>EOTPAL

MNperpesuua 118, 11080 yH - beorpaa, Cpbuja
Tenedon: +381 11 3713000, arc: +381 11 31621%
MAB: 100105980, MatnuHm 6poj: 07018029, Texyhn pauyH: cua-vovod-23

Hayunom Behy UHcTHTYyTa 32 QH3HKY Yy beor

Ipensor 3a Cryaentcky Harpaxy Hucruryra 3a ¢pusuky y beorpany

INomroBaHH,

Benuko MM je 3a10BOJbCTBO fa mpemioxkuM Ap Baagumupa Jlonuapa 3a CTyneHTCKy
Harpany UHcTuTyTa 32 dhu3uKy y beorpaay 3a nokropcky Tely noa HasueoM "Hybrid Parallel
Algorithms for Solving Nonlinear Schrodinger Equation", kojy je oxbpaHuo 17. oktoGpa
2017. roqune Ha [IpupoaHo-mMaTteMaTHukoM dakynrtery YHueep3autera y Hosom Cany.

Ucrpaxxusauku pan ap Brnanumupa JloHuapa je y obnacTH npuMeHe pauyHapa y ¢GM3HIM, a
noce6HO pa3Boja MapajJeNHUX M XUOPHAHHMX HYMEPUUKMX airopurama 3a pelliaBarbe
HelMHeapHUX NapudjalHuX JAdQepeHLMjalHUX jeJHaudHa M HHXOBa I[pUMEHa Ha
npoyyaBamwe yNTpaxJagHHX O030HCKHX CHCTeMa ca JMUION-AWION HHTepakUHUjoM. JeqHaurnHe
OBOI' THMA C€ jaBJbajy He caMoO y (GH3MLM YITpPaxjafHHX aTOMA, HEr0 W y HEJIMHEApHOj
onTHUM K ApyruM obnactuma. Konera JloHuap ce 6aBHO pa3BojeM MapajlienHHX alropurama
3a pelaBame jeHor 00JHKa HeMHeapHe napuyjainHe AddepeHLHjaHe jeAHAYMHOM MO3HATE
kao ['poc-Tluraescku jennaunna (I'T1)), koja ce jaB/ba NpHIMKOM MpoyuaBawa (GUIHUKOT
¢beHoMeHa mo3HaTor kao bose-AjHIITajH KOHAEH3alMja, Ca HArJIaCKOM Ha OOJMK jeHa4YMHE,
KOjHU MOpe] HEeJIIMHeapHOI wWiaHa CaJpXH W HHTErpajHO je3rpo KOHBOJYLHOHOI THIIA.
Pewrapawe ['T1J HymMepHUKUM NOCTYNIKOM Ha padyHapy je Moryhe, anu cy nperxoaHo GWiH
JOCTYNHHU CaMO CEPHJCKH JITOPUTMH. 300r Benukor 6poja pauyHCKHX onepaluja Koje OBH
AITOPUTMH MOZIPa3syMeBajy, HWHUXOBE CepUjcKe HMIUIEMEHTallHje CYy OrpaHd4eHe Ha
CHMyJaLHje ca BeoMa rpyboM JMCKPETH3allMOHOM LIEMOM, Te Ce jaBJba MoTpeba 3a yop3amem
IropuTaMa M HHUXOBHUX MMIUIEMEHTallMja MyTeM napanenusauuje. [p JloHuap je paseuo
BHLIE Mapajie/IHMX anropuTama 3a paslIHudTe Xap/BEpCKe apXHUTEKType, 0J KiacMuHuX Intel
npouecopa, Ao Nvidia rpadHuKkuMX KapTHLa, KOJU C€ MOTY H3BpIUABaTH KAKO Ha jEHOM
pauyHapy, Tako M Ha payyHapcKoM KjacTepy. Y OKBHPY OBOI HCTPaKHMBauka [paBlia
KaHAMAaT je o0jaBHO HEKONHMKO MyOsivkauMja y Mel)yHapOIHHUM 4acomMcuma, OAHOCHO Y
300pHHIIMMa paoBa ca MeljyHapoiHUX kKoHepeHLHja.

Vnotpeba rpaguukux rnpolecopa Kao alTepHaTHBA LIEHTPAJHHUM [pOLeCOpUMa pavyHapa 3a
yOp3ame HYMEpUUKHMX MOCTYNaKa ce 4YeCTO MpUMEHYje Y Hay4dHHM KpYroBHMa, jep ce
NojelMHH HyMepHukHM noctynuu (momyt ®ypujeose TpaHcdopmalje) MHOrO ebHKacHHje
MOTY H3BPIUMTH Ha rpaUuKOM Mpolecopy. Y oBoM npasly, Bnanumup ce 6aBuo ynorpeGom
rpadHykMx mpouecopa 3a pemasawe [TIJ M pasBuo napanenHu anroputaM M nparehy
umruieMeHTauMjy 3a Nvidia rpaduuke mnpoluecope. ANropuram ce ocnama Ha BHILE
HyMepuukuX Metoza, Mmehy kojuma cy Kpenk-Hukoncon Hymepuuku meroa, ®ypujeosa
TpaHcopMmaLMja M HyMepuduka HWHTerpauvja myteM CHMIICOHOBOr MpaBWiia Koje cy
MMIUIEMEHTHpaHe Kao jesrpa Koja ce U3BpLIaBajy Ha rpaduukom mpoiecopy myrem CUDA
texHonoruje. IloceGan Harnacak je craBjbeH Ha ONTHMMH3alMjy ynotpeGe MeMOpHje Ha
rpadbuukoM mpolecopy, Koje y HajseheMm Opojy ciyuajeBa MMa Marbe HEr0 OCHOBHE RAM
MeMopHje padyHapa. Y TecTOBUMa Nep(OPMaHCH, MMILIEMEHTAllHja je MoKasaja 3Ha4yajHo
ybp3ame y 0JHOCY Ha cepHjcKy Bep3Hjy. OBaj pe3ysTar AeTabHHje je OMUCaH y pay:

>EOTPALL

Mperpesuua 118, 11080 3emyH - Beorpag, Cpbuja
TenedoHn: +381 11 3713000, Paxc: +381 11 316219
MAB: 100105980, MaTtnyHm 6poj: 07018029, Tekyhu pauyH: cu>-oovs4-23

e CUDA programs for solving the time-dependent dipolar Gross-Pitaevskii equation in
an anisotropic trap
V. Loncar, A. Balaz, A. Bogojevig¢, S. Skrbié, P. Muruganandam, and S. K. Adhikari
Comput. Phys. Commun. 200, 406 (2016). [M21a, IF(2016)=3.936]

ITopen anroputamMa 3a rpaduuke mporecope, KaHAWAAT je Pa3BHjao M MapaieiHe aJropuTMe
3a MOJEpHE BHIIEje3rapHe NpOLEcOope Kao W CUCTeME ca TUCTPUOYHPaHOM MEMOPHjOM
OJITHOCHO pauyyHapcke Kiactepe. Y pa3BHjeHHM aJITOPUTMHMA MOAALM Cy MOJAebeHU n3Mely
nponecupajyhnx enemeHata (HUTH WIM Mpoleca) Tako Jla HUjeAaH Mpolecupajyhn elreMeHT
HeMa MPHCTYII LEJIOM CKyIy IoJaraka, Beh u3BplIaBa padyHCKe oIeparyje caMo Ha 3a1aToM
MOJICKYITy TOJaTaka M MO MOTpedM BPIIM pasMeHy MoJaTraka ca IpyruM mpouecupajyhum
enemenTuMa. Ha oBaj HauuH je omoryheHo u3BpmaBame cuMysanyja Ha MHOTO BeheMm Opojy
napanelHuX padyHapckux pecypca. Ca jeaHe cTpaHe, OBE HMMIUIEMEHTalnuje OMOryhaBajy
Opke u3BpIIaBame NocTojehnx cumyianyja, IOK ca Apyre crpane Takohe omoryhaBajy u
cUMyJalje ca MHOro (HMHHjUM JUCKPETU3ALMOHUM IIeMaMa Koje Cy HEONXOJHE 3a
WCMIUTHBAKE MOjeAnHNX (QU3NYKUX (PEHOMEHa W Koje JI0 Caj HHCY Morie OuTH KopuiiheHe
300r orpaHHYema JIOCTYIIHE MEMOpHWje jeIHOr padyHapa. AJTOpUTME TNpaTH W JAeTajbaH
nperies nephopMaHCH BUXOBUX UMIDIEMEHTAIUja, IOK je Y JUCepTaliju KaHaAuaaTa Takohe
pasBjen u mozen nepdopmancu. OBU pe3yaTaTH NPEACTaBIbEHH cy Y cienehnm pagoBuMa:

e OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the time-dependent
dipolar Gross—Pitaevskii equation
V. Loncar, L. E. Young-S., S. Skrbié, P. Muruganandam, S. Adhikari, and A. Balaz
Comput. Phys. Commun. 209, 190 (2016). [M21a, IF(2016)=3.936]

e OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross-
Pitaevskii equation
L. E. Young-S., P. Muruganandam, S. Adhikari, V. Lonc¢ar, D. Vudragovi¢, and A.
Balaz
Comput. Phys. Commun. 220, 503 (2017). [M21a, IF(2016)=3.936]

Kannmuaar je pa3Bujao W alropuTMe 3a XETEpPOreHE padyHapcKe CHUCTeMe, KOju KOMOHWHY)Y
ANTOPUTME 3a BHIIEje3rapHe MPOLECOpPEe W alropuTMe 3a rpaduuke mporecope. Y OKBHPY
OBOT TIPUCTYIIA Pa3BHjeHO j& BHIIE XETEPOTEHNX HyMEPHUKHUX METOa, Mel)y KOjuM ce u3/Baja
XEeTeporeHn ajropurtam 3a Op3y PypujeoBy TpaHcopmainjy, KOjU je NMPUMEHJbUB W Ha
MHOTO HIMPEM HU3Y MaTeMaTHYKuX rpoodiemMa. [la 6u ce MUHIMH30BalIO BpeMe U3BpIIIaBama
XEeTeporeHor anropuTMma 3a pemaBame [11J, koje 3aBucum ox pematuBHUX mnephopMaHCH
[MEHTPAITHOT U TpaUUKOr MPOIecopa padyHAPCKOT CHCTeMa KOju ce KOPHCTH, pa3BHjeH je U
METOJI ONITUMH3AIIMje TMapaMeTapa aJlfOpUTMa. BHIle pa3uauTHX METo[a ONTHUMH3AIH]je je
eBaTyNpaHo, Mehy KojuMma je XEypHCTHYKH METOJ 3aCHOBAaH Ha TEHETCKOM alTOPUTMY
MoKazao Hajoosee mepdopMaHce, W KOjU je NMPUMEHJBMB HAa CBE XETEPOTCHE alTOpPUTME.
Xubpuaau anroputMu 3a perrabarme [1) Ha XeTeporeHuM cucTenMa JIeTaJbHO Cy OIHCAaHHU Y
JIOKTOPCKO] JHUCEPTaIfjy KaHAWaaTa, Kao U y cieaeheM MmoriaBby y TEMATCKOM 300pHHKY
pamoBa:

o Efficient Numerical Tools for Solving the Nonlinear Schroedinger Equation
V. Long¢ar, I. Vasi¢, and A. Balaz
Scientific Computing: Studies and Applications, Ed. C. Erling, pp. 63-157
ISBN: 978-1-53612-564-1, NOVA Science Publishers, 2017. [M13]

>EOTPA

Mperpesuua 118, 11080 3emyH - Beorpag, Cpbuja
TenedoHn: +381 11 3713000, Paxc: +381 11 316219
MAB: 100105980, MaTtuyHwm 6poj: 07018029, Tekyhu pauyH: cu>-oovs4-23

OcuM pasBoja anropuTama, KaHIWIAT ce Takohe OaBMO M BH3yeNIM3alMjoM MoJaTaka
J00MjeHnX U3 HyMEpPHUYKNX cHMyJanyja. 3a oBe MOTpede pa3BHO je MEXaHW3ME MPEKO KOjuX
ce MoJaly JIaKo BHU3YENM3Yjy TOKOM H3BpLIaBama CHMYJAIMje, U MPEKO KOjUX Ce MOXKeE
yIpaBjbaTd CHUMYJALWjOM, T3B. in situ Bu3yenusanuja. Pa3BujeHn MexaHW3MH 3HA4ajHO
OJIaKIIABajy aHaJIH3Yy U 00paly nmojaraka 100HjeHUX U3 CHMYJIALH]e.

Kopuctehu pasBujeHe anroputMe u MexaHu3Me 3a 00pajay mojaraka KaHAWJAT je MPoydaBao
YTHLA] AWNON-AMIION HMHTepakiuje Ha ocoOuHe bo3e-AjHINTajH KOHIEH3aTa Xpoma U
JHCIIPO3UjyMa, Kao U (opMHpame KBaHTHHUX JIPOIUIETa MPUIIMKOM Harjie IpOMEHE KOHTaKTHE
MHTEpaKLMje Y KOHJEH3aTuMa €a jakoM JUIION-AUIO0T HHTEPAKLII]OM.

CBH OBM pe3yJITaTu Cy NPUKa3aHU JETaJbHO Y OKBHPY IOKTOpPCKE Te3e mox HasuBoM "Hybrid
Parallel Algorithms for Solving Nonlinear Schrodinger Equation", xoja je Hamucana Ha
EHIJIECKOM je3uKy 1 uma 10 mormnasiba.

Y mpBOM MOrNaBby je AaT YBOX y Te3y M 00jallbeH 3Hauyaj MpoydyaBama allfopuTama 3a
pelaBame MmaphujatHuX — JudepeHIMjaTHuX — jelHaYnMHa, a ITI0Ce0HO HeJIMHeapHe
HlpenunarepoBe jemHadWHe, Kao M Kparak Iperyies oOlacTH HayKe y KOjuUMa ce OHa
npuMeryje. Takole, moOpojaHn Cy TIIaBHM HaydHHU JOMPHHOCH Te3€ W OMHCAHA j& HheHa
CTPYKTypa. Y IpyroM MOIJIAaBJbY j€ AaT KpaTak Mperie] aHaIUTHYKUX U HyMEPUUKHX METo/a
3a pemaBame HenuHeapHe llpenunrepose jennaunue, ogHocHO I'poc-ITutaeBcku jenHaunHe
ca qunonHuM wiaHoM. [IpencraBibeHa je Oe3auMeH3nHa GpopMa OBE jeHAYMHE Y TPH, ABE H
jemHOj TPOCTOPHOj IOUMEH3WjH, a HAKOH TOora M ceMu-uMIUMOUTHH Kpenk-Hukoncon
IITOPUTaM TIO/ICJbEHOT KOpaka, KOjH MPEJCTaBJba OCHOBY 3a CBE JIpyTe allTOPHTME pa3BHjeHE
y OKBHPY Te3e€.

Tpehe mornasibe, Koje MPEACTaBIhba OPUTHHATIAH HAYYHU JOMPHHOC, Jaje OIKC MapaieTHOT
HYMEPHUYKOI alropuTMa 3a pemaBambe aunonHe I'poc-IlutaeBcku jemHaumHe, kao Hu
WMIUIEMEHTAIlMje OBOT ajrOpuTMa 3a CHCTeMe ca JeJbeHOM MEMOPHjOM, Y3 KOpHIIheme
OpenMP mapagurme. Y 4YeTBPTOM IMOTNIaBJbY IPENCTaBJBEH je OJroBapajyhm mapaiienHu
anropuTaM W HEeroBa HWMIUIEMEHTAllMja 3a CHCTeMe ca XapABepckuM (rpaduaxum)
akueneparopuma 'y CUDA oOkpyXkemy, IITO Takohe TNpeAcTaBiba OpPUTHHANAH HAyYHU
nmornpuHoc. Ileto mornaBhe KOMOMHYje TpPETXOIHA J[Ba ajlropuTMa M OIUCYje HOBH,
XUOpUIHHM AJTOpUTaM 3a pemaBambe HenuHeapHe lllpeanHrepoBe jeqHauMHE ca AMIIOIHUM
qwiaHOM. XUOPHIHU aITOPHTaM jeé HaMEmEeH PadyyHapCKUM CHCTEMHMa ca BHIIEje3TapHUM
LEHTPATHUM IPOLIECOPHMa M TpaQuUKUM KapTHLlaMa, ¥ NpPelCcTaB/ba OPUIHMHAJIAH HAy4HU
JOIPUHOC.

VY mecrom moriiaBiby Cy OIKCaHa MPOIIMPEHa alropruTaMa U3 MPETXOTHUX MOTJaBjba Koja Cy
HaMemheHa CUCTEeMHUMa ca IUCTpuOynpaHoM MeMopHjoM y3 kopuithemse MPI mapagurme. OBo
yKJbydyje creaehe anropuTMe W HUXOBE HMIUIEMEHTalldje, INTO TakKohe IMpeacTaBiba
OpUTHHAJAH HAyYHU JOTPHUHOC:
¢ UMIUIEMEHTalMja Koja pagd caMO Ha LEHTPaTHUM IMpOoIlecOpHMa, 3aCHOBaHa Ha
AITOPUTMY 3a JCJbCHY MEMOpPH]Y, OMHOCHO EeroBoj OpenMP mapamenuszanuju u3
tpeher nornasiba (OpenMP/MPI),
e HMIUIEMEHTaIlMja KOja paaW caMo Ha TpadUdIKAM IPOIECOpHMA, a 3aCHOBaHA je Ha
HMILIEMEHTAIU]| U3 yeTBpror nornasiba (CUDA/MPI),
e xuOpuIHA WMIUIEMEHTaIlMja 3acHoBaHa Ha MPI mpommpemy aiaropuTMa W3 IMETOT
nornassea (Hybrid/MPI).

>EOTPAL

MNperpesunua 118, 11080 3emyH - beorpaa, Cpbuja
Tenedo: +381 11 3713000, Gakc: +381 11 31621
NUB: 100105980, Matiurm 6poj: 67018029, Texyhin pauyh: cus-covsd-23 —

Cenmo mornasmbe ce 0aBH BH3yeNH3alUMjOM BEJIMKE KOJIMYWHE MO/aTaka KOjy TeHepuuly
NporpamMH pa3BHjeHHd Y OKBHPY Te3e H OIHcyje eHKacaH MPUCTYN peluaBaiy OBOr npobiema
xopuuiheweM Vislt cobTBepckor okpyxema.

OcMO norfaBsbe, Koj€ MpEACTaB/ba OPUTHHAIAH HayyHW [ONPHUHOC Te3e, Mpoy4ara
nepdopMaHce U KOMIUIEKCHOCT CBHX Pa3BHjEHHX airOpuUTaMa M HHXOBHX HMILIEMEHTALH]a.
Y OBOM mOIaB/bYy C€ TEOPHjCKM MoJenupa yOp3awme M e(dHKAacCHOCT NapaieqHuX
UMIUIEMEHTalHja, @ OBH MOJEIH ce BepudHKyjy nopehemeMm ca AeTa/bHHM pe3yJiTaTHMa
mepewa nepdopMaHcu cBux nporpama. [locebaH nompHHOC OBOr MOrJiaB/ba je NpHMeHa
FeHEeTCKOr alNropuTMa Ha ONTHMM3aUMjy Mapamerapa XWOpPUIAHHX aNropuTama, LITO je
HEOMXOIHO 32 MaKCHMaIM3aLlHjy bUXOBUX nepdopmancu. [Topen MoryhHocTH Ja ce Ha OBaj
Ha4yMH oOlLleHe MOTpeOHH pauyHapCkH pecypcH 3a peliaBame oarosapajyher mnpoGiema
(nenuneapHe lllpenuHrepose jeqHauHHe y nOTpeOHOj pPe30TyLIMjH), pa3BHjeHa METOLOIOrH]a
32 TeCTHpale M MOJe/NH Cy O LIMper 3Havaja, jep ce MOry KOPHCTHTH M Ha APYrHM
pavyyHapCcKUM apXHTEKTypama, Kao H 3a Jipyre BpcTe XHOpHAHUX ajiropUTama.

JleBeTO moryaB/be NEMOHCTPHUpA KakO ce MpOrpaMH pa3BHjeHH Y OKBHpPY OBe Te3e MOry
KOPHUCTHTH Y HCTp@KHUBaly Yy GU3HIM KOHAEH30BaHE MaTepHje, OMHOCHO y obnacTH
yJATpax/iaJIHUX aroMa, Ha Mpumepy MpoydaBama (OpMHpama KBaHTHHX BopTekca y boze-
AjJHILITajH KOHIEH3aTHMa KpO3 Koje ce kpehe mpenpeka (JlacepckH CHOM). Y OBOM MOrJIaBjby
ce MpBO BEPU(PHKYjy pa3BUjeHH MPOrpamMH Ha MpPUMEPY 3a KOJU OCTOje EKCIIEPUMEHTATHH
pe3yJiTaTH, a HaKOH TOra Ce MCIMTYj€ 3aBUCHOCT KPUTH4YHe Op3MHE mpempeke 3a MojaBy
BOpTeKCa OJ jauMHEe AWMNON-AUNON HHTepakuuje. OBM pes3ysiTard MpeAcTaB/bajy 3a4eTak
Hay4HOT JIOTIpHHOCA Te3e U3 001acTH ¢U3MKe U Ha OBOj TEMHM KaHAMIAT MjlaHKpa Ja paaH y
6ynyhem neprony. JleceTo noraaBjbe CyMUpa pe3ysTaTe OCTBapeHe y TOKTOPCKOj T€3U H Jaje
npersiea 6yayhux npasaua HCTpakUBama.

Brnagumup JloH4ap je no cama o6jaBuo jenaH paa kareropuje M13 (morsasibe y TEMaTcKoM
300pHMKY), TPH paza kareropuje M2la, nea caomiurerwa kareropije M33 u Tpu caonuirema
kareropuje M34. Tlpema 6azn Web of Science, oBH paaoBu cy UMTHpaHH yKynHO 45 nyTa, a
43 myra 6e3 ayrouurara, y3 XHpiuoB HHAeKC 3. Jenan oA pagoBa kareropuje M2la jey Web
of Science 6uo o3Hauen kao Highly Cited Paper (top 1%) 3a nmepuon ox objaBsbuBama y
mapty 2016. ronune no okrtodpa 2017. ronuHe.

Hmajyhn cBe HaBeAeHO y BHAY, €2 3aJ0BO/LCTBOM Hpeaiaxem aAp Biagumupa Jlonuapa
3a Cryaentcky Harpaay HHcTHTyTa 32 pu3uky y Beorpany 3a HajGo/by 10KTOpPCKY Te3y
onbpameny Tokom 2017, roaumne.

V beorpany, 15. 03. 2018. roauHe

I v oo

Hay4YHH CaBeTHHK
HHcrutyT 32 duzuky y beorpany

YHUBEP3UTET Y BEOTPALY

UHCTUTYT 3A OU3UKY IBEOTPAL

Mperpesuua 118, 11080 3emyH - Beorpap, Cpbuja
Tenedon: +381 11 3713000, Pakc: +381 11 3162190, www.ipb.ac.rs
MUB: 100105980, MaTtnuHu 6poj: 07018029, Tekyhun pauyH: 205-66984-23

buorpaduja: 1p Baagumup Jlonuap

Bnagumup Jlonuap je pohen 28. okrodpa 1985. romune y HoBom Cany. OcHOBHe cTyuje Ha
[Mpupoano-matemaTnukoM (akyntery YHuBep3utera y Hosom Camy, cmep IOMIUIOMHpaHu
nHpopMaTHyap - MocjioBHa WHGopmaruka, ynucao je 2004. romune, a 3aBpmmo 20009.
roauHe. MacTep cTynuje Ha UCTOM (akyATeTy, Ha cMepy HH)OPMAIMOHU CUCTEMH, 3aBpIINO
je 2011. rogune. Ilxoncke 2011/2012 rogune je ymucao JOKTOPCKE cTyauje MHGOpMaTUKe
Ha JlemapTmany 3a MaremMaTuky W wuHpopMmatuky [IpupogHo-matemaTnukor (akynTera
VYuusep3utera y HoBom Cany, a mokTopcky aucepraumjy non HasuBoMm "Hybrid Parallel
Algorithms for Solving Nonlinear Schrodinger Equation" onopanno je 17. oxrobpa 2017.
TOJMHE IO PYKOBOACTBOM Ap AHTyHa banaxa u nmpod. ap Cphana Ilkpouha.

Jp Bnagumup Jlonuap je ox 2012. no kpaja 2014. ronuHe akKTUBHO Y4ECTBOBAO Y Pa3BOjy
nHpopmarmoHor cucrema [Ipupoano-maremarnukor ¢axynrera y Hosom Cany, rie je 6uo u
3amocieH. Ox ¢ebdpyapa 2015. je 3amocnen y MHcTuTyTy 32 Qu3uky y beorpany, y okBupy
Jlaboparopuje 3a mpuMeHy padyHapa y Haylnu HanmoHamHOT meHTpa M3y3€THHX BPEJHOCTH
3a M3yYaBame KOMIUIEKCHHX CHCTEMa, Ha IPOjeKTy OCHOBHUX HcTpaxkuBama OH171017
"Mogenupame 1 HyMEpHUKe CUMYJIallje CI0KECHUX BUILICUECTUIHNUX cucTeMa'.

I'maBHa Tema uctpaxuBama Ap Brnagumupa Jlonuapa cy napaneinu U XuOpuIHH HYMEPHUKA
AITOPUTMHU 32 pellaBarkbe HEMUHEApHUX NapUujaTHUX AUQEepeHIUjaTHUX jeAHAunHa W
BUXOBA MPUMEHAa Ha IMpPOydYaBame YATPaxiagHUX OO30HCKHUX CHCTEMa Ca AWTOJ-JHIION
uHTepakuujoM. Jlo cana je o0jaBuo jemaH pan xareropuje M13, Tpu pana xareropuje M21a,
JBa caommTema kateropuje M33 u Tpu caommrema kareropuje M34. Ilpema 6azu Web of
Science, OBM paioBH Cy LMTHpaHU YKynHO 45 myTa, a 43 myrta Oe3 ayronmrara, y3 XHUpPILIOB
uHzaekc 3. Jegan ox pagosa kareropuje M21a je y Web of Science 6uo o3nauen kao Highly
Cited Paper (top 1%) 3a nepuox oxn objaBibuBama y Mapty 2016. ronune no okrobpa 2017.
TOJMHE.

Crmmcak nyoaukamnuja ap Baagmmupa Jlongapa

ITornasspe y ucrakuyroj mounorpaduju mehynapoanor 3nagaja (M13)

1. V. Lonc¢ar, I. Vasi¢, and A. Balaz,
Efficient numerical tools for solving the nonlinear Schrédinger equation,
in Scientific Computing: Studies and Applications, Ed. C. Erling, pp. 63-157
NOVA Science Publishers (2017), ISBN: 978-1-53612-564-1

PanoBu y mehynapoauum gaconucuma ndysetHux Bpegunoctu (M21a)

1. V. Loné&ar, A. Balaz, A. Bogojevié, S. Skrbi¢, P. Muruganandam, and S. K. Adhikari,
CUDA programs for solving the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic
trap, Comput. Phys. Commun. 200, 406 (2016) [1®D(2016)=3.936]
DOI: 10.1016/j.cpc.2015.11.014

2. V. Lonéar, L. E. Young-S., S. Skrbi¢, P. Muruganandam, S. K. Adhikari, and A. Balaz,
OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the time-dependent dipolar
Gross—Pitaevskii equation, Comput. Phys. Commun. 209, 190 (2016) [1®(2016)=3.936]
DOI: 10.1016/j.cpc.2016.07.029

3. L. E. Young-S., P. Muruganandam, S. K. Adhikari, V. Lon¢€ar, D. Vudragovi¢ and A. Balaz,
OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross-Pitaevskii equation,
Comput. Phys. Commun. 220, 503 (2017) [1®(2016)=3.936]
DOI: 10.1016/j.cpc.2017.07.013

Caoniirema ca mehjyHapoauux ckymnoBa miramnana y mneiauau (M33)

1. V. Loné&ar, S. Skrbi¢, and A. Balaz,
Parallelization of minimum spanning tree algorithms using distributed memory architectures,
in Transactions on Engineering Technologies, Eds. G.-C. Yang, S-1. Ao, L. Gelman, pp. 543-554
Springer (2014), DOI: 10.1007/978-94-017-8832-8 39

2. V. Lonéar, S. Skrbi¢,
Parallel implementation of minimum spanning tree algorithms using MPI,
in IEEE 13th International Symposium on Computational Intelligence and Informatics (CINTI),
pp- 35-38 (2012), DOI: 10.1109/CINTI.2012.6496797

Caomniirema ca mehyHapoauux ckymosa miramnana y ussony (M34)

1. V. Lonéar, A. Balaz, A. Pelster,

Trapped Bose-Einstein Condensates with Strong Disorder,

V International School and Conference on Photonics - Photonica 2015, Belgrade, Serbia (2015)
2. V. Long¢ar, D. Vudragovi¢, A. Balaz, A. Pelster,

Rosensweig instability due to three-body interaction or quantum fluctuations?

DPG 2016 conference, Q17.2, Hannover, Germany (2016)
3. V. Long¢ar, D. Vudragovi¢, S. K. Adhikari, A. Balaz,

Parallel solvers for dipolar Gross-Pitaevskii equation,

VI International School and Conference on Photonics - Photonica 2017, Belgrade, Serbia (2017)

Opbpamena gqokropcka aucepranuja (MT70)

1. V. Lon¢ar,
Hybrid parallel algorithms for solving nonlinear Schrodinger equation,
Univerzitet u Novom Sadu, Prirodno-matematicki fakultet (2017)

Web of Science [v.5.27.2] - Web of Science Core Collection Citati... http://apps.webofknowledge.com/CitationReport.do?product=W...

InCites Journal Citation Reports Essential Science Indicators EndNote Publons Sign In Help English

2 Clarivate

Analytics

Search Search Results My Tools Search History = Marked List

Citation report for 5 results from Web of Science Core Collection between 1996 ~ and 2018 ~ | Go
You searched for: AUTHOR: (loncar v*) ...More

This report reflects citations to source items indexed within Web of Science Core Collection. Perform a Cited Reference Search to include citations to items not indexed within Web
of Science Core Collection.

Export Data: =~ Save to Text File v
Total Publications ¢ h-index e Sum of Times Cited O Citing articles i]
II II Average citations per o Without self citations o Without self citations @
item

1998 2017 43 30
9

Sum of Times Cited per Year

28 4

°

26
24 -
224
20 -
18
16
14
120
10

8

6

2016 2017

Sort by: Times Cited Date More v Page | 1 of 1

2014 2015 2016 2017 2018 Total Average

R] > Citations
per Year
Use the checkboxes to remove individual items from this Citation Report
0 0 12 27 6 45 15.00
f or restrict to items published between 1996 ~ and 2018 ~ Go
1. CUDA programs for solving the time-dependent dipolar Gross-
Pitaevskii equation in an anisotropic trap
0 0 12 14 3 29 9.67

By: Loncar, Vladimir; Balaz, Antun; Boojevic, Aleksandar; et al.

1of2 3/15/18, 11:07

Web of Science [v.5.27.2] - Web of Science Core Collection Citati...

20f2

COMPUTER PHYSICS COMMUNICATIONS Volume: 200 Pages: 406-410

Published: MAR 2016

2. OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving

the time-dependent dipolar Gross-Pitaevskii equation

By: Loncar, Vladimir; Young-S, Luis E.; Skrbic, Srdjan; et al.

COMPUTER PHYSICS COMMUNICATIONS Volume: 209 Pages: 190-196

Published: DEC 2016

3. OpenMP GNU and Intel Fortran programs for solving the time-

dependent Gross-Pitaevskii equation

By: Young-S, Luis E.; Muruganandam, Paulsamy; Adhikari, Sadhan K.; et al.

COMPUTER PHYSICS COMMUNICATIONS Volume: 220 Pages: 503-506

Published: NOV 2017

4. Distributed Memory Parallel Algorithms for Minimum Spanning

Trees

By: Loncar, Vladmir; Skrbic, Srdjan; Balaz, Antun
Edited by: Ao, SI; Gelman, L; Hukins, DWL; et al.
Conference: World Congress on Engineering (WCE 2013) Location: Imperial Coll
London, London, ENGLAND Date: JUL 03-05, 2013

Sponsor(s): IAENG, Soc Artificial Intelligence; IAENG, Soc Bioinformat; IAENG,

http://apps.webofknowledge .com/CitationReport.do?product=W...

Soc Comp Sci; IAENG, Soc Data Mining; IAENG, Soc Elect Engn; IAENG, Soc
Imaging Engn; IAENG, Soc Ind Engn; IAENG, Soc Informat Syst Engn; IAENG,

Soc Internet Comp & Web Serv; IAENG, Soc Mech Engn; IAENG, Soc Operat

Res; IAENG, Soc Sci Comp; IAENG, Soc Software Engn; IAENG, Soc Software
Engn; IAENG, Soc Wireless Networks

WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL Il

Book Series:

Lecture Notes in Engineering and Computer Science Pages: 1271-+

Published: 2013

5. Parallel implementation of minimum spanning tree algorithms

using MPI

By: Loncar, Vladimir; Skrbic, Srdjan

Edited by: Szakal, A

Conference: 13th IEEE International Symposium on Computational Intelligence

0 0 0 10
0 0 0 2
0 0 0 1
0 0 0 0

and Informatics (CINTI) Location: Budapest, HUNGARY Date: NOV 20-22, 2012

Sponsor(s): IEEE

13TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL
INTELLIGENCE AND INFORMATICS (CINTI 2012) Book Series: International
Symposium on Computational Intelligence and Informatics Pages: 35-38

Published: 2012

Select Page 6] M]

Sort by: Times Cited Date

5 records matched your query of the 40,229,813 in the data limits you selected.

© 2018 CLARIVATE ANALYTICS

Save to Text File v

More

TERMS OF USE

PRIVACY POLICY

FEEDBACK

Page | 1

4.00

1.50

0.17

0.00

of 1

3/15/18, 11:07

Konuje objaB/penux pajgoBa U APYyrux
Iy OJIMKAaIIja

Caj Erling

Editor

Studies and Applications
L NOVA 2

COMPUTER SCIENCE, TECHNOLOGY AND APPLICATIONS

SCIENTIFIC COMPUTING

STUDIES AND APPLICATIONS

No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or
by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no
expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of information
contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in
rendering legal, medical or any other professional services.

COMPUTER SCIENCE, TECHNOLOGY
AND APPLICATIONS

Additional books 1n this series can be found on Nova’s website
under the Series tab.

Additional e-books in this series can be found on Nova’s website
under the eBooks tab.

COMPUTER SCIENCE, TECHNOLOGY AND APPLICATIONS

SCIENTIFIC COMPUTING

STUDIES AND APPLICATIONS

CAJ ERLING
EDITOR

nova

science publishers
New York

Copyright © 2017 by Nova Science Publishers, Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying,
recording or otherwise without the written permission of the Publisher.

We have partnered with Copyright Clearance Center to make it easy for you to obtain permissions to
reuse content from this publication. Simply navigate to this publication’s page on Nova’s website and
locate the “Get Permission” button below the title description. This button is linked directly to the
title’s permission page on copyright.com. Alternatively, you can visit copyright.com and search by
title, ISBN, or ISSN.

For further questions about using the service on copyright.com, please contact:
Copyright Clearance Center
Phone: +1-(978) 750-8400 Fax: +1-(978) 750-4470 E-mail: info@copyright.com.

NOTICE TO THE READER

The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or
implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of information
contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary
damages resulting, in whole or in part, from the readers’ use of, or reliance upon, this material. Any
parts of this book based on government reports are so indicated and copyright is claimed for those parts
to the extent applicable to compilations of such works.

Independent verification should be sought for any data, advice or recommendations contained in this
book. In addition, no responsibility is assumed by the publisher for any injury and/or damage to
persons or property arising from any methods, products, instructions, ideas or otherwise contained in
this publication.

This publication is designed to provide accurate and authoritative information with regard to the subject
matter covered herein. It is sold with the clear understanding that the Publisher is not engaged in
rendering legal or any other professional services. If legal or any other expert assistance is required, the
services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS
JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A
COMMITTEE OF PUBLISHERS.

Additional color graphics may be available in the e-book version of this book.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-53612-584-9 (eBook)

Published by Nova Science Publishers, Inc. 7 New York

Preface

Chapter 1

Chapter 2

Chapter 3

Index

CONTENTS

Exploring the Potential for Scientific Computing
on the Java Platform of Scala and Groovy with the
Scalalab and Groovylab Environments

Stergios Papadimitriou and Lefteris Moussiades

The Structure and Dynamics of Meetup
Social Networks
Marija Mitrovi¢ Dankulov and Jelena Smiljani¢

Efficient Numerical Tools for Solving the
Nonlinear Schrodinger Equation
Viadimir Loncar, Ivana Vasi¢ and Antun Balaz

vii

33

63

159

In: Scientific Computing ISBN: 978-1-53612-564-1
Editor: Caj Erling (© 2017 Nova Science Publishers, Inc.

Chapter 3

EFFICIENT NUMERICAL TOOLS FOR
SOLVING THE NONLINEAR SCHRODINGER
EQUATION

Vladimir Loncar, Ivana Vasi¢ and Antun BalaZ*
Scientific Computing Laboratory,
Center for the Study of Complex Systems,
Institute of Physics Belgrade, University of Belgrade,
Belgrade, Serbia

Abstract

The nonlinear Schrodinger equation or Gross-Pitaevskii equation
plays an important role in several areas of physical sciences. It is used in
various forms to describe prominent physical phenomena, such as propa-
gation of light in a nonlinear medium and the dynamics of weakly inter-
acting Bose-Einstein condensates studied in experiments with ultracold
quantum gases. Large-scale numerical simulations for realistically large
physical systems based on this equation have provided valuable insights
into the properties of many interesting phenomena. Furthermore, numer-
ical solutions of this equation are now routinely used for interpretation of
experimental data and are indispensable for day-to-day operation of many
laboratories, as well as for the design of new experimental setups.

In this chapter we review an efficient numerical algorithm for solv-
ing this nonlinear partial differential equation in three spatial coordinates

*Corresponding Author Email: antun.balaz@ipb.ac.rs.

64 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

and either real or imaginary time, based on the Crank-Nicolson split-step
semi-implicit method. Integration over imaginary time provides a direct
access to stationary solutions of the full time-dependent problem. General
spatially anisotropic solutions in three spatial variables are considered, as
well as dimensionally-reduced problems such as radially or spherically
symmetric cases.

Stability and efficiency of the presented method is ensured in the fol-
lowing way. The discretization error in both time and spatial step is of
the second order. Moreover, integration over the time variable is split into
two steps that are dealt with in a different, but optimized way. In the first
step, only local part of the equation is taken into account and integration is
performed exactly with respect to it. In this way the nonlinear term is con-
sidered in a straightforward, but optimized way that allows for a treatment
of strong nonlinearities. In the second step, spatial derivatives are consid-
ered separately. Semi-implicit nature of the algorithm also contributes to
its stability.

This method is numerically implemented using the standard C pro-
gramming language. Further computational optimization is achieved
by employing the state-of-the-art parallelization techniques for different
computing platforms: OpenMP (for shared memory multiprocessing),
OpenMP/MPI (for distributed memory systems, where each compute
node uses OpenMP to maximize performance), CUDA (for single GPG-
PUs), CUDA/MPI (for distributed memory systems, where each compute
node has GPGPU installed), as well as their hybrid combinations. The
scalability of the algorithm with the number of processors and compute
nodes is discussed.

As applications and extensions of the above developed algorithms, we
present three relevant examples from the field of ultracold atoms. The first
application illustrates how the non-equilibrium dynamics of multicompo-
nent Bose-Einstein condensates can be numerically studied, including the
excitation dynamics of a condensate with a coupling of the effective spin
and angular momentum in the second application. The third application
demonstrates how formation of vortices can be studied in a condensate
featuring contact, as well as long-range dipole-dipole interaction.

PACS: 02.60.Lj, 02.60.Jh, 02.60.Cb, 03.75.-b

Keywords: Bose-Einstein condensate, Gross-Pitaevskii equation, Dipole-
dipole interaction, OpenMP, MPI, CUDA, Crank-Nicolson method

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 65

1. Introduction

One of the important breakthroughs in physics of the twentieth century was the
development of quantum mechanics. The key ingredient of this theory is the
Schrodinger equation: a linear equation that governs the time evolution of a
quantum system. In one of its common representations, Schrodinger equation
is a partial differential equation.

Full quantum description of an interacting many—body system easily be-
comes computationally demanding due to exponentially increasing underlying
vector space with the system size. For this reason, approximate descriptions
that capture main physical phenomena are highly sought—after. The nonlinear
Schrodinger (NLS) equation represents an effective, mean—field description of a
quantum system. It is of great relevance in the field of cold atoms, in particular
for a description and understanding of a weakly interacting bosonic systems at
low temperatures in the regime of Bose—FEinstein condensation [1]. In this con-
text, the equation is widely known as Gross—Pitaevskii equation [2, 3] and it has
provided valuable theoretical understanding of experimental results. Another
field of research where the NLS equation plays a prominent role is the field of
nonlinear optics that was initiated by the discovery of lasers in 1960 [4]. As
analytical solutions of the NLS equation are limited to just a few special cases,
the NLS equation was investigated numerically starting in the seventies using
several different numerical methods [5]. The development of present—day com-
puter architectures promotes numerical simulations and enables studies of more
complex physical problems for experimentally relevant system sizes.

In this chapter we first introduce the NLS equation and derive an algorithm
for obtaining its solutions based on a split—step method. In the next step we
present an optimized implementation of this algorithm that heavily exploits par-
allelization techniques available on present—day state—of—the—art computer ar-
chitectures. In the last sections of this chapter we illustrate applications of the
described method for three examples that are currently in a research focus of
cold—atom community.

66 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

2. Algorithm and Computational Implementation

2.1. Introduction

The time—dependent nonlinear Schrodinger equation in a dimensionless form is
given by

e (—%A V() +g|w<r,t>\2) b, b) M

where A is the three-dimensional Laplace operator A = g—; + 68—; + %. The
usual Schrodinger equation describing the time—evolution of a single—particle
wave function v (r, t) is recovered by eliminating the nonlinear term by setting
g = 0. The wave function depends on four variables: three spatial coordinates
r = (z,y, z) and time t. The real-valued function V' (r) corresponds to an ex-
ternal potential, and before mentioned Laplacian stems from the kinetic energy.
Initial conditions are appropriately set by fixing ¢ (r,t = 0) = ¥initial(r) and
then the time evolution for ¢ > 0 is studied. The equation (1) conserves the
normalization of the function ¢ (r, t)

/ dr (e, P = 1, @)

which in physical terms corresponds to the conservation of the particle number,
as well as the total energy of the system,

o /dmp*(r,t) (—%A V) + I, t)\2> et . G

In the context of cold atoms, the complex—valued function) (r, t) stands for
a condensate wave function — an effective single particle wave function macro-
scopically occupied by bosonic particles. The constant g is set by weak atomic
interactions that we approximate by contact interactions: repulsive interactions
yield g > 0, while attractive interactions are described by g < 0. The phase
of a system described by the nonlinear Schrodinger equation is called a Bose—
Einstein condensate (BEC). Macroscopic occupation of a single particle state (a
finite condensate fraction) is a consequence of bosonic statistics (Bose—Einstein
statistics) that becomes of key importance at very low temperatures. The phe-
nomenon of Bose—Einstein condensation was predicted in early days of quan-
tum mechanics in 1924 when the Bose—Einstein statistics was derived for the

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 67

first time. After several decades of experimental efforts, first experimental re-
alization of a BEC with nanokelvin-cold atoms was reported in 1995 [6, 7, 8].
This success marked the onset of intense research activity in the field of cold
atoms where the description based on the nonlinear Schrodinger equation played
an important role [9, 10, 11, 12, 1, 13, 14]. Formally, the equation (1) can be
derived by using the time—dependent variational principle. The time—dependent
spatial density distribution of a condensate is given by

n(r,t) = [¢(r,)% 4)

Equation (1) governs the time evolution of a weakly interacting BEC. An-
other relevant question concerns finding a stationary solution ¢ (r) that mini-
mizes the energy

By= [dvvto (—%A V() + gww) W), 5)

for a given potential V' (r) and interaction constant g. For a moment we are con-
sidering a stationary problem, so v is a function of three spatial variables only.
To address this question we will use a variant of a well established gradient de-
scent method [15]. To this end, we introduce a label n = 0, 1, . . ., where ¥ (r)g
is our initial guess for the stationary solution. In the next step, the function v is
incrementally changed as

Y(r)nt1 — P(r)n = _GM(?Z&(:M ’

where € is an optimally chosen update step. The reasoning behind equation (6)
is a general idea of the gradient descent method: we move through the space
of functions 1 (r) along the direction in which the energy functional exhibits

(6)

the fastest decay. For a stationary solution y(r) it holds true %@) = 0 and
it corresponds to an extremum (minimum) of Fy. The last equation can be
rewritten as

oY(r,T)

or

— - (-3A+VE vl) v @

where 7 = ne is a label that keeps track of propagation through the space of
functions v (r). We notice that equation (7) can be derived from equation (1) by
a formal replacement ¢ — i7. For this reason, the variable 7 is named imaginary

68 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

time. In contrast to the energy conservation (3), imaginary time propagation by
its construction ensures that with a right choice of initial function, we will reach
a minimum of the energy functional (5) at long enough 7. Moreover, imaginary
time propagation as given in (7) does not preserve normalization (2), so this
condition should be provided additionally, either by introducing an appropriate
Lagrange multiplier or by re—normalizing v (r, 7) in each propagation step (6).
Finally, we note that the solution ty(r) which minimizes Ey evolves in time
according to the nonlinear equation (1) as

W(r,t) = e *o(r), (8)

where p 1s a chemical potential

u= [aruiin (—%A V() +g|¢o(r)|2> do(r) ©)

More recent experimental progress in the field of cold atoms has enabled
study of more complex and fascinating physical systems whose theoretical un-
derstanding necessitates generalizations and extensions of the basic NLS equa-
tion (1). One of the topics that has attracted lot of attention recently is real-
ization of a BEC of atoms with strong magnetic dipole moment [16, 17, 18].
To describe the system, we define z—axis as the polarization axis of the dipole
moments. In this case the dipole—dipole interaction is proportional to [19]

1 —3cos?

Vaa(R) = RPE

(10)

where vector R = r — r’ stands for the relative position of the two dipoles, and
6 is the angle between the vector R and the z—axis. The dipolar NLS equation
1s given by

Op(r, 1)
ot

i - (—%A FV@) + g0 + g0 [dViP (e -)0 t>>|2))
an

The coefficient gqq sets the strength of the dipolar interaction. Other general-

1zations of the NLS equation (1) will be discussed in sections 3 (two—component

BEC) and 4 (BEC with the coupling of spin and angular momentum).

In order to further illustrate wide applicability of the NLS equation, here
we present its form used in nonlinear fiber optics. Starting with Maxwell’s
equations and using several justified approximations, it can be shown that the

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 69

propagation of the pulse filed envelope A(z,y,t,z) along the z direction is
governed by the NLS equation of the form [20, 4]

OA(z,y,t,2) | 1 o2 o2 o2 9
OAEIEE) 2 (ot s+ O) At)| A, a2
where the coefficient § describes dispersive effects and the coefficient v de-
scribes nonlinear effects. In the following, we mainly consider equations (1)
and (11), but we note that all the discussed algorithms and their numerical im-
plementations can be used to simulate equation (12) as well.

2.2. Algorithm

As the NLS equation (1) has been widely used and solved numerically, various
types of numerical methods have been applied to this purpose [5]. A recent
review paper [21] provides extensive comparison of the properties of different
numerical methods used to solve the NLS equation. Broadly speaking, numeri-
cal methods for solving equation (1) are either finite difference approximations,
pseudo spectral methods or finite element methods. Depending on the applied
time—discretization scheme, a finite difference method can be explicit, implicit,
semi—implicit or split—step approximation. Here we follow derivations from ref-
erence [22, 23] and present a simple and efficient numerical method to integrate
the NLS equation (1). From the numerical point of view, real-time propagation
according to equation (1) and imaginary—time propagation (7) can be imple-
mented in a very similar manner.

In order to integrate equations (1) and (7) in time, we perform time dis-
cretization t = tg + ne, n = 0,1,2,..., ¥(r,t) — (r),. It turns out that
optimal ways to deal with spatially local and non—local terms of these equations
are different, hence we further split integration over time into two consecutive
pieces. This approximation formally corresponds to a replacement of equation
(1) by a set of two equations

PPED () + gl) ol (13)
z‘a‘”éj’t) = —%Awr,t), (14)

assuming that the result of integration of equation (13) is the initial condition
for solving equation (14). The split-step approximation given by (13) and (14)
is valid only for short-enough time interval € and introduces a numerical error
of the order O(&?).

70 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

For practical reasons in a general three-dimensional situation, we further
split equation (14) into three parts treating spatial derivatives over the three spa-
tial coordinates separately. Thus, in this way we obtain a set of four consecutive
equations

t
2D e (15)
where i € {1,2, 3,4} and we introduced
Hy = V(r) + gli(r,t)]% (16)
1 02 1 92 1 92
H=-——— Hy3=——, Hy=-———=. 1
2 2 0z’ s 2 0y?’ 4 2 022 (7

Accordingly, between configurations n and n + 1, we introduce three interme-
diate states labeled by n + %, n + %, n—+ % such that

Y(r) i1 = exp [—ie (V(r) + gl (r)al*)] 2 (x)a (18)

and
s~ 0@y = S [0, 0m),] (9
T N S NP ICo WY IR c'0
et~ s = o (e 0] @D

The result (18) gives an exact, analytical solution of equation (13). In this way
the nonlinear term has been properly taken into account providing a stability of
the employed numerical scheme for arbitrary strong nonlinearity coefficient g.
In the equations (19, 20, 21), we have used the semi—implicit Crank—Nicolson
method [24], which is second—order accurate in the time step € and uncondi-
tionally stable method. The accuracy of the approximation is O(g2).

To reduce the obtained differential equations to the algebraic form, we ad-
ditionally perform space discretizations with the discretization steps hy, hy,
and h,. To this end, we introduce integer indices ¢, j, k, which take values
0<i<N,0<j<N,0<k< N, such that ¢ (z;, ¥, 2k)n = Vijkn
where x; = (—% + z) h., and similarly for y and z. We also approximate
second—order spatial derivatives in the standard way via the central difference

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 71

formula:

2
ag—(;)n — LQ (Vit1,5,km — 2%ijkn + Yic14kn) (22)
x hZ
with the error of the order of h2. We consider large enough grids such that we
can use boundary conditions (0, j, k), = 0,1 (N, j, k), =~ 0 and similarly
in the other two spatial directions. As a result of using approximation (22) in
equation (19), we obtain a tridiagonal system of equations

A ez T Bwi,j,k:,m% - A%—l,j,k,m% = 0i, (23)

for each j and k, where A = B=1+ 2h2 and

4h2 ’
_ >k
0; = Aqvbi-i—l,j,k,n-l—i + B wz’,j,k,n-l—i + Awi—l,j,k,n-i-i :

A solution of this tridiagonal system of equations can be cast in the form

1/’i+1,j,k,n+% - O‘“/)i,j,k,mr% + Bis (24)
and from this ansatz we find the recursive relations for the solution:
A 0 + AB;
= - = TP 25

From the boundary condition ¢, jiknt2

values for o and 3, an,—1 = On,—1 = 0, which we use to solve the recursive
equations (25). With another boundary condition ikn+2 = 0, we finally
3J)) 4

= ¢N jkntl = = 0, we derive initial

solve equation (24). Similar procedure is afterwards followed in y and z direc-
tion. Due to the tridiagonal form of the above system of equations, the com-
plexity of the overall algorithm is proportional to the number of discretization
points, i.e., O(NzN,N).

Once the ground—state solution g(r) is calculated using the imaginary—
time version of the above algorithm, the corresponding value of the ground—state
energy Iy of the system can be calculated by numerically integrating expression
(5). The described algorithm is implemented using the Fortran programming
language [22] and the C programming language [23]. Further computational
optimization is achieved by employing the state—of—the-art parallelization tech-
niques for different computing platforms: OpenMP (for shared memory mul-
tiprocessing) [25] and hybrid OpenMP/MPI (for distributed memory systems,
where each compute node uses OpenMP to maximize performance) [26].

72 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

In order to solve the dipolar NLS equation (11) numerically, we need to deal
with the integral on the right—hand side of this equation efficiently. To this end,
we exploit the fact that the Fourier transform of a convolution integral is given
by a product of Fourier transforms of its components

Lia(r,t) = / dr'Vaa(r — ')n(r’, t) = / (Qd:)g

where we define the direct and the inverse Fourier transformation as:

1
(2m)?

e *Va(k)(k,t), (26)

A(k) = / drA(r)e™™, A(r) = / dkA(k)e ™, (27)

The Fourier transform of the geometric factor (10) stemming from the dipolar
interaction can be obtained analytically and is given by

- A [3K2
Vaa(k) = ?” (5~ 1) . (28)

The Fourier transform of n(r’, t) and the inverse Fourier transform from equa-
tion (26) are calculated numerically using optimized libraries such as FFTW
[27]. Finally, the obtained numerical value I44(r, t) of the integral (26) is used
in the first part of the split—step approach (18) as:

(), 1 = exp [—ie (V(r) + gl (r)nl* + gaalaa(®)n) | ¥ (x)n. (29)

Numerical codes implementing the described algorithm for solving the time—
dependent dipolar NLS equation are written in the Fortran and in the C pro-
gramming languages [28]. CUDA parallel version of the algorithm is developed
for single GPGPUs [29], as well as a hybrid CUDA/MPI version for distributed
memory systems, where each compute node has GPGPU installed [30].

2.3. Parallelization of the Algorithm

Let us note that the tridiagonal systems of equations (23) can be solved sepa-
rately for different values of j and k. This feature is essential and can be directly
exploited to parallelize numerical implementation of the above described algo-
rithm. In fact, this has been done for practically all available modern computer
architectures and platforms, and we briefly outline all implementations.

Initial algorithm for solving the NLS equation with the contact interaction
term using Crank-Nicolson method was published in reference [22], which also

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 73

Nx

1D |« > 3D Nx
>
EEEE , & ,
dx Ay
>
2D < Nx ol Z
A
\ J
>
Z
dy, g
dy ' dx dz

-

dx

Figure 1. Example of 1D, 2D and 3D meshes with Nx, Ny and Nz discretization
points in x, y and z direction, respectively, and the corresponding spacings dx,
dy and dz.

includes a serial implementation in Fortran. This was followed by the imple-
mentation written in C [23], which includes serial and parallel implementation
for shared memory systems consisting of one or more multi-core CPUs using
OpenMP approach. Fortran OpenMP implementation was also provided [25],
as well as a full parallel MPI version for distributed memory systems, i.e., com-
puter clusters with multi-core CPU nodes [26]. An extension of the algorithm
to include the dipolar interaction term was published in reference [28], where
the authors provided two serial implementations, in C and Fortran. This was
followed by an implementation written in Nvidia CUDA for hardware acceler-
ators in the form of GPUs [29], and later by a comprehensive suite of programs
that includes OpenMP, MPI, CUDA, as well as their hybrid combinations [30].

To introduce the parallelization strategy, we start with the description of the
discretization scheme used by the algorithm. Let Nx, Ny and Nz be the number
of points in each direction, corresponding to the x, y and z directions in one,
two or three dimensions (1D, 2D and 3D, respectively). In other words, the
number of points in 1D is defined by Nx, in 2D by Nx and Ny, and in 3D by Nx,
Ny and Nz. Discretization points in each direction are equidistant, with their
spacing defined in dimensionless units by variables dx, dy and dz, illustrated
in Figure 1.

The mesh determines how the space is discretized, but the actual values of

74 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

I - TR STET T

ntimes

Figure 2. Main loop of the real-time propagation algorithm in 3D.

the wave function, which is also discretized by the mesh, need to be stored in
a separate array. For convenience, we refer to this array as psi variable. This
variable is defined as a vector of size Nx in 1D, as Nx X Ny matrix in 2D and as
Nx X Ny X Nz tensor in 3D. In real-time propagation, the wave function values
are complex, while in imaginary-time propagation they are purely real, which
determines the type of psi variable.

Time is discretized according to t,, = tg + ne, with the time step ¢ stored in
a variable dt. Taking into account the time step and the total amount of physical
time we wish to simulate, we determine the number of iterations required. The
main part of the algorithm is a loop where each iteration corresponds to one
time step of the propagation. Inside the loop, we update the wave function
by propagating it in time with respect to different parts of the Hamiltonian,
according to the split-step scheme described in section 2.2 This is illustrated in
Figure 2.

In each step of the main loop, wave function values are computed along the
discretization mesh in several smaller steps. First such substep is the calculation
of the dipolar interaction term (for programs where it is taken into account,
otherwise it is omitted). We have two further substeps in 1D, pertaining to
propagation w.r.t. H; and Hs. In 2D and 3D we follow a similar procedure
and add further substeps for H3 and H,. Each substep produces intermediate
values of the wave function that are used in the next substep. The order of the
substeps dealing with parts of the Hamiltonian with spatial derivatives (Ho, H3
and H,) can be arbitrary, a feature useful in hybrid and distributed memory
algorithms. Propagation of the wave function w.r.t. H; relies on the availability
of the dipolar interaction term value, which is computed in the first substep,
before we start with the update of the wave function.

When necessary, the dipolar interaction term is computed using the discrete
Fourier transform (DFT). DFT of a sequence is commonly implemented by re-
lying on the Fast Fourier transform (FFT) algorithm via an external library.
From equation (26) it follows that we first need a DFT of a sequence consisting

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 75

- - e s e | -

ntimes

Figure 3. Main loop of the imaginary-time propagation algorithm in 3D, which
introduces an additional step of normalization.

of absolute squares of wave function values. The resulting complex-valued se-
quence is then multiplied by the Fourier transform of the dipolar potential. This
transform is a known function (28), precomputed for a chosen spatial mesh and
stored in an array. Next, by performing the inverse DFT we get the dipolar
interaction term stored in the resulting array, which we then use to propagate
the wave function w.r.t. 1. In 2D and 3D, we need multidimensional DFT,
which can be computed by the composition of a sequence of 1D DFTs along
each direction.

The substep in which the wave function is propagated w.r.t. the Hamilto-
nian part without spatial derivatives (/) proceeds by employing further nested
loops over mesh points. Part of the H; is the trap potential V' (r), which, like
Fourier transform of the dipolar potential, can be computed only once during the
initialization, and then reused. We assume that the trap potential is static, but in
case of a time-varying trap potential, the algorithm can be modified to update
the trap potential before this substep, i.e., at the beginning of each iteration. The
remaining substep, or substeps in 2D and 3D, propagates the wave function by
relying on the Crank-Nicolson scheme. We need to perform a backward sweep
of the mesh in each direction to determine the corresponding Crank-Nicolson
coefficients «, 3 and d for each direction, followed by a forward sweep to deter-
mine the solution for the entire space range. The algorithm for imaginary-time
propagation is similar to the one discussed above, with the addition of the nor-
malization step at the end of each iteration of the main loop, as illustrated in
Figure 3. To normalize the wave function, we first need to compute its norm
and then to divide the wave function values with that norm.

We see that the algorithm is computationally very demanding, as it requires
multiple passes over the entire mesh in each iteration of the main loop. In 2D
and 3D, the total number of discretized points sharply increases, making this
problem even greater. As we have identified above, several variables can be
moved out of the main loop and computed only once, however the remaining
calculations are still very demanding, hence the need for parallelization.

76 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

The described substeps cannot be executed concurrently, as the intermediate
values they produce are used in subsequent substeps. Instead, parallelization of
the algorithm can only be achieved by focusing on the mesh loops inside sub-
steps. This is an obvious choice for shared memory systems, as all data stored
in the memory is local and accessible to all participating processes, removing
the need for data transfers between processes. The loops themselves can eas-
ily be parallelized if they do not contain recursive relations. This is true for
the substeps dealing with the computation of the dipolar term and propagation
w.r.t. ;. Substep involving H9 cannot be easily parallelized in 1D, as it has
recursive relations in both backward and forward sweeps. In general, recursive
relations can be parallelized using the scan algorithm [31] (also known as the
generalization of prefix sum algorithm [32]), however the implementation com-
plexity of such an algorithm made us discard this approach. In 2D and 3D,
we can exploit the fact that the recursive relations appear only in the innermost
loops of the substeps involving Hs, Hs and H,. Thus, we can achieve paral-
lelization by dividing the work among the processes at the level of the outermost
loop.

In addition to the above outlined parallelization that can be naturally im-
plemented on a single computer using OpenMP approach, one can also utilize
modern GPUs to parallelize the algorithm on a single node, and even combine
CPU and GPU into a hybrid algorithm. We first discuss CUDA-based paral-
lelization, introduced in reference [29]. The significant differences in architec-
ture of the GPU and its accompanying execution model on one side, and CPU
architecture with its conventional execution model on the other side, do not re-
sult in significant changes to the main algorithm for the case of Nvidia CUDA
implementation. From the algorithm’s point of view, both CPU and GPU are
shared memory systems with multiple processing units, even though they are
vastly different, and therefore can be used in a similar manner. Main loop of
the algorithm remains unchanged, as well as each substep. However, one has
to replace the FFTW library used by C/OpenMP programs with the cuFFT li-
brary, which is available in CUDA. cuFFT provides two interfaces: the native
one and the FFTW one [33]. FFTW interface is intended to be used as a drop-
in replacement for FFTW, allowing programs written primarily with FFTW in
mind to use CUDA GPUs with minimal modifications to the source code. While
this interface could be used as a temporary solution during the development of
CUDA programs, the goal of using CUDA for all computation relating to the
propagation of the wave function could only be reached with the native cuFFT

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 77

interface. This interface is modeled after FFTW but differs from it in the way
plans are created and executed. In cuFFT, precision and data type of the trans-
form is determined by the functions initiating execution of plans, which results
in a slightly different sequence of function calls and in improved performance.

In order to use CPU and GPU at the same time for hybrid algorithms, the
work has to be divided efficiently between them. If we put aside the obvious
hardware architecture difference between CPU and GPU, we can consider the
computer with GPU as being similar to the distributed memory system consist-
ing of two computing nodes with different characteristics. Both CPU and GPU
have their own memory, and are connected through a fast interconnect, in this
case the PCI-Express. This means that we need an approach similar to the one
distributed memory algorithms use to achieve the desired parallelization. The
most important difference here is that all data is available in main (CPU) mem-
ory, and only portions of it need to be transferred to GPU memory, as opposed
to the true distributed memory systems, where no single part of the system has
all the data. Therefore, the general approach to perform this type of hybrid
computation is to:

1. designate a portion of data to be processed by GPU,

2. copy that data to GPU while simultaneously using CPU for computation
over the remaining data,

3. transfer the data back from GPU, overwriting old data, and
4. synchronize CPU and GPU.

This flow is illustrated in Figure 4.

Note that data can be offloaded from CPU to GPU in various ways [34, 35]
and, in general, any data distribution scheme which targets distributed mem-
ory systems may be used. However, we settled on a simple approach using 1D
decomposition, also known as slab decomposition. When using slab decom-
position, data is distributed along one dimension, usually the slowest-changing
one, and the remaining dimension (in 2D programs) or dimensions (in 3D pro-
grams) of data remain local. This means that we can perform computation on
the local data efficiently, and no data exchanges are necessary. Depending on
a data access pattern, in our programs we rely on decompositions either along
the x direction (discretized with the Nx spatial points), or along the y direc-
tion (discretized with the Ny spatial points). In 3D programs, there is no need

78 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

1) Copy a portion of data to device

Host | \
Device] *
2) Perform computation concurrently stale data

»

Host \ \
Device] I
3) Copy data back from device
Host | |

A
Device] I

Figure 4. Flow of data between host and device.

to decompose the data along the z direction. In case we need data from the
distributed dimension to become local in order to perform some computation
(e.g., to update the wave function values when data are decomposed along the
x direction), we have to reassemble data in host memory and decompose again
along the appropriate dimension. Figure 5 illustrates this concept.

With the decomposition scheme in place, we can consider how to divide the
computation of the wave function propagation in time between CPU and GPU.
Once the data have been distributed between CPU and GPU, on the CPU side
only the exit condition of the outer loop needs to be adjusted, so that the CPU
processes a smaller number of elements (e.g., by replacing Nx with cpulNx).
Similar changes are required on the GPU side as well, however we also need to
ensure that GPU has valid data to work with, and that data are reassembled in
host memory after the computation on GPU is done.

Therefore, in the hybrid implementation we initially distribute the data
along the slowest-changing dimension. This allows CPU and GPU to simul-
taneously perform computation of wave function propagation w.r.t. H; and H3
parts of the Hamiltonian (and /4 when working in 3D). The propagation of the
wave function w.r.t. H9, corresponding to the x direction, can be done locally

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 79

>
\J
A
>
z
Y
- -
cpuNx " gpuNx Nx

Figure 5. Two offload patterns used. If offloaded along x direction, the y di-
rection remains local. If we need to access whole x direction data, we need to
decompose along y direction.

only if we decompose the data along the y direction beforehand. Note that we
do not have to transfer data from GPU back to host memory at the end of each
function, due to the fact that time propagation w.r.t. Hs, Hs and H, parts of
the Hamiltonian can be done in arbitrary order in each step. Without this, the
time propagation workflow of 3D programs would have to involve the following
steps, according to Figure 2:

1. calculate the dipolar term,

2. transfer the data decomposed along x direction to GPU,
3. propagate the wave function w.r.t. H;

4. reassemble the data in host memory,

5. transfer the data decomposed along y direction to GPU,
6. propagate the wave function w.r.t. Ho,

7. reassemble the data in host memory,

8. transfer the data decomposed along x direction to GPU,

80 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

9. propagate the wave function w.r.t. H3,
10. propagate the wave function w.r.t. Hy,
11. reassemble the data in host memory.

Rearranging the order of time-propagation substeps allows us to remove one
transfer of data to GPU and its subsequent reassembly in host memory:

1. calculate the dipolar term,

2. transfer the data decomposed along x direction to GPU,
3. propagate the wave function w.r.t. H,

4. propagate the wave function w.r.t. Hs,

5. propagate the wave function w.r.t. Hy,

6. reassemble the data in host memory,

7. transfer the data decomposed along y direction to GPU,
8. propagate the wave function w.r.t. Ho,

9. reassemble the data in host memory.

Therefore, we use the above, optimized sequence in all 3D programs, and simi-
larly in 2D.

To complete the hybrid algorithm, we also need to distribute computation of
the dipolar term between CPU and GPU, where complexity arises in performing
DFT on distributed data. Currently available FFT libraries target either CPU or
GPU for their computation, but unfortunately not both at the same time. There
are numerous attempts to develop specialized FFT libraries which would enable
this [36, 37, 38], however a full-featured library with support for R2C trans-
forms with advanced data layout is still not available. The approach we used is
to rely on existing libraries for actual transforms, but perform data distributions
manually. The libraries we use, FFTW on CPU and cuFFT on GPU, support ad-
vanced data layouts as well as working on a subset of the whole data, allowing
for an efficient implementation.

To perform the Fourier transform simultaneously on CPU host and GPU
device, we have to split the single multidimensional transform into a series of

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 81

1D transforms along each dimension of the input data, which can be computed
on CPU and GPU independently. This approach is known as the row-column
algorithm [39], and is often used in FFT libraries. The essence of this algorithm
can best be summarized in an example of a 2D FFT. Given a matrix Nx X Ny,
we compute the DFT in the following way:

1. Transfer portion of the input array, decomposed along the = direction, to
device memory. We transfer last gpuNx X Ny consecutive array elements
to GPU. This can be done as a single memory copy operation due to the
flat allocation that was used. The choice whether to offload data to GPU
memory from the beginning or the end of the input array is arbitrary.

2. Perform DFT along the y direction on both CPU and GPU concurrently.
CPU will perform cpulNx such transformations, while the GPU will per-
form gpuNx 1D DFTs. Each of these transforms will take a subset of the
input array, which are Ny/2 + 1 elements apart. Note that CPU will
not do anything with the last gpuNx X Ny elements.

3. Copy the array with the transform back from GPU to CPU, writing over
the stale data with the relevant portion transformed on GPU. After this
step, we have the complete array transformed along the y direction resid-
ing in host memory.

4. Transfer portion of the input array, decomposed along the y direction, to
GPU memory. Similarly to step 1, we transfer last Nx X gpuNy elements
to GPU.

5. Perform DFT along the x direction on both CPU and GPU. This time,
CPU will perform cpuNy /2 + 1 such transformations, while GPU will
perform remaining gpuNy /2 transformations. The halving of the num-
ber of transformations is due to use of R2C transformations. In each
transform, elements are Ny /2 + 1 places apart, while the first element
of each transform is adjacent to the previous one.

6. Copy the array with the transform back from GPU to CPU. With this step
completed, we have the full FFT of the input array residing in host mem-
ory. This step may be omitted if the computation that follows does not
require the FFT of input data to be fully assembled in host memory. This
is the case in our algorithm, as we use the resulting transformed array

82 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

1) Offload data
along x

4) Offload data
along y

Figure 6. Hybrid algorithm for concurrent FFT on host and device.

only for subsequent computation on GPU. Since the memory transfer is
expensive, omitting this step leads to significant performance improve-

ment.

The inverse Fourier transform can be done in an analogous way. In 3D, the
general principle remains the same, however, we do not separate the DFT into
three 1D transforms, but to one 2D and one 1D transform. We do this due to
better performance of 2D transforms, which in both libraries used is found to be
better than two 1D transforms. Figure 6 illustrates the DFT algorithm described

above.

And finally let us mention that several distributed memory implementations,
targeting computer clusters, were developed as well:

1. pure CPU version, which is built on top of the shared memory algorithm

(OpenMP/MPI]),

2. pure GPU version, which is built on top of the CUDA implementation of
the shared memory algorithm (CUDA/MPI),

3. hybrid version, which is based on the algorithm described in Chapter (Hy-

brid/MPI).

2) 1D FFT
along y

AAA

5) 1D FFT
along x

3) Copy data
back

6) Copy data
back (optional)

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 83

Two of the three implementations, the OpenMP/MPI and CUDA/MPI imple-
mentations, have been published in reference [30] and are available for down-
load [40, 41]. The Hybrid/MPI implementation is also publicly available [41].
The main challenges in the development of distributed memory and hybrid al-
gorithms were devising an efficient data distribution scheme that facilitates fast
data shuffling between computing resources. In the MPI implementations this
was done via a transpose operation realized in two ways, one relying on FFTW
and the other relying on MPI vector types and collective communications. Fur-
ther details can be found in reference [42].

2.4. Performance of Parallel Algorithms: Measurement Results
and Modeling

In previous section we presented various parallel implementations of programs
solving the dipolar and contact interaction GP equation without providing de-
tails of their measured performance. This section is dedicated to filling that gap.
We tested various scaling scenarios, strong and weak, from a single computing
node to the cluster. All testing was done at the PARADOX supercomputing fa-
cility located at the Scientific Computing Laboratory, Center for the Study of
Complex Systems of the Institute of Physics Belgrade.

Performance of hybrid implementations is highly dependent on the amount
of work offloaded to GPU(s), so the key to maximizing performance of these
versions is proper selection of parameters which control this feature. We used
evolutionary computation techniques to find the optimal solutions, as described
here. In the remaining subsections we give an overview of the tests and the
methodology they relied on, present the performance results and their modeling,
and finally discuss how to select the optimal algorithm for a given hardware
platform.

2.4.1. Optimization of Input Parameters for Hybrid Implementations

Hybrid implementations, running on a single computer or a cluster with mul-
tiple computing nodes, can potentially offer the best performance of all algo-
rithms presented in this thesis, by utilizing all allocated computing resources.
For this to happen, work must be divided between CPU and GPU in such a way
as to maximize their throughput and minimize their idle time. A question that
naturally arises is how to achieve this for any possible mesh size for a given
CPU/GPU combination. Unfortunately, there is no single best way to divide the

84 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

a) Equal division of work sync point

Host | | | tm

b) Optimized division of work

Host ’ H H H ‘

| >

Time

Figure 7. Execution timeline in a hybrid system: (a) with equal data distribution,
leading to unbalanced computation time; (b) with optimized data distribution
and ideal computation load.

work, since processing powers of CPUs and GPUs vary significantly. For ex-
ample, in a computer where a powerful new GPU is paired with an older type of
CPU, more work should be offloaded to the GPU, and vice versa for computers
with a powerful CPU and low-performing GPU. Even if the installed CPU and
GPU offer similar performance in terms of floating point operations per second
(as is the case for the PARADOX cluster), the differing architectures mean that
certain portions of the algorithm are better suited to CPU or GPU. If we were
to divide the work naively, e.g., equally, this would lead to unbalanced com-
putation, as illustrated in Figure 7(a), which in turn increases the computation
time.

To get over this problem, the described hybrid implementations have an
option to manually specify each parameter that controls the work being done
on a GPU. Ideally, this flexibility would allow us to overlap computation on
CPU and GPU as much as possible, thus minimizing the execution and idle
time of each resource. The execution timeline for the ideal case looks like the
illustration in Figure 7(b).

The aforementioned parameters include the total amount of data transferred
to GPU, the number of chunks, kernel grid size parameters and a special param-
eter controlling whether some functions will even be offloaded to GPU or not,
which is useful in situations where the CPU is much more powerful than the

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 85

GPU. In 3D programs, this amounts to 33 integer-valued parameters for which
we would like to find the optimal values for the desired mesh size on a given
computing system (with given hardware characteristics). Furthermore, there are
constraints that the parameters must satisfy. For example, the total amount of
data transferred to GPU must be divisible by the number of chunks, and the
size of a block that kernel launches must fit within the limits imposed by the
underlying GPU.

To evaluate any combination of parameters, the programs have to be exe-
cuted, and their execution time measured. The search space of 33 parameters
is clearly too large to be exhaustively traversed in a reasonable amount of time.
Fortunately, we can reduce the number of parameters we have to search through
at any single time by grouping them based on the synchronization point. Af-
ter the CPU and GPU synchronize, data have to be divided again, so the only
relevant parameters in the region between two synchronization points are the
ones controlling the division of work and the ones controlling the kernels which
are executed in that region. During a single iteration, CPU and GPU have to
synchronize four times:

1. after the FFT on local dimensions,

2. after the inverse FFT on the non-local dimension,

3. before the function performing propagation w.r.t. H9, and

4. after that function (which represents the end of a single iteration).

This gives us four distinct parameter sets to optimize: PS; with 6 parameters,
PSS, also with 6 parameters, PS3 with 15 parameters and PS4 with 5 parameters.
We can consider each parameter set independently.

We investigated several approaches to optimization of parameter sets: naive
brute-force search, iterative optimization via gradient descent, and metaheuristic
via genetic algorithm. Our goal was not to find the best possible optimization
algorithm for our problem, but rather to implement a reasonably good one. By
this we mean the algorithm which is not difficult to implement, which will give
us a set of parameters that are close to the optimal ones, and will not take a
long time to finish. Our focus was on 3D variants of both single node and
MPI versions of hybrid programs. The concepts presented here apply equally
to 2D variants and there is no important difference between the single node and

86 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

the MPI version, so we will not make this distinction in the remainder of this
section. We will now describe how the three approaches were implemented.

A brute-force search (BFS), or exhaustive search, considers every possible
combination of parameter values in order to find the optimal one. Even with
parameters divided into smaller sets, the exhaustive search takes too long, and
is only feasible if we narrow down the ranges of all parameters involved. Un-
fortunately, this is only possible when we have a deep understanding of the per-
formance of the CPU and GPU models used, when we can provide a reasonable
guess for the optimal solution. An alternative is to consider only certain values
along the range of a single parameter, rather than every value in the range. This
approach is feasible and we were able to find reasonably good parameter val-
ues using it. The downside is that this way we may miss the optimal values of
parameters, as they often lie between the selected test points. For instance, on
one PARADOX computing node and a mesh size 256 x 256 x 256, with the
work divided between CPU and GPU along the outermost, « dimension, if we
test only for the values of offloaded data to GPU that are multiples of 32 (i.e.,
32 x 256 x 256, 64 x 256 x 256, etc.), we will miss the optimal value which
lies around 140 x 256 x 256 (assuming all other parameters are fixed). Even
though BFS is often not feasible, it is useful as the baseline for the evaluation
of other methods we implemented.

With the BFS implemented as a baseline, we switched our focus to the im-
plementation of an iterative optimization algorithm. A well-known and widely
used algorithm is gradient descent (GD) [15]. It is an iterative procedure in
which every iteration aims to get closer to the minimum of the given function
F(x), where x represents a vector of function parameters. If the function F'(x)
is defined and differentiable around some point a, then F'(x) decreases fastest
in the direction of the negative gradient of F' at a. GD exploits this fact and
defines b as

b=a—-~VF(a), (30)

so that F'(b) < F'(a), for v small enough. This observation s used as a building
block for the algorithm. We start from an initial guess xg for a location of the
minimum of F’ and construct a sequence x,(n > 1) such that:

Xn = Xp—1 — vaF(Xn—l) . (3D

This sequence will eventually converge to the local minimum, if one exists. GD
1s most applicable to functions for which the gradient can be computed analyt-
ically, however it can also be used when the derivative can only be obtained

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 87

numerically. To apply it here, the execution time of our programs will be the
function F' that we minimize, and its arguments are the n = 33 parameters that
control the GPU. The execution time is measured as the average time of a sin-
gle iteration of the main time-propagation loop, sampled over a given number
of iterations. As explained earlier, we can divide the problem into four sepa-
rate minimization problems, with four sets of parameters of dimensionality m;
(¢ = 1,2,3,4), in the same way as in BFS. To numerically compute the k-
th partial derivative of one of the minimization functions at a set of candidate

parameters a, as, . . ., G, We use first order approximation:
oF _Flar,.. . ap +hg,ooam) — Flag, ..o ag, . am)
—(&1, e ey a/m) ~~ Y
8$Uk hk

(32)
where hj is the increment of a given parameter. Since the parameters are
integer-valued, we have to carefully choose the value of Ay, to be as small as
possible, while still satisfying all the constraints that the corresponding param-
eter may have w.r.t. other parameters. We note that in order to evaluate the full
gradient of F' at (ay, ..., a,,) we need to execute our programs m + 1 times.

We stress that execution times of our programs are not always the same due
to the hardware, software and OS scheduling issues, making the minimization
functions noisy. This noise affects the calculation of the gradient and could
point the algorithm in the wrong direction. We can detect this by checking if
the value of minimization function has increased in subsequent GD iteration,
and discard this move if necessary. While useful, resorting to this tactic means
that in case the GD gets stuck in a local minimum, it will not be able to get out
and thus will never reach the global minimum. A naive way to check if this
1s the case would be to start over from a different initial point, and see if the
GD algorithm converges to the same minimum. There are more sophisticated
approaches to addressing this issue, which we discuss later.

In general, it is not possible to completely eliminate noise, due to inherent
problems of accurately measuring time on a computer. However, we can try
to minimize it by increasing the precision of execution time measurement of
our programs. This can be achieved by averaging execution times over larger
number of iterations of the main time-propagation loop. Unfortunately, this
also means that the total execution time of the GD algorithm will significantly
increase.

Another issue in our implementation of GD arises when we have to select
the next values of our parameters based on the output values of previous GD

88 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

iteration. These output values are real-valued, meaning that we need to convert
them to integers somehow. Simply rounding them up or down to the nearest
integer will not be enough, especially for small value of +. For example, if we
set the initial value of some parameter to 10, and after one GD iteration the
proposed value of that parameter is 10.2, rounding it down will reset the value
back to 10, effectively discarding the whole GD iteration. To avoid getting stuck
in this way, our implementation selects the next possible value in the direction of
change. In the example above it would mean selecting 11 as the new value. This
change makes it impossible for the algorithm to converge, but it will usually stay
close the minimum where all proposed solutions are of similar quality.

With the GD algorithm implemented as described above, we are able to
get a set of optimized parameters from a random set of initial values. How-
ever, such optimized parameters are often suboptimal, and do not have the best
performance. This is due to the fact that in most cases the GD will converge
to the nearest local minimum, and there is no guarantee that that local mini-
mum is also the global one. Using our previous example from BFS, a mesh of
256 x 256 x 256, with GD we obtain that local minima exist for all power of
two values, i.e., parameters suggest offloading 2" x 256 x 256 to the GPU. If
we randomly select a small initial value, GD will get stuck in the nearest local
minimum, which in this example will be far from the global one, thus producing
a very bad solution. We can attempt to avoid getting stuck in a local minimum
by adapting the parameter v, also known as learning rate in machine learning
literature. Keeping the learning rate high for a first few iterations would allow
the algorithm to find the general location of the minimum, after which we could
gradually lower the learning rate until convergence is achieved, in a process
called annealing [43]. In practice this did not completely solve the problem, as
we found that the optimal learning rate to start with varies with the initial set of
parameters and the mesh size, and thus has to be manually selected. This com-
plicates attempts to automate the process of finding the optimal parameters for a
range of mesh sizes, which we needed as part of the tests of both hybrid imple-
mentations. A method to remove the manual tuning of the learning rate exists
[44], but we find it to be too complex to implement for our programs, because it
would require significant changes to the way the parameters are selected.

From the discussion above, we conclude that the GD is not the best-suited
method for the optimization in our case, mostly because our minimization func-
tion is noisy and the numerical computation of the gradient is costly. Derivative-
free optimization methods would be better suited to the problem, e.g., stochastic

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 89

approximation algorithms like simultaneous perturbation (SPSA) [45, 46], or
metaheuristics like genetic algorithms. We decided to use a genetic algorithm
approach, as it is simple to understand and implement, as well as easy to adjust
to get the desired behavior.

Genetic algorithm (GA) is an optimization method based on natural selec-
tion that mimics the process found in biological evolution [47]. GA works by
creating a population of individual solutions, which it then evaluates and mod-
ifies, creating a new population, and iterating this process. Unlike the classical
algorithms like GD, which iterate a single candidate solution towards the opti-
mal one, the GA iterates a population of solutions in which the best individu-
als approach the optimal solution. The initial population is usually created at
random, giving the GA different points in the search space to start from. The
individual solutions are evaluated using a user-supplied fitness function, giving
each individual a score based on how well they perform the given task. Indi-
viduals with the highest score are then selected to “reproduce” and create new
offspring, after which they may be mutated randomly. The offspring form a
new population, and the process can be repeated again. The GA continues until
a suitable solution is found, or after a certain number of generations has passed.

To implement a GA, we first have to decide how to represent an individ-
ual. Individuals are created based on their blueprint, called chromosome in GA
terminology. The most often used representation is bit-string [48], where all
properties of an individual (its genes) are serialized to an array of bits, and
then concatenated. More advanced representations exist, e.g., for encoding real
values, permutations and general data structures [49, 50], however since our
individuals are sets of integer parameters, we did not develop any special rep-
resentation and instead we used ordinary arrays of integers as a chromosome.
Therefore, each gene in a chromosome is a single GPU parameter of our pro-
grams. Individuals need to be evaluated using a fitness function. In our case,
this means executing the programs with the parameters extracted from the in-
dividual’s chromosome, and reporting the execution time as fitness score, with
lower execution time being better.

Next step is the implementation of the three GA operators: selection, re-
production (crossover in GA terminology) and mutation. Each operator can be
implemented in different ways. Most common type of the selection operator is
roulette wheel selection. This is a type of fitness-proportionate selection, with
the idea to give each individual a slice of the circular roulette wheel based on
their fitness. The wheel is then spun, and when the roulette ball stops, the in-

90 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

dividual in whose region the ball stopped is selected. In this way, the fittest
individuals have the greatest chance of being selected for reproduction, while
the ones with very low score quickly die out. We also tested an alternative type
of selection, the tournament selection. In this type of selection, we randomly se-
lect several individuals, and host a tournament for them. The individual with the
best fitness score wins, and is selected for reproduction. By changing the size of
the tournament we can control the selection pressure, e.g., by using small tour-
nament size in the first few iterations we can prevent premature convergence
and increase it in later generations when we have explored the search space
enough. In our tests, the tournament selection gave slightly better results for
smaller populations, by keeping the population diverse in early generations. For
larger population size, both selection rules performed equally. Alongside the
main selection algorithm, we also used elitist selection, where first few individ-
uals are copied to the next generation without changing their chromosome. This
prevented the loss of the best individuals in the next generation, but has to be
used carefully as it may lead to premature convergence to a suboptimal solution.

