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Abstract The Gell-Mann Lie algebra decontraction formula was proposed as an
inverse to the Inonu-Wigner contraction formula. We considered recently this for-
mula in the content of the special linear algebras sl(n), of an arbitrary dimension. In
the case of these algebras, the Gell-Mann formula is not valid generally, and holds
only for some particular algebra representations. We constructed a generalization
of the formula that is valid for an arbitrary irreducible representation of the sl(n)
algebra. The generalization allows us to explicitly write down, in a closed form, all
matrix elements of the algebra operators for an arbitrary irreducible representation,
irrespectively whether it is tensorial or spinorial, finite or infinite dimensional, with
or without multiplicity, unitary or nonunitary. The matrix elements are given in the
basis of the Spin(n) subgroup of the corresponding SL(n,R) covering group, thus
covering the most often cases of physical interest. The generalized Gell-Mann for-
mula is presented, and as an illustration some details of its applications in the Gauge
Affine theory of gravity with spinorial and tensorial matter manifields are given.

1 Introduction

The In̈onü-Wigner contraction [9] is a well known transformation of algebras
(groups) with numerous applications in various fields of physics. Just to mention
a few: contractions from the Poincaré algebra to the Galilean one; from the Heisen-
berg algebras to the Abelian ones of the same dimensions (a symmetry background
of a transition processes from relativistic and quantum mechanics to classical me-
chanics); contractions in the Kaluza-Klein gauge theories framework; from (Anti-
)deSitter to the Poincaré algebra; various cases involving the Virasoro and Kac-
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Moody algebras; relation of strong to weak coupling regimes of the corresponding
theories; relation of geometrically curved to “less curved’ and/or flat spaces...

However, existence of a transformation (i.e. algebra deformation) inverse to the
Inönü-Wigner contraction, so called the “Gell-Mann formula” [4, 7, 8, 1], is far less
known. The aim of the formula is to express the elements of the starting algebra as
explicitly given expressions containing elements of the contracted algebra. In this
way, a relation between certain representations of the two algebras is also estab-
lished. This, in turn, can be very useful since, by a rule, various properties of the
contracted algebras are much easier to explore (e.g. construction of representations
[10], decompositions of a direct product of representations [7], etc.).

Before we write down the Gell-Mann formula in the general case, some notation
is in order. LetA be a symmetric Lie algebraA = M +T with a subalgebraM
such that:

[M ,M ]⊂M , [M ,T ]⊂T , [T ,T ]⊂M . (1)

Further, letA ′ be its In̈onü-Wigner contraction algebra w.r.t its subalgebraM , i.e.
A ′ = M +U , where

[M ,M ]⊂M , [M ,U ]⊂U , [U ,U ] = {0}. (2)

The Gell-Mann formula states that the elementsT ∈ T can be in certain cases
expressed in terms of the contracted algebra elementsM ∈M andU ∈ U by the
following rather simple expression:

T = i
α√

U ·U [C2(M ),U ]+σU. (3)

Here,C2(M ) andU ·U denote the second order Casimir operators of theM and
A ′ algebras respectively, whileα is a normalization constant andσ is an arbitrary
parameter. For a mathematically more strict definition, cf. [4].

Probably the main reason why this formula is not widely known – in spite of its
potential versatility – is the lack of its general validity. Namely, there is a number
of references dealing with the question when this formula is applicable [7, 8, 1,
16]. Apart form the case of (pseudo) orthogonal algebras where, loosely speaking,
the Gell-Mann formula works very well [20], there are only some subclasses of
representations when the formula can be applied [7, 8]. To make the things worse,
the question of its applicability is not completely resolved.

Recently, we studied theSL(n,R) group cases, contracted w.r.t the maximal com-
pactSpin(n) subgroups. BySL(n,R) we denote the double cover ofSL(n,R). Note
that there faithful spinorial representations are always infinite dimensional and phys-
ically correspond to fermionic matter. In these cases the Gel-Mann formula does
not hold as a general operator expression and its validity depends heavily on the
sl(n,R) algebra representation space. An exhaustive list of the cases for which the
Gell-Mann formula forsl(n,R) algebras hold was obtained [16]. In particular, we
have shown that the Gell-Mann formula is not valid for any spinorial representa-
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tion, nor for any representation with nontrivialSpin(n) multiplicity, rendering the
Gell-Mann formula here useless for most of physical applications.

