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The so-called Gell-Mann formula, a prescription designed to provide an inverse to the
Inonti-Wigner Lie algebra contraction, has a great versatility and potential value. This
formula has no general validity as an operator expression. The question of applicability
of Gell-Mann’s formula to various algebras and their representations was only partially
treated. The validity constraints of the Gell-Mann formula for the case of sl(n,R) and
su(n) algebras are clarified, and the complete list of representations spaces for which this
formula applies is given. Explicit expressions of the sl(n,R) generators matrix elements
are obtained for all these cases in a closed form by making use of the Gell-Mann formula.
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1. Introduction

The Gell-Mann formula [1-5] is a prescription aimed to serve as an “inverse” to the
In6nti-Wigner contraction [6]. Let a symmetric Lie algebra A = M + 7T

MMM, MT]cCT, [T.7]CM, (1)
and its Inonii-Wigner contraction A = M + U:
MMlCcM, MU CU, [UU] =0}, (2)

be given. Following a definition that is mathematically less strict but closer to the
original formulation, the Gell-Mann formula states that elements 7, € 7 can be

constructed as the following simple function of the contracted algebra operators
U, €U and M, € M:

TM:'W[Cz(M) ] +ioU,. (3)
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Here, C?(M) and U,U" denote the (positive definite) second-order Casimir
operators of the M and A’ algebras, respectively, while « is a normalization con-
stant and o is an arbitrary parameter. (For a mathematically more strict definition,
cf. [1].) The formula was, to our knowledge, first introduced by Dothan and Ne’eman
[5], and was advocated by Hermann.

This formula is of a great potential value due to its simplicity and the fact
that many aspects of the representation theory are much simpler for the contracted
groups/algebras (e.g. construction of representations [7], decompositions of a direct
product of representations [2], etc.). However, this formula is valid, on the algebraic
level, only in the case of contractions from A = so(m+1,n) and/or A = so(m,n+
1) to A" = iso(m,n), with M = so(m,n) [8, 9]. Moreover, apart from this, the
formula is also partially applicable in a broad class of other contractions provided
one restricts to some classes of the algebra representations. The validity of Gell-
Mann’s formula in a weak sense, when an algebra representation requirement is
imposed as well, was investigated long ago by Hermann [2, 3]. A partial set of
classes of the algebra representations for which the Gell-Mann formula holds is listed
[3]. No attempt to make this list exhaustive is made, deliberately concentrating
“on what seems to be the simplest situation”. This analysis excluded, from the
very beginning, the cases of representations where the little group (in Wigner’s
terminology) is nontrivially represented, not claiming a complete answer even then.

The Gell-Mann formula is especially valuable as a tool in the problem of finding
all unitary irreducible representations of the si(n,R) algebras in spaces over the
SO(n) and/or Spin(n) groups generated by their so(n) subalgebras (applying the
formula to contraction of sl(n,R) with respect to subalgebra so(n)). Finding rep-
resentations in the basis of the maximal compact subgroup SO(n) of the SL(n,R)
group is mathematically superior, and it suites well various physical applications in
particular in nuclear and particle physics, gravity [10], physics of p-branes [11] etc.
As an example consider a gauge theory based on the Affine spacetime symmetry
SA(n,R) = T,, A SL(n,R); bar denoting the covering group. The gauge covariant
derivative, Do, a = 0,1,...,n — 1, as acting on an Affine matter field ¥(x), is
given by,

Do W A(2) = (00 — i0%(2) (Qup) 5 ) ¥B(x),  Qab € sl(n,R),

where I'%(z) are the sl(n,RR) connections, and A, B enumerate the matter field
components. The matter-gravity vertices require the knowledge of the si(n,R) oper-
ators matrix elements (Qab)i in the Hilbert space of the matter field components
{W4(z)}. Operators Qqp naturally split into antisymmetric generators of the com-
pact SO(n) subgroup Mu, = Q45 and the symmetric, so-called, sheer generators
Tab = Qapy- While the matrix elements of the former are well-known, it is generally
difficult task to find, for a given sl(n,R) representation, the matrix elements of the
latter. In particular, for a generic spinorial SL(n, R) matter field, an explicit form
of the matrix elements of the si(n,R) generators, with respect to the Lorentz-like
Spin(1,n—1) subgroup, for infinite-dimensional representation corresponding to the
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V¥ field is required. The Gell-Mann formula, in principle, offers a powerful method to
describe various representation details (including the matrix elements) in a simple
closed analytic form.