To produce the next generation, selected individuals should combine their
chromosomes and produce offspring. This is the task of the crossover opera-
tor. Crossover exchanges parts of the chromosomes, mimicking the biological
recombination from nature. In its most basic form, crossover works by ran-
domly selecting a point and exchanging segments before and after the point to
create two new offspring from two parents. This type of crossover is called
single-point crossover, and is illustrated in Figure 8(a). Other popular crossover
techniques are two-point crossover and uniform crossover, illustrated in Fig-
ures 8(b) and 8(c). Two-point crossover is similar to the single-point crossover,
just with two points instead of one. On the other hand, in the uniform crossover
each gene of the offspring is selected randomly, either from the first parent or
from the second one, with some fixed probability, typically 0.5. Using the uni-
form crossover leads to a wider exploration of the search space [51], but this
may not always result in better performance of the operator [52]. We tested
single- and two-point crossover and found that there is little difference in terms
of performance between them. Since some of our parameters have constraints,
it is important to select only the crossover points which lead to an allowed re-
combination of genes. Unfortunately, this made the implementation of uniform
crossover impossible, and we did not pursue it further.

The final step in producing the next generation is to apply the mutation op-
erator on the new population. The mutation operator randomly changes genes

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 91

a) Single-point crossover b) Two-point crossover c) Uniform crossover

crossover v, ‘ ‘ L N
point : 3 3 P A

Figure 8. Three different crossover techniques in GA: a) single-point crossover,
b) two-point crossover and ¢) uniform crossover.

to new values, which is equivalent of performing a random walk through the
search space. Changing every gene would not be desired, so mutation operates
with a very small probability, meaning most of the genes will be left unchanged.
When chromosomes are implemented as bits, the mutation would be equivalent
to flipping a random bit. However, we could not implement mutation this way,
as random changes to the chromosome would often result in non-functioning in-
dividuals, e.g., parameter constraints would not be satisfied. Special care must
be taken to ensure that the mutation produces a healthy individual, similarly to
the crossover operator. The importance of mutation operator and its relation to
the crossover is often debated [53, 54], with its role being defined as “to main-
tain diversity within the population and inhibit premature convergence” [55], as
the crossover operator does not introduce new information to the population. In
our tests, the mutation plays a crucial role if the population size is small, e.g.,
less than 20 individuals, in accordance with references [56, 57]. If the popula-
tion size is large, e.g., over 200 individuals, the positive effects of mutation on
the population fitness are not that evident.

GA 1s typically iterated for a fixed number of generations, as is the case
in our implementation. Alternatively, we could have implemented some exit
clause in the main loop of the GA which would stop the evolution after the best
individuals have not been improved for some number of generations. After each
run of the GA, there is usually several highly fit individuals in the population.
Since randomness is an integral part of any GA, different runs of the algorithm
produce slightly different results. Therefore, our GA does not converge to a
single solution, but produces candidate solutions that have very similar param-
eter values and overall fitness. Among the candidate solutions, there may be

92 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

small differences in the amount of data offloaded to GPU or the kernel param-
eters, with the execution times negligibly different. The number of generations
required to produce a good solution also varies due to the randomness in the
initial population and the population size. In our tests, it has a value between 10
and 50.

The implementation described above provides only the basis for a successful
application of GA to the problem at hand. As can be seen, there are several im-
portant parameters of GA to tune in order to get optimal results. These include
the population size, the number of generations, mutation rate, and the selection
parameters (e.g., elite selection rate, the tournament size). We did not perform
thorough testing of the performance of the GA that would allow us to obtain the
best values for these parameters, as we were more focused on the quality of the
candidate solutions GA creates. However, we observed that our GA finds good
solutions faster if the initial population size is between 100 and 200, with the
number of generations between 10 and 20, depending on the set of parameters
we wish to optimize.

To get a perspective of how the three optimization methods perform, we
tested them by comparing their final solutions, as well as by recording the num-
ber of program executions needed to get to the optimal set of parameters. For
this test, we used 3D real-time propagation hybrid program on a single comput-
ing node. All three methods were allowed to execute the program up to 1000
times. The mesh sizes used range from 80 x 80 x 80 to 600 x 600 x 600, all
of which could potentially be offloaded to GPU. We tested parameter set PS3
(with 15 parameters), which controls the execution of FFT and the kernels in
the subsequent functions that perform propagation w.r.t. Hy, Hs, and H4. The
BES algorithm was used as the baseline. Note that the range of parameters and
a small number of allowed executions implies that the BFS algorithm takes the
values of parameters with large stride, potentially missing the optimal solution.
GD method is used as described, with the learning rate -y initially set to a higher
value, which was gradually decreased. We performed the GD for 60 iterations,
which amounts to 960 program executions. The GA was run on a population
of 100 individuals, for 10 generations, amounting to the same the number of
program executions as the BFS. We have used mutation rate of 5%, and the
tournament selection, with the tournament size equal to 10% of the population
size. Elitism was also included, with the top 2% of the population copied over.
All algorithms were tested five times, to minimize the effects of random initial-
ization of both GD and GA methods. The results are shown in Table 1.

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 93

Table 1. A comparison of three optimization methods. Reported times are
given in milliseconds, for a single iteration of the main time-propagation
loop, averaged over 50 iterations. The last column contains the minimal
execution times obtained by manual tuning. The reported time for each

algorithm represents the minimal achieved value in five test runs

Mesh size BFS GD GA | Best
80 x 80 x 80 7 6 6 6
128 x 128 x 128 18 27 16 16
240 x 240 x 240 154 272 135 126
256 x 256 x 256 181 199 169 156
360 x 360 x 360 343 387 312 298
480 x 480 x 480 981 | 1049 868 829
512 x 512 x 512 | 1452 | 1628 | 1312 | 1242
600 x 600 x 600 | 2591 | 2984 | 2227 | 2159

From the results we conclude that the GA was the most effective optimiza-
tion method of the three approaches. As expected, GA found better solutions
than BFS due to large strides BFS had to use. The randomness in the initial
population has a big effect on the convergence of the GA method, sometimes
enabling it to find the optimal solution after just three generations. Even if the
fitness of the initial population is very bad, the GA still converges to very good
solutions after 10 generations. On the other hand, GD performed very poorly,
mainly because the noise in program execution times has often thrown it in the
wrong direction. Also, GD would get stuck in the nearest local minimum, which
often was not the global one. When the initial position of GD is near the global
minimum it converged to toward the optimal solution, which was rarely the case.
For mesh sizes larger than the tested ones (relevant for MPI-based implemen-
tations), corresponding to a larger range of parameters, GD would be even less
effective. Both BFS and GD can be made more usable if the range of parame-
ters can be narrowed, i.e., if we know the relative performance of the GPU in
comparison to the CPU. However, the GD would still be somewhat inefficient,
due to its higher susceptibility to noise.

Since the GA method is shown to be superior to the other two approaches,
we use GA as our optimization method of choice in the next two sections.

94 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

2.4.2. Testing Methodology

All programs were tested on the PARADOX-IV cluster, which is a part of the
PARADOX supercomputing facility. This cluster is comprised of computing
nodes with two Intel Xeon E5-2670 Sandy Bridge CPUs (with a total of 2 x
8 = 16 cores), with 32 GB of RAM and one Nvidia Tesla M2090 GPU with 6
GB of GPU RAM, each connected by InfiniBand QDR interconnect. We used
Intel’s compiler (version 2016) to compile the serial and OpenMP programs, and
CUDA 7.5 for the GPU portions of the CUDA and hybrid programs. MPI-based
implementations were compiled with Open MPI (version 1.10), which itself
relied on underlying Intel and CUDA compilers. In the case of Hybrid/MPI
programs, we performed tests using both FFTW and our own transpose routines.
We found the minimal execution times to be about the same for both approaches,
but the FFTW transpose would sometimes exhibit very bad performance due to
the creation of suboptimal communication plan. For this reason, the execution
times reported for Hybrid/MPI implementation are obtained using only our own
transpose routines.

The base of all performance evaluations was the measured execution time
of critical regions of the programs, i.e., the portions performing wave function
propagation in imaginary or in real time. This measurement excluded the time
spent in other parts of the programs, e.g., initialization of OpenMP/CUDA/MPI
environment, memory allocation and deallocation, creation and destruction of
FFTW plans, initialization of variables and I/O operations. Measuring average
execution time of a single iteration of the main time-propagation loop allows
us to predict the performance and total execution time of a given simulation,
as the number of iterations is specific to the problem at hand and may vary
significantly between different simulations. All measurements were collected
using high precision timers based on clock_gettime POSIX function on
the CPU side, and CUDA event API on the GPU side. The execution time of
a single iteration of serial programs depends on the mesh size, controlled by
variables Nx, Ny and Nz. For parallel programs, we can measure speedup and
scaling efficiency as a function of the varying number of processing elements
(OpenMP threads or MPI processes).

We tested performance of 1D, 2D and 3D programs on a range of mesh
sizes, for a varying number of OpenMP threads and MPI processes, as shown in
Table 2. Mesh sizes were chosen from the corresponding range, and we did not
focus solely on mesh sizes which maximize performance of the programs, to

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 95

obtain a more realistic assessment. We varied the number of OpenMP threads
from 1 to 16, in increments of one thread. Similarly, we tested the MPI-based
implementations by varying number of MPI processes, each bound to a different
cluster node. In this way we tested MPI-based implementations on 2, 4, 8,
12, 16, 20, 24, 28 and 32 computing nodes. Note that varying the number of
processing elements is not applicable to the single-GPU implementations of the
programs, as they always use all available processing resources on a GPU. Only
one of the two 1D and 2D programs were tested (corresponding to x direction
in 1D and z-y plane in 2D), because, performance-wise, there is no difference
between them (e.g., imagl1dX-th vs. imagldZ-th).

The main performance indicator is the execution time, the wall-clock time
of one iteration of the main loop, averaged over 5 executions of 1000 itera-
tions, reported in milliseconds. Using the results obtained, we calculated the
speedup of all programs compared to the published serial C implementation.
We were also interested in examining the scaling efficiency, or scalability, of
the OpenMP and MPI programs. We tested both strong scaling, when the mesh
size stays the same but the number of processing elements varies, and weak
scaling, when the amount of work each processing element performs stays the
same while the number of processing elements increases. More formally, given
the execution time of a single iteration of serial programs (7°(1)), and the cor-
responding execution time for parallel programs performed with N process-
ing elements (T'(IN)), we calculated speedup as S(N) = T(1)/T(N) and
strong scaling efficiency as F(N) = S(N)/N. Weak scaling is computed
as By (N) = Tw(1)/Tw(N), where Ty (1) is the execution time of a pro-
gram using single processing element performing the work assigned to it, while
Tw () is the execution time of a program using N processing elements per-
forming N times more work. We achieve this by increasing the mesh size.

2.4.3. Performance Test Results and Modeling of Single Node Programs

In this section we present the results obtained for single computing node
OpenMP, CUDA and hybrid programs, and compare them to the previously
published [23] serial implementation.

Table 2. Performance testing matrix, showing the mesh sizes and numbers of processing elements (threads or
processes) used to test the programs, as well as the baseline program used for comparison

Program Mesh size Processing elements Baseline
Min | Max Min | Max
OpenMP programs
imagldX-th 1000 1000000 1 16 imagld
real1dX-th 1000 1000000 realld
imag2dXY-th 1000 x 1000 15000 x 15000 1 16 imag2dXY
real2dXY-th 1000 x 1000 13000 x 13000 real2dXY
imag3d-th 50 x 50 x 50 800 x 800 x 800 1 16 imag3d
real3d-th 50 x 50 x 50 800 x 800 x 800 real3d
CUDA programs
imag2dXY-cuda 1000 x 1000 15000 x 15000 1 1 imag2dXY
real2dXY-cuda 1000 x 1000 13000 x 13000 real2dXY
imag3d-cuda 50 x 50 x 50 600 x 600 x 600 1 1 imag3d
real3d-cuda 50 x 50 x 50 540 x 540 x 540 real3d
Hybrid programs
imag2dXY-hetero 1000 x 1000 15000 x 15000 1641 1641 imag2dXY-th
real2dXY-hetero 1000 x 1000 13000 x 13000 real2dXY-th
imag3d-hetero 50 x 50 x 50 600 x 600 x 600 1641 1641 imag3d-th
real3d-hetero 50 x 50 x 50 600 x 600 x 600 real3d-th
OpenMP/MPI programs
imag3d-mpi 480 x 480 x 250 | 1920 x 1920 x 960 1x16 32%16 imag3d-th
real3d-mpi 480 x 480 x 250 | 1920 x 1920 x 960 real3d-th
CUDA/MPI programs
imag3d-mpicuda | 480 x 480 x 250 | 1920 x 1920 x 960 1 3 imag3d-cuda
real3d-mpicuda 480 x 480 x 250 | 1920 x 1920 x 960 real3d-cuda
Hybrid/MPI programs
imag3d-mpihetero | 480 x 480 x 250 | 1920 x 1920 x 960 imag3d-hetero
real3d-mpihetero | 480 x 480 x 250 | 1920 x 1920 x 960 | - <(16+D) | 32X 16+ D) = etero

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 97

Table 3. Wall-clock execution times of a single iteration of the main
time-propagation loop of single-node OpenMP programs (in milliseconds)
for different number of OpenMP threads N, and speedup S(16) in strong

scaling tests. The speedup is calculated w.r.t. the execution times of
previously published serial versions of programs [23], given in the second

column
Program Serial | Ngp =1 | Ngn =2 | Nqgn =4 | Nyw =8 | Nen =16 | S(16)
imag1dX-th 9.1 7.1 4.7 34 2.9 2.8 2.5
realldX-th 15.2 14.2 10.5 8.2 7.3 7.2 2.0
imag2dXY-th | 13657 7314 4215 2159 1193 798 9.2
real2dXY-th 17281 11700 6417 3271 1730 1052 11.1
imag3d-th 16064 9353 5201 2734 1473 888 10.5
real3d-th 22611 17496 9434 4935 2602 1466 11.9

Strong scaling performance test results for the OpenMP-based implemen-
tation using methodology described in the previous section are given in Ta-
ble 3 and Figure 9. They show the obtained execution times, speedups and
strong scaling efficiencies for different number of OpenMP threads. Columns
Ni¢w = 1, Ny = 4, Ny, = 8 and Ny, = 16 in Table 3 correspond to the number
of threads used, while the last column shows the obtained speedup S(16) with
16 OpenMP threads compared to one OpenMP thread. Strong scaling efficiency
E(Nin) = S(Nin)/Nin in Figure 9 is calculated as a fraction of the obtained
speedup compared to a theoretical maximum. The mesh size used in 1D is 10°,
in 2D 10% x 10%, while in 3D the mesh size is 480 x 480 x 480. Execution times
and speedups of imagldZ-th, real1dZ-th, imag2dXZ-th, and real2dXZ-th (not
reported here) are similar to those of imagldX-th, realldX-th, imag2dXY-th,
and real2d X Y-th, respectively.

The change from C2C to R2C FFT routine has a big impact on the execution
time of single-threaded (/Vy, = 1) programs compared to the previous serial
programs. As we can see from the table, these improvements alone yield a
speedup of 1.3 to 1.9 in 2D and 3D programs, and somewhat smaller speedup
for 1D programs, 1.1 to 1.3. The use of additional threads brings about further
speedup (reported in the last column) of 2 to 2.5 for 1D programs, and 9 to 12 for
2D and 3D programs. In Figure 9 we see that the efficiency rapidly decreases for
1D programs, even though speedup increases with the number of threads used.

98 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz
3 \\\ T T T T 1 2.5 1
L _0—0—0—9 @ (]
2.5 oo 2T, 2r o 0000000005
o 2 Q\ B ad e o el [P
S o Jo62 = L 0.6 28
< | NGO ® speedup Ta - ® speedup | O,
3 /. 0. & efficiency o 3 & efficiency @
Q, 1048 & 1f —10.4 2
» 1- @ S & 9]
<o o < 178
0.5 ~e_e_2 0.2 0.5 & _e_e_z 0.2
(a) imag1dX-th (b) real1dX-th
0 L L L L L L L L L L L L L 0 0 L L L L L L L L 0
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
number of threads number of threads
12 S 1 12 pS — w w !
Lo o e~
10 < \M 18 10 M%‘/./o los
L o0 ¢ O O-04¢ o
o 8k o = ® o s o o
_g ././Q ‘(—)Mz 0.6 = _g /./. 10.6 &
O 6 ./0/ Z O 6 _® 1 &
2. o~ {0438 & _® 1045
@' 4 _e ® speedup S @ 4 o ® speedup | Q8
_® - < & - <
e & efficiency | 9 5 & & efficiency | 0.2
21 . .
e (c) imag2dXY-th el (d) real2dX Y-th
0 L L L L L L L L L L L L L L L 0 0 L L L L L L L L L L L L L L 0
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
number of threads number of threads
12 T T T T T T T T T T 1 12 T T T T T T T T T T T T T 1
I 'Y
3 1 XS ad
101 V\M o 08 101 ¢ °‘<.>>0<<?>~e_<_> 408
o, 8- ./o;’<<‘>~e-e~< © a8 e 1T &
5 _S J062 3 _® H0.6 BB
S o ® e T L e e
8 6 o 3 6 @)
S _e” 4048 &, ~® 1048
» 4+ 0 ® speedup & @ ar ./ ® ® speedup | QO
/./ o ¢ efficiency | 02 ././ ¢ efficiency | 0.2
ol . Al .
P (e) imag3d-th o (freal3d-th -
0 L L L L L L L L L L L L L L L O 0 L L L L L L L L L L L L L L L 0
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
number of threads number of threads

Figure 9. Speedup in the execution time and strong scaling efficiency of
OpenMP programs compared to single-threaded runs for: (a) imagldX-th, (b)
reall1dX-th, (c¢) imag2dXY-th, (d) real2dXY-th, (e) imag3d-th, (f) real3d-th.
Solid lines represent fits to measured data, where fit model functions are given
in the text and obtained fit parameters are listed in Table 4. Note that the model
parameter p is fitted only to the speedup data, and then used to plot the efficiency
model curve.

This is expected, as parts of the algorithm dealing with the recursive relations
for calculation of the CN coefficients are inherently serial. In 1D, already with
N¢n, = 4 threads we almost achieve the maximal speedup, while still keeping
the efficiency around 50%. We also see that, as expected, speedup and efficiency
of multidimensional programs behave quite well as we increase the numbers of
threads. In particular, we note that the efficiency always remains above 60%,

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 99

making the use of all available CPU cores worthwhile.

From Figure 9 we observe that the speedup of 1D programs saturate quickly
due to inherent serial nature of the portion of the algorithm, while in 2D and
3D the speedup behaves almost linearly. Despite their obvious differences, all
curves in Figure 9 can be successfully modeled based on Amdahl’s law [58].
Namely, the measured execution time 7'(Ny},) of one iteration of the main loop
can be expressed as

T(0Nw) =T(1) (54 54 33
Ntn
where Ny, is the number of threads used, 7(1) is the execution time of a single-
threaded run, s is the serial fraction of the loop code, and p is the corresponding
parallel fraction. By definition, s + p = 1, and therefore the speedup can be
modeled by
T(1) 1

T(Nww) 1-=p+p/Nm’
where the parallel fraction of the main loop code p is the only fit parameter.
Table 4 gives the obtained model fit parameter values for the data from Figure 9.
As we can see, the fits match the obtained measurement data very well. Note
that the efficiency can be expressed in terms of the speedup model

S(Nth) B 1 1
Nin N1 —p+p/Ny’

and is not fitted independently. Figure 9 shows that this model with the pa-
rameter p fitted on the speedup data matches very well with the efficiency data
points.

From the obtained values of the parallel fraction of the algorithm, we see
that 2D and 3D programs are almost ideally parallelizable, with p over 95%.
In 1D case, however, the parallel fraction is around 66% for imaginary-time
propagation and around 54% for real-time propagation, due to the fact that cal-
culation of CN coefficients in the function calclux cannot be parallelized.
Note that the parallel fraction of imaginary-time 1D program is higher than that
of the real-time 1D program due to the larger amount of arithmetic operations
required to process complex-valued data in the real-time version of the serial
function calclux.

OpenMP programs were also tested for weak scalability. We were mostly
interested in 3D variants of the programs, which we tested by fixing the amount

S(Nen) = (34)

E(Nw) = 35)

100 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

Table 4. Values of obtained strong scaling model fit parameter p and the
estimated fit errors for OpenMP-parallelized programs

Program P Ap
imagldX-th 0.662 | 0.004
real1dX-th 0.541 0.003
imag2dXY-th | 0.9514 | 0.0007
real2dXY-th | 0.9706 | 0.0004
imag3d-th 0.9635 | 0.0008
real3d-th 0.9762 | 0.0006

of work to 6,912,000 spatial points of the mesh, which corresponds to a mesh
size of 240 x 240 x 120. By increasing the number of OpenMP threads, we
also increase the mesh size to be the multiple of 6,912,000. This means that the
mesh has to be increased in such a way that, when divided among the threads,
each thread gets 6,912,000 spatial points to process. The mesh sizes that satisfy
this requirement cannot always be obtained by multiplying all three array di-
mensions with the same number, so we have to work with mesh sizes in which
the size of each dimension may be different. For such mesh sizes, we tested
all possible combinations, however no significant difference has been observed.
Table 5 contains mesh sizes we used for testing for Ny, = 1,2,4,8,12,16
threads, along with the execution times (in milliseconds) and the weak scaling
efficiency. The testing was also done for Ny, = 6 and 10 threads, but the corre-
sponding mesh sizes are omitted from the table for brevity. However, Figure 10
presents complete data collected in this test, for all Ny, values, averaged over
mesh sizes used. The figure shows that the real-time 3D programs have better
weak scaling efficiency, which is about 75% at 16 threads, while imaginary-time
programs demonstrate smaller, but still significant efficiency of about 60%.

To model weak scaling efficiency, we compare execution times of a single
iteration of the main loop Ty (Ny), performed with Ny, threads, where for each
value of Ny, the total amount of work is Ny, times the work being performed in
a single-threaded run, i.e., the amount of work per thread is constant. The weak
scaling efficiency is defined as

Tw (1)
Tw (Ntn) '

where Ty (1) = T'(1) is the execution time of a single-threaded run for a given

Ew (Nin) = (36)

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 101

Table 5. Weak scaling efficiency of OpenMP-parallelized 3D programs.
Wall-clock execution times 77; are given in milliseconds, efficiencies 'y
in percents

imag3d-th real3d-th
Tw | Ew | Tw | Ew
Nth =1
120 x 240 x 240 | 699 | 98.2 | 1259 | 99.5
240 x 120 x 240 | 711 | 96.5 | 1271 | 100
240 x 240 x 120 | 686 | 100 | 1275 | 98.2

Mesh size

Nin = 2
240 x 240 x 240 | 718 | 95.5 [1254 | 99.9
Nin = 4

240 x 240 x 480 | 755 | 90.9 | 1312 | 95.5
240 x 480 x 240 | 778 | 88.2 | 1301 | 96.3
480 x 240 x 240 | 754 91 1310 | 95.6
Nth = 8
240 x 480 x 480 | 875 | 78.4 | 1405 | 89.9
480 x 240 x 480 | 847 81 1393 | 89.1
480 x 480 x 240 | 886 | 77.5 | 1431 | 87.7
Ny, — 12
360 x 480 x 480 | 1010 | 67.9 | 1532 | 81.7
480 x 360 x 480 | 981 | 69.9 | 1514 | 82.7
480 x 480 x 360 | 1004 | 68.4 | 1581 | 79.2
Nin = 16
480 x 480 x 480 | 1155 | 59.4 | 1680 | 74.5

workload (in our case, 6,912,000 spatial points). The expected execution time
of a workload assigned to a simulation with Ny, threads, executed in a single-
threaded run, is Vyy7'(1). In weak scaling tests, this workload is executed with
Ny, threads and therefore the expected execution time can be modeled by

Ty (Nar) = NuT (1) (1 Cpt Ni) | G37)
th

According to this argument, we model the weak scaling efficiency by a single-

parameter function
1

. 38
+ (1 - p)Nth (38)

FEw (N) =
w(NVtn) 5

102 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

1 @<L i
<.§<3\9\0
e ——
> 0.8 —e. o 1
= T \.\O
8 06F *—
S I
= 041 i
5} |
0.2+ [] lmang-th
| < real3d-th
0 1 1 1 1 1 1 1 1
1 2 4 6 8 10 12 16

number of threads

Figure 10. Weak scaling efficiency of OpenMP-parallelized 3D programs, aver-
aged over all mesh sizes tested for each value of Nyy,. Solid lines represent fits
to measured data, where fit model functions are given in the text.

We fitted this model to data presented in Figure 10 and the obtained fit param-
eters are given in Table 6. As we can see from the figure, the above model is
an excellent fit to experimental data, and both 3D OpenMP-parallelized pro-
grams have high (above 95%) parallel fraction of the code, in agreement with
the results of strong scaling tests (Table 4).

Table 6. Values of obtained weak scaling model fit parameter p and the
estimated fit errors for OpenMP-parallelized programs

Program P Ap
imag3d-th | 0.958 | 0.002
real3d-th | 0.9792 | 0.0009

Overall, we conclude that imaginary-time OpenMP-parallelized programs
show smaller speedup and efficiency across all tests, except in 1D. This can be
attributed to the additional step of wave function normalization in each iteration
of the imaginary-time propagation, as well as the fact that real-time programs
work with complex-valued data that require more arithmetic operations for the
same mesh size. Since much of the computation inside loops requires simple
arithmetic, the throughput of the CPU is often not fully exploited in imaginary-
time programs, thus the pressure of memory bandwidth makes these programs
less efficient. The real-time programs are also affected by this, however to a
somewhat lesser extent.

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 103

Next, we consider the CUDA implementation of the shared memory algo-
rithm. GPU functions as a single processing element, therefore we cannot test
CUDA implementation by varying both the mesh size and the number of pro-
cessing elements. However, just varying the mesh size gives us valuable insight
into the behavior of this implementation, due to the difference in programming
models and the libraries used. Tables 7 and 8 show the execution times (in mil-
liseconds) for a number of mesh sizes tested, as well as the average speedup
(S) compared to the serial programs [23]. Figure 11 shows the speedup ob-
tained for all mesh sizes tested, and horizontal lines represent average speedups
obtained for each program. Note that the dispersion of data is due to the use of
FFTW_ESTIMATE flag in library calls to FFTW in the serial programs. Use of
this flag results in a choice of suboptimal FFT algorithm for some mesh sizes.
The vertical lines in Figure 11 denote the change in POTMEM parameter. The
speedups left of the first vertical line are obtained with POTMEM=2 and thus
demonstrate the best speedup. Second group of results, between the two verti-
cal lines, is obtained with POTMEM=1, and we note that the speedup decreases
slightly, while the results right of the second vertical line are obtained with
POTMEM=2, and show the smallest speedup due to the use of mapped memory.
The 2D programs in z-z plane exhibited very similar performance to those of
x-y plane, and therefore we did not include them in the figures.

Table 7. Wall-clock execution times of a single iteration of the main
time-propagation loop of single-node 2D CUDA programs (in
milliseconds) for different mesh sizes, and average speedup w.r.t. to the
execution times of serial 2D programs [23]

Program 2000% | 4000% | 6000 | 8000 | 10000* | 12000% | Avg.speedup
imag2dXY-cuda | 24.1 1043 | 2352 | 386.1 657.1 1150.4 10
real2dXY-cuda 299 | 1124 | 2664 | 4440 | 7490 | 15283 14

For small mesh sizes, the GPU remains underutilized, resulting in a smaller
speedup. For large mesh sizes, where the GPU memory usage approaches
the limit, we also see declining speedup. This is due to the inevitable use of
POTMEM parameter, which keeps some arrays in the host memory when they
cannot fit in the memory of the GPU. Overall, the CUDA implementation shows
execution times similar to the OpenMP implementation for imaginary-time
propagation, and slightly lower for real-time propagation. We stress that these
results strongly depend on the type of GPU used and that the obtained speedups

104 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

Table 8. Wall-clock execution times of a single iteration of the main
time-propagation loop of single-node 3D CUDA programs (in
milliseconds) for different mesh sizes, and average speedup w.r.t. to the
execution times of serial 3D programs [23]

Program 100% | 200° | 300% | 4003 5003 | Avg. speedup
imag3d-cuda | 10.6 | 79.3 | 298.8 | 674.5 | 1260.2 7.1
real3d-cuda 109 | 84.1 | 302.5 | 6824 | 14674 13.5
20— T T 20— T A I L AR R B
L 1 1 Bl L ° ° I I
o 5f S q.e..«_,L;'.,,_:..:.:.’_;,.z-f;:'.w.’_"..' .
"g X3 00e®0 850 o0 (ade Lo ©! o 9 ..g T’. ..o':.
8 10 _5(;. o‘:(._o.‘. i Jg“‘.—. (.:‘(.!0‘._"‘. ...o.” ... 8 10+ | I'“‘ m
o & 10 fe s & o
5k | | - 5k | | -
" (@) ima‘g2dXY"CUda ‘ ‘ : ‘ : I (b) real‘ZdXY-qlda ‘ : : ‘
0o2 2500 5000° 7500° 100007 125002 15000Z 002 2500° 5000 75007 100002 125002 150002
mesh size mesh size
20— T T T T 20— T T T AL I B B
L 1 1 L I I
155 | | | 15F o o o° ..'o. e © ol | _
o | | o, o] O < . 'o 000. ° oot
-g [% 00 ® ¢ T %l
9 10~ o ° e 13 10 ° I ee
% - ... — ’5— . ._. o oo oo.o - o® 00 0. . .0, % | |
5F . ° |1 ee®® 4 5L 1o i
[(c) imag3d-cuda : : (d) rea13d cuda : :

0 - ' - T '\ - - L L) 0 - PR '\ TR '\ - | - -
0’ 100° 200° 300° 400° 5000 600° 0’ 100d 2005 300° 400° 500
mesh size mesh size

Figure 11. Speedup in the execution time of CUDA programs compared to the
serial programs for all tested mesh sizes: (a) imag2dXY-cuda, (b) real2dXY-
cuda, (c) imag3d-cuda, (d) real3d-cuda. Horizontal lines represent (S), while
dashed vertical lines represent different values of POTMEM parameter (see text).

may be even better for newer-generation GPUs (e.g., Kepler-, Maxwell-, Pascal-
and Volta-based GPUs).

Hybrid OpenMP/CUDA implementation was tested on a range of mesh
sizes, similarly to the OpenMP- and CUDA-based implementations. Since
OpenMP implementation showed that all cores should be used for 2D and 3D
programs, we kept the number of OpenMP threads fixed at 16 in our hybrid al-
gorithm. The parameters governing the amount of data offloaded to GPU were
optimized using our GA method from section 2.4.1 An illustrative subset of the

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 105

results for 3D programs is shown in Table 9, which gives execution times for
a single iteration of the main loop, for different mesh sizes. A comparison of
execution times of hybrid and pure OpenMP programs with N, = 16 threads is
given in Figure 12(a), while Figure 12(b) compares the performance of hybrid
and pure CUDA programs, for all tested mesh sizes.

Table 9. Wall-clock execution times of a single iteration of the main
time-propagation loop of single-node 3D hybrid programs (in
milliseconds) for different mesh sizes. Offload parameters are optimized
using the GA optimization method

80% | 200° | 320° | 4407 560° 680° 800°
imag3d-hetero | 6.3 | 67.1 | 271.4 | 6789 | 1493.3 | 2750.9 | 4461.6
real3d-hetero 80 | 94.7 | 374.1 | 922.8 | 1985.2 | 4020.2 | 6676.6

2 2r
1.61 A Be-Se 1 1.6 o o o 1
L 0 "9)] [o —9—]
2 | oo o<\ =T RN e]
L R S S N PSY) L —~e —O
CRE Y o SoREENE S0 2o R N I g
& 1 3 ,.f o000]
808" gf 1 Bost &<]
04l —— imag3d-hetero vs. imag3d-th 04l —e— imag3d-hetero vs. imag3d-cuda]
T (a) —-&- real3d-hetero vs. real3d-th] T (b) -&- real3d-hetero vs. real3d-cuda
0’ L I L I L I L I L I L I L I 1 0’ P T S O AU NS R RRN B
0° 100® 200° 300° 400° 500° 600° 700° 800° 50° 100° 150° 200° 250° 300° 350° 400° 450° 500°550°
mesh size mesh size

Figure 12. Speedup in the execution time of 3D hybrid programs compared to:
(a) OpenMP programs with Ny, = 16 threads, (b) CUDA programs. Dashed
horizontal lines correspond to a speedup value S = 1.

From Figure 12 we see that the hybrid implementation outperforms the
OpenMP one for all mesh sizes except for the smallest one. The same applies to
the comparison of imaginary-time hybrid and CUDA programs, while real-time
hybrid program outperforms the corresponding CUDA program only for mesh
sizes larger than 400 x 400 x 400. Although one would expect that the speedup
of the optimized hybrid algorithm is always equal to or larger than one, we see
that this is not the case for all mesh sizes in Figure 12. This is due to the fact
that the hybrid FFT algorithm is always employed in hybrid programs, meaning

106 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

that even if no or all data are offloaded to GPU, the splitting of FFT will still
take place. Therefore, in these limiting cases we do not obtain pure OpenMP or
CUDA algorithms that would yield maximal performance. Splitting the compu-
tation of FFT along one direction in calcpsidd2 function disables some of
the potential optimizations that libraries like FFTW and cuFFT exploit, and in-
troduces data copies between host and device which cannot be fully offset using
CUDA streams. The hybrid algorithm can compensate for this if the amount of
offloaded data to GPU is sufficiently large, which is not the case for the smallest
mesh size.

Table 10. Optimal fraction of total data offloaded to GPU for different
mesh sizes in hybrid 3D programs, obtained using the GA optimization

method
GPU portion of data [%]
Mesh size imag3d-hetero real3d-hetero
PS; | PSe | PSs | PS4 | PS; | PSe | PS3 | PSy
80 x 80 x 80 20 3 60 33 23 3 40 10

120 x 120 x 120 | 12 10 25 28 23 10 25 27
160 x 160 x 160 | 15 7 31 24 44 19 34 23
200 x 200 x 200 | 38 27 37 28 44 26 46 26
240 x 240 x 240 | 38 28 40 30 38 28 47 25
280 x 280 x 280 | 40 31 30 33 46 22 37 25
320 x 320 x 320 | 33 38 29 36 45 28 69 44
360 x 360 x 360 | 41 33 27 36 49 33 43 31
400 x 400 x 400 | 38 25 30 38 46 24 47 21
440 x 440 x 440 | 31 35 29 39 45 35 43 32
480 x 480 x 480 | 16 19 22 41 45 33 62 35
520 x 520 x 520 | 40 31 28 46 45 25 40 37
560 x 560 x 560 | 38 41 30 43 36 24 35 32
600 x 600 x 600 | 37 27 30 43 29 29 29 28
640 x 640 x 640 | 36 40 30 43 24 22 24 23
680 x 680 x 680 | 26 38 28 38 20 16 20 20
720 x 720 x 720 | 23 26 25 32 17 13 17 17
760 x 760 x 760 | 21 22 25 27 14 14 14 13
800 x 800 x 800 | 19 23 23 21 11 8 12 12

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 107

Given that pure CUDA programs performing imaginary-time propagation
demonstrated smaller speedup than the corresponding OpenMP programs (Fig-
ure 11 vs. Figure 9), it is expected that CUDA portion of the hybrid imaginary-
time propagation programs would yield smaller improvement, which is evident
when we compare hybrid implementation with the OpenMP one in Figure 12(a),
except for the largest mesh sizes. We can reach the same conclusion if we con-
sider that, in real-time propagation, CUDA implementation shows the highest
speedup of all single-node programs, and therefore the corresponding hybrid
programs show better speedup than imaginary-time propagation programs par-
allelized with OpenMP. On the other hand, when compared with the CUDA
implementation in Figure 12(b), the situation is reversed, and we see much bet-
ter performance of the hybrid imaginary-time propagation programs, while the
hybrid real-time propagation programs achieve speedup larger than one only for
mesh sizes larger than 400 x 400 x 400. This result can be attributed to the fact
that in real-time propagation the amount of data copied between host and device
is larger, given that some of the copied arrays are complex-valued.

Also, we can observe that the speedup in Figure 12(a) declines with mesh
size. This is due to the memory saturation of the GPU device, as only a small
portion of the data can be offloaded when the mesh is large. The amount of data
offloaded to GPU for all tested mesh sizes is given in Table 10, where we can
see that the total amount of data processed by the GPU declines with increasing
mesh size. As a result, the computation is unbalanced, given that the host has to
work with a much larger portion of the data. This is reflected in the optimization
step, where our GA quickly converges to the highest possible mesh size that can
be offloaded to the device, implying that a greater amount of device memory
would be required to get a balanced computation.

To make an optimal choice of programs to be used on a single node for a par-
ticular hardware platform, one has to perform detailed tests using the method-
ology presented in section 2.4.2 The results presented in this section apply to
hardware comparable to the one available at PARADOX supercomputing facil-
ity, but one can expect similar behavior for all modern types of CPU and GPU.

2.4.4. Performance Test Results and Modeling of MPI Programs

Following on from the previous section, here we present the results obtained
for MPI-parallelized programs, executed on a computer cluster consisting of
varying number of computing nodes, and compare them with the corresponding

108 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

single-node programs.

MPI programs are highly dependent on the configuration of the cluster,
mainly on the speed of interconnect, but also on the distribution of processes and
threads, NUMA configuration, MPI configuration, etc. Getting the best perfor-
mance out of the programs requires some experimentation with several different
configurations. The results presented are obtained without extensive tuning of
the cluster or MPI runtime, with the aim to show the base performance.

Strong scaling of MPI-based implementations is tested in a similar way to
the single-node testing, by varying number of cluster nodes N, from 2 to 32.
On each node, a single MPI process is launched, which then uses the node’s re-
sources, either by further spawning 16 OpenMP threads in case of OpenMP/MPI
and Hybrid/MPI implementations, or by invoking the CUDA kernels utilizing
the node’s GPU in case of CUDA/MPI implementation. In this test, the base-
line used for comparison was the equivalent single-node implementation, i.e.,
OpenMP/MPI programs are compared with OpenMP programs executing with
N¢n = 16 threads, CUDA/MPI programs are compared to the single-node pure
CUDA programs, and Hybrid/MPI programs is compared to the single-node
hybrid programs.

Mesh size we use in this test is 480 x 480 x 250. Since the values of Nx
and Ny parameters must be divisible by the number of processes N, this mesh
cannot be distributed over 28 processes. In this case we use slightly modified
mesh, taking into account the multiple of 28 that is closest to 480, yielding a
mesh size of 476 x 476 x 250. Data is never distributed along z direction,
so no such requirement exists for Nz. The resulting mesh has slightly fewer
spatial points, and thus less work per process, potentially allowing for a better
performance, but in our tests the smaller mesh did not have a significant impact
on the measured execution time.

Note that strong scaling tests, where the mesh size is fixed, inevitably lead
to saturation and decrease in measured speedup and efficiency values. Whatever
the chosen mesh size, increase in the number of cluster nodes used will even-
tually yield insufficient amount of work per MPI process, such that communi-
cation will start to dominate over computation. Therefore, in our strong scaling
tests we can expect that execution times initially decrease with increasing values
of Ny, but eventually performance of MPI-based programs will decline. This
issue is addressed by considering weak scaling tests.

Table 11. Wall-clock execution times of a single iteration of the main time-propagation loop of
OpenMP/MPI1, CUDA/MPI and Hybrid/MPI programs (in milliseconds) for different number of MPI
processes NV, and speedup S(32) in strong scaling tests. The speedup is calculated w.r.t. the baseline
execution times of the corresponding single-node programs (OpenMP, CUDA and hybrid, respectively),
given in the second column.

Program Baseline | N, =4 | Np =8 | N, =16 | Ny =24 | N, =32 | 5(32)
imag3d-mpi 1124 541 262 134 89 64 17.5
real3d-mpi 2140 700 358 207 155 98 21.8
imag3d-mpicuda 579 438 210 103 71 59 9.8
real3d-mpicuda 800 609 291 142 95 79 10.1
imag3d-mpihetero 489 299 162 99 84 81 6.0
real3d-mpihetero 613 407 255 154 135 101 6.0

110 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

The illustrative portion of obtained execution times of a single iteration of
the main loop for the three MPI-parallelized implementations are shown in Ta-
ble 11, together with the execution times of the corresponding baseline single-
node program. Columns N, = 4, N, = 8, N, = 16 and N, = 32 correspond
to the number of cluster nodes used, while the last column shows the obtained
speedup S(32) with N, = 32 nodes compared to baseline single-node pro-
grams.

The maximal speedup of OpenMP/MPI implementation ranges from 17 for
imaginary-time propagation to 22 for real-time propagation programs for /N, =
32. The complete measurement results for speedup and efficiency are depicted
in Figure 13(a) and 13(b), where we see that the speedup grows linearly with
the number of nodes used, while the efficiency remains mostly constant in the
range between 40% and 60%, thus making the use of OpenMP/MPI programs
highly advantageous for simulations with large mesh size. In general, we can
expect even better efficiency for larger mesh sizes.

Similar behavior is observed for CUDA/MPI implementation. The obtained
speedup with N, = 32 nodes ranges from 9 to 10, with the slightly lower effi-
ciency, between 30% and 40%, as shown in Figure 13(c) and 13(d). Even though
the efficiency is lower for this implementation, the speedup still grows linearly
and the execution times are lower than for the OpenMP/MPI implementation.
This makes CUDA/MPI programs ideal choice for use on GPU-enabled com-
puter clusters. Additional benefit of using CUDA/MPI programs is their low
CPU usage (using only one CPU core per cluster node), allowing for the possi-
bility that the same cluster nodes are used for other CPU-intensive simulations
in a time-sharing fashion.

As we see in Figure 13(e) and 13(f), the linear growth of speedup is also
present for the Hybrid/MPI implementation, however, as the amount of work
per-process shrinks, the efficiency drastically drops down to 20% with N, = 32
nodes. For the mesh size used in this test, we observe that the Hybrid/MPI im-
plementation performs very well on N, < 16 processes, providing the lowest
execution times, but with [V, > 16 processes its execution times become larger
than for the CUDA/MPI implementation (especially for real-time propagation
programs), and eventually even for the OpenMP/MPI implementation, as illus-
trated in Figure 14. This is again due to the insufficient amount of work each
computing node performs after data are distributed among the MPI processes,
which can be seen from the amount of data offloaded to GPU for all tested val-
ues of N, in Table 12. Similar saturation in performance will eventually happen

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ...

111

18 T T 0 T T T T 0. 24 N\ p 0.8
150 & s 6/07 =05 20 e 07
o2f o 1042 a6l < %0
g ‘5 5 s)=
o ® e Q.
8 or - 1033 8127 ./. 1045

5 . B
& 6l /‘ ® speedup 0.2.2 o 8- /./ ® speedup 19385
/. & efficiency /. & efficiency 0.2
3+ . . 0.1 41 .
_® (a) imag3d-mpi P (b) real3d-mpi 0!
0 ’. L L L L L L 0 0 7 L L L L L L L 0
2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32
number of cluster nodes number of cluster nodes
10 T T T T T T T T 0.4 10F T T T T T T T T (] 0.4
I O—< o <’]
8r 403 8 /' o3
r [o) o)
o, & o o e
g 6 P g 3 6F | &
D - 4025 @ - 025
2 4r o = - . { B
7 ./ ® speedup S & / ® speedup !
< <
ol / & efficiency 0.1 Al /0 & efficiency 0.1
’/. (c) imag3d-mpicuda ,/‘ (d) real3d-mpicuda
0 L L L L L L L 0 0 he L L L L L L L 0
2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32
number of cluster nodes number of cluster nodes
T T T T T — 0.5 6F T T T 0.5
6 o—© ¢ [:
sL N [o4 51 / o
H ~ e ¢) 4 _—® o] e)
_§*4— & 032 _%47 ® H03 BB
I o Q
o 3 o/ & 3 3f /.\<O\°\o\<> 1
2, / =02z & . > 023
2F P < ° / { <
1k /]) ® speedup 0.1 1- /./) ® speedup 0.1
I (e? 1mag‘3d-m‘p1hete‘ro 2 | effif:iency | (f)‘ rea13‘d-mp1‘heter(‘) o | efﬁ‘ciency’
0 0 0 0

|
8 12 16 20 24 4

number of cluster nodes

28 32 2 8 12 16 20 24

number of cluster nodes

28 32

Figure 13. Speedup in the execution time and strong scaling efficiency of MPI-
based programs compared to single-node runs: (a) imag3d-mpi, (b) real3d-mpi,
(c) imag3d-mpicuda, (d) real3d-mpicuda, (e) imag3d-mpihetero, (f) real3d-
mpihetero. Solid lines represent fits to measured data, where fit model functions
are given in the text and obtained fit parameters are listed in Table 13. Note that
the model parameters are fitted only to the speedup data, and then used to plot
the efficiency model curve.

for the OpenMP/MPI and CUDA/MPI implementations for larger values of V.

We thus conclude that Hybrid/MPI implementation has the best perfor-
mance of the three MPI-based implementations if the amount of work per pro-
cess remains high enough to justify the use of hybrid algorithm. Otherwise,
either of the other two MPI-based implementations should be considered first.
The energy efficiency of this and other MPI-based implementations was not

112

Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

» | —e— mpihetero vs. mpi

0.4 ~©- mpihetero vs. mpicuda

| (a) imag3d

2 4 8 12

!
16 20

24 28

number of cluster nodes

32

[—@— mpihetero vs. mpi

0.4 —©- mpihetero vs. mpicuda

| (a) real3d

2

4 8

12

|
16

20 24 28 32

number of cluster nodes

Figure 14. Speedup in the execution time of Hybrid/MPI programs in strong
scaling tests compared to the other two MPI-based programs: (a) OpenMP/MPI,

(b) CUDA/MPL.

explored due to the difficulty in making precise measurements. If the energy
consumption is not an issue, Hybrid/MPI implementation will yield the best

performance, providing the cluster has powerful GPUs installed and the mesh
size used is large enough.

Table 12. Optimal fraction of total data offloaded to GPU per process for
different values of /N, in Hybrid/MPI programs, obtained using the GA
optimization method in strong scaling tests

GPU portion of data [%]

Ny imag3d-mpihetero real3d-mpihetero

PS: | PS2 | PSs | PS4 | PS:1 | PS2 | PS3 | PSy
1 30 | 175 | 344 | 36.7 | 452 | 325 | 55 35
2 25 10 | 17.5 | 16.7 | 20.8 | 11.5 | 23.8 16
4 10 5.2 9.2 94 10 5.2 15 6.7
8 5 29 5.8 6.7 6.3 2.1 6.7 5
12 3.3 1.7 4.2 4.2 4 1.3 5 3.3
16 29 1.3 29 2.1 3.1 0.4 29 2.1
20 1.7 0.6 25 1 25 0.4 25 1.7
24 1.7 1.3 2.1 1.7 2.1 1.3 2.5 0.8
28 1.7 0.4 2.1 1.3 1.7 0.4 1.7 1.3
32 0.8 0.4 1.7 0.8 1.5 0.4 2.1 0.8

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 113

We now model the speedup and strong scaling efficiency of MPI-based pro-
grams. In general, the execution time of a program can be expressed as

T(Np) :a+ﬁL+W%+ﬁVN%5, (39)
where « represents the average time to perform serial portion of the code, L is
the communication latency associated with one MPI message, (3 is the frequency
of MPI messaging, -y is the average time to process one spatial point, V" is related
to data transfer speed (throughput), and M is the mesh size (Nx X Ny xNz). The
communication overhead of one all-to-all message passing instance is equal to
L+ V M/N2, where each of N, processes communicates its M /N,, part of the
mesh evenly to all other processes, leading to a message size of M/ Ng. Taking
into account that in the strong scaling tests the mesh size is fixed, the above
model can be simplified to

b c
T(N,) =T(1 — + — 40
while the speedup can be modeled by
T(1 1
S(Np) = (1) = (41)

T(Np) a+0b/Np+ c/Ng '

Table 13. Values of obtained strong scaling model fit parameters a, b and c,
as well as the estimated fit errors for MPI-parallelized programs

Program a Aa b | Ab| ¢ | Ac
imag3d-mpi 0.008 | 0.006 | 1.6 | 0.2 | 1.4 | 04
real3d-mpi 0.026 | 0.006 | 1.1 | 0.1 | 0.2 | 0.3

imag3d-mpicuda | 0.025 | 0.008 | 2.3 | 0.2 | 2.8 | 0.6
real3d-mpicuda 0.020 | 0.008 | 23 | 0.2 | 2.8 | 0.6
imag3d-mpihetero | 0.104 | 0.009 | 1.7 | 0.2 | 09 | 0.5
real3d-mpihetero 0.09 | 002 |27]03]-10] 0.6

This model is fitted to the obtained strong scaling measurement data and
the results are presented in Table 13, while the corresponding model curves are

114 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

shown as solid lines in Figure 13. As we see, the proposed model agrees very
well with the experimental data. The only exception is the speedup and effi-
ciency of real-time OpenMP/MPI program (real3d-mpi) on N, = 32 processes,
where FFTW library creates an optimal transform plan that works very well
with the given mesh size. However, changing the mesh size even slightly gives
the performance comparable to the model prediction. We note that the value of
the model parameter c is negative for real-time Hybrid/MPI program (real3d-
mpihetero), which should not be the case since is parameter is related to data
transfer speed. However, due to uncertainty of the optimization choice by the
GA method and the fact that the fraction of total data offloaded to GPU grad-
ually decreases (Table 12), leading from real hybrid algorithm to almost pure
OpenMP/MPI one with hybrid FFT, it is not surprising that the obtained value
differs from expected. Taking into account relatively large fit error Ac/c = 60%
for this parameter, we can still use expression (41) to model performance of Hy-
brid/MPI programs.

Next, we test weak scaling of MPI-based implementations. The same num-
ber of cluster nodes (and thus MPI processes) was used as in previous tests,
while the starting mesh, which corresponds to a unit workload, had a size of
480 x 480 x 480, amounting to 110,595,000 spatial points. This number of spa-
tial points was kept constant per process, similarly to the weak test of OpenMP
programs. There is an exception to this scheme, the case when programs are
executed on N, = 28 nodes, as the scaled number of spatial points cannot be
evenly distributed among 28 processes. In this case we compare the weak scala-
bility by scaling up a starting mesh of 476 x 476 x 476, which has 107,850,176
spatial points, just slightly less than for other values of N,. The base of com-
parison was the execution time of a single iteration of the main loop with the
corresponding MPI-based program running as a single process (N, = 1). While
we used this configuration as the baseline, we do not recommend running MPI-
based programs with N, = 1 processes, because no special handling of such
case has been implemented. This means that MPI-parallelized programs are al-
ways transposing the data, which is unnecessary with NV, = 1 as all data is local
to the single process. Instead, we recommend using single-node variants of the
programs outside cluster environment.

Table 14. Weak scaling of MPI-based programs. Wall-clock execution times 77 are given in milliseconds,
efficiencies Fyy in percents

Mesh size [imag3d-mpi [real3d-mpi [imag3d-mpicuda | real3d-mpicuda [imag3d-mpihetero | real3d-mpihetero
Tw | EBw [Tw [Ew | Tw | Ew | Tw | Bw | Tw | Ew | Tw | Ew
Ny =1
180 x 430 x 430 [1758 | 100 | 2056 | 100 | 4338 | 100 [6346 [100 [1971 [100 [2877 [100

—
180 x 480 x 960 | 3858 | 45.6 | 4910 | 60.2 | 3785 | 1146 | 5430 | 1169 | 2044 | 964 | 2878 | 100
180 X 960 x 480 | 3704 | 475 | 5035 | 58.7 | 3825 | 1134 | 5573 | 1130 | 1997 | 087 | 2928 | 983
960 x 480 x 480 | 3758 | 468 | 5506 | 53.7 | 3871 | 1i2.0 | 5609 | 113.1 | 2019 | ©97.6 | 2980 | 965
Ny =4
180 x 960 x 960 | 4267 | 412 | 6033 | 49.2 | 2995 | 1448 | 4278 | 1483 | 2149 | 917 | 3000 | 956
960 x 480 x 960 | 3877 | 454 | 5223 | 56.6 | 3042 | 142.6 | 4318 | 1469 | 2218 | 889 | 3274 | 879
960 x 960 x 480 | 4000 | 44 | 5063 | 584 | 3078 | 1409 | 4424 | 1434 | 2148 | 9018 | 3106 | 926

Np =38
960 x 960 x 960 | 4327 | 40.6 | 6285 | 47 | 2952 | 1469 | 4167 | 1523 | 2369 | 832 | 3338 | 862
Np = 12

T440 x 960 x 960 | 4400 | 40 | 6729 | 430 | 2902 | 1495 | 4254 | 1492 | 2335 84.4 3504 | 82.1
960 x 1440 x 960 | 4268 | 412 | 6263 | 472 | 2953 | 1469 | 4167 | 1523 | 2412 817 3440 | 836
960 x 960 x 1440 | 4234 | 402 | 6299 | 469 | 2865 | 1514 | 4153 | 1528 | 2413 817 3351 | 859
Ny = 16
1920 x 960 x 960 | 4356 | 404 | 6419 | 46 | 3001 | 1445 | 4278 | 1483 | 2392 824 3434 | 8338
960 x 1920 x 960 | 4266 | 41.2 | 6376 | 464 | 2970 | 146.1 | 4170 | 1522 | 2552 772 3525 | 816
960 x 960 x 1920 | 4234 | 402 | 6508 | 45.4 | 2888 | 1502 | 4148 | 153 | 2639 74.7 3606 | 79.8
Np =24
1440 x 1920 X 960 | 4677 | 40 | 6895 | 429 | 2924 | 1484 | 4266 | 1488 | 2552 773 3770 | 763
T440 x 960 x 1920 | 4796 | 38.3 | 7076 | 41.8 | 2984 | 1454 | 4235 | 1498 | 2611 755 3699 | 778
1920 x 1440 X 960 | 4470 | 40.6 | 6439 | 450 | 3007 | 1442 | 4286 | 148.1 | 2546 774 3504 | 821
1920 x 960 x 1440 | 4450 | 408 | 6425 | 46 | 2984 | 1453 | 4251 | 1493 | 2551 713 3550 | 8L.1
960 x 1440 x 1920 | 4364 | 41.1 | 6846 | 432 | 2879 | 150.7 | 4105 | 1546 | 2632 735 3725 | 712
960 x 1920 x 1440 | 4346 | 41 | 6806 | 43.4 | 2878 | 150.7 | 4133 | 153.5 | 2501 78.8 3562 | 80.8
Ny = 32
1920 x 1920 X 960 | 4452 | 395 | 6704 | 44.1 | 3183 | 136.3 | 4518 | 140.5 | 2585 763 3715 | 715
1920 x 960 x 1920 | 4520 | 389 | 6802 | 434 | 3163 | 137.2 | 4480 | 1417 | 2632 74.9 3769 | 763
960 x 1920 x 1920 | 4301 | 409 | 6663 | 444 | 3014 | 1439 | 4351 | 1459 | 2776 71 3933 | 730

116 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

Table 14 lists mesh sizes used and execution times obtained for N, = 1,
2,4, 8, 12, 16 and 32 cluster nodes. We also tested weak scaling on N, =
20, 24 and 28, but have excluded them from the table for brevity. A complete
comparison is shown in Figure 15. The ordering of mesh dimensions had a
slightly greater impact than with single-node OpenMP programs, varying up
to 10% for the OpenMP/MPI programs, and less for the other two MPI-based
implementations. This means that for meshes of the same size, thus implying
equal work, execution times were mostly lower for those with larger values of
Nx (e.g., the execution time for a 960 x 480 x 960 mesh is lower than for a
480 x 960 x 960 one). However, no distinct pattern emerges that would give us
a clue as to which order is the most favorable. Upon inspection, we find that the
difference in execution times is due to the different FFT plans employed by the
FFTW and cuFFT libraries. The communication time remains mostly the same,
as is expected since the amount of data exchanged is the same.

The results of weak scaling tests warrant further discussion as the execution
times and plotted efficiencies appear misleading. On one hand, OpenMP/MPI
programs show poor scaling results, achieving only 40% efficiency, while on
the other hand the CUDA/MPI show efficiency well above 100%, a seemingly
impossible result. The lower efficiency of the OpenMP/MPI programs is due to
the very good performance of the baseline run. Here, the FFTW creates a very
good FFT and transpose plans, which exploit the fact that all data are local, and
thus have very good execution time. With IV, = 2 nodes the execution time
increases significantly, and efficiency drops to about 45-55%. However, adding
more work and nodes has much smaller impact on efficiency, which only drops
to 40-45% with N, = 32 nodes. If we use N, = 2 as the baseline, we see that
the efficiency remains above 80%, a very good result.

In contrast to the OpenMP/MPI version, CUDA/MPI version performs very
badly when executed on one node. Due to message sizes, MPI implementation
used (Open MPI) relies on asynchronous copies through host memory [59] to
perform the required communication. This results in bad performance due to
a lack of overlap when copying data, as there is only one process involved.
With N, = 2 processes the situation improves, as multiple streams are used,
much like how we employ streams to overlap computation and data transfers
in implementation of the hybrid algorithm. Between N, = 4 and 16 processes
we get the best performance, and further increasing the number of processes
only slightly reduces efficiency due to the size and amount of messages passed.
If we compare the weak scaling efficiency with the best result as the baseline

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 117

0.6 T T T 1.8 T T T T
L 0 i
0.5+ ° o - 1.5+ #.:e @ A’ ‘;, /.\ {3 ;
r \@. v (o3 &> 4
2‘0.4 i —e—o—_ o ¢ & 2—1 812 ¢ g
] L 1 Qo L 4
g 0.3 I 1 § 0.9
T 0.2 ® imag3dd-mpi | “GO0.6 ® imag3d-mpicuda -
F <& realdd-mpi < real3d-mpicuda
0.1r B 0.3 B
b (a) OpenMP / MPI | (b) CUDA / MPI
0 L L L L L L L L 0 L L L L L L L L
2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32
number of cluster nodes number of cluster nodes
1 & | B

T
K/.\‘ %

o
_—
o
[3
[2
)

o
[=2)
—

efficiency
(=}
'S

T T

® imag3d-mpihetero |
<& real3d-mpihetero i

(c) Hybrid / MPT
| | | | | |

L L
2 4 8 12 16 20 24 28 32
number of cluster nodes

e
[\
—T

(=)

Figure 15. Weak scaling efficiency of three MPI-based implementations, aver-
aged over all mesh sizes tested for each value of NV,. Solid lines represent fits
to measured data, where fit model functions are given in the text.

(obtained with N, = 16 processes), we see that the efficiency is lower than
for the OpenMP/MPI version, due to the different transpose routine used and
divided multidimensional FFT that has to be employed. However, we stress that,
in terms of absolute execution times, CUDA/MPI is faster than OpenMP/MPI
version for N, > 4.

The Hybrid/MPI version behaves as expected and demonstrates weak scal-
ing efficiency of about 70-75% with N, = 32 nodes. Since data are trans-
posed only in host memory, this version does not suffer the penalty of memory
copies like the CUDA/MPI version, and therefore achieves much better effi-
ciency with small number of cluster nodes. In terms of absolute execution times,
Hybrid/MPI version is the fastest of all three implementations for N, > 2 and is
therefore the algorithm of choice for distributed memory systems. Of course, it
assumes previous optimization of offloading parameters using the GA method,
which itself is time-consuming and has to be taken into consideration when
making the choice. Table 15 provides data on the optimal fraction of total data
offloaded to GPU in our weak scaling tests. As the number of processes in-
creases, one expects that the amount of data offloaded to GPU remains constant,
which is the case, as we see from the table. The only exceptions are when the

118 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

Table 15. Optimal fraction of total data offloaded to GPU in weak scaling
tests for different mesh sizes in Hybrid/MPI programs, obtained using the

GA optimization method
. imag3d-mpihetero real3d-mpihetero

Mesh size PS; | PS, | PS; | PS: | PS; | PSs |pP83 PS;
Ny =1

480 x 480 x 480 | 35 | 20 | 31 | 44 | 46 | 30 | 40 | 35
Np =2

480 x 480 x 960 46 | 33 [33 [47 [38 | 29 | 37 [38

480 x 960 x 480 50 | 67 | 17 | 47 | 45 | 60 | 19 | 40

960 x 480 x 480 S0 | 15 [70 | 34 | 43 [15 | 67 | 35
N, =4

480 x 960 x 960 40 | 65 | 18 [47 [40 | 63 | 17 [37

960 x 480 x 960 S0 [10 | 67 | 42 [40 | 12 | 75 | 33

960 x 960 x 480 33 [29 [33 | 40 | 45 [22 | 33 | 40
Ny, =8

960 x 960 x 960 | 53 | 25 | 33 | 47 | 40 | 27 | 40 | 28
N, = 12

1440 < 960 x 960 | 37 | 20 | 53 | 45 | 42 | 18 | 60 | 63
960 x 1440 x 960 | 40 | 38 | 27 | 47 | 45 | 35 | 27 | 35
960 x 960 x 1440 | 50 | 25 | 38 | 45 | 45 | 25 | 40 | 40
N, = 16
1020 x 960 x 960 | 47 | 13 | 67 | 27 | 42 | 13 | 80 | 30
960 x 1920 x 960 | 47 | 47 | 35 | 37 | 47 | 53 | 20 | 25
960 x 960 x 1920 | 50 | 20 | 33 | 33 | 47 | 20 | 40 | 27

1440 x 1920 x 960 | 47 | 40 | 30 | 53 | 47 | 33 | 25 | 63
1440 x 960 x 1920 | 50 | 17 | 60 | 45 | 47 | 13 | 60 | 70
1920 x 1440 x 960 | 40 | 20 | 50 | 40 | 45 | 20 | 53 | 27
1920 x 960 x 1440 | 53 | 13 | 60 | 45 | 45 | 10 | 80 | 25
960 x 1440 x 1920 | 50 | 30 | 27 | 47 | 45 | 30 | 27 | 27
960 x 1920 x 1440 | 40 | 50 | 18 | 45 | 45 | 50 | 20 | 30
N, = 32
1920 x 1920 x 960 | 47 | 27 | 33 | 30 | 47 | 17 | 40 | 27
1920 x 960 x 1920 | 50 | 13 | 60 | 40 | 47 | 10 | 80 | 40
960 x 1920 x 1920 | 47 | 47 | 40 | 33 | 47 | 40 | 23 | 27

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 119

value of Ny is greater than Nx where we see a larger fraction of data offloaded
to GPU in PSy and PS4, and when the value of Ny is smaller than Nx where we
see a smaller fraction of data offloaded to GPU in PSy and PS4.

To model the obtained weak scaling results, we start from equation (39) for
the execution time of a single iteration of the main loop. In weak scaling tests,
the mesh size is increased proportionally to the number of MPI processes Ny,
and therefore the execution time is given by

M N, M N, M
Tw(Np) = a+BL+y—> 4V —=F = a+ L+yM+ 5V —. (42)
Ny Ny Ny
The weak scaling efficiency
Tw(1)
Ew(Np) = 7~ (43)
(p) TW(Np)
can thus be modeled by
Bw(Ny) = — (44)
WA Y b/N,

We fitted this model to data presented in Figure 15 and the obtained fit param-
eters are given in Table 16. Note that the model is fitted to CUDA/MPI scaling
data only for IV, > 4. The agreement between the model and measurement data
is very good, although we note that the parameter b has negative values, contrary
to its expected relation to the communication cost. Therefore, we conclude that
the above expression can be successfully used for modeling of the performance
of all three MPI-based implementations.

To summarize, in all test results of MPI-based programs, we note an ex-
pected declining of the scaling efficiency. This is due to the introduction of
distributed transposes of data, creating overhead that negatively impacts scal-
ing efficiency. It is most evident in both strong and weak scaling tests of the
CUDA/MPI version, as the transpose algorithm is inferior to the one provided
by FFTW, used in OpenMP/MPI implementation. In our tests, all three MPI
versions of programs failed to achieve actual speedup (S(/Np) > 1) on less than
N, = 4 nodes, due to the introduction of these transpose routines. We therefore
recommend using MPI versions only on N, = 4 or more cluster nodes.

120 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

Table 16. Values of obtained weak scaling model fit parameters ¢ and b, as
well as the estimated fit errors for MPI-parallelized programs

Program a Aa b | Ab
imag3d-mpi 256 | 0.06 | -09 | 0.3
real3d-mpi 232 1005 | -13 |02

imag3d-mpicuda | 0.70 | 0.02 | -0.1 | 0.2
real3d-mpicuda 0.68 | 0.02 | -0.1 | 0.2
imag3d-mpihetero | 1.32 | 0.03 | -0.6 | 0.2
real3d-mpihetero 1.27 |1 0.03 | -0.6 | 0.2

2.4.5. Selecting the Optimal Algorithm

In previous sections we presented results of detailed performance tests and asso-
ciated models for all developed programs. Here we provide general guidelines
for obtaining the best performance from each implementation.

We note that the extensive testing performed shows that the best perfor-
mance can be achieved by evenly distributing the workload among the MPI
processes and OpenMP threads, and by using mesh sizes which are optimal
for FFT. In particular, the single-node OpenMP programs have the best perfor-
mance if the number of spatial points in all directions, controlled by parameters
Nx, Ny and Nz, is divisible by the number of OpenMP threads used. Similarly,
the OpenMP/MPI implementation achieves the best performance if Nx and Ny
are divisible by a product of the number of MPI processes and the number of
OpenMP threads used.

On the other hand, CUDA implementation works best if all the data for a
given mesh size can fit into the GPU memory. In the case of a small mesh
size, CUDA programs may not be able to saturate all Streaming Multiproces-
sors (SM) of a given GPU, and in this case the OpenMP programs may be
considered first. For CUDA/MPI programs, the best performance is achieved
if Nx and Ny are divisible by a product of the number of MPI processes and
the number of SMs in the GPU used. Note that CUDA-based implementations
write output files (e.g., density profiles) by transferring data from GPU memory
to host memory, where a single thread writes to a file. Therefore, these im-
plementations may not be suitable for simulations that require the output to be
written frequently, after a small number of time propagation steps.

Best performance of hybrid implementations can be obtained by following

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 121

the same guidelines. Furthermore, we recommend using these programs with
the optimization methods described in section 2.4.1 to optimally divide the work
between host and device. If manual tuning of offload parameters is required,
we recommend that the guidelines above are followed for both CPU and GPU
portions of the mesh. In the case of large disparity in the performance of host
or device, hybrid versions will not provide the lowest execution times, and in
such cases the pure CPU or GPU implementations with or without MPI could
be better suited.

In addition to the guidelines for mesh sizes presented above, all programs
benefit from the mesh size which is also optimal for FFT. The best FFT per-
formance on CPU with FFTW library is obtained if Nx, Ny and Nz can be
expressed as 2a3b5e7d11€13/ where e and f are either O or 1, and the other
exponents are non-negative integer numbers [60]. Similarly, for cuFFT the best
performance is achieved for transform sizes of the form 2¢3°5°7%. In hybrid
implementations, the same applies to the host and device portions of Nx and
Ny, i.e., cpuNx, cpuNy, gpulNx and gpulNy.

2.5. Applications

The applicability and accuracy of the NLS equation for the description of BEC
properties has been established in early studies addressing time—of—flight expan-
sion and collective modes of the condensate [61, 1]. More recently, numerical
algorithms [22, 23, 25, 26] for solving the NLS equation (1), have been used
to investigate: nonlinear frequency shifts of the collective mode induced by a
harmonic modulation of interaction [62]; onset and features of Faraday waves
in BEC [63, 64, 65]; phase—separation dynamics of two—component BECs [66];
geometric resonances in a BEC with two— and three-body interactions [67];
non-equilibrium dynamics of a stirred BEC [68, 69, 70]; localization of a two—
component BEC in a random potential [71]; vortex lattice melting in the pres-
ence of impurities [72]; classification of fractional vortices in a spinor BEC
[73]; BEC dynamics in a dimple trap [74, 75, 76]; dynamics of localized impu-
rity in BEC [77]; analysis of localized states in a multi-component BEC [78];
BEC dynamics induced by a sudden change of an optical lattice geometry [79];
BEC dynamics in a gravito—optical surface trap [80]; emergence of a Bose glass
phase in a BEC in the presence of disorder [81]; vortex dynamics [82]; vortex
generation in a stirred BEC [83]; dynamics of a self-bound droplet in the pres-
ence of an attractive two—body and a very small repulsive three—body interaction

122 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

[84, 85]. The dynamics of light bullets in a cubic—quintic nonlinear medium
based on an extension of equation (12) has been published in reference [86].
As an illustration, in section 3 we present results of the study addressing the
phase—separation dynamics of two—component BECs [66].

Furthermore, the codes [22, 23] have been extended to incorporate effects of
the spin—orbit coupling which are currently intensely explored in the systems of
cold atoms. In particular, the following subjects have been investigated: phase
separation in a spin—orbit coupled BEC [87]; soliton dynamics in spin—orbit
coupled BEC [88, 89, 90, 91]; dynamics of a BEC with spin—angular momentum
coupling [92]. In section 4 we present recently obtained results about dipole
mode and breathing mode excitations of a BEC in the presence of the coupling
of pseudo spin and angular momentum [66].

The algorithms [28, 29, 30] for solving the dipolar NLS equation (11) have
been applied to the study of: vortex dynamics in a dipolar BEC [93, 94, 95,
96]; phase separation in a binary dipolar BEC [97]; dynamics of a dipolar BEC
droplet [98]; stability and dynamics of a dipolar Bose—Fermi mixture [99, 100];
solitons in a dipolar BEC [101, 102, 103, 104, 105, 106, 107]; self—trapping of
a dipolar BEC in a double—well [108]. As a final illustration, in section 5 we
present a study of vortex formation in a dipolar BEC.

3. Phase Separation Dynamics of a Two—Component
BEC

Systems of multi-component BECs involve an additional degree of freedom and
enrich the physics that can be explored within cold atom setups. These systems
are either realized as mixtures of different bosonic atoms or different hyper-
fine states of the same atomic species. In this section we extend the previously
described numerical algorithm and apply it for a study of a two—component
system, described by two condensate wave functions 1 (x,t) and ¥s(x, t) in
a quasi one—dimensional geometry. The ground state configuration can be ob-
tained as a minimum of the following energy functional

o)

+ %|¢1($)|4+g%lwz(fcﬂél+g12|w1(a:)|2\¢2(x)\2}, 45)

By = [[<wr<x> Y1) Ho (

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 123

where H(corresponds to the non—interacting Hamiltonian
1 9
Hy = <——— +V($)) Iy, (46)

with Zo being a 2 x 2 identity matrix. As the total number of atoms of
each species is conserved, the normalization condition is implemented as
[dxyr(z)|? = [dzlpa(z)]> = 1. The expression (45) encompasses three
interaction constants: g1 for atoms of the first species, goo for atoms of the sec-
ond species and g;2 interaction constant between the atoms of the two species.
We assume that all these interactions are repulsive, i.e., g;1 > 0, goo > 0,
g12 > 0. For g12 = 0, the two species do not ’feel” each other and energy de-
fined in (45) consists of two copies of single—component energy (5). In this case
density distributions of the two species |11 (x)|? and |5(x)|? may fully over-
lap in space. As intra—component repulsion g2 gets stronger, two—component
mixtures may exhibit phase separation [13]. Simply, as it is energetically costly
for the two species to overlap, they spatially separate instead. In the homoge-
neous case V' (x) = 0, the necessary condition for the onset of phase separation
1s given by [109]

911922 < Gl - 47)

Often the two—component condensate is not prepared as the ground state
of (45), but using a dynamical protocol [110, 111, 112] that we describe in the
following. The dynamics of a two-component condensate in the mean—field
regime is governed by two coupled Gross—Pitaevskii equations [113]:

2

@W = {—%% + %AQQEQ + gu1 | (z,1)]? +912|¢2(937t)|2} Pi(x,t), (48)
2

ia%(;?t) = {—%% + %)\21,2 + gi2 |t (z,1)]? +922|¢2($7t)\2} pa(x,t). (49)

Wave functions of the condensates 1 (x,t) and o (x,t) are normalized to
unity and \ is the strength of the harmonic trap V(x) = A2z?/2. The
non—equilibrium dynamics of a two—component BEC captured by the cou-
pled NLS equations (48) and (49) has attracted lot of theoretical interest
[114, 115,116, 117, 118].

Initially, a single-component condensate is produced. We model this situa-
tion as a two—component BEC with g;1 = g22 = g12 and prepare initial state as
the ground state of (45) for g11 = g22 = g12. Att = 0 apulse is applied and half

124 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

g12 = 1.01 g12 = 1.04

(b) 3

(@) 3

Figure 16. Time evolution of condensate widths for several values of gi2: (a)
g2 = 1.01, (b) g12 = 1.04, (c) g12 = 1.06, (d) g12 = 1.3. Other parameters:
A=1073,g11 =1, goo = 1.01.

the atoms are transfered into another hyperfine state. An important assumption
of our analysis is that the process is completely spatially symmetric, i.e. the two
BEC:s overlap perfectly at the initial moment. Due to the transfer, values of g29
and g2 are suddenly changed and dynamics of the two components is started.
We monitor the time dependence of the widths of the two components,

w3 o(t) = / do 2z, 6)2 (50)

—00

as well as the total width w(t) = /(w1 (t)? + wa(t)?) /2. Typical results ob-
tained for different final values of gi and A = 1073, g11 = 1, goo = 1.01 are
presented in Figure 16. We observe fast oscillations in the total width with a
frequency unaffected by a change in g;2. These oscillations correspond to the
so—called breathing mode. In a quasi one—dimensional geometry it turns out
that their period is 277 /(+/3)). On top of this, we notice slow oscillations in the
width of each of the two component for g;o = 1.01 as shown in Figure 16(a).

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 125

These out—of—phase oscillations correspond to the ”spin” mode, and their fre-
quency decreases with increase in gi2. In particular, the oscillation period of
the spin mode is about 20 for g;2 = 1.01 (see Figure 16(a)) and about 30 for
g12 = 1.04 (see Figure 16(b)). Above a certain threshold value of g;2, oscilla-
tion amplitudes sharply increase and the width dynamics becomes aperiodic and
irregular (see Figure 16(c) for g5 = 1.06). Irregularity of the width dynamics
1s even more apparent for gio = 1.3 as shown in Figure 16(d).

In Figure 17 we show the dynamics of the “spin density” |¢(z,)
|42 (, t)|? for the same parameters as in Figure 16. The plots Figure 17(a)
and (b) show regular oscillations. By comparing plots Figure 17(b) and (c) we
note a sharp change in the color scales that matches the sharp increase in the
oscillation amplitude observed earlier. Finally, in Figure 17(d) we observe a
clear onset of pattern dynamics. By applying a suitable linear stability analysis,
it was shown that the onset of aperiodic motion is marked by emergence of an
unstable mode around a referent stationary state [66]. This behavior is known as
modulation instability and by investigating a range of values A € (10_5) 10_1) ,
we found that in a realistic experimental situation, stronger trapping potential
strength A shifts the instability condition (47) toward higher values of g1».

2 -

4. Excitations of a BEC with Spin-Angular Momentum
Coupling

Experimental realization of an effective spin—orbit coupling in ultracold atom
systems [119, 120, 121, 122, 123, 124, 125] has allowed for new quantum
phases to be explored. Bosonic systems with spin—orbit coupling are interest-
ing as they have no direct analogues in condensed matter systems and provide a
new research playground [126, 127]. In recent references [128, 129, 130, 131]
the following Hamiltonian for a two—component bosonic system has been intro-

duced:
1 2 Q%2 1 e %9
Hsoc = <—§A + ?) Iy + 5 (Q20) ; (51)

where 75 is a 2 x 2 identity matrix and the effective spin 1/2 comes from the
two bosonic components involved. The system is assumed to be effectively
two—dimensional (tightly trapped in the longitudinal direction). The value of
() is set by the intensity of two co—propagating Laguerre—Gauss laser beams

126 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

g12 = 1.01 g12 = 1.04
6 0.12 6
-6 -0.12 -6 -0.12
g12 = 1.06
6 0.4
g | _i |
-6 -0.4
10 20 30 40
)\t At

Figure 17. Spin dynamics illustrated via the density difference given by
A1/2 (|91 (=,)% — |ha(z, t)|2), induced by a quench of g1 and go5. Param-
eters: (a) g2 = 1.01, (b) gi12 = 1.04, (¢) g1 = 1.06, (d) g1 = 1.3 and
A=1073, 911 =1, goo = 1.01.

that carry a unit of angular momentum in the opposite rotational directions.
The last, p—dependent term, where ¢ is the polar angle, provides the coupling
between the spin and angular momentum, as can be explicated by using a proper
unitary transformation [129]. In this section we extend the algorithms presented
in subsection 2.2 and use them to investigate excitations of a BEC with spin-
angular momentum coupling as defined in equation (51).

The total energy per particle of the condensed state with the order parameter

(¥1(r) ¥a(r))" is given by

V1
(2

where we assume spin—symmetric interactions gi; = go2 = g12 = ¢g. Due to
off—diagonal terms in (51), which allow for the conversion of one atomic state
into the other, only the total number of atoms is conserved and the normalization
condition is given by [dr (|11(r)|? + [¢2(r)[?) = 1.

By = / dr [wf ¢;>Hsoc()+ Sl 4 Tl + glen Pl (52)

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 127

To implement the spin—angular momentum coupling in the propagation rou-
tine, we split the step of imaginary—time propagation into four pieces. As usual,
in the first step we take into account harmonic potential and nonlinear terms, ac-
cording to equation (13). The second step comprises the spin—angular momen-
tum coupling, and in the last two steps we perform integrations of the type (14)
with respect to the two spatial variables z and y. Explicitly, the off—diagonal
terms from (51) are treated separately starting from

0 .
——wla(r’ N e 2% c(r)abo(r, T), (53)
-
0 .
ST 2 e,), (54)
-
where ¢(r) = %9272. By differentiating the two last equations we obtain two
independent equations
0% (r, T 0%o(r, T
% = (r)%(r,7), % = c(r)%o(r,7) (55)

that are solved by
Pi(r,7) = Ai(r)e T 4 By (x) T,
Yo(r,7) = Aa(r)e 7T 4 By(r) 7, (56)

From the initial conditions for the second part of the n—th integration step at
T/ = (n + %) e we obtain a set of algebraic equations for the coefficients

Ai(r) + Bi(r) = ¢i(r,7),
—c(r)Ai(r) + c(r)Bi(r) = —e *c(r)io(r,7'),

As(r) + Ba(r) = a(r,7),
—c(r)Ag(r) + c(r)Ba(r) = —€*?c(r)n(r,7'),

that finally leads to

A = 3 [l) e e)]

Bir) = 5[0l)= e M)

Anfr) = 3 [0ale,) + (e,)]

By(r) = %:¢2(r,f’)—e2i¢¢1(r,f')}. (57)

128 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

2.065
2.06
2.055
205
2.045
2.04
2035
203
2.025

Ey(t)

Initial conditions 1 ——o—
Initial conditions 2 ———

20 40 60 80 100 120 140 160 180 200

T

Figure 18. The energy of the ground state Fy(7) defined in equation (52)
vs. imaginary time 7 obtained for different initial conditions. In the first case,
we start from a random initial state and observe slow convergence toward the
global minimum. In the second case, initial conditions have proper dependence
on the polar angle ¢, as given in equation (58) and the convergence toward the
ground state is exponentially fast as shown in the inset. Parameters: 2 = 3.2
and g = 1.

In our numerical implementation we make direct use of equations (56) and (57).

Before turning to numerical simulations, we first briefly present an impor-
tant analytical result available for ¢ = 0. General symmetry considerations
imply that the ground state configurations of (52) for ¢ = 0 can be expressed in

a form o ”
_ e fm(r)e”
qu(lr'a ¢) — \/ﬁ < gm(r)eiqs)) (58)

where m is an integer. In particular for €2 < €., with 2. = 3.35 there are two
degenerate ground states m = +1 and for {2 > (). the ground state configura-
tion corresponds to m = 0. The m = =1 states are denoted as half—vortices,
and m = 0 state is named vortex—antivortex pair. In order to explore ground
state configurations for a finite value of interaction constant g, we perform min-
imization of energy functional (52) using imaginary time propagation. How
quickly we reach the ground state strongly depends on the choice of initial con-
figuration as shown in Figure 18. Starting with random initial values, we find

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 129

that propagation routine may first reach a metastable configuration (local min-
imum of Fy) and eventually, only after very long propagation time, it selects
the right minimum. With a better choice of initial configuration, motivated by
exact results (58), the right minimum is found with substantially less iterations.
Considerations of this kind are relevant whenever there are several configura-
tions that are nearly degenerate — i.e., have close values of the corresponding
energies (52) and represent local minima of the functional (52).

2 0.25 2 0.04
@ 5 ® 5 0.035
1 0.2 I 0.03
0.5 0.15 0.5 0.025
=0 = 0 0.02
-0.5 0.1 -0.5 0.015
1 005 1 0.01
1.5 1.5 0.005
2 0 -2 0
2-1.5-1:05005 1152 2:15-1-050 051 1.5 2
X X
2 2
© 5 @ 5
1 I
0.5 0.5
= 0 N 0
0.5 -0.5
1 1
1.5 -15
2 2
2-1.5-1-0500.5 1 1.5 2 2-15-1-050 051 1.5 2
X X

Figure 19. The m = 1 ground state obtained for 2 = 3.2, g = 1. We plot: (a)
the density distribution of the first component |11 (r)|?, (b) the density distribu-
tion of the second component |1)3(r)|?, (c) the argument of 11 (r) and (d) the
argument of s (r).

Two examples of the ground state configurations are given in Figs. 19 and
20. We find that at finite values of g, ground states can also be distinguished
according to their dependence on polar angle ¢, as given in equation (58). In
Figure 19 we present the ground state solution for {2 = 3.2 and ¢ = 1. This
is a half-skyrmion configuration characterized by m = 1. We note that the

130 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

first component is confined around the trap center and its phase dependence is
trivial. In contrast, the second bosonic species exhibits double phase winding,
see Figure 19(d). In Figure 20 we present the ground state solution for {2 = 3.5
and g = 1. The densities of the two components overlap in space, Figure 20(a)
and (b), and exhibit phase winding in opposite directions, Figure 20 (c) and (d).
This is an example of m = 0 state called a vortex—antivortex pair.

In general, quantum phases can be distinguished according to their low—
lying spectra. In cold atom experiments routinely accessible with great preci-
sion are breathing mode and dipole mode excitations. To probe these modes,
initially the system is prepared in its ground state and then a sudden quench of
the potential V' (r) is performed. We now theoretically address these excitations
for the half-skyrmion and vortex—antivortex state.

@ 2 0.06 b 2 0.06
‘-51 0.05 ‘-? 0.05
0.5 0.04 i 0.04
N 0 0.03 = 0 0.03
'0-? 0.02 'O-f 0.02
15 0.01 15 0.01
2 0 2 0
2151050051152 2-15-1-050051 152
X X
c 2 d 2
15 15
I I
0.5 0.5
=, 0 =, 0
0.5 0.5
-1 -1
‘15 ‘15
2 2
2-15-1-0500511.52 2-15-1-0500511.52
X X

Figure 20. The m = 0 ground state obtained for 2 = 3.5, g = 1. We plot: (a)
the density distribution of the first component |11 (r)|?, (b) the density distribu-
tion of the second component |13(r)|?, (c) the argument of +;(r) and (d) the
argument of s (r).

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 131

The dynamics of a BEC with spin—angular momentum coupling is gov-
erned by two coupled time—dependent Gross-Pitaevskii equations for vy (r, t)

and ¥o(r, t):

.01 1/ 02 02 r?Q? 2 2 0 o
ZW%E(@*@)”(”* 5 9 (Wl + [al) | Y 5=, (59)
' 877[12 1 82 82 ?"292 9 9 T2Q2 20
Z—at = {—5 (@—f—a_ﬁ)—'_v(r)—’_ 5 +g(|¢2| + [41]):| 2+ 5 e 1. (60)

The trapping potential is assumed to be harmonic, initially set to V (1) = r2/2.
To induce a breathing mode, we perturb the trap strength

7“2
?7

and calculate the time evolution of the width of the probability distribution,

Vpert = (1 + 77) (61)

2w 00
<T2(t)>=/0 d¢/0 drr® [[91(r,) + [9a(r, 1)]7] . (62)

By inspecting the corresponding Fourier transform, we identify the lowest ex-
cited frequency as the breathing mode wp.

In a typical harmonically trapped two—dimensional system, without the
spin—orbit coupling 2 = 0, the Gross—Pitaevskii description predicts that the
breathing mode frequency is wp = 2 (in the units of the harmonic trap fre-
quency), independent of interaction constant g [132]. Analytical arguments and
numerical results (not presented here) show that this general conclusion holds
true for the vortex—antivortex state. On the other hand, the breathing mode
frequency of a half-skyrmion state depends on both the coupling €2 and on
the interaction strength g. Illustrative results for (r2(¢)) are presented in Fig-
ure 21(a) for {2 = 3.2, 7 = 0.1 and several values of g. From the related Fourier
transforms shown in Figure 21(b), we find that the breathing mode frequency
increases for several percent with g.

To excite a dipole mode, we consider a shift of the trap bottom in x direction,

2
Vperi = 5 — 0w, (% + 7). (63)
2 2
and monitor the motion of the center of mass of the system in that direction,

27 X0 —i¢ 00
(w(t)) = / dp / dro® [(e, O + [a(e, OP] L (64

as well as (y(t)).

