on the picosecond time
scale. Here, the approach is used for the study of molecular junctions subjected to ultra-short excitation pulses. We thus analyze the electronic
energy fluxes across the molecular junction engendered by femtosecond laser pulses. Our numerical implementation enables us to correlate the
time-dependent energy current to the underlying intra-molecular dynamics, with special attention paid to the impacts of intra-molecular coupling
and incoherence on the energy transfer time-resolved measurables.

Figure 1: We consider a junction made of two donors (D) that interact with light and an acceptor (A), the whole is in contact with tow thermal
reservoirs. Effects of the intra-molecular D-D coupling on the time-resolved energy current flowing from D to A during a 30 fs laser pulse

Recent Publications

. Michelini F, Crépieux A, Beltako K (2017) Entropy ion in photovoltai ices from the non- equilibrium Green’s
function formalism, J. Phys.: Condens. Matter 29: 175301.

N

. Beltako K, Cavassilas N, Michelini F (2016) State hybridization shapes the photocurrent in triple quantum dot nanojunctions, Appl. Phys.
Lett. 109: 073501.

3. Crépieux A, Michelini F (2015) Mixed, charge and heat noises in thermoelectric nanosystems, J. Phys.: Condens. Matter 27: 015302.

4. Berbezier A, Autran JL, Michelini F (2013) Photovoltaic response in a resonant tunneling wire-dot-wire junction, Appl. Phys. Lett. 103:
041113,

5. Crépieux A, Simkovic F, Cambon B, Michelini F (2011), under a ti gate voltage, Phys. Rev. B 83:
153417,

Keynote Forum

Shao-Wei Wang (https://optics.physicsmeeting.com/speaker/2017/shao-wei-wang-chinese-academy-of-
sciences-china)

Chinese Academy of Sciences, China

Keynote: Integrated narrow bandpass filters array for mini:
12017 filt y-for-mini

Time : 00

Biography:

Shao-Wei Wang received his Ph.D. (2003) degree in ics and solid state from Shanghai Institute of Technical Physics,
Chinese Academy of Sciences, China. He is a professor of the institute and works at National Laboratory for Infrared Physics from 2010. His
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research interests include artificial photonic structure and devices, such as interaction between high-Q optical cavity and low-

i materials, i ities for miniature , solar selective L ial polarizers, and
optical thin films. He has published more than 50 research papers and authorized one US patent. He got LU JIAXI Young talent
award (2009), RAO YUTAI basic optical award (2007) , National Natural science award (2014, 4th principal achiever), National
Technological Invention Award (2011, 5th principal achiever), Shanghai Technological Invention Award (2010, 7th principal
achiever), Shanghai Natural science award (2007, 5th principal achiever), etc.

Abstract:

Compact, lightweight, and rigid miniature spectrometers without moving parts are needed for a wide variety of applications, including space
applications, where every inch of payload counts. Miniaturization increases the portability and paves the way for making in situ spectral
measurements for daily life of Food-safety and health efc. It also eases the integration of microspectrometers

Jlopti i into other jes, such as and helps to realize lab-on-

com/)and miniature sp

a-chip devices.

It attracts many research interests in recent years. There are many novel wavelength devision approaches have been proposed for miniature

(http://optic: i ing.com/), such as colloidal quantum dot spectrometer and disordered photonic chip. The optical filter

array is one of the most important in divi it devices, and parallel array optics, which are
widely used in communication and electrooptical systems.

We proposed and realized the concept of integrated narrow bandpass filter array from 2004, which can totally match with detectors array with
very high spectral resolution and high structure & spectrum flexibility, and resulting in simple structure and small volume with high reliability. We
developed the combinatorial etching technique and combinatorial deposition technique for fabrication of such devices. We also demonstrated a
concept of a high-resolution miniature spectrometer using an integrated filter array. Such a device has already been succefully used in a multi-
spectral luminescence imaging for plant growth research setup of Shijian ten satellite (http://optics.physicsmeeting.com/)launched in 2016.

Recent Publications

1. Xingxing Liu, Shao-Wei Wang, Hui Xia, Xutao Zhang, Ruonan Ji, Tianxin Li, Wei Lu (2016) Interference-aided spectrum fitting method for
film thickness ination. Chinese Optics Letters. 14(8):081203.

2. Shao-Wei Wang, et al. (2007) Concept of a high-resolution miniature sp using an i filter array. Optics Letters 32(6)
632-634.

3. Shao-Wei Wang, et al. (2007) 128 Channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique.
Appl. Phys. B 88(2):281-284.

4. Shao-Wei Wang, et al. (2006) 16 x 1 integrated filter array in the MIR region prepared by using a combinatorial etching technique. Appl.
Phys. B 82(4):637-641.

5. Shao-Wei Wang, et al. (2006) Integrated optical filter arrays fabricated by using the combinatorial etching technique. Optics Letters
31(3):332-334.
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Location: Brera

Chair
Shien-Kuei Liaw

National Taiwan University of Science and Technology, Taiwan

Co-Chair
V A Belyakov

Landau Institute for Theoretical Physics, Russia

Session Introduction

Alexey Akimov (https://optics.physicsmeeting.com/speaker/2017/alexey-akimov-alexey-akimov-a-m-
university-usa)

Alexey Akimov, A&M University, USA

Title: Towards spin-photon interface for NV color center in diamond
1201 pin-photon-interface-f 1 ter-in-di

Time : 12:20-12:45

Biography:
Alexey Akimov received his PhD degree from Moscow Institute for Physics and Technology in 2003. In 1997, he started
working in the Laboratory for Active Media at the Lebedev Physical Institute of the Russian Academy of Sciences. His
research was focused on the narrow optical resonances in hot and laser-cooled atoms. During 2006-2012, he was a Visiting
Scholar in Misha Lukin's group in Physics Department of Harvard University, where he worked on a number of research
projects related to surface plasmons, quantum dots and NV centers in diamond. The main focus of this activity was light-spin
interfaces. During 2010-2012, he was the Acting Director of the Russian Quantum Center (RQC). He then assumed a
Principal Investigator position at the RQC and conducted research in the fields of cold atoms and solid state spin systems. In

October 2015, he joined the Physics Department of Texas A&M University as an Assistant Professor

Abstract:
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Nitrogen Vacancy (NV) color centers in diamond attract a lot of attention of quantum optics (http://optics.physicsmeeting.com/) and quantum
information community. Due to its long coherence time, possibility of optical readout of electronic spin state and possibility to store information
in nearby nuclear spins using this center long quantum memory even at room temperature, long distance quantum entanglement and quantum
registers has been demonstrated. Besides, quantum il (http://optic: i ing.com/) ication, this color center is proven to
be good high-resolution sensor of magnetic field. Such a sensor is able to combine nanometer resolution with single spin sensitivity.
Furthermore, due to its low chemical activity, diamond could be used as in vivo sensor. Recently, successful implementation of NV

I as sensors for of thermal activation of transient receptor potential was demonstrated. NV color
center in diamond could also be used for measurement of electric fields (http://optics.physicsmeeting.com/), tension, rotation or force. This
sensor could offer high resolution or cutting edge sensitivity, if bulk sample is used. Also, due to its unique photo stability, this color centers
find application in imaging, in particular bio- imaging as well as high resolution imaging such as STED or RESOLFT. In many of these
applications, one of the important issues is efficiency, with which light emission of the color center is collected. In this contribution, we present
our results on broadband collection of NV color centers emission using optical fiber and nanostructures.

Optical fibar
with MNDs on it

£ X,
£ A,
PLL coated
— nanofiber

Figure 1: Procedure of single nanocrystal pickup onto optical fiber

Figure 2: Positioning on nanocrystals on nanostructures
Recent Publications

1. Alexander Sushkov, Nicholas Chisholm, Igor Lovchinsky, Minako Kubo, Pik Kwan Lo, Steven Bennett, David Hunger, Alexey Akimov,
Ronald L Walsworth, Hongkun Park, Mikhail D Lukin (2014) All-optical sensing of a single-molecule electron spin. Nano Lett., 14 (11):
6443-6448.

N

. Dmitry Sovyk, Victor Ralchenko, Maxim Komlenok, Andrew Khomich, Viadimir Shershulin, Vadim Vorobyev, Igor Viasov, Vitaly Konov,
and Alexey Akimov (2015) Fabrication of diamond tub with strong i of SiV color centers: -
up approach. Applied Physics A, 118(1).

3. MY Shalaginov, V'V Vorobyov, J Liu, M Ferrera, AV Akimov, A Lagutchev, A N Smolyaninov, V V Klimov,
Jlrudayaraj, AV Kildishev, A Boltasseva and V M Shalaev (2014) ing the [t itroge y single-photon
source with TIN/AIScN i ice Laser Photonics Rev., 1-8.

4. Vorobyov V'V, VYV, i SV, J, Lebedev N, Smolyaninov A N, Sorokin V N, Akimov A V (2016)

Coupling of single NV center to adiabatically tapered optical single mode fiber. Eur. Phys. J. D 70(12): 269.

o

. Vorobyov V'V, Kazakov A Y, Soshenko V V, Korneev A A, Shalaginov M Y, Bolshedvorskii S V, Sorokin V N, Divochiy A V, Vakhtomin Y
B, et al (2017) Superconducting detector for visible and near-infrared quantum emitters. Opt. Mater. Express 7(2), 513.

Branislav Vlahovic (https://optics.physicsmeeting.com/speaker/2017/branislav-vlahovic-north-carolina-
central-university-usa-1699774681)

North Carolina Central University, USA

Title: Optical sensing for ics of the states in binary quantum (https://optics.physicsmeeting.com
17/optical ing-f i i tates-in-binary

Biography:
Branislav Viahovic is Director of the National Science Foundation Computational Center of Research Excellence, NASA
University Research Center for Aerospace Device, and NSF Center Partnership for Research and Education in Materials at
North Carolina Central University. In 2004, he was awarded by the Board of Governors of The University System of North
Carolina Oliver Max Gardner statewide award for his research and contribution to science. He has published more than 300

- papers in peer-reviewed journals. His research interest includes pulsed laser deposition of nanostructures, nonlinear optics,
computer simulations of nanostructures, tunneling and charge transfer between nanostructures, detectors and devices based
on quantum 't, nanophotonics, and pt

Abstract:

Weakly coupled binary d systems for i We study ion and
spectral distributi of i i states in binary quantum including quantum wells (QWs) and quantum
dots (http://optics.physi ing.com/) (QDs). The | (http://optic: ing.com/)are described using the
effective potential model. It was shown, that the electron tunneling and spectral distributions of localized/delocalized states in binary system is
extremely sensitive on shape symmetry violations. The parameter , which defines delocalized ( ) or localized (  0) states of an
electron, depends on the energy difference ~ of the spectra in left and right QDs. The difference can be caused by a shape symmetry violation.
The sensitivity of the parameter  to the small variations of is estimated as . This work focuses on the optical registration
of the localized/delocalized states dynamics. Modeling of carrier transfer from a barrier in InAs/GaAs dot-well, tunnel-injection structure is
performed. In Fig 1, shown is the electron wave functions of the localized and delocalized states calculated for two spectral levels: E=0.345 eV
and E=0.444 eV, respectively. The energy of the delocalized state corresponds to that one for which the tunneling between dot and well
oceurs. The relation to the PL experiments for such complexes is provided. We model the second pick of the PL spectrum, which corresponds
to the carriers tunneling in the dot-well complex, in the terms of the localized/delocalized states. Influence of the variations of geometrical
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parameters of QD and QW on the tunneling will be presented.

E=0 3456V g E=lhddd eV FIA¥

Figure 1. The electron wave funciions of the (o] locolized ond (&) delocalized stotes
T the InGieri (et dar-wall binsry complas,

Recent Publications

. Filikhin 1, Karoui A and Viahovic B (2016) Nanosensing Backed by the Uncertainty Principle. Journal of Nanotechnology.
doi:10.1155/2016/3794109.

N

. Filikhin I, Suslov \V M and Viahovic B (2006) Modeling of | quantum ring i in the
approximation. Phys. Rev. B 73: 205332-4.

©

. Filikhin 1, Matinyan S G and Vlahovic B (2015) Electronic structure of quantum dots and rings. Reviews in Theoretical Science 3: 1-22.

IS

. Filikhin 1, Karoui A and B. Vlahovic B (2016) Single electron tunneling in double and triple quantum wells. International Journal of
Modern Physics B 30: 1642011-9.

o

. Filikhin 1, Matinyan S G and Vlahovic B (2015) Localized-delocalized states and tunneling in double quantum dots: effect of symmetry
violation. Quantum Matter 4: 1-7.

H C Ong (https://optics.physicsmeeting.com/speaker/2017/h-c-ong-the-chinese-university-of-hong-
kong-hong-kong)

The Chinese University of Hong Kong, Hong Kong

Title: Study of the angular of light from ic crystals
12017/study-of-the-angul flightf ic-crystals)

Biography:

H C Ong received his BA and PhD in Materials Science and Engineering from Northwestern University, USA. He currently is
an Associate Professor in Physics Department, at the Chinese University of Hong Kong. He has been working on amorphous
carbon, diamond, and ZnO for years and his current interest is light-matter interaction focusing on plasmonics. He has
published more than 100 technical papers on fluorescence and sensing. He has been serving as an Organizer of intemational
conferences.

Abstract:

In analogy to electron waves, waves (http://optic: i ing.com/) also carry spin and orbital angular momentum (AM)
and this property has been fascinating the world of optical science and engineering for many years. With the rise of nanotechnology
(http://optics.physicsmeeting.comy), photonic systems can now be fabricated at the length scale of nanometers, manifesting many intriguing
phenomena including the spin-orbit interaction in an observable extent. The polarization, the spatial field distribution, and the propagation
direction are no longer treated separately and controlling one with another has become feasible. Plasmonic arrays are one of the most popular

(http://optic: i ing.com/)systems owing to their simplicity and well-defined for yielding optical
properties. They have been used in inary ion, , nonlinear optics, sensing, etc. In addition, since
surface plasmon polaritons (SPPs) carry transverse spin AM, they should modify the AM of the outgoing radiation under the conservation of
angular L this spin is not properly taken into consideration even though plasmonic research has been

carried out for years. Here, | will talk about the AM of light from plasmonic crystals. We have observed substantial polarization conversion and
spin-orbital coupling from square lattice circular nanohole arrays, which do not possess intrinsic chirality. We find the transverse spin AM
possessed by SPPs play a deterministic role in governing the far-field radiation. The i results are by finite-diffe
time-domain simulations and temporal coupled mode theory. Based on the AM study, we propose the AM can be used as a new parameter in
surface plasmon resonance (SPR) sensing. As the transverse spin AM of SPPs is strongly dependent on the complex propagation wave
vector, which is sensitive to the change of the local refractive index, the change in the AM of light thus reflects the sensing environment. The
performance of the spin-SPR will be discussed.

Recent Publications

1. Cao ZL, Yiu LY, Zhang ZQ, Chan CT, Ong HC (2017) Understanding the role of surface plasmon polaritons in two-dimensional achiral
nanohole arrays for polarization conversion. Phys. Rev. B (in press).

2. Lin M, Cao ZL, Ong HC (2017) Determination of the excitation rate of quantum dots mediated by momentum resolved Bloch-like surface
plasmon polaritons. Opt. Exp. 25: 6092-6103.

w

Cao ZL, Ong HC (2016) Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole
array. Opt. Exp. 24: 12489-12500.

IS

. Liu C, Chan CF, Ong HC (2016) Direct deconvolution of electric and magnetic responses of single nanoparticles by Fourier space
surface plasmon resonance microscopy. Opt. Comm. 378: 28-34.

o

. Liu SD, Leong ESP, Li GC, Hou YD, Deng J, Teng JH, Ong HC, Lei DY (2016) Polarization-i 't multiple fano in
plasmonic for i itching multiband second-harmonic generation. ACS Nano 10: 1442-1452.

Biography:
Jian Fu has completed his PhD at Zhejiang University. He is working as Associate Professor at Zhejiang University. He has published more
than 45 papers in reputed journals.

Abstract:

The history to simulate quantum states (http://optics.physicsmeeting.com/) using classical optical fields is long. Many researchers utilized
classical optical fields to simulate quantum states and quantum computations. However, it is quickly found that the simulation is not efficient
and scalable. This is because the classical optical field only supports the product structure but does not support tensor product structure. We
proposed a possible scheme to solve the problem that optical fields with pset phase simulate any state of

https://optics.physicsmeeting.com/2017/scientific-program.php?day=1&sid=3584&date=2017-07-31

11/30/2018, 6:04 PM



Scientific Program | Photonics Conferences | Optics Conferences | LaserTech Meetings | Europe| USA ...

8of 12

Jian Fu (https://optics.physicsmeeting.com/speaker/2017/jian-fu-zhejiang-university-china)
Zhejiang University, China

Title: A possible approach to quantum computation by using classical optical fields modulated with pseudorandom phase
-llobti i i 17/a-possible-appi to-quant ion-by-using

|assical-optical-field: ith
P P!

multiple quantum particles. By using the scheme, we demonstrated optical analogies to many quantum states such as Bell
states, GHZ states and W states, and some quantum algorithms (http:// i ing.com/) such as Shors algorithm,
Grove's algorithm and quantum Fourier T Firstly, we introduced a i a phase ensemble

based on pseudorandom phase sequence referring from the concept of quantum ensemble. Then, we represented various
quantum states of n particles by using classical fields with n phase and we also

demonstrated nonlocal properties of quantum entanglement in the phase ensemble theoretical framework. Finally, we

some optical to realize some quantum algorithms. We believe these optical implementations

are not difficult to implement. After careful analysis and numerical simulation, we can conclude that our scheme provides an
efficient approach to quantum on without classical

Jae Eun Jang (https://optics.physicsmeeting.com/speaker/2017/jae-eun-jang-dgist-korea)

DGIST, Korea

Title: Label free bio ion using array i i il 17/label-fi

bi i ing. y
Biography:
Jae Eun Jang received his PhD degree in Electrical Engineering from the University of Cambridge, UK in 2006. From 2007 to
2011, he was Principal Senior at Samsung Ady d Institute of , Yongin, Korea. Since 2011, he has
been a Professor in and C jcati gineering at Daegu G Institute of Science and Technology
(DGIST), Daegu, Korea. He first the and DRAM concept using vertically

aligned carbon nanotubes in 2004 and 2008, respectively. More recently he was involved in nanodevices for ultra-fast driving,
biomimic concepts and brain-machine interface. He has authored or co-authored over 200 journal and conference papers,
and is an inventor of 100 granted patents.

Abstract:

The different working principles of nano hole array structure from general color can make promising features as a bio-detector
(http://optics.physicsmeeting.com/) because the structural color filter (SCF) changes easily, the filtering colors by covering of different
biomaterials. Because the nano-hole arrays were designed to present a filtered peak wavelength in the visible light region, filtered color

changes caused by different biomolecules were easily observed with a mi com/)or even by the naked
eye. Generally, many biomolecules are transparent or colorless in the visible range, so that it is hard to distinguish among them using visible
observation. However, their molecular structure and composition induce some differences in the dielectric constant or refractive index, causing
afiltered color shift in the nano-hole array structure. Here, the contribution of geometric parameters such as the hole diameter and the spacing
between nano-holes for bio-detection was evaluated to maximize the change in color among different biomolecules. A larger hole size and
space between the holes enabled the bi to be easily distinguished. Even if the change in color was not distinctive enough by eye in
some cases, it was possible to distinguish the change by simple analysis of the "Hue’ values or by the ‘Lab’ color coordinates obtained from
the photo images. Therefore, this skill can have high probability of realization for real-time detection of cells without the use of bio-markers

m

Figure 1: Concept images of bio-detection based on a SCF. (a) Image of a general red CF based on red pigments. Except for the red color
component, the other components in white light are absorbed by the red pigments (b) Schematic image of a SCF. Nano-hole arrays induce a
color filtering effect (c) Even though three different proteins are dropped on a general CF; there are no color changes due to its transparent
optical property. (d) Different transparent biomolecules change the dielectric property of the surface of filters when they are dropped on the
SCF. This causes spectral shifts in the SCF

Recent Publications

1.MRyu, et. al. (2017) of interface ct ics of neural probe based on graphene, ZnO nanowires, and conducting
polymer PEDOT. ACS Applied Materials & Interfaces. 9 (12): 10577-10586.

2. M Sim et. al. (2016) Structural solution to enhance the sensitivity of a self-powered pressure sensor for an artificial tactile system. IEEE
Transactions on Nanobioscience. 15: 804-811.

3. J H Shin et. al. (2016) Ultrafast metal-insulator-multi-wall carbon nanotube tunneling diode employing asymmetrical structure effect.
Carbon 102: 172-180.

4.S Kim et. al. (2016) Geometric effects of nano-hole arrays for label free bio-detection. RSC Advances 6: 8935-8940.

5. B O Jun et. al. (2015) Wireless thin film transistor based on micro magnetic induction coupling antenna. Scientific Reports 5:18621.

Biography:

Johan Bauwelinck received his PhD degree in Applied Sciences, Electronics from Ghent University, Belgium in 2005. Since
Oct 2009, he is a Professor in the IDLab research group of the Department of Information Technology (INTEC) at the same
university where he is leading the Design lab since 2014. He became a Guest Professor at iMinds in the same year, now
IMEC since 2016. His research focuses on high-speed, high-frequency (opto) electronic circuits and systems, and their
applications on chip and board level, including transmitter and receiver analog front-ends for wireless, wired and fiber-optic
communication or instrumentation systems. He is an active person involved in the EU-funded projects GIANT, POWERNET,
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Johan Bauwelinck (https://optics.physicsmeeting.com/speaker/2017/johan-bauwelinck-ghent-university-

belgium)

Ghent University, Belgium

Title: High-speed i ics for t. ion optical networks
2017/high-speed. i ics-f t jon-optical ks)

PIEMAN, EuroFOS, C3-PO, Mirage, Phoxtrot, Spirit, Flex5Gware, Teraboard, Streams, WIPE and Optima conducting research on advanced
electronic integrated circuits for next generation transport, metro, access, datacenter and radio-over-fiber networks. He has promoted 18 PhDs

and ithored more than 200 i and 10 patents in the field of High-Speed and Fiber-Optic C

Abstract:

High-speed ~electronic circuits  (http:// i ing.com/) are essential to the development of new fiber-optic
systems. ally i ing data ion is ing the ions of optical and driving the

development of faster and more efficient ivers. Fiber-optic ication networks operate on very different scales from very short

interconnects in datacenters to very long links between cities, countries or continents. Optical fibers (http://optics.physicsmeeting.com/) are
also increasingly used for access networks (e.g. fiber-to-the-home) and for mobile fronthauling and backhauling. Advances in opto-electronic
devices, high-volume ing and i jes are driving in these diverse applications. Because
of the increasing speeds, close integration and co- design of photonic and electronic devices have become a necessity to realize high-
performance sub-systems, while such co-design brings new opportunities as well on the sub-system architecture level to break traditional
performance-cost trade-offs. There is no single best solution among electrical and optical technologies due to the different technological
constraints in terms of distance, footprint, power consumption, cost, etc. Research is approaching this challenge from different angles, with
technological improvements on photonic and electronic devices (http://optics.physicsmeeting.com/) and/or by applying more complex

and signal While each appli operates on a very different scale (fiber length, number of users) with very different
requirements (capacity, signal format, cost, power, etc.), they share one thing, their need for application-specific high-speed electronic
transceiver circuits such as driver amplifiers, amplifiers, izers and clock-and- data recovery circuits. This presentation

willllustrate a few recent and ongoing developments from various H2020 projects.

Figure 2: 64Gb/s PAM-4 transimpedance amplifier array

Recent Publications

1. M et. al. (2017) optical i ing a CMOS driver array and an InP IQMZM for advanced
modulation formats. J. Lightw. Technol. 35(4):862- 867.

2. JVerbist et. al. (2016) A 40-GBd QPSK/16-QAM integrated silicon coherent receiver. IEEE Photon. Technol. Lett. 28(19):2070-2073.

3. B. Moeneclaey et. al. (2017) 40-Gb/s TDM-PON downstream link with Low-Cost EML transmitter and APD-Based electrical duobinary
receiver. J. Lightw. Technol. 35(4):1083-1089.

Nikola Z Petrovi¢ (https://optics.physicsmeeting.com/speaker/2017/nikola-z-petrovi--university-of-
belgrade-serbia)

University of Belgrade, Serbia

Title: General analytic solutions to the various forms of the nonlinear Schrédinger equation using the Jacobi elliptic
othod i i h 7igeneral-analyti ions.to-the-vari

function ion mi y
f f.th i t th b functi i thod)
ger-eq g-the-j; )
Biography:
Nikola Z Petrovic received his BSc in Mathematics and in Physics at MIT ( Institute of ) in 2003 and

his PhD in Physics at University of Belgrade in 2013. He was employed as a Teaching Associate and Lab Coordinator at
Texas A&M University at Qatar from 2005 to 2012. He is currently an Assistant Research Professor at Institute of Physics,
Belgrade. His primary field of expertise is Mathematical Physics applied to nonlinear optics, in particular finding novel exact
solutions to the nonlinear Schrodinger equation, the Gross-Pitaevskii equation and other related equations.

Abstract:

The advent of meta-materials has made materials with a negative refractive index possible. This has opened up a possibility of finding stable
solutions to various nonlinear equations that naturally occur in the field of nonlinear optics through the use of dispersion management. Finding
such stable solutions is invaluable for the field of photonics (http://optics.physicsmeeting.com/)and has many potential practical applications. In
our work we use the F-expansion method applied to the Jacobi elliptic function, along with the principle of harmonic balance to find novel
solutions to various forms of the Nonlinear Schrédinger equation (NLSE). This approach allowed us to assume a quadratic form for the phase
with respect to the longitudinal variable and thus find solutions both with and without chirp. Earlier work done on the NLSE with Kerr

90f12 11/30/2018, 6:04 PM



Scientific Program | Photonics Conferences | Optics Conferences | LaserTech Meetings | Europe| USA ...

10 of 12

nonlinearity, with both normal and It i was i to i ities of arbitrary ial nonlinearity. Stable
solutions were also obtained for the Gross-Pitaevskii equation. These solutions were determined to be modulationally stable, either
or with di ing on the signs of various parameters in the original equation. The method was

subsequently generalized for functions satisfying an arbitrary elliptic differential equation, including Weierstrass elliptic functions. A relatively
new line of research has been finding solutions to the NLSE in a parity-time (PT) conserving potential, i.e. one for which the real part is an
even function and the complex part is an odd function. We found a rich new class of exact solutions where the potential resembles the Scarf Il
potential.

Jul®
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Figure 1: Solution to the NLSE with Kerr nonlinearity using the Weierstrass elliptic function described in: (a) without chirp (b) with chirp

1.S L Xu, Y Zhao, N Z Petrovié and M R Beli¢ (2016) Spatiotemporal soliton supported by parity-time symmetric potential with competing
nonlinearities. Europhysics Letters. 115: 14006.

2. N Z Petrovi¢ and M Bohra (2016) General Jacobi elliptic function expansion method applied to the generalized (3+1)-dimensional
nonlinear Schrédinger equation. Optical and Quantum Electronics. 48: 1-8.

3. S L Xu, N Petrovi¢, M R Beli¢ and W Deng (2016) Exact solutions for the quintic nonlinear Schrédinger equation with time and space.
Nonlinear Dynamics 84: 251.

4.N Z Petrovi¢, N B Aleksi¢ and M R Beli¢ (2015) Modulational stability analysis of exact idii solutions to the
nonlinear Schrédinger equation and the Gross-Pitaevskii equation using a variational approach. Optics Express 23: 10616.

4. W P Zhong, L Chen, M R Beli¢ and N Petrovi¢ (2014) Controllable parabolic-cylinder optical rogue wave. Physical Review E. 90:
043201.

V A Belyakov (https://optics.physicsmeeting.com/speaker/2017/v-a-belyakov-landau-institute-for-
theoretical-physics-russia)

Landau Institute for Theoretical Physics, Russia

Title: Optics of photonic liquid crystals at frequencies of localized modes
12017/optics-of-photonic-liquid-crystals-at les-of-localized-modes)

Biography:
V A Belyakov graduated from Moscow Engineering Institute in 1961 and was a Postgraduate student of | V Kurchatov Atomic
Energy Institute during 1961-64. He received Doctor of Science degree in 1974. He was the Head of Laboratory in All-Union
Physics-Technical and Radio-Technical Institute from 1964 to 1982 and Surface and Vacuum Research Centre, Moscow
r during 1982-1995. Since 1995, he is a Senior Researcher in L D Landau Institute for Theoretical Physics. Since 1982, he is a
Part-time Professor in Moscow Institute for Physics and Technology; and short term Visiting Professor of some universities:
Leuven (Belgium), Tokyo (Japan), Paris Sud (France), Glasgow Thrathclyde (Scotland), etc. He is the Author of the following
monographs: Optics of Cholesteric Liquid Crystals, 1982, Optics of Chiral Liquid Crystals, 1989; Diffraction Optics of Complex
Structured Periodic Media , 1988, 1992; Optics of Photonic Crystals, Publishing House of Moscow Institute of Physics and Technology, 2013
(Textbook, in Russian). He is honored with the Grants of Russian Foundation for Basic Research (RFBR), Soros Grants, and INTAS Grants.
He is a Member of Russian Academy of Natural Sciences, Member of Russian Academy of Metrology, Member of International Liquid Crystal
Society and Liquid Crystal Society of CIS (member Governing body 1982).

Abstract:

Recently great attention was paid to the localized optical modes in photonic crystals, in particular, in photonic liquid crystals due to their
efficient application in the linear and nonlinear optics. Here a brief survey of the publications and original theoretical results on the localized
optical modes in photonic liquid crystals in ion with ion of the i are .
Theoretical studies were performed for the certainty, as the example of chiral liquid crystals (CLCs). The chosen model (absence of dielectric
interfaces in the studied structures) allows one to get rid off the polarization by mixing at the surface of the CLC layer and the defect structure
(DMS) to reduce the corresponding equations to equations for the light of diffraction in the CLC polarization, to obtain an analytic description of

localized edge (EM) and defect (DM) modes. The di equations i of the EM and DM frequencies with the CLC
layer parameters and other parameters of the DMS are obtained. Analytic for the ion and reflection i of the
DMS are presented and analyzed. Specific cases were considered, as DMS with an active (i.e. transforming the light intensity or polarization)
defect layer, CLC layer of local ani: ion and helical director . It is shown that the active layer (excluding an

amplifying one) reduces the DM life-time (and increase the lasing threshold) in comparison with the case of DM at an isotropic defect layer.
The case of CLC layers with an anisotropic local absorption is also analyzed and, in particular, shown that due to the Borrmann effect the EM
life-times for the EM ies at the opposite stop-bands edges may be if different and so in the experiment optimization of it
should be taken into account. The experimentally observed enhancement of some optical effects in photonic liquid crystals at the EM and DM
frequencies (lowering of the lasing threshold, abnormally strong absorption, etc.) are in good agreement with the presented theory. Options of

i bservations of the new revealed are Itis ized that the localized modes in
CLC results are of a general nature and are qualitatively applicable for the localized modes in other structures.

REFERENCES

1. Liquid Crystals Microlasers, Eds. L.M.Blinov, R.Bartolino, Transword Research Network, 2010.
2.V. 1. Kopp, Z.-Q. Zhang, and A. Z. Genack, Prog. Quantum Electron. 27, 369 (2003).

3. V.ABelyakov, S.V,Semenov, JETP , 118, 798 (2014).

4. V. A. Belyakov, Mol. Cryst. Liquid Cryst. 612, 81 (2015).

Enayet Rahman (https://optics.physicsmeeting.com/speaker/2017/enayet-rahman-university-of-london-
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uk)
University of London, UK

Title: Optical ide properties of i and nerve axons from ultraviolet to NIR wavelengths
Hlopti jsicsmeeti 17/optical properties-of- i d i
- Biography:
Abstract:

Statement of the Problem: Infrared Nerve Stimulation (INS) is becoming popular because of its potential to provide targeted
stimulation. Recently it was claimed that myelin sheath can guide light (200 nm — 1300 nm), however propagation
characteristics were not reported for wavelengths | > 1500 nm, common in INS. We present them here for | up to 2000 nm for
both myelinated and unmyelinated nerve fibers.

