Hayunom Behy UHcTuTyTa 32 pnsuky beorpan

beorpan, 02. ¢ebpyap 2017.

IIpeamer:
ITokpeTrame NOCTYNKA 32 CTHIAKE 3Balha HCTPAXKUBAY CAPAJIHHK

Monum Hayuno Behe MHcTHTyTa 32 PHU3MKY A2 MOKPEHE MOCTYNAK 3a MOj U300p y 3Barbe
UCTPaXXWBAY CapajHHUK.

VY npunory 10CTaB/baM:

Mulbere pyKOBOAHOLIA IPOjeKTa

Kpatky cTpyuny 6uorpadujy

Cnucak 06jaB/beHUX Hay4HUX paJoBa U HUXOBE KOMHje
[ToTBpay O ynKCy JOKTOPCKHMX aKaJeMCKUX CTyauja
JIMruioMy ca OCHOBHHX M MacTep CTyauja

Kparak npernien Hay4yHe akTHBHOCTH

Prth: 5 R =

C nouiToBameM,

Jacmuna Mupuh
UCTpaXKMBay NPUIPABHUK

,b (b Foaunay
T ] N




Hayunom Behy UHcTHTYTa 32 PH3HKY
beorpaz, 02. pebpyap 2017.

Munubeme pyKoBogHOUA mpojexta 3a H36op Jacmune Mupuh y 3Bame HCTpakuBay
capajHHK

JacMuua Mupuh je 3anocneHa y JlaGopaTopuju 3a racHy eleKTpoHUKY MHCTHTyTa 32
¢usuky y Beorpamy on ¢ebpyapa 2014. romune. OHa je aHraXxoBaHa Ha TMPOJEKTY
MunuctapcTBa Hayke, npocsere M TexHonowkor passoja HMMH41011  Ilpumena
HUCKOTEMIIEPATYPHUX TIUIa3MH y OWOMEIMIMHM, 3alUTMTH 4YOBEKOBE  OKOJIMHE U
HaHOTeXHoNorujama” noja MeHtopcTBoM aAp Came [lyjka. Kanauaart je monoxuo CBe MCIUTE Ha
JIOKTOPCKUM CTynujama @usmdkor daxynreta Ha cmepy Pu3KMKa jOHH30BAHOTI raca, mjiasme M
TexHosoruja miasme. Y mepuoay 2014-2016. yuectBoBana je Ha MehyHapoaHOM TNpOjEKTy ca
jEHOM OJ1 PEHOMHUPAaHUX MYJITHHAIIMOHAHUX KOMIIaHH]a.

O6nacT Hay4HOUCTPKMBAYKOr paja KaHauzaata JacMumHe Mupuh je TpaHcmopTHa
TeOopuja €eNeKTpOHa y racoBuMa M (u3MKa eNEeKTPUYHMX TracHMX Mpaxmwewa. Ha ocHoBy
pesyatara paga JacmuHe Mupuh nyGiaukoBaH je pan y MehyHapomHOM dYacomucy H3y3eTHHX
Bpeanoct (M21a). Kanauaar je 60 KoayTop HEKOJMKO YBOAHMX MpeJaBama Kao U pajoBa Ha
mehyHapogaum u gomahuM koHdepeHuujama. Jlo caja MOCTUIHYTH Pe3yNTaTH KOJETHHUIIE
Mupuh noka3syjy Aa nocejayje cBe HEONXOAHE KBaIUTETE 3a 0aB/behb€ HayYHOUCTPAKUBAYKUM
paaom.

C 063upoM Ja ucmymasa KpuTepujyme npeapuhene IIpaBUIHMKOM O MOCTYNKY, HAYMHY
BpEe/IHOBalba ¥ KBAHTUTAaTHMBHOM MCKAa3MBakby HAyYHOMCTPAXMBAuKUX pe3yiTaTra UCTpakuBaua
MuHucTapcTBa NpOCBETe, HayKe M TEXHOJOWIKOr pa3Boja, carjlacHa caM ca IOKpeTameM
nocTyrnka 3a u36op JacMuHe Mupuh y 3Bame HCTpaXuBay CapaJHHUK.

3a cactaB Komucuje 3a u3bop Jacmune Mupuh y 3Bame MCTaXXMBay CapajiHUK Npeasiaxy ce
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CTPYYHA BUOT'PA®UIJA

Oopa3oBamse:

Jacmuaa Mupuh je pohena 3. dbebpyapa 1987. romune y Ilpuspeny rue je 3aBpiimia
MpBUX IIECT pa3pena OCHOBHe Ikoiie. Y beorpagy je moBpiimia OCHOBHO 0O0pa3oBame U
3aBpIINJIA CPEEbY IIKOIY.

VYnucana je ocHOBHe cTynuje Ha EnektporexHuukoMm QaxkynTeTy, YHHUBEp3UTETa Yy
beorpany mkoncke 2005/2006. roguHe Ha ojaceky 3a DU3NUKY EICKTPOHUKY U CMEpy 3a
buomMeauIIMHCKM W EKONOWIKM WHXHUEbepuHT. Jlumimomupana je ca mpocekom 8.62 u 15.
centemOpa 2011. rogune cTekia 3Bame JUIIoMupanyu MHKEmEp eNeKTpOoTeXHUKe. JunnomMmcku
pan noj Ha3uBoM "YmoTpeba rurcaHux IUio4a 3a 3allITHTY O PeHTreHckor 3pauema’ je ypahen
Ha EnexrporexunukoMm (akyntety moj meHTopctBoM npod. ap [Ipeapara Mapunkosuha.

Mactep crtynuje je ymnucana Ha EnekTporexHHUKoM (akylaTery YHHUBEp3UTETa Yy
Bbeorpany mkoncke 2011/2012. roguHe Ha ojaceky 3a DU3HUKY EICKTPOHUKY U CMEpy 3a
buoMeAMIIMHCKYN U €KOJIOMIKU WHXHELEPUHT. J[pyTrH CTENeH cTyAuja je 3aBpIiuiia ca MPOCeYHOM
oueHoMm 10.0. Mactep pan mox HasuBoM "[IpuMeHe TpaHCHOPTHHX KoeduiujeHaTta pojeBa
€JIEKTPOHA Y MO/JIEJIOBay M3BOpa cBeTIoCTH je ypahen mox meHtopctBoM ap Came Jlyjka Ha
Wucturyry 3a ¢pusuky y beorpany a dopmanau menTop Ha EJeKTpoTeXxHHMUYKOM (axyiTeTy je
6uo mpod. mp Ilpenpar MapunkoBuh. Mactep pan je ogOpamen 1. HoBemOpa 2012. ronune u
KaHIUIAT je 700K 3Bambe MacTtep HHKEHep eICKTPOTEXHUKE U pauyHapCTBa.

Hoktopcke crynuje Ha PusnukoMm (akynarery YHuBep3utTeTa y beorpany je ymucana
mkosicke 2012/2013. roguHe Ha cmepy PHU3MKa JOHHM30BAHOI raca, IUIa3Me€ M TEXHOJIOTHja
a3Mme.

PaxHo uckycrBo:

On 5. ¢ebOpyapa 2014. roauHe je 3amocieHa Kao HUCTPaXWBad MPUIIPABHUK Yy
JlaGoparopuju 3a racHy enekTpoHuKy MHctutyTa 3a ¢usuky y beorpany. AHraxkoBaHa je Ha
pojeKTy MuHHuCTapcTBa Hayke, IpocBeTe M TexHojomkor pasBoja MMM41011 | ITpumena
HUCKOTEMIEPAaTYpHUX IUIa3MH y  OHMOMEIWIMHH, 3alITUTH YOBEKOBE  OKOJWHE W
HaHOTeXHoJIorHjama” kojuM pykoBoau ap Hesena Ilyau.



CIIUCAK OBJAB/BEHUX PAJIOBA U IPYT'UX ITYBJIUKALIUJA

PAJLY MEBYHAPOJHOM YHACOITMCY U3Y3ETHUX BPEJHOCTH (M21a)

1. Jasmina Mirié, Danko Bosnjakovi¢, Ilija Simonovié¢, Zoran Lj. Petrovi¢, Sasa Dujko,
Electron swarm properties under the influence of a very strong attachment in SFg and
CF;l obtained by Monte Carlo rescaling procedures,

Plasma Sources Sci. Technol. 25, 065010 (2016),
DOI: http://dx.doi.org/10.1088/0963-0252/25/6/065010
ISSN: 0963-0252

MPEJABAIBE 110 [IO3UBY CA MEBYHAPOJHOI CKYIIA INITAMIIAHO Y
LEJWHU (M31)

1. Sasa Dujko, Danko Bosnjakovi¢, Jasmina Mirié, Ilija Simonovi¢, Zoran M. Raspopovié,
R. D. White, A. H. Markosyan, U. Ebert, Zoran L;j. Petrovic,
9th EU-Japan Joint Symposium on Plasma Processing and EU COST MP1101 Workshop
on Atmospheric Plasma Processes and Sources (JSPP2014), 19-23 January 2014,
Bohinjska Bistrica, Slovenia, (Slovenian Society for Vacuum Technique) Book of
Abstracts, p. INV-Dujko-1,
Recent results from studies of non-equilibrium electron transport in modeling of low-
temperature plasmas and particle detectors

MPEJABAIBE 1O MO3UBY CA MEBYHAPOJHOT CKYIIA IITAMIIAHO ¥
WU3BOY (M32)

1. Sasa Dujko, Zoran L. Petrovi¢, R. D. White, G. Boyle, Ana Bankovi¢, Ilija Simonovi¢,
D. Bosnjakovi¢, Jasmina Miri¢, A. H. Markosyan, Srdan Marjanovic,
XXIX International Conference on Photonic, Electronic and Atomic Collisions
(ICPEAC2015), 22-28. July 2015, Toledo, Spain, Book of Abstracts, p. 75,
Transport processes for electrons and positrons in gases and soft-condensed matter:
Basic phenomenology and applications

2. Zoran Lj. Petrovi¢, Sasa Dujko, Dragana Mari¢, Danko Bosnjakovi¢, Srdan Marjanovic,
Jasmina Miri¢, Olivera Sasi¢, Snjezana Dupljanin, Ilija Simonovié, Ronald D. White,
XIX International Symposium on Electron-Molecule Collisions and Swarms & XVIII
International Workshop on Low-Energy Positron and Positronium Physics
(POSMOL2015), 17-20. July 2015, (ISBN: 978-989-20-5845-0) Book of Abstracts, p.4,
Swarms as an exact representation of weakly ionized gases



CAOINUITEKBE CA MEBYHAPOJHOI CKYIIA LITAMITAHO Y HEJIUHU (M33)

1. Jasmina Mirié, Danko Bosnjakovi¢, Ilija Simonovi¢, Zoran Lj. Petrovi¢, Sasa Dujko,
Proc. 28th Sumer School and International Symposium on Physics of lonized Gases
(SP1G2016), 28. August - 2. September 2016, (University of Belgrade, Faculty of
Physics, Belgrade, ISBN: 978-86-84539-14-6), Book of Abstracts, p.104,

Monte Carlo simulations of electron transport in CF3l and SF6 gases

2. Jasmina Miri¢, Ilija Simonovi¢, Danko Bosnjakovié, Zoran Lj. Petrovi¢, Sasa Dujko,
Proc. 28th Summer School and International Symposium on Physics of lonized Gases
(SP1G2016), 28. August - 2. September 2016, (University of Belgrade, Faculty of
Physics, Belgrade, ISBN: 978-86-84539-14-6), Book of Abstracts, p.108,

Electron transport in mercury vapor: dimer induced NDC and analysis of transport
phenomena in electric and magnetic fields

3. Jasmina Miri¢, Olivera Sasi¢, Sasa Dujko, Zoran L. Petrovic,
Proc. 27th Symposium on Physics of lonized Gases, Contributed Papers and Abstracts of
Invited Lectures, Topical Invited Lectures and Progress Reports (SP1G2014), 26-29.
August 2014, (Institute of Physics, Belgrade; Klett izdavacka kuéa d.o.o., ISBN: 978-86-
7762-600-6), Book of Abstracts, p.122,
Scattering Cross Sections and Transport Coefficients for Electrons in CF3lI

4. Jasmina Miri¢, Zoran Lj. Petrovi¢, R. D. White, SaSa Dujko,
Proc. 27th Symposium on Physics of lonized Gases, Contributed Papers and Abstracts of
Invited Lectures, Topical Invited Lectures and Progress Reports (SP1G2014), 26-29.
August 2014, (Institute of Physics, Belgrade; Klett izdavacka kuca d.o.o., ISBN: 978-86-
7762-600-6), Book of Abstracts, p.126,
Electron Transport in Noble-Gas Metal-Vapor Mixtures

5. Jasmina Mirié, SaSa Dujko, Zoran L. Petrovi¢,
9th EU-Japan Joint Symposium on Plasma Processing and EU COST MP1101 Workshop
on Atmospheric Plasma Processes and Sources (JSPP2014), 19-23. January 2014,
(Slovenian Society for Vacuum Technique), Book of Abstracts, p.P-07-1,
Scattering Cross Sections and Transport Data for Electrons in CF3I

CAOINUTEKBE CA MEBYHAPOJHOI' CKYITA HLITAMITAHO Y U3BOY (M34)

1. Zoran Petrovi¢, Jasmina Miri¢, Ilija Simonovi¢, Danko Bos$njakovi¢, Sasa Dujko,



Bulletin of the American Physical Society, 69th Annual Gaseous Electronics Conference
(GEC2016), 10-14. October 2016, (American Physical Society), Book of Abstracts, p.71,
Monte Carlo simulations of electron transport in strongly attaching gases

. Zoran Petrovi¢, Jasmina Mirié, Ilija Simonovi¢, Sasa Dujko,

Bulletin of the American Physical Society, 69th Annual Gaseous Electronics Conference
(GEC2016), 10-14. October 2016, Bochum, Germany, (American Physical Society),
Book of Abstracts, p. 71,

Electron transport in mercury vapor: magnetic field effects, dimer induced NDC and
multi-term analysis,

. Jasmina Miri¢, Danko Bosnjakovi¢, Zoran L. Petrovi¢, Sasa Dujko,

XXIX International Conference on Photonic, Electronic and Atomic Collisions
(ICPEAC2015), 22-28. July 2015, Toledo, Spain,

Transport coefficients and scattering cross sections for electrons in CF3lI

. Danko Bosnjakovi¢, Jasmina Miri¢, Zoran L. Petrovi¢, SaSa Dujko,

XIX International Symposium on Electron-Molecule Collisions and Swarms
(POSMOL2015), 17-20. July 2015, Lisboa , Portugal, (ISBN: 978-989-20-5845-0), Book
of Abstracts, p.26,

Rescaling procedures for Monte Carlo simulations of electron transport in strong
electronegative gases

. Jasmina Mirié¢, Danko Bognjakovi¢, Olivera Sasi¢, J. de Urquijo, Sasa Dujko, Zoran Lj.
Petrovic,

42nd IEEE International Conference On Plasma Science (ICOPS2015), 24-28. May
2015, Belek, Antalya, Turkey,

Scattering cross sections and electron transport coefficients for electrons in CF3I

Sasa Dujko, Danko Bosnjakovi¢, Jasmina Miri¢, R. D. White, A. H. Markozan, U.
Ebert,

XVII International Workshop on Low-Energy Positron and Positronium Physics & XVI1I
International Symposium on Electron-Molecule Collisions and Swarms (POSMOL2013),
19-21. July 2013, Kanazawa, Japan, Book of Abstracts, p.24,

Non-conservative electron transport in gases and its application in modelling of non-
equilibrium plasmas and particle detectors

. Jasmina Miri¢, Zoran L. Petrovi¢, R. D. White, Sasa Dujko,



XVII International Workshop on Low-Energy Positron and Positronium Physics & XVIII
International Symposium on Electron-Molecule Collisions and Swarms (POSMOL2013),
19-21. July 2013, Kanazawa, Japan, Book of Abstracts, p.46,

Transport coefficients for electrons in rare-gas metal-vapor mixtures



IOPScience

Home

Search Collections Journals About Contactus My IOPscience

iopscience.iop.org

Electron swarm properties under the influence of a very strong attachment in SF6 and CF3I

obtained by Monte Carlo rescaling procedures

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 Plasma Sources Sci. Technol. 25 065010
(http://iopscience.iop.org/0963-0252/25/6/065010)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 147.91.1.45
This content was downloaded on 18/10/2016 at 09:14

Please note that terms and conditions apply.

You may also be interested in:

Boltzmann equation and Monte Carlo studies of electron transport in resistive plate chambers

D BoSnjakovi, Z Lj Petrovi, R D White et al.

Non-conservative electron transport in CF4
S Dujko, R D White, K F Ness et al.

Positron transport in water vapour
A Bankovi, S Dujko, R D White et al.

High-order fluid model for streamer discharges: I. Derivation of model and transport data
S Dujko, A H Markosyan, R D White et al.

A multi-term solution of the nonconservative Boltzmann equation
S Dujko, R D White, Z Lj Petrovi et al.

Monte Carlo studies of electron transport in CF4
S Dujko, Z M Raspopovi and Z Lj Petrovi

Fluid modeling of resistive plate chambers: impact of transport data on development of streamers

and induced signals
D Bosnjakovi, Z Lj Petrovi and S Dujko



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/article/10.1088/0022-3727/47/43/435203
http://iopscience.iop.org/article/10.1088/0022-3727/39/22/009
http://iopscience.iop.org/article/10.1088/1367-2630/14/3/035003
http://iopscience.iop.org/article/10.1088/0022-3727/46/47/475202
http://iopscience.iop.org/article/10.1088/0963-0252/20/2/024013
http://iopscience.iop.org/article/10.1088/0022-3727/38/16/032
http://iopscience.iop.org/article/10.1088/0022-3727/49/40/405201
http://iopscience.iop.org/article/10.1088/0022-3727/49/40/405201
http://iopscience.iop.org/0963-0252/25/6
http://iopscience.iop.org/0963-0252
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

IOP Publishing Plasma Sources Science and Technology

Plasma Sources Sci. Technol. 25 (2016) 065010 (15pp) doi:10.1088/0963-0252/25/6/065010

Electron swarm properties under the
influence of a very strong attachment in SFg
and CF;l obtained by Monte Carlo rescaling
procedures

J Miri¢!, D Bo$njakovié!, | Simonovié!, Z Lj Petrovi¢!:> and S Dujko!

