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1.  Introduction

Graphene, the recently discovered two-dimensional allotrope 
of carbon [1], has several distinct properties that make it very 
attractive for optical modulators: it exhibits a strong interac-
tion with light [2], optical transitions [3, 4] tunable by means 
of the electric-field effect [1], high mobility of charge carriers 
[5], low switching energies [6] and compatibility with many 
of the existing photonic devices [7–15]. Various geometries 
and material systems have recently been considered [16–19] 
for coupling with graphene. However, the silicon-on-insulator 
(SOI) platform offers compact optical waveguides which are 
the key components of various types of photonic integrated 
circuits [20, 21]. For these reasons, electro-optical modula-
tors based on graphene coupled to SOI waveguides have been 
drawing most of the interest recently [22–30].

The working principle of the proposed electro-absorptive 
modulators relies on tunable interband transitions in graphene 

[22]. A pristine graphene layer deposited on top of a wave-
guide absorbs the optical signal propagated in the waveguide 
as electrons in graphene are accelerated by the high-frequency 
electric field and undergo interband transitions. When, how-
ever, a gate voltage is applied, it raises the Fermi energy EF 
in graphene which fills up the higher electronic levels, thus 
Pauli blocking interband transitions [3, 4]. It implies that the 
modulation depth achievable by changing the gate voltage 
increases linearly with the length L of the waveguide segment 
covered by graphene [28]. As the increase of L implies higher 
power consumption and a larger device footprint, it follows 
that the choice of an optimal length always involves a trade-
off. The only way both the modulation depth and the footprint 
can be improved simultaneously, is by designing the wave-
guide so as to optimise the graphene-light interaction strength. 
The latter is known [16, 28, 29, 31] to be highly dependent 
on the location of the graphene layer relative to the optical 
mode, as the absorption is more efficient if graphene is placed 

Journal of Physics D: Applied Physics

Role of waveguide geometry in  
graphene-based electro-absorptive  
optical modulators

Uroš Ralević1,2, Goran Isić1, Borislav Vasić1, Dejan Gvozdić2 and 
Radoš Gajić1

1  Center for Solid State Physics and New Materials, Institute of Physics, University of Belgrade, 
Pregrevica 118, 11080 Belgrade, Serbia
2  Faculty of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73b,  
PO Box 35-54, 11120 Belgrade, Serbia

E-mail: uros@ipb.ac.rs

Received 2 March 2015, revised 29 June 2015
Accepted for publication 9 July 2015
Published 6 August 2015

Abstract
We investigate the variation of the graphene-waveguide coupling strength G, whose magnitude 
is the crucial parameter of efficient graphene-based electro-absorptive optical modulators, 
with the waveguide geometry and its graphene coverage. By sweeping a wide geometrical 
parameter space, we show that G can be improved up to few times by optimising the 
waveguide width and height. We find that the high values of G cannot be simply related to 
the modal confinement factor and assess the impact of a small detachment of graphene from 
vertical waveguide boundaries. Using perturbation theory, we demonstrate that the modulation 
depth to the insertion loss ratio of a graphene-based modulator is always independent of the 
geometry and determined by the residual conductivity of graphene.

Keywords: waveguides, graphene, electro-optical modulators

(Some figures may appear in colour only in the online journal)

Uroš Ralević et al

Role of waveguide geometry in graphene-based electro-absorptive optical modulators

Printed in the UK

355102

JPAPBE

© 2015 IOP Publishing Ltd

2015

48

J. Phys. D: Appl. Phys.

JPD

0022-3727

10.1088/0022-3727/48/35/355102

Papers

35

Journal of Physics D: Applied Physics

JW

0022-3727/15/355102+9$33.00

doi:10.1088/0022-3727/48/35/355102J. Phys. D: Appl. Phys. 48 (2015) 355102 (9pp)

mailto:uros@ipb.ac.rs
http://crossmark.crossref.org/dialog/?doi=10.1088/0022-3727/48/35/355102&domain=pdf&date_stamp=2015-08-06
publisher-id
doi
http://dx.doi.org/10.1088/0022-3727/48/35/355102


Uroš Ralević et al

2

in the high-field region which is often in the middle of the 
waveguide [28]. While the fabrication of thin slots in silicon 
waveguides is possible [32] it is rather difficult and likely to 
decrease the waveguide quality. Thus, graphene is, in practice, 
deposited exclusively on the top of the waveguide [22–28].