&T ical Orientation: Modal analysis was performed on the cross-section of the nerve fiber by solving
Maxwell's equations. The effective index (n_eff) of the first three modes was determined and the single mode operating wavelength range was
determined for both myelinated and unmyelinated nerve fibers, using a 4-um diameter axon. The overall diameter of the myelinated fiber was
6.66 um. The refractive indices of the fiber cytoplasm, the myelin sheath, and the outside medium were set as 1.34, 1.44 and 1.38
respectively.

Findings: The optical power propagating through unmyelinated fiber is confined by the index of the fiber's cytoplasm (1.38) being higher than
its surrounding (1.34). The effective indices of the first three propagating modes were determined and plotted in for 200nm < | < 2000nm. It
was found that the unmyelinated fiber is single-mode for | > 1700 nm. In the myelinated fiber, optical power is confined within the myelin
sheath (1.44). The effective indices of the myelinated fiber indicate that it supports more modes than the unmyelinated one and the myelin
sheath operates in a single-mode condition for wavelengths longer than 1980 nm. This article i light i istics of
nerve fibers for a range of wavelengths, making it very useful for future INS designs. This study can also be useful in the field of interfacing
brain using light.

Conference Series LLC LTD Destinations

Conferences By Continents Medical & Clinical Conferences Conferences By Subject
USA & Americas Europe Diabetes & Endocrinology ~ Gastroenterology Agri, Food & Aqua Alternative Healthcare
A Al
us Austria diabete: Jagri-food-aq i healthcare-
nceseries.com
b ) eetingy meetings) Animal Science and meetings)
-meet tria-
usa-meetings) austria Healthcare Management  Infectious Diseases Veterinary Biochemistry
Canada meetings) - )
(hnpi//wwwwnferencesenes.ccmflguum heatthe infectious §
& eetingy M meetings) Business & Management  Cardiology
Brazil Jbelgium- ’ )
Medical Ethics & Health Obesity hi
(https:/fwwwconferenceseries comneetings) - N
P . Policies Jcardiology
Mm?I ;e (l)'/tpms// feroipsth meetings) Chemistry
tps:/jww
exico PO e es-health-  Palliativecare Chemical h
(https:/fwwwconferenceseries corftyprus- i N )
3 Y
Jmexico-meetings) meetings) hemical 5
- . Crech Republic . : )
Asia-Pacific & Middle (https://www.conferenceserieatiology meetings) (https://www.conferenceseries.com
(nttpsi/wwwconferenceseris com
East N lophthalmology- (https://www.conferenceserieeatistry /dermatology-meetings)
Jezech-republic- } N )
sl meetings) diology Sciences
et ) rg‘:e““g[” Physical Therapy dentistry n
(hetps:Jwww conferenceseries coenmark Rehabilitation EEE & Engineering Jenvironmental-sciences-
[ hi nceseries.com N o
peMvnnco co (https:/fwww.conferenceserieneatings)
China /denmark-
) Iphysical-therapy- Jeee-engineering- Ceology & Earth science
(https:/Jwww.conferenceseries.cormeetings) : ) )
B rehabilitation-meetings) meetings) (https://www.conferenceseries.com
[china-meetings) Finland . - :
Reproductive Medicine & Genetics & Molecular Igeology-earth-science-
Hong Kong (https:Jfwwwconfergaceserics com }
) fomen Fiealthcare Biology meetings)
(https:/Jwww.conferenceseries.corffinland- )
(https://www.conferenceseries.com (https://www.conferenceseridsromanology
Jhong-kong-meetings) meetings) L
Jreproductive-medicine- Is lecular-
India France
" - women-healthcare- biology
! ectings) Hematology Medical
/india-meetings) [france- N )
\:donesla . ‘ zeetmgs) g fmedical
¢ t:"s'”WW"’“’” erenceseriescomermany ) Materials Science Nanotechnology
g N )
lzpan . ) Igermany- Is-science- -
(https:/Jwnwwconferenceseries, cur:\eeungs) mectings mectings)
fjapan-meetings) reece ) Microbiology Neuroscience
Malaysia (https:fjwwwconferenceseries.com N )
(https:/Junww.conferenceseries corfgreece-
Jmalaysia-meetings) meetings) Nephrology Nutiition
New Zealand Hungary N .
h — . ;
- hungary-
Inewzealand-meetings) Jhungary- Nureing pathology
Philippines meetings) N )
(https:/Junww.conferenceseries.cortieland ol ;
h - " p g
Oncology & Cancer Petroleum
Singapore Jireland- N )
(https:/Juww.conferenceseries.cormeetings) . o
A 3 Tl y
Isingapore-meetings) aly ) meetings) Pharmaceutical Sciences
South Korea (https:fjwwwconferenceseries.com - )
Pediatrics (https://www.conferenceseries.com

11 of 12 11/30/2018, 6:04 PM



Scientific Program | Photonics Conferences | Optics Conferences | LaserTech Meetings | Europe| USA ...

12 of 12

g fences-
h-k g L pediatric: i meetings)
Taiwan (https://www.conferBhaesexibtarketing & Psychiatry
(h Industry (https://www.conferenceseries.com
Jtaiwan-meetings) meetings/) h i ing:
Thailand Netherlands ~ fpharma-marketing- Surgery
hailand netherlands- Physics Jsurgery-meetings)
UAE meetings) (https://www.conferenceseridéaines
(https:/fwwwconferenceseries corNorway Jphysic h m
Juae-meetings) (https://www.conferBalressradaggm Ivaccines-meetings)
Romania [norway- (https://www.conferenceseries.com
(h -4
Jromania-meetings) Poland Toxicology
Jpoland- Jtoxicology-meetings)
meetings)
Portugal
(https://www.conferenceseries.com
Jportugal-
meetings)
Romania
(https://www.conferenceseries.com
Jromania-
meetings)
Russia
(https://www.conferenceseries.com
Jrussia-
meetings)
Slovenia
(https://www.conferenceseries.com
Jslovenia-
meetings)
South Africa
(https://www.conferenceseries.com
Jsouth-africa-
meetings)
Spain
(https://www.conferenceseries.com
Jspain-meetings)
Sweden
(https://www.conferenceseries.com
Jsweden-
meetings)
Switzerland
(https://www.conferenceseries.com
Jswitzerland-
meetings)
Turkey
(https://www.conferenceseries.com
Jturkey-
meetings)
UK
(https://www.conferenceseries.com
Juk-meetings)
Mail us at Be a member and support us Highlights from last year’s
Convention!

Drop us an email for Program enquiry.
9 photonics@conferenceseries.net

(mailto:photonics@conferenceseries.net)

Sponsors  Exhibiting/ Advertising.

9 photonics@physicsconferences.org

5 Join Our Mailing List
(join_our_mailing_list.php)
5 SuggestASpeaker
(suggest_speaker.php)

5 Suggestions (suggestions.php)
-

General Queries.

< photonics@physicsconferences.org

5 Invite Proposals (invite_proposals.php)

2

8y registering for the conference you grant permission to Conferenceseries to photograph, film or record and use your name, likeness, image, voice and comments and to publish, reproduce, exhibit,
distribute, broadcast, edit and|or digitize the resulting images and materialsin publications, advertising materials, or in any other form worldswide without compensation. Taking of photographs and/or

3 View Past Conference Report
(http://www.conferenceseries.com
[Past_Reports/photonics-2016-past)
3 View Conference gallery
(http:/fwww.conferenceseries.com
[Past_Reports/photonics-2016-gallery)
3 View Proceedings
(http:/fwww.omicsgroup.org/journals
[Archive]LOP/photonics-and-laser-
technology-2016-proceedings.php)

videotaping during any session is prohibited. Contact us for any queries,
N f (0 W (htpsiiwitercom/Photonics_2017) in () Copyright © 2015-2016 ConferenceSeries lic LTD
(http:/iconferenceseries.com/), All Rights Reserved.
@0 &0 80 @0 @9

https://optics.physicsmeeting.com/2017/scientific-program.php?day=1&sid=3584&date=2017-07-31

11/30/2018, 6:04 PM



Fwd: Re: Poziv

1o0f3

Subject: Fwd: Re: Poziv
From: Nikola Petrovic <nzpetr@ipb.ac.rs>
Date: 27.10.2018. 03.46
To: zoran@phy.bg.ac.rs

———————— Original Message --------
Subject: Re: Poziv

Date: 2017-02-26 23:35

From: Nikola Petrovic <nzpetr@ipb.ac.rs>
To: Brana Jelenkovic <branaj@ipb.ac.rs>

Da 1i mozete samo da mi javite da 1i mi je potvrdena rezervacija sobe?

Puno pozdrava,
Nikola

On 2017-02-23 08:36, Brana Jelenkovic wrote:
Ima soba, jednokrevetna, cak mozes da biras, Konaci ili Angela. Javi sto pre.

Pozdrav,

Brana

Brana Jelenkovic
Photonics Center
Institute of Physics
University of Belgrade

On 21.02.2017 10:51, Nikola Petrovic wrote:

Dolazim sam, tako da mi treba singl. Nazalost, necu biti u mogucnosti
da dodem u nedeliju.

Stizem u ponedeljak, vracdam se nazad u sredu uvece (kad se zavrsSe
predavanja krecem kuc¢i), tako da mi trebaju samo ponedeljak i utorak
uvece.

Do¢i ¢u svojim kolima.
Pozdrav,

Nikola

On 2017-02-21 08:50, Brana Jelenkovic wrote:
Pozivni predavaci su oslobodjeni kotizacije.

Nisi se javio da ti rezervisemo sobu u Konacima, da 1i si sam negde
rezervisao. Ako nisi, reci da 1i ides sam ili sa porodicom. odn kolika
ti soba treba. Nece biti lako ali mogu da pokusam da rezervisem joe
jednu sobu.

conference bus krece u nedelju u 7:30 ispred IF-a, reci i da 1i hoces
da putujes sa nama.

2.12.2018.18.16



Fwd: Re: Poziv

20f3

Pozdrav,

Brana

Brana Jelenkovic
Photonics Center
Institute of Physics
University of Belgrade

On 21.02.2017 06:50, Nikola Petrovic wrote:
Saljem apstrakt. Javite mi ako treba ne3to da se ispravi 3to se formata tice.

Koliko vidim smeStaj je u sopstvenoj reziji, ali pretpostavljam da su
svi predavaci automatski ucesnici konferencije i mogu prisustvovati
svim predavanjima.

Koliko para treba da se uplati u Ziro racun spomenut u templetu?

Puno pozdrava,
Nikola

On 2017-02-20 23:27, Brana Jelenkovic wrote:
Nikola,

nisi poslao naslov i apstrakt predavanja na Radionici. Ako nisi
odustao od puta na Kopaonik, posalji to da bi bilo u programu i knjizi
apstrakta, sto pre, znaci do sutra u podne.

Pozdrav,
Brana

Brana Jelenkovic
Photonics Center
Institute of Physics
University of Belgrade

On 26.11.2016 19:24, Nikola Petrovic wrote:
On 2016-11-23 17:22, Brana Jelenkovic wrote:
Dragi Nikola,

imas poziv od Organizacionog odbora 10. Radionice iz fotonike da budes
predavac. Predavanja traju 25 min. Radionica se odrzava od 26 februara

do 2 marta na Kopaoniku, u hotelu Konaci,

Verujemo da imas znacajne radove iz nelinearne optike, jedne od tema
Radionice.

Nadamo se da ces da prihvatis poziv.
Pozdrav,
u 1ime Organizacionog komiteta

Brana Jelenkovic

2.12.2018.18.16



Fwd: Re: Poziv

30f3

Sa zadovoljstvom Vam saopStavam da prihvatam poziv da odrzim predaavanje.

puno pozdrava,
Nikola

Institute of Physics Belgrade
Pregrevica 118, 11080 Belgrade, Serbia
http://www.ipb.ac.rs/

Institute of Physics Belgrade
Pregrevica 118, 11080 Belgrade, Serbia
http://www.ipb.ac.rs/

Institute of Physics Belgrade
Pregrevica 118, 11080 Belgrade, Serbia
http://www.ipb.ac.rs/

Institute of Physics Belgrade
Pregrevica 118, 11080 Belgrade, Serbia
http://www.ipb.ac.rs/
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BAeceta pagnonuua $oTOHMKe Konaonuk, 26.2-2.03.2016. Y

General analytic solutions to the various forms of the Nonlinear
Schrédinger Equation using the Jacobi elliptic function expansion method

Nikola Petrovi¢!

(1) Institute of Physics, 118 Pregrevica, 11080 Bel 'grade, Serbia
Contact: Nikola Petrovi¢ (nzpetr@ipb.ac.rs )

» most notably the F-expansion method, the principle of
harmonic balance and the use of the Jacobi elliptic function (JEF) for the expansion function,

has yielded a rich new class of solutions for a wide range of parameters of the NLSE. Thanks
to the mathematical properties of JEFs, both solitary wave and traveling wave solutions can
be realized and the effect of chirp can be added to all the solutions [1].

The fundamental ansatz for the solution to the basic NLSE with distributed coeffi
anomalous dispersion and Kerr nonlinearity was described in [1]. This ansatz was

degree of nonlinearity.

REFERENCES

[1] M. Beli¢, N. Z. Petrovi¢, W. P. Zhong, R. H. Xie and G. Chen, Phys. Rev. Lett.101, 0123904 (2008)
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10" Photonics Workshop (2017)

Program

Sunday, February 26, 2017

from to activity carried by type

116:10 |16:30 |OPENING B. Jelenkovié |

| \ chairperson B. Jelenkovié \

16:30 17:00 | Dynamic interactions between glutamate-mediated S. Anti¢ 1
plateau potentials and backpropagating action
potentials in dendrites of cortical pyramidal neurons

17:00 17:30 | Towards low-loss metamaterials for nanophotonics Z. Jaksic 1
and plasmonics

117:30 [17:40 |BREAK | |

17:40 18:10 | Scattering enhanced absorption in biophotonic D. Panteli¢ 1
structures

18:10 |18:30 Luminescence and structural properties of Eu**doped | D. Sevié 2
Sr,CeO4 nanopowders

118:30 [20:00 |DINNER BREAK | |

| | chairperson | |

20:00 [20:20 | Proposal for efficient atom localization scheme using |J. Dimitrijevi¢ 2
Zeeman coherences in degenerate two-level atomic
system

20:20 20:40 | Effects of water adsorption on thin films of graphene | R. Panajotovi¢ 2
and tungsten disulfide as active components for
biochemical sensors

20:40 [21:00 | Electromagnetic wave propagation through terahertz | D. Stojanovi¢ 2
chiral metamaterials




21:00 21:10 |BREAK | |

21:10 [21:30 | The adsorption of gases during LIPSS formation on | A. Kovacevic 2
thin metal films with femtosecond beam

21:30 [21:50 | Comparison of the securities of two-state and four- D. Popovi¢ 2
state quantum bit-commitment protocols

21:50 22:10 |Light localization in two-dimensional Lieb lattices with | P. BeliCev 2
alternating spacings and Kerr nonlinearity

22:10 22:30 |Laser treatment of multilayered Ti/Ta thin film M. Obradovi¢ 2
structures (pdf)

Monady, February 27, 2017

from [to activity carried by type

116:00 [16:30 |REFRESHMENT | \

| | chairperson | |

16:30  17:00  Building your own Light Sheet Fluorescence A. Kranz 1
Microscope

17:00 [(17:30 H2020-CARDIALLY — Noninvasive capturing and Lj. HadZievski 1
quantitative analysis of multi-scale multi-channel
diagnostic data of the cardiovascular system

17:30 [17:40 |BREAK | |

17:40 18:10  General analytic solutions to the various forms of the | N. Petrovi¢ 1
Nonlinear Schrédinger Equation using the Jacobi
elliptic function expansion method

18:10 [18:30 Electro-optic techniques and THz time domain R. Pan 2
spectroscopy (pdf)

118:30 20:00 |DINNER BREAK | |

20:00 |20:20 FTIR Spectrometer for spectral characterization of E. Zapolnova 2
THz undulator at FLASH1 (pdf)

20:20 20:40 |Raman spectroscopy: a tool for the characterization |I. Petrovié 2




of antioxidant components of mature tomato fruits

20:40 |21:00 Imaging of functional and structural alterations in S. Stamenkovi¢ 2
primary cortical astrocytes isolated from the
transgenic rat model of ALS

21:00 [21:10 |BREAK | |

21:10 21:30 Deformation of Fermi Surface for Ultracold Dipolar V. Velji¢ 2
Fermi Gases

21:30 [21:50 Benefits of implementing online Dynamic Bandwidth | B. Pajcin 2
Allocation algorithm in energy efficient WDM EPON

21:50 22:10 Performances of BB84 and B92 QKD authentication | N. Miljkovi¢ 2
protocols analyzed by proposed physical model

22:10 |22:30 Ejection fraction calculation using multiparametric M. Mileti¢ 2
cardiac measurement system

22:30 22:50 | G-Protein Coupled Receptors structure prediction by | M. Mudrini¢ 2
Bayesian probabilistic approach principle

Tuesday, February 28, 2017

from [to activity carried by type

116:00 [16:30 |REFRESHMENT | |

| | chairperson | |

16:30 17:00 | Quantum Control on an Atom Chip 'F. Cataliotti 1

17:00 [(17:30 Imaging the state of the blood-brain barrier, cellular | P. Andjus 1
and molecular markers of inflammation in hSOD1
G93A rat model of ALS

17:30 [17:40 |BREAK | |

17:40 [18:10 Putting some light on the membrane physiology of M. Zivi¢ 1
filamentous fungi

18:10 [18:30 Four way mixing in potassium vapor with large photon| B. Jelenkovi¢ 2
amplification




118:30 20:00 |DINNER BREAK | |

| | chairperson | \

20:00 20:20 Destruction of organophosphate pollutants in water | N. Skoro 2
using atmospheric pressure plasma sources

20:20 20:40 Fabrication of fluorescent probe for cell bioimaging by | V. Djokovié¢ 2
bi-conjugation of gold nanoparticles with riboflavin and
tryptophan biomolecules

20:40 [21:00 |Nonlinear localized flat-band modes in pseudo-spinor | G. Gligori¢ 2
diamond chain

21:00 [21:10 |BREAK | |

21:10 [21:30 | Analysis of Transmission Line Coupled with V. MiloSevic 2
Antisymmetric Split Ring Resonators

21:30 [21:50 |Comparative analysis of two porous carbon materials | A. Kalijadis 2
based on similar type of precursors

21:50 [22:10 |Assesment of connexin protein distribution in the D. KoCovi¢ 2
human fetal cortex using confocal laser scanning
microscopy

22:10 [22:30 | Quantum Droplets in a Strongly Dipolar Bose-Einstein| D. Vudragovic¢ 2
condensate

22:30 [22:50 | Stokes Eigenvectors of Anisotropic Medium | V. Merkulov 2

Wednesday, March 1, 2017

from [to activity carried by type

116:00 [16:30 |REFRESHMENT | |

| | chairperson | |

16:30 |17:00  Maximally efficient symmetry based diagonalization of| |. MiloSevi¢ 1
biophysical Hamiltonians

17:00 17:30 | Application of non-equilibrium plasmas in treatments | N. Pua¢ 1
of seeds and plant cells




17:30

18:00

18:10

18:30

18:50

19:10

20:30

18:00

18:10

18:30

18:50

19:10

19:20

Harmonic Generation via Excitation of Surface States  O. Khasanov
Formed from Spatially Separated Electrons and Holes

in Nanocomposites

BREAK

chairperson

Photonic density of states near a semi-infinite G. Isi¢
metallodielectric superlattice

Hemoglobin imaging using two photon excitation A. Krmpot
fluorescence microscopy

Spatio-Temporal Localization of Powerful O. Fedotova
Femtosecond Pulses in Kerr Solids

CLOSING

WORKSHOP DINNER
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Monday, February 27, 2017 SPONSORS_»

from to activity carried by type f

16:00 [16:30 REFRESHMENT
chairperson

16:30 [17:00  Building your own Light Sheet Fluorescence | A. Kranz 1
Microscope

17:00 [17:30 |H2020-CARDIALLY — Noninvasive capturing | Lj. HadZievski 1
and quantitative analysis of multi-scale muilti-
channel diagnostic data of the cardiovascular
system

17:30 [17:40 BREAK

17:40 [18:10 | General analytic solutions to the various forms | N. Petrovi¢ 1
of the Nonlinear Schrédinger Equation using
the Jacobi elliptic function expansion method

18:10 [18:30 | Electro-optic techniques and THz time domain | R. Pan 2
spectroscopy (pdf)

18:30 20:00 DINNER BREAK

20:00 [20:20 | FTIR Spectrometer for spectral E. Zapolnova 2
characterization of THz undulator at FLASH1
(pdf)

20:20 [20:40 | Raman spectroscopy: a tool for the |. Petrovi¢ 2
characterization of antioxidant components of
mature tomato fruits

20:40 [21:00 |Imaging of functional and structural alterations | S. Stamenkovi¢ 2
in primary cortical astrocytes isolated from the
transgenic rat model of ALS

21:00 [21:10 BREAK

21:10 [21:30 | Deformation of Fermi Surface for Ultracold V. Velji¢ 2
Dipolar Fermi Gases

21:30 [21:50 | Benefits of implementing online Dynamic B. Pajcin 2
Bandwidth Allocation algorithm in energy
efficient WDM EPON

21:50 [22:10  Performances of BB84 and B92 QKD N. Miljkovi¢ 2
authentication protocols analyzed by proposed
physical model

22:10 [22:30 | Ejection fraction calculation using M. Mileti¢ 2
multiparametric cardiac measurement system

22:30 [22:50 | G-Protein Coupled Receptors structure M. Mudrini¢ 2
prediction by Bayesian probabilistic approach
principle
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6. EnemeHTH 32 KBAHTUTAaTUBHY aHaNIMU3y paga

OcTBapeHM pes3ynTati y nepuoay HakoH ogsnyke HayyHor Beha o nmpegnory 3a ctuuarbe

NPeTXOAHOr Hay4HOr 3Bakba

Kareropwuja M 6op0Ba 110 pagy bpoj pagosa YkynHo M 6010Ba
M21a 10 5 50
M21 8 2 16
M22 5 1 5
M23 3 1 3
M31 3,5 0 0
M32 1,5 2 3
M51 2 1 2
YKynHO 79

I'Iope'f)el-be ca MMHUMANHUM KBAHTUTAaTUBHUM yC/1IOBMUMaA 34 M360p Y 3Bakbe BUWKN Hay4HU
CapagHuK

M kateropuje Ycnos OcTBapeHo
YKynHO 50 79
M10+M20+M31+M32+M33+M41+M42 40 7
M11+M12+M21+M22+M23 30 74

Ny nepnogy npe ny nepnoay nocne nbopa kaHgnaat je sehuHom objaB/bmBao pasgose y
Yyaconucuma KaTteropmje M21a n M21. YkynaH ¢paKktop ytmuaja (361p umnakT ¢paktopa)
pagoBa KaHauaaTa je 49,448, a y nepnoay HakoH ognyke HaydHor Beha o npegnory 3a
CTULaH€e NPEeTXoaHOr Hay4yHOor 3Bamba Taj dpakTop je 24,526.

JopatHn BubanomeTpumjckm nokasatesbm 3a nepmog, nocne n3bopa y cagawte 3Bakbe
(tauka 2 N1N) cy:

N M cHUN
YKyMHO 24526 | 76 11.19
yepearero |, oo 7.6 1.24
No YNaHKY
yepearero | g g 30.75 4.629
no ayTopy

Mpema 6a3n WOS pagoBu KaHamaaTta cy umMtMpaHu yrkynHo 352 nyTa, 40K je 6poj
umTaTa 6e3 aytoumtata 308. Mpema uctoj 6a3n H-nHaekc kaHamnaaTa je 8.
Mpwunor: nogaun o UMTUPAHOCTU Ca MHTEPHET cTpaHuue WOS.



Ha 6a3u Google Scholar uma 515 uutaTta (WwTo yK/by4yje n 54 umutata Kbure IMO
Compendium) n H dakTop 10.

KoHkpeTHe BpegHocTn UmnakT PakTopa v paHrmparba Yaconuca cy HageaeHe 3a CBe pajose
Yy NCTW pagoBa. Tom MPUAMKOM HWje KopuwheHo NpaBuNO TPU rOgMHE OCUM Yy CAy4ajy
Kaga jow Hucy objaBsbeHun nogaum (2018) nnm Kaga 36or UcTeKa npeTniaTe Hema NogaTtaka

y 6a3n KobcoH.



7. Cnucak objaB/beHUX pagoBa u apyrux nybaukaumja
Hukona 3 Netposuh

CMUCAK PAJOBA Y YHACOMUCUMA A0 NPETXOAHOI U3BOPA Y 3BAHE

[1] D. Jovi¢, M. Petrovi¢, D. Arsenovic, S. Prvanovi¢, M. Beli¢, N. Z. Petrovié, “Counterpropagating
beams in photorefractive media and optically induced photonic lattices”’, Asian J. Phys. 15, 283
(2006). M24

[2] W.P. Zhong, R.-H. Xie, M. Belié, N. Z. Petrovi¢, G. Chen and L. Yi, “Exact spatial soliton solutions of
the two-dimensional generalized nonlinear Schrodinger equation with distributed coefficients,”
Phys. Rev. A 78,023821 (2008). IF 2.908 (6/64) M21a

[3] M. Beli¢, N. Z. Petrovi¢, W.-P. Zhong, R. H. Xie and G. Chen, “Analytical Light Bullet Solutions to
the Generalized (3+1)-Dimensional Nonlinear Schrédinger Equation,” Phys. Rev. Lett. 101, 0123904
(2008). IF 7.180 (5/68) M21a

[4] N. Z. Petrovi¢, M. Belié, W.-P. Zhong, R.-H. Xie and G. Chen, “Exact spatiotemporal wave and
soliton solutions to the generalized (3+1)-dimensional Schrédinger equation for both normal and
anomalous dispersion,” Opt. Lett. 34, 1609 (2009). IF 3.059 (6/71) M21a

[5] N. Z. Petrovi¢, M. Beli¢ and W.-P. Zhong, “Spatiotemporal wave and soliton solutions to the
generalized (3+1)-dimensional Gross-Pitaevskii equation,” Phys. Rev. E 81, 016610 (2010). IF 2.352
(4/54) M21a

[6] N. Z. Petrovi¢, M. Beli¢ and W.-P. Zhong, “Exact traveling-wave and spatiotemporal soliton
solutions to the generalized (3+1)-dimensional Schrédinger equation with polynomial nonlinearity of
arbitrary order,” Phys. Rev. E 83, 026604 (2011). IF 2.255 (6/55) M21 *(napomena u ovom materijalu
nije koris¢eno pravilo najboljih rezultata u tri godine veé¢ samo u tekucoj godini, ukoliko bi se to
pravilo primenilo ovo bi bio rad u kategoriji M21a)

[7]1 N. Z. Petrovi¢, N. Aleksi¢, A. Al Bastami and M. Belié, “Analytical traveling-wave and solitary
solutions to the generalized Gross-Pitaevskii equation with sinusoidal time-varying diffraction and
potential,” Phys. Rev. E 83, 036609 (2011). IF 2.255 (6/55) M21 *

[8] A. Al Bastami, N. Z. Petrovic¢ and M. R. Beli¢, “Special solutions of the Ricatti Equation with
applications to the Gross-Pitaevskii nonlinear PDE,” Electron. J. Diff. Egs., Vol. 2010, No. 66, 1 (2010).
IF 0.427 (198/245 podaci za 2011) M23

[9] A. Al Bastami, M. R. Beli¢, D. Milovi¢ and N. Z. Petrovi¢, “Analytical chirped solutions to the (3+1)-
dimensional Gross-Pitaevskii equation for various diffraction and potential Functions,” Phys. Rev. E
84, 016606 (2011). IF 2.255 (6/55) M21 *

[10] N. Z. Petrovic¢, H. Zahreddine and M. Beli¢, “Exact spatiotemporal wave and soliton solutions to
the generalized (3 + 1)-dimensional nonlinear Schrédinger equation with linear potential,” Phys.
Scr. 83, 065001 (2011). 1.204 (35/84) M22



[11] S. Xu, N. Z. Petrovi¢ and M. Beli¢, “Vortex solitons in the (2+1)-dimensional nonlinear
Schrédinger equation with variable diffraction and nonlinearity coefficients,” Phys. Scr. 87, 045401
(2013). IF 1.296 (40/78) M22

MNpepaBara Ha KOHdepeHUUjama NybAMKOBaHa y Le/IMHU Y Yaconucuma

[12] M. R. Beli¢, M. S. Petrovi¢, D. M. Jovié, A. |. Strini¢, D. D. Arsenovié, S. Prvanovic,
R. D. Jovanovi¢, N. Z. Petrovié, “Dancing Light: Counterpropagating, Beams in Photorefractive

Crystals,” Acta Physica Polonica A 212, 729 (2007). M33 (M23 as a journal)

[13] N. Z. Petrovi¢ and H. Zahreddine, “Exact traveling wave solutions to coupled generalized
nonlinear Schrédinger equations,” Phys. Scr. T149, 014039 (2012). M33 (IF 1.032 (48/83) M22 as a
journal)

PAAOBU NYB/IMKOBAHU NMOC/IE NPETXOAHOI U3BOPA Y 3BAHE

PagoBeu y mehyHapogaHUM YaconmMcuma usyseTHux BpegHoctu M21a

4

[14] W. P. Zhong, L. Chen, M. Beli¢, N. Petrovi¢, “Controllable parabolic-cylinder optical rogue wave,’
Phys. Rev. E 90 (4), 043201 (2014)  IF=2.288 (5/54) SNIP=1.14

[15] S. L. Xu, N. Petrovi¢, M. R. Beli¢, “Exact solutions of the (2+ 1)-dimensional quintic nonlinear
Schrédinger equation with variable coefficients,” Nonlinear Dynamics 80 (1-2), 583-589 (2015)
IF=3.000 (8/135) SNIP=1.47

[16] S. L. Xu, N. Petrovi¢, M. R. Beli¢, W. Deng, “Exact solutions for the quintic nonlinear Schrédinger
equation with time and space,” Nonlinear Dynamics 84 (1), 251-259 (2016) 1F=3.464 (8/133)
SNIP=1.54

[17] S. L. Xu, N. Petrovi¢, M. R. Beli¢, Z. L. Hu, “Light bullet supported by parity-time symmetric
potential with power-law nonlinearity,” Nonlinear Dynamics 84 (4), 1877-1882 (2016) IF=3.464
(8/133) SNIP=1.54

[18] N.Z.Petrovi¢, “Spatiotemporal traveling and solitary wave solutions to the generalized
nonlinear Schrodinger equation with single-and dual-power law nonlinearity,” Nonlinear Dynamics
93 (4), 2389-2397 (2018) 1F=4.339 (8/134) SNIP=1.75

PapoBu y BpxyHCKUM mehyHapogHum yaconucuma M21

[19] N. Z. Petrovi¢, N.B. Aleksié¢, M. Beli¢, “Modulation stability analysis of exact multidimensional
solutions to the generalized nonlinear Schrédinger equation and the Gross-Pitaevskii equation using
a variational approach,” Optics Express 23 (8), 10616-10630 (2015) IF=3.148 (14/90) SNIP=1.67

[20] S. L. Xu, Y. Zhao, N. Z. Petrovi¢, M. R. Belié, “Spatiotemporal soliton supported by parity-time
symmetric potential with competing nonlinearities,” EPL (Europhysics Letters) 115 (1), 14006 (2016)
IF=1.957 (23/79) SNIP=0.60



PagoBu y uctakHytum mehyHapogHum yaconucuma M22

[21] S. L. Xu, G. P. Zhou, N. Petrovi¢, M. R. Beli¢, “ Nonautonomous vector matter waves in two-
component Bose-Einstein condensates with combined time-dependent harmonic-lattice potential,”
Journal of Optics 17 (10), 105605 (2015) 1F=1.847 (36/90) SNIP=0.87

Paposu y mehjyHapoaHum yaconucuma M23

[22] N. Z. Petrovi¢, M. Bohra, “General Jacobi elliptic function expansion method applied to the
generalized (3+ 1)-dimensional nonlinear Schrodinger equation,” Optical and Quantum Electronics
48 (4), 268 (2016) IF=1.055 (70/92) SNIP=0.61

Mpepasarwa no no3meBy Ha mehyHapogHum ckynosoma M32

[23] Nikola Z Petrovi¢ "General analytic solutions to the various forms of the nonlinear Schrédinger
equation using the Jacobi elliptic function expansion method" 6th International Conference on
Photonics July 31- August 01, 2017 Milan, ltaly
(https://optics.physicsmeeting.com/abstract/2017/general-analytic-solutions-to-the-variousforms-
of-the-nonlinear-schr-dinger-equation-using-the-jacobi-elliptic-function-expansion-method)

[24] Nikola Z Petrovi¢ "General analytic solutions to the various forms of the Nonlinear Schrodinger
Equation using Jacobi eliptic function expansion method" 10th Photonics Workshop Kopaonik 26.2-
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8. Nogauu o0 UMTUPAHOCTU pPagoBa
Hukona 3 MNetpoBuh

Mpema 6a3m WOS pagoBuM KaHAMAATa CYy UMTMPaHW YKynHo 352 nyTta, AOK je 6poj
uuTaTa 6e3 aytoumutata 308. MNpema nctoj 6asm H-MHAEKC KaHaAnaaTa je 8.

