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Abstract It is well known that the symmetric group has an important role (via 3

Young tableaux formalism) both in labelling of the representations of the unitary 4

group and in construction of the corresponding basis vectors (in the tensor product of 5

the defining representations). We show that orthogonal group has a very similar role 6

in the context of positive energy representations of osp.1j2n;R/. In the language 7

of parabose algebra, we essentially solve, in the parabosonic case, the long standing 8

problem of reducibility of Green’s Ansatz representations. 9

1 Introduction 10

The osp.1j2n;R/ superalgebra attracts nowadays significant attention, primarily 11

as a natural generalization of the conformal supersymmetry in higher dimensions 12

[1–9]. In the context of space-time supersymmetry, knowing and understanding 13

unitary irreducible representations (UIR’s) of this superalgebra is of extreme 14

importance, as these should be in a direct relation with the particle content of the 15

corresponding physical models. 16

And the most important from the physical viewpoint are certainly, so called, 17

positive energy UIR’s, which are the subject of this paper. More precisely, the goal 18

of the paper is to clarify how these representations can be obtained by essentially 19

tensoring the simplest nontrivial positive energy UIR (the one that corresponds 20

to oscillator representation). This parallels the case of the UIR’s of the unitary 21

group U.n/ constructed within the tensor product of the defining (i.e. “one box”) 22

representations. In both cases the tensor product representation is reducible, and 23

while this reduction in the U.n/ case is governed by the action of the commuting 24

group of permutations, in the osp case,1 as we will show, the role of permutations 25

is played by an orthogonal group. We will clarify the details of this reduction. 26

1We will often write shortly osp.1j2n/ or osp for the osp.1j2n;R/.
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The osp.1j2n/ superalgebra is also known by its direct relation to parabose 27

algebra [10,11]. In the terminology of parastatistics, the tensor product of oscillator 28

UIR’s is known as the Green’s Ansatz [12]. The problem of the decomposition of 29

parabose Green’s Ansatz space to parabose (i.e. osp.1j2n/) UIR’s is an old one [12], 30

that we here solve by exploiting additional orthogonal symmetry of a “covariant” 31

version of the Green’s Ansatz. 32

2 Covariant Green’s Ansatz 33

Structural relations of osp.1j2n/ superalgebra can be compactly written in the form 34

of trilinear relations of odd algebra operators a˛ and a
�
˛ : 35

Œfa˛ ; a
�

ˇ
g; a� � D �2ıˇ� a˛ ; Œfa�

˛ ; aˇ g; a
�
� � D 2ıˇ�a

�
˛ ; (1)

Œfa˛ ; aˇ g; a� �; Œfa�
˛ ; a

�

ˇ
g; a

�
� � D 0; (2)

where operators fa˛; a
�

ˇ
g, fa˛; aˇ g and fa�

˛; a
�

ˇ
g span the even part of the superal- 36

gebra and Greek indices take values 1; 2; : : : n (relations obtained from these by use 37

of Jacobi identity are also implied). This compact notation emphasises the direct 38

connection [11] of osp.1j2n/ superalgebra with the parabose algebra of n pairs of 39

creation/annihilation operators [10]. 40

If we (in the spirit of original definition of parabose algebra [10]) additionally 41

require that the dagger symbol � above denotes hermitian conjugation in the algebra 42

representation Hilbert space (of positive definite metrics), then we have effectively 43

constrained ourselves to the, so called, positive energy UIR’s of osp.1j2n/.2 44

Namely, in such a space, “conformal energy” operator E � 1
2

P
˛fa˛; a

�
˛g must be 45

a positive operator. Operators a˛ reduce the eigenvalue of E , so the Hilbert space 46

must contain a subspace that these operators annihilate. This subspace is called 47

vacuum subspace:V0 D fjvi; a˛jvi D 0g. If the positive energy representation is 48

irreducible, all vectors from V0 have the common, minimal eigenvalue �0 of E: 49

Ejvi D �0jvi; jvi 2 V0. Representations with one dimensional subspace V0 are 50

called “unique vacuum” representations. 51

In this paper we will constrain our analysis to UIR’s with integer and half-integer 52

values of �0 (in principle, �0 has also continuous part of the spectrum—above the, so 53

called, first reduction point of the Verma module). It turns out that all representations 54

from this class can be obtained by representing the odd superalgebra operators a and 55

a� as the following sum: 56

a˛ D Pp
aD1 ba

˛ ea; a
�
˛ D Pp

aD1 b
a�
˛ ea: (3)

