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SL(n, R) and Diff(n, R) groups play a prominent role in various particle physics and
gravity theories, notably in chromogravity (that models the IR region of QCD), gauge
affine generalizations of general relativity, and pD-branes. Applications of these groups
require a knowledge of their features and especially rely on the unitary irreducible repre-
sentation details. Lie algebra, topology and unitary representation issues of the covering
groups of the SL(n, R) and Diff(n, R) groups with respect to their maximal compact
SO(n) subgroups are considered. Topological properties determining spinorial represen-
tations of these groups are reviewed. An especial attention is paid to the fact that,
contrary to other classical Lie algebras, the SL(n, R), n ≥ 3 covering groups are groups
of infinite matrices, as are all their spinorial representations. A notion of Lie algebra
decontraction, also known as the Gell-Mann formula, that plays a role of an inverse
to the Inonu–Wigner contraction, is recalled. Contrary to orthogonal type of algebras,
the decontraction formula has a limited validity. The validity domain of this formula
for sl(n, R) algebras contracted with respect to their so(n) subalgebras is outlined. A
recent generalization of the decontraction formula, that applies to all SL(n, R) cover-
ing group representations, as well as an explicit closed expression of all non-compact
sl(n, R) operators matrix elements for all representations is presented. A construction of
the unitary sl(n, R) representations is discussed within a framework than combines the
Harish-Chandra results and a method of fulfilling the unitarity requirements in Hilbert
spaces with non-trivial scalar product kernel.

Keywords: Gell-Mann decontraction formula; Lie algebra contraction; SL(n) represen-
tations.

Mathematics Subject Classification 2010: 20C33, 20C40

1. Introduction

The Poincaré spacetime and internal SU (n) symmetries, both global and local,
played a crucial role in describing fundamental forces in nature, physical
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conservation laws, and the basic matter fields. These symmetries are the core essence
of the Standard Model and Einstein’s General Relativity Theory, the two pillars
of contemporary fundamental physics. In this work we consider the SL(n, R) sym-
metries in the content of particle physics and gravity theory. First, we recollect
several prominent examples and extract the knowledge on the relevant required
SL(n, R) representations. Afterwards, we pose a general framework for construct-
ing the SL(n, R) unitary irreducible representations, and outline the basic facts
about recent generalization of the Gell-Mann’s decontraction formula that yields
all matrix elements of the sl(n, R) algebra elements for all representations.

Already in 1965, Gell-Mann, Dothan and Ne’eman proposed the SL(3, R)
symmetry to describe the Regge trajectories of hadron recurrences in a spectrum
generating algebra approach [1]. The model was subsequently generalized to the
relativistic SL(4, R) one, describing both parent and daughter trajectories [2]. A
construction of the unitary irreducible SL(3, R) representations was a first step on
the way to fulfill this proposal. Moreover, the spinorial representations, faithful
representations of the SL(3, R) covering group, were essential in order to describe
baryonic recurrences. After some confusion among researchers at the time, denying
even an existence of the covering group on the basis of a wrong interpretation of
certain Cartan’s statement, it was soon clear that there are specific features of the
SL(3, R) symmetry (subsequently, all SL(n, R), n ≥ 3, symmetries) and its represen-
tations [3]. The covering SL(n, R), n ≥ 3, groups are necessarily defined in infinite
dimensional spaces (groups of infinite matrices), thus there are no finite spino-
rial representations, and their representations considered with respect to maximal
compact Spin(n), i.e. SO(n) subgroups have as a rule non-trivial multiplicity. An
explicit construction of all SL(3, R) unitary irreducible representations confirmed
these facts [4].

A potential relevance of the SL(n, R), n = 3, 4 symmetries in describing con-
finement of quarks was noted even at the early stage of the so-called “bag-models”
featuring a volume-preserving part of the action that yields confinement. These
symmetries revive on the fundamental dynamic QCD level. The adoption of QCD
and its incorporation in the Standard Model were the outcome of the success of
asymptotic freedom (AF) in fitting the scaling results of deep inelastic electron-
nucleon scattering, coupled with the fact that color-SU (3) provides an explanation
for some (otherwise paradoxical) key features of the Non-Relativistic Quark Model
(NRQM): “wrong” spin-statistics of the baryon (56 in SU (6)) ground state, zero-
triality of the entire SU (3) (Eightfold-Way) physical spectrum. AF provides a suc-
cessful perturbative treatment for the “ultraviolet” (UV) region, e.g., high-energy
electro-weak hadronic interactions, corresponding to the current-quarks aspects of
NRQM. There is also a prosperous understanding of hadronic strong interactions
in the “hard” and “semi-hard” regimes. Nothing of the sort has emerged in the
“infrared” (IR) frequency antipode region. After several decades, we still lack a
complete proof of color-confinement.
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2. Chromogravity