There were some attempts to generalize the Gell-Mann formula for the “decon-
tracted” algebra operators of the complex simple Lie algebrasg with respect to
decompositiong = k+ ik = kc [22, 11], that resulted in a form of relatively compli-
cated polynomial expressions. Recently we have managed to obtain a generalized
form of this formula, first in the concrete case ofsl(5,R) algebra, and then also in
the case ofsl(n,R) algebra, for anyn.

In this paper we shall consider the obtained generalized expressions and illustrate
applicability of the formula in the context of affine theory of gravity. In particular,
we analyze the five dimensional affine gravity models.

2 Generalized formula

The sl(n,R) algebra operators, i.e. theSL(n,R), SL(n,R) group generators, can
be split into two subsets:Mab, a,b = 1,2, ...,n operators of the maximal compact
subalgebraso(n) (corresponding to the antisymmetric realn× n matrices,Mab =
−Mba), and the, so called, sheer operatorsTab, a,b = 1,2, ...,n (corresponding to
the symmetric traceless realn×n matrices,Tab = Tba). Thesl(n,R) commutation
relations, in this basis, read:

[Mab,Mcd] = i(δacMbd +δadMcb−δbcMad−δbdMca), (4)

[Mab,Tcd] = i(δacTbd +δadTcb−δbcTad−δbdTca), (5)

[Tab,Tcd] = i(δacMdb+δadMcb+δbcMda+δbdMca). (6)

The In̈onü-Wigner contraction ofsl(n,R) with respect to its maximal compact
subalgebraso(n) is given by the limiting procedure:

Uab≡ lim
ε→0

(εTab), (7)

which leads to the following commutation relations:

[Mab,Mcd] = i(δacMbd +δadMcb−δbcMad−δbdMca) (8)

[Mab,Ucd] = i(δacUbd +δadUcb−δbcUad−δbdUca) (9)

[Uab,Ucd] = 0. (10)

Therefore, the In̈onü-Wigner contraction ofsl(n,R) gives a semidirect sum
r n(n+1)

2 −1

⊎
so(n) algebra, wherer n(n+1)

2 −1
is an Abelian subalgebra (ideal) of “trans-

lations” in n(n+1)
2 −1 dimensions.

The generalized Gell-Mann formula forsl(n,R), obtained in [18], reads:
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Tσ2...σn
ab = i

n

∑
c=2

1
2
[C2(so(c)K),U (cc)

ab ]+σcU
(cc)
ab . (11)

OperatorsTab live in the spaceL 2(Spin(n)) of square integrable functions over
the Spin(n) manifold and it is known that this space is rich enough to contain all
representatives from equivalence classes of theSL(n,R) group, i.e.sl(n,R) algebra
representations [3]. A natural discrete orthonormal basis in this space is given by
properly normalized functions of theSpin(n) representation matrix elements:

{∣∣∣∣
{J}
{k}{m}

〉
≡

∫ √
dim({J})D{J}

{k}{m}(g
−1)dg|g〉

}
, (12)

〈 {J′} {J}
{k′}{m′} {k}{m}

〉
= δ{J′}{J}δ{k′}{k}δ{m′}{m},

wheredg is an (normalized) invariant Haar measure andD{J}
{k}{m} are theSpin(n)

irreducible representation matrix elements:

D{J}
{k}{m}(g)≡

〈{J}
{k}

∣∣∣∣R(g)
∣∣∣∣
{J}
{m}

〉
. (13)

Here,{J} stands for a set of theSpin(n) irreducible representation labels, while{k}
and{m} labels enumerate thedim(D{J}) representation basis vectors.