Mpwnor: nogaum o0 ULMTUPAHOCTU ca UHTepHeT cTpaHuue WOS.

Ha 6a3u Google Scholar nma 515 yutaTa (WTO YK/bYyYyje u 54 untata kbure IMO
Compendium) n H dakTop 10.

MpunoxKeHe cy CTpaHuLe ca Npernesom LMTUPAHOCTM KaHamMaaTa y 6asm WOS.
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9. 3a KaHauMpaTe Koju ce bupajy y 3Barbe HayuyHU capagHUK Uaun ce NpBu
nyt 6upajy y 3Bare y Cpbuju notpebHO je NpUNoKUTU U JOKTOPCKY
Aunnaomy.

OBo Huje npBu U3bop y 3eare. KaHanaar je gokropupao y Cpbumju. Konuja
amnnome he 6uTK NnpunoxKeHa

10. Konwuje o6jaB/meHunx pagosa u Apyrux nybimnKaumja HaKoH NpeTxoaHor
u3bopa y 3Barbe (Bep3uje u3s yaconmuca, 360pHMUKa ancTpaKkara, uta.).

MpunokeHe cy Konuje pagosa Ny61MKoBaHe Noc/e NPeTXo4He oayKe
HayuHor Beha/u36opa y 3Bama.

11. Pewere 0 npeTxogHOM u3bopy y 3Bame (3a KaHguaarte Koju Beh
MMajyHay4yHO 3Batbe NPUAMKOM M360pa y BuLle 3Bakbe unm pensbopa).

Pewere je NpuaoxeHo.
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Controllable parabolic-cylinder optical rogue wave
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We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An
analytical rogue wave solution of the generalized nonlinear Schrodinger equation with spatially modulated
coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity
transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm
the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of
parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrodinger equation.
Such rogue waves may appear in different forms, as the hump and paw profiles.

DOI: 10.1103/PhysRevE.90.043201

I. INTRODUCTION

The (1 4+ 1)-dimensional (1D) nonlinear Schrodinger equa-
tion (NLSE) with constant coefficients is an integrable model
which, among many solutions, supports also the ones that
reproduce well the qualitative characteristics of rogue waves
[1,2]. This equation describes diverse physical systems, such as
nonlinear optical fibers [3], Bose-Einstein condensates (BECs)
[4], and others. The relevance of the equation for the study of
rogue waves was lately established in various experiments
carried out in different physical contexts [5,6]. It should be
noted that these solutions—specifically, the Peregrine soliton
and Akhmediev and Ma breathers—by themselves are not
the proper rogue waves but can be used to model them.
On the other hand, the two-dimensional (2D) NLSE with
constant coefficients and external potentials may also support
propagation of different nonlinear wave packets. These wave
packets display many new properties [7-9], such as self-
compression [7] and the generation of vortex-ring beams [9].

The elucidation of mechanisms underlying the formation
and dynamics of rogue waves (also called the freak or extreme
waves) is currently subject to fundamental scientific scrutiny.
They occur in many fields, such as oceanography [10], nonlin-
ear optics [11], and BECs [4]. A comprehensive recent review
of rogue waves can be found in [12,13]. An explicit rogue
wave solution of the standard NLSE was derived in 1983 [14];
after the author, the solution was called the Peregrine breather
or an algebraic breather. Other related rogue wave solutions of
the standard NLSE were found by Ma [15] in 1979; these are
solutions that breathe temporally but are localized spatially,
for example, along a fiber. Akhmediev found a new kind
of solutions, now called Akhmediev breathers [16,17], which
were qualitatively different from the Ma breathers. Akhmediev
breathers oscillate spatially but are localized in time. In other
words, Akhmediev breathers are the exact pulse solutions of
the standard NLSE that extend transversely and may arise
from the transverse modulation instability of a plane wave [17].
On the other hand, the Peregrine breather is a localized solution
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in both space and time [14], and can thus be seen as the limit
of both the Ma and the Akhmediev breathers.

Recently, the first-order and second-order Peregrine rogue
wave solutions—indeed, solutions all the way up to the fifth
order—have been observed in a water wave tank [18,19]. Also,
rogue waves described by the Peregrine rational solution have
been generated in optics [20] and magnetoplasma [21,22].
Thus the validity of the simplest rogue wave solutions has been
confirmed experimentally. A direct approach to finding multi-
rogue-wave solutions of the standard NLSE, based on the mod-
ified Darboux transformation, is presented in [23]. It is worth
mentioning that the rogue wave solutions were exhibited in the
inhomogeneous NLSE with variable coefficients. Periodic and
hyperbolic wave functions may display the dynamical behavior
of roguelike wave phenomena. The profiles of the first-order
and second-order rogue wave solutions of the inhomogeneous
NLSE with variable coefficients can be controlled by a number
of parameters [24]. A common characteristic of all these waves
is that they ride on a finite background.

In this paper, we demonstrate that a class of
parabolic-cylinder optical rogue waves can exist in
inhomogeneous media described by the varying coefficients
in NLSE. Such solutions, which are constructed by means
of the similarity transformation method as products of
the parabolic-cylinder function and the basic rogue wave
solutions of the standard nonlinear Schrodinger equation,
form relatively stable rogue wave patterns while propagating.
These controllable profiles of the optical rogue waves can be
realized by selecting different orders of the parabolic-cylinder
function. Since in general the media exhibiting rogue
waves that can be controlled—such as nonlinear optics and
BECs—are inhomogeneous and can be better described by
the NLSE with varying coefficients, it is expected that the
solutions obtained in this paper will have a greater influence
on the quest for finding changeable but feasible rogue waves
in experimentally controlled environments [12,13].

The paper is organized as follows. In Sec. II, we introduce
the generalized nonlinear Schrodinger equation with spatially
modulated coefficients and a special external potential, and
construct an explicit form of the rogue wave solution of
the model through the similarity transformation. We then

©2014 American Physical Society
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elaborate on the method of deriving parabolic-cylinder rogue
waves. In Sec. III, we discuss the patterns of first-order,
second-order, and third-order rogue wave solutions mentioned
above. Section III is also devoted to a numerical study of two
solutions in order to compare our numerical simulations with
the analytical predictions, and also to confirm the stability of
localized solutions. Finally, Sec. IV presents our conclusions.

II. THE MODEL AND THE SIMILARITY
TRANSFORMATION

We consider nonlinear optical systems ruled by the gen-
eralized NLSE with spatially modulated coefficients and a
special external potential which can be written in the following
dimensionless form:

82
+ d(x)a—xZ F2NGOulPu+ Uzxu =0, (1)

.ou
l_
0z

where u(z,x) represents the complex optical wave envelope,

the beam propagates along the z axis, and x is the transverse
coordinate. Here, d(x) is the diffraction coefficient, N(z,x) is
the nonlinearity coefficient, and U (x) is the external potential.
We choose the potential as U(x) = d(x)(ax> + b), where a
and b are the two real constants to be determined below. Hence,
the external potential is just a simple quadratic potential,
modulated by the diffraction coefficient. In this manner, we
try to stay close to the physically relevant situations, so when
d(x) is constant, the equation reduces to the Gross-Pitaevskii
equation of BECs with harmonic potential. All of the parame-
ters of the equation can be controlled and manipulated by the
choice of medium. The nonlinearity coefficient N(z,x) may
possess different expressions in Eq. (1); thus it may include
many special cases of nonlinear optics and BECs. When
N(z,x) = N(z) and d(x) =1 in Eq. (1), we have obtained
bright and dark soliton solutions by means of the F-expansion
method in [25]; the first-order and the second-order rogue
waves were also obtained, and the dynamical behavior of those
waves was discussed in our previous work [24]. However, the
important controllable behavior of rogue waves in [24] has
not been investigated, not even for N(z,x) = N(x), and also
the third-order rogue waves have not been analyzed at all. We
focus in this paper on spatially localized solutions for which
N(z,x) = N(x).

In order to find rogue wave solutions of Eq. (1), we presume
arelation between u(z,x) and the solution V (z,Y) of the NLSE
with constant coefficients, Eq. (3), by utilizing the similarity
transformation,

u(z,x) = A(X)V(z,Y), 2
%4 + v +2|IVPPV =0 (3)
I— + — =0,

0z aY?

where A(X) is the amplitude, assumed to be a real function.
Here we introduce two similarity variables X = X(x)and Y =
Y(x) to be determined [26,27]. In general, the rogue wave
solutions of Eq. (3) have the following basic structure [1]:

Y i H,(z,Y .
VH(Z1Y) — [(_l)n + Gn(Zs )+l n(Zv )} 82127 (4)

F,(z,Y)
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where n(=1,2,3,...) is a positive integer. The polynomial
F,(z,Y) should have no zeros in the region of interest, to ensure
that the solution V,(z,Y) is finite everywhere. The first-order
(n = 1), going to the third-order (n = 3) rogue wave solutions
of Eq. (3), can be found by the direct integration method (see
Appendix A).

Substituting Eq. (2) into Eq. (1) leads to Eq. (3), provided
that a system of differential equations for X, Y, and A(X) is
satisfied:

29A0X0Y %Y

AdX dx ax = ox2
d|a%A [aXx 2+8A82X
Aloax2\ ax

X 9x2
and the following two relations hold:

—0, (5a)

]+U=o, (5b)

———, and d(x):/ X. (5¢)
X

AZ(X)d
These relations establish a connection of the nonlinearity and
diffraction coefficients with the presumed amplitude of the
solution in Eq. (2) and thus can be considered as constraint
conditions on Eq. (1) for solution by the present similarity
transformation method. By assuming the simplest possibility
X = x, one finds the following relation between Y and A:

Y(x) = f A 2dx, (6a)
and a simple differential equation for A:
d*A )
— +(ax"+b)A=0. (6b)
dx?

Equation (6b) is just the Schrodinger equation for the quadratic
potential, with the well-known solutions. It is a linear second-
order ordinary differential whose general solution can be
expressed in terms of many different special functions. We
opt for the ones with clear physical relevance and a convenient
parameter that allows an easy classification of solutions. More
specifically, if we choose a = —1/4 and b = m + 1/2, where
m is a non-negative integer, differential equation (6b) is
transformed into the canonical form of the parabolic-cylinder
differential equation [28] (PCDE), namely,

d*A 1,
W‘i‘ m—i—z—zx A=0. (6¢0)

The general solution to PCDE (6c), found by considering the
standard Weber differential equation, is

A =klc1Dy(x) + c2D_py—1 (iX)], (6d)

where ¢; and ¢; (cjc; > 0) are the two integration constants
that should be chosen so as to avoid introducing singularities
in Y(x). Here, D,,(x) is the parabolic-cylinder function and

k=41 /\/Em! is the normalization constant. It should be
noted that A(x) is real, although the argument of the second
parabolic-cylinder function is complex (see Appendix B).
Obviously, when [x| — oo for any non-negative integer m,
D,,(x) tends to a constant.
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FIG. 1. (Color online) External potential for parameters c¢; =
¢, = 1 and different m.

Collecting all these partial solutions together, we obtain an
analytical solution of Eq. (1):

u(z,x)= [e1Dp(x) + 2Dy 1 (ix)1V,(2,Y), (7)

1
V2mm!
which we will refer to as the parabolic-cylinder
rogue waves. Since |u(z,x)| vanishes at [x| — oo,
Eq. (7) represents localized wave packets. Here, Y(x) =
k2 f [c1 D, (x) + czD_m_l(ix)]_zdx and V,(z,Y) is defined
by Eq. (4). The novel optical rogue waves from Eq. (7) can be
conveniently classified by the two integer parameters, n and
m. Based on the values of n and m, we can obtain new families
of controllable parabolic-cylinder optical rogue waves.

III. CONTROLLABLE ROGUE WAVES

In this section, we consider the cases when m is a non-
negative integer and discuss the profiles of the first-order
(n = 1), the second-order (n = 2), and the third-order (n = 3)
optical rogue waves. We then check the stability of exact
solutions to Eq. (1) as given by Eq. (7) with the quadratic
potential coefficient a = —1 / 4, by numerical integration of
Eq. (1) with appropriate initial conditions.

PHYSICAL REVIEW E 90, 043201 (2014)

A. External potential

When a = —1/4 and b = m + 1/2, the external poten-
tial for different values of parameter m becomes U, (x) =
v 2n'm!(—}1x2 +m+ %)f (c1Dm(x)+cdzJ;.)7m71(ix))2 and is shown
Fig. 1. Even though the formula for these optical potentials
is complicated, the potential barriers of such form are readily
realizable experimentally and theoretically [29,30]. Although
the potential includes an explicit quadratic dependence, upon
modulation it resembles more a cubic polynomial function. An
external potential of this form can serve as an anharmonic trap-
ping potential in BECs that includes a tunneling mechanism;
one should keep in mind that interest in the field of BECs
is mostly confined to harmonic and liner potentials [30,31].
Additionally, anharmonic potentials may arise in the dynamics
of waveguides with specially crafted transverse profiles of
the refractive index [32]. A discussion of the influence of
polynomial external potentials on NLSE is provided in [33].
Our interest here is confined to providing exact rogue wave
solutions to the generalized NLSE that ride on complicated-
looking external potentials which display benign-looking
profiles. Note that the parameter m is connected with the
potential, while the parameter n is connected with the order of
the rogue wave solution.

In general, we have a large degree of freedom in choosing
n and m. However, when n is greater than 3, V,,(z,x) in Eq. (4)
becomes quite complex. Thus, in this paper we only study low-
order rogue wave packets. We present the optical amplitude
[1,(z,x) = v/|u(z,x)|*] distributions and their contour plots
for specific values of the two parameters n and m. Clearly, the
optical intensity can be manipulated by the choice of parabolic-
cylinder functions and the order of rogue wave solutions.

B. First-order rogue waves

The simplest case in this family of optical rogue wave
solutions given by Eq. (7) is obtained when n = 1. In Fig. 2,
analytical solutions of the first-order (n = 1) rogue waves

@ (b)

FIG. 2. (Color online) First-order rogue waves withn = 1, shown form = 0,1,2 from left to right. Top row shows the intensity distributions,

the bottom row the corresponding contour plots.
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FIG. 3. (Color online) Profiles of the fundamental second-order
rogue waves with the parameters o; = B; = 0: (a) m = 0 and (b)
m=1.

are depicted for different m with two integral constants:
c1 = ¢ = 1. For simplicity, we keep the constantsc; = ¢; = 1
throughout. Figure 2(a) depicts the distribution when m = 0;
the profile displays a single peak with two dips. The peak is
located at (z,x) = (0,0) and there are two transverse valleys
around the peak, akin to the Peregrine soliton. By increasing
m to 1, the localized structure with two humps is generated, as
in Fig. 2(b). Next, when m = 2, Fig. 2(c) shows three profiles
for this localized wave packet. We can see from Fig. 2(c) that
the smaller hump appears at the central position, while the
maximum value is attained at the peaks of the two side humps.
In general, for the parabolic-cylinder rogue wave with different
m, we find m 4+ 1 humps. Furthermore, we find that for even
m there is a hump at the central position, which is the smallest,
and m /2 additional humps on each side of the central position,
whereas for odd m there is no hump at the central position.

C. Second-order rogue waves

For n = 2, there exist two types of parabolic-cylinder rogue
wave families, namely, the fundamental rogue waves with the
parameters «; = §; = 0 and the excited rogue waves with
the real parameters «; and fB;, of which at least one is not
zero. The second-order parabolic-cylinder rogue waves exhibit
pawlike patterns, with “four-claw” symmetrical structures
around the central peak. Figure 3(a) shows the intensity of
these wave packets for m = 0. For m = 1, these rogue waves
form more complex structures. Two four-claw profiles along
the transverse direction are seen in Fig. 3(b).

Another case is obtained for parameters «; = 0 and 8 =
—10. Figure 4(a) depicts a typical example in which three
similar peaks are located at the vertices of an equilateral
triangle, for m = 0. For m = 1, the pattern of the rogue wave
displays six four-claw structures, as seen in Fig. 4(b).

D. Third-order rogue waves

To describe their form, the general third-order rogue wave
necessitates four real parameters, o, B, o, and f,. Therefore

PHYSICAL REVIEW E 90, 043201 (2014)
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(b)

FIG. 4. (Color online) Multiple four-claw structures for the
second-order rogue waves with the parameters o; = 0, 8 = —10:
(a) m = 0 and (b) m = 1. The setup is as in Fig. 3.

the third-order rogue wave displays a more complex structure
than the second-order wave. The choice of four parameters can
be made in many ways, but we consider the three special cases.
In the first case «; = ap = B; = B> = 0, which describes the
fundamental third-order rogue wave. The remaining two cases
are given by 8 = 8, =0, and o) # 0, o # 0 and by o) =
o, =0, and By # 0, By # 0. In general, we find that many
different profiles of rogue waves can be obtained by different
combinations of these four parameters.

First, we construct the fundamental third-order rogue wave
fora; = ap = B1 = B2 = 0. Form = 0 there exist two valleys
and a high peak surrounded by six small claws, as seen in
Fig. 5(a). Note that the peak is located at the origin (z,x) =
(0,0). Figure 5(b) illustrates the rogue wave for m = 2. There
now exist three “six-claw” patterns, and the intensity is smaller
at the central peak than at the two side peaks.

Next, we consider the parameters B = 8, =0, o] =
aop, = 50, and m = 0. Figure 6(a) exhibits the second-order

Y e D e 4w

N
P L

FIG. 5. (Color online) Intensity of the fundamental third-order
rogue waves: (a) m = 0 and (b) m = 2. The setup is as in Fig. 3.
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FIG. 6. (Color online) General third-order rogue waves with the
parameters 8; = f, = 0anda; =, = 50:(a)m = 0and (b)m = 1.
The setup is as in Fig. 5.

rogue wave with six high peaks. If a larger parameter m is
selected, the structure of the rogue wave is significantly more
complicated, as shown in Fig. 6(b) form = 1.

Finally, we choose four parameters: «; = 0, o, =0, | =
1,and B, = 5000. To display the characteristics of this peculiar
third-order solution of Eq. (7), the evolution of the rogue wave
is plotted in Fig. 7. Complicated patterns are obtained.

E. Numerical simulation

In the end, we briefly test the stability of the rogue wave
solutions found above. We take the fundamental third-order
rogue wave solution (7) as an initial wave perturbed by a
random noise to perform numerical simulation of Eq. (1) with
a special external potential parameter a = —1 / 4. The simu-
lations should also confirm the validity of analytical solutions

FIG. 7. (Color online) Intensities of the third-order solution of
Eq. (7) with the parameters &y = 0, o, = 0, 8; = 1, and B, = 5000:
(a) m = 0 and (b) m = 1. The setup is as in Fig. 5.

PHYSICAL REVIEW E 90, 043201 (2014)

FIG. 8. (Color online) Comparison of the analytical solution with
the numerical simulations for the fundamental third-order rogue
waves at z = 80: (a) analytical solution of Eq. (7) and (b) numerical
simulation of Eq. (1).

(7) by comparing them to their numerical counterparts. In
order to do so, we add white noise to the initial pulse u (0,x)
in the amount of 5% amplitude random noise so that the per-
turbed pulse is written as upey = # (0,x) [1 + 0.05random(x)].
Figure 8 compares the analytical solution of Eq. (7) with the
numerical simulation of Eq. (1) for «; = ; = 0 by using the
split-step beam-propagation method [34-36]. Here, we keep
the same parameters as in Fig. 5, but the parabolic-cylinder
order is chosen as m = 1. As expected, the rogue wave can
propagate in a stable manner for a while under the initial
perturbation of white noise and is in good agreement with the
analytical solution. Although here we have demonstrated the
results of the stability only for an example in Eq. (1), similar
conclusions hold for other solution cases as well, provided
propagation distances are kept within reasonable values. One
should keep in mind that rogue waves riding on a finite
background often suffer from modulational instabilities.

IV. CONCLUSIONS

In conclusion, we have presented analytical rogue wave
solutions of the generalized NLSE with spatially modulated
coefficients and a special external potential. By utilizing
the similarity transformation, we have demonstrated that a
class of parabolic-cylinder optical rogue waves can exist in
specific inhomogeneous media. Our results show that these
controllable patterns of the optical rogue waves can be realized
by selecting different orders of the parabolic-cylinder function
and of the basic rogue wave solutions of NLSE with constant
coefficients. A numerical simulation is performed to compare
with the analytical solution and to confirm the relative stability
of localized solutions. Since the understanding of rogue
waves is important in the (241)-dimensional models, which
characterize the more realistic evolution in the transverse (x,
y) plane, we plan to extend our study to multidimensional
NLSE models.
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APPENDIX A: EXACT ROGUE WAVE SOLUTIONS

We use the direct integration method to obtain rogue wave
solutions of Eq. (3). To find the first-order rogue wave solution,
we assume the solution of Eq. (3) in the form
Gi(z,Y)+iH(z,Y)

Fi(z,Y)

Vi(z,Y) = [—1 + ]e“, (AD)

J

PHYSICAL REVIEW E 90, 043201 (2014)

with G1(z,Y) = go, Hi(z,Y) = ho+ iz + hoY, Fi(z,Y) =
fo+ fiz? + foY?, where g;, hj, and f; (j = 0,1,2) are real
constants and the factor e”? is a seed solution of Eq. (3).
Substituting Eq. (A1) into Eq. (3) and setting all coefficients
of 2V (k, J = 0) to zero, for f; # 0 to avoid singularities in
F, we obtain a system of algebraic equations, which are then
solved, to obtain go =1, hg =0, hy =4, h, =0, fo =1/4,
f1 =4, fo = 1, namely,

Gi(z.Y)=1, Hi(z.Y)=4z, Fi(z.Y)=;+4"+7Y"

We further apply the direct method to find the second-order
rogue wave solution as follows:
G2(z,Y) +iHy(z,Y)
F(z,Y)

Va(z,Y) = [1 + ]ez"z, (A2)

with

Ga2(2,Y) = g0+ 812 + g22Y + g3Y + 842 + g522Y 2 + ge V> + g72* + gs ¥4,
Hy(z,Y) = ho + hiz + ho¥ + h3z® + haz¥ 4+ hsY? + hez’ + hyz® + hgzV? + hoz’ Y2 + hyozV? + hyzY?,
Fz.Y) = fo+ fiz+ LY + 22+ V2 4 fs2* + fezV 2+ f122Y + Y2 + foz* + f102? Y2 + f1 7?4

+ f122° 4 fi3?Y* + fuuY? + fisYS.

Again, substituting Eq. (A2) into Eq. (3) and using Mathematica, we obtain the following relations:

g0 =36, g =-1156;, g =0, g3=-5760;, g4 = —3456, gs= —4608, g¢c = —288,

g7 = —15360, gg=—192;

ho = 14481, hy =720, hy =0, hz=-23048;, h4= —2304c;, hs=>576p8,, he¢= —12288,
h7; = —1636, hg = 1152, hg = —6144, hjy=1152, hy; = —768;

fo=9+144 (0512 + /312), fi =864y, f, =144a;, f3=1584, f, =108, f5=1536p,

fo = —115281, f; =2304ay, f3=—19a;, fo=06912, fio=—1152, f;;, =48, fi»=4096,
fi3 =768, fia =3072, fis =64

where o) and B; are two arbitrary real constants. Thus, G»(z,Y), H»(z,Y), and F»(z,Y) can be written as follows:
G(z,Y) =36 — 1158,z — 5760, Y — 3456z% — 4608z°Y? — 288Y% — 15360z* — 192Y*,
Hy(z2,Y) = 1448, + 720z — 2304B,2% — 2304a,zY + 5768, Y> — 122887° — 16362°
+1152zY% — 61442°Y% 4+ 1152772 — 768774,
Fx(z,Y) = 9+ 144 (a)” + B1?) + 8641z + 144a Y + 158477 + 108Y* + 1536p12° — 1152B,zY>

+23040,2%Y — 1920, Y3 + 69127% — 115222Y? + 48Y* + 40967° + 76872 Y* + 3072z*Y? + 64Y°.

In a similar procedure, we obtain the following third-order rogue wave solutions of Eq. (3):

Gs3(z,Y) +iH(z,Y)

V3(z,Y) = [—1 +

The expressions for G3, H3, and F3 are given as follows:

F3(Z,Y)

} ez, (A3)

10
G3(2.Y) = 16200 + 3600 (o + B7) + 144 (o2 + B2) + G (V) + Y @u(¥)',

=1
11

H(z.Y) = —162008, — 24008 (o] + BT) + 960a; 0281 — 10808, + 4808, (BT — of) + Hy(¥) + > hy(¥)z',

=1

F3(z,Y) = 2025 4+ 2700 (o] + B7) + 400 (af + BY) + 360 (et + B182) + 36 (o3 + B3) + 800 B

12
+ R+ BP0+ L,
=1
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where

GY(Y) =

gio(¥Y) =
g6(Y) =
gs(Y) =
ga(Y) =

g(Y) =
&) =

g1(Y) =

H(v) =

hi(Y) =
ha(Y) =
hs(Y) =

ha(Y) =
h3(Y) =

hy(Y) =

hi(Y) =

FPr) =

FO =

fi2(Y) =

24576Y"% + 921607 + 3225607 ° + (230400cr; — 13824a5) ¥ + (57600a] — 1920087 — 172800) ¥*
— (1152000; + 1152002)Y? — (64800 + 28800a7 + 2880087 ) ¥ — (43200, + 9600cr; + 4320a 4 9600a; B7) Y,

276824064, go(Y) =0, gg(Y) = 283115520Y% + 778567680, g7(Y) = —471859208;,

110100480Y* + 165150720Y% 4 550502400, Y + 215285760,

—294912008; — 10321926,

196608007 — 14745600Y* 4 19660800a; Y + 16588800072 + (18432000, — 25804800ct;) Y

— 47001600 4 215040002 4 92160082,

49152008, Y* 4 (11059208, — 368640008;) Y + 2457600, 81 Y + 101376008, — 64512085,

1474560Y® — 14745607 ° 4 14745600, Y + 2764800Y* + (9216000 — 184320a,) ¥*

+ (138240087 — 460800c] — 20736000) Y

+ (4147200, — 2764800r;) Y — 3456007 + 460800 ar; — 80640087 + 460808, 8, — 777600,

4915208, Y° + 460808,zY* — 6144000, B1Y> + (13824008, + 691208,) Y?

+ (2304001 B2 — 230400, 81 4 23040001 B,)Y + 1920002 ) + 1920087 — 86408,,

307208, Y8 + (921608, — 76808,) Y° + 30720a; 8, Y° + (576008, — 57608,) Y*

+ (3840001 B1 — 384000281 + 384001 Bo) Y — (864008 + 960081 + 960087 + 129608,) Y*

+ 2880028, Y — 2880c; 8, Y,

100663296, hio(Y) =0, ho(Y) = 12582912072 + 157286400, hg(Y) = —235929608,

629145607+ — 94371840Y2 4 314572800, Y — 342097920, he(Y) = 39321608, — 6881286,,
15728640Y° + 825753607 * + 15728640 Y + 168099840Y 2 + (14745600, — 56033280c;) ¥

+ 17203200 4 73728087 — 236666880,

49152008, Y* + (11059208, — 516096008;) Y? + 2457600 81 Y + 359424008, — 4608008,

1966080Y® — 1376256076 + 1966080a; Y — 11059200Y* + (122880000, — 245760ct,) Y

+ (184320087 — 38707200 — 6144000:7) Y* + (1843200, — 7372800r1) Y — 1382400c] + 61440010t
—19968008% 4 614408, B> — 3801600,

9830408, Y6 + 921608, Y* — 1228800a; 81 Y> + (27648008, — 1382408,) Y + (460800a; B; — 460802 B,
+ 460800 B2)Y + 384008, + 3840083 + 1900808,,

98304Y "% — 368640Y® — 921600Y° + 1843200 Y° — 552960, Y + (230400cr; — 7680087 — 2073600) Y*
+ (460800, — 1382400cr1) Y + (11520007 + 11520087 + 1814400) Y* — (172800cr; + 38400c;; + 86400a;
+ 3840001 7)Y + 720000 — 230400t 0t + 57603 + 7200087 — 230408, B> + 5763 + 453600,

4096Y % + 6144Y "% — 102400, Y® + 34560Y® + (153602 — 15360c1) Y7 + (896087 + 38407 + 149760) Y°
+ (691200, — 34560) Y + (336000; — 1920002 4+ 1440087 — 19208, B, + 54000) Y* + (3200c; B7 — 144000,
+32000; — 43200,)Y? + (1445 + 360007 — 2880001t + 14403 + 360087 — 28808 B> + 48600) ¥

+ (16200c; + 2400 + 1080, — 480crcr; + 240001 B + 4800287 — 960ct1 B1B2) Y,
—551155295846408; + 350552064008, — 491520000} B; — 4600627200a; 2 81 + 196608000 o2 B
+ 17307402240008; — 6881280000c 83 4 1966080000, 8; — 63897600008, + 3179739217928,

— 663552000 B, + 265420800 012 B2 — 5463244800087 8,

+ 196608000a7 87 B2 + 1966080008} B, + 2654208008, B3,

16777216,  fi1(Y) =0, fio(Y) = 25165824Y% 4 132120576, fo(Y) = —5242880p,,

043201-7



ZHONG, CHEN, BELIC, AND PETROVIC

f3(Y) = 15728640Y* + 70778880Y> + 7864320a, Y + 244776960,

PHYSICAL REVIEW E 90, 043201 (2014)

YY) =0,

fo(Y) = 5242880Y° + 3932160Y* 4 52428800 Y> + 221184000Y2 + (4915200, — 2949120cr;) Y

457344007 + 24576087 + 62668800,

f5(Y) = 19660808, Y* + (4423688, — 265420808) Y2 4 983040 B Y + 70041608, — 626688 4,,
F4(Y) = 983040Y® — 294912076 + 9830400, Y> — 5529600Y* + (159744000, — 1228800cx») Y?
+ (92160087 — 30720007 + 80179200) Y + (8294400, — 11059200at1) Y + 3840,

f5(Y) = 6553608, Y6 + (614408, + 24576008,) Y* — 81920001 B; Y + (2764808, — 165888008,)Y>

+ (15360001 81 — 307200281 + 3072001 52)Y,

£(Y) = 983040 — 368640Y® + 5529607 ° + (184320c; — 55296a2) Y° + (23040007 — 7680087 + 3456000) Y*
+ (2304000c; + 46080cr2) ¥* + (103680087 + 115200a; — 2332800) ¥* + (190080ct; — 172800a; — 38400a;
— 3840001 B7)Y + 30240007 — 230400t + 57685 + 57605 + 53280087 — 230408 B> + 1490400,

fi(Y) = 614408, Y3+ (614408, — 153608,) YO+ (345608, — 284160a, B1) Y* + (7680 B2 — 76800281 — 230400a; B1) ¥
+ (1728008, — 19200c] B1 — 1920087 + 432008,) Y + (1728001 B2 — 172802 81) Y
— 1188008, — 240008;a + 192002 81 — 240008; — 108008, — 960 B2 -+ 96057 .

It should be emphasized that the first-order rogue wave solution has no free parameters, the second-order rogue wave solution
has a pair of free parameters (two real numbers: «; and f;), while the third-order rogue wave solution has two pairs of free

parameters (four real numbers: oy, i, oz, and B;).

