
Íàó÷íîì âå£ó Èíñòèòóòà çà ôèçèêó ó Áåîãðàäó

Áåîãðàä, 4. îêòîáàð 2016. ãîäèíå

Ïðåäìåò: Ìîëáà çà ïîêðåòà»å ïîñòóïêà çà ðåèçáîð ó çâà»å èñòðàæèâà÷

ñàðàäíèê

Ì Î Ë Á À

Ñ îáçèðîì äà èñïó»àâàì êðèòåðèjóìå ïðîïèñàíå îä ñòðàíå Ìèíèñòàðñòâà ïðîñâåòå,
íàóêå è òåõíîëîøêîã ðàçâîjà çà ðåèçáîð ó çâà»å èñòðàæèâà÷ ñàðàäíèê, ìîëèì Íàó÷íî
âå£å Èíñòèòóòà çà ôèçèêó ó Áåîãðàäó äà ïîêðåíå ïîñòóïàê çà ìîj ðåèçáîð ó íàâåäåíî
çâà»å.

Ó ïðèëîãó äîñòàâ§àì:

1. Ìèø§å»å ðóêîâîäèîöà ïðîjåêòà

2. Êðàòêó ñòðó÷íó áèîãðàôèjó

3. Ñïèñàê îájàâ§åíèõ ðàäîâà è äðóãèõ ïóáëèêàöèjà

4. Ïîòâðäó î óïèñàíèì äîêòîðñêèì ñòóäèjàìà

5. Êðàòàê ïðåãëåä íàó÷íå àêòèâíîñòè

6. Kîïèjå îájàâ§åíèõ ðàäîâà è äðóãèõ ïóáëèêàöèjà

7. Ðåøå»å î ïðåòõîäíîì èçáîðó ó çâà»å èñòðàæèâà÷ ñàðàäíèê

8. Ðåøå»å î ïðèõâàòà»ó òåìå äîêòîðñêå äèñåðòàöèjå

9. Óâåðå»å î ïîëîæåíèì èñïèòèìà íà äîêòîðñêèì ñòóäèjàìà

10. Óâåðå»å î ñòå÷åíîì âèñîêîì îáðàçîâà»ó äðóãîã ñòåïåíà ìàñòåð àêàäåìñêèõ ñòóäèjà
ñà ñïèñêîì ïîëîæåíèõ èñïèòà

11. Óâåðå»å î ñòå÷åíîì âèñîêîì îáðàçîâà»ó ñà ñïèñêîì ïîëîæåíèõ èñïèòà

Ñà ïîøòîâà»åì,

Âëàäèìèð Ëîí÷àð

Áèîãðàôèjà Âëàäèìèðà Ëîí÷àðà

Âëàäèìèð Ëîí÷àð jå ðî¢åí 28. îêòîáðà 1985. ãîäèíå ó Íîâîì Ñàäó. Îñíîâíå ñòóäèjå
íà Ïðèðîäíî-ìàòåìàòè÷êîì ôàêóëòåòó Óíèâåðçèòåòà ó Íîâîì Ñàäó, ñìåð äèïëîìèðàíè
èíôîðìàòè÷àð - ïîñëîâíà èíôîðìàòèêà, óïèñàî jå 2004. ãîäèíå, à çàâðøèî 2009.
ãîäèíå. Ìàñòåð ñòóäèjå íà èñòîì ôàêóëòåòó, íà ñìåðó èíôîðìàöèîíè ñèñòåìè, çàâðøèî
jå 2011. ãîäèíå. Èçðàäîì äèïëîìñêîã è ìàñòåð ðàäà ðóêîâîäèî jå ïðîô. äð Ñð¢àí
Øêðáè£. Øêîëñêå 2011/2012 ãîäèíå jå óïèñàî äîêòîðñêå ñòóäèjå èíôîðìàòèêå íà
Äåïàðòìàíó çà ìàòåìàòèêó è èíôîðìàòèêó Ïðèðîäíî-ìàòåìàòè÷êîã ôàêóëòåòà Óíèâåð-
çèòåòà ó Íîâîì Ñàäó. Ìåíòîðè äîêòîðñêèõ ñòóäèjà Âëàäèìèðà Ëîí÷àðà ñó ïðîô. äð
Ñð¢àí Øêðáè£ ñà Ïðèðîäíî-ìàòåìàòè÷êîã ôàêóëòåòà Óíèâåðçèòåòà ó Íîâîì Ñàäó è
äð Àíòóí Áàëàæ ñà Èíñòèòóòà çà ôèçèêó ó Áåîãðàäó.

Âëàäèìèð Ëîí÷àð jå îä 2012. äî êðàjà 2014. ãîäèíå àêòèâíî ó÷åñòâîâàî ó ðàçâîjó
èíôîðìàöèîíîã ñèñòåìà Ïðèðîäíî-ìàòåìàòè÷êîã ôàêóëòåòà ó Íîâîì Ñàäó, ãäå jå áèî è
çàïîñëåí. Îä 2015. jå çàïîñëåí ó Ëàáîðàòîðèjè çà ïðèìåíó ðà÷óíàðà ó íàóöè Èíñòèòóòà
çà ôèçèêó ó Áåîãðàäó, íà ïðîjåêòó îñíîâíèõ èñòðàæèâà»à ÎÍ171017 �Ìîäåëèðà»å è
íóìåðè÷êå ñèìóëàöèjå ñëîæåíèõ âèøå÷åñòè÷íèõ ñèñòåìà�.

Îä ïðåòõîäíîã èçáîðà ó çâà»å Âëàäèìèð Ëîí÷àð jå îájàâèî 2 ðàäà êàòåãîðèjå Ì21a,
jåäíî ñàîïøòå»å êàòåãîðèjå Ì33 è äâà ñàîïøòå»à êàòåãîðèjå Ì34. Jåäàí îä ðàäîâà
êàòåãîðèjå Ì21à jå ó Web of Science îçíà÷åí êàî Highly Cited Paper çà ïåðèîä îä
îájàâ§èâà»à äî jóíà 2016. ãîäèíå.

Ñïèñàê ðàäîâà Âëàäèìèðà Ëîí÷àðà

Ðàäîâè ó ìå¢óíàðîäíèì ÷àñîïèñèìà èçóçåòíèõ âðåäíîñòè (Ì21a)
íàêîí ïðåòõîäíîã èçáîðà ó çâà»å

1. CUDA programs for solving the time-dependent dipolar Gross-Pitaevskii equation in
an anisotropic trap
V. Lon�car, A. Bala�z, A. Bogojevi�c, S. �Skrbi�c, P. Muruganandam, and S. Adhikari
Comput. Phys. Commun. 200, 406 (2016)

2. OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the time-dependent
dipolar Gross�Pitaevskii equation
V. Lon�car, L. E. Young-S., S. �Skrbi�c, P. Muruganandam, S. Adhikari, and A. Bala�z
Comput. Phys. Commun. 209, 190 (2016)

Ñàîïøòå»à ñà ìå¢óíàðîäíèõ ñêóïîâà øòàìïàíà ó öåëèíè (Ì33)
íàêîí ïðåòõîäíîã èçáîðà ó çâà»å

1. Parallelization of minimum spanning tree algorithms using distributed memory archi-
tectures
V. Lon�car, S. �Skrbi�c, and A. Bala�z
Transactions on Engineering Technologies, pp. 543-554, Springer (2014)
G.-C. Yang, S-I. Ao, L. Gelman (Eds.), Special Volume of the World Congress on
Engineering 2013.
DOI: 10.1007/978-94-017-8832-8_39

Ñàîïøòå»à ñà ìå¢óíàðîäíèõ ñêóïîâà øòàìïàíà ó öåëèíè (Ì33)
ïðå ïðåòõîäíîã èçáîðà ó çâà»å

1. Parallel implementation of minimum spanning tree algorithms using MPI
V. Lon�car, S. �Skrbi�c
IEEE 13th International Symposium on Computational Intelligence and Informatics
(CINTI), pp. 35-38 (2012).

Ñàîïøòå»à ñà ìå¢óíàðîäíèõ ñêóïîâà øòàìïàíà ó èçâîäó (Ì34)
íàêîí ïðåòõîäíîã èçáîðà ó çâà»å

1. Rosensweig instability due to three-body interaction or quantum �uctuations?
V. Lon�car, D. Vudragovi�c, A. Bala�z, A. Pelster
DPG 2016 conference, Q17.2, Hannover, Germany (2016)

2. Trapped Bose-Einstein Condensates with Strong Disorder
V. Lon�car, A. Bala�z, A. Pelster
Book of abstracts of V International School and Conference on Photonics - Photonica
2015, Belgrade, Serbia, 24-28 August 2015

Êðàòàê ïðåãëåä íàó÷íå àêòèâíîñòè

Âëàäèìèðà Ëîí÷àðà

Âëàäèìèð Ëîí÷àð jå îä ôåáðóàðà 2015. ãîäèíå àíãàæîâàí ó Ëàáîðàòîðèjè çà ïðè-
ìåíó ðà÷óíàðà ó íàóöè Èíñòèòóòà çà ôèçèêó ó Áåîãðàäó è »åãîâ èñòðàæèâà÷êè ðàä ñå
îäâèjà ïîä ðóêîâîäñòâîì äð Àíòóíà Áàëàæà. Èñòðàæèâà÷êè ðàä Âëàäèìèðà Ëîí÷àðà
jå áèî ôîêóñèðàí íà ïðèìåíó ðà÷óíàðà ó íàóöè, ó ñêëàäó ñà ïëàíèðàíèì ñàäðæàjåì
»åãîâå äîêòîðñêå òåçå. Ó îêâèðó îâîã èñòðàæèâà÷êà ïðàâöà Âëàäèìèð jå îájàâèî
íåêîëèêî ïóáëèêàöèjà ó ìå¢óíàðîäíèì ÷àñîïèñèìà, îäíîñíî ó çáîðíèöèìà ðàäîâà ñà
ìå¢óíàðîäíèõ êîíôåðåíöèjà.

Ó îêâèðó îâîã èñòðàæèâà÷êîã ïðàâöà, Âëàäèìèð Ëîí÷àð ñå áàâèî ðà÷óíàðñòâîì
âèñîêèõ ïåðôîðìàíñè, ïîñåáíî èìïëåìåíòàöèjîì è îïòèìèçàöèjîì íóìåðè÷êèõ àëãîðè-
òàìà çà ðåøàâà»å ñëîæåíèõ ìàòåìàòè÷êèõ ïðîáëåìà. Jåäàí îä çàäàòàêà jå áèëà è
èìïëåìåíòàöèjà ïàðàëåëíèõ íóìåðè÷êèõ àëãîðèòàìà âåçàíèõ çà ïðîó÷àâà»å Áîçå-Àjí-
øòàjí êîíäåíçàòà ñà êîíòàêòíîì è äèïîë-äèïîë èíòåðàêöèjîì. Âëàäèìèð jå ðàçâèî
âèøå ïàðàëåëíèõ àëãîðèòàìà çà ðàçëè÷èòå õàðäâåðñêå àðõèòåêòóðå, îä êëàñè÷íèõ Intel
ïðîöåñîðà, äî Nvidia ãðàôè÷êèõ êàðòèöà, êîjè ñå ìîãó èçâðøàâàòè êàêî íà jåäíîì
ðà÷óíàðó, òàêî è íà ðà÷óíàðñêîì êëàñòåðó. Ðàçâèjàî jå è àëãîðèòìå çà õåòåðîãåíå
ðà÷óíàðñêå ñèñòåìå, êàî è õåóðèñòè÷êå ìåòîäå çà îïòèìèçàöèjó àëãîðèòàìà çà õåòåðîãå-
íå ñèñòåìå. Êîðèñòå£è ðàçâèjåíå àëãîðèòìå ïðîó÷àâàî jå óòèöàj äèïîë-äèïîë èíòåðàê-
öèjå íà îñîáèíå Áîçå-Àjíøòàjí êîíäåíçàòà õðîìà è äèñïðîçèjóìà, êàî è ôîðìèðà»å
êâàíòíèõ äðîïëåòà ïðèëèêîì íàãëå ïðîìåíå êîíòàêòíå èíòåðàêöèjå ó jàêî äèïîëàðíèì
êîíäåíçàòèìà.

Âëàäèìèð ñå áàâèî è âèçóåëèçàöèjîì ïîäàòàêà äîáèjåíèõ èç íóìåðè÷êèõ ñèìóëàöèjà.
Çà îâå ïîòðåáå ðàçâèî jå ìåõàíèçìå ïðåêî êîjèõ ñå ïîäàöè ëàêî âèçóåëèçójó òîêîì
èçâðøàâà»à ñèìóëàöèjå, è ïðåêî êîjèõ ñå ìîæå óïðàâ§àòè ñèìóëàöèjîì, òçâ. in situ
âèçóåëèçàöèjà.

Îä ïðåòõîäíîã èçáîðà ó çâà»å Âëàäèìèð Ëîí÷àð jå îájàâèî äâà ðàäà êàòåãîðèjå
Ì21a, jåäíî ñàîïøòå»å êàòåãîðèjå Ì33 è äâà ñàîïøòå»à êàòåãîðèjå Ì34. Jåäàí îä
ðàäîâà êàòåãîðèjå Ì21à jå ó Web of Science îçíà÷åí êàî Highly Cited Paper çà ïåðèîä
îä îájàâ§èâà»à äî jóíà 2016. ãîäèíå.

Computer Physics Communications 200 (2016) 406–410

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

CUDA programs for solving the time-dependent dipolar
Gross–Pitaevskii equation in an anisotropic trap

Vladimir Lončar a,∗, Antun Balaž a, Aleksandar Bogojević a, Srdjan Škrbić b,
Paulsamy Muruganandam c, Sadhan K. Adhikari d
a Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
b Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
c School of Physics, Bharathidasan University, Palkalaiperur Campus, Tiruchirappalli – 620024, Tamil Nadu, India
d Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, 01.140-70 São Paulo, São Paulo, Brazil

a r t i c l e i n f o

Article history:
Received 12 November 2015
Accepted 17 November 2015
Available online 17 December 2015

Keywords:
Bose–Einstein condensate
Dipolar atoms
Gross–Pitaevskii equation
Split-step Crank–Nicolson scheme
Real- and imaginary-time propagation
C program
GPU
CUDA program
Partial differential equation

a b s t r a c t

In this paper we present new versions of previously published numerical programs for solving the dipolar
Gross–Pitaevskii (GP) equation including the contact interaction in two and three spatial dimensions in
imaginary and in real time, yielding both stationary and non-stationary solutions. New versions of pro-
gramswere developed using CUDA toolkit and canmake use of Nvidia GPU devices. The algorithm used is
the same split-step semi-implicit Crank–Nicolson method as in the previous version (Kishor Kumar et al.,
2015), which is here implemented as a series of CUDA kernels that compute the solution on the GPU.
In addition, the Fast Fourier Transform (FFT) library used in the previous version is replaced by cuFFT li-
brary, whichworks on CUDA-enabled GPUs.We present speedup test results obtained using new versions
of programs and demonstrate an average speedup of 12–25, depending on the program and input size.