In the basis (12) sets of labels{J} and{m} determine transformation properties
of a basis vector under theSpin(n) subgroup:{J} label irreducible representation
of Spin(n), while numbers{m} label particular vector within that representation.
The set of parameters{k} serve to enumerateSpin(n) multiplicity of representation
{J} within the given representation ofSL(n,R). These parameters{k} are math-
ematically related to the left action ofSpin(n) subgroup in representation space
L 2(Spin(n)).

OperatorsU (cc)
ab appearing in (11) are concrete (normalized) representations (in

L 2(Spin(n)) space) of the In̈onü-Wigner contractions of shear generatorsTab. In
basis (12) these operators act in the following way:

〈 {J′}
{k′}{m′}

∣∣∣∣U
(cd)
ab

∣∣∣∣
{J}
{k}{m}

〉
=

√
dim({J})
dim({J′})C

{J} {J′}
{k}(cd){k′}C

{J} {J′}
{m}(ab){m′} , (14)

where denotesSpin(n) representation that corresponds to second order symmet-
ric tensors (shear generators, as well as their Inönü-Wigner contractions, transform
in this way w.r.t.Spin(n) subgroup) andC stands for Clebsch-Gordan coefficients
of Spin(n).

In (11) we also used notationC2(so(c)K) ≡ 1
2 ∑c

a,b=1(Kab)2, whereKab are gen-
erators ofSpin(n) group left action in basis (12). These operators behave exactly as
the rotation generatorsMab, but, instead of acting on right-hand{m} indices, they
act on the lower left-hand side indices{k} that label multiplicity:
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〈
{J′}
{k′}{m′}

∣∣∣∣Kab

∣∣∣∣{J}{k}{m}
〉

= δ{J′}{J}δ{m′}{m}
√

C2({J}) C{J} {J′}
{k}(ab){k′} . (15)

Finally, the set ofn−1 indicesσ2,σ3, . . .σn in (11) label the particular represen-
tation of theSL(n,R). The formula (11) covers all cases: infinite and finite dimen-
sional representations, spinorial and tensorial, with and without multiplicity, unitary
and non unitary.

We note that the termc = n in (11) is, essentially, the original Gell-Mann for-
mula, sinceC2(so(n)K) = C2(so(n)M). The rest of the terms can be seen as neces-
sary corrections securing the formula validity in the entire representation space. The
additional terms vanish for some particular representations thus yielding the original
formula.

An immediate mathematical benefit of the generalized formula is the expression
for matrix elements of shear generators in basis (12) [18]:

〈 {J′}
{k′}{m′}

∣∣∣∣Tab

∣∣∣∣
{J}
{k}{m}

〉
= i

2

√
dim({J})
dim({J′})C

{J} {J′}
{m} ab {m′}

×∑n
c=2

√
c−1

c

(
C2(so(c){k′})−C2(so(c){k})+ σ̃c

)
C{J}( )n−c+1{J′}
{k} (0)c−2 {k′} .

(16)

In order to demonstrate application of this result in the context of five dimen-
sional affine gravity models, we introduce a concreten = 5 adapted notation (for all
n= 5 notation we adhere to that of our paper [17]). As a basis forSpin(5) represen-
tations we pick vectors:





∣∣∣∣∣∣

J1 J2

J1 J2

m1 m2

〉
,Ji = 0,

1
2
, . . . ;J1 ≥ J2;mi =−Ji , . . .Ji



 . (17)

with respect to decompositionso(5) ⊃ so(4) = so(3)⊕ so(3). Basis ofSL(5,R)
representation space, corresponding to (12) is then given by vectors:





∣∣∣∣∣∣

J1 J2

K1 K2 J1 J2

k1 k2 m1 m2

〉

 . (18)

The reduced matrix elements of thesl(5,R) shear (noncompact) operators, derived
from an alternative form of Gell-Mann formula that we have given in the paper [17],
read:
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〈
J
′
1 J

′
2

K′
1K′

2
k′1 k′2

∣∣∣∣
∣∣∣∣T

∣∣∣∣
∣∣∣∣

J1 J2
K1K2
k1 k2

〉
=

√
dim(J1,J2)
dim(J′1,J′2)

