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Abstract

Special linear group SL(n,R), as well as its covering group SL(n,R)
in quantum domain, appear as relevant symmetry groups in many
physical models based on spacetime symmetries. Applications of
these symmetries and their representations in physics problems re-
quire knowledge of the sl(n,R) algebra representations. Spinorial
sl(n,R) representations are of particular importance in various prob-
lems of quantum field theory, quantum and alternative theories of
gravity, and theories of extended objects (strings, branes, etc.). Con-
struction of the unitary and spinorial representations of the sl(n,R)
algebras is further involved by the fact that these representations are
necessarily infinite dimensional. Moreover, transformation properties
of physical entities, as well as their correct physical interpretation, re-
quire knowledge of the relevant sl(n,R) algebra and SL(n,R) group
representations in the basis of the orthogonal subgroup Spin(n).
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The method used to derive expressions of the SL(n,R) genera-
tors is based on the so called decontraction, also known as the Gell-
Mann, formula that is in the focus of this work. This formula, in
our case, determines the sl(n,R) algebra elements in terms of the
algebra elements obtained by the Inönü-Wigner algebra contraction
with respect to the so(n) subalgebra. It is shown that this formula
is valid only for some particular classes of irreducible representations
that are insufficient for applications in physical models.

Next we demonstrate how the Gell-Mann formula can be gen-
eralized. The obtained generalized formula is valid for all sl(n,R)
irreducible representations: finite and infinite, unitary and non uni-
tary, tensorial and spinorial. All expressions of the matrix elements
of the SL(n,R), n ≥ 2, generators are obtained explicitly by making
use of the generalized decontraction formula. They are given in a
closed form, in terms of the Hilbert space functions over the Spin(n)
subgroup, for an arbitrary irreducible representation characterized by
the corresponding set of labels. This result provides, due to sl(n,R)
and su(n) algebras relation, expressions of the matrix elements of
the SU(n) generators in the SO(n) basis for all irreducible represen-
tations. An example that illustrate applications of the generalized
decontraction formula in models of alternative theories of gravity
based on a local affine symmetry is also presented.

1 Introduction

Special linear group over the field of real numbers SL(n,R) is defined as a set
of unit determinant n× n real matrices, equipped with usual matrix multi-
plication and inversion operations. In modern physics, this group appears in
many different context. It appears either independently, or as the essential
part of the general linear group GL(n,R) – as it is well known that basi-
cally all mathematical problems related to the general linear group reduce
to the corresponding problems for the case of the special linear subgroup:
representations, topology, Clebsch-Gordan coefficients... Accordingly, spe-
cial linear group also plays an important role in a number of contemporary
attempts to solve existing problems in the theory of gravity.

In the first place, it is the case for the affine theories of gravity, both met-
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ric affine [1, 2] and gauge affine [3, 4]. In this context, special linear group
plays the role that the Lorentz group has within the standard, Poincaré
based theory of gravity. Flat space-time symmetry here is Rn ∧ GL(n,R),
i.e. semidirect product of translations in n dimensions with a subgroup of all
homogenous linear transformations of these n dimensions. Already at this
level understanding of the particle content of the models requires knowledge
of the special linear group representations (which are the key step for finding
representations of the entire affine symmetry). The gravitational interac-
tion is introduced by localization of the affine symmetry, while the neces-
sary symmetry breaking can be induced in various ways. Matrix elements
of SL(n,R) group and of the SL(n,R) double covering group SL(n,R) ap-
pear in the interaction vertex terms. The detailed knowledge of the special
linear group representations is particularly needed for the construction of
concrete symmetry breaking scenarios [5].

Knowledge of representations of the special linear group, in particular
of the, so called, spinorial representations is needed already in the anal-
ysis of the classical Einstein’s theory of gravity. Namely, general linear
group is the homogenous part of the diffeomorphism group Diff(n,R) and
the (world) tensors in the general theory of gravity transform according
to the corresponding representations of exactly GL(n,R). Therefore, the
most straightforward and natural way to introduce spinorial matter in gen-
eral relativity would be via fields that transform with respect to spinorial
representations of the general linear group (so called world spinors) [6, 7].
Spinorial representations are those which, after symmetry reduction to the
(pseudo)orthogonal subgroup of the general linear group (one correspond-
ing to physical rotations), decompose into spinorial representations of the
orthogonal group. The very existence of the spinorial representaions of the
general linear, i.e. of the special linear group has been long unknown (up
to eighties, [6]) due to the fact that all such representations are necessarily
infinite dimensional. This fact certainly complicates finding and application
of this type of representations, but does not diminish its physical relevance.

In last decade or two, general linear group appears in the papers also as
an important subgroup in supersymmetry models with, so called, tensorial
central charges [8, 9, 10, 11, 12, 13, 14, 15, 16]. In these models super-
Poincaré symmetry in n dimensions is extended by adding of n(n − 1)/2
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generalized momenta (”tensorial charges”) to the set of n standard gen-
erators of the space-time translations. Altogether they comprise a set of
n(n + 1)/2 operators, transforming as a second order symmetric tensor
w.r.t. (with respect to) the general linear group GL(n,R) that here extends
and replaces the Lorentz group.1 Such a generalization of the Poincaré su-
peralgebra is additionally important as it corresponds to the symmetry of
the M-theory [17, 18, 19, 20, 21, 22], so that it is also called M-algebra.
Gravitational interaction ca be introduced in these models also by localiza-
tion of GL(n,R) symmetry. Thus the importance of detailed knowledge of
representations of general (special) linear group in this context is also clear.

Special linear group corresponds to volume conserving transformations
(i.e. area conserving in the two dimensional case). This makes the group
relevant also in all cases where dynamics of the system is such that some
volume (area) is conserved. Such situations occur in the context of strings
and branes [23, 24].

To summarize, knowledge of SL(n,R) group/sl(n,R) algebra and its
representations is of extreme importance in theory of gravity and theories
of extended objects (in these examples it is usually enough to know rep-
resentations of sl(n,R) algebra, i.e. of the generators of SL(n,R) group).
These representations, as well as the context of their physical applications,
have many specific properties.

First of all, in physics we are often interested in unitary representations,
and since we are here dealing with a noncompact group, it is well known
that all such representations are infinite dimensional. Next, SL(n,R) group
has its double cover group SL(n,R). This is most easily seen via Iwasawa
decomposition SL(n,R) = NAK: nilpotent (N) and abelian (A) subgroups
are simply connected, so the covering of the entire group is determined by
the covering of the maximal compact subgroup K – in this case SO(n)
that, as it is well known, has double cover Spin(n) ≡ SO(n). If we are
interested in models that include fermionic matter, the representations of
the double covering group SL(n,R) (that is GL(n,R)) are of the utmost

1We note that this symmetry significantly differs from the affine symmetry even in the
bosonic part, since the abelian subgroup generators, i.e. generalized momenta, transform
as symmetric tensors of the second order in one case and as the n-dimensional vector
representations of GL(n,R) in the second case.
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interest, since among these representations are those that decompose into
spinorial representations of the (pseudo)orthogonal subgroups. Additional
mathematical difficulty is the fact that all these spinorial representations are
infinite dimensional, irrespectively of their unitarity properties [25, 6, 26].

Physical context also determines the basis of the representations space:
to differentiate between fields of different spins, we usually need to know
form of the symmetry generators in basis of the (pseudo)orthogonal sub-
group SO(m,n − m) ( m depends on the signature of residual symmetry
metrics in the model). This requirement reduces the number of available
mathematical methods for finding of representations: for example, stan-
dard ”canonical” approach (induction from maximal parabolic subgroup
[27]) would provide representations in a basis of Cartan subalgebra weight
vectors, and subsequent change of (infinite dimensional) basis is a difficult
task. Additional problem is due to the fact that representations of the spe-
cial linear group in general have nontrivial multiplicity with respect to the
decomposition into (pseudo)orthogonal representations. Therefore, in this
basis it is also necessary to take care of the multiplicity label.

Finally, dimension of the physical space varies from one model to an-
other: (Kaluza-Klein theories, strings, branes) so that a generic (for arbi-
trary n) result in a closed form is highly preferred.

The listed technical requirements make the problem of finding the special
linear group representations in this context very difficult. One possible
solution to this problem, that satisfies all the above criteria, is considered
in this paper. The solution is based on the generalization of the, so called,
Gell-Mann (decontraction) formula.

Gell-Mann decontraction formula [28, 29, 30, 31, 32, 33] is a transforma-
tion aimed to serve as an ”inverse” to the Inönü-Wigner contraction [34].
More precisely, while the Inönü-Wigner contraction is a singular transforma-
tion, more concretely a limiting procedure, that yields ”contracted algebra”
operators from the operators of the original algebra, the goal of the Gell-
Mann formula is to provide a way to express the operators of the starting
”non-contracted” algebra as functions of the contracted algebra elements.
The concrete expression of the Gell-Mann formula will be written in the
next section.

We are here interested in the case of SL(n,R) group. In this con-



6

text, important is its contraction contraction w.r.t. its maximal compact
subgroup SO(n). This procedure takes sl(n,R) algebra into a semidi-
rect sum of abelian subalgebra of generalized translations and a special
orthogonal algebra: rn(n+1)/2−1

⊎
so(n). Representations of this contracted

group/algebra are much easier to find than the representations of the start-
ing group/algebra (especially since the representations should be given in an
SO(n) adapted basis). Therefore, one approach to obtain representations of
sl(n,R) would be to convert, using the Gell-Mann formula, representations
of contracted rn(n+1)/2−1

⊎
so(n) algebra into representations of sl(n,R).

The problem with this approach comes from the fact that the Gell-
Mann formula is actually only a prescription that is not valid always,
i.e. not for all algebras and all their representations. Moreover, this for-
mula is entirely valid – i.e. as an algebraic identity – only in the case
of (pseudo)orthogonal algebras, that is, for contractions so(m + 1, n) →
rm+n

⊎
so(m,n) so(m,n + 1) → rm+n

⊎
so(m,n) [35, 36]. In other cases,

including the sl(n,R) algebra case, the Gell-Mann formula is valid only for a
certain subset of representations (the validity conditions will be the subject
of the third section). Thus, by using the Gell-Mann formula we can ob-
tain only some of the sl(n,R) representations, amongst whom, for example,
there are neither spinorial nor representations with multiplicity.

On the other hand, in the sl(n,R) case, it is possible to generalize Gell-
Mann formula so to broaden its domain of applicability to all representa-
tions, including both unitary and nonunitary, both multiplicity free and
with multiplicity, both tensorial and spinorial. As a direct mathematical
application of the generalized formula, a closed expression for matrix ele-
ments of SL(n,R) generators can be given – for an arbitrary (irreducible)
representation, for arbitrary n, in the basis of the orthogonal subgroup. Due
to the close relation of sl(n,R) and su(n) algebra, the same can be done
also in the case of special unitary group/algebra.

This paper is organized as follows: the subjects of the next section are
Inönü-Wigner contraction and the original form of the Gell-Mann decon-
traction formula; in the third section we will concentrate on the particular
case of sl(n,R) algebras and discuss the domain of validity of the formula
for these algebras; the fourth section deals with the generalization of the for-
mula; the fifth section contains discussion of the applicability of the formula
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in the context of affine gravity models; sixth section contains a summary
of the paper; Appendix contains Clebsch-Gordan coefficients of the SO(5)
group necessary for finding explicit matrix values in the considered five
dimensional case.
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2 Inönü-Wigner contraction and the Gell-

Mann decontraction formula

2.1 Contraction

Inönü and Wigner have long ago introduced the notion of algebra contrac-
tion, in order to mathematically describe transition from the relativistic
Poincare symmetry to non-relativistic Galilei symmetry in the limit of in-
finite velocity of light [34]. At the basic of the contraction idea is the
observation that change of basis Ai of algebra A:

Ai → A′
i = X j

i Aj (1)

can transform algebra A into a non-isomorphic algebra A′ if the transfor-
mation coefficients X j

i are singular. This type of transformation is called
Inönü-Wigner contraction if the singular transition coefficients can be ob-
tained as a limit, when some parameter ϵ approaches zero, of otherwise
non-singular transformation coefficients linear in ϵ: X j

i = X j
i (ϵ). In such

a case, new structural constants of algebra A′ have well defined limit if
and only if algebra A contains a subalgebra M with respect to which the
contraction is done in the following way:

M → M′ = M, T → T ′ = ϵT

where A = M + T and A′ = M′ + T ′. We say that the algebra was
contracted with respect to subalgebra M (that remained unaltered), and
the elements T ′ we call ”contracted”. Contracted elements form an abelian
ideal T ′ of algebra A′, since in the limit ϵ → 0 it holds [T ′

i , T
′
j ] = ϵ2Ca

ijM
′
a +

ϵCk
ijT

′
k = 0, where M ′

a ∈ M′, T ′
i ∈ T ′, and Ci

jk are structural constants of
algebra A.

When the limit of structural constants is well defined, some other prop-
erties of the contracted algebra can be also found as a limit of the properties
of the starting algebra – eg. group parameters, matrix elements of the op-
erators, representation space basis vectors, Casimir operators. [34].

In this way, simultaneous Inönü-Wigner contraction of spatial momenta
and boost generators transforms Poincare algebra into Galilei one (that
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is, by contraction w.r.t. subgroup generated by spatial rotations and time
translation). Another example of Inönü-Wigner contraction is a transfor-
mation of three dimensional rotation algebra into Euclidean algebra in two
dimension, or contraction of (anti)de Sitter algebra into Poincare algebra
(by contraction of four generalized rotations into four-momenta: Pµ = ϵM4µ,
where Mµν ∈ so(3, 2) or Mµν ∈ so(4, 1)).

In the case of sl(n,R) algebras we are interested in the contraction w.r.t.
the maximal compact subalgebra so(n). Algebra sl(n,R) contains n(n −
1)/2 elements of rotational subalgebra Mab ∈ M = so(n), a, b = 1, 2, ..., n
(corresponding to antisymmetric real matrices , Mab = −Mba) and n(n +
1)/2− 1 noncompact generators Tab ∈ T , a, b = 1, 2, ..., n (corresponding to
traceless symmetric real matrices Tab = Tba). In the context of space-time
symmetries and deformations of rigid bodies, the latter are known as shear
generators.

Structural relations of the special linear algebra, in Cartesian basis, are:

[Mab,Mcd] = i(δacMbd + δadMcb − δbcMad − δbdMca), (2)

[Mab, Tcd] = i(δacTbd + δadTcb − δbcTad − δbdTca), (3)

[Tab, Tcd] = i(δacMdb + δadMcb + δbcMda + δbdMca). (4)

Inönü-Wigner contraction w.r.t. the maximal compact subgroup is given
by the following limit:

Uab ≡ lim
ϵ→0

(ϵTab). (5)

Relations of the contracted algebra are:

[Mab,Mcd] = i(δacMbd + δadMcb − δbcMad − δbdMca) (6)

[Mab, Ucd] = i(δacUbd + δadUcb − δbcUad − δbdUca) (7)

[Uab, Ucd] = 0. (8)

(Above we used the notation U instead of T ′ for the contracted elements,
to avoid excessive use of prime symbols.)

The connection of the two algebras, established by this contraction pro-
cedure, can be used to obtain certain classes of representations of the con-
tracted algebra from the known representations of the starting algebra.
However, more often it would be of a greater practical merit to establish
the opposite type of relation, which is the subject of the next subsection.
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2.2 Decontraction

As we saw, the Inönü-Wigner contraction of the sl(n,R) algebra yields
a semidirect sum rn(n+1)

2
−1

⊎
so(n), where rn(n+1)

2
−1

is abelian subalgebra

(ideal) of ”translations” in n(n+1)
2

− 1 dimensions. If we knew representa-
tions of the special linear algebra, by contraction procedure we could obtain
certain classes of representations of this semidirect sum algebra. However,
in this case (and in most of the others, as the matter in fact) this is of
not much practical use for finding representations. Namely, it is here much
more easy to find, by using direct methods of representation theory, repre-
sentations of the contracted algebra than of the starting special linear one.
Therefore, of a great utility would be a method that would allow us the
opposite: to get representations of the sl(n,R) starting from known repre-
sentations of the contracted semidirect sum. It this sense, instead of the
limit (5) that expresses elements of the contracted algebra as functions of
the starting one, it would be good to have expressions for the elements of
the sl(n,R) as functions of rn(n+1)

2
−1

⊎
so(n) operators.

An attempt to establish this type of connection resulted in the Gell-
Mann formula [31, 32, 33, 37]. This formula, in its basic form, first time
appeared in a paper of Dothan and Ne’eman, back in 1966 [28], and was
known as the ”decontraction” formula at the time [29, 30]. The formula was
largely advocated by Hermann [33, 32], who, on the other hand, had learnt
about it from Gell-Mann. Not knowing the details of its genesis, he referred
to it as the ”Gell-Mann formula”. Under this latter name the formula
is nowadays known in some textbooks [32] and even in a mathematical
encyclopedia [31].

As it traveled a long road since its birth, this formula now appears in a
few variants and forms. First we give a definition close to the one given in
the encyclopedia [31].

Let A be a symmetric Lie algebra A = M + T with subalgebra M, so
that it holds:

[M,M] ⊂ M, [M, T ] ⊂ T , [T , T ] ⊂ M. (9)

Let A′ be its Inönü-Wigner contraction w.r.t. the subalgebra M. Then
A′ = M′ + U and exists an isomorphism of vector spaces π : A → A′,
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given by the Inönü-Wigner contraction, such that π(M) = M′, π(T ) = U ,
[π(M), π(A)] = π([M,A]) and [π(T1), π(T2)] = 0 where M ∈ M, A ∈ A
T1, T2 ∈ T . Let U2 denote quadratic element of the enveloping algebra of
subalgebra U that is invariant w.r.t. action of subalgebra M′. If D′ is a
representation of A′ such that D′(U2) is a multiple of the unit operator,
then the Gell-Mann formula for the representations D of algebra A is:

D(T ) = α[D′(C2), D
′(π(T ))] + σD′(π(T )), D(M) = D′(π(M)), (10)

where T ∈ T ,M ∈ M, C2 is a second order Casimir operator of the en-
veloping algebra of M′, α is a constant dependant upon D′(U2) and σ is an
arbitrary parameter.

In a mathematically less rigorous way, but closer to the original formu-
lation, the formula can be written as the following operator expression:

Tµ = i
α′

√
U2

[C2(M), Uµ] + iσUµ, (11)

where Tµ ∈ T , Uµ ∈ U and we assume, just as in the above definition, that
the algebra A = M + T is Inönü-Wigner contracted into A′ = M + U ,
with Tµ → Uµ. C2(M) is quadratic Casimir of the algebra M, α′ is a
constant, and σ is an arbitrary parameter. By writing the square root of U2

(U2 is defined above) as a normalization in the denominator we cancel the
dependance of α on U2, that was present in the formulation (10). In this
way we can frite the formula, at least formally, as an operator expresson,
unlike the relation (10) that is given at the representations level. This form
makes apparent the goal of the formula: to express the operators of the
starting algebra as functions of contracted algebra elements.

It is of great importance to establish the domain of validity of the
formulas (10) and (11). There is a number of papers on this subject
[33, 32, 35, 36]. It is known that the formula is valid for almost all rep-
resentations in the case of contractions so(m+1, n) → rm+n

⊎
so(m,n) and

so(m,n + 1) → rm+n

⊎
so(m,n) (problems exist only with representations

where U2 is represented as 0) [35, 36]. Namely, in these cases the relation
(11) can be checked to satisfy proper commutation relations.

For example, let the operators Mab, a, b = 1, 2, ..., n satisfy so(n) algebra
commutation relation and let define contraction w.r.t. so(n− 1) sublagebra
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as a limit of transformation Pi = ϵMni, i = 1, 2, ..., n−1. Contracted algebra
satisfies:

[Mij,Mkl] = i(δikMjl + δilMjk − δjkMil − δjlMki), (12)

[Mij, Pk] = i(δikPj − δjkPi) (13)

[Pi, Pj] = 0. (14)

We can explicitly check that the Gell-Mann formula will, in this case, be
indeed inverse to the contraction: operators Mni, defined as in (11) as:

Mni =
i

2
√∑n−1

j=1 (Pj)2
[1
2

n−1∑
j,k=1

(Mjk)
2, Pi] + iσPi, i = 1, 2, ..., n− 1, (15)

together with subalgebra elements Mij, i, j = 1, 2, ..., n−1 will again satisfy
structural relations of so(n) algebra (we had to fix the value of constant
α′ = 1

2
). As the matter in fact, since Pi obviously transform according the

the vector representation of the so(n− 1) subalgebra, it remains to check:

[Mni,Mnj] = − i

16
√
P 2
[{Mkl, δikPl − δilPk}, {Mk′l′ , δik′Pl′ − δil′Pk′}]

= · · · = i√
P 2
PkPlδ

klMij
P 2 ̸=0
= iMij. (16)

In the above expressions we implied summation convention and Euclidian
metrics δij with respect to the first n−1 coordinates and the curly brackets
denote anticommutator. Therefore, we see that in the case of this algebra,
the Gell-Mann formula is completely valid, that is, as an algebraic identity
(apart from the special case of contracted algebra representations satisfying
P 2 = 0, when the very formula expression is ill defined).

