




Научном већу Института за физику у Београду 
Београд, 21. април 2017. године 

 

 

 

 

Кратка стручна биографија 

 

Миљан Дашић рођен је 03.11.1990. године у Параћину, Србија. Завршио је ОШ „Момчило 

Поповић-Озрен“ и природно-математички смер Гимназије у Параћину, обе као ученик 

генерације и носилац Вукове дипломе. Награђиван је специјалним дипломама за српски језик и 

књижевност, математику, физику, хемију и програмирање, за остварене резултате на 

такмичењима. 

Дипломирао је 5. јула 2013. године на Одсеку за Физичку Електронику Електротехничког 

факултета Универзитета у Београду, са просечном оценом 9.93. Свој дипломски рад урадио је у 

Лабораторији за нанофотонске системе Универзитета Колорадо (Сједињене Америчке Државе), 

под менторством проф. др Милоша Поповића. У току студија стручно се усавршавао на 

иностраним универзитетима: 2011. године три месеца је радио на Тиндал институту у Ирској, у 

оквиру UREKA 2011 летње научне праксе; потом је 2012. године четири месеца радио на 

Колорадо Универзитету у Сједињеним Америчким Државама, као истраживач сарадник у 

Лабораторији за нанофотонске системе; у 2013. години, у оквиру IAESTE стручне праксе, три 

месеца је радио на Лапенранта Технолошком Универзитету у Финској, у Лабораторији за физику.  

Мастер студије завршио је 16. јула 2014. године, на Одсеку за Физичку Електронику 

Електротехничког факултета Универзитета у Београду, са просечном оценом 10.00. Свој мастер 

рад урадио је у Лабораторији за примену рачунара у науци на Институту за физику у Београду, 

под менторством др Игора Станковића. 

Октобра 2014. године уписује докторске студије на Физичком факултету Универзитета у 

Београду, на смеру Физика кондензоване материје и статистичка физика. Од новембра 2014. 

године запослен је у Лабораторији за примену рачунара у науци Института за физику у Београду, 

на пројекту Министарства просвете, науке и технолошког развоја Републике Србије ОН171017 

“Моделирање и нумеричке симулације сложених вишечестичних физичких система”. На том 

пројекту ради под менторством др Игора Станковића, а руководилац пројекта је др Антун Балаж. 

Реализовао је стручну праксу у Одељењу за напредне технологије (Advanced Technology 

Division) Техничког Центра компаније Тојота Мотор Европа, са седиштем у Завентему (Белгија) 

у периоду од 5. октобра 2015. до 8. априла 2016. године.  

Добитник је више награда на домаћем и међународном нивоу. Најмлађи је учесник 

регуларног дела међународне конференције ТЕЛФОР 2012, одржане новембра 2012. године у 

Сава центру у Београду. Тада је, као студент четврте године основних студија, презентовао рад у 

регуларној сесији. Освојио је друго место на тимском такмичењу у студији случаја на локалном 

инжењерском такмичењу (LEC - Local Engineering Competition), марта 2012. у Београду. Освојио 

је треће место на тимском такмичењу у бизнис идејама, на Academy of Modern Management 

(AMM), децембра 2012. у Београду. Награђен је за најбољи рад на 7. међународној IEEESTEC 

конференцији, одржаној новембра 2014. године на Електронском факултету у Нишу. Носилац је 

стипендије Фонда за младе таленте (Доситеја) за школску 2012/2013 и 2013/2014 годину. 

Изабран је за члана клуба СУПЕРСТЕ за 2014. годину, у области природних наука. То је 

годишњи конкурс ЕРСТЕ банке, са циљем подршке младим талентима Србије.  

До сада је објавио два рада у врхунским међународним часописима (М21 категорије).  



Научном већу Института за физику у Београду
Београд, 21. април 2017. године

Списак научних радова

 Радови објављени у врхунским међународним часописима (М21):

1. I. Stanković, M. Dašić and R. Messina,
“Structure and Cohesive Energy of Dipolar Helices”,
Soft Matter (2016) Royal Society of Chemistry, ISSN: 1744-683X
Импакт фактор = 3.798

2. Konstantinos Gkagkas, Veerapandian Ponnuchamy, M. Dašić and I. Stanković,
“Molecular dynamics investigation of a model ionic liquid lubricant for automotive applications”,
Tribology International (2016) Elsevier, ISSN: 0301-679X
Импакт фактор = 2.259

 Саопштења са међународног скупа штампана у целини (М33):

1. M. Dašić,
“Calculation of Geometrical Packing and Binding Energy of Self-Assembled Magnetic Tubular 
Structures”,
INFOTEH, 18-20 March 2015, Jahorina, Bosnia and Herzegovina

 Саопштења са међународног скупа штампана у изводу (М34):

1. M. Dašić and I. Stanković,
“Theoretical and Experimental Study of Helices Composed of Spherical Dipoles”,
The 19th Symposium on Condensed Matter Physics – SFKM 2015, 7-11 September 2015, Belgrade, 
Serbia



This journal is©The Royal Society of Chemistry 2016 Soft Matter

Cite this:DOI: 10.1039/c5sm02774h

Structure and cohesive energy of dipolar helices

Igor Stanković,*a Miljan Dašića and René Messinab

This paper deals with the investigation of cohesive energy in dipolar helices made up of hard spheres. Such

tubular helical structures are ubiquitous objects in biological systems. We observe a complex dependence of

cohesive energy on surface packing fraction and dipole moment distribution. As far as single helices are

concerned, the lowest cohesive energy is achieved at the highest surface packing fraction. Besides, a striking

non-monotonic behavior is reported for the cohesive energy as a function of the surface packing fraction.

For multiple helices, we discover a new phase, exhibiting markedly higher cohesive energy. This phase is

referred to as ZZ tube consisting of stacked crown rings (reminiscent of a pile of zig-zag rings), resulting in a

local triangular arrangement with densely packed filaments parallel to the tube axis.

1 Introduction

Particles with permanent dipole moments, such as magnetic
particles, are well known for their outstanding self-assembly
properties.1–3 In biology, tubular and helical structures are
relevant self-assembled objects, for instance, found in bacterial
flagella4 and microtubules.5,6 Other instances of such tubular/
helical structures can be found in various materials with specific
building units that can be: carbon atoms,7 coiled carbon nano-
tubes,8 DNA,9 nanoparticles,10 or amphiphilic molecules.11–13 Self
organization of cubic magnetic nanoparticles14 and asymmetric
colloidal magnetic dumbbells15 into helical architectures were
recently reported without the need for pre-existing templates.

On a more theoretical side, hard spherical particles confined in
narrow cylinders spontaneously assemble into helical structures16,17

and this is also seen experimentally.18 Hard-spheres with permanent
moment can be employed as a paradigm for more complex helical
molecular superstructures,19 or microtubules.20,21 The pioneering
theoretical work of Jacobs and Bean22 and later that of de Gennes
and Pincus23 shed some light on the microstructure of self-
assembled unconstrained (spherical) dipoles. More recently, the
paper24 advocated the ground states of self-assembled magnetic
structures. The authors proved that for a sufficiently high number
of particles the ground state is obtained via ring stacking
into tubes.24 On the other hand, Vella et al.25 showed an
illustrative example in which a macroscopic straight portion
of the chain spontaneously wraps itself building a tube. At
larger scales, the Janus chain model was able to reproduce well
the formation of superstructures and double helical conformations

of amphiphilic molecules.26,27 The competition between toroidal
and rod-like conformations, as possible ground states for DNA
condensation, was studied using a polymer chain model function
of stiffness and short range interactions.28,29 Also the recently
introduced polymorphic dynamics model30,31 was able to reproduce
the behavior of the microtubule lattice based on a rough under-
standing of underlying atomic level processes. The general scientific
problem of understanding the processes by which building blocks
(dipoles) self-assemble and obtain their functionality is highly
challenging.32–36

The goal of this paper is to address the intimate link between
microstructure and cohesive energy. Tubular helical structures
can be obtained either (i) through ring stacking or (ii) by rolling
one or multiple helices on a confining cylindrical surface (Section 2).
The dipolar interaction model is introduced and a link between
the dipole distribution and the microstructure is established
in Section 3. In Section 4, starting from the most simple case
corresponding to a single helix, we discuss the relationship
between the surface packing and the resulting macroscopic
properties such as the cohesive energy or overall polarization.
Then, the more complex situation of multiple helices with densely
packed constitutive particles is addressed. There, the degree of
alignment (especially in the ground state) between the dipole
moment orientation and the helix axis is analyzed.

2 Geometry of helices
2.1 Geometry of the single helix

In the framework of this paper, helices are composed of hard
spherical particles and confined to a cylinder’s surface, i.e., the
helices are created by rolling threads on the cylindrical surface
of radius Rcyl. Geometrical parameters that define a single helix
are: the azimuthal angular shift G between the centers of two
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successive particles and the radius of the helix R = Rcyl + d/2,
where d stands for the hard sphere diameter, see Fig. 1. The radius
R represents physically the distance of the closest approach
between the cylinder axis and the center of the spherical particle.

The Cartesian coordinates of particle i in a single helix are
calculated as: xi = Rcos(iG), yi = Rsin(iG), and zi = iDz, where i A Z
and assuming that one particle is at (x,y,z) = (R,0,0). The distance
between the centers of each two successive particles along the
helix axis is labelled Dz, see Fig. 1. When constructing a helix, its
radius R and the azimuthal angular distance G have to be chosen
in a way that ensures non-overlapping of hard spheres. The non-
overlapping constraint is expressed for any two particles i, j as

r ij

�� �� � d. Since the helix thread is connected everywhere, any

two successive particles are touching. We can obtain Dz as a

function of other two variables: Dz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 2ðcosG� 1ÞR2

p
.

Thereby, variables Dz, R and G are not independent. Clearly,
with decreasing Dz (i.e., increasing G) helices become more
compact. Because of the connectivity, every particle in a helix
has at least two neighbors, i.e., the coordination number, nc, is
always greater or equal than two (nc Z 2). The highest packing
density of the particles for the prescribed confinement radius R
will be achieved when the successive helix turns touch. In this
situation of touching turns, the coordination number nc can be
either four or six. Therefore, in general, nc A {2, 4, 6}, where the
case nc = 2 corresponds to non-touching turns. Based on the
coordination number nc, we can classify helices as follows (see
Fig. 2a–c). Examples of helices with two neighbors nc = 2 and
four neighbors nc = 4 at a prescribed cylindrical confinement,
e.g., R/d = 1.78, are sketched in Fig. 2a and b, respectively. For
a number of well-defined radii, as discussed later in this
paper, densely packed helices with six neighbors (nc = 6) can
be formed, see Fig. 2c. In the following sections, we will also
investigate stacked rings forming the so-called tubes, also
depicted in Fig. 2d–f.

2.2 Order parameters for single helices

The surface packing fraction, Z = S/Savail, is defined as the ratio
of the area S = pd2/4 covered by one particle and the area
available for one particle Savail, in an unrolled configuration.

Following the definition of the surface packing density we
obtain:†

Z ¼ d2

8DzR
: (1)

For comparison we are also going to derive the packing fraction
for the tubes:‡
� The surface packing fraction of AA tubes is given by

ZAA = Nringd/8RAA for an AA tube with Nring particles per ring
and the confinement radius RAA/d = 1/[2sin(p/Nring)], see Fig. 2d
for a microstructure with RAA/d = 1.93.

Fig. 1 Illustration of a single helix with the relevant geometrical parameters
(R,G,Dz) labelled. The bold line connecting spherical particle centers
represents the backbone of the helix. In the upper part of the figure, the
azimuthal dipole moment orientation a is defined in a local coordinate
system with its origin corresponding to the particle center. The z0-axis is
parallel to the cylinder axis.

