
Physics Letters A 380 (2016) 1904–1911
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

O (6) algebraic approach to three bound identical particles in the 

hyperspherical adiabatic representation

Igor Salom, V. Dmitrašinović ∗
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We construct the three-body permutation symmetric O (6) hyperspherical harmonics and use them to 
solve the non-relativistic three-body Schrödinger equation in three spatial dimensions. We label the states 
with eigenvalues of the U (1) ⊗ S O (3)rot ⊂ U (3) ⊂ O (6) chain of algebras, and we present the K ≤ 4
harmonics and tables of their matrix elements. That leads to closed algebraic form of low-K energy 
spectra in the adiabatic approximation for factorizable potentials with square-integrable hyper-angular 
parts. This includes homogeneous pairwise potentials of degree α ≥ −1. More generally, a simplification 
is achieved in numerical calculations of non-adiabatic approximations to non-factorizable potentials by 
using our harmonics.
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1. Introduction

The three-body bound-state problem has been addressed by a 
huge literature, see e.g. Refs. [1–7], in which the hyperspherical 
harmonics (H.H.) provide one of the most firmly established the-
oretical tools. All three-body calculations conducted thus far have 
been numerical, suggesting that perhaps there are no quantum-
mechanical three-body bound state problems that can be solved in 
closed form.

Very little is known about the general structure of the three-
body bound-state spectrum, such as the ordering of states, even in 
the (simplest) normal case of three identical particles interacting 
with a two-body interaction strong enough to bind two particles, 
i.e., in the non-Borromean regime. In comparison, the two-body 
bound state problem is much better understood, see Refs. [8–11], 
where theorems controlling the ordering of bound states in con-
vex two-body potentials were proven more than 30 years ago. In 
this paper we make the first significant advance in the problem of 
three-body bound state ordering after the 1990 paper by Taxil & 
Richard, Ref. [12].

The basic difficulty lay in the absence of a systematic construc-
tion of permutation-symmetric three-body wave functions. Clas-
sification of wave functions into distinct classes under permuta-
tion symmetry in the three-body system, should be a matter of 
course, and yet permutation symmetric three-body hyperspheri-
cal harmonics in three dimensions were known explicitly only in 
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a few special cases, such as those with total orbital angular mo-
mentum L = 0, see Refs. [5,13]. Instead, mathematically unjustified 
bases for hyperspherical harmonics were routinely used in the lit-
erature, thus leading to significant computational difficulties. This 
is reflected already at the level of quantum numbers used for la-
belling of the harmonics, that often feature two sets, (lρ, mρ) and 
(lλ, mλ), of S O (3) quantum numbers, related to separate rotations 
of the two Jacobi vectors, λ and ρ , e.g. Refs. [3,4,6].1

The main goal of this paper is to point out the recent progress 
in the construction and application of permutation symmetric 
three-body hyperspherical harmonics [14,15]. Rather than going 
into the technical details of the construction of these harmonics, 
we here restrict ourselves to simply listing their explicit forms for 
K ≤ 4 in Ref. [14] and concentrate on their application to the quan-
tum mechanical three-body problem.

The hyperspherical harmonics we use are permutation-symmet-
ric three-body O (6) HH based on the U (1) ⊗ S O (3)rot ⊂ U (3) ⊂
O (6) chain of algebras, where U (1) is the “democracy transforma-
tion”, or “kinematic rotation” group for three particles, S O (3)rot is 
the 3D rotation group, and U (3), O (6) are the usual Lie groups. 
This particular chain was recently suggested in Ref. [18], but also 
by the previous discovery of the dynamical O (2) symmetry of the 
Y-string potential, Ref. [19]: this O (2) = U (1) symmetry has the 
permutation group S3 ⊂ O (2) as its (discrete) subgroup. The close 

1 Permutation symmetric N-body (with N ≥ 4) hyperspherical harmonics had 
only been constructed by means of a numerical recursive procedure that sym-
metrizes non-permutation-symmetric hyperspherical harmonics, see Refs. [16,17], 
which, to our knowledge, has not been applied to the three-body problem.
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relation of U (1) kinematic rotations to permutations, on one hand, 
and the fact that this is the only subgroup of the full O (6) hyper-
spherical symmetry that commutes with rotations, on the other, 
imply that the corresponding quantum number must appear in 
any mathematically justified and permutationally symmetric basis 
of hyperspherical harmonics.

In two-dimensional space, this requirement strongly suggested 
an O (4) algebraic approach, Ref. [20] to solve the three-body 
bound state problem. An independent study of “universal states” 
using O (4) permutation-symmetric three-body harmonics in two 
dimensions has appeared recently, Ref. [21]. In three dimensions 
(3D) the (maximal) hyperspherical symmetry is O (6), however, 
and thus requires a new set of permutation-symmetric three-body 
hyperspherical harmonics, that were lacking hitherto, and which 
we present here.

Then, we apply the new harmonics to the three-identical-
particles Schrödinger equation, as written in the so-called hyper-
spherical adiabatic representation, defined in Refs. [21–24] which 
simplifies the resulting equations significantly, especially in the 
case of factorizable (in the hyper-radius and hyper-angles) three-
body potentials. Factorizable potentials, see Sect. 3.3.2, include ho-
mogeneous potentials, which, in turn, include pairwise sums of 
two-body power-law potentials, such as the Coulomb one, and the 
confining “�-string”, as well as the genuinely three-body “Y-string” 
potential and Refs. [19,20].

In the adiabatic approximation to the Schrödinger equation 
with this class of potentials, the energy spectra can be evaluated in 
closed form, for sufficiently small (K ≤ 7) values of the grand an-
gular momentum K. Inhomogeneous potentials, and non-adiabatic 
approximations can only be treated numerically, yet significant 
simplifications appear there, too, in our method, due to the max-
imal/optimal sparseness of the adiabatic potential matrix in the 
permutation-symmetric basis.

In this paper, we shall show: 1) the properties of permutation-
symmetric three-body O (6) hyperspherical harmonics; 2) how the 
Schrödinger equation for three identical particles can be reduced 
to a set of ordinary differential equations with coefficients deter-
mined by O (6) symmetric matrix elements; 3) how, in homoge-
neous three-body potentials, this set of coupled equations for three 
identical particles reduces to a set of single decoupled differen-
tial equation with coupling strengths determined by O (6) algebra; 
4) that our method allows closed-form (“analytical”) results in this 
class of potentials, for sufficiently small values (i.e. for K ≤ 7) of 
the grand angular momentum K.