Unfortunately, the (pseudo)orthogonal algebras are also the only class
of of algebras where the Gell-Mann formula is valid in such, algebraic sense.
For example, we can try to apply the same Gell-Mann prescription in the
sl(n,R) case. In that case, the Gell-Mann formula tells us to look for
the sheer generators as the following functions of the contracted algebra
elements (6)-(8):

Tab =
iα√∑
(Ucd)2

[C2(so(n)), Uab] + σUab. (17)
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For the sake of later comparison, we mention that the same expression can
be also written as:

Tab = − 2α√∑
(Ucd)2

∑
c

Uc{aMb}c + σ′Uab, (18)

where σ′ differs from σ, and { } denotes antisymmetrization of the indices
in the bracket.

However, if we calculate commutators of so defined shear generators, it
will turn out that they do not satisfy sl(n,R) commutation relation (4),
more precisely, that additional terms appear on the righthand side. These
additional terms are, in general, nonzero, rendering the formula inapplica-
ble. Only in certain representations of the contracted algebra these terms
vanish, and for that subclass of representations of the contracted algebra
the Gell-Mann formula is valid, resulting in the corresponding subset of
representations of the special linear algebra.

The situation is similar in the case of other algebras and their contrac-
tions – although the formula is not satisfied algebraically, it can still be valid
for a certain subclass of representations. A partial answer to the question
of what subclasses these precisely are was given by Hermann in [33] and
[32]. However, he did not even attempt to give the complete answer, con-
centrating, as he said, to ”what seems to be the simplest case” and ignoring
the cases when the little group (in Wigner’s terminology) is nontrivially
represented.

On the other hand, this question (for the case of sl(n,R) algebras) is of
extreme importance for us, since in the cases when the formula is applicable
we have an extremely simple and convenient expression for representation of
operators of the special linear algebra. Therefore, the conditions for validity
of the Gell-Mann formula in the sl(n,R) case will be discussed in the next
section.
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3 Domain of validity of the Gell-Mann for-

mula for sl(n,R)

3.1 Mathematical framework

In order to make use of the Gell-Mann formula to obtain the sl(n,R) rep-
resentations, the first necessary step is to determine representation matrix
elements of the contracted algebra operators. The corresponding contracted
group is a semidirect product of SO(n) and an Abelian group, and it is well
known that the usual group induction method provides the complete set of
all inequivalent irreducible representations [38]. Nevertheless, we will not
pursue the induction approach here. Instead, we will rather proceed to work
in the representation space of square integrable functions L2(Spin(n)) over
the Spin(n) group (in accord with the SL(n,R) topological properties),
with the standard invariant Haar measure. As for our final goal, this ap-
proach ensures certain advantages: (i) The generalized Gell-Mann formula
is expressed in terms of tensor operators w.r.t. the maximal compact sub-
group basis (instead w.r.t. the eigenvector basis of the Abelian subgroup),
(ii) This representation space contains all inequivalent irreducible represen-
tations of the contracted group (some of the irreducible representations are
multiply contained, i.e. each such representation appears as many times as
is the dimension of the corresponding little group representation and all of
them, irrespectively of the corresponding stabilizer, can be treated in an
unified manner), and (iii) this space is rich enough to contain all represen-
tatives from equivalence classes of the SL(n,R) group, i.e. sl(n,R) algebra
representations [40]. The last feature provides the necessary requirement
of a framework needed for generalization of the Gell-Mann formula, i.e. a
unique framework providing for all sl(n,R) (unitary) irreducible represen-
tations.

The generators of the contracted group are generically represented in
this space as follows.

Space L2(Spin(n)) is the space of the vectors:

|ϕ⟩ =
∫
Spin(n)

ϕ(g) |g⟩ dg, g ∈ Spin(n), (19)
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where ϕ(g) denotes a square integrable function on the Spin(n) group, |g⟩
are (generalized) basis vectors of group elements, and dg is a (normalized)
Haar measure.

Operators of so(n) subalgebra act on these vectors in a natural way:

Mab |ϕ⟩ = −i
d

dt
exp(itMab)

∣∣∣
t=0

|ϕ⟩ ,

where the action of element g′ of the Spin(n) group on an arbitrary vector
|ϕ⟩ ∈ L2(Spin(n)) is determined by right group action on basis vectors |g⟩
of this space:

g′ |ϕ⟩ = g′
∫

ϕ(g) |g⟩ dg =

∫
ϕ(g) |g′g⟩ dg, g′, g ∈ Spin(n). (20)

The abelian operators Uab (5) of the contracted algebra in this basis act
multiplicatively as Wigner’s D-functions (SO(n) group matrix elements as
functions of the group parameters):

Uab → |u|Dw(ab)(g
−1) ≡ |u|

⟨
w

∣∣∣∣ (D (g))−1

∣∣∣∣ ab

⟩
, (21)

|u| being a constant norm, g being an SO(n) element, and in order to
simplify notation we denote by (in a parallel to the Young tableaux) the

symmetric second rank tensor representation of SO(n). The vector

∣∣∣∣ ab

⟩
from the representation space is determined by the ab “double” index of

Uab, whereas the vector

∣∣∣∣ v

⟩
can be an arbitrary vector belonging to the

1
2
n(n+1)− 1 dimensional representation (the choice of v is determined,

in Wigner’s terminology, by the little group of the obtained representation).
Taking an inverse of g in (21) ensures the correct transformation properties.
The form of the representation of the Abelian operators merely reflects the
fact that they transform as symmetric second rank tensor w.r.t so(n) (7)
and that they mutually commute.

A natural discrete orthonormal basis in the L2(Spin(n)) representation
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space is given by properly normalized Wigner D-functions:{∣∣∣∣ {J}{k}{m}

⟩
≡
∫

√
dim({J})D

{J}
{k}{m}(g

−1)dg |g⟩
}
, (22)⟨

{J ′} {J}
{k′}{m′} {k}{m}

⟩
= δ{J ′}{J}δ{k′}{k}δ{m′}{m},

where D
{J}
{k}{m} are matrix elements of Spin(n) irreducible representations:

D
{J}
{k}{m}(g) ≡

⟨
{J}
{k}

∣∣∣∣D{J}(g)

∣∣∣∣ {J}
{m}

⟩
. (23)

Here, {J} stands for a set of the Spin(n) irreducible representation labels,
while {k} and {m} labels enumerate the dim(D{J}) representation basis
vectors.

An action of the so(n) operators in this basis is well known, and it can
be written in terms of the Clebsch-Gordan coefficients of the Spin(n) group
as follows:⟨

{J ′}
{k′}{m′}

∣∣∣∣Mab

∣∣∣∣ {J}{k}{m}

⟩
= δ{J ′}{J}

√
C2({J}) C{J} {J ′}

{m}(ab){m′}
, (24)

where denotes Spin(n) representations of second order antisymmetric
tensors.

The matrix elements of the Uab operators in this basis are readily found
to read: ⟨

{J ′}
{k′}{m′}

∣∣∣∣Uw
ab

∣∣∣∣ {J}{k}{m}

⟩
= |u|

⟨
{J ′}
{k′}{m′}

∣∣∣∣D−1
w(ab)

∣∣∣∣ {J}{k}{m}

⟩
= |u|√dim({J ′})dim({J})

∫
D

{J ′}∗
{k′}{m′}(g)Dw(ab)(g)D

{J}
{k}{m}(g)dg (25)

= |u|
√

dim({J})
dim({J′})C

{J} {J ′}
{k} w {k′} C {J} {J ′}

{m}(ab){m′} .

A closed form of the matrix elements of the whole contracted algebra
rn(n+1)

2
−1

⊎
so(n) representations is thus explicitly given in this space by

(24) and (25).
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Moreover, we introduce the so called, left action generators K as:

Kab ≡ g(a
′′b′′)(a′b′)D(ab)(a′′b′′)Ma′b′ , (26)

where g(a
′′b′′)(a′b′) is the Cartan metric tensor of SO(n) and D are multi-

plicative operators analogous to operatorsD , but that correspondWigner
D-functions of representation of antisymmetric second order tensors.

The Kµ operators behave exactly as the rotation generators Mµ, apart
from that that they act on the lower left-hand side indices of the basis (22):⟨

{J ′}
{k′}{m′}

∣∣∣∣Kab

∣∣∣∣ {J}{k}{m}

⟩
= δ{J ′}{J}

√
C2({J}) C{J} {J ′}

{k}(ab){k′}
. (27)

Due to the fact that the mutually contragradient SO(n) representations
are equivalent, the Kab operators are directly related to the ”left” action
of the SO(n) subgroup on L2(|g(θ)⟩): g′ |g⟩ =

∣∣gg′−1
⟩
. For this reason

we will refer to the group generated by Kab simply as the left orthogonal
(sub)group. The Kab and Mab operators mutually commute, however, the
corresponding Casimir operators match, i.e.:

1

2

∑
a,b

K2
ab =

1

2

∑
a,b

M2
ab. (28)

Commutators of K and D operators are:

[Kab, D(cd)(ef)] = i(δacD(bd)(ef)+δadD(cb)(ef)−δbcD(ad)(ef)−δbdD(ca)(ef)). (29)

We note that, in complete analogy with operators D and D , it is
possible to introduce also operators D

{J}
{k}{m} that act multiplicatively in the

space L2(Spin(n)) as corresponding Wigner D-functions of representation
{J}. Due to their multiplicative action, these operators obey the same
identities that are standardly fulfilled by the Wigner D-functions.
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3.2 Condition for the validity of the Gell-Mann for-
mula

The problem with validity of the Gell-Mann formula lies in the fact that
commutator of two operators (from the subalgebra T ) constructed by using
this formula does not always belong to the subalgebra M with respect to
which the contraction has been performed (9), as it should. In the sl(n,R)
case that means that the commutator of two shear generators, constructed
by using (17) is not equal to a linear combination of operators from so(n)
subalgebra. That is, the problem is in the relation (4) which is not satisfied
a priori, i.e. without imposing additional conditions. On the other hand,
relation (3) is automatically satisfied by the construction, due to obvious
transformation properties of the Gell-Mann formula constructed operators
Tab w.r.t. the so(n) subalgebra.

To investigate circumstances in which relation (4) holds, we will evalu-
ate this commutator using relations and mathematical framework from the
previous subsection. For the sake of generality of the results, we do not
wish to fix the basis for algebra elements – to stress this, we will use a
single letter indices (e.g. Tµ) instead of Cartesian basis double indices (Tab)

Using (21) and (28), the Gell-Mann formula (17) now reads:

Tµ = iα[C2(so(n))K , Dwµ ] + iσDwµ , (30)

where C2(so(n))K is quadratic Casimir operator of the so(n) subalgebra
expressed using K operators (28):

C2(so(n))K = KiKi. (31)

Starting from the expression (30) and using known properties of Wigner
D-functions, we find:

[Tµ, Tν ] = −2α2[K{i, [Kj}, Dwν ]][Kj, Dwµ ]Ki − (µ ↔ ν)

= · · · = −α2
∑

J

∑
λ,λ′(C J

µ ν λ − C J
ν µ λ)· (32)(

2(C2(J)− 2C2( ))⟨⟨Jλ′|1⊗Ki| w ⟩| w ⟩+

⟨⟨Jλ′|[1⊗Ki, C2(I+II)K ]| w ⟩| w ⟩
)
DJ

λ′λKi.
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The C2(I+II)K operator here denotes the second order Casimir operator
acting in the tensor product of two representations, i.e. C2(I+II)K =∑

i(Ki ⊗ 1 + 1⊗Ki)
2.

The summation index J in (32) runs over all irreducible representations
of the Spin(n) group that appear in the tensor product ⊗ , and λ, λ′

count the vectors of these representations. Since all irreducible representa-
tions terms, apart those for which the Clebsch-Gordan coefficient C J

µ ν λ

is antisymmetric w.r.t. µ ↔ ν vanish, we are left with only two values
that J takes: one corresponding to the antisymmetric second order tensor

and the other one corresponding to the representation that we denote as

. The fact that in the case of sl(n,R) algebras, there is another repre-

sentation term, in addition to , in the antisymmetric product of two
representations (i.e. representations that correspond to abelian U opera-
tors), is in the root of the Gell-Mann formula validity problem. Note that
in the case of the so(m+ 1, n) → iso(m,n), i.e. so(m,n + 1) → iso(m,n))
contractions, where the Gell-Mann formula works on the algebraic level,
the contracted U operators transform as and the antisymmetric prod-

uct of two such representations certainly belongs to the representation
(i.e. to the representation that corresponds to M = so(m,n) subalgebra
operators).

The so(n) Casimir operator values satisfy C2( ) = 2C2( ) = 4n,

implying that one of the two terms vanishes in (32) when J = , leaving
us with:

1
2α2 [Tµ, Tν ] = 4(n+ 2)

∑
λ,λ′C µ ν λ ⟨⟨λ′|1⊗Ki| w ⟩| w ⟩Dλ′λKi−∑

λ,λ′C µ ν λ ⟨⟨λ′|[1⊗Ki, C2(I+II)K ]| w ⟩| w ⟩Dλ′λKi− (33)∑
λ,λ′C µ ν λ ⟨⟨ λ′ |[1⊗Ki, C2(I+II)K ]| w ⟩| w ⟩Dλ′λKi,

where we used that C2( ) = 2n− 4.
As the coefficient α can be adjusted freely, all that is needed for the

Gell-Mann formula to be valid is that (33) is proportional to the appropriate
linear combination of the Spin(n) generators, as determined by the Wigner-
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Eckart theorem, i.e.:

[Tµ, Tν ] ∼
∑
λ

C µ ν λMλ =
∑
λ,i

C µ ν λDiλKi. (34)

We now analyze these requirements, skipping some straightforward tech-
nical details. The third term in (33), containing D functions of the repre-

sentation , is to vanish. Since it is not possible to choose vectors w
so that this term vanishes identically as an operator, the remaining pos-
sibility is to restrain the the space (22) of its domain to some subspace
V = {|v⟩} ⊂ L2(Spin(n)). More precisely, for this term to vanish, there
must exist a subalgebra L ⊂ so(n)K , spanned by some {Kα}, such that
Kα ∈ L ⇒ Kα |v⟩ = 0. Requiring additionally that this subspace V ought
to close under an action of the shear generators, and that the first two
terms of (33) ought to yield (34), we arrive at the following two necessary
conditions:

1. The algebra L, must be a symmetric subalgebra of so(n), i.e.

[L,N] ⊂ N, [N,N] ⊂ L;N = L⊥. (35)

2. The vector

∣∣∣∣ w

⟩
ought to be invariant under the L subgroup action

(subgroup of Spin(n) corresponding to L), i.e.

Kα ∈ L ⇒ Kα

∣∣∣∣ w

⟩
= 0. (36)

The space V is thus Spin(n)/L. In Wigner’s terminology, this means
that L is the little group of the contracted algebra representation, and that
necessarily it is to be represented trivially. Besides, the little group is to be
a symmetric subgroup of the Spin(n) group. This coincides with one class
of the solutions found by Hermann [33]. However, now we demonstrated
that there are no other solutions in the sl(n,R) algebra cases, in particular,
there are no solutions with little group represented non trivially.
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As for the first requirement, an inspection of the tables of symmet-
ric spaces, yields two possibilities: L = Spin(m) × Spin(n − m), where
Spin(1) ≡ 1, and, for n = 2k, L = U(k) (U is the unitary group). However,
this second possibility certainly does not imply another solution, since it
turns out that there is no vector satisfying the second above property.

Thus, the only remaining possibility is as follows,

L = Spin(m)× Spin(n−m), m = 1, 2, . . . , n− 1, Spin(1) ≡ 1. (37)

It is rather straightforward but somewhat lengthy to show that propor-

tionality of (33) and (34) really holds in this case. The vector

∣∣∣∣ w

⟩
exists, and it is the one corresponding to traceless diagonal n × n matrix
diag( 1

m
, . . . , 1

m
,− 1

n−m
, . . . ,− 1

n−m
).

The analysis accomplished above can not be applied directly to the n = 2
case, thus the sl(2,R) case must be treated separately. The maximal com-
pact subgroup SO(2), that is, its double cover Spin(2), has only one genera-
torM , and therefore it has only one-dimensional irreducible representations.
In this case, there are two Abelian generators U± of the contracted group:

[M,U±] = ±U±, [U+, U−] = 0. (38)

Based on these relations, it is easy to verify that the T± operators obtained
by the Gell-Mann construction as:

T± = i[M2, U±] + iσU± (39)

automatically satisfy the sl(2,R) commutation relation:

[T+, T−] = −2M. (40)

Therefore, we demonstrate that the Gell-Mann formula applies to the sl(2,R)
case as well.

The above results can be summarized into a conclusion that the formula
is valid only in Hilbert spaces over Spin(n)/(Spin(m) × Spin(n − m)),
m = 1, 2, . . . , n− 1, Spin(1) ≡ 1.
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3.3 Matrix elements

The presented approach allows us also to write down explicitly the matrix
elements of the sl(n,R) generators in the cases when the Gell-Mann formula
is valid. The possible cases are determined by the numbers n and m. The
corresponding representation space (not irreducible in general) is the one
over the coset space Spin(n)/Spin(m)×Spin(n−m). The proportionality
factor α is determined to be:

α =
1

2

√
m(n−m)

n
, (41)

and, in a matrix notation for representation:∣∣∣∣ w

⟩
=
√

m(n−m)
n

diag(
1

m
, . . . ,

1

m
,− 1

n−m
, . . . ,− 1

n−m
). (42)

The Gell-Mann formula (30), and the matrix representation of the con-
tracted Abelian generators U (25) yield:⟨

J ′

m′

∣∣∣∣Tµ

∣∣∣∣ J
m

⟩
=

i
√

m(n−m)
4n

√
dim(J)
dim(J ′)

(C2(J
′)− C2(J) + σ)C J J ′

0 0 0 C J J ′

m µ m′ .

(43)

The zeroes in the indices of Clebsch-Gordan coefficients here denote vectors
that are invariant w.r.t. Spin(m) × Spin(n − m) transformations (in that

spirit

∣∣∣∣ w

⟩
=

∣∣∣∣ 0

⟩
). In the formula (43), the space reduction from

L2(Spin(n)) to L2(Spin(n)/Spin(m)×Spin(n−m)) implies a reduction of

the basis (22), i.e.

∣∣∣∣ J0m
⟩

→
∣∣∣∣ J
m

⟩
, i.e. only the vectors invariant w.r.t.

left Spin(m)×Spin(n−m) action remain:

∣∣∣∣ J0m
⟩
. By fixing value of the

left index to be zero in the basis (22), we effectively lose multiplicity of the
representation w.r.t. the Spin(n) subgroup.

The expression (43), together with the action of the Spin(n) generators
(24) provides an explicit form of the SL(n,R) generators representation,
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that is labelled by a free parameter σ. Such representations are multiplicity
free w.r.t. the maximal compact Spin(n) subgroup, and all of them are a
priori tensorial. One can obtain from these representations, for certain σ
parameter values, the sl(n,R) spinorial representations as well by explicitly
evaluating the Clebsch-Gordan coefficient and performing an appropriate
analytic continuation in terms of the Spin(n) labels [39, 30].

3.4 Conclusion on the original Gell-Mann formula for
sl(n,R)

In this section, we clarified the issue of the Gell-Mann formula validity
for the sl(n,R) → rn(n+1)

2
−1

⊎
so(n) algebra contraction. We have shown

that the only sl(n,R) representations obtainable in this way are given in
Hilbert spaces over the symmetric spaces Spin(n)/Spin(m)×Spin(n−m),
m = 1, 2, . . . , n− 1. Moreover, by making use of the Gell-Mann formula in
these spaces, we have obtained a closed form expressions of the noncompact
operators (generating SL(n,R)/SO(n) cosets) irreducible representations
matrix elements. The matrix elements of both compact and noncompact
operators of the sl(n,R) algebra are given by (24) and (43), respectively.

In particular, it turns out that, due to Gell-Mann’s formula validity
conditions, no representations with so(n) subalgebra representations mul-
tiplicity can be obtained in this way. Moreover, the matrix expressions of
the noncompact operators as given by (43) do not account a priori for the
sl(n,R) spinorial representations.

Due to mutual connection of the sl(n,R) and su(n) algebras, the results
apply to the corresponding su(n) case as well. The SU(n)/SO(n) genera-
tors differ from the corresponding sl(n,R) operators by the imaginary unit
multiplicative factor, while the spinorial representations issue in the su(n)
case is pointless due to the fact that the SU(n) is a simply connected (there
exists no double cover) group.