132 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

fb}mﬂ g=0 « g=06 « g=1.5

apmijdwe [q

Figure 21. Breathing mode oscillations in half-skyrmion phase: (a) (r?(t))
versus t and (b) corresponding Fourier transform. From the inset we observe
increase of the breathing mode frequency with g. Motion is induced by changing
harmonic trap potential as 5 — 1.01%2, Q=3.2.

7)) —— maft) —— n(t) —— IH::U) ——=

(b) 0.05
0
-0.05
I I/

10* . "
(c) ‘ (d) 0.25
3 10°
Z10° 0 ¥
=
-
=107

0.25

107

20 0.25 0.5

Figure 22. Dipole mode oscillations of half—skyrmion state in interacting case
for 2 = 3.2. Motion is induced by shifting the harmonic trap bottom for dx =
0.01. In (a) and (b) g = 1. In (c) motion of the center of mass, y(t) versus x(t),
is plotted. The trajectory radius gets smaller with increasing g. In (d) vertical
lines give results for wlL) (in the inset) and wg (in the main panel) obtained using
the Bogoliubov method, and dots represent Fourier transform of z(t).

In the conventional harmonically trapped system ({2 = 0), this perturba-
tion excites the Kohn mode — an oscillation with the trap frequency along x

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 133

axis unaffected by interactions. Illustrative results for a half—skyrmion state are
presented in Figure 22 for (2 = 3.2 and they obviously exhibit more complex
behavior in comparison to the results for {2 = 0. We observe that oscillatory
motion in z direction is coupled to the motion along y direction. Moreover, we
find that there are two frequencies involved. We label them as w% (low) and w#
(high). In Figure 22(a) and 22(b) we see that two bosonic components oscillate
in—phase in both directions. The frequency w,% exhibits a strong increase with
g, as 1s depicted in Figure 22(c). As the frequency w{g gets larger, the induced
oscillation amplitude gets weaker, Figure 22(d). For the considered case, the
frequency wg is found to be almost independent of g, see Figure 22(c). Results
based on the complementary Bogoliubov approach, match quite well to the nu-
merical data obtained from direct numerical simulations of equations (59)—(60),
see Figure 22(c).

z1(t) —— xa(t) n(t) —— yalt)

(a) (by 0.02
0.25
0
0 0,02
0 250 500 0 250 500
! i
4
10
(c) E . i D ¢g=02 ——0voH
D i(}g '{}:%\ whD qg= 0.5 —— 0.1
2 — ', g=15 ' 0.05
Z10° R g ey W
g i
R [T _4 -0.03
L, L b=t = = hmﬁ
10" I'E 0.1
[002 004, 006 008
0 0.5 1 1.5 2 0 01 02 03

w T

Figure 23. Dipole mode oscillations of the m = 0 solution in interacting case
for {2 = 3.5. Motion is induced by shifting harmonic trap bottom for = = 0.01.
In (a) and (b) g = 0.2. In (c) trajectory of the center of mass of a single bosonic
component, y; (t) versus x1(t), is plotted. In (d) vertical lines give results for
wlL) (in the inset) and wg (in the main panel) obtained using Bogoliubov method
and dots represent Fourier transform of x(t).

134 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

In the vortex—antivortex state, the two bosonic components exhibit an out—
of—phase oscillation in y direction, see Figure 23(b), and consequently the cen-
ter of mass only oscillates in x direction with the frequency wlL) that exhibits
an increase with g, see Figure 23(c). The trajectory of the center of mass of
each of the components is given by an ellipse, which is strongly elongated in x
direction, see Figure 23(d).

5. Study of Critical Velocity for Vortex Formation

As we have already seen, the programs presented in this chapter can be used
to model and study a variety of systems. In this section we demonstrate the
versatility of developed programs on a simulation of vortex formation in a BEC.
We use the MPI-based programs to simulate the effects of a moving obstacle in
an oblate atomic BEC. The obstacle, a repulsive Gaussian laser beam, moves
through the condensate and sheds quantum vortices, elementary excitation of a
superfluid [14, 13]. The vortices appear only when the obstacle is moving above
some critical speed, consistent with the Landau’s criterion of superfluidity. At
low obstacle velocities above a critical value, vortex dipoles emerge, and as the
speed is increased further, individual vortices and rotating vortex pairs are also
formed.

In the first subsection we document how our programs can be used to simu-
late the experiment reported in reference [133], and compare experimental and
numerical results. The experiment measured critical velocity for the emergence
of vortex dipoles and rotating vortex pairs in a BEC of sodium atoms (*>Na),
which do not exhibit the dipolar interaction. Therefore, in this section we also
demonstrate how our programs can be modified to switch off the dipolar inter-
action term when solving NLS equation. The agreement of the results obtained
numerically and experimental observations provides an external check of the
correctness of our algorithms and their implementations.

In the second subsection we investigate the formation of vortices in a dipolar
BEC of dysprosium atoms (164Dy). Our simulations follow the same methodol-
ogy as the experiment with sodium atoms, only with atomic species exhibiting
strong dipolar interaction. We study effects of the dipolar interaction on the
critical velocity for the emergence of vortices, as well as the interplay between
contact and dipolar interaction. The visualization extensions presented in ref-
erence [42] have proven to be indispensable during these simulations, as they
allow much easier study of the results and control of the simulation.

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 135

5.1. Formation of Vortices in a BEC

BEC is a superfluid quantum liquid and one of its hallmarks are quantized vor-
tices, which appear as elementary excitations of the system. Quantization of
vortices is connected to excitation spectrum and, according to Landau’s crite-
rion, leads to the existence of a minimal velocity an obstacle moving through
the superfluid has to have in order to generate such elementary excitations. This
critical velocity v, can be experimentally measured and, in principle, depends
on the experimental protocol used.

vortices rotating
vortex pair

BEC

Figure 24. Illustration of the experimental setup used in reference [133] to study
vortex formation in a BEC of sodium atoms. A repulsive Gaussian laser beam
is initially at the center of the condensate and moves along y direction with a
constant velocity v until it reaches its final position. The beam is then switched
off during a period of 0.5 s. For sufficiently large velocity vortices and vortex
pairs are generated.

Reference [133] reports the study of vortex formation in an oblate BEC of
Na = 3.2 x 10°% sodium atoms. The trapping potential frequencies used are
(Way wy, wy) = 2w x (9, 9, 400) Hz, and the s-wave scattering length determin-
ing the strength of contact interaction was as = 51.9 ag, where ag = 0.0529 nm
is the Bohr radius. The moving obstacle is realized by a repulsive Gaussian laser

136 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

beam corresponding to an additional potential of the form

SV)

o2

Ve(r;t) =V exp {—2

where V) represents the strength of the beam, o is the 1/e? beam waist, while
yo(t) = vt determines the center of the beam position (0, yo(t), 0). In our
simulations, as in the experiment, the initial position of the beam is at the
condensate center and then it moves with the velocity v along y direction for
24 pm. Afterwards, the beam is switched off linearly during 0.5 s. Illustration
of the experimental setup is given in Figure 24. Using imaginary-time propa-
gation, we calculate the ground state of the system with the trapping potential
V(r) + Vp(r;t), where V(r) corresponds to the harmonic part, with the fre-
quencies given above. The experiment measured critical velocity for the emer-
gence of vortex dipoles, pairs of vortices of the opposite sign. We numerically
addressed this setup and calculated this critical velocity for the values of the
parameters 0 = 1.3/ and Vy = 250 hw, where [= 6.988 um is the harmonic
oscillator length for the referent frequency @ = w,.

Before runnnig simulations with the parameters described above, we had to
implement the time-dependent potential V' (r) 4+ Vi(r; ¢). Initialization of V' (r)
remains the same, i.e., it is initialized before the main loop and stored in an
array, while calculation of Vp(r;t) is implemented in a separate function that
is called in each iteration within the main loop. Two distinct phases of Vg (r;?)
exist: one relating to the movement of the beam, and the other relating to the
beam shutdown during 0.5 s. Each phase is implemented as a separate function,
and the active phase is determined by the current time, i.e., iteration number.

Figure 25 shows several snapshots of a typical dynamical evolution of the
system. Imaginary-time propagation yields ground state of the system, which
is shown in Figure 25(a), where we plot integrated 2D density profile in y-z
plane. To model local inhomogeneities always present in the experiment, we
add uniformly distributed random noise to the wave function of the order of
10%. Such modified ground state represents initial state of the system, and
the beam starts to move along y direction at time ¢ = 0 with the speed v =
1.26 mm/s. Figures 25(b) and 25(c) show 2D density profile of the system at
times t = 52.17 ms and ¢ = 358.1 ms, respectively. In Figure 25(b) the beam
already reached its final position and its switch-off started. We can observe that
several vortices (vortex dipoles) are generated and that the used speed exceeds
the critical velocity. Generated vortices are stable and can be seen after extended

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 137

0000 0000 0002 0003 0,004

a) t = 0.00 ms B b)t=52.17 ns
90 90

0000 0001 0002 0003 0004

60 \ 60

30 - \ 30l

20 -20 -60 -30 20

0000 0001 0002 0003 0004

=80 =60 =30 [30 60 30
z

Figure 25. Time evolution of 2D density profile of BEC of sodium atoms with
an obstacle moving at speed v = 1.26 mm/s > v., when several vortices are
generated. Each panel shows integrated 2D density profile in y-z plane at dif-
ferent time ¢. All lengths are expressed in units of pum, and particle density is
given in units Ny /12

period of time, Figure 25(c). To confirm that we indeed have vortices and not
just localized density minima, we plot the z = 0 slice of the phase of the wave
function in Figure 26. We observe characteristic braiding and jumps of the phase
in the vicinity of density minima, which is a well-known hallmark of a vortex.
When the obstacle is moving with an under-critical velocity, no vortices are
generated, as in Figure 27. The velocity v = 0.87 mm/s is just slightly lower
than the the critical one, and we can see precursors of vortices at the beam edge
in Figures 27(a) and 27(b). At higher velocities, vortices emerge, as we have

138 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

seen in Figure 25. At even higher velocities, Figure 28, rotating vortex pairs are
generated, in addition to individual vortices.

The obtained results are in good agreement with experimental findings of
reference [133] and show that the programs developed within this thesis can be
successfully used to model BEC systems with contact interaction, even for the
most complex setup, when vortices are generated due to a moving obstacle.

5.2. Effects of Dipolar Interactions on Vortex Formation in a BEC

To further test our programs, we model vortex formation in a BEC of dyspro-
sium atoms (164Dy), which exhibit strong magnetic dipole moment. In par-

Bt m M

a) t = 52.17 ms] b) t = 145.01 ms
60 7 E 60

20

=30

-60 =30
m
—

A4|

0
z

=60 =30 o 30 50

R ||
C) t = 358.10 ms

r’

a0
|

30

-Ja {
_“b A
F . -
.1 =30 [+] 30 &0
z

Figure 26. Time evolution of the wave function phase of BEC of sodium atoms
with an obstacle moving at speed v = 1.26 mm/s > v., when several vortices
are generated. Each panel shows x = 0 slice of the phase of the wave function
in y-z plane at different time ¢. All lengths are expressed in units of pm.

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 139

ticular, we study effects of the dipolar interaction strength for varying s-wave
scattering lengths on the critical velocity for the emergence of vortices, which
was not investigated experimentally. Dysprosium atoms have the largest mag-
netic dipole moment (m = 10up) available in ultracold atom experiments, cor-
responding the characteristic dipole-dipole interaction length aqgq = 132 ag.
External magnetic field can be used to align all atomic dipoles in the same di-
rection, as well as to tune their strength up to a maximal value given above.
The same applies to the s-wave scattering length, which determines the contact

0000 0001 0002 0003 0.004 0000 0001 0002 0003 0004

' b))t =32.72ms .

a) t = 17.68 ms

a0 u 30

0 30 =30
z z
000 000N 0UD0Z ﬂ.llll\!- 0.004

1]
€) t = 120.25 ms

Figure 27. Time evolution of 2D density profile of BEC of sodium atoms with an
obstacle moving at speed v = 0.87 mm/s < v,, when no vortices are generated.
Each panel shows integrated 2D density profile in y-z plane at different time ¢.
All lengths are expressed in units of pm, and particle density is given in units
N, at / [2 .

140 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

interaction strength and which can also be tuned using the Feshbach resonance
technique. Following reference [134], we take the same range of possible values
for a as for aqq, 1.€., up to a maximal value of 132 ag. With this we show how
the developed programs can be used to model and theoretically address new
physical phenomena, before they are studied experimentally. Such approach
is essential for the design of many upcoming experiments, since otherwise it
would be extremely difficult to predict what would be the relevant range of
physical quantities to be measured, thus making it very challenging to perform

0000 0001 002 NIIB 0.004

Wl b)t=28.29ms

0000 0001 0U00Z Mllll 0.004

a) t = 8.84 ms

s 30 5 30

T -30

0000 0000 OU00Z ﬁ.llll\l 0.004

€) t = 120.25 ms

s 30

Figure 28. Time evolution of 2D density profile of BEC of sodium atoms with
an obstacle moving at speed v = 1.4 mm/s > v., when rotating vortex pairs
are also generated. Each panel shows integrated 2D density profile in y-z plane
at different time ¢. A rotating vortex pair is highlighted in panel (c). All lengths
are expressed in units of um, and particle density is given in units N, /1.

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 141

the experiments. Having the results of detailed numerical simulations for the
particular system enables experiments to target appropriate range of all relevant
quantities, and to focus on discovering new phenomena.

QA

laser
beam

BEC

»

>
z

Figure 29. Illustration of the setup we use to study vortex formation in a dipolar
BEC of dysprosium atoms. A repulsive Gaussian laser beam is initially outside
of the condensate and moves along y direction with a constant velocity v until
it reaches its final position on the other side. For sufficiently large velocity
vortices are generated.

The experiment follows the same methodology as in previous section and
uses the same parameters where applicable. Namely, the trap frequencies re-
main the same, i.e., (wg,wy,w,) = 27 x (9, 9, 400) Hz, as well as strength
of the beam Vjj = 250 hw. Due to the strong dipolar interactions affecting
the stability of the BEC, we had to use a much smaller number of atoms,
N, = 8 x 10*. This resulted in a much smaller BEC, so we had to reduce
the 1/e? beam waist to ¢ = [, where [= 2.617 um is harmonic oscillator
length corresponding to dysprosium atoms. Also, we positioned the beam out-
side of the condensate, and move it all the way to the other side, as illustrated in
Figure 29. The potential V(r; t) has the same form (65) as in previous section,
just the center of the beam is now given by yo(t) = yoo + vt, where ypo = —15
in units of [.

Modifications to the programs presented in the previous section can be

142 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

reused for this numerical experiment and we only need to re-enable previously
disabled calculation of the dipolar term in the main time propagation loop. As
before, the ground state of the system is obtained using imaginary-time pro-
gram, which then serves as the initial state of the real-time propagation program,
with uniformly distributed random noise of 10% added. To calculate critical ve-
locity v, for the emergence of vortices, we search for the minimal speed of the
laser beam for which two vortices appear, as illustrated in Figure 29.

Figure 30 shows several 2D density profiles of a typical dynamical evolu-

0.000 0002 0004 0006 0.00 0000 0.002 0004 0006 0.OGS
a) t=0.00 ms - b) t = 135.28 ms

20 20

10 L - 10

-10 T -10

-20 -20

0000 0.002 0 0.008 0000 0.002 i 604

€) t=171.09 ms d) t = 250.67 ms
20 20

10 L 10

Figure 30. Time evolution of 2D density profile of BEC of dysprosium atoms
for ag = 66ag and aqq = 44ap, with an obstacle moving at speed v = v, =
0.16 mm/s, when two individual vortices are generated. Each panel shows in-
tegrated 2D density profile in y-z plane at different time ¢. All lengths are
expressed in units of ;zm, and particle density is given in units Ny /12.

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 143

tion of the system for velocity v = v. = 0.16 mm/s. The ground state, obtained
through imaginary-time propagation is shown in Figure 30(a). The beam, ini-
tially outside of the condensate, moves along the y direction, as seen in Fig-
ures 30(b) through 30(f). In Figure 30(c) the precursors of the vortices form on
the edges of the beam, which then separate from the beam if v > v, a situa-
tion seen in Figure 30(d). In Figures 30(e) and 30(f) we see that the generated
vortices are stable, and survive for long propagation times.

I I I I I I I I I I
0.17F Al
LA A A A 4, 4 A 4, A A 4 a7
0.165 - o o O B
> ‘o g OO O O o]
EO.lG* <><><>°°°f
| o O
£ 0155 o o ° © ce®*"®]
— o150 © o ®]
S . °
0.145+ L4 ® a=44a 0O a=9a
I ¢ O a,=66a, A a,=132a, A
0'14%\. | | | | | | | | | | | L
0 11 22 33 44 55 66 77 88 99 110 121 132
Aaa |

Figure 31. Ciritical velocity v. for the emergence of vortices generated by a
moving obstacle as a function of the characteristic dipolar interaction length
adq (in units of ag) for varying values of the s-wave scattering length a.

Figure 31 shows results of our numerical study of the dipolar interaction ef-
fects on the critical velocity. We see that for large values of the s-wave scattering
length, i.e., for the contact interaction comparable or larger than the dipole in-
teraction, effects of decreasing aqq are very small and probably could not be
experimentally measured. On the other hand, when contact interaction is tuned
down so that the dipole interaction starts to dominate the behavior of the system,
critical velocity depends much stronger on a4q and could be easily measured in
future experiments.

The above study represents an example on how our programs can be used
to verify and compare results of current experiments, as well as to theoretically
investigate new phenomena and plan future experiments.

Conclusion

In this chapter we have reviewed an efficient numerical algorithm for solving the
nonlinear Schrodinger equation. The stability and efficiency of the used finite

144 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

difference approach is ensured through properly chosen discretization schemes:
the split-step Crank-Nicolson method for the time derivatives and central dif-
ference formula for the spatial derivatives. In a computational implementa-
tion, the presented numerical algorithm is well suited for various paralleliza-
tion techniques. We have exploited several parallelization approaches available
on present-day computer architectures: OpenMP (for shared memory multipro-
cessing), OpenMP/MPI (for distributed memory systems, where each compute
node uses OpenMP to maximize performance), CUDA (for single GPGPUs),
CUDA/MPI (for distributed memory systems, where each compute node has
GPGPU installed), as well as their hybrid combinations. For efficient hybrid
implementations it is essential to divide the work in a way that is suited to the
performances of the available computer architecture. To this purpose additional
input parameters are introduced and it is shown that their optimal values can
be set using a variant of a genetic algorithm. Both strong and weak scalabil-
ity of the algorithm are explicitly demonstrated by detailed measurements and
subsequent analysis. The scalability is proved to be of high importance as par-
allel versions of the algorithm allow for efficient studies of realistically large
system sizes, which are needed in order to make a direct connection to actual
physical experiments. As illustrative examples, three applications of the pre-
sented algorithms to the topics of current interest in the field of cold atomic
BECs were presented. In section 3 a study of phase separation dynamics of a
two—component BEC is performed. In section 4 we addressed excitations of a
BEC with the coupling of spin and angular momentum and finally in section 5
we investigated vortex formation dynamics in a stirred BEC in the presence of
dipolar interactions.

Acknowledgments

The authors acknowledge valuable discussions with Sadhan K. Adhikari. This
work was supported by the Ministry of Education, Science, and Technological
Development of the Republic of Serbia under project ON171017. Numerical
simulations were performed on the PARADOX supercomputing facility at the
Scientific Computing Laboratory of the Institute of Physics Belgrade.

References

[1] Dalfovo, F., Giorgini, S., Pitaevskii, L. P., and Stringari, S. Theory of

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 145

[6]

[10]

[11]

[12]

Bose-FEinstein condensation in trapped gases. Rev. Mod. Phys. 71 (1999),
463-512.

Gross, E. P. Structure of a quantized vortex in boson systems. Il Nuovo
Cimento 20 (1961), 454-477.

Pitaevskii, L. P. Vortex Lines in an Imperfect Bose Gas. Sov. Phys. JETP
13 (1961), 451.

Agrawal, G. P. Nonlinear fiber optics: its history and recent progress. J.
Opt. Soc. Am. B 28 (2011), Al.

Taha, T. R., and Ablowitz, M. I. Analytical and Numerical Aspects
of Certain Nonlinear Evolution Equations. II. Numerical, Nonlinear
Schrodinger Equation. J. Comput. Phys. 55 (1984), 203-230.

Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and
Cornell, E. A. Observation of Bose-Einstein Condensation in a Dilute
Atomic Vapor. Science 269 (1995), 198-201.

Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten, N. J., Durfee,
D. S., Kurn, D. M., and Ketterle, W. Bose-Einstein condensation in a gas
of sodium atoms. Phys. Rev. Lett. 75 (1995), 3969-3973.

Bradley, C. C., Sackett, C. A., Tollett, J. J., and Hulet, R. G. Evidence
of Bose-Einstein Condensation in an Atomic Gas with Attractive Inter-
actions. Phys. Rev. Lett. 75 (1995), 1687-1690.

Edwards, M., and Burnett, K. Numerical solution of the nonlinear
Schrodinger equation for small samples of trapped neutral atoms. Phys.
Rev. A 51 (1995), 1382-1386.

Ruprecht, P. A., Holland, M. J., Burnett, K., and Edwards, M. Time-
dependent solution of the nonlinear Schrédinger equation for Bose-
condensed trapped neutral atoms. Phys. Rev. A 51 (1995), 4704-4711.

Dalfovo, F.,, and Stringari, S. Bosons in anisotropic traps: Ground state
and vortices. Phys. Rev. A 53 (1996), 2477-2485.

Holland, M., and Cooper, J. Expansion of a Bose-Einstein condensate in
a harmonic potential. Phys. Rev. A 53 (1996), R1954-R1957.

146 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

[13] Pethick, C. J., and Smith, H. Bose-Einstein Condensation in Dilute
Gases. Cambridge University Press, 2008.

[14] Pitaevskii, L. P., and Stringari, S. Bose-Einstein Condensation. Oxford
University Press, 2003.

[15] Snyman, J. Practical Mathematical Optimization. Springer, 2005.

[16] Koch, T., Lahaye, T., Metz, J., Frohlich, B., Griesmaier, A., and Pfau, T.
Stabilization of a purely dipolar quantum gas against collapse. Nat. Phys.
4 (2008), 218-222.

[17] Lu, M., Burdick, N. Q., Youn, S. H,, and Lev, B. L. Strongly Dipolar
Bose-Einstein Condensate of Dysprosium. Phys. Rev. Lett. 107 (2011),
190401.

[18] Aikawa, K., Frisch, A., Mark, M., Baier, S., Rietzler, A., Grimm, R., and
Ferlaino, F. Bose-Einstein Condensation of Erbium. Phys. Rev. Lett. 108
(2012), 210401.

[19] Goéral, K., and Santos, L. Ground state and elementary excitations of
single and binary Bose-Einstein condensates of trapped dipolar gases.
Phys. Rev. A 66 (2002), 023613.

[20] Agrawal, G. P. Nonlinear Fiber Optics. Academic Press, 2012.

[21] Antoine, X., Bao, W., and Besse, C. Computational methods for the dy-

namics of the nonlinear Schrodinger/Gross-Pitaevskii equations. Com-
put. Phys. Commun. 184 (2013), 2621-2633.

[22] Muruganandam, P., and Adhikari, S. Fortran programs for the time-
dependent Gross-Pitaevskii equation in a fully anisotropic trap. Comput.
Phys. Commun. 180 (2009), 1888-1912.

[23] Vudragovié, D., Vidanovi¢, 1., Balaz, A., Muruganandam, P., and Ad-
hikari, S. K. C programs for solving the time-dependent Gross-Pitaevskii

equation in a fully anisotropic trap. Comput. Phys. Commun. 183 (2012),
2021-2025.

[24] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.
Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3 ed.
Cambridge University Press, New York, NY, USA, 2007.

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 147

[25] Young-S., L. E., Vudragovi¢, D., Muruganandam, P., Adhikari, S. K.,
and Balaz, A. OpenMP Fortran and C programs for solving the time-

dependent Gross-Pitaevskii equation in an anisotropic trap. Comput.
Phys. Commun. 204 (2016), 209-213.

[26] Satari¢, B., Slavnié, V., Belié, A., Balaz, A., Muruganandam, P., and
Adhikari, S. K. Hybrid OpenMP/MPI programs for solving the time-

dependent Gross-Pitaevskii equation in a fully anisotropic trap. Comput.
Phys. Commun. 200 (2016), 411-417.

[27] Frigo, M., and Johnson, S. G. The design and implementation of FFTW3.
Proc. IEEE 93 (2005), 216-231.

[28] Kumar, R. K., Young-S., L. E., Vudragovi¢, D., Balaz, A., Muruganan-
dam, P., and Adhikari, S. Fortran and C programs for the time-dependent

dipolar Gross-Pitaevskii equation in an anisotropic trap. Comput. Phys.
Commun. 195 (2015), 117-128.

[29] Loncar, V., Balaz, A., Bogojevié, A., Skrbi¢, S., Muruganandam, P., and
Adhikari, S. K. CUDA programs for solving the time-dependent dipolar

Gross-Pitaevskii equation in an anisotropic trap. Comput. Phys. Com-
mun. 200 (2016), 406—410.

[30] Loncar, V., Young-S., L. E., §krbié, S., Muruganandam, P., Adhikari,
S. K., and Balaz, A. OpenMP, OpenMP/MPI, and CUDA/MPI C pro-

grams for solving the time-dependent dipolar Gross-Pitaevskii equation.
Comput. Phys. Commun. 209 (2016), 190-196.

[31] Blelloch, G. Scans as primitive parallel operations. IEEE Trans. Comput.
38 (1989), 1526-1538.

[32] Blelloch, G. E. Prefix sums and their applications. Tech. rep., School of
Computer Science, Carnegie Mellon University, 1990.

[33] NVIDIA Corporation. cuFFT Library User’s Guide, 7.5 ed., 2017.

[34] Lee, J., Samadi, M., Park, Y., and Mahlke, S. Transparent cpu-gpu col-
laboration for data-parallel kernels on heterogeneous systems. In Pro-
ceedings of the 22Nd International Conference on Parallel Architectures
and Compilation Techniques (Piscataway, NJ, USA, 2013), PACT ’13,
IEEE Press, pp. 245-256.

148 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

[35] Papadrakakis, M., Stavroulakis, G., and Karatarakis, A. A new era in
scientific computing: Domain decomposition methods in hybrid CPU-
GPU architectures. Comput. Meth. Appl. Mech. Eng. 200 (2011), 1490-
1508.

[36] Li, Y., Diamond, J. R., Wang, X., Lin, H., Yang, Y., and Han, Z. Large-
scale fast fourier transform on a heterogeneous multi-core system. Int. J.
High Perform. Comput. Appl. 26 (2012), 148—158.

[37] Ogata, Y., Endo, T., Maruyama, N., and Matsuoka, S. An efficient,
model-based CPU-GPU heterogeneous FFT library. In 2008 IEEE In-

ternational Symposium on Parallel and Distributed Processing (2008),
IEEE.

[38] Chen, S., and Li, X. A hybrid GPU/CPU FFT library for large FFT
problems. In 2013 IEEE 32nd International Performance Computing
and Communications Conference (IPCCC) (2013), IEEE.

[39] Chu, E., and George, A. Inside the FFT Black Box. CRC Press, 1999.

[40] Loncar, V., Young-S., L. E,, §krbié, S., Muruganandam, P., Ad-
hikari, S. K., and Balaz, A. DBEC-OMP-CUDA-MPI package.
https://data.mendeley.com/datasets/j3z9z379m8/2,2016.

[41] Loncar, V., Young-S., L. E., §krbié, S., Muruganandam, P., Adhikari,
S. K., and Balaz, A. Repository of DBEC-GP family of programs.
https://git.ipb.ac.rs/vloncar/DBEC-GP, 2016. Accessed: 2017-04-10.

[42] Loncar, V. Hybrid parallel algorithms for solving nonlinear Schrodinger
equation. PhD Thesis, University of Novi Sad (2017).

[43] Darken, C., Chang, J., and Moody, J. Learning rate schedules for faster
stochastic gradient search. In Neural Networks for Signal Processing 11
Proceedings of the 1992 IEEE Workshop (1992), IEEE.

[44] Schaul, T., Zhang, S., and LeCun, Y. No more pesky learning rates. In
Proceedings of the 30th International Conference on Machine Learning
(Atlanta, Georgia, USA, 2013), S. Dasgupta and D. McAllester, Eds.,
vol. 28 of Proceedings of Machine Learning Research, PMLR, pp. 343—
351.

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 149

[45] Spall, J. C. Implementation of the simultaneous perturbation algorithm
for stochastic optimization. [EEE Trans. Aerosp. Electron. Syst. 34
(1998), 817-823.

[46] Spall, J. C. Stochastic optimization and the simultaneous perturbation

method. In Proceedings of the 31st conference on Winter simulation
Simulation—a bridge to the future - WSC 1999 (1999), ACM Press.

[47] Holland, J. H. Adaptation in Natural and Artificial Systems. MIT Uni-
versity Press Group Ltd, 1992.

[48] Mitchell, M. An Introduction to Genetic Algorithms. MIT Press, 1998.

[49] Gen, M., and Cheng, R. Genetic Algorithms and Engineering Optimiza-
tion. John Wiley & Sons Inc, 1999.

[50] Kumar, A. Encoding schemes in genetic algorithm. Int. J. Adv. Res. IT
Eng. 2 (2013), 1-7.

[51] Eshelman, L. J., Caruana, R. A., and Schaffer, J. D. Biases in the
crossover landscape. In Proceedings of the Third International Confer-
ence on Genetic Algorithms (San Francisco, CA, USA, 1989), Morgan
Kaufmann Publishers Inc., pp. 10-19.

[52] Spears, V. M., and Jong, K. A. D. On the virtues of parameterized uni-
form crossover. In Proceedings of the Fourth International Conference
on Genetic Algorithms (1991), pp. 230-236.

[53] Richter, J. N. On mutation and crossover in the theory of evolutionary
algorithms. PhD thesis, Montana State University, 2010.

[54] White, D. R., and Poulding, S. A rigorous evaluation of crossover and

mutation in genetic programming. In Lecture Notes in Computer Science,
vol. 5481. Springer Berlin Heidelberg, 2009, pp. 220-231.

[55] daSilva, A. P. A., and Falcao, D. M. Fundamentals of genetic algorithms.
In Modern Heuristic Optimization Techniques: Theory and Applications
to Power Systems, K. Y. Lee and M. A. El-Sharkawi, Eds. John Wiley &
Sons Inc, 2008, ch. 2, pp. 25-42.

150 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

[56] Luke, S., and Spector, L. A comparison of crossover and mutation in
genetic programming. In Genetic Programming 1997: Proceedings of
the Second Annual Conference (1997), J. R. e. a. Koza, Ed., Morgan
Kaufmann, pp. 240-248.

[57] Luke, S., and Spector, L. A revised comparison of crossover and mutation
in genetic programming. In Genetic Programming 1998: Proceedings
of the Third Annual Conference (1998), J. R. e. a. Koza, Ed., Morgan
Kaufmann, pp. 208-213.

[58] Amdahl, G. M. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference - AFIPS ’67 (Spring) (1967),

ACM Press.

[59] Open MPI project. Faq: Running cuda-aware open mpi.
https://www.open-mpi.org/faq/?category=runcuda, 2016. Accessed:
2017-04-10.

[60] Frigo, M., and Johnson, S. G. FFTW 3 documentation, version 3.3.6.
http://www.fftw.org/fftw3_doc/, 2017. Accessed: 2017-04-10.

[61] Edwards, M., Ruprecht, P. A., Burnett, K., Dodd, R. J., and Clark, C. W.
Collective Excitations of Atomic Bose-Einstein Condensates. Phys. Rev.
Lett. 77 (1996), 1671-1674.

[62] Vidanovié, 1., Balaz, A., Al-Jibbouri, H., and Pelster, A. Nonlinear Bose-
Einstein-condensate dynamics induced by a harmonic modulation of the
s-wave scattering length. Phys. Rev. A 84 (2011),013618.

[63] Balaz, A., and Nicolin, A. I. Faraday waves in binary nonmiscible Bose-
Einstein condensates. Phys. Rev. A 85 (2012), 023613.

[64] Balaz, A., Paun, R., Nicolin, A. 1., Balasubramanian, S., and Ra-
maswamy, R. Faraday waves in collisionally inhomogeneous Bose-
Einstein condensates. Phys. Rev. A 89 (2014), 023609.

[65] Sudharsan, J. B., Radha, R., Carina Raportaru, M., Nicolin, A. L.,
and Balaz, A. Faraday and resonant waves in binary collisionally-

inhomogeneous Bose-Einstein condensates. J. Phys. B-At. Mol. Opt.
Phys. 49 (2016), 165303.

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 151

[66] Vidanovié, 1., van Druten, N. J., and Haque, M. Spin modulation insta-
bilities and phase separation dynamics in trapped two-component Bose
condensates. New J. Phys. 15 (2013), 035008.

[67] Al-Jibbouri, H., Vidanovié, 1., Balaz, A., and Pelster, A. Geometric res-
onances in Bose-Einstein condensates with two- and three-body interac-
tions. J. Phys. B-At. Mol. Opt. Phys. 46 (2013), 065303.

[68] Sakhel, R. R., Sakhel, A. R., and Ghassib, H. B. Nonequilibrium Dy-
namics of a Bose-Einstein Condensate Excited by a Red Laser Inside a
Power-Law Trap with Hard Walls. J. Low Temp. Phys. 173 (2013), 177—-
206.

[69] Sakhel, R. R., Sakhel, A. R., and Ghassib, H. B. On the phase-correlation
and phase-fluctuation dynamics of a strongly excited Bose gas. Physica
B 478 (2015), 68-76.

[70] Sakhel, R. R., Sakhel, A. R., Ghassib, H. B., and Balaz, A. Conditions for
order and chaos in the dynamics of a trapped Bose-Einstein condensate
in coordinate and energy space. Eur. Phys. J. D 70 (2016), 66.

[71] Xi, K.-T., Li, J., and Shi, D.-N. Localization of a two-component Bose-

Einstein condensate in a one-dimensional random potential. Physica B
459 (2015), 6-11.

[72] Mithun, T., Porsezian, K., and Dey, B. Disorder-induced vortex lattice
melting in a Bose-Einstein condensate. Phys. Rev. A 93 (2016), 013620.

[73] Gautam, S., and Adhikari, S. K. Fractional-charge vortex in a spinor
Bose-Einstein condensate. Phys. Rev. A 93 (2016), 013630.

[74] Akram, J., and Pelster, A. Sculpting quasi-one-dimensional Bose-
Einstein condensate to generate calibrated matter waves. Phys. Rev. A
93 (2016), 023606.

[75] Akram, J., and Pelster, A. Statics and dynamics of quasi one-dimensional

Bose-Einstein condensate in harmonic and dimple trap. Laser Phys. 26
(2016), 065501.

[76] Sakhel, R. R., and Sakhel, A. R. Application of the Lagrangian varia-
tional method to a one-dimensional Bose gas in a dimple trap. J. Phys.
B-At. Mol. Opt. Phys. 50 (2017), 105301.

152 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

[77] Akram, J., and Pelster, A. Numerical study of localized impurity in a
Bose-Einstein condensate. Phys. Rev. A 93 (2016), 033610.

[78] Manikandan, K., Muruganandam, P., Senthilvelan, M., and Lakshmanan,
M. Manipulating localized matter waves in multicomponent Bose-
Einstein condensates. Phys. Rev E 93 (2016), 032212.

[79] Lai, C.-Y., and Chien, C.-C. Geometry-Induced Memory Effects in Iso-
lated Quantum Systems: Cold-Atom Applications. Phys. Rev. Applied 5
(2016), 034001.

[80] Akram, J., Girodias, B., and Pelster, A. Quasi one-dimensional Bose-
Einstein condensate in a gravito-optical surface trap. J. Phys. B-At. Mol.
Opt. Phys. 49 (2016), 075302.

[81] Khellil, T., Balaz, A., and Pelster, A. Analytical and numerical study of
dirty bosons in a quasi-one-dimensional harmonic trap. New J. Phys. 18
(2016), 063003.

[82] Nakamura, K., Babajanov, D., Matrasulov, D., Kobayashi, M., and Muru-
ganandam, P. Dynamics of trapped interacting vortices in Bose-Einstein

condensates: a role of breathing degree of freedom. J. Phys. A-Math.
Theor. 49 (2016), 315102.

[83] Sakhel, R. R., and Sakhel, A. R. Elements of Vortex-Dipole Dynamics
in a Nonuniform Bose-Einstein Condensate. J. Low Temp. Phys. 184
(2016), 1092—-1113.

[84] Adhikari, S. K. Statics and dynamics of a self-bound dipolar matter-wave
droplet. Laser Phys. Lett. 14 (2017), 025501.

[85] Adhikari, S. K. Statics and dynamics of a self-bound matter-wave quan-
tum ball. Phys. Rev. A 95 (2017), 023606.

[86] Adhikari, S. K. Elastic collision and molecule formation of spatiotem-
poral light bullets in a cubic-quintic nonlinear medium. Phys. Rev E 94
(2016), 032217.

[87] Gautam, S., and Adhikari, S. K. Phase separation in a spin-orbit-coupled
Bose-Einstein condensate. Phys. Rev. A 90 (2014), 043619.

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 153

[88] Gautam, S., and Adhikari, S. K. Mobile vector soliton in a spin-orbit
coupled spin-1 condensate. Laser Phys. Lett. 12 (2015), 045501.

[89] Gautam, S., and Adhikari, S. K. Vector solitons in a spin-orbit-coupled
spin-2 Bose-Einstein condensate. Phys. Rev. A 91 (2015), 063617.

[90] Gautam, S., and Adhikari, S. K. Vortex-bright solitons in a spin-orbit-
coupled spin-1 condensate. Phys. Rev. A 95 (2017), 013608.

[91] Vinayagam, P. S., Radha, R., Bhuvaneswari, S., Ravisankar, R., and
Muruganandam, P. Bright soliton dynamics in spin orbit-Rabi coupled

Bose-Einstein condensates. Commun. Nonlinear Sci. Numer. Simulat. 50
(2017), 68-76.

[92] Vasié, 1., and Balaz, A. Excitation spectra of a Bose-Einstein condensate
with an angular spin-orbit coupling. Phys. Rev. A 94 (2016), 033627.

[93] Kishor Kumar, R., and Muruganandam, P. Vortex dynamics of rotating
dipolar Bose-Einstein condensates. J. Phys. B-At. Mol. Opt. Phys. 45
(2012), 215301.

[94] Kishor Kumar, R., and Muruganandam, P. Numerical studies on vortices
in rotating dipolar Bose-Einstein condensates. In J. Phys.: Conf. Ser.
(2014), vol. 497, p. 012036.

[95] Kumar, R. K., and Muruganandam, P. Effect of optical lattice potentials
on the vortices in rotating dipolar Bose-Einstein condensates. Eur. Phys.
J. D 68 (2014), 289.

[96] Kishor Kumar, R., Sriraman, T., Fabrelli, H., Muruganandam, P., and
Gammal, A. Three-dimensional vortex structures in a rotating dipolar
Bose-Einstein condensate. J. Phys. B-At. Mol. Opt. Phys. 49 (2016),
155301.

[97] Young-S., L. E., and Adhikari, S. K. Mixing, demixing, and structure
formation in a binary dipolar Bose-Einstein condensate. Phys. Rev. A 86
(2012), 063611.

[98] Young-S., L. E., and Adhikari, S. K. Dipolar droplet bound in a trapped
Bose-Einstein condensate. Phys. Rev. A 87 (2013), 013618.

154 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

[99] Adhikari, S. K. Stability of trapped degenerate dipolar Bose and Fermi
gases. J. Phys. B-At. Mol. Opt. Phys. 46 (2013), 115301.

[100] Adhikari, S. K. Stability and collapse of fermions in a binary dipolar
boson-fermion %4Dy-'1Dy mixture. Phys. Rev. A 88 (2013), 043603.

[101] Kishor Kumar, R., Muruganandam, P., and Malomed, B. A. Vortical
and fundamental solitons in dipolar Bose-Einstein condensates trapped

in isotropic and anisotropic nonlinear potentials. J. Phys. B-At. Mol. Opt.
Phys. 46 (2013), 175302.

[102] Adhikari, S. K. Stable and mobile excited two-dimensional dipolar Bose-
Einstein condensate solitons. J. Phys. B-At. Mol. Opt. Phys. 47 (2014),
225304.

[103] Adhikari, S. K. Stable, mobile, dark-in-bright, dipolar Bose-Einstein-
condensate solitons. Phys. Rev. A 89 (2014), 043615.

[104] Adhikari, S. K. Demixing and symmetry breaking in binary dipolar Bose-
Einstein-condensate solitons. Phys. Rev. A 89 (2014), 013630.

[105] Adhikari, S. K. Bright dipolar Bose-Einstein-condensate soliton mo-
bile in a direction perpendicular to polarization. Phys. Rev. A 90 (2014),
055601.

[106] Adhikari, S. K. Two-dimensional bright and dark-in-bright dipolar Bose-
Einstein condensate solitons on a one-dimensional optical lattice. Laser
Phys. Lett. 13 (2016), 085501.

[107] Adhikari, S. K. Stable and mobile two-dimensional dipolar ring-dark-
in-bright Bose-Einstein condensate soliton. Laser Phys. Lett. 13 (2016),
035502.

[108] Adhikari, S. K. Self-trapping of a dipolar Bose-Einstein condensate in a
double well. Phys. Rev. A 89 (2014), 043609.

[109] Ho, T.-L., and Shenoy, V. B. Binary Mixtures of Bose Condensates of
Alkali Atoms. Phys. Rev. Lett. 77 (1996), 3276-3279.

[110] Matthews, M. R., Hall, D. S., Jin, D. S., Ensher, J. R., Wieman, C. E.,
Cornell, E. A., Dalfovo, F., Minniti, C., and Stringari, S. Dynamical

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 155

Response of a Bose-Einstein Condensate to a Discontinuous Change in
Internal State. Phys. Rev. Lett. 81 (1998), 243-247.

[111] Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E., and Cornell,
E. A. Dynamics of Component Separation in a Binary Mixture of Bose-
Einstein Condensates. Phys. Rev. Lett. 81 (1998), 1539—-1542.

[112] Miesner, H.-J., Stamper-Kurn, D. M., Stenger, J., Inouye, S., Chikkatur,
A. P, and Ketterle, W. Observation of Metastable States in Spinor Bose-
Einstein Condensates. Phys. Rev. Lett. 82 (1999), 2228-2231.

[113] Salasnich, L., Parola, A., and Reatto, L. Effective wave equations for the
dynamics of cigar-shaped and disk-shaped Bose condensates. Phys. Rev.
A 65(2002), 043614.

[114] Pu, H., and Bigelow, N. P. Collective Excitations, Metastability, and

Nonlinear Response of a Trapped Two-Species Bose-Einstein Conden-
sate. Phys. Rev. Lett. 80 (1998), 1134-1137.

[115] Timmermans, E. Phase Separation of Bose-Einstein Condensates. Phys.
Rev. Lett. 81 (1998), 5718-5721.

[116] Kasamatsu, K., and Tsubota, M. Multiple Domain Formation Induced by
Modulation Instability in Two-Component Bose-Einstein Condensates.
Phys. Rev. Lett. 93 (2004), 100402.

[117] Kasamatsu, K., and Tsubota, M. Modulation instability and solitary-
wave formation in two-component Bose-Einstein condensates. Phys. Rev.
A 74 (2006), 013617.

[118] Navarro, R., Carretero-Gonzdlez, R., and Kevrekidis, P. G. Phase separa-
tion and dynamics of two-component Bose-Einstein condensates. Phys.
Rev. A 80 (2009), 023613.

[119] Lin, Y.-J., Jiménez-Garcia, K., and Spielman, I. B. Spin-orbit-coupled
Bose-Einstein condensates. Nature (London) 471 (2011), 83-86.

[120] Beeler, M. C., Williams, R. A., Jiménez-Garcia, K., Leblanc, L. J., Perry,
A. R., and Spielman, I. B. The spin Hall effect in a quantum gas. Nature
(London) 498 (2013), 201-204.

156 Vladimir Loncar, Ivana Vasi¢ and Antun Balaz

[121] Zhang, J.-Y., Ji, S.-C., Chen, Z., Zhang, L., Du, Z.-D., Yan, B., Pan, G.-
S., Zhao, B., Deng, Y.-J., Zhai, H., Chen, S., and Pan, J.-W. Collective

Dipole Oscillations of a Spin-Orbit Coupled Bose-Einstein Condensate.
Phys. Rev. Lett. 109 (2012), 115301.

[122] Khamehchi, M. A., Zhang, Y., Hamner, C., Busch, T., and Engels,
P. Measurement of collective excitations in a spin-orbit-coupled Bose-
Einstein condensate. Phys. Rev. A 90 (2014), 063624.

[123] Cheuk, L. W., Sommer, A. T., Hadzibabic, Z., Yefsah, T., Bakr, W. S.,
and Zwierlein, M. W. Spin-injection spectroscopy of a spin-orbit coupled
fermi gas. Phys. Rev. Lett. 109 (2012), 095302.

[124] Li,J., Huang, W., Shteynas, B., Burchesky, S., Top, F. C., Su, E., Lee, J.,
Jamison, A. O., and Ketterle, W. Spin-Orbit Coupling and Spin Textures
in Optical Superlattices. Phys. Rev. Lett. 117 (2016), 185301.

[125] Li, J.-R., Lee, J., Huang, W., Burchesky, S., Shteynas, B., Top, F. C.,
Jamison, A. O., and Ketterle, W. A stripe phase with supersolid properties

in spin-orbit-coupled Bose-Einstein condensates. Nature (London) 543
(2017), 91-94.

[126] Galitski, V., and Spielman, I. B. Spin-orbit coupling in quantum gases.
Nature (London) 494 (2013), 49-54.

[127] Zhai, H. Degenerate quantum gases with spin-orbit coupling: a review.
Rep. Prog. Phys. 78 (2015), 026001.

[128] Hu, Y.-X., Miniatura, C., and Grémaud, B. Half-skyrmion and vortex-
antivortex pairs in spinor condensates. Phys. Rev. A 92 (2015), 033615.

[129] DeMarco, M., and Pu, H. Angular spin-orbit coupling in cold atoms.
Phys. Rev. A 91 (2015), 033630.

[130] Qu, C., Sun, K., and Zhang, C. Quantum phases of Bose-Einstein con-

densates with synthetic spin-orbital-angular-momentum coupling. Phys.
Rev. A 91 (2015), 053630.

[131] Sun, K., Qu, C., and Zhang, C. Spin-orbital-angular-momentum coupling
in Bose-Einstein condensates. Phys. Rev. A 91 (2015), 063627.

Efficient Numerical Tools for Solving the Nonlinear Schrodinger ... 157

[132] Pitaevskii, L. P., and Rosch, A. Breathing modes and hidden symmetry of
trapped atoms in two dimensions. Phys. Rev. A 55 (1997), R853—-R8&56.

[133] Kwon, W. J., Moon, G., Seo, S. W., and Shin, Y. Critical velocity for
vortex shedding in a Bose-Einstein condensate. Phys. Rev. A 91 (2015),
053615.

[134] Kadau, H., Schmitt, M., Wenzel, M., Wink, C., Maier, T., Ferrier-Barbut,
I., and Pfau, T. Observing the Rosensweig instability of a quantum fer-
rofluid. Nature (London) 530 (2016), 194-197.

Computer Physics Communications 200 (2016) 406-410

Computer Physics Communications

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cpc

CUDA programs for solving the time-dependent dipolar

@ CrossMark

Gross-Pitaevskii equation in an anisotropic trap

Vladimir Lon¢ar **, Antun BalaZ?, Aleksandar Bocfgojevic’a, Srdjan Skrbi¢”,
Paulsamy Muruganandam ¢, Sadhan K. Adhikari

2 Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

b Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
€School of Physics, Bharathidasan University, Palkalaiperur Campus, Tiruchirappalli - 620024, Tamil Nadu, India

4 Instituto de Fisica Terica, UNESP - Universidade Estadual Paulista, 01.140-70 Sdo Paulo, Sdo Paulo, Brazil

ARTICLE INFO

Article history:

Received 12 November 2015
Accepted 17 November 2015
Available online 17 December 2015

Keywords:

Bose-Einstein condensate

Dipolar atoms

Gross-Pitaevskii equation

Split-step Crank-Nicolson scheme
Real- and imaginary-time propagation
C program

GPU

CUDA program

Partial differential equation

* Corresponding author.

ABSTRACT

In this paper we present new versions of previously published numerical programs for solving the dipolar
Gross-Pitaevskii (GP) equation including the contact interaction in two and three spatial dimensions in
imaginary and in real time, yielding both stationary and non-stationary solutions. New versions of pro-
grams were developed using CUDA toolkit and can make use of Nvidia GPU devices. The algorithm used is
the same split-step semi-implicit Crank-Nicolson method as in the previous version (Kishor Kumar et al.,
2015), which is here implemented as a series of CUDA kernels that compute the solution on the GPU.
In addition, the Fast Fourier Transform (FFT) library used in the previous version is replaced by cuFFT li-
brary, which works on CUDA-enabled GPUs. We present speedup test results obtained using new versions
of programs and demonstrate an average speedup of 12-25, depending on the program and input size.

New version program summary

Program title: DBEC-GP-CUDA package, consisting of: (i) imag2dXY-cuda, (ii) imag2dXZ-cuda, (iii) imag3d-
cuda, (iv) real2dXY-cuda, (v) real2dXZ-cuda, (vi) real3d-cuda.

Catalogue identifier: AEWL_v2_0

Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/AEWL_v2_0.html

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland.
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 18297.

No. of bytes in distributed program, including test data, etc.: 128586.

Distribution format: tar.gz.

Programming language: CUDA C.

Computer: Any modern computer with Nvidia GPU with Compute Capability 2.0 or higher, with CUDA
toolkit (compiler and runtime, with cuFFT library, minimum version 6.0) installed.

Operating system: Linux.

RAM: With provided example inputs, programs should run on a computer with 512 MB GPU RAM. There
is no upper limit to amount of memory that can be used, as larger grid sizes require more memory, which
scales as NX*NY or NX*NZ (in 2d) or NX*NY*NZ (in 3d). All programs require roughly the same amount of
CPU and GPU RAM.

Number of processors used: One CPU core and one Nvidia GPU.

Classification: 2.9, 4.3, 4.12.

External routines/libraries: CUDA toolkit, version 6.0 or higher, with cuFFT library.
Catalogue identifier of previous version: AEWL_v1_0.

E-mail addresses: vladimir.loncar@ipb.ac.rs (V. Lon€ar), antun.balaz@ipb.ac.rs (A. Balaz), aleksandar.bogojevic@ipb.ac.rs (A. Bogojevic), srdjan.skrbic@dmi.uns.ac.rs
(S. Skrbi¢), anand@cnld.bdu.ac.in (P. Muruganandam), adhikari@ift.unesp.br (S.K. Adhikari).

http://dx.doi.org/10.1016/j.cpc.2015.11.014
0010-4655/© 2015 Elsevier B.V. All rights reserved.

V. Loncar et al. / Computer Physics Communications 200 (2016) 406-410 407

Journal reference of previous version: Comput. Phys. Commun. 195 (2015) 117.
Does the new version supersede the previous version?: No.

Nature of problem: These programs are designed to solve the time-dependent nonlinear partial differential
Gross-Pitaevskii (GP) equation with contact and dipolar interactions in two or three spatial dimensions in
a harmonic anisotropic trap. The GP equation describes the properties of a dilute trapped Bose-Einstein
condensate.

Solution method: The time-dependent GP equation is solved by the split-step Crank-Nicolson method by
discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary
or real time, over small time steps. The contribution of the dipolar interaction is evaluated by a Fourier
transformation to momentum space using a convolution theorem. The method yields the solution of
stationary and/or non-stationary problems.

Reasons for the new version: Previously published dipolar Fortran and C programs [1], based on earlier
programs and algorithms for GP equation with the contact interaction [2], are already used within
the ultra-cold atoms community [3]. However, they are sequential, and thus did not allow for use of
the maximum computing performance modern computers can offer. For this reason we have explored
possible ways to accelerate our programs. Detailed profiling revealed that the calculation of FFTs is the
most computationally demanding part of our programs. Since using GPUs to compute FFTs with optimized
libraries like the cuFFT can lead to much better performance, we have decided to parallelize our programs
using Nvidia CUDA toolkit. Also, the massive parallelism offered by GPUs could be exploited to parallelize
the nested loops our programs have. We have focused on 2d and 3d versions of our programs, as they
perform enough computation to justify and require the use of massive parallelism.

Summary of revisions: Previous C programs in two or three spatial dimensions are parallelized using CUDA
toolkit from Nvidia and named similarly, with “-cuda” suffix appended to their names. The structure of all
programs is identical. Computationally most demanding functions performing time evolution (calcpsidd2,
calcnu, calclux, calcluy, calcluz), normalization of the wave function (calcnorm), and calculation of
physically relevant quantities (calcmuen, calcrms) were implemented as a series of CUDA kernels, which
are executed on GPU. All kernels are implemented with grid-stride loops [4], which allow us to use the
same kernel block sizes for all of our kernels. These block sizes can be changed in src/utils/cudautils.cuh,
containing the optimal values for current Nvidia Tesla GPUs.

As before, CPU performs the initialization of variables and controls the flow of programs, offloading
computation to GPU when needed. Because of the initialization, programs still require almost the same
amount of CPU RAM as GPU RAM. Before any computation begins, relevant variables are copied to GPU,
where they remain during computation, and only wave function array is returned back to CPU when it is
required for writing output.

Parallelization with CUDA toolkit required some dynamically allocated arrays (tensors, matrices, or
vectors) to become private for each GPU thread. This has caused an increase in the amount of used GPU
memory, since the number of running threads on GPU is very large. Coupled with the fact that GPUs
usually have smaller amount of RAM than CPU, this meant that our GPU versions of programs could
be used for much smaller input in comparison to sequential versions. In order to fix this problem and
reduce memory usage, our programs reuse temporary arrays as much as possible. Aside from allocation
of complex tensor/matrix (for 3d or 2d case, respectively) in which we store wave function values, we
allocate one complex tensor/matrix, and up to two double precision tensors/matrices, and reuse them for
different purposes in computations. Allocated complex tensor/matrix is later also used as two double
precision tensors/matrices, for other purposes. This required some reorganization of computation in
several functions, mainly in calcmuen and calcpsidd2. In calcmuen we have reorganized computation
to reuse temporary array and store partial derivatives in it, so instead of using three (in 3d) or two
(in 2d) separate tensors/matrices for partial derivatives, we now use a single temporary tensor/matrix,
which we also use for different purposes in other places in programs. In calcpsidd2 we have removed
the use of additional temporary array that was only used in FFT computation, and also use real-to-
complex and complex-to-real FFT transformations in place of complex-to-complex transformations of
previous program versions. This change was possible because condensate density (input array for FFT)
is purely real, and thus it exhibits Hermitian symmetry. Some FFT libraries, like the cuFFT used in these
programs, can exploit this to reduce memory usage and provide better performance by calculating only
non-redundant parts of the array. Additionally, programs can further reduce GPU RAM consumption by
keeping the tensor/matrix used to store trap potential and dipolar potential in main RAM, configurable
through POTMEM parameter in the input file. Setting value of POTMEM to 2 maximizes performance, and
means that programs will allocate two separate tensors/matrices for storing trap potential and dipolar
potential in GPU memory. This provides the best performance, but at the cost of a larger total memory
consumption. If we set the value of POTMEM to 1, only one tensor/matrix will be allocated in GPU memory,
to which trap potential and dipolar potential will be asynchronously copied from main memory when
they are needed for computation. In this case, tensor/matrix will initially contain trap potential, which
will be replaced with dipolar potential during execution of FFT in calcpsidd2, and replaced back with trap
potential during inverse FFT. Finally, setting POTMEM to 0 will instruct the programs not to allocate any
GPU memory for storing potentials and will instead use main memory, which GPU can access through
slower PCI-Express bus. Figure 1 explains how memory is used and the possible values of POTMEM. We
suggest using POTMEM value of 2 if memory permits, and using values of 1 or 0 if problem cannot fit into
GPU memory. If POTMEM is not specified, programs will check if GPU memory is large enough to fit all
variables and set POTMEM accordingly.

Time propagation functions calclux, calcluy, and calcluz have a recursive relation that makes them
difficult to parallelize. In principle, recursive relations could be parallelized using a higher-order prefix

408

V. Loncar et al. / Computer Physics Communications 200 (2016) 406-410

sum algorithm [5] (also known as scan algorithm), but implementation of this would require multiple
CUDA Kkernels [6]. Since recursive relations are in the innermost loop, launching of all required kernels
would create a sizeable overhead. Also, the number of grid points in each dimension is usually not large
enough to compensate that overhead. Therefore, we have chosen an approach that, instead of parallelizing
the inner loop which has the recursive relation, we parallelize the outer loops, and each GPU thread
computes the whole innermost loop. Since each GPU thread now requires its own array for storing
Crank-Nicolson coefficients cbeta, we reuse existing temporary tensor/matrix for storing these values.
Similar pattern of parallelizing outer loops was also used in calcnorm, calcrms, and calcmuen.

We tested our programs at the PARADOX supercomputing facility at the Scientific Computing
Laboratory of the Institute of Physics Belgrade. Nodes used for testing had Intel Xeon E5-2670 CPUs with
32 GB of RAM and Nvidia Tesla M2090 GPU with 6 GB of RAM. Figure 2 shows the speedup obtained for six
DBEC-GP-CUDA programs compared to their previous versions [1] executed on a single CPU core. Profiling
reveals that the execution time is dominated by execution of FFTs and that the speedup varies significantly
with changing of the grid size. This is due to FFT libraries used (FFTW in previous CPU version [1] and cuFFT
in this version), which use different algorithms for different input array sizes. We thus conclude that the
best performance can be achieved by experimenting with different grid sizes around the desired target.

POTMEM = 2 POTMEM =1 POTMEM =0
cPU psi pot potdd pot potdd pot potdd
q temp pot or
GPU psi array pot potdd potdd pot potdd

Fig. 1. [llustration of placement of relevant variables in CPU and GPU memory. CPU initializes its own wave function
tensor/matrix (psi), trap potential (pot) and dipolar potential (potdd), which is copied to GPU memory. Depending
on value of POTMEM variable, GPU will either allocate the same tensors/matrices for trap and dipolar potential
(POTMEM = 2), allocate only one tensor/matrix and use it for different purposes (POTMEM = 1), or will map pot
and potdd from CPU and not allocate extra memory on GPU (POTMEM = 0). Additionally, GPU allocates one complex
tensor/matrix which is used for temporary data. This tensor/matrix is used either as a single complex tensor/matrix, or
is divided into two double tensors/matrices which can then each contain the same number of elements as the complex
tensor/matrix.

Restrictions:
Programs will only run on computers with Nvidia GPU card (Tesla or GeForce) with Compute Capability
2.0 or higher (Fermi architecture and newer) and with CUDA toolkit installed (version 6.0 or higher).

a 4 b
imag2d-cuda . -, real2d-cuda LR IR Y
* . . L .
30 e et te e arees 30
Iy . A ? .

=" . P = . S >
_é, o . . PO . _g .M.\o
g 20 T, A R S i el eyt g 20 B
2, O LR IRCIL 2,
3 < Coro)

10 10

0 2 2 2 2 2 2 2 O 2 2 2 2 2 2 2

[} 2500 5000 7500 10000 125007 15000 0 2500 5000 7500 10000 12500 15000

grid size grid size

30 30
C imag3d-cuda d real3d-cuda T 2 s ey e

25 25 e

o 0 ©
e . iy .
%20 e %20 RPN < g
.
g5 oty gy SR 15 wete :
53 o o oy o o 5 °
g 1 A INCNCIED e & o
v ot g [N
RO

5 5

0 3 3 3 3 3 3 3 0 3 3 3 3 3 3 '3

0 100 200 300 400 500 600 0 100 200 300 400 500 600

grid size grid size

Fig. 2. Speedup in execution time of imag2dXY-cuda and imag2dXZ-cuda (top-left), real2dXY-cuda and real2dXZ-
cuda (top-right), imag3d-cuda (bottom-left) and real3d-cuda (bottom-right) compared to the previous versions of
programs [1] executed on a single CPU core. Solid red line represents average speedup obtained. We tested linear
grid sizes starting from 50 in 3d and 10007 in 2d, up to the maximum that could fit in GPU memory, which was 600°
for imag3d-cuda, 5403 for real3d-cuda, 15000 for imag2dXY-cuda and imag2dXZ-cuda, and 130007 for real2dXY-cuda
and real2dXZ-cuda. Note that the dispersion of data is due to the use of FFTW_ESTIMATE flag in library calls to FFTW
in the CPU programs.

Unusual features of all programs:

As part of the memory usage optimizations, programs may slightly increase the number of spatial grid
points in each dimension (NX, NY, NZ). This is due to FFT algorithms of cuFFT library that require additional
memory to store temporary results. Qur programs reuse already allocated memory to provide cuFFT with
the temporary memory it requires, however, some problem sizes require much more memory, up to eight
times more [7]. For instance, if the number of grid points in any dimension is a large prime number, cuFFT

V. Loncar et al. / Computer Physics Communications 200 (2016) 406-410 409

uses an algorithm that requires eight times more memory than similarly sized power of two number.
Adjustments of the number of grid points made in the programs ensure that cuFFT will not require such
significantly increased additional memory. In case the programs perform the adjustments to grid size, this
is reported in the output.

Additional comments:
This package consists of 6 programs, see Program title above. For the particular purpose of each program,
please see descriptions below.

Running time:
Example inputs provided with the programs take less than one minute on Nvidia Tesla M2090 GPU.

Program summary (i)

Program title: imag2dXY-cuda.

Title of electronic files: imag2dXY-cuda.cu and imag2dXY-cuda.cuh.
Maximum RAM memory: No upper bound.

Programming language used: CUDA C.

Typical running time: Minutes on a medium PC.

Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in two space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.

Program summary (ii)

Program title: imag2dXZ-cuda.

Title of electronic files: imag2dXZ-cuda.cu and imag2dXZ-cuda.cuh.
Maximum RAM memory: No upper bound.

Programming language used: CUDA C.

Typical running time: Minutes on a medium PC.

Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in two space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.

Program summary (iii)

Program title: imag3d-cuda.

Title of electronic files: imag3d-cuda.cu and imag3d-cuda.cuh.
Maximum RAM memory: No upper bound.

Programming language used: CUDA C.

Typical running time: Tens of minutes on a medium PC.

Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in three space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.

Program summary (iv)

Program title: real2dXY-cuda.

Title of electronic files: real2dXY-cuda.cu and real2dXY-cuda.cuh.
Maximum RAM memory: No upper bound.

Programming language used: CUDA C.

Typical running time: Tens of minutes on a good workstation.

Unusual feature: If NSTP = 0, the program requires and reads the file imag2dXY-den.txt, generated by
executing imag2dXY-cuda with the same grid size parameters.

Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in two space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in real time over
small time steps. The method yields the solution of dynamical problems.

Program summary (v)
Program title: real2dXZ-cuda.
Title of electronic files: real2dXZ-cuda.cu and real2dXZ-cuda.cuh.

410

V. Loncar et al. / Computer Physics Communications 200 (2016) 406-410

Maximum RAM memory: No upper bound.
Programming language used: CUDA C.
Typical running time: Tens of minutes on a good workstation.

Unusual feature: If NSTP = 0, the program requires and reads the file imag2dXZ-den.txt, generated by
executing imag2dXZ-cuda with the same grid size parameters.

Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in two space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in real time over
small time steps. The method yields the solution of dynamical problems.

Program summary (vi)

Program title: real3d-cuda.

Title of electronic files: real3d-cuda.cu and real3d-cuda.cuh.
Maximum RAM memory: No upper bound.

Programming language used: CUDA C.

Typical running time: Tens of minutes on a good workstation.

Unusual feature: If NSTP = 0, the program requires and reads the file imag3d-den.txt, generated by
executing imag3d-cuda with the same grid size parameters.

Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in three space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose-Einstein condensate.

Method of solution: The time-dependent GP equation is solved by the split-step Crank-Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in real time over
small time steps. The method yields the solution of dynamical problems.

Acknowledgments

V.L,A.B., A. B, and S. § acknowledge support by the Ministry of Education, Science, and Technological
Development of the Republic of Serbia under projects ON171017, 11143007, ON174023, and IBEC, and by
the DAAD - German Academic and Exchange Service under project IBEC. P.M. acknowledges support by
the Science and Engineering Research Board, Department of Science and Technology, Government of India
under project No. EMR/2014/000644. S.K.A. acknowledges support by the CNPq of Brazil under project
303280/2014-0, and by the FAPESP of Brazil under project 2012/00451-0. Numerical simulations were
run on the PARADOX supercomputing facility at the Scientific Computing Laboratory of the Institute of
Physics Belgrade, supported in part by the Ministry of Education, Science, and Technological Development
of the Republic of Serbia under project ON171017.

References

[1] R.Kishor Kumar, L. E. Young-S., D. Vudragovi¢, A. BalazZ, P. Muruganandam, and S. K. Adhikari, Fortran
and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap,
Comput. Phys. Commun. 195 (2015) 117.

[2] P. Muruganandam and S. K. Adhikari, Comput. Phys. Commun. 180 (2009) 1888;

D. Vudragovié, 1. Vidanovi¢, A. Balaz, P. Muruganandam, and S. K. Adhikari, Comput. Phys. Commun.

183 (2012) 2021;

P. Muruganandam and S. K. Adhikari, J. Phys. B: At. Mol. Opt. Phys. 36 (2003) 2501.

R. Kishor Kumar, P. Muruganandam, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys. 46 (2013)

175302;

S. K. Adhikari, Bright dipolar Bose-Einstein-condensate soliton mobile in a direction perpendicular to

polarization, Phys. Rev. A 90 (2014) 055601;

S. K. Adhikari, Stable matter-wave solitons in the vortex core of a uniform condensate, J. Phys. B: At.

Mol. Opt. Phys. 48 (2015) 165303;

S. K. Adhikari, Stable spatial and spatiotemporal optical soliton in the core of an optical vortex, Phys.

Rev. E 92 (2015) 042926;

T. Khellil, A. Balaz, and A. Pelster, Dirty bosons in a quasi-one-dimensional harmonic trap, e-print

arXiv:1510.04985 (2015).

M. Harris, CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops, Parallel Forall Blog, http://

devblogs.nvidia.com/parallelforall/cuda- pro-tip-write-flexible-kernels-grid- stride-loops/ (2013).

[5] G.E. Blelloch, Prefix Sums and Their Applications, In]. H. Reif (Ed.), Synthesis of Parallel Algorithms,
Morgan Kaufmann, San Francisco (1990).

[6] M. Harris, Parallel Prefix Sum (Scan) with CUDA, EECS 570 Parallel Computer Architecture Course,
University of Michigan, http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf (2007).

[7] cuFFT, CUDA API References, CUDA Toolkit Documentation v7.5, http://docs.nvidia.com/cuda/cufft/
(2015).

3

[4

© 2015 Elsevier B.V. All rights reserved.

Computer Physics Communications 209 (2016) 190-196

Computer Physics Communications

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cpc

OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the @CmsMark
time-dependent dipolar Gross-Pitaevskii equation

Vladimir Lon¢ar **, Luis E. Young-S."¢, Srdjan Skrbi¢¢, Paulsamy Muruganandam ¢,
Sadhan K. Adhikari ¢, Antun Balaz?

2 Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080

Belgrade, Serbia

b Departamento de Ciencias Bdsicas, Universidad Santo Tomds, 150001 Tunja, Boyacd, Colombia

¢ Instituto de Fisica Tedrica, UNESP—Universidade Estadual Paulista, 01.140-70 Sdo Paulo, Sdo Paulo, Brazil

4 Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
€ School of Physics, Bharathidasan University, Palkalaiperur Campus, Tiruchirappalli - 620024, Tamil Nadu, India

ARTICLE INFO

Article history:

Received 13 July 2016

Accepted 15 July 2016

Available online 6 September 2016

Keywords:

Bose-Einstein condensate

Dipolar atoms

Gross-Pitaevskii equation
Split-step Crank-Nicolson scheme
C program

OpenMP

GPU

CUDA program

MPI

* Corresponding author.

ABSTRACT

We present new versions of the previously published C and CUDA programs for solving the dipolar
Gross-Pitaevskii equation in one, two, and three spatial dimensions, which calculate stationary and non-
stationary solutions by propagation in imaginary or real time. Presented programs are improved and
parallelized versions of previous programs, divided into three packages according to the type of paral-
lelization. First package contains improved and threaded version of sequential C programs using OpenMP.
Second package additionally parallelizes three-dimensional variants of the OpenMP programs using MPI,
allowing them to be run on distributed-memory systems. Finally, previous three-dimensional CUDA-
parallelized programs are further parallelized using MPI, similarly as the OpenMP programs. We also
present speedup test results obtained using new versions of programs in comparison with the previous
sequential C and parallel CUDA programs. The improvements to the sequential version yield a speedup of
1.1-1.9, depending on the program. OpenMP parallelization yields further speedup of 2-12 on a 16-core
workstation, while OpenMP/MPI version demonstrates a speedup of 11.5-16.5 on a computer cluster with
32 nodes used. CUDA/MPI version shows a speedup of 9-10 on a computer cluster with 32 nodes.

New version program summary

Program Title: DBEC-GP-OMP-CUDA-MPI: (1) DBEC-GP-OMP package: (i) imag1dX-th, (ii) imag1dZ-th,
(iii) imag2dXY-th, (iv) imag2dXZ-th, (v) imag3d-th, (vi) real1dX-th, (vii) real1dZ-th, (viii) real2dXY-th,
(ix) real2dXZ-th, (x) real3d-th; (2) DBEC-GP-MPI package: (i) imag3d-mpi, (ii) real3d-mpi; (3) DBEC-GP-
MPI-CUDA package: (i) imag3d-mpicuda, (ii) real3d-mpicuda.

Program Files doi: http://dx.doi.org/10.17632/j3z92379m8.1

Licensing provisions: Apache License 2.0

Programming language: OpenMP C; CUDA C.

Computer: DBEC-GP-OMP runs on any multi-core personal computer or workstation with an OpenMP-
capable C compiler and FFTW3 library installed. MPI versions are intended for a computer cluster with
a recent MPI implementation installed. Additionally, DBEC-GP-MPI-CUDA requires CUDA-aware MPI
implementation installed, as well as that a computer or a cluster has Nvidia GPU with Compute Capability
2.0 or higher, with CUDA toolkit (minimum version 7.5) installed.

Number of processors used: All available CPU cores on the executing computer for OpenMP version, all
available CPU cores across all cluster nodes used for OpenMP/MPI version, and all available Nvidia GPUs
across all cluster nodes used for CUDA/MPI version.

Journal reference of previous version: Comput. Phys. Commun. 195 (2015) 117; ibid. 200 (2016) 406.

Does the new version supersede the previous version?: Not completely. OpenMP version does supersede

previous AEWL_v1_0 version, while MPI versions do not supersede previous versions and are meant for
execution on computer clusters and multi-GPU workstations.

E-mail addresses: vladimir.loncar@ipb.ac.rs (V. Lon¢ar), luisevery@gmail.com (L.E. Young-S.), srdjan.skrbic@dmi.uns.ac.rs (S. Skrbi¢), anand@cnld.bdu.ac.in
(P. Muruganandam), adhikari@ift.unesp.br (S.K. Adhikari), antun.balaz@ipb.ac.rs (A. Balaz).

http://dx.doi.org/10.1016/j.cpc.2016.07.029
0010-4655/© 2016 Elsevier B.V. All rights reserved.

V. Loncar et al. / Computer Physics Communications 209 (2016) 190-196 191

Nature of problem: These programs are designed to solve the time-dependent nonlinear partial differential
Gross-Pitaevskii (GP) equation with contact and dipolar interaction in a harmonic anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose-Einstein condensate. OpenMP package contains
programs for solving the GP equation in one, two, and three spatial dimensions, while MPI packages
contain only three-dimensional programs, which are computationally intensive or memory demanding
enough to require such level of parallelization.

Solution method: The time-dependent GP equation is solved by the split-step Crank-Nicolson method by
discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary
or real time, over small time steps. The contribution of the dipolar interaction is evaluated by a Fourier
transformation to momentum space using a convolution theorem. MPI parallelization is done using the
domain decomposition. The method yields the solution of stationary and/or non-stationary problems.

Reasons for the new version: Previously published C and Fortran programs [1] for solving the dipolar GP
equation are sequential in nature and do not exploit the multiple cores or CPUs found in typical modern
computers. A parallel implementation exists, using Nvidia CUDA [2], and both versions are already used
within the ultra-cold atoms community [3]. However, CUDA version requires special hardware, which
limits its usability. Furthermore, many researchers have access to high performance computer clusters,
which could be used to either further speed up the computation, or to work with problems which
cannot fit into a memory of a single computer. In light of these observations, we have parallelized all
programs using OpenMP, and then extended the parallelization of three-dimensional programs using
MPI to distributed-memory clusters. Since the CUDA implementation uses the same algorithm, and thus
has the same structure and flow, we have applied the same data distribution scheme to provide the
distributed-memory CUDA/MPI implementation of three-dimensional programs.

Summary of revisions:

Package DBEC-GP-OMP: Previous serial C programs [1] are here improved and then parallelized using
OpenMP (package DBEC-GP-OMP). The main improvement consists of switching to real-to-complex (R2C)
Fourier transform, which is possible due to the fact that input of the transform is purely real. In this case
the result of the transform has Hermitian symmetry, where one half of the values are complex conjugates
of the other half. The fast Fourier transformation (FFT) libraries we use can exploit this to compute the
result faster, using half the memory.

To parallelize the programs, we have used OpenMP with the same approach as described in [4], and
extended the parallelization routines to include the computation of the dipolar term. The FFT, used in
computation of the dipolar term, was also parallelized in a straightforward manner, by using the built-
in support for OpenMP in FFTW3 library [5]. With the introduction of multiple threads memory usage
has increased, driven by the need to have some variables private to each thread. To reduce the memory
consumed, we resorted to using techniques similar to the ones used in our CUDA implementation [2],
i.e., we have reduced the memory required for FFT by exploiting the aforementioned R2C FFT, and reused
the memory with pointer aliases whenever possible.

Package DBEC-GP-MPI: Next step in the parallelization (package DBEC-GP-MPI) was to extend the
programs to run on distributed-memory systems, i.e., on computer clusters using domain decomposition
with MPI programming paradigm. We chose to use the newly-implemented threaded versions of the
programs as the starting point. Alternatively, we could have used serial versions, and attempt a pure MPI
parallelization, however we have found that OpenMP-parallelized routines better exploit the data locality
and thus outperform the pure MPI implementation. Therefore, our OpenMP/MPI-parallelized programs
are intended to run one MPI process per cluster node, and each process would spawn the OpenMP threads
as needed on its cluster node. Note that this is not a requirement, and users may run more than one MPI
process per node, but we advise against it due to performance reasons. With the suggested execution
strategy (one MPI process per cluster node, each spawning as many threads as CPU cores available),
OpenMP threads perform most of the computation, and MPI is used for data exchanges between processes.
There are numerous ways to distribute the data between MPI processes, and we decided to use a simple
one-dimensional data distribution, also known as slab decomposition. Data is distributed along the first
(slowest changing) dimension, which corresponds to NX spatial dimension in our programs (see Fig. 1).
Each process is assigned a different portion of the NX dimension, and contains the entire NY and NZ spatial
dimensions locally. This allows each process to perform computation on those two dimensions in the same
way as before, without any data exchanges. In case the computation requires whole NX dimension to be
local to each process, we transpose the data, and after the computation, we transpose the data back.

"]

Fig. 1. Illustration of data distribution between MPI processes. On the left, the data are distributed along the NX
dimension, while on the right the same data are redistributed along the NY dimension.

Transpose routine can be implemented in many ways using MPI, most commonly using
MPI_Alltoall function, or using transpose routines from external libraries, like FFTW3 [5] or
2DECOMP&FFT [6]. Since we already rely on FFTW3 library for FFT, we have utilized its dedicated

192

V. Loncar et al. / Computer Physics Communications 209 (2016) 190-196

transpose interface to perform the necessary transformations. To speed up transpose operation, we do
not perform full transposition of data, but rather leave it locally transposed. That is, we transform from
local_NX x NY x NZ, stored in row-major order, to NX x local_NY x NZ in row-major order (where
local_NX = NX / number_of_processes, and equivalently for local_NY). This approach has an additional
benefit that we do not have to make significant changes in the way array elements are processed, and in
most cases we only have to adjust the loop limit of the non-local dimension.

Package DBEC-GP-MPI-CUDA: The aforementioned data distribution scheme can be also applied to the
CUDA version of programs [2]. However, there is no support for CUDA in FFTW3, and cuFFT (used in CUDA
programs for FFT) does not provide equivalent MPI or transpose interface. Instead, we developed our
own transpose routines, and used them in FFT computation. One example of manual implementation of
transpose routines is shown in Ref. [7], and while we could readily use the same code, we wanted to have
the same result as when using FFTW3. To achieve this, we use the same basic principle as in Ref. [7],
first we create a custom MPI data type that maps to portions of the data to be exchanged, followed by an
all-to-all communication to exchange the data between processes, see Fig. 2 for details.

Fig. 2. Example of a transpose routine of a 4 x 4 x 4 data between four MPI processes. Initially, all processes have 1/4
of the NX dimension, and whole NY and NZ dimensions. After transposing, each process has full NX and NZ dimensions,
and 1/4 of the NY dimension.

The implemented transpose routines are also used to compute a distributed-memory FFT, performed
over all MPI processes. To divide the computation of a multidimensional FFT, in our case three-
dimensional, we use a well-known row-column algorithm. The basic idea of the algorithm is perhaps best
explained on a two-dimensional FFT of N x M data, stored in row-major order, illustrated in Fig. 3. First
the N one-dimensional FFTs of length M are performed (along the row of data), followed by a transpose,
after which data are stored as M x N in row-major format. Now M FFTs of length N can be performed along
what used to be a column of original data, but are stored as rows after transposing. Finally, an optional
transpose can be performed to return the data in their original N x M form. In three dimensions, we can
perform a two-dimensional FFT, transpose the data, and perform the FFT along the third dimension. This
algorithm can be easily adapted for distributed memory systems. We use advanced cuFFT interface for
local computation of FFT, and use our transpose routine to redistribute the data.

Note that DBEC-GP-MPI-CUDA programs can be easily modified to work on a single workstation with
multiple GPU cards, or a computer cluster with multiple GPU cards per node. In that case, for each GPU
card a separate MPI process should be launched and the programs should be modified to assign a separate
GPU card for processes on the same cluster node.

> — | :
— S ! |
1D FFT on Transpose 1D FFT on Traﬁ:glg se
rows data rows :
(optional)

Fig. 3. Illustration of four stages of row-column FFT algorithm. The last transpose operation may be omitted, and often
yields better performance.

MPI output format: Given that the distributed memory versions of the programs can be used for much
larger grid sizes, the output they produce (i.e., the density profiles) can be much larger and difficult to
handle. To alleviate this problem somewhat, we have switched to a binary output instead of the textual.
This allowed us to reduce the size of files, while still retaining precision. All MPI processes will write the
output to the same file, at the corresponding offset, relieving the user of the task of combining the files.
The binary output can be subsequently converted to textual, for example by using hexdump command on
UNIX-like systems. We have developed a simple script which converts the output from binary to textual
format and included it in the software package.

Testing results: We have tested all programs on the PARADOX supercomputing facility at the Scientific
Computing Laboratory of the Institute of Physics Belgrade. Nodes used for testing had two Intel Xeon E5-
2670 CPUs (with a total of 2 x 8 = 16 CPU cores) with 32 GB of RAM and one Nvidia Tesla M2090 GPU
with 6 GB of RAM, each connected by Infiniband QDR interconnect. The presented results are obtained for
arbitrary grid sizes, which are not tailored to maximize performance of the programs. We also stress that
execution times and speedups reported here are calculated for critical parallelized parts of the programs

V. Loncar et al. / Computer Physics Communications 209 (2016) 190-196 193

performing iterations over imaginary or real time steps, and they exclude time spent on initialization
(threads initialization, MPI environment, allocation/deallocation of memory, creating/destroying FFTW
plans, I/O operations). As a part of its output, each program separately prints initialization time and
time spent on iterations for GP propagation. The latter time is used to calculate a speedup, as a speedup
obtained this way does not depend on the number of iterations and is more useful for large numbers of
iterations.

The testing of OpenMP versions of programs DBEC-GP-OMP was performed with the number of
threads varying from 1 to 16. Table 1 and Fig. 4 show the obtained absolute wall-clock times, speedups,
and scaling efficiencies, as well as comparison with the previous serial version of programs [1]. As we
can see from the table, improvements in the FFT routine used already yield a speedup of 1.3 to 1.9 for
single-threaded (T = 1) 2d and 3d programs compared to the previous serial programs, and somewhat
smaller speedup for 1d programs, 1.1 to 1.3. The use of additional threads brings about further speedup
of 2 to 2.5 for 1d programs, and 9 to 12 for 2d and 3d programs. From Fig. 4 we see that for 1d programs,
although speedup increases with the number of threads used, the efficiency decreases due to insufficient
size of the problem, and one can achieve almost maximal value of speedup already with T = 4 threads,
while still keeping the efficiency around 50%. We also see, as expected, that speedup and efficiency of 2d
and 3d programs behave quite well as we increase the numbers of threads. In particular, we note that the
efficiency is always above 60%, making the use of all available CPU cores worthwhile.

Table 1

Wall-clock execution times of DBEC-GP-OMP programs compiled with Intel’s icc compiler, compared to the execution
times of previously published serial versions. The execution times given here are for 1000 iterations (in seconds,
excluding initialization and input/output operations, as reported by each program) with grid sizes: 10° for 1d
programs, 10* x 10* for 2d programs, and 480 x 480 x 480 for 3d programs. Columns T = 1,T = 2, T = 4,
T = 8,and T = 16 correspond to the number of threads used, while the last column shows the obtained speedup
with 16 OpenMP threads (T = 16) compared to one OpenMP thread (T = 1). Note that the reduction in the execution
time is not solely due to the introduction of multiple threads, as the improvements in the FFT routine used also have
noticeable impact. This is most evident when comparing execution times of serial versions to OpenMP versions with
one thread. Execution times and speedups of imag1dZ-th, real1dZ-th, imag2dXZ-th, and real2dXZ-th (not reported
here) are similar to those of imag1dX-th, real1dX-th, imag2dXY-th, and real2dXY-th, respectively.

Serial [1] T=1 T=2 T=4 T=8 T=16 Speedup

imag1dX-th 9.1 7.1 47 34 2.9 2.8 25
real1dX-th 15.2 14.2 10.5 8.2 7.3 7.2 2.0
imag2dXY-th 13657 7314 4215 2159 1193 798 9.2
real2dXY-th 17281 11700 6417 3271 1730 1052 111
imag3d-th 16064 9353 5201 2734 1473 888 10.5
real3d-th 22611 17496 9434 4935 2602 1466 119
a 3 T T T 1 b 25 1

251 e o OO0 2F pus o—0—0—0—0—0—0-0—0-0—(05§

L o— — .
=) 2 P4 do6 & =isk o 0.6 =
L AN il ol R R N T medw g
é- / efficiency | & § Lo efficiency |, S

- @ < <
05F —-& 3 0.2 0.5 oA 0.2
0 L L L L L lr\nagl (j\X-th 0 0 L L L L L rqal 1 d)?-tﬁ_ 0
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
number of threads number of threads
C 12 T T T T T 1 d 12 v\é T T T T T 1
-0 B o NN _o—
10F e\e_%_ 08 10F O~0-0-o S~6-0 ;6:5/. Jos
P L 'M—
8- Q-9 - o <)
§ ./0/0 o ~O~6-406 & é‘ § _ o H0.6 ;=>
o 6F e 2.8 e ® &
2 /o/‘ do4 2 2 ./'/ do4 2
4+ _& —@— speedup < 4F ~ —@— speedup <
L ././. -&- efficiency 02 L ././. -&- efficiency | 02
o imag2dXY-th ' real2dXY-th
L L L L L L L L L L L L L
0 2 4 6 8 10 12 14 léJ 0 2 4 6 8 10 12 14 1(?
number of threads number of threads
c 12 M T T T 1 f 12 v\é\e T T T T T prs 1
q ~0-0-0-0-0—0- o
10F Q-N-W % s 10F . 6—?;06&_ 6308
8t 6" %~e~ o 8h —o~ ©
5 J06 & & ./’ 0.6 =
e _o— a B A G,
g o 0 a § or ./. @
& _ 1043 & A 04 3
4+ ° _® —@— speedup < 4+ _» —@— speedup <
.L ././ -&— efficiency | 02 N /./. -&- efficiency | 02
o imag3d-th ./. real3d-th
n 1 n 1 n 1 n 1 n 1 n 1 n 1 n n 1 n 1 n 1 n 1 n 1 n 1 n 1 n
0 2 4 6 8 10 12 14 160 0 2 4 6 8 10 12 14 160
number of threads number of threads

Fig.4. Speedup in the execution time and scaling efficiency of DBEC-GP-OMP programs compared to single-threaded
runs: (a) imag1dX-th, (b) real1dX-th, (c) imag2dXY-th, (d) real2dXY-th, (e) imag3d-th, (f) real3d-th. Scaling efficiency
is calculated as a fraction of the obtained speedup compared to a theoretical maximum. Grid sizes used for testing
are the same as in Table 1. Speedups and efficiencies of imag1dZ-th, real1dZ-th, imag2dXZ-th, and real2dXZ-th (not
reported here) are similar to those of imag1dX-th, real1dX-th, imag2dXY-th, and real2dXY-th, respectively.