Therefore, two obvious questions arise in this context: (i) What is the scope of
applicability of the Gell-Mann formula in the sl(n,R) case (i.e. what is the subset
of irreducible representations that can be obtained using the formula)? and (ii) Can
the formula be somehow generalized, as to account for all si(n,R) irreducible rep-
resentations?

Recently [12], we have successfully answered the second question by obtaining
a generalized formula of a form similar to that of (3):

T _zz [C?(s0(m) ), US™™] + 0, UG™, (4)

where C?(so(m) ) is the second-order Casimir of the so(m) left action subalgebra,
Ua;"m) are specifically chosen representations of the Abelian part of the contracted
algebra and 09,03, ...,0, are the sl(n,R) representation labels (for more details
cf. [12], and a previous analysis [13] of the n = 5 case). This generalized Gell-Mann
formula expression for the noncompact “shear” generators T,; holds for all cases of
sl(n,R) irreducible representations.

However, the above solution of the second problem in no way diminishes impor-
tance of the first one — i.e. when is the original formula applicable. Apart from
mathematical curiosity, this question is of great value since, despite the simple
form of the generalization, the original formula still has a number of advantages
in applications. First, the summation that appears in the generalized formula cer-
tainly renders any practical calculation more complex. More importantly, the gen-
eralized Gell-Mann formula is no longer solely a Lie algebra operator expression,
but an expression in terms of representation dependant operators U éém) and the
so called “left action rotation generators” K,; appearing through C?(so(m)x) =
%Z:b:1(Kab)2' Therefore, it is still of a great value to know precisely when the
original formula can be applied.

The aim of this paper is to clarify the matters of the original Gell-Mann for-
mula applicability for the class of sl(n, R) algebras contracted with respect to their
so(n) maximal compact subalgebras. Note, that owing to a direct connection of the
sl(n,R) and su(n) algebras, the conclusions readily convey to the latter case.

In the following, we stick to the notation and mathematical framework of the
paper [12]. We briefly restate the minimal due set of these preliminaries in the
appendix.

2. Validity of the Gell-Mann Formula

The Gell-Mann formula validity problem is due to the fact that the third com-
mutation relation of (1) is not a priori satisfied as an operator relation when the
algebra elements are given by expressions (3). In the sl(n,R) case, the 7 subspace
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is spanned by %n(n + 1) — 1 shear generators T),. These operators transform as
a second-order symmetric tensor with respect to Spin(n) subgroup, and, in the
Cartesian basis, satisfy:

[Tab7 Tcd] = i(éachb + (Sandb + (Sbcha + 5bnda)~ (5)

Generally, we use indices from the beginning of the Latin alphabet for Cartesian
basis and the Greek indices whenever we want to stress that expression is basis-
independent.

To investigate circumstances in which this relation holds, we evaluate the com-
mutator of two shear generators in the framework given in the appendix. In that
framework, the Gell-Mann formula (3) reads:

T, = ia[C?(so(n) k), DL + io DTY) (6)

wi )

where C?(so(n)x) = 3> ,—1(Kap)?. By making use of this formula, a few alge-

braic relations and some properties of the Wigner D-functions, after some algebra
we obtain:

[T, 1)) = —20*[K ;. [Kjy, D] 1K, DK — (e v)

=—a?) > (57 - TR
J AN

x (2(c2() - 202m) ({4 Y5
+ (Ve K OB [57) ) ik (7)

where a summation over repeated Latin indices ¢ and j that label the K generators
in any real basis (such that C?(K) = K;K; is assumed). The C*(K ;1)) operator
here denotes the second-order Casimir operator acting in the tensor product of two
[T representations, i.e. C?(K(r4m) = > ,(K; ® 1 +1® K;)%