Fig. 2 Illustration of different classes of helices, based on the coordination number nc = 2, 4, and 6. (a) Helix with non-touching turns (nc = 2). (b) Helix
with touching turns (nc = 4). (c) Densely packed helix (nc = 6). The other panels illustrate the so-called (d) AA, (e) AB, and (f) ZZ tubes. The tubes can be
created by strict axial stacking of unit rings. For AA and AB tubes unit rings are flat, whereas, for ZZ tubes the unit ring has a crown shape (reminiscent of
the pile of ‘zig-zag’ rings). The radii of AA and AB tubes are the same R/d = 1.93.
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� Similarly, for AB tubes, the packing fraction is ZAB = Nringd2/
8RABDzAB, with RAB = RAA. Here, the elevation DzAB between two
consecutive rings is:

DzAB ¼ ðd=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cosðp=NÞ � cos2ðp=NÞ

q
: (2)

� For ZZ tubes, the packing fraction is ZZZ = Nringd/8RZZ, with the

confinement radius RZZ=d ¼
ffiffiffi
3
p

= 4 sin p=Nring

� �� �
.

To further characterize the helical microstructures, we
introduce an additional geometrical order parameter x which
is valid for nc = 4 and 6. This order parameter connects an
individual reference particle 0 located at -

r0 in the helix with its
two neighbors: its immediate successive particle 1 in the turn
(-r01 = -

r1 �
-
r0) and a neighboring particle 2 from the next turn

(-r02 = -
r2 �

-
r0), see Fig. 3(a).

The angular coordination order parameter is conveniently
defined as:

x ¼ 2
~r01 �~r02j j

d2
: (3)

In the two limiting cases, the angular coordination order
parameter has values: xmin = 0, for a locally square lattice on a
cylinder (e.g., AA tubes, check Fig. 2d) and xmax = 1, for a locally
triangular lattice (e.g. AB tubes, check Fig. 2e). In all other
cases, the value of the angular coordination order parameter x
is between those two extreme values, i.e., 0 o x o 1.

2.3 Multiple helices at high surface packing fraction

The densely packed helices (nc = 6) can be created, in analogy
with carbon nanotubes, by rolling a ribbon of a triangular
lattice on a cylinder surface.37 We deal with cylindrical geometry,
infinite in one direction. We can generate these helical structures
by periodical reproduction of a curved patch (unit cell) along the
helical line with spanning vectors (-a1, -

a2). This curved unit
cell has n1 particles along the -

a1 direction and n2 particles in the
-
a2 direction.§

Since we deal with hard spheres and we aim to build very
dense structures, the parameter space (R,Dz,n1,n2) is significantly
restricted. We are going to find out that only two of these
parameters are independent. There exists a relationship linking
the elevation angle Y = arcsin(Dz/d) and the confinement radius
R, see ref. 37. Bearing in mind that for any pair (n1,n2) or
equivalently (n2,n1), we have a unique corresponding structure

with nc = 6, one arrives at the following two independent
equations:

Y n1; n2ð Þ ¼ arctan

ffiffiffi
3
p

n2

2n1 þ n2

 !
(4)

and

180� ¼ n1 arcsin
d

4R

� 	
2n1 þ n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n12 þ n22 þ n1n2
p

" #

þ n2 arcsin
d

4R

� 	
2n2 þ n1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n12 þ n22 þ n1n2
p

" #
:

(5)

We have solved those two equations and obtained the sets (Y,R/d)
shown in Fig. 4. For each value of R there are two different values
of Y, symmetric around Y = 301, which correspond to lattice
constant pairs (n1,n2) and (n2,n1), respectively. The (n1,n2) pairs
are actually identical structures with opposite chirality.38 The six-
fold rotational symmetry of the lattice restricts Y A [01,601].

We now look into properties of (n1,n2) pairs in order to
characterize the multi-thread structure of six neighbor helices
(nc = 6). First, we identify the link between nc = 6-tubes and the

Fig. 3 (a) Illustration of a helix made of hard spheres, helix backbone
(solid line), and the vectors connecting a reference particle 0 located at
(x,y,z) = (R,0,0) with its neighbors: an immediate successive particle 1 in the
turn located at (r~01) and a neighboring particle 2 from the next thread turn
at (r~02). (b) An overview of the principal geometrical parameters of nc = 4
and 6 helices: elevation angle Y and azimuthal angular shifts G1 and G2 (see
eqn (7)). In our notation, densely packed directions along the helical
superstructure are called threads. The corresponding elevation distances
of successive particles along helix axes Dz1,2 (see eqn (9)) are also given for
two possibilities for the rolling of the same helix configuration.

† The available area per particle is Savail = 2pRDz, where the distance between
successive particles along the tube axis is Dz. We take for the surface covered by
particle S = pd2/4, i.e., neglecting curvature. This results in a small overestimation
of the packing fraction (less then 2% for large curvatures, e.g., R=d ¼

ffiffiffiffiffiffiffiffi
3=2

p
).

‡ The tubes are obtained via ring stacking. It is convenient to calculate the
surface packing fraction as the ratio of the area covered by the particles in a unit
ring and the available area per ring. The surface covered is S = Nringpd2/4. The
available area per ring is Savail = 2pRDz, where Dz is the distance between
successive rings. The distance between successive rings is Dz = d for AA and ZZ
tubes.
§ The values n1 and n2 can be seen as the two possible widths of the ribbon
generating the same helical structure.
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(n1,n2) pair values. The pairs (0,n2) and (n1,0) leading to Y = 601
and 01, respectively, represent AB tubes, cf. Fig. 4. The pairs
with n1 = n2 corresponding to Y = 301 lead to ZZ tubes that are
characterized by constitutive straight filaments parallel to the
ZZ tube axis, see Fig. 2f. The curve with n1 = 1 (with n2 Z 3)
corresponds to a single helix, n1 = 2 (with n2 Z 3) to a double
helix, n1 = 3 (for any n2 Z 4) to a triple helix, and more generally
an n1-helical structure is obtained when n2 Z n1 + 1.¶

We employ Cartesian coordinates to express positions of
particles in an n-helix similarly to the single helix case, using
two indices, i A Z and j = {1,n}:

xi+jn = Rsin(iG1 + jG2)

yi+jn = Rcos(iG1 + jG2)

zi+jn = iDz1 + jDz2. (6)

In eqn (6), G1 represents the azimuthal angular shift between
each two consecutive particles along a given thread and G2 is
the angular shift between threads, i.e., densely packed directions
in a superstructure, see Fig. 3(b). The azimuthal angle G1 is
merely provided by:

G1 ¼ arccos 1� dffiffiffi
2
p

R
cosY

� 	2
" #

: (7)

The angular shift G2 between threads is more delicate to derive.
Knowing that starting from the reference particle it is possible
to reach the same particle position following two paths along
threads (in -

a1 or -
a2-direction), one can arrive at a relation

linking G1 and G2: 3601 = (n1 + n2)G1 � n2G2.
The dependence of angular parameters G1 and G2 on the

reduced helix radius R/d is displayed in Fig. 5, for Yo 30 in the

single helix (n2 = 1, n1 Z 4), the double helix (n2 = 2, n1 Z n2)
and the quadruple helix (n2 = 4, n1 Z n2).

As the helix radius R/d increases, the value of G1 monotonically
decreases, since additional particles are added to a turn. The
angular parameter G2 monotonically decreases only for n2 = 1.
The scenario becomes qualitatively different at n2 Z 2 where
non-monotonic behavior is found, see Fig. 5. This feature can be
rationalized as follows. The smallest compatible radii R with
n2 Z 2 and Y o 301 are obtained when n1 = n2 (cf. Fig. 4)
corresponding to Z tubes where G2 = 0. Besides that, G2 tends
to zero for the vanishing cylinder curvature (R/d - N). These
are the reasons why the profile of G2(R/d) is non-monotonic
when n2 Z 2.

The surface packing fraction of densely packed multiple
helices is simply obtained by multiplying the surface packing
fraction of a single helix with the number of threads n2 (Zmulti = n2Z,
see eqn (1)):

Zmulti ¼ n2
d2

8Dz1R
; (8)

where the elevation distance Dz1 (shown in Fig. 3b) is given by:

Dz1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4R2 sin2

G1

2

� 	s
: (9)

The calculated surface packing fraction of single (n2 = 1),
double (n2 = 2), and quadruple (n2 = 4) helices is shown in
Fig. 6. At a given confinement curvature (fixed R/d), adding
threads results in higher surface packing fraction, see Fig. 6.

3 Dipole moments
3.1 Dipolar interaction model

We now want to address the situation where the constitutive
particles are dipolar. Each particle carries an identical dipole
moment in magnitude, m = |-

mi|, where -
mi = (mx

i , my
i , mz

i) defines

Fig. 4 Phase diagram in the (Y,R/d)-plane showing possible unit cells
characterized by (n1,n2) pairs. Solid lines represent unit cells with n2 fixed,
and the dashed ones represent unit cells with n1 fixed. The three horizontal
lines (dot-dashed) correspond to tubes.

Fig. 5 Dependence of azimuthal angular shift parameters G1 and G2

stemming from the corresponding spanning vectors a~1, a~2, respectively,
on a reduced helix radius R/d, for single (n2 = 1), double (n2 = 2), and
quadruple (n2 = 4) helices.

¶ In our notation, multiple helices are named after the smallest unit patch
dimension, i.e., the smallest number of generating threads.
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the dipole moment of particle i, see also Fig. 1. The potential
energy of interaction U(-rij) between two point-like dipoles
whose centers are located at -

ri and -
rj can be written as:

U ~rij
� �

¼ C
1

rij3
~mi � ~mj � 3

~mi �~rij
� �

~mj �~rij
� �

rij2


 �
(10)

for rij Z d or N otherwise, where C represents a constant that
depends on the intervening medium, and rij = |-rij| = |-rj�

-
ri|. It is

convenient to introduce the energy scale defined by Umm � Cm2/d3

that physically represents the repulsive potential value for two
parallel dipoles in contact standing side by side as clearly
suggested by the notation. Therefore, the total potential energy
of interaction in a given structure Utot is given by

Utot ¼
X
i;j
i4 j

U ~rij
� �

: (11)

One can then define the reduced potential energy of interaction
u (per particle) of N magnetic spheres. It reads u = Utot/(UmmN),
which will be referred to as the cohesive energy.

Since we are dealing with infinitely long structures (in one
direction), we shall consider only periodic structures in that
direction that greatly facilitate the calculation of the cohesive
energy. The method of choice is provided by the Lekner sum for
systems with periodicity in one direction.39 The central feature
in the Lekner method is the choice of the periodic cell. For
nc = 2, 4, we can always find helical parameters with a finite
number of particles in the unit cell. The periodicity is achieved
by imposing a condition on the angular shift parameter G that a
helix has to make an integer number of turns within the unit cell.

3.2 Dipole moment orientation prescribed by helix threads

Because of the symmetry it is intuitive to envision dipole moments
following helix threads. In order to have dipole moments tangential
to the helical backbone, we introduce two components of dipole
moments. The parallel component with respect to the helix axis
is given by mz = mDz/d and the orthogonal one is given by

~mxyj j ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðDz=dÞ2

p
. Hence, the dipole moment of particle i

in the single thread helix reads: mx
i = �mxysin(iG), my

i = mxy

cos(iG), and mz
i = mz.