APPENDIX B: THE RELATION BETWEEN
PARABOLIC-CYLINDER AND CONFLUENT
HYPERGEOMETRIC FUNCTION

The parabolic-cylinder differential equation (PCDE) has
two standard forms:

d*y 1,
e (zx +“>y =0, @1
d*y 1,
dx? <Zx B )y =0 ®2

For a general €2, the even and odd solutions to (B1) and (B2)
are

W=t m (Lo Lo (B3)
Y1 11 ) 4°2°2 s

e (1331
»(x) =xe 4 21F1<§Q+Z;5;5X2), (B4)

(

where | F) is a confluent hypergeometric function. When Q =
m + %, from (B3) we easily find

e (ml 11,
Dy(x) = e+ Fy [ 22— 252 BS
(x)=e"3" 1( D) 2x> (B5)
Doprlin) = ety (=21 L (B6)
_m—1x) =e¢ 1 2,2, 2)6 ,

both functions being real. Thus Eq. (6d) can be simplified as

. 1 e (ML 1L

xX)= |——]|cie —_— ==X
Vom0 T U2 22

m 1 10) |

2°2 2

1.2
+ e 1 F <—
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Abstract Using the self-similarity transformation,
we find analytical spatial bright and dark self-similar
solitons, i.e., the similaritons, of the generalized (2+1)-
dimensional quintic nonlinear Schrodinger equation
with varying diffraction, nonlinearity, and gain. Char-
acteristic examples with physically relevant behavior
of these similaritons are studied, and the stability of
these solutions is verified with numerical integration.

Keywords Nonlinear optics - Spatial solitons -
Self-similarity transformation

1 Introduction

The construction of exact soliton solutions for a
large variety of nonlinear partial differential equations
describing a diverse array of systems such as shallow
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water waves, DNA excitations, matter waves in Bose—
Einstein condensates, and ultrashort pulses (or laser
beams) in nonlinear optics is one of the most important
tasks in nonlinear science.

One important class of exact solutions is the so-
called “self-similar solution”, i.e., a similariton [1].
Dynamics induced by self-similar solutions has
attracted considerable attention recently in various
areas of nonlinear optics, such as the evolution of non-
linear waveguides [2], propagation of pulses in fibers
[3], and compression of parabolic solitons [4]. Self-
similar optical waves appear when the variable nonlin-
earity, diffraction, and gain conspire to evolve as abeam
with a self-similar shape. The self-similar beams may
be useful for various applications in optical telecom-
munications and waveguides, since they maintain their
overall shape but allow the amplitude and width to
change with the changing system parameters such as
dispersion, nonlinearity, and gain. Several attempts
have been made to find exact similaritons [2-7], usu-
ally in (14-1)-dimensional [(1+1)D] systems, although
solutions have also been found in a higher number of
dimensions [8]. The interaction of multiple similaritons
was studied in Refs. [9,10].

In recent years, there has been an increased inter-
est in generalizations of the standard NLSE equation
with space-modulated diffraction and nonlinearities. It
aroused in different physical contexts, such as nonlin-
ear optics and dynamics of Bose—Einstein condensates
(BECs). In BEC applications, matter waves are the nat-
ural outcome of the mean-field description [11] and
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have attracted a great deal of attention [12]. The pos-
sibility of using Feschbach resonances to control the
nonlinearities (see e.g., [13,14]) has lead to the pro-
posal of many different nonlinear phenomena induced
by the manipulation of the scattering length either in
time [15,16] or in space [17].

Many of these works deal with the cubic nonlinear
Schrodinger equation (CNLSE), as this equation mod-
els a wealth of physical phenomena. However, when the
incident fields become stronger, non-Kerr nonlineari-
ties should be considered [18,19]. The cubic—quintic
nonlinearity occurs due to an intrinsic nonlinear res-
onance in the material, which also gives rise to the
strong two-photon absorption [20,21]. The quintic non-
linear Schrodinger (QNLS) equation, in contrast to
the CNLSE, has received less attention, in spite of
the considerable relevance of this equation, both from
the mathematical point of view and that of nonlinear
physics.

In recent years, many influential papers have been
devoted to constructing exact analytical solutions of
the QNLSE, such as the pioneering work of Serkin
et al. [22]. Hao et al. [23] constructed exact soli-
tary wave solutions by assuming an ansatz solution,
Senthilnathan et al. [19,24] investigated the evolution
of nonlinear optical pulses in cubic—quintic nonlinear
media and Dai et al. [25] constructed chirped and chirp-
free self-similar cnoidal and solitary wave solutions of
the QNLSE.

In this paper, we go beyond the previous work on the
QNLS equation and study explicit solutions of the two-
dimensional generalized QNLS equation with space-
modulated diffraction and nonlinearity coefficients. We
use the multivariate self-similarity transformation to
transform this model into the standard QNLS equation
and find exact solutions. Although our method is suit-
able for arbitrary modulations of the coefficients, in
this work, we investigate in more detail the general-
ized QNLS equation, as well as the dynamics of the
corresponding nonlinear solitary waves.

The present paper is organized as follows. In Sect. 2,
we extend the similarity method given in Refs. [26,27]
to Eqg. (1), in order to reduce the generalized QNLS
equation with variable coefficients to the standard
QNLS equation and present exact solitary wave solu-
tions. In Sect. 3, the cases of chirp and chirp-free soli-
tary waves are investigated when the solution parame-
ters are chosen appropriately. Numerical simulations
and comparison with the analytical results are also per-

@ Springer

formed. In Sect. 4, the conclusions to the paper are
outlined briefly.

2 Similarity transformation and exact solitons

An optical beam propagation in media with power-law
nonlinearity can be investigated with the help of the
generalized QNLS equation with variable coefficients,
written in the following form:

du  p(z)

i— 4+ ==V + x@lul*u =iy (@u, (M
0z 2

where u(z, x, y) is the complex envelope of the electric
field, z is the coordinate in the propagation direction,
and V| = 32 + 92 is the transverse Laplacian. Here,
B(z) is the diffraction coefficient, y (z) is the nonlin-
earity coefficient, and y (z) the linear gain (y > 0) or
the loss (y < 0) coefficient.

To obtain exact analytical solutions of Eq. (1), we
introduce a self-similar transformation of the solution
[28,29]:

u(z, x,y) = A(QV(Z, X)e'B&xy), )

where A(z) is the amplitude, Z = Z(z) is the trans-
formed propagation variable, V. = V(Z, X) is the
complex function, X = X(z, x, y) is the multivariate
self-similar variable and B(z, x, y) is the phase of the
wave. All functions except V are assumed to be real.
Writing the amplitude of u as a product of two aux-
iliary functions allows for more freedom in the treat-
ment of Eq. (1). The goal is to transform Eq. (1) into
the QNLS equation with constant coefficients but with
transformed variables. Substituting Eq. (2) into Eq. (1)
transforms Eq. (1) into the following standard QNLS:

i + LoV +olVI*V =0 3)

_— —_ o =0,

Y9z T 20x2

provided that the following two equations are satisfied:

B (9°X 9°X 0z

—N—+—5)—0— =0, 4

2\ T a7) % (4a)
0Z

XAt ===, (4b)
0z

where ¢ = 1. Now we can use the fundamental soli-
ton solutions of Eq. (3), namely the bright fundamental
(single-peak) soliton in the focusing nonlinear medium
foro = +1,

n i%

VX, Z) = ————~+——¢
( ) cosh!/2(uX)

(5a)
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u? 3u? . ..
where E = T0 =77 and E is positive constant,
and the dark fundamental soliton in the defocusing non-

linear medium for o = —1,
V2Vsotanh(VEX) .,
e

/3 — tanh? (V2 X)

where E = —0 V; Vo is the value of V when X —
0o. We use these solutions to construct novel soliton
solutions of Eq. (1). Assuming Eq. (3), substituting Eq.
(2) into Eq. (1), separating its real and imaginary parts,
and requiring the coefficients next to V and Vy to be
zero, we obtain a system of partial differential equations
for X, Z, A, and B:

V(X,Z) = (5b)

d0A B (3*B 9’B
—+iaA(=—=+=)-ya=0, 6
5z 1 2 (8x2+8y2) v (6a)
dX dX 9B 09X 0B

2 _p (2L 2207 o, (6b)
0z dax 0x ay ady

aB B | (aB\> [(0B\*

—+ 5= —) [=o0 6
8z+2|:(8x) +(8y) (60)
rX - PX_ 0 (6d)
ax2  9yr

After some algebra, one obtains the simplest particular
solutions of system (6) for the given parameters:

A = Apa exp[G(2)], (7a)
2,2
7 — w’ (7b)
Wy

X = % [kx + Ly + (ro + woso) D(z) —wol,  (7c)
0

= () )

ré (k2 +1*)aD

ol ;kz 1)2 SN, (7d)
where G(z) = [y (v)dv and D(z) = [;B(v)dv
represent gain/loss and the accumulated dispersion,
respectively,anda = [1 — soD(z)] —1isthe chirp func-
tion, which is related to the wave front curvature and
represents a measure of the phase chirp. The subscript
‘0’ denotes the initial values of the corresponding para-
meters at distance z = 0; sg, ro, Ag, w, Wo, k, [, are all
constants, the parameters so and r( being the initial cur-
vature and position, Ag and wy are the initial amplitude
and position of the beam center, W, is related to the ini-
tial beam width and k and / are group velocity parame-
ters. Moreover, the function D(z) influences the form
of the amplitude, the width, the phase, and the effective
propagation distance of the solution.

The transformation of Eq. (1) into the traceable form
(3) imposes a constraint on x (z), i.e.,

_ ,B(Z)(k2 + lz) —4G(2)
x (@) = W2 A2 e . 8)
This constraint can be viewed as an integrability con-
dition placed on Eq. (1) for solution by the present
method. Thus, starting with Eq. (1), one casts its solu-
tion into a convenient form that depends on the self-
similarity variable X (which depends on the original
variables x, y and z) and two arbitrary parameters S(z)
and y (z). According to condition (8), solitons or simi-
laritons transmit stably without the distortion of shape
based on the exact balance between the diffraction, non-
linearity, and the gain/loss. Only two of the three coef-
ficients B(z), x(z) and y(z) in Eq. (1) are free para-
meters. For example, if 8(z) and y(z) are freely cho-
sen, then y (z) should be determined from Eq. (8). In
this way, different solitons or similaritons are obtained,
depending on the two real-independent functions.

We have thus obtained explicit analytical solutions
that involve the modulated diffraction and nonlinearity.
Equation (5a) leads to the bright solitary wave solution:

nAo
[1 — soD(z)] cosh!/2(X)
i[12@+BEx»]+6@)
X e )

ug(z, x,y) =

(%a)

whereas Eq. (5b) leads to the dark solitary wave solu-
tion:

V2A0  usotanh(uZ X)

up(z,x,y) =
1 —s0D
0D@) 3 _ tanh? w2, X)

x e [FZ@+BExIH+GR) (9b)

where D(z), G(z), Z(z) and B(z, x, y) are parameters
already mentioned, and us, is the value of u when
X — oo. From Egs. (9a) and (9b), as long as we
appropriately choose y (z), we obtain analytical soli-
tary wave solutions to the generalized (2+1)D QNLS
equation with variable spatially-modulated diffraction
and nonlinearity coefficients.

3 Bright and dark similariton solitons

From the solutions presented above, we can conclude
that both bright and dark solitary wave solutions could
propagate either in normal diffraction media or in
media with spatially-modulated diffraction. Figure 1

@ Springer



586

S.-L. Xu et al.

Fig. 1 Decay of the bright (a)
soliton (a) and the dark
soliton (b) in the framework 1

(b)

of Eq. (1). Here, the
diffraction coefficient

2
lug|
o
o=

B(z) = 1, and the gain/loss
coefficient y (z) = 0. (Inset)
The decay of the amplitude.
Other parameters:
Ao=Wo=so=ro=n=
k=1l=1 w09=0

OO
N O

Fig. 2 Evolution of the
bright soliton and the dark
soliton with chirp sop = 1.
The diffraction coefficient
B(z) = cos(2z), and the
gain/loss coefficient

y (z) = 0; other parameters
are the same as in Fig. 1

shows the evolution of this kind of bright soliton or
dark soliton. Letting 8 = 1, y = 0, Ag = Wy =
so =ro=n=4k=1=1,and wy = 0, from
the condition (8) one obtains x(z) = (1 — 2)2. Obvi-
ously, the light beam begins to decay after about sev-
eral propagation distance units (diffraction lengths),
and hence the bright soliton and the dark soliton are
both unstable.

This situation will be greatly changed if one chooses
the proper distributed coefficients in Eq. (1). In the
following examples, the control and management of
bright/dark chirp and chirp-free solitons is realized. For
example, consider the cosine-distributed coefficients in
the periodic distributed system [30,31]. Figure 2 shows
the evolution of bright and dark chirped solitons with
the diffraction coefficient 8(z) = cos(2z), the gain/loss
y(z) = 0, and the nonlinearity coefficient x(z) =
cos(2z)[1 — 0.5 % cos(2z)], with the chirp parameter
so = 1. From Eq. (7), one finds that the transformed
propagation distance Z = cos(2z)/[1 — 0.5 * cos(2z)]

@ Springer
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is a periodic function of the original propagation dis-
tance z. In Fig. 2, one can see that as the beam propa-
gates in the medium, the decay and the recovery of the
beam’s intensity repeat with the period /2. Thus, one
obtains breathers.

On the other hand, if we chose so = 0, the chirp-
free bright and dark soliton intensity distributions are
shown in Fig. 3. From the figure, one can note that the
profile of the chirp-free solitary waves does not change
while propagating, although its position oscillates peri-
odically (these oscillations were called “snakelike” in
Ref. [32]). Therefore, from Figs. 2 and 3, one can con-
clude that the spatial chirp is not an essential feature of
the self-similar waves and that chirp-free self-similar
waves (with so = 0) really exist, which is similar to
the results reported in Ref. [25]. These results show
that the shape of both the bright and dark solitary solu-
tions does not change even if the group velocity and
the amplitude is changed due to the presence of the
parameter so, which might be useful in the application



(2+1)-dimensional quintic nonlinear Schrodinger equation

587

Fig. 3 Evolution of the
bright soliton and the dark
chirp-free solitons, with

so = 0. The diffraction
coefficient

B(z) = cos(1.2z) and the
gain/loss coefficient

¥ (z) = 0. Other parameters
are the same as in Fig. 1

Fig. 4 Evolution of the
bright soliton and the dark
soliton with chirp, for

so = 1. The diffraction
coefficients

B(z) = exp(—0.8z), and the
gain/loss y (z) = 0; other
parameters are the same as
in Fig. 1

0
kx+ly

of self-similar solitary wave for long-distance optical
communications.

Next, let us consider the compression problem
of the laser beam in a dispersion-decreasing opti-
cal medium, by choosing for solution (8) a proper
group velocity dispersion coefficient, as given in
Ref. [33], B(z) = exp(—0.8z) and the nonlinearity
x(2) = exp[—0.8z] {1 4+ 1/0.8 exp[—0.8z]}. The evo-
lution plots of the bright soliton and dark soliton with
chirp (for so = 1) are presented in Fig. 4. It is seen
that the intensities of the beam increase gradually with
the increase in transmission distance at the start, but at
around z = 2.8, these intensities reach saturation and
remain constant. As the width of the solitary waves
is given by 1/a = 1 + sofo/o exp[—oz], the width
of the beam can thus be compressed quite effectively

—q 0 0 10
kx+ly

in propagation along optical medium to any degree
that is desired, which can have useful applications in
experiments.

To confirm the validity of solutions in Eq. (9) and
to test their stability, we performed a direct numerical
integration and compared analytical solutions with the
numerical ones. We performed numerical simulations
by using the split-step beam propagation method [34]
and added 9% of white noise to the initial condition. We
considered the input pulse from Eq. (9). Figure 5 shows
the comparison of the exact bright and dark chirp-free
solutions given by Egs. (9a) and (9b) with the result of
numerical simulation. We see that the analytical solu-
tion is consistent with the numerical simulation, and
the noise does not cause the collapse or the diffraction
of the solitary wave.
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Fig. 5 Comparing the
analytical solution with the (a)
numerical simulation of the
bright and dark chirp-free

solitons, for so = 0. Other 3“3
parameters are the same as - 8
in Fig. 1 2

Fig. 6 Evolution of the (a)
bright and dark solitons with
chirp (a),(b) and chirp-free
(¢),(d); The diffraction
coefficient is B(z) =

0.5 *cos(ﬁz)—l—O.Z*cos(z);
other parameters are the
same as in Fig. 1

Finally, by choosing 8(z) = 0.5 % cos(v/22) + 0.2 %
cos(z) and taking x(z) as in Eq. (8), we derive qua-
siperiodic solutions of Eq. (9), provided that the dis-
persion coefficient 8(z) has two incommensurable fre-
quencies. Solution (9) in this case shows a quasiperi-
odic behavior in both the width and the amplitude of
the solution, as can be seen in Fig. 6.

4 Conclusion

In this paper, we have used similarity transforma-
tion to find exact solutions of the quintic nonlinear
Schrodinger equation with spatially-modulated disper-
sion and nonlinearity. We have explicitly calculated
the chirp and chirp-free bright and dark soliton solu-
tions. By appropriately choosing the relations between

@ Springer
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distributed coefficients, rich self-similar solutions are
found. The dynamical behavior along the propagation
direction of 2D bright and dark solitons in a periodic
and exponentially distributed diffractive system with
constant gain is discussed. The chirp parameter «(z)
influences the intensity and the width of the beam. Our
solutions provide explicit periodic and quasiperiodic
bright and dark soliton solutions in a parametrically
modulated two-dimensional QNLSE.
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Abstract Using similarity transformations, the ana-
lytical solutions to the quintic nonlinear Schrodinger
equation with potentials and nonlinearities depending
both on time and space are constructed. The stability
of resonance solitons is examined by direct numerical
simulation. It is found that stable fundamental soliton
states with m = 0 and low-order soliton states with
m = 1 can be supported both by self-focusing and self-
defocusing materials. Higher-order solitons are found
unstable, however, displaying quasi-stable propagation
over prolonged distances.

Keywords Nonlinear optics - Spatial solitons -
Quintic nonlinear Schrodinger equation

S.-L. Xu (X)) - W. Deng

The School of Electronic and Information Engineering,
HuBei University of Science and Technology,

437100 Xianning, China

e-mail: xusiliul968@163.com

N. Petrovi¢
Institute of Physics, University of Belgrade,
P.O. Box 68, Belgrade 11001, Serbia

M. R. Beli¢
Science Program, Texas A&M University at Qatar,
P.O. Box 23874, Doha, Qatar

1 Introduction

A spatial soliton is a stable self-trapped wave packet
propagating in a nonlinear (NL) medium, in which dif-
fraction is exactly balanced by the nonlinearity [1].
One of the most often used models to describe two-
dimensional (2D) optical spatial solitons propagating in
Kerr media is the nonlinear Schrédinger (NLS) Egs. [1,
2]. In two transverse dimensions, spatial solitons have
been identified and can self-trap in different physical
systems [2]. However, their stability is still an open
problem. It can be improved with different methods,
such as employing soliton management techniques [3]
or including nonlocality into the analysis [4-8]. In both
2D and 3D physical settings, various types of robust
soliton clusters have been constructed by many authors
[9-11]. Recent review work [12] lists a variety of exact
solutions of the 2D NLS with the trapping potential.

Many of these works deal with the cubic nonlin-
ear Schrodinger equation (CNLSE), as this equation
models a wealth of physical phenomena. However,
when the incident fields become stronger, non-Kerr
nonlinearities should be considered [13, 14]. The cubic-
quintic nonlinearity occurs due to an intrinsic nonlin-
ear resonance in the material, which also gives rise
to the strong two-photon absorption [15,16]. In con-
trast to the CNLSE, the quintic nonlinear Schrodinger
(QNLS) equation, has received less attention, in spite of
the considerable relevance of this equation, both from
the mathematical point of view and that of nonlinear
physics.
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In recent years, many influential papers have been
reporting exact analytical solutions of the QNLSE, such
as the pioneering work of Serkin et al. [17] and Hao et
al. [18], which constructed exact solitary wave solu-
tions by assuming an ansatz solution. K. Senthilnathan
et al. [14,19] investigated the evolution of nonlin-
ear optical pulses in cubic-quintic nonlinear media,
and Dai et al. [20] constructed chirped and chirp-free
self-similar cnoidal and solitary wave solutions of the
QNLSE.

In this paper, we go beyond the previous work
on the QNLS equation and study explicit solutions
of the two-dimensional QNLS equation with space-
modulated diffraction and nonlinearity coefficients. We
use the self-similarity transformation to transform this
model into the standard QNLS equation and find exact
solutions.

The present paper is organized as follows. In Sect. 2,
extending the similarity method given in Refs. [21,22]
to Eq. (1), we reduce the generalized QNLS equa-
tion with variable coefficients to the standard QNLS
equation and present exact solitary wave solutions. In
Sect. 3, the resonance solitary waves are investigated
when the solution parameters are chosen appropriately.
Numerical simulations and comparison with the ana-
lytical results are also performed. In Sect. 4, the con-
clusions to the paper are outlined briefly.

2 The model and the soliton solutions

We utilize a model for the propagation of optical elec-
tromagnetic field in a bulk nonlinear medium with
the quintic nonlinearity, in the presence of a space-
modulated photonic lattice [23]

0y

1
io- T3V G O + Vi, g =0. (1)

Here, z is the propagation coordinate, and r and ¢
are the polar coordinates in the transverse plane. The
function x(z,r) stands for the variable nonlinearity
coefficient. The diffraction coefficient in the second
term in Eq. (1) has been normalized. Here, V =
(,;9722 + %367 + rlz % is the transverse 2D Laplacian with
the transverse radial coordinate r = /x2 + y2, ¢ is the
azimuthal angle and V (z, r) describes a real external
potential, which is to be specified.

We search for the axisymmetric cylindrical-beam

solutions of Eq. (1) inthe form ¥ (z, r, @) =u(z, r) P (¢).
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We assume that the azimuthal part of the solution is of
the form ®(¢) = cos(mg) +iq sin(me)[24], where m
is a non-negative real constant, the so-called topologi-
cal charge (TC). The parameter ¢ € [0, 1] determines
the modulation depth of the beam intensity. Note that
the azimuthal part is only an approximate solution of
Eq. (1), valid for weak nonlinearities or for large values
of g (close to 1). This is because the lu|* term in the
nonlinearity retains the ¢-dependence and spoils the
assumed separation of variables. Inserting the ansatz
for ¢ into Eq. (1), integrating over ¢ from O to 27,
and when m is an integer or half-integer is, one readily
derives an averaged equation for u:

1 Pu 1du  m? + Pl
! dz 2 \ar2  ror r2 " A&, Tl
+V(z,r)u =0. 2)

Here xi(z,r) = (3 + 2q2 + 3q4/8) x(z,r).

In order to transform Eq. (2) into the standard QNLS
equation [25] with constant nonlinearity coefficient, we
use the following form of the equation with constant
coefficients:

EU = —Ugr + G|U|*U, 3)

where both U = U(R) and R = R(z, r) are real func-
tions to be determined, E denotes the eigenvalue of the
nonlinear equation and G is a constant. Henceforth, we
explore the cases G = —1, the so-called focusing or
attractive nonlinearity and G = 1, the so-called defo-
cusing or repulsive nonlinearity.

Next, we construct the bright soliton solution of

Eq. (3), for the case of negative eigenvalue E = —%
and G = —% =—1,
U
UR) = —75—", 4a
(R) coshl/z(ER) (4a)

and for the case of positive eigenvalue £ = Gu‘go and
G = 1, where u is the value of u when r — o0, the
dark soliton solution,

2t tanh (ugo JGR)
\/3 — tanh? (u%o«/ER) ’

U(R) =

(4b)

To connect solutions of Eq. (2) with this of Eq. (3), we
use the following similarity transformation:
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u(z,r) = Az, )U[R(z, r)]e!®E"), (5)
where the amplitude A(z, r) and the phase ®(z, r) are
real functions of z and r [26]. It should be emphasized
that we require U (R) to satisfy Eq. (3) and u(z, r)to be
a solution of Eq. (2). Substituting Eq. (5) into Eq. (2),
one obtains:

dR  dRd® _ 6a)
dz  dr dr ~ 7
x1A* =GR}, (6b)

dA dR +Ad2R N AdR
dr dr dr? r dr

de 1|d%a de\> 1dA m>
A tslgr Ay ) tog A

=0, (6¢)

dz dr r r dr r2
dR\?>
+AV —EA(—) =0, (6d)
dr
dA 1/ d?*® dAdO® AdO
A——0 =0. (6
dz+2( dr2+drdr+rd) (6e)

To find exact solutions of Egs. (6a)—(6e), we intro-
duce another self-similar transformation [4,5] and a
few auxiliary functions:

Az, r) = %F(e) (7a)
Oz, r) = a(z)r + b(z). (7b)

Here, k1 is the normalization constant, w(z) is the beam
width, 0(z, r) is the similarity variable to be deter-
mined, a(z) is the wave front curvature, and b(z) repre-
sents the phase offset. These variables vary with prop-
agation distance z. Inserting Eqgs. (7) into Egs. (6a)-
(6e) we obtain the following expressions for 6(z, r) =

2 EL the wave front curvature a(z) = 2; %‘g, and:
1
R, = @) (8a)
8G dR\?
P =— —) . 8b
X&) = = B v agh At (dr) (8)

The amplitude A(z, r) is found from Eq. (6d), which is
transformed into the following NL differential equation
for F(0)

9d2F+dF 9w3d2w+m2 F
de? do 4 dz2 40

We choose the special trapping potential as follows:

dR
V =sr*-2E ( ) , (10)
dr

where s is a positive constant, and after a variable
transformation F (0) = G%e_% f(0),fromEq. (10) one
obtains:

2
da°f df
9d02+( +1—6’)——nf—0 (11a)
with:
w2db m+1
T _ T _y (11b)
2 dz 2
and
w dw? 2 1
—— —sw 4+ — =0. (11¢)

"2z ¢ 2w?

Here, n is a non-negative integer. The differential equa-
tion (11a) is known as the confluent hyper-geometric
differential equation and its solutions are the Sonine
functions [27], namely f(0) = S, (0) with:

1 (m+n)! ,

NG ¥ 6. 12
©®) = §( R =l m £ k) (12
Taking w(z)|;=0 = wo and dlﬁiﬂ |;=0 = 0, where the

subscript *0’ denotes the value of the corresponding
quantity at z = 0, and integrating Eq. (11c) yields:

w@? = wi[1+ 06— Dsin? (2ude) |, (3w

where A = W Hence, from Egs. (13a), (11b) and
0

1 dw

= 554> We obtain

from the definition of a(z) =
swi (0 — 1) sin (4swjz)

1+ — (h— 1)cos (4swiz)’

(2n +m+ 1tan™! [\/Xtan (2sw%z)]

2sﬁw3 '
(13¢c)

a(z) =

(13b)

b(z) = by —

Collecting all these partial solutions together, we finally
obtain the analytical solution of Eq. (1):
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k mo_ 2 .
V(2. 7, @) = [cos(me + iq sin(mg)] — (1) o a7 where:
2 v o _to 1w 1 60
xS (r_Z) ULR(z, r)e!le@r 0@, (da) ' T 2o 207 22007
Y o=ga=3y'+V-nu (16e)

Here w(2), a(2), b(2), U(R), R(z.r), SJ'(Ly) are
determined by Egs. (13a)-(13c), (4), (8a), (12), and

ki =/ oty

The localized solution in Eq. (14a) has the pulse
width, wave front curvature, phase, and other charac-
teristics changing with the propagation distance. Thus,
it does not represent a shape-invariant spatial soliton.
However, from Eq. (13a) one can see that for A = 1,
i.e., w = wy, the beam diffraction is exactly balanced
by the nonlinearity and hence the beam becomes an
exact soliton The other parameters in this case are:

f ——,a(z) =0and b(z) = bo—(2n+m~|—1)

Pluggmg all the results into Eq. (1), we obtain the fol—
lowing analytical resonance soliton solution:

2

- ki (1 \" 5z
Y(z,r, @) = [cos(my) +igsin(mp)] — | —) e 0
wo \wWo

2 il b _ @nt+m+1) .
xS (;)U[R(r)]e [ T Z] (14b)

0

In order to study the linear stability of this soliton, we
assume perturbations to Eq. (1) in the form [28]:

Y, 0, 2) = * P, @) + slg(r, ) + h(r, @)1,
(15)

where ¥ (r, ¢) is a soliton solution of Eq. (1), ¢ is an
infinitesimal amplitude, g(r, ¢) and h(r, @) are the real
and imaginary parts of the perturbation and & denotes
the perturbation growth rate. Substituting the perturbed
¥ (x, y) into Eq. (1) and then linearizing it around the
unperturbed solution (to the first order of ¢), one obtains
the following eigenvalue equations:

1 1 1 -
§g = — - — 3xy*h + Vh — uh,
8= 5 8t 58+ 57800+ Xy h+ 2
(16a)

Sh= by + Sy 4~ +3xvtg +V
_21’ r ) rr 27‘2 06 X 8 8 ng,

(16b)

We rewrite this eigenvalue problem as:

si2) (85 (8
(£2) G)=+ () s
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This eigenvalue problem can be solved by the Newton-
conjugate-gradient method for individual discrete eigen-
values [29]. If any eigenvalue § has a negative imag-
inary part, the perturbed solution would grow expo-
nentially with z, and thus, the corresponding solitons
would become linearly unstable. Otherwise, solutions
can be completely stable, if all imaginary parts of § are
positive or equal to zero.

3 The characteristic distributions of solitons

From Eq. (14b), it is seen that the novel solitons are
characterized by three parameters: the mode number
n, the TC m and the modulation depth g. Based on the
values of these parameters, the new 2D resonance soli-
tons are introduced. It is seen that the auxiliary func-
tion R, the nonlinearity coefficient x, and the trapping
potential V depend only on the radial variable . Hence,
to obtain the shape of invariant solitons by the present
method, it is necessary to precisely model the forms
of the external potentials and nonlinearity coefficients.
Their forms are demonstrated by Egs. (8) and (10),
which present a drawback in the procedure and in the
applicability of the method. The distributions of the
nonlinearity coefficient x (r) and the external potential
V (r) with respect to the radial coordinate » are shown
in Fig. 1. In Eq. (14b), since lim; |0 ¥ (z, 7, ¢) =0,
the solutions are localized. Without loss of generality,
in this paper we will study the case when n and m are
different non-negative integers with an initial condition
wo = 1.

First, we begin by analyzing the resonance soliton
and select the lower-order vortex-shaped distribution
of the beams for m = 1 withn = 0,1,2, and g =
0.5. Such 2D resonance soliton can exist as a spatially
localized excitation. It is evident that the solitons are
composed of two symmetrical half-moon shapes seen
in the toprow of inFig. 2 (G = 1) and Fig.3(G = —1).
The number of rings is n 4 1, the optical intensity in
the center is zero, and the intensity of rings surrounding
the center decreases with the increasing radial distance.
Futhermore, one can see that the intensity of soliton in
the self-defocusing materials is larger than that in the
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Fig. 1 Distributions of the (@)s (b) 15
nonlinearity coefficient —G=1|( 7 | e E=0.0002
x (r) and the external | e G=-1 1 —E=-0.0006
potential V (r) for the
resonance soliton from
Eq. (14b). Parameters: 0.5
wo:l,nzl,mzo - L——w/\" —_ L I
&= Of e, o = 0 ETTT s asansavnnane
= O . 3
£ N -0.5
-1
5 -1.5
0 0.5 1 15 2 0 0.5 1 15 2

Fig. 2 Intensity profiles of
resonance solitons for the
self-focusing materials with
different n (fop row); Phase
distributions (middle row);
Linear-stability spectra
(bottom row). The
parameters are: G = m = 1,
qg=0.5,n=0,1,2 from
left to right, the other
parameters are the same as
Fig. 1

0
Re(5)

self-focusing materials. The middle rows in Figs. 2 and
3 depict the phase distributions of soliton, respectively.
The bottom rows in Figs. 2 and 3 display the stability
analysis of the solitons. It is seen that the eigenvalue
8 is pure imaginary; hence some of the solutions are
stable, some are unstable.

