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Permutation-Symmetric Three-Body O(6)
Hyperspherical Harmonics in Three Spatial
Dimensions

Igor Salom and V. DmitraSinovi¢

Abstract We have constructed the three-body permutation symmetric O(6) hyper-
spherical harmonics which can be used to solve the non-relativistic three-body
Schrodinger equation in three spatial dimensions. We label the states with eigen-
values of the U(1) ® SO(3),,, C U(3) C O(6) chain of algebras and we present the
corresponding K < 4 harmonics. Concrete transformation properties of the harmon-
ics are discussed in some detail.

1 Introduction

Hyperspherical harmonics are an important tool for dealing with quantum-mechanical
three-body problem, being of a particular importance in the context of bound states
[1-6]. However, before our recent progress [7], a systematical construction of
permutation-symmetric three-body hyperspherical harmonics was, to our knowl-
edge, lacking (with only some particular cases being worked out — e.g. those with
total orbital angular momentum L = 0, see Refs. [5, 8]).

In this note, we report the construction of permutation-symmetric three-body
O(6) hyperspherical harmonics using the U(1) ® SO(3),,; C U(3) C O(6) chain of
algebras, where U(1) is the “democracy transformation”, or ‘“kinematic rotation”
group for three particles, SO(3),,, is the 3D rotation group, and U (3), O(6) are the
usual Lie groups. This particular chain of algebras is mathematically very natural,
since the U(1) group of “democracy transformations” is the only nontrivial (Lie)
subgroup of full hyperspherical SO(6) symmetry (the symmetry of nonrelativistic
kinetic energy) that commutes with spatial rotations. Historically, this chain was also
suggested in the recent review of the Russian school’s work, Ref. [9], and indicated
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by the previous discovery of the dynamical O(2) symmetry of the Y-string potential,
Ref. [10]. The name “democracy transformations” comes from the close relation
of these transformations with permutations: (cyclic) particle permutations form a
discrete subgroup of this U(1) group.

2 Three-Body Hyperspherical Coordinates

A natural set of coordinates for parametrization of three-body wave [unction ¥ (p, X)
(in the center-of-mass frame of reference) is given by the Euclidean relative position
Jacobi vectors p = %(xl —X2), A = ﬁ(xl + Xp — 2x3). The overall six compo-
nents of the two vectors can be seen as specifying a position in a six-dimensional
configuration space x, = (X, p), which, in turn, can be parameterized by hyper-
spherical coordinates as ¥ (R, Qs). Here R = /p? + A* is the hyper-radius, and
five angles 25 parametrize a hyper-sphere in the six-dimensional Euclidean space.
Three (®;; i = 1,2, 3) of these five angles (£25) are just the Euler angles associ-
ated with the orientation in a three-dimensional space of a spatial reference frame
defined by the (plane of) three bodies; the remaining two hyper-angles describe the
shape of the triangle subtended by three bodies; they are functions of three inde-
pendent scalar three-body variables, e.g. p - A, p2, and A% Due to the connection
R = /p? + X?, this shape-space is two-dimensional, and topologically equivalent
to the surface of a three-dimensional sphere. A spherical coordinate system can be
further introduced in this shape space. Among various (in principle infinitely many)
ways that this can be accomplished, the one due to Iwai [6] stands out as the one
that fully observes the permutation symmetry of the problem. Namely, of the two

Iwai (hyper)spherical angles (cv, ¢): (sin)? = 1 — (2’;3—?‘)2, tan ¢ = (;”T‘;z), the
angle ar does not change under permutations, so that all permutation properties are
encoded in the ¢-dependence of the wave functions.

Nevertheless, in the construction of hyperspherical harmonics, we will, unlike the
most of the previous attempts in this context, refrain from use of any explicit set of

angles, and express harmonics as functions of Cartesian Jacobi coordinates.

