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We use the permutation symmetric hyperspherical three-body variables to cast the
non-relativistic three-body Schrodinger equation in two dimensions into a set of
(possibly decoupled) differential equations that define an eigenvalue problem for the
hyper-radial wave function depending on an SO(4) hyper-angular matrix element. We
express this hyper-angular matrix element in terms of SO(3) group Clebsch-Gordan
coefficients and use the latter’s properties to derive selection rules for potentials with
different dynamical/permutation symmetries. Three-body potentials acting on three
identical particles may have different dynamical symmetries, in order of increasing
symmetry, as follows: (1) S3 ® Or(2), the permutation times rotational symmetry,
that holds in sums of pairwise potentials, (2) O(2) ® Or(2), the so-called “kine-
matic rotations” or “democracy symmetry” times rotational symmetry, that holds
in area-dependent potentials, and (3) O(4) dynamical hyper-angular symmetry, that
holds in hyper-radial three-body potentials. We show how the different residual dy-
namical symmetries of the non-relativistic three-body Hamiltonian lead to different
degeneracies of certain states within O(4) multiplets. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4891399]

I. INTRODUCTION

The quantum three-body problem is an old one with a huge literature — the hyperspherical
variables, together with the corresponding hyperspherical harmonics, form one of the best known
sets of tools in the theorist’s arsenal, Refs. 1-3. Classification/separation of wave functions into
distinct classes under permutation symmetry is a fundamental property of (non-relativistic) quantum
mechanics with non-trivial consequences in the three-body system. Permutation symmetric three-
body hyperspherical harmonics in three dimensions, however, are known only in special cases such
as the (small, definite values of the) total angular momentum L = 0, 1 ones, cf. Refs. 3 and 4. All
other values of L have to be treated separately, usually by means of non-permutation symmetric
hyperspherical harmonics. In that way, one loses the manifest permutation symmetry, however, as
well as a certain dynamical O(2) symmetry, when the three-body potential is invariant under the so
called “kinematic rotation,” Ref. 2, or equivalently the “democracy,” Refs. 5 and 6, transformations.
This symmetry was viewed as mathematical esoterics, see Ref. 5, until recently it was shown, Refs. 7
and 19, to be a dynamical symmetry of area-dependent potentials, which class includes the so-called
Y-string potential in QCD. Consequently follows the increased interest in its properties.

In two spatial dimensions, the problem of constructing permutation symmetric hyperspherical
harmonics was solved in Ref. 8, however, almost as an afterthought of certain rather abstract internal
geometric considerations in Refs. 9 and 10, and certain mathematical aspects of this problem were
reconsidered more recently in Ref. 11. Although the need for such a theoretical tool (e.g., in anyon
physics, cf. Refs. 12—17) was acute at the time of writing (mid-1990s) of Ref. 8, it never received the
attention it deserves. Knowledge of three-body permutation symmetric hyperspherical harmonics
in two dimensions (2D) allows one to calculate the discrete part of the energy spectrum of the
three-body problem, very much as the quantum mechanical two-body problem can be solved using
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SO(3) spherical harmonics in three dimensions. That line of research was not pursued in Ref. 8, nor
elsewhere, to our knowledge.*!

In the present paper, we extend the line of investigation started in Refs. 9 and 10 and continued
in Refs. 8 and 11 to show how the Schrodinger equation for three-body bound states in two spatial
dimensions can be reduced to an eigenvalue problem for the hyper-radial wave function, where the
whole hyper-angular dependence has been reduced to an SO(4) hyperspherical harmonics matrix
element that boils down to a product of two SO(3) Clebsch-Gordan coefficients. This is the basic
contribution of the present paper. These results are not specific to any one particular three-body
problem, i.e., they could find application in many realistic 2D three-body problems, such as the
three-anyon one, Refs. 12—17, and/or other condensed matter physics problems in 2D, Ref. 18. The
results of this paper have been used to study the 2D version of three-body confinement with the A
and Y-string.'%??

In this way, the three-body problem in two dimensions has been effectively reduced to an
SO(4) group theoretical problem (or “algebraized” in vulgate), and one eigenvalue equation for the
hyper-radial wave function, a goal that was hypothesized about in three dimensions in Ref. 23 and
elsewhere. In this algebraic language, one is looking for the “chain” of algebras so(2) & so.(2) C
s0(3) @ so(3) C so(4) (where sor(2) is the total angular momentum part and so(2) being the so-
called “democracy” transformation, where the permutation group S3 is a (discrete) subgroup of the
so-called “kinematic rotations,” Ref. 2, or equivalently the “democracy” transformation (continuous)
group O(2), Refs. 5 and 6).

On the formal side, these SO(4) hyperspherical harmonics are directly related to the monopole
harmonics of Ref. 24, as shown in Ref. 8, and to the spin-weighted spherical harmonics of
Ref. 25. Our result, Eq. (31), for the hyper-angular matrix elements of SO(4) hyperspherical har-
monics appears to be the first of its kind in the literature. It can be viewed as a continuation of the
earlier results for the matrix elements of SO(4) hyperspherical harmonics in Refs. 26 and 27.

As an example of the utility of our results we apply our method to the three-quark confinement
problem in 2D and show how we evaluated the (2D) eigen-energy splittings in the K = 2, 3 bands
of the spectra of the A and Y-string potentials in QCD, that were presented in Refs. 19 and 22.

After defining preliminaries in Sec. II, we define our SO(4) algebraic methods for solving the
spectrum of the model in Sec. III. We apply our results to two classes of permutation-symmetric
three-body problems in Sec. IV: (a) the three-body sum of pairwise terms, and (b) area-dependent
potentials that are invariant under “democracy” O(2) transformations. Section V contains a summary
and a discussion of the results.