In the multi-thread case, the Cartesian dipole moment
components are given by:

mx
i, j = �mxysin(iG1 + jG2)

my
i, j = mxycos(iG1 + jG2)

mz
i,j = mDz/d, (12)

where i A Z is the internal particle label within a thread and
j = {1,n2} stands for the thread’s label. In dense helices (nc = 4, 6)
dipole moments can follow two directions -

a1 and -
a2. In Fig. 7,

representative dipole moment distributions are shown.

3.3 Energy minimization

In general, the dipole moments do not have to follow thread
structure. To find the dipole moment distribution that yields
minimal energy, we first perform minimization of the cohesive
energy using a constrained minimization algorithm.24,40 A randomly
oriented dipole moment is assigned to every particle of the helical
structure in the following way: dipole moment is defined in the
spherical coordinate system. Two important features stemming
from these energy minimization calculations are:

(i) Dipole moments are tangential to the cylinder’s surface.

Fig. 6 Surface packing fraction Z, see eqn (8) as a function of reduced
helix radius R/d for single (n2 = 1), double (n2 = 2), and quadruple (n2 = 4)
helices.

Fig. 7 The representative structures including dipole moment distributions
are displayed. For AB tubes with patch parameters (n1,n2) = (8,0) dipole
distributions which correspond to spanning unit cell vectors (a) a~1 (oblique to
cylinder’s axis), (b) a~2 (closer to cylinder’s axes), and (c) ground state dipole
distribution. For a single helix (n1,n2) = (9,1) dipole distributions which
correspond to (d) a~1 and (e) a~2 (closer to helix axes) spanning vectors,
and(f) ground state dipole distribution. For a double helix (n1,n2) = (8,2)
dipole distributions which correspond to (g) a~1, (h) a~2 (closer to helix axes)
spanning vectors, and (i) the ground state dipole distribution. In the case of
ZZ tubes (j) a~1 and (k) a~2 dipole distributions are shown. The ground state of
ZZ tubes follows a~2 dipole distribution (parallel to cylinder’s axis).
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(ii) The component of dipole moment in the z-axis direction
mz for a given structure is identical for all particles.8

Therefore we need just one angular parameter to characterize
the dipole moment orientation. We choose the dipole moment
angular parameter, a A [�1801,1801], relative to the z-axis, see
Fig. 1. Doing so we arrive at:

m x
i, j = �msin(a)sin(iG1 + jG2)

m y
i, j = msin(a)cos(iG1 + jG2)

m z
i, j = mcos(a), (13)

where the indices i and j have the same meaning as in eqn (12).
Consequently, the angular parameter a is most of the time a
unique variable, at prescribed helical structures, entering into
the energy minimization routine.

4 Cohesion energy and microstructure
4.1 Compression of a single helix

A simple way to deform a helix is to compress (or extend) it
along its axis, i.e., the z-direction, while ensuring the dipole
moments follow the thread (for details of implementation, see
Section 3.2). Compression of a helix results in a continuous
increase of its surface packing fraction Z. Fig. 8 shows the
evolution of cohesive energy uR with the surface packing fraction
Z for a single helix with reduced radius (R/d C 1.7, chosen in the
vicinity of nc = 6 point). Recalling geometrical considerations in
Section 2.1 the increase of the azimuthal angular shift G at
prescribed curvature results in a continuous decrease of Dz and
compression of the helix. The compression process begins with

a fully extended helix (i.e., Z - d/8R E 0.073) where the chain
stands up with Dz/d = 1, and the cohesive energy of infinite
chain u C �2.404.24 The compression ends when two successive
turns of the helix touch, i.e., the coordination number of particles
in the helix changes from nc = 2 to nc = 4.

We also address the minimal energy of the helix with respect
to the dipole moment distribution (i.e., not necessarily prescribed
by tangentially following the helix). From Fig. 8, we observe that
uR = uR(Z) is non-monotonic. We can identify two regimes:
� At small packing fractions up to Z t 0.4 (with no touching

turns), the compression of the helix requires energy input and
therefore cohesive energy increases. The reason for this is that
two distant consecutive turns of the helix experience weaker
attraction upon increasing Z.
� In the regime of high Z \ 0.4 where successive turns are

allowed to be close or even touching, the cohesive energy starts
to decrease as Z increases, i.e., the helix would compress on its
own without input of energy. This is a consequence of enhanced
attraction caused by the discreteness of the constitutive dipolar
beads, see ref. 41.

The overall polarization order parameter hmzi is also analysed
in Fig. 8. During most of the course of the helix compression,
see Fig. 8, a dipole moment orientation following the helix
corresponds to the ground state structure up to Z E 0.8, cf.
points C and D in Fig. 8 (for details of ground state calculations,
see Section 3.3). Only for very high packing fractions, i.e., Z 4 0.8,
the ground state dipole orientation starts to rapidly deviate from
the helix direction accompanied by a significant reduction in
cohesive energy (see points E and F in Fig. 8). The highest difference
in hmzi occurs for ZE 0.887, where nc = 4 helix with touching turns
is formed, and the energy difference uE

R � uF
R C 0.06.

4.2 From the square to triangular arrangement for a single
helix

Having successfully parameterized helices and introduced dipole
moments, it is natural to ask how cohesive energy depends on
structural changes and especially on curvature. With increasing
curvature the structure will change from the triangular to square
arrangement and vice versa through a continuous series of
rhombic configurations. We first study in detail systems with
dipole moments following the spanning vector that are most
oblique to helix axes, see Fig. 7d. For the sake of comparison
with tubes (AA/AB tubes), we also chose dipole moments that are
building vortices along the rings for them, cf. Fig. 7a. Motivation
for that choice stems from a previous study,24 where we have
shown that finite AB tubular systems are energetically favor-
able, see Fig. 7a (dipole moment orientation is perpendicular to
the tube’s axis).

The surface packing fraction Z (eqn (1)), the angular coordination
order parameter x (see eqn (3)), and the cohesive energy per particle
uR (eqn (11)) are plotted versus the reduced helix radius R/d in Fig. 9.

Fig. 8 Compression of a single helix on a cylindrical confinement with a
fixed radius (R/d C 1.7). Dependence of cohesive energy (upper left panel)
and the overall polarization order parameter, i.e., the axial component of
the dipole moment (in lower left panel), on the packing fraction is shown
for two characteristic dipole moment orientations: one that follows the
helix, i.e., the spanning vector a~1 and the ground state dipole moment
orientation obtained by energy minimization. Comparative microstructures
at different Z values (A–F) are depicted on the right panel. Configurations (A,
B, C and E) correspond to a dipole moment distribution following the helix
whereas configurations D and F correspond to ground state distributions.

8 We have found that under some circumstances the dipole moment orientations
alternate, i.e., antiferromagnetic-like coupling between the neighboring threads.
This actually occurs with any AA tube. Similar behavior is reported for some
moderately dense nc = 4-helical structures.
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Actually, the energy and structural properties change in an
oscillatory quasi-periodic manner and they are enveloped from
both sides with the properties of AA and AB tubes, see Fig. 9. In
Fig. 10 behavior of these observables is depicted within one
period (R/d A [2.09,2.26], arbitrary chosen). In one period, the
number of particles (n) in a constitutive ring of (AA/AB) tubes is
increased for one, i.e., from n-ring to n + 1-ring. Within this
period, the order parameter changes from x = 0, i.e., square
arrangement, to x = 1, i.e., triangular arrangement, via a continuous
rhombic transformation, see Fig. 10a. The radii of densely packed
helices are roughly in the middle between two corresponding
(AB/AA) tube radii, see Fig. 10a. This is a result of the radial
constraint and the excluded volume. Though in a single thread
helical structure we cannot close rings in the plane perpendicular to
the cylinder axis, one can nevertheless realize a full 3601 helix turn
with roughly n + 1/2 particles. We observe discontinuity and strong
asymmetry of the angular coordination order parameter x at the
mid-period (R(13,1)/d E 2.17), see Fig. 10a. This is due to a change in
the number of lateral threads n2, see Fig. 7e for illustration, at the
mid period going from n2 = 9 to n2 = 10, see Fig. 10a.

With decreasing curvature, the surface packing fraction increases
globally, see Fig. 9b. We observe oscillatory behavior as the system
continuously evolves from the square to triangular arrangement and
vice versa. The AA and AB tubes still roughly bound have the values
taken by the surface packing fraction. At the helix radius R/d 4 3.4,
see Fig. 9b, we are already within 3% of the asymptotic expected
values in the planar case. In contrast to the angular coordination
parameter x, the surface packing density Z is continuous every-
where, compare Fig. 10a and b. Moreover, at mid-period the
Z value is slightly (and systematically, see Fig. 9b) above the
interpolated stemming from AB tubes (see Fig. 10b). In Fig. 9b
and c, it can be clearly seen that the profiles of energy oscillations
uR and the surface packing fraction Z are anti-correlated. The
mid-period values uR coincide with interpolated stemming from
AB tube radii (confirmed by Fig. 9c and 10c).

4.3 Looking for the ground state

At this point, we would like to discuss mechanisms which govern
the minimal energy dipole moment orientation near the mid-
period transition point (more details about implementation are
provided in Section 3.3). There are three privileged directions in

Fig. 9 Dependence of (a) the angular coordination order parameter x, (b)
the packing density Z and (c) the cohesive energy uR on the helix radius
R/d, for a~1 dipole orientation. AA and AB tube points are clearly indicated,
they bracket the parameter values of helices, like a kind of envelope (solid
and dashed lines connecting the tube points are power law fits).

Fig. 10 Dependence of (a) the angular coordination order parameter x,
(b) the packing density Z and (c) the cohesive energy uR on the helix radius
R/d, for a segment in the vicinity of R(13,1)/d = 2.17 of Fig. 9. Tubes AA and
AB are represented by discrete points since they can be formed only with a
fixed number of particles in a ring, the fitted (power law) curves serve only
as a guide to the eye. The point which represents the dense helix with
(n1,n2) = (13,1) and R(13,1)/d = 2.17 is marked with a rectangle.
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a helix: two which follow helix spanning vectors (determined by
-
a1, -

a2) and the third one which is the direction of the helix axis.
These privileged directions come into play in two competing
mechanisms:
� The first mechanism is typically dictated by first neighbor

interactions which favor dipole moments following the thread
directions.
� The distant–neighbor interactions favor the distribution of

dipole moments parallel to the helix axis.
We can justify these two mechanisms as follows. It is well

known for a small finite system that rings are formed with dipole
moments building vortices, cf. ref. 24. When a helix turn is projected
along the z-axis, the resulting figure is highly reminiscent of the
vortex discussed above. The head to tail configuration is favored
at long distances, explaining the second advocated mechanism.

The abrupt change in polarization (or magnetization) in the
direction of the axis hmzi, seen in Fig. 11b, is correlated with
the discontinuous change in the angular coordination order
parameter x in the vicinity of transition, see Fig. 10a. At the
mid-period point R(13,1)/d = 2.17 magnetization in the direction
of the axis hmzi is close to one, but not exactly one, see Fig. 11.

For the sake of comparison with tubes (AA/AB tubes), we
choose dipole moments that are parallel with the helix axis, see
Fig. 7c. The fact that the system is able to relax its dipole
moment orientation to the ground state results in more dependence
of energy on confinement curvature around the mid-point. The
degree of asymmetry of uR is stronger around the transition point,
see Fig. 11b, than in the excited state in Fig. 10c. The ground state
calculations confirm the high stability of AB tubes (see Fig. 10c).

4.4 Cohesion energy for multiple helices at high surface
packing fraction

In this part, we consider the high surface packing fraction regime
with nc = 6. Some representative structures including dipole
moment streamlines are displayed in Fig. 7. The streamlines
following spanning unit cell vectors -

a1 (oblique to the helix axis)
and -

a2 (more aligned to the helix axis) are also shown.** Dipole
moment distributions in the ground states are also indicated for
comparison in Fig. 7. In analogy with the study of a single helix
case (see Section 4.2), we start analysis with a dipole moment
distribution prescribed by tangentiality with the thread backbone.
In Fig. 12, cohesive energy for the -

a1-generated dipole moment
distribution is shown for different helical structures.