New version program summary

Program title:DBEC-GP-CUDApackage, consisting of: (i) imag2dXY-cuda, (ii) imag2dXZ-cuda, (iii) imag3d-
cuda, (iv) real2dXY-cuda, (v) real2dXZ-cuda, (vi) real3d-cuda.
Catalogue identifier: AEWL_v2_0
Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/AEWL_v2_0.html
Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland.
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 18297.
No. of bytes in distributed program, including test data, etc.: 128586.
Distribution format: tar.gz.
Programming language: CUDA C.
Computer: Any modern computer with Nvidia GPU with Compute Capability 2.0 or higher, with CUDA
toolkit (compiler and runtime, with cuFFT library, minimum version 6.0) installed.
Operating system: Linux.
RAM: With provided example inputs, programs should run on a computer with 512 MB GPU RAM. There
is no upper limit to amount of memory that can be used, as larger grid sizes require more memory, which
scales as NX*NY or NX*NZ (in 2d) or NX*NY*NZ (in 3d). All programs require roughly the same amount of
CPU and GPU RAM.
Number of processors used: One CPU core and one Nvidia GPU.
Classification: 2.9, 4.3, 4.12.
External routines/libraries: CUDA toolkit, version 6.0 or higher, with cuFFT library.
Catalogue identifier of previous version: AEWL_v1_0.

∗ Corresponding author.
E-mail addresses: vladimir.loncar@ipb.ac.rs (V. Lončar), antun.balaz@ipb.ac.rs (A. Balaž), aleksandar.bogojevic@ipb.ac.rs (A. Bogojević), srdjan.skrbic@dmi.uns.ac.rs

(S. Škrbić), anand@cnld.bdu.ac.in (P. Muruganandam), adhikari@ift.unesp.br (S.K. Adhikari).

http://dx.doi.org/10.1016/j.cpc.2015.11.014
0010-4655/© 2015 Elsevier B.V. All rights reserved.

V. Lončar et al. / Computer Physics Communications 200 (2016) 406–410 407

Journal reference of previous version: Comput. Phys. Commun. 195 (2015) 117.

Does the new version supersede the previous version?: No.

Nature of problem: These programs are designed to solve the time-dependent nonlinear partial differential
Gross–Pitaevskii (GP) equationwith contact and dipolar interactions in two or three spatial dimensions in
a harmonic anisotropic trap. The GP equation describes the properties of a dilute trapped Bose–Einstein
condensate.

Solution method: The time-dependent GP equation is solved by the split-step Crank–Nicolson method by
discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary
or real time, over small time steps. The contribution of the dipolar interaction is evaluated by a Fourier
transformation to momentum space using a convolution theorem. The method yields the solution of
stationary and/or non-stationary problems.

Reasons for the new version: Previously published dipolar Fortran and C programs [1], based on earlier
programs and algorithms for GP equation with the contact interaction [2], are already used within
the ultra-cold atoms community [3]. However, they are sequential, and thus did not allow for use of
the maximum computing performance modern computers can offer. For this reason we have explored
possible ways to accelerate our programs. Detailed profiling revealed that the calculation of FFTs is the
most computationally demanding part of our programs. Since usingGPUs to compute FFTswith optimized
libraries like the cuFFT can lead tomuch better performance, we have decided to parallelize our programs
using Nvidia CUDA toolkit. Also, the massive parallelism offered by GPUs could be exploited to parallelize
the nested loops our programs have. We have focused on 2d and 3d versions of our programs, as they
perform enough computation to justify and require the use of massive parallelism.

Summary of revisions: Previous C programs in two or three spatial dimensions are parallelized using CUDA
toolkit fromNvidia and named similarly, with ‘‘-cuda’’ suffix appended to their names. The structure of all
programs is identical. Computationallymost demanding functions performing time evolution (calcpsidd2,
calcnu, calclux, calcluy, calcluz), normalization of the wave function (calcnorm), and calculation of
physically relevant quantities (calcmuen, calcrms) were implemented as a series of CUDA kernels, which
are executed on GPU. All kernels are implemented with grid-stride loops [4], which allow us to use the
same kernel block sizes for all of our kernels. These block sizes can be changed in src/utils/cudautils.cuh,
containing the optimal values for current Nvidia Tesla GPUs.

As before, CPU performs the initialization of variables and controls the flow of programs, offloading
computation to GPU when needed. Because of the initialization, programs still require almost the same
amount of CPU RAM as GPU RAM. Before any computation begins, relevant variables are copied to GPU,
where they remain during computation, and only wave function array is returned back to CPU when it is
required for writing output.

Parallelization with CUDA toolkit required some dynamically allocated arrays (tensors, matrices, or
vectors) to become private for each GPU thread. This has caused an increase in the amount of used GPU
memory, since the number of running threads on GPU is very large. Coupled with the fact that GPUs
usually have smaller amount of RAM than CPU, this meant that our GPU versions of programs could
be used for much smaller input in comparison to sequential versions. In order to fix this problem and
reduce memory usage, our programs reuse temporary arrays as much as possible. Aside from allocation
of complex tensor/matrix (for 3d or 2d case, respectively) in which we store wave function values, we
allocate one complex tensor/matrix, and up to two double precision tensors/matrices, and reuse them for
different purposes in computations. Allocated complex tensor/matrix is later also used as two double
precision tensors/matrices, for other purposes. This required some reorganization of computation in
several functions, mainly in calcmuen and calcpsidd2. In calcmuen we have reorganized computation
to reuse temporary array and store partial derivatives in it, so instead of using three (in 3d) or two
(in 2d) separate tensors/matrices for partial derivatives, we now use a single temporary tensor/matrix,
which we also use for different purposes in other places in programs. In calcpsidd2 we have removed
the use of additional temporary array that was only used in FFT computation, and also use real-to-
complex and complex-to-real FFT transformations in place of complex-to-complex transformations of
previous program versions. This change was possible because condensate density (input array for FFT)
is purely real, and thus it exhibits Hermitian symmetry. Some FFT libraries, like the cuFFT used in these
programs, can exploit this to reduce memory usage and provide better performance by calculating only
non-redundant parts of the array. Additionally, programs can further reduce GPU RAM consumption by
keeping the tensor/matrix used to store trap potential and dipolar potential in main RAM, configurable
through POTMEM parameter in the input file. Setting value of POTMEM to 2maximizes performance, and
means that programs will allocate two separate tensors/matrices for storing trap potential and dipolar
potential in GPU memory. This provides the best performance, but at the cost of a larger total memory
consumption. Ifwe set the value of POTMEMto 1, only one tensor/matrixwill be allocated inGPUmemory,
to which trap potential and dipolar potential will be asynchronously copied from main memory when
they are needed for computation. In this case, tensor/matrix will initially contain trap potential, which
will be replaced with dipolar potential during execution of FFT in calcpsidd2, and replaced back with trap
potential during inverse FFT. Finally, setting POTMEM to 0 will instruct the programs not to allocate any
GPU memory for storing potentials and will instead use main memory, which GPU can access through
slower PCI-Express bus. Figure 1 explains how memory is used and the possible values of POTMEM. We
suggest using POTMEM value of 2 if memory permits, and using values of 1 or 0 if problem cannot fit into
GPU memory. If POTMEM is not specified, programs will check if GPU memory is large enough to fit all
variables and set POTMEM accordingly.

Time propagation functions calclux, calcluy, and calcluz have a recursive relation that makes them
difficult to parallelize. In principle, recursive relations could be parallelized using a higher-order prefix

408 V. Lončar et al. / Computer Physics Communications 200 (2016) 406–410

sum algorithm [5] (also known as scan algorithm), but implementation of this would require multiple
CUDA kernels [6]. Since recursive relations are in the innermost loop, launching of all required kernels
would create a sizeable overhead. Also, the number of grid points in each dimension is usually not large
enough to compensate that overhead. Therefore,we have chosen an approach that, instead of parallelizing
the inner loop which has the recursive relation, we parallelize the outer loops, and each GPU thread
computes the whole innermost loop. Since each GPU thread now requires its own array for storing
Crank–Nicolson coefficients cbeta, we reuse existing temporary tensor/matrix for storing these values.
Similar pattern of parallelizing outer loops was also used in calcnorm, calcrms, and calcmuen.

We tested our programs at the PARADOX supercomputing facility at the Scientific Computing
Laboratory of the Institute of Physics Belgrade. Nodes used for testing had Intel Xeon E5-2670 CPUs with
32 GB of RAM andNvidia TeslaM2090 GPUwith 6 GB of RAM. Figure 2 shows the speedup obtained for six
DBEC-GP-CUDA programs compared to their previous versions [1] executed on a single CPU core. Profiling
reveals that the execution time is dominated by execution of FFTs and that the speedup varies significantly
with changing of the grid size. This is due to FFT libraries used (FFTW in previous CPU version [1] and cuFFT
in this version), which use different algorithms for different input array sizes. We thus conclude that the
best performance can be achieved by experimenting with different grid sizes around the desired target.

Fig. 1. Illustration of placement of relevant variables in CPU and GPU memory. CPU initializes its own wave function
tensor/matrix (psi), trap potential (pot) and dipolar potential (potdd), which is copied to GPU memory. Depending
on value of POTMEM variable, GPU will either allocate the same tensors/matrices for trap and dipolar potential
(POTMEM = 2), allocate only one tensor/matrix and use it for different purposes (POTMEM = 1), or will map pot
and potdd from CPU and not allocate extra memory on GPU (POTMEM = 0). Additionally, GPU allocates one complex
tensor/matrix which is used for temporary data. This tensor/matrix is used either as a single complex tensor/matrix, or
is divided into two double tensors/matrices which can then each contain the same number of elements as the complex
tensor/matrix.

Restrictions:
Programs will only run on computers with Nvidia GPU card (Tesla or GeForce) with Compute Capability
2.0 or higher (Fermi architecture and newer) and with CUDA toolkit installed (version 6.0 or higher).

Fig. 2. Speedup in execution time of imag2dXY-cuda and imag2dXZ-cuda (top-left), real2dXY-cuda and real2dXZ-
cuda (top-right), imag3d-cuda (bottom-left) and real3d-cuda (bottom-right) compared to the previous versions of
programs [1] executed on a single CPU core. Solid red line represents average speedup obtained. We tested linear
grid sizes starting from 503 in 3d and 10002 in 2d, up to the maximum that could fit in GPU memory, which was 6003

for imag3d-cuda, 5403 for real3d-cuda, 150002 for imag2dXY-cuda and imag2dXZ-cuda, and 130002 for real2dXY-cuda
and real2dXZ-cuda. Note that the dispersion of data is due to the use of FFTW_ESTIMATE flag in library calls to FFTW
in the CPU programs.

Unusual features of all programs:
As part of the memory usage optimizations, programs may slightly increase the number of spatial grid
points in each dimension (NX, NY, NZ). This is due to FFT algorithms of cuFFT library that require additional
memory to store temporary results. Our programs reuse already allocated memory to provide cuFFT with
the temporarymemory it requires, however, some problem sizes requiremuchmorememory, up to eight
timesmore [7]. For instance, if the number of grid points in any dimension is a large prime number, cuFFT

V. Lončar et al. / Computer Physics Communications 200 (2016) 406–410 409

uses an algorithm that requires eight times more memory than similarly sized power of two number.
Adjustments of the number of grid points made in the programs ensure that cuFFT will not require such
significantly increased additionalmemory. In case the programs perform the adjustments to grid size, this
is reported in the output.
Additional comments:
This package consists of 6 programs, see Program title above. For the particular purpose of each program,
please see descriptions below.
Running time:
Example inputs provided with the programs take less than one minute on Nvidia Tesla M2090 GPU.
Program summary (i)
Program title: imag2dXY-cuda.
Title of electronic files: imag2dXY-cuda.cu and imag2dXY-cuda.cuh.
Maximum RAM memory: No upper bound.
Programming language used: CUDA C.
Typical running time: Minutes on a medium PC.
Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in two space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose–Einstein condensate.
Method of solution: The time-dependent GP equation is solved by the split-step Crank–Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.
Program summary (ii)
Program title: imag2dXZ-cuda.
Title of electronic files: imag2dXZ-cuda.cu and imag2dXZ-cuda.cuh.
Maximum RAM memory: No upper bound.
Programming language used: CUDA C.
Typical running time: Minutes on a medium PC.
Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in two space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose–Einstein condensate.
Method of solution: The time-dependent GP equation is solved by the split-step Crank–Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.
Program summary (iii)
Program title: imag3d-cuda.
Title of electronic files: imag3d-cuda.cu and imag3d-cuda.cuh.
Maximum RAM memory: No upper bound.
Programming language used: CUDA C.
Typical running time: Tens of minutes on a medium PC.
Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in three space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose–Einstein condensate.
Method of solution: The time-dependent GP equation is solved by the split-step Crank–Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in imaginary
time over small time steps. The method yields the solution of stationary problems.
Program summary (iv)
Program title: real2dXY-cuda.
Title of electronic files: real2dXY-cuda.cu and real2dXY-cuda.cuh.
Maximum RAM memory: No upper bound.
Programming language used: CUDA C.
Typical running time: Tens of minutes on a good workstation.
Unusual feature: If NSTP = 0, the program requires and reads the file imag2dXY-den.txt, generated by
executing imag2dXY-cuda with the same grid size parameters.
Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in two space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose–Einstein condensate.
Method of solution: The time-dependent GP equation is solved by the split-step Crank–Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in real time over
small time steps. The method yields the solution of dynamical problems.
Program summary (v)
Program title: real2dXZ-cuda.
Title of electronic files: real2dXZ-cuda.cu and real2dXZ-cuda.cuh.

410 V. Lončar et al. / Computer Physics Communications 200 (2016) 406–410

Maximum RAM memory: No upper bound.
Programming language used: CUDA C.
Typical running time: Tens of minutes on a good workstation.
Unusual feature: If NSTP = 0, the program requires and reads the file imag2dXZ-den.txt, generated by
executing imag2dXZ-cuda with the same grid size parameters.
Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in two space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose–Einstein condensate.
Method of solution: The time-dependent GP equation is solved by the split-step Crank–Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in real time over
small time steps. The method yields the solution of dynamical problems.
Program summary (vi)
Program title: real3d-cuda.
Title of electronic files: real3d-cuda.cu and real3d-cuda.cuh.
Maximum RAM memory: No upper bound.
Programming language used: CUDA C.
Typical running time: Tens of minutes on a good workstation.
Unusual feature: If NSTP = 0, the program requires and reads the file imag3d-den.txt, generated by
executing imag3d-cuda with the same grid size parameters.
Nature of physical problem: This program is designed to solve the time-dependent dipolar nonlinear partial
differential GP equation in three space dimensions in an anisotropic harmonic trap. The GP equation
describes the properties of a dilute trapped Bose–Einstein condensate.
Method of solution: The time-dependent GP equation is solved by the split-step Crank–Nicolson method
by discretizing in space and time. The discretized equation is then solved by propagation in real time over
small time steps. The method yields the solution of dynamical problems.
Acknowledgments
V. L., A. B., A. B., and S. Š acknowledge support by the Ministry of Education, Science, and Technological
Development of the Republic of Serbia under projects ON171017, III43007, ON174023, and IBEC, and by
the DAAD - German Academic and Exchange Service under project IBEC. P.M. acknowledges support by
the Science and Engineering Research Board, Department of Science and Technology, Government of India
under project No. EMR/2014/000644. S.K.A. acknowledges support by the CNPq of Brazil under project
303280/2014-0, and by the FAPESP of Brazil under project 2012/00451-0. Numerical simulations were
run on the PARADOX supercomputing facility at the Scientific Computing Laboratory of the Institute of
Physics Belgrade, supported in part by theMinistry of Education, Science, and Technological Development
of the Republic of Serbia under project ON171017.
References

[1] R. Kishor Kumar, L. E. Young-S., D. Vudragović, A. Balaž, P. Muruganandam, and S. K. Adhikari, Fortran
and C programs for the time-dependent dipolar Gross–Pitaevskii equation in an anisotropic trap,
Comput. Phys. Commun. 195 (2015) 117.

