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2 БИОГРАФСКИ ПОДАЦИ КАНДИДАТКИЊЕ

Ивана Васић (девоjачко Видановић) jе рођена 1983. године у Jагодини, где jе завршила основну
школу. Као средњошколац била jе ђак Математичке гимназиjе у Београду. Школовање наставља
на Физичком факултету Универзитета у Београду, где jе студирала теориjску физику и стекла
основну диплому 2006. године и мастер диплому 2007. године. Добитница jе стипендиjе Краљевске
Норвешке амбасаде у Београду, награде и стипендиjе "Проф. др Ђорђе Живановић" и награде
"Проф. др Љубомир Ћирковић" за наjбољи дипломски рад из физике. Од стране Универзитета
у Београду проглашена jе за студента генерациjе Физичког факултета. У току 2007. године била
jе стипендиста Министарства науке Републике Србиjе. Докторску тезу под насловом "Нумеричко
проучавање хладних квантних гасова" урадила jе под руководством др Антуна Балажа и одбра-
нила jе 2011. године на Физичком факултету Универзитета у Београду. Добитница jе и годишње
награде Института за физику у Београду за наjбољу докторску дисертациjу. Након завршених
докторских студиjа, у периоду од jуна 2012. до септембра 2014. године, др Ивана Васић jе радила
као постдокторски истраживач у групи проф. др Валтера Хофштетера на Институту за теориjску
физику Гете универзитета у Франкфурту.

Ивана Васић jе запослена у Лабораториjи за примену рачунара у науци Института за физику
у Београду од 1. jануара 2008. године на националном проjекту "Моделирање и нумеричке симу-
лациjе комплексних физичких система" (ОИ 141035). Активно jе учествовала на билатералном
српско–немачком проjекту "Fast Converging Path Integral Approach to Bose-Einstein Condensation",
у периоду 2009.–2010. године и у раду европског Центра изврсности за компjутерско моделирање
комплексних система (CX-CMCS). У звање научног сарадника изабрана jе 18. jула 2012. године.
У току боравка на Гете универзитету, кандидаткиња jе била ангажована на престижном проjекту
"DFG-Research Unit 801" финансираном од стране Немачке истраживачке фондациjе (DFG), коjи jе
представљао колаборациjу шест водећих немачких експерименталних и теориjских група из обла-
сти хладних атома. По завршетку постдокторског усавршавања у септембру 2014. године, Ивана се
вратила на Институт за физику у Београду, где сада ради на националном проjекту "Моделирање и
нумеричке симулациjе сложених вишечестичних система" (ОН 171017) као руководилац потпроjекта
"Ефикасно израчунавање функционалних интеграла са применом на ултрахладне квантне гасове".
Tакође jе и руководилац билатералног српско–немачког проjекта "Квантне фазе бозонског Кеjн-
Меле-Хабард модела (BKMH)" за период 2016.-2017. година, и билатералног српског–хрватског
проjекта "Тополошка своjства оптичких и фотонских решетки" за период 2016.-2017. година.

Главне теме њеног истраживања су колективне ексцитациjе хладних бозонских гасова, особине
бозонских гасова у оптичким решеткама и бозонске фазе у присуству вештачких магнетних поља.
Она jе коаутор 20 научних радова у међународним часописима, од коjих jе 10 радова обjављено у
Physical Review часописима. Заjедно са проф. др Хофштетером, била jе руководилац два диплом-
ска рада и два мастер рада. У току боравка на Гете универзитету, била jе асистент на предмету
Статистичка физика и организовала рачунске вежбе за курсеве Квантна механика, Рачунарска фи-
зика и Физика ултрахладних квантних гасова. Тренутно jе ментор за израду докторске дисертациjе
Ане Худомал на Физичком факултету Универзитета у Београду.
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3 ПРЕГЛЕД НАУЧНЕ АКТИВНОСТИ

Др Ивана Васић се бави теориjским проучавањем хладних квантних гасова у циљу описа мо-
дерних експеримената у овоj области. Вишедецениjска потрага за чистом експерименталном реа-
лизациjом Бозе-Аjнштаjн кондензациjе jе довела системе хладних атома на нанокелвинским темпе-
ратурама у први план савремене физике. Данас ови системи заиста представљаjу дуго очекиване
Фаjнманове квантне симулаторе: експериментално добро контролисане системе описане законима
квантне механике и квантне статистике. Пуно разумевање експеримената захтева детаљно поре-
ђење са одговараjућим теориjским резултатима и у тoм циљу кандидаткиња jе радила на следећим
истраживачким темама:

• развоj ефикасног нумеричког метода за решавање своjственог проблема Хамилтониjана,

• испитивање особина идеалних бозона у систему са анхармониjским потенциjалом,

• детаљан опис динамике бозонског кондензата,

• проучавање ефеката дисипациjе на бозонске фазе,

• одређивање фазног диjаграма и основних ексцитациjа бозона у присуству синтетичких
магнетних поља.

У наредним секциjама су укратко пркиказани главни научни резултати добиjени у оквиру ових
тема.

3.1 Нумерички метод за решавање своjственог проблема применом ефективних
деjстава

Као докторанд, кандидаткиња jе увела и детаљно испитала нумерички метод базиран на диjаго-
нализациjи еволуционог оператора. Кључни елемент метода су ефективна деjства, раниjе уведена у
истоj истраживачкоj групи, коjа омогућаваjу прецизно и ефикасно рачунање одговарajућих ампли-
туда прелаза. Аналитички jе показано да дискретизациона грешка овог приступа има супериорно
понашање у односу на друге стандардне методе. Метод jе примењен на неколико jеднодимензионал-
них и дводимензионалних модела и показано jе да се на нумерички ефикасан начин може добити
информациjа о великом броjу енергетских нивоа. Ови резултати су представљени у следећим ра-
довима:

• Fast Convergence of Path Integrals for Many-Body Systems
A. Bogojević, I. Vidanović, A. Balaž, and A. Belić
Phys. Lett. A 372, 3341 (2008),

• Recursive Schrödinger Equation Approach to Faster Converging Path Integrals
A. Balaž, A. Bogojević, I. Vidanović, and A. Pelster
Phys. Rev. E 79, 036701 (2009),

• Properties of Quantum Systems Via Diagonalization of Transition Amplitudes. I. Discretization
Effects
I. Vidanović, A. Bogojević, and A. Belić
Phys. Rev. E 80, 066705 (2009),

• Properties of Quantum Systems Via Diagonalization of Transition Amplitudes. II. Systematic
Improvements of Short-time Propagation
I. Vidanović, A. Bogojević, A. Balaž, and A. Belić
Phys. Rev. E 80, 066706 (2009),
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• Fast Converging Path Integrals for Time-Dependent Potentials: II. Generalization to Many-Body
Systems and Real-Time Formalism
A. Balaž, I. Vidanović, A. Bogojević, A. Belić, and A. Pelster
J. Stat. Mech. P03005 (2011),

• Fast Converging Path Integrals for Time-Dependent Potentials: I. Recursive Calculation of Short-
Time Expansion of the Propagator
A. Balaž, I. Vidanović, A. Bogojević, A. Belić, and A. Pelster
J. Stat. Mech. P03004 (2011).

3.2 Особине идеалних бозона у анхармониjском потенциjалу

После обимног тестирања, претходни метод jе примењен за одређивање особина идеалних бо-
зона у случаjу спољашњег анхармониjског потенциjала. Наjчешће, хладни бозони се налазе у хар-
мониjскоj потенциjалноj замци, коjу производи спољашње електрично или магнетно поље. За оваj
наjчешћи случаj температура на коjоj долази до макроскопске насељености основног стања, одно-
сно до Бозе-Аjнштаjн кондензациjе, jе добро позната. Међутим, одређени експерименти захтеваjу
употребу додатног конфинираjућег потенциjала. Конкретно, у релевантном случаjу оствареном у
експерименту, брзо ротираjући кондензат jе смештен у потенциjал коjи jе комбинациjа квадратног
и квартичног члана. Наши нумерички резултати показуjу како промена спољашњег потенциjала
утиче на температуру на коjоj долази до Бозе-Аjнштаjн кондензациjе, на расподелу честица у замци
и на резултате ескперименталних мерења разлетања атома по искључивању замке (time of flight).
За ово jе на кључан начин коришћен SPEEDUP нумерички код, у чиjем развоjу jе кандидаткиња
такође учествовала. Истраживања су обjављена у:

• SPEEDUP Code for Calculation of Transition Amplitudes Via the Effective Action Approach
A. Balaž, I. Vidanović, D. Stojiljković, D. Vudragović, A. Belić, and A. Bogojević
Commun. Comput. Phys. 11, 739 (2012),

• Ultra-Fast Converging Path-Integral Approach for Rotating Ideal Bose-Einstein Condensates
A. Balaž, I. Vidanović, A. Bogojević, and A. Pelster
Phys. Lett. A 374, 1539 (2010).

3.3 Динамика бозонског кондензата

Динамички одговор Бозе-Аjнштаjн кондензата на спољашње пертурбациjе jе наjдиректниjи и
наjчешћи начин мерења ових система. Типично, динамика се побуђуjе малом пертурбациjом хар-
мониjског потенциjала и мере се резултуjуће фреквенциjе осцилациjа положаjа центра масе или
ширине кондензата, коjе у линеарном режиму одговараjу колективним модама. У новиjем експери-
менту, употребом технике Фешбах резонанци, ефективна међуатомска интеракциjа jе периодично
осцилована и при одређеним примењеним фреквенциjама, примећен jе резонантни одговор конден-
зата. На довољно ниским температурама и при слабим интеракциjама, за опис динамике кондензата
се може користити временски зависна Грос-Питаевски jедначина. Оваj ефективни опис jе нелине-
аран и у одређеном режиму нелинеарни ефекти постаjу експериментално значаjни. Нумеричким
симулациjама Грос-Питаевски jедначине и применом аналитичке Поенкаре-Линдштет методе, кан-
дидаткиња jе идентификовала нелинеарне ефекте коjи се jављаjу у близини резонанци, као што су
линеарне комбинациjе основних ексцитациjа, побуђивање виших хармоника и помераjи побуђених
фреквенциjа у односу на вредности добиjене у линеарном режиму. Такође, показано je да интен-
зитет нелинеарних ефеката постаjе jачи при одређеноj конфигурациjи хармониjског потенциjала.
Осим употребе Фешбах резонанци, атомске интеракциjе се могу контролисати и променом атомских
стања. Често коришћен динамички протокол jе да се делу почетног кондензата атомско стање про-
мени применом одговараjућег ласерског пулса. У тоj ситуациjи, систем описуjу (бар) две константе
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интеракциjа и детаљи резултуjуће динамике jако зависе од њиховог односа. Обимним нумерич-
ким симулациjама и одговараjућом анализом у линеарном одзиву, кандидаткиња jе класификовала
могуће динамичке одговоре система при овом често коришћеном протоколу. Ова истраживања су
довела и до развоjа ефикасних нумеричких кодова коjи су обjављени независно. Наjважниjи радови
су

• Nonlinear Bose-Einstein-condensate Dynamics Induced by a Harmonic Modulation of the s-wave
Scattering Length
I. Vidanović, A. Balaž, H. Al-Jibbouri, and A. Pelster
Phys. Rev. A 84, 013618 (2011),

• Parametric and Geometric Resonances of Collective Oscillation Modes in Bose-Einstein Condensates
I. Vidanović, H. Al-Jibbouri, A. Balaž, and A. Pelster
Phys. Scr. T 149, 014003 (2012),

• C Programs for Solving the Time-dependent Gross-Pitaevskii Equation in a Fully Anisotropic Trap
D. Vudragović, I. Vidanović, A. Balaž, P. Muruganandam, and S. K. Adhikari
Comput. Phys. Commun. 183, 2021 (2012),

• Geometric Resonances in Bose-Einstein Condensates with Two- and Three-body Interactions
H. Al-Jibbouri, I. Vidanović, A. Balaž, and A. Pelster
J. Phys. B: At. Mol. Opt. Phys. 46, 065303 (2013),

• Spin Modulation Instabilities and Phase Separation Dynamics in Trapped Two-component Bose
Condensates
I. Vidanović, N. J. van Druten, and M. Haque
New J. Phys. 15, 035008 (2013).

3.4 Ефекти дисипациjе на бозонске фазе

Примена контролисане дисипациjе пружа нов начин мерења особина и понашања хладних атом-
ских система. На пример, у експериментима групе проф. Хервига Ота (Технички универзитет у
Каjзерслаутерну, Немачка), jако фокусиран електронски сноп се усмерава на облак хладних атома,
а услед нееластичних судара електрона и атома формираjу се jони, коjи напуштаjу систем и касниjе
се детектуjу.

Мотивисана овим експериментом, кандидаткиња jе разматрала динамику хладних бозона коjа
jе изазвана локализованом дисипациjом у дводимензионалноj оптичкоj решетки. Основни модел
коjим се описуjу бозони у оптичкоj решетки jе Бозе-Хабард модел коjи садржи чланове коjи одго-
вараjу тунелирању између наjближих чворова решетке и локалноj репулзивноj интеракциjи. Дина-
мика система jе описана Линдбладовом мастер jедначином коjа даjе временску еволуциjу матрице
густине. Основна апроксимациjа коjа jе коришћена при решавању ове jедначине jе Гуцвилерова
теориjа средњег поља. Добиjени резултати показуjу да при слабоj дисипациjи укупни губици ди-
ректно одсликаваjу почетну локалну густину атома и расту са поjачањем примењене дисипациjе.
Много интересантниjи jе режим jаке дисипациjе у ком jе уочен квантни Зенонов ефекат при ком
мерење успорава унитарну еволуциjу система и ефективни губици опадаjу са поjачањем примењене
дисипациjе. У овом режиму ефективни губици одсликаваjу вредности микроскопских параметара
система (као што су jачина тунелирања и интеракциjа), што значи да овакво мерење пружа додатне
важне информациjе о систему. Истраживање jе обjављено у раду:

• Dissipation through Localized Loss in Bosonic Systems with Long-range Interactions
I. Vidanović, D. Cocks, and W. Hofstetter
Phys. Rev. A 89, 053614 (2014).
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Други важна експериментална поставка коjа се описуjе дисипативним Бозе-Хабард моделом jе
дата низовима спрегнутих фотонских шупљина. Неизбежни губици се компензуjу применом споља-
шњег ласера и у овом отвореном квантном систему се проучаваjу стационарна стања коjа настаjу
балансом губитака и додатне ексцитациjе. Циљ jедног од дипломских радова коjима jе канди-
даткиња руководила jе било испитивање стационарних стања у коjима постоjе коначне фотонске
струjе. Конкретно, анализирано jе како на фотонске струjе утичу спољашњи параметри, као што
су интензитет и фреквенциjа ласерске пумпе, стопе губитка, као и физички параметари ефективног
Бозе-Хабард модела. Транспортна мерења ће бити природни први експерименти коjе треба урадити
у овим системима да би се утврдило како интеракциjе утичу на простирање фотона, а теориjски
резултати су обjављени у раду:

• Photonic currents in driven and dissipative resonator lattices
T. Mertz, I. Vasić, M. J. Hartmann, and W. Hofstetter
Phys. Rev. A 94, 013809 (2016).

3.5 Особине бозона у присуству синтетичких магнетних поља

Кључни модели физике чврстог стања, Хофштатеров и Холдеjнов модел, су успешно реализо-
вани у наjновиjим експериментима са хладним атомима у оптичким решеткама. На оваj искорак
се дуго чекало, jер атоми не поседуjу наелектрисање и нема њиховог директног спрезања са споља-
шњим магнетним пољем. Основни предуслов за реализациjу jе вештачки калибрациони ("gauge")
потенциjал, тj. нетривиjална фаза при тунелирању атома између два суседна чвора решетке, што jе
ефективно постигнуто или осциловањем читаве решетке или употребом додатних ласера. Мотиви-
санa отвореним питањима о могућим новим бозонским фазама и расположивим експерименталним
могућностима, кандидаткиња jе увела и проучавала бозонски Холдеjн-Хабард модел на хексаго-
налноj решетки при концентрациjи од jедног атома по чвору оптичке решетке. Модел укључуjе:
тунелирање између наjближих суседа решетке, комплексно тунелирање између следећих наjближих
суседа и локалне интеракциjе. Сваки од ових чланова преферира различиту фазу: доминатно ту-
нелирање између наjближих суседа даjе суперфлуидну фазу, комплексно тунелирање између првих
следећих суседа води киралном суперфлуиду са неуниформним параметрима уређења, док доми-
нантне локалне интеракциjе производе Мот изолатор фазу.

Применом бозонске динамичке теориjе средњег поља мапиран jе комплетан фазни диjаграм у
функциjи амплитуда тунелирања и локалних интеракциjа. Идентификоваан jе реентратни прелаз
другог реда у Мот изолатор стање као ефекат ван домашаjа основне теориjе средњег поља. За
сваку од фаза су одређене особине локалних струjа и флуктуациjе локалне густине. Ове величине
су експериментално доступне и користе се за идентификациjу различитих фаза. Посебно, у раз-
матраном случаjу, локалне струjе се поjављуjу и у Мот фази, што jе аналитички аргументовано.
Посебно интересантна jе кирална суперфлуидна фаза – у овом случаjу теориjа средњег поља пред-
виђа независну кондензациjу атома две подрешетке хексагоналне решетке. Међутим, детаљном
анализом квантних флуктуациjа око конфигурациjа коjе даjе теориjа средњег поља, утврђено jе да
ефекат уређења услед флуктуациjа доводи до спрезања фаза параметара поретка две подрешетке.
Резултати су приказани у раду:

• Chiral Bosonic Phases on the Haldane Honeycomb Lattice
I. Vasić, A. Petrescu, K. Le Hur, and W. Hofstetter
Phys. Rev. B 91, 094502 (2015).

Експериментална реализациjа ефективног спин-орбит спрезања у системима хладних атома jе
посебно значаjна за бозонске системе за коjе не постоjе директне аналогиjе у физици кондензоване
материjе. Неколико теориjских радова jе разматрало могућност спрезања спина и ангуларног мо-
мента у режиму Бозе-Аjнштаjн кондензата. Са експерименталне тачке гледишта, физички систем
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би се састоjао од два различита атомска стања, коjа заправо чине псеудоспин, и пара супротно
пропагираjућих ласера коjи носе ангуларни моменат и спрежу два поменута атомска стања. У за-
висности од jачине спрезања и jачине интеракциjа, утврђено jе да основно стање система може бити
или тополошки полускирмион или вортекс-антивортекс пар.

Кандидаткиња jе одредила наjниже ексцитациjе овог система, коjе експериментално могу да се
испитаjу у будућим експериментима. Конкретно, испитан jе одговор система на две пертурбациjе
хармониjске замке коjе се стандардно примењуjу у експериментима: дишућа (breathing) мода се
побуђуjе променом jачине замке, док се диполна мода уводи померањем минимума хармониjског
потенциjала. Директним нумеричким решавањем Грос-Питаевски jедначине и применом проши-
рене методе Богољубова утврђено jе да две фазе даjу потпуно различита понашања на побуде и
да су eфекти интеракциjа наjизражениjи на прелазу између две фазе. Нумеричке симулациjе су
показале да jе одговор полускирмионске фазе на померање минимума замке комплексан и карак-
теристичан на више начина. Пре свега, услед присуства спин-орбит спрезања у систему, Конова
теорема више не важи, па помераj у jедном правцу резултуjе дводимензионалним кретањем центра
масе система коjе укључуjе више фреквенциjа. Услед дегенерациjе основног стања оваj резултат
се мора интерпретирати применом дегенерисане пертурбативне теориjе. Резултати су обjављени у
раду:

• Excitation Spectra of a Bose-Einstein Condensate with an Angular Spin-orbit Coupling
I. Vasić and A. Balaž
Phys. Rev. A 94, 033627 (2016).
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4 ЕЛЕМЕНТИ ЗА КВАЛТИТАТИВНУ ОЦЕНУ НАУЧНОГ ДОПРИНОСА
КАНДИДАТА

4.1 Квалитет научних резултата

4.1.1 Научни ниво и значаj резултата, утицаj научних радова

Др Ивана Васић jе у свом досадашњем раду дала кључни допринос у укупно 20 радова у међуна-
родним часописима са ISI листе. Од тога jе 6 у М21a категориjи (међународни часописи изузетних
вредности), 12 у М21 категориjи (врхунски међународни часописи) и 2 у М22 категориjи.

У периоду након одлуке Научног већа о предлогу за стицање претходног научног звања, др
Ивана Васић jе обjавила 9 радова у часописима са ISI листе. Од тога jе 3 у М21a категориjи (ме-
ђународни часописи изузетних вредности) и 5 у М21 категориjи (врхунски међународни часописи).
Одржала jе више предавања на научним скуповима, од коjих три по позиву.

Као наjзначаjниjих пет радова кандидаткиње могу се узети:

1. I. Vasić, A. Petrescu, K. Le Hur, and W. Hofstetter
Chiral Bosonic Phases on the Haldane Honeycomb Lattice
Phys. Rev. B 91, 094502 (2015), Editors’ Suggestion, M21, цитиран 15 пута,

2. I. Vidanović, D. Cocks, and W. Hofstetter
Dissipation through Localized Loss in Bosonic Systems with Long-range Interactions
Phys. Rev. A 89, 053614 (2014), M21a, цитиран 14 пута,

3. I. Vidanović, N. J. van Druten, and M. Haque
Spin Modulation Instabilities and Phase Separation Dynamics
in Trapped Two-component Bose Condensates
New J. Phys. 15, 035008 (2013), M21a, цитиран 7 пута,

4. I. Vidanović, A. Balaž, H. Al-Jibbouri, and A. Pelster
Nonlinear Bose-Einstein-condensate Dynamics Induced by a Harmonic Modulation
of the s-wave Scattering Length
Phys. Rev. A 84, 013618 (2011), M21a, цитиран 33 пута,

5. I. Vidanović, A. Bogojević, and A. Belić
Properties of Quantum Systems Via Diagonalization of Transition Amplitudes.
I. Discretization Effects
Phys. Rev. E 80, 066705 (2009), M21, цитиран 10 пута.

У првом раду уведен jе и детаљно испитан нови модел чиjа се експериментална реализациjа
очекуjе у текућим експериментима са хладним атомима у вештачким магнетним пољима. Пока-
зано jе да се у присуству интеракциjа и вештачких магнетних поља могу поjавити нестандардне
бозонске фазе и анализиране су њихове конкретне експерименталне карактеристике. Рад jе по об-
jављивању издвоjен ознаком Editors’ Suggestion, и на основу овог рада кандидаткиња jе одржала
два предавања по позиву. Резултате су као уводна предавања представили и други коаутори на
водећим конференциjама у овоj области. Истраживања започета у овом раду настављаjу докто-
ранди на Гете универзитету у Франкфурту, на Ecole Polytechnique, CNRS у Паризу, и на Институту
за физику у Београду. Такође, на основу овог рада кандидаткиња и њен докторанд Ана Худомал
из Београда су сараднице на новом престижном проjекту "FOR 2414: Artificial Gauge Fields and
Interacting Topological Phases in Ultracold Atoms" финансираном од стране Немачке истраживачке
фондациjе (DFG), коjи представља колаборациjу десет водећих европских група у области хладних
атома.

Други рад jе инспирисан сарадњом теориjске групе са Гете универзитета у Франкфурту и ек-
сперименталне групе Хервига Ота са Техничког универзитета у Каjзерслаутерну, коjа jе обjавила
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прва мерења бозонског кондензата применом контролисане локализоване дисипациjе. Наш тео-
риjски рад разматра аналогна мерења у режиму jаких интеракциjа и даjе конкретно, нумерички
проверено предвиђање за пун опсег примењеног интензитета дисипациjе. Посебно су интересантни
резултати за режим jаке дисипациjе у ком се jавља тзв. квантни Зенонов ефекат, где смо показали
како микроскопски параметри Хамилтониjана утичу на експериментално доступне величине. Ове
резултате кандидаткиња jе представила на интерном састанку колаборативног немачког проjекта
SFB/TR49.

У трећем и четвртом раду теориjски jе проучавана динамика атомског Бозе-Аjнштаjн кондензата
са фокусом на експериментално доступне динамичке протоколе. Велика контролабилност система
хладних атома jе њихова главна предност и то се jасно илуструjе чињеницом да се чак и ефективне
међуатомске интеракциjе могу динамички мењати у овим експериментима. У поменутим радовима
кандидаткиња jе разматрала одговор система на периодично осциловање интензитета и на изне-
надну промену интензитета ефективне интеракциjе. Детаљно су анализирани нелинеарни ефекти
и услови у коjима jе почетно стање нестабилно на примењену пертурбациjу и води комплексноj
динамици.

У петом раду уведен jе и анализиран нумерички метод коjи на ефикасан начин пружа ин-
формациjу о спектру квантног система. Оваj метод jе касниjе коришћен за прецизно одређивање
температуре Бозе-Аjнштаjн кондензациjе у анхармониjском потенциjалу.

4.1.2 Позитивна цитираност научних радова кандидата

Према ISI Web of Science бази радови кандидаткиње су цитирани укупно 315 пута, док jе броj
цитата без аутоцитата 271. Према истоj бази h–индекс кандидаткиње jе 11.

Прилог: подаци о цитираности са интернет странице ISI Web of Science.

4.1.3 Параметри квалитета часописа

Битан елемент за процену квалитета научних резултата jе и квалитет часописа у коjима су ра-
дови обjављени, односно њихов импакт фактор – ИФ. У категориjи М21а, М21 и M22 кандидаткиња
jе обjавила радове у следећим часописима, где су подвучени они часописи у коjима jе кандидат-
киња обjављивала у периоду након одлуке Научног већа о предлогу за стицање претходног научног
звања:

• 1 рад у New Journal of Physics (ИФ = 4,177),

• 1 рад у Computer Physics Communications (ИФ = 3,268),

• 4 рада у Physical Review A (ИФ = 2,866 за 1 рад, ИФ = 3,042 за 1 рад и ИФ = 2,991 за 2 радa),

• 3 рада у Physical Review B (ИФ = 3,475 за 1 рад, ИФ = 3,774 за 1 рад и ИФ = 3,736 за 1 рад),

• 3 рада у Physical Review E (ИФ = 2,508 за 3 радa),

• 2 рада у Journal of Statistical Mechanics (ИФ = 2,67 за 2 радa),

• 1 рад у Communications in Computational Physics (ИФ = 1,863),

• 1 рад у Journal of Physics B (ИФ = 2,031),

• 2 рада у Physics Letters A (ИФ = 2,174 за 2 рада),

• 1 рад у The European Physical Journal B (ИФ = 1,575),

• 1 рад у Physica Scripta (ИФ = 1,204).
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Укупан фактор утицаjа радова кандидаткиње jе 54.205, а у периоду након одлуке Научног
већа о предлогу за стицање претходног научног звања таj фактор jе 27.214. Часописи у коjима jе
кандидаткиња обjављивала радове су по свом угледу цењени и водећи у областима коjима припадаjу.
Посебно се међу њима истичу: New Journal of Physics, Computer Physics Communications, Physical
Review A, Physical Review B и Physical Review E.

4.1.4 Степен самосталности и степен учешћа у реализациjи радова у научним
центрима у земљи и иностранству

Кандидаткиња jе водећи аутор девет радова, други аутор осам публикациjа и трећи аутор три
публикациjе.

На радовима коjи су обjављени у периоду након одлуке Научног већа о предлогу за стицање прет-
ходног научног звања, кандидаткиња jе водећи аутор пет публикациjа и други аутор три рада. При
изради свих ових публикациjа кандидаткиња jе учествовала у конкретноj формулациjи проблема,
у његовом решавању применом обимних нумеричких симулациjа и апроксимативних аналитичких
техника, и у завршном писању. У радовима где jе кандидаткиња други аутор, у jедном случаjу
први аутор jе студент чиjим дипломским радом jе кандидаткиња директно руководила, а у друга
два случаjа први аутори су докторанди са коjима jе сарађивала.

Током израде докторске дисертациjе на Институту за физику у Београду, у сарадњи са др Анту-
ном Балажем и др Акселом Пелстером са Универзитета у Дуизбургу, кандидаткиња jе започела са
нумеричим симулациjама хладних бозонских атома у режиму слабих интеракциjа применом Грос-
Питаевски jедначине. У току постдокторског истраживања кандидаткиња се бавила проучавањем
особина jако интерагуjућих бозона у оптичким решеткама, испитивањем ефеката дисипациjе на бо-
зонске фазе, као и одређивањем особина бозонских фаза у присуству синтетичких магнетних поља.
Ово су веома актуелне теме, коjе се истражуjу у наjновиjим експериментима са хладним атомима.
За њихово успешно проучавање неопходне су напредне нумеричке технике, коjе jе кандидаткиња
усавршила као постдокторанд у Франкфурту и затим то знање пренела на Институт за физику.

Кандидаткиња има активну сарадњу са истраживачким групама проф. Валтера Хофштетера,
Франкфурт, Немачка, проф. Карин Ле Хур, Париз, Француска, проф. Масуд Хаке, Даблин, Ирска
и проф. Хрвоjе Буљан, Загреб, Хрватска.

4.1.5 Награде

Кандидаткиња jе добитница годишње награде Института за физику у Београду за наjбољу док-
торску дисертациjу за 2012. годину.

4.2 Ангажованост у формирању научних кадрова

Кандидаткиња jе тренутно ментор на изради докторске дисертациjе Ане Худомал на Физичком
факултету Универзитета у Београду.

Поред тога, блиско jе сарађивала и помагала студентима докторандима Хамиду Ал-Џибуриjу
(Hamid Jabber Haziran Al-Jibbouri) на Free University, у Берлину, Немачка, чиjа докторска теза jе
одбрањена септембра 2013. и Андреасу Гаjслеру (Andreas Geissler) на Гете универзитету у Франк-
фурту, Немачка, чиjа одбрана се очекуjе ове године.

Kандидаткиња jе као коментор учествовала у изради два мастер рада

• Phase transitions of the coherently coupled two–component Bose gas in a 2D Optical Lattice
Студент: Улрике Борнхаjмер (Ulrike Bornheimer)
Гете универзитет, Франкфурт, Немачка, децембар 2014. године
Ментори: Валтер Хофштетер, Ивана Васић,
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• Phase Diagram of the Bosonic Kane-Mele-Hubbard Model
Студент: Ражбир Нирван (Rajbir Nirwan)
Гете универзитет, Франкфурт, Немачка, септембар 2016. године
Ментори: Валтер Хофштетер, Ивана Васић,

и два дипломска рада

• Transport and Dynamics of Interacting Bosons with Dissipation
Студент: Томас Мерц (Thomas Mertz)
Гете универзитет, Франкфурт, Немачка, септембар 2014.
Ментори: Валтер Хофштетер, Ивана Васић,

• Superfluid Phases in the Presence of Artificial Gauge Fields
Раџбир-Синг Нирван (Rajbir-Singh Nirwan)
Гете универзитет, Франкфурт, Немачка, октобар 2014.
Ментори: Валтер Хофштетер, Ивана Васић.

У току постдокторског боравка на Гете универзитету, кандидаткиња jе активно учествовала у
настави на основним студиjама Физичког факултета. Била jе асистент-тутор на вежбама из Ста-
тистичке физике, као и асистент коjи припрема материjале, испите и координише рад асистената-
тутора на предметима Квантна механика, Рачунарскa физикa, Квантне информациjе и ултрахладни
квантни гасови.

Прилог: потврда о менторству руководиоца проjекта, извештаj о раду истраживача докторанда,
захвалница докторске тезе Хамида Ал-Џибуриjа, насловне стране наведених мастер и дипломских
радова.

4.3 Нормирање броjа коауторских радова, патената и техничких решења

Сви радови кадидаткиње обjављени у периоду након одлуке Научног већа о предлогу за стицање
претходног научног звања су базирани на комплексним нумеричким симулациjама и имаjу пет или
мање аутора, тако да улазе са пуном тежином у односу на броj коаутора.

4.4 Руковођење проjектима, потпроjектима и проjектним задацима

Кандидаткиња руководи:

• проjектом "Квантне фазе бозонског Кеjн-Меле Хабард модела (BKMH)" у оквиру Програма
билатералне научне и технолошке сарадње између Министарства просвете, науке и техноло-
шког развоjа Републике Србиjе и Немачке агенциjе за академску размену (DAAD) за период
2016.-2017. година,

• проjектом "Тополошка своjства оптичких и фотонских решетки" у оквиру Програма била-
тералне научне и технолошке сарадње између Министарства просвете, науке и технолошког
развоjа Републике Србиjе и Министарствa знаности, образовања и шпорта Републике Хрват-
ске за период 2016.-2017. година,

• потпроjектом "Ефикасно израчунавање функционалних интеграла са применом на ултра-
хладне квантне гасове" у оквиру проjекта основних истраживања ОН171017 "Моделирање
и нумеричке симулациjе сложених вишечестичних система" Министарства просвете, науке и
технолошког развоjа Републике Србиjе.

У току постдокторског боравка на Гете универзитету, кандидаткиња jе била ангажована на пре-
стижном проjекту "DFG-Research Unit 801 - Strong Correlations in Multiflavor Ultracold Quantum
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Gases" финансираном од стране Немачке истраживачке фондациjе (DFG), коjи jе представљао ко-
лаборациjу шест водећих немачких експерименталних и теориjских група из области хладних атома.

Прилог: званична писма обавештења о одобреним билатералним проjектима, потврда руково-
диоца проjекта о руковођењу потпроjектом.

4.5 Активност у научним и научно-стручним друштвима

Кандидаткиња jе члан Одсека за физику кондензоване материjе и статистичку физику Друштва
физичара Србиjе, члан Оптичког друштва Србиjе и Немачког друштва физичара. Учествовала jе
у раду Државне комисиje за такмичења из физике за ученике средњих школа Друштва физичара
Србиjе при прегледању задатака на Државном такмичењу 2016. године.

Рецензент jе за часописе Physical Review Letters, Physical Review A и Physical Review B Аме-
ричког друштва физичара. Била jе члан организационог комитета конференциjе Turkish Physical
Society 32 nd International Physics Congress – TPS32, Бодрум, Турска, 6.-9. септембар, 2016. године,
организоване од стране Турског друштва физичара.

Прилог: писмо уредништва рецезенту, званични позив за чланство у организационом комитету.

4.6 Утицаjност научних резултата

Утицаj научних резултата кандидаткиње jе наведен у одељку 4.1. овог документа. Пун списак
радова и цитата jе у прилогу.

4.7 Конкретан допринос кандидата у реализациjи радова у научним центрима у земљи
и иностранству

Кандидаткиња jе значаjно допринела сваком раду на коме jе учествовала. Од девет радова
у часописима у периоду након одлуке Научног већа о предлогу за стицање претходног научног
звања, jедан jе комплетно урађен на Институту за физику у Београду, шест у сарадњи са колегама
у иностранству, а два су комплетно реализована у иностранству (док jе кандидаткиња била на
постдокторском усавршавању). У овим публикациjама кандидаткиња jе имала кључни допринос,
па jе водећи аутор 5 публикациjа и други аутор 3 публикациjе. Конкретно, кандидаткиња jе била
покретач истраживања, радила jе на конкретном решавању проблема применом нумеричких симу-
лациjа, координисала jе сарадњу свих коаутора, писала рад и била у комуникациjи са уредником
часописа при слању рада за обjављивање.

Нова истраживачка тема коjу jе кандидаткиња покренула на Институту за физику у Београду
су особине jако интерагуjућих хладних бозонских атома у оптичким решеткама. За рад на овоj
теми потребни су напредни нумерички методи и кандидаткиња jе успешно пренела своjе познавање
бозонске динамичке теориjе средњег поља коjе jе стекла на постдокторском усавршавању.

4.8 Уводна предавања на конференциjама и друга предавања

Након претходног избора у звање, кандидаткиња jе одржала следећа предавања:

• I. Vasić, A. Petrescu, K. Le Hur and W. Hofstetter
Bosonic phases on the Haldane honeycomb lattice
Conference Topological effects and synthetic gauge/magnetic fields for atoms and photons, Zagreb,
Croatia, 29 September 2015 – 1 October 2015, M32

• I. Vasić, A. Petrescu, K. Le Hur and W. Hofstetter
Bosonic phases on the Haldane honeycomb lattice
The 19th Symposium on Condensed Matter Physics, Belgrade, Serbia, 7–11 September 2015, M32
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• I. Vasić, A. Petrescu, K. Le Hur, and W. Hofstetter
Chiral Bosonic Phases on the Haldane Honeycomb Lattice
Osma radionica fotonike, Kopaonik, Serbia, 8–12 March 2015, M62

• I. Vasić
Hladni bozonski atomi u optičkim rešetkama
Seminar Fizičkog fakulteta u Beogradu, Belgrade, Serbia, 10. June 2015

• I. Vasić
Bozonski gasovi u optičkim rešetkama
Predavanje u okviru predmeta Seminari savremene fizike, Fizički fakultet, Belgrade, Serbia, 20.
April 2015

• I. Vidanović
Dissipation induced bosonic dynamics and hybrid quantum simulations
International conference on Strong Correlations in Ultracold Quantum Gases – Munich 2013,
Munich, Germany, 22-25 October 2013

• I. Vidanović, D. Cocks, W. Hofstetter
Dissipation through localised loss in bosonic systems with long-range interactions
7th Annual Retreat of the SFB/TR 49, Bensheim, Germany, 19–20 September 2013

Прилог: позивна писма за учешће на конференциjама, изводи из књига апстраката.
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5 ЕЛЕМЕНТИ ЗА КВАНТИТАТИВНУ ОЦЕНУ НАУЧНОГ ДОПРИНОСА
КАНДИДАТА

Остварени резултати у периоду након одлуке Научног већа о предлогу за стицање
претходног научног звања:

Категориjа M бодова по раду Броj радова Укупно M бодова
M21a 10 3 30
M21 8 5 40
M22 5 1 5
M32 1.5 2 3
M34 0.5 16 8
M62 1 1 1

Поређење са минималним квантитативним условима за избор у звање виши
научни сарадник:

Mинималан broj M бодова Остварено
Укупно 50 87

M10+M20+M31+M32+M33+M41+M42 40 78
M11+M12+M21+M22+M23+M24 30 75

Према ISI Web of knowledge бази укупан броj цитата радова кандидаткиње jе 315, док jе броj цитата
без аутоцитата 271. Према истоj бази h–индекс кандидаткиње jе 11.
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6 СПИСАК РАДОВА ДР ИВАНЕ ВАСИЋ

Радови у међународним часописима изузетних вредности (М21а)

Радови обjављени након претходног избора у звање

1. I. Vidanović, D. Cocks, and W. Hofstetter
Dissipation through Localized Loss in Bosonic Systems with Long-range Interactions
Phys. Rev. A 89, 053614 (2014), ИФ = 3.042 за 2012. год.

2. I. Vidanović, N. J. van Druten, and M. Haque
Spin Modulation Instabilities and Phase Separation Dynamics in Trapped
Two-component Bose Condensates
New J. Phys. 15, 035008 (2013), ИФ = 4.177 за 2011. год.

Радови обjављени између два избора у звање

1. D. Vudragović, I. Vidanović, A. Balaž, P. Muruganandam, and S. K. Adhikari
C Programs for Solving the Time-dependent Gross-Pitaevskii Equation in a Fully Anisotropic Trap
Comput. Phys. Commun. 183, 2021 (2012), ИФ = 3.268 за 2011. год.

Радови обjављени пре претходног избора у звање

1. I. Vidanović, A. Balaž, H. Al-Jibbouri, and A. Pelster
Nonlinear Bose-Einstein-condensate Dynamics Induced by a Harmonic Modulation
of the s-wave Scattering Length
Phys. Rev. A 84, 013618 (2011), ИФ = 2.866 за 2009. год.

2. A. Balaž, I. Vidanović, A. Bogojević, A. Belić, and A. Pelster
Fast Converging Path Integrals for Time-Dependent Potentials:
II. Generalization to Many-Body Systems and Real-Time Formalism
J. Stat. Mech. P03005 (2011), ИФ = 2.670 за 2009. год.

3. A. Balaž, I. Vidanović, A. Bogojević, A. Belić, and A. Pelster
Fast Converging Path Integrals for Time-Dependent Potentials:
I. Recursive Calculation of Short-Time Expansion of the Propagator
J. Stat. Mech. P03004 (2011), ИФ = 2.670 за 2009. год.

Радови у врхунским међународним часописима (М21)

Радови обjављени након претходног избора у звање

1. I. Vasić and A. Balaž
Excitation Spectra of a Bose-Einstein Condensate with an Angular Spin-orbit Coupling
Phys. Rev. A 94, 033627 (2016), ИФ = 2.991 за 2013. год.

2. T. Mertz, I. Vasić, M. J. Hartmann, and W. Hofstetter
Photonic currents in driven and dissipative resonator lattices
Phys. Rev. A 94, 013809 (2016), ИФ = 2.991 за 2013. год.

3. I. Vasić, A. Petrescu, K. Le Hur, and W. Hofstetter
Chiral Bosonic Phases on the Haldane Honeycomb Lattice
Phys. Rev. B 91, 094502 (2015), Editors’ Suggestion, ИФ = 3.736 за 2014. год.
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4. H. Al-Jibbouri, I. Vidanović, A. Balaž, and A. Pelster
Geometric Resonances in Bose-Einstein Condensates with Two- and Three-body Interactions
J. Phys. B: At. Mol. Opt. Phys. 46, 065303 (2013), ИФ = 2.031 за 2012. год.

Радови обjављени између два избора у звање

1. N. Moran, A. Sterdyniak, I. Vidanović, N. Regnault, and M. V. Milovanović
Topological D-wave Pairing Structures in Jain States
Phys. Rev. B 85, 245307 (2012), Editors’ Suggestion, ИФ = 3.774 за 2010. год.

Радови обjављени пре претходног избора у звање

1. A. Balaž, I. Vidanović, D. Stojiljković, D. Vudragović, A. Belić, and A. Bogojević
SPEEDUP Code for Calculation of Transition Amplitudes Via the Effective Action Approach
Commun. Comput. Phys. 11, 739 (2012), ИФ = 1.863 за 2012. год.

2. A. Balaž, I. Vidanović, A. Bogojević, and A. Pelster
Ultra-Fast Converging Path-Integral Approach for Rotating Ideal Bose-Einstein Condensates
Phys. Lett. A 374, 1539 (2010), ИФ = 2.174 за 2008. год.

3. I. Vidanović, A. Bogojević, A. Balaž, and A. Belić
Properties of Quantum Systems Via Diagonalization of Transition Amplitudes.
II. Systematic Improvements of Short-time Propagation
Phys. Rev. E 80, 066706 (2009), ИФ = 2.508 за 2008. год.

4. I. Vidanović, A. Bogojević, and A. Belić
Properties of Quantum Systems Via Diagonalization of Transition Amplitudes.
I. Discretization Effects
Phys. Rev. E 80, 066705 (2009), ИФ = 2.508 за 2008. год.

5. M. V. Milovanović, T. Jolicoeur, and I. Vidanović
Modified Coulomb Gas Construction of Quantum Hall States
from Nonunitary Conformal Field Theories
Phys. Rev. B 80, 155324 (2009), ИФ = 3.475 за 2009. год.

6. A. Balaž, A. Bogojević, I. Vidanović, and A. Pelster
Recursive Schrödinger Equation Approach to Faster Converging Path Integrals
Phys. Rev. E 79, 036701 (2009), ИФ = 2.508 за 2008. год.

7. A. Bogojević, I. Vidanović, A. Balaž, and A. Belić
Fast Convergence of Path Integrals for Many-Body Systems
Phys. Lett. A 372, 3341 (2008), ИФ = 2.174 за 2008. год.

Радови у истакнутим међународним часописима (М22)

Радови обjављени између два избора у звање

1. I. Vidanović, H. Al-Jibbouri, A. Balaž, and A. Pelster
Parametric and Geometric Resonances of Collective Oscillation Modes in Bose-Einstein Condensates
Phys. Scr. T 149, 014003 (2012), ИФ = 1.204 за 2011. год.
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Радови обjављени пре претходног избора у звање

1. I. Vidanović, S. Arsenijević, and S. Elezović-Hadžić
Force-induced Desorption of Self-avoiding Walks on Sierpinski Gasket Fractals
Eur. Phys. J. B 81, 291 (2011), ИФ = 1.575 за 2010. год.

Предавања по позиву са међународних скупова штампана у изводу (М32)

Радови обjављени након претходног избора у звање

1. I. Vasić, A. Petrescu, K. Le Hur and W. Hofstetter
Bosonic phases on the Haldane honeycomb lattice
The 19th Symposium on Condensed Matter Physics, Belgrade, Serbia, 7–11 September 2015, p. 61
(2015)

2. I. Vasić, A. Petrescu, K. Le Hur and W. Hofstetter
Bosonic phases on the Haldane honeycomb lattice
Topological effects and synthetic gauge/magnetic fields for atoms and photons, Zagreb, Croatia, 29
September 2015 - 1 October 2015, p. 20 (2015)

Саопштења са међународних скупова штампана у целини (М33)

Радови обjављени пре претходног избора у звање

1. A. Balaž, I. Vidanović, A. Bogojević, and A. Belić
Accelerated Path-Integral Calculations via Effective Actions
Proceedings of the Path Integrals – New Trends and Perspectives PI07 Conference, Dresden,
Germany, 23–28 September 2007, p. 86 (2008)

2. I. Vidanović, A. Balaž, A. Bogojević, and A. Belić
Systematic Speedup of Energy Spectra Calculations for Many-Body Systems
Proceedings of the Path Integrals – New Trends and Perspectives PI07 Conference, Dresden,
Germany, 23–28 September 2007, p. 92 (2008)

3. A. Balaž, I. Vidanović, and A. Bogojević
Accelerated Path Integral Calculations for Many-body Systems
Proceedings of the QTS-5 Conference, Valladolid, Spain, 22-28 July 2007
J. Phys. Conf. Ser. 128, 012048 (2008)

Саопштења са међународних скупова штампана у изводу (М34)

Радови обjављени након претходног избора у звање

1. I. Vasić and A. Balaž
Excitations of a Bose-Einstein condensate with angular spin-orbit coupling
Proceedings of the Conference on Ultracold Quantum Gases–Current Trends and Future Perspectives,
Bad Honnef, Germany, 18–20 April 2016, P35 (2016)

2. R. Nirwan, I. Vasić, A. Petrescu, K. Le Hur, and W. Hofstetter
The Bosonic Kane-Mele Hubbard model
Proceedings of the APS March Meeting 2016, Baltimore, Maryland U.S.A, 14–18 March 2016,
#L50.010 (2016)
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3. I. Vasić and A. Balaž
Excitations of a Bose-Einstein condensate with angular spin-orbit coupling
Proceedings of the DPG-2016 Conference, Hannover, Germany, 29 February 2016 – 4 March 2016,
Q-27.8 (2016)

4. I. Vasić, D. Cocks and W. Hofstetter
Dissipation through localised loss in lattice bosonic systems
Proceedings of the V International School and Conference on Photonics, Belgrade, Serbia, 24–28
August 2015 p. 39, (2015)

5. I. Vasić, A. Petrescu, K. Le Hur, and W. Hofstetter
Chiral Bosonic Phases on the Haldane Honeycomb Lattice
Proceedings of the APS March Meeting 2015, San Antonio, Texas, U.S.A, 2–6 March 2015, #J36.013
(2015)

6. T. Mertz, I. Vasić, D. Cocks, and W. Hofstetter
Steady State Currents in the Driven Dissipative Bose-Hubbard Model
Proceedings of the DPG-2015 Conference, Heidelberg, Germany, 23–27 March 2015, Q-15.30 (2015)

7. R. Nirwan, I. Vasić, A. Petrescu, K. Le Hur, and W. Hofstetter
Superfluid Phases in the Presence of Artificial Gauge Field
Proceedings of the DPG-2015 Conference, Heidelberg, Germany, 23–27 March 2015, Q-15.31 (2015)

8. A. Geissler, M. Barbier, I. Vasić, and W. Hofstetter
Dynamical Mean-Field Theory of Rydberg-dressed quantum gases in optical lattices
Proceedings of the DPG-2015 Conference, Heidelberg, Germany, 23–27 March 2015, Q-62.6 (2015)

9. I. Vasić, A. Petrescu, K. Le Hur, and W. Hofstetter
Superfluid - Mott transition in the presence of artificial gauge fields
Proceedings of the 45th Annual Meeting of the APS Division of Atomic, Molecular, and Optical
Physics, Madison, Wisconsin, U.S.A, 2–6 June 2014, K1.00144 (2014)

10. U. Bornheimer, I. Vidanović, and W. Hofstetter
Coherently coupled two-component ultracold bosons
Proceedings of the DPG-2014 Conference, Berlin, Germany, 17–21 March 2014, A-34.21 (2014)

11. I. Vidanović, D. Cocks, and W. Hofstetter
Dissipation through localised loss in bosonic systems with long-range interactions
Proceedings of the DPG-2014 Conference, Berlin, Germany, 17–21 March 2014, Q-32.37 (2014)

12. T. Mertz, I. Vidanović, D. Cocks, and W. Hofstetter
Steady State Currents in the Driven Dissipative Bose-Hubbard Model
Proceedings of the DPG-2014 Conference, Berlin, Germany, 17–21 March 2014, Q-32.38 (2014)

13. A. Geissler, I. Vidanović, and W. Hofstetter
Dynamical Mean-Field Theory of Rydberg-dressed quantum gases in optical lattices
Proceedings of the DPG-2014 Conference, Berlin, Germany, 17–21 March 2014, Q-32.75 (2014)

14. I. Vidanović, A. Petrescu, K. Le Hur, and W. Hofstetter
Superfluid - Mott transition in the presence of artificial gauge fields
Proceedings of the DPG-2014 Conference, Berlin, Germany, 17–21 March 2014, Q-57.4 (2014)

15. I. Vidanović, U. Bissbort, and W. Hofstetter
Collective modes of interacting bosons in artificial gauge fields
Proceedings of the Workshop on Ultracold Atoms and Gauge Theories, Trieste, Italy, 13–17 May
2013, p. 45 (2013)
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16. I. Vidanović, U. Bissbort, and W. Hofstetter
Collective modes of interacting bosons in artificial gauge fields
Proceedings of the DPG-2013 Conference, Hannover, Germany, 18–22 March 2013, Q-31.4 (2013)

Радови обjављени пре претходног избора у звање

1. I. Vidanović, H. Al-Jibbouri, A. Balaž, and A. Pelster
Parametric and Geometric Resonances of Collective Oscillation Modes in Bose-Einstein Condensates
Proceedings of the III International School and Conference on Photonics, Photonica 2011, Belgrade,
Serbia, 29 August–2 September 2011, p. 56 (2011)

2. I. Vidanović, A. Balaž, H. Al-Jibbouri, and A. Pelster
Nonlinear Bose-Einstein-condensate Dynamics Induced by a Harmonic Modulation of the s-wave
Scattering Length
Proceedings of the DPG-2011 Conference, Dresden, Germany,13–18 March 2011, Q-57.3 (2011)

3. A. Balaž, I. Vidanović, A. Bogojević, and A. Pelster
Fast Converging Path Integrals for Time-Dependent Potentials
Proceedings of the DPG-2010 Conference, Regensburg, Germany, 22–27 March 2010, DY-1.3 (2010)

4. A. Balaž, I. Vidanović, A. Bogojević, and A. Pelster
Short-time Effective Action Approach for Numerical Studies of Rotating Ideal BECs
Proceedings of the Conference on Research Frontiers in Ultra-Cold Atoms, ICTP, Trieste, Italy, 4–8
May 2009, P2030-4 (2009)

5. A. Balaž, I. Vidanović, A. Bogojević, and A. Pelster
Ultra-fast Converging Path Integral Approach for Rotating Ideal Bose Gases
Proceedings of the DPG-2009 Conference, Dresden, Germany, 22–27 March 2009, DY-1.4 (2009)

6. I. Vidanović, A. Balaž, A. Bogojević, and A. Pelster
Calculation of Tc of 87Rb BEC using High-order Effective Actions
Proceedings of the Quo Vadis BEC? Conference, Bad Honnef, Germany, 29-31 October 2008, P2
(2008)

7. A. Balaž, I. Vidanović, A. Bogojević, and A. Pelster
Path Integrals Without Integrals
Proceedings of the DPG-2008 Conference, Berlin, Germany, 25–29 February 2008, DY-29.16 (2008)

8. I. Vidanović, A. Bogojević, and A. Balaž
Effective Action Approach for Improved Many-Body Path Integral Calculations
Proceedings of the V International Student Conference of the Balkan Physical Union, Bodrum,
Turkey, 21–24 August 2007, p. 82 (2007)

Предавања по позиву са скупова националног значаjа штампана у изводу (М62)
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like to thank them.

I would like to acknowledge the financial support from German Academic Exchange Service and

Ministry of Higher Education and Scientific Research Iraq (DAAD/MoHESRI). I am specially indebted

to Ms. Sandra Wojciechowski for her kind help throughout the period of the DAAD-scholarship. I

would like to express my sincere gratitude to the Iraqi cultural attaché in Berlin. I would like to
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October 2014











Welcome to the DFG-Research Unit 801
Strong Correlations in Multiflavor Ultracold Quantum Gases

Strong correlations have been studied for many decades, particularly in condensed matter and nuclear physics. They play a

crucial role in understanding complex phenomena like superconductivity, metal-insulator transitions or the excitation spectra

of nuclei. Building on the achievement of Bose-Einstein-Condensation (BEC) and degenerate Fermi gases in ultracold atomic

vapors, strong correlation phenomena have recently been shown to appear even in such dilute gases. This has opened a new

chapter in atomic and molecular physics, where interactions rather than single particle physics are at center stage.

Two of the major tools which allow to enter the regime of strong correlations in cold gases are optical lattices and Feshbach

resonances. Together they allow for an almost perfect tunability of the effective interaction strength, providing an ideal

realization of most of the basic models in many body physics. Prominent examples are Bosons on an optical lattice or

attractive Fermions near a Feshbach resonance. They exhibit a superfluid-insulator transition or an intermediate regime

between a BCS- and a BEC-type superfluid, phenomena which have never before been accessible in condensed matter

physics. Here we propose to study strong correlations in cold gases with internal (spinor) degrees of freedom, in mixtures of

Bose and Fermi gases and in degenerate gases subject to static disorder potentials. These systems have hardly been explored

so far and are expected to display a number of complex phenomena, which are among the most challenging and still poorly

understood problems in many body physics.

The experimental groups in Hamburg, Mainz and Munich will realize and investigate degenerate gases, in particular spinor

gases and Bose-Fermi and Fermi-Fermi mixtures, both with and without optical lattices. Using two component systems allows

realizing static short-range potentials for one of the components. In a coordinated effort, the theoretical description will be

provided by the theory groups in Aachen, Frankfurt and Munich, using both analytical and numerical techniques. The close

collaboration between theory and experiment offers a unique possibility to explore fundamental issues in many body physics,

like the competition between Anderson- and Mott-insulating phases in perfectly well defined and tunable systems.

Events

no news in this list.

Contact

Ludwig-Maximilians-

University

Quantum Optics Chair/

Fakultät für Physik

Prof. Immanuel Bloch

Schellingstr. 4

80799 Munich, Germany

Phone: +49 (0)89 2180 - 6130

Fax: +49 (0)89 2180 - 63851

DFG-Research Unit 801 | DFG-Forschergruppe 801

DFG - Forschergruppe 801 : Strong Correlations in Multiflavor Ult... http://www.for801.de/

1 of 2 01/27/2017 11:12 AM



Sub-Project T2

Disorder versus Interaction in Ultracold Atom Systems

Universität Frankfurt/Institut für Theoretische Physik

Room: 01.136

Max-von-Laue-Str. 1

60438 Frankfurt/Main

Phone: +49 (0)69 798 47822

Fax: +49 (0)69 798 47881

vidanovic(at)itp.uni-frankfurt.de

DFG-Research Unit 801 | DFG-Forschergruppe 801

Dr. Ivana Vidanovic

back

DFG-Forschergruppe 801: Dr. Ivana Vidanovic http://www.for801.de/members/member-details/p/dr-ivana-vidanovic/

1 of 2 01/27/2017 11:02 AM



 
 

 
 
 

 

Dr. Ivana Vasic 
Institute of Physics Belgrade 
Serbia 

17/03/2016 
 
Dear Dr. Ivana Vasic, 
 

Turkish Physical Society, is greatly honoured that you have accepted our 
invitation to be a member of the Organizing Committee at the “Turkish Physical 
Society 32nd International Physics Congress – TPS32” which will be organized by 
Turkish Physical Society and hosted by Bodrum Municipality in Bodrum / Muğla 
between September 06 – 09, 2016. 
 