! Institute of Physics, University of Belgrade, PO Box 68, 11080 Belgrade, Serbia
2 Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11001 Belgrade, Serbia

E-mail: sasa.dujko@ipb.ac.rs

Received 13 May 2016, revised 28 July 2016
Accepted for publication 19 September 2016 @
Published 14 October 2016

CrossMark
Abstract
Electron attachment often imposes practical difficulties in Monte Carlo simulations,
particularly under conditions of extensive losses of seed electrons. In this paper, we discuss
two rescaling procedures for Monte Carlo simulations of electron transport in strongly
attaching gases: (1) discrete rescaling, and (2) continuous rescaling. The two procedures are
implemented in our Monte Carlo code with an aim of analyzing electron transport processes
and attachment induced phenomena in sulfur-hexafluoride (SF¢) and trifluoroiodomethane
(CFj3]). Though calculations have been performed over the entire range of reduced electric
fields E/ng (where ng is the gas number density) where experimental data are available, the
emphasis is placed on the analysis below critical (electric gas breakdown) fields and under
conditions when transport properties are greatly affected by electron attachment. The present
calculations of electron transport data for SFg and CF3l at low E/ng take into account the full
extent of the influence of electron attachment and spatially selective electron losses along the
profile of electron swarm and attempts to produce data that may be used to model this range
of conditions. The results of Monte Carlo simulations are compared to those predicted by the
publicly available two term Boltzmann solver BOLSIG+. A multitude of kinetic phenomena
in electron transport has been observed and discussed using physical arguments. In particular,
we discuss two important phenomena: (1) the reduction of the mean energy with increasing
E/ng for electrons in SFq and (2) the occurrence of negative differential conductivity (NDC) in
the bulk drift velocity only for electrons in both SFs and CF31. The electron energy distribution
function, spatial variations of the rate coefficient for electron attachment and average energy
as well as spatial profile of the swarm are calculated and used to understand these phenomena.

Keywords: Monte Carlo, electron transport, electron attachment, SFg, CF31

(Some figures may appear in colour only in the online journal)

1. Introduction fabrication [1, 2], high-voltage gas insulation [3] and par-

ticle detectors in high energy physics [4-6]. The importance
Electron transport in strongly attaching gases has long been  of studies of electron attachment has also been recognized in
of interest, with applications in many areas of fundamental other fields, including planetary atmospheres, excimer lasers,
physics and technology. Electron attaching gases support key  plasma medicine and lighting applications, as well as in life sci-
processes for plasma etching and cleaning in semiconductor ence for understanding radiation damage in biological matter.

0963-0252/16/065010+15$33.00 1 © 2016 IOP Publishing Ltd  Printed in the UK
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The fundamental importance of electron attachment pro-
cesses has led to many experimental and theoretical swarm
studies. For some gases the cross sections for attachment may
be very large resulting in a rapid disappearance of free elec-
trons that greatly complicates the measurements of transport
coefficients [1, 7-9]. The pioneering studies date back to the
1970s, and the well-known swarm method of deriving cross
section for electron attachment developed by Christophorou
and his co-workers [10]. According to this method, trace
amounts of an electron attaching gas are mixed into the buffer
gases, typically nitrogen to scan the lower mean energies
and argon to scan the higher mean energies. This technique
results in the removal of electrons without disturbing the elec-
tron energy distribution function. In such mixtures the losses
depend only on the very small amount of the added gas and
we may measure the density reduced electron attachment rate
coefficient. Electron attachment cross sections can be deter-
mined by deconvoluting the mixture data, since the electron
energy distribution function is a known function of E/ng as
calculated for the pure buffer gas. Examples of this procedure
are cross sections for electron attachment in SFg and SF¢-
related molecules [11-15] as well as cross sections and rate
coefficients for a range of fluorocarbons [1, 12, 16—18] and
other relevant gases for applications [1, 19-22]. In addition to
non-equilibrium data, there is a separate category of experi-
ments, including flowing afterglow, the Cavalleri diffusion
experiment [9, 23, 24], and others that provide attachment
rates for thermal equilibrium (i.e. without an applied electric
field). These may be taken at different temperatures, but the
range of energies covered by this technique is very narrow.
These two techniques have been used to evaluate the cross
sections for SFs and CFsl, always under the assumption that
the effect of attachment is merely on the number of particles
and not on any other swarm properties.

A thorough understanding of the influence of attachment
on the drift and diffusion of the electrons provides informa-
tion which could be used in analysis of kinetic phenomena
in complex electronegative gases and related plasmas. The
attachment cooling and heating [25, 26], negative absolute
electron flux mobility [27, 60] and anomalous phase shifts of
drift velocity in AC electric fields [28] are some examples of
these phenomena in strongly attaching gases, which may not
be trivially predicted on the basis of individual collision events
and external fields. Negative differential conductivity (NDC)
induced by 3-body attachment for lower E/ng and higher pres-
sures in molecular oxygen and its mixture with other gases
is another example of phenomena induced by strong electron
attachment [29]. The duality in transport coefficients, e.g. the
existence of two fundamentally different families of transport
coefficients, the bulk and flux, is caused by the explicit effects of
electron impact ionization and electron attachment [7, 30-32].
The differences between two sets of data vary from a few per-
cents to a few orders of magnitude and hence a special care
is needed in the implementation of data in fluid models of
plasma discharges [7, 31, 33-35]. On one hand, most plasma
modeling is based on flux quantities while experiments aimed
at yielding cross section data provide mostly but not uniquely
the bulk transport data. This differentiation between flux and

bulk transport properties is not merely a whimsy of theorists,
but it is essential in obtaining and applying the basic swarm
data. In addition, the production of negative ions has a large
effect on the transport and spatial distribution of other charged
particle species as well as on the structure of the sheath and
occurrence of relaxation oscillations in charged particle densi-
ties [36—41].

There are three main approaches to the theoretical descrip-
tion of electron transport in gases: the kinetic Boltzmann equa-
tion, the stochastic particle simulation by the Monte Carlo
method and semi-quantitative momentum transfer theory.
Restrictions on the accuracy of momentum transfer theory for
studies of electron transport in attaching gases, particularly
under non-hydrodynamic conditions, have already been dis-
cussed and illustrated [31, 42, 43]. Boltzmann equation anal-
yses for SFg and its mixtures with other gases (see for example
[11, 44-50]) have been performed several times in the past.
Two important studies devoted to the calculation of electron
swarm parameters based on a Boltzmann equation have also
been performed for CFsl [51, 52]. Theories for solving the
Boltzmann equation were usually restricted to low-order trun-
cations in the Legendre expansions of the velocity dependence
assuming quasi-isotropy in velocity space. The explicit effects
of electron attachment were also neglected and electron trans-
port was studied usually in terms of the flux data only. These
theories had also restricted domains of validity on the applied
E/ny in spite of their coverage of a considerably broader
range. One thing that strikes the reader surveying the litera-
ture on electron transport in SFg is the systematic lack of reli-
able data for electron transport coefficients for E/ng less than
50 Td. Contemporary moment methods for solving
Boltzmann’s equation [31, 53] are also faced with a lot of
systematic difficulties, particularly under conditions of the
predominant removal of the lower energy electrons which
results in an increase in the mean energy, i.e. attachment
heating. Under these conditions the bulk of the distribution
function is shifted towards a higher energy which in turn
results in the high energy tail falling off much slower than
a Maxwellian. This is exactly what may happen in the anal-
ysis of electron transport in strongly attaching gases such as
SFg or CFsl for lower E/ng. The moment method for solving
Boltzmann’s equation under these circumstances usually
requires the prohibitive number of basis functions for resolving
the speed/energy dependency of the distribution function and/
or unrealistically large computation time. As a consequence,
the standard numerical schemes employed within the frame-
work of moment methods usually fail.

The present investigation is thus mainly concerned with
the Monte Carlo simulations of electron transport in strongly
attaching gases. Monte Carlo simulations have also been
employed for the analysis of electron transport in the mixtures
of SFg [46, 54-57] and CFsI [58] with other gases usually with
an aim of evaluating the insulation strength and critical electric
fields. However, electron attachment in strongly electronega-
tive gases often imposes practical difficulties in Monte Carlo
simulations. This is especially noticeable at lower E/ng, where
electron attachment is one of the dominant processes which
may lead to the extensive vanishing of the seed electrons and
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consequently to the decrease of the statistical accuracy of the
output results. In extreme cases, the entire electron swarm
might be consumed by attachment way before the equilibrated
(steady-state regime) is achieved. An obvious solution would
be to use a very large number of initial electrons, but this
often leads to a dramatic increase of computation time and/
or required memory/computing resources which are beyond
practical limits. Given the computation restrictions of the
time, the workers were forced to develop methods to combat
the computational difficulties induced by the extensive van-
ishing of the seed electrons. Two general methods were devel-
oped: (1) addition of new electrons by uniform scaling of the
electron swarm at certain time instants under hydrodynamic
conditions [26, 59] or at certain positions under steady-state
Townsend conditions [60], when number of electrons reaches a
pre-defined threshold, and (2) implementation of an additional
fictitious ionization channel/process with a constant collision
frequency (providing that the corresponding ionization rate is
chosen to be approximately equal to the attachment rate) [54].
On the other hand, similar rescaling may be applied for the
increasing number of electrons as has been tested at the larger
E/ng by Li et al [61]. Further distinction and specification
between methods developed by Nolan et al [26] and Dyatko
et al [60] on one hand and Raspopovi¢ et al [59] on the other,
will be discussed in later sections. These methods have not
been compared to each other in a comprehensive and rigorous
manner. This raises a number of questions. How accurate,
these methods are? Which is the more efficient? Which is
easier for implementation? What is their relationship to each
other? Which one is more flexible? In this paper, we will try to
address some of these issues. In particular, the present paper
serves to summarize the salient features of these methods in a
way which we hope will be of benefit to all present and future
developers of Monte Carlo codes. Finally, it is also important
to note that in the present paper we extend the method initially
developed by Yousfi et al [54], by introducing time-dependent
collision frequency for the fictitious ionization process.

This paper is organized as follows: in section 2, we briefly
review the basic elements of our Monte Carlo code, before
detailing the rescaling procedures employed to combat the
computational difficulties initiated by the rapid disappearance
of electrons. In the same section, we illustrate the issue of
electron losses by considering the evolution of the number of
electrons for a range of E/ny in SF¢ and CFsl. In section 3,
we evaluate the performance of rescaling procedures by simu-
lating electron transport in SFg and CFsl over a wide range of
E/ny. We will also highlight the substantial difference between
the bulk and flux transport coefficients in SFg and CFsl.
Special attention will be paid to the occurrence of negative
differential conductivity (NDC) in the profile of the bulk drift
velocity. For electrons in SFg another phenomenon arises:
for certain reduced electric fields we find regions where the
swarm mean energy decreases with increasing E/ny. In the last
segment of the section 3, we discuss two important issues: (1)
how to use the rescaling procedures in Monte Carlo codes,
and (2) rescaling procedures as a tool in the modeling of non-
hydrodynamic effects in swarm experiments. In section 4, we
present our conclusions and recommendations.

Cross section (10'20 mz)

10’ 10° 10°
Electron energy (eV)

T
10°

10 107 10"

Figure 1. Electron impact cross-sections for CF3I used in this
study [62]: Q ¢, m¢ momentum transfer in elastic collisions, Q vib, exc
vibrational excitation, Q ¢ exc €lectronic excitation, Q , dissociative
attachment and Q ; electron-impact ionization.

2. Input data and computational methods

2.1. Cross sections for electron scattering and simulation
conditions

We begin this section with a brief description of cross sec-
tions for electron scattering in SFg and CF3l. For the SFg cross
sections we use the set developed by Itoh et al [47]. This set
was initially based on published measurements of cross sec-
tions for individual collision processes. Using the standard
swarm procedure, the initial set was modified to improve
agreement between the calculated swarm parameters and the
experimental values. The set includes one vibrational channel,
one electronic excitation channel, as well as elastic, ionization
and five different attachment channels.

This study considers electron transport in CF3l using the
cross section set developed in our laboratory [62]. This set of
cross sections is shown in figure 1. It should be noted that this
set is similar but not identical to that developed by Kimura
and Nakamura [63]. We have used the measured data under
pulsed Townsend conditions for pure CFsl and its mixtures
with Ar and CO; in a standard swarm procedure with the aim
of improving the accuracy and completeness of a set of cross
sections. It consists of the elastic momentum transfer cross
section, three cross sections for vibrational and five cross sec-
tions for electronic excitations as well as one cross section for
electron-impact ionization with a threshold of 10.4eV and one
cross section for dissociative attachment. For more details the
reader is referred to our future paper [64].

For both SF¢ and CFsl all electron scattering are assumed
isotropic and hence the elastic cross section is the same as
the elastic momentum transfer cross section. Simulations have
been performed for E/ng ranging from 1 to 1000 Td. The pres-
sure and temperature of the background gas are 1 Torr and
300K, respectively. It should be mentioned that special care in
our Monte Carlo code has been paid to proper treatment of the
thermal motion of the host gas molecules and their influence
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Figure 2. Electron number density decay for four different reduced electric fields as indicated on the graph. Calculations are performed for

SF¢ (a) and CF3l (b).

on electrons, which is very important at low electric fields,
when the mean electron energy is comparable to the thermal
energy of the host gas [65]. After ionization, the available
energy is partitioned between two electrons in such a way that
all fractions of the distribution are equally probable.

2.2. Monte Carlo method

The Monte Carlo simulation technique used in the present
work is described at length in our previous publications [32,
53, 59, 66, 67]. In brief, we follow the spatiotemporal evo-
lution of each electron through time steps which are fractions
of the mean collision time. In association with random num-
bers, these finite time steps are used to solve the integral equa-
tion for the collision probability in order to determine the time
of the next collision. The number of time steps is determined in
such a way as to optimize the performance of the Monte Carlo
code without reducing the accuracy of the final results. When
the moment of the next collision is established, the additional
sequences of random numbers are used, first to determine the
nature of a collision, taking into account the relative probabili-
ties of the various collision types, and second to determine the
change in the direction of the electron velocity. All dynamic
properties of each electron such as position, velocity, and
energy are updated between and after the collisions. Sampling
of electron dynamic properties is not correlated to the time
of the next collision and is performed in a way that ensemble
averages can be taken in both the velocity and configuration
space. Explicit formulas for the bulk and flux transport prop-
erties have been given in our previous publications [59, 66].
To evaluate the accuracy of the Monte Carlo code, Boltzmann
analyses were performed in parallel with the Monte Carlo
calculations using the multi term method described in detail by
Dujko et al [53]. In addition, we use the BOLSIG+, a publicly
available Boltzmann solver based on a two term theory [68].
The most recent version of this code might be used to study the
electron transport in terms of both the flux and bulk data which
is very useful for some aspects of plasma modeling [7]. At the
same time, the comparison between our results and those com-
puted by BOLSIG+ which is presented in this paper, should

be viewed as the first benchmark for the bulk BOLSIG+ data.
Our Monte Carlo code and multi term codes for solving the
Boltzmann equation have been subject of a detailed testing for
a wide range of model and real gases [31, 53, 59, 67].

In figure 2 we illustrate the losses of electrons during the
evolution of the swarm towards the steady-state. The initial
number of electrons is set to 1 x 10% and calculations are
performed for a range of reduced electric fields E/ng as indi-
cated on the graphs. For both SFs and CFsl, we observe that
at small E/no, i.e. at low mean energies, the number of elec-
trons decreases much faster. This is a clear sign that collision
frequency for electron attachment increases with decreasing
E/ny. Electrons in CF3l are lost continuously and consequently
the number of electrons in the swarm decreases exponentially
with time. The same trend may be observed for electrons in
SFe at 210 Td. For the remaining E/ng the number of electrons
is reduced with time even faster. Comparing SF¢ and CFsl, it
is evident that the electrons are more efficiently consumed by
electron attachment in SF in the early stage of the simulation.
Conversely, in the last stage of simulation the electrons are
more consumed by electron attachment in CF;l than in SFg.
In any case, the electron swarms in both cases are entirely
consumed by attachment way before the steady-state regime
and hence the simulations are stopped. In other words, the
number density drops down by six orders of magnitude over
the course of several hundred nanoseconds in both gases. To
facilitate the numerical simulation, it is clear that some kind
of rescaling of the number density is necessary to compen-
sate for the electrons consumed by electron attachment. This
procedure should not in any way disrupt the spatial gradients
in the distribution function. On the other hand, releasing elec-
trons with some fixed arbitrary initial condition would require
that they equilibrate with the electric field during which time
again majority of such additional electrons would be lost.

2.3. Rescaling procedures

To counteract the effect of attachment in an optimal fashion
while keeping the statistical accuracy, the following rescaling
procedures were proposed and applied so far:
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(1) Uniform generation of new electrons with initial prop-
erties taken from the remaining electrons thus taking
advantage of the equilibration that has been achieved
so far [59]. To make this procedure effective i.e. to
avoid losing population in some smaller pockets of the
ensemble the population should be allowed to oscillate
between N; and Ny, where N; > N, but their difference is
relatively small. Here Ny is minimum allowed number of
electrons while N; is maximum number of electrons in
the simulation after rescaling.

(2) Uniform scaling of an electron swarm by a factor of 2 or 3
at certain instants of time [26] or distance [60] depending
on the simulation conditions where the probability of
scaling for each electron is set to unity.

(3) Introduction of an additional fictitious ionization process
with a constant ionization frequency (that is close to
the rate for attachment), which artificially increases the
number of simulated electrons [54, 61]. Uniform rescaling
of the swarm is done by randomly choosing the electrons
which are to be ‘duplicated’. The newborn electron has
the same initial dynamic properties, coordinates, velocity,
and energy as the original. Following the creation of a
new electron their further histories diverge according to
the independently selected random numbers.