[2] P. Muruganandam and S. K. Adhikari, Comput. Phys. Commun. 180 (2009) 1888;
D. Vudragović, I. Vidanović, A. Balaž, P. Muruganandam, and S. K. Adhikari, Comput. Phys. Commun.
183 (2012) 2021;
P. Muruganandam and S. K. Adhikari, J. Phys. B: At. Mol. Opt. Phys. 36 (2003) 2501.

[3] R. Kishor Kumar, P. Muruganandam, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys. 46 (2013)
175302;
S. K. Adhikari, Bright dipolar Bose–Einstein-condensate soliton mobile in a direction perpendicular to
polarization, Phys. Rev. A 90 (2014) 055601;
S. K. Adhikari, Stable matter-wave solitons in the vortex core of a uniform condensate, J. Phys. B: At.
Mol. Opt. Phys. 48 (2015) 165303;
S. K. Adhikari, Stable spatial and spatiotemporal optical soliton in the core of an optical vortex, Phys.
Rev. E 92 (2015) 042926;
T. Khellil, A. Balaž, and A. Pelster, Dirty bosons in a quasi-one-dimensional harmonic trap, e-print
arXiv:1510.04985 (2015).

[4] M. Harris, CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops, Parallel Forall Blog, http://
devblogs.nvidia.com/parallelforall/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/ (2013).

[5] G. E. Blelloch, Prefix Sums and Their Applications, In J. H. Reif (Ed.), Synthesis of Parallel Algorithms,
Morgan Kaufmann, San Francisco (1990).

[6] M. Harris, Parallel Prefix Sum (Scan) with CUDA, EECS 570 Parallel Computer Architecture Course,
University of Michigan, http://www.eecs.umich.edu/courses/eecs570/hw/parprefix.pdf (2007).

[7] cuFFT, CUDA API References, CUDA Toolkit Documentation v7.5, http://docs.nvidia.com/cuda/cufft/
(2015).

© 2015 Elsevier B.V. All rights reserved.

Computer Physics Communications 209 (2016) 190–196

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the
time-dependent dipolar Gross–Pitaevskii equation
Vladimir Lončar a,∗, Luis E. Young-S. b,c, Srdjan Škrbić d, Paulsamy Muruganandam e,
Sadhan K. Adhikari c, Antun Balaž a

a Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080
Belgrade, Serbia
b Departamento de Ciencias Básicas, Universidad Santo Tomás, 150001 Tunja, Boyacá, Colombia
c Instituto de Física Teórica, UNESP—Universidade Estadual Paulista, 01.140-70 São Paulo, São Paulo, Brazil
d Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
e School of Physics, Bharathidasan University, Palkalaiperur Campus, Tiruchirappalli – 620024, Tamil Nadu, India

a r t i c l e i n f o

Article history:
Received 13 July 2016
Accepted 15 July 2016
Available online 6 September 2016

Keywords:
Bose–Einstein condensate
Dipolar atoms
Gross–Pitaevskii equation
Split-step Crank–Nicolson scheme
C program
OpenMP
GPU
CUDA program
MPI

a b s t r a c t

We present new versions of the previously published C and CUDA programs for solving the dipolar
Gross–Pitaevskii equation in one, two, and three spatial dimensions, which calculate stationary and non-
stationary solutions by propagation in imaginary or real time. Presented programs are improved and
parallelized versions of previous programs, divided into three packages according to the type of paral-
lelization. First package contains improved and threaded version of sequential C programs using OpenMP.
Second package additionally parallelizes three-dimensional variants of the OpenMP programs using MPI,
allowing them to be run on distributed-memory systems. Finally, previous three-dimensional CUDA-
parallelized programs are further parallelized using MPI, similarly as the OpenMP programs. We also
present speedup test results obtained using new versions of programs in comparison with the previous
sequential C and parallel CUDA programs. The improvements to the sequential version yield a speedup of
1.1–1.9, depending on the program. OpenMP parallelization yields further speedup of 2–12 on a 16-core
workstation,while OpenMP/MPI version demonstrates a speedup of 11.5–16.5 on a computer clusterwith
32 nodes used. CUDA/MPI version shows a speedup of 9–10 on a computer cluster with 32 nodes.

New version program summary

Program Title: DBEC-GP-OMP-CUDA-MPI: (1) DBEC-GP-OMP package: (i) imag1dX-th, (ii) imag1dZ-th,
(iii) imag2dXY-th, (iv) imag2dXZ-th, (v) imag3d-th, (vi) real1dX-th, (vii) real1dZ-th, (viii) real2dXY-th,
(ix) real2dXZ-th, (x) real3d-th; (2) DBEC-GP-MPI package: (i) imag3d-mpi, (ii) real3d-mpi; (3) DBEC-GP-
MPI-CUDA package: (i) imag3d-mpicuda, (ii) real3d-mpicuda.
Program Files doi: http://dx.doi.org/10.17632/j3z9z379m8.1
Licensing provisions: Apache License 2.0
Programming language: OpenMP C; CUDA C.
Computer: DBEC-GP-OMP runs on any multi-core personal computer or workstation with an OpenMP-
capable C compiler and FFTW3 library installed. MPI versions are intended for a computer cluster with
a recent MPI implementation installed. Additionally, DBEC-GP-MPI-CUDA requires CUDA-aware MPI
implementation installed, as well as that a computer or a cluster has Nvidia GPUwith Compute Capability
2.0 or higher, with CUDA toolkit (minimum version 7.5) installed.
Number of processors used: All available CPU cores on the executing computer for OpenMP version, all
available CPU cores across all cluster nodes used for OpenMP/MPI version, and all available Nvidia GPUs
across all cluster nodes used for CUDA/MPI version.
Journal reference of previous version: Comput. Phys. Commun. 195 (2015) 117; ibid. 200 (2016) 406.
Does the new version supersede the previous version?: Not completely. OpenMP version does supersede
previous AEWL_v1_0 version, while MPI versions do not supersede previous versions and are meant for
execution on computer clusters and multi-GPU workstations.

∗ Corresponding author.
E-mail addresses: vladimir.loncar@ipb.ac.rs (V. Lončar), luisevery@gmail.com (L.E. Young-S.), srdjan.skrbic@dmi.uns.ac.rs (S. Škrbić), anand@cnld.bdu.ac.in

(P. Muruganandam), adhikari@ift.unesp.br (S.K. Adhikari), antun.balaz@ipb.ac.rs (A. Balaž).

http://dx.doi.org/10.1016/j.cpc.2016.07.029
0010-4655/© 2016 Elsevier B.V. All rights reserved.

V. Lončar et al. / Computer Physics Communications 209 (2016) 190–196 191

Nature of problem: These programs are designed to solve the time-dependent nonlinear partial differential
Gross–Pitaevskii (GP) equationwith contact and dipolar interaction in a harmonic anisotropic trap. TheGP
equationdescribes theproperties of a dilute trappedBose–Einstein condensate. OpenMPpackage contains
programs for solving the GP equation in one, two, and three spatial dimensions, while MPI packages
contain only three-dimensional programs, which are computationally intensive or memory demanding
enough to require such level of parallelization.
Solution method: The time-dependent GP equation is solved by the split-step Crank–Nicolson method by
discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary
or real time, over small time steps. The contribution of the dipolar interaction is evaluated by a Fourier
transformation to momentum space using a convolution theorem. MPI parallelization is done using the
domain decomposition. The method yields the solution of stationary and/or non-stationary problems.
Reasons for the new version: Previously published C and Fortran programs [1] for solving the dipolar GP
equation are sequential in nature and do not exploit the multiple cores or CPUs found in typical modern
computers. A parallel implementation exists, using Nvidia CUDA [2], and both versions are already used
within the ultra-cold atoms community [3]. However, CUDA version requires special hardware, which
limits its usability. Furthermore, many researchers have access to high performance computer clusters,
which could be used to either further speed up the computation, or to work with problems which
cannot fit into a memory of a single computer. In light of these observations, we have parallelized all
programs using OpenMP, and then extended the parallelization of three-dimensional programs using
MPI to distributed-memory clusters. Since the CUDA implementation uses the same algorithm, and thus
has the same structure and flow, we have applied the same data distribution scheme to provide the
distributed-memory CUDA/MPI implementation of three-dimensional programs.
Summary of revisions:
Package DBEC-GP-OMP: Previous serial C programs [1] are here improved and then parallelized using
OpenMP (package DBEC-GP-OMP). Themain improvement consists of switching to real-to-complex (R2C)
Fourier transform, which is possible due to the fact that input of the transform is purely real. In this case
the result of the transform has Hermitian symmetry, where one half of the values are complex conjugates
of the other half. The fast Fourier transformation (FFT) libraries we use can exploit this to compute the
result faster, using half the memory.

To parallelize the programs, we have used OpenMP with the same approach as described in [4], and
extended the parallelization routines to include the computation of the dipolar term. The FFT, used in
computation of the dipolar term, was also parallelized in a straightforward manner, by using the built-
in support for OpenMP in FFTW3 library [5]. With the introduction of multiple threads memory usage
has increased, driven by the need to have some variables private to each thread. To reduce the memory
consumed, we resorted to using techniques similar to the ones used in our CUDA implementation [2],
i.e., we have reduced the memory required for FFT by exploiting the aforementioned R2C FFT, and reused
the memory with pointer aliases whenever possible.
Package DBEC-GP-MPI: Next step in the parallelization (package DBEC-GP-MPI) was to extend the
programs to run on distributed-memory systems, i.e., on computer clusters using domain decomposition
with MPI programming paradigm. We chose to use the newly-implemented threaded versions of the
programs as the starting point. Alternatively, we could have used serial versions, and attempt a pure MPI
parallelization, howeverwe have found that OpenMP-parallelized routines better exploit the data locality
and thus outperform the pure MPI implementation. Therefore, our OpenMP/MPI-parallelized programs
are intended to run oneMPI process per cluster node, and each process would spawn the OpenMP threads
as needed on its cluster node. Note that this is not a requirement, and users may run more than one MPI
process per node, but we advise against it due to performance reasons. With the suggested execution
strategy (one MPI process per cluster node, each spawning as many threads as CPU cores available),
OpenMP threads performmost of the computation, andMPI is used for data exchanges betweenprocesses.

There are numerousways to distribute the data betweenMPI processes, andwedecided to use a simple
one-dimensional data distribution, also known as slab decomposition. Data is distributed along the first
(slowest changing) dimension, which corresponds to NX spatial dimension in our programs (see Fig. 1).
Each process is assigned a different portion of theNX dimension, and contains the entire NY andNZ spatial
dimensions locally. This allows eachprocess to performcomputation on those twodimensions in the same
way as before, without any data exchanges. In case the computation requires whole NX dimension to be
local to each process, we transpose the data, and after the computation, we transpose the data back.

Fig. 1. Illustration of data distribution between MPI processes. On the left, the data are distributed along the NX
dimension, while on the right the same data are redistributed along the NY dimension.

Transpose routine can be implemented in many ways using MPI, most commonly using
MPI_Alltoall function, or using transpose routines from external libraries, like FFTW3 [5] or
2DECOMP&FFT [6]. Since we already rely on FFTW3 library for FFT, we have utilized its dedicated

192 V. Lončar et al. / Computer Physics Communications 209 (2016) 190–196

transpose interface to perform the necessary transformations. To speed up transpose operation, we do
not perform full transposition of data, but rather leave it locally transposed. That is, we transform from
local_NX × NY × NZ, stored in row-major order, to NX × local_NY × NZ in row-major order (where
local_NX = NX / number_of_processes, and equivalently for local_NY). This approach has an additional
benefit that we do not have to make significant changes in the way array elements are processed, and in
most cases we only have to adjust the loop limit of the non-local dimension.
Package DBEC-GP-MPI-CUDA: The aforementioned data distribution scheme can be also applied to the
CUDA version of programs [2]. However, there is no support for CUDA in FFTW3, and cuFFT (used in CUDA
programs for FFT) does not provide equivalent MPI or transpose interface. Instead, we developed our
own transpose routines, and used them in FFT computation. One example of manual implementation of
transpose routines is shown in Ref. [7], and while we could readily use the same code, we wanted to have
the same result as when using FFTW3. To achieve this, we use the same basic principle as in Ref. [7],
first we create a customMPI data type that maps to portions of the data to be exchanged, followed by an
all-to-all communication to exchange the data between processes, see Fig. 2 for details.

Fig. 2. Example of a transpose routine of a 4× 4× 4 data between four MPI processes. Initially, all processes have 1/4
of the NX dimension, andwhole NY and NZ dimensions. After transposing, each process has full NX and NZ dimensions,
and 1/4 of the NY dimension.

The implemented transpose routines are also used to compute a distributed-memory FFT, performed
over all MPI processes. To divide the computation of a multidimensional FFT, in our case three-
dimensional, we use awell-known row–column algorithm. The basic idea of the algorithm is perhaps best
explained on a two-dimensional FFT of N × M data, stored in row-major order, illustrated in Fig. 3. First
the N one-dimensional FFTs of length M are performed (along the row of data), followed by a transpose,
afterwhich data are stored asM×N in row-major format. NowM FFTs of lengthN can be performed along
what used to be a column of original data, but are stored as rows after transposing. Finally, an optional
transpose can be performed to return the data in their original N × M form. In three dimensions, we can
perform a two-dimensional FFT, transpose the data, and perform the FFT along the third dimension. This
algorithm can be easily adapted for distributed memory systems. We use advanced cuFFT interface for
local computation of FFT, and use our transpose routine to redistribute the data.

Note that DBEC-GP-MPI-CUDA programs can be easily modified to work on a single workstation with
multiple GPU cards, or a computer cluster with multiple GPU cards per node. In that case, for each GPU
card a separateMPI process should be launched and the programs should bemodified to assign a separate
GPU card for processes on the same cluster node.

Fig. 3. Illustration of four stages of row–column FFT algorithm. The last transpose operationmay be omitted, and often
yields better performance.

MPI output format: Given that the distributed memory versions of the programs can be used for much
larger grid sizes, the output they produce (i.e., the density profiles) can be much larger and difficult to
handle. To alleviate this problem somewhat, we have switched to a binary output instead of the textual.
This allowed us to reduce the size of files, while still retaining precision. All MPI processes will write the
output to the same file, at the corresponding offset, relieving the user of the task of combining the files.
The binary output can be subsequently converted to textual, for example by using hexdump command on
UNIX-like systems. We have developed a simple script which converts the output from binary to textual
format and included it in the software package.
Testing results: We have tested all programs on the PARADOX supercomputing facility at the Scientific
Computing Laboratory of the Institute of Physics Belgrade. Nodes used for testing had two Intel Xeon E5-
2670 CPUs (with a total of 2 × 8 = 16 CPU cores) with 32 GB of RAM and one Nvidia Tesla M2090 GPU
with 6 GB of RAM, each connected by Infiniband QDR interconnect. The presented results are obtained for
arbitrary grid sizes, which are not tailored to maximize performance of the programs. We also stress that
execution times and speedups reported here are calculated for critical parallelized parts of the programs

V. Lončar et al. / Computer Physics Communications 209 (2016) 190–196 193

performing iterations over imaginary or real time steps, and they exclude time spent on initialization
(threads initialization, MPI environment, allocation/deallocation of memory, creating/destroying FFTW
plans, I/O operations). As a part of its output, each program separately prints initialization time and
time spent on iterations for GP propagation. The latter time is used to calculate a speedup, as a speedup
obtained this way does not depend on the number of iterations and is more useful for large numbers of
iterations.