×
(

(
σ1+i

√
4
5(J′1(J′1+2)+J′2(J

′
2+1)−J1(J1+2)−J2(J2+1))

)
C

J1J2 11 J′1J′2
K1K2 00K′1K′2
k1k2 00k′1k′2

+ i(σ2+K′1(K′1+1)+K′2(K
′
2+1)−K1(K1+1)−K2(K2+1))C

J1J2 11 J′1J′2
K1K2 11K′1K′2
k1k2 00k′1k′2

− i(δ1+k1−k2)C
J1J2 11 J′1J′2
K1K2 11 K′1K′2
k1k2 1−1 k′1k′2

− i(δ1−k1+k2)C
J1J2 1 1 J′1J′2
K1K2 1 1K′1K′2
k1k2 −11k′1k′2

+ i(δ2+k1+k2)C
J1J2 11 J′1J′2
K1K2 11K′1K′2
k1k2 11k′1k′2

+ i(δ2−k1−k2)C
J1J2 1 1 J′1J′2
K1K2 1 1 K′1K′2
k1k2 −1−1 k′1k′2

)
,

(19)

wheredim(J1,J2) = (2J1−2J2 +1)(2J1 +2J2 +3)(2J1 +2)(2J2 +1)/6 is the di-
mension of theso(5) irreducible representation characterized by(J1,J2). In this
notation,SL(5,R) irreducible representations are labelled by parametersσ1,σ2,δ1

andδ2, that appear in the formula (19).

3 Gauge Affine action

The space-time symmetry of the affine models of gravity (prior to any symmetry
breaking) is given by the General Affine GroupGA(n,R) = Tn ∧GL(n,R) (or,
sometimes, by the Special Affine GroupSA(n,R) = Tn∧SL(n,R)). In the quan-
tum case, the General Affine Group is replaced by its double cover counterpart
GA(n,R) = Tn∧GL(n,R), which contains double cover ofGL(n,R) as a subgroup.
This subgroup here plays the role that Lorentz group has in the Poincaré symmetry
case. Thus it is clear that knowledge ofGL(n,R) representations is a must-know
for any serious analysis of affine gravity models. On the other hand, the essential
nontrivial representation determining part of theGL(n,R) = R+⊗SL(n,R) group
is its SL(n,R) subgroup (R+ is subgroup of dilatations). We will make use of the
SL(n,R) matrix elements expression in order to obtain coefficients for some of the
gauge field–matter interaction vertices.

A standard way to introduce interactions into affine gravity models is by local-
ization of the global affine symmetryGA(n,R) = Tn∧GL(n,R). Thus, quite gen-
erally, affine Lagrangian consists of a gravitational part (i.e. kinetic terms for gauge
potentials) and Lagrangian of the matter fields:L = Lg + Lm. Gravitational partLg

is a function of gravitational gauge potentials and their derivatives, and also of the
dilaton fieldϕ (that ensures action invariance under local dilatations). In the case
of the standard Metric Affine [6, 5], i.e. Gauge Affine Gravity [13], the gravita-
tional potentials are tetradsea

µ , metricsgab and affine connectionΓ a
bµ , so that we

can write:Lg = Lg(e,∂e,g,∂g,Γ ,∂Γ ,ϕ). More precisely, due to action invariance
under local affine transformations, gravitational part of Lagrangian must be a func-
tion of the formLg = Lg(e,g,T,R,N,ϕ), whereTa

µν = ∂µea
ν +Γ a

bµeb
ν − (µ ↔ ν),

Ra
bµν = ∂µΓ a

bν +Γ c
bµΓ a

cν − (µ ↔ ν), Nµab = Dµgab are, respectively, torsion, cur-
vature and nonmetricity. Assuming, as usual, that equations of motion are linear in
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second derivatives of gauge fields, we are confined to no higher than quadratic pow-
ers of the torsion, curvature and nonmetricity. Covariant derivative is of the form
Dµ = ∂µ − iΓ b

a µQ a
b , whereQ a

b denote generators ofGL(n,R) group. The matter
Lagrangian (assuming minimal coupling for all fields except the dilaton one) is a
function of some number of affine fieldsφ I and their covariant derivatives, together
with metrics and tetrads (affine connection enters only through covariant derivative):
Lm = Lm(φ I ,Dφ I ,e,g).