A chromogravity approach to the IR QCD sector [5] is based on a conjecture: (a)
that gluon exchange forces (with the gluons in color-neutral combinations) make
up an important component of inter-hadron interactions in the “softest” region and
in confinement; (b) that the physical role of this component is to produce a longer-
range force, with many of the characteristics of gravity, starting with the basic
mathematical foundation, namely, invariance under (pseudo) diffeomorphisms; (c)
that the simplest such n-gluon exchange, that of the two-gluon system

Gµν(x) = (κ)−2gabB
a
µ(x)Bb

ν(x) (1)

fulfills the role of an effective (pseudo) metric — “chromometric”, with respect to
these (pseudo) diffeomorphisms — “chromo diffeomorphisms”, in the same manner
that the physical metric (through its Christoffel connection) “gauges” the true
diffeomorphisms. Here κ has the dimensions of mass, µ, ν, . . . are Lorentz 4-vector
indices, a, b, . . . are SU (3) adjoint representation (octet) indices, gab is the Cartan
metric for the SU (3) octet, and Ba

µ is a gluon field.
The gluon color-SU (3) gauge field transforms under an infinitesimal local SU (3)

variation according to

δεB
a
µ = ∂µεa + Bb

µ{λb}a
c εc = ∂µεa + ifa

bcB
bεc (2)

(we use the adjoint representation {λb}a
c = −ifa

bc = ifa
bc). To deal with the non-

perturbative IR region, we expand the gauge field operator around a constant global
vacuum solution Na

µ ,

∂µNa
ν − ∂νNa

µ = ifa
bcN

b
µN c

ν , (3)

Ba
µ = Na

µ + Aa
µ. (4)

Such a vacuum solution might be of the instanton type, for instance, that at large
distances is required to approach a constant value.

The leading part of the color-SU (3) infinitesimal gauge variation of the pseudo-
metric field Gµν in the infrared region reads [5]

δξGµν = ∂µξν + ∂νξµ = ∂µ(ξσGσν ) + ∂ν(ξσGµσ), (5)

where, ξµ = ηabε
aN b

µ, and where one can reidentify δξ as a variation under a formal
diffeomorphism of the R4 manifold. This Gµν variation simulates the infinitesimal
variation of a “world tensor” Gµν under Einstein’s covariance group, xσ → xσ +ξσ.
ξσ thus has to be defined as a contravariant vector, and Gµν is invertible, thanks
to the constant part Na

µ . Note that as the µ, ν indices are “true” Lorentz indices,
acted upon by the physical Lorentz group, the manifold has to be Riemannian (only
Riemannian manifolds, with or without torsion, have tangents with orthogonal or
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pseudo-orthogonal symmetry). Thus

DσGµν = 0, (6)

the commutator of two such variations,

[δξ1 , δξ2 ]Gµν = δξ3Gµν , (7)

where

ξ3µ := (∂νξ1µ)ξν
2 + (∂µξ1ν)ξν

2 − (∂νξ2µ)ξν
1 − (∂µξ2ν)ξν

1 (8)

indeed closes on the covariance group’s commutation relations.
In the general case, the QCD “gluon-made” operators which mutually connect

various hadron states are characterized by color-singlet quanta. The corresponding
color-singlet n-gluon field operator has the following form

G
(n)
µ1µ2···µn = d

(n)
a1a2···anBa1

µ1
Ba2

µ2
· · ·Ban

µn
(9)

where

d(2)
a1a2

= ga1a2 ,

d(3)
a1a2a3

= da1a2a3 ,

d
(n)
a1a2···an = da1a2b1g

b1c1dc1b2a3 · · · gbn−4cn−4dcn−4bn−3an−2g
bn−3cn−3dcn−3an−1an ,

n > 3,

(10)

Ba
µ is the dressed gluon field, ga1a2 is the SU (3) Cartan metric, and da1a2a3 is the

SU (3) totally symmetric 8×8×8 → 1 tensor. The set of all G
(n)
µ1µ2···µn operators, n =

1, 2, . . . , forms a basis of a vector space of colorless purely gluonic configurations.
Again, in the infrared region approximation the infinitesimal color-SU (3) variation
can be rewritten in terms of effective pseudo-diffeomorphisms,

δεG
(n)
µ1µ2···µn = ∂{µ1ξ

(n−1)
µ2µ3···µn} ≡ δξG

(n)
µ1µ2···µn , (11)

where {µ1µ2 · · ·µn} denotes symmetrization of indices, and

ξ
(n−1)
µ1µ2···µn−1 ≡ d

(n)
a1a2···anNa1

µ1
Na2

µ2
· · ·Nan−1

µn−1
εan . (12)

A subsequent application of two SU (3)-induced variations closes algebraically

[δε1 , δε2 ]G
(n)
µ1µ2···µn = δε3G

(n)
µ1µ2···µn i.e. [δξ1 , δξ2 ]G

(n)
µ1µ2···µn = δξ3G

(n)
µ1µ2···µn

(13)

thus yielding an infinitesimal nonlinear realization of the Diff(4, R) Chromodiffeo-
morphisms group in the space of fields {G(n)

µ1µ2···µn |n = 2, 3, . . .}.

