Generalization of the Gell-Mann decontraction
formula for sl(n,R) and its applications in affine
gravity

Igor Salom and Djordj&ijatki

Abstract The Gell-Mann Lie algebra decontraction formula was proposed as an
inverse to the Inonu-Wigner contraction formula. We considered recently this for-
mula in the content of the special linear algebras sl(n), of an arbitrary dimension. In
the case of these algebras, the Gell-Mann formula is not valid generally, and holds
only for some particular algebra representations. We constructed a generalization
of the formula that is valid for an arbitrary irreducible representation of the sl(n)
algebra. The generalization allows us to explicitly write down, in a closed form, all
matrix elements of the algebra operators for an arbitrary irreducible representation,
irrespectively whether it is tensorial or spinorial, finite or infinite dimensional, with

or without multiplicity, unitary or nonunitary. The matrix elements are given in the
basis of the Spin(n) subgroup of the corresponding SL(n,R) covering group, thus
covering the most often cases of physical interest. The generalized Gell-Mann for-
mula is presented, and as an illustration some details of its applications in the Gauge
Affine theory of gravity with spinorial and tensorial matter manifields are given.

1 Introduction

The Indni-Wigner contraction [9] is a well known transformation of algebras
(groups) with numerous applications in various fields of physics. Just to mention
a few: contractions from the Poinéalgebra to the Galilean one; from the Heisen-
berg algebras to the Abelian ones of the same dimensions (a symmetry background
of a transition processes from relativistic and quantum mechanics to classical me-
chanics); contractions in the Kaluza-Klein gauge theories framework; from (Anti-
)deSitter to the Poincaralgebra; various cases involving the Virasoro and Kac-
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Moody algebras; relation of strong to weak coupling regimes of the corresponding
theories; relation of geometrically curved to “less curved’ and/or flat spaces...

However, existence of a transformation (i.e. algebra deformation) inverse to the
InGni-Wigner contraction, so called the “Gell-Mann formula” [4, 7, 8, 1], is far less
known. The aim of the formula is to express the elements of the starting algebra as
explicitly given expressions containing elements of the contracted algebra. In this
way, a relation between certain representations of the two algebras is also estab-
lished. This, in turn, can be very useful since, by a rule, various properties of the
contracted algebras are much easier to explore (e.g. construction of representations
[10], decompositions of a direct product of representations [7], etc.).

Before we write down the Gell-Mann formula in the general case, some notation
is in order. Let be a symmetric Lie algebre’ = .# + .7 with a subalgebraz
such that:

(A, M\ CH, (M ,T\CT, |7,7|CMH. 1)

Further, lete?’ be its Irdni-Wigner contraction algebra w.r.t its subalgeb#s i.e.
o = .M +U,where

A, M) C M, (MU CU, |, U]=/{0}. )

The Gell-Mann formula states that the elements .7 can be in certain cases
expressed in terms of the contracted algebra elenMnts # andU € % by the
following rather simple expression:

a
vu-u

Here,Cy(.#) andU -U denote the second order Casimir operators of #ieand
/" algebras respectively, whike is a normalization constant amdis an arbitrary
parameter. For a mathematically more strict definition, cf. [4].

Probably the main reason why this formula is not widely known — in spite of its
potential versatility — is the lack of its general validity. Namely, there is a number
of references dealing with the question when this formula is applicable [7, 8, 1,
16]. Apart form the case of (pseudo) orthogonal algebras where, loosely speaking,
the Gell-Mann formula works very well [20], there are only some subclasses of
representations when the formula can be applied [7, 8]. To make the things worse,
the question of its applicability is not completely resolved.

Recently, we studied tH8L(n, R) group cases, contracted w.r.t the maximal com-
pactSpinn) subgroups. BY5L(n,R) we denote the double cover 8£(n,R). Note
that there faithful spinorial representations are always infinite dimensional and phys-
ically correspond to fermionic matter. In these cases the Gel-Mann formula does
not hold as a general operator expression and its validity depends heavily on the
sl(n,R) algebra representation space. An exhaustive list of the cases for which the
Gell-Mann formula forsl(n,R) algebras hold was obtained [16]. In particular, we
have shown that the Gell-Mann formula is not valid for any spinorial representa-

T=i

Co(7),U] + 0U. 3)
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tion, nor for any representation with nontrivi&pin'n) multiplicity, rendering the
Gell-Mann formula here useless for most of physical applications.