Here we perform an eigenmode analysis implemented 
within the finite element method [33] to study how the geomet-
rical parameters of a SOI strip waveguide affect the graphene-
light interaction strength. The interpretation of the numerical 
results is done with the help of a perturbation approach, whose 
general properties and accuracy were the subject of our pre-
vious work [29]. Owing to the fact that the fields of optical 
eigenmodes are virtually unaffected by graphene [29], we 
find that: (i) the total absorption due to graphene segments 
placed at different locations along the waveguide cross sec-
tion is additive, (ii) the modes of the bare and graphene-cou-
pled waveguide are impedance-matched so the reflection on 
the entrance into the modulator is negligible and (iii) the ratio 
of the modulation depth (MD) and insertion losses (IL) does 
not depend on the waveguide and is determined solely by the 
optical properties of graphene, which indicates that the value 
close to 5 recently reported in [24] will be hard to improve 
upon. We also investigate whether there is a direct connection 
between the interaction strength and optical confinement [28] 
and find that the answer is negative, which is corroborated by 
a similar conclusion recently reached in attempts to maximise 
the graphene-induced nonlinear parameter [19]. Finally, we 
show that, in principle, by carefully choosing the waveguide 

geometry, the modulation efficiency can be increased by up to 
several times.

2. The model: SOI waveguide-graphene system

Among various geometries being used in photonic integrated 
circuits, the so-called rib, buried and strip waveguides are the 
most common [20, 21]. Here we limit our attention to the case 
of strip waveguides, which have the highest index-contrast 
and for which single mode operation in the near-infrared can 
be obtained with submicron lateral dimensions [21]. We have 
found that the coupling strengths attainable with rib or buried 
waveguides are similar and can be analysed analogously. 
Figure 1(a) illustrates a SOI strip waveguide whose section of 
length L is covered by a layer of graphene.

The guided modes of a bare waveguide are classified into 
quasi-transverse electric (qTE) and quasi-transverse magnetic 
(qTM). The electric field of the former is polarised mainly 
horizontally (along the x-axis), while the latter is polarised 
mainly vertically (along the y axis), as shown by the example 
in figure 1(c). The propagation of modes along the z-axis is 
quantified by the propagation constant β, which is a purely 
real quantity in a bare waveguide with negligible losses.

Upon depositing graphene on the top of the waveguide, the 
propagation constant β ω( ) of a guided mode at a given fre-
quency ω is changed by β ωΔ ( ). As graphene behaves both as 
a polarisable and absorptive system, β ωΔ ( ) has both real and 
imaginary parts. Figure 1(b) shows the real part of dispersion 

Figure 1.  (a) Schematics of a graphene-coupled strip waveguide. (b) Real (left panel) and imaginary part (right panel) of dispersion 
relations for the fundamental qTE and qTM modes, obtained for μ=H 0.25  m and μ=W 0.5  m. The empty and full markers represent the 
bare and graphene-coupled cases, respectively, while the dotted lines indicate the silicon and silica light lines. (c) The total electric field 
distribution at ωℏ = 0.8 eV, as indicated by the dashed line in (b). The fields are normalised so that the modal energy per unit length U is 
equal to −1 J m 1. The arrows show the dominant polarisation of the fields.
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curves for the bare waveguide (circles-qTE, squares-qTM) 
and the dispersion curves for the graphene-coupled waveguide 
(lines with dots-qTE, lines with stars-qTM). In numerical cal-
culations [33] of optical eigenmodes, the refractive indices for 
silicon (n   =   3.47) and the silica substrate (n   =   1.44) are taken 
to be real and constant, which is appropriate for the frequency 
range of around ωℏ = 0.8 eV, corresponding to the free-space 
wavelength of λ μ= 1.55  m, which we focus on in this study. 
As the magnitude of β ωΔ ( )  is of the order of −10  m4 1, the 
difference between the bare and graphene-coupled dispersion 
cannot be distinguished on the scale of figure 1(b) left panel. 
The right panel of figure  1(b) shows the imaginary part of 
the propagation constant for modes of the graphene-coupled 
waveguide.

In the calculations used in this study, graphene is repre-
sented by an infinitely thin layer having a frequency-dependent 
surface conductivity σ ω( ). The simplest and most widely used 
model [34] for σ ω( ) follows from the Kubo formalism in the 
non-interacting picture [35], in which σ ω( ) is written as the 
sum of the interband
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Here τ and T denote the electron relaxation rate and the 
temperature, while q is the elementary charge. The above 
model accounts for the main properties of graphene’s linear 
optical response and its dependence on EF, including the 
Drude-like behaviour at frequencies below ωℏ = E2 F (intra-
band transitions) and the flat absorption spectrum at frequen-
cies above ωℏ = E2 F (interband transitions). This model, 
however, predicts that the residual conductance at frequencies 
slightly below the interband threshold frequency ω = ℏE2 /th F  
is very close to zero. Experiments [3, 37, 38] have, however, 
shown that the residual conductance is σp 0 with σ = ℏq /40

2  
and p ranging from 0.3 to 0.5, depending on the graphene fab-
rication method and its electron concentration. Non-negligible 
values of p are known to be an inherent characteristic of gra-
phene and a signature of many-body effects in its optical 
response [35, 36]. This fact is important for graphene-based 
modulators as p sets the lower bound on the insertion loss. 
Below we show that the modulation depth to insertion loss 
ratio is entirely independent on the waveguide geometry and 
is given by