2.1. Matter particles and fields

The simplest way to describe hadronic matter fields is by making use of nonlinear
realizations of the Diff(4, R) chromodiffeomorphisms group over its maximal linear
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subgroup, i.e. over the GA(4, R) ⊃ SA(4, R) [8]. Here, GA(4, R), SA(4, R) are the
semidirect product groups of the translation group T4 and the GL(4, R), SL(4, R)
groups, respectively.

In the following, we consider the relevant groups in an n-dimensional space
time, i.e. the Diff(n, R), Tn, SL(n, R), SO(n) groups, thus setting up a mathemat-
ical framework applicable to gravity and extended objects considerations in higher
dimensions as well, and we focus on the SL(n, R) group, since this group determines
the non-Abelian features of the GL(n, R) group as well.

The matter particles and the matter fields in quantum theory are described by
the affine group, SA(n, R) = Tn ∧ SL(n, R), representations in Hilbert spaces of
states and fields, respectively.

The commutation relations of the sa(n, R) algebra of the SA(n, R) group read

[Pa, Pb] = 0,

[Qab, Pc] = igacPb, (14)

[Qab, Qcd] = igbcQad − igadQcb,

the structure constants gmn being either δab = (+1, +1, . . . , +1), a, b, c, d =
1, 2, . . . , n for the SO(n) subgroup or ηab = (+1,−1, . . . ,−1), a, b, c, d = 0, 1, . . . , n−
1 for the n-dimensional Lorentz subgroup SO(1, n− 1) of the SL(n, R) group. The
maximal compact SO(n) subgroup of the SL(n, R) group is generated by the metric
preserving antisymmetric operators Jab = Q[ab], while the remaining non-compact
traceless symmetric operators Tab = Q(ab), the shear operators, generate the (non-
trivial) n-volume preserving transformations. The SL(n, R) commutation relations
are given as follows

[Mab, Mcd] = −iηacMbd + iηadMbc + iηbcMad − iηbdMac,

[Mab, Tcd] = −iηacTbd − iηadTbc + iηbcTad + iηbdTac, (15)

[Tab, Tcd] = +iηacMbd + iηadMbc + iηbcMad + iηbdMac.

The quantum mechanical symmetry group is given as the U(1) minimal exten-
sions of the corresponding classical symmetry group. In practice, one finds it by
taking the universal covering group of the classical group (topology changes), and
by solving the algebra commutation relations for possible central charges (alge-
bra deformation). There are no non-trivial central charges of the sa(n, R) and
sl(n, R) algebras, and the remaining important question for quantum applications
is the one of the affine symmetry covering group. The translational part of the
SA(n, R) group is contractible to a point and thus irrelevant for the covering ques-
tion. The SL(n, R) subgroup is, according to the Iwasawa decomposition, given
by SL(n, R) = SO(n, R) × A × N , where A is a subgroup of Abelian transforma-
tions (e.g., diagonal matrices) and N is a nilpotent subgroup (e.g., upper triangular
matrices). Both A and N subgroups are contractible to point. Therefore, the cover-
ing features are determined by the topological properties of the maximal compact
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subgroup of the group in question. In our case, that is the SO(n, R) group, i.e.
more precisely its central subgroup. The universal covering group of the SO(n),
D ≥ 3 group is its double covering group isomorphic to Spin(n). In other words
SO(n) � Spin(n)/Z2.

The universal covering group of a given group is a group with the same Lie
algebra and with a simply-connected group manifold. A finite dimensional cover-
ing, SL(n, R), exists provided one can embed SL(n, R) into a group of finite complex
matrices that contain Spin(n) as subgroup. A scan of the Cartan classical algebras
points to the SL(n, C) groups as a natural candidate for the SL(n, R) groups cov-
ering. However, there is no match of the defining dimensionalities of the SL(n, R)
and Spin(n) groups for n ≥ 3,

dim(SL(n, C)) = n < 2[ n−1
2 ] = dim(Spin(n)), (16)

except for n = 8. In the n = 8 case, one finds that the orthogonal subgroup of
the SL(8, R) and SL(8, C) groups is SO(8, R) and not Spin(8). Thus, there are
no finite dimensional covering groups of the SL(n, R) groups for any n ≥ 3. An
explicit construction of all spinorial, unitary and non-unitary multiplicity-free [6],
and unitary non-multiplicity-free [4], SL(3, R) representations shows that they are
all defined in infinite dimensional spaces.

The universal (double) covering groups of the SL(n, R) and SA(n, R), n ≥ 3
groups are groups of infinite complex matrices. All their spinorial representations
are infinite dimensional and when reduced with respect to Spin(n) subgroups con-
tain representations of unbounded spin values.

2.2. Representations on states

The SA(n, R) Hilbert space representations are, owing to the semidirect product
group structure, induced as in the Poincaré case from the corresponding little group
(stability subgroup) representations. The correct quantum mechanical interpreta-
tion requires the little group representations to be unitary. The unitary irreducible
SA(n, R) Hilbert space representations are obtained as follows: (i) determine the
vectors characterized by the maximal set of labels of the Abelian translational sub-
group generators, (ii) determine the corresponding little groups as subgroups of
the SL(n, R) groups that leave these vectors invariant, and (iii) induce the unitary
irreducible SA(n, R) representations from Tn and little groups representations. In
contradistinction to the Poincaré case, the little groups that describe affine particles
are more complex in structure due to the fact that a orthogonal type of group is
enlarged here to the linear one.