Il. PRELIMINARIES
A. Three-body variables

The p, A are the two Jacobi three-vectors, defined by
1

p= E(XI —X2), (D
X—L(x + X3 — 2X3) 2)
_\/6 1 2 3)-

In the relations above, we assume that all three masses are equal. In two spatial dimensions (2D),
the full symmetry of the three-body kinetic energy is O(4) and SO(2) is its rotation symmetry. The
“larger” symmetry of the non-relativistic kinetic energy is the basis of the hyper-spherical variable
approach to the three-body problem.

A crucial ingredient to the solution to the three-body bound state problem are the hyper-spherical
coordinates/hyper-angles.' > Here, instead of two Jacobi three-vectors p, A, defined in Eqs. (1) and
(2), the hyper-spherical formalism introduces the hyper-radius R,

R =/p2+1?%, (3)
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and two hyper-angles that are defined by way of three independent scalar three-body variables, e.g.,
p - A, p2, and A%. Then, one may use the hyper-space unit-vector fi

p> =A% 2p-X 21 X p)s
R2 ' R? R?

i= (n),ny, n) = ( , “4)
(apparently first introduced by Hopf, Ref. 29) to define a sphere with unit radius. The points on the
equatorial unit circle correspond to collinear configurations (“triangles” with zero area). Two angles
parametrize this sphere — they can be chosen at will.

The area of the triangle ‘/le p X A| ~ |(x; — X2) X (X3 — x3)| and the hyper-radius R are related

to the Smith-Iwai variables (c, ¢),2’9’ 10°a5 follows:

) , , 2p X A 2
(sine)’ = (nf+ nf)=1- ( e ) , o)
n’ 20 - A
=tan~!' [ =2 ) = tan™' . 6
¢ n (n&) n (pz—)f) (6)
The standard Delves-Simonov choice of hyper-angles is (xp = 2, 0),13
pz _ xZ 2
(sinxp)* = (sin2x)* = (n5 + nf) = 1- ( 3 ) , @)

! A
0 = tan™! <n_/2) = tan~! <|,0 x l) . (8)
n; p-A

One must choose the most appropriate parametrization according to the symmetry of the potential,
Ref. 7.
Only one set of three-body variables, viz., (R, «, ¢), with the hyper-angle ¢ = arctan (é’: 22)

makes the permutation symmetry manifest, see Ref. 7. That fact makes («, ¢) appropriate for
permutation-symmetric three-body potentials. The (other) hyper-angle o describes the “scale-
invariant area” of the triangle cosa = 2R™%(p x A);. That makes this set also appropriate for
area-dependent potentials.

B. Three-body potentials

Three-body potentials acting on three identical particles can be divided into three interesting
classes according to their permutation and/or dynamical symmetries (in order of increasing sym-
metry): (1) S3 ® Or(2), the permutation times rotational symmetry, that holds in sums of pairwise
potentials, (2) O(2) ® O.(2) C SO(4), the so-called “kinematic rotations” or “democracy symmetry”
times rotational symmetry, that holds in area-dependent potentials, and (3) the full SO(4) dynamical
hyper-angular symmetry, that holds for hyper-radial three-body potentials which do not depend
on the shape of the triangle subtended by the three particles, but only on their “mean size,” the
hyper-radius R.

The third class has the highest symmetry, the harmonic oscillator being one example, but it is
also the least realistic one: there are simply no known hyper-radial potentials in nature. Due to its
highest symmetry, its energy spectra have the highest levels of degeneracy, and can be used as the
starting point for the two cases (1) and (2) with lesser symmetries. For this reason, we shall spend
the least amount of space on this (third) class.

The second class corresponds to a certain dynamical O(2) symmetry, when the three-body po-
tential is invariant under the so called “kinematic rotations,” Ref. 2, or, equivalently, the “democracy”
transformations, Refs. 5 and 6. This (continuous) “kinematic rotations,” or “democracy” symmetry
is a generalization of the (discrete) permutation symmetry of three bodies. It used to be viewed as
something of mathematical esoterics, see Ref. 5, until recently Refs. 7 and 19, showed it to be the
dynamical symmetry of the Y-string potential among three quarks in QCD, in particular, and of all
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three-body potentials that depend only on the area of the triangle subtended by the three particles,
in general. Analogous “kinematic rotations,” or “democracy” symmetry, for four particles in three
spatial dimensions, is the non-Abelian group SO(3), Ref. 20. It is not yet clear what geometrical
or physical quantity is kept invariant under the corresponding democracy transformations in the
four-body case, Ref. 20, let alone five- or more bodies, Ref. 212

The first class corresponds to potentials symmetric under the full 3 permutation group. Poten-
tials with only a two-body permutation S, subgroup, or a trivial (S;) permutation symmetry will not
be dealt with here.

(1) In the first class, we consider the three-body sum of pairwise distances to power a (here, we
use the boldface greek letter o to distinguish it from the hyperangle «, introduced in Eq. (5) above),

3
1
Vo = Oury - E Ix; —x;|%. 9
i#j=1

Perhaps, the best known example of such a potential (albeit with different signs multiplying each
term) is the (¢ = —1) Coulomb potential in atomic and molecular physics. More recently, potentials
with different powers a # 1 have been used in few-body problems in 2D, in condensed matter
physics, Ref. 18.

(2) The second class of potentials are the area-dependent ones that have the additional “democ-
racy” dynamical O(2) symmetry, Refs. 6 and 7. Perhaps, the best known example of such a potential
is the Y-string one Vy_g;., defined as

3
Vy = i i — Xol. 10
y =oymin 3 [% — | (10)

i=1

The exact string potential Eq. (10) consists of the so-called Y-string term,

3
Vy =6Y\/§(pz+l2+2lp X Al), 1L

and three other angle-dependent two-body string, or so-called V-string terms specified in Ref. 37.
Manifestly, Eq. (11) depends only on the hyper-radius R = y/p? + A” and on the area of the triangle
Blp x Al.

lll. THE SO(4) ALGEBRAIC METHOD

The decomposition of the three-body spatial wave functions in terms of the SO(4) “grand angular
momentum’” eigenfunctions is appropriate for all permutation symmetric three-body potentials, in-
cluding, though not limited to the Y-string. Three-body potentials with lesser permutation symmetry
can be treated in this way, as well, though with additional complications. The approximations that
are used to solve the three-body Schrodinger equation depend on the potential and form a separate
part of the theoretical framework.