194

V. Loncar et al. / Computer Physics Communications 209 (2016) 190-196

For testing of MPI versions we have used a similar methodology to measure the strong scaling per-
formance. For OpenMP/MPI programs DBEC-GP-MPI, the obtained wall-clock times are shown in Table 2,
together with the corresponding wall-clock times for the OpenMP programs DBEC-GP-OMP that served
as a baseline to calculate speedups. The testing was done for varying number of cluster nodes, from 4 to
32, and the measured speedup ranged from 11 to 16.5. The corresponding graphs of speedups and effi-
ciencies are shown in Fig. 5, where we can see that the speedup grows linearly with the number of nodes
used, while the efficiency remains mostly constant in the range between 40% and 60%, thus making the
use of OpenMP/MPI programs highly advantageous for problems with large grid sizes.

Table 2

Wall-clock execution times of DBEC-GP-MPI programs compiled with mpicc compiler from OpenMPI implementation
of MPI, backed by Intel’s icc compiler, compared to the execution times of OpenMP (DBEC-GP-OMP) versions on
a single-node (T = 16, N = 1). The execution times given here are for 1000 iterations (in seconds, excluding
initialization and input/output operations, as reported by each program) with the grid size 480 x 480 x 500. Columns
N =4N =8, N = 16,N = 24,and N = 32 correspond to the number of cluster nodes used (each withT = 16
threads), while the last column shows the obtained speedup with N = 32 nodes compared to single-node runs.

OpenMP N=4 N=38 N =16 N=24 N =32 Speedup
imag3d-mpi 1124 653 352 167 128 96 115
real3d-mpi 2140 979 513 277 220 129 16.5
alZ T \/‘Ovﬁ b 16F " T T T g0.6
1oF G\e /‘ 105 14F — & 05
[o - Jo. 12p T o,
= 8 & /f>,/ e UA% & 1ok ./ 04%
32 6k Joszg B o d03 g
g 6 / 03z 8 gl o 037
& o : v g
T 4 / —@— speedup 40.2< To6r /C —@— speedup —40.2<
/. -&— efficiency 41 L -&- efficiency
2% e . 0.1 L . o1
S imag3d-mpi 2r o real3d-mpi
| | | | | | | 1 | | | | | | |
0 2 4 8 12 16 20 24 28 32') 0 2 4 8 12 16 20 24 28 320
number of cluster nodes number of cluster nodes

Fig. 5. Speedup in the execution time and scaling efficiency of DBEC-GP-MPI programs compared to single-node
OpenMP runs: (a) imag3d-mpi, (b) real3d-mpi. Scaling efficiency is calculated as a fraction of the obtained speedup
compared to a theoretical maximum. Grid size used for testing is the same as in Table 2.

For CUDA/MPI programs DBEC-GP-MPI-CUDA we observe similar behavior in Table 3 and in Fig. 6.
The obtained speedup with N = 32 nodes here ranges from 9 to 10, with the efficiency between 30%
and 40%. While the efficiency is slightly lower than in the case of OpenMP/MPI programs, which could be
expected due to a more complex memory hierarchy when dealing with the multi-GPU system distributed
over many cluster nodes, the speedup still grows linearly and makes CUDA/MPI programs ideal choice for
use on GPU-enabled computer clusters. Additional benefit of using these programs is their low CPU usage
(up to one CPU core), allowing for the possibility that same cluster nodes are used for other CPU-intensive
simulations.

Table 3

Wall-clock execution times of DBEC-GP-MPI-CUDA programs compiled with Nvidia’s nvcc compiler, with CUDA-
aware OpenMPI implementation of MPI, backed by Intel’s icc compiler, compared to the execution times of previous
CUDA [2] versions on a single-node with one GPU card (N = 1). The execution times given here are for 1000 iterations
(in seconds, excluding initialization and input/output operations, as reported by each program) with the grid size
480 x 480 x 250.Columns N = 4,N = 8, N = 16, N = 24, and N = 32 correspond to the number of cluster nodes
used (each with one GPU card), while the last column shows the obtained speedup with N = 32 nodes compared to
single-node runs.

CUDA [2] N=4 N=38 N =16 N =24 N =32 Speedup
imag3d-mpicuda 579 447 212 103 71 61 9.5
real3d-mpicuda 800 619 295 142 96 80 9.9
a 10 T T T T T T \/'[)_4 b 10— T T T T T — 0.4
[o————, ® i —o—O——5
8 0/9 . /. 6\< 03 8 o/é/e ./ G\g 03
[} o
§ 6F ./ = %% 6 ./ =
f§. , ./ Ho2 % §_ A ./ +0.2 ;
z / —@— speedup < @ / —@— speedup <
2 / ~©- efficiency 0.1 2l ./‘ -&- efficiency 0.1
D imag3d-mpicuda A real3d-mpicuda
0 ’ L L L L L L L 0 0 , L L L L L L L 0
2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32
number of cluster nodes number of cluster nodes

Fig. 6. Speedup in the execution time and scaling efficiency of DBEC-GP-MPI-CUDA programs compared to single-
node runs of previous CUDA programs [2]: (a) imag3d-mpicuda, (b) real3d-mpicuda. Scaling efficiency is calculated
as a fraction of the obtained speedup compared to a theoretical maximum. Grid size used for testing is the same as in
Table 3.

The introduction of distributed transposes of data creates some overhead, which negatively impacts
scaling efficiency. This is more evident in the CUDA/MPI version, as the transpose algorithm is inferior
to the one provided by FFTW3. In our tests, both MPI versions of programs failed to achieve speedup on

V. Loncar et al. / Computer Physics Communications 209 (2016) 190-196 195

less than 4 nodes, due to the introduction of the transpose routines. We therefore recommend using MPI
versions only on 4 or more cluster nodes.

The MPI versions are highly dependent not only on the configuration of the cluster, mainly on the
speed of interconnect, but also on the distribution of processes and threads, NUMA configuration, etc. We
recommend that users experiment with several different configurations to achieve the best performance.
The results presented are obtained without extensive tuning, with the aim to show the base performance.

Finally, we note that the best performance can be achieved by evenly distributing the workload among
the MPI processes and OpenMP threads, and by using grid sizes which are optimal for FFT. In particular,
the programs in DBEC-GP-OMP package have the best performance if NX, NY, and NZ are divisible by the
number of OpenMP threads used. Similarly, for DBEC-GP-MPI programs the best performance is achieved
if NX and NY are divisible by a product of the number of MPI processes and the number of OpenMP threads
used. For DBEC-GP-MPI-CUDA programs, the best performance is achieved if NX and NY are divisible by
a product of the number of MPI processes and the number of Streaming Multiprocessors (SM) in the GPU
used. For all three packages, the best FFT performance is obtained if NX, NY and NZ can be expressed
as 293°5¢7911°13/, where e and f are either 0 or 1, and the other exponents are non-negative integer
numbers [8].

Additional comments, restrictions, and unusual features: MPI programs require that grid size (controlled by
input parameters NX, NY and NZ) can be evenly distributed between the processes, i.e., that NX and NY
are divisible by the number of MPI processes. Since the data is never distributed along the NZ dimension,
there is no such requirement on NZ. Programs will test if these conditions are met, and inform the user
if not (by reporting an error). Additionally, MPI versions of CUDA programs require CUDA-aware MPI
implementation. This allows the MPI runtime to directly access GPU memory pointers and avoid having
to copy the data to main RAM. List of CUDA-aware MPI implementations can be found in Ref. [9].

Acknowledgments

V.L, S.S. and AB. acknowledge support by the Ministry of Education, Science, and Technological
Development of the Republic of Serbia under projects ON171017, 011611005, and 11143007, as well as
SCOPES project 1Z274Z0-160453. LEE. Y.-S. acknowledges support by the FAPESP of Brazil under project
2012/21871-7 and 2014/16363-8. P.M. acknowledges support by the Science and Engineering Research
Board, Department of Science and Technology, Government of India under project No. EMR/2014/000644.
S.K.A. acknowledges support by the CNPq of Brazil under project 303280/2014-0, and by the FAPESP of
Brazil under project 2012/00451-0.

References:

[1] R.Kishor Kumar, L. E. Young-S., D. Vudragovié, A. Balaz, P. Muruganandam, and S. K. Adhikari, Comput.
Phys. Commun. 195 (2015) 117.
[2] V. Lonéar, A. BalaZ, A. Bogojevi, S. Skrbi¢, P. Muruganandam, S. K. Adhikari, Comput. Phys. Commun.
200 (2016) 406.
[3] R. Kishor Kumar, P. Muruganandam, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys. 46 (2013)
175302;
H. Al-Jibbouri, I. Vidanovi¢, A. BalaZ, and A. Pelster, J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 065303;
R. R. Sakhel, A. R. Sakhel, and H. B. Ghassib,]. Low Temp. Phys. 173 (2013) 177;
B. Nikoli¢, A. Balaz, and A. Pelster, Phys. Rev. A 88 (2013) 013624;
X. Antoine and R. Duboscq, Comput. Phys. Commun. 185 (2014) 2969;
J. Luo, Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 3591;
K.-T. Xi, J. Li, and D.-N. Shi, Physica B 436 (2014) 149;
S. K. Adhikari, Phys. Rev. A 90 (2014) 055601;
M. C. Raportaruy, J. Jovanovski, B. Jakimovski, D. Jakimovski, and A. Mishev, Rom. J. Phys. 59 (2014) 677;
A. L. Nicolin, A. Balaz, J. B. Sudharsan, and R. Radha, Rom. J. Phys. 59 (2014) 204;
A.Balaz, R. Paun, A. L. Nicolin, S. Balasubramanian, and R. Ramaswamy, Phys. Rev. A 89 (2014) 023609;
A. 1. Nicolin and I. Rata, High-Performance Computing Infrastructure for South East Europe’s Research
Communities: Results of the HP-SEE User Forum 2012, in Springer Series: Modeling and Optimization
in Science and Technologies 2 (2014) 15;
S. K. Adhikari, J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 165303;
S. K. Adhikari, Phys. Rev. E 92 (2015) 042926;
T. Khellil and A. Pelster, arXiv:1512.04870 (2015);
H. L. C. Couto and W. B. Cardoso,]. Phys. B: At. Mol. Opt. Phys. 48 (2015) 025301;
R. R. Sakhel, A. R. Sakhel, and H. B. Ghassib, Physica B 478 (2015) 68;
L. Salasnich and S. K. Adhikari, Acta Phys. Pol. A 128 (2015) 979;
X. Antoine and R. Duboscq, Lecture Notes Math. 2146 (2015) 49;
E. Chiquillo, J. Phys. A: Math. Theor. 48 (2015) 475001;
S. Sabari, C. P. Jisha, K. Porsezian, and V. A. Brazhnyi, Phys. Rev. E 92 (2015) 032905;
W. Wen, T. K. Shui, Y. F. Shan, and C. P. Zhu, J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 175301;
P. Das and P. K. Panigrahi, Laser Phys. 25 (2015) 125501;
Y.S.Wang, S. T. Ji, Y. E. Luo, and Z. Y. Li,]. Korean. Phys. Soc. 67 (2015) L1504;
A. L. Nicolin, M. C. Raportaru, and A. BalaZ, Rom. Rep. Phys. 67 (2015) 143;
V. S. Bagnato, D.]. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, and D. Mihalache, Rom. Rep. Phys.
67 (2015) 5;
J. B. Sudharsan, R. Radha, H. Fabrelli, A. Gammal, and B. A. Malomed, Phys. Rev. A 92 (2015) 053601;
K.-T. Xi, J. Li, and D.-N. Shi, Physica B 459 (2015) 6;
E.]. M. Madarassy and V. T. Toth, Phys. Rev. D 91 (2015) 044041;
F. 1. Moxley III, T. Byrnes, B. Ma, Y. Yan, and W. Dai,]. Comput. Phys. 282 (2015) 303;
D. Novoa, D. Tommasini, J. A. N6voa-Lopez, Phys. Rev. E 91 (2015) 012904;

196 V. Loncar et al. / Computer Physics Communications 209 (2016) 190-196

Y. H. Wang, A. Kumar, F. Jendrzejewski, R. M. Wilson, M. Edwards, S. Eckel, G. K. Campbell, and C. W.
Clark, New]. Phys. 17 (2015) 125012;

T. Khellil, A. BalaZ, and A. Pelster, New J. Phys. 18 (2016) 063003;

T. Khellil and A. Pelster,]. Stat. Mech.-Theory Exp. (2016) 063301;

J. Akram and A. Pelster, Phys. Rev. A 93 (2016) 023606;

S. K. Adhikari, Laser Phys. Lett. 13 (2016) 035502;

J. Akram and A. Pelster, Phys. Rev. A 93 (2016) 033610;

J. Akram, B. Girodias, and A. Pelster,]. Phys. B: At. Mol. Opt. Phys. 49 (2016) 075302;

S. K. Adhikari and S. Gautam, Phys. Rev. A 93 (2016) 013630;

7. Marojevi¢, E. Gokli, and C. Limmerzahl, Comput. Phys. Commun. 202 (2016) 216;

A. Paredes and H. Michninel, Phys. Dark Universe 12 (2016) 50;

J. Akram and A. Pelster, Laser Phys. 26 (2016) 065501;

T. Mithun, K. Porsezian, and B. Dey, Phys. Rev. A 93 (2016) 013620;

C.-Y. Lai and C.-C. Chien, Phys. Rev. Appl. 5 (2016) 034001;

S. K. Adhikari, Laser Phys. Lett. 13 (2016) 085501;

K. Manikandan, P. Muruganandam, M. Senthilvelan, and M. Lakshmanan, Phys. Rev. E 93 (2016)
032212;

R. R. Sakhel, A. R. Sakhel, H. B. Ghassib, and A. Balaz, Eur. Phys.]. D 70 (2016) 66;

W. Bao, Q. Tang, and Y. Zhang, Commun. Comput. Phys. 19 (2016) 1141;

R. Kishor Kumar, T. Sriraman, H. Fabrelli, P. Muruganandam, and A. Gammal, J. Phys. B: At. Mol. Opt.
Phys. 49 (2016) 155301;

A. Bogojevi¢, A. BalaZ, and A. Beli¢, Phys. Rev. E 72 (2005) 036128;

A. Bogojevic¢, 1. Vidanovi¢, A. BalaZ, and A. Beli¢, Phys. Lett. A 372 (2008) 3341;

I. Vidanovié, A. Bogojevié, A. BalaZ, and A. Beli¢, Phys. Rev. E 80 (2009) 066706;

A. BalazZ, A. Bogojevi¢, 1. Vidanovi¢, and A. Pelster, Phys. Rev. E 79 (2009) 036701;

A. Balaz, 1. Vidanovi¢, A. Bogojevi¢, and A. Pelster, Phys. Lett. A 374 (2010) 1539;

A. 1. Nicolin, Physica A 391 (2012) 1062;

I. Vasi¢ and A. Balaz, arXiv:1602.03538 (2016);

0. Voronych, A. Buraczewski, M. Matuszewski, and M. Stobiriska, arXiv:1603.02570 (2016);

A. M. Martin, N. G. Marchant, D. H.]. O’Dell, and N. G. Parker, arXiv:1606.07107 (2016).

[4] D. Vudragovi¢, L. Vidanovi¢, A. BalaZ, P. Muruganandam, and S. K. Adhikari, Comput. Phys. Commun.
183 (2012) 2021.

[5] FFTW3 library, http://www.fftw.org/ (2016).

[6] 2DECOMP&EFFT library, http://www.2decomp.org/ (2016).

[7] B.Satarié, V. Slavni¢, A. Beli¢, A. Balaz, P. Muruganandam, S. K. Adhikari, Comput. Phys. Commun. 200
(2016) 411.

[8] Real-data DFTs with FFTW3, http://www.fftw.org/fftw3_doc/Real_002ddata-DFTs.html (2014);
Nvidia’s cuFFT accuracy and performance, http://docs.nvidia.com/cuda/cufft/#accuracy-and-performance
(2015).

[9] Nvidia’s MPI Solutions for GPUs, https://developer.nvidia.com/mpi-solutions-gpus (2016).

© 2016 Elsevier B.V. All rights reserved.

Computer Physics Communications 220 (2017) 503-506

Computer Physics Communications

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cpc

OpenMP GNU and Intel Fortran programs for solving the @Cmssm
time-dependent Gross-Pitaevskii equation

Luis E. Young-S.?, Paulsamy Muruganandam °, Sadhan K. Adhikari ¢, Vladimir Loncar ¢,
Dusan Vudragovi¢¢, Antun Balaz ¢*

2 Departamento de Ciencias Bdsicas, Universidad Santo Tomds, 150001 Tunja, Boyacd, Colombia

b Department of Physics, Bharathidasan University, Palkalaiperur Campus, Tiruchirappalli—620024, Tamil Nadu, India

¢ Instituto de Fisica Teérica, UNESP - Universidade Estadual Paulista, 01.140-70 Sdo Paulo, Sdo Paulo, Brazil

4 Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Serbia

ARTICLE INFO

ABSTRACT

Article history:

Received 11 July 2017

Accepted 14 July 2017

Available online 10 August 2017

Keywords:

Bose-Einstein condensate
Gross-Pitaevskii equation
Split-step Crank-Nicolson scheme
Intel and GNU Fortran programs
Open Multi-Processing

OpenMP

Partial differential equation

* Corresponding author.

We present Open Multi-Processing (OpenMP) version of Fortran 90 programs for solving the Gross-
Pitaevskii (GP) equation for a Bose-Einstein condensate in one, two, and three spatial dimensions,
optimized for use with GNU and Intel compilers. We use the split-step Crank-Nicolson algorithm
for imaginary- and real-time propagation, which enables efficient calculation of stationary and non-
stationary solutions, respectively. The present OpenMP programs are designed for computers with multi-
core processors and optimized for compiling with both commercially-licensed Intel Fortran and popular
free open-source GNU Fortran compiler. The programs are easy to use and are elaborated with helpful
comments for the users. All input parameters are listed at the beginning of each program. Different output
files provide physical quantities such as energy, chemical potential, root-mean-square sizes, densities, etc.
We also present speedup test results for new versions of the programs.

New version program summary

Program title: BEC-GP-OMP-FOR software package, consisting of: (i) imagld-th, (ii) imag2d-th,
(iii) imag3d-th, (iv) imagaxi-th, (v) imagcir-th, (vi) imagsph-th, (vii) real 1d-th, (viii) real2d-th, (ix) real3d-
th, (x) realaxi-th, (xi) realcir-th, (xii) realsph-th.

Program files doi: http://dx.doi.org/10.17632/y8zk3jgn84.2

Licensing provisions: Apache License 2.0

Programming language: OpenMP GNU and Intel Fortran 90.

Computer: Any multi-core personal computer or workstation with the appropriate OpenMP-capable
Fortran compiler installed.

Number of processors used: All available CPU cores on the executing computer.

Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1888; ibid. 204 (2016) 209.
Does the new version supersede the previous version?: Not completely. It does supersede previous Fortran
programs from both references above, but not OpenMP C programs from Comput. Phys. Commun. 204
(2016) 209.

Nature of problem: The present Open Multi-Processing (OpenMP) Fortran programs, optimized for use
with commercially-licensed Intel Fortran and free open-source GNU Fortran compilers, solve the time-
dependent nonlinear partial differential (GP) equation for a trapped Bose-Einstein condensate in one
(1d), two (2d), and three (3d) spatial dimensions for six different trap symmetries: axially and radially
symmetric traps in 3d, circularly symmetric traps in 2d, fully isotropic (spherically symmetric) and fully
anisotropic traps in 2d and 3d, as well as 1d traps, where no spatial symmetry is considered.

Solution method: We employ the split-step Crank-Nicolson algorithm to discretize the time-dependent
GP equation in space and time. The discretized equation is then solved by imaginary- or real-time
propagation, employing adequately small space and time steps, to yield the solution of stationary and
non-stationary problems, respectively.

E-mail addresses: luis.young@usantoto.edu.co (L.E. Young-S), anand@cnld.bdu.ac.in (P. Muruganandam), adhikari@ift.unesp.br (S.K. Adhikari), vladimir.loncar@ipb.ac.rs
(V. Lon¢ar), dusan.vudragovic@ipb.ac.rs (D. Vudragovi¢), antun.balaz@ipb.ac.rs (A. Balaz).

http://dx.doi.org/10.1016/j.cpc.2017.07.013
0010-4655/© 2017 Elsevier B.V. All rights reserved.

504

LE. Young-S et al. / Computer Physics Communications 220 (2017) 503-506

Reasons for the new version: Previously published Fortran programs [1,2] have now become popular tools
[3] for solving the GP equation. These programs have been translated to the C programming language [4]
and later extended to the more complex scenario of dipolar atoms [5]. Now virtually all computers have
multi-core processors and some have motherboards with more than one physical computer processing
unit (CPU), which may increase the number of available CPU cores on a single computer to several tens.
The C programs have been adopted to be very fast on such multi-core modern computers using general-
purpose graphic processing units (GPGPU) with Nvidia CUDA and computer clusters using Message
Passing Interface (MPI) [6]. Nevertheless, previously developed Fortran programs are also commonly used
for scientific computation and most of them use a single CPU core at a time in modern multi-core laptops,
desktops, and workstations. Unless the Fortran programs are made aware and capable of making efficient
use of the available CPU cores, the solution of even a realistic dynamical 1d problem, not to mention the
more complicated 2d and 3d problems, could be time consuming using the Fortran programs. Previously,
we published auto-parallel Fortran programs [2] suitable for Intel (but not GNU) compiler for solving the
GP equation. Hence, a need for the full OpenMP version of the Fortran programs to reduce the execution
time cannot be overemphasized. To address this issue, we provide here such OpenMP Fortran programs,
optimized for both Intel and GNU Fortran compilers and capable of using all available CPU cores, which
can significantly reduce the execution time.

Summary of revisions: Previous Fortran programs [1] for solving the time-dependent GP equation in 1d, 2d,
and 3d with different trap symmetries have been parallelized using the OpenMP interface to reduce the
execution time on multi-core processors. There are six different trap symmetries considered, resulting in
six programs for imaginary-time propagation and six for real-time propagation, totaling to 12 programs
included in BEC-GP-OMP-FOR software package.

All input data (number of atoms, scattering length, harmonic oscillator trap length, trap anisotropy,
etc.) are conveniently placed at the beginning of each program, as before [2]. Present programs introduce
a new input parameter, which is designated by Number_of_Threads and defines the number of CPU
cores of the processor to be used in the calculation. If one sets the value 0 for this parameter, all available
CPU cores will be used. For the most efficient calculation it is advisable to leave one CPU core unused for
the background system’s jobs. For example, on a machine with 20 CPU cores such that we used for testing,
it is advisable to use up to 19 CPU cores. However, the total number of used CPU cores can be divided into
more than one job. For instance, one can run three simulations simultaneously using 10, 4, and 5 CPU
cores, respectively, thus totaling to 19 used CPU cores on a 20-core computer.

The Fortran source programs are located in the directory src, and can be compiled by the make
command using the makefile in the root directory BEC-GP-OMP-FOR of the software package. The
examples of produced output files can be found in the directory output, although some large density
files are omitted, to save space. The programs calculate the values of actually used dimensionless
nonlinearities from the physical input parameters, where the input parameters correspond to the identical
nonlinearity values as in the previously published programs [1], so that the output files of the old
and new programs can be directly compared. The output files are conveniently named such that their
contents can be easily identified, following the naming convention introduced in Ref. [2]. For example,
a file named <code>-out.txt, where <code> is a name of the individual program, represents
the general output file containing input data, time and space steps, nonlinearity, energy and chemical
potential, and was named fort.7 in the old Fortran version of programs [1]. A file named <code>-
den.txt is the output file with the condensate density, which had the names fort.3 and fort.4
in the old Fortran version [1] for imaginary- and real-time propagation programs, respectively. Other
possible density outputs, such as the initial density, are commented out in the programs to have a
simpler set of output files, but users can uncomment and re-enable them, if needed. In addition, there
are output files for reduced (integrated) 1d and 2d densities for different programs. In the real-time
programs there is also an output file reporting the dynamics of evolution of root-mean-square sizes
after a perturbation is introduced. The supplied real-time programs solve the stationary GP equation,
and then calculate the dynamics. As the imaginary-time programs are more accurate than the real-time
programs for the solution of a stationary problem, one can first solve the stationary problem using the
imaginary-time programs, adapt the real-time programs to read the pre-calculated wave function and
then study the dynamics. In that case the parameter NSTP in the real-time programs should be set to
zero and the space mesh and nonlinearity parameters should be identical in both programs. The reader
is advised to consult our previous publication where a complete description of the output files is given
[2]. A readme. txt file, included in the root directory, explains the procedure to compile and run the
programs.

We tested our programs on a workstation with two 10-core Intel Xeon E5-2650 v3 CPUs. The
parameters used for testing are given in sample input files, provided in the corresponding directory
together with the programs. In Table 1 we present wall-clock execution times for runs on 1, 6, and 19
CPU cores for programs compiled using Intel and GNU Fortran compilers. The corresponding columns
“Intel speedup” and “GNU speedup” give the ratio of wall-clock execution times of runs on 1 and 19 CPU
cores, and denote the actual measured speedup for 19 CPU cores. In all cases and for all numbers of CPU
cores, although the GNU Fortran compiler gives excellent results, the Intel Fortran compiler turns out to
be slightly faster. Note that during these tests we always ran only a single simulation on a workstation at a
time, to avoid any possible interference issues. Therefore, the obtained wall-clock times are more reliable
than the ones that could be measured with two or more jobs running simultaneously. We also studied
the speedup of the programs as a function of the number of CPU cores used. The performance of the
Intel and GNU Fortran compilers is illustrated in Fig. 1, where we plot the speedup and actual wall-clock
times as functions of the number of CPU cores for 2d and 3d programs. We see that the speedup increases
monotonically with the number of CPU cores in all cases and has large values (between 10 and 14 for 3d

LE. Young-S et al. / Computer Physics Communications 220 (2017) 503-506 505

programs) for the maximal number of cores. This fully justifies the development of OpenMP programs,
which enable much faster and more efficient solving of the GP equation. However, a slow saturation in
the speedup with the further increase in the number of CPU cores is observed in all cases, as expected.

A A A 5 A A A
a b 10 I-lmag2d
12 4 | I-lmag3d
G-Imag3d
= 10% 4 G-Real2d 3
° |-Real3d ——
[=3 £
> 8- L =
B 3
»n @
4 “t ©
I-Real3d —— =
0 . . . 10! T ; ;
0 5 10 15 20 0 5 10 15 20

Number of cores

Number of cores

Fig. 1. (a) Speedup for 2d and 3d programs compiled with the Intel (I) and GNU (G) Fortran compilers as a function of the number of CPU cores, measured on a workstation
with two Intel Xeon E5-2650 v3 CPUs. (b) Wall-clock execution time (in seconds) of 2d and 3d programs compiled with the Intel (I) and GNU (G) Fortran compilers as a

function of the number of CPU cores.

Speedup with 19 cores

0

200 400 600 800 1000
Number of x grid points

Fig. 2. Speedup of real2d-th program, compiled with the Intel Fortran 90 compiler and executed on 19 CPU cores on a workstation with two Intel Xeon E5-2650 v3 CPUs, as
a function of the number of spatial discretization points NX=NY.

Table 1

Wall-clock execution times (in seconds) for runs with 1, 6, and 19 CPU cores of different pro-
grams using the Intel Fortran (ifort)and GNU Fortran (gf ortran) compilers on a workstation
with two Intel Xeon E5-2650 v3 CPUs, with a total of 20 CPU cores, and the obtained speedups
for 19 CPU cores.

of cores 1 1 6 6 19 19 19 19

Fortran Intel GNU Intel GNU Intel GNU Intel GNU
time time time time time time speedup speedup

imag1d 52 60 22 22 20 22 2.6 2.7
imagcir 22 30 14 15 14 15 1.6 2.0

imagsph 24 30 12 15 12 14 24 2.1
realld 205 345 76 108 62 86 33 4.0
realcir 145 220 55 73 48 59 3.0 3.7
realsph 155 250 57 76 46 61 34 2.7
imag2d 255 415 52 84 27 40 9.4 10.4
imagaxi 260 435 62 105 30 55 8.7 7.9
real2d 325 525 74 107 32 50 10.1 10.5
realaxi 160 265 35 49 16 24 10.0 11.0
imag3d 2080 2630 370 550 200 250 104 10.5

real3d 19500 26000 3650 5600 1410 2250 138 116

506 L.E. Young-S et al. / Computer Physics Communications 220 (2017) 503-506

The speedup tends to increase for programs in higher dimensions, as they become more complex and
have to process more data. This is why the speedups of the supplied 2d and 3d programs are larger than
those of 1d programs. Also, for a single program the speedup increases with the size of the spatial grid, i.e.,
with the number of spatial discretization points, since this increases the amount of calculations performed
by the program. To demonstrate this, we tested the supplied real2d-th program and varied the number
of spatial discretization points NX=NY from 20 to 1000. The measured speedup obtained when running
this program on 19 CPU cores as a function of the number of discretization points is shown in Fig. 2. The
speedup first increases rapidly with the number of discretization points and eventually saturates.
Additional comments: Example inputs provided with the programs take less than 30 minutes to run on a
workstation with two Intel Xeon E5-2650 v3 processors (2 QPI links, 10 CPU cores, 25 MB cache, 2.3 GHz).

© 2017 Elsevier B.V. All rights reserved.

Acknowledgments

V.L, D.V,, and A.B. acknowledge support by the Ministry of Ed-
ucation, Science, and Technological Development of the Republic
of Serbia under projects ON171017 and I1143007. P.M. acknowl-
edges support by the Science and Engineering Research Board,
Department of Science and Technology, Government of India under
project no. EMR/2014/000644. S.K.A. acknowledges support by the
CNPq of Brazil under project 303280/2014-0, and by the FAPESP
of Brazil under project 2012/00451-0. Numerical tests were par-
tially carried out on the PARADOX supercomputing facility at
the Scientific Computing Laboratory of the Institute of Physics
Belgrade.

References

[1] P. Muruganandam, S.K. Adhikari, Comput. Phys. Comm. 180 (2009) 1888.
[2] LE.Young-S., D. Vudragovi¢, P. Muruganandam, S.K. Adhikari, A. BalaZ, Comput.
Phys. Comm. 204 (2016) 209.

H. Fabrellj, et al.,]. Opt. 19 (2017) 075501;

S.K. Adhikari, Laser Phys. Lett. 14 (2017) 065402;

A.N. Malmi-Kakkada, O.T. Valls, C. Dasgupta, Phys. Rev. B 95 (2017) 134512;
P.S. Vinayagam, R. Radha, S. Bhuvaneswari, R. Ravisankar, P. Muruganandam,
Commun. Nonlinear Sci. Numer. Simul. 50 (2017) 68;

0. Voronych, et al., Comput. Phys. Comm. 215 (2017) 246;

V. Velji¢, A. Balaz, A. Pelster, Phys. Rev. A 95 (2017) 053635;

A.M. Martin, et al,,]J. Phys.: Condens. Matter. 29 (2017) 103004;

R.R. Sakhel, A.R. Sakhel, J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 105301;

E. Chiquillo, J. Phys. A 50 (2017) 105001;

G.A. Sekh, Phys. Lett. A 381 (2017) 852;

W. Wen, B. Chen, X. Zhang, J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 035301;
S.K. Adhikari, Phys. Rev. A 95 (2017) 023606;

S. Gautam, S.K. Adhikari, Phys. Rev. A 95 (2017) 013608;

S.K. Adhikari, Laser Phys. Lett. 14 (2017) 025501;

D. Mihalache, Rom. Rep. Phys. 69 (2017) 403;

X.-F. Zhang, et al., Ann. Phys. 375 (2016) 368;

G. Vergez, et al., Comput. Phys. Comm. 209 (2016) 144,

S. Bhuvaneswari, et al., J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 245301;

[3

C.-Y. Lai, C.-C. Chien, Sci. Rep. 6 (2016) 37256;

C.-Y. Lai, C.-C. Chien, Phys. Rev. Appl. 5 (2016) 034001;

H. Gargoubi, et al., Phys. Rev. E 94 (2016) 043310;

S.K. Adhikari, Phys. Rev. E 94 (2016) 032217;

I. Vasi¢, A. Balaz, Phys. Rev. A 94 (2016) 033627,

R.R. Sakhel, A.R. Sakhel,]. Low Temp. Phys. 184 (2016) 1092;

J.B. Sudharsan, et al., J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 165303;

A.Lj, et al.,, Phys. Rev. A 94 (2016) 023626;

R.K. Kumar, et al.,]. Phys. B: At. Mol. Opt. Phys. 49 (2016) 155301;

K. Nakamura, et al., J. Phys. A 49 (2016) 315102;

S.K. Adhikari, Laser Phys. Lett. 13 (2016) 085501;

A. Paredes, H. Michinel, Phys. Dark Universe 12 (2016) 50;

W. Bao, Q. Tang, Y. Zhang, Commun. Comput. Phys. 19 (2016) 1141;

A.R. Sakhel, Physica B 493 (2016) 72;

J. Akram, B. Girodias, A. Pelster,]. Phys. B: At. Mol. Opt. Phys. 49 (2016) 075302;
J. Akram, A. Pelster, Phys. Rev. A 93 (2016) 033610;

T. Khellil, A. BalaZ, A. Pelster, New]. Phys. 18 (2016) 063003;

D. Hocker, J. Yan, H. Rabitz, Phys. Rev. A 93 (2016) 053612;

J. Akram, A. Pelster, Phys. Rev. A 93 (2016) 023606;

S. Subramaniyan, Eur. Phys. J. D 70 (2016) 109;

Z.Marojevic, E. Goeklue, C. Laemmerzahl, Comput. Phys. Comm. 202 (2016) 216;
R.R. Sakhel, et al., Eur. Phys.]. D 70 (2016) 66;

K. Manikandan, et al., Phys. Rev. E 93 (2016) 032212;

S.K. Adhikari, Laser Phys. Lett. 13 (2016) 035502;

S. Gautam, S.K. Adhikari, Phys. Rev. A 93 (2016) 013630;

T. Mithun, K. Porsezian, B. Dey, Phys. Rev. A 93 (2016) 013620;

D.-S. Wang, Y. Xue, Z. Zhang, Romanian J. Phys. 61 (2016) 827;

S. Sabari, K. Porsezian, P. Muruganandam, Romanian Rep. Phys. 68 (2016) 990;
J. Akram, A. Pelster, Laser Phys. 26 (2016) 065501;

R.R. Sakhel, A.R. Sakhel, H.B. Ghassib, Physica B 478 (2015) 68;

J.B. Sudharsan, et al., Phys. Rev. A 92 (2015) 053601.

D. Vudragovié, 1. Vidanovi¢, A. BalaZ, P. Muruganandam, S.K. Adhikari, Comput.
Phys. Comm. 183 (2012) 2021.

R. Kishor Kumar, L.E. Young-S., A. Vudragovi¢, P. Balaz, D. Muruganandam, S.K.
Adhikari, Comput. Phys. Comm. 195 (2015) 117.

V. Lon¢ar, A. BalaZ, A. Bogojevi¢, S. Skrbi¢, P. Muruganandam, S.K. Adhikari,
Comput. Phys. Comm. 200 (2016) 406;

V. Loncar, L.E. Young-S., S. Skrbi¢, P. Muruganandam, S.K. Adhikari, A. Balaz,
Comput. Phys. Comm. 209 (2016) 190;

B. Satari¢, V. Slavni¢, A. Beli¢, A. BalaZ, P. Muruganandam, S.K. Adhikari, Comput.
Phys. Comm. 200 (2016) 411.

Parallelization of Minimum Spanning
Tree Algorithms Using Distributed
Memory Architectures

Vladimir Lon¢ar, Srdjan Skrbi¢ and Antun BalaZ

Abstract Finding a minimum spanning tree of a graph is a well known problem in
graph theory with many practical applications. We study serial variants of Prim’s
and Kruskal’s algorithm and present their parallelization targeting message passing
parallel machine with distributed memory. We consider large graphs that can not fit
into memory of one process. Experimental results show that Prim’s algorithm is a
good choice for dense graphs while Kruskal’s algorithm is better for sparse ones.
Poor scalability of Prim’s algorithm comes from its high communication cost while
Kruskal’s algorithm showed much better scaling to larger number of processes.

Keywords Distributed memory - Kruskal « MPI - MST - Paralellization + Prim

1 Introduction

A minimum spanning tree (MST) of a weighted graph G = (V, E) is a subset of
E that forms a spanning tree of G with minimum total weight. MST problem has
many applications in computer and communication network design, as well as
indirect applications in fields such as computer vision and cluster analysis [12].

V. Lonéar - S. Skrbi¢ (B<)
Faculty of Science, University of Novi Sad, Trg Dositeja Obradovica 4, Novi Sad, Serbia
e-mail: srdjan.skrbic@dmi.uns.ac.rs

V. Loncar
e-mail: vladimir.loncar@dmi.uns.ac.rs

A. Balaz

Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade,
Pregrevica 118, Belgrade, Serbia

e-mail: antun.balaz@scl.rs

G.-C. Yang et al. (eds.), Transactions on Engineering Technologies, 543
DOI: 10.1007/978-94-017-8832-8_39,
© Springer Science+Business Media Dordrecht 2014

544 V. Loncar et al.

In this paper we implement two parallel algorithms for finding MST of a graph,
based on classical algorithms of Prim [23] and Kruskal [18], building upon our
previous work in [19]. Algorithms target message passing parallel machine with
distributed memory. Primary characteristic of this architecture is that the cost of
inter-process communication is high in comparison to cost of computation. Our
goal was to develop algorithms which minimize communication, and to measure
the impact of communication on the performance of algorithms. Our primary
interest were graphs which have significantly larger number of vertices than
processors involved in computation. Since graphs of this size cannot fit into the
memory of a single process, we use a partitioning scheme to divide the input graph
among processes. We consider both sparse and dense graphs.

First algorithm is a parallelization of Prim’s serial algorithm. Each process is
assigned a subset of vertices and in each step of computation, every process finds a
candidate minimum-weight edge connecting one of its vertices to MST. The root
process collects those candidates and selects one with minimum weight which it
adds to MST and broadcasts result to other processes. This step is repeated until
every vertex is in MST.

Second algorithm is based on Kruskal’s approach. Processes get a subset of
G in the same way as in first algorithm, and then find local minimum spanning tree
(or forest). Next, processes merge their MST edges until only one process remains,
which holds edges that form MST of G.

Implementations of these algorithms are done using C programming language
and MPI (Message Passing Interface) and tested on a parallel cluster PARADOX
using up to 256 cores and 256 GB of distributed memory.

Section 2 contains references to the most important related papers. In Sect. 3 we
continue with the description and analysis of algorithms—both serial and parallel
versions, and their implementation. In the last section we describe experimental
results, analyze them and draw our conclusions.

2 Related Work

Algorithms for MST problem have mostly been based on one of three approaches,
that of Boruvka [3], Prim [23] and Kruskal [18], however, a number of new
algorithms has been developed. Gallager et al. [10] presented an algorithm where
processor exists at each node of the graph (thus n = p), useful in computer net-
work design. Katriel and Sanders designed an algorithm exploiting cycle property
of a graph targeting dense graph, [17], while Ahrabian and Nowzari-Dalini’s
algorithm relies on depth first search of the graph [1].

Due to its parallel nature, Boruvka’s algorithm (also known as Sollin’s algo-
rithm) has been the subject to most research related to parallel MST algorithms.
Examples of algorithms based on Boruvka’s approach include Chung and Condon
[4], Wang and Gu [14] and Dehne and Gotz [7].

Parallelization of Minimum Spanning Tree Algorithms 545

Parallelization of Prim’s algorithm has been presented by Deo and Yoo [8]. Their
algorithm targets shared memory computers. Improved version of Prim’s algorithm
has been presented by Gonina and Kale [11]. Their algorithm adds multiple vertices
per iteration, thus achieving significant speedups. Another approach targeting
shared memory computers presented by Setia et al. [24] uses the cut property of a
graph to grow multiple trees in parallel. Hybrid approach, combining both
Boruvka’s and Prim’s approaches has been developed by Bader and Cong [2].

Examples of parallel implementation of Kruskal’s algorithm can be found in
work of Jin and Baker [16], and Osipov et al. [21]. Osipov et al. proposes a
modification to Kruskal’s algorithm to avoid edges which certainly are not in a
graph. Their algorithm runs in near linear time if graph is not too sparse.

Bulk of the research into parallel MST algorithms has targeted shared memory
computers like PRAM, i.e. computers where entire graph can fit into memory. Our
algorithms target distributed memory computers and use partitioning scheme to
divide the input graph evenly among processors. Because no process contains info
about partition of other processes, we designed our algorithms to use predictable
communication patterns, and not depend on the properties of input graph.

3 The Algorithms

Let us assume that graph G = (V, E), with vertex set V and edge set E is connected
and undirected. Without loss of generality, it can be assumed that each weight is
distinct, thus G is guaranteed to have only one MST. This assumption simplifies
implementation, otherwise a numbering scheme can be applied to edges with same
weight, at the cost of additional implementation complexity.

Let n be the number of vertices, m the number of edges (IVl = n, |[El = m), and
p the number of processes involved in computation of MST. Let w(v, u) denote
weight of edge connecting vertices v and u. Input graph G is represented as
n x n adjacency matrix A = (a;;) defined as:

~_ fwi,vy) i (vi,vj) €E
dij = {O otherwise (1)

3.1 Prim’s Algorithm

Prim’s algorithm starts from an arbitrary vertex and then grows the MST by
choosing a new vertex and adding it to MST in each iteration. Vertex with an edge
with lightest weight incident on the vertices already in MST 1is added in every
iteration. The algorithm continues until all the vertices have been added to the
MST. This algorithm requires O(n”) time. Implementations of Prim’s algorithm
commonly use auxiliary array d of length n to store distances (weight) from each

546 V. Loncar et al.

Fig. 1 Partitioning of
adjacency matrix among
D processes

vertex to MST. In every iteration a lightest weight edge in d is added to MST and
d is updated to reflect changes.

Parallelizing the main loop of Prim’s algorithm is difficult [13], since after
adding a vertex to MST lightest edges incident on MST change. Only two steps
can be parallelized: selection of the minimum-weight edge connecting a vertex not
in MST to a vertex in MST, and updating array d after a vertex is added to MST.
Thus, parallelization can be achieved in the following way:

1. Partition the input set V into p subsets, such that each subset contains n/p con-
secutive vertices and their edges, and assign each process a different subset.
Each process also contains part of array d for vertices in its partition. Let V; be
the subset assigned to process p;, and d; part of array d which p; maintains.
Partitioning of adjacency matrix is illustrated in Fig. 1.

2. Every process p; finds minimum-weight edge e; (candidate) connecting MST

with a vertex in V.

Every process p; sends its e; edge to the root process using all-to-one reduction.

4. From the received edges, the root process selects one with a minimum weight
(called global minimum-weight edge e,,;,), adds it to MST and broadcasts it to
all other processes.

5. Processes mark vertices connected by e,,,, as belonging to MST and update
their part of array d.

6. Repeat steps 2-5 until every vertex is in MST.

e

Finding a minimum-weight edge and updating of d; during each iteration costs
O(n/p). Each step also adds a communication cost of all-to-one reduction and all-
to-one broadcast. These operations complete in O(log p). Combined, cost of one
iteration is O(n/p + log p). Since there are n iterations, total parallel time this
algorithm runs in is:

n

T, = 0(2) +0(n logp) 2)

Parallelization of Minimum Spanning Tree Algorithms 547

Prim’s algorithm is better suited for dense graphs and works best for complete
graphs. This also applies to its parallel formulation presented here. Ineffectiveness
of the algorithm on sparse graphs stems from the fact that Prim’s algorithm runs in
O(n?), regardless of the number of edges. A well-known modification [5] of Prim’s
algorithm is to use binary heap data structure and adjacency list representation of a
graph to reduce the run time to O(m log n). Furthermore, using Fibonacci heap
asymptotic running time of Prim’s algorithm can be improved to O(m + n log n).
Since we use adjacency matrix representation, investigating alternative approaches
for Prim’s algorithm was out of the scope of this paper.

3.2 Kruskal’s Algorithm

Unlike Prim’s algorithm which grows a single tree, Kruskal’s algorithm grows
multiple trees in parallel. Algorithm first creates a forest F, where each vertex in
the graph is a separate tree. Next step is to sort all edges in E based on their weight.
Algorithm then chooses minimum-weight edge e,,;, (i.e. first edge in sorted set). If
enin connects two different trees in F, it is added to the forest and two trees are
combined into a single tree, otherwise e,,;, 1s discarded. Algorithm loops until
either all edges have been selected, or F contains only one tree, which is the MST
of G. This algorithm is commonly implemented using Union-Find algorithm [22].
Find operation is used to determine which tree a particular vertex is in, while
Union operation is used to merge two trees. Kruskal’s algorithm runs in
O(m log n) time, but can be made even more efficient by using more sophisticated
Union-Find data structure, which uses union by rank and path compression [9]. If
the edges are already sorted, using improved Union-Find data structure Kruskal’s
algorithm runs in O(ma(n)), where o(n) is the inverse of the Ackerman function.

Our parallel implementation of Kruskal’s algorithm uses the same partitioning
scheme of adjacency matrix as in Prim’s approach and is thus bounded by on?)
time to find all edges in matrix. Having that in mind, our parallel algorithm
proceeds through the following steps:

1. Every process p; first sorts edges contained in its partition V.

2. Every process p; finds a local minimum spanning tree (or forest, MSF) F; using
edges in its partition V; applying the Kruskal’s algorithm.

3. Processes merge their local MST’s (or MSF’s). Merging is performed in the
following manner. Let a and b denote two processes which are to merge their
local trees (or forests), and let F, and F, denote their respective set of local
MST edges. Process a sends set F, to b, which forms a new local MST (or
MSF) from F, U F,. After merging, process a is no longer involved in com-
putation and can terminate.

4. Merging continues until only one process remains. Its MST is the end result.

Creating a new local MSF during merge step can be performed in a number of
different ways. Our approach is to perform Kruskal’s algorithm again on F, U F,.

548 V. Loncar et al.

Computing the local MST takes O(n*/p). There is a total of log p merging stages,
each costing O(n’log p). During one merge step one process transmits maximum
of O(n) edges for a total parallel time of:

T, = O(n’/p) + O(n* logp) (3)

Based on speedup and efficiency metrics, it can be shown that this parallel
formulation is efficient for p = O(n/log n), same as the first algorithm.

3.3 Implementation

Described algorithms were implemented using ANSI C and Message Passing Inter-
face (MPI). Fixed communication patterns in parallel formulation of the algorithms
map directly to MPI operations. Complete source code can be found in [25].

4 Experimental Results

Implementations of algorithms were tested on a cluster of up to 32 computing
nodes. Each computer in the cluster had two Intel Xeon E5345 2.33 GHz quad-
core CPUs and 8 GB of memory, with Scientific Linux 6 operating system
installed. We used OpenMPI v1.6 implementation of the MPI standard. The cluster
nodes are connected to the network with a throughput of 1 Gbit/s. Both imple-
mentations were compiled using GCC 4.4 compiler. This cluster has enabled
testing algorithms with up to 256 processes as shown in Table 1.

We tested graphs with densities of 1, 5, 10, 15 and 20 % with number of
vertices ranging from 10,000 to 100,000, and number of edges from 500,000 to
1,000,000,000. Distribution of edges in graphs was uniformly random, and all edge
weights were unique. Due to the high memory requirements of large graphs, not
every input graph could be partitioned in a small number of cluster nodes, as can
be seen in Table 1.

4.1 Results

Due to the large amount of obtained test results, we only present the most
important ones here. Complete set of results can be found in [25].

In the Table 2 we show the behavior of algorithms with increasing number of
processes on input graph of 50,000 vertices and density of 10 %.

Results show poor scalability of Prim’s algorithm, due to its high communi-
cation cost. Otherwise, computation phase of Prim’s algorithm is faster than that of

Parallelization of Minimum Spanning Tree Algorithms 549

Table 1 Testing parameters

Processes Nodes Processes per node No. of vertices (k)
4 4 1 10-50

8 8 1 10-60

16 16 1 10-80

32 32 1 10-100

64 32 2 10-100

128 32 4 10-100

256 32 8 10-100

Table 2 CPU time (in seconds) for algorithms with increasing number of processes

4 8 16 32 64 128 256
Kruskal 38.468 19.94 10.608 5.342 2.958 1.796 1.382
Prim 16.703 15.479 25.201 30.382 30.824 32.661 39.737

Table 3 CPU time (in seconds) for algorithms with increasing density

1 % 5 % 10 % 15 % 20 %
Kruskal 0.607 2.603 5.342 8.164 10.663
Prim 30.189 30.007 30.382 30.518 30.589

Kruskal’s. Due to the usage of adjacency matrix graph representation, Prim’s
algorithm performs almost the same regardless of the density of the input graph.
This can be seen from the results of input graph with 50,000 vertices and 32
processes with varying density shown at Table 3.

On the other hand, Kruskal’s algorithm shows degradation of performance with
increasing density. Results of Kruskal’s algorithm show that majority of local
computation time is spent sorting the edges of input graph, which grows with
larger density. Increasing the number of processes makes local partitions smaller
and faster to process, thus allowing this algorithm to achieve good scalability. If
the edges of input graph were already sorted, Kruskal’s algorithm would be
significantly faster than other MST algorithms.

4.2 Impact of Communication Overhead

Cost of communication is much greater than the cost of computation, so it is
important to analyse the time spent in communication routines. During tests we
measured the time spent waiting for the completion of the communication oper-
ations. In case of Prim’s algorithm, we measured the time that the root process
spends waiting for the completion of MPI_Reduce and MPI_Bcast operations.
Communication in Kruskal’s algorithm is measured as total time spent waiting for
messages received over MPI_Recv operation in the last active process (which will

550 V. Loncar et al.

Table 4 Communication versus computation time (in seconds)

Processes 4 8 16 32 64 128 256
Prim’s algorithm
Total 16.703 15.479 25.201 30.382 30.824 32.661 39.737

Communication 8.188 11.183 23.009 29.248 30.237 32.322 39.467

Kruskal’s algorithm
Total 38.468 19.94 10.608 5.342 2.958 1.796 1.382
Communication 0.171 0.356 0.371 0.288 0.317 0.253 0.256

contain the MST after last iteration of the merge operation). This gives us a good
insight into the duration of communication routines because the last active process
will have to wait the most.

The Table 4 shows communication times of processing input graph of 50,000
vertices with 10 % density.

When comparing communication time with a total computation time it can be
noted that the Prim’s algorithm spends most of time in communication operations,
and by increasing number of processes almost all the running time of the algorithm
is spent on communication operations. A bottleneck in Prim’s algorithm is the cost
of MPI_Reduce and MPI_Bcast communication operations. These operations
require communication between all processes, and are much more expensive than
local computation within each process, because all processes must wait until the
operation is completed, or until the data are transmitted over the network. This
prevents Prim’s algorithm from achieving substantial speedup of running time
with increasing number of processes. Therefore, this algorithm is most efficient on
the fewest number of processes that the partitioned input graph can fit.

On the other hand Kruskal algorithm spends much less time in communication
operations, but instead spends most of the time in local computation. These
differences are illustrated in Figs. 2 and 3. The diagrams show that communication
in Prim’s algorithm rises sharply with increasing number of processes, while
execution time slowly reduces. In Kruskal’s algorithm, the situation is reversed.

4.3 Analysis of Results

The experimental results confirmed some of the assumptions made during the
development and analysis of algorithms, but also made a couple of unexpected
results. Results of these experiments gave us directions for further improvement of
the described algorithms.

Prim’s algorithm has shown excellent performance in computational part of the
algorithm, but a surprisingly high cost of communication operations spoils its final
score. Finding candidate edges for inclusion in MST can be further improved by
using techniques described in [5], but it will not significantly improve the total

Parallelization of Minimum Spanning Tree Algorithms 551

45
40
35
30
25
20
15
10

5

0

A &
4 8

16 32 64 128 256

== Total === Communication

Fig. 2 Communication in Kruskal’s algorithm

45
40
35
30
25
20
15
10

4 8 16 32 64 128 256
e Total ==$==Communication

Fig. 3 Communication in Prim’s algorithm

time of the algorithm, as communication routines will remain the same. Unfor-
tunately, the communication can not be further improved by changing the algo-
rithm. The only way to reduce the cost of communication is to use a cluster that
has a better quality network, or to rely on the semantics of the implementation of
the MPI operation MPI_Allreduce.

Kruskal’s algorithm has shown good performance, especially for sparse graphs,
while the performance degrades with increasing density. It is important to note that
many real-world graphs have density much smaller than 1 % (for example, graph
of roads as egdes and junctions as vertices has a density much smaller than 1 %).
Also, this algorithm showed much better scaling to larger number of processes
than Prim’s algorithm. Cost of communication in Kruskal’s algorithm is much
smaller than in Prim’s algorithm, but the local computation is slower. This can be
improved by using more efficient Union-Find algorithms [9], or by improving
merging of local trees between processes. Kruskal’s algorithm does not use a lot of

552 V. Loncar et al.

slow messages like Prim’s algorithm, but can send very large messages depending
on the number of processes and the size of the graph. This can be improved by
introducing techniques for compressing messages, or changing the structure of the
message.

5 Alternate Parallelization Approaches

In this section we will give a brief overview of two other parallelization approa-
ches we considered using for implementation of these algorithms. One approach
would be using graphics processing unit (GPU) technologies like Nvidia CUDA or
OpenCL. Another would be using shared-memory parallelization API like
OpenMP to utilize multi-core processors on cluster nodes. We will go over
advantages and disadvantages of both approaches.

With the introduction of CUDA and OpenCL programming models, using GPU
for general-purpose computing (GPGPU) has become a powerful alternative to
traditional CPU programming models. Nowadays GPUs can be found in most
high-ranking supercomputers and even ordinary clusters. GPUs have their own
RAM, which is separate from main RAM of a computer and was not accessible for
distributed-memory technologies like MPI. This made writing multi-GPU pro-
grams more difficult, since it required expensive copy operations between GPU
memory and host (CPU) memory which MPI could access. However, recent
developments in MPI implementations have alleviated this problem, and newer
versions of popular MPI implementations like OpenMPI and MVAPICH can
access GPU memory directly. This unfortunately still doesn’t make GPU the
perfect platform for implementations of our algorithms. GPUs still have much
smaller amount of RAM when compared to main memory (recently released
models like Tesla K10 have up to 8 GB of memory [20]). This means that GPU
solution could only be used on much smaller graphs. Alternatively, a different
graph representation (like adjacency lists) would allow graphs with greater number
of vertices, but would still be only useful for sparser graphs. Primary part of Prim’s
algorithm which could be accelerated by GPU is finding local (and then global)
vertex with the smallest distance to the tree. This could be achieved by slightly
modifying well-known parallel reduction algorithm for GPU [15]. Communication
pattern between nodes would remain the same. Kruskal’s algorithm is more
complex to implement on GPU due to Union-Find data structure. Other important
portions of Kruskal’s algorithm, like sorting of input could be done using various
GPU libraries.

Unlike the relatively new technology that is GPGPU, OpenMP has been suc-
cessfully used to parallelize serial code since the late 90s. In some cases, OpenMP
allows developers to parallelize their with programs with minimal effort, using
compiler directives around loops, often with good performance [6]. This technique
could be used in parallelization of Prim’s algorithm for finding local (and later

Parallelization of Minimum Spanning Tree Algorithms 553

global) vertex with the smallest distance to the tree. Graph would be partitioned in
such a way that each node in cluster receives an equal part, then each node would
use all it’s processors and cores with OpenMP to find local minimum, and use MPI
for communication between nodes. Kruskal’s algorithm can be parallelized in
similar way, although it would require a slightly greater effort for implementation
of sorting and Union-Find data structure.

Acknowledgements Authors are partially supported by Ministry of Education, Science, and
Technological Development of the Republic of Serbia, through projects no. ON174023: “Intel-
ligent techniques and their integration into wide-spectrum decision support”, and ON171017:
“Modeling and numerical simulations of complex many-body systems”, as well as European
Commission through FP7 projects PRACE-2IP and PRACE-3IP.

References

1. H. Ahrabian, A. Nowzari-Dalini, Parallel algorithms for minimum spanning tree problem.
Int. J. Comput. Math. 79(4), 441-448 (2002)

2. D.A. Bader, G. Cong, Fast shared-memory algorithms for computing the minimum spanning
forest of sparse graphs. J. Parallel Distrib. Comput. 66(11), 13661378 (2006)

3. O. Boruvka, O Jistém Problému Minimalnm (about a certain minimal problem) (in Czech,
German summary). Prdce Mor. Prrodoved. Spol. v Brne III, vol. 3 (1926)

4. S. Chung, A. Condon, Parallel implementation of borvka’s minimum spanning tree
algorithm. in Proceedings of the 10th International Parallel Processing Symposium, IPPS
‘96 (IEEE Computer Society, Washington, DC, 1996), pp. 302-308

5. T.H. Cormen, C. Stein, R.L. Rivest, C.E. Leiserson, Introduction to Algorithms, 2nd edn.
(McGraw-Hill Higher Education, Boston, 2001)

6. M. Curtis-Maury, X. Ding, C.D. Antonopoulos, D.S. Nikolopoulos, An Evaluation of
Openmp on Current and Emerging Multithreaded/Multicore Processors, ed. by M.S.
Mueller, B.M. Chapman, B.R. Supinski, A.D. Malony, M. Voss. OpenMP Shared Memory
Parallel Programming, vol 4315 (Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2008), pp. 133-144

7. F. Dehne, S. Gtz, Practical Parallel Algorithms for Minimum Spanning Trees, in Workshop
on Advances in Parallel and Distributed Systems (1998), pp. 366-371

8. N. Deo, Y.B. Yoo, Parallel algorithms for the minimum spanning tree problem, in
Proceedings of the International Conference on Parallel Processing (1981), pp. 188-189

9. Z. Galil, G.F. Italiano, Data structures and algorithms for disjoint set union problems. ACM
Comput. Surv. 23(3), 319-344 (1991)

10. R.G. Gallager, P.A. Humblet, P.M. Spira, A distributed algorithm for minimum-weight
spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 6677 (1983)

11. E. Gonina, L.V. Kale, Parallel prim’s algorithm on dense graphs with a novel extension, in
PPL Technical Report, Oct 2007

12. R.L. Graham, P. Hell, On the history of the minimum spanning tree problem. IEEE Ann.
Hist. Comput. 7(1), 43-57 (1985)

13. A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to Parallel Computing, 2nd edn.
(Addison Wesley, Reading, 2003)

14. W. Guang-rong, G. Nai-jie, An efficient parallel minimum spanning tree algorithm on
message passing parallel machine. J. Softw. 11(7), 889-898 (2000)

15. M. Harris, Optimizing parallel reduction in CUDA. CUDA tips and tricks

554 V. Loncar et al.

16

17.

18.

19.

20.

21.

22.

23.

24.

25

.M. Jin, J.W. Baker, Two graph algorithms on an associative computing model, in
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA 2007, vol 1, Las Vegas, Nevada, 25-28 June 2007,
pp. 271277

I. Katriel, P. Sanders, J.L. Trff, J.L. Tra, A practical minimum spanning tree algorithm using
the cycle property, in [1th European Symposium on Algorithms (ESA), vol. 2832 in LNCS
(Springer, New York, 2003), pp. 679-690

J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem.
Proc. Am. Math. Soc. 7(1), 48-50 (1956)

V. Lonéar, S. Skrbi¢, A. BalaZ, Distributed memory parallel algorithms for minimum
spanning trees, in Lecture Notes in Engineering and Computer Science: Proceedings of the
World Congress on Engineering 2013, WCE 2013, London, 3-5 July 2013, pp. 1271-1275
Nvidia, Nvidia tesla GPU accelerators. Nvidia Tesla Product Datasheet (2012)

V. Osipov, P. Sanders, J. Singler, The filter-kruskal minimum spanning tree algorithm, in
ALENEX’09 (2009), pp. 52-61

D.-Z. Pan, Z.-B. Liu, X.-F. Ding, Q. Zheng, The application of union-find sets in kruskal
algorithm, in Proceedings of the 2009 International Conference on Artificial Intelligence and
Computational Intelligence (AICI ‘09), vol 2 (IEEE Computer Society, Washington, DC,
2009), pp. 159-162

R.C. Prim, Shortest connection networks and some generalizations. Bell Syst. Technol. J. 36,
1389-1401 (1957)

R. Setia, A. Nedunchezhian, S. Balachandran, A new parallel algorithm for minimum
spanning tree problem, in Proceedings of the International Conference on High Performance
Computing (HiPC) (2009), pp. 1-5

. S. Skrbi¢, Scientific Computing Seminar (2013)

CINTI 2012 » 13th IEEE International Symposium on Computational Intelligence and Informatics * 20-22 November, 2012 « Budapest, Hungary
1

Parallel implementation of minimum spanning
tree algorithms using MPI

Vladimir Lon¢ar* and Srdjan Skrbic**
Faculy of Science, Depatment for Mathematics an Informatics, University of Novi Sad, Serbia
* vlada.loncar@gmail.com
** shkrba@uns.ac.rs

Abstract—In this paper we study parallel algorithms for
finding minimum spanning tree of a graph. We present
two algorithms, based on sequential algorithms of Prim and
Kruskal, targeting message passing parallel machine with
distributed memory. First algorithm runs in O(n?/p-+n log p)
and second algorithm runs in O(n?/p + n?logp).

Index Terms—Minimum spanning tree, parallel algo-
rithms, message passing, distributed memory computer.

I. INTRODUCTION

A minimum spanning tree (MST) of a graph G =
(V,E) is a subset of F that forms a spanning tree of G
with minimum total weight. MST problem has many appli-
cations in computer and communication network design,
as well as indirect applications in fields such as computer
vision and cluster analysis [1].

In this paper we implement two parallel algorithms for
finding MST of a graph, based on classical algorithms
of Prim and Kruskal. Algorithms target message pass-
ing parallel machine with distributed memory. Primary
characteristic of this architecture is that the cost of inter-
process communication is high in comparison to cost of
computation. Our goal was to develop algorithms which
minimize communication, and to measure the impact of
communication on the performance of algorithms. Our
primary interest were graphs which have significantly
larger number of vertices than processors involved in
computation. Since graphs of this size cannot fit into a
memory of single process, we use simple partitioning
scheme to divide the input graph among processes. We
considered both sparse and dense graphs.

First algorithm is a parallelization of Prim’s sequential
algorithm. Each process is assigned a subset of vertices
and in each step of computation, every process finds a
candidate minimum-weight edge connecting one of it’s
vertices to MST. Leader process collects those candidates
and selects one with minimum weight which it adds to
MST, and broadcasts result to other processes. This step
is repeated until every vertex is in MST.

Second algorithm is based on Kruskal’s approach. Pro-
cesses get a subset of G in the same way as in first
algorithm, and then find local minimum spanning tree (or
forest). Next, processes merge their MST edges until only
one process remains, which holds edges that form MST

of G.

978-1-4673-5206-2/12/$31.00 ©2012 IEEE

35

Algorithms we present are both easy to understand
and implement, and since they use fixed communication
patterns, their performance can easily be predicted.

II. RELATED WORK

Algorithms for MST problem have mostly been based
on one of three approaches, that of Boruvka [2], Prim [3]
and Kruskal [4], however, a number of new algorithms
has been developed. Gallager et al. presented an algorithm
where processor exists at each node of the graph (thus
n = p), useful in computer network design [5]. Katriel and
Sanders designed an algorithm exploiting cycle property
of a graph targeting dense graph, [6], while Ahrabian and
Nowzari-Dalini’s algorithm relies on depth first search of
the graph [7].

Due to it’s parallel nature, Boruvka’s algorithm (also
known as Sollin’s algorithm) has seen the most research.
Examples of algorithms based on Boruvka’s approach
include Chung and Condon [8], Wang and Gu [9] and
Dehne and Gotz [10].

Parallelization of Prim’s algorithm has been presented
by Deo and Yoo [11]. Their algorithm targets shared-
memory computers. Improved version of Prim’s algorithm
has been presented by Gonina and Kale [12]. Their algo-
rithm adds multiple vertices per iteration, thus achieving
significant speedups. Another approach targeting shared-
memory computers presented by Setia et al. [13] uses the
cut property of a graph to grow multiple trees in parallel.
Hybrid approach, combining both Boruvka’s and Prim’s
approaches has been developed by Bader and Cong [14].

Examples of parallel implementation of Kruskal’s algo-
rithm can be found in work of Jin and Baker [15], and
Osipov et al [16]. Osipov et al. proposes a modification
to Kruskal’s algorithm to avoid edges which certainly are
not in a graph. Their algorithm runs in near linear time if
graph is not too sparse.

Bulk of the research into parallel MST algorithms
has targeted shared-memory computers like PRAM, i.e.
computers where entire graph can fit into memory. Our
algorithms target distributed-memory computers and use
partitioning scheme to divide the input graph evenly
among processors. Because no process contains info about
partition of other processes, we designed our algorithms
to use predictable communication patterns, and not depend
on the properties of input graph.

III. THE ALGORITHMS

In the remainder of this paper, we will assume that
graph G = (V, E) is connected and undirected. Without
loss of generality, it can be assumed that each weight is
distinct, thus G is guaranteed to have only one MST. This
assumption simplifies implementation, otherwise a num-
bering scheme can be applied to edges with same weight,
at the cost of additional implementation complexity.

Let n be the number of vertices, m the number of edges
(V| = n, |E| = m), and p the number of processes
involved in computation of MST. Let w(v,u) denote
weight of edge connecting vertices v and wu. Input graph
G is represented as n x n adjacency matrix A = (a; ;)

defined as:
am- = {

A. Prim’s Algorithm

w(v;, vj)
0

if (’Ui7 ’Uj) ek
otherwise

ey

Prim’s algorithm starts from an arbitrary vertex and then
grows the MST by choosing a new vertex and adding
it to MST in each iteration. Vertex with an edge with
lightest weight incident on the vertices already in MST is
added in every iteration. The algorithm continues until all
the vertices have been added to the MST. This algorithm
requires O(n?) time. Implementations of Prim’s algorithm
commonly use auxiliary array d of length n to store
distances (weight) from each vertex to MST. In every
iteration a lightest weight edge in d is added to MST and
d is updated to reflect changes.

Parallelizing the main loop of Prim’s algorithm is dif-
ficult [17], since after adding a vertex to MST lightest
edges incident on MST change. Only two steps can
be parallelized: selection of the minimum-weight edge
connecting a vertex not in MST to a vertex in MST, and
updating array d after a vertex is added to MST. Thus,
parallelization can be achieved in the following way:

1) Partition the input set V' into p subsets, such that
each subset contains n/p consecutive vertices and
their edges, and assign each process a different
subset. Each process also contains part of array d
for vertices in it’s partition. Let V; be the subset
assigned to process p;, and d; part of array d which
p; maintains. Partitioning of adjacency matrix is
illustrated in Fig. 1.

Every process p; finds minimum-weight edge e;
(candidate) connecting MST with a vertex in V.
Every process p; sends its e; edge to leader process
using all-to-one reduction.

From the received edges, leader process selects one
with a minimum weight (called global minimum-
weight edge e,,i,), adds it to MST and broadcasts
it to all other processes.

Processes mark vertices connected by e,,;, as be-
longing to MST and update their part of array d.
Repeat steps 2-5 until every vertex is in MST.

2)
3)

4)

5)

6)

36

V. Lon&ar and S. Skrbic « Parallel Implementation of Minimum Spanning Tree Algorithms using MP!

-1

Fig. 1. Partitioning of adjacency matrix among p processes

Finding a minimum-weight edge and updating of d;
during each iteration costs O(n/p). Each step also adds
a communication cost of all-to-one reduction and all-to-
one broadcast. These operations complete in O(logp).
Combined, cost of one iteration is O(n/p + log p). Since
there are n iterations, total parallel time this algorithm runs
in is:

n2

-o("

In comparison to sequential algorithm, this algorithm
achieves a speedup and efficiency of:

) + O (nlogp) (2)

_ O(n?)
5= O(n2/p + nlogp) 3)
1
)

B = 10 oen) /)

From equations 3 and 4 we conclude that this for-
mulation of Prim’s algorithm is efficient only for p =
O(n/logn) processes.

Prim’s algorithm is better suited for dense graphs and
works best for complete graphs. This also applies to
it’s parallel formulation presented here. Ineffectiveness
of the algorithm on sparse graphs stems from the fact
that Prim’s algorithm runs in O(n?), regardless of the
number of edges. A well-known modification [18] of
Prim’s algorithm is to use binary heap data structure and
adjacency list representation of a graph to reduce the
run time to O(mlogn). Furthermore, using Fibonacci
heap asymptotic running time of Prim’s algorithm can
be improved to O(m + nlogn). Since we use adjacency
matrix representation, investigating alternative approaches
for Prim’s algorithm was out of the scope of this paper.

B. Kruskal’s Algorithm

Unlike Prim’s algorithm which grows a single tree,
Kruskal’s algorithm grows multiple trees in parallel. Al-
gorithm first creates a forest F', where each vertex in the
graph is a separate tree. Next step is to sort all edges
in E based on their weight. Algorithm then loops the
sorted set and chooses minimum-weight edge e,,;, (i.e.
first edge in sorted set). If e,,;, connects two different

CINTI 2012 » 13th IEEE International Symposium on Computational Intelligence and Informatics * 20-22 November, 2012 « Budapest, Hungary
3

trees in I, add it to the forest and combine two trees
into a single tree, otherwise discard e,,;,. Algorithm loops
until either all edges have been selected, or F' contains
only one tree, which is the MST of G. This algorithm
is commonly implemented using Union-Find algorithm
[19]. Find operation is used to determine which tree a
particular vertex is in, while Union operation is used to
merge two trees. Kruskal’s algorithm runs in O(m logn)
time, but can be made even more efficient by using more
sophisticated Union-Find data structure, which uses union
by rank and path compression [20]. If the edges are
already sorted, using improved Union-Find data structure
Kruskal’s algorithm runs in O(ma(n)), where a(n) is the
inverse of an Ackerman function.

Our parallel implementation of Kruskal’s algorithm uses
the same partitioning scheme of adjacency matrix as in
Prim’s approach and is thus bounded by O(n?) time to
find all edges in matrix. Every process first sorts edges
contained in its partition. From edges in partition V;, every
process p; finds a local minimum spanning tree (or forest,
MSF) T; using Kruskal’s algorithm. At the end of this
step, local MSTs are merged. Merging is performed in the
following manner. Let a and b denote two processes which
are to merge their local trees (or forests), and let A and B
denote their respective set of local MST edges. Process a
sends set A to b, which forms a new local MST (or MSF)
from AUB. After merging, process a is no longer involved
in computation and can terminate. Merging continues until
only one process remains, which will contain MST of G.

Example of parallel Kruskal’s algorithm is illustrated in
Fig. 2. Input graph in (a) is divided among processes p;
and py which compute local MST based on edges incident
on vertices assigned to them ((b) and (c)). Next, processes
merge their local MST-s to form a MST of input graph.
The dashed lines represent edges which are in local MST
of a process, but are removed after merging.

Creating a new local MSF during merge step can be
performed in a number of different ways. One approach
is to perform Kruskal’s algorithm again on A U B. Alter-
natively, a modified depth-first search (DFS) can be used.
For every edge in A, it is first determined if it is already
in the same tree of B (using find operation). If it is not, it
is added in MSF and union operation is called. Merging
two trees can produce a cycle, so a modified DFS is run
to eliminate edge with a heaviest weight.

Computing the local MST takes O(n?/p). There is a
total of logp merging stages, each costing O(n?logp).
During one merge step one process transmits maximum
of O(n) edges for a total parallel time of:

T, = O(n*/p) + O(n”log p) (5)

Based on speedup and efficiency metrics, it can be
shown that this parallel formulation is efficient for p =
O(n/logn), same as first algorithm.

IV. IMPLEMENTATION

Algorithms were simple to implement using ANSI C
and MPI. Simplicity is the result of fixed communication

37

(b)

4
P
5 2 4 (o)
D E F
3 _/ 6
MST
(D)—&)
e
| yd
| 2| 7 4 @
| 7
Ve
D E F
OEmOs

Fig. 2. Example of merge step for two processes

patterns which directly map to MPI operations. During
implementation we explored alternative communication
patterns in order to grow multiple trees in parallel, similar
to approaches of parallelization of Boruvka’s algorithm.
We have found that using data-dependant communication
paths results in imbalanced computation due to arbitrary
communication between processes. Also, implementation
of arbitrary communication can be difficult with MPI,
since number of messages each process sends or receives
is not known in advance for every input. Overcoming this
obstacle often requires adding additional communication
complexity, at the cost of overall performance.

Communication pattern in Prim’s algorithm can be im-
proved by using MPI MPI_Allreduce operation instead of
the standard combination of MPI_Reduce and MPI Bcast.
This optimization does not necessarily result in better
performance, since MPI implementations can implement

MPI_Allreduce operation as a simple all-to-one reduce,
followed by a broadcast, without any performance im-
provements [21].

Main performance bottleneck of Prim’s algorithm is
communication overhead of all-to-one reduce operation.
Reduce operation is costly in comparison to local com-
putation, and all other processes are idle while waiting
for reduce to complete. This prevents Prim’s algorithm
to achieve significant speedups on a larger number of
processors. Therefore, Prim’s algorithm is best used on a
smallest number of processes on which partitioned input
graph can fit.

Unlike Prim’s algorithm, Kruskal’s algorithm doesn’t
use collective communication operations during which all
processes except one are idle. Performance-wise, critical
part Kruskal’s algorithm is merging of local MST-s. Merge
part of Kruskal’s algorithm is only fully efficient in case
when p is a power of 2. Since merging is pairwise
operation, in other cases at least one merge step will
have a process without a pair. This process will be idle
until a merge partner is available. In our implementation,
idling can span multiple merge steps, thus causing a
considerable efficiency degradation. For example, if there
are 9 processes in computation, one process will be idle
until the very last merge step. One approach to solving
this issue would be introduction of a special 3-way merge
(or in general a d-ary merge, where d = 2,3,4...) along
with a load balancing logic to minimize or remove the
effect on performance of algorithm.

V. CONCLUSION

We presented two parallel implementations of algo-
rithms for finding minimum spanning tree of a graph.
Our algorithms are parallelizations of classical sequential
algorithms of Prim and Kruskal. Parallel processes work
on a subset of input graph, and communicate using fixed
communication pattern. First algorithm takes O(n?/p +
nlog p) time, while second takes O(n?/p+n?logp) time.

Our analysis has identified several bottlenecks in our im-
plementations, and further work in this area would include
minimizing communication cost by reducing the number
and size of messages passed, as well as improving merge
step of the second algorithm. Also, further experimental
work would give us information about practical limitations
of our algorithms for wider array of input graphs and
uncover new areas for improvement.

ACKNOWLEDGMENT

Authors are partially supported by Ministry of Educa-
tion and Science of the Republic of Serbia, through project
no. I1147003: ” Infrastructure for technology enhanced
learning in Serbia”.

REFERENCES

[1] R. L. Graham and P Hell, “On the history of the
minimum spanning tree problem,” IEEE Ann. Hist. Comput.,
vol. 7, no. 1, pp. 43-57, Jan. 1985. [Online]. Available:
http://dx.doi.org/10.1109/MAHC.1985.1001 1

38

(2]

(31

(4]

[5]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

V. Lon&ar and S. Skrbic « Parallel Implementation of Minimum Spanning Tree Algorithms using MP!

0. Boruvka, “ O Jistém Problému Minimédlnim (About a Certain
Minimal Problem) (in Czech, German summary),” Prdce Mor.
Prirodoved. Spol. v Brne III, vol. 3, 1926.

R. C. Prim, “Shortest connection networks and some generaliza-
tions,” Bell System Technology Journal, vol. 36, pp. 1389-1401,
1957.

J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and
the Traveling Salesman Problem,” Proceedings of the American
Mathematical Society, vol. 7, no. 1, pp. 48-50, Feb. 1956.
[Online]. Available: http://www.jstor.org/stable/2033241

R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed
algorithm for minimum-weight spanning trees,” ACM Trans.
Program. Lang. Syst., vol. 5, no. 1, pp. 6677, Jan. 1983. [Online].
Available: http://doi.acm.org/10.1145/357195.357200

I. Katriel, P. Sanders, J. L. Tréff, and J. L. Tra, “A practical
minimum spanning tree algorithm using the cycle property,” in In
11th European Symposium on Algorithms (ESA), number 2832 in
LNCS. Springer, 2003, pp. 679-690.

H. Ahrabian and A. Nowzari-Dalini, “Parallel algorithms for min-
imum spanning tree problem,” International Journal of Computer
Mathematics, vol. 79, no. 4, pp. 441-448, 2002.

S. Chung and A. Condon, “Parallel implementation
of borvka’s minimum spanning tree algorithm,” in
Proceedings of the 10th International Parallel Processing
Symposium, ser. IPPS ’96. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 302-308. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645606.661036

W. Guang-rong and G. Nai-jie, “An efficient parallel minimum
spanning tree algorithm on message passing parallel machine,”
Journal of Software, vol. 11, no. 7, pp. 889-898, 2000.

F. Dehne and S. Gotz, “Practical parallel algorithms for minimum
spanning trees,” in In Workshop on Advances in Parallel and
Distributed Systems, 1998, pp. 366-371.

Y. Y. B. Deo, Narsingh, “Parallel algorithms for the minimum span-
ning tree problem.” in Proceedings of the International Conference
on Parallel Processing, 1981, pp. 188-189.

E. Gonina and L. V. Kale, “Parallel prim’s algorithm on dense
graphs with a novel extension,” PPL Technical Report, October
2007.

A. N. R. Setia and S. Balachandran, “A new parallel algorithm for
minimum spanning tree problem,” in Proc.International Conference
on High Performance Computing (HiPC), 2009, pp. 1-5.

D. A. Bader and G. Cong, “Fast shared-memory
algorithms for computing the minimum spanning forest
of sparse graphs,” J. Parallel Distrib. Comput., vol. 66,
no. 11, pp. 1366-1378, Nov. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2006.06.001

M. Jin and J. W. Baker, “Two graph algorithms on an associative
computing model,” in Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applica-
tions, PDPTA 2007, Las Vegas, Nevada, USA, June 25-28, 2007,
Volume 1, 2007, pp. 271-2717.

V. Osipov, P. Sanders, and J. Singler, “The filter-kruskal minimum
spanning tree algorithm,” in ALENEX 09, 2009, pp. 52-61.

A. Grama, G. Karypis, V. Kumar, and A. Gupta,
Introduction to Parallel ~ Computing (2nd Edition),
2nd ed. Addison Wesley, Jan. 2003. [Online]. Available:

http://www.worldcat.org/isbn/0201648652

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Intro-
duction to Algorithms, 2nd ed. McGraw-Hill Higher Education,
2001.

D.-Z. Pan, Z.-B. Liu, X.-F. Ding, and Q. Zheng, “The application
of union-find sets in kruskal algorithm,” in Proceedings of
the 2009 International Conference on Artificial Intelligence
and Computational Intelligence - Volume 02, ser. AICI ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 159—
162. [Online]. Available: http://dx.doi.org/10.1109/AICI.2009.155
Z. Galil and G. F. Italiano, “Data structures and algorithms
for disjoint set union problems,” ACM Comput. Surv.,
vol. 23, no. 3, pp. 319-344, Sep. 1991. [Online]. Available:
http://doi.acm.org/10.1145/116873.116878

P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce
algorithms for clusters of workstations,” J. Parallel Distrib.
Comput., vol. 69, no. 2, pp. 117-124, Feb. 2009. [Online].
Available: http://dx.doi.org/10.1016/j.jpdc.2008.09.002

Nonlinear optics Contributed papers

Quench Dynamics for Trapped Dipolar Fermi Gases

V. Velji¢', A. Balaz' and A. Pelster®
'Scientific Computing Laboratory, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
“Physics Department and Research center OPTIMAS,
Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
e-mail: vveljic@ipb.ac.rs

A recent time-of-flight expansion experiment for polarized fermionic erbium atoms
managed to detect a Fermi surface deformation which is due to the dipolar interaction [1].
Here we perform a systematic study of quench dynamics of trapped dipolar Fermi gases
at zero temperature, which are induced by a sudden change of the magnetic field, which
enforces the polarization of the magnetic moments of the erbium atoms. As this modifies
the equilibrium configuration, oscillations of the fermionic erbium cloud emerge around
the new equilibrium, which are characteristic for the presence of the dipole-dipole
interaction. In order to analyze the emergent dynamics we follow Ref. [2] and solve
anaytically the underlying Boltzmann-Vlasov equation wihtin the relaxation
approximation in the vicinity of the new equilibrium configuration by using a suitable
rescaling of the equilibrium distribution [3]. The resulting ordinary differential equations
of motion for the scaling parameters are solved numerically for experimentally relevant
parameters all the way from the collisionless to the hydrodynamic regime. A comparison
with a corresponding linear stability analysis reveals that the resulting quench dynamics
can be understood in terms of the low-lying collective modes due to the smallness of the
dipolar interaction strength. All our theoretical and numerical calculations can be tested in
current experiments with ultracold dipolar fermionic atoms.

REFERENCES

[1] K. Aikawaet a., Science 345, 1484 (2014).

[2] F. Wé&chtler, A. R. P. Lima, A. Pelster, arXiv: 1311.5100 (2013).

[3] P. Pedri, D. Guery-Odelin, S. Stringari, Phys. Rev. A 68, 043608 (2003).

Trapped Bose-Einstein Condensates with Strong Disorder

V. Longar’, A. Balaz' and A. Pelster?

'Scientific Computing Laboratory, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
*Physics Department and Research center OPTIMAS,
Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
e-mail: vloncar@ipb.ac.rs

We work out a non-perturbative approach towards the dirty boson problem at zero
temperature that is based on a Gaussian approximation for correlation functions of the
disorder problem and the condensate wave function solving the Gross-Pitaevskii problem.
For harmonically trapped Bose-Einstein condensates we apply, in addition, the

76

Nonlinear optics Contributed papers

semiclassical approximation and derive with this self-consistency equations between the
disorder ensemble-averages of particle density and condensate density. Invoking,
furthermore, the Thomas-Fermi approximation we obtain results that reproduce for weak
disorder the seminal results of a Bogoliubov theory of dirty bosons [1-3], but do not yield
for strong disorder a Bose-glass phase. Afterwards, we go beyond the Thomas-Fermi
approximation and perform a full numerical treatment of the self-consistency equations
based on the Crank-Nicolson split-step semi-implicit imaginary-time propagation [4],
which yields a quantum phase transition to a Bose-glass phase for strong disorder [5].

REFERENCES

[1] K. Huang, H.-F. Meng, Phys. Rev. Lett. 69, 644 (1992).

[2] G. M. Faco, A. Pelster, R. Graham, Phys. Rev. A 75, 063619 (2007).
[3] G. M. Faco, A. Pelster, R. Graham, Phys. Rev. A 76, 013624 (2007).
[4] D. Vudragovi¢ et al., Comput. Phys. Comm.. 183, 2021 (2012).

[5] P. Navez, A. Pelster, R. Graham, Appl. Phys. B 86, 395 (2007).

Faraday Waves in Dipolar Bose-Einstein Condensates

D. Vudragovi¢ and A. Balaz
Scientific Computing Laboratory, Institute of Physics Belgrade,
University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
e-mail: dusan@ipb.ac.rs

We present the emergence of Faraday waves in cigar-shaped **Cr and *Dy Bose-
Einstein condensates. These density waves are induced by periodic modulation of the
frequency of the trapping potential. We study through extensive numerical simulations
and detailled variational treatment the effects of the strong dipolar interaction on the
spatial and time-period of the Faraday waves. Unlike in the case of homogeneous [1] or
inhomogeneous contact interactions [2], the emergence of Faraday waves is found to
further destabilize the condensate in the presence of strong dipolar interaction. The
interesting effect of spatial period variation of generated density patterns is observed
numerically and studied within the Gaussian variational approach.