The summation index J in (7) runs over all irreducible representations of the
Spin(n) group that appear in the tensor product [11 ® [, and A, X’ count the vec-
tors of these representations. Since all irreducible representations terms, apart those
for which the Clebsch—Gordan coefficient C' DEEDK is antisymmetric with respect

v

1® K;

to p <> v vanish, we are left with only two values that J takes: one corresponding
to the antisymmetric second-order tensor H and the other one corresponding to the
representation that we denote as Bﬂ The fact that in the case of sl(n,R) algebras,
there is another representation term, in addition to H, in the antisymmetric prod-
uct of two [IJ representations (i.e. representations that correspond to Abelian U
operators), is in the root of the Gell-Mann formula validity problem. Note that in
the case of the so(m+1,n) — iso(m,n), i.e. so(m,n+1) — iso(m,n) contractions,
where the Gell-Mann formula works on the algebraic level, the contracted U oper-
ators transform as O and the antisymmetric product of two such representations
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certainly belongs to the H representation (i.e. to the representation that corresponds
to M = so(m,n) subalgebra operators).

The so(n) Casimir operator values satisfy C? (Bﬂ) = 202%() = 4n, implying

that one of the two terms vanishes in (7) when J = EH leaving us with:

[T, T, = 4(n + 2)205353H <<H 1® K; Pj> L > D@AKZ‘

202 WY
=SBl w o mFF) ) b
AN
—ZCDEDEBAH <<HH’ [1® Ki, C*(K+m)]| > ij> D@Ku
AN

(8)

where we used that C? (H) =2n —4.

As the coefficient a can be adjusted freely, all that is needed for the Gell-Mann
formula to be valid is that (8) is proportional to the appropriate linear combination
of the Spin(n) generators, as determined by the Wigner—Eckart theorem, i.e.:

Z ctHED M => CD:”:DEDQKI-. (9)
A,

We now analyze these requirements, skipping some straightforward technical
details. The third term on the right-hand side in (8), containing D functions of the
representation BEL is to vanish. Since it is not possible to choose vectors w so that
this term vanishes identically as an operator, the remaining possibility is to restrain
the space (A.3) to some subspace V = {|v)} C £?(Spin(n)). More precisely, for this
term to vanish, there must exist a subalgebra L C so(n) g, spanned by some {K,},
such that K, € L = K, |v) = 0. Requiring additionally that this subspace V' ought
to close under an action of the shear generators, and that the first two terms of (8)
ought to yield (9), we arrive at the following two necessary conditions:

(1) The algebra L, must be a symmetric subalgebra of so(n), i.e.

[L,NJCN, [N,NJcL; N=L', (10)

(2) The vector }Dw]> ought to be invariant under the L subgroup action (subgroup

ij> = 0. (11)

The second necessary condition is satisfied by requiring that the space V is
given by Spin(n)/L. In Wigner’s terminology, this means that L is the little group
of the contracted algebra representation, and that necessarily it is to be represented
trivially. Besides, the little group is to be an invariant subgroup of the Spin(n)

of Spin(n) corresponding to L), i.e

K,eL= K,
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group. This coincides with one class of the solutions found by Hermann [3]. However,
we demonstrated here that there are no other solutions in the si(n,R) algebra case,
in particular, there are no solutions with little group represented nontrivially.

As for the first necessary condition, an inspection of the tables of symmetric
spaces, yields two possibilities: L = Spin(m) x Spin(n — m), where Spin(1) = 1,
and, forn = 2k, L = U(k) (U is the unitary group). However, this second possibility
certainly does not imply another solution, since it turns out that there is no vector
satisfying the second above property.

Thus, the only remaining possibility is as follows,

L = Spin(m) x Spin(n —m), m=1,2,...,n—1, Spin(l) =1. (12)

It is rather straightforward, however somewhat lengthy, to show that proportional-

ity of (8) and (9) really holds in this case. The vector ’ij> exists, and it is the one

corresponding to traceless diagonal nx n matrix diag(L, ..., L ——1 -1

m’ n—m?’ " "7 n—m

3. Special Case: SL(2,R)

The analysis accomplished above cannot be applied directly to the n = 2 case,
thus the sl(2,R) case must be treated separately. The maximal compact subgroup
SO(2), that is, its double cover Spin(2), has only one generator M, and therefore
it has only one-dimensional irreducible representations. In this case, there are two
Abelian generators U+ of the contracted group:

(M, U] = £Uy, [Uy,U_]=0. (13)

Based on these relations, it is easy to verify that the 7'y operators obtained by the
Gell-Mann construction as:

Ty =i[M? Uy] +iocUs (14)
automatically satisfy the s{(2,R) commutation relation:
[Ty, 7] = —2M. (15)

Therefore, we demonstrate that the Gell-Mann formula applies to the si(2,R) case
as well.