The little group of the SA(n, R) Hilbert-space particle states is of the form
T∼

n−1∧SL(n−1, R), where the Abelian invariant subgroup T∼
n−1 of the little group is

generated by Q1j , j = 2, 3, . . . , n. Owing to the fact that the little group itself
is given as a semidirect product, there is number of possibilities. The simplest one
is when the T∼

n−1 subgroup is represented trivially, D(T∼
n−1) → 1, i.e. D(Q1j) → 0,
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the remaining part of the little group is SL(n−1, R), and the corresponding “affine
particle” is described by the unitary irreducible SL(n−1, R) representations. These
representations are infinite dimensional, even in the tensorial case, due to non-
compactness of the SL(n, R) group.

2.3. Representations on fields

The representations of the SA(n, R) group generalize the known Poincaré group
representations on fields and are given as follows,

(D(a, Λ̄)Φi)(x) = (D(Λ̄))j
i Φj(Λ−1(x − a)) (a, Λ̄) ∈ Tn ∧ SL(1, n − 1), (17)

where i, j enumerate a basis of the representation space of the field components.
There are two physical requirements that have to be satisfied in the affine case in
order to provide the due particle-field connection: (i) representations of the affine-
particle little group SL(n − 1, R) have to be unitary and thus (due to the lit-
tle group’s non-compactness) infinite dimensional, and (ii) representations of the
Lorentz subgroup Spin(1, n−1) have to be finite dimensional and thus non-unitary
as required by their Poincaré subgroup interpretation. This is achieved by making
use of the so called “deunitarizing” automorphism of the SL(n, R) group [7]:

A : SL(n, R) → SL(n, R), (18)

JA
ij = Jij , KA

j = iNj, NA
j = iKj, (19)

TA
ij = Tij , TA

00 = T00, i, j = 1, 2, . . . , D − 1, (20)

so that (Jij , iKi) generate the new compact Spin(n)A and (Jij , iNi) generate
Spin(1, D − 1)A. Here, the SL(n − 1, R), the stability subgroup of SA(n, R), is
represented unitarily, while the Lorentz subgroup is represented by finite dimen-
sional non-unitary representations. An efficient way of constructing explicitly the
SL(n, R) infinite dimensional representations is based on the so called “decontrac-
tion” formula, which is an inverse of the Wigner–Inönü contraction, and will be
treated below.

3. Affine Gravity and Spinorial Wave Equations

The metric affine [9], and gauge affine [10, 11] theories of gravity are generalizations
of the Poincaré gauge theory where the Lorentz group Spin(1, n − 1) is replaced
by the SL(n, R) group. The customary way to develop such a theory in a particle
physics framework is to start by the Dirac equation and then gauging the relevant
global symmetry. In our case that means to start by a Dirac-like equation for an
infinite-component spinorial affine field Ψ(x),

(iXa∂a − M)Ψ(x) = 0, (21)

Ψ(x) ∼ D(spin)(SL(n, R)). (22)

1343006-7
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The Xa, a = 0, 1, . . . , n− 1 vector operator, acting in the space of the Ψ field com-
ponents, is an appropriate generalization of the Dirac γ matrices to the affine case.
The SL(n, R) affine covariance requires that the following commutation relations
are satisfied

[Mab, Xc] = iηbcXa − iηacXb, (23)

[Tab, Xc] = iηbcXa + iηacXb. (24)

The first relation ensures Lorentz covariance, and is generally a easy one to fulfill.
The second relation, required by the full affine covariance, turns out to be rather
difficult to accomplish.

We focus here on the SL(n, R) representations constrains required by the
group algebraic consistency of this Dirac-like equation. In order to obtain all
(physically relevant) unitary irreducible SL(n, R) representations, and in partic-
ular the spinorial ones fitting the Dirac-like equation construction, one works in
Hilbert spaces of square integrable functions over the maximal compact subgroup,
L2(Spin(n)). The Hilbert space basis vectors in Dirac’s notation are {|{J}

{k}{m}〉},
where {J} and {m} are the representation labels of Spin(n) and its subgroups
Spin(n− 1), Spin(n− 2), . . . , Spin(n), respectively; while {k} are labels of Spin(n−
1), Spin(n − 2), . . . , Spin(n) groups acting to the left which are used to describe
eventual multiplicity of the Spin(n) representations within a given SL(n, R) repre-
sentation. We can split an SL(n, R) representation in terms of its Spin(n) subrep-
resentations, in a symbolic notation, as follows:

D(SL(n, R)) ∼
∑

{J},{k}
D{J}(Spin(n), {k}). (25)

Representations of the shear operators Tab are such that their matrix elements
apriory have non-trivial {k} dependence, i.e. they are proportional, as presented

below, to the C{J′′} {J′}
{k′′} {k} {k′} Spin(n) Clebsch–Gordan coefficients. There are two

distinct cases: (i) the Spin(n) multiplicity free representations when all {k} labels
are zero, and (ii) representations with non-trivial multiplicity. In the first case,
the zero-value {k} labels imply that the {J} labels are integer, and thus all these
D(SL(n, R)) representations are tensorial. In the second case, when there are no
constraints on the {k} labels, one can have both tensorial and spinorial D(SL(n, R))
representations.