REFERENCES

[1] A. Balaz, A. I. Nicolin, Phys. Rev. A 85, 023613 (2012).
[2] A. BalaZ et a., Phys. Rev. A 89, 023609 (2014).

77

Hannover 2016 — Q

Tuesday

Q 17: Quantum Gases: Bosons |

Time: Tuesday 11:00-13:00

Group Report Q 17.1 Tue 11:00 001
Rosensweig instability and solitary waves in a dipolar Bose-
Einstein condensate — eMarTHIAS WENZEL, HOLGER KaDAU,
MatTHIAS SCHMITT, IGOR FERRIER-BARBUT, and TiLmMAN Prau —
5. Physikalisches Institut and Center for Integrated Quantum Sci-
ence and Technology, Universitiat Stuttgart, Pfaffenwaldring 57, 70569
Stuttgart, Germany

Ferrofluids show unusual hydrodynamic effects due to the magnetic
nature of their constituents. For increasing magnetization a classical
ferrofluid undergoes a Rosensweig instability and creates self-organized
ordered surface structures or droplet crystals.

In the experiment we observe a similar behavior in a sample of ultra-
cold dysprosium atoms, a quantum ferrofluid. By controlling the short-
range interaction with a Feshbach resonance we can induce a finite-
wavelength instability due to the dipolar interaction.

Subsequently, we observe the spontaneous transition from an unstruc-
tured superfluid to an ordered arrangement of droplets by in situ imag-
ing. These patterns are surprisingly long-lived and show hysteretic be-
havior. When transferring the sample to a waveguide we observe mu-
tually interacting solitary waves. Time-of-flight measurements allow
us to show the existence of an equilibrium between dipolar attraction
and short-range repulsion. In addition we observe interference between
droplets.

In conclusion, our system shows both superfluidity and translational
symmetry breaking. This novel state of matter is thus a possible can-
didate for a supersolid ground state.

Q 17.2 Tue 11:30 001
Rosensweig instability due to three-body interaction or quan-
tum fluctuations? — Vviapmmir Loncar!, Dusan Vubpracoviél,
e ANTUN BaLaz!, and AXEL PELsTER? — !Scientific Computing Lab-
oratory, Institute of Physics Belgrade, University of Belgrade, Serbia
— 2Physics Department and Research Center OPTIMAS, Technical
University of Kaiserslautern, Germany

In the recent experiment [1], the Rosensweig instability was observed
in a 164Dy Bose-Einstein condensate, which represents a quantum fer-
rofluid due to the large atomic magnetic dipole moments. After a
sudden reduction of the scattering length, which is realized by tuning
the external magnetic field far away from a Feshbach resonance, the
dipolar quantum gas creates self-ordered surface structures in form of
droplet crystals. As the underlying Gross-Pitaevskii equation is not
able to explain the emergence of that Rosensweig instability, we ex-
tend it by both three-body interactions [2-4] and quantum fluctuations
[5]. We then use extensive numerical simulations in order to study the
interplay of three-body interactions as well as quantum fluctuations on
the emergence of the Rosensweig instability.

[1] H. Kadau, M. Schmitt, et al., arXiv:1508.05007v2 (2015).

[2] H. Al-Jibbouri, I. Vidanovi¢, A. BalaZz, and A. Pelster, J. Phys. B
46, 065303 (2013).

[3] R. N. Bisset and P. B. Blakie, arXiv:1510.09013 (2015).

[4] K.-T. Xi and H. Saito, arXiv:1510.07842 (2015).

[5] A. R. P. Lima and A. Pelster, Phys. Rev. A 84, 041604(R) (2011);
Phys. Rev. A 86, 063609 (2012).

Q 17.3 Tue 11:45 €001
Phonon to roton crossover and droplet formation in trapped
dipolar Bose-Einstein condensates — eFALK WACHTLER and Luis
SaNnTOs — Institut fiir Theoretische Physik, Leibniz Universitdt Han-
nover, Hannover, Germany

The stability, elementary excitations, and instability dynamics of dipo-
lar Bose-Einstein condensates depend crucially on the trap geometry.
In particular, dipolar condensates in a pancake trap with its main plane
orthogonal to the dipole orientation are expected to present under
proper conditions a roton-like dispersion minimum, which if softening
induces the so-called roton instability. On the contrary, cigar-shape
traps are expected to present no dispersion minimum, and to undergo
phonon (global) instability if destabilized. In this talk we investigate by
means of numerical simulations of the non-local non-linear Schrédinger
equation and the corresponding Bogoliubov-de Gennes equations the
stability threshold as a function of the trap aspect ratio, mapping the
crossover between phonon and roton instability. We will discuss in
particular how this crossover may be observed in destabilization ex-

Location: e001

periments to reveal rotonization.

In a second part, motivated by recent experiments on droplet forma-
tion in Stuttgart, we introduce large conservative three-body interac-
tions, and study how these forces affect the destabilization dynamics.
‘We will discuss the ground-state physics of the individual droplets, and
the crucial role that is played by the interplay between internal droplet
energy, external center-of mass energy of the droplets, and energy dis-
sipation in the nucleation of droplets observed in experiments.

Q174 Tue 12:00 €001
Lattice Physics with Ultracold Magnetic Erbium — eSimoN
Baier!, ManrFrep J. Marxk!2, DanierL PeTTER!', KrvoTaka
Atkawal, LaurRiaNE CHomaz' 2, Z1 Car?, MikHAIL BaraNov?, PE-
TER ZoLLER?3, and FrRaNcEscA FErLaiNo!2 — lInstitut fiir Exper-
imentalphysik, Universitat Innsbruck, Technikerstrafte 25, 6020 Inns-
bruck, Austria — 2Institut fiir Quantenoptik und Quanteninforma-
tion, Osterreichische Akademie der Wissenschaften, 6020 Innsbruck,
Austria — 3Institut fiir Theoretische Physik, Universitiat Innsbruck,
Technikerstrafte 21A, 6020 Innsbruck, Austria

Strongly magnetic atoms are an ideal systems to study many-body
quantum phenomena with anisotropic and long-range interactions.
Here, we report on the first observation of the manifestation of mag-
netic dipolar interaction in extended Bose-Hubbard (eBH) dynamics
by studying an ultracold gas of Er atoms in a three-dimensional optical
lattice. We drive the superfluid-to-Mott-insulator (SF-to-MI) quan-
tum phase transition and demonstrate that the dipolar interaction
can favor the SF or the MI phase depending on the orientation of
the atomic dipoles. The system is well described by the individual
terms of the eBH Hamiltonian. This includes the onsite interaction,
which, additional to the isotropic contact interaction, can be tuned
with the dipole-dipole interaction by changing the dipole orientation
and the shape of the onsite Wannier functions. We find for the first
time the presence of the nearest-neighbor interaction between two adja-
cent particles. Future work will investigate dipolar effects with erbium
molecules and fermions as well as spin physics in our lattice system.

Q 17.5 Tue 12:15 €001
Strong-wave-turbulence character of non-thermal fixed
points in Bose gases — eIsara CHaNTEsaNA''23 and THowmas
GaseENzER?3 — llnstitut fiir Theoretische Physik, Ruprecht-Karls-
Universitdt Heidelberg, Philosophenweg 16, 69120 Heidelberg, Ger-
many — 2Kirchhoff Institut fiir Physik, INF 227, 69120 Heidelberg,
Germany — 3ExtreMe Matter Institute EMMI, GSI Helmholtzzen-
trum fiir Schwerionenforschung GmbH, Planckstrafe 1, 64291 Darm-
stadt, Germany

Far-from equilibrium dynamics of a dilute Bose gas is studied by means
of the two-particle irreducible effective action formalism. We investi-
gate the properties of non-thermal fixed points predicted previously,
which are related to non-perturbative strong wave turbulence solu-
tions of the many-body dynamic equations. Instead of using a scaling
analysis, we study the Boltzmann equation of the scattering integral
by means of direct integration equation for sound waves. In this way
we obtain a direct prediction of the scaling behaviour of the possible
fixed-point solutions in the context of sound-wave turbulence. Impli-
cation for the real-time dynamics of the non-equilibrium system are
discussed.

Q 17.6 Tue 12:30 €001

Evidence of Non-Thermal Fixed Points in one-dimensional

Bose gases — oSEBASTIAN ErNED24 ROBERT BUCKER?,
WoLrcaNG RosrINGER?, Tnomas Gasenzerb?3, and Jora
ScHMIEDMAYER? — lInstitut fiir Theoretische Physik, Ruprecht-

Karls-Universitdt Heidelberg, Philosophenweg 16, 69120 Heidelberg,
Germany — 2ExtreMe Matter Institute EMMI, GSI Helmholtzzen-
trum fiir Schwerionenforschung GmbH, Planckstrae 1, 64291 Darm-
stadt, Germany — 3Kirchhoff-Institut fiir Physik, INF 227, 69120 Hei-
delberg, Germany — *Vienna Center for Quantum Science and Tech-
nology (VCQ), Atominstitut, TU Wien, Vienna, Austria

This work investigates the rapid cooling quench over the dimensional-
and quasicondensate-crossover. Analyzing experiments performed at
the Atominstitut, we study the relaxation of such a far-from equilib-
rium system. The early stage of condensate formation is dominated

Hannover 2016 — Q

Tuesday

by solitonic excitations, leading to a characteristic momentum distri-
bution in agreement with a model of randomly distributed defects.
The number of solitons increases with the quenchrate giving rise to an
incompressible condensate. The isolated system follows a self-similar
evolution governed by a universal time-independent nonthermal fixed
point distribution. The dynamic universality classes of these nonequi-
librium attractor solutions are relevant for a wide variety of physical
systems ranging from relativistic high-energy physics to cold quantum
gases. At later times of the evolution the system fully equilibrates
leading to deviations from the self-similar evolution. Our results show
a new way of condensation in far from equilibrium 1d Bose gases.

Q 17.7 Tue 12:45 €001

Spin phonon dynamics with classical statistical methods

— eAsIER PINEIRO ORIOLIV'2, ARGHAVAN SAFAVI-NAINIZ, MICHAEL
WaLL?, and JOHANNES SCHACHENMAYER? — lInstitute for Theoreti-
cal Physics, Heidelberg, Germany — 2JILA, NIST and University of
Colorado, Boulder, Colorado, USA

Systems with both spin and phonon degrees of freedom are ubiquitous
in physical fields ranging from condensed matter to biophysics. How-
ever, methods to compute the dynamics of such systems are scarce,
especially in high dimensions. In this work, we combine the Truncated
Wigner Approximation (TWA) for bosons with its recently developed
discrete version (dTWA) for spins to describe the dynamics of coupled
spin-phonon systems. We benchmark the method by comparing to
exact results and discuss applications to trapped-ion and cavity exper-
iments.

Photonica 2017 1. Quantum optics and ultracold systems

Parallel solvers for dipolar Gross-Pitaevskii equation

V. Lonéar!, D. Vudragovi¢!, S. K. Adhikari?, and A. Balaz!
IScientific Computing Laboratory, Center for the Study of Complex Systems,
Institute of Physics Belgrade, University of Belgrade, Serbia
2Instituto de Fisica Teérica, UNESP — Universidade Estadual Paulista, Sdo Paulo, Brazil
e-mail:vladimir.loncar@ipb.ac.rs

We present serial and parallel semi-implicit split-step Crank-Nicolson algorithms for solving the dipolar
Gross-Pitaevskii equation [1, 2], used for study of ultracold Bose systems with the dipole-dipole interaction.
Six parallel algorithms will be presented: C implementation parallelized with OpenMP targeting single shared
memory system [3], CUDA implementation targeting single Nvidia GPU [4], hybrid C/CUDA implementation
combining the two previous approaches, and their parallelizations to distributed memory systems using MPI
[5]. We first give an overview of the split-step Crank-Nicolson method and describe how the dipolar term is
computed using FFT, which forms the basis of all presented algorithms. We then move on to describing the
concepts used in each of the parallel implementations, and finally present a performance evaluation of each
algorithm. In our tests OpenMP implementation demonstrates a speedup of 12 on a 16-core workstation,
CUDA version has a speedup of up to 13, hybrid version has a speedup of up to 16, while the MPI
parallelization yields a further speedup of 16 for the OpenMP/MPI version, speedup of 10 for the CUDA/MPI
version, and speedup of 6 for the hybrid version.

REFERENCES

[1] P. Muruganandam, et. al., Comput. Phys. Commun. 180, 1888 (2009).
[2] R. Kishor Kumar, et. al., Comput. Phys. Commun. 195, 117 (2015).
[3] D. Vudragovi¢, et. al., Comput. Phys. Commun. 183, 2021 (2012).

[4] V. Loncar, et. al., Comput. Phys. Commun. 200, 406 (2016).

[5] V. Lon¢ar, et. al., Comput. Phys. Commun. 209, 190 (2016).

49

SEMAT;
K&

UNIVERSITY OF NOVI SAD \SAS S

&%ﬂﬂ%@
T FACULTY OF SCIENCES AP
3, "I <

DEPARTMENT OF % B =

5%+ MATHEMATICS AND INFORMATICS % W&

Q?ARO Dy, o
S
o

EAZTe A e

|

Vladimir Loncar

Hybrid parallel algorithms for solving

nonlinear Schrodinger equation

— PhD thesis —

Advisors:
Dr. Antun Balaz
Dr. Srdan Skrbié

Novi Sad, 2017

Contents

Acknowledgements
Abstract

Sazetak

1 Introduction

2 Methods for solving nonlinear Schrédinger equation
2.1 Overview of solutions of NLSE and GPE
2.2 Dipolar GPEin3D,2Dand 1D oo
2.3 Split-step Crank-Nicolson method for the GPE

2.4 Calculation of relevant physical quantities

3 Algorithm for shared memory systems
3.1 Description of the algorithm
3.2 Serial implementation

3.3 Parallelization on shared memory systems

4 Solving NLSE using GPU accelerators
4.1 CUDA programming and execution model 0.

4.2 CUDA implementation of shared memory algorithm

5 Hybrid algorithm for heterogeneous computing systems
5.1 Description of the hybrid algorithm
5.2 Implementation of the hybrid algorithm

5.3 Optimization of data transfers.

6 Distributed memory algorithm
6.1 Data distribution scheme
6.2 Distributing the computation over multiple processes

6.3 Improvements of input and output operations

7 Interacting with simulation
7.1 Visualization of data

7.2 Simulation steering

iii

iv

11
14
18

21
21
24
33

39
40
44

52
93
o7
62

66
67
71
74

CONTENTS

Performance evaluation and modeling

8.1 Optimization of input parameters for hybrid implementations
8.2 Testing methodology L
8.3 Performance test results and modeling of single node programs
8.4 Performance test results and modeling of MPI programs

8.5 Selecting optimal algorithm L o

Demonstration of usability of developed programs

9.1 Formation of vorticesin BEC

9.2 Effects of dipolar interactions on vortex formation in BEC

10 Conclusions and future work
Bibliography

Prosireni sazetak

Short biography

Kratka biografija

Key Words Documentation

Kljuéna dokumentacijska informacija

ii

118
118
122

125

127

134

148

149

150

153

Acknowledgements

First and foremost I offer my sincerest gratitude to my advisors, Dr. Antun Balaz and Dr. Srdan
Skrbi¢, for supporting me during these past six years. Antun has set an example of excellence as a
researcher, mentor, instructor, and role model. His patience, guidance, encouragement and advice
have made my PhD experience more productive and stimulating, and I thank him for the great
effort he put into training me in the scientific field. Srdan has been supportive throughout my
thesis and has given me the freedom to pursue my goals without objection. I especially thank him
for his support during my transition to Scientific Computing Laboratory.

I also have to thank the members of my PhD committee, Professors Dragan Masulovi¢, Natasa
Kreji¢ and Miljko Satarié¢ for their helpful advice and invaluable feedback.

I would like to give special thanks to my colleagues from the Scientific Computing Laboratory,
for all productive discussions we had, for all the laughs we shared over lunch, and for the great time
I have spent with you.

This thesis is written in the Scientific Computing Laboratory, Center for the Study of Complex
Systems of the Institute of Physics Belgrade and is supported by the Ministry of Education, Science,
and Technological Development of the Republic of Serbia under project ON171017. Numerical simu-
lations were run on the PARADOX supercomputing facility at the Scientific Computing Laboratory
of the Institute of Physics Belgrade.

Lastly, I would like to thank my family and friends for all their love and encouragement. For my
parents who raised me with a love of science and supported me in all my pursuits. For my friends

for providing support and friendship that I needed. Thank you.

iii

Abstract

Numerical methods and algorithms for solving of partial differential equations, especially parallel
algorithms, are an important research topic, given the very broad applicability range in all areas of
science. Rapid advances of computer technology open up new possibilities for development of faster
algorithms and numerical simulations of higher resolution. This is achieved through parallelization
at different levels that practically all current computers support.

In this thesis we develop parallel algorithms for solving one kind of partial differential equations
known as nonlinear Schrodinger equation (NLSE) with a convolution integral kernel. Equations
of this type arise in many fields of physics such as nonlinear optics, plasma physics and physics of
ultracold atoms, as well as economics and quantitative finance. We focus on a special type of NLSE,
the dipolar Gross-Pitaevskii equation (GPE), which characterizes the behavior of ultracold atoms
in the state of Bose-Einstein condensation.

We present novel parallel algorithms for numerically solving GPE for a wide range of modern
parallel computing platforms, from shared memory systems and dedicated hardware accelerators
in the form of graphics processing units (GPUs), to heterogeneous computer clusters. For shared
memory systems, we provide an algorithm and implementation targeting multi-core processors using
OpenMP. We also extend the algorithm to GPUs using CUDA toolkit and combine the OpenMP and
CUDA approaches into a hybrid, heterogeneous algorithm that is capable of utilizing all available
resources on a single computer.

Given the inherent memory limitation a single computer has, we develop a distributed memory
algorithm based on Message Passing Interface (MPI) and previous shared memory approaches. To
maximize the performance of hybrid implementations, we optimize the parameters governing the
distribution of data and workload using a genetic algorithm. Visualization of the increased volume
of output data, enabled by the efficiency of newly developed algorithms, represents a challenge in
itself. To address this, we integrate the implementations with the state-of-the-art visualization tool
(Vislt), and use it to study two use-cases which demonstrate how the developed programs can be

applied to simulate real-world systems.

iv

Sazetak

Numericki metodi i algoritmi za reSavanje parcijalnih diferencijalnih jednacina, narocito paralelni
algoritmi, predstavljaju izuzetno znacajnu oblast istrazivanja, uzimajuéi u obzir veoma Siroku pri-
menljivost u svim oblastima nauke. Veliki napredak informacione tehnologije otvara nove moguéno-
sti za razvoj brzih algoritama i numerickih simulacija visoke rezolucije. Ovo se ostvaruje kroz
paralelizaciju na razli¢itim nivoima koju poseduju prakticno svi moderni racunari.

U ovoj tezi razvijeni su paralelni algoritmi za resavanje jedne vrste parcijalnih diferencijalnih
jednaéina poznate kao nelinearna Sredingerova jednadina sa integralnim konvolucionim kernelom.
Jednacine ovog tipa se javljaju u raznim oblastima fizike poput nelinearne optike, fizike plazme i
fizike ultrahladnih atoma, kao i u ekonomiji i kvantitativnim finansijama. Teza se bavi posebnim
oblikom nelinearne Sredingerove jednaédine, Gros-Pitaevski jednac¢inom sa dipol-dipol interakcionim
¢lanom, koja karakteriSe ponasanje ultrahladnih atoma u stanju Boze-Ajnstajn kondenzacije.

U tezi su predstavljeni novi paralelni algoritmi za numericko resavanje Gros-Pitaevski jednacine
za Sirok spektar modernih racunarskih platformi, od sistema sa deljenom memorijom i specijalizo-
vanih hardverskih akceleratora u obliku grafickih procesora, do heterogenih racunarskih klastera.
Za sisteme sa deljenom memorijom, razvijen je algoritam i implementacija namenjena visejezgarnim
centralnim procesorima koriséenjem OpenMP tehnologije. Ovaj algoritam je prosiren tako da radi i
u okruzenju grafickih procesora koriséenjem CUDA alata, a takode je razvijen i predstavljen hibri-
dni, heterogeni algoritam koji kombinuje OpenMP i CUDA pristupe i koji je u stanju da iskoristi
sve raspolozive resurse jednog rac¢unara.

Imajuéi u vidu inherentna ogranicenja raspolozive memorije koju pojedinacan racunar pose-
duje, razvijen je i algoritam za sisteme sa distribuiranom memorijom zasnovan na Message Passing
Interface tehnologiji i prethodnim algoritmima za sisteme sa deljenom memorijom. Da bi se maksi-
malizovale performanse razvijenih hibridnih implementacija, parametri koji odreduju raspodelu po-
dataka i racunskog opterec¢enja su optimizovani koriséenjem genetskog algoritma. Poseban izazov
je vizualizacija povecane koli¢ine izlaznih podataka, koji nastaju kao rezultat efikasnosti novorazvi-
jenih algoritama. Ovo je u tezi reseno kroz integraciju implementacija sa najsavremenijim alatom
za vizualizaciju (Vislt), $to je omogudéilo proucavanje dva primera koji pokazuju kako razvijeni

programi mogu da se iskoriste za simulacije realnih sistema.

Chapter 1

Introduction

The study of dynamical evolution of various physical systems is essential for their understanding
and represents a key ingredient for possible applications. It is still debated how deterministic
nature is, but the majority of models we use to describe systems in nature are deterministic. This
means that we use first and second order differential equations to model their dynamic behavior.
Even quantum systems, although notorious for their probabilistic behavior, are described in the
deterministic mathematical framework and their evolution can be cast into the form of second
order differential equations. Apart from very simple models, systems with multiple degrees of
freedom are usually described by partial differential equations. At the most fundamental level,
these equations are linear and the superposition principle applies. However, due to large numbers of
degrees of freedom for realistic systems, the complexity of the corresponding systems of equations is
prohibitively large to address either analytically or numerically. Therefore, the effective models with
much smaller dimensionality are often used, albeit not without introducing additional complexities,
such as nonlinearity of the system. This is true for many-body physics problems, especially physics
of ultracold atoms, plasma physics and many others. There are however, systems where nonlinearity
is inherent, such as nonlinear optics. Whatever the case may be, nonlinearity is always a source
of interesting and novel phenomena and has to be carefully studied. As usual, this translates to
mathematical complexity in solving of the corresponding nonlinear partial differential equations.
Therefore, the development of mathematical methods and computer algorithms for solving of such
kind of equations is of very broad interest, not only in physics, but also in applied physics and
engineering, astrophysics, chemistry, quantitative finance, etc.

As far as analytical methods are concerned, our options are limited to a small number of exactly
solvable models or application of approximative techniques. While the number of such techniques
is considerable, many of them have the disadvantage of lacking the proper way to estimate errors
associated with the obtained results. Even for methods where such an estimate is possible, only
the lowest order calculations can be done within reason, and calculation of higher order corrections
usually requires an exponentially growing number of symbolic operations, making the approach
intractable. This is the reason why numerical simulations are so widely used today, and they
represent the main tool for studying large number of systems in nature, as well as social systems.

Numerical simulations of realistic systems are often computationally very intensive, substantially
more so in higher number of dimensions. Therefore, they cannot be performed efficiently on a single,

serial computing resource, and instead require parallel processing. Parallel algorithms for solving

CHAPTER 1. INTRODUCTION 2

partial differential equations are an important research topic today, given the fact that practically all
current computers support some form of multiprocessing. The development of parallel algorithms
for solving a particular type of partial differential equations, nonlinear Schrédinger equation (NLSE)
type, represents the main topic of this thesis.

Multi-core central processing units (CPU) form the first level of parallelism available in all
modern computers. Individual cores of the CPU may perform tasks in parallel while sharing a
single view of data in memory. By extension, several multi-core CPUs may be packaged within
a single computer and given access to the shared memory to further increase a system’s parallel
processing capabilities. Developing parallel algorithms for shared memory systems is relatively
easy, however maximizing the efficiency of their implementation is often hindered by the fact that
many systems do not provide uniform memory access times, instead relying on non-uniform memory
access (NUMA) design. Also, data coherence issues arise when caching is employed within separate
cores. Numerous hardware and software technologies exist to enable better utilization and simpler
control of shared memory systems, with OpenMP emerging as the most widespread application
programming interface for such computing platforms.

Next level of parallelism in this hierarchy is provided by the dedicated hardware accelerators,
such as graphics processing units (GPU) and early Intel Xeon Phi coprocessors. These accelerators
feature a vastly different hardware architecture to the one found in CPUs, often use their own
separate main memory, and come packaged as an add-on for the existing computer. The difference
in architecture is reflected in the programming model, whose successful utilization usually requires
a significant modification of the underlying shared memory algorithm. In this thesis, we focus on a
specific type of accelerator, the Nvidia GPU, which is programmed using CUDA toolkit. Combining
parallelism of the CPU with the one found in the GPU to take full advantage of the resources one
computer has is challenging. While CPU and GPU have separate memories, they cannot easily
be programmed as a distributed memory system, and can instead be considered a heterogeneous
computing resource, which requires development of hybrid algorithms to be fully exploited. These
algorithms must shuffle data between CPU and GPU efficiently, overlap computation, and ensure
correctness of concurrent operations through synchronization.

Combining several computers into a computer cluster forms the final level of parallelism. Even
with the rate at which current CPU and GPU technologies advance, a single computer may not
have enough memory, processing power, or both, to address the computational requirements of
numerical simulations of high resolution. Therefore, computer clusters, comprised of large number
of individual computer nodes interconnected via high-speed networking infrastructure, and accom-
panied by software solutions that allow for the whole system to be used in a parallel manner (e.g.,
Message Passing Interface, MPI) are created to fill this gap and complete the hierarchy. These
systems have distributed memory, meaning that computational tasks on each node of the cluster
operate only on data that are local to that node, and access to remote data is obtained through
communication with one or more remote computational tasks. Today, each individual cluster node
itself represents a shared memory system and the algorithm may or may not exploit this to attain
finer level of parallelism granulation. Distributed memory algorithms must take all this into account
and provide a data distribution scheme that facilitates efficient communication between computing
nodes and maximizes the computation on local data.

Efficient use of such diverse computing systems requires domain-specific knowledge and the

CHAPTER 1. INTRODUCTION 3

development of parallel algorithms that take into consideration the specifics of the hardware the
system contains, as well as parallelization of numerical methods used to solve the given problem.
We explore all levels of parallelism across the entire hierarchy of modern hardware resources in this
thesis.

As mentioned above, parallel algorithms for solving NLSE are of great importance in the
physics of ultracold atoms, which studies the properties of matter at very low temperatures, at
the nanokelvin level. At these temperatures, rarified gases of alkali metal elements exhibit a phase
transition known as Bose-Einstein condensation [1, 2, 3, 4, 5], which produces a new state of quan-
tum matter, characterized by a coherent, collective behavior. Bose-Einstein condensation is a purely
quantum effect and does not have a classical counterpart. It is one of macroscopic quantum phenom-
ena, together with superfluidity, superconductivity and lasers. Bose-Einstein condensates (BEC)
and ultracold atoms are one of hot research topics because they provide previously unimaginable
control over parameters, properties and behavior patterns of the system. In particular, short-range
contact interaction strength in such systems can be tuned over many orders of magnitude, and
can even switch the sign, i.e., can be made either attractive or repulsive. Furthermore, the dimen-
sionality of the system can also be tuned using the external trapping potential, making possible
crossovers from three spatial dimensions (3D) to two (2D) or one (1D). This can be even performed
dynamically, by changing the shape of the trapping potential from a spherical one to disc-shaped
or cigar-shaped one. BECs have possible applications in quantum computing [6, 7], as well as in
quantum simulations of other systems. As of today, they are considered the only feasible Feynman
simulators [8].

Despite this versatility, contact interactions in BEC systems, realized through s-wave scatter-
ing of atoms or molecules, are extremely short-ranged and usually have very limited effect on the
properties of the system. Therefore, in the last decade special attention was devoted to the study
of systems in which, alongside the omnipresent contact interactions, atoms or molecules also ex-
hibit long-range dipole-dipole interaction. The dipolar BEC was first realized in 2005 [9] with
chromium atoms (°2Cr), which possess a small permanent magnetic dipolar moment. Since then,
new atomic and molecular species with larger permanent or induced magnetic (1%®Er, %4Dy) or
electric (3K®"Rb, 8"Rb!*3Cs, "Li'*3Cs) dipolar moments are broadly investigated, and some of
them are successfully condensed. Heteronuclear molecular species with large permanent electric
dipole moments, which should become experimentally accessible in the next few years, will have
orders of magnitude larger dipole-dipole interactions and will enable full exploration of the strong
interaction regime. The presence of long-range interactions can lead to interesting new phenomena,
such as phases with nontrivial order (ferromagnetic, antiferromagnetic, striped, etc.), and therefore
this field is a topic of intensive research efforts by many groups worldwide.

This motivates us to study numerical algorithms for solving of nonlinear partial differential
equations used for effective description of dipolar BEC systems. On one hand, it is an interesting
problem in physics in itself, with many possible applications and expected new breakthroughs in
the near future. On the other hand, it is also a challenging computer science problem that requires
development of novel algorithms, parallelization and the use of latest computer technology.

To begin the development of a (parallel) computer algorithm, we start from the mathematical
formulation of the problem, which at its core is a many-body physics problem, involving a Hamilto-

nian with quantum fields, i.e., the formalism of the second quantization. BEC systems are usually

CHAPTER 1. INTRODUCTION 4

realized with dilute atomic or molecular gases and therefore, in first-order approximation, we can
neglect quantum fluctuations. Since the temperature is of the order of nanokelvin, we can neglect
thermal excitations as well, which leads to the well-known mean-field theory [10, 11], with the field
operators replaced by the classical fields, i.e., the single-particle wave function of the system. This
effective wave function ¥(r;t) depends on position r = (z,y, z) and time ¢, and satisfies mean-field

Gross-Pitaeuvskii equation (GPE), which for the contact interaction case reads

ihg\ll(r;t) = |- hiv? + V(r) + gNu |O(r; 1) 2| U(r; 1), (1.1)
ot 2m

where m is the mass of the atomic or molecular species, h is the reduced Planck constant, N
is the number of particles in the condensate and V(r) is the trapping potential that confines the
condensate, usually a harmonic function. As already mentioned, Eq. (1.1) includes only contact
interaction, represented by a nonlinear term with the interaction strength g determined by the
s-wave scattering length. Without the nonlinear term, Eq. (1.1) represents the usual Schrodinger
equation, where the first term on the right-hand side is the kinetic energy, and V' (r) is the potential.
The cubic term that arises from atomic interactions makes the equation nonlinear, and therefore
it is usually called nonlinear Schrédinger equation. It is worth noting that similar equations also
arise in other fields of physics and engineering, in different contexts. The stability and existence
of solutions to GPE strongly depends on the sign of nonlinearity g. Namely, if g is positive, which
corresponds to repulsive interactions, the system is stable and the above equation always has a
physically meaningful solution. On the other hand, if g is negative, the system is stable only up to
a critical number of particles and beyond this number it collapses.

For atomic and molecular species with dipolar moments we have to take into account the dipolar

interaction term, which yields the dipolar GPE in the form

o w(ei) = | - TGV (1) + gNu [(i) 4 Nog / Uaalr =) [0 £) 2’ | w(rs1). (1.2)
The dipolar interaction term is given by a convolution integral that contains the position-dependent
dipolar potential Ugq(r — r’). While contact interaction is fixed for a given system, the dipolar
interaction strongly depends on the relative orientation and distance of the dipoles, and can be
both attractive and repulsive. This greatly affects stability of the system, similarly to the case
of pure contact interaction: if the interaction is predominantly attractive, the system is unstable
beyond a critical number of particles, while for predominantly repulsive interaction the system is
unconditionally stable.

The dynamics of dipolar BEC system is described using the time-dependent GPE presented
above. Typically, we start from a given state ¥(r,t = 0), and propagate it in time to obtain the
state of the system at some future time ¢t. However, if the system is in the stationary, ground state,
its time propagation reduces to just phase rotation, so that it can be written as \Ilo(r)e’“‘t/ i where

Uy(r) is a real-valued function which satisfies the time-independent GPE
h2 2 2 ! N2 4
pPo(r) = | — %V + V(r) + gNatPo(r)” + Nat [Uaa(r —)| To(r")|dr’ | Tp(r), (1.3)

where p is the chemical potential of the system which corresponds to the energy of the system in that

state. By employing the Wick rotation, the solution of time-independent equation can be obtained

CHAPTER 1. INTRODUCTION 5

formally by turning to the imaginary time, starting from an arbitrary initial state and propagating
the wave function until the convergence is reached. Therefore, the development of methods and
algorithms for solving of GPE in both real and imaginary time is of practical interest and enables
us to fully study the behavior and properties of BEC systems, from calculation of stationary states
to dynamical evolution of a given state subject to a particular experimental protocol.

Numerical methods for solving partial differential equations require significant computing re-
sources, in particular in presence of nonlinearities. The nonlinearities such as those in dipolar GPE
further increase the complexity of the corresponding algorithms, insofar as BEC systems are often
of multi-scale nature. For example, if the system dynamically develops features at different, inde-
pendent length scales, such as vortices, density waves or collective oscillations, the smallest scale
dictates the discretization spacing. Thus, it may turn out that the minimal mesh size, which is
necessary for accurate modeling of the system, is too large to be handled by a single processing
element. The necessity of employing fine-grained discretization schemes is so prevalent in many
areas where equations of the NLSE type are used that the development of parallel algorithms and
their implementation represents an important challenge.

Therefore it is not surprising that this challenge was already addressed, and that there are several
approaches developed and tailored specifically for solving of GPE. Most of them are inherently
serial and focus solely on the equation for the contact interaction only. Algorithms and software
implementations for the dipolar GPE are practically missing, in particular parallel algorithms do
not exist in public domain or in the literature. This thesis addresses the identified development gap
and provides a significant step forward in the area of numerical methods and parallel algorithms for
solving equations the NLSE type, of interest for the fields of ultracold atoms, nonlinear optics, and
other areas.

Research results presented in this thesis contribute to the fields of scientific computing and
parallel programming, as well as complexity modeling and optimization of hybrid algorithms. In
particular, the main contribution of this thesis is the development of parallel algorithms for solving
of GPE and related equations of the NLSE type. The thesis proposes and implements several

parallel algorithms for a range of modern computing architectures:

e Shared memory systems consisting of one or more multi-core CPUs;

Hardware accelerators in the form of GPUs;

Heterogeneous systems combining the multi-core CPUs with the GPUs;

Distributed memory systems - computer clusters with multi-core CPU nodes;

Distributed memory systems - computer clusters with GPU-enabled nodes;
e Distributed memory systems - computer clusters with multi-core CPU & GPU-enabled nodes.

Development and implementation of the hybrid algorithms that fully overlap the computation on
all resources required major research effort, however, tuning them to get the best performance on
a specific hardware combination was even more challenging. This is addressed by automating the
tuning of hybrid implementations via a genetic algorithm, where a general method was developed
such that it can be applied to other heterogeneous algorithms. In addition to the development of

the above parallel algorithms, the optimal data distribution scheme for hybrid algorithms targeting

CHAPTER 1. INTRODUCTION 6

heterogeneous systems is also presented. This scheme was selected during the research leading to
this thesis and represents another contribution, as can be verified by its use for the hybrid Fourier
transform algorithm, which was developed within the thesis as well. The hybrid Fourier transform
algorithm is highly efficient as it enables simultaneous computation on both CPU and GPU, and can
be reused independently for other purposes, thus representing an important contribution in itself.
The thesis concludes its research by investigating and modeling the complexity of the developed
parallel algorithms. The proposed models are tested and experimentally verified through a thor-
ough measurement of the performance of developed programs. Finally, the thesis investigates the
possibilities for visualization of large-scale simulations in real time and demonstrates its practical
implementation on the example of study of vortex formation in dipolar BECs.

Following on from this introductory chapter, we discuss approaches to solving NLSE and specifi-
cally GPE along with the description of the numerical algorithm employed by all programs developed
as part of this thesis, in Chapter 2. The chapter starts with an overview of both analytical and
well as numerical methods for solving NLSE and GPE, accompanied by a survey of available solvers
based on the numerical methods (Section 2.1). Next, we present the dimensionless dipolar GPEs
in 3D, 2D and 1D (Section 2.2) which we numerically solve in this thesis, before moving on to the
description of the semi-implicit split-step Crank-Nicolson numerical method which forms the basis
of the algorithms used in the implementations (Section 2.3). In addition to the main method to
solve the dipolar GPE, in Section 2.4 we give expressions for several relevant physical quantities
that can be calculated from the wave function and used to study properties of BEC systems.

With the main numerical method described, we proceed to the description of the shared memory
algorithm in Chapter 3. In Section 3.1 we describe how the numerical method can be used to
construct a computer algorithm targeting shared memory systems, followed by a description of the
serial implementation in Section 3.2 and parallel implementation in Section 3.3.

The shared memory algorithm can be extended to hardware accelerators like graphics processing
units (GPUs), which we demonstrate in Chapter 4. To get a better understanding of how the
algorithm can be implemented, we provide a brief overview of the main concepts of the programming
on GPU in Section 4.1. This is followed by the description of the implementation of the shared
memory algorithm using CUDA in Section 4.2.

Combining the algorithms from Chapter 3 and 4 to produce a new, hybrid, algorithm which
simultaneously employs both CPU and GPU is discussed in Chapter 5. The hybrid algorithm is
described in Section 5.1, followed by a naive implementation in Section 5.2, where we also note the
inherent problems with such approach. The ways to improve it are discussed in Section 5.3.

Given that the single computer may not satisfy the requirements of large-scale simulations in
terms of amount of processing power or available memory, in Chapter 6 we show how the algorithms
from Chapters 3, 4 and 5 can be extended with MPI to work with distributed memory systems like
computer clusters. To enable this, we demonstrate how data are distributed to separate processes in
Section 6.1. Working with only a subset of data required changes to the way we perform computation
in the main loop of our algorithms, which we describe in Section 6.2. In Section 6.3 we show how
distributed memory processing can be used to improve the input and output (I/O) operations of
the developed programs.

To get a better understanding of the results of the simulations created with our programs and

enable study of the properties of BEC systems, in Chapter 7 we investigate how the programs can be

CHAPTER 1. INTRODUCTION 7

extended to provide easy and efficient visualization of produced data. We show how the programs
can be integrated into a visualization tool (Section 7.1), and how the running simulations can be
made interactive (Section 7.2).

Chapter 8 is dedicated to the detailed performance evaluation of all developed programs. To
extract the best performance out of the hybrid implementations, we developed several optimization
techniques which automatically tune the parameters governing the division of work between CPU
and GPU, details of which are given in Section 8.1. This is followed by the description of the
methodology used for the tests (Section 8.2), and results of the tests along with their modeling are
presented in Sections 8.3 and 8.4.

An example of how the programs can be used for research into the behavior of BEC systems is
given in Chapter 9. We demonstrate how the real-world experiments can be simulated in Section 9.1,
which also serves as the ultimate verification not only of the algorithms and their implementations,
but also of the physical model and mean-field approximation applied. In Section 9.2 we show how
simulations of potential new phenomena can be performed using our programs on the example of
study of the dipole-dipole interaction effects on the critical velocity for the emergence of vortices in
a dipolar BEC.

We provide a summary of the work done as part of this thesis and an outlook of future research

directions in Chapter 10.

Chapter 2

Methods for solving nonlinear

Schrodinger equation

Nonlinear partial differential equations are known to be difficult to solve. The same is true for the
GPE and NLSE in general, although their nonlinearity is not that severe. Numerous methods for
solving such kind of equations have been developed, each with different advantages and setbacks.
In this chapter we discuss relevant methods for solving one form of NLSE known as dipolar GPE
and provide details on the numerical method underpinning the algorithms presented in this thesis.

In Section 2.1 we give an overview of well-known methods used to solve GPE and similar NLSE.
We cover both analytic approaches and numerical methods, and go over the most popular solvers.
The dimensionless form of dipolar GPE in 3D as well as the effective equations of reduced dimen-
sionality are presented in Section 2.2. Our numerical method of choice, split-step semi-implicit
Crank-Nicolson method, upon which all algorithms in this thesis are based, is the subject of Sec-
tion 2.3. Relevant physical quantities which are usually calculated during numerical simulations of

imaginary- and real-time propagation of the GPE are discussed in Section 2.4.

2.1 Overview of solutions of NLSE and GPE

While linear differential equations of different kinds can be generally always solved and the super-
position principle allows for a construction of solutions satisfying any given initial (or boundary)
conditions, this is not the case with nonlinear differential equations, including NLSE and GPE.
In general, unless a special method exists for a particular type of nonlinear equations, one has to
use approximative approaches, either analytical or numerical. Here we discuss the most relevant
methods for NLSE-type of equations.

Perturbative approach, where the unknown function is expressed as a power series in an ap-
propriate small parameter, is one of the most popular analytical methods. In the case of NLSE
and GPE, it leads to a hierarchical system of coupled linear equations in the coefficients of the
power series. These equations are coupled due to nonlinearity, and usually cannot be solved ana-
lytically. The hierarchy has to be cut at a given order of the smallness parameter, which brings
an infinitely large system to a finite size and enables its solving. At the same time, cutting the

hierarchy introduces an approximation and associated error to the obtained solution.

CHAPTER 2. METHODS FOR SOLVING NONLINEAR SCHRODINGER EQUATION 9

There are also physics-motivated approaches, where one neglects certain terms in NLSE/GPE
if they are known to be sufficiently small. For example, when studying the ground state of a BEC
with strong interactions, the kinetic energy is usually small compared to other terms, and can
be neglected. This is done in the Thomas-Fermi approximation, which reduces the corresponding
time-independent NLSE/GPE into an algebraic equation. This method can be also applied in real-
time propagation if kinetic energy is guaranteed to always remain sufficiently small, however this
cannot be known in advance and has to be independently verified. Thomas-Fermi approximation
can be reliably used only for very strong interactions or in the limit of infinite interaction. In the
other limit, when interaction is very weak, NLSE/GPE reduces to the usual Schrodinger equation,
whose solutions can be obtained by the methods tailored for this type of equations, including known
analytical solutions. One can even combine these methods with the perturbative expansion in the
small interaction strength.

Another physics-motivated approach is the variational method, where one assumes certain math-
ematical form of the solution containing several unknown parameters (ansatz). These parameters
are then optimized and their values are obtained (usually) by minimizing the corresponding func-
tional (action or energy, in the language of physics). The approximative solution obtained in this
way is the best in a given class of functions, however it is difficult to assess its quality or the
associated error. Selection of a suitable ansatz depends on our knowledge of the behavior of the
system, i.e., solutions for particular cases or limits, numerical solutions for some values of system
parameters, or experimental data. The more we know about the properties of the system, we are
able to build this knowledge into an ansatz that describes more reliably the dynamical behavior
and possible solutions of the equations we seek to solve.

In addition to the analytic methods, various numerical methods also play an important role, as
in many cases they are the only way to study the given physical system in detail. These methods

can be roughly categorized in three groups:
e split-step methods,
e finite difference methods and
e spectral methods.

In split-step methods, propagation in time is separated into several substeps, such that each of
them can be performed either analytically or numerically. In addition to errors associated with each
individual substep, splitting the time propagation also introduces an overall error that has to be
taken into account when estimating the total error of the solution. Finite difference methods rely
on the discretization of the corresponding equation and solving it as a system of linear algebraic
equations. Note that variations of these methods are usually combined with other approaches,
in particular with split-step methods. Spectral methods assume that the solution is written in a
complete basis of orthonormal special functions, and the equations for the corresponding coefficients
are calculated numerically. The choice of a basis is made so that it leads to numerically tractable
system of equations, with most popular examples being the Fourier or Laplace decomposition.

In the case of the dipolar GPE, the convolution integral representing the dipole-dipole interaction
term is usually calculated via the discrete Fourier transformation (DFT), which has to be combined

with the chosen method of solution.

CHAPTER 2. METHODS FOR SOLVING NONLINEAR SCHRODINGER EQUATION 10

There are several available solvers for NLSE and GPE and we briefly review the most popular
ones: BEC-GP [12, 13, 14, 15] and DBEC-GP [16, 17, 18] families of solvers, TS-MPI [19], GPUE
[20], NLSEmagic [21], GPELab [22, 23], GSGPEs [24], ATUS-PRO [25] and GPFEM [26]. All of
these solvers are publicly available and published in journals such as Computer Physics Communi-
cations.

Published serial implementations have been in development since the 2000s, however they are
largely superseded by the parallel implementations. One such notable and highly cited Fortran im-
plementation by Muruganandam and Adhikari [12] combines split-step and finite difference methods,
and utilizes Crank-Nicolson scheme to produce solvers for 1D, 2D and 3D GPE with contact in-
teraction only. Parallelizations of these solvers have been developed in C with OpenMP [13] and
MPI [14], and in Fortran with OpenMP [15]. New branch that includes the dipolar interaction was
published in 2015 [16], and we have subsequently parallelized these solvers using CUDA [17], as
well as OpenMP and MPT [18]. Parallelizations of the dipolar programs are presented in this thesis
in detail. Note that only the solvers in this branch are capable of taking into account the dipolar
interaction. As far as other software packages mentioned below are concerned, only one of them
(GPELab) has this capability, while all others can solve GPE with the contact interaction only.

One of such parallel solvers is the Trotter-Suzuki-MPI library (TS-MPI) [19]. This library pro-
vides a parallel and distributed implementation based on the Trotter-Suzuki algorithm [27]. The
library contains kernels for efficient computation on CPU and GPU, as well as a hybrid implemen-
tation, allowing for the simultaneous use of CPU and GPU. Additionally, TS-MPI exposes several
external application programming interfaces (APIs), and can thus be used from Python or C++.
Unfortunately, TS-MPI library can only be used for 1D and 2D problems, and there is no support
for 3D systems.

Specialized GPU solvers also exist, an example of which are GPUE [20] and NLSEmagic [21].
GPUE is based on a time-splitting pseudospectral method, implemented in CUDA and targeting
only 2D systems. Being implemented in CUDA, it relies on external Python routines to process the
output. It supports only a single GPU, and there is no support for multiple GPUs within the same
computer or any form of distributed computation. NLSEmagic can be used to simulate the NLSE
in 1D, 2D and 3D. It utilizes a fully-explicit fourth-order Runge-Kutta scheme in time and both
second- and fourth-order finite difference scheme in space. While implemented in C and CUDA,
NLSEmagic is designed to interface with MATLAB. Like GPUE, it also uses only a single GPU.

There are also solvers implemented fully in MATLAB, like GPELab [22, 23] and GSGPEs [24].
GPELab is a toolbox able to solve stationary and dynamics problems in 1D, 2D and 3D, including
the contact, dipole-dipole and user-provided interactions, as well as rotation of the system, stochastic
effects and multi-components problems. It is based on a semi-implicit backward Euler scheme, a
pseudo-spectral approximation and a Krylov subspace method [28]. While very popular due to its
versatility, GPELab was shown to have very bad performance when compared to implementations
based on compiled languages [29]. The other MATLAB-based implementation, GSGPEs, has fewer
features and can only be used for the computation of the ground state of systems. It also relies on
spectral decomposition method to perform this task.

Two solvers based on the finite element method are ATUS-PRO [25] and GPFEM [26]. ATUS-
PRO calculates the solutions of the stationary and the time-dependent 1D, 2D and 3D GPE with

contact interaction. Programs in this package are implemented in C++ by means of the deal.Il

CHAPTER 2. METHODS FOR SOLVING NONLINEAR SCHRODINGER EQUATION 11

library, and support running in parallel on distributed memory systems using MPI. Numerical
method employed in the solver is based on the fully implicit Crank-Nicolson method, while stationary
states are obtained with a constrained Newton-like method. The other finite element-based solver,
GPFEM, can be used to compute the stationary solutions of GPE with rotation, in 2D or 3D. It
is implemented in FreeFem++, a free finite element toolbox with its own language. An interesting
feature of this solver is that it offers two numerical methods for minimization of GP energy for
the user to choose from: a steepest descent method based on Sobolev gradients and a minimization
algorithm based on the optimization library Ipopt. This toolkit also provides several post-processing
tools for tasks such as identification of quantized vortices, that can help in extracting values of
physical quantities from the simulations.

As we can see from this overview, many of the previous implementations focus on a specific
problem (e.g., computation of the stationary state), or on a specific dimensionality. Only DBEC-
GP solver and GPELab are able to address the dipolar interaction, however the first one is serial
and the other one is implemented in MATLAB, leading to their poor performance, in particular
when treating 3D systems. One of the aims of this thesis is to overcome this problem and to develop

and implement parallel algorithms, which are presented in later chapters.

2.2 Dipolar GPE in 3D, 2D and 1D

Many important properties of BEC systems at low temperatures can be successfully described
using the mean-field theory, where quantum fluctuations are neglected and where we assume zero
temperature, as already mentioned in Chapter 1. If we take into account scattering of the atoms or
molecules through the nonlinear contact interaction term, and the dipole-dipole interaction assuming
a fixed orientation of the dipoles along z direction, the corresponding mean-field Gross-Pitaevskii
equation has a form
_h

2
V2—|—V(r)—|—gNat|\I/(r;t)|2+Nat/Udd(r—r’)|\11(r’;t)\2dr’ T(r;t), (2.1)

0
th—¥(r;t) = 5

ot
where the nonlinearity g = 4wh?as/m is determined by the s-wave scattering length a, a quantity
used in atomic physics for characterizing the interactions of atoms in the low-energy limit. Ny
is the total number of condensed particles and V(r) is the trapping potential, usually anisotropic

quadratic function of the form
1
V(r) = 5m(wiazQ + wng +w?2?), (2.2)

where w;, wy, and w, are the corresponding frequencies. However, in general, it may be any arbitrary
function depending on position and time V (r,t). The normalization condition of the wave function
is given by

[areop -1, (23)
which ensures that the number of particles in the system is fixed to Ny at all times. The boundary
conditions the solution has to satisfy read

lim ¥(r;t)=0. (2.4)

r—+oo

CHAPTER 2. METHODS FOR SOLVING NONLINEAR SCHRODINGER EQUATION 12

The dipolar interaction potential is given by

Caq 1 —3cos?0
UuR)= ——F77—, 2.5
dd() A |R|3 ()
where R = r — 7' determines relative position of the dipoles, # is the angle between R and the
orientation of dipoles, and Cqq = poji® for magnetic dipoles and Cyq = d?/eq for electric dipoles.
To compare contact and dipolar interactions, a new length scale is introduced, characterizing the

dipole-dipole interaction:
o Cddm

©127h2”

which also allows the dipolar GPE to be written in a more compact way.

add (2.6)

In order to numerically simulate GPE, we first have to cast it into dimensionless form and
to express all quantities through dimensionless variables. To achieve this, we start by choosing
a reference frequency @, which may be equal to one of the trap frequencies, or have some other
value. Now we can express the trap frequencies by the corresponding dimensionless quantities,
Wy = YW, wy = v and w, = A\D. We also use & to define a unit of time 1/& and to introduce the
dimensionless time as ¢ = t&. The corresponding harmonic oscillator length [= \/W is used as
a unit of length, and the dimensionless coordinates are defined as & = x/l, § = y/l and z = z/l.
Finally, we express the wave function in a dimensionless form by ¥ = [3/2®¥. Using this rescaling,
GPE (2.1) reduces to

ley 1 -
- §v2 + 5(725;2 + V2% 4+ N22%) + Ama, Nog |V (3 1) |2

+ 3&ddNat/df'/Vdd(f' —) O | U(F 1), (2.7)

where the dimensionless dipolar interaction potential reads

- 1—3cos?6

Vdd(R) = |R‘3) (28)

and we have introduced the dimensionless scattering length a5 = as/l and the dipole-dipole inter-
action length dqq = aqq/l.

It is worth noting that the above conversion to dimensionless quantities is not the only way to
do so. For example, we can additionally rescale the time so that instead of ¢ we use 2¢. This would
make the factor of 1/2 disappear from the kinetic energy and harmonic potential terms, which may
be preferred in some cases. If we additionally drop the tilde symbol from all quantities, GPE takes
the form

ig\IJ(r;t) =

5 — V222?02 N GNat |V (r; t)|2

+ gaaNas / A Vaa (r —)W) 2| (s 1), (2.9)

where the dimensionless nonlinearity is defined as g = 8ma,/l and the dimensionless dipolar inter-
action strength is gqq = 6aqq/!.
In many cases, the geometry of the system is such that one can use effective equations with re-

duced dimensionality. Lower dimensional equations are analytically more complex and less tractable,

CHAPTER 2. METHODS FOR SOLVING NONLINEAR SCHRODINGER EQUATION 13

but their numerical complexity significantly reduces and thus this effective approach is widely used
whenever possible.

In disc-shaped external potentials, when one of the trapping frequencies is much larger than the
other two, we can effectively use 2D geometry and derive appropriate equations assuming that a BEC
system remains confined to a ground state of harmonic oscillator in the third (confining) direction.
We can consider two physically distinct cases, when the dipoles are oriented along the confining
direction (A > v,v) and when the dipoles are in the 2D plane (e.g., v > 7, A). The corresponding
dimensionless effective equations have been derived in Ref. [16]. For the first case, when the dipoles
are orthogonal to the plane, the wave function is written as U(r;t) = ¥o(z; \)Pap(rap;t), where

the ground state in z direction is given as

AN\
\Ilo(z;)\):<7r> e /2 (2.10)

and rap = (z,y) is 2D radius vector. Using this substitution, GPE (2.9) reduces to

0
ZE\IIQD(I?DW) = | = V3p +7%2° + v*y° + gap Nag|Vap (rap; t)|?

dk) 5 k
+gdd,2DNat/ D e~ k2p T2 5o (kopy; t) hap <2D) Uop(rep;t), (2.11)

(2m)? V2
where Vop represents 2D gradient operator, the effective dimensionless interaction strengths are
gop = /A/(2m) 8mas/l and gaa2p = /A/(27) 8maaa/l, kap = (kz, ky) is the 2D k-vector, and

oD (kQD; t) = /dI‘QDeikzD‘mD ‘\IIQD (r2D; t)|2 ’ (212)

hap (€) = 2 = 3v/mE exp(§%){1 — erf(€)} . (2.13)
For the second case, when dipoles lie in the plane, the wave function can be expressed as ¥(r;t) =
Uy (y; v)Wap(rap; t), where the ground state is defined by Eq. (2.10) and 2D radius vector is now
rop = (, z). The corresponding effective 2D GPE has a form

.0
i—Wop(rap;t) = | — Vip +722% + A%2% + gap Nag|Pan (ran;)]

ot
dk . N . k
+gdd,2DNat/ (2;)]326*’k2D'r2Dn2D(k2D;t)J2D (\/22%,’%) Uop(rap;t),
(2.14)

where Vyp now represents 2D gradient operator in z-z plane, gop = +/v/(27) 8mas/l and gga,2p =
Vv/(2m) 8maqa/l are the effective interaction strengths, kop = (ks, k.) is the corresponding 2D

k-vector, and

k2
3

5% exp(€2){1 — erf(€)}. (2.15)

jon (&, ks) = =1+ 3/

Similar dimensional reduction can be performed for BEC systems in elongated, cigar-shaped
traps [16], where again we can distinguish two cases: when the dipoles are orthogonal to the trap
axis (without loss of generality, we consider just the geometry v, A > v) and when they are parallel
to the trap axis (vy,v > A). In a cigar-shaped trap, a BEC system is assumed to remain confined

to a ground state of a harmonic oscillator in two transversal directions (y and z in the first case,

CHAPTER 2. METHODS FOR SOLVING NONLINEAR SCHRODINGER EQUATION 14

and x and y in the second), and we consider the wave function to depend only on one remaining
coordinate. In the first case, the wave function is written as W(r;t) = Wo(y;v)Po(z; \)U1p(2;1t),

and assuming axial symmetry (v = \) the effective 1D GPE can be expressed in a closed form

.0 02
Z&‘I’lD(I;t) = [922 +7%2% 4+ g1p Nag|W1p (1)

dk k
+ N, / —Le et (yst <x> Uip(z;t), 2.16
9dd,1D{Vat 1D(x)]1D \/E 1D() ()
where interactions strengths are gip = 4va,/l and gqa1p = 4vaqq/!, and
o .
b (kg3 t) :/ daet = | Wb (z;)2, (2.17)

jin(§) = / dkye™ v hap (1/52 + k2) (2.18)

In the second case, when dipoles are parallel to the trap axis (v,v > A), the wave function is
written as ¥(r;t) = Uo(z;v)Po(y; v)P1ip(z;t). Again, assuming axial symmetry (v = v) the closed
form of the effective 1D GPE reads

.0 02
i—~Vip(zt) = | — 55 + A22% + gip Nag|¥1p (23 1)|?
ot 0z
< dk . k
N, e "2 (ks t)hip | ——=) | ¥ip (25t 2.1
+ gdd,1D t[m 5 € fiip (kz;t)hip (\/ﬂ) 1p(25t), (2.19)
where interaction strengths are gip = 4va,/l and gaq1p = 27yaqq/!, and
e} 362
h = d —1le™™. 2.20
w© = [Ta| 2] (220)

The above equations in 3D, as well as the effective equations in 2D and 1D are solved by the

algorithms and programs presented in this thesis.

2.3 Split-step Crank-Nicolson method for the GPE

With the dimensionless form of GPE introduced in the previous section, we proceed with the de-
scription of split-step semi-implicit Crank-Nicolson method [30], the approach we use to numerically
solve GPE in 3D as well as effective 2D and 1D equations. The basic idea behind this method is
to divide the calculation of the solution into multiple steps at two levels. First, time propagation is
discretized and the total propagation time T is divided into N time steps, each of length A = T/N.
At the second level, each time step is divided into several substeps, dealing with different parts of
the Hamiltonian governing the time propagation. This second level of splitting uses semi-implicit
Crank-Nicolson (CN) method, which we describe in detail here.
We first demonstrate how this method works on a simple example in 1D, before moving on to
the solution of full dipolar GPE. Let us consider the equation of the general form
8 U(xz;t) = HU(x;t), (2.21)
‘ot
where the Hamiltonian H contains the kinetic term, i.e., the Laplacian, as well as other non-

derivative terms, including the potential and nonlinear terms. Time propagation starts from a

CHAPTER 2. METHODS FOR SOLVING NONLINEAR SCHRODINGER EQUATION 15

known initial condition at ¢ = ty and proceeds in N time steps of the duration A. To propagate the
wave function in one time step, we split H into two parts, H = Hy + Hs, where H; contains all non-
derivative terms, while Hy is the remaining Laplacian. This allows us to make an approximation

and split Eq. (2.21) into two parts, which we consider and solve separately, one after the other,

0
za\ll(x;t) = H1U(z;t), (2.22)
0
za\ll(x;t) = Hy¥(z;1). (2.23)

Equation (2.22) is solved first, with an initial value ¥(xz;tg) at t = ¢g, to obtain an intermediate
solution at ¢ = t9 + A. This intermediate solution is then used as the initial value for Eq. (2.23),
yielding the final solution ¥ (z; ¢+ A) at t = tg+ A. This procedure then continues in the next time
step until we finish time propagation. As we mentioned above, the time splitting is an approximation
and introduces an error of the order of A2, which may be neglected when used with small time step
A. However, such a scheme allows us to treat the larger part of the Hamiltonian exactly, even for
arbitrarily large nonlinear terms, as we show below.

Let us denote the wave function at time ¢, = to+nA by ¥"(z) and the corresponding intermedi-
ate solution of Eq. (2.22) by ¥"*1/2(z). Since H; does not contain any derivatives, the intermediate

solution can be explicitly calculated as
U2 (2) = Opa(H)" (2) = e 207 (1) (2.24)

where we use Opq(H1) to denote the time evolution operator with respect to Hy and the suffix “nd”,
short for “non-derivative”; to differentiate it from other similar operators we use.
Next step is to perform the time propagation w.r.t. Hy, by using semi-implicit CN scheme,
,\I/"—H(l‘) _ gnt1/2 (.T)

1
_1 n+1 n+1/2
i 2H2 [\Il () + T ()|, (2.25)

where the partial derivative 9/t is approximated using a two-point formula connecting the values

of the wave function in the present and the future time step. On the right-hand side hand, the

Laplacian 9?/0x? is written in a semi-implicit form, which averages the wave function over the

present and the future time step. This averaging makes the scheme unconditionally stable [31, 32].
The solution of this time-discretized equation with the initial condition ¥"*+/2(z), obtained in

the previous substep, yields the wave function U+ (z) at time t,,,1. Formally, it is solved as

_ 1—1AH,/2

n+1 _ n+1/2
V" (@) = Oon (Ha) U2 (a) = 13

G2 () (2.26)
Similarly to the Onq(H;) operator, the Ocn(Hz) operation denotes the time evolution operator
w.r.t. Hy. To actually solve Eq. (2.25), we also have to discretize spatial coordinate and introduce a
mesh with N, equidistant points, separated by a spacing h. Mesh points are defined by x; = —L+ih,
where L = N, h/2 determines the size of the spatial interval [—L, L] considered to be relevant, i.e.,
such that the wave function is sufficiently small outside of it and we can safely set it to zero in our
calculations. If we denote the wave function at time ¢,, and position z; by 9%, Eq. (2.25) can be

written as

gL g2 gl gt gl gt g2 gt
7 =

A 2h? ’

(2.27)

CHAPTER 2. METHODS FOR SOLVING NONLINEAR SCHRODINGER EQUATION 16

where each Laplacian is approximated using a three-point formula. The associated discretization
error is of second order in h, the same as in time step A, as discussed previously. This makes
discretization errors negligible for small enough discretization steps. Equation (2.27) can be written

as a series of tridiagonal equations in unknown wave function values at t,1,

A7 U AU AT = B (2.28)
where the coeflicients
A
A7 = Af = —i— 2.29
2 () 7’2h2 ? ()
A
LA nt1)2 nt1/2 | ontl/2 nt1/2
Bi=iz (\I/Hl/ —out 2y grtl/) gt (2.31)
are all known. To solve Eq. (2.28), we use forward recursion relation, and assume the solution in a
form
U = o U0 4 s (2.32)
where coefficients «; and 3; need to be determined. If we substitute Eq. (2.32) into Eq. (2.28) we
obtain
Uit = (A7 O + A B - By) (2.33)
where v; = —1/(AY + Afa;). We can now use the backward recursion relation to obtain the
coefficients «; and f;,
o =%i41A5 1, Bi = vie1(Af 1 Biv1 — Bi1). (2.34)

The strategy to apply the aforementioned recursion relations from Eqgs. (2.32)—(2.34) is to perform
a backward sweep of the mesh to determine «; and (;, for ¢ running from N, — 2 to 0. The initial
values on endpoints are chosen to be ay, , = By, , = 0, which ensures that the value of the
wave function at the border is always zero. With the coefficients «;, £; and ; determined, and the
boundary condition \Ilg+1 = 0 fixed to provide that the wave function is equal to zero at zg = —L,
we can determine the solution for the entire space range at time t,,41 using a forward sweep from
Eq. (2.32). This completes the single iteration and procedure continues on until end of propagation
is reached.

Note that, apart from unconditional stability and small discretization errors, the above scheme
has one additional advantage, namely it conserves the normalization of the wave function. This can
be monitored throughout the calculation and used as a criterion to assess the quality and validity
of the obtained solution.

The method illustrated above in 1D can be straightforwardly generalized to solving 3D problems.
For a full 3D dipolar GPE (2.9), discretization of time is performed in the same way, while spatial
coordinates are discretized analogously with N, N, and N, mesh points in the corresponding
direction, and with spacings h, h, and h_, respectively. Time propagation in each iteration is now

divided into four substeps, corresponding to the following parts the Hamiltonian:

Hy =222 + 292 + X222 + gNL. |9 (15 8) |2 + gaaNat / dr'Vaa(r —)| ¥ (x';1))?, (2.35)
52 92 92

Hy=—-—- H3=—-—-, Hj=——". 2.36

2 922’ 3 92 4 922 ()

CHAPTER 2. METHODS FOR SOLVING NONLINEAR SCHRODINGER EQUATION 17

To propagate the wave function w.r.t. Hy, we need to calculate the expression (2.35) at each mesh
point. This requires evaluation of the dipolar term given by the convolution integral, which can be

written and calculated as
/dr’vdd(r — WP = FF [Vaa)| F[1 e 0] | (2.37)

where F represents Fourier transform and F~! its inverse. These can be computed using the
standard Fast Fourier Transform (FFT) algorithm. Note that F [Vdd (r)] does not change between

time steps, and can be computed analytically, yielding
F[Vaa(r)] =3cos’0 -1, (2.38)

where 6 is the angle between the orientation of dipoles and vector k. As we assume that the dipoles
are oriented in z direction, cosf = k,/k. This leaves us with two Fourier transforms in each time
step and in particular motivates our interest for implementation of this approach on GPUs.

The above method is applicable to real-time dynamics of the system, given that its initial state
is known. However, we can extend the method to also enable calculation of the ground state. This is
achieved by switching to imaginary-time propagation, when real time ¢ is replaced by an imaginary
quantity 7 = it. Mathematically, this corresponds to a Wick rotation [33] and yields imaginary-time
analogue of GPE,

— %\II(P;T) =HY(r;7), (2.39)

where H = H,+ Ho+ H3+ H,4 is the same as above. Although such a Wick rotation is just a formal
mathematical transformation of GPE and does not have any physical motivation, time propagation
of the above equation leads to a solution of the time-independent GPE (1.3),

Uo(r) = lim ¥(r;7), (2.40)

T—00

provided that the normalization of the wave function is kept equal to unity during the time propa-
gation, as it is not conserved any more. Equation (2.40) follows from the decomposition of the wave
function in the eigenbasis of the Hamiltonian for the Schrédinger equation and also holds for GPE
[12]. Therefore, to obtain a ground state we start with an arbitrary initial state (usually taken to be
a Gaussian) and propagate it in imaginary time until the convergence is achieved. We also note that
the ground state of a system described by GPE can always be represented by a real-valued wave
function, which can be exploited to obtain the solution faster. Namely, working with real-valued
data on a computer is faster than with the complex-valued ones, since all mathematical calcula-
tions require less operations. Practically, this works as follows: the time propagation w.r.t. H; is

performed using a formula analogous to Eq. (2.24),
U2 = Oyq(Hp) U™ = e 2 un (2.41)

while the coefficients of the CN scheme (2.29)—(2.31) are now real-valued and (in 1D) defined as

_ A 0 A A n+1/2 n+1/2 n+1/2 n+1/2
AT =Af =5 Al=1-5, Bi=—— (wr? =202 w2 w2 (2.02)

Here A represents time step in imaginary time and generalization to 3D is straightforward.
Similar procedure is applied to solve effective GPEs of reduced dimensionality. In 2D, depending

on the orientation of dipoles, the Hamiltonian corresponding to GPE (2.11) or (2.14) is written in

CHAPTER 2. METHODS FOR SOLVING NONLINEAR SCHRODINGER EQUATION 18

the split form H = H; + Hy + Hs. The non-derivative part H;p is already expressed in the form
suitable for evaluation using FFT, while the Laplacians Ho and Hj are addressed using the CN
scheme, as described above. Effective 1D GPEs (2.16) and (2.19) are solved in the same way, using
the split form of the Hamiltonian H = H; + H,. Similarly to 2D case, the non-derivative part H;
is written in k-space and allows for efficient evaluation using FFT.

With the main numerical method described above, we can define a computer algorithm for real-
and imaginary-time propagation in 1D, 2D and 3D. While this is the main goal that will be addressed
in subsequent chapters, we first give expressions for calculation of relevant physical quantities in

the next section.

2.4 Calculation of relevant physical quantities

Numerical methods presented in this thesis enable us to solve different variants of GPE in a number
of physically relevant problems. However, in order to study properties of physical systems described
by those equations as well as their dynamical evolution, we have to extract values of relevant physical
quantities from the current state of the system, i.e., from the wave function in a given time ¢. The
most useful quantities are chemical potential, energy, and expectation value of the system size.
In particular, convergence of these quantities during the imaginary-time propagation is used as a
criterion for the convergence of the wave function to the ground state of the system.

Chemical potential u can be defined for stationary states of a BEC and follows from the time-
independent GPE (1.3):

1
p= g [ITVER + (002 4 022 4 RO + N0

+ gaaVat /dr'Vdd(r —)W) 2| (r)?] . (2.43)

The corresponding energy of the system F is given by a similar expression in which the interaction

energy terms contain an additional factor of 1/2:
1 1
B =g [ar[[PU@P + (7 + 027 + RN + SoNul ()
1
+ p00aNas [' Vaalr =)W) P P]. (240

The above equations are written for the rescaling of time £ = 2@t, used throughout previous section.
If other standard rescaling of time is used, = &t, the factor of 1/2 in front of both Eqs. (2.43) and
(2.44) should be removed. Note that the dimensionless values of © and E can be converted back to
physical units by multiplying them with h&.

Similarly, we can define chemical potential and energy for stationary states of effectively 2D and
1D systems. For 2D case when dipoles are oriented perpendicular to the plane, described by GPE
(2.11), chemical potential is given by

1
Nzi/dl‘zD

|VapWop (ran)|® + (22?4 124?)|Wan (r2p) > + g20 Nag| Yo (rap)[*

dkop e o k
+gdd,2DNat/ (2;)]326 kop 20 791 (kap) hop (\;%\) |\IJ2D(I'2D)|2‘| , (2.45)

CHAPTER 2. METHODS FOR SOLVING NONLINEAR SCHRODINGER EQUATION 19
while the energy can calculated as

1
EF=—-]d
2/ r'sD

1
|VapWap (rop)|? + (v22? + v29%)|Wap (rap) | + §Q2DNat|\I/2D(r2D)|4

1 dKoD i por - k2D 2
- N, ikepTan () LERIANTY . (24
+ 59dd.2p c/ 2r2° fizp (k2p) hap (@) |¥2p (rap)| (2.46)

In the second 2D case, when dipoles lie in the plane, the chemical potential and energy are given

by
1
p= [dran | [VapWap(ran)l? + (3%% + X222)[Wap ran)]? + ga0 Nos e (rap)

dk . N . k
+gdd,2DNat/ (2772)132 e~ T ok (Kon) jop (\/2%, kz> |\112D(I‘2D)|2] , (247

1
|VapWap (rap)|? + (V222 + A222)|Wap (rap) > + = gop Nat|Paop (rap)[*

1
E=—-|d
2/ I'2D B

1 dKoD iier o . k2D 2
— N, #X2D T2D k — k. ||V . (248
+ 29dd,2D at/ (%)26 fiop (kan)j2p \/57 |Waop (r2p)] ()

The same applies to 1D systems described by GPE (2.16), where in the case when dipoles are

orthogonal to the trap axis, the chemical potential and energy can be expresses by

2
+7%2|¥1p (2) > + g1p Nat|¥1p (z)[*

’d‘I’m(@“)
dx

T W iny (k) (’“) Wip ()] (2.49)
o 1D(Rz)J1D \/ﬁ 1D s .

+ 9dd, 1D Nat /

— 00
p=l [||l
2 o dx

1
+ 7222 |WUp ()| + §Q1DNat|‘I’1D(!E)|4

—00

1 © dky e . ks
+ *gdd,mNat/ 5 € 2 51p (ke) j1p () |‘I’1D($)21 ; (2.50)

2 oo V2

while in the case when dipoles are parallel to the trap axis these quantities are defined by

dv 2
‘ID(Z) + X222 U 1p(2) > + g1pNat|¥1p(2)[*

dz

%)
dkz e—ik:zz

o fp (kz)hip (“) |\I/1D(z)|2] , (2.51)

+ gdd,lDNat/ NG

— 00

2
1
+)\222|\I!1D(z)|2 + 591DNat|‘I’1D(Z)|4

Ezl/ dz
2 —00

d\Ile(z)
dz

oo
dkz efikzz

1 k.
+ *gdd,lDNat/ o nip(k2)hip <m> ‘I’lD(Z)|2] . (2.52)

2 —00

Note that both of the above quantities can be generalized and calculated also during real-time

propagation, however only time-dependent energy is physically relevant.

CHAPTER 2. METHODS FOR SOLVING NONLINEAR SCHRODINGER EQUATION 20

Another set of useful quantities is related to the size of the system, which can be calculated for
the ground state as well as during dynamical evolution of the system. Typical measure of system’s

size in a given direction is expectation value of the coordinate square, such as
@)= [aaop, @)= [aPveoP, @)= [a2peop, @)

and the system size is then estimated as a root-mean-square (RMS) of the corresponding expectation

value
Lrms = <LIJ2> 3 Yrms = <y2> ’ Zrms — <Z2> . (254)

The size of the whole system is usually estimated by the quadratic mean of coordinate RMS sizes,

rems = /(%) + (1) + (%) (2.55)

Note that all RMS sizes calculated in this way are dimensionless and can be converted to physical
units by multiplying them with the harmonic oscillator length I.
We can define analogous quantities for systems of reduced dimensionality where, for example,

coordinate RMS sizes of 2D systems can be expressed by

<w=/mmﬂ%wmw%<w=/wmﬂ%WmMK (2.56)

while for 1D systems the RMS size is given by
)
(x?) = / da 22|V p (z;t)]? . (2.57)
—o0
Of course, the above equations depend on the 2D or 1D system geometry, i.e., on the coordinates
used to describe the system.
Finally, in order to visualize the system, one can consider the appropriate density distribution.

For 3D systems, the density is given by
n(rst) = [W(rb)]?, (2.58)

and analogously for 2D and 1D systems. We can also consider effective, lower-dimensional density
projections, that can be more easily visualized. For example, for 3D systems we can define the

effective 2D and 1D density by integrating out the full 3D density over some of the coordinates,
nap(rep;t) = / dz |U(r; 1), nmip(x;t) = /dI‘QD [T (r;t)]?. (2.59)
Similar density projections can be defined for 2D systems as well. All densities and density projec-

tions calculated in this way are dimensionless and can be converted to physical units by multiplying
them with the appropriate unit (172 in 3D, [=2 in 2D and [~} in 1D).

Chapter 3

Algorithm for shared memory

systems

Numerical analysis from Chapter 2 outlines the algorithm we present in this chapter. Similarly to
the numerical analysis, the algorithm is based on Refs. [12, 13, 16]. Here we present an improved
serial and a new, parallelized version for shared memory computer systems.

Initial algorithm for solving the GPE with contact interaction term using Crank-Nicolson method
was published in Ref. [12], which also includes a serial implementation in Fortran. This was followed
by the serial and parallel implementations written in C [13]. An extension of the algorithm to
include the dipolar interaction term was published in Ref. [16]. The authors provided two serial
implementations, in C and Fortran. Their algorithm was used as a starting point for all algorithms
and implementations presented in this thesis.

In Section 3.1 we will give an overview of the baseline algorithm for dipolar GPE [16] and
discuss options for its parallelization on shared memory systems, followed by the description of the
improved serial implementation in Section 3.2. Typical numerical simulations that make use of
presented serial implementations of the algorithm are extremely computationally demanding, and
therefore the parallelization approach was an obvious route forward, details of which are given in
Section 3.3.

3.1 Description of the algorithm

In this section we give a brief description of the algorithm for the application of numerical methods
presented in Chapter 2, which is instructive in understanding how to implement it on a shared
memory computer.

We start with the description of the discretization scheme used by the algorithm. Let Nx, Ny
and Nz be the number of points in each direction, corresponding to the z, y and z directions in one,
two or three dimensions (1D, 2D and 3D, respectively). In other words, the number of points in 1D
is defined by Nx, in 2D by Nx and Ny, and in 3D by Nx, Ny and Nz. Discretization points in each
direction are equidistant, with their spacing defined in dimensionless units by variables dx, dy and

dz, illustrated in Figure 3.1.

21

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 22

Nx

R R —_
o V%
N >
2D _ X _ Z
A
>
pd
dyI
S il
dy} Y dx dz

dx

Figure 3.1: Example of 1D, 2D and 3D meshes with Nx, Ny and Nz discretization points in z, y and

z direction, respectively, and the corresponding spacings dx, dy and dz.

The mesh determines how the space is discretized, but the actual values of the wave function,
which is also discretized by the mesh, need to be stored in a separate array. For convenience, we
refer to this array as psi variable. This variable is defined as a vector of size Nx in 1D, as Nx x Ny
matrix in 2D and as Nx x Ny x Nz tensor in 3D. In real-time propagation, the wave function values
are complex, while in imaginary-time propagation they are purely real, which determines the type
of psi variable.

Time is discretized according to t,, = tg + nA, with the time step A stored in a variable dt.
Taking into account the time step and the total amount of physical time we wish to simulate, we
determine the number of iterations required (n). The main part of the algorithm is a loop where
each iteration corresponds to one time step of the propagation. Inside the loop, we update the wave
function by propagating it in time with respect to different parts of the Hamiltonian, according to

the split-step scheme described in Chapter 2. This is illustrated in Figure 3.2.

B R B i

ntimes

Figure 3.2: Main loop of the real-time propagation algorithm in 3D.

In each step of the main loop, wave function values are computed along the discretization mesh
in several smaller steps. First such substep is the calculation of the dipolar interaction term. We
have two further substeps in 1D, pertaining to Eq. (2.22) w.r.t. H; and Eq. (2.23) w.r.t. He. In
2D and 3D we follow a similar procedure and add further substeps for Hs and Hy. Each substep
produces intermediate values of the wave function that are used in the next substep. The order of
the substeps dealing with parts of the Hamiltonian with spatial derivatives (Hs, H3 and Hy) can be
arbitrary, a feature useful in hybrid and distributed memory algorithms. Propagation of the wave
function w.r.t. H; relies on the availability of the dipolar interaction term value, which is computed
in the first substep, before we start with the update of the wave function.

The dipolar interaction term is computed according to Eq. (2.37), using the discrete Fourier
transform (DFT). DFT of a sequence is commonly implemented by relying on the Fast Fourier

transform (FFT) algorithm via an external library. From Eq. (2.37) it follows that we first need a

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 23

DFT of a sequence consisting of absolute squares of wave function values. The resulting complex-
valued sequence is then multiplied by the Fourier transform of the dipolar potential. This transform
is a known function (2.38), precomputed for a chosen spatial mesh and stored in an array. Next, by
performing the inverse DFT we get the dipolar interaction term stored in the resulting array, which
we then use to propagate the wave function w.r.t. H;. In 2D and 3D, we need multidimensional
DFT, which can be computed by the composition of a sequence of 1D DFTs along each direction.

The substep in which the wave function is propagated w.r.t. the Hamiltonian part without
spatial derivatives (H;) proceeds according to Eq. (2.24), by employing further nested loops over
mesh points. Part of the H; is the trap potential V (r), which, like Fourier transform of the dipolar
potential, can be computed only once during the initialization, and then reused. We assume that
the trap potential is static in all algorithms described in this thesis. In case of a time-varying trap
potential, the algorithm can be modified to update the trap potential before this substep, i.e., at
the beginning of each iteration.

The remaining substep, or substeps in 2D and 3D, propagates the wave function by relying on
the Crank-Nicolson scheme. We need to perform a backward sweep of the mesh in each direction
to determine corresponding coefficients a, 8 and v for each direction, according to Egs. (2.32)—
(2.34), followed by a forward sweep to determine the solution for the entire space range. Since the
coefficients a and v for each direction are independent of the current state of the wave function,
they can be computed beforehand, during initialization.

The algorithm for imaginary-time propagation is similar to the one discussed above, with the
addition of the normalization step at the end of each iteration of the main loop, as illustrated
in Figure 3.3. To normalize the wave function, we first need to compute its norm, according to

Eq. (2.3), and then to divide the wave function values with that norm.

- -~ - - -

ntimes

Figure 3.3: Main loop of the imaginary-time propagation algorithm in 3D, which introduces an

additional step of normalization.

In Section 2.4, we introduced other physical quantities of interest that are computed from the
wave function, namely chemical potential, energy and the RMS of system’s physical extent (size),
which give us more insight into the state of the simulation and allows us to observe and measure
time evolution of a BEC. These quantities do not have to be computed in each iteration. Instead,
they can be calculated periodically after a predefined number of iterations.

We see that the algorithm is computationally very demanding, as it requires multiple passes over
the entire mesh in each iteration of the main loop. In 2D and 3D, the total number of discretized
points sharply increases, making this problem even greater. As we have identified above, several
variables can be moved out of the main loop and computed only once, however the remaining
calculations are still very demanding, hence the need for parallelization.

The described substeps cannot be executed concurrently, as the intermediate values they produce
are used in subsequent substeps. Instead, parallelization of the algorithm can only be achieved by
focusing on the mesh loops inside substeps. This is an obvious choice for shared memory systems,

as all data stored in the memory is local and accessible to all participating processes, removing the

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 24

need for data transfers between processes. The loops themselves can easily be parallelized if they
do not contain recursive relations. This is true for the substeps dealing with the computation of the
dipolar term and propagation w.r.t. Hi, as well as periodical computation of chemical potential,
energy and RMS of BEC’s size. Substep involving Hs cannot be easily parallelized in 1D, as it
has recursive relations in both backward and forward sweeps. In general, recursive relations can be
parallelized using the scan algorithm [34] (also known as the generalization of prefiz sum algorithm
[35]), however the implementation complexity of such an algorithm made us discard this approach.
In 2D and 3D, we can exploit the fact that the recursive relations appear only in the innermost
loops of the substeps involving Hy, H3 and H4. Thus, we can achieve parallelization by dividing
the work among the processes at the level of the outermost loop.

Given the algorithm and parallelization strategy, in next two sections we present serial and

parallel implementations.

3.2 Serial implementation

Basis for the programs presented in this section was originally developed in Fortran and published
in 2009 in Ref. [12], however without considering the dipolar interaction term. Fortran and C imple-
mentations that take into account both contact and dipolar interaction term have been published in
2015 in Ref. [16] as package DBEC-GP, which can be downloaded from the journal repository [36]
or alternatively from the local repository [37]. This package consists of 10 Fortran 90/95 programs,
as well as 10 corresponding C programs. For each programming language, there is one program
for solving full GPE in 3D, two programs for solving the effective 2D GPE and two for solving
the effective 1D GPE, implemented separately for imaginary- and real-time propagation. Here we
present improved versions of the latter C programs. Note that these programs may not be suitable
for long-running simulations, due to their serial nature. They are superseded by all other programs
presented in this thesis, which vastly out-perform programs presented in this section. Another issue
with serial and other shared memory programs is their inherent limitation on mesh sizes due to
memory constraints of a single computing node. This will be addressed in Chapter 6.

Implementation-wise, the main difference between real- and imaginary-time programs is that
the wave function is complex in real-time propagation, and real in imaginary-time. Real values
are stored in double precision, as single precision type is inadequate for wave function values since
the lower precision in computation leads to faster accumulation of numerical errors. In C-based
implementations, complex values are stored in double complex type, which is part of the C99
standard [38] of the C language. The implication of using complex numbers is that real-time
propagation is more demanding both in terms of memory and computation. However, they have
a different purpose: imaginary-time versions of programs are used for calculation of the stationary
(ground) state of a physical system, which is then typically used as the initial value of the wave
function for real-time propagation.

All programs share the similar structure and reuse common routines whenever possible. Here
we present the general flow of implementation, with examples from 1D, 2D and 3D programs.

Before the main time-propagation loop can begin, we need to allocate space for the variables,
and set them to their initial values. Matrices and tensors used in 2D and 3D programs are allocated

as contiguous arrays of required type (real or complex), with a pointer scheme that allows access to

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 25

elements in 2D or 3D, see Listing 3.1. This allows us to access elements of matrices/tensors in a more
intuitive way, e.g., psi[i] [j] [k], as opposed to computing the 1D index every time (for example,
psili * Ny * Nz + j * Nz + k]). The underlying flat allocation scheme is not required, but has
turned out to be very useful during the implementation of GPGPU and heterogeneous programs,

described in Chapters 4 and 5.

Listing 3.1: Allocation of a real-valued vector, matrix and tensor. Allocation of complex-valued

arrays is analogous.