The testing of OpenMP versions of programs DBEC-GP-OMP was performed with the number of
threads varying from 1 to 16. Table 1 and Fig. 4 show the obtained absolute wall-clock times, speedups,
and scaling efficiencies, as well as comparison with the previous serial version of programs [1]. As we
can see from the table, improvements in the FFT routine used already yield a speedup of 1.3 to 1.9 for
single-threaded (T = 1) 2d and 3d programs compared to the previous serial programs, and somewhat
smaller speedup for 1d programs, 1.1 to 1.3. The use of additional threads brings about further speedup
of 2 to 2.5 for 1d programs, and 9 to 12 for 2d and 3d programs. From Fig. 4 we see that for 1d programs,
although speedup increases with the number of threads used, the efficiency decreases due to insufficient
size of the problem, and one can achieve almost maximal value of speedup already with T = 4 threads,
while still keeping the efficiency around 50%. We also see, as expected, that speedup and efficiency of 2d
and 3d programs behave quite well as we increase the numbers of threads. In particular, we note that the
efficiency is always above 60%, making the use of all available CPU cores worthwhile.
Table 1
Wall-clock execution times of DBEC-GP-OMP programs compiledwith Intel’s icc compiler, compared to the execution
times of previously published serial versions. The execution times given here are for 1000 iterations (in seconds,
excluding initialization and input/output operations, as reported by each program) with grid sizes: 105 for 1d
programs, 104

× 104 for 2d programs, and 480 × 480 × 480 for 3d programs. Columns T = 1, T = 2, T = 4,
T = 8, and T = 16 correspond to the number of threads used, while the last column shows the obtained speedup
with 16 OpenMP threads (T = 16) compared to one OpenMP thread (T = 1). Note that the reduction in the execution
time is not solely due to the introduction of multiple threads, as the improvements in the FFT routine used also have
noticeable impact. This is most evident when comparing execution times of serial versions to OpenMP versions with
one thread. Execution times and speedups of imag1dZ-th, real1dZ-th, imag2dXZ-th, and real2dXZ-th (not reported
here) are similar to those of imag1dX-th, real1dX-th, imag2dXY-th, and real2dXY-th, respectively.

Serial [1] T = 1 T = 2 T = 4 T = 8 T = 16 Speedup

imag1dX-th 9.1 7.1 4.7 3.4 2.9 2.8 2.5
real1dX-th 15.2 14.2 10.5 8.2 7.3 7.2 2.0

imag2dXY-th 13657 7314 4215 2159 1193 798 9.2
real2dXY-th 17281 11700 6417 3271 1730 1052 11.1

imag3d-th 16064 9353 5201 2734 1473 888 10.5
real3d-th 22611 17496 9434 4935 2602 1466 11.9

Fig. 4. Speedup in the execution time and scaling efficiency of DBEC-GP-OMP programs compared to single-threaded
runs: (a) imag1dX-th, (b) real1dX-th, (c) imag2dXY-th, (d) real2dXY-th, (e) imag3d-th, (f) real3d-th. Scaling efficiency
is calculated as a fraction of the obtained speedup compared to a theoretical maximum. Grid sizes used for testing
are the same as in Table 1. Speedups and efficiencies of imag1dZ-th, real1dZ-th, imag2dXZ-th, and real2dXZ-th (not
reported here) are similar to those of imag1dX-th, real1dX-th, imag2dXY-th, and real2dXY-th, respectively.

194 V. Lončar et al. / Computer Physics Communications 209 (2016) 190–196

For testing of MPI versions we have used a similar methodology to measure the strong scaling per-
formance. For OpenMP/MPI programs DBEC-GP-MPI, the obtained wall-clock times are shown in Table 2,
together with the corresponding wall-clock times for the OpenMP programs DBEC-GP-OMP that served
as a baseline to calculate speedups. The testing was done for varying number of cluster nodes, from 4 to
32, and the measured speedup ranged from 11 to 16.5. The corresponding graphs of speedups and effi-
ciencies are shown in Fig. 5, where we can see that the speedup grows linearly with the number of nodes
used, while the efficiency remains mostly constant in the range between 40% and 60%, thus making the
use of OpenMP/MPI programs highly advantageous for problems with large grid sizes.
Table 2
Wall-clock execution times of DBEC-GP-MPI programs compiledwithmpicc compiler fromOpenMPI implementation
of MPI, backed by Intel’s icc compiler, compared to the execution times of OpenMP (DBEC-GP-OMP) versions on
a single-node (T = 16,N = 1). The execution times given here are for 1000 iterations (in seconds, excluding
initialization and input/output operations, as reported by each program) with the grid size 480×480×500. Columns
N = 4, N = 8, N = 16, N = 24, and N = 32 correspond to the number of cluster nodes used (each with T = 16
threads), while the last column shows the obtained speedup with N = 32 nodes compared to single-node runs.

OpenMP N = 4 N = 8 N = 16 N = 24 N = 32 Speedup

imag3d-mpi 1124 653 352 167 128 96 11.5
real3d-mpi 2140 979 513 277 220 129 16.5

Fig. 5. Speedup in the execution time and scaling efficiency of DBEC-GP-MPI programs compared to single-node
OpenMP runs: (a) imag3d-mpi, (b) real3d-mpi. Scaling efficiency is calculated as a fraction of the obtained speedup
compared to a theoretical maximum. Grid size used for testing is the same as in Table 2.

For CUDA/MPI programs DBEC-GP-MPI-CUDA we observe similar behavior in Table 3 and in Fig. 6.
The obtained speedup with N = 32 nodes here ranges from 9 to 10, with the efficiency between 30%
and 40%. While the efficiency is slightly lower than in the case of OpenMP/MPI programs, which could be
expected due to amore complexmemory hierarchywhen dealing with themulti-GPU system distributed
over many cluster nodes, the speedup still grows linearly andmakes CUDA/MPI programs ideal choice for
use on GPU-enabled computer clusters. Additional benefit of using these programs is their low CPU usage
(up to one CPU core), allowing for the possibility that same cluster nodes are used for other CPU-intensive
simulations.
Table 3
Wall-clock execution times of DBEC-GP-MPI-CUDA programs compiled with Nvidia’s nvcc compiler, with CUDA-
aware OpenMPI implementation of MPI, backed by Intel’s icc compiler, compared to the execution times of previous
CUDA [2] versions on a single-nodewith one GPU card (N = 1). The execution times given here are for 1000 iterations
(in seconds, excluding initialization and input/output operations, as reported by each program) with the grid size
480 × 480 × 250. Columns N = 4, N = 8, N = 16, N = 24, and N = 32 correspond to the number of cluster nodes
used (each with one GPU card), while the last column shows the obtained speedup with N = 32 nodes compared to
single-node runs.

CUDA [2] N = 4 N = 8 N = 16 N = 24 N = 32 Speedup

imag3d-mpicuda 579 447 212 103 71 61 9.5
real3d-mpicuda 800 619 295 142 96 80 9.9

Fig. 6. Speedup in the execution time and scaling efficiency of DBEC-GP-MPI-CUDA programs compared to single-
node runs of previous CUDA programs [2]: (a) imag3d-mpicuda, (b) real3d-mpicuda. Scaling efficiency is calculated
as a fraction of the obtained speedup compared to a theoretical maximum. Grid size used for testing is the same as in
Table 3.

The introduction of distributed transposes of data creates some overhead, which negatively impacts
scaling efficiency. This is more evident in the CUDA/MPI version, as the transpose algorithm is inferior
to the one provided by FFTW3. In our tests, both MPI versions of programs failed to achieve speedup on

V. Lončar et al. / Computer Physics Communications 209 (2016) 190–196 195

less than 4 nodes, due to the introduction of the transpose routines. We therefore recommend using MPI
versions only on 4 or more cluster nodes.

The MPI versions are highly dependent not only on the configuration of the cluster, mainly on the
speed of interconnect, but also on the distribution of processes and threads, NUMA configuration, etc. We
recommend that users experiment with several different configurations to achieve the best performance.
The results presented are obtainedwithout extensive tuning, with the aim to show the base performance.

Finally, we note that the best performance can be achieved by evenly distributing theworkload among
the MPI processes and OpenMP threads, and by using grid sizes which are optimal for FFT. In particular,
the programs in DBEC-GP-OMP package have the best performance if NX, NY, and NZ are divisible by the
number of OpenMP threads used. Similarly, for DBEC-GP-MPI programs the best performance is achieved
if NX andNY are divisible by a product of the number ofMPI processes and the number of OpenMP threads
used. For DBEC-GP-MPI-CUDA programs, the best performance is achieved if NX and NY are divisible by
a product of the number of MPI processes and the number of Streaming Multiprocessors (SM) in the GPU
used. For all three packages, the best FFT performance is obtained if NX, NY and NZ can be expressed
as 2a3b5c7d11e13f , where e and f are either 0 or 1, and the other exponents are non-negative integer
numbers [8].
Additional comments, restrictions, and unusual features:MPI programs require that grid size (controlled by
input parameters NX, NY and NZ) can be evenly distributed between the processes, i.e., that NX and NY
are divisible by the number of MPI processes. Since the data is never distributed along the NZ dimension,
there is no such requirement on NZ. Programs will test if these conditions are met, and inform the user
if not (by reporting an error). Additionally, MPI versions of CUDA programs require CUDA-aware MPI
implementation. This allows the MPI runtime to directly access GPU memory pointers and avoid having
to copy the data to main RAM. List of CUDA-aware MPI implementations can be found in Ref. [9].
Acknowledgments

V.L., S.Š. and A.B. acknowledge support by the Ministry of Education, Science, and Technological
Development of the Republic of Serbia under projects ON171017, OI1611005, and III43007, as well as
SCOPES project IZ74Z0-160453. L.E. Y.-S. acknowledges support by the FAPESP of Brazil under project
2012/21871-7 and 2014/16363-8. P.M. acknowledges support by the Science and Engineering Research
Board, Department of Science and Technology, Government of India under project No. EMR/2014/000644.
S.K.A. acknowledges support by the CNPq of Brazil under project 303280/2014-0, and by the FAPESP of
Brazil under project 2012/00451-0.
References:

[1] R. Kishor Kumar, L. E. Young-S., D. Vudragović, A. Balaž, P. Muruganandam, and S. K. Adhikari, Comput.
Phys. Commun. 195 (2015) 117.

[2] V. Lončar, A. Balaž, A. Bogojević, S. Škrbić, P. Muruganandam, S. K. Adhikari, Comput. Phys. Commun.
200 (2016) 406.

[3] R. Kishor Kumar, P. Muruganandam, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys. 46 (2013)
175302;
H. Al-Jibbouri, I. Vidanović, A. Balaž, and A. Pelster, J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 065303;
R. R. Sakhel, A. R. Sakhel, and H. B. Ghassib, J. Low Temp. Phys. 173 (2013) 177;
B. Nikolić, A. Balaž, and A. Pelster, Phys. Rev. A 88 (2013) 013624;
X. Antoine and R. Duboscq, Comput. Phys. Commun. 185 (2014) 2969;
J. Luo, Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 3591;
K.-T. Xi, J. Li, and D.-N. Shi, Physica B 436 (2014) 149;
S. K. Adhikari, Phys. Rev. A 90 (2014) 055601;
M. C. Raportaru, J. Jovanovski, B. Jakimovski, D. Jakimovski, and A.Mishev, Rom. J. Phys. 59 (2014) 677;
A. I. Nicolin, A. Balaž, J. B. Sudharsan, and R. Radha, Rom. J. Phys. 59 (2014) 204;
A. Balaž, R. Paun, A. I. Nicolin, S. Balasubramanian, and R. Ramaswamy, Phys. Rev. A 89 (2014) 023609;
A. I. Nicolin and I. Rata, High-Performance Computing Infrastructure for South East Europe’s Research
Communities: Results of the HP-SEE User Forum 2012, in Springer Series: Modeling and Optimization
in Science and Technologies 2 (2014) 15;
S. K. Adhikari, J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 165303;
S. K. Adhikari, Phys. Rev. E 92 (2015) 042926;
T. Khellil and A. Pelster, arXiv:1512.04870 (2015);
H. L. C. Couto and W. B. Cardoso, J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 025301;
R. R. Sakhel, A. R. Sakhel, and H. B. Ghassib, Physica B 478 (2015) 68;
L. Salasnich and S. K. Adhikari, Acta Phys. Pol. A 128 (2015) 979;
X. Antoine and R. Duboscq, Lecture Notes Math. 2146 (2015) 49;
E. Chiquillo, J. Phys. A: Math. Theor. 48 (2015) 475001;
S. Sabari, C. P. Jisha, K. Porsezian, and V. A. Brazhnyi, Phys. Rev. E 92 (2015) 032905;
W. Wen, T. K. Shui, Y. F. Shan, and C. P. Zhu, J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 175301;
P. Das and P. K. Panigrahi, Laser Phys. 25 (2015) 125501;
Y. S. Wang, S. T. Ji, Y. E. Luo, and Z. Y. Li, J. Korean. Phys. Soc. 67 (2015) L1504;
A. I. Nicolin, M. C. Raportaru, and A. Balaž, Rom. Rep. Phys. 67 (2015) 143;
V. S. Bagnato, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, and D. Mihalache, Rom. Rep. Phys.
67 (2015) 5;
J. B. Sudharsan, R. Radha, H. Fabrelli, A. Gammal, and B. A. Malomed, Phys. Rev. A 92 (2015) 053601;
K.-T. Xi, J. Li, and D.-N. Shi, Physica B 459 (2015) 6;
E. J. M. Madarassy and V. T. Toth, Phys. Rev. D 91 (2015) 044041;
F. I. Moxley III, T. Byrnes, B. Ma, Y. Yan, and W. Dai, J. Comput. Phys. 282 (2015) 303;
D. Novoa, D. Tommasini, J. A. Nóvoa-López, Phys. Rev. E 91 (2015) 012904;

196 V. Lončar et al. / Computer Physics Communications 209 (2016) 190–196

Y. H. Wang, A. Kumar, F. Jendrzejewski, R. M. Wilson, M. Edwards, S. Eckel, G. K. Campbell, and C. W.
Clark, New J. Phys. 17 (2015) 125012;
T. Khellil, A. Balaž, and A. Pelster, New J. Phys. 18 (2016) 063003;
T. Khellil and A. Pelster, J. Stat. Mech.-Theory Exp. (2016) 063301;
J. Akram and A. Pelster, Phys. Rev. A 93 (2016) 023606;
S. K. Adhikari, Laser Phys. Lett. 13 (2016) 035502;
J. Akram and A. Pelster, Phys. Rev. A 93 (2016) 033610;
J. Akram, B. Girodias, and A. Pelster, J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 075302;
S. K. Adhikari and S. Gautam, Phys. Rev. A 93 (2016) 013630;
Ž. Marojević, E. Göklü, and C. Lämmerzahl, Comput. Phys. Commun. 202 (2016) 216;
A. Paredes and H. Michninel, Phys. Dark Universe 12 (2016) 50;
J. Akram and A. Pelster, Laser Phys. 26 (2016) 065501;
T. Mithun, K. Porsezian, and B. Dey, Phys. Rev. A 93 (2016) 013620;
C.-Y. Lai and C.-C. Chien, Phys. Rev. Appl. 5 (2016) 034001;
S. K. Adhikari, Laser Phys. Lett. 13 (2016) 085501;
K. Manikandan, P. Muruganandam, M. Senthilvelan, and M. Lakshmanan, Phys. Rev. E 93 (2016)
032212;
R. R. Sakhel, A. R. Sakhel, H. B. Ghassib, and A. Balaž, Eur. Phys. J. D 70 (2016) 66;
W. Bao, Q. Tang, and Y. Zhang, Commun. Comput. Phys. 19 (2016) 1141;
R. Kishor Kumar, T. Sriraman, H. Fabrelli, P. Muruganandam, and A. Gammal, J. Phys. B: At. Mol. Opt.
Phys. 49 (2016) 155301;
A. Bogojević, A. Balaž, and A. Belić, Phys. Rev. E 72 (2005) 036128;
A. Bogojević, I. Vidanović, A. Balaž, and A. Belić, Phys. Lett. A 372 (2008) 3341;
I. Vidanović, A. Bogojević, A. Balaž, and A. Belić, Phys. Rev. E 80 (2009) 066706;
A. Balaž, A. Bogojević, I. Vidanović, and A. Pelster, Phys. Rev. E 79 (2009) 036701;
A. Balaž, I. Vidanović, A. Bogojević, and A. Pelster, Phys. Lett. A 374 (2010) 1539;
A. I. Nicolin, Physica A 391 (2012) 1062;
I. Vasić and A. Balaž, arXiv:1602.03538 (2016);
O. Voronych, A. Buraczewski, M. Matuszewski, and M. Stobińska, arXiv:1603.02570 (2016);
A. M. Martin, N. G. Marchant, D. H. J. O’Dell, and N. G. Parker, arXiv:1606.07107 (2016).