To sum up, from the considered physical examples we conclude that applications
of the SL(n, R) symmetry requires knowledge of the spinorial and tensorial unitary
(infinite dimensional) representations with non-trivial Spin(n), Spin(1, n − 1) sub-
group multiplicity. In the following, we present an effective method of constructing
all SL(n, R) representations, and set up a framework that allowes one to fulfill the
unitarity and irreducibility issues as well.
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4. Gell-Mann Decontraction Formula

To solve the problem of finding SL(n, R) representations in the basis of its
(pseudo)orthogonal subgroup we will employ the so called Gell-Mann (decontrac-
tion) formula [12–16]. The aim of this formula is to provide an inverse to the well-
known Inönü–Wigner contraction procedure [17]. More concretely, let a symmetric
Lie algebra A = M + T :

[M,M] ⊂ M, [M, T ] ⊂ T , [T , T ] ⊂ M, (26)

and its Inönü–Wigner contraction A′ = M + U :

[M,M] ⊂ M, [M,U ] ⊂ U, [U ,U ] = {0}, (27)

be given. Following a mathematically less rigorous definition (more strict definition
can be found in [12]), the Gell-Mann formula states that, in certain cases, elements
Tµ ∈ T can be constructed as the following simple function of the contracted algebra
operators Uµ ∈ U and Mν ∈ M:

Tµ = i
α√

UνUν
[C2(M), Uµ] + iσUµ. (28)

Here, C2(M) and UνUν denote the (positive definite) second order Casimir opera-
tors of the M and A′ algebras, respectively, while α is a normalization constant and
σ is an arbitrary parameter. The formula was, to our knowledge, first introduced
by Dothan and Ne’eman [16], and was advocated by Hermann [13].

The importance of this formula in our case is immediate, since it is not difficult to
obtain representations of the contracted algebra rn(n+1)

2 −1

⊎
so(n) (here rn(n+1)

2 −1

denotes n(n+1)
2 − 1 dimensional Abelian algebra and

⊎
stands for semidirect sum).

To represent the contracted algebra we will work in the representation space
of square integrable functions L2(Spin(n)) over the maximal compact subgroup
Spin(n), i.e. the SO(n) universal covering group, with a standard invariant Haar
measure. This representation space is large enough to provide for all inequivalent
irreducible representations of the contracted group, and, by a theorem of Harish-
Chandra [18–21], is also rich enough to contain representatives from all equivalence
classes of the SL(n, R) group, i.e. sl(n, R) algebra, representations.

The generators of the contracted group are generically represented, in this space,
as follows. The so(n) subalgebra operators Mab, a, b = 1, 2, . . . , n, act in the stan-
dard way:

Mab|φ〉 = −i
d

dt
exp(itMab)|t=0|φ〉, (29)

where action of a Spin(n) element g′ on an arbitrary vector |φ〉 ∈ L2(Spin(n)) is
given via action from the left on basis vectors |g〉 of this space:

g′|φ〉 = g′
∫

φ(g)|g〉dg =
∫

φ(g)|g′g〉dg, g′, g ∈ Spin(n). (30)

1343006-9
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The contracted non-compact Abelian operators Uµ (27) and (28), act in the same
basis as multiplicative Wigner-like D-functions (the SO(n) group matrix elements
expressed as functions of the group parameters):

Uµ → |u|Dwµ (g−1) ≡ |u|
〈

w

∣∣∣∣∣
(
D (g)

)−1
∣∣∣∣∣ µ

〉
, (31)

|u| being a constant norm, g being an SO(n) element, and denoting (in a par-
allel to the Young tableaux) the symmetric second order tensor representation of
SO(n). The norm |u| parametrizes representation of U , but will turn out to be
irrelevant in our case, as it cancels with the denominator in (28). The

∣∣∣
µ

〉
vector

from representation space is denoted by the index of the operator Uµ, whereas

the vector
∣∣∣

w

〉
can be an arbitrary vector belonging to (the choice of w deter-

mines, in Wigner terminology, the little group of the representation in question).
Taking an inverse of g in (31) insures the correct transformation properties.

A natural discrete orthonormal basis in the L2(Spin(n)) space is given by prop-
erly normalized Wigner D-functions:{∣∣∣∣Jkm

〉
≡

∫ √
dim(J)DJ

km(g−1)dg|g〉
}

,

〈
J J ′

km k′m′

〉
= δJJ′δkk′δmm′ , (32)

where dg is an (normalized) invariant Haar measure. Here, J stands for a set of
Spin(n) irreducible representation labels, while the k and m labels numerate the
representation basis vectors.