Figures 4 and 5 display the intensity profiles of reso-
nance solitons for the self-focusing materials and self-
focusing with different m (top row). The vortex solitons
exhibit spatially modulated patterns, and the ampli-
tude and phase distributions of multipeaked vortex soli-
tons are very similar to those of azimuthons [30]. The
profiles of vortex solitons possess several amplitude
peaks covering on a constitutive ring-like substrate. The
number of amplitude peaks is also determined by the
azimuthal index m. Such a localized solution displays
a necklace-type self-trapped structure, the number of
“petals” is 2m in each necklace ring and the total inten-

0
Re(5)

sity distribution exhibits similar vortex profile. As in
Figs. 2 and 3, the intensity of rings surrounding the
center decreases with the increasing radial distance.
Furthermore, a noticeable difference is that the inten-
sity in self-defocusing materials is reduced faster and is
strongly localized in the transverse plane. In the middle
row of Figs. 4 and 5, we depict the phase distributions
of the soliton solution. Similar to the vortex soliton,
the phase pattern changes in the course of the decay,
developing a spiral form. One of the interesting prop-
erties to note is a wider extent of the resonant solitons
in the self-defocusing materials than those in the self-
focusing materials, under the same conditions, because
of the self-defocusing effect. The linear-stability spec-
tra are displayed in the bottom row of Figs. 4 and 5.
For a fixed n and m, increasing the modulation
depth ¢g from O to 1, we obtain an angularly-modulated
vortex ring and a ring-shaped beam, respectively (see
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Fig. 3 Same as Fig. 2, but (a) (b) (c)
for G = —1 0.4 a & 02 : - 0.2
o A N (I
= o.g = o_; ~S = 0-(1) s
5 5 5
0 5 0 5 0 0 5
5 5 5 5 5 5
y X y X y X
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5 @) . (9) 5 (h)
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= 0 i = = 0
£ : E° £
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g 5 0 f
Re(3) Re(3) Re(3)
Fig. 4 Same as Fig. 2, but (a) (b) (c)
forn =2,m=1,2,3 from 5 5 5
5 5 — -5
5 0 5 0 5 5 0 5
X X X
(d) (e) )
5 e — 5= —_— 5w —]
- — - = -
5. e -5 — = 5 — |
5 0 5 5 0 5 5 0 5
X X X
(9) (h) (M)
s 2 2
E . E E
5 0 5 0 5 5 0 5
Re(5) Re(5) Re(5)
Fig. 5 Same as Fig. 4, but (a) (b) (c)

for G = —1
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Fig. 6 Same as Fig. 2, but

(a)
forG=n=1,m=2, 5
q =0,0.5, 1 from left to - 0
-5 0 5
X
(d)
Sg A§
- =
_5 >‘V£
N 0 5
X
(9)
~ 5
o
E s :
-5 0 5
Re(5)
Fig. 7 Same as Fig. 6, but (a)
for G = —1 5
> 0 a__o
5
-5 0 5
X

X
5 (9)
o
E 3 :
-5 0 5
Re(5)

the top row of Figs. 6 and 7). It is shown that the
beam is modulated by the modulation depth ¢. Increas-
ing ¢, the distance between the petals decreases and
multi-TC vortices change into the vortex rings. Dif-
ferent from the self-focusing materials, for solitons in
the self-defocusing materials the outer soliton inten-
sity reduces to zero, and only a single layer exists.
Further, the phase pattern changes with increasing ¢,
so that an angular gradient-changing form evolves
into a spiral one (see the middle rows of Figs. 6
and 7). The linear-stability spectra are displayed in
the bottom rows of Figs. 6 and 7. It is seen that
the larger the value of ¢, the more stable the soli-
tons.

In order to check the stability of the soliton, we per-
form direct numerical simulations using the split-step

257
(b) (c)
5 5
g <> EX
® 0 5 0 5
X X
(e) ()
5 5
= c—=>
> T — > | >
-5 0 5 -5 0 5
X X
(h) (0]
z ol
Es E s
5 0 5 -5 0 5
Re(3) Re(5)
(b) (c)
-5 0 5 -5 0 5
X X
(e) U]
5 5 ~
> o |~ S
5 0 5 -5 0 5
X X
(h) (1)
o 5 @5
E; E2
5 0 5 -5 0 5
Re(d) Re(3)

Fourier method [31] and solve Eq. (1) by taking the
analytical solution (14b) at z = 0 as an initial condi-
tion. In Fig. 8, we present the comparison of analytical
(the first and the third rows) and numerical (the second
and the fourth rows) intensity distribution contour plots
in x — y plane, with parameters n = 2, ¢ = 0.96 and
m = 0,1,2,3 from left to right. It is seen that only
when the topological charge is m = 0, 1, the numeri-
cal solution is stable against perturbation with an initial
Gaussian noise level of 6 %. But when the topological
chargeism > 2, the soliton solution (14b) is unstable in
propagation and splits into necklace ring-shaped struc-
tures. Furthermore, we find that the stability of solution
(14b) in the self-defocusing material is better than that
in the self-focusing material. In fact, when ¢ — 1,
the stability of resonance soliton solutions of Eq. (14b)

@ Springer



258

S.-L. Xu et al.

Fig. 8 (Color online)
Comparison of analytical
(the first and the third rows)
and numerical (the second
and the fourth rows)
intensity distribution
contour plots in x — y plane;
The top two rows are for the
self-focusing material, the
bottom two rows are for the
self-defocusing material.
The parameters are n = 2,
q=09andm =0,1,2,3
from left to right, the other
parameters and the
coordinate scale range are
the same as Figs. 6 and 7

improves, in that it propagates with little change for
very long.

4 Conclusion

In summary, the dynamics of azimuthally modulated
resonance solitons in self-focusing and self-defocusing
materials are investigated. Under the same parame-
ters, the intensity of resonance solitons in the self-
defocusing material is smaller than that in the self-
focusing material. The stability of the solitons is
checked by direct numerical simulation. Our results
show that the resonance solitons with m < 1 are stable,
and for higher topological charges (m > 2), the oppo-
site holds. We find that the stability of resonance soli-
tons in defocusing material is better than in the focus-
ing material, and the stability improves as ¢ — 1. Our
approach can be applied to other problems, e.g., Bose—
Einstein condensates and light propagation in plasmas.
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Abstract Using a similarity transformation, we find
the light bullet solution of (3 + 1)-dimensional nonlin-
ear Schrodinger equation with parity-time (PT) sym-
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mogeneous functions. We demonstrate how intensity,
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of PT-potential. Dynamic characteristics of light bullets
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1 Introduction

Solitons in spatially inhomogeneous media have attrac-
ted great attention in the past decade, owing to numer-
ous applications in many areas of physics such as pho-
tonic devices, nonlinear plasmas, fluid dynamics, and
Bose-FEinstein condensation (BEC) [1-5]. Recently,
the propagation of localized optical beams in complex
nonlinear media featuring parity-time (PT) symmetry
has become a subject of intense study [6—10].

The PT-symmetry became important in quantum
mechanics when Bender and Boettcher in 1998 showed
that Hamiltonians with such symmetry can have an
entirely real spectrum, although the Hamiltonians are
non-Hermitian [11]. Complex PT-symmetric potentials
require that the real part of the potential must be an even
function of position, whereas the imaginary part should
be odd. Another important property of PT-symmetric
system is the existence of a sudden phase transi-
tion known as the spontaneous PT-symmetry breaking,
above which the spectrum ceases to be real.

Nowadays, the properties of solitons in the form of
ultrashort and strong laser pulses are quite well known
[12-14]. Furthermore, in the long-distance commu-
nications and all-optical ultrafast switching devices,
many spatiotemporal localized structures such as opti-
cal solitons [15], similaritons [16], and light bullets
(LBs) [17] have been displayed in nonlinear optics.
However, spatiotemporal localized structures in PT-
symmetric potentials have not been discussed much.
Especially, the 3D solitons in PT-symmetric potentials
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with power-law nonlinearities are hardly reported [18].
This study is undertaken in this paper.

The plan of this paper is as follows. In Sect. 2, we
briefly introduce the general model and obtain a distinct
type of soliton solution. In Sect. 3, the dynamic char-
acteristics of light bullets (LBs), such as their intensity,
width, phase, and chirp in specially designed media, are
studied. Numerical simulations and comparison with
the analytical results are performed in the same sec-
tion. In Sect. 4, the conclusion to the paper is outlined
briefly.

2 The model and the soliton solutions

We present here analytical LB solutions to the general
(3 + 1)-dimensional nonlinear Schroédinger equation
(NLSE)

i0u + @(VLM + 8%u)

Fx@u™u + [v(z, r) + iw(z, r)]u =0 )

with the power-law nonlinearity and a PT-symmetric
potential. Here, V| = 982/9x% + 8%/dy? is the trans-
verse Laplacian, r = (x, y, t) is the position vector,
and u(z, r) is the complex envelope of the electric field,
normalized with (kgwo) ™! (n2/ng)~'/2. The longitudi-
nal z, transverse x, y coordinates, and the comoving
time ¢ are, respectively, scaled by the diffraction length
Lp = kow(% (with the wave number kg = 2mng/A), the
typical input spatial width wq, and the temporal pulse
width. Functions B(z) and x(z) denote the diffrac-
tion/dispersion (DD) and the nonlinearity coefficients,
respectively. An even function v(z, r) = k(2) wgn r(z, 1)
and an odd function w(z,r) = k(%wgn](z, r), to be
specified subsequently, are the real and imaginary com-
ponents of the complex PT-symmetric potential, cor-
responding to the index-guiding and the gain or loss
distribution of the optical potential.

To obtain exact analytical solutions of Eq. (1), we
introduce a self-similar transformation of the solution
sought [16,17]:

u(z,r) =A@U[X(z,x),Y(z, y),
T(z,1), Z(z)]e! ¥, 2)

where A(z) is the amplitude; X = X(x,2), ¥ =
Y(z,y),and T = T(z,t) are the formal self-similar
variables; Z = Z(z) is the effective propagation dis-
tance; and ¢(z, r) is the phase of the wave, all assumed
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to be real functions. Substituting Eq. (2) into Eq. (1),
one obtains the following standard NLSE with constant
nonlinearity coefficient yq:

,3_U+1 82U+82U+32U
"9z T2 |ax2 T vz T a2
+x0lUP"U+[V(X, Y, T)+iW(X, Y, T)]JU =0,
(3)
with the requirements that:
A" X (@)
= , 4
X0 B@)I[1 —so [ B(z)dz]>"—2 (42)
_ 2
VXY T) = s0J p)dz] v(z, 1), (4b)
B(2)
_ 2
WX.Y.T) = 1 s0J F2)dz] w(z, r), (4c)
B(2)

where Ag and so are arbitrary real constants. The
requirement that the new nonlinearity coefficient y is
constant enforces a relation between the nonlinearity
and the DD coefficient, expressed by Eq. (4a). Thus,
in order for the method of solution to be valid and the
prescribed LB solutions obtained, an integrability con-
dition on the method must be imposed, in the form of
Eq. (4a). After some algebra, the simplest particular
solutions are obtained:

A = Ao[l —so/ﬁ(z)dz]3/2,

X(z,x) = I_SO}CW (52)

Y(z,y) = m,

T(z1) = m (sb)
Z) = %,

oy = — Y+ (50)

2[1 —sp [ B(z)dz]’

Solutions of Eq. (3) can be considered as seeds which
generate various solutions of Eq. (1) via relations (4)
under conditions (5). Therefore, if we substitute solu-
tions of Eq. (3) into transformation (2), nonautonomous
solitons of Eq. (1) can be obtained.

Here, we investigate the localized modes supported
by a 3D PT-symmetric complex potential Vp(X, Y, T)
whose real and imaginary parts are given by:



Parity-time symmetric potential with power-law nonlinearity

V=Vo(X*+Y*+T7? - V1e*242(X2+Y2+T2)
—i—Vz(e*z“zx2 + o2a°Y? i 672“272) 6a)

and:

W= W()(Xefazx2 + ye*az)’2 n Te,asz), (6b)

which satisfy the properties of PT-symmetry: V(X, Y
,T)=V(-X,-Y,—-T)and WX, Y, T)= —-W(-X,

-Y,-T).
We seek a solution of 3D NLSE (3) in the form:
U(Z, X, Y, T) = §(X, Y, T)e? &0, (7

Here, the real-valued functions of phase 6 (X, ¥, T') and
amplitude ¢ (X, Y, T') satisfy the following differential
equations:

V2 — VO + VY + xov® T =8y, (8a)
YV20 4+2V6 -V + W)y = 0. (8b)

For potential (6), the above equations possess closed-
form localized solutions that satisfy ¥ (X, Y, T) — 0
when (X, Y, T) — Zoo. Thus, for the amplitude, we
obtain:

\4

€
o a?(x24v2412)
€

v(X, Y, T) = z (9a)

while the phase 6(X, Y, T') is given by:

0(X,Y,T) = M
4a3(m +2)
+ Erf(aT)]. (9b)
where Erf(X,Y, Z) is the error function, Vy =
—4a*/m?, Vo, = —m*W§/4a*(m + 2)?, and § =
—4a*/m.
From expression (2), the components of the complex
PT-potential are given as:

b — B(2)
[1—s0 [ B())?

A o 20°(XP+Y24T?)

[Erf(aX) + Erf(aY)

Vo(X2+Y*+T?

+ V2(e—2a2X2 + e—2a2Y2 + e—2a2T2)] (loa)
and
w = Wop(2) (Xe_“ZX2
[1—s0 [ B(z)dz]?
ye @Y’ 4 pema'T?, (10b)

The soliton solution of Eq. (1) is thus:

€1
2m

ulz,r) = l

where X, Y, T, and ¢(t, x, y, z) satisfy Egs. (5a)—(5¢),
respectively. Here, the phase is made up of the phase
0(X, Y, T) in solution (9b) and of the chirped phase
¢(z, r), expressed by Eq. (5¢).

3 The characteristic distributions of solitons

To illustrate the characteristics of the analytic solution
(11), we present the corresponding system manage-
ment schemes in a DD medium (DDM) with decreas-
ing B(z) = Poexp(—wz) [19] and in the periodically
modulated medium (PMM), B(z) = Bo cos(z) [20], the
choice of which leads to the controlled development of
nonautonomous waves.

From Egs. (10a) and (10b), one finds that the
complex PT-symmetric potential satisfies v(x, y, 1) =
v(—x, —y,—t) and w(x, y,t) = —w(—x, —y, —1).
Thus, the index-guiding and the gain or loss distribu-
tions are even and odd functions with regard to x, y, and
t. For the complex PT-symmetric potential, the even
and odd properties of v and w are depicted in Fig. 1a,
c and b, d, respectively.

Figure 2 presents the isosurface plots and the inten-
sity distributions of LBs in the x—y plane for DDM, at
different longitudinal distances. One can see that the LB
exhibits a spherical distribution. Moreover, it is found
that the LB profiles are self-similar and that the radii
and the intensities of the pulse become slowly bigger
as the propagation distance increases.

Figures 3a—c show the real part, the imaginary part,
and the phase of the field distribution of the LB in the
x—y plane, with m = 1. One sees that the real part

(a) (b)
5- b. ~ 5. - -
g = SR o
T e
y 55 X y 55 «x
(c) (d)
2 5.
>1 A A 2 0 i
LT >,
0 0 5 \0\/0//5
y 5 -5 X y 5 -5 X

Fig.1 Even function v and odd function w of the PT-symmetric
potential, with a, b isosurface plots and ¢, d distributions in the
x—y plane, at z = 120,¢ = 1. The remaining parameters are
Bo=02,Wy=0.1,V; =2, w =0.15, and 5o = 0.4
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Fig. 2 Isosurface plots and intensity distributions of LBs in the
x—y plane, for DDM, at different propagation distances: a, d
z =10, b, e z = 100, and ¢, f z = 160. The potential used is
depicted in Fig. 1
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Fig. 3 a—c Real part, the imaginary part, and the phase of the
field distribution of LBs in the x—y plane, with m = 1. d-f
Intensity, half width, and the chirp of LBs, for two different values
of m. Other parameters are as in Fig. 2
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Fig. 4 a, c Even function v and b, d odd function w of the PT-
symmetric potential in the PMM ata, b z = 120,7 = l and ¢, d
t = 1. The setup and other parameters are the same as in Fig. 1

of the field distribution is positive, while the imagi-
nary part is negative and has a far lower magnitude
than the real part. In Fig. 3c, an abrupt phase change
is seen. The phase of the LB, as expressed in Eq. (11),
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Fig. 5 Isosurface plots and the intensity distribution of LBs in
x—y plane for PMM at different program distances a, d z = 10,
b, ez = 100, and ¢, f z = 160. The PT-potential used is depicted
in Fig. 4

is a result of the superposition of the original form, the
abrupt phase change 6(z, r) + §z in solution (9b), and
the parabolic shape ¢(z, r) in Eq. (5). Thus, the phase
shows an abrupt gradient change on the parabolic back-
ground, which can be clearly seen from the top of the
parabolic shape in Fig. 3c. In Fig. 3d—f, the intensity,
half width, and the chirp of the LB with different m are
displayed. We see that the intensity of the LB increases
slightly until about z = 15 and afterward there is lit-
tle change. On the other hand, the width decreases at
first and then remains constant along the propagation
distance. From Fig. 3f, it is apparent that the chirp of
the LB displays an odd-symmetric property about the
origin and at £0.75 achieves a maximum and a min-
imum value, respectively. Moreover, the larger the m,
the smaller the intensity. However, in the case of width,
the opposite holds.

Figure 4 exhibits a periodic structure of the com-
plex PT-potential along the propagation distance z in
PMM. Similar to Fig. 1, the even and odd properties of
v and w are displayed in Fig. 4a, c and b, d. Along the
propagation distance, the characteristics of the periodic
oscillation change as shown in Fig. 4c, d.

Figure 5 presents the isosurface plot and the intensity
distribution of LB in the x—y plane for PMM, at differ-
ent propagation distances. Similar to Fig. 2, a spherical
distribution is seen. It is shown that the LB exhibits a
periodic propagation along the distance z. This property
can be verified from Fig. 6d. Figures 6a—c describe the
real part, the imaginary part, and the phase of the field
distribution of the LB in the x—y plane, with m = 1.
Similar to the previous case, one can see that the real
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Fig. 6 a—c Real and imaginary parts, and the phase of field
distributions of LBs in x—y plane, with m = 1. d—f Intensity,
half width, and the chirp of LBs with two different values of m.
The parameters are the same as in Fig. 2

Fig. 7 Numerical simulation of LBs for DDM (a, b) and PMM
(¢, d) at different distances a, ¢ z = 100, and b, d z = 160. A
5% white noise is added to the initial field. The parameters are
the same as in the analytical plots

part of the field distribution is even and that the imagi-
nary is close to being odd and is far less in magnitude
than the real part. In the same way, the abrupt phase
transition is shown in Fig. 6¢c. When the DD parameter
B(z) is a cosine function, the periodic structure of the
soliton intensity, width, and the chirp is clearly seen
along the propagation direction in Fig. 5d, e. Similarly
to Fig. 3, it can be seen that with an increase in m,
the width and the chirp increase, while the intensity
decreases.

Figure 7 shows the direct numerical integration of
Eq. (1) for DDM (Fig. 7a, b) and PMM (Fig. 7a, b) at
different propagation distances. We use a 3D split-step
FFT beam propagation technique and consider an ini-
tial field whose form is given by Eq. (11) at z = 0. It
is seen that the numerical calculations indicate no col-

lapse, and stable propagation over tens of diffraction
lengths is observed, except for some small oscillations.
Moreover, the LB is more stable in the PMM than in
the DDM. Thus, based on these results, there is strong
indication that the dispersion/diffraction management
of the type considered can prolong the life of LBs sig-
nificantly.

4 Conclusion

In summary, we discovered LBs supported by a parity-
time symmetric potential with a power-law nonlinear-
ity. We established ways in which intensity, width,
phase, and the chirp of these LBs can be modified
by the variation in the diffraction/dispersion and the
nonlinearity coefficients. Our results indicate that the
behavior of 3D LBs in PT-lattice is considerably differ-
ent from the behavior of the dissipative and the ground
state solitons in the 3D case.
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Abstract We generalize previously obtained solu-
tions to the generalized nonlinear Schrodinger equation
(NLSE) with cubic-quintic nonlinearity and distributed
coefficients to obtain spatiotemporal traveling and soli-
tary wave solutions for the NLSE with a general p-2p
dual-power law nonlinearity, where p is an arbitrary
positive real number (the cubic-quintic model being a
special case for p = 2). In addition, it is possible to
eliminate the lower exponent, producing spatiotempo-
ral traveling and solitary wave solutions to the NLSE
with a single power law nonlinearity of arbitrary posi-
tive real power, which models many important systems
including superfluid Fermi gas.

Keywords Nonlinear - Schrodinger - Cubic-quintic -
Dual-power

1 Introduction

The generalized nonlinear Schrédinger equation (NLSE)
is a generic model that is very important in nonlinear
optics since it describes the propagation of a wave in
a medium whose index of refraction is dependent on
the intensity of light under the paraxial approximation
[1-4]. Recently, there has been a huge development
in obtaining stable spatiotemporal soliton solutions for

N. Z. Petrovi¢ ()

Institute of Physics, University of Belgrade, P.O. Box 68,
Belgrade 11080, Serbia

e-mail: nzpetr@ipb.ac.rs

a higher number of transverse dimensions [4,5] using
the Jacobi elliptic function (JEF) expansion method and
the principle of harmonic balance [6,7] and the stabil-
ity of these solutions was analyzed in [8]. Recent work
[9,10] has allowed generalization of these methods to
cubic-quintic and other higher-order nonlinearities. In
particular, the transformation in [10] has the potential
to reduce many problems with non-integer exponents
into problems with integer exponents and thus render a
large class of equations applicable to various standard
techniques.

The cubic-quintic nonlinear Schrédinger equation
(CQNLSE) is a special case of the NLSE with dual-
power law nonlinearity for p = 2. It is particularly
important as the competing nonlinearities in many sit-
uations increase the likelihood of finding stable solu-
tions to the NLSE [11]. Various exact solutions to the
CQNLSE have been found [12,13]. The most com-
mon approach is using the self-similar method [14-16]
which involves reducing an CQNLSE with distributed
coefficients to one with constant coefficients. Other
approaches are possible, such as assuming an ansatz
solution [17,18].

Power law and dual-power law nonlinearities have
been studied for various systems of nonlinear differ-
ential equations, such as the KdV equation [19], the
dispersive NLSE [20] and the Biswas—Milovi¢ equa-
tion [21]. The NLSE with a dual-power law nonlin-
earity has been extensively studied [22] and solitary
wave solutions have been found based on the hyper-
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bolic secant [23]. The interaction of these waves has
been studied in [24]. These solutions were analyzed
using the Vaikhitov—Kolokolov criterium in Ref. [22]
and in many circumstances were found to be sta-
ble. Chirped solitons were found in [25]. The G’/ G-
expansion method was used in [26] to find topologi-
cal solitons, and a wide range of differing forms for
the solutions were obtained in [27] using the modified
simple equation method. Finally, solutions with a sin-
gle power law nonlinearity have been found in [28,29]
and solutions of all forms were found in [30].

These solutions found so far, however, are only a
relatively small class of possible solutions and in most
cases only contain a linear phase dependence. The goal
of this paper is to extend the range of solutions found
in [23-30] using the methods developed in [6, 10].

2 Method

In this paper, we generalize the work done in [10] to
find new spatiotemporal traveling wave solutions to
the NLSE with the dual-power law (DPL) nonlineari-
ties (hereafter abbreviated as (DPLNLSE). We consider
the standard form of the (1+1)-dimensional ((1+1)D)
DPLNLSE [31]:

, (2) ;
et ﬁTuxx + 1@ ulPut o @lu*Pu = iy @u,

ey

which describes evolution of a slowly varying wavepacket

envelope u(x, y, z,t) in a diffractive nonlinear Kerr
medium with anomalous dispersion, in the paraxial
approximation. Here, z is the propagation coordinate,
x the transverse coordinate, and ¢ is the reduced time,
i.e., time in the frame of reference moving with the
wavepacket. All coordinates are made dimensionless
by the choice of coefficients and the indices represent
partial derivatives. The functions g and y stand for
the diffraction/dispersion and gain coefficients, respec-
tively. The functions x; and y; represent the nonlin-
earity coefficients corresponding to the (p + 1)-th and
(2p + 1)-th order of u, respectively. The special case
p = 2 corresponds to the cubic-quintic system and, as
mentioned before, was extensively covered in Ref. [10].
The conclusions in this paper can be easily generalized
to a higher number of transverse variables [6].

@ Springer

Generalizing the results in [10], we define u as fol-
lows:

u(z, x) = v(z, x)"/7 exp (i B(z, x)). )

Inserting Eq. (2) into Eq. (1) and separating the real
and imaginary part, we obtain the following coupled
equations:

vz—i-ﬂvax—i—ﬂ?poxx — pyv =0, 3)
-1
PP, + Fp—1) )vi - ﬂ—pvvm
2 2
2
+ ﬂ%sz)% — p2X1v3 — pzx2v4 =0. 4)
We now assume the following form of the solutions:
v=f1(0) + L@FO) + F0), (5)
0 = k(z)x + w(z), (6)
B = a(2)x> + b(2)x + e(z), @)

where f; (i = 1,2,3), k, w, a, b and e are parameter
functions to be determined. We will assume F' to be the
solution of the differential equation:

dF\? 2 4
W =cotcF"+cyb”, )]

satisfied by the JEFs. Here, ¢, ¢> and c4 are coefficients
which depend on the parameter of the JEF M. The sets
of all values of c¢g, ¢z and ¢4 for each of the functions
F we used are given in [32].

Applying the F-expansion method and the principle
of harmonic balance [5], we obtain the following sys-
tem of algebraic and first-order differential equations
for f; (i =1,2,3),a,b, kand w:

ﬁz+aﬂﬁ_pyﬁ=07 121’273’ (9)
k, + 2kap =0, (10)
a. +2Ba* =0, (11)
b, +2Bab =0, (12)
w. + Bkb = 0. (13)
For x; and x», we obtain four equations:

f2 (BRes(p + D + 252 f7 ) =0, (14)
£ (Bk2co(p + D + 202 £2p7) =0, (1s)
f2 (BResfi+ a f3p +4xf1 f2p) =0, (16)
/3 (ﬁk200f1 +X1f32P+4X2f1f32P> =0. (17)
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For the equation for ¢, we obtain three equations instead
of one:

1 1
e fip* — Z.Bc2f1kzp + 5,3172f1172
3
- §X1f12192 - 252 /i P?

3
- §X1f2f3P2 —6x2f1 2f3p* =0, (18)

2 2 1 2
2 (ezfzp — Beaf3k*2p —1) — 5/302f2k
1
+ 580 op® =30 fif2p?
— 6012 o —4n fi fEp?) =0, (19)
2 2 1 2
f3 (6zf3p — Beo ok 2p — 1) — 5,362f3k
1
+ Eﬂbzfspz —3x1 f1f5p°

— 632/ f3p? — 42 f213p%) = 0. 20)

We will require two matching conditions imposed on
functions f; (i = 1, 2, 3) for all three equations to be
satisfied simultaneously.

3 Results

Equations (9)—(13) are solved as in [6] to obtain:

fi() = a'? figexp (p / ydz), @1
k(z) = akg, ’ 22)
() = wp — arkobp / Bz, 23)
a(z) = aag, ’ 24)
b(2) = abo. (25)
where

Sy (1 + ZaO/OZ ﬂdz) (26)

is the chirp function. From solving Egs. (14)—(20), we
obtain three distinct cases.

3.1 Casel: p #2

We first assume that p # 2 and x; # 0. The matching
conditions between Eqgs. (18) and (19), and between

Egs. (19) and (20), respectively, give the following
formulas:

fi = f2,/36\/§+ 2 7)
c4  2cq4
fi= f2€\/g, (28)

where € = 4 1. Equation (28) is also applied to the
other pairs for Egs. (14), (15) and (16), (17). One of
the three differential equations for e is solved to obtain:

e(z) =eo
by kG e
B (66\/M+ ?(P+2)>
Z
/ Bdz, (29)
0
Equations (14)—(17) are solved to obtain:
Besk*(p +2) fco
X] = 0 36 — + ~ (30)
fp? ey 2c4
— _w (31)
2%

32Casell: p=2

We now assume that p = 2 and x; # 0, which corre-
sponds to the cubic-quintic (CQ) nonlinearity.

Using the ansatz in this paper, the case for p = 2 was
first covered in [10], albeit incompletely. The key dif-
ference in comparison with Case I is that it turns out that
for specifically p = 2 the matching condition between
Egs. (18) and (19) is automatically satisfied. Hence,
/1 1s independent from f> and f3. In [10], the authors
suggest a relationship between f| and f>; however, it
turns out to not be necessary. The matching condition
between f3 and f> is the same as in Case I:

f3= fzé\/cz), (32)
c4

wheree = £ 1, 0. Unlikein Casel, e = 0,1i.e., f3 = 0,
is admissible. An equation for e is solved to obtain:

e(z) = eo
b2 k2 f2 s
— (30 — Zo <3C4E122 — 3e/cocq + ?>>
/ﬁdz. (33)
0
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Equations (14)—(17) are solved to obtain:

2
_ ﬂm_szl, (34)
f
3Bcak?
S . 35
X2 312 (35)

3.3 Caselll: xy; =0

In the third case, we will assume that y; = 0. This
corresponds to the Z law (SPL) nonlinearity of frac-
tional degree 2 p. From Eq. (16), it follows that f| = 0.
Equation (18) is thus trivially satisfied. As in Case I,
the matching condition gives:

3= fzé\/c»—o, (36)
c4

where € = £ 1, 0. The equation for e is solved to
obtain:

b2 k2 z
e(z) =¢ey—«a <?0 — —% (%2 — 36«/C()C4)> /0 Bdz.

p
(37)

Finally, from Eq. (14), we have:

Bk’ (p+1)

2 (38)

X2 =

For p = 2, we obtain the quintic NLSE [33]. For
p= %, we obtain the equation for the superfluid Fermi
gas in the crossover from the weak-coupling Bardeen—
Cooper—Schrieffer (BCS) regime [34]. All of the results
in Case III reduce to those obtained in [6] for the special
case p = 1.

4 Solutions

In this section, we present the exact analytic solutions
for the DPLNLSE (and SPLNLSE) obtained for all
three cases. The solutions were plotted using the pro-
gram Mathematica. We present only the qualitatively
most distinct cases and those that do not have any sin-
gularities, being that a large number of functions satis-
fying Eq. (8) can be used for each case, as can be seen
in Appendix of Ref. [32].

@ Springer

We note that there is a large degree of control of
the waveforms when it comes to scaling and propa-
gating behaviors. The parameters kg and by determine
the width of the waveforms, while wy determines the
off-set. A constant y introduces exponential growth or
decay, while sinusoidal forms of y introduce oscilla-
tions in amplitude. The parameter ag introduces chirp
into the system. In general, non-chirped solutions are
periodic along the transverse variable and exhibit a con-
stant maximum amplitude as a function of the longitu-
dinal variable, while chirped solutions exhibit a stretch-
ing effect and the maximum amplitude is modulated.

4.1 Casel: p #2

For Case I, Egs. (27), (28) give us the following condi-
tions:

€0 2

3¢ [0 4 2 20, (39)
cs  2c4

U (40)

cs

An additional constraint is that the JEF used must not
have a value of 0 since its inverse will then be infi-
nite. As long as these conditions are satisfied, the JEF
is usable for the solution. We find that an appropri-
ate choice is F = dn(-|M) or F = nd(-|M), where
M < 0.971. Thus, for F = dn and also F' = nd only
traveling wave solutions are admissible. As of present,
no form of the function has been found which matches
all conditions for M = 1 and is non-singular. Solutions
for ¢ = — 1 are more difficult to find, since the whole
expression for v must remain positive when p is not an
odd integer.

We see in Fig. 1 that the chirp function modulates the
intensity of the waveform and also periodically com-
presses and expands it in the transverse direction. The
solutions can also be found for negative p and are
displayed in Fig. 2. In Fig. 2c, we see that the chirp
now compresses and expands oppositely with respect
to Fig. lc.

In [23,24], the solutions in this paper are only based
on the sech function and the phase does not contain
chirp. In [25], one only obtains constant chirp for the
special case of the DPLNLSE. In [26], one has a large
selection of functions, but again the phase is a lin-
ear function of the transverse variable. In [27], only
a DPLNLSE with constant coefficients is analyzed.
Thus, we can say that in comparison with the most
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Fig. 1 (Color online) Traveling wave solutions for ' = nd as
functions of time. Intensity |u 12 is presented as a function of kox
and z for p = 3, B(z) = Bocos2zand: aap = 0,b ap = 0.15

and ¢ ap = 0.3. Other parameters are: M = 0.97, by = 1,
e0=0,kp=1,00=0,2=1,8=1lande =1

15~10

Fig. 2 (Color online) Traveling wave solutions for F = nd as functions of time. Intensity lu|? is presented as a function of kox and z
for p = =3, B(z) = Bocos 2z and: aagp = 0, b ap = 0.15 and ¢ ap = 0.3. Other parameters are the same as in Fig. 1

recent papers that have found analytic solutions to the
DPLNLSE, the solutions in this paper are novel.