[4] D. Vudragović, I. Vidanović, A. Balaž, P. Muruganandam, and S. K. Adhikari, Comput. Phys. Commun.
183 (2012) 2021.

[5] FFTW3 library, http://www.fftw.org/ (2016).
[6] 2DECOMP&FFT library, http://www.2decomp.org/ (2016).
[7] B. Satarić, V. Slavnić, A. Belić, A. Balaž, P. Muruganandam, S. K. Adhikari, Comput. Phys. Commun. 200

(2016) 411.
[8] Real-data DFTs with FFTW3, http://www.fftw.org/fftw3_doc/Real_002ddata-DFTs.html (2014);

Nvidia’s cuFFT accuracy andperformance, http://docs.nvidia.com/cuda/cufft/#accuracy-and-performance
(2015).

[9] Nvidia’s MPI Solutions for GPUs, https://developer.nvidia.com/mpi-solutions-gpus (2016).

© 2016 Elsevier B.V. All rights reserved.

Parallelization of Minimum Spanning
Tree Algorithms Using Distributed
Memory Architectures

Vladimir Lončar, Srdjan Škrbić and Antun Balaž

Abstract Finding a minimum spanning tree of a graph is a well known problem in
graph theory with many practical applications. We study serial variants of Prim’s
and Kruskal’s algorithm and present their parallelization targeting message passing
parallel machine with distributed memory. We consider large graphs that can not fit
into memory of one process. Experimental results show that Prim’s algorithm is a
good choice for dense graphs while Kruskal’s algorithm is better for sparse ones.
Poor scalability of Prim’s algorithm comes from its high communication cost while
Kruskal’s algorithm showed much better scaling to larger number of processes.

Keywords Distributed memory � Kruskal � MPI � MST � Paralellization � Prim

1 Introduction

A minimum spanning tree (MST) of a weighted graph G = (V, E) is a subset of
E that forms a spanning tree of G with minimum total weight. MST problem has
many applications in computer and communication network design, as well as
indirect applications in fields such as computer vision and cluster analysis [12].

V. Lončar � S. Škrbić (&)
Faculty of Science, University of Novi Sad, Trg Dositeja Obradovica 4, Novi Sad, Serbia
e-mail: srdjan.skrbic@dmi.uns.ac.rs

V. Lončar
e-mail: vladimir.loncar@dmi.uns.ac.rs

A. Balaž
Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade,
Pregrevica 118, Belgrade, Serbia
e-mail: antun.balaz@scl.rs

G.-C. Yang et al. (eds.), Transactions on Engineering Technologies,
DOI: 10.1007/978-94-017-8832-8_39,
� Springer Science+Business Media Dordrecht 2014

543

In this paper we implement two parallel algorithms for finding MST of a graph,
based on classical algorithms of Prim [23] and Kruskal [18], building upon our
previous work in [19]. Algorithms target message passing parallel machine with
distributed memory. Primary characteristic of this architecture is that the cost of
inter-process communication is high in comparison to cost of computation. Our
goal was to develop algorithms which minimize communication, and to measure
the impact of communication on the performance of algorithms. Our primary
interest were graphs which have significantly larger number of vertices than
processors involved in computation. Since graphs of this size cannot fit into the
memory of a single process, we use a partitioning scheme to divide the input graph
among processes. We consider both sparse and dense graphs.

First algorithm is a parallelization of Prim’s serial algorithm. Each process is
assigned a subset of vertices and in each step of computation, every process finds a
candidate minimum-weight edge connecting one of its vertices to MST. The root
process collects those candidates and selects one with minimum weight which it
adds to MST and broadcasts result to other processes. This step is repeated until
every vertex is in MST.

Second algorithm is based on Kruskal’s approach. Processes get a subset of
G in the same way as in first algorithm, and then find local minimum spanning tree
(or forest). Next, processes merge their MST edges until only one process remains,
which holds edges that form MST of G.

Implementations of these algorithms are done using C programming language
and MPI (Message Passing Interface) and tested on a parallel cluster PARADOX
using up to 256 cores and 256 GB of distributed memory.

Section 2 contains references to the most important related papers. In Sect. 3 we
continue with the description and analysis of algorithms—both serial and parallel
versions, and their implementation. In the last section we describe experimental
results, analyze them and draw our conclusions.

2 Related Work

Algorithms for MST problem have mostly been based on one of three approaches,
that of Boruvka [3], Prim [23] and Kruskal [18], however, a number of new
algorithms has been developed. Gallager et al. [10] presented an algorithm where
processor exists at each node of the graph (thus n = p), useful in computer net-
work design. Katriel and Sanders designed an algorithm exploiting cycle property
of a graph targeting dense graph, [17], while Ahrabian and Nowzari-Dalini’s
algorithm relies on depth first search of the graph [1].

Due to its parallel nature, Boruvka’s algorithm (also known as Sollin’s algo-
rithm) has been the subject to most research related to parallel MST algorithms.
Examples of algorithms based on Boruvka’s approach include Chung and Condon
[4], Wang and Gu [14] and Dehne and Götz [7].

544 V. Lončar et al.

Parallelization of Prim’s algorithm has been presented by Deo and Yoo [8]. Their
algorithm targets shared memory computers. Improved version of Prim’s algorithm
has been presented by Gonina and Kale [11]. Their algorithm adds multiple vertices
per iteration, thus achieving significant speedups. Another approach targeting
shared memory computers presented by Setia et al. [24] uses the cut property of a
graph to grow multiple trees in parallel. Hybrid approach, combining both
Boruvka’s and Prim’s approaches has been developed by Bader and Cong [2].

Examples of parallel implementation of Kruskal’s algorithm can be found in
work of Jin and Baker [16], and Osipov et al. [21]. Osipov et al. proposes a
modification to Kruskal’s algorithm to avoid edges which certainly are not in a
graph. Their algorithm runs in near linear time if graph is not too sparse.

Bulk of the research into parallel MST algorithms has targeted shared memory
computers like PRAM, i.e. computers where entire graph can fit into memory. Our
algorithms target distributed memory computers and use partitioning scheme to
divide the input graph evenly among processors. Because no process contains info
about partition of other processes, we designed our algorithms to use predictable
communication patterns, and not depend on the properties of input graph.

3 The Algorithms

Let us assume that graph G = (V, E), with vertex set V and edge set E is connected
and undirected. Without loss of generality, it can be assumed that each weight is
distinct, thus G is guaranteed to have only one MST. This assumption simplifies
implementation, otherwise a numbering scheme can be applied to edges with same
weight, at the cost of additional implementation complexity.

Let n be the number of vertices, m the number of edges (|V| = n, |E| = m), and
p the number of processes involved in computation of MST. Let w(v, u) denote
weight of edge connecting vertices v and u. Input graph G is represented as
n 9 n adjacency matrix A = (ai,j) defined as:

ai;j ¼
wðvi; vjÞ if (vi; vjÞ 2 E
0 otherwise

�
ð1Þ

3.1 Prim’s Algorithm

Prim’s algorithm starts from an arbitrary vertex and then grows the MST by
choosing a new vertex and adding it to MST in each iteration. Vertex with an edge
with lightest weight incident on the vertices already in MST is added in every
iteration. The algorithm continues until all the vertices have been added to the
MST. This algorithm requires O(n2) time. Implementations of Prim’s algorithm
commonly use auxiliary array d of length n to store distances (weight) from each

Parallelization of Minimum Spanning Tree Algorithms 545

vertex to MST. In every iteration a lightest weight edge in d is added to MST and
d is updated to reflect changes.

Parallelizing the main loop of Prim’s algorithm is difficult [13], since after
adding a vertex to MST lightest edges incident on MST change. Only two steps
can be parallelized: selection of the minimum-weight edge connecting a vertex not
in MST to a vertex in MST, and updating array d after a vertex is added to MST.
Thus, parallelization can be achieved in the following way:

1. Partition the input set V into p subsets, such that each subset contains n/p con-
secutive vertices and their edges, and assign each process a different subset.
Each process also contains part of array d for vertices in its partition. Let Vi be
the subset assigned to process pi, and di part of array d which pi maintains.
Partitioning of adjacency matrix is illustrated in Fig. 1.

2. Every process pi finds minimum-weight edge ei (candidate) connecting MST
with a vertex in Vi.

3. Every process pi sends its ei edge to the root process using all-to-one reduction.
4. From the received edges, the root process selects one with a minimum weight

(called global minimum-weight edge emin), adds it to MST and broadcasts it to
all other processes.

5. Processes mark vertices connected by emin as belonging to MST and update
their part of array d.

6. Repeat steps 2–5 until every vertex is in MST.

Finding a minimum-weight edge and updating of di during each iteration costs
O(n/p). Each step also adds a communication cost of all-to-one reduction and all-
to-one broadcast. These operations complete in O(log p). Combined, cost of one
iteration is O(n/p ? log p). Since there are n iterations, total parallel time this
algorithm runs in is:

Tp ¼ O
n2

p

� �
þ O n log pð Þ ð2Þ

Fig. 1 Partitioning of
adjacency matrix among
p processes

546 V. Lončar et al.

Prim’s algorithm is better suited for dense graphs and works best for complete
graphs. This also applies to its parallel formulation presented here. Ineffectiveness
of the algorithm on sparse graphs stems from the fact that Prim’s algorithm runs in
O(n2), regardless of the number of edges. A well-known modification [5] of Prim’s
algorithm is to use binary heap data structure and adjacency list representation of a
graph to reduce the run time to O(m log n). Furthermore, using Fibonacci heap
asymptotic running time of Prim’s algorithm can be improved to O(m ? n log n).
Since we use adjacency matrix representation, investigating alternative approaches
for Prim’s algorithm was out of the scope of this paper.

3.2 Kruskal’s Algorithm

Unlike Prim’s algorithm which grows a single tree, Kruskal’s algorithm grows
multiple trees in parallel. Algorithm first creates a forest F, where each vertex in
the graph is a separate tree. Next step is to sort all edges in E based on their weight.
Algorithm then chooses minimum-weight edge emin (i.e. first edge in sorted set). If
emin connects two different trees in F, it is added to the forest and two trees are
combined into a single tree, otherwise emin is discarded. Algorithm loops until
either all edges have been selected, or F contains only one tree, which is the MST
of G. This algorithm is commonly implemented using Union-Find algorithm [22].
Find operation is used to determine which tree a particular vertex is in, while
Union operation is used to merge two trees. Kruskal’s algorithm runs in
O(m log n) time, but can be made even more efficient by using more sophisticated
Union-Find data structure, which uses union by rank and path compression [9]. If
the edges are already sorted, using improved Union-Find data structure Kruskal’s
algorithm runs in O(ma(n)), where a(n) is the inverse of the Ackerman function.

Our parallel implementation of Kruskal’s algorithm uses the same partitioning
scheme of adjacency matrix as in Prim’s approach and is thus bounded by O(n2)
time to find all edges in matrix. Having that in mind, our parallel algorithm
proceeds through the following steps:

1. Every process pi first sorts edges contained in its partition Vi.
2. Every process pi finds a local minimum spanning tree (or forest, MSF) Fi using

edges in its partition Vi applying the Kruskal’s algorithm.
3. Processes merge their local MST’s (or MSF’s). Merging is performed in the

following manner. Let a and b denote two processes which are to merge their
local trees (or forests), and let Fa and Fb denote their respective set of local
MST edges. Process a sends set Fa to b, which forms a new local MST (or
MSF) from Fa [Fb. After merging, process a is no longer involved in com-
putation and can terminate.

4. Merging continues until only one process remains. Its MST is the end result.

Creating a new local MSF during merge step can be performed in a number of
different ways. Our approach is to perform Kruskal’s algorithm again on Fa [Fb.

Parallelization of Minimum Spanning Tree Algorithms 547

Computing the local MST takes O(n2/p). There is a total of log p merging stages,
each costing O(n2log p). During one merge step one process transmits maximum
of O(n) edges for a total parallel time of:

Tp ¼ Oðn2=pÞ þ Oðn2 log pÞ ð3Þ

Based on speedup and efficiency metrics, it can be shown that this parallel
formulation is efficient for p = O(n/log n), same as the first algorithm.

3.3 Implementation

Described algorithms were implemented using ANSI C and Message Passing Inter-
face (MPI). Fixed communication patterns in parallel formulation of the algorithms
map directly to MPI operations. Complete source code can be found in [25].

4 Experimental Results

Implementations of algorithms were tested on a cluster of up to 32 computing
nodes. Each computer in the cluster had two Intel Xeon E5345 2.33 GHz quad-
core CPUs and 8 GB of memory, with Scientific Linux 6 operating system
installed. We used OpenMPI v1.6 implementation of the MPI standard. The cluster
nodes are connected to the network with a throughput of 1 Gbit/s. Both imple-
mentations were compiled using GCC 4.4 compiler. This cluster has enabled
testing algorithms with up to 256 processes as shown in Table 1.

We tested graphs with densities of 1, 5, 10, 15 and 20 % with number of
vertices ranging from 10,000 to 100,000, and number of edges from 500,000 to
1,000,000,000. Distribution of edges in graphs was uniformly random, and all edge
weights were unique. Due to the high memory requirements of large graphs, not
every input graph could be partitioned in a small number of cluster nodes, as can
be seen in Table 1.

4.1 Results

Due to the large amount of obtained test results, we only present the most
important ones here. Complete set of results can be found in [25].

In the Table 2 we show the behavior of algorithms with increasing number of
processes on input graph of 50,000 vertices and density of 10 %.

Results show poor scalability of Prim’s algorithm, due to its high communi-
cation cost. Otherwise, computation phase of Prim’s algorithm is faster than that of

548 V. Lončar et al.

Kruskal’s. Due to the usage of adjacency matrix graph representation, Prim’s
algorithm performs almost the same regardless of the density of the input graph.
This can be seen from the results of input graph with 50,000 vertices and 32
processes with varying density shown at Table 3.