3 O(6) Symmetry of the Hyperspherical Approach

The motivation for hyperspherical approach to the three-body problem comes from
the fact that the equal-mass three-body kinetic energy T is O(6) invariant and can be
written as

ij
2mR?’

T="R

ey
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Here,K,,,(u, v =1, 2, ..., 6)denotes the SO(6) “grand angular’” momentum tensor

K, =m (xl,f(,, — x,,f(u)

= (Xupy - Xl/pu) . (2)

K, has 15 linearly independent components, that contain, among themselves
three components of the “ordinary” orbital angular momentum: L =1, +1, =
m(px p+AxA).

It is due to this symmetry of the kinetic energy that the decomposition of the
wave function and potential energy into SO(6) hyperspherical harmonics becomes a
natural way to tackle the three-body quantum problem.

In this particular physical context, the six dimensional hyperspherical harmonics
need to have some desirable properties. Quite generally, apart from the hyperangular
momentum K, which labels the O(6) irreducible representation, all hyperspherical
harmonics must carry additional labels specifying the transformation properties of
the harmonic with respect to (w.r.t.) certain subgroups of the orthogonal group. The
symmetries of most three-body potentials, including the three-quark confinement
ones, are: parity, rotations and permutations (spatial exchange of particles).

Therefore, the goal is to find three-body hyperspherical harmonics with well
defined transformation properties with respect to thee symmetries. Parity is directly
related to K value: P = (—1)X, the rotation symmetry implies that the hyperspherical
harmonics must carry usual quantum numbers L and m corresponding to SO(3),,; D
SO(2) subgroups and permutation properties turn out to be related with a continuous
U(1) subgroup of “democracy transformations”, as will be discussed below.

4 Labels od Permutation-Symmetric Three-Body
Hyperspherical Harmonics

We introduce the complex coordinates:
XE=\xip, i=1,273. (3)
Nine of 15 hermitian SO(6) generators K, in these new coordinates become

0 0 0 0
X

Ly =X —— + X —— — Xt —— — X7 ——, 4

T =R T TN o T X, @
+ 9 -0 + 90 -0

205 =X —— — X7 — + X X —— ®)

foxt Thoaxt U oxt T ax;
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Here L;; have physical interpretation of components of angular momentum vector L.
The symmetric tensor Q;; decomposes as (5) + (1) w.r.t. rotations, while the trace:

’ B o B)
= U = X+—— X — 6
Q=0 glaxf 2 X ox ©

is the only scalar under rotations, among all of the SO(6) generators. Therefore,
the only mathematically justified choice is to take eigenvalues of this operator for an
additional label of the hyperspherical harmonics. Besides, this trace Q is the generator
of the forementioned democracy transformations, a special case of which are the
cyclic permutations — which in addition makes this choice particularly convenient
on an route to construction of permutation-symmetric hyperspherical harmonics.
The remaining five components of the symmetric tensor Q;;, together with three
antisymmetric tensors L;; generate the SU(3) Lie algebra, which together with the
single scalar Q form an U (3) algebra, Ref. [9].

Overall, labelling of the O(6) hyperspherical harmonics with labels K, Q, L and
m corresponds to the subgroup chain U(1) ® SO(3),,; C U(3) C SO(6). Yet, these
four quantum numbers are in general insufficient to uniquely specify an SO(6)
hyperspherical harmonic and an additional quantum number must be introduced
to account for the remaining multiplicity. This is the multiplicity that necessarily
occurs when SU (3) unitary irreducible representations are labelled w.r.t. the chain
SO(2) C SO(3) C SU(3) (where SO(3) is “matrix embedded” into SU(3)), and thus
is well documented in the literature. In this context the operator:

Vigr = D LiOyl, @

7

(where L; = %e,jijk and Qj; is given by Eq. (5)) has often been used to label the mul-
tiplicity of SU(3) states. This operator commutes both with the angular momentum
L;, and with the “democracy rotation” generator Q:

[Veor. Li] = 0: [Vigr. Q] =0

Therefore we demand that the hyperspherical harmonics be eigenstates of this oper-

ator:
K K
y Qv Qv .