There were some attempts to generalize the Gell-Mann formula for the “decon-
tracted” algebra operators of the complex simple Lie algeprasth respect to
decompositiorg = k+ ik = k; [22, 11], that resulted in a form of relatively compli-
cated polynomial expressions. Recently we have managed to obtain a generalized
form of this formula, first in the concrete casesbf5,R) algebra, and then also in
the case o§l(n,R) algebra, for any.

In this paper we shall consider the obtained generalized expressions and illustrate
applicability of the formula in the context of affine theory of gravity. In particular,
we analyze the five dimensional affine gravity models.

2 Generalized formula

The sl(n,R) algebra operators, i.e. tfgL(n,R), SL(n,R) group generators, can
be split into two subsetd,,, a,b = 1,2, ...,n operators of the maximal compact
subalgebrao(n) (corresponding to the antisymmetric reak n matrices,Map =
—Mpa), and the, so called, sheer operatdss, a,b = 1,2,...,n (corresponding to
the symmetric traceless realx n matrices, Ty, = Tpa). Thesl(n,R) commutation
relations, in this basis, read:

[Mab, Mcd] = 1(0acMbd + 8adMcb — GpcMad — dbdMca), 4)
[Mab, Ted] = 1(acTod + Gad Teb — docTad — od Tca) s %)
[Taba Tcd] = i(aachb + 5andb + 5ochaJF 5od Mca)- (6)

The Imni-Wigner contraction o§l(n,R) with respect to its maximal compact
subalgebraa(n) is given by the limiting procedure:

Uap = lim (8Tab)7 (7)
£—0

which leads to the following commutation relations:

[Mab, Mcd] = 1(8acMbd + OadMcb — ObcMad — SpdMea) 8)
[Mab, Ucd] = i((SalcUbd + 6adUcb - 5ocUad - 6odUca) (9)
[Uab; Ucd} =0. (lO)

Therefore, the lani-Wigner contraction ofsl(n,R) gives a semidirect sum

Fonen) l¥sa(n) algebra, wherenn. 1) 1 Is an Abelian subalgebra (ideal) of “trans-
2 2
lations” in "X _ 1 dimensions.

The generalized Gell-Mann formula fel(n,R), obtained in [18], reads:
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n

T;{f""’"zi; [Ca(s0(c)k ), U] + aUle?. (11)

c=

OperatorsTyy, live in the spaceZ?(Spin(n)) of square integrable functions over
the Spinn) manifold and it is known that this space is rich enough to contain all
representatives from equivalence classes oSt{e, R) group, i.esl(n,R) algebra
representations [3]. A natural discrete orthonormal basis in this space is given by
properly normalized functions of ti&pin(n) representation matrix elements:

{‘ %{m}> = /\/‘WD%{m}(gl)dglw}, (12)

<{k’}{rﬂ}‘{k}{m}> 14k 0 Bt o

wheredg is an (normalized) invariant Haar measure ﬂ{d{{m} are theSpinn)
irreducible representation matrix elements:

J J
?Ii]]:{m}(g) <}ki R(9) {{m}i> (13)

Here,{J} stands for a set of th&pin(n) irreducible representation labels, whle}
and{m} labels enumerate trim(D1?}) representation basis vectors.

In the basis (12) sets of labe]d} and{m} determine transformation properties
of a basis vector under tHepin(n) subgroup:{J} label irreducible representation
of Spinn), while numbers{m} label particular vector within that representation.
The set of parametefk} serve to enumerat@pinn) multiplicity of representation
{3} within the given representation &L(n,R). These parameterk} are math-
ematically related to the left action &pin(n) subgroup in representation space
Z22(Spir(n)).

Operatorsuéb appearing in (11) are concrete (normalized) representations (in
Z£2(Spinn)) space) of the lani-Wigner contractions of shear generat®sg. In
basis (12) these operators act in the following way:

{J'} _ [am) D)~ 0
<{k’ (my|Y {k}{m} = am 7 Cidea i) Cmpanimy > (14)

where 11 denotesS pinn) representation that corresponds to second order symmet-
ric tensors (shear generators, as well as théinlrwigner contractions, transform

in this way w.r.t.Spin(n) subgroup) and€ stands for Clebsch-Gordan coefficients
of Spin(n).

In (11) we also used notatia®(sa(C)k) = 3 551 (Kan)?, WhereKgp, are gen-
erators ofSpinn) group left action in basis (12). These operators behave exactly as
the rotation generatomd,p,, but, instead of acting on right-haddn} indices, they
act on the lower left-hand side indicéls} that label multiplicity:
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Kab

/
(B ol Bl ) = oo vemomey g a9

Finally, the set oh— lindicesos, 03,... 0, in (11) label the particular represen-
tation of theSL(n,R). The formula (11) covers all cases: infinite and finite dimen-
sional representations, spinorial and tensorial, with and without multiplicity, unitary
and non unitary.