// Double vector allocation
double *alloc_double_vector(long Nx) {
double *vector;

if ((vector = (double *) malloc((size_t) (Nx * sizeof(double)))) == NULL) {
fprintf (stderr, "Failed to allocate memory for the vector.\n"); exit(EXIT_FAILURE);
}
return vector;
}
// Double matrix allocation
double **alloc_double_matrix(long Nx, long Ny) {
long 1i;
double **matrix;

if ((matrix = (double **) malloc((size_t) (Nx * sizeof(double *)))) == NULL) {
fprintf(stderr, "Failed to allocate memory for the matrix.\n"); exit(EXIT_FAILURE);
}
if ((matrix[0] = (double *) malloc((size_t) (Nx * Ny * sizeof (double)))) == NULL) {
fprintf(stderr, "Failed to allocate memory for the matrix.\n"); exit(EXIT_FAILURE);
}
for(i = 1; i < Nx; i ++)
matrix[i] = matrix[i - 1] + Ny;

return matrix;

}

// Double tensor allocation

double *#**alloc_double_tensor(long Nx, long Ny, long Nz) {
long i, j;
double ***tensor;

if ((tensor = (double ***x) malloc((size_t) (Nx * sizeof(double **)))) == NULL) {
fprintf(stderr, "Failed to allocate memory for the tensor.\n"); exit(EXIT_FAILURE);
}
if ((tensor[0] = (double #**) malloc((size_t) (Nx * Ny * sizeof(double *)))) == NULL) {
fprintf(stderr, "Failed to allocate memory for the tensor.\n"); exit(EXIT_FAILURE);
}
if ((tensor [0] [0] = (double *) malloc((size_t) (Nx * Ny * Nz * sizeof(double)))) == NULL){
fprintf(stderr, "Failed to allocate memory for the tensor.\n"); exit(EXIT_FAILURE);
}
for(j = 1; j < Ny; j ++)
tensor [0] [j] = tensor[0][j-1] + Nz;
for(i = 1; i < Nx; i ++) {
tensor[i] = temsor[i - 1] + Ny;
tensor[i] [0] = temsor[i - 1]1[0] + Ny * Nz;
for(j = 1; j < Ny; j ++)
tensor[i] [j] = temsor[il[j - 1] + Nz;

return tensor;

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 26

Propagation of the wave function w.r.t. different parts of the Hamiltonian has been implemented
in separate functions, where function calcnu takes into account H; part of the Hamiltonian, calclux
propagates the wave function w.r.t. Hs, calcluy corresponds to propagation determined by Hs
(in 2D and 3D programs) and calcluz does the same for Hy (in 3D programs). Calculation of
the dipolar interaction term, upon which function calcnu relies, has been implemented separately,
in function calcpsidd2. Afterwards, the value of the wave function is propagated for each mesh

point, as shown in Listing 3.2.

Listing 3.2: Loops are employed to propagate the wave function in each mesh point, as illustrated

here on a 1D real-time calcnu function.

void calcnu(double complex *psi, double *psidd2) {
long 1i;
double psi2, psi2lin, psidd2lin, tmp;

for(i = 0; i < Nx; i ++) {
psi2 = cabs(psilil);
psi2 *= psi2;
psi2lin = psi2 * g;
psidd2lin = psidd2[i] * gd;
tmp = dt * (pot[i] + psi2lin + psidd2lin);
psil[i] *= cexp(- I * tmp);

The function calcpsidd2 computes the DFT of the input sequence by means of the FFT algo-
rithm. The authors in Ref. [16] relied on the FFTW library [39] for this task, a well-known and
widely used FFT library. In their implementation they have used the ordinary DFT of complex
data, which takes a complex-valued input and produces a complex-valued output of identical size,
a so-called C2C transform. This can be improved by observing the fact that in Eq. (2.37) the
input of the transform is |¥(r)|?, which is purely real, even when ¥(r) is complex-valued. DFT of
a real-valued input produces an output that has Hermitian symmetry, with one half of the output
being the complex conjugate of the other half, making it redundant. Many FFT libraries, FFTW
included, are able to exploit this symmetry to provide a special real-to-complex (R2C) transform.
R2C transform is both faster, due to fewer operations involved, and requires less memory, because
only half of the output is retained. To use R2C instead of C2C transforms, we have to ensure that
the size of output array is sufficient (e.g., Nx * Ny * (Nz / 2 + 1) * sizeof(double complex)
in 3D), and use the appropriate R2C functions from FFTW (see Listing 3.3). Performing any type
of transform with FFTW involves creation and execution of a plan, which specifies all details of the

transform.

Listing 3.3: Real-to-complex and complex-to-real FEF'TW calls used in calcpsidd?2 function. Shown

here is the 1D variant of the function, used in real-time propagation.

// Here we use in-place FFT, so we need to ensure proper padding of input and output arrays
psidd2 = alloc_double_vector((Nx / 2 + 1) * 2);
psidd2fft = (fftw_complex *) psidd2;

// Create plans during initialization
plan_forward = fftw_plan_dft_r2c_1d(Nx, psidd2, psidd2fft, FFTW_MEASURE);
plan_backward = fftw_plan_dft_c2r_1d(Nx, psidd2fft, psidd2, FFTW_MEASURE);

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS

void calcpsidd2(double complex *psi, double *psidd2, fftw_complex *psidd2fft) {
long i;
double tmp;
// Prepare input for FFT
for(i = 0; i < Nx; i ++) {
tmp = cabs(psilil);
psidd2[i] = tmp * tmp;
}
// Execute R2C transform
fftw_execute_dft_r2c(plan_forward, psidd2, psidd2fft);
// Resulting output array has Nx / 2 + 1 elements
for(i =0; i < Nx/ 2+ 1; i ++) {
psidd2fft[i] [0] *= potdd[i];
psidd2fft[i] [1] #*= potdd[il;
}
// Execute C2R transform
fftw_execute_dft_c2r(plan_backward, psidd2fft, psidd2);
// Rescale the result of FFT
for(i = 0; i < Nx; i ++) {
psidd2[i] /= Nx;
}
// Handle boundary case
psidd2[Nx - 1] = psidd2[0];

27

Functions calclux, calcluy and calcluz perform the time propagation with respect to parts

of the Hamiltonian involving spatial partial derivatives by solving the tridiagonal system that arises

from Crank-Nicolson method. Implementation of forward recursion and backward substitution is

shown in Listing 3.4.

Listing 3.4: 3D real-time functions calclux, calcluy and calcluz.

// Time propagation with respect to H2 (x-part of the Laplacian).
void calclux(double complex ***psi, double complex *cbeta) {
long i, j, k;
double complex c;

for(j = 0; j < Ny; j ++) {
for(k = 0; k < Nz; k ++) {

cbeta[Nx - 2] = psilNx - 11[j]1[k];

for(i = Nx - 2; i >0; i —-) {
c = - Ax x psili + 11[j1[k] + AxOr * psil[il[jl1[k] - Ax * psili - 11[j]1[k];
cbetali - 1] = cgammax[i] * (Ax * cbetal[i] - ¢);

}

psil01[j1[k] = 0.;

for(i = 0; i < Nx - 2; i ++) {
psili + 11[j]1[k] = calphax[i] * psi[i] [j][k] + cbetalil;

}

psilNx - 11[j]1[k] = 0.;

}
// Time propagation with respect to H3 (y-part of the Laplacian).
void calcluy(double complex ***psi, double complex *cbeta) {
long i, j, k;
double complex c;

for(i = 0; i < Nx; i ++) {
for(k = 0; k < Nz; k ++) {
cbetalNy - 2] = psil[i]l[Ny - 1]1[k];

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 28

for(j =Ny - 2; j >0; j--){
c = - Ay * psi[i]l[j + 11[k] + AyOr * psi[il[jl1[k] - Ay * psilil[j - 11[k];
cbetalj - 1] = cgammay[j]l * (Ay * cbetalj]l - ¢);

}

psilil [0] [k] = O.;

for(j = 0; j <Ny - 2; j ++) {
psilil[j + 11[k] = calphay[j]l * psilil[j][k] + cbetaljl;

}

psil[il [Ny - 11[k] = 0.;

}
}
// Time propagation with respect to H4 (z-part of the Laplacian).
void calcluz(double complex ***psi, double complex *cbeta) {
long i, j, k;
double complex c;

for(i = 0; i < Nx; i ++) {
for(j = 0; j < Ny; j ++) {

cbetal[Nz - 2] = psil[il[j][Nz - 1];

for(k = Nz - 2; k> 0; k —-) {
¢ =- Az * psi[i][j1[k + 1] + AzOr * psil[il[jl[k] - Az * psi[il[jl1[k - 1];
cbetalk - 1] = cgammaz[k] * (Az * cbetalk] - c);

}

psilil[jI[0] = 0.;

for(k = 0; k < Nz - 2; k ++) {
psilil [j1 [k + 1] = calphaz[k] * psi[i] [j][k] + cbetalk];

}

psilil[j1[Nz - 11 = 0.;

In Listing 3.4 we observe the pattern employed in higher-dimensional programs. Depending
on the spatial direction of the computation we perform, i.e., the function used, nested loops are
reordered appropriately so that the innermost one corresponds to the computation direction. This
pattern is used in other functions whenever we need to access elements in a matrix/tensor in a
specific spatial direction.

In imaginary-time propagation, the algorithm mandates that at the end of every time step an
additional substep, normalization of the wave function, is required. To compute the wave func-
tion norm, we have to integrate over all space, according to Eq. (2.3). Numerical integration is

implemented in function simpint using composite Simpson’s rule,

b n/2
[e @)~ 5 3 [Flonia) + 48 (o) + fa2)]. (31)

a i=1
where n is the number of subintervals, step size h is h = (b —a)/n and x; = a + ih. Computing the
norm and subsequent normalization of the wave function is illustrated in Listing 3.5. Note that in
real-time propagation the norm of the wave function is preserved, and therefore we do not perform
the normalization at the end of every time step. However, keeping track of the norm is still useful
as a check of correctness, and we calculate it at the regular intervals. The implementation remains
mostly the same, with the last step (performing the normalization of the wave function) omitted in

real-time propagation.

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 29

Listing 3.5: Numerical integration via composite Simpson’s rule and its usage in computation of the
norm and normalization of the wave function, as used by the 1D imaginary-time programs. The

equivalent real-time function is similar, with the last step removed.

// Numerical integration via composite Simpson’s rule
double simpint(double h, double *f, long N) {

int c;

long 1i;

double sum;

sum = f£[0];

for (i =1; 1 < N -1; i ++) {
c=2+2x*x (1% 2);
sum += ¢ * f[i];

}

sum += f[N - 1];

return sum * h / 3.;

}

void calcnorm(double *norm, double *psi, double *tmpx) {
long 1i;
double tmp;

for(i = 0; i < Nx; i ++) {
tmpx [i] = cabs(psi[il);
tmpx [i] *= tmpx[i];

}

*norm = sqrt(simpint(dx, tmpx, Nx));
tmp = 1. / *norm;

for(i = 0; i < Nx; i ++) {
psili] *= tmp;
}

The chemical potential and energy are computed in function calcmuen, while RMS size is cal-
culated in function calcrms. Chemical potential and energy are computed in the same function
because Eqgs. (2.43) and (2.44) used to compute these quantities differ only in a coefficient in front
of the nonlinear term. Computation of these quantities requires calculation of spatial derivatives of
the wave function, which is implemented in function diff using Richardson extrapolation formula
of the fourth order [40],

flz —2h) —8f(x —h) +8f(x + h) — f(z — 2h)

f(z) ~ o . (3.2)

Finally, expressions for the chemical potential and energy are integrated using composite Simpson’s
rule. The implementation of calcmuen with the aforementioned calculations in 1d case is illustrated

in Listing 3.6.

Listing 3.6: Calculation of chemical potential and energy in 1D imaginary-time calcmuen function.

Also shown is the numerical differentiation function, based on Richardson extrapolation formula.

void calcmuen(double *mu, double *en, double *psi, double *dpsix, double *psidd2, double
*tmpxi, double *tmpxj) {
long ij;
double psi2, psi2lin, psidd2lin, dpsi2;

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 30

diff (dx, psi, dpsix, Nx);
calcpsidd2(psi, psidd2);

for(i = 0; i < Nx; i ++) {
psi2 = psil[i] * psilil;
psi2lin = psi2 * g;
psidd2lin = psidd2[i] * gd;
dpsi2 = dpsix[i] * dpsix[i];
tmpxi[i] = (pot[i] + psi2lin + psidd2lin) * psi2 + dpsi2;
tmpxj[i] = (pot[i] + 0.5 * psi2lin + 0.5 * psidd2lin) * psi2 + dpsi2;
}
*mu = simpint(dx, tmpxi, Nx);
*en = simpint(dx, tmpxj, Nx);

}

// Calculation of numerical derivative using Richardson extrapolation formula
void diff(double h, double *f, double *df, long N) {

long 1i;
daf[0] = 0.;
df[1] = (£[2] - £[0]) / (2. * h);

for(i = 2; i <N -2; i ++) {
df[i] = (f[i - 2] - 8. = f[i - 1] + 8. = f[i + 1] - f[i + 2]) / (12. * h);

1
df[N - 2] = (£[N - 1] - £[N - 3]) / (2. * h);
df[N - 1] = 0.;

In 2D and 3D, partial derivatives need to be calculated for each direction. Previously published
implementations [13, 16] allocate separate arrays for each partial derivative, that can consume sig-
nificant amount of memory if the mesh size is large. By reorganizing the computation of derivatives
slightly, we can reuse a single array for all calculations involving partial derivatives. This small
change leads to significant reduction in memory usage, especially in 3D programs. For this reason
we have relied on this type of memory usage optimizations for all programs presented in this thesis.

Calculation of RMS sizes in function calcrms is straightforward, given the simplicity of their
definitions (2.53)—(2.57). Relevant portion of the implementation in 1D is shown in Listing 3.7.
Implementation in 2D and 3D relies on the concepts we already presented, hence no further details

will be given.

Listing 3.7: Computation of the RMS size in 1D in imaginary-time propagation.

void calcrms(double *rms, double complex *psi, double *tmpx) {
long 1i;
double psi2;

for(i = 0; i < Nx; i ++) {
psi2 = cabs(psilil);
psi2 *= psi2;
tmpx[i] = x2[i] * psi2;
}

*rms = sqrt(simpint(dx, tmpx, Nx));

In order to use the programs to simulate a given physical system, we need to provide the appro-

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 31

priate input parameters. The parameters of the programs, e.g., the discretization scheme, number of
time steps, trap anisotropy coefficients, coefficients of nonlinear terms, interaction strengths, names
of output files and others, are specified in the input file. Input files are passed to the programs as
runtime arguments, where they are parsed, and the variables obtained in this way are used to initial-
ize the space mesh, the wave function, trap and dipolar potentials, and Crank-Nicolson coefficients.
Listing 3.8 shows how initialization of space mesh and associated wave function, trap potential and
Crank-Nicolson coefficients is implemented in 1D. Initialization of the dipolar potential, which is
not listed here, has a slightly longer implementation and is available in Ref. [16]. In 2D and 3D

this step is performed in an analogous way, and is also not given here.

Listing 3.8: Initialization of space mesh and associated wave function, trap potential and Crank-

Nicolson coefficients in 1D real-time programs.

// Initialization of the space mesh and the initial wave function.
void initpsi(double complex *psi) {

long 1i;

double cpsi = sqrt(sqrt(pi / vgamma));

for(i = 0; i < Nx; i ++) {
x[i] = (i - Nx2) * dx; x2[i] = x[i] * x[i];
}
for(i = 0; i < Nx; i ++) {
psili] = exp(- 0.5 * vgamma * x2[i]) / cpsi;
}
}
// Initialization of the potential.
void initpot() {
long 1i;
double vgamma2 = vgamma * vgamma;

for(i = 0; i < Nx; i ++) {
pot[i] = 0.5 * par * (vgamma2 * x2[i]);
}
}
// Crank-Nicolson scheme coefficients generation.
void gencoef () {
long 1i;

Ax0 = 1. + I * dt / dx2;
AxOr = 1. - I * dt / dx2;
Ax = - 0.5 * I * dt / dx2;

calphax[Nx - 2] = 0.;
cgammax[Nx - 2] = - 1. / AxO;
for (i =Nx -2;i>0;i--){
calphax[i - 1] = Ax * cgammax[i];
cgammax [i - 1] - 1. / (Ax0O + Ax * calphax[i - 11);
}

With all the relevant variables allocated and initialized to the proper values, the time propagation
can now proceed. This is achieved by calling the previously described computation functions in
the main loop, as illustrated in Listing 3.9. Note that in the imaginary-time propagation, as
mentioned earlier, the normalization has to be performed at the end of every time step. In the

current implementation, the number of time iterations is predefined in the input file.

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 32

Listing 3.9: Main loop of the time propagation, for 3D imaginary-time programs.

//Read input, allocate and initialize variables

// Main loop of time propagation
for(i = 0; i < Nrun; i ++) {
calcpsidd2(psi, psidd2, psidd2fft);
calcnu(psi, psidd2);
calclux(psi, cbeta);
calcluy(psi, cbeta);
calcluz(psi, cbeta);
// In imaginary-time propagation, we need additional normalization step
calcnorm(&norm, psi, tmpxi, tmpyi, tmpzi);
// Optionally, physical quantities can be computed after certain number of steps
if (i % 1000 == 0) {
. // Call ’calcmuen’, ’calcrms’ or output functions

}

// Write summary file, clean up and exit

After the predefined number of time steps, programs can compute physical quantities like chem-
ical potential or energy, or they can write to a file the current density profile (absolute square of the
wave function), which can be used for further analysis and/or visualization. Final density profile
of the imaginary-time propagation can be used as the initial value for wave function propagation
in real time. 2D and 3D programs also provide integrated (effective) 1D density profiles, obtained
by integrating the densities over all spatial variables but one. Furthermore, 3D programs can write
integrated 2D density profiles, obtained in a similar way. Output mesh can coincide with the mesh
used by the program, or can be coarser, controlled by the outstpx, outstpy and outstpz input

parameters. Two examples of such output functions are given in Listing 3.10.

Listing 3.10: Examples of output functions from 2D real-time programs that compute and write

density and integrated density to a file.

void outpsi2xy(double complex **psi, FILE *file) {
long i, j;

for(i = 0; i < Nx; i += outstpx) {
for(j = 0; j < Ny; j += outstpy) {
fprintf(file, "%8le %8le %8le\n", x[il, y[j], cabs(psil[il[j]l) * cabs(psil[il[j]1));
}
fprintf(file, "\n"); fflush(file);
}
}

void outdenx(double complex **psi, double *tmp, FILE *file) {
long i, j;

for(i = 0; i < Nx; i += outstpx) {
for(j = 0; j < Ny; j ++) {
tmp[j] = cabs(psili]l[j]1) * cabs(psilil[jl1);
}
fprintf(file, "%8le %8le\n", x[i], simpint(dy, tmp, Ny)); fflush(file);
}

Additionally, all programs write the summary output file, which contains the information on the

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 33

input parameters, and the computed norm, chemical potential and energy. A sample summary file

is given in Listing 3.11.

Listing 3.11: Example of a summary output file of 3D real-time propagation.

Real time propagation 3D, OPTION = 2

Number of Atoms N = 5000, Unit of length AHO = 0.00000100 m
Scattering length a = 100.00%a0, Dipolar ADD = 132.70%a0
Nonlinearity G_3D = 332.4918, Strength of DDI GD_3D = 105.33272
Parameters of trap: GAMMA = 0.50, NU = 1.00, LAMBDA = 1.50

Space Stp: NX = 128, NY = 96, NZ = 80

Space Step: DX = 0.200000, DY = 0.200000, DZ = 0.200000
Time Stp : NSTP = 0, NPAS = 100, NRUN = 900

Time Step: DT = 0.005000

Dipolar Cut off: R = 10.000

* Change for dynamics: GPAR = 1.500, GDPAR = 1.000 *

Norm Chem Ener/N <r> |Psi(0,0,0) "2
Initial: 1.0000 5.81621 4.33909 2.54499 0.02162
After NPAS iter.: 1.0000 5.81920 4.33911 2.54358 0.02181
After NRUN iter.: 1.0000 6.93923 5.00916 2.63297 0.01448

Clock Time: 290 seconds
CPU Time: 290 seconds

The 10 improved programs developed here use the same naming convention as the original C

programs. They can be downloaded from the local repository [37].

3.3 Parallelization on shared memory systems

It can be observed that the implementation described in the previous section is computationally very
demanding, especially in 2D and 3D. This results in long execution time when a large discretization
scheme is used, which makes the programs less appealing for fine-grained simulations, thus making
parallelization a necessity. Parallel implementation on shared memory systems using C language
can be achieved in multiple ways, using a wide array of technologies. These range from automatic
parallelizations built in compilers [41] to specialized language extensions like Unified Parallel C
[42, 43] and Cilk Plus [44]. Given that the parallelization efforts of previous work in Ref. [13] was
focused on using OpenMP, which was shown to achieve 80-90% of the ideal speedup, we adopted
the same approach.

OpenMP is designed for shared memory systems containing multiple processors/cores. It pro-
vides an explicit programming model, based around the concept of using multiple threads to ac-
complish parallelism. OpenMP is published as an open specification [45], and there are numerous
compilers which implement support for it. Usually, a special flag is passed to the compiler (-fopenmp
in GCC or -qopenmp in newer versions of Intel’s compiler) to instruct it to parallelize the code using
OpenMP.

Parallelization in OpenMP is achieved using the fork-join model, where master thread spawns (or

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 34

forks) a number of slave threads to perform a task in parallel, at the end of which the slave threads
join back to the master thread. It relies on compiler directives (called pragmas) and runtime library
routines to achieve this task. Programmers declare parallel regions of the code by using compiler
directives. When a master thread encounters such regions, it creates a team of parallel threads
that execute the statements in the region. When threads complete all statements in the parallel
region, they synchronize and terminate, leaving only the master thread to continue with the serial
execution of the program. This flow is illustrated in Figure 3.4. The number of threads can be
different for any parallel region, however in most cases the number of threads is equal to the number

of processing cores available in the system. Such is the case with the programs presented here.

parallel region

master) parallel region

thread Thread 1 parallel region
W Y | Thread 1

et b e o (iRl e~
R % [Thread2 |
! ! 1 Thread 3

Figure 3.4: The fork-join model, used by OpenMP.

To create parallel regions, we must declare them with the compiler directives. Each OpenMP
directive in C begins with the keyword #pragma omp, followed by a directive name and its optional
clauses, and ends with the new line. When dealing with loops, the declaration of a parallel region
can be shortened, as demonstrated in Listing 3.12. While the second approach results in a cleaner
code that is easier to follow, the first one provides additional flexibility. We use both approaches
in our programs, depending on whether we need to perform any additional work or just parallelize
the loop at hand. Special care must be taken to ensure that each thread has a copy of intermediate
variables it writes, defined in the surrounding parallel region. Otherwise, the compiler would assume
that variable is shared among threads, and each thread would write its own value, overwriting the

data of other threads and leading to concurrency problems.

Listing 3.12: OpenMP compiler directives.

#include<omp.h> // Include the appropriate OpenMP header

#pragma omp parallel // Spawns a team of parallel threads

{
#pragma omp for private(i) // Divides loop iterations between the spawned threads
for(i = 0; i < Nx; i ++) {
tmpx [i] = psi[i] * psilil;
}
}

#pragma omp parallel for private(i) // Shorter, combined parallel worksharing construct
for(i = 0; i < Nx; i ++) {

tmpx[i] = psil[i] * psil[il;
}

Our programs rely on OpenMP to parallelize the most computationally demanding functions,
namely calcnu, calclux, calcluy, calcluz, calcpsidd2, calcnorm, calcmuen and calcrms. Un-

fortunately, OpenMP currently does not provide any support for parallel input and output (I/0),

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 35

leaving this task entirely to the programmer. Performing efficient read/write operations on a single
file in multi-threaded environment is a complex task, and because of this no effort was made to
improve the I/O functions in our programs, and they remain serial.

Since most of the computation in our programs is done in a series of loops, the parallelization
is achieved by assigning the portion of each loop to a different thread. In 1D, that approach would
take the form presented in Listing 3.13.

Listing 3.13: OpenMP parallelization of 1D loop, demonstrated on real-time calcrms function.

void calcrms(double *rms, double complex *psi, double *tmpx) {
long i;
double psi2;

#pragma omp parallel for private(i)
for(i = 0; i < Nx; i ++) {
psi2 = cabs(psil[il);
psi2 *= psi2;
tmpx[i] = x2[i] * psi2;
}
*rms = sqrt(simpint_th(dx, tmpx, Nx));

However, we can observe that this technique would not always work in 1D programs, because
of the recursive relations in calclux function. The first loop requires that cbetal[i] is computed
before cbetali - 1], and similarly with the psi in the second loop. The scan algorithm could be
used to parallelize the loops of this function, however improvements over the serial implementation
would be visible only for simulations with very large number of discretization points (over a million),
which are rarely needed. In multidimensional programs this approach would be even less effective,
as the outer loops are independent and are better suited for parallelization than the innermost loop
with recursive relations. Since the serial implementation in 1D can be considered to be sufficiently
fast on modern hardware, and due to the complexity that parallelization of calclux would entail,
the focus here is placed on improving 2D and 3D variants of the programs. 1D programs remain
only partially parallelized, with all functions except for calclux being threaded.

In multidimensional programs, the outer loops are independent and their work can be divided
between threads. Listing 3.14 illustrates how the loop of 2D real-time calcnu function is parallelized
with OpenMP. The OpenMP runtime would divide the work in such a way that each thread would
process approximately Nx / nthreads elements (with nthreads being the number of threads in
the parallel region), where each element contains the whole inner loop. During computation, values
of several expressions are stored in temporary variables. As mentioned before, each thread must
have a private copy of these variables to avoid overwriting data, so we must specify them in the
parallel construct. This concept is used in the parallelization of calcnu, calclux, calcluy, calcluz
functions and portions of the calcpsidd2 function.

When working with dynamically allocated arrays, for example when writing temporary results
to an array, the variables cannot be made private just by declaring them in the parallel region.
Instead, we have to extend the allocated array so that each thread has a separate portion. For
instance, instead of allocating a vector of Nx elements, we allocate a nthreads x Nx matrix, and use
each row in a different thread. Even though this concept increases the amount of memory programs

use, that increase is not significant as the number of threads is relatively low compared to typical

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 36

Listing 3.14: OpenMP parallelization of 2D loop, demonstrated on real-time calcnu function.

void calcnu(double complex **psi, double **psidd2) {
long i, j;
double psi2, psi2lin, psidd2lin, tmp;

#pragma omp parallel for private(i, j, psi2, psi2lin, psidd2lin, tmp)
for (i = 0; i < Nx; i ++) {
for (j = 0; j < Ny; j ++) {
psi2 = cabs(psilil[j1);
psi2 *= psi2;
psi2lin = psi2 * g;
psidd2lin = psidd2[i][j] * gd;
tmp = dt * (pot[i][j] + psi2lin + psidd2lin);
psilil [j] *= cexp(- I * tmp);

vector sizes. An implementation of this concept is shown in Listing 3.15, which demonstrates how
calcnorm function can be parallelized in 2D. The threads fill out their portion of the tmpy temporary
array, and perform the integration on their portion of the array. The listing also shows how a single
thread in a parallel region can be used to compute the final result. As the variable holding the
final result is not declared to be private, its value is visible to all threads, and can be used in the
parallel region that follows. Other than calcnorm function, parallelization is achieved in this way

in calcmuen and calcrms, so we would not go into their specifics here.

Listing 3.15: Concept used in parallelization of functions requiring temporary storage, demonstrated

on imaginary-time calcnorm function.

#pragma omp parallel
#pragma omp master
nthreads = omp_get_num_threads();

alloc_double_matrix(nthreads, Nx); // Allocate separate array for each thread
alloc_double_matrix(nthreads, Ny);

tmpx
tmpy

void calcnorm(double *norm, double **psi, double **tmpx, double **tmpy) {
int threadid;
long i, j;
double tmp;

#pragma omp parallel private(threadid, i, j)
{

threadid = omp_get_thread_num(); // Get a thread identification number

#pragma omp for
for (i = 0; i < Nx; i ++) {
for (j = 0; j < Ny; j ++) {
tmpy [threadid] [j] = psilil[j] * psilil[j]; // Store data in separate slots
}
(*tmpx) [i] = simpint(dy, tmpy[threadid], Ny);
}
#pragma omp barrier // Wait for all threads to complete

#pragma omp single

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 37

*norm = sqrt(simpint(dx, *tmpx, Nx));
tmp = 1. / *norm; // ’tmp’ is a shared variable, visible to all other threads

}

#pragma omp for
for (i = 0; i < Nx; i ++) {
for (j = 0; j < Ny; j ++) {
psilil [j] *= tmp;
}

These functions rely on numerical integration, which essentially computes a sum of a sequence,
an operation also known as reduction. Reduction can be handled with OpenMP via a special
directive, as we can see in Listing 3.16, which shows how the simpint function was parallelized.
Note that we need parallelized version of numerical integration only when invoked from outside the
threaded loops, as the computation loops themselves are parallelized. Further attempts to perform

nested parallelization would not yield any improvement in this case.

Listing 3.16: OpenMP parallelization of numerical integration, using the reduction clause.

double simpint_th(double h, double *f, long N) {
int c;
long ij;
double sum = f[0];

#pragma omp parallel for private(i, c) reduction(+:sum)
for (i =1; 1 < N -1; i ++) {
c=2+2x*x (1% 2);
sum += ¢ * f[i];
}
sum += f[N - 1];

return sum * h / 3.;

The final portion of the programs that has to be parallelized is the DFT. Instructing FFTW to
use OpenMP is a simple task, and requires minimal changes to the code. Before any plan is created
or any FFTW function is used, we initialize the threaded FFTW by calling two functions shown in
Listing 3.17. The plan creation and execution remain unchanged. Finally, the compiled programs
should be linked with the threaded FFTW, by linking to -1fftw3_omp in addition to the -1fftw3.

Listing 3.17: Initialization of threaded FFTW.

#pragma omp parallel
#pragma omp master
nthreads = omp_get_num_threads();

fftw_init_threads();

fftw_plan_with_nthreads(nthreads);

// Create plans as usual, e.g., 3D FFT plans

plan_forward = fftw_plan_dft_r2c_3d(Nx, Ny, Nz, **psidd2, psidd2fft, FFT_MEASURE);
plan_backward = fftw_plan_dft_c2r_3d(Nx, Ny, Nz, psidd2fft, **psidd2, FFT_MEASURE);

This step completes the OpenMP parallelization of the programs from previous section. The

CHAPTER 3. ALGORITHM FOR SHARED MEMORY SYSTEMS 38

remaining portions of the code, mainly output functions, are not suitable for parallelization, and
were thus not improved.

Using the concepts described, we have parallelized all programs in 1D, 2D and 3D, for both
imaginary- and real-time propagation, resulting in 10 parallel programs. The programs form a
package named DBEC-GP-OMP, a subset of a package DBEC-GP-OMP-CUDA-MPI, published in
Ref. [18] and available for download from Refs. [46, 37]. Names of the programs are the same as
in serial implementation with the suffix “-th” added. Detailed performance review of parallelized

programs presented in this section will follow in Chapter 8.

Chapter 4

Solving NLSE using GPU

accelerators

With the shared memory algorithm described and parallelized in the previous chapter, we can con-
sider using an accelerator processor to achieve even better performance. Use of special-purpose
hardware architectures to accelerate computationally demanding applications is becoming standard
practice in the scientific community. In this chapter we will present the algorithm and implemen-
tation which uses one such accelerator, namely the graphics processing unit (GPU). As their name
implies, GPUs have been originally designed for graphics-oriented tasks, however nowadays their
enormous processing power can be used for general-purpose computation, giving rise to a prac-
tice that is now known as general-purpose computing on graphics processing units (GPGPU). They
achieve this by relying on the large number of slower low-power processing cores, designed to pro-
cess many parallel streams of data simultaneously, but are ill-suited for complex processing of few
streams of data. This is in contrast to modern CPUs, which have few very fast latency-oriented
cores, designed to handle single or few streams of data with complex processing (such as regular
desktop applications). As a result, GPUs are better suited to handle tasks that significantly benefit
from parallelization, which is why we considered using them for our algorithms.

Using GPUs for general-purpose computing by programming only with graphics primitives
would be very time consuming and error-prone, severely limiting the usefulness of GPUs in high-
performance computing. Fortunately, GPU vendors have recognized this and developed the inter-
faces for general-purpose programming on GPUs. There are two competing APIs in this space,
CUDA [47] and OpenCL [48]. CUDA (formerly an acronym for Compute Unified Device Architec-
ture) is a mature, proprietary, C, C++ and Fortran API and computing platform created by Nvidia,
available since 2007. All Nvidia GPUs from that time onward support CUDA, with each generation
of GPUs adding more features. GPUs from other vendors are not supported. It is available for free,
but is not open-source.

On the other hand, OpenCL, initially developed by Apple, but since transferred to Khronos
group, is the standardized approach to programming on heterogeneous platforms. As such, it is not
limited only to GPUs from a single vendor (like CUDA is with Nvidia), rather it supports a plethora
of different platforms, from CPUs and GPUs to digital signal processors (DSPs), field-programmable
gate arrays (FPGAs) and more. Nvidia GPUs also support OpenCL, however it is implemented on

39

CHAPTER 4. SOLVING NLSE USING GPU ACCELERATORS 40

top of CUDA, and often has worse performance than using pure CUDA [49]. OpenCL specification
is based on the subset of C language, and is similar in functionality to CUDA. Being a standard
though, OpenCL often lags a bit with adding new functionality when compared to CUDA, which is
controlled by a single company. Note that this is usually not a problem, even for advanced usage.

With the functionality being similar in both CUDA and OpenCL, the choice between the two
is often based on the available hardware or developer’s personal preference. Since the PARADOX
supercomputing facility, where all our programs were developed and tested, has Nvidia GPUs, we
have decided to use CUDA for implementation of our algorithm.

In the following sections of this chapter we will first describe the CUDA programming and
execution model, taking note of the features we used in our programs, and then proceed with the
explanation of the changes to the algorithm required by the implementation using CUDA, and finish

with the important details of the implementation itself.

4.1 CUDA programming and execution model

Hardware architecture of Nvidia (and other) GPUs differs in some significant ways to the x86 CPU
architecture. Understanding these differences is the key to exploiting the full potential of GPUs.
CPU architectures have historically been focused on increasing performance for serial applications,
however this trend has slowed down due to energy consumption and heat dissipation problems
that arose with increasing clock frequency. Since then the CPU architectures switched to using
multiple processing units, giving rise to the multi-core systems which are in use today. On the
other hand, GPUs have been focused with increasing performance of floating-point calculations in
response to the demand from video game industry. So instead of investing in advancing control
logic and branch prediction that would rival the current CPU designs, GPU vendors have focused
on increasing throughput through the use of massive number of threads. This approach has been
dubbed many-core, signifying the larger number of threads than the multi-core systems have. The
software written for this type of computing platform is expected to work with the large number of
parallel threads, which the hardware takes advantage of to hide the latency of the memory accesses
or arithmetic operations.

Hardware implementation of aforementioned concepts comes in a form of Streaming Multipro-
cessor (SM). The Nvidia GPU architecture is built around an array of these SMs, each executing in
parallel with the others. Inside each SM there is a number of CUDA cores that execute a sequential
thread, various caches, special function units (SFU) that are used for transcendental operations
(e.g., sin, cos) and a small amount of shared memory available to all CUDA cores within the SM.
A simplified architecture of a CUDA device is shown in Figure 4.1. Modern Nvidia GPUs have a
large number of SMs and cores, which, when combined, allow for hundreds or even thousands of
simultaneous threads to execute. For example, the previous-generation Tesla M2090 has 512 cores,
while the newer Tesla K80 has 4992 CUDA cores. Cores execute in Single Instruction Multiple
Thread (SIMT) model, similar to the Single Instruction Multiple Data (SIMD) model [50]. This
means that all cores within the same group execute the same instruction at the same time, in lock-
step fashion. These groups are called warps, and in current hardware implementations, each warp
has 32 threads. One peculiar behavior of SIMT is in case of conditionals, which SIMT handles by

disabling the threads that would not execute the same code, and then rerun the same code with the

CHAPTER 4. SOLVING NLSE USING GPU ACCELERATORS 41

previously disabled threads re-enabled. This has negative performance impact, therefore conditional

computation that would cause thread divergence should be avoided in GPU code, if possible.

Streaming
multiprocessor

Graphics processing unit

| su || sm || sm || su |

Core Core

o [[on] [ou]

Core Core

| su || sm || sm || su |

Core Core

4 4 4 A

A A A v
GPU DRAM

Core Core

Shared memory

Figure 4.1: Simplified architecture of modern Nvidia GPU.

Within each SM, there is also a small amount of cache memory, named shared memory, which
is available to all threads within the SM. Because it resides on-chip, shared memory is much faster
than main GPU memory, but it is limited in size, with most GPUs having access to 48-96 KB. This
type of memory is useful for many scenarios, such as user-managed data caches or high-performance
cooperative parallel algorithms (like parallel reductions, which we use in our algorithm for numerical
integration).

The main memory of the GPU (named global memory in CUDA terminology), its RAM, is
separate from the main memory of the host computer on which the GPU is installed. GPU is
connected to a host through PCI-Express, and all data transfers between the host and GPU device
have to go through this I/O bus. Data is usually transferred between the GPU and host memory
using direct memory access (DMA), either in synchronous or asynchronous fashion. Alternatively,
GPU may access host’s memory through so called mapped memory, where data transfers happen
on the fly, however, accessing memory in this way is usually far slower and should thus be used
sparingly. Current-generation Nvidia GPUs offer between 2 GB and 24 GB of memory, which is
enough for some use-cases, but still noticeably less than amount of RAM memory current high-end
computing nodes have. This means that for memory-demanding programs, such as the ones we
describe in this thesis, efficient use of GPU memory is paramount.

CUDA execution model states that instructions are issued and executed per warp. This is also
true for global memory operations. The CUDA device combines, or coalesces, these global memory
load/store operations issued by threads of a warp into as few transactions as possible, to maximize
memory throughput. Additionally, for data to be read or written by memory transactions it must
be naturally aligned, i.e., its first address must be a multiple of their size (32, 64, or 128 bytes).
This means that the most favorable memory access pattern is achieved when all threads in a warp
access consecutive global memory locations, and in the case of multidimensional data, its innermost
dimension must be padded to the nearest natural boundary. The difference between coalesced and
non-coalesced (non-sequential or unaligned) access pattern is illustrated in Figure 4.2. Failure to
meet the coalesced access pattern will result in more transactions per instruction, reducing the

memory throughput and increasing execution time. Memory coalescence is also very important

CHAPTER 4. SOLVING NLSE USING GPU ACCELERATORS 42

when dealing with multidimensional data. For accesses to this type of data to be fully coalesced,
the number of elements in its innermost dimension must be a multiple of the warp size. In particular,
this means that data whose innermost dimension is not a multiple of this size will be accessed much
more efficiently if it is actually allocated with a number of elements in its innermost dimension

rounded up to the closest multiple of this size.

Sequential and aligned Aligned but non-sequential Unaligned Memory Access
Address
256 128 256 128 256 257
e e S
Thread ID ° 31 0 31 0 31

Figure 4.2: Different memory access patterns on GPU device.

Programming for CUDA devices in done via a C-like language, which is essentially an extension
of C language to support GPU computation. CUDA programming model reflects the heterogeneous
nature of a system which has a GPU, by making a distinction between the host code, which executes
on the CPU, and the device code, which executes on the GPU. Host code may contain any valid C
code, whereas device code is declared by special language extensions. Any given CUDA source file
may contain a mixture of host and device code. Because CUDA source file with device code is not
valid C, it needs to be compiled with a special compiler, the Nvidia C compiler (nvcce). Internally,
nvcc works by splitting the source files into host and device code, compiling them separately, and
then linking them into a final executable. It can also be used to compile and link only the device
code, which is useful when integrating CUDA code into existing programs.

A key component of CUDA programming model is the kernel, a specially annotated function
that executes on the CUDA device. When the kernel is invoked, or launched, it is executed by
a large number of threads on the device. Kernels do not create or manipulate threads directly,
instead the number of threads is defined during kernel launch and device takes control of creating
and scheduling them for execution. To differentiate between the threads and to assign different
work for them, special variables exist which can only be used inside kernels. Kernel is launched
using a special syntax, in the form of kernel_name«< ... »>(...), where the launch parameters

are specified. Listing 4.1 demonstrates the basic definition and execution of a CUDA kernel.

Listing 4.1: Example of a simple CUDA program, with transferring data to/from GPU device,

executing a kernel, and allocating/deallocating resources.

#include <stdio.h>

// Kernels are functions defined with ’__global__’ and returning ’void’

__global__ void square(int Nx, double *psi, double #*psi2) {
int i = blockIdx.x * blockDim.x + threadIdx.x; // Compute the thread index in a grid
if (1 < Nx) psi2[i] = psi[i] * psilil; // Ensure that we don’t go out of bounds

}

void main() {
int Nx = 1<<20; // 1048576
double *h_data, *h_data2, *d_data, *d_data2;
// Allocate data on host and device
data = (double*) malloc(Nx * sizeof (double));
data2 = (double*) malloc(Nx * sizeof(double));

CHAPTER 4. SOLVING NLSE USING GPU ACCELERATORS 43

cudaMalloc(&d_data, Nx * sizeof(double));

cudaMalloc(&d_data2, Nx * sizeof (double));

// Initialize ’h_data’

for (int i = 0; i < Nx; i++) { ... }

// Copy data from host to device

cudaMemcpy (d_data, h_data, Nx * sizeof (double), cudaMemcpyHostToDevice);
// Invoke kernel with 256 threads per block, 4096 blocks in total
square<<<(Nx + 255) / 256, 256>>>(Nx, d_data, d_data2);

// Copy the result from device back to host

cudaMemcpy (h_data2, d_data2, Nx * sizeof (double), cudaMemcpyDeviceToHost) ;
// Use ’h_data2’ for anything

for (int i = 0; i < Nx; i++) { ... }

// Free resources

cudaFree(d_data); cudaFree(d_data2); free(h_data); free(h_data2);

Collection of threads that are generated by a kernel launch are referred to as a grid. When a host
code launches a kernel, the CUDA runtime system generates a grid of threads that are organized
in a two-level hierarchy. On the first level, each grid is organized into an array of thread blocks,
which are in turn organized as an array of threads on the second level. All thread blocks of a
grid are of the same size, and (on current CUDA devices) each thread block can contain up to
2048 threads. The number of threads in each thread block and the number of thread blocks are
specified in the host code with kernel launch parameters. This hierarchy allows CUDA programming
model to be scalable regardless of the underlying GPU architecture. CUDA runtime is in charge of
scheduling thread blocks for execution on available SMs. Because there is no guarantee of which
thread blocks are currently executing nor is their order of execution known in advance, there is no
way to synchronize between thread blocks. Instead, it is expected that algorithms will be designed
in a way so that they do not require synchronization between thread blocks. The array of thread
blocks in a grid and the array of threads in a block are not necessarily 1D, and may be organized
as 2D or 3D arrays. In fact, these arrays are always 3D, with unused dimensions initialized to 1.

Figure 4.3 illustrates the thread hierarchy on an example with 2D array of thread blocks.

Grid Block
‘Block (0,0)‘ ‘Block (0,1)‘ ‘Block (0,2)‘ ‘Block (0,3)‘

‘ Block (1,0) ‘ ‘ Block (1,1) ‘ ‘ Block (1,2) ‘ ‘ Block (1,3) ‘

A A J
GPU with 2 SMs GPU with 4 SMs

‘SMOHSM1‘ ‘SMOHSM1HSM2HSM3‘

|
)]|) e)

Figure 4.3: Execution of 2D array of thread blocks on a different number of SMs.

Kernels operate on device memory and in most cases have no access to host memory. Just

CHAPTER 4. SOLVING NLSE USING GPU ACCELERATORS 44

like the memory in a traditional C program, memory on the device must first be allocated, and
then freed after use. Working with device memory is very similar to the way we work with host
memory. There are four main memory operations, cudaMalloc, cudaMemcpy, cudaMemset and
cudaFree, which are the counterparts of the standard C functions malloc, memcpy, memset and
free, respectively. In most cases, CUDA programs follow the same processing flow, where the data
required for computation is first copied from the host’s memory to the device, then one or more
kernels are invoked that perform some computation using that data, and finally the resulting data
is copied back to the host. Since the memory transfers use the PCI-Express bus to copy the data
between memories of host and device, they are in general much slower than the computation on
either the host or the device. For this reason it is very important to minimize memory transfers,
as well as to use asynchronous operations to overlap memory transfer with computation. We relied
on these techniques in our heterogeneous implementation, with details presented in Chapter 5.

An important aspect of CUDA programming is error handling. All CUDA runtime functions
return an error code and it is good practice to check for errors after any CUDA runtime function is
invoked. Since the errors they produce usually do not terminate the whole program, failure to check
for errors can lead to many unexpected situations and complicate debugging. In examples which
we present throughout this thesis we will omit the error checking for brevity, however the proper
error handling is in fact implemented in all of the GPU-related portions of the programs presented.

In this section we have described only the most basic concepts of GPU programming with
CUDA. Many details have been omitted as we focus on the core concepts that we relied on in our
implementations. More detailed description of CUDA can be found in [51, 52, 53].

4.2 CUDA implementation of shared memory algorithm

The significant differences in architecture of the GPU and its accompanying execution model on
one side, and CPU architecture with its conventional execution model on the other side, did not
result in significant changes to the main algorithm we employ. From the algorithm’s point of view,
both CPU and GPU are shared memory systems with multiple processing units, even though they
are vastly different, and therefore can be used in a similar manner. Main loop of the algorithm
remains unchanged, as well as each substep. Auxiliary algorithms, like the algorithm for numerical
integration, which are more dependent on the execution model, need to be adapted to the new
environment, as we will describe below.

While the algorithm and thus the flow of the programs remain conceptually the same, actual
implementation on CUDA platform required significant changes to C/OpenMP programs. We have
focused our efforts on using GPU for computationally demanding functions performing time evo-
lution of the wave function (calcpsidd2, calcnu, calclux, calcluy and calcluz), normalization
(calcnorm) and calculation of physical quantities (calcmuen, calcrms). As 1D variants of the
programs are sufficiently fast even in their serial implementation, and the inherent difficulty in
parallelizing recursive relations which are part of calclux, calcluy and calcluz functions, we
have implemented the algorithm on GPU for 2D and 3D variants of the programs. In the resulting
implementation, CPU host was used for initialization of variables, control of program flow, and I/O.
Computation functions were reimplemented as CUDA kernels, while the initialization and output

functions have remained host-only and serial. Since the initialization of variables uses host RAM

CHAPTER 4. SOLVING NLSE USING GPU ACCELERATORS 45

memory, programs require the same amount of host and device memory. Before any computation
begins, variables are copied to GPU device, where they remain during computation, and only wave
function variable (psi) is returned back to CPU memory when it is required for writing output.
Implementation was done in several steps, each offloading more computation to the GPU.

The first step in migration to the CUDA platform was to use CUDA built-in types for complex
numbers instead of the ones provided by the C99 standard. This was necessary only in real-
time propagation programs because complex numbers, as implemented in C99 standard of the C
language, are not directly supported in CUDA device code. However, converting them to CUDA
built-in complex types is possible as they share the same binary representation. Complex numbers
in CUDA do not support all the operations that C99 standard provides. Namely, the function to
compute the complex exponential of a number, which we rely on in function calcnu, is missing. This
function can be replaced by an approximation using sincos function available in Linux (though it
is not part of a standard C library).

Next step was to replace the FFTW library used by C/OpenMP programs with the cuFFT
library, which is available in CUDA. cuFFT provides two interfaces: the native one and the FFTW
one [54]. FFTW interface is intended to be used as a drop-in replacement for FFTW, allowing
programs written primarily with FFTW in mind to use CUDA GPUs with minimal modifications to
the source code. While this interface could be used as a temporary solution during the development
of CUDA programs, our goal of using CUDA for all computation relating to the propagation of the
wave function could only be reached with the native cuFFT interface. This interface is modeled
after FE'TW but differs from it in the way plans are created and executed. In cuFFT, precision and
type of data of the transform is determined by the functions initiating execution of plans, which
results in a slightly different sequence of function calls. We used cuFFT in much the same way as
FFTW, for doing R2C and C2R FFT transforms.

With the computation of FFT offloaded to GPU, we proceed and port the remaining wave
function propagation functions to GPU. Most of the computation functions have nested loops, either
two or three levels deep. This could naturally be mapped onto a 2D or 3D grid of threads, with each
thread processing a single element of the corresponding arrays. This is the standard approach when
writing CUDA kernels, called monolithic kernel, and is often found in CUDA textbooks. While
this way of writing kernels is sufficient for our needs, we have opted to use grid-stride loops when
writing kernels, as proposed in Ref. [55]. Basic grid-stride loop is illustrated in Listing 4.2. The
stride of the loop is the total number of threads in the grid, which means that all memory accesses
are coalesced for maximum performance, in the same way as in the monolithic approach. Addition
of a loop in a kernel does not add to its instruction complexity, which would impact performance.
This is because we need instructions of the same complexity in the form of conditional statements in
the monolithic kernel to ensure that we do not access data out of bounds. We should also note that
we have found grid-stride loops to be more flexible and easier to debug. Kernels with grid-stride
loops can be launched with just a single thread and a single block, which would essentially make
the kernel serial in nature and thus far easier to debug.

The remaining functions we ported, calcnorm, calcmuen and calcrms, rely on 1D spatial in-
tegration implemented with composite Simpson’s rule. This function requires computation of a
sum of elements of an array, which is trivial to implement in serial or OpenMP code, but can

be much more difficult using CUDA due to lack of global synchronization between thread blocks.

CHAPTER 4. SOLVING NLSE USING GPU ACCELERATORS 46

Listing 4.2: Example of 1D grid-stride loop.

int i, tid_x, grid_stride_x;

tid_x = blockIdx.x * blockDim.x + threadIdx.x;
grid_stride_x = blockDim.x * gridDim.x;

for (i = tid_x; i < d_Nx; i += grid_stride_x) {

}

Nvidia GPUs have support for atomic operations, which could be used to significantly simplify the
implementation, however, only the latest-generation Nvidia GPUs have the hardware support for
atomic operations on double precision data. Alternative implementations of atomic operations on
double precision data rely on compare-and-swap (CAS) instructions that may incur a performance
penalty [56]. For this reason we have based our implementation of composite Simpson’s rule on the
reduction algorithm from Ref. [57]. We extended the reduction algorithm to support array sizes
which are not powers of two and to compute three sums simultaneously. The algorithm operates in
two steps, implemented as two kernel invocations. In the first invocation, each thread block creates
a partial sum using a tree-based approach with shared memory and stores the partial result in main
memory. In the second kernel invocation, this time with only one thread block, the partial sums
from previous invocation are combined to produce the final result. An illustration of the algorithm

is given in Figure 4.4, and its implementation is shown in Listing 4.3.

Thread block 1 Thread block 2 Thread block 3 Thread block 4

Q Phase 1
(Local reduce)
v v
Phase 2
(Global reduce)

Single thread block

Figure 4.4: Two-phase reduction algorithm on CUDA device. In this example, four thread blocks

are used in the first phase, while a single block computes the final result in the second phase.

Listing 4.3: Implementation of composite Simpson’s rule with CUDA.

// Initiate temporary storage on device
void simpint_init(long N) {
sum = alloc_double_vector_device(1);
sumi = alloc_double_vector_device(1);
sumj = alloc_double_vector_device(1);

sumk = alloc_double_vector_device(1);

tsumi = alloc_double_vector_device(ceil(1. * N / CUDA_BLOCK_SIZE / 2));
tsumj = alloc_double_vector_device(ceil(1l. * N / CUDA_BLOCK_SIZE / 2));
tsumk = alloc_double_vector_device(ceil(1. * N / CUDA_BLOCK_SIZE / 2));

CHAPTER 4. SOLVING NLSE USING GPU ACCELERATORS

47

double simpint_gpu(double h, double *f, long N) {

__global

double f_sum;

dim3 block; dim3 grid; int shmem;

block.x = CUDA_BLOCK_SIZE; // For example, 128

grid.x = ceil(1. * N / block.x / 2);

shmem = 3 * block.x * sizeof(double);

// Compute partial sums and reduce to a single block

simpintld_kernelil<<<grid, block, shmem>>>(tsumi, tsumj, tsumk, f+1, f, f+2, N-2, 2);
// Compute final sums with just one block

simpintld_kernell<<<1, block, shmem>>>(sumi, sumj, sumk, tsumi, tsumj, tsumk, grid.x,1);
// Compute the final result of integration

simpintld_kernel2<<<1,1>>>(h, sum, sumi, sumj, sumk, f, N);

cudaMemcpy (&f _sum, sum, 1 * sizeof (double), cudaMemcpyDeviceToHost);

return f_sum;

__ void simpintld_kernell(double *sumi, double *sumj, double *sumk, double *ini,
double *inj, double *ink, long N, int step) {

extern __shared__ double psumi[]; // Shared memory for partial sums

double *psumj = &psumi[blockDim.x]; double *psumk = &psumi[2 * blockDim.x];

double tsumi = 0.; double tsumj = 0.; double tsumk = 0.;

int tid = threadIdx.x;
long idx = (blockIdx.x * blockDim.x + tid) * step;

if (idx < N) {
tsumi += ini[idx]; tsumj += inj[idx]; tsumk += ink[idx];

}
psumi[tid] = tsumi; psumj[tid] = tsumj; psumk[tid] = tsumk;
__syncthreads();

// Start the shared memory loop on the next power of 2 less than the block size.
// If block size != power of 2, accumulate the intermediate sums in the remainder range.
int pow2 = blockDim.x;

if (pow2 & (pow2-1)) {
while (pow2 & (pow2-1)) {
pow2 &= pow2-1;
}
if (tid >= pow2) {
psumi[tid-pow2] += psumi[tid];
psumj[tid-pow2] += psumj[tid];
psumk [tid-pow2] += psumk[tid];
}
__syncthreads();
}
for (int th = pow2 >> 1; activeThreads; activeThreads >>= 1) {
if (tid < activeThreads) {
psumi[tid] += psumi[tid+activeThreads];
psumj[tid] += psumj[tid+activeThreads];
psumk [tid] += psumk[tid+activeThreads];
}
__syncthreads();
}
if (tid == 0) {
sumi [blockIdx.x] = psumi[0]; sumj[blockIdx.x] = psumj[0]; sumk[blockIdx.x] = psumk[0];
}

CHAPTER 4. SOLVING NLSE USING GPU ACCELERATORS 48

}
__global__ void simpintld_kernel2(double h, double *sum, double *sumi, double *sumj,
double *sumk, double *f, long N) {
*sum = *sumj + 4. * *sumi + *sumk;
if(N % 2 == 0) *sum += (5. * f[N - 1] + 8. *x f[N - 2] - f[N - 3]) / 4.;
*sum = *sum * h / 3.;
}

The aforementioned algorithm works well in situations where we need just one call of the in-
tegration function. However, in our programs, this routine is often called inside nested loops.
Invoking two kernels in each iteration creates an overhead that makes this approach slower than
the OpenMP-threaded programs. In case of nested loops, we can use the similar approach used
in calclux, calcluy and calcluz functions, by performing the whole integration in each GPU
thread. Just like in the case of recursive relations, the integration via composite Simpson’s rule
is much slower on GPU threads than on CPU threads, however the large number of parallel GPU
threads successfully hides their individual latency. Since both approaches have strengths and weak-
nesses, we used a combination of both in our implementation of calcnorm, calcmuen and calcrms

functions. These functions share a common flow, shown in Listing 4.4.

Listing 4.4: Performing reduction along multiple directions, demonstrated on the 3D real-time

calcrms function.

void calcrms(...) {
// Prepare data in a tensor
calcrms_kerneli1x<<<dimGrid3d, dimBlock3d>>>(psi, tmpyzx, d_x2);
// Reduce from 3D to 2D
simpint3d_kernel<<<dimGrid2d, dimBlock2d>>>(dx, tmpyzx, tmpyz, Ny, Nz, Nx);
// Reduce from 2D to 1D
simpint2d_kernel<<<dimGridld, dimBlock1d>>>(dz, tmpyz, tmpy, Ny, Nz);
// Reduce from 1D to scalar
rms[1] = sqrt(simpint_gpu(dy, tmpy, Ny));

__global__ void simpint2d_kernel(double h, cudaPitchedPtr matrix, double #*vector, long N1,
long N2) {

for (i = blockIdx.x * blockDim.x + threadIdx.x; i < Ni1; i += blockDim.x * gridDim.x) {
matrixrow = get_double_matrix_row(matrix, i);
vector[i] = simpint(h, matrixrow, N2); // Each thread calls sequential function

__global__ void simpint3d_kernel(double h, cudaPitchedPtr tensor, cudaPitchedPtr matrix,
long N1, long N2, long N3) {

for (i = blockIdx.y * blockDim.y + threadIdx.y; i < Ni1; i += blockDim.y * gridDim.y) {
matrixrow = get_double_matrix_row(matrix, i);
for (j = blockIdx.x * blockDim.x + threadIdx.x; j < N2; j += blockDim.x * gridDim.x){
tensorrow = get_double_tensor_row(tensor, i, j);
matrixrow[j] = simpint(h, tensorrow, N3);

}

CHAPTER 4. SOLVING NLSE USING GPU ACCELERATORS 49

In Section 3.1 we mentioned that we perform flat allocation of CPU memory even when deal-
ing with multidimensional data. This property was especially useful when transitioning to GPU.
Contiguous (flat) memory allowed us to transfer whole multidimensional variables with one call
to cudaMemcpy. While we also used flat allocations on GPU, we did not rely on double or triple
pointers to index our variables. Using them is possible on GPU, however correct usage is much
more complicated, and may reduce performance [58]. Since we are focused on 2D and 3D variants
of our programs, we also had to ensure that we are optimally accessing memory of multidimen-
sional variables. To this end, we have used pitched memory allocations, to make sure that the
allocation is appropriately padded to allow coalesced access. Pitched memory can be allocated
with cudaMallocPitch or cudaMalloc3D which perform the same allocation routine, just with a
slightly different interface. Transferring pitched data to/from GPU is also done with special func-
tions, cudaMemcpy2D and cudaMemcpy3D, which follow the same differences. We settled on using
cudaMalloc3D and cudaMemcpy3D in our programs, which we found to be more convenient due to
the fact that cudaMalloc3D neatly groups all allocation-related variables in one C structure. The
pitch of allocation must be used to access elements of an allocated array, which makes the index
calculation slightly different, as shown in Listing 4.5. Note that in these functions the innermost
dimension (Nz in our case) is specified first, and the slowest changing (Nx) last, resulting in an
unusual order when compared to the memory allocation functions we presented in the previous

chapter. Nevertheless, this is just a cosmetic issue which does not impact performance in any way.

Listing 4.5: Accessing pithed memory on a device.

// Allocated memory resides in a special structure
struct cudaPitchedPtr tensor;
cudaMalloc3D(&tensor, make_cudaExtent(Nz * sizeof(double), Ny, Nx);

// Define code for accessing specified row
// Equivalent to double *row = tensor[slice] [row] on host
__device__ double *get_double_tensor_row(cudaPitchedPtr tensor, long slice, long row) {
return (double *)((((char *)tensor.ptr) + slice * tensor.pitch * tensor.ysize) + row *
tensor.pitch);

}

// From device code, access the specified row, and k-th element inside
// Equivalent to double val = tensor[i] [j][k] in host code

double *tensorrow = get_double_tensor_row(tensor, i, j);

double val = tensorrowl[k];

Changes required to support pitched memory were in most cases straightforward, however special
care has to be taken when working with cuFFT, as its basic interface does not assume that memory
is padded. Similarly to the advanced interface of FFTW, the advanced interface of cuFF'T supports
working with a subset of a larger (in this case padded) multidimensional array. Using pitched
memory does not cause a significant increase in memory usage on GPU in most cases. On the
other hand, parallelization of outer loops requires additional per-thread memory, in the same way
as in OpenMP parallelization. Since GPU usually executes more threads simultaneously than what
is available on the CPU, this increase can be significant. Given that GPUs in most cases have
less RAM than their host, high memory usage means that the GPU can be used for much smaller
problem sizes.

To curb memory usage, we reused memory as much as possible, and reduced the memory foot-

CHAPTER 4. SOLVING NLSE USING GPU ACCELERATORS 50

print of some functions. We allocate up to four matrices/tensors (for 2D and 3D, respectively),
which are used throughout the programs. These four matrices/tensors hold wave function values
(variable psi), temporary data, trap potential (pot) and Fourier transform of the dipolar potential
(potdd).

Allocating data for the two potentials that we use has been made optional, and can be exploited
to further reduce memory usage. We exposed this functionality through POTMEM input parameter.
The three possible values of POTMEM are 0, 1 and 2. Setting the value of POTMEM to 2 instructs the
programs to allocate two separate matrices/tensors which will be used to store trap potential and
dipolar potential in GPU memory. This provides the best performance at the expense of increased
memory usage, and thus smaller maximum mesh size. Setting POTMEM to 1 will allocate only one
matrix/tensor, which will store one of the two potentials, as needed. The required potential will be
copied asynchronously in the background while other computations on GPU take place. Initially, the
matrix/tensor will store trap potential. During execution of the calcpsidd?2 function, the dipolar
potential will be copied over the trap potential, and after it is no longer needed, the trap potential
will replace it for the rest of the computation. This cycle will repeat itself in each iteration of the
wave function propagation. The last option, setting POTMEM to 0, will not allocate any memory
for the potentials on GPU, and will instead expose the host memory of the potentials as mapped
memory. Leaving the POTMEM parameter undefined will instruct the programs to try and select the
optimal value based on the size of the mesh. Figure 4.5 illustrates the three different settings of
the POTMEM parameter. We suggest using POTMEM value of 2 if possible, or leaving it undefined, and
using values of 1 or 0 if programs do not correctly predict the optimal value, or the problem cannot
fit into GPU memory.

POTMEM =2 POTMEM =1 ! POTMEM =0

Host psi | pot ||potdd| | | pot || potdd | | pot || potdd
. , temp pot or ¥

Device psi array pot potdd potdd pot 1 potdd

Figure 4.5: Hlustration of placement of relevant variables in CPU and GPU memory.

We allocate matrix/tensor for temporary data as a flat array of double or double complex
values, in the same way as for the other matrices/tensors. This matrix/tensor is used in real-time
propagation functions calclux, calcluy and calcluz to store the Crank-Nicolson coefficients.
Alternatively, complex matrix/tensor can be further divided into two matrices/tensors of double
values. Since the arrays we get in this way are also used in computation of R2C FFT, we had
to ensure the matrix/tensor had the proper size, that is 2 * Nx * (Ny / 2) and 2 * Nx * Ny *
(Nz / 2) in 2D and 3D variants of programs, respectively. To use this memory allocation scheme
effectively, we had to reorganize some of the computations inside calcmuen and calcpsidd2. In
fact, the memory optimizations of those two functions mentioned in Chapter 3 were inspired by
the optimizations we had to introduce in GPU variants of programs. Changes required in these

functions are conceptually very similar to the ones we presented in Chapter 3, therefore we will

CHAPTER 4. SOLVING NLSE USING GPU ACCELERATORS o1

not go into all of their details here. One notable difference is the additional restriction we have to
place on FFT computation in order to keep its memory usage in check. We do this by ensuring
that cuFFT reuses temporary storage we already allocated to store its intermediate results. By
default, cuFFT will allocate memory for intermediate results separate from the already allocated
input/output arrays. This can be changed, however we must ensure that we have allocated enough
memory to meet cuFFT demands. The amount of memory required for FFT temporary data varies
with the transform size due to different algorithms used. Some transform sizes require much more
memory than others, in some cases up to eight times more [54]. This amount can be larger than
what we have already allocated, in which case the programs will select a nearest larger transform
size that can fit in the allocated memory and perform the computation as if the user has entered
the corresponding number in the input file for the mesh size. The output of programs will report if
it had to make these adjustments to the mesh size.

When all the memory optimizations are combined, we get an approximately 50% reduction in
the memory usage compared to the initial GPU implementation. This not only allowed us to use
this implementation for much larger mesh sizes, but also to use similar optimizations to improve all
variants of programs descried in this thesis.

CUDA programs have been grouped and published as DBEC-GP-CUDA package in Ref. [17],
which can be downloaded from Refs. [59, 37]. The package consists of 2D (corresponding to -
y and z-z planes) and 3D programs, in both imaginary- and real-time propagation, resulting in 6
programs in total. We followed the similar naming convention as in the case of OpenMP-parallelized
programs, by adding a suffix “~cuda” to the base program name. Performance evaluation of these

programs is given in Chapter 8.

Chapter 5

Hybrid algorithm for

heterogeneous computing systems

In this chapter we describe the hybrid algorithm targeting heterogeneous systems. While this
algorithm can be implemented on every heterogeneous system where processing resources have
separate memory (i.e., the memory is not shared), here we focus on platforms consisting of CPUs
and GPUs on the same computer, as it is the most common heterogeneous platform. Thus, the
algorithm described here is a combination of algorithms from Chapters 3 and 4, further extended to
allow for simultaneous computation. The resulting hybrid algorithm and its implementation is made
possible by the fact that pure GPU solution does not use CPU for any computation, rather the CPU
is used only to control the execution of GPU kernels and perform I/O operations. Modern computers
with powerful GPUs usually also have a powerful multi-core CPUs, so using only GPU presents a
missed opportunity to achieve better performance through the use of all available resources.

Our goal was to extend the algorithm so that we can reuse as many portions of the CPU and
GPU programs as we can. We did this by introducing GPU support over the base OpenMP-
parallelized CPU programs from Chapter 3. Numerically most demanding functions were extended
to asynchronously offload computation to GPU, and then proceed with the computation on CPU
using multiple threads.

The most important part of creating a hybrid algorithm is the distribution of data between CPU
and GPU in a way that maximizes the performance of any function involved in time propagation
of the wave function. We first give a detailed description of how data is distributed, followed by a
description of hybrid computation functions and hybrid FFT in Section 5.1. Details of basic imple-
mentation that uses all available CPU cores and GPUs are given in Section 5.2. The implementation
of the data distribution scheme revealed that the time it takes to transfer the data to GPU and
back dominates the execution time. To optimize the implementation and minimize the impact of
data transfers, we have used CUDA streams to hide the latency of data transfers, as demonstrated

in Section 5.3 along with other memory usage optimizations we applied.

52

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 53

5.1 Description of the hybrid algorithm

In order to use CPU and GPU at the same time, we have to divide the work efficiently between
them. If we put aside the obvious hardware architecture difference between CPU and GPU which we
described in Section 4.1, we can consider the computer with GPU as being similar to the distributed
memory system consisting of two computing nodes with different characteristics. Both CPU and
GPU have their own memory, and are connected through a fast interconnect, in this case the PCI-
Express. This means that we need an approach similar to the one distributed memory algorithms
use to achieve the desired parallelization. The most important difference here is that all data is
available in main (CPU) memory, and only portions of it need to be transferred to GPU memory,
as opposed to the true distributed memory systems, where no single part of the system has all the

data. Therefore, the general approach to perform this type of hybrid computation is to:
(i) designate a portion of data to be processed by GPU,

(ii) copy that data to GPU while simultaneously using CPU for computation over the remaining

data,
(iii) transfer the data back from GPU, overwriting old data, and

(iv) synchronize CPU and GPU.

This flow is illustrated in Figure 5.1.

1) Copy a portion of data to device

Host | ‘ ‘

Device IﬁIZIﬁZIIﬁZIﬁﬁZIIﬁZIIIZIﬁIIIﬁZIIﬁZZZZZZZZZZZZﬁZZZﬁZZZZZZﬁZZZﬁZZZZZIZ+

2) Perform computation concurrently stale data

Host V A

Deviee ! . .
3) Copy data back from device

Host ‘ ‘

Deviee | . +

Figure 5.1: Flow of data between host and device.

Not every function is feasible for simultaneous computation on CPU host and GPU device.
Functions calculating physical properties (chemical potential, energy, norm and RMS size), or func-
tions not executed in each iteration are not suitable for computation on GPU for various reasons.
Specifically, functions which require multiple invocations of numerical integration do not achieve
noticeable speedup on GPU, and when coupled with data transfer, actually perform worse than
on CPU alone. We have therefore focused our efforts on speeding up only the functions relating

to time propagation of the wave function, which are invoked in each step of the main loop, i.e.

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 54

calcnu, calclux, calcluy, calcluz and calcpsidd2. The function computing the norm of the
wave function was not offloaded to GPU for real-time propagation, as it is not invoked in each
iteration. On the other hand, in imaginary-time propagation, in which normalization is performed
as the last step of each iteration, we perform a concurrent computation on both CPU and GPU
only for the normalization step (i.e., dividing the wave function by the norm), not the computation
of the norm itself.

Data can be offloaded in various ways [60, 61] and, in general, any data distribution scheme
which targets distributed memory systems may be used. However, we settled on a simple approach
using 1D decomposition, also known as slab decomposition.

When using slab decomposition, data is distributed along one dimension, usually the slowest-
changing one, and the remaining dimension (in 2D programs) or dimensions (in 3D programs) of
data remain local. This means that we can perform computation on the local data efficiently, and
no data exchanges are necessary. Depending on a data access pattern, in our programs we rely on
decompositions either along the x direction (discretized with the Nx spatial points), or along the y
direction (discretized with the Ny spatial points). In 3D programs, there is no need to decompose
the data along the z direction. In case we need data from the distributed dimension to become local
in order to perform some computation (e.g., to update the wave function values in calclux function
when data are decomposed along the z direction), we have to reassemble data in host memory and

decompose again along the appropriate dimension. Figure 5.2 illustrates this concept.

|| Host Ram |
. Device RAM

| SR

Ny

cpuNy

cpuNx ' gpuNx Nx

Figure 5.2: Two offload patterns used. If offloaded along x direction, the y direction remains local,

however if we need to access whole x direction data, we need to decompose along y direction.

With the decomposition scheme in place, we can consider how to divide the computation of the
wave function propagation in time between CPU and GPU. Once the data have been distributed
between CPU and GPU, on the CPU side only the exit condition of the outer loop needs to be
adjusted, so that the CPU processes a smaller number of elements (e.g., by replacing Nx with cpulix).
Similar changes are required on the GPU side as well, however we also need to ensure that GPU has
valid data to work with, and that data are reassembled in host memory after the computation on
GPU is done. Introduction of offloading to GPU did not require significant changes to the functions
calculating individual parts of the wave function propagation, and all changes are similar.

Initially, we distribute the data along the slowest-changing dimension. This allows CPU and

GPU to simultaneously perform computation of wave function propagation w.r.t. H; and Hj parts

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 55

of the Hamiltonian (and Hy when working in 3D). The propagation of the wave function w.r.t. Ha,
corresponding to the x direction, can be done locally only if we decompose the data along the y
direction before invoking the function calclux on CPU and GPU. Note that we do not have to
transfer data from GPU back to host memory at the end of each function, due to the fact that
time propagation w.r.t. Hy, Hs and H, parts of the Hamiltonian can be done in arbitrary order in
each step. Without this, the time propagation workflow of 3D programs would have to involve the

following steps, according to Figure 3.2:

1. calculate the dipolar term,
2. transfer the data decomposed along x direction to GPU,
3. propagate the wave function w.r.t. H;
4. reassemble the data in host memory,
5. transfer the data decomposed along y direction to GPU,
6. propagate the wave function w.r.t. Hs
7. reassemble the data in host memory,
8. transfer the data decomposed along x direction to GPU,
9. propagate the wave function w.r.t. Hs

10. propagate the wave function w.r.t. Hy

11. reassemble the data in host memory.

Rearranging the order of time-propagation substeps allows us to remove one transfer of data to

GPU and its subsequent reassembly in host memory:
1. calculate the dipolar term,
2. transfer the data decomposed along x direction to GPU,
3. propagate the wave function w.r.t. H
4. propagate the wave function w.r.t. Hs
5. propagate the wave function w.r.t. Hy
6. reassemble the data in host memory.
7. transfer the data decomposed along y direction to GPU,
8. propagate the wave function w.r.t. Hs

9. reassemble the data in host memory,

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 56

Therefore, we use the above, optimized sequence in our 3D programs, and similarly in 2D.

To complete our hybrid algorithm, we also need to distribute computation of the dipolar term
between CPU and GPU, where complexity arises in performing DFT on distributed data. Currently
available FFT libraries target either CPU or GPU for their computation, but unfortunately not
both at the same time. There are numerous attempts to develop specialized FFT libraries which
would enable this [62, 63, 64], however a full-featured library with support for R2C transforms with
advanced data layout is still not available. The approach we used is to rely on existing libraries for
actual transforms, but perform data distributions manually. The libraries we use, FFTW on CPU
and cuFFT on GPU, support advanced data layouts as well as working on a subset of the whole
data, allowing for an efficient implementation.

To perform the Fourier transform simultaneously on CPU host and GPU device, we split the
single multidimensional transform into a series of 1D transforms along each dimension of the input
data, which can be computed on CPU and GPU independently. This approach is known as the
row-column algorithm [65], and is often used in FFT libraries. The essence of this algorithm can
best be summarized in an example of a 2D FFT. Given a matrix Nx x Ny, we compute the DFT in

the following way:

1. Transfer portion of the input array, decomposed along the z direction, to device memory.
We transfer last gpulNx x Ny consecutive array elements to GPU. This can be done as a single
memory copy operation due to the flat allocation that was used. The choice whether to offload

data to GPU memory from the beginning or the end of the input array is arbitrary.

2. Perform DFT along the y direction on both CPU and GPU concurrently. CPU will perform
cpulNx such transformations, while the GPU will perform gpuNx 1D DFTs. Each of these
transforms will take a subset of the input array, which are Ny / 2 + 1 elements apart. Note

that CPU will not do anything with the last gpuNx x Ny elements.

3. Copy the array with the transform back from GPU to CPU, writing over the stale data
with the relevant portion transformed on GPU. After this step, we have the complete array

transformed along the y direction residing in host memory.

4. Transfer portion of the input array, decomposed along the y direction, to GPU memory.

Similarly to step 1, we transfer last Nx x gpuNy elements to GPU.

5. Perform DFT along the x direction on both CPU and GPU. This time, CPU will perform
cpuNy / 2 + 1 such transformations, while GPU will perform remaining gpuNy / 2 transfor-
mations. The halving of the number of transformations is due to use of R2C transformations.
In each transform, elements are Ny / 2 + 1 places apart, while the first element of each

transform is adjacent to the previous one.

6. Copy the array with the transform back from GPU to CPU. With this step completed, we
have the full FFT of the input array residing in host memory. This step may be omitted if
the computation that follows does not require the FFT of input data to be fully assembled
in host memory. This is the case in our algorithm, as we use the resulting transformed array
only for subsequent computation on GPU. Since the memory transfer is expensive, omitting

this step leads to significant performance improvement.

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 57

The inverse Fourier transform can be done in an analogous way. In 3D, the general principle
remains the same, however, we do not separate the DFT into three 1D transforms, but to one
2D and one 1D transform. We do this due to better performance of 2D transforms, which in both
libraries used is found to be better than two 1D transforms. Figure 5.3 illustrates the DFT algorithm

described above.

1) Offload data 2) 1D FFT 3) Copy data
along x along y back

=

4) Offload data 5) 1D FFT 6) Copy data
along y along x back (optional)
—>
—
—>

Figure 5.3: Hybrid algorithm for concurrent FFT on host and device.

5.2 Implementation of the hybrid algorithm

The hybrid algorithm was implemented by extending the C/OpenMP implementation with the data
distribution scheme from the previous section, while the computation functions on the GPU device
were taken from the CUDA implementation described in Section 4.2. This allowed us to reuse much
of the existing code, with straightforward modifications.

Decomposition of data was implemented efficiently using the CUDA built-in functionality for
copying memory to and from the GPU. In case of decomposition along the x direction, we divide
the data into two (possibly uneven) parts with sizes cpuNx and gpulix, where cpuNx + gpulx = Nx.
Now the CPU works with the first cpulix x Ny elements in 2D programs and cpulNx x Ny x Nz elements
in 3D programs, while the GPU works with remaining gpuNx X Ny elements in 2D programs and
cpulix x Ny x Nz elements in 3D programs. Listing 5.1 shows how the memory is copied from host to
device in this scenario. The opposite, copying from device to host, is done in a similar way, where

only the source and destination pointers are exchanged in the copy parameters.

Listing 5.1: Initialization and copying of data from host to device, distributed along the x direction.

// Allocate host data
double *h_matrix = alloc_double_matrix(Nx, Ny);

// Allocate only the required amount of data on device
struct cudaPitchedPtr d_matrix_x = alloc_double_matrix_device(gpulNx, Ny);

// Prepare memcpy operation
struct cudaMemcpy3DParms cpy_x_h2d;
cpy_x_h2d.srcPtr = make_cudaPitchedPtr (h_matrix[cpuNx], Ny * sizeof(double), Ny, gpulNx);

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 58

cpy_x_h2d.dstPtr = d_matrix_x;
cpy_x_h2d.extent = make_cudaExtent(Ny * sizeof(double), gpulNx, 1);
cpy_x_h2d.kind = cudaMemcpyHostToDevice;

// Copy data from host to device
cudaMemcpy3D (&cpy_x_h2d) ;

Similar concept is applied when distributing data along the y direction. This time CPU works
with Nx X cpuNy in 2D (Nx X cpulNy X Nz in 3D), while the GPU portion is Nx X gpuNy in 2D,
Nx x gpuNy x Nz in 3D (Listing 5.2).

Listing 5.2: Initialization and copying of data from host to device, distributed along the y direction.

// Allocate only the required amount of data on device
struct cudaPitchedPtr d_matrix_y = alloc_double_matrix_device(Nx, gpulNy);

// Prepare memcpy operation

struct cudaMemcpy3DParms cpy_y_h2d;

cpy_y_h2d.srcPtr = make_cudaPitchedPtr(h_matrix[0], Ny * sizeof (double), Ny, Nx);
cpy_y_h2d.srcPos = make_cudaPos((cpuNy) * sizeof (double), 0, 0);

cpy_y_h2d.dstPtr = d_matrix_y;

cpy_y_h2d.extent = make_cudaExtent(gpuNy * sizeof(double), Nx, 1);

cpy_y_h2d.kind = cudaMemcpyHostToDevice;

// Copy data from host to device
cudaMemcpy3D (&cpy_y_h2d) ;

We can also notice how the flat allocation of memory on CPU is once again useful. Without it,
the transfer of data between CPU and GPU would be much more complicated, involving copying
individual rows of the innermost dimension. Flat allocation allows for a single copy operation to
be invoked to copy the whole GPU portion of the data. It is also much easier to further divide the
copy operation when using CUDA streams, as we will demonstrate in Section 5.3.

With the data transfer mechanism in place, we can focus on enabling concurrent computation.
CUDA kernel launches are asynchronous with regard to the CPU, allowing us to combine them with
OpenMP-based computation on CPU. There are numerous ways to implement GPU offloading. We

have investigated three possible approaches, which we now describe.

a)

 eltwaso| ~fDSiEEN ~[Tedo]
) (/'_>

N Thread 1 e
..

parallel region

c) !!!’!

Figure 5.4: Three strategies considered for GPU offloading.

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 59

The approach we decided to use, illustrated on Figure 5.4(a), involves the use of OpenMP nested
parallelism. We first create a parallel region that consists of two threads, one of which will invoke
the GPU functions, while the other will do the same for CPU functions. The GPU-related thread
invokes the required functions and waits for their completion. Meanwhile, the CPU-related thread
spawns new (nested) threads, which perform the CPU computation with the changed loop exit
condition (Listing 5.3). The optimal number of newly spawned threads is equal to nthreads - 1,

where nthreads is the total number CPU cores in the system.

Listing 5.3: Use of nested OpenMP parallelism to control both host and device computation.

void hybrid_function(...) {
#pragma omp parallel private(threadid) num_threads(2)

threadid = omp_get_thread_num();

if (threadid == 0) {
gpu_function(); // Async calls on device
sync_with_gpu(); // Wait for completion

}

if (threadid == 1 || omp_get_num_threads() != 2) {

cpu_function(...); // Invokes nested parallelism

}
}
void cpu_function(...) {

nthreads = omp_get_num_threads();

#pragma omp parallel for private(...) num_threads(nthreads - 1)

for (...) { ...}

The second approach, illustrated in Figure 5.4(b), does not use nested parallelism. Instead of
dedicating one thread to GPU-related tasks, here we asynchronously invoke GPU functions from
the master thread. Before performing computation on CPU using OpenMP threads, we instruct
the GPU to perform the work from the master CPU thread. Next we invoke the CPU computation
via OpenMP threads (one for each CPU core), and finally, after CPU completes its computation,
we synchronize with the GPU to avoid race conditions (Listing 5.4). This approach works because
GPU supports asynchronous calls. Kernel invocations are naturally asynchronous with regard to
the CPU, while the memory transfer calls can be asynchronous, a feature which will be explained in
detail in Section 5.3. While simpler to implement, this solution performs worse than aforementioned
implementation with a dedicated GPU thread. This is because the asynchronous GPU calls still
require some CPU work, and the frequent context switches the operating system has to make to
service the GPU calls negatively affects performance of OpenMP threads.

Final approach we considered involves using each OpenMP thread for both CPU and GPU
functions. This way, each OpenMP thread was responsible for transferring optimal amount of data
to GPU and back, and invoking kernels on GPU, as illustrated in Figure 5.4(c). This approach did

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 60

Listing 5.4: Use of asynchronous calls to device functions while using OpenMP for computation on
host.
void hybrid_function(...) {

gpu_function();

#pragma omp parallel private(threadid, ...)
{
threadid = omp_get_thread_num();

#pragma omp for
for (...) { ...}
}

sync_with_gpu(Q);

not bring observable performance improvement and led to a much more complex implementation,
requiring more bookkeeping, especially with the introduction of multi-GPU support. Additionally,
the flexibility of choosing an ideal amount of data to offload to GPU for each function was somewhat
lost because the amount of data offloaded to GPU was now controlled by the number of active
OpenMP threads. The introduction of per-thread default streams in CUDA 7.0 (not available at
the time of development) could have been used to simplify the implementation, however it would
have still been more complex than our other approach, and would not solve the flexibility issue. For
these reasons we have discarded this approach.

At this point, we have an implementation that performs most of the computation simultaneously
on CPU and GPU, but we also need to implement hybrid FFT routines. The hybrid row-column
algorithm from the previous section for DFT can be implemented using existing libraries very effi-
ciently, without the requirement to make the input data of every transform consecutive in memory.
The only complexity of this approach is that we have to use the advanced interface of FFTW and
cuFFT that allows setting appropriate offsets, strides and number of transforms manually. We can
see how this works in Listing 5.5, which demonstrates how a 3D FF'T can be divided between host
and device. This approach does not require more memory than regular multidimensional CPU or
GPU FFT. We have tested several combinations of in-place and out-of-place transforms, and have
concluded that on the device, the transform along the x direction (when data is distributed along
the y direction) performs much better when done out-of-place, while for all other transforms the
difference between in-place and out-of-place operation is usually not significant. In our case, switch-
ing from one type of transform to another is easy, the only change needed is to allocate memory for

the output array, and pass its pointer to the planner.

Listing 5.5: Creating and executing plans for concurrent FFT on host and device.

// Allocate proper amount of data on host
double ***tensor = alloc_double_tensor(Nx, Ny, Nz);
fftw_complex *fft_array = alloc_complex_vector(Nx * Ny * (Nz/2+1));

// Using FFTW’s ’advanced’ interface on host
int fft_rank = 2; int nfr[] = {Ny, Nz}; int howmany = cpulx;
int idist = Ny * (Nz/2+1) * 2; int odist = Ny * (Nz/2+1);

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 61

int istride = 1; int ostride = 1;

int *inembed = NULL, *onembed = NULL;

// Define an out-of-place plan for cpulNx transforms of size Ny * (Nz/2+1)

plan_fw_row = fftw_plan_many_dft_r2c(fft_rank, nfr, howmany, **tensor, inembed, istride,
idist, fft_array, onembed, ostride, odist, FFTW_MEASURE);

fft_rank = 1; int nfc[] = {Nx}; howmany = cpuNy * (Nz/2 + 1);

idist = 1; odist = 1;

istride = Ny * (Nz/2+1); ostride = Ny * (Nz/2 + 1);

// Define an in-place plan for cpuNy * (Nz/2 + 1) transforms of size Nx

plan_fw_col = fftw_plan_many_dft(fft_rank, nfc, howmany, fft_array, inembed, istride,
idist, fft_array, onembed, ostride, odist, FFTW_FORWARD, FFTW_MEASURE);

// Plans can be executed with the following command
fftw_execute_dft_r2c(plan_fw_row, **tensor, fft_array);
fftw_execute_dft(plan_fw_col, fft_array, fft_array);

// Allocate proper amount of data on device

struct cudaPitchedPtr d_tensor_x = alloc_double_tensor_device(gpuNx, Ny, (Nz/2+1)%2);
struct cudaPitchedPtr d_tensor_y = alloc_double_tensor_device(Nx, gpulNy, (Nz/2+1)%2);
struct cudaPitchedPtr d_tensor_y_tran = alloc_double_tensor_device(Nx, gpulNy, (Nz/2+1)%2);

// Using equivalent cuFFT calls on device

fft_rank = 2; int nfr[] = {Ny, Nz}; howmany = gpulx;

idist = Ny * (d_tensor_x.pitch / sizeof(cufftDoubleReal)) ;

odist = Ny * (d_tensor_x.pitch / sizeof (cufftDoubleComplex));

istride = 1; ostride = 1;

int inembed_fwr[] = {Ny, d_tensor_x.pitch / sizeof(cufftDoubleReal)};

int onembed_fwr[] = {Ny, d_tensor_x.pitch / sizeof (cufftDoubleComplex)};

// Define an in-place plan for gpuNx transforms of size Ny * (Nz/2+1), padded by ’pitch’

cufftMakePlanMany (plan_fw_row, fft_rank, nfr, inembed_fwr, istride, idist, onembed_fwr,
ostride, odist, CUFFT_D2Z, howmany, &ws_fwr);

fft_rank = 1; int nfc[] = {Nx}; howmany = gpuNy * (Nz/2+1);

idist = 1; odist = 1;

istride = gpuNy * (d_tensor_y.pitch / sizeof (cufftDoubleComplex));

ostride = gpuNy * (d_tensor_y_tran.pitch / sizeof (cufftDoubleComplex)) ;

int inembed_fc[] = {Nx}; int onembed_fc[] = {Nx};

// Define an out-of-place plan for gpuNy * (Nz/2+1) transforms of size Nx,padded by ’pitch’

cufftMakePlanMany (plan_fw_col, fft_rank, nfc, inembed_fc, istride, idist, onembed_fc,
ostride, odist, CUFFT_Z2Z, howmany, &ws_fwc);

// Plans can be executed with the following command

cufftExecD2Z(plan_fw_row, (cufftDoubleReal *) d_tensor_x.ptr, (cufftDoubleComplex *)
d_tensor_x.ptr)

cufftExecZ2Z(plan_fw_col, d_tensor_y.ptr, d_tensor_y_tran.ptr, CUFFT_FORWARD);

Implementation described so far utilizes all available CPU cores, but only a single GPU. Since a
computer may have multiple GPUs installed, we have implemented support for using all available
GPUs. Currently, CUDA supports up to four GPUs in a single computer, meaning we can offload
up to four times the amount of data to GPUs. We have tested the programs on a computer with
up to three GPUs, maximum allowed by the hardware at PARADOX supercomputing facility.