Comparing the procedures (1) and (2), it is clear that there are
no essential differences between them. The only difference lies
in the fact that in the procedure (2) duplicating is performed
for all the electrons in the simulation while according the pro-
cedure (1), the probability of duplication is determined by the
current ratio of the number of electrons to the desired number
of electrons in the simulation, which is specified in advance.
On the other hand, fictitious ionization collision generates a
new electron which is given the same position, velocity and
energy as the primary electron that is not necessarily the elec-
tron lost in attachment. In this paper, we shall refer to the pro-
cedure (1) as discrete rescaling, since the procedure is applied
at discrete time instants. The procedure (2) shall be termed
as swarm duplication and finally we shall refer to the proce-
dure (3) as the continuous rescaling since the rescaling is done
during the entire simulation. An important requirement is that
the rescaling must not perturb/change/disturb the normalized
electron distribution function and its evolution. Li et al [61]
showed that the continuous rescaling procedure meets this
requirement. In case of discrete rescaling as applied to the
symmetrical yet different problem of excessive ionization, it
was argued that one cannot be absolutely confident that the
rescaled distribution is a good representation of the original
[69], except when steady state is achieved [70].

In what follows, we discuss the continuous rescaling.
Following the previous works [54, 61], the Boltzmann equa-
tion for the distribution function f(r,c,#) without rescaling
and f*(r, ¢, t) with rescaling are given by:

(8[+C'Vr+a'Vc)f(rac’t):_‘](f)’ (1)
and

O+ Ve ta - Nf(r,e,t) = —J(f*) + va()f ", @)

where a is the acceleration due to the external fields, J(f) is
the collision operator for electron-neutral collisions and vy is
time-dependent fictitious ionization rate. If the collision oper-
ator is linear (i.e. if electron—electron collisions are negligible)
and if the initial distributions (at time ¢ = 0) are the same, it
can be easily shown that the following relationship holds

fr(@r,e,t)=f(r,c,t)exp ( j: Vﬁ(T)dT). 3)

Substituting equation (3) into equation (2) and using the lin-
earity of the collision operator yields the following equation

J(F*) = exp ( fo t yﬁ(T)dT)J( . @)

Note that in contrast to Li e al [61] the collision frequency
for the fictitious ionization is now a time-dependent func-
tion. In terms of numerical implementation, the only differ-
ence between our continuous rescaling procedure and the one
described in [54, 61] is that we do not need to provide the
fictitious ionization rate which is estimated by trial and error,
in advance ( a priori). Instead, our fictitious ionization rate is
initially chosen to be equal to the calculated attachment rate at
the beginning of the simulation. Afterwards, it is recalculated
at fixed time instants in order to match the newly developed
attachment rates. As a result, the number of electrons during
the simulation usually does not differ from the initial one by
more than 10%. It should be noted that the fictitious ionization
process must not in any way be linked to the process of real
ionization. It was introduced only as a way to scale the distri-
bution function, or in other words, as a way of duplicating the
electrons.

3. Results and discussion

In this section the rescaling procedures and associated Monte
Carlo code outlined in the previous section are applied to
investigate transport properties and attachment induced phe-
nomena for electrons in SFg and CFsl. Electron transport in
these two strongly attaching gases provides a good test of dif-
ferent rescaling procedures, particularly for lower E/ny where
electron attachment is the dominant non-conservative process.
In addition to comparisons between different rescaling pro-
cedures, the emphasis of this section is the observation and
physical interpretation of the attachment induced phenomena
in the E/ng-profiles of mean energy, drift velocity and diffu-
sion coefficients. In particular, we investigate the differences
between the bulk and flux transport coefficients. We do not
compare our results with experimentally measured data as it
would distract the reader’s attention to the problems associ-
ated with the quality of the sets of the cross sections for elec-
tron scattering. There are no new experimental measurements
of transport coefficients for electrons in SFg, particularly for
E/ng less than 50 Td and thus we have deliberately chosen
not to display the comparison. On the other hand, one cannot
expect the multi term results to be useful here as the condi-
tions with excessive attachment would make convergence dif-
ficult in the low E/ng region, where comparison would be of
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Figure 3. Variation of the mean energy with E/n, for electrons
in SFs. Monte Carlo results using three different techniques for
electron number density compensation (rescaling) are compared
with the BOLSIG+- results.

interest. Thus, for clarity the multi term results are omitted.
Both experimental and theoretical work on electron swarms in
SFg prior to 1990 is summarized in the papers of Phelps and
van Brunt [11], Gallagher et al [71] and Morrow [72]. Recent
results can be found in the book by Raju [22] and the review
article of Christophorou and Olthoff [12]. The swarm analysis
and further improvements of the cross sections for electron
scattering in CFsl is a subject of our future work [64].

3.1. Transport properties for electrons in SFg and CF3l

3.1.1. Mean energy. In figure 3 we show the variation of the
mean energy with E/ng for electrons in SFs. The agreement
between different rescaling procedures is excellent. This sug-
gests that all rescaling procedures are equally valid for calcul-
ation of the mean energy (provided that rescaling is performed
carefuly). In addition, the BOLSIG+ results agree very well
with those calculated by a Monte Carlo simulation technique.
For lower E/ny, the mean energy initially increases with E/ny,
reaching a peak at about 10 Td, and then surprisingly it starts
to decrease with E/ng. The minimum of mean energy occurs
at approximately 60 Td. For higher E/ny the mean energy
monotonically increases with E/ng. The reduction in the mean
energy with increasing E/ng has been reported for electrons in
Ar [73] and O, [74] but in the presence of very strong magn-
etic fields. In the present work, however, the mean energy is
reduced in absence of magnetic field which certainly repre-
sents one of the most striking and anomalous effects observed
in this study. Moreover, this behavior is contrary to previous
experiences in swarm physics as one would expect the mean
swarm energy to increase with increasing E/ng. This is dis-
cussed in detail below.

In order to understand the anomalous behavior of the mean
energy of electrons in SFg, in figure 4 we display the elec-
tron energy distribution functions for E/ng at 10, 27, 59 and
210 Td. Cross sections for some of the more relevant col-
lision processes are also included, as indicated in the graph.
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Figure 4. Electron energy distribution functions for E/ng of 10,
27,59 and 210 Td. Cross sections for elastic momentum transfer
(Qmt), electronic excitation (Qexc) and ionization (Qion) as well as
for attachments that lead to the formation of SF¢ (Qattl) and SF5~
(Qatt2) ions, are also included.

For clarity, the attachment cross sections for the formation of
SF,, F, and F ~ are omitted in the figure. For E/ny of 10
and 27 Td we observe the clear signs of ‘hole burning’ in the
electron energy distribution function (EEDF). This phenom-
enon has been extensively discussed for electrons in O, [75,
76], O, mixtures [29, 77] and under conditions leading to the
phenomenon of absolute negative electron mobility [27, 60]
as well as for electrons in the gas mixtures of C,H,F,, iso-
C4Ho and SFg used in resistive plate chambers in various
high energy physics experiments at CERN [6]. For elec-
trons in SFg, the collision frequency for electron attachment
decreases with energy and hence the slower electrons at the
trailing edge of the swarm are preferentially attached. As a
consequence, the electrons are ‘bunched’ in the high-energy
part of the distribution function which in turn moves the bulk
of the distribution function to higher energies. This is the well-
known phenomenon of attachment heating which has already
been discussed in the literature for model [25, 26] and real
gases [0, 29]. In the limit of the lowest E/ny we see that due
to attachment heating the mean energy attains the unusually
high value of almost 5eV. For a majority of molecular gases,
however, the mean energy is significantly reduced for lower
E/ng due to presence of rotational, vibrational and electronic
excitations which have threshold energies over a wide range.
As E/ng further increases the mean energy is also increased as
electrons are accelerated through a larger potential. However,
in case of SFg, for E/ng increasing beyond 10 Td the mean
energy is reduced. This atypical situation follows from the
combined effects of attachment heating and inelastic cooling.
From figure 4 we see that for E/ng of 27 and 59 Td the elec-
trons from the tail of the corresponding distribution functions
have enough energy to undergo the electronic excitation.
Whenever an electron undergoes electronic excitations (or
ionization) it loses the threshold energy of 9.8eV (or 15.8eV
in case of ionization) and emerges from the collision with a
reduced energy. This in turn diminishes the phenomenon of
‘hole burning’ in the distribution function by repopulating
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Figure 5. Variation of the mean energy with E/n for electrons
in CFsl. Monte Carlo results using three different techniques for
electron compensation are compared with the BOLSIG+ results.

the distribution function at the lower energy. The combined
effects of attachment heating and inelastic cooling and subse-
quent redistribution of low-energy electrons are more signifi-
cant for the energy balance than the energy gain from electric
field and losses in other collisions. The vibrational excitation
with the threshold of 0.098¢V is of less importance having in
mind the actual values of the mean energy. For E/ng higher
than 60 Td, the dominant part in the energy balance is the
energy gain from the electric field while attachment heating
and induced phenomena are significantly suppressed. Thus,
for E/ng higher than 60 Td the mean energy monotonically
increases with increasing E/ny.

The variation of the mean energy with E/n for electrons in
CF;lis shownin figure 5. The agreement between different resca-
ling procedures is very good. Small deviations between discrete
rescaling and swarm duplication from one side and continuous
rescaling from the other side are present between approximately
3 and 20 Td. BOLSIG+ slightly overestimates the mean energy
only in the limit of the lowest E/n. In contrast to mean energy
of the electrons in SFg, the mean energy of the electrons in CF;l
monotonically increases with E/ny without signs of anomalous
behavior. If we take a careful look, then we can isolate three
distinct regions of electron transport in CF;l as E/ng increases.
First, there is an initial region where the mean energy raises rela-
tively slowly due to large energy loss of the electrons in low-
threshold vibrational excitations. In this region the mean energy
of the electrons is well above the thermal energy due to extensive
attachment heating. The mean energy is raised much sharper
between approximately 5 and 50 Td, indicating that electrons
become able to overcome low-threshold vibrational excitations.
The following region of slower rise follows from the explicit
cooling of other inelastic processes, including electronic excita-
tions and ionization, as these processes are now turned on. In
conclusion, the nature of cross sections for electron scattering in
CF;l and their energy dependence as well as their mutual rela-
tions do not favor the development of the anomalous behavior of
the swarm mean energy.
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Figure 6. Variation of the drift velocity with E/n for electrons
in SFe. Monte Carlo results using three different techniques for
electron number density compensation are compared with the
BOLSIG+ results.

= continuous rescaling
O discrete rescaling

W * swarm duplication
Flux - - - BOLSIG+
1 10 100 1000
E/n, [Td]

Figure 7. Variation of the drift velocity with E/n for electrons
in CFsl. Monte Carlo results using three different techniques for
electron number density compensation are compared with the
BOLSIG+ results.

3.1.2. Drift velocity. Infigures 6 and 7 we show variation of the
bulk and flux drift velocity with E/ng for electrons in SFg and
CFsl, respectively. For electrons in SFg the agreement between
different rescaling procedures for electron compensation is
excellent for both the bulk and flux drift velocity over the
entire E/ng range considered in this work. The BOLSIG+ bulk
results slightly underestimate the corresponding bulk Monte
Carlo results in the limit of the lowest E/ng. For electrons in
CFsl, the agreement among different rescaling procedures
for electron compensation is also good except for lower E/ng
where the continuous rescaling gives somewhat lower results
than other techniques.

For both SFg and CFsl, we see that the bulk dominates the
flux drift velocity over the entire E/ng range considered in this
work. For lower E/ny this is a consequence of a very intense
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Figure 8. Spatial profile of electrons (blue curves) and spatially resolved averaged energy (red curves) at four different E/n in CF;l. Full
lines denote the results when electron attachment is treated as a non-conservative process, while the dashed lines represent our results when
electron attachment is treated as a conservative inelastic process with zero energy loss.

attachment heating while for higher E/ng this follows from
the explicit effects of ionization. As mentioned above, when
transport processes are greatly affected by attachment heating
the slower electrons at the back of the swarm are consumed at
a faster rate than those at the front of the swarm. Thus, in the
case of drift, the electron attachment acts to push the centre
of mass forward, increasing the bulk drift velocity above its
flux component. For higher E/ny when ionization takes place,
the ionization rate is higher for faster electrons at the front of
the swarm than for slower electrons at the back of the swarm.
As a result, electrons are preferentially created at the front of
the swarm which results in a shift in the centre of mass. Of
course, this physical picture is valid if collision frequency for
ionization is an increasing function of electron energy. This
is true for electrons in both SF¢ and CF;l. The explicit effects
of electron attachment are much stronger than those induced
by ionization. When ionization is dominant non-conservative
process, the differences between two sets of data are within
30% for both gases. When attachment dominates ionization,
however, then the discrepancy between two sets of data might
be almost two orders of magnitude, as for electrons in SF¢ in
the limit of the lowest E/n.

The flux drift velocity is a monotonically increasing func-
tion of E/ny while the bulk component behaves in a qualitatively

different fashion. A prominent feature of electron drift in SFg
and CFsl is the presence of a very strong NDC in the profile
of the bulk drift velocity. On the other hand, a decrease in the
flux drift velocity with increasing E/ng has not been observed.
Such behavior is similar of the recently observed NDC effect
for positrons in molecular gases [78, 79] where Positronium
(Ps) formation plays the role of electron attachment.

In order to provide physical arguments for an explanation
of NDC in the bulk drift velocity, in figure 8 we show the spa-
tial profile and spatially resolved average energy of electrons
in CF3l. Calculations are performed for four different values
of E/ny as indicated in the graph. The direction of the applied
electric field is also shown. Two fundamentally different sce-
narios are discussed: (1) the electron attachment is treated as
a conservative inelastic process with zero energy loss, and
(2) the electron attachment is treated regularly, as a true non-
conservative process. The first scenario is made with the aim
of illustrating that NDC is not primarily caused by the shape
of cross section for attachment but rather by the synergism of
explicit and the implicit effects of the number changing nature
of the process on electron transport. Sampling of spatially
resolved data in our Monte Carlo simulations is performed
using the continuous rescaling. The continuous rescaling pro-
duces smoother curves and in most cases it is more reliable
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as compared to the discrete rescaling and swarm duplication.
The results of the first scenario are presented by dashed lines
while the second scenario where electron attachment is treated
as a true non-conservative process, is represented by full lines.

When electron attachment is treated as a conservative ine-
lastic process, the spatial profile of electrons has a well defined
Gaussian profile with a small bias induced by the effect of
electric field. The non-symmetrical feature of spatial profile
is further enhanced with increasing E/ng. While for lower E/ny
the spatial variation of the average energy is relatively low,
for higher E/ny, e.g. for E/ny of 59 Td the slope of the average
energy is quite high, indicating that the electron swarm energy
distribution is normally spatially anisotropic. It is important
to note that there are no imprinted oscillations in the spatial
profile of the electrons or in the profile of the average energy
which is a clear sign that the collisional energy loss is gov-
erned essentially by ’continuous’ energy loss processes [32].

When electron attachment is treated as a true non-
conservative process, the spatial profile and the average
energy of electrons are drastically changed. For all consid-
ered reduced electric fields spatially resolved average energy
is greater as compared to the case when electron attachment is
treated as a conservative inelastic process. For E/ng of 1.7 and
4.6 Td the spatial profiles of electrons depart from a typical
Gaussian shape. For 1.7 Td there is very little spatial variation
in the average energy along the swarm. When E/ny = 4.6 Td,
however, the spatial profile is skewed, asymmetric and shifted
to the left. This shift corresponds approximately to the differ-
ence between bulk drift velocities in the two scenarios. We
observe that the trailing edge of the swarm is dramatically cut
off while the average energy remains essentially unaltered. At
the leading edge of the swarm, however, we observe a sharp
jump in the average energy which is followed by a sharp drop-
off. In addition, the height of spatial profile is significantly
increased in comparison to the Gaussian profile of the swarm
when electron attachment is treated as a conservative inelastic
process. For higher E/ng the signs of explicit effects of elec-
tron attachment are still present but are significantly reduced.
For E/ng= 10 Td the spatial dependence of the average
energy is almost linear with a small jump at the leading edge
of the swarm. Comparing trailing edges of the swarms at 4.6
and 10 Td we see that for higher electric field the spatial pro-
file of electrons is by far less cut off. This suggests that for
increasing E/ng there are fewer and fewer electrons that are
consumed by electron attachment. Finally, for E/ny = 59 Td
the spatial profile of electrons is exactly the same as the profile
obtained under conditions when electron attachment is treated
as a conservative inelastic process.

The spatially resolved attachment rates are displayed in
figure 9 and are calculated under the same conditions as for the
spatial profile of the electrons and spatially averaged energy.
We see that the attachment rate peaks at the trailing edge of
the swarm where the average energy of the electrons is lower.
Attachment loss of these lower energy electrons causes a for-
ward shift to the swarm centre of mass, with a corresponding
increase in the bulk drift velocity. For increasing E/ng, the
spatially resolved attachment rate coefficients are reduced and
linearly decrease from the trailing edge towards the leading
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Figure 9. Spatially resolved attachment rate coefficient for a range
of E/ny as indicated on the graph. Calculations are performed for
electrons in CF;l.

part of the swarm. At the same time the electrons at the leading
edge of the swarm have enough energy to undergo ionization.
This suggests much less explicit influence of electron attach-
ment on the electron swarm behavior. As a consequence, NDC
is removed from the profile of the bulk drift velocity.