VLQL L.m =V L.m

Thus, v will be the fifth label of the hyperspherical harmonics, beside the
(K,Q,L,m).
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S Tables of Hyperspherical Harmonics of Given K, Q, L, M
and v

Below we explicitly list all hyperspherical harmonics for K < 4, labelled by the
quantum numbers (K, Q, L, m, v) (we will not delve here into lengthy details of
the derivation of the expressions). We list only the harmonics with m = L and
Q > 0, as the rest can be easily obtained by acting on them with standard lower-
ing operators and by using the permutation symmetry properties of hyperspheri-
cal harmonics: yﬁm”(/\, p) = (—l)K‘LyEZQ_V()\, —p). We use the (more compact)
spherical complex coordinates: XOJI = \; £ ips, X(jj:) =\ ip+ (E) Lip),
IX*|? = XTX* + (XF)?, while we are also explicitly writing out the K < 3 har-
monics in terms of Jacobi coordinates.

1
0,0.0 _
y(),() (X) - m

Ll—=1,py \/gXI B \/g(/\l +i(A2+ p1+ip2))
Vi X) = AR =

N N e h

V3 (XEXS = XIXS)  2VB s (pa—ip) +i (M + M) p3)

ylz,?.o(x) = 322 T A2 (24202 2 2 2
’ mA°R w2 (AT A3+ A+ o+ 3+ i)
Y200 (xy — V3XTXy _ V34 i+ pr +ipa)) i+ ida —ipr + pa)
N TR w2 (N + X+ N+t + 3+ 1)
Valxt|?
yggo(x) - w3|/2R2|
_ N2(2iM 1420 pa+2ids p3 H N AN AN —p2 —p3—p3)
- T2 (A +N+N 401 +03+03)
3 2 3 . . 2
S DT fFatiu oo
22 = =

mER (N NN+ el + 0 3)
VB(XT|X P =R
yi°’;11»3(X) - %

_ NO(OiFide=ipip) (M)  +Qatip) + s +ipy)’))
- w2 (X + N+ +p3+03)

LB (Aot Fips)
RN+ 4o +03+03)




436 I. Salom and V. DmitraSinovié¢

31=5 oy VEXE (XTX - XIXy)
W (X) = AR

_ 25+ i Qe+ prtipa) s (p2 = ipy) +i (A +iXa) p3)
T2 (W + M+ + o+ )

2
V15 (x1)* x5
2732R3
VIS0 + o+ pr i) N+ ida — ipy + po)
232 (N4 N2+ A2 4 2+ pd + p2)

13X =

3.3,-1 Vaxt x|
yirTlon = LD

_ V3OA1H Qo tp1+ip)) (2iA1 p14H2iMa pr+2i3 p3+ X3+ N3+ N —pt —p3 —p)
T2 (N4 N+ +p3+03)

\/5 (XI)3 B «/g(/\l +i(A+p+ iPZ))3
2OPRY T 2m 2 (N N+ N+ 0+ 3+ )

337000 = 32
V3 (R =2 X[

4,0,0
Yoo (X) =~ T3I2RA

Vs x) =

—12VTARXIXT + (105 (11=V/105) (x7)*[X [+ /105 (114/105) (xT) x|

TG R
4,0,/105
yz,z X) =
—12VTARX XS+ [105(114-/T05) (X7 )*[X /105 (11-/105) (x1) x|
TG R

3VSXEXT (XiX) — XPXy)

4.0,0
V33" (X) = Im32RA
2 \2
oo 30 ()
Vg (X) = PR
a2y = XS = XDX) X[
1,1 -

T32RA
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- 2
Jax (sx3 xe [ —2moxy)
T312RA

