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HayuynoMm Behy UncruryTa 3a ¢pusuky y beorpany

Ipensor 3a INoguimy HArpaay 3a HAYYHU Paj

Hucruryra 3a pusuxky y beorpany

IlomrroBanm,

Benuko Mu je 3am0BoJbCcTBO fa mpeanoxuMm Ap Mapujy Mutposuh /laHky/n0B, Hay9HOT
capajHuKa, 3a ['ogummy Harpaxy 3a HaydHu paja MHcTuTyTa 3a dusuky y beorpany, 3a men
JOTIPUHOC pa3yMeBamy Pa3IMYUTHX KOJEKTHBHUX (PEHOMEHA y COIHjaTHUM CHCTEMHMA, Kao
M J1aJbe€M Pa3BOjy T€OpHje KOMIUIEKCHUX MpPEeXKa.

Ilomro ce I'ogmmima Harpama noxaesbyje 3a pesynTaTe U3 INPETXOJHE [BE TOAWHE, a
kojernanna Mutposuh JlankynoB je ox 2. memem6pa 2015. mo 1. meuembpa 2016. rogmne
0msa Ha TOPOJMJBCKOM OJICYCTBY, IpEUIaXXeM Jia Ce NMpH OAIy4YHBamy O JOAEIH Harpaje,
yMmecTo nepuona o 2015. ronune, pazmarpa nepuos nodes ox 2014. ronune. ¥V ToM nepuony
KaHJIUJaTKAka 00jaBuia cefpaM pagoBa y MeyHapoIHUM daconmucuMa kaTteropuje M2la u
M21. V nutamy cy nmyOinKandje y W3y3eTHHM 4YacolHMcHuMa Kao mTo cy Nature, Nature
Communications, Scientific Reports u PLOS One:

1. Pan Growing time lags threatens Nobel je o0jaBmeH y wacomucy Nature 2014. rogune.
[IpuByKkao je BenWKy Maxmby CBETCKHX Menuja, kako oHMx mocBehenmx Haymum (Phys.org,
Scientific America), Tako n oHuX koju ce 6aBe ommtuMm Temama (USA Today, SPIEGEL
ONLINE, Business Standard). O maxmsu Kojy je IpUBYKao paj TOBOpH M WmeroB Altmetric
MHJIEKC KOjU Ta CBpcTaBa y 5% ulaHaka KOju Cy IPHUBYKIH HajBehy maxmy uKaja.

2. Pan Inferring human mobility using communication patterns je o6jaBen 2014. ronune y
yaconucy Scientific Reports. Y 0BOM paxy Cy paHHje Pa3BHjeHH METOAM NPUMEHCHH Ha
aHAIN3Yy ¥ MOJETHUpPAEe jeAHE peaJHe TEeXHO-COIMjaliHe Mpexe (Mpexe MOOmIHe
tenedonuje). OBaj Momen MOXKe IONPUHETH pas3Bojy oOmacTm Kao MmTO Cy ypOaHo
IUTaHUpamke, TUIAHHpamke jaBHOT INpeBo3a M enuaemuonoruja. O 3Hadajy pajga TOBOpH U
gnmeHnna na Beh nva 15 murata (m3Bop Web of Science) kxoje je nobuo onx oOjaBibuBama
Kpajem aBrycrta 2014. rogune.

3. Pan Quantifying randomness in real networks je o0jaBiper 2015. roguHe y dacommcy
Nature Communications © IpeJCTaBJba 3Ha4ajaH JOMPHHOC y 00JACTH T€OpHje KOMIUIEKCHUX
Mpeka. Y OBOM pajy je Mo MpBH IyT ojpeleH MUHIMaIaH CKyHI TOMOJIOIIKKX OCOOMHA KOje
onpelyjy CTpyKTypy peadHe KOMIUIEKCHE MpexXe H KBAaHTU(UKOBAHO KOJHKO C€ OHAa
pa3nmKyje o ciaydajHMX Mpexa. [lomTo ce momohy KOMIUIEKCHHX Mpeka JdaHac OIHCY)Y
Pa3IMYUTH CUCTEMH, (PU3MUKH, OMOIOIIKH, TEXHOIOIIKH W COIMjalTHH, TEOPHja KOMIUIEKCHUX
Mpe’Ka I0CTaje CBe BaXXKHMja 32 UCTPAXKMBama y OBUM obOisacTuMa. 300T TOra je oBaj pajx of
BEIMKOT 3Hadaja M 32 OBe 00JIacTH, Kao U 3a MPUMEHEHE 00JIaCTH KOj€ ce Ha HhUX HACIAmka)y.
O 3Havajy pajga roBopu u uumeHHna aa seh mma 6 murara (m3Bop Web of Science) koje je
000 3a penaTUBHO KpaTko Bpeme (paj je 06jaBibeH Kpajem okToOpa 2015. rogune).
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4. Y pany The dynamics of meaningful social interactions and the emergence of collective
knowledge o6jaBibenom 2015. romune y wacommcy Scientific Reports cy TpBH MyT
YHOTpeOJbEHN METOIU CTAaTUCTHYKE (PU3UKE M TEOpHje KOMIUIEKCHHX MpPEka 3a IMPOydaBame
(eHOMEHa KOJEKTUBHOT HACTaHKa 3Hama Yy CONMjalHUM 3ajelHuIama. AHaIn3oMm
KOMIUIEKCHE OWIapTHTHE Mpeke KOjOM Ce€ TPEeACTaBibajy HHTepKaiuje usMmel)y nemosa
KOMIUIEKCHE Mpe’ke NCTPaXKMBaHA j€ ’bHX0Ba KJIACTepU3allfja, 0K CIIEKTap CHare BpeMEHCKe
ceprje aKTUBHOCTM KOPHCHHKA IIOKa3yje /Ja Cy OHE KapaKTepucCaHe JIaBUHaMa, CIMYHUM
Bpakxay3eHOBOM IIyMy WU JIABUHAMA Y HEKUM (PU3HYKHUM CHCTEMHMa Kao IITO CY MOJEIH
nemyanux jgaBuHa. OBaj paj je 3HaudajaH 3a (U3HKY KOMIUIEKCHHX CHCTEMa, a HETOBHU
pesyntatu he OWTH 3Ha4ajHM 3a MPUMEHE Yy COLMOJIOTHjHM W IUCHMIUIMHAMa Koje ce 0aBe
JUHAMUKOM HacTaHKa 3Haka M JUHAMHKOM y4ema y rpynama. Pax uma 5 nurara (u3Bop Web
of Science) xoje je mobuo ox o6jaBEUBama y jymy 2015. rogune.

5. Pax Topology of innovation spaces in the knowledge networks emerging through questions-
and-answers je oOjaBmen 2016. romune y wacomucy PLOS One. IlperxomHo pa3BujeHe
MeToJie anrebapcke Tomosoruje rpadoBa Cy OBIEe NMPUMEHEHE 3a HCHUTHBAKE CTPYKTypa
BUILIET peia y KOMOMHATOPHOM IPOCTOPY KOJEKTUBHOT 3Hama. MeTomoorHja pUMemheHa Y
OBOM pajly c€ MOXE HCKOPHCTUTH 3a aHallM3y IMIMpe Kiace cCHcTeMa KOJEKTUBHOT HACTaHKa
HOBOT 3Hamba.

6. Pan A theoretical model for the associative nature of conference participation je 00jaBIbeH
2016. romune y wacomucy PLOS One. Y 0oBOM pany je MO HpBH IIyT KBaHTH(HKOBaHA
JUHAMMKa MMOHOBJbEHUX ydemrha Ha HAyYHUM KOH(EpeHIMjamMa M JaT TEOPHjCKH MOJET 3a
BUXOBO ONUCHBame. IeHTH(hHKOBaHN COLMjaTHN MEXaHN3MH KOjH MMajy KJbYYHH 3Ha4aj 3a
MOHOBJbEHA Yydemha y aKkTHBHOCTHMA jeJHE HAy4HE 3aje[JHHIIEC IIpPeJICTaBhajy OCHOBHE
¢akTope xoju oxpel)yjy yHUBEp3aIHy TMHAMHKY COIMjaTHUX TPyIIa.

7. Y pany Associative nature of event participation dynamics: A network theory approach,
o0jaBsseHoMm 2017. romune y waconmucy PLOS One, mpuMemeHa je TeopHja KOMIUIEKCHHX
Mpeka 3a HCTPAKUBAKE EBOJYLHjE€ CONMjaTHUX Mpeka y OKBHpPY Meetup OKpyXema.
Pesyaratu oBor paga cy mokasanu Ja je YHHBEp3aJHa AWHAMHKA MTOHOBJbEHUX ydemrha y
AKTUBHOCTHMA T'pyIle HajBUIIE 3aBUCH O] MoBehama BE3UBHOT colyjanHor kanutaita. OBaj u
NPEeTXOJHW pajg Ha 3HA4YajaH HAYMH JONpPUHOCE 00JacTH ympaBibamka (OPMATHHM U
HeQOpMaHUM JPYNITBEHUM TpylliaMa ¥ MOTY Jia IOMOTHE Yy IUIaHWpamy U yHanpehuBamy
BUXOBOT Paja.

Ha ocHoBy ommcanmx pesynrata kojernHuie MwurtpoBuh JlaHKYJOB jacHO je Aa HEH
JoCaJallllbi paj MpeACcTaBba 3HadajaH JOMPUHOC Pa3Bojy (HU3MKE KOMIUIEKCHHX CHUCTEMa,
Kao M HEeKUM JIpYTMM HAayYHUM 00JaCTHMa, IITO je J0Ka3 MHTEPAMCLUIUIAHAPHOT KapakTepa
HEHOT HCTPAKUBAA.

Konernnuna Mutposuh [laHKyJoB MMa MIMPOKY Hay4yHY capaamy ca rpynama n3 CioBeHuje,
Wrammje, Unnuje, N3paena m @Puncke. MeHTOp je Ha JOKTOPCKHM CTyAHMjaMa jEIHO]
CTYICHTKUILN 4Hja 0J0paHa MOKTOPCKE Te3e ce OYeKyje A0 Kpaja oBe roamue. Komermauia
MutpoBuh J[lankynoB je Owma ujgaH TporpaMcKor KomHuTeTra Hajsehe W Haj3HadajHH]jE
KoH(pepeHIje y obmactu ¢usuke couujanHux cucrema (International Conference on
Computational Social Science) ox modYeTKa HEHOT OIp)KaBama, a TPEHYTHO je ¥
mporpaMckuM komuTeTHMa Beher Opoja MelyHapomHmx KoH¢epeHnuja U3 00IacTH
KOMILJICKCHUX cucTteMa. [lopes HaydHOT pajlia, KOJIETHHUIA je aHra)koBaHa Uy VIHOBalimoHOM
neHTpy MuctutyTa 3a Qusmuky y beorpany kao 3aMeHHK pyKOBOIHOIIA.
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Konernannma Mutposuh [laHkynoB je y cBOjoj Hay4HOj Kapujepu obOjaBmia 18 pamoBa on
Kojux je BehmHa y MmeljyHaponHuMm uacommcuma kateropuje M2la m M21, xao u jegHo
MIOTJIaBJbE Y KEbHU3H, a JI0 Ca/ia je oJ(piKaja YeTHUpPHU MpeAaBama 1o M03UBY Ha MelhyHapoIHUM
Hay4yHHM cKymnoBuma. IIpema 6a3u Web of Science pamosu ap Mapuje Mutposuh Jlankynos
uTtupanu cy 180 myra (6e3 ayronurara), a ;meH h-axrop je 9.

Hmajyhu cBe HaBeaeHO y BHAY, €a 33J0BObCTBOM MNpenJakem aAp Mapujy Mutposuh
JankyJios 3a 'ognmmy Harpaay 3a HayuyHu pajg UHcruryTa 3a pusuky y beorpany.

V¥ Beorpany, 15. 03. 2017. rogune

np Anexcarnap benuh
Hay4YHU CaBETHUK
WnuctutyT 32 pusuky y beorpany



MAPUJA MUTPOBHU'R JAHKYJIOB

Adunujanuja: Jlaboparopuja 3a mpuMeHy padyHapa y HayIy,

LlenTap 3a n3ydaBame KOMIJIEKCHUX CHCTEMa

WnctutyT 32 pusuky y beorpany;

WuoBannonu nentap, Mactutyt 3a pusuky y beorpany
Jdatym u mecto pohema: 7. maj 1981. ronune, hiynpuja, Cpouja
Bpauno crame: yaata, jenna hepka

HPOPNJI

Enepruuna, amOunno3zHa u BpemHa 0co0a KOjy KapaKTepHINy OIIHYHE
opraHM3aliMoHe W KOMYyHHKaluoHe BemTuHe. [locenyje Goraro 3Hame n
HCKYyCTBO y oOmactu Teopujcke (u3nKe W y mporpaMupamy. [aBHa
o0nacT HEHOI WHTEpecoBama W HCTPaKHMBama je CTAaTUCTHYKA (U3MKa
KOMIUIEKCHUX CHCTeMa M TeopHja KOMIUIEKCHHX Mpexka, a TOoceOHO
(M3MKa KOJIEKTUBHUX COLMjaIHUX (DeHOMEHa.

AyTtopka je 18 myOumkanuja y Bogehum gaconucuma, jeTHOT MoriIaBiba y Kibu3n 1 30 mpesaBarma 10 MO3UBY U
caomnmTema Ha Mel)yHapoiHUM HaydHUM cKynoBuMa. bpoj murara Ha ocHOBY 6a3e Web of Science je 217 (180
0e3 ayronmrara), h-uanekc 9, nok je 6poj numrara Ha ocHOBY Google scholar 455, h-unnmexc 12. Ilyna mmcra
myOJuKanuja gaTa je y mpuiory.

OBPA30OBAIBE
2000-2005 ®u3nuku pakyarer, Yauep3uteT y beorpamy
qurutomupanu pusmaap (2005).
2005-2012 ®Duzuuxku pakyarer, YHusep3urer y beorpany
IMoctaumiomcke cTyanje Ha oacexy Dr3nKa KOHASCH30BAHOT CTamka MaTepHje.
Junmome: maructpartypa (2010)
Marucrapcka te3a: Hanascerse omedcurbeHux noOCmpyKmypa u HeKum
PEANHUM U KOMNJYIMEPCKU 2eHePUCAHUM KOMNIEKCHUX
Mpedxcama
aoktopar (2012)
Joxropcka teza: Cmpykmypa u OUHAMUKA MEXHOCOYUJATHUX MPeXHCd
PAJTHO UCKYCTBO
2005-2009 HCTPaKUBA4 NpunpaBHuK y JlabopaTopuju 3a mpuMeHy padyHapa y Haynw, MHCTHTYT
3a ¢usuky y beorpamy
2009-2012 HCeTpaskuBay npunpaBHuk Ha Opjceky 3a Teopujcky ¢usuky, HuCTHTYT JOxked

lredan, Jbydipana, CrioBeHuja



2012-2014

2014-n0 cana

2014-n0 cana

HHPOJEKTH

2006-2009

2006-2009

2009-2006

2014-no cana

2014-no cana

2015-10 cana

2017-n0 cana

NMOCTAOKTOPCKO YycaBpmaBamwe Ha Ojcexy 3a OHOMEIUIIMHCKH WHXCHEPUHT WU
paduyHapcke Hayke, Aanto YHusep3ureT, Ecrio, ®uHcka

HAy4YHU capagHuk y Jlabopatopuju 3a mpuMeHy padyHapa y Haynu, HammonamHu
[IEHTap M3Y3€THUX BPEIHOCTH 3a HM3y4aBame KOMIUIEKCHHX cHucTeMa, VHCTHTYT 3a
¢uzuky y beorpany

3aMeHHUK pykoBoauouna Muosanuonor nenrpa MucturyTa 3a pusuky y beorpany

CX-CMCS: EU Centre of Excellence for Computer Modeling of Complex
Systems, EY ®I16 mpojekr

ON141035: Mopaeanpame M HYMEpPHYKe CHMYJALHMje KOMILIEKCHHX (PH3HMYKUX
cucrema, MuancrapcTBo Hayke Peny6nuke CpOuje, mpojeKTH OCHOBHHUX UCTPaKHBAmbHa

CYBEREMOTIONS-Collective Emotions in Cyberspace, EY ®I17 npojexar

OH171017: Moaenupame 1 HyMepHU4iKe CUMYJalKje MHOTOYeCTHYHHUX cCHCTeMa
MuHHICTapCTBO MPOCBETE, HAYKE M TEXHOJIOMIKOT pa3Boja Pemybmmke CpbOuje, mpojexTu
OCHOBHHUX HCTpPaXHBamba

COST Action TUI1305: Social Networks and Travel Behavior, unan MeHalIMEHT
KOMHTETA

VI-SEEM, EY X2020 npojekar
Upscaling Teslagram® technology based on variable and complex biological

structures for security printing, Ilporpam capagme Hayke U npuBpene, Pona 3a
WHOBAIMOHY AenatHocT CpOuje

HACTABHO 1 NIEJAT'OIIKO UCKYCTBO

2013-10 cana

2015

2008

2007

MEHTOp Ha JOKTOpcKuM cryaujama (Jemena Cmuspanmh, EnextporexHuukm (akynrer,
Yuusepsurer y beorpany)

MeHTOp Ha cryaeHTckoj npakcu (Ilerap Taamh, ®usmukn Qaxynrer, YHUBEp3HUTET y
Beorpany)

acuctenT Ha Advanced School in High Performance and GRID Computing, ICTP,
Trieste, Italy

acucteHT Ha Advanced School in High Performance Computing Tools for e-Science-
joint DEMOCRITOS/INFM-eLab/SISSA-ICTP activity, ICTP, Trieste, Italy

OJABOPU, YPEJHUIITBO, IPOI'PAMCKHN KOMUTETH

2009-10 cana

penoBHO pedepenme pagoBe y uyacommcuma PLoS One, Journal of Statistical
Mechanics (JSTAT), European Physical Journal B, Frontiers, Scientific Reports,
Applied Network Science, Computational Social Networks.



2014

2015-10 cana

2015

2015

2016

2016

2016

2017

2017

2017

2017-n0 cana

2017

OPI'AHM3ALIUJA

2006

2011

2013

YiaH NPOrpamMcKor komurera kondepenuuje 6th International Conference on
Information Technologies and Information Society ITIS 2014, 5.-7. HOBemOap,
IImajepuike Tormne, CnoBenuja

YJIaH YpeIHHMIITBA 32 MHTEPAUCUHILIMHAPHY (pu3uKy yaconuc Frontiers

4JaH NporpamMcKor Komutera koHpepenuuje 1% Annual International Conference on
Computational Social Science 2015, 8.-11. jyu 2016, Xencunku, ®uHCKa

YJIaH NPOrpaMcKoOr KoMuTeTa KoHpepenuuje 7th International Conference on
Information Technologies and Information Society ITIS2015, 4.-6. HoBembap 2015,
Hoso Mecto, Cnoenuja

wlaH mporpamMcKor Komurera xoubepenuuje 2" Annual International Conference on
Computational Social Science 2016, 23.-26. jyu 2016, EBancron, Ununonc, CA /]

wjIaH mporpamckor Kommrera koudpepenumje 3¢ Conference on Sustainable Urban
Mobility — 3 CSUM 2016, 26.-27. maj, Bonoc, I'puka

wJ1aH MPOrpamMcKor Komurera koudepenuuje 5” International Conference on Complex
Networks and their Applications — COMPLEX NETWORKS 2016, 30. noBembap — 2.
nerem6ap 2016, Munano, Uranuja

WwiaH mporpamckor komurtera xkoudpepenuuje Conference on Complex Systems 2017,
17.-22. cenrembap 2017, Kaukyn, Mekcuko

wJIaH MPOrpaMcKor Komutera konbepenuuje 6" International Conference on
Complex Networks and their Applications — COMPLEX NETWORKS 2017, 29.
HoBemOap — 1. mememOap 2017, JInon, @panirycka

YjJaH nporpaMckor komuTera koH(pepenuuje 2nd International Conference on
Complexity, Future Information Systems and Risk” - COMPLEXIS 2017, 24.-26. anpun
2017, Ilopto, IopTyran.

yaan Onxbopa MelyyHHBEp3UTETCKOT MporpaMa 3a HCTPAXHBAEmE OJPKUBOT pa3Boja
VYHusepsurera y beorpany

ypenuuk Frontiers Research Topic "Culturomics: Interdisciplinary Path Towards
Quantitative Study of Human Culture" qaconuc Frontiers

Opranuszatop npse Ctynentcke Henesbe y beorpany, ISWiB, Cpbuja, 30. 6. - 5. 7. 2006

Opranusatop xoHpepenmuje Cyberemotions — collective emotions in cyberspace,
Jby6spana, Cnosennja, 20.-21. jarmyap 2011

Opranmsatop koH¢epenuuje First annual meeting of COST Action TD1210
KNOWeSCAPE - Analyzing the dynamics of information and knowledge
landscapes, Ecmio, ®uncka, 18-20 mHoBemOap 2013



MEBYHAPO/JHA CAPAJIIbA

2006-m0 cana Oncex 3a Teopujcky Qusuky, Uncturyt Joxed Iltedan, Jbybmana, CnoBenuja
npogecop bocuspka Tagnh

2012-m0 cama Oncex 3a OMOMETUITMHCKA WHXCHEPUHT M padyHapcKe Hayke, AanTo YHUBEP3UTET,
Ecno, ®uncka, npodecop Canro PopryHaro

2012-n0 cana Oncex 3a ¢usuky uBpcror crama, Caxa MHCTHTYT 3a HyKJIeapHe Hayke, Ip ApHad
Yatepxu

2014-m0 cana Aanro Yuusep3urer, Ecrio, ®uncka, n1p Tomu Kaynunen

2015-n0 cana Yuusepsurer Texuuon, Xauda, Uzpaen, npod. ap ITauna [Tnayt

2015-n0 cana Yuusesnuter Munano bukoka, Munano, Utanuja, npod. np Cunsana Ctedanu

HAT'PAJE U CTUIIEH/IUJE

2005-2006 MunncrapcTBo Hayke, Pemy6nuka Cpouja

2004 Birana Kpassesune Hopsemike

JE3NI

CPIICKU-MATCPHU,; CHITICCKU - OAJIMYHO, CJIOBEHAYKH! - OCHOBHU HUBO,

MNPOI'PAMUPAIBE U ITIO3HABAIBE PAJIA HA PAYUYHAPY
nporpamupame: C/C++, Pascal, Matlab, Mathematica, Python, shell scripts

Hanpenan kopucHuk Linux, Mac OS u Windows omnepatuBHMX cuctema, Grid
computing

OCTAJIE AKTUBHOCTH

CBHpa XapMOHHUKY, 3aBpmmia je Hwwky wmyswuky mkomy ““/lyman CkoBpan” 'y
Thynpuju, cmMep xapMoHHKa

ayTopKa je W Hay4dHO-NIONMyJapHUX WIaHKa Yy dvacomucuma Muaam ¢usngap
(ApymrtBo ¢usnuapa Cpbuje), Wavemagazine (wWww.wavemagazine.net) nu becene
(ApymrBo cpricka 3ajeaanna, Jbybssana, CiioBenuja)

rJyMuiIa je y npeactasu 3awmo nuwem necme (JpymTBo cpricka 3ajeHAIIA,
JbyOspana, CioBennja)



Jlucta nyoaukanuja ap Mapuje Mwurtposuh JlankyaoB 3a
peJieBaHTaH MepPHoJl 32 HATPaaAy y yaconucuma kareropuje M20

1.

Associative nature of event participation dynamics: A network theory approach
J. Smiljani¢ and M. Mitrovi¢ Dankulov

PLoS ONE 12, 0171565 (2017)

Kareropuja: M21; Ud=3.057 (momamu 3a 2015. ronuny)

Topology of Innovation Spaces in the Knowledge Networks Emerging through
Questions-And-Answers

M. Andjelkovi¢, B. Tadi¢, M. Mitrovi¢ Dankulov, M. Rajkovi¢, and R. Melnik
PLoS ONE 11, e0154655 (2016)

Kareropuja: M21; Ud=3.057 (momamwu 3a 2015. ronuny)

A Theoretical Model for the Associative Nature of Conference Participation
J. Smiljani¢, A. Chatterjee, T. Kauppinen, and M. Mitrovi¢ Dankulov
PLoS ONE 11, 0148528 (2016)

Kareropuja: M21; Ud=3.057 (momamwu 3a 2015. ronuny)

Quantifying Randomness in Real Networks

C. Orsini, M. Mitrovi¢ Dankulov, P. Colomer-de-Simo6n, A. Jamakovic, P.
Mahadevan, A. Vahdat, K. E. Bassler, Z. Toroczkai, M. Bogufia, G. Caldarelli,
S. Fortunato, and D. Krioukov

Nat. Commun. 6, 8627 (2015)

Kareropuja: M21a; Ud=11.329 (nonauu 3a 2015. roguny)

The Dynamics of Meaningful Social Interactions and the Emergence of
Collective Knowledge

M. Mitrovi¢ Dankulov, R. Melnik, and B. Tadi¢

Sci. Rep. 5, 12197 (2015)

Kareropuja: M21; Ud=5.228 (moxamwu 3a 2015. ronuny)

Inferring Human Mobility Using Communication Patterns

V. Palchykov, M. Mitrovi¢, H. Jo, J. Saramaki, and R. Ku. Pan
Sci. Rep. 4, 6174 (2014)

Kareropuja: M21a; Ud=5.578 (momaru 3a 2014. ronuny)

Growing Time Lag Threatens Nobels

S. Fortunato, A. Chatterjee, M. Mitrovi¢, R. Ku. Pan, P. Della Briotta Parolo,
and F. Becattini

Nature 508,186 (2014)

Kareropuja=M21a; U®=41.456 (noxaru 3a 2014. ronuny)



JIucra nyosnukauuja ap Mapuje Mutposuh /lankysios

Hyouukanuje M20

1.