In addition to the explicit effects of electron attachment
there are implicit effects due to energy specific loss of elec-
trons, which changes the swarm energy distribution as a
whole, and thus indirectly changes the swarm flux. Generally
speaking, it is not possible to separate the explicit from
implicit effects, except by analysis with and without the elec-
tron attachment. Using these facts as motivational factors, in
figure 10 we show the electron energy distribution functions
for the same four values of E/ng considered above. The elec-
tron energy distribution functions are calculated when elec-
tron attachment is treated as a true non-conservative process
(full line) and under conditions when electron attachment is
assumed to be a conservative inelastic process (dashed line).
As for electrons in SFg, we observe a ‘hole burning’ effect in
the energy distribution function which is certainly one of the
most illustrative examples of the implicit effects. Likewise,
we see that the high energy tail of the distribution function
falls off very slowly even slower than for Maxwellian. Under
these circumstances, when the actual distribution function
significantly deviates from a Maxwellian, the numerical
schemes for solving the Boltzmann equation in the framework
of moment methods usually fail. Indeed, for E/ng less than
approximately 20 Td we have found a sudden deterioration in
the convergence of the transport coefficients which was most
pronounced for the bulk properties. Furthermore, we see that
the ‘hole burning’ effect is not present when electron attach-
ment is treated as a conservative inelastic process. The lower
energy part of the distribution function is well populated while
high energy part falls off rapidly. For increasing E/ny and
when electron attachment is treated as a true non-conservative
process, the effect of hole burning is reduced markedly while
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Figure 10. Energy distribution functions for four different E/n, for electrons in CFsl. Black lines denote the results when electron
attachment is treated as non-conservative process while dashed red lines represent our results when electron attachment is treated as a

conservative inelastic process.

the high energy part of the distribution function coincides with
the corresponding one when electron attachment is treated as
a conservative inelastic process.

Before embarking on a discussion of our results for dif-
fusion coefficients, one particular point deserves more men-
tion. NDC phenomenon in the bulk drift velocity has not been
experimentally verified, neither for SF¢ nor for CFsl. On the
other hand, as we have already seen, the two entirely different
theoretical techniques for calculating the drift velocity pre-
dict the existence of the phenomenon. Thus, it would be very
useful to extend the recent measurements of the drift velocity
in both SFg and CFsl to lower E/ng with the aim of confirming
the existence of NDC. On the other hand, such measurements
are most likely very difficult, even impossible due to rapid
losses of electron density in experiment.

3.1.3. Diffusion coefficients. Variations of the longitudinal
and transverse diffusion coefficients with E/n for electrons in
SFg are displayed in figures 11 and 12, respectively. From the
E/ng-profiles of the longitudinal and transverse flux diffusion
coefficients, we observe that different rescaling procedures for
Monte Carlo simulations agree very well. For the bulk comp-
onents, the agreement is also very good for intermediate and
higher E/ny and only in the limit of the lowest E/n the agree-
ment is deteriorated. Over the range of E/ng considered we see
that there is an excellent agreement between continuous and
discrete rescaling.

Comparing Monte Carlo and BOLSIG+- results, the devia-
tions are clearly evident. They might be attributed to the
inaccuracy of the two term approximation of the Boltzmann
equation which is always considerably higher for diffusion
than for the drift velocity. For higher E/n, inelastic collisions
are significant and the distribution function deviates substanti-
ally from isotropy in velocity space. In these circumstances,
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Figure 11. Variation of the longitudinal diffusion coefficient with
E/ny for electrons in SFg. Monte Carlo results using three different

techniques for electron number density compensation are compared
with the BOLSIG+ results.

the two term approximation of the Boltzmann equation fails
and multi-term Boltzmann equation analysis is required. For
lower E/ng, however, the role of inelastic collisions is of less
significance, but still discrepances between the BOLSIG+ and
Monte Carlo results are clearly evident, particularly for the
longitudinal diffusion coefficient. This suggests that further
analyses of the impact of electron attachment on the distribu-
tion function in velocity space of electrons in SFs would be
very useful.

From the profiles of the longitudinal diffusion coefficient
at lower and intermediate values of E/ny we observe the fol-
lowing interesting points. In contrast to drift velocity (and
transverse diffusion coefficient shown in figure 12) we see
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Figure 12. Variation of the transverse diffusion coefficient with
E/ny for electrons in SFg. Monte Carlo results using three different
techniques for electron number density compensation are compared
with the BOLSIG+ results.

that the bulk diffusion coefficient is smaller than the corre-
sponding flux component. This indicates that the decrease in
electron numbers due to attachment weakens diffusion along
the field direction. As already discussed, attachment loss of
electrons from the trailing edge of the swarm causes a forward
shift to the swarm centre of mass, with the corresponding
increases in the bulk drift velocity and mean energy. The same
effects result in an enhancement of the flux longitudinal dif-
fusion. It should be noted that when attachment heating takes
place, the opposite situation (bulk is higher than flux) has
also been reported [25]. This is a clear sign that the energy
dependence of the cross sections for electron attachment is
of primary importance for the analysis of these phenomena.
For higher E/ny, however, where the contribution of ionization
becomes important, we observe that the diffusion is enhanced
along the field direction, e.g. the bulk dominates the flux. This
is always the case if the collision frequency for ionization is
an increasing function of the electron energy, independently
of the gaseous medium considered.

From the profiles of the transverse diffusion coefficient
the bulk values are greater than the corresponding flux values
over the range of E/nj considered in this work. Only in the
limit of the lowest E/n the opposite situation holds: the flux is
greater than the bulk. In contrast to the longitudinal diffusion,
spreading along the transverse directions is entirely deter-
mined by the thermal motion of the electrons. The flux of the
Brownian motion through a transverse plane is proportional
to the speed of the electrons passing through the same plane.
Therefore, the higher energy electrons contribute the most to
the transversal expansion, so attachment heating enhances
transverse bulk diffusion coefficient.

Figures 13 and 14 show the variations of the longitudinal
and transverse diffusion coefficients with E/n for electrons in
CFsl, respectively. From the E/ng-profiles of the bulk diffu-
sion coefficients we observe an excellent agreement between
different rescaling procedures for E/ng > 10 Td. The same
applies for the flux component of the longitudinal diffusion.
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Figure 13. Variation of the longitudinal diffusion coefficient with
Elng for electrons in CF3l. Monte Carlo results using three different
techniques for electron number density compensation are compared
with the BOLSIG+ results.
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Figure 14. Variation of the transverse diffusion coefficient with
E/ng for electrons in CFs1. Monte Carlo results using three different
techniques for electron number density compensation are compared
with the BOLSIG+- results.

For E/ny < 10 Td the agreement is poor for bulk components,
particularly between the continuous rescaling from one side
and discrete rescaling and/or swarm duplication from the
other side. The agreement is better for the flux components.

Comparing Monte Carlo and BOLSIG + results, we see
that the maximum error in the two term approximation, for
both diffusion coefficients occurs at lower and higher E/ny. In
contrast to SFg, CFsl has rapidly increasing cross sections for
vibrational excitations in the same energy region where the
cross section of momentum transfer in elastic collisions
decreases with the electron energy. Under these conditions,
the energy transfer is increased and collisions no longer have
the effect of randomizing the direction of electron motion. As
a consequence, the distribution function deviates significantly
from isotropy in velocity space and two term approximation
of the Boltzmann equation fails.
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When considering the differences between the bulk and
flux values of diffusion coefficients the situation is much more
complex comparing to SF¢. From the E/ny-profiles of the lon-
gitudinal diffusion coefficient one can immediately see that
for lower and higher E/ny, the bulk is greater than the corre-
sponding flux values while at intermediate E/n, the opposite
situation holds: the flux is greater than the bulk. The behavior
of the transverse diffusion coefficient is less complex, as over
the entire of E/ng the bulk is greater that the corresponding
flux values.

As we have demonstrated, in contrast to drift velocity the
behavior and differences between the bulk and flux diffusion
coefficients is somewhat harder to interpret. This follows from
the complexity of factors which contribute to or influence the
diffusion coefficients. The two most important factors are the
following: (a) the thermal anisotropy effect resulting from
different random electron motion in different directions; and
(b) the anisotropy induced by the electric field resulting from
the spatial variation of the average energy and local average
velocities throughout the swarm which act so as to either inhibit
or enhance diffusion. Additional factors include the effects of
collisions, energy-dependent total collision frequency, and
presence of non-conservative collisions. Couplings of these
individual factors are always present and hence sometimes it
is hard to elucidate even the basic trends in the behavior of
diffusion coefficients. In particular, to understand the effects
of electron attachment on diffusion coefficients and associated
differences between bulk and flux components, the variation
in the diffusive energy tensor associated with the second-order
spatial variation in the average energy with E/ny should be
studied. This remains the program of our future work.

3.1.4. Rate coefficients. In figure 15 we show the variation of
steady-state Townsend ionization and attachment coefficients
with E/ng for electrons in SFq. The agreement between differ-
ent rescaling procedures and BOLSIG+ code is very good.
It is important to note that the agreement is very good, even
in the limit of the lowest E/ng considered in this work where
the electron energy distribution function is greatly affected
by electron attachment. The curves show expected increase
in a/ng and expected decrease in n/ng, with increasing E/ny.
The value obtained for critical electric field is 361 Td which
is in excellent agreement with experimental measurements of
Aschwanden [80].

In figure 16 we show variation of the steady-state Townsend
ionization and attachment coefficients with E/n for electrons
in CF;l. The agreement between different rescaling procedure
and BOLSIG+ code is excellent for ionization coefficient.
From the E/ng-profile of attachment coefficient, we see that
the continuous rescaling slightly overestimates the remaining
scenarios of computation. The critical electric field for CF;l
is higher than for SFe. This fact has been recently used as a
motivational factor for a new wave of studies related to the
insulation characteristics of pure CFsl and its mixture with
other gases, in the light of the present search for suitable alter-
natives to SFq. The value obtained for critical electric field
in our calculations is 440 Td which is in close agreement
with experimental measurements under steady-state [63, 81]

12

107 1
Nl—| _______
S 107
N continuous rescaling
e 1024 O discrete rescaling
@ * swarm duplication
2 1- - - BOLSIG+ o/n,
24|
g 1Sk
3 ] 6
Q -26
o 107
14
10—2& T T T
1 10 100 1000
E/n, [Td]

Figure 15. Variation of the rate coefficients with E/n for electrons
in SFe. Monte Carlo results using three different techniques for
electron number density compensation are compared with the
BOLSIG+ results.
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Figure 16. Variation of the rate coefficients with E/n for electrons
in CFsl. Monte Carlo results using three different techniques for
electron number density compensation are compared with the
BOLSIG+ results.

and pulsed-Townsend [82] conditions, as well as with recent
calculations performed by Kawaguchi ef al [58] and Deng and
Xiao [52].

3.2. Recommendations for implementation

In this section, we discuss the main features of the rescaling
procedures and we give recommendations on how to use
them in future Monte Carlo codes. Based on our experience
achieved by simulating the electron transport in SFs, CF3l
and other attaching gases, we have observed that if correctly
implemented the procedures generally agree very well. The
agreement between different rescaling procedures is always
better for the flux than for the bulk properties. We found a
poor agreement for the bulk diffusion coefficients, particularly
for the lower E/ny while for mean energy, drift velocity and
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rate coefficients the agreement is reasonably good. For lower
E/ny when the distribution function is extremely affected by
electron attachment, the agreement between swarm duplica-
tion and discrete rescaling is also good. This is not surprising
as these two techniques are essentially the same.

In terms of implementation, the Monte Carlo codes can
be relatively easily upgraded with the procedures for swarm
duplication and/or discrete rescaling. Special attention
during the implementation of these procedures should be
given to the choice of the length of time steps after which
the cloning of the electrons is done. If the length of this time
step appears to be too long as compared to the time constant
which corresponds to the attachment collision frequency,
then the distribution function could be disturbed due to a low
statistical accuracy. In other words, depleting certain pockets
of the EEDF means that those cannot be recovered at all. On
the other hand, if the length of the time steps is too small,
the speed of simulation could be significantly reduced. The
implementation of the continuous rescaling procedure is
somewhat more complicated.

Which procedure is, the most flexible? It is difficult to
answer this question because the answer depends on the cri-
teria of flexibility. If the criterion for flexibility is associated
with the need for a priori estimates which are necessary for
setting the simulation, then the technique of continuous res-
caling is certainly the most flexible. Once implemented, and
thoroughly tested this procedure allows the analysis of elec-
tron transport in strongly attaching gases regardless of the
energy dependence of the cross section for electron attach-
ment. On the other hand, for the analysis of electron transport
in weakly attaching gases, the discrete rescaling is very con-
venient because it is easier for implementation into the codes
and less demanding in terms of the CPU time.

In terms of reliability and accuracy, the comparison of
the results obtained for various transport properties using the
rescaling procedures for Monte Carlo simulations and the
Boltzmann equation codes shows that the rescaling proce-
dures described herein are highly reliable. It should be noted
that only the multi term codes for solving the Boltzmann
equation may offer the final answer. Restrictions of the TTA
for solving the Boltzmann equation were demonstrated many
times in the past [7, 31], especially when it comes to the calcul-
ations of diffusion coefficients. Testing and benchmarking
against other Boltzmann solvers are currently ongoing.

3.3. Experiments in strongly attaching gases: difficulties
induced by non-hydrodynamic effects

It must be noted at this point that most processes scale with
pressure, so the independence on pressure would be main-
tained and so would be the equilibration of EEDFs affected
by excessive attachment. Most of the processes fall into that
category. These processes are best visualized in an infinite
uniform environment. Standard swarm experiments are built
in such a way that boundaries are not felt over appreciable
volume and thus, they mimic hydrodynamic conditions very
well. However, going to high E/n( requires operating at lower
pressures and there the boundaries may be felt over a larger
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portion of the volume. In general, whenever boundaries of any
kind are introduced selective losses resulting in very different
mean free paths of different groups of particles may lead to
selective losses. The resulting holes in the distribution may be
filled in by collisions, so when considerable selective losses
are introduced results may become the pressure dependent
(even when the cross section is not dependent on the pressure).
The same is true for temporal limitations. For example, if the
frequency of collisions is small, so that the mean free time is
comparable to the time required to accelerate to energies where
cross sections decrease with the electron energy, the runaway
effects may be developed. Similar effects may be created due
to temporal variations of the field that do not allow full equili-
bration. The pressure dependence of the results will develop
under such conditions (and so would the dependence on the
size of the vessel). The development of a non-hydrodynamic
theory for solving the Boiltzmann equation is difficult and
the best solution is a Monte Carlo simulation technique. For
that reason, rescaling procedures are essential in modeling of
the non-hydrodynamic (non-local) development of charged
particle ensembles.

Experiments in gases with a very large attachment (typi-
cally at low energies) may be difficult to carry out due to a
large loss of electrons. The fact that experiments in diluted gas
mixtures of such gases may be feasible, means that cross sec-
tions may be obtained. Yet, one should be aware of two main
problems. Even in such mixtures and depending on the size
of the experiment, attachment may be high enough to induce
depletion of the distribution function thus making results
pressure dependent or abundance dependent. If one wants to
extend the calculations to pure attaching gas for smaller ves-
sels and pressures, one needs to be aware that only techniques
that take full non-hydrodynamic description of the swarm
development, are required. Similar effects have been observed
in gases always associated with strong attachment such as
oxygen [76] and water vapor [83]. In any case, the critical
effects that include NDC for bulk drift velocity as a result of
excessive loss of electrons in attachment can be observed in
gases like SFq and CFsl based on hydrodynamic expansion
and even based on the two term theory provided that theory
takes into account the explicit and implicit non-conservative
effects of the attachment.

4. Conclusion

In this paper, we have presented the development, imple-
mentation and benchmarking of the rescaling procedures for
Monte Carlo simulations of electron transport in strongly
attaching gases. The capabilities of the rescaling procedures
have been described by systematic investigation of the influ-
ence of electron attachment on transport coefficients of elec-
trons in SFg and CF;1. Among many important points, the key
results arising from this paper are:

(1) We have presented two distinctively different methods for
compensation of electrons in Monte Carlo simulations of
electron transport in strongly attaching gases, e.g. the dis-
crete and the continuous procedures. In order to avoid the
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somewhat arbitrary choice of the fictitious ionization rate,
we have extended the continuous rescaling procedure,
initially developed by Li ef al [61], by introducing a time-
dependent collision frequency for the fictitious ionization
process.

(2) One of the initial motivating factors for this work was
to provide accurate data for transport properties of elec-
trons in SFg and CF3l which are required as input in fluid
models of plasma discharges. In this work, for the first
time, we have calculated the mean energy, drift velocity
and diffusion coefficients as well as rate coefficients for
lower E/ng for electrons in SFs and CF;l.

(3) We have demonstrated the differences which can exist
between the bulk and flux transport coefficients and the
origin of these differences. Our study has shown that the
flux and bulk transport properties can vary substantially
from one another, particularly in the presence of intensive
attachment heating. Thus, one of the key messages of this
work is that theories which approximate the bulk trans-
port coefficients by the flux are problematic and generally
wrong.

(4) We have demonstrated and interpreted physically the
phenomenon of the anomalous behavior of the mean
energy of electrons in SFg, in which the mean energy
is reduced for increasing E/ng. The phenomenon was
associated with the interplay between attachment heating
an inelastic cooling. The same phenomenon has not been
observed for electrons in CF3I indicating that the role of
the cross sections is vital.

(5) We have explained and identified a region of NDC in the
bulk drift velocity, originating from the explicit influ-
ence of electron attachment. The phenomenon has been
explained using the concept of spatially-resolved trans-
port properties along the swarm.

(6) The publicly available two term Boltzmann solver,
BOLSIG++, has been shown to be accurate for calcul-
ations of mean energy, drift velocity and rate coefficients
for electrons in SFg and CFsl. On the other hand,
significant differences between our Monte Carlo and
BOLSIG+ results for diffusion coefficients have been
observed, particularly for electrons in CF3l in the limit of
the lowest E/ng considered in this work.

