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Abstract

We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when
both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which
yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum
and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the
generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called
quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and
the Bethe equations of the Gaudin model.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The quantum inverse scattering method (QISM) is an approach to construct and solve quantum
integrable systems [1-3]. In the framework of the QISM the algebraic Bethe ansatz (ABA) is
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a powerful algebraic tool, which yields the spectrum and corresponding eigenstates for which
highest weight type representations are relevant, like for example quantum spin systems, Gaudin
models, etc. In particular, the Heisenberg spin chain [4], with periodic boundary conditions, has
been studied by the algebraic Bethe ansatz [1,3], including the question of completeness and
simplicity of the spectrum [5].

A way to introduce non-periodic boundary conditions compatible with the integrability of the
quantum systems solvable by the quantum inverse scattering method was developed in [6]. The
boundary conditions at the left and right sites of the system are expressed in the left and right
reflection matrices. The compatibility condition between the bulk and the boundary of the system
takes the form of the so-called reflection equation. The compatibility at the right site of the model
is expressed by the dual reflection equation. The matrix form of the exchange relations between
the entries of the Sklyanin monodromy matrix are analogous to the reflection equation. Together
with the dual reflection equation they yield the commutativity of the open transfer matrix [6-8].

There is a renewed interest in applying the algebraic Bethe ansatz to the open XXX chain
with non-periodic boundary conditions compatible with the integrability of the systems [9—12].
Other approaches include the ABA based on the functional relation between the eigenvalues of
the transfer matrix and the quantum determinant and the associated T—Q relation [13], func-
tional relations for the eigenvalues of the transfer matrix based on fusion hierarchy [14] and the
Vertex-IRF correspondence [15]. For a review of the coordinate Bethe ansatz for non-diagonal
boundaries see [16]. However, we will focus on the case when system admits the so-called
pseudo-vacuum, or the reference state [6,9-12]. In his seminal work on boundary conditions
in quantum integrable models Sklyanin has studied the XXZ spin chain with diagonal bound-
aries [6]. The next relevant step was the study of the s¢(n) spin chain in the case when reflection
matrices can be brought into the diagonal form by a suitable similarity transformation which
leaves the R-matrix invariant and it is independent of the spectral parameter [17,18]. These re-
sults were then generalized to the case of the spin-s XXX chain when there exists a basis in which
one reflection matrix is triangular and the other one is diagonal [9]. Recent studies are focused
on the XXX chain when both K-matrices can be simultaneously brought to a triangular form by
a single similarity matrix which is independent of the spectral parameter [10] and similarly for
the XXZ chain [12]. Although the on shell Bethe ansatz is realized, the proposed Bethe vectors
are not suitable for the off shell ABA. The case when the reflection matrix K~ (}) is diagonal
and K1 (1) is a two-by-two matrix with non-zero entries was studied in [11].

This work is centred on the implementation of the algebraic Bethe ansatz which yields the
off shell action of the transfer matrix the XXX Heisenberg spin chain when the corresponding
K-matrices are triangularizable. The Bethe vectors Wy (141, (2, . . ., i) we define here are such
that they make the off shell action of the transfer matrix strikingly simple since it almost coincides
with the corresponding action in the case when the two boundary matrices are diagonal. The
Bethe vectors Wy (i1, U2, - .., Lym), for an arbitrary positive integer M, are defined explicitly as
some polynomial functions of the creation operators. As expected, the off shell action yields the
spectrum of the transfer matrix and the corresponding Bethe equations. To explore further these
results we use the so-called quasi-classical limit and obtain the off shell action of the generating
function of the Gaudin Hamiltonians, with boundary terms, on the corresponding Bethe vectors.

A model of interacting spins in a chain was first considered by Gaudin [19,20]. In his ap-
proach, these models were introduced as a quasi-classical limit of the integrable quantum chains.
The Gaudin models were extended to any simple Lie algebra, with arbitrary irreducible represen-
tation at each site of the chain [20]. Sklyanin studied the rational s£(2) model in the framework
of the quantum inverse scattering method using the s£(2) invariant classical r-matrix [21]. A gen-
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eralization of these results to all cases when skew-symmetric r-matrix satisfies the classical
Yang-Baxter equation [22] was relatively straightforward [23,24]. Therefore, considerable at-
tention has been devoted to Gaudin models corresponding to the classical r-matrices of simple
Lie algebras [25-27] and Lie superalgebras [28-32].

Hikami showed how the quasi-classical expansion of the transfer matrix, calculated at the spe-
cial values of the spectral parameter, yields the Gaudin Hamiltonians in the case of non-periodic
boundary conditions [33]. Then the ABA was applied to open Gaudin model in the context of
the Vertex-IRF correspondence [34—-36]. Also, results were obtained for the open Gaudin models
based on Lie superalgebras [37]. An approach to study the open Gaudin models based on the
classical reflection equation [38] and the non-unitary r-matrices was developed recently, see [39,
40] and the references therein. For a recent review of the open Gaudin model see [41].

In [42] we have derived the generating function of the Gaudin Hamiltonians with boundary
terms following Sklyanin’s approach in the periodic case [21]. Our derivation is based on the
quasi-classical expansion of the linear combination of the transfer matrix of the XXX chain
and the central element, the so-called Sklyanin determinant. Here we use this result with the
objective to derive the off shell action of the generating function of the Gaudin Hamiltonians. As
we will show below, the quasi-classical expansion of the Bethe vectors we have defined for he
XXX Heisenberg spin chain yields the Bethe vectors of the corresponding Gaudin model. The
significance of these Bethe vectors is in the striking simplicity of the formulae of the off shell
action of the generating function of the Gaudin Hamiltonians.

