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Abstract
We investigate the influence that an embedded graphene layer has on guided modes of optical
waveguides using exact numerical calculations and a convenient perturbation theory.
The latter is found to be highly accurate allowing the graphene-induced changes of modal
propagation constants to be determined as the product of a numerical factor characterizing the
modal properties of the bare waveguide and the optical conductivity of graphene. In this
manner, the influence of the waveguide geometry and the electro-optical properties of
graphene on the modulation efficiency can be considered and optimized separately. This result
is then used to illustrate the basic electro-absorptive and electro-refractive modulator design
principles on a planar waveguide toy model with realistic parameters.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The electrical [1] and optical [2] properties of graphene,
the two-dimensional allotrope of carbon, have attracted
considerable interest in the past few years. In spite of being
only one atom thick, a single free-standing sheet of graphene
will, upon illumination, absorb around [3] πα ≈ 2.3% of the
incoming light regardless of its frequency. Such a significant
(per atom) and spectrally flat absorbance is a consequence of
graphene’s peculiar electronic structure and is implied by the
honeycomb arrangement of carbon atoms [4].

The crucial property that makes graphene a promising
material for optoelectronics is the so-called electric field
effect [1]. It allows the electron (or hole) concentration,
and consequently the optical conductance σ(ω), to be tuned
via electrical gating [2], thus establishing graphene as the
ultimate electro-optic material. The ensuing gate-controlled
absorption and its compatibility with standard CMOS and
SOI technologies indicate that graphene has a high potential
as a building block of various optoelectronic devices [5–7]
including photodetectors [8, 9], optical modulators [10, 11],
polarizers [12, 13], sensors [14] and mode-locked lasers [15].

We consider a generic type of graphene-based electro-
optical modulators characterized by graphene being embedded
into an optical waveguide. The recent surge of interest
[10, 11, 16–20] in such systems is motivated by the fact that
highly localized photons of the waveguide can interact very
efficiently with graphene. The augmented photon–graphene
interaction is a consequence of the enhanced optical density of
states in the waveguide.

While σ(ω) depends on doping, as quantified by the
Fermi energy EF, for values of EF achievable in practice [2],
graphene behaves invariably as a weak conductor. Therefore,
upon insertion into the waveguide, a graphene layer will only
weakly perturb the fields of a given mode by inducing a slight
change in its propagation constant. So far, most attention
has been devoted to structures in which modulation is based
on the graphene-induced change in the imaginary part of the
propagation constant [10, 11, 16–23]. Since it means that light
is absorbed as it propagates along the waveguide, the ensuing
devices are referred to as electro-absorptive modulators
(EAM). Alternatively, in electro-refractive modulators (ERM)
light is modulated in a Mahn–Zehnder setup [24, 25], using
graphene to tune the real part of the propagation constant of
light in one of the arms. In either case, recent work [10, 11, 18]

0022-3727/14/335101+09$33.00 1 © 2014 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/0022-3727/47/33/335101
mailto: uros@ipb.ac.rs


J. Phys. D: Appl. Phys. 47 (2014) 335101 U Ralević et al

has shown that optical modulators based on waveguides
coupled with graphene are already comparable to, if not better
than, traditional semiconductor optical modulators (Si, GeSi
and InGaAs) [26, 27] in terms of a broad optical bandwidth,
small device footprint, high operation speed, large modulation
depth (MD) and small insertion losses (ILs).

This paper addresses the problem of understanding the
effect that graphene has on guided modes of a waveguide at
telecommunication (near-infrared) frequencies. The existing
studies mentioned above, experimental or theoretical, report
on characteristics of particular waveguide geometries leaving
aside questions on how would the device performance change
by varying any of the geometrical or material parameters. Here
we introduce a method that can predict the effect of parametric
variations, which is essential in the design of graphene-based
modulators. The method is based on perturbation theory
[28, 29] that treats graphene as a perturbation to the waveguide
in which it is embedded, henceforth referred to as the bare
waveguide. Using planar waveguides as a toy model, we show
that perturbation theory is virtually exact for a wide range of
realistic material parameters. We show that the change in the
propagation constant induced by graphene equals the product
of a numerical factor G(ω), quantifying the modal properties
of the bare waveguide, and the optical conductance of graphene
σ(ω). We then proceed with the toy model to show how this
fact can be used to facilitate the understanding and design of
graphene-based modulators.

2. Model and theory

2.1. Model

A planar dielectric waveguide extending infinitely along the
y and z directions is illustrated in the inset of figure 1. We
consider this simple geometry as a toy model, while it will
be evident that the reasoning is straightforwardly extended
onto waveguide geometries used in practice, such as the ridge
(silicon bus) waveguide [10, 11] or an optical fibre [12]. The
thickness of the waveguide (layer 2) is d while the superstrate
(layer 1) and substrate (layer 3) are semi-infinite in the x

direction. Light waves are assumed to propagate in the y

direction, their propagation constant being denoted by ky .
We shall consider the typical case of ε2 > ε3 > ε1,

corresponding to a waveguiding slab of permittivity ε2 grown
on a substrate with permittivity ε3 and surrounded by air with
ε1 = 1. In particular, we shall consider the technologically
most relevant case of a silicon-on-insulator (SOI) system
where the waveguide is made of silicon with a silicon-dioxide
substrate. Around the telecommunication frequencies (λ ≈
1.5 µm), the silicon and silicon-dioxide permittivities are [30]
ε2 = 12.25 and ε3 = 2.25.