2Omitting a short proof, we note that in such a Hilbert space all superalgebra relations actually
follow from one single relation—the first or the second of (1).
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In this expression integer p is known as the order of the parastatistics, ea are 57

elements of a real Clifford algebra: 58

fea; ebg D 2ıab (4)

and operators ba
˛ together with adjoint b

a�
˛ satisfy ordinary bosonic algebra rela- 59

tions. There are total of n � p mutually commuting pairs of bosonic annihilation- 60

creation operators .ba
˛ ; b

a�
˛ /: 61

Œba
˛ ; b

b�

ˇ
� D ıˇ˛ıab I Œba

˛ ; bb
ˇ � D 0: (5)

Indices a; b; : : : from the beginning of the Latin alphabet will, throughout the paper, 62

take values 1; 2; : : : p. Relation (3) is a slight variation, more precisely, realization, 63

of a more common form of the Green’s Ansatz [10, 13]. 64

The representation space of operators (3) can be seen as tensor product 65

of p multiples of Hilbert spaces Ha of ordinary linear harmonic oscillator in 66

n-dimensions multiplied by the representation space of the Clifford algebra: 67

H D H1 ˝ H2 ˝ � � � ˝ Hp ˝ HCL: (6)

A single factor Hilbert space Ha is the space of unitary representation of n 68

dimensional bose algebra of operators .ba
˛ ; b

a�
˛ /; ˛ D 1; 2; : : : n: Ha Š U.ba�/j0ia, 69

where j0ia is the usual Fock vacuum of factor space Ha. The representation space 70

HCL of real Clifford algebra (4) is of dimension 2Œp=2�, i.e. isomorphic with C
2Œp=2�

71

(matrix representation). Positive definite scalar product is introduced in usual way 72

in each of the factor spaces, endowing entire space H also with positive definite 73

scalar product. The space is spanned by the vectors: 74

H D l:s:fP.b�/j0i˝ !g; (7)

where P.b�/ are monomials in mutually commutative operators b
a�
˛ , j0i � j0i1 ˝ 75

j0i2 ˝ � � � ˝ j0ip and w 2 HCL. 76

In the case p D 1 (the Clifford part becomes trivial) we obtain the simplest 77

positive energy UIR of osp.1j2n/—the n dimensional harmonic oscillator repre- 78

sentation. The order p Green’s Ansatz representation of osp.1j2n/ is, effectively, 79

representation in the p-fold tensor product of oscillator representations [12], with 80

the Clifford factor space taking care of the anticommutativity properties of odd 81

superalgebra operators. It is easily verified that even superalgebra elements act 82

trivially in the Clifford factor space and that their action is simply sum of actions in 83

each of the factor spaces. 84

The space (6) is highly reducible under action of osp superalgebra. It necessarily 85

decomposes into direct sum of positive energy representations (both unique vacuum 86

and non unique vacuum representations) and thus, from the aspect of osp transfor- 87

mation properties, space H is spanned by: 88

H D l:s:fj.�; l/; ��ig; (8)
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where � labels osp.1j2n/ positive energy UIR, l uniquely labels a concrete vector 89

within the UIR �, and �� D 1; 2; : : : N� labels possible multiplicity of UIR � 90

in the representation space H. If some UIR � does not appear in decomposition 91

of H, then the corresponding N� is zero. Label � in (8) runs through all (integer 92

and halfinteger positive energy) UIR’s of osp.1j2n/ such that N� > 0 and l runs 93

through all vectors from UIR �. 94

3 Gauge Symmetry of the Ansatz 95

Green’s Ansatz in the form (3) possesses certain intrinsic symmetries. First, we note 96

that hermitian operators 97

Gab �
nX

˛D1

i.ba�
˛ bb

˛ � bb�
˛ ba

˛/ C i

4
Œea; eb� (9)

commute with entire osp superalgebra, which immediately follows after checking 98

that ŒGab ; a˛ � D 0. Operators Gab themselves satisfy commutation relations of 99

so.p/ algebra. The second term in (9) acts in the Clifford factor space, generating a 100

faithful representation of Spin.p/ (i.e. spinorial representation of double cover of 101