This paper is organized as follows. In Section 2 we review the SL(2)-invariant Yang R-matrix
and provide fundamental tools for the study of the inhomogeneous XXX Heisenberg spin chain.
The general solutions of the reflection equation and the dual reflection equation are given in
Section 3 as well as the triangularization of these K-matrices, when the corresponding parame-
ters obey an extra identity. In Section 4 we expose the Sklyanin approach to the inhomogeneous
XXX Heisenberg spin chain with non-periodic boundary conditions. The implementation of the
ABA, as one of the main results of the paper, is presented in Section 5, including the definition of
the Bethe vectors and the formulae of the off shell action of the transfer matrix. Corresponding
Gaudin model and the respective implementation of the ABA are given in Section 6. Our con-
clusions are presented in Section 7. Finally, in Appendix A are given some basic definitions for
the convenience of the reader and in Appendix B are given commutation relations relevant for
the implementation of the ABA in Section 5.

2. Inhomogeneous Heisenberg spin chain

The XXX Heisenberg spin chain is related to the Yangian )Y(s€(2)) (see [43]) and the
SL(2)-invariant Yang R-matrix [44]

A+n 0 O 0

_ _ 0 Ao 0
RA) =AM +nP= 0 n A 0 , (2.1

0 0 0 A4y

where X is a spectral parameter, 7 is a quasi-classical parameter. We use 1 for the identity operator
and P for the permutation in C? ® C2.
The Yang R-matrix satisfies the Yang—Baxter equation [44.45] in the space C*> ® C> ® C?

Rio(A — ) R13(AM) Roz () = Rz () Ri3(M) Ri2 (A — ), (2.2)
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we suppress the dependence on the quasi-classical parameter n and use the standard notation
of the QISM to denote spaces V;, j = 1,2,3 on which corresponding R-matrices R;;,ij =
12, 13, 23 act non-trivially [1-3]. In the present case Vi =V, = V3 = C2.

The Yang R-matrix also satisfies other relevant properties such as

unitarity Rix(MRa1 (=) = (n? — AD1L;
parity invariance Ry1 (M) = Ri2(A);
temporal invariance Ri,(M) = Ria(1);

crossing symmetry R(A) =TJ1R2(—A — 77)\7171,

where 7, denotes the transpose in the second space and the entries of the two-by-two matrix J
are Jup = (—1)7 18,4 35

Here we study the inhomogeneous XXX spin chain with N sites, characterized by the local
space V,, = C>*! and inhomogeneous parameter a,,. The Hilbert space of the system is

N
H =) Vi = (CFH*V, (2.3)
m=1

Following [21] we introduce the Lax operator

PR P SN S A S R
LOrn()\)—]l"‘)L(O'O Sm)—k< '75,:2 }L_nsrg,n . 2.4)

Notice that IL(1) is a two-by-two matrix in the auxiliary space Vo = C2. It obeys
25m (sm + 1) >
——— | %o:
A —2)

where s, is the value of spin in the space V,,.

When the quantum space is also a spin % representation, the Lax operator becomes the
R-matrix, Loy (A) = L Row (A — n/2).

Due to the commutation relations (A.1), it is straightforward to check that the Lax operator
satisfies the RLL-relations

Roor (A = 1) Lom (A = ctm) Ly (0 — 0tm) = Loy (1 — @) Liom (A — atm) Roor (A — 1) (2.6)

The so-called monodromy matrix

Lom (M) Lom (1 — 2) = <1 +n 2.5

T =Lon(A —an)---Lot(A —ay) 2.7

is used to describe the system. For simplicity we have omitted the dependence on the quasi-
classical parameter n and the inhomogeneous parameters {«j, j =1,..., N}. Notice that T (1)
is a two-by-two matrix acting in the auxiliary space Vo = C2, whose entries are operators acting
inH
_(AQ) BQ)
T = (C(A) b ) (2.8)

From RLL-relations (2.6) it follows that the monodromy matrix satisfies the RTT-relations
Roy (A — ) To(M) Ty () = Toy () To(A) Roor (A — ). (2.9)

The RTT-relations define the commutation relations for the entries of the monodromy matrix.
In every V,, = C**! there exists a vector w,, € V,, such that
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S3 wm =Smwm and  Stw, =0. (2.10)
We define a vector £24 to be
2, =w1® - Quwy eH. (2.11)

From the definitions above it is straightforward to obtain the action of the entries of the mon-
odromy matrix (2.8) on the vector £2+

N
)\‘ —
A2y =aM)Qy, witha() =[] AT dm ¥ 15w (2.12)
A—oy
m=1
N A—a N
DRy =d()2y, withd() =[] m — Nm (2.13)
ol A— oy
C()24 =0. (2.14)

To construct integrable spin chains with non-periodic boundary condition, we will follow
Sklyanin’s approach [6]. Accordingly, before defining the essential operators and corresponding
algebraic structure, in the next section we will introduce the relevant boundary K-matrices.

3. Reflection equation

A way to introduce non-periodic boundary conditions which are compatible with the integra-
bility of the bulk model, was developed in [6]. Boundary conditions on the left and right sites of
the system are encoded in the left and right reflection matrices K~ and K. The compatibility
condition between the bulk and the boundary of the system takes the form of the so-called reflec-
tion equation. It is written in the following form for the left reflection matrix acting on the space
C2 at the first site K~ (1) € End(C?)

Rip(A — ) Ky (M Rat (A + ) Ky (1) = Ky (WRi2(h + ) Ky (M) Rt (A — ). (3.1

Due to the properties of the Yang R-matrix the dual reflection equation can be presented in
the following form

Rio(t — MK Rat (—h — e — 2K (1)
=K (WRin(—x — =2 K (MR (e — 1). (3.2)
One can then verify that the mapping
Kt =K (=x—n) (3.3)

is a bijection between solutions of the reflection equation and the dual reflection equation. After
substitution of (3.3) into the dual reflection equation (3.2) one gets the reflection equation (3.1)
with shifted arguments.