In many physics applications one is interested in the unitary irreducible
representations. The unitarity question goes beyond the scope of the present
work, and it relates to the Hilbert space properties, i.e. the vector space
scalar product. An efficient method to study unitarity is to start with a
Hilbert space L2(Spin(n), κ) of square integrable functions with a scalar
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product given in terms of an arbitrary kernel κ, and to impose the unitarity
constraints both on the scalar products itself and on the noncompact opera-
tors matrix elements in that scalar product (cf. [41]). The simplest series of
the sl(n,R) unitary irreducible representations, the Principal series, of the
representations constructed above are obtained when σ = iσI , σI ∈ R\{0},
i.e. when σ takes an arbitrary nonzero pure imaginary value.
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4 Generalization of the Gell-Mann formula

in the sl(n,R) case

4.1 Low dimensional cases sl(3,R) and sl(4,R)
In the previous section we have shown that the Gell-Mann formula in
sl(n,R) case is of a very limited domain of validity. The reason why the
formula (17) is not valid in entire space L2(Spin(n)) can be understood in
the following way. While the sl(n,R) operators Mab are invariant w.r.t. the
left action of the Spin(n) group in this space, i.e. they commute with op-
erators Kab, it is not the case with the shear generators Tab, as constructed
by using the Gell-Mann formula (17). These transformation properties of
shear generators Tab are inherited from the corresponding operators Uab of
the contracted algebra. Their nontrivial transformation properties w.r.t.
the left action of the Spin(n) group are determined by the choice of the
vector w in (21). As a consequence, a commutator of two such operators
a priori will also have nontrivial transformation properties w.r.t. SO(n)K
group (the one generated by Kµ).

Therefore, unlike Mµ, this commutator is not scalar w.r.t. SO(n)K ac-
tion, so that commutation relation (4) is not satisfied. In certain cases it is
possible to restrict representations space to a subspace in such a way that
only SO(n)K invarian part of commutator [Tµ, Tν ] remains. That is exactly
what happens in the cases discussed in the last section, when the Gell-Mann
formula is valid.

This analysis gives a motivation to attempt to modify the formula by
adding some terms proportional to the generators of the left SO(n)K group,
in such a way to cancel the unwanted terms in the commutator [Tµ, Tν ]. In-
deed, such a generalization of the Gell-Mann formula can be effectively read
out from the known form of the matrix elements for sl(3,R) representations
with multiplicity. Namely, in the form of sl(3,R) matrix element expression
from the paper [41] it is possible to recognize terms that correspond to the
Gell-Mann formula, together with certain additional terms. Therefore, in
the n = 3 case, using the results of [41] we can directly write:

Tµ = σD2
0µ+

i√
6
[C2(so(3)), D

2
0µ]+ i(D2

2µ−D2
−2µ)K0+δ(D2

2µ+D2
−2µ). (44)
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We used the standard spherical basis for Spin(3) representations, with
representations here corresponding to J = 2, and the vectors within this
representation are labeled by µ = 0,±1,±2. Complex numbers σ and δ
are parameterizing the representations of the sl(3,R) group. The first two
terms we recognize as the original Gell-Mann formula (30), with vector
w chosen to be invariant w.r.t. the action of the K3 (i.e. chosen is vector
|J = 2, µ = 0⟩. The additional terms to the “original” Gell-Mann formula
secure that the Tµ operators satisfy the commutation relation (4) in the
entire representation space. Note that there are two sl(3,R) representation
labels σ and δ, matching the algebra rank, contrary to the case of the
original Gell-Mann formula whose single free parameter cannot account for
the entire representation labeling. Notice also that additional terms in the
formula (44) change value of projection K3, that is, action of these terms
on vector form the basis (22) will change the multiplicity label k (in general
leading to nontrivial multiplicity of the representations).

The generalized expression (44) contains the original formula as a special
case: by restricting the representation space L2(Spin(3)) to the subspace of
k = 0 (that is the subspace L2(Spin(3)/Spin(2))), and choosing δ = 0 one
arrives at the multiplicity free representations that were obtained by using
the original formula. Moreover, the generalized Gell-Mann formula allows
one to obtain some sl(3,R) multiplicity free representations that cannot be
reached by making use of the original formula. For example, with the choice
σ = 3

2
, and δ = −1

2
[42], a subspace spanned by the following vectors (linear

combinations of basis vectors with different k values):

{
|

1
2
m

>′= |
1
2
1
2

m
> +|

1
2

− 1
2

m
>,

|
5
2
m

>′= |
5
2
5
2

m
> +

√
5
2
|

5
2
1
2

m
> +

√
5
2
|

5
2

− 1
2

m
> +|

5
2

− 5
2

m
>,

|
9
2
m

>′= |
9
2
9
2

m
> +|

9
2
5
2

m
> +

√
7
2
|

9
2
1
2

m
> +

√
7
2
|

9
2

− 1
2

m
> +|

9
2

− 5
2

m
> +|

9
2

− 9
2

m
>, . . .

} (45)

is invariant w.r.t. the action of sl(3,R) operators. At the same time, sub-
spaces with fixed value of are here one dimensional and the values of are
half-integer. Therefore, this is an example of a spinorial multiplicity free
sl(3,R) representation. More precisely, this is the unique unitary sl(3,R)
spinorial multiplicity free representation sl(3,R), and this representation
cannot be obtained by application of the original Gell-Mann formula (with-
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out resorting to certain analytical continuation of the Clebsch-Gordan co-
efficient expressions [41]).

Matrix elements of the sl(4,R) representations with multiplicity are also
known (n = 4 is the largest dimension with known matrix elements). The
Gell-Mann formula thus can similarly be generalized in the case of the
sl(4,R) algebra. Again, by extracting from the known matrix elements
of the sl(4,R) representations with multiplicity [30], we find:

Tµ1µ2 = i
(
σD11

00µ1µ2
+ 1

2
[C2(so(4)), D

11
00µ1µ2

]

+δ1(D
11
11µ1µ2

+D11
−1−1µ1µ2

) + (D11
11µ1µ2

−D11
−1−1µ1µ2

)(K10
00 +K01

00) (46)

+δ2(D
11
−11µ1µ2

+D11
1−1µ1µ2

) + (D11
−11µ1µ2

−D11
1−1µ1µ2

)(K10
00 −K01

00)
)
,

where we used Spin(4) ⊃ (Spin(2)× Spin(2)) basis and µ1, µ2 = 0,±1. As
the rank of the sl(4,R) algebra is three, there are precisely three represen-
tation labels σ, δ1, and δ2 (if complex, only three real are independent).

As in the sl(3,R) case, the generalized formula reduces, for certain values
of the labels δ1 = δ2 = 0, in a representation subspace defined by K10

00 =
K01

00 = 0 (i.e. in the subspace L2(Spin(4)/(Spin(2) × Spin(2)))) to the
original Gell-Mann formula.

If we express the generalized Gell-Mann formula for sl(4,R) in a basis
that corresponds to the subgroup chain Spin(4) ⊃ Spin(3) ⊃ Spin(2), we
obtain:

Tj,µ = γ1D
11
0 j
0 µ

− i
√
3

4
[C2(so(4)), D

11
0 j
0 µ

]+

γ2D
11
2 j
0 µ

+ i√
6
[C2(so(3))K , D

11
2 j
0 µ

]+ (47)

γ3(D
11
2 j
2 µ

+D
11
2 j
− 2µ

) + (D
11
2 j
2 µ

−D
11
2 j
− 2µ

)(K
10
1
0

+K
01
1
0
),

where j = 0, 1, 2, |µ|≤ j, and C2(so(3))K denotes quadratic Casimir opera-
tor of the left SO(3) subgroup, generated by

{K
10
1
− 1

+K
01
1
− 1

, K
10
1
0

+K
01
1
0
, K

10
1
1

+K
01
1
1
}

(in Cartesian basis: {K12, K23, K31}). We note that in subspace L2(Spin(4))
it holds C2(so(4)) ≡ C2(so(4))M = C2(so(4))K , but this connection does
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not exist for the Casimir operators of the subalgebras, i.e. C2(so(3))M ̸=
C2(so(3))K ! Relation of the parameters used in (46) and (47) is iσ =

− 1√
3
γ1+

√
2
3
γ2−2i, δ1 = γ3, and δ2 =

1√
3
γ1+

1√
6
γ2−2i. From this form of the

expression can be easily seen that, if we choose γ2 = γ3 = 0, the generalized
formula reduces to the original one in the subspace L2(Spin(4)/Spin(3)),
since in that subspace the additional terms vanish (and only the first row
of the expression remains).

4.2 Generalization of the Gell-Mann formula for sl(5,R)
In the previous subsection, thanks to the known matrix elements of the
sl(n,R), n = 3, 4 representations with multiplicity, we generalized Gell-
Mann formula for the SL(3,R) and SL(4,R) groups, finding a formula that
is valid in entire space of square integrable functions over the compact sub-
group. In this subsection we will construct a generalization of the Gell-Mann
formula for sl(5,R) case and, as a direct application, we will derive matrix
elements of sl(5,R) generators for arbitrary irreducible representation. This
approach to the problem of finding matrix elements is particularly impor-
tant since the matrix elements for sl(3,R) and sl(4,R) were in [41] and [30]
found in a very computationally involved way, that would be difficult to
repeat for the higher dimensional sl(5,R) case.

As a hint toward a way to generalize the formula in n = 5 case we
note a certain recursive pattern in transition from n = 3 to n = 4 can be
seen by comparing the expressions (44) and (47). Namely, in the formula
(47) all additional terms coincide with the generalized formula for sl(3,R)
itself (44), where only the quadratic Casimir operator C2(so(3)) is replaced
by C2(so(3))K . It turns out that transition from n = 4 to n = 5 can be
obtained in a similar manner.

Let us recall first some basic so(5) algebra representation notions. The
so(5) algebra is of rang two, and its irreducible representations are labeled
by a pair of labels (J1, J2), resembling the so(4) labeling. The complete
labeling of the representation space vectors can be achieved by making use
of the subalgebra chain: so(5) ⊃ so(4) = so(3)⊕so(3) ⊃ so(2)⊕so(2). The
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basis of the so(5) algebra representation space can be taken as in [43, 44]:
∣∣∣∣∣∣
J1 J2

J1 J2
m1 m2

⟩
, J i = 0,

1

2
, . . . ; J1 ≥ J2; |mi|≤ Ji, i = 1, 2

 . (48)

The admissible values of J1 and J2, within an irreducible representation
(J1, J2) are given in [45]. Now, the basis of the so(5) algebra, i.e. the
Spin(5) group, representation space vectors (22) is given as follows:

∣∣∣∣∣∣
J1 J2

K1 K2 J1 J2
k1 k2 m1 m2

⟩ . (49)

The ten so(5) algebra operators, generating the adjoint representation
of Spin(5), transform, in notation (48), under the representation (1, 0).
Their so(4) subalgebra representation content is: (1, 0) → (1, 0) ⊕ (1

2
, 1
2
)

⊕ (0, 1). The shear operators transform under the 14-dimensional so(5)
irreducible representation (1, 1) of so(5) which contains (1, 1), (1

2
, 1
2
) and

(0, 0) representation upon reduction to so(4):{
T j1j2µ1µ2

}
=
{
T 1 1

µ1µ2
, T 1

2
1
2µ1µ2

, T 00
00

}
.

Now, by analogy to the transition from n = 3 to n = 4 (44, 47) we will
make the following educated guess for the form of the sl(5,R) generalized
Gell-Menn formula:

T j1j2µ1µ2
= σ1D

11
00j1 j2
00µ1µ2

+ iα5[C2(so(5)), D
11
00j1 j2
00µ1µ2

]

+i

(
σ2D

11
11j1 j2
00µ1µ2

+ 1
2
[C2(so(4)K), D

11
11j1 j2
00µ1µ2

]

−D
1 1
1 1 j1 j2
1−1µ1µ2

(δ1 +K 10
10
00 −K 10

01
00 )−D

1 1
1 1j1 j2− 11µ1µ2

(δ1 −K 10
10
00 +K 10

01
00 )

+D
11
11j1 j2
11µ1µ2

(δ2 +K 10
10
00 +K 10

01
00 ) +D

1 1
1 1 j1 j2− 1−1µ1µ2

(δ2 −K 10
10
00 −K 10

01
00 )

)
,

(50)
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where ji = 0, 1
2
, 1, |µi|≤ ji, i = 1, 2, the representation labels σ1, σ2, δ1

and δ2 are arbitrary (complex) parameters (four real are independent), and
C2(so(4)K) denotes the quadratic Casimir operator of the left action so(4)K
algebra. Coefficient α5 is determined from the requirement that that com-
mutation relations of the [T, T ] ⊂ M type should be satisfied (4). And
indeed, with the choice α5 =

1√
5
this relation can be checked to hold.

Unlike the sl(n,R), n = 3, 4 cases where we started from the known
expressions for matrix elements of the shear oeprators, here, in the case of
sl(5,R) algebra, using the obtained generalization of the Gell-Mann formula
(50) we can now derive matrix elements for arbitrary sl(5,R) representation
(given by the parameters σ1, σ2, δ1 and δ2).

Matrix elements of the sl(5,R) shear generators are:⟨
J
′
1 J

′
2

K′
1K

′
2J

′
1 J ′

2
k′1 k′2 m′

1m
′
2

∣∣∣∣T j1j2µ1µ2

∣∣∣∣ J1 J2

K1K2J1 J2
k1 k2 m1m2

⟩
=

√
dim(J1,J2)

dim(J
′
1,J

′
2)
C

J1J2 1 1 J
′
1J

′
2

J1 J2 j1j2 J′
1 J′

2
m1m2 µ1µ2 m′

1m
′
2

×

((
σ1+i

√
4
5
(J

′
1(J

′
1+2)+J

′
2(J

′
2+1)−J1(J1+2)−J2(J2+1))

)
C

J1J2 11 J
′
1J

′
2

K1K2 00 K′
1K

′
2

k1 k2 00 k′
1 k′

2

+ i(σ2+K′
1(K

′
1+1)+K′

2(K
′
2+1)−K1(K1+1)−K2(K2+1))C

J1J2 11 J
′
1J

′
2

K1K2 11 K′
1K

′
2

k1 k2 00 k′
1 k′

2

− i(δ1+k1−k2)C
J1J2 11 J

′
1J

′
2

K1K2 11 K′
1K

′
2

k1 k2 1−1 k′
1 k′

2

− i(δ1−k1+k2)C
J1J2 1 1 J

′
1J

′
2

K1K2 1 1 K′
1K

′
2

k1 k2 −11 k′
1 k′

2

+ i(δ2+k1+k2)C
J1J2 11 J

′
1J

′
2

K1K2 11 K′
1K

′
2

k1 k2 11 k′
1 k′

2

+ i(δ2−k1−k2)C
J1J2 1 1 J

′
1J

′
2

K1K2 1 1 K′
1K

′
2

k1 k2 −1−1 k′
1 k′

2

)
.

(51)

dim(J1, J2) = (2J1 − 2J2 + 1)(2J1 + 2J2 + 3)(2J1 + 2)(2J2 + 1)/6 is the
dimension of the so(5) irreducible representation (J1, J2) [45].

To summarize: matrix elements of (noncompact) shear generators (51),
together with the known matrix elements of the (compact) so(5) operators
(24), give an action of the sl(5,R) algebra on the basis vectors (49) space
over the maximal compact subgroup Spin(5) of the group SL(5,R). This
result is general due to Corollary from the Harish-Chandra paper [40], that
is directly applicable to the case of sl(5,R) algebra.
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4.3 Generalization of the Gell-Mann formula for ar-
bitrary n

The generalized Gell-Mann formulas for sl(3,R), sl(4,R) and sl(5,R) [25]
are given by rather cumbersome expressions. However, when these formulas
are expressed in the Cartesian basis (like formulas (2)-(4)) in terms of the
Kab operators and anti-commutators rather than commutators the resulting
expressions become extremely simple. Moreover, this form allows for an
immediate generalization to the case of an arbitrary n. We prove below
that the generalized Gell-Mann formula for any sl(n,R) algebra w.r.t its
so(n) subalgebra takes the following form::

T σ2...σn

ab = −
n∑

c>d

{Kcd, D(cd)(ab)}+ i
n∑

c=2

σcD(cc)(ab), (52)

where σc is a set of n− 1 arbitrary parameters that essentially (up to some
discrete parameters) label sl(n,R) irreducible representations. Note that
the sum in the first term goes only over pairs (c, d) where c > d i.e. it is not
symmetric in c, d.

Let us begin the proof that the expressions (52) satisfy the sl(n,R)
commutation relation (4) by introducing operators:

T
[c]
ab = −

c−1∑
d=1

{Kcd, D(cd)(ab)}+ iσcD(cc)(ab), c = 2, . . . , n (53)

and expressing the generalized expression (52) as:

Tab =
n∑

c=2

T
[c]
ab . (54)
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Next we calculate the commutator [T
[c]
ab , T

[d]
a′b′ ] for c < d:

[T
[c]
ab , T

[d]
a′b′ ] =

c−1∑
e=1

[−{Kce, D(ce)(ab)},−
d−1∑
f=1

{Kdf , D(df)(a′b′)}]

+
c−1∑
e=1

iσd[−{Kce, D(ce)(ab)}, D(dd)(a′b′)]

+
d−1∑
f=1

iσc[D(cc)(ab),−{Kdf , D(df)(a′b′)}] (55)

=
c−1∑
e=1

[{Kce, D(ce)(ab)}, {Kdc, D(dc)(a′b′)}+ {Kde, D(de)(a′b′)}]

+ 0− iσc[D(cc)(ab), {Kdc, D(dc)(a′b′)}]

= · · · = i
c−1∑
e=1

{Kce, {D(ed)(ab), D(cd)(a′b′)}+ {D(cd)(ab), D(ed)(a′b′)}}

+ 2σc{D(dc)(ab), D(dc)(a′b′)}.

The result is symmetric under the change of pair of indices (ab) ↔ (a′b′),
and similarly can be concluded when c > d. We conclude that for c ̸= d it
holds [T

[c]
ab , T

[d]
a′b′ ] = [T

[c]
a′b′ , T

[d]
ab ], and thus we find::

[Tab, Ta′b′ ] =
∑
c

[T
[c]
ab , T

[c]
a′b′ ] = i

∑
c,d,d′

{Kdd′ , {D(cd)(ab), D(cd′)(a′b′)}}. (56)

By making use of the identity:∑
c(D(cd)(ab)D(cd′)(a′b′) −D(cd′)(ab)D(cd)(a′b′)) (57)

= 1
2
(δaa′D(dd′)(bb′) + δbb′D(dd′)(aa′) + δab′D(dd′)(ba′) + δba′D(dd′)(ab′)),

and the fact that the M generators are given in terms of the K operators

via the D operators (cf. (26)), one verifies the desired expression (4).
Note that the first equality in (56) implies that the overall sign of op-

erators T
[c]
ab is inessential. Moreover, any left rotation (generated by the
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K operators) of the generalized formula (52) will preserve the [T, T ] com-
mutator (4) and thus lead to another valid expression for the generalized
Gell-Mann formula. The generalized formulas related in this way form an
equivalence class of formulas that yield the same set of sl(n,R) irreducible
representations. Besides this class there are a few alternative useful expres-
sions of the generalized Gell-Mann formula. We point out explicitly two
cases below.

Let us consider operators:

U
(cd)
ab ≡ D(cd)(ab), (58)

stressing that D(cd)(ab) is just a particular representation of the Uab operators

(21), characterized by the choice of the vector v to be v = (cd) and |u|= 1.
Then, by making use of the commutation relations to shift the K operators
to the right in (52) we find :

Tab = −2
n∑

c>d

U
(cd)
ab Kcd + i

n∑
c=2

σ′
cU

(cc)
ab . (59)

The parameters in the two forms of the formula are connected by relation:
σ′
c = σc − 2(c− 1).
The last expression for the generalized formula can now be directly com-

pared to the original formula in the form (18). It is as simple as the original
Gell-Mann formula, with a crucial advantage of being valid in the whole
representation space over L2(Spin(n)). General validity of the new formula
is reflected in the fact that there are now n− 1 free parameters, i.e. repre-
sentation labels, matching the sl(n,R) algebra rank, compared to just one
parameter of the original Gell-Mann formula.

Another notable form of the generalized formula relies on the fact that
the operators T [c] (53) can be written as:

T
[c]
ab =

i

2
[C2(so(c)K), U

(cc)
ab ] + iσcU

(cc)
ab , c = 2, . . . , n (60)

where C2(so(c)K) is the second order Casimir of the so(c) left action subalge-
bra, i.e. C2(so(c)K) =

1
2

∑c
a,b=1(Kab)

2. The generalized Gell-Mann formula
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can now be written as:

T σ2...σn

ab = i
n∑

c=2

1

2
[C2(so(c)K), U

(cc)
ab ] + σcU

(cc)
ab , (61)

which is to be compared with the original formula in the form (17). Again,
the generalized formula matches, by simplicity of the expression, the original
one. Besides, the very term when c = n is, essentially, the original Gell-
Mann formula (since C2(so(n)K) = C2(so(n)M)), whereas the rest of the
terms can be seen as necessary corrections securing the formula validity
in the entire representation space. The additional terms vanish for some
representations yielding the original formula.

The generalized Gell-Mann formula expression for the noncompact “shear”
generators Tab holds for all cases of sl(n,R) irreducible representations, ir-
respective of their so(n) subalgebra multiplicity (multiplicity free of the
original Gell-Mann formula, and nontrivial multiplicity) and whether they
are tensorial or spinorial. The price paid is that the Generalized Gell-Mann
formula is no longer solely a Lie algebra operator expression, but an expres-
sion in terms of representation dependant operators Kab and U (cd)ab .