Please do not hesitate to contact Organizing Committee of the Congress by 
tfd@turkfizikdernegi.org e-mail address.  

 
We are looking forward to seeing you in Bodrum.  
Yours sincerely, 
 

                               

 

Prof. Dr. Baki AKKUŞ 
President of TPS-32 Organizing Committee 
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To <ivana.vasic@ipb.ac.rs>
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Dr. Ivana Vasic (Vidanovic)
Scientific Computing Laboratory
Institute of Physics Belgrade
Pregrevica 118
11080 Belgrade
SERBIA
ivana.vasic@ipb.ac.rs

Dear Dr. Vasic (Vidanovic),

Thank you for your help as a referee for the Physical Review journals and Reviews of
Modern Physics.  We understand that your time is valuable and have therefore made your
record available via our referee server (https://referees.aps.org/) so that you can make
changes quickly and easily at any time.

We recognize that your availability to review manuscripts may fluctuate throughout the
year and suggest that you visit this site whenever necessary to update your relevant
information.  Please be reminded that to access our referee server you will need to have
an active APS Journal account.  For more information and to create an account please go
to https://journals.aps.org/signup.

Providing us with up to date and accurate information helps the refereeing process run
smoothly and ensures that we only ask you to review appropriate material, when you are
able to, and that we do not contact you unnecessarily.

Thank you for your assistance.

Sincerely,

Pierre Meystre
Editor in Chief
American Physical Society

Institute of Physics Belgrade Roundcube Webmail ... https://mail.ipb.ac.rs/roundcube/?_task=mail&_s...
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Subject Invitation to a Workshop in Zagreb

From Hrvoje Buljan <hbuljan@phy.hr>

To <ivanavi@ipb.ac.rs>

Cc <hbuljan@phy.hr>

Reply-To <hbuljan@phy.hr>

Date 2015-06-18 22:33

Priority Normal

Dear Dr. Ivana Vasić,

Prof. Moti Segev and I are putting together a workshop titled
"Topological effects and synthetic gauge/magnetic fields for atoms and
photons", please see synthetic.ifs.hr

We would like to cordially invite you to present an invited talk at the
workshop, and we hope that you will be able to accept this invitation.

Time: 29 September - October 1, 2015
Venue: Zagreb, Croatia.

Zagreb is the Capital of Croatia easy to reach from many European
destinations. The charms of Zagreb have been recognized by ever increasing
number of visitors: the al fresco cafe tables, the classic
Austro-Hungarian architecture, the rows of fashionable boutiques and bars,
restaurants, and lively night life. Before/after the workshop we suggest
visiting the unspoiled natural beauty of Plitvice Lakes National Park (
http://www.np-plitvicka-jezera.hr/en/ , just two hour drive ) or the
Adriatic Sea. In fact if there will be interest we will organize an
excursion with hiking or swimming after the workshop.

Topics:

Synthetic gauge fields / synthetic magnetism, topological phases and
topological effects, physics of the Hall effect,  topologically protected
edge states, have been of great interest to the communities in optics and
photonics and ultracold atomic gases. A flurry of papers is being
published in most prestigious journals on these topics. However, we
believe that both communities could benefit by having stronger links in
understanding the methods from the other side, experimental difficulties,
new possibilities and ideas. This workshop is intended to bring together a
few most distinguished scientists and interested young scientists together
to discuss these topics. We aim at having 50-70 people in the workshop.

Funding:

As an invited speaker you will not have to pay for the conference fee, and
we will provide accommodation for you.

In the name of the organizing committee,
Hrvoje Buljan

Institute of Physics Belgrade Roundcube Webmail ... https://mail.ipb.ac.rs/roundcube/?_task=mail&_s...
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Marin Soljačić

Local organizing committee:
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Robert Pezer
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Organized by:

Department of Physics
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Bosonic Phases On The Haldane Honeycomb Lattice

Vasić, I (1); Petrescu, A (2,3); Le Hur, K (2); Hofstetter, W (4);

Contact: ivana.vasic@ipb.ac.rs

(1) Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Bel-
grade, Serbia

(2) Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
(3) Department of Physics, Yale University, New Haven, Connecticut 06520, USA
(4) Institute of Theoretical Physics, Goethe University, Frankfurt/Main, Germany

Recent experiments [1] in ultracold atoms have reported the implementation of artificial gauge
fields in lattice systems. Motivated by such advances, we investigate the Haldane honeycomb lattice
tight-binding model [2], for bosons with local interactions at the average filling of one boson per site.
We analyze the ground state phase diagram and uncover three distinct phases: a uniform superfluid,
a chiral superfluid and a plaquette Mott insulator with local current loops. Nearest-neighbor and
next-nearest neighbor currents distinguish CSF from SF, and the phase transition between them is
first order. We apply bosonic dynamical mean field theory and exact diagonalization to obtain the
phase diagram, complementing numerics with calculations of excitation spectra in strong and weak
coupling perturbation theory. The characteristic density fluctuations and excitation spectra can be
probed in future experiments.
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Figure 2.2: a) Lattice vectors and hopping integrals of the Haldane model. b) Phase diagram of the model
at unit filling, containing plaquette Mott insulator (PMI), uniform superfluid (SF) and chiral superfluid
(CSF) phases. c) Local condensate order parameter in the uniform superfluid; d) In CSF the condensate
order parameters on sublattices A and B are determined up to a relative phase.

References

[1] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Nature
(London) 515, 237 (2014).

[2] I. Vasić, A. Petrescu, K. Le Hur, W. Hofstetter, Phys. Rev. B 91, 094502 (2015).



Subject Invitation from SFKM 2015

From Leonardo Golubovic <Leonardo.Golubovic@mail.wvu.edu>

To ivana.vidanovic@scl.rs <ivana.vidanovic@scl.rs>

Date 2015-01-16 07:41

Faculty of Physics University of Belgrade
Ins�tute of Physics Belgrade

Ins�tute for Nuclear Sciences "Vinca" Belgrade
Serbian Academy of Sciences and Arts

Dr. Ivana Vasic
Scien�fic Compu�ng Laboratory
Ins�tute of Physics Belgrade
Pregrevica 118
11080 Belgrade, Serbia

      Dear Dr. Vasic,

On behalf of the Organizing and Program Commi�ees and my own, it is my privilege and pleasure to offer you to give an invited talk at
the 19th Symposium on Condensed Ma�er Physics - SFKM 2015, to be held in Belgrade, Serbia, September 7-11, 2015.

We are hoping that you can accept the invita�on and are looking forward to your response. More informa�on about the conference
can be found posted at h�p://www.s�m.ac.rs

We would be very grateful if you could send us a tenta�ve �tle or subject of your talk at your earliest convenience, as this would be
very helpful for our planning the conference sessions.

We are looking forward to mee�ng you in Belgrade in September.

Sincerely yours,

SFKM 2015 Chair
Prof. Leonardo Golubovic
West Virginia University, USA

Institute of Physics Belgrade Roundcube Webmail ... https://mail.ipb.ac.rs/roundcube/?_task=mail&_s...
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The 19th Symposium on Condensed Matter Physics – SFKM 2015, Belgrade – Serbia

Bosonic Phases On The Haldane Honeycomb
Lattice

I. Vasića, A. Petrescubc, K. Le Hurb and W. Hofstetterd

aScientific Computing Laboratory, Institute of Physics, University of Belgrade, Belgrade, Serbia
bCentre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France

cDepartment of Physics, Yale University, New Haven, Connecticut 06520, USA
dInstitute of Theoretical Physics, Goethe University, Frankfurt/Main, Germany

Abstract. Recent experiments [1] in ultracold atoms have reported the implementation of artificial
gauge fields in lattice systems. Motivated by such advances, we investigate the Haldane honeycomb
lattice tight-binding model [2], for bosons with local interactions at the average filling of one boson
per site. We analyze the ground state phase diagram and uncover three distinct phases: a uniform su-
perfluid, a chiral superfluid and a plaquette Mott insulator with local current loops. We apply bosonic
dynamical mean field theory and exact diagonalization to obtain the phase diagram, complementing
numerics with calculations of excitation spectra in strong and weak coupling perturbation theory.
The characteristic density fluctuations and excitation spectra can be probed in future experiments.
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FIGURE 1. a) Lattice vectors and hopping integrals the Haldane model. b) Phase diagram of the model
at unit filling, containing plaquette Mott insulator (PMI), uniform superfluid (SF) and chiral superfluid
(CSF) phases. c) Local condensate order parameter in the uniform superfluid; d) In CSF the condensate
order parameters on sublattices A and B are determined up to a relative phase.

REFERENCES
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Nature (London) 515, 237-240 (2014).
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7th Annual Retreat of the SFB/TR 49, Bensheim, September 19 – 20, 2013 
 
Programme  
 
 
Thursday, September 19, 2013  

 
 

1. Ultracold Gases & Cold Ion Crystals              A. Widera / H. Ott 
 
 

09:15 (5)  Michael Lang Welcome 
 
09:20 (12+8) Ivana Vidanovic (A3) Dissipation induced bosonic dynamics an hybrid quantum 
   simulations 
 
09:40 (12+8) Michael Fleischhauer (A5) Adiabatic preparation of Wigner crystals of photons in 
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We discuss d-wave topological (broken time-reversal symmetry) pairing structures in unpolarized and polarized
Jain states. We demonstrate pairing in the Jain spin-singlet state by rewriting it in an explicit pairing form,
in which we can recognize d-wave weak pairing of underlying quasiparticles—composite fermions. We find
and describe the root configuration of the Jain spin-singlet state and its connection with neutral excitations
of the Haldane-Rezayi state, and study the transition between these states via exact diagonalization. We find
high overlaps with the Jain spin-singlet state upon a departure from the hollow-core model for which the
Haldane-Rezayi state is the exact ground state. Due to a proven algebraic identity we are able to extend the
analysis of topological d-wave pairing structures to polarized Jain states and integer quantum Hall states and
discuss its consequences.

DOI: 10.1103/PhysRevB.85.245307 PACS number(s): 05.30.Pr, 73.43.−f

I. INTRODUCTION

Fractional quantum Hall (FQH) states are strongly corre-
lated many-body states which in certain cases have an effective
description in terms of weakly interacting quasiparticles. An
important example is the Jain states1 which are composed of
weakly interacting composite fermion quasiparticles, which
themselves form underlying integer quantum Hall (IQH)
states. In other important examples these underlying states
of quasiparticles may be superconducting with broken time-
reversal symmetry, as in the famous Pfaffian (Moore-Read)
state2 with p-wave superconducting pairing of composite
fermion quasiparticles. The paired states in the FQH effect
(FQHE) are often discussed in connection with systems with
extra degrees of freedom such as spin. The first paired state
proposed was the spin-singlet d-wave Haldane-Rezayi (HR)
state.3 It has served as inspiration and as a prototype for other
paired states, despite initial confusion about its compressibil-
ity. Initially it was believed to be an incompressible state—a
spin-singlet state at filling factor 1/2. However, in Ref. 4
the HR state was identified as a critical (gapless) state of a
d-wave superconductor with broken time reversal symmetry.
In the same reference it was shown that the gapped phase
that is on the weak-pairing side of the transition for which
the HR state is critical possesses some universal properties of
the Jain spin-singlet (JSS) state at half filling.5 Therefore the
JSS state may represent a weakly paired d-wave topological
superconductor of composite fermion quasiparticles and may
be related to the gapless HR d-wave state. On the other
hand, recent developments in the theory of the FQHE have
demonstrated exceptional similarities between polarized Jain
states and a nonunitary series of states [connected with
nonunitary conformal field theories (CFTs)] with gapless
behavior.6–10

In this paper we focus on d-wave topological pairing
structures in unpolarized and polarized Jain states. First
we discuss further the connection between the JSS state
and topological d-wave superconductors, and the implied
connection between HR and JSS states. Due to an algebraic
identity we recover the exact pairing (structure) in the JSS

wave function. The root configuration of the same state is
also presented. These results improve our understanding of
the role of paired composite fermions in the HR and JSS
states, and the transition that is expected to occur between
these states. In order to confirm its existence in the presence of
specific interactions we study this transition by way of exact
diagonalization. Due to the spin degree of freedom our studies
are limited in the system sizes treated compared to studies
without spin. In the systems we could treat we demonstrate
high overlaps with the JSS state upon departing from the pure
hollow-core model for which the HR state is the exact ground
state. Due to the proven identity we are able to show that the
pairing structures also exist even in polarized Jain states, as
a consequence of the underlying multicomponent nature of
the FQH states. Furthermore, we demonstrate a connection,
based on the proven identity, between the IQH states with
Chern number equal to 2 (Refs. 11–13) and the d-wave
superconducting states with broken time-reversal symmetry.
This connection is enabled by the extremely weak pairing in
the d-wave superconductor. We will discuss the connection
on the level of many-body wave functions; it was introduced
previously on the level of Hamiltonians by Laughlin in Ref. 14.

The paper is organized as follows: Sec. II introduces the HR
and JSS model wave functions and reviews their most relevant
properties, Sec. III shows how to see hidden pairing structure
in the JSS state, Sec. IV discusses the HR and JSS states in
terms of their root partitions, Sec. V presents results from
numerical calculations, Sec. VI extends the pairing structure
arguments to the spin-polarized case, and finally Sec. VII
presents conclusions.

II. MODEL WAVE FUNCTIONS

To understand better the topological nature of Jain states
and their relationship to the nonunitary states, we will first
discuss the JSS state and the related HR state. The JSS state at
ν = 1

2 is defined as

�JSS = PLLL(χ2χ110χ1) (1)
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in the usual Jain notation. PLLL is the projector operator to the
lowest Landau level (LLL). χ2 denotes the wave function of
two filled Landau levels (LLs) of all particles. As shown in
Ref. 15, in a condensed form χ2 can be expressed as

χ2 = A
{

M∏
i=1

z∗
i ×

∏
i<j ;i,j�M

(zi − zj ) ×
∏

k<l;M<k,l�N

(zk − zl)

}
,

(2)

where N , the total number of particles, is assumed even, and
M = N/2. A denotes the antisymmetrization operator over
the N particles. Here and below we suppress the omnipresent
Gaussian factors, characteristic of the disk geometry. In this
section we look for long-distance properties of wave functions,
and use the expression (2) or (7) below. χ1 denotes the wave
function of the filled LLL of all particles,

χ1 =
N∏

i<j

(zi − zj ), (3)

and χ110 denotes the wave function with Jastrow-Laughlin
factors only between particles with the same spin,

χ110 =
N
2∏

i<j

(z↑
i − z

↑
j )

N
2∏

i<j

(z↓
i − z

↓
j ), (4)

where z
↑
i (z↓

i ) are the positions of the particles with spin up
(down). Where no spin index is given, the product is over all
particles irrespective of spin.

The HR state3 is a fermionic spin-singlet state defined as

�HR = det

(
1

(z↑
i − z

↓
j )2

) ∏
i<j

(zi − zj )2. (5)

This state is the unique densest zero-energy ground state of
a hollow-core two-body interaction Hamiltonian. Two-body
interaction Hamiltonians can be expressed in terms of the
Haldane pseudopotential coefficients16 Vm as

H =
∑
m�0

⎛
⎝Vm

∑
i<j

P (m)
ij

⎞
⎠ , (6)

where Vm is the pseudopotential coefficient for relative
angular momentum m and P (m)

ij projects a particle pair onto
relative angular momentum m. The hollow-core interaction
corresponds to setting the V1 coefficient to a finite value while
the rest are set to zero. For the HR state the counting of zero
modes with and without quasiholes can be deduced from a
generalized Pauli principle.17,18

We will examine in detail the transition induced by
changing V0 (the interaction pseudo-potential for particles
with relative angular momentum zero) that is believed to
represent the transition from the HR to the JSS state. We
are especially interested in identifying the JSS state and its
universal properties on the weak-pairing side of the transition.
This will also entail better examination of the JSS state along
with its root configuration.

III. PAIRING STRUCTURE

From the expression for the JSS state in Eq. (1) we will
illustrate the basic pairing structure that is hidden in the usual
definition of Jain states. We will prove an algebraic identity
in this case that directly relates the JSS wave function and the
long-distance form of the ground state of a d-wave topological
superconductor in its weak-pairing phase.

The projection to the LLL is made by replacing complex
conjugate coordinates z∗

i , i = 1, . . . ,N , in the two-LLs-filled
wave function χ2 with derivatives ∂/(∂zi), i = 1, . . . ,N .
When attempting to construct this state numerically we found
that changing the order of application of the projection operator
to reduce the computational complexity is no longer applicable
here as it is in the spinless case.19,20 For further details see
the Appendix. We will use expression (2) for χ2, derived in
Ref. 15, which assumes even numbers of particles, N = 2M . It
is important to notice that in the equivalent but more common
definition of χ2,

χ2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 · · · 1

z1 · · · zi · · · zN

z2
1 · · · z2

i · · · z2
N

...
...

...

zM−1
1 · · · zM−1

i · · · zM−1
N

z∗
1 · · · z∗

i · · · z∗
N

z∗
1z1 · · · z∗

i zi · · · z∗
NzN

z∗
1z

2
1 · · · z∗

i z
2
i · · · z∗

Nz2
N

...
...

...

z∗
1z

M−1
1 · · · z∗

i z
M−1
i · · · z∗

NzM−1
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7)

due to the asymmetry of the determinant, any exchange of
two particles amounts only to a change of sign as for the
wave function of a filled LLL, expression (3). If we use these
expressions for two groups of particles as in the case of states
with spin assignment, which particles are up or down becomes
irrelevant (as far as the correlations are concerned), as these
expressions have equal correlations for up-up, down-down,
and up-down correlators. It is important to notice that spin is
not fixed in a given LL [in χ2 in the definition, expression (2) or
(7)], and each LL may contain any distribution of up and down
spins. In the following we will extract (under derivatives due
to the LLL projection) from each term in χ2 the correlator that
is between the two definite groups with the same numbers of
particles equal to M; the first group will be among particles to
which we assign spin up and the second group will be among
particles with spin down. Therefore we have

�JSS = A
[
∂z1 · · · ∂zM

×
∏

i<j ;i,j�M (zi − zj )
∏

k<l;M<k,l�N (zk − zl)∏
p,q(zp↑ − zq↓)

×
∏
p,q

(zp↑ − zq↓)

]
χ110χ1. (8)
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Only if the division into two groups under A coincides with
division between up and down particles can we use the Cauchy
identity∏

i<j (zi↑ − zj↑)
∏

l<m(zl↓ − zm↓)∏
p,q(zp↑ − zq↓)

= det

(
1

zp↑ − zq↓

)
,

where the resulting determinant has antisymmetry among
same-spin particles. This gives us a clue about what the
expression in the square brackets in Eq. (8),

A[∂z1 · · · ∂zM

∏
i<j ;i,j�M (zi − zj )

∏
k<l;M<k,l�N (zk − zl)∏

p,q(zp↑ − zq↓)
, (9)

should be.
The expression
(a) should not carry macroscopic flux (the filling factor is

determined by [
∏

p,q(zp↑ − zq↓)]χ110χ1 = χ2
1 ),

(b) should preserve the same total power (N/2 = M) of
derivatives,

(c) should be antisymmetric under exchange of same-spin
particles,

(d) should be invariant under total (when all particles
participate) exchange between opposite-spin particles due to
the factor

∏
p,q(zp↑ − zq↓) that already encodes a definite

symmetry of χ2 under the total exchange equal to the parity of
M2, i.e., (−1)M

2 = (−1)M between opposite-spin particles,
(f) and should be invariant under translation (as χ2 is).
This is achieved by the following pairing function:

�d = det

(
z∗
p↑ − z∗

q↓
zp↑ − zq↓

)
, (10)

to which the projection to the LLL has to be applied when
considering the JSS state.

To see that the function is invariant under any total exchange
between up and down particles, we start with a general
expression,

� =
∑
p∈SM

f1,p(2) · · · f2M−1,p(2M)sgn(p), (11)

for a pairing function of M pairs. SM is the symmetric group
over a set of M elements and sgn(p) is the signature of the
permutation p. Each pair is invariant under the exchange of
its constituents, i.e., fi,j = fj,i . Any total exchange between
two kinds (even and odd) of particles is defined by a single
permutation s on M numbers. The transformed wave function
E� can be expressed as

E� =
∑

p

fs−1p(2),s(1) · · · fs−1p(2M),s(2M−1)sgn(p)

=
∑

p

fs(1),s−1p(2) · · · fs(2M−1),s−1p(2M)sgn(p)

=
∑

p

f1,s−2p(2) · · · f2M−1,s−2p(2M)sgn(p)

=
∑

σ

f1,σ (2) · · · f2M−1,σ (2M)sgn(σ ) = �, (12)

i.e., we have proved that the pairing function is invariant under
any total exchange E between (ups and downs) even- and
odd-number particles.

Thus we have

�JSS = det

(
∂z↑ − ∂z↓

z↑ − z↓

) ⎡
⎣∏

i,j

(zi↑ − zj↓)

⎤
⎦χ110χ1

= det

(
∂z↑ − ∂z↓

z↑ − z↓

)
χ2

1 . (13)

The existence and uniqueness of the pairing function that
satisfies the listed conditions lead to the equality of the
expressions. While we do not have a proof of the uniqueness
of the pairing wave function, we checked that the following
identity:

χ2 = �d

∏
i,j

(zi↑ − zj↓), (14)

and thus Eq. (13), hold true up to N � 8. Interestingly we
came to an expression for χ2 that includes the division into
two groups of particles, but as we emphasized previously this
does not select any particular two groups in the definition of
χ2 as long as we do not assign spin. But in the definition of the
JSS wave function we do, and it is then natural to decompose
χ2 in a way that respects this spin assignment.

IV. ROOT PARTITIONS

In the following we will describe another characteristic of
the JSS state, its root configuration. It has been established21

that many model FQH states can be written exactly as
Jack polynomials or as the product of a Jack polynomial
and some power of Vandermonde determinants. Jack poly-
nomials are characterized by a dominant partition which
reflects the vanishing properties of the state. A partition λ

can be represented as an occupation-number configuration
n(λ) = {nm(λ), m = 0,1,2, . . .} of each of the LLL orbitals.
A “squeezing rule” connects configurations n(λ) → n(μ).
This is a two-particle operation that moves a particle from
orbital m1 to m′

1 and another from m2 to m′
2 with m1 <

m′
1 � m′

2 < m2 and m1 + m2 = m′
1 + m′

2. A configuration λ

dominates a configuration μ if n(μ) can be derived from n(λ)
by applying a sequence of squeezing operations. When FQH
wave functions, equivalent to Jack polynomials, are expanded
in the occupation-number basis, the only configurations with
nonzero weight are the dominant configuration and those
derived from this via squeezing operations. This is also true
of FQH states which are equivalent to the product of Jack
polynomials and some power of Vandermonde determinants.
Recent work18,22 has focused on the form of squeezing
operations required for dealing with spinful states.

As a consequence of the pairing structure that we described
in Sec. III we will demonstrate that the difference between the
HR and JSS ground states can be described by an excitation
of two neutral fermions of opposite spins at total momentum
k = 0 in the corresponding root configurations. Here we use
the term “neutral fermions” in place of “composite fermions”
to stress that, at ν = 1/2, these excitations are due to unpaired
particles in the BCS states, i.e., neutral fermions.4 We can start
from the neutral excitation spectrum of the JSS state in the
thermodynamic limit with a quasiparticle-quasihole minimum
as sketched on the left of Fig. 1. The spectrum is completely
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FIG. 1. Sketches of the excitation spectra of the Jain spin-
singlet (left panel) and Haldane-Rezayi (right panel) states with the
respective root configurations of the ground states.

gapped from the ground state, Eq. (1), with root configuration
on a sphere given by (2̄00↓0↑0↓ · · · 0↑002̄). By 2̄ we denote
a spin-singlet pair on a single orbital. The relationship of
flux to particle number (Nφ/N ) is Nφ = 2N − 4. We expect
that by changing (decreasing) the V0 component of the
pseudopotential series {V0,V1,0,0, . . .}, V0,V1 > 0, the system
will become gapless and will be described at V0 = 0 by the
HR state with excitation spectrum sketched on the right of
Fig. 1, with root configuration (2̄0002̄000 · · · 2̄0002̄) with the
same relationship of flux to number of particles. As we know
from the previous analysis,4 the branch of gapless excitations
of the HR state is described by neutral fermions (excitations
due to unpaired particles in the BCS state). Neutral fermions
exist4 in the JSS state, and it is this gapped branch around
k = 0 that becomes gapless at the critical point. It is thus to
be expected that at the transition the pair of neutral fermions
of opposite spins, each of momentum k = 0, become part of
the ground-state configuration and description. Indeed, we can
convince ourselves by looking at the root configurations of the
JSS and HR states that they differ by the excitation of two
neutral fermions with opposite spins. Each bulk spin-singlet
pair in the HR state becomes set apart by one orbital in the
root configuration of the JSS state. Opposite spins thus carry
opposite momenta, but due to the requirement of inversion
symmetry with respect to the equator and the constraint on
the ratio of flux to number of particles (charge neutrality),
the boundary configurations do not change and the difference
between the two states may appear to us as some kind of
boundary excitation in a uniform state (the JSS state). But as
we already explained, essentially the difference between the
HR and JSS phases can be described by the state of two neutral
fermion bulk excitations in their respective ground states.

V. NUMERICAL CALCULATIONS

To verify that the state on the weak-pairing side of the
transition (HR state) is indeed a JSS state we obtain the ground
state of the relevant interaction Hamiltonian and compare
this to the explicitly constructed JSS state. The two-body
interaction here consists of a hollow-core interaction (V1 = 1)
along with a varying strength hard-core interaction (V0 > 0).
Constructing the JSS wave function is very computationally

Δ
Δ

FIG. 2. (Color online) Excitation gap and overlaps of the ground
state for a two-body interaction Hamiltonian for different V0/V1 for
(a) N = 10 and (b) N = 12 (see Ref. 5 for plots of the N = 8 case).
No overlap data are available for the JSS for N = 12.

intensive and N = 10 was the largest we could construct.
This is somewhat smaller than what has been achieved for
spin-polarized systems. This is because changing the order of
application of the projection operator no longer results in a
good approximation as it does in the spin-polarized case (see
the Appendix). Figure 2 shows the results of these calculations
for the N = 10 and N = 12 cases. As expected, as V0 is
increased the overlap with the HR state decays. For N = 10
where we could construct the JSS state we see that as V0 is
increased the overlap with this state increases to almost unity
before starting to decay. This is a strong indication that this is
indeed the JSS state on the weak-pairing side of the transition.
In both cases the energy gap also shows a peak near where
we expect the JSS state to be, which is consistent with this
picture. Note that the Coulomb ground state in the lowest or
the second Landau level has a zero overlap with the HR or
JSS state for N = 10 and N = 12, because of the different
quantum numbers.

VI. SPIN-POLARIZED CASE

In the following we will discuss spin-polarized Jain states
and their relationship to the nonunitary states. This subject is
well studied, especially for the case of bosons at filling factor
2/3 and the related nonunitary state, the Gaffnian state,23,24

and our focus here will be the underlying pairing structures in
these states. The root configurations of these two states, Jain
and Gaffnian, are well known8 and their pairing structure can
be probed. We will see that in this case also, as the difference
of the two states, two neutral excitations exist that are spread
out over the whole system. Due to the equivalence of north
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and south poles on the sphere (with a magnetic monopole
in its center), i.e., symmetry under inversion on the finite
interval of angular momentum states of any quantum Hall
state, and as a consequence of the bulk neutral excitations,
“edge decorations”—special decorations on the ends (north
and south poles)—appear, as we find in the case for the JSS
state. This neutral rearrangement and the edge decorations can
be seen in the root configuration of the Jain state (2010110102)
compared to that of the Gaffnian state (2002002002) (for
the sake of simplicity we display the root configurations for
only eight particles). This can also be seen in Jain states that
need more than two LLs for their construction. Each new LL
contributes a new pair of neutral excitations with respect to
nonunitary partner states.8 To understand the origin of this
behavior, which may stem from a pairing structure in Jain
states, we begin with the definition of the Gaffnian wave
function of bosons at 2/3:

�Gf = S
[
�221perm

(
1

z↑ − z↓

)]
. (15)

In constructing this state we first divide the electrons into two
groups of up (↑) and down (↓) pseudospins. In the definition
Eq. (15), “perm” denotes the permanent which for an M × M

M matrix is perm (M) = ∑
p∈SM

∏M
k=1 Mk,p(k). �221 is the

well-known notation of Halperin states for which we have

�221 =
∏
i<j

(zi↑ − zj↑)2
∏
l<m

(zl↓ − zm↓)2
∏
p<q

(zp↑ − zq↓).

(16)
In the following we will use

(zσ − zσ ′)m, (17)

where m can be a fraction and (σ,σ ′) = (↑,↑),(↓,↓), or (↑,↓)
as a shorthand notation for any of the three factors in Eq. (16).
The overall symmetrization operator S in Eq. (15) is necessary
to produce a state of polarized bosons.

To display the pairing structure related to the previous
discussion of the HR state we will separate out the charge
part, i.e., the part unaffected by pseudospin:

�Gf = S
[ ∏

(z − z)3/2(z↑ − z↑)1/2(z↓ − z↓)1/2

× 1

(z↑ − z↓)1/2
perm

(
1

(z↑ − z↓)

) ]
,

(18)

where
∏

(z − z)3/2 denotes the product of all possible pairs:

∏
(z − z)3/2 = (z↑ − z↑)3/2(z↓ − z↓)3/2(z↑ − z↓)3/2. (19)

Due to the equality given in Ref. 3,

�11-1perm

(
1

z↑ − z↓

)
= det

(
1

(z↑ − z↓)2

)
, (20)

we can rewrite the Gaffnian as

�Gf = S
[ ∏

(z − z)3/2 (z↑ − z↓)1/2

(z↑ − z↑)1/2(z↓ − z↓)1/2

× det

(
1

(z↑ − z↓)2

) ]
. (21)

Thus a possible interpretation of the Gaffnian state is that
it represents a HR pairing state of neutral semions, semions
because we have taken in front the factor

∏
(z − z)3/2 that

describes the charge part. The original semions that paired by
way of a permanent in the usual definition [Eq. (18)] have
relative fermionic statistics with respect to the new semions of
Eq. (21).

We can try to extend our pairing arguments from spin-
singlet HR and Jain states to Gaffnian and Jain states at 2/3
filling (2/5 in the case of fermions). We expect that the Jain
state at 2/3 filling can be viewed as an underlying state of
weakly paired semions as in the following expression (we
neglect the projection to the LLL in the following):

�Jain = S
[ ∏

(z − z)3/2 (z↑ − z↓)1/2

(z↑ − z↑)1/2(z↓ − z↓)1/2

× det

(
z∗
↑ − z∗

↓
z↑ − z↓

) ]
. (22)

Due to the previously proven identity [Eq. (14)]

χ2 = χ1

χ110
det

(
z∗
↑ − z∗

↓
z↑ − z↓

)
, (23)

we can rewrite Eq. (22) as

�Jain = S
[ ∏

(z − z)3/2 (z↑ − z↓)1/2

(z↑ − z↑)1/2(z↓ − z↓)1/2

χ2χ110

χ1

]
= S(χ1χ2) = χ1A(χ2) = χ1χ2, (24)

as we anticipated. The last identity, in which A is the antisym-
metrizer, follows from the antisymmetry already encoded in
χ2 under exchange of any i and j . Moreover, we can start from
the definition of the bosonic Jain state,

�Jain = χ2χ1, (25)

use the same identity in Eq. (23), and conclude that

�Jain = det

(
z∗
↑ − z∗

↓
z↑ − z↓

)
×(z↑ − z↑)(z↓ − z↓)(z↑ − z↓)2, (26)

i.e., come to an expression for �Jain in terms of two groups
of particles. As we emphasized below Eq. (14), the division
between ups and downs in Eq. (26) is arbitrary and we do not
have a regular paired state with a charge part clearly separated
from a pairing function. As before, but without the need for
the symmetrizer S, we have

�Jain =
∏

(z − z)3/2 (z↑ − z↓)1/2

(z↑ − z↑)1/2(z↓ − z↓)1/2

× det

(
z∗
↑ − z∗

↓
z↑ − z↓

)
. (27)
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Therefore we conclude that the Jain state at 2/3 filling can
be (to a certain degree) viewed as a topological superconductor
of anyons in a weak-pairing phase. The physical consequences
of such a statement are not obvious. The pairing is very much
disguised. We may also talk about neutral fermions and their
pairing, but there is no simple relationship between them and
the underlying particles—in this case bosons.

Edge decorations in the root configuration of the Jain
state in comparison with the Gaffnian clearly point to the
presence of neutral excitations that follow from pair breaking.
To understand better how edge decorations are connected
with the pairing structure in Gaffnian and Jain states that
we demonstrated previously in Eqs. (18), (21), (22), and
(24), we will take out S (symmetrizer) in the definition of
the Gaffnian [Eq. (15)]. As a result we get a spinful state
with root configuration (2̄002̄002̄002̄) where 2̄ represents a
spin singlet on a single orbital. (This is analogous to the
HR case.) We may imagine pair-breaking neutral excitations
with spin which would lead to root configurations of the form
(2̄0↑0↓↑0↓02̄), but this would be too restrictive to describe
the root configuration of a Jain state which is ferromagnetically
ordered with the total projection along the quantization axis
equal to zero in the pseudospin space: (2010110102). We can
convince ourselves of this particular ferromagnetic ordering
by analyzing the expression Eq. (22) for the Jain state.
Nevertheless, we see the similarity between pair-breaking
neutral excitations that carry spin and quasiparticle-quasihole
excitations25 on both ends of the Jain state. Here quasiparticle-
quasihole excitations correspond to neutral fermions in the HR
and JSS case. Instead of a pair of neutral fermions of opposite
spins in the polarized Jain case we have a quadrupolar26

excitation, two quasiparticle-quasihole pairs that are spread
out over the ground state. Namely, we need two (neutral)
dipoles of corresponding but opposite momenta to make
a k = 0 excitation that decreases in energy when we are
approaching the critical Gaffnian state. The situation is similar
to the spin-singlet HR and JSS case with opposite-spin neutral
fermions as sketched in Fig. 1.

With all that we have said about Jain states, we can
expect that IQH effect (IQHE) wave functions that describe
noninteracting fermions can be described as some kind of
weakly paired topological superconductors where the ex-
tremely weak pairing of a time-reversal-symmetry-breaking
d wave, which is just a phase, changes into the description of
fermionic correlations between different LLs. As we already
demonstrated the Slater determinant of two filled LLs can be
written as

χ2 = det

(
z∗
↑ − z∗

↓
z↑ − z↓

)
(z↑ − z↓). (28)

We emphasize that the division between ups and downs is
arbitrary; the only requirement is an equal number of ups and
downs, i.e., an even total number of fermionic particles. The
factor (z↑ − z↓), similar to the Jastrow-Laughlin factor but
not the same, carries the information about the filling factor,
i.e., from the number of flux quanta that particles experience,
N

↑
φ = N

↓
φ = N/2 − 2, we can read off the filling factor,

ν = 2.
The interesting question concerns the relationship between

weakly paired d-wave superconductors and the topological

insulator, i.e., the IQHE with Chern number equal to 2. This
question is highly relevant in the context of fractional Chern
insulators27 (i.e., the FQHE without a magnetic field) with
Chern number larger than 1.11–13 Besides the relationship be-
tween bulk Hamiltonians defined on a lattice as demonstrated
in Ref. 14, there is obvious similarity in the edge theories:
Both are made up of two Dirac fermions,4 which, expressed as
Majoranas, represent a theory with SO(4) symmetry which is
equivalent to SU (2) × SU (2) symmetry. We may ask what
is the symmetry of bulk d-wave Hamiltonians in order to
identify the degrees of freedom which are transformed under
the symmetry. First there is obvious spin rotation symmetry,
SU (2)spin, due to the underlying spin degree of freedom in the
Hamiltonian; the ground-state wave function

�d = det

(
z∗
↑ − z∗

↓
z↑ − z↓

)
(29)

is a spin-singlet eigenstate of SU (2)spin since it is a collection
of BCS spin-singlet pairs. Second, besides particle-hole
symmetry, there is no additional internal symmetry in the
BCS Hamiltonian. Only in its ground-state wave function
is the number of complex conjugated and the number of
nonconjugated variables (“LL index”) expected to be the same
or, expressed in an equivalent way, their difference should
be conserved. Hence we may talk about an internal U (1)
symmetry. What we can conclude is that the symmetry that
is present in the bulk is enlarged at the edge to SU (2)spin ×
SU (2)internal.

On the other hand, in the case of the IQHE at ν = 2, at
the edge we may talk certainly about a symmetry that acts
on the LL index in parallel with the spin symmetry on the
edge of d-wave superconductors. Therefore on the edge we
have an SU (2)LL index × SU (2)internal symmetry. [Note that
here SU (2)internal should not be identified with that in the
context of the d-wave superconductor.] There are no explicit
degrees of freedom in the bulk that would correspond to or lead
to SU (2)internal symmetry on the edge. Interestingly, the bulk
ground-state wave function has the form which can be seen in
Eq. (28)—it is invariant under arbitrary assignment of ups and
downs. Equation (28) relates the ground-state wave function of
d-wave superconductors and the IQHE at ν = 2 and therefore
indicates a pairing structure in IQHE wave functions. There is
no pseudospin degree of freedom in the IQHE (Hamiltonian)
in the bulk, but the ground-state wave function looks as if there
is an additional ferromagnetically ordered pseudospin degree
of freedom next to the LL index. And the symmetries related
to these structures exist on the edge.

Therefore IQHE and polarized FQHE states underlie a
pairing construction which incorporates the “right” mutual
statistics of constituents that is achieved by their d-wave
pairing. At the same time their construction incorporates an
explicit projection to a ferromagnetic, i.e., one-component,
state so that the paired nature is suppressed. In this way
latent pseudospin degrees of freedom that are paired in the
ground-state wave functions appear in the root configurations
of the model wave functions and on the edge by way of
enlarged symmetry.
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VII. CONCLUSIONS

Haldane-Rezayi and Jain spin-singlet states are canonical
examples of d-wave pairing of FQHE wave functions. We
explicitly showed d-wave pairing in the case of the JSS state.
The root configuration of the JSS state was derived; in it we
could recognize the role of composite (neutral) fermion pairs in
the transition from the JSS to the HR state. We demonstrated
this transition in an exact diagonalization study. Besides its
intrinsic interest the study enabled us to draw parallels and
conclusions concerning polarized FQHE and IQHE states. We
found the presence of d-wave pairing in these states although
it is suppressed due to their one-component nature.
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APPENDIX: NUMERICAL CONSTRUCTION
OF COMPOSITE FERMION WAVE FUNCTIONS

First we discuss the construction of lowest-Landau-level
spin-polarized composite fermion (CF) wave functions of the
form

φ = PLLL
[
χ

2p

1 χn

]
.

In Ref. 19 it was demonstrated that when constructing wave
functions of this form the Jastrow factor χ

2p

1 can be moved

inside the determinant coming from χn. The LLL projection
can then be performed before taking the determinant. In
addition, analytical expressions for the application for the
LLL projection operator can be derived. In this manner the
computational cost of constructing such wave functions is
dramatically reduced.

Extending this, it was discovered that this method can be
applied even for cases where the wave function in question
does not have this form. For example, the bosonic wave
functions considered in Ref. 20 that are associated with the
CF state at filling factor ν = n

n+1 fall into this category:

φB = PLLL [χ1χn] .

It was shown that this wave function can be approximated well
with

φ′
B = χ−1

1 PLLL
[
χ2

1 χn

]
,

which is amenable to the technique from Ref. 19. The overlap
for N = 8 is |〈φB |φ′

B〉|2 = 0.9820.20

In the case of the JSS wave function it was hoped that a
similar method could be applied. We constructed the wave
functions

φ′
JSS = χ−1

001PLLL
[
χ2

1 χ2
]

and

φ′′
JSS = χ110PLLL [χ1χ2] .

However, it was found that these do not offer good approxi-
mations of the JSS state even for small systems. The overlaps
with the JSS state for N = 8 are |〈φJSS|φ′

JSS〉|2 = 0.790 and
|〈φJSS|φ′′

JSS〉|2 = 0.792. Note that for φ′′
JSS the term inside the

projection is not of the form χ
2p

1 χ2 and thus is not amenable
to the technique described in Ref. 19. However, this wave
function is still less computationally intensive to construct than
φJSS [Eq. (1)] since the application of the projection operator
before performing the product operation makes this operation
much less demanding.
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a b s t r a c t

Wepresent C programming language versions of earlier published Fortran programs (Muruganandamand
Adhikari (2009) [1]) for calculating both stationary and non-stationary solutions of the time-dependent
Gross–Pitaevskii (GP) equation. The GP equation describes the properties of dilute Bose–Einstein
condensates at ultra-cold temperatures. C versions of programs use the same algorithms as the Fortran
ones, involving real- and imaginary-time propagation based on a split-step Crank–Nicolson method.
In a one-space-variable form of the GP equation, we consider the one-dimensional, two-dimensional,
circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In
the two-space-variable form, we consider the GP equation in two-dimensional anisotropic and three-
dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also
considered. In addition to these twelve programs, for six algorithms that involve two and three space
variables, we have also developed threaded (OpenMP parallelized) programs, which allow numerical
simulations to use all available CPU cores on a computer. All 18 programs are optimized and accompanied
by makefiles for several popular C compilers. We present typical results for scalability of threaded
codes and demonstrate almost linear speedup obtained with the new programs, allowing a decrease in
execution times by an order of magnitude on modern multi-core computers.

New version program summary
Program title: GP-SCL package, consisting of: (i) imagtime1d, (ii) imagtime2d, (iii) imagtime2d-th,
(iv) imagtimecir, (v) imagtime3d, (vi) imagtime3d-th, (vii) imagtimeaxial, (viii) imagtimeaxial-th,
(ix) imagtimesph, (x) realtime1d, (xi) realtime2d, (xii) realtime2d-th, (xiii) realtimecir, (xiv) realtime3d,
(xv) realtime3d-th, (xvi) realtimeaxial, (xvii) realtimeaxial-th, (xviii) realtimesph.
Catalogue identifier: AEDU_v2_0.
Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDU_v2_0.html.
Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland.
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html.
No. of lines in distributed program, including test data, etc.: 180583.
No. of bytes in distributed program, including test data, etc.: 1 188688.
Distribution format: tar.gz.
Programming language: C and C/OpenMP.
Computer: Any modern computer with C language compiler installed.
Operating system: Linux, Unix, Mac OS, Windows.
RAM: Memory used with the supplied input files: 2–4 MB (i, iv, ix, x, xiii, xvi, xvii, xviii), 8 MB
(xi, xii), 32 MB (vii, viii), 80 MB (ii, iii), 700 MB (xiv, xv), 1.2 GB (v, vi).
Number of processors used: For threaded (OpenMP parallelized) programs, all available CPU cores on the
computer.
Classification: 2.9, 4.3, 4.12.

✩ D.V., I.V., and A.B. acknowledge support by the Ministry of Education and Science of the Republic of Serbia under projects No. ON171017 and NAD-BEC, by DAAD -
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Catalogue identifier of previous version: AEDU_v1_0.
Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1888.
Does the new version supersede the previous version?: No.
Nature of problem: These programs are designed to solve the time-dependent Gross–Pitaevskii (GP)
nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic,
circularly-symmetric, spherically-symmetric, axially-symmetric or fully anisotropic trap. TheGP equation
describes the properties of a dilute trapped Bose–Einstein condensate.
Solution method: The time-dependent GP equation is solved by the split-step Crank–Nicolson method by
discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary
or real time, over small time steps. The method yields solutions of stationary and/or non-stationary
problems.
Reasons for the new version: Previous Fortran programs [1] are used within the ultra-cold atoms
[2–11] and nonlinear optics [12,13] communities, as well as in various other fields [14–16]. This new
version represents translation of all programs to the C programming language, which will make it
accessible to the wider parts of the corresponding communities. It is well known that numerical
simulations of the GP equation in highly experimentally relevant geometries with two or three space
variables are computationally very demanding, which presents an obstacle in detailed numerical studies
of such systems. For this reason, we have developed threaded (OpenMP parallelized) versions of
programs imagtime2d, imagtime3d, imagtimeaxial, realtime2d, realtime3d, realtimeaxial, which are
named imagtime2d-th, imagtime3d-th, imagtimeaxial-th, realtime2d-th, realtime3d-th, realtimeaxial-
th, respectively. Fig. 1 shows the scalability results obtained for OpenMP versions of programs realtime2d
and realtime3d. As we can see, the speedup is almost linear, and on a computer with the total of 8 CPU
cores we observe in Fig. 1(a) a maximal speedup of around 7, or roughly 90% of the ideal speedup, while
on a computer with 12 CPU cores we find in Fig. 1(b) that the maximal speedup is around 9.6, or 80% of
the ideal speedup. Such a speedup represents significant improvement in the performance.
Summary of revisions: All Fortran programs from the previous version [1] are translated to C and named
in the sameway. The structure of all programs is identical. We have introduced the use of comprehensive
input files, where all parameters are explained in detail and can be set by a user. We have also
included makefiles with tested and verified settings for GNU’s gcc compiler, Intel’s icc compiler, IBM’s
xlc compiler, PGI’s pgcc compiler, and Oracle’s suncc (former Sun’s) compiler. In addition to this, 6 new
threaded (OpenMP parallelized) programs are supplied (imagtime2d-th, imagtime3d-th, imagtimeaxial-
th, realtime2d-th, realtime3d-th, realtimeaxial-th) for algorithms involving two or three space variables.
They are written by OpenMP-parallelizing the most computationally demanding loops in functions
performing time evolution (calcnu, calclux, calcluy, calcluz), normalization (calcnorm), and calculation
of physical quantities (calcmuen, calcrms). Since some of the dynamically allocated array variables are
used within such loops, they had to bemade private for each thread. This was done by allocatingmatrices
instead of arrays, with the first index in all such matrices corresponding to a thread number.
Additional comments: This package consists of 18 programs, see Program title above, out of which 12
programs (i, ii, iv, v, vii, ix, x, xi, xiii, xiv, xvi, xviii) are serial, while 6 programs (iii, vi, viii, xii, xv, xvii)
are threaded (OpenMP parallelized). For the particular purpose of each program, please see descriptions
below.
Running time: All running times given in descriptions below refer to programs compiledwith gcc on quad-
core Intel Xeon X5460 at 3.16 GHz (CPU1), and programs compiled with icc on quad-core Intel Nehalem
E5540 at 2.53 GHz (CPU2). With the supplied input files, running times on CPU1 are: 5 min (i, iv, ix, xii,
xiii, xvii, xviii), 10 min (viii, xvi), 15 min (iii, x, xi), 30 min (ii, vi, vii), 2 h (v), 4 h (xv), 15 h (xiv). On CPU2,
running times are: 5 min (i, iii, iv, viii, ix, xii, xiii, xvi, xvii, xviii), 10 min (vi, x, xi), 20 min (ii, vii), 1 h
(v), 2 h (xv), 12 h (xiv).

© 2012 Elsevier B.V. All rights reserved.

New version program summary (i)
Program title: imagtime1d.
Title of electronic files: imagtime1d.c, imagtime1d.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 4 MB.
Programming language used: C.
Typical running time: 2 min (CPU1), 1 min (CPU2).
Nature of physical problem: This program is designed to solve the
time-dependent GP nonlinear partial differential equation in one
space dimension with a harmonic trap. The GP equation describes
the properties of a dilute trapped Bose–Einstein condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (ii)
Program title: imagtime2d.
Title of electronic files: imagtime2d.c, imagtime2d.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 80 MB.
Programming language used: C.
Typical running time: 30 min (CPU1), 20 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in two space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.
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New version program summary (iii)
Program title: imagtime2d-th.
Title of electronic files: imagtime2d-th.c, imagtime2d-th.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 80 MB.
Programming language used: C/OpenMP.
Typical running time: 15 min (CPU1), 5 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in two space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.
New version program summary (iv)
Program title: imagtimecir.
Title of electronic files: imagtimecir.c, imagtimecir.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 2 MB.
Programming language used: C.
Typical running time: 2 min (CPU1), 1 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
two space dimensions with a circularly-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.
New version program summary (v)
Program title: imagtime3d.
Title of electronic files: imagtime3d.c, imagtime3d.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 1.2 GB.
Programming language used: C.
Typical running time: 1.5 h (CPU1), 1 h (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in three space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.
New version program summary (vi)
Program title: imagtime3d-th.
Title of electronic files: imagtime3d-th.c, imagtime3d-th.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 1.2 GB.
Programming language used: C/OpenMP.
Typical running time: 25 min (CPU1), 10 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation

in three space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (vii)
Program title: imagtimeaxial.
Title of electronic files: imagtimeaxial.c, imagtimeaxial.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 32 MB.
Programming language used: C.
Typical running time: 30 min (CPU1), 20 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with an axially-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (viii)
Program title: imagtimeaxial-th.
Title of electronic files: imagtimeaxial-th.c, imagtimeaxial-th.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 32 MB.
Programming language used: C/OpenMP.
Typical running time: 10 min (CPU1), 5 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with an axially-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.

New version program summary (ix)
Program title: imagtimesph.
Title of electronic files: imagtimesph.c, imagtimesph.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 2.5 MB.
Programming language used: C.
Typical running time: 2 min (CPU1), 1 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with a spherically-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
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Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
imaginary time over small time steps. The method yields solutions
of stationary problems.
New version program summary (x)
Program title: realtime1d.
Title of electronic files: realtime1d.c, realtime1d.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 4 MB.
Programming language used: C.
Typical running time: 15 min (CPU1), 10 min (CPU2).
Nature of physical problem: This program is designed to solve the
time-dependent GP nonlinear partial differential equation in one
space dimension with a harmonic trap. The GP equation describes
the properties of a dilute trapped Bose–Einstein condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xi)
Program title: realtime2d.
Title of electronic files: realtime2d.c, realtime2d.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 8 MB.
Programming language used: C.
Typical running time: 15 min (CPU1), 10 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in two space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xii)
Program title: realtime2d-th.
Title of electronic files: realtime2d-th.c, realtime2d-th.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 8 MB.
Programming language used: C/OpenMP.
Typical running time: 5 min (CPU1), 2 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in two space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xiii)
Program title: realtimecir.
Title of electronic files: realtimecir.c, realtimecir.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 3 MB.
Programming language used: C.

Typical running time: 5 min (CPU1), 5 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
two space dimensions with a circularly-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xiv)
Program title: realtime3d.
Title of electronic files: realtime3d.c, realtime3d.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 700 MB.
Programming language used: C.
Typical running time: 15 h (CPU1), 12 h (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in three space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xv)
Program title: realtime3d-th.
Title of electronic files: realtime3d-th.c, realtime3d-th.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 700 MB.
Programming language used: C/OpenMP.
Typical running time: 4 h (CPU1), 1.8 h (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation
in three space dimensions with an anisotropic trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xvi)
Program title: realtimeaxial.
Title of electronic files: realtimeaxial.c, realtimeaxial.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 4 MB.
Programming language used: C.
Typical running time: 10 min (CPU1), 5 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with an axially-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.



D. Vudragović et al. / Computer Physics Communications 183 (2012) 2021–2025 2025

a b

Fig. 1. (Colour online) Speedup in the execution time of realtime2d-th and realtime3d-th threaded (OpenMP parallelized) programs as a function of the number of CPU
cores used. The results are obtained: (a) on an 8-core machine with 2× quad-core Intel Nehalem E5540 CPU at 2.53 GHz, using the icc compiler, (b) on a 12-core machine
with 2 × six-core Intel Nehalem X5650 CPU at 2.66 GHz, using the pgcc compiler. The spatial grid sizes used are 2000 × 2000 (realtime2d-th) and 1000 × 1000 × 300
(realtime3d-th).

New version program summary (xvii)
Program title: realtimeaxial-th.
Title of electronic files: realtimeaxial-th.c, realtimeaxial-th.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 4 MB.
Programming language used: C/OpenMP.
Typical running time: 5 min (CPU1), 1 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with an axially-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
New version program summary (xviii)
Program title: realtimesph.
Title of electronic files: realtimesph.c, realtimesph.h.
Computer: Any modern computer with C language compiler
installed.
Maximum RAM memory: 2.5 MB.
Programming language used: C.
Typical running time: 5 min (CPU1), 5 min (CPU2).
Nature of physical problem: This program is designed to solve
the time-dependent GP nonlinear partial differential equation in
three space dimensions with a spherically-symmetric trap. The GP
equation describes the properties of a dilute trapped Bose–Einstein
condensate.
Method of solution: The time-dependent GP equation is solved by
the split-step Crank–Nicolson method by discretizing in space and
time. The discretized equation is then solved by propagation in
real time over small time steps. The method yields solutions of
stationary and non-stationary problems.
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Abstract
We analytically and numerically study nonlinear dynamics in Bose–Einstein condensates
(BECs) induced either by a harmonic modulation of the interaction or by the geometry of the
trapping potential. To analytically describe BEC dynamics, we use a perturbative expansion
based on the Poincaré–Lindstedt analysis of a Gaussian variational ansatz, whereas in the
numerical approach we use numerical solutions of both a variational system of equations and
the full time-dependent Gross–Pitaevskii equation. The harmonic modulation of the atomic
s-wave scattering length of a BEC of 7Li was achieved recently via Feshbach resonance, and
such a modulation leads to a number of nonlinear effects, which we describe within our
approach: mode coupling, higher harmonics generation and significant shifts in the
frequencies of collective modes. In addition to the strength of atomic interactions, the
geometry of the trapping potential is another key factor for the dynamics of the condensate, as
well as for its collective modes. The asymmetry of the confining potential leads to important
nonlinear effects, including resonances in the frequencies of collective modes of the
condensate. We study in detail such geometric resonances and derive explicit analytic results
for frequency shifts for the case of an axially symmetric condensate with two- and three-body
interactions. Analytically obtained results are verified by extensive numerical simulations.

PACS numbers: 03.75.Kk, 03.75.Nt, 67.85.De

(Some figures may appear in colour only in the online journal)

1. Introduction

Collective oscillation modes of various physical systems
provide important insights into their behavior and represent
a valuable source of information about their properties.
Collective modes are usually easily accessible experimentally,
and a comparison of the measured values of their frequencies
with corresponding analytical results obtained from a linear
stability analysis provides an essential tool for quantitative
assessment of the theoretical description of a given physical
system. In Bose–Einstein condensate (BEC) systems [1, 2],
collective oscillation modes were among the first properties

to be measured [3, 4] and compared with theoretical
results [5–9]. However, the prominent nonlinear features
of BECs open up a rich variety of phenomena, such as
solitons [10] or Faraday waves [11–15] that arise in different
experimental setups. This is most dramatically seen through a
resonant behavior, but a number of other phenomena are also
observed. For instance, mode coupling due to nonlinearities
is always present, and even when we excite only one given
collective oscillation mode, in the realistic experimental setup
other modes will also be excited eventually. Furthermore,
resonances and pronounced nonlinear effects can also be
caused purely by the geometry of the trapping potential, thus
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making the study of nonlinear effects quite important even
for the design of BEC experiments. Therefore, a detailed
theoretical and numerical description of nonlinear phenomena
is of significant interest and analytic results, which we derive
from the Poincaré–Lindstedt analysis, can contribute to a
better understanding of them.

In this paper, following the approach introduced in [16],
we study nonlinear effects in a BEC due to the harmonic
modulation of the s-wave scattering length [17], as well as
due to the geometry of the trap, where geometric resonances
emerge. In section 2, we briefly introduce the mean-field
description and the Gaussian variational approach for BEC
with two- and three-body contact interactions. We present in
section 3 our results on frequency shifts due to the modulation
of two-body interactions and due to the geometry of the trap,
whereas in section 4, we summarize our main results and give
a brief outlook for future research on this topic.