An action of the so(n) operators in this basis is well known, and it can be written
in terms of the Clebsch–Gordan coefficients of the Spin(n) group as follows,〈

J ′

k′m′

∣∣∣∣Mab

∣∣∣∣Jkm

〉
= δJJ′

√
C2(J) CJ J′

m(ab)m′
. (33)

The matrix elements of the Uµ operators in this basis are readily found to read:〈
J ′

k′m′

∣∣∣∣U (w)
µ

∣∣∣∣Jkm

〉
= |u|

〈
J ′

k′m′

∣∣∣∣D−1
wµ

∣∣∣∣Jkm

〉

= |u|

√
dim(J)
dim(J ′)

CJ J′

k w k′ C
J J′

m µ m′ . (34)

A closed form of the matrix elements of the whole contracted algebra
rn(n+1)

2 −1

⊎
so(n) representations is thus explicitly given in this space by (33) and

(34). To obtain representations of sl(n, R), apart from (33), we also need to know
how to represent non-compact shear generators Tµ in this space. That is given by
the Gell-Mann formula (28):

T (w,σ)
µ = iα[C2(so(n)), Dwµ ] + iσDwµ . (35)
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Though it seems that our goal is accomplished, it unfortunately turns out that
formula (35) does not hold in the entire space L2(Spin(n)) and for arbitrary choice
of vector w (in the sense that commutator of two so constructed shear generators
will not yield the correct result).

In [22], we have carried out a detailed analysis of the scope of validity of Gell-
Mann formula in the sl(n, R) case. The conclusion was that the only sl(n, R) rep-
resentations obtainable in this way are given in Hilbert spaces over the symmetric
spaces Spin(n)/Spin(m) × Spin(n − m), m = 1, 2, . . . , n − 1. The narrowing of the
space from L2(Spin(n)) to L2(Spin(n)/Spin(m)×Spin(n−m)) in the terms of basis
(32) means reduction to a subspace spanned by vectors

∣∣J
0m

〉
, where zero denotes the

vector component invariant with respect to Spin(m) × Spin(n − m). Furthermore,
vector w in (35) must be chosen to be the one invariant with respect to the action
of the group Spin(m) × Spin(n − m).

With these constraints, expression (35) becomes a proper representation of shear
generators. This formula then leads to explicit expression for matrix elements of
shear generators in L2(Spin(n)/Spin(m) × Spin(n − m)):〈

J ′

m′

∣∣∣∣T (σ)
µ

∣∣∣∣ J

m

〉

= i

√
m(n − m)

4n

√
dim(J)
dim(J ′)

(C2(J ′) − C2(J) + σ)CJ J′

0 0 0
CJ J′

m µ m′ . (36)

The zeroes in the indices of Clebsch–Gordan coefficients again denote vectors that
are invariant with respect to Spin(m)×Spin(n−m) transformations (in that spirit∣∣∣

w

〉
=

∣∣∣
0

〉
). We also used shorthand notation

∣∣J
0m

〉
≡

∣∣J
m

〉
.

The expression (41), together with the action of the Spin(n) generators (33),
provides an explicit form of the SL(n, R) generators representation, valid for arbi-
trary value of parameter σ. However, such representations are multiplicity free with
respect to the maximal compact Spin(n) subgroup, and all of them are tensorial:
multiplicity is lost with fixing of the left index of basis vectors (32) and only ten-
sor representations of Spin(n) possess components invariant with respect to any
Spin(m) × Spin(n − m), m ≥ 1 subgroup.a

To obtain more general class of sl(n, R) representations (and, in particular, those
with multiplicity) the Gell-Mann formula had to be generalized.

5. Generalization of the Gell-Mann Formula

One of the key steps to obtain generalized Gel-Mann formula is introduction of, so
called, left action generators K:

Kµ ≡ gνλDµνMλ, (37)

aIn principle, some classes of spinorial multiplicity free representations can be obtained by appro-
priate analytic continuation of the Clebsch–Gordan coefficient in terms of the Spin(n) labels.

1343006-11



2nd Reading

November 22, 2013 16:39 WSPC/S0129-055X 148-RMP J070-1343006

I. Salom & Dj. Šijački

where gνλ is the Cartan metric tensor of SO(n). The Kµ operators have the fol-
lowing matrix elements in the basis (32):

〈Kab〉 =
〈

J ′

k′m′

∣∣∣∣Kab

∣∣∣∣Jkm

〉
= δJJ′

√
C2(J) CJ J′

k(ab)k′
. (38)

In other words, they behave exactly as the rotation generators Mµ (33), with a dif-
ference that they act on the lower left-hand side indices. The operators Kµ and Mµ

mutually commute, but the corresponding Casimir operators match (in particular∑
K2

µ =
∑

M2
µ).