The cohesive energy in a planar triangular lattice, uNC�2.759,
represents the energy value which will be reached asymptotically
(R/d - N) for all considered structures. As already found for
AB tubes in ref. 24, cohesive energy exhibits the scaling law of
the form uR � uN B R�2, see Fig. 12. The cohesive energies of
all three helices and AB tubes are weakly dependent on the
number of threads for -

a1-generated dipole moment distribution.

Fig. 11 Dependence of (a) cohesive energy uR and (b) the overall polari-
zation order parameter hmzi on the helix radius R/d (in the ground state),
for a chosen segment of Fig. 9. Tubes AA and AB are represented by
discrete points since they can be formed only with a fixed number of
particles in a ring, the fitted (power law) curves serve only as a guide to the
eye. The point which represents the dense helix with (n1,n2) = (13,1) and
R(13,1)/d = 2.17, is marked with a rectangle.

Fig. 12 Dependence of cohesive energy uR on the helix radius R/d, for
single, double, and quadruple helices at high surface packing fraction, and
AB tubes, with a~1 dipole orientation.

** It is possible to polarize the helix by a homogeneous external field parallel to its
axis. For symmetry reasons, a reversal of the magnetic field should result in the
reversal of the dipole orientation. In the case of magnetic dipoles, it should also be
possible to polarize the system to follow a~1 and a~2 spanning vectors by combination
of a curling magnetic field of electric current flowing through the confining cylinder
and the homogeneous external magnetic field parallel to its axis.
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This is in accordance with surface packing fraction behavior
reported in Fig. 6. A comparison with the azimuthal angular shift
parameter G1, see Fig. 5, and the corresponding cohesive energy
(for -

a1-generated dipole moment distribution) clearly reveals a
correlation between these two quantities.

In Fig. 13, cohesive energy for -
a2-generated dipole moment

distribution is compared with ground state energy for a different
number of threads. There exists an analogous correlation (as
discussed for -

a2-dipole distribution) between the azimuthal shift
G2 and the resulting cohesive energy, compare Fig. 5 and 13.

The smallest compatible radius R for multi thread helices
(n2 = 2, 4) is obtained for ZZ tubes (n1 = n2). In Fig. 13, the
corresponding radii read R(2,2)/d = 0.61 and R(4,4)/d = 1.13. In
this case the -

a2 and ground state dipole moment orientations
are the same, see Fig. 7k. Strikingly, ZZ tube ground states
converge very fast to the expected planar value uN at the
smallest accessible radii, i.e., the largest curvature, within less
than 1% of the planar case, see Fig. 13 for R(2,2)/d = 0.61. A
structural similarity of ZZ tubes, with typical experimental
images of microtubules is striking, see Fig. 7k. Structurally,
ZZ tubes can be created by closing the rectangular strip on a
cylinder and decomposition into chains which are analogous to
biological filaments which the microtubules are made of.

5 Conclusions

We have presented a study about cohesive energy of helical
structures composed of hard spheres with permanent dipole
moments. Helices were created by replication of a particle or
patch (of particles) on a confining cylindrical surface. Even for
the most simple situation, namely the single thread helix, a
non-trivial behavior is found when monitoring the cohesive
energy as a function of surface packing (i.e., axial compression).
In particular, we observe a non-monotonic dependence of the

cohesive energy on the packing fraction (or equivalently the
amount of compression) as a result of a delicate interplay of
dipole–dipole interactions and excluded volume effects. The
lowest cohesive energy is achieved at the highest packing fraction
with touching turns. In parallel, the magnetization (or polarization)
order parameter, i.e., the mean dipole moment per particle in hmzi,
also exhibits a striking non-monotonic behavior as a function of
the extent of compression. In the regime of very high surface
packing fraction with local triangular arrangement compatible
with certain cylinder radius (R) vs. particle diameter (d) ratio
(R/d), a pronounced cohesive energy is found. Concomitantly,
the magnetization order parameter indicates a sharp change in
the dipole moment orientation, which tends to be parallel to
the helix axis.

Finally, we compare cohesive energies of dense multiple
(i.e., double or quadruple) helices, as well as, AB and ZZ-tubes
made up of stacking rings that can also be seen as special
multiple helices. A remarkable finding is the enhanced cohesive
energy for the ZZ-tube structure. The latter already emerges at
strong substrate curvature with cohesive energies very close to that
obtained at vanishing curvatures. In these ZZ-tube structures, an
alignment of the helix threads with its axis is a microstructural
signature for this low cohesive energy. As a final note, we would
like to emphasize that our model mimics nicely the geometry and
microstructure of microtubules. It could also provide a possible
clue about the self-assembly mechanisms and cohesion within
microtubular structures.
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2010, 100, 122–131.

22 I. Jacobs and C. Bean, Phys. Rev., 1955, 100, 1060.
23 P.-G. De Gennes and P. A. Pincus, Phys. Kondens. Mater.,

1970, 11, 189–198.

24 R. Messina, L. A. Khalil and I. Stanković, Phys. Rev. E: Stat.,
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Soft Matter, 2014, 10, 2836–2847.

32 D. Tomanek, S. G. Kim, P. Jund, P. Borrmann, H. Stamerjohanns
and E. R. Hilf, Z. Phys. D: At., Mol. Clusters, 1997, 40, 539–541.

33 T. A. Prokopieva, V. A. Danilov, S. S. Kantorovich and C. Holm,
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2009, 80, 031404.

34 G. Pál, F. Kun, I. Varga, D. Sohler and G. Sun, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2011, 83, 061504.

35 V. Malik, A. V. Petukhov, L. He, Y. Yin and M. Schmidt,
Langmuir, 2012, 28, 14777–14783.

36 N. Vandewalle and S. Dorbolo, New J. Phys., 2014, 16, 013050.
37 D. A. Wood, C. D. Santangelo and A. D. Dinsmore, Soft Matter,

2013, 9, 10016–10024.
38 W. T. B. Kelvin, The molecular tactics of a crystal, Clarendon

Press, 1894.
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Abstract—This paper is dealing with tubular structures composed 
through the self-assembly of magnetic hard spheres, in a given 
geometric confinement. Since the structures are tubes, geometric 
confinement is a cylinder with a given radius (confinement 
radius). Interaction of interest is magnetic dipole-dipole 
interaction, therefore a detailed analysis of it is provided. Next 
step is formation of the structures. We are analyzing infinitely 
long tubes, therefore an efficient method (Lekner method) for 
summing the dipole-dipole interactions of 1D periodical systems 
(periodical along one direction, the z-axis) is implemented in 
MATLAB. One of the main goals is determination of 
energetically favoured configurations, so a comparison of the 
tubes’ energy has been done. 

Key words-calculations; geometrical packing; binding energy; 
magnetic; tubes; MATLAB 

I.  INTRODUCTION 
Self-assembly of magnetic particles is an interesting and 

relevant research topic which investigates the ways of forming 
regular structures composed of magnetic particles, in a fixed 
geometric confinement. Interaction between each two particles 
is magnetic dipole-dipole interaction [1]. What is a magnetic 
particle? It is a hard sphere which is a magnet (it has magnetic 
dipole moment). Why is this topic attractive? First of all, it is 
relevant from the theoretical point of view, since the dipole-
dipole interaction is a long-ranged (~1/r3, r is the distance) and 
unisotropic interaction. Applications of magnetic structures are 
numerous, especially in nanoelectronics and biotechnology. 
For example, in nanotechnology, mixtures of self-assembled 
magnetic particles can lead to the formation of very strong 
magnets [2,3]. Interaction between magnetic planar layers can 
lead to 3D structures with a great potential for the 
microfabrication of electronic devices [4]. Ground states of 
microstructures in ferofluid monolayers, in which the 
interaction is magnetic dipole-dipole interaction, have been 
investigated [5]. In the paper [6] self-assembled magnetic 
structures with minimal energy (ground state) have been found. 
It has been shown that as the number of particles, N, increases, 
the dimensionality of the ground state structures increases as 
well. For a small number of particles (N = {2, 3}), a chain is 
the ground state. For (3 < N < 14), a chain closes into a ring. In 

the end, for a sufficiently big number of particles (N > 13) 
ground state is obtained via ring stacking. There is a clear 
transition with the increase of N, since a chain is 1D, a ring is 
2D and stacked rings is a 3D structure. The subject of this 
paper is investigation of 3D structures (infinitely long tubes) 
formed via ring stacking into tubes. In the first part of this 
paper, a detailed analysis of the magnetic dipole-dipole 
interaction is performed, in order to better understand self-
assembly of magnetic particles. There are two specific 
geometrical packings of the rings into tubes (square and 
triangular), leading to so called, AA and AB tubes. Our goal is 
to form a certain structure and calculate its binding energy, 
which is a result of the dipole-dipole interactions of each pair 
of particles that are building it. Once a structure is built 
geometrically, its dipole orientation (also called magnetization) 
should be defined. We have introduced three different 
magnetizations (ST/MT/ZZ magnetization) and compared their 
impact on the energy. Also, for a fixed magnetization, a scan 
over a wide range of confinement radii has been done, in order 
to understand how does the energy change when the 
confinement radius increases. When the confinement radius 
goes to infinity, then a convergence to corresponding lattice 
plane happens [6], which confirms the accuracy of the 
implemented summation method.    

II. MAGNETIC DIPOLE-DIPOLE INTERACTION 
Interaction for modelling the self-assembly of hard 

magnetic spheres is magnetic dipole-dipole interaction.  
It occurs between two particles with magnetic moments m1 and

 m2. Potential energy of this interaction has the form: 
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and the position vector connecting the two particles is r12 = r1 
– r2. Distance between the particles is the moduo of this vector 
and we note it as r. Let us assume that magnetic moments 
belong to the same plane.

 
In such a case, they have two 

components, one normal to the direction of r12,
 
mn

 
and the 

other one parallel to it, mp.
 
It leads to the expression for the 

potential energy: 
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In the next figure, a sketch of the two dipoles that we are 
analyzing is shown. 

 

 

 

 

 

 

Figure 1.  A sketch of two dipoles interacting via magnetic dipole-dipole 
interaction 

Potential of their interaction has been derived. Let us normalize 
the values of the variables in it: 
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Vectors m1
 
and m2

 
form the angles θ1 and θ2 with the direction 

of vector r12. Let us write: 
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There is a compact expression for the potential: 
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Let us test how does the potential depend on the mutual 
orientation of the dipoles. We are scanning the angle θ1 in 
1000 points over the full range,, and angle θ2 takes selected 
values. In Fig. 2 the potential depending on the mutual dipole 
orientation is shown. Potential has a minimum when the 

dipoles are parallel to vector r12 and they point to the same 
direction. It has a maximum when the dipoles have opposite 
directions, parallel to vector r12.

 
The same stands if the dipoles 

are normal to vector r12,
  

just the absolute values of the 
potential are smaller. Stars indicate the higher absolute value 
minimum and maximum, while triangles indicate lower 
absolute value minimum and maximum.  

Figure 2.  Potential of the dipole-dipole interaction depending on the dipole 
orientation 

From the previous analysis, we have learned that two dipole 
orientations are of interest: parallel and normal to the vector 
r12.

  
Distance was kept fixed and the dipole orientation was 

being changed. Now, we will keep the orientation fixed, but 
the distance will be changing.  
In Fig. 3 a sketch of two dipoles parallel to the position vector 
r12 is shown. This system corresponds to the minimum marked 
with a star  in Fig. 2. 