Various rescaling procedures for Monte Carlo simulations
described in this work have recently been applied to modeling
of electron transport in strongly attaching gases under the
influence of time-dependent electric and magnetic fields. It
will be challenging to investigate the synergism of magnetic
fields and electron attachment in radio-frequency plasmas.
Likewise, the remaining step to be taken, is to apply the res-
caling procedures presented in this work to investigate the
influence of positronium formation on the positron transport
properties. This remains the focus of our future investigation.
Finally, we hope that this paper will stimulate further dis-
cussion on methods of correct representation of the effects
induced by electron attachment on transport properties of
electrons in strongly attaching gases.
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A quantitative understanding of charged particle transport processes in
gases under highly non-equilibrium conditions is of interest from both
fundamental and applied viewpoints, including modeling of non-
equilibrium plasmas and particle detectors used in high energy physics. In
this work we will highlight how the fundamental kinetic theory for solving
the Boltzmann equation [1] and fluid equations [2,3] as well as Monte
Carlo simulations [3], developed over many years for charged particle
swarms are presently being adapted to study the various types of non-
equilibrium plasma discharges and particle detectors.

Non-equilibrium plasma discharges sustained and controlled by electric
and magnetic fields are widely used in materials processing [4]. Within
these discharges the electric and magnetic fields can vary in space, time
and orientation depending on the type of discharge. Moreover, the typical
distances for electron energy and momentum relaxation are comparable to
the plasma source dimensions. Consequently, the transport properties at a
given point are usually no longer a function of instantaneous fields. This is
the case for a variety of magnetized plasma discharges where, before the
electrons become fully relaxed, it is likely that the electrons will be



reflected by the sheath or collide with the wall [5]. In this work we will
Illustrate various kinetic phenomena induced by the spatial and temporal
non-locality of electron transport in gases. Two particular examples of
most recent interest for the authors are the magnetron and ICP discharges.
The magnetron discharge is used in the sputtering deposition of in films [6]
where magnetic field confines energetic electrons near the cathode. These
confined electrons ionize neutral gas and form high density plasma near
the cathode surface while heavy ions and neutrals impinge on the solid
surface ejecting material from that surface which is then deposited on the
substrate. Within these discharges the angle between the electric and
magnetic fields varies and thus for a detailed understanding and accurate
modeling of this type of discharge, a knowledge of electron transport in
gases under the influence of electric and magnetic fields at arbitrary angles
Is essential. In this work we will investigate the electron transport in N,-O,
mixtures when electric and magnetic fields are crossed at arbitrary angles
for a range of pressures having in mind applications for low-pressure
magnetized discharges and discharges at atmospheric pressure. Special
attention is placed upon the explicit effects of three-body attachment in
oxygen on both the drift and diffusion in low energy range [7]. The duality
of transport coefficients arising from the explicit effects of non-
conservative collisions will be discussed not only for vectorial and low-
order tensorial transport coefficients but also for the high-order tensorial
transport properties. The errors associated with the two-term
approximation and inadequacies of Legendre polynomial expansions for
solving the Boltzmann equation will be illustrated and highlighted.

In addition to magnetron discharges, we focus on the time-dependent
behavior of electron transport properties in ICP discharges where electric
and magnetic fields are radiofrequency. We systematically investigate the
explicit effects associated with the electric and magnetic fields including
field to density ratios, field frequency to density ratio, field phases and
field orientations. A multitude of kinetic phenomena were observed that
are generally inexplicable through the use of steady-state dc transport
theory. Phenomena of significant note include the existence of transient
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negative diffusivity, time-resolved negative differential conductivity and

anomalous anisotropic diffusion. Most notably, we propose a new
mechanism for collisional heating in inductively coupled plasmas which
results from the synergism of temporal non-locality and cyclotron
resonance effect. This mechanism is illustrated for discharges in pure CF,
and pure O,.
As an example of fluid modeling of plasmas, we will discuss the recently
developed high order fluid model for streamer discharges [2,3]. Starting
from the cross sections for electron scattering, it will be shown how the
corresponding transport data required as input in fluid model should be
calculated under conditions when the local field approximation is not
applicable. The temporal and spatial evolution of electron number density
and electric field in the classical first order and in the high order model are
compared and the differences will be explained by physical arguments. We
will illustrate the non-local effects in the profiles of the mean energy
behind the streamer front and emphasize the significance of the energy flux
balance equation in modeling. We consider the negative planar ionization
fronts in molecular nitrogen and noble gases. Our results for various
streamers properties are compared with those obtained by a PIC/Monte
Carlo approach. The comparison confirms the theoretical basis and
numerical integrity of our high order fluid model for streamers discharges.
In the last segment of this talk we will discuss the detector physics
processes of resistive plate chambers and time-projection chambers that are
often used in many high energy physics experiments [8]. For resistive
plate chambers the critical elements of modeling include the primary
lonization, avalanche statists and signal development. The Monte Carlo
simulation procedures that implement the described processes will be
presented. Time resolution and detector efficiency are calculated and
compared with experimental measurements and other theoretical
calculations. Among many critical elements of modeling for time-
projection chambers, we have investigated the sensitivity of electron
transport properties to the pressure and temperature variations in the
mixtures of Ne and CO,. In particular, we have investigated how to reduce



the transverse diffusion of electrons by calculating the electron trajectories
under the influence of parallel electric and magnetic fields and for typical
conditions found in these detectors.
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Synopsis An understanding of electron and positron transport in gases and soft-condensed matter under non-equilibrium
conditions finds applications in many areas, from low-temperature plasmas, to positron emission tomography, radiation dam-
age and particle detectors in high-energy physics. In this work we will highlight how the fundamental kinetic theory for solv-
ing the Boltzmann equation and fluid equation models are presently being adapted to study the various types of non-

equilibrium plasma discharges and positron-based technologies.

The transport theory of electrons and posi-
trons in gases and soft-condensed matter is of
interest both as a problem in basic physics and
for its potential for application to modern tech-
nology. For electrons, these applications range
from low-temperature plasmas to particle detec-
tors in high energy physics and to understand-
ing radiation damage in biological matter. For
positron based systems, the emission of back-
to-back gamma rays resulting from annihilation
of a positron and an electron is a fundamental
process used as a tool in many areas, ranging
from fundamental atomic and molecular phys-
ics, particle and astrophysics, to diagnostics in
biological and material sciences.

In this work we explore analytical frame-
work and numerical techniques for a multi term
solution of Boltzmann's equation [1], for both
electrons and positrons in gases and soft-
condensed matter, and associated fluid equation
models [2,3]. Together with the basic elements
of our Monte Carlo method, the particular atten-
tion will be placed upon the rescaling proce-
dures for compensation of electrons for losses
under conditions when transport is greatly af-
fected by electron attachment in strong electro-
negative gases.

For electrons, we will highlight recent ad-
vancements in the determination of the high-
order transport coefficients in both atomic and
molecular gases. Then we will discuss the ele-
mentary physical processes of electrons in the
mixtures of gases used to model planetary at-
mospheric discharges. In particular, we will
present the results of our theoretical calculations
for expected heights of occurrence of sprites
above lightning discharges in atmospheres of
planets in our Solar system.

' E-mail: sasa.dujko@ipb.ac.rs

As an example of fluid equation models, we
will discuss the recently developed high order
fluid model for streamer discharges [3]. The
balance equations for electron density, average
electron velocity, average electron energy and
average electron energy flux have been obtained
as velocity moments of Boltzmann’s equation
and are coupled to the Poisson equation for the
space charge electric field. Starting from the
cross sections for electron scattering, it will be
shown how the corresponding transport data
required as input in fluid model should be cal-
culated under conditions when the local field
approximation is not applicable. We will illus-
trate the non-local effects in the profiles of the
mean energy behind the streamer front and em-
phasize the significance of the energy flux bal-
ance equation in modeling. Numerical examples
include the streamers in N, and noble gases.

In the last segment of this talk we will dis-
cuss the interaction of primary positrons, and
their secondary electrons, with water vapor and
its mixture with methane using complete sets of
cross sections having bio-medical applications
in mind [4]. We will also highlight recent ad-
vancements in the testing/validation of com-
plete cross section sets for electrons in biologi-
cally relevant molecules, including water vapor
and tetrahydrofuran [5].
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Often swarms are regarded as idealized ensembles of charged particles that may be realized in
specialized experiments to provide accurate transport coefficients, which after some analysis, yield
"complete" sets of cross sections and accurate representations of non-equilibrium electron energy
distribution function (EEDF) for a given E/N. Generally it is believed nowadays that swarms are just a
tool for modeling non-equilibrium (low temperature) plasmas, as some kind of an interface through
which atomic physics enters plasmas. In this review we shall show some new results that extend that
picture into several directions:

* New results for the cross sections in systems where information from beam experiments and
binary collision theories are insufficient such as C,H,F, that is commonly used as a cooling
gas in modern refrigerators and air conditioners, but also it is used in particle detectors and has
a potential for plasma processing applications.

* Jonized gases where swarms are exact representation of the system. Those include weakly
ionized gases such as atmosphere, gas breakdown, afterglow (after the breakup of the
ambipolar field), steady state Townsend regime of discharges, conduction of electricity
through gases, interaction of secondary electrons produced by high energy particles with the
gas or liquid background and many more. A special example will be modeling of Resistive
Plate Chambers, the most frequently used gas phase detectors of elementary particles in high
energy experiments.

* Swarm studies provide best insight into non-hydrodynamic (or as plasma specialists call it
non-local) development of the ionized gas. It is not only that simulations are simple but also
some of the accurate experiments operate in such conditions and thus allow testing of such
theories. One such example are the Franck Hertz oscillations. Temporal and spatial relaxation
of properties of ensembles to the final distribution belong to this group as well and are of
interest for a number of positron applications and trapping in general.

* Fluid models when applied to swarms provide a good way to test the fluid models as used in
more general plasmas. This has yielded the need to generalize fluid equations and extend
them to a one step further while using a higher order transport coefficients.

* Finally we shall address the open issues for transport theorists and atomic and molecular
collision population in the attempt to represent transport of electrons, positrons and other
particles in liquids, especially in water that has a strong dipole moment. Hydrated electrons
and positrons are the actually particles of interest for modeling these particles in the human
tissue.

As an interface between atomic and molecular collision physics on a lower phenomenological (but
deeper) level and plasmas on a higher (but less fundamental) level swarm physics has the
responsibility of providing plasma physics with its intellectual basis and fundamental importance. It is
how we combine the building blocks of atomic and molecular physics, transport theory and other
relevant elementary processes that will define generality of the conclusions about non-equilibrium
plasmas that are all different and require a special approach.

The models that we provide here are simple, yet realistic and real systems that may be described by
swarm models and that may be regarded as low ionization limits of some more complex non-
equilibrium plasmas.
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MONTE CARLO SIMULATIONS OF
ELECTRON TRANSPORT IN CF;I AND SF; GASES

J. Miri¢, D. Bosnjakovié, 1. Simonovi¢, Z. Lj. Petrovi¢ and S. Dujko

Institute of Physics, University of Belgrade,
Pregrevica 118, 11080 Belgrade, Serbia

Abstract. Electron transport coefficients in CF;1 and SF¢ gases are calculated
using Monte Carlo simulations for a wide range of reduced electric field
strengths. In order to compensate for the loss of electrons in simulation due to
strong attachment, three different rescaling techniques are considered and
applied. Among many observed phenomena, in case of SFs we highlight the
reduction of mean electron energy with increasing electric field. In addition, we
observe that for both gases bulk drift velocities exhibit negative differential
conductivity which is not present in the flux drift velocity.

1. INTRODUCTION

Electron attachment in strongly electronegative gases, such as CF;I and
SFe, has many industrial applications. For example, in high-voltage circuit
breakers, it is the most significant process for the prevention of electric
breakdown [1]. Electronegative gases are also used for plasma etching and
cleaning in semiconductor fabrication [2].

On the other hand, electron attachment imposes practical difficulties in
experiments for measurement of transport coefficients [1,3]. Considerable
difficulties also appear in Monte Carlo simulations of electron transport in
strongly electronegative gases at low electric fields where electron attachment is
the dominant process. Due to this process, the number of electrons in a
simulation can reach extremely low values leading to poor statistics or complete
loss of electrons in the simulation [4,5]. In order to compensate for this loss of
electrons, some sort of rescaling techniques must be used.

In this work, we discuss the existing rescaling techniques for Monte
Carlo simulations of electron transport in strongly electronegative gases.
Furthermore, we introduce our modified rescaling procedure and demonstrate
how these techniques affect the calculated transport data for CF;I and SF¢ gases.
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2. RESCALING TECHNIQUES

The following rescaling techniques, applicable for Monte Carlo
simulations, can be found in the literature:
1. Duplication of electrons randomly chosen from the remaining swarm at
certain discrete time steps [6];
2. Duplication of the entire electron swarm (one or more times) at certain
time steps [5] or at certain distance steps [7];
3. Introduction of an additional fictitious ionization [4] or attachment
process [8] with a constant collision frequency.
An unaltered electron distribution function and its evolution are a common
objective for all these techniques. In this work, the first technique will be
referred to as discrete rescaling, the second as swarm duplication and the third as
continuous rescaling. However, we introduce a modification to the third
procedure where the fictitious ionization process is dynamically adjusted during
the simulation in such way that the fictitious ionization rate is chosen to be equal
to the attachment rate. Therefore, it is not necessary to define a fictitious
ionization rate in advance and as a benefit, the number of electrons is kept nearly
constant during the simulation.

3. RESULTS

In this section, we present the transport data for CFs;l and SF; gases,
calculated using our Monte Carlo code [6,9] with three different rescaling
techniques. The cross section set for electron scattering in SF¢ is taken from Itoh
et al. [10]. In case of CF;l, we use our modified cross section set [11] which is
based on cross sections of Kimura and Nakamura [12]. This modification of the
CF;l set was necessary in order to provide a better agreement between the
calculated data and the reference data measured in a pulsed Townsend
experiment for pure CF;l and its mixtures with Ar and CO,.

Figure 1(a) shows the variation of mean electron energy with E/ngy in
CF;l. Calculations are performed assuming the three rescaling techniques.
Excellent agreement between the cases of discrete rescaling and swarm
duplication can be understood, having in mind that these two techniques are
essentially the same. The only difference between the two is the fact that in case
of discrete rescaling, the probability for duplication of an electron is determined
by the ratio of current number and desired number of electrons, while in case of
swarm duplication technique, this probability is set to unity i.e. the duplication is
performed for all electrons. Continuous rescaling is also in a good agreement
with the other two techniques.

In case of mean electron energy for the SF¢ gas, Figure 1(b) shows
excellent agreement between the three rescaling techniques. Furthermore, one
anomalous behavior is observed — a decrease of mean energy with increasing
electric field. This phenomenon is associated with mutual influence of
attachment heating and inelastic cooling. Since it is observed only in case of SFs,
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Figure 1. Mean electron energy in (a) CFsl and (b) SF¢ gases as a function of
reduced electric field. The profiles are calculated using three different rescaling
techniques.

it is evident that the specific cross sections for electron scattering are essentially
responsible for the occurrence of this phenomenon.

Figure 2 shows flux and bulk drift velocities in (a) CF;I and (b) SFq
gases, obtained with three rescaling techniques. For electrons in CF;l, the drift
velocities calculated using discrete rescaling and swarm duplication are again in
excellent agreement while continuous rescaling at low electric fields gives
slightly lower values than the other two techniques. For drift velocities in the SF
gas, all three rescaling techniques are in good agreement over the entire range of
reduced electric fields considered in this work. We can conclude that the nature
of the cross sections for electron scattering in CF;l and SF4 and their energy
dependence are responsible for the differences between the results obtained using
different rescaling techniques.

Two interesting phenomena are also observed in Figure 2. First, for
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Figure 2. Variation of the drift velocity with E/ny for electrons in (a) CF;I and
(b) SFs gases. The profiles are calculated using three different rescaling
techniques.
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both gases the bulk drift velocity is higher than the flux drift velocity. In low
energy range, this is a consequence of strong attachment heating (the
consumption of slow electrons due to attachment) while in higher energy range
the explicit effect of ionization is responsible. As a result, new electrons are
preferentially created at the front of the swarm and/or slow electrons are
consumed at the back of the swarm resulting in a forward shift of centre of mass
of the swarm which is observed as an increase of bulk drift velocity over the flux
drift velocity. The other phenomenon is a very strong NDC effect (negative
differential conductivity) which is noticed for both gases, but only in case of
bulk component drift velocity. This behavior appears to be common for all
strongly electronegative gases since it is induced by explicit effects of electron
attachment.
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ELECTRON TRANSPORT IN MERCURY VAPOR:
DIMER INDUCED NDC AND ANALYSIS OF
TRANSPORT PHENOMENA IN ELECTRIC AND
MAGNETIC FIELDS

J. Miri¢, 1. Simonovi¢, D. Bosnjakovi¢, Z. Lj. Petrovi¢ and S. Dujko

Institute of Physics, University of Belgrade,
Pregrevica 118, 11080 Belgrade, Serbia

Abstract. Transport coefficients for electron swarms in mercury vapor in the
presence of electric and magnetic fields are calculated and analyzed using a multi
term theory for solving the Boltzmann equation and Monte Carlo simulation
technique. Particular attention is paid to the occurrence of negative differential
conductivity (NDC) at higher gas pressures and temperatures. It is shown that the
correct representation of the presence of mercury dimers and superelastic
collisions plays a key role in the analysis of NDC. When both the electric and
magnetic fields are present, another phenomenon arises: for certain values of
electric and magnetic field, we find regions where swarm mean energy increases
with increasing magnetic field for a fixed electric field. Spatially-resolved
electron transport properties are calculated using a Monte Carlo simulation
technique in order to understand these phenomena.

1. INTRODUCTION

In this work we discuss the transport of electrons in mercury vapor and
its mixtures with argon under conditions relevant for metal vapor lamps. Current
models of such lamps require knowledge of transport coefficients as a function of
electric field strengths, gas pressures and temperatures. Recently developed
inductively coupled plasma light sources require the knowledge of transport
coefficients when both the electric and magnetic fields are present and crossed at
arbitrary angles [1]. These transport coefficients can be either measured in swarm
experiments or calculated from transport theory. To date, no experiments exist
that can measure all the required transport coefficients, including rate coefficients,
drift velocities, and diffusion coefficients for electrons in gases in the presence of
electric and magnetic fields.