The electromagnetic fields in the waveguide are classified
into transverse electric (TE) and transverse magnetic (TM)
modes. By TE (TM) we designate modes having the electric
(magnetic) field vector parallel to z. The graphene layer
indicated by the dashed line in the inset of figure 1 is positioned
at distance h from the left end of the slab, and modelled as an
infinitely thin layer with surface conductivity σ(ω) [31].
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Figure 1. Real σ R (solid line) and imaginary σ I (dashed line) part of
graphene’s optical conductivity obtained from equations (1) and (2)
for EF = 0.29 eV, τ = 1.77 × 10−13 s and T = 45 K. The
experimental σ R (dotted line) and σ I (dashed–dotted line) curves are
taken from [2] for V = 71 V, corresponding to EF ≈ 0.29 eV. Inset
shows the illustration of the planar waveguide geometry with
graphene (the vertical dashed line) positioned at distance h from the
waveguide–superstrate interface.

The conductivity σ(ω) comprises two contributions origi-
nating from inter-band and intra-band transition processes, i.e.
σ(ω) = σinter(ω) + σintra(ω), these terms being given by [31]

σ(ω)inter ≈ iq2

4πh̄
ln

(
2EF − h̄(ω + i/τ)

2EF + h̄(ω + i/τ)

)
, (1)

and

σ(ω)intra = iq2kBT

πh̄2(ω + i/τ)

×
[

EF

kBT
+ 2ln

(
exp

(−EF

kBT

)
+ 1

)]
. (2)

Here τ and T denote the electron relaxation rate and
temperature, respectively. The elementary charge is denoted
with q. For low frequencies ω, such that h̄ω � 2EF, the
intra-band (Drude-like) term of the conductivity dominates.
At high frequencies, h̄ω � 2EF, the σintra term is negligible
while σinter approaches the universal optical conductance [3]
σ0 = q2/4h̄. As we study the influence that changing of
EF has on waveguide modes and as this is effected via the
change in σ(ω) with EF, it is useful to bear in mind that all
the σ(ω) spectra with different EF are similar, each having the
characteristic features (minima of the imaginary and a step in
the real part) centred at h̄ω = 2EF, see figure 1.

While values of σ(ω) given by equations (1) and (2)
are widely used in the literature, it should be noted that
they represent an idealized case that describes graphene
only qualitatively, since they are derived by neglecting the
temperature and frequency dependence of τ . To show this,
in figure 1 we plot the theoretical σ(ω) calculated from
equations (1) and (2) along with σ(ω) values that have
been measured in [2] under idealistic conditions (high-quality
exfoliated graphene measured in vacuum at T = 45 K).
Here and henceforth, σ R and σ I denote the real and imaginary
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component of σ(ω), respectively. The experimental curves,
denoted as ‘exp.’ in figure 1, represent the 71 V (highest
voltage) case from [2] corresponding to EF ≈ 0.29 eV.
The theoretical curves (‘theor.’) are drawn by taking τ =
1.77 × 10−13 s, which is estimated as the intra-band relaxation
time in [2] for the 71 V case, and T = 45 K. Despite
the fact that T = 45 K is taken to match the experimental
data in [2], it should be noted that equations (1) and (2)
predict small, practically negligible, temperature dependence
of the conductivity in the range of frequencies used in this
work. For the sake of simplicity, these values of τ and T are
used throughout the paper whenever σ(ω) is calculated from
equations (1) and (2). The comparison in figure 1 shows a
marked difference between the two datasets with theoretical
curves being much sharper. Moreover, the parameters of
wafer-scale graphene produced either epitaxially [32] or by
chemical vapour deposition [33] and used under ambient
conditions are likely to be even more flattened-out. Below
we show that the method developed in this paper is ideally
suited for easily assessing the effect that realistic spectra of
σ(ω) would have on a modulator.

A waveguide mode of the figure 1 geometry with
frequency ω and propagation constant ky comprises plane-
wave components in the three layers, each satisfying the
following dispersion relation [34]

k2
n = εnε0µ0ω

2 − k2
y, (3)

where kn is the x-component of the wave vector k, and
n = 1, 2, 3 denotes layers of the structure. In case of a lossless
waveguide, guided modes have a real propagation constant
ky , with kn being purely imaginary in layers 1 and 3 and
purely real in the slab. The inclusion of graphene induces
losses and the propagation constant becomes complex i.e.
ky = kR

y + ikI
y . Accordingly, the value of kn becomes complex

in all three layers. For guided modes of a waveguide coupled
with graphene, the complex ky at a particular frequency ω

can be numerically determined from the complex reflection
coefficient using the reflection pole method [35, 36]. For
both TE and TM modes, the complex reflection coefficient
is obtained by the standard transfer matrix formalism.