On the other hand, Kruskal’s algorithm shows degradation of performance with
increasing density. Results of Kruskal’s algorithm show that majority of local
computation time is spent sorting the edges of input graph, which grows with
larger density. Increasing the number of processes makes local partitions smaller
and faster to process, thus allowing this algorithm to achieve good scalability. If
the edges of input graph were already sorted, Kruskal’s algorithm would be
significantly faster than other MST algorithms.

4.2 Impact of Communication Overhead

Cost of communication is much greater than the cost of computation, so it is
important to analyse the time spent in communication routines. During tests we
measured the time spent waiting for the completion of the communication oper-
ations. In case of Prim’s algorithm, we measured the time that the root process
spends waiting for the completion of MPI_Reduce and MPI_Bcast operations.
Communication in Kruskal’s algorithm is measured as total time spent waiting for
messages received over MPI_Recv operation in the last active process (which will

Table 1 Testing parameters

Processes Nodes Processes per node No. of vertices (k)

4 4 1 10–50
8 8 1 10–60
16 16 1 10–80
32 32 1 10–100
64 32 2 10–100
128 32 4 10–100
256 32 8 10–100

Table 2 CPU time (in seconds) for algorithms with increasing number of processes

4 8 16 32 64 128 256

Kruskal 38.468 19.94 10.608 5.342 2.958 1.796 1.382
Prim 16.703 15.479 25.201 30.382 30.824 32.661 39.737

Table 3 CPU time (in seconds) for algorithms with increasing density

1 % 5 % 10 % 15 % 20 %

Kruskal 0.607 2.603 5.342 8.164 10.663
Prim 30.189 30.007 30.382 30.518 30.589

Parallelization of Minimum Spanning Tree Algorithms 549

contain the MST after last iteration of the merge operation). This gives us a good
insight into the duration of communication routines because the last active process
will have to wait the most.

The Table 4 shows communication times of processing input graph of 50,000
vertices with 10 % density.

When comparing communication time with a total computation time it can be
noted that the Prim’s algorithm spends most of time in communication operations,
and by increasing number of processes almost all the running time of the algorithm
is spent on communication operations. A bottleneck in Prim’s algorithm is the cost
of MPI_Reduce and MPI_Bcast communication operations. These operations
require communication between all processes, and are much more expensive than
local computation within each process, because all processes must wait until the
operation is completed, or until the data are transmitted over the network. This
prevents Prim’s algorithm from achieving substantial speedup of running time
with increasing number of processes. Therefore, this algorithm is most efficient on
the fewest number of processes that the partitioned input graph can fit.

On the other hand Kruskal algorithm spends much less time in communication
operations, but instead spends most of the time in local computation. These
differences are illustrated in Figs. 2 and 3. The diagrams show that communication
in Prim’s algorithm rises sharply with increasing number of processes, while
execution time slowly reduces. In Kruskal’s algorithm, the situation is reversed.

4.3 Analysis of Results

The experimental results confirmed some of the assumptions made during the
development and analysis of algorithms, but also made a couple of unexpected
results. Results of these experiments gave us directions for further improvement of
the described algorithms.

Prim’s algorithm has shown excellent performance in computational part of the
algorithm, but a surprisingly high cost of communication operations spoils its final
score. Finding candidate edges for inclusion in MST can be further improved by
using techniques described in [5], but it will not significantly improve the total

Table 4 Communication versus computation time (in seconds)

Processes 4 8 16 32 64 128 256

Prim’s algorithm
Total 16.703 15.479 25.201 30.382 30.824 32.661 39.737
Communication 8.188 11.183 23.009 29.248 30.237 32.322 39.467

Kruskal’s algorithm
Total 38.468 19.94 10.608 5.342 2.958 1.796 1.382
Communication 0.171 0.356 0.371 0.288 0.317 0.253 0.256

550 V. Lončar et al.

time of the algorithm, as communication routines will remain the same. Unfor-
tunately, the communication can not be further improved by changing the algo-
rithm. The only way to reduce the cost of communication is to use a cluster that
has a better quality network, or to rely on the semantics of the implementation of
the MPI operation MPI_Allreduce.

Kruskal’s algorithm has shown good performance, especially for sparse graphs,
while the performance degrades with increasing density. It is important to note that
many real-world graphs have density much smaller than 1 % (for example, graph
of roads as egdes and junctions as vertices has a density much smaller than 1 %).
Also, this algorithm showed much better scaling to larger number of processes
than Prim’s algorithm. Cost of communication in Kruskal’s algorithm is much
smaller than in Prim’s algorithm, but the local computation is slower. This can be
improved by using more efficient Union-Find algorithms [9], or by improving
merging of local trees between processes. Kruskal’s algorithm does not use a lot of

4 8 16 32 64 128 256
0

5

10

15

20

25

30
35

40

45

Total Communication

Fig. 2 Communication in Kruskal’s algorithm

4 8 16 32 64 128 256
0

5

10

15

20

25

30

35

40

45

Total Communication

Fig. 3 Communication in Prim’s algorithm

Parallelization of Minimum Spanning Tree Algorithms 551

slow messages like Prim’s algorithm, but can send very large messages depending
on the number of processes and the size of the graph. This can be improved by
introducing techniques for compressing messages, or changing the structure of the
message.

5 Alternate Parallelization Approaches

In this section we will give a brief overview of two other parallelization approa-
ches we considered using for implementation of these algorithms. One approach
would be using graphics processing unit (GPU) technologies like Nvidia CUDA or
OpenCL. Another would be using shared-memory parallelization API like
OpenMP to utilize multi-core processors on cluster nodes. We will go over
advantages and disadvantages of both approaches.

With the introduction of CUDA and OpenCL programming models, using GPU
for general-purpose computing (GPGPU) has become a powerful alternative to
traditional CPU programming models. Nowadays GPUs can be found in most
high-ranking supercomputers and even ordinary clusters. GPUs have their own
RAM, which is separate from main RAM of a computer and was not accessible for
distributed-memory technologies like MPI. This made writing multi-GPU pro-
grams more difficult, since it required expensive copy operations between GPU
memory and host (CPU) memory which MPI could access. However, recent
developments in MPI implementations have alleviated this problem, and newer
versions of popular MPI implementations like OpenMPI and MVAPICH can
access GPU memory directly. This unfortunately still doesn’t make GPU the
perfect platform for implementations of our algorithms. GPUs still have much
smaller amount of RAM when compared to main memory (recently released
models like Tesla K10 have up to 8 GB of memory [20]). This means that GPU
solution could only be used on much smaller graphs. Alternatively, a different
graph representation (like adjacency lists) would allow graphs with greater number
of vertices, but would still be only useful for sparser graphs. Primary part of Prim’s
algorithm which could be accelerated by GPU is finding local (and then global)
vertex with the smallest distance to the tree. This could be achieved by slightly
modifying well-known parallel reduction algorithm for GPU [15]. Communication
pattern between nodes would remain the same. Kruskal’s algorithm is more
complex to implement on GPU due to Union-Find data structure. Other important
portions of Kruskal’s algorithm, like sorting of input could be done using various
GPU libraries.

Unlike the relatively new technology that is GPGPU, OpenMP has been suc-
cessfully used to parallelize serial code since the late 90s. In some cases, OpenMP
allows developers to parallelize their with programs with minimal effort, using
compiler directives around loops, often with good performance [6]. This technique
could be used in parallelization of Prim’s algorithm for finding local (and later

552 V. Lončar et al.

global) vertex with the smallest distance to the tree. Graph would be partitioned in
such a way that each node in cluster receives an equal part, then each node would
use all it’s processors and cores with OpenMP to find local minimum, and use MPI
for communication between nodes. Kruskal’s algorithm can be parallelized in
similar way, although it would require a slightly greater effort for implementation
of sorting and Union-Find data structure.

Acknowledgements Authors are partially supported by Ministry of Education, Science, and
Technological Development of the Republic of Serbia, through projects no. ON174023: ‘‘Intel-
ligent techniques and their integration into wide-spectrum decision support’’, and ON171017:
‘‘Modeling and numerical simulations of complex many-body systems’’, as well as European
Commission through FP7 projects PRACE-2IP and PRACE-3IP.

References

1. H. Ahrabian, A. Nowzari-Dalini, Parallel algorithms for minimum spanning tree problem.
Int. J. Comput. Math. 79(4), 441–448 (2002)

2. D.A. Bader, G. Cong, Fast shared-memory algorithms for computing the minimum spanning
forest of sparse graphs. J. Parallel Distrib. Comput. 66(11), 1366–1378 (2006)

3. O. Boruvka, O Jistém Problému Minimálnm (about a certain minimal problem) (in Czech,
German summary). Práce Mor. Prrodoved. Spol. v Brne III, vol. 3 (1926)

4. S. Chung, A. Condon, Parallel implementation of borvka’s minimum spanning tree
algorithm. in Proceedings of the 10th International Parallel Processing Symposium, IPPS
‘96 (IEEE Computer Society, Washington, DC, 1996), pp. 302–308

5. T.H. Cormen, C. Stein, R.L. Rivest, C.E. Leiserson, Introduction to Algorithms, 2nd edn.
(McGraw-Hill Higher Education, Boston, 2001)

6. M. Curtis-Maury, X. Ding, C.D. Antonopoulos, D.S. Nikolopoulos, An Evaluation of
Openmp on Current and Emerging Multithreaded/Multicore Processors, ed. by M.S.
Mueller, B.M. Chapman, B.R. Supinski, A.D. Malony, M. Voss. OpenMP Shared Memory
Parallel Programming, vol 4315 (Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2008), pp. 133–144

7. F. Dehne, S. Gtz, Practical Parallel Algorithms for Minimum Spanning Trees, in Workshop
on Advances in Parallel and Distributed Systems (1998), pp. 366–371

8. N. Deo, Y.B. Yoo, Parallel algorithms for the minimum spanning tree problem, in
Proceedings of the International Conference on Parallel Processing (1981), pp. 188–189

9. Z. Galil, G.F. Italiano, Data structures and algorithms for disjoint set union problems. ACM
Comput. Surv. 23(3), 319–344 (1991)

10. R.G. Gallager, P.A. Humblet, P.M. Spira, A distributed algorithm for minimum-weight
spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)

11. E. Gonina, L.V. Kale, Parallel prim’s algorithm on dense graphs with a novel extension, in
PPL Technical Report, Oct 2007

12. R.L. Graham, P. Hell, On the history of the minimum spanning tree problem. IEEE Ann.
Hist. Comput. 7(1), 43–57 (1985)

13. A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to Parallel Computing, 2nd edn.
(Addison Wesley, Reading, 2003)

14. W. Guang-rong, G. Nai-jie, An efficient parallel minimum spanning tree algorithm on
message passing parallel machine. J. Softw. 11(7), 889–898 (2000)

15. M. Harris, Optimizing parallel reduction in CUDA. CUDA tips and tricks

Parallelization of Minimum Spanning Tree Algorithms 553

16. M. Jin, J.W. Baker, Two graph algorithms on an associative computing model, in
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA 2007, vol 1, Las Vegas, Nevada, 25–28 June 2007,
pp. 271–277

17. I. Katriel, P. Sanders, J.L. Trff, J.L. Tra, A practical minimum spanning tree algorithm using
the cycle property, in 11th European Symposium on Algorithms (ESA), vol. 2832 in LNCS
(Springer, New York, 2003), pp. 679–690

18. J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem.
Proc. Am. Math. Soc. 7(1), 48–50 (1956)

19. V. Lončar, S. Škrbić, A. Balaž, Distributed memory parallel algorithms for minimum
spanning trees, in Lecture Notes in Engineering and Computer Science: Proceedings of the
World Congress on Engineering 2013, WCE 2013, London, 3–5 July 2013, pp. 1271–1275

20. Nvidia, Nvidia tesla GPU accelerators. Nvidia Tesla Product Datasheet (2012)
21. V. Osipov, P. Sanders, J. Singler, The filter-kruskal minimum spanning tree algorithm, in

ALENEX’09 (2009), pp. 52–61
22. D.-Z. Pan, Z.-B. Liu, X.-F. Ding, Q. Zheng, The application of union-find sets in kruskal

algorithm, in Proceedings of the 2009 International Conference on Artificial Intelligence and
Computational Intelligence (AICI ‘09), vol 2 (IEEE Computer Society, Washington, DC,
2009), pp. 159–162

23. R.C. Prim, Shortest connection networks and some generalizations. Bell Syst. Technol. J. 36,
1389–1401 (1957)

24. R. Setia, A. Nedunchezhian, S. Balachandran, A new parallel algorithm for minimum
spanning tree problem, in Proceedings of the International Conference on High Performance
Computing (HiPC) (2009), pp. 1–5

25. S. Škrbić, Scientific Computing Seminar (2013)

554 V. Lončar et al.

1

Parallel implementation of minimum spanning
tree algorithms using MPI

Vladimir Lončar* and Srdjan Škrbic**
Faculy of Science, Depatment for Mathematics an Informatics, University of Novi Sad, Serbia

* vlada.loncar@gmail.com
** shkrba@uns.ac.rs

Abstract—In this paper we study parallel algorithms for
finding minimum spanning tree of a graph. We present
two algorithms, based on sequential algorithms of Prim and
Kruskal, targeting message passing parallel machine with
distributed memory. First algorithm runs in O(n2/p+n log p)
and second algorithm runs in O(n2/p + n2 log p).

Index Terms—Minimum spanning tree, parallel algo-
rithms, message passing, distributed memory computer.

I. INTRODUCTION

A minimum spanning tree (MST) of a graph G =
(V,E) is a subset of E that forms a spanning tree of G
with minimum total weight. MST problem has many appli-
cations in computer and communication network design,
as well as indirect applications in fields such as computer
vision and cluster analysis [1].

In this paper we implement two parallel algorithms for
finding MST of a graph, based on classical algorithms
of Prim and Kruskal. Algorithms target message pass-
ing parallel machine with distributed memory. Primary
characteristic of this architecture is that the cost of inter-
process communication is high in comparison to cost of
computation. Our goal was to develop algorithms which
minimize communication, and to measure the impact of
communication on the performance of algorithms. Our
primary interest were graphs which have significantly
larger number of vertices than processors involved in
computation. Since graphs of this size cannot fit into a
memory of single process, we use simple partitioning
scheme to divide the input graph among processes. We
considered both sparse and dense graphs.

First algorithm is a parallelization of Prim’s sequential
algorithm. Each process is assigned a subset of vertices
and in each step of computation, every process finds a
candidate minimum-weight edge connecting one of it’s
vertices to MST. Leader process collects those candidates
and selects one with minimum weight which it adds to
MST, and broadcasts result to other processes. This step
is repeated until every vertex is in MST.

Second algorithm is based on Kruskal’s approach. Pro-
cesses get a subset of G in the same way as in first
algorithm, and then find local minimum spanning tree (or
forest). Next, processes merge their MST edges until only
one process remains, which holds edges that form MST
of G.

Algorithms we present are both easy to understand
and implement, and since they use fixed communication
patterns, their performance can easily be predicted.

II. RELATED WORK

Algorithms for MST problem have mostly been based
on one of three approaches, that of Boruvka [2], Prim [3]
and Kruskal [4], however, a number of new algorithms
has been developed. Gallager et al. presented an algorithm
where processor exists at each node of the graph (thus
n = p), useful in computer network design [5]. Katriel and
Sanders designed an algorithm exploiting cycle property
of a graph targeting dense graph, [6], while Ahrabian and
Nowzari-Dalini’s algorithm relies on depth first search of
the graph [7].