4.4 Direct application – martix elements of SL(n,R)
generators for arbitrary irreducible representa-
tion

The generalized Gell-Mann formula, as given by (61), can be directly applied
to yield all matrix elements of the SL(n,R) generators for all irreducible
representations, characterized by a complete set of labels σi, i = 2, 3, . . . , n
(the invariant Casimir operators are analytic functions of solely these la-
bels), in the basis of the maximal compact subgroup Spin(n). Taking the
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matrix elements of (61) we get:⟨
{J ′}
{k′}{m′}

∣∣∣∣T σ2...σn

ab

∣∣∣∣ {J}{k}{m}

⟩
(62)

=

⟨
{J ′}
{k′}{m′}

∣∣∣∣ i n∑
c=2

1

2
[C2(so(c)K), U

(cc)
ab ] + σcU

(cc)
ab

∣∣∣∣ {J}{k}{m}

⟩
=

i

2

n∑
c=2

(C2(so(c){k′})− C2(so(c){k}) + σc)

⟨
{J ′}
{k′}{m′}

∣∣∣∣U (cc)
ab

∣∣∣∣ {J}{k}{m}

⟩
= i

2

√
dim({J})
dim({J′})

n∑
c=2

(C2(so(c){k′})− C2(so(c){k}) + σc)C
{J} {J ′}
{k}(cc){k′} C {J} {J ′}

{m}(ab){m′} ,

where, in the last equality, the expression (25) for the matrix elements
of the U operators is used. The second Clebsch-Gordan coefficient, that
is merely reflecting the Wigner-Eckart theorem, can be evaluated in any
suitable basis, not necessarily the Cartesian one, due to the fact that the
expression is covariant with respect to the free index (ab). Note, that this
is not the case for the first Clebsch-Gordan coefficient – it is necessary in

order to evaluate it to express the specific vector
∣∣∣ (cc)

⟩
in some basis that

spans the entire vector space over Spin(n).
The final expression is simplified by choosing the indexes of the gen-

eralized Gell-Mann formula matrix elements to be given by labels of the
Spin(n) ⊃ Spin(n− 1) ⊃ · · · ⊃ Spin(2) group chain representation labels.
In this notation, the basis vectors of the Spin(n) irreducible representations
are written as:∣∣∣∣ {J}

{m}

⟩
=

∣∣∣∣∣∣∣∣
JSpin(n),1 JSpin(n),2 JSpin(n),3 . . .

JSpin(n−1),1 JSpin(n−1),2 . . .
. . .

JSpin(2)

⟩
. (63)

Likewise, the set of indices {k} of (22) is thus given by the labels of the irre-
ducible representations {JSpin(n−1),1, JSpin(n−1),2, · · · ; JSpin(n−2),1, JSpin(n−2),2,
· · · ; . . . ; JSpin(2)} of the Spin(n) ⊃ Spin(n−1) ⊃ · · · ⊃ Spin(2) group chain.

To express the vector
∣∣∣ (cc)

⟩
in such a basis we notice first that it corre-

sponds to a diagonal traceless n by n matrix of the form diag(− 1
n
, . . . ,− 1

n
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, n−1
n
, − 1

n
, . . . ,− 1

n
), with n−1

n
positioned at the c-th row and column. On

the other hand, the diagonal traceless matrix
√

1
c(c−1)

diag(−1, . . . ,−1, c−
1, 0, . . . , 0), with first c− 1 occurrences of −1, corresponds to a vector that
belongs to a second order symmetric tensor ( representation) with re-
spect to Spin(c), Spin(c + 1), . . . , Spin(n) subgroups, and it is invariant
under Spin(c− 1): ∣∣∣∣∣∣∣∣

{ }Spin(n)

· · ·
{ }Spin(c)

{0}Spin(c−1)

· · ·
0

⟩
. (64)

This vector has n− c+ 1 double-boxes followed by c− 2 zeros underneath

– in shorthand notation:
∣∣∣ { }n−c+1

{0}c−2

⟩
. Somewhat peculiar is the matrix√

1
2
diag(−1, 1, 0, 0, . . . ) that corresponds to:

∣∣∣ { }n−1

{0}0

⟩
≡ 1√

2

∣∣∣∣∣∣∣
{ }Spin(n)

· · ·
{ }Spin(4)

2
2

⟩
+ 1√

2

∣∣∣∣∣∣∣
{ }Spin(n)

· · ·
{ }Spin(4)

2
−2

⟩
, (65)

where the standard labelling for SO(n), n ≤ 3 is implied, in particular the
representation corresponds to JSpin(3) = 2).
By combining these facts we find:∣∣∣ (cc)

⟩
+ 1

c

n∑
d=c+1

∣∣∣ (dd)

⟩
=
√

c−1
c

∣∣∣ { }n−c+1

{0}c−2

⟩
. (66)

However, when evaluating the U (cc) operators of (61) in this basis, only
the first term on the left-hand side is relevant due to the fact that:

d > c ⇒ [C2(so(c)K), U
(dd)
ab ] = 0. (67)

Having this in mind, we make use of (66) to recast, in the first equality
of (62), the U (cc) operators accordingly. Taking into account arbitrariness of
the σc coefficients and following the same steps as in (62), we finally obtain
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a rather simple expression for the shear generator matrix elements for an
arbitrary sl(n,R) representation (labelled now by parameters σ̃c):⟨

{J ′}
{k′}{m′}

∣∣∣∣T{w}

∣∣∣∣ {J}{k}{m}

⟩
= i

2

√
dim({J})
dim({J′})C

{J} {J ′}
{m}{w}{m′}

×
∑n

c=2

√
c−1
c

(
C2(so(c){k′})− C2(so(c){k}) + σ̃c

)
C {J}( )n−c+1{J ′}

{k} (0)c−2 {k′} .

(68)
The relation of the labelling of (43) and the one of (52), i.e. (61), is achieved
provided σc = σ̃c+

∑c−1
d=2 σ̃d/d. The Clebsch-Gordan coefficient with indices

{m}, {w}, {m′} in (43) can be evaluated in an arbitrary basis (which is
stressed by denoting the appropriate index by w instead by ab). The other
Clebsch-Gordan coefficient can be evaluated in any basis labelled accord-
ing to the Spin(n) ⊃ Spin(n − 1) ⊃ · · · ⊃ Spin(2) subgroup chain (e.g.
Gel’fand-Tsetlin basis) and can be, nowadays, rather easily evaluated, at
least numerically.

4.5 A comment on the generalized formula

As already stated, the matrix elements of the sl(n,R)/so(n) operators, as
given by the Generalized Gell-Mann formula, apply to all tensorial, spino-
rial, unitary, nonunitary (both finite a infinite-dimensional) sl(n,R) irre-
ducible representations. In many physics applications one is interested in
the unitary irreducible representations. The unitarity question goes beyond
the scope of the present paper, and it relates to the Hilbert space prop-
erties, i.e. the vector space scalar product. An efficient method to study
unitarity is to start with a Hilbert space L2(Spin(n), κ) of square integrable
functions with a scalar product in terms of an arbitrary kernel κ, and to im-
pose the unitarity constraints both on the scalar products itself and on the
sl(n,R)/so(n) operators matrix elements in that scalar product (cf. [41]).

We note that the results of the previous subsection can be directly con-
veyed to the case of special unitary group SU(n). Namely, operators of
su(n) algebra can be, similarly as in the case of sl(n,R) algebra, split w.r.t.
its so(n) subalgebra into Mab operators and T

su(n)
ab , a, b = 1, 2, ..., n opera-

tors. Relation of T
su(n)
ab and Tab operators is a direct one: T

su(n)
ab = iTab, and

the commutator [T
su(n)
ab , T

su(n)
cd ] differs from the commutator (4) only by an
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overall minus sign. Therefore, all formulas obtained for SL(n,R) shear gen-
erators Tab (44, 46, 47, 52, 59, 61, 68), are after multiplying by imaginary

unit also applicable to SU(n) generators T
su(n)
ab , with the following remark:

since the SU(n) group is its own covering group, space L2(Spin(n)) has to
be reduced to space L2(SO(n)).

To sum up, the expressions (24) and (43) fully determine the action
of the sl(n,R) operators for an arbitrary irreducible representation given
by the set of n − 1 invariant Casimir operators labels σ̃c. This action is
given in the basis (22) of the representation spaces of the maximal compact
subgroup Spin(n) of the SL(n,R) group. This result is general due to a
Corollary of Harish-Chandra [40] that explicitly applies to the case of the
sl(n,R) algebras.
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5 Application in affine theories of gravity

5.1 Affine gravity models

In the introduction we have listed a few models of space-time symmetries
and gravity where special linear group plays a substantial role. In this
section we will briefly illustrate where the Gell-Mann formula can be applied
in the context of affine theories of gravity.

Mostly due to the difficulties encountered in attempts to quantize Ein-
stein’s theory of gravity, a new ways to generalize and expand the basic
concepts of Riemannian geometry and general relativity were sought. Affine
theory of gravity is one of the possible directions to take. It is interesting
to mention that even Einstein himself has considered affine generalizations
of general relativity [51].

In affine gravity models the flat space-time symmetry of the theory
(prior to any symmetry breaking) is given by the General Affine Group
GA(n,R) = T n ∧ GL(n,R) (or, sometimes, by the Special Affine Group
SA(n,R) = T n∧SL(n,R)). In the quantum case, the General Affine Group
is replaced by its double cover counterpartGA(n,R) = T n∧GL(n,R), which
contains double cover of GL(n,R) as a subgroup. This subgroup here plays
the role that Lorentz group has in the Poincaré symmetry case. Thus it
is clear that knowledge of GL(n,R) representations is a must-know for any
serious analysis of Affine Gravity models. On the other hand, the essential
part of the GL(n,R) = R+ ⊗SL(n,R) group is its SL(n,R) subgroup, and
that is where SL(n,R) generators matrix elements, obtained by using the
generalized Gell-Mann formula, come into play (R+ is subgroup of dilata-
tions). We will apply expression for these matrix elements in order to obtain
coefficients for some of the gauge field–matter interaction vertices.

Gravitational interaction is into these models usually introduced by
gauging the global affine symmetry GA(n,R) = T n ∧ GL(n,R). Since in
the tensor product of two defining representation of GL(n,R) group (also of
SL(n,R) group) does not appear any GL(n,R) (or SL(n,R) respectively)
invariant tensor, there is also no equivalent of Minkovski metrics ηµν , and
connection will not preserve length of vectors. Actually, as the transition
from Riemannian to Riemann-Cartan space can be seen as a result of in-
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troduction of torsion, similarly, the transition from the Riemann-Cartan
geometry to the affine geometry is related to abandoning of the require-
ment of metricity.

5.2 Gauge Affine action

A standard way to introduce interactions into affine gravity models is by
localization of the global affine symmetry GA(n,R) = T n ∧ GL(n,R).
Thus, quite generally, affine Lagrangian consists of a gravitational part (i.e.
kinetic terms for gauge potentials) and Lagrangian of the matter fields:
L = Lg + Lm. Gravitational part Lg is a function of gravitational gauge
potentials and their derivatives, and also of the dilaton field φ (that ensures
action invariance under local dilatations). In the case of the standard Metric
affine gravity [1, 2], gravitational potentials are tetrads eaµ, metrics gab and
affine connection Γa

bµ, so that we can write: Lg = Lg(e, ∂e, g, ∂g,Γ, ∂Γ, φ).
More precisely, due to action invariance under local affine transformations,
gravitational part of Lagrangian must be a function of the form Lg =
Lg(e, g, T, R,N, φ), where T a

µν = ∂µe
a
ν + Γa

bµe
b
ν − (µ ↔ ν), Ra

bµν =
∂µΓ

a
bν + Γc

bµΓ
a
cν − (µ ↔ ν), Nµab = Dµgab are, respectively, torsion, cur-

vature and nonmetricity. Assuming, as usual, that equations of motion are
linear in second derivatives of gauge fields, we are confined to no higher
than quadratic powers of the torsion, curvature and nonmetricity. Co-
variant derivative is of the form Dµ = ∂µ − iΓ b

a µQ
a
b , where Q a

b denote

generators of GL(n,R) group. The matter Lagrangian (assuming minimal
coupling for all fields except the dilaton one) is a function of some num-
ber of affine fields ϕI and their covariant derivatives, together with metrics
and tetrads (affine connection enters only through covariant derivative):
Lm = Lm(ϕ

I , DϕI , e, g).
With all these general remarks, we will consider a class of affine La-



41

grangians, in arbitrary number of dimensions n, of the form:

L(e a
µ , ∂νe

a
µ ,Γ a

bµ , ∂νΓ
a

bµ , gab,ΨA, ∂νΨA,ΦA, ∂νΦA, φ, ∂νφ) =

e
[
φ2R− φ2T 2 − φ2N2 +

Ψ̄igabγae
µ
b DµΨ+ 1

2
gabe µ

a e ν
b (DµΦ)

+(DνΦ) +
1
2
gabe µ

a e ν
b DµφDνφ +

− Lg(n) + Lm(n)
]
. (69)

The terms in the first row represent general gravitational part of the La-
grangian, that is invariant w.r.t. affine transformations (dilatational invari-
ance is obtained with the aid of field φ, of mass dimension n/2− 1). Here
T 2 and N2 stand for linear combination of terms quadratic in torsion and
nonmetricity, respectively, formed by irreducible components of these fields
(a discussion of available possibilities can be found in Appendix B of [2]).
For the scope of this paper, we need not fix these terms any further. This
is a general form of gravitational kinetic terms, invariant for an arbitrary
space-time dimension n ≥ 3.

The Lagrangian matter terms, invariant w.r.t. the local GA(n,R), n ≥ 3,
transformations, are written in the second row. The field Ψ denotes a spino-
rial GL(n,R) field – components of that field transform under some appro-
priate spinorial GL(n,R) irreducible representations. All spinorial GL(n,R)
representations are necessarily infinite dimensional [6], and thus the field Ψ
will have infinite number of components. The concrete spinorial irreducible
representation of field Ψ is given by a set of n − 1 SL(n,R) labels {σΨ

c }
together with the dilatation charge dΨ. The field Φ is a representative of
a tensorial GL(n,R) field, transforming under a tensorial GL(n,R) rep-
resentation (i.e. one transforming w.r.t. single-valued representation of the
SO(n) subgroup) labelled by parameters {σΦ

c } and dΦ. Since, as it is argued
in the following section, the noncompact SL(n− 1,R) affine subgroup is to
be represented unitarily, the tensorial field Φ is also to transform under an
infinite-dimensional representation and to have an infinite number of com-
ponents. The remaining dilaton field φ is scalar with respect to SL(n,R)
subgroup, and thus has only one component.

Finally, the third row contains possible additional gravitational and
matter terms, denoted respectively by Lg(n) and Lm(n), that, due to re-
strictions imposed by the dilatational invariance requirement, can appear
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only for some concrete values of n. (E.g., in [5] dealing with the four di-
mensional case, authors take Lg(4) = α1R[abcd]R

[abcd] + α2R[ab[c]d]R
[ab[c]d] +

α3R[a(b][c)d]R
[a(b][c)d] + α4R(a[b)cd]R

(a[b)cd] + α5R(ab[c)d]R
(ab[c)d], and Lm(4) =

µΨ̄ΦΨ− λΦ(Φ
+Φ)2 − λ(Φ+Φ)φ2 − λφφ

4.)
Interaction of affine connection with matter fields is determined by terms

containing covariant derivatives. We write these terms in a component no-
tation, where the component labelling is done with respect to the physically
important Lorenz Spin(1, n− 1) subgroup of GL(n,R). Such a labelling al-
lows, in principle, to identify affine field components with Lorentz fields of
models based on the Poincaré symmetry. Namely, the affine models of grav-
ity necessarily imply existence of some symmetry breaking mechanism that
reduces the global symmetry to the Poincaré one, reflecting the subgroup
structure T n ∧ SO(1, n − 1) ⊂ T n ∧ GL(n,R). Therefore, we consider the
field Ψ (and similarly for Φ field) as a sum of its Lorentz components:∑

{J}
{k}{m}

Ψ
{J}
{k}{m}|

{J}
{k}{m}⟩.

Ket vectors in this decomposition are basis vectors of the {σΨ
c } representa-

tion of SL(n,R) group [26]. Sets of labels {J} and {m} determine trans-
formation properties of a basis vector under the Lorentz Spin(1, n−1) sub-
group: {J} label irreducible representation of Spin(1, n−1), while numbers
{m} label particular vector within that representation. The set of parame-
ters {k} enumerate Spin(1, n− 1) multiplicity of representation {J} within
the {σΨ

c } representation of SL(n,R). These parameters {k} are mathemat-
ically related to the left action of Spin(n) subgroup in representation space
L2(Spin(n)) of square integrable functions over the Spin(n) group (for more
details c.f. [26]).

The interaction term connecting fields gcd, e µ
d , Γab

µ , Ψ̄
{J}
{k}{m}, Ψ

{J ′}
{k′}{m′} is

now:

gcde µ
d Γab

µ Ψ̄
{J}
{k}{m}Ψ

{J ′}
{k′}{m′}

∑
{J′′}

{k′′}{m′′}

⟨{J}{k}{m}|γc|
{J ′′}
{k′′}{m′′}⟩⟨

{J ′′}
{k′′}{m′′}|Qab|{J

′}
{k′}{m′}⟩,

(70)
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while the interaction of tensorial field with connection is given by:

− i
2
gcde µ

c e ν
d Γab

ν ∂µΦ
†{J}
{k}{m}Φ

{J ′}
{k′}{m′}⟨

{J}
{k}{m}|Qab|{J

′}
{k′}{m′}⟩+ (71)

i
2
gcde µ

c e ν
d Γab

ν Φ
†{J}
{k}{m}∂µΦ

{J ′}
{k′}{m′}⟨

{J ′}
{k′}{m′}|Qab|{J}{k}{m}⟩

∗+ (72)

1
2
gcde µ

c e ν
d Γab

µ Γa′b′
ν Φ

†{J}
{k}{m}∂µΦ

{J ′}
{k′}{m′}·∑

{J′′}
{k′′}{m′′}

⟨{J}{k}{m}|Qab|{J
′′}

{k′′}{m′′}⟩⟨
{J ′′}
{k′′}{m′′}|Qa′b′|{J

′}
{k′}{m′}⟩. (73)

The scalar dilaton field interact only with the trace of affine connection:

1
2
gabe µ

a e ν
b (∂µ − iΓ a

a µdφ)φ(∂ν − iΓ a
a νdφ)φ, (74)

where dφ denotes dilatation charge of φ field.
In the above interaction terms we note an appearance of matrix ele-

ments of GL(n,R) generators, written in a basis of the Lorenz subgroup
Spin(1, n− 1). The dilatation generator (that is, the trace Qa

a) acts merely
as multiplication by dilatation charge, so it is really the SL(n,R) matrix
elements that should be calculated. (An infinite dimensional generalization
of Dirac’s gamma matrices also appear in the term (70); more on these ma-
trices can be found in papers of Šijački [53].) However, before we illustrate
how to evaluate these matrix elements, and thus how to calculate vertex
coefficients, we must make some additional general remarks on GL(n,R)
representations that correspond to physical fields.

5.3 Deunitarizing automorphism

We will briefly discuss the matter of unitarity of the representations corre-
sponding to fields in affine models. In standard, Poincaré symmetric models,
gauge and matter fields have finite number of components and this fits well
the experimental data. However, since the Lorenz group is a non compact
one, this is made possible by the fact that the fields transform under the
non-unitary representations of the Lorenz group. Note that it is only the
compact SO(n−1) part of the Lorentz group that is represented unitary. If
the unitary, so called Gelfand-Naimark, representations of the Lorenz group
were used [52], the boosts would mix infinitely many field components, in
contrary to observations.



44

For the same physical reasons, the Lorenz subgroup of GL(n,R) should
act in an analogous way on GL(n,R) fields: boosts should be represented
non unitarily and the Lorenz subgroup should reduce in finite dimensional
subspaces of field components. On the other hand, much in the same way as
spatial rotation part of the Lorenz group acts unitarily on Poincaré fields,
it is physically favorable that the spatial ”little group” GL(n − 1,R), a
subgroup of GL(n,R), acts unitarily on field components.

This can be elegantly accomplished by using a so called deunitarizing
automorphism. Namely, there exists an inner automorphism [6], which
leaves the R+ ⊗ SL(n − 1,R) subgroup intact, and which maps the Q(0k),
Q[0k] generators into iQ[0k], iQ(0k) respectively (k = 1, 2, . . . n − 1). Here
Q[ab] =

1
2
(Qab −Qba) denote the antisymmetric operators that generate the

Lorentz subgroup Spin(1, n − 1), whereas Q(ab) =
1
2
(Qab + Qba) − 1

n
gabQ

c
c

are the symmetric traceless operators that generate the proper n-volume-
preserving deformations (shears).

The deunitarizing automorphism thus allows us to start with the unitary
representations of the SL(n,R) subgroup, and upon its application, to iden-
tify the finite (unitary) representations of the abstract SO(n) compact sub-
group with nonunitary representations of the physical Lorentz group, while
the infinite (unitary) representations of the abstract SO(1, n−1) group now
represent (non-unitarily) the compact SO(n)/SO(n− 1) generators.