= − p

p

MD

IL

1
,� (3)

thus ≈MD/IL 4.84 reported in [24] implies ≈p 0.17, which 
is already quite small in comparison with values reported in 
spectroscopic studies of exfoliated graphene [35]. In view of 
the significance that taking a realistic dataset for σ ω( ) has for 

making meaningful numerical predictions, below we use the 
data reported in [3] modified as explained in [29] to account 
for various values of EF. Meanwhile, the results shown in 
figure 1 are obtained with the use of equations (1) and (2) with 

=T 300 K, τ = × −1.77 10  s13  and =E 0.4 eVF .
We note here that the conducting sheet model [34] of gra-

phene employed in our calculations is equivalent to an aniso-
tropic thin film model [39] in which graphene is represented 
as a thin film of thickness ≈d 0.34 nmg  and relative permit-
tivity components

ε ω σ ω
ωε

ε ε( ) = + ( ) =∥ ⊥
d

1
i

, ,
g 0

b� (4)

that differ for dielectric response parallel (ε ω( )∥ ) and perpendic-
ular (ε⊥) to the graphene layer. Here εb denotes the background 
permittivity (in our case equal to unity for air) indicating that 
graphene carriers cannot respond to the electric field compo-
nent ⊥E  perpendicular to the sheet. The equivalence between 
the conducting sheet and thin film model is a simple conse-
quence of the fact that all the involved wavelengths are several 
orders of magnitude longer than dg. Modeling graphene by the 
use of isotropic values for its permittivity ε ω ε ω( ) = ( )∥  can 
lead to erroneous results in cases where ⊥E  is not negligible. 
This is particularly important at frequencies such that ε ω( ) ≈ 0 
(the bulk plasma frequency of the hypothetical medium), for 
which the isotropic model predicts a spurious enhancement 
of ⊥E  within the fictitious thin film, by means of a mechanism 
akin to the one used in reducing the mode volume in dielectric 
optical microcavities [40]. This can further lead to large spu-
rious graphene absorption rates, as evidenced by some of the 
unrealistically high values reported in the literature.

At frequencies in the vicinity of ωth, where these modula-
tors are operated, the magnitude of σ ω( ) can reach σ3 0– σ4 0 at 
most. This is found to be insufficient to noticeably modify the 
field distribution of any of the considered guided modes. For 
example, the electric fields in figure 1(c) drawn for the bare 
waveguide are virtually identical to the fields in the graphene-
coupled waveguide. In fact, we find that the situation in strip 
waveguides is similar to the case of planar waveguides exam-
ined in [29], where it was found that magnitudes of σ ω( )  as 
high as σ30 0 are required in order to visibly disturb the fields. 
An important practical consequence of this is that graphene-
based modulators are always impedance-matched to the bare 
waveguide.

We now introduce a quantitative measure for the graphene-
waveguide coupling strength. Starting from the graphene-
coupled waveguide but replacing σ ω( ) by an infinitesimally 
small conductance σΔ , the bare waveguide dispersion β ω( ) of 
a given mode is retrieved as σΔ → 0. A nonzero but very small 

σΔ  will modify the propagation constant by β ωΔ ( ), which, 
to the first order, is proportional to σΔ . We thus define the 
graphene-waveguide coupling strength ω( )G  as the derivative:

ω β ω
σ

( ) = − ( )
G i

d

d
,� (5)

with the −i multiplier introduced for convenience (it makes 
ω( )G  almost entirely real, as shown below) and where σd  can 
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have an arbitrary phase. In case σ  becomes sufficiently larger 
than zero, so that β ω σ( )d /d  evaluated at σ = 0 is significantly 
different from the derivative evaluated at σ > 0, the coupling 
strength should be considered as a function of both conduc-
tivity and frequency. However, according to [29], this would 
typically require values of σ  larger than σ30 0, which is much 
higher than the conductance of a single or few layer graphene 
at these frequencies. Considering that graphene practically 
does not change the electromagnetic fields, we may invoke 
the perturbation theory [41] to show that

β ω σ ω ωΔ ( ) ≈ ( ) ( )Gi ,� (6)

i.e. that the simple proportionality between βΔ  and σ holds 
for all magnitudes of σ relevant for graphene modulators at 
telecommunication wavelengths [29]. Furthermore, it follows 
that ω( )G  can be, to an excellent approximation and for a wide 
range of relevant parameters [29], written in terms of bare 
waveguide eigenmodes

∫ω
ω ω

( ) ≈
( ) ( )

∣ ∣∥G
v U

lE
1

4
d ,

g graph

2
� (7)

with ω( )U  and ω( )vg  denoting the bare modal energy per unit 
length (along the z-axis) and group velocity, respectively. The 
integral of the electric field component ∥E  parallel to the gra-
phene sheet is taken along all the lines in the waveguide cross 
section which correspond to boundaries covered by graphene. 
Equation (7) shows that only electric field components parallel 

to the graphene layer can lead to absorption, and also that the 
total absorption in separate graphene patches is always addi-
tive, which is used below for analysing the contribution of 
individual waveguide boundaries to ω( )G .