Due to it’s parallel nature, Boruvka’s algorithm (also
known as Sollin’s algorithm) has seen the most research.
Examples of algorithms based on Boruvka’s approach
include Chung and Condon [8], Wang and Gu [9] and
Dehne and Götz [10].

Parallelization of Prim’s algorithm has been presented
by Deo and Yoo [11]. Their algorithm targets shared-
memory computers. Improved version of Prim’s algorithm
has been presented by Gonina and Kale [12]. Their algo-
rithm adds multiple vertices per iteration, thus achieving
significant speedups. Another approach targeting shared-
memory computers presented by Setia et al. [13] uses the
cut property of a graph to grow multiple trees in parallel.
Hybrid approach, combining both Boruvka’s and Prim’s
approaches has been developed by Bader and Cong [14].

Examples of parallel implementation of Kruskal’s algo-
rithm can be found in work of Jin and Baker [15], and
Osipov et al [16]. Osipov et al. proposes a modification
to Kruskal’s algorithm to avoid edges which certainly are
not in a graph. Their algorithm runs in near linear time if
graph is not too sparse.

Bulk of the research into parallel MST algorithms
has targeted shared-memory computers like PRAM, i.e.
computers where entire graph can fit into memory. Our
algorithms target distributed-memory computers and use
partitioning scheme to divide the input graph evenly
among processors. Because no process contains info about
partition of other processes, we designed our algorithms
to use predictable communication patterns, and not depend
on the properties of input graph.

CINTI 2012 • 13th IEEE International Symposium on Computational Intelligence and Informatics • 20–22 November, 2012 • Budapest, Hungary

35978-1-4673-5206-2/12/$31.00 ©2012 IEEE

2

III. THE ALGORITHMS

In the remainder of this paper, we will assume that
graph G = (V,E) is connected and undirected. Without
loss of generality, it can be assumed that each weight is
distinct, thus G is guaranteed to have only one MST. This
assumption simplifies implementation, otherwise a num-
bering scheme can be applied to edges with same weight,
at the cost of additional implementation complexity.

Let n be the number of vertices, m the number of edges
(|V | = n, |E| = m), and p the number of processes
involved in computation of MST. Let w(v, u) denote
weight of edge connecting vertices v and u. Input graph
G is represented as n × n adjacency matrix A = (ai,j)
defined as:

ai,j =

{
w(vi, vj) if (vi, vj) ∈ E

0 otherwise
(1)

A. Prim’s Algorithm

Prim’s algorithm starts from an arbitrary vertex and then
grows the MST by choosing a new vertex and adding
it to MST in each iteration. Vertex with an edge with
lightest weight incident on the vertices already in MST is
added in every iteration. The algorithm continues until all
the vertices have been added to the MST. This algorithm
requires O(n2) time. Implementations of Prim’s algorithm
commonly use auxiliary array d of length n to store
distances (weight) from each vertex to MST. In every
iteration a lightest weight edge in d is added to MST and
d is updated to reflect changes.

Parallelizing the main loop of Prim’s algorithm is dif-
ficult [17], since after adding a vertex to MST lightest
edges incident on MST change. Only two steps can
be parallelized: selection of the minimum-weight edge
connecting a vertex not in MST to a vertex in MST, and
updating array d after a vertex is added to MST. Thus,
parallelization can be achieved in the following way:

1) Partition the input set V into p subsets, such that
each subset contains n/p consecutive vertices and
their edges, and assign each process a different
subset. Each process also contains part of array d
for vertices in it’s partition. Let Vi be the subset
assigned to process pi, and di part of array d which
pi maintains. Partitioning of adjacency matrix is
illustrated in Fig. 1.

2) Every process pi finds minimum-weight edge ei

(candidate) connecting MST with a vertex in Vi.
3) Every process pi sends its ei edge to leader process

using all-to-one reduction.
4) From the received edges, leader process selects one

with a minimum weight (called global minimum-
weight edge emin), adds it to MST and broadcasts
it to all other processes.

5) Processes mark vertices connected by emin as be-
longing to MST and update their part of array d.

6) Repeat steps 2-5 until every vertex is in MST.

Fig. 1. Partitioning of adjacency matrix among p processes

Finding a minimum-weight edge and updating of di

during each iteration costs O(n/p). Each step also adds
a communication cost of all-to-one reduction and all-to-
one broadcast. These operations complete in O(log p).
Combined, cost of one iteration is O(n/p + log p). Since
there are n iterations, total parallel time this algorithm runs
in is:

Tp = O

(
n2

p

)
+ O (n log p) (2)

In comparison to sequential algorithm, this algorithm
achieves a speedup and efficiency of:

S =
O(n2)

O(n2/p + n log p)
(3)

E =
1

1 + O((p log p)/n)
(4)

From equations 3 and 4 we conclude that this for-
mulation of Prim’s algorithm is efficient only for p =
O(n/ log n) processes.

Prim’s algorithm is better suited for dense graphs and
works best for complete graphs. This also applies to
it’s parallel formulation presented here. Ineffectiveness
of the algorithm on sparse graphs stems from the fact
that Prim’s algorithm runs in O(n2), regardless of the
number of edges. A well-known modification [18] of
Prim’s algorithm is to use binary heap data structure and
adjacency list representation of a graph to reduce the
run time to O(m log n). Furthermore, using Fibonacci
heap asymptotic running time of Prim’s algorithm can
be improved to O(m + n log n). Since we use adjacency
matrix representation, investigating alternative approaches
for Prim’s algorithm was out of the scope of this paper.

B. Kruskal’s Algorithm

Unlike Prim’s algorithm which grows a single tree,
Kruskal’s algorithm grows multiple trees in parallel. Al-
gorithm first creates a forest F , where each vertex in the
graph is a separate tree. Next step is to sort all edges
in E based on their weight. Algorithm then loops the
sorted set and chooses minimum-weight edge emin (i.e.
first edge in sorted set). If emin connects two different

V. Lončar and S. Škrbic • Parallel Implementation of Minimum Spanning Tree Algorithms using MPI

36

3

trees in F , add it to the forest and combine two trees
into a single tree, otherwise discard emin. Algorithm loops
until either all edges have been selected, or F contains
only one tree, which is the MST of G. This algorithm
is commonly implemented using Union-Find algorithm
[19]. Find operation is used to determine which tree a
particular vertex is in, while Union operation is used to
merge two trees. Kruskal’s algorithm runs in O(m log n)
time, but can be made even more efficient by using more
sophisticated Union-Find data structure, which uses union
by rank and path compression [20]. If the edges are
already sorted, using improved Union-Find data structure
Kruskal’s algorithm runs in O(mα(n)), where α(n) is the
inverse of an Ackerman function.

Our parallel implementation of Kruskal’s algorithm uses
the same partitioning scheme of adjacency matrix as in
Prim’s approach and is thus bounded by O(n2) time to
find all edges in matrix. Every process first sorts edges
contained in its partition. From edges in partition Vi, every
process pi finds a local minimum spanning tree (or forest,
MSF) Ti using Kruskal’s algorithm. At the end of this
step, local MSTs are merged. Merging is performed in the
following manner. Let a and b denote two processes which
are to merge their local trees (or forests), and let A and B
denote their respective set of local MST edges. Process a
sends set A to b, which forms a new local MST (or MSF)
from A∪B. After merging, process a is no longer involved
in computation and can terminate. Merging continues until
only one process remains, which will contain MST of G.

Example of parallel Kruskal’s algorithm is illustrated in
Fig. 2. Input graph in (a) is divided among processes p1

and p2 which compute local MST based on edges incident
on vertices assigned to them ((b) and (c)). Next, processes
merge their local MST-s to form a MST of input graph.
The dashed lines represent edges which are in local MST
of a process, but are removed after merging.

Creating a new local MSF during merge step can be
performed in a number of different ways. One approach
is to perform Kruskal’s algorithm again on A ∪ B. Alter-
natively, a modified depth-first search (DFS) can be used.
For every edge in A, it is first determined if it is already
in the same tree of B (using find operation). If it is not, it
is added in MSF and union operation is called. Merging
two trees can produce a cycle, so a modified DFS is run
to eliminate edge with a heaviest weight.

Computing the local MST takes O(n2/p). There is a
total of log p merging stages, each costing O(n2 log p).
During one merge step one process transmits maximum
of O(n) edges for a total parallel time of:

Tp = O(n2/p) + O(n2 log p) (5)

Based on speedup and efficiency metrics, it can be
shown that this parallel formulation is efficient for p =
O(n/ log n), same as first algorithm.

IV. IMPLEMENTATION

Algorithms were simple to implement using ANSI C
and MPI. Simplicity is the result of fixed communication

Fig. 2. Example of merge step for two processes

patterns which directly map to MPI operations. During
implementation we explored alternative communication
patterns in order to grow multiple trees in parallel, similar
to approaches of parallelization of Boruvka’s algorithm.
We have found that using data-dependant communication
paths results in imbalanced computation due to arbitrary
communication between processes. Also, implementation
of arbitrary communication can be difficult with MPI,
since number of messages each process sends or receives
is not known in advance for every input. Overcoming this
obstacle often requires adding additional communication
complexity, at the cost of overall performance.

Communication pattern in Prim’s algorithm can be im-
proved by using MPI MPI Allreduce operation instead of
the standard combination of MPI Reduce and MPI Bcast.
This optimization does not necessarily result in better
performance, since MPI implementations can implement

CINTI 2012 • 13th IEEE International Symposium on Computational Intelligence and Informatics • 20–22 November, 2012 • Budapest, Hungary

37

4

MPI Allreduce operation as a simple all-to-one reduce,
followed by a broadcast, without any performance im-
provements [21].

Main performance bottleneck of Prim’s algorithm is
communication overhead of all-to-one reduce operation.
Reduce operation is costly in comparison to local com-
putation, and all other processes are idle while waiting
for reduce to complete. This prevents Prim’s algorithm
to achieve significant speedups on a larger number of
processors. Therefore, Prim’s algorithm is best used on a
smallest number of processes on which partitioned input
graph can fit.

Unlike Prim’s algorithm, Kruskal’s algorithm doesn’t
use collective communication operations during which all
processes except one are idle. Performance-wise, critical
part Kruskal’s algorithm is merging of local MST-s. Merge
part of Kruskal’s algorithm is only fully efficient in case
when p is a power of 2. Since merging is pairwise
operation, in other cases at least one merge step will
have a process without a pair. This process will be idle
until a merge partner is available. In our implementation,
idling can span multiple merge steps, thus causing a
considerable efficiency degradation. For example, if there
are 9 processes in computation, one process will be idle
until the very last merge step. One approach to solving
this issue would be introduction of a special 3-way merge
(or in general a d-ary merge, where d = 2, 3, 4 . . .) along
with a load balancing logic to minimize or remove the
effect on performance of algorithm.

V. CONCLUSION

We presented two parallel implementations of algo-
rithms for finding minimum spanning tree of a graph.
Our algorithms are parallelizations of classical sequential
algorithms of Prim and Kruskal. Parallel processes work
on a subset of input graph, and communicate using fixed
communication pattern. First algorithm takes O(n2/p +
n log p) time, while second takes O(n2/p+n2 log p) time.

Our analysis has identified several bottlenecks in our im-
plementations, and further work in this area would include
minimizing communication cost by reducing the number
and size of messages passed, as well as improving merge
step of the second algorithm. Also, further experimental
work would give us information about practical limitations
of our algorithms for wider array of input graphs and
uncover new areas for improvement.

ACKNOWLEDGMENT

Authors are partially supported by Ministry of Educa-
tion and Science of the Republic of Serbia, through project
no. III47003: ” Infrastructure for technology enhanced
learning in Serbia”.

REFERENCES

[1] R. L. Graham and P. Hell, “On the history of the
minimum spanning tree problem,” IEEE Ann. Hist. Comput.,
vol. 7, no. 1, pp. 43–57, Jan. 1985. [Online]. Available:
http://dx.doi.org/10.1109/MAHC.1985.10011

[2] O. Boruvka, “ O Jistém Problému Minimálnı́m (About a Certain
Minimal Problem) (in Czech, German summary),” Práce Mor.
Prı́rodoved. Spol. v Brne III, vol. 3, 1926.

[3] R. C. Prim, “Shortest connection networks and some generaliza-
tions,” Bell System Technology Journal, vol. 36, pp. 1389–1401,
1957.

[4] J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and
the Traveling Salesman Problem,” Proceedings of the American
Mathematical Society, vol. 7, no. 1, pp. 48–50, Feb. 1956.
[Online]. Available: http://www.jstor.org/stable/2033241

[5] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed
algorithm for minimum-weight spanning trees,” ACM Trans.
Program. Lang. Syst., vol. 5, no. 1, pp. 66–77, Jan. 1983. [Online].
Available: http://doi.acm.org/10.1145/357195.357200

[6] I. Katriel, P. Sanders, J. L. Träff, and J. L. Tra, “A practical
minimum spanning tree algorithm using the cycle property,” in In
11th European Symposium on Algorithms (ESA), number 2832 in
LNCS. Springer, 2003, pp. 679–690.

[7] H. Ahrabian and A. Nowzari-Dalini, “Parallel algorithms for min-
imum spanning tree problem,” International Journal of Computer
Mathematics, vol. 79, no. 4, pp. 441–448, 2002.

[8] S. Chung and A. Condon, “Parallel implementation
of borvka’s minimum spanning tree algorithm,” in
Proceedings of the 10th International Parallel Processing
Symposium, ser. IPPS ’96. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 302–308. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645606.661036

[9] W. Guang-rong and G. Nai-jie, “An efficient parallel minimum
spanning tree algorithm on message passing parallel machine,”
Journal of Software, vol. 11, no. 7, pp. 889–898, 2000.

[10] F. Dehne and S. Götz, “Practical parallel algorithms for minimum
spanning trees,” in In Workshop on Advances in Parallel and
Distributed Systems, 1998, pp. 366–371.

[11] Y. Y. B. Deo, Narsingh, “Parallel algorithms for the minimum span-
ning tree problem.” in Proceedings of the International Conference
on Parallel Processing, 1981, pp. 188–189.

[12] E. Gonina and L. V. Kale, “Parallel prim’s algorithm on dense
graphs with a novel extension,” PPL Technical Report, October
2007.

[13] A. N. R. Setia and S. Balachandran, “A new parallel algorithm for
minimum spanning tree problem,” in Proc.International Conference
on High Performance Computing (HiPC), 2009, pp. 1–5.

[14] D. A. Bader and G. Cong, “Fast shared-memory
algorithms for computing the minimum spanning forest
of sparse graphs,” J. Parallel Distrib. Comput., vol. 66,
no. 11, pp. 1366–1378, Nov. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2006.06.001

[15] M. Jin and J. W. Baker, “Two graph algorithms on an associative
computing model,” in Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applica-
tions, PDPTA 2007, Las Vegas, Nevada, USA, June 25-28, 2007,
Volume 1, 2007, pp. 271–277.

[16] V. Osipov, P. Sanders, and J. Singler, “The filter-kruskal minimum
spanning tree algorithm,” in ALENEX’09, 2009, pp. 52–61.

[17] A. Grama, G. Karypis, V. Kumar, and A. Gupta,
Introduction to Parallel Computing (2nd Edition),
2nd ed. Addison Wesley, Jan. 2003. [Online]. Available:
http://www.worldcat.org/isbn/0201648652

[18] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Intro-
duction to Algorithms, 2nd ed. McGraw-Hill Higher Education,
2001.