As an example, figure 2 shows the dispersion curves of the
two lowest TE and TM (fundamental and first-order) modes
calculated by the outlined numerical procedure. The thickness
of the silicon (ε2 = 12.25) slab was set to d = 220 nm while
silicon-dioxide (ε3 = 2.25) is assumed as the substrate. The
graphene layer is assumed to be placed in the centre of the slab,
h = d/2, with σ(ω) calculated from equations (1) and (2) with
EF = 0.4 eV. Solid lines show the real, kR

y (left panels), and
imaginary, kI

y (right panels), dispersions of the fundamental TE
(figures 2(a) and 2(b)) and TM (figures 2(c) and 2(d)) modes,
while dashed lines represent the first-order TE and TM modes.
Insets of figure 2 depict the corresponding field distributions
for TE and TM modes at frequency h̄ω = 1.45 eV.

Since the waveguide is asymmetric, all modes, regardless
of being TE or TM polarized, have a cut-off frequency.
The modes of the bare waveguide are not depicted: the
dispersion of kR

y would practically overlap the graphene-
coupled dispersions, while the kI

y components are identically
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Figure 2. Calculated real kR

y (ω) and imaginary kI
y(ω) dispersion

curves for a d = 220 nm thick SOI waveguide, ε1 = 1, ε2 = 12.25,
ε3 = 2.25 and assuming the theoretical σ(ω) calculated for
EF = 0.4 eV. (a) and (b) show the real and imaginary parts of ky for
the fundamental and the first-order TE modes, while (c) and (d)
depict the two lowest TM modes. The insets depict the modal field
distributions at h̄ω = 1.45 eV.

equal to zero in the bare waveguide. Also, the field
distributions of a graphene-coupled waveguide are practically
the same as those of the bare waveguide. Therefore, the
effect of graphene is to introduce nonzero values of kI

y and
to slightly shift kR

y (not visible in the current scale). Here
the cut-offs of the fundamental TE and TM modes of the
bare waveguide are at 0.1 eV and 0.38 eV, while the graphene
coupled waveguide cut-offs are slightly blueshifted to 0.11 eV
and 0.39 eV, respectively.

2.2. Perturbation theory

Since the coupling of a graphene layer with the waveguide
induces small changes in the propagation constant of a
waveguide mode, one can treat graphene as a perturbation
to the bare waveguide and apply a perturbation technique to
evaluate those changes. Following [28, 29], for a given mode
with fields E and H of the bare waveguide, a change in
the mode’s propagation constant �ky at frequency ω can be
expressed as

�ky = iσ(ω)
|E‖(h)|2

4P
, (4)

where P = 1/2
∫
(E × H∗)ydx is the time-averaged power

flux per unit length along the z direction in the bare waveguide
and E‖ represents the bare mode electric field component
parallel with the graphene layer: E‖ = Ez for TE modes
and E‖ = Ey for TM modes. Introducing U as the
modal electromagnetic energy per unit length along y and
z, which is well defined in the lossless waveguide [37],
U = 1/4

∫
(εε0|E|2 + µµ0|H|2)dx, and the modal group

velocity of the bare waveguide, vg = dω/dky , equation (4)

3
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becomes [29]
�ky = iσ(ω)G(ω, h), (5)

where

G(ω, h) = |E||(h)|2
4vgU

. (6)

If U is set to unity, i.e. the in-plane electric field is normalized to
the total energy in the waveguide, equation (6) is simplified to

G(ω, h) = |e||(h)|2
4vg

, (7)

where e‖ denotes the normalized in-plane electric field of the
unperturbed waveguide.

As σ is a complex quantity, i.e. σ = σ R + iσ I, it becomes
clear that

�kR
y = −σ I(ω)G(ω, h), �kI

y = σ R(ω)G(ω, h). (8)

Equation (8) is the main result of this section. It indicates
that, if graphene only weakly perturbs the waveguide modes,
the changes in the real and imaginary parts of the propagation
constant are directly determined as a product of G(ω, h),
which is an inherent property of the bare waveguide, and the
imaginary and real parts of σ(ω), respectively. Furthermore,
separation of graphene and the waveguide provided by
the perturbation method significantly simplifies numerical
calculations. Below we show, by comparing the predictions
of equation (8) with exact values calculated by the reflection
pole method, that the perturbation method is very accurate and
demonstrate the advantages of using equation (8) in discussing
graphene-coupled waveguides.

3. Accuracy of perturbative expressions

To test the validity of equation (8), we consider the SOI
waveguide from figure 2. We calculate �ky = �kR

y + i�kI
y by

the reflection pole method (‘Exact’) and compare the results
with the perturbative values (‘Perturbation method’), for two
values of EF. Figure 3 shows the comparison of �kR

y and �kI
y

for the fundamental TE, panels (a) and (b), and TM mode,
panels (c) and (d). Since both the imaginary and real parts
of the conductivity change with EF, the cut-offs for the two
investigated values of EF will slightly differ. For example,
when the Fermi level is EF = 0.29 eV, the cut-off of the
fundamental TE mode is 0.105 eV, while for EF = 0.4 eV
and EF = 0.7 eV the cut-offs rise to 0.11 eV and to 0.115 eV,
respectively. A similar, though much smaller, shift is found for
the TM mode cut-off. The comparisons in figure 3 are plotted
from the higher cut-off of the corresponding mode. We find
that the agreement between the perturbative and exact curves
is excellent.