In the present work we solve the Boltzmann equation for electron
swarms undergoing ionization in mercury vapor and its mixtures with argon in the
presence of electric and magnetic fields crossed at arbitrary angles. For the E-only
case we discuss the occurrence of negative differential conductivity (NDC) for

108



28th SPIG Atomic Collision Processes

higher gas pressures and temperatures in the limit of lower electric fields. NDC is
a phenomenon where the drift velocity decreases with increasing electric field.
For electrons in mercury vapor this behavior of the drift velocity is attributed to
the presence of mercury dimers.

In the second part of this work we investigate the electron transport in
varying configurations of electric and magnetic fields. In particular, we discuss
the following phenomenon: for certain values of electric and magnetic fields, we
find regions where swarm mean energy increases with increasing magnetic field
for a fixed electric field. The phenomenon is discussed using spatially-resolved
transport data calculated in Monte Carlo simulations.

2. CROSS SECTIONS AND SIMULATION TECHNIQUES

The cross section for momentum transfer in elastic collisions is made as
follows. For lower electron energies, we use a cross section from [2] while for
higher energies, we use a cross section tabulated in MAGBOLTZ code [3]. Cross
sections for electronic excitations for levels Py, *P; and °P; are retrieved from [4]
while electronic excitations to 'S, and 'P, states as well as a cross section for
higher states are also taken from MAGBOLTZ code. For electron-impact
ionization, we have used a cross section from [5]. The effective cross section
which describes vibration and electronic excitations of mercury dimers is derived
using the experimental measurements of Elford [6]. Cross sections were slightly
modified during the calculations to improve agreement between the calculated
swarm parameters and the experimental values [6].

Electron transport coefficients are calculated from the multi term
solution of Boltzmann's equation. A Monte Carlo simulation technique is used to
verify the Boltzmann equation results and also for the calculations of spatially-
resolved transport data.

3. RESULTS AND DISCUSSIONS

In Figure 1 (a) we show the variation of the drift velocity with E/n, for a
range of gas pressures, as indicated on the graph. Calculations are performed in a
wide range of pressures, from 20.2 to 108.4 Torr. The temperature of the
background gas is 573K. The same range of pressures and temperatures was
considered by Elford in his experiments [6]. We extend his measurements by
considering the drift of electrons for six additional gas pressures. For E/n, less
than approximately 2.5 Td the pressure dependence of the drift velocity is clearly
evident. For higher E/n,, however, the drift velocity does not depend on the
pressure. For pressures higher than approximately 200 Torr, we see that the drift
velocity exhibits a region of NDC, i.e. over a range of E/ny values the drift
velocity decreases as the driving field is increased. The conditions for the
occurrence of NDC have been investigated previously [7]. For electrons in
mercury vapor, NDC arises for certain combinations of elastic cross sections of
dimer-free mercury vapor and inelastic cross sections of mercury dimers in
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which, on increasing the electric field, there is a rapid transition in the dominant
energy loss mechanism from inelastic to elastic. For pressures lower than 200
Torr the elastic cross section of dimer-free mercury vapor dominates the effective
inelastic cross section of mercury dimers. Thus, the conditions for the occurrence
of NDC are not set. For higher pressures, the phenomenon is promoted by either
or both of (i) a rapidly increasing cross section for elastic collisions and (ii) a
rapidly decreasing inelastic cross section. It is clear that the presence of dimmers
plays a key role in the development of NDC in mercury vapor.

In Figure 1 (b) we show a comparison between our calculations and
experimental measurements of the drift velocity for a range of pressures. Our
Monte Carlo results (figure 1 (b)) agree very well with those measured in the
Bradbury-Nielsen time-of-flight experiment [6]. The agreement is achieved only
after careful implementation of superelastic collisions in our calculations. Cross
sections for superelastic collisions are calculated directly in our code from the
principle of detailed balance.
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Figure 1. Variation of the drift velocity with E/n, for a range of pressures (a) and
comparison between our Monte Carlo results and experimental measurements.
Calculations are performed for electrons in mercury vapor. The temperature of
the background gas is 573K.

In the last segment of this work we discuss the impact of a magnetic
field on the electron transport in mercury vapor. The pressure and temperature of
the mercury vapor are set to 1 Torr and 293K, respectively. As an example of our
study, in figure 2 we show the variation of the mean energy with E/n, for a range
of the reduced magnetic fields B/ny, in a crossed field configuration. In the limit
of the lowest E/n, the electrons are essentially in the quasi-thermal equilibrium
with the mercury vapor, independent of the strength of the applied magnetic field.
In this regime, the longitudinal and transverse drift velocity components are
dependent on both E/ny and B/ny while the diagonal diffusion tensor elements
along the E and ExB directions are dependent on B/ny only. The diffusion
coefficient along the magnetic field direction is reduced to its thermal value as
magnetic field only affects the diffusion in this direction indirectly, through the
magnetic field’s action to cool the swarm. Certainly one of the most striking

110



28th SPIG Atomic Collision Processes

properties observed in the profiles of transport coefficients is an increase in the
swarm mean energy with increasing magnetic field for a fixed electric field. The
phenomenon is evident in the range E/ng=5-200 Td for B/ny considered in this
work. This behavior is contrary to previous experiences in swarm physics as one
would expect the mean swarm energy to decrease with increasing B/n, for a fixed
E/ng. The phenomenon could be associated with the interplay between magnetic
field cooling and inelastic/ionization cooling, although the role of the cross
sections in both phenomena is of course vital. The electron energy distribution
function and spatially-resolved mean energy, rate coefficients and other properties
are calculated using a Monte Carlo simulation technique in order to explain this
phenomenon.
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Figure 2. Variation of the mean energy with E/ny for a range of B/n,.
Calculations are performed for electrons in mercury vapor.
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SCATTERING CROSS SECTIONS AND
TRANSPORT COEFFICIENTS FOR ELECTRONS
IN CF;l

J. Miri¢', O. Sagi¢'?, S. Dujko' and Z.Lj. Petrovi¢'

!Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade,
Serbia
’Faculty of Transport and Traffic Engineering, University of Belgrade, Vojvode
Stepe 305, 11000, Belgrade, Serbia

Abstract. Scattering cross sections for electrons in CF;l are discussed using the
swarm method. Electron drift velocity, effective ionization coefficient and
diffusion coefficients are calculated using a Monte Carlo simulation technique
and from solution of the non-conservative Boltzmann equation. Calculated data
for pure CF;I and its mixtures with rare gases, N, and SF4 are compared with
those measured experimentally under both the time-of-flight and pulsed-
Townsend conditions. Among many important phenomena observed in electron
transport we note the existence of negative differential conductivity in the profile
of the bulk drift velocity with no signs of the same phenomenon in the profile of
flux drift velocity.

1. INTRODUCTION

Trifluoroiodomethane (CFsl) is a processing gas employed for plasma
etching of various materials. Due to its short atmospheric lifetime (1.8 days), low
GWP (0.4 times than of CO,) and high critical electric field (437 Td) CF;I shows
a promise for application as an alternative refrigerant to commonly used
fluorocarbons such as CF, [1], and as a potential high voltage insulator, both on
its own and mixed with N, and CO, in high-voltage insulation technology [2]. In
spite of these important applications of CFs], still there is a lack of reliable sets of
cross sections for electron scattering and associated electron transport
coefficients.

In this work we discuss the existing sets of cross sections for electron
scattering in CF;l. Using the swarm method, our initial set of cross sections is
constructed from other available sets, and data for individual scattering channels.
Calculated transport data are then compared with those measured in experiments
and if the agreement is not enough, then cross sections are modified. This process
is repeated until some preset agreement between theoretically calculated and
experimentally measured data is achieved. Increasing the accuracy of the set of
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cross sections, the electron transport is investigated using the multi term approach
for solving the Boltzmann equation where particular emphasis was placed upon
the explicit effects of non-conservative collisions on the drift and diffusion.

2. CROSS SECTIONS FOR ELECTRON SCATTERING IN
CFsl

The initial set of cross sections in this work was developed by Kimura
and Nakamura [3], and is presented by solid curves in Figure 1. Due to
disagreement between experimentally measured swarm data and those obtained in
theoretical calculations, we have concluded that there are some internal
inconsistencies in the set proposed by Kimura and Nakamura. Similar conclusions
have been recently found by Kawaguchi et al. [4].
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Figure 1. Cross sections for electron scattering in CF;I from Kimura and
Nakamura (solid curves) [3] and from our work (broken curves).

In this work the cross sections were extended in energy up to 1000 eV
so that calculated data may cover the region between a few Td and few
thousands of Td. This is of great importance having in mind the high critical
field of CF;l. The logarithmic extrapolation was used for electronic excitation
with the lowest threshold and for all vibrational excitations as well as for the
electron attachment. The Born-Bethe approximation was used to extrapolate the
cross sections for momentum transfer in elastic collisions and for the cross
sections for electronic excitation. The cross section for ionization was modified
as follows: in the energy range up to 45 eV we have used the cross section from
[3] while for higher energies than 45 ¢V we have included the theoretically
calculated cross section developed by Anthony et al. [5]. Using the data
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suggested by Christophorou [6], the cross section for attachment between 0.5 and
3 eV was reconstructed.

Cross section for momentum transfer in elastic collisions in the energy
region between 4 and 20 eV was modified together with the cross section for
vibrational excitation with the highest threshold in order to fit the drift velocity
from experimental measurements of Kimura and Nakamura [3]. The ionization
coefficient was fitted through the modification of cross sections for electronic
excitations having in mind the large uncertainties associated with the magnitudes
of these cross sections. Our final set of cross sections for electron scattering in
CF;l is shown in Figure 1. This set of cross sections provides much better
agreement between theoretically calculated and experimentally measured swarm
transport data as discussed below.

3. TRANSPORT COEFFICIENTS FOR ELECTRONS IN
CFsl

In Figure 2 we compare our results for the electron drift velocity with
experimental data obtained under the time-of-flight [3] and pulsed-Townsend
conditions [2]. The calculated values of W are initially lower than those
measured in experiments. After modification of cross sections the calculated
values of W are in a good agreement with experimental measurements obtained
under the time-of-flight conditions. Our flux drift velocity is calculated by the
two-term approximation (TTA) for solving the Boltzmann equation and using a
Monte Carlo simulation technique.
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Figure 2. Variation of the drift velocity with E/n, for electrons in CF;1. Our TTA
results are compared with those obtained in experiments for (a) our initial set of
cross sections and (b) our final set of cross sections.

Figure 3 shows the calculated values of effective ionization coefficient
(a+1m)/ny using the initial set of cross sections (a) and our final set of cross
sections (b). Values of (a+177)/ny measured by Kimura and Nakamura [3] and de
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Urquijo et al. [2] are also plotted. In Figure 3 (a), calculated values of (o~1)/ng
are higher than the measured data for higher E/n,. Calculated values using our
final set of cross sections agree well with the measured data in a wide range of
E/ny except for E/ny less than approximately 200 Td where the effects of
attachment are dominant.
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Figure 3. Variation of the effective ionization coefficient with E/n, for electrons

in CFsl. Our TTA results are compared with those obtained in experiments for

(a) our initial set of cross sections and (b) our final set of cross sections.

Other transport properties including diagonal elements of the diffusion
tensor, mean energy and rate coefficients are also calculated using a Monte Carlo
simulation technique and from multi term solutions of the Boltzmann equation.
Bulk values of the drift velocity and diffusion coefficients are evaluated and
explicit effects of the electron attachment and/or ionization are examined.
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ELECTRON TRANSPORT IN NOBLE-GAS
METAL-VAPOR MIXTURES
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Pregrevica 118, 11080 Belgrade, Serbia
2ARC Centre for Antimatter-Matter studies, James Cook University,
School of FElectrical Engineering and Physical Sciences, 4810 Townsville,
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Abstract. Electron transport coefficients required for the modeling of light
sources are calculated from the multi term solution of the non-conservative
Boltzmann equation. Calculations are performed over a range of E/ng
values (ratio of the electric field, E, to the neutral number density ng), gas
temperatures and metal vapor concentrations relevant to lamp discharges.
Values and general trends of mean energy, drift velocity, diffusion tensor
and rate coefficients are presented in this work.

1. INTRODUCTION

The progress and further improvements of light sources based on low
or high pressure electrical gas discharges require the most accurate modeling
of charged particle transport processes in noble-gas-metal-vapor mixtures
[1]. In particular, modern high intensity discharge lamps are usually filled
with noble gas at high pressure (0.1 to 12 bar) and metallic salts. Noble
gas provides light during the initial warm-up phase of the operation while
metallic salts take over light emission after they have evaporated [2]. Our
work has been motivated, in part, by recent suggestions that highly accurate
data for transport coefficients required as input in fluid models of lamp
discharges may significantly improve the existing models. Current models
of such lamps require knowledge of the plasma electrical conductivity, which
can be calculated from the cross sections for electron scattering in noble-
gas-metal-vapor mixtures and mobility coefficients presented in this work.

In this work we investigate electron transport in mixtures of noble
gases (He, Ne, Ar, Kr and Xe) and metal vapors (Na, K, Cs, Mg and Hg)
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under swarm conditions using a multi term theory for solving the Boltzmann
equation [3]. In section 2, we give a brief discussion of the theoretical multi
term solution of the Boltzmann equation under non-conservative conditions
while in section 3 we present a few examples of our systematic study of
electron transport in noble-gas-metal-vapor mixtures.

2.THEORETICAL METHODS

Electron transport coefficients are determined by solving the non-
conservative Boltzmann’s equation under the hydrodynamic conditions for
electrons drifting and diffusing through the noble-gas-metal-vapor mixtures
under the influence of spatially homogeneous electric field. In brief, the
solution of Boltzmann’s equation is found be expanding the distribution
function as sums of products with the directional dependence of ¢ contained
in spherical harmonics Yl(m) (¢) (where c is the electron velocity), the spatial

distribution contained in G,(f’\), the s-th application of the spatial gradient
operator operating on n(r,t), and the speed distribution contained in an
expansion discussed below [3]. Thus, we have

S

0o l (S)
f(r,et) Z Z 3 Z f(Um|shn) Y, (@GN n(r. ). (1)
=0 m=—1s=0 \

The coefficients f (Im|sAu) are functions of the speed ¢ and are obtained by
the expansion

oo

fmlsip) = w (Ty, ) > F (vim|shp) Ry (Th, c), (2)

v=0

where w (Tp, ¢) is a Maxwellian distribution at a temperature Tp. T} is not
equal to the neutral gas temperature and serves as an adjustable parame-
ter to optimize the convergence. R,; are related to a Sonnine polynomial
of order (v,1) while the coefficients F' (vim|sAu) are the so-called moments
that are relatively simply related to transport coefficients. The classical two
term approximation (TTA) for solving the Boltzmann equation covers only
the range in [ of 0 and 1, which is not sufficient for good accuracy in noble-
gas metal-vapors. Using the above decomposition of f (1), the Boltzmann
equation is converted to a hierarchy of doubly infinite set of coupled alge-
braic equations for the moments. The resulting coefficient matrix is sparse
and direct numerical inversion procedure is used to calculate the moments.

3.RESULTS AND DISCUSSIONS

The transport coefficients shown below are functions of F/ng and
are expressed using the unit townsend (1 Td= 10~2'Vm~1!). In this work
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we will cover a range of E/ng up to 1000 Td. The temperature of Hg vapor
is varied between 0 and 8000 K. The internal states are assumed to be
governed by a Maxwell-Boltzmann distribution which essentially places all
metal-vapor atoms in the ground state for the temperatures considered. The
effects of dimmers are not included. Cross sections for electron scattering
in Na, K and Cs are taken from [4] while for Hg and Mg are taken from the
Lxcat database [5].

In figure 1 (a) we show the variation of the mean energy with E/ng
and gas temperature T, for electrons in Hg vapor. For lower E/ny the mean
energy is different for different gas temperatures and only for 7' = 8000 K
the electrons are in thermal equilibrium with the Hg vapor. This means that
the electron velocity distribution is approximately thermal-Maxwellian. For
increasing E/ng the effects of the gas temperature are less pronounced; the
electron velocity distribution is non-equilibrium and non-Maxwellian though
transport properties are still dependent on T'. In the limit of higher E/ny,
the electron swarm is far from thermal-equilibrium and the influence of the
Hg vapor temperature can be neglected.

—0K

----1000 K
<o+ 2000 K
--=-=-4000 K

— 8000 K

l: < -20-1
40
I C-) B L C)
0.1 1 10 100 1000 0 200 400 600 800 1000
E/n, [Td] E/n, [Td]

Figure 1. (a) Variation of the mean energy with E/ng and gas temperature
T for electrons in Hg vapor. (b) Percentage difference between the two term
and multi term results for various transport properties. The gas temperature
is set to 293 K.

In figure 1 (b) we illustrate the errors associated with the TTA for
solving the Boltzmann equation for electrons in Hg vapor. We observe that
increasing E/ng deteriorates the accuracy of the TTA. For the chosen set of
conditions, the mean energy and drift velocity have the errors of the order
of 5% while the errors of the diffusion coefficients are much higher and are
of the order of 50 %.

Figure 2 (a) shows the variation of the mean energy and drift ve-
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locity with E/ng for electrons in various metal-vapors. For lower E/ng, we
observe that the electrons are in thermal-equilibrium only with the K-vapor.
The properties of the cross sections are reflected in the profiles of the mean
energies. When elastic collisions are dominant, the mean energy grows very
fast. Much slower rise of the mean energy is a consequence of the large
energy loss of the electrons as the inelastic channels become important. Ex-
cept for very low E/ng the mean energy in Hg vapor dominates the mean
energies of electrons in other vapors.

From figure 2 (b) we see that for E/ng > 6 Td the drift velocity in
Hg vapor dominates the drift velocities of electrons in other vapors. This
suggests that plasma electrical conductivity will be the highest for Hg vapor.