In terms of these new operators we can write down the following expression:

T σ2...σn

ab = i

n∑
c>d

{Kcd, D(cd)(ab)} + i

n∑
c=2

σcD(cc)(ab). (39)

In [23, 24], we have shown that this is indeed the sought for generalization of
the Gell-Mann formula, as this expression satisfies sl(n, R) commutation relations
in the entire space L2(Spin(n)). In this expression σc is a set of n − 1 arbitrary
parameters that essentially (up to some discrete parameters) label sl(n, R) irre-
ducible representations. General validity of the new formula is reflected in the fact
that there are now n − 1 free parameters, i.e. representation labels, matching the
sl(n, R) algebra rank, compared to just one parameter of the original Gell–Mann
formula.

An alternative form of (39) that looks more like the original formula (28) is:

T σ2...σn

ab = i

n∑
c=2

1
2
[C2(so(c)K), U (cc)

ab ] + σcU
(cc)
ab , (40)

where C2(so(c)K) is the second order Casimir of the so(c) left action subalgebra,
i.e. C2(so(c)K) = 1

2

∑c
a,b=1(Kab)2. It is almost as simple as the original Gell-Mann

formula, with a crucial advantage of being valid in the whole representation space
over L2(Spin(n)). Thus, due to Harish-Chandra theorems, the generalized Gell-
Mann formula expression for the non-compact “shear” generators Tab holds for
all cases of sl(n, R) irreducible representations, irrespective of their so(n) subal-
gebra multiplicity (multiplicity free of the original Gell-Mann formula, and non-
trivial multiplicity) and whether they are tensorial or spinorial. The price paid is
that the generalized Gell-Mann formula is no longer solely a Lie algebra operator
expression, but an expression in terms of representation dependant operators Kab

and U
(cd)
ab .

We also note that the very term in (40) when c = n is, essentially, the original
Gell-Mann formula (since C2(so(n)K) = C2(so(n)M )), whereas the rest of the terms
can be seen as necessary corrections securing the formula validity in the entire
representation space. The additional terms vanish for some representations yielding
the original formula.
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The form (40) also allows us to find matrix elements of Tab operators. After
some calculation the following expression is obtained:〈

{J ′}
{k′}{m′}

∣∣∣∣ T{w}

∣∣∣∣{J}{k}{m}

〉
=

i

2

√
dim({J})
dim({J ′})C{J} {J′}

{m}{w}{m′}

×
n∑

c=2

√
c − 1

c
(C2(so(c){k′}) − C2(so(c){k}) + σ̃c)

×C{J}( )n−c+1{J′}
{k} (0)c−2 {k′} . (41)

(For the notation used for indices of Clebsh–Gordan coefficients please cf. [24, 25].)
The relation of the labeling of (41) and the one of (39), i.e. (40), is achieved

provided σc = σ̃c +
∑c−1

d=2 σ̃d/d. The Clebsch–Gordan coefficient with indices
{m}, {w}, {m′} in (41) can be evaluated in an arbitrary basis (which is stressed by
denoting the appropriate index by w instead by ab). The other Clebsch–Gordan
coefficient can be evaluated in any basis labeled according to the Spin(n) ⊃
Spin(n − 1) ⊃ · · · ⊃ Spin(2) subgroup chain (e.g., Gel’fand–Tsetlin basis) and
can be, nowadays, rather easily evaluated, at least numerically.

6. Unitarity

A convenient way to parametrize any non-compact semisimple Lie group is given
by means of the Iwasawa decomposition according to which the group G can be
written as a product G = NAK , where N is a nilpotent subgroup of G, and
its elements are upper triangular matrices with ones on the diagonal, A is an
Abelian subgroup of G, and for SL(n, R) we take its elements to be of the form
a = diag(eλ, eµ, eν , . . . , e−(λ+µ+ν+···)), and finally K is the maximal compact sub-
group SO(n). An element g ∈ G can thus be written as a product g = nak, where
n ∈ N, a ∈ A, k ∈ K. The Iwasawa decomposition is unique and the product
of some element k ∈ K and an arbitrary element g ∈ G is in general an arbi-
trary element of G which can be uniquely written as kg = na(k, g)k · g, where
n ∈ N, a(k, g) ∈ A and k · g ∈ K. Owing to the Iwasawa decomposition every
element g ∈ SL(n, R) can be uniquely written as g = nehk. The Abelian subgroup
of SL(n, R) has n−1 generators A1, A2, . . . , and if λ1, λ2, . . . are the corresponding
group parameters, respectively, one has h = λ1A1 + λ2A2 + · · · . Let α be a linear,
in general complex, function such that α(h) = λ1α(A1)+λ2α(A2)+ · · · , and let us
denote α(A1), α(A2), . . . by σ1, σ2, . . . , respectively. Existence of the mapping α is
guaranteed by the 1-dimensionality of the irreducible representations of the Abelian
subgroup A. The mapping α can be extended in a natural way to a mapping from
the group NA into the complex numbers since N is an invariant subgroup in NA.