Associative nature of event participation dynamics: A network theory approach
J. Smiljani¢ and M. Mitrovi¢ Dankulov

PLoS ONE 12, 0171565 (2017)

Kareropuja: M21; Ud=3.057 (momamu 3a 2015. ronuny)

Topology of Innovation Spaces in the Knowledge Networks Emerging through
Questions-And-Answers

M. Andjelkovi¢, B. Tadi¢, M. Mitrovi¢ Dankulov, M. Rajkovi¢, and R. Melnik
PLoS ONE 11, e0154655 (2016)

Kareropuja: M21; Ud=3.057 (momamwu 3a 2015. ronuny)

A Theoretical Model for the Associative Nature of Conference Participation
J. Smiljani¢, A. Chatterjee, T. Kauppinen, and M. Mitrovi¢ Dankulov
PLoS ONE 11, 0148528 (2016)
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Growing time lag
threatens Nobels

The time lag between reporting
a scientific discovery worthy of
a Nobel prize and the awarding
of the medal has increased, with
waits of more than 20 years
becoming common. If this trend
continues, some candidates
might not live long enough to
attend their Nobel ceremonies.

Before 1940, Nobels were
awarded more than 20 years after
the original discovery for only
about 11% of physics, 15% of
chemistry and 24% of physiology
or medicine prizes, respectively.
Since 1985, however, such
lengthy delays have featured
in 60%, 52% and 45% of these
awards, respectively.

The increasing average interval
between reporting discoveries
and their formal recognition can
be fitted to an exponential curve
(see “The long road to Sweder’),
with data points scattered about
the mean value.

As this average interval
becomes longer, so the average
age at which laureates are
awarded the prize goes up. By
the end of this century, the
prizewinners’ predicted average
age for receiving the award
is likely to exceed his or her
projected life expectancy (data
not shown). Given that the
Nobel prize cannot be awarded
posthumously, this lag threatens
to undermine science’s most
venerable institution.

Santo Fortunato* Aalto
University, Finland.
santo.fortunato@gmail.com

*On behalf of 6 co-authors; see
go.nature.com/cmmxa5 for full list.

Livestock: tackle
demand and yields

Among many otherwise laudable
suggestions, Mark Eisler and
colleagues propose limiting
feedstuffs for livestock to fibrous
fodder, such as grass and silage
(see Nature 507, 32-34; 2014).
However, we believe that any
attempt to meet the rapid growth
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Scientists who publish prizewinning discoveries are, on average, waiting longer

for a Nobel than ever before.
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in world demand for meat and
dairy products by focusing on
ruminant grazing systems would
be damaging for biodiversity and
for the global climate.

Although ruminants convert
grass and silage into animal
protein, they do so inefficiently;
they therefore require much more
land to produce a given amount
of meat or milk than ruminants
fed on diets that include grain.
Growing enough fodder to satisfy
demand would require the large-
scale expansion of grazing lands
(see go.nature.com/7mf63y) —a
leading cause of biodiversity loss,
tropical deforestation and carbon
dioxide emissions.

The environmental impacts
of meat and dairy production
should instead be addressed
by stringent efforts to decrease
consumption, halt the expansion
of grazing, and increase yields
on land that is already used for
livestock. Promoting extensive
grazing without tackling demand
would do more harm than good.
Erasmus K. H.J. zu Ermgassen,
David R. Williams, Andrew
Balmford University of
Cambridge, UK.
ekhjz2@cam.ac.uk

Livestock: limit red
meat consumption

Mark Eisler and co-authors
advocate eating only 300 grams
of red meat a week (roughly
the volume of three decks of

186 | NATURE | VOL 508 | 10 APRIL 2014

playing cards) as a step towards
producing sustainable livestock
(Nature 507, 32-34;2014). That
amount corresponds to 3.5-7%
of a 2,000-calorie-a-day diet,
depending on the cut and type
of meat. Such a move would also
make for a more equitable global
distribution of animal-product
consumption; these products
comprise around 48% of the
average diet in the United States,
for example (S. Bonhommeau
et al. Proc. Natl Acad. Sci. USA
110, 20617-20620;2013).
Imposing a global dietary
limit of 5% red meat as part
of a 10% maximum for all
animal-based products would
enable more people to be fed
using less land. For example,
eliminating livestock and
using existing agricultural
lands to grow crops for direct
human consumption instead
of for livestock fodder could
feed an extra 4 billion people
(E. S. Cassidy et al. Environ. Res.
Lett. 8,034015;2013), thereby
reducing or eliminating the
greenhouse-gas emissions and
biodiversity loss associated with
conversion of natural habitats.
This would also reduce many
other environmental impacts of
agriculture that relate to the use
of water, fertilizer and fossil fuels.
Brian Machovina, Kenneth
J. Feeley Florida International
University, Miami; and The
Fairchild Tropical Botanic Garden,
Coral Gables, Florida, USA.
brianmachovina@gmail.com
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Zoo visits boost
biodiversity literacy

Zoos and aquaria worldwide
attract more than 700 million
visits every year. They are
therefore well placed to make
more people aware of the
importance of biodiversity —
a prime target of the United
Nations Strategic Plan for
Biodiversity 2011-20.

We surveyed approximately
6,000 visitors to 30 zoos and
aquaria in 19 countries (see
go.nature.com/vw{8yf). More
respondents showed improved
understanding of biodiversity
after their visit (75.1% compared
with 69.8% before) and more
could identify an individual
action that would bolster
biodiversity after their visit
(58.8% compared with 50.5%
before).

Regrettably, increased
awareness does not necessarily
change behaviour. The world’s
zoo and aquarium communities
must also help to drive important
behavioural and social changes to
assist conservation.

Andrew Moss Chester Zoo, UK.
EricJensen University of
Warwick, Coventry, UK.
Markus Gusset World
Association of Zoos and
Aquariums, Gland, Switzerland.
markus.gusset@waza.org

A protein that spells
trouble

The gene CYLD is so named
because one of its mutant forms is
associated with cylindromatosis,
which causes skin tumours.

The CYLD protein is an
enzyme; its active site in humans
contains a cysteine residue at
position 601 (denoted as Cin the
one-letter amino-acid code). The
amino-acid sequence following
this cysteine (C) is tyrosine (Y),
leucine (L) and aspartate (D).
What are the odds of that?

David Boone Indiana University
School of Medicine — South
Bend, Indiana, USA.
daboone@iu.edu

SOURCES: NOBELPRIZE.ORG/PHYS. REV. LETT. ‘LETTERS FROM THE PAST’ (2008)
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Inferring human mobility using
communication patterns
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'Department of Biomedical Engineering and Computational Science (BECS), Aalto University School of Science, P.O. Box 12200, Fi-
00076, Finland, 2Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, UA 79011 Lviv, Ukraine,
SLorentz Institute, Leiden University, 2300 RA Leiden, The Netherlands, “Scientific Computing Laboratory, Institute of Physics
Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia, °BK2 1plus Physics Division and Department of Physics,
Pohang University of Science and Technology, Pohang 790-784, Republic of Korea.

Understanding the patterns of mobility of individuals is crucial for a number of reasons, from city planning
to disaster management. There are two common ways of quantifying the amount of travel between locations:
by direct observations that often involve privacy issues, e.g., tracking mobile phone locations, or by
estimations from models. Typically, such models build on accurate knowledge of the population size at each
location. However, when this information is not readily available, their applicability is rather limited. As
mobile phones are ubiquitous, our aim is to investigate if mobility patterns can be inferred from aggregated
mobile phone call data alone. Using data released by Orange for Ivory Coast, we show that human mobility is
well predicted by a simple model based on the frequency of mobile phone calls between two locations and
their geographical distance. We argue that the strength of the model comes from directly incorporating the
social dimension of mobility. Furthermore, as only aggregated call data is required, the model helps to avoid
potential privacy problems.

eople travel and move for a variety of reasons, including social, economic, and political factors. While

individuals may follow simple, recurrent patterns of movement, e.g., daily commuting, a more complex

picture emerges when all trajectories of a population are assembled together'. Understanding the principles
governing individual and collective movement is important for a number of reasons: for planning urban design?,
for forecasting and avoiding traffic congestion’, for mitigating infectious disease* , and for contingency planning
in extreme situations caused by disasters”®. However, accurately determining the movement patterns in a
population is cumbersome and costly, and involves privacy issues.

There are two ways of inferring the mobility patterns in a population: by direct measurement or by models that
predict population movement based on other observed data. Regarding the former, tracking the movement of
individuals using location data from mobile phones’" has emerged as a powerful alternative to traditional
methods such as traffic surveys'>. In this case, the data set comes from the billing systems of mobile phone
operators, where the closest tower of each phone is recorded when a mobile phone is used. The resolution
problems caused by this are compensated by the large quantity and high quality of data'*'*. However, there
are drawbacks to this approach: tracking the locations of individuals may be seen as a threat to privacy even when
the data is properly anonymised".

The alternative approach to direct measurement is to use models that predict the average population behaviour
from (publicly) available information, such as census and population data. Perhaps the most famous example is
the gravity model'*'® that has been used to predict the intensity of a number of human interactions, including
population movement'*' and mobile phone calls between cities®. In the gravity model, the intensity of inter-
actions between two locations (e.g., cities) is determined by their populations and distance (with proper scaling
exponents). Recently, it has been shown that a parameter-free model, the radiation model®, is able to predict
mobility patterns with improved accuracy; this model requires geospatial information on population size as an
input.

The applicability of the above-mentioned models is constrained by the availability of accurate population
information. This may become a problem e.g. for developing countries, where census data may be incomplete.
However, mobile phones are ubiquitous almost everywhere, and one might expect that mobile phone calls reflect
the social dimension of mobility - the amount of social ties between geospatial locations can be expected to
influence travel patterns. Therefore, the aim of this paper is to predict mobility patterns from mobile phone call
data alone, and examine models that would be applicable in a setting where accurate, up-to-date population
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information is not available. Furthermore, we focus on models that
only require aggregated call data, without needing to track individual
users. This has the obvious benefit of mitigating privacy-related
issues; additionally, the volume of required input data is smaller
and the aggregation can be easily done by the mobile operator that
owns the source data.

Our modelling and analysis is purely based on the Ivory Coast
mobile telephone data set*, originally released by Orange for the
Data for Development Challenge. This data set includes information
on mobile phone calls aggregated at the tower level during 140 days,
used as inputs for the models, and data on the trajectories of ran-
domly chosen individuals, used for developing the models and test-
ing their accuracy. There is no accurate, up-to-date geospatial
population information for Ivory Coast; the last census was con-
ducted in 1998, and there is no data available on mobility or migra-
tion within the country. In contrast, the telephone system in Ivory
Coast is well-developed by African standards with mobile phone
penetration above 83%.

This paper is constructed as follows: first, we examine gravity laws
for average mobility and call frequency between locations. We then
proceed to show that mobility between two locations can be directly
estimated from the number of calls between the locations and their
distance. This holds at two levels of coarse-graining: between tower
locations in a major city and between cities. Finally, we study the
accuracy of predictions for individual pairs of locations, beyond
averages, and show that the number of calls between locations
appears to be a good predictor of the frequency of travel between
them. For reference, we also study variants of existing mobility mod-
els (the gravity and radiation models) where location-specific call
frequencies are used as inputs instead of population data; despite
applying these models beyond their intended range, they provide
fairly good predictions on average.

Results
Data set and coarse-graining. The data set comes in two parts: (i)
the number of calls between 1231 Orange towers in Ivory Coast for 5
months, and (ii) ten data sets on two-week individual trajectories of
50,000 randomly chosen users. From the trajectories, we aggregated
the mobility m;; between locations i and j by counting direct
movements along the trajectories (see Methods for further details).
As it is reasonable to assume that communication and mobility
patterns are in general different for short and long distances, we
aggregated the data at two levels: (i) tower level for intra-city beha-
viour and (ii) city level for inter-city behaviour. The intra-city ana-
lysis consist of 5.1 million movements and 109 million calls between
all 298 towers located inside Abidjan, the largest city of Ivory Coast,
during 140 days. This comprises 31% of all calls and 50% of all
movements in the country. In this analysis the geographical unit —
referred to as “location” in the following - is the area covered by a
single tower. To analyse inter-city behaviour, we aggregated towers
that lie within a city boundary and consider calls and mobility
between cities. The resulting data contains 143 cities with 63 million
calls and 374 thousand movements between them during 140 days.
At both levels of analysis, we determine the number of calls, move-
ments, and the geographical distance between every pair of locations
(towers, cities). See Methods for further details.

Gravity laws: dependence of mobility and communication inten-
sity on distance. We begin by investigating whether the mobility and
communication intensities between two locations follow the gravity
law on average. In its general form, the gravity law states that
NN

g

(1)

XU'OC

where x;; is the intensity of interaction, e.g., calls, mobility, trade,
between locations i and j associated with populations of sizes N;

and Nj, separated by a distance d;;'°"'*. The exponent o governs the
distance dependence. Note that in the most general form of the
gravity law, N; and N; are also associated with an exponent; here
for simplicity we assume a linear dependence. For our data, we
study the intensities of mobility m; and communication c;
between locations i and j. These are defined as the average number
of weekly movements and calls between them, respectively. As a
proxy of the population N;, we take the total number of weekly
calls s; made and received at location i.

The variation of the scaled mobility intensity, m;/s;s;, with respect
to the distance d;; is shown in Fig. 1 for the tower and city levels of
coarse-graining (panels A and B, respectively). In both cases, the
gravity law holds on average and

m;; —
—=Yocd,. ! 2
<Si5j> d’] ’ ( )

where y = 2.14 for the intra-city level and y =~ 2.54 for the inter-city
level. Panels C and D display a similar plot for the scaled commun-
ication intensity that is also seen on average to follow the gravity law:

Gij -5
— Yocd;; 3
<S,—Sj> - v ( )

where the distance exponents are ¢ = 1.20 for the intra-city level and
0 =~ 1.48 for the inter-city level. It is worth noting that both expo-
nents y and ¢ are smaller for the intra-city level, indicating differ-
ences in communication and travel patterns within and between
cities: within a city, the spatial distance appears to play a less import-
ant role than it does between cities.

The two gravity laws discussed above suggest that the following
relationship might also hold:

()" @
C1]

where § =y — 0. This is indeed the case, as seen in Fig. 1 (E,F) where
(mjjc;j) follows a power-law dependence on d;;. For both intra- and
inter-city levels, we find the exponent =y — ¢ (see Table I). These
results suggest that there are two possible ways of inferring the
intensity of mobility between locations i and j from call data: using
the distance and either (i) the total call numbers at both locations s;
and s; (Eq. 2), or (ii) the total number of calls between the locations c;;
(Eq. 4). The prediction accuracy of these two models will be assessed
in in the section “Prediction accuracy” below.

It is worth noting that both for intra- and inter-city levels, the
exponent f§ = 1. This does not directly result from Egs. (2) and
(3). One possible argument for the observed value of f is as follows:
the cost of a single trip, measured in e.g. time or money, between two
towers/cities i and j can be assumed to depend linearly on their
distance, d,-j. This means that the total cost of all movements between
i and j is proportional to m;;d;;. However, the cost of communication
is independent of distance. If one further assumes that the total cost
of movement is balanced by the total benefit brought by social ties,
linearly reflected in c;, we have m;d; ~ c; and thus the value of
exponent § = 1. In this interpretation, the communication exponent
0 is directly related to a decrease in the number of social ties as
function of distance, whereas y captures a combination of cost assoc-
iated with travel and the decrease in the number of social ties.

Models for estimating mobility based on call data. The results of
the previous section indicate that on average, the mobility intensity
m;; between two locations i and j can be estimated using the gravity
model

G _ G55
where k® is a normalization constant obtained by equating the
total numbers of expected and observed movements, i.e.,
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indicates a pair of locations, and circles correspond to the average log-binned behaviour. Solid lines show the fitted power-law decaying behaviour.

Zij my= Zij mf]} This model takes the communication intensities

s; and s; at both locations as inputs in addition to the distance d;;. As
an alternative we propose the communication model
S

B’
d;

Cc_1C
mlj—k

(6)

based on the communication intensity c;; between the locations. The

normalization constant k* is obtained as before. The values of the
exponents y and [ are taken from Table L.

For comparison, we also study a modified version of the radiation
model”, originally designed to predict mobility between locations i
and j with the help of data on population density in the surrounding
area. Again, we modify the model such that only call and distance
data is required as input. To this end, we assume that the number of
calls in a given location is an unbiased estimate of population density,
similarly to the gravity model. Note that this assumption may not
necessarily hold, since mobile phone penetration may correlate with
socioeconomic factors. Further, we assume that the number of trips
that begin (end) at location i (j) is proportional to s; (s;). Then, the
radiation model formula can be rewritten as

S,‘S2

J . (7
(s 53) (5+ s+ 53) @

2.
Si'Sj

R_ (R
" Grrsg) (s )

y

Here s;; denotes the total number of calls made within a circle of
radius dj; centred at i, excluding locations i and j, and Kk® is a nor-
malization constant.

Prediction accuracy. To assess the actual predictive power of the
models beyond averages, we compare the actual mobility intensity
m;, obtained from the trajectory data set, with the estimates given by
the models for each specific pair of locations i and j. This comparison
for the communication model, the gravity model, and the radiation
model is shown in Fig. 2. The gray dots correspond to predicted
versus actual mobility for each pair of locations, and the boxes
(whiskers) correspond to the region between 25th and 75th (9th
and 91st) percentiles.

It is clear from the figure that all models give on average reasonable
predictions. However, the gravity and radiation models display
higher levels of variance between the predicted and actual mobility
intensities. In particular, the prediction accuracy of the gravity model
is relatively poor for the inter-city mobility, and the radiation model
performs the worst for the intra-city mobility. The latter is not sur-
prising, as the radiation model was originally not designed for pre-
dicting short-range travel patterns within cities. Further, the original
radiation model requires accurate geospatial population informa-
tion, and simply equating population size within an area with the
number of calls can be expected to give rise to errors.

The level of observed variance implies that in addition to compar-
ing averages, it is important to compare the expected and observed
mobility between individual pairs of locations. As the first step, we
determine the Spearman correlation coefficients r*®® between m;
and mE"G’R. Table II shows that the correlation is higher for the

communication model than for the gravity and radiation models
for both levels of coarse-graining (intra-city, inter-city). In general,
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Table | | The estimated values of exponents y (Eq. 2), J (Eq. 3), and
B (Eq. 4) for the tower and city levels of coarse-graining. The
values and their standard errors have been obtained by least
square fitting to logarithmically binned data

Level y 1) B

2.14+0.05 1.20 +0.04 0.98 +0.02
2.54+0.05 1.48+0.05 1.08 +£0.05

intra<city (tower level)
interity (city level)

in terms of the Spearman coefficient, predictions of all models are

more accurate for intra-city mobility than for inter-city mobility.
Finally, we consider the differences between the observed and

predicted mobilities by measuring their relative deviations. For all

the three models, we define the relative deviations 5E‘G’R between the

observed m;; and predicted m?’G’R as
CGR
SCOR _ my; mij
i T _CGR ’ (8)
mij + mi;

where J;; takes values between —1 and 1. A deviation of 6; = 0
implies exact prediction by the model for the pair of locations i
and j, whereas negative (positive) values indicate under- (over-)
estimations. We only determine J;; for those pairs of of i and j for
which m;; # 0.
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The probability distributions P( ) shown in Fig. 3 confirm

the above finding that out of the studied three models for inferring
mobility from call data, the communication model has the highest

accuracy of prediction. The distribution P(éc) is well centred

around zero, whereas especially for inter-city mobility the distribu-
tions P(éG) and P(éR) show a bias towards under-estimation. In

more detail, for intra-city mobility, the fractions of location pairs
with deviations 0 € [—0.25, 0.25] are 13% for the radiation model,
42% for the gravity model, and 51% for the communication model.
For inter-city mobility, the corresponding fractions are 20%, 17%
and 33%. Note that for the gravity model, in spite of the fact that
the average (m;;/(s;s;)) follows a d;; ’-dependence (Fig. 1A,B), there is
still a significant amount of under-estimation. This indicates that
there is a broad distribution of the values of {mm;;/(s;s;)) for a given
distance, and the average value is not always a good estimator.

Discussion and conclusion

The goal of this paper has been to investigate simple models that
predict the intensities of mobility between two locations on the basis
of mobile phone call data and their geospatial distance. The motiva-
tion behind this is to provide ways of predicting mobility in situations
where accurate information of population size at each location is not
available; furthermore, the focus is on aggregated call data, mitigating

inter-city
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E

104

10?
Obs. mobility m;;

10% 1072 10°

Figure 2 | Comparison between observed and predicted human mobility. The expected mobility intensities (A,B) m? for the communication

model, (C,D) m? for the gravity model, and (E,F) m?} for the radiation model are plotted against the mobility intensities observed in data ;. The
left panels (A,C,E) correspond to the intra-city analysis and right panels (B,D,F) correspond to inter-city analysis. The boxes provide the region between
25th and 75th percentiles, and the whiskers correspond to 9th and 91st percentiles of logarithmically binned data. A box is colored green if for a given bin
the line y = x lies between the 9th and the 91st percentiles of the expected distribution; otherwise it is colored red.
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Table Il | Spearman correlation coefficient between the observed
and predicted mobility values for the three models. For both intra-
city and inter-city analyses the communication model shows larger
correlation values than gravity and radiation models. The signifi-
cance of the difference in the correlation is indicated by the pvalues

Love P R R Y
intra<ity (fower level) 0.87  0.81  0.82 <10 <10
inter<ity (city level) 074 0.67 067 <10* <104

the need to track movement patterns of individual phone users. Our
study is based on call and mobility data released by Orange for Ivory
Coast; note that it would be important to verify the findings with data
from other countries.

We have tested three models that only take aggregated call data
and geospatial information as inputs: the well-known gravity model,
the communication model based on the number of calls between two
locations, and a modified version of the radiation model. While all
models on average capture the real mobility patterns derived from
call data with location information, a more detailed analysis of the
prediction accuracy at the level of individual locations reveals that
the communication model is the most accurate out of the three tested
models in this setting.

Note that the gravity and radiation models were originally
designed to use geospatial population information as input para-
meters. Since our aim has been to study mobility models in a setting
where such information is not available, we have simply taken the
number of calls at a given location as a proxy of the population size.
Therefore we do not claim that the communication model would
outperform other models in a situation where they could be applied
as their designers intended. Also note that our modeling target — the
mobility pattern - is also derived from mobile phone records, and
geospatial biases in mobile phone usage might influence the results.
Hence, it would be useful to verify the accuracy of the communica-
tion model for a case where there are alternative sources of mobility
information.

The likely reason why the communication model works well is that
it directly incorporates geospatial information on social ties and
human relationships. It has been observed earlier that individuals
tend to travel to locations where they have social bonds®; further-
more, once under way, it is reasonable to assume that people make
calls back home. Because of this, the aggregated intensity of com-

munication between two locations should contain information on
the mobility patterns as well. Then, in the first approximation one
might assume that the frequency of movement between two locations
is directly proportional to the intensity of communication. Further,
the simplest way to incorporate the fact that larger distances imply
larger travel costs (in terms of time or money) is to assume that
mobility is inversely proportional to distance. These two components
directly yield the communication model: m;; o< ¢;/dy;.

It is worth noting that in general, in gravity laws of human inter-
action, the distance dependence is associated with some exponent a.
This is also seen in our analysis of the gravity laws for mobility and
communication intensity, where the exponents were seen to depend
on the level of coarse-graining, i.e., intra-city or inter-city. However,
for both levels, the inverse distance dependence of the communica-
tion model is approximately linear, i.e., the exponent equals one. This
suggests universality and calls for analysis of similar data sets from
different countries.

Methods

Communication and mobility data. The data set* consists of 2.5 million call detail
records of customers for a single provider (Orange) in Ivory Coast between December
1st, 2011 and April 28th, 2012. The communication data used in this paper contains
the number of calls as well as their aggregated duration between all pairs of 1231
towers, i.e., mobile base stations. The geographical locations of the towers were also
provided. The temporal resolution of the data set is one hour.

The mobility sample consists of ten data sets of trajectories of individual users, each
for 50,000 randomly chosen users. Each trajectory corresponds to the subscribers’ call
locations during a two-week period. The locations were recorded every time a call was
made and correspond to the position of the tower that transmitted the call. The data
sets represent consecutive two-week periods, beginning in December 5, 2011.