A. SO(4) symmetry in the hyper-spherical approach

First, we need to define several objects that are needed in subsequent developments. The “grand
angular” momentum tensor K, u, v=1,2,3,4

K =m (X, X, — X,X,,)
= (X, P, —X,P,), (12)

where X, = (p, A). In particular, [, = Kj, and [, = K34 generate SO(2) rotation of vector p and A,
respectively.
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Next, we introduce

1
MZE(I/J + I, Ki3 — Koy, K14+K23)’ (13)

1
N= E(lp_lA7K13+K24v K — Ka3). (14)

Note that M and N commute and that each of them satisfies separate SO(3) commutation rules
M, M/] = is"M,
[N, N/] = ie"/NF, (15)

explicitly demonstrating the so(4) = so(3) @ so(3) decomposition. In this context (of SO(4) hyper-
spherical harmonics), the Casimir operator eigenvalues of the two SO(3) subgroups J = M = J' =
N must be identical, leading to the requirement J = J' = %K (this is easily explicitly verified by
using Eqs. (12)—(14)). This constraint significantly reduces the number of hyperangular harmonics,
i.e., of SO(4) representations that appear in this problem.

A natural basis in the space of an SO(4) irreducible representation, labeled by the J value, is the
tensor products basis

) =1Imy) @ |[Jm2),
mi nmyp
where we are free to choose which component of M, and of N, will be diagonalized and denoted
as m; and m,, respectively. We will take m; to be eigenvalue of M|, thus, from Eq. (13), we read
off mi = % (l b+ lk) = %, where L is the total angular momentum, a constant of the motion. One
possibility, that is appropriate to the case of Delves-Simonov hyperangles (x p, ), would be to take

my to be the eigenvalue of Ny, i.e., my = % (lp — l,\) = ATL. (As the AL can have (only) integer
values, we see that both the “half-integer” N, M € %, %, %, ...,and the “integer” N,M €0, 1,2, ...,

representations of SO(4) must appear, Refs. 26 and 27.) We shall find it more convenient to take m;
to be the eigenvalue of the operator G = Ny = 2(p - ps — A - P,), corresponding to choice of the
Iwai-Smith hyperangles («, ¢). i

One may need to know the explicit form of the hyper-spherical harmonics. They can be con-
structed either directly, as in Sec. III B 1 below, or indirectly, by way of their connection with
Wu-Yang monopole harmonics, as in Sec. III B, following Ref. 8.

B. SO(4) hyper-spherical harmonics

The symmetries of the Y-string confinement potential/hamiltonian are: parity, rotation, and
permutation/spatial exchange of particles, or its “generalization” the “democracy group” O(2).
Therefore, only wave functions with the same P = (—1)»*% L, and permutation symmetry M
(mixed), S (symmetric), and A (antisymmetric) may mix with each other. There are two different
states with mixed permutation symmetry: the M, and M,.. If Pj; is the ijth particle permutation/spatial
exchange operator, then the permutation symmetry can be examined using the following transposition

lllatIiCGSZ
P12 = 1 s 'i

1 _\3
(2 2
P13—( j | ), a7
2

operating on the transposed “four-vector” X /Tx = (p, A)T that furnish a basis for the two-dimensional
(mixed) irrep. M of S;.
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Mitchell and Littlejohn, Ref. 8, have developed a general theory of SO(4) hyperspherical
harmonics for the planar three-body problem. They have shown, inter alia, that the two sets (Delves-
Simonov and Iwai-Smith) of hyper-angles are related by a (hyper-)rotation through 7 about the y-
hyper-axis. Next, we shall briefly review that subject as we shall need it for subsequent developments.

1. lwai-Smith variables SO(4) hyper-spherical harmonics

The general theory of symmetrized SO(4) hyper-spherical harmonics in the Iwai-Smith basis
has been developed in Ref. 8 on the basis of monopole harmonics, Ref. 24, or spin-weighted
spherical harmonics, Ref. 25. They show an explicit formula, Eq. (5.9) in Ref. 8, for the “symmetric
representation” of planar three-body wave functions ¥7 (a, B) in terms of what they call the
“principal axes gauge” SO(4) hyperspherical harmonics, or what we call the Iwai-Smith hyper-
angles («, ¢), where 8 = ¢, which formula reads

2 .
1//}5,,”(0(, B,0) = ——ef le;?z,k/g.n/z(a’ B)

21
VAV

= YD . 20), as)

where Y,E’/*l,\ janp(@, B) are related to the Wu-Yang (magnetic) monopole spherical harmonics,
Ref. 24, or spin-weighted spherical harmonics, Ref. 25, in the “north regular” gauge, cf. Eq. (2.12)

in Ref. 8,
2141
Yiu©.9) = \| =—Dj_(=.0,9), (19)

where Dﬁh_ 4(—9. 0, ¢) are the Wigner SO(3) rotation matrices defined by

D, @, B, y) = (Im|exp(—iaJ,) exp(—iBJ,) exp(—iy J)|im'). (20)

In other words, we may identify K = A, L = m, G = n/2, and write the SO(4) hyper-spherical
harmonics (yf/j ¢ 1n our notation)

2 .
yf//z%G(av ¢, P) = —t? Y{?Z,K/Q_G(a’ ®)

V2r

VI+K
= ——D;?, ,(—¢.2,20). Q1)