W [m/s]

E/n, [Td] E/n, [Td]

Figure 2. Variation of the mean energy (a) and drift velocity (b) with E/ng
for electrons in metal-vapors. The gas temperature is T' = 298 K.
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Scattering cross sections and transport data for
electrons in CF;l

J. Miri¢, S. Dujko and Z.Lj. Petrovi¢

Institute of Physics, University of Belgrade, Pregrevica 118, 11080
Belgrade, Serbia

jasmina.miric@ipb.ac.rs

The trifluoroiodomethane (CF;l) is a halofluorocarbon gas employed in the
plasma etching of various materials. It also shows promise as a gaseous
dielectric in the application of high-voltage power equipment. This is an
environmentally friendly gas due to the following characteristics. First, C-I
bond in this molecule is weak so can easily be broken by ultraviolet light
which leads to a very short atmospheric lifetime (1.8 days). GWP (global
warming potential) of CFsl is ultra low (0.4 times that of CO,) [1].
Second, this molecule has higher critical electric field (437 Td) [2] than
SFs and hence it meets the basic requirements for application to
environmentally-benign power equipment. Despite the need for reliable
swarm and cross section data, there have only been a few swarm
measurements of transport data covering relatively narrow E/N range [2]
and only one set of cross sections for electron scattering [3]. This work
represents an attempt to overcome such lack of reliable collisional and
transport data for CF;l.

Cross sections for electron scattering are critical input data in modeling of
plasma discharges. The compilation of the cross-sections from different
sources, without their renormalization to fit the swarm parameters, is
usually not sufficient. Starting from the existing set of cross sections for
electrons in CF;l [3], we have employed a standard swarm procedure for
the analysis of measured drift velocities and effective ionization
coefficient.



In [3] the momentum transfer is composed of theoretical values up to 0.5
eV by Christophorou [4] while in the energy range between 1.5 and 60 eV
the numerical integration of the differential cross sections of Kitajima [5]
was performed. For higher energies the momentum transfer cross section is
found as a sum of individual cross sections for momentum transfer of
constituent atoms [6, 7]. The attachment cross section suggested by
Christophorou [4] was included and six vibrational modes of CF;l by
Shimanouchi [8] were grouped into three. The total ionization cross section
Is given as a sum of experimentally determined partial ionization cross
sections [9]. Finally, in the same set of cross sections there are five cross
sections for electronic excitations (and possibly neutral dissociation)
whose magnitudes were decided by considering the relative loss peak
height of Kitajima [5]. Using a two-term Boltzmann code, the calculated
transport coefficients (drift velocity under the time-of-flight conditions and
rate coefficients for ionization and attachment obtained under the steady-
state  Townsend conditions) were compared with the corresponding
experimental data and in figure 1(a) we show the final set of cross sections
developed by Kimura and Nakamura [3]. This is the initial set of cross
sections used in this work.
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Figure 1. Cross section sets for electron scattering of CF3l: (a) from Kimura and
Nakamura's work [3], (b) from this work (solid curves - our final and dashed curves -
our initial set of cross sections).
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The first step in our work was calculation of transport data based on the

cross sections developed in [3]. Calculations of transport coefficients were
performed by Bolsig+ [10] and our Monte Carlo simulation code and the
results for the drift velocity and rate coefficients for attachment and
ionization were compared with the available experimental measurements.
The disagreement between these two sets of data was an indication of
some internal inconsistencies within the set of cross sections developed by
Kimura and Nakamura [3].

10%° < O attachment rate, Kimura and Nakamura [3]

| —— attachment rate, Our calculated data 1 o Kimuraand Nakamura [3]
j| o ionizationrate, Kimuraand Nakamura [3] % Urquijo [2]
—_— ]| —— ionization rate, Our calculated data 40 Our calculated data
X
«&
X
1022 T T T T T T T T T T 1 0.0 T T T T T T T T T T 1
0 200 400 600 800 1000 0 200 400 600 800 1000
@ E/n, [Td] ) E/n, [Td]

Figure 2. Comparison of our calculated and experimentally measured transport
coefficients presented [2,3]: (a) ionization and attachment rates, and (b) drift velocity.

In this work the cross-sections were extended in energy up to 1000 eV so
that calculated data may cover the region between a few Td and few
thousands of Td. This is of great importance having in mind the high
critical field of CF;l. The logarithmic extrapolation was used for electronic
excitation with the lowest threshold and for all vibrational excitations as
well as for the electron attachment. The Born-Bethe approximation was
used to extrapolate the cross sections for momentum transfer in elastic
collisions and for the cross sections for electronic excitation. The cross
section for ionization was modified as follows: in the energy range up to
45 eV we have used the cross section from [3] while for higher energies
than 45 eV we have included the theoretically calculated cross section
developed by Anthony [11]. Using the data suggested by Christophorou



[4], the cross section for attachment between 0.5 and 3 eV was
reconstructed.

Cross section for momentum transfer in elastic collisions in the energy
region between 4 and 20 eV was modified together with the cross section
for vibrational excitation with the highest threshold in order to fit the drift
velocity from experimental measurements of Kimura and Nakamura [3].
The ionization coefficient was fitted through the modification of cross
sections for electronic excitations having in mind the large uncertainties
associated with the magnitudes of these cross sections. Our cross sections
for electron scattering in CF3l are shown in figure 1(b). This set of cross
sections provides much better agreement between theoretically calculated
and experimentally measured swarm transport data as shown in figure 2.

In this work the cross section set for electron-CF3;l collisions was
developed on the basis of the cross sections developed by Kimura and
Nakamura [3]. Further improvements of the present set will be made by
considering the transport data in the mixtures of CFsl with Ar, Xe and N,.
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coefficients for low and moderate reduced electric fields E/N (N-
gas density) accounting for non-conservative processes.

*Acknowledgment to Ministry of Education, Science and Technol-
ogy of Republic Serbia, Projects No. 171037 and 410011.

MWé6 35 Third order transport coefficients for electrons and
positrons in gases SASA DUJKO, ILIJA SIMONOVIC, Institute
of Physics, University of Belgrade, Serbia RONALD WHITE, Col-
lege of Science, Technology & Engineering, James Cook University,
Australia ZORAN PETROVIC, Institute of Physics, University of
Belgrade, Serbia Third order transport coefficients (the skewness
tensor) of the electron and positron swarms, in atomic and molec-
ular gases, are investigated. The knowledge of the skewness tensor
is necessary for the conversion of the hydrodynamic transport co-
efficients to the arrival time and steady-state Townsend transport
data as well as for the determination of the deviations of the spatial
density profiles from an ideal Gaussian. In this work, we investigate
the structure and symmetries along individual elements of the skew-
ness tensor by the group projector method. Individual components
of the skewness tensor are calculated using a Monte Carlo simu-
lation technique and multi term theory for solving the Boltzmann
equation. Results obtained by these two methods are in excellent
agreement. We extend previous studies by considering the sensi-
tivity of the skewness components to explicit and implicit effects
of non-conservative collisions, post-ionization energy partitioning,
and inelastic collisions. The errors of the two term approximation
for solving the Boltzmann equation are highlighted. We also inves-
tigate the influence of a magnetic field on the skewness tensor in
varying configurations of electric and magnetic fields. Among many
interesting points, we have observed a strong correlation between
the skewness and diffusion.

MW6 36 Transport properties of electrons and transition of
an electron avalanche into a streamer in atomic liquids SASA
DUJKO, ILIJA SIMONOVIC, Institute of Physics, University of
Belgrade, Serbia GREGORY BOYLE, RONALD WHITE, College
of Science, Technology & Engineering, James Cook University, Aus-
tralia DANKO BOSNJAKOVIC, ZORAN PETROVIC, Institute of
Physics, University of Belgrade, Serbia A Monte Carlo simulation
technique is developed and used to calculate transport coefficients
of electron swarms in non-polar atomic liquids. We employ the
two model processes in which only momentum and energy are ex-
changed, respectively, to account for structure dependent coherent
elastic scattering at low energies. The validity of the code is con-
firmed by comparison with results of previous authors. We apply two
scenarios for higher energy cross sections. In the first scenario exci-
tations in the liquid phase are approximated by excitations in the gas
phase. In the second scenario excitations are completely neglected.
Tonization threshold is reduced to values which are suggested in the
literature, in both scenarios. Transport coefficients in these two sce-
narios, as well as transport coefficients for gas and liquid phases are
compared. Special attention has been given to the structure induced
negative differential conductivity (NDC), which has been observed
both in this work, and in previous publications. Spatially-resolved
electron transport properties are calculated in order to understand
this phenomenon. The important aspect of this work is modeling of
the transition of an electron avalanche into a streamer. Calculations
are performed using 1D and 1.5D fluid models. Streamer properties
in scenarios with and without excitations are compared.

MW6 37 Monte Carlo simulations of electron transport in

 strongly attaching gases ZORAN PETROVIC, JASMINA MIRIC,

ILIJA SIMONOVIC, DANKO BOSNJAKOVIC, SASA DUJKO,

Institute of Physics, University of Belgrade, Serbia Extensive loss
of electrons in strongly attaching gases imposes significant diffi-
culties in Monte Carlo simulations at low electric field strengths.
In order to compensate for such losses, some kind of rescaling
procedures must be used. In this work, we discuss two rescaling
procedures for Monte Carlo simulations of electron transport in
strongly attaching gases: (1) discrete rescaling, and (2) continuous
rescaling. The discrete rescaling procedure is based on duplication
of electrons randomly chosen from the remaining swarm at certain
discrete time steps. The continuous rescaling procedure employs a
dynamically defined fictitious ionization process with the constant
collision frequency chasen to be equal to the attachment collision
frequency. These procedures should not in any way modify the
distribution function. Monte Carlo calculations of transport coeffi-
cients for electrons in SF4 and CF;1 are performed in a wide range
of electric field strengths. However, special emphasis is placed upon
the analysis of transport phenomena in the limit of lower electric
fields where the transport properties are strongly affected by elec-
tron attachment. Two important phenomena arise: (1) the reduction
of the mean energy with increasing E/N for electrons in SF6, and
(2) the occurrence of negative differential conductivity in the bulk
drift velocity of electrons in both SFe and CF3l.

MW6 38 Electron transport in mercury vapor: magnetic field
effects, dimer induced NDC and multi-term analysis ZORAN
PETROVIC, JASMINA MIRIC, ILIJA SIMONOVIC, SASA DU-
JKO, Institute of Physics, University of Belgrade, Serbia A multi
term theory for solving the Boltzmann equation and Monte Carlo
simulation technique are used to investigate electron transport in
varying configurations of electric and magnetic fields in mercury
vapor. Using different sets of cross sections for electron scattering
in mercury as an input in our Boltzmann and Monte Carlo codes, we
have calculated data for electron transport as a function of reduced
electric and magnetic fields. A multitude of kinetic phenomena in
electron transport has been observed and discussed using physical
arguments. In particular, we discuss two important phenomena: (1)
for certain values of electric and magnetic field, we find regions
where swarm mean energy increéases with increasing magnetic field
for a fixed electric field, and (2) the occurrence of negative differ-
ential conductivity (NDC) for higher pressures and temperatures.
In particular, NDC is induced by the presence of mercury dimers.
The measured drift velocities agree very well with our Monte Carlo
results only if the superelastic collisions are included in our calcula-
tions. Spatially-resolved electron transport properties are calculated
using a Monte Carlo simulation technique in order to understand
these phenomena.

MWG6 39 Dependence of ion drift velocity and diffusion coef-
ficient in parent gas on its temperature* SERGEY MAIOROV,
Joint Institute for High Temperatures of RAS, Moscow RUSUDAN
GOLYATINA, A.M. Prokhorov General Physics Institute of RAS,
Moscow The results of Monte Carlo calculations of the ion drift
characteristics are presented: ions of noble gases and Ti, Fe, Co,
Cs, Rb, W and mercury ions in case of constant and uniform elec-
tric field are considered. The dependences of the ion mobility on
the field strength and gas temperature are analyzed. The parame-
ters of the drift velocity approximation by the Frost formula for
gas temperatures of 4.2, 77, 300, 1000, and 2000 K are presented.
A universal drift velocity approximation depending on the reduced
electric field strength and gas temperature is obtained. In the case
of strong electric fields or low gas temperatures, the deviation of
the ion distribution function from the Maxwellian one (including
the shifted Maxwellian one) can be very significant. The average
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Rescaling procedures for Monte Carlo simulations of
electron transport in strong electronegative gases

D. Bosnjakovié, J. Mirié, Z.Lj. Petrovi¢ and S. Dujko
Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

dbosnjak@ipb.ac.rs

Electron attachment often imposes practical difficulties in Monte Carlo (MC) simulations of electron
transport in strong electronegative gases at low electric field strengths. If the attachment rate is too
high, the entire electron swarm can be consumed before steady state is achieved. In such extreme cases
the transport data cannot be calculated. An obvious solution would be to use a very large number of
initial electrons. However, in order to obtain the results with reasonable statistical accuracy, this would
usually require computing resources which are beyond practical limits.

In order to address this issue in an optimal fashion, two distinctive procedures for electron
compensation were proposed. The first one, which we refer to as discrete rescaling, is based on
duplication of electrons randomly chosen from the remaining swarm at certain discrete time instants
[1]. The other one we refer to as continuous rescaling introduces a fictitious ionization process with
constant collision frequency chosen to be roughly equal to the attachment rate [2]. Both of these
procedures were devised with the aim not to alter the electron distribution function and its evolution.
However, it can be shown theoretically that only continuous rescaling meets this requirement [2].

In this work, we investigate the effects of MC rescaling procedures on the electron transport in
CF;l and SF¢ gases. Additionally, we propose a new implementation of continuous rescaling
procedure which does not require the fictitious ionization rate to be defined a priori. Transport data is
calculated using our electron impact cross sections for CF;l [3] and a cross section set for SF¢
developed by Itoh et al. (1993). The results show that in case of CF;l the transport parameters obtained
using these two rescaling procedures can differ as much as 30% for the flux drift velocity or the
attachment rate. Figure 1 shows the calculated flux drift velocity for CF;l over a range of reduced
electric field strengths. The results calculated using two term approximation for solving Boltzmann
equation (BE TTA), are also shown for comparison.

10° Figure 1. Flux drift velocity for CF;l calculated
- —— MC continuous rescaling 1 over a range of reduced electric field strengths
[ — — MC discrete rescaling using two different MC rescaling procedures.
s BE TTA | Values obtained using two term approximation
- 10 3 j  for solving Boltzmann equation are also shown
€ C 1 (BETTA).
- I ]
= otk 3
103 L1l Lol Lo
100 10’ 102 103
E/N (Td)
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SCATTERING CROSS SECTIONS AND
ELECTRON TRANSPORT COEFFICIENTS
FOR ELECTRONS IN CF;l

J. Miri¢', D. Bosnjakovi¢', O. Sasi¢?, J. de Urquijo®,
S. Dujko' and Z.Lj. Petrovi¢'
!Institute of Physics, University of Belgrade, Pregrevica 118,
11080 Belgrade, Serbia

Faculty of Transport and Traffic Engineering, University of
Belgrade, Vojvode Stepe 305, 11000

3Instituto de Ciencias Fisicas, Universidad Nacional
Autonoma de Mexico, PO Box 48-3, 62251 Cuernavaca, Mor.,
Mexico

Electron transport coefficients and rate coefficients in pure
CF;l and its mixtures with Ar, Xe, N, and SF¢ have been
calculated for a set of cross-sections which was based on the
work of Kimura and Nakamura [1] but which was modified
to improve agreement between the calculated swarm
parameters and the experimental values. Electron drift
velocity, effective ionization coefficient and diffusion
coefficients are calculated using a Monte Carlo simulation
technique and from solution of the non-conservative
Boltzmann equation [2]. Calculated data for pure CF;l and its
mixtures with Ar, Xe, N, and SF¢ are compared with those
measured under both time-of-flight (TOF) and pulsed-
Townsend (PT) conditions. We note the existence of negative
differential conductivity (NDC) in the profile of the bulk drift
velocity with no signs of the same phenomenon in the profile
of flux drift velocity. We systematically study the origin and
mechanisms for such phenomena as well as the possible
physical implications which arise from their explicit
inclusion into plasma models. Spatially-resolved electron
transport properties are calculated using a Monte Carlo
simulation technique in order to understand these phenomena.
Special attention is paid upon the implementation of
procedure for compensation of electrons for losses due to
strong electron attachment in our Monte Carlo code.

The Monte Carlo method is used to analyze the behavior of
electron transport coefficients in radio-frequency electric
field in pure CF;I. Among many interesting Kkinetic
phenomena, we observe the time-resolved NDC and
anomalous anisotropic behavior of the longitudinal diffusion
coefficient. We explore the validity of the quasi-static
approximation for lower field frequencies and effective field
approximation for higher frequency for electrons in CF;l.

1. M. Kimura and Y. Nakamura, J. Phys. D: Appl. Phys. 43
(2010) 145202.

2. S. Dujko, R.D. White, Z.Lj. Petrovi¢c and R.E. Robson,
Phys. Rev. E (2010) 81 046403.

* Work supported by MPNTRRS Projects OI171037 and
11141011.
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Non-conservative electron transport in gases and its
application in modelling of non-equilibrium plasmas and
particle detectors

S. Dujko'?, D. Bo$njakovi¢', J. Miri¢', Z.Lj. Petrovié’, R.D. White’, A.H.
Markoyan® and U. Ebert’

'Institute of Physics, University of Belgrade, Pregrevica 118, Zemun 11080, Serbia

’Centrum Wiskunde & Informatica, (CWI), P.O. Box 94079, 1090 GB Amsterdam,
The Netherlands

*ARC Centre for antimatter-Matter Studies, School of Engineering and Physical
Sciences, James Cook University, Townsville 4810, Australia

sasa.dujko@ipb.ac.rs, S.Dujko@cwi.nl

The advancements in modern day technology associated with non-equilibrium plasma discharges
depend critically on accurate modeling of the underlying collision and transport processes of charged
particles in gases. To meet these challenges, we have undertaken a program to understand the kinetic
behavior of charged particles under the combined action of electric and magnetic fields in neutral
gases. A multi term theory for solving the Boltzmann equation has been developed and used to
calculate transport coefficients of charged-particle swarms in neutral gases [1,2].