42 Casell: p=2

Case II allows for a much wider range of solutions,
being that there is no longer a constraining relationship
between fi and f>. Also, most importantly, it is now
possible to have € = 0. All of the solutions for Case I
also apply to Case Il for p = 2, plus many other forms,
being that the condition (39) is no longer necessary. The
big difference from Case I is that now we obtain solitary
wave equations. The only thing to have in mind is that
v must not be negative. We will show in this section
only solutions that do not apply to Case 1.

In Fig. 3, we see that we can also obtain solutions
using F = sn for Case II, by combining the appropriate
value of fio and fp9. We see that the waves become
wider and flatter for increasing M until for M = 1

we effectively obtain a step function in Fig. 3c, i.e., a
topological soliton. We can see how only the nonzero
half is moderated by chirp in Fig. 3f.

In Fig. 4, we see the effect of f1¢ on the chirp in the
case of a solitary wave for F = dn. By switching on
Jf10, we modulate the whole background in the presence
of chirp as can be seen in Fig. 4b, c. Without the chirp,
adding a nonzero value to the parameter fjo essentially
amounts to adding a constant term to the background,
without much qualitative change to the solitary wave.

Finally, in Fig. 5, we see solutions for a more com-
plicated function chosen for F', namely F' = Msd+nd,
and their dependence on the choice of parameter €. We
find in Fig. 5b that with an appropriate choice of coef-
ficients one can produce traveling wave solutions with
waves of alternating height. We also present in Fig. 5c
solutions for € = — 1. The chirped solutions are shown
in Fig. 5d—f.

We compare our results to those derived in other
papers. In [14] solutions with chirp are present, but the
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Fig. 3 (Color online) Traveling and solitary wave solutions for
F = sn as functions of time. Intensity |u|? is presented as a func-
tion of kox and z for p = 2, B(z) = Bocos 2z and: a ay = 0,
M =05ba=0M=09ca=0M=1,day =03,

Fig. 4 (Color online) Solitary wave solutions for F = dn as
functions of time. Intensity |u|? is presented as a function of kox
and z for p = 2, M = 1, B(z) = Pocos§2z and: a ap = O,

external potential and the fourth-order nonlinearity are
dependent on all other parameters. One obtains solu-
tions based on the few elementary JEFs and hyperbolic
functions. Qualitatively, novel solutions in our paper
are those in Figs. 4c and 5b, e. In [15], complicated
solutions are obtained where all parameters depend on

@ Springer

M =0.5ea0=03, M =09andfay = 0.3, M = 1. Other
parameters are: by = 1,e9 = 0,ko = 1, w0 =0, fio = fo0 =1,
2=1p=1lande =0

fi0 =0, fao=1,bap =0.3, fio =0, fo =1andcap = 0.3,
fio = fo0 = 1. Other parameters are the same as in Fig. 3

the values of two functions. The forms for the bright
and dark solitons are fixed and one can obtain vari-
ous forms of the chirp function, including sinusoidal.
In [16], one obtains various novel solutions most of
whom do not resemble the solutions in this paper. In
[17], the interactions of the basic bright soliton solu-
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Fig.5 (Color online) Traveling wave solutions for F = Msd +
nd as functions of time. Intensity |u|? is presented as a function of
kox and z for p =2, M = 0.5, f(z) = Bocos 2z and:aag = 0,

tions are studied. Finally, in [18] the Ricatti equation
method is used to obtain forms of the amplitude differ-
ent from that in this paper. Again, we have found novel
solutions to the CQNLSE.

4.3 Caselll: x1 =0

In this case, all solutions that would normally be
allowed for the NLSE in [6] are allowed, provided
v is always positive when p is not an odd integer.
These solutions for the SPLNLSE largely resemble
those found in [6]. In Fig. 6, we see the solutions for
dark solitary and traveling waves for p = 3. Taking the
solutions to the root of p has a narrowing effect on the
dark soliton which only gets more pronounced with the
increase in p.

The solutions in [28] are only based on sech!/P
and contain no chirp. In [29,30], one obtains compli-
cated solutions based on sech!'/? and csch!/?. These

kox

e=0,bag=0,e =1,ca0=0,e =—1,dap =0.3,e =0, e
ap = 0.3, = 1 and fap = 0.3, ¢ = — 1. Other parameters are
the same as in Fig. 3

solutions coincide with the solutions in this paper for
F = sech, csch. Still, one can choose other forms of
F to obtain novel solutions.

5 Conclusion

In this paper, we demonstrated a large class of new solu-
tions for the NLSE with dual- and fractional power law
nonlinearities. The ansatz used allows for a large num-
ber of free parameters and thus gives us a very diverse
profile of qualitative behavior. For a general dual-power
law nonlinearity, we obtain traveling wave solutions,
with and without chirp. For the cubic-quintic nonlin-
earity, we also obtain solitary wave solutions, without
chirp, with chirp and with chirp and a modulated back-
ground. We also obtain traveling wave solutions where
two sets of waves alternate in height, with and without
chirp. For the single power law nonlinearity, when p
is a positive odd integer we obtain equivalent forms to
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5

-5

z 10

Fig. 6 (Color online) Traveling and solitary wave solutions
for F = sn and x; = 0 as functions of time. Intensity |u|?
is presented as a function of kox and z for p = 3, ¢ = 0,
B(z) = Pocos 2zand:aay =0, M = 0.25,bay =0, M = 0.9,

all solutions found in [6]. Otherwise, we obtain equiv-
alent forms to all solutions found in [6] for which the
parameter v is positive.

The solutions can also adapt to any function F
derived from the Jacobi Elliptic functions satisfying
Eq. (8), which is the main advantage of this method.
The solutions allow a gradual transition from traveling
waves to a solitary wave due to the limit of the JEFs
as M — 1. Finally, the chirp can be added to each
of the solutions which has a profound effect on their
form. These solutions have potential practical applica-
tions for systems which use a potential with a dual- or
fractional power law, such as in nonlinear optics or in
the study of superfluid Fermi gases.
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Abstract: We analyze the modulation stability of spatiotemporal solitary
and traveling wave solutions to the multidimensional nonlinear Schrédinger
equation and the Gross-Pitaevskii equation with variable coefficients that
were obtained using Jacobi elliptic functions. For all the solutions we obtain
either unconditional stability, or a conditional stability that can be furnished
through the use of dispersion management.
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1. Introduction

Modulation instability (MI) is a general phenomenon occurring in solutions of the nonlinear
wave equation wherein small perturbations to the solution grow exponentially over time, often
producing singularities [1]. Determining whether MI occurs is of prime interest in the field od
non-linear optics, where many different forms of wave equation naturally occur [2,3]. In partic-
ular, the generalized nonlinear Schrodinger equation (NLSE) is an important generic model that
is of great use in NL optics [4-7]. The Ml in the NLSE with cubic nonlinearity has been studied
in [8], as well as in various related systems: the discrete NLSE [9], the NLSE with loss and a
derivative term [10], the cubic-quintic NLSE [11], and others [12, 13]. Experimental confirma-
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tion of Ml in the NLSE with varying coefficients was given in [14]. M1 has also been extensively
studied in metamaterials, especially in materials with negative index of refraction [15-23]. In
particular, it was determined that metamaterials have different stability properties from ordi-
nary materials [15]. The discovery of metamaterials has opened up the possibility of forming
stable spatial solutions through the management of the sign of refraction.

Recently, a number of exact solutions have been found for the various forms of NLSE
[24-26] and for the Gross-Pitaevskii (GP) equation in Bose-Einstein condensates [27,28], using
the F-expansion technique and the principle of harmonic balance [29, 30]. Two types of solu-
tions were found: travelling wave solutions and solitary wave (SW) solutions. The solutions de-
veloped in [25] and [26] were for the (3+1)-dimensional ((3+1)D) NLSE with anomalous and
normal dispersion, respectively. The solutions developed in [24] were for the (2+1)D NLSE.
Meanwhile, the solutions in [28] describe stable spatiotemporal SWs under the influence of a
sinusoidal diffraction/dispersion parameter, while the solutions in [27] required external gain in
order to maintain the amplitude. Reference [28] briefly addressed the stability of obtained solu-
tions, while [25] and [26] left the stability analysis to be performed in future work. It is the goal
of this paper to provide a complete stability analysis of the obtained solutions in all of these
papers. While this may look like a restricted goal aimed at specific solutions, it is nonetheless
useful because it might be applicable to multidimensional solutions found in other equations
that are of questionable stability. To the best of our knowledge, this is the first time MI analysis
of this form has been applied to these systems.

The stability of exact soliton solutions to the NLSE in various forms is an important question
that requires careful and thoughtful answer [31]. In (1+1)D, bright and dark soliton solutions
of the NLSE in Kerr medium with cubic nonlinearity are unconditionally stable for the, respec-
tively, self-focusing and self-defocusing nonlinearity [4]. However, in homogenous bulk media
with a self-focusing cubic Kerr nonlinearity one cannot have unconditionally stable solutions
of the NLSE in two and three dimensions. Nevertheless, great interest has been generated when
it was suggested that (2+1)D generalized NLSE with varying coefficients may lead to stable
2D solitons [32]. The stabilizing mechanism has been the sign-alternating Kerr nonlinearity in
a layered medium. The solutions obtained in [24-26, 28] all resulted in the alternating sign of
Kerr nonlinearity and therefore it is worth investigating whether those solutions are also stable.
In addition, there is strong indication that the SW solutions can be combined into multiple so-
lutions using the self-similar method [33, 34] and that the individual components can interact
with each other without affecting each other’s form [34], which is a defining characteristic of
solitons. Still, we will only use the term “solitary wave solution” to describe these solutions
throughout our paper.

We will use a variational approach described in [35, 36] to explore the modulation instability
of the solitary wave solutions obtained in [24-26, 28]. Localized two- and three-dimensional
solutions of the cubic nonlinear Schrodinger equation in [24-26] are extended one dimensional
solutions. Namely, the intensity of solutions is homogenous in two out of three spatial dimen-
sions for solutions obtained in [25, 26]. In the case of solutions obtained in [24] it is homoge-
neous in one out of two dimensions. It is in these homogenous directions, due to the nonlinear-
ity, that modulation instability can develop. For this reason, of particular interest is the analysis
of modulation stability of solutions in the direction of homogeneity.

2. Generalized nonlinear Schrodinger equation

We confine our analysis to the (2+1) and (3+1)-dimensional NLSEs considered in [24-26],
and use the notation introduced there. We consider the generalized (3+1)D NLSE with varying
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coefficients and Kerr nonlinearity, developed in [25, 26]

.du 2) (d°u d*u  J%u .
|az+[3;)<axz+ay2+satz>+x(z)u2u:|5(z)u. 1)
The functions 3, x, and 6 stand for the diffraction, nonlinearity, and the gain or loss coefficients,
respectively. Our goal is to verify whether the solutions to Eq. (1) developed in [25, 26] are
modulationally stable (MS) or modulationally unstable (MU). In Eq. (1), s= —1 for the normal
dispersion and s= 1 for the anomalous dispersion. For s= 0 we have the two-dimensional time
independent NSLE studied in [24], which will also be covered in our stability analysis.
The solution to Eq. (1) described in [26] is given as:

u = (a)¥2feeldd <F(9) +8\/§F(16)) : 2)
exp (i (a(2) (O +y? +t?) +b(2) (x+y+1) +€(2))),

where F is a Jacobi elliptic function (JEF), « is the chirp function:

1

%= 15289 7Bz ®)
and:
6 = k(2)x+1(2y+m2t + (2, @
for nonlinearity y (z) given as:
z "z
x(2) =—C4&2)mexp(—2 / yd2), (5)
ofs 0
where we define:
o= (K5 +1§ +smp). (6)
The parameters a, b, k, I, m, @ and eare:
a = aag, b= aby, @)
k = ako, | = alo, m= amny, 8)
"z
0 = oo—alko+lo+smobo [ oz ©)
z
e = e+(a/2)(cro—(2+9b2) /0 Bdz, (10)

where ¢ = ¢, — 6¢,/CyCs and Cgy, C, and ¢4 are parameters related to the Jacobi elliptic func-
tion parameter M [24]. We will limit our attention to the cases where € = 0, hence ¢ = ¢;.
Throughout this paper, we also take wy = ey = 0. For convenience, we define the parameter e
as follows:

_ c (%, »
e:e—f/ Bodz (11)
2Jo
We now make the following gauge transformation on the solution and the coordinates:
4
u—G = uexp <—/ 6dz> . (12)
Jo

exp <_i(a<X2—‘,—y2 +32)+b(x+y+t)+é))/(fooc3/2|x004|1/2)7
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x—X = a(x—qg), (13)
)

y—=y = aly—9), (14)
t—t = at-sg), (15)
_ [f2
z2—7 = /o o Bdz, (16)
where ¢(z) = by 5 Bdzis the solution to the equation:
)
22 _ B(2)2a(2)5(2) +b(2), an

to obtain the following equation:

0G 1(826 %G 9°G

l— + = X2 +Ty,2+33t/2

20
3 >+GG|GO, (18)

where 6 = sgn(—ca o). Equation (18) is much more suitable for stability analysis than Eq. (1)
because all the coefficients next to G and its derivatives are constant. Also, the wave propagation
now necessarily happens along a straight line, unlike in solutions shown in [25, 26].

The stationary solutions F = Gexp (—ic, J; Ba®dz/2), where G is the solution of Eq. (18),
contain the whole range of solutions from [25] and [26], for different values of ¢c; and ¢4, in the
direction (ko,lo,mp). Since € =0, F will be equal to some JEF. Adjusting parameters (ko, lo, M)
to these values corresponds to the rotation and re-scaling of the coordinate system (X,y/,t").
Without loss of generality, we can put fo =1 and also kg = 0, I = 0, my = 1, for temporal
solutions, and kg = 0, lp = 1, my = 0, for spatial solutions. As mentioned, the amplitude |G|
is homogenous in two of the three spatial/temporal dimensions (i.e. in the plane perpendicular
to the direction (ko,lo,mp) of inhomogeneity.) It is in this plane that, owing to nonlinearity,
the modulation instability can develop. Hence, it is of interest to analyze MI of perturbations
in the plane of homogeneity of | G|. We chose X' as the perpendicular direction of modulation.
In this case, yo = 1 for spatial SWs, whereas yo = s for temporal SWs. If the SW is spatial,
perturbations along the temporal axis t’ are also possible. In that case, we will consider the X'
and t’ to be swapped, so that X’ always denotes the axis of perturbation.

3. Variational approach to the modulation stability

We now use the variational approach to examine M, following [8]. We analyze two periodic
traveling wave planar solutions: F = sn and F = cn, which reduce in the limit of M =1 to
two solitary wave solutions: tanh (the dark SW) and sech (the bright SW), respectively. We
study spatial and temporal periodic solutions for both cases: the normal and the anomalous
dispersion.

The idea of the variational approach is to introduce a perturbation in the solutions and analyze
the behavior of the perturbation. To this end, we assume:

G=Gp (1+U(z)cos (KX)), (19)

where Gy is the unperturbed solution of Eq. (18), U (z) = U, (z) +iU;(2) is the total amplitude
perturbation, K is the wave number of the perturbation and x is the direction in which the
perturbation occurs, as described in the previous section. One then constructs, according to
standard procedure, the corresponding Lagrangian to Eq. (18):

i (.9G"  _9G\ 1 ._ _, s
L—2<G 5 G az)+2|vc;| —o|G*, (20)
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where G* is the complex conjugate of G, and |[VG|? = |0G/dX|? +|9G/ay |* +s|dG/at'|2.
One next performs an averaging of the Lagrangian over all three transverse coordinates, to

obtain: ) 3G+ 5 L
<L>=/<|2 (G ¢ & G)+2|VG|2—G|G|4) dxX dy dt’ (21)

o4 o4

Note that the Lagrangian is averaged over one period of perturbation in the direction of pertur-
bation and in the direction of the SW it has been averaged from —2K (M) to 2K(M) for F = cn
and from —K (M) to 3K(M) for F = sn (these boundaries converge to —e and o for M = 1,

i.e. to solitary waves). Here K(M) = ”/2(1 —Msin?t)~1/2dt is the complete elliptic integral
of the first kind and M is the parameter of JEFs. The total action is now defined as:

A= / T (Lydz (22)

It remains invariant in the transformation of coordinates from u to G.

Substituting the new formula for G in Eq. (19) into the effective Lagrangian given in Eq. (22),
we vary U; and U; in the standard procedure [8], to obtain Euler-Lagrange differential equations
for U, =U;(2) and U; =U;i(2), as follows:

0

U = %Kzazmwi), (23)
d N 1 2 2
jZ(KUI) - _2(K xod) o Uy, (24)

where the parameter k is defined as follows: k¥ = 1 for the perturbations along the spatial
coordinates (spatial perturbations) and k = sfor the temporal perturbation of spatial SWs. The
parameter d is defined as:

d— g _ 8 (@M —1)(E(M) —E(@m(K(M)[M)[M)) ~2(2-5M+3MKM)
o3 E(M) — E(am(5K(M)[M)[M)) — 4(M — 1)K (M))
for F =cn(-|M),
d:déw):g<2—M+(1—M)2KE<(|\I<|A))> (26)

for F =dn(:|M) and

4 g _ 8 (M -+ DE(@mUK(M)IM)|M) — 2(2-+ M)K(M) -
ST (E(am(AK ()M M) — 4K (W)

for F = sn(:|M). Here K(M) = F(xn/2|M) and E(M) = E(x/2|M) are the complete ellip-
tic integrals of the first and second kind, respectively; F (ulM) = ['(1 — Msin?t)~%/2dt and
E(uM) = f5'(1 — Msin?t)}/2dt are the incomplete elliptic integrals of the first and second
kind, respectively, and am(u,M) = F~%(u,M) is the amplitude of the Jacobi elliptic functions.
The dependence of coefficients dér'\,"), dé’;:') and d@") on the elliptic parameter M (0 < M < 1) is
shown in Fig. 1(a). For bright SWs diM=v = dé?:':l) = 8/3 and for dark SWs M= — 4,

The solution to Egs. (23) and (24) can now be written as:

_ 1S
U = UOCOSh(1+2aO§>7 (28)
o 2y s
U = U K25|nh<1+2a0€>, (29)
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Fig. 1. (a) Nonlinearity parameter d for solutions cn, sn and dn. (b) The growth rate pa-

rameter y for dark an bright SWs, as a function of K for the case ko = 1. Modulational

instability occurs for values of K depicted in the respective graphs. The solid lines represent

the theoretical calculation of K using Eqg. (30), and the square and circle dots are values of

y measured using numerical simulations, in which the dark and bright SWs, respectively,

were perturbed by a small wave of the given wave number K.

where:
y=K,/(okd—K2)/2 (30)

and

£ = ./O.Zﬂdz. (31)

For small values of &, i.e. & << 1, the modulus of the perturbation amplitude can be approxi-
mated to within second order of & to be:

U|=Up <1+cxgrz(1—4ao§)§2>. (32)

3.1. Casewithout chirp

In the case without chirp, i.e. for ag = 0, the solutions given in Egs. (28) and (29) to Egs. (23)
and (24) become:

U = Ugcosh(y€), (33)
U = UO%sinh(yé). (34)

The dynamics of the overall evolution of the total perturbation U are determined by the growth
rate parameter y given in Eq. (30), also known as the modulation-instability growth rate [4], and
the function B(z). For ko = —1, the growth rate parameter y =iy = iK+v/K2 +d/2 is imaginary
for all values of K, and, consequently, the solutions G are modultionally unconditionally stable
for any function (z). This case occurs for temporal cn-SWs with normal dispersion (s= —1)
and temporal sn-SWs with anomalous dispersion (s= 1) in the self-defocusing media.

In the opposite case, ko = 1, which holds for the temporal or spatial cn-solutions for anoma-
lous dispersion s= 1 or temporal sn-solutions if s= —1 in the focusing media, more interesting
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Fig. 2. Perturbation amplitude growth for ko =1, ag = 0 and d = 8/3 as a function of prop-
agation distance z Black curves are numerical results, while the red curves are analytical
results: (a) Bo = 1, B1 = 0, top to bottom: numerical results for K = /d/2, analytic results
forK = m analytical results for K = 2, numerical results for K =2, (b) fo =0, p1 =1,
Z = 1, top to bottom: numerical results for K = ,/d/2, analytical results for K = \/d/2,
analytical results for K = 2, numerical results for K = 2.

dynamics of perturbations occur. For the analysis of these dynamics, let us assume f to be
of the following form: (2) = Bo + B1sin(2xz/Z), where Z = 27/Q is the wavelength of 3.
For the spatial perturbation with wavenumber K > /d the growth rate is zero (since y = iy is
imaginary) and the perturbation amplitude has an oscillatory solution in the following range:

\/1— %Sinz (YB1Z/m) <|U/Uo| < 1. (35)
In Fig. 2 we see that the mode corresponding to K = 2 > /8/3 is stable for both a constant
and a sinusoidal form of 8 (plots (a) and (b), respectively).

If K < +/d, then |U | grows exponentially at a rate of 3, as seen in Fig. 2(a). Consequently, if
Bo # 0 the solution is unstable. In Fig. 1(b) we plot y as a function of wavenumber K for bright
(d =8/3) and dark (d =4) SWs in the case without dispersion management: §(z) = fo=1.In
both cases, y has a maximum y =T =d/4 for modes K = /d/2. Numerical simulations of Eq.
(18) confirm the analytical prediction for the growth rate 7. It also follows that the amplitude of
|U| can be made to be stable if the mean value of the management function is zero 3y = 0, and
the period of oscillations of 3 is small (i.e. Z << 1). This is due to the finite limit imposed on
& under these conditions. The variation of the perturbation amplitude in this case is:

1< |U/Uo| < \/ 14 5 sinh? (7612 ). (36)

3.2. Casewith chirp

In the case where ay > 0 we analyze the evolution of perturbation modes with maximal growth
rates as functions of z. Expanding the solution for large £ to within the first order of 1/& we

find:
B d . ,(v7 C
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Fig. 3. Perturbation amplitude growth for k6 = 1, d =8/3 and K = /d/2 as a function of
propagation distance z for systems with chirp. Black curves are numerical results, while the
red curves are analytical results: (a) o = 1, B1 =0, ag = 0.1, top: numerical results, bottom:
analytical results, (b) fo =0, 1 =1, Z =1, dashed lines represent plots for ag = 0.1, top
to bottom: analytical results for ag = 0.1, numerical results for ag = 0.1, analytical results
for ag = 0.3, numerical results for ag = 0.3.

where:
d o Y
N GK@SInh %)
820 11 51,9 sinh? (%)

This implies saturation after linear growth for constant 3, i.e. By # 0 and 1 = 0. Indeed, some
sort of saturation of the perturbation amplitude is to be expected in this case, since the solution
dissipates due to the form of the chirp function [25]. The analytical results agree well with the
numerical results, as can be seen in Fig. 3(a).

The overall behavior of Mls is otherwise similar to the case without chirp. Typical behavior
of |U| is presented in Fig. 3, for different values of parameters. In the case of dispersion man-
agement By = 0, the perturbation amplitude has oscillatory behavior with a maximum variation
that depends on the period Z of the management function . Stabilization can be achieved by
reducing the period of the management function. The dependence of the maximum perturba-
tion amplitude on z d and & is given in Fig. 4. While an increase in parameter d in general
increases the amplitude of |U]|, as is seen in Fig. 4(a), an increase in ay reduces the amplitude
of |U|, as seen in Fig. 4(b). This result is in agreement with results obtained in Fig. 3(b) where
values ag = 0.3 and ag = 0.1 were compared.

The entire stability analysis is presented in Table 1. We see that depending on the choice of
s, o and whether the SW is spatial or temporal we have eight distinct cases for examining the
stability of our solutions. In the case of spatial SWSs, perturbations can occur in both the spatial
and temporal directions, whereas in the case of temporal SWSs they can only occur in spatial
directions. For a SW to be stable we must have ko = —1 in all directions of perturbation,
otherwise it is conditionally stable, i.e. only for By = 0. A SW is dark if the direction of the SW
and the nonlinear term, i.e. ¢ are of the opposite sign, otherwise the SW is bright. In the 2D
time-independent case we no longer need to consider temporal SWs and distortions.

(38)

4. Numerical simulations

We now use computer simulations to simulate the behavior of our solutions when a small per-
turbation is introduced. Observing the rate of change of the amplitude of G in our simulations,

#229339 - $15.00 USD Received 15 Dec 2014; revised 27 Mar 2015; accepted 28 Mar 2015; published 16 Apr 2015
(C) 2015 OSA 20 Apr 2015 | Vol. 23, No. 8 | DOI:10.1364/0E.23.010616 | OPTICS EXPRESS 10624



Fig. 4. Maximum amplitude of perturbation for K = /d/2 plotted against z= 1Z/m and:
(a) d for ag = 0.05, (b) ag ford =8/3.

Table 1. Stability cases

| [ s] o] SW [pertt| x [type[ stability(3D) | stability (2D) |
. S 1 CS-Conditionall

1] 1 1 S-spatial - 1 cn Stable y CSs

2|11 1 | T-temporal S 1 cn CS -

3|1 |-1 S ? i sn S-stable S

41 1 | -1 T S 1 sh S -

5| -1] 1 S S ! cn CS CS
T -1

6| 1] 1 T S 1 sn CS -

71 -1] -1 S S ! sn CS S
T -1

8| -1| -1 T S 1 cn S -

we can then measure the value of y and compare it with the theoretical expectation given in
Eq. (30). The split-step FFT simulations produced the points on the plot in Fig. 1(b), which
agree well with theoretical expectations denoted by the continuous line. Most importantly, the
solutions cease to exponentially increase at precisely the values predicted by the theory of MI.

We see in Figs. 5-7 the main results of our simulations in scenarios involving instability.
Starting from the initial form of the solution (Figs. 5-6(a)), we can see that the perturbation
rapidly increases (Figs. 5-6(b)) and ultimately completely abandons the original form of the
solution (Figs. 5-6(c)). Figure 5 depicts the time evolution of a bright SW, while Fig. 6 depicts
the time evolution of a dark SW. Owing to the difficulty that arises from the boundary conditions
for the dark SW, due to a change in the sign of u, we have instead run a simulation of two dark
SWs with periodic boundary conditions, as is the standard practice. Periodic solutions show a
similar pattern of instability formation as seen in Fig. 7.

5. Analysisof the stability of the Gross-Pitaevskii equation

In this section we apply the results and methods of Sec. 2 to provide a stability analysis of our
solutions to the Gross-Pitaevskii equation (GPE), obtained in [28]. This section expands upon
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y y Yy
X t X t X 4

Fig. 5. Development of modulation instability for the bright SW for three different values
of z Here, xis the direction of perturbation, y is the direction of the SW and t is the remain-
ing transverse direction. Bright colors, i.e. towards the color red (the center in Fig. 5(a)),
indicate a higher value of |u|2.

(a) (b) (c)
J h 4 F
X t X t X t

Fig. 6. Development of modulational instability for the dark SW for three different values of
z Here, x s the direction of perturbation, y is the direction of the SW and t is the remaining
transverse direction. Red color (away from the center in Fig. 6(a)), indicates a higher value
of |ul.

() (b) (c)
X t X t X t

Fig. 7. Development of modulational instability for the dark traveling wave (F = sn) for
three different values of z. Here, x is the direction of perturbation, y is the direction of
the traveling wave and t is the remaining transverse direction. Parameters are M = 0.5
and K = /d/2. Blue color (at the top, bottom and the three central stripes in Fig. 7(a)),
indicates a lower value of |u|2.
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the results briefly summarized in [28] and provides additional data. We now examine the GPE,
ie.

2 2 2
iohu+ @ (gxl; 3;2’ + g;) +xOuPu+nt) ¢ +y* +Z)u=is(t)u. (39)
The coefficient 1 refers to the strength of the quadratic potential. The main part of our analysis
will be to transform the starting Eq. (39) into a form more amenable to stability analysis [38].
The propagation variable is now t instead of z.

The key differences between Eq. (39) and Eq. (1), apart from the addition of the quadratic
potential, is the change in the longitudinal direction from z to t. Hence, there is no longer
a distinction between normal and anomalous dispersion. This greatly simplifies the stability
analysis. We restrict out attention to SWs found in [28], as the solutions found in [27] do not
have a stable amplitude when they are not artificially maintained with a nonzero gain. The
solutions in [28] are found under the condition that 8 and n are proportional trigonometric
functions of the same sign. We will call their amplitudes 3y and ng. The parameters b, k, | and
mare:

k = pko, I = plo, m= pn, (41)
® = p—q(ko+Ilo+mp)byo. (42)

The parameters p and g, as well as the chirp function a, are defined to be:

_ Mo
p = /7n0—2a§ﬁose0h(r(t)+fo)’ (43)

q = ﬂ(n— %(tanh(r(t)+m)—tanhm), (44)
a — %tanh(r(t)ﬂo), (45)
where:
To = arctanh (ao ZBO) (46)
Mo
and: .
_ %%
=1/ % O/ B(t)dt. 47)
Formula (5) now becomes:
t
20 = el roenp( -2 | oa). (#8)

where xg = kg + IS + rr% and p is defined in Eq. (43). For convenience we set yo =1, fo =1
and Bp = 1. We also define:

o U
e=e-—, (49)

where g is given in Eqg. (44) and ¢ = ¢, — 6€,/CoCs. Again, for e = 0 we have c = c,.
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We now define:

L ( 5
= exp —/ t)
p%/2fo\/|Caxol 0

and employ similar changes of coordinates as in Sec. 2:

exp (—ia( +y* +Z) —ib(x+y+2) —i€)  (50)

— X =px-¢) (51)

- ¥Y=py—9) (52)

z - Z=p(z-9) (53)
t

t o t’:/O p?Bt, (54)

where p is defined in Eq. (43) and % = B(t)(2a(t){(t) +bop(t)). The form of the function
£(t) in the transformation is of no immediate interest, other than the fact that it depends on p(t)
and t(t), which are given in Eq. (43) and Eq. (47), respectively. The transformation gives us
the following equation for G:

dG [0°G 0°G 0%G 2
Iat’+<8>(2+8)/2+8z’2> c|GI*G=0, (55)
where o = —sgn(cs). Qualitatively, this is the same equation as Eq. (18), except for the change
of the longitudinal variable from zto t. The new variable t’, which only depends on t, involves
an integral over B that can change sign. This will be important in the analysis of Eq. (55). Just
as in the case of NLSE, we can place without the loss of generality the Z axis in the direction
of inhomogeneity of our extended solitary solutions, i.e. assume kg = lg =0 and my = 1, and
put X as the axis of perturbation.

Equation (55) is the usual (3+1)D nonlinear Schrodinger equation with constant coefficients,
which is prone to instabilities and the wave function collapse. Instabilities in G translate into
instabilities of the general solution u. This would bode disaster for the stability of exact traveling
wave and solitary solutions found, were it not for the possibility of diffraction and nonlinearity
management [7] in Eq. (55), thanks to the form of the primed variables. We find that, for the
choice of coefficients o:(t) and 3(t) made in [28], the typical extended SW solutions of Eq. (55)
do not collapse when perturbed, but keep oscillating in a typical breathing behavior.

We now consider the perturbation of G in this plane for the two fundamental solutions, the
dark F = sn and the bright F = cn SWs, where F = Gexp (—iqcz/2) in the form:

G=Gp (1+U(t)cos(Kx)), (56)

where U (t) = U (t) +iUj(t) is the complex amplitude, and K is the wavenumber of the pertur-
bation in the direction perpendicular to Z. In a standard linear stability analysis, as was already
done for the NLSE in Sec. 2, the perturbation is substituted into Eq. (55) and linear first-order
differential equations for U, and U; are obtained. Plugging in the perturbation, one obtains:

aUr o 1 2.9 )

S = SKEPBUL 67)
(9U| - E 2 2

i (K*—aod) p°BUr, (58)

where d is defined as in Egs. (25)—(27). The solutions of Egs. (57) and (58) determine the
dynamics of the modulational instability. Equations (57) and (58) can be solved analytically to
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yield:

Ur(t) = Uocosh(yg()), (59)
Uilt) = Uoysinh(va(z), (60)

where:
y=K,/(d—K?)/2. (61)

A similar analysis as in Sec. 3.1 can be performed in this case, and one obtains a much more
simplified analysis with respect to Table 1 since there is no case s= 1, and there are no temporal
perturbations. One obtains that the dark SWs are always stable, and the bright SWs are always
conditionally stable.