The general, spectral parameter dependent, solutions of the reflection equation (3.1) and the
dual reflection equation (3.2) can be written as follows [46,47]

soo_(E—x YA
K (x)_< o S‘+/\>’ (3.4)

Sy ((EL+A+n —J*(Hn))
K(“‘(—cb*(Hn) g —a-n ) )
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We notice that the matrix K~ (A) (3.4) has at most two distinct eigenvalues

=607, v =1+¢ ¥, (3.6)

when v~ ## 0. Then, for 1/7’ # 0, there exists a matrix

(VY
U_(l—v_ 14+v™ G.7)
such that
15— i ET — T 0
U 'K W)U = ( 0 £ 4w ) (3.8)
A similar diagonalization exists when 5_ # 0. However, forv™ =0, i.e. 5_ 1;_ = —1, the matrix
K~ (A) cannot be diagonalized and
- (& 2
UK (/\)U_( , T ) (3.9)
where
(v 0
U_< g ) (3.10)
Following [10] we notice the condition
~_~ ~ ~_ 2 ~_ ~ ~_ ~
@ v —¢TyT) =4l -0 )V —vT) (3.11)

has to be imposed on the parameters of KT so that the matrices (3.4) and (3.5) are upper trian-
gularizable by a single similarity matrix M. When the square root with the negative sign is taken
on the right-hand-side of (3.11) then one possible choice for M is given by

(1= q?‘
M_< 3 —1—v>’ (3.12)
Evidently this matrix does not depend on the spectral parameter A and it is such that
N (& =M AT
K~ W) =M"K (A)M_( 0 £ i ) (3.13)
+ + +
+y — -1 7+ _ (5 T+ @&+ -y (A +n)
KA =M"K (A)M_< 0 £ o+t ) (3.14)

withy = =¢~ +¢ vt =1+ ¢+ty+ and ¥ = ¢t + 4 T. An analogous choice for M exists
for the other sign of the square root in (3.11).

4. Inhomogeneous Heisenberg spin chain with boundary terms

In order to develop the formalism necessary to describe an integrable spin chain with non-
periodic boundary condition, we use the Sklyanin approach [6]. The main tool in this framework
is the corresponding monodromy matrix

To() = ToM Ky W To(), .1
it consists of the matrix 7 (A) (2.7), a reflection matrix K~ (1) (3.13) and the matrix
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~ A B
T = (20 Bory ) =LotGh+an-+m)---Law G ay +) 42

It is important to notice that the identity (2.5) can be rewritten in the form

2
n"Sm(Sm + 1) )10. (4.3)

A —ap)(=A +oapy +n)

It follows from the equation above and the RLL-relations (2.6) that the RTT-relations (2.9) can
be recast as follows

Lom (A — atm) Lo (—A + ot + 1) = (1 +

Tor (W) Roo (A + ) To(k) = To (M) Rooy O + 12) Ty (1), (4.4)
To() Toy (1) Rooy (1t — 1) = Royy (0 — M) Ty () To (). (4.5)

Using the RTT-relations (2.9), (4.4), (4.5) and the reflection equation (3.1) it is straightforward
to show that the exchange relations of the monodromy matrix 7 (1) in Vo ® Vy are

Roo (A — ) To(M) Ryo (A + 1) Toy () = Toy (1) Rooy (A + ) To(A) Ryro (A — ), (4.6)

using the notation of [6]. From the equation above we can read off the commutation relations of
the entries of the monodromy matrix

(A B
Tk = (C()») DO ) . 4.7
Following Sklyanin [6] (see also [10]) we introduce the operator
=~ _ _ n
D(A) =D)L tn AQ). (4.8)

The relevant commutation relations are given in Appendix B.
The exchange relations (4.6) admit a central element, the so-called Sklyanin determinant,

A[T(A)] = troo Pyoy To(A — 1/2) Rooy A) Toy (A +1/2). 4.9)
The element A[7 (A)] can be expressed in form
A[T(A)] = 2A§(A —n/2)AA+1n/2) — QA+ n)BOA —n/2)C(A+n/2). (4.10)

The open chain transfer matrix is given by the trace of the monodromy 7 (1) over the auxiliary
space Vp with an extra reflection matrix K (1) [6],

1) =tro(KT(W)T ). 4.11)

The reflection matrix K* (1) (3.14) is the corresponding solution of the dual reflection equation
(3.2). The commutativity of the transfer matrix for different values of the spectral parameter

[tV 1(w)] =0, 4.12)

is guaranteed by the dual reflection equation (3.2) and the exchange relations (4.6) of the mon-
odromy matrix 7 (1) [6].
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5. Algebraic Bethe ansatz

In [10] it was shown that the most general case in which the algebraic Bethe ansatz can be
fully implemented is when both K-matrices have upper-triangular from (3.13) and (3.14). The
main aim of this section is to define the Bethe vectors as to obtain the most simplest formulae
for the off shell action of the transfer matrix of the spin chain on these Bethe vectors. The first
step in this direction is to get the expressions of the entries of the monodromy matrix 7 (1) in
terms of the corresponding ones of the monodromies 7'(}) and T(). According to definition of
the monodromy matrix (4.1) we have

([ AQ) B®)
T(’\)_(C(x) D(A))
_ (A0 BM\ (& = yTa (AW B 5.0)
“\cxn DWW 0 ee+m- J\C) D) :
From the equation above, using (4.2) and the RTT-relations (4.4), we obtain
A = (E7 = w7 )AMAR) + (Y A)AR) + (7 +2v7)BR))C ) (5.2)
— (= _ o\ B _ ST
DM =(§ —xv )(B(A)C(A) Z)HLT’(D()\)D(A) A(A)A(A)))
+((¥2)C) + (= +r7)DR))DM) (5.3)
Boy= (6= — ) =2 Boa T Bo)YDG
M =(" - ”)(2x+n ) ()_2/\+n ) ())
+((v2)AG) + (7 +1v7)BW)) D) (5.4)
C)=(E" —27)CAWARN + ((VA)CO) + (7 +1v7) D)) CQ). (5.5

With the aim of obtaining the action of the operators ;A()L),ND()L) andNC (1) on the vector 2
(2.11) we first observe that the action of the operators A(X), D(X) and C(A) on the vector £24