SO.p/ group). Action of the first terms from (9) generate SO.p/ group action in 102

the space H1 ˝H2 ˝� � �˝Hp . In the entire space H operators G generate Spin.p/ 103

group and all vectors belong to spinorial unitary representations of this symmetry 104

group. The two terms in (9) thus resemble orbital and spin parts of rotation 105

generators and we will often use that terminology. In particular H � Ho ˝ Hs, 106

where Ho D H1 ˝ H2 ˝ � � � ˝ Hp and Hs D HCL. Furthermore, due to existence 107

of operators I a � �iexp.i�
P

˛ b
a�
˛ ba

˛/eea where e � i Œp=2�e1e2 � � � ep , for even 108

values of p, the symmetry can be extended to P in.p/ group (the double cover of 109

orthogonal group O.p/). We will refer to the symmetry group of the Green’s ansatz 110

as the gauge group. 111

Vectors in space H carry quantum numbers also according to their transformation 112

properties under the gauge group. As the gauge group commutes with osp.1j2n/, 113

these numbers certainly remove at least a part of degeneracy of osp representations 114

in H, in the sense that relation (8) can be rewritten as: 115

H D l:s:fj.�; l/; .M; m/; �.�;M/ig; (10)

where (�, l) uniquely label vector l within osp.1j2n/ positive energy UIR �, 116

(M , m) uniquely label vector m within finite dimensional UIR M of the gauge 117

group, and �.�;M/ D 1; 2; : : : N.�;M/ labels possible remaining multiplicity of 118

tensor product of these two representations Dosp
� ˝ Dgauge

M in the space H. Again, 119

if some combination .�; M / does not appear in decomposition of H, then the 120

corresponding N.�;M/ is zero. 121
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Important property of the gauge symmetry is that it actually removes all 122

degeneracy in decomposition of H to osp.1j2n/ UIR’s, i.e. that the multiplicity of 123

osp.1j2n/ UIR’s is fully taken into account by labeling transformation properties 124

of the vector w.r.t. the gauge symmetry group. Furthermore, there is one-to-one 125

correspondence between UIR’s of osp.1j2n/ and of the gauge group that appear in 126

the decomposition, meaning that transformation properties under the gauge group 127

action automatically fix the osp.1j2n/ representation. We formulate this more 128

precisely in the following theorem. 129

Theorem 1. The following statements hold for the basis (10) of the Hilbert 130

space H: 131

1. All multiplicities N.�;M/ are either 1 or 0. 132

2. Let the N be the set of all pairs .�; M / for which N.�;M/ D 1, i.e. N D 133

f.�; M /jN.�;M/ D 1g and let the L andM be sets of all � and M , respectively, 134

that appear in any of the pairs from N . Then pairs from N naturally define 135

bijection from L to M, N WL ! M . 136

The theorem is proved by explicit construction of the bijection N . First we must 137

go through some preliminary definitions and lemmas. 138

Corollary 1. If osp.1j2n/ representation � appears in the decomposition of the 139

space H, then its multiplicity in the decomposition is given by the dimension of the 140

gauge group representation N .�/. 141

4 Root Systems 142

At this point we must introduce root systems, both for osp.1j2n/ superalgebra and 143

for the so.p/ algebra of the gauge group. 144

We choose basis of a Cartan subalgebra hosp of (complexified) osp.1j2n/ as: 145

hosp D l:s:
n 1

2
fa�

˛; a˛g; ˛ D 1; 2; : : : n
o
: (11)