 

 

 

 

 

 

 

 

Figure 3.  A sketch of two dipoles parallel to the position vector 

In Fig. 4 dependence of potential on distance is shown. 
Obviously, absolute value of interaction potential decreases as 
the distance increases. This is an example of attraction 
between two dipoles. In Fig. 5 a sketch of two dipoles normal 
to the position vector r12

 
is shown. This system corresponds to 

the maximum marked with a triangle in Fig. 2.  
In Fig. 6 dependence of potential on distance is shown. The 
same remark applies here, absolute value of interaction 
potential decreases as the distance increases. This is an 
example of repulsion between two dipoles.  
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Figure 4.  Dependence of the interacion potential on the position of dipole 2 

 

 

 

 

 

 

 

 

 

Figure 5.  A sketch of two dipoles normal to the position vector 

Figure 6.  Dependence of the interaction potential on the position of dipole 2 

This was the analysis of two systems of interest based on the 
general picture presented in Fig. 2. On the other side, from the 
Eq. 3, we can conclude that for a specific dipole orientation, 
interaction potential will be equal to zero [7]. We came up 
with a sketch shown in Fig. 7, in order to find out how does 
the system look like when this is the case. In Fig. 8 
dependence of potential on distance is shown. When the angle 
is equal to the magic angle, potential is equal to zero. From the 
Eq. 3 we can derive what should be the angle α which causes 
the dipole-dipole interaction potential to be equal to zero.  
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Angle α = 54.74° is the magic angle, interaction potential goes 
through the zero value at the x-coordinate (see Fig. 8) which 
corresponds to this angle. For this system, there is a switch of 
potential's sign, so there are both, attraction and repulsion 
between two dipoles. 
 
 
 

 

 

 

 

 

 

Figure 7.  An illustration of the magic angle in the  dipole-dipole interactions 

Figure 8.  Dependence of the interaction potential on the position of dipole 2 

III. CALCULATION OF THE BINDING ENERGY 
In this chapter, a method for calculating the binding 

energy of a tubular structure is provided. Since we are 
analyzing infinitely long tubes, an efficient method for 
summing the dipole-dipole interactions of 1D periodical 
structures (periodical along one direction, the z-axis) had to be 
found. There are two well known and widely applied methods 
for this type of calculations, those are Ewald summs and 
Lekner method. Ewald sums are usually used for 2D 
periodical systems, while Lekner summation method 
converges faster in the 1D case, therefore we decided to 
implement Lekner method. The key feature of Lekner method 
is the choice of a periodic cell. It is a part of the infinite 
structure which is being replicated. Since we are dealing with 
tubes, one has to define its cell which is being replicated along 
the tube's axis (z – axis). Energy of an infinitely long tube is 
calculated as a sum of the self and cross energy. In next 
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expressions, we are dividing by N, since the energy is defined 
per particle, which allows a comparison of different structures 
with different number of particles in a cell. 
Self energy represents the interaction energy of a selected 
particle in a cell, with all of its copies in the other cells. Total 
self energy is got as a sum over all particles in a cell, where 
number of particles in one cell is equal to N.  
Self energy is given as [8]:  
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Cross energy represents the interaction energy of a selected 
particle in a cell, with all other particles of the same cell and 
with all their copies in the other cells. Total cross energy is got 
as a sum over all particles in a cell, i = {1, N}, j = {1, N} [8]: 
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In the above equation, the cross energy is got as a sum of cross 
potentials of pairs of particles (i, j). Cross potential is defined 
as a sum of four sums. In those sums a modified Bessel 
function of the second kind, zero and first order, K0

 
and K1 

appears, respectively. In the following text, those sums are 
presented. 
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Method for calculation of the binding energy of 1D infinitely 
long periodic structures is presented briefly. Goal of this paper 
is geometric formation and calculation of the binding energy of 
structures with minimal energy. Since the dipole orientation 
dictates the interaction potential, energy minimization means 
finding the optimal dipole orientation. 
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IV. GEOMETRIC FORMATION OF THE STRUCTURES 
        In this paper we are analyzing tubes composed of 
magnetic particles. A specific configuration of a tube is 
defined by the geometry and the dipole orientation. There are 
two possible tube's geometries depending on the ring stacking. 
If the rings are stacked one on top of each other, those are AA 
tubes. Otherwise, if the rings are stacked in the way that there 
is one particle in the upper ring between two particles in the 
lower ring, those are AB tubes. There are only two ways of 
ring stacking, but there is a huge number of different dipole 
orientations. We took both stackings, and three well-defined 
dipole orientations. Those dipole orientations are called: 
single-thread (ST), multi-thread (MT) and ZZ dipole 
orientation. ST means that dipoles follow one thread that is 
tangential to the contour of the tube. MT means that dipoles 
follow multi threads of which the tube is composed, while ZZ 
means that all the dipoles are parallel to the z-axis. We have 
analyzed all three chosen dipole orientations for AA and AB 
tubes. When calculating binding energy of an infinite periodic 
structure using Lekner method, the key task is to define the 
periodic cell. In an AA tube, a cell is one ring. In an AB tube, 
a cell is composed of two rings. Normalization of the system 
includes dimension and energy scales. The diameter of every 
particle is d = 1. The distance between two particles is 
calculated from centre to centre, which means that the distance 
between two touching particles is equal to 1. On the other side, 
it is very convenient to introduce energy scale, so the energy is 
not defined in joules or electronvolts, but rather in arbitraty 
units [a. u.]. Energy scale is defined via repulsive potential of 
two touching dipoles standing side by side. The dipole 
moment is also normalized so that the length of dipole 
moment vector is equal to 1. Now we will explain geometric 
formation of the structures. For a tube, the basis is a ring 
composed of magnetic particles. In Fig. 9 the cross-section of 
a tube is presented.  
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Figure 9.  A sketch of the tube’s cross-section 

A ring is composed of N touching particles. Angular distance 
between two successive particles is 

N
πθ 2

=Δ for an arbitraty 

chosen i-th particle, its angular position in respect to the 
positive x-semiaxis is 

N
ii

πθ 2
=  . Let us look at the triangle 

ABC in Fig. 9. Since the distance between touching particles 
is equal to 1, then BC = 1/2. There are relations:  
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Therefore, the relation between ring's radius and number of 
particles is: 
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A. Formation of AA tubes 
In AA tubes, a periodic cell is one ring. Next array of 

equations defines coordinates of the particles, i = {1, N}. 
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Dipole moments are defined in the next way, i = {1, N}. 
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In the case of AA tubes, period along the z-axis is Lz = 1. 

B. Formation of AB tubes 
In AB tubes, periodic cell is a pair of rings. There are two 

arrays of equations, one for the lower ring, and another one for 
the upper ring. For the lower ring, coordinates of the particles 
are defined like in the case of AA tubes. There was a problem 
defining the z-coordinates of upper ring particles, which was  
solved using the definition of the distance between touching 
particles. Let us look at two arbitrary chosen particles in the 
lower ring (particles A and B) and one particle in the upper 
ring (particle C), which is placed between them. As it stands 
AC = BC = 1, from this condition we can derive how much 
are the upper ring particles displaced compared to the lower 
ring particles, along the z direction: 

              ( ) ( )221 CACA yyxxz −−−−=Δ             (16) 

In the upper ring, coordinates of the particles are those: 
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In this case, period along the z-axis is Lz = 2 .zΔ  
V. RESULTS OF THE STRUCTURE AND ENERGY 

CALCULATIONS 
In this chapter, results of the structure and energy 

calculations are presented. In Fig. 10, a geometry of one tube 
configuration is shown, obtained via MATLAB calculations. 
We are showing how does the tube (AA tube) look like in a 
side and in a top view. 

 

Figure 10.  A side and a top view of an AA tube 

In Fig. 11 and Fig. 12, dependence of binding energy on the 
confinement radius for AA and AB tubes is shown, including 
three different magnetizations. 
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Figure 11.  Energy in function of the confinement radius for different 
magnetizations (AA tube) 

Figure 12.  Energy in function of the confinement radius for different 
magnetizations (AB tube) 

It is clear that for a fixed packing geometry (AA or AB), 
binding energy decreases as the magnetization changes from 
ST and MT into ZZ. Tubes with ZZ dipole orientation have 
minimal binding energy, and therefore they are the most stable 
tube configurations. When the confinement radius goes to the 
infinity, energy of all differently oriented tubes (ST/MT/ZZ) 
converges into the energy of an infinite plane. Energy of a 
square lattice plane is Esquare = –2.258, all AA tubes converge 
into a square lattice plane. Energy of a triangular lattice plane 

is Etriangular = –2.759, all AB tubes converge into a triangular 
lattice plane. 

VI. CONCLUSION 
We have developed MATLAB simulations which form 

tubular structures composed of magnetic particles and 
calculate its binding energy. Both AA and AB ring stackings, 
including three different magnetizations, have been 
investigated.  

From the results, we conclude that all those tube 
configurations are stable, since their binding energy is 
negative. For a fixed packing geometry (AA or AB), binding 
energy decreases as magnetization changes in the way:  
ST - MT - ZZ. For a fixed magnetization, AB tubes have 
lower energy than AA tubes. Since AB tubes are more densely 
packed than AA tubes, we may say that bigger packing density 
implies lower binding energy and more stable structures. 
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A R T I C L E I N F O
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A B S T R A C T

In the current work we present a new modelling approach for simulating meso–scopic phenomena related to
lubrication of the piston ring–cylinder liner contact. Our geometry allows a variable confinement gap and a
varying amount of lubricant in the gap, while avoiding the squeeze-out of the lubricant into vacuum. We have
implemented a coarse grain molecular dynamics description of an ionic liquid as a lubricant which can expand
into lateral reservoirs. The results have revealed two regimes of lubrication, an elasto-hydrodynamic one under
low loads and one with low, velocity-independent specific friction, under high loads. The observed steep rise of
normal forces at small plate-to-plate distances is an interesting behaviour that could potentially be exploited for
preventing solid–solid contact and wear.

1. Introduction

Friction accounts approximately for one-third of the fuel energy
consumed in passenger cars [1], therefore a deeper understanding of
the lubrication mechanisms in engineering systems is necessary.
Atomic-scale simulations can provide important insights which are
necessary for understanding the underlying mechanisms that can affect
the system behaviour, such as structural changes in lubrication layers
during shear as well as the interaction between lubricants and surfaces.
The field of computational lubricated nanotribology has been well
established over the last decades [2,3] and the availability of increased
computational resources is allowing the application of such methods in
cases with increasing complexity. Recent studies of nanoscopic friction
based on Molecular Dynamics (MD) include, for example, the study of
fatty acids [4] and ionic liquids ILs [5] as lubricants. Wear reduction
demands and the drive to keep friction low, have led to reduced
lubricant film thickness down to only a few molecular layers [6–9]. MD
can enable us to access and understand the behaviour of very thin films
which are subjected to compression and shearing between walls [6–8].

Our specific goal is to achieve a representation of the tribological
system which is relevant to automotive powertrain applications. As
approximately 45% of the engine friction losses occur in the piston
assembly [1], our initial target is to mimic the conditions observed in
the piston ring–cylinder liner contact, in terms of pressure, tempera-
ture and shear rates. In addition, in order to be able to achieve length–

and time–scales that can be of relevance to the real–life systems, it is
necessary to apply appropriate simulation methodologies, such as the
use of coarse grain molecular dynamics [10–13].