The values of |�ky | for the TE mode, shown in figures 3(a)
and (b), are around two orders of magnitude larger than the
corresponding values of the TM mode in figures 3(c) and (d).
To explain the origin of this difference and show how �ky

depends on where graphene is placed within the waveguide, the
G(ω, h) factor is plotted as a function of the spatial coordinate
x = h and frequency h̄ω, for both TE (figure 4(a)) and TM

Figure 3. Comparison of the numerically calculated (‘Exact’) and
the perturbative (‘Perturbation method’) values of the
graphene-induced changes of the propagation constant �ky ,
obtained for the waveguide from figure 2. The top row, (a) and (b),
shows the real and imaginary parts of �ky for the fundamental TE
mode, while the bottom row, (c) and (d), shows the corresponding
quantities for the TM mode.
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plotted as a function of both the frequency ω and the position of
graphene, h = x.

(figure 4(b)) modes. Here, the G is divided by the vacuum
impedance z0 = √

µ0/ε0 and plotted in units of m−1.
The spatial distribution of G(ω, h) at frequency ω

represents the spatial distribution of the normalized in-plane
electric field at that frequency divided by the modal group
velocity. The obvious outcome of equation (8) is thus the
well-known fact that a mode couples more strongly to graphene
when the position of the graphene layer h is set to points of the
in-plane electric field maxima. The much larger |�ky | of the
fundamental TE mode than the TM mode values is evidently
the consequence of setting h = d/2 in calculations for figure 3.
However, the more important outcome of equation (8) is that
it allows a direct comparison of coupling strengths at different
frequencies and waveguide geometries, simply by comparing
G(ω, h).

As the frequency increases, both TE and TM modes in
figure 4 become more confined to the slab. In symmetrical
waveguides, the field amplitude minima (nodes) and maxima
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Figure 5. Relative errors δ as a function of σ for purely imaginary
values, (a), (c), and purely real values, (b), (d). The top panels show
δ for the fundamental TE mode of the SOI waveguide from figure 2
calculated at h̄ω1 = 0.35 eV, h̄ω2 = 1.1 eV and h̄ω3 = 1.85 eV.
The bottom panels show the corresponding δ for the fundamental
TM mode, calculated at h̄ω1 = 0.55 eV, h̄ω2 = 1.2 eV and
h̄ω3 = 1.9 eV.

(antinodes) have fixed positions determined by symmetry.
Here, due to the substrate–superstrate asymmetry, the
normalized field minima and maxima shift with ω approaching
the middle of the slab with increasing ω. At lower frequencies,
especially near the cut-offs, these extremal points are slightly
shifted towards the substrate. Thus, by positioning graphene
h = d/2, the coupling efficiency is nearly maximized
(minimized) for the TE (TM) mode for frequencies sufficiently
above the cut-off.

Having seen that the perturbative expression appears
highly accurate for single-layer graphene, we now attempt
to quantify this accuracy and establish the limits of its
validity. To this end, we introduce the relative error as
δ = |�ke

y − �k
p
y |/|�k

p
y |, with ‘e’ and ‘p’ indicating the exact

and perturbative values, respectively. The extent to which
graphene will perturb a mode of a given frequency ω is clearly
determined by how big σ(ω) is which, in turn, depends on EF.
In the range of telecommunication frequencies (λ ≈ 1.5 µm)
relevant for this study, the practically achievable [2] values
of EF are such that |σ(ω)| is a few σ0 at most. Therefore,
in figure 5 we investigate δ by selecting a mode of a given
frequency and polarization and then calculate the variation of
δ as a function of the real or imaginary parts of σ(ω).

The calculations shown in figure 5(a) are made for the
fundamental TE mode of the SOI structure described in figure 2
where the conductivity of graphene is swept over purely
imaginary values, σ = iMσ0, M being a real number varied
between 0 and 30. The curves are drawn for three frequency
values, ω1 being close to the cut-off (dotted), ω2 being in
the middle of the investigated range (dashed–dotted) and ω3

being at the higher end of the investigated spectral interval,
see figure 5. For panel (b), we repeated the calculations but
by sweeping σ over purely real values, σ = Mσ0. The same
procedure carried out for the fundamental TM mode results in
plots shown in figures 5(c) and (d).