24

Determining city boundaries. As the locations of the cell-towers were provided, we
used reverse geocoding® to determine the city in which the tower is located. The mean
longitude and latitude of all towers within a city defines the centre of the city. This
location was used to calculate the inter-city distances. Out of the 1231 mobile phone
towers, 686 are located within city boundaries (with 298 of them in the largest city,
Abidjan). The total number of cities with at least a single tower is 143.

Determining direct movements. Given the individual trajectories of users, a variety
of methods have been developed to extract different aspects of human mobility*’.
Here, we consider direct movements that correspond to any consecutive changes in
the location of a user. Formally, direct movements are defined as follows: if the user
made a call from location i at some time f and j is the location of the next callat ' > ¢,
there is a direct movement from i to j if j # i. By aggregating this information for all
users we determine, the total number of direct movements between all pairs of
locations. The locations can correspond either to towers (intra-city analysis) or to
cities (inter-city analysis). Note that for inter-city analysis, only towers located within
city boundaries are considered. Thus, all calls and direct movements to locations
between cities are ignored.

A intra-city B inter-city
2.0 T T T T T T
Communication Model
Gravity Model
Radiation Model
1.5 H 1 b -
o
—1.0 f 1 F -
A
0.5 | 1k -
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Figure 3 | Relative deviation between the observed and predicted mobility values for the three models. Distribution P ((55’@“) of the relative deviations

55’&“ (Eq. 8) for (A) intra-city and (B) inter-city mobility.
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Data filtering. Users may be located in areas covered by several towers. In this case,
the calls made by users at the same location can be handled by different neighbouring
towers. This phenomena of switching of mobile phone calls between towers is called
handover and it may give rise to artefacts in mobility and communication. For
instance, let us consider an immobile user located in the boundary area covered by two
towers i and j. If one of the calls of this user was served by tower i and the subsequent
call by tower j, the data will indicate movement of the user from tower i to tower j.
Similarly, the number of calls between neighbouring towers might also get biased. To
get rid of this artefact, we excluded all pairs of neighbouring towers from our analysis.
As the towers are heterogeneously distributed (higher concentration in densely
populated areas and lower concentration in rural zones), neighbouring towers were
identified by a distance-independent approach. To do this, we first computed the
Voronoi diagram around each tower. The towers having a common edge in their
Voronoi cells are defined as the neighbouring towers. We also excluded the
communication and mobility between the towers that are located within 1 meter from
each other (e.g. two base stations serving a busy area). Further, only pairs of locations
with more than one call per day (on average) were considered.
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interactions and the emergence of
collective knowledge

Marija Mitrovi¢ Dankulov*2, Roderick Melnik3 & Bosiljka Tadi¢*

Collective knowledge as a social value may arise in cooperation among actors whose individual
expertise is limited. The process of knowledge creation requires meaningful, logically coordinated
interactions, which represents a challenging problem to physics and social dynamics modeling. By
combining two-scale dynamics model with empirical data analysis from a well-known Questions &
Answers system Mathematics, we show that this process occurs as a collective phenomenon in an
enlarged network (of actors and their artifacts) where the cognitive recognition interactions are
properly encoded. The emergent behavior is quantified by the information divergence and innovation
advancing of knowledge over time and the signatures of self-organization and knowledge sharing
communities. These measures elucidate the impact of each cognitive element and the individual
actor’s expertise in the collective dynamics. The results are relevant to stochastic processes involving
smart components and to collaborative social endeavors, for instance, crowdsourcing scientific
knowledge production with online games.

In modern statistical mechanics’, it has been recognized that the collective phenomena arise from inter-
actions among the elementary units via a spontaneous transition to an organized state, which can be
identified at a larger scale?’. Recently, this unifying principle is gaining importance in other natural
sciences, for instance for elucidating organization in living systems*®, emergence of coherent activity
in neuronal cultures’, and developing computational social science'’. In social systems, interactions and
cooperations among actors can lead to the recognizable collective behavior, for instance, the develop-
ment of collective knowledge!!, appearance of common norms'? or language'®. The quantitative study
of the stochastic processes underlying these social phenomena utilizes the methods of statistical physics
supported by analysis of the plethora of online empirical data. Some illustrative examples are the appear-
ance of good and bad conduct in online games'* and groupings induced by the exchange of emotional
messages on social sites'>~'8. However, a deeper understanding of the mechanisms of collaborative social
endeavors'"'*? remains a serious challenging problem in physics and social dynamics modeling.

The building of collective knowledge via social interactions is a subtle phenomenon that requires both
cognitive elements and an organized effort to solve a particular query. In this stochastic process, the
social system that enables transfer of knowledge and the cognitive subsystem are dynamically interlinked
and influence each other at a microscopic scale?!. In the relational epistemology, the exchange of values
is an essential factor that permits the emergence of a collective value via interaction and cooperation
among equal individuals®”. In this concept, the collective knowledge is neither an entity over individuals
nor their sum, rather, it is a property of the particular relations among the interacting actors. It reflects
the actions of each individual as a meaningful, adjusted to the actions of others by means of new opera-
tion; its reciprocity and the acceptance of the confirmed values lead to a cooperation “that has a logical
structure isomorphic to logical thought™®2. On the practical side, modern information communication
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technologies (ICT) provide a suitable platform for knowledge building via social dynamics®***. These
systems aim at transferring the expertise and tacit knowledge that reside in the minds of individuals into
a form of collective knowledge. Through ICT, the individual’s knowledge is shared or “externalized”.
Also, the fragile relational state, where the knowledge is dynamically experienced within a community,
is actualized as a collection of mutually related digital artifacts. When a systematic tagging is applied to
these artifacts, a form of “explicit” knowledge appears, from which others can learn?!. For this reason, the
emergence and quality of the collective knowledge crucially depend on the microscopic mechanisms, by
which a particular cognitive element and an individual actor’s expertise contribute to the self-organized
process.

We develop a new approach that explains how the collective knowledge emerges in Questions &
Answers (Q&A) communications. We utilize the concept of two-scale dynamics that enables defining a
correct microscopic model of interactions between social and cognitive elements, and confirm its pre-
dictions by quantitative analysis of the empirical data from a well-known Q&A system. The elementary
units in the process, actors, and questions that they post or answer contain sub-elementary units—cog-
nitive elements, which describe the actor’s expertise and the questions’ cognitive contents. Their dynam-
ics strictly obeys the cognitive recognition rules, thus influencing the dynamics at the social level of
actors. We quantitatively describe the knowledge-creation process from the elementary interactions to
mesoscopic and global level. The statistical signatures of the collective dynamics depend on the range
of the actors’ expertise, which can be extracted from the empirical data and varied in the simulations.
The impact of cognitive elements in the empirical data is further confirmed by methods of information
theory while the occurrence and structure of communities are visualized by graph theoretic techniques.

Results

Fine-grained dynamics and cooperation. All our exemplifications are provided based on the anal-
ysis of data in mathematics from the system known as Mathematics which has become a universal clear-
inghouse for Q&A in the field”®. In the data, the cognitive element of each artifact (question, answer or
comment) has been systematically tagged according to the standard mathematics classification scheme.
In addition, the fact that a unique identity is known for each actor (user) and each artifact together with
the high temporal resolution of the data enable a detailed analysis of the underlying stochastic process.
Assuming that the cognition-driven events occurred, we determine a set of tags as expertise of each
user in the considered dataset. The dataset and the procedure are described in Methods. In the model
(Supplementary information, SI), the actors (agents) have a defined range of expertise. Minimal match-
ing of the expertise of an answering agent with the tags of the answered question is strictly obeyed. The
considered agents have the activity patterns statistically similar with the patterns of users in the empirical
data while their expertise is varied.

In the process, which is schematically depicted in Fig. 1a, an actor (U) posts a question (Q), which
may receive answers or comments (A) by other actors over time. Subsequently, new Q and the already
present Q&A are subject to further answers, and so on. Representing each action by a directed link, this
process co-evolves a bipartite network, where actors are one partition and Q&A form another partition.
An example of a single-question network from the empirical data is shown in Fig. 1b. The cognitive
content of each question is marked by up to 5 different tags, which thus specify the required expertise of
the answering actors. Matching by at least one tag is required. The actor’s expertise is transferred to its
answer. The excess expertise of the involved actors leads to the innovation?*-2® and an accumulation of
expertise around a particular question. At the same time, it extends the sample space of matching events,
thus accelerating the process in a self-organized manner.

The quantitative measures displayed in Fig. 1(c-f) signify a highly cooperative process with the cog-
nitive elements encoded by tags in the empirical dataset. Specifically, the entropy in Fig. 1f shows a
distinctly non-random pattern of the appearance of each tag. In accordance with the entropy, the use of
different contents shows temporal correlations. The distribution of time intervals between consecutive
events with a particular tag ranges over five decades, Fig. 1d, suggesting a variety of roles that different
cognitive elements play in the process. The dynamics of tags closely reflects the heterogeneity of the
users’ activity profile and their expertise. Figure 1d also shows the broad distribution of the interactivity
time of a particular user; the presence of a daily cycle is characteristic of online social dynamics'>".
The long delays between actions of some users, contrasted with a frequent activity of others, yield the
power-law distribution of the number of activities N; per user (Fig. 3a in SI). Further, the role of each
user in the process can be distinguished. For instance, in Fig. 1c, the probability for posting questions
g decays with the number of the user’s actions N;. Essential for the cognitive process, however, is the
broad range of the user’s expertise. As discussed in Methods, it is measured by the entropy distribution
shown in Fig. 1le. While the majority expertise includes between one and four tags, few individuals have
an activity record for a large number of topics. Consequently, the appearance of a particular combination
of cognitive elements shows a complex pattern. All distinct combinations of tags found in the dataset
obey Zipf’s law, see Fig. 2. It is a marked feature of scale-invariance in the collective dynamics?®%. The
ranking distribution of individual tags is also broad, Fig. 2 in SI. Furthermore, by directly inspecting
the related time series, Figs 4 and 5, we find that an actively self-organized social process underlies the
observed dynamics of cognitive elements.
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Figure 1. Tags-matching illustration and the activity patterns of users and tags in Mathematics.

(a) Schematically shown a sequence of events with matching of tags (colored boxes) between actors’
expertise (displayed as a particular set of tags above blue circles—actors, U;), the answers A;, and questions
Q; containing the tags of the related actor’s expertise. The direction of lines towards/outwards each actor
indicates the process of reading/posting event. (b) Bipartite network of users (blue) and answers (red) at a
favorite question (big red node). (c) Probability g; of posting a new question by the user i plotted against its
total activity N, averaged over all users in the dataset. (d) The distributions of the interactivity time AT for
users and tags. (e) The distribution of the user’s expertise entropy S; averaged over all users in the data.

(f) Each point indicates the entropy related with the probability of the appearance of a particular tag along a
sequence of m time intervals, where m is the tag’s frequency. Lower set of points represents the entropies for
all tags computed from the sequence of events in the empirical data while the upper set is obtained from its
randomized version.
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Figure 2. Innovation growth by the actor’s expertise. Main panel: The number of new combinations of
tags C(N) at questions including answers to them is plotted against increasing total number of artifacts N.
The curves 0 --- 4 are for the empirical data and simulations where the number of the agent’s expertise is
fixed as follows: (Exp$S), 25-tags expertise where § is taken from the distribution in Fig. le, and (Expn), n-
tags expertise where n=4, 3, 2. Inset (a) Increase of the knowledge at a particular question Ey(t) over time
t for diverse distributions of expertise as in the central panel. Inset (b) Ranking distribution for frequency of
new combinations of tags appearing in questions and the related answers for (0) the empirical data and (1)
simulation in the case ExpS.
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Figure 3. Measuring the impact of a particular cognitive content (x-tag). Likelihood O"(K) for four most
active tags (a) and Information divergence I"(K) for 30 most active tags (b) are plotted against the time-
window index K.
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Figure 4. Clustering of events with cognitive contents. (a) Sequences of clustered events (avalanches) of
the size S, against the cluster’s index . Different colors indicate the sequences identified in the empirical
time series and time series simulated for various ranges of the agents’ expertise. (b) Distribution of the
first returns scaled by the standard deviation o of the corresponding sequence (matching color). Full line
indicates g-Gaussian curve with the parameter g=2.4. For a comparison, the curve with g= 1.8 is shown
(dashed line), corresponding to the case of chat channel dynamics studied in'°.
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Figure 5. Persistent fluctuations in answering activity in data and in simulations. (a) In the empirical
dataset, time series of new users p(t), and time series of the number of answers and comments, and the
number of events involving a particular tag (“calculus”). (b) The fluctuations F,(n) ~n'! around the local
trend are plotted against the time interval » for time series in (a) as well as their trends, and time series
involving a particular tag: LA—"linear algebra’, RA—“real algebra’, Prob—“Probability”. (c) and (d) Time
series and their fluctuations in the simulations: time series of the number of all answers, and the number of
answers containing a particular tag no.2, as well as series containing a particular combination of eight tags
R2(8), one-tag, R5(1), and two tags combination, R100(2), all for the distribution of expertise ExpS, and the
answers containing tag no.12, in the case of Expl. Lines are shifted vertically for better display. On each line,
the scaling region is indicated by a straight line, whose slope gives the displayed value of the exponent H
within error bars £0.009.

Advance of innovation. In the present context, the innovation is measured by appearance of new
combination of tags C(N) with the addition of artifacts N, Fig. 2. The universal Heaps’ law, C{(N) ~ N¢,
and the related?® Zipf’s law shown in the inset (b) of Fig. 2, obtained from the empirical data are sup-
ported by the simulations. Here, the innovation is directly given by the excess expertise of the active
agents. Thus, the accumulation of expertise at a given question depends on the population of experts; it
is slower when, e.g, each agent has two-tags expertise than in the case of four-tags expertise, inset (a) of
Fig. 2. In contrast, no increase in innovation is observed when each agent possesses a single-tag expertise.

Information divergence. To examine the influence of a particular cognitive element (tag) in the
process, we define a set of conditional probability measures and compute the discrete Kullback-Leibler
information divergence from the sequence of question-answer events in which that tag is present, Fig. 3.
The empirical data are divided into a series of one-day time windows. In what follows, we use the time
window index K, which runs in our examples as K= 1, 2, --- 1498. As the activity on a particular question
or answer typically extends over many time windows, for K>2 the space of events QX for questions in
the Kth window also includes Q&A which were active in the (K—1)th window, while only new answers
in the Kth window make the sample space AX for answers. By focusing on the time-line of the tag
k, which annotates a particular cognitive content, four conditional probabilities, which are defined in
Methods, are determined in every time window K. The information divergence®*-*?, defined as I(P(x|AX,
QN)||P(k|QX)) = I*(K) within the time window K, is computed by

P (kA", QY .
P (k|Q") (1)

It determines the information gain about the x-tag that is present in questions QX if the answers AK
are known. Using the chain relation P(x|AX, QX)P(AX|QK) = P(AK|k, QX)P(k|QX), it can be expressed as
I*(K) = P(x|QX¥)O%(K) In O*(K) or:

I"(K) = P (x]A, Q€)In

P Ak, Q5 y P (k|Q")
P(AQY) P (Af|QY) )

I"(K) = P (A"|r, Q€)In

P (4" | %,Q5)
P(a% | Q")
questions triggers answers within the time window K. We compute O%(K) for four most frequent tags,

where the ratio 0" (K) = is a measure of the likelihood that the presence of the x-tag in
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Fig. 3a, in the sequence of time windows K. A significant difference among tags is apparent; for instance,
“real analysis” triggers more activity than “linear algebra’, but still less than “calculus” and “homework”
tags.

In view of Eq. (2), the information divergence is expressed (apart from a multiplicative factor smaller
than one) as the negative of a relative entropy, which measures the information loss when the proba-
bility of answers to questions containing a given cognitive content « is approximated by the probability
of answers to all questions. This probability is expected to increase with the accumulation of expertise
around each question over time. Consequently, the information divergence tends to zero for a sufficiently
large time. I*(K), computed for 30 leading tags in the empirical data, Fig. 3b, levels to zero for the major-
ity of tags at large K. However, in the case of four tags, for which the increase in the likelihood of new
activity occurs, Fig. 3a, the information divergence still decreases within the entire time interval in the
empirical data, four marked curves in Fig. 3b. Note that these topics of a broad interest often combine
with new tags, i.e. via the expertise of new arrivals. In this way, triggered answers that match these new
tags expand the sample space AK, which keeps the information divergence finite. This feature is compat-
ible with the innovation growth, reported in Fig. 2. Accounting the contribution of each particular tag
in the knowledge creation, the results of information divergence complement the statistical measures in
Fig. 1 and support the occurrence of Zipf’s law.

Signatures of self-organization in the social process. The constraints of cognitive recognition at
the level of tags affect the social process between actors as well as the structure of the co-evolving net-
work. The time-series analysis is used to uncover prominent features of the coherent fluctuations in this
process. We determine the fractal characteristics (see Methods) of the activity time series. In particular,
we consider the time series of the number of all answers to the existing questions per time step as well
as the time series of such events that contain a particular cognitive element. The results, Fig. 4, reveal
that the clustering of events (avalanches) occurs as a distinguishing feature of self-organized processes.
In addition, a high persistence is observed in the temporal fluctuations, both in the empirical data and
simulations for a varied range of the agent’s expertise, Fig. 5. Measured by Hurst exponent (H>0.5), a
similar persistence was found in the processes of thematic discussions!®. While somewhat lower Hurst
exponents characterize the fluctuations in prototypal online social interactions'” and market dynamics®.

Several sequences of clustered events, determined (see Methods) from the corresponding time series,
are reported in Fig. 4a. Considering a particular sequence, the avalanche size differences (returns)
dy=sy;1—5» A=1,2 -+ )\, are found to exhibit non-Gaussian fluctuations. Fig. 4b shows the uni-
versal plot of the distributions for the appropriately scaled returns. It turns that the g-Gaussian expres-
sion f{x) = a[l — (1 — q)(x/b)*]V1~, which was observed in a variety of complex dynamical systems**¥,
well approximates these distributions (see Fig. 4 in SI). Interestingly, the values® for the nonextensivity
parameter g obtained in these cognitive-driven processes are higher compared with the corresponding
parameter in emotion-driven social dynamics'.

The considered time series and the results of their fractal analysis for the empirical data and simula-
tions are reported in Fig. 5a-d. Note that the rate of new arrivals in the empirical data, p(¢), is also used
as a creation rate of new agents in the simulation (see Methods). It exhibits distinct temporal correla-
tions, which are carried out from the user’ real life. In this case, p(t) also shows an increasing trend that
eventually yields the increase in the entire activity over time both in the empirical and simulated data,
Fig. 5a,c. Hence, the detrended fractal analysis is performed, as described in Methods. Shown in Fig. 5b,
the fluctuations in the number of answers containing all tags in the empirical data are characterized by
the scaling exponent H=0.85=+ 0.07. Similarly, persistent fluctuations with the exponents in the range
H € [0.62, 0.68] are found in the series of selected events that contain a particular tag. The results of an
analogous analysis of the simulated data are shown in Fig. 5d. The time series of the number of answers
with all tags and series containing a particular tag have the scaling exponents that are slightly higher,
implying a stronger persistence, compared with the corresponding series of the empirical data. Here,
we also consider temporal activity of three identified combinations of tags, three bottom curves, which
exhibit a similar scaling behavior. These results show that the enhanced self-organization among actors
emerges in the interactions with tag recognition, which is mandatory in the model, and, to a large extent,
applies to the empirical data.

Knowledge-sharing communities. The coevolving bipartite networks, Fig. 6, emerge in vari-
ous scenarios in the simulations and empirical data. Note that these networks are different from the
single-question graph in Fig. 1b. In this case, each actor is a separate node while a compressed infor-
mation on a particular question including all answers related to that question represents a single node
of the question-partition. The structure of communities detected in these networks clearly stresses the
importance of the actor’s expertise. In particular, in the case Expl, the communities containing a spec-
ified single expertise grow as independent clusters, Fig. 6b. The situations when the agents have more
than one expertise permit formation of larger communities of agents and questions. For a broad range
of the agents’ expertise, the compact communities grow resembling the ones in the empirical data (see
also Fig. 5 in SI). It is interesting to note that a dominant node representing a very active knowledgeable
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Figure 6. Community structure in bipartite networks of actors and questions reflecting the population
of experts. Compressed bipartite network of actors and questions from Mathematics dataset (a) and
simulation with the population of experts Expl (b) Exp2 (c) and in the case of ExpS but with non
matching expertise p-process (d). The observed communities, indicated by different colors, contain actors
interconnected by questions. Each question node contains all answers related to it.

actor appears in each community. On the contrary, the pattern of communities is entirely different when
the cognitive recognition does not drive the linking, Fig. 6d.

Conclusions and outlook
Knowledge building via social interactions is studied as a collective phenomenon in an extended space—
network of actors and their artifacts, where cognitive recognition interactions are active. We have con-
sidered an abundant empirical dataset with cognitive elements as mathematical tags and a two-scale
dynamics modeling close to the data, which enabled a quantitative analysis of the process from the
microscopic to global scale. Our approach permits to reveal the importance of each cognitive element,
as well as the expertise of each actor and its activity pattern in the creation of the collective knowledge.
Specifically, when the interacting actors possess a diversity of expertise, the process based on the mean-
ingful (cognitive recognition) interactions leads to the innovation and the advance of knowledge of the
emerging communities. When a broad spectrum of expertise is present in the population of actors, i.e. as
in the empirical system, the process is quite efficient in creating the enlarged space where innovation can
occur. In this case, the formation of coherent communities that share the knowledge is associated with
the presence of several actors possessing a broad range of expertise. Notably fewer developed communi-
ties and a slower advance of knowledge characterize the population with a narrow distribution of exper-
tise; entirely isolated communities and vanishing of innovation is found in the limiting case of a single
expertise per individual. In contrast to the meaningful interactions, the case with ad hoc social linking
leads to an entirely different outcome, even though, the individual actors possess a broad distribution
of expertise. The advance of innovation measured at the system level appears fragmented in a variety of
the emerging communities, each of which shares a limited amount of randomly accumulated knowledge.
The dynamics of social and cognitive elements, interwoven at the elementary scale, induces a type
of self-organized process where several quantitative characteristics appear to be different from a proto-
typal social dynamics. Besides theoretical implications of our results in the study of cognitive-driven
processes on networks, the presented approach can be directly applied in the analysis of other empirical
systems that entail social collaborative efforts!*?. Examples include, but not limited to, social comput-
ing, crowdsourcing scientific knowledge production or scientific discovery games, and other emerging
areas of increasing importance in the modern science and society®*=*. The presented theoretical concept
can prove to be useful in modeling physical systems at nanoscale, for instance, the assembly of smart
nanostructured materials with biological recognition.

Methods

Data structure. As a platform for scientific collaboration?, Mathematics is a part of StackExchange:
expert answers to your questions network. For this work, the dataset was downloaded on May 5, 2014
from https://archive.org/details/stackexchange. It contains all user-contributed contents on Mathematics
since the establishment of the site, July 2010, until the end of April 2014. Specifically, the considered
dataset contains 77895 users, 269819 questions, 400511 answers and 1265445 comments. A detailed
information is given about user id, the user’s activity (posting, answering, commenting), time stamp, list
of tags for questions, and id of the corresponding question or answer to which a given answer or com-
ment refers. The set of tags in answer/comment is inherited from the related question.

Network mapping and topology analysis. Actions of users in Q&A dynamics are mapped onto a
directed bipartite graph, where users, as one partition, interact indirectly via artifacts (questions, answers
or comments), as another partition. At a user node i an incoming link is inserted to indicate that that
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user reads the corresponding artifact while an outgoing link stands for the user’s posting of a new arti-
fact. The path of directed links from a question to a user to answer accurately describes the relationship
of the answer to the original question, as it is included in the empirical data and strictly observed in the
model. We also introduce a compressed bipartite network, where each question-node includes a question
with all answers and comments related to that question; typically, they contain a larger number of tags
thus expanding the original questions attributes. The graphs layouts are done using Gephi; the commu-
nity structure is detected by the maximum modularity algorithm*2.

The user’s activity and estimation of expertise. Assuming that a particular expertise of a user i
is necessary to answer a given question (which is marked by a set of tags), we consider the amount of
the user’s actions related to a particular tag, k. Each tag that appears in the data is considered, in total
1040 tags Hence, we compute a fraction p" of the user’s actions N; that is spent at r-tag. For those tags
where p exceeds the average probablhty for that user, we set unity, indicating that the user i is an expert
in these categories; thus, the user’s i expertise list is formed containing in total n,”? tags which received
unity mark. The rest of tags receive zeros for that user. The entropy measure for each user,
S = —ZN‘”-? p“ log, p , remarkably quantifies the heterogeneity of the user’s expertise, both in answering
and postlng questlons, Fig. le and Fig. 3b in SI, respectively. In the model, the agent’s expertise is spec-
ified from the list of 32 tags. Different populations of experts correspond to the situations where each
agent gets a fixed number n** tags. In particular, one-tag expertise (Expl), two-tags expertise (Exp2),
four-tags expertise (Exp4), etc., correspond to the agents expertise list with two, four, etc. randomly
selected tags. The case marked as ExpS is close to the empirical data, i.e., each agent gets a list of 25< 32
tags, where the random number § is taken from the empirical distribution in Fig. le.