In recent years, the application of ILs as advanced lubricants is
being studied with a steadily increasing interest [14]. The use of ILs as
both neat lubricants and additives for engine lubrication has been
considered [15–17]. Significant improvements on friction and wear
reduction have been observed experimentally [16], rendering this
concept of potential interest to industry. However, unravelling the
mechanism of nanoscopic friction in ILs together with their structure
poses a great scientific challenge, and so far few studies in this direction
have been performed, e.g., Ref. [18]. ILs are molten salts typically
consisting of large-size organic anions and cations. Physical properties
of ILs, such as negligible vapour pressure, high temperature stability
(they do not evaporate or decompose at temperatures of interest for
automotive industry) and high ionic conductivity render them poten-
tially relevant to lubrication. In addition, their properties can be
modified by an applied voltage using confining surfaces which are
charged in order to build up an electric field across the nanoscale film.
The applied potential can affect the structure of IL layers and lead to
externally controllable lubricating properties [18,19]. There is also
significant flexibility in tuning the physical and chemical properties of
ILs which can affect lubrication such as viscosity, polarity and surface
reactivity by varying their atomic composition as well as the anion–
cation combination. An important observation is that ILs confined
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between surfaces feature alternating positive and negative ionic layers,
with an interlayer separation corresponding to the ion pair size [20,21].

Previous work employing Lennard-Jones fluids has provided in-
sights on the complete dynamic diagram of confined liquids including
wall slip, shear banding, solid friction, and plug flow. In terms of fluid
complexity these studies have mainly employed mono-atomic systems,
and only a few authors have considered mixtures of molecules [22,23].
In addition to inherently being a mixture of cation and anion
molecules, ILs involve long range Coulomb interactions inducing long
range order on far greater scales than the IL itself [5,9,24]. Detailed
investigation of ILs as lubricants at the nanoscale is therefore essential
for exploring the potential of implementing them in lubrication
systems.

In this study, we apply a coarse-grained model for the description of
nanoscopic friction mediated by a liquid lubricant because based on
recent studies [18,19,21] it was shown that if the molecules interact via
non-bonded potentials (Lennard-Jones and Coulombic), this can
capture all main physical attributes of the IL-lubricated nanotribolo-
gical system.

This paper is organised as follows: Section 2 introduces the MD
setup of the solids and lubricants used, while the motivation for the
choices made is provided. In Section 3, the structural properties of the
modelled IL under bulk and confined conditions are discussed. The
results stemming from the friction MD simulations are then presented
in Section 4 followed by some concluding remarks in Section 5.

2. Model

Under typical operation of internal combustion engines, the condi-
tions inside the combustion chamber vary significantly. Temperature
can range from 300 K to values higher than 2000 K, while pressure
ranges from atmospheric to values higher than 10 MPa [1]. The piston
reciprocates with a sinusoidal velocity variation with speeds varying
from zero to over 20 m/s. The time required for one revolution of the
engine is of the order of 10 ms, while the total distance travelled by the
piston over this period is of the order of 0.2 m. Such scales are typically
modelled using continuum mechanics simulations. However such
simulations cannot provide the physical insight which is necessary
for understanding the molecule–dependent processes that affect the
tribological phenomena. For this purpose, we have developed a coarse
grain MD configuration that can provide useful insights to molecular
processes, while remaining relevant to conditions observed in real–life
systems. More specifically, in this section we will describe a setup of
MD simulations developed with the aim of building a framework that
incorporates meso–scale features of the piston ring–cylinder liner
system and permits an efficient implementation of different solid
surfaces and lubricants.

2.1. Geometry

All MD simulations in this study were performed using the
LAMMPS software [25]. The geometry used in our friction simulations
is shown as a schematic in Fig. 1, along with the dimensions of our
system as well as the number of the MD particles used. The simulation
setup was loosely inspired by previously published research by others
[5,18,19,21]. By implementing such a geometry we have attempted to
achieve: (i) a realistic particle squeeze–out behaviour with the forma-
tion of two lateral lubricant regions (in a similar manner to the
simulations of Capozza et al. [21]) and (ii) a system that allows the
lubricant to be externally pressurised. For the description of the solid
surfaces we have combined rigid layers of particles moving as a single
entity on which the external force or motion is imposed, denoted by
“Top Action” and “Bottom Action” in Fig. 1(A), with thermalised layers
(denoted by “Top Thermo” and “Bottom Thermo”) in which particles
vibrate thermally at T=330 K. The Nose-Hoover NVT thermostat is
used to control the temperature. As in previous MD simulations

[9,18,19,21,24], under similar operating conditions, the details of the
adopted dissipation scheme are not expected to change the essence of
the system response on mechanical deformation. The relaxation time of
the Nose-Hoover NVT thermostat for the lubricant and the solids is
200 fs (cf. Ref. [9]). The plates were treated as rigid bodies, with the
lower one being fixed and the upper one subjected to a z-directed force
Fz (the load) as shown in Fig. 1(A) and driven along x direction at a
constant velocity. The solid plates were made up of densely packed
atomic layers at a FCC (111) lattice arrangement. Periodic boundary
conditions were applied in the x and y directions. The bottom plate can
therefore be considered to be infinite, while the top plate is surrounded
by vacuum pockets on its sides, so called lateral reservoirs, in which the
lubricant can freely expand. The lateral reservoirs were implemented as
a mechanistic way for allowing the lubricant to be dynamically
squeezed in or out as an external load or velocity is applied, or due
to local fluctuations during the simulation progression. At the same
time, the lubricant remains an infinite continuous body in x and y
directions, similar to the conditions observed in a real tribological
system from a meso–scopic point of view. This is especially important
if the system experiences partial or complete crystallisation under
compression, cf. Section 4 and Fig. 8.

While the total number of considered lubricant molecules is
constant, the finite upper plate width and the resulting free space
enables the particles to be squeezed-out even to the extent where due to
structural changes the lubricant ceases wetting the solid plates. The
number of lubricant molecules effectively confined inside the gap can
therefore dynamically change depending on the loading conditions.
This is important for exploring the possible states of a mechanical
system of particles that is being maintained in thermodynamic
equilibrium (thermal and chemical) with a lubricant reservoir (i.e.,
void spaces in tribological system). The nano-tribological system is
open in the sense that it can exchange energy and particles, realising an
effectively grand-canonical situation, cf. Fig. 1(b) and Ref. [26].

2.2. Solids and lubricant model

By using our simulation setup, we aim to study the lubrication
properties of several lubricants. As a first step, in the current study we
have implemented an ionic liquid as a lubricant. On the atomic level
ILs are usually made up of large-size irregular organic anions and
cations often including long alkyl chains. In the current work we have
applied a simple coarse-grained model for its description, consisting of
a charged Lennard-Jones system where anions and cations have
different radii as already exploited in previous studies in the literature
[21]. According to that, we have implemented a Lennard-Jones (LJ)
12-6 potential combined with a Coulombic electrostatic potential:
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Parameters σ{ϵ , }ij ij define the LJ potential between different types
of particles i j, = A, C, P which refer to anions, cations and solid plate
atoms, respectively. The numerical values for each pair are listed in
Table 1. The diameter of cations was set to σ = 5 ÅCC and anions to
σ = 10 ÅAA , in order to explore the effect of asymmetry of ion sizes
(similar to Ref. [21]). Atoms of the solid plates have a diameter of
σ = 3 ÅPP . The plates consist of nine densely packed layers in a FCC
(111) lattice.

The ions were modelled as coarse grain particles, the charge of
which was set to elementary: q e= −A and q e=+C , i.e.,
e = 1.6 × 10 C−19 . The ionic liquid is neutral, so the total number of
cations and anions is the same: N N N= = /2C A IL . In the present
simulations, the number of ions used was N = 2500IL . The dielectric
constant was set to ϵ = 2r to account for the dielectric screening, as in
Refs. [19] and [21]. The LJ potential has a short-range impact, since it
vanishes rapidly as the distance increases r∝ −6, while the Coulombic
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potential has a long-range impact, r∝1/ . To handle long–range inter-
actions, we have used a multi-level summation method (MSM) [27],
since it scales well with the number of ions and allows the use of mixed
periodic and non-periodic boundaries that are featured in our setup. To
sum up, IL ions and plate atoms interact with each other via LJ
potentials. In addition a Coulombic electrostatic potential is added in
ion-ion interactions.

In engineering applications, the lubricant molecules typically
interact with metal surfaces. Computationally efficient many–body
potentials such as embedded atom method (EAM) potential [28,29]
can be applied for the description of such solids. Such schemes have
been employed extensively for modelling a wide range of systems
including metals [29] and metal-metal oxide interfaces [30]. In
addition, in order to account for the induced charges on the metallic
conductor surface by the ions, the Drude-rod model developed by Iori
and Corni [31] which consists of the addition of an embedded dipole
into each metal atom, thus rendering it polarisable, has been applied in
previous studies [5]. Since in our initial stage of IL tribological
behaviour research, modelling the elasticity of metallic plates plays a
secondary role, we have selected a simplified model in which plate
atoms interact strongly with each other if they belong to the same plate,
i.e., ϵ = 120 kCal/molPP , as opposed, to a very weak interaction between
the different plates ϵ = 0.03 kCal/moltop/bottom . Furthermore, even
though the typical engineering systems are often metallic, our initial

coarse grain MD study of liquid dynamics according to the applied
conditions justified the implementation of a simpler solid system which
does not feature substrate polarisation. Finally, it is possible that the
actual surfaces might feature carbon coatings or depositions, in which
case the surface polarisation can be of secondary importance.

The starting configuration for our MD simulations was obtained via
a relaxation process. In order to obtain a stable and reproducible initial
configuration, the relaxation was performed through a stepwise
increase of absolute ion charge at steps of Δ q e| | = /10i , i=A, C. Each
time the charge of the ions was increased, a minimisation of the
system's energy through conjugated gradient method was performed.
In this way, the system characteristics were gradually converted from
pure LJ to a Coulomb interaction dominated system through a series of
stable configurations.

As we are aiming at understanding the lubricant behaviour at meso-
scopic conditions observed in a ring–liner system, we have attempted
to include in our MD model the potential IL pressurisation that can
occur due to the liquid flow resistance, as well as the variable pressure
arising from the reacting gas in the combustion chamber. Inserting gas
molecules directly in the simulation for this purpose would require a
reduction of the time step due to higher thermal velocities of the gas. In
turn, the computational cost would increase significantly making
simulations impossible to run in realistic computational time.
Therefore, in order to understand the effect of external pressure on
the IL behaviour, we have applied a repulsive force between the
topmost rigid solid layer and the IL particles in the form of a truncated
and shifted LJ potential. Two cases with cut-off distances at 15 Å and
4 Å above the outermost top plate layer were studied so that the IL
inside the confinement gap would remain outside the influence zone of
this mechanistic force. By appropriate selection of the LJ parameters
for this potential, the resulting external pressures applied on the
unconfined surface of the IL were 120 kPa and 250 kPa, respectively.

Fig. 1. (A) Schematic of the simulation setup shown as yz cross-section. There are two solid plates at the top and bottom of the system, consisting of two regions: at the outermost ones
the particles are moving as a single entity (Top/Bottom Action) and at the innermost ones the particles are at a controlled temperature (Top/Bottom Thermo). The thermalised layers are
in direct contact with the lubricant while the action layers are used to impose external velocity and/or force to the solid plates. (B)–(D) Side views of the typical simulation configuration
and key dimensions of the geometry. (B) Side (xz) view with respect to the shear direction. (C) Front (yz) view in the direction of the top plate motion. (D) Top (xy) view of the system.
The solid plates are made up of FCC (111) atomic layers. The ionic liquid is composed of an equal number of cations (blue spheres) and anions (red spheres). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
List of LJ parameters used in simulations.