2. Variational approach

If we take into account two- and three-body contact
interactions, the dynamics of a BEC at zero temperature is
described by the generalized Gross–Pitaevskii equation [18]

ih̄
∂

∂t
9(r, t)=

{
−

h̄2

2m
1+ V (r)+ g2 |9(r, t)|2

+ g3 |9(r, t)|4
}
9(r, t), (1)

where 9(r, t) is a condensate wave function, the trapping
potential is considered to be axially symmetric V (r)=
1
2 mω2

ρ

(
ρ2 + λ2z2

)
with anisotropy λ, while g2 and g3 are two-

and three-body interaction strengths, respectively.
In order to obtain analytic results on the low-lying

collective modes of a BEC, we use the Gaussian variational
ansatz for the ground state [7, 8]

ψG(ρ, z, t)=N (t) exp

[
−

1

2

ρ2

uρ(t)2
+ iρ2φρ(t)

]
× exp

[
−

1

2

z2

uz(t)2
+ iz2φz(t)

]
, (2)

with the normalization factor N (t)= (π
3
2 u2
ρuz)

−1/2. Here
uρ(t), uz(t), φz(t) and φρ(t) are variational parameters with
a straightforward interpretation: uρ(t) and uz(t) correspond
to the radial and the axial condensate width, while φρ(t) and
φz(t) represent the corresponding phases. After minimization
of the Lagrangian corresponding to the Gross–Pitaevskii
equation, we arrive at the following nonlinear system of
ordinary differential equations for condensate widths, which
is our variational description of a BEC:

üρ(t)+ uρ(t)−
1

uρ(t)3
−

p

uρ(t)3uz(t)
−

k

uρ(t)5uz(t)2
= 0,

(3)

üz(t)+ λ2uz(t)−
1

uz(t)3
−

p

uρ(t)2uz(t)2
−

k

uρ(t)4uz(t)3
= 0,

(4)

where

p =
g2 N

(2π)3/2h̄ωρ`3
and k =

2g3 N 2

9
√

3π3ωρ h̄`6

are dimensionless two- and three-body interaction strengths
and `=

√
h̄/mωρ denotes the harmonic oscillator length.

Through extensive numeric simulations in [16], it was shown
that the above Gaussian variational ansatz can be successfully
used for describing the real-time dynamics of BEC systems
with parameters similar to the experimental ones from [17].

3. Results

Nonlinear terms in the underlying Gross–Pitaevskii
equation (1) and consequently in the variational system
of equations (3) and (4) lead to a number of interesting effects
in the properties of collective modes of a BEC. First we
consider the important case of a harmonic modulation of the
two-body interaction [17],

p(t)= p0 + q cos�t, (5)

and neglect three-body effects. As we can see from figure 1(a)
for a spherically symmetric trap, i.e. λ= 1, when the
two-body interaction strength is harmonically modulated with
the external driving frequency �, collective modes exhibit
a resonant behavior. The resonant frequencies correspond to
collective modes calculated from the linear stability analysis
and their higher harmonics. Close to resonances, frequencies
of collective modes exhibit shifts from the corresponding
linear stability results. By performing a Poincaré–Lindstedt
perturbative expansion [19, 20] in the small modulation
amplitude q, we can calculate this shift, which stems from
secular terms in solving the hierarchy of equations obtained in
the perturbation theory. It turns out that the first correction to
the linear stability frequencies is quadratic in the modulation
amplitude q and reads for the quadrupole mode

ωQ = ωQ0 + q2 CQ

2ωQ0 AQ
+ · · · . (6)

Similar results can also be obtained for the breathing mode
frequency. The coefficients AQ and CQ are calculated using
the Mathematica code5. The structure of the coefficient
AQ shows that the quadrupole mode frequency contains
poles at ωQ0, 2ωQ0, ωB0 −ωQ0, ωB0 and ωQ0 +ωB0 to
second order of perturbation theory. Higher-order calculations
would lead to additional poles, which are, indeed, observed
numerically [16]. Figure 1(b) compares the analytic result
for the frequency shift (6) for an axially symmetric BEC
at λ= 0.3 with the numerical results obtained by solving
the nonlinear variational equations (3)–(4) and performing
their Fourier analysis. As we can see, even the first
analytically calculated correction to the frequencies of
collective oscillation modes is in excellent agreement with the
full numerical results.

Next, we consider the interplay between the geometry
of the trap, which is represented by the anisotropy λ, and

5 SCL BEC MATHEMATICA codes, http://www.scl.rs/speedup

2

http://www.scl.rs/speedup
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Figure 1. (a) Oscillation amplitude (umax − umin)/2 versus driving frequency � for p0 = 0.4, k = 0 for a spherically symmetric BEC. The
shape and value of a resonance occur at a driving frequency �, which differs from the linear stability frequency ω0, and depends on the
modulation amplitude q . (b) Frequency of the quadrupole mode ωQ versus driving frequency � for p0 = 1, q = 0.2 and k = 0 for an axially
symmetric BEC with anisotropy λ= 0.3.
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Figure 2. Relative frequency shift of the quadrupole oscillation mode versus the trap aspect ratio λ for values of the dimensionless
two-body interaction p = 0.01, 0.1, 0.4 and 1 and for several values of the dimensionless three-body interaction k.

nonlinearities due to interactions. In the case of two-body
interactions, this was studied within the hydrodynamic
approach of [21] and more recently in other formalisms
[22, 23]. Here we also consider three-body contact
interactions, and describe the BEC system by the variational
set of equations (3) and (4). Linear stability analysis yields the
frequencies of collective modes:

ωB0,Q0 =

m1 + m3 ±

√
(m1 − m3)2 + 8m2

2

2

1/2

, (7)

m1 = 1 +
3

u4
ρ0

+
3p

u4
ρ0uz0

+
5k

u6
ρ0u2

z0

, (8)

m2 =
p

u3
ρ0u2

z0

+
2k

u5
ρ0u3

z0

, (9)

m3 = λ2 +
3

u4
z0

+
2p

u2
ρ0u3

z0

+
3k

u4
ρ0u4

z0

, (10)

and uρ0 and uz0 are equilibrium widths, obtained as stationary
solutions.

To study nonlinear effects in real-time dynamics, we
consider a BEC in the initial state corresponding to the
stationary ground state with a small perturbation proportional
to the eigenvector of the quadrupole mode. This perturbation,
proportional to the small parameter ε, leads to quadrupole
mode oscillations. However, due to nonlinear effects in a
BEC, the breathing mode is also excited eventually, as well as
other, higher harmonics, which include linear combinations
of both modes. The frequency of collective modes depends
on the anisotropy λ and, as was shown in [21], exhibit
resonances for specific values of λ. For trap geometries with
anisotropies close to resonant values, frequencies of collective
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oscillation modes are significantly shifted from their linear
stability analysis values. If we take into account three-body
interactions and apply a Poincaré–Lindstedt perturbative
expansion [19, 20] in the small parameter ε, we obtain the
frequency shift of the quadrupole mode in the form

ωQ = ωQ0 + ε2 f (ωQ0, ωB0, uρ0, uz0, p, k, λ)

2ω2
Q0(ωB0 − 2ωQ0)(ωB0 + 2ωQ0)

. (11)

From this, we can immediately read off poles for the
values of λ determined by the condition ωB0 = 2ωQ0. Similar
results are obtained for the breathing mode. The frequency
shifts for the quadrupole mode are illustrated in figure 2
for various values of dimensionless two- and three-body
interaction strengths. As we can see from the graphs, for
small values of the two-body interaction, the three-body
interaction can have a significant effect on the frequency of
collective modes. Furthermore, we see that the trap anisotropy
can be fine-tuned in such a way that the frequency shift
is completely removed. However, as two-body interactions
increase, three-body interaction effects become less important
and eventually just represent a small correction to the leading
two-body behavior.

4. Conclusions

In this paper, we have studied prominent nonlinear effects
that arise in BECs due to two- and three-body contact
interactions. We have used a Gaussian variational approach
which was shown to well describe BEC systems in the
range of parameters that are relevant for current experimental
setups [16]. Using the Poincaré–Lindstedt perturbation theory,
we have calculated frequency shifts due to a harmonic
modulation of the s-wave scattering length, motivated by
a recent experiment [17]. We have also studied in detail
the delicate interplay between nonlinear effects due to
two- and three-body interactions and the trap geometry.
Within the variational approach and the Poincaré–Lindstedt
method, we have calculated frequency shifts and identified
the geometric resonances of collective modes of axially
symmetric BEC systems. We have also shown that the
observed geometric resonances can be eliminated if two- and
three-body interactions can be appropriately fine-tuned.

We plan to extend this research and further study the
interplay of two- and three-body interactions by considering
the case of attractive three-body interaction, when competing
effects between repulsive two-body and attractive three-body
interactions may give rise to interesting phenomena. We also
plan to study mode coupling and energy transfer between
quadrupole and breathing oscillation mode due to nonlinear
effects.
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Balaž A and Nicolin A I 2012 Phys. Rev. A 85 023613
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Abstract
We investigate geometric resonances in Bose–Einstein condensates by solving the underlying
time-dependent Gross–Pitaevskii equation for systems with two- and three-body interactions
in an axially symmetric harmonic trap. To this end, we use a recently developed analytical
method (Vidanović et al 2011 Phys. Rev. A 84 013618), based on both a perturbative
expansion and a Poincaré–Lindstedt analysis of a Gaussian variational approach, as well as a
detailed numerical study of a set of ordinary differential equations for variational parameters.
By changing the anisotropy of the confining potential, we numerically observe and analytically
describe strong nonlinear effects: shifts in the frequencies and mode coupling of collective
modes, as well as resonances. Furthermore, we discuss in detail the stability of a
Bose–Einstein condensate in the presence of an attractive two-body interaction and a repulsive
three-body interaction. In particular, we show that a small repulsive three-body interaction is
able to significantly extend the stability region of the condensate.

(Some figures may appear in colour only in the online journal)

1. Introduction

The experimental discovery of Bose–Einstein condensation
[1–6] has instigated extensive experimental and theoretical
studies of ultracold atoms and molecules. In particular,
many experiments have focused on collective excitations of
harmonically trapped Bose–Einstein condensates (BECs), as
their frequencies can be measured to the order of a few per mill
[7–10] and calculated analytically [11–17], and thus provide a
reliable method for extracting ultracold system parameters.

A wide variety of interesting nonlinear phenomena
are observed in collective excitations of BECs, including
frequency shifts [18, 19], mode coupling [18, 20, 21], damping
[9, 22], nonlinear interferometry [23], as well as collapse and

revival of oscillations [18, 24, 25]. The collective oscillation
modes can be induced in a BEC by modulating the external
potential trap [7, 8, 18, 26–39], the s-wave scattering length
[19, 40–43] or three-body interactions [42, 44].

Resonant coupling between collective modes in a BEC
was experimentally observed [20, 45], and it was shown that,
when the parity quadrupole mode is excited by changing the
trap anisotropy parameter above a certain value, it is possible to
achieve an energy transfer between modes at a rate [21] which
is comparable to the collective mode frequency. In [18], the
frequency shift of collective modes due to the trap anisotropy
in a generic axially symmetric geometry was studied, and
it was shown that the collective modes exhibit a resonant
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behaviour for specific values of the trap anisotropy, which are
called geometric resonances, and that the strong effects can be
observed even for oscillations of relatively small amplitude.
The excitations and coupling of quadrupole and scissor modes
in two-component BECs were investigated in [46]. Recently,
also a coupling of the dipole, breathing and quadrupole modes
close to a Feshbach resonance was analysed in [47].

In this paper, we study geometric resonances and resonant
mode coupling in BECs with two- and three-body contact
interactions. Theoretical studies of collective excitations are
usually focused on two-body contact interactions due to the
diluteness of quantum gases [10, 18–21, 41, 48]. However,
the experimental progress with BECs in atomic waveguides
and on the surface of atomic chips, which involve a strong
increase in the density of BECs, also necessitates the study of
three-body interactions [49–51]. Theoretical and experimental
studies [49, 52, 53] for a BEC of 87Rb atoms indicated
that the real part of the three-body interaction term can be
103–104 times larger than the imaginary part. The imaginary
part, which arises from three-body recombinations, limits
the lifetime of the condensate. However, even for a small
strength of the three-body interaction, the region of stability
for the condensate can be extended considerably according to
[54–57]. We study this in more detail and provide a
phase diagram which demonstrates the significantly enhanced
stability of BECs due to three-body interactions.

Due to the three-body interaction, the density profile [56],
the excitation spectrum of the collective oscillations [59, 58]
as well as the modulation instability of a trapped BEC [60]
is modified. The effects of the three-body interaction were
furthermore studied in ultracold bosonic atoms in an optical
lattice [51, 61–68], BCS-BEC crossover [69], complex solitons
BEC [70] and vortex BEC [71]. In addition, an extensive
work was done on the study of cubic–quintic nonlinear
equations, most notably in the context of nonlinear optics and
superfluid helium. Even though these studies were done in
uniform systems, many of the results are quite relevant for
trapped systems as well. In particular, we mention studies of
cavitation [72], droplets [73], as well as dynamics, solitary
waves and vortex nucleation [74]. The transition temperature,
the depletion of the condensate atoms and the collective
excitations of a BEC with two- and three-body interactions
in an anharmonic trap at finite temperature are studied in
[75]. Reference [76] shows that the frequency of the collective
excitation is also significantly affected by the strength of the
three-body interaction and the anharmonicity of the potential.
In [77], the authors investigated the collective excitations and
the stability of a BEC in a one-dimensional trapping geometry
for the case of repulsive or attractive three-body and repulsive
two-body interactions.

Motivated by this, we study here the dynamics of the
condensate with both two- and three-body contact interactions
in general and its collective oscillation modes in particular
by changing the geometry of the trapping potential. Within a
Gaussian variational approach, the partial differential equation
of Gross and Pitaevskii is transformed in section 2 into a set of
ordinary differential equations for the condensate widths. We
then discuss in detail in section 3 the resulting stability of the

condensate. First, we consider the case of an attractive two-
body interaction and a vanishing three-body interaction, and
afterwards the case of attractive two-body and repulsive three-
body interactions. In section 4, we study geometric resonances
and derive explicit analytic results for the frequency shifts
for the case of an axially symmetric condensate based on
a perturbative expansion and a Poincaré–Lindstedt method.
This frequency shift is calculated for a quadrupole mode in
subsection 4.1, for a breathing mode in subsection 4.2 and the
derived analytical results are then compared with the results
of numerical simulations in subsection 4.3. In that subsection,
we also compare results of numerical simulations for radial
and longitudinal condensate widths and the corresponding
excitations spectra with the analytical results obtained using
perturbation theory. Then, in section 5, we analyse the resonant
mode coupling and the generation of second harmonics of
the collective modes. Finally, in section 6 we summarize our
findings and present our conclusions.

2. Variational approach

The dynamics of a Bose–Einstein-condensed gas in a trap
at zero temperature is well described by the time-dependent
Gross–Pitaevskii (GP) equation [76–81]. Usually, only two-
body contact interactions are considered due to the diluteness
of the gas. In this paper, however, we study systems where also
three-body contact interactions have to be taken into account
[82, 52]. In that case, the GP equation has the form

i�
∂

∂t
ψ(r, t) =

[
− �

2

2m
� + V (r) + g2N |ψ(r, t)|2

+ g3N2 |ψ(r, t)|4
]
ψ(r, t), (1)

where ψ(r, t) denotes a condensate wavefunction normalized
to unity and N is the total number of atoms in the condensate.
On the right-hand side of the above equation, we have a
kinetic energy term, an external axially symmetric harmonic
trap potential V (r) = 1

2 mω2
ρ

(
ρ2 + λ2z2

)
with the anisotropy

parameter λ = ωz/ωρ , while the parameters g2 and g3

account for the strength of two-body and three-body contact
interactions, respectively. The two-body interaction strength
g2 = 4π�

2a/m is proportional to the s-wave scattering length
a, where m denotes the mass of the corresponding atomic
species.

The three-body interaction strength g3 becomes important
not only for large values of the s-wave scattering length, but
also for small values of a close to the ideal gas regime. It
is well known that the stability against the collapse of 85Rb
cannot be described by using only the two-body scattering
[83]. The three-body scattering also plays an essential role
in understanding the Efimov physics, where three bosons
form a bound state [84, 85]. Braaten and Nieto [86] have
used an effective field theory to calculate the strength of the
three-body interaction, which effectively arises from the two-
body interaction, and obtained the result g3(κ) = 384π(4π −
3
√

3)[ln κa+B]�2a4/m, where κ is an arbitrary wave number
and B is a complex constant, both being suitably fixed in
[86]. Thus, in general, the effective three-body coupling

2



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 065303 H Al-Jibbouri et al

strength represents a complex number, where its imaginary
part describes recombination effects. However, its real part
turns out to be much larger, and the fit to experimental data for
85Rb and 87Rb gives typical values for Re(g3)/� of the order
of 10−27 to 10−26 cm6 s−1 [87, 75, 88].

Equation (1) can be cast into a variational problem, which
corresponds to the extremization of the action defined by the
Lagrangian L(t) = ∫

L(r, t) dr, with the Lagrangian density

L(r, t) = i�

2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− �

2

2m
|∇ψ |2 − V (r)|ψ |2

− g2N
2

|ψ |4 − g3N2

3
|ψ |6. (2)

In order to analytically study the dynamics of BEC systems
with two- and three-body interactions, we use the Gaussian
variational ansatz, which was introduced in [15, 16]. For an
axially symmetric trap, this time-dependent ansatz reads

ψG(ρ, z, t) = N (t) exp

[
−1

2

ρ2

uρ (t)2
+ iρ2φρ(t)

]

× exp

[
−1

2

z2

uz(t)2
+ iz2φz(t)

]
, (3)

where N (t) = 1/

√
π

3
2 u2

ρ (t)uz(t) is a normalization factor,
while uρ (t), uz(t), φz(t) and φρ(t) are variational parameters,
representing radial and axial condensate widths and the
corresponding phases. The ansatz (3) describes dynamics of
the condensate in terms of the time-dependent condensate
widths and phases, while no centre-of-mass motion is
considered here. A similar variational ansatz including the
centre-of-mass motion has been studied in [89], and would be
suitable to investigate how the centre-of-mass motion couples
to the collective oscillation modes in the presence of three-
body interactions.

If we insert the Gaussian ansatz (3) into the
Lagrangian (2), we obtain the Lagrange function

L(t) = −�

2

(
2φ̇ρu2

ρ + φ̇zu2
z
) − mω2

ρ

2

(
u2

ρ + λ2 u2
z

2

)

− �
2

2m

[(
1

u4
ρ

+ 4φ2
ρ

)
u2

ρ +
(

1

u4
z

+ 4φ2
z

)
u2

z

2

]

− g2N
2(2π)3/2u2

ρuz
− g3N2

9
√

3π3u4
ρu2

z
. (4)

From the corresponding Euler–Lagrange equations, we obtain
the equations of motion for all variational parameters. The
phases φρ and φz can be expressed explicitly in terms of first
derivatives of the widths uρ and uz according to

φρ = mu̇ρ

2�uρ

, φz = mu̇z

2�uz
. (5)

Inserting equations (5) into the Euler–Lagrange equations for
the widths, we obtain the second-order differential equation
for uρ and uq. After introducing the dimensionless parameters

ω̃i = ωi/ωρ, ũi = ui/�, t̃ = ωρ t (6)

with the oscillator length � = √
�/mωρ , we obtain a system

of two second-order differential equations for uρ and uz in the

dimensionless form

üρ + uρ − 1

u3
ρ

− p
u3

ρuz
− k

u5
ρu2

z
= 0, (7)

üz + λ2uz − 1

u3
z

− p
u2

ρu2
z

− k
u4

ρu3
z

= 0, (8)

where, for simplicity, we drop the tilde sign in the
dimensionless widths. In the above equations,

p = g2N
(2π)3/2�ωρ�3

=
√

2

π

Na
�

(9)

denotes the dimensionless two-body interaction strength,
while the parameter

k = 4g3N2

9
√

3π3�ωρ�6
(10)

is the dimensionless three-body interaction strength, which
can also be expressed in terms of p as

k = 32

9
√

3

g3�ωρ

g2
2

p2. (11)

For N = 105 atoms of 87Rb [45, 51] in a trap with
ωρ = 2π × 112 Hz, the two-body interaction strength is
g2 = 5� × 10−11 cm3 s−1, yielding p = 426. The three-body
interaction is of the order of g3 ≈ � × 10−26 cm6 s−1 [51],
which gives the dimensionless three-body interaction value
k = 1050.

Although the value of k is larger than that of p, the
corresponding terms in equations (7) and (8), i.e. k/u5

ρu2
z and

k/u4
ρu3

z , are suppressed by the factor u2
ρuz compared to the

respective p-terms. The value of this factor can be estimated
by taking into account the equilibrium positions uρ0 and uz0,
which are obtained by solving the stationary equations

uρ0 = 1

u3
ρ0

+ p
u3

ρ0uz0
+ k

u5
ρ0u2

z0

, (12)

λ2uz0 = 1

u3
z0

+ p
u2

ρ0u2
z0

+ k
u4

ρ0u3
z0

. (13)

For the anisotropy λ = 3/2, one numerically obtains uρ0 ≈
3.69 and uz0 ≈ 2.47, yielding the value u2

ρ0uz0 ≈ 33.6.
This shows that the terms proportional to k have the effective
coupling k/33.6 ≈ 31.2, which makes them small corrections
of the order of 7% to the leading two-body interaction
terms. However, if the system exhibits resonances, this may
no longer be true, and three-body interactions can play a
significant role for the system dynamics. In this paper, we
study geometric resonances, where it turns out to be necessary
to take into account effects of three-body interactions. The
s-wave scattering length can be tuned to any value, large
or small, positive or negative, by applying an external
magnetic field, using the Feshbach resonance technique
[90, 91]. Therefore, in this paper we will consider a range of
experimentally realistic values for dimensionless interaction
strengths p and k.

Using the Gaussian approximation enables us to
analytically estimate frequencies of the low-lying collective
modes [15, 16, 19]. This is done by linearizing equations (7)
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Figure 1. Frequencies (in units of ωρ) of collective oscillation modes for (a) breathing and quadrupole modes and (b) the radial quadrupole
mode versus the trap aspect ratio λ for p = 1, k = 0.001 (solid red lines) and p = 10, k = 0.1 (dashed blue lines).

and (8) around the equilibrium positions. If we expand the
condensate widths as uρ (t) = uρ0 + δuρ (t) and uz(t) =
uz0 + δuz(t), insert these expressions into the corresponding
equations and expand them around the equilibrium widths
by keeping only linear terms, we immediately obtain the
frequencies of the breathing and the quadrupole modes,

ω2
B,Q =

m1 + m3 ±
√

(m1 − m3)2 + 8m2
2

2
, (14)

where the abbreviations m1, m2 and m3 are given by

m1 = 4 + 2k
u6

ρ0u2
z0

, m2 = p
u3

ρ0u2
z0

+ 2k
u5

ρ0u3
z0

,

m3 = 4λ2 − p
u2

ρ0u3
z0

, (15)

and the corresponding breathing and quadrupole mode
eigenvectors are given by

uB,Q = 1√
m2

2 + (
ω2

B,Q − m1
)2

(
m2

ω2
B,Q − m1

)
. (16)

The quadrupole mode has a lower frequency and is
characterized by out-of phase radial and axial oscillations,
while in-phase oscillations correspond to the breathing
mode. Another low-lying collective excitation is the radial
quadrupole mode, which is characterized by out-of-phase
oscillations in the x and y directions, while in the z direction
there are no oscillations. As this mode breaks the cylindrical
symmetry, it can only be calculated by using the three-
dimensional equations of motion. The frequency turns out to
be

ω2
RQ = 2 + 2

u4
ρ0

, (17)

and the corresponding three-dimensional eigenvector is

uRQ = 1√
2

⎛
⎝ 1

−1
0

⎞
⎠ . (18)

Figure 1 shows the frequencies of all collective oscillation
modes as functions of the trap aspect ratio λ. We see that
the collective mode frequencies depend relatively strongly on
the trap anisotropy, whereas a variation of the dimensionless
interaction strengths p and k yields only marginal changes.

3. Stability diagram

In this section, we discuss the stability of a BEC in the
mean-field framework for systems with two- and three-body
contact interaction in an axially symmetric harmonic trap. It is
well known that BEC systems with an attractive two-body
interaction are unstable against collapse above the critical
number of atoms (i.e. for a sufficiently large negative value of
p) in the condensate [80, 81]. For smaller numbers of atoms,
the zero-point kinetic energy is able to counter the attractive
inter-atomic interactions; however, when the number of atoms
sufficiently increases, this is no longer possible, and the system
collapses to the centre of the trapping potential.

We find that, for a pure two-body interaction, the
condensate is stable only above a critical stability line pc(λ),
while the presence of even a small repulsive three-body
interaction leads to the stabilization of the condensate. On the
other hand, we find that an attractive three-body interaction
further destabilizes the condensate.

To study in detail the effects of the three-body interaction
on the stability of BEC systems, we consider several
cases of interest: repulsive and attractive pure two-body
interactions, attractive two-body and repulsive three-body
interactions, and attractive two- and three-body interactions. If
the corresponding system of equations does (not) have positive
and bounded solutions of equations (7) and (8) in the vicinity
of positive equilibrium widths determined by equations (12)
and (13), then the condensate is considered stable (unstable).
This is equivalent to performing a linear stability analysis
and determining the stability of positive equilibrium widths
by examining frequencies of the corresponding collective
oscillation modes (14) and (17). The solution is only stable
if frequencies of all low-lying collective modes are found to
be real; otherwise the solution is unstable.

For the case of a pure repulsive two-body interaction, we
will immediately see that the condensate is always stable. For
the case of an attractive two-body interaction, the situation
is quite different: the above system of equations can have no
equilibrium, or it could have up to three equilibrium solutions.
The results of a detailed numerical analysis are summarized in
figure 2.

The dashed red line in figure 2(a) represents the critical
stability line as a function of the trap aspect ratio λ for a
pure two-body interaction (k = 0). Below the critical stability
line, there are no stable solutions and the system is unstable.
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Figure 2. Stability diagram of a BEC as a function of a trap aspect ratio λ for different values of dimensionless two-body and three-body
contact interaction strengths p and k. (a) λ–p stability diagram for k = 0, where the dashed red line represents the critical stability line,
below which there are no solutions (N). Above this line, for p < 0, there is one stable and one unstable solution (1S+1U), while for p � 0
there is only one stable solution (1S). (b) λ–p stability diagram for k = 0.005, where two cases exist: the small region with two stable and
one unstable solution (2S+1U), while otherwise only one stable solution exists (1S). For comparison, in the inset we combine the critical
stability line for k = 0 with the stability diagram for k = 0.005. (c) λ–k stability diagram for p = −0.5. For k � 0, there are two regions: the
one without solutions (N), and the one with one stable and one unstable solution (1S+1U). For k > 0, there are also two regions: the small
region with two stable solutions and one unstable solution (2S+1U), while otherwise there is only one stable solution (1S). As we can see, a
non-vanishing value of the three-body interaction k substantially enhances the stability of a condensate.
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Figure 3. Condensate width uρ0 = uz0 = u0 for λ = 1 and (a) k = 0, as a function of p; (b) k = 0.005, as a function of p; (c) p = −0.5, as a
function of k. The solid red lines represent the stable solution with minimal energy, the dotted black lines represent another stable solution
and the dashed blue lines represent the unstable solution.

Above the critical stability line, the system has one stable and
one unstable solution for an attractive two-body interaction
(p < 0), and only one stable solution for a repulsive two-body
interaction (p � 0). For λ = 0, which corresponds to the limit
of a cigar-shaped condensate, we have the critical value of two-
body interactions pc = −0.6204, which coincides precisely
with the value from [16]. For the isotropic case, when λ = 1,
the critical value is pc = −0.535, which again coincides with

the value from the literature [6, 16, 87, 57]. Figure 3(a) shows
solutions for the isotropic condensate as a function of p.

Now, if we consider the case of an attractive two-body
interaction and a small repulsive three-body interaction, then
the results of the stability analysis are quite different. The
system can either have one or three solutions, as shown in
figure 2(b). The presence of a positive three-body interaction
k, however small, leads to the existence of at least one stable
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Figure 4. Frequencies (in units of ωρ) of low-lying collective excitation modes: breathing (B), radial quadrupole (RQ) and quadrupole (Q),
as functions of an attractive two-body interaction p for the trap anisotropy λ = 117/163 and (a) k = 0, (b) k = 0.005.

solution in the whole range of values of λ and p. In the small
area designated by 2S+1U in figure 2(b), two stable solutions
and one unstable solution exist. Out of these two stable
solutions, only the one with the minimal energy is physically
relevant and could be realized in an experiment. Figure 3(b)
shows solutions for λ = 1, k = 0.005 as a function of p. As we
can see, a minimal-energy stable solution exists for any value
of p. However, for large negative values of p this solution tends
to zero, which practically represents a collapsed condensate.
Therefore, although within the given mathematical model the
condensate is always stable, physically this is valid only up
to a critical number of atoms, which has to be determined
by considering in detail the corresponding condensate density.
However, as we can see from figure 3(b), the dependence u0(p)

for large negative values of p is quite flat, which means that the
stability region can be significantly extended in the presence
of a small positive value of k compared to the case of pure
two-body interaction.

We also analyse the stability of a BEC system as a
function of the three-body interaction k. Figure 2(c) shows
the corresponding stability diagram for an attractive two-
body interaction p = −0.5. For a repulsive three-body
interaction (k > 0), as expected, we see a small region
with two stable solutions and one unstable solution (2S+1U),
as well as a region with only one stable solution (1S),
similar to figure 2(b). For an attractive three-body interaction
(k < 0), the stability region with one stable and one unstable
solution (1S+1U), which corresponds to the 1S+1U region in
figure 2(a), gradually shrinks until it disappears as k becomes
sufficiently negative. Therefore, we see that an attractive three-
body interaction has the same destabilizing effect on a BEC
as an attractive two-body interaction. This can also be seen
in figure 3(c), where the stable minimal-energy solution for
p = −0.5 exists only for a limited range of negative values
of k.

To further illustrate the findings of the above stability
analysis, we plot in figure 4 the frequencies of the low-
lying collective excitation modes as functions of an attractive
two-body interaction for the trap anisotropy λ = 117/163
[3]. Figure 4(a) corresponds to the case when three-body
interactions are neglected, i.e. k = 0, and we can see
that the condensate collapses for pc = −0.561, when the
expression for ω2

Q from equation (14) becomes negative. For a
small repulsive three-body interaction k = 0.005, figure 4(b)
shows the frequencies corresponding to stable minimum-
energy solutions. From figure 3(b) we see that for pc = −0.486

there is a jump from one to another solution branch due to the
minimal energy condition, which is reflected in figure 4(b)
by a corresponding jump in the frequencies of the collective
modes.

4. Shifts in frequencies of collective modes

Close to geometric resonances, the nonlinear structure of
the GP equation (1) leads to shifts in the frequencies of
collective oscillation modes compared to the respective values
in equation (14), which are calculated using a linear stability
analysis. Here we apply the standard Poincaré–Lindstedt
method [92–95, 19] in order to develop a perturbation theory
and calculate these frequency shifts.

4.1. Quadrupole mode

We start with working out a perturbation theory for the BEC
dynamic, which is based on the set of ordinary differential
equations (7)–(8), by expanding the condensate widths in the
series

uρ (t) = uρ0 + εuρ1(t) + ε2uρ2(t) + ε3uρ3(t) + · · · , (19)

uz(t) = uz0 + εuz1(t) + ε2uz2(t) + ε3uz3(t) + · · · , (20)

where the smallness parameter ε stems from the respective
initial conditions. Here we study the system dynamics with
the initial conditions in the form

u(0) = u0 + εuQ, _u(0) = 0, (21)

when the system is close to the equilibrium position u0, and is
perturbed in the direction of the quadrupole oscillation mode
eigenvector uQ, determined by equation (16). By inserting
expansions (19) and (20) into equations (7) and (8), we obtain
the following system of linear differential equations:

üρn(t) + m1uρn(t) + m2uzn(t) = χρn(t), (22)

üzn(t) + 2m2uρn(t) + m3uzn(t) = χzn(t), (23)

where the index n takes integer values n = 1, 2, 3, . . .,
and the quantities m1, m2 and m3 are already defined by
expressions (15). The functions χρn(t) and χzn(t) depend
only on the solutions uρi(t) and uzi(t) of lower orders i,
i.e. those corresponding to i < n. Therefore, the above
system of equations can be solved hierarchically, and at each
level n of this procedure, we use the initial conditions from
equations (21).
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In order to decouple the system of equations (22)–(23),
we use the linear transformation

uρn(t) = xn(t) + yn(t), (24)

uzn(t) = c1xn(t) + c2yn(t) (25)

with the coefficients

c1,2 =
m3 − m1 ∓

√
(m3 − m1)2 + 8m2

2

2m2
, (26)

which leads to two independent linear second-order
differential equations:

ẍn(t) + ω2
Qxn(t) + c2χρn(t) − χzn(t)

c1 − c2
= 0, (27)

ÿn(t) + ω2
Byn(t) + χzn(t) − c1χρn(t)

c1 − c2
= 0. (28)

From this we see that xn(t) and yn(t) correspond to quadrupole
and breathing mode oscillations, respectively. Although
the system is initially perturbed only in the direction of the
quadrupole mode eigenvector, due to the nonlinearity of the
system, the breathing mode is excited as well. The solutions
of the above equations depend essentially on the nature of
the inhomogeneous terms, which are given by polynomials of
harmonic functions of ωQt, ωBt and their linear combinations
(kωQ + mωB)t. Therefore, compared to linear systems, the
important difference here is that higher harmonics and linear
combinations of the modes emerge due to the structure of the
GP equation.

A careful analysis also reveals the important conclusion
that secular terms will start appearing at the level n = 3. As
usual, they can be absorbed by a shift in the quadrupole mode
frequency [19, 92–95]. At level n = 3, equations (22)–(23)
can be written as

ü3(t) + Mu3(t) + IQ,3 cos ωQt + · · · = 0, (29)

with the matrix M defined as

M =
(

m1 m2

2m2 m3

)
, (30)

and the dots represent the inhomogeneous part of the equation,
which does not contain linear terms proportional to harmonic
functions in ωQt. The expression for IQ,n can be calculated
systematically in the Mathematica software package [96].

The frequency shift of the quadrupole mode is found to
be quadratic in ε:

ωQ(ε) = ωQ + �ωQ = ωQ − ε2
(uL

Q)T IQ,3

2ωQ
, (31)

where uL
Q is the left-hand quadrupole mode eigenvector of the

matrix M. After a detailed calculation, the frequency shift of
a quadrupole mode to lowest order in ε is found to be

�ωQ = −ε2 fQ,3(ωQ, ωB, uρ0, uz0, p, k, λ)

2ωQ(ωB − 2ωQ)(ωB + 2ωQ)
, (32)

where fQ,3 is a regular function, without poles for real values
of its arguments. The above expression (32) has a pole for
ωB = 2ωQ. Taking into account the fact that ωQ < ωB, as

we can see from equation (14) and figure 1, as well as the
fact that collective frequencies depend on the trap aspect ratio
λ, the condition ωB = 2ωQ can, in principle, be satisfied.
This is denoted as a geometric resonance, since it is obtained
by simply tuning the geometry of the experiment through λ.
Higher-order corrections to �ωQ in ε could, in principle, be
obtained systematically by using the developed perturbation
theory.

4.2. Breathing mode

In a similar manner, we also study the dynamics of a
cylindrically symmetric BEC system when initially only the
breathing mode is excited,

u(0) = u0 + εuB, u̇(0) = 0. (33)

Applying again the Poincaré–Lindstedt perturbation theory,
we calculate the breathing mode frequency shift,

ωB(ε) = ωB + �ωB = ωB − ε2

(
uL

B
)T

IB,3

2ωB
, (34)

where again the expression (uL
B)T IB,3 is calculated in

Mathematica. In this way, we finally yield the following
analytic formula for the frequency shift of the breathing mode

�ωB = −ε2 fB,3(ωQ, ωB, uρ0, uz0, p, k, λ)

2ωB(2ωB − ωQ)(2ωB + ωQ)
, (35)

where the function fB,3 is a regular function of its arguments.
Naively looking at this expression, one would say that it
exhibits a pole for 2ωB = ωQ. However, from equation (14)
and figure 1 we see that ωQ < ωB, and, therefore, the condition
2ωB = ωQ is never satisfied. In the following subsection, we
numerically demonstrate that a geometric resonance does not
occur, and verify the analytical result for the frequency shift
of the breathing mode.

4.3. Comparison with numerical results

In order to verify our analytical results, we perform high-
precision numerical simulations [97–105]. At first we focus on
a description of the BEC dynamics, and compare our analytical
results for the radial and longitudinal widths of the condensate
obtained perturbatively to the direct numerical solutions of
equations (7)–(8). To this end, we consider a BEC in the initial
state corresponding to the perturbed equilibrium position,
where the small perturbation is proportional to the eigenvector
of the quadrupole mode according to equations (21). Examples
of the condensate dynamics are shown in figure 5 for a pure
two-body interaction p = 1, k = 0 with ε = 0.1, and in
figure 6 for p = 1, k = 0.001, ε = 0.1.

In both figures, we plot analytical and numerical solutions
for uρ and uz as functions of the dimensionless time parameter
ωρt for different values of the trap aspect ratio λ. Analytical
solutions are calculated using the third-order perturbation
theory developed in subsection 4.1. We can see in figure 5
that the agreement is excellent, not only for the non-resonant
value of the trap aspect ratio λ = 2.3 (top panels), but
also for λ = 0.55 (bottom panels), which is close to a
geometric resonance, as we will see later in figure 8(a). For
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Figure 5. A comparison of analytic (solid blue lines) and numeric (red dots) results for a BEC dynamics with a pure repulsive two-body
interaction p = 1, k = 0 and ε = 0.1. The top panels show dynamics of (a) radial and (b) longitudinal condensate widths for the trap aspect
ratio λ = 2.3 as a function of the dimensionless time ωρt; the bottom panels show dynamics of (c) radial and (d) longitudinal BEC widths
for λ = 0.55.
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Figure 6. A comparison of analytic (solid blue lines) and numeric (red dots) results for BEC dynamics for a repulsive two-body interaction
p = 1 and a repulsive three-body interaction k = 0.001, with ε = 0.1. The top panels show dynamics of (a) radial and (b) longitudinal
condensate widths for the trap aspect ratio λ = 0.7 as a function of the dimensionless time ωρt; the bottom panels show dynamics of
(c) radial and (d) longitudinal BEC widths for λ = 2.05.

these values of parameters, the relative shift in the quadrupole
mode frequency is of the order of 0.3%, and therefore third-
order perturbation theory yields a quite accurate description
of the system dynamics. The same applies to the top panels
of figure 6, where λ = 0.7 is far from any resonance.
However, for λ = 2.05 (bottom panels), we observe some
disagreement, which increases with propagation time. This is
due to the fact that p = 1, k = 0.001, λ = 2.05 is close
to a geometric resonance, as we will see in figure 8(b). In
this case, the perturbatively calculated shift in the quadrupole
mode frequency is much larger than that for the bottom panels
of figure 5. For this reason, after a long enough time the third-
order perturbation theory is not sufficiently accurate. Although
it gives a qualitatively correct description of the behaviour
of the system, one would have to go to higher orders in

perturbation theory to get more accurate agreement with the
numerical results. Such a behaviour in the bottom panels of
figure 6 is just a telltale of the occurrence of a geometric
resonance, and a subsequent analysis of frequency shifts is
the only proper way to identify these resonances in a more
quantitative way.

However, before we present this analysis, we show in
figure 7 the excitation spectra of the BEC dynamics which
corresponds to the initial conditions (21) for p = 1, k =
0.001 and two values of the trap aspect ratio, λ = 1.9
and λ = 0.5. For the parameter values in figure 7(a), the
linear stability analysis yields breathing and quadrupole mode
frequencies (14) with ωB = 3.65 and ωQ = 1.96, while
for the parameters in figure 7(b), we obtain ωB = 2.01 and
ωQ = 0.905, all expressed in units of ωρ . In both graphs, we
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Figure 8. Relative frequency shift of the quadrupole mode as a function of the trap aspect ratio λ for ε = 0.1 and different values of
two-body and three-body interaction strengths: (a) p = 1, k = 0, (b) p = 1, k = 0.001, (c) p = 0.1, k = 0.001, (d) p = 0.1, k = 0.1,
(e) p = −0.2, k = 0, (f) p = −0.2, k = 0.005. The solid lines represent the analytical result (32), while dots are obtained by a numerical
analysis of the corresponding excitation spectrum for each value of λ, as described in figure 7.

can see that the Fourier spectra contain two basic modes, ωQ
and ωB, whose values agree well with those obtained from the
linear stability analysis in equation (14), and a multitude of
higher order harmonics, which are linear combinations of the
two modes, as pointed out in subsection 4.1.

Now we compare the derived analytical results for the
frequency shifts of the quadrupole and the breathing modes
with the results of numerical simulations for the BEC systems
with two- and three-body contact interactions in a cylindrical
trap. In particular, we note that the calculated frequency shifts
close to geometric resonances reveal poles, which are an
artefact of the perturbative approach. Indeed, our detailed
numerical calculations show that the observed frequencies
remain finite through the whole geometric resonance. In
figures 8 and 9, we present the comparison of analytic (solid
lines) and numeric (dots) values of relative frequency shifts as

functions of the trap aspect ratio λ. The analytical results are
calculated from equations (32) and (35), respectively, while
the numerical data are obtained from a Fourier analysis of
the excitation spectrum, i.e. for each value of λ we have
calculated the corresponding Fourier spectra, as in figure 7,
and then extracted the frequency values of the quadrupole and
the breathing mode.

In figure 8(a), we show a special case of a pure two-
body interaction, when k = 0. The condition for a geometric
resonance ωB = 2ωQ yields the trap aspect ratios λ1 = 0.555
and λ2 = 2.056, which is in good agreement with the
numerical data, as we can see from the graph. The existence
of a geometric resonance at λ1 = 0.555 is responsible for a
violent dynamics seen in the bottom panels of figure 5, as we
have pointed out earlier. However, by analysing the frequency
shifts we can conclusively show that, indeed, the geometric
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Figure 9. Relative frequency shift of the breathing mode as a function of the trap aspect ratio λ for ε = 0.1 and different values of two-body
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Figure 10. Comparison of the analytical results for the relative frequency shifts of (a) quadrupole and (b) breathing modes in the
Thomas–Fermi limit from [18] derived using the parabolic variational ansatz (solid red lines) and the analytical results derived here using
the Poincaré–Lindstedt perturbation theory with the Gaussian variational ansatz (dashed blue lines).

resonance is present. In further graphs, we see that the excellent
agreement between analytical and numerical results also holds
for other values of p and k, including the case of an attractive
two-body interaction p = −0.2, which is still within the BEC
stability region. It is interesting to note the observation that
the asymptotic approach to geometric resonances for the case
of an attractive two-body interaction is reversed compared to
the case of a repulsive two-body interaction. For instance, we
can see in figure 8(d) that �ωQ/ωQ → ∞ when λ → λ−

2 ,
and �ωQ/ωQ → −∞ when λ → λ+

2 , while for an attractive
p = −0.2 in figure 8(f) we see that the situation is reversed.

In figure 9, we compare analytic and numeric results
for a frequency shift of the breathing mode. As for the
quadrupole mode, the agreement is excellent for both repulsive
and attractive two-body interactions. As pointed out in
subsection 4.2, there are no geometric resonances for the
breathing mode frequency, since the corresponding condition
ωQ = 2ωB cannot be satisfied.

Finally, we compare our derived analytic results with
those from [18], where frequency shifts of collective modes
were calculated in the Thomas–Fermi (TF) limit using a
hydrodynamic approach. In terms of our variational approach,
the TF limit corresponds to the limit p → ∞, so that

equation (14) for the frequencies of the breathing and the
quadrupole mode reduces to

ω2
B,Q = 2 + 3

2λ2 ± 1
2

√
16 − 16λ2 + 9λ4, (36)

which is in agreement with [18]. The condition for a geometric
resonance ωB = 2ωQ thus yields trap aspect ratios λ1,2 =
(
√

125 ± √
29)/

√
72, i.e. λ1 ≈ 0.683 and λ2 ≈ 1.952.

Figure 10 gives a comparison of the relative frequency
shifts in the TF limit calculated in [18] using a hydrodynamic
approach, and our analytical results obtained using the
Poincaré–Lindstedt perturbation theory. Despite the good
agreement, we observe small differences, which are due to
the fact that [18] uses a parabolic variational ansatz for the
condensate wavefunction, while we use the Gaussian ansatz
in equation (3). We have confirmed that, when applied to the
parabolic variational ansatz, our perturbative approach yields
frequency shifts in perfect agreement with [18].

5. Resonant mode coupling

In this section, we study the phenomenon of nonlinearity-
induced resonant mode coupling. As already pointed out, even
if a BEC system is excited precisely along the quadrupole
or, equivalently, the breathing mode, the emerging dynamics

10
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Figure 11. Amplitudes of the breathing mode emerging in the second order of the perturbation theory from BEC dynamics after initially
only the quadrupole mode is excited, given as functions of the trap aspect ratio λ for ε = 0.1 and different values of two-body and
three-body interaction strengths p and k. The amplitudes AρB and AzB from equations (40) and (41) correspond to the radial and the
longitudinal condensate widths of the emerging breathing mode dynamics.

will lead to small oscillations which initially involve only the
corresponding mode, but then the other collective mode will
eventually step in, as well as higher harmonics of the two
modes and their linear combinations will appear. If the trap
confinement of the system allows a geometric resonance, this
could greatly enhance the mode coupling and speed up the
emergence of those modes which are initially not excited, and
therefore we designate it as a resonant mode coupling. We
focus on the experimentally most studied case of a repulsive
two-body interaction, although all derived analytical results are
also valid for the case of an attractive interaction. As effects
of three-body interactions are usually small, and their main
contribution is related to a stabilization/destabilization of the
condensate, we focus on the emergence of a resonant mode
coupling due to geometric resonances.

To demonstrate this phenomenon, we use the perturbative
solution of equations (7) and (8) with the initial conditions
defined by equations (21), for which the initial state coincides
with the equilibrium with a small perturbation proportional
to the quadrupole mode eigenvector. The second-order
perturbative solution can then be written as

u0 +
(

AρQ
AzQ

)
cos ωQt +

(
AρB
AzB

)
cos ωBt + · · · , (37)

where dots represent higher harmonics and the respective
amplitudes are given by

AρQ = εuρQ + ε2AρQ2

u2
ρQ

ω2
Q

, (38)

AzQ = c1AρQ, (39)

AρB = ε2AρB2

u2
ρQ

(
ω2

B − 2ω2
Q
)

ω2
B
(
ω2

B − 4ω2
Q
) , (40)

AzB = c2AρB. (41)

Note that the absence of terms linear in ε in expressions for
AρB and AzB is due to the initial condition, i.e. the fact that,
initially, we only excite the quadrupole mode. The constants
c1,2 in the above expressions are defined by equation (26),
while AρQ2 and AρB2 are calculated to be

AρQ2 = c2γρ + c1c2α + c2
1c2β − α − 4c1β − c2

1γz

3(c1 − c2)
, (42)

AρB2 = −c3
1β + α − c1γρ + 4c1β − c2

1α + c2
1γz

c1 − c2
, (43)

with α, β, γρ , γz defined as

α = 3p
u4

ρ0u2
z0

+ 10k
u6

ρ0u3
z0

, β = p
u3

ρ0u3
z0

+ 3k
u5

ρ0u4
z0

, (44)

γρ = 6

u5
ρ0

+ 6p
u5

ρ0uz0
+ 15k

u7
ρ0u2

z0

, γz = 6

u5
z0

+ 3p
u2

ρ0u4
z0

+ 6k
u4

ρ0u5
z0

(45)

In figure 11, we see the comparison of the derived
analytical results, which emerge in the second order, and
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Figure 12. Ratios of breathing and quadrupole mode amplitudes emerging in the second order of the perturbation theory after initially only
the quadrupole mode is excited, given as functions of the trap aspect ratio λ for ε = 0.1 and different values of two-body and three-body
interaction strengths p and k. The quantities Rρ and Rz from equations (46) and (47) correspond to ratios of amplitudes of the breathing and
the quadrupole mode in the radial and longitudinal condensate widths.

corresponding numerical simulations for the amplitudes of
the breathing mode. The numerical results are obtained, as
before, by extracting the amplitude of the breathing mode
from the Fourier excitation spectra of the system for each
value of the trap aspect ratio λ. The agreement is quite good,
and we see again a resonant behaviour, which occurs at the
same trap aspect ratios as for the frequency shift of the
quadrupole mode. From equations (40) and (41), we actually
see that the resonances occur when the condition ωB = 2ωQ
is satisfied, which is precisely the same condition as for the
frequency shift. This is not surprising, since amplitudes are
expressed in terms of frequencies of the collective modes,
and a resonant behaviour of the quadrupole mode frequency
leads to resonances in the amplitudes for the same values of λ.
Therefore, geometric resonances are not only reflected in the
resonances of frequency shifts of collective modes, but also in
the resonant mode coupling.

In addition to the absolute values of the breathing mode
amplitudes, which are excited through the resonant mode
coupling, it is also interesting to look at their relative values,
compared to the quadrupole mode amplitudes, i.e.

Rρ = AρB

AρQ
∝ ω2

B − 2ω2
Q

ω2
B − 4ω2

Q
, (46)

Rz = AzB

AzQ
∝ ω2

B − 2ω2
Q

ω2
B − 4ω2

Q
. (47)

Figure 12 shows the comparison of analytical and numerical
results for the relative ratio of amplitudes of the resonance-
excited breathing mode. Due to the geometric resonances, we
see that the trap aspect ratio can be tuned in such a way that the
resonant mode coupling excites the breathing mode with an
amplitude far larger than that of the quadrupole mode, which
serves as the source of excitation.

Furthermore, from equations (40) and (41) we see that, if
the geometry of the trap is tuned such that ωB = ωQ

√
2, then

the amplitudes of the breathing mode vanish simultaneously,
i.e. AρB = AzB = 0. Although this is true only in the
second-order perturbation theory, it still represents a condition
for a significant suppression of the resonant mode coupling.
Therefore, the tunability of the trap aspect ratio offers a unique
tool for enhancing and suppressing the mode coupling in a
BEC, which might be of broad experimental interest.

In a similar way, we can initially excite only the breathing
mode, which corresponds to equations (7) and (8) with initial
conditions defined in equations (33). The solution in the
second-order perturbation theory has again the form

u0 +
(

AρB
AzB

)
cos ωBt +

(
AρQ
AzQ

)
cos ωQt + · · · , (48)

12



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 065303 H Al-Jibbouri et al

(a) p 1
k 0

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

λ

R ρ

p 1
k 0

(b)

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

λ

R z

(c) p 1
k 0.001

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

λ

R ρ

(d) p 1
k 0.001

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

λ

R z
(e) p 0.2

k 0.005
(e) p 0.2

k 0.005

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

λ

R ρ

(f) p 0.2
k 0.005

0 0.5 1 1.5 2
0

0.2

0.4

0.6

λ

R z

Figure 13. Ratios of quadrupole and breathing mode amplitudes emerging in the second order of the perturbation theory after initially only
the breathing mode is excited, given as functions of the trap aspect ratio λ for ε = 0.1 and different values of two-body and three-body
interaction strengths p and k. The quantities Rρ and Rz from equations (55) and (56) correspond to ratios of amplitudes of the breathing and
the quadrupole modes in the radial and longitudinal condensate widths.

but now the respective amplitudes read

AρB = εuρB + ε2AρB2
u2

ρB

ω2
B

, (49)

AzB = c2AρB, (50)

AρQ = ε2AρQ2

u2
ρB

(
2ω2

B − ω2
Q
)

ω2
Q
(
4ω2

B − ω2
Q
) , (51)

AzQ = c1AρQ, (52)

and the coefficients AρB2 and AρQ2 are given by

AρB2 = −c1γρ − c1c2α − c1c2
2β + α + 4c2β + c2

2γz

3(c1 − c2)
, (53)

AρQ2 = c3
2β − α + c2γρ − 4c2β + c2

2α − c2
2γz

c1 − c2
. (54)

In this case, the ratios of amplitudes are given by

Rρ = AρQ

AρB
∝ 2ω2

B − ω2
Q

4ω2
B − ω2

Q
, (55)

Rz = AzQ

AzB
∝ 2ω2

B − ω2
Q

4ω2
B − ω2

Q
. (56)

Figure 13 compares analytical and numerical results for
the mode coupling when initially only the breathing mode
is excited, and then the quadrupole mode emerges due to
the mode coupling. As for the case of the breathing mode
frequency shift, there are no resonances, since ωB > ωQ,
and the resonance condition 2ωB = ωQ cannot be satisfied,
as is confirmed by the graphs. Therefore, the amplitudes do
not experience resonances in this case, contrary to what we
have observed in figure 12. Again, this can be explained by
the fact that amplitudes are functions of the breathing mode
frequency, which does not experience any resonances, and
hence the same is valid for the corresponding amplitude.
Also, the condition ωB

√
2 = ωQ cannot be satisfied, and

therefore the amplitude of the quadrupole mode cannot be fully
suppressed here, contrary to the case presented in figure 12. For
a repulsive two-body interaction in figures 13(a)–(d), we see
that the ratios Rρ and Rz are below 10%, and the mode coupling
mechanism is not able to produce a significant amplitude for
the quadrupole mode. For the case of an attractive two-body
interaction in figures 13(e)–(f), the ratio increases and the
generated quadrupole mode amplitude is stronger. Here the
agreement between analytical and numerical results is only
qualitative, so that the perturbation theory would have to be
carried out to higher orders in the small parameter ε in order
to improve the agreement.

13



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 065303 H Al-Jibbouri et al

6. Conclusions

We have studied the dynamics and collective excitations of
a BEC for different trap aspect ratios at zero temperature. In
particular, we have investigated prominent resonant effects that
arise due to two- and three-body interactions, and their delicate
interplay. We have discussed the stability of a condensate in an
axially symmetric harmonic trap for the experimentally most
relevant setups: repulsive and attractive two-body interactions,
attractive two-body and repulsive three-body interactions, and
attractive two- and three-body interactions. We have shown
that even a small repulsive three-body interaction is able to
extend the stability region of the condensate beyond the critical
number of atoms when the two-body interaction is attractive.

Using a perturbation theory and a Poincaré–Lindstedt
analysis of a Gaussian variational approach for the condensate
wavefunction, we have studied in detail the relation between
resonant effects due to two- and three-body interactions,
and the effects of the trap geometry. Within the variational
approach and the Poincaré–Lindstedt method, we have
analytically calculated frequency shifts and a mode coupling in
order to identify geometric resonances of collective oscillation
modes of an axially symmetric BEC. We have also shown that
the observed geometric resonances can be suppressed if two-
and three-body interactions are appropriately fine-tuned.

To verify the derived analytical results, we have used
numerical simulations, which provide detailed excitation
spectra of the BEC dynamics. We have numerically observed
and analytically described several prominent nonlinear
features of BEC systems: significant shifts in the frequencies of
collective modes, generation of higher harmonics and linear
combinations of collective modes, as well as resonant and
non-resonant mode coupling. We have shown that, even if
the system is excited so that the perturbation corresponds
initially to the eigenvector of a particular mode, the nonlinear
dynamics of the condensate will eventually excite also other
modes due to the mode coupling. The presence of geometric
resonances can significantly enhance this effect, as we have
shown using the developed perturbation theory. All obtained
analytical results are found to be in good agreement with the
numerical results. Furthermore, the results for frequency shifts
are shown to coincide with the earlier derived analytical results
[18] within the hydrodynamic approach in the Thomas–Fermi
approximation. In future work, we plan to extend the present
analysis and also include the effects of quantum fluctuations
[106].
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and Foot C J 2002 Phys. Rev. A 65 033612
[22] Pitaevskii L and Stringari S 1997 Phys. Lett. A 235 398
[23] Lee C, Huang J, Deng H, Dai H and Xu J 2012 Front. Phys.