Our work is based on the recent advances in the construction 
of three-body wave functions with well-defined permutation sym-
metry, see Sects. 2.1, 2.3, and Ref. [14].

2. Three-body problem in hyper-spherical coordinates

The three-body wave function �(ρ, λ) can be transcribed 
from the Euclidean relative position (Jacobi) vectors ρ = 1√

2
(x1 −

x2), λ = 1√
6
(x1 + x2 − 2x3), into hyper-spherical coordinates as 

�(R, �5), where R =
√

ρ2 + λ2 is the hyper-radius, and five an-
gles �5 that parametrize a hyper-sphere in the six-dimensional 
Euclidean space. Three (�i ; i = 1, 2, 3) of these five angles (�5) 
are just the Euler angles associated with the orientation in a 
three-dimensional space of a spatial reference frame defined by 
the (plane of) three bodies; the remaining two hyper-angles de-
scribe the shape of the triangle subtended by three bodies; they 
are functions of three independent scalar three-body variables, e.g. 
ρ · λ, ρ2, and λ2. As we saw above, one linear combination of the 
two variables ρ2, and λ2, is already taken by the hyper-radius R , 
so the shape-space is two-dimensional, and topologically equiva-
lent to the surface of a three-dimensional sphere.
There are two traditional ways of parameterizing this sphere: 
1) the standard Delves choice, [3], of hyper-angles (χ, θ), that 
somewhat obscures the full S3 permutation symmetry of the 
problem; 2) the Iwai, Ref. [7], hyper-angles (α, φ): (sinα)2 =
1 −

(
2ρ×λ

R2

)2
, tan φ =

(
2ρ·λ

ρ2−λ2

)
, reveal the full S3 permutation 

symmetry of the problem: the angle α does not change under 
permutations, so that all permutation properties are encoded in 
the φ-dependence of the wave functions. We shall use the lat-
ter choice, as it leads to permutation-symmetric hyperspherical 
harmonics, as explained in Sects. 2.1, 2.3. Specific hyperspherical 
harmonics with K ≤ 4 are displayed in Ref. [14].

2.1. O (6) Symmetry of the hyper-spherical approach

The decomposition of the three-body spatial wave functions in 
terms of the O (6) “grand angular momentum” Kμν eigenfunctions, 
or hyperspherical harmonics, is based on the fact that the equal-
mass three-body kinetic energy T is O (6) invariant and can be 
written as

T = m

2
Ṙ2 + K 2

μν

2mR2
(1)

where the “grand angular” momentum tensor Kμν , (μ, ν =
1, 2, . . . , 6)

Kμν = m
(
xμẋν − xν ẋμ

)
= (

xμpν − xνpμ

)
(2)

and xμ = (λ, ρ). Kμν has 15 linearly independent components, 
that contain, among themselves three components of the “ordi-
nary” orbital angular momentum: L = lρ + lλ = m 

(
ρ × ρ̇ + λ × λ̇

)
.

Apart from the hyperangular momentum K, which labels the 
O (6) irreducible representation, all hyperspherical harmonics must 
carry additional labels specifying the transformation properties of 
the harmonic with respect to (w.r.t.) certain subgroups of the or-
thogonal group. The symmetries of most three-body potentials, 
including the three-quark confinement ones, are: parity, rotations 
and permutations (spatial exchange of particles).

Therefore, the three-body hyperspherical harmonics ought to 
have definite transformation properties w.r.t. to these three sym-
metries. Parity is the simplest one to implement, as it is directly 
related to K: P = (−1)K. The rotation symmetry implies that the 
hyperspherical harmonics must carry quantum numbers L and m
associated with the rotational subgroup S O (3)rot .

2.2. Permutation-symmetric three-body hyper-spherical harmonics

We introduce the complex coordinates:

X±
i = λi ± iρi, i = 1,2,3. (3)

Nine of 15 hermitian S O (6) generators Kμν in these new coordi-
nates become

iLi j ≡ X+
i

∂

∂ X+
j

+ X−
i

∂

∂ X−
j

− X+
j

∂

∂ X+
i

− X−
j

∂

∂ X−
i

, (4)

2Q ij ≡ X+
i

∂

∂ X+
j

− X−
i

∂

∂ X−
j

+ X+
j

∂

∂ X+
i

− X−
j

∂

∂ X−
i

. (5)

Of these, Li j is an antisymmetric tensor, with three components, 
corresponds to the physical angular momentum vector L, and the 
symmetric tensor Q ij decomposes as (5) + (1) w.r.t. rotations. The 
trace:

Q ≡ Q ii =
3∑

X+
i

∂

∂ X+ −
3∑

X−
i

∂

∂ X− (6)

i=1 i i=1 i
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is the only scalar under rotations, and generates so-called democ-
racy transformations, a special case of which are the cyclic permu-
tations, so its eigenvalue is a natural choice for an additional label 
of permutation-symmetric hyperspherical harmonics. The remain-
ing five components of the symmetric tensor Q ij , together with 
three antisymmetric tensors Li j generate the SU (3) Lie algebra, 
which together with the single scalar Q form an U (3) algebra, 
Ref. [18].

Therefore, labelling of the O (6) hyper-spherical harmonics with 
labels K, Q , L and m corresponds to the subgroup chain U (1) ⊗
S O (3)rot ⊂ U (3) ⊂ S O (6). Yet, these four quantum numbers are in 
general insufficient to uniquely specify an S O (6) hyper-spherical 
harmonic: it is well known that SU (3) representations in general 
have nontrivial multiplicity w.r.t. decomposition into S O (3) sub-
group representations, and such a multiplicity also appears here. 
In this context the operator:

VL Q L ≡
∑

i j

Li Q ij L j (7)

(where Li = 1
2 εi jk L jk and Q ij is given by Eq. (5)) has often been 

used in the literature, to label the multiplicity of SU(3) states. This 
operator commutes both with the angular momentum Li , and with 
the “democracy rotation” generator Q :
[
VL Q L, Li

] = 0; [
VL Q L, Q

] = 0

Therefore we demand that the hyperspherical harmonics be eigen-
states of this operator:

VL Q LYKQ ν
L,m = νYKQ ν

L,m .

Thus, ν will be the fifth label of the hyper-spherical harmonics, 
beside the (K, Q , L, m).