All of the relative errors shown in figure 5 are below 9%
up to above M = 30 and almost independent of whether σ is
real or imaginary. The reason that δ increases with M is that
the field distributions of the perturbed waveguide gradually
become more different from those of the bare waveguide,
meaning that the assumptions made in deriving the perturbative
expressions [28, 29] gradually break down. Considering that
the values of |σ(ω)| are expected to be ∼3σ0–4σ0 at most, see
figure 1(b), M = 30 would correspond to inserting around
10 layers of graphene into the waveguide, which is much
more than the technologically relevant case of one or two
layers [10, 11]. Therefore, figure 5 asserts that the expected
worst-case accuracy of the perturbative expressions for a single
graphene layer is better than 1% and that it is well behaved
even for a larger number of layers. The relative errors found
in panels (c) and (d) are lower simply because here the placing
of graphene is such that it weakly interacts with the TM
mode. Clearly, the G factor also determines the accuracy
of perturbative expressions since high values of G lead to
a stronger interaction of the mode’s field and the graphene.
But, as long as the condition of a small perturbation is met
this approach can be applied to any type of waveguides, for
example slot waveguides, with accuracy better than a few
per cent. Specially, for plasmonic waveguides one needs to
consider complex mode frequencies and adjust the perturbation
technique accordingly.

4. Graphene-based optical modulators

In section 1, we mentioned that there are two strategies
in designing graphene-based optical modulators. In more
popular EAMs, graphene is used for tuning the absorption
of the wave as it propagates along the waveguide. The
efficiency of such a modulator is, therefore, determined from
the graphene-induced variation of �kI

y . Alternatively, in
ERMs [24, 25] graphene is used to induce a phase shift meaning
that the efficiency of ERMs is determined by the magnitude of
�kR

y . In view of equation (8), we find that in both cases, the
efficiency of the modulation is proportional to the G(ω) factor.
Therefore, the starting point of the design of a graphene-based
modulator is finding a waveguide geometry that will have a
maximum value of G(ω) for the frequency and optical mode
at which the modulator is operated.

Here we limit our consideration to the fundamental TE
mode and investigate how the change in the waveguide
permittivity ε2 and thickness d affect G(ω), assuming that
the superstrate and substrate permittivities are kept fixed at
ε1 = 1 and ε3 = 2.25, respectively. As explained before,
the optimum position of graphene is in the vicinity of the
middle of the waveguiding slab, so we fix h = d/2. For
highly confined fields this configuration yields at least four
times greater modulation efficiency than the one achievable
with configurations in which graphene is positioned on the
edges of the slab (see figure 4(a)). Configurations having
a nanostructure embedded in the middle of the waveguide,
similar to the one we chose to analyse, have already been
experimentally demonstrated [38].
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Figure 6. Parametric analysis of G(ω) at h = d/2 and assuming air
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substrate, respectively. In (a) the waveguide thickness d is varied,
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frequency, h̄ω = 0.8 eV, while the dot denotes the intersection with
the G(ω) curve that gives the maximum G-factor. (d) Illustration of
the analogy between the investigated SOI waveguide and a fictive
PEC waveguide.

Figure 6(a) depicts the variation of G(ω) with fixed
ε2 = 12.25 and with the waveguide width d varied. The
frequencies at which the various G(ω) curves reach zero are the
corresponding cut-offs. As d is swept from 20 to 300 nm in
steps of 40 nm, the cut-off is seen to decrease from around
h̄ω = 1.1 eV to below h̄ω = 0.1 eV. Assuming that a
modulator operating at h̄ω = 0.8 eV is sought, we find that
the optimal thickness is around d = 100 nm, as indicated by
the intersection of the (red) dashed line with the G(ω) curve.

Alternatively, in figure 6(b) we show the variation of
G(ω) when ε2 is varied between 3.25 and 21.25 in steps of 3,
assuming d = 220 nm is fixed. The cut-offs are seen to redshift
with increasing ε2, as the optical width

√
ε2d of the slab is being

increased. Amongst the plotted curves, two corresponding to
ε2 = 6.25 and ε2 = 9.25 are found to have the largest value of
G(ω) at h̄ω = 0.8 eV, indicating again that the optimal value
of ε2 lies between these two values.

A common characteristic of the G(ω) curves shown in
figures 6(a) and (b) is that they start from G = 0 at the cut-off
and steadily increase gradually saturating at high frequencies.
Here we are interested in the near-infrared spectral region, so
the curves are not plotted up to the saturation frequencies.
The effective mode width, deff , defined as the width within
which the fields of the guided mode fall sufficiently close
to zero, is infinite at the cut-off (the mode is not confined)
and gradually decreases with increasing ω. The saturation of
G(ω) occurs because deff saturates with increasing ω, as the
mode becomes tightly confined to the slab. Therefore, the
shape of G(ω) simply reflects the fact that the fields become
more confined at higher ω. The dependence of the limiting
value at which G(ω) saturates on d2 and ε2 can be understood

in analogy with a waveguide having a perfectly conducting
cladding (PEC waveguide), as depicted in figure 6(d). For
frequencies sufficiently above the cut-off, the group velocity
of the fundamental TEM mode of the PEC waveguide can be
considered constant and G(ω) is found to be proportional to
1/(dWεW), dW and εW denoting its thickness and permittivity.
Therefore, waveguides having small values of the ε2d product
are expected to give larger values of G(ω) ∼ 1/ε2d at
high frequencies but at a given operating frequency that will
be counterbalanced by the vicinity of the cut-off frequency
which is, to the first approximation, proportional to 1/

√
ε2d.