7 109
[24] Pitaevskii L 1997 Phys. Lett. A 229 406
[25] Graham R, Walls D F and Collett M J 1998 Phys. Rev. A

57 503
[26] Castin Y and Dum R 1996 Phys. Rev. Lett. 77 5315
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[52] Köhler T 2002 Phys. Rev. Lett. 89 210404
[53] Tolra B L, O’Hara K M, Huckans J H, Phillips W D,

Rolston S L and Porto J V 2004 Phys. Rev. Lett. 92 190401
[54] Ruprecht P A, Holland M J, Burnett K and Edwards M 1995

Phys. Rev. A 51 4704
[55] Akhmediev N, Das M P and Vagov A V 1999 Int. J. Mod.

Phys. B 13 625
[56] Gammal A, Frederico T, Tomio L and Chomaz Ph 2000

J. Phys. B: At. Mol. Opt. Phys. 33 4053
[57] Tomio L, Filho V S, Gammal A and Frederico T 2003 Laser

Phys. 13 582
[58] Abdullaev F K, Gammal A, Tomio L and Frederico T 2001

Phys. Rev. A 63 043604
[59] Tewari S P, Silotia P, Saxena A and Gupta L K 2006 Phys.

Lett. A 359 658
[60] Wamba E, Mohamadou A and Kofane T C 2008 J. Phys. B: At.

Mol. Opt. Phys. 41 225403
[61] Abdullaev F K and Salerno M 2005 Phys. Rev. A 72 033617
[62] Chen B-L, Huang X-B, Kou S-P and Zhang Y 2008 Phys. Rev.

A 78 043603
[63] Chen Y, Zhang K-Z and Chen Y 2009 J. Phys. B: At. Mol.

Opt. Phys. 42 185302
[64] Zhou K, Liang Z and Zhang Z 2010 Phys. Rev. A

82 013634
[65] Silva-Valencia J and Souza A M C 2011 Phys. Rev. A

84 065601
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Abstract. In the study of trapped two-component Bose gases, a widely used
dynamical protocol is to start from the ground state of a one-component
condensate and then switch half the atoms into another hyperfine state. The
slightly different intra-component and inter-component interactions can then
lead to highly non-trivial dynamics, especially in the density mismatch between
the two components, commonly referred to as ‘spin’ density. We study and
classify the possible subsequent dynamics, over a wide variety of parameters
spanned by the trap strength and by the inter- to intra-component interaction
ratio. A stability analysis suited to the trapped situation provides us with a
framework to explain the various types of dynamics in different regimes.
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1. Introduction

Two-component Bose–Einstein condensates (BECs) are increasingly appreciated as a rich
and versatile source of intricate non-equilibrium pattern dynamics phenomena. In addition to
experimental observations [1–13], pattern dynamics in two-component BECs has also attracted
significant theoretical interest (see, e.g., [14–28] and references cited in [14]).

In a number of two-component BEC experiments reported over more than a decade, a
standard technique has been to start from the equilibrium state of a single-component BEC, e.g.
populating a single hyperfine state of 87Rb and then using a π/2 pulse to switch half the atoms to
a different hyperfine state [1–9]. This results in a binary condensate where the two intra-species
interactions (g11 and g22) and one inter-species interaction (g12) are all slightly different from
each other, but the starting state is the ground state determined by g11 alone. Since it has been
realized several times in several different laboratory setups, this is a paradigm non-equilibrium
initial state for binary condensate dynamics. A thorough and general analysis of the dynamics
subsequent to such a π/2 pulse is thus clearly important. In this paper, we present such an
analysis, clarifying the combined role of the inter-species interaction (g12) and the strength
λ of the trapping potential. We provide a stability analysis mapping out regions of the λ–g12

parameter space hosting different types of dynamics. Since it is now routine to monitor real-
time dynamics in such experiments (e.g. [6]), we also directly analyze the real-time evolution
after a π/2 pulse.

It is widely known that the ground state of a uniform two-species BEC is phase separated
or miscible depending on whether or not the inter-species repulsion dominates over the self-
repulsions of the two species, i.e. if

g11g22 < (g12)
2 , (1)

then the ground state is phase separated [15]. This criterion is also a key ingredient in
understanding dynamical features such as pattern dynamics in the density difference between
the two species—such ‘spin patterns’ emerge when the phase separation condition is satisfied.
(Since it is common to refer to the components of a two-component Bose gas as ‘spin’ states,
e.g. [29–32], we refer to the density difference as ‘spin density’ and patterns in the density
difference as ‘spin patterns’.) The emergence of spin patterns whenever equation (1) is satisfied
can be understood as the onset of a modulation instability [16–18], identified by the appearance
of an unstable mode in the excitation spectrum around a reference stationary state. For a
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homogeneous situation, linear stability analysis shows that modulation instability sets in when
the condition of equation (1) is satisfied [16–18].

The situation is different in the presence of a trapping potential. Phase separation in the
ground state, as well as the appearance of modulation instability when starting from a mixed
state, now requires larger inter-species repulsion [14, 19]. This suggests that the region of
parameter space where pattern dynamics occurs also depends on the trap. A trap is almost
always present in cold-atom experiments, and it is easy to imagine experiments where the
trapping potential is not extremely shallow but varies between tight and shallow limits. (‘Tight’
and ‘shallow’ will be specified more precisely in section 2.) It is thus necessary to examine
the relevance of equation (1) for trapped binary BECs. To this end, we explore different trap
strengths spanning several orders of magnitude, and identify the appropriate extensions of
equation (1) for the type of spin dynamics resulting from the π/2 protocol described above.

We focus on the effects of two parameters. Firstly, we study the effects of changing
cross-species interaction g12, thus generalizing equation (1) for trapped situations. Secondly,
we explore the role of the relative strength of the trap with respect to the interactions. Our
analysis, performed for a one-dimensional (1D) geometry, sheds light on the situation where
g11 and g22 are close but unequal: (a) the stability analysis is performed for g11 = g22 and their
difference serves only to select appropriate instability modes; (b) the simulations are performed
with g22/g11 = 1.01.

We restrict ourselves to repulsive interactions (gi j > 0). Attractive interactions (gi j < 0)
are known to cause collapse of the condensate for a large enough number of particles, even for
a single-component BEC [33].

In section 2, we introduce the formalism and geometry. In section 3, we show the results
from a linear stability analysis for a sequence of trap strengths, and identify and analyze relevant
modulation instabilities. Through an analysis of unstable modes, we present a classification of
the parameter space into dynamically distinct regions, in relation to the prototypical initial state
explained above. This may be regarded as a dynamical ‘phase diagram’. A remarkable aspect is
that the ‘phase transition’ line most relevant to spin pattern dynamics does not arise from the first
modulation instability (studied in [14]). This first instability mode is antisymmetric in space,
and as a result is not naturally excited in a symmetric trap with symmetric initial conditions.
Complex dynamics (not due to collective modes but rather due to modulation instability) is
generated only when the first spatially symmetric mode becomes unstable, which occurs at a
higher value of g12.

In section 4, we provide a relatively detailed account of the time evolution. For each trap
strength λ, for values of g12 not much larger than g11, we observe simple collective modes.
Above a threshold value of g12, the oscillation amplitude becomes sharply stronger, and at the
same time the motion becomes notably aperiodic, signaling that the dynamics is more complex
than a combination of a few modes. Dynamical spin patterns start appearing at this stage and
become more pronounced as g12 is increased further. The threshold value at which the dynamics
changes sharply corresponds to the second modulation instability line rather than the first, as we
demonstrate through a careful choice of parameters in each region of the phase diagram derived
from stability analysis.

Some further connections between the stability analysis and dynamical features, relating
to the length scale of the generated patterns, appear in section 5. In the concluding section 6, we
place our results in context and point out open questions.
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2. Geometry and formalism

The relevant time-resolved experiments have been performed in both quasi-1D geometries
(highly elongated traps with strong radial trapping) [6] and in a three-dimensional BEC of
cylindrical symmetry with the radial variable playing an analogous role as the 1D coordinate
[2, 5]. Since the basic phenomena are very similar, we expect the same theoretical framework
to describe the essential features of each case. For definiteness, in this work we show results for
1D geometry. We expect the general picture emerging from this work to be qualitatively true
also for other geometries exhibiting the same type of spin dynamics.

We will restrict ourselves to the mean field regime. Bosonic systems in elongated traps can
of course also be in regimes beyond the applicability of mean field descriptions, e.g. when the
particle number is small. In such a case a Lieb–Liniger or Tonks–Girardeau description might
be more appropriate. Dynamics in such regimes is beyond the scope of this paper. The mean
field regime is generally valid when the particle number is large enough [34].

In the mean field framework at zero temperature, the dynamics is described by two coupled
Gross–Pitaevskii equations [35–37]:

i∂tψ1 =

(
−

1

2
∂2

x +
1

2
λ2x2 + g11|ψ1|

2 + g12|ψ2|
2

)
ψ1, (2)

i∂tψ2 =

(
−

1

2
∂2

x +
1

2
λ2x2 + g12|ψ1|

2 + g22|ψ2|
2

)
ψ2. (3)

Condensate wave functions ψ1(x, t) and ψ2(x, t) are normalized to unity, and λ is the strength
of the harmonic trap. Factors of particle number and radial trapping frequency are absorbed as
appropriate into the effective 1D interaction parameters gi j [6, 37, 38]. We consider purely
non-dissipative dynamics, i.e. we do not attempt to model experimental loss rates with a
phenomenological dissipative term as was done in, e.g., [5–7].

The equations above are in a dimensionless form, because we measure lengths in units of
trap oscillator length and time in units of inverse trapping frequency, for a hypothetical trap of
unit strength (λ= 1). The scale for trap strengths is itself fixed by imposing g11 = 1. With this
convention, small values of λ correspond to a BEC in the Thomas–Fermi limit. For comparison,
we note that the parameters of the experiment of [6] correspond to λ of the order of 10−5 in
these units. For the purposes of this paper, ‘tight’ and ‘shallow’ mean, respectively, k & 10−2

and k . 10−4 in our units. Note that the trap oscillator strength is λ−1/2.
Of course, one can switch between different units via the transformation: x → x/ l,

t → t/ l2, λ→ λl2, g → gl and ψ → ψ
√

l, where l is an appropriately chosen scale.
The initial state after a π/2 pulse involves both components occupying the ground state

of a single-component system of interaction 2g11, because the atoms were all in the first
hyperfine state before the pulse. We model this initial situation as a two-component BEC
with g11 = g22 = g12. The π/2 pulse may then be regarded as a sudden change (a quantum
quench [39]) of the interaction parameters g22 and g12.

We use g11 = g22 for the stability analysis of section 3. For the explicit time evolution
reported in section 4, we use g11 and g22 values close but unequal: g11 = 1, g22 = 1.01.
This choice of close values is convenient for illustrating the structure of the phase diagram,
especially for shallow traps. In rubidium experiments the difference between g11 and g22 is
somewhat larger (in the common case using 87Rb hyperfine states |1〉 = |F = 1,m F = −1〉 and

New Journal of Physics 15 (2013) 035008 (http://www.njp.org/)

http://www.njp.org/


5

|2〉 = |F = 2,m F = 1〉); however, our insights should be relevant to a broad regime of possible
experiments. A full exploration of the regime of arbitrary differences (g11 − g22) remains an
open task beyond the scope of the present paper.

Numerical simulations presented in section 4 were performed using a semi-implicit
Crank–Nicolson method [40, 41].

3. Stability analysis and dynamical ‘phase diagram’

We provide in this section a stability analysis for g11 = g22 that maps out the regions of λ–g12

parameter space which support pattern formation instabilities.
Ideally, one might wish to perform a stability analysis around the initial state. However, in

contrast to the homogeneous case [16], we are faced with the situation that the initial state is not
a stationary state of the final Hamiltonian. The choice of reference state is therefore a somewhat
subtle aspect of the present analysis.

We use as the reference state ψ0(x) the lowest-energy spatially symmetric stationary state
of the case g11 = g22, with parameter g12 set to its final value. (For large g12, this is not the ground
state for these parameters, which is phase-separated.) This reference state has the advantage
of looking relatively similar to our actual initial state (two components totally overlapping in
space), and of being a stationary state of the Hamiltonian for which we analyze linear stability.
Our reference state can be regarded as placing both components in the single-component ground
state for interaction g11 + g12. We are not aware of a suitable stationary state even more similar
to the actual initial state. We will see that our stability analysis around this reference state will
predict remarkably well the main observed time-evolution features described in section 4.

Note that it is not natural to use g11 6= g22, because stationary states for such a case typically
do not overlap completely in space. Instead, in our approach the difference between g11 and g22

will play the important role of selecting certain instability modes over others. For this reason,
inferences from the present analysis apply only to small relative differences between g11 and g22.

We linearize equations (2) and (3) around the reference stationary state ψ0(x):

ψ1(x, t)= [ψ0(x)+ δψ1(x, t)] exp(−iµt),
(4)

ψ2(x, t)= [ψ0(x)+ δψ2(x, t)] exp(−iµt),

where µ is the chemical potential corresponding to the reference state. By keeping only terms
of the first order in δψ1(x, t) and δψ2(x, t), we obtain a system of linear equations which can
be cast in the form

∂2
t

(
δψ1 + δψ∗

1
δψ2 + δψ∗

2

)
+M

(
δψ1 + δψ∗

1
δψ2 + δψ∗

2

)
= 0. (5)

HereM is a matrix differential operator which, upon discretization or upon expansion in a set of
orthogonal functions, becomes the so-called stability matrix (e.g. [22, 24]). We analyze below
the eigenmodes of the stability matrix, which we have obtained by numerically calculating the
reference stationary state ψ0(x) and expanding in the basis of harmonic trap (non-interacting)
eigenstates.

Since we use g11 = g22 for the stability analysis, eigenmodes will have well-defined
‘species parity’, i.e. will all be either even [δψ1(x, t)= δψ2(x, t)] or odd [δψ1(x, t)=

−δψ2(x, t)] with respect to the interchange of species. Even modes describe in-phase motion
of the two components and simply correspond to the excitation spectrum of a single-component
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1 32
g12
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−−−
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g12

0
0.

05
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1

ω2

−−−
λ2

x

δψ
1

&
   

δψ
2

asymmetric-mode
     eigenvector

symmetric-mode
    eigenvector

g12
a g12

s

λ = 10−3

λ = 0.2 BREATHING

DIPOLE

Figure 1. Results of stability analysis. Squared eigenvalues ω2 of the stability
matrix M are plotted against g12, for a tight trap (top) and for a shallow trap
(bottom left). The arrows show the values of g12 for onset of the two instabilities,
namely ga

12 (onset of spatially antisymmetric modulation instability) and gs
12

(onset of spatially symmetric instability). Typical eigenvectors corresponding to
these two modes are shown in the panels on the lower right.

BEC with interaction constant g11 + g12. Odd modes are more interesting—they describe out-of-
phase motion of two components and are therefore reflected in the spin dynamics. Additionally,
due to the spatial inversion symmetry x → −x , the solutions will also have well-defined spatial
reflection symmetry, and we can distinguish spatially symmetric and antisymmetric modes.

Typical eigenspectra are presented in figure 1. In the case of a tight trap λ= 0.2, we notice
two modes whose frequencies are nearly constant. These are even modes encoding single-
component or in-phase physics. The lower one is the dipole (Kohn) mode with frequency equal
to the trap frequency λ. The second nearly constant mode is the breathing mode, which for
elongated traps takes a value close to ω2

= 3λ2. The breathing mode (oscillations of cloud size)
is visible in the plots of figure 3 (section 4) as a fast oscillation of the total condensate widths.

The two lowest-lying eigenmodes are odd modes encoding out-of-phase physics. For
g12 & 1, their frequencies are significantly below the breathing mode, and therefore lead to
relatively slow oscillations in the spin density. This will also be visible in the real-time dynamics
presented in section 4 (the first two columns of figures 3 and 4). The forms of the corresponding
eigenvectors are shown in the lower right of figure 1. The nature of the eigenvectors shows
that the motion related to the lowest mode corresponds to the left–right oscillations of the
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two species, while the next odd mode corresponds to spatially symmetric spin motion. The
frequencies of these two modes become imaginary at certain values of g12, thus leading to the
onset of modulation instabilities. The antisymmetric mode becomes unstable at smaller value of
g12 (ga

12 ≈ 1.6 for λ= 0.2) in comparison with the symmetric mode (gs
12 ≈ 2.4 for λ= 0.2). In a

spatially symmetric trap, there is no natural mechanism for exciting the spatially antisymmetric
mode. On the other hand, any difference between g11 and g22 naturally excites the second
(spatially symmetric) mode. Thus, the second mode, occurring at larger g12, is the relevant
instability for understanding the dynamics observed in experiments and explored numerically
in section 4.

We find similar excitation spectra for trap strengths λ spanning several orders of magnitude.
The spatially antisymmetric mode becomes unstable before the spatially symmetric mode, and
both instabilities get closer to 1 as the trap gets shallower. For example, for λ= 10−3 (also
shown in figure 1) the lowest instability sets in for ga

12 ≈ 1.02, while the next one appears at
gs

12 ≈ 1.05. The distinction between two instabilities becomes ever smaller as we go toward
a uniform system λ→ 0, where the phase-separation condition, equation (1), becomes exact.
Nevertheless, even for shallow traps, the issue is not purely academic as the precision in
experimental measurement and control of scattering lengths continues to improve [6, 42].

In figure 2 (main panel), the results of the stability analyses are combined to present a
dynamical ‘phase diagram’. The two lines show the two instabilities (ga

12 and gs
12) as a function

of trap strength λ. For very shallow traps, the two transition lines merge as gs
12 ≈ ga

12 ≈ 1. The
lower transition line (ga

12) was previously introduced in [14]. However, for a trap and initial state
with left–right spatial symmetry, this is not the relevant dynamical transition line, because the
first even mode only becomes unstable at some higher g12 value, given by the gs

12 line.
In section 4, we will see that spin pattern dynamics is indeed only generated when the

inter-component repulsion g12 exceeds the second instability line (g12 > gs
12), and that crossing

the first instability (ga
12 < g12 < gs

12) is not enough for pattern formation in a spatially symmetric
trap.

4. Dynamical features across the parameter space

In this section, we present and analyze the dynamics obtained from direct numerical simulation
of the Gross–Pitaevskii equations (2) and (3), after the system is initially prepared in the ground
state of the situation g11 = g22 = g12 = 1. The subsequent dynamics is performed with g11 = 1,
g22 = 1.01, and several different values of g12 for each trap strength λ.

It is difficult to show the full richness of pattern dynamics through plots of a few quantities.
We choose to show the dynamics through two types of plots (figures 3 and 4). Figure 3 shows
the time dependence of the root mean square widths of the two components

w2
1,2(t)=

∫
∞

−∞

x2
|ψ1,2(x, t)|2 dx, (6)

while figure 4 shows density plots of the density difference (spin density), |ψ1(x, t)|2 −

|ψ2(x, t)|2. In both figures, each row corresponds to a different trap strength (λ), and we
approach the shallow trap (Thomas–Fermi) limit going from top to bottom.

For each λ the four values of g12 from table 1 are used for figures 3 and 4. We have chosen
g12 values such that the first panel in each row is in the parameter region where there are no
instabilities, the second one is in the region where the only instability is the antisymmetric
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Figure 2. Left: the dynamical ‘phase diagram’ showing the critical values of g12

for the onset of the two types of modulation instability versus the trap strength λ.
The instability lines are shown as straight lines joining numerically determined
values. Right bottom: spatially asymmetric (left–right–left) oscillation mode,
shown schematically through density profiles of the two components at two
instants of an oscillation period. This type of mode is persistent everywhere
above the ga

12 line. Right top: spatially symmetric (in–out–in) oscillation mode,
shown schematically through density profiles of the two components at two
instants of an oscillation period. This type of mode is persistent only above the
higher gs

12 line. The spatially symmetric instability (gs
12 line) is the one relevant

for experimental situations with symmetric traps. Squares mark values used in
the dynamical simulations of figures 3 and 4 (table 1).

one, and the third on each row is at g12 values just above the second, relevant, instability.
The fourth panel on each row is at higher g12 values. The choice of g12 values with respect
to instability lines is clear in the tighter traps of the top three rows, as also shown by squares
in figure 2. For shallow traps (lower rows), the instability lines are too close together and too
close to g12 = 1, so making such choices is not meaningful. In the following, as we compare the
features of the different columns, we implicitly exclude the lowest row (smallest λ). This is also
indicated by the fact that the schematic instability lines in figures 3 and 4 are not extended to the
lowest row.

Broadly speaking, we note that there is only regular (collective-mode) dynamics in the
second-column figures (ga

12 < g12 < gs
12) even though an instability is present. There is generally

a sharp difference between the second and third figures in each row, indicating that the second
instability (gs

12) is the relevant one. The fourth panel on each row is at higher g12 values, showing
more rich dynamics.
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Figure 3. Time evolution of root-mean-square widths after π/2 pulse (interaction
quench). The first component width w1(t) is shown as a blue dashed line, the
second component width w2(t) is shown as a red solid line (gray solid without
color), and the total width w(t)=

√
(w2

1(t)+w2
2(t))/2 is the black solid line

intermediate between the other two. From top to bottom: tight to shallow traps.
For each trap strength, four values of g12 (indicated near the top of each panel)
from table 1 are used. The two lines separating the first and second columns (red
dashed) and the second and third columns (black solid) indicate the ‘positions’
of instability lines, from figure 2. While the first two columns look qualitatively
the same and show regular oscillatory dynamics, in the third column we observe
aperiodic motion of stronger amplitude that we relate to the onset of spin pattern
dynamics. The spin dynamics is even more pronounced in the fourth column.

In figure 3, we show the time dependence of the individual widths (w1, w2) and also of
the total root-mean-square width, w(t)=

√
(w2

1(t)+w2
2(t))/2. Consistent with our observation

that spatially symmetric modes (and not the antisymmetric ones) are naturally excited in the
current setup, the dynamics shows signatures of the two most prominent spatially symmetric
modes noted in figure 1. The breathing mode is the easiest to note and most ubiquitous—it
shows up in almost every parameter choice as oscillations in the total density (in-phase in the
two components), with a typical period given by 2π/

√
3λ≈ 3.63/λ. This follows from the

frequency of this mode being almost constant near
√

3λ.
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Figure 4. Spin dynamics subsequent to the π/2 protocol, shown via the density
difference λ−1/2

(
|ψ1(x, t)|2 − |ψ2(x, t)|2

)
. Traps and g12 values are the same

as in figure 3 and table 1: λ decreases from 10−1 to 10−5 from top to bottom
and g12 values are indicated near the top of each panel. As in figure 3, the
black solid line and the red dashed line indicate the instability lines from the
‘phase diagram’ of figure 2. Note the sharp change of color-scale ranges between
the second and third columns in the upper rows, indicating that the dynamics
changes dramatically only across the second instability line.

Table 1. Parameters from the first five columns are used for the plots in
figures 3 and 4. The instability values ga

12 and gs
12 (introduced in figures 1 and 2

and discussed in section 3) are also given for each trap strength.

λ
g(1)12√g11g22

g(2)12√g11g22

g(3)12√g11g22

g(4)12√g11g22
ga

12 gs
12

10−1 1.3 1.8 2 2.3 1.37 1.92
10−2 1.08 1.17 1.25 1.5 1.085 1.23
10−3 1.01 1.04 1.06 1.3 1.018 1.050
10−4 1.003 1.01 1.02 1.12 1.004 1.011
10−5 1 1.005 1.03 1.08 ≈ 1 ≈ 1

We also see out-of-phase motion of the two components, associated with the lower spatially
symmetric mode in figure 1, which has odd species parity. In the first two columns of figure 3,
corresponding to smaller values of g12 such that this mode has small real frequencies, this is
excited as a regular ‘spin’ mode. For example, at λ= 10−3 and g12 = 1.04, we observe an out-of-
phase oscillation with the period of approximately ≈ 30, much slower than the breathing mode.
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In addition, the oscillation period of the out-of-phase motion is slower in the second than in
the first column of each row, corresponding to the decreasing frequency of the mode, as seen
in stability analysis (figure 1). Once g12 becomes large enough that the instability threshold
for this mode is crossed, the oscillation amplitudes increase sharply and the width dynamics
becomes strongly aperiodic and irregular (the third column of figure 3). This signifies the onset
of pattern dynamics, as opposed to the excitation of a regular collective mode around a stable
state. Irregularity of the width dynamics at stronger g12 is even more apparent in the fourth
column of figure 3.

It is noteworthy that the spatially antisymmetric modes play no role and do not show up
in these dynamical simulations. We see no signature of the Kohn mode. Nor do we see any
sharp change associated with the instability of the antisymmetric mode, i.e. there is no sharp
difference between the first two columns of figure 3.

In figure 4, we show the dynamics of the ‘spin density’ |ψ1(x, t)|2 − |ψ2(x, t)|2. The case of
very shallow traps (last row) resembles the data in [17, 18]. As in figure 3, the first two columns
show regular oscillations, corresponding to collective modes without instability. A sharp change
occurs, not across the first instability line (between the first and second columns), but instead
across the second instability line (the second and third columns), especially for tighter traps (top
three rows) where the comparison with instability lines is meaningful. The sharp change can be
noted through the color scales, which is dramatically different between the second and third
columns in the upper rows.

5. Length scales of patterns

In homogeneous stability analysis, the length scale of patterns is inferred from the wavevector
(momentum) at which an instability first occurs. Since we perform our stability analysis
specifically for trapped systems, we do not have a momentum quantum number. Nevertheless,
the eigenvectors of the unstable modes contain information about the form of patterns generated
in the dynamics of the trapped system. This is illustrated in figure 5, where the eigenvectors of
the lowest unstable spatially symmetric modes are shown for several values of g12, together with
the spin patterns generated in the non-equilibrium dynamics. There is a close match between
the distance between nodes of the eigenvectors (rough analogue of ‘wavevector’) and the length
scales involved in the patterns. As in previous figures, the lengths are shown scaled with the
trap oscillator length, λ−1/2, which plays the role of setting the overall length scale for the
cloud.

In figure 4, we see that the patterns contain more spatial structure in shallow traps. The
top two rows (tight traps) only show in–out–in type of patterns. This can be understood from
the idea that the interactions induce length scales (‘healing lengths’) in the problem, which
are smaller for larger interactions and which set the length scale of spatial structures. For tight
traps, the healing length set by the interactions is large or comparable to the cloud size, so that
only global dynamical patterns are generated. In such traps, generation of complex patterns
with many spatial oscillations would require much higher values of (g12/g11 − 1). For shallow
traps, the healing length becomes much smaller than the cloud size; as a result one can have
a multitude of dynamical spin structures in the system, of the type seen in experiments and
prior simulations [5, 6, 18]. This heuristic explanation can be made quantitative by counting
the number of nodes appearing in the eigenmodes (as in figure 5). Generally, there are as many
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Figure 5. Top: eigenvectors of the most unstable spatially symmetric
eigenmodes, from the stability analysis of section 3, for λ= 10−4, and g12 =

1.02, 1.06 and 1.12 from left to right. Below each eigenvector, the corresponding
spin dynamics after the π/2 protocol (parameters of section 4) is shown through
the time evolution of |ψ1(x, t)|2 − |ψ2(x, t)|2. The number of nodes in the
eigenvectors (top panels) corresponds closely to the number of nodes in the spin
densities.

nodes in the eigenmodes as there are crossings between positive and negative spin densities
seen in the dynamical patterns. Accordingly, as we have more nodes at larger g12, we get more
intricate dynamical patterns.

6. Conclusions and open problems

In this paper, we have analyzed a widely used dynamical protocol for two-component BECs,
which involves starting from the ground state of one component and switching half the atoms
to a different component through a π/2 pulse. We have presented a stability analysis suitable to
the trapped situation and also presented results from extensive dynamical simulations. Through
an analysis of unstable modes, we have presented a classification of the parameter space into a
number of dynamically distinct regions, in relation to the prototypical initial state. This may be
regarded as a dynamical ‘phase diagram’.

In the ‘stable’ regime of parameter space (no modulation instabilities), our stability analysis
explains the observed slow spin oscillations compared to the fast breathing mode oscillations
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of the total density. We demonstrate that the important ‘phase transition’ line for spatially
symmetric situations relevant to most experiments is not the first instability (studied in [14]),
but a second transition line. The first instability is antisymmetric in space, and as a result is not
naturally excited in a symmetric trap.

Our stability analysis is performed relative to a stationary state of the situation g11 = g22.
The π/2 pulse of the experiments (in the cases where g11 6= g22) can be considered as turning
on a nonzero (g11 − g22), i.e. turning on ‘buoyancy’ such that one component gains more energy
by being in the interior of the trap compared to the other. This helps to select instability modes
which are symmetric in space.

Since we have used a stability analysis with g11 = g22 to analyze dynamics with g11 6= g22,
an obvious question is how the ratio g22/g11 affects the regime of applicability of this scheme.
We expect that features of this (g11 = g22) stability analysis are useful for dynamical predictions
as long as g12/g11 − 1 is roughly more than g22/g11 − 1. For example, for shallow traps
(small λ), the instabilities occur at g12/g11 − 1 values comparable to 0.01, which is why the
placement of parameters in the three dynamical regions of the ‘phase diagram’ (figure 2) is not
meaningful for the smallest λ values (the lowest rows of figures 3 and 4).

For the stability analysis, we used a reference stationary state which is of course not the
initial state: the initial state is the ground state for g11 = g22 = g12, while the reference state is
the lowest-energy spatially symmetric stationary state corresponding to the final value of g12.
The instability lines found in this stability analysis would describe even better a situation where
the dynamics is triggered by a small quench of g12, as opposed to the changes of g12 that we
consider here, which can be relatively large. We have looked at some examples of this type of
dynamics and indeed find instabilities matching the stability analysis extremely well. However,
although the initial state in the π/2 dynamics is somewhat different from the reference state
of our stability analysis, our results show that this stability analysis does provide an excellent
overall picture of the dynamics generated by the π/2 protocol.

Our work opens up a number of questions deserving further study. Firstly, we have
thoroughly explored the λ–g12 parameter space, while assuming that the intra-component
interactions g11 and g22 are unequal but close in value. The regime of large difference (g11 − g22)
clearly might have other interesting dynamical features which are yet to be explored.

Secondly, in this work we have restricted ourselves to the mean field regime. While the
mean field description captures well the richness of pattern formation phenomena (see [5, 14,
17, 18, 20] in addition to this work), it may be worth asking whether quantum effects beyond
mean field might have interesting consequences for the patter dynamics generated by a π/2
pulse. For bosons in elongated traps, regimes other than mean field (such as the Lieb–Liniger or
Tonks regimes) may occur naturally in experiments [29, 34, 43–45]. Dynamics subsequent to
a π/2 pulse in strongly interacting 1D gases outside the mean field regime is an open area for
investigation.

Thirdly, we have assumed a spatially symmetric trap and an initial condition with spatial
symmetry, and this plays a crucial role in the selection of instability channels. In a real-
life experiment, the trap will have some left–right asymmetry. Also, thermal and quantum
fluctuations can initiate spatially antisymmetric excitations. The extent to which a small spatial
asymmetry affects spin dynamics remains unexplored; in such a case we would have some type
of competition between the two types of instabilities. Navarro et al [14] have studied dynamical
effects of fluctuations (noise), but the effects of thermal and quantum fluctuations are yet to be
studied in the context of a π/2 protocol.
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Finally, one could consider time evolution and spatiotemporal patterns generated by a π/2
pulse in the presence of an optical lattice, described by the dynamics of a two-component
Bose–Hubbard model. This is a situation easy for us to imagine realizing experimentally.
One could speculate that there is a complex interplay between spin dynamics and the spatial
arrangement of Mott and superfluid regions.
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In recent years, controlled dissipation has proven to be a useful tool for the probing of a quantum system in
an ultracold setup. In this paper we consider the dynamics of bosons induced by a dissipative local defect. We
address superfluid and supersolid phases close to half filling that are ground states of an extended Bose-Hubbard
Hamiltonian. To this end, we solve the master equation using the Gutzwiller approximation and find that in
the superfluid phase repulsive nearest-neighbor interactions can lead to enhanced dissipation processes. On the
other hand, our mean-field approach indicates that the effective loss rates are significantly suppressed deep in the
supersolid phase where repulsive nearest-neighbor interactions play a dominant role. Our numerical results are
explained by analytical arguments and, in particular, in the limit of strong dissipation we recover the quantum
Zeno effect.
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I. INTRODUCTION

Dissipation arises in condensed matter systems through
a variety of effects. Heating, impurities, and currents can
often be included into these open systems only via dissipative
processes. These can then contribute to the stabilization
or destruction of particular equilibrium phases or produce
relevant nonequilibrium physics such as resistive currents
through materials. For many years, in the field of ultracold
atoms, dissipation has been considered as one of the main
obstacles in the preparation and manipulation of macroscopic
quantum states. This point of view has changed recently, since
it was realized that dissipation enables an additional way of
tuning properties of the system. It has been predicted that
the competition of unitary and dissipative dynamics leads
to steady-state quantum phases [1–7] whose features have
been compared to their equilibrium counterparts. Dissipation
can be either engineered on purpose [1] or naturally present
as, for example, heating processes via two-body loss [8–10],
spontaneous decay of Rydberg atoms [11], or cavity loss [7].

Another beneficial aspect of controlled dissipation is that
it can be exploited as a measurement tool. In this article,
we choose to focus on the realization of dissipation via
an electron beam [12–15] although our system can also be
realized with an optical quantum gas microscope [16,17]. In
all these experiments [12,16,17], application of a controlled
loss process has opened the door to measurement of atoms
in an optical lattice with single-site resolution. The electron
beam experiment [15] operates in the following way: An
electron source is focused into a very tight beam, such that
electrons collide with atoms, imparting a very large amount of
kinetic energy and expelling them from the trap. Both elastic
and inelastic (i.e., ionizing) collisions occur and, by capturing
the ions, the number of atoms in the focus of the beam can
be determined. When applied in the presence of an optical
lattice the loss can be made truly localized, i.e., acting on a
single site, and then the effective loss rate reflects the initial
local density per site in the system.

Although this measurement procedure is not described by
the standard paradigm of projective measurement in quantum
mechanics, it has still been shown to exhibit the quantum Zeno
effect [18]. In a broader context [19], the quantum Zeno effect
can be defined as a suppression of the unitary time evolution

by an interaction with the external environment. Typically, in
cold atomic systems the effect is observed as a nonmonotonic
behavior of the effective loss rate in the presence of an
external periodic optical potential as a function of the bare
loss (dissipation) strength: For weak dissipation, the effective
loss rate is proportional to the dissipation strength, but in the
regime of strong dissipation, the number of expelled particles
decays as the dissipation gets stronger. The basic explanation
of this nonintuitive phenomenon lies in the fact that the system
protects itself from strong dissipation by approaching very
closely a “dark” state that is unaffected by a loss process.
The phenomenon has been theoretically addressed [20] and
experimentally observed in three other setups in the cold atom
context [21–23]. In the case of a two-body or three-body
loss, it was shown that strong dissipation introduces effective
hard-core repulsion into the physical system [20–22,24]
precisely via the mentioned quantum Zeno effect. In recent
experiments on polar molecules in three-dimensional optical
lattices [23,25], the effect has been used to suppress molecular
chemical reactions and to measure the density of the system.

Previous theoretical investigations of localized single-
particle dissipation in bosonic systems have considered
few-site Bose-Hubbard systems with large filling fractions
[26–31]. It has been shown that the dynamics induced by local
dissipation depends strongly on the initial state: A mean-field
Gross-Pitaevskii-like description works well for initial states
that are conventional homogeneous Bose-Einstein conden-
sates. On the other hand, a beyond-mean-field treatment is
necessary when the initial state is a Bose-Einstein condensate
with a macroscopic occupation of the single-particle state
corresponding to a nonzero momentum vector [27,30]. In that
case, states with macroscopic entanglement naturally describe
the long-time dynamics of the system. Localized dissipation
of a one-dimensional strongly correlated system has also been
addressed in a density-matrix renormalization-group (DMRG)
study [32], where excitations created by dissipation as well as
the quantum Zeno effect have been considered in detail.

In this paper we consider the dynamics induced by
localized dissipation for bosons in a two-dimensional lattice
at low filling fractions. To address the problem we apply the
Gutzwiller (GW) mean-field approximation for the density
matrix, which is expected to reasonably capture properties of
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the system in higher dimensions. In our study we also include
repulsive nearest-neighbor interactions, expected in systems
of dipolar or Rydberg-dressed quantum gases [33] and polar
molecules [23,25]. Usually in this context the main features
of the quantum Zeno effect are explained by the balance of
dissipation and hopping, and it is interesting to understand
whether and how repulsive nearest-neighbor interactions can
affect it. With long-range interactions, the model hosts not only
Mott-insulator and superfluid phases, but also density-wave
and supersolid ground states. In the following we choose the
initial state as the ground state and then compare and contrast
the response of superfluid and supersolid phases when exposed
to localized dissipation. While the supersolid phase requires
strong nearest-neighbor repulsion that is still difficult to reach
experimentally, it is certainly important to find the fingerprints
of weaker repulsive interaction in how a uniform superfluid
responds to dissipation.

This paper has the following structure: In Sec. II we first
briefly describe the zero-temperature phase diagram of the
extended Hubbard model and introduce the quantum master
equation that allows us to treat continuous dissipation. Our
method of choice for solving the full problem is the Gutzwiller
mean-field approximation, we discuss its advantages and
shortcomings. However, before solving the full mean-field
master equation, we consider in Sec. III two simpler, but
closely related, quench-type processes that introduce local
defects into the system. From these we learn about intrinsic
time scales and about the dark state of the system. We then turn
to continuous dissipation in Sec. IV and numerically study the
response of different phases in the full range of dissipation
strengths. Conveniently, our numerical results fit well into the
analytical framework of Drummond and Walls [34] for a single
dissipative cavity, and this enables an analytical insight into
our problem. In particular, from the analytical solution we
can directly obtain results in the limit of weak and strong
dissipation. Furthermore, the analytical formula yields a very
reasonable approximation of the numerical data for the whole
range of the dissipation strength for the uniform superfluid.
This is an important simplification that will allow for an
easy and direct comparison of the theoretical prediction with
experimental data, once they are available. We conclude with
a discussion of our results.

II. MODEL AND METHOD

We consider a two-dimensional (2D) bosonic gas, trapped
in a significantly deep optical lattice described by a single-band
Bose-Hubbard model, with local (U ) and nearest-neighbor
(W ) interactions:

H = −J
∑
〈ij〉

(a†
i aj + H.c.) + U

2

∑
i

ni(ni − 1)

−
∑

i

μni + W
∑
〈ij〉

ninj , (1)

where 〈ij〉 enumerates pairs of nearest neighbors i and j , J is
the hopping integral, and μ is the chemical potential.

The ground state |ψ0〉 of the system without long-range
interaction (W = 0) is the well-known superfluid phase away
from integer filling, or for strong enough hopping. At integer

filling and beneath a critical hopping value, a phase transition
into the Mott-insulator state occurs [35–37]. The inclusion
of long-range interaction has already been investigated in
the context of dipolar gases [38–41] and new phases have
been shown to appear: charge-density-wave (CDW) order for
half-integer filling as well as supersolid (SS) order, which
is characterized by both nonzero CDW order and a finite
condensate order parameter. The CDW order parameter in
this system is given by

CDW = 1

N/2

∣∣∣∣∣
∑

i

(−1)i〈ni〉
∣∣∣∣∣ (2)

and the condensate order parameter is defined locally on each
site by φi = 〈ai〉.

To study the ground states and unitary dynamics of this
model we use a Gutzwiller ansatz [35,42]:

|ψGW〉 =
∏
⊗i

∑
n

cin(t)|n〉i ,

which captures exactly the physics of the system in both the
noninteracting and atomic limits. The energy functional and
time evolution of the Gutzwiller ansatz treats the hopping at
the mean-field level, while the long-range interaction provides
a mean-field correction to the local chemical potential.
Explicitly we solve

i
d|ψGW〉

dt
= H̃ |ψGW〉, H̃ =

∑
i

H̃i

with the nonlinear effective “Hamiltonian”

H̃i = −J
∑

j∈〈ij〉
(φ∗

j ai + a
†
i φj ) + U

2
ni(ni − 1)

−
⎛
⎝μ − W

∑
j∈〈ij〉

〈nj 〉
⎞
⎠ ni,

where φj = 〈aj 〉 is the local condensate order parameter.
This ansatz restricts the validity of our dynamical simulations
to phases with condensate order. One of its main recent
applications has been in understanding properties of the
amplitude mode. The description has been proven to be able
to capture and explain the main experimental findings [43,44].

The ground-state phase diagram for varying chemical
potential around half filling is shown in Fig. 1, for W = 0.25U .
Numerically exact quantum Monte Carlo studies [40,41] have
shown that mean-field calculations [39,45,46] overestimate the
size of the supersolid region, yet the supersolid phase remains
stable at fillings �0.5 for zW � U (z is the coordination
number of the lattice) in the close vicinity of the density-
wave regime. Therefore, in the following, we will consider
parameter regimes within the uniform superfluid phase with
and without long-range interaction and regimes deep within
the supersolid phase, close to the density-wave lobe, where we
expect that quantitatively correct predictions can be obtained
based on mean-field GW considerations. For this to hold true,
we are also limited to the zero-temperature case. Our units
are set by the choice U = 1, unless otherwise stated. For the
presentation of numerical data we chose a fixed noninteger
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FIG. 1. (Color online) The ground-state phase diagram close to
half filling within the Gutzwiller approximation for the extended
Bose-Hubbard model (1) on the square lattice for W/U = 0.25.
We plot the value of the CDW order parameter CDW , Eq. (2). This
quantity takes the following values: CDW = 1 in the density-wave
phase, CDW = 0 in the uniform superfluid phase, and an intermediate
value in the SS phase. A line of constant density n = 0.52 is also
shown.

density n = 0.52, and either W = 0 or W = U/4, although
we have also tested a range of other parameters.

The final ingredient in our simulation is a loss term that
acts on a single site to remove individual particles. This has
been considered before and can be shown, through a variety
of representations of the loss process, to result [5,6,11] in the
following Lindblad equation:

∂ρ

∂t
= −i [H,ρ] + �

2
(2alρa

†
l − {nl,ρ}), (3)

where in our case a single site l is affected by the loss and
we also apply the Gutzwiller ansatz to the density matrix ρ ≡∏

⊗i

∑
nm cinm|n〉i〈m|i . The constant � describes the strength

of dissipation and can be experimentally tuned by changing
the strength of the applied electron beam [15].

To simulate the time evolution numerically, we will con-
sider several different regimes of parameters J , U , W , and �

for a finite system with open boundaries but without a trap.
We first determine the ground state |ψ0〉 of H̃ using imaginary
time propagation. Finally, starting from ρ(t = 0) = |ψ0〉〈ψ0|
we solve the master equation by propagating it in real time
using standard differential equation solvers.

The accuracy of the above mean-field approximation
improves as the coordination number of the lattice increases.
For this reason, we would expect our final results for the
uniform superfluid state to be even more accurate on the 3D
lattice. On the other hand, the supersolid region in the phase
diagram is expected to shrink as the dimension changes from
two to three [41].

III. WITHOUT DISSIPATION

Before discussing the solution of the master equation in its
entirety, we first probe the unitary dynamics of the system due
to the presence of a defect originating on the lossy site. To this
end, we prepare the system in the ground state |ψ0〉 and either

0
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t J

Bulk density
nl(t), W/U=0.25, J/U=0.12
nl(t), W/U=0, J/U=0.06
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t J

nl(t), W/U=0.25, J/U=0.06
nl+1(t), W/U=0.25, J/U=0.06

t=0 t J=36

(a) (b)

FIG. 2. (Color online) Time dependence of the density of the
central site after it has been completely depopulated at t = 0 for
the uniform superfluid state (a) and SS state (b). The insets in (b)
show the densities immediately after the defect has been introduced
and at later moment when the system has recovered.

(a) completely depopulate the site l or (b) turn off the couplings
to the neighboring sites and completely depopulate the site l.
These are quench-type processes that give us an insight into
the intrinsic relevant time scales of different phases.

In the first protocol we monitor the time dependence of the
density of the central site after complete depopulation at t = 0,
Fig. 2. In the superfluid phase [Fig. 2(a)] we observe persisting
oscillations with the period 1/J . The oscillation amplitude
decays faster when there are no long-range interactions in the
system. From the data presented in Fig. 2 we may conclude
that the system recovers from the initial defect on a time scale
approximately proportional to the inverse hopping rate. On
the contrary, the healing time of the typical SS phase is much
longer [see Fig. 2(b)], on the order of ∼10/J . These time
scales will have direct implications on the dynamics in the
limit of weak dissipation strength.

In the second protocol we suddenly remove the four central
links of the lattice at the same time as depopulating the central
lattice site, Fig. 3. The recovery of the system with this type
of defect is much more rapid than the sudden depopulation
alone that we studied above, as can be seen in Fig. 4(a). In
this figure, we show the change in the particle density on
the sites next to the decoupled site [nl+1(t)] as a function
of time. As we see, without any nearest-neighbor repulsion,
sites next to the defect lose some of their initial density,
while strong enough nearest-neighbor repulsion leads to the
opposite effect. The reason for the quick response is visible in
the long-term behavior: The system approaches the ground

(a) (b) (c)

FIG. 3. (Color online) Density distributions realized by the
quench-type process in which four central lattice links are suddenly
removed and the central site is completely depopulated. The system
is initially in the ground state in the SS phase (left), then the defect
is introduced (middle), and finally, the system adjusts to this change
(right). Parameters used are J = 0.06U and W = 0.25U .
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FIG. 4. (Color online) Left: Time dependence of the density on
the nearest-neighbor site nl+1(t) induced by the second quench
protocol. Right: Saturated averaged values limt→∞ nl+1(t) and
limt→∞ |φl+1(t)| as functions of J with and without repulsive nearest-
neighbor interactions.

state with the four links removed (which we will refer to as
|ψimp〉). For nonzero W this state exhibits a “screening” effect
[see Fig. 3(c)]. Simply, the density can become much larger at
these neighboring sites, due to the lack of long-range repulsion
from the central site and the bulk of the system is only weakly
affected by the quench process.

We will show in the next section that the process of
removing the central links is directly related to the limit of
strong dissipation. For this reason it is important to understand
in more detail how the saturated values of density and
condensate order parameter of these nearest neighbors depend
on J , U , and W . As can be seen in Fig. 4(b), in the case of
W = 0 the condensate shows a monotonic increase in the order
parameter on the neighboring sites with increasing J , but there
is only a very weak dependence on J throughout the studied
range. More complicated behavior is found for W = U/4.
For the total initial density fixed at n = 0.52 and J less than
≈0.103U , the ground state is a supersolid and we always
choose to remove links around the site of higher initial density.
First we notice that saturated values of nl+1 are always higher
than the initial values [see Fig. 4(a)] a result of the above-
mentioned “screening.” Now, we compare what happens for
J = 0.06U to J = 0.07U . Initial values of nl+1 are of the same
order, but stronger effective repulsion in the first case yields
a higher saturated value of n

imp
l+1. In our simulations, the local

condensate fractions f = |φl+1|2/nl+1 of neighboring sites
are very high, i.e., close to 1, and the change in the density
is followed by the related change in φl+1. This explains the
decrease of n

imp
l+1 and φ

imp
l+1 with J observed for weak J . On

the other hand, the initial value of nl+1 is significantly higher
for J = 0.09U compared to J = 0.06U , corresponding to a
smaller density-wave order parameter CDW, and this leads
also to the higher saturated value. Hence, the decrease in the
initial value of the density-wave order parameter leads to the
increasing saturated values for J = 0.08U − 0.1U . Finally,
for strong enough J , the initial state is a uniform superfluid
and exhibits similar qualitative behavior as found for W = 0.

IV. CONTINUOUS LOSS PROCESS

We now introduce dissipation by the use of the master
equation (3). Similar to the above scenarios, we choose to
affect only the central site of the lattice. This localized impurity
produces several effects: a continuous loss of particles from
the system, a disturbance of the bulk and a restructuring of

the density profile around the lossy site. In our finite-sized
systems the disturbance in the bulk will eventually be reflected
from the boundary but, as we are interested in the properties
of an infinitely large system we consider only time scales
smaller than this limit. Achieving larger times in our simulation
hence requires larger systems. Although we consider a finite
system and the only true “steady-state” solution is that of zero
particle density, the solutions we obtain can be considered to
be quasisteady state, as long as the loss rates are much smaller
than the total number of particles.

A. Numerical results

We first present results for parameter regimes with and
without long-range interaction, whose ground state is a ho-
mogeneous superfluid. Two examples, with snapshots of their
time-dependent density profiles, are shown in Fig. 5, where we
immediately see that the effect of long-range interaction is to
enhance the charge-density-wave order in the bulk disturbance.
To estimate the speed of propagation of this perturbation, we
monitor the density of an arbitrary bulk site as a function of
time as shown in Fig. 6. We choose a site which is ten sites
away from the center and observe that it has a nearly constant
density for initial times and then exhibits weak oscillations.
The defect propagation velocity is obviously set by J , but it
seems to be slightly higher in the presence of repulsive W .

-20

-10

0

10

20

-20 -10 0 10 20

t J = 8.4

0.47

0.48

0.49

0.5

0.51

0.52

0.53

-20

-10

0

10

20

-20 -10 0 10 20

t J = 8.4

0.47

0.48

0.49

0.5

0.51

0.52

0.53

-20

-10

0

10

20

-20 -10 0 10 20

t J = 1.2

0.47

0.48

0.49

0.5

0.51

0.52

0.53

-20

-10

0

10

20

-20 -10 0 10 20

t J = 1.2

0.47

0.48

0.49

0.5

0.51

0.52

0.53

-20

-10

0

10

20

-20 -10 0 10 20

t J = 3.6

0.47

0.48

0.49

0.5

0.51

0.52

0.53

-20

-10

0

10

20

-20 -10 0 10 20

t J = 3.6

0.47

0.48

0.49

0.5

0.51

0.52

0.53

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 5. (Color online) Real-space density profiles after time
propagation showing the bulk properties, starting from an initial
homogeneous superfluid. Parameters used are J/U = 0.12, � =
0.2U , and W = 0 (on the left) and W = 0.25U (on the right).
Although the profiles share many similarities, note the enhancement
of the charge-density-wave pattern in the bulk disturbance with the
inclusion of long-range interactions.
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FIG. 6. (Color online) Density of a site in the bulk (ten sites
away from the central lossy site) in the presence of continuous local
dissipation, � = 0.2U .

Quantitatively, it is more useful to look at the density on
both the lossy site and its neighbors, as shown in Figs. 7(a)
and 7(b). We see here that these sites very quickly reach their
steady-state values within a few hopping time scales, and that
the steady-state particle density on the lossy site itself mono-
tonically decreases with increasing �, approaching zero in the
large-� limit. This means that strong loss prevents hopping to
the lossy site and is evidenced in our results in the limit � � 1,
where we see that the steady-state density of neighboring sites
approaches that of the ground state with central links removed,
|ψimp〉, as discussed in Sec. III. As is to be expected, in the
opposite limit � → 0 the saturated values of both lossy site
and neighboring sites are close to their initial values.

We now turn to the supersolid phase, for which density
profiles of lossy site and neighbours are presented in Figs. 7(c)
and 7(d). We fix the lossy site to be an initially high density
site of the checkerboard distribution. The most striking point
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FIG. 7. (Color online) Temporal evolution of the local densities
starting from an initially homogeneous superfluid W = 0, J = 0.1U

(top row) or starting from an initial supersolid state W = 0.25U ,
J = 0.06U (bottom row). Left: Density of the lossy site as a function
of time. Right: Density of the site next to the lossy site as a function
of time. The horizontal line in the right plots shows the asymptotic
value of n

imp
l+1, which is reached for strong �.

that we observe here is the behavior for weak loss. Even for
loss rates of � = 0.02U , we see that the steady-state values
are significantly altered compared to the initial values. This
behavior can be related to the time scales considered in Sec. III,
where we found that complete recovery of a supersolid state
requires many hopping times. Instead, for the shorter time
scales considered here, a steady state with different density
distribution becomes the relevant one. For all values of � we
observe an increase of the density on the neighboring site. This
behavior reflects the “screening” effect that was found for the
ground state with central links removed, |ψimp〉, as discussed
in Sec. III, which we again obtain in the limit � � 1.

We must also mention that our results for weak loss may not
truly reflect the limit of � → 0. While in the superfluid the re-
laxation rate at which the density profiles return to equilibrium
is related to J , yielding the criterion � < J which is satisfied
in our simulations, relaxation rates in the supersolid phase
are slower and may also depend on higher-order processes in
perturbation theory (e.g., J 2/W ). Unfortunately the rigorous
investigation of even weaker loss rates requires accessing very
large simulation times and consequently infeasibly large lattice
sizes in order to neglect finite-size effects.

B. Analytical insight

1. Density profiles

Within our approach, the study of local dissipation reduces
to a set of coupled single-site Hamiltonians. In particular, the
Hamiltonian of the central site that is directly exposed to the
dissipation has an effective pumping term F (t):

Hl = −(μ − 4Wnl+1)a†
l al + U

2
a
†
l a

†
l alal

+F (t)a†
l + F ∗(t)al, (4)

where F (t) = −4Jφl+1(t) represents the incoming parti-
cles from the neighboring sites, obtained in the complete
Gutzwiller simulation. From the numerical data presented in
the previous section, we find that after an initial transient
regime both nl+1(t) and |φl+1(t)| reach nearly constant values.
Weak oscillations around averaged values are present even at
later times, but this turns out to be a subleading effect and we
may safely approximate nl+1(t) and |φl+1(t)| by constants.
The local Hamiltonian (4) for constant F in the presence
of dissipation has been explored in the context of isolated
driven photonic cavities [34]. In that other context, the F terms
represent the incident laser field, the dissipation � is a cavity
dissipation rate, and a balance between unitary and dissipative
dynamics leads to a local steady state. The exact solution for
the single cavity is known [7,34] and it gives a steady-state
density on the lossy site through

nl = 〈a†
l al〉 =

∣∣∣∣2F

U

∣∣∣∣
2 1

|c|2 × F(1 + c,1 + c∗,8|F/U |2)

F(c,c∗,8|F/U |2)
,

(5)
where c = 2[−(μ − 4Wnl+1) − i�/2]/U ,

F(c,d,z) =
∞∑
n

�(c)�(d)

�(c + n)�(d + n)
× zn

n!
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is the hypergeometric function and �(x) is the Gamma
function. Given the a posteriori numerical values of φl+1

and nl+1, the analytical formula (5) matches very well with
our numerical results for nl . Equation (5) can be used to
directly determine the particle number on the lossy site, given
the condensate order parameter and density on the nearest
neighbors.

To employ this analytical solution, we must, however, fix
the chemical potential μ. Although the value of μ affects the
propagation of the Hamiltonian only by a global phase factor,
the analytical derivation of (5) relies on a time-independent
value of F , which in turn requires φi(t) = φi . If we assume
that our numerical results have reached a steady state, then it is
clear that |φi | must be time independent; however, the choice of
μ affects the time dependence of the phase of φi . Fortunately,
the value of μ obtained by fixing the required particle number
in the ground state has exactly this property, which one can see
through d〈âi〉|ψ0〉/dt = i〈[Ĥ ,âi]〉|ψ0〉 = 0. As this value of μ

reproduces the steady-state density profiles in both the limit of
� → 0 (corresponding to the homogeneous ground state) and
the limit of � � 1 (corresponding to the ground state with
central site and links removed), we can assume it is a good
approximation for all values of � between these limits. Note
that this value of μ is independent of the description of the
“bath” to which the master equation is coupled—any relative
offset between the system and bath, e.g., a chemical potential
difference, which would appear in the derivation of the master
equation, has already been assumed to be absorbed into the
parameter �.