Tag-related entropy. Following®, we define T; as the time interval between the first occurrence of a
tag j and the last activity in the dataset. Counting the total number of times m that the tag j occurred,
we divide T; into m equal subintervals. Then for each i=1, --- m we count the number of events f;(m)
related to the tag j in the i-th subinterval and compute the entropy Si(m) of the tag’s j sequence as

;= — o p” log . For each tag in the dataset, the tag’s entropy normalized with the correspond-

ing factor log(m) is represented by a point in Fig. 1f.

Conditional probabilities of tag-related events. Four conditional probabilities appearing in Eqs
(1) and (2), are defined and computed as follows: P(x|QX), probability that the x-tag is present given the
presence of questions QX, is computed as the frequency of k-tag in all questions; P(AX|x, Q), the prob-
ability that answers AX exist given the questions QX with k-tag, is given by the fraction of users whose
expertise includes k-tag of all active users in Kth window; P(AX|QF), the probability that answers AX exist
given the question QX (independently on the presence of x-tag) is obtained as the ratio of the number of
matching tags of all active users in Kth window with all tags in the present questions; P(x|AX, QX), the
probability to find the tag  given the questions and answers in the Kth window is determined from the
above probabilities via chain relation.

Definition of temporally clustered events. A cluster (or avalanche) represents a set of events
enclosed between two consecutive drops of the time series to the baseline (noise level)**-4.

Detrended time series analysis. To remove the local trend (an increasing activity and a weak
4-month cycle) appearing in the time series in Fig. 5, we apply the method of overlapping intervals'”.
Then, for each time series h(k), k=1, 2, --- T}, the profile Y (i) = i _,(h (k) — (h)) is divided into N
segments of length # and the standards deviation around the local trend y,(i) is computed at each

2
z:;l[wwnm%y )]

segment u=1,2--- N, ie, F,(p, n) = . Varying the segment length #, the scale
invariance F,(n) = (1/N,) 2’; VEa(p, n) ~ nH is examined to determine the Hurst exponent H.

Model rules of interacting agents with expertise. Assuming that the new arrivals in the system
boost the activity?’, the agents are introduced with a pace p(f) agents per time step, where p(t) is the
empirical time series of new users, shown in Fig. 5a. Each new agent receives a unique id and a fixed
profile. The agents’ profiles statistically match the profiles of users in the data. Specifically, the agent’s
activity level is set by the number of actions N;€ P(N,), where P(N;) is the distribution of the user’s
activity averaged over all users in the data (see SI:Fig. 3a). Subsequently, the agent’s probability g; to post
a question, or otherwise answer other questions, 1— g, is selected according to the interdependence g;
and N; shown in Fig. 1c. Furthermore, the agent’s expertise is fixed by first setting the number of tags
nE"P , according to the considered situation, i.e. Expl, Exp2, Exp4, or ExpS, and then making the list of
the agent’s expertise of n"? tags by random selection from the common list of 32 tags. The interactivity
time of a new agent is set to AT=0, which implies its immediate action. After each completed action,
a new delay AT e P(AT) is taken, where P(AT) is the empirical distribution for users, Fig. 1d. Note that
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both p(t) and P(AT) have the same temporal resolution, one bin representing 10 minutes in the original
data. All agents are systematically updated, and the agents with an expiring delay time are placed in the
active agents list. Each active agent, with its probability g;, puts a new question. Otherwise, it attempts to
answer a question from the updated list of interesting questions. The list is created by considering all
questions of next-neighbor agents on which an activity occurred within previous T;= 10 steps. With a
given probability that item can be searched elsewhere. In both cases, the agent’s action is the subject of
the expertise matching. In the case of p-process, with the probability ;1=0.5 an agent connects to a
random question and post an answer while the matching of tags with the agent’s expertise is not required,
but it can occur by chance (see illustration Fig. 1 in SI, and Algorithm in SI).
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Represented as graphs, real networks are intricate combinations of order and disorder. Fixing
some of the structural properties of network models to their values observed in real networks,
many other properties appear as statistical consequences of these fixed observables, plus
randomness in other respects. Here we employ the dk-series, a complete set of basic char-
acteristics of the network structure, to study the statistical dependencies between different
network properties. We consider six real networks—the Internet, US airport network, human
protein interactions, technosocial web of trust, English word network, and an fMRI map of the
human brain—and find that many important local and global structural properties of these
networks are closely reproduced by dk-random graphs whose degree distributions, degree
correlations and clustering are as in the corresponding real network. We discuss important
conceptual, methodological, and practical implications of this evaluation of network
randomness, and release software to generate dk-random graphs.
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etwork science studies complex systems by representing

them as networks!. This approach has proven quite

fruitful because in many cases the network representation
achieves a practically useful balance between simplicity and
realism: while always grand simplifications of real systems,
networks often encode some crucial information about the
system. Represented as a network, the system structure is fully
specified by the network adjacency matrix, or the list of
connections, perhaps enriched with some additional attributes.
This (possibly weighted) matrix is then a starting point of
research in network science.

One significant line of this research studies various (statistical)
properties of adjacency matrices of real networks. The focus is often
on properties that convey useful information about the global
network structure that affects the dynamical processes in the system
that this network represents>. A common belief is that a self-
organizing system should evolve to a network structure that makes
these dynamical processes, or network functions, efficient>=, If this
is the case, then given a real network, we may ‘reverse engineer’ it
by showing that its structure optimizes its function. In that respect
the problem of interdependency between different network
properties becomes particularly important®-1°,

Indeed, suppose that the structure of some real network has
property X—some statistically over- or under-represented sub-
graph, or motif'!, for example—that we believe is related to a
particular network function. Suppose also that the same network
has in addition property Y—some specific degree distribution or
clustering, for example—and that all networks that have property
Y necessarily have property X as a consequence. Property Y thus
enforces or ‘explains’ property X, and attempts to ‘explain’ X by
itself, ignoring Y, are misguided. For example, if a network has
high density (property Y), such as the interarial cortical network
in the primate brain where 66% of edges that could exist do
exist!?, then it will necessarily have short path lengths and high
clustering, meaning it is a small-world network (property X).
However, unlike social networks where the small-world property
is an independent feature of the network, in the brain this
property is a simple consequence of high density.

The problem of interdependencies among network properties
has been long understood!*!4. The standard way to address it, is
to generate many graphs that have property Y and that are
random in all other respects—let us call them Y-random graphs—
and then to check if property X is a typical property of these
Y-random graphs. In other words, this procedure checks if graphs
that are sampled uniformly at random from the set of all graphs
that have property Y, also have property X with high probability.
For example, if graphs are sampled from the set of graphs with
high enough edge density, then all sampled graphs will be small
worlds. If this is the case, then X is not an interesting property of
the considered network, because the fact that the network has
property X is a statistical consequence of that it also has property
Y. In this case we should attempt to explain Y rather than X. In
case X is not a typical property of Y-random graphs, one cannot
really conclude that property X is interesting or important (for
some network functions). The only conclusion one can make is
that Y cannot explain X, which does not mean however that there
is no other property Z from which X follows.

In view of this inherent and unavoidable relativism with
respect to a null model, the problem of structure-function
relationship requires an answer to the following question in the
first place: what is the right base property or properties Y in
the null model (Y-random graphs) that we should choose to study
the (statistical) significance of a given property X in a given
network!>? For most properties X including motifs'!, the choice
of Y is often just the degree distribution. That is, one usually
checks if X is present in random graphs with the same degree

2

distribution as in the real network. Given that scale-free degree
distributions are indeed the striking and important features of
many real networks!, this null model choice seems natural, but
there are no rigorous and successful attempts to justify it. The
reason is simple: the choice cannot be rigorously justified because
there is nothing special about the degree distribution—it is one of
infinitely many ways to specify a null model.

Since there exists no unique preferred null model, we have to
consider a series of null models satisfying certain requirements.
Here we consider a particular realization of such series—the dk-
series'®, which provides a complete systematic basis for network
structure analysis, bearing some conceptual similarities with a
Fourier or Taylor series in mathematical analysis. The dk-series is
a converging series of basic interdependent degree- and
subgraph-based properties that characterize the local network
structure at an increasing level of detail, and define a
corresponding series of null models or random graph
ensembles. These random graphs have the same distribution of
differently sized subgraphs as in a given real network.
Importantly, the nodes in these subgraphs are labelled by node
degrees in the real network. Therefore, this random graph series is
a natural generalization of random graphs with fixed average
degree, degree distribution, degree correlations, clustering and so
on. Using dk-series we analyse six real networks, and find that
they are essentially random as soon as we constrain their degree
distributions, correlations, and clustering to the values observed
in the real network (Y =degrees + correlations + clustering). In
other words, these basic local structural characteristics almost
fully define not only local but also global organization of the
considered networks. These findings have important implications
on research dealing with network structure-function interplay in
different disciplines where networks are used to represent
complex natural or designed systems. We also find that some
properties of some networks cannot be explained by just degrees,
correlations, and clustering. The dk-series methodology thus
allows one to detect which particular property in which particular
network is non-trivial, cannot be reduced to basic local degree- or
subgraph-based characteristics, and may thus be potentially
related to some network function.

Results
General requirements to a systematic series of properties. The
introductory remarks above instruct one to look not for a single
base property Y, which cannot be unique or universal, but for a
systematic series of base properties Yy, Yj,.... By ‘systematic’ we
mean the following conditions: (1) inclusiveness, that is, the
properties in the series should provide strictly more detailed
information about the network structure, which is equivalent to
requiring that networks that have property Y, (Y;-random graphs),
d >0, should also have properties Y,y foralld =0, 1,...,d— 1;and
(2) convergence, that is, there should exist property Yj, in the series
that fully characterizes the adjacency matrix of any given network,
which is equivalent to requiring that Yp-random graphs is only one
graph—the given network itself. If these Y-series satisfy the
conditions above, then whatever property X is deemed important
now or later in whatever real network, we can always standardize
the problem of explanation of X by reformulating it as the
following question: what is the minimal value of d in the above
Y-series such that property Y, explains X? By convergence, such d
should exist; and by inclusiveness, networks that have property Y,
with any d =d, d+1,..., D, also have property X. Assuming that
properties Y, are once explained, the described procedure provides
an explanation of any other property of interest X.

The general philosophy outlined above is applicable to
undirected and directed networks, and it is shared by different
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approaches, including motifs!!, graphlets!” and similar
constructions'®, albeit they violate the inclusiveness condition
as we show below. Yet one can still define many different Y-series
satisfying both conditions above. Some further criteria are needed
to focus on a particular one. One approach is to use degree-based
tailored random graphs as null models for both undirected!-2!
and directed®>?> networks. The criteria that we use to select a
particular Y-series in this study are simplicity and the importance
of subgraph- and degree-based statistics in networks. Indeed, in
the network representation of a system, subgraphs, their
frequency and convergence are the most natural and basic
building blocks of the system, among other things forming the
basis of the rigorous theory of graph family limits known as
graphons?4, while the degree is the most natural and basic
property of individual nodes in the network. Combining the

subgraph- and degree-based characteristics leads to dk-series'®.

dk-series. In dk-series, properties Y, are dk-distributions. For any
given network G of size N, its dk-distribution is defined as a
collection of distributions of G’s subgraphs of size d=0, 1,..., N
in which nodes are labelled by their degrees in G. That is, two
isomorphic subgraphs of G involving nodes of different degrees—
for instance, edges (d =2) connecting nodes of degrees 1, 2 and 2,
2—are counted separately. The 0k-‘distribution’ is defined as the
average degree of G. Figure 1 illustrates the dk-distributions of a
graph of size 4.

Thus defined the dk-series subsumes all the basic degree-based
characteristics of networks of increasing detail. The zeroth
element in the series, the O0k-‘distribution’, is the coarsest
characteristic, the average degree. The next element, the 1k-
distribution, is the standard degree distribution, which is the
number of nodes—subgraphs of size 1—of degree k in the
network. The second element, the 2k-distribution, is the joint
degree distribution, the number of subgraphs of size 2—edges—
between nodes of degrees k; and k,. The 2k-distribution thus
defines 2-node degree correlations and network’s assortativity.
For d=3, the two non-isomorphic subgraphs are triangles and
wedges, composed of nodes of degrees k;, k, and k3, which defines
clustering, and so on. For arbitrary d the dk-distribution
characterizes the ‘degree ‘k’orrelations in d-sized subgraphs, thus
including, on the one hand, the correlations of degrees of nodes
located at hop distances below d, and, on the other hand, the
statistics of d-cliques in G. We will also consider dk-distributions
with fractional d e (2, 3) which in addition to specifying two-node
degree correlations (d =2), fix some d =3 substatistics related to
clustering.

The dk-series is inclusive because the (d -+ 1)k-distribution
contains the same information about the network as the dk-
distribution, plus some additional information. In the simplest
d=0 case for example, the degree distribution P(k) (1k-
distribution) defines the average k (0k-distribution) via
k =", kP(k). The analogous expression for d=1, 2 are derived
in Supplementary Note 1.

It is important to note that if we omit the degree information,
and just count the number of d-sized subgraphs in a given
network regardless their node degrees, as in motifs'!, graphlets!”
or similar constructions'®, then such degree-k-agnostic d-series
(versus dk-series) would not be inclusive (Supplementary
Discussion). Therefore, preserving the node degree (k)
information is necessary to make a subgraph-based (‘d’) series
inclusive. The dk-series is clearly convergent because at d=N,
where N is the network size, the Nk-distribution fully specifies the
network adjacency matrix.

A sequence of dk-distributions then defines a sequence of
random graph ensembles (null models). The dk-graphs are a set

Original 4k ¢ 3k o 2k 1k ¢ 0k

Figure 1| The dk-series illustrated. (a) shows the dk-distributions for a
graph of size 4. The 4k-distribution is the graph itself. The 3k-distribution
consists of its three subgraphs of size 3: one triangle connecting nodes of
degrees 2, 2 and 3, and two wedges connecting nodes of degrees 2, 3 and 1.
The 2k-distribution is the joint degree distribution in the graph. It specifies
the number of links (subgraphs of size 2) connecting nodes of different
degrees: one link connects nodes of degrees 2 and 2, two links connect
nodes of degrees 2 and 3, and one link connects nodes of degree 3 and 1.
The 1k-distribution is the degree distribution in the graph. It lists the number
of nodes (subgraphs of size 1) of different degree: one node of degree 1, two
nodes of degree 2, and one node of degree 3. The Ok-distribution is just the
average degree in the graph, which is 2. (b) illustrates the inclusiveness and
convergence of dk-series by showing the hierarchy of dk-graphs, which are
graphs that have the same dk-distribution as a given graph G of size D. The
black circles schematically shows the sets of dk-graphs. The set of Ok-
graphs, that is, graphs that have the same average degree as G, is largest.
Graphs in this set may have a structure drastically different from G's. The
set of Tk-graphs is a subset of Ok-graphs, because each graph with the same
degree distribution as in G has also the same average degree as G, but not
vice versa. As a consequence, typical 1k-graphs, that is, 1k-random graphs,
are more similar to G than Ok-graphs. The set of 2k-graphs is a subset

of 1k-graphs, also containing G. As d increases, the circles become smaller
because the number of different dk-graphs decreases. Since all the dk-graph
sets contain G, the circles ‘'zoom-in’ on it, and while their number decreases,
dk-graphs become increasingly more similar to G. In the d=D limit, the set
of Dk-graphs consists of only one element, G itself.

of all graphs with a given dk-distribution, for example, with
the dk-distribution in a given real network. The dk-random
graphs are a maximum-entropy ensemble of these graphs'®.
This ensemble consists of all dk-graphs, and the probability
measure is uniform (unbiased): each graph G in the ensemble is
assigned the same probability P(G) = 1/N 4, where N, is the
number of dk-graphs. For d=0, 1, 2 these are well studied
classical random graphs Gy » (ref. 25), configuration model26-28
and random graphs with a given joint degree distribution?’,
respectively. Since a sequence of dk-distributions is increasingly
more informative and thus constraining, the corresponding
sequence of the sizes of dk-random graph ensembles is non-
increasing and shrinking to 1, Ny >N > ... > Ny=1,
Fig. 1. At low d=0, 1, 2 these numbers N can be calculated
either exactly or approximately>®3!.
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We emphasize that in dk-graphs the dk-distribution con-
straints are sharp, that is, they hold exactly—all dk-graphs have
exactly the same dk-distribution. An alternative description uses
soft maximum-entropy ensembles belonging to the general class
of exponential random graph models**=3> in which these
constraints hold only on average over the ensemble—the
expected dk-distribution in the ensemble (not in any individual
graph) is fixed to a given distribution. This ensemble consists
of all possible graphs G of size N, and the probability
measure P(G) is the one maximizing the ensemble entropy
S= —> GP(G)InP(G) under the dk-distribution constraints.
Using analogy with statistical mechanics, sharp and soft
ensemble are often called microcanonical and canonical,
respectively.

As a consequence of the convergence and inclusiveness
properties of dk-series, any network property X of any given
network G is guaranteed to be reproduced with any desired
accuracy by high enough d. At d=N all possible properties are
reproduced exactly, but the Nk-graph ensemble trivially consists
of only one graph, Gself, and has zero entropy. In the sense that
the entropy of dk-ensembles S; =InAy is a non-increasing
function of d, the smaller the d, the more random the dk-random
graphs, which also agrees with the intuition that dk-random
graphs are ‘the less random and the more structured’, the higher
the d. Therefore, the general problem of explaining a given
property X reduces to the general problem of how random a
graph ensemble must be so that X is statistically significant. In the
dk-series context, this question becomes: how much local degree
information, that is, information about concentrations of degree-
labelled subgraphs of what minimal size d, is needed to reproduce
a possibly global property X with a desired accuracy?

Below we answer this question for a set of popular and
commonly used structural properties of some paradigmatic real
networks. But to answer this question for any property in any
network, we have to be able to sample graphs uniformly at
random from the sets of dk-graphs—the problem that we discuss
next.

dk-random graph sampling. Soft dk-ensembles tend to be more
amenable for analytic treatment, compared with sharp ensembles,
but even in soft ensembles the exact analytic expressions for
expected values are known only for simplest network properties
in simplest ensembles®®”. Therefore, we retreat to numeric
experiments here. Given a real network G, there exist two ways to
sample dk-random graphs in such experiments: dk-randomize G
generalizing the randomization algorithms in refs 38,39, or
construct random graphs with G’s dk-sequence from scratch!6:40,
also called direct construction*! =44

The first option, dk-randomization, is easier. It accounts for
swapping random (pairs of) edges, starting from G, such that the
dk-distribution is preserved at each swap, Fig. 2. There are many
concerns with this prescription®, two of which are particularly
important. The first concern is if this process ‘ergodic’, meaning
that if any two dk-graphs are connected by a chain of dk-swaps.
For d=1 the two-edge swap is ergodic*®>, while for d =2 it is
not ergodic. However, the so-called restricted two-edge swap,
when at least one node attached to each edge has the same degree,
Fig. 2, was proven to be ergodic*. It is now commonly believed
that there is no edge-swapping operation, of this or other type,
that is ergodic for the 3k-distribution, although a definite proof is
lacking at the moment. If there exists no ergodic 3k-swapping,
then we cannot really rely on it in sampling dk-random graphs
because our real network G can be trapped on a small island of
atypical dk-graphs, which is not connected by any dk-swap chain
to the main land of many typical dk-graphs. Yet we note that in

(k. @
P=1
@ 0k @ 0k
P=1
I P=1 x
[ssesieic o S
2k
I I =
R
2.1k- 2.5k

PGP

Figure 2 | The dk-sampling and convergence of dk-series illustrated. The
left column shows the elementary swaps of dk-randomizing (for d=0, 1, 2)
and dk-targeting (for d=2.1, 2.5) rewiring. The nodes are labelled by their
degrees, and the arrows are labelled by the rewiring acceptance probability.
In dk-randomizing rewiring, random (pairs of) edges are rewired preserving
the graph's dk-distribution (and consequently its d'K-distributions for

all d' <d). In 2.7k- and 2.5k-targeting rewiring, the moves preserve the
2k-distribution, but each move is accepted with probability p designed to
drive the graph closer to a target value of average clustering ¢ (2.7k) or
degree-dependent clustering ¢(k) (2.5k): p=min(1, e ~ #AH) where B the
inverse temperature of this simulated annealing process, AH=H, — H,,
and H, are the distances, after and before the move, between the
current and target values of clustering: Hyx = [Ccurrent — Ctarget| and

Hosk =3 |Ecurrem [ki] —Etarget[k,-]\. The right column shows LaNet-vi

(ref. 65) visualizations of the results of these dk-rewiring processes
(Supplementary Methods), applied to the PGP network, visualized at the
bottom of the left column. The node sizes are proportional to the logarithm
of their degrees, while the colour reflects node coreness®. As d grows, the
shown dk-random graphs quickly become more similar to the real PGP
network.

an unpublished work?” we showed that five out of six considered

real networks were virtually indistinguishable from their
3k-randomizations across all the considered network properties,
although one network (power grid) was very different from
its 3k-random counterparts.

The second concern with dk-randomization is about how close
to uniform sampling the dk-swap Markov chain is after its mixing
time is reached—its mixing time is yet another concern that we
do not discuss here, but according to many numerical experi-
ments and some analytic estimates, it is O(M)16:29-38-40,46  Eyep
for d =1 the swap chain does not sample 1k-graphs uniformly at
random, yet if the edge-swap process is done correctly, then
the sampling is uniform?%2!,
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A simple algorithm for the second dk-sampling option,
constructing dk-graphs from scratch, is widely known for d=1:
given G’s degree sequence {k;}, build a lk-random graph by
attaching k; half-edges (‘stubs’) to node i, and then connect
random pairs of stubs to form edges?’. If during this process a
self-loop (both stubs are connected to the same node) or double-
edge (two edges between the same pair of nodes) is formed, one
has to restart the process from scratch since otherwise the graph
sampling is not uniform8, If the degree sequence is power-law
distributed with exponent close to — 2 as in many real networks,
then the probability that the process must be restarted approaches
1 for large graphs?®, so that this construction process never
succeeds. An alternative greedy algorithm is described in ref. 42,
which always quickly succeeds and gives an efficient way of
testing whether a given sequence of integers is graphical, that is,
whether it can be realized as a degree sequence of a graph. The
base sampling procedure does not sample graphs uniformly, but
then an importance sampling procedure is used to account for the
bias, which results in uniform sampling. Yet again, if the degree
distribution is a power law, then one can show that even without
importance sampling, the base sampling procedure is uniform,
since the distribution of sampling weights that one can compute
for this greedy algorithm approaches a delta function. Extensions
of the naive 1k-construction above to 2k are less known, but they
exist! 294450 Most of these 2k-constructions do not sample 2k-
graphs exactly uniformly either?®, but importance sampling?%:44
can correct for the sampling biases.

Unfortunately, to the best of our knowledge, there currently
exists no 3k-construction algorithm that can be successfully used
in practice to generate large 3k-graphs with 3k-distributions of
real networks. The 3k-distribution is quite constraining and non-
local, so that the dk-construction methods described above for
d=1, 2 cannot be readily extended to d =3 (ref. 16). There is yet
another option—3k-targeting rewiring, Fig. 2. It is 2k-preserving
rewiring in which each 2k-swap is accepted not with probability
1, but with probability equal to min(1, exp( — SAH)), where B is
the inverse temperature of this simulated-annealing-like process,
and AH is the change in the L' distance between the 3k-
distribution in the current graph and the target 3k-distribution
before and after the swap. This probability favours and,
respectively, suppresses 2k-swaps that move the graph closer or
farther from the target 3k-distribution. Unfortunately, we report
that in agreement with® this 2k-preserving 3k-targeting process
never converged for any considered real network—regardless of
how long we let the rewiring code run, after the initial rapid
decrease, the 3k-distance, while continuing to slowly decrease,
remained substantially large. The reason why this process never
converges is that the 3k-distribution is extremely constraining, so
that the number of 3k-graphs A3 is infinitesimally small
compared with the number of 2k-graphs N,, N3/N, < 1
(refs 16,30). Therefore, it is extremely difficult for the 3k-targeting
Markov chain to find a rare path to the target 3k-distribution, and
the process gets hopelessly trapped in abundant local minima in
distance H.

Therefore, on one hand, even though 3k-randomized versions
of many real networks are indistinguishable from the original
networks across many metrics?’, we cannot use this fact to claim
that at d =3 these metrics are not statistically significant in those
networks, because the 3k-randomization Markov chain may be
non-ergodic. On the other hand, we cannot generate the
corresponding 3k-random graphs from scratch in a feasible
amount of compute time. The 3k-random graph ensemble is not
analytically tractable either. Given that d=2 is not enough to
guarantee the statistical insignificance of some important
properties of some real networks, see ref. 47 and below, we, as
in ref. 40, retreat to numeric investigations of 2k-random graphs

in which in addition to the 2k-distribution, some substatistics of
the 3k-distribution is fixed. Since strong clustering is a ubiquitous
feature of many real networks!, one of the most interesting such
substatistics is clustering.