CUDA provides a simple API for choosing which GPU is in use, via the cudaSetDevice function.
Every command issued afterward targets the selected device. The developer only needs to keep track
of pointers used for each device. This simple mechanism allows us to keep our data transfer routines
intact, and add support for multiple GPUs with little effort. The general concept we used is to loop

over available GPUs, and issue the desired operations on each device (Listing 5.6).

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 62

Listing 5.6: Changing the currently active GPU device.

cudaGetDeviceCount (&nDevices) ;

for (i = 0; i < nDevices; i ++) {
cudaSetDevice(i);
. // Issue commands as usual

This approach has only one drawback, and that is that it will issue the same amount of work to
all GPUs, which may not be optimal if GPUs are different. We believe that the trade-off between
the simplicity of implementation and feature-completeness was worthwhile, because in most HPC
installations, all GPUs within a single computing node are of the same model. Alternatively, we
could have also made our programs aware of the differences between multiple GPUs installed.
CUDA has an API for discovering features of GPUs which would be useful in selecting the optimal
parameters for the amount of work for each CPU, however it would still be a significant effort to
implement this in our programs, and for the users to optimally use this functionality.

During implementation of the algorithm described in this section we noticed that the majority
of the execution time on GPU is spent waiting for the memory transfers to complete. To perform a
single multidimensional FFT, we need four memory transfers, which, if implemented in a sequential

manner, becomes the main bottleneck. In the next section we describe a technique to mitigate this.

5.3 Optimization of data transfers

Transferring memory is usually a significantly slower process than computation, to such an extent
that if memory copies between host and device are common, that defeats the whole purpose of using
GPU. In our implementation, several copies are needed during one iteration of the wave function
propagation, limiting the use of GPU to smaller mesh sizes.

There are several remedies to this problem. An obvious one is to reduce the amount of data
transferred, by only transferring subsets of data that are required on the GPU side. The programs
presented here minimize the amount of data involved by copying only the parts of arrays required by
the computation that immediately follows. Although this technique brings observable improvement,
it alone is not enough to consider the problem solved. In fact, reducing the amount of data that is
copied to GPU and back also means that we use less GPU memory, allowing for use of larger meshes
on GPU, which in turn take more time to transfer. Therefore, we rely on additional optimizations
in order to improve memory transfer.

To be able to do this, we have to understand and exploit the nature of data transfers between
CPU and GPU. Data allocations on the CPU side are pageable by default, and the operating system
can swap-out memory pages at any point. The GPU cannot access data directly from pageable CPU
memory, so when a data transfer from pageable host memory to GPU memory is invoked, the CUDA
driver must first allocate a temporary page-locked, or pinned, host array, copy the host data to the
pinned array, and then transfer the data from the pinned array to device memory.

As can be seen in Figure 5.5, pinned memory is used as a staging area for transfers. We can
avoid the cost of the transfer between pageable and pinned host arrays either by directly allocating
CPU arrays in pinned memory, or by declaring that already allocated array should be page-locked,

or pinned. Pinned memory has its downsides: if the operating system cannot swap-out pages, it

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 63

Pageable data transfer Pinned data transfer
Host Host
Pageable Pinned Pinned
memory memory memory
Device \J Device \
DRAM DRAM

Figure 5.5: Memory copy between host and device using pageable (left) and pinned (right) memory.

may run out of resources, causing it to behave in an unexpected way. Consequently, pinned memory
should not be overused. Since our programs transfer only subsets of whole arrays, pinning just those
parts allows us to benefit from improved transfer speeds, as well as leave the rest of the memory
allocated as pageable, in case the operating system wishes to swap it out.

Even with the use of pinned memory, the data transfer times are still large in comparison to the
computation time, and leave the GPU idle during transfer. Most CUDA GPUs support simultaneous
data transfers and computation via CUDA streams, which are sequences of operations that execute
on the device in order by which they are issued by the host code. While operations within a stream
are guaranteed to execute in the prescribed order, operations in different streams can be interleaved
and, when possible, they can even run concurrently. Proper use of streams allows us to overlap data
transfers and computation, thus mitigating the slow transfer speeds. Streams are actually always
used internally within CUDA runtime, and unless a stream is specified explicitly, all operations are
queued to the default stream where they appear to be synchronous due to their order of execution.

Streams are relatively simple to use when there are multiple operations on disjoint arrays queued
for execution. However, when there is just one transfer to GPU, followed by computation on that
data and transfer of data back from GPU, streams alone do not offer a way to improve performance.
Therefore, to obtain speedup we divide the data into smaller chunks, which can then be transferred
and processed independently (Figure 5.6). This idea allows us to reduce the idle time of GPU, from
the time it takes to transfer the whole array to GPU and back, to the time it takes to transfer just
one chunk to GPU and back, which can be significant.

weo [
Compute | T T

D2H [[[

Time

Figure 5.6: Dividing data into smaller chunks and transferring them using streams reduces the GPU
idle time. The idle time is reduced to the time it takes to complete one host to device (H2D) copy

operation and one device to host (D2H) copy operation.

The overlap illustrated in Figure 5.6 is possible only on certain CUDA GPUs. In general, the
overlap depends on the order the operations are issued to a stream, and the number of copy engines
that the GPU has. Operations in each engine’s queue are executed in the order they are issued.

Therefore, to queue all operations, we have two choices, shown in Listing 5.7.

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 64

Listing 5.7: Two approaches to issuing commands to CUDA streams.

h_data = ... // Allocate data on host
d_data = ... // Allocate data on device
str = ... // Initialize ’nStreams’ CUDA streams

// Asynchronous copy vl
for (i = 0; i < nStreams; i++) {
int offset = i * streamSize;
cudaMemcpyAsync (&d_data[offset], &h_datal[offset], size, cudaMemcpyHostToDevice, str[i]);
kernel<<<gridSize, blockSize, 0, str[i]>>>(d_data, offset);
cudaMemcpyAsync (&¥h_data[offset], &d_dataloffset], size, cudaMemcpyDeviceToHost, str([il);
}

// Asynchronous copy v2
for (i = 0; i < nStreams; i++) {
int offset = i * streamSize;
cudaMemcpyAsync (&d_datal[offset], &h_dataloffset], size, cudaMemcpyHostToDevice, str([il);
}
for (i = 0; i < nStreams; i++) {
int offset = i * streamSize;
kernel<<<gridSize, blockSize, 0, str[i]>>>(d_data, offset);
}
for (i = 0; i < nStreams; i++) {
int offset = i * streamSize;
cudaMemcpyAsync (&h_datal[offset], &d_dataloffset], size, cudaMemcpyDeviceToHost, str([il);
}

Depending on the number of copy engines, overlaps may be different, or not exist at all. If a
GPU has two copy engines, one for transferring to and one for transferring back from the GPU,
the overlap obtained by the first approach is ideal, while the second one is not. If there is one copy
engine, the situation is different, with the second approach performing better. This is shown on

Figure 5.7.

1 copy engine

. Copy engine H2D - Stream 0 D2H -0
Sequential
Compute engine 0
Copyengie
Async vi1
Compute engine
Copyengie 21
Async v2
Compute engine
t >
Time
2 copy engines
H2D engine Stream 0
Sequential Compute engine ‘ 0 ‘
D2H engine 0
HeD engine (5]
Async vi Compute engine
D2H engine
HeD engne (5]
Async v2 Compute engine
ozt engine
f >
Time

Figure 5.7: Difference between one and two copy engines for overlapping data transfer and compu-

tation.

CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 65

Nvidia Tesla line of GPUs usually has two copy engines, while the consumer-oriented GeForce
line has just one [66]. On newer Nvidia GPUs with Compute Capability 3.5 and higher this is not
a problem, so both approaches have equal performance. However, we decided to aim for maximum
compatibility and implemented both approaches, and our programs themselves select the correct
approach at runtime. We created separate functions for different cases, and a function pointer to
select between the two. Number of copy engines (among other things) for CUDA device in use
can be obtained from CUDA runtime. With this piece of information programs choose the correct
functions during initialization.

In Figures 5.6 and 5.7 we assume that the time required for transfer and computation is approx-
imately the same. This, however, is not necessarily easy to achieve, as it depends on the size and
number of chunks that the GPU will process. Users can control the size and number of chunks in

our programs, and a detailed guide to choosing the best parameters is given in Chapter 8.

Chapter 6

Distributed memory algorithm

Algorithms presented in previous chapters target a single computer, where they use all available
CPU and/or GPU resources. Next logical step is to extend them to multiple machines, i.e., clusters
of computing nodes with distributed memory model, where no single process contains the whole
dataset. Using multiple computing nodes can help us achieve two goals, namely faster computation
on existing mesh sizes due to more computing resources being available, and availability of larger
mesh sizes that cannot fit on a single computing node. In a distributed memory system, we often
need to exchange data between processes running in parallel on different computing nodes. Explicit
message passing is typically deployed to facilitate data exchanges and achieve parallelism.

The most popular standardized protocol for message passing paradigm is the Message Passing
Interface (MPI) [67], which we use in our implementations targeting distributed memory clusters.
For this development, focus was placed only on the 3D variants of our programs. We made this
decision because modern computers (especially powerful cluster nodes) have enough memory for 1D
or 2D calculations our programs require. An MPI algorithm with three different implementations

came out as a result of this effort. The three implementations are:
1. pure CPU version built on top of shared memory algorithm from Chapter 3,

2. pure GPU version built on top of CUDA implementation of the shared memory algorithm
described in Chapter 4 and

3. hybrid version based on the algorithm described in Chapter 5.

Henceforth, we refer to these implementations as OpenMP/MPI, CUDA/MPI and Hybrid/MPI,
respectively. Two of the three implementations, the OpenMP/MPI and CUDA/MPI implementa-
tions, have been published in Ref. [18] and is available for download [46, 37]. The Hybrid/MPI
implementation is also publicly available [37].

In the following sections, we demonstrate how the algorithms from previous chapters can be
extended with a data distribution scheme to enable their execution on distributed memory systems,
and how MPI can be successfully used in the implementation of these new algorithms. All three
implementations we developed share a common data distribution scheme, and thus share the same
general structure, so we describe them together in this chapter, emphasizing the differences in im-
plementations where applicable. We start with the description of data decomposition among the

nodes in the cluster (Section 6.1), and how the necessary transpose of data can be implemented.

66

CHAPTER 6. DISTRIBUTED MEMORY ALGORITHM 67

In Section 6.2 we move on to the description of the changes in computation imposed by the dis-
tributed environment. Finally, in Section 6.3, we describe the changes needed to input and output

components in the new environment.

6.1 Data distribution scheme

When we design algorithms for distributed memory systems there are two general approaches we can
take. We can either focus our efforts on developing distributed algorithms, or we can dynamically
redistribute the data by doing a transpose among processes in order to apply our existing algorithms
on each computing node.

In the first approach, we would have to develop many novel algorithms from scratch, such as
a parallel tridiagonal solver used in the functions calclux, calcluy and calcluz, or a parallel
Fourier transform working on distributed data, and in the case of a heterogeneous architecture,
further divided between CPU and GPU. This would require a significant effort, and while in the
end it may provide significant performance improvement, the complexity of the implementation
would be detrimental to future modifications.

The other approach, to redistribute the data, requires only development of transpose routines
necessary to transform the data so that any desired dimension is local to a process. Thus, the
second approach is preferred here due to its simplicity. The existing algorithms, optimized for a
single machine, remain mostly unchanged and preserve all of the original logic. Conceptually, the
most important changes are that we now initialize only the relevant portion of data on each process,
and rely on data transposes to bring the nonlocal data to each process.

Working with 3D data allows us to have a 1D, 2D or 3D decomposition, as shown in Figure 6.1.
In 1D or 2D decompositions we can arbitrarily choose the dimensions which would be split among
the processes. The 3D decomposition would imply that no single dimension is local to any process,
a scenario that would require us to develop distributed algorithms from scratch, which we do not

pursue.

1D decomposition 2D decomposition 3D decomposition

AJ\il
SO
o

S

N

——

N

Figure 6.1: Decomposition of 3D data along one (left), two (center) and three (right) dimensions.

The 1D decomposition (slab decomposition, Figure 6.1, left), which we have already used as the
data distribution method in our hybrid algorithm, is the simplest way to distribute the data among
separate processes here as well. In this decomposition approach, each MPI process is assigned one
or more 2D slices of data s shown in the figure. The downside of this type of decomposition is its
scalability. In order to perform a transpose over slab-decomposed data, all processes communicate to

must exchange data, which in cases of large number of processes (over 1000), can lead to scalability

CHAPTER 6. DISTRIBUTED MEMORY ALGORITHM 68

issues [68]. On the other hand, in 2D decomposition, also known as block or pencil decomposition,
MPI processes are organized in a 2D array and each contains one or more 1D blocks of data as
shown in Figure 6.1 (center). The block decomposition requires only between processes in a single
logical row or column, which scales better.

Transposing data in both of these decomposition types can be implemented using all-to-all MPI
functions, e.g., MPI_Alltoall or MPI_Alltoallv. However, 2D decomposition is more difficult to
implement since the communication pattern is quite complex [69], e.g., the cost of communications
is very semnsitive to the orientations of blocks and their associated memory patterns. The packing
and unpacking of memory buffers for the MPI library must be handled with great care for efficiency.
All this is further complicated by the fact that we need two such decompositions, depending on the
dimension which we need to be local to each process. In the implementation of 1D decomposition,
there is an alternative way to transpose the data, via the FFTW library, whose implementation
of transpose routines relies on internal mechanisms used in the computation of multidimensional
FFT. This approach is simpler and has an additional benefit in that FFTW routines can operate
in-place, whereas MPI_Alltoall-based approach can only operate out-of-place. Even for out-of-
place transposes, FFTW’s routine should be equal or faster, since one of the possible algorithms
that FF'TW uses for an out-of-place transpose is simply to call MPI_Alltoall.

Since PARADOX cluster used during the development has slightly more than a hundred nodes
(with a total of 1696 cores), we have decided to base our algorithm and its implementations on the
1D decomposition. In order to avoid its scalability issues for large number of processes, we use MPI
only for communication between nodes in a cluster, whereas all computation within a single node
remains unchanged, with OpenMP, CUDA, or a combination of the two. Similarly to approach
used in our hybrid algorithm, here we also decompose along the z and y direction, according to
data access patterns, an example of which we show in the next section. This means that each
process holds localNx x Ny x Nz amount of data (or Nx X localNy x Nz), where localNx = Nx /
nprocs and nprocs is the number of MPI processes (localNy = Ny / nprocs). Transpose along
the innermost, fastest changing dimension is not required by any computation.

With the data distributed among the MPI processes, we need an efficient transpose routine to
redistribute the data along a different dimension. As mentioned before, one easy way to achieve
this is to use the transpose routines from the FFTW library, which we use in the OpenMP/MPI
and Hybrid/MPI implementations. Transpose interface in FEFTW works in a similar way as the rest
of the library, i.e., it involves creating end executing a plan (Listing 6.1). We use a special type of
transpose routine from FFTW, where data is locally transposed. The full transpose of data would
require performing an additional, local transpose operation, which we omit since we can perform all
computation with locally transposed data. This means that the data after such partial transpose
operation are stored structured as Nx x localNy x Nz in row-major order, instead of the expected
locallNy x Nx x Nz structure in row-major order. Similar procedure can be used to transpose the
data back to its original layout. This way, we do not have to change the data access pattern, we
only have to adjust the loop limits. To instruct FFTW to perform transpose in this way, we have
to pass an additional flag when creating a transpose plan.

While it is very easy to use, FFTW transpose interface currently works only on data stored
in host memory of each computing node, not the GPU memory. As a consequence, we had to

implement our own transpose routines for CUDA /MPT version. We used the MPI data types and

CHAPTER 6. DISTRIBUTED MEMORY ALGORITHM 69

Listing 6.1: The transpose operation implemented using FFTW, using locally transposed data
layout.

// Allocate required memory
double ***tensor = alloc_double_tensor(localNx, Ny, Nz);
double ***tensor_t = alloc_double_tensor(Nx, localNy, Nz);

// Create a plan with a special flag specifying that output should be locally transposed

fftw_plan plan_tran_x = fftw_mpi_plan_many_transpose(Nx, Ny * Nz, 1, localNx, locallNy *
Nz, **tensor, **tensor_t, MPI_COMM_WORLD, FFT_MEASURE | FFTW_MPI_TRANSPOSED_OUT) ;

fftw_plan plan_tran_y = fftw_mpi_plan_many_transpose(Ny * Nz, Nx, 1, localNy * Nz,
locallNx, **tensor_t, **tensor, MPI_COMM_WORLD, FFT_MEASURE | FFTW_MPI_TRANSPOSED_IN);

//Execute like a regular FFTW plan
fftw_execute(plan_tran_x);
fftw_execute(plan_tran_y);

all-to-all communication (by using MPI_Alltoall function or a series of MPI_Isend and MPI_Irecv
functions) to perform this task. We implemented the same locally transposed input/output data
layout. Figure 6.2 shows the communication pattern required to perform such transpose operation.
Since the result of the transpose is the same with FFTW and our own implementation, we made
available the choice between the two transpose routines as a compile-time variable in Hybrid /MPI

implementation, allowing users to select routine to be used.

Figure 6.2: Communication pattern of transpose operation between four processes. Note that the

data after the operation are locally transposed, i.e., do not represent full transpose in general case.

Two custom MPI data types were required, representing a portion of the data which is to be
exchanged in x and y dimension. Special care must be taken to account for the third dimension,
which is padded in CUDA implementation and should thus be expressed in bytes and not in the

actual number of elements. To achieve this, we use MPI vector type, as described in Listing 6.2.

Listing 6.2: The transpose operation implemented using MPI, using locally transposed data layout.

struct tran_params { // We use a structure to keep the data relevant to transpose
void *orig_buf, *tran_buf; // Data buffers
int *orig_cnts, *tran_cnts; // Counts
int *orig_displ, *tran_displ; // Displacements
MPI_Datatype *orig_types, *tran_types; // Custom MPI types
int nprocs; // Number of processes
MPI_Request *send_req, *recv_req; // Used to track async sends and recv’s

CHAPTER 6. DISTRIBUTED MEMORY ALGORITHM 70

struct tran_params init_transpose_double(int nprocs, long localNx, long localNy, long Ny,
long Nz, void *send_buf, size_t send_pitch, void *recv_buf, size_t recv_pitch) {
long 1i;
MPI_Datatype tran_dtype;
MPI_Datatype lxyz_dtype, xlyz_dtype;
struct tran_params tran;

// Create a custom data type representing a Ny * Nz matrix, pitched, in bytes
MPI_Type_contiguous(locallNy * (send_pitch / sizeof (double)), MPI_DOUBLE, &tran_dtype);
MPI_Type_commit (&tran_dtype) ;

// MPI vector representing the data to be sent to each process
MPI_Type_create_hvector(localNx, 1, Ny * send_pitch, tran_dtype, &lxyz_dtype);
MPI_Type_create_hvector(localNx, 1, localNy * recv_pitch, tran_dtype, &xlyz_dtype);
MPI_Type_commit (&lxyz_dtype) ;

MPI_Type_commit (&xlyz_dtype) ;

// Allocate tran_params variables (*_cnts, *_displ, *_types, *_req)

// Set the parameters for each process
for (i = 0; i < nprocs; i ++) {
orig_cnts[i] = 1;
tran_cnts[i] = 1;

orig_displ[i] = i * localNy * send_pitch;
tran_displ[i] i * locallNx * localNy * recv_pitch;

orig_types[i] = lxyz_dtype;
tran_types[i] = xlyz_dtype;

return tran;

}

void transpose(struct tran_params tran) {
long 1i;

// Exchange data using asynchronous send and receive
for (i = 0; i < tran.nprocs; i++) {
MPI_Irecv(((char *)tran.tran_buf) + tran.tran_displ[i], 1, tran.tran_typesl[il, i, O,
MPI_COMM_WORLD, &(tran.recv_reqlil));
MPI_Isend(((char *)tran.orig_buf) + tran.orig_displ[i], 1, tran.orig_types[i], i, O,
MPI_COMM_WORLD, &(tran.send_reql[il));
}
for (i = 0; i < tran.nprocs; i++) {
MPI_Wait(&(tran.recv_req[i]), MPI_STATUSES_IGNORE);
MPI_Wait(&(tran.send_req[i]), MPI_STATUSES_IGNORE) ;
}

// Alternatively, we can use MPI_Alltoallw
//MPI_Alltoallw(tran.orig_buf, tran.orig_cnts, tran.orig_displ, tran.orig_types,
tran.tran_buf, tran.tran_cnts, tran.tran_displ, tran.tran_types, MPI_COMM_WORLD) ;
}

// To initialize the transpose operation

d_tensor = alloc_double_tensor_device(localNx, Ny, Nz);

d_tensor_t = alloc_double_tensor_device(Nx, localNy, Nz);

tran_tensor = init_transpose_double(nprocs, localNx, localNy, Ny, Nz, d_tensor.ptr,
d_tensor.pitch, d_tensor_t.ptr, d_tensor_t.pitch);

transpose(tran_tran_tensor) ;

CHAPTER 6. DISTRIBUTED MEMORY ALGORITHM 71

An interesting property of the CUDA/MPI implementation is that the transpose routine is
invoked on data residing in GPU memory, as opposed to the other two distributed memory imple-
mentations. This is possible due to the functionality available in some of the modern, CUDA-aware
MPI implementations, where MPI runtime can directly access data in GPU memory without the
need for copying to the host memory. Otherwise, we would need to copy the data to host memory
before any MPI routine is called, a task known to be a bottleneck, which would make CUDA /MPI
implementation far less usable. A list of CUDA-aware MPI implementations is available in Ref.
[70]. During testing and development of the three distributed memory implementations, we have
used Open MPT library [71], which can be compiled with support for CUDA.

6.2 Distributing the computation over multiple processes

With our data distribution scheme explained in the previous section, we can outline the changes
required to the computation functions. We first have to ensure that each process works with a
different portion of the data, or rather, initialize equal, non-overlapping portions of data on each
process. This requires that the number of discretization points of each dimension that will be
distributed must be divisible by the number of processes. By introducing additional processing
logic it is possible to support the distribution of non-equal portions of data, however, we decided
against such implementation since it leads to unbalanced computing load. Note that this is not
a significant restriction because users can always adapt and select slightly larger or smaller, but
evenly divisible mesh.

Data initialization begins by calculating the amount of data each process will get. Based on that
we calculate each process’ logical offset into the data, so we can initialize only the relevant portion.
Initially, we distribute the data along the x dimension and perform a transpose operation whenever
the data need to be local in that dimension. Listing 6.3 shows how each process can identify and

initialize only the portion of data that logically belongs to it.

Listing 6.3: Example of initialization of the relevant portion of data on each process.

// Get the rank of the current process and total number of processes
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
// Compute offsets
long localNx = Nx / nprocs; long offsetNx = rank * localNx;
// Allocate memory for data
psi = alloc_double_tensor(localNx, Ny, Nz);
// Example of initialization of relevant portion of wave function
for (i = 0; i < Nx; i ++) {
x[i] = (i - Nx / 2) * dx; x2[i] = x[i] * x[i];
}

for (i = 0; i < localNx; i ++) {
for (j = 0; j < Ny; j ++) {
for (k = 0; k < Nz; k ++) {
tmp = exp(- 0.5 * (vgamma * x2[offsetNx + i] + vnu * y2[j] + vlambda * z2[k]));
psilil[j1[k] = tmp / cpsi;
}

CHAPTER 6. DISTRIBUTED MEMORY ALGORITHM 72

Now that each process has initialized the relevant portion of the data, the only change to the
computation functions is the adjustment of the exit clause (limit) of the outermost loop. Compu-
tation in the inner loops that require other two dimensions to be local remains unchanged. This
means that functions calcnu, calcluy and calcluz do not require any changes other than mod-
ifications of the loop limits, as their relevant portion of data is already local. Function calclux,
which requires x dimension to be local, is changed so that we first transpose the data, afterward
perform the computation as before, and then transpose the data back to original layout (Listing
6.4).

Listing 6.4: Pseudocode of the changed caclux function.

// Using FFTW transpose for OpenMP/MPI implementation
void calclux(...) {

fftw_execute(plan_transpose_x); // Transpose ’psi’ and place the result in ’psi_t’
. // Compute calclux using ’psi_t’, with the outer loop limit set at ’locallNy’
fftw_execute(plan_transpose_y); // Transpose ’psi_t’ back to original ’psi’

}

// Using custom MPI transpose for Hybrid/MPI and CUDA/MPI implementations
void calclux(...) {

transpose(tran_psi);

transpose_back(tran_psi);

}

This is also a common pattern for other functions that require x dimension to be local, namely,
parts of computation of chemical potential and energy, as well as RMS size. These functions also
require communication between processes to gather results of computation at root process (usually
the process with the lowest identification number, i.e., 0), which post-processes them (if needed)

and writes the summary output. Listing 6.5 demonstrates this pattern.

Listing 6.5: Pseudocode of the data gathering pattern employed by cacnorm, cacmuen and cacrms

functions.

void calcnorm(...) {
...// Place the temporary data in ’tmpx’ as before
void *sendbuf = (rank == 0) 7 MPI_IN_PLACE : *tmpx;
MPI_Gather(sendbuf, localNx, MPI_DOUBLE, *tmpx, localNx, MPI_DOUBLE, O, MPI_COMM_WORLD) ;

if (rank == 0) {
*norm = sqrt(simpint(dx, *tmpx, Nx));

}

MPI_Bcast(norm, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD) ;

The final piece is the computation of Fourier transforms in a distributed memory environment.
Fourier transform for OpenMP/MPI implementation is a straightforward task, because FFTW
library supports MPI, and uses the same slab decomposition. FFTW’s MPI transform algorithms
work by first computing transforms of the data local to each process, then by globally transposing

the data to redistribute them among the processes and performing a transform of the new data

CHAPTER 6. DISTRIBUTED MEMORY ALGORITHM 73

local to each process, and optionally transposing back. This sequence corresponds to the row-
column algorithm, which we have already seen in our hybrid algorithm in Chapter 5. An example of
the row-column algorithm in a distributed memory system for 2D Fourier transform is illustrated in
Figure 6.3. If the final data transpose is omitted, the transform results are produced in transposed
order, distributed over y dimension. This has a significant performance advantage, at the cost of
having to change the data layout of the Fourier transform of the dipolar potential (variable potdd).
This was a simple matter of allocating memory in a different layout to fit the transposed order and

reordering the loops in the initialization of the dipolar term.

— — €
~ZE =

— — » F
1D FFT on Transpose 1D FFT on Transpose
rows data rows back
(optional)

Figure 6.3: Ilustration of four stages of the row-column FFT algorithm.

In the case of CUDA/MPI and Hybrid/MPI implementations though, it is not possible to use
FFTW’s MPI transforms. The cuFFT library does not have support for MPI, and our Hybrid/MPI
implementation relies on the heterogeneous Fourier transform we described in Section 5.2. However,
we can still use transpose routines in conjunction with the row-column algorithm. To mimic the
behavior of FFTW’s MPI transforms with transposed order, we rely on the same transpose routines
we used earlier, either ones available in FFTW for the Hybrid/MPI implementation, or the ones we
developed for the CUDA /MPI version. Listing 6.6 illustrates how we perform FFT using FFTW’s
MPI transforms, using cuFFT and our own transpose routines CUDA /MPI, as well as using cuFFT
and FFTW with FFTW transposes in Hybrid/MPI implementation.

Listing 6.6: Three different implementations of distributed FFT: using FFTW, cuFFT and both.

We show only the forward FFT, the inverse transform that follows is done analogously.

// FFT plan creation and usage with FFTW MPI interface, used in OpenMP/MPI implementation
fftw_plan plan_fw = fftw_mpi_plan_many_dft_r2c(3, n, 1, locallNx, localNy, psidd2[0] [0],
psidd2fft, MPI_COMM_WORLD, FFT_MEASURE | FFTW_MPI_TRANSPOSED_OUT);

fftw_execute(plan_fw); // Executed as any other plan

// FFT with cuFFT , used in CUDA/MPI implementation

int dim = 2;

long long nfr[] = {Ny, Nz};

long long howmany = locallx;

long long idist = Ny * (psidd2.pitch / sizeof (cufftDoubleReal))

long long odist = Ny * (psidd2.pitch / sizeof (cufftDoubleComplex));

long long istride = 1, ostride = 1;

long long inembedfr[] = {Ny, psidd2.pitch / sizeof (cufftDoubleReal)};
long long onembedfr[] = {Ny, psidd2.pitch / sizeof (cufftDoubleComplex)};

cufftMakePlanMany64(plan_fwr, dim, nfr, inembedfr, istride, idist, onembedfr, ostride,
odist, CUFFT_D2Z, howmany, &ws_fwr);

dim = 1;
long long nfc[] = {Nx};

CHAPTER 6. DISTRIBUTED MEMORY ALGORITHM 74

howmany = localNy * (Nz/2 + 1);

idist = 1; odist = 1;

istride = localNy * psidd2_t.pitch / sizeof (cufftDoubleComplex) ;

ostride = locallNy * psidd2_t.pitch / sizeof (cufftDoubleComplex) ;

long long inembedfc[] = {Nx}, onembedfc[] = {Nx};

cufftMakePlanMany64 (plan_fwc, dim, nfc, inembedfc, istride, idist, onembedfc, ostride,
odist, CUFFT_Z2Z, howmany, &ws_fwr);

// Create a transpose plan

tran_dd2 = init_transpose_complex(nprocs, localNx, localNy, Ny, Nz/2 + 1, psidd2.ptr,
psidd2.pitch, psidd2_t.ptr, psidd2_t.pitch);

cufftExecD2Z(plan_fwr, (cufftDoubleReal *) psidd2.ptr, (cufftDoubleComplex *) psidd2.ptr);

transpose(tran_dd2);

cufftExecZ2Z(plan_fwc, (cufftDoubleComplex *) psidd2_t.ptr, (cufftDoubleComplex *)
psidd2_t.ptr, CUFFT_FORWARD);

// FFT using FFTIW on host and cuFFT on device, as used in Hybrid/MPI implementation
. // Initialize FFT plans on host and device as in Listing 5.5
// Make transpose plan
plan_tr_psidd2_x = fftw_mpi_plan_many_transpose(Nx, Ny * (Nz/2 + 1), 2, locallNx, locallNy *
(Nz/2 + 1), (double *) psidd2fft, (double *) psidd2fft, MPI_COMM_WORLD, FFTW_ESTIMATE
| FFTW_MPI_TRANSPOSED_OUT);

#pragma omp parallel private(threadid) num_threads(2)
{
threadid = omp_get_thread_num();
if (threadid == 0) {
. // Copy data to GPU, perform FFT along Ny and Nz, and sync data back
}
if (threadid == || omp_get_num_threads() != 2) {
. // Perform FFT on host, using FFTW without MPI

fftw_execute(plan_tr_psidd2_x); // Transpose data using FFTW

#pragma omp parallel private(threadid) num_threads(2)
{
threadid = omp_get_thread_num();
if (threadid == 0) {
. // Copy data to GPU, perform FFT along Nx, without syncing back
}
if (threadid == 1 || omp_get_num_threads() '= 2) {
. // Perform FFT on host, using FFTW without MPI

The patterns we described in this section are used throughout the three implementations. Since

their use is relatively straightforward, for brevity we will not go through all the individual changes.

6.3 Improvements of input and output operations

With the introduction of multiple computing nodes, each working on a separate set of data, the
I/O components of our programs needed to be adjusted accordingly. Note that the input mentioned
in this section is the output of imaginary-time propagation programs, used as input for real-time
propagation. Input files containing parameters (passed via -i argument during program startup)

are very small, and identical for every process, thus there is no need for handling them in any special

CHAPTER 6. DISTRIBUTED MEMORY ALGORITHM 75

way.

A naive approach to reading input data in a cluster environment is to let one process read all
data, and then distribute them to all other processes. This is inefficient, since it relies on I/0O
throughput of a single node to perform the read, and therefore scales badly. Additionally, the input
may be very large, larger than the available memory of a single node, requiring additional processing
logic to read and split the data. As far as output is concerned, a simple approach would be to let
each process write its own portion of the data in a separate file, ensuring only that processes do not
overwrite each other’s output. While the simplicity of this approach to I/O is appealing, it may
result in potentially many files being created, which complicates analysis of the results, forcing users
to rely on some external process to collect, combine and otherwise process the output. Alternatively,
we could send all data to one process, which would then write all output data aggregated. This
approach again has scalability issues similar to the naive approach to reading input data, as it would
limit the mesh size to the size of the single node’s memory. Efforts to remedy this, for example by
sequentially obtaining and writing data from other processes would further reduce the performance.

Another limiting factor is the sheer amount of data written. Previous implementations used a
textual output, which is simple to analyze and process. With larger mesh sizes, however this output
grows to become very large. Textual representation of floating-point values stored in memory that
we used before takes up more space than the equivalent binary representation, and we can reduce
the size of textual representation only by decreasing precision.

In light of these limitations, we have decided to use MPI for I/O as well, and to switch from
textual to binary representation of data. While it is possible to write textual data with MPI, by
calculating the offset based on the amount of bytes the text is going to occupy, this solution is
not preferred due to the reasons mentioned above. Textual output could still be obtained from
binary representation using hexdump command, available in most UNIX-like operating systems. We
have included an example script that will convert binary output to a textual one as part of the
documentation of our MPI programs.

MPI has a simple mechanism for writing to and reading from files based on the offset into data
at which each process will perform its work (Figure 6.4). Behind the scenes, MPI runtime will

choose an optimal way to perform I/0.

File
HEEEN " EEEEE [TTTT]
AN A A -
Y Y Y
P P P P

Figure 6.4: I/O using MPI, where each process accesses a portion of the file at a different offset.

Reading or writing data with MPI in binary form is straightforward, as illustrated by several
output functions shown in Listing 6.7. We did not use the approach of single-node implementations,
where small amount of data is written to a file in each iteration of the loop. Instead, we now use
temporary variables to prepare data for output, and write them all at once. In case of very large
outputs, like 3D density profiles, MPI buffers may be too small to write all data at once, so in that
case we can simply write a 2D slice in a loop. Writing output this way has obvious performance
benefits, and the amount of additional memory required for the temporary variables is negligible in

a distributed memory system.

CHAPTER 6. DISTRIBUTED MEMORY ALGORITHM 76

Listing 6.7: Examples of output functions implemented using MPI I/0.

// Write integrated XY density
void outdenxy(double ***psi, double ***outxy, double *tmpz, MPI_File file) {
long i, j, k;
// Compute the appropriate offset for each process
MPI_Offset fileoffset= rank * 3 * sizeof (double) * (localNx / outstpx) * (Ny / outstpy);

for (i = 0; i < localNx; i += outstpx) {
for (j = 0; j < Ny; j += outstpy) {
for (k = 0; k < Nz; k ++) {
tmpz [k] = psilil[j1[k] * psilil[j][k]1;
}
// Prepare output data
outxy[i / outstpx][j / outstpyl [0] = x[offsetNx + il;
outxy[i / outstpx][j / outstpyl[1] = y[jl;
outxy[i / outstpx][j / outstpyl[2] = simpint(dz, tmpz, Nz);

}

// Write all prepared data at once, leaving MPI to choose the best strategy for I/O

MPI_File_write_at_all(file, fileoffset, **outxy, (localNx / outstpx) * (Ny / outstpy) *
3, MPI_DOUBLE, MPI_STATUS_IGNORE);

// Write integrated Y density

void outdeny(double ***psi_t, double **outy, double *tmpx, double *tmpz, MPI_File file) {
long i, j, k;
MPI_Offsetfileoffset = rank * 2 * sizeof (double) * (localNy / outstpy);
fftw_execute(plan_transpose_x); // With a transpose we can make required data local

for (j = 0; j < localNy; j += outstpy) {
for (i = 0; 1 < Nx; i ++) {
for (k = 0; k < Nz; k ++) {
tmpz [k] = psi_t[il[j1[k] * psi_t[il[j1[k]1;
}
tmpx[i] = simpint(dz, tmpz, Nz);
}
outy[j / outstpy] [0] = yloffsetNy + jl;
outy[j / outstpyl [1] = simpint(dx, tmpx, Nx);

}
MPI_File_write_at_all(file, fileoffset, *outy, (localNy / outstpy) * 2, MPI_DOUBLE,
MPI_STATUS_IGNORE);

// Write final density

void outdenxyz(double **xpsi, double **xoutxyz, MPI_File file) {
long i, j, k;
MPI_Offsetf ileoffset = rank * sizeof(double) * localNx * Ny * Nz;

for (i = 0; i < localNx; i += outstpx) {
for (j = 0; j < Ny; j += outstpy) {
for (k = 0; k < Nz; k += outstpz) {
outxyz[0] [j1[k] = psili] [j]1[k] * psilil[j][k];
}
}
// MPI I/0 returns error if the array is too large, so we write Ny * Nz at a time.
MPI_File_write_at_all(file, fileoffset, **outxyz, (Ny / outstpy) * (Nz / outstpz),
MPI_DOUBLE, MPI_STATUS_IGNORE) ;
fileoffset += (Ny / outstpy) * (Nz / outstpz) * sizeof (double);

CHAPTER 6. DISTRIBUTED MEMORY ALGORITHM 7

// Reading the output of imaginary-time programs in real-time programs
void readdenxyz(double complex ***psi, double *tmpz, MPI_File inputfile) {
long i, j, k;
MPI_Offset fileoffset = rank * sizeof(double) * localNx * Ny * Nz;

for (i = 0; i < localNx; i ++) {
for (j = 0; j < Ny; j ++) {
// Read whole row at a time, faster then each element individually
MPI_File_read_at(file, fileoffset, tmpz, Nz, MPI_DOUBLE, MPI_STATUS_IGNORE);
for (k = 0; k < Nz; k ++) {
psilil [j1[k] = sqrt(tmpz[k]);
}

fileoffset += Nz * sizeof (double);

}
MPI_File_close(&file);
}

Note that in some output functions we require data along x direction to be local to each process.
We use the same techniques described in the previous two sections to achieve this, therefore we will

not go into those details again.

Chapter 7

Interacting with simulation

Programs presented in previous chapters are not interactive. That is, programs are parametrized via
an input file and produce a summary output, and optionally write the density profiles of the wave
function to disk at predefined intervals. This output can then be analyzed further or visualized with
some visualization tool. While this workflow is sufficient for many use-cases, sometimes it is useful
to analyze and visualize data as it is being generated, as well as to interact with the simulation (for
example, to start, pause, stop, or restart the simulation) and modify parameters it is running. This
type of visualization is called in-situ visualization, meaning that it is applied on datasets in-place
where they are computed (host memory of a computer), rather than writing files to disk, and then
reading them back into a visualization tool. The ability to steer the visualized simulation, e.g.,
by stopping the simulation if we are not satisfied with the intermediate results, or modifying the
parameters of a running simulation, can help reduce resource consumption and reduce the time
it takes to obtain the desired results. In situ visualization can also be a valuable research tool,
allowing users to investigate phenomena that appear during the simulation, even if not anticipated
previously.

Creating a visualization component and embedding it in our programs would be an arduous
task. The preferred approach therefore is to link a visualization component of an existing tool that
supports in-situ visualization to our programs. There are plenty of such tools available, but two
have garnered a lot of attention in the scientific community: ParaView [72] and Vislt [73]. Both
are powerful and mature products with similar functionality, distributed under an open-source
license. ParaView relies on a library called Catalyst to provide in-situ visualization support, which
is a reduced version of the ParaView’s server component, allowing a program to share data with
ParaView for visualization. Similar capabilities are available within Vislt with the 1ibsim library.
In addition to data sharing between the simulation and Vislt, 1ibsim also enables the opposite flow
of information, sending data from the client to the simulation, enabling simulation steering. We
chose to use libsim and Vislt for our visualizations and steering since it offers a simple C API,
which was easier to include in existing programs.

In the following sections, we describe how we used 1ibsim component of Vislt to provide visu-

alization of data from our programs and enable simulation steering.

78

CHAPTER 7. INTERACTING WITH SIMULATION 79

7.1 Visualization of data

Vislt is a free, open-source, platform-independent, distributed, parallel, visualization tool for vi-
sualizing data defined on 2D and 3D, structured and unstructured meshes, as well as plots of 1D
data. Vislt uses a client-server model (viewer-compute engine), where the server is parallelized and
can be distributed on a cluster. This architecture allows for remote visualization, allowing us to
perform large-scale visualization on a powerful computer cluster while running viewer component
on an ordinary desktop computer connected to a cluster. Vislt’s compute engine handles coordi-
nation between distributed processes and, given the information on how the data are distributed,
can reassemble and process them for visualization (e.g., generate a plot and send it to the viewer

component). Figure 7.1 depicts VisIt’s compute engine accessing data in parallel.

GUI Viewer Data file
e Girsie Qb it Flete Gyt toip = — - - Compute
Gt Poafocse=aFkCHoaad -4-3)la- enging ~
[e | T s iy @A hhhk) =
Y
Data file
Compute r
engine
Data file
Compute
engine ?
n
Data file
Compute N
engine
Local computer Remote computers

Figure 7.1: Illustration of Vislt’s components. Vislt’s compute engine reads data files in parallel

and sends data to the viewer component, which user controls via GUI.

A scenario where processes of a program write separate data files is illustrated in Figure 7.1.
Data created in such way are analyzed and visualized as a post-processing step. In order to make
the simulation interactive, and to remove the need for writing data to disk, we have to allow Vislt’s
compute engine access to our data directly in memory. To do this, we rely on Visit’s 1ibsim library.
This library can be inserted into a program to make the simulation behave like a Vislt compute
engine. The 1libsim library and the accompanying data-access code gives Vislt’s data-processing
routines access to the simulation’s calculated data without the need for the simulation to write files
to disk (Figure 7.2). Simulation instrumented in this way can begin its processing while periodically
listening for connections from an instance of Vislt using libsim. When an incoming connection
is detected, libsim loads its dynamic runtime library that contains the Vislt compute engine’s
data-processing functions. Once the runtime is loaded, the simulation connects to Vislt’s viewer,

which can make requests for plots as if the simulation was an ordinary Vislt compute engine.

CHAPTER 7. INTERACTING WITH SIMULATION 80

Viewer Data access code

I

Vislt compute engine library

Local computer

Remote computers

Figure 7.2: Schematic depiction of Vislt getting data from an instrumented parallel simulation.

User’s requests for data from Vislt’s viewer are passed to the simulation, which has to provide
data through a set of callback functions. These callback functions are the main part of the integra-
tion with Vislt, as they provide information on what the simulation is doing, its current state, what
data are available, how they can be represented, and how they are distributed among the processes.
In addition to the callback functions, we also have to change the flow of our program to integrate

libsim. General flow of a simulation with 1ibsim integrated is illustrated in Figure 7.3.

Initialize

Visualization
request

VisitDetectInput

Exit
Figure 7.3: Main simulation loop with 1ibsim integrated.

Restructuring programs to integrate libsim can be done in many ways, however we selected a
pattern that Vislt uses in its examples and which is also recommended by Vislt’s developers. Focus
was placed on 3D variants of the programs, specifically, the MPI-parallelized versions described
in Chapter 6, however other versions of programs would also be suitable candidates for integra-
tion with Vislt. We note that the necessary changes were not difficult to implement. While the
changes are extensive, the only conceptually major change is the restructuring of the main loop to
support connections from Vislt. Much of the restructured code can be shared between real- and

imaginary-time programs, so we used a single implementation for most of the functions commu-

CHAPTER 7. INTERACTING WITH SIMULATION 81

nicating with libsim. The differences were handled with conditional compilation, allowing us to
enable the different functionality via a compiler switch. Listing 7.1 shows the flow of simulation

after restructuring.

Listing 7.1: The flow of simulation in 3D programs after integration with 1ibsim.

void main(...) {
// Initialize variables and simulation data
SimData *sim = ...; // Structure containing simulation state and variables
SimMainLoop(sim) ;
// Free resources and clean up

}

void SimMainLoop(SimData *sim) {
int blocking, vstate, err = O;
// Register VisIt commands (start/stop, pause...), variables, on-demand output...
SimRegisterCommands (sim) ;
do {
// Determines if the simulation should wait for user input or run anyway
blocking = (sim->running == SIM_STOPPED) 7 1 : 0;

if (sim->par_rank == 0) {

vstate = VisItDetectInput(blocking, fileno(stdin)); // Detect user input, if any
}
MPI_Bcast(&vstate, 1, MPI_INT, O, MPI_COMM_WORLD);

switch(vstate) {
case O:
SimNextStep(sim); // If there was no user input, proceed with the next iteration
break;
case 1:
// Initial case, user attempts to connect to VisIt
if (VisItAttemptToCompleteConnection() == VISIT_OKAY) {
// Set command callbacks
VisItSetCommandCallback(SimCommandCallback, (void*)sim);
VisItSetSlaveProcessCallback2(SlaveProcessCallback, (void#*)sim);
// Set simulation metadata and variable callback
VisItSetGetMetaData(SimGetMetaData, (void*)sim);
VisItSetGetMesh(SimGetMesh, (void#*)sim);
VisItSetGetVariable(SimGetVariable, (void*)sim);
VisItSetGetCurve(SimGetCurve, (void*) sim);
VisItSetGetDomainList (SimGetDomainList, (void*)sim);
} else {
// Handle connection error
}
break;
case 2:
// User has sent an UI command, decode and process it
if ('ProcessVisItCommand(sim)) {
VisItDisconnect(); // Disconnect in case of failure
sim->done = 1;
}
break;
case 3:
// User has sent an console command, decode and process it
SimProcessConsoleCommand (sim) ;
break;
default:
// Other states should not happen, handle errors if they do
break;

CHAPTER 7. INTERACTING WITH SIMULATION 82

}

} while (!sim->done && err == 0); // Loop until simulation is stopped or reaches the end

As part of the restructuring, we introduced a structure called SimData that represents the
simulation’s global state, has pointers to all important variables, and is used to pass information
inside callback functions. We define several callback functions that return information about data in
our programs and register them with Vislt by calling the appropriate function from VisItSetGetx*
set.

First callback function to be invoked is VisItSetGetMetaData, which provides metadata about
the simulation. This is the function invoked when Vislt connects to the simulation, and the obtained
metadata is used to determine which meshes and variables are available. The associated callback
function must return a handle to a SimulationMetaData object that contains lists of metadata
objects. Listing 7.2 demonstrates creation of some of the metadata used. For 3D programs, we
define one 3D mesh, and three 2D meshes (every combination of two axes). These meshes represent
the base on top of which the corresponding 2D or 3D variables will be visualized. The 3D mesh is
used as a base for the variable containing the absolute square of the wave function (|1|?), while the
2D meshes are used for the 2D integrated density profiles the programs generate. Vislt supports
numerous types of meshes for many different use-cases. Due to the nature of the data in our
programs, a rectilinear mesh is the best choice for our data, as it directly corresponds to the spatial
grid we use. Rectilinear meshes are specified by lists of coordinate values for each axis, which map
to spatial grid variables we already defined in our programs. For variables representing 1D arrays,
there is no concept of 1D mesh, rather they are defined as curves in Vislt, and are visualized as
ordinary plots. Using meshes and curves we have augmented the output system of our programs,
which can now also send data to Vislt for visualization instead of just writing the computed output

to a file.

Listing 7.2: The portion of the metadata exported from the 3D program to Vislt.

visit_handle SimGetMetaData(void *cbdata) {
visit_handle md = VISIT_INVALID_HANDLE;
SimData *sim = (SimData *)cbdata;
// Allocate main SimulationMetaData object
if (VisIt_SimulationMetaData_alloc(&md) == VISIT_OKAY) {
// Define empty handles to meshes, variables and curves
visit_handle xyzmd = VISIT_INVALID_HANDLE;
visit_handle xymd = VISIT_INVALID_HANDLE;
visit_handle xzmd = VISIT_INVALID_HANDLE;
#ifndef REAL
visit_handle psimd = VISIT_INVALID_HANDLE;
#endif
visit_handle psi2md = VISIT_INVALID_HANDLE;

VisIt_SimulationMetaData_setMode(md, (sim->running == SIM_STOPPED) 7
VISIT_SIMMODE_STOPPED : VISIT_SIMMODE_RUNNING) ;

VisIt_SimulationMetaData_setCycleTime(md, sim->step, sim->time);

// 3D mesh (XYZ) metadata

if (VisIt_MeshMetaData_alloc(&xyzmd) == VISIT_OKAY) {
VisIt_MeshMetaData_setName (xyzmd, "xyz_mesh");
VisIt_MeshMetaData_setMeshType(xyzmd, VISIT_MESHTYPE_RECTILINEAR);
VisIt_MeshMetaData_setTopologicalDimension(xyzmd, 3);
VisIt_MeshMetaData_setSpatialDimension(xyzmd, 3);

CHAPTER 7. INTERACTING WITH SIMULATION 83

VisIt_MeshMetaData_setNumDomains (xyzmd, sim->par_size);

VisIt_MeshMetaData_setXLabel(xyzmd, "z")
VisIt_MeshMetaData_setYLabel (xyzmd, "y");
VisIt_MeshMetaData_setZLabel (xyzmd, "x")

VisIt_SimulationMetaData_addMesh(md, xyzmd) ;

}

// 2D mesh (XY) metadata

if (VisIt_MeshMetaData_alloc(&xymd) == VISIT_OKAY) {
VisIt_MeshMetaData_setName (xymd, "xy_mesh");
VisIt_MeshMetaData_setMeshType(xymd, VISIT_MESHTYPE_RECTILINEAR);
VisIt_MeshMetaData_setTopologicalDimension(xymd, 2);
VisIt_MeshMetaData_setSpatialDimension(xymd, 2);
VisIt_MeshMetaData_setNumDomains (xymd, sim->par_size);

VisIt_MeshMetaData_setXLabel(xymd, "y");
VisIt_MeshMetaData_setYLabel(xymd, "x");

VisIt_SimulationMetaData_addMesh(md, xymd);

}

// Remaining 2D meshes
#ifndef REAL

// psi variable

if (VisIt_VariableMetaData_alloc(&psimd) == VISIT_OKAY) {
VisIt_VariableMetaData_setName(psimd, "psi");
VisIt_VariableMetaData_setMeshName (psimd, "xyz_mesh");
VisIt_VariableMetaData_setType(psimd, VISIT_VARTYPE_SCALAR);
VisIt_VariableMetaData_setCentering(psimd, VISIT_VARCENTERING_NODE);

VisIt_SimulationMetaData_addVariable(md, psimd) ;

}

#endif

// psi2 variable

if (VisIt_VariableMetaData_alloc(&psi2md) == VISIT_OKAY) {
VisIt_VariableMetaData_setName(psi2md, "psi~2");
VisIt_VariableMetaData_setMeshName(psi2md, "xyz_mesh");
VisIt_VariableMetaData_setType(psi2md, VISIT_VARTYPE_SCALAR);
VisIt_VariableMetaData_setCentering(psi2md, VISIT_VARCENTERING_NODE);

VisIt_SimulationMetaData_addVariable(md, psi2md);

}

// Density (XY) variable

if (VisIt_VariableMetaData_alloc(&denxymd) == VISIT_OKAY) {
VisIt_VariableMetaData_setName(denxymd, "density_xy");
VisIt_VariableMetaData_setMeshName (denxymd, "xy_mesh");
VisIt_VariableMetaData_setType(denxymd, VISIT_VARTYPE_SCALAR);
VisIt_VariableMetaData_setCentering(denxymd, VISIT_VARCENTERING_NODE) ;

VisIt_SimulationMetaData_addVariable(md, denxymd) ;

// Other 2D variables
/* Density (X) curve */
if (VisIt_CurveMetaData_alloc(&denxmd) == VISIT_OKAY) {
VisIt_CurveMetaData_setName(denxmd, "density_x");
VisIt_SimulationMetaData_addCurve(md, denxmd);

// Remaining curves
// Custom commands
visit_handle cmd = VISIT_INVALID_HANDLE;
if (VisIt_CommandMetaData_alloc(&cmd) == VISIT_OKAY) {

CHAPTER 7. INTERACTING WITH SIMULATION 84

VisIt_CommandMetaData_setName(cmd, "START/PAUSE");
VisIt_SimulationMetaData_addGenericCommand(md, cmd);

// Remaining commands

return md;

Once Vislt’s GUI is populated by the metadata obtained, the user can request the visualization
of variables from the simulation, which will call the associated callback. For example, if one wants
to visualize a variable labeled psi~2, one selects the appropriate command from the Vislt’s GUI,
and in the background, VisIt will use 1ibsim to call the SimGetMesh (callback function registered
in Listing 7.1) to get the info about the 3D mesh, then SimGetVariable to get the actual data,
and other callback functions as needed. Listing 7.3 shows the portion of these callback functions.
As part of the callback mechanism, functions receive the string with the name of the desired object
(mesh, variable, curve, ...), which can be used to provide different data. In this way we can define

a single function to return all possible meshes or variables.

Listing 7.3: Portions of the mesh, variable and curve callbacks.

visit_handle SimGetMesh(int domain, const char *name, void *cbdata) {
visit_handle h = VISIT_INVALID_HANDLE;
visit_handle hxc, hyc, hzc;
SimData *sim = (SimData *)cbdata;

if (strcmp(name, "xyz_mesh") == 0) {
if (VisIt_RectilinearMesh_alloc(&h) !'= VISIT_ERROR) {
VisIt_VariableData_alloc(&hxc);
VisIt_VariableData_alloc(&hyc);
VisIt_VariableData_alloc(&hzc);

VisIt_VariableData_setDataD(hxc, VISIT_OWNER_SIM, 1, sim->var.localNx /
sim->out.outstpx + sim->ghost, sim->var.xstp + (sim->var.offsetNx /
sim->out.outstpx));

VisIt_VariableData_setDataD(hyc, VISIT_OWNER_SIM, 1, sim->var.Ny /
sim->out.outstpy, sim->var.ystp);

VisIt_VariableData_setDataD(hzc, VISIT_OWNER_SIM, 1, sim->var.Nz /
sim->out.outstpz, sim->var.zstp);

VisIt_RectilinearMesh_setCoordsXYZ(h, hzc, hyc, hxc); // We use inverted order

return h;

// Remaining meshes
return h;

visit_handle SimGetVariable(int domain, const char *name, void *cbdata) {
visit_handle h = VISIT_INVALID_HANDLE;
long ntuples;
SimData *sim = (SimData *)cbdata;

if (strcmp(name, "psi~2") == 0) {
VisIt_VariableData_alloc(&h);
ntuples = (sim->var.localNx / sim->out.outstpx + sim->ghost) * (sim->var.Ny /
sim->out.outstpy) * (sim->var.Nz / sim->out.outstpz);
VisIt_VariableData_setDataD(h, VISIT_OWNER_SIM, 1, ntuples, **(sim->var.psi2));

CHAPTER 7. INTERACTING WITH SIMULATION 85

return h;

. // Remining variables
return h;

}

visit_handle SimGetCurve(const char *name, void *cbdata) {
visit_handle h = VISIT_INVALID_HANDLE;
SimData *sim = (SimData *)cbdata;

// Note that only rank O calls this function
if (strcmp(name, "density_x") == 0) {
if (VisIt_CurveData_alloc(&h) '= VISIT_ERROR) {
visit_handle hxc, hyc;
VisIt_VariableData_alloc(&hxc);
VisIt_VariableData_alloc(&hyc);

VisIt_VariableData_setDataD(hxc, VISIT_OWNER_SIM, 1, sim->var.Nx /
sim->out.outstpx, sim->var.xstp);

VisIt_VariableData_setDataD(hyc, VISIT_OWNER_SIM, 1, sim->var.Nx /
sim->out.outstpx, sim->var.denx);

VisIt_CurveData_setCoordsXY(h, hxc, hyc);

return h;

. // Remaining curves
return h;

In our simulations, we distribute data among multiple processes, and this information must
also be passed via libsim. Vislt supports working with distributed data through the concept of
domains. A domain is a unit of work assigned to a given process that corresponds to a portion of
the mesh. By decomposing the meshes into multiple domains, Vislt is able to handle large-scale
simulations. Therefore, in a distributed simulation, we have to provide Vislt with information on
how domains abut, via another callback function. Additionally, each domain needs information on
its adjacent domains, to ensure continuity between domains. This information is provided via ghost
nodes. There are a few ways to provide information on ghost nodes, in our case the simplest way
was to extend the data on each process to include the first spatial points of adjacent processes. The
overlap of data obtained in this way is designated as a ghost node between adjacent domains. This
has proved to be simple to implement, as it does not require changes to any computation. Instead,
the processes exchange data just prior to sending them to Vislt, with a call to MPI_Sendrecv. Since
the amount of data is small, the impact on memory usage and simulation performance is negligible.

Figure 7.4 illustrates this concept.

Ny Py R

Ve O NV NI

ghost
node

Figure 7.4: Exchange of data between neighboring processes to construct ghost nodes.

CHAPTER 7. INTERACTING WITH SIMULATION 86

This and other callback functions are implemented in a similar manner to the ones presented
above, i.e., they all return a handle to an object that contains the necessary information. By
providing the aforementioned metadata, Vislt can now connect to our programs, and visualize
variables as they are updated. Figure 7.5 illustrates some of the visualizations made possible with

this integration.

_Zf"ia'ﬂ'li‘“m =[P =4 =1 E] &= O0fEo=8 =ld=l4-1315s= _Eﬁaﬂ'liwm =l ey = 41 = =] 5 =
St hhEN s "] .G‘.\"x+-+|ﬁ = 2L Rt Hh hEN .

s g 5 10105

0.35 3

0.30

0.25

0.20

0.15

0.10

0.08

Figure 7.5: Examples of visualizations in VisIt: 3D pseudocolor plot (left), 2D pseudocolor plot
(center) and curve plot (right).

We note that, while interacting with the simulation is very useful, sometimes the classic, ap-
proach where analysis of data happens after the simulation, is preferred. To enable this usage
scenario, we added support of exporting data to Vislt as files independent of the running simula-
tion. For visualization purposes, Vislt supports numerous formats via plugins, however two formats
stand out as being the most commonly used: Silo and VTK. Silo [74] is data format and library
for reading and writing a wide variety of scientific data, developed together with VisIt. It is mostly
used for data intended to be visualized with Vislt, however it can be used with other tools as well.
VTK [75] stands for Visualization Toolkit and is a software system for 3D computer graphics, image
processing and visualization. It is developed by the same company that is also the primary devel-
oper of ParaView. VTK supports two different file formats, the legacy textual format that is easy
to write either by hand or a library, and the newer XML-based format which has more advanced
features and is often written with its own library. As all three file formats (Silo, textual VTK and
XML-based VTK) meet our needs, the choice between them was based on personal preference and
ease of use. We decided to use textual VTK, which we found to be more widespread in scientific
communities, has good compatibility with the major visualization tools, and is simple to use. Vislt
provides sample programs for writing textual VTK files, which we used as the base for our imple-
mentation. In this way the same set of meshes and variables can be exported as VTK files. Since the
binary output produced by our programs can still be useful for data analysis without visualization,
we decided to keep it together with VTK output.

7.2 Simulation steering

With changes shown in the previous section Vislt viewer component can connect to our programs
and visualize the exported variables. However, the simulation is still independent of Vislt, and runs
even if there is no connection from Vislt. In this section we describe how our simulation is extended

to accept commands from Vislt.

CHAPTER 7. INTERACTING WITH SIMULATION 87

Vislt supports issuing custom commands that can be used to send data to the simulation. The
data sent can be interpreted as instructions to alter the simulation state. There are three ways to
send data to the simulation: via simulation window in viewer GUI, via a custom user interface, or
via console interface. In order to cover more use-cases, we implemented support for all three ways
of commanding.

Simulation window, available after Vislt connects to a simulation, allows custom commands to
be specified, which are accessible as push buttons the user can interact with. Pushing a button
invokes a callback function in the simulation, which can perform some action based on the button
selected. While useful for some basic commanding, this approach is very limited because there is
no way to send any parameters to the simulation. That means that the callback function can only
perform work based on the name of the command. For this reason, we use this functionality only for
the most basic commands, i.e., start/pause the simulation, reset the simulation to the initial state,
perform one step of time propagation, force the update of Vislt’s plots, and stop the simulation
and free the resources. To create these commands, they first must be registered with Vislt as part
of the metadata callback (Listing 7.1). This essentially provides labels that will be written on the
buttons. After that, along with other callbacks, we provide a callback to a function that will be

invoked when a user clicks on a button in the simulation window. Listing 7.4 demonstrates this.

Listing 7.4: Registering basic Vislt commands.

// Callback for VisIt’s Simulation window
void SimCommandCallback(const char* cmd, const char* args, void* cbdata) {
if (strcmp(cmd, "START/PAUSE") == 0) {
SimUIStartPauseClick(cbdata);
} else if (strcmp(emd, "RESET") == 0) {
SimUIResetClick(cbdata) ;
} else if (strcmp(emd, "NEXT STEP") == 0) {
SimUIStepClick(cbdata);
} else if (strcmp(cmd, "UPDATE PLOTS") == 0) {
SimUIUpdatePlotClick(cbdata) ;
} else if (strcmp(emd, "STOP") == 0) {
SimUIStopClick(cbdata) ;
}
}
void SimUIStartPauseClick(void* cbdata) {
SimData* sim = (SimData*) cbdata;
sim->running = !sim->running;
// Temporary disable the Simulation window so that the user can not issue multiple
commands and cause concurrency problems
SimSetupUI(sim, !sim->running);
VisItTimeStepChanged(); // Notify VisIt so that the GUI is refreshed with the new data
}
void SimUIStepClick(void* cbdata) {
SimData* sim = (SimData*) cbdata;
SimSetupUI(sim, 0);
SimNextStep(sim); // Perform next step in the time propagation and update GUI
SimSetupUI(sim, 1);

. // Remaining three functions omitted for brevity

Greater flexibility can be obtained by creating a custom GUI. They are made using Qt toolkit
[76], in which VisIt’s GUI itself is made. Custom GUIs are designed using Qt Designer tool,

which is a part of Qt software package. While simulation window only allows push buttons to be

CHAPTER 7. INTERACTING WITH SIMULATION 88

programmed, custom Uls support three different widgets (at the time of writing): push button,
check box, and spin box widget. Push button widgets work the same way as in simulation window,
allowing some predefined action to be taken. On the other hand, check box widgets can be used to
change the value of some boolean parameter in the simulation, while spin box widgets can be used
to change a numeric value of some variable. Noticeably missing is the support for text input widget,
which would be useful to send some textual (or decimal) value to the simulation. Support for
additional widgets may come in a future version of VisIt, however we find the current widgets to be
adequate for most cases. By using these three widget types we implemented support for: toggling
computation of output variables (which may significantly speed up each step of the simulation),
toggling automatic updates of Vislt’s plots, writing current state of variables on-demand in multiple
formats, and performing the selected number of steps in the simulation (Listing 7.5). The basic
commands of the simulation window were also implemented in the custom GUI. In addition to
sending data to the simulation, custom GUIs can also receive data from it. In this way, the custom
GUI may present some information to the user. For example, we use this functionality to display

the current iteration number on the custom UL

Listing 7.5: Registering Vislt commands for the custom GUI. The callbacks for individual actions

are similar to the functions in Listing 7.4

void SimRegisterCommands(SimData* sim) {
// Simulation comntrol
VisItUI_clicked("btnStartPause", SimUIStartPauseClick, sim); // Button
VisItUI_clicked("btnStep", SimUIStepClick, sim);
VisItUI_clicked("btnReset", SimUIResetClick, sim);
VisItUI_clicked("btnStop", SimUIStopClick, sim);
VisItUI_clicked("btnUpdatePlot", SimUIUpdatePlotClick, sim);
VisItUI_stateChanged("boxAutoUpdate", SimUIAutoUpdateChange, sim); // Check box
VisItUI_valueChanged("spnStep", SimUIStepValue, sim); // Spinner
// Variables to track
VisItUI_stateChanged("boxMuen", SimUIMuenChange, sim);
VisItUI_stateChanged("boxRms", SimUIRmsChange, sim);
VisItUI_stateChanged("boxPsi2", SimUIPsi2Change, sim);
VisItUI_stateChanged("boxDenX", SimUIDenXChange, sim);
VisItUI_stateChanged("boxDenY", SimUIDenYChange, sim);
VisItUI_stateChanged("boxDenZ", SimUIDenZChange, sim);

// Output

VisItUI_stateChanged("boxTextOut", SimUITextOutChange, sim);
VisItUI_stateChanged("boxVtkOut", SimUIVtkOutChange, sim);
VisItUI_stateChanged("boxAutoOut", SimUIAutoOutChange, sim);
VisItUI_clicked("btnOutput", SimUIOutputClick, sim);

The custom GUI can be invoked from the simulation window, and interaction with it causes the
registered functions to be called. Again, a simple mechanism based on a name of the widget user
is interacting with is used to differentiate between the widgets in the GUI. The simulation window

and the custom GUI are shown in Figure 7.6.

CHAPTER 7. INTERACTING WITH SIMULATION 89

Simdation [DBEC real3d on vloncar-acer | [Sinulation control
P e | BtatoPase| Stee | Resst | stop |
~Host, wloncar-acer VOt dat
- Hane TBEC. realZd Loolieds
“-Tate Sun Feb 12 16:57:43 2017 5t =
e procs... 1 e o st plt |
i-path Current step 0
e comment.
-uiFile dbec,ui ~Track variables
Simulation status Stopped 7w " RS ¥ nsi2
nuen psi
Yizlt stat
133t status ‘ ¥ Density X ¥ Density X [7 pei2 XY
Interrupt | Clear cache ¥ Density ¥ ¥ Density %2 ¥ psi2 42
Gontrols | Hessages | Strip charts | ¥ Tensity Z ¥ Density V2 ¥ psi? 12
 Conmands
~Output.
STRT/PALE | RESET | et ser | [Toxt, Forwat te
1! wtﬂ]t
waiE PO | STOP | wston . L .| i AT y——

¥ Enable time ranging

Start | Step [Stop [

_tpost |

Post I Dismiss

Figure 7.6: Simulation window with five programmable buttons (left) and more advanced custom
GUI (right).

GUIs created in Qt Designer are essentially XML files, and the user does not have to compile
them or link them in any special way with Vislt. The user only has to place the XML file of the
GUI in a directory where Vislt can find it. They are completely independent of the simulation itself,
and their (un)availability does not interfere with the simulation.

The third option for issuing commands to the simulation is via the console interface. This
interface allows the user to type commands in the console window of the running simulation. This
way of commanding predates other two approaches and is perhaps the most flexible. This flexibility
comes from the fact that anything the user types in the console gets sent to the simulation as a
string that can be further processed in any way. Therefore, with sufficiently capable parser, the
console interface can alleviate the current limitations of GUI commanding. Additionally, this is
the only available interface when Vislt is started without its GUI component. Vislt can be started
without its GUI and scripted to perform many advanced actions, however this scenario is out of
scope for this thesis. Since we did not focus on advanced scripting with Vislt, we implemented the
console interface to have the same functionality as the graphical one.

We added support for the console interface as a special case in the main Vislt loop inside the
simulation, as illustrated in Listing 7.1. VisItDetectInput returns a value of 3 to denote that the
command issued was a console command, and we process it with the SimProcessConsoleCommand
function. This function may then perform any work based on user’s input. We do not present its

implementation because it covers the same functionality already presented.

Chapter 8

Performance evaluation and

modeling

In previous chapters we presented various parallel implementations of programs solving the dipolar
GP equation without providing details of their measured performance. This chapter is dedicated
to filling that gap. Before performance evaluation, all programs were tested for correctness to make
sure they produce the same results as original serial programs, and extended to record execution
time of the main loop.

We tested various scaling scenarios, strong and weak, from a single computing node to the cluster.
All testing was done at the PARADOX supercomputing facility located at the Scientific Computing
Laboratory, Center for the Study of Complex Systems of the Institute of Physics Belgrade.

Performance of hybrid implementations is highly dependent on the amount of work offloaded to
GPU(s), so the key to maximizing performance of these versions is proper selection of parameters
which control this feature. We used evolutionary computation techniques to find the optimal solu-
tions, as described in Section 8.1. In the remaining two sections we give an overview of the tests
and the methodology they relied on (Section 8.2), and present the performance results and their
modeling in Sections 8.3 and 8.4. Section 8.5 discusses how to select the optimal algorithm for a

given hardware platform.

8.1 Optimization of input parameters for hybrid implemen-

tations

Hybrid implementations, running on a single computer or a cluster with multiple computing nodes,
can potentially offer the best performance of all algorithms presented in this thesis, by utilizing
all allocated computing resources. For this to happen, work must be divided between CPU and
GPU in such a way as to maximize their throughput and minimize their idle time. A question that
naturally arises is how to achieve this for any possible mesh size for a given CPU/GPU combination.
Unfortunately, there is no single best way to divide the work, since processing powers of CPUs and
GPUs vary significantly. For example, in a computer where a powerful new GPU is paired with
an older type of CPU, more work should be offloaded to the GPU, and vice versa for computers
with a powerful CPU and low-performing GPU. Even if the installed CPU and GPU offer similar

90

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 91

performance in terms of floating point operations per second (as is the case for the PARADOX
cluster), the differing architectures mean that certain portions of the algorithm are better suited to
CPU or GPU. If we were to divide the work naively, e.g., equally, this would lead to unbalanced

computation, as illustrated in Figure 8.1(a), which in turn increases the computation time.

a) Equal division of work sync point

Host | | | \ |

oevice [N (N I

b) Optimized division of work

Host | | | | |

Device | (NN [—
I

\

Time

Figure 8.1: Execution timeline in a hybrid system: (a) with equal data distribution, leading to

unbalanced computation time; (b) with optimized data distribution and ideal computation load.

To get over this problem, our hybrid implementations have an option to manually specify each
parameter that controls the work being done on a GPU. Ideally, this flexibility would allow us to
overlap computation on CPU and GPU as much as possible, thus minimizing the execution and
idle time of each resource. The execution timeline for the ideal case looks like the illustration in
Figure 8.1(b).

The aforementioned parameters include the total amount of data transferred to GPU, the number
of chunks, kernel grid size parameters and a special parameter controlling whether some functions
will even be offloaded to GPU or not, which is useful in situations where the CPU is much more
powerful than the GPU. In 3D programs, this amounts to 33 integer-valued parameters for which
we would like to find the optimal values for the desired mesh size on a given computing system
(with given hardware characteristics). Furthermore, there are constraints that the parameters must
satisfy. For example, the total amount of data transferred to GPU must be divisible by the number
of chunks, and the size of a block that kernel launches must fit within the limits imposed by the
underlying GPU.

To evaluate any combination of parameters, the programs have to be executed, and their exe-
cution time measured. The search space of 33 parameters is clearly too large to be exhaustively
traversed in a reasonable amount of time. Fortunately, we can reduce the number of parameters we
have to search through at any single time by grouping them based on the synchronization point.
After the CPU and GPU synchronize, data have to be divided again, so the only relevant parameters
in the region between two synchronization points are the ones controlling the division of work and
the ones controlling the kernels which are executed in that region. During a single iteration, CPU

and GPU have to synchronize four times:
1. after the FFT on local dimensions,
2. after the inverse FFT on the non-local dimension,

3. before calclux function, and

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 92

4. after calclux (which represents the end of a single iteration).

This gives us four distinct parameter sets to optimize: PS; with 6 parameters, PSs also with 6
parameters, PS3 with 15 parameters and PS, with 5 parameters. We can consider each parameter
set independently.

We investigated several approaches to optimization of parameter sets: naive brute-force search,
iterative optimization via gradient descent, and metaheuristic via genetic algorithm. Our goal was
not to find the best possible optimization algorithm for our problem, but rather than to implement
a reasonably good one. By this we mean the algorithm which is not difficult to implement, which
will give us a set of parameters that are close to the optimal ones, and will not take a long time to
finish. Our focus was on 3D variants of both single node and MPI versions of hybrid programs. The
concepts presented here apply equally to 2D variants and there is no important difference between
the single node and the MPI version, so we will not make this distinction in the remainder of this
section. We will now describe how the three approaches were implemented.

A brute-force search (BFS), or exhaustive search, considers every possible combination of pa-
rameter values in order to find the optimal one. Even with parameters divided into smaller sets, the
exhaustive search takes too long, and is only feasible if we narrow down the ranges of all parameters
involved. Unfortunately, this is only possible when we have a deep understanding of the perfor-
mance of the CPU and GPU models used, when we can provide a reasonable guess for the optimal
solution. An alternative is to consider only certain values along the range of a single parameter,
rather than every value in the range. This approach is feasible and we were able to find reasonably
good parameter values using it. The downside is that this way we may miss the optimal values
of parameters, as they often lie between the selected test points. For instance, on one PARADOX
computing node and a mesh size 256 x 256 x 256, with the work divided between CPU and GPU
along the outermost, x dimension, if we test only for the values of offloaded data to GPU that are
multiples of 32 (i.e., 32 x 256 x 256, 64 x 256 x 256, etc.), we will miss the optimal value which lies
around 140 x 256 x 256 (assuming all other parameters are fixed). Even though BFS is often not
feasible, it is useful as the baseline for the evaluation of other methods we implemented.

With the BFS implemented as a baseline, we switched our focus to the implementation of an
iterative optimization algorithm. A well-known and widely used algorithm is gradient descent (GD)
[77]. Tt is an iterative procedure in which every iteration aims to get closer to the minimum of the
given function F'(x), where x represents a vector of function parameters. If the function F(x) is
defined and differentiable around some point a, then F(x) decreases fastest in the direction of the

negative gradient of F' at a. GD exploits this fact and defines b as
b=a-~VF(a), (8.1)

so that F(b) < F(a), for v small enough. This observation is used as a building block for the
algorithm. We start from an initial guess xo for a location of the minimum of F' and construct a
sequence X, (n > 1) such that:

Xp =Xp-1 — YVF(Xn-1) . (8.2)

This sequence will eventually converge to the local minimum, if one exists. GD is most applicable to
functions for which the gradient can be computed analytically, however it can also be used when the
derivative can only be obtained numerically. To apply it here, the execution time of our programs

will be the function F' that we minimize, and its arguments are the n = 33 parameters that control

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 93

the GPU. The execution time is measured as the average time of a single iteration of the main time-
propagation loop, sampled over a given number of iterations. As explained earlier, we can divide the
problem into four separate minimization problems, with four sets of parameters of dimensionality

m; (i =1,2,3,4), in the same way as in BFS. To numerically compute the k-th partial derivative of

one of the minimization functions at a set of candidate parameters a1, as, ..., a,, we use first order
approximation:
oF F(ay,...,ap +hg,...,am) — F(at,...,a5,...,a
—(a1,...,am) = (m) (m)) (8.3)
8a:k hk

where hj is the increment of a given parameter. Since the parameters are integer-valued, we have to
carefully choose the value of hy, to be as small as possible, while still satisfying all the constraints
that the corresponding parameter may have w.r.t. other parameters. We note that in order to
evaluate the full gradient of F' at (a1, ...,a,,) we need to execute our programs m + 1 times.

We stress that execution times of our programs are not always the same due to the hardware,
software and OS scheduling issues, making the minimization functions noisy. This noise affects the
calculation of the gradient and could point the algorithm in the wrong direction. We can detect
this by checking if the value of minimization function has increased in subsequent GD iteration,
and discard this move if necessary. While useful, resorting to this tactic means that in case the GD
gets stuck in a local minimum, it will not be able to get out and thus will never reach the global
minimum. A naive way to check if this is the case would be to start over from a different initial
point, and see if the GD algorithm converges to the same minimum. There are more sophisticated
approaches to addressing this issue, which we discuss later.

In general, it is not possible to completely eliminate noise, due to inherent problems of accurately
measuring time on a computer. However, we can try to minimize it by increasing the precision of
execution time measurement of our programs. This can be achieved by averaging execution times
over larger number of iterations of the main time-propagation loop. Unfortunately, this also means
that the total execution time of the GD algorithm will significantly increase.

Another issue in our implementation of GD arises when we have to select the next values of
our parameters based on the output values of previous GD iteration. These output values are real-
valued, meaning that we need to convert them to integers somehow. Simply rounding them up or
down to the nearest integer will not be enough, especially for small value of . For example, if we
set the initial value of some parameter to 10, and after one GD iteration the proposed value of that
parameter is 10.2, rounding it down will reset the value back to 10, effectively discarding the whole
GD iteration. To avoid getting stuck in this way, our implementation selects the next possible value
in the direction of change. In the example above it would mean selecting 11 as the new value. This
change makes it impossible for the algorithm to converge, but it will usually stay close the minimum
where all proposed solutions are of similar quality.

With the GD algorithm implemented as described above, we are able to get a set of optimized
parameters from a random set of initial values. However, such optimized parameters are often
suboptimal, and do not have the best performance. This is due to the fact that in most cases the
GD will converge to the nearest local minimum, and there is no guarantee that that local minimum
is also the global one. Using our previous example from BFS, a mesh of 256 x 256 x 256, with GD
we obtain that local minima exist for all power of two values, i.e., parameters suggest offloading
2™ x 256 x 256 to the GPU. If we randomly select a small initial value, GD will get stuck in the

nearest local minimum, which in this example will be far from the global one, thus producing a

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 94

very bad solution. We can attempt to avoid getting stuck in a local minimum by adapting the
parameter -y, also known as learning rate in machine learning literature. Keeping the learning rate
high for a first few iterations would allow the algorithm to find the general location of the minimum,
after which we could gradually lower the learning rate until convergence is achieved, in a process
called annealing [78]. In practice this did not completely solve the problem, as we found that the
optimal learning rate to start with varies with the initial set of parameters and the mesh size, and
thus has to be manually selected. This complicates attempts to automate the process of finding
the optimal parameters for a range of mesh sizes, which we needed as part of the tests of both
hybrid implementations. A method to remove the manual tuning of the learning rate exists [79],
but we find it to be too complex to implement for our programs, because it would require significant
changes to the way the parameters are selected.

From the discussion above, we conclude that the GD is not the best-suited method for the
optimization in our case, mostly because our minimization function is noisy and the numerical
computation of the gradient is costly. Derivative-free optimization methods would be better suited
to the problem, e.g., stochastic approximation algorithms like simultaneous perturbation (SPSA)
[80, 81], or metaheuristics like genetic algorithms. We decided to use a genetic algorithm approach,
as it is simple to understand and implement, as well as easy to adjust to get the desired behavior.

Genetic algorithm (GA) is an optimization method based on natural selection that mimics the
process found in biological evolution [82]. GA works by creating a population of individual solutions,
which it then evaluates and modifies, creating a new population, and iterating this process. Unlike
the classical algorithms like GD, which iterate a single candidate solution towards the optimal
one, the GA iterates a population of solutions in which the best individuals approach the optimal
solution. The initial population is usually created at random, giving the GA different points in
the search space to start from. The individual solutions are evaluated using a user-supplied fitness
function, giving each individual a score based on how well they perform the given task. Individuals
with the highest score are then selected to “reproduce” and create new offspring, after which they
may be mutated randomly. The offspring form a new population, and the process can be repeated
again. The GA continues until a suitable solution is found, or after a certain number of generations
has passed.

To implement a GA, we first have to decide how to represent an individual. Individuals are
created based on their blueprint, called chromosome in GA terminology. The most often used
representation is bit-string [83], where all properties of an individual (its genes) are serialized to
an array of bits, and then concatenated. More advanced representations exist, e.g., for encoding
real values, permutations and general data structures [84, 85], however since our individuals are
sets of integer parameters, we did not develop any special representation and instead we used
ordinary arrays of integers as a chromosome. Therefore, each gene in a chromosome is a single
GPU parameter of our programs. Individuals need to be evaluated using a fitness function. In
our case, this means executing the programs with the parameters extracted from the individual’s
chromosome, and reporting the execution time as fitness score, with lower execution time being
better.

Next step is the implementation of the three GA operators: selection, reproduction (crossover in
GA terminology) and mutation. Each operator can be implemented in different ways. Most common

type of the selection operator is roulette wheel selection. This is a type of fitness-proportionate

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 95

selection, with the idea to give each individual a slice of the circular roulette wheel based on their
fitness. The wheel is then spun, and when the roulette ball stops, the individual in whose region
the ball stopped is selected. In this way, the fittest individuals have the greatest chance of being
selected for reproduction, while the ones with very low score quickly die out. We also tested an
alternative type of selection, the tournament selection. In this type of selection, we randomly select
several individuals, and host a tournament for them. The individual with the best fitness score
wins, and is selected for reproduction. By changing the size of the tournament we can control the
selection pressure, e.g., by using small tournament size in the first few iterations we can prevent
premature convergence and increase it in later generations when we have explored the search space
enough. In our tests, the tournament selection gave slightly better results for smaller populations,
by keeping the population diverse in early generations. For larger population size, both selection
rules performed equally. Alongside the main selection algorithm, we also used elitist selection, where
first few individuals are copied to the next generation without changing their chromosome. This
prevented the loss of the best individuals in the next generation, but has to be used carefully as it
may lead to premature convergence to a suboptimal solution.

To produce the next generation, selected individuals should combine their chromosomes and
produce offspring. This is the task of the crossover operator. Crossover exchanges parts of the
chromosomes, mimicking the biological recombination from nature. In its most basic form, crossover
works by randomly selecting a point and exchanging segments before and after the point to create
two new offspring from two parents. This type of crossover is called single-point crossover, and
is illustrated in Figure 8.2(a). Other popular crossover techniques are two-point crossover and
uniform crossover, illustrated in Figures 8.2(b) and 8.2(c). Two-point crossover is similar to the
single-point crossover, just with two points instead of one. On the other hand, in the uniform
crossover each gene of the offspring is selected randomly, either from the first parent or from the
second one, with some fixed probability, typically 0.5. Using the uniform crossover leads to a wider
exploration of the search space [86], but this may not always result in better performance of the
operator [87]. We tested single- and two-point crossover and found that there is little difference in
terms of performance between them. Since some of our parameters have constraints, it is important
to select only the crossover points which lead to an allowed recombination of genes. Unfortunately,

this made the implementation of uniform crossover impossible, and we did not pursue it further.

a) Single-point crossover b) Two-point crossover c) Uniform crossover

cossover_—7 |

point

[

Figure 8.2: Three different crossover techniques in GA: a) single-point crossover, b) two-point

crossover and c) uniform crossover.

The final step in producing the next generation is to apply the mutation operator on the new
population. The mutation operator randomly changes genes to new values, which is equivalent of
performing a random walk through the search space. Changing every gene would not be desired, so

mutation operates with a very small probability, meaning most of the genes will be left unchanged.

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 96

When chromosomes are implemented as bits, the mutation would be equivalent to flipping a random
bit. However, we could not implement mutation this way, as random changes to the chromosome
would often result in non-functioning individuals, e.g., parameter constraints would not be satisfied.
Special care must be taken to ensure that the mutation produces a healthy individual, similarly to
the crossover operator. The importance of mutation operator and its relation to the crossover is
often debated [88, 89], with its role being defined as “to maintain diversity within the population and
inhibit premature convergence” [90], as the crossover operator does not introduce new information
to the population. In our tests, the mutation plays a crucial role if the population size is small, e.g.,
less than 20 individuals, in accordance with Refs. [91, 92]. If the population size is large, e.g., over
200 individuals, the positive effects of mutation on the population fitness are not that evident.