2. Effective loss rates

The experimentally accessible quantity relevant to
our simulations is the total number of expelled atoms
N (t) = Ntot(t = 0) − Ntot(t) per time. We determine this
through

dN(t)

dt
= −Tr

(
N̂tot

dρ

dt

)
= �nl(t), (6)

where N̂tot = ∑
i n̂i is the total number of particles and we have

made use of the vanishing trace Tr([N̂tot,H̃ ]ρ) = 〈[N̂tot,H̃ ]〉 =
0. Hence, we see that the global loss rate is determined by nl(t).

We show plots of the total number of particles lost in Fig. 8
and of the loss rate dN/dt in Fig. 9 for both the superfluid
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FIG. 8. (Color online) Time dependence of the total number of
particles lost in the (a) superfluid phase (W = 0, J = 0.1U ) and
(b) supersolid phase (W = 0.25U , J = 0.06U ). After a brief transient
of strong loss as the central site is depleted, the system quickly reaches
a quasisteady state, from which an approximately constant loss rate
can be extracted.
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FIG. 9. (Color online) Off-site density and condensate order pa-
rameter (left column) and decay rate dN/dt (right column) as
functions of dissipation strength for a homogeneous superfluid
with (a),(b) W = 0, J = 0.1U and (c),(d) W = 0.25U , J = 0.12U ,
and (e),(f) supersolid with W = 0.25U , J = 0.06U . The quantum
Zeno effect is apparent as the decay rate vanishes in the limit of
strong dissipation in all cases. Using analytical arguments and the
given off-site condensate order parameter, we can obtain near exact
agreement with the numerical loss rate. For weak loss, there is a
linear dependence on � [dotted line; for clarity, shown only in
(b)] whereas for strong loss we observe the asymptotic form (7)
(continuous line). The dashed blue line represents the full Eq. (5)
used in (6), with off-site parameters taken directly from numerical
simulations, as shown in the left column. The dot-dashed line gives
a simplification—large � values for off-site parameters are used
throughout the whole range of � in Eq. (5).

and supersolid phases. In all cases, initially the number of
expelled particles grows rapidly as the lossy site is emptied.
In the quasisteady state, when the dissipation is balanced by
hopping, a constant current of expelled particles develops, and
therefore constant loss rates dN/dt can be directly extracted
from numerical data.

To prove that our system has indeed reached the local
quasisteady state, we compare numerical results for effective
loss rates with results obtained by using numerical values
for off-site parameters (Fig. 9, left) in Eqs. (5) and (6). We
find complete agreement as shown in Fig. 9, right, except
for very weak dissipation in the supersolid phase. In this
case, the dynamics is very slow and the system has not yet
reached the steady state during the monitored time interval.
But, although this mapping works perfectly, it still requires
complete knowledge of the off-site expectation values. We can
obtain a more applicable approximation through some further
simplifications. In the case of uniform superfluid phases, we
obtain nearly perfect agreement between analytical estimates
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and the numerical simulations by using a constant φl+1 in
the whole range of �, which is shown in Fig. 9 as the green
(dot-dashed) line. The analytical estimate (5) has only one
problem: We must know the value of φl+1 exactly. This is
often not available a priori in experiment and is of course
modified by the presence of the dissipation. However, we
can easily perform a nondissipative Gutzwiller calculation for
given experimental parameters, to determine the value of φl+1

in the ground state, and use this as an approximate value of φl+1

to estimate the steady-state loss rate. Similarly, we may also
calculate the ground state with central links removed, which
is relevant in the limit � � 1. In the case of the supersolid
phase, we find stronger dependence of φl+1 and nl+1 on � that
cannot be simply replaced by a constant value.

When describing the regime of strong dissipation, the
analytical result (5) turns out to be very useful. Simply, by
taking the limit � → ∞ in Eq. (5) and using (6) we obtain

dN

dt
≈ 4z2

∣∣φimp
l+1

∣∣2 J 2

�

(
1 + 4(μ − zWnl+1)2

�2

)−1

, (7)

where we have explicitly indicated that the condensate order
parameter is to be taken from the ground-state solution with
central links removed, φ

imp
l+1, and z is the lattice coordination

number. This limit can be seen in Fig. 9 where it agrees well
with the full numerics for � > 1. In the opposite limit of
� → 0, the expected behavior is a linear dependence in � and
this is clearly a good approximation, as can also be seen in
Fig. 9.

The result captured in Eq. (7) describes the quantum Zeno
regime and is to some extent general. The leading J 2/�

dependence has been previously derived using an extended
perturbative approach [20] and by considering simplified
few-site Bose-Hubbard systems [27,29]. The essence of the
formalism in [20] is to consider the dark state of the system
which is, in our case, |ψ imp〉. The nonzero decay rate of this
state stems from the hopping events that couple it to states
with finite density on the lossy site. This effect is captured,
within the Gutzwiller ansatz, by Eq. (7). In the formalism
of [20], however, the coupling is not the Gutzwiller mean-field
hopping term but the original full hopping term. This leads
us to conjecture that the loss rates beyond mean-field theory
would depend also on the particle density of the neighboring
sites, not only on the condensate density, and hence be larger
than our results. Unfortunately, explicit calculations cannot be
performed without knowledge of the exact state.

When considering local dissipation as a measurement tool,
the main question is which properties of the observed system
we can extract from the measured effective loss rates. The
straightforward answer is given by Eq. (6)—effective loss
rates are directly related to the density of the lossy site. In
the limit of weak dissipation, this density closely corresponds
to the initial bulk density. However, our results indicate that
this limit is not always easy to reach, as for example in
the case of the supersolid phase. On the other hand, in the
large-� limit the effective loss rate is proportional to J 2/� and
related to the corresponding dark state. Within our description,
further dependence on microscopic parameters of the model
is contained in the proportionality constant |φimp

l+1| and in the
leading correction term (μ − 4Wnl+1)2. At approximately half
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FIG. 10. (Color online) Loss rates dN/dt for large dissipation
(�/U = 6) for varying J obtained by numerical calculations within
the Gutzwiller approximation and the analytical result in Eq. (7),
which requires the knowledge of the condensate order parameter at
the neighboring sites, taken directly from the numerical calculations
of Sec. III. Dashed lines show the J 2 dependence, while the vertical
line marks the supersolid-superfluid transition.

filling, as considered throughout our paper, the correction term
does not play a major role, yet at higher filling fractions it can
become more pronounced. The influence of a similar term
has been denoted as the nonlinear Zeno effect [27], since the
dissipation rate is reduced by interactions. We again emphasize
that the full interplay of U and � is captured by Eq. (5).

We now turn to further implications of Eq. (7) to understand
how the effective loss rate in the large-� limit is modified
by the presence of interactions. The answer is directly based
on the results for φ

imp
l+1 presented in Fig. 4(b) which we now

use in combination with Eq. (7). Semianalytical results are in
good agreement with full numerical calculations throughout
the entire supersolid regime and through the transition to the
superfluid phase with and without long-range interaction, as
shown in Fig. 10. Here we take a fixed value of �/U = 6 and
vary J to show that the form of Eq. (7) fits the numerical
data well. The trend of J 2 is clearly visible for W = 0
through the whole range of J . This is a direct consequence
of the fact that we are close to half filling. Without long-
range interactions, no quantum phase transition occurs at this
filling, and hence the condensate fraction is only weakly
dependent on J . Close to unity filling for example, the
condensate fraction would depend more strongly on J and
affect the J 2 behavior. The J 2 dependence is also apparent
in the presence of repulsive interactions in the superfluid,
where we find that effective loss rates are enhanced by W . On
the contrary, deep in the supersolid phase the J 2 dependence
is strongly suppressed and effective loss rates are much
weaker.

Based on the previous considerations, for a fixed value of
J and � we expect an increase of the effective loss rate with
increasing W , as shown in Fig. 11. However, eventually for
strong enough W , in our mean-field calculations we reach the
supersolid regime that finally leads to a suppression of the
dissipative loss.
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V. CONCLUSIONS

In this paper, we have addressed the dynamics of the ex-
tended Bose-Hubbard model induced by localized dissipation.
We have solved the master equation using the mean-field
Gutzwiller approximation and complemented our numerical
study by the analytical description of Drummond and Walls.
We have observed a regime of weak dissipation where effective
loss rates are almost linearly proportional to the initial density
and a regime of strong dissipation which exhibits the quantum
Zeno effect, where stronger dissipation leads to smaller
effective loss rates.

We have demonstrated that at the mean-field level, reason-
ably accurate loss rates in the quantum Zeno regime can be
calculated without the need for explicit numerical solutions of
the full dissipative problem. This can be achieved by taking a
single result from the simpler nonlossy Hermitian calculation
(regarding a quench-type process) as an input parameter for the
analytical theory of Drummond and Walls [34]. In particular,
in the case of a superfluid, this approximation turns out to be
a very good description of the effective loss rates for the full
regime of applied dissipation.

Based on these considerations, we have then estimated
effects of nearest-neighbor repulsive interactions in the regime
of strong dissipation: in the superfluid these interactions
lead to enhanced effective loss rates due to a mechanism
of screening of the local defect. On the other hand, when
nearest-neighbor interactions are dominant over the hopping,
and induce a supersolid phase, the process of dissipation is
strongly suppressed and effective loss rates decrease.

We expect our mean-field results to be even more quanti-
tatively accurate for the three-dimensional optical lattice and
uniform superfluid phase. From comparison to [20] which
introduces an effective model in the limit of strong dissipation,
we expect that corrections to the mean-field theory would
produce increased loss rates. Finally, we need to mention that
time-dependent nonequilibrium calculations within mean-field
theory are more accurate for superfluid rather than supersolid
systems, due to the contribution of higher-order hopping
processes.
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Svistunov, Phys. Rev. A 77, 015602 (2008).
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Arrays of coupled photonic cavities driven by external lasers represent a highly controllable setup to explore
photonic transport. In this paper we address (quasi)-steady states of this system that exhibit photonic currents
introduced by engineering driving and dissipation. We investigate two approaches: in the first one, photonic
currents arise as a consequence of a phase difference of applied lasers and, in the second one, photons are injected
locally and currents develop as they redistribute over the lattice. Effects of interactions are taken into account
within a mean-field framework. In the first approach, we find that the current exhibits a resonant behavior with
respect to the driving frequency. Weak interactions shift the resonant frequency toward higher values, while
in the strongly interacting regime in our mean-field treatment the effect stems from multiphotonic resonances
of a single driven cavity. For the second approach, we show that the overall lattice current can be controlled
by incorporating few cavities with stronger dissipation rates into the system. These cavities serve as sinks for
photonic currents and their effect is maximal at the onset of quantum Zeno dynamics.

DOI: 10.1103/PhysRevA.94.013809

I. INTRODUCTION

Understanding the transport properties of photons in differ-
ent media is a prerequisite for future applications, for example
in quantum information processing. This subject has been ad-
dressed from various perspectives [1]. As one notable example
we mention successful experimental realizations of photonic
topological insulators, where emerging edge states provide
robust transport channels [1–5]. Forthcoming experiments
with arrays of coupled photonic cavities [1,6,7] are expected
to feature strong interactions on a single-photon level. The
latest theoretical and experimental progress in this direction
is summarized in two recent review papers [8,9]. Transport
measurements will be the most natural first experiments to
carry out in these systems in order to explore how interactions
affect the propagation of photons. First experimental results in
this direction are already available [10,11].

Theoretically, arrays of coupled photonic cavities can be
described by the Bose-Hubbard model [1,6,7]. However,
photonic cavities exhibit dissipation due to intrinsic loss rates,
which has to be compensated by driving the system with an
external laser. Instead of equilibrium properties, stationary
states that arise from the interplay of driving and dissipation
are thus more naturally studied in this open quantum system
[12–22]. The aim of our study is to explore steady states of
the dissipative-driven two-dimensional Bose-Hubbard model
which exhibit finite photonic currents and are generated by
engineering the driving and dissipation. In particular, we will
analyze how the emerging photonic currents are affected by
the externally controllable parameters, such as intensity and
frequency of the external laser pump, the loss rates, and the
physical parameters of the underlying Bose-Hubbard model.

We note that transport measurements in cold atomic systems
[23] have been reported recently [24–27] and that some of our
conclusions may apply to corresponding bosonic systems of
cold atoms as well. Different possibilities to control stationary
flows of cold atoms by dissipation have been theoretically
addressed in Refs. [28–32].

The structure of the paper is the following. The model we
consider is described in Sec. II, where we also introduce two
setups, which lead to stationary states with finite currents. In
Sec. III we briefly outline the theoretical methods we employ
in this work. In Sec. IV we explore properties of the currents
first in the noninteracting limit, then at weak interactions,
and finally in the regime of strong interactions, where we
use the Gutzwiller mean-field approximation. In the end we
summarize our main conclusions and outline open questions.

II. THE MODEL

We study transparency in the dissipative-driven photonic
Bose-Hubbard model, which describes the dynamics of pho-
tonic or polaritonic excitations in coupled cavity arrays; see
Fig. 1 for a sketch of our setup. The key parameters of the Bose-
Hubbard model are the hopping amplitude J and the on-site
interaction U . The driving of the system via local excitation
by external lasers can be described by F ∗

l al exp(iωLt) + H.c.,
where the amplitudes Fl are set by the laser intensity and al

are the bosonic annihilation operators on site l. We describe
the system in the corotating frame, by applying the uni-
tary transformation U (t) = exp(iωLt

∑
l nl), nl = a

†
l al . This

transformation leads to an additional chemical potentiallike
term proportional to the detuning � = ωL − ωC of the laser
frequency with respect to the cavity mode ωC . The effective
Hamiltonian of the model is [18,21]

H = −�
∑

l

a
†
l al − J

∑
〈l,j〉

(a†
l aj + a

†
j al)

+ U

2

∑
l

nl(nl − 1) +
∑

l

(Fla
†
l + F ∗

l al), (1)

where the sum over 〈l,j 〉 indicates that we only take into
account tunneling between nearest-neighbor sites of the square
lattice. In addition to the Hamiltonian time evolution we
consider one-body loss described by a Lindblad master
equation. The equations of motion for the density operator
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FIG. 1. (a) Sketch of the phase imprinting setup (6). (b) Sketch
of the source-drain setup (7). Throughout this paper we assume
translational invariance in the y direction, where all sites along the y

axis behave in the same way.

ρ of the dissipative model are given by

i
dρ

dt
= [H,ρ] + Lρ, (2)

where we set � = 1. The dissipator L is

Lρ = i
∑

l

γl

2
(2alρa

†
l − a

†
l alρ − ρa

†
l al), (3)

where γl is the local dissipation rate.
In order to quantify the transparency of the material we

calculate the (local) current density j , which is derived from
the lattice continuity equation and provides a measure for the
photon transport through the system. The current jlj between
sites l and j is given by

jlj = −iJ (a†
j al − a

†
l aj ), (4)

and is the main quantity commonly used to describe transport
in other lattice systems, as for example in Refs. [33–35].
From the experimental side, the two-point correlations 〈a†

j al〉
have already been measured in superconducting circuits
[36], implying that photonic bond currents may be directly
accessible in forthcoming experiments. Another possibility for
probing properties of a photonic flow is through a local loss of
photons, which will be explained in the next section.

In our study we will investigate the photonic transport in
the regime of finite local bosonic coherences given by |〈al〉|. In
this case it is reasonable to approximate the expectation value
of the bond current from Eq. (4) by

〈jlj 〉 ≈ −iJ (〈a†
j 〉〈al〉 − 〈a†

l 〉〈aj 〉), (5)

where the local expectation values 〈al〉 are calculated within
a mean-field approximation. From the last equation it follows
that the current is directly related to the phase ordering of the
complex expectation values 〈al〉 of lattice nearest neighbors,
and that it is enhanced by strong bosonic coherences |〈al〉|. In
the following we consider different spatial distributions of the

dissipation rates γl and the driving amplitudes Fl in order to
find an optimal regime where the steady states exhibit maximal
bond currents. Due to the symmetry of the considered setups
we assume translational invariance in the y direction, where
all sites along the y axis behave in the same way. In this case
there is no current in the y direction and the indices l and j

label x coordinates of the lattice sites; see Fig. 1.
One possibility to realize steady states exhibiting a finite

bond current is by engineering suitable phases of the coherent
driving terms Fl

F PI
l = F exp(i�l), �l = �PIl, γ PI

l = γb, (6)

that will be imprinted onto phases of 〈al〉, thus providing the
finite current. This setup has been introduced in Ref. [14] and
throughout the paper we designate it as phase imprinting (PI),
Fig. 1(a). A second experimentally relevant protocol that leads
to steady states with currents uses drives that inject photons
into the lattice locally, e.g., by shining laser light on one side
only, Fig. 1(b). Steady states in the presence of homogeneous
dissipation in a one-dimensional lattice have been explored
recently in such systems [21]. In particular, stronger loss rates
at the opposite lattice side should serve as photonic sinks

F SD
l = Fδl,N , γ SD

l = γ δl,1 + γb, (7)

thus providing for a stable photonic flow. In both Eqs. (6) and
(7), the index l stands for the site position along the x axis
and there is no explicit dependence on the site position in
the y direction. The aim of our study is to explicate how the
emerging current intensity j is set by the laser amplitude F

and intrinsic loss rates γl , as well as by the parameters of the
underlying Hamiltonian in Eq. (1).

We note that the onset of particle currents in a bosonic
system naturally raises questions about superfluidity in a
dissipative-driven system [37–40]. A definite answer can be
provided by studying how the presence of defects modifies
the photonic flow or by analyzing asymptotics of long-range
correlations in the system. These questions will be addressed
in future work.

III. METHODS

In the noninteracting limit U = 0 we solve the exact
equations of motion for the expectation values φl = 〈al〉 =
Trρal :

i
dφl

d(tJ )
= −�

J
φl −

∑
〈l,j〉

φj + Fl

J
− i

γl

2J
φl, (8)

where 〈l,j 〉 denotes summation over nearest-neighbor sites
of the site l. We consider a two-dimensional lattice with N

sites in the x direction and translational invariance in the y

direction implemented using periodic boundary conditions,
and the index l labels x coordinates of the lattice sites. In this
notation we have for example

∑
〈l,j〉 φj = 2φl + φl−1 + φl+1.

Using vector notation �φ = (φ1, . . . ,φN )T , �F =
(F1, . . . ,FN )T the steady-state solution can be written
as [1,41]

φl = −M−1
lj Fj /J, (9)
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where M is a N × N matrix with elements

Mlj = [−2 − �/J − iγl/(2J )]δl,j − δl−1,j − δl+1,j . (10)

To simplify the notation, spatial indices will be omitted jlj →
j from now on whenever the current throughout the lattice is
constant and we implicitly assume the current between two
nearest neighbors in the x direction.

At high densities, provided for example by strong driving,
and for weak U , the interaction term may be treated at the
mean-field level leading to nonlinearities for the φl in their
equations of motion:

i
dφl

d(tJ )
= −�

J
φl −

∑
〈l,j〉

φj + U

J
|φl|2φl + Fl

J
− i

γl

2J
φl.

(11)

To get an estimate of effects of quantum fluctuations
on the mean-field predictions, we follow the approach de-
scribed in Ref. [14]. Using a Fourier transform alx ,ly =

1√
NxNy

∑
�k e−i(kx lx+ky ly )B�k we rewrite the Hamiltonian (1) as

H =
∑

�k
ω�kB

†
�kB�k + √

NxNyF (B�PI,0 + B
†
�PI,0)

+ U

2NxNy

∑
�k1,�k2,�k3,�k4

δ�k1+�k2+2π (z,p),�k3+�k4
B

†
�k1
B

†
�k2
B�k3

B�k4
,

where ω�k = −� − 2J (cos kx + cos ky), and z and p are
integers. In the next step, we expand operators around the
mean-field solution as

B�k = √
NxNyβδkx,�PIδky,0 + b�k, (12)

where |β|2 = nPI is the mean-field density. By taking into
account fluctuations up to the second order we obtain an
effective quadratic Hamiltonian

H̃ =
∑

�k

[
(ω�k + 2nPIU )b†�kb�k + U

2
(β∗2b�kb �kk +β2b

†
�kb

†
�kk

)

]
,

with kkx = 2πz + 2�PI − kx,kky = ky . From the stationarity
condition d

dt
〈b†�kb�k〉 = 0, d

dt
〈b�kb �kk〉 = 0, we find closed-form

equations for the second-order moments

iUβ∗2〈b�kb �kk〉 − iUβ2〈b†�kb
†
�kk
〉 − γb〈b†�kb�k〉 = 0, (13)

−i(ω�k + ω �kk + 4nPIU )〈b�kb �kk〉 − γb〈b�kb �kk〉
− iUβ2(〈b†�kb�k〉 + 〈b†�kk

b �kk〉 + 1) = 0, (14)

that finally yield for m(�k) = 〈b†�kb�k〉

m(�k) = 2(UnPI)2

[(ω�k + ω �kk)2 + 4nPIU ]2 + γ 2
b − 4(UnPI)2

.

Fluctuation effects are quantified by the ratio

m/nPI =
∑

�k
m(�k)/(nPINxNy) (15)

and the expansion up to second order in the fluctuations can
be expected to be a good approximation as long as this ratio
remains small, m/nPI 	 1.

When addressing the limit of strong interactions, we restrict
our description to the well-established bosonic Gutzwiller
approximation [13,17,42], where only local correlations are
taken into account. The time-dependent variational Gutzwiller
mixed state is a product of local mixed states. In other words the
total density operator in the Gutzwiller approximation is given
by a direct product of density operators ρi on the individual
sites:

ρGW(t) =
∏
⊗l

ρl(t) =
∏
⊗l

∑
m,n<Nc

cl
nm(t)|n〉l〈m|l . (16)

In our calculations we truncate the dimension of the local
Hilbert space for every site at a finite value Nc = 10, which
we choose large enough so that our results are independent of
the choice of the cutoff. The accuracy and limitations of this
approximation in describing dissipative systems have been
discussed in Ref. [43]. In brief, by comparing Gutzwiller
results with exact calculations on small lattices it is found
that the method describes local quantities accurately, but
it underestimates phase coherence between different sites.
However, it is expected that the accuracy of the method
improves as the lattice coordination number increases.

Projecting the Lindblad equation (2) onto the local oc-
cupation number bases we obtain equations of motion for
the variational coefficients of the Gutzwiller state, which are
N × Nc coupled first-order differential equations:

ı
dcl

nm(t)

dt
= ηl

√
ncl

n−1,m + η∗
l

√
n + 1cl

n+1,m

− ηl

√
m + 1cl

n,m+1 − η∗
l

√
mcl

n,m−1

+ iγl

√
n + 1

√
m + 1cl

n+1,m+1

+
(

U

2
[n(n − 1) − m(m − 1)]

−�(n − m) − i
γl

2
(n + m)

)
cl
n,m, (17)

where ηl = Fl − J
∑

〈l,j〉 φj takes into account the contribu-
tion of nearest-neighbor sites and the external driving term.
After preparing the system in an initial state we propagate the
equations of motion simultaneously to describe the subsequent
nonequilibrium dynamics. We chose here to investigate the
steady-state solutions by observing the long-time dynamics of
the system.

IV. RESULTS

In the following we present properties of photonic currents
for the setups defined in Eqs. (6) and (7).

A. Phase imprinting

In the noninteracting limit of the setup shown in Fig. 1(a),
phases of the coherent driving terms Fl translate into phases
of φl according to Eq. (9) as

φl = −
∑

k

1

εk − � − i
γb

2

kl

∑
j

k∗
j Fj , (18)
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∆

FIG. 2. The density nPI [Eq. (22)] as a function of (a) detuning
and (b) driving for the setup (6). Additional parameters used in the
calculations: �PI = π/2, (a) F/J = 1, γb/J = 1, (b) �/J = −1,
γb/J = 1. The thin part of the dotted line in (a) corresponds to
unstable solutions.

where εk and |k〉 are eigenfrequencies and eigenmodes of

H 0
lj = −2Jδl,j − Jδl−1,j − Jδl+1,j , (19)

and we keep in mind that we work in a corotating frame. For
a lattice obeying periodic boundary conditions in both x and
y directions, we find homogeneous steady states with density

nPI = F 2

[2J (1 + cos �PI) + �]2 + γ 2
b

4

, (20)

and bond current

|jPI| = 2JnPI sin �PI. (21)

The maximal current jPI = 8JF 2/γ 2
b occurs at � =

−2J (1 + cos �PI), and the highest ratio jPI/(JnPI) = 2 is
found at �PI = π/2.

We now discuss effects of weak interactions on the currents
for �PI = π

2 . The lattice density is obtained from Eq. (11) by
solving

nPI = F 2

(−2J − � + nPIU )2 + γ 2
b

4

, (22)

while the bond current is still given by Eq. (21). From Eq. (22)
it is clear that the maximal current is the same as without
interactions, only the resonance condition is changed to

�PI
r = −2J + 4U

F 2

γ 2
b

. (23)

This effect is illustrated in Fig. 2(a), where we also see that in
certain regimes the mean-field description predicts up to three

FIG. 3. Top: The density nPI as a function of (a) detuning
and (b) driving for phase imprinting �PI = π/2. Bottom: quantum
fluctuations m/nPI. Additional parameters used in the calculations:
(a), (c) F/J = 1, γb/J = 1, U/J = 0.5, (b), (d) �/J = −1, γb/J =
1, U/J = 0.2.

solutions for the same detuning � [44]. From Fig. 2(b) it is
evident that only in the limit of low filling we find j ∼ F 2 as
in the case of U = 0. At a certain threshold value of F , the
dependence becomes steep and finally turns into j ∼ F 2/3. We
note that even stronger switching from low to high occupation
can be found for the nonlinear waveguide where normal modes
synchronize during this switching process [45].

By inspecting the contribution of quantum fluctuations
given in Eq. (15) for different solutions (22), we find that in
the region of coexistence one branch of solutions is unstable
[37,44] [the blue (middle) curve in Figs. 3(a) and 3(b)]. The two
other branches exhibit stronger fluctuations in the intermediate
regime [see Figs. 3(c) and 3(d)], indicating that the accuracy
of the mean-field approach deteriorates and the exact solution
may be a superposition of the two mean-field solutions. This
conclusion is in agreement with a variational solution of Eq. (2)
that captures beyond mean-field effects and exhibits a unique
steady state [46].

In the limit of stronger interactions, in the Gutzwiller
mean-field description (16) our system decomposes into single
cavities with an effective driving

η = F − 2JφPI(1 + cos �PI), (24)

which incorporates contributions from the nearest neighbors
of every site of the square lattice. Our numerical results can be
explained using an analytical result of Drummond and Walls
[44] for a steady state of a single driven cavity. In the steady-
state regime the value of the bosonic coherence φPI satisfies
the equation [17,18,44]

φPI = η

� + iγb/2

F(1 + c,c∗,8|η/U |2)

F(c,c∗,8|η/U |2)
. (25)

The average density is given by

nPI =
∣∣∣∣2η

U

∣∣∣∣
2 1

|c|2
F(1 + c,1 + c∗,8|η/U |2)

F(c,c∗,8|η/U |2)
, (26)
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FIG. 4. The current jPI = 2J |φPI|2 sin �PI and local density nPI

in the steady state of the phase imprinting setup (6). Param-
eters: U/J = 20, γb/J = 0.2, (a) �/J = 10,F/J = 2.4,nPI ≈ 1,
(b) F/J = 2.4,�PI = π/2, (c) �PI = π/2. The black solid lines in
(c) are the corresponding analytical results for J = 0.

where c = −2(� + iγb/2)/U ,

F(c,d,z) =
∞∑
n


(c)
(d)


(c + n)
(d + n)

zn

n!

is the generalized hypergeometric function and 
(x) is the
gamma function. Our analysis is analogous to the analysis
performed in Refs. [17,18], with the main difference that we
introduce the parameter �PI, which is a necessary ingredient to
obtain currents. The steady states we obtain by solving Eq. (25)
are also found in real-time evolution of Eqs. (17) starting from
an initial state with a strong bosonic coherence.

Our main results are summarized in Fig. 4. As the strong
interaction U/J = 20 tends to suppress bosonic coherences,
the ratio of jPI/(JnPI) is an order of magnitude smaller
compared to the noninteracting regime. The maximal ratio
is found at �PI ≈ 0.35π , since the bosonic coherence φPI is
higher for this value than at �PI = π/2, Fig. 4(a). The current
jPI is a nonmonotonous function of the detuning �, Fig. 4(b).
This behavior stems from multiphotonic resonances of the
single cavity that occur at [18,44]

�PI
r = U

2
(n − 1), n = 1,2, . . . , (27)

when the energy of n incoming photons is equal to the energy
of n cavity photons. The number of resonances that can
be resolved practically is set by the ratio F/U , which also

FIG. 5. (a) Analytical results from [44] for a steady state of a
single driven cavity. (b) Bosonic coherence as a function of the
detuning for several values of J . Parameters γb/U = 0.01 and
F/U = 0.12,�PI = π/2 in (b).

determines the maximal possible filling of the lattice. For
very weak driving only low-lying resonances can be probed,
as shown in Fig. 4(b) for F/U = 0.12. At stronger driving,
low-order resonances are washed out—as can be seen from
the analytical solution available for J = 0, see Fig. 5(a)—and
replaced by a simpler dependence that is captured by Eq. (11).
Yet, a few high-lying resonances can be resolved clearly even
at strong F ; see Fig. 5(a). In the vicinity of the lowest-order
resonance, maximal jPI is found at some off-resonant negative
value of �, while higher-order resonances can appear either as
peaks or dips in the current intensity. In Fig. 5(b) we observe
a local maximum of the coherence at � = U/2, while at
� = U there is a minimum at J/U = 0.05 and maximum at
J/U = 0.1. When J/U and F/U are comparable, a regime
with multiple stable mean-field solutions can be found [17,18];
however, this topic is beyond the scope of this paper.

In order to infer the dependence of the current on the driving
amplitude in the regime of strong U , we expand the analytical
result [44] for J = 0 in the limit of weak F and obtain

n ∼ 1

U 6

[(
γ 2

b + 4�2
)(

(U − 2�)2 + γ 2
b

)
F 2

+ 8U (4� − U )F 4 + · · · ]. (28)

If the dissipation rates are low (γb/U 	 1), at � = U/2
the term proportional to F 4 will dominate the F 2 term
even at very weak F , as we clearly observe in Fig. 4(c) at
�/J = 10,U/J = 20. Except for this special resonant case,
we typically have an F 2 dependence in the weak F limit. In
the regime of strong F , we recover the result obtained in the
previous section j ∼ F 2/3.
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MERTZ, VASIĆ, HARTMANN, AND HOFSTETTER PHYSICAL REVIEW A 94, 013809 (2016)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0  10  20  30  40  50  60  70  80  90  100

j lj/
J

l

γ/J = 0,  γb/J = 0.02
γ/J = 1,  γb/J = 0.02
γ/J = 1,  γb/J = 0

FIG. 6. The currents jl,l+1 between nearest-neighbor sites along
the x direction for the source-drain setup (7). Parameters used:
F/J = 1, �/J = −2.

B. Source-drain setup

Typical spatial distributions of the bond currents in the
noninteracting regime of the setup defined in Eq. (7) are
presented in Fig. 6 for a lattice size of N = 100 in the
x direction and assuming translational invariance in the y

direction, where a single site is repeated periodically. The
driving is applied at the rightmost lattice sites, and in the
presence of uniform dissipation rates the intensity of the bond
currents decays roughly linearly as we approach the leftmost
sites. In order to enhance overall currents, we consider the
leftmost cavities to exhibit a stronger dissipation rate. In the
idealized case of γb = 0 we find a uniform current throughout
the lattice. Hence, in the following we will explore the
source-drain (SD) setup Eq. (7) with open boundary conditions
in the x direction and periodic boundary conditions in the y

direction. The differences of this setup with respect to the
model studied in Ref. [21] are the following: we consider
a two-dimensional lattice and we take into account spatially
varying dissipation rates of cavities; see Eq. (7). Moreover,
we investigate a regime of high lattice density and weak
interactions, which was not addressed in Ref. [21].

In the steady-state regime with constant total number of
photons, it holds true that

−2F ImφN = γ n1 + γb

N∑
j=1

nj , (29)

i.e., the flux of incoming particles on the right is equal to the
flux of the particles leaving the system (continuity equation).
In the special case of γb = 0 we find a uniform current:

jSD = γ n1 = −2F ImφN. (30)

In the noninteracting limit of the setup (7), both the total
density

∑
l〈nl〉 and the intensity of the bond current are

proportional to F 2 according to Eq. (9). In Fig. 7(a) we show
that the transport occurs if there is an eigenmode of H 0 in
Eq. (19) at the given value of � to support it. In our case the
range of resonant driving frequencies is � ∈ [−4J,0], as the
frequency of the lowest mode of a two-dimensional lattice is
−4J and we only consider transport in the x direction. To infer
effects of local dissipation γ , we invert the matrix M (10), first

FIG. 7. The current (4) for the setup (7) as a function of
(a) detuning and (b) local dissipation. Additional parameters:
(a) γ /J = 1, F/J = 1, (b) �/J = −2.1, F/J = 1. Insets in (a)
show the spatial distribution of |φl | over the site index l in the
x direction. Typical distributions range from (top) “conducting”
behavior (�/J = −2.1,γb = 0) to (center) the situation without
bulk current (�/J = 5,γb = 0.0). Bottom: Conducting behavior with
bulk dissipation (�/J = −2.1,γb/J = 0.02). The lattice consists of
N = 100 sites in the x direction.

for γb = 0. The bond current is given by

j = γ
F 2

J 2

p
(
2 + �

J

)
q
(
2 + �

J

) + γ 2

4J 2 r
(
2 + �

J

) , (31)

where p(x), q(x), and r(x) are polynomials that can be
expressed in terms of determinants of the matrix M and its
submatrices with γ set to zero. The last dependence is plotted
in Fig. 7(b) and we see that the bond current is maximal when
the dissipation rate γ is of the same order of magnitude as the
hopping rate J , i.e., γ /J ∼ 1. Beyond this value, the current
is suppressed as the quantum Zeno effect takes place [43].
If the resonant condition � = εn is fulfilled, the matrix M in
Eq. (10) is singular for vanishing γb and we find j ∼ γ −1. As
expected, the intensity of j is suppressed by the presence of
finite bulk dissipation γb. In Fig. 7(b) at finite γb we plot the
current between the leftmost site and its nearest neighbor in the
x direction. The insets of Fig. 7(a) show density distributions
in different regimes. In the conducting regime density profiles
are typically nonuniform.

Now we address effects of weak interactions first with
γb = 0. To access the steady states, we perform a real-time
propagation of Eq. (11). This method raises an important
question about if and how the steady states depend on the
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chosen initial conditions [47]. For very weak U , such that
nU/J 	 1, the noninteracting steady states from the previous
section provide a good starting point. States obtained in this
way exhibit nonuniform density distributions. As U becomes
stronger, our numerical results suggest that in the bulk of the
system, where γl = 0 and Fl = 0, the steady states are given
by φl =

√
nSD exp(i�l). The density is uniform in the bulk

nSD(�) = � + 2J (1 + cos �)

U
, (32)

and so is the bond current

jSD(�) = 2JnSD(�) sin �, (33)

where � is a constant phase difference between φl of nearest
neighbors. Unlike the phase imprinting setup, where the value
of � is fixed by the external drive, here the phase difference is
set by the boundary conditions (30). In the following, we set
the initial state for the real-time propagation of Eq. (11) to a
steady state for fixed values of �, F , and γ , then adiabatically
change one of the parameters and monitor how this change
affects the steady state.

As in the phase imprinting setup, for very weak U it holds
that j ∼ F 2. In contrast, in the steady state (32) the driving F

affects only the rightmost sites and not the bulk features. As
F gets smaller, only the occupancy of the rightmost sites nN

decreases. Eventually, densities on the leftmost and rightmost
lattice site become equal nN ≈ n1 and at this point the steady
state is no longer supported. This occurs approximately at
F ∗ = 1

2γ
√

n1 and we have j ∼ θ (F − F ∗), where θ (x) is a
step function. With further decrease of the driving intensity
F , our numerical results exhibit strong oscillations that persist
up to the longest integration time. In this regime, numerical
simulations fail to converge to a stationary regime and the
average intensity of the bond current is zero.

The steady states (32) exist if � � −4J . Above this
threshold the lattice filling exhibits a roughly linear increase
with �. The detuning also affects the phase difference �, as
evidenced by the change in the ratio j/n; see Fig. 8(a). The
current per particle saturates at large � and it turns out that
at large enough �, when the lattice filling is too high, the
steady state is no longer supported for it requires stronger
driving F .

In the source-drain setup the value of � can be changed
by tuning the intensity of the local dissipation γ [29]. Unlike
F , γ affects both the bulk density of a steady state as well
as the strength of the bond current. For example, in the case
presented in Fig. 8(b) an optimal ratio j/(Jn) ≈ 1 is found
at γ /J ≈ 2. By additionally optimizing the detuning �, this
ratio can be enhanced further; see Fig. 8(a). In a similar way as
for the phase imprinting, effects of quantum fluctuations can
be estimated and we find them to be reasonably small. Finally,
we find that the states (32) are stable with respect to the bulk
dissipation for moderate values of γb/J ∼ 0.01.

We now investigate features of the current for stronger
interactions at a fixed ratio U/J = 4 as a function of the
external system parameters γ,F (γb = 0) by solving Eq. (17)
for long times. In Fig. 9 we show the average current at large
times tJ ∼ 104, where we identify quasisteady states, which
yield approximately constant current and particle densities
j,n ≈ const. We average theses quantities over a large enough

FIG. 8. The ratio j/(Jn) as a function of (a) detuning � and
(b) the dissipation γ for U/J = 0.5, γb = 0, and N = 50 for the
source-drain setup (7). Insets of both plots show the local density n

in the bulk.

time span, which evens out most of the oscillations, and we
attribute any residual noise to lower-frequency components,
which stem from our choice of the initial state. At small
γ /J � 1 the aforementioned quasisteady states exist and their
current density increases almost linearly with γ /J . The current
density is then only weakly dependent on the driving F/J . At
γc/J ∼ 1 a sharp transition occurs and the existence of the
quasisteady states is suddenly violated. What we find instead
are oscillating mixed states with (almost) vanishing average
current density, hence a nontransparent region.

We explain this observation with the quantum Zeno effect
[48,49] by identifying the loss rate γ with the rate of a gener-
alized measurement, which—repeated at high frequencies—
stops the unitary time evolution and forces the system into
the lossless steady state, where no significant particle transfer
from the driven to the lossy site is observed. Following early
theoretical considerations [50], the quantum Zeno effect was
observed in experiments with cold ions [51] and ultracold
atoms [52–55]. In the context of ultracold atoms, the interplay
of interactions and dissipation has received a lot of attention
[42,56–62]. Applying this principle to our system we first note
that only the dissipative sites (in this case only the ones at
the left boundary x = 0) are being “measured,” which means
that only the reduced density operators on these sites become
time independent in the limit of frequent measurements, i.e.,
strong dissipation. In fact, in the limiting case the local density
operators will be equal to the local vacuum. The rest of the
system will henceforth pursue its own unitary time evolution,
where the coupling to the dissipative site is simply disabled.
This explains why we cannot find quasisteady states at large
dissipation, because the only steady states under unitary time
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FIG. 9. (a) Average current j/J in the center of a system (7) of width N = 200 sites in the x direction and translational invariance in the y

direction at times tJ ∼ 104. At γc/J ∼ 1 the current is suppressed due to the quantum Zeno effect. In (b) slices through the phase diagram at
different driving strengths are shown. Parameters used are U/J = 4,�/J = 2.

evolution are eigenstates of H and for arbitrary initial states,
composed of many different eigenstates of H, observables do
not converge.

The transition at γc/J ∼ 1 occurs at the point where the
time scales of the local measurement ∼1/γ and the competing
hopping process at rate J are balanced. At this point the
particle transfer is maximal since particle loss occurs at the
same rate as the hopping, which fills up the dissipative sites
again. If the dissipation is any stronger this filling process will
be suppressed.

From this discussion it is already apparent that the dissipa-
tion is the prevalent ingredient for a description of the transport
in this system. Microscopically, this can be understood from
a wave picture, where excess currents are reflected from a
hard wall and destructive interference of counterpropagating
waves takes place. We confirm this assumption by examining
snapshots of the current distribution at small times (see Fig. 10)
before the quasisteady state regime has been reached. By
observing the time evolution of easily identifiable current
peaks we find that for weak γ only a small proportion of
particles is reflected while the majority is transmitted to the
lossy site and lost eventually, Fig. 10(a). However, for a large

enough ratio γ /J , currents are reflected—not at the system
boundary, but at the lossy site, Fig. 10(b). Peaks traveling
towards the dissipative edge will change the direction, i.e.,
the sign of the current, just before the dissipative site. As a
consequence the dissipative site is effectively decoupled from
the system.

The oscillations in the region with γc < γ 	 ∞ can be
explained in the wave picture as well. Since perfect destructive
interference of reflected components would require suitable
geometric conditions, which we do not alter throughout our
simulations, the process of particles “bouncing” back and forth
will lead to a small current distribution, which is difficult to
average out completely.

The source-drain setup (7) is the simplest way to describe
transport through the system, neglecting the penetration depth
of the laser into the medium and de-excitations in the
bulk. Typically, lattices are formed of identical cavities, the
individual mode excitations of which have the same decay
rates, so that a constant bulk decay rate is more realistic. In
order to simulate the penetration of the laser into the medium
we consider a decaying laser amplitude F as a function of the
penetration depth. In the simplest case this would be a linear

FIG. 10. Current distribution jl,l+1/J at small times tJ ∈ [0,1400] for the system of Fig. 9 at (a) γ /J = 0.8 and (b) γ /J = 4. In (b) currents
are reflected from the dissipative site as a consequence of quantum Zeno blocking. The initial dynamics for tJ ∈ [0,600] are only shown in (a) for
clarity. Relevant are the peaks in the current distribution; arrows are meant to guide the eye. Parameters used are U/J = 4,�/J = 1,F/J = 2.
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FIG. 11. (a) Average current jx = 1/N
∑

l jl,l+1 as a function of the slope �F of the driving laser amplitude (34) and the background
amplitude F0. Here, the system has a width of N = 200 sites in the x direction and one site in the y direction, which is repeated via periodic
boundary conditions. Cuts through the diagram are shown in (b), where we observe maximal current at a specific value of the slope �F in the
upper plot for small F0. The maximum is shifted to the left with increasing F0. Varying F0 at fixed �F (lower plot) shows decreasing behavior
of jx . Parameters used are U/J = 4,�/J = 1,γ /J = 0.2.

decay with bulk dissipation present:

Fl = F0 + �F (l − 1), γl = γ, (34)

where l denotes the site index in the x direction and no explicit
y dependence is given, as before.

For the setup (34) we investigate the dependence of the
currents on an overall laser field F0 and an “on top” gradient
�F . It turns out that the larger the offset field F0 the lower
the overall current, Fig. 11(a). In Fig. 11(b) we observe
a peak in the photon transport at F0 = 0 and a strongly
suppressed transport for any other value of F0. The effect can
be understood by realizing that the off-set field corresponds to
the phase imprinting with phase zero, i.e., we are pumping
a mode that does not support any current. Effects of the
gradient �F are given in Fig. 11(b). At low �F , the system
compensates for the imbalance between neighboring sites
via coherent transport of photons along the gradient and, as
expected, the gradient enhances the current. However, at a
certain value of the �F the imbalance is so strong that the
incoherent dynamics becomes the dominant process.

V. CONCLUSIONS

Motivated by ongoing research interest in arrays of coupled
photonic cavities, we have investigated different possibilities
to optimize coherent transport in this setup. We have started
from the noninteracting limit, where simple relations between
the bond current and externally tunable parameters can be
established. To address the role of interactions we have
employed the Gutzwiller mean-field theory and a simpler
Gross-Pitaevskii–like approach when possible.

In the case where bond currents are introduced by phase
engineering of the external lasers, we have found that weak
interactions shift the driving frequency that leads to a peak
in the current toward higher values. On the other hand, in
the strongly interacting regime of this setup, multiphotonic
resonances of a single driven cavity lead to multiple peaks of

the current as a function of the driving frequency. The lattice
filling is set by the strength of the applied driving field F

and the dissipation rate γb, but interactions can modify the F 2

proportionality into either a weaker F 2/3 gain or an effectively
stronger gain in the vicinity of multiphotonic resonances.

In the source-drain setup, local dissipation γ proves to be
the tuning parameter that allows us to maximize the bond
current. The optimal value of γ is set by the intrinsic hopping
rate of the underlying Bose-Hubbard model. Further increase
of γ leads to the quantum Zeno dynamics that suppresses
uniform currents. The effects of the applied driving F turn
out to be especially simple in the interacting case: the steady
state is either stable at the specific value of F or its stationarity
breaks down as stronger driving strength would be required to
balance the dissipation.

The main approximation of our analysis is the employed
mean-field approach together with the simplified form of
the bond current, that limits to the regime of the strong
bosonic coherences. The contribution of nontrivial correlations
becomes important in the limit of very strong interactions and
weak driving and this case should be treated in the future
using beyond mean-field approximations [14,21,46,63,64].
However, we expect that the main effects we have identified
at finite coherences will not be modified by the inclusion
of higher-order terms. Another interesting research direction
would be to connect our results with well-established results
describing heat transport on the microscopic level [65].
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[19] I. Pižorn, Phys. Rev. A 88, 043635 (2013).
[20] T. V. Laptyeva, A. A. Tikhomirov, O. I. Kanakov, and M. V.

Ivanchenko, Sci. Rep. 5, 13263 (2015).
[21] A. Biella, L. Mazza, I. Carusotto, D. Rossini, and R. Fazio,

Phys. Rev. A 91, 053815 (2015).
[22] U. Naether, F. Quijandrı́a, J. J. Garcı́a-Ripoll, and D. Zueco,

Phys. Rev. A 91, 033823 (2015).
[23] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
[24] J.-P. Brantut, J. Meineke, D. Stadler, S. Krinner, and T. Esslinger,

Science 337, 1069 (2012).
[25] S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, and T.

Esslinger, Nature (London) 517, 64 (2015).
[26] R. Labouvie, B. Santra, S. Heun, S. Wimberger, and H. Ott,

Phys. Rev. Lett. 115, 050601 (2015).
[27] R. Labouvie, B. Santra, S. Heun, and H. Ott, Phys. Rev. Lett.

116, 235302 (2016).

[28] V. A. Brazhnyi, V. V. Konotop, V. M. Pérez-Garcı́a, and H. Ott,
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A theoretical model of a Bose-Einstein condensate with angular spin-orbit coupling has recently been proposed
and it has been established that a half-skyrmion represents the ground state in a certain regime of spin-orbit
coupling and interaction. Here we investigate low-lying excitations of this phase by using the Bogoliubov
method and numerical simulations of the time-dependent Gross-Pitaevskii equation. We find that a sudden shift
of the trap bottom results in a complex two-dimensional motion of the system’s center of mass that is markedly
different from the response of a competing phase, and comprises two dominant frequencies. Moreover, the
breathing mode frequency of the half-skyrmion is set by both the spin-orbit coupling and the interaction strength,
while in the competing state it takes a universal value. Effects of interactions are especially pronounced at the
transition between the two phases.

DOI: 10.1103/PhysRevA.94.033627

I. INTRODUCTION

Experimental realization of an effective spin-orbit coupling
in ultracold atom systems [1–6] has allowed for new quantum
phases to be explored. Bosonic systems with spin-orbit
coupling are interesting as they have no direct analogs
in condensed-matter systems and provide a new research
playground. Different types of coupling based on atom-light
interactions have been considered, e.g., Raman induced (as
realized in the current experiments) and Rashba type [7]. Only
recently bosonic systems with two-dimensional spin-orbit
coupling have become experimentally available [8]. Ground-
state phase diagrams that comprise a plane-wave, stripe, and
nonmagnetic condensed phase have been predicted and probed
[9–13]. Another type of condensate, a half-quantum vortex,
is expected for harmonically trapped bosons with Rashba
coupling [14–16]. A substantial progress in the field has been
summarized in Refs. [7,17]. As a further extension of these
ideas, in the very recent papers [18–23], a theoretical model
of bosons with the coupling of spin and angular momentum
has been introduced. From the experimental side, the proposal
involves two copropagating Laguerre-Gauss laser beams that
carry angular momentum and couple two internal states of
bosonic atoms.

Since the first experimental realization of Bose-Einstein
condensation, collective modes have been used to probe
the macroscopic quantum state and to relate measurements
to theoretical predictions [24]. Collective modes can reveal
important information about system properties, such as role of
interactions or quantum fluctuations. Experimentally, breath-
ing mode and dipole mode excitations introduced through a
quench of the harmonic trap are routinely accessible with great
precision, thus providing an indispensable tool for probing
the properties of a Bose-Einstein condensate. Along these
lines, collective modes of bosons with the Raman-induced
spin-orbit coupling have already been measured [3,4,20,25].
In the literature, several theoretical calculations of collective
modes for different types of spin-orbit coupling are available
[16,26–36]. In contrast to usual, harmonically trapped systems,
spin-orbit coupled systems exhibit the absence of the Galilean
invariance and, as a consequence, the Kohn theorem no longer

applies [7]. Another hallmark of these systems is that the
motion in real space is coupled with spin dynamics.

In this paper we investigate collective modes of bosons with
angular spin-orbit coupling that have not been addressed so far,
and show that the two competing ground states can be directly
distinguished according to their response to standard quenches
of the underlying harmonic trap. The paper is organized as
follows. In Sec. II we introduce the basic model and discuss
its excitations in the noninteracting limit. In Sec. III we briefly
describe methods that we use and summarize the ground-state
phase diagram in the limit of weak interactions [18]. Finally,
in Sec. IV we address breathing-mode and dipole mode
excitations of the two relevant phases and in Sec. V we present
our concluding remarks.

II. NONINTERACTING MODEL

In recent Refs. [18–21] the following Hamiltonian for a
two-component bosonic system has been introduced:

H0 =
(

p2

2
+ r2

2

)
I2 + �2r2

2

(
1 e−2iφ

e2iφ 1

)
, (1)

where I2 is a 2 × 2 identity matrix and the effective spin 1/2
comes from the two bosonic components involved. The system
is assumed to be effectively two dimensional (tightly trapped
in the longitudinal direction) and the value of � is proportional
to the intensity of the applied Laguerre-Gauss laser beam. The
last, φ-dependent term, where φ is the polar angle, provides
the coupling between the spin and angular momentum, as can
be explicated by using a proper unitary transformation [19].
We have assumed that the two lasers carry a unit of angular
momentum in the opposite rotational directions. In Eq. (1) and
in the following we use harmonic oscillator scales of the kinetic
energy and the trap p2/2m + mω2r2/2 as our units: the energy
is expressed in terms of �ω, the unit length is the harmonic
oscillator length scale

√
�/mω, where m is the atomic mass,

the unit momentum is
√

�mω, and the time scale is given
by ω−1. The frequency � and all excitation frequencies are
expressed in units of the harmonic oscillator frequency ω.
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FIG. 1. Spectrum Em
n of Hamiltonian (1) for (a) � = 3.2 and

(b) � = 3.5.

From the commutation relation [Jz,H0] = 0, where Jz =
Lz ⊗ I + I ⊗ σz is the z component of the total angular
momentum, it follows that the noninteracting eigenstates can
be written in the form

φm(r,φ) = eimφ

√
2π

(
fm(r)e−iφ

gm(r)eiφ

)
, (2)

where m as an eigenvalue of Jz takes integer values and r

is the radial coordinate. By numerical calculation [18] it has
been shown that the ground state moves from the m = 1 into
the m = 0 subspace at �c ≈ 3.35. The m = 1 ground state
exhibits a nontrivial spin texture that can be characterized by a
topological number (a winding number of the spin vector). This
state is called half-skyrmion and is degenerate, i.e., it has the
same energy as the ground state in the m = −1 subspace. The
m = 0 states comprises two vortices of opposite circulation.

We investigate excitations above the half-skyrmion and
m = 0 ground state, first at a single-particle level. The
spectrum of the Hamiltonian (1) is shown in Fig. 1(a) for
� = 3.2 and in Fig. 1(b) for � = 3.5. In the first case, for
� = 3.2 < �c the ground state m = 1 is doubly degenerate
and the lowest m = 0 state is close in energy, Em=0

0 − Em=1
0 ≈

2.5 × 10−2. For � = 3.5 > �c the ground state corresponds
to m = 0. In the following we will probe some features of
these spectra by applying two experimentally relevant types of
perturbations to a selected ground state.

To induce a breathing mode, we perturb the trap strength

Hpert = H0 + η
r2

2
I2. (3)

From the time-dependent Schrödinger equation,

i
∂

∂t

(
ψ1(t)

ψ2(t)

)
= Hpert

(
ψ1(t)

ψ2(t)

)
, (4)

we calculate the time evolution of the width of the probability
distribution,

〈r2(t)〉 =
∫ 2π

0
dφ

∫ ∞

0
dr r3[|ψ1(t)|2 + |ψ2(t)|2], (5)

as well as the spin dynamics captured by

〈Sz(t)〉 = 1

2

∫ 2π

0
dφ

∫ ∞

0
dr r[|ψ1(t)|2 − |ψ2(t)|2]. (6)

When changing the trap strength η in the Hamiltonian (3),
we couple only states with the same value of m. In the limit
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FIG. 2. Breathing mode oscillations of half-skyrmion state,
evidenced by (a) 〈r2(t)〉 − 〈r2(0)〉 and (b) 〈Sz(t)〉 − 〈Sz(0)〉. Motion
is induced by changing harmonic trap potential as r2

2 → 1.01 r2

2 .

of vanishing �, the breathing mode frequency is ωB = 2. By
increasing �, while staying in a half-skyrmion state, we find
that the breathing mode frequency decreases down to ωB ≈ 1.5
at the transition point, Fig. 2(a). Oscillations in the system size
are accompanied by an oscillatory spin dynamics, as shown in
Fig. 2(b).

In the m = 0 subspace, by subtracting and summing the
two coupled eigenequations, we find that the eigenproblem
reduces to two independent harmonic oscillators,(
L +

(
1 + 2�2

)
r2

2

)
(f0(r) + g0(r)) = Em=0(f0(r) + g0(r)),

(
L + r2

2

)
(f0(r) − g0(r)) = Em=0(f0(r) − g0(r)),

with frequencies 1 and
√

1 + 2�2, and the azimuthal quantum
number 1 in both cases as L = − 1

2r
∂
∂r

(r ∂
∂r

) + 1
2r2 . Hence

the m = 0 energy levels are linear combinations of Em=0
n =

2n and Em=0
n = 2

√
1 + 2�2 n,n = 1,2, . . .. In the region of

interest, where � is strong enough, the ground-state energy is
exactly Em=0

0 = 2 with a wave function

φ0 = 1√
2π

(
f0(r)e−iφ

−f0(r)eiφ

)
, (7)

which is independent of �. From this analysis it follows that the
breathing mode frequency is ωB = 2, which is a well-known
result for harmonically trapped bosons in two dimensions at the
classical level [37]. Moreover, it is easy to show that the time
evolution according to the perturbed Hamiltonian (3) is given

by φ0(r,t) = (
f0(r,t)e−iφ

−f0(r,t)eiφ

)
, leading to 〈Sz(t)〉 = 0. Therefore, in

this case oscillations in the system size are not followed by
oscillations in 〈Sz(t)〉.

To excite a dipole mode, we consider a shift of the trap
bottom in x direction,

Hpert = H0 − δx
r

2
(eiφ + e−iφ)I2, (8)

and monitor the motion of the center of mass of the system in
that direction,

〈x(t)〉 =
∫ 2π

0
dφ

(eiφ + e−iφ)

2

∫ ∞

0
dr r2[|ψ1(t)|2 + |ψ2(t)|2],

(9)
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FIG. 3. Dipole mode oscillations of half-skyrmion state for δx =
0.02 at (a),(b) � = 2 and (c),(d) � = 3.2.

as well as 〈y(t)〉. In Fig. 3(a) for � = 2 we see that oscillations
in x and y directions are coupled and that there are several
frequencies involved. In Fig. 3(c) we observe that for � = 3.2
even a weak shift of δx = 0.02 leads to very strong, slow
oscillations in x and y directions. On top of this, we also find
fast oscillations, as shown in the inset of the same figure. In
Figs. 3(b) and 3(d) we show the resulting complex motion of
the center of mass of the system, given by y(t) vs x(t). These
are all very distinct features not present in the conventional
harmonically trapped system, where the same perturbation
excites the Kohn mode—an oscillation with the trap frequency
along x axis. In the following we discuss the origin of the
complex dynamics.