2.3. Permutation properties of O (6) hyper-spherical harmonics

We seek hyperspherical harmonics with well-defined values of 
parity P = (−1)K, rotation-group quantum numbers (L, m), and 
permutation symmetry, such as the M (mixed), S (symmetric), and 
A (antisymmetric) ones. In the mixed (M) symmetry representa-
tion of the S3 permutation group being two-dimensional, there are 
two different H.H. (state vectors) in each mixed permutation sym-
metry multiplet, usually denoted by Mρ and Mλ .

Two- and three-particle permutation properties of H.H.
YKQ ν

J ,m (λ, ρ) can be inferred from the transformation properties of 
the coordinates X±

i , as follows. Under the two-body permutations 
{T12, T23, T31} of pairs of particles (1,2), (2,3) and (3,1), the Jacobi 
vectors ρ, λ transform as:

T12 : λ → λ, ρ → −ρ,

T23 : λ → −1

2
λ +

√
3

2
ρ, ρ → 1

2
ρ +

√
3

2
λ, (8)

T31 : λ → −1

2
λ −

√
3

2
ρ, ρ → 1

2
ρ −

√
3

2
λ.

This induces the following transformations of complex vectors X±
i :

T12 : X±
i → X∓

i ,

T23 : X±
i → e± 2iπ

3 X∓
i , (9)

T31 : X±
i → e∓ 2iπ

3 X∓
i .

The quantum numbers K, L and m do not change under permu-
tations of two particles, whereas the values of the “democracy 
label” Q and multiplicity label ν are inverted under transpositions: 
Q → −Q , ν → −ν .
In addition to the changes of labels, transpositions of two parti-
cles generally also result in the appearance of an additional phase 
factor multiplying the hyper-spherical harmonic. For multiplicity-
free values of K, Q , L and m, the following transformation proper-
ties of H.H. hold under (two-particle) particle transpositions:

T12 : YKQ ν
L,m → (−1)K− JYK,−Q ,−ν

L,m ,

T23 : YKQ ν
L,m → (−1)K−Le

2Q iπ
3 YK,−Q ,−ν

L,m , (10)

T31 : YKQ ν
L,m → (−1)K−Le− 2Q iπ

3 YK,−Q ,−ν
L,m .

In order to determine which representation of the S3 permutation 
group any particular H.H. YKQ ν

L,m belongs to, one has to consider 
various cases, with and without multiplicity. The following linear 
combinations of the H.H.

YK|Q |ν
L,m,± ≡ 1√

2

(
YK|Q |ν

L,m ± (−1)K−LYK,−|Q |,−ν
L,m

)
(11)

are no longer eigenfunctions of Q operator but are eigenfunctions 
of the transposition T12 instead:

T12 : YK|Q |ν
L,m,± → ±YK|Q |ν

L,m,±.

They are the appropriate H.H. with well-defined permutation prop-
erties:

1. Q �≡ 0 (mod 3): the H.H. YK|Q |ν
L,m,± belongs to the mixed repre-

sentation M, where the ± sign determines which of the two 
components it is, Mρ, Mλ .

2. Q ≡ 0 (mod 3): the H.H. YK|Q |ν
L,m,+ belongs to the symmetric 

representation S and YK|Q |ν
L,m,− belongs to the antisymmetric rep-

resentation A.

The above rules define the permutation-group representation for 
any given H.H.

2.3.1. Labels of K ≤ 4 O (6) hyper-spherical harmonics
As an illustration, in Table 1 we give the values of “O (6) in-

dices” Q , L, m, ν for the lowest K ≤ 4 permutation-symmetric hy-
perspherical harmonics. The corresponding h.s. harmonics, as well 
as their hyper-angular matrix elements can be found in Ref. [14].

The K ≥ 4 h.s. harmonics and the corresponding O (6) matrix 
elements can be readily evaluated using our code written in a 
commercially available symbolic manipulation language, Ref. [14].

Note that only in the K = 4 shell there appear (at most) two 
multiplets with equal permutation properties and equal (L, m) la-
bels that may mix: a) the Y4,±2,±2

2,m � |[70, 2+]〉 and Y4,±4,±3
2,m �

|[70′, 2+]〉; and b) the Y4,∓2,±5
4,m � |[70, 4+]〉 and Y4,∓4,±10

4,m �
|[70′, 4+]〉. Note, moreover, that both of these have orbital angular 
momenta L ≥ 2, as this is required for multiplicity to occur.

3. The three-body Schrödinger equation

First, we briefly explain the adiabatic hyperspherical represen-
tation of the three-body Schrödinger equation. Then, we apply the 
permutation-symmetric h.s. harmonics to this problem, and solve 
the adiabatic approximation to Schrödinger equation with homo-
geneous potentials.

3.1. Adiabatic hyperspherical representation

Here we follow the standard derivation of the adiabatic hyper-
spherical representation, Refs. [23,24]. The three-body Schrödinger 
equation in 3D for the scaled wave function ψ = R5/2� ,
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Table 1
The labels of distinct K ≤ 4 h.s. harmonics YK,Q ,ν

L,m (three-body states, with allowed 
orbital angular momentum value L; only L = m labels are shown). The correspon-
dence between the S3 permutation group irreps. and SU(6)F S symmetry multiplets 
of the three-quark system: S ↔ 56, A ↔ 20 and M ↔ 70.

K (K, Q , L,m, ν) [SU (6), L P ] S3 irrep.

0 (0, 0, 0, 0, 0) [56,0+] S

1 (1,±1, 1, 1,∓1) [70,1−] M

2 (2,±2, 0, 0, 0) [70,0+] M
2 (2, 0, 2, 2, 0) [56,2+] S
2 (2,∓2, 2, 2,±3) [70,2+] M
2 (2, 0, 1, 1, 0) [20,1+] A

3 (3,∓3, 1, 1,±1) [20,1−] A
3 (3,∓3, 1, 1,±1) [56,1−] S
3 (3,±1, 1, 1,±3) [70,1−] M
3 (3,∓1, 2, 2,±5) [70,2−] M
3 (3,∓1, 3, 3,±2) [70,3−] M
3 (3,±3, 3, 3,∓6) [56,3−] S
3 (3,±3, 3, 3,∓6) [20,3−] A