Vi3 (X) =

33 (XD) (XX - X2X7)
2m3/2R4

Vi TP =

V15 (X)X
4.2,—5 + +
y4.4 X) = W
ValxH[

4,4,0 _
yO.O X) = 32 R4

s W DT

2,2 m3/2R4

VIS (1)’

4.4,-10 _
y4»4 X) = 432R4

6 Permutation Symmetric Hyperspherical Harmonics

There is a small step remaining from obtaining the hyperspherical harmonics labelled
by quantum numbers (K, Q, L, m, v) to achieving our goal, which is to construct
hyperspherical functions with well-defined values of parity P = (—1)X, rotational
group quantum numbers (L, m), and permutation symmetry M (mixed), S (symmet-
ric), and A (antisymmetric).! In this section we clarify how to obtain the latter as
linear combinations of the former.

Properties under particle permutations of the functions yf%’()\, p) are inferred
from the transformation properties of the coordinates XljE under the transpositions
(two-body permutations) {715, 723, 731} of pairs of particles (1,2), (2,3) and (3,1),
the Jacobi coordinates transform as:

I The mixed symmetry representation of the S3 permutation group being two-dimensional, there
are two different state vectors (hyperspherical harmonics) in each mixed permutation symmetry
multiplet, usually denoted by M, and M.
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To: A=A, p— —p,

1 V3 1 V3
T : — A4 = —p4 — 8
B A— 2)\+ 5 P p—>2p+ 2)\, (8)
1 \/g 1 «/§
Tai: A—> —=A— —p, —p— ~
weAT TS 2 P P PT

That induces the following transformations of complex coordinates Xl.i:

7'12 : Xi — XT
Tyt XF — 5 X7, 9)

T X — eT X

None of the quantum numbers K, L and m change under permutations of particles,
whereas the values of the “democracy label” Q and multiplicity label v are inverted
under all transpositions: Q — —Q, v — —v.

Apart from the changes in labels, transpositions of two particles generally also
result in the appearance of an additional phase factor multiplying the hyperspherical
harmonic. For values of K, O, L and m with no multiplicity, we readily derive (Ref.
[7]) the following transformation properties of h.s. harmonics under (two-particle)
particle transpositions:

K —J\)K,—0,—
Tia: Vo = DSV,
2Qin

Tyt Viw — (=Df e S Y0 (10)

. KQv K—L -2t K —Q.—v
,131 . yL% - (_1) € ’ L.mQ .

There are three distinct irreducible representations of the S; permutation group
- two one-dimensional (the symmetric S and the antisymmetric A ones) and a two-
dimensional (the mixed M one). In order to determine to which representation of the
permutation group any particular h.s. harmonic yf%’ belongs, one has to consider
various cases, with and without multiplicity, see Ref. [7]; here we simply state the
results of the analysis conducted therein. The following linear combinations of the
h.s. harmonics,

v_ | v LK 10l —v
Vit = 7 (V2 & =Rty ey, (1)

are no longer eigenfunctions of Q operator but are (pure sign) eigenfunctions of the
transposition 77, instead:

. K10y K[Qlv
T Vpme = Vs
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They are the appropriate h.s. harmonics with well-defined permutation properties:

1. for Q # 0 (mod 3), the harmonics y"l,?'; belong to the mixed representation M,
where the == sign determines the M,,, M component,
2. for Q = 0 (mod 3), the harmonic yf'Q'j

m belongs to the symmetric representation
S and yf',f;"ﬁ belongs to the antisymmetric representation A.

The above rules define the representation of S5 for any given h.s. harmonic.

7 Summary

In this paper we have reported on our recent construction of permutation symmet-
ric three-body SO(6) hyperspherical harmonics. In the Sect.5 we have displayed
explicit forms the harmonic functions labelled by quantum numbers K, Q, L, m and
v, postponing explanation of their derivation to [7]. In Sect. 6 we demonstrated that
simple linear combinations yf'mQ'; of these functions have well defined permutation
properties. To our knowledge, this is the first time that such hyperspherical harmonics
are constructed in full generality.
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