In other words, the optimal geometry for a given operating
frequency is found as a trade-off between high confinement
and a sufficiently low cut-off frequency.

A further insight into the dependence of G(ω) on the
geometry is found by studying figure 6(c) where the behaviour
of G is investigated when both d and ε2 are changed in a
manner which keeps their product constant. The product is
set by the parameters selected in panel (a), i.e. d = 100 nm
and ε2 = 12.25. Increasing ε2 is seen to increase G(ω). For
values above ε2 = 21.25 and the corresponding d ≈ 58 nm, a
further increase in ε2 and decrease in d result in a negligible
increase in G(ω) at h̄ω = 0.8 eV.

The parametric analysis given in figure 6 demonstrates the
complexity of optimizing the grapheme–waveguide coupling
strength. For the sake of simplicity, we now designate the
values of ε2 = 21.25 and d = 58 nm as optimal at h̄ω =
0.8 eV and henceforth refer to the corresponding structure as
‘Optimized’. We will later show how it compares with the SOI
structure given in figure 2.

4.1. Electro-absorptive optical modulators

In EAMs, the electrically induced change in the absorption
coefficient is used in order to modulate light. Actually, by
changing the absorption coefficient the modal propagation
length Le = 1/kI

y is changed. Obviously, the size of L should
be at least several times larger than Le of the mode propagating
in the ‘off’ state of the waveguide. Figure 7(a) shows a
schematics of a EAM based on the waveguide coupled with
graphene. The position of graphene in the waveguide is chosen
depending on the mode’s in-plane electric field distribution, as
was explained in previous sections.

The shift of the Fermi level in graphene enables switching
between the intra- and inter-band transitions and allows the
tuning of the absorption coefficient α = 2�kI

y . The dotted
and dashed–dotted lines in figure 7(b) show the real and
the imaginary parts of the optical conductivity obtained from
the [2] data (the one being plotted in figure 1) by displacing
both σ R(ω) and σ I(ω) so that 2EF falls to 0.8 eV. Such
an extrapolation procedure is used for obtaining datasets of
σ(ω) for all the values of EF considered below (other than
EF = 0.29 eV, which represents the original dataset). In
the absence of experimental data on σ(ω) for varying EF,
this dataset is referred to as experimental. The purpose of
considering this ‘artificial’ dataset is to have as realistic data
as possible. For comparison, the theoretical σ(ω) curves,
obtained using equations (1) and (2) at EF = 0.4 eV, are
plotted with full and dashed lines.
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Figure 7. (a) Schematics of a graphene-based EAM. (b) The
experimental (dotted and dashed–dotted lines) and theoretical (full
and dashed lines) σ(ω) spectra. The vertical lines show the position
of 1, 1′, 2 and 2′ points used to explain the operational principle.
(c) The waveguide transmittance in [dB/µm] as a function of EF,
calculated for the ‘Optimized’ structure (see section 4) and for the
SOI structure in figure 2. The definition of IL, MD and �EF is
illustrated for the dotted curve.

The points 1 and 2 (1′ and 2′) shown in figure 7(b) illustrate
how the values of the real part of the conductivity should
be chosen in order to achieve a desirable difference between
absorption coefficients. The 1 and 1′ points correspond to
σ R closest to 2EF, for which the absorption coefficient has
the lowest value. Similarly, the 2 and 2′ points correspond
to σ R closest to 2EF, for which the absorption coefficient has
the highest value. Clearly, points 1′ and 2′ are moved further
away from 2EF than those of the calculated conductivity, since
the slope of the experimental curve is wider than that of the
calculated one.

The modulation is achieved by shifting the Fermi level in
graphene so that the points 1 (1′) and 2 (2′) alternately match
the operating frequency. The transmission coefficient of the
above-described EAM can be calculated as Tr = exp(−αL).
Expressed in [dB/µm], the transmission coefficient is given by

Tr = 10

ln(10)
× (−2σ RG

)
. (9)

Figure 7(c) shows the transmission coefficient calculated
from equation (9) versus the position of the Fermi level in
graphene. The modulator is operated using the fundamental
TE mode at h̄ω = 0.8 eV. The dashed line corresponds
to the transmission coefficient of a modulator based on the
‘Optimized’ structure from the previous section calculated for
the theoretical σ(ω).

In contrast, the dotted line representsTr of a modulator also
based on the ‘Optimized’ structure, but now the experimental
dataset of σ(ω) is used. Finally, the dashed–dotted curve

shows the Tr values corresponding to the SOI structure from
figure 2 calculated with the experimental σ(ω).