We note that the termm = nin (11) is, essentially, the original Gell-Mann for-
mula, sinceCy(sa(n)k ) = Ca(so(n)m). The rest of the terms can be seen as neces-
sary corrections securing the formula validity in the entire representation space. The
additional terms vanish for some particular representations thus yielding the original
formula.

An immediate mathematical benefit of the generalized formula is the expression
for matrix elements of shear generators in basis (12) [18]:

{J/} {J} i d|m J})
(e[| 0 iy ) = /BRIl o

_ ~ Dj n-c+lyy
X zgzz./%(cz(so(c){k,}) —Ca(s0(C) ) +ac)c}k{< o

In order to demonstrate application of this result in the context of five dimen-
sional affine gravity models, we introduce a concrete5 adapted notation (for all
n = 5 notation we adhere to that of our paper [17]). As a basiSfun5) represen-
tations we pick vectors:

Ji1 Jo
NN >,Ji =0,

m My

Sdi>Im=-3,... % . (17)

NI =

with respect to decompositiosn(5) O so(4) = sa(3) ¢ so(3). Basis of SL(5,R)
representation space, corresponding to (12) is then given by vectors:

Ji1 Jo
Ki Ko Ji > . (18)
ki ko m mp

The reduced matrix elements of thg5, R) shear (noncompact) operators, derived
from an alternative form of Gell-Mann formula that we have given in the paper [17],
read:
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3,7,
KK,
kike
J1J2 11J %

X ((Uﬁ-i\/g(J/l(J/1+2)+J'2(J/2+1)—Jl(J1+2)—J2(J2+1 ) 1Kz 00K ; »{

ky ko 00K

313, L343
K ) K )t ) O (19)
Jy3, I J],J% 33,1 1J]7J%
TGl C s TGO
3,3, 11J’J 313,11 J%J%

+ i(Gp+ky+kp) CKle 11::/1,2 +i(8—ky—kp)CraKz 1 1 K5,

kikp —1-1kjky

wheredim(J1,J2) = (231 — 2J2 + 1)(2J1 + 232+ 3)(2J1+ 2)(2J, + 1) /6 is the di-
mension of theso(5) irreducible representation characterized (By,J>). In this
notation,SL(5,R) irreducible representations are labelled by parametgrs;,
and&,, that appear in the formula (19).

3 Gauge Affine action

The space-time symmetry of the affine models of gravity (prior to any symmetry
breaking) is given by the General Affine Gro@A(n,R) = T" A GL(n,R) (or,
sometimes, by the Special Affine Gro@#n,R) = T" A SL(n,R)). In the quan-

tum case, the General Affine Group is replaced by its double cover counterpart
GA(n,R) = T"AGL(n,R), which contains double cover &L(n,R) as a subgroup.

This subgroup here plays the role that Lorentz group has in the Péisgammetry
case. Thus it is clear that knowledge ®E(n,R) representations is a must-know

for any serious analysis of affine gravity models. On the other hand, the essential
nontrivial representation determining part of 8&(n,R) = R, ® SL(n,R) group

is its SL(n,R) subgroup R, is subgroup of dilatations). We will make use of the
SL(n,R) matrix elements expression in order to obtain coefficients for some of the
gauge field—matter interaction vertices.

A standard way to introduce interactions into affine gravity models is by local-
ization of the global affine symmeti@A(n,R) = T" AGL(n,R). Thus, quite gen-
erally, affine Lagrangian consists of a gravitational part (i.e. kinetic terms for gauge
potentials) and Lagrangian of the matter fields= Ly + Lm. Gravitational part 4
is a function of gravitational gauge potentials and their derivatives, and also of the
dilaton field ¢ (that ensures action invariance under local dilatations). In the case
of the standard Metric Affine [6, 5], i.e. Gauge Affine Gravity [13], the gravita-
tional potentials are tetradr‘s‘ metricsgan and affine connectioh @ b SO that we
can write:Lg = Lg(e, o"’e,g,dg,l',dl’,d)). More precisely, due to action invariance
under local affine transformations, gravitational part of Lagrangian must be a func-
:i?(;n of the foarng = L%(e,g,T, RN, ¢), whereT?, = g,é, +F§Hebv —(uev),