4 (4,±4, 0, 0, 0) [70,0+] M
4 (4, 0, 0, 0, 0) [56,0+] S
4 (4,±2, 1, 1,±2) [70,1+] M
4

(
4,0,2,2,∓√

105
) [56,2+] S

4
(
4,0,2,2,∓√

105
) [20,2+] A

4 (4,±2, 2, 2,±2) [70,2+] M
4 (4,±4, 2, 2,∓3) [70′,2+] M
4 (4,∓2, 3, 3,±13) [70,3+] M
4 (4, 0, 3, 3, 0) [20,3+] A
4 (4, 0, 4, 4, 0) [56,4+] S
4 (4,∓2, 4, 4,±5) [70,4+] M
4 (4,∓4, 4, 4,±10) [70′,4+] M

[
− 1

2m

∂2

∂ R2
+ Had(R;�5)

]
ψE(R;�5) = EψE(R;�5), (12)

can be (re)formulated as an algebraic (matrix) eigenvalue problem 
for the “adiabatic Hamiltonian” Had(R; �5)

Had(R;�5) = K 2
μν(�5) − 1/4

2mR2
+ V (R,α,φ), (13)

where K 2
μν(�5) is the grand angular momentum squared, i.e., the 

hyper-angular part of the kinetic energy, V (R, α, φ) is the interpar-
ticle interaction potential, E is the total energy and �5 ≡ (γ , α, φ)

denotes the set of three Euler (γ ) and two hyper-angles (α, φ). 
The shift of K 2

μν(�5) by 1/4 in Eq. (13), as compared with Eq. (1), 
is due to the rescaling � → ψ/R5/2 of the wave function that was 
implemented in order to eliminate the first derivative in R term 
from Eq. (12).

In the adiabatic hyperspherical representation, the scaled three-
body wave function ψE (R; �5) is expanded in terms of the “chan-
nel functions” �μ(R; �5),

ψE(R;�5) =
∑
μ

FμE(R)�μ(R;�5), (14)

Here FμE(R) are the hyper-radial wave functions and the channel 
functions �μ(R; �5) form a complete set of orthonormal functions 
at each value of R being the eigenfunctions of Had,

Had(R;�5)�μ(R;�5) = Uμ(R)�μ(R;�5) (15)

The “channel index” μ,2 represents all quantum numbers neces-
sary to specify each channel and “may serve to identify new sets of 
approximate quantum numbers”, Ref. [23]. The eigenvalue problem 
Eq. (15) is (still) an infinite-dimensional one (in spite of absence of 

2 Not to be confused with the reduced mass μ, nor with the index of the grand 
angular momentum tensor Kμν , Eq. (2).
hyper-radial derivatives): Had(R; �5) is a linear Hermitian differ-
ential operator in the hyper-angles �5. In general Eq. (15) cannot 
be solved exactly, so that approximate and/or numerical solutions 
must be sought.

The eigenvalues Uμ(R) correspond to the three-body potentials 
in the channel specified by the set of quantum numbers μ. From 
the eigenvalues Uμ(R) one can define the effective three-body po-
tentials for the hyper-radial motion in those channels.

The basic idea of the adiabatic representation/expansion, is that 
the “channel functions” �μ(R; �5) vary smoothly with R except in 
localized regions of avoided crossings. The simplest approximation 
is to ignore the coupling of different channels – this is called the 
adiabatic approximation.3 The energies obtained by solving two 
slightly different adiabatic approximations form an upper- and a 
lower bound on the true eigenenergy, Refs. [22,24].

3.2. O (6) reduction

The presence of the hyper-angular momentum squared,
K 2

μν(�5) in Had(R; �5), immediately suggests the O (6) hyper-
spherical harmonics as the basis vectors in three-body systems. 
Thus we employ hyperspherical harmonics to solving the channel 
eigenvalue equation (15), and hence decompose the channel func-
tions �ν(R; �5) as

�μ(R;�5) =
∑

K,[m]
f K[m](R)YK[m](�5),

where [m] denotes all the labels of hyperspherical harmonics apart 
from K. After projecting out the YK′

[m′] component, Eq. (15) be-
comes[

K(K + 4) − 1/4

2mR2
− U K

μ(R)

]
f K[m](R) +

+
∑

K′,[m′]
V K K′

[m][m′](R) f K′
[m′](R) = 0, (16)

where

V K K′
[m][m′](R) =

〈〈
YK[m]

∣∣∣V (R,α,φ)

∣∣∣YK′
[m′]

〉〉
. (17)

The double-bracket matrix element signifies that integrations are 
carried out only over the angular coordinates �5. Eq. (16) is the 
(final) result of the O (6) reduction of the eigenvalue equation (15)
– it turns into an eigenvalue problem for an infinite-dimensional, 
hyper-radius dependent matrix. For arbitrary potentials it can only 
be solved numerically, but there are special cases, such as factoriz-
able potentials and/or dominantly hyper-radially dependent poten-
tials, that can be treated (semi)analytically, see below.

It is immediately clear, however, that the application of the 
permutation-symmetric hyperspherical harmonics simplifies this 

3 The name is apparently due to the formal similarity to the adiabatic approxi-
mation, where solving the time-dependent Schrödinger equation is separated into 
two steps: first solve the (“quasi-static”) eigenvalue problem (without the partial 
derivative in time) at each moment in time; and then insert these eigenvalue so-
lutions into the full Schrödinger equation including the partial derivative in time 
and solve it, Ref. [35]. The validity of the conventional (time-dependent) “adiabatic 
approximation” depends on just how slowly the potential changes with time: the 
slower, the better. Here, we have made a similar separation, albeit with an eigen-
value problem Eq. (15), which contains no partial derivatives in the hyper-radius R . 
Its solutions are then “fed” into the full Schrödinger equation (12) that contains 
the partial derivative(s) in hyper-radius R . The name (hyper-radial) “adiabatic ap-
proximation” is a misnomer here, because the eigenvalue problem Eq. (15) always 
contains the K 2

μν (�5)−1/4

2mR2 term, with its strong R dependence, no matter how the 
potential V (R, α, φ) depends on R . Indeed, the only non-trivial case when this ap-
proximation is exact is with the −1/R2 potential, which changes rather rapidly 
in R!
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matrix eigenproblem substantially, as the matrix then turns into a 
block-diagonal form, with block sub-matrices corresponding to la-
bels from the set [m] that are preserved by the symmetries of the 
potential, viz. rotational numbers L and m, parity P , and permuta-
tion symmetry labels A, S, M. Consequently, the channel functions 
�μ(R; �5) must be labelled by these four good quantum numbers, 
i.e., the channel index μ = (L P , m, Q ) must consist of at least these 
four good quantum numbers.4

Apart from the case of hyper-radial potentials, matrix elements 
Eq. (17) may be nonzero when K �= K′ (i.e. the level crossing �K �=
0 transitions may exist), meaning that K is not a good quantum 
number for labelling of the channels in general. Nevertheless, the 
breaking of O (6) symmetry by permutation-symmetric homoge-
neous potentials is sufficiently small, see Table 2, so as to allow a 
systematic approximation scheme based on O (6) symmetry.5 Thus, 
in the following, K may be treated as an approximate quantum 
number.