V2r

Note that when the total angular momentum L vanishes (L = 0) it leads to a particular simplification,
because then the SO(4) hyper-spherical harmonics reduce to ordinary SO(3) spherical harmonics
(modulo a multiplicative constant) in the shape-space hyper-angles (o, ¢), due to the defining relation
(cf. Eq. (1) in Sec. 4.17 of Ref. 28)

20 +1
Y5 (B0 = \| =—D,, (@, B, 7). (22)

Vi 6. @) = Vg (@ ¢, @)

Therefore,

Iy G, @)

m 0,K/2,

— 2 G
- \E Yo, ). (23)

As any three-body (spatial part of) potential must be invariant under overall (ordinary) rotations,
it is a scalar, or equivalently, it contains only zero-angular momentum hyperspherical components.
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Thus, we have shown that for L = 0 one may use an ordinary SO(3) spherical harmonic expansion
of the potential to recover the full SO(4) hyperspherical harmonic expansion.

C. The Schrédinger equation in hyper-spherical variables

An important property of the hyper-spherical formalism is that the three-body Schrodinger
equation of the three-body systems with factorizable potentials, viz., V(R, a, ¢) = V(R)V (v, ¢),
turns into a set of infinitely many (mutually) coupled equations, that reduce to a common hyper-radial

Schrodinger equation,
1 [ d? 3d K(K +2)
- 2 S T L mE [ YR + Ver (R) Y Coou (R 24
[dR2+RdR >+ }w()+vff<>§jc Ve(R) =0 (24)

albeit with different hyper-angular coupling coefficients C, .. The coupling matrix C, . is defined
as the proportionality coefficient in the hyper-angular matrix element, Eq. (25)

Vetr. (R)Cixn,1x1 = (Vikn(@, ¢, ®)IV(R, a, §)|Vik(a, ¢, P))
= V(R)Yik1(a, ¢, ®)|V(a, §)| Viki(a, ¢, D)), (25)

when the three-body potential can be factored into a hyper-radial V3_pogy(R) and hyper-angular part
V3_pody (@, ¢). The latter can be expanded in SO(3) (hyper-)spherical harmonics,

Vaobody (@, ¢) = > 03" Y (@, §). (26)

As a consequence of Eq. (23), this is related to the L = 0 SO(4) hyper-spherical harmonics
Vi (a, ¢, ®) as follows:

Vi_body (0, $) = @ > U Ve b, D) @7)
J.M

leading to

Verr.(R)Crin k) = wm[ D v V(. 6. DIV (. ¢, ©)|Viki(e. ¢, ). (28)

J.M=0

We separate out the J = 0 term

V. R)C — V(R 8 1 3—body
eft. (R)Cix,1x1 = V(R) [K/],[K]mvoo

\f Y v Vi@, ¢, DNy (@, ¢, PNIYixi(@. ¢, @))) (29)

J>0,.M
and absorb the factor rvgo P0dY into the definition of Vg (R) = \]ﬁ 2 b°dyV(R) to find
0 3 body
Crnix) = Sixrix) + V2 Z 5oy body Vixn(e, ¢, D) Vgy (. ¢, P)IVix (e, ¢, ). (30)
70, Y00
Here, and in the following &k x] = 0k k0L LBG . Thus, the problem has been

reduced to one of evaluating the SO(4) hyperspherical harmonic matrix elements
Ve, ¢, @)Yy, ¢, PNIViki(a, ¢, D).
In Table I we show, for reference purposes, the first six coefficients v%, and \/g vY, in the

expansion (27) of the A and Y-string potentials, respectively. For a derivation see the Appendix. One
can see that the series is alternating (in sign) and converging, though fairly slowly, after the initial
rapid drop-off from J = 0 to J = 2. This dominance of the vy coefficient (the one corresponding to
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TABLE I. Expansion coefficients UIAO and \/; ”}(0 of the A- and Y-string
three-body potentials Va, Vy, respectively, in terms of the hyper-spherical
O(3) harmonics Yjy(e, ¢), forJ =0, 2, ..., 10.

A 3.Y
J Vjo \/; Yjo

0 10.0265 5.29221

2 0.320285 0.494019
4 0.232132 —0.129813
6 0.0158003 0.0599748
8 —0.00699939 —0.0345825
10 0.00369641 0.0225086

the SO(4)-invariant, or “hyper-spherical” component of the three-body potential), which is illustrated
in Table I, is a general property of most conventional three-body potentials that demonstrates why
the SO(4) symmetry is generally a good starting point for most conventional three-body calculations
in two dimensions.

D. The hyperspherical harmonic matrix element

The SO(4) hyperspherical harmonic matrix element in Eq. (30) can be evaluated using the
definition of SO(4) hyper-spherical harmonics Eq. (19) and the standard formula for the angu-
lar integral over the product of three Wigner D-functions, see, e.g., Eq. (5) in Sec. 4.11.1 of
Ref. 28, as the product of the reduced (hyper-angular) SO(4) matrix element (J'| |y0f w|1J”) and the
corresponding SO(4) Clebsch-Gordan coefficient, which equals the product of two SO(3) Clebsch-
Gordan coefficients. That leads to

0 3—body

v (K'+DHRJ+1) kL Kg

Cixik] = dix1.ik) + § IM c:2,,.C? 31
[K'LIK] [K'LIK] J>0,M<v(3)0_b0dy>\/ K+ D) J0.% K (3D

where C f;;lm;m are the SO(3) Clebsch-Gordan coefficients in the notation of Ref. 28. This is our main

algebraic result: it allows one to evaluate the discrete part of the (energy) spectrum of a three-body
. . . . . . 3—body

potential as a function of its shape-sphere harmonic expansion coefficients v7,, .