4. Matrix Elements

The approach presented in this paper allows us additionally to write down explic-
itly the matrix elements of the si(n, R) generators in the cases when the Gell-Mann
formula is valid. The possible cases are determined by the numbers n and m. The
corresponding representation space (not irreducible in general) is the one over the
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coset space Spin(n)/Spin(m) x Spin(n —m). The proportionality factor « is deter-
mined to be:

a=_\/—=, (16)

and, in a matrix notation for [1J representation:

’Dw3>: @diag(l,...,i_ L ) (17)

m m n—m n—m

The Gell-Mann formula (3), (6), and the matrix representation of the contracted
Abelian generators U (A.5) yield:

!
Gl
m m

“w
_ o fmn—m) [dim(J) o o J A3
=1 in dlm(J/) (C (J) C (J) + U)CO 00 Cm wom': (]‘8)

The zeroes in the indices of Clebsch—Gordan coefficients here denote vectors that
are invariant with respect to Spin(m) x Spin(n —m) transformations (in that spirit

|E|u:‘> = |E(|):‘>) In the formula (18), the space reduction from £2(Spin(n)) to
L£2(Spin(n)/Spin(m) x Spin(n — m)) implies a reduction of the basis (A.3), i.e.
| g m) = | 7‘7]1> (only the vectors invariant with respect to left Spin(m) x Spin(n—m)

action remain).

The expression (18), together with the action of the Spin(n) generators (A.4)
provides an explicit form of the SL(n,R) generators representation, that is labeled
by a free parameter o. Such representations are multiplicity-free with respect to
the maximal compact Spin(n) subgroup, and all of them are a priori tensorial. One
can obtain from these representations, for certain o parameter values, the si(n,R)
spinorial representations as well as by explicitly evaluating the Clebsch—Gordan
coefficient and performing an appropriate analytic continuation in terms of the
Spin(n) labels.

5. Conclusion

In this paper, we clarified the issue of the Gell-Mann formula validity for the
sl(n,R) — 7nwsn Y so(n) algebra contraction. We have shown that the only
sl(n,R) represe;tations obtainable in this way are given in Hilbert spaces over the
symmetric spaces Spin(n)/Spin(m) x Spin(n —m), m = 1,2,...,n — 1. Moreover,
by making use of the Gell-Mann formula in these spaces, we have obtained a closed
form expressions of all irreducible representations matrix elements of the noncom-
pact operators generating SL(n,R)/SO(n) cosets. The matrix elements of both
compact and noncompact operators of the sl(n,R) algebra are given by (A.4) and
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(18), respectively. In particular, it turns out that, due to Gell-Mann’s formula valid-
ity conditions, no representations with so(n) subalgebra representations multiplicity
can be obtained in this way. Moreover, the matrix expressions of the noncompact
operators as given by (18) do not account a priori for the sl(n,R) spinorial represen-
tations. An explicit construction of spinorial representations requires an additional
analytic continuation of the matrix elements explicit expressions to half-integer val-
ues of the representation labels. Due to mutual connection of the si(n, R) and su(n)
algebras, the results of this paper apply to the corresponding su(n) case as well.
The SU(n)/SO(n) generators differ from the corresponding si(n,R) operators by
the imaginary unit multiplicative factor, while the spinorial representations issue
in the su(n) case is pointless due to the fact that the SU(n) is a simply connected
(there exists no double cover) group.

In many physics applications (e.g. those in [18]) one is interested in the unitary
irreducible representations. The unitarity question goes beyond the scope of the
present work, and it relates to the Hilbert space properties, i.e. the vector space
scalar product. An efficient method to study unitarity is to start with a Hilbert space
L?(Spin(n), k) of square integrable functions with a scalar product given in terms
of an arbitrary kernel x, and to impose the unitarity constraints both on the scalar
products itself and on the noncompact operators matrix elements in that scalar
product (cf. [19]). The simplest series of the sl(n,R) unitary irreducible represen-
tations, the Principal series, of the representations constructed above are obtained
when o = ioy, oy € R\{0}, i.e. when o takes an arbitrary nonzero pure imaginary
value.