3.3. Potential matrix elements

3.3.1. Hyperspherical expansion of three-body potentials
As the spatial part of any spin-independent three-body inter-

action potential must be invariant under overall (“ordinary O (3)”) 
rotations, it is a scalar, or equivalently, it contains only the zero-
angular momentum L = m = 0 hyperspherical components. Of 
course, this holds for both the permutation-symmetric and unsym-
metrized hyperspherical harmonics.

So far, we have eschewed specifying the h.s. harmonics used in 
Sect. 3.2. Next we show the substantial advantages/simplifications 
in the form of the hyperspherical expansion of the three-body po-
tential, and in the evaluation of hyper-angular matrix elements, 
gained by using the permutation-symmetric set.

This means choosing the set [m] = [L P , Lz = m, Q , ν] that con-
sists of parity P , the (total orbital) angular momentum L, its pro-
jection on the z-axis Lz = m, the Abelian hyper-angular momentum 
quantum number Q conjugated with the Iwai angle φ, and the 
multiplicity label ν that distinguishes between hyperspherical har-
monics with remaining four quantum numbers that are identical.

The three-body potential V (R,α,φ) can be expanded in terms 
of O (6) hyper-spherical harmonics with zero angular momenta 
L = m = 0 (due to the rotational invariance of the potential),

V (R,α,φ) =
∞∑

K,Q

v3-body
K,Q (R)YKQ ν

00 (α,φ) (18)

In the present case of three identical particles (and therefore 
also of permutation symmetric potential) the sum runs only over 
double-even-order (K = 0, 4, . . .) O (6) hyper-spherical harmonics 
with zero value of the democracy quantum number G3 = Q = 0, 
as well as over K = 6, 12, 18 . . . O (6) hyper-spherical harmonics 
with democracy quantum number G3 ≡ Q ≡ 0 (mod 6), always 
with vanishing angular momentum L = m = 0. There is no summa-
tion over the multiplicity index in Eq. (18), because no multiplicity 
arises for harmonics with L < 2.

Here v3-body
KQ are defined as

v3-body
K,Q (R) =

∫
YK,Q ,ν∗

0,0 (�5) V 3-body(R,α,φ) d�5. (19)

4 There may be additional, approximate quantum numbers, however, depending 
on the specific dynamics.

5 In exceptional cases, such as the Coulombic, or the harmonic oscillator ones, 
where the dynamical symmetry of the problem is larger than O (6), K is not the 
principal quantum number; rather it is some other integer N , and K appears as the 
label of degenerate states within an N-multiplet, i.e., ν = [N, K, [m]].
Table 2
Non-vanishing expansion coefficients vKQ of the Y- and �-string and the QCD 
Coulomb potentials in terms of O (6) hyper-spherical harmonics YK,0,0

0,0 , for K = 0, 
4, 8, respectively, and of the hyper-spherical harmonics Y6,±6,0

0,0 , for K ≤ 11. 
The last row gives the percentage of the “Parseval unity” for the potential 
that is accounted for by its expansion into these five harmonics, calculated as ∑

(v3-body
K,Q )2/(

∫
(V 3-body)

2 d�5).

(K, Q ) vY
KQ v�

KQ vCoulomb
KQ

(0,0) 8.18 16.04 20.04
(4,0) −0.44 −0.44 2.95
(6,±6) 0 −0.14 1.88
(8,0) −0.09 −0.06 1.49

∑
(v3-body

K,Q )2∫
(V 3-body)2 d�5

99% 99% 94%

In the special case of a factorizable three-body potential, see 
below, the v3-body

KQ coefficients do not depend on the hyper-
radius R; these coefficients are determined by the hyper-angular 
part V (α,φ) of the potential.

The numerical values for the first four allowed (non-vanishing) 
v3-body

K,Q coefficients for K ≤ 11, in the Y- and �-string and Coulomb 
potential’s hyperspherical expansions are tabulated in Table 2, to-
gether with a check to which extent Parseval’s identity Eq. (20) is 
fulfilled by the truncation of the sum. All other coefficients must 
vanish for K < 12. Vanishing of the coefficient vY

6,±6 = 0 indicates 
(an additional) dynamical symmetry of the Y-string potential.

Note that Parseval’s theorem

∞∑
K,Q

|v3-body
K,Q |2 =

∫
|V 3-body|2 d�5 , (20)

requires square integrability of the potential at each value of the 
hyper-radius R , i.e., finiteness of the right-hand side of Eq. (20), 
regardless of the kind of h.s. harmonics that were used. The re-
quirement of square integrability also holds for any expansion of 
the potential in terms of a complete set of basis functions, whether 
O (6) harmonics, or not.

This condition (of square integrability) eliminates all sums of 
two-body power-law potentials 

∑3
i> j=1 |xi − x j |α , with powers 

α < −1, as well as other singular potentials, such as the Dirac 
δ-function one. Thus, it poses a strong restriction on the class of 
three-body potentials that can be treated in this manner, that has 
not been considered so far: in particular, potentials such as the 
Lennard-Jones, v.d. Waals and Morse ones will have to be exam-
ined individually.

3.3.2. Factorizable potentials
Factorizable potentials satisfy

V (R,α,φ) = V (R)V (α,φ),

and form a non-negligible class that contains homogeneous poten-
tials,6 such as: 1) the �-string, V� = σ�

∑3
i> j=1 |xi − x j |; 2) the 

Y-string, V Y = σY minx0

∑3
i=1 |xi − x0|; and 3) the QCD Coulomb 

V Coulomb = −αC
∑3

i> j=1
1

|xi−x j | .