We now restrict our attention to the bright SWs, i.e. o = 1. The the modulus of the perturba-
tion amplitude is given as:

1/2
U|=Up <1+ %jsinhz (yq(r))) : (62)

A graph and a detailed analysis describing the behavior of perturbations were given in [28].
Here we focus our attention on the dependence of the maximum perturbation on parameters d,
No and ag. It is worth noting that unlike in the case of NLSE the parameter q is limited assuming
a reasonable choice of ng and ay. Thus assuming n and 3 are proportional and of equal sign,
finding stable solutions is likely even in the absence of dispersion management.
To achieve the maximum amplitude of |U | we taket — o= and K = /d/2. In that case, along
with By = 1, we obtain
B d
a2 Ve

Since od/K? = 2 and sinh is an increasing function it follows that growth of |U| follows the
growth of the magnitude of yq. In other words, d and ag contribute to an increase in |U | while ng
contributes to a decrease in |U|. As solutions approach the singularity threshold ag = /10/2,
the amplitude of perturbations also blows up.

(63)

6. Conclusion

In this paper, we have analyzed the stability of solutions of the (3+1)D NLSE with normal or
anomalous dispersion and the (2+1)D time-independent NLSE. For the (2+1)D solutions, we
obtained stability for dark solitary waves and conditional stability for bright solitary waves,
meaning we need to apply dispersion management to keep the solitary waves stable, i.e. the
diffraction/dispersion coefficient must oscillate around 0. The management function dynami-
cally stabilizes the nonlinear structure of the transversal perturbation of the soliton if its mean
value is zero. Reducing the period of the management function can be achieved by arbitrary
limitations of the perturbation level. If, however, the mean value is different from zero, the
amplitude modulation perturbation exponentially increases in the case of a solution without
chirp and linearly with saturation in the case with chirp. In the former case we have Lyapunov
instability. In the latter case the saturation is an indirect consequence of the dissipation of the
solution.

For the (3+1)D case we obtain stability for the temporal bright solitons for normal disper-
sion and dark solitons for anomalous dispersion. All other types of solitons are conditionally
stable. For the Gross-Pitaevskii equation we obtain that dark solitons are always stable and
bright solitons are always conditionally stable. The obtained results are verified using computer
simulations.
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PACS 42.65.Tg — Optical solitons; nonlinear guided waves

PACS 05.45.Yv — Solitons

Abstract — We construct explicit spatiotemporal or light bullet (LB) solutions to the (3 + 1)-
dimensional nonlinear Schrédinger equation (NLSE) with inhomogeneous diffraction/dispersion
and nonlinearity in the presence of parity-time (PT) symmetric potential with competing nonlin-
earities. The solution is based on the similarity transformation, by which the initial inhomogeneous
problem is reduced to the standard NLSE with constant coefficients but with redefined variables
and potential. Transmission characteristics of LB solutions, such as the phase change, half width
and chirp, are studied in the media with exponentially decreasing diffraction/dispersion and with

periodic modulation.

Our outcomes demonstrate that diffraction/dispersion and nonlinearity

management can prolong the stability of LBs in a PT potential.

Copyright © EPLA, 2016

Introduction. — Solitons are formed by an exact bal-
ance of dispersion, diffraction, and nonlinearity. In nonlin-
ear science, one of the most essential tasks is constructing
exact soliton solutions to a large variety of nonlinear par-
tial differential equations, describing diverse systems such
as shallow water waves, DNA excitations, matter waves
in Bose-Einstein condensates (BECs), and laser beams in
nonlinear optics [1,2].

The PT symmetry was introduced in quantum me-
chanics in 1998 [3], when Bender and Boettcher offered
the first indication that a class of non-Hermitian but
parity and time-reversed (PT) symmetric Hamiltonians
may possess a real bound-state spectrum. It was soon
reported that balancing gain and loss is an interesting
possibility for experimental realization of PT-symmetric
Hamiltonians in arrays of waveguides [4,5]. Against the
background of experimental findings, various types of sta-
ble spatial solitons in PT-symmetric potentials have been
reported [6-11]. In optics, the complex PT-symmetric po-
tentials can be realized in the most straightforward way
by combining the spatial modulation of the refractive in-
dex with properly placed gain and loss [12]. Pioneering

(2) B-mail: xusiliu19680163.com (corresponding author)

theoretical works [12,13] stimulated recent experimental
studies and led to the observation of PT symmetry break-
ing in both active [14] and passive [15] optically coupled
systems.

Spatiotemporal solitons, also called “light bullets”
(LBs), originate from the simultaneous balance of diffrac-
tion and dispersion by the nonlinear self-focusing [16].
They have flourished into a separate research area of great
importance and broad interest in various fields, from op-
tics, plasma physics to BECs [17-19].

LBs are described by the spatiotemporal (3+1)D parax-
ial wave equation or the nonlinear Schrédinger equation
(NLSE) [20,21]. It is long known that multi-dimensional
solitons in Kerr media are unstable against wave collapse.
Therefore, the search for suitable media for the genera-
tion of stable 3D LBs remains a viable topic [22]. The
same stability problem impedes the creation of multi-
dimensional solitons in self-attractive BECs. Different
schemes to stabilize solitons in BECs and cubic media have
been proposed in refs. [23-30]. However, spatiotemporal
localized structures in PT-symmetric potentials with com-
peting nonlinearities are less often reported [31].

In this paper, we go beyond previous work on the
NLSE and study spatiotemporal solitons supported by
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a PT-symmetric potential with competing nonlinearities.
We utilize the similarity transformation to transform this
model into the standard NLS equation with constant co-
efficients and a PT-symmetric potential, and find exact
solutions.

The paper is organized as follows. In the second sec-
tion, we introduce the model and obtain different types
of spatio-temporal soliton solutions. In the third section,
the transmission characteristics of the LBs found, such
as the phase change, the half width and the chirp are
studied in media with periodic modulation and with ex-
ponentially decreasing diffraction/dispersion. Numerical
simulations and comparison with analytical results are also
performed. In the last section, our conclusions are briefly
outlined.

The model and the soliton solutions. — We
consider propagation of a light beam along the z-axis
in paraxial approximation, in the presence of a PT-
symmetric potential with competing nonlinearities. In
this case the beam dynamics is governed by a generalized
(3 + 1)D nonlinear Schrodinger model:

10 u + @(VLU + OFu) + x1(2)|uPu

+x2(2) [ul* u 4 [v(z,r) + iw(z,7)]u = 0, (1)
where V| = 0%/02% + 0%/0y? is the transverse Lapla-
cian, r = (x,y,t) is the spatiotemporal “transverse” po-
sition vector, and the complex envelope of the electrical
field u(z,7) is normalized by (kowo) ! (na/ng)~'/2. The
longitudinal coordinate z, transverse coordinates x, y and
the co-moving time ¢ are scaled to the diffraction length
Lp = kow? (with the wave number ko = 27ng/A and the
input wavelength A), the input beam width w, and VLp,
respectively. Function (3(z) is the diffraction/dispersion
coefficient, and x1(z) and x2(z) are the cubic and (k+1)-
th—order nonlinearity coefficients, respectively. Thus, the
model contains competing cubic and higher-order power
nonlinearity. The power k is any real number larger
than 1. An even function v(z,r) = k3wing(z,r) and an
odd function w(z,r) = k3win;(z,r) are the real and imag-
inary components of the complex PT-symmetric potential
that is considered in this paper; they correspond to the in-
dex guiding and the gain or loss distribution of the optical
potential, respectively. Their form will be specified later.

To find analytical solutions of eq. (1), we write the field
as [13,31]:

u(zr) = AUX (2,2), Y (,9), T(2, ), Z(2)]e#0,
(2)
where A(z) is the amplitude, X = X (z,2), Y = Y(z,y),
T = T(z,t) are the self-similar variables, Z = Z(z) is an
effective propagation distance, and ¢(z,r) is the phase of
the wave, all assumed to be real functions. Substituting
eq. (2) into eq. (1), we aim to obtain the standard NLSE

with two constant coefficients x19 and x2¢:

oU 1[0*U 0°U 0°U

5z T3 |axz tave T oz | xelUlU

+x20|UPU + [V(X,Y,T) +iW (X, Y, T)U = 0.

Requiring that

_ Afxa(2) X
MO B (1= s0 Jg B2)dz)” (4a)
AfFxa(z)
0= —.  (4b)
X20 A(2) (1 s fOZ ﬁ(z)dz)% 2
vix v = L fozﬂ(;)é;) MEED ()
W(X,Y,T) = (1 — 50 foz B(Z)dz) w(X,Y, T)’ (4d)

8(z)

after some algebra one obtains the following expressions
for the self-similar variables and the amplitude and phase:

- r z = -y
X(z ) = 1—so [y B(z)dz’ V() 1=so [y B(z)dz’
(5a)
et ) = _ o Bx)dz
T(zt) = 1—sg fozﬁ(z)dz7 Z(z) = 1—=s0 fozﬂ(z)dz7
(5b)
Ay

Az) = —3/2’

(1—s0 [y B(2)d2) Y (5¢)

S0 (wz + y2 + t2)
2 (1 — 5 foz ﬂ(z)dz) ’

where sg is an arbitrary real constant. Solutions of eq. (3)
can be used as seeds for the generation of various solutions
of eq. (1) via relations (4), under conditions (5). There-
fore, substituting solutions of eq. (3) into (2) will lead to
the nonautonomous solitons of eq. (1).

We seek the solution of 3D NLSE (3) in the form

90(2:7 x? y7 t) =

U(Z,X,Y,T) = (X, Y, T)elbZH0XYDI ()

where, 0 is an arbitrary constant. Here, the real-valued
amplitude ¢ (X,Y,T) and the phase §(X,Y,T) satisfy the
following differential equations:
V2 — VO + Vb + x10¢® + x200®* ! = 69p,
V20 + 2VOVY + Wep = 0,

(7a)
(7b)

The model admits different solutions, provided the above-
mentioned conditions are met. Here, we are interested in
two distinct types of soliton solutions, denoted as Case 1
and Case 2 solutions, arrived at by suitable chooses of
V(X,Y,T) and W(X,Y,T). It follows that for an arbi-
trary even function 1 and odd function 6, there is an even
potential V and an odd potential W for which eqgs. (7) are
satisfied.
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Case 1 solution. If the PT-symmetric potential is cho-
sen in the following form:

2
V(XY,T) =5 -3+ <2+ V?)
X [sec h*(X) + sec h*(Y) + sec h? (T)}
—Pax10sec h?(X) sec h?(Y) sec h*(T)

— 2Fxa0 sec h2F (X)) sec h?F(Y) sec h?(T),  (8a)
W(X,Y,T) = Wysech(X) tanh(X)
+ sec h(Y') tanh(Y') 4 sec h(T') tanh(T), (8b)

the potential obviously satisfies the properties of a PT-
symmetric potential: V(X,Y,T) = V(-X,-Y,-T)
and W(X,Y,T) = —W(-X,-Y,-T), and we obtain a
closed-form localized solution (that satisfies the condition
VX, Y, T) —0as X, Y, T — +o00):

Y(X,Y,T) = 1pgsec h(X)sec h(Y ) sec h(T), (9a)

with the phase given by

Wi
0(X,Y,T) = ?O [arctan(sinh X) + arctan(sinh V")
(9Db)

and two arbitrary constants Wy and vy. Note that this
soliton solution is valid irrespective of whether x1¢ and/or
X20 are positive or negative.

The potentials in egs. (8) resemble the Scarff IT potential
commonly used in the study of PT potentials [11]. The
only additional terms are the two terms with products
of hyperbolic secants: sech?(X)sech?(Y)sech?(T) and
sec h2F(X) sec h?#(Y') sec h?#(T), which decay much faster
than sec h?(X) +sec h?(Y) +sec h?(T) far from the origin.
Therefore, it remains plausible that such PT potentials
can be experimentally realized.

From egs. (4), under the given PT potential, one obtains

+ arctan(sinh T)],

B(2)
(1—s0fy ﬁ(z)dz)2

*{63+ (2 + ngo) (sec h*(X)+sec h*(Y)+sec h*(T))

UI(XaKT) =

—h8x10 sec h?(X) sec h?(Y) sec h*(T)

—1h2F 90 sec B2 (X)) sec h2* (V') sec h?*(T) (10a)
and
WoB(2)
w(X,Y,T) = Z 5 [sec h(X) tan h(X)
(1 — S0 fo B(z)dz)
+ sec h(Y) tan h(Y') 4 sec h(T') tan h(T)]. (10Db)

The soliton solution of eq. (1) is thus given by
Ao
(1 — S0 foz B(z)dz)3/2
x [sec h(X) sec h(Y) sec h(T)] eV D+ozte(zay.0)]
(11)

u(z,z,y,t) = +

where X, Y, T, o(z,r) and O6(X,Y,T) satisfy
egs. (ba)—(5c) and (9b), respectively. Here the phase is
made up of the phase 0(X,Y,T) in solution (9b) and the
chirped phase ¢(z, ), expressed by eq. (5¢).

Case 2 solution. If instead, the PT potential is

chosen as

E k2W§
k2 k2 (k? + 2)2
X [sech?(X) + sec h*(Y) + sec h*(T)]
—h2x10 sec k¥ (X)) sec h2/F (V) sec h¥/*(T)
- w(Q)kXQO sec h*(X) sec h*(Y) sec h*(T),

V(X,Y,T) =05 —

(12)

leaving W equal to eq. (8b), one obtains the following
amplitude:

W(X,Y,T) =1 sec h*/*(X) sec h/*(Y ) sec hY*(T), (13a)

with the phase given by

k
0(X.Y.T) =+ I:LVOZ

+ arctan(sinh T)],

[arctan(sinh X) + arctan(sinh )
(13b)

From eqs. (4), the complex PT potential is of the form

B(z)
X,Y,T) =
vri ) (1 — 50 foz ﬂ(z)dz)2
3 1+k E2W,
*la_k?+ B (14 k)

x (sec h*(X) + sech®(Y) + sech*(T))
— h2x10 sec h2F (X)) sec h2/*(Y) sec h?/¥(T)

—2Fxa0 sec h?(X) sec h?(Y) sec h*(T) |, (14)

whereas w is of the same form as in eq. (10b). Finally,
is equal to

Aotbo
(1 - s0 foz ﬂ(z)dz)g/2
* [sec hYE(X ) sec kY% (Y) sec B/ *(T)

i[0(X, Y, T)+6z+¢(z,@,y,t
« O D) 4024 (a.p.0)]

u(z,z,y,t) = +

(15)

where X, Y, T satisfy egs. (5a)—(5c), respectively. Here,
again, the phase is made up of the phase 6(X,Y,T) in
solution (13b) and the chirped phase ¢(z,7) expressed by
eq. (be). Note that the solutions found depend in a crucial
way on the diffraction/dispersion coefficient 5(z). In the
next section we make specific choices for the function 3(2)
and discuss the properties of the corresponding solutions.

Characteristic distributions of solitons. — We next
discuss dynamics of LBs found for the two special cases
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Fig. 1: (Colour online) |u/?, v and w in a PMS for Case 1.
(a)—(c) Plots as functions of z and z for y = ¢ = 0. (d)—(f) Plots
as functions of z and y for z = ¢t = 0. Other parameters are
u)I1,So:O,A():1,k:2,X10:1,X2021,ﬁ0:1,
Wo=3,6=3and ¢pg = 1.

Fig. 2: (Colour online) |u|?, v and w in a PMS with chirp as a
function of x and z for y =t = 0. Parameters are the same as
in fig. 1, except for sop = 0.5.

Fig. 3: (Colour online) |u|? as a function of # and y in Case 2,
for various values of k: (a) k = 2, (b) k = 3 and (¢) k = 5.
Here, z =t = 0. The remaining parameters are the same as in
fig. 1.

of the diffraction/dispersion coefficient 3(z): the periodi-
cally modulated system (PMS) 3(z) = §p cos(wz) [32,33],
and the diffraction/dispersion-decreasing medium (DDM)
B(z) = PBoel? [32], where [y is the initial diffraction, w
is the frequency of modulation in the PMS case, and p
is the exponential rate of growth/decay in the DDM case.
One can obtain increased modulation stability of solutions
using such distributed coefficients [33,34].

In fig. 1, we display the basic results for the PMS sys-
tem without chirp. We see in fig. 1(a) that the basic sech
profile propagates in the z direction without change. From
egs. (10a), (10b), and (14), it is seen that the complex PT-
symmetric potential satisfies v(z,y,t) = v(—z,—y, —t)
and w(z,y,t) = —w(—z, —y, —t). Thus, the index guiding
and the gain or loss distribution are respectively even and
odd functions with regards to x,y, and t. We observe this
in figs. 1(b) and (c). In fig. 1(d), we see that the solution
is localized in all transverse dimensions, while figs. 1(e)
and (f) again confirm the PT symmetry.

Fig. 4: (Colour online) |u|?, v and w as functions of = and z
in a DDM for Case 1 without chirp. We have y = ¢t = 0 and
po = —0.1. Other parameters are the same as in fig. 1.

Fig. 5: (Colour online) |u|?, v and w as functions of = and z in
a DDM for Case 1, with chirp. Parameters are the same as in
fig. 4, except sop = —0.5.

Fig. 6: (Colour online) v in a PMS for different values of y1o.
Parameters are the same as in fig. 1(e), except for (a) x10 = 3
and (b) x10 = 10.

Figure 2 displays the same plots as in 1(a), (b) and (c),
with the addition of chirp. Hence, one can see that the
chirp modulates the intensity of our solution in fig. 2(a).
Somewhat surprisingly, the chirp produces only a rela-
tively modest effect on the PT potential, as can be seen if
we compare figs. 2(a) and (b) with figs. 1(a) and (b). This
is because the modulation is already present in v and w
via the parameter 3.

Figures 3(a)—(c) show the effect of changing k for Case 2.
We find that the increase in parameter k broadens our
solution, as can be expected from eq. (13a).

Figures 4 and 5 give the results for Case 1 in DDM. In
fig. 5 there is the addition of chirp. A negative number was
chosen for sy, given that the chirp blows up for positive
So at some point. One can see from fig. 4(a) that funda-
mentally the solution without chirp is the same, however
with the addition of chirp in fig. 5(a), an exponential de-
cay of the solution is observed, down to some small value.
From figs. 4(b), (c) and figs. 5(b), (c) one can see that the
potentials also ultimately decay to 0.

In fig. 6 we display the effect of increasing the terms
associated with x10. Given a large enough value, they
produce a potential well in the center of v. A similar
effect can be found if instead, one increases xa0.

In fig. 7 we observe the effect of an increase in k£ on the
potential, for both the PMS (a) and the DDM (b). One
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v (a . (b)
e 20| )
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—a T4 2 2 a

Fig. 7: (Colour online) v in a PMS (a) and DDM (b) for various
values of k. The remaining parameters are the same as in figs. 1
and 4.

Fig. 8: (Colour online) The total phase ® in PMS as a function
of x and z for y = ¢ = 0 in (a) and (c) and of =z and y for
z=1t=01n (b) and (d). In (a) and (b) so = 0, whereas in (c)
and (d) so = 0.1. Other parameters are the same as in fig. 1.

can see that the two effects are drastically different. For
the PMS, an increase in k leads to the formation of a wall,
similar to when y1¢ is increased, as shown in fig. 6. Since
the term in which & appears decays rapidly away from the
origin, there is no change in the baseline value of v. For
the DDM, on the other hand, there is a general increase of
the potential, both in the baseline value and in the peak.

Finally, in fig. 8 we present the overall phase
O(z,z,y,t) = 0(X,Y,T) 4+ 6z + ¢(z,z,y,t) of the solu-
tion. One notes in figs. 8(a) and (b) that in the case of no
chirp the only term present is 6, whereas in the presence
of chirp the phase is dominated by ¢, which is a parabolic
function.

The formal stability analysis of our solutions is a
formidable problem that will not be addressed in this pa-
per. In principle, these multi-dimensional LBs —as most
of other LBs— are unstable, but can propagate stably
over prolonged distances. In order to test the stabil-
ity of our solutions, we perform numerical integration of
eq. (1), with a white noise of variance ¢ = 0.15 added to
the input, for various distances. We used a 3D split-step
Fourier technique and considered the initial conditions cor-
responding to the formulas for u in eqgs. (11) and (15),
with z = 0. It was found that the numerical calculations
indicate no collapse, and stable propagation over tens of
diffraction/dispersion lengths is observed, except for some
small oscillations. Moreover, a LB is more stable in the
PMS than in the DDM, and the larger the power k, the

larger the instabilities. Thus, as it is seen, the diffraction
management of the type considered here can prolong the
life of these LBs significantly.

Conclusion. — In summary, we have found light bullets
supported by specific parity-time symmetric potentials
with competing nonlinearities and have analyzed their
properties. We established that the dynamic character-
istics of LBs, such as the intensity, phase, and chirp, can
be modified by the variation of the diffraction/dispersion
parameter and the strength of nonlinearities. These re-
sults may provide additional potential applications in the
field of PT-symmetric systems.
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Abstract
We construct exact self-similar soliton solutions of three-dimensional coupled Gross—Pitaevskii
equations for two-species Bose—Einstein condensates (BECs) in a combined time-dependent
harmonic-lattice potential. Based on these solutions, we investigate the control and manipulation
of solitary waves for three kinds of BECs with changing diffraction and nonlinearity coefficients;
the solutions include Ma breathers and Peregrine and Akhmediev soliton solutions. Our results
indicate that matter waves readily propagate in this system. It is shown that diffraction and lattice
potential factors play important roles in the beam evolution characteristics, such as the peak, the

phase offset, the linear phase, and the chirp.

Keywords: Bose-Einstein condensates, vector solitons, harmonic-lattice potential

1. Introduction

Bose-Einstein condensates (BECs) in weakly interacting
atomic gases have offered a practical means of studying
nonlinear behavior by using the concept of matter waves. A
BEC soliton is a macroscopic localized excitation, which is
quite common and has been extensively studied both theo-
retically and experimentally. Usually, in one-dimensional
(1D) systems, a repulsive BEC or an attractive BEC is
believed to be stable, bright and dark solitons are expected to
exist, respectively [1]. In integrable nonlinear systems, soli-
tons have a variety of applications in fiber optics as well as
other fields [2, 3].

In order to get stable BEC solitons, an effective method
is to consider the effects of periodic time modulation of the
optical-lattice (OL) potential [4, 5]. The time-dependent OL

5 Author to whom any correspondence should be addressed.

2040-8978/15/105605+06$33.00

can suppress the leading-order diffraction; hence the forma-
tion of sub-diffractive solitons was realized in BECs [6, 7]. It
had been demonstrated that the strong, periodically shaken
OLs could cause the phase coherence of BECs [8]. Moreover,
a remarkable OL is the combined harmonic-lattice potential,
in which the periodic time-dependent lattice is accompanied
by a harmonic confining potential. Using the Feshbach
resonance (FR) technique, harmonic-lattice potential may be
realized in BECs by tuning the external magnetic field and the
optically controlled interactions [9, 10]. The dynamics of
BEC solitons in the harmonic-lattice potentials has become a
hot research topic both in theory [11-13] and experiment
[14, 15]. Some more recent accounts have been presented in
[16-19].

Under a harmonic trapping potential, 1D exact vector
solitons and localized nonlinear matter waves in two-com-
ponent BECs were found in reference [16]. In reference [17]
Feijoo et al have discussed the possibility of emitting vector

© 2015 I0OP Publishing Ltd  Printed in the UK



J. Opt. 17 (2015) 105605

S-L Xu et al

solitons from a two-component elongated BEC by manip-
ulating in time the inter- or intra-species scattering lengths
with FR tuning. In the case of repulsive and attractive con-
densates, the 2D vector solutions have been studied in
references [20] and [21]. In the experiments, Dalfovo et al
have realized an attractive two-component BEC by simulta-
neous magnetic trapping of atoms of "Li [22]. Moreover,
Papp et al realized two-component BECs with tunable inter-
component interaction [23]. In addition, dynamical creation
of fractionalized vortices and vortex lattices was considered in
[24], while the dynamics of bright solitons in BECs with
time-dependent atomic scattering length in an expulsive
parabolic potential was considered in [25].

With the basis of this motivation in mind, we investigate
in this paper the explicit novel solutions of the (3+1)-
dimensional coupled Gross—Pitaevskii equations (GPE) with
temporal modulation of the nonlinearities and the harmonic-
lattice potential. Three kinds of soliton solutions are pre-
sented, and the stability of these solitons is investigated
numerically.

The paper is organized as follows. The model describing
vector matter waves in two-component Bose—Einstein con-
densates with combined time-dependent harmonic-lattice
potential is introduced in section 2. In section 3, novel Ma
breathers and Peregrine and Akhmediev soliton solutions in
the combined time-dependent harmonic-lattice potential are
demonstrated, and the evolution characteristics of rogue
nonlinear matter wave soliton solutions are discussed. Con-
cluding remarks, with a simple summary, are given in
section 4.

2. The model

We describe nonlinear interactions in a binary mixture of
BEC:s, consisting of two different spin states for the complex
macroscopic wave functions u; »:

.0 t
lﬂ + wAul +;((t)(c1 |141|2 +c |u2|2)u1
ot 2
+ V(i x,y, Dup =iy (t)uy, (1a)
.0 t
lﬂ + &Auz +)((t)(cz |u2|2 +c |u1|2)u2
ot 2
+ V(t, x,y, 2)uy =iy (Huy, (1b)

where A is the three-dimensional (3D) Laplacian. All
coordinates are made dimensionless by the choice of
variables. The functions f(¢t) and y(r) represent the
diffraction coefficient and the nonlinearity coefficient,
respectively. In this paper, we choose the time-dependent
harmonic-lattice potential as
Vi, x,y,2) = W) + (@) (x + y + 2)+

V3(1)(x? + y* 4+ z%), where V; are, as yet, not specified
functions. The parameter y (¢) is the gain or loss coefficient.
The constants c, ¢;, and ¢, determine the ratio of the coupling
strengths of the cross-phase modulation to the self-phase
modulation. For the linearly polarized eigenmodes we have
¢ = c; = 1,c =2/3[26], and the total number of particles of

each  component is the norm

Nig= [l lur, Pdrdydz.
To obtain exact analytical solutions of equation (1), we
introduce a self-similar transformation of the solution [27]:

determined by

c—cj 172 \
u](ts R Z) :po 27 D» (Z)U(T, X)
ct = Ccl
X ei(/’(hx,y,z)+1"(t), @)

where j =1, 2, co=c», and p, is a constant. The similarity
variable 7, the effective distance X, and the phase ¢ are
assumed to be real functions. U = U (T, X) is a complex
function, X = X (¢, x, y, z) is the multivariate self-similar
variable, and ¢ (¢, x, y, z) is the phase of the matter wave.
Substituting equation (2) into equation (1), one obtains the
standard nonlinear Schrédinger (NLS) equations with trans-
formed variables
oU 10°U

i—+-——+|UPU=0, 3
oT 2 0x? v ®

provided the following two conditions are satisfied:

pO(X?+X] +X2) =T, (4a)

DS (1) =T, (4b)

Here, the variable subscripts stand for the corresponding
partial derivatives. Considering equation (3), one obtains for
D, T, X, and ¢ the following solutions:

D= exp[— /0 ﬂ(T)Cp(T)dT], (5a)
— ! 2 2 2 4
T= fo (K2 + 2 + m?)p (2) D* () dr, (5b)
X = (kx + ly + mz)D?
—(k+1+m) / " B()D* (1) H (r)dr, (5¢)
0
¢ =c,()(x* + + 22) + HOD*()(x + y + 2)
_3r 4 VH?
> fo p()D* (zr)H*(7)dr, (5d)
where ¢ is the chirp function,

H()=Hy+ [ W@)/D*(t)de and T'()= [ y(x)dr.
The subscript ‘0’ denotes the initial values of the correspond-
ing functions at time ¢ = 0. The parameters k, [, m, and Hy
are arbitrary constants.

The transformation of equation (1) into an integrable
equation (3) imposes the following constraint on y (z):

(k2 + 12+ mz)
D (1)

and a constraint on the quadratic term of the lattice potential:

B, (6a)

x () =
Vs(t) = 2¢,, + 4pc;. (6b)

Therefore, substituting equation (3) into (2), the self-similar
solitons of equation (1) can be obtained. The solutions of
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Figure 1. Profiles of the OL potential and the nonlinearity coefficient with V{ = 0 and V5 = cos(2t). (a), (d) The first lattice potential
V3= 2[1 + 0.05exp(2t)] and S (¢) = cos(2t); (b), (¢) The second lattice potential V3 = 4(1 + 1), B(t) = 2/(1 + t)*; (c), (f) The third lattice
potential V3 = exp(cos()), f(¢) = 2exp[2sin(27)/(1 + sin(2t))], respectively; other parameters are c,p = =0.1,/ =m =y =0, ¢y = —1,

cz=—8,c=5,andH0=p0=1.

equation (3) can be considered as seeds to generate various
solutions of equation (1) under the conditions (4).

Following reference [28] and using the inverse scattering
technique, the breather solution (Ma breather) of the standard
NLS equation (3) can be found:

2c0s(2\/§T) +iV2 sin(ZﬁT)
J2 cosh(2X) — cos(ZﬁT)

U(T,X) = —1[e.

(Ta)

In the same way, when the period becomes infinite, the rogue
wave solution with the following basic structure is obtained
[29, 30]:

G,(T, X) + iH, (T, X) | .

U1, %) = | -1y ¢ DO AT br g,
D, (T, X)

where n =1, 2, 3 .... When n = 1, the Peregrine soliton

[31] is found, with Gy =4, H =8X, and

D=1+ 4T% + 4X?; if n = 2, one finds the Akhmediev
soliton solution [32]. Thus, collecting the partial solutions
together, we obtain the exact rogue wave solution of
equation (1):

¢ = ¢y 12 .
uj(t, x,y,2) = po| ————| D'OUT, X)
- —clen
X ei(p(t,x,y,z)+F(t)’ (8)

where U is given by equations (7a) and (7b). The expressions
above indicate that the width W(f) of the soliton for two
components is related to D ~3(¢), the amplitude of the solitons

is proportional to po(c - cj_l/cz - clc2)1/2D3 @) exp[l" ()],
and the center of the solitons is located at 8 (t)D*(¢)H (t). The

linear part of the phase is determined by H(t)Dz(t), and the
chirp in the phase ¢, is related to the lattice potential V3 and
the diffraction coefficient B. It is easily seen that the
diffraction coefficient f(¢) and the lattice potential V play
an important role in determining the evolution characteristics
of the solitons.

3. Solitary solutions

In this paper we demonstrate explicit vector matter wave
solutions in combined time-dependent magneto-optical
potentials (TDMOPs). Using the FR techniques [33, 34], as
previously described, the combined TDMOP may be realized
in BECs by tuning the external magnetic field and the opti-
cally controlled interactions. Their profiles and nonlinearity
coefficients are plotted in figure 1.

We study the dynamics of the exact localized nonlinear
waves of equation (1). To illustrate the characteristics of the
analytic solution (8), we present the corresponding system
management scheme with the parameter functions f(¢), y (¢),
y(t), and V (x, y, z, t), the choice of which leads to the con-
trolled development of rogue waves. Without much loss of
generality we assume y () =0 and V;=0. We also take
V5 = cos(2t) throughout and make three choices of the V;
potential.

First, we study the influence of the first lattice potential,
with V5= 2[1 + 0.05exp(2¢)] in equation (1), and in the
diffraction management for f = 2cos(2¢). As the condition
(6b) is a variable-coefficient differential equation, the analy-
tical solution cannot be found; thus a Runge—Kutta numerical
solution is used. By combining equations (5)—(7) with
equation (8), the spatiotemporal evolution of the soliton wave



J. Opt. 17 (2015) 105605

S-L Xu et al

Figure 2. Condensate distributions of the soliton wave |u;|* in the first lattice potential. (a) Ma breather; (b) Peregrine first-order wave; (c)

Akhmediev second-order wave. Other parameters are as in figure 1.

-10 -10

10 20 0
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Figure 3. Same as figure 2 but for the second potential.

|u; |? is shown in figure 2. This figure displays the intensity
profiles of the Ma breather and the Peregrine and the Akh-
mediev rogue waves of equation (8), represented as functions
of kx + Iy + mz and ¢, without loss. One can see that the Ma
breather and the Peregrine and Akhmediev waves have one,
two, and three symmetrical maxima in the center of the
kx + Iy + mz direction. It is noteworthy to observe that the
three wave peaks keep the same intensity with the change in
time; however, their intensity distributions differ.