5.4 Gauge affine symmetry vertex coefficients evalu-
ation

Now we return to evaluation of vertex coefficients for interaction between
various Lorentz components of the GL(n,R) fields. The nontrivial part
of the problem is to find matrix elements of SL(n,R) shear generators in
expressions (70)-(73). We will do that by using formula (68).

However, formula (68) is given in the basis of the compact Spin(n)
subgroup, and not in the basis of the physically important Lorentz group
Spin(1, n − 1). On the other hand, it turns out that taking into account
deunitarizing automorphism exactly amounts to keeping reduced matrix
element from (68) and replacing the remaining Clebsch-Gordan coefficient
of the Spin(n) group by the corresponding coefficient of the Lorenz group



45

Spin(1, n− 1).
Now, as a concrete example, we will consider tensorial affine field Φ in

n = 5 dimensions. For example, let the field Φ correspond to an unitary
multiplicity free SL(5,R) representation, defined by labels σ2 = −4, δ1 =
δ2 = 0, with σ1 arbitrary real. The representation space is spanned by
vectors (49) satisfying J1 = J2 = J ∈ N0 +

1
2
;K1 = K2 = 0; J1 = J2 =

J ≤ J . This is a simplest class of multiplicity free representations that is
unitary assuming usual scalar product. If we denote Φa, a = 1 . . . 5 the five
Φ components with J1 = J2 =

1
2
(in this sense Φa corresponds to a Lorenz

5-vector) then the interaction vertex (71) connecting fields Φa†, ∂µΦ
d and

affine shear connection Γbc
ν is:

i

2
gefe µ

e e ν
f Φa†Γbc

ν ∂µΦ
d

√
5

14
σ1(ηabηdc + ηacηdb −

2

n
ηadηbc). (75)

To obtain this result we used an easily derivable formula for Clebsch-Gordan
coefficient connecting Lorentz vector and symmetric second order Lorenz
tensor representations:

CL
a (bc) d =

√
n

2(n+2)(n−1)
(ηabηdc + ηacηdb −

2

n
ηadηbc), (76)

where we labelled Spin(1, n − 1) irreducible representations by Young di-
agrams, as in [26]. More importantly, we also used value of the reduced
matrix element: ⟨

1
2

1
2

0 0
0 0

∣∣∣∣∣∣∣∣Q∣∣∣∣∣∣∣∣ 1
2

1
2

0 0
0 0

⟩
=

√
2

7
σ1, (77)

that we obtained by using formula (51) (based on this formula, a Mathemat-
ica program was generated that directly calculates sl(5,R) matrix elements,
taking into account relevant Spin(5) Clebsch-Gordan coefficients given in
the Appendix).

It is no more difficult to obtain coefficients of the vertices of the form
(73). Lagrangian term (73) connecting Lorenz 5-vector Φ components Φ5,
Φ†

5 and affine connection component Γ(55)µ is:

1

15

(
σ2
1 − 25

)
gcde µ

c e ν
d Γ55

µ Γ55
ν Φ†

5∂µΦ5. (78)
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In a similar fashion, we can find vertex coefficients for more complex
representations with nontrivial multiplicity.
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6 Conclusion

Gell-Mann decontraction formula is, at the algebraic level, applicable only in
the case of the (pseudo)orthogonal algebras. In the case of other algebras
this formula is not applicable for all representations. As for the case of
sl(n,R) algebras, contracted w.r.t. the so(n) subalgebra, we saw that it
can be applied only to certain classes of tensorial representations without
multiplicity. More specifically, we have shown that the formula is valid only
in Hilbert spaces over Spin(n)/(Spin(m)×Spin(n−m)), m = 1, 2, . . . , n−1.
When the formula is applicable, it directly yields matrix element expressions
of the sl(n,R) operators: (24) and (43).

Starting from the known expression for generator matrix elements of
sl(3,R) and sl(4,R) representations with multiplicity, it was possible to
easily obtain expressions for the generalized Gell-Mann formulas in the
corrsponding cases, and then to follow a similar pattern and obtain gen-
eralized formula in the sl(5,R) case. By expressing the obtained formulas
in Cartesian basis, the Gell-Mann formula was generalized for arbitrary di-
mension n. The generalized formula is given by the expression (52). As the
most direct and important application of the formula, we obtained closed
form expressions for matrix elements of sl(n,R) operators in arbitrary irre-
ducible representation (finite, infinite, tensorial, spinorial, multiplicity free
or not). The form of the generalized formula is quite elegant and comparable
by simplicity to the form of the original formula.

We have also considered an application of the Gell-Mann formula in the
context of affine models of gravity.
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7 Appendix: Clebsch-Gordan coefficients for

the 14 dimensional uinitary irreducible rep-

resentation of Spin(5)

Analytical expressions for the Spin(5) Clebsch-Gordan coefficients involv-
ing the 14-dimensional representations are a must know for obtaining and
confirming all of the results pertaining to the 5 dimensional case. These
coefficients were published long ago [58]. However, in attempt to use these
coefficients, it turned out that some 30% of the expressions in the paper are
incorrect. Therefore, a detailed analysis of the polynomial expressions had
to be carried out, that led to their correction. Additionally, an algorithm for
numerical evaluation of Spin(5) Clebsch-Gordan coefficients was developed
in order to compare their values in a vast number of points.

The obtained results are given in this appendix. More details can be
found in [44].

Any Spin(5) Clebsch-Gordan coefficient can be written as a multiple of
two Spin(3) Clebshc-Gordan coefficients and one reduced Spin(5) Clebsch-
Gordan coefficient: j̄1 j̄2 j̄′1 j̄′2 j̄′′1 j̄

′′
2

j1 j2 j′1 j′2 j′′1 j′′2
m1 m2 m′

1 m
′
2 m′′

1 m
′′
2

 =

(
j̄1 j̄2 j̄′1 j̄

′
2 j̄′′1 j̄

′′
2

j1 j2 j′1 j′2 j′′1 j′′2

)(
j1 j′1 j′′1
m1 m′

1 m
′′
1

)(
j2 j′2 j′′2
m2 m′

2 m
′′
2

)
.

(79)
Since the Spin(3) coefficients are well known, we will list only the reduced
Spin(5) Clebsch-Gordan coefficients.

The direct product of a representation (j̄1, j̄2) with 14-dimensional rep-
resentation (1̄, 1̄), decompose into the following representations:

(j̄1, j̄2)⊗ (1̄, 1̄) = (j̄1 + 1, j̄2 + 1)⊕ (j̄1, j̄2 + 1)⊕ (j̄1 − 1, j̄2 + 1)

⊕ (j̄1 + 1, j̄2)⊕ (j̄1 − 1, j̄2)⊕ (j̄1 + 1, j̄2 − 1)⊕ (j̄1, j̄2 − 1)

⊕ (j̄1 − 1, j̄2 − 1)⊕ (j̄1 +
1

2
, j̄2 +

1

2
)⊕ (j̄1 −

1

2
, j̄2 +

1

2
)

⊕ (j̄1 +
1

2
, j̄2 −

1

2
)⊕ (j̄1 −

1

2
, j̄2 +

1

2
)⊕ 2(j̄1, j̄2).

(80)
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The reduced coefficients follow:

Clebsch-Gordan coefficients (j̄1, j̄2)⊗ (1̄, 1̄) → (j̄1 + 1, j̄2 + 1) are:

(81)
Na(j̄1, j̄2) = ((2j̄1 + 2) (2j̄1 + 3) (j̄1 + j̄2 + 2) (j̄1 + j̄2 + 3) (2j̄2 + 1) (2j̄2

+ 2) (2j̄1 + 2j̄2 + 3) (2j̄1 + 2j̄2 + 5))
− 1

2 ,(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 + 1 j2 + 1 j1 j2 1 1

)
=
(
Na(j̄1, j̄2) ((j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2 + 3) (j1 + j2 − j̄1 + j̄2

+ 1) (j1 + j2 − j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2
+ 3) (−j1 + j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 3) (j1 + j2 + j̄1 + j̄2 + 4) (j1 + j2 + j̄1 + j̄2 + 5) (j1 + j2 + j̄1 + j̄2

+ 6))
1/2
)
/
(
4 ((j1 + 1) (2j1 + 3) (j2 + 1) (2j2 + 3))1/2

)
,

(82)(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 − 1 j2 − 1 j1 j2 1 1

)
=
(
Na(j̄1, j̄2) ((j1+j2+j̄1−j̄2) (j1+j2+j̄1−j̄2+1) (j1

+ j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1 + j̄2) (−j1 − j2 + j̄1
+ j̄2+1) (−j1− j2+ j̄1+ j̄2+2) (−j1− j2+ j̄1+ j̄2
+3) (−j1−j2+ j̄1+ j̄2+4) (j1−j2+ j̄1+ j̄2+2) (j1
−j2+ j̄1+ j̄2+3) (−j1+j2+ j̄1+ j̄2+2) (−j1+j2+ j̄1

+ j̄2 + 3))
1/2
)
/
(
4 (j1 (2j1 − 1) j2 (2 j2 − 1))1/2

)
,

(83)(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 − 1 j2 + 1 j1 j2 1 1

)
=
(
Na(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 − 1) (j1 − j2 + j̄1

− j̄2) (−j1 + j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2
+ 2) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2
+ 2) (−j1 + j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2
+ 3) (−j1 + j2 + j̄1 + j̄2 + 4) (−j1 + j2 + j̄1 + j̄2

+ 5) (j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 4))
1/2
)
/
(
4
(
j1 (2 j1 − 1)

(
2j22 + 5j2 + 3

))1/2 )
,

(84)
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(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 + 1 j2 − 1 j1 j2 1 1

)
=
(
Na(j̄1, j̄2) ((j1− j2+ j̄1− j̄2+1) (j1− j2+ j̄1− j̄2

+ 2) (−j1 + j2 + j̄1 − j̄2 − 1) (−j1 + j2 + j̄1
− j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2

+ 2) (j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2
+ 3) (j1 − j2 + j̄1 + j̄2 + 4) (j1 − j2 + j̄1 + j̄2
+ 5) (j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 4))
1/2
)
/
(
4
((
2j21 + 5 j1 + 3

)
j2 (2j2 − 1)

)1/2 )
,

(85)

(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 + 1 j2 j1 j2 1 1

)
=
(
Na(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1

− j̄2) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 − j̄1 + j̄2
+ 1) (−j1 − j2 + j̄1 + j̄2 + 1) (j1 − j2 + j̄1 + j̄2
+ 2) (j1 − j2 + j̄1 + j̄2 + 3) (j1 − j2 + j̄1 + j̄2

+ 4) (−j1 + j2 + j̄1 + j̄2 + 2) (j1 + j2 + j̄1 + j̄2
+ 3) (j1 + j2 + j̄1 + j̄2 + 4) (j1 + j2 + j̄1 + j̄2

+ 5))
1/2
)
/
(
4 ((j1 + 1) (2j1 + 3) j2 (j2 + 1))1/2

)
,

(86)

(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 − 1 j2 j1 j2 1 1

)
= −

(
Na(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2

+1) (j1+j2+ j̄1− j̄2+1) (j1+j2− j̄1+ j̄2) (−j1−j2
+ j̄1+ j̄2+1) (−j1−j2+ j̄1+ j̄2+2) (−j1−j2+ j̄1+ j̄2
+3) (j1−j2+ j̄1+ j̄2+2) (−j1+j2+ j̄1+ j̄2+2) (−j1
+ j2 + j̄1 + j̄2 + 3) (−j1 + j2 + j̄1 + j̄2 + 4) (j1 + j2

+ j̄1+ j̄2+3))
1/2
)
/
(
4 (j1 (2 j1−1) j2 (j2+1))1/2

)
,

(87)
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(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 j2 + 1 j1 j2 1 1

)
=
(
Na(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2

+ 1) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 − j̄1 + j̄2
+ 1) (−j1 − j2 + j̄1 + j̄2 + 1) (j1 − j2 + j̄1 + j̄2

+ 2) (−j1 + j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2
+ 3) (−j1 + j2 + j̄1 + j̄2 + 4) (j1 + j2 + j̄1 + j̄2
+ 3) (j1 + j2 + j̄1 + j̄2 + 4) (j1 + j2 + j̄1 + j̄2

+ 5))
1/2
)
/
(
4 (j1 (j1 + 1) (j2 + 1) (2j2 + 3))1/2

)
,

(88)

(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 j2 − 1 j1 j2 1 1

)
= −

(
Na(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1

− j̄2) (j1+j2+ j̄1− j̄2+1) (j1+j2− j̄1+ j̄2) (−j1−j2
+ j̄1+ j̄2+1) (−j1−j2+ j̄1+ j̄2+2) (−j1−j2+ j̄1+ j̄2
+3) (j1− j2+ j̄1+ j̄2+2) (j1− j2+ j̄1+ j̄2+3) (j1
− j2 + j̄1 + j̄2 + 4) (−j1 + j2 + j̄1 + j̄2 + 2) (j1 + j2

+ j̄1+ j̄2+3))
1/2
)
/
(
4 (j1 (j1+1) j2 (2j2− 1))1/2

)
,

(89)

(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 j2 j1 j2 1 1

)
= −

(
Na(j̄1, j̄2) ((−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2

+ j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1
+ j̄2 + 3) (−j1 + j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1

+ j̄2 + 3) (j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 4))
1/2 (

j21 + j1 + j22 − j̄21 − j̄22 + j2 − j̄1 + 2 j̄1j̄2

+ j̄2
) )

/
(
4 (j1 (j1 + 1) j2 (j2 + 1))1/2

)
,

(90)



52

(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 +

1
2 j2 +

1
2 j1 j2

1
2

1
2

)
=
(
Na(j̄1, j̄2) ((j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 − j̄1

+ j̄2 + 1) (−j1 − j2 + j̄1 + j̄2 + 1) (j1 − j2 + j̄1
+ j̄2 + 2) (j1 − j2 + j̄1 + j̄2 + 3) (−j1 + j2 + j̄1
+ j̄2 + 2) (−j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1

+ j̄2 + 3) (j1 + j2 + j̄1 + j̄2 + 4) (j1 + j2 + j̄1 + j̄2

+ 5))
1/2
)
/
(
2 ((j1 + 1) (j2 + 1))1/2

)
,

(91)(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 − 1

2 j2 − 1
2 j1 j2

1
2

1
2

)
= −

(
Na(j̄1, j̄2) ((j1 + j2 + j̄1 − j̄2 + 1) (j1 + j2 − j̄1

+ j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2
+ 2) (−j1 − j2 + j̄1 + j̄2 + 3) (j1 − j2 + j̄1 + j̄2
+ 2) (j1 − j2 + j̄1 + j̄2 + 3) (−j1 + j2 + j̄1 + j̄2
+ 2) (−j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 3))
1/2
)
/
(
2 (j1j2)

1/2
)
,

(92)(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 +

1
2 j2 − 1

2 j1 j2
1
2

1
2

)
=
(
Na(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1

− j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2
+ 2) (j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2

+ 3) (j1 − j2 + j̄1 + j̄2 + 4) (−j1 + j2 + j̄1 + j̄2
+ 2) (j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 4))
1/2
)
/
(
2 ((j1 + 1) j2)

1/2
)
,

(93)(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 − 1

2 j2 +
1
2 j1 j2

1
2

1
2

)
=
(
Na(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2

+ 1) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2
+ 2) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2
+ 2) (−j1 + j2 + j̄1 + j̄2 + 3) (−j1 + j2 + j̄1 + j̄2

+ 4) (j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 4))
1/2
)
/
(
2 (j1 (j2 + 1))1/2

)
,

(94)
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(
j̄1 + 1 j̄2 + 1 j̄1 j̄2 1 1
j1 j2 j1 j2 0 0

)
=

1

2

√
5Na(j̄1, j̄2) ((−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2

+ j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1
+ j̄2+3) (−j1+ j2+ j̄1+ j̄2+2) (−j1+ j2+ j̄1+ j̄2

+3) (j1+ j2+ j̄1+ j̄2+3) (j1+ j2+ j̄1+ j̄2+4))
1/2

,

(95)

Clebsch-Gordan coefficients (j̄1, j̄2)⊗ (1̄, 1̄) → (j̄1 + 1, j̄2) are:

(96)
Nb(j̄1, j̄2) = ((2j̄1 + 2) (2j̄1 + 3) (2j̄1 − 2j̄2 + 1) (j̄1 − j̄2 + 1) j̄2 (j̄1 + j̄2

+ 2) (2j̄2 + 2) (2j̄1 + 2j̄2 + 3))
− 1

2

(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 + 1 j2 + 1 j1 j2 1 1

)
= −

(
Nb(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2 + 1) (j1 + j2 + j̄1

− j̄2 + 2) (j1 + j2 + j̄1 − j̄2 + 3) (j1 + j2 + j̄1 − j̄2 + 4) (j1 + j2 − j̄1 + j̄2
+ 1) (−j1 − j2 + j̄1 + j̄2) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2 + 2) (j1

+ j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2 + 4) (j1 + j2 + j̄1 + j̄2

+ 5))
1/2
)
/
(
4 ((j1 + 1) (2j1 + 3) (j2 + 1) (2j2 + 3))1/2

)
,

(97)

(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 − 1 j2 − 1 j1 j2 1 1

)
=
(
Nb(j̄1, j̄2) ((j1− j2+ j̄1− j̄2+1) (−j1+ j2+ j̄1− j̄2

+1) (j1+ j2+ j̄1− j̄2+1) (j1+ j2− j̄1+ j̄2−2) (j1
+j2− j̄1+ j̄2−1) (j1+j2− j̄1+ j̄2) (−j1−j2+ j̄1+ j̄2
+1) (−j1−j2+ j̄1+ j̄2+2) (−j1−j2+ j̄1+ j̄2+3) (j1
−j2+ j̄1+ j̄2+2) (−j1+j2+ j̄1+ j̄2+2) (j1+j2+ j̄1

+ j̄2 + 2))
1/2
)
/
(
4 (j1 (2 j1 − 1) j2 (2j2 − 1))1/2

)
,

(98)
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(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 − 1 j2 + 1 j1 j2 1 1

)
=
(
Nb(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2

+1) (−j1+j2+ j̄1− j̄2+2) (−j1+j2+ j̄1− j̄2+3) (j1
+j2+ j̄1− j̄2+2) (j1+j2− j̄1+ j̄2) (−j1−j2+ j̄1+ j̄2
+1) (j1−j2+ j̄1+ j̄2+1) (−j1+j2+ j̄1+ j̄2+2) (−j1
+j2+ j̄1+ j̄2+3) (−j1+j2+ j̄1+ j̄2+4) (j1+j2+ j̄1

+ j̄2+3))
1/2
)
/
(
4
(
j1 (2 j1−1)

(
2j22+5j2+3

))1/2 )
,

(99)(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 + 1 j2 − 1 j1 j2 1 1

)
=
(
Nb(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 +1) (j1 − j2 + j̄1 − j̄2

+2) (j1−j2+ j̄1− j̄2+3) (−j1+j2+ j̄1− j̄2) (j1+j2
+ j̄1 − j̄2 +2) (j1 + j2 − j̄1 + j̄2) (−j1 − j2 + j̄1 + j̄2
+1) (j1− j2+ j̄1+ j̄2+2) (j1− j2+ j̄1+ j̄2+3) (j1
−j2+ j̄1+ j̄2+4) (−j1+j2+ j̄1+ j̄2+1) (j1+j2+ j̄1

+ j̄2+3))
1/2
)
/
(
4
((
2j21+5 j1+3

)
j2 (2j2−1)

)1/2 )
,

(100)(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 + 1 j2 j1 j2 1 1

)
=
(
Nb(j̄1, j̄2) ((j1−j2+ j̄1− j̄2+1) (j1−j2+ j̄1− j̄2+2) (j1

+ j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2 + 3) (j1 − j2 + j̄1
+ j̄2+2) (j1− j2+ j̄1+ j̄2+3) (j1+ j2+ j̄1+ j̄2+3) (j1

+ j2+ j̄1+ j̄2+4))
1/2 (−j21 +(2 j̄1+1) j1+ j22 − j̄21 + j̄22

+ j2 − j̄1 + j̄2
) )

/
(
4
((
2j21 + 5j1 + 3

)
j2 (j2 + 1)

)1/2 )
,

(101)(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 − 1 j2 j1 j2 1 1

)
= −

(
Nb(j̄1, j̄2) ((−j1 + j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 − j̄1

+ j̄2 − 1) (j1 + j2 − j̄1 + j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2

+ 2) (−j1 + j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2 + 3))
1/2

(2j2 j̄2

+(j1−j2+ j̄1− j̄2+1) (j1+j2+ j̄1+ j̄2+2))
)
/
(
4 (j1 (2j1−1) j2 (j2+1))1/2

)
,

(102)
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(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 j2 + 1 j1 j2 1 1

)
=
(
Nb(j̄1, j̄2) ((−j1 + j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1

− j̄2 + 2) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2
+ 3) (−j1 + j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2

+ 3) (j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 4))
1/2 (

j21 + j1 − j22 − j̄21 + j̄22 − j̄1 + j2 (2 j̄1 + 1)

+ j̄2
) )

/
(
4
(
j1 (j1 + 1)

(
2j22 + 5j2 + 3

))1/2 )
,

(103)(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 j2 − 1 j1 j2 1 1

)
=
(
Nb(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 +1) (j1 − j2 + j̄1 − j̄2