N
~ ~ o~ At+oy +n+nsy,
AN =a(AM) 2y, witha(d) = , 5.6)
(W24 =T 24 >n!:[1 P (
N Aoy +n—mns
DWVNR. =dWN)R., withd) = m 1 Tm 5.7
MR =dn)24 ()E1 PR (5.7)
CO)2, =0, (5.8)

follows directly from the definition (4.2). Using the relations (5.2)—(5.5) and the formulas
(2.12)—(2.14) and (5.6)—(5.8) we derive
CVRy =0, (5.9)
AN Ry =a(M)R24, witha(h)=(§7 =17 )aM)a®), (5.10)
DA+ =58(A)24, with

S(h) = <(§ + ) = —1

2047

n
2A 47

(57 —av7)aam).
(5.11)

(6 - Av))d(k)g(x) +
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In what follows we will use the fact that £2 is an eigenvector of the operator ﬁ(k) 4.8)

D(A)24+ =6(A)824, withd(h) =8(r) Y na(k), (5.12)
or explicitly

o~ o _ -\ ]’] - _ ~

HOE ((s + A7) T (7 — v ))d(k)d(k). (5.13)

The transfer matrix of the inhomoggpeous XXX chain (4.11) with the triangular K-matrix (3.14)
can be expressed using Sklyanin’s D()) operator (4.8) [10]

1) = k1 (WVAMR) + K2 0)DR) + k12(WCM), (5.14)
with
A+
k() =2(E" + Aw)ﬁ, () =ET — L+,
ko) =—v T +n). (5.15)

Evidently the vector £2; (2.11) is an eigenvector of the transfer matrix
124 = (k1 W) +k2(WE(R)) 24 = Ag(A) 824 (5.16)

For simplicity we have suppressed the dependence of the eigenvalue Ag(X) on the boundary
parameters £ and vt as well as the quasi-classical parameter 7.

We proceed to define the Bethe vectors Wy, (11, 42, - .., iar) as to make the off shell action
of (1) on them as simple as possible. Before discussing ¥/ (i1, 12, ..., p), for arbitrary
positive integer M, we will give explicitly first two Bethe vectors as well as the corresponding
formulae for the off shell action of the transfer matrix. To this end, our next step is to show that

() = B(u) 24 + b1 (1) 824, (5.17)

is a Bethe vector, if bj(u) is chosen to be

b = 2 ()~ 5w (5.18)
=— a(u) — . .
1 20 \ 20+ 1 2 2
A straightforward calculation, using the relations (B.2), (B.3) and (B.4), shows that the off shell
action of the transfer matrix (5.14) on ¥ (u) is given by

20 +mET 4 pvh)

MY =AM (A, ¥ Fi(n)w (A 5.19
(MY () 1A, ¥ () + TR Y S 1(W¥1(2) (5.19)

where the eigenvalue Aj(A, w) is given by

A+t —pu—n) A—pu+nA+u+2n)
A1(h, w) =k1(2) a(A) +x2(R) 5(2). (5.20)
A=wr+p+n A=A+ pn+mn
Evidently A1 (A, u) depends also on boundary parameters £+, v™ and the quasi-classical param-
eter 1, but these parameters are omitted in order to simplify the formulae. The unwanted term on

the right hand side (5.19) is annihilated by the Bethe equation
X —(ut+mvts

l/L [—
2+ Ua('u) - WS(M) =0, (5.21)

Fi(p) =
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or equivalently,

a(w) _ (tmra(w)  Cu+mET = (+nvh)
S(w) ey () 2uEt 4+ pvt)
Therefore we have shown that ¥ () (5.17) is the Bethe vector of the transfer matrix (5.14)

corresponding to the eigenvalue Aj(A, n) (5.20).
We seek the Bethe vector ¥, (11, o) in the form

(5.22)

Yo (i, o) = B(r1)B(r2) 24 + bél)(uz: n)B(p1) 2+
+ b5V (1 12) B(12) 24 + b5 (1. n2) 2+, (5.23)

where bél)(m; 12) and bgz) (u1, po) are given by

b(l)(MI'MZ)Zw—+< 241 (m+uz)(m—uz—n)a(m)
2 ’ 20t \ 2u1 4+ (1 — pw2) ey + p2 + 1)

(1 —p2 +m (1 +p2 +2n) = )
- 5 , 5.4
(pe1 — p2)(per + 2 +1n) (1) (524
1
b (1, p2) = E(bé”wl; 12) b1 (12) + b (s 1) by (). (5.25)

Starting from the deﬁnj\tions (5.14) and (5.23), using the relations (B.8), (B.9) and (B.10) to
push the operators .A(X), D(A) and C(}) to the right and after rearranging some terms, we obtain
the off shell action of transfer matrix (1) on ¥ (w1, u2)

1V (11, w2) = Az (h, {ii}) W2 (1, p2)

i 2+ ) EF + pivT)

O = i) (A = i 41m)

Fy(uis p3—i)¥a(h, h3—i), (5.26)

i=1
where the eigenvalue is given by

G4 p)A = pi —n)
A =) A+ pi +m)

2
A (0 {miY) =k [ ]
i=1

2
~ A= i + A+ pi +21)
+oWs | | (5.27)
i GOt 4m)

and the two unwanted terms in (5.26) are canceled by the Bethe equations which follow from
F(ui; u3—i) =0, ie.
2pi (i +p3—i) (i — M3—i —n)
2pi +n (i — p3—i) (Wi + p3—i +n)
+ (1 + S Ua . A 2n)
¢ +(Mz+n+)v (i — p3—i +m) (i +p3—i + n)8(m)=0, (5.28)
EF + v (i = m3—i) (i + p3—i +1)

with i = {1, 2}. Therefore the Bethe equations are

a (i)

o) _ (i +m2 (i) (i — p3—i +n) (i + pa—; +2n)
(i) ik (i) (Wi + p3—i) (i — 13— —n)

(5.29)
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where i = {1, 2}. Striking property of the Bethe vectors we have introduced so far is the simplicity
of the off shell action of the transfer matrix ¢ (1), Eqs. (5.19) and (5.26). Actually, the action of
the transfer matrix almost coincides with the one in the case when the two boundary matrices are
diagonal [6,33].