The matrix ordinary differential equation (ODE) (24) can be diagonalized (in the hyper-angular
sub-space of the Hilbert space) before being solved, because the potential V(R) is common to
all (matrix) components. That, in turn, is a consequence of the homogeneity of the potential,
V(AR) — A*V(R), under dilations, R — AR, where « is the power of R in the potential*® that
simplifies the solution. Diagonalization of such a matrix is generally not a big problem numerically,
but analytic diagonalization has its intrinsic limitations: if the matrix exceeds the 4 x 4 “size,” then

the secular equation becomes of the fifth order and thus generally not solvable in closed form. Due
3—body

to the smallness of the ratio ZQ”T; < 1 of the potential’s expansion coefficients vy %, v},

the diagonalization of this usuogllly small correction may be adequately dealt with the first-order

perturbation theory. This is because the value of vy is usually higher than v, for any other J # 0

value for most conventional three-body potentials, see Table 1. This is not to say that one cannot

construct three-body potentials with a smaller, or even vanishing value of vy, however.

The SO(3) Clebsch-Gordan coefficients are subject to the usual “triangular” conditions J' +
J'>J> = J'|.As J = %K/ and J" = %K we find constraints on the values of J' = J, where
J is the “multipole order” of the interaction: K' + K > 2J > |K' — K]. So, for example, with the
lowest non-trivial multipole order J = 2, we have additional constraints, discussed in Sec. IV A
below. This leads to some remarkable simplifications, for example, the facts (a) that the three lowest
K bands eigen-energies are entirely determined by two numbers: the expansion coefficients vgg and
vy, which has been known at least since Refs. 30 and 31 and (b) that the K = 3 band of states
introduces just one new free parameter, the v343, which has been known at least since Refs. 32-34.
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Moreover, due to angular momentum conservation reflected in the first Clebsch-Gordan coeffi-
cient of Eq. (31), K/2 and K'/2 values must be either both integer, or both half-integer. In turn, this
has consequence that all non-diagonal terms with [K] = [K'] £ n, where n is an odd integer, are
forbidden.

IV. APPLICATION TO THREE-QUARK CONFINEMENT

Our own interest in this matter stems from the three-quark confinement by the A and/or Y-
strings, Refs. 7 and 37-39. Lattice QCD appears to demand one of two confining potentials: either
the so-called Y-junction string three-quark potential, Eq. (10), as suggested in Refs. 35 and 36, or
the sum of two-body (“A-string”) potentials

3
Vacsr =0a Y [xi —X;l. (32)
i>j=1

The Y-string potential contains certain two-body terms when one of the angles in the triangle
subtended by the quarks is greater than %n, cf. Subsection 2 of the Appendix. In the present paper,
we shall ignore such terms, which generally make (very) small contributions to the energies of low-
lying states, as shown explicitly in Ref. 37. We were led to the permutation symmetric hyperangles in
the process of our study of the dynamical symmetry of the Y-string Refs. 7 and 37-39: the residual
0.(2) ® O(2) € SO(4) dynamical symmetry of the non-relativistic Y-string Hamiltonian is best
visualized in terms of permutation-adapted hyper-angles.

Present methods can relate the regularities in the spectrum to the permutation, or dynamical
symmetry properties of the potential. Moreover, one can use this method in systems with “only” two
(rather than three) identical particles, i.e., in potentials that are only partially permutation symmetric,
such as the Coulomb bound state(s) of two electrons and one positron (or vice versa).

A. The string potential’s hyper-angular matrix elements

The S3 permutation group symmetrized hyper-spherical harmonics correspond to different
SU(6)ps symmetry multiplets (Young diagrams/tableaux) of the three-quark system: S < 56,
A < 20, and M < 70. For more about the SU(6)rs symmetry multiplets and their relation to
the S3 permutation group, see Ref. 40. Thus, we may use the “democracy” index G to classify the
wave functions, i.e., the symmetrized hyper-spherical harmonics, according to their S3 permutation
group, or equivalently to their SU(6)gs symmetry properties.

1. The Y-string and other area-dependent potentials

In the case of area-dependent potentials,

o0

Varea—dep. (a, ¢ =0) = Z Uix(")ea—dep. Yoo (o, =0)
n=0,2,...

n - area—dep.
- \/; Z Vr0 ep Vil ¢ =0, @ =0) (33)

J=K /2=0,2,..:G=0

. . —dep. . 3—body . o
the expansion coefficients viroea °P, corresponding to v M °Y in Eq. (27), have non-vanishing values

only for the zero value of the “hyper-magnetic” quantum number M = 0, due to the independence
of the area-dependent potentials on the azimuthal angle ¢, see Subsection 2 of the Appendix.
Therefore, the hyper-angular matrix C|x) (k) of an area-dependent three-body potential becomes

Cinix1 = Sk ik + Z—zgﬂ ik &) Vaolew, ) Vigi(ct. ) + -+

= Sk + Z—(’;\/E\/gwff:@(a, Vil ¢>>|y§f G+ (34
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We use the potential’s SO(4) transformation properties to express its matrix element in terms of
general SO(4) Clebsch-Gordan coefficients; to that end we note that such area-dependent potentials
are eigenfunctions of two SO(4) generators: M! = %L and N? = G with both eigenvalues being
equal to zero. Thus, a residual dynamical SO7(2) ® SO(2) symmetry of ordinary rotations (in the
physical/geometric configuration space) and hyper-rotations (in the shape space) remains in this
system. In addition to this, space parity transformation and permutation of two particles Eq. (16),
which are also symmetries of this potential, extend the residual symmetry to O.(2) ® O(2).
Therefore, the hyper-angular matrix element of the Y-string and other area-dependent potentials
is, in the lowest order, proportional to the product of the reduced matrix element (J'||)?||J), that is
explicitly determined in Eq. (31), and the corresponding SO(4) Clebsch-Gordan coefficient