GA is typically iterated for a fixed number of generations, as is the case in our implementation.
Alternatively, we could have implemented some exit clause in the main loop of the GA which would
stop the evolution after the best individuals have not been improved for some number of generations.
After each run of the GA, there is usually several highly fit individuals in the population. Since
randomness is an integral part of any GA, different runs of the algorithm produce slightly different
results. Therefore, our GA does not converge to a single solution, but produces candidate solutions
that have very similar parameter values and overall fitness. Among the candidate solutions, there
may be small differences in the amount of data offloaded to GPU or the kernel parameters, with the
execution times negligibly different. The number of generations required to produce a good solution
also varies due to the randomness in the initial population and the population size. In our tests, it
has a value between 10 and 50.

The implementation described above provides only the basis for a successful application of GA
to the problem at hand. As can be seen, there are several important parameters of GA to tune
in order to get optimal results. These include the population size, the number of generations,
mutation rate, and the selection parameters (e.g., elite selection rate, the tournament size). We did
not perform thorough testing of the performance of the GA that would allow us to obtain the best
values for these parameters, as we were more focused on the quality of the candidate solutions GA
creates. However, we observed that our GA finds good solutions faster if the initial population size
is between 100 and 200, with the number of generations between 10 and 20, depending on the set
of parameters we wish to optimize.

To get a perspective of how the three optimization methods perform, we tested them by com-
paring their final solutions, as well as by recording the number of program executions needed to get
to the optimal set of parameters. For this test, we used 3D real-time propagation hybrid program
on a single computing node. All three methods were allowed to execute the program up to 1000
times. The mesh sizes used range from 80 x 80 x 80 to 600 x 600 x 600, all of which could poten-
tially be offloaded to GPU. We tested parameter set PSz (with 15 parameters), which control the
execution of FFT and the kernels in the subsequent calcnu, calcluy and calcluz functions. The
BFS algorithm was used as the baseline. Note that the range of parameters and a small number
of allowed executions implies that the BFS algorithm takes the values of parameters with large
stride, potentially missing the optimal solution. GD method is used as described, with the learning
rate y initially set to a higher value, which was gradually decreased. We performed the GD for
60 iterations, which amounts to 960 program executions. The GA was run on a population of 100

individuals, for 10 generations, amounting to the same the number of program executions as the

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 97

BFS. We have used mutation rate of 5%, and the tournament selection, with the tournament size
equal to 10% of the population size. Elitism was also included, with the top 2% of the population
copied over. All algorithms were tested five times, to minimize the effects of random initialization
of both GD and GA methods. The results are shown in Table 8.1.

Table 8.1: A comparison of three optimization methods. Reported times are given in milliseconds,
for a single iteration of the main time-propagation loop, averaged over 50 iterations. The last
column contains the minimal execution times obtained by manual tuning. The reported time for

each algorithm represents the minimal achieved value in five test runs.
Mesh size BES | GD | GA | Best

80 x 80 x 80 7 6 6 6
128 x 128 x 128 18 27 16 16
240 x 240 x 240 154 | 272 135 126
256 x 256 x 256 181 199 169 156
360 x 360 x 360 | 343 | 387 | 312 | 298
480 x 480 x 480 | 981 | 1049 | 868 | 829
512 x 512 x 512 | 1452 | 1628 | 1312 | 1242
600 x 600 x 600 | 2591 | 2984 | 2227 | 2159

From the results we conclude that the GA was the most effective optimization method of the
three approaches. As expected, GA found better solutions than BFS due to large strides BFS
had to use. The randomness in the initial population has a big effect on the convergence of the
GA method, sometimes enabling it to find the optimal solution after just three generations. Even
if the fitness of the initial population is very bad, the GA still converges to very good solutions
after 10 generations. On the other hand, GD performed very poorly, mainly because the noise in
program execution times has often thrown it in the wrong direction. Also, GD would get stuck in
the nearest local minimum, which often was not the global one. When the initial position of GD is
near the global minimum it converged to toward the optimal solution, which was rarely the case.
For mesh sizes larger than the tested ones (relevant for MPI-based implementations), corresponding
to a larger range of parameters, GD would be even less effective. Both BFS and GD can be made
more usable if the range of parameters can be narrowed, i.e., if we know the relative performance
of the GPU in comparison to the CPU. However, the GD would still be somewhat inefficient, due
to its higher susceptibility to noise.

Since the GA method is shown to be superior to the other two approaches, we use GA as our

optimization method of choice in the next two sections.

8.2 Testing methodology

All programs were tested on the PARADOX-IV cluster, which is a part of the PARADOX super-
computing facility. This cluster is comprised of computing nodes with two Intel Xeon E5-2670
Sandy Bridge CPUs (with a total of 2 x 8 = 16 cores), with 32 GB of RAM and one Nvidia Tesla
M2090 GPU with 6 GB of GPU RAM, each connected by InfiniBand QDR interconnect. We used
Intel’s compiler (version 2016) to compile the serial and OpenMP programs, and CUDA 7.5 for

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 98

the GPU portions of the CUDA and hybrid programs. MPI-based implementations were compiled
with Open MPI (version 1.10), which itself relied on underlying Intel and CUDA compilers. In
the case of Hybrid/MPI programs, we performed tests using both FFTW and our own transpose
routines. We found the minimal execution times to be about the same for both approaches, but the
FFTW transpose would sometimes exhibit very bad performance due to the creation of suboptimal
communication plan. For this reason, the execution times reported for Hybrid/MPI implementation
are obtained using only our own transpose routines.

The base of all performance evaluations was the measured execution time of critical regions of
the programs, i.e., the portions performing wave function propagation in imaginary or in real time.
This measurement excluded the time spent in other parts of the programs, e.g., initialization of
OpenMP /CUDA /MPI environment, memory allocation and deallocation, creation and destruction
of FFTW plans, initialization of variables and I/O operations. Measuring average execution time of
a single iteration of the main time-propagation loop allows us to predict the performance and total
execution time of a given simulation, as the number of iterations is specific to the problem at hand
and may vary significantly between different simulations. All measurements were collected using
high precision timers based on clock_gettime POSIX function on the CPU side, and CUDA event
API on the GPU side. The execution time of a single iteration of serial programs depends on the
mesh size, controlled by variables Nx, Ny and Nz. For parallel programs, we can measure speedup
and scaling efficiency as a function of the varying number of processing elements (OpenMP threads
or MPI processes).

We tested performance of 1D, 2D and 3D programs on a range of mesh sizes, for a varying number
of OpenMP threads and MPI processes, as shown in Table 8.2. Mesh sizes were chosen from the
corresponding range, and we did not focus solely on mesh sizes which maximize performance of
the programs, to obtain a more realistic assessment. We varied the number of OpenMP threads
from 1 to 16, in increments of one thread. Similarly, we tested the MPI-based implementations by
varying number of MPI processes, each bound to a different cluster node. In this way we tested
MPI-based implementations on 2, 4, 8, 12, 16, 20, 24, 28 and 32 computing nodes. Note that
varying the number of processing elements is not applicable to the single-GPU implementations of
the programs, as they always use all available processing resources on a GPU. Only one of the two
1D and 2D programs were tested (corresponding to x direction in 1D and z-y plane in 2D), because,
performance-wise, there is no difference between them (e.g., imagldX-th vs. imagldZ-th).

The main performance indicator is the execution time, the wall-clock time of one iteration of
the main loop, averaged over 5 executions of 1000 iterations, reported in milliseconds. Using the
results obtained, we calculated the speedup of all programs compared to the published serial C
implementation. We were also interested in examining the scaling efficiency, or scalability, of the
OpenMP and MPI programs. We tested both strong scaling, when the mesh size stays the same
but the number of processing elements varies, and weak scaling, when the amount of work each
processing element performs stays the same while the number of processing elements increases.
More formally, given the execution time of a single iteration of serial programs (7°(1)), and the
corresponding execution time for parallel programs performed with N processing elements (T'(V)),
we calculated speedup as S(N) = T'(1)/T(N) and strong scaling efficiency as E(N) = S(N)/N.
Weak scaling is computed as Ew (N) = Tw(1)/Tw(N), where Ty (1) is the execution time of a

program using single processing element performing the work assigned to it, while Ty (N) is the

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING

99

Table 8.2: Performance testing matrix, showing the mesh sizes and numbers of processing elements

(threads or processes) used to test the programs, as well as the baseline program used for comparison.

real3d-mpihetero

480 x 480 x 250

1920 x 1920 x 960

Program Mesh size Processing elements Baseline
Min Max Min Max
OpenMP programs
imagldX-th 1000 1000000 1 16 imagld
realldX-th 1000 1000000 realld
imag2dXY-th 1000 x 1000 15000 x 15000) 16 imag2dXY
real2dXY-th 1000 x 1000 13000 x 13000 real2dXY
imag3d-th 50 x 50 x 50 800 x 800 x 800 1 16 imag3d
real3d-th 50 x 50 x 50 800 x 800 x 800 real3d
CUDA programs
imag2dXY-cuda 1000 x 1000 15000 x 15000)) imag2dXY
real2dXY-cuda 1000 x 1000 13000 x 13000 real2dXY
imag3d-cuda 50 x 50 x 50 600 x 600 x 600 1) imag3d
real3d-cuda 50 x 50 x 50 540 x 540 x 540 real3d
Hybrid programs
imag2dXY-hetero 1000 x 1000 15000 x 15000 1641 1641 imag2dXY-th
real2dXY-hetero 1000 x 1000 13000 x 13000 real2dXY-th
imag3d-hetero 50 x 50 x 50 800 x 800 x 800 imag3d-th
real3d-hetero 50 x 50 x 50 800 x 800 x 800 10+1 10+1 real3d-th
OpenMP /MPI programs
imag3d-mpi 480 x 480 x 250 | 1920 x 1920 x 960 imag3d-th
real3d-mpi 480 x 480 x 250 | 1920 x 1920 x 960 116 3216 real3d-th
CUDA /MPI programs
imag3d-mpicuda 480 x 480 x 250 | 1920 x 1920 x 960) 39 imag3d-cuda
real3d-mpicuda 480 x 480 x 250 | 1920 x 1920 x 960 real3d-cuda
Hybrid/MPI programs
imag3d-mpihetero | 480 x 480 x 250 | 1920 x 1920 x 960 imag3d-hetero
1x(1641) | 32x(16+41)

real3d-hetero

execution time of a program using N processing elements performing N times more work. We

achieve this by increasing the mesh size.

8.3 Performance test results and modeling of single node

programs

In this section we present the results obtained for single computing node OpenMP, CUDA and

hybrid programs, and compare them to the previously published [13] serial implementation.

Strong scaling performance test results for the OpenMP-based implementation using methodol-

ogy described in the previous section are given in Table 8.3 and Figure 8.3. They show the obtained

execution times, speedups and strong scaling efficiencies for different number of OpenMP threads.
Columns Ny, = 1, Ny = 2, Ny = 4, Ny, = 8 and Ny, = 16 in Table 8.3 correspond to the number
of threads used, while the last column shows the obtained speedup S(16) with 16 OpenMP threads

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 100

compared to one OpenMP thread. Strong scaling efficiency F(Ny,) = S(Ngn)/Nin in Figure 8.3 is
calculated as a fraction of the obtained speedup compared to a theoretical maximum. The mesh
size used in 1D is 10°, in 2D 10* x 10*, while in 3D the mesh size is 480 x 480 x 480. Execution
times and speedups of imagldZ-th, realldZ-th, imag2dXZ-th, and real2dXZ-th (not reported here)
are similar to those of imagldX-th, realldX-th, imag2dXY-th, and real2dXY-th, respectively.

Table 8.3: Wall-clock execution times of a single iteration of the main time-propagation loop of
single-node OpenMP programs (in milliseconds) for different number of OpenMP threads Ny, and
speedup S(16) in strong scaling tests. The speedup is calculated w.r.t. the execution times of

previously published serial versions of programs [13], given in the second column.

Program Serial | Nyp =1 | Nyn =2 | Nyn=4 | Nen =8 | New = 16 | S(16)
imagldX-th 9.1 7.1 4.7 3.4 2.9 2.8 2.5
realldX-th 15.2 14.2 10.5 8.2 7.3 7.2 2.0
imag2dXY-th | 13657 7314 4215 2159 1193 798 9.2
real2dXY-th 17281 11700 6417 3271 1730 1052 11.1
imag3d-th 16064 9353 5201 2734 1473 888 10.5
real3d-th 22611 17496 9434 4935 2602 1466 11.9

The change from C2C to R2C FFT routine has a big impact on the execution time of single-
threaded (Ny, = 1) programs compared to the previous serial programs. As we can see from the
table, these improvements alone yield a speedup of 1.3 to 1.9 in 2D and 3D programs, and somewhat
smaller speedup for 1D programs, 1.1 to 1.3. The use of additional threads brings about further
speedup (reported in the last column) of 2 to 2.5 for 1D programs, and 9 to 12 for 2D and 3D
programs. In Figure 8.3 we see that the efficiency rapidly decreases for 1D programs, even though
speedup increases with the number of threads used. This is expected, as parts of the algorithm
dealing with the recursive relations for calculation of the CN coefficients are inherently serial. In
1D, already with Ny, = 4 threads we almost achieve the maximal speedup, while still keeping the
efficiency around 50%. We also see that, as expected, speedup and efficiency of multidimensional
programs behave quite well as we increase the numbers of threads. In particular, we note that the
efficiency always remains above 60%, making the use of all available CPU cores worthwhile.

From Figure 8.3 we observe that the speedup of 1D programs saturate quickly due to inherent
serial nature of the portion of the algorithm, while in 2D and 3D the speedup behaves almost
linearly. Despite their obvious differences, all curves in Figure 8.3 can be successfully modeled
based on Amdahl’s law [93]. Namely, the measured execution time T'(Nyy) of one iteration of the

main loop can be expressed as

Nth

where Ny, is the number of threads used, T'(1) is the execution time of a single-threaded run, s

T(Ng) = T(1) (s+ b) (8.4)

is the serial fraction of the loop code, and p is the corresponding parallel fraction. By definition,

s+ p =1, and therefore the speedup can be modeled by

T 1
S(Nwm) = TONm) ~ 1=p+p/Na’ (8.5)

where the parallel fraction of the main loop code p is the only fit parameter. Table 8.4 gives the

obtained model fit parameter values for the data from Figure 8.3. As we can see, the fits match

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING

101

3 T T T T T 1 2.5 1
L —0—0—0— @
2.5 \ P ¢ ® s 2 o 00000000038
[@ P g o)
a2 ., e, o S o
j=1 @ 0.6 =2 S15F- -10.6 =2
SE ./ NGO ® speedup Q. o] ® speedup =}
8 2 / \9 & efficiency @ 8 Q\o & efficiency @
2, \9\9 1042 o 1lr e o 1042
w 1- @ ~O < 2) & <
o 0.2 051 Ry H0.2
0.5 Yoo -~ -O-6-4
(a) imagldX-th (b) real1dX-th
0 | | L | L | | L | L | L 0 0 | L | L | L | | n L 0
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
number of threads number of threads
12 T T T 1 12 — T T T T T 1
L O) L %%\ ././'
10 -2 SONON _{os 10 000 oa ™ Jos
2 —@ v
. o ® @ &~ O O0-o-¢ o
59 w2 sl - . -
] /./. ©—0.6 6 5 /./ 0.6 8
o 6 _® @ o 6 o a2
2 o ® 043 2 o H04 3
o d joN @)
D 4 ./0/ ® speedup Q » 4F ® speedup is
- O efficiency & efficiency
o &® 0.2 2k & 0.2
o (c) imag2dXY-th o (d) real2dXY-th
0 L L L L L L L O 0 L L L L L L L 0
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
number of threads number of threads
12 T T 1 T T]l 12 L B e B e B |
s
3 M P
o V\‘%\o\ ././!08 e AP 0\0‘6—-6/./ los
— ,‘/./ : o M_N -
a8t 0004 & o 8l v @
3 Jo6 3 - Ho.6 2
9 . o ® =X < . _ =}
S 6 o = S 6 «® 5
g _e” 1043 g, / 043
@ 4 o ® ® speedup 9 o 4 ./. ® speedup s]
././ ¢ efficiency | 02 ././ & efficiency | 02
o) . ol .
o (e) imag3d-th o (f) real3d-th
0 n n n L n L n L n 0 0 n n L n L n L n 0
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

number of threads number of threads

Figure 8.3: Speedup in the execution time and strong scaling efficiency of OpenMP programs com-
pared to single-threaded runs for: (a) imagldX-th, (b) realldX-th, (c) imag2dXY-th, (d) real2dXY-
th, (e) imag3d-th, (f) real3d-th. Solid lines represent fits to measured data, where fit model functions
are given in the text and obtained fit parameters are listed in Table 8.4. Note that the model pa-

rameter p is fitted only to the speedup data, and then used to plot the efficiency model curve.

the obtained measurement data very well. Note that the efficiency can be expressed in terms of the

speedup model
S(Nin) 1 1

Noo Nl —p+p/Nw’
and is not fitted independently. Figure 8.3 shows that this model with the parameter p fitted on

E(Ng) = (8.6)

the speedup data matches very well with the efficiency data points.

Table 8.4: Values of obtained strong scaling model fit parameter p and the estimated fit errors for

OpenMP-parallelized programs.

Program P Ap
imagldX-th 0.662 | 0.004
realldX-th 0.541 | 0.003
imag2dXY-th | 0.9514 | 0.0007
real2dXY-th | 0.9706 | 0.0004
imag3d-th 0.9635 | 0.0008
real3d-th 0.9762 | 0.0006

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 102

From the obtained values of the parallel fraction of the algorithm, we see that 2D and 3D
programs are almost ideally parallelizable, with p over 95%. In 1D case, however, the parallel
fraction is around 66% for imaginary-time propagation and around 54% for real-time propagation,
due to the fact that calculation of CN coefficients in the function calclux cannot be parallelized.
Note that the parallel fraction of imaginary-time 1D program is higher than that of the real-time
1D program due to the larger amount of arithmetic operations required to process complex-valued
data in the real-time version of the serial function calclux.

OpenMP programs were also tested for weak scalability. We were mostly interested in 3D
variants of the programs, which we tested by fixing the amount of work to 6,912,000 spatial points
of the mesh, which corresponds to a mesh size of 240 x 240 x 120. By increasing the number of
OpenMP threads, we also increase the mesh size to be the multiple of 6,912,000. This means that
the mesh has to be increased in such a way that, when divided among the threads, each thread
gets 6,912,000 spatial points to process. The mesh sizes that satisfy this requirement cannot always
be obtained by multiplying all three array dimensions with the same number, so we have to work
with mesh sizes in which the size of each dimension may be different. For such mesh sizes, we
tested all possible combinations, however no significant difference has been observed. Table 8.5
contains mesh sizes we used for testing for Ny, = 1,2,4,8,12,16 threads, along with the execution
times (in milliseconds) and the weak scaling efficiency. The testing was also done for Ny, = 6
and 10 threads, but the corresponding mesh sizes are omitted from the table for brevity. However,
Figure 8.4 presents complete data collected in this test, for all Ny, values, averaged over mesh sizes
used. The figure shows that the real-time 3D programs have better weak scaling efficiency, which is
about 75% at 16 threads, while imaginary-time programs demonstrate smaller, but still significant
efficiency of about 60%.

~¢ i
1r “‘9§O\Q\
e—%— o
> 0.8 *— o O—o— e
o —e_
2 0.6~ o
S0
& 041 J
[5) L
02k ® imag3d-th
L ¢ realdd-th
0 1 1 1 1 1 1 1 1
1 2 4 6 8 10 12 16

number of threads

Figure 8.4: Weak scaling efficiency of OpenMP-parallelized 3D programs, averaged over all mesh
sizes tested for each value of Ny,. Solid lines represent fits to measured data, where fit model

functions are given in the text.

To model weak scaling efficiency, we compare execution times of a single iteration of the main
loop Tw (Nin), performed with Ny, threads, where for each value of Ny, the total amount of work
is Ny, times the work being performed in a single-threaded run, i.e., the amount of work per thread

is constant. The weak scaling efficiency is defined as

B (Nuw) — T%jj) , (8.7)

where Ty (1) = T'(1) is the execution time of a single-threaded run for a given workload (in our case,

6,912,000 spatial points). The expected execution time of a workload assigned to a simulation with

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 103

Table 8.5: Weak scaling efficiency of OpenMP-parallelized 3D programs. Wall-clock execution times
Tw are given in milliseconds, efficiencies Ey in percents.
imag3d-th real3d-th

Tw | BEw | Tw | Ew
Nep = 1
120 x 240 x 240 | 699 | 98.2 | 1259 | 99.5
240 x 120 x 240 | 711 | 96.5 | 1271 | 100
240 x 240 x 120 | 686 | 100 | 1275 | 98.2

Mesh size

Ny, = 2
240 x 240 x 240 | 718 | 95.5 | 1254 | 99.9
Ny, = 4

240 x 240 x 480 | 755 | 90.9 | 1312 | 95.5
240 x 480 x 240 | 778 | 88.2 | 1301 | 96.3
480 x 240 x 240 | 754 | 91 | 1310 | 95.6
Ny, = 8
240 x 480 x 480 | 875 | 78.4 | 1405 | 89.9
480 x 240 x 480 | 847 | 81 | 1393 | 89.1
480 x 480 x 240 | 886 | 77.5 | 1431 | 87.7
Ny = 12
360 x 480 x 480 | 1010 | 67.9 | 1532 | 81.7
480 x 360 x 480 | 981 | 69.9 | 1514 | 82.7
480 x 480 x 360 | 1004 | 68.4 | 1581 | 79.2
Ny, = 16
480 x 480 x 480 | 1155 | 59.4 | 1680 | 74.5

Ny threads, executed in a single-threaded run, is Ny, T'(1). In weak scaling tests, this workload is

executed with Ny, threads and therefore the expected execution time can be modeled by

Tyw (Nn) = NowT(1) (1 —p+ N%;}) . (8.8)

According to this argument, we model the weak scaling efficiency by a single-parameter function

1

Fw(Nyy) = —————— .
w (Nin) p+ (1—p)Ne

(8.9)

We fitted this model to data presented in Figure 8.4 and the obtained fit parameters are given in
Table 8.6. As we can see from the figure, the above model is an excellent fit to experimental data,
and both 3D OpenMP-parallelized programs have high (above 95%) parallel fraction of the code,

in agreement with the results of strong scaling tests (Table 8.4).

Table 8.6: Values of obtained weak scaling model fit parameter p and the estimated fit errors for

OpenMP-parallelized programs.

Program P Ap
imag3d-th | 0.958 | 0.002
real3d-th | 0.9792 | 0.0009

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 104

Overall, we conclude that imaginary-time OpenMP-parallelized programs show smaller speedup
and efficiency across all tests, except in 1D. This can be attributed to the additional step of wave
function normalization in each iteration of the imaginary-time propagation, as well as the fact that
real-time programs work with complex-valued data that require more arithmetic operations for
the same mesh size. Since much of the computation inside loops requires simple arithmetic, the
throughput of the CPU is often not fully exploited in imaginary-time programs, thus the pressure
of memory bandwidth makes these programs less efficient. The real-time programs are also affected
by this, however to a somewhat lesser extent.

Next, we consider the CUDA implementation of the shared memory algorithm. GPU functions
as a single processing element, therefore we cannot test CUDA implementation by varying both
the mesh size and the number of processing elements. However, just varying the mesh size gives
us valuable insight into the behavior of this implementation, due to the difference in programming
models and the libraries used. Tables 8.7 and 8.8 show the execution times (in milliseconds) for a
number of mesh sizes tested, as well as the average speedup compared to the serial programs [13].
Figure 8.5 shows the speedup obtained for all mesh sizes tested, and red horizontal lines represent
average speedups obtained for each program. Note that the dispersion of data is due to the use of
FFTW_ESTIMATE flag in library calls to FFTW in the serial programs. Use of this flag results in a
choice of suboptimal FFT algorithm for some mesh sizes. The vertical lines in Figure 8.5 denote the
change in POTMEM parameter. The speedups left of the first vertical line are obtained with POTMEM=2
and thus demonstrate the best speedup. Second group of results, between the two vertical lines, is
obtained with POTMEM=1, and we note that the speedup decreases slightly, while the results right of
the second vertical line are obtained with POTMEM=2, and show the smallest speedup due to the use
of mapped memory. The 2D programs in z-z plane exhibited very similar performance to those of

z-y plane, and therefore we did not include them in the figures.

Table 8.7: Wall-clock execution times of a single iteration of the main time-propagation loop of
single-node 2D CUDA programs (in milliseconds) for different mesh sizes, and average speedup

w.r.t. to the execution times of serial 2D programs [13].

Program 20007 | 4000% | 6000% | 8000* | 10000% | 12000 | Avg. speedup
imag2dXY-cuda | 24.1 | 104.3 | 235.2 | 386.1 | 657.1 | 1150.4 10
real2dXY-cuda | 29.9 | 1124 | 266.4 | 444.0 | 749.0 | 1528.3 14

Table 8.8: Wall-clock execution times of a single iteration of the main time-propagation loop of
single-node 3D CUDA programs (in milliseconds) for different mesh sizes, and average speedup
w.r.t. to the execution times of serial 3D programs [13].

Program 1002 | 2003 | 300% | 400° 5003 Avg. speedup
imag3d-cuda | 10.6 | 79.3 | 298.8 | 674.5 | 1260.2 7.1
real3d-cuda 109 | 84.1 | 302.5 | 682.4 | 1467.4 13.5

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 105

20 T T T 20 T T T
L] 1 4 - . ° 1 1
L 1 1 | L o Seo o %008 o e o | |
o 15 | . o 15 (:.;‘l:f'f.:q:%%—:—:.:{ﬁ&.::ﬁ@m"%o.—.?&}‘“l -~
L] L &
3 PR R RS L PR 3 ‘ A
% 10 ‘;(_..15:_:!._.(.9,.&'_“;0._‘.5_..«,:‘_.3‘_1. A 3 10+ | | AN _
e
I < .’él. ot :."c::'-‘ & [
5 1 1 E 5k [E
L . I I L 1 1
(a) imag2dXY-cuda . . (b) real2dXY-cuda -
02‘ e ‘2‘ — ‘2‘ pp— ‘2‘ L ‘2‘] ‘2‘ iy 2 02‘ — ‘2‘ — ‘2‘ — ‘2‘ e ‘2‘ ! ‘2‘ iy 2
0 2500 5000 7500 10000° 12500° 15000 0 2500 5000 7500° 10000° 12500° 15000
mesh size mesh size
20— T [N B R B B 20— T [N L A BN B B B
L] 1 - 1 1
L o i L o o0 et o o o | i
15 15 o ® 0% o® 0 00°° %0 "o
% | [% L 30— - et
1 1 (] 1 e
T 10- e oo e T wop L ee A
a E 00 9% [0% g0 % of o 90% o & r [
7)) o O oo O © J e U o 0° 3 ° 172
5k K L) 1 | *e® 4 5+ | I —
L . I I L 1 1
(c) imag3d-cuda . (d) real3d-cuda .
L L L L L 0 L L L L L
0’ 100° 200’ 300° 400° 500° 600° 0’ 100° 200’ 300’ 400° 500° 600’
mesh size mesh size

Figure 8.5: Speedup in the execution time of CUDA programs compared to the serial programs for
all tested mesh sizes: (a) imag2dXY-cuda, (b) real2dXY-cuda, (c) imag3d-cuda, (d) real3d-cuda.
Red horizontal lines represent the average speedup, while dashed vertical lines represent different

values of POTMEM parameter (see text).

For small mesh sizes, the GPU remains underutilized, resulting in a smaller speedup. For large
mesh sizes, where the GPU memory usage approaches the limit, we also see declining speedup. This
is due to the inevitable use of POTMEM parameter, which keeps some arrays in the host memory when
they cannot fit in the memory of the GPU. Overall, the CUDA implementation shows execution
times similar to the OpenMP implementation for imaginary-time propagation, and slightly lower for
real-time propagation. We stress that these results strongly depend on the type of GPU used and
that the obtained speedups may be even better for newer-generation GPUs (e.g., Kepler-, Mazwell-,
Pascal- and Volta-based GPUs).

Hybrid OpenMP/CUDA implementation was tested on a range of mesh sizes, similarly to the
OpenMP- and CUDA-based implementations. Since OpenMP implementation showed that all cores
should be used for 2D and 3D programs, we kept the number of OpenMP threads fixed at 16 in our
hybrid algorithm. The parameters governing the amount of data offloaded to GPU were optimized
using our GA method from Section 8.1. An illustrative subset of the results for 3D programs is
shown in Table 8.9, which gives execution times for a single iteration of the main loop, for different
mesh sizes. A comparison of execution times of hybrid and pure OpenMP programs with Ny, = 16
threads is given in Figure 8.6(a), while Figure 8.6(b) compares the performance of hybrid and pure

CUDA programs, for all tested mesh sizes.

Table 8.9: Wall-clock execution times of a single iteration of the main time-propagation loop of
single-node 3D hybrid programs (in milliseconds) for different mesh sizes. Offload parameters are

optimized using the GA optimization method.
Program 803 | 200% | 320% | 4403 5603 6803 8003

imag3d-hetero | 6.3 | 67.1 | 271.4 | 678.9 | 1493.3 | 2750.9 | 4461.6
real3d-hetero 80 | 94.7 | 374.1 | 922.8 | 1985.2 | 4020.2 | 6676.6

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 106
2r 27
16F L6 ° o __ o
[-2 @ —a— o
2 ! N/KQM% = I /\ o~ ®
L L — L L]
SR o SRS & ‘faﬁ Rl RIS o e ds
A4 T Lo et]
w L 1 w 4
04L —@— imag3d-hetero vs. imag3d-th 7 04L —@— imag3d-hetero vs. imag3d-cuda 1
r (@) -&- real3d-hetero vs. real3d-th T () -&~- real3d-hetero vs. real3d-cuda
0’ . | . | . | . | . | . | . | M 0’ P T Y O I IR RS MR NN
0° 100° 200° 300° 400° 500° 600° 700° 800° 50° 100° 150° 200° 250° 300° 350° 400° 450° 500°550°
mesh size mesh size

Figure 8.6: Speedup in the execution time of 3D hybrid programs compared to:

(a) OpenMP

programs with Ny, = 16 threads, (b) CUDA programs. Dashed horizontal lines correspond to a
speedup value S = 1.

From Figure 8.6 we see that the hybrid implementation outperforms the OpenMP one for all
mesh sizes except for the smallest one. The same applies to the comparison of imaginary-time
hybrid and CUDA programs, while real-time hybrid program outperforms the corresponding CUDA
program only for mesh sizes larger than 400x400x400. Although one would expect that the speedup
of the optimized hybrid algorithm is always equal to or larger than one, we see that this is not the
case for all mesh sizes in Figure 8.6. This is due to the fact that the hybrid FFT algorithm is
always employed in hybrid programs, meaning that even if no or all data are offloaded to GPU,
the splitting of FFT will still take place. Therefore, in these limiting cases we do not obtain pure
OpenMP or CUDA algorithms that would yield maximal performance. Splitting the computation
of FFT along one direction in calcpsidd2 function disables some of the potential optimizations
that libraries like FFTW and cuFFT exploit, and introduces data copies between host and device
which cannot be fully offset using CUDA streams. The hybrid algorithm can compensate for this
if the amount of offloaded data to GPU is sufficiently large, which is not the case for the smallest
mesh size.

Given that pure CUDA programs performing imaginary-time propagation demonstrated smaller
speedup than the corresponding OpenMP programs (Figure 8.5 vs. Figure 8.3), it is expected
that CUDA portion of the hybrid imaginary-time propagation programs would yield smaller im-
provement, which is evident when we compare hybrid implementation with the OpenMP one in
Figure 8.6(a), except for the largest mesh sizes. We can reach the same conclusion if we consider
that, in real-time propagation, CUDA implementation shows the highest speedup of all single-node
programs, and therefore the corresponding hybrid programs show better speedup than imaginary-
time propagation programs parallelized with OpenMP. On the other hand, when compared with the
CUDA implementation in Figure 8.6(b), the situation is reversed, and we see much better perfor-
mance of the hybrid imaginary-time propagation programs, while the hybrid real-time propagation
programs achieve speedup larger than one only for mesh sizes larger than 400 x 400 x 400. This
result can be attributed to the fact that in real-time propagation the amount of data copied between
host and device is larger, given that some of the copied arrays are complex-valued.

Also, we can observe that the speedup in Figure 8.6(a) declines with mesh size. This is due to
the memory saturation of the GPU device, as only a small portion of the data can be offloaded
when the mesh is large. The amount of data offloaded to GPU for all tested mesh sizes is given in
Table 8.10, where we can see that the total amount of data processed by the GPU declines with

increasing mesh size. As a result, the computation is unbalanced, given that the host has to work

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 107

with a much larger portion of the data. This is reflected in the optimization step, where our GA
quickly converges to the highest possible mesh size that can be offloaded to the device, implying

that a greater amount of device memory would be required to get a balanced computation.

Table 8.10: Optimal fraction of total data offloaded to GPU for different mesh sizes in hybrid 3D

programs, obtained using the GA optimization method.
GPU portion of data [%]

Mesh size imag3d-hetero real3d-hetero
PS; | PSy | PSs | PS4 | PSy | PSe | PS3 | PSy
80 x 80 x 80 20 3 60 33 23 3 40 10

120 x 120 x 120 | 12 10 25 28 23 10 25 27
160 x 160 x 160 | 15 7 31 24 44 19 34 23
200 x 200 x 200 | 38 27 37 28 44 26 46 26
240 x 240 x 240 | 38 28 40 30 38 28 47 25
280 x 280 x 280 | 40 31 30 33 46 22 37 25
320 x 320 x 320 | 33 38 29 36 45 28 69 44
360 x 360 x 360 | 41 33 27 36 49 33 43 31
400 x 400 x 400 | 38 25 30 38 46 24 47 21
440 x 440 x 440 | 31 35 29 39 45 35 43 32
480 x 480 x 480 | 16 19 22 41 45 33 62 35
520 x 520 x 520 | 40 31 28 46 45 25 40 37
560 x 560 x 560 | 38 41 30 43 36 24 35 32
600 x 600 x 600 | 37 27 30 43 29 29 29 28
640 x 640 x 640 | 36 40 30 43 24 22 24 23
680 x 680 x 680 | 26 38 28 38 20 16 20 20
720 x 720 x 720 | 23 26 25 32 17 13 17 17
760 x 760 x 760 | 21 22 25 27 14 14 14 13
800 x 800 x 800 | 19 23 23 21 11 8 12 12

To make an optimal choice of programs to be used on a single node for a particular hardware
platform, one has to perform detailed tests using the methodology presented in Section 8.2. The
results presented in this section apply to hardware comparable to the one available at PARADOX

supercomputing facility, but one can expect similar behavior for all modern types of CPU and GPU.

8.4 Performance test results and modeling of MPI programs

Following on from the previous section, here we present the results obtained for MPI-parallelized
programs, executed on a computer cluster consisting of varying number of computing nodes, and
compare them with the corresponding single-node programs.

MPI programs are highly dependent on the configuration of the cluster, mainly on the speed
of interconnect, but also on the distribution of processes and threads, NUMA configuration, MPI
configuration, etc. Getting the best performance out of the programs requires some experimentation

with several different configurations. The results presented are obtained without extensive tuning

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 108

of the cluster or MPI runtime, with the aim to show the base performance.

Strong scaling of MPI-based implementations is tested in a similar way to the single-node testing,
by varying number of cluster nodes N, from 2 to 32. On each node, a single MPI process is launched,
which then uses the node’s resources, either by further spawning 16 OpenMP threads in case of
OpenMP /MPI and Hybrid/MPI implementations, or by invoking the CUDA kernels utilizing the
node’s GPU in case of CUDA/MPI implementation. In this test, the baseline used for comparison
was the equivalent single-node implementation, i.e., OpenMP/MPI programs are compared with
OpenMP programs executing with Ny, = 16 threads, CUDA/MPI programs are compared to the
single-node pure CUDA programs, and Hybrid/MPI programs is compared to the single-node hybrid
programs.

Mesh size we use in this test is 480 x 480 x 250. Since the values of Nx and Ny parameters must
be divisible by the number of processes IV,,, this mesh cannot be distributed over 28 processes. In
this case we use slightly modified mesh, taking into account the multiple of 28 that is closest to
480, yielding a mesh size of 476 x 476 x 250. Data is never distributed along z direction, so no such
requirement exists for Nz. The resulting mesh has slightly fewer spatial points, and thus less work
per process, potentially allowing for a better performance, but in our tests the smaller mesh did not
have a significant impact on the measured execution time.

Note that strong scaling tests, where the mesh size is fixed, inevitably lead to saturation and
decrease in measured speedup and efficiency values. Whatever the chosen mesh size, increase in the
number of cluster nodes used will eventually yield insufficient amount of work per MPI process, such
that communication will start to dominate over computation. Therefore, in our strong scaling tests
we can expect that execution times initially decrease with increasing values of IV,,, but eventually
performance of MPI-based programs will decline. This issue is addressed by considering weak scaling
tests.

The illustrative portion of obtained execution times of a single iteration of the main loop for the
three MPI-parallelized implementations are shown in Table 8.11, together with the execution times
of the corresponding baseline single-node program. Columns N, = 4, N, =8, N, = 16, N, = 24
and N, = 32 correspond to the number of cluster nodes used, while the last column shows the

obtained speedup S(32) with N, = 32 nodes compared to baseline single-node programs.

Table 8.11: Wall-clock execution times of a single iteration of the main time-propagation loop of
OpenMP/MPI, CUDA/MPI and Hybrid/MPI programs (in milliseconds) for different number of
MPT processes N, and speedup S(32) in strong scaling tests. The speedup is calculated w.r.t. the
baseline execution times of the corresponding single-node programs (OpenMP, CUDA and hybrid,

respectively), given in the second column.

Program Baseline | Ny =4 | N, =8 | N, =16 | N, =24 | N, =32 | 5(32)
imag3d-mpi 1124 541 262 134 89 64 17.5
real3d-mpi 2140 700 358 207 155 98 21.8
imag3d-mpicuda 579 438 210 103 71 59 9.8
real3d-mpicuda 800 609 291 142 95 79 10.1
imag3d-mpihetero 489 299 162 99 84 81 6.0
real3d-mpihetero 613 407 255 154 135 101 6.0

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 109

The maximal speedup of OpenMP/MPI implementation ranges from 17 for imaginary-time
propagation to 22 for real-time propagation programs for N, = 32. The complete measurement
results for speedup and efficiency are depicted in Figure 8.7(a) and 8.7(b), where we see that
the speedup grows linearly with the number of nodes used, while the efficiency remains mostly
constant in the range between 40% and 60%, thus making the use of OpenMP/MPI programs
highly advantageous for simulations with large mesh size. In general, we can expect even better
efficiency for larger mesh sizes.

Similar behavior is observed for CUDA/MPI implementation. The obtained speedup with
N, = 32 nodes ranges from 9 to 10, with the slightly lower efficiency, between 30% and 40%,
as shown in Figure 8.7(c) and 8.7(d). Even though the efficiency is lower for this implementation,
the speedup still grows linearly and the execution times are lower than for the OpenMP/MPT im-
plementation. This makes CUDA/MPI programs ideal choice for use on GPU-enabled computer
clusters. Additional benefit of using CUDA /MPI programs is their low CPU usage (using only one
CPU core per cluster node), allowing for the possibility that the same cluster nodes are used for
other CPU-intensive simulations in a time-sharing fashion.

As we see in Figure 8.7(e) and 8.7(f), the linear growth of speedup is also present for the
Hybrid/MPI implementation, however, as the amount of work per-process shrinks, the efficiency
drastically drops down to 20% with N, = 32 nodes. For the mesh size used in this test, we observe
that the Hybrid/MPI implementation performs very well on N, < 16 processes, providing the
lowest execution times, but with N, > 16 processes its execution times become larger than for
the CUDA/MPI implementation (especially for real-time propagation programs), and eventually
even for the OpenMP/MPI implementation, as illustrated in Figure 8.8. This is again due to the
insufficient amount of work each computing node performs after data are distributed among the
MPI processes, which can be seen from the amount of data offloaded to GPU for all tested values of
N, in Table 8.12. Similar saturation in performance will eventually happen for the OpenMP /MPI
and CUDA/MPI implementations, just for larger values of N.

We thus conclude that Hybrid/MPI implementation has the best performance of the three
MPI-based implementations if the amount of work per process remains high enough to justify the
use of hybrid algorithm. Otherwise, either of the other two MPI-based implementations should
be considered first. The energy efficiency of this and other MPI-based implementations was not
explored due to the difficulty in making precise measurements. If the energy consumption is not
an issue, Hybrid/MPI implementation will yield the best performance, providing the cluster has
powerful GPUs installed and the mesh size used is large enough.

We now model the speedup and strong scaling efficiency of MPI-based programs. In general,

the execution time of a program can be expressed as

M M
T(Ny) —Of‘f'ﬂL‘*‘Vpr +5VN737 (8.10)

where « represents the average time to perform serial portion of the code, L is the communication
latency associated with one MPI message, § is the frequency of MPI messaging, v is the average
time to process one spatial point, V is related to data transfer speed (throughput), and M is the
mesh size (Nx x Ny X Nz). The communication overhead of one all-to-all message passing instance is
equal to L+ VM /ng7 where each of N, processes communicates its M /N, part of the mesh evenly

to all other processes, leading to a message size of M /Np2. Taking into account that in the strong

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 110

0.8

T 0.6 24

18 T T > T T
(|
151 00/‘9 ST o :7;.074 05 a0k \o\é\o 0.7
-10.6
L loa @ L <o — @
% 12 f 0.4 = %4 16 /.>-< 0.5 58
S ° 5]] o a
o 9 1037 S 12+ . H0.4 2
g ./ = 8—4 /. 03 =
® 6 / ® speedup 0.22 »' 8 /. ® speedup ~Q
o <& efficiency /. <& efficiency 0.2
sp . . 701 v e i Joa
_& (a) imag3d-mpi o (b) real3d-mpi :
0 ’. 1 1 1 1 1 1 1 0 0 a 1 1 1 1 1 1 1 0
2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32
number of cluster nodes number of cluster nodes
10 T T T T T T T T 04 10F T T T T T T T 0.4
P B e ot e
o T X03 8 /> - 703
o o o o & [e
S 6l / = S 6l - =
o o o @ o
) ./. 102 5) e 02 5
o | =] o P =)
aQ 4 / a Q41 o
17} ® speedup g 17 ./ ® speedup Q
efficiency 0.1 & efficiency 0.1

of A o

(c) imag3d-mpicuda

1
4 8 12 16 20 24 28 32

number of cluster nodes

(d) real3d-mpicuda

4 8 12 1

6 20 24 28 32

number of cluster nodes

)

6
51) l %
o f O %/ . ol \ e o
_g 4 /. 0\0\ 1032 _g - 1032
8 3r o *—) g 3 <>\<> 5
. 023 2, o< q023
@ 2 < @ 2r <
. ®
1 / . . ® speedup 0.1 1k ./) ® speedup 0.1
(e) imag3d-mpihetero ¢ efficiency ‘ (f) real3d-mpihetero ¢ efficiency
0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0
2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32

number of cluster nodes number of cluster nodes

Figure 8.7: Speedup in the execution time and strong scaling efficiency of MPI-based programs
compared to single-node runs: (a) imag3d-mpi, (b) real3d-mpi, (c¢) imag3d-mpicuda, (d) real3d-
mpicuda, (e) imag3d-mpihetero, (f) real3d-mpihetero. Solid lines represent fits to measured data,
where fit model functions are given in the text and obtained fit parameters are listed in Table 8.13.
Note that the model parameters are fitted only to the speedup data, and then used to plot the

efficiency model curve.

scaling tests the mesh size is fixed, the above model can be simplified to

T(0) =T) (a4 3 +) (6.11)
p p
while the speedup can be modeled by
T(1) 1
N,) = = . 12
S(Np) T(Ny) a+b/Ny+c/N2 (8.12)

This model is fitted to the obtained strong scaling measurement data and the results are presented
in Table 8.13, while the corresponding model curves are shown as solid lines in Figure 8.7. As we
see, the proposed model agrees very well with the experimental data. The only exception is the
speedup and efficiency of real-time OpenMP/MPI program (real3d-mpi) on N, = 32 processes,
where FFTW library creates an optimal transform plan that works very well with the given mesh
size. However, changing the mesh size even slightly gives the performance comparable to the model
prediction. We note that the value of the model parameter ¢ is negative for real-time Hybrid/MPI

program (real3d-mpihetero), which should not be the case since is parameter is related to data

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 111

Table 8.12: Optimal fraction of total data ofloaded to GPU per process for different values of IV,
in Hybrid/MPI programs, obtained using the GA optimization method in strong scaling tests.
GPU portion of data [%]

N, imag3d-mpihetero real3d-mpihetero
PS; | PSe | PSs | PSy | PSy | PSe | PSs | PSy
1 30 | 175 | 344 | 36.7 | 45.2 | 325 | 55 35
2 25 10 | 175 | 16.7 | 20.8 | 11.5 | 23.8 | 16
4 10 52 1 9.2 | 94 10 5.2 15 6.7
8 5 29 | 58 | 6.7 | 6.3 | 2.1 | 6.7 5
12 | 33 | 1.7 | 42 | 4.2 4 1.3 5 3.3
16 2.9 1.3 2.9 2.1 3.1 0.4 2.9 2.1
20 | 1.7 | 06 | 2.5 1 25 | 04 | 25 | 1.7
24 1.7 1.3 2.1 1.7 2.1 1.3 2.5 0.8
28 | 1.7 | 04 | 21 1.3 1.7 1 04 | 1.7 | 1.3
32 | 0.8 | 04 | 1.7 | 0.8 1.5] 04 | 21 | 0.8

F X
@

e]]
L6 \6:] 16 N]
SIS I I e

12 °] Sl2r - 1
,,,,,,,,,,,, st e - - O] . d
g T 1 e\e\é\ I \‘6‘ \ —q
08 . . .08 . . e\e.’-e—<
@ [—@— mpihetero vs. mpi p » [—@— mpihetero vs. mpi]
0.4 —©- mpihetero vs. mpicuda] 0.4 —~©- mpihetero vs. mpicuda]
| (a) imag3d b (a) real3d]

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32

number of cluster nodes number of cluster nodes

Figure 8.8: Speedup in the execution time of Hybrid/MPI programs in strong scaling tests compared
to the other two MPI-based programs: (a) OpenMP/MPI, (b) CUDA/MPI.

transfer speed. However, due to uncertainty of the optimization choice by the GA method and the
fact that the fraction of total data offloaded to GPU gradually decreases (Table 8.12), leading from
real hybrid algorithm to almost pure OpenMP/MPI one with hybrid FFT, it is not surprising that
the obtained value differs from expected. Taking into account relatively large fit error Ac/c = 60%
for this parameter, we can still use expression (8.12) to model performance of Hybrid/MPI programs.

Next, we test weak scaling of MPI-based implementations. The same number of cluster nodes
(and thus MPI processes) was used as in previous tests, while the starting mesh, which corresponds
to a unit workload, had a size of 480 x 480 x 480, amounting to 110,595,000 spatial points. This
number of spatial points was kept constant per process, similarly to the weak test of OpenMP
programs. There is an exception to this scheme, the case when programs are executed on N, = 28
nodes, as the scaled number of spatial points cannot be evenly distributed among 28 processes.
In this case we compare the weak scalability by scaling up a starting mesh of 476 x 476 x 476,
which has 107,850,176 spatial points, just slightly less than for other values of N,. The base of
comparison was the execution time of a single iteration of the main loop with the corresponding
MPI-based program running as a single process (N, = 1). While we used this configuration as the

baseline, we do not recommend running MPI-based programs with N, = 1 processes, because no

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING

112

Table 8.13: Values of obtained strong scaling model fit parameters a, b and ¢, as well as the estimated

fit errors for MPI-parallelized programs.

Program a Aa b | Ab| ¢ | Ac
imag3d-mpi 0.008 | 0.006 | 1.6 | 0.2 | 1.4 | 04
real3d-mpi 0.026 | 0.006 | 1.1 | 0.1 | 0.2 | 0.3
imag3d-mpicuda 0.025 | 0.008 | 2.3 | 0.2 | 2.8 | 0.6
real3d-mpicuda 0.020 | 0.008 | 2.3 | 0.2 | 2.8 | 0.6
imag3d-mpihetero | 0.104 | 0.009 | 1.7 | 0.2 | 0.9 | 0.5
real3d-mpihetero 0.09 0.02 | 27 |03]|-1.01 0.6

special handling of such case has been implemented. This means that MPI-parallelized programs
are always transposing the data, which is unnecessary with N, = 1 as all data is local to the
single process. Instead, we recommend using single-node variants of the programs outside cluster
environment.

Table 8.14 lists mesh sizes used and execution times obtained for N, =1, 2, 4, 8, 12, 16, 24 and
32 cluster nodes. We also tested weak scaling on /N, = 20 and 28, but have excluded them from the
table for brevity. A complete comparison is shown in Figure 8.9. The ordering of mesh dimensions
had a slightly greater impact than with single-node OpenMP programs, varying up to 10% for the
OpenMP /MPI programs, and less for the other two MPI-based implementations. This means that
for meshes of the same size, thus implying equal work, execution times were mostly lower for those
with larger values of Nx (e.g., the execution time for a 960 x 480 x 960 mesh is lower than for a
480 x 960 x 960 one). However, no distinct pattern emerges that would give us a clue as to which
order is the most favorable. Upon inspection, we find that the difference in execution times is due
to the different FFT plans employed by the FFTW and cuFFT libraries. The communication time

remains mostly the same, as is expected since the amount of data exchanged is the same.

0.6 T T 1.8 T T T T T T
05 R B L5F p——=e—@ @ & *—, =
[o\.\ S S N) S —————
204l —eo o 3 ¢ C 12l ¢ 4
=) r =)
D al | Ol i
§ 0.3 I] g 0.9
% 0.2 ® imag3d-mpi aa 0.6 ® imag3d-mpicuda
r <& real3d-mpi ¢ real3d-mpicuda
0.1+ B 0.3+ B
b (a) OpenMP / MPI | (b) CUDA / MPI
O 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1
2 4 8 12 16 20 24 28 32 2 4 8 12 16 20 24 28 32
number of cluster nodes number of cluster nodes
1F " T T T T T 7
6‘\ ,
a)0.8 r —e— ——— =H
=2
% 041 ® imag3d-mpihetero |
o2l <& real3d-mpihetero]
(c) Hybrid / MPI -
O L L L L L L L L
2 4 8 12 16 20 24 28 32

number of cluster nodes

Figure 8.9: Weak scaling efficiency of three MPI-based implementations, averaged over all mesh sizes
tested for each value of N,. Solid lines represent fits to measured data, where fit model functions

are given in the text.

Table 8.14: Weak scaling of MPI-based programs. Wall-clock execution times Ty are given in milliseconds, efficiencies Ey in percents.

Mesh size

imag3d-mpi

real3d-mpi

imag3d-mpicuda

real3d-mpicuda

imag3d-mpihetero

real3d-mpihetero

Tw ‘ Ew Tw ‘ Ew Tw ‘ Ew Tw ‘ Ew Tw ‘ Ew Tw ‘ Ew
Ny =1

480 x 480 x 480 [1758 [100 [2056 | 100 [4338 | 100 6346 | 100 [1o71] 100 [2877] 100
N, =2

480 x 480 x 960 | 3858 | 45.6 | 4910 | 60.2 | 3785 | 114.6 | 5430 | 116.9 | 2044 96.4 2878 100

480 x 960 x 480 | 3704 | 47.5 | 5035 | 58.7 | 3825 | 1134 | 5573 | 113.9 | 1997 98.7 2928 | 98.3

060 x 480 x 480 | 3758 | 46.8 | 5506 | 53.7 | 3871 | 1121 | 5609 | 113.1 | 2019 97.6 2080 | 96.5
Ny =4

480 x 960 x 960 | 4267 | 41.2 | 6033 | 49.2 | 2905 | 144.8 | 4278 | 148.3 | 2149 91.7 3000 | 95.6

060 x 480 x 960 | 3877 | 45.4 | 5223 | 56.6 | 3042 | 142.6 | 4318 | 146.9 | 2218 88.9 3274 | 87.9

060 x 960 x 480 | 4000 | 44 | 5063 | 58.4 | 3078 | 140.9 | 4424 | 143.4 | 2148 91.8 3106 | 92.6
N, =8

960 x 960 x 960 | 4327 | 40.6 | 6285 | 47 | 2052 | 1469 | 4167 | 152.3 | 2369 | 832 | 3338 | 862
N, =12

1440 x 960 x 960 | 4400 | 40 | 6720 | 43.9 | 2002 | 1495 | 4254 | 1492 | 2335 84.4 3504 | 821

960 x 1440 x 960 | 4268 | 41.2 | 6263 | 47.2 | 2053 | 146.9 | 4167 | 152.3 | 2412 81.7 3440 | 83.6

960 x 960 x 1440 | 4234 | 40.2 | 6299 | 46.9 | 2865 | 1514 | 4153 | 152.8 | 2413 817 3351 | 85.9
N, =16

1020 960 x 960 | 4356 | 40.4 | 6419 | 46 | 3001 | 144.5 | 4278 | 148.3 | 2392 82.4 3434 | 838

960 x 1920 x 960 | 4266 | 41.2 | 6376 | 46.4 | 2970 | 146.1 | 4170 | 152.2 | 2552 77.2 3525 | 816

960 x 960 x 1920 | 4234 | 40.2 | 6508 | 45.4 | 2888 | 150.2 | 4148 | 153 | 2639 747 3606 | 79.8
N, =24

1440 x 1920 x 960 | 4677 | 40 | 6895 | 42.9 | 2024 | 1484 | 4266 | 148.8 | 2552 773 3770 | 76.3

1440 x 960 x 1920 | 4796 | 38.3 | 7076 | 41.8 | 2084 | 145.4 | 4235 | 1498 | 2611 75.5 3699 | 77.8

1920 x 1440 x 960 | 4470 | 40.6 | 6439 | 45.9 | 3007 | 144.2 | 4286 | 148.1 | 2546 774 3504 | 821

1020 x 960 x 1440 | 4450 | 40.8 | 6425 | 46 | 2984 | 1453 | 4251 | 149.3 | 2551 773 3550 | 8L.1

960 x 1440 x 1920 | 4364 | 41.1 | 6846 | 43.2 | 2879 | 150.7 | 4105 | 154.6 | 2682 73.5 3725 | 772

060 x 1020 x 1440 | 4346 | 41 | 6806 | 43.4 | 2878 | 150.7 | 4133 | 153.5 | 2501 78.8 3562 | 80.8
N, = 32

1920 x 1920 x 960 | 4452 | 30.5 | 6704 | 44.1 | 3183 | 136.3 | 4518 | 140.5 | 2585 76.3 3715 | 775

1020 x 960 x 1920 | 4520 | 38.9 | 6802 | 43.4 | 3163 | 137.2 | 4480 | 141.7 | 2632 74.9 3769 | 76.3

960 x 1920 x 1920 | 4301 | 40.9 | 6663 | 44.4 | 3014 | 1439 | 4351 | 145.9 | 2776 71 3933 | 73.0

ONITHAOW ANV NOLLVATVAA HONVINHOAYHd '8 YHLIVHD

€It

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 114

The results of weak scaling tests warrant further discussion as the execution times and plotted
efficiencies appear misleading. On one hand, OpenMP/MPI programs show poor scaling results,
achieving only 40% efficiency, while on the other hand the CUDA/MPI show efficiency well above
100%, a seemingly impossible result. The lower efficiency of the OpenMP/MPI programs is due
to the very good performance of the baseline run. Here, the FFTW creates a very good FFT and
transpose plans, which exploit the fact that all data are local, and thus have very good execution
time. With N, = 2 nodes the execution time increases significantly, and efficiency drops to about
45-55%. However, adding more work and nodes has much smaller impact on efficiency, which only
drops to 40-45% with N, = 32 nodes. If we use N, = 2 as the baseline, we see that the efficiency
remains above 80%, a very good result.

In contrast to the OpenMP /MPI version, CUDA/MPI version performs very badly when exe-
cuted on one node. Due to message sizes, MPI implementation used (Open MPI) relies on asyn-
chronous copies through host memory [94] to perform the required communication. This results in
bad performance due to a lack of overlap when copying data, as there is only one process involved.
With N, = 2 processes the situation improves, as multiple streams are used, much like how we em-
ploy streams to overlap computation and data transfers in implementation of the hybrid algorithm.
Between IV, = 4 and 16 processes we get the best performance, and further increasing the number
of processes only slightly reduces efficiency due to the size and amount of messages passed. If we
compare the weak scaling efficiency with the best result as the baseline (obtained with N, = 16
processes), we see that the efficiency is lower than for the OpenMP /MPI version, due to the different
transpose routine used and divided multidimensional FFT that has to be employed. However, we
stress that, in terms of absolute execution times, CUDA/MPI is faster than OpenMP/MPI version
for N, > 4.

The Hybrid/MPI version behaves as expected and demonstrates weak scaling efficiency of about
70-75% with N, = 32 nodes. Since data are transposed only in host memory, this version does not
suffer the penalty of memory copies like the CUDA /MPI version, and therefore achieves much better
efficiency with small number of cluster nodes. In terms of absolute execution times, Hybrid/MPI
version is the fastest of all three implementations for N, > 2 and is therefore the algorithm of
choice for distributed memory systems. Of course, it assumes previous optimization of offloading
parameters using the GA method, which itself is time-consuming and has to be taken into consid-
eration when making the choice. Table 8.15 provides data on the optimal fraction of total data
offloaded to GPU in our weak scaling tests. As the number of processes increases, one expects that
the amount of data offloaded to GPU remains constant, which is the case, as we see from the table.
The only exceptions are when the value of Ny is greater than Nx where we see a larger fraction of
data offloaded to GPU in PSy and PS4, and when the value of Ny is smaller than Nx where we see
a smaller fraction of data offloaded to GPU in PSo and PS,.

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 115

Table 8.15: Optimal fraction of total data offloaded to GPU in weak scaling tests for different mesh
sizes in Hybrid/MPI programs, obtained using the GA optimization method.

. imag3d-mpihetero real3d-mpihetero
Mesh size
PS; | PS; | PS; | PS, | PS; | PS, | PS; | PS,
N, =1
480 x 480 x 480 | 35 [20 | 31 | 44 [46 | 30 | 40 | 35
N, =2

480 x 480 x 960 46 33 33 47 38 29 37 38
480 x 960 x 480 50 67 17 47 45 60 19 40
960 x 480 x 480 50 15 70 34 43 15 67 35

480 x 960 x 960 40 65 18 47 40 63 17 37
960 x 480 x 960 50 10 67 42 40 12 (6] 33
960 x 960 x 480 33 29 33 40 45 22 33 40

47 [40 | 27 | 40 | 28

Np
960 x 960 x 960 | 53 | 25 | 33
Np

1440 x 960 x 960 37 20 593 45 42 18 60 63
960 x 1440 x 960 40 38 27 47 45 35 27 35
960 x 960 x 1440 50 25 38 45 45 25 40 40

1920 x 960 x 960 47 13 67 27 42 13 80 30
960 x 1920 x 960 47 47 35 37 47 53 20 25
960 x 960 x 1920 50 20 33 33 47 20 40 27

1440 x 1920 x 960 | 47 | 40 | 30 | 53 | 47 | 33 | 25 | 63
1440 x 960 x 1920 | 50 | 17 | 60 | 45 | 47 | 13 | 60 | 70
1920 x 1440 x 960 | 40 | 20 | 50 | 40 | 45 | 20 | 53 | 27
1920 x 960 x 1440 | 53 | 13 | 60 | 45 | 45 | 10 | 80 | 25
960 x 1440 x 1920 | 50 | 30 | 27 | 47 | 45 | 30 | 27 | 27
960 x 1920 x 1440 | 40 | 50 | 18 | 45 | 45 | 50 | 20 | 30
N, =32
1920 x 1920 x 960 | 47 | 27 | 33 | 30 | 47 | 17 | 40 | 27
1920 x 960 x 1920 | 50 | 13 | 60 | 40 | 47 | 10 | 80 | 40
960 x 1920 x 1920 | 47 | 47 | 40 | 33 | 47 | 40 | 23 | 27

To model the obtained weak scaling results, we start from equation (8.10) for the execution time
of a single iteration of the main loop. In weak scaling tests, the mesh size is increased proportionally

to the number of MPI processes Ny, and therefore the execution time is given by

MN, M
=a+ BL+~yM+BV—. (8.13)
N2 N,

M N,
Tw(Ny) = a+ BL +7 N L+ BV
P

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 116

The weak scaling efficiency
Tw(1)

P
can thus be modeled by)
P

We fitted this model to data presented in Figure 8.9 and the obtained fit parameters are given in
Table 8.16. Note that the model is fitted to CUDA/MPI scaling data only for N, > 4. The agree-
ment between the model and measurement data is very good, although we note that the parameter
b has negative values, contrary to its expected relation to the communication cost. Therefore, we
conclude that the above expression can be successfully used for modeling of the performance of all

three MPI-based implementations.

Table 8.16: Values of obtained weak scaling model fit parameters a and b, as well as the estimated

fit errors for MPI-parallelized programs.

Program a Aa b Ab
imag3d-mpi 2.56 | 0.06 | -0.9 | 0.3
real3d-mpi 232 1 0.05 | -1.3 | 0.2

imag3d-mpicuda 0.70 | 0.02 | -0.1 | 0.2
real3d-mpicuda 0.68 | 0.02 | -0.1 | 0.2
imag3d-mpihetero | 1.32 | 0.03 | -0.6 | 0.2
real3d-mpihetero 1.27 | 0.03 | -0.6 | 0.2

To summarize, in all test results of MPI-based programs, we note an expected declining of the
scaling efficiency. This is due to the introduction of distributed transposes of data, creating overhead
that negatively impacts scaling efficiency. It is most evident in both strong and weak scaling tests
of the CUDA/MPI version, as the transpose algorithm is inferior to the one provided by FFTW,
used in OpenMP/MPI implementation. In our tests, all three MPI versions of programs failed to
achieve actual speedup (S(NNp) > 1) on less than N, = 4 nodes, due to the introduction of these
transpose routines. We therefore recommend using MPI versions only on IV, = 4 or more cluster

nodes.

8.5 Selecting optimal algorithm

In previous sections we presented results of detailed performance tests and associated models for all
developed programs. Here we provide general guidelines for obtaining the best performance from
each implementation.

We note that the extensive testing performed shows that the best performance can be achieved
by evenly distributing the workload among the MPI processes and OpenMP threads, and by using
mesh sizes which are optimal for FFT. In particular, the single-node OpenMP programs have
the best performance if the number of spatial points in all directions, controlled by parameters
Nx, Ny and Nz, is divisible by the number of OpenMP threads used. Similarly, the OpenMP /MPI
implementation achieves the best performance if Nx and Ny are divisible by a product of the number

of MPI processes and the number of OpenMP threads used.

CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 117

On the other hand, CUDA implementation works best if all the data for a given mesh size can
fit into the GPU memory with the POTMEM parameter set to 2. In the case of a small mesh size,
CUDA programs may not be able to saturate all Streaming Multiprocessors (SM) of a given GPU,
and in this case the OpenMP programs may be considered first. For CUDA/MPI programs, the
best performance is achieved if Nx and Ny are divisible by a product of the number of MPI processes
and the number of SMs in the GPU used. Note that CUDA-based implementations write output
files (e.g., density profiles) by transferring data from GPU memory to host memory, where a single
thread writes to a file. Therefore, these implementations may not be suitable for simulations that
require the output to be written frequently, after a small number of time propagation steps.

Best performance of hybrid implementations can be obtained by following the same guidelines.
Furthermore, we recommend using these programs with the optimization methods described in
Section 8.1 to optimally divide the work between host and device. If manual tuning of offload
parameters is required, we recommend that the guidelines above are followed for both CPU and
GPU portions of the mesh. In the case of large disparity in the performance of host or device,
hybrid versions will not provide the lowest execution times, and in such cases the pure CPU or
GPU implementations with or without MPI could be better suited.

In addition to the guidelines for mesh sizes presented above, all programs benefit from the
mesh size which is also optimal for FFT. The best FFT performance on CPU with FFTW library
is obtained if Nx, Ny and Nz can be expressed as 293°5°7911°13/, where e and f are either 0 or
1, and the other exponents are non-negative integer numbers [95]. Similarly, for cuFFT the best
performance is achieved for transform sizes of the form 223°5°7? [96]. In hybrid implementations,

the same applies to the host and device portions of Nx and Ny, i.e., cpuNx, cpuNy, gpuNx and gpuNy.

Chapter 9

Demonstration of usability of

developed programs

The programs developed as part of this thesis can be used to model and study a variety of systems.
In this chapter we demonstrate the versatility of developed programs on a simulation of a BEC. We
use the MPI-based programs to simulate the effects of a moving obstacle in an oblate atomic BEC.
The obstacle, a repulsive Gaussian laser beam, moves through the condensate and sheds quantum
vortices, elementary excitation of a superfluid [10, 11]. The vortices appear only when the obstacle
is moving above some critical speed, consistent with the Landau’s criterion of superfluidity. At
low obstacle velocities above a critical value, vortex dipoles emerge, and as the speed is increased
further, individual vortices and rotating vortex pairs are also formed.

In Section 9.1 we document how our programs can be used to simulate the experiment reported
in Ref. [97], and compare experimental and numerical results. The experiment measured critical
velocity for the emergence of vortex dipoles and rotating vortex pairs in a BEC of sodium atoms
(?3Na), which do not exhibit the dipolar interaction. Therefore, in this section we also demonstrate
how our programs can be modified to switch off the dipolar interaction term when solving GPE. The
agreement of the results obtained numerically and experimental observations provides an external
check of the correctness of our algorithms and their implementations.

Next, in Section 9.2, we investigate the formation of vortices in a dipolar BEC of dysprosium
atoms (1%*Dy). Our simulations follow the same methodology as the experiment with sodium
atoms, only with atomic species exhibiting strong dipolar interaction. We study effects of the
dipolar interaction on the critical velocity for the emergence of vortices, as well as the interplay
between contact and dipolar interaction. The visualization extensions presented in Chapter 7 have
proven to be indispensable during these simulations, as they allow much easier study of the results

and control of the simulation.

9.1 Formation of vortices in BEC

BEC is a superfluid quantum liquid and one of its hallmarks are quantized vortices, which appear as
elementary excitations of the system. Quantization of vortices is connected to excitation spectrum

and, according to Landau’s criterion, leads to the existence of a minimal velocity an obstacle moving

118

CHAPTER 9. DEMONSTRATION OF USABILITY OF DEVELOPED PROGRAMS 119

through the superfluid has to have in order to generate such elementary excitations. This critical
velocity v, can be experimentally measured and, in principle, depends on the experimental protocol
used.

Reference [97] reports the study of vortex formation in an oblate BEC of N,y = 3.2 x 10% sodium
atoms. The trapping potential frequencies used are (wy,wy,w.) = 27 x (9, 9, 400) Hz, and the
s-wave scattering length determining the strength of contact interaction was as = 51.9 ag, where
ap = 0.0529 nm is the Bohr radius. The moving obstacle is realized by a repulsive Gaussian laser
beam corresponding to an additional potential of the form

Vs(r;t) = Vp exp {—Q[ZJ_%S‘W} , (9.1)
where Vj represents the strength of the beam, o is the 1/e? beam waist, while y(t) = vt determines
the center of the beam (0, yo(t), 0). In our simulations, as in the experiment, the initial position
of the beam is at the condensate center and then it moves with the velocity v along y direction for
24 pm. Afterwards, the beam is switched off linearly during 0.5 s. Illustration of the experimental
setup is given in Figure 9.1. Using imaginary-time propagation, we calculate the ground state of the
system with the trapping potential V (r)+ Vg(r;t), where harmonic part V(r) is defined by Eq. (2.2),
with the frequencies given above. The experiment measured critical velocity for the emergence of
vortex dipoles, pairs of vortices of the opposite sign. We numerically addressed this setup and
calculated this critical velocity for the values of the parameters ¢ = 1.31 and Vy = 250 hw, where

1 = 6.98777 um is the harmonic oscillator length for the referent frequency @ = w,.

vortices rotating
vortex pair

BEC

Figure 9.1: Illustration of the experimental setup used in Ref. [97] to study vortex formation in a
BEC of sodium atoms. A repulsive Gaussian laser beam is initially at the center of the condensate
and moves along y direction with a constant velocity v until it reaches its final position. The beam
is then switched off during a period of 0.5 s. For sufficiently large velocity vortices and vortex pairs

are generated.

Before it was possible to run simulations with the parameters described above, we had to make
changes to the programs to model the experiment precisely. First, we had to exclude the dipolar

interaction term from the propagation of the wave function, since sodium atoms have negligible

CHAPTER 9. DEMONSTRATION OF USABILITY OF DEVELOPED PROGRAMS 120

dipole moment. While we can set the corresponding input parameters to zero, this would still result
in unnecessary computation. A better approach is to remove (or comment out) the portions of
the code relating to the calculation of the dipolar interaction term (calling of calcpsidd2 function
and, optionally, the associated allocations and deallocations), and adjust the calcnu function not to
include the dipolar interaction term. This is a very simple change, resulting in modification of a few
lines of the code, however, the performance impact is significant, due to the code calling the FFT
functions no longer being part of the main loop. A single iteration of the main loop now performs
roughly 30-40% faster.

Final change was related to the implementation of time-dependent potential V (r) + Vi (r;t).
Initialization of V(r) remains the same, i.e., it is initialized before the main loop and stored in
an array, while calculation of Vi(r;¢) is implemented in a separate function that is called in each
iteration within the main loop. Two distinct phases of V5(r;t) exist: one relating to the movement
of the beam, and the other relating to the beam shutdown during 0.5 s. Each phase is implemented
as a separate function, and the active phase is determined by the current time, i.e., iteration number.

Figure 9.2 shows several snapshots of a typical dynamical evolution of the system. Imaginary-
time propagation yields ground state of the system, which is shown in Figure 9.2(a), where we plot
integrated 2D density profile in y-z plane. To model local inhomogeneities always present in the
experiment, we add uniformly distributed random noise to the wave function of the order of 10%.
Such modified ground state represents initial state of the system, and the beam starts to move along
y direction at time ¢ = 0 with the speed v = 1.26 mm/s. Figures 9.2(b) and 9.2(c) show 2D density
profile of the system at times ¢ = 52.17 ms and ¢ = 358.1 ms, respectively. In Figure 9.2(b) the beam
already reached its final position and its switch-off started. We can observe that several vortices
(vortex dipoles) are generated and that the used speed exceeds the critical velocity. Generated
vortices are stable and can be seen after extended period of time, Figure 9.2(c). To confirm that
we indeed have vortices and not just localized density minima, we plot the = 0 slice of the phase
of the wave function in Figure 9.3. We observe characteristic braiding and jumps of the phase in

the vicinity of density minima, which is a well-known hallmark of a vortex.

0000 0001 0002 0003 0004 0000 0001 0002 0003 0O04 0000 0001 0002 0003 0004
a)t =0.00 ms E 1 a b) t = 52.17 ms [¢ B C)t=358.10ms i

50 50 50

60 60 60

30 30 30

=80 =60 =30 o 30 60 20 =90 =60 =30 20 =80 =60 =30 o 30 60 20
z z z

Figure 9.2: Time evolution of 2D density profile of BEC of sodium atoms with an obstacle moving
at speed v = 1.26 mm/s > v., when several vortices are generated. Each panel shows integrated
2D density profile in y-z plane at different time ¢. All lengths are expressed in units of pm, and

particle density is given in units Ny /I2.

CHAPTER 9. DEMONSTRATION OF USABILITY OF DEVELOPED PROGRAMS 121

n n n L

m n
a)t=s2.07m S b)t-150lm N C)t- 5.0 m

Figure 9.3: Time evolution of the wave function phase of BEC of sodium atoms with an obstacle
moving at speed v = 1.26 mm/s > v., when several vortices are generated. Each panel shows z = 0
slice of the phase of the wave function in y-z plane at different time ¢. All lengths are expressed in

units of pm.

When the obstacle is moving with an under-critical velocity, no vortices are generated, as in
Figure 9.4. The velocity v = 0.87 mm/s is just slightly lower than the the critical one, and we
can see precursors of vortices at the beam edge in Figures 9.4(a) and 9.4(b). At higher velocities,
vortices emerge, as we have seen in Figure 9.2. At even higher velocities, Figure 9.5, rotating vortex

pairs are generated, in addition to individual vortices.

0000 000 0002 0003 0004 0000 0001 0002 0003 0004

b) 0000 0001 0002 0003 0004
t = 32.72 ms

a) t = 17.68 ms €) t = 120.25 ms

60 60

o
z

Figure 9.4: Time evolution of 2D density profile of BEC of sodium atoms with an obstacle moving

at speed v = 0.87 mm/s < v., when no vortices are generated. Each panel shows integrated 2D
density profile in y-z plane at different time ¢. All lengths are expressed in units of pm, and particle

density is given in units Ny /I2.

The obtained results are in good agreement with experimental findings of Ref. [97] and show
that the programs developed within this thesis can be successfully used to model BEC systems with
contact interaction, even for the most complex setup, when vortices are generated due to a moving

obstacle.

CHAPTER 9. DEMONSTRATION OF USABILITY OF DEVELOPED PROGRAMS 122

0000 0001 0002 0003 0004 0000 0001 0002 0003 0004

0000 0001 0002 0003 0004
a) t = 8.84 ms b) t = 28.29 ms C) t = 120.25 ms ¥
| & S | o m

Figure 9.5: Time evolution of 2D density profile of BEC of sodium atoms with an obstacle moving
at speed v = 1.4 mm/s > v., when rotating vortex pairs are also generated. Each panel shows
integrated 2D density profile in y-z plane at different time ¢. A rotating vortex pair is highlighted

in panel (c). All lengths are expressed in units of zm, and particle density is given in units N, /I%.

9.2 [Effects of dipolar interactions on vortex formation in
BEC

To further test our programs, we model vortex formation in a BEC of dysprosium atoms (1%4Dy),
which exhibit strong magnetic dipole moment. In particular, we study effects of the dipolar inter-
action strength for varying s-wave scattering lengths on the critical velocity for the emergence of
vortices, which was not investigated experimentally. Dysprosium atoms have the largest magnetic
dipole moment (m = 10up) available in ultracold atom experiments, corresponding the character-
istic dipole-dipole interaction length aqq = 132 ay. External magnetic field can be used to align all
atomic dipoles in the same direction, as well as to tune their strength up to a maximal value given
above. The same applies to the s-wave scattering length, which determines the contact interaction
strength and which can also be tuned using the Feshbach resonance technique. Following Ref. [98],
we take the same range of possible values for a4 as for aqq, i.e., up to a maximal value of 132ay.
With this we show how the developed programs can be used to model and theoretically address new
physical phenomena, before they are studied experimentally. Such approach is essential for the de-
sign of many upcoming experiments, since otherwise it would be extremely difficult to predict what
would be the relevant range of physical quantities to be measured, thus making it very challenging
to perform the experiments. Having the results of detailed numerical simulations for the particular
system enables experiments to target appropriate range of all relevant quantities, and to focus on
discovering new phenomena.

The experiment follows the same methodology as in previous section and uses the same pa-
rameters where applicable. Namely, the trap frequencies remain the same, ie., (wg,wy,w;) =
2w x (9, 9, 400) Hz, as well as strength of the beam Vy = 250A@. Due to the strong dipolar
interactions affecting the stability of the BEC, we had to use a much smaller number of atoms,
N,i = 8 x 10%. This resulted in a much smaller BEC, so we had to reduce the 1/e? beam waist to
o =1, where [= 2.617 um is harmonic oscillator length corresponding to dysprosium atoms. Also,
we positioned the beam outside of the condensate, and move it all the way to the other side, as

illustrated in Figure 9.6. The potential Vi(r;t) has the same form (9.1) as in previous section, just

CHAPTER 9. DEMONSTRATION OF USABILITY OF DEVELOPED PROGRAMS 123

the center of the beam is now given by yo(t) = yoo + vi, where ygp = —15 in units of [.

laser

Q / beam

BEC

N

vortices

L.

4

Figure 9.6: Illustration of the setup we use to study vortex formation in a dipolar BEC of dysprosium
atoms. A repulsive Gaussian laser beam is initially outside of the condensate and moves along y
direction with a constant velocity v until it reaches its final position on the other side. For sufficiently

large velocity vortices are generated.

Modifications to the programs presented in the previous section can be reused for this numerical
experiment and we only need to re-enable previously disabled calculation of the dipolar term in the
main time propagation loop. As before, the ground state of the system is obtained using imaginary-
time program, which then serves as the initial state of the real-time propagation program, with
uniformly distributed random noise of 10% added. To calculate critical velocity v, for the emergence
of vortices, we search for the minimal speed of the laser beam for which two vortices appear, as
illustrated in Figure 9.6.

Figure 9.7 shows several 2D density profiles of a typical dynamical evolution of the system for
velocity v = v, = 0.16 mm/s. The ground state, obtained through imaginary-time propagation is
shown in Figure 9.7(a). The beam, initially outside of the condensate, moves along the y direction,
as seen in Figures 9.7(b) through 9.7(f). In Figure 9.7(c) the precursors of the vortices form on the
edges of the beam, which then separate from the beam if v > v, a situation seen in Figure 9.7(d).
In Figures 9.7(e) and 9.7(f) we see that the generated vortices are stable, and survive for long
propagation times.

Figure 9.8 shows results of our numerical study of the dipolar interaction effects on the critical
velocity. We see that for large values of the s-wave scattering length, i.e., for the contact interac-
tion comparable or larger than the dipole interaction, effects of decreasing aqq are very small and
probably could not be experimentally measured. On the other hand, when contact interaction is
tuned down so that the dipole interaction starts to dominate the behavior of the system, critical
velocity depends much stronger on aqq and could be easily measured in future experiments.

The above study represents an example on how our programs can be used to verify and compare
results of current experiments, as well as to theoretically investigate new phenomena and plan future

experiments.

CHAPTER 9. DEMONSTRATION OF USABILITY OF DEVELOPED PROGRAMS 124

0000 0002 0004 0006 0008 0000 0002 0004 0006 0008 0000 0002 0004 0006 0008
b) t = 135.28 ms €) t =171.09 ms

20 20

[
z

L~1

0000 0002 0004 0006 0008 0000 0002 0004 0006 0008 0000 0002 0004 0006 0008
f) t = 500.01 ms

20

d) t = 250.67 ms
20

1o

[
z

Figure 9.7: Time evolution of 2D density profile of BEC of dysprosium atoms for as; = 66a¢ and

[
z

aqa = 44ag, with an obstacle moving at speed v = v, = 0.16 mm/s, when two individual vortices
are generated. Each panel shows integrated 2D density profile in y-z plane at different time ¢. All

lengths are expressed in units of um, and particle density is given in units Ny /I?.

T T T T T T T T T T T T T
0.17 A A A

LA A A A 4 a A o
0.165 g g O .
— L oo OO]
2 o oo o ¢
~ 0.16 - O o o 0 .*
= i o 0 ° o ® o
=) 0.155 o Lo e © ® B
= o015/ € o ®]
= L []]
0145~ o ©® ® a=4a 0O a=%a -
r O a=66a A a=132a, 1
0'147? I I I I I I I I I I I L
0 11 22 33 44 55 66 77 88 99 110121 132

Aaa | ay

Figure 9.8: Critical velocity v. for the emergence of vortices generated by a moving obstacle as a
function of the characteristic dipolar interaction length aqq (in units of ag) for varying values of the

s-wave scattering length as.

Chapter 10

Conclusions and future work

The main contribution of this thesis is the development of parallel algorithms for solving nonlin-
ear differential equations of Gross-Pitaevskii type with a convolution integral kernel, as well as
six implementations of the algorithms. The algorithms are based on the split-step, semi-implicit
Crank-Nicolson method, while the convolution integral is solved using Fourier transform. Several
parallelization approaches were considered, targeting both shared memory and distributed memory
systems, with an emphasis on heterogeneous computing platforms. Algorithm for shared-memory
architectures based on multi-core processing units is presented in Chapter 3 and its extension to
specialized accelerator architecture in the form of GPUs is given in Chapter 4. Combination of the
two approaches is given in Chapter 5, where we propose a hybrid algorithm targeting heterogeneous
computer architectures, which fully harnesses the power of modern heterogeneous parallel resources
of a single computer. While the (discrete) Fourier transform can be computed using the specialized
FFT libraries that target specific hardware architecture, in a hybrid environment this is not easily
achievable as no FFT library for heterogeneous architectures exists. Therefore, as part of the hybrid
implementation, we have developed a heterogeneous algorithm for discrete Fourier transform, which
combines the specialized multi-core and GPU FFT libraries. Our heterogeneous FFT algorithm re-
mains general enough that it can easily be used outside the programs we developed, potentially
simplifying the development of future heterogeneous algorithms which rely on Fourier transform.

The shared memory algorithms were further extended using MPI, allowing them to be executed
in a distributed computing environment, e.g., on a computer cluster. This work is presented in
Chapter 6. The benefit of distributed memory programs is twofold: they can be used to speed up the
computation of simulations that can be executed on a single computer, and enable the simulations
of higher resolution, which due to large memory requirements cannot fit in the memory of a single
computer. Three implementations are given, targeting different computer cluster installations, from
the ones based entirely on multi-core CPUs or GPUs, to the heterogeneous ones where the high-
performing CPU and GPU are installed on the same computing node.

Two additional important contributions of this thesis are presented in Chapter 8. The first is
the parameter optimization method for heterogeneous algorithms, which we developed to optimize
the performance of our hybrid implementations. We have studied three approaches, based on
brute-force search, gradient descent and genetic algorithm, and found the optimizer based on a
genetic algorithm to be best suited to the problem. This method allows us to quickly find the
optimal division of work between CPU host and GPU device, and we note that it can be adapted

125

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 126

to work with other heterogeneous algorithms. The second contribution relates to the assessment of
the efficiency of all developed programs through extensive performance evaluation. Testing results
confirm that optimization of all programs described throughout the thesis yield highly efficient
implementations. This chapter also includes detailed performance models for programs at different
parallelization approaches. The developed methodology can be directly used in the evaluation of
the expected performance of our programs on different computing resources.

The larger volume of data produced by the higher-resolution simulations could negatively im-
pact user’s ability to analyze the data and extract new information. We have addressed this by
providing extensive integration with the Vislt visualization system, presented in Chapter 7. In situ
visualization enables higher level of interaction with the simulation, through modification of the
simulation’s parameters while the simulation is running, visualization of its current state and con-
trol of its course. More traditional, post-mortem visualization is also possible, using standardized
visualization file format. The usefulness of the developed integrations can be seen in Chapter 9, in
which we demonstrate the usability of the developed programs on the example of study of vortex
formation in BECs with a moving obstacle. Here, the visualization of high-resolution simulations
was integral to the observations and measurements that were made.

In the future, we plan to address several important topics that include multi-component BEC
systems, fast-rotating BECs, as well as other types of interaction, such as spin-orbit coupling.
The main challenge for the development of multi-component programs is their increased memory
requirement and therefore a distributed memory approach seems suitable to address this problem.
Fast-rotating BECs are described by a Hamiltonian that includes additional, first-order partial
derivatives w.r.t. spatial coordinates, which will require substantial changes in the implementation
of Crank-Nicolson method in all approaches. Finally, different forms of the spin-orbit coupling,
which represents a hot topic in the physics of ultracold atoms, will require combining of multi-
component algorithm with the improved Crank-Nicolson method to allow study of novel physical

systems that exhibit this type of interaction.

Bibliography

[1]

S. Bose, “Plancks gesetz und lichtquantenhypothese,” Zeitschrift fir Physik, vol. 26, pp. 178
181, 1924.

A. Einstein, “Quantentheorie des einatomigen idealen gases,” Sitzungsber. Kgl. Preuss. Akad.
Wiss., vol. 1924, p. 261, 1924.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation

of Bose-Einstein condensation in a dilute atomic vapor,” Science, vol. 269, pp. 198-201, 1995.

C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, “Evidence of Bose—FEinstein
condensation in an atomic gas with attractive interactions,” Phys. Rev. Lett., vol. 75, pp. 1687—
1690, 1995.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and
W. Ketterle, “Bose-FEinstein condensation in a gas of sodium atoms,” Phys. Rev. Lett., vol. 75,
pp. 3969-3973, 1995.

O. Morsch and M. Oberthaler, “Dynamics of Bose-Einstein condensates in optical lattices,”
Rev. Mod. Phys., vol. 78, pp. 179-215, 2006.

I. Bloch, “Quantum coherence and entanglement with ultracold atoms in optical lattices,”
Nature, vol. 453, pp. 1016-1022, 2008.

R. P. Feynman, “Simulating Physics with Computers,” Int. J. Theor. Phys., vol. 21, pp. 467—
488, 1982.

A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose-Einstein condensation of
chromium,” Phys. Rev. Lett., vol. 94, p. 160401, 2005.

L. P. Pitaevskii and S. Stringa