Specifically we study 2.1k-random graphs, defined as 2k-
random graphs with a given value of average clustering ¢, and
2.5k-random graphs, defined as 2k-random graphs with given
values of average clustering c(k) of nodes of degree k (ref. 40). The
3k-distribution fully defines both 2.1k- and 2.5k-statistics, while
2.5k defines 2.1k. Therefore, 2k-graphs are a superset of 2.1k-
graphs, which are a superset of 2.5k-graphs, which in turn contain
all the 3k-graphs, N,>N,1>N,5>N3. Therefore if a
particular property is not statistically significant in 2.5k-random
graphs, for example, then it is not statistically significant in 3k-
random graphs either, while the converse is not generally true.

We thus generate 20 dk-random graphs with d=0, 1, 2,2.1, 2.5
for each considered real network. For d=0,1,2 we use the
standard dk-randomizing swapping, Fig. 2. We do not use its
modifications to guarantee exactly uniform sampling?®2!,
because: (1) even without these modifications the swapping is
close to uniform in power-law graphs, (2) these modifications are
non-trivial to efficiently implement, and (3) we could not extend
these modifications to the 2.1k and 2.5k cases. As a consequence,
our sampling is not exactly uniform, but we believe it is close to
uniform for the reasons discussed above. To generate dk-random
graphs with d=2.1, 2.5, we start with a 2k-random graph, and
apply to it the standard 2k-preserving 2.xk-targeting (x=1, 5)
rewiring process, Fig. 2. The algorithms that do that, as described
in ref. 40, did not converge on some networks, so that we
modified the algorithm in ref. 10 to ensure the convergence in all
cases. The details of these modifications are in Supplementary
Methods (the parameters used are listed in Supplementary
Table 4), along with the details of the software 5package
implementing these algorithms that we release to public®!.

Real versus dk-random networks. We performed an extensive
set of numeric experiments with six real networks—the US air
transportation network, an fMRI map of the human brain, the
Internet at the level of autonomous systems, a technosocial web of
trust among users of the distributed Pretty Good Privacy (PGP)
cryptosystem, a human protein interaction map, and an English
word adjacency network (Supplementary Note 2 and
Supplementary Table 3 present the analysed networks). For each
network we compute its average degree, degree distribution,
degree correlations, average clustering, averaging clustering of
nodes of degree k and based on these dk-statistics generate a
number of dk-random graphs as described above for each d=0,
1, 2, 2.1, 2.5. Then for each sample we compute a variety of
network properties, and report their means and deviations for
each combination of the real network, d, and the property.
Figures 3-6 present the results for the PGP network;
Supplementary Note 3, Supplementary Figs 1-10, and
Supplementary Tables 1-2 provide the complete set of results for
all the considered real networks. The reason why we choose the
PGP network as our main example is that this network appears to
be ‘Tleast random’ among the considered real networks, in the
sense that the PGP network requires higher values of d to
reproduce its considered properties. The only exception is the
brain network. Some of its properties are not reproduced even by
d=2.5.

Figure 2 visualizes the PGP network and its dk-randomiza-
tions. The figure illustrates the convergence of dk-series applied to
this network. While the Ok-random graph has very little in
common with the real network, the 1k-random one is somewhat
more similar, even more so for 2k, and there is very little visual
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difference between the real PGP network and its 2.5k-random
counterpart. This figure is only an illustration though, and to have
a better understanding of how similar the network is to its
randomization, we compare their properties.

We split the properties that we compare into the following
categories. The microscopic properties are local properties of
individual nodes and subgraphs of small size. These properties
can be further subdivided into those that are defined by the dk-
distributions—the degree distribution, average neighbour degree,
clustering, Fig. 3—and those that are not fixed by the dk-
distributions—the concentrations of subgraphs of size 3 and 4,
Fig. 4. The mesoscopic properties—k-coreness and k-density (the
latter is also known as m-coreness or edge multiplicity,
Supplementary Note 1), Fig. 5—depend both on local and global
aspects of network organization. Finally, the macroscopic
properties are truly global ones—betweenness, the distribution
of hop lengths of shortest paths, and spectral properties, Fig. 6. In
Supplementary Note 3 we also report some extremal properties,
such as the graph diameter (the length of the longest shortest

path), and Kolmogorov-Smirnov distances between the distribu-
tions of all the considered properties in real networks and their
corresponding dk-random graphs. The detailed definitions of all
the properties that we consider can be found in Supplementary
Note 1.

In most cases—henceforth by ‘case’ we mean a combination of
a real network and one of its considered property—we observe a
nice convergence of properties as d increases. In many cases there
is no statistically significant difference between the property in the
real network and in its 2.5k-random graphs. In that sense these
graphs, that is, random graphs whose degree distribution, degree
correlations, and degree-dependent clustering ¢(k) are as in the
original network, capture many other important properties of the
real network.

Some properties always converge. This is certainly true for the
microscopic properties in Fig. 3, simply confirming that our
dk-sampling algorithm operates correctly. But many properties
that are not fixed by the dk-distributions converge as well. Neither
the concentration of subgraphs of size 3 nor the distribution of
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Figure 3 | Microscopic properties of the PGP network and its dk-random graphs. (a) The degree distribution P(k), (b) average degree k, (k) of nearest
neighbours of nodes of degree k, (c) average clustering ¢(k) of nodes of degree k, (d) the distribution P(m) of the number m of common neighbours
between all connected pairs of nodes, and (e-g) the means and (h-j) s.d. of the corresponding distributions. The error bars indicate the s.d. of the metrics

across different graph realizations.
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Figure 4 | The densities of subgraphs of size 3 and 4 in the PGP network and its dk-random graphs. The two different graphs of size 3 and six different
graphs of size 4 are shown on each panel. The numbers on top of panels are the concentrations of the corresponding subgraph in the PGP network, while
the histogram heights indicate the average absolute difference between the subgraph concentration in the dk-random graphs and its concentration in the
PGP network. The subgraph concentration is the number of given subgraphs divided by the total number of subgraphs of the same size. The error bars are

the s.d. across different graph realizations.

the number of neighbours common to a pair of nodes are fully
fixed by dk-distributions with any d<3 by definition, yet 2.5k-
random graphs reproduce them well in all the considered
networks. Most subgraphs of size 4 are also captured at d=2.5
in most networks, even though d=3 would not be enough to
exactly reproduce the statistics of these subgraphs. We note that
the improvement in subgraph concentrations at d = 2.5 compared
with d=2.1 is particularly striking, Fig. 4. The mesoscopic and
especially macroscopic properties converge more slowly as
expected. Nevertheless, quite surprisingly, both mesoscopic
properties (k-coreness and k-density) and some macroscopic
properties converge nicely in most cases. The k-coreness, k-
density, and the spectral properties, for instance, converge at
d=2.5 in all the considered cases other than Internet’s Fiedler
value. In some cases a property, even global one, converges for d
<2.5. Betweenness, for example, a global property, converges at
d=1 for the Internet and English word network.

Finally, there are ‘outlier’ networks and properties of poor or
no dk-convergence. Many properties of the brain network, for
example, exhibit slow or no convergence. We have also
experimented with community structure inferred by different
algorithms, and in most cases the convergence is either slow or
non-existent as one could expect.

Discussion

In general, we should not expect non-local properties of networks
to be exactly or even closely reproduced by random graphs with
local constraints. The considered brain network is a good example
of that this expectation is quite reasonable. The human brain
consists of two relatively weakly connected parts, and no dk-
randomization with low d is expected to reproduce this peculiar
global feature, which likely has an impact on other global
properties. And indeed we observe in Supplementary Note 3 that
its two global properties, the shortest path distance and
betweenness distributions, differ drastically between the brain
and its dk-randomizations.

Another good example is community structure, which is not
robust with respect to dk-randomizations in all the considered
networks. In other words, dk-randomizations destroy the original
peculiar cluster organization in real networks, which is not
surprising, as clusters have too many complex non-local features
such as variable densities of internal links, boundaries and so on,
which dk-randomizations, even with high d, are expected to affect
considerably.

Surprisingly, what happens for the brain and community
structure does not appear representative for many other
considered combinations of real networks and their properties.
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Figure 5 | Mesoscopic properties, the k-coreness and k-density distributions, in the PGP network and its dk-random graphs. The figure shows the
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an edge is the number of common neighbours between the nodes that this edge connects, or equivalently the number of triangles that this edge belongs to.
A node has k-coreness k. if it belongs to the k.-core but not to the k.4 1-core. An edge has k-density kg if it belongs to the k4-core but not to the k4 + 1-core.
The error bars indicate the s.d. of the metrics across different graph realizations.

As a possible explanation, one can think of constraint-based
modelling as a satisfiability (SAT) problem: find the elements of
the adjacency matrix (1/0, True/False) such that all the given
constraints in terms of the functions of the marginals (degrees) of
this matrix are obeyed. We then expect that the 3k-constraints
already correspond to an NP-hard SAT problem, such as 3-SAT,
with hardness coming from the global nature of the constraints in
the problem. However, many real-world networks evolve based
mostly on local dynamical rules and thus we would expect them
to contain correlations with d<3, that is, below the NP-hard
barrier. The primate brain, however, has likely evolved through
global constraints, as indicated by the dense connectivity across
all functional areas and the existence of a strong core-periphery
structure in which the core heavily concentrates on areas within
the associative cortex, with connections to and from all the
primary input and subcortical areas'2.

However, in most cases, the considered networks are
dk-random with d<2.5, that is, d<2.5 is enough to reproduce
not only basic microscopic (local) properties but also mesoscopic
and even macroscopic (global) network properties®~!%. This
finding means that these more sophisticated properties are
effectively random in the considered networks, or more precisely,
that the observed values of these properties are effective
consequences of particular degree distributions and, optionally,
degree correlations and clustering that the networks have. This
further implies that attempts to find explanations for these

8

complex but effectively random properties should probably be
abandoned, and redirected to explanations of why and how
degree distributions, correlations and clustering emerge in real
networks, for which there already exists a multitude of
approaches®?=>7. On the other hand, the features that we found
non-random do require separate explanations, or perhaps a
different system of null models.

We reiterate that the dk-randomization system makes it clear
that there is no a priori preferred null model for network
randomization. To tell how statistically significant a particular
feature is, it is necessary to compare this feature in the real
network against the same feature in an ensemble of random
graphs, a null model. But one is free to choose any random graph
model. In particular, any d defines a random graph ensemble, and
we find that many properties, most notably the frequencies of
small subgraphs that define motifs'!, strongly depend on d for
many considered networks. Therefore, choosing any specific
value of d, or more generally, any specific null model to study the
statistical significance of a particular structural network feature,
requires some non-trivial justification before this feature can be
claimed important for any network function.

Yet another implication of our results is that if one looks for
network topology generators that would veraciously reproduce
certain properties of a given real network—a task that often
comes up in as diverse disciplines as biology>® and computer
science®®—one should first check how dk-random these
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Figure 6 | Macroscopic propetties of the PGP network and its dk-random graphs. (a) The average betweenness b(k) of nodes of degree k, (b) the

distribution P(I) of hop lengths I of the shortest paths between all pairs of nodes, the (¢,d) means and (f,g) s.d. of the corresponding distributions, (e) the
largest eigenvalues of the adjacency matrix A, and (h) the Fiedler value, which is the spectral gap (the second largest eigenvalue) of the graph's Laplacian
matrix L=D — A, where D is the degree matrix, D;= d;k;, 0; the Kronecker delta, and k; the degree of node i. The error bars indicate the s.d. of the metrics

across different graph realizations.

properties are. If they are dk-random with low d, then one may
not need any sophisticated mission-specific topology generators.
The dk-random graph-generation algorithms discussed here can
be used for that purpose in this case. We note that there exists an
extension of a subset of these algorithm for networks with
arbitrary annotations of links and nodes®*—directed or coloured
(multilayer) networks, for instance.

The main caveat of our approach is that we have no proof that
our dk-random graph generation algorithms for d=2.1 and
d=2.5 sample graphs uniformly at random from the ensemble.
The random-graph ensembles and edge-rewiring processes
employed here are known to suffer from problems such as
degeneracy and hysteresis>>©%2, Ideally, we would wish to
calculate analytically the exact expected value of a given property
in an ensemble. This is currently possible only for very simple
properties in soft ensembles with d=0, 1, 2 (refs 36,37). Some
mathematically rigorous results are available for d=0, 1 and for
some exponential random-graph models?®3*, Many of these
results rely on graphons?* that are applicable to dense graphs
only, while virtually all real networks are sparse?®. Some rigorous
approaches to sparse networks are beginning to emerge®>4, but
the rigorous treatment of global properties, which tend to be
highly non-trivial functions of adjacency matrices, in random
graph ensembles with d>2 constraints, appear to be well beyond
the reach in the near future. Yet if we ever want to fully
understand the relationship between the structure, function and
dynamics of real networks, this future research direction appears
to be of a paramount importance.
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Abstract

Participation in conferences is an important part of every scientific career. Conferences pro-
vide an opportunity for a fast dissemination of latest results, discussion and exchange of
ideas, and broadening of scientists’ collaboration network. The decision to participate in a
conference depends on several factors like the location, cost, popularity of keynote speak-
ers, and the scientist’s association with the community. Here we discuss and formulate the
problem of discovering how a scientist’s previous participation affects her/his future partici-
pations in the same conference series. We develop a stochastic model to examine scien-
tists’ participation patterns in conferences and compare our model with data from six
conferences across various scientific fields and communities. Our model shows that the
probability for a scientist to participate in a given conference series strongly depends on the
balance between the number of participations and non-participations during his/her early
connections with the community. An active participation in a conference series strengthens
the scientist’s association with that particular conference community and thus increases the
probability of future participations.

Introduction

Social data at a large scale is nowadays available over the internet. Researchers are making the
best use of these data to find trends, statistics and patterns, which sometime reveal as robust
features, similar to ‘laws’ in natural science. In recent years, a huge community of researchers
[1] including mathematicians, statisticians, computer scientists, theoretical physicists, sociolo-
gists, economists, financial analysts, geographers, anthropologists, and biologists of various
sub-disciplines have contributed to a larger, developing field, commonly known as ‘computa-
tional social science’ [2]. Empirical data, after a rigorous analysis produces information that is
of immense interest for theoreticians. Statistical mechanics, which has been proved to be versa-
tile in modeling phenomena across different areas of physics, and beyond, seems to be the
most desired tool even for the above emerging discipline [3, 4].
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The abundance of a new data about scientific activities such as publications, collaborations,
and citations led to the emergence of a new interdisciplinary field of research about science and
how science works [5]. These studies provide insights about the impact of scientists and their
publications [6-8], authors’ reputation and scientific success [9], patterns of collaboration and
their impact on authors’ reputation [10, 11], the role of cumulative advantage in career longev-
ity [12, 13] and scientific mobility [14] among many other things. Despite the attention given
to publication records and citation patterns, another integral part of modern science, scientific
meetings, have so far been largely overlooked. This negligence is particularity interesting, given
the pervasive role of the meetings in scientific disciplines. Scientific meetings provide arenas
for a fast dissemination of the latest results, exchange and evaluation of ideas as well as a
knowledge extension. However, the most important function of scientific meetings is to facili-
tate social contacts. They provide an opportunity and platform to extend the network of collab-
orators through the creation of new contacts, and to strengthen existing links by getting
reacquainted with old friends.

Undoubtedly, conference participation has a very positive impact on scientific career. In
addition to the opportunities they provide, attending a scientific meeting can be very costly,
both in terms of time and money. Bearing in mind that the number of national and interna-
tional meetings have drastically increased in the last few decades, it is clear that scientists are
now pressed to make a careful selection of the meetings they will attend. Extensive studies [15-
17] have shown that conference characteristics, such as the attractiveness and the reachability
of the location or the choice of keynote speakers affect the decision of scientists to attend a
meeting. The role of the social component in conference choice is so far unexplored, mainly
due to lack of quality data. The social component, such as the association with a conference
community or conference inclusiveness, are of crucial importance when it comes to whether a
conference participation was beneficial or not. This is particularly evident in the case of young
scientists, who are new to a community and struggle to overcome the social obstacle of an ini-
tial contact [18, 19]. One of the rare studies on conference participation [20] has shown that
conferences have a stable core of regularly attending participants, regardless of the conference
location and distance. Having in mind that characteristics like the attractiveness of a location
and the quality of keynote speakers are fluctuating from one year to another, it is clear that
social component of a conference strongly influence the scientists decision to attend the confer-
ence and their long-term participation patterns, accordingly.

The association with a conference community and conference inclusiveness, can have a
strong influence on scientists persistence in participating at the specific conference. The prob-
lem of the order-parameter persistence (first-passage time), is a well studied phenomenon in
non-equilibrium statistical dynamics in condensed matter systems [21]. Persistence is defined
as the probability that fluctuating variable does not change the sign until time ¢, and for many
non-equilibrium systems this probability decays with time as a power-law [21]. Here we carry
out the analysis of persistence of participation patterns of more than 100000 scientists at six
national and international conferences of different sizes and from different fields of science.
We study the probability of total and successive number of participations, as well as the distri-
bution of time lags between two successive participations. We find that all three measured
probabilities have a shape of a truncated power law, regardless of the conference size and
degree of specialization. This indicates that the probability for a participant to attend the next
meeting is not constant, but rather it grows/decays with a number of participations/non-partic-
ipations. This observation is directly related to the strength of the association with the confer-
ence community. We propose a microscopic stochastic model which includes this influence of
balance between the number of participations and non-participations, as well as the role of
conference inclusiveness, on the probability to attend the conference next year. Results of our
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model show that the studied conferences have a relatively low inclusiveness, i.e. the probability
for a scientist to participate in the next meeting after the first attendance. We also show that
conference attendance is characterized by positive feedback. The growth in the total number of
participations results in a stronger attractiveness of the conference community to participants,
and vice versa. Longevity of scientific career of publishing in scientific journals is also charac-
terized by a power-law distribution with an exponential cut-off [12]. Using the empirical analy-
sis and stochastic model Petersen et al. [12] have shown that longevity and past success of
scientists lead to cumulative advantage in further development of their career. Although the
distribution of career longevity and conference persistence have a similar behaviour, there is a
significant difference of characteristic exponents, which indicates that a different mechanism
underlie these two phenomena.

This paper is structured as follows: first, we perform empirical analysis of participation pat-
terns for six conferences. We then propose and describe the model of conference participation
dynamics. Finally, we perform numerical simulations and discuss some properties of the
model, and estimate the values of parameters that correspond to empirical data.

Results
Data set

For our empirical analysis we use data for six conference series in different fields of science. We
collected and filtered information about abstracts presented at the American Physical Society
March Meeting (APSMM), American Physical Society April Meeting (APSAM), Society for
Industrial and Applied Mathematics Annual Meetings (SIAM), Neural Information Processing
Systems Conference (NIPS), International Conference on Supercomputing (ICS) and Annual
International Conference on Research in Computational Molecular Biology (RECOMB). All
these scientific meetings are held annually, but they differ in the topic, sizes, degree of speciali-
sation, longevity and degree of localisation (national versus international). When it comes to
the meeting size it can vary from a few dozens, like ICS and RECOMB, to several thousands of
participants at APSMM. Some of these meetings are on highly focused topic, NIPS, while oth-
ers are designed to cover the entire scientific fields, like APSMM, APSAM and SIAM. Four of
these conferences (SIAM, NIPS, ICS and RECOMB) have an international character with ven-
ues all over the world, while APSMM and APSAM are annual conferences of American Physi-
cal Society which are always held in North American cities. APSMM, SIAM and APSAM are
conferences with a long tradition, while first meetings of NIPS, ICS and RECOMB have been
organized during late 80s and early 90s. Detailed information about conferences and data is
given in S1 File.

To be able to track participants at the conference over the years, we have labeled them based
on name, affiliation and co-authors and performed author name disambiguation (see Methods
for details). We are interested in studying the participation patterns of scientists starting from
their first attendance at the conference series. Thus, for conferences for which the data are not
available from their beginning (APSMM, APSAM and SIAM), we have filtered out the authors
that may have attended the conference before the starting year in our dataset (see Methods for
the details of our filtering procedure).

Empirical results

For all scientists we have the information about the years of their appearance as authors in the
book of abstracts of particular a conference series. The information about the list of authors
who actually attended the conference is not available for the conferences considered in this
paper. Hence, as a proxy for a conference participation in a given year, we use the appearance
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dash-dot line denote the best fit to power-law distribution, x¥ and exponential distribution, ™, respectively.

doi:10.1371/journal.pone.0148528.9001

of a scientist as a co-author of at least one abstract in conference proceeding for that year. Not
all authors that are mentioned in the book of abstracts have actually attended the conference,
but one can argue that as co-authors they have actively contributed to the material presented
and thus participate as a contributors in the conference [15].

First we analyse the total number of author’s participations (the number of times an author
has participated), x, at the given conference series. Fig 1, shows the probability distribution of
the total number of participations, P(x), averaged over all participants, for each of the six ana-
lysed conferences. The comparison of the quality of fits between exponential, power-law and
truncated power-law, Fig 1, shows that all curves are very well represented by power law with
exponential cut-off (see Methods), with the value of exponent & € (1.6, 2.7). The disparity in
the total number of participations indicates that most scientists belong to the group of occa-
sional participants, with more than half of all participants attending a particular conference
only once. For instance, the percentage of all participants that attend the conference only once
is the highest for APSAM and ICS, around 81%, and the lowest for APSMM and NIPS, 63%
and 68% respectively. This observation indicates that communities of all these conferences
have a relatively low inclusiveness. On the other hand, it is also clear that some of the partici-
pants are very regular, attending the conference (almost) every year. These participants form
the group of regular attendees whose conference participation is mainly driven by social fac-
tors, i.e. their sense of association with the community.

In the case of when the probability to attend a conference is constant or random, the
expected distribution of total number of attendances is of exponential type. Thus, the power-
law nature of the distribution of total participations strongly suggests that the probability of
participation at some future conference increases with the number of previous participations.
By participating frequently at a particular conference scientists not only expand, but also
strengthen, their collaboration network which leads to their further engagement with the
community.

We further explore the participation patterns by analysing the number of successive partici-
pations (Fig 2) and the time lag between two successive participations (Fig 3). The distributions
of these quantities also exhibit the truncated power-law behaviour (see Methods). The observed
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exponential function respectively.

doi:10.1371/journal.pone.0148528.9002

distributions of the number of successive participations, with exponent 2 < o < 4, suggests
that even frequent attendees make a pause in their participation, although these breaks are usu-
ally short, i.e. long breaks of five and more years occur with a low probability, Fig 3. A long-
period of non-participation results in fading of existing collaboration ties with the community
while new ones are never formed. Due to this fading, the probability to attend the meeting
decreases with total number of non-participations. This indicates that conference participation
of most scientists takes place in a limited period of time with a relatively short and small num-
ber of breaks.

As it was shown in Ref [12] the distribution of the journal career longevity exhibits a trun-
cated power-law behaviour with cut-off around 10 years. The exponential cut-off in the distribu-
tion of all three measures is a consequence of the two combined finite-size effects that influence
the asymptotic behaviour, the finite life time of scientist’s association with one community or
her/his career in one field of research or in science in general [12], and limitations of used data-
sets. This effect will be also observed in the distribution of conference participations. The end of
a career inevitably results in a termination of participation in conferences and thus also the con-
ference community membership. Also, used datasets have a relatively short time span (less than
three decades), due to which they do not include scientists with long careers [12]. Both of these
effects affect the value of the exponential cut-off, which is lower in the case of conference partici-
pation, between 4 and 9 years, compared to the one observed for the career longevity.

Model

The empirical results from six different series shown in the previous section indicate that the
probability for a scientist to attend the next meeting of a conference series depends on the bal-
ance of previous participations and non-participations. Petersen et al. [12] show that Matthew
(rich get richer) effect is responsible for the career longevity in several competitive professions,
including science. They argue that it becomes easier to move forward in the career with an
increasing past success of an individual, and show, using their stochastic career progressive
model, that this mechanism leads to a truncated power-law distribution of the career longevity.
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In their model, they assume that the stochastic process governing career progress is similar to
Poisson process, where progress is made at any given step with the rate g(x) = 1 — exp[—(x/
x.)”], where 1/x_ is a hazard rate corresponding to random career ending while the parameter o
is the same as power-law exponent in the pdf of career longevity. Using this model for o < 1
they were able to obtain truncated power-law distributions for career duration in several
professions.

The empirical results of conference participation patterns suggest that the probability for a
scientist to participate in a conference is not constant or random, but that it rather grows with
the number of participations. This is reflected in the increase of proportion of authors who are
going to attend the conference next year with total number of previous conference attendance
(see Figure A in S1 File). Higher number of participations of a scientist at the conference results
in better connections with the community and thus higher probability that the author will par-
ticipate in the following conference. But unlike career longevity, where the length of the waiting
times between two successive steps in the career does not influence the progress rate, the proba-
bility for conference participation is strongly influenced by the number and length of pauses
(Figure B in S1 File). The longer the scientists are absent from the community the weaker are
their connections and lower are the probabilities to participate in the following events. For this
reason and the fact that the pdf obtained from the model proposed in Ref [12] exhibits a trun-
cated power-law only for the exponents & < 1 Petersen et al. model [12] cannot be applied for
modelling conference participation dynamics.

