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7

We use O(4) ' O(3)×O(3) algebraic methods to calculate the energy-8

splitting pattern of the K = 2, 3 excited states of the Y-string in two9

dimensions. To this purpose we use the dynamical O(2) symmetry of the10

Y-string in the shape space of triangles and compare our results with known11

results in three dimensions and find qualitative agreement.12
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1. Introduction14

QCD seems to demand a genuine three-quark confining potential: the
so-called Y-junction string three-quark potential, defined by

VY = σmin
x0

3∑
i=1

|xi − x0| , (1)

or, explicitly15

Vstring = VY = σ
√

3
2

(
ρ2 + λ2 + 2|ρ× λ|

)
. (2)

The complete Y-string potential contains “additional” two-body terms that16

are valid only in certain parts of the three-particle configuration space, and17

which we shall ignore here. The |ρ × λ| term is proportional to the area18

of the triangle subtended by the three quarks. The Y-string potential was19

proposed as early as 1975, see Refs. [1, 2] and the first schematic calculation20

(using perturbation theory) of the baryon spectrum for K ≤ 2 followed soon21

∗ Presented at the Workshop “Excited QCD 2013”, Bjelasnica Mountain, Sarajevo,
Bosnia–Herzegovina, February 3–9, 2013.
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thereafter, Ref. [3]. References [4–6] elaborated on this. The first non-per-22

turbative calculations (variational approximation) of the K = 3 band with23

the Y-string potential were published in the early 1990s, Ref. [7] and ex-24

tended to the K = 4 band later in that decade, Ref. [8]. Yet, some of the25

most basic properties, such as the ordering of the low-lying states in the26

spectrum of this potential, without the “QCD hyperfine interaction” and/or27

relativistic kinematics, remain unknown.28

The first systematic attempt to solve the Y-string spectrum, albeit only29

for the K ≤ 2 states, can be found in Ref. [9]. That paper used the hyper-30

spherical harmonics formalism, where the Y-string potential can be written31

as a function of hyper-angles32

VY = σ
√

3
2R

2 (1 + sin 2χ| sin θ|) . (3)

This led to the discovery, see Ref. [10], of a new dynamical O(2) symmetry33

in the Y-string potential, with the permutation group S3 ⊂ O(2) as the34

subgroup of the dynamical O(2) symmetry. That symmetry was further35

elaborated in Ref. [11]. The present report is a continuation of that line of36

work.37

The three-body sum of two-body potentials has only the three-body38

permutation group S3 as its symmetry. When one changes variables from the39

hyper-angles (χ, θ) to z′ = z = cos 2χ (vertical axis), and x′ = x
√

1− z2 =40

cos θ sin 2χ, one can see the full S3 symmetry, Fig. 1. The area of the triangle41 √
3
2 |ρ×λ| and the hyper-radius R are related to the Smith–Iwai variables α,42

φ as follows43

(cosα)2 =

(
2ρ× λ
R2

)2

, (4)

tanφ =

(
2ρ · λ
ρ2 − λ2

)
. (5)

The Y-string potential becomes44

VY = σ
√

3
2R

2 (1 + | cosα|) . (6)

Independence of the potential on the variable φ is equivalent to its invari-45

ance under (infinitesimal) “kinematic rotation” O(2) transformations δx′ =46

2εz
′
, δz

′
= −2εx

′ or, in terms of the original Jacobi variables, δρ = ελ, δλ =47

−ερ, in the six-dimensional hyper-space. This invariance leads to the new48

integral of motion G3 = 1
2

(
pρ · λ− pλ · ρ

)
, References [10, 11], associated49

with the dynamical symmetry (Lie) group O(2) that is a subgroup of the50

(full hyper-spherical) O(6) Lie group.51
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Fig. 1. Left: The equipotential contours for the central Y-string potential (black
solid), and the boundary between the central Y-string and two-string potentials
(blue dashes). Right: The equipotential contour plot of the ∆-string potential as
functions of z

′
= z = cos 2χ (vertical axis), and x

′
= x
√

1− z2 = cos θ sin 2χ

(horizontal axis). The three straight lines (red long dashes) of reflection symme-
try correspond to the three binary permutations, or “transpositions” S2 subgroups
of S3. The rotations through φ = ± 2π

3 correspond to two cyclic three-body per-
mutations. The rotation symmetry of the Y-string potential (left panel) about the
axis pointing out of the plane of the figure should be visible to the naked eye.