+2) (j1 + j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1 + j̄2) (−j1
− j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2

+ j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2 + 3))
1/2 (

j21 + j1

− j22 − j̄21 + j̄22 − 3j̄1 − j2 (2 j̄1 + 3) + j̄2

− 2
) )

/
(
4 (j1 (j1 + 1) j2 (2j2 − 1))1/2

)
,

(104)(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 j2 j1 j2 1 1

)
= −

(
Nb(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2

+1) (j1 + j2 + j̄1 − j̄2 +2) (j1 + j2 − j̄1 + j̄2) (−j1 − j2
+ j̄1 + j̄2 +1) (j1 − j2 + j̄1 + j̄2 +2) (−j1 + j2 + j̄1 + j̄2

+ 2) (j1 + j2 + j̄1 + j̄2 + 3))
1/2 (

j21 + j1 + j22 − j̄21 + j̄22

+ j2 − 3 j̄1 + j̄2 − 2
) )

/
(
4 (j1 (j1 + 1) j2 (j2 + 1))1/2

)
,

(105)(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 +

1
2 j2 +

1
2 j1 j2

1
2

1
2

)
=
(
Nb(j̄1, j̄2) (j1+j2− j̄1) ((j1−j2+ j̄1− j̄2+1) (−j1

+ j2 + j̄1 − j̄2 + 1) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2
+ j̄1 − j̄2 + 3) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2

+ j̄1 + j̄2 + 2) (j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1

+ j̄2 + 4))
1/2
)
/
(
2 ((j1 + 1) (j2 + 1))1/2

)
,

(106)
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(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 − 1

2 j2 − 1
2 j1 j2

1
2

1
2

)
= −

(
Nb(j̄1, j̄2) (j1 + j2 + j̄1 + 2) ((j1 − j2 + j̄1 − j̄2

+ 1) (−j1 + j2 + j̄1 − j̄2 + 1) (j1 + j2 − j̄1 + j̄2
− 1) (j1 + j2 − j̄1 + j̄2) (−j1 − j2 + j̄1 + j̄2

+ 1) (−j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2

+2) (−j1 + j2 + j̄1 + j̄2 +2))
1/2
)
/
(
2 (j1j2)

1/2
)
,

(107)

(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 +

1
2 j2 − 1

2 j1 j2
1
2

1
2

)
=
(
Nb(j̄1, j̄2) (−j1 + j2 + j̄1 + 1) ((j1 − j2 + j̄1 − j̄2

+ 1) (j1 − j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2
+2) (j1+ j2− j̄1+ j̄2) (−j1− j2+ j̄1+ j̄2+1) (j1
− j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2 + 3) (j1 + j2

+ j̄1 + j̄2 + 3))
1/2
)
/
(
2 ((j1 + 1) j2)

1/2
)
,

(108)

(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 − 1

2 j2 +
1
2 j1 j2

1
2

1
2

)
=
(
Nb(j̄1, j̄2) (j1 − j2 + j̄1 + 1) ((−j1 + j2 + j̄1 − j̄2

+ 1) (−j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2
+2) (j1+j2− j̄1+ j̄2) (−j1−j2+ j̄1+ j̄2+1) (−j1
+ j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2 + 3) (j1

+ j2 + j̄1 + j̄2 + 3))
1/2
)
/
(
2 (j1 (j2 + 1))1/2

)
,

(109)

(
j̄1 + 1 j̄2 j̄1 j̄2 1 1
j1 j2 j1 j2 0 0

)
=

1

2

√
5Nb(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1

− j̄2 +1) (j1 + j2 + j̄1 − j̄2 +2) (j1 + j2 − j̄1 + j̄2) (−j1
− j2 + j̄1 + j̄2 + 1) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2

+ j̄1 + j̄2 + 2) (j1 + j2 + j̄1 + j̄2 + 3))
1/2

.

(110)

Clebsch-Gordan coefficients (j̄1, j̄2)⊗ (1̄, 1̄) → (j̄1, j̄2 + 1) are:
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(111)
Nc(j̄1, j̄2) = ((2j̄1 + 1) (2j̄1 + 3) (2j̄1 − 2j̄2 + 1) (j̄1 − j̄2) (j̄1 + j̄2 + 2) (2j̄2

+ 1) (2j̄2 + 2) (2j̄1 + 2j̄2 + 3))
− 1

2

(
j̄1 j̄2 + 1 j̄1 j̄2 1 1

j1 + 1 j2 + 1 j1 j2 1 1

)
=
(
Nc(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2) (j1 + j2 + j̄1 − j̄2

+ 2) (j1 + j2 − j̄1 + j̄2 + 1) (j1 + j2 − j̄1 + j̄2 + 2) (j1 + j2 − j̄1 + j̄2
+ 3) (−j1 − j2 + j̄1 + j̄2) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2 + 2) (j1

+ j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2 + 4) (j1 + j2 + j̄1 + j̄2

+ 5))
1/2
)
/
(
2 (2)1/2 ((j1 + 1) (2j1 + 3) (j2 + 1) (2j2 + 3))1/2

)
,

(112)

(
j̄1 j̄2 + 1 j̄1 j̄2 1 1

j1 − 1 j2 − 1 j1 j2 1 1

)
= −

(
Nc(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1

− j̄2) (j1 + j2 + j̄1 − j̄2 − 1) (j1 + j2 + j̄1 − j̄2) (j1
+ j2 + j̄1 − j̄2 + 1) (j1 + j2 − j̄1 + j̄2) (−j1 − j2
+ j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2 + 2) (−j1 − j2
+ j̄1 + j̄2 + 3) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2

+ j̄1 + j̄2 + 2) (j1 + j2 + j̄1 + j̄2

+ 2))
1/2
)
/
(
2 (2)1/2 (j1 (2j1 − 1) j2 (2j2 − 1))1/2

)
,

(113)

(
j̄1 j̄2 + 1 j̄1 j̄2 1 1

j1 − 1 j2 + 1 j1 j2 1 1

)
=
(
Nc(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 − 2) (j1 − j2 + j̄1 − j̄2 − 1) (j1 − j2 + j̄1

− j̄2) (−j1 + j2 + j̄1 − j̄2 + 1) (j1 + j2 + j̄1 − j̄2 + 1) (j1 + j2 − j̄1 + j̄2
+ 1) (−j1 − j2 + j̄1 + j̄2 + 1) (j1 − j2 + j̄1 + j̄2 + 1) (−j1 + j2 + j̄1 + j̄2
+ 2) (−j1 + j2 + j̄1 + j̄2 + 3) (−j1 + j2 + j̄1 + j̄2 + 4) (j1 + j2 + j̄1 + j̄2

+ 3))
1/2
)
/
(
2 (2)1/2 (j1 (2j1 − 1) (j2 + 1) (2j2 + 3))1/2

)
,

(114)



58

(
j̄1 j̄2 + 1 j̄1 j̄2 1 1

j1 + 1 j2 − 1 j1 j2 1 1

)
=
(
Nc(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2 − 2) (−j1 + j2 + j̄1

− j̄2 − 1) (−j1 + j2 + j̄1 − j̄2) (j1 + j2 + j̄1 − j̄2 + 1) (j1 + j2 − j̄1 + j̄2
+ 1) (−j1 − j2 + j̄1 + j̄2 + 1) (j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2
+ 3) (j1 − j2 + j̄1 + j̄2 + 4) (−j1 + j2 + j̄1 + j̄2 + 1) (j1 + j2 + j̄1 + j̄2

+ 3))
1/2
)
/
(
2 (2)1/2 ((j1 + 1) (2j1 + 3) j2 (2j2 − 1))1/2

)
,

(115)

(
j̄1 j̄2 + 1 j̄1 j̄2 1 1

j1 + 1 j2 j1 j2 1 1

)
=
(
Nc(j̄1, j̄2) ((j1 − j2 − j̄1 + j̄2) (j1 − j2 − j̄1 + j̄2

+ 1) (j1 + j2 − j̄1 + j̄2 + 1) (j1 + j2 − j̄1 + j̄2
+ 2) (j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2
+ 3) (j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 4))
1/2 (−j21 + 2j̄2 j1 + j22 + j̄21 − j̄22 + j2 + 2j̄1

+ 1
) )

/
(
2 (2)1/2

((
2j21 + 5j1 + 3

)
j2 (j2 + 1)

)1/2 )
,

(116)

(
j̄1 j̄2 + 1 j̄1 j̄2 1 1

j1 − 1 j2 j1 j2 1 1

)
= −

(
Nc(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 − 1) (j1 − j2 + j̄1

− j̄2) (j1 + j2 + j̄1 − j̄2) (j1 + j2 + j̄1 − j̄2
+ 1) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2
+ 2) (−j1 + j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2

+3))
1/2 (

j21 +2 (j̄2 +1) j1 − j22 − j̄21 + j̄22 − j2 − 2 j̄1

+ 2j̄2
) )

/
(
2 (2)1/2 (j1 (2j1 − 1) j2 (j2 + 1))1/2

)
,

(117)
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(
j̄1 j̄2 + 1 j̄1 j̄2 1 1
j1 j2 + 1 j1 j2 1 1

)
=
(
Nc(j̄1, j̄2) ((j1− j2+ j̄1− j̄2− 1) (j1− j2+ j̄1− j̄2) (j1

+ j2 − j̄1 + j̄2 +1) (j1 + j2 − j̄1 + j̄2 +2) (−j1 + j2 + j̄1
+ j̄2+2) (−j1+j2+ j̄1+ j̄2+3) (j1+j2+ j̄1+ j̄2+3) (j1

+j2+ j̄1+ j̄2+4))
1/2 (

j21+j1−j22+ j̄21− j̄22+2j̄1+2j2 j̄2

+ 1
) )

/
(
2 (2)1/2

(
j1 (j1 + 1)

(
2 j22 + 5j2 + 3

))1/2 )
,

(118)

(
j̄1 j̄2 + 1 j̄1 j̄2 1 1
j1 j2 − 1 j1 j2 1 1

)
=
(
Nc(j̄1, j̄2) ((−j1+j2+ j̄1− j̄2−1) (−j1+j2+ j̄1− j̄2) (j1

+ j2+ j̄1− j̄2) (j1+ j2+ j̄1− j̄2+1) (−j1− j2+ j̄1+ j̄2
+ 1) (−j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2 + 2) (j1

− j2+ j̄1+ j̄2+3))
1/2 (

j21 + j1− j22 + j̄21 − j̄22 +2j̄1−2 j̄2

− 2j2 (j̄2+1)
) )

/
(
2 (2)1/2 (j1 (j1+1) j2 (2j2− 1))1/2

)
,

(119)

(
j̄1 j̄2 + 1 j̄1 j̄2 1 1
j1 j2 j1 j2 1 1

)
=
(
Nc(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2) (j1

+ j2 + j̄1 − j̄2 +1) (j1 + j2 − j̄1 + j̄2 +1) (−j1 − j2 + j̄1
+ j̄2 + 1) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2

+2) (j1+ j2+ j̄1+ j̄2+3))
1/2 (

j21 + j1+ j22 + j̄21 − j̄22 + j2

+ 2j̄1 − 2 j̄2
) )

/
(
2 (2)1/2 (j1 (j1 + 1) j2 (j2 + 1))1/2

)
,

(120)

(
j̄1 j̄2 + 1 j̄1 j̄2 1 1

j1 +
1
2 j2 +

1
2 j1 j2

1
2

1
2

)
= −

(
Nc(j̄1, j̄2) (2 j1 + 2j2 − 2j̄2 + 1) ((j1 − j2 + j̄1

− j̄2) (−j1+j2+ j̄1− j̄2) (j1+j2− j̄1+ j̄2+1) (j1
+ j2− j̄1+ j̄2+2) (j1− j2+ j̄1+ j̄2+2) (−j1+ j2
+ j̄1 + j̄2 + 2) (j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1

+ j̄2 + 4))
1/2
)
/
(
2 (2)1/2 ((j1 + 1) (j2 + 1))1/2

)
,

(121)
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(
j̄1 j̄2 + 1 j̄1 j̄2 1 1

j1 − 1
2 j2 − 1

2 j1 j2
1
2

1
2

)
=
(
Nc(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1

− j̄2) (j1+j2+ j̄1− j̄2) (j1+j2+ j̄1− j̄2+1) (−j1
− j2+ j̄1+ j̄2+1) (−j1− j2+ j̄1+ j̄2+2) (j1− j2

+ j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2 + 2))
1/2

(2j1

+ 2j2 + 2 j̄2 + 3)
)
/
(
2 (2)1/2 (j1j2)

1/2
)
,

(122)

(
j̄1 j̄2 + 1 j̄1 j̄2 1 1

j1 +
1
2 j2 − 1

2 j1 j2
1
2

1
2

)
=
(
Nc(j̄1, j̄2) ((−j1+ j2+ j̄1− j̄2− 1) (−j1+ j2+ j̄1

− j̄2) (j1 + j2 + j̄1 − j̄2 + 1) (j1 + j2 − j̄1 + j̄2
+1) (−j1−j2+j̄1+j̄2+1) (j1−j2+j̄1+j̄2+2) (j1

− j2+ j̄1+ j̄2+3) (j1+ j2+ j̄1+ j̄2+3))
1/2

(−2j1

+ 2j2 + 2 j̄2 + 1)
)
/
(
2 (2)1/2 ((j1 + 1) j2)

1/2
)
,

(123)

(
j̄1 j̄2 + 1 j̄1 j̄2 1 1

j1 − 1
2 j2 +

1
2 j1 j2

1
2

1
2

)
=
(
Nc(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 − 1) (j1 − j2 + j̄1

− j̄2) (j1 + j2 + j̄1 − j̄2 + 1) (j1 + j2 − j̄1 + j̄2
+ 1) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 + j2 + j̄1 + j̄2

+ 2) (−j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 3))
1/2

(2j1 − 2j2 + 2 j̄2

+ 1)
)
/
(
2 (2)1/2 (j1 (j2 + 1))1/2

)
,

(124)

(
j̄1 j̄2 + 1 j̄1 j̄2 1 1
j1 j2 j1 j2 0 0

)
= −

√
5

2
Nc(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1

− j̄2) (j1 + j2 + j̄1 − j̄2 +1) (j1 + j2 − j̄1 + j̄2 +1) (−j1
− j2 + j̄1 + j̄2 + 1) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2

+ j̄1 + j̄2 + 2) (j1 + j2 + j̄1 + j̄2 + 3))
1/2

.

(125)
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Clebsch-Gordan coefficients (j̄1, j̄2)⊗ (1̄, 1̄) → (j̄1 + 1, j̄2 − 1) are:

(126)
Nd(j̄1, j̄2) = (2 (2j̄1 + 2) (2j̄1 + 3) (2j̄1 − 2j̄2 + 1) (2j̄1 − 2j̄2 + 3) (j̄1 − j̄2

+ 1) (j̄1 − j̄2 + 2) j̄2 (2j̄2 + 1))
− 1

2

(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 + 1 j2 + 1 j1 j2 1 1

)
=
(
Nd(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1 − j̄2 + 2) (−j1 + j2 + j̄1 − j̄2

+ 1) (−j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2
+ 3) (j1 + j2 + j̄1 − j̄2 + 4) (j1 + j2 + j̄1 − j̄2 + 5) (−j1 − j2 + j̄1 + j̄2

− 1) (−j1 − j2 + j̄1 + j̄2) (j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 4))
1/2
)
/
(
4 ((j1 + 1) (2j1 + 3) (j2 + 1) (2j2 + 3))1/2

)
,

(127)

(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 − 1 j2 − 1 j1 j2 1 1

)
=
(
Nd(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 +1) (j1 − j2 + j̄1 − j̄2

+ 2) (−j1 + j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2
+ 2) (j1 + j2 − j̄1 + j̄2 − 3) (j1 + j2 − j̄1 + j̄2

− 2) (j1 + j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1
+ j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2

+ 2) (j1 + j2 + j̄1 + j̄2 + 1) (j1 + j2 + j̄1 + j̄2

+ 2))
1/2
)
/
(
4 (j1 (2 j1 − 1) j2 (2j2 − 1))1/2

)
,

(128)

(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 − 1 j2 + 1 j1 j2 1 1

)
=
(
Nd(j̄1, j̄2) ((−j1+j2+ j̄1− j̄2+1) (−j1+j2+ j̄1− j̄2

+2) (−j1+j2+ j̄1− j̄2+3) (−j1+j2+ j̄1− j̄2+4) (j1
+ j2+ j̄1− j̄2+2) (j1+ j2+ j̄1− j̄2+3) (j1+ j2− j̄1
+ j̄2−1) (j1+j2− j̄1+ j̄2) (j1−j2+ j̄1+ j̄2) (j1−j2
+ j̄1+ j̄2+1) (−j1+ j2+ j̄1+ j̄2+2) (−j1+ j2+ j̄1

+ j̄2+3))
1/2
)
/
(
4
(
j1 (2j1−1)

(
2j22+5 j2+3

))1/2 )
,

(129)
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(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 + 1 j2 − 1 j1 j2 1 1

)
=
(
Nd(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 +1) (j1 − j2 + j̄1 − j̄2

+2) (j1− j2+ j̄1− j̄2+3) (j1− j2+ j̄1− j̄2+4) (j1
+ j2+ j̄1− j̄2+2) (j1+ j2+ j̄1− j̄2+3) (j1+ j2− j̄1
+ j̄2−1) (j1+j2− j̄1+ j̄2) (j1− j2+ j̄1+ j̄2+2) (j1
− j2+ j̄1+ j̄2+3) (−j1+ j2+ j̄1+ j̄2) (−j1+ j2+ j̄1

+ j̄2+1))
1/2
)
/
(
4
((
2j21+5 j1+3

)
j2 (2j2−1)

)1/2 )
,

(130)(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 + 1 j2 j1 j2 1 1

)
=−

(
Nd(j̄1, j̄2) ((j1− j2+ j̄1− j̄2+1) (j1− j2+ j̄1− j̄2

+2) (j1−j2+ j̄1− j̄2+3) (−j1+j2+ j̄1− j̄2+1) (j1
+ j2+ j̄1− j̄2+2) (j1+ j2+ j̄1− j̄2+3) (j1+ j2+ j̄1
− j̄2+4) (j1+ j2− j̄1+ j̄2) (−j1− j2+ j̄1+ j̄2) (j1
−j2+ j̄1+ j̄2+2) (−j1+j2+ j̄1+ j̄2+1) (j1+j2+ j̄1

+ j̄2+3))
1/2
)
/
(
4
((
2j21 +5 j1+3

)
j2 (j2+1)

)1/2 )
,

(131)(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 − 1 j2 j1 j2 1 1

)
=−

(
Nd(j̄1, j̄2) ((j1−j2+ j̄1− j̄2+1) (−j1+j2+ j̄1− j̄2

+1) (−j1+j2+ j̄1− j̄2+2) (−j1+j2+ j̄1− j̄2+3) (j1
+ j2+ j̄1− j̄2+2) (j1+ j2− j̄1+ j̄2−2) (j1+ j2− j̄1
+ j̄2−1) (j1+j2− j̄1+ j̄2) (−j1−j2+ j̄1+ j̄2+1) (j1
− j2 + j̄1 + j̄2 + 1) (−j1 + j2 + j̄1 + j̄2 + 2) (j1 + j2

+ j̄1+ j̄2+2))
1/2
)
/
(
4 (j1 (2 j1−1) j2 (j2+1))1/2

)
,

(132)(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 j2 + 1 j1 j2 1 1

)
=−

(
Nd(j̄1, j̄2) ((j1−j2+ j̄1− j̄2+1) (−j1+j2+ j̄1− j̄2

+1) (−j1+j2+ j̄1− j̄2+2) (−j1+j2+ j̄1− j̄2+3) (j1
+ j2+ j̄1− j̄2+2) (j1+ j2+ j̄1− j̄2+3) (j1+ j2+ j̄1
− j̄2+4) (j1+ j2− j̄1+ j̄2) (−j1− j2+ j̄1+ j̄2) (j1
−j2+ j̄1+ j̄2+1) (−j1+j2+ j̄1+ j̄2+2) (j1+j2+ j̄1

+ j̄2 +3))
1/2
)
/
(
4
(
j1 (j1 +1)

(
2j22 +5j2 +3

))1/2 )
,

(133)
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(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 j2 − 1 j1 j2 1 1

)
=−

(
Nd(j̄1, j̄2) ((j1− j2+ j̄1− j̄2+1) (j1− j2+ j̄1− j̄2

+2) (j1−j2+ j̄1− j̄2+3) (−j1+j2+ j̄1− j̄2+1) (j1
+ j2+ j̄1− j̄2+2) (j1+ j2− j̄1+ j̄2−2) (j1+ j2− j̄1
+ j̄2−1) (j1+j2− j̄1+ j̄2) (−j1−j2+ j̄1+ j̄2+1) (j1
− j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2 + 1) (j1 + j2

+ j̄1+ j̄2+2))
1/2
)
/
(
4 (j1 (j1+1) j2 (2j2− 1))1/2

)
,

(134)(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 j2 j1 j2 1 1

)
=
(
Nd(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1 − j̄2 + 2) (−j1 + j2 + j̄1 − j̄2

+ 1) (−j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2

+ 3) (j1 + j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1 + j̄2))
1/2

(2j1 j2

+(−j1−j2+j̄1+j̄2+1) (j1+j2+j̄1+j̄2+2))
)
/
(
4 (j1 (j1+1) j2 (j2+1))1/2

)
,

(135)(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 +

1
2 j2 +

1
2 j1 j2

1
2

1
2

)
= −

(
Nd(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1

− j̄2 + 2) (−j1 + j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1
− j̄2 + 2) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2

+ 3) (j1 + j2 + j̄1 − j̄2 + 4) (j1 + j2 − j̄1
+ j̄2) (−j1 − j2 + j̄1 + j̄2) (j1 + j2 + j̄1 + j̄2

+ 3))
1/2
)
/
(
2 ((j1 + 1) (j2 + 1))1/2

)
,

(136)(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 − 1

2 j2 − 1
2 j1 j2

1
2

1
2

)
= −

(
Nd(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1

− j̄2+2) (−j1+j2+ j̄1− j̄2+1) (−j1+j2+ j̄1− j̄2
+2) (j1+j2+ j̄1− j̄2+2) (j1+j2− j̄1+ j̄2−2) (j1
+ j2− j̄1+ j̄2−1) (j1+ j2− j̄1+ j̄2) (−j1− j2+ j̄1

+ j̄2+1) (j1+j2+ j̄1+ j̄2+2))
1/2
)
/
(
2 (j1j2)

1/2
)
,

(137)
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(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 +

1
2 j2 − 1

2 j1 j2
1
2

1
2

)
=
(
Nd(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1

− j̄2 + 2) (j1 − j2 + j̄1 − j̄2 + 3) (−j1 + j2 + j̄1
− j̄2 + 1) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2

+ 3) (j1 + j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1
+ j̄2) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2

+ 1))
1/2
)
/
(
2 ((j1 + 1) j2)

1/2
)
,

(138)

(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 − 1

2 j2 +
1
2 j1 j2

1
2

1
2

)
=
(
Nd(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1

− j̄2 + 1) (−j1 + j2 + j̄1 − j̄2 + 2) (−j1 + j2 + j̄1
− j̄2 + 3) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2

+ 3) (j1 + j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1
+ j̄2) (j1 − j2 + j̄1 + j̄2 + 1) (−j1 + j2 + j̄1 + j̄2

+ 2))
1/2
)
/
(
2 (j1 (j2 + 1 ))1/2

)
,

(139)

(
j̄1 + 1 j̄2 − 1 j̄1 j̄2 1 1
j1 j2 j1 j2 0 0

)
=

1

2

√
5Nd(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1

− j̄2 + 2) (−j1 + j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1
− j̄2 + 2) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2

+ 3) (j1 + j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1 + j̄2))
1/2

.