=0ulg, + I'bul'cv — (M < V), Nyap = D gap are, respectively, torsion, cur-

buv L . . . . .
vature and nonmetricity. Assuming, as usual, that equations of motion are linear in
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second derivatives of gauge fields, we are confined to no higher than quadratic pow-
ers of the torsion, curvature and nonmetricity. Covariant derivative is of the form
Dy =0u— iI'aE,Qba, whereQ.? denote generators @L(n,R) group. The matter
Lagrangian (assuming minimal coupling for all fields except the dilaton one) is a
function of some number of affine fielg# and their covariant derivatives, together
with metrics and tetrads (affine connection enters only through covariant derivative):
Lm= Lm((PI ) D(pl , € g)

With all these general remarks, we will consider a class of affine Lagrangians, in
arbitrary number of dimensions of the form:

L(eyav dveyaa ,_buaa aV ,_buav gaba LpAv dv L’UAv (DAa aV (DA7 ¢7 dV ¢) =
e ¢2R_ ¢2T2— ¢2N2 +
Wig*vaey D + 307l ey (Dy @) " (Dy @) + 3¢™ef'e’Du¢Du|.  (20)

The terms in the first row represent general gravitational part of the Lagrangian,
that is invariant w.r.t. affine transformations (dilatational invariance is obtained with
the aid of field¢, of mass dimension/2 — 1). Here T2 and N2 stand for linear
combination of terms quadratic in torsion and nonmetricity, respectively, formed
by irreducible components of these fields. For the scope of this paper, we need not
fix these terms any further. This is a general form of gravitational kinetic terms,
invariant for an arbitrary space-time dimensioi 3.

The Lagrangian matter terms, invariant w.r.t. the |[d8&(n,R), n > 3, transfor-
mations, are written in the second row. The fi¢ldienotes a spinori&L(n, R) field
— components of that field transform under some appropriate spir®tiai, R)
irreducible representations. All spinori@L(n,R) representations are necessarily
infinite dimensional [12], and thus the fiedd will have infinite number of compo-
nents. The concrete spinorial irreducible representation of#fe&igiven by a set of
n—1SL(n,R) labels{ay'} together with the dilatation chargly. The field® is a
representative of a tensori@L(n, R) field, transforming under a tensor@L(n,R)
representation (i.e. one transforming w.r.t. single-valued representation®®the
subgroup) labelled by parametgrs®} andde. Since, as it is briefly argued later,
the noncompacsL(n— 1,R) affine subgroup is to be represented unitarily, the ten-
sorial field @ is also to transform under an infinite-dimensional representation and
to have an infinite number of components. The remaining dilaton figklscalar
with respect ta&SL(n,IR) subgroup, and thus has only one component.

Interaction of affine connection with matter fields is determined by terms con-
taining covariant derivatives. We write these terms in a component notation, where
the component labelling is done with respect to the physically important Lorenz
Spin(1,n— 1) subgroup ofGL(n,R). Such a labelling allows, in principle, to iden-
tify affine field components with Lorentz fields of models based on the Pd@ncar
symmetry. Namely, the affine models of gravity necessarily imply existence of some
symmetry breaking mechanism that reduces the global symmetry to the Roincar
one, reflecting the subgroup structuf@ A SQ(1,n— 1) C T" A GL(n,R). There-
fore, we consider the fiel® (and similarly for @ field) as a sum of its Lorentz
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components:
widt ’{J} >
k}{m} {kH{m}/"
{kH{m}
The interaction term connecting field¥, e}, r,2°, %{é}{m}, {{kf/}}{m} is now:
da H -abp{d} {3} 3"}
o ey Ty q{{k}{m}qj{k’}{nﬂ (g el i) G oy | Qb i) )+ 2)
Wi
while the interaction of tensorial field with connection is given by:
b {3} {3} {3} {3}
—59°e¢ €' T°0u Py ) Py ) i gmp | bl iy oy )+ (22)
{3} {3} {'} {3} y
59°e ' PP imy Ou P ) (e ) [ Qabl ey pmy )+ (23)
b e e TR @iy du d )
{J/ {J//
2 (1 <{k}{m}|Qab|{k”}{rr{’ ><{k”}{n‘(’}‘Qa'b’|{k/}{n1}> (24)

The scalar dilaton field interact only with the trace of affine connection:

Lo ety (9 —iM50p)0(0y —iM,5ds) 0, (25)

wheredy denotes dilatation charge ¢ffield.