First we note that the perturbation introduced in the
Hamiltonian (8) couples the initial m = 1 ground state
with excited states corresponding to other eigenvalues of
Jz, e.g.,

∫ ∞
0 dr r

∫ 2π

0 dφ φ∗
1 (r)Hpertφ0(r) 
= 0. In general, this

effect may lead to the time-dependent expectation value
〈ψ(t)|Jz|ψ(t)〉 = 〈Jz(t)〉. From the Heisenberg equations of
motion i

dJz(t)
dt

= [Jz,Hpert] and from the commutation relation
[Jz,x ⊗ I2] = iy ⊗ I2, we directly obtain that oscillating
〈Jz(t)〉 implies a motion in y direction

〈y(t) ⊗ I2〉 = − 1

δx

d〈Jz(t)〉
dt

. (10)

Now we discuss the emerging oscillation frequencies. In
first order of perturbation theory, we would expect the dom-
inant coupling of m = 1 with m = 0 and m = 2 eigenstates,
providing the two frequencies:

ωL
D = Em=0

0 − Em=1
0 , ωH

D = Em=2
0 − Em=1

0 . (11)

However, due to the degeneracy of the states m = −1 and m =
1, the m = −1 state has to be taken into account as well. The
lowest frequencies can be described by using the perturbation

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

FIG. 4. Dipole mode oscillations for � = 3.5, starting from m =
0 ground state with different trap displacements δx. Black solid lines
are results of the analytical calculation.

theory for degenerate states presented in Appendix A. Within
this approach we find that the excitation frequencies are

ω1 =
√

ωL
D

2 + 2(δxI10)2, (12)

ω2,3 =
∣∣∣∣ωL

D

2
± 1

2

√
ωL

D

2 + 2(δxI10)2

∣∣∣∣, (13)

together with ωH
D . Obviously, the excited frequencies are

amplitude–dependent, and when ωL
D is low, i.e., close to the

transition point, the contribution of the term proportional to
the trap displacement δx is significant. This is another
difference with respect to a standard harmonically trapped
system. It arises due to the fact that by shifting the trap bottom,
while keeping the term proportional to �2 unchanged in the
model (1), we lower the symmetry of the model and modify
its energy levels. In the regime ωL

D → 0 it turns out that ω1

corresponds to oscillations in x direction, while both ω2 and
ω3 represent the motion in y direction. Results of the analytical
calculation, Eqs. (A8) and (A7) from Appendix A, are given
by the black solid lines in Figs. 3(a) and 3(c) and capture the
low-lying frequencies or long-time dynamics quite well.

The response of a vortex–antivortex pair to the sudden shift
of the trap is shown in Fig. 4. In this case, the perturbation
couples the initial m = 0 state symmetrically to excited states
±m. Thus 〈Jz(t)〉 = 0 and the center of mass only oscillates
in x direction. The two involved frequencies are

ω1 =
√

ωL
D

2 + 2(δxI10)2, ωH
D = Em=1

1 − Em=0
0 . (14)

For � = 3.5, we have ωL
D ≈ 2.2 × 10−2 and the increase of

the excited frequency with the shift δx is clearly observable in
the long-time dynamics; see Fig. 4.

Results of this section are summarized in Fig. 5, where we
see that at the transition point, � ≈ 3.35, ωL

D becomes gapless;
ωB of the m = 1 state decreases from ωB = 2 down to ωB ≈
1.5 and turns into ωH

D of m = 0 state. On the other hand, ωB =
2 on top of the m = 0 ground state is unaffected by �. We also
keep in mind that, due to the degeneracy of the half-skyrmion,
below the transition point we have a gapless quadrupole mode
ωQ = Em=−1

0 − Em=1
0 = 0 that indirectly affects dipole mode

oscillations. For completeness, we note that the frequency ωH
D

of the half-skyrmion turns into a quadrupole mode of m = 0
state, but this excitation does not play an important role in the
remaining discussion.

033627-3



IVANA VASIĆ AND ANTUN BALAŽ PHYSICAL REVIEW A 94, 033627 (2016)

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4
Ω

-1 0 1 2 -1 0 1

(a)

(c)

(b)

0

0.05

3.2 3.35 3.5

FIG. 5. Breathing-mode and dipole mode excitations at g = 0 of
(a) m = 1 and (b) m = 0 ground state. (c) Energy of excited states as
a function of �.

III. WEAK INTERACTIONS

Now we consider weak spin–symmetric interactions, which
are approximated by a contact potential [7,18,19]. The total
Hamiltonian takes the form

H=
∫

dr

[
�†(r)H0�(r)+g

2

2∑
a,b=1

�†
a(r)�†

b(r)�b(r)�a(r)

]
,

(15)

where �(r) is a two-component spinor. Without interactions,
the ground state of many bosons is degenerate for � < �c

as there are different possibilities to accommodate atoms into
the two lowest degenerate noninteracting states. In general, the
degeneracy of noninteracting eigenstates makes the occurrence
of Bose-Einstein condensation more subtle [9,38]. In the
case that we consider, it turns out that weak interactions
promote condensation [7], as it is energetically favorable for
the particles to condense into the same single-particle state
in either the m = 1 or the m = −1 subspace [18,19]. As
the many-body ground state is twofold degenerate, in the
following we will consider a condensate formed in the m = 1
subspace. For � > �c and weak g there is a condensation into
the m = 0 state.

The total energy per particle of the condensed state with the
order parameter [ψ1(r) ψ2(r)]T is given by

E0 =
∫

dr
[

(ψ∗
1 ψ∗

2 )H0(ψ1ψ2)T

+ 1

2
g|ψ1|4 + 1

2
g|ψ2|4 + g|ψ1|2|ψ2|2

]
. (16)

In order to find the ground state, we perform minimization of
this functional with respect to ψ1(r) and ψ2(r). As usual, we
introduce a chemical potential μ to enforce a normalization
condition

∫
dr[|ψ1(r)|2 + |ψ2(r)|2] = 1. In the ground state,

0

0.5

1

1.5

2

2.5

3.2 3.22 3.24 3.26 3.28 3.3 3.32 3.34 3.36 3.38 3.4

half-skyrmion

vortex-antivortex
 pair

FIG. 6. Transition line between half-skyrmion and m = 0
condensate, which was originally calculated in Ref. [18].

we have

μψ0
1 =

[
p2

2
+ r2

2
(1 + �2) + g

(|ψ0
1 |2 + |ψ0

2 |2)]ψ0
1

+ r2

2
�2e−2iφψ0

2 , (17)

μψ0
2 =

[
p2

2
+ r2

2
(1 + �2) + g

(∣∣ψ0
1

∣∣2 + ∣∣ψ0
2 |2)]ψ0

2

+ r2

2
�2e2iφψ0

1 , (18)

where the chemical potential μ is given by μ =∫
dr[(ψ0∗

1 ψ0∗
2 )H0(ψ0

1 ψ0
2 )

T + g(|ψ0
1 |2 + |ψ0

2 |2)
2
]. By com-

paring the ground-state energies of the condensed state in the
two subspaces m = 0 and m = 1, it has been established that
even at � < �c there is a transition into an m = 0 condensate
with increasing g, as shown in Fig. 6, which was originally
calculated in Ref. [18].

In order to learn about low-energy excitations of the
condensed phase, we use the Bogoliubov approach. It can
be performed on the operator level, or starting from the time-
dependent Gross-Pitaevskii equation for ψ1(r,t) and ψ2(r,t)
[24]:

i
∂ψ1

∂t
=

[
p2

2
+ r2

2

(
1 + �2

)]
ψ1 + 1

2
�2r2e−2iφψ2

+ g|ψ1|2ψ1 + g|ψ2|2ψ1, (19)

i
∂ψ2

∂t
=

[
p2

2
+ r2

2

(
1 + �2

)]
ψ2 + 1

2
�2r2e2iφψ1

+ g|ψ2|2ψ2 + g|ψ1|2ψ2. (20)

In the following, we use the second approach.
Our first assumption is that the fluctuations δψ1(r,t) and

δψ2(r,t) around the ground state,

ψ1(r,t) ≈ [
ψ0

1 (r) + δψ1(r,t)
]

exp(−iμt), (21)

ψ2(r,t) ≈ [
ψ0

2 (r) + δψ2(r,t)
]

exp(−iμt), (22)

are weak. At the zeroth order in the fluctuations, from Eqs. (19)
and (20) we recover Eqs. (17) and (18). By keeping terms of the
first order, we derive a set of linear equations that describe the
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low-lying excitations of our system. To decouple the equations
further, we proceed in a standard way and introduce

δψ1(r,t) = u1(r) exp(−iωt) + v∗
1 (r) exp(iωt), (23)

δψ2(r,t) = u2(r) exp(−iωt) + v∗
2 (r) exp(iωt), (24)

to obtain the generalized eigenproblem

ω u1 =
(

p2

2
+ r2

2
(1 + �2) + 2g

∣∣ψ0
1

∣∣2 + g
∣∣ψ0

2

∣∣2 − μ

)
u1

+ r2

2
�2e−2iφu2 + g

(
ψ0

1

)2
v1

+ gψ0
1 ψ0∗

2 u2 + gψ0
1 ψ0

2 v2, (25)

− ω v1 =
(

p2

2
+ r2

2
(1 + �2) + 2g

∣∣ψ0
1

∣∣2 + g
∣∣ψ0

2

∣∣2 − μ

)
v1

+ r2

2
�2e2iφv2 + g

(
ψ0∗

1

)2
u1

+ gψ0∗
1 ψ0

2 v2 + gψ0∗
1 ψ0∗

2 u2, (26)

ω u2 =
(

p2

2
+ r2

2
(1 + �2) + g

∣∣ψ0
1

∣∣2 + 2g
∣∣ψ0

2

∣∣2 − μ

)
u2

+ r2

2
�2e2iφu1 + g

(
ψ0

2

)2
v2

+ gψ0
1 ψ0

2 v1 + gψ0∗
1 ψ0

2 u1, (27)

− ω v2 =
(

p2

2
+ r2

2
(1 + �2) + g

∣∣ψ0
1

∣∣2 + 2g
∣∣ψ0

2

∣∣2 − μ

)
v2

+ r2

2
�2e−2iφv1 + gψ0∗

1 ψ0∗
2 u1

+ gψ0∗
2 ψ0

1 v1 + g
(
ψ0∗

2

)2
u2. (28)

In general, the resulting eigenvalues form pairs −ωn,ωn and
only positive frequencies correspond to physical excitations of
the system.

To complement the Bogoliubov method, we numerically
solve Eqs. (19) and (20) for different types of perturbations (3)
and (8). For this purpose, the existing numerical codes for the
two-dimensional time-dependent Gross-Pitaevskii equations
[39–44] have been modified to include the spin-angular
momentum coupling from Eq. (1).

IV. RESULTS

In this section we present and discuss excitation spectra
and dynamical responses to perturbations (3) and (8) of the
half-skyrmion and the m = 0 condensate.

A. Half-skyrmion state

We first consider the case of � < �c and weak interaction
g, where all bosons condense into m = 1 state. By inspecting
Eqs. (25)–(28) for the φ-dependent terms, where we take into
account a nontrivial φ dependence of the order parameters
ψ1(r) and ψ2(r), we can infer that the solution can be cast in
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FIG. 7. Excitation spectra of half-skyrmion state for (a),(c) � = 2
and (b),(d) � = 3.2. Results obtained by the Bogoliubov approach.

the form⎛
⎜⎜⎜⎝

u1(r)

v1(r)

u2(r)

v2(r)

⎞
⎟⎟⎟⎠ =

∑
m

⎛
⎜⎜⎜⎝

um−1
1 (r)r |m−1| exp[i(m − 1)φ]

vm−1
1 (r)r |m−1| exp[i(m − 1)φ]

um+1
2 (r)r |m+1| exp[i(m + 1)φ]

vm−3
2 (r)r |m−3| exp[i(m − 3)φ]

⎞
⎟⎟⎟⎠. (29)

The explicit form of the matrices, that are diagonalized,
are given in Appendix B. The obtained spectrum shares
many features with the noninteracting spectrum presented in
Fig. 1(b), but it also exhibits important differences.

Excitation frequencies as a function of the interaction
strength g are plotted in Fig. 7(a) for � = 2 and in Fig. 7(b)
for � = 3.2. The lowest excitation that does not change the
relevant quantum number of the ground state is the breathing
mode and its frequency increases for several percent with g.
This is also confirmed by solving Eqs. (19) and (20) in order
to obtain 〈r2(t)〉, as shown in Fig. 8(a), and then inspecting
corresponding Fourier transforms, Fig. 8(b).

The most obvious difference with respect to the noninter-
acting spectrum is that the quadrupole mode is now gapped:
at finite interaction g it costs some energy to move a particle
from the half-skyrmion m = 1 condensate into the m = −1
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FIG. 8. Breathing mode oscillations in half-skyrmion phase: (a)
〈r2(t)〉 vs t and (b) corresponding Fourier transform. From the inset
we observe increase of the breathing mode frequency with g. Motion
is induced by changing harmonic trap potential as r2

2 → 1.01 r2

2 , � =
3.2.
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IVANA VASIĆ AND ANTUN BALAŽ PHYSICAL REVIEW A 94, 033627 (2016)

0

0.02

0.04

0 20 40 60 80

-0.02

0

0.02

0 20 40 60 80
t

-0.05

0

0.05

0 0.05 0.1

y

x

10-2
10-1
100
101
102
103
104

0 0.5 1 1.5 2

x1(t) x2(t)

y1(t) y2(t)

(a)

(b)

(c)

(d)

FT
 a

m
pl

itu
de

FIG. 9. Dipole mode oscillations of half-skyrmion state in inter-
acting case for � = 2. Motion is induced by shifting harmonic trap
bottom for δx = 0.02. In (a) and (b) g = 1. In (c) motion of the center
of mass, y(t) vs x(t), is plotted. In (d) vertical lines give results for ωL

D

and ωH
D obtained using the Bogoliubov method, and dots represent

Fourier transform of x(t).

state; see Fig. 7(c) and Fig. 7(d). This is directly reflected onto
the dipole mode oscillations that take place in the xy-plane for
the half-skyrmion state. For � = 2 both ωL

D and ωH
D are only

weakly affected by g; however, the fact that the quadrupole
mode is gapped means that now a simpler perturbation theory
applies. In the first order of this theory in δx the center-of-mass
motion is given by

〈x(t)〉 ≈ δx

2

(
I 2

10

ωL
D

cos ωL
Dt + I 2

12

ωH
D

cos ωH
D t

)
+ const, (30)

〈y(t)〉 ≈ δx

2

(
I 2

10

ωL
D

sin ωL
Dt + I 2

12

ωH
D

sin ωH
D t

)
, (31)

where the values of I10 and I12 can be roughly ap-
proximated by using the noninteracting eigenstates from
Eq. (2) as I10 = ∫ ∞

0 dr r2f ∗
0 (r)[f1(r) − g1(r)] and I12 =∫ ∞

0 dr r2[f ∗
1 (r)f2(r) + g∗

1 (r)g2(r)]. In Fig. 9(c) we see how
the pattern in the xy plane becomes regular and symmetric
as g is changed from g = 0.2 to g = 2. The two bosonic
components oscillate in phase in both directions; see Figs. 9(a)
and 9(b). Results of the Bogoliubov approach, which are
captured by Eqs. (25)–(28), match quite well to the numerical
data obtained from direct numerical simulations of Eqs. (19)
and (20); see Fig. 9(d).

Effects of interactions are more prominent close to �c. In
this case the frequency ωL

D exhibits a strong increase with g,
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FIG. 10. Dipole mode oscillations of half-skyrmion state in
interacting case for � = 3.2. Motion is induced by shifting the
harmonic trap bottom for δx = 0.01. In (a) and (b) g = 1. In (c)
motion of the center of mass, y(t) vs x(t), is plotted. The trajectory
radius gets smaller with increasing g. In (d) vertical lines give results
for ωL

D (in the inset) and ωH
D (in the main panel) obtained using the

Bogoliubov method, and dots represent Fourier transform of x(t).

as is depicted in Fig. 7(d). In Figs. 10(a) and 10(b) we see that
the oscillations are still as strong as for g = 0, but the pattern
is regular; compare Fig. 10(c) with Fig. 3(d). As the frequency
ωL

D gets larger, the induced oscillation amplitude gets weaker
and the induced frequency is less affected by the shift of the
trap δx. In this case, the frequency ωH

D is found to be almost
independent of g; see Figs. 7(b) and 10(d).

B. Vortex-antivortex pair

In a similar way we proceed in the case of � > �c, where
the bosons condense in the m = 0 state. The solution of
Eqs. (25)–(28) can now be cast in the form⎛

⎜⎜⎜⎝
u1(r)

v1(r)

u2(r)

v2(r)

⎞
⎟⎟⎟⎠ =

∑
m

⎛
⎜⎜⎜⎝

um−1
1 (r)r |m−1| exp[i(m − 1)φ]

vm+1
1 (r)r |m+1| exp[i(m + 1)φ]

um+1
2 (r)r |m+1| exp[i(m + 1)φ]

vm−1
2 (r)r |m−1| exp[i(m − 1)φ]

⎞
⎟⎟⎟⎠. (32)

Excitation frequencies as a function of the interaction strength
g are plotted in Fig. 11. As anticipated in Sec. II, the breathing
mode frequency of the m = 0 state is independent of g and at
the mean-field level we have ωB = 2 [37].

In the dipole mode oscillations, the two bosonic compo-
nents exhibit an out-of-phase oscillation in y direction, see
Fig. 12(b), and consequently the center of mass only oscillates
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FIG. 12. Dipole mode oscillations of the m = 0 solution in
interacting case for � = 3.5. Motion is induced by shifting harmonic
trap bottom for δx = 0.01. In (a) and (b) g = 0.2. In (c) trajectory
of the center of mass of a single bosonic component, y1(t) vs x1(t),
is plotted. In (d) vertical lines give results for ωL

D (in the inset) and
ωH

D (in the main panel) obtained using Bogoliubov method and dots
represent Fourier transform of x(t).
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FIG. 13. Comparison of Bogoliubov analysis (black dots) and
simplified diagonalization: (a) � = 3.2 and (b) � = 3.5. Inset gives
energy difference of m = 0 state, which turns out to exhibit a
condensate fraction significantly smaller than 1, and m = 15 state,
which corresponds to a half-skyrmion condensate.

in x direction with the frequency ωL
D that exhibits an increase

with g; see Fig. 11(b). The trajectory of the center of mass of
each of the components is given by an ellipse, which is strongly
elongated in x direction; see Fig. 12. A much weaker effect
of g is observed in ωH

D , that is quite close to the numerical
resolution of the applied methods.

C. Discussion

The ground-state mean-field calculations indicate a first-
order phase transition from a half-skyrmion state into m = 0
condensate with increasing g at � < �c and g = gc [18] as
shown in Fig. 6. Based on the Bogoliubov analysis we find
that this m = 0 state is dynamically unstable for � < �c

at g > gc as it exhibits an imaginary excitation frequency.
The results of the numerical simulations of Eqs. (19) and
(20) also show a nonlinear behavior in this regime, such
as mode coupling and the generation of higher harmonics.
One way to resolve this issue is to use a method that is
an alternative to the mean-field calculation, such as exact
diagonalization. Although this method suffers from conceptual
limitations in higher dimensions, if the two-body interactions
are described by a contact potential (Dirac delta function)
[45,46], we have implemented it with a finite-energy cutoff, as
described in Ref. [47]. In particular, we perform a simplified
diagonalization study for � close to �c by taking into account
only the three nearly degenerate noninteracting eigenstates.
This analysis is sufficient to discuss the change in the ground
state and the two lowest excitations ωQ and ωL

D .
A comparison of the results obtained by the simplified diag-

onalization and by the Bogoliubov method is given in Fig. 13
for Np = 15 particles used in the diagonalization, where we
see that the two methods show good agreement in ωL

D in both
phases. However, the frequency ωQ is overestimated in the
Bogoliubov analysis. This can be understood as follows: when
performing a diagonalization, the lowest-lying state in the
sector m = Np − 2 is a linear combination of states |−11Np−1〉
and |1Np−200〉. However, the frequency ωQ, that we obtained
using the Bogoliubov method, corresponds much better to
the energy expectation value of |−11Np−1〉, from which we
subtract E0, as it neglects the two-particle excitations. An
effect of similar origin is found for the m = 0 condensate at
� > �c, where we find a series of two-particle excitations
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|0Np 〉 → |0Np−21 − 1〉 → |0Np−411 − 1 − 1〉 with the same
quantum number as the ground state that we do not capture
using the Bogoliubov method; see Fig. 13(b). In the inset
of Fig. 13(a) we plot the energy difference between the two
competing states for � = 3.2. We find that the transition from
the half-skyrmion condensate to m = 0 state occurs at a lower
value of g compared to the mean-field prediction, and that the
m = 0 state obtained in this way has a condensate fraction
substantially lower then 1. For this reason in the region of
the phase diagram � < �c,g > gc beyond-mean-field effects
become important.

V. CONCLUSIONS

Motivated by ongoing experimental efforts to realize and
probe new quantum states, we have investigated the breathing
mode and the dipole mode oscillations of the half-skyrmion
bosonic condensed state. These excitations are routinely used
in the experiments and we find that both of them distinguish
the half-skyrmion phase from a competing m = 0 state. In
particular, the breathing mode frequency of the half-skyrmion
state depends on the spin-orbit coupling and interaction
strength, while it takes a universal value in the m = 0 state
at the classical level. As a response to the sudden shift of
the harmonic trap, a center of mass of a half-skyrmion state
exhibits a peculiar motion in the xy plane that involves
the two dominant excitation frequencies ωL

D and ωH
D . In

the noninteracting limit, the degeneracy of the m = 1 half-
skyrmion with m = −1 state leads to complex motion patterns.
Weak repulsive interactions make the quadrupole mode gapped
and lead to simpler and symmetric patterns. These effects
of interactions are stronger closer to the transition point
between the two phases, where they prominently enhance the
frequency ωL

D .
In future work, we plan to address bosonic excitations for

spin-asymmetric interactions as well as to treat interactions
for a spin-orbit-coupled system in more detail [48]. Another
interesting direction would be to investigate the role of disorder
[35,49–53], or the phenomenon of Faraday waves [54–56] in
this type of system.
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APPENDIX A: PERTURBATION THEORY FOR NEARLY
DEGENERATE STATES

To describe the lowest excitation frequencies, we consider
the lowest-lying states of the Hamiltonian (1), given in Eq. (2),
for m = −1,0,1. The states m = ±1 are degenerate and the
state m = 0 is close in energy; see Fig. 1. In the lowest order
of the perturbation theory, the relevant part of the perturbed

Hamiltonian (8) can be approximated by

H red
pert =

⎛
⎜⎝

a c/2 0

c/2 b −c/2

0 −c/2 a

⎞
⎟⎠, (A1)

where a = Em=−1
0 = Em=1

0 , b = Em=0
0 , c = δxI10 =

δx
∫ ∞

0 dr r2f ∗
0 (r)[f1(r) − g1(r)], and integrals over the angle

φ have already been performed. Functions f0(r), f1(r), and
g1(r) are defined in Eq. (2). For completeness, other relevant
operators in this subspace are approximated by

J red
z =

⎛
⎜⎝

−1 0 0

0 0 0

0 0 1

⎞
⎟⎠,

xred ⊗ I2 =

⎛
⎜⎝

0 −d/2 0

−d/2 0 d/2

0 d/2 0

⎞
⎟⎠, (A2)

yred ⊗ I2 =

⎛
⎜⎝

0 id/2 0

−id/2 0 −id/2

0 id/2 0

⎞
⎟⎠,

where d = I10. The eigensystem of H red
pert is given by

E1 = a, E2 = a + b − z

2
, E3 = a + b + z

2
, (A3)

v1 = 1√
2

⎛
⎜⎝

1

0

1

⎞
⎟⎠, v2 = 1√

n2

⎛
⎜⎝

−1
z−ωL

D

c

1

⎞
⎟⎠,

(A4)

v3 = 1√
n3

⎛
⎜⎝

−1

− z+ωL
D

c

1

⎞
⎟⎠,

where ωL
D = b − a, z =

√
ωL

D

2 + 2c2, n2 = 2z(z − ωL
D)/c2,

and n3 = 2z(z + ωL
D)/c2.

First we consider the case when the system is initially
prepared in the half-skyrmion configuration |ψ(t = 0)〉 =
(0 0 1)T . With this initial condition, we have

|ψ(t)〉 ≈ 1

2

⎛
⎜⎝

1

0

1

⎞
⎟⎠e−iE1t + 1

n2

⎛
⎜⎝

−1
z−ωL

D

c

1

⎞
⎟⎠e−iE2t

+ 1

n3

⎛
⎜⎝

−1

− z+ωL
D

c

1

⎞
⎟⎠e−iE3t . (A5)

From the last expression we can find all expectation values
〈O(t)〉 = 〈ψ(t)|O|ψ(t)〉. We start from

〈Jz(t)〉 ≈ 2

n2
cos (E2 − E1)t + 2

n3
cos (E3 − E1)t. (A6)
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From Eq. (10) it follows directly

〈y(t)〉 ≈ 2d

c

E2 − E1

n2
sin (E2 − E1)t + 2d

c

E3 − E1

n3
sin (E3 − E1)t

= δx I 2
10

2
√

ωL
D

2 + 2(δxI10)2

⎡
⎣sin

⎛
⎝

√
ωL

D

2 + 2(δxI10)2 − ωL
D

2

⎞
⎠t + sin

⎛
⎝

√
ωL

D

2 + 2(δxI10)2 + ωL
D

2

⎞
⎠t

⎤
⎦. (A7)

When calculating the expectation value of xred, we first note that xredv1 = 0, vT
1 xredv2,3 = 0. From here it follows that the

expectation value will oscillate with the frequency E3 − E2. The straightforward calculation yields

〈x(t)〉 ≈ δx I 2
10 ωL

D

2
(
ωL

D

2 + 2
(
δxI10

)2)
[
1 − cos

√
ωL

D

2 + 2(δxI10)2t
]
. (A8)

Results captured by Eqs. (A8) and (A7) are presented in Fig. 3, where we see that they reasonably agree with the full numerical
calculation.

Next we consider the time evolution of the vortex-antivortex pair |ψ(t = 0)〉 = (0 1 0)T . In this case

|ψ(t)〉 ≈ z − ωL
D

cn2

⎛
⎜⎝

−1
z−ωL

D

c

1

⎞
⎟⎠e−iE2t − z + ωL

D

cn3

⎛
⎜⎝

−1

− z+ωL
D

c

1

⎞
⎟⎠e−iE3t . (A9)

As the perturbation couples the m = 0 state symmetrically to ±m states, we find 〈Jz(t)〉 = 0 and the motion occurs only in the
x direction, where we recover Eq. (A8).

APPENDIX B: EXPLICIT FORM OF BOGOLIUBOV EQUATIONS

For a half-skyrmion ground state we rewrite linearized Eqs. (25)–(28) in the form of the eigenproblem of the matrix HBg,hs ,

Hm
Bg,hs

⎛
⎜⎜⎜⎝

um−1
1 (r)

vm−1
1 (r)

um+1
2 (r)

vm−3
2 (r)

⎞
⎟⎟⎟⎠ = ω

⎛
⎜⎜⎜⎝

um−1
1 (r)

vm−1
1 (r)

um+1
2 (r)

vm−3
2 (r)

⎞
⎟⎟⎟⎠, (B1)

where

HBg,hs = H0
Bg,hs + Hg

Bg,hs − Dμ, (B2)

H0,m
Bg,hs

=

⎛
⎜⎜⎜⎜⎝
Hm−1

0 + g
∣∣ψ0

1

∣∣2 + g
∣∣ψ0

2

∣∣2
0 1

2�2r2q13(r) 0

0 −Hm−1
0 − g

∣∣ψ0
1

∣∣2 − g
∣∣ψ0

2

∣∣2
0 − 1

2�2r2q24(r)
1
2�2r2q31(r) 0 Hm+1

0 + g
∣∣ψ0

2

∣∣2 + g
∣∣ψ0

1

∣∣2
0

0 − 1
2�2r2q41(r) 0 −Hm−3

0 − g
∣∣ψ0

2

∣∣2 − g
∣∣ψ0

1

∣∣2

⎞
⎟⎟⎟⎟⎠,

(B3)

and

Hg,m

Bg,hs = g

⎛
⎜⎜⎜⎜⎝

∣∣ψ0
1

∣∣2 (
ψ0

1

)2
ψ0

1 χ0
2 q13(r) ψ0

1 χ0
2 q14(r)

−(
ψ0

1

)2 −∣∣ψ0
1

∣∣2 −ψ0
1 χ0

2 q23(r) −ψ0
1 χ0

2 q24(r)

ψ0
1 χ0

2 q31(r) ψ0
1 χ0

2 q31(r)
∣∣ψ0

2

∣∣2 (
χ0

2

)2
q34(r)

−ψ0
1 χ0

2 q41(r) −ψ0
1 χ0

2 q41(r) −(
χ0

2

)2
q43(r) −∣∣ψ0

2

∣∣2

⎞
⎟⎟⎟⎟⎠, Dμ = μ

⎛
⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠. (B4)
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We have introduced the following functions:

χ2(r) = ψ2(r) exp (−2iφ), (B5)

q13(r) = r |m+1|−|m−1|, q14(r) = r |m−3|−|m−1|, q23(r) = r |m+1|−|m−1|, q24(r) = r |m−3|−|m−1|,

q31(r) = r |m−1|−|m+1|, q34(r) = r |m−3|−|m+1|, q41(r) = r |m−1|−|m−3|, q43(r) = r |m+1|−|m−3|, (B6)

and Hm
0 = − 1

2 ( 2|m|+1
r

d
dr

+ d2

dr2 ) + 1
2 (1 + �2)r2.

In a similar way we proceed in the case of m = 0 ground state:

HBg,m0 = H0
Bg,m0 + Hg

Bg,m0 − Dμ, (B7)

with

H0,m
Bg,m0

=

⎛
⎜⎜⎜⎜⎝
Hm−1

0 + g
∣∣ψ0

1

∣∣2 + g
∣∣ψ0

2

∣∣2
0 1

2�2r2h(r) 0

0 −Hm+1
0 − g

∣∣ψ0
1

∣∣2 − g
∣∣ψ0

2

∣∣2
0 − 1

2�2r2e(r)
1
2�2r2e(r) 0 Hm+1

0 + g
∣∣ψ0

2

∣∣2 + g
∣∣ψ0

1

∣∣2
0

0 − 1
2�2r2h(r) 0 −Hm−1

0 − g
∣∣ψ0

2

∣∣2 − g
∣∣ψ0

1

∣∣2

⎞
⎟⎟⎟⎟⎠

(B8)

and

Hg,m

Bg,m0 = g
∣∣ψ0

1

∣∣2

⎛
⎜⎜⎜⎝

1 h(r) −h(r) −1

−e(r) −1 1 e(r)

−e(r) −1 1 e(r)

1 h(r) −h(r) −1

⎞
⎟⎟⎟⎠, (B9)

where h(r) = r |m+1|−|m−1| and e(r) = r |m−1|−|m+1|.
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[38] G. Möller and N. R. Cooper, Phys. Rev. A 82, 063625 (2010).
[39] P. Muruganandam and S. K. Adhikari, Comput. Phys. Commun.

180, 1888 (2009).
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Recent experiments in ultracold atoms and photonic analogs have reported the implementation of artificial
gauge fields in lattice systems, facilitating the realization of topological phases. Motivated by such advances, we
investigate the Haldane honeycomb lattice tight-binding model, for bosons with local interactions at the average
filling of one boson per site. We analyze the ground-state phase diagram and uncover three distinct phases:
a uniform superfluid (SF), a chiral superfluid (CSF), and a plaquette Mott insulator with local current loops
(PMI). Nearest-neighbor and next-nearest-neighbor currents distinguish CSF from SF, and the phase transition
between them is first order. We apply bosonic dynamical mean-field theory and exact diagonalization to obtain
the phase diagram, complementing numerics with calculations of excitation spectra in strong and weak coupling
perturbation theory. The characteristic density fluctuations, current correlation functions, and excitation spectra
are measurable in ultracold atom experiments.

DOI: 10.1103/PhysRevB.91.094502 PACS number(s): 67.85.Hj, 03.75.Lm, 03.75.Kk

I. INTRODUCTION

Magnetic fields play a crucial role in condensed-matter
physics, from the complete expulsion of magnetic fields in su-
perconductors (Meissner effect) to the appearance of quantum
Hall states. More generally, gauge fields play a central role in
the description of macroscopic quantum phenomena. Lattice
variants of the quantum Hall effect have attracted attention
since the 1980s, beginning with the groundbreaking work
by Hofstadter [1], followed by a complete characterization
of magnetic bands via topological quantum numbers [2].
In 1988, Haldane [3] introduced a fermionic tight-binding
model on the honeycomb lattice that breaks time-reversal
symmetry without net magnetic flux through the unit cell. The
model exhibits nontrivial topological properties as a result
of next-nearest-neighbor tunneling processes. Time reversal
symmetric extensions, 2D topological insulators [4,5] (for
a review see Ref. [6]) have been experimentally realized in
HgTe quantum wells [7]. Revived interest into these models
stems from on-going experiments in photonic lattices [8–20],
metamaterials [21,22], and optical lattices hosting ultracold
atoms [23–29].

For ultracold atoms in optical lattices, artificial gauge fields
producing complex hopping amplitudes have been realized
by shaking the optical lattice, which results in a net Peierls
phase [26,29] or by laser-assisted tunneling [27]. Two groups
have recently reported the realization of a Hofstadter butterfly
model [27,28], and very recently the first experimental
realization of the Haldane model has been achieved [29].
Other ultracold atom experiments have also succeeded in
realizing triangular flux lattices [26]. The current technologies
allow to realize one-dimensional and two-dimensional lattice
systems, which can be loaded with bosons or fermions.
These recent developments constitute impressive steps towards
simulating many-body physics, artificial gauge fields and
spin-orbit couplings in optical lattices where interactions can
be engineered and tuned in a precise manner.

In parallel, several theoretical works have focused on
interaction-induced transitions from a topological into a

Mott insulator (MI) in fermionic systems [30–40]. Properties
of lattice bosons exposed to artificial gauge fields have
been addressed as well in different regimes. Lattices with
staggered flux give rise to finite momentum Bose–Einstein
condensates [41–43]. A related phenomenon has been
identified in the presence of uniform flux and the excitation
spectrum in the weakly interacting regime of this unusual
superfluid phase has been calculated [44,45]. With stronger
interactions, a superfluid to MI transition is expected to
occur [41,42,46–52], and even more interestingly, the interplay
of strong interactions and uniform lattice flux should lead to
fractional Hall states [53] and topological transitions [54].
Another proposed setup for reaching the quantum Hall regime
are optical flux lattices [55]. In low-dimensional lattices with
staggered flux a new intermediate phase has been predicted—a
chiral Mott state [56–58] that exhibits broken time-reversal
symmetry without breaking U(1) symmetry. Bond-chirality
and plaquette order have been shown to emerge in a system
of two-dimensional hard-core bosons with frustrated ring
exchange [59]. Topological transport in bosonic Mott states
in the presence of spin orbit-coupling has been studied in
Refs. [60,61]. Emergence of a chiral current and Meissner
effect in bosonic ladders have been demonstrated experimen-
tally [62] and theoretically analyzed [63–67]. While topologi-
cal bosonic Mott insulators have been theoretically predicted in
one dimension [68–70], an important open question in the field
is the existence of bosonic topological Mott states in two spatial
dimensions [71]. Multicomponent interacting bosonic systems
exhibit spontaneous spin Hall effect [72], exotic magnetic
order [73], and integer Hall effect [74]. A low-density ground
state of spinor bosonic gases with isotropic Rashba spin-orbit
coupling is proven to be a composite fermion state [75].

Recently several approaches for the realization of the
Haldane model for integer quantum Hall effect without Landau
levels [3] in an ultracold atom system were theoretically
proposed [76–79]. In relation to this, the intricacies of
the direct Peierls substitution for the Haldane model were
addressed [80]. The very recent experiment [29] demonstrates
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FIG. 1. (Color online) (a) Lattice vectors on the honeycomb
lattice and hopping integrals the Haldane model of Eq. (1).
(b) Phase diagram of the model (5) at unit filling, containing plaquette
Mott insulator (PMI), uniform superfluid (SF) and chiral superfluid
(CSF) phases. Solid (dashed) lines represent DMFT (Gutzwiller
mean-field) results. (c) Local condensate order parameter in the
uniform superfluid. (d) In CSF the condensate order parameters on
sublattices A and B are determined up to a relative phase. (e)–(g)
The lowest band of Eq. (1) for t1 = 1, φ = π/2, and t2 = 0,1/

√
3,1,

from the left to the right. Band minima move from the center � to the
corners KA, KB of the first Brillouin zone (depicted as a solid line).
At t1 = √

3t2, there are three degenerate minima.

that time-periodic driving of a honeycomb optical lattice
creates the prerequisite complex next-nearest-neighbor hop-
ping. Topological transitions arising in the noninteracting
Haldane model for fermions have been directly probed in this
experimental setup.

Motivated by experimental possibilities and open theoret-
ical questions on the emergence of new bosonic phases in
the presence of gauge fields, we study the Haldane model for
bosons at unit filling with a local repulsive Hubbard interac-
tion. The Hamiltonian comprises three terms: a real nearest-
neighbor hopping t1, an imaginary next-nearest-neighbor
hopping it2, and the local repulsive interaction U . Each of the
three terms favors one of the phases depicted in the diagram of
Fig. 1(b), which is our main result. The t1-dominated phase is
a uniform superfluid (SF) with long-range phase correlations,
whereas the t2-dominated phase is a chiral superfluid (CSF)
that exhibits phase modulation due to bosons condensing at
nonzero momentum. The interactions dominated phase is a
plaquette Mott insulator (PMI) characterized by local plaquette
currents. We find that the excitation bands in both superfluid
and Mott insulator phases are reminiscent of the single-particle
spectrum of the Haldane model. For all considered phases, we

calculate experimentally accessible features such as density
fluctuations, plaquette currents and excitation spectra.

The paper is organized as follows: we introduce the
Haldane–Hubbard model in Sec. II. We discuss the weakly
interacting limit and the distinction between the uniform
superfluid and the chiral superfluid in Sec. III A, followed
by a discussion of possible ground states and current ex-
pectation values in Sec. III B. To access the regime of
stronger interactions, we start with a simple mean-field theory
approach that leads to a phase diagram which captures all
the important qualitative features in Sec. III C. To address
effects beyond the mean-field approximation, in Sec. III D, we
use bosonic dynamical mean-field theory (DMFT) [81–85]
that gives information on the thermodynamic limit. We then
compare such results to those extracted from the exact ground
state found with the Lanczos algorithm for a finite system
in Sec. III E. Within all these approaches, we compute the
values of condensate order parameters, density fluctuations
and plaquette currents in the ground state. We then turn to the
excitation spectra of the superfluid (Sec. IV A) and of the Mott
insulator (Sec. IV B) and characterize their main features. We
conclude in Sec. V with a discussion of our results and indicate
possible future research directions.

II. MODEL

The Haldane Hamiltonian on the honeycomb lattice is given
by [3]

HH = −t1
∑
〈i,j〉

b̂
†
i b̂j − t2

∑
〈〈i,j〉〉

eiφij b̂
†
i b̂j , (1)

where b̂i is the annihilation operator at site i. The term
proportional to t1 describes the graphene lattice with nonzero
hopping elements only between nearest neighbors along
vectors a1, a2, and a3 shown in Fig. 1(a). The t2 term was
originally introduced by Haldane. It includes a complex phase
φij for the tunneling between two next-nearest neighbors
(sites belonging to the same sublattice) along b1 = a2 − a3,
b2 = a3 − a1, and b3 = a1 − a2. The absolute value of φij is
constant throughout the lattice and its sign is shown in Fig. 1(a).
As can be seen from the same figure, the net flux per unit cell is
zero. In the following, we consider the case of |φij | = π/2 and
use the notation tij to shorten Eq. (1) to HH = −∑

i,j tij b̂
†
i b̂j .

We will add a label to make sublattice dependence explicit
when necessary, for example, b̂i → b̂Ai .

The single-particle Hamiltonian (1) can be described by
the Chern numbers of its Bloch bands, a property which we
briefly review here. In momentum space, (1) is rewritten as
HH = ∫

BZ dk ψ(k)†HH(k)ψ(k), with

HH(k) = −d (k) · σ̂ . (2)

The momenta k belong to the first Brillouin zone, which
is spanned by the vectors g1 = (2π/(3a), − 2π/(a

√
3)) and

g2 = (2π/(3a),2π/(a
√

3)) in reciprocal space. We have intro-
duced the field ψ(k) = (bA(k),bB(k))T of Fourier transforms
of the annihilation operators on sublattices A and B. We wrote
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HH in the basis of Pauli matrices σ̂ = (σx,σy,σz) in terms of

d(k) =
(

t1
∑

i

cos k ai,t1
∑

i

sin k ai,−2t2
∑

i

sin k bi

)
. (3)

The nontrivial topology of the Bloch bands translates to a
nonzero winding number of the map d̂ = d/|d| from the torus
(the first Brillouin zone) to the unit sphere. Denoting by ∂i

the partial derivatives with respect to the two components of
momentum ki , i = 1,2, the winding number is [3]

C− = 1

4π

∫
BZ

dk d̂ · (∂1d̂ × ∂2d̂). (4)

Equation (4) represents the Chern number of the lower Bloch
band, and it takes the value C− = 1 at finite values of t2 and
t1 when |φij | = π

2 . For t1 = 0, the two bands touch along the
certain cuts of the Brillouin zone, and the spectrum is fully
gapped as soon as t1 > 0. The formula for the upper band is
obtained by replacing d̂ by −d̂, and leads to C+ = −1.

We focus here on the bosonic Haldane-Hubbard Hamilto-
nian

H = HH + U

2

∑
i

n̂i(n̂i − 1) − μ
∑

i

n̂i , (5)

where U is a local (on-site) interaction and μ is the chemical
potential. Throughout this work, we will consider the zero
temperature limit T = 0. In the following sections, we char-
acterize different phases by the value of the condensate order
parameter

ψi = 〈b̂i〉, (6)

local density fluctuations

�ni = 〈
n̂2

i

〉 − 〈n̂i〉2, (7)

and emerging patterns of lattice currents. The expectation
value of the current operator for the bond j → i on the lattice
is given by

Jij = −i(tj i〈b̂†j b̂i〉 − tij 〈b̂†i b̂j 〉) = −2Im(tij 〈b̂†i b̂j 〉), (8)

as can be derived from the lattice continuity equation.
Implications of nontrivial Chern numbers (4) are most

often discussed in the context of fermionic systems. In the
seminal paper [2], the Hall conductance of noninteracting
lattice fermions in the strong magnetic field has been expressed
in terms of Chern numbers of occupied Bloch bands. The
current cold-atom realization of the Haldane model [29] is
based on the idea of Floquet topological insulators [86].
The definition and the meaning of topological invariants in
these periodically driven systems have been in the focus of
several studies [87–89]. Recently, the first photonic analogs
of topologically nontrivial systems have been realized [20]:
both in the classical regime [10,13] and in the quantum regime
where arrays of coupled photonic cavities have been used [12].
These photonic experiments have probed the emerging edge
states, as a clear indication of nontrivial topology. More
recently, it has been theoretically proposed to directly measure
topological invariants [16,90,91] in these systems. Topological
transitions have been directly probed in quantum circuits of
interacting superconducting qubits [92].

Photonic systems [12,14] typically work in the dissipative-
driven regime. In the equilibrium situation that we consider
throughout the paper, when a topological band is filled
with weakly interacting bosons, the ground state can be a
topologically trivial Bose-Einstein condensate [44,45,93,94].
Properties of the condensate are set by the features of
band minima and are not affected by a nontrivial band
topology expressed by Eq. (4). However, band topology does
affect transport properties of bosons as well as properties of
excitations [44,45,60,61,93,94]. Transport of lattice bosons
has been used to probe a finite Berry curvature [95] and the
Chern number of a topological band [96]. In contrast to weakly
interacting bosons, strongly interacting (hard-core) bosons in
topological flat bands at certain filling fractions are known
to exhibit topologically nontrivial ground states [97]. In the
next sections, we study the ground state and excitations of
model (5).

III. STUDY OF THE GROUND STATE

A. Weakly interacting bosons

In the weakly interacting limit, we expect bosons to
condense. From the noninteracting model of Eq. (1), we
can easily infer two limits that give rise to two types of
superfluids: for t2 = 0 we obtain a honeycomb lattice and all
bosons condense at the center of the Brillouin zone � at zero
momentum. On the other hand, for t1 = 0, the model turns
into two decoupled triangular lattices, and we expect separate
condensation of bosons on two sublattices.

To study the possible condensates at finite values of t1 and
t2, let us focus on the noninteracting Hamiltonian. The energy
dispersion of the lowest band ε−(k) exhibits either a single
minimum at k = � for t1 >

√
3t2 or degenerate minima at the

two inequivalent corners of the Brillouin zone KA and KB for
t1 <

√
3t2 [see Figs. 1(e)–1(g)]. The momenta at the corners

of the Brillouin zone satisfy

eiKA·bi = ei 2π
3 , eiKB ·bi = e−i 2π

3 , (9)

for all i = 1,2,3. At these high-symmetry points, the Hamil-
tonian takes the following forms:

H(�) = −3t1σx (10)

and

H(KA,B) = ±3
√

3t2σz. (11)

The SF phase forms when t1 >
√

3t2. The condensate order
parameter is 〈b̂i〉 = √

n, where n = N/Nsites is the filling. The
ground-state energy obtained from the Gross-Pitaevskii (GP)
energy functional [98]

E0 = −
∑
i,j

tijψ
∗
i ψj + 1

2
U

∑
i

|ψi |4 (12)

is E0
Nsites

= (−3t1n + 1
2Un2) and we find that the next-nearest-

neighbor hopping is effectively canceled. Using Eq. (8), the
next-nearest-neighbor bond current is

J SF
AA = −2 n t2 Im exp(−iπ/2) = 2nt2. (13)

The CSF phase forms in the opposite case t1 <
√

3t2.
Noninteracting bosons can condense in a state that is an
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arbitrary linear combination of single-particle ground states at
KA and KB , leading to large degeneracy. However, even weak
repulsive interactions prefer a uniform density distribution on
the two sublattices. To infer the low-energy description, we
assume that only the minima of the lowest band are occupied
and approximate operators according to Eq. (11) by

b̂A,i ≈ 1√
Nsites/2

e−iKAri b̂A(KA),

b̂B,i ≈ 1√
Nsites/2

e−iKB ri b̂B(KB). (14)

The Hamiltonian (5) then turns into

H ≈ −3
√

3t2(b̂†A(KA)b̂A(KA) + b̂
†
B(KB)b̂B(KB))

+ U

2
b
†
A(KA)b̂A(KA)

(
2

Nsites
b
†
A(KA)b̂A(KA) − 1

)

+ U

2
b
†
B(KB)b̂B(KB)

(
2

Nsites
b
†
B(KB)b̂B(KB) − 1

)

−μ(b̂†A(KA)b̂A(KA) + b̂
†
B(KB)b̂B(KB)), (15)

i.e., it describes two decoupled sublattices since the nearest-
neighbor tunneling term vanishes:

∑
〈i,j〉

b̂
†
i b̂j ∝

∑
i

b̂
†
i

3∑
j=1

e−iKB ·(ri+aj )b̂B(KB) = 0. (16)

Thus we conclude that the ground state consists of two
decoupled superfluids. The same observation follows directly
from Eq. (12), i.e., at the mean-field level the ground-state
consists of two separate condensates occupying the two
sublattices.

The mean-field ground-state energy (12) is E0
Nsites

=
(−3

√
3t2n + 1

2Un2) and the corresponding momentum dis-
tributions are ρA(k) ≈ N

2 δk,KA
, ρB(k) ≈ N

2 δk,KB
. For the

operators b̂A,i on the same sublattice, we find from Eq. (9),

〈b̂†A,i b̂A,j 〉 = ψ∗
A,iψA,j = 2

Nsites

∑
k

eik(ri−rj)〈b̂†A(k)b̂A(k)〉

= n exp

(
i
2π

3
m

)
, (17)

where m is an arbitrary integer. The condensate at nonzero
momentum exhibits nonuniform phase differences between
next-nearest neighbors [see Fig. 1(d)]. Phase ordering directly
affects the next-nearest-neighbor current expectation value:

J CSF
AA = −2Im(t2e

−iπ/2〈b̂†Aib̂Aj 〉)
= −2t2n sin[−π/2 + KA · (ri − rj )] = −nt2. (18)

The aforementioned “decoupling of sublattices,” Eq. (16), is
depicted in Fig. 1(d) as an arbitrary phase difference between
order parameters on two sublattices.

At the critical hopping strength t1 = √
3t2, there are three

degenerate minima present in the dispersion relation, and in
order to deduce the proper ground state at the mean-field level
all three of them should be taken into account. However, the
analysis of the mean-field energy functional indicates that
condensation either at � or at both KA and KB is preferred, and

we do not find a density modulated phase in this case [44,45].
The fact that at the phase boundary between the two superfluids
the current changes abruptly, Eqs. (13) and (18), hints towards
a first-order phase transition between uniform and chiral
superfluids in the weakly interacting limit.

B. Josephson effect between sublattices

In Sec. III A, we distinguished SF and CSF phases through
their patterns of the next-nearest-neighbor current JAA (equiv-
alently JBB ), expressed in Eqs. (13) and (18), respectively.
We now argue that the two superfluid phases have different
expectation values of the nearest-neighbor current JAB , which
is a signature of Josephson-type phase coherence between
sublattices A and B.

In the SF phase, the phases of bosons on the A and
B sublattices are pinned and therefore the nearest-neighbor
current vanishes:

J SF
AB = 0. (19)

This follows from the fact that the operator corresponding to
the boson at the minimum of the lower band is b̂−(k = �) =

1√
2
[b̂A(�) + b̂B(�)]. The ground-state energy is invariant to

a U(1) rotation of the pinned phases on A and B sublattices,
which corresponds to the existence of one Goldstone mode.

In the CSF phase, the boson annihilation operator corre-
sponding to the band minimum obeys b̂−(Ka) = b̂a(Ka) for
a = A or B. The twofold degeneracy of the band minimum
leads us to the problem of coherence of a Bose-Einstein
condensate in a double-well potential [72,99]. In the following,
we prove that the presence of defects, or open boundary con-
ditions, produces a condensate in which A and B sublattices
are phase coherent. Secondly, we show that if discrete lattice
symmetries are preserved, the ground state for weak U > 0
consists of decoupled condensates on sublattices A and B.

We form first a condensate wave function from coherent
superpositions of the degenerate minima

|�′
CSF(φ)〉 = 1√

N !

[
1√
2
b̂
†
A(KA) + eiφ

√
2
b̂
†
B(KB)

]N

|0〉. (20)

The nearest-neighbor current JAB on the unit cell at coordinate
ri has a well defined value ∝ sin[φ − (KA − KB) · ri]. Note
that the ground state |�′

CSF〉 spontaneously breaks lattice
translation and lattice inversion symmetries.

We form a second wave function for the chiral superfluid
by uniformly superimposing all |�′

CSF(β)〉 for β between 0
and 2π . This new wave function corresponds to decoupled
condensates, and is both lattice translation and inversion
symmetric:

|�′′
CSF〉 = 1

(N/2)!
[b̂†A(KA)]N/2[b̂†B(KB)]N/2|0〉. (21)

Note that now the nearest-neighbor current J CSF
AB vanishes.

This is due to the fact that the phases of the two sublattices can
be rotated independently without changing the energy, which
corresponds to the existence of two Goldstone modes.

First we discuss a finite size system with periodic boundary
conditions. We find that the energy per site of |�′′

CSF〉 is
E′′

0
Nsites

= −3
√

3t2n + (Un/2)(n + 1 − 2/Nsites). This is lower
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by nU/(2Nsites) than the energy of Eq. (20). Thus, if the
system is finite, if the interactions are weakly repulsive
and if all discrete lattice symmetries are preserved, then
the variational ground state is |�′′

CSF〉. This is confirmed
numerically using Lanczos methods for small translation
and inversion symmetric clusters in Sec. III E. However, the
fact that the states (20) and (21) become degenerate in the
thermodynamic limit opens up a possibility of a ground
state that breaks lattice symmetries [43]. We investigate this
issue further in Secs. III E and IV A.

The ground state is significantly different if a defect is
introduced in a finite lattice with periodic boundaries or in a
finite lattice with open boundaries. In these cases, the double-
well structure (15) does not apply anymore. For example, at
the boundary of the lattice, A and B sublattice phases can
be pinned since the number of B neighbors for any A site is
2 instead of 3. Once the phases are pinned at the boundary,
the A-B sublattice phase coherence proliferates into the bulk.
Another possibility to establish phase coherence between A

and B sublattices is to create a strong nearest-neighbor bond
at a given unit cell (possibly imprinting a phase difference).
As a consequence of long-range correlations between sites on
the same sublattice, JAB at any other bond acquires a definite
value.

We conclude that

J CSF
AB = 0 (22)

in a finite system obeying lattice translation and inversion
symmetries (i.e., a lattice on a torus with finitely many sites),
whereas

J CSF
AB 
= 0 (23)

in the presence of defects or if the system has open boundaries,
i.e., in realistic experimental conditions. Our qualitative
remarks about the role of defects are substantiated with
numerical results obtained by minimizing the GP energy
functional (12) for finite lattices, presented in Fig. 2.

FIG. 2. (Color online) Aligning the phases of order parameters
on the two sublattices: U = 1, t1 = 10,t2 = 10, and average filling
n = 1. In (a), the top left link hosts a defect t1 = 4t2. In (b), we impose
open boundary conditions in x direction. Arrows represent local
(plaquette) currents with amplitude |JAB| ≈ |2t1n sin 2π

3 | = √
3nt1.

Weaker currents that should vanish in the bulk, far away from the
defect are not plotted. Results are obtained by minimizing the energy
functional (12) with respect to ψi for the 120 sites shown in the plot.
In both plots, there are density modulations, for example, in (a) there
are more particles sitting on the sites linked by 4t1.

C. Mott insulator with plaquette currents

To address stronger interactions, we start with a mean-field
decoupling of the tunneling term as b̂

†
i b̂j ≈ 〈b̂†i 〉b̂j + b̂

†
i 〈b̂j 〉 −

〈b̂†i 〉〈b̂j 〉 that is fully equivalent to applying a variational
Gutzwiller ansatz |ψGW〉 = ∏

⊗i

∑
n ci,n|n〉 [100,101]. We

obtain a mean-field Hamiltonian

Hmf =
∑

i

Hi
mf + const., (24)

given by a sum of local terms

Hi
mf = −
mf

i b̂
†
i − (


mf
i

)∗
b̂i + U

2
n̂i(n̂i − 1) − μ n̂i, (25)

where each lattice site is coupled to its neighbors only by
a sum of condensate order parameters 
mf

i = ∑
j tijψj . The

ground state is found by minimizing the expectation value
of the Hamiltonian (24) with respect to the coefficients ci,n.
The approximation becomes an exact description both in the
weakly interacting limit and in the atomic limit. A resulting
mean-field phase diagram at unit filling is shown in Fig. 1(b) by
dashed lines. It consists of the two superfluid phases discussed
in the previous subsection and in addition it contains a Mott
phase. The rectangular shape of the Mott domain implies that
the ground-state energy of the uniform superfluid is unaffected
by t2 and vice versa for the chiral superfluid.