Pair ij ϵij [kCal/mol] σij [Å]

CC 0.03 5
AA 0.03 10
CA 0.03 7.5
PC 0.3 4
PA 0.3 6.5
PP 120 3
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3. Probing ionic liquid's internal structure behaviour

3.1. Solidification and melting of bulk ionic liquid

In order to confirm that the IL used in our MD simulations remains
in a liquid state for the conditions of interest, its liquid–solid and
solid–liquid phase transitions were initially studied. A bulk IL config-
uration was prepared by placing the same number of cations and
anions N N= = 1000c a into a 3D periodic box, with pressure kept
constant at 100 kPa. Phase transitions were then achieved via the
application of linear ramping to the temperature, in a similar approach
to the calculations performed in Ref. [21].

Starting from an initial temperature T = 330 K1 where the IL is in
liquid state, the temperature was decreased linearly down to
T = 180 K2 . The absolute rate of temperature change was:
dT dt/ = 1.67 K ns−1. A liquid–solid phase transition was observed
during the IL cooling. After reaching T = 180 K2 , the temperature was
increased back to the initial value of 330 K. This heating process caused
with its turn a solid–liquid phase transition. In Fig. 2 the IL internal
energy change EΔ int and temperature T are shown as functions of time
t. The temperature profile follows the applied conditions and its
superimposition to internal energy change allows the observation of
the dynamic behaviour of the liquid. By plotting the averaged internal
energy change of the IL against its temperature in Fig. 3, the hysteresis
behaviour in the solidification–melting cycle is clearly observed, while
the phase transition locations can be clearly defined. It can be seen that
during the cooling process, the internal energy of IL linearly decreases
until the temperature reaches T = 190 Kls , at which point a sharp drop
is observed. This indicates a first order thermal phase transition
(liquid–solid). During the heating process, a similar sharp jump of
energy is observed at T = 305 Ksl which corresponds to an opposite
phase transition (solid–liquid). The obtained results are in a good
agreement with Ref. [21] and confirm that the IL is behaving as a liquid
for temperatures higher than 310 K, under atmospheric pressure
conditions. In the rest of our calculations a temperature value of
T=330 K was applied, in order to allow a liquid state that is combined
with local solidification under elevated contact pressure conditions.

3.2. Ionic liquid structure in thin film

The confinement has a profound influence on the structure of ILs in
thin films [20,26,32]. The confining surfaces can induce ordering of the

particles in their vicinity. The resulting structure and forces are a result
of the interplay between the limited volume and the particles which fill
the space. In Fig. 4, the force-distance characteristic of our system is

Fig. 2. (Left): Bulk internal energy change and temperature of the ionic liquid as a function of simulation time. (Right) Snapshots of ion arrangement at liquid (A), (C) and solid (B)
state.

Fig. 3. Bulk internal energy change of the ionic liquid as a function of temperature. The
internal energy was calculated by averaging on segments of TΔ = 0.5 K .

Fig. 4. Dependence of normal force Fz on plate-to-plate distance dz. Eight characteristic
points A B C D E F G H{ , , , , , , , } with corresponding interplate distances

d = {11, 14, 17, 20, 22, 24, 27, 32} Åz are marked on the F d( )z z curve. The horizontal

solid line denotes Fz=0 pN. The dashed line connects the points obtained from the
simulation and serves as a visual guide.
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presented. The solid horizontal line denotes the zero normal force level
(i.e., Fz=0). A non-monotonous behaviour of the normal force Fz acting
on the top plate can be observed as the plate-to-plate distance is
changing. This distance corresponds to the gap between the plates
where the IL is under confinement. The points d F( , )z z were obtained
through our simulations, while the dashed line serves as a visual guide.
It can be seen that the normal force strongly depends on the inter–
plate distance and that it also becomes negative in certain regions. This
can be translated as the IL striving to reduce the plate-to-plate distance
due to adhesion phenomena. These changes of the normal force are
correlated with the extraction and inclusion of IL layers into the gap, as
already observed experimentally, cf. Ref. [20]. During the performed
simulations, the cationic-anionic layers were squeezed out in pairs, in
order to keep the system locally neutral, as observed in experimental
studies [20,26,32–34].

Concerning the realisation of the simulations presented in Fig. 4,
the inter–plate gap was modified in the following manner: the top plate
was displaced towards the bottom one with a constant velocity vz=5 m/
s. For d < 17 Åz the velocity was reduced to vz=1 m/s. At each
calculation point shown in Fig. 4, the top plate was kept fixed for a
period of time t = 50 psstatic , during which period the average value of
the normal force was calculated. The process was repeated until a
distance d = 11 Åz min, was reached.

In order to understand the dynamic evolution of our system,
snapshots of the system from the MD simulations corresponding to
several characteristic points in the F d( )z z curve were selected and
studied in more detail. Fig. 5 shows the configuration and ion density
distribution along the z–direction for eight characteristic points
A B C D E F G H{ , , , , , , , }, corresponding to plate-to-plate distances

d = {11, 14, 17, 20, 22, 24, 27, 32} Åz respectively. The ions are delib-
erately depicted smaller than their LJ radii in order to allow a direct
observation of the layering. The position of the atomic centres of the
innermost atomic layers of the top and bottom plate are indicated in
Fig. 5 as zT and zB respectively. As the bottom plate was fixed, zB
remains constant while zT changes with the top plate displacement.

A general feature observed under all conditions was the fact that the
cations always formed the layer closest to the bottom plate. The reason
is the smaller size of the cations σ( = 5 Å)CC compared to the anion
species σ( = 10 Å)AA . Following this, a second layer was induced by the
first one and populated only by anions. The distance between the first
and the second layer from the bottom is in the range of 1 − 2.5 Å,
meaning that while the centres of mass of the particles are in different
layers, the layers themselves overlap as their distance is smaller than
the particle diameters. In the rest of this section, the changes in the
number of layers as the inter–plate gap is reduced will be presented
and correlated with the changes in the normal force Fz which is acting
on the top plate.

For the minimum simulated plate-to-plate distance dz=11 Å,
shown in Fig. 5(A) we can observe a pronounced peak in the anion
density distribution close to the bottom plate which is aligned with a
well-defined anionic layer inside the gap. The anion peak is marked
with the “1CU” annotation. In the case of cations, there are two peaks
attached below and above the anionic peak. This situation corresponds
to the formation of two incomplete cationic layers inside the gap. With
increasing plate-to-plate distance dz the normal force Fz is decreasing,
with a sign change of Fz at dz=12.7 Å. In the range d12.7 Å < < 15.7 Åz

the normal force remains negative. This means that the IL is pulling the
plates together, since the ions strive to reduce their interlayer distance,
as well as the distance between themselves and the plate atoms. Such
behaviour is typically observed in systems exhibiting layering transi-
tion, already seen in systems of both neutral molecules [2] and ILs
[20]. With further increase of dz the force becomes positive again, and
reaches a local maximum at the point (C) in Fig. 4. At this point we
observe a change in the number of anion layers confined in the gap
from one to two, as shown in Fig. 5(C).

In Fig. 5(C), the plate-to-plate distance is dz=17 Å and the two
bottom peaks of the anion/cation density distribution, denoted by
“1CU” and “2C”, are inside the gap. A third smaller anion/cation
density peak, denoted by “2U” in Fig. 5(C), is the result of the ordering
initiated at the bottom plate's surface and is actually outside the
confinement gap. The vertical distance between the peaks “2C” and
“2U” is approximately 3.5 Å and corresponds to the effect of the
compression of the IL from the top plate. Further increase of the plate-
to-plate distance results in a continuous decrease of the normal force
without a sign change as the positions of peaks “2C” and “2U” become
aligned, cf. Fig. 5(D) for a distance dz=20 Å. Further increase of the
inter–plate distance results once more in a reversal of the sign of the
normal force (i.e., F < 0z for 21 Å d< < 23.5 Åz ). At the mid point
between the plates a broad maximum of cation density distribution can
then be observed, see Fig. 5(E). The cations, as smaller particles, have a
tendency to fill the space between the more stable anionic layers. When
the anions also start to form a third layer at the midpoint between the
two plates the corresponding cationic peak of density becomes sharper
and the normal force becomes positive again, see Fig. 5(F). In this case
the cations can form a layer more easily while the anions remain
scattered. This is the opposite behaviour to the one typically observed,
where the larger anions tend to order more strongly due to the
excluded volume effect [35]. From Fig. 5(F) to Fig. 5(G) an interesting
transition can be observed, during which the single well resolved cation
peak disappears and a less pronounced cation–anion pair peak takes its
place. Finally in Fig. 5(H) at dz=32 Å, we observe the clear formation of
three anion and four cation peaks.

Considering engineering applications, the steep rise of the normal
force at small plate-to-plate distances, i.e., d < 14 Åz can be beneficial
for protecting against solid-solid contact and consequent wear. On the
other hand, there is also a strongly decreasing trend of maximal normal
force which can be sustained by the system as the number of ion layers
confined between the plates increases, i.e., for two cation layers the
maximal force F = 3 pNz max, , while for three it is F = 0.25 pNz max, . In our
model, the Lennard-Jones interaction between the plates and the ions
is ten times stronger than between the ions themselves. The ion layers
closest to the plates are therefore more stable than the layers in the
midpoint of the gap (see Fig. 5(F)). As a result, the three layer system
becomes less dense, and can build up a lower normal force compared to
the two layer system (in Fig. 5(C)).

4. Friction simulations

Following the detailed study of the static system, we turn our focus
to dynamic conditions, where there is a relative motion between the
plates in x direction and as a result frictional forces can be observed.
The dynamics of the plates impact the IL and result in an overall
longitudinal force acting on each solid body. In order to evaluate the
trends of specific friction we have performed simulations at different
plate velocities and at two interplate distances. The simulations have
been performed for a broad range of top plate velocities v = 0.1x , 0.2,
0.5, 1, 2, 5, and 10 m/s, with the bottom plate kept fixed. We have
compared cases with different external pressures applied on the IL
p = 0ext , 120 and 250 kPa and two distinct plate distances dz=17 and
27 Å. The simulations were performed as follows: Points (C) and (G) in
Fig. 5 were chosen as the starting configurations. The simulations ran
until the top plate had covered a distance of dx=50 Å in x direction.
Therefore cases with lower velocities required increased total time. The
forces acting on the top plate were monitored, as shown in Fig. 6 for a
randomly chosen case. It was observed that the normal force remained
roughly the same after the onset of the simulation. Steady–state
conditions were assumed following a displacement of dx=10 Å, and
then average values were calculated using the statistics until the
completion of the simulation.

The results for the specific friction are shown as a function of sliding
velocity in Fig. 7. The specific friction F F〈 〉/〈 〉x z is defined as the ratio of
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the time averaged frictional and normal force Fx and Fz respectively
and is different to the Coulomb friction coefficient μ F F= ∂ /∂x z. In our
simulated cases we have observed either a weak or a logarithmic
dependence of specific friction on velocity. The numerical values were
fitted to a linear function of the form F F a v v b〈 〉/〈 〉 = log( / ) +x z x ref , where
v = 1 m/sref . The coefficients a b, obtained from the simulation data are
listed in Table 2. A reasonable fit to the linear regression curve can be
observed for most cases. In the case of p = 120 kPaext , the system is
potentially in a transition between the two significantly different cases
of zero and high pressure, which can explain the poorer quality of the
fit to the linear curve. The logarithmic dependence indicates typical
elasto-hydrodynamic lubrication conditions [36]. On the other hand,
the weak dependence of specific friction on velocity has also been
observed in previous studies of IL lubrication, cf. Refs. [5,24].