J ) J J R JJ 2 2 T J
A1 — il .
my  mj no

m my myl0 0; my my
This SO(4) Clebsch-Gordan coefficient is the product of two SO(3) Clebsch-Gordan coefficients
<J/ J2 200 J

my my10 0; my mo

> = (J,m1,2,01J",m\)(J, m2,2,01J', m})

= Smym) Oy, (J, m1, 2,01, mi)(J, ma, 2,010, ma). (35)

The corresponding (non-vanishing) SO(3) Clebsch-Gordan coefficients are those with: J' = J,J =J
+ 1,and J' =J + 2.Ttis clear, however, that some of these matrix elements are often not necessary.
For example, the product (J, m;, 2,01J £ 1, m;)(J, my, 2,0|J £ 1, my) vanishes, due to symmetries
of Clebsch-Gordan coefficients, when either m; = 0 (angular momentum of the state is zero) or m;
= 0 (this also holds for higher order corrections from Eq. (33) — when either one of m; and m; is
zero, the difference |/ — J'| must be even, i.e., |K — K'| is a multiple of 4). Even when neither is
the case, the (J, my, 2, 0lJ + 1, my) Clebsch-Gordan coefficient connects states with values of K
that differ by two units, which is important only when the (K + 2) band energy is degenerate with
some K-band hyper-radially excited state, which happens only in the harmonic oscillator and 1/R
hyper-Coulomb potentials.

Moreover, the Clebsch-Gordan coefficient (J, my, 2, 0|J £ 2, my) is physically significant in
situations when the absolute value of the difference of K’s for the two states equals four: |[K — K'| =
4 and the unperturbed levels are degenerate, something that only happens in the higher shells/bands
of the harmonic oscillator and the 1/R hyper-Coulomb potential. Thus, for most practical purposes,
we shall only need the J' = J terms.

2. The A-string potential

The A-string potential contains all of the “ordinary” multipoles present in the area-dependent
potentials, though not in the same proportion. The first distinctly “two-body potential” contribution
transforms as Y3i3(o, @) = ﬁyg ;. The corresponding coefficient for the A-string potential is
4y, = 0.141232, see Subsection 1 of the Appendix. This breaks the residual dynamical O(2) ®
O (2) symmetry down to S3 ® Op(2). Consequently, the Clebsch-Gordan coefficients appearing in
Eq. (31) are different as well, so they bring about different selection rules: the v313 term can only
contribute to K > 3 matrix elements.

B. Results

The numerical results have been discussed in Refs. 19 and 22, so here we shall only discuss the
“missing steps” in their derivation.

1. K= 2 band results

We have calculated the hyper-angular matrix elements ygo )ang for the SU(6) multiplets (states
with the same permutation group Sz properties) of the four lowest K(=0,1,2,3) bands: as explained
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TABLE II. The values of the three-body potential hyper-angular matrix
elements nﬁ( )«’50 )ang, for various K = 2 states (for all allowed orbital
waves L). The correspondence between the §3 permutation group irreps.
and SU(6)rs symmetry multiplets of the three-quark system: § < 56,
A < 20, and M < 70.

K [SU(), L] 72 V3 Vane
2 [70,0%] - \Lﬁ
2 [56,2] - %
2 [70, 2] 57
2 20, 0%] N

earlier, the K = 0, 1 bands are affected only by the vy coefficient. The calculated energy splittings
of K = 2 band states depend only on the Clebsch-Gordan coefficient (J, my, 2, 0|J, m,) with various
values of m; = G and m, = L/2 belonging to different SU(6) multiplets being listed in Table II. Our
main concern is the energy splitting pattern among the states within the K = 2 hyper-spherical SO(4)
multiplet. The hyper-radial matrix elements of the linear hyper-radial potential are identical for all
the (hyper-radial ground) states in one K band. Therefore, the 2D energy differences among various
sub-states of a particular K band multiplet are integer multiples of the energy splitting “unit” Ag,
just as they are in 3D.

Note that the two K = 2 SU(6), or S3 multiplets [70, 0% ] and [56, 27 ] are degenerate in
2D, as opposed to 3D, where they are split. Moreover, the 3D [20, 11 ] multiplet has L = 0 in
2D. Otherwise, the 2D and 3D states coincide and their energy splitting patterns agree. This is but
another manifestation of the Bowler-Tynemouth theorem?>3? for this class of three-body potentials.

The 2D splitting pattern is similar, but not identical to the 3D one: the 2D multiplets [20, 0],
[70,27%1, [20,0%], [56, 2T ], are split just like the 3D multiplets [20, 171, [70, 2], [20, 0™ ], [56,
271, but the [70, 07 ] and the [56, 27 ] are degenerate in 2D, whereas they are split in 3D. This
indicates the differences between 2D and 3D in this problem.

2. K= 3 band results

The calculated energies of states with of K = 3 and various values L are listed in Table II and
displayed in Fig. 2 of Ref. 22. With an area-dependent (i.e., ¢-independent) potential in 2D, we find
that the K = 3 band SU(6), or S3 multiplets have one of (only) two possible energies: the ([70, 1 ~],
[56, 371, [20, 37 ]) are degenerate, as are ([70, 37 ], [56, 1], [20, 1~ ]) (at a different energy)
(Tables III and IV). Note that the 3D [70, 2~ ] multiplet has no analogon in 2D. Upon introduction
of a ¢-dependent (“two-body”) potential component proportional to v4, 5, and upon diagonalization
of the C|g1 x| matrix, one finds further splittings among the previously degenerate states [70, 1 ~ ],

TABLE III. The values of the three-body potential hyper-angular diagonal
matrix elements ( Y20(et, @) )ang, for various K = 3 states (for all allowed
orbital waves L).

K [SU(6), L™ TV2( V2 Yang
3 [20,17] .

3 [56,17] —JLg

3 [70,17] ﬁ

3 [56,37] =

3 [70,37] ‘ﬁ

3 [20,37] %
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TABLE IV. The values of the off-diagonal matrix elements of the hyper-
. : K 3 K

angular part of the three-body potential () % LGay | yo L5 1Y % Li.Gs; )ang, for

various K = 3 states (for all allowed orbital waves L).