Figure 3 demonstrates the condensate distributions of the

three kinds of solitary waves |u1|2 with the parameters
B(t)=2/(1+ 1) and V5= 4(1 + 1). It is shown that the

condensates oscillate in the kx + ly + mz direction as a
function of time. When 7 < 10, the intensities increase very
slowly. After t = 20 one can see that the intensities remain
constant. Concerning the Peregrine soliton, the two usual
symmetric oscillating distributions are found. However, the
usual symmetry of the Akhmediev solutions is changed, and
the central peak is much larger than the two side peaks.
Figure 4 demonstrates the condensate distributions of the
three kinds of solitary waves ‘ul |2 with the parameters
V5(t) = exp[cos(2t)], p(t) = 2exp[2sin(2¢)/(1 + sin(21))].
Similar to figure 2, the three centrosymmetric solutions in the
kx + ly + mz direction are shown. For the Ma breather, the
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Figure 4. Same as figure 2 but for the third potential.
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Figure 5. (a)—(c) The condensate distributions of wave packets |u; |> and |u; [> for kx + Iy + mz = 0. (d)~(f) Comparison of the analytical
solution with the numerical simulation of the phase offsets, the linear phase, and the chirp of wave packets. The parameters are as in figure 4.

difference is that the peak decreases slowly with time.
However, for the Peregrine and the Akhmediev, the peaks
increase gradually. Also, the usual symmetries of the Pere-
grine and Akhmediev solutions are now displayed.

Figures 5(a)—(c) depict the comparison of the condensate
distributions of wave packets |u> with |u,> for
kx + Iy + mz = 0. One can see that the central intensities of

the |u1 |2 wave packets are smaller than those of |u2|2. These
analytical properties have been confirmed by the direct
numerical integration of equation (1). We used a 3D split-step
fast Fourier technique and considered an initial form of the
solution given by equation (8) at t = 0. The comparison
between the simulations and analytical predictions for this

case are shown in figures 5(d)—(f). These figures highlight
significant features of the evolution of 3D vector wave
packets. The simulated phase offset, the linear phase, and the
chirp are in good agreement with the analytical results. These
results confirm the fact that the diffraction managements and
TDMOPs of the type considered can prolong the life of
condensate wave packets.

4. Conclusion

In summary, we have demonstrated condensate solitary
waves supported by different TDMOPs in the coupled vector
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GPE. The control and manipulation of solitary waves are
investigated for the three kinds of changing diffraction,
potential, and nonlinearity parameters of GPE, considering
Ma breathers and the Peregrine and Akhmediev soliton
solutions. Our results indicate that diffraction and lattice-
potential factors play important roles in the evolution char-
acteristics, such as the peak, the phase offset, the linear phase,
and the chirp of the beam.
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Abstract We generalize the Jacobi elliptic function expansion method used to solve the
(3 + 1)-dimensional nonlinear Schrédinger equation for the case of an arbitrary inverse of
an elliptic integral. Among the obtained solutions are functions based on the Weierstrass
elliptic function and the inverses of Carlson’s elliptic integrals.

Keywords F-expansion - Jacobi elliptic functions - Nonlinear Schrédinger equation

1 Introduction

The generalized nonlinear Schrodinger equation (NLSE) is a generic model that is very
important in NL optics, where it describes the full spatiotemporal optical solitons or light
bullets (Akhmediev and Ankiewicz 1997; Kivshar and Agrawal 2003; Hasegawa and
Matsumoto 2003; Malomed 2006). For this equation, along with several other related
equations such as the Klein—-Gordon (KG) equation and the Korteweg de-Vries (KdV)
equation, there is a large interest in finding novel exact solutions (Drazin and Johnson
1989). One of the most popular approaches is to use an expansion method which assumes a
certain ansatz for the solutions and the solutions are then expanded in terms of one or
perhaps more than one function, as was done in Ref. Zhang (2010). Some of the most
popular expansion methods are the trigonometric function expansion method (Zhang 2008;
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Zhang et al. 2011c), including hyperbolic trigonometric functions (Malfliet and Hereman
1996; Zhang et al. 2013a), the exponential function expansion method (He and Wu 2006),
the (%) -expansion method (Li and Wang 2009; Miao and Zhang 2011; Zhang et al.
2013b), the bifurcation method (Zhang et al. 2011a, b) and the first integral method (Zhang
et al. 2013c). These forms of solutions have in common that they assume a linear form for
the phase of the solution. However, Kruglov et al. (2003) have proposed an ansatz for the
solution to the NLSE which involves a quadratic term in the phase, commonly known as
the chirp (Lai and Cai 2011).

A prominent expansion method that has emerged is the Jacobi elliptic function (JEF)
expansion method (Zhang 2012, 2015). The JEF is a natural choice for the NLSE with a
Kerr nonlinearity because it satisfies the second order nonlinear differential involving a
nonlinear term of the third degree and also because it encompasses both traveling and
solitary wave solutions (Olver 2010). Recently, there has been a huge development in
obtaining stable spatiotemporal soliton solutions, with and without chirp, for a higher
number of transverse dimensions (Malomed 2006; Zhong 2008) using the JEF-expansion
method and the principle of harmonic balance. The traveling wave and soliton solutions to
the generalized NLSE in (3 + 1) dimensions ((3 + 1)-D) for the cubic nonlinearity were
first developed in Beli¢ (2008) for the anomalous dispersion and were generalized in
Petrovi¢ (2009) for the normal dispersion. However, the important task remains to gen-
eralize these solutions to a wider range of functions.

2 Method

In this paper we expand the work done in Beli¢ (2008) to find new spatiotemporal traveling
wave solutions to the NLSE. We consider the standard form of the NLSE (Malomed et al.
2005):

iO.u + @ (ALu+ 6[214) + 1) |ulPu = iy(2)u, (1)

which describes evolution of a slowly-varying wavepacket envelope u(x, y, z, f) in a
diffractive nonlinear Kerr medium with anomalous dispersion, in the paraxial approxi-
mation. Here, z is the propagation coordinate, 4, = 6)2( + 65 represents the transverse
Laplacian, and ¢ is the reduced time, i.e. time in the frame of reference moving with the
wavepacket. All coordinates are made dimensionless by the choice of coefficients. The
functions f3, y, and y stand for the diffraction/dispersion, nonlinearity, and gain coefficients,
respectively. As in Beli¢ (2008) we define u in terms of amplitude and phase u(z,x,y,t) =
A(z,x,y,t) exp (iB(z,x,y,t)) and assume the following form of the solutions:

A =fi(2) +LRF(0) + f(2)F1(0), (2)
0 = k(z)x + I(z)y + m(2)t + o(z), (3)
B=a(z)(* +y +72) +b@)(x+y+1)+e(2), (4)

where f, g, k,l,m,w,a,b, e are parameter functions to be determined.
The key difference from the previous paper is that we will assume F to be the solution
of a more general differential equation:
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dF\* 2 3 4
<@> =co+ C1F 4+ cF" 4+ c3F7 4 c4F7, (5)
whereas for the Jacobi elliptic functions (JEFs) used in Beli¢ (2008) we had ¢; = ¢3 = 0.
This differential equation has been previously used in several papers, namely in Fan
(2002), Lan-Fang et al. (2011), Wang et al. (2006) and in Zhang et al. (2013d) for
co = ¢; = 0. However, the ansatz with the more general equation has never been applied to
the (3 4+ 1)-D NLSE and in no case was the effect of chirp considered. In this paper we will
explicitly assume c; # 0 or c3 # 0.

Applying the F-expansion method and the principle of harmonic balance we obtain the
following system of algebraic and first order differential equations for f; (i =
1,2,3),a,b,k,l,m and w:

i
4 F3aBf = =0, (6)
dk dl dm

=4 2kaf = = 4 2laf = — 42 = 7
& + 2kaf =0, = + 2laff =0, = + 2mapf = 0, (7)

d
M 2pa? =0, (8)

d

db
—+2fab =0 9
7 +2Pab =0, ©)

do
E-i—ﬁ(k—ﬁ—l—ﬁ—m)b:o. (10)
Instead of two equations for y as was obtained in Beli¢ (2008) we obtain four equations:
LB+ P +m*)es + yf5) =0, (11)
(B + P +m?)eo +273) =0, (12)
c
£(B0E+ 2 +m?) 2+ i7) =0, (13)
c

BB+ +0?) S+ ) = 0. (14)

Equation (11) (or Eq. (12) if f, = 0) will give us the formula for y(z), given arbitrary
values of f(z) and y(z), while the remaining three equations, if not automatically satisfied,
will impose constraints on ¢; (i = 0, .. ., 4). For the equation for e we obtain two equations
instead of one:

de 2 B 2, oo tfies)
dz_6Xf2f3_"f'+Z(6b (k +l+m)7f] )_0, (15)
ﬁ_ _ 22 E 2 (12 2 2 o
g~ Suhf = 3 +2(3b (K + P +m?)cy) = 0. (16)

We will require an additional matching condition imposed on the coefficients c;
(i=20,...,4) for both equations to be satisfied simultaneously.
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3 Results

We now proceed to solve the system of ordinary algebraic and differential equations
obtained in Sect. 2. Using standard elementary calculus, Egs. (6)—-(10) are solved as in
Beli¢ (2008) to obtain:

filz) = 2 f exp </OZ ydz), (17)
k(z) = ako, I(2) = aly, m(z) = amy, (18)
a)(z) =wy — Ot(ko + 1+ m())b() /OZ pdz, (19)
a(z) = aay, (20)
b(z) = abo, (21)
where:
1

=7, 22
1+2610f6[5)d2 ( )

is the chirp function and subscript ‘0’ denoted the value of the respective function at z = 0.
From solving Egs. (11)—-(14) we obtain three distinct cases.

31 CaseIl: ;=0

Assuming f3 = 0, Egs. (12) and (14) are automatically satisfied, and from Egs. (11) and
(13) we obtain:

4c
h=H—, (23)
c3
2(2) = —Bea (kg + 1§ + m) fo” exp(72/ ydz) /oc. (24)
0
The matching condition is:
2
2
P e (25)
4C4 Cc3
The formula for e is:
o [* 2cic; 3
e(z) :eo+§/0 pdz - ((k(z)+lé+m(2))( o 787034) 7319(2)). (26)

For ¢; = 0, the condition (25) reduces to c3 = +2,/c,c4. A range of functions that can be
used in this case is given in Refs. Lan-Fang et al. (2011) and Zhang et al. (2013d).

@ Springer



General Jacobi elliptic function expansion method applied to... Page 5 of 8 268

(b)

A o
A : 5 -10
5 kox+lyy+myt 10 kox+lyy+myt

Fig. 1 A solution for Case II using the Weierstrass elliptic function. The parameters are: F =
©o(x;3/32,1),fio =bo =ko =lp =mg = 1, =0 and a ag = 0, b g = 0.3

32 CaseIl: , =0

Assuming f, = 0, Egs. (11) and (13) are automatically satisfied, and from Egs. (12) and
(14) we obtain:

f3 :fl ) (27)
(S
Z
10 = —pes( + B ) exo (2 [ ydc) [ 9
0
The matching condition is:
oy = C1 | 200C3 (29)
4C0 C
The formula for e is:
o [* 2 n N )
€(Z)=eo+§/0 ﬁdZ'<(ko+lo+mo) o 8 h0) (30)

For ¢3 = 0, the condition (29) reduces to ¢; = £2,/c2¢q.

For this case, the function of most interest which satisfies the necessary requirement
co, 1 # 0 is the Weierstrass elliptic function (WEF) (Lawden 1989). It is well known that
for the WEF p(x; g2,83) we have cs = ¢, =0, ¢3 =4, ¢ = —g» and ¢y = —g3. Using
Eq. (29) we get g3 = 32¢3. In Fig. 1 we see the solutions plotted with and without chirp for
g3 =1 and g, = V/32. Thus we have shown that the WEF can also be used in the F-ex-
pansion method for solving the (3 + 1)-D NLSE.

3.3 Case IIIL: f>,f; # 0

Assuming both f, and f5 are non-zero, we obtain the following equations:
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4C4 4C()
H= f17> 5 f1? (31)
and an additional condition:
2 2
G_49 32
& a (32)

needed to make Eqgs. (11)—(14) consistent. The formula for y(z) is the same as the one in
Egs. (24). The matching condition for Egs. (15)—(16) is:

c% 2c4c1
) =——
4C4 Cc3

(33)

The formula for e is:

dd_wo—i/ﬁﬂ (@?+F )(2“”+;1>+3N> (34)

c3

Note that a symmetric formula for (33) is also available using ¢y, ¢; and c3.
For this case we will chose the following values of coefficients, which satisfy conditions
(32) and (33): cs =—1,¢3=2,¢c2 =0, ¢; =1 and ¢y = —1/4. The polynomial p(F) =

.. .. dF
co+c F+ o F? + C3F3 + C4F4 has two positive zeros, giving us a range for 20 that

insures bounded solutions (Drazin and Johnson 1989). When the polynomial P has distinct
zeros, function F can be considered an inverse of Carlson’s elliptic integrals (Carlson
1987), though cases with complex conjugate zeros can also be evaluated (Carlson 1977). A
plot is given in Fig. 2. The plots depict roughly a single period of the function. We can see
that the combination of two elliptic functions, given that both f, and f5 are non-zero. Also,
it is important to note that unlike JEF the maxima and minima of F are not the same width,
due to the asymmetry of the elliptic integral. The modulational stability of these solutions
is not addressed in this paper, though is likely that the solutions are stable since work done
in Petrovié¢ et al. (2015) has shown that in most regimes solutions to Eq. (1) obtained in
Beli¢ (2008), Petrovi¢ (2009) are either unconditionally modulationally stable or
stable under the regime of dispersion management.

2
Ju (@) luf? (b)
14 ‘ \ . I
12 150
10
100
8
6 50
2 4 6 8 2 4 6 8
Z Z
. . . . . . . _dF 1 3
Fig. 2 A solution for Case III where function F satisfied the differential equation — = ——+ F + 2F° —

do 4
F* for x =y = t = 0. Other parameters are the same as in Fig. 1
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4 Conclusion

To sum up, we have generalized the Jacobi elliptic function expansion method for the case
of a general fourth order-polynomial for the elliptic integral. We have shown that it is
possible to use the Weierstrass elliptic function in the F-expansion method for the (3 + 1)-
D NLSE. Finally, we have shown that general inverses of elliptic integrals may be used for
solving the (3 4+ 1)-D NLSE. This opens the door to a far more general class of solutions
for the (3 + 1)-D NLSE than what was previously obtained.

Acknowledgments The work in Serbia is supported by the Serbian Ministry of Education and Science
under project OI 171006.
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Abstract

The advent of meta-materials has made materials with a negative refractive index possible. This has opened up a possibility of finding stable solutions to various nonlinear equations that naturally occur in
the field of nonlinear optics through the use of dispersion management. Finding such stable solutions is i for the field of ics (http:/opti i ing.com/)and has many potential
practical applications. In our work we use the F-expansion method applied to the Jacobi elliptic function, along with the principle of harmonic balance to find novel solutions to various forms of the
Nonlinear Schrédinger equation (NLSE). This approach allowed us to assume a quadratic form for the phase with respect to the longitudinal variable and thus find solutions both with and without chirp.
Earlier work done on the NLSE with Kerr nonlinearity, with both normal and i ion, was is to i ities of arbitrary i i ity. Stable solutions were also
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parameters in the original equation. The method was for functions an arbitrary elliptic differential equation, including Weierstrass elliptic functions. A relatively new
line of research has been finding solutions to the NLSE in a parity-time (PT) conserving potential, i.e. one for which the real part is an even function and the complex part is an odd function. We found a rich
new class of exact solutions where the potential resembles the Scarf Il potential.
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Figure 1: Solution to the NLSE with Kerr nonlinearity using the Weierstrass elliptic function described in: (a) without chirp (b) with chirp
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General analytic solutions to the various forms of the Nonlinear
Schrédinger Equation using the Jacobi elliptic function expansion method

Nikola Petrovi¢!
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» most notably the F-expansion method, the principle of
harmonic balance and the use of the Jacobi elliptic function (JEF) for the expansion function,

has yielded a rich new class of solutions for a wide range of parameters of the NLSE. Thanks
to the mathematical properties of JEFs, both solitary wave and traveling wave solutions can
be realized and the effect of chirp can be added to all the solutions [1].

The fundamental ansatz for the solution to the basic NLSE with distributed coeffi
anomalous dispersion and Kerr nonlinearity was described in [1]. This ansatz was

degree of nonlinearity.
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Abstract Using the balance principle and the F-expansion
method, we find dark soliton solutions in a general nonlocal
nonlinear optical model with a diffusive type of nonlinearity.
These solutions are modeled by numerical simulation, in order
to study how they propagate and interact with each other. Our
results show that the multidimensional nonlocal solitary
waves can be manipulated and controlled by changing the
degree of nonlocality and the diffraction coefficient.
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Introduction

Nonlocality is an inherent feature of many settings in optics,
plasmas, and Bose-Einstein condensates. Spatial-domain non-
linear dynamics of light waves in nonlocal optical media with
different response functions, characterized by the respective
correlation lengths, were studied in detail theoretically and
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experimentally in Krélikowski et al. [1]. In particular, the
nonlocal nonlinearity can support solitons in various forms
[2, 3]. Two-dimensional (2D) spatial solitons stabilized by
the nonlocality were observed in vapors [4] and lead glasses
featuring strong thermal nonlinearity [5], as well as in liquid
crystals [6]. Further studies included stabilized solitons in
photonic lattices [7, 8], vortices [9, 10], spatial solitons in soft
matter [11], and multipole vector solitons in nonlocal nonlin-
ear media [12]. In addition, it was shown that long-range cubic
nonlinearity induced by long-range interactions between
atoms carrying polarized magnetic momenta in effectively
2D Bose-Einstein condensates also leads to the prediction of
stable 2D solitons [13]. It has also been demonstrated that the
nonlocal nonlinear (NN) response allows for suppression of
the modulation instability of plane waves, arrest of the col-
lapse of multidimensional beams, and, generally, fosters the
stabilization of solitons in NN media [14, 15].

In principle, it is important to find exact solutions to the of
nonlinear (NL) partial differential equations. The goal of this
paper is to adapt the homogeneous balance principle and the
F-expansion technique, which were used in finding solutions
to the general 2D NL paraxial wave equation, to identify trav-
eling and solitary wave solutions of a general NN optical
system of equations, with both diffractive and diffusive equa-
tions. We study the spatial solitary waves in a general NN
optical system with a diffusive type of nonlocality and a
Kerr-type of nonlinearity.

The paper is structured as follows. “The model” section
introduces the general 2D nonlocal NL optical system and
the solution method for the problem. “The solitary solutions”
section analyzes different forms of spatial dark solitons. In
“Stability analysis” section, the stability is investigated by
accurate computation of growth rates for the perturbed eigen-
modes. The concluding remarks, with a simple summary, are
given in “Conclusion” section.
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The model

We consider the propagation of a paraxial laser beam along the
z axis in a generic NN optical medium. The beam propagation
in 2D is described by the following system of equations for the
slowly varying field amplitude » and the NL contribution to
the change of the refractive index n [16-20]:

B(z)
2
a’(nwr + nyy)—n + |u|2 =0, (1b)

i, +

(thxx + ttyy) 4+ un =0, (la)

where x are y are the suitably scaled transverse and
longitudinal coordinates, z is the longitudinal coordinate,
0(z) is transverse diffraction coefficient, and the param-
eter d stands for the degree of nonlocality of the NL
response #n. Thus, the system of equations given in (1)
consists of the paraxial propagation equation for the
field envelope and the diffusion equation for the nonlo-
cal nonlinearity. When d—0 the system describes a lo-
cal response and reduces to the simple NL Schrodinger
equation in Kerr medium, whereas when d—oo it de-
scribes a strongly nonlocal response. A generalization
of Eq. (1) in (3+1)D was considered by Mihalache
et al. [21, 22] as a model for the generation of stable
3D spatiotemporal solitons. The stability of the funda-
mental solitons was demonstrated through the computa-
tion of the corresponding stability eigenvalues in direct
simulations. It is clear that the parameter d can be elim-
inated from the equations by rescaling the coordinates.
Nevertheless, we prefer to keep d as an explicit param-
eter, as it directly controls the system’s nonlocality
degree.

In general, the system of equations (1) can be applied to
optical propagation in generic NN media, for example the
propagation of an electromagnetic wave in a nematic liquid
crystal [23] or the optical beam propagation in partially ion-
ized plasmas [10]. The degree of nonlocality d can be modu-
lated externally, by changing an applied voltage to the crystal.
System (1) possess several conserved quantities, among other
the power E and the Hamiltonian

4o p4oo 2
E= / / |u| dxdy, (2)
ﬂ / +o0 / 400 2
H==C
2) ) \al T
To determine the amplitude profiles of spatial solitons with
u,n—0 at x,y—o0, we assume u(z,x,y)=A(0)e> and n(z,
x,¥)=D(0), where A(f) and D(0) are real functions of their

argument, B(z,x,y)=kx+ly+(2z+B, is the phase of the com-
plex amplitude and O=px+qy+wz+6, is the traveling wave

%
ox

ou

oy

2
nu|2> dxdy. (3)

variable. By and 0, represent the initial values of the respective
functions at z=0. In this manner, the system (1) reduces to the
following coupled equations:

Bk + 1) o4 B + ¢

Pl +1)o4 5 )629 + (D—Q)A——(p 5 Ja—o, (4a)
2
D

D—(k* + lz)dZTe—Az =0, (4b)

with the following dispersion relation having been
established: w=—[3(z)(kp+Iq). Linear waves cannot be a prop-
er solution of (4) since the second derivatives of 4 and D are
proportional not only to the functions themselves, but also to
the product and the square of the functions. Therefore, we
seek the traveling nonlinear wave solutions of (4) that satisfy
the established dispersion relation. Using the balance principle
and the F-expansion technique [24, 25], we assume the solu-
tions to be of the form

A(H) = Aqy + aq F(H) + azG(G) + a3F2(9)
+ a3 F(0)G(6), (5a)

D(0) = by + b1 F(0) + b2G(6) + b3 F*(6)
+ b4 F(0)G(6), (5b)

where a;, b; (j=0,1,2,3,4) are the parameters to be
determined, and F(6) and G() are Jacobi elliptic func-
tions (JEFs). These functions satisfy the following NL
differential equations:

<‘2—§>2 =co+ e F? + ey F, (6a)
i;f — 2 F +2e4F°, (6b)
(‘jg)z =)+ eGP+ esGY, (6¢c)
0;7(2; = ;G + 2e,G°, (6d)

where cg,c5,c4 and eg,e,,e4 are real constants related
to the elliptic modulus m (0<m<1) of the JEF [24, 25].
Table 1 lists the dependence of c¢y,cp,c4 and eg,e,,e4 On
m for some of JEFs. As can be seen from the table, the
elliptic modulus greatly influences the final form of the
solution. When m—0 the JEFs become the trigonomet-
ric functions and the periodic traveling wave solutions
become the periodic trigonometric solutions. When m—
1 the JEFs become the hyperbolic functions and the
periodic traveling wave solutions become the soliton
solutions.

@ Springer
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Table 1  Jacobi elliptic functions

Solution coleo) cy(e2) cqley) F(0)
1 1 —(m*+1) m? sn(6)
2 1-m? 2m*—1 -m? cn(6)
3 m—1 2-m? -1 dn(0)
4 m? —(1+m?) 1 ns(0)
5 -m? 2m*—1 1-m® nc(6)
6 -1 2-m? m>—1 nd(0)
7 1 2-m? 1—m? sc(6)
8 1 2m*—1 —m*(1—m?) sd(0)
9 1—m? 2-m? 1 es(9)
10 —m*(1-m?) 2m?—1 1 ds(6)

We now proceed to solve Egs. (4). Inserting expressions (5)
and (6) into (4) and making the coefficient of each power of

F/GY (j=¢q=0,1,2,3,4) and \/co+ c2F? +csF*

\/ ey + e2G? + e,G* equal to zero, we obtain a set of algebra-
ic polynomials for the parameters a;, b;, k,1,p,q, {2, and w:

czﬂ/c% +3coes | P

—, Ta
2 c§+3COC4 2d (7a)

ap =

3C4 2ﬂ
a3 = ——F————\|—

4\/(:% +3cpes V d ’

b 2C§ + 30064_(12dC0C4 + 2c2)\ /c% + 3cocs
0 =

B, (7c)
Sd(cg + 36004)2
—3cqf3
by=— 2 7d
’ 4d\/6’% +3C()C4 ( )
1

SRy — Te
4d\/C§ +3C()C4 ( )

pZ N q2 B 20+ 2by 3coey (cz + 3\/6%—46064)
B d(3c%—9C0C4 + 3C2\/C‘%—4C()C4) (9COC4—26‘%) '
(7f)

Fig. 1 Exact solitary wave
solution and the distribution of the

refractive index in the strongly 1 ’
nonlocal case, with =2, d=12, L 05 c

(a, b) and the weakly nonlocal
case d=0.7 (c, d) 18

with the signs of @ and a3 equal to each other and the rest
of the a; and b; coefficients equal to zero. We will choose the
signs so that a, and a; are positive. Note that G turns out to be
proportional to F and thus it does not explicitly figure in the
solutions. Thus, the solutions with cross products of different
functions F" and G seem not to be possible, according to the
solution method utilized here.

By solving Egs. (7) self-consistently, one can find exact
periodic and solitary solutions of (1). The solutions of (1)
are found in the form:

u(z,x,y) — [aO + as F2 (0)]ei(karlerh(Zan’S'o)7 (83)

n(z,x,y) = [bo + b3F2(9)]. (8b)

The traveling wave solution in Eq. (8) is a stationary solution
as long as /, p, and {2 are constant. In the most general case, /
and p are independent of d. As long as we choose the constants
Co,C2,¢4 according to the relationships listed in Table 1, and
substitute the appropriate a;, b; k,L,p,q,{2, and w into (8), we
obtain exact periodic traveling wave solutions of (1).

‘We concentrate in this paper on the dark solitary solutions.
The soliton propagation characteristics and shape greatly de-
pend on parameters d and 3, which are chosen according to
some actual physical modeling requirements. In order to study
this dependence, we consider F=sn, which for dark solitary
waves (m= 1) reduces to F=tanh.

Substituting the corresponding JEF from Table 1 into (8),
with the condition m=1, and noting the conditions: 5d>0, d#
0, and we obtain the required solitary wave solution of (1).
They are discussed in the following section.

The solitary solutions

First, we consider the strongly nonlocal case, @>> /. For d=
12, k=p=Q =1, =2, and 0y=B,=0, the evolution of the cor-
responding soliton and the distribution of the refractive index
are depicted in Fig. 1a and b. It is seen that the spatial soliton

a b

@ Springer
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Fig. 2 Exact solitary wave a b
solution and the distribution of the 2
refractive index in the strongly 05
nonlocal case, with d=—12, c 0 /
(5=—2 (a, b) and the weakly
nonlocal case and d=—0.1, B 1'8 0 20
3=—0.1 (c, d) 10 20 0
px+qy z
c d
10
c 0
_18 = 0
0 0
-10 - _ E
px+ay 20 pxray 10 20

profile and its width remain unchanged with the increasing
propagation distance. Next, we consider the Kerr-like medium
case in the weakly nonlocal case, d close but not equal to 1/2.
For d=0.7 and the other parameters the same as in Fig. 1a and
b, the shape of the solitary wave oscillates, as is evident in
Fig. 1c and d. The quasi-periodic change in the solitary wave
shape during its motion is clearly seen. Such behavior is char-
acteristic of nonlocal solitary waves and quite different from
the standard Kerr solitons.

Figure 2 presents the evolution of the exact solution for the
self-focusing and nonlocal Kerr medium case with 4<0. Sim-
ilar to Fig. 1, we can discern that for the strong nonlocality, the
spatial soliton profile and its width remain unchanged with the
increasing propagation distance; in the weak nonlocality case,
quasi-periodic oscillations can be seen.

Figure 3 presents soliton amplitude profiles with different
degrees of nonlocality (a), (b) and different diffraction coeffi-
cients (c), (d). We analyze the impact of different values of the
nonlocality parameter d and the diffraction coefficient on the
soliton amplitude profile |u|. Evidently, an increase in the degree
of nonlocality parameter |d| results in a decrease of the soliton
width. The nonlocality suppresses the change in the refractive
index profile, thereby leading to a narrowing of the beam. This

px+qy

effect is more clearly seen in Fig. 3a and b. We can see that the
soliton width changes monotonically with the degree of
nonlocality |d|. Furthermore, we show the influence of different
values of the diffraction coefficient 3 on the soliton amplitude
profile |¢| in Fig. 3¢ and d. In the strongly nonlocal case (d=12
and d=—12), the diffraction coefficient contracts the change in
the refractive index profile, thereby leading to a narrowing of the
beam, which results in a decrease in the soliton width.

Stability analysis

To study the stability of stationary solitons in a more accurate
manner, the full stability of solitons is investigated using the
equations for small perturbations linearized around the analyt-
ical solution [22, 26]

s ol + {096 40, D), (10
n= [n(x,y) + 5(9(%)’,2)6& +q*(x,y, Z)eﬁ*z)} (10b)

where ¢ is a small parameter, b is the transmission constant
and f, g and ¢ are the eigenfunctions of the linearized

i

px+qy

Fig.3 Soliton intensity profiles with different degrees of nonlocality (a, b) and different diffraction coefficients (¢, d). The parameters are taken to be z=
30, By=0p=0, 3=1.5 (a), 3=—1.5 (b), d=15 (¢), and d=—15, respectively
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Fig. 4 The largest real part of the a b
perturbation growth rate 0.2 0.5
(eigenvalue) vs a diffraction - R
coefficient /3, b transmission & 0 f—_ S 0 \—
constant b, and the nonlocality o 14
parameter d, respectively. d
Comparison of amplitude profiles '0'20 5 10 03 5 10
for the exact solution (solid lines) B b
and the numerical simulation
(dashed lines) at different (o]
propagation distances z=0, 10,20, 4
from left to right, with 5=1.8 and =
d=12 T 2
’ _J
—q 5 -10 -5 0
d

equations (1). Here, d is the instability growth rate, which may
be complex, and * stands for the complex conjugate. Func-
tions u(x,y) and n(x,y) represent the initial values of u and n, as
given in Eq. (9), at z=0. The substitution of the perturbed
solution in Eq. (1) leads to the linearized equations [26]

2i8f2bf + B[+ f1y) +200f +ug) =0, (11a)
~2i6g—2bg + 3 (gm + gyy) +2(ng +ugq) =0, (11b)
Gd(4ux + 4,y ) u(f +8) = 0. (11c)

Here, the function ¢ is not to be confused with the param-
eter g in the first part of the paper. The growth rate § is found as
an eigenvalue at which Eqs. (11) have a non-singular localized
solution. The eigenfunctions f'and g, and the eigenvalue § can
be found only numerically. Stable solitons are those for which
Re(0)=0 for different values of 3 and d. These features are
presented in Fig. 4 for {2=1, k=0.2, and 6,=8,=0.

Figure 4a and c show the largest real part of the perturbation
growth rate (eigenvalue) vs 5 and d. It can be shown that there
exist certain ranges of values for 5 and d, —1.5<4<1.5 and —
2.7<d<2.7, in which no stabile soliton solutions in the request-
ed form exist. Without loss of generality, here we only present
the case of 3>0 in Fig. 4a. Figure 4b represents the perturba-
tion growth rate (eigenvalue) vs the transmission constant b.
One can see that when »<8.2 the instability appears, i.e. the
larger the value of b, the more stable the exact solutions. Fi-
nally, to demonstrate the stability of such exact solutions, we
compare in Fig. 4d the exact solution with the numerical sim-
ulation. As expected, no collapse is seen, and the numerical
solutions are in good agreement with the analytical solutions.

Conclusion

We have solved analytically the generic nonlocal NL 2D op-
tical system, using the homogeneous balance principle and the

@ Springer

F-expansion technique. A type of new exact dark soliton so-
lutions is demonstrated. The stability is corroborated by an
accurate computation of growth rates for the perturbed eigen-
modes. Numerical simulations are performed, to ascertain the
stability of such soliton solutions. A procedure is presented for
controlling NN solitons, in which one may select the
nonlocality parameter d and the diffraction coefficient 3, to
control the propagation behavior of solitons.
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