We proceed to define Wy (L1, 12, ..., Ly) as a sum of 2M terms, for arbitrary positive inte-
ger M, and as a symmetric function of its arguments

Unm (s w2, - M)
= B(u)B(u2) - - Blm)$24
1
+ by s s 2, =) B B(2) - Blpy—1) 2+

e B (o, s 1, s =) Bun) B(a) - - Blim—2) 2+

M—1 M
00TV st D Baan) 24 + b5 (s s ) 24, (5.30)

where the coefficients are given by

+ (1 +p))(ur —pj—n)
By o s AN || L, .
w (15 12, 143 pm) = 2pt 2u —|—17 #1) 5 (=) ey 4 +m)

~ (mr —pj+m) (1 +pj+2n)
—8(u) ]_[ : J : (5.31)
(1 —pj)(pr +pwj+mn)
2
b (1, 12s H3s ey pia) = 5 (b( D15 W2y W3s o D)D) (25 3 s )
+b§u)(M2;M1,M3,-..,MM)b s 13, ),
(5.32)
M-1
b}w (1, s M1 )
1 Z by (Lpys p@)s -+ 1eat)
(M—l)‘ M p(1)s Kp(2)> ’
PESM-1
(D :
X by (Mp@)s Mp@G)s > M)
1 1
X b,(u)_z(ﬂpo); Mp@ys - vvs M) - ~b§ )(Mp(M—l); “m) (5.33)
M
bﬁu)(m,m,...,uM)
LI o AT P YOI )
=M M Mo (1) Ko (2)s s Mo (M))Op_1\Ha(2)s KMo B)s - -+ Mo (M)
‘oeSy
1 1
bj(w)_z(uao); Ko@)y« » Ko (M) * -~b§ )(:U«cr(Mflﬁ Mo m))b1 (e (M) (5.34)

where Sy/—1 and Sy are the symmetric groups of degree M — 1 and M, respectively.

A straightforward calculation based on evident generalization of the formulas (B.8), (B.9) and
(B.10) and subsequent rearranging of terms, yields the off shell action of the transfer matrix on
the Bethe vector Wy, (1, 12, ..., y)
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t(A)¥m (s 12, - v s M)
= Ap (M A )Warr(rs 2, - )

%2n(k+n)(é++mv+)
. A=)+ +n)

Fua (s A} i) O (M (e} ji ) (5.35)
where the corresponding eigenvalue is given by

M
A+ i) —pi —n)
m (o {ii}) = ki Ma(h)
E A= i)+ pi +n)

M
~ = pi +m A+ pi +2n)
+ioWSMW ] | (5.36)
i A= )Gt i+ )

and the M unwanted terms o the right hand side of (5.35) are canceled by the Bethe equations
Far(uis {iej}j2i) = 0, explicitly

2Mz )1—[ (i + )i —pmj—n)
Hi (i — 1) (i + 4 +n)
Jaél
+ 42
CET = (it ) l—[ (Mz i +mpi + w1y +2n) —0, (5.37)
ET +pivt — )i + i +n)
or equivalently
() _ i+ miea (i) ﬁ — 1+ (i + 1+ 2n) 538)
S(wi)  mikr (i) (i + )i —mj—1n) ‘

j=1

J#
withi ={1,2,..., M}. The Bethe vectors ¥y, (1t1, 12, ..., y) we have defined in (5.30) yield
the strikingly simple expression (5.35) for the off shell action of the transfer matrix 7 (1) (5.14).
Actually, the action of the transfer matrix is as simple as it could possible be since it almost
coincides with the one in the case when the two boundary matrices are diagonal [6,33]. In this
way we have fully implemented the algebraic Bethe ansatz for the XXX spin chain in the case
when both boundary matrices have upper-triangular form (3.13) and (3.14).

6. Gaudin model

We explore further the results obtained in the previous section on the XXX Heisenberg spin
chain in the case when both boundary matrix are upper-triangular. We combine them together
with the quasi-classical limit studied in [42] with the aim of implementing fully the off shell
Bethe ansatz for the corresponding Gaudin model by defining its Bethe vectors. The significance
of these Bethe vectors is in the striking simplicity of the formulae of the off shell action of the
generating function of the Gaudin Hamiltonians, yielding the spectrum and the corresponding
Bethe equations.
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For the study of the open Gaudin model we impose
lim (KTQ)K~ (W) = (% — 2171 (6.1)
n—0
In particular, this implies that the parameters of the reflection matrices on the left and on the right

end of the chain are the same. In general, this is not the case in the study of the open spin chain.
Howeyver, this condition is essential for the Gaudin model. Then we will write

K- W)=KO) = (5 _0“ Ei\%l/j\v) (6.2)
so that

In [42] we have derived the generating function of the Gaudin Hamiltonians with boundary
terms following Sklyanin’s approach in the periodic case [21]. Our derivation is based on the
quasi-classical expansion of the linear combination of the transfer matrix of the XXX chain and
the central element, the so-called Sklyanin determinant. Finally, the expansion reads [42]

20t () — A[T(W)] =24(82 = A2v?) 1 + (&% — 33%7)1
2
+ r;%\((sz — 22T — %]1) +0(n’), (6.4)

where 7 (1) is the generating function of the Gaudin Hamiltonians, with upper triangular reflec-
tion matrix (6.2),

T(h) = trg LI(A), (6.5)
and the Lax matrix
N - 2 > 1 d
00-Sm , 00 (K,;"(A)Su K (X))
Lo(A) = n . 6.6
e m§1<k—“m + P ) (6.6)

The Gaudin Hamiltonians with the boundary terms are obtained from the residues of the gener-
ating function (6.5) at poles A = £, :