To conclude, we obtained recently a representation dependent generalization of
the Gell-Mann formula for all si(n,R) algebras [12] to cover the cases of represen-
tations with nontrivial multiplicity. The sl(n, R) noncompact operators representa-
tions obtained in that work together with the results of this work cover all si(n,R)
representation cases.

Appendix A

In this paper, rather than following the approach of Hermann [3], we follow our
approach of [12]. That is, we work in the representation space of square integrable
functions £2(Spin(n)), over the maximal compact subgroup Spin(n), i.e. the SO(n)
universal covering group, with a standard invariant Haar measure. This representa-
tion space is large enough to provide for all inequivalent irreducible representations
of the contracted group, and, by a theorem of Harish-Chandra [14-17], is also rich
enough to contain representatives from all equivalence classes of the SL(n, R) group,
i.e. sl(n,R) algebra, representations.

The generators of the contracted group are generically represented, in this space,
as follows. The so(n) subalgebra operators act, in a standard way:

d
Murlg) =~ explitMa)|_ 16),

t=
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where action of a Spin(n) element ¢’ on an arbitrary vector |¢) € £2(Spin(n)) is
given via action from the left on basis vectors |g) of this space:

q'19) =g’/¢>(g)lg>dg = /¢(g)lg’g>dg, g',g € Spin(n). (A1)

The contracted noncompact Abelian operators U, (2, 3), act in the same basis as
multiplicative Wigner-like D-functions (the SO(n) group matrix elements expressed
as functions of the group parameters):

U~ D) = (| (0 a))

- A2
2. (A2)
|u| being a constant norm, g being an SO(n) element, and [1TJ denoting (in a parallel
to the Young tableaux) the symmetric second-order tensor representation of SO(n).
The norm |u| parametrizes representation of U, but will turn out to be irrelevant

in our case, as it cancels with the denominator in (3). The ’D/i]> vector from repre-
sentation [TJ space is denoted by the index of the operator U, whereas the vector
||%|Uj> can be an arbitrary vector belonging to [1J (the choice of w determines, in

Wigner terminology, the little group of the representation in question). Taking an
inverse of g in (A.2) insures the correct transformation properties.

A natural discrete orthonormal basis in the £2(Spin(n)) space is given by prop-
erly normalized Wigner D-functions:

km km

J _ J |J
{‘ > = /,/dim(J)D,fm(g 1)dg|g>}, < ‘k’m’> =077 0kk Omms,  (A.3)

where dg is an (normalized) invariant Haar measure. Here, J stands for a set of
Spin(n) irreducible representation labels, while the & and m labels numerate the
representation basis vectors.

An action of the so(n) operators in this basis is well-known, and it can be written
in terms of the Clebsch—Gordan coefficients of the Spin(n) group as follows,

J’ J H
M, =y /c2(n) CJ L J' . A4
<k”m’ b k:m> JJA/C3(J) in(ab)m’ ( )
The matrix elements of the U, operators in this basis are readily found to read:
J (w) |
Em'| 7" |km
J! i |/ dim(J) iy - oms
_ = , ,. A.
|u|<kz’m’ wh k:m> ful dim(J’)C’“”k Cm”m (A-5)
A closed form of the matrix elements of the whole contracted algebra Tnntn) 4
2

[t so(n) (a semidirect sum of a "("TH) — 1-dimensional Abelian algebra and so(n))

representations is thus explicitly given in this space by (A.4) and (A.5).
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Moreover, we introduce the so-called, left action generators K as:

K, = g”’\D?UM,\, (A.6)

where g”* is the Cartan metric tensor of SO(n). The K . operators behave exactly
as the rotation generators M, it is only that they act on the lower left-hand side
indices of the basis (A.3):

J

(K. >:<J/ >:5 e g 3 (A7)
¢ k'm/ km JJ k(ab)k’ :

The operators K, and M, mutually commute. However, the corresponding
Casimir operators match and, in particular, we will use Y3 K = Y3 M in the
expression for the Gell-Mann formula (3).
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