However, the Mott state that we obtain within the mean-
field approximation, given by Eqs. (24) and (25), is a simple
product state

∏
⊗i |n〉 and is therefore featureless. To explore

its properties in more detail we need a better approach. The
random phase approximation (RPA) [102–104] is analytically
tractable. It is a standard approach that shares some similarities
with DMFT and we briefly outline it here.

In both approaches, we consider the single-particle Green’s
functions

Gij (τ1 − τ2) = −〈T b̂i(τ1)b̂†j (τ2)〉 (26)

expressed in terms of Matsubara frequencies ωn = 2πn/β,
where β is the inverse temperature (β → ∞) and Gij (iωn) =∫

dτ exp(iωnτ )Gij (τ ). The main approximation of the two
methods is that the self-energy is local. This is an exact
property in the limit of infinite lattice coordination number.

In RPA, local self-energies are determined from the local
Hamiltonian (25) [102–104]. Local Green’s functions corre-
sponding to the Hamiltonian (25) at T = 0 when the ground
state is

∏
⊗i |n〉 are given by

GRPA
ii (iωn) = − n

−(n − 1)U + μ + iωn

+ n + 1

−nU + μ + iωn

.

(27)

The corresponding self-energies are then calculated using the
local Dyson equation

�RPA
i (iωn) = iωn + μ − (

GRPA
ii (iωn)

)−1
. (28)

As already mentioned, the last result approximates the self-
energy of the full lattice problem and is used in the lattice
Dyson equation, written either in real

[GRPA]−1
ij (iωn) = (iωn + μ)δij + tij − δij�

RPA
i (iωn), (29)
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or k space

[GRPA]−1(iωn,k) = (iωn +μ− �RPA
ii (iωn))I −HH(k). (30)

Starting from the Green’s functions, Eq. (30), we first
derive the excitation spectrum of the Mott state. By going
into the basis in which HH(k) is diagonal and by applying
analytical continuation iωn → ω + iδ, we can read off poles
of the k-dependent Green’s function. The excitation spectrum
of the Mott insulator is given by the particle-hole excitations
[101–103]

ω±,α(k) = U

2

[
(2n − 1) − 2

μ

U
+ εα(k)

U

±
√

1 + 2(2n + 1)
εα(k)

U
+ εα(k)2

U 2

]
, (31)

where α takes values ± corresponding to the two noninter-
acting bands. A detailed study of the properties of excitations
given by Eq. (31) is postponed to Sec. IV. Here, we only
note that at filling n = 1 the gap in the spectrum closes at
t

RPA,c
1 = U 3−2

√
2

3 for t1 >
√

3t2 where the transition from the
Mott insulator into the uniform superfluid occurs, while for
t1 <

√
3t2 the transition into the chiral superfluid is found for

t
RPA,c
2 = U 3−2

√
2

3
√

3
. The two boundaries meet at the tricritical

point with the line corresponding to a direct transition between
the two superfluids, Fig. 1(b).

Another important feature of the Mott state are finite
(nonvanishing) density fluctuations present at finite values of
the hopping terms t1 and t2 (note that these are not captured
by the oversimplified state

∏
⊗i |n〉). To understand how these

fluctuations are affected by the complex hopping term (it2), we
calculate local (plaquette) currents (8) between next-nearest
neighbors. The expectation value 〈b†i bj 〉 can be expressed in
terms of Green’s functions

〈b†i bj 〉 = − 1

β

∑
n

exp(iωn0+)Gji(iωn), (32)

where ωn is Matsubara frequency. Deep in the Mott domain,
an approximate result for Gij can be derived from the strong-
coupling expansion in hopping [104,105]. Here, we consider
only contributions obtained by a formal matrix inversion of
Eq. (29) and by keeping terms that are second order in tij .
Directly from the second-order result for 〈b†i bj 〉 given in
Refs. [104,105], we read off a general expression

J
(2)
ij

U
= −2Im tij

(∑
k

tjktki

)
3n(n + 1)(2n + 1)

U 3
+ · · ·

In our case, we obtain the following perturbative result:

J
(2)
AA

U
= 36

U 3
t2

(
t2
1 − 2t2

2

)
. (33)

On the other hand, at this order in perturbation theory, the
current between nearest neighbors vanishes.

We finally note that correlations 〈JAAJAA〉 between currents
belonging to plaquettes that are separated [i.e., not connected
by a kinetic term in HH of Eq. (2)] factorize and are
proportional to the square of Eq. (33). Therefore the connected

correlation functions of plaquette currents vanish identically
for separated plaquettes. This characterizes the Mott insulator
phase as a state with local plaquette currents without long-
range current-current correlations.

As mentioned at the beginning of the section, RPA is an
exact description in the limit of infinite coordination number
of the lattice. In the next section, we will use bosonic DMFT
to include the next-order correction (i.e., a finite coordination
number) and to go beyond RPA.

D. DMFT

Bosonic DMFT was originally introduced several years
ago [81–85] in analogy to the well-established fermionic
DMFT [106]. The method has been successfully ap-
plied in the context of topological band insulators with
fermions [34,38,39,107]. Here, we use a spatially resolved
version, the so-called real-space bosonic DMFT [108]. For
completeness, we describe the method briefly.

The essence of DMFT is mapping of the full lattice problem
onto a set of local problems. The next-order correction for
the self-energy in Eq. (28) is still local in space [in our
case, proportional to 3(t2

1 + 2t2
2 )] as can be shown by a

diagrammatic expansion [104]. To derive a proper local model
that goes beyond the Hamiltonian (25), we perform an effective
integration over all off-site degrees of freedom and keep only
terms of suitable order. We find that the local Hamiltonian is
given by a bosonic Anderson impurity model:

Hi
AI =

L∑
l=0

(εlâ
†
l âl + Vlâ

†
l b̂i + V ∗

l âl b̂
†
i + Wlâl b̂i + W ∗

l â
†
l b̂

†
i )

−ψAI∗
i b̂i − ψAI

i b̂
†
i + U

2
n̂i(n̂i − 1) − μn̂i, (34)

where index l counts Anderson orbitals and we allow for
complex values of Anderson parameters Vl and Wl . The
mapping is formally described in detail in Ref. [84]. At this
point, it is useful to introduce hybridization functions of the
Anderson impurity model:

�11(iωn) =
∑

l

|Vl|2
εl − iωn

+ |Wl|2
εl + iωn

,

�12(iωn) =
∑

l

V ∗
l W ∗

l

εl − iωn

+ V ∗
l W ∗

l

εl + iωn

, (35)

and �21(iωn) = �12(iωn)∗, �11(iωn) = �22(iωn)∗. The term
ψAI

i used in Eq. (34) incorporates a correction with respect to
the mean-field result and it reads [84]

ψAI
i =

∑
j

tijψj − �11(0)ψi − �12(0)ψ∗
i .

We consider local Green’s functions written in the Nambu
notation to take into account off-diagonal terms:

Gii(τ1 − τ2) = −
(〈T b̂i(τ1)b̂†i (τ2)〉 〈T b̂i(τ1)b̂i(τ2)〉

〈T b̂
†
i (τ1)b̂†i (τ2)〉 〈T b̂

†
i (τ1)b̂i(τ2)〉

)
.
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The self-energy is obtained from the local Dyson equation

G−1
ii (iωn) =

(
iωn + μ + �11(iωn) − �11

i (iωn) �12(iωn) − �12
i (iωn)

�21(iωn) − �21
i (iωn) −iωn + μ + �22(iωn) − �22

i (iωn)

)
. (36)

In analogy to Eq. (29), the real-space Dyson equation takes the following form:

G−1
ij,latt(iωn) =

((
iωn + μ − �11

i (iωn)
)
δij +tij −�12

i (iωn)δij

−�21
i (iωn)δij

(−iωn+μ−�22
i (iωn)

)
δij +t∗ij

)
, (37)

where we approximate the self-energy by a local contribution
from Eq. (36). Finally, we need a criterion to set values of
parameters εl , Vl , and Wl in Eq. (34). To this end, a condition
is imposed on the hybridization functions (35). These functions
should be optimized such that the two Dyson equations (36)
and (37), yield the same values of local Green’s functions.
Therefore local correlations are treated beyond the mean-field
level.

In practice, we iterate a self-consistency loop to fulfill
this condition, starting from arbitrary initial values. The
local problem (34) is solved by exact diagonalization and
we obtain results for the local density ni = 〈n̂i〉, density
fluctuations �ni = 〈n̂2

i 〉 − 〈n̂i〉2, and local condensate order
parameter ψi = 〈b̂i〉. Here, we work with a finite lattice
consisting of 72 sites that provides the proper sampling of the
Brillouin zone that includes its corners [31]. To benchmark
our code, we compare our results for hexagonal and triangular
lattice (without flux) with accurate results available in the
literature [109]. The deviation in the position of tip of the first
Mott lobe is of the order of several percent and it is smaller for
triangular than for hexagonal lattice, which can be justified by
a higher coordination number of the former lattice.

The resulting phase diagram for the model (5) is given in
Fig. 1(b). To have n = 1 filling on the superfluid side we adjust
the value of the chemical potential μ. We find that the Mott
domain is extended in comparison to the mean-field result and
its “cusp” shape reveals the subtle interplay of two types of
hopping, which goes beyond the simple mean-field picture.
We can understand this point better by looking at density
fluctuations, Fig. 3 and plaquette currents, Figs. 4 and 5.

FIG. 3. (Color online) Local density fluctuations 〈n̂2
i 〉 − 〈n̂i〉2 vs

t2 at unit filling n = 1. We see a competing effect of t1 and t2, as
indicated by arrows: for small values of t2, t1 enhances fluctuations
and drives the transition into SF. The opposite effect is found
for strong enough t2 in CSF, where eventually the effect of t1 is
washed out.

In Fig. 3, we show local density fluctuations for several
cuts through the phase diagram. Weak density fluctuations are
a hallmark of the Mott insulator phase, while stronger density
fluctuations correspond to superfluid phases. In the CSF phase
(rightmost part of the plot), t1 supresses density fluctuations.
This relates to the fact that t1 pushes the PMI-CSF phase
boundary toward higher values of t2, Fig. 1(b). Deep in the CSF
phase (t2/U > 0.08) the effect is very weak (different curves
become indistinguishable) in accordance with our mean-field
results. At strong enough values of t1, we enter the SF phase
(curves in the upper left part of the plot). Finally, dips in the
curves mark the reentrant transition from SF into PMI.

Next, we turn to bond currents between next-nearest
neighbors, Figs. 4 and 5. In Fig. 4, we observe that in the PMI
our numerical results are in good agreement with Eq. (33)
and the current JAA changes its sign smoothly here. In the
limit of weak hopping the sign change occurs for t1 = √

2t2,
Fig. 4. At stronger values of t1 and t2, there are more features
showing up, Fig. 5. In agreement with Eqs. (13) and (18), JAA is
positive in the SF, and negative in the CSF. By increasing t2 and
keeping t1 small enough (for example, t1/U = 0.04 in Fig. 5)
we reach the point of the second order PMI-CSF transition.
The aforementioned reentrant phase transition is marked by
two second-order phase transitions from the SF into PMI and
from the PMI into the CSF, for example for t1/U = 0.10. It is
interesting to note the nonmonotonic behavior—the absolute
value of JAA initially exhibits a linear increase with t2, but

 0

 0.01

 0.02

 0.03

 0.04

 0.05

t 1
/U

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

-0.002

-0.001

 0

 0  0.005  0.01  0.015  0.02  0.025  0.03

J A
A/

U

t2/U

t1/U = 0.01
t1/U = 0.02
t1/U = 0.04

FIG. 4. (Color online) (Top) Absolute value of the next-nearest-
neighbor bond current |JAA|/U deep in MI. The dashed line t1 =√

2t2
marks the region JAA = 0 according to Eq. (33). (Bottom) DMFT data
for JAA (dots) agree very well with the result Eq. (33) (lines) in this
region of the phase diagram.
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FIG. 5. (Color online) The JAA current vs t2 for n = 1 and several
values of t1. Deep in SF (upper left) the current is positive and
exhibits linear increase with t2. In CSF (bottom right), the current
is negative, strongly dependent on t2 and only weakly affected by
t1. The absolute value |JAA| is much weaker in MI (intermediate
regions).

as we approach the Mott domain it decays due to a reduced
value of the order parameter. At strong enough t1 and t2, we
expect the intermediate Mott domain to vanish and the first
order phase transition described in Sec. III A to set in.

E. Exact diagonalization

In this section, we use the ALPS implementation [110] of
the Lanczos algorithm [111] in order to study the ground
state of the interacting model in Eq. (5) at unit filling
n = 1. We consider a lattice of 3×3 unit cells, implying
Nsites = 18 and N = 18 particles. The truncated boson Hilbert
space contains states for which the number expectation
value at any site is bounded above 〈ni〉 � 2. The Hilbert
subspace with this constraint has dimension 4 4152 809.
With periodic boundary conditions, total momentum Q =∑N

i=1 ki is a good quantum number and the dimension of
the Hilbert space for each momentum sector is reduced by
a factor of 9. The Brillouin zone contains 3×3 points and
includes the inequivalent points � and KA,KB , as shown in
Fig. 7.

Since total particle number is conserved, the spontaneous
breaking of the U(1) symmetry is not observable in the ground
state. We rather identify the Mott insulator phase as the region
of the (t1/U,t2/U ) plane where number fluctuations at a site
〈n2

i 〉 − 〈ni〉2 are small [see Fig. 6(d)].
As shown in Sec. III A, bond current expectation values

distinguish the chiral superfluid from the uniform superfluid
phase. The nearest-neighbor current JAB vanishes identically
at n = 1. The next-nearest-neighbor bond current JAA as
a function of t1 and t2 is consistent with the result from
strong-coupling perturbation theory [Eq. (33)]. The next-
nearest-neighbor current JAA changes sign at t1 = t2

√
3, and

JBB has analogous behavior [their common absolute value
is plotted in Fig. 6(b)]. This is the exact phase boundary
found previously in the weakly interacting regime and with
DMFT for arbitrarily strong interactions. We thus confirm the
existence of the PMI state with nonzero triangular plaquette
currents at order t2

1 t2/U 3 but vanishing nearest-neighbor
currents.
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(c) (d)

t 1
/U

t 1
/U

FIG. 6. (Color online) Comparison of DMFT [(a) and (c)] and
ED results [(b) and (d)]. Absolute value of the current on the bond
between two next-nearest neighbors |JAA|/U is shown in (a) and
(b). In (c) and (d), we plot local density fluctuations 〈n̂2

i 〉 − 〈n̂i〉2.
The inset in (a) gives the sign of JAA; in the superfluid, the sign
changes for t1 = √

3t2 (solid line), while deep in the Mott domain the
boundary is given by t1 = √

2t2 (dashed line). DMFT data shown in
these plots are for the fixed value of chemical potential μ/U = 0.4,
while ED results are at fixed filling n = 1. However, the main features
discussed in the text are clearly visible.

To understand the momentum structure of the ground state,
we consider the momentum distributions,

na(k) ≡ 〈b̂†a(k)b̂a(k)〉 =
∑

j

eik·rj 〈b̂†a0b̂aj 〉, (38)

where a = A or B denotes the sublattice. In agreement with
analytical results in the weakly interacting limit (Sec. III A), we
find that in the SF the momentum distribution nA(k) + nB(k)
is sharply peaked at the � point. In the CSF phase, na(k) are
peaked at Ka , in agreement with the decoupled condensates
wave function |�′′

0〉 of Eq. (21). In the PMI, na(k) become more
and more uniformly distributed as the hopping amplitudes t1
and t2 approach 0. Regarding the symmetries, we remark that
the nine lattice translation symmetry operators and the lattice
inversion symmetry are conserved by the ground state in the
Q = 0 sector. Without breaking the discrete lattice symmetries
it is impossible to obtain the coherent superposition |�′

0〉.
In conclusion, we confirm by studying the exact ground

state of the 3×3 lattice all the qualitative features of the
DMFT phase diagram [see Fig. 6 for a comparison]. We
can distinguish between the SF and the CSF by studying
momentum distributions and currents, and determine sharply
the phase boundary between the two superfluids at the critical
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FIG. 7. (Color online) Low-lying energy levels in the spectra of
the 3×3 unit cell lattice at unit filling, for: PMI (t1/U = 0.04, t2/U =
0.02), SF (t1/U = 0.14, t2/U = 0.02), and CSF (t1/U = 0.04, t2 =
0.08). The first eight energy levels in each sector of total momentum
Q are plotted. The nine momentum sectors in the Brillouin zone
spanned by the vectors g1 and g2 are represented in the top left panel.
For example, sectors labeled 0, 7, 5 correspond to �, KA, and KB ,
respectively.

line t1 = t2
√

3 by detecting the change in sign of the next-
nearest-neighbor currents JAA or JBB .

We stress that the results obtained in this section are for
a finite sized lattice Hamiltonian obeying translation and
inversion symmetries. Consequently, the finite size ground
state in the Q = 0 sector obeys these symmetries. For an
infinite system obeying all symmetries, the ground state may
be identified as a specific linear combination of degenerate
ground states that breaks the symmetries [43]. To briefly
explore this possibility, we plot the low-energy spectra for
each phase, as shown in Fig. 7. In the CSF phase, there are two
low-lying states in the Q = KA and Q = KB sectors, which
may become degenerate with the ground state for an infinite
system or as U → 0. However, an analysis of the scaling of
the gap with system size is limited by the large dimension
of the Hilbert space at unit filling. Moreover, the U → 0 limit
cannot be rigorously explored numerically due to the necessary
truncation of the bosonic Hilbert space.

IV. EXCITATIONS

In this section, we study the excitation spectra in the
superfluid phases (Sec. IV A) and in the Mott insulator
(Sec. IV B).

A. Weakly interacting bosons

To compute the excitation spectrum in the weakly interact-
ing limit, we start from the time-dependent GP equation [98]

i
∂ψi

∂t
= −t1

∑
〈i|j〉

ψj − it2
∑
〈〈i|j〉〉

(±)ψj + U |ψi |2ψi, (39)

where we make explicit with 〈i|j 〉 and 〈〈i|j 〉〉 that index i is
now fixed and we are summing over its neighbors. The ±
refers to the sign of the imaginary hopping term along the
different directions (additionally, it takes opposite values for
the two sublattices). We expand the order parameter in terms
of fluctuations δi around the mean-field solution ψ0

i as

ψi = (
ψ0

i + δi

)
exp(−iμt). (40)

In the zeroth order in δi we recover the ground-state equation

μψ0
i = −t1

∑
〈i|j〉

ψ0
j −

∑
〈〈i|j〉〉

it2(±)ψ0
j + U

∣∣ψ0
i

∣∣2
ψ0

i , (41)

that corresponds to the ground-state energy given by Eq. (12).
By keeping terms of the order δi we obtain an equation that
allows the study of excitations:

i
∂δi

∂t
= −μδi − t1

∑
〈i|j〉

δj − it2
∑
〈〈i|j〉〉

(±)δj

+U
(
2
∣∣ψ0

i

∣∣2
δi + (

ψ0
i

)2
δ∗
i

)
. (42)

To decouple Eq. (42) further, we proceed in the standard
way:

δi = ui exp(−iωt) + v∗
i exp(iωt), (43)

and obtain the set of equations:

ωuA
i = δuA

i − t1
∑
〈i|j〉

uB
j − it2

∑
〈〈i|j〉〉

uA
j (±) + U

(
ψ0

i

)2
vA

i ,

−ωvA
i = δvA

i − t1
∑
〈i|j〉

vB
j − it2

∑
〈〈i|j〉〉

vA
j (∓) + U

((
ψ0

i

)2)∗
uA

i ,

ωuB
i = δuB

i − t1
∑
〈i|j〉

uA
j − it2

∑
〈〈i|j〉〉

uB
j (∓) + U

(
ψ0

i

)2
vB

i ,

−ωvB
i = δvB

i − t1
∑
〈i|j〉

vA
j − it2

∑
〈〈i|j〉〉

vB
j (±) + U

((
ψ0

i

)2)∗
uB

i ,

(44)

where δ = 2Un − μ. In the next step, we rewrite Eq. (44) in
the momentum basis and solve the emerging eigenproblem.

For the SF phase, the relevant matrix is of size 4×4, and
since Eqs. (44) exhibit particle-hole symmetry we obtain two
particle excitation branches, shown in Figs. 8(a) and 8(b).
For the honeycomb lattice without flux, Fig. 8(a), we find
a Goldstone mode and a Dirac cone inherited from the
noninteracting dispersion relation, shown in the same figure by
a solid line. As we increase t2 but remain in the same phase, the
Goldstone mode persists and the sound velocity is unaffected
by t2. The gap between the two bands in Fig. 8(b) implies
that the edge mode structure present in the noninteracting
spectrum, arising due to a nontrivial topological index (4),
remains intact in the presence of weak interactions [16].
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Γ Γ Γ Γ

Γ Γ Γ Γ

Γ

FIG. 8. (Color online) Bogoliubov dispersion relation ω(k)/U

for nU = 1 and (a) t1 = 1,t2 = 0, (b) t1 = 1,t2 = 0.1, (c) t1 = 1,

t2 = 1, (d) t1 = 0,t2 = 1. Black solid lines give the corresponding
noninteracting dispersion relation shifted upwards by 2Un − μ. The
inset in (b) defines the path in the Brillouin zone.

In CSF, the mean-field order parameter takes the form:

ψ0
i =

{√
n exp(−iKAri) exp iφA, i ∈ A√
n exp(−iKBri) exp iφB, i ∈ B

, (45)

where we explicitly consider at the mean-field level two
independent superfluids by introducing two angles φA and
φB . The terms proportional (ψ0

i )2 couple different momenta in
Eq. (44) [44,45]. In the case of t1 = 0, uA

k couples to vA
k−2KA

and uB
k couples to vB

k−2KB
. (Vectors −KA, KB , and 2KA are

equal up to reciprocal lattice vectors). Therefore we obtain two
decoupled eigenproblems for

hA(k) =
(

δ − d3(k) nU

−nU −δ − d3(k + KA)

)
(46)

and

hB(k) =
(

δ + d3(k) nU

−nU −δ + d3(k − KA)

)
, (47)

where d(k) is given in Eq. (3), that yield the following particle
excitations:

ωA(k) = 1
2 [−d3(k) − d3(k + KA)

+
√

(d3(k) − d3(k + KA) − 2δ)2 − 4n2U 2], (48)

ωB(k) = 1
2 [d3(k) + d3(k − KA)

+
√

(d3(k) − d3(k − KA) + 2δ)2 − 4n2U 2]. (49)

These are shown in Fig. 8(d). We observe two Goldstone
modes: one corresponiding to the superfluid of sublattice
A located around KA and the second one at KB . The
inversion symmetry, present when both sublattices are taken
into account, provides the particle-hole symmetry also in this
case [45].

As the t1 term is turned on, the three momenta k, k − KA,
and k + KA are coupled and the eigenproblem corresponding
to Eq. (44) is of size 12×12. The related matrix is explicitly

π π π

δ
φ

δ

φ

FIG. 9. (Color online) (a) Contribution of quantum fluctuations
to the ground-state energy δE(k,φ) − δE(k,0), t1 = t2 = 1, nU = 1,
φ = φA − φB . For a single value of k, we obtain the thick curve. The
qualitative behavior of δE(k,φ) is similar throughout the Brillouin
zone (thin lines). In (b), we illustrate the six configurations of order
parameters on the two sublattices favoured by quantum fluctuations.
In (c), the corresponding emerging plaquette currents are depicted.

given in the Appendix and it incorporates the angles φA and φB .
An example of the result for the six particle bands is illustrated
in Fig. 8(c) for φA = φB . We observe that the two Goldstone
modes persist even at finite t1. Some redundancies are present
in Fig. 8(c), e.g. KA, �, and KB correspond to the same point,
since we have not reduced the Brillouin zone in accordance
with the coupling between different momenta.

As mentioned many times throughout the paper, in the
CSF at the mean-field level the two sublattices are fully
decoupled. We now discuss the role of quantum fluctuations
as a beyond mean-field effect that could lift the degeneracy
of the mean-field solution and set the value of the phase
difference φ = φA − φB . The mechanism is known as “order
by disorder” [112], and it has been discussed in the context of
cold atoms [72,113–115]. The zero-point energy is given by

δE(φ) =
∑

k

δE(k,φ) = 1

2

∑
k,l

ωl(k,φ) (50)

as can be derived using the Bogoliubov approach in the
operator formalism [98,114,115]. The index l enumerates six
particle bands. In Fig. 9(a), we show the typical behavior
of δE(k,φ) − δE(k,0) throughout the Brillouin zone. The
energy differences are typically small, but configurations with
φ = m×π

3 , where m is an integer [Fig. 9(b)] are preferred.
Phase ordering between the sublattices leads to the current
patterns shown in Fig. 9(c). These are similar to the patterns
discussed in Sec. III B; out of the three nearest-neighbor links
shown, one does not carry current and there are two possible
directions for the current flow on the two other links. These
current patterns are periodic with respect to an enlarged unit
cell which consists of six sites. The dependence 1 − cos(6φ)
can be traced back to the eigenproblem of the matrix (A2). By
inspecting the characteristic polynomial (A7), we find that the
only contribution of the phase difference φ is in the free term as
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cos(6φ) with proportionality constant t6
1 U 6. The contribution

vanishes exactly at KB and KA.
Our findings comply to the general rule stating that quantum

fluctuations favor colinear (parallel or anti-parallel) order
parameters [112]. As cold atoms represent highly tunable
and clean systems, the effect could be possibly observed in
an experiment. However, it may be difficult to distinguish it
from the pinning that arises due to the boundary conditions
or defects, discussed in Sec. III B. In addition, thermal effects
may be important, but we do not discuss this point further.

B. Excitations of the Mott phase

In this section, we study quasiparticle or quasihole ex-
citations of the Mott insulator phase. We use the single
particle Green’s function G(iωn,k) to compute quasiparticle
and quasihole band dispersions. We characterize transport in
excited bands through band Chern numbers [2]. We obtain
G(iωn,k) from DMFT and from the strong-coupling random
phase approximation [116–118].

1. Strong-coupling expansion

We use the results of the strong-coupling expansion
with RPA introduced in Sec. III C to study the spectrum
of quasiparticle and quasihole excitations. We extend the
approach of Sec. III C by grouping the sites on the lattice into
identically shaped nonoverlapping clusters [116–118] (e.g.,
the collection of unit cells pointing along a1 is a collection of
two site clusters). Starting from the limit of decoupled clusters
(intercluster hopping vanishes) we treat intercluster hopping
perturbatively, summing all RPA contributions.

Let H′
H be the sum of intercluster hopping terms in HH. Let

HI ≡ H − HH denote the interaction part of the Hamiltonian.
The Hamiltonian of decoupled clusters is

HC = HI + HH − H′
H =

∑
j

HCj . (51)

The sum in the second equality is over decoupled cluster
Hamiltonians HCj .

We now define the local Green’s function corresponding to
one decoupled cluster. Let the ground state of HCj be |�0j 〉
with ground-state energy E0. Denote sites within a cluster
using Latin indices a,b = A or B, such that b̂aj annihilates a
quasiparticle at the ath site of the j th cluster. The local Green’s
function is[
GRPA

jj (iωn)
]
ab

= −〈�0j |b̂†bj
1

iωn − E0 + HCj

b̂aj |�0j 〉

+ 〈�0j |b̂aj

1

iωn + E0 −HCj

b̂
†
bj |�0j 〉, (52)

for each cluster j . In what follows, we assume that clusters are
identical, and therefore we will drop the cluster index denoting
the local Green’s function simply by [GRPA(iωn)]ab.

Note that Eq. (52) reduces to Eq. (27) of Sec. III C if we
consider single-site clusters. The spectral function has a pole
at nU − μ with residue (n + 1) and a pole at (n − 1)U − μ

with residue −n. If the cluster comprises the unit cell,
hybridization from the intracluster kinetic term results in pairs
of quasiparticle and quasihole poles.
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FIG. 10. (Color online) Typical spectral functions deep in the
Mott domain, for t1 = 3U/100, t2 = U/100, μ = U/2: (a) and
(b) quasihole and quasiparticle branches of the spectral function
obtained from DMFT for a cylinder geometry exhibiting edge modes
for δ = U/1000, (c) density of states A(ω) (arbitrary units) in a
torus geometry for two values of δ: U/1000 (solid black line) and
U/100 (thick dashed red line). Quasiparticle and quasihole bands are
centered at U − μ and −μ, respectively.

We commit to clusters consisting of a single unit cell. In
this case, the RPA approximation to the single particle Green’s
function is [117,118]

[GRPA(iωn,k)]−1 = [GRPA(iωn)]−1 − H′
H(k). (53)

This is the equivalent of Eq. (30) in the cluster perturba-
tion theory language. The difference is that now all three
of [GRPA(iωn,k)]ab, [GRPA(iωn)]ab and [H′

H(k)]ab are 2×2
matrices acting on the sublattice basis. Tracing over sublattice
indices in Eq. (53), we obtain the spectral function

A(ω,k) = −(1/π )Tr ImGRPA(ω,k). (54)

Since GRPA(ω,k) in Eq. (53) is a rational function, the spectral
function A(ω,k) is a sum of Lorentzians. Deep in the Mott
phase, the strong-coupling spectral function agrees with that
obtained from DMFT, plotted in Figs. 10(a) and 10(b) for a
finite cylinder geometry. Note that the resolution of the edge
states is dependent on the inverse lifetime δ. In Fig. 10(c), we
plot the density of states A(ω) ≡ ∫

d2kA(ω,k) for two values
of δ. The gap between quasiparticle (hole) bands disappears
when the inverse lifetime approaches the bandwidth, δ ∼ t1.
In the opposite regime, a clear gap is present for δ � t1. We
note finally that using larger clusters [117,118] yields a GRPA

whose qualitative features are similar to those of Eq. (53).
In particular, this approach will not yield an estimate for the
quasiparticle lifetime 1/δ.
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2. Chern number of particle or hole excitations

We assume that δ � t1, such that the GRPA(ω,k) has well
defined quasiparticle and quasihole peaks. We use Greek
indices α = +,− to denote the upper and lower subbands.
We denote the quasiparticle dispersion relation as ω+,α(k) and
the quasihole dispersion relation ω−,α(k). Quasiparticle and
quasihole poles arise from the equation

λ[ω±,α(k),k] = 0, (55)

where λ denotes any one of the two eigenvalues of
[GRPA(ω,k)]−1 obtained from Eq. (53). We are interested
in band Chern numbers, which arise from the Ishikawa-
Matsuyama formula [119] of the many-body Hall conductivity

σxy = −
∫

d2kdω

8π2
εij Tr[∂0G∂iG

−1G∂jG
−1]. (56)

The summation over indices i,j = 0,1,2 is implicit and εij

is the antisymmetric tensor. Integrations are performed over
the Brillouin zone and over real frequencies ω. We have
denoted partial derivatives as ∂j = ∂/∂kj , where k0 ≡ ω, and
k1,2 denote momentum.

Let U(ω,k) be the unitary transformation that diagonalizes
[GRPA(ω,k)]−1, that is,

[GRPA]−1
ab =

∑
αβ

UaαλαδαβU†
βb. (57)

We introduce the matrix of Berry gauge fields

Aj

αβ =
∑

a

i Uaα∂jU†
βa, for j = 0,1,2. (58)

Note that the diagonal component Aj
αα is the Berry gauge field

associated with the αth band. If the Green’s function has only
simple poles at ω±,α(k), then the frequency integral of Eq. (56)
can be performed [60,61,120], leading to

σxy = −
∑
αδ

∫
d2k
2π

εij
[
Ai

αδA
j

δα + vi
−,αA

j

αδA0
δα

]
ω=ω−,α(k).

(59)

The frequency integral of Eq. (56) amounts to evaluating the
integrand of Eq. (59) at the two quasihole poles ω−,α(k). We
have introduced band velocities

v
j
−,α(k) ≡ ∂jω−,α(k). (60)

To further simplify Eq. (59), define the on-shell Berry gauge
field for quasihole bands as

Bi
h,αβ(k) =

∑
a

i Uaα[ω−,α(k),k]∂iU†
βa[ω−,β(k),k]. (61)

Then σxy measures the flux of the on-shell Berry field strength
through the Brillouin zone and splits into a sum over quasihole
bands σxy = ∑

α=± Cα , where

Cα = 1

2π

∫
d2k

[
∂1B2

h,αα(k) − ∂2B1
h,αα(k)

]
. (62)

Direct evaluation of Eq. (62) gives C± = ±1. The total Hall
conductivity of the two quasihole bands is hence σxy = 0.
This corresponds to the Hall conductivity evaluated in the

Mott gap. Bulk-edge correspondence implies that edge modes
exist in the gap between the two quasihole bands, Fig. 10.
The quasiparticle bands have C± = ∓1, which follows from
an analogous calculation.

Small finite inverse lifetime δ results in a shift of quasi-
particle poles away from the real axis. The results of this
subsection for Cα remain valid as long as a gap exists between
quasiparticle bands. Figure 10 shows that whenever the inverse
lifetime δ is on the order of the kinetic energy strength t1, the
Mott gap and the two gaps between excited bands are smeared
off. It is therefore necessary to require δ � t1. Moreover, this
allows to resolve intra-gap edge modes from bulk states in the
density of states.

The edge modes discussed in this section should be
visible either in cold-atom experiments using Bragg spec-
troscopy [100,121] and photoemission spectroscopy [122] or
in photonic systems, where the frequency of the incoming-
wave can be adjusted. As mentioned in Sec. II, artificial gauge
fields have already been synthesized in photonic systems [12].
The more challenging requirements are photon-photon inter-
actions. However, on a single-cavity level it has been shown
that photon-photon interactions can be induced by coupling an
off-resonant superconducting qubit to a cavity [14,123].

V. CONCLUSIONS

In this paper, we have investigated the bosonic Haldane-
Hubbard model at unit filling. By combining several numerical
and analytical approaches, we have mapped out the phase
diagram as a function of two hopping amplitudes and local
interaction and found that it consists of two competing
types of superfluid and a Mott insulator supporting local
plaquette currents. In particular, we found using methods
beyond mean-field theory that there is a reentrant transition
into the Mott insulator. We have discussed two distinct
superfluid ground states. These are connected either by a
first order transition in the weakly interacting regime, or via
two second order Mott insulator transitions in the strongly
interacting regime. Different physical properties of the phases
are reflected in the ground-state density fluctuations and
plaquette currents between next-nearest neighbors. All these
observables are accessible in present-day ultracold atom
experiments. In addition to the study of the ground states,
we have addressed the excitation spectra in the weakly
interacting superfluid and in the Mott domain and found
that the corresponding quasiparticle or quasihole excitations
consist of bands with nonzero Chern numbers which predict
the existence of edge states in the gaps between excited
bands.

We expect that our findings can be probed in the near future
in ongoing experiments. This work paves the way to open
questions about emergent phases at different filling fractions
or in multicomponent systems, which we will address in future
work. For example, related recent studies [97,124–128] of
fermions on the half-filled honeycomb lattice have identified
emergence of d-wave superconducting states close to the Mott
transition. Recent work in Ref. [72] discusses a chiral spin
superfluid phase of two-component bosons in a double-well
potential realized on the honeycomb lattice. This shares some
features with our proposal but is nevertheless different.
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APPENDIX: EXCITATIONS OF THE CHIRAL SUPERFLUID

In this Appendix, we complement derivations of Sec. IV A. In the chiral superfluid at finite values of t1, we have coupling of
three momenta k, k − KA, and k + KA in Eq. (44). Accordingly, we introduce

δψ(k) = (
uA

k ,uA
k−KA

,uA
k+KA

,vA
k ,vA

k−KA
,vA

k+KA
,uB

k ,uB
k−KA

,uB
k+KA

,vB
k ,vB

k−KA
,vB

k+KA

)
. (A1)

The dispersion relation ω(k) is obtained by solving the eigenproblem of the 12×12 matrix

h(k) =
(

h11 h12

h21 h22

)
, (A2)

where

h11 =

⎛
⎜⎜⎜⎜⎜⎝

δ − d3(k) 0 0 0 0 nUe2iφA

0 δ − d3(k − KA) 0 nUe2iφA 0 0
0 0 δ − d3(k + KA) 0 nUe2iφA 0
0 −nUe−i2φA 0 −δ − d3(k) 0 0
0 0 −nUe−i2φA 0 −δ − d3(k − KA) 0

−nUe−i2φA 0 0 0 0 −δ − d3(k + KA)

⎞
⎟⎟⎟⎟⎟⎠, (A3)

h22 =

⎛
⎜⎜⎜⎜⎜⎝

δ + d3(k) 0 0 0 nUe2iφB 0
0 δ + d3(k − KA) 0 0 0 nUe2iφB

0 0 δ + d3(k + KA) nUe2iφB 0 0
0 0 −nUe−i2φB −δ + d3(k) 0 0

−nUe−i2φB 0 0 0 −δ + d3(k − KA) 0
0 −nUe−i2φB 0 0 0 −δ + d3(k + KA)

⎞
⎟⎟⎟⎟⎟⎠, (A4)

h12 = diag(−d1(k) + id2(k), − d1(k − KA) + id2(k − KA), − d1(k + KA) + id2(k + KA),

d1(k) − id2(k), d1(k − KA) − id2(k − KA), d1(k + KA) − id2(k + KA)), (A5)

and

h21 = diag(−d1(k) − id2(k),−d1(k − KA) − id2(k − KA),−d1(k + KA) − id2(k + KA),

d1(k) + id2(k), d1(k − KA) + id2(k − KA), d1(k + KA) + id2(k + KA)). (A6)

Here, δ = 2nU − μ = Un + 3
√

3t2.
The characteristic polynomial of the matrix (A2) is too long to be written down completely, so we explicitly show only the

few most interesting terms:

p(x) = x12 + x10[6n2U 2 − 6δ2 − 2(d(k)2 + d(k − KA)2 + d(k + KA)2)] + · · · + ()x2 + δ12

− 2n6U 6 cos(6φ)(d1(k)2 + d2(k)2)(d1(k − KA)2 + d2(k − KA)2)(d1(k + KA)2 + d2(k + KA)2). (A7)
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Bosonic Phases On The Haldane Honeycomb Lattice

Vasić, I (1); Petrescu, A (2,3); Le Hur, K (2); Hofstetter, W (4);

Contact: ivana.vasic@ipb.ac.rs

(1) Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Bel-
grade, Serbia

(2) Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
(3) Department of Physics, Yale University, New Haven, Connecticut 06520, USA
(4) Institute of Theoretical Physics, Goethe University, Frankfurt/Main, Germany

Recent experiments [1] in ultracold atoms have reported the implementation of artificial gauge
fields in lattice systems. Motivated by such advances, we investigate the Haldane honeycomb lattice
tight-binding model [2], for bosons with local interactions at the average filling of one boson per site.
We analyze the ground state phase diagram and uncover three distinct phases: a uniform superfluid,
a chiral superfluid and a plaquette Mott insulator with local current loops. Nearest-neighbor and
next-nearest neighbor currents distinguish CSF from SF, and the phase transition between them is
first order. We apply bosonic dynamical mean field theory and exact diagonalization to obtain the
phase diagram, complementing numerics with calculations of excitation spectra in strong and weak
coupling perturbation theory. The characteristic density fluctuations and excitation spectra can be
probed in future experiments.
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Figure 2.2: a) Lattice vectors and hopping integrals of the Haldane model. b) Phase diagram of the model
at unit filling, containing plaquette Mott insulator (PMI), uniform superfluid (SF) and chiral superfluid
(CSF) phases. c) Local condensate order parameter in the uniform superfluid; d) In CSF the condensate
order parameters on sublattices A and B are determined up to a relative phase.
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Bosonic Phases On The Haldane Honeycomb
Lattice

I. Vasića, A. Petrescubc, K. Le Hurb and W. Hofstetterd

aScientific Computing Laboratory, Institute of Physics, University of Belgrade, Belgrade, Serbia
bCentre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
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dInstitute of Theoretical Physics, Goethe University, Frankfurt/Main, Germany

Abstract. Recent experiments [1] in ultracold atoms have reported the implementation of artificial
gauge fields in lattice systems. Motivated by such advances, we investigate the Haldane honeycomb
lattice tight-binding model [2], for bosons with local interactions at the average filling of one boson
per site. We analyze the ground state phase diagram and uncover three distinct phases: a uniform su-
perfluid, a chiral superfluid and a plaquette Mott insulator with local current loops. We apply bosonic
dynamical mean field theory and exact diagonalization to obtain the phase diagram, complementing
numerics with calculations of excitation spectra in strong and weak coupling perturbation theory.
The characteristic density fluctuations and excitation spectra can be probed in future experiments.
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FIGURE 1. a) Lattice vectors and hopping integrals the Haldane model. b) Phase diagram of the model
at unit filling, containing plaquette Mott insulator (PMI), uniform superfluid (SF) and chiral superfluid
(CSF) phases. c) Local condensate order parameter in the uniform superfluid; d) In CSF the condensate
order parameters on sublattices A and B are determined up to a relative phase.
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Preview Abstract

Authors:
  Rajbir Nirwan
    (Institut fur Theoretische Physik, Goethe-Universitat, 60438 Frankfurt/Main, Germany)

  Ivana Vasic
    (Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia)

  Alexandru Petrescu
    (Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA)

  Karyn Le Hur
    (Centre de Physique Theorique, Ecole Polytechnique and CNRS, Universite Paris-Saclay, France)

  Walter Hofstetter
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We investigate the bosonic equivalent of the Kane-Mele model on the honeycomb lattice [1] including spin-orbit and interaction effects. This model is
a generalization of the interacting bosonic Haldane model introduced in Ref. [2]. We also allow for an on-site conversion (coherent) term between the
two species. We analyze the phase diagram using bosonic dynamical mean-field theory and analytical methods. In the Mott phase, a strong-coupling
expansion is performed to investigate the magnetism and frustration effects. A connection is drawn with the quantum theory of an antiferromagnet on
a triangular lattice in a magnetic field [3]. This model can be realized in ultra-cold atom systems with current technology. [1] C. L. Kane and E. Mele,
Phys. Rev. Lett. 95, 226801 (2005). [2] I. Vasic, A. Petrescu, K. Le Hur and W. Hofstetter, Phys. Rev. B 91, 094502 (2015). [3] A. V. Chubukov and D.
I. Golosov, J. Phys. Cond. Matt. 3 69 (1991).
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Hannover 2016 – Q Tuesday

Kopfermann-Straße 1, 85748 Garching, Germany — 2Fakultät für
Physik, Ludwig-Maximilians-Universität München, Schellingstraße 4,
80799 München, Germany
Ultracold atoms in optical lattices provide an ideal testbed for the
study of strongly correlated many-body systems. The detection and
manipulation of single atoms in two-dimensional optical lattices offer
a versatile toolbox to investigate condensed matter models. In our
setup we are capable of such control and local detection at the single-
atom level by fluorescence-imaging of a two-dimensional bosonic gas
of Rubidium-87. In recent work we have investigated Rydberg gases,
which feature strong van der Waals interactions and can be used for the
study of strongly correlated long-range many-body systems. This has
allowed us to observe crystalline states and to microscopically char-
acterize Rydberg superatoms, as well as to detect spin correlations
induced by Rydberg-dressed interactions. We have also explored the
localization transition occurring in a disordered interacting bosonic
system in two dimensions, in which a for large enough disorder strength
non-thermal states prevail. To this end we prepare a highly-excited
Mott insulator state and study its thermalization in the presence of a
random disorder potential.

Q 27.8 Tue 16:30 Empore Lichthof
Excitations of a Bose–Einstein condensate with angular spin–
orbit coupling — ∙Ivana Vasić and Antun Balaž — Scientific
Computing Laboratory, Institute of Physics Belgrade, University of
Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
A theoretical model of a Bose–Einstein condensate with angular spin–
orbit coupling has been recently introduced and it has been established
that a half–skyrmion configuration represents the ground state in a
certain regime of spin–orbit coupling and interaction. We investigate
low–lying excitations of this phase by using the method of Bogoliubov
and simulations of the time–dependent Gross–Pitaevskii equation. We
find that a sudden shift of the trap bottom results in a complex motion
of the center–of–mass of the system in the x–y plane that is markedly
different from a response of a competing phase. This behaviour of the
half-skyrmion phase comprises a low–frequency interaction–dependent
oscillation as well as a high–frequency contribution. Moreover, the
breathing mode frequency of the half–skyrmion is set by the spin-orbit
coupling and interaction strength, while it takes a universal value in
the competing state.

Q 27.9 Tue 16:30 Empore Lichthof
Observation of a superradiant Mott insulator in the Dicke-
Hubbard model — ∙Christoph Georges, Hans Kessler, Jens
Klinder, Jose Vargas, and Andreas Hemmerich — Institut für
Laserphysik, Universität Hamburg, Luruper Chaussee 149, D-22761
Hamburg, Germany
It is well known that the bosonic Hubbard model possesses a Mott
insulator phase. Likewise, it is known that the Dicke model exhibits a
self-organized superradiant phase. By implementing an optical lattice
inside of a high finesse optical cavity both models are merged such
that an extended Hubbard model with cavity-mediated infinite range
interactions arises. In addition to a normal superfluid phase, two su-
perradiant phases are found, one of them coherent and hence superfluid
and one incoherent Mott insulating [1].
[1] J. Klinder et al., arXiv:1511.00850

Q 27.10 Tue 16:30 Empore Lichthof
Direct Observation of Chiral Superfluid Order — ∙Carl Hip-
pler, Thorge Kock, Hannes Winter, and Andreas Hemmerich
— Universität Hamburg
The overall goal of our experiment is to explore ultracold bosonic quan-
tum gases in excited bands of an optical lattice. We investigate Rb-87
atoms in a bipartite interferometric lattice allowing us to change the
lattice geometry dynamically. We observe the formation of a chiral
superfluid order, arising from the interplay between the contact inter-
action of the atoms on each lattice site and the degeneracy of the p
orbitals in the second Bloch band. A periodic pattern of locally alter-
nating orbital currents and circular currents establishes in the lattice,
time-reversal symmetry being spontaneously broken. We report on a
technique that lets us directly observe the phase properties of the su-
perfluid order parameter. Here, two independent atomic samples are
produced in the second band at well separated spatial regions of the
lattice and subsequently brought to interference.

Q 27.11 Tue 16:30 Empore Lichthof

Laser using narrow band intercombination line of Calcium
— Hannes Winter, ∙Torben Laske, and Andreas Hemmerich —
Institut für Laserphysik, Hamburg
We present our setup for realizing a superradiant laser [1] similar to
the proposal to [2] using the narrow Calcium intercombination line
41S0 ↔ 43P1 as the laser transition. Such a laser operates in the bad-
cavity regime, in which the coherence is not stored in the intra cavity
light field but in the gain medium. The ultracold Calcium atoms are
trapped in the Lamb-Dicke regime by a one dimensional intra cav-
ity lattice to control the Doppler effect. Unlike conventional lasers,
the expected frequency stability of this light source is not limited by
mechanical fluctuations of the cavity length, which yields important
implications for applications like time metrology.

[1] M. Holland and J. Thompson et al. Nature, 484(7392):78-81,
(2012). [2] M. Holland et al., Phys. Rev. Lett. 102(16):163601,
(2009).

Q 27.12 Tue 16:30 Empore Lichthof
Towards an experimental realization of a periodic quan-
tum Rabi model with ultracold atoms — Simone Felicetti1,
Enrique Rico1,2, Carlos Sabín3, ∙Till Ockenfels4, Martin
Leder4, Christopher Grossert4, Martin Weitz4, and Enrique
Solano1,2 — 1Department of Physical Chemistry, University of
the Basque Country UPV/EHU, Bilbao, Spain — 2IKERBASQUE,
Basque Foundation for Science, Bilbao, Spain — 3Instituto de Física
Fundamental, CSIC, Madrid, Spain — 4Institut für Angewandte
Physik, Universität Bonn, Bonn
The quantum Rabi model [1,2,3] describes the interaction between a
two-level quantum system and a single bosonic mode. Whereas the
regime of ultra-strong coupling (USC) has just been recently investi-
gated, and an experimental realization of the quantum Rabi model in
the deep strong coupling (DSC) regime has so far been absent. We
propose a setup to perform a full quantum simulation of the quantum
Rabi model regarding an effective two-level quantum system, provided
by the occupation of Bloch bands by ultra-cold atoms in tailored op-
tical lattices [4], interacting with a quantum harmonic oscillator im-
plemented with an optical dipole trap. This setup will enable us to
study the crossover between USC and DSC regimes, where a pattern
of collapse and revival is predicted.

[1] I.I. Rabi, Phys. Rev 49, 324 (1936).
[2] D. Braak, Phys. Rev. Lett. 107, 100401 (2011).
[3] J. Casanova et al., Phys. Rev. Lett. 105, 263603 (2010).
[4] T. Salger et al., Phys. Rev. Lett. 107, 240401 (2011).

Q 27.13 Tue 16:30 Empore Lichthof
First order coherence of an ideal Bose gas of light —
∙Tobias Damm1, Julian Schmitt1, David Dung1, Christian
Wahl1, Frank Vewinger1, Jan Klaers1,2, and Martin Weitz1 —
1Institute of Applied Physics, University of Bonn — 2Present address:
Institute for Quantum Electronics, ETH Zürich
Bose-Einstein condensation in the gaseous regime has been oberseved
with cold atoms, exciton-polaritons and more recently with photons in
a dye-filled optical microcavity. The latter system is thermally equili-
brated both below and above criticality due to repeated absortion and
re-emission processes of the dye molecules.

In this work we report on the measurements of the first order coher-
ence of the photon gas confined in a dye-filled optical microcavity below
as well as above the phase transition to a photon condensate. Tun-
able Michelson and Mach-Zehnder interferometers are used to split up
and recombine the cavity emission to obtain temporal and spatial co-
herence information respectively. The observed coherence times range
from sub-picoseconds for noncritical system sizes up to microseconds
for condensed systems. While below criticality the coherence length is
in the micrometer regime, above criticality phase coherence is estab-
lished macroscopically over the whole mode volume.

Q 27.14 Tue 16:30 Empore Lichthof
Microstructuring of Trapping Potentials for Coupled Photon
Condensates — ∙Christian Kurtscheid1, Erik Busley1, David
Dung1, Tobias Damm1, Julian Schmitt1, Frank Vewinger1, Jan
Klärs2, and Martin Weitz1 — 1Institut für Angewandte Physik,
Universität Bonn — 2Institut für Quantenelektronik, ETH Zürich
We present recent work on multiple coupled photon condensates in a
single optical microcavity. Unlike Bose-Einstein condensates of dilute
atomic gases, the realization of a photon condensate is not feasible us-
ing a blackbody radiator by cooling, because the photons then simply

2
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system of rate equations for all the relevant Landau levels, and obtain the necessary 
information about the carrier distribution among the levels, after which we are able to 
evaluate the permittivity component along the growth direction of the structure, as well as 
the range of frequencies at which the structure exhibits negative refraction for a 
predefined total electron sheet density. 
 
REFERENCES 
[1] C. Gmachl et al., Rep. Prog. Phys. 64, 1533 (2001). 
[2] A. Daničić et al., J. Phys. D 43, 045101 (2010). 
[3] S. Kumar, J. Sel. Top. Quant. Elec. 17, 38 (2011). 
[4] J. Radovanović et al., Appl. Phys. A 109, 763 (2012). 
 
 
 

Dissipation through localised loss in lattice bosonic systems 
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e-mail: ivana.vasic@ipb.ac.rs 
 
In the recent years, controlled dissipation has proven to be a useful tool for probing of a 
quantum system in the ultracold setup [1]. We consider dynamics of lattice bosons 
induced by a dissipative local defect [2]. We address superfluid and supersolid phases 
that are ground states of an extended Bose-Hubbard Hamiltonian. To this end, we solve 
the master equation using the Gutzwiller approximation and find that in the usual 
homogeneous superfluid phase repulsive interactions lead to enhanced dissipation 
process. On the other hand, our mean-field approach indicates that the effective loss rates 
are significantly suppressed deep in the supersolid phase where repulsive nearest 
neighbour interactions play a dominant role. Our numerical results are explained by an 
analytical insight and in particular, in the limit of strong dissipation we recover the 
quantum Zeno effect. 
 
REFERENCES 
[1] G. Barontini et al., Phys. Rev. Lett. 110, 035302 (2013). 
[2] I. Vidanović, D. Cocks, W. Hofstetter, Phys. Rev. A 89, 053614 (2014). 
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Preview Abstract

Authors:
  Ivana Vasic
    (Institut fuer Theoretische Physik, Goethe-Universitaet, 60438 Frankfurt/Main, Germany)

  Alexandru Petrescu
    (Department of Physics, Yale University, New Haven, CT 06520, USA and Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128
Palaiseau, France)

  Karyn Le Hur
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Motivated by its recent realization in an ultracold atom experiment [1], we investigate the honeycomb lattice tight-binding model introduced by
Haldane [2], for bosons with local interactions at the average filling of one boson per site [3]. We uncover in the ground state phase diagram three
phases: a uniform superfluid (SF), a chiral superfluid (CSF) and a plaquette Mott insulator with local current loops (PMI). Nearest-neighbor and
next-nearest neighbor currents distinguish CSF from SF, and the phase transition between them is first order. We apply bosonic dynamical mean field
theory and exact diagonalization to obtain the zero temperature phase diagram, complementing numerics with calculations of excitation spectra in
strong and weak coupling perturbation theory. Furthermore, we explore the possibility of chiral Mott insulating phases at the average filling of one
boson every two sites. The characteristic density fluctuations, current correlation functions, and excitation spectra are measurable in ultracold atom
experiments. [1] G. Jotzu et al., arXiv:1406.7874 [2] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988). [3] Ivana Vasic, Alexandru Petrescu, Karyn Le
Hur, Walter Hofstetter, arXiv:1408.1411
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Q 62.1 Thu 17:00 C/Foyer
Towards imaging of single Rydberg Atoms — ∙Vladislav
Gavryusev, Georg Günter, Gerhard Zuern, Miguel Ferreira-
Cao, Giulia Faraoni, Hanna Schempp, Shannon Whitlock, and
Matthias Weidemüller — Physikalisches Institut, Universitat Hei-
delberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
Electronically highly excited (Rydberg) atoms constitute a system with
long range interactions which allows to study many intriguing phenom-
ena, ranging from quantum non-linear optics to dipole-mediated energy
transport.

To optically image Rydberg atoms we use the interaction enhanced
imaging technique [1] which exploits interaction-induced shifts on
highly polarizable excited states of probe atoms, that can be spatially
resolved via an electromagnetically induced transparency resonance.
With this tool we observed by monitoring the Rydberg distribution
the migration of Rydberg electronic excitations, driven by quantum-
state changing interactions [2]. To push this technique to the level
of individual Rydberg atom detection we developed a simple analytic
Hard-Sphere model for light propagation through an atom cloud that
takes into account interaction effects and technical noise sources. The
model predicts a signal to noise ratio > 1 and agrees with numerical
non linear light propagation simulations. We will present our progress
towards the observation of individual Rydberg atoms which would al-
low to study the spatial and temporal dynamics of the system.

[1] G. Günter et al., Phys. Rev. Lett. 108, 013002 (2012)
[2] G. Günter et al., Science 342, 954 (2013)

Q 62.2 Thu 17:00 C/Foyer
Dipolar exchange in interacting Rydberg gases — ∙Miguel
Ferreira-Cao, Georg Günter, Hanna Schempp, María M. Val-
ado, Vladislav Gavryusev, Gerhard Zürn, Shannon Whitlock,
and Matthias Weidemüller — Physikalisches Institut, Universität
Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
Dipolar exchange interactions play an important role in diverse systems
ranging from polar molecules to molecular aggregates, light-harvesting
complexes or quantum dots [1]. Ultracold Rydberg atoms offer an
ideal system to study dipolar energy transport under the influence of
a controlled environment [2].

We have performed measurements of microwave driven Rabi oscilla-
tions between Rydberg states with angular momentum state s and p
in which interactions lead to reduced contrast for high Rydberg den-
sities. This system constitutes a realization of a XY spin model with
long-range and anisotropic spin-spin interactions [3,4]. The build-up of
correlated phases of the spin distribution is an important aspect under
investigation. Applying tomographic methods, future measurements
can reveal the time-dependent properties of the many-body state.