Resy—q,, T(A) =4H,, and Res;—_,, T(1) = 4ﬁm (6.7)
where
N o 2 N I IS S K-
Ho=Y" Sw-Su 3 (K (@) S Ky (@) - Su + Su - (K (00m) S K 5y ()
" n#m Om = Otn n=1 Z(Olm + Oln) ,
(6.8)
and
N = -
~ Sm - Sn
H. =
" Z Am n
n#m
n i (Km(—otm)gnanl (—Olm)) . §n + 5;n : (I{m(_()lm)s;ml{n:1 (—Olm)) ) (69)

2(0o + ap)
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Since the element A[7 (A)] can be written in form (4.10) it is evident that the vector £24 (2.11)
is its eigenvector

A[T(W)]$24+ =2xa(+ n/2)80. — n/2) 2. (6.10)
Moreover, it follows from (5.16) and (6.10) that £24 (2.11) is an eigenvector of the difference
a1 — A[TW]) 24 = 24(A0() — aGr+ 1/2)8(h — 1/2)) 2+ (6.11)

We can expand the eigenvalue on the right hand side of the equation above in powers of 1
20kt W) + k2 (WS —a(h+ /25— 1/2))
2
=2x(8% = A%v?) + (62 = 32%v?) + n%\((g — 220 xo(h) — ) +0(n*). (6.12)

Substituting the expansion above into the right hand side of (6.11) and using (6.4) to expand the
left hand side, it follows that the vector §£21 (2.11) is an eigenvector of the generating function of
the Gaudin Hamiltonians

T2+ = x0(M) 24, (6.13)

with

Sm
A
x0(A) = )\'2])2 Z( A—ap )\+am>

) Z ( SmSn + SmSmn 2(SmSn + SmOmn) SmSn + SmOmn )
A —am)A—ay) A —am) (A +ay) A +am) (A +ay)

m,n=1

(6.14)

As expected, the eigenfunction xo(A) also depends on the boundary parameters &, v. In general,
we can obtain the spectrum xs (A, i1, ..., upr) of the generating function t(A) of the Gaudin
Hamiltonians through the expansion

20 (Aph s ) — A+ 0/2)8(A — 1/2))

2
+0(nY). (6.15)

or explicitly

2
=21(82 —21?) + (82 = 3a2%) + n%\((sz — 220 ) A sy ) — ”—)

—42204 1 -8k 2(1 = 38%)
AL,y ) = +2 L + z
Gt btan) = (e jkzl<<x—u,->(x—uk) (= )Gt 112

N
1-56 SmSn + Smd
jk >+2 Z < mdn mO9mn
T eam) T 2 G et
2(SmSn + SmSmn) SmSn + SmSmn >
A =o)X +ay) A+ o)X +ay)
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M 2
1 1 AV
—4 —
(Z(A—Mj—i_)»‘f‘llj) 52_)@])2)

Jj=1

9 i Sm + Sm + a2 (6.16)
A—am  Atoy E2 -2 )’ ‘

m=1

As our next important step toward obtaining the formulas of the algebraic Bethe ansatz for
the corresponding Gaudin model we observe that the first term in the expansion of the function
Fy(er; na, ..., ) in powers of 7 is

Far(uts wa, i) = nfa (s w2, .o i) + O (n%), (6.17)
where
21 v? 1
I (s o, .o, py) = —2(§ —uv) ( )
§+ v Z M1 — M1+Mj

+2(6 - Mw)Z( + ) (6.18)

1 — Uy U1+ oy

We have used the formulas (5.17) and (5.18) as well as (5.4) and (5.13) in order to expand the
Bethe vector ¥ (u) of the Heisenberg spin chain in powers of 1 and obtained the Bethe vector
@1(u) of the Gaudin model

¥ (1) =ne1(w) + O(n?). (6.19)
where
N
_ Etoapy  E4auv\ [ ¥sn _
<p1(u)—n;(u_am e )( - +Sm).(2+. (6.20)

As our final step we observe that using (4.10) and (5.19) we have the off shell action of the
difference of the transfer matrix of the XXX chain and the central element, the so-called Sklyanin
determinant, on the Bethe vector ¥ (1)

(2at(0) — A[TW]) W1 (w) =20 (A1 (A, 1) — (A + 1/2)8(h — n/2))¥1 ()
2n(A +n) (€ + uv)
22 Fi()w (V). 6.21
+( )()\—u)(k+u+n) 1(W)P (L) (6.21)

Finally, the off shell action of the generating function the Gaudin Hamiltonians on the vector
¢1() can be obtained from the equation above by using the expansion (6.4) and (6.19) on the
left hand side as well as the expansion (6.15), (6.17) and (6.19) on the right hand side

4r(E + pv)
(52 _ )»2\12)()»2 _
Therefore @1 (w) (6.20) is the Bethe vector of the corresponding Gaudin model, i.e. the eigenvec-

tor of the generating function the Gaudin Hamiltonians once the unwanted term is canceled by
imposing the corresponding Bethe equation

Sm _
é‘l‘ +2(€ Mv)Z(M am+ﬂ+am>_0. ©29

TMer(w) = x1(x, wWer (r) + % Si(we1(A). (6.22)

filw) =
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To obtain the action of the generating function (1) on the Bethe vector ¢(ut1, n2) of the
Gaudin model we follow analogous steps to the ones we have done when studding the action of
T(A) on ¢ (). The first term in the expansion of the Bethe vector ¥, (w1, i2) (5.23) in powers
of n yields the corresponding Bethe vector of the Gaudin model

W (i1, w2) = 1221, w2) + O(n?), (6.24)

where

N
£ +apv é+amv><€+anv $+anv)
) = + +
w2l 12) Z (/'Ll_am U1+ o M2 — Oy U2 +op

m,n=1

« ((‘“’" +S,n><ws” v s )_ f(smn(ws” + 8y ))m (6.25)
v v 2

As in the previous case (6.21), it is of interest to study the action of the difference of the transfer
matrix (1) and the so-called Sklyanin determinant A[7 (1)] on the Bethe vector ¥, (w1, 12)
using (4.10) and (5.26)