In the above interaction terms we note an appearance of matrix elements of
GL(n,IR) generators, written in a basis of the Lorenz subgrSpn(1,n—1). The
dilatation generator (that is, the tra@8) acts merely as multiplication by dilatation
charge, so itis really thBL(n, R) matrix elements that should be calculated. (An in-
finite dimensional generalization of Dirac’s gamma matrices also appear in the term
(21); more on these matrices can be found in pape&ijatki [21].) However, be-
fore presenting examples of the matrix elements evaluations, and thus calculations
of the vertex coefficients, it is due to note that the correct physical interpretation
of the SL(n,R) representations requires these representations to be unitary w.r.t. its
SL(n—1,R) subgroup and to be nonunitary w.r.t. its lorentz-I&gin(1,n— 1) sub-
group. It turns out that these requirements can be properly satisfied by making use
of the so called deunitarizing automorphism [12].

4 Gauge Affine symmetry vertex coefficients evaluation

Now we return to evaluation of vertex coefficients for interaction between various
Lorentz components of th&L(n,R) fields. The nontrivial part is to find matrix

elements ofSL(n,R) shear generators in expressions (21)-(24), and, to do that in
n =5 case we will use expression (19). However, this formula is given in the basis
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of the compacSpin(n) subgroup, and not in the basis of the physically important
Lorentz groupSpin(1,n— 1). On the other hand, it turns out that taking into account
deunitarizing automorphism exactly amounts to keeping reduced matrix element
from (16) and replacing the remaining Clebsch-Gordan coefficient oS{ign)

group by the corresponding coefficient of the Lorenz gr8mi(1,n— 1) [15].

As the first example, let the fiel® correspond to an unitary multiplicity free
SL(5,R) representation, defined by labets = —4,& = & = 0, with gy arbitrary
real. The representation space is spanned by vectors (18) satidfyind, = J €
No -+ %; Ki =Ky =0;J; = b =J < J. This is a simplest class of multiplicity free
representations that is unitary assuming usual scalar product. If we déAgie-
1...5 the five ® components witll; = J, = % (in this sensep? corresponds to a
Lorenz 5-vector) then the interaction vertex (22) connecting figids oy 9 and
affine shear connectiafC is:

i V5 2
égefee“efv @29, o° 1 01(NabMNdc+ Naclldb — ﬁrladnbc)~ (26)

To obtain this result we used an easily derivable formula for Clebsch-Gordan coef-
ficient connecting Lorentz vector and symmetric second order Lorenz tensor repre-
sentations:

2
CLf(ubf)% = \/ 21 (NabMde+ Nacldb — - Nadbe), (27)

where we labelle® pin(1,n— 1) irreducible representations by Young diagrams, as
in [18]. More importantly, we also used value of the reduced matrix element:

57|l 22 2
00 ||Q[|60 ) =14/=01, (28)
00 00 7
that we obtained by using formula (19) (based on this formula, a Mathematica pro-
gram was generated that directly calculat§®, R) matrix elements [15], taking
into accounSpin5) Clebsch-Gordan coefficients found in [19]).
It is no more difficult to obtain coefficients of the vertices of the form (24). La-

grangian term (24) connecting Lorenz 5-vect®rcomponentsbs, dJ;r and affine
connection componeifiss),, is:

1
1c (0f —25) g™el'e MM al0, @s. (29)
Next we will consider an example wher field corresponds to a representa-
tion with multiplicity. Let us, again, consider 5-vector componént= J, = 3 of
@, only this time without any restriction to the valuesaf, 0>, 4, . In general,
this will correspond to a representation with non trivial multiplicity. Quantum num-
bers{k} = (K1, Kz, ki, k), that label multiplicity, now can take value$s, 3,3, 1),
3.3.3,-3),3.3,-3.3), (3,4, -3,-3) and(0,0,0,0). Therefore, thisa priori
corresponds to 5 observable 5-vector fields, differentiated by khevalues, and
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these five vector fields mutually interact by gravitational interaction. Part of the La-
grangian term (22), responsible for this interaction, has the form:

i 1T 11
Egefee“ef ‘Dﬁ:r/}’_bcdu@{k}< 5152 Q|| K >\/\C6(rlab’7dc+ Nacldb — nadnbc)-

(30)

The reduced matrix element is obtained from the generalized Gell-Mann formula:

11 i1
(1i]e]i1)-
Kk 1|1 ko
1 305 ~ 3 13 313
avia |~ 2018 ok Cag0k, +1502C3k ok Caig ok, ™

15(33 1k/((k1+k2—52)C3 1K) (k1+k2+51)c3k 1k/)

111
1K:3k 1k’ ((kl k2+6l)c3k22721k/ - (kl+k2+62)c3k 1K ))

1 T 1 1

22 2 2 22 22
<oo K1K2>0, <oo 00> \/>01, (31)
00 ke ko 00 00

whereC3 denotes an usu@lpin3) Clebsch-Gordan coefficient.

Q
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