The two key quantities describing a modulator are the MD
and the ILs. The MD is defined as the ratio of the maximal
and minimal value of the transmission coefficient expressed in
[dB µm−1], as shown in figure 7(c). ILs are defined as the ratio
of the maximal value transmission of the bare waveguide and
the graphene-coupled waveguide. Since the bare waveguide
is assumed to be lossless, the maximal Tr in the former case
is equal to 0 dB µm−1. A comparison of the two curves,
which are obtained for the same G and for two different
conductivities (dashed and dotted lines in figure 7(c)), shows
how the conductivity affects the overall optical performance of
EAMs. In the idealized case, σ calculated from equations (1)
and (2), IL ≈ 0.005 dB µm−1 and MD ≈ 0.274 dB µm−1.
In the more realistic case, corresponding to the experimental
dataset, IL ≈ 0.082 dB µm−1 and MD ≈ 0.196 dB µm−1.
IL is determined by the minimal σ R belonging to the intra-
band region, hence it is smaller in the ideal case. The ratio
of maximal σ R, belonging to the inter-band region, and the
minimal σ R, belonging to the intra-band region, is a good
indicator of how high MD would be. On the other hand, the
imaginary part of the conductivity determines the phase shift of
the propagating wave. Ultimately, the frequency dependence
of σ I could lead to a distortion of the propagating signal with a
finite spectral width. The perturbation approach is suitable for
analysis of such parasitic effects, since the phase shift could
be determined using equation (8). The shift of the Fermi
level needed to switch between the states of the maximum
and the minimum transmission is �EF = 0.1 eV in the ideal
case, whereas in the other case �EF = 0.25 eV. This clearly
demonstrates the extent to which the optical performances of
EAMs can vary depending on the quality of graphene samples.
We also note that MD ≈ 0.12 dB µm−1, corresponding to the
SOI modulator in figure 7(c), is in reasonable agreement with
values of around 0.1 dB µm−1 reported in [10]. A slightly
higher MD of 0.16 dB µm−1 was experimentally demonstrated
for a modulator having two graphene layers [11].

4.2. Electro-refractive optical modulators

ERMs are commonly constructed using Mach–Zehnder
interferometers [24–26]. Two waveguides, which are also
called the arms, have different real parts of the modal index and
this induces a phase lag between the two propagating waves. At
the output of the device, where the waveguides are coupled, the
waves can interfere constructively or destructively. Figure 8(a)
shows a sketch of a Mach–Zehnder modulator based on
waveguides coupled with graphene. The waveguides forming
the arms are assumed to be the same.

At a given operating frequency, the waves passing through
the two arms will interfere constructively or destructively if
their relative phase difference, �φ, is 2mπ or (1 + 2m)π ,
respectively, where m is an integer. Assuming the length of
both arms is set to L, �φ = (kR

y,1 −kR
y,2)L, where kR

y,1 and kR
y,2

are the real parts of the propagation constant in the two arms.
Using equation (8), we have

�φ = (
σ I

1 − σ I
2

)
GL = �σ IGL. (10)
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Figure 8. (a) Schematics of a graphene-based ERM. (b) Explanation
of the ERM working principle using the experimental (dotted and
dashed–dotted lines) and theoretical (full and dashed lines) σ(ω)
spectra. The vertical lines show the position of 1, 1′, 2 and 2′ points
used to explain the operational principle. (c) The Le/Lπ ratio versus
σ R, for theoretical (solid line) and experimental (dashed line)
conductivities, for the ‘Optimized’ structure from section 4.
(d) Corresponding transmission coefficient versus EF, calculated for
Lπ values which are displayed in (c). The definition of IL, MD and
�EF is illustrated for the dashed–dotted curve.

Having a higher difference of σ I in the two arms obviously
allows the construction of a shorter modulator. Also, by
optimizing the parameters of the waveguide, i.e. by increasing
G, the L can be reduced even more. The real part of
the conductivity is also important since it determines the
absorption of the modes in arms. The absorption should be
approximately equal in both arms, in order to allow for a
destructive interference (the ‘off’ state). In the design of an
ERM, two characteristic lengths should be considered. The
first is the modal propagation length Le, which we mentioned
before and which is given by Le = 1/(σ RG). The second
important length is the length required to achieve a phase shift
of �φ = π between the two arms. Using equation (10), Lπ it
is given by

Lπ = π

�σ IG
. (11)

The Le > Lπ condition ensures that the waves are not
considerably absorbed before they interfere. This condition is
fulfilled if �σ I > πσ R. Thus, the values of σ I and σ R should
be chosen in the region below 2EF, as is shown in figure 8(b) by
points 1, 2, 1′ and 2′. Dotted and dashed–dotted lines represent
σ R and σ I of the experimental dataset, respectively, while the
full and dashed lines are the calculated values at EF = 0.4 eV.