K [SU®);, L1 [SU©), L] n«/i(y;fycsﬂ Viis |y§LhGai Yang
3 [20,17] [56,17] -5

3 [56,17] [20,17] _%

3 [70,17] [all, 1 7] 0

3 [56,371 [20,37] *

3 [70,371 [all, 171 0

3 [20,37] [56,37] %3?

[56,3 7], and [20, 37 ], as well as among the [70, 3], [56, 1~ ], and [20, 1]

1 2

20, 1_ = e )
[ ] voo ﬁvzo + \/5033
[56, 1_] Voo — vao - i1133,

NG 35
[70, 1_] Voo + vao,

NG
[70.37] oo — vao,

NG
[20,37] woo + vao + Lv33,

NG V35
[56.3] voo + — ¢ (36)

—=VUy0 — —F—=U33.
\/520 @33

For the K = 3 band in 3D, the energy splittings have been calculated by Bowler and Tynemouth3?33
for two-body anharmonic potentials perturbing the harmonic oscillator and confirmed and clarified
by Richard and Taxil, Ref. 34, in the hyper-spherical formalism with linear two-body potentials (the
A-string). One should compare the above results, Egs. (36), with Eq. (45) in Ref. 34, in particular.
Comparing the sizes of the v4 ;-induced splittings in 3D and 2D, one finds comparable values: 1/3
in 2D vs. 2/7 in 3D.

In hindsight, Richard and Taxil’s, Ref. 34, separation of V4(R) and Vg(R) potentials’ con-
tributions is particularly illuminating (prescient?): the former corresponds precisely to our “area-
dependent” term vy and the latter to the “two-body” contribution v3+3. As both the Y- and A strings
contain the former, whereas only the A string contains the latter, we see that the latter to be the
source of different degeneracies/splittings in the spectra of these two types of potentials. This was
not noted by Richard and Taxil, Ref. 34, however, so our contribution here is the (first) demonstration
of this fact in 2D. The 3D case ought to be analogous, but has not been worked out in detail, yet.

V. SUMMARY AND DISCUSSION

In summary, we have reduced the non-relativistic three-body bound state problem in a per-
mutation symmetric potential in two dimensions to a single ordinary differential equation for the
hyper-radial wave function with coefficients determined by SO(4) group-theoretical arguments mul-
tiplying the (homogenous) hyper-radial potential. That one equation can be solved just like the radial
Schrodinger equation in 3D. The breaking of the SO(4) symmetry determines the spectrum.



082105-13 V. Dmitradinovi¢ and I. Salom J. Math. Phys. 55, 082105 (2014)

In 2D, the “hyper-spherical symmetry” is SO(4), and the residual dynamical symmetry of the
potential is O(2) ® Or(2) C SO(4), where Oy (2) is the rotational symmetry associated with the
(total) angular momentum. Due to the fact that so(4) ~~ so(3) @ so(3), one may use many of the so(3)
algebra results, such as the SO(3) Clebsch-Gordan coefficients. Thus, we looked at the “algebra
chain” so(2) @ so.(2) C so(3) @ sor(2) C so(4).

We formulated the problem in terms of SO(4)-group covariant three-body variables and then
brought the Schrodinger equation into a form that can be (exactly) solved. More specifically, we
expanded the three-body Schrodinger equation and its eigen-functions, as well as the potential in
SO(4) hyperspherical harmonics. Then we showed how the energy eigenvalues (the energy spectrum)
can be calculated as functions of the three-body potential’s (hyper-)spherical harmonics expansion
coefficients, of the SO(4) reduced matrix element(s) and of the SO(4) Clebsch-Gordan coefficients,
that are related to the ordinary SO(3) Clebsch-Gordan coefficients.

The dynamical O(2) symmetry of the Y-string potential was discovered in Ref. 7, with the
permutation group S3 C O(2) as its subgroup. The existence of an additional dynamical symmetry
strongly suggested an algebraic approach, such as those used in Refs. 32 and 33, which were not
based on the Y-string, however. A careful perusal of Refs. 32 and 33 showed that an O(2) group had
been used as an enveloping structure for the permutation group S35 C O(2), but was not interpreted
as a (possible) dynamical symmetry. With this in mind we started an algebraic study of the Y-string-
like (“collective”) area-dependent potentials. We first established the basic consequences of this
dynamical symmetry of the Y-string potential. The 3D case is substantially more complicated than
the 2D one: for this reason we have limited ourselves to the two dimensions in this paper.

We have used these results to calculate the energy splittings of various SU(6)/S3 multiplets in
the K = 2 and K = 3 bands of the Y- and A string spectra, and found close correspondence with
the splittings calculated by other methods in three dimensions. It is only in the K = 3 band that
a difference appears between the spectra of these two confining models. That is, the first explicit
consequence of the dynamical O(2) symmetry of the Y-string.

Our results can be used in other three-body problems in two dimensions, such as the three-anyon
problem, Refs. 13—17, and some other condensed matter physics problems, Ref. 18. There is also
hope that one can extend these methods to three dimensions and thus simplify the hyper-spherical
harmonics approach to the three-body problem in general.
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APPENDIX: THREE-BODY POTENTIALS IN TERMS OF HYPER-SPHERICAL VARIABLES
1. The sum of two-body a-power potentials

The A-string potential Va_g; , Eq. (32), is proportional to the sum of pairwise distances between
the bodies. It can be viewed as a special case (¢ = 1) of the three-body sum of pairwise distances to
power a Eq. (9).

In terms of Iwai-Smith hyper-angles, Eq. (32) reads

Va_w (R, @, ¢) = oaR <\/ 1 + sin(e) sin (% - ¢> + \/ 1 + sin(e) sin (¢ n %) + /1= sin(oz)cos((b)) .