Then Eq. (17) factors into a common hyper-radial part V (R) and 
the hyper-angular matrix CK K′

[m][m′]:

V K K′
[m][m′](R) = V (R)〈YK[m](�5)|V (α,φ)|YK′

[m′](�5)〉
≡ V (R) CK K′

[m][m′]. (21)

6 Of course, this class does not include many of the realistic potentials in molec-
ular and nuclear physics, such as the Lennard-Jones, Morse, v.d. Waals and Yukawa 
potentials.
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For homogeneous potentials ∼ Rα , with exponent α = −2, the 
eigenvalue equation (16) becomes effectively independent of the 
hyper-radius R , which leads to conformal symmetry, Refs. [25,26], 
together with a substantial simplification of the problem.

3.3.3. Selection rules
Plugging the potential decomposition (18) into Eq. (17), or 

Eq. (21) requires the knowledge of O (6) hyper-angular matrix ele-
ments of the form

CK′′ K′
[m′′][m′] =

∞∑
K,Q

v3-body
K,Q 〈YK′′

[m′′](�5)|YKQ ν
00 (α,φ)|YK′

[m′](�5)〉

The O (6) hyper-angular matrix elements

〈YK′′
[m′′](�5)|YKQ ν

00 (α,φ)|YK′
[m′](�5)〉

can be evaluated using the permutation-symmetric hyperspherical 
harmonics obtained in Sect. 2.2, see also Ref. [14].

Generally, the O (6) matrix elements obey the following selec-
tion rules that reduce the number of non-zero values: they are 
subject to the “triangular” conditions K′ + K′′ ≥ K ≥ |K′ − K′′| plus 
the condition that K′ + K′′ + K = 0, 2, 4, . . . , and the angular mo-
menta satisfy the selection rules: L′ = L′′ , m′ = m′′ . Moreover, Q is 
an Abelian (i.e. additive) quantum number that satisfies the sim-
ple selection rule: Q ′′ = Q ′ + Q . All of this reduces the sum in 
CK′′ K′

[m′′][m′] to a finite one, that depends on a finite number of coeffi-

cients v3-body
K,Q ; for small values of K, this number is also small, see 

Sect. 4.1.
The hyper-angular matrix element

〈YK′′
[m′′](�5)|YKQ ν

00 (α,φ)|YK′
[m′](�5)〉

is (merely) a product of two O (6) group Clebsch–Gordan coeffi-
cients that can be calculated using Ref. [14], and the physics is con-
tained in the three-body potential expansion coefficients v3-body

K,Q .

3.3.4. Advantages of the permutation-symmetric basis
Of course, Eq. (16) must also hold with any other complete set 

of three-body hyperspherical harmonics, including the permuta-
tion non-symmetric ones, such as those based on the Delves choice 
of hyper-angles, see Ref. [34]. Note, however, that the Delves-type 
h.s. harmonics do not have a well-defined set of labels (“quantum 
numbers”): besides the three standard/obvious quantum numbers 
K, L, m there is an ambiguity as to what one ought to use for the 
rest, see Sects. 2.3.2 and 2.3.3 in Ref. [34] and Sect. 5. in Ref. [18].

The permutation-symmetric basis is the optimal one in so far 
as it maximally observes the symmetries of the permutation-
symmetric three-body problem and leads to a minimal number 
of h.s. components in the decomposition of the potential and of 
non-vanishing off-diagonal matrix elements. Using the Table 2 as 
an example, we note the following: there are overall (K + 3)!(K +
2)/(12K!) = 2366 hyperspherical harmonics in the K ≤ 11 shells, 
and this number is independent of the choice of h.s. basis. How-
ever, it is a unique feature of the permutation-symmetric basis 
that the decomposition of any permutation symmetric potential 
has no more than four distinct nonvanishing coefficients out of 
2366 possible ones! This “sparseness” is even more marked when 
one considers (of the order of) 106 off-diagonal K ≤ 11 matrix el-
ements, all of which depend only on these four coefficients, see 
Sect. 4.1.

The sparseness of this matrix suggests that our three-body 
problem might be diagonalizable, at least in some circumstances 
– see Sect. 4. The manifest permutation symmetry of our hyper-
spherical harmonics, together with the complete set of commut-
ing operators, simplifies all subsequent calculations. This simpli-
fication becomes increasingly pronounced as the value of K in-
creases, see Ref. [15] where we applied these HH to the problem 
Table 3
The values of non-vanishing off-diagonal matrix elements of the hyper-angular 
part of the three-body potential π√

π 〈[SU (6) f , L P
f ]| 2�eY6,±6,0

0,0 |[SU (6)i , L P
i ]〉ang, 

for various K = 4 states (for all allowed orbital waves L).

K [SU (6) f , L P
f ] [SU (6)i , L P

i ] π
√

π 〈2�eY6,±6,0
0,0 〉ang

4 [70,2+] [70′,2+] 6
7

√
6
5

4 [70,4+] [70′,4+] 8
21

Table 4
The values of the off-diagonal matrix elements of the hyper-angular part of the 
three-body potential π√

π 〈[SU (6) f , L P
f ]| Y4,0,0

00 |[SU (6)i , L P
i ]〉ang, for various K = 0,

2, 4 states (for all allowed orbital waves L).

(K f , [SU (6) f , L P
f ]) (Ki , [SU (6)i , L P

i ]) π
√

π 〈Y4,0,0
00 〉ang

(0, [56,0+]) (4, [56,0+]) 1

(2, [70,2+]) (4, [70,2+]) 4
5

√
6
7

(2, [56,0+]) (4, [56,0+]) 4
5

√
2
7

Table 5
The values of non-vanishing off-diagonal matrix elements of the hyper-angular 
part of the three-body potential π√

π 〈[SU (6) f , L P
f ]| 2�eY6,±6,0

0,0 |[SU (6)i , L P
i ]〉ang, 

for various K = 4 states (for all allowed orbital waves L).

(K f , [SU (6) f , L P
f ]) (Ki , [SU (6)i , L P

i ]) π
√

π 〈2�eY6,±6,0
0,0 〉ang

(2, [70,2+]) (4, [70′,2+]) 2
√

3
35

of three-quark bound states. In that display of utility of our ap-
proach, we explicitly calculated the orderings of K ≤ 4 states and 
showed that, thanks to the symmetry properties of our harmonics, 
these levels’ energies can be accurately parameterized by only four 
potential-dependent constants. Furthermore, as a consequence of 
the mentioned matrix sparseness, the expressions for the energies 
in Ref. [15] are given in an analytic form.