With all these general remarks, we will consider a class of affine Lagrangians, in
arbitrary number of dimensionsn, of the form:

L(e a
µ ,∂νe a

µ ,Γ a
bµ ,∂νΓ a

bµ ,gab,ΨA,∂νΨA,ΦA,∂ν ΦA,ϕ,∂ν ϕ) =

e
[
ϕ2R−ϕ2T2−ϕ2N2 +

Ψ̄ igabγae µ
b DµΨ + 1

2gabe µ
a e ν

b (Dµ Φ)+(Dν Φ)+ 1
2gabe µ

a e ν
b Dµ ϕDν ϕ

]
. (20)

The terms in the first row represent general gravitational part of the Lagrangian,
that is invariant w.r.t. affine transformations (dilatational invariance is obtained with
the aid of fieldϕ, of mass dimensionn/2− 1). HereT2 andN2 stand for linear
combination of terms quadratic in torsion and nonmetricity, respectively, formed
by irreducible components of these fields. For the scope of this paper, we need not
fix these terms any further. This is a general form of gravitational kinetic terms,
invariant for an arbitrary space-time dimensionn≥ 3.

The Lagrangian matter terms, invariant w.r.t. the localGA(n,R), n≥ 3, transfor-
mations, are written in the second row. The fieldΨ denotes a spinorialGL(n,R) field
– components of that field transform under some appropriate spinorialGL(n,R)
irreducible representations. All spinorialGL(n,R) representations are necessarily
infinite dimensional [12], and thus the fieldΨ will have infinite number of compo-
nents. The concrete spinorial irreducible representation of fieldΨ is given by a set of
n−1 SL(n,R) labels{σΨ

c } together with the dilatation chargedΨ . The fieldΦ is a
representative of a tensorialGL(n,R) field, transforming under a tensorialGL(n,R)
representation (i.e. one transforming w.r.t. single-valued representation of theSO(n)
subgroup) labelled by parameters{σΦ

c } anddΦ . Since, as it is briefly argued later,
the noncompactSL(n−1,R) affine subgroup is to be represented unitarily, the ten-
sorial fieldΦ is also to transform under an infinite-dimensional representation and
to have an infinite number of components. The remaining dilaton fieldϕ is scalar
with respect toSL(n,R) subgroup, and thus has only one component.

Interaction of affine connection with matter fields is determined by terms con-
taining covariant derivatives. We write these terms in a component notation, where
the component labelling is done with respect to the physically important Lorenz
Spin(1,n−1) subgroup ofGL(n,R). Such a labelling allows, in principle, to iden-
tify affine field components with Lorentz fields of models based on the Poincaré
symmetry. Namely, the affine models of gravity necessarily imply existence of some
symmetry breaking mechanism that reduces the global symmetry to the Poincaré
one, reflecting the subgroup structureTn∧SO(1,n− 1) ⊂ Tn∧GL(n,R). There-
fore, we consider the fieldΨ (and similarly forΦ field) as a sum of its Lorentz
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components:

∑
{J}

{k}{m}

Ψ {J}
{k}{m}

∣∣{J}
{k}{m}

〉
.

The interaction term connecting fieldsgcd, e µ
d , Γ ab

µ , Ψ̄ {J}
{k}{m}, Ψ {J′}

{k′}{m′} is now:

gcde µ
d Γ ab

µ Ψ̄ {J}
{k}{m}Ψ

{J′}
{k′}{m′} ∑

{J′′}
{k′′}{m′′}

〈{J}
{k}{m}

∣∣γc
∣∣{J′′}
{k′′}{m′′}

〉〈{J′′}
{k′′}{m′′}

∣∣Qab
∣∣{J′}
{k′}{m′}

〉
, (21)

while the interaction of tensorial field with connection is given by:

− i
2gcde µ

c e ν
d Γ ab

ν ∂µ Φ†{J}
{k}{m}Φ

{J′}
{k′}{m′}

〈{J}
{k}{m}

∣∣Qab
∣∣{J′}
{k′}{m′}

〉
+ (22)

i
2gcde µ

c e ν
d Γ ab

ν Φ†{J}
{k}{m}∂µ Φ{J′}

{k′}{m′}
〈{J′}
{k′}{m′}

∣∣Qab
∣∣{J}
{k}{m}

〉∗+ (23)

1
2gcde µ

c e ν
d Γ ab

µ Γ a′b′
ν Φ†{J}

{k}{m}∂µ Φ{J′}
{k′}{m′}·

∑ {J′′}
{k′′}{m′′}

〈{J}
{k}{m}

∣∣Qab
∣∣{J′′}
{k′′}{m′′}

〉〈{J′′}
{k′′}{m′′}

∣∣Qa′b′
∣∣{J′}
{k′}{m′}

〉
. (24)

The scalar dilaton field interact only with the trace of affine connection:

1
2gabe µ

a e ν
b (∂µ − iΓ a

a µdϕ)ϕ(∂ν − iΓ a
a νdϕ)ϕ, (25)

wheredϕ denotes dilatation charge ofϕ field.
In the above interaction terms we note an appearance of matrix elements of

GL(n,R) generators, written in a basis of the Lorenz subgroupSpin(1,n−1). The
dilatation generator (that is, the traceQa

a) acts merely as multiplication by dilatation
charge, so it is really theSL(n,R) matrix elements that should be calculated. (An in-
finite dimensional generalization of Dirac’s gamma matrices also appear in the term
(21); more on these matrices can be found in papers ofŠijački [21].) However, be-
fore presenting examples of the matrix elements evaluations, and thus calculations
of the vertex coefficients, it is due to note that the correct physical interpretation
of theSL(n,R) representations requires these representations to be unitary w.r.t. its
SL(n−1,R) subgroup and to be nonunitary w.r.t. its lorentz-likeSpin(1,n−1) sub-
group. It turns out that these requirements can be properly satisfied by making use
of the so called deunitarizing automorphism [12].

4 Gauge Affine symmetry vertex coefficients evaluation

Now we return to evaluation of vertex coefficients for interaction between various
Lorentz components of theGL(n,R) fields. The nontrivial part is to find matrix
elements ofSL(n,R) shear generators in expressions (21)-(24), and, to do that in
n = 5 case we will use expression (19). However, this formula is given in the basis
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of the compactSpin(n) subgroup, and not in the basis of the physically important
Lorentz groupSpin(1,n−1). On the other hand, it turns out that taking into account
deunitarizing automorphism exactly amounts to keeping reduced matrix element
from (16) and replacing the remaining Clebsch-Gordan coefficient of theSpin(n)
group by the corresponding coefficient of the Lorenz groupSpin(1,n−1) [15].

As the first example, let the fieldΦ correspond to an unitary multiplicity free
SL(5,R) representation, defined by labelsσ2 = −4,δ1 = δ2 = 0, with σ1 arbitrary
real. The representation space is spanned by vectors (18) satisfyingJ1 = J2 = J ∈
N0 + 1

2;K1 = K2 = 0;J1 = J2 = J ≤ J. This is a simplest class of multiplicity free
representations that is unitary assuming usual scalar product. If we denoteΦa,a =
1. . .5 the fiveΦ components withJ1 = J2 = 1

2 (in this senseΦa corresponds to a
Lorenz 5-vector) then the interaction vertex (22) connecting fieldsΦa†, ∂µ Φd and
affine shear connectionΓ bc

ν is:

i
2

ge fe µ
e e ν

f Φa†Γ bc
ν ∂µ Φd

√
5

14
σ1(ηabηdc+ηacηdb− 2

n
ηadηbc). (26)

To obtain this result we used an easily derivable formula for Clebsch-Gordan coef-
ficient connecting Lorentz vector and symmetric second order Lorenz tensor repre-
sentations:

CL
a (bc) d =

√
n

2(n+2)(n−1) (ηabηdc+ηacηdb− 2
n

ηadηbc), (27)

where we labelledSpin(1,n−1) irreducible representations by Young diagrams, as
in [18]. More importantly, we also used value of the reduced matrix element:

〈
1
2

1
2

0 0
0 0

∣∣∣∣
∣∣∣∣Q

∣∣∣∣
∣∣∣∣

1
2

1
2

0 0
0 0

〉
=

√
2
7

σ1, (28)

that we obtained by using formula (19) (based on this formula, a Mathematica pro-
gram was generated that directly calculatessl(5,R) matrix elements [15], taking
into accountSpin(5) Clebsch-Gordan coefficients found in [19]).

It is no more difficult to obtain coefficients of the vertices of the form (24). La-
grangian term (24) connecting Lorenz 5-vectorΦ componentsΦ5, Φ†

5 and affine
connection componentΓ(55)µ is:

1
15

(
σ2

1 −25
)

gcde µ
c e ν

d Γ 55
µ Γ 55

ν Φ†
5∂µ Φ5. (29)

Next we will consider an example whereΦ field corresponds to a representa-
tion with multiplicity. Let us, again, consider 5-vector componentJ1 = J2 = 1

2 of
Φ , only this time without any restriction to the values ofσ1,σ2,δ1,δ2. In general,
this will correspond to a representation with non trivial multiplicity. Quantum num-
bers{k}= (K1,K2,k1,k2), that label multiplicity, now can take values :(1

2, 1
2, 1

2, 1
2),

(1
2, 1

2, 1
2,−1

2), (1
2, 1

2,−1
2, 1

2), (1
2, 1

2,−1
2,−1

2) and(0,0,0,0). Therefore, thisa priori
corresponds to 5 observable 5-vector fields, differentiated by the{k} values, and
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these five vector fields mutually interact by gravitational interaction. Part of the La-
grangian term (22), responsible for this interaction, has the form:

i
2

ge fe µ
e e ν

f Φa†
{k′}Γ

bc
ν ∂µ Φd

{k}

〈
1
2

1
2

K′
1K′

2
k′1 k′2

∣∣∣∣
∣∣∣∣Q

∣∣∣∣
∣∣∣∣

1
2

1
2

K1K2
k1 k2

〉 √
5√
56

(ηabηdc+ηacηdb− 2
5

ηadηbc).

(30)
The reduced matrix element is obtained from the generalized Gell-Mann formula:

〈
1
2

1
2

1
2

1
2

k′1k′2

∣∣∣∣
∣∣∣∣Q

∣∣∣∣
∣∣∣∣

1
2

1
2

1
2

1
2

k1k2

〉
=

1
4
√

14

(
−2σ1C3

1
2 0 1

2
k1 0k′1

C3

1
2 0 1

2
k2 0k′2

+15σ2C3

1
2 1 1

2
k1 0k′1

C3

1
2 1 1

2
k2 0k′2

−

−15C3

1
2 1 1

2
k1−1k′1

(
(k1 +k2−δ2)C3

1
2 1 1

2
k2−1k′2

+(−k1 +k2 +δ1)C3

1
2 1 1

2
k2 1k′2

)

−15C3

1
2 1 1

2
k1 1k′1

(
(k1−k2 +δ1)C3

1
2 1 1

2
k2−1k′2

− (k1 +k2 +δ2)C3

1
2 1 1

2
k2 1k′2

))
,

〈
1
2

1
2

0 0
0 0

∣∣∣∣
∣∣∣∣Q

∣∣∣∣
∣∣∣∣

1
2

1
2

K1K2
k1 k2

〉
= 0,

〈
1
2

1
2

0 0
0 0

∣∣∣∣
∣∣∣∣Q

∣∣∣∣
∣∣∣∣

1
2

1
2

0 0
0 0

〉
=

√
2
7 σ1, (31)

whereC3 denotes an usualSpin(3) Clebsch-Gordan coefficient.
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