We propose a new stochastic model for conference attendance dynamics which can explain
our empirical findings. Our model is based on a 2-bin generalized Pélya process [22-24] and
random termination time of a career. As opposed to the Petersen model where the progress
rate depends only on the current position of scientist in his/her career, the 2-bin generalized
Pdlya incorporates dependence on the balance between participations and non-participations.
Let x stands for the total number of participations at the conference, y stands for the number of
conferences an author has not participated since she/he appeared at the conference for the first
time and ¢ is the number of events held, t = x + y. All authors start with x = 1 and y = 0. Accord-
ing to our model, the probability that a scientist with x total number of participations and y
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number of non-participations will appear at the next conference is given by
xf z°
XAy ty) 1+

glx,y) = : (1)

X
Yo

p is the exponent of the model, and y, determines the initial balance value. The probability that
a scientist will not attend the next conference is equal to 1 — g(x, y). Depending on the exponent
p> the function g can correspond to positive (p > 1) or negative feedback (p < 1) [22]. When
p=1and y, =0, the Eq 1 is equivalent to the equation for a Pélya-Eggenberg problem [25]. As
we shall see in the following section, the value of the parameter p for all conferences is larger

where z = - measures the balance between participations and non-participations, parameter

than one, suggesting that the conference participation dynamics is characterized by the positive
feedback: scientists who participate in the conference frequently and make less and shorter
pauses have a stronger association with the conference community and thus have a higher
probability to participate in the following events. The value of the parameter y, determines the
probability of a scientist to attend the next event after her/his first occurrence at the conference.
According to our model this parameter is the same for all scientists attending one conference
series, thus it can be interpreted as a measure of the conference community inclusiveness.

Evolution equation. The probability P(x, ) for the author to have x conference participa-
tions after t conferences since his/her first participation is equal to the probability to attend the
next conference g(x — 1, t — x) times the probability of already attending x — 1 conferences at
time ¢ — 1 plus the probability of skipping the next conference 1 — g(x, t — 1-x) times the proba-
bility of already attending x conferences at time t — 1:

(x—1)
(x=1)"+(t—x+y)

(t—1-x+y)
X+ (t—1—x+y)

P(x,t) = P(x—1,t—1)+ P(x,t —1). (2)
The probability distribution P(x) of the number of total conference attendances for a partic-
ular conference series is obtained by summing P(x, t = T) over all possible T:

P(x) = iP(x, t = T)P(T) , (3)

where T denotes the duration of a scientist’s membership in the community. In our case, we
assume that the duration of a scientist’s membership in a conference community can be termi-
nated at any year after his/her first appearance with probability H, which gives the distribution
of time intervals

P(T)=H(1-H)"" (4)

Numerical simulation results

Since the analytical solution of Eq 3 cannot be obtained, we estimate the model parameters y,,
H and p using numerical simulations (see Methods). The best estimates of the model parame-
ters for each of the six conferences are given in Table G in S1 File. As shown in Figs 1, 2 and 3,
the model with the properly chosen parameters nicely reproduces the behaviour of participants
at six conferences, for all three measured quantities.

For all six conferences the estimated value of parameter p is greater than 1, which suggests
that the positive feedback mechanism underlies the conference participation dynamics. This
means that the probability for a scientist to attend the next year event grows superlinearly with
the balance between the number of participations and pauses (z). The value of the parameter y,
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together with the value of p determines the probability for a scientist to participate in the con-
ference next year after his/her first participation, i.e. the initial inclusiveness of the conference
community. Table H in S1 File shows the estimated value of the initial inclusiveness for all six
conferences. The APSMM has the highest probability, around 25%, for newcomers to attend
the conference next year, while APSAM has the lowest, 9%. One could assume that the size and
diversity of topics of a conference have an essential influence on conference inclusiveness, but
according to our results this is not the case. The ordering of the conferences according to size,
Table H in S1 File, and their initial inclusiveness do not correlate. APSAM is the second largest
conference but has the lowest inclusiveness, while the RECOMB as the smallest conference is
ranked as third and has the inclusiveness of 15%. Further, it follows from our results that the
diversity of topics covered by the conference does not have a significant effect on the return
probability of newcomers. Although the first ranked conference according to inclusiveness,
APSMM, covers the widest range of topics among considered conferences, the APSAM and
SIAM, which are also considered general conferences, have a lower inclusiveness than NIPS
and RECOMB. This suggests that the conference inclusiveness is influenced by some other fac-
tors, which are not related to the size, degree of specialisation or localisation (national and
international), but rather to social structure and openness of the conference community toward
newcomers.

We solve Eq 3 numerically using an iterative method (see SI for more details) and compare
it with simulation results. Fig 1 shows an excellent matching between results obtained using
the iterative algorithm and numerical simulations for the estimated values of parameters.

Discussion and conclusion

The goal of this paper has been to investigate the conference participation patterns and propose
a simple stochastic model of conference participation dynamics. The motivation behind this is
to better understand the mechanisms that underlie the repeated participation in the same con-
ference series and explore whether the conference series topic, size, degree of specialisation,
longevity and degree of localisation (national and international) influence the participation
probability and inclusiveness of the specific community. Our study is based on empirical analy-
sis and modelling of authors participation at six different conference series in the last three
decades: APSMM, APSAM, SIAM, NISP, ICS and RECOMB. We note here that it would be
important to verify our findings with the data from other conferences.

The set of considered conferences is very heterogeneous. Although they differ in size, topic
and topic diversity, national structure of participants and conference longevity, they are char-
acterized with similar participation patterns. The distributions of the total number of participa-
tions for all six conferences exhibit the same, truncated power-law, behaviour with values of
exponent a between 1.6 and 2.7. A similar behaviour is also observed for the distributions of
the number of successive participations and the duration of pauses between them. The
observed statistical evidence strongly imply that the dynamics of conference participation is
governed by universal forces which are independent of the specific conference features or the
scientific field. This and the fact that conferences often have a stable core of attending partici-
pants [20] suggests that these have social origins and that social factors, such as the association
with a conference community and its inclusiveness, strongly influence the probability for a sci-
entist to attend the future meetings and their participation patterns at the specific conference
series, accordingly.

The observed truncated power-law behaviour of the distributions of participations indicates
that the probability for a scientist to participate in the next year conference is growing(decreas-
ing) with the balance between the number of participations and pauses. To further explore this
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we proposed a stochastic model based on 2-bin generalized Pélya process which incorporates
the dependence on the ratio between number of participations an pauses. Our model shows
that the positive feedback mechanism underlies the conference participation dynamics. The
probability for a scientist to attend a conference grows superlineary with the number of partici-
pations, while the frequent pauses have the opposite effect. The scientists who are able to over-
come the initial obstacles and create social ties with the conference community by frequent
participation at the beginning have a higher probability to attend the conference in the follow-
ing years. A frequent participation strengthens the scientist’s association with a conference
community which further increases the probability for future participations. On the other
hand, scientists with a small number of initial participations have a low probability to partici-
pate in the following conference, thus small number of participations, and eventually stop
attending the conference. The initial inclusiveness of the specific conference community has
the main influence on early participation patterns. As we showed, this inclusiveness does not
depend on the size, degree of specialisation or topic of the conference, but rather on the open-
ness of the community toward newcomers.

Our analysis indicates that social factors, such as the association with the community and
the community inclusiveness are the main driving forces of conference participation dynamics.
In general the community/group cohesion and the ability to attract and retain newcomers and
other members influence the dynamics of their participation in group activities [26]. On the
other hand, a member’s engagement in group activities strengthens ties to other group/com-
munity members, and contributes to the creation of the bonding capital, while the ties of non-
attendees dissolve and weaken with time [27]. Conference communities are just one example
of these systems, thus we expect to observe the similar group participation patterns in other
types of social communities, both online and offline. Further investigations and studies of
other social systems will reveal and characterize the connection between a social network struc-
ture and group inclusiveness, and participation dynamics in group activities.

Methods

Data filtering Identification of the different authors may involve a few issues. On one hand, an
author may use different spelling variants to sign his first and middle name. On the other
hand, the author’s name may be related to several different authors, thus using only the initials
of the last name and first name increases additionally error rates in disambiguating the author
names. In our data sets, data from NIPS and RECOMB conferences did not require additional
cleaning, while for the SIAM and ICS data, we have used python fuzzy partial string matching
of author’s first and middle names, which gave a high accuracy. For APSMM and APSAM con-
ferences, where data are highly heterogeneous, we have used a method described in [28] to dis-
ambiguate the author names. This method considers pairs of names that match on last name
and first name initials. Then it groups the authors based on their affiliation and co-authors.
Because the same affiliation could be formatted differently, the two affiliations were considered
the same if their fuzzy token set ratio was higher than 50%.

The sources and detailed description of the data are given in Tables A, B and C in S1 File.
For NIPS, ICS and RECOMB, we have complete data from their very beginning. Remaining
data sets required filtering out the authors with a high probability of attending conference
before the starting year in our dataset, Y,. Therefore, for APSMM, APSAM and SIAM we have
isolated authors with the first recorded year of conference attendance, smaller than Yo+(7),
where (7) is the average waiting time between a consecutive conference attendance for all the
authors who took part at the conference during the [Yj, Y] period. This way we excluded
between 10% (APSMM and SIAM) and 25% (APSAM) authors from our analysis.
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Functional fits We have used the maximum-likelihood fitting method [29] to fit three dif-
ferent functions to the probability distributions of the total number of participations, the num-
ber of and the time lags between two successive participations: exponential function e %,
power-law function x 7 and truncated power-law x™ e %* It follows from the comparison of
fits of these three functions to empirical data that the truncated power-law is the best fit for the
probability distribution of all three measured quantities, see Figs 1, 2 and 3. In order to com-
pare these three fits we calculate the log likelihood ratio, R, and 7-value (see Ref [29]) which
compares the fits to the power-law with exponential cut-off with the pure power-law for the
distribution of total number of participations (Table D in S1 File) and the number of successive
participations (Table E in S1 File). In the case of nested distributions, the negative value of R
indicates that the larger family of distributions, in this case the truncated power-law, is a supe-
rior model. When the value of R tends to 0, one can use 7-value. The small 7z-value suggests
that the smaller family of distributions, in this case power-law, can be ruled-out. Both the log
likelihood ratio and the 7-value indicate that the truncated power-law is a superior model com-
pared to pure power-law for both distributions. A similar procedure can be applied for the
comparison between truncated power-law and exponential fits, but since from the visual
inspection it is clear that the distributions do not follow the exponential fits, we have omitted
these results. The comparison between exponential and the power-law with exponential cut-off
fit, given in Table F in S1 File, indicates that the power-law distribution with exponential cut-
off fit is better than exponential fit for the distribution of the time lags. For all six conferences,
the power-law with exponential cut-off distribution gives the best fit for all three empirical
distributions.

Parameter estimation We simulate the model for N = 100000 different authors. Starting
from x =1 and y = 0 at ¢ = 1, an author will appear at the next conference with probability g(x,
y) or skip it with the probability 1 — g(x, ¥). The author can terminate his/her membership in
the community at each time step with the probability H. In order to estimate the values of
parameters p, yo and H, we calculate the distribution of total number of attendances x, from the
simulations and compare it to the empirical distribution using Kullback-Leibler Distance [30].
We perform the simulations for several different sets of parameter (y,, H, p) to determine
which combination of parameter values makes the model optimally close to the empirical data.
For each parameter set the results are averaged across 100 simulations.

Supporting Information

S1 File. Supplementary Information: A theoretical model for the associative nature of con-
ference participation. Proportion of conference participants g with x conference attendances
who are going to attend the conference next year (Figure A). Proportion of conference partici-
pants p with n missed conferences after x-th conference attendance who are going to skip the
conference next year, but will take part at some future conference from the observation period
(Figure B). Pages on the web from which we downloaded conference data (Table A). Summary
of the conference data. Columns 2 and 3 indicate for each conference the year in which data we
have collected begin (Y,) and end (Yy). The total number of different participants at the confer-
ence during that period of time is given in column 4 (Table B). The number of participants at
the conference per year (Table C). Log likelihood ratio R and the n-value compare the fit to
the power-law with the fit to the power-law with an exponential cutoff for the probability dis-
tribution of number of conferences at which each author appears (Table D). Log likelihood
ratio R and the n-value compare the fit to the power-law with the fit to the power-law with an
exponential cutoff for the probability distribution of the number of successive participations at
the conference (Table E). Log likelihood ratio R and the 7-value compare the fit to the
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exponential with the fit to the power-law with an exponential cutoff for the probability distri-
bution of the time lag between two consecutive conference participations (Table F). The opti-
mal parameter values of the model for each conference (Table G). Stagnancy rate 1 — g(1, 0) at
t =1 for each conference and exponent o of power-law with an exponential cutoff distribution
fit with the corresponding conference order (Table H).

(PDF)
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Abstract

The communication processes of knowledge creation represent a particular class of human
dynamics where the expertise of individuals plays a substantial role, thus offering a unique
possibility to study the structure of knowledge networks from online data. Here, we use the
empirical evidence from questions-and-answers in mathematics to analyse the emergence
of the network of knowledge contents (or tags) as the individual experts use them in the pro-
cess. After removing extra edges from the network-associated graph, we apply the methods
of algebraic topology of graphs to examine the structure of higher-order combinatorial
spaces in networks for four consecutive time intervals. We find that the ranking distributions
of the suitably scaled topological dimensions of nodes fall into a unique curve for all time
intervals and filtering levels, suggesting a robust architecture of knowledge networks. More-
over, these networks preserve the logical structure of knowledge within emergent communi-
ties of nodes, labeled according to a standard mathematical classification scheme. Further,
we investigate the appearance of new contents over time and their innovative combinations,
which expand the knowledge network. In each network, we identify an innovation channel
as a subgraph of triangles and larger simplices to which new tags attach. Our results show
that the increasing topological complexity of the innovation channels contributes to net-
work’s architecture over different time periods, and is consistent with temporal correlations
of the occurrence of new tags. The methodology applies to a wide class of data with the suit-
able temporal resolution and clearly identified knowledge-content units.

Introduction

The knowledge creation through online social interactions represents an emerging area of
increased interest both for technological advances and the society [1] where the collective
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knowledge is recognised as a social value [2-4]. Recently studied examples include the knowl-
edge accumulation in systems with direct questions-and-answers [5], crowdsourcing scientific
knowledge production [6, 7] and scientific discovery games [8]. Similar phenomena can be
observed in business/economics-associated online social networking [9-11]. On the other
hand, the study of the collective knowledge creation opens new topics of research interests. In
particular, it provides ground to examine a novel type of collective dynamics in social systems
in which each actor possesses certain limited expertise. In the course of the collaborative social
efforts to solve a problem, such as communications through questions-and-answers that we
consider here, the tacit knowledge and the expertise of individual actors are externalised and
dynamically shared with other participants who take part in the process. When a systematic
tagging applies to the shared cognitive contents, the process leads to an explicit knowledge [3]
as the output value (the network of knowledge contents), from which others can learn. Further-
more, the dynamics underlying knowledge creation exemplifies multi-scale phenomena related
to the cognitive recognition, which may occur in a wider class of systems, social, biological and
physical [17].

By the nature of the underlying stochastic processes, the knowledge networks that emerge
through the collaborative social endeavours necessarily reflect the expertise and the activity
patterns of the involved participants. Furthermore, these networks tend to capture the logical
relationship among the used cognitive contents as it resides in the mind of each participating
individual. In this regard, these networks substantially differ from the commonly studied
knowledge networks, which are produced in ontological initiatives [12-14] such as those from
the online bibliographic data and Wikipedia, or the mapping citation relationships between
journal articles [15], to name a few. Also, the stochastic process of knowledge creation through
questions and answers are different from the spreading dynamics of scientific memes, whose
inheritance patterns are identified in citation networks [16].

In recent work [5], we have shown that the knowledge creation by questions-and-answers
involve two-scale dynamics, in which the constitutive social and cognitive elements (individual
experts or actors and the knowledge contents that they use) interact and influence each other
on the original scale. This complex system evolves in a self-organised manner leading to the
emergence of socio-technological structures where the involved actors share the accumulated
knowledge. These structures are visualised as communities on the related bipartite network of
actors and their artefacts [5]. Furthermore, the advance of innovation in this process, which
builds on the expertise of the involved participants, leads to the expansion of the knowledge
space by adding new cognitive contents. The central question for the research and applications
of the collective knowledge creation is how these stochastic processes work and potentially can
be controlled to converge towards the desired outcome. Furthermore, what is the structure of
the emergent knowledge that can be used by others?

A part of the answer relies on the structure of the networks, co-evolving with the knowl-
edge-sharing processes among the actors possessing the required expertise. In [5] the empirical
data from the Stack Exchange site Mathematics (http://math.stackexchange.com/) were down-
loaded and analysed, as a prototypal example. The sequence of events in the process of ques-
tions-and-answers (Q&A) suitably maps onto a growing bipartite network of actors, as one
partition, and their questions and answers, as another partition. The emergent communities on
these networks have been identified, consisting of the involved actors and the connected ques-
tions-and-answers. As a rule, in each community a dominant actor is found, representing an
active user with a broad expertise. The knowledge elements of each question are specified
according to the standard mathematical classification scheme by one to five tags (for instance,
“functional analysis”, “general topology”, “differential geometry”, “abstract algebra”, “algebraic
number theory”). Consequently, the expertise of the actor can be specified as a combination of
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tags that the actor had frequently used. Assuming that a minimal matching applies among the
actor’s expertise and the contents of the answered question, and using theoretical modelling
based on the empirical data, it was shown [5] that the emergent communities and the knowl-
edge that they share strongly depend on the population of the involved experts and their activ-
ity patterns.

In this work, using the same empirical dataset, our focus is on the networks of cognitive ele-
ments (tags) that emerge in these processes with questions-and-answers. Different from the
aforementioned bipartite networks, these emergent knowledge networks contain subelements
of both partitions, namely, knowledge contents of questions as well as a measure of the users’
expertise. Such networks, supported by the current information and computer technology
(ICT) systems, embody the collective knowledge that emerges via the cooperative social efforts
and can be used by others to learn. Moreover, the relevance and speed of knowledge acquisition
from these networks may be more efficient than from the networks generated through wide-
scale ontological plans and efforts. We apply the techniques of algebraic topology of graphs
[18-22] to investigate higher-order structures that characterise the connection complexity
between knowledge elements in the emergent networks. Specifically, we aim to determine

o the metrics to quantify the higher-order combinatorial structures which contain the logical
units of knowledge as the actors use them in communication;

o the role of innovative contents brought over time by the experts in building the network
architecture.

In addition to the standard graph-theoretic metrics and community detection in the emer-
gent networks of knowledge units, we describe their hierarchical organisation using several
algebraic topology measures. Further, we identify the appearance of new tags over time and
investigate the subgraphs (innovation channels) where these new cognitive elements attach to
the existing network. By tracking topology measures over the consecutive time periods for the
innovation channel together with the topology of the entire network, we quantify the impact of
the new-added contents. Our main findings indicate that the networks of cognitive elements
map to a nontrivial hierarchical architecture which contains aggregates of high-order cliques.
The increasing structural complexity of these networks over time, owing to the innovation
expansion, is consistent with the logical structure of knowledge that they contain and temporal
correlations in the appearance of new cognitive contents.

In the following, the networks of tags are built from the empirical data for four successive
one-year periods. At the initial stage, the networks are filtered to remove redundant links. At
the next stage, network measures are obtained at the graph level, and the community structure
is determined. At the final stage, the algebraic topology analysis of these networks for different
periods and filtering levels is performed. The analysis is focused on the subgraphs, which are
related to the appearance of new tags, representing the innovation channels of these networks.

Emergence of the tags networks
The Q&A process and structure of the empirical data

In this work, we have constructed knowledge networks from the empirical data, which are col-
lected and described in Ref. [5]. In the data, the knowledge contents are mathematical tags
used in the communications on Q&A system Mathematics Stack Exchange. In particular, the
content of each question is specified (tagged) by one or more (maximum five) tags according
to the standard mathematical classification scheme. While in Ref. [5] we investigated the role
of expertise in the social process taking part on the co-evolving bipartite network of users-and-
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questions, here we focus on the network of tags as the elementary units of knowledge that are
used by the actors in this process. With the help of the agent-directed modeling, in Ref. [5] we
have demonstrated that the considered empirical process obeys the fundamental assumption
of knowledge creation, i.e., that at least minimal matching between the contents of the question
and the expertise of answering actor occurred in each event. Therefore, the emergent network
of tags reflects the way in which these knowledge units are used in the process and, indirectly,
the expertise of the social community. Moreover, the architecture of the emergent network of
tags is expected to mirror the logical structure of knowledge, as it is presented by the experts
involved in the knowledge-creation process.

To be consistent with the previous studies and the associated analysis of Ref. [5], we use the
same dataset that was downloaded on May 5, 2014, from https://archive.org/details/
stackexchange and contains all user-contributed contents on Mathematics since the establish-
ment of the site, July 2010, until the end of April 2014. Specifically, the considered dataset con-
tains 269818 questions, posted and answered by 77895 users, 400511 answers, and 1265445
comments. For the present analysis, from the available high-resolution data we use the infor-
mation about questions, i.e., ID of each question, its content as a list of tags, and time stamp.
The tags and their combinations define the knowledge landscape whose size is not constant but
increases with time and the number of posted questions. In this way, the innovation increases
as the key feature of the collective knowledge creation [5]. By investigating the network of tags,
here we examine how the knowledge creation can be expressed by the topological complexity
of the expanding knowledge landscape.

Mapping data to networks of tags is performed within four consecutive periods; a period is
one-year long. First, the questions that are posted within the considered year period are
selected, and a unique set of tags that are involved in these questions is formed. Each tag repre-
sents a node of the tags network. Two tags (i, j) are linked by multiple connections w;;, where
the link multiplicity w;; = 0, 1, 2, - - - represents the number of common questions in which the
considered pair of tags appeared in the selected dataset. The resulting networks are termed
tagNetY-k, where k = 1, 2, 3, 4 indicates the considered year period.

Graph measures of tags networks without redundant connections

The raw networks of tags contain a large number of redundant connections leading to a large-
density graph, cf. an example in Fig 1. To move forward, we first apply an advanced procedure
to eliminate the potentially redundant links.

Filtering redundant connections in a network of tags is motivated by the following facts. In
the data, the number of tags is between 500 and 1000 while the number of posted questions per
year are between 15 and 120 thousand, which results in a quite dense network of tags. On the
other hand, a broad distribution of the tags frequencies [5] suggests that a relatively small num-
ber of tags occurs quite frequently. Among the most frequent tags are “homework”, “proof-
writing”, “reference-request”, and “terminology”, which are not related to any particular field
of Mathematics but rather determine the type of question asked. For this reason, these tags can
occur in many different combinations of tags, thus increasing the network’s density. Here, we
apply an algorithm to decrease the network’s density by identifying the edges that do not incur
as a result of a random process. For this purpose, the weighted network is considered as a mul-
tigraph where the weight w;; represents a multiplicity of links between the pair of nodes (i, j).
We apply the filtering technique described in Ref. [23]; it utilizes a random configurational
model for weighted graphs that preserves the total weight of the realised links, W = ¥ s;, as
well as the node’s strength s; = ¥; w;; on average. To avoid the influence of the filtering on
higher structures, we apply the algorithm to each link independently.
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Fig 1. The network tagNetY-1: a close-up of unfiltered network near some large nodes (left) and the whole network filtered at confidence level
p = 0.1 (right).

doi:10.1371/journal.pone.0154655.g001

A pair of nodes (i, ) is selected proportionally to their strengths s; and s;. In the considered
network, the selected pair is connected by the weighted link of the multiplicity w;;. In the ran-
dom configurational model, the occurrence of a link with multiplicity m between the selected
pair of nodes is given by the conditional probability

WY /85 \" 55\ W
P"f(m|s"’sf’w)_(m> (ws) (L-2w2) (1)

Then the probability that the realised weight w; of the link (i, j) occurred by chance (p-
value) according to the marginal distribution given by Eq (1) is computed as [23]

P(wy) = > Py(mls,s, W). (2)

metj

The links for which the probability P,(w;;) appears to be larger than a preset confidence level
p are removed. The remaining edges, which satisfy the condition P,(w;;) < p, represent the fil-
tered network with the specified confidence level. Here we examine the structure of the filtered
networks obtained for several values of the parameter, p € {0.1, 0.05, 0.01}. As an example, the
right panel in Fig 1 shows the first year network after the filtering procedure with the confi-
dence level p=0.1.

The networks of tags for different periods and filtered at various confidence levels are ana-
lysed by algebraic topology techniques, as presented in the following Sections. In this regard,
we turn the weighted networks into binary graphs, which retain all important topological fea-
tures of the weighted graphs while making the computation less demanding. Here, we first
show that the filtering process leads to a reduced-density graph but preserves the relevant
(nonrandom) connections. Specifically, the thematically connected groups of nodes (cf. labels
of nodes in Figs 1 and 2) appear to form distinct communities on the network. In these
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Fig 2. The community structure of the network of tags for the fourth period, which is filtered at p = 0.1. In each community, the
mutually connected cognitive contents (mathematical tags) are indicated by the nodes’ labels.

doi:10.1371/journal.pone.0154655.g002

networks, mostly non-overlapping communities occur. Consequently, they are suitably identi-
fied by methods based on the optimisation of the modularity [24-26]. A module is recognised
as a densely connected group of nodes that are sparsely connected to nodes in other groups
[27]. For a better comparison of different networks, the communities are systematically deter-
mined at the same resolution parameter (standard resolution 1.0 in Gephi, the open graph
visualization platform http://gephi.org). This large-scale clustering of the knowledge networks
appears systematically during the network growth. See also the structure of innovation chan-
nels studied in the following Section.