4. Results

In general, the eigenvalue problem Eq. (16) has to be solved 
numerically, but its solution is significantly simplified by the 
use of permutation-symmetric h.s. harmonics basis, as the hyper-
angular matrix elements are subject to the selection rules shown 
in Sect. 3.3.3.

The couplings of lower-K′ states to the higher-K′′ ones are pro-
portional to the higher-K valued coefficients v3-body

K,Q , due to the 
K′ + K′′ ≥ K ≥ |K′ − K′′| selection rule, which coefficients, in turn, 
are smaller than the lower-K ones, see Table 2. This reduction be-
comes increasingly pronounced as the values of K′, K′′ increase, 
see Ref. [15]. That fact leads, in the case of homogeneous poten-
tials, to a clear ordering of off-diagonal matrix elements and allows 
controllable approximations to the solution, that may even be con-
vergent in some special cases, e.g. with conformal invariance.

4.1. Off-diagonal matrix elements

The non-vanishing single-shell (�K = 0) off-diagonal matrix el-
ements, for K = 0, 1, 2, 3, 4 states, are shown in Table 3.

The non-vanishing two-shell off-diagonal (nonadiabatic) matrix 
elements, for various K = 0, 2, 4 states, are shown in Tables 4, 5, 
and for K = 1, 3 states, in Table 6.

4.2. Diagonalization

The sparseness of the hyper-angular coupling coefficients ma-
trix CK K′

[m][m′] in the permutation-symmetric basis displayed in 
Sect. 4.1 suggests that we attempt an analytic diagonalization.
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Table 6
The values of the off-diagonal matrix elements of the hyper-angular part of the 
three-body potential π√

π 〈[SU (6) f , L P
f ]| Y4,0,0

00 |[SU (6)i , L P
i ]〉ang, for various K = 1, 

3, 5 states (for all allowed orbital waves L).

(K f , [SU (6) f , L P
f ]) (Ki , [SU (6)i , L P

i ]) π
√

π 〈Y4,0,0
00 〉ang

(1, [70,1−]) (5, [70′,1−])
√

2
3

(1, [70,1−]) (3, [70,1−]) 1√
3

4.2.1. Adiabatic mixing (�K = 0)
Inspection of the Table 2 reveals that all of the potentials con-

sidered there have coefficients v3-body
00 that are one order of mag-

nitude larger than the rest v3-body
K>0,Q . This fact justifies taking only 

the term proportional to v3-body
00 in the expansion Eqs. (16), (18)

as the zeroth order approximation. To this zeroth order, all the so-
lutions with the same principal number K are degenerate, with 
Uμ(R) = UK(R) = K(K+4)−1/4

2mR2 + v3-body
00 (R). The first order correc-

tions lift this degeneracy, i.e., that would amount to including 
all off-diagonal elements within the same K-shell (i.e. those with 
K = K′) into Eq. (17).

In a such case, the eigenvalue problem Eq. (16) splits into sep-
arate equations for each value of K. For a given K the term in the 
first line in Eq. (16) is proportional to a unit matrix, so it may be 
removed from the diagonalization. Therefore, the potential matrix 
V K K′

[m][m′](R) is the only one that needs to be diagonalized; it can be 
brought into the diagonal form

V K K′
[m][m′](R) = δK,K′δ[m],[m′]V K[m](R),

due to its Hermiticity, yielding the eigenvalues of the equation 
Eq. (16) in the form

U K[m](R) = K(K + 4) − 1/4

2mR2
+ V K[m](R). (22)

The matters simplify further in the case of factorizable poten-
tials, i.e., when V K[m](R) = V (R)CK[m] . In such a case, the coefficients 
f K[m](R) form (mutually orthogonal) eigenvectors that effectively do 
not depend on the hyper-radius R , as we can choose the normal-
ization so that f K[m](R) = f K[m](0). This is so because the matrix 
CK K′

[m][m′] that is being diagonalized does not depend on R .
This implies that the non-adiabatic coupling terms, Eq. (3.10) in 

Ref. [23], or Eqs. (16), (17) in Ref. [21], vanish: P K,K′
[m],[m′](R) = 0 and 

Q K,K′
[m],[m′](R) = 0. In this sense, the single K-shell mixing approxi-

mation corresponds to the adiabatic one for factorizable potentials. 
That, in turn, leads to the explicit solution V K

eff [m](R) = U K[m](R), 
to the hyper-radial effective potential.

4.2.2. Non-adiabatic mixing (�K �= 0)
Introducing higher-order corrections to Eq. (17) corresponds to 

taking into account the inter-shell (K �= K′) mixings. It is then no 
longer possible (in general) to choose f K[m](R) as being indepen-
dent of hyper-radius R . Note that in the K, K′ ≤ 4 shells there is at 
most two-state mixing, see Tables 4, 5, 6. In such simple cases one 
can solve for the mixing angle �(R) in closed form.

For (smooth, monotonic) homogeneous potentials V (R) ∼ Rα , 
the two-state mixing angle �(R) changes monotonically from 
�(0) = 0 to its asymptotic value �as. , as R → ∞.7 The “hyper-
radial functions” f K[m](R) ∼ cos�(R) lead to non-vanishing non-

7 For (in-homogeneous, smooth) non-monotonic potentials with a hard inner-
core, α < −2 and/or weak asymptotic tail falling off faster than 1/R2, the mixing 
angle �(R) behaves differently, and its two limits, R → ∞, and R → 0, may be “re-
versed”. For V (R) � 1/R2, α = −2, the mixing angle � does not depend on R , as 
the complete R dependence can be factored out of the eigenvalue equation (16). 
adiabatic coupling coefficients, Eq. (3.10) in Ref. [23], or Eqs. (16), 
(17) in Ref. [21], P K,K′

[m],[m′](R) �= 0 and Q K,K′
[m],[m′](R) �= 0 because 

d�K[m]
dR ∼

(
df K[m](R)

dR

)
�= 0. This leads to a non-vanishing non-adiabatic 

correction Q K,K
[m],[m](R) �= 0 to the hyper-radial effective potential.

In general, the problem has to be solved numerically, but 
solving Eq. (16) is significantly simplified in the permutation-
symmetric h.s. harmonics basis, as the hyper-angular matrix 
elements are subject to the (now familiar) selection rules in 
Sect. 3.3.3. Couplings to higher-K, K′ shells are proportional to 
higher values of expansion coefficients v3-body

K,Q , which, in turn, are 
smaller than the lower ones; this allows a controlled/convergent 
approximation.