[1] B. Yan et al., Nature 501, 521-525 (2013)
[2] G. Günter et al., Science 342, 954 (2013)
[3] D. Maxwell et al., Phys. Rev. Lett. 110, 103001 (2013)
[4] D. Barredo et al., arXiv:1408.1055 (2014)

Q 62.3 Thu 17:00 C/Foyer
Rydberg dressing of ultracold Potassium atoms via electro-
magnetically induced transparency — ∙Christoph Schweiger,
Nils Pehoviak, Stephan Helmrich, Alda Arias, and Shannon
Whitlock — Physikalisches Institut, Universität Heidelberg, Im
Neuenheimer Feld 226, 69120 Heidelberg
We aim to use laser dressing of Rydberg states of ultracold potassium
atoms to create and study novel strongly-correlated quantum gases
with long-range interactions. Rydberg dressing, i.e. the small admix-
ture of a Rydberg state to the ground state [1] can be realised via
a single-photon transition or a two-photon transition in a three-level
ladder scheme. We use a two-photon transition in an electromagneti-
cally induced transparency (EIT) configuration to excite potassium-40
atoms to Rydberg states. The Rydberg state admixture and the life-
time of the dressed-states can be controlled by the ratio of the Rabi
frequencies of the laser fields. We will describe a high-power narrow-
linewidth laser system used to produce up to 2 W at a wavelength of
460 nm. It is stabilised using spectroscopy of Rydberg states using
an EIT resonance using thermal atoms in a vapor cell. We will re-
port our first experiments on EIT spectroscopy of potassium atoms,
and discuss the prospects for creating long-range interacting fermionic

quantum gases via Rydberg dressing.
[1] Balewski, J.B. et al. ”Rydberg dressing: Understanding of collec-

tive many-body effects and implications for experiments”, arXiv:1312-
6346, 2013

Q 62.4 Thu 17:00 C/Foyer
Rydberg quantum optics in ultracold gases — ∙Ivan Mir-
gorodskiy, Hannes Gorniaczyk, Christoph Tresp, Sebastian
Weber, and Sebastian Hofferberth — 5. Physikalisches Institut,
Universität Stuttgart, Germany
Mapping the strong interaction between Rydberg excitations in ultra-
cold atomic ensembles onto single photons via electromagnetically in-
duced transparency enables manipulation of light on the single photon
level. We report the realization of a free-space single-photon transis-
tor, where a single gate photon controls the transmission of more than
60 source photons. We show that this transistor can also be operated
as a quantum device, where the gate input state is retrieved from the
medium after the transistor operation. In addition, we demonstrate
general theoretical techniques for the dynamic description of Rydberg
pair state admixture at nonzero interaction angles with respect to the
quantization axis. This model explains our experimental observation
of dipolar dephasing of D-states.

Q 62.5 Thu 17:00 C/Foyer
Towards a single-photon source based on Rydberg FWM in
thermal microcells — ∙Fabian Ripka, Yi-Hsin Chen, Robert
Löw, and Tilman Pfau — 5. Physikalisches Institut Universität
Stuttgart, Stuttgart, Deutschland
Photonic quantum devices based on atomic vapors at room temper-
ature combine the advantages of atomic vapors being intrinsicly re-
producible as well as semiconductor-based concepts being scalable and
integrable. One key device in the field of quantum information are
single-photon sources. A promising candidate for realizing an on-
demand single-photon source relies on the combination of two atomic
effects, namely four-wave mixing (FWM) and the Rydberg blockade.

Coherent dynamics to Rydberg states has been demonstrated in
thermal vapor cells on nanosecond timescales [1] and van-der-Waals
interaction has been observed [2], where the interaction strength ex-
ceeds the energy scale of thermal motion and is thus strong enough to
enable quantum correlations. Subsequently, we observed both coherent
dynamics and effects of dephasing due to Rydberg-Rydberg interaction
also in a pulsed FWM scheme [3]. Both are essential effects for building
up a single-photon source. As the next step, we are about to reduce
the excitation volume towards below the Rydberg interaction range by
use of high-NA optics and spatial confinement. First investigations on
effects of the confinement on the FWM signal will be shown.

[1] Huber et al., PRL 107, 243001 (2011)
[2] Baluktsian et al., PRL 110, 123001 (2013)
[3] Huber et al., PRA 90, 053806 (2014)

Q 62.6 Thu 17:00 C/Foyer
Dynamical Mean-Field Theory of Rydberg-dressed quan-
tum gases in optical lattices — ∙Andreas Geißler1, Mathieu
Barbier1, Ivana Vasic2, and Walter Hofstetter1 — 1Goethe
Universität, Frankfurt a. M., Germany — 2University of Belgrade,
Belgrade, Serbia
Recent experiments have shown that Rydberg-dressed quantum many
body systems with large numbers of Rydberg excitations in an opti-
cal lattice are within reach. We have studied these strongly correlated
systems for the bosonic case both within the Gutzwiller approximation
(GA) and in a real-space bosonic extension of Dynamical Mean-Field
Theory (RB-DMFT) for a two-species lattice Hamiltonian. While RB-
DMFT becomes computationally demanding for high lattice fillings,
the GA still allows for a thorough investigation of the phase space.
We find new exotic quantum phases of lattice commensurate order,
giving rise to a devil’s staircase in the filling as a function of the chem-
ical potential, long-range interaction and Rabi laser detuning. With
increasing hopping, a nonzero condensate fraction starts to emerge,
which can coexist with the spatial density-wave order, giving rise to a
series of supersolid phases. Spontaneously broken lattice symmetries
imply an anisotropic superfluid fraction. We obtain a rich phase dia-
gram in our simulations for the chosen range of experimentally relevant
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The impressive development of experimental techniques in ultracold
quantum degenerate gases of alkaline-earth atoms in the last years
has allowed investigation of strongly correlated systems. Long-lived
metastable states in combination with a decoupled nuclear spin give
the opportunity to study Hamiltonians beyond the possibilities of cur-
rent alkali-based experiments such as: two-band Hubbard models,
the Kondo lattice model as well as SU(N)-symmetric magnetic sys-
tems. From the experimental point of view Ytterbium is the most
appropriate due to its large number of bosonic and fermionic (e.g.
173Yb) isotopes with a wide range of interaction strengths. We study
finite-temperature properties of four-component mixtures of ultracold
fermions within the repulsive (𝑈 > 0) Hubbard model, on the simple
cubic lattice. We use the Real-Space Dynamical Mean-Field method,
mostly for the half-filling case and at intermediate and strong cou-
plings. We also investigate the case of different interspecies interac-
tions and its influence on the possible magnetic orderings. Finally,
we study the role of Hund’s coupling (exchange interaction) in finite
temperature magnetic phases, within two-band Hubbard model.

Q 15.29 Mon 17:00 C/Foyer
Detection of topological order in interacting many-body sys-
tems using mobile impurities — ∙Fabian Grusdt1,2,3, Norman
Yao3, Dmitry Abanin3,4,5, and Eugene Demler3 — 1Department
of Physics and research center OPTIMAS, University of Kaiser-
slautern, Germany — 2Graduate School Materials Science in Mainz,
Kaiserslautern, Germany — 3Department of Physics, Harvard Univer-
sity, Cambridge, Massachusetts 02138, USA — 4Perimeter Institute
for Theoretical Physics, Waterloo, Canada — 5Institute for Quantum
Computing, Waterloo, Canada
We present a scheme for the detection of topological order in interact-
ing many-body systems. Our method is based on a generalization of
single-particle interferometric schemes developed for the detection of
topological invariants of band structures [Atala et.al., Nature Physics
9, 795 (2013)]. We suggest to couple a spin-1/2 impurity to a (topo-
logical) excitation of the many-body system. Performing Ramsey in-
terferometry in combination with Bloch oscillations of the resulting
composite particle (a strong-coupling topological polaron) allows to
directly detect many body-topological invariants. We demonstrate the
feasibility of our scheme by discussing integer and fractional Chern
insulators in two dimensions, and show how fractionalized excitations
can be detected. We also consider one-dimensional systems and show
how symmetry-protected topological invariants can be measured.

Q 15.30 Mon 17:00 C/Foyer
Steady State Currents in the Driven Dissipative Bose-
Hubbard Model — ∙Thomas Mertz1, Ivana Vasic1,2, Daniel
Cocks1,3, and Walter Hofstetter1 — 1Institute for Theoret-
ical Physics, Goethe-University, Frankfurt am Main, Germany —
2Institute of Physics, University of Belgrade, Beograd, Serbia —
3School of Engineering and Physical Sciences, James Cook University,
Townsville, Australia
Non-equilibrium dynamics of interacting bosons has been explored in-
tensely in recent experiments in both cold atoms and quantum optical
systems. We study the driven Bose-Hubbard model with one-body loss
in two dimensions for both spatially homogeneous and inhomogeneous
coupling to the environment. We describe dissipation by coupling the
system to a Markovian bath in terms of a Lindblad master equation
for the reduced density operator. In our work we analyse the steady
states of such systems, in particular we consider steady states that ex-
hibit constant particle currents supported by inhomogeneous coupling
to the environment. Furthermore, we investigate the effect of the bath
parameters on the occurence of constant currents.

Q 15.31 Mon 17:00 C/Foyer
Superfluid Phases in the Presence of Artificial Gauge Fields
— ∙Rajbir Nirwan1, Ivana Vasic1,2, Alex Petrescu3,4, Karyn
Le Hur4, and Walter Hofstetter1 — 1Institut für Theoretische
Physik, Frankfurt, Germany — 2Institute of Physics Belgrade, Bel-
grade, Serbia — 3Department of Physics, Yale, USA — 4Centre de
Physique Theorique, Ecole Polytechnique, France
In recent years several experiments have reported the realization of
artificial gauge fields in systems of cold atoms in optical lattices. One
of the latest advances has been the realization of the Haldane model
[1,2]. Motivated by these achievements, we investigate the Haldane
model for bosons in the weakly interacting regime using the Gross
Pitaevskii- equation [3]. We study the ground state of the system
and find two different superfluid phases. In the normal superfluid

phase the ground state of the system is a Bose-Einstein condensate at
zero quasi-momentum. However, for sufficiently strong next-nearest
neighbor hopping we find a chiral superfluid phase, where the ground
state of the system consists of two condensates formed at finite quasi-
momentum. In both cases we calculate the pattern of local mass cur-
rents and density distributions.

[1] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)
[2] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,

D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014)
[3] I. Vasic, A. Petrescu, K. Le Hur, W. Hofstetter, arXiv: 1408.1411

Q 15.32 Mon 17:00 C/Foyer
Direct observation of chiral order in double layer super-
fluid — ∙Arne Ewerbeck, Carl Hippler, Thorge Kock, Robert
Büchner, Raphael Eichberger, Matthias Ölschläger, Wen-
Min Huang, Ludwig Mathey und Andreas Hemmerich — Institut
für Laseryphsik, Hamburg
A double layer chiral superfluid is formed in the second band of a bi-
partite optical square lattice. In an ballistic expansion process the two
layers are superimposed. The Bragg maxima thus observed exhibit in-
terference patterns, which provide direct information on the formation
of chiral order and the presence and character of low energy excitati-
ons.

Q 15.33 Mon 17:00 C/Foyer
Quasi-Condensation and Superfluidity in a Ring Trap —
Hansjörg Polster and ∙Carsten Henkel — University of Pots-
dam, Germany
Low-dimensional Bose gases suffer from large phase fluctuations that
prevent the formation of a proper condensate as defined by Penrose
and Onsager. We study a one-dimensional, phase-fluctuating gas in
the cross-over region between the ideal gas and the quasi-condensate
(weak interactions). Correlation functions of any order are found by
mapping the quantum field theory to a random walk in the complex
plane, making a classical field approximation [1]. We discuss in par-
ticular full distribution functions for the atomic density, including the
formation of pairs and clusters at the onset of quasi-condensation.
Currently we investigate the distribution function of the total parti-
cle current in a rotating ring trap [2] which provides insight into the
superfluid behaviour of the gas.
[1] L. W. Gruenberg and L. Gunther, Phys. Lett. A 38 (1972) 463; D.
J. Scalapino, M. Sears, and R. A. Ferrell, Phys. Rev. B 6 (1972) 3409
[2] I. Carusotto and Y. Castin, C. R. Physique 5 (2004) 107

Q 15.34 Mon 17:00 C/Foyer
Failure of extended mean-field theories in one-dimensional
Bose gases — Tim Sauer and ∙Carsten Henkel — University of
Potsdam, Germany
Due to large thermal fluctuations, low-dimensional Bose gases do not
develop a proper condensate, and even the onset of quasi-condensation
turns into a cross-over rather than a phase transition. This is actu-
ally a challenge to reproduce within a mean-field theory because the
modeling of the system seems to require a larger number of relevant
hydrodynamic fields. In other words, the statistics of the quantum field
is far from Gaussian in the cross-over region. We outline a zoology of
mean-field theories [1,2] and develop efficient analytical formulas us-
ing a high-temperature expansion. The problems of the theories are
illustrated by studying the equation of state and density fluctuations.
[1] C. Mora and Y. Castin, Phys. Rev. A 67 (2003) 053615.
[2] R. Walser, Opt. Commun. 243 (2004) 107

Q 15.35 Mon 17:00 C/Foyer
Quench-condensation of one-dimensional Bose gases —
∙Sebastian Erne1,2,4, Thomas Gasenzer1,2,3, and Jörg
Schmiedmayer4 — 1Institut für Theoretische Physik, Ruprecht-
Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,
Germany — 2ExtreMe Matter Institute EMMI, GSI Helmholtzzen-
trum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darm-
stadt, Germany — 3Kirchhoff-Institut für Physik, INF 227, 69120
Heidelberg, Germany — 4Vienna Center for Quantum Science and
Technology (VCQ), Atominstitut, TU Wien, Vienna, Austria
This work investigates the rapid cooling quench over the dimensional-
and quasicondensate-crossover. Following experiments performed by
R. Bücker, W. Rohringer et.al at the Atominstitut in Vienna, we study
the relaxation of such a far-from equilibrium system. The early stage of
condensate formation is dominated by solitonic excitations. The high
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Friday

Q 57: Quantum gases: Lattices II

Time: Friday 10:30–12:30 Location: UDL HS2002

Q 57.1 Fri 10:30 UDL HS2002
Artificial graphene with tunable interactions — •Michael
Messer1, Thomas Uehlinger1, Gregor Jotzu1, Daniel Greif1,
Walter Hofstetter2, Ulf Bissbort2,3, and Tilman Esslinger1 —
1Institute for quantum electronics, ETH Zurich, Zurich, Switzerland
— 2Institut für Theoretische Physik, Goethe Universität Frankfurt,
Frankfurt, Germany — 3Singapore university of technology and de-
sign, Singapore

We create an artificial graphene system with tunable interactions and
study the crossover from metallic to Mott insulating regimes, both in
isolated and coupled two-dimensional honeycomb layers. The artificial
graphene consists of a two-component spin mixture of an ultracold
atomic Fermi gas loaded into a honeycomb optical lattice. For strong
repulsive interactions we observe a suppression of double occupancy
and measure a gapped excitation spectrum. We present a quantitative
comparison between our measurements and theory, making use of a
novel numerical method to obtain Wannier functions for complex lat-
tice structures. Extending our studies to time-resolved measurements,
we investigate the equilibration of the double occupancy as a function
of lattice loading time.

Q 57.2 Fri 10:45 UDL HS2002
Realization of the Hofstadter Hamiltonian with ultra-
cold atoms in optical lattices — •Michael Lohse1,2, Monika
Aidelsburger1,2, Marcos Atala1,2, Julio Barreiro1,2, Belén
Paredes3, and Immanuel Bloch1,2 — 1Fakultät für Physik, Ludwig-
Maximilians-Universität, Schellingstrasse 4, 80799 München, Ger-
many — 2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-
Strasse 1, 85748 Garching, Germany — 3Instituto de F́ısica Teórica
CSIC/UAM C /Nicolás Cabrera, 13-15 Cantoblanco, 28049 Madrid,
Spain

We developed a new experimental technique to simulate strong uniform
artificial magnetic fields on the order of one flux quantum per plaquette
with ultracold atoms in optical lattices. Using laser-assisted tunneling
in a tilted optical lattice we engineer complex tunneling amplitudes
- so called Peierls phases - whose value depends on the position in
the lattice. Thereby, atoms hopping in the lattice accumulate a phase
shift equivalent to the Aharonov-Bohm phase of charged particles in a
magnetic field. We determine the local distribution of fluxes through
the observation of cyclotron orbits of the atoms on isolated four-site
square plaquettes. Furthermore, we show that for two atomic spin
states with opposite magnetic moments, our system naturally real-
izes the time-reversal-symmetric Hamiltonian underlying the quantum
spin Hall effect; i.e., two different spin components experience opposite
directions of the magnetic field

Q 57.3 Fri 11:00 UDL HS2002
Dynamical synthetic gauge fields using periodically modu-
lated interactions — Sebastian Greschner1, •Gaoyong Sun1,
Dario Poletti2, and Luis Santos1 — 1Institut für Theoretische
Physik, Leibniz Universität Hannover , Appelstr. 2, DE-30167 Han-
nover, Germany — 2Engineering Product Development, Singapore
University of Technology and Design, 20 Dover Drive, 138682 Sin-
gapore

We show that dynamical synthetic gauge fields may be engineered
using periodically modulated interactions. We discuss two scenarios
in one-dimensional lattices where periodic interactions may realize a
quantum Peierls phase. We discuss how this dynamical gauge field
may be probed in stroboscopic measurements of the momentum dis-
tribution in time-of-flight experiments. These measurements will show
a density-dependent shift of the momentum distribution, revealing as
well the quantum character of the created Peierls phase.

Q 57.4 Fri 11:15 UDL HS2002
Superfluid - Mott transition in the presence of artificial gauge
fields — •Ivana Vidanovic1, Alex Petrescu2, Karyn Le Hur3,
and Walter Hofstetter1 — 1Institut für Theoretische Physik, Jo-
hann Wolfgang Goethe-Universität, Frankfurt am Main, Germany —
2Department of Physics, Yale University, New Haven, USA — 3Centre
de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau Cedex,
France

Several recent cold atom experiments reported implementation of ar-

tificial gauge fields in optical lattice systems, paving the way toward
observation of new phases of matter. Here we study the tight-binding
model on the honeycomb lattice introduced by Haldane, for lattice
bosons. We analyze the ground state topology and quasiparticle prop-
erties in the Mott phase by applying bosonic dynamical mean field
theory, strong-coupling perturbation theory and exact diagonalization.
The phase diagram also contains two different superfluid phases. The
quasiparticle dynamics, number fluctuations, and local currents are
measurable in cold atom experiments.

Q 57.5 Fri 11:30 UDL HS2002
Landau-Stark states — •Andrey R. Kolovsky — Kirensky Insti-
tute of Physics, 660036 Krasnoyarsk, Russia

The term ”Landau-Stark states” refers to eigenstates of a charged par-
ticle in a 2D lattice in the presence of normal to the lattice plane mag-
netic and in-plane electric fields. I shall report the recent progress in
understanding unusual properties of the Landau-Stark states [1,2] and
discuss application of this newly developed theory to the Hall effect
with cold atoms subjected to synthetic electric and magnetic fields [3].

[1] A.R.Kolovsky and G.Mantica, Cyclotron-Bloch dynamics of a
quantum particle in a 2D lattice, Phys. Rev. E 83, 041123 (2011);
Phys. Rev. E 86, 041146 (2012).

[2] A.R.Kolovsky and G.Mantica, Driven Harper model, Phys. Rev.
B 86, 054306 (2012).

[3] A.R.Kolovsky, Master equation approach to conductivity of
bosonic and fermionic carriers in one- and two-dimensional lattices,
Annalen der Physik, DOI: 10.1002/andp201300169 (2013).

Q 57.6 Fri 11:45 UDL HS2002
Observation of the Meissner effect in bosonic lad-
ders — •Marcos Atala1,2, Michael Lohse1,2, Monika
Aidelsburger1,2, Julio Barreiro1,2, Belén Paredes3, and Im-
manuel Bloch1,2 — 1Fakultät für Physik, Ludwig-Maximilians-
Universität, Schellingstrasse 4, 80799 München, Germany — 2Max-
Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748
Garching, Germany — 3Instituto de F́ısica Teórica CSIC/UAM C
/Nicolás Cabrera, 13-15 Cantoblanco, 28049 Madrid, Spain

We implemented a large uniform effective magnetic field with ultra-
cold atoms using laser-assisted tunneling in a ladder created with an
optical lattice. Depending on the ratio between the coupling along the
rungs of the ladder and the one along the legs of the ladder, the system
presents two different phases: the vortex phase, where the probability
currents along the bonds have a vortex structure, and the Meissner
phase where the currents form a single vortex of infinite length. In or-
der to detect the probability currents associated to the different phases
we populated the ground state of the flux ladder and subsequently pro-
jected the state into isolated double well potentials that allowed us to
measure the average current direction and strength. We observed the
different behavior of the current in both regimes. Furthermore, we
also measured the time-of-flight momentum distribution of the ground
state for different lattice parameters.

Q 57.7 Fri 12:00 UDL HS2002
String order and correlated phases with periodically modu-
lated interactions — •Sebastian Greschner1, Luis Santos1, and
Dario Poletti2 — 1Institut für Theoretische Physik, Leibniz Uni-
versität Hannover, Appelstr. 2, DE-30167 Hannover, Germany —
2Engineering Product Development, Singapore University of Technol-
ogy and Design, 20 Dover Drive, 138682 Singapore

The periodic modulation of certain parameters in optical lattice exper-
iments opens interesting possibilities for the control and engineering of
lattice gases. Periodically modulated interactions result in a non-linear
hopping rate depending on the occupation differences at neighbouring
sites [1]. In this way some type of correlated-hopping models [2] as
well as dynamical synthetic gauge fields [3] can be engineered. We
show how the combined periodic modulation of optical lattices and
interactions may be used to realize a very broad class of correlated-
hopping Hubbard models for ultracold fermions and bosons. We study
the rich physics of this scenario, including pair-superfluidity, dimerized
phases as well as exotic Mott-insulator states with a non-vanishing
string-order. We also address different aspects of the experimental
preparation, stability and detection.



Wednesday

tem. We observe effects that are not explained by thermal reaction
rate theory.

Finally, we show multiple signatures of a stochastic resonance in our
system, including an increased signal-to-noise ratio for added thermal
noise and a measurement of the phase lag of the non-linear response.

Q 32.74 Wed 16:30 Spree-Palais
Molecular dynamics of trapped cold gases on GPUs — •Roman
Nolte and Reinhold Walser — Institut für Angewandte Physik,
Technische Universität Darmstadt

The understanding of classical molecular dynamics of N rapped inter-
acting atoms is an important precursor in order to achieve quantum
degeneracy. In the QUANTUS experiment, which explores quantum
gases in microgravity in the ZARM droptower in Bremen, the evapo-
ration time is a scarce resource. It is therefore of critical importance
to understand the non-equilibrium dynamics with high precision.

In this contribution we present results of N-particle 3D molecular
dynamics simulation performed on graphic cards (GPU). We investi-
gated the dependence of relaxation on external parameters and the
validity of common assumptions.

Q 32.75 Wed 16:30 Spree-Palais
Dynamical Mean-Field Theory of Rydberg-dressed quantum
gases in optical lattices — •Andreas Geißler, Ivana Vidanovic,
and Walter Hofstetter — Goethe Universität, Frankfurt, Hessen

As recent experiments have shown, it is now possible to investigate
Rydberg-dressed quantum systems in optical lattices with a large num-
ber of Rydberg excitations. Here we investigate these strongly corre-
lated systems for the bosonic case, by applying the real-space extension
of bosonic dynamical mean-field theory (R-BDMFT) to the two-species
lattice Hamiltonian in two and three dimensions. We find new exotic
quantum phases of lattice commensurate order, giving rise to a devil’s
staircase in the filling as a function of the chemical potential. For in-
creased hopping, a nonzero condensate fraction starts to emerge, which
can coexist with the spatial density order, and thereby lead to a su-
persolid phase. A rich phase diagram is obtained in our simulations
for experimentally realistic parameters.

Q 32.76 Wed 16:30 Spree-Palais
Towards imaging of single Rydberg Atoms — •Vladislav
Gavryusev, Georg Günter, Hanna Schempp, Martin Robert-
de Saint-Vincent, Stephan Helmrich, Christoph S. Hofmann,
Miguel Ferreira-Cao, Shannon Whitlock, and Matthias Wei-
demüller — Physikalisches Institut, Universität Heidelberg, Im
Neuenheimer Feld 226, 69120 Heidelberg, Germany

Electronically highly excited (Rydberg) atoms constitute a system with
long range interactions which allows to study many intriguing phe-
nomena, ranging from quantum non-linear optics to dipole-mediated
energy transport.

We demonstrate optical imaging of Rydberg atoms using the inter-
action enhanced imaging technique[1], which allows to follow spatially
the evolution of the system. This method exploits interaction-induced
shifts on highly polarizable excited states of probe atoms, that can
be spatially resolved via an electromagnetically induced transparency
resonance. With this novel tool we observe the migration of Rydberg
electronic excitations, driven by quantum-state changing interactions
similar to Förster processes found in complex molecules. We find that
the many-body dynamics of the energy transport is influenced by the
environment, controlled through the laser parameters[2]. After having
improved the optical resolution and CCD detector, we are progress-
ing towards the observation of individual Rydberg atoms which would
allow to resolve the spatial and temporal dynamics of the system.

[1] G. Günter et al., Phys. Rev. Lett. 108, 013002 (2012)
[2] G. Günter et al., Science 342, 954 (2013)

Q 32.77 Wed 16:30 Spree-Palais
Atomic and photonic correlations in interacting Rydberg
gases — •Miguel Ferreira-Cao, Vladislav Gavryusev, Georg
Günter, Hanna Schempp, Martin Robert-de-Saint-Vincent,
Christoph S. Hofmann, Shannon Whitlock, and Matthias Wei-
demüller — Physikalisches Institut, Universität Heidelberg, Im
Neuenheimer Feld 226, 69120 Heidelberg, Germany

Ultracold atomic gases involving strongly interacting Rydberg states
in combination with electromagnetically induced transparency provide
an excellent system to generate nonclassical states of light [1,2].

Recent experiments have delivered evidence of effective photon-

photon interactions and the corresponding atomic correlations [3,4].
Nonlocal effect such as self-focusing due to optical nonlinearities are
predicted [5]. Strong antibunching of photons [2] as well as elastic
interactions leading to bound state photons [6] are also evidenced.

We explore to which extent the emergence of photonic correlations
can be related to atomic correlations through the full counting statis-
tics of the Rydberg number [7] and direct Hanbury-Brown-Twiss mea-
surements of photon correlations.

[1] Y. O. Dudin and A. Kuzmich, Science 336, 887 (2012)
[2] T. Peyronel et al., Nature 488, 57-60 (2012)
[3] D. Maxwell et al. Phys. Rev. Lett. 110, 103001 (2013)
[4] C.S. Hofmann et al., Phys. Rev. Lett. 110, 203601 (2013)
[5] S. Sevinçli et al. Phys. Rev. Lett. 107, 153001 (2011)
[6] O. Firstenberg et al., Nature 502, 71-75 (2013)
[7] H. Schempp et al. PRL accepted, arXiv:1308.0264 (2013)

Q 32.78 Wed 16:30 Spree-Palais
Artificial Abelian gauge potentials induced by dipole-dipole
interactions between Rydberg atoms — •Alexandre Cesa and
John Martin — Institut de Physique Nucléaire, Atomique et de Spec-
troscopie, Université de Liège, Bât. B15, B-4000 Liège, Belgium

We analyze the influence of dipole-dipole interactions between Ryd-
berg atoms on the generation of Abelian artificial gauge potentials
and fields. When two Rydberg atoms are driven by a uniform laser
field, we show that the combined atom-atom and atom-field interac-
tions give rise to nonuniform, artificial gauge potentials. We identify
the mechanism responsible for the emergence of these gauge potentials.
Analytical expressions for the latter indicate that the strongest arti-
ficial magnetic fields are reached in the regime intermediate between
the dipole blockade regime and the regime in which the atoms are
sufficiently far apart such that atom-light interaction dominates over
atom-atom interactions. We discuss the differences and similarities of
artificial gauge fields originating from resonant dipole-dipole and van
der Waals interactions. We also give an estimation of experimentally
attainable artificial magnetic fields resulting from this mechanism and
we discuss their detection through the deflection of the atomic motion.

Q 32.79 Wed 16:30 Spree-Palais
Coherent Rydberg dynamics and interaction in thermal va-
por cells — •Bernhard Huber, Andreas Kölle, Fabian Ripka,
Robert Löw, and Tilman Pfau — 5. Physikalisches Institut, Uni
Stuttgart

Rydberg atoms are of great interest due to their prospects in quantum
information. Coherent control of the strong Rydberg-Rydberg inter-
action allows for the realization of quantum operations and devices
which have been demonstrated in ultracold experiments. Since then,
coherent dynamics to Rydberg states has been demonstrated also in
thermal vapor cells on nanosecond timescales [1] and van der Waals
interatomic interaction has been observed [2], where the interaction
strength exceeds the energy scale of thermal motion and is thus strong
enough to enable quantum correlations.

We present our progress on implementing a non-classical light source
from a thermal vapor cell based on four-wave-mixing and Rydberg in-
teraction.

We observe coherent dynamics within a thermal ensemble of Ryd-
berg atoms in a pulsed four-wave-mixing scheme and effects of dephas-
ing due to Rydberg-Rydberg interaction. Furthermore we discuss our
recent work on the reduction of the excitation volume to below the Ry-
dberg interaction range (few µm) in 3 dimensions by use of high-NA
optics and spatial confinement. First results of Rydberg four-wave-
mixing therein will be shown.

[1] Huber et al., PRL 107, 243001 (2011)
[2] Baluktsian et al., PRL 110, 123001 (2013)

Q 32.80 Wed 16:30 Spree-Palais
Rydberg-Rydberg interactions in high density caesium
vapour — •Fabian Ripka1, Alban Urvoy1, Margarita Reschke1,
David Peter2, Harald Kübler1, Tilman Pfau1, and Robert Löw1

— 15. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring
57, 70550 Stuttgart Germany — 2Institut für Theoretische Physik III,
Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart Germany

Rydberg atoms are of growing interest, due to new physics provided by
their exaggerated properties. For instance the van-der-Waals interac-
tion between Rydberg atoms has been observed in thermal vapour [1]
and is the foundation of several proposals for the realisation of quan-
tum devices. It has also been demonstrated that a phase transition
to collective behaviour of the Rydberg atoms can occur, leading to
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in optical lattice potentials. To overcome the band gap between the
lowest Bloch band and higher excited bands, we consider a scheme
where the lattice is driven by an external time-periodic force. By the
resulting AC-force on the particles, the bands are coupled coherently
and thus hybridize. With the help of Floquet theory we derive effec-
tive time-independent Hubbard models describing the band-coupled
system. Within this framework we study the melting of a bosonic
Mott-insulator as a result of the coherent band coupling. We analyze
the respective phase diagram of the bosonic ground state and in addi-
tion simulate an experimental protocol, in which the phase transition
is achieved by an adiabatic tuning of the driving frequency.

Q 32.35 Wed 16:30 Spree-Palais
Quantum dynamics of spin waves in ultracold bosonic
systems — •Frauke Seeßelberg1, Sebastian Hild1, Takeshi
Fukuhara1, Peter Schauß1, Johannes Zeiher1, Immanuel
Bloch1,2, and Christian Gross1 — 1Max-Planck-Institut für Quan-
tenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
— 2Fakultät für Physik, Ludwig-Maximilians-Universität München,
Schellingstraße 4, 80799 München, Germany

Ultracold quantum gases in optical lattices are promising candidates
to simulate spin Hamiltonians, which describe a variety of different
phenomena. Single-site resolved imaging of a single spin species allows
for the spatially resolved measurement of spin-spin correlations. The
atomic Mott insulator corresponds to a spin polarized state with very
low entropy. Together with precise local or global spin manipulation,
this allows for the study of the dynamics of precisely defined initial
spin states.

We report on experiments studying the dynamics of bound and free
magnons following local spin flips as well as globally imprinted spin
spirals, which are highly excited states of the system. The ability to
control the tunneling rate in the ultracold atomic gas allows us to
study the scaling behavior of the spin spiral lifetime in one and two
dimensions. The data is compared with theoretical predictions based
on direct diagonalization.

Q 32.36 Wed 16:30 Spree-Palais
Towards ultracold fermions in a 2D honeycomb lattice
— •Thomas Paintner, Daniel Hoffmann, Michael Griener,
Jochen Gleiter, Wladimir Schoch, Wolfgang Limmer, Benjamin
Deissler, and Johannes Hecker Denschlag — Institut für Quan-
tenmaterie, Universität Ulm, Deutschland

We are setting up a new experiment with ultracold fermionic atoms in
a two-dimensional honeycomb lattice to investigate intriguing phenom-
ena which are either related to relativistic quantum physics (e.g. Zit-
terbewegung, Klein tunnelling) or to condensed matter physics (quan-
tum phases, quantum criticality). This system has the underlying ge-
ometry of graphene, but can be tuned and controlled in a much greater
range. Fermionic 6Li atoms are captured in a magneto-optical trap and
loaded into a strong optical dipole trap. In the next steps, the atoms
will be transferred optically into a glass cell and loaded into a 2D opti-
cal trap created by blue-detuned laser beam with a TEM01 mode. We
will present the experimental progress towards a two-dimensional de-
generate Fermi gas, as well as results on the projection of a honeycomb
potential created with a holographic phase plate.

Q 32.37 Wed 16:30 Spree-Palais
Dissipation through localised loss in bosonic systems with
long-range interactions — •Ivana Vidanovic, Daniel Cocks, and
Walter Hofstetter — Institut für Theoretische Physik, Johann
Wolfgang Goethe-Universität, Frankfurt am Main Germany

In the recent years, controlled dissipation has proven to be a useful tool
for probing of a quantum system in the ultracold setup. In this paper
we consider dynamics of bosons induced by a dissipative local defect.
We address superfluid and supersolid phases that are ground states
of an extended Bose-Hubbard Hamiltonian. To this end, we solve the
master equation using the Gutzwiller approximation and find that in
the usual homogeneous superfluid phase repulsive interactions lead to
enhanced dissipation process. On the other hand, our mean-field ap-
proach indicates that the effective loss rates are significantly suppressed
deep in the supersolid phase where repulsive nearest neighbour interac-
tions play a dominant role. Our numerical results are explained by an
analytical insight and in particular, in the limit of strong dissipation
we recover the quantum Zeno effect.

Q 32.38 Wed 16:30 Spree-Palais
Steady State Currents in the Driven Dissipative Bose-

Hubbard Model — •Thomas Mertz1, Ivana Vidanovic1, Daniel
Cocks1,2, and Walter Hofstetter1 — 1Institute for Theoretical
Physics, Goethe-University, Frankfurt am Main — 2School of Engi-
neering and Physical Sciences, James Cook University, Townsville,
Australia

Non-equilibrium dynamics of interacting bosons has been explored in-
tensely in recent experiments in both cold atoms and quantum optical
systems. We study the driven Bose-Hubbard model with one-body loss
in two dimensions for both spatially homogeneous and inhomogeneous
coupling to the environment. We describe dissipation by coupling the
system to a Markovian bath in terms of a Lindblad master equation
for the reduced density operator. In our work we analyse the steady
states of such systems, in particular we consider steady states that ex-
hibit constant particle currents supported by inhomogeneous coupling
to the environment. Furthermore, we investigate the effect of the bath
parameters on the occurence of constant currents.

Q 32.39 Wed 16:30 Spree-Palais
Spectroscopy of ultracold Fermions in Triangular Optical
Lattices using ultranarrow Opical Transitions — Alexan-
der Thobe, •Bastian Hundt, André Kochanke, Thomas Ponath,
Niels Petersen, Christoph Becker, and Klaus Sengstock — Zen-
trum für Optische Quantentechnologien, Universität Hamburg, Luru-
per Chaussee 149, 22761 Hamburg, Germany

Quantum gases of two-electron atoms in optical lattices offer excit-
ing new possibilities within the field of ultracold atoms. Especially
the spin-independent ground state interaction, as well as the long
lived metastable 3P0,2 states allow the realization of novel many-body
Hamiltonians.

Here, we report on our recent experiments with ultracold Ytterbium
quantum gases in a triangular optical lattice. In our 2D-/3D-MOT
setup, we prepare quantum degenerate gases of fermionic 173Yb with
1 to 6 spin components. In order to investigate the interaction prop-
erties of the metastable 3P0-state, we perform spectroscopy on the
narrow 1S0 − 3P0 clock transition of the ultracold atomic sample. To
this end, we load the atoms into a triangular optical lattice at the
magic wavelength, where the transition is probed with a stable laser
system exhibiting a linewidth of a few Hz.

This work is supported by the DFG within the SFB 925 and GRK
1355, the EU FET-Open Scheme (iSense), and the Marie-Curie ITN
on Quantum Sensor Technologies and Applications.

Q 32.40 Wed 16:30 Spree-Palais
Dynamics of Quantum-Systems with Localized Dissipation
— •Ralf Labouvie, Andreas Vogler, Simon Heun, Bodhaditya
Santra, and Herwig Ott — Fachbereich Physik and Research Cen-
ter OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiser-
slautern, Germany

In our experiment, we are employing a tightly focussed scanning
electron-beam on ultra-cold atoms to locally remove particles. This
allows us to probe atomic density distributions with high temporal
and spatial resolution. Furthermore, the electron-beam is a versatile
tool to manipulate the atomic ensemble e.g. it yields the possibility
for localized dissipative defects and therefore to create open quantum-
systems. The obtained signal shows the system’s reaction on the defect
and allows to measure pair-correlations and Zeno-like behaviour. This
method can also be used to engineer non-equilibrium states and inves-
tigate their time evolution e.g. tunnel dynamics in an one-dimensional
optical lattice. In addition, subsequently obtained density-profiles al-
low for an in-vivo investigation of all the samples.

Q 32.41 Wed 16:30 Spree-Palais
Realization of a finite-size optical lattice for cold fermionic
atoms — •Simon Murmann1, Andrea Bergschneider1, Vincent
Klinkhamer1, Gerhard Zürn1, Thomas Lompe1,2, and Selim
Jochim1 — 1Physikalisches Institut der Universität Heidelberg, INF
226, 69120 Heidelberg, Germany — 2Department of Physics, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA

We report on the realization of an experimental setup for the deter-
ministic preparation of cold fermionic atoms in multiple-well poten-
tials. Starting with a setup for the preparation of few-atom samples
in the vibrational ground state of one tightly focused dipole trap, we
expanded our experiment using an acousto-optic deflector (AOD) to
split the trapping light into multiple orders forming one potential well
each. Both depth and position of the individual wells can be changed
independently, allowing the creation of a tunable finite-size optical lat-
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tions. Finally, we will discuss different experimental routes to observe
the predicted phase transition towards crystalline order.

A 34.21 Wed 16:30 Spree-Palais
Coherently coupled two-component ultracold bosons —
•Ulrike Bornheimer, Ivana Vidanovic, and Walter Hofstetter
— Goethe Universität, Institut für Theoretische Physik, Max-von-
Laue Straße 1, 60438 Frankfurt am Main

We investigate an ultracold, two-component bosonic gas in a cubic
optical lattice. In addition to density-density interactions, the atoms
are subject to coherent light matter interactions that couple different
internal hyperfine states. In the strongly interacting Mott regime, the
resulting Bose-Hubbard Model can be mapped onto an effective spin
Hamiltonian. We examine the influence of the coherent coupling on
the system and its’ quantum phases by using Gutzwiller Mean Field
as well as Bosonic Dynamical Mean Field Theory.

A 34.22 Wed 16:30 Spree-Palais
Towards atom chips with submicron atom-surface separa-
tion — •Amruta Gadge1, Robert Hollenstein1,2, Francesco
Intravaia1,3,4, Jessica Maclean1, Samanta Piano1, Mark
Fromhold1, Christian Koller1, and Peter Kruger1 — 1Midlands
Ultracold Atom Research Centre, School of Physics and Astronomy,
University of Nottingham, Nottingham NG7 2RD, UK — 2Vienna
Center for Quantum Science and Technology, TU Wien, Atomisti-
tut, Stadionallee 2 1020 Wien — 3Institut fuer Physik, Humboldt-
Universitaet zu Berlin, Newtonstr. 15, 12489 Berlin, Germany —
4Max-Born-Institut, 12489 Berlin, Germany

Current atom chip technology enables trapping of atoms at distances
of 10-100 microns from the surface. The limitation on the trapping dis-
tance arises from distance-dependent effects like surface forces, John-
son noise or fields generated from the adsorbates. Ultra-close trap-
ping of atoms would improve the resolution of cold-atom based surface
probes when they are used to map out current distributions and elec-
tric and magnetic fields. We are constructing an experimental system
to trap atoms very close to the surface, considering relevant effects that
can impede trapping at submicron distances. The basis of these exper-
iments is an atom chip incorporating a thin film. We will position an
ultracold cloud of Rb87 atoms, above a graphene sheet supported by a
TEM grid, which will allow us to control and shift the cloud precisely
to specific grid locations. We will compare the losses from the trap
when the cloud is above the metal part and the hollow region of the
grid. We will show theoretical calculations and experimental progress.

A 34.23 Wed 16:30 Spree-Palais
Artificial gauge fields in a driven optical lattice — •Malte
Weinberg1, Christoph Ölschläger1, Julian Struck1, Juliette
Simonet1, Patrick Windpassinger2, and Klaus Sengstock1 —
1Institut für Laserphysik, Universität Hamburg, Germany — 2Institut
für Physik, Johannes Gutenberg-Universität, Mainz, Germany

Atomic quantum gases are neutral, and therefore, not affected by ex-
ternal electromagnetic fields in the way electrons are. This constitutes
a central issue towards the quantum simulation of solid state models
involving an external magnetic field, e.g. the Quantum Spin Hall Ef-
fect. Therefore the experimental realization of artificial gauge fields
in ultracold atomic systems shall put through quantum simulators of
new kinds of exotic quantum matter.

In this perspective, driven optical lattices constitute a versatile tool,
which allows controlling both phase and amplitude of the complex
tunneling parameters and, thus, generating artificial gauge potentials
[1]. By expanding this concept to a triangular lattice structure, it is
possible to realize gauge invariant and fully tunable artificial magnetic
fluxes that exhibit a staggered ordering [2].

[1] J. Struck et al., Phys. Rev. Lett. 108, 225304 (2012)
[2] J. Struck et al., Nat. Phys. 9, 738-743 (2013)

A 34.24 Wed 16:30 Spree-Palais
Progress on the Fermi Quantum Microscope — •Timon
Hilker1, Martin Boll1, Ahmed Omran1, Thomas Reimann1,
Konrad Viebahn1, Alexander Keesling1, Immanuel Bloch1,2,
and Christian Groß1 — 1Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Str.1, 85748 Garching — 2Ludwig-Maximilians-
Universität München, Schellingstr. 4, 80799 München

Ultracold atoms in optical lattices have proven to be a powerful tool
for investigating quantum many body systems. Recent experiments
have demonstrated the power of single-site resolved detection in op-

tical lattices for the study of strongly correlated bosonic many body
systems.

In our experiment we plan to apply similar techniques to fermionic
systems. Here, we present our progress towards a fermionic many body
system trapped in a 3D optical lattice. Li-6 atoms are cooled to de-
generacy using a UV-MOT and a fast optical evaporation. We plan
to achieve the imaging of single atoms resolved on individual sites of
a 2D plane of the lattice by superimposing an additional small-scale
pinning lattice onto the larger-scale physics lattice. This freezes out
the distribution of atoms during imaging with a high resolution imag-
ing system, which allows to separate the detector from the physical
system under study. Different lattice geometries can thus be studied
with single atom sensitivity. In this way we plan to probe the quan-
tum phases of the Fermi-Hubbard Hamiltonian by local measurements,
and investigate the underlying phenomena associated with condensed
matter systems, e.g. quantum magnetism.

A 34.25 Wed 16:30 Spree-Palais
Stochastic theory of thermal matter fields — •Holger
Hauptmann1, Sigmund Heller1, Holger Kantz2, and Walter T.
Strunz1 — 1Technische Universität Dresden — 2Max-Planck-Institut
für Physik komplexer Systeme

We study quasi one-dimensional ultracold Bose gases with repulsive
self interaction. A nonlinear stochastic matter-field equation of gener-
alized Gross-Pitaevskii type will be presented to describe Bose gases in
the canonical ensemble (fixed particle number). This might be a more
realistic experimental scenario than the grand-canonical approach. Ap-
plications of this equation to simulate recent experiments from the
Schmiedmayer group [1] will be shown, especially the emergence of
correlations in quantum many-body systems. Moreover, results for
equilibrium coherence properties of one-dimensional Bose gases will be
presented.

[1] Langen et al. Nature Physics 9, 640-643 (2013)

A 34.26 Wed 16:30 Spree-Palais
Nonequilibrium BCS Dynamics of Ultracold Fermi Gases —
•Peter Kettmann1, Simon Hannibal1, Mihail Croitoru2, Alexei
Vagov3, Vollrath Martin Axt3, and Tilmann Kuhn1 — 1Institute
of Solid State Theory, University of Münster — 2Condensed Matter
Theory, University of Antwerp — 3Theoretical Physics III, University
of Bayreuth

Ultracold Fermi gases are a convenient testbed for complex interacting
Fermi systems like, e.g., superconductors. They are on the one hand
easily accessible in experiment. On the other hand their interparticle
interaction strength can be tuned to pass from a BCS to a BEC state.
In this way, many-body effects in strongly correlated Fermi systems
like high-Tc superconductors can be tested in a controlled way.

We investigate the BCS phase of an ultracold Fermi gas. In particu-
lar we calculate the nonequilibrium dynamics of a confined 6Li gas after
a sudden excitation, which can be achieved, e.g., by an abrupt change
of an external magnetic field or the system confinement. We show that
the dynamics of the BCS gap is given by a collective damped oscilla-
tion breaking down after a certain time. Afterwards a rather chaotic
oscillation appears. We explain this behavior by expressing the quasi-
particle equations of motion in terms of a set of coupled oscillators.

Studying systems with different parameters we see that the dynamics
show a more or less pronounced initial part of the oscillation depend-
ing on the confinement. This is related to size-dependend superfluid
resonances predicted by recent theoretical studies [1] and thus to the
BCS-BEC crossover. [1] A. A. Shanenko et al., PRA 86, 033612
(2012)

A 34.27 Wed 16:30 Spree-Palais
Narrow-line laser cooling of dysprosium into an optical dipole
trap — •Matthias Schmitt, Thomas Maier, Holger Kadau, Axel
Griesmaier, and Tilman Pfau — 5. Physikalisches Institut, Univer-
sität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

We present our techniques to laser cool dysprosium on a narrow-line
transition to achieve suitable conditions to directly load atoms into
an optical dipole trap. Dysprosium is the element with the highest
magnetic moment and offers a non-spherical symmetric groundstate
5I8. This complex electronic structure leads to several possible cooling
and optical pumping transitions. We use a broad cooling transition
at 421 nm for Zeeman slowing and capture these atoms in a narrow-
line magneto-optical trap using a transition at 626 nm. A transversal
cooling stage before the Zeeman slower increases the capture rate by
a factor of 4 and atom number by a factor of 3. By using a spectral



Workshop on 

Ultracold Atoms and Gauge Theories

(Trieste, 13-17 May 2013)

POSTER SESSION

(14 May, 18:30)



Collective modes of interacting bosons in artificial gauge fields

Ivana Vidanovic,* Ulf Bissbort, Walter Hofstetter
* Scientific Computing Laboratory, Institute of Physics, Belgrade

Rapid experimental  progress  in  the realization of  artificial  magnetic  fields  for cold neutral 

atoms heads toward the creation and direct observation of exotic quantum states under highly 

controllable  experimental  conditions.  By  combining  mean-field  and  beyond  mean-field 

approaches, we explore the Mott insulator and the superfluid phase of interacting lattice bosons 

in an artificial magnetic field.

We calculate ground states  and excitation spectra of these phases.  To demonstrate how the 

physical  quantities  of  our  system  can  be  detected  in  experiments,  we  perform  numerical 

calculations of the systems non-equilibrium behaviour under realistic perturbations.
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Group Report Q 31.1 Tue 14:00 E 001
Observation of critical behavior at the non-equilibrium Dicke
phase transition — ∙Ferdinand Brennecke1, Rafael Mottl1,
Renate Landig1, Kristian Baumann2, Tobias Donner1, and
Tilman Esslinger1 — 1Quantum Optics Group, ETH Zurich,
Switzerland — 2Department of Applied Physics, Stanford University
We experimentally study critical behavior of the Dicke phase transi-
tion, realized by Raman coupling motional degrees of freedom of a
Bose-Einstein condensate to the field in a high-finesse optical cavity.
We use the natural dissipation channel of the cavity to observe the in-
coherent fluctuation spectrum of the coupled system in real time. The
corresponding measurement backaction introduces additional density
fluctuations in the atomic gas and changes the critical behavior of the
system. A correlation analysis of the light exiting the cavity reveals the
diverging time scale of the fluctuation dynamics, in agreement with the
experimentally observed mode softening in the excitation spectrum.
We quantitatively compare our measurements with a theoretical model
taking into account both cavity and atomic dissipation channels. Fu-
ture directions of the experiment include Bose-Hubbard physics with
cavity-mediated long-range interactions and self-organization in lower
dimensions.

Q 31.2 Tue 14:30 E 001
Semiclassical Study of Intrinsic Photoconductivity of Ultra-
cold Fermions in Optical Lattices — ∙Alexander Itin1,2,3,
Jannes Heinze1, Jasper Simon Krauser1, Nick Fläschner1,
Bastian Hundt1, Sören Götze1, Klaus Sengstock1,2,
Christoph Becker1,2, and Ludwig Mathey1,2 — 1Institut für
Laser-Physik, Universität Hamburg, Germany — 2Zentrum für Optis-
che Quantentechnologien, Universität Hamburg, Germany — 3Space
Research Institute, Moscow, Russia
We present theoretical analysis of recent experiments reported in [J.
Heinze et al., arxiv::1208.4020v2]. Ultracold fermionic atoms in op-
tical lattices were used to simulate the phenomenon of photoconduc-
tivity. Using amplitude modulations of the optical lattice, the analog
of a persistent alternating photocurrent was induced in the atomic
gas. A small fraction of the atoms was excited to the third band as
a wavepacket with a well-defined quasimomentum, leaving a hole in
the momentum distribution of atoms in the lowest band. The subse-
quent dynamics is due to an external harmonic trap. It was observed
that the particle excitations in the third band exhibit long-lived os-
cillations with a frequency determined by the initial quasimomentum,
while holes in the lowest band behave strikingly differently: an ini-
tial fast collapse was followed by periodic partial revivals. We explain
both observations by a semiclassical approach to lattice dynamics. By
using the Truncated Wigner Approximation and mapping the system
onto a classical Hamiltonian resembling a nonlinear pendulum, both
the long-lived particle oscillations and decaying hole revivals are un-
derstood quantitavely.

Q 31.3 Tue 14:45 E 001
Motional coherence of fermions immersed in a bosonic bath
— ∙Raphael Scelle, Arno Trautmann, Tobias Rentrop, and
Markus K. Oberthaler — Kirchhoff-Institut für Physik, Univer-
sität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg
We study the impact of a Bose Einstein condensate of sodium atoms on
the motional coherence of lithium atoms. For this purpose the lithium
atoms are exposed to a species-selective lattice potential which allows
to prepare the lithium atoms in a motionally coherent state by control
of the lattice position. We developed a spin echo technique in order to
investigate the bath impact on the coherent evolution of the lithium
atoms. The interaction between the two components induces a decay
of the motional coherence and we extract the corresponding time scale
by comparing the spin echo signal for freely evolving lithium atoms to
the signal for atoms evolving within the bosonic bath. The observed
coherence decay time is consistent with the time scale expected from
relaxation measurements of motionally excited states.

Q 31.4 Tue 15:00 E 001
Collective modes of interacting bosons in artificial gauge
fields — ∙Ivana Vidanovic, Ulf Bissbort, and Walter Hofstet-
ter — Institut für Theoretische Physik, Johann Wolfgang Goethe-

Universität, 60438 Frankfurt/Main, Germany
Rapid experimental progress in the realization of artificial magnetic
fields for cold neutral atoms heads toward the creation and direct ob-
servation of exotic quantum states under highly controllable experi-
mental conditions. By combining mean-field and beyond mean-field
approaches, we explore the phase diagram of strongly interacting lat-
tice bosons in an artificial magnetic field. We calculate the ground
state properties and excitation spectra of various phases. To demon-
strate how the physical quantities of our system can be detected in
experiments, we perform numerical calculations of the systems non-
equilibrium behaviour under realistic perturbations.

Q 31.5 Tue 15:15 E 001
Gapped chiral phases and spontaneous symmetry breaking
for ultracold bosons in zig-zag optical lattices — ∙Sebastian
Greschner, Luis Santos, and Temo Vekua — Institut für the-
oretische Physik, Leibniz Universität Hannover, Appelstr. 2, 30167
Hannover, Germany
Ultracold bosons in (quasi-)one-dimensional zig-zag optical lattices -
apart from being a theoretically well controllable test-bed to study the
properties of possible quantum simulators of quantum antiferromag-
netism - exhibit a wealth of interesting physical phenomena some of
which are particular for one-dimensional systems [1]. In this talk we
present the full phase diagram of ultracold bosons in zig-zag optical
lattices for non-integer fillings. We comment on how interactions lead
to a competition between spontaneous symmetry breaking chiral SF
and two-component SF phases and analyse the emergence of insulating
phases as well as gapped chiral phases exhibiting both local currents
as well as a finite excitation gap. Some issues of phase preparation and
detection are discussed.
[1] S. Greschner et al., arXiv:1202.5386 (2012)

Q 31.6 Tue 15:30 E 001
Quantum simulation of curved spaces in optical lattices con-
taining topological defects — ∙Nikodem Szpak — Fakultät für
Physik, Universität Duisburg-Essen
We discuss the possibility of quantum simulation of relativistic fields
living in curved spaces realized in optical lattices loaded with ultra-cold
atoms. In the low energy regime their dynamics can be described by
the Hubbard model which, under some circumstances, can be mapped
onto a discrete version of a relativistic quantum field theory. Manip-
ulation of the hopping constants and the lattice topology can lead
to the coupling to an artificial Riemann-Cartan geometry containing
curvature and torsion. We give examples of several lattice geometries
and discuss the properties of the emergent curved spaces with the field
theoretic effects, like scattering on curvature centers or vortices and
birefringence on torsion lines.

Q 31.7 Tue 15:45 E 001
Impact of inhomogeneities on antiferromagnetism in cold
atom systems — ∙Elena Gorelik and Nils Blümer — Institute
of Physics, Johannes Gutenberg University, Mainz, Germany
The study of inhomogeneities in antiferromagnets (AF) is of consider-
able interest both in condensed matter physics and in the cold-atom
context. In atomic clouds, the intrinsic inhomogeneity is due to the
presence of a confinement potential, whereas in material context inter-
faces provide an example of the large-scale inhomogeneities. Localized
inhomogeneities, in particular impurities, in both homogeneous and
spacially variable background, play important role in the interplay of
competing phases.

We employ the real-space extension of dynamical mean-field theory
(RDMFT) combined with Hirsch-Fye quantum Monte Carlo (QMC)
impurity solver [1,2] to explore the effect of single/multiple impurities
on the formation of AF correlations. Both the dimensional aspects
and the proximity effects are analyzed. In 𝑑 = 2, RDMFT results
are compared with those of direct calculations using the determinantal
quantum Monte Carlo method.

[1] E. V. Gorelik, I. Titvinidze, W. Hofstetter, M. Snoek, and N.
Blümer, Phys. Rev. Lett. 105, 065301 (2010).

[2] N. Blümer and E. V. Gorelik, Comp. Phys. Comm. 182, 115
(2011).