3.  Results and discussion

3.1.  Analysis of the graphene-guided mode coupling strength

The coupling strength introduced above is, evidently, a char-
acteristic of the mode being propagated in the waveguide. 
Here we focus on waveguides operated in the true single 
mode (TSM) regime, defined as the regime in which exactly 
one mode (qTE or qTM) is allowed to propagate at the oper-
ating frequency ωℏ = 0.8 eVop . The quantity denoted below 
by G refers to the coupling strength of the appropriate mode 
with graphene at ω ω≈ op. In contrast to TSM, the term single 
mode regime is used in the literature [21] for cases in which 
the waveguide supports either only one mode, or two modes 
but with orthogonal polarisations (the lowest qTE and qTM 
modes).

Figure 2 shows the greyscale (colour) map of G as a func-
tion of the silicon strip height H and width W, calculated for 
a waveguide entirely covered by graphene (as sketched by the 
bottom-left inset) within a part of the H–W parametric plane 
that belongs to the TSM regime. The latter comprises two 
disjoint regions denoted by qTE (upper left) and qTM (lower 
right), representing the H–W values for which the fundamental 
mode is qTE and qTM, respectively, while higher modes are 
not allowed. The qTE and qTM regions in figure 2 would be 
symmetric across the H   =   W curve, if it not were for the silica 
substrate. Since the silica refractive index (n   =   1.44) is higher 
than the refractive index of air, the horizontally polarised 
modes are slightly red-shifted relative to their vertically polar-
ised counterparts, which causes the qTM region to slightly 
spill over into the W  >  H half-plane. This further implies that 
in the close vicinity of the H   =   W curve in the TSM regime, 
the modes always belong to the qTM polarisation. As the fun-
damental cutoff frequency increases when decreasing either 
H or W, the part of the H–W plane below and to the left of the 
TSM region corresponds to waveguides in which no mode is 
allowed to propagate at ω ω≈ op. And vice-versa, the part of 
the H–W plane above and to the right of the TSM greyscale 
(colour) map represents the waveguides supporting at least 
two modes at ω ω≈ op.

We find from figure 2 that the qTE modes have very effi-
cient coupling with the graphene layer for waveguide geom-
etries near the H   =   W curve. In the case of qTM modes, high 
values of G are reached further away from the H   =   W curve, 
increasing even further for heights beyond the range shown in 
figure 2. Such a high aspect ratio waveguide cross section is, 
nevertheless, likely to be irrelevant in practice due to fragility 
and difficulties in fabrication. Additionally, the detachment of 
graphene from vertical boundaries might also become con-
siderable, decreasing significantly the overall value of G, as 
shown in section 3.3. In the plotted H–W range, the qTE G 
map has a maximum at around ≈H 0.22 μm and ≈W 0.31 μm,  
whereas the qTM region maximum is at ≈H 0.6 μm and 

Figure 2.  Greyscale (colour) map of G calculated at λ μ= 1.55  m 
for the structure shown in the lower inset (the graphene layer is 
represented by the thick dotted line). The upper inset shows the 
corresponding mode confinement factors Γ.
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≈W 0.1 μm. These maxima are located near the very end of 
the TSM regime for both modes. However, a variation of H 
or W of around 20 nm from the mentioned coordinates, within 
the TSM regime, induces a change of less than 2% in the 
maximal values of G, indicating that the benefit obtained by 
geometric optimisation can be reliably transferred into fabri-
cated devices.

For any given H, there is a single value of W for which G 
reaches a maximum. The dotted and dashed lines in figure 2 
connecting these maxima are found to be well parameterised 
by the following curve

= +W
a

H
c,

b� (8)

with a, b and c, listed in table 1, for both qTE and qTM regions. 
Note that the fit parameters in equation (8) correspond to H 
and W values expressed in microns.

The existence of such extremal points within the TSM 
regime is a direct proof that the graphene-waveguide coupling 
strength cannot simply be expressed in terms of the mode con-
finement factor Γ. To show this, we introduce Γ as the ratio of 
the power carried within the silicon strip, to the total mode 
power, i.e. as

∫
∫ ∫ ∫

Γ =
+ +

P x y

P x y P x y P x y

d d

d d d d d d
,

z

z z z

Si

Si SiO air2

� (9)

where Pz denotes the z-component of the time-averaged 
Poynting vector. We find in the upper-right inset in figure 2 
that, as expected, Γ increases monotonously with increasing 
both H and W, i.e. with moving away from the cut-off regime. 
Since the graphene layer covers the outer boundaries of the 
waveguide, at first it might appear that modes which are less 
confined will have a higher G. However, this is not what is 
seen in figure  2, which shows that G actually decreases to 
zero at the boundaries between TSM and the cut-off regime. 
Furthermore, going along the extremal (dotted and dashed) 
lines in figure 2 shows that reducing the width of the wave-
guide and increasing its height according to equation  (8) 
improves the graphene coupling efficiency of both modes, 
regardless of their being more or less confined.