[19] D.-Z. Pan, Z.-B. Liu, X.-F. Ding, and Q. Zheng, “The application
of union-find sets in kruskal algorithm,” in Proceedings of
the 2009 International Conference on Artificial Intelligence
and Computational Intelligence - Volume 02, ser. AICI ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 159–
162. [Online]. Available: http://dx.doi.org/10.1109/AICI.2009.155

[20] Z. Galil and G. F. Italiano, “Data structures and algorithms
for disjoint set union problems,” ACM Comput. Surv.,
vol. 23, no. 3, pp. 319–344, Sep. 1991. [Online]. Available:
http://doi.acm.org/10.1145/116873.116878

[21] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce
algorithms for clusters of workstations,” J. Parallel Distrib.
Comput., vol. 69, no. 2, pp. 117–124, Feb. 2009. [Online].
Available: http://dx.doi.org/10.1016/j.jpdc.2008.09.002

V. Lončar and S. Škrbic • Parallel Implementation of Minimum Spanning Tree Algorithms using MPI

38

Nonlinear optics Contributed papers

76

Quench Dynamics for Trapped Dipolar Fermi Gases

V. Veljić
1Scientific Computing Laboratory, Institute of Physics Belgrade,

1, A. Balaž1 and A. Pelster2

University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
2Physics Department and Research center OPTIMAS,

Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
e-mail: vveljic@ipb.ac.rs

A recent time-of-flight expansion experiment for polarized fermionic erbium atoms
managed to detect a Fermi surface deformation which is due to the dipolar interaction [1].
Here we perform a systematic study of quench dynamics of trapped dipolar Fermi gases
at zero temperature, which are induced by a sudden change of the magnetic field, which
enforces the polarization of the magnetic moments of the erbium atoms. As this modifies
the equilibrium configuration, oscillations of the fermionic erbium cloud emerge around
the new equilibrium, which are characteristic for the presence of the dipole-dipole
interaction. In order to analyze the emergent dynamics we follow Ref. [2] and solve
analytically the underlying Boltzmann-Vlasov equation wihtin the relaxation
approximation in the vicinity of the new equilibrium configuration by using a suitable
rescaling of the equilibrium distribution [3]. The resulting ordinary differential equations
of motion for the scaling parameters are solved numerically for experimentally relevant
parameters all the way from the collisionless to the hydrodynamic regime. A comparison
with a corresponding linear stability analysis reveals that the resulting quench dynamics
can be understood in terms of the low-lying collective modes due to the smallness of the
dipolar interaction strength. All our theoretical and numerical calculations can be tested in
current experiments with ultracold dipolar fermionic atoms.

REFERENCES
[1] K. Aikawa et al., Science 345, 1484 (2014).
[2] F. Wächtler, A. R. P. Lima, A. Pelster, arXiv: 1311.5100 (2013).
[3] P. Pedri, D. Guery-Odelin, S. Stringari, Phys. Rev. A 68, 043608 (2003).

Trapped Bose-Einstein Condensates with Strong Disorder

V. Lončar
1Scientific Computing Laboratory, Institute of Physics Belgrade,

1, A. Balaž1 and A. Pelster2

University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

2Physics Department and Research center OPTIMAS,
Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany

e-mail: vloncar@ipb.ac.rs

We work out a non-perturbative approach towards the dirty boson problem at zero
temperature that is based on a Gaussian approximation for correlation functions of the
disorder problem and the condensate wave function solving the Gross-Pitaevskii problem.
For harmonically trapped Bose-Einstein condensates we apply, in addition, the

Nonlinear optics Contributed papers

77

semiclassical approximation and derive with this self-consistency equations between the
disorder ensemble-averages of particle density and condensate density. Invoking,
furthermore, the Thomas-Fermi approximation we obtain results that reproduce for weak
disorder the seminal results of a Bogoliubov theory of dirty bosons [1-3], but do not yield
for strong disorder a Bose-glass phase. Afterwards, we go beyond the Thomas-Fermi
approximation and perform a full numerical treatment of the self-consistency equations
based on the Crank-Nicolson split-step semi-implicit imaginary-time propagation [4],
which yields a quantum phase transition to a Bose-glass phase for strong disorder [5].

REFERENCES
[1] K. Huang, H.-F. Meng, Phys. Rev. Lett. 69, 644 (1992).
[2] G. M. Falco, A. Pelster, R. Graham, Phys. Rev. A 75, 063619 (2007).
[3] G. M. Falco, A. Pelster, R. Graham, Phys. Rev. A 76, 013624 (2007).
[4] D. Vudragović et al., Comput. Phys. Comm.. 183, 2021 (2012).
[5] P. Navez, A. Pelster, R. Graham, Appl. Phys. B 86, 395 (2007).

Faraday Waves in Dipolar Bose-Einstein Condensates

D. Vudragović
Scientific Computing Laboratory, Institute of Physics Belgrade,

 and A. Balaž

University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
e-mail: dusan@ipb.ac.rs

We present the emergence of Faraday waves in cigar-shaped 52Cr and 164Dy Bose-
Einstein condensates. These density waves are induced by periodic modulation of the
frequency of the trapping potential. We study through extensive numerical simulations
and detailed variational treatment the effects of the strong dipolar interaction on the
spatial and time-period of the Faraday waves. Unlike in the case of homogeneous [1] or
inhomogeneous contact interactions [2], the emergence of Faraday waves is found to
further destabilize the condensate in the presence of strong dipolar interaction. The
interesting effect of spatial period variation of generated density patterns is observed
numerically and studied within the Gaussian variational approach.

REFERENCES
[1] A. Balaž, A. I. Nicolin, Phys. Rev. A 85, 023613 (2012).
[2] A. Balaž et al., Phys. Rev. A 89, 023609 (2014).

Hannover 2016 – Q Tuesday

Q 17: Quantum Gases: Bosons I

Time: Tuesday 11:00–13:00 Location: e001

Group Report Q 17.1 Tue 11:00 e001
Rosensweig instability and solitary waves in a dipolar Bose-
Einstein condensate — ∙Matthias Wenzel, Holger Kadau,
Matthias Schmitt, Igor Ferrier-Barbut, and Tilman Pfau —
5. Physikalisches Institut and Center for Integrated Quantum Sci-
ence and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569
Stuttgart, Germany
Ferrofluids show unusual hydrodynamic effects due to the magnetic
nature of their constituents. For increasing magnetization a classical
ferrofluid undergoes a Rosensweig instability and creates self-organized
ordered surface structures or droplet crystals.
In the experiment we observe a similar behavior in a sample of ultra-
cold dysprosium atoms, a quantum ferrofluid. By controlling the short-
range interaction with a Feshbach resonance we can induce a finite-
wavelength instability due to the dipolar interaction.
Subsequently, we observe the spontaneous transition from an unstruc-
tured superfluid to an ordered arrangement of droplets by in situ imag-
ing. These patterns are surprisingly long-lived and show hysteretic be-
havior. When transferring the sample to a waveguide we observe mu-
tually interacting solitary waves. Time-of-flight measurements allow
us to show the existence of an equilibrium between dipolar attraction
and short-range repulsion. In addition we observe interference between
droplets.
In conclusion, our system shows both superfluidity and translational
symmetry breaking. This novel state of matter is thus a possible can-
didate for a supersolid ground state.

Q 17.2 Tue 11:30 e001
Rosensweig instability due to three-body interaction or quan-
tum fluctuations? — Vladimir Lončar1, Dušan Vudragović1,
∙Antun Balaž1, and Axel Pelster2 — 1Scientific Computing Lab-
oratory, Institute of Physics Belgrade, University of Belgrade, Serbia
— 2Physics Department and Research Center OPTIMAS, Technical
University of Kaiserslautern, Germany
In the recent experiment [1], the Rosensweig instability was observed
in a 164Dy Bose-Einstein condensate, which represents a quantum fer-
rofluid due to the large atomic magnetic dipole moments. After a
sudden reduction of the scattering length, which is realized by tuning
the external magnetic field far away from a Feshbach resonance, the
dipolar quantum gas creates self-ordered surface structures in form of
droplet crystals. As the underlying Gross-Pitaevskii equation is not
able to explain the emergence of that Rosensweig instability, we ex-
tend it by both three-body interactions [2-4] and quantum fluctuations
[5]. We then use extensive numerical simulations in order to study the
interplay of three-body interactions as well as quantum fluctuations on
the emergence of the Rosensweig instability.
[1] H. Kadau, M. Schmitt, et al., arXiv:1508.05007v2 (2015).
[2] H. Al-Jibbouri, I. Vidanović, A. Balaž, and A. Pelster, J. Phys. B
46, 065303 (2013).
[3] R. N. Bisset and P. B. Blakie, arXiv:1510.09013 (2015).
[4] K.-T. Xi and H. Saito, arXiv:1510.07842 (2015).
[5] A. R. P. Lima and A. Pelster, Phys. Rev. A 84, 041604(R) (2011);
Phys. Rev. A 86, 063609 (2012).

Q 17.3 Tue 11:45 e001
Phonon to roton crossover and droplet formation in trapped
dipolar Bose-Einstein condensates — ∙Falk Wächtler and Luis
Santos — Institut für Theoretische Physik, Leibniz Universität Han-
nover, Hannover, Germany
The stability, elementary excitations, and instability dynamics of dipo-
lar Bose-Einstein condensates depend crucially on the trap geometry.
In particular, dipolar condensates in a pancake trap with its main plane
orthogonal to the dipole orientation are expected to present under
proper conditions a roton-like dispersion minimum, which if softening
induces the so-called roton instability. On the contrary, cigar-shape
traps are expected to present no dispersion minimum, and to undergo
phonon (global) instability if destabilized. In this talk we investigate by
means of numerical simulations of the non-local non-linear Schrödinger
equation and the corresponding Bogoliubov-de Gennes equations the
stability threshold as a function of the trap aspect ratio, mapping the
crossover between phonon and roton instability. We will discuss in
particular how this crossover may be observed in destabilization ex-

periments to reveal rotonization.
In a second part, motivated by recent experiments on droplet forma-

tion in Stuttgart, we introduce large conservative three-body interac-
tions, and study how these forces affect the destabilization dynamics.
We will discuss the ground-state physics of the individual droplets, and
the crucial role that is played by the interplay between internal droplet
energy, external center-of mass energy of the droplets, and energy dis-
sipation in the nucleation of droplets observed in experiments.

Q 17.4 Tue 12:00 e001
Lattice Physics with Ultracold Magnetic Erbium — ∙Simon
Baier1, Manfred J. Mark1,2, Daniel Petter1, Kiyotaka
Aikawa1, Lauriane Chomaz1,2, Zi Cai2, Mikhail Baranov2, Pe-
ter Zoller2,3, and Francesca Ferlaino1,2 — 1Institut für Exper-
imentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Inns-
bruck, Austria — 2Institut für Quantenoptik und Quanteninforma-
tion, Österreichische Akademie der Wissenschaften, 6020 Innsbruck,
Austria — 3Institut für Theoretische Physik, Universität Innsbruck,
Technikerstraße 21A, 6020 Innsbruck, Austria
Strongly magnetic atoms are an ideal systems to study many-body
quantum phenomena with anisotropic and long-range interactions.
Here, we report on the first observation of the manifestation of mag-
netic dipolar interaction in extended Bose-Hubbard (eBH) dynamics
by studying an ultracold gas of Er atoms in a three-dimensional optical
lattice. We drive the superfluid-to-Mott-insulator (SF-to-MI) quan-
tum phase transition and demonstrate that the dipolar interaction
can favor the SF or the MI phase depending on the orientation of
the atomic dipoles. The system is well described by the individual
terms of the eBH Hamiltonian. This includes the onsite interaction,
which, additional to the isotropic contact interaction, can be tuned
with the dipole-dipole interaction by changing the dipole orientation
and the shape of the onsite Wannier functions. We find for the first
time the presence of the nearest-neighbor interaction between two adja-
cent particles. Future work will investigate dipolar effects with erbium
molecules and fermions as well as spin physics in our lattice system.

Q 17.5 Tue 12:15 e001
Strong-wave-turbulence character of non-thermal fixed
points in Bose gases — ∙Isara Chantesana1,2,3 and Thomas
Gasenzer2,3 — 1Institut für Theoretische Physik, Ruprecht-Karls-
Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Ger-
many — 2Kirchhoff Institut für Physik, INF 227, 69120 Heidelberg,
Germany — 3ExtreMe Matter Institute EMMI, GSI Helmholtzzen-
trum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darm-
stadt, Germany
Far-from equilibrium dynamics of a dilute Bose gas is studied by means
of the two-particle irreducible effective action formalism. We investi-
gate the properties of non-thermal fixed points predicted previously,
which are related to non-perturbative strong wave turbulence solu-
tions of the many-body dynamic equations. Instead of using a scaling
analysis, we study the Boltzmann equation of the scattering integral
by means of direct integration equation for sound waves. In this way
we obtain a direct prediction of the scaling behaviour of the possible
fixed-point solutions in the context of sound-wave turbulence. Impli-
cation for the real-time dynamics of the non-equilibrium system are
discussed.

Q 17.6 Tue 12:30 e001
Evidence of Non-Thermal Fixed Points in one-dimensional
Bose gases — ∙Sebastian Erne1,2,4, Robert Bücker4,
Wolfgang Rohringer4, Thomas Gasenzer1,2,3, and Jörg
Schmiedmayer4 — 1Institut für Theoretische Physik, Ruprecht-
Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg,
Germany — 2ExtreMe Matter Institute EMMI, GSI Helmholtzzen-
trum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darm-
stadt, Germany — 3Kirchhoff-Institut für Physik, INF 227, 69120 Hei-
delberg, Germany — 4Vienna Center for Quantum Science and Tech-
nology (VCQ), Atominstitut, TU Wien, Vienna, Austria
This work investigates the rapid cooling quench over the dimensional-
and quasicondensate-crossover. Analyzing experiments performed at
the Atominstitut, we study the relaxation of such a far-from equilib-
rium system. The early stage of condensate formation is dominated

1

Hannover 2016 – Q Tuesday

by solitonic excitations, leading to a characteristic momentum distri-
bution in agreement with a model of randomly distributed defects.
The number of solitons increases with the quenchrate giving rise to an
incompressible condensate. The isolated system follows a self-similar
evolution governed by a universal time-independent nonthermal fixed
point distribution. The dynamic universality classes of these nonequi-
librium attractor solutions are relevant for a wide variety of physical
systems ranging from relativistic high-energy physics to cold quantum
gases. At later times of the evolution the system fully equilibrates
leading to deviations from the self-similar evolution. Our results show
a new way of condensation in far from equilibrium 1d Bose gases.

Q 17.7 Tue 12:45 e001
Spin phonon dynamics with classical statistical methods

— ∙Asier Piñeiro Orioli1,2, Arghavan Safavi-Naini2, Michael
Wall2, and Johannes Schachenmayer2 — 1Institute for Theoreti-
cal Physics, Heidelberg, Germany — 2JILA, NIST and University of
Colorado, Boulder, Colorado, USA
Systems with both spin and phonon degrees of freedom are ubiquitous
in physical fields ranging from condensed matter to biophysics. How-
ever, methods to compute the dynamics of such systems are scarce,
especially in high dimensions. In this work, we combine the Truncated
Wigner Approximation (TWA) for bosons with its recently developed
discrete version (dTWA) for spins to describe the dynamics of coupled
spin-phonon systems. We benchmark the method by comparing to
exact results and discuss applications to trapped-ion and cavity exper-
iments.

2