(2 () = A[TW]) P21, p2)
=2k(A2(X,M1,M2)—a(A+n/2)§(A_n/z))%(m’m)
2n(+mE + pu1v)
2 F(1; p2)¥a(a,
+( )()»—Hl)()‘+ﬂl+n) 2(1; m2) W2 (A, n2)
2n(h +n)(€ + p2v)

” . ; 20 ’ 6.26
o )(A—Mz)(k+u«z+n) 2(p2; w2, 1) 6.26)

The off shell action of the generating function of the Gaudin Hamiltonians on the Bethe vector
@2(11, o) is obtained from the equation above using the expansions (6.4) and (6.24) on the left
hand side and (6.15), (6.24) and (6.17) on the right hand side. Then, by comparing the terms of
the fourth power in 1 on both sides of (6.26) we derive

4r(E + pu1v)
(52 _ )»2\)2)()»2 _

T(Mea(r, n2) = x2(r, p1, w2)p2(pr, 12) + % falprs m2)@2 (A, p2)
1

41§ + pov)
(52 _ )\21)2)()@ _

2 Fa(uas p)g2 (A, pr). (6.27)
2

The two unwanted terms on the right hand side of the equation above are annihilated by the
following Bethe equations

fotours up) = 2 e )( r ! )
2(p1; o) = -2 — v
: &+ urv P — e T+
Sm
+2(6 — puqv) < + ) =0, (6.28)
s Z J2 R o N 1 W oo P

2uav? ( 1 1 )
2(2; 1) = —2(§ — uav) +
f VT E oy M2 — (1 M2+

126 — mv)Z( 4 om ):o. (6.29)

M2 — Oy H2 + oty
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The off shell action of the generating function 7 (A) on the Bethe vector ¢, (111, t2) of the Gaudin
model is strikingly simple (6.27). Actually, it is as simple as it can be since (6.27) practically
coincide with the corresponding formula in the case when the boundary matrix K (}) is diago-
nal [33].

In general, we have that the first term in the expansion of the Bethe vector Wys (w1, 12, ..., )
(5.30), for arbitrary positive integer M, in powers of 7 is

Wag (1 s i) = M ou (- pan) + O (M), (6.30)
where
oM (1, 12, - im) = F(ui) F(u2) - F(um) 24 (6.31)
and the operator F(u) is given by
S (Erm  Ew\ (U o Y
F(M)=;(M_am+ﬂ+am)<v + 80— 135 ) (6.32)
The Bethe vector of the Gaudin model ¢y (1, 12, ..., pr) is a symmetric function of its argu-

ments, since a straightforward calculation shows that the operator F' (1) commutes at different
values of the spectral parameter,

[FO), F(w]=0. (6.33)

The action of the generating function 7 (1) on the Bethe vector ¢p(1t1, 12, ..., i) is derived
analogously to the previous two cases when M =1 (6.22) and M = 2 (6.27). In the present case
we use the expansions (6.15), (6.17) and (6.30) to obtain

TN om (1, 12, ..., ym)

= (M A ) om (r 2, s )
M

Z 4)\(5 + niv)
(E2 =222 (A2 — pud)

I (s (b jszi )omn (A (e} ji ) (6.34)
i=1

where xp (X, {/L,'}l-ﬂi |) is given in (6.16) and the unwanted terms on the right hand side of the
equation above are canceled by the following Bethe equations

1
_S —2(§ — M!V)Z( py ) )

I (s {pejhjzi) =

J Mz + uj
J#l
N S S,
+2(§ — piv) < Ly " > =0, (6.35)
' mZ:I Mi — O, Wi +am

fori =1,2,..., M. As expected, the above action of the generating function 7 (A) is strikingly
simple and this simplicity is due to our definition of the Bethe vector ¢ps (11, (2, .- ., tpr) (6.31).
These results will be studied further in the framework of an alternative approach to the imple-
mentation of the algebraic Bethe ansatz for the Gaudin model, with triangular K-matrix (6.2),
based on the classical reflection equation and corresponding linear bracket and will be reported
in [42].
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7. Conclusions

We have implemented fully the off shell algebraic Bethe ansatz for the XXX Heisenberg
spin chain in the case when the boundary parameters satisfy an extra condition guaranteeing
that both boundary matrices can be brought to the upper-triangular form by a single similarity
matrix which does not depend on the spectral parameter. As it turned out the identity satisfied
by the Lax operator enables a convenient realization for the Sklyanin monodromy matrix. This
realization led to the action of the entries of the Sklyanin monodromy matrix on the vector §24
and consequently to the observation that £2 is an eigenvector of the transfer matrix of the chain.

We have proceeded then to the essential step of the algebraic Bethe ansatz, to the definition
of the Bethe vectors ¥y, (w1, K2, ..., wp). Our objective was to make the off shell action of the
transform matrix ¢ (1) on them as simple as possible. Before defining the general Bethe vector
Wy, 2, ..., Lm), for an arbitrary positive integer M, we gave a step by step presentation
of the first two Bethe vectors, including the formulae for the action of #()), the corresponding
eigenvalues and Bethe equations. In this way we have exposed the striking property of these
vectors to make the off shell action of the transform matrix as simple as possible. Consequently,
the elaborated definition of Wy, (w1, W2, ..., ), for arbitrary positive integer M, appeared nat-
urally as a generalization of the first two Bethe vectors. As expected, the action of #(A) on the
Bethe vector Wy (1, 12, ..., (L) is again very simple. Actually, the action of the transfer ma-
trix is as simple as it could possible be since it almost coincides with the corresponding action in
the case when the two boundary matrices are diagonal [6,33].