3.2.  Contribution of individual boundaries

We have seen in equation (7) in section 2 that, owing to the small 
effect graphene has on the fields, the total value of G can be con-
sidered to originate from the sum of individual contributions of 
each waveguide boundary covered by graphene. Since the wave-
guide is symmetric across the y  −  z plane, we may write

= + +G G G G2 2 .1 2 3� (10)

Here G1 represents the coupling strength between the 
waveguide and graphene placed at the horizontal boundary 
separating the oxide layer and air. Similarly, G2 and G3 are 
coupling strengths for graphene at the vertical and horizontal 
boundaries between the Si wire and air, respectively. The seg-
ments corresponding to the definition of G1, G2 and G3 are 
sketched in figure  3(a) with dotted, solid and dashed lines, 
respectively. The remainder of figure 3 shows the greyscale 
(colour) maps of G1, G2 and G3 for the same W–H range as 
considered in figure 2. To facilitate the comparison, the (b)–
(d) panels in figure 3 share their H and W axes and have the 
same greyscale (colour) bar located at the bottom of figure 3.

The arrows in figure  3(b) show that G1 increases when 
going from the single and multi-mode towards the cut-off 
regime. The strongest coupling is reached for geometries near 
the H   =   W curve. Comparing the two polarisations, the qTM 
mode is seen to couple less efficiently. This is because the 
Ex and Ez electric field components, parallel to the boundary 
between the substrate and air on which the assumed graphene 
ribbon is deposited (see figure 3(a)), are stronger for the qTE 
polarisation. The main characteristics of the electric fields 
for the qTE and qTM modes for several geometries along the 
extremal points defined by equation (8) are given in figures 4 

Table 1.  Parameters of the maxima lines for the qTE and qTM 
modes.

Parameters a b c

qTE 0.001 444 2.267 0.2734
qTM 0.004 906 3.007 0.075 45

Figure 3.  (a) Illustration showing graphene layers which are 
deposited on the lower horizontal (dotted line), vertical (solid line) 
and top horizontal (dashed line) boundaries of the waveguide. 
(b) Greyscale (colour) map of G1 corresponding to the graphene 
on lower horizontal boundary. (c) Greyscale (colour) map of G2 
corresponding to the graphene on vertical boundary. (d) Greyscale 
(colour) map of G3 corresponding to the graphene on top horizontal 
boundary. The arrows show the direction in which G1, G2 and G3 
are increasing.

J. Phys. D: Appl. Phys. 48 (2015) 355102



Uroš Ralević et al

6

and 5, respectively. The three geometries for both polarisa-
tions correspond to the starting, middle and ending points 
of the corresponding extremal curves. The fields intensities 
represented by the greyscale (colour) maps in figures 4 and 
5 are all normalised so that the mode energy per unit length 
appearing in equation (7) equals unity, i.e. U   =   1 J m−1.

By examining figure 3(c), we find that qTM mode couples 
with graphene on the vertical boundary more efficiently when 
the H/W ratio is increased, as shown by the arrows. This is 
understood by analysing how the electric field components 
Ey and Ez of the corresponding modes, as shown in figure 5, 
change when H and W are varied. As H is increased the 
amount by which these field components overlap the vertical 
boundary becomes larger. Furthermore, shrinking the width of 
the waveguide leads to the field delocalisation and the inten-
sity of the Ey and Ez components grows at the vertical bounda-
ries. Hence the qTM mode has the strongest coupling with 
graphene on this boundary for ≈H 0.6 μm and ≈W 0.1 μm. 
The qTE mode couples more efficiently with graphene on the 
vertical edges than the qTM mode for geometries near H   =   W 
curve. Here, the Ez field component of the qTE mode domi-
nates the coupling efficiency since the Ey component is small, 
as seen in figure 4. On decreasing the width of the waveguide 
while increasing the height, the Ez maxima move away form 
the centre of the waveguide and towards the boundaries of the 
Si wire. This can be seen by comparing Ez in figures 4(a)–(c). 
Furthermore, the amount of overlapping of Ez component with 
the graphene ribbon on the vertical boundary becomes higher 
as the height grows. Thus the most efficient coupling, for the 
qTE mode, is obtained at ≈H 0.22 μm and ≈W 0.31 μm.