(Al)

In order to find the general hyper-spherical harmonic expansion of the sum of «-power two-body
potentials, we note that it factors into the hyper-radial V,(R) = 0, R* and the hyper-angular part
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Valct, )
Va(R. @, $) = Va(R)Valet, ¢) = mmi vS You(@. ¢). (A2)
o
where
Uiy = fo " g /0 " Vel@, ) Vi (@ @)sin(@) dee (A3)

We note that any S* permutation symmetric sum of two-body potentials (with the sole exception of
the harmonic oscillator) has a specific “triple-periodic” azimuthal ¢ hyper-angular dependence with
the angular period of %n. That provides additional selection rules for the magnetic quantum number
M dependent terms in this expansion, besides the / =0, 2, ... rule for M = 0 terms discussed below
in Subsection 2

Yo Yimle ¢y = Y V5Vl @)+ Y vV e+ Y vy Yim(e )+
IM

J=02,... J;M==%3 J;M=%6
(A4)

Reality of the potential V = Je(V) and the “azimuthal parity” under (¢ — — ¢) lead to the fact
that only the “zonal harmonics” coefficients, Eq. (A5) survive, whereas the “sectorial harmonics”
coefficients, Eq. (A6) vanish

(v +V5m) (AS5)

NS

Uy =

1
O:E(UJM—va). (A6)

The aforementioned reflection symmetry with respect to the “hyper-equatorial plane” (cos (o) —
— cos (), adds new selection rules for each of the new sub-series. For example,

oo

D Y dy= Y W Yimle, ). (A7)

JM==%3 J=3,57,...M=%3

The first such non-vanishing coefficient for the A-string potential is v4}; = 0.141232. Thus, we see
that the number of non-vanishing coefficients in the Iwai-Smith parametrization of the shape sphere
is decimated, as compared with the number of the Delves-Simonov parametrization coefficients
which fact ought to improve the speed of convergence of corresponding numerical calculations.

2. Area-dependent potentials and their dynamical symmetry

The Y-string potential Vy_g,. is defined in Eq. (10). The complexity of the Y-string potential
is perhaps best seen when expressed in terms of three-body Jacobi (relative) coordinates p, A: The
exact string potential Eq. (10) consists of the so-called Y-string term, Eq. (11), which is valid when

20 —/3p-A > —P\/P2+3X2—2\/§P'l,

202 +/3p A > —p\/p2+3x2+2\/§p-k,
32— p? > —1(p + 3222 — 12(p - )2,

and three other angle-dependent two-body string, or so-called V-string terms (for their explicit
functional form, see Ref. 37). These additional terms are relevant only when the above angular
conditions are not met — which occurs only in a small part of the configuration space — and
contribute to the same “sub-leading” multipoles v;13 (the lowest one being v343) as the sum of
two-body terms in Eq. (A7). In this sense, the V-string terms are indistinguishable from the A-string
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contributions, except by the size of their contributions, which is smaller than the A-string’s. Of
course, they contribute to the “leading” multipoles v ¢, as well. Thus, their effect can be thought of
as one of slightly changing the values of the Y-string multipoles. For this reason, we shall ignore
these two-body V-string terms hereafter.

The |p x A| term in Eq. (11) is proportional to the area of the triangle subtended by the three
quarks. Next, we show that Vy is a function of both Delves-Simonov hyper-angles (x, 0),

3
Vy(R, x,0) = aYR\/E (1 + sin2x|sin @), (A8)

whereas it is a function of only one Smith-Iwai hyper-angle — the “polar angle” «

W(R, a, ¢) = oyR,/ % (1 + | cosal). (A9)

This independence of the “azimuthal” Smith-Iwai hyper-angle ¢ means that the associated compo-
nent G of the hyper-angular momentum is a constant-of-the-motion of the Y-string; this result holds
in all area-dependent potentials, Ref. 7.

Equation (A9) can be further re-written as a (non-polynomial) function of (the absolute value of)
only one SO(3) (hyper-)spherical harmonic in the shape (hyper-)space: using the following formula

for Yio(, ¢):
|4
cosa = ?Ylo(ot, ), (A10)

3 4
Vy(R, a, ¢) = oyR 3 (1 +4/ ?|Y10(057 ¢>)|>- (A11)

Now, the absolute value of |Yjo(@, ¢)| can be expressed as \/ Yo, ¢)Y10(e, @) and the SO(3)
Clebsch-Gordan expansion can be applied to Y} (c, ¢)Yio(, ¢), which contains only the (even)

values of J =0, 2
4r N
|cosal =/ 5/ ¥iote. )Yioe @)

_ AT YZ(Q¢)+iY (o, @) Yoo(at, @)
_/3 2 (e, 75 To(@ O¥nole

= ﬁ |4 2 Sl d) (A12)
3 V5 Yoo(a, ¢)

The square root in Eq. (A12) can be expanded in a Taylor-like series, the first two terms of which
coincide with the expansion in Legendre polynomials, or SO(3) spherical harmonics, and in SO(4)
hyper-spherical harmonics. Therefore, the exact Legendre polynomial expansion of Eq. (A12) runs
over even-order J = 0, 2, 4, ..., zero “hyper-magnetic” quantum number G = M = 0 SO(3)
(hyper-)spherical harmonics. This is not an accident: all three-body potentials are invariant under
the reflection symmetry with respect to the “hyper-equator” cos (o) — — cos (o), which together
with the independence of Vy on the azimuthal hyper-angle ¢ leads to the fact that this series cannot
depend on the “hyper-magnetic quantum number” G = M and consequently to the aforementioned
“selection rule”: it is a sum over even values of J only

that leads to

3 oo
vY<R,a,¢>)=aYRf5 Y oYl ), (A13)

J=0,2,...

where v}{o, J=0,2,....
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