Finding the convenient values of �σ I and σ R is done
by looking at the Le/Lπ = �σ I/πσ R ratio. The idea is to
choose a value of σ R

2(2′) and find the corresponding σ I
2(2′). The

absorption in both arms must be equal, i.e. σ R
1(1′) = σ R

2(2′).
So the σ I

1(1′) is automatically determined. Then for a chosen
span of σ R

2(2′) the Le/Lπ is calculated and plotted versus
σ R

1(1′) = σ R
2(2′) = σ R. Figure 8(c) shows such plots. The

initial value of σ R
2(2′) corresponds to a minimal value for which

its counterpart σ R
1(1′) exist. Zeros of the curves in the inset

correspond to the initial values of conductivity. The Le > Lπ

condition is satisfied when the ratio of the two lengths is higher
than one. When the theoretical conductivity is used the Le/Lπ

curve (solid line) has a distinct maximum of about 15. This
is not the case for the other curve (dashed line), calculated
using the experimental σ(ω) dataset. For the ‘Optimized’
structure (see section 4) at h̄ω = 0.8 eV, Lπ corresponding
to the Le/Lπ curve maximum is around 63 µm. However, the
smallest values of the Lπ are obtained for σ R and σ I related
to the end points of the Le/Lπ curves, as shown in figure 8(c).
At those points, the Le > Lπ condition is fulfilled and values
of Lπ are respectively 20 µm and 40 µm. Thus, they represent
optimal values.

The modulation of the light is achieved by changing EF in
one of the arms, while it is kept fixed in the other (reference)
arm. Here, EF in the reference arm is denoted by E

(1)
F and

adjusted to provide matching between the position of point
1(1′) and the mode’s operational frequency. When the Fermi
level in the other arm, denoted as E

(2)
F , is at the same value

as E
(1)
F , the waves interfere constructively at the output. In

contrast, when the E
(2)
F is shifted so that the position of point

2(2′) matches the operational frequency, the waves interfere
destructively at the output. The transmission coefficient of the
above-described ERM, in [dB], can be expressed as

Tr = 10log10
1

4

[
e−2σ R

1 GL + e−2σ R
2 GL

+2e−(σ R
1 +σ R

2 )GLcos
((

σ I
1 − σ I

2

)
GL

) ]
. (12)

Figure 8(d) shows the transmission coefficient calculated
from equation (12) versus the position of the Fermi level
in graphene in arm 2. The modulator operates using
the fundamental TE mode at h̄ω = 0.8 eV and is based
on the ‘Optimized’ parameters. The dashed and dotted
curves correspond to the theoretical σ(ω) calculated for two
different values of the Fermi energy in the reference arm,
E

(1)
F = 0.405 eV and E

(1)
F = 0.435 eV with corresponding

Lπ = 20 µm and Lπ = 63 µm, respectively. The dashed–
dotted curve is obtained using the experimental dataset with
E

(1)
F = 0.43 eV and the corresponding Lπ = 40 µm.

The MD and the IL are defined as in the case of EAMs.
Since the absorption is held the same in both arms and the
length of the arms is chosen to be L = Lπ , the transmission
coefficient given by equation (12) is equal to −∞ dB when the
waves interfere destructively. Graphs in figure 8(d) are shown
starting from Tr = −25 dB. Accordingly, the modulation
depth is MD = ∞ dB. If the absorption is not the same in
the two arms, or if the π phase shift cannot be achieved for
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a reasonable Lπ , the MD would have a finite value. On the
other hand, IL is determined by the real part of σ and has
finite values and is smaller when the theoretical σ(ω) is used.
The actual values are IL ≈ 0.48 dB for the theoretical σ(ω)

and IL ≈ 4.8 dB for the experimental dataset. The shift of the
Fermi level needed to switch between the states of the maximal
and the minimal transmission is �EF = 0.245 eV in the case
of L = 20 µm long modulator, and �EF = 0.225 eV in the
case of L = 40 µm long modulator (see figure 8(d)). For a
longer modulator, the transmission curve has two maxima, as
can be seen in figure 8(d). Thus, �EF corresponding to the
closer maximum is around 0.065 eV.

The difference between the modulator properties
calculated with theoretical and experimental σ(ω) is mainly
manifested as a difference in IL and �EF. It is also seen that
the minimal modulator length for theoretical σ(ω) is around
two times shorter than the one estimated with the experimental
dataset.

5. Summary

Optical waveguides incorporating graphene as the electro-
optical element are a promising platform for future electro-
optical modulators. Their operational principle is based
on tuning the optical conductivity σ(ω) of graphene by
the application of a gate voltage, thus changing the modal
propagation constants ky .

Here we have described a perturbation method for
calculating �ky , the graphene-induced change in ky , from
which the quantities such as the modulation depth or insertion
losses are directly obtained. On the planar waveguide toy
model with realistic material parameters, the method has been
shown to possess an excellent accuracy with relative errors in
�ky of around 1% for the practically relevant cases. It has thus
been established that �ky is given by the product of a factor
characterizing the modal properties of the bare waveguide (the
G-factor) and the optical conductivity of graphene. This result
has then been used for discussing the optimization of the G-
factor and the design principles of both electro-absorptive and
electro-refractive graphene-based electro-optical modulators.

Considering that σ(ω) can vary significantly depending on
the graphene fabrication procedure and environment, we have
simultaneously investigated the predictions of the theoretical
and experimental datasets. As expected, the theoretical dataset
has been found to predict a considerably better modulator
performance. More importantly, however, we have shown that
the changes in device performance due to variations of σ(ω) are
easily and accurately estimated using the perturbation method.
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