Figure 3(d) shows that if just the top horizontal boundary 
is covered by graphene, the qTE mode-graphene coupling 
would be maximizes by decreasing the height and increasing 

the width of the waveguide, as indicated by the arrows. This 
behaviour, opposite to the case of the vertical waveguide 
boundary, is also understood by considering the Ex and Ez 
components of the qTE mode in figure 4, which become less 
localised and stronger on the top horizontal boundary as the 
W/H ratio is increased. In the case of the qTM mode, the Ez 
component in figure 5 mainly contributes to the overall cou-
pling since the Ex component is very small. Thus, lowering the 
H/W ratio leads to the movement of the Ez maxima towards 
the horizontal boundaries of the Si wire, and consequently to a 
stronger interaction of the qTM mode with the graphene layer 
covering the top horizontal boundary. Also, higher values of 
W imply that Ez has a better overlap with the graphene on this 
boundary. The most efficient coupling, for the qTE mode, is 
obtained at ≈H 0.075 μm and ≈W 0.79 μm and for the qTM 
mode at ≈H 0.3 μm and ≈W 0.25 μm.

Finally, figures 3(b)–(d), can be used to explain figure 2, 
i.e. the graphene-waveguide coupling strength in case the 
graphene covers the entire waveguide. For geometries with 
a high W/H ratio the most influential is the graphene segment 
covering the top horizontal boundary of the Si wire. When the 
W/H ratio is decreased the influence of the graphene covering 
the vertical and lower horizontal boundaries becomes more 
significant. The maximum in the qTE-G map is actually due to 
coupling between the mode and graphene layer on the vertical 

Figure 4.  (a) qTE electric field components, for ≈H 0.22 μm and 
≈W 0.31 μm. (b) qTE electric field components, for ≈H 0.105 μm 

and ≈W 0.51 μm. (c) qTE electric field components, for ≈H 0.075 
μm and ≈W 0.79 μm. Shown electric field components are 
normalized so that U   =   1 J m−1.

Figure 5.  (a) qTM electric field components, for ≈H 0.3 μm and 
≈W 0.25 μm. (b) qTM electric field components, for ≈H 0.44 μm 

and ≈W 0.135 μm. (c) qTM electric field components, for ≈H 0.6 
μm and ≈W 0.1 μm. The shown electric field components are 
normalised so that U   =   1 J m−1.

J. Phys. D: Appl. Phys. 48 (2015) 355102



Uroš Ralević et al

7

boundaries. In the case of the qTM mode for the (H,W) pairs 
near the H   =   W curve the graphene on the top horizontal 
boundary mainly contributes to the overall coupling with this 
mode.

3.3.  Decrease in coupling strength due to detachment from 
the vertical boundaries

So far, we have assumed that graphene conforms perfectly to 
all of the waveguide boundaries that it might cover. In prac-
tice, however, graphene might not be attached ideally to the 
vertical boundaries. Here we assess what impact this might 
have on G. Figure 6(a) illustrates an augmented case of the 
graphene layer being detached from the vertical boundaries, 
which can be quantified by displacements x1, x2, and angles 
θ1, θ2, as sketched in figure 6(b).

As before, the total coupling strength can be expressed as 
a sum of contributions from an individual graphene segment, 
as shown in figure 6(b)

″ ″= + + + +′ ′G G G G G G ,1 2 3 2 1� (11)

where ′G1, ″G1  and G3 represent the coupling between the 
waveguide and graphene at the horizontal boundaries, while 

′G2 and ″G2 represent the coupling between the waveguide and 
the slanted segments. For simplicity, we assume θ θ θ= =1 2  
and = =x x xl1 2  so that ″=′G G1 1  and ″=′G G2 2.

In section 3.2, we have shown that the coupling between 
the waveguide and graphene is dominated by the contributions 
of the graphene segments at the top, horizontal and vertical 

boundaries. Therefore, it is expected that, for a fixed wave-
guide geometry, the value of G would be modified mainly due 
to the modification of ′G2 as θ increases from zero.

Figures 6(c) and (d) show the variation of the total coupling 
strength with xl for the two waveguides from section 3.1 having 
the most efficient coupling with graphene and whose electric 
field components have been given in figures 4(a) and 5(c). For 
xl   =   0, the graphene conforms ideally to the vertical bounda-
ries, and G is the same as the one in figure 2 for the qTE and 
qTM modes shown in figures 6(c) and (d), respectively. As xl 
increases, both GTE and GTM are seen to decrease. This can be 
explained by analysing the ′G1, ′G2 and G3 components shown 
as dotted lines in figures  6(c) and (d). G3 does not depend 
on xl (see figure  6(b)) and hence it is constant throughout 
the considered displacement range. On the other hand, dis-
placing the graphene away from the vertical boundaries yields 
lower values of ′G1 and ′G2. This is due to the rapid decay of 
the corresponding electric field components outside of the 
waveguide. In the case of the qTM mode, ′G2 is the one that 
determines the modification of GTM, as expected. However, 
for the qTE mode, both ′G1 and ′G2 affect the trend in GTE. 
The steep initial decrease of both GTE and GTM as xl increases 
from zero shows that even displacements of around 10 nm can 
noticeably modify the coupling efficiency, meaning that the 
conformity of the graphene layer on the silicon waveguide is 
an important aspect to consider in designing graphene-based 
optical modulators. The comparison of figures  6(c) and (d) 
shows that the small aspect ratio waveguides carrying the qTE 
modes are much more robust to graphene detachment issues 
than the high aspect ratio qTM waveguides.