In the first part of this talk I will focus on non-equilibrium magnetized plasma discharges where the
electric and magnetic fields can vary in space, time and orientation depending on the type of discharge
and where attention must be paid to the correct treatment of temporal and spatial non-locality within
the discharge. I will highlight the duality of transport coefficients arising from the explicit effects of
non-conservative collisions particularly for electrons in rare gas metal-vapor mixtures, having in mind
applications in lighting industry. As an example of fluid modeling of plasmas, I will discuss the
recently developed high order fluid model for streamer discharges [3.,4]. Starting from the cross
sections for electron scattering, it will be shown how the corresponding transport data required as
input in fluid model should be calculated under conditions when the local field approximation is not
applicable. The temporal evolution of electron number density and electric field in the classical first
order and in the high order model are compared and the differences will be explained by physical
arguments.

In the second part of this talk I will discuss the detector physics processes of resistive plate
chambers that are often used in many high energy physics experiments. Critical elements of modeling
include the primary ionization, avalanche statists and signal development. The Monte Carlo simulation
procedures that implement the described processes will be presented. Time resolution and detector
efficiency are calculated and compared with experimental measurements and other theoretical
calculations.
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[2] R.D. White, R.E. Robson, S. Dujko, P. Nicoletopoulos and B. Li, J. Phys. D: Appl. Phys. 42
194001 (2009)

[3] S.Dujko, A. Markosyan, R.D. White and U. Ebert, under revision for J.Phys.D.

[4]  A.Markosyan, S. Dujko and U. Ebert, under revision for J.Phys.D.

24



EMS

XVIII International Symposium
on Electron-Molecule Collisions

and Swarms

Programme and Book of Abstracts

XVII International Workshop on Low-Energy Positron and Positronum Physics &
XVIII International Symposium on Electron-Molecule Collisions and Swarms
19 - 21 July 2013, Kanazawa, Japan

POSMOL 2013



POSITRON

XVII International Workshop on

Low-Energy Positron

and Positronium Physics

Programme and Book of Abstracts

XVII International Workshop on Low-Energy Positron and Positronium Physics &
XVTII International Symposium on Electron-Molecule Collisions and Swarms
19 - 21 July 2013, Kanazawa, Japan

POSMOL 2013



TE-22: Doubly excited states of molecular hydrogen by scattered electron-ion coincidence measurements
K. Takahashi, Y. Sakata, Y. Hino, and Y. Sak@i =~ oo 40

Abstracts of Posters (ems)

E-01: Damage of DNA-Fe ions complex by low energy electrons studied by XPS
EheANNDRand HaCholwim woncmmeg B o s v S i i e el il i i i 41

E-02: Potassium atom collisions to DNA sugar unit surrogates: D-Ribose vs THF
D. Almeida, F. Ferreira da Silva, G. Garcia, P. Limdo-Vieira oo, 42

E-03: Swarm parameter measurements of argon / oxygen mixtures
P Haefliger and C. M. Franck = = ettt e seet s se e s et eae et e s e e 43

E-04: Monte Carlo modelling of resistive plate chambers
D. Bosnjakovi¢, Z.Lj. Petrovic, and S. DUJKO ~— .....ocooueeeeeeeeeeeeeeeeeeeeeeeeee e -

E-05: High order fluid model for streamer discharges in rare gases
AYL Markosyan,, S.-Dujko,.and U. Ebertaly. w Lades fbe o8, A et bl S hanadasms Son Lo 45

E-06: Transport coefficients for electrons in rare-gas metal-vapor mixtures
J'Mirié, Z.Lj. Petrovié; R-D: Whiteiand S, Pujlo’s &= ndsndasisrrnmt e, dilmen o 46

E-07: Electrons in THF: Cross-sections, transport coefficients and thermalization
N. Garland, W.Tattersall, M. J.Brunger, G. Garcia, and R. D. White =~ ..coooooeeeeeeeeeeeeeeeeen, 47

E-08: Development of mass-selected ion mobility spectrometer
K. Takaya, T. Kaneko, N. Miyauchi, Y. Inoue, T. Nishide, H. Sugivama, N. Nakano, H. Tanuma, and Y. Seto

........................................................................................................................................ 48
E-09: Shape resonance spectra of uracil, 5-fluorouracil and 5-chlorouracil
F. Kossoski, M. H. F. Bettega, and M. T. do N. Varella - .........c.ccocooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesee e 49
E-10: Electron interactions with disulfide bridges
J. S. dos Santos, F. Kossoski, and M. T. do N. Varella — ..........cococoooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 50

E-11: Time-dependent model of resonant electron-molecule collisions: interpretation of structures in the
cross sections

M. Vatia.and K. Houfek » 300 1 0 Sl M Lol e e ssdsronsssssssesiissssssssaiusssssssssnsssssssboaliiatsdsmves 51
E-12: A close-coupling calculation for the electronic states of H,
A. Igarashi and Y. KUWGYAMA oot 52

E-13: Autodetachment dynamics of acrylonitrile anion revealed by two-dimensional electron impact spectra
K. Regeta and M. Allan

10




E-06

Transport coefficients for electrons in rare-gas
metal-vapor mixtures

J. Miri¢', Z.Lj. Petrovi¢', R.D. White® and S. Dujko'?
'Institute of physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Serbia

’Centrum Wiskunde & Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam,
The Netherlands

SARC Centre for Antimatter-Matter studies, James Cook University, School of
Electrical Engineering and Physical Sciences, 4810 Townsville, Australia

sasa.dujko@ipb.ac.rs, S.Dujko@cwi.nl

The progress and further improvements of light sources based on low pressure electrical gas
discharges require the most accurate modeling of charged particle transport processes in rare-gas-
metal-vapor mixtures [1]. In this work we investigate electron transport in mixtures of rare gases
(argon and neon) and metal vapors (sodium, potassium, cesium, magnesium and mercury) under
swarm conditions using a multi term theory for solving the Boltzmann equation [2]. Calculations are
performed over a range of E/N values, gas temperatures and metal vapor concentrations relevant to
lamp discharges. Values and general trends of mean energy, drift velocity, diffusion tensor and rate
coefficients are presented in this work.

Our work has been motivated, in part, by recent suggestions that highly accurate data for transport
coefficients required as input in fluid models of lamp discharges may significantly improve the
existing models. Current models of such lamps require knowledge of the plasma electrical
conductivity, which can be calculated from the cross sections for electron scattering in rare-gas-metal-
vapor mixtures and mobility coefficients presented in this work. In addition, we discuss the duality of
transport coefficients arising from the explicit effects of ionization and correct implementation of
transport data in fluid models of such discharges. Special attention is paid to the determination of
transport data under steady-state Townsend conditions and their relations to transport coefficients
obtained under hydrodynamic conditions [3]. The effects of metastable atoms and presence of
dimmers in metal vapors on the swarm parameters are also discussed. Therefore, in this work we
revisit and distill the most essential aspects of the definition and calculation of transport coefficients,
giving numerical results for a range of transport data in rare-gas metal-vapor mixtures required as
input in fluid models of lamp discharges.

References

[1]  G.G. Lister, J.E. Lawler, W.P. Lapatovich and V.A. Godyak, Rev. Mod. Phys. 76 541 (2004)
[2]  S. Dujko, R.D. White R D, Z.Lj. Petrovi¢ and R.E. Robson, Phys. Rev. E 81 046403 (2010)
[3] S.Dujko, R.D. White and Z.L;j. Petrovié, J. Phys. D:Appl. Phys. 41 245205 (2008)

46




ke Peny6auka Cpbuja
WG U A0
wgnpy YHusepsntet y Beorpany
A% Ousnuku dakynter
—* J1.5p.2012/8021
Hatym: 02.02.2017. ronune

Ha ocnosy yaana 161 3akoHa 0 onwrem ynpaBHOM NOCTYNKY M CiyxOeHe eBUACHUM]E H3aaje ce

YBEPEIBE

Mupuh (Mnaaaen) Jacmuna, 6p. unaekca 2012/8021, pohena 03.02.1987. roaune, I[1puspeH,
Peny6nunka CpOuja, ynucana wkosncke 2016/2017. roauHe, y cratycy: caMohUHAHCUpabe; TUI
CTY/JMja: IOKTOPCKE aKaJeMCKe CTyauje; CTyAujcKHu mporpam: dusuka.

[lpema CratyTy hakynrera ctyauje Tpajy (6poj ronmHa): TpH.
Pox 3a 3aBpluerak cTyauja: y ABOCTPYKOM Tpajamby CTyAHja.

OBo ce yBepere Moke ynoTpeduTH 3a pery/ucare BojHe obaBe3se, H31aBatbe BU3E, PaBa HA ACUH|H 101aTakK. IOPOAHYHE
MNEeH3Kje, MHBAMACKOT 101aTKa, 100Hjatba 31PaBCTBEHE KibIKHULE, IETUTUMALIM]E 3a nomamheuy %\ H CTHIICHIH]E.

N,

» \l<\y
OsnawheHo nuuﬁ»ﬁ) ynTeTa
| M

e




PENYRAHKA CPRHJA

YHHBEP3SHTCT Y KECOIPAAY
CACKRTPOTEXHHUYKH MARYATET

AHITAOMA

0 CTCYCHOM BHCOROM ORPASORAHY

NHPHR MaaneH JACKHHA

POBEH-A 03, 021987 FOAHHE ¥ NPH3PEHY, PENYEAHKA CPEHIA,
YIHCAH-A 2005/06.FOAHHE, A AAHA 15.9.2011.  TOAHHE 3ABPLUHO-AA J€ CTYAHIE
HA CACKTPOTEXHHYKOM MDAKYATETY HA OACCKY 34 DHZHYKY EACKTPOHHKY ~CMEP
BHOMEAHIHHCEH H €KOAOLIKH HHKEIMEPHHT, CA OMUTHM YCTIEXOM 8,62
(OCAM 62/100) Y TOKY CTYAHIA H OLEHOM 10 ( AECET ) HA AHIAOMCKOM

HCIHTY.
HA OCHORY TOIA H3AAJE MY-JOJ C€ ORA AHMAOMA O CTEUEHOM BHCOKOM

OLPASOBAIRY H CTPYYHOM HASHBY AHMNAOMHPAHH HHACHCP CACKTPOTCXHHKE.

PEAHH BPO) H3 CBHACHLHIC © HIAATHA AHDAOMAMA 18292,
Y BEOIPAAY, 16. 9. 2011, TOAHHE.

ACKAH ;PEHTGP
= ",,_;_.d,_..._________.--;_ﬂ

u_{:,.- AT / -
Mpod. Ap MuoApar MonosHk {(poda. Ap Bpako KoBaucaHh



Y Ly
Peiiyénuxa Cpouja

Yuusepsuitieini y beoipagy
3/ 3’ b EnexitipoiliexXHUHKY (axyniieit, beoipag

Ocuusay: Peiydmuxa Cpouja
Tozsony 3a pag opoj 612-00-02666/2010-04 og 10. geyemopa 2010.

ioguwe je uzgano Munuciiapciiro tpocseitie u HayKe Peaydnure Cpduje

Jacmuna, MuageHn, Mupuh

pohena 3. pedpyapa 1987. iogune y Ipuspeny, Peirydnuxa Cpduja, yilucana wKoncke
2011/2012. iogune, a gana 1. nosemopa 2012. iogure 3aBpuLiisd je macitiep akagemcke
citiyguje, gpyioi citieierd, Ha ciygujckom ipoipamy EnextapouiexHuka u PAUYHAPCULBO,

oduma 60 (wesgeceitt) Sogosa ECIIB ca iipoceynom oyerom 10,00 (gecein u 0/100).

Ha ocHoBy ioid usgaje joj ce 0B guiIoMa o Cie4HeHOM BUCOKOM 00pA30BabY U AKAGEMCKOM HA3UBY

Maciiiep uHmerep eeKipolilexHuKe u pavyHapciiBa

Bpoj: 1199300
Y Beoipagy, 28. mapitia 2013. ioguHe

Pexitop

Hexan
Tpodh. gp Bragumup Bymdawupesuf

Ipodp. gp Bpanxo Kosaxesuli
/\ /ﬁ /’(—Av,/—\_%

o122 72



Kparak nperyien HaydyHe aKTHBHOCTH KaHAMIATA

Kanmunar Jacmuna Mupuh je anrakoBaHa Ha HpojekTy MMHHCTapcTBa HayKe, IPOCBETE M
texHosomkor pazsoja MMM41011 ,IIpumena HHCKOTEMIIEpaTypHHUX IUIa3MH Y OMOMEAUIIMHM,
3alITUTH YOBEKOBE OKOJMHE M HaHOTeXHONorujama” mojx MmeHTopcTtBoM ap Came /[lyjka.
Kangunat ce ©0aBu TpaHCIOPTHOM TEOPHjOM €JEKTPOHA y TacoBUMa U MOJEIIOBAmbEM
CTPHUMEPCKUX TpaXmemha HMajyhm Ha yMy Ipe cBera NpHMEHE Yy TEXHOJOTHjU TacHUX
JHMEIEKTPUKA.

VY mpBoM zeny CBOT Jocajauimer paaa, JacmuHa Mupuh ce mocBeTusia UCTpaXKHBamby
CYJapHUX W TPAHCIIOPTHUX OCOOMHA €JIEeKTPOHA y jaKO eNCeKTPOHEraTMBHUM racoBuma. Ha
OCHOBY TOCTOjehMX TmoAaTaka y JUTEpaTypd M MPUMEmYjyhn TeXHUKY pojeBa HaeleKTPHCAHUX
YeCTHIA, KaHANUIAT je Pa3BUO KOMIUIETHE CETOBE IPEceKa 3a pacejame eNEeKTPOHA 32 HEKOJIMKO
TaCHHUX JIUEJICKTPUKA TIOCIEABE TeHepalyje Koje OIMKYyje BeoMa HH3aK TiaolanHu (akTop 3a
3arpeBame armocgepe. Jacmuaa Mupuh je yuectBoBaja y pa3Bojy HyMEpPHUKHX IpoLeaypa 3a
Ha/I0KHaluBame eJIeKTPOHA M3TyOJHEHUX 3aXBaTOM eyekTpoHa y Mounte Kapno cumynanujama.
Hakon pa3Boja, 1eTaJbHOT TeCTHpamka U UMILIEMEHTalje OBUX npoueaypa y Monre Kap:o ko,
M3padyHaTH Cy TPAHCIOPTHU Koe(dUIMjeHTH enekTpoHa y Tpuduyopometn jomuay (CFsl) u
cymmop xekcadnyopuny (SFe) y mIMPOKOM OICEry peayKOBaHHX eNeKTpuuHuX moJba. Hajeeha
NaXma je mocBehena pasyMeBamy M aHAIM3W KUHETHYKNX ()eHOMEHA MHIYKOBAaHHX MPOLIECHMA
3axBara eJIeKTpoHa. 3a pU3NYKOo TyMadyewne OBUX ()eHOMEHa n3padyHare ¢y (GyHKIHUje pacnojene
eNIEKTPOHA U IIPOCTOPHO PA3JIOKEHE KapaKTEPUCTHKE poja.

VY npyrom Jneny cBor jgocajanimer pajaa, JacuuHa Mupuh ce 6aBuia npoydaBambeMm
pa3Boja eJIEKTPOHCKUX JIaBUHA, BbUXOBOM TPAH3MUIIM]OM y CTPUMEpE U MpoNarayjoM cTpumepa y
JaKo eNeKTpOHETraTMBHMM TIacoBMMa. 3a OBa IpoydaBama Cy KopuiiheHH (UIyHIHH MOAEIH
CTPUMEPCKUX TPAKIHEHA PA3INIATEe KOMIUICKCHOCTH. Y OBHM HCTpPaXKHMBambUMa aKICHAT je
CTaBJbEH Ha IOBE3UBakby MUKPOCKOICKHMX OCOOMHA €JIeKTpOHa M MAaKPOCKOICKHX OCOOHMHA
CTPUMEPCKUX MpaKmbema. JIMCKyTOBaHA j€ OCETJBMBOCT Op3MHE Iponaraiuje CTpuMepa u
pacrioziesnie eJeKTPUYHOT 10Jba Ha Pa3iIMuuTe CETOBE MpeceKa 3a pacejame eJIeKTPOHA Kao M Ha
MIPUPOAY TPAHCIIOPTHUX Koe(UIlMjeHaTa KOjU C€ KOPUCTE Kao YJIa3HH MoJaly. 3HauajHa MaxXmba
je moceheHa pa3dyMmeBamy edekara peKOMOMHalMje €JEeKTpOHAa M TO3UTHUBHUX jOHA Kao U
MehycoOHe pexkoMOMHallMje pa3IMuyuTO HAaENeKTPUCAHMX JOHA Ha pa3BOj W Iporaraiujy
CTpUMEpa Y JaKo €JIeKTPOHEraTUBHUM raCOBUMA.

Ha ocHOBY HymMepHUKHMX MYJITH TepM pellewma bonmmanose jeqHaunne u Monte Kapio
MeTO/a, KaHAWJAT je TMPOoydaBao TPAHCIOPT EJNEKTPOHA Y JKUBHHHUM IapaMa Ha BUCOKHM
Temreparypama u nputuciuma. [lokazaHo je 1a KOpeKTHa pernpe3eHTaluja JumMepa aToMa KHuBe
U CyINepelacTHYHUX CyAapa HMa KJbY4YHY YIOTy 3a pa3yMmMeBame (EHOMEHAa HeraTHBHE
nudepeHInjagHe MPOBOIHOCTH.

HNocagammu pesynratu JacmuHe Mupuh cy mpukasaHu y paay y MehyHapomHom
gacomucy u3y3eTHux BpeaHoctu (M21a). Kamammar je, kao koayTop, ydecTBOBao Ha Behem
O0pojy mehyHapoauux u nomahux KoOH(pEpEeHIMja Kao ¥ Ha HEKOJIMKO YBOJIHUX MpeaBarmba.
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