(140)

Clebsch-Gordan coefficients (j̄1, j̄2)⊗ (1̄, 1̄) → (j̄1 +
1
2 , j̄2 +

1
2) are:

(141)
Ne(j̄1, j̄2) = ((2j̄1 + 2) (j̄1 − j̄2) (j̄1 − j̄2 + 1) (j̄1 + j̄2 + 1) (j̄1 + j̄2 + 2) (j̄1

+ j̄2 + 3) (2j̄2 + 1) (2j̄1 + 2j̄2 + 3))
− 1

2
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(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 + 1 j2 + 1 j1 j2 1 1

)
= −

(
Ne(j̄1, j̄2) (j1 − j2) ((j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2 + 3) (j1 + j2

− j̄1 + j̄2 + 1) (j1 + j2 − j̄1 + j̄2 + 2) (−j1 − j2 + j̄1 + j̄2) (j1 − j2 + j̄1 + j̄2
+2) (−j1+ j2+ j̄1+ j̄2+2) (j1+ j2+ j̄1+ j̄2+3) (j1+ j2+ j̄1+ j̄2+4) (j1

+ j2 + j̄1 + j̄2 +5))
1/2
)
/
(
2 (2)1/2 ((j1 +1) (2j1 +3) (j2 +1) (2j2 +3))1/2

)
,

(142)(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 − 1 j2 − 1 j1 j2 1 1

)
=
(
Ne(j̄1, j̄2) (j1− j2 ) ((j1+ j2+ j̄1− j̄2) (j1+ j2+ j̄1

− j̄2 + 1) (j1 + j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1
+ j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2

+ 2) (−j1 − j2 + j̄1 + j̄2 + 3) (j1 − j2 + j̄1 + j̄2
+ 2) (−j1 + j2 + j̄1 + j̄2 + 2) (j1 + j2 + j̄1 + j̄2

+2))
1/2
)
/
(
2 (2)1/2 (j1 (2j1−1) j2 (2j2−1))1/2

)
,

(143)(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 − 1 j2 + 1 j1 j2 1 1

)
=
(
Ne(j̄1, j̄2) (j1 + j2 + 1) ((j1 − j2 + j̄1 − j̄2 − 1) (j1 − j2 + j̄1 − j̄2) (−j1 + j2

+ j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2 + 2) (−j1 − j2 + j̄1 + j̄2 + 1) (j1 − j2 + j̄1
+ j̄2 +1) (−j1 + j2 + j̄1 + j̄2 +2) (−j1 + j2 + j̄1 + j̄2 +3) (−j1 + j2 + j̄1 + j̄2

+4) (j1+ j2+ j̄1+ j̄2+3))
1/2
)
/
(
2 (2)1/2

(
j1 (2j1− 1)

(
2j22 +5j2+3

))1/2 )
,

(144)(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 + 1 j2 − 1 j1 j2 1 1

)
= −

(
Ne(j̄1, j̄2) (j1 + j2 + 1) ((j1 − j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1 − j̄2 + 2) (−j1

+ j2 + j̄1 − j̄2 − 1) (−j1 + j2 + j̄1 − j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (j1 − j2 + j̄1
+ j̄2 + 2) (j1 − j2 + j̄1 + j̄2 + 3) (j1 − j2 + j̄1 + j̄2 + 4) (−j1 + j2 + j̄1 + j̄2

+1) (j1+ j2+ j̄1+ j̄2+3))
1/2
)
/
(
2 (2)1/2

((
2 j21 +5j1+3

)
j2 (2j2− 1)

)1/2 )
,

(145)
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(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 + 1 j2 j1 j2 1 1

)
= −

(
Ne(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2) (j1 + j2 + j̄1 − j̄2

+ 2) (j1 + j2 − j̄1 + j̄2 + 1) (j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2 + 3) (j1

+ j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2 + 4))
1/2

(j2 (j2 + 1)

+ (j1 +1) (−j1 + j̄1 + j̄2 +1))
)
/
(
2 (2)1/2 ((j1 +1) (2j1 +3) j2 (j2 +1))1/2

)
,

(146)(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 − 1 j2 j1 j2 1 1

)
= −

(
Ne(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2 + 1) (j1 + j2 + j̄1 − j̄2

+ 1) (j1 + j2 − j̄1 + j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2

+ 2) (−j1 + j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2 + 3))
1/2 (

j21

+ (j̄1 + j̄2 + 2) j1 − j2 (j2 + 1)
) )

/
(
2 (2)1/2 (j1 (2j1 − 1) j2 (j2 + 1))1/2

)
,

(147)(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 j2 + 1 j1 j2 1 1

)
=
(
Ne(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2 + 1) (j1 + j2 + j̄1 − j̄2

+ 2) (j1 + j2 − j̄1 + j̄2 + 1) (−j1 + j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2

+ 3) (j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2 + 4))
1/2

(j1 (j1 + 1)

+ (j2 +1) (−j2 + j̄1 + j̄2 +1))
)
/
(
2 (2)1/2 (j1 (j1 +1) (j2 +1) (2j2 +3))1/2

)
,

(148)(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 j2 − 1 j1 j2 1 1

)
= −

(
Ne(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2) (j1 + j2 + j̄1 − j̄2

+ 1) (j1 + j2 − j̄1 + j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2 + 2) (j1

− j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2 + 3))
1/2 (

j21 + j1

− j2 (j2 + j̄1 + j̄2 + 2)
) )

/
(
2 (2)1/2 (j1 (j1 + 1) j2 (2j2 − 1))1/2

)
,

(149)
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(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 j2 j1 j2 1 1

)
=
(
Ne(j̄1, j̄2) (j1 − j2 ) (j1 + j2 + 1)

(
−j21 − j1 − j22

− j2 + (j̄1 − j̄2) (j̄1 − j̄2 + 1)
)
((−j1 − j2 + j̄1

+ j̄2 + 1) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1
+ j̄2 + 2) (j1 + j2 + j̄1 + j̄2

+ 3))
1/2
)
/
(
2 (2)1/2 (j1 (j1 + 1) j2 (j2 + 1))1/2

)
,

(150)

(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 +
1
2 j2 +

1
2 j1 j2

1
2

1
2

)
=
(
Ne(j̄1, j̄2) (j1 − j2 ) (2j1 + 2j2 − j̄1 − j̄2

+ 1) ((j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 − j̄1 + j̄2
+ 1) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2
+ 2) (j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 4))
1/2
)
/
(
2 (2)1/2 ((j1 + 1) (j2 + 1))1/2

)
,

(151)

(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 − 1
2 j2 − 1

2 j1 j2
1
2

1
2

)
= −

(
Ne(j̄1, j̄2) (j1

−j2) ((j1+j2+ j̄1− j̄2+1) (j1+j2− j̄1+ j̄2) (−j1
− j2+ j̄1+ j̄2+1) (−j1− j2+ j̄1+ j̄2+2) (j1− j2

+ j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2 + 2))
1/2

(2j1

+ 2 j2 + j̄1 + j̄2 + 3)
)
/
(
2 (2)1/2 (j1j2)

1/2
)
,

(152)

(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 +
1
2 j2 − 1

2 j1 j2
1
2

1
2

)
= −

(
Ne(j̄1, j̄2) (j1 + j2

+1) ((j1−j2+ j̄1− j̄2+1) (−j1+j2+ j̄1− j̄2) (−j1
− j2 + j̄1 + j̄2 +1) (j1 − j2 + j̄1 + j̄2 +2) (j1 − j2

+ j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2 + 3))
1/2

(−2j1

+2 j2+ j̄1+ j̄2+1)
)
/
(
2 (2)1/2 ((j1+1) j2)

1/2
)
,

(153)
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(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 − 1
2 j2 +

1
2 j1 j2

1
2

1
2

)
=
(
Ne(j̄1, j̄2) (j1 + j2 + 1) (2j1 − 2j2 + j̄1 + j̄2

+ 1) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2
+ 1) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 + j2 + j̄1 + j̄2
+ 2) (−j1 + j2 + j̄1 + j̄2 + 3) (j1 + j2 + j̄1 + j̄2

+ 3))
1/2
)
/
(
2 (2)1/2 (j1 (j2 + 1))1/2

)
,

(154)

(
j̄1 +

1
2 j̄2 +

1
2 j̄1 j̄2 1 1

j1 j2 j1 j2 0 0

)
=

√
5

2
Ne(j̄1, j̄2) (j1 − j2) (j1 + j2 + 1) ((−j1 − j2

+ j̄1 + j̄2 + 1) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2

+ j̄1 + j̄2 + 2) (j1 + j2 + j̄1 + j̄2 + 3))
1/2

.

(155)

Clebsch-Gordan coefficients (j̄1, j̄2)⊗ (1̄, 1̄) → (j̄1 +
1
2 , j̄2 −

1
2) are:

(156)
Nf (j̄1, j̄2) = ((2j̄1 + 2) (2j̄1 − 2j̄2 + 1) (j̄1 − j̄2) (j̄1 − j̄2 + 1) (j̄1 − j̄2

+ 2) (j̄1 + j̄2 + 1) (j̄1 + j̄2 + 2) (2j̄2 + 1))
− 1

2

(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 + 1 j2 + 1 j1 j2 1 1

)
=
(
Nf (j̄1, j̄2) (j1 − j2 ) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2 + 1) (j1 + j2

+ j̄1 − j̄2 +2) (j1 + j2 + j̄1 − j̄2 +3) (j1 + j2 + j̄1 − j̄2 +4) (j1 + j2 − j̄1 + j̄2
+ 1) (−j1 − j2 + j̄1 + j̄2 − 1) (−j1 − j2 + j̄1 + j̄2) (j1 + j2 + j̄1 + j̄2 + 3) (j1

+ j2 + j̄1 + j̄2 +4))
1/2
)
/
(
2 (2)1/2 ((j1 +1) (2j1 +3) (j2 +1) (2j2 +3))1/2

)
,

(157)
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(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 − 1 j2 − 1 j1 j2 1 1

)
=
(
Nf (j̄1, j̄2) (j1 − j2 ) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1

+ j2 + j̄1 − j̄2 + 1) (j1 + j2 + j̄1 − j̄2 + 1) (j1 + j2
− j̄1 + j̄2 − 2) (j1 + j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1
+ j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2

+ 2) (j1 + j2 + j̄1 + j̄2 + 1) (j1 + j2 + j̄1 + j̄2

+2))
1/2
)
/
(
2 (2)1/2 (j1 (2j1−1) j2 (2j2−1))1/2

)
,

(158)(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 − 1 j2 + 1 j1 j2 1 1

)
=
(
Nf (j̄1, j̄2) (j1 + j2 +1) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2 +1) (−j1 + j2

+ j̄1 − j̄2 + 2) (−j1 + j2 + j̄1 − j̄2 + 3) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 − j̄1
+ j̄2) (j1 − j2 + j̄1 + j̄2) (j1 − j2 + j̄1 + j̄2 + 1) (−j1 + j2 + j̄1 + j̄2 + 2) (−j1

+ j2 + j̄1 + j̄2 + 3))
1/2
)
/
(
2 (2)1/2

(
j1 (2j1 − 1)

(
2j22 + 5j2 + 3

))1/2 )
,

(159)(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 + 1 j2 − 1 j1 j2 1 1

)
= −

(
Nf (j̄1, j̄2) (j1 + j2 + 1) ((j1 − j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1 − j̄2 + 2) (j1

− j2 + j̄1 − j̄2 + 3) (−j1 + j2 + j̄1 − j̄2) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 − j̄1
+ j̄2) (j1 − j2 + j̄1 + j̄2 +2) (j1 − j2 + j̄1 + j̄2 +3) (−j1 + j2 + j̄1 + j̄2) (−j1

+ j2 + j̄1 + j̄2 + 1))
1/2
)
/
(
2 (2)1/2

((
2j21 + 5j1 + 3

)
j2 (2j2 − 1)

)1/2 )
,

(160)(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 + 1 j2 j1 j2 1 1

)
=
(
Nf (j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2

+ 2) (j1 + j2 + j̄1 − j̄2 + 3) (−j1 − j2 + j̄1 + j̄2) (j1 − j2 + j̄1 + j̄2 + 2) (−j1

+ j2 + j̄1 + j̄2 + 1) (j1 + j2 + j̄1 + j̄2 + 3))
1/2

(j2 (j2 + 1)

− (j1 + 1) (j1 − j̄1 + j̄2))
)
/
(
2 (2)1/2 ((j1 + 1) (2j1 + 3) j2 (j2 + 1))1/2

)
,

(161)
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(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 − 1 j2 j1 j2 1 1

)
= −

(
Nf (j̄1, j̄2)

(
j21 + (j̄1 − j̄2 + 1) j1

− j2 (j2 + 1)
)
((−j1 + j2 + j̄1 − j̄2 + 1) (−j1 + j2

+ j̄1 − j̄2 + 2) (j1 + j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1
+ j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (j1 − j2 + j̄1 + j̄2
+ 1) (−j1 + j2 + j̄1 + j̄2 + 2) (j1 + j2 + j̄1 + j̄2

+ 2))
1/2
)
/
(
2 (2)1/2 (j1 (2j1 − 1) j2 (j2 + 1))1/2

)
,

(162)(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 j2 + 1 j1 j2 1 1

)
= −

(
Nf (j̄1, j̄2) ((−j1 + j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1

− j̄2 + 2) (j1 + j2 + j̄1 − j̄2 + 3) (−j1 − j2 + j̄1 + j̄2) (j1 − j2 + j̄1 + j̄2

+ 1) (−j1 + j2 + j̄1 + j̄2 + 2) (j1 + j2 + j̄1 + j̄2 + 3))
1/2 (

j21 + j1

− (j2 + 1) (j2 − j̄1 + j̄2)
) )

/
(
2 (2)1/2 (j1 (j1 + 1) (j2 + 1) (2j2 + 3))1/2

)
,

(163)(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 j2 − 1 j1 j2 1 1

)
= −

(
Nf (j̄1, j̄2)

(
j21 + j1 − j2 (j2 + j̄1 − j̄2 + 1)

)
((j1

− j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1 − j̄2 + 2) (j1 + j2
− j̄1 + j̄2 − 1) (j1 + j2 − j̄1 + j̄2) (−j1 − j2 + j̄1
+ j̄2 + 1) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1

+ j̄2 + 1) (j1 + j2 + j̄1 + j̄2

+ 2))
1/2
)
/
(
2 (2)1/2 (j1 (j1 + 1) j2 (2j2 − 1))1/2

)
,

(164)(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 j2 j1 j2 1 1

)
=
(
Nf (j̄1, j̄2)

(
j21 + j1

− j2 (j2 + 1)
)
((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2

+ j̄1 − j̄2 + 1) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 − j̄1

+ j̄2))
1/2 (−j21−j1−j22+(j̄1+ j̄2)

2−j2+3 (j̄1+ j̄2)

+ 2
) )

/
(
2 (2)1/2 (j1 (j1 + 1) j2 (j2 + 1))1/2

)
,

(165)
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(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 +

1
2 j2 +

1
2 j1 j2

1
2

1
2

)
= −

(
Nf (j̄1, j̄2) (j1 − j2) (2j1 + 2j2 − j̄1 + j̄2

+ 2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2
+ 1) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 + j̄1 − j̄2
+ 3) (−j1 − j2 + j̄1 + j̄2) (j1 + j2 + j̄1 + j̄2

+ 3))
1/2
)
/
(
2 (2)1/2 ((j1 + 1) (j2 + 1))1/2

)
,

(166)

(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 − 1

2 j2 − 1
2 j1 j2

1
2

1
2

)
= −

(
Nf (j̄1, j̄2) (j1 − j2) (2j1 + 2j2 + j̄1 − j̄2

+ 2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2
+ 1) (j1 + j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1

+ j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (j1 + j2 + j̄1 + j̄2

+ 2))
1/2
)
/
(
2 (2)1/2 (j1 j2)

1/2
)
,

(167)

(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 +

1
2 j2 − 1

2 j1 j2
1
2

1
2

)
=
(
Nf (j̄1, j̄2) (j1 + j2 + 1) (2j1 − 2j2 − j̄1

+ j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1 − j̄2
+ 2) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 − j̄1

+ j̄2) (j1 − j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2

+ 1))
1/2
)
/
(
2 (2)1/2 ((j1 + 1) j2)

1/2
)
,

(168)

(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 − 1

2 j2 +
1
2 j1 j2

1
2

1
2

)
=
(
Nf (j̄1, j̄2) (j1 + j2 + 1) (2j1 − 2j2 + j̄1

− j̄2) ((−j1 + j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1
− j̄2 + 2) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 − j̄1

+ j̄2) (j1 − j2 + j̄1 + j̄2 + 1) (−j1 + j2 + j̄1 + j̄2

+ 2))
1/2
)
/
(
2 (2)1/2 (j1 (j2 + 1))1/2

)
,

(169)
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(170)

(
j̄1 +

1
2 j̄2 − 1

2 j̄1 j̄2 1 1
j1 j2 j1 j2 0 0

)
=

(
5

2

)1/2

Nf (j̄1, j̄2) (j1 − j2) (j1 + j2

+1) ((j1−j2+j̄1−j̄2+1) (−j1+j2+j̄1−j̄2+1) (j1+j2+j̄1−j̄2+2) (j1+j2−j̄1+j̄2))
1/2

.