4.3. Homogeneous permutation-symmetric potentials in adiabatic 
approximation

The adiabatic approximation is obtained by setting the non-
adiabatic coefficients equal to zero: P K,K′

[m],[m′](R) = 0. One can argue 
that the adiabatic approximation is a reasonable one for confin-
ing (α > 0) three-body potentials, at least for low values of K ≤ 4. 
In such cases hyper-radial equations decouple, leading to solutions 
that depend on the (diagonalized values of) quantum numbers [m]
and thus lead to (slightly) different eigen-energies within the same 
K shell.

The ordering of states in each shell depends only on four coef-
ficients (v00, v40, v6±6, v80), for K ≤ 5, and the largest number of 
states that mix is three, so the eigenvalue equations are at most 
cubic algebraic ones, with well-known closed form solutions.

Homogeneous confining three-body potentials, such as the 
�-string and the Y-string, have coefficients v3-body

00 that are one 
order of magnitude larger than the rest v3-body

K>0,Q , see Table I in 
Ref. [15]. Consequently, the K expansion ought to converge quickly. 
In Ref. [15] we used the above-described methods to calculate the 
eigen-energies of various SU(6)/S3 multiplets in the K ≤ 4 shells 
of the Y-, �-string potential spectra, with the following results.

The K = 2 shell depends only on two coefficients (v00, v40), 
so the level splittings depend only on one free parameter (the 
ratio v40/v00) and the O (6) matrix elements/Clebsch–Gordan coef-
ficients, thus confirming the “universal splitting” result of Refs. [28,
29].

In the K = 3 shell, however, there are three coefficients 
(v00, v40, v6±6), leading to two free parameters, the independent 
ratios v40/v00 and v6±6/v00, which means that the energy split-
tings depend on the potential, i.e., that they are not “universal”.

A clear example of this difference appears between the eigen-
energies in the Y-string and the �-string potential, as a conse-
quence of |vY

6±6| � |v�
6±6|. That is also the first direct consequence 

of the dynamical O (2) symmetry of the “Y-string” potential. Nu-
merical values of eigen-energies can be obtained from the results 
in Ref. [15] by using Eqs. (22), (24)–(26) in Sect. 3.3 and Eqs. 
(C1)–(C8) in App. C; as well as the numerical values shown in Ta-
bles 4, 5, 6 in Sect. 4.2 and Table 11 in App. C of Ref. [30]. The 
K = 4 shell is too complicated to be discussed here; for these re-
sults see Ref. [15] – the general conclusions agree with those from 
K = 3 shell.

The ordering of bound states has its most immediate appli-
cation in the physics of three confined quarks, where the ques-
tion was originally raised, Refs. [12,27–29], but, as time passed 
it has become more of a question in mathematical physics, see 
Refs. [8,9,11]. The above discussion ought to have made it clear 

That is a consequence of the scale invariance of V (R) � 1/R2 potentials in non-
relativistic dynamics, see Refs. [25,26].
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that three-body analogons of two-body state-ordering theorems, 
Refs. [8,9,11], do not hold for realistic three-body systems at K > 2.

5. Summary and conclusions

In summary, we have constructed the three-body permutation-
symmetric hyperspherical harmonics and then used them in a per-
mutation symmetric version of the hyperspherical adiabatic rep-
resentation to reduce the non-relativistic three-body problem to a 
set of coupled ordinary differential equation for the hyper-radial 
wave functions with effective potentials that are derived as func-
tions of the three-body potential’s hyperspherical harmonics ex-
pansion coefficients.

In the adiabatic approximation this set of equations decouples 
to one ordinary differential equation, that can be solved in the 
same manner as the one-body radial Schrödinger equation.

This transcription of the three-body problem into hyperspher-
ical variables is possible only for three-body potentials whose 
hyper-angular dependence is square integrable, however. One such 
subset are the factorizable potentials, and more specifically homo-
geneous potentials, such as the pairwise sums of single-power-law 
terms, with the power larger than −1.

Then, we applied these methods to three homogeneous po-
tentials that satisfy the square integrability condition. The order-
ing of states (“pattern”) in the spectrum depends on the O (6)

symmetry-breaking, which in turn is determined by the hyper-
spherical expansion coefficients of the three-body potential. These 
coefficients depend on the dynamical “remnant” symmetries of the 
potential. Thus, for example the so-called Y-string potential has 
an O (2) dynamical symmetry, Ref. [19], that is absent in poten-
tials that are pairwise sums of single-power-law terms (for powers 
different than the second one). We used this O (2) dynamical sym-
metry, of which the permutation group S3 ⊂ O (2) is a subgroup, 
to guide our construction of the permutation symmetric harmon-
ics. In three dimensions (3D) the “hyper-spherical symmetry” is 
O (6), and the residual dynamical symmetry of the potential is 
S3 ⊗ S O (3)rot ⊂ O (2) ⊗ S O (3)rot ⊂ O (6), where S O (3)rot is the 
rotational symmetry associated with the (total orbital) angular mo-
mentum L.

Our O (6) permutation-symmetric three-body hyperspherical 
harmonics appear to be the first of their kind in the literature. 
Symmetrized three-body hyper-spherical harmonics have been 
pursued before, albeit without emphasis on the the “kinematic 
rotation” O (2) symmetry label. To our knowledge, aside from the 
special case L = 0 results of Simonov, Ref. [5] and L = 1 of Barnea 
and Mandelzweig, Ref. [13], several other attempts, Refs. [6,31–33], 
some based on so-called “tree pruning” techniques, exist in the lit-
erature, beside the recursively symmetrized N-body hyperspherical 
harmonics of Barnea and Novoselsky, Refs. [16,17]. The latter are 
based on the O (3) ⊗ SN ⊂ O (3N − 3) chain of algebras, which 
does not explicitly include the “kinematic rotation”/“democracy” 
O (2) symmetry.

The method of permutation-symmetric hyperspherical harmon-
ics is not specific to any particular non-relativistic quantum three-
body problem, i.e., it should find application in realistic 3D three-
body problems in atomic, molecular and Efimov physics, three-
quark problem in hadronic physics, as well as in positronium ion 
P−

s (= e−e+e−) physics.
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