We explored further these results by obtaining the off shell action of the generating func-
tion of the Gaudin Hamiltonians on the corresponding Bethe vectors by means of the so-called
quasi-classical limit. To study the open Gaudin model we had to impose the condition so that the
parameters of the reflection matrices on the left and on the right end of the chain are the same.
This is not the case in the study of the open spin chain, but is essential for the Gaudin model.
The generating function of the Gaudin Hamiltonians with boundary terms is derived analogously
to the periodic case [42]. Based on this result we showed how the quasi-classical limit yields
the off shell action of the generating function of the Gaudin Hamiltonians on the Bethe vectors
om (U1, w2, ..., upr) as well as the spectrum and the Bethe equations. The off shell action of
the generating function 7(A) on the Bethe vectors ¢ (i1, U2, ..., ) is strikingly simple. As
in the case of the spin chain, it is as simple as it can be since it practically coincide with the
corresponding formula in the case when the boundary matrix is diagonal [33]. This simplicity of
the action of 7(A) is due to our definition of the Bethe vectors ¢ (w1, L2, ..., p)-

An important open problem is to calculate the off shell scalar product of the Bethe vectors we
have defined above both for the XXX Heisenberg spin chain and the Gaudin model. These results
could lead to the correlations functions for both systems. In the case of Gaudin model it would
be of interest to establish a relation between Bethe vectors and solutions of the corresponding
Knizhnik—Zamolodchikov equations, along the lines it was done in the case when the boundary
matrix is diagonal [33].
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Appendix A. Basic definitions

We consider the spin operators S¢ with « = 4+, —, 3, acting in some (spin s) representation
space C>*! with the commutation relations

[$3, sF]=£5*%, [sT,57]=25%, (A1)
and Casimir operator
1 .
= () + (TS + 57857 = () + 87+ 5757 =55,
In the particular case of spin % representation, one recovers the Pauli matrices
§Y — lO'a — l a3 28a+
2 2\ 204~ =63 )’
We consider a spin chain with N sites with spin s representations, i.e. a local C>**! space at

each site and the operators

S%:ﬂ@...@ S ®---®1, (A2)
m

witha =+, —,3andm=1,2,...,N.
Appendix B. Commutation relations

Eq. (4.6) yields the exchange relations between the operators A(A), B(A), C(A) and 5()0. The
relevant relations are

BB =BuBG).  CHCG) = CCE, B.1)
AGIB ) = G ) AG) + 2 BGIAG)
e Z -, B0DG, (B.2)

BB = ST I 51D — 215Gy D)

BT s e BPAw: ©
o 1=

2

Ta- mmz 12)(% gy A

Tt AP0~ T AW

Sk j) Gy PWAW = 5 DODW. (B4
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For completeness we include the following commutation relations

[AM), AW)] =

n
g (B(w)C() — B)C(w)) (B.5)

2n(pn+mn)
———(B(W)C — B(u)C(r B.6
O = Cn+ )( (MC () (W)C)) (B.6)

dn(r +n)(n+mn)
CL+mQCu+nA+u+n)
From the relations above it follows that

AM)B(u1)B(u2) 82+

1—[()»+M, (A—ui—n)
A =pu)A 4w +1)

[AG), D(w)] =

[D, D] = (BGIC () = B(u)C(2) (B.7)

a(M)B(u1)B(uz)$2+
i=1
22: 2npi (i + p3—i) (i — U3—i —n)

= Cui M — ) (i = p3—) (i + p3—i +n)

a(u)B)B(usz—i)$2+

2
1 i + ] + i + 2
Sy e O O I B0 B ) 2. (BS)

wi+n (i — pu3—i) (Ui + 13— +n)
Analogously,
DO)B(u1)B(p2) 2+

_1—[()\ wi A+ wi +2n)~
P G DI o T o))

SMB(11)B(k2) 82+
_22: 2n(h+m) (i — p3—i £ (i + p3—i +2n)~
— CQA+mO =) (i — 3= (U + p3—i +n)

2

Z dnpi (A +1n)
— CQA+mCui + MO+ i +n)
(i + p3—i) (i — u3—i — 1)
(i — p3—i) (i + p3—i +1n)

S(ui) BMB(u3—i)$2+

a(ui) BO)B(u3-i)$2+4. (B.9)
Finally,

C)B(u1)B(u2)$2+
2

_ Z( 4pirn
S\ Cpi +m O A i 1)
A+ u3—) A — pu3—; —n) (Wi +p3—i) (Wi — pm3— —1n)

A i
A —p3—p) A+ p3—; +n) (i — p2)(Wi +p3—i +1n) vl
__ Zam
(A —ui)2r+n)
A+ w2 — pu2 —n) (ui — p2 +n) (i + pu2 +2n) ~
a(A)o(u;)

A—p2)A+p2+mn (i —p2)(i +p2+1n)
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2pin
(A —ui)2u; +n)
(A —p2 +n) A+ p2+2n) (i +p2)(i —p2 —1n) ~ n
a(ui)d(A) — ————
A—u)A+p2+mn (i —u2)(i +p2+1n) At i +n
A —p2+ )+ w2 +2n) (i — p2 +n) (i + pn2 +2n)~ 3(#1))

A=)+ p2+1n) (mi — p2) (i + p2 +m) M
X B(us—i)$2+
( 821 pa(ier + 1) A+ 1) — pip2)
A= pnD)—pw2)Cuir +n)Quz +n) (A + w1+ + w2 +n) (1 + w2 +n)
x a(up)a(ur)
At (ua — 1 +m OO +n) + i (2 + )

- 3
B — 1)@+ Wiz — ) Gt 1+ 0z W00
dn’ua (1 — 2 + OO+ 1) + palp + 1)) -~
_ a(p2)d(ur)
A=) —u2)Cuza +n)(ur — u2)(A+ w1 + )+ p2 +1n)
202 (ur 4+ p2 + 22 = A2+ g Fnpr F 2 —2) ~ o~ )
— S(iu1)8 B2
A —pu) = w2) A+ pr + )+ 2 +n) (1 + u2 +n) (1)8(p2) JBA)S2,
(B.10)

The relations (B.8), (B.9) and (B.10) are readily generalized [10].
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