Representation (j̄1, j̄2) appears twice in the decomposition of the product
(j̄1, j̄2) ⊗ (1̄, 1̄). To distinguish between the two, we will use the convention
described in [58]. Clebsch-Gordan coefficients (j̄1, j̄2)⊗ (1̄, 1̄) → (j̄1, j̄2)1 are:

(171)
Ng(j̄1, j̄2) = 2 (5)1/2

(
4j̄22 (j̄2 + 1) 2 + 11

(
8j̄21 + 16j̄1 + 5

)
j̄2 (j̄2 + 1)

+ j̄1 (j̄1 + 2) (2j̄1 − 1) (2j̄1 + 5)
)− 1

2(
j̄1 j̄2 j̄1 j̄2 1 1

j1 + 1 j2 + 1 j1 j2 1 1

)
1

=−
(
Ng(j̄1, j̄2) ((j1+j2− j̄1− j̄2) (j1+j2− j̄1− j̄2+1) (j1+j2+ j̄1− j̄2+2) (j1

+j2+ j̄1− j̄2+3) (j1+j2− j̄1+ j̄2+1) (j1+j2− j̄1+ j̄2+2) (j1+j2+ j̄1+ j̄2

+3) (j1+ j2+ j̄1+ j̄2+4))
1/2
)
/
(
8 ((j1+1) (2j1+3) (j2+1) (2j2+3))1/2

)
,

(172)(
j̄1 j̄2 j̄1 j̄2 1 1

j1 − 1 j2 − 1 j1 j2 1 1

)
1

= −
(
Ng(j̄1, j̄2) ((j1 + j2 + j̄1 − j̄2) (j1 + j2 + j̄1 − j̄2

+ 1) (j1 + j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1
+ j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2

+ 2) (j1 + j2 + j̄1 + j̄2 + 1) (j1 + j2 + j̄1 + j̄2

+ 2))
1/2
)
/
(
8 (j1 (2 j1 − 1) j2 (2j2 − 1))1/2

)
,

(173)(
j̄1 j̄2 j̄1 j̄2 1 1

j1 − 1 j2 + 1 j1 j2 1 1

)
1

= −
(
Ng(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 − 1) (j1 − j2 + j̄1

− j̄2) (−j1 + j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2
+ 2) (j1 − j2 + j̄1 + j̄2) (j1 − j2 + j̄1 + j̄2

+ 1) (−j1 + j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2

+ 3))
1/2
)
/
(
8
(
j1 (2j1 − 1)

(
2j22 + 5 j2 + 3

))1/2 )
,

(174)
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(
j̄1 j̄2 j̄1 j̄2 1 1

j1 + 1 j2 − 1 j1 j2 1 1

)
1

= −
(
Ng(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1

− j̄2 + 2) (−j1 + j2 + j̄1 − j̄2 − 1) (−j1 + j2 + j̄1
− j̄2) (j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2
+ 3) (−j1 + j2 + j̄1 + j̄2) (−j1 + j2 + j̄1 + j̄2

+ 1))
1/2
)
/
(
8
((
2j21 + 5 j1 + 3

)
j2 (2j2 − 1)

)1/2 )
,

(175)

(
j̄1 j̄2 j̄1 j̄2 1 1

j1 + 1 j2 j1 j2 1 1

)
1

= −
(
Ng(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1

− j̄2) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 − j̄1 + j̄2
+ 1) (−j1 − j2 + j̄1 + j̄2) (j1 − j2 + j̄1 + j̄2 + 2) (−j1

+ j2 + j̄1 + j̄2 + 1) (j1 + j2 + j̄1 + j̄2

+ 3))
1/2
)
/
(
8 ((j1 + 1) (2j1 + 3) j2 (j2 + 1))1/2

)
,

(176)

(
j̄1 j̄2 j̄1 j̄2 1 1

j1 − 1 j2 j1 j2 1 1

)
1

=
(
Ng(j̄1, j̄2) ((j1−j2+ j̄1− j̄2) (−j1+j2+ j̄1− j̄2+1) (j1

+ j2+ j̄1− j̄2+1) (j1+ j2− j̄1+ j̄2) (−j1− j2+ j̄1+ j̄2
+1) (j1− j2+ j̄1+ j̄2+1) (−j1+ j2+ j̄1+ j̄2+2) (j1

+j2+ j̄1+ j̄2+2))
1/2
)
/
(
8 (j1 (2 j1−1) j2 (j2+1))1/2

)
,

(177)

(
j̄1 j̄2 j̄1 j̄2 1 1
j1 j2 + 1 j1 j2 1 1

)
1

= −
(
Ng(j̄1, j̄2) ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2

+ 1) (j1 + j2 + j̄1 − j̄2 + 2) (j1 + j2 − j̄1 + j̄2
+ 1) (−j1 − j2 + j̄1 + j̄2) (j1 − j2 + j̄1 + j̄2 + 1) (−j1

+ j2 + j̄1 + j̄2 + 2) (j1 + j2 + j̄1 + j̄2

+ 3))
1/2
)
/
(
8 (j1 (j1 + 1) (j2 + 1) (2j2 + 3))1/2

)
,

(178)
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(
j̄1 j̄2 j̄1 j̄2 1 1
j1 j2 − 1 j1 j2 1 1

)
1

=
(
Ng(j̄1, j̄2) ((j1−j2+ j̄1− j̄2+1) (−j1+j2+ j̄1− j̄2) (j1

+ j2+ j̄1− j̄2+1) (j1+ j2− j̄1+ j̄2) (−j1− j2+ j̄1+ j̄2
+1) (j1− j2+ j̄1+ j̄2+2) (−j1+ j2+ j̄1+ j̄2+1) (j1

+j2+ j̄1+ j̄2+2))
1/2
)
/
(
8 (j1 (j1+1) j2 (2j2−1))1/2

)
,

(179)(
j̄1 j̄2 j̄1 j̄2 1 1
j1 j2 j1 j2 1 1

)
1

= −
(
Ng(j̄1, j̄2)

(
j41 + 2j31

−
(
10j22 + 10j2 + 2j̄21 + 2 j̄22 + 4j̄1 + 2j̄2 + 1

)
j21

− 2
(
5j22 + 5 j2 + j̄21 + j̄22 + 2j̄1 + j̄2 + 1

)
j1 + j42 + j̄41 + j̄42

+2j32 +4j̄31 +2j̄32 +5 j̄21 − 2j̄21 j̄
2
2 − 4j̄1 j̄22 − j̄22 +2j̄1 − 2j̄21 j̄2

− 4 j̄1j̄2 − 2j̄2 − 2j2
(
j̄21 + 2 j̄1 + j̄22 + j̄2 + 1

)
− j22

(
2j̄21

+ 4 j̄1 + 2j̄22 + 2j̄2 + 1
)) )

/
(
8 (j1 (j1 + 1) j2 (j2 + 1))1/2

)
,

(180)(
j̄1 j̄2 j̄1 j̄2 1 1

j1 +
1
2 j2 +

1
2 j1 j2

1
2

1
2

)
1

=
(
Ng(j̄1, j̄2) (2j1+2 j2+3) ((j1+j2+ j̄1− j̄2+2) (j1

+ j2 − j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2) (j1 + j2

+ j̄1 + j̄2 + 3))
1/2
)
/
(
8 ((j1 + 1) (j2 + 1))1/2

)
,

(181)(
j̄1 j̄2 j̄1 j̄2 1 1

j1 − 1
2 j2 − 1

2 j1 j2
1
2

1
2

)
1

=
(
Ng(j̄1, j̄2) (2j1 + 2 j2 + 1) ((j1 + j2 + j̄1 − j̄2

+ 1) (j1 + j2 − j̄1 + j̄2) (−j1 − j2 + j̄1 + j̄2

+ 1) (j1 + j2 + j̄1 + j̄2 + 2))
1/2
)
/
(
8 (j1j2)

1/2
)
,

(182)(
j̄1 j̄2 j̄1 j̄2 1 1

j1 +
1
2 j2 − 1

2 j1 j2
1
2

1
2

)
1

=
(
Ng(j̄1, j̄2) (2j1 − 2 j2 + 1) ((j1 − j2 + j̄1 − j̄2

+1) (−j1+j2+ j̄1− j̄2) (j1−j2+ j̄1+ j̄2+2) (−j1

+ j2 + j̄1 + j̄2 + 1))
1/2
)
/
(
8 ((j1 + 1) j2)

1/2
)
,

(183)
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(
j̄1 j̄2 j̄1 j̄2 1 1

j1 − 1
2 j2 +

1
2 j1 j2

1
2

1
2

)
1

= −
(
Ng(j̄1, j̄2) (2 j1 − 2j2 − 1) ((j1 − j2 + j̄1

− j̄2) (−j1 + j2 + j̄1 − j̄2 + 1) (j1 − j2 + j̄1 + j̄2
+ 1) (−j1 + j2 + j̄1 + j̄2

+ 2))
1/2
)
/
(
8 (j1 (j2 + 1 ))1/2

)
,

(184)

(185)

(
j̄1 j̄2 j̄1 j̄2 1 1
j1 j2 j1 j2 0 0

)
1

= −
(
Ng(j̄1, j̄2)

(
5 j21 + 5j1 + 5j22 + 5j2

− 3
(
j̄21 + 2 j̄1 + j̄22 + j̄2

)) )
/
(
2 (5)1/2

)
.

Clebsch-Gordan coefficients (j̄1, j̄2)⊗ (1̄, 1̄) → (j̄1, j̄2)2 are:

(186)

(
j̄1 j̄2 j̄1 j̄2 1 1
j′1 j

′
2 j1 j2 J1 J2

)
2

=
(
H2 −X2

)1/2(j̄1 j̄2 j̄1 j̄2 1 1
j′1 j

′
2 j1 j2 J1 J2

)
−X

(
j̄1 j̄2 j̄1 j̄2 1 1
j′1 j

′
2 j1 j2 J1 J2

)
1

,

where:

(187)X = − 1

10
Ng(j̄1, j̄2) (j̄1 − j̄2) (j̄1 − j̄2 + 1) (j̄1 + j̄2 + 1) (j̄1 + j̄2

+ 2) (4j̄1 (j̄1 + 2) + 4j̄2 (j̄2 + 1)− 5) ,

H2 =
1

5
(j̄1− j̄2) (j̄1− j̄2+1) (j̄1+ j̄2+1) (j̄1+ j̄2+2)

(
4j̄42+8j̄32−(8j̄1 (j̄1+2)+9) j̄22

− (8j̄1 (j̄1 + 2) + 13) j̄2 + (j̄1 + 1) 2 (4j̄1 (j̄1 + 2)− 5)
)
,

(188)

and a list of additional coefficients is the following:
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(
j̄1 j̄2 j̄1 j̄2 1 1

j1 + 1 j2 + 1 j1 j2 1 1

)
=
(
(j1− j2)

2 ((j1+ j2− j̄1− j̄2) (j1+ j2− j̄1− j̄2+1) (j1+ j2+ j̄1− j̄2+2) (j1

+j2+ j̄1− j̄2+3) (j1+j2− j̄1+ j̄2+1) (j1+j2− j̄1+ j̄2+2) (j1+j2+ j̄1+ j̄2

+3) (j1+ j2+ j̄1+ j̄2+4))
1/2
)
/
(
4 ((j1+1) (2j1+3) (j2+1) (2j2+3))1/2

)
,

(189)

(
j̄1 j̄2 j̄1 j̄2 1 1

j1 − 1 j2 − 1 j1 j2 1 1

)
=
(
(j1 − j2)

2 ((j1 + j2 + j̄1 − j̄2) (j1 + j2 + j̄1 − j̄2

+ 1) (j1 + j2 − j̄1 + j̄2 − 1) (j1 + j2 − j̄1
+ j̄2) (−j1 − j2 + j̄1 + j̄2 + 1) (−j1 − j2 + j̄1 + j̄2

+ 2) (j1 + j2 + j̄1 + j̄2 + 1) (j1 + j2 + j̄1 + j̄2

+ 2))
1/2
)
/
(
4 (j1 (2 j1 − 1) j2 (2j2 − 1))1/2

)
,

(190)

(
j̄1 j̄2 j̄1 j̄2 1 1

j1 − 1 j2 + 1 j1 j2 1 1

)
=
(
(j1+ j2+1) 2 ((j1− j2+ j̄1− j̄2− 1) (j1− j2+ j̄1

− j̄2) (−j1 + j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2
+ 2) (j1 − j2 + j̄1 + j̄2) (j1 − j2 + j̄1 + j̄2

+ 1) (−j1 + j2 + j̄1 + j̄2 + 2) (−j1 + j2 + j̄1 + j̄2

+ 3))
1/2
)
/
(
4
(
j1 (2j1 − 1)

(
2j22 + 5 j2 + 3

))1/2 )
,

(191)

(
j̄1 j̄2 j̄1 j̄2 1 1

j1 + 1 j2 − 1 j1 j2 1 1

)
=
(
(j1 + j2 +1) 2 ((j1 − j2 + j̄1 − j̄2 +1) (j1 − j2 + j̄1

− j̄2 + 2) (−j1 + j2 + j̄1 − j̄2 − 1) (−j1 + j2 + j̄1
− j̄2) (j1 − j2 + j̄1 + j̄2 + 2) (j1 − j2 + j̄1 + j̄2
+ 3) (−j1 + j2 + j̄1 + j̄2) (−j1 + j2 + j̄1 + j̄2

+ 1))
1/2
)
/
(
4
((
2j21 + 5 j1 + 3

)
j2 (2j2 − 1)

)1/2 )
,

(192)
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(
j̄1 j̄2 j̄1 j̄2 1 1

j1 + 1 j2 j1 j2 1 1

)
=
(√

j2 (j2 + 1)

(
(j1 + 1) 2

j2 (j2 + 1)

− 1

)
((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2) (j1

+ j2 + j̄1 − j̄2 +2) (j1 + j2 − j̄1 + j̄2 +1) (−j1 − j2 + j̄1
+ j̄2) (j1− j2 + j̄1 + j̄2 +2) (−j1 + j2 + j̄1 + j̄2 +1) (j1

+ j2 + j̄1 + j̄2 + 3))
1/2
)
/
(
4 ((j1 + 1) (2j1 + 3))1/2

)
,

(193)

(
j̄1 j̄2 j̄1 j̄2 1 1

j1 − 1 j2 j1 j2 1 1

)
=
( (

−j21 + j22

+ j2
)
((j1− j2+ j̄1− j̄2) (−j1+ j2+ j̄1− j̄2+1) (j1+ j2

+ j̄1− j̄2+1) (j1+j2− j̄1+ j̄2) (−j1−j2+ j̄1+ j̄2+1) (j1
− j2 + j̄1 + j̄2 +1) (−j1 + j2 + j̄1 + j̄2 +2) (j1 + j2 + j̄1

+ j̄2 + 2))
1/2
)
/
(
4 (j1 (2 j1 − 1))1/2 (j2 (j2 + 1))1/2

)
,

(194)

(
j̄1 j̄2 j̄1 j̄2 1 1
j1 j2 + 1 j1 j2 1 1

)
=
(√

j1 (j1 + 1)

(
(j2 + 1) 2

j1 (j1 + 1)

− 1

)
((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2 + 1) (j1

+ j2 + j̄1 − j̄2 +2) (j1 + j2 − j̄1 + j̄2 +1) (−j1 − j2 + j̄1
+ j̄2) (j1− j2 + j̄1 + j̄2 +1) (−j1 + j2 + j̄1 + j̄2 +2) (j1

+ j2 + j̄1 + j̄2 + 3))
1/2
)
/
(
4 ((j2 + 1) (2j2 + 3))1/2

)
,

(195)

(
j̄1 j̄2 j̄1 j̄2 1 1
j1 j2 − 1 j1 j2 1 1

)
=
( (

j21 + j1

− j22
)
((j1 − j2 + j̄1 − j̄2 + 1) (−j1 + j2 + j̄1 − j̄2) (j1

+ j2+ j̄1− j̄2+1) (j1+ j2− j̄1+ j̄2) (−j1− j2+ j̄1+ j̄2
+1) (j1−j2+ j̄1+ j̄2+2) (−j1+j2+ j̄1+ j̄2+1) (j1+j2

+ j̄1+ j̄2+2))
1/2
)
/
(
4 (j1 (j1+1))1/2 (j2 (2j2−1))1/2

)
,

(196)
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(
j̄1 j̄2 j̄1 j̄2 1 1
j1 j2 j1 j2 1 1

)
= −

(
j61 + 3j51 −

(
j22 + j2 + 2j̄21 + 2 j̄22 + 4j̄1 + 2j̄2 − 1

)
j41

−
(
2j22 + 2 j2 + 4j̄21 + 4j̄22 + 8j̄1 + 4j̄2 + 3

)
j31

+
(
−j42 − 2j32 +

(
4j̄21 + 8j̄1 + 4 j̄22 + 4j̄2 + 2

)
j22

+
(
4j̄21 +8 j̄1+4j̄22 +4j̄2+3

)
j2+ j̄41 + j̄42 +4j̄31 +2j̄32 − 3 j̄22

− 4j̄2 + j̄21
(
−2j̄22 − 2 j̄2 + 3

)
− 2j̄1

(
2j̄22 + 2j̄2 + 1

)
− 2
)
j21

+
(
−j42 − 2j32 +

(
4j̄21 + 8 j̄1 + 4j̄22 + 4j̄2 + 3

)
j22

+4
(
j̄21+2j̄1+ j̄22+ j̄2+1

)
j2+ j̄41+4j̄31+ j̄1

(
−4j̄22−4 j̄2+2

)
+ j̄21

(
−2j̄22 − 2j̄2 + 5

)
+ j̄2

(
j̄32 + 2j̄22 − j̄2 − 2

))
j1

+ j2 (j2 + 1)
(
j42 + 2j32 −

(
2 j̄21 + 4j̄1 + 2j̄22 + 2j̄2 + 1

)
j22

− 2
(
j̄21 + 2j̄1 + j̄22 + j̄2 + 1

)
j2 + j̄41 + 4j̄31

+ j̄1
(
−4j̄22 − 4 j̄2 + 2

)
+ j̄21

(
−2j̄22 − 2j̄2 + 5

)
+ j̄2

(
j̄32 + 2j̄22 − j̄2 − 2

)) )
/
(
4 (j1 (j1 + 1) j2 (j2 + 1))1/2

)
,

(197)(
j̄1 j̄2 j̄1 j̄2 1 1

j1 +
1
2 j2 +

1
2 j1 j2

1
2

1
2

)
= −

(
(j1 − j2)

2 (2j1 + 2j2 + 3) ((j1 + j2 + j̄1 − j̄2

+2) (j1+ j2− j̄1+ j̄2+1) (−j1− j2+ j̄1+ j̄2) (j1

+ j2+ j̄1+ j̄2+3))
1/2
)
/
(
4 ((j1+1) (j2+1))1/2

)
,

(198)(
j̄1 j̄2 j̄1 j̄2 1 1

j1 − 1
2 j2 − 1

2 j1 j2
1
2

1
2

)
= −

(
(j1 − j2)

2 (2j1 + 2j2 + 1) ((j1 + j2 + j̄1 − j̄2

+ 1) (j1 + j2 − j̄1 + j̄2) (−j1 − j2 + j̄1 + j̄2

+ 1) (j1 + j2 + j̄1 + j̄2 + 2))
1/2
)
/
(
4 (j1j2)

1/2
)
,

(199)(
j̄1 j̄2 j̄1 j̄2 1 1

j1 +
1
2 j2 − 1

2 j1 j2
1
2

1
2

)
=
(
(j1+ j2+1) 2 (−2j1+2j2− 1) ((j1− j2+ j̄1− j̄2

+1) (−j1+j2+ j̄1− j̄2) (j1−j2+ j̄1+ j̄2+2) (−j1

+ j2 + j̄1 + j̄2 + 1))
1/2
)
/
(
4 ((j1 + 1) j2)

1/2
)
,

(200)
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(
j̄1 j̄2 j̄1 j̄2 1 1

j1 − 1
2 j2 +

1
2 j1 j2

1
2

1
2

)
=
(
(2j1 − 2j2 − 1) (j1 + j2

+ 1) 2 ((j1 − j2 + j̄1 − j̄2) (−j1 + j2 + j̄1 − j̄2
+ 1) (j1 − j2 + j̄1 + j̄2 + 1) (−j1 + j2 + j̄1 + j̄2

+ 2))
1/2
)
/
(
4 (j1 (j2 + 1 ))1/2

)
,

(201)

(
j̄1 j̄2 j̄1 j̄2 1 1
j1 j2 j1 j2 0 0

)
= −

(
j̄41 +4j̄31 +

(
−2j̄22 − 2 j̄2 +5

)
j̄21 +

(
−4j̄22 − 4j̄2 +2

)
j̄1 + j̄42

+ 2j̄32 − 5
(
j21 + j1 − j2 (j2 + 1)

)
2 − j̄22 − 2j̄2

)
/
(
2 (5)1/2

)
.

(202)

The rest of the coefficients can be obtained by using the symmetries of
the coefficients [43]. There are no multiplicity, so the symmetries are simply
given by:(
j̄1 j̄2 j̄′1 j̄

′
2 1̄ 1̄

j1 j2 j′1 j′2 j′′1 j′′2

)
= (−1)j̄1−j̄′1+j̄′2−j̄2+j1−j′1+j2−j′2+j′′1+j′′2 ×√

dim(j̄1, j̄2)(2j′1 + 1)(2j′2 + 1)

dim(j̄′1, j̄
′
2)(2j1 + 1)(2j2 + 1)

(
j̄′1 j̄

′
2 j̄1 j̄2 1̄ 1̄

j′1 j′2 j1 j2 j′′1 j′′2

)
,

where dim(j̄1, j̄2) = (2j̄1 − 2j̄2 + 1)(2j̄1 + 2j̄2 + 3)(2j̄1 + 2)(2j̄2 + 1)/6.
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[24] Dj. Šijački, Class. Quant. Grav. 25 (2008) 065009.
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[54] I. Kirsch and Dj. Šijački, Class. Quant. Grav. 19 (2002) 3157.

[55] A. Cant and Y. Neeman, J. Math. Phys. 26 (1985) 3180.

[56] S. Coleman and E. Weinberg, Phys. Rev. D 7 (1973) 1888.

[57] E. J. Weinberg, Phys. Rev. D 47 (1993) 4614.

[58] M. K. F. Wong, Nuclear Physics A 186 (1972) 177.