4.1. Impact of ionic liquid confinement gap

The influence of plate-to-plate distance on specific friction was
initially analysed, while the applied external pressure on the IL pext was
kept equal to zero. In contrast to previous studies of IL lubrication

Fig. 5. Snapshots of system configurations at points A B C D E F G H{ , , , , , , , } from Fig. 4 and corresponding density distribution of anions/cations along the z-axis. The position of the

atomic centres of the innermost layer of the top and bottom plate is denoted by zT and zB, respectively. The bottom plate is fixed and z = 21 ÅB . The ions are deliberately depicted smaller

than their LJ radii in order to allow a direct observation of the layering. In Figures (A) and (C) the annotations indicate the anion layer vertical order from the bottom (1, 2, 3) and the
lateral placement: (C)onfined and (U)nconfined.

Fig. 6. Temporal evolution of total normal and axial forces acting on sliding surface for
plate-to-plate distance dz=27 Å and top plate axial velocity vx=10 m/s. Dashed lines
show the raw numerical data which are smoothed using the solid lines for a clearer
identification of temporal trends.
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[5,24], our system showed a strong crystalline order induced by
confinement. The normal force was roughly ten times higher in the
case of the smaller plate-to-plate distance, i.e., for dz=17 Å compared
to dz=27 Å. On the other hand, the lateral force Fx remained at similar
levels, therefore leading to a sharp decrease of the specific friction
values. At the same time, the weaker confinement and the smaller
normal force for dz=27 Å resulted in a steeper slope of the curve
F F〈 〉/〈 〉x z .

In order to understand the potential correlation of the IL structure
with the arising frictional forces, the confinement zone was observed in
detail using Fig. 8, where a side view (left side) and top view (right side)
of the system is shown. In the top view, the system is shown with the
solid and IL particles above the upper plate plane removed. In this plot
the ions are depicted with their corresponding LJ radii in order to
achieve a realistic visualisation of the structure. The anions form a
locally cubic structure, cf. right panel Fig. 8(A), while the crystal
direction of the cubic structure is indicated with dashed lines. If we
look into the structure of the IL in the confinement zone, Fig. 8(A) and
(B), we can observe a single, well resolved crystal structure in the case
of dz=17 Å, while in the case of dz=27 Å some defects are present. It
can also be observed that outside the gap, the IL remains in a
disordered, liquid state.

Further clarification can be attained by plotting the ion density
distribution profiles inside and outside the gap in Figs. 9(A) and (B). It
can be observed that at the plate-to-plate distance dz=17 Å, both cation
and anion peaks of density distribution function inside the gap are
narrow and sharp. In addition, both the anion and cation peaks in each
paired layer are located at approximately the same z location. These
findings confirm that under these conditions the IL is in a crystalline,
“solid-like” state with minimum disorder. In the case of a wider gap
dz=27 Å the anion peaks next to the walls remain narrow, with a third
broader one appearing in the centre. The cation arrangement is more
dispersed, with double peaks appearing above and below each anion

peak. These statistics indicate a more layered, less strictly ordered
state. The difference in the extent of confinement induced crystal-
lisation is a probable reason for the observed steep slope of specific
friction since the observed defects can interact more strongly with the
upper plate at higher velocities and contribute to the increase of
friction force. Our observations show some similarity to the behaviour
previously seen in Lennard-Jones systems where systems at pressures
above a certain critical value and at sufficiently low velocities exhibited
such behaviour. In these studies, cf. Ref. [8], the shape of fluid
molecule was identified as the main parameter that controls crystal-
lisation through the promotion or prevention of internal ordering.

4.2. Impact of ionic liquid pressurisation

In addition to the impact of different confinement gaps, the effect of
IL pressurisation was studied, while the inter–plate distance was kept
constant. More specifically, a gap of dz=27 Å was used, while different
pressures p = 0ext , 120 and 250 kPa were applied, using the approach
described in Section 2.2.

Through observation of Fig. 9(B)–(D), it can be seen that the
application of external pressure prevents the wetting of the side walls of
the top plate and leads to a distinct crystallisation of the unconfined IL.
On the other hand, the ion density profiles inside the confinement zone
are moderately influenced.

The friction results for increasing values of applied pressure are
consistent with the observations in the previous subsection, with
specific friction decreasing as the order of the IL increases. It can be
seen that for high external pressure, i.e., p = 250 kPaext , the slope of the
specific friction curve almost vanishes.

Fig. 8(C) shows that for p = 120 kPaext the local cubic structure

Fig. 7. Dependence of specific friction F F〈 〉/〈 〉x z on velocity at external pressures p = 0ext ,

120 and 250 kPa and inter-plate distances dz=17 and 27 Å. The error bars represent the
standard deviation of the average values obtained from the simulation data. The curves
showing the specific friction trends were obtained by linear regression and the
corresponding parameters are listed in Table 2.

Table 2
Results for the coefficients a b, in the relation F F a v v b〈 〉/〈 〉 = log( / ) +x z x ref , where
v = 1 m/sref . The results were obtained using the least-squares method.

Case a b R2

(A) dz=17 Å, p = 0 kPaext −0.0006(2) 0.0039(2) 0.63

(B) dz=27 Å, p = 0 kPaext 0.016(5) 0.036(3) 0.72

(C) dz=27 Å, p = 120 kPaext 0.007(2) 0.017(2) 0.26

(D) dz=27 Å, p = 250 kPaext 0.002(1) 0.003(1) 0.62
Fig. 8. Side (yz) and top (xy) views of snapshots from four separate friction simulations.
The top views correspond to the planes marked with dashed lines in the side views and do
not include the solid and IL particles above the upper plate plane. The ions are depicted
according to their LJ radii in order to visualise the crystalline structures. The dashed
lines in the top views denote the crystal direction of self-formed cubic structures.
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induced by confinement between the plates served as a nucleus for
further crystallisation between the plates and a well ordered single
crystallite was formed in this region. Outside the confinement zone
another crystallite was formed with a different orientation. Further
increase of external pressure to p = 250 kPaext forced the IL in the void
space to crystallise, while at the same time the IL in the confinement
zone was converted to a number of smaller crystallites, cf. Fig. 8(D) and
9(D).

The reported results show a dual nature of IL lubrication, with EHL
characteristics at low to medium pressures and confinement gaps that
allow more than two distinct anion/cation pair layers to form. At higher
pressures and smaller distances which can be translated as mixed
lubrication conditions the IL is transformed to a solid-like body, while
specific friction decreases to low values which are independent of the
sliding velocity. This behaviour can be beneficial in engineering
applications such as the piston ring–cylinder liner system, where it
can be assumed that the IL crystallisation can potentially aid in
preventing the solid contact between the surfaces, along with the
associated high friction and wear.

5. Conclusions

In the current study we have implemented a MD simulation setup
in order to study the behaviour of model ionic liquids confined between
plates which are in close proximity while being in relative motion. Our
MD setup was developed in a way that allows the meso–scopic study of
the lubrication processes in automotive applications such as the piston
ring – cylinder liner interaction inside the internal combustion engine.
More specifically, our geometry was selected in order to allow a variable
lubricant confinement gap combined with a varying lubricant quantity
in the gap, while avoiding the squeeze-out of the lubricant into vacuum.
Odd-number layering and near-wall solidification was observed be-
tween the solid plates, similar to published experimental findings. Our
friction simulations have uncovered an interesting behaviour of ILs,
with a logarithmic dependence of specific friction on velocity hinting at
elasto-hydrodynamic lubrication at low loads. This behaviour comple-
tely changed under more critical conditions of high load, with specific
friction decreasing to lower values and becoming independent of

sliding velocity. This behaviour was strongly correlated with the
internal structure of the IL and can provide guidance for implementing
lubrication concepts that can lead to friction reduction in internal
combustion engines.
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Кратак преглед научне активности кандидата

Миљан  Дашић  је  запослен  у  Лабораторији  за  примену  рачунара  у  науци,  која  припада
Националном  центру  изузетних  вредности  за  изучавање  комплексних  система  Института  за
физику у Београду и ангажован је на пројекту основних истраживања Министарства просвете,
науке  и  технолошког  развоја  Републике  Србије  ОН171017,  под  називом  “Моделирање  и
нумеричке симулације  сложених вишечестичних физичких  система”.  На поменутом пројекту
ради  на  темама  у  вези  са  истраживањем  структуре  и  динамичког  понашања  просторно
ограничених диполних и јонских система, под менторством др Игора Станковића.

У  оквиру  свог  досадашњег  рада,  Миљан  Дашић  је  радио  на  истраживању  диполних
структура  туба  и  хеликса  формираних  од  чврстих  диполних  сфера  са  сталним  диполним
моментом.  Кандидат  је  имплементирао  директно  сумирање  дипол-дипол  интеракције  за
рачунање  кохезионе  енергије  коначних  структура,  као  и  Лекнеров  метод  за  сумирање
дипол-дипол интеракције  за  1D бесконачне  периодичне  структуре.  На  основу геометријских
параметара  направио  је  преглед  различитих  класа  тубуларних  и  хеликоидних  диполних
структура и потом је извео изразе за површинску густину паковања за случај свих класа туба и
за општи случај вишеструко намотаних густо пакованих хеликса. Спровео је статичку анализу и
добио да кохезиона енергија немонотоно зависи од густине паковања при компресији хеликса и
порасту њихове густине  паковања.  Ради  детаљног описа  испитиваних  структура,  уведени су
адекватни  параметри  уређења  који  описују  различите  режиме  уређења  ових  структура.
Конкретно,  кандидат  је  радио  на  развоју  симулација  за  генерисање  диполних  структура  и
прорачун њихове кохезионе енергије, као и за прорачун параметара попут површинске густине
паковања,  оријентације  дипола  и  уведених  параметара  уређења.  Такође,  радио  је  на
визуелизацији  репрезентативних  структура.  Резултат  тог  ангажмана  је  рад  “Structure  and
cohesive energy of dipolar helices” објављен јануара 2016. године у врхунском међународном
часопису Soft Matter. 

Друга  тема  је  моделовање  јонских  течности  методом  молекуларне  динамике  са  циљем
њихове примене као лубриканта у аутомобилској индустрији. Миљан Дашић је у периоду од 5.
октобра  2015.  до  8.  априла  2016.  године  био  ангажован  на  пракси  у  Одељењу  за  напредне
технологије  Техничког  Центра  компаније  “Toyota  Motor  Europe”,  у  Завентему  (Белгија).  По
повратку на  Институт за  физику, наставио је  рад  на  истом пројекту. Циљ пројекта  је  развој
модела  који  ће  укључити  све  релевантне  физичке  процесе  везане  за  подмазивање  контакта
прстена клипа и зидова цилиндра у аутомобилском мотору. Кандидатов допринос односи се на
развој  модела  и  његову  софтверску  имплементацију,  као  и  на  визуелизацију  резултата
симулација.  Резултат  тог  ангажмана  је  учешће  на  међународној  конференцији  Лидс-Лион  у
септембру  2016.  године  и  рад  “Molecular  dynamics  investigation  of  a  model  ionic  liquid
lubricant  for  automotive  applications”  објављен  децембра  2016.  године  у  врхунском
међународном  часопису  Tribology  International.  Ово  је  пример  успешно  остварене  сарадње
домаће институције са врхунском светском компанијом као што је Тојота. Овим ангажманом је
дат  пример  примене  теоријских  знања  на  реалне  проблеме,  од  интереса  у  аутомобилској
индустрији. 

Тренутно  ради  на  анализи  диполних  структура  формираних  у  равни,  у  присуству
спољашњег  поља.  Наставио  је  рад  на  симулацијама  молекуларне  динамике  са  унапређеним
моделом јонске течности.
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