For comparison, in Table 1 we summarise the standard graph-theoretic measures [27] of
the networks of tags for four consecutive periods and the confidence level p = 0.1. Note that the
network of tags grows over years by the appearance of new tags, but also shrinks by the number
of tags that appeared in the previous period and were not used in the current period.

PLOS ONE | DOI:10.1371/journal.pone.0154655 May 12,2016 6/17
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Table 1. The graph-level measures for tags networks for four consecutive periods, filtered at confidence p = 0.1.

Net N
TagNetY-1 582
TagNetY-2 702
TagNetY-3 856
TagNetY-4 1033

(k) (€) d Cc P M
10.07 3.02 6 0.365 0.018 0.439
14.45 2.86 5 0.365 0.021 0.441
20.09 2.72 5 0.351 0.023 0.436
22.52 2.68 5 0.338 0.022 0.422

The number of nodes N, average degree (k), average path length (¢), diameter d, clustering coefficient Cc, graph density p = 57+, and modularity M =

(N—1)?

Yilei— () e,-/-)z), where the summation runs over different communities.

doi:10.1371/journal.pone.0154655.1001

Topology of the tags networks

In addition to the standard graph-theoretic analysis, cf. Table 1, we apply techniques of alge-
braic topology to determine simplices and simplicial complexes, which describe higher order
structures of these networks. Definitions and detailed explanation of topological quantities
used in this presentation may be found in Ref. [19] and references within. The simplices are
identified as maximal cliques of all orders, i.e. dimensions. Then the topological complexity of
the simplicial complex constructed from the complex network is quantified by the number of
cliques at each topological level (dimension) g, starting at g = 0 up to the g,,,,, — 1. A clique at
level g = 0 is an isolated node while g = 1 is a link, g = 2 is a triangle and so on up to the level
Gmax — 1 representing the largest clique found in the network.

Algebraic topology measures

We use the Bron-Kerbosh algorithm [21, 22] to determine cliques of all orders that are present
in the studied network. The resulting matrix of maximal cliques (MC) thus contains informa-
tion about the identity index of each clique as well as the identity index of each node that par-
ticipates in that clique. Using rich information of the MC matrix, we can characterise the
topological spaces around each node as well as the organisation of cliques in the entire network
at each topological level. These goals are achieved by determining several node-related quanti-
ties [19] in addition to the commonly defined structure vectors of the network [18-20, 28].

In particular, the topology vector Q' is associated with the node i

Qi:{Qi 717Qi 27"'7QZ)} ’ (3)

Imax Amax—

where the components Q}, k=0, 1, - - -Gax — 1, describe the number of k-dimensional cliques
in which the node i participates. Then the influence of a node in the overall network architec-
ture is quantified by topological dimension dimQ' of the node i, which is introduced in [19]; it is
defined as the total number of all cliques in which the node i participates

Amax —~

dimQ = Z Q. (4)
gq=1

To demonstrate the relevance of nodes, we compute the topological dimension of each node
in the original and filtered network of tags for the first-year interval, which are shown in Fig 1.
The components at each q level of the top 40 nodes (tags), ordered according to their topologi-
cal dimension, are displayed by three-dimensional plots in Fig 3. As this figure shows, the
applied elimination of the links reduces not only the node’s topological dimension but also
changes the structures at g-levels where the considered node is present. Consequently, the
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Fig 3. Components Q of the first 40 tags ranked by their topological dim@ for the tagNetY-1 network
filtered at p = 0.1 (a) and with no filtration (b).

doi:10.1371/journal.pone.0154655.g003

ranking order of a particular node can be changed (see the corresponding lists of nodes in
Table 2), which is compatible with the altered importance of that node in the filtered network.

We further compare the role of individual nodes in the networks evolving over time, which
are filtered at different confidence levels, i.e., p = 0.1, p = 0.05 and p = 0.01. We determine the
topological dimensions of all nodes in the corresponding filtered networks for the four succes-
sive year-periods. The ranking distributions of the node’s topological dimensions are displayed
in Fig 4a. This Figure shows that, first, nodes with a gradually higher topological dimension
appear at later periods, suggesting that topological complexity of tags networks increases over
years. Furthermore, within each year, the reduced confidence level p results in a simpler struc-
ture of the nodes’ neighbourhood (and possible shifts in the ranking order of nodes, as

Table 2. Names of the first twenty tags ordered according to their topological dimension in the network of tags before filtering and after filtering at
the indicated confidence level p has been performed.

before filtering

calculus

linear algebra
analysis

homework

reference request
probability
sequences and series
geometry

functions

real analysis
combinatorics
abstract algebra
number theory
terminology

complex analysis
general topology
category theory
algebraic geometry
discrete mathematics
logic

doi:10.1371/journal.pone.0154655.1002

p=0.1

number theory
geometry

algebraic topology
combinatorics
abstract algebra
functional analysis
algebra precalculus
group theory

real analysis
differential geometry
logic

sequences and series
soft question
probability
integration
algorithms

complex analysis
analysis

differential equations
calculus

number theory
geometry

functional analysis
sequences and series
combinatorics
algebraic topology
abstract algebra
differential geometry
calculus

real analysis
probability

algebraic geometry
algebra precalculus
algorithms

soft question

logic

analysis

complex analysis
integration
differential equations

p =0.01

geometry

number theory
calculus

algorithms
functional analysis
abstract algebra
reference request
real analysis
algebra precalculus
logic

sequences and series
probability

linear algebra
algebraic topology
combinatorics
complex analysis
dierential geometry
soft question
discrete mathematics
analysis

PLOS ONE | DOI:10.1371/journal.pone.0154655 May 12,2016

8/17



el e
@ ) PLOS ‘ ONE Knowledge Networks Topology and Innovation

- 0% g g
1 43 LE !
s a
"33
2§
1070 B ¥ 10"} « 1vpoo1
¢ 3 og + 1Yp005
. fis « 1Ypo1
e = 10 2Ypoo1
& T 107 °
z 10’ g 2Yp005 i
= = 2Ypo1 <
& 47l @ 3vpoot
£ 4 3Yp005
10° s < 3vpot
L[ > 4vpoot
107« 4Yp005
(@) + 4Yp01 b
| y=0.01x°%%(1000-x)**® ®)
10 . : . .
10° 10' 10° 10° 10" 10' 107 10°

rank rank

Fig 4. Ranking distributions of the topological dimension of tags dimQ’ for all years and all p values
(a) and scaled distribution dimQ//max(dimQ’) of all data (b). The legend abbreviations: 1Yp001 indicates
the first-year network filtered at the level p = 0.01, and so on. Fit lines are according to the discrete
generalised beta function (5); in panel (a) the parameter b = 0.67 + 0.03 and c varies from 0.32 for 1Yp001
and 0.71 for 2Yp001 to 0.82 for 3Yp001 and 4Yp001, with error bars +0.03.

doi:10.1371/journal.pone.0154655.g004

mentioned above). However, all networks exhibit a broad ranking distribution of the node’s
topological dimension with a power-law section. The distributions are fitted by the discrete
generalised beta function

f(x) =ax*(N+1—x) (5)

with different parameters a, b and c. The robustness of the observed scaling feature is further
confirmed by the scaling collapse of all curves to a master curve, shown in Fig 4b. The scale-
invariant ranking, where the node’s topological dimension is scaled by the maximal dimension
found in the corresponding network, suggests that the relative topological complexity of the
tags networks is preserved over time and the degree of filtering.

Topological spaces in the filtered networks of tags

To characterise the structure of the topological levels g =0, 1, 2, - - -K of the entire graph, we
compute three commonly used structure vectors [18-20, 28, 29]. In particular, the first struc-
ture vector

Q = {Qq:Ka Qq:Kfla ) Qq:l ’ Qq:()} (6)

has K + 1 components that describe the number of g-connected classes, where K + 1 = g«
indicates the size of the maximal clique found in the graph. Furthermore, the components of
the second structure vector

Ns = {nq:K7 l’lq:K717 Y nq:p nq:()} (7)

designate the number of simplexes from the level g up to the top level. The third structure vec-
tor is often defined such that its g-level component
Q=1- %
n

q

(8)

determines how the simplices of higher order are connected at the level g. Fig 5 summarises the
components of two structure vectors for the tags networks emerging over different periods and
varied filtering level p.
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Fig 5. The components of (a) the first structure vector Q, and (b) the third structure vector aq =
1 - n,/Q, plotted against the topology level q for each year period and three filtering levels p = 0.1,
0.05, 0.01. The legend abbreviations are explained in connection to Fig 4.

doi:10.1371/journal.pone.0154655.g005

By comparing the curves for different one-year periods but fixed filtering level, say p = 0.1,
we observe that the network topological complexity increases over time. It manifests in the
increased number of connectivity classes (components of the first structure vector) at all topo-
logical levels as well as the shift of the maximum from q = 2 (triangles), in the first year, to
q = 3 (tetrahedra) and q = 4 (5-cliques), in the fourth year. At the same time, we observe that
the number of topological levels increases as well as the connectivity among the cliques at each
topology level, cf. the third structure vector in the Fig 5b.

On the other hand, by decreasing the filtering confidence level p, a more sparse network is
obtained having a smaller number of topological levels and a reduced number of simplicial
complexes. However, they proportionally preserve the above-described tendency of the
enhanced complexity of combinatorial spaces over time. The corresponding curves for p = 0.05
and p = 0.01 are also shown for each year-period in Fig 5. According to the structure vectors in
Fig 5, all filtered networks exhibit a systematic shift towards richer topology in later years.
Once again, these results confirm the structural stability in Fig 4 of the emergent networks of
tags, which complements the logical organisation of knowledge contents in the communities in
these networks, demonstrated in Fig 2 and in the following Section.

Clustering of the innovative contents
Three aspects of innovation in the knowledge creation

The innovation growth [5, 30] is a crucial element of the process of knowledge creation. In the
voluntary system, the innovation that comes from the expertise of the actors involved in the
process was shown [5] to expand the knowledge space over time. To quantify the impact of
innovation onto the architecture of the emerging knowledge networks, we consider the follow-
ing three aspects of the innovation:

o the appearance of new tags due to the actor’s expertise;
o the occurrence of new combinations of tags expanding the knowledge space;

« the emergence of new combinatorial topological structures enriching the architecture of the
knowledge network.

In the following, we discuss in detail these features of innovation.
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Fig 6. The temporal sequence of the appearance of new tags present in the networks for Year-1, Year-2,
Year-3 and Year-4 periods (a). Temporal resolution is two days. The scaling of the standard fluctuation
function (b) and the power spectrum (c) of these time series. Panel (d) displays increase in the number of new
combinations of tags as a function of the number of questions over time.

doi:10.1371/journal.pone.0154655.g006

Fig 6a contains time sequence of the first appearance of tags that are present in the data of
each one-year period. Naturally, the sequence for Year-1 is the shortest, while the sequence for
Year-4 is the longest, since some tags that are present in Year-4 appeared in the earlier periods.
The time series contains the number of new tags appearing in the sequence of two-day time
intervals. The fractal analysis of these time series and their power spectrum, shown in Fig 6b
and 6¢ suggest that the appearance of new tags is not random but exhibits long-range temporal
correlations. Specifically, the plots in Fig 6b represent the fluctuation function F,(n) of the
standard deviations of the integrated time series at the interval of length #. They reveal scaling
regions (of different length for each time series) which permit determination of the Hurst expo-
nent via F,(n) ~ n'’. Values of the Hurst exponent H indicated in the legend suggest the fractal
structure of the fluctuations. It appears that the fractality increases over time from nearly ran-
dom time series with H = 0.51 + 0.01 in Year-1, to strongly persistent fluctuations with
H=0.72 £0.02, in Year-4.

Similarly, power spectra of these time series in Fig 6¢ exhibit long-range correlations accord-
ing to S(v) ~ v~* with two distinct exponents in high and low frequency regions. While the
low-frequency feature is similar for all considered periods, the pronounced scaling in the high-
frequency region gradually builds over years.

The number of unique combinations of tags was examined in the whole dataset and plotted
against the number of posted questions in Fig 6d. The plot exhibits a power-law
behaviourN, . ~ N, in the range above 10® posted questions. It represents the Heaps law
which appears to be in agreement with the ranking distribution of frequencies of the unique
combinations of tags, i.e., the Zipf’s law, as discussed in [5]. The occurrence of Heaps’ law is a
manifestation of the innovation growth [5, 30] in the process of Q&A. The exponent o < 1
indicates a sublinear growth of innovation with the number of posted questions. This depen-
dence suggests that a fraction of displayed items brings new combinations of tags while the
remaining questions use the already identified combinations.
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Fig 7. The structure of the innovation channel at the beginning of Year-2 (left) and Year-3 (right). New tags
were added to the filtered tags network of the previous year, forming structures of higher dimension than a triangle.
Communities of well-connected nodes show the logical grouping of mathematics subject categories, indicated by
labels on nodes.

doi:10.1371/journal.pone.0154655.9g007

The structure of innovation subgraphs

The appearance of new tags in the Q&A process leads to the expansion of the knowledge net-
work. In particular, the network grows by the addition of new nodes (cf. Table 1), as well as by
increasing its topological complexity measured by the presence of simplicial complexes of a
high order. In the remaining part of this section, we investigate how the new tags attach to the
existing nodes and affect the formation of higher order structures in the knowledge network.
For this purpose, we first define an innovation channel as a subgraph related with the new tags
appearing at the end of a considered one-year period. Specifically, the subgraph in the network
(filtered at p = 0.1) contains newly added tags together with the tags to which they attach and
form simplices larger than a single link (i.e., triangle or higher dimensional structure). The two
plots in Fig 7 show the structure of the innovation channels at the beginning of Year-2 and
Year-3 periods, respectively.

The innovation channels in Fig 7 grow over a one-year period; moreover, the innovative
nodes stick with the rest of the network (previously existing nodes and links) making with
them a tight structure that involves higher-order combinatorial spaces up to the largest cli-
que. The community structure in the innovation subgraphs, which is demonstrated in Fig 7,
reflects the thematic grouping of the entire knowledge network, as presented in Fig 2. For
example, the newly added tag “cohomology” sticks to the group where we also find “algebraic
topology”, “differential geometry”, “abstract algebra”, “complex geometry” and other themat-
ically related tags, cf. the lower left community in Fig 7 right panel. On the other hand, the
added tag “computational complexity” links to the community with “discrete mathematics”,
“algorithms”, “logics”, “combinatorics”, “computer science” and others, cf. the rightmost
community in the same Figure. Similarly, the node labels in all identified communities con-
firm their thematic closeness. Therefore, the expansion of the knowledge network by the
addition of innovative contents systematically obeys the overall logical structure of (mathe-
matical) knowledge. As mentioned earlier, the core of this feature of knowledge creation lies
in the crucial role of the actor’s expertise in the process of meaningful cognitive-matching
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actions. The logical structure of individual knowledge of each actor gets externalised during
the process of Q&A.

According to the results in Fig 6, the appearance of innovative contents boosts the process
of knowledge creation, leading to the observed temporal correlations, characteristic of collec-
tive dynamics. Analogously, here we show that the structure of innovation channels enriches
the topological spaces of the knowledge network. In Figs 8 and 9 we summarise the topological
measures of the innovation channels and compare them with the corresponding measures of
the entire network. In addition to the structure vectors defined in Eqs (6)-(8), here we also con-
sider the topological “response” function f; to express the shifts in the topology at each level g
in response to the changes in the network size. Formally, f; is defined [20] as the number of
simplices and shared faces at the level q.

Interestingly enough, the third structure vectors in Fig 8a and 8c show that the correspond-
ing channels exhibit a better connectivity up to the level g = 4 of 5-clique than the background
network. This feature of the innovation channels suggests the leading role of the innovative
tags in the observed increase of the topological complexity of the network over years. This con-
clusion compares well with the number of connectivity classes at different topological levels,
namely the first structure vectors in Fig 8b and 8d. The topology of the channel determines the
most ubiquitous structure in the entire network, corresponding to the peak in the first structure
vector. Furthermore, the increase of the topological complexity of the knowledge graphs over

consecutive periods is illustrated by the topological “response” function f,, which is shown in

@@ Network
B Channel:g>2

&= Channel:g>3

0.8

o
£ 06
o

q q

Fig 8. (a) and (c) The third structure vector and (b) and (d) the first structure vector for the networks of tags in Year-2 (left panels) and Year-4 (right
panels) and the corresponding innovation channels above the levelg =2 and g = 3.

doi:10.1371/journal.pone.0154655.9008
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Fig 9. It manifests in the increase of the number of topology levels, as well as the number of
simplices and shared faces at each topology level. Also, the maximum of the function f; shifts
towards more complex structures, i.e., from triangles at Year-2 to tetrahedra in Year-4. As the
plots in the lower panel of Fig 9 show, these topological shifts in the networks of different peri-
ods are tightly reflected in the structure of the corresponding innovation channels.

Conclusions

Information processing underlines the evolution and structure of various social networks [31-
33]. The creation of knowledge through questions-and-answers requires meaningful interac-
tions with the actor’s expertise adjusted to the needs of other participants; consequently, it
leads to the accumulation of the sound knowledge and the expansion of knowledge space [5].
In the studied example, we have demonstrated how the algebraic topology measures can char-
acterise the connection complexity of the emergent knowledge networks. Using the data of
questions-and-answers from the Stack Exchange system Mathematics, we have shown how the
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network of mathematical tags, as constitutive elements of knowledge, appears and evolves with
the actor—question—actor-answer interactions over time.

The connections among different tags reflect their use by the actors possessing the expertise,
which (at least partially) overlaps with the contents of the considered question. The networks
of tags are filtered by removing the extra edges which may have appeared by chance with a
specified confidence level. We have applied the filtering at the level of (uncorrelated) edges to
preserve the higher-order structures, which have been the focus of this study. Our results reveal
that the process preserves the genuine structure of knowledge networks consisting of themati-
cally connected tags communities. For example, five communities in Fig 2 appear in the filtered
network of tags in Year-4. Considering the higher-order topological spaces, the filtered net-
works of tags exhibit a robust structure. The hierarchy of nodes sorted out according to their
suitably scaled topological dimension is represented by a unique curve, independent of the evo-
lution time and the filtering level.

The appearance of new contents (tags) over time plays a significant role in the process of
knowledge creation and the related networks. As it was shown in [5], the occurrence of new
contents and new combinations of contents are chiefly related to the expertise of newly arriving
users. Therefore, the introduced combinations of tags obey the logical structure as it is pre-
sented by the participating experts. The growing number of unique combinations leads to the
advance of innovation [5], as also shown in Fig 6d. Moreover, their appearance is conditioned
by the cognitive-matching interactions and the user’s activity patterns. These features of the
social dynamics are manifested in the non-random (persistent) fluctuations and long-range
temporal correlations, as demonstrated in Fig 6a, 6b and 6¢. Further, the performed algebraic
topology analysis has revealed the role of these innovative contents in building the architecture
of knowledge network. Specifically, we have found that:

o the newly appearing tags connect to the current network at all levels from a single link to the
cliques of the highest order;

« the innovation channel is recognised as a subgraph containing simplices larger than or equal
to a triangle in which at least one of the new tags occurred; its growth and the increased topo-
logical complexity over time provides the evolution pattern of the entire network;

o the growth of the innovation channel is consistent with enhanced fractal features and tempo-
ral correlations of the appearance of new contents over time; it systematically obeys the sensi-
ble connections of contents, as also demonstrated in Fig 7.

The presented results reveal that the creation of new combinations of knowledge contents
(or innovation) is compatible with the non-random correlations in the sequence of new con-
tents and their linking to the knowledge network. Hence the innovation expansion, as a core of
each knowledge-creation process, can be additionally quantified by the fractal features of time
series of new tags as well as the algebraic topology measures of the network’s innovation chan-
nel. Hidden beneath these quantifiers of the emergent knowledge networks is the dynamics of
human actors and their expertise, which provides the logical structure of the collective knowl-
edge. Our approach consists of the appropriate data filtering, fractal analysis of time series, and
algebraic topology techniques applied to the emergent knowledge networks and their innova-
tive channels. The methodology can be useful to the analysis of a wide class of networks where
the actors and their artefacts, as well as the cognitive elements used in the process, are clearly
identified. These may include, among others, networks created by science, engineering, busi-
ness and economics communities based on online collaborations. Further, such examples may
also include a collection of articles (e.g. journal articles) referring to each other, where their

PLOS ONE | DOI:10.1371/journal.pone.0154655 May 12,2016 15/17



@’PLOS ‘ ONE

Knowledge Networks Topology and Innovation

logical units are marked. In some such situations, keywords, memes, and concepts can be iden-
tified by machine learning methods.
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Abstract

The affiliation with various social groups can be a critical factor when it comes to quality of
life of each individual, making such groups an essential element of every society. The group
dynamics, longevity and effectiveness strongly depend on group’s ability to attract new
members and keep them engaged in group activities. It was shown that high heterogeneity
of scientist’s engagement in conference activities of the specific scientific community
depends on the balance between the numbers of previous attendances and non-atten-
dances and is directly related to scientist’s association with that community. Here we show
that the same holds for leisure groups of the Meetup website and further quantify individual
members’ association with the group. We examine how structure of personal social net-
works is evolving with the event attendance. Our results show that member’s increasing
engagement in the group activities is primarily associated with the strengthening of already
existing ties and increase in the bonding social capital. We also show that Meetup social net-
works mostly grow trough big events, while small events contribute to the groups
cohesiveness.

Introduction

One of the consequences of the rapid development of the Internet and growing presence of
information communication technologies is that a large part of an individual’s daily activities,
both off and online, is regularly recorded and stored. This newly available data granted us a
substantial insight into activities of a large number of individuals during long period of time
and led to the development of new methods and tools, which enable better understanding of
the dynamics of social groups [1]. The structure and features of social connections both have
strong influence and depend on social processes such as cooperation [2, 3], diffusion of inno-
vations [4, 5], and collective knowledge building [6]. Therefore, it is not surprising that the the-
ory of complex networks has proven to be very successful in uncovering mechanisms
governing the behavior of individuals and social groups [7, 8].

The human activity patterns, the structure of social networks, and the emergence of collec-
tive behavior in different online communities have been extensively studied in the last decade
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[6, 9-15]. On the other hand, the dynamics of offline social groups, where the activities take
place trough offline meetings (events), have drawn relatively little attention, given their impor-
tance. Such offline groups, both professional and leisure ones, provide significant benefits and
influence everyday lives of individuals, their broader communities, and the society in general:
they offer social support to vulnerable individuals [16, 17], can be used for political campaigns
and movements [18, 19], or can have an important role in career development [20]. As they
have different purpose, they also vary in the structure of participants, dynamics of meetings,
and organisation. Some groups, such as cancer support groups or scientific conference com-
munities, are intended for a narrow circle of people while others, leisure groups for instance,
bring together people of all professions and ages. In the pre-Internet era these groups have
been, by their organisation and means of communication between their members, strictly off-
line, while today we are witnessing the appearance of a growing number of hybrid groups,
which combine both online and offline communication [19]. Although inherently different, all
these social groups have two main characteristics in common: they do not have formal organi-
zation, although their members follow certain written and non-written rules, and their mem-
bership is on a voluntary basis. Bearing this in mind, it is clear that the function, dynamics and
longevity of such self-organized communities depend primarily on their ability to attract new
and retain old active members. Understanding the reasons and uncovering key factors that
influence members to remain active in the social group dynamics are thus important, espe-
cially having in mind their relevance for the broader social communities and the society.

The size of social groups and personal social networks, as well as their structure, have been
extensively studied. The considerable body of evidence [21-24] suggests that the typical size of
natural human communities is approximately 150, that both groups and personal social net-
works are highly structured, and consist of social layers characterized by different strengths of
relationships. The relationships within each layer are characterized by a similar mean fre-
quency of interaction and emotional closeness, both of which decrease rapidly as we move
trough network layer. These findings have been explained using the Social Brain Hypothesis,
which relates the average size of species’ personal network with the computational capacity of
its brain. Here we confirm that these findings also hold for leisure groups where the frequency
of interactions among members is constrained by the event dynamics. We also explore how
the number of attended events is related to the size and layered structure of member’s personal
network.

Previous research on hybrid social groups and interplay between offline and online interac-
tions has shown that offline meetings enhance attendees’ engagement with online community
and contributes to the creation of a bonding capital [25, 26]. In our previous work [20] it was
shown that the participation patterns of scientist in a particular conference series are not ran-
dom and that they exhibit a universal behaviour independent of conference subject, size or
location. Using the empirical analysis and theoretical modeling we have shown that the confer-
ence attendance depends on the balance between the numbers of previous attendances and
non-attendances and argued that this is driven by scientist’s association with the conference
community, i.e. with the number and strength of social ties with other members of the confer-
ence community. We also argued that similar behaviour can be expected in other social com-
munities when it comes to members’ participation patterns in organised group events. Here
we provide empirical evidence supporting these claims and further investigate the relationship
between the dynamics of participation of individuals in social group activities and the structure
of their social networks.