3.4.  Influence of the coupling strength on the optical  
properties of electro-absorptive optical modulators

Having seen how the geometrical parameters of the wave-
guide influence the coupling between the given mode and the 
graphene layer over a specific boundary, we now consider 
how it affects the operation of electro-absorptive modulators. 
The power transmittance through a graphene-coupled wave-
guide segment of length L is determined by the imaginary 
part βI of the optical propagation constant, which is equal to 

βΔ I. Therefore, the transmittance expressed in dB and per unit 
length of the waveguide becomes

β[ ] = − Δ−T dB m
20

ln10
.r

1
I� (12)

Figure 7 shows Tr expressed in [dB μm−1] versus the posi-
tion of the Fermi level in graphene, evaluated at ωℏ = 0.8 eVop  
(λ = 1.55 μm) for two representative waveguide geometries. 
The value of EF is assumed to be varied by applying a gate 
voltage on graphene, which can be done in several ways [22–
27], perhaps the use of two graphene layers on top of each 
other being the most effective [23, 24, 27]. While the choice 
of any particular solution for introducing the gating on gra-
phene will affect the optical properties of the waveguide to 
some extent, the part of the analysis that is relevant for modu-
lation will always be the same. Thus, although the conclusions 
below are reached on a simplified system, it is easily seen that 

Figure 6.  (a) Sketch of a graphene-waveguide structure in which 
the graphene is completely detached from the vertical waveguide 
boundaries. (b) Cross-section of the waveguide in (a) used to define 
the displacements x1 and x2, and angles θ1 and θ2. (c) The total 
coupling strength GTE and its ′G1, ′G2 and G3 components, calculated 
for a waveguide having ≈H 0.22 μm and ≈W 0.31 μm (d) GTM and 
its components ′G1, ′G2 and G3, calculated for a waveguide having 

≈H 0.6 μm and ≈W 0.1 μm.
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they are equally applicable to the general case. In order to 
have as realistic predictions as possible, here the σ ω( )R  values 
reported in [3] for a gate voltage of 71 V ( ≈E 0.29 eVF ) were 
used. In the absence of experimental data on σ ω( )R  beyond 

≈E 0.29 eVF , the experimental dataset σ ω( )R  was shifted to 
cover all EF values in the immediate vicinity ωℏ =/2 0.4 eVop , 
as in [29]. The ( )T Er F  curves shown in figure 7 are obtained by 
calculating the propagation constant of the waveguide with 
graphene. However, owing to the mentioned accuracy of the 
perturbative expressions, we find that they are identical with 
the curves obtained using ω( )G  evaluated from equations (7) 
and (6).

As a comparison with previous work, we consider a wave-
guide, denoted by A, which has H   =   0.25 μm, W   =   0.6 μm,  
corresponding to the one studied in [22]. The 7 nm thick 
Al O2 3 layer that was used in [22] to electrically insulate gra-
phene from the semiconducting silicon strip is neglected in 
our comparison for clarity. Taking this thin layer into account 
leads only to small modifications of the G value, which are of 
the order of a few per cent for the considered waveguides, and 
it thus does not affect our analysis. For example, direct calcu-
lations show that if a 7 nm thick Al O2 3 layer is added between 
graphene and waveguide A, the G value of the considered TM 
mode would decrease by about 5%. As the second waveguide, 
denoted by B, we consider the waveguide with ≈H 0.22 μm 

and ≈W 0.31 μm, which is one of the geometries for which 
we have found above to couple strongly to graphene (the one 
having the highest G for qTE). A comparison of waveguide 
A parameters with figures 2 and 3 shows that, at the chosen 
operating frequency, waveguide A is not in the TSM regime 
that we have focused our attention to. Instead, it is found to 
support three modes at ωℏ op. Here we evaluate its properties 
for the qTM mode, which is the mode that has been utilised in 
the experiments in [22]. Two possible cases of graphene depo-
sition are evaluated. By A and B we denote the modulators 
obtained when the waveguides are covered entirely by gra-
phene, as indicated by the thick (red) dotted lines in figure 7 
insets. A’ and B’, on the other hand, represent the modulators 
in which the waveguides are covered only partially, as also 
indicated by the figure 7 insets. Modulator A’ is, actually, the 
configuration that has been studied in [22].