Positive roots, expressed using elementary functionals, are: 146

�C
osp D fCı˛; 1 � ˛ � nI Cı˛ C ıˇ ; 1 � ˛ < ˇ � nI

Cı˛ � ıˇ ; 1 � ˛ < ˇ � nI C2ı˛ ; 1 � ˛ � ng (12)

and the corresponding positive root vectors, spanning subalgebra gC
osp, are (in the 147

same order): 148

n
a

�
˛ ; 1 � ˛ � nI fa�

˛ ; a
�

ˇ
g; 1 � ˛ < ˇ � nI

fa�
˛ ; aˇ g; 1 � ˛ < ˇ � nI fa�

˛ ; a
�
˛g; 1 � ˛ � n

o
: (13)
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Simple root vectors are: 149

n
fa�

1; a2g; fa�
2; a3g; : : : ; fa�

n�1; ang; a�
n

o
: (14)

With this choice of positive roots, positive energy UIR’s of osp.1j2n/ become low- 150

est weight representations. Thus, we will label positive energy UIR’s of osp.1j2n/ 151

either by their lowest weight 152

	 D .	1; 	2; : : : ; 	n/; (15)

or by its signature 153

� D Œd I �1; �2; : : : ; �n�1� (16)

related to the lowest weight 	 by d D 	1, �˛ D 	˛C1 � 	˛. �˛ are nonnegative 154

integers [14] and spectrum of d is positive and dependant of �˛ values. 155

As a basis of Cartan subalgebra hso of so.p/ we take: 156

hso D l:s:

�

G.k/ � G2k�1;2k ; k D 1; 2; : : : q

�

; (17)

where q D Œp=2� is the dimension of Cartan subalgebra (indices k; l; : : : from the 157

middle of alphabet will take values 1; 2; : : : ; q). Positive roots in case of even p are: 158

�C
so D fCık C ıl ; 1 � k < l � qI Cık � ıl ; 1 � k < l � qg; (18)

while in the odd case we additionally have fCık; 1 � k � qg. 159

In accordance with the choice of Cartan subalgebra hso it is more convenient to 160

use the following linear combinations: 161

B
.k/�
˛˙ � 1p

2
.b2k�1�

˛ ˙ ib2k�
˛ /; B

.k/
˛˙ D 1p

2
.b2k�1

˛ � ib2k
˛ /; (19)

instead of b� and b , as ŒG.k/; B
.l/�
˛˙ � D ˙ıkl B

.l/�
˛˙ and ŒG.k/; B

.l/
˛˙� D �ıklB

.l/
˛˙. 162

Similarly, we introduce e
.k/
˙ � 1p

2
.e2k�1 ˙ ie2k/ that satisfy: 163

ŒG.k/; e
.l/
˙ � D ˙ıkl e

.l/
˙ : (20)

Odd superalgebra operators take form: 164

a�
˛ D

� qX

kD1

B
.k/�
˛C e.k/� C B.k/�

˛� e
.k/
C
�

C � bp�
˛ ep; (21)
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a˛ D
� qX

kD1

B
.k/
˛Ce

.k/
C C B.k/

˛� e.k/�
�

C � bp
˛ ep; (22)

where � D p mod 2. 165

The space H decomposes to spinorial UIR’s of so.p/ with the highest weight 166


 D .
1; 
2; : : : ; 
q/ satisfying 
1 � 
2 � � � � � 
q�1 � j
qj � 1
2

with all 
q
167

taking half-integer values (
q can take negative values when p is even). However, 168

since the gauge symmetry group in the case of even p is enlarged to P in.p/ group, 169

any highest weight of UIR of the gauge group satisfies: 
1 � 
2 � � � � � 
q � 0. 170

As the gauge group representation in H is spinorial, all 
k take half-integer values 171

greater or equal to 1
2

. To label UIR’s of the gauge group we will also use signature 172

M D ŒM 1; M 2; : : : ; M q� (23)

with M k D 
k �
kC1; k < q and M q D 
q � 1
2

. All M k are nonnegative integers. 173

The “spin” factor space Hs is irreducible w.r.t. action of the gauge group. Gauge 174

group representation in the space Hs has the highest weight 
s D . 1
2
; 1

2
; : : : ; 1

2
/. 175

Weight spaces of this representation are one dimensional, meaning that basis vectors 176

can be fully specified by weights 
s: 177

Hs D l:s:f!�s � !.
1
s ; 
2

s ; : : : ; 
q
s /j
k

s D ˙1

2
g: (24)

An action of operators e
.k/
C ; e.k/� and ep in this basis is given by: 178

e
.k/
˙ !.
1

s ; 
2
s ; : : : ; 
q

s / D p
2

 
k�1Y

lD1

2
l
s

!