The Meetup portal, whose group dynamics we study here, is an event-based social network.
Meetup members use the online communication for the organization of offline gatherings.
The online availability of event attendance lists and group membership lists enables us to
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examine the event participation dynamics of Meetup groups and its influence on the structure
of social networks between group members. The diversity of Meetup groups in terms of the
type of activity and size allows us to further examine and confirm the universality of member’s
participation patterns. We note that previous papers using Meetup source of data have mostly
focused on the event recommendation problem [27-31], structural properties of social net-
works, and relationships between event participants [31, 32] by disregarding evolutionary
behaviour of Meetup groups.

In this paper, we examine the event-induced evolution of social networks for four large
Meetup groups from different categories. Similarly to the case of conference participation, we
study the probability distribution of a total number of meetup attendances and show that it
also exhibits a truncated power law for all four groups. This finding suggests that the event par-
ticipation dynamics of Meetup groups is characterized by a positive feedback mechanism,
which is of social origin and is directly related to member’s association with social community
of the specific Meetup group. Using the theory of complex networks we examine in more detail
the correlation between an individual’s decisions to participate in an event and her association
with other members of that Meetup group. Specifically, we track how member’s connectedness
with the community changes with the number of attendances by measuring change in the clus-
tering coefficient and relation between the degree and the strength in an evolving weighted
social network, where only statistically significant connections are considered. Our results
indicate that greater involvement in group activities is more associated with the strengthening
of existing than to creation of new ties. This is consistent with previous research on Meetup
which has shown that repeated event attendance leads to an increase in bonding and a decrease
in bridging social capital [25, 33]. Furthermore, in view of the fact that people interact and net-
works evolve through events, we examine how particular a event affects the network size and
its structure. We investigate effects of event sizes and time ordering on social network organi-
zation by studying changes in the network topology, numbers of distinctive links and cluster-
ing, caused by the removal of a specific event. We find that large events facilitate new
connections, while during the small events already acquainted members strengthen their inter-
personal ties. Similar behavior was observed at the level of communities, where small commu-
nities are typically closed for new members, while contrary to this, changes in the membership
in large communities are looked at favorably [34, 35].

This paper is organized as follows: we first study the distribution of the total number of par-
ticipations in four Meetup groups from different categories. Next we introduce a filtered
weighted social network to characterize significant social connections between members and
discuss its structural properties. Specifically, we study how the local topological properties
evolve with the growth of the number of participations in order to derive relationships
between members’ association with the group and their activity patterns. In order to analyze
impact of a particular event on the network organization, we remove events using different
strategies and study how this influences the social structure.

Results
Event participation patterns of Meetup groups

Meetup is an online social networking platform that enables people with a common interest to
start a group with a purpose of arranging offline meetings (events, meetups) all over the world.
The groups have various topics and are sorted into 33 different categories, such as careers, hob-
bies, socializing, health, etc. These groups are of various sizes, have different event dynamics,
and hierarchical organisation. They also differ in the type of activity members engage, ranging
from socializing events (parties and clubbing) to professional trainings (seminars and
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Table 1. Summary of collected data for four selected Meetup groups. N, is total number of group members, N, is total number of organised events.

Meetup group
geamcIt
pittsburgh-free
techlifecolumbus

VegasHikers

doi:10.1371/journal.pone.0171565.t001

Acronym Category Np, N,
GEAM Food & Drink 5377 3986
PGHF Socializing 4995 4617
TECH Tech 3217 3162
LVHK Outdoors & Adventure 6061 5096

lectures). Common to all groups is the way they organize offline events: each member of the
group gets an invitation to event to which they reply with yes or no, creating in that way a
record of attendance for each event. We use this information to analyze event participation
patterns and to study the evolution of the social network.

Here, in particular we analyze four large groups, each belonging to a different category and
having more than three thousand organized events (see Methods and Table 1). We chose these
four groups because of their convenience for statistical analysis, large number of members and
organized events, and also for the fact that they are quite different concerning the type of activ-
ities and interests their members share. The geamclt (GEAM) group is made of foodie thrill-
seekers who mostly meet in restaurants and bars in order to try out new exciting foods and
drinks, while people in the VegasHiker (LVHK) group are hikers who seek excitement trough
physical activity. The Pittsburgh-free (PGHF) is our third group which invites its members to
free, or almost free, social events, and the fourth considered group TechLife Columbus
(TECH), which is about social events and focuses on technology-related community network-
ing, entrepreneurship, environmental sustainability, and professional development.

Fig 1 demonstrates that the probability distributions of total attendance numbers of mem-
bers in events for all four groups exhibits a truncated power law behavior (see Fig A and
Table A in S1 File, which show a comparison with the exponential and power law fit), with
power law exponent larger than one. Similarly to the conference data [20], the exponential

4 -
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10° : : - : : =
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Fig 1. Total number of attended events. Probability distributions P(x) of total number of participations x, for
four Meetup groups. Solid line represents best fit to truncated power law distribution, x e,

doi:10.1371/journal.pone.0171565.9001
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cut-off is a finite size effect. Power law and truncated power law behavior of probability distri-
butions can be observed for the number of and the time lag between two successive participa-
tions in group-organized events, Figs B and C in S1 File. In fact, we find that similar
participation patterns which differ in values of exponents) can be observed for all Meetup
groups, regardless of their size, number of events or category. As in the case of the conference
participation dynamics [20], this indicates that the probability to participate in the next event
depends exclusively on the balance of numbers of previous participations and non-participa-
tions. We argued in [20] that the forces behind conference participation dynamics are of social
origin, and it follows from Fig 1 that the same can be argued for the case of the Meetup group
participation dynamics. The more participations in group activities member has, the stronger
and more numerous are her connections to the other group members, and thus her association
with the community. We further explore this assumption by investigating the event-driven
evolution of social networks of the four different Meetup groups.

Structure of social event-based network

We construct a social network between group members for each considered group, as a net-
work of co-occurrence on the same event (see Methods for more details). By definition, these
networks are weighted networks with link weights between two members equal to the number
of events they participated together. These networks are very dense, as a direct result of the
construction method, with broad distribution of link weights (see Fig D in S1 File). However,
co-occurrence at the same event does not necessarily imply a relationship between two group
members. For instance, a member of a group that attends many events, or big events, has a
large number of acquaintances, and thus large number of social connections, which are not of
equal importance regarding her association with the community. Similarly, two members that
attend a large number of events can have relatively large number of co-occurrences, which can
be the result of coincidences and not an indicator of their strong relationship. In order to filter
out these less important connections we use a filtering technique based on the configuration
model of bipartite networks [36, 37] (see Methods). By applying this technique to weighted
networks we reduce their density and put more emphasis on the links that are less likely to be
the result of coincidences. In this way we emphasize the links of higher weights without the
removal of all links below certain threshold (see Fig D in S1 File), a standard procedure for net-
work pruning. We explore the evolution of social networks of significant relationships between
Meetup group members by studying how the local characteristics of the nodes (members)
change with their growing number of participations in group activities.

Association with the community of a specific Meetup group can be quantitatively expressed
trough several local and global topological measures of weighted networks. Specifically, here
we explore how the number of significant connections (member’s degree) and their strength
(member’s strength), as well as how member’s embeddedness in a group non-weighted and
weighted clustering coefficient) are changing with the number of attended group events. Fig 2
shows how average strength of a node depends on its degree in filtered networks of four
selected Meetup groups. While member’s degree equal to the number of member’s significant
social relationships, the strength measures how strongly she is connected to the rest of the
group [38]. In all considered Meetup groups members with small and medium number of
acquaintances (g < 50) have similar values of strengths and degrees, i.e., their association with
the community is quantified by the number of people they know and not through the strength
of their connections (see Fig 2). Having in mind that the average size of an event in these four
groups is less than 20, we can conclude that majority of members with a degree less than 50 are
the ones that attended only a few group meetups. A previous study [30] has found that the
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Fig 2. Node strength dependence on node degree. Dependence of average member’s strength (s) on her
degree qin social network of significant links for considered groups.

doi:10.1371/journal.pone.0171565.9002

probability for a member to attend a group event strongly depends on whether her friends will
also attend. The non-linear relationship between the degree and the average strength for

q > 50 shows that event participation of already engaged members (ones who already attended
few meetings) is more linked to the strength of social relations than to their number. This
means that at the beginning of their engagement in group activities, when the association is
relatively small, the participation is conditioned by a number of members a person knows,
while later, when the association becomes stronger, the intensity of relations with already
known members becomes more important.

This finding is further supported if we consider the change of the average degree and
strength with the number of participations. Fig 3 shows how the average member’s degree and
strength evolve with the number of participations in group’s events. At the beginning, the
degree and strength have the same value and grow at the same rate, but after only few partici-
pations the strength becomes larger than the degree, and starts to grow much faster for mem-
bers of all four Meetup communities. After 100 attended events the average strength of a
member is up to ten times larger than her degree (see Fig E in S1 File). This indicates that the
event participation dynamics is mostly governed by the need of a member to maintain and
strengthen her relationships with already known members of a community. As a matter of
fact, our analysis of member’s embeddedness in these social networks shows that members
maintain strong relations with single members of the community, but also with small sub-
groups of members. A comparison with randomized data (Figs E and F in S1 File) reveals that
both the degree and strength grow slower with the number of events, and that their ratio is
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Fig 3. Event driven evolution of member’s degree and strength. Dependence of member’s average
degree (g) and strength (s) on number of attended group events by member x for four considered Meetup
groups.
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higher than in the original data. Relatively high value of the average clustering coefficient (c;),
shown in Fig 4 indicates that there is a high probability (more than 10% on average) that
friends of a member also form significant relationships. The slow decay of (c;) with the number
of participations and the fact that it remains relatively large (above 0.2) even for participants
with a thousand of attended meetups, Fig 4, show that personal networks of members have
tendency to remain clustered, i.e., have relatively high number of closed triplets compared to
random networks.

We now further examine the structure of these triplets and its change with the number of
participations by calculating the averaged weighted clustering coefficient. The weighted clus-
tering coefficient ¢}" measures the local cohesiveness of personal networks by taking into
account the intensity of interactions between local triplets [38]. This measure does not just
take into account a number of closed triplets of a node i but also their total relative weight with
respect to the total strength of the nodes (see Methods). We also examine how the value of
weighted clustering coefficient, averaged over all participants that have attended x events, des-
ignated as (¢} (x), with the number of attended events. As it is shown in Fig 4, a member’s net-
work of personal contacts shows high level of cohesiveness, on the average. Like its non-
weighted counterpart, the value of (¢}') only slightly decreases during member’s early involve-
ment in group activities, while later it remains constant and independent of the number of par-
ticipations. A comparison of the values of weighted and non-weighted clustering coefficients
reveals the role of strong relationships in local networks, i.e., whether they form triplets or
bridges between different cohesive groups [38]. At the beginning of member’s involvement in
a group, these two coefficients have similar values, Fig 4, which indicates that the cohesiveness
of a subgroup of personal contacts is not that important for the early participation dynamics.
As a number of attended events grows, as well as a number and strength of personal contacts,
the weighted clustering coefficient becomes larger than its non-weighted counterpart, indicat-
ing member’s strongest ties with other members who are also friends. The fact that in later
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members personal networks, measured by averaged non-weighted (c;) and weighted clustering coefficients
(¢!}, with the number of events attended by the member x.
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engagement the weighted clustering coefficient is larger than its non-weighted counterpart
indicates that the clustering has an important role in the network organization of Meetup
groups and thus in the group participation dynamics [38]. Low and very similar values of the
clustering and weighted clustering coefficients in networks obtained for randomized data (Fig
G in S1 File) further confirm our conclusion about the importance of clustering in the event
participation dynamics. The observed discontinuity and decrease of values of the degree,
strength and both clustering coefficients, Figs 3 and 4, for groups GEAM and TECH are conse-
quences of a small number of members who attended more than 300 events.

Event importance in group participation dynamics

In our previous work [20], we have shown that the conference participation dynamics is inde-
pendent of the conference topic, type and size. The same holds true for the Meetup participa-
tion dynamics, i.e., the member’s participation patterns in the Meetup group activities do not
depend on the group size, category, location or type of activity. However, the size of group
events and their time order may influence the structure of network and thus group dynamics.
We explore how topological properties of networks, specifically the number of acquaintances
and network cohesion, change after the removal of events according to a certain order (see
Methods for details).

Firstly, we study how the removal of events according to a certain order influences the
number of overall acquaintances in the network. For this purpose we define a measure 7 (see
Methods), which we use to quantify the percentage of the remaining significant acquaintances
after the removal of an event. Fig 5 shows the change of measure 7 after the removal of a frac-
tion r of events according to a chosen strategy. We see that most of new significant connections
are usually made during the largest events. The importance of large events for the creation of
new acquaintances is especially striking for the groups GEAM, PGHF, and TECH, where
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about 80% of acquaintances only met at top 20% of events. For LVHK the decrease is slower,
probably due to a difference in the event size fluctuations (see Fig E in S1 File), but still more
than 50% of acquaintances disappear if we remove top 40% of events, which is still much
higher percentage of contacts compared to random removal of events (see Fig 5 (right)). Simi-
lar results are observed when we remove events in the opposite order, Fig 5 (left). Only 20% of
acquaintances are being destroyed after the removal of 80% of events, for all four groups. This
indicates that new and weak connections are usually formed during large events, while these
acquaintances are further strengthen during small meetups. On the other hand, the removal of
events according to their temporal order, Fig 5, has very similar effect as random removal, i.e.,
the value of parameter 7 decreases gradually as we remove events.

Similar conclusions can be drawn based on the change of average weighted clustering coeffi-
cient {(C") (now averaged over all nodes in the network) with the removal of events, Fig 6.
Removal of events according to decreasing order of their sizes, does not result in the significant
change of (C"). The same value of weighted clustering coefficient, observed even after the
removal of 80% of events, shows that small events are not attended by a pair of but rather by a
group of old friends. On the other hand, the removal of events in the opposite order results in
gradual decrease of (C"). A certain fraction of triads in networks are made by at least one link
of low weight. These links are most likely to vanish after the removal of the largest events, which
results in the gradual decrease of (C"). Removal of events according to their temporal order
results in the change of (C") similar to one obtained for random removal of events, confirming
further that the time ordering of events does not influence the structure of studied networks.

Discussion and conclusion

In this article we explore the event participation dynamics and underlying social mechanism
of the Meetup groups. The motivation behind this was to further explore the event driven
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dynamics, work we have started by exploring participation patterns of scientists at scientific
conferences [20], and to better examine the social origins behind the repeated attendance at
group events, which was not feasible with the conference data. The results in this manuscript
are based on empirical analysis of participation patterns and topological characteristics of net-
works for four different Meetup groups made up of people who have different motives and
readiness to participate in group activities: GEAM, PGHF, TECH, LVHK.

Although these four groups differ in category and type of activity, we have shown that they
are all characterized with similar participation patterns: the probability distributions of total
number of participations, number of successive participations and time lag between two suc-
cessive participations follow a power law and truncated power law behavior, with the value of
power law exponents between 1 and 3. The resemblance of these patterns to those observed for
conference participations [20] indicates that these two, seemingly different, social system
dynamics are governed by similar mechanism. This means that the probability for a member
to participate in future events depends non-linearly on the balance between the numbers of
previous participations and non-participations. As in the case of conferences [20], this behav-
ior is independent of the group category, size, or location, meaning that members association
with the community of a Meetup group strongly influence their event participation patterns,
and thus the frequency and longevity of their engagement in the group activities.

The Member’s association with the community is primarily manifested trough her inter-
connectedness with other members of a specific Meetup group, i.e., in the structure of her per-
sonal social network. We have examined topological properties of filtered weighted social
networks constructed from the members event co-occurrence. Trough network filtering we
have emphasized the importance of significant links, the ones which are not the result of coin-
cidence but rather an indicator of social relations. The analysis of local topological properties
of these networks has revealed that the strength of connectedness with the community, for the
members with small number of participations, is predominantly the consequence of the width
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of their social circles. Average strength and degree of members with g << 50, which on average
corresponds to only a few participations, are equal, while the strength of members who know
more than 50 people and have participated in more than a few events, is several times higher
then their degree. This means that after a few participations strengthening of existing ties
becomes more important than meeting new people. These arguments are further extended
with our observation of the evolution of average strength and degree with the growth of num-
ber of participations. Both, average degree and strength, grow, but the growth rate of strength
is higher than one of the degree, for all four Meetup groups. All four groups are characterised
with very high cohesiveness of their social communities. The evolutions of clustering coeffi-
cients, non and weighted one, and their ratio, show that bonding with the community becomes
more important as the members’ engagement in the group activity progresses. As in the case
of conference participations, frequent attendees of group activities tend to form a core whose
stability grows with the number of participations [20, 39]. The need of frequent attendees to
maintain and increase their bonding with the rest of the community influences their probabil-
ity to attend future meetings and thus governs the event participation dynamics of the Meetup
groups.

The observed structure of personal social networks of the Meetup members is in accor-
dance with previous research on this topic [21-24]. The average size of personal social net-
works for the most frequent attendees of the Meetup groups GEAM, PGHF, and TECH, is 150
or lower, while the size of the LVHK personal network is less than 500 different connections,
i.e., of the same order. This is consistent with the predictions of the Social Brain Hypothesis
for the typical human group size. The faster growth of the strength, compared to the one
observed for degree, and the constant, non-trivial, value of the clustering coefficients are indi-
cators of the layered structure of social networks. The comparable values of strength and
degree, as well as weighted and non-weighted clustering coefficients, observed for small num-
bers of attendances, indicate that at the beginning all social connections are of the equal impor-
tance. As members’ engagement with the community grows, she begins to interact with a
certain members of the group more often, which results in the non-linear growth of her
strength. The higher value of weighted clustering coefficient, compared to its non-weighted
counterpart, indicates that member’s personal network consists of layers, subgroups of mem-
bers, characterized with similar strength of mutual relations.

While the group category, type of activity and size do not significantly affect the participa-
tion dynamics in the group activities and structure of networks, the size of separate events
does have an influence on the evolution of social networks. Large events represent an opportu-
nity for members to make new acquaintances, i.e., to establish new connections. On the other
hand, small meetings are typically the gatherings of members with preexisting connections,
and their main purpose is to facilitate the stronger bonding among group members. We find
that the time order of events is irrelevant for group dynamics.

The universality of the event participation patterns, shown in this and previous work [20],
and its socially driven nature give us a better insight not only about the dynamics of studied
social communities but also about others which are organised on very similar principles: com-
munities that bring together people with the similar interests and where the participation is
voluntary. Having in mind that these type of groups constitute a large part of human life,
including all life aspects, understanding their functioning and dynamics is of great importance.
Our results not only contribute to the corpus of increasing knowledge, but also indicate the
key factor which influences the group longevity and successful functioning: the association of
group members with the community. This and recent success stories [40] suggest that complex
network theory can be an extremely useful tool in creating successful communities. Future
studies will be conducted towards further confirmation of universality of event participation
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patterns and better understanding of how social association and contacts can be used for creat-
ing conditions for successful functioning of learning and health support groups.

Materials and methods
Data

There are more than 240000 groups in 181 countries classified into 33 categories active in the
Meetup community [41]. For each of selected four groups, we have used the Meetup public
API to access the data and collect the list of events organized by the group and the information
on the members who confirmed their participation (RSVP) in the given event since the group’s
beginnings. Each member has a unique id which enables us to follow her activity in the group
events during the time. The collected data have been fully anonymised and we did not collect
any personal information about the group members. We have complied with terms of use of
Meetup website. More details about the group sizes and the number of events is given in

Table 1.

Network construction and filtering

Network construction. We start with a bipartite member event network, which we repre-
sent with participation matrix B. Let N,,, denotes total number of members in the group and
N, is total number of events organized by the group. If the member i participated in the event /
element of matrix B; takes a value 1, otherwise B;; = 0. In the bipartite network created in this
way, members’ degree is equal to total number of events member participated in, while events’
degree is defined as total number of members that have attended that event. The social net-
work, which is the result of members interactions during the Meetup events and is represented
by weighted matrix W, is created from the weighted projection of bipartite network to mem-
bers partition [42, 43]. In the obtained weighted network nodes correspond to individual
members while the value of the element of weighted matrix W;; corresponds to number of
common events two members have attended together.

Network filtering. The observed weighted network is dense network where some of the
non-zero edges can be the result of coincidence. For instance, these edges can be found
between members who attended large number of events or events with many participants, and
therefore they do not necessarily indicate social connections between members. The pruning
of these type of networks and separation of significant edges from non-significant ones is not a
trivial task [36, 37, 44]. For this reasons we start from bipartite network and use method that
determines the significance of W; link based on configuration model of random bipartite net-
works [36, 37, 45, 46]. In this model of random networks the event size and the number of
events a member attended are fixed, while all other correlations are destroyed (see SI for fur-
ther explanations). Based on this model, for each link in bipartite network, B;;, we determine
the probability p; that user i has attended event [. The assumption of uncorrelated network
enables us to also estimate the probability that two members, i and j, have attended the same
event, which is equal to p;p;. Probability that two members have attended the same w events is
then given by Poisson binomial distribution

Pij(w) = Z Hpil.pjl H(l _Pﬁpﬁ) (1)

M,, IeM,, ¢M,,

where M,, is the subset of w events that can be chosen from given M events [36, 37, 47]. We
define p-value as probability that two members i and j has co-occurred on at least w;; events,
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i.e., that the link weight between these two members is w;; or higher

p-value(w;) = Z Py(w). (2)

wa[j

The relationship between users i and j will be considered statistically significant if p-value(w;)
< Pus- In our case, threshold p,, = 0.05. All links with p-value(w;) > p, are consequence of
chance and are considered as non-significant and thus removed from the network. This way
we obtain weighted social network of significant relations between members of the Meetup
group WS The details on how we estimate p;; and P;;(w) for each link are given in SI.

Topological measures. All topological measures considered in this work are calculated
for weighted social network of significant relations W}. We consider the following topological

measures of the nodes:

« The node degree ¢; = >_H (W), where H is Heaviside function (H(x) = 1if x > 0 other-
wise H(x) = 0);

o The node strength s; = Zle‘f [71;

« Non-weighted clustering coefficient of the node ¢; = _ 137, , H( WOHWs ) H(Ws,)
[7].

S S
« Weighted clustering coefficient of the node ¢)” = 5 (q,-lfl) > ik ;Wm HWYHW ) H(W,)
[38].

Weighted clustering coefficient of the network (C") and its non-weighted counterpart (C) are
values averaged over all nodes in the network.

The event relevance

In order to explore the relevance of event size and time ordering for the evolution of social net-
work topology we analyze how removal of events, according to specific ordering, influences
the number of acquaintance and network cohesion. Specifically, we observe change of measure
7, which represents the fraction of the remaining acquaintances, and weighted clustering coef-
ficient (C") after the removal of a fraction r of events. The removal of event results in change
of link weights between group members. For instance, if two members, i and j, have partici-
pated in event , the removal of this event will result in the decrease of the link weight W} by
one. Further removal of events in which these two members have co-occurred will eventually
lead to termination of their social connection, i.e., W; = 0. If W3(r) is the matrix of link
weights after the removal of a fraction  of events and W* is the original matrix of significant
relations, then the value of parameter 7 after the removal of r events is calculated as

() = =) ®)

S AW
The value of weighted clustering coefficient (C") after the removal of a fraction r of events is
calculated using the same formula as for the (C") just using the value of W*(r) instead of W°.
We remove events according to several different strategies:

« We sort events according to their size. Then, we remove sorted events in descending and
ascending order.

« We remove events according to their time-order, from the first to the last.
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o We remove events in random order. We perform this procedure for each list of events 100
times.

Supporting information

S1 File. Supplementary information: Associative nature of event participation dynamics: a
network theory approach. The probability distribution P(x) of total numbers of participations
in group events x, obtained from the empirical data for the four selected Meetup groups (blue
circles). We also show truncated power law fit x % B (solid lines), power law fit x”” (dotted-
dashed lines), and exponential fit e ** (dotted lines). Fig A Log likelihood ratio R and the 7-
value compare fits to the power law and fits to the truncated power law for the probability dis-
tribution of total numbers of participations in group events. Table A The probability distribu-
tion of successive numbers of participations in group events xg, for the four selected Meetup
groups. The probability distribution follows power law behavior P(xg) ~ Xg’. Fig B The prob-
ability distribution of time lags between two successive participations in group events ys, for
the four selected Meetup groups. The probability distribution follows truncated power law
behavior P(yg) ~ ys*e ®s. Fig C The probability distribution of link weights in a weighted
network before and after filtering, for the four selected Meetup groups. Fig D The dependence
of a degree strength ratio on the number of participations, averaged over all members for the
four considered Meetup groups. Red circles correspond to results obtained from empirical
data, while blue squares correspond to randomized data. Fig E The dependence of group
members’ average degree (g) and strength (s) on numbers of participations for a real weighted
network and a randomized network. Fig F The dependence of group members’ average non-
weighted (c;) and weighted clustering coefficient (c!') on numbers of participations for a real
weighted network and a randomized network. Fig G The probability distribution of relative
size fluctuations <E<ge, for the four considered Meetup groups, where e is the event size and (e)
is the average event size. Fig H.
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