Of course, the sums of two-body potentials, such as the ∆-string poten-52

tial, are invariant only under the finite rotations through φ = ±2π
3 , that53

correspond to cyclic permutations, as well as under reflections about the54

three symmetry axes. In that case, this generalized hyper-angular momen-55

tum G3 is not an exact integral of motion, but an approximate one. The56

precise consequences in the energy spectra of systems with such a broken57

(approximate) symmetry will be shown below.58

2. The O(4) algebraic method59

The existence of an additional dynamical symmetry strongly suggests an60

algebraic approach, such as those used in Refs. [12–15]. A careful perusal61

of Ref. [12, 13] shows, however, that an O(2) group had been used as an62

enveloping structure for the (discrete) permutation group S3 ⊂ O(2), but63

was not interpreted as a (possible) dynamical symmetry. References [14, 15]64

did not use this symmetry, however. For the sake of technical simplicity,65

we confine ourselves to the two spatial dimensions here. In two dimensions66

(2D), the non-relativistic three-body kinetic energy is a quadratic form of67

the two Jacobi two-vector velocities, ρ̇, λ̇, so its “hyper-spherical symmetry”68
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is O(4), and the residual dynamical symmetry of the Y-string potential is69

O(2)⊗OL(2) ⊂ O(4), where OL(2) is the (orbital) angular momentum. As70

the O(4) Lie group can be “factored” in two mutually commuting O(3) Lie71

groups: O(4) ' O(3)⊗O(3), one may use for our purposes many of the O(3)72

group results, such as the Clebsch–Gordan coefficients. The 3D case is more73

complicated than the 2D one; for reasons of simplicity, we limit ourselves to74

the two-dimensional case in this report.75

We (re)formulate the problem in terms of O(4) symmetric variables and76

then bring the potential into a form that can be (exactly) solved, i.e. we77

expand it in O(4) hyperspherical harmonics YJJLM . The energy spectrum78

is a function of the O(4) hyperspherical expansion coefficients for the po-79

tential, and of the O(4) Clebsch–Gordan coefficients, that are products of80

the ordinary O(3) Clebsch–Gordan coefficients. As the potential is OL(2)81

“rotation-symmetric”, we have an additional constraint on the allowed hy-82

perspherical harmonics and one finds that for values of K ≤ 3 one needs83

only three terms: (1) the “hyper-spherical average”, i.e. the Y00
00 matrix el-84

ement, (2) the area-term containing the O(4) hyperspherical harmonic Y22
0085

(which is related to the O(3) spherical harmonic Y20(α, φ) of the shape space86

(hyper)spherical angles (α, φ), i.e., the V4 term in the notation of Richard87

and Taxil [17]) that is present in both the two-body and the Y-string poten-88

tials; and (3) the O(2) symmetry-breaking term containing Y33
0±3'Y3±3(α, φ),89

i.e., the V6 term in the notation of Richard and Taxil [17], that is important90

in the two-body potentials, and not at all in the Y-string potential Eq. (2).91

3. Results92

We have evaluated the K = 2, 3 bands’ splittings in 2D, Ref. [16] and93

compare them with the 3D case, Ref. [17]:94

(1) The only difference between the 2D and 3D K = 2 states’ splittings is95

that the [70, 0+] and [56, 2+] states are degenerate in 2D, whereas in96

3D they are split by one half of the energy difference between [70, 2+]97

and [70, 0+]. This shows that the 2D case does relate fairly closely to98

the 3D one.99

(2) We compare our 2D Y-string potential K=3 results with the 3D K=3100

two-body potential results of Ref. [17] and find certain similarities, and101

a few distinctions. There are six SU(6) multiplets in the K = 3 sector102

(other than the hyper-radial excitation [70, 1−]
′′ of the K = 1 state):103

[20, 1−], [56, 1−], [70, 3−], [56, 3−], [70, 2−], [20, 3−] in 3D. The main104

difference between the 2D and 3D is that the [70, 2−] state disappears105

in 2D.106
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In 3D two-body potential the energy splittings can be divided in two107

parts in Ref. [17]: (a) those due to the V4 perturbation; and (b) due to the108

V6 perturbation. This corresponds to our Y20 and Y3±3 terms, respectively.109

(a) In the V4 6= 0, V6 → 0 limit, the states can be (roughly) divided in110

two groups: the [20, 1−], [56, 1−], [70, 3−] which are pushed down, and111

the [56, 3−], [70, 2−], [20, 3−] which are pushed up by the V4 pertur-112

bation. Two pairs of states are left degenerate: ([20, 1−], [56, 1−]) in113

the lower set and ([56, 3−], [20, 3−]) in the upper set. In this limit,114

in 2D we find complete degeneracy of all three members of the lower-115

([20, 1−], [56, 1−], [70, 3−]) and upper levels ([56, 3−], [70, 2−], [20, 3−]),116

Fig. 2 (b).117

(b) In the V4 6= 0, V6 6= 0 case, the remaining degeneracy of states is118

removed in 3D: the [20, 1−] and the [56, 1−] are split in the “lower set”119

and the [56, 3−] and the [20, 3−] in the “upper set”. In 2D, we find the120

same pattern of splitting, and a similar ratio of strengths, Fig. 2 (b).121
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Fig. 2. Schematic representation of the K = 3 band in the energy spectrum of
the ∆-string potential in (a) three dimensions, following Ref. [17]; and (b) two
dimensions (present calculation). The sizes of the two splittings (the v∆

20-induced
∆ and the subsequent v∆

3±3-induced splitting) are not on the same scale, the latter
having been increased, so as to be clearly visible. The ∆ here is the same as the
∆ in the K = 2 band.
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So, in the K = 2, 3 bands, one sees similarities of dynamical symmetry-122

breaking patterns in 2D and 3D. This lends credence to the belief that this123

similarity may persist at higher values of K, where there are not known 3D124

results, at present.125

This work was supported by the Serbian Ministry of Science and Tech-126
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