!.
1
s ; : : : ; 
k�1

s ; 
k
s ˙ 1; 
kC1

s ; : : : ; 
q
s /

(25)
and, when p is odd, also: 179

ep!.
1
s ; 
2

s ; : : : ; 
q
s / D

 
qY

lD1

2
l
s

!

!.
1
s ; 
2

s ; : : : ; 
q
s /: (26)

In these definitions it is implied that !.
1
s ; 
2

s ; : : : ; 

q
s / � 0 if any j
k

s j > 1
2

. 180

Gauge group representation in “orbital” factor space Ho decomposes to highest 181

weight 
o UIR’s such that all 
k
o are nonnegative integers. Besides, it is not difficult 182

to verify that, if n < q, then 183


nC1
o D 
nC2

o D � � � D 
q
o D 0 (27)

(since maximally n operators (19) can be antisymmetrized). 184



UNCORRECTED
PROOF

I. Salom

5 Decomposition of the Green’s Ansatz Space 185

Now we can formulate the following lemma that is the remaining step necessary for 186

the proof of Theorem 1. 187

Lemma 1. The vector j.	; 	/; .
; 
/; �.�;�/i 2 H that is the lowest weight vector 188

of osp.1j2n/ positive energy UIR 	 and the highest weight vector of the gauge group 189

UIR 
 exists if and only if signatures � and M (16, 23) satisfy: 190

Mk D �n�k; (28)

where �0 � d � p=2 and it is implied that Mk D 0; k > q and �˛ D 0; ˛ < 0. In 191

that case this vector has the following explicit form (up to multiplicative constant) 192

in the basis (7): 193

j.	; 	/; .
; 
/; �.�;�/i D
�
B

.1/�
nC

��n�1
�
B

.1/�
nC B

.2/�
n�1C � B

.2/�
nC B

.1/�
n�1C

��n�2 � � �

�
� min.n;q/X

k1;k2;:::knD1

"k1k2:::kn
B

.k1/�
nC B

.k2/�
n�1C � � � B.kn/�

1C
��0 j0i˝ !.

1

2
;

1

2
; : : : ;

1

2
/: (29)

We will omit a rather lengthy proof of the lemma. 194

Note that the Lemma 1 also determines whether an osp representation � appears 195

or not in the decomposition of Green’s Ansatz of order p: UIR � appears in the 196

decomposition if and only if the condition (28) can be satisfied by allowed integer 197

values of Mk . However, if q is not sufficiently high, the first n � q of the � 198

components �0; �1; : : : �n�q�1 are bound to be zero. 199

Corollary 2. All (half)integer positive energy UIR’s of osp.1j2n/ can be con- 200

structed in space H with p � 2n C 1. 201

Proof. Due to relation (28), values �0; �1; : : : �n�1 can be arbitrary integers when
q � n: choice p D 2n contains integer values of d UIR’s while p D 2n C 1

contains half-integer values. That spaces H for some p < 2n also contain all UIR’s
with d < n, can be verified by checking the list of all positive energy UIR’s of
osp.1j2n/ given elsewhere [15]. ut

In other words, the above corollary states that no additional (half)integer energy 202

UIR’s of osp.1j2n/ appear when considering p > 2n C 1, i.e. it is sufficient to 203

consider only p � 2n C 1. 204

The proof of the Theorem 1 now follows from the Lemma 1. 205

Proof. Lemma 1 gives the explicit form of the vector that is the lowest weight vector
of osp.1j2n/ positive energy UIR 	 and the highest weight vector of the gauge
group UIR 
, when such vector exists. It follows that there can be at most one such
vector. Therefore, the multiplicity N.�;�/ can be either 1 or 0. The relation between
	 and 
 is given by (28) and it defines bijection N . ut
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