The key quantities describing a modulator are modulation 
depth (MD) and insertion loss (IL). When transmittance is 
expressed in dB and per unit length of the waveguide, MD 
is defined as the difference of the maximum and minimum 
values of the transmittance, while IL represents the amount by 
which the transmittance is decreased as a result of introducing 
graphene. These two quantities are illustrated in figure 7 on 
the example of waveguide B. Using equation  (6) and con-
sidering how σ ω( )R  behaves in the vicinity of the interband 
threshold frequency (see the figure 7 inset), we find that there 
is a simple relationship between the coupling constant ω( )G op  
at the operating frequency and p, which quantifies the residual 
conductivity of graphene discussed in section 2

σ ω[ ] ≈ − ( − ) ( )− p GMD dB m
20

ln10
1 ,1

0 op� (13)

and

σ ω[ ] ≈ − ( )− p GIL dB m
20

ln10
.1

0 op� (14)

Thus, by dividing equations (13) and (14), we recover the 
mentioned fact, stated by equation (3), that the ratio of MD 
to IL is independent of the waveguide geometry and deter-
mined entirely by the residual conductivity of graphene. This 
is also seen in figure 7, where the modulators with a higher 
MD are seen to have a proportionally higher IL. In this par-
ticular case, the values [3] of σ ω( ) used in calculations imply 

≈p 0.3, which amounts to ≈MD/IL 2.33. It should be noted 
that equations (13) and (14), and consequently equation (3), 
rely on two important characteristics of the considered gra-
phene-waveguide system, which are: (1) The graphene-wave-
guide coupling strength, G, depends only on frequency, as 
explained in section 2. (2) The mode propagation losses of the 
bare waveguide are negligible in comparison with the losses 
induced by residual conductance. This is generally true for 
SOI waveguides, which have small propagation losses at tel-
ecommunication wavelengths [42].

In figure 7, the highest modulation depth of 0.3 dB μm−1is 
reached for modulator B. Both modulators A and A’, cor-
responding to the one given in [22], are seen to have more 
than two times smaller MDs. The difference in coupling 
strength and thus in MDs between A and A’ is not very big 

Figure 7.  Transmittance versus the position of the Fermi level in 
graphene for four different modulators. They are illustrated near 
their corresponding transmittance curves. A and A’ modulators 
have H   =   0.25 μm and W   =   0.6 μm, and are entirely and partially 
covered by graphene, respectively. B and B’ modulators have 

≈H 0.22 μm and ≈W 0.31 μm, and are entirely and partially 
covered by graphene, respectively. The maximal and minimal value 
of the transmittance, MD and IL are shown using the B modulator’s 
curve. The inset shows σR in units of σ0 with the minimal and 
maximal values defined by the dotted lines.
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and, obviously, results from A having a higher graphene cov-
erage than A’. A comparison of ( )T Er F  for the four modulators 
clearly shows that the amount by which the waveguide is cov-
ered by graphene is not the only factor which determines the 
MD. It is rather the appropriate choice of the geometry for the 
given mode’s polarisation that determines how high the MD 
will be. Here we see that the B’ modulator has a higher MD, 
even though it has a smaller graphene coverage. Thus, our 
analysis demonstrates that by a wise choice of SOI waveguide 
parameters, the graphene-waveguide coupling constant can be 
increased by up to a few times.

4.  Summary

We have shown how the variation of the strip width and height 
in SOI strip waveguides can be used to increase the graphene-
waveguide coupling strength G. The values of G for practi-
cally all the relevant waveguide width and height pairs have 
been evaluated showing that over the entire parameter plane, 
the value of G changes up to few times.

As tailoring the geometry of a waveguide and the graphene 
ribbon deposited on it always involves considering additional 
constraints, such as the issue of gating graphene, it is impor-
tant to understand how covering only parts of the waveguide 
affects the coupling strength. We have shown that the effect 
of disjoint graphene patches is always additive and then used 
this fact to analyse from which graphene segments most of the 
coupling efficiency originates. For example, we have found 
that in the case of complete waveguide coverage by graphene, 
the most efficient coupling is reached for the qTE mode, in 
a waveguide with ≈H 0.22 μm and ≈W 0.31 μm yielding a 
modulator with ≈MD 0.3 dB μm−1, which is estimated to be 
almost three times higher than the value reported in a previous 
study [22]. Interestingly, for this (H,W) pair, a very large rela-
tive contribution comes from graphene on the vertical bounda-
ries of the silicon wire, which is somewhat unexpected since 
the qTE modes are mainly horizontally polarised.

Our analysis has also shown that the value of G depends 
on how well the graphene layer conforms to the waveguide 
surface and that it cannot be simply related to the mode con-
finement factor. In particular, we have found that the local 
maxima of G follow two distinct curves within the true single 
mode regime.

We have also shown that the ratio of the modulation depth 
to insertion losses, which is a commonly used figure of merit 
for electro-optical modulators, does not depend on the wave-
guide geometry and graphene coverage at all, but that it is 
exclusively a function of the residual conductivity of graphene.
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