The set of cosets SL(n, R)/NA is in one-to-one correspondence with the group
K = SO(n) and can be parametrized by the elements of K. In the coset space
SL(n, R)/NA one has as well a measure, which we choose to be the invariant measure
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dk on K. Let H = L2(K) be the separable Hilbert space of functions on K which
are square integrable with respect to the invariant measure on K, i.e. H = {f(k) |
k ∈ K}, such that

∫
dkf∗(k)f(k) < ∞, and let

∫
dk = 1.

Every non-trivial unitary representation of a non-compact group is necessarily
infinite dimensional and this partly accounts for the complexity which occurs when
one deals with unitary representations. The class of real semisimple Lie groups is
especially complex. Harish-Chandra [18–21] defines a representation U(g) of G =
SL(n, R) on H in the following way: U(g) is a homomorphic continuous mapping
from G into the set of linear transformations on H given by

(U(g)f)(k) = e(h(k,g))f(k · g), (42)

where g ∈ G, f ∈ H, k ∈ K, eh ∈ A and where (U(g)f)(k) denotes the value
of U(g)f at the point k. Harish-Chandra now defines the concept of infinitesimal
equivalence of two representations in the following way: Two representations are
infinitesimally equivalent if there exists a similarity transformation of one represen-
tation into the other, with a non-singular, not necessarily unitary operator. In the
case of equivalence there exist a unitary operator by means of which the transfor-
mation between the two representations is carried out. If both of two infinitesimally
equivalent representations are unitary, then they are equivalent. Suppose now that
U(g) is a representation of a group G on a Hilbert space H . Suppose further that
H1 and H2 are the two closed invariant subspaces of H , such that H2 ⊂ H1 ⊂ H ,
and H1 �= H2. Then U(g) induces a representation U ′(g) on the quotient H1/H2

in a natural way. The representation U ′(g) is said to be deducible from the rep-
resentation U(g). Harish-Chandra has proved that every unirrep is infinitesimally
equivalent to some irreducible representation deducible from some representation
U(g) of the above form. Thus it is always possible to construct a bilinear form
(f̃ , g̃) in some quotient space H1/H2, where f̃ , g̃ ∈ H1/H2. One can extend the
domain of this bilinear form to all H1 uniquely by defining (, ) to vanish on H2.
Unitarity now means that (U(g)f, U(g)f) = (f, f), f ∈ H1, g ∈ G, and the addi-
tional conditions that the bilinear form is a scalar product are hermiticity and
positive definiteness (f, g) = (g, f)∗ and (f, f) ≥ 0 ∀ f, g ∈ H1. It is convenient to
extend the domain of the scalar product to the whole space H . Being interested
in obtaining all unirreps of SL(n, R), we will start with the most general scalar
product: (f, g) =

∫ ∫
dk1dk2f

∗(k1)κ(k1, k2)g(k2), f, g ∈ H , where κ(k1, k2) is a
kernel, the integration is over K, and dk is an invariant measure. The problem of
finding all unitary representations of SL(n, R) becomes now the problem of finding
all scalar products, i.e. kernels for which the representation U(g) is unitary. We
start with the most general scalar product of the Hilbert space. We find, by making
use of the fact that dk is an invariant measure and of the additivity properties of
Spin(n) Wigner’s functions following expressions for the scalar product in terms of
the matrix elements of the kernel and the expansion coefficients

(f, g) =
∑

{J}{k}{k′}(m)

f
{J}∗
{k′}{m}g

{J}
{k}{m}κ

{J}
{k′}{k}. (43)
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The hermiticity of the scalar product yields

κ
{J}∗
{k′}{k} = κ

{J}
{k}{k′}. (44)

Therefore κ is a hermitian matrix and can be diagonalized. Thus without any loss
of generality we write κ in the form κ({J}; {k}). The positive definiteness of the
scalar product yields

κ({J}; {k}) ≥ 0. (45)

Finally we find that the hermiticity condition of an arbitrary group generator Q,
i.e. the unitarity of the representation, (f, Qg) = (g, Qf)∗ reads

κ({J ′}; {k′})〈{J′}
{k′}{m′}| Q |{J}

{k}{m}〉 = κ({J}; {k})〈{J}
{k}{m}| Q |{J′}

{k′}{m′}〉
∗. (46)

We now substitute in this equations the explicit expressions for the non-compact
generators as given by making use of the generalized Gell-Mann formula, and allow
the representation labels values to be arbitrary complex numbers, e.g., σi = σiR +
iσiI , i = 1, 2, . . . , n, and what is left is to solve above equations and determine all
possible solutions for the representation labels σi and the corresponding kernels
of the scalar products, thus determining all SL(n, R) unitary representations. The
irreducibility of the representations is most effectively achieved by using the little
group technique.

Let us present explicitly the simplest case when the scalar product kernel is
given by the Dirac δ function. The kernel matrix elements are now trivial, i.e.
κ({J}; {k}) = 1, for all {J}, {k}), and the unitarity equations yield σi = iσiI , where
σiI is an arbitrary real number for all i = 2, 3, . . . , n. The corresponding SL(n, R)
unitary representations constitute the principal series of representations, for which,
due to the generalized Gell-Mann formula, we obtained all matrix elements of the
